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ABSTRACT 

 

Campylobacter jejuni is the leading cause of diarrhoea among human beings worldwide. 

Epidemiological investigations have shown that it affects over 500 million people per year.  

C. jejuni is mainly transmitted to human through consumption of cross contaminated chicken. 

In most cases, the diarrhoea clears by itself within 3 to 5 days. But it causes a big discomfort 

in the affected individuals. In addition, it has a huge economic impact due to sick leaves. 

Because of this, efforts are being put into understanding how C. jejuni interacts with human 

beings and other hosts. An indepth understanding of how this pathogen interacts with its hosts 

will lead to development of appropriate diagnosis tools and prevention measures.  

Bile acids are a major component of the gut fluid in all the hosts of C. jejuni. However, the 

interaction of C. jejuni and different types of bile acids at human body temperature of 37
o
C is 

poorly understood. Consequently, this study was designed to unearth the proteomic response 

in C. jejuni reference strain 81-176 to sublethal concentrations of cholic acid (CA), 

deoxycholic acid (DCA), lithocholic acid (LCA), taurocholic acid (TCA), chenodeoxycholic 

acid (CDCA), ursodeoxycholic acid (UDCA) and glycocholic acid (GCA). The specific 

objectives were: (i) to investigate the response in 81-176 to DCA 0.05% at 37
o
C for 12h and 

24h using both stable isotope labeling with amino acids in cell culture (SILAC) and label-free 

analysis with sequantial window acquisation of all theoretical mass spectra (SWATH); and 

determine a suitable quantitative method for the study. (ii) To use the method selected 

quantitative method to investigate global protein expression in 81-176 in response to sublethal 

concentrations of CA, LCA, TCA, CDCA, UDCA and GCA cultured at 37
o
C for 12h under 

microaerophilic conditions. (iii) To identify and characterize a currently uncharacterized and 

widely induced protein (iv) To use label-free analysis with SWATH to investigate protein 

expression in 81-176 cultured in temperatures of 37
o
C (human) and 42

o
C (chicken) without 

bile acids.. 

Intially, the capability of C. jejuni to adhere and invade Caco-2 cells in the presence of 

various concentrations of bile acids was investigated using gentamicin protection assay 

(GPA). The results showed that DCA, CDCA and GCA promoted adherence and invasion in a 

dose depandant fashion. LCA and UDCA didn‘t neither promote nor suppress adherence and 

invasion. Subsequently, IC50 of each bile acid was obtained. Half of this concentration of each 

bile acid corresponded to the concentrations that are present in the large intestines of human 



 x 

beings. Hence half IC50 concentrations were taken to be sublethal concentration. The 

concentrations were: CA 0.1%, DCA 0.05%, LCA 0.05%, TCA 0.5%, CDCA 0.05%, UDCA 

0.5% and GCA 0.4%. Quantitative proteomic analysis of the response of 81-176 to DCA 

0.05% showed that SILAC generated 500 quantifiable proteins and label-free analysis with 

SWATH generated 957 quantifiable proteins. The difference was attributed to poor 

incorporation of arginine and lysine in 81-176. As a result, SWATH analysis was used to 

quantify the response in 81-176 to different bile acids. These analyses found that CA 

significantly upregulated 19 proteins and downregulated 28 proteins; DCA significantly 

upregulated 113 proteins and downregulated 79 proteins; LCA significantly upregulated 4 

proteins and downregulated 13 proteins; TCA significantly upregulated 51 proteins and 

downregulated 60 proteins; CDCA  significantly upregulated 89 proteins and downregulated 

79 proteins; UDCA significantly upregulated 2 proteins and downregulated 4 proteins; GCA 

significantly upregulated 139 proteins and downregulated 20 proteins. Among the 

significantly upregulated proteins, MazF was selected for further characterization. The mutant 

showed significant reduction in adhering onto Caco-2 cells in the presence of CA 0.1% 

(p<0.05). Also, the mutant showed significant reduction in invading Caco-2 cells in the 

presence of CA 0.1% and TCA 0.5% (p<0.05). Similarly, the muatnt showed decline in 

growth after 20 hr in broth supplemented with CA 0.01%, DCA 0.05%, TCA 0.05%, CDCA 

0.05% and GCA 0.4%. Separately, 83 proteins were significantly upregulated and 65 proteins 

were significantly downregulated between 81-176 that was cultured at 37
o
C for 12h and 24h. 

While 83 proteins were significantly upregulated and 50 proteins were significantly 

downregulated between 81-176 that was cultured at 37
o
C for 24h and 42

o
C for 24h. All the 

differentially expressed proteins belonged to the following biological processes: (i) cell 

division and cell cycle (ii) maintenance of integrity of outer, periplasmic and inner 

membranes (iii) DNA replication and transcription (iv) metabolism (v) chemotaxis and 

motility (vi) stress response and 291 uncharacterized proteins. 

  

In conclusion, SWATH analysis is a more suitable quantitative method for wide scale 

Campylobacter proteomic research. However, other methods such as SILAC should be 

concurrently included to complement its weaknesses. DCA, CDCA and GCA had the highest 

number of differentially expressed proteins. Equally, CA differentially expressed a reasonable 

number of proteins but not as high as DCA, CDCA and GCA. CA, DCA, LCA, TCA, CDCA, 

UDCA and GCA promote adherence and invasion of epithelial cells. Majority of the proteins 

which are promoted adherence and invasion are involved in metabolic processes. Also all the 
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bile acids that were examined in this study are toxic to 81-176. The results show that 81-176 

has a well built adaptation system to both bile acid antimicrobial activities and changes in 

temperatures. This system involves activation and deactivation of a set of genes involved in 

metabolism, stress response, maintenance of integrity of outer, periplasmic and inner 

membranes, chemotaxis and motility. Undoubtedly, the findings of this study will enhance the 

understanding of the biology on the interaction of C. jejuni and bile acids.    
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1.0 INTRODUCTION  

1.1 Brief history of Campylobacter jejuni 

The isolation of Campylobacter spp. dates back to a period between 1884 and 1940 during 

which comma and spiral shaped bacteria where constantly isolated from humans and livestock 

suffering from diarrhea, abortion and death (Butzler, 2004). These bacteria were collectively 

classified in the genus Vibrio which had been created earlier by Otto Friedrich Müller 

(Vandamme and De Ley, 1991). Improvement in isolation and identification methods between 

1920 and 1960 lead to an understanding that Campylobacter spp. shared a similar shape with 

Vibrio spp. but had different physiological characteristics and disease outcome (King, 1957). 

Consequently, two groups of Vibrios evolved: the first group contained Vibrios with low G+C 

content growing optimally at 42
°
C under microaerophilic conditions. The second group was 

comprised of Vibrios that had high G+C content in DNA and grew optimally at 37
°
C under 

aerobic conditions (King, 1962). In 1963 Sebald and Veron coined the genus Campylobacter 

to house Vibrios in the first group described above (Veron and Chatelain, 1973). Since then, 

this genus has 25 species and 9 subspecies (Zautner and Masanta, 2016). But only C. jejuni 

and C. coli cause gastroenteritis in humans with 95% of the cases attributed to C. jejuni 

(Kaakoush et al., 2015; Sheppard and Maiden, 2015).      

The dates when C. jejuni was first isolated is unclear due to the absence of suitable diagnostic 

tools during that period. Unconfirmed historical records suggest that C. jejuni could have been 

one of the bacteria that Dr. Theodor Escherich isolated from infant stool in 1889 (Shulman et 

al., 2007). However, successful isolation was only reported in 1947 by Vinzent and co-

workers, in 1957 by Elizabeth King and in 1968 by Dekeyser and Butzler (Dekeyser et al., 

1972; King, 1957). Currently, better diagnostic tools, reliable research models, suitable 

disease management approaches, improved control mechanisms and epidemiological 

monitoring programs have been developed. These developments have continued to show that 

C. jejuni is the leading cause of gastroenteritis worldwide beating other food borne bacterial 

pathogens including Staphylococcus aureus, Salmonella typhi, Yersinia enterocolitica, 

Shigella, Clostridium difficle, Enterotoxigenic Escherichia coli, Enterohemorrhagic E. coli 

(EHEC), Enteropathogenic E.coli, Bacillus cereus and Vibrio cholerae (Kirk et al., 2015; 

Marder, 2017). This phenomenon makes in-depth understanding of the biology of C. jejuni 

worthwhile.  
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1.2 Characteristics of C. jejuni 

C. jejuni are Gram-negative bacteria, non-spore formers, have a spiral shape and the length 

and width of the body is in the ranges of 1.5 – 3.5 µm and 0.2 – 0.4 µm respectively (Pead, 

1979). Their distinct stable spiral shape is mediated by its ring shaped flagella and the small 

amplitude of its helix (Ng et al., 1985). This shape distinguishes it from other Campylobacter 

spp. whose shape is pleomorphic including S-shape spiral, seagull-shaped spiral, ribbon 

shaped spiral or dimpled and coccus forms. It has a unique corkscrew motility which is 

propelled by bipolar flagella emerging from a concave depression or crater-like feature on the 

poles (Müller et al., 2014; Pead, 1979). 

Naturally, C. jejuni colonizes the intestinal mucosa of mammals and birds (Brown et al., 

2004). Other habitats include: water, sewage, beach sand and ground water (Newell et al., 

1985). However, chicken is the major host and the main source of transmission to humans 

(Hermans et al., 2012). In chicken, C. jejuni inhabits the crypt mucus of cecum, large intestine 

and cloacal without attaching onto the surfaces and rarely the spleen and gallbladder (Beery et 

al., 1988a). Human beings are an accidental host, and it resides in the crypt mucus of 

duodenum and proximal jejunum (Stahl and Vallance, 2015). 

In the laboratory, the following conditions are routinely used to promote wholesome C. jejuni 

cellular growth: (i) a suitable media containing source(s) of carbon, amino acids, metal ions 

and pH ranging from 6.0 to 7.0, (ii) a microaerophilic environment which consists of 85% N2, 

10% CO2, and 5% O2 and (iii) temperatures ranging from 37
°
C to 42

°
C, with optimal growth 

achieved at 42
°
C (Davis and DiRita, 2008a).  

1.3. Human disease and epidemiology 

1.3.1 Clinical presentation of the disease and complications  

C. jejuni causes an enteric disease known as campylobacteriosis (Black et al., 1988). The 

symptoms include: diarrhea, raised body temperature, anorexia, malaise and stomach cramps 

and occasionally vomiting (Crushell et al., 2004). These symptoms don't kick in at once. It 

starts with fever which is experienced 2-3 days after exposure to C. jejuni gradually followed 

by mild or severe diarrhea after 3-5 days of exposure combined with anorexia, malaise and 

stomach cramps and may continue for 7 consecutive days (Black et al., 1988). Diagnosis is 

mainly through Gram-staining (Gram negative), polymerase chain reaction and cultivation 

either on blood agar or Campylobacter selective agar at 42
o
C under microaerophilic 

environment overnight (Hurd et al., 2012). In addition, appropriately equipped diagnostic 
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laboratories used MALDI-TOF mass spectrometry (Zautner et al., 2013). Normally, 

campylobacteriosis heals by itself within 3 days of onset. However, in serious cases 

erythromycin and ciprofloxacin are recommended for adults while in children only 

erythromycin is recommended (Eiland and Jenkins, 2008; Guerrant et al., 2001).  

In some patients, post-infectious sequelae can arise upon recovery from campylobacteriosis. 

There most common ones are: (i) Guillain–Barré syndrome (GBS) which is a result of the 

human immune system mistaking its ganglioside GM1 to be C. jejuni's lipopolysaccharide 

hence attacking itself resulting in limb weaknesses (Willison et al., 2016; Yuki and Hartung, 

2012).  (ii) Reactive arthritis (ReA) which is characterized by painful joints arising from 

immune associated inflammation after C. jejuni infection (Giovanni Cimminiello et al., 2015). 

And, (iii) Inflammatory bowel disease (IBD) which is characterized by gut inflammation due 

to an uncontrolled immune response to non-invasive microbiota species following infection 

by C. jejuni (Kalischuk and Buret, 2010).   

1.3.2 Epidemiology 

Recent epidemiological data show that campylobacteriosis affects more than 500 million 

people per year with the majority of the cases going unreported (Kaakoush et al., 2015). 

These reports show that campylobacteriosis affects all ages, gender and race; but the elderly, 

children below 5 years and malnourished children are more affected due to weak immune 

defense systems and unstable composition of microbiota (Kaakoush et al., 2015; Masanta et 

al., 2013; Platts-Mills and Kosek, 2014). In addition, cases of Campylobacter associated post-

infectious sequelae are on the rise (Connor and Riddle, 2013; Esan et al., 2017). Equally, 

resistance to tetracyclines and fluoroquinolones is on the rise (El-Adawy et al., 2015; Nguyen 

et al., 2016; Wimalarathna et al., 2013). The increased awareness of these situations has been 

attributed to the availability of reliable diagnostic tools and better epidemiological 

surveillance schemes (Kaakoush et al., 2015).  

The sources of C. jejuni transmission to human include: (i) eating contaminated animal and 

poultry meat, particularly from cross contaminated chicken; (ii) eating contaminated 

vegetables particularly cross contaminated salads; (iii) drinking contaminated fluids such as 

milk and water and (iv) association with farm animals, poultry and pets (Hald et al., 2016). 

Consequently, risk factors include: contaminated foods and fluids, associating with animals, 

swimming or drinking tap water, traveling, poor sanitation, food production, diverse C. jejuni 

host/environmental adaption strategies and human status such as age, health and feeding 

habits (Hald et al., 2016; Kaakoush et al., 2015; Strachan et al., 2013).  



 4 

No particular phylogenetic group of C. jejuni is directly linked to a particular type of diarrhea 

(i.e. mild or severe) or to a particular geographical location or region. The majority of human 

cases have been linked to serotypes ST-21 and ST-45 but recently ST-257 and ST-677 have 

been linked to severe hospitalized diarrhea cases in Sweden and Finland respectively (Cody et 

al., 2012; Harvala et al., 2016; Schönberg-Norio et al., 2006; Zautner et al., 2011). The 

prevalence of campylobacteriosis has been linked to seasons; it has been shown that its 

prevalence is higher during summer than winter or during rainy seasons than dry seasons 

(Nichols et al., 2012; Schielke et al., 2014; Zautner et al., 2011).  

1.3.3 Pathogenesis process and virulence associated factors 

The C. jejuni pathogenesis process is poorly unserstood. As a result, majority of the 

responsible bacterial virulence factors are not known. However, available literature reveals 

that the infection process of C. jejuni in humans begins when a reasonable amount of cells 

reach and succeed in settling in the small intestines; for example, Black and co-workers 

showed that as little as 400 cells of C. jejuni can initiate Campylobacter associated diarrhea 

(Black et al., 1988). Since this observation was made, it has been shown that the process 

leading to diarrhea involves the following intertwined phases: (i) arrival of C. jejuni in the 

stomach, (ii) colonization of small intestines, (iii) adherence to epithelial cells and, (iv) 

invasion of epithelial cells, damage of tight junctions and evasion of innate immune defense 

system (Janssen et al., 2008; Konkel et al., 2001; Van Vliet and Ketley, 2001; Young et al., 

2007). Below is an overview of each phase: 

(i) Phase 1: entry of C. jejuni in the stomach 

C. jejuni is introduced into the human stomach when one ingests contaminated food, water or 

milk but frequently by eating contaminated chicken meat (Butzler, 2004; Hermans et al., 

2012). However, the environment in the stomach is characterized by pH 1.5 to 3.5, high 

osmolarity, temperature of 37
°
C, oxidants, poor nutrition and low oxygen levels, which are 

hostile to C. jejuni (Gelberg, 2014; Kararli, 1995). Because of this, C. jejuni migrates into the 

small intestines in search of a favourable environment (Hugdahl et al., 1988). The natural 

movement of food also helps to transport C. jejuni during its migration into the small 

intestines (Ribet and Cossart, 2015). 

(ii) Phase 2: Colonization of small intestine, mainly, jejunum 

Duodenum, jejunum and ileum make up the small intestine. Its main function is nutrient 

absorption. The environment in the small intestine is made up of: almost neutral pH 
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(duodenum pH 5 - 7, jejunum pH 6 - 7 and ileum pH 7), bile acids, limited oxygen, a 

temperature of 37
°
C, diverse strains of natural gut microbiota and mucus (Kararli, 1995). 

Consequently, when C. jejuni arrives in the duodenum and jejunum, it encounters a more 

favourable environment choosing to reside mainly in the crypt mucus of the jejunum (Lecuit 

et al., 2004; Stahl and Vallance, 2015). Other factors which have been found to encourage  

C. jejuni to prefer residing in the crypt mucus of jejunum include: (a) availability of variety of 

amino acids which C. jejuni utilizes as a source of carbon (Karmali et al., 1986; Leach et al., 

1997; Mendz et al., 1997; Westfall et al., 1986); (b) availability of metal ions especially iron 

which are essential in synthesis of proteins and metabolic processes (Stahl et al., 2012a);  

(c) availability of various by-products such as SCFAs and vitamins generated by the gut 

microbiota during fermentation which C. jejuni utilizes for growth (Mao et al., 2014; Staib 

and Fuchs, 2014; Sun and O‘Riordan, 2013) and; (d) availability of constantly replenished 

mucus whose chief component is mucin which has L-fucose as one of its building blocks 

(Johansson et al., 2011). C. jejuni utilizes free L-fucose produced by fucosidases of both the 

gut microbiota and human small intestine as a carbon source (Stahl et al., 2011).  

 (iii) Phase 3: adherence to epithelial cells 

Under normal situations, walls of small intestines are highly guarded against adherence and 

subsequent invasion by microbial pathogens. Some of these guarding mechanisms include: 

saliva, acidic pH, microbiota, immunoglobulins, peroxidases, lactoferrins, proteolytic 

enzymes, phagocytes, catalases, mucus, secretions from paneth cells, innate lymphoid cells, 

adaptive immune system, among others (Gelberg, 2014). Interference with this norm opens a 

door for a pathogen to attack the epithelial lining of the small intestines leading to infections 

(Kamada et al., 2013). For C. jejuni, it has been shown that consumption of certain types of 

foods disrupts the composition of microbiota leading to invasion of epithelia cells (Masanta et 

al., 2013). For example, fat-rich  diet alters the normal composition of microbiota by 

increasing levels of E. coli, Clostridium spp. and other Eubacterium spp. and reducing the 

levels Enterococcus spp. and Lactobacillus spp. (Bereswill et al., 2011). This disruption 

breaks the colonization resistance mounted by normal composition of microbiota supporting 

the population of C. jejuni to multiply to numbers which overpowers other protective 

measures leading to its attachment onto the epithelial cells followed by invasion and diarrhea 

(Stahl and Vallance, 2015). 
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(iv) Phase 4: Invasion of intestinal epithelial cells 

In the small intestines, C. jejuni is taken up by M-cells (Hu et al., 2008; Kalischuk et al., 

2010; Walker et al., 1988). C. jejuni avoids engulfment by phagocytes which protect M-cells 

by increasing synthesis of polysaccharide capsule on its outer coat (Maue et al., 2013; Rose et 

al., 2012; Stahl et al., 2014). Once inside the cytoplasm, C. jejuni is mainly contained in a 

Campylobacter containing vacuole (CCV) which is moulded during uptake (Konkel et al., 

2013; Stahl et al., 2014). During its moulding, the vacuole incorporates Lamp-1 of the 

lysosome which aids the vacuole in evading engulfment by lysosome (Stahl et al., 2014; 

Watson and Galán, 2008). In addition to Lamp-1, epithelial membrane attached C. jejuni 

injects proteins useful proteins into the cytoplasm, for example, CiaI which also aids CCV in 

avoiding delivery to lysosomes (Buelow et al., 2011). C. jejuni survives inside the CCV by 

drastically decreasing metabolic activities and utilizing anaerobic respiratory pathway (Liu et 

al., 2012).  

(v) Phase 5: Intestinal epithelia cell response to invasion by C. jejuni and resulting diarrhea 

It has been shown in a mice model that during invasion by C. jejuni, the toll-like receptors, 

TLR2 and TLR4, of gastrointestinal epithelium sense C. jejuni or its effectors and transmit 

information through MyD88 to NF-kB which recruits innate immune response (Stahl and 

Vallance, 2015). In addition, the presence of C. jejuni or its capsule stimulates gastrointestinal 

epithelium to recruit cytokines such as interleukin 2, interleukin 4, interferon-γ, tumor 

necrosis factor-α and a group of antimicrobials which join hands with other players of innate 

immune response to defend the gastrointestinal epithelium against C. jejuni invasion and 

subsequent clearance of C. jejuni (Maue et al., 2013; Shang et al., 2016; Zilbauer et al., 2005). 

Ultimately, diarrhea results from a combination of factors: first, the tension imposed on the 

integrity of epithelia cells alters: (i) the structure and function of tight junction barriers, (ii) 

normal induction of fluid and (iii) normal electrolyte secretion (Berkes et al., 2003; 

MacCallum, 2005; Viswanathan et al., 2008). Second, toxin component CdtB which when 

delivered into the nucleus, unzips the double stranded DNA into single strands leading to 

termination of cell cycle and subsequently apoptosis (Lai et al., 2016). Lastly, the 

inflammatory response cascade leads to disruption of blood veins (Martini and Willison, 

2016). 
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1.4 Bile acids: A key component of the fluid in the small intestines of human 

beings  

As stated above, C. jejuni mainly resides in the small intestines of human beings. Bile acids 

are one of the major constituents of fluid in the human small intestines. Hence they constantly 

interact with bacteria that are present in the small intestine including C. jejuni. The bile acids 

are categorized into two groups, namely, primary bile acids and secondary bile acids ( Table 

1). Below is a brief description of the synthesis of human bile acids and their secretion to the 

small intestines.  

 1.4.1 Synthesis of primary bile acids in the liver 

Primary bile acids; cholic acid (CA) and chenodeoxycholic acid (CDCA) are synthesized in 

the liver from cholesterol (Lefebvre et al., 2009). Two pathways are involved, namely, a 

classic (neutral) pathway and alternative (acidic) pathway (Li and Chiang, 2015). The classic 

pathway is the main source of CA and CDCA (Dawson and Karpen, 2015). The first step in 

this pathway entails enzyme 7α-hydroxylase (CYP7A1) catalyzing the conversation of 

cholesterol to 7α-hydroxycholesterol. The subsequent steps involve further disintegration of 

this molecule into: (i) unconjugated CA which is jointly catalyzed by actions of enzymes 12α-

hydroxylase (CYP8B1) and 27α-hydroxylase (CYP27A1) and (ii) unconjugated CDCA which 

is catalyzed by enzyme CYP27A1 (Lorbek et al., 2012). Separately, the alternative pathway 

yields CDCA only. The pathway progresses in 2 steps: first, cholesterol is oxidized into  

27-hydroxycholesterol in a process driven by enzyme CYP27A1; second,  hydroxylation of 

27-hydroxycholesterol into CDCA in a process that is catalyzed by oxysterol 7α-hydroxylase 

(CYP7B1) (Chiang, 2004).  

Finally, synthesized CA and CDCA undergo N-acylamadation conjugation which is essential 

for their reabsorption (Dawson and Karpen, 2015; Lorbek et al., 2012). It involves first 

converting CA and CDCA into their respective acyl-CoA thioester in a process that is 

catalyzed by cholyl-CoA synthetase (Falany et al., 1994). This is followed by an addition of 

either glycine or taurine to the respective acyl-CoA thioester in a process involving bile acid-

CoA:amino acid N-acyltransferase (hBAT). The end results are the following conjugated 

hydrophobic primary bile acids: CA yields (i) glycocholic (GCA) and (ii) taurocholic (TCA); 

CDCA yields (i) glycochenodeoxycholic (GCDCA) acid and (ii) taurochenodeoxycholic acid 

(TCCDA) with the ratio of glycine conjugants being higher than taurine conjugants (Joyce 

and Gahan, 2016; Kubitz et al., 2012). CA, GCA, TCA, CDCA, GCDCA and TCCDA are 
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transported through canalicular bile salt export pump (BSEP) for storage in the gallbladder 

(Lorbek et al., 2012). 

1.4.2 Release of primary bile acids into the small intestines and subsequent synthesis of 

secondary bile acids  

The release of CA, GCA, TCA, CDCA, GCDCA and TCCDA from the gallbladder into the 

small intestines is driven by the hormone cholecystokinin (CCK). The presence of food in the 

small intestines stimulate endocrine cells to release CCK which contracts the gallbladder 

releasing CA, GCA, TCA, CDCA, GCDCA and TCCDA into the duodenum (Gomez et al., 

1988). In the small intestines, CA, GCA, TCA, CDCA, GCDCA and TCCDA undergo 

biotransformation by gut bacterial microbiota rendering them soluble and re-absorbable 

(Canzi et al., 1989; Kim and Lee, 2005). In addition, some of the biotransformed bile acids 

undergo further modification by sulfation and glucoronidation conjugation (Kirkpatrick et al., 

1988). These modifications are briefly described below: 

(a) Biotransformation 

The small intestine harbours bacterial microbiota which is made up of species from the 

following phyla: Bacteroidetes, Firmicutes (Tenericutes), Proteobacteria, Verrucomicrobia, 

Fusobacteria, Actinobacteria and Cyanobacteria (Eckburg et al., 2005). Ridlon et al., 2005 

reported the distribution of bacterial microbiota as follows: 

(i) the duodenum harbours Lactobacillus and Streptococcus 

(ii) The jejunum harbours Lactobacillus, Streptococcus, Staphylococcus and Veillonella 

(iii) the ileum harbours Enterococcus, Enterobacteria, Clostridium, Bacteroides, Veillonella 

and Lactobacillus  

(iv) The colon harbours Bacteroides, Eubacterium, Bifidobacterium, Ruminococcus, 

Peptostreptococcus, Propionibacterium, Clostridium, Lactobacillus, Streptococcus and 

Methanobrevibacter. 

These bacteria release bile salt hydrolases (BSHs) which degrade bile acid salts for the 

following reason: (a) nutrition (Huijghebaert et al., 1982; Van Eldere et al., 1996) (b) 

detoxification (De Boever and Verstraete, 1999; Smet et al., 1995). The actions of these 

enzymes modify primary bile acids creating secondary bile acids (Hill and Drasar, 1968, 

1968; Shindo and Fukushima, 1976). This process is commonly referred to as 
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biotransformation. Four different types of bile acid biotransformation have been observed in 

human small intestine:  

(i) Oxidation: It involves the removal or addition of H2 at the  C-3, C-7 and C-12 of CDCA, 

CA, DCA and UDCA leading to generation of oxo- and keto- forms. These reactions are 

catalyzed by enzymes 3α- and 3β-hydroxysteroid dehydrogenase, oxidoreductase and 

luciferase which are present in Arthrobacter spp., Bacillus spp., Bacteroides spp., 

Brevibacterium spp., Clostridium spp. Corynebacterium spp., E. coli, Eubacterium spp., 

Lactobacillus spp., Micrococcus spp., Nocardia spp., Peptococcus magnus and Pseudomonus 

spp. (Baron and Hylemon, 1995; Kang, 2008; Sutherland and Macdonald, 1982; Taiko et al., 

1987). 

 (ii) Epimerization: It involves interchange of  α- with β- or vice versa at the C-3, C-7 and C-

12 positions of CDCA, CA, DCA and UDCA leading to generation of oxo- and iso- forms. 

These reactions are catalyzed by hydroxysteroid dehydrogenase (HSDH) that is present in 

Bacteroides spp., Clostridium spp. and Eubacterium spp. (Edenharder and Schneider, 1985; 

Hirano et al., 1981; Macdonald and Hutchison, 1982). 

(iii) Deamination: It entails breaking the N-acyl amide bond which binds taurine and glycine 

with CA and CDCA leading to generation of unconjugated GCA, TCA, GCDCA and 

TCDCA. This process is catalyzed by bile salt hydrolases (BSH) that are present in 

Bacteroides spp., Clostridium spp., Lactobacillus spp., Bifidobacterium spp., and Listeria 

monocytogenes (Huijghebaert and Hofmann, 1986). The unconjugated GCA, TCA, GCDCA 

and TCDCA are either reabsorbed back into the liver for conjugation or further 

biotransformed into CA and CDCA respectively. 

(iv) 7α/β-dehydroxylation: In this reaction CA and CDCA are biotransformed by Clostridium 

spp. and Eubacterium spp. into DCA and LCA or UDCA respectively. The process is 

catalyzed by enzymes 7α- or 7β-HSDH (Lepercq et al., 2004; Macdonald and Roach, 1981). 

(b) Sulfonation conjugation 

It involves transferring SO
-
3 at phosphoadenosine 5'- phosphosulfate (PAPS) to 3-OH position 

in a process that is catalyzed by sulfotransferase (Glatt, 2000). For example, sulfonation of 

lithocholic acid yields gylcolithocholic and taurolithocholic bile acids (PALMER and BOLT, 

1971). 
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(c) Glucuronidation conjugation 

It involves the addition of a glucuronide molecule to a biotransformed bile acid in a process 

that is catalyzed by UDP-glucuronosyltransferases (UGT) enzymes (Matern et al., 1984). For 

example, glucoronidation conjugation of chenodeoxycholic in the liver into acyl CDCA-

24glucuronide (CDCA-24G) in a process that is catalyzed by UDP-glucuronosyltransferases-

1A3 (UGT1A3) (Erichsen et al., 2010; Trottier et al., 2006). 

Table 1: Human bile acid pool and their sources 

Class Metabolic conversations Bile Acids 

Primary bile acids Breakdown of cholesterol by classic 

and alternative pathways 

(a) Cholic acid (CA); glyco and tauro 

conjugation leads to: (i) Glycocholic 

(GCA) and (ii) Taurocholic (TCA) 

(b) Chenodeoxycholic acid (CDCA); 

glyco and tauro conjugation leads to: (i) 

Glycochenodeoxycholic (GCDCA) 

acid (ii) Taurochenodeoxycholic acid 

(TCCDA) 

(Lefebvre et al., 2009) 

Secondary bile acids 

 (i) From primary bile acids through gut 

microbial 7α-dehydroxylation 

CA biotransforms into deoxycholic 

acid (DCA) and CDCA biotransforms 

into lithocholic acid (LCA) (Masuda 

and Oda, 1983; Mitropoulos and 

Myant, 1967; Norman and Donia, 

1962) 

(ii) From primary or secondary bile acids: 

(a) through gut microbial 7α/β-

epimerization 

Oxo-lithocholic biotransforms into 

ursodeoxycholic acid (UDCA) 

(Odermatt et al., 2011) 

(b) through gut microbial 3α/β-

epimerization 

Iso-bile acids (isoLCA, isoIDCA and 

isoIUDCA) (Nagengast et al., 1993). 

But rare.  

(c) through gut microbial 5α/β-

epimerization 

Allo-bile acids (allo-CA, allo-DCA, 

allo-LCA and allo-UDCA) (Monte, 

2009). But rare. 

(d) through gut microbial oxidation Oxo-(keto-) bile acids (7-

ketolithocholic acid and 12-lithocholic 

acid) (Odermatt et al., 2011). But rare. 
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1.5 Quantitative proteomics and its application to bacteria-bile acid 

research  

The goal of quantitative proteomics study is the detection, identification and quantification of 

the whole protein complement of a biological system, and the global quantitative 

characterization of its changes when its normal status is perturbed (Patterson and Aebersold, 

2003). Relative and absolute changes of protein and peptide concentrations in a perturbed 

system are usually measured by high resolution mass spectrometry (MS) (Bantscheff et al., 

2007). In a nutshell, MS-based quantitative measurements are grouped into two: quantitative 

labeling quantification and label-free labeling quantification (Boja and Rodriguez, 2012; 

Washburn, 2011). 

1.5.1 Quantitative labeling quantification 

In a labeling-based quantitative approach, differential expression of proteins is analysed by 

comparing the LC-MS or LC-MS/MS spectral differences between endogenous peptides and 

their stable isotope-labeled analogues (Sap and Demmers, 2012). Three major labeling 

methods have been established: 

 a) Metabolic labeling: 

In this type of labeling, cells are cultured in media which are supplemented with amino acids 

or nutrients carrying stable heavy isotopes (Gouw et al., 2010). These are incorporated into 

the synthesized proteins, and the corresponding mass shifts and associated signal intensities 

provide information on the differential concentrations of peptides, and therefore proteins. At 

the beginning, 
15

N-enriched media were successfully used in metabolic labeling (Conrads et 

al., 2001; Oda et al., 1999). This success lead to the development of a superior and currently 

frequently used metabolic labeling method called stable isotope labeling in cell culture 

(SILAC) (Ong et al., 2002).  In this method, heavy stable amino acids (most commonly 

arginine and lysine) are used because this corresponds with the enzyme specificity of trypsin 

as the most frequently used endoproteinase (Zhang and Neubert, 2009). In a two-plexed 

experiment, two sets of bacterial cultures are prepared; the first set - bacteria are cultured in 

media with light Arg and Lys. Second set - bacteria are cultured in media containing heavy 

Arg and Lys with several sub cultivation steps until ≥95% incorporation rate is achieved. 

Subsequently, 1:1 mixtures of the light and heavy protein samples are prepared and separated 

e.g. by SDS-PAGE. The resulting bands are sliced into small pieces, digested with trypsin and 

analyzed by LC-MS/MS. The ratios of the generated spectra of both light and heavy peptides 
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are used to calculate differential expression of proteins (Ong et al., 2002; Zhang and Neubert, 

2009). 

 b) Chemical or enzymatic labeling: 

In this labeling method, proteins are chemically or enzymatically labeled after extraction and 

purification (Sap and Demmers, 2012). Three main techniques which use this labeling method 

include:  

(i) isotope-coded affinity tags (ICAT) which utilizes cysteine labeling to measure differential 

protein expression (Shiio and Aebersold, 2006). ICAT labeling reagents are made up of three 

parts: a cysteine reactive group, a linker containing light and heavy isotopes which can be 

differentiated by MS and an affinity tag (biotin) (Chan et al., 2015). Experimentally, two 

protein samples are labeled with light and heavy ICAT reagent. The two mixtures are 

combined and digested with trypsin. The cysteine rich peptides are affinity tagged, purified 

and measured by MS (Shiio and Aebersold, 2006). 

(ii) Dimethyl labeling: In this technique, N-termini and ɛ-amino groups of lysine residue are 

labeled through reductive amination with formaldehyde and cyanoborohydride (Hsu and 

Chen, 2016). Initially, peptides are generated by digestion with trypsin. A Schiff base is 

formed via reductive amination when formaldehyde reacts with the N-terminus or an ɛ-amino 

group of a Lys residue. This base is reduced to a reactive secondary amine by 

cyanoborohydride. The secondary amine reacts with formaldehyde to form dimethylated 

peptides which are measured by MS/MS (Hsu et al., 2003).  

(iii) 
18

O labeling: This technique uses trypsin digestion to label carboxyl termini of peptides 

with two atoms of 
18

O (Stewart et al., 2001). The labeling procedure involves digesting 

proteins with trypsin (or a proteases enzyme) in 
18

O and 
16

O labeled water. The ratio of 
18

O 

and 
16

O in the resulting peptides is analyzed by MS and MS/MS (Miyagi and Rao, 2007). 

 c) Isobaric tags labeling: 

In this technique, isobaric tags employ the principle of carboxylic acid active ester chemistry 

to label free primary or secondary amino groups in either proteins or peptides (Gygi et al., 

1999). Reagents incorporate an isotopic balancer group which links an amin-reactive group 

with an isotopic reporter group (Christoforou and Lilley, 2012). LC-MS/MS analysis of the 

tryptically digested samples after mixing produce a cumulative MS signal, and MS/MS 

spectra containing a set of reporter mass signals whose intensity corresponds to the initial 
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protein concentration in the samples (Rauniyar and Yates, 2014). This labeling approach is 

employed by both ‗isobaric tags for relative and absolute quantification‘ (iTRAQ) (Ross, 

2004) and ‗tandem mass tags‘ (TMT) (Rauniyar et al., 2013). 

1.5.2 Label-Free Quantification                         

In this approach to protein quantification, proteins or peptides are not labeled (Griffin et al., 

2010). The experimental approach involves digestion of protein replicates with trypsin, 

separation of peptides by LC, and quantification from either the MS or MS/MS spectra 

(Neubert et al., 2008). In addition to absence of labeling, another important distinct feature of 

label-free quantification approach is the LC-MS/MS spectra quantification approach (Wang et 

al., 2008; Zhu et al., 2010). Four different LC-MS/MS spectra quantification approaches are 

available whose usage depends on the equipment. They include: First, Spectral counting: In 

this approach, protein quantification of a given protein is directly related to the average sum 

of the corresponding LC-MS/MS peptide spectra in the sample (Milac et al., 2012; Zhang et 

al., 2006). Second, MS1 label-free analysis in which a concentration of a given protein is 

calculated from the peak area value of corresponding peptides (Aoshima et al., 2014). Third, 

MS
E
 where both the precursor and fragment ion information of a protein are simulatenously 

extracted (Plumb et al., 2006). This results in the generation of both the molecular mass and 

fragment ion information of the protein under consideration which are used to identify it. 

Fourth, data-independent acquisition (DIA) with sequential window acquisition of all 

theoretical mass spectra (SWATH). This approach employs a data-dependant acquisition 

(DDA) generated ion library to identify data-independent acquisition (DIA) generated m/z 

windows ion spectra (Gillet et al., 2012; Huang et al., 2015).       

In general, the following advantages make both label and label-free quantitative proteomics 

approaches very attractive: enhanced simplicity, specificity, accuracy and reproducibility of 

results, rapid availability of results, analysis of multiple samples concurrently, and analysis of 

both post-translational modifications and protein complexes (Wasinger et al., 2013). 
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1.6 Physiological response of intestinal bacteria to bile acids and 

quantitative proteomics   

Transcriptional analysis has been widely used to gain an in-depth understanding into the 

physiological response of a few intestinal bacteria to bile acids. Through these studies, it has 

been found that bile acids impacts biological processes including: DNA replication and 

transcription (Kristoffersen et al., 2007), DNA damage and repair (Kandell and Bernstein, 

1991), cell wall and cell membrane biogenesis (Merritt and Donaldson, 2009), fatty acid and 

phospholipid metabolism (Taranto et al., 2003), amino acid biosynthesis (Sanchez et al., 

2005), efflux systems (Lin et al., 2005),  energy metabolism (Leverrier et al., 2004), protein 

synthesis (Prouty et al., 2004) and stress defense mechanisms (Bernstein et al., 1999).  

Of greatest interest is the recent application of quantitative proteomics in two studies which 

investigated the tolerance of bile acid stress in Lactobacillus spp. In the first study, Hamon 

and colleagues used 2D-LC-MS to conclude that 6 out of 15 genes previously identified via 

transcriptional analysis were responsible for bile acid tolerance in three Lactobacillus 

plantarum strains (LC56, LC 804 and 299V) (Hamon et al., 2011). In the second study, Lee 

and colleagues used iTRAQ to investigate the global bile stress response in Lactobacillus 

johnsonii PF01 (Lee et al., 2013). The study revealed numerous previously unknown bile 

tolerance proteins in Lactobacillus spp. In addition, the findings of this study generated the 

first detailed proposal on bile stress response in Lactobacillus spp. Evidently, the findings of 

these two studies showed that quantitative proteomics can point to hitherto unknown proteins, 

and lead to a better understanding of the physiological response of bacteria to bile acids. 
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2.0 HYPOTHEIS, AIM AND OBJECTIVES OF THE STUDY 

2.1 Hypothesis of this study 

As explained earlier, C. jejuni resides in the human small intestines where it continuously 

interacts with different bile acids. However, literature search shows that the response of 

different biological processes in C. jejuni to the different bile acids remains uninvestigated. 

Available results from few studies on physiological response of Bifidobacterium spp., 

Lactobacillus spp. and Helicobacter pylori to bile reveal a picture of re-arrangement of 

various biological systems such as transcriptional regulators, chaperones, membrane 

transporters, enzymes, stress mitigating proteins, energy metabolism and outer membrane 

proteins (Ruiz et al., 2013a). This thesis therefore hypothesized that a similar picture of 

rearrangement of biological processes was true for C. jejuni. In addition, some of the proteins 

which were significantly differentiated in C. jejuni in response to bile acids promoted its 

adherence on and invasion of epithelia lining of the human small intestine. The information 

that this study has generated will increase the current understanding of the biology of  

C. jejuni. 

2.2 Aim of the thesis 

The first aim of this thesis was to use a suitable quantitative proteomic approach to investigate 

the proteomic response of C. jejuni to sublethal concentrations of seven dominant human bile 

acids and identify previously uncharacterized proteins. These bile acids are: CA, DCA, LCA, 

TCA, CDCA, UDCA and GCA. The second aim was to characterize the adherence and 

invasion of at least one of the unknown widely expressed C. jejuni protein in Caco-2 cells.  

2.3 Objectives of the thesis 

(i) To investigate the response in 81-176 to DCA 0.05% at 37
o
C for 12h and 24h using both 

stable isotope labelling with amino acids in cell culture (SILAC) and label-free analysis with 

sequential window acquisition of all theoretical mass spectra (SWATH); and determine a 

suitable quantitative method for the study.  

(ii) To use the method selected quantitative method to investigate global protein expression in 

81-176 in response to sublethal concentrations of CA, LCA, TCA, CDCA, UDCA and GCA 

cultured at 37
o
C for 12h under microaerophilic conditions.  

(iii) To identify and characterize a currently uncharacterized and widely induced protein. 

(iv) To use label-free analysis with SWATH and investigate protein expression in 81-176 

cultured in temperatures of 37
o
C (human) and 42

o
C (chicken) without bile acids. 
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3.0 MATERIALS AND METHODS 

3.1 Investigating the influence of bile acids on the ability of 81-176 to adhere 

and invade Caco-2 cells 

Gentamicin protection assay (GPA) was used to investigate the influence of bile acids on the 

ability of 81-176 to adhere and invade Caco-2 cells. Briefly, GPA is an assay that is used to 

determine the ability of eukaryotic cells to internalize bacteria (Friis et al., 2005). 

Experimentally, bacteria and eukaryotic cells are co-incubated to allow internalization to take 

place. In order to increase the number of internalized bacteria, a low number of bacteria in the 

inoculum or multiplicity of infection (MOI) is recommended (Hu and Kopecko, 1999). 

Consequently, an antibiotic called gentamicin is added to kill the non-internalized bacteria. 

Finally, the internalized bacteria are retrieved, cultured in appropriate media and their 

numbers are determined.  

In this study, a concentration of 2 x10
4
/mL Caco-2 cells was seeded in each well of a 24-well 

plate containing 1ml Dulbecco's minimal essential medium (DMEM) supplemented with 1% 

fetal calf serum (FCS) and 1% non essential amino acids without antibiotics and incubated at 

37
°
C under 5% CO2-95% air atmosphere for 24h to 72h until a confluence of 90% was 

observed. These semi-confluent cells were washed three times with warm Hank's Balanced 

Salt Solution (HBSS), and to each well was added 1mL DMEM media supplemented with 1% 

fetal calf serum (FCS) and 1% non essential amino acid without antibiotics and 5µL of 

appropriate concentration of bile acid. 3 wells on each plate contained DMEM media lacking 

a corresponding bile acid to act as a control. All C. jejuni isolates were cultured for 16h to 18h 

at 42
°
C under microarophilic conditions to achieve an optical density at A540 of 0.2 (OD A540 

of 0.2 corresponds to 5 x 10
8
 CFU/ml) (Khanna et al., 2006). C. jejuni inoculums were 

washed twice in warm HBSS to centrifuging at 4000 rpm for 10 minutes and diluting with 

HBSS to multiplicity of infection (MOI) of 1:10 using the formula below: 

 

MOI  = Number of 81-176 (5 x 10
8
)   =  Y + HBSS to achieve MOI of 1:10 

             Number of Caco-2 cells 

 

10µL of diluted C. jejuni suspension was inoculated into each well followed by centrifugation 

of each plate at a low speed of 1000 x g for 2 min to bring all the C. jejuni isolates directly in 
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contact with Caco-2 cells. From this point onwards adherence and invasion were performed 

separately. 

3.1.1 Adherence assays 

Plates that were allocated for adherence assays were incubated at 37
°
C under 5% CO2-95% air 

atmosphere for 30 minutes, after which the media was removed and the cells were washed 3 

times with warm HBSS. The cells were then overlaid with 100µL of 1% Triton X-100 and left 

to incubate for 10 minutes to lyse and detach. Consequently, 900µL LB medium was added to 

the arising suspension and homogenously mixed by pipetting. 20µL of each diluted 

suspension was inoculated on Columbia blood agar and incubated at 42
°
C under 

microaerophilic conditions for 24h. Finally, the number of colonies on each plate was counted 

and the number of adherent C. jejuni isolates was recorded. Only plates with 10 or more 

colonies were counted. STATISTICA software was used to analyze the differences by two-

way ANOVA. Bile acid concentrations were taken to be dependable variables and 81-176 to 

be an independent variable. 

3.1.2 Invasion assays 

Plates that were allocated for invasion assays were incubated at 37
°
C under 5% CO2-95% air 

atmosphere for 2h, after which the media was removed and the cells were washed 3 times 

with warm HBSS. 1mL DMEM supplemented with 1% FCS, 1% non essential amino acid 

and 100 ug/mL  gentamicin was added to each well and the plates incubated at 37
°
C under 5% 

CO2-95% air atmosphere for 2h. The cells were then washed 3 times with warm HBSS and 

overlaid with 100µL of 1% Triton X-100 and left to incubate for 10 minutes to lyse and 

detach. Consequently, 900µl LB medium was added to the arising suspension and 

homogenously mixed by pipetting. 20µl of each suspension was inoculated on Columbia 

blood agar and incubated at 42
°
C under microaerophilic conditions for 24h. Finally, the 

number of colonies on each plate was counted and the number of invade C. jejuni was 

recorded. Only plates with 10 or more colonies were counted. STATISTICA software was 

used to analyze the differences by two-way ANOVA. Bile acid concentrations were taken to 

be dependable variables and 81-176 to be an independent variable. 

3.2 Determination of C. jejuni IC50 of each bile acid and evaluation of  

81-176 growth in half IC50 concentrations 

CDB containing different concentrations of each bile acid was prepared (Table 3). Bile acid 

concentrations were derived from the range of 2mM to 30mM (0.2 to 2%) that is present in 

the human small intestine (Begley et al., 2005a). The OD600 of C. jejuni 81-176 growing for 
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16h at 42
o
C under microaerophilic conditions while shaking at 150rpm was measured and 

diluted to an OD600 of 1.0 using neutral CDB (lacking bile acids). 1.5ml of CDB containing 

various concentrations of each bile acid and 1.5ml of diluted suspension of C. jejuni 81-176 

were transferred into test tubes with cocks. The inoculum was incubated for 16h at 42
°
C under 

microaerophilic conditions with shaking at 150rpm. An inoculum of 1.5ml neutral CDB and 

1.5ml diluted suspension of C. jejuni 81-176 was included as a control. Lastly, OD600 of each 

inoculum was measured, recorded; and finally a graph of OD600 vs. concentration (mM/l) of 

C. jejini's growth in response to each bile acid was drawn from which the C. jejuni IC50 of 

each bile acid was determined (Bailey et al., n.d.; Kusano-Kitazume et al., 2012; Soothill et 

al., 1992). Thereafter, the growth of 81-176 in Mueller Hinton Broth (MHB) supplimented 

with half IC50 concentrations of each bile acid. The growth evaluations were carried out as 

described before (Davis and DiRita, 2008b). STATISTICA software was used to analyze the 

differences by one-way ANOVA.    

 

Table 2: Concentrations of bile acids which were used in determining C. jejuni IC50  

%age Concentrations in mM/L 

 CA CDCA TCA GCA DCA LCA UDCA 

1.5% 38.21mM 38.21mM 29.09mM 197.24mM 38.21mM 39.83mM 38.21mM 

0.75% 19.11mM 19.10mM 14.55mM 98.62mM 19.10mM 19.91mM 19.10mM 

0.38% 9.55mM 9.68mM 7.27mM 49.31mM 9.55mM 10.09mM 9.68mM 

0.19% 4.78mM 4.84mM 3.64mM 24.65mM 4.78mM 5.05mM 4.84mM 

0.09% 2.39mM 2.29mM 1.82mM 12.32mM 2.39mM 2.39mM 2.29mM 

0.05% 1.19mM 1.27mM 0.91mM 6.16mM 1.20mM 1.33mM 1.27mM 

0.02% 0.60mM 0.51mM 0.45mM 3.08mM 0.48mM 0.53mM 0.51mM 

0.01% 0.30mM 0.25mM 0.23mM 1.54mM 0.24mM 0.27mM 0.25mM 

0% 0mM 0mM 0mM 0mM 0mM 0mM 0mM 
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3.3 Quantitative proteomics  

3.3.1 Establishment of SILAC for C. jejuni 

(i) C. jejuni isolates and culture conditions 

Suitable isolates for SILAC analysis were selected from 303 C. jejuni strains which had been 

isolated from different sources, namely, cattle (52), chicken (73), turkey (28) and humans 

(150). Chicken, turkey and cattle isolates were generously provided by the German 

Campylobacter reference center of the Bundesinstitut für Risikobewertung (BfR, Federal 

Institute for Risk Assessment) in Berlin, Germany. Reference strains NCTC 11168, NCTC 

11828 (81116), 81-176, and 84-25 were obtained from Leibniz Institute - DSMZ German 

Collection of Microorganisms and Cell Cultures, Braunschweig, Germany. Human isolates 

were isolated from stool samples of campylobacteriosis patients treated at the University 

Medical Center Göttingen (Germany) from 2000-2004. These isolates had been stored as 

cryobank stocks (Mast Diagnostica, Reinfeld, Germany) at -80°C. Prior to auxotyping, they 

were thawed then cultured in on Columbia agar base (Merck, Darmstadt, Germany) 

supplemented with 5% sheep blood (Oxoid Deutschland GmbH, Wesel, Germany) and 

incubated overnight at 42°C under microaerophilic conditions (5% O2, 10% CO2, 85% N2).  

(ii) Selection of suitable C. jejuni isolate: Auxotyping 

Auxotyping was performed using a defined broth. The components of this medium were 

grouped into 5 solutions and individual components (Table 4; all chemicals were obtained 

from Sigma-Aldrich, Germany). Prior to auxotyping, the growth of C. jejuni reference strain 

81-176 in the define broth (CDM), Luria-Bertani (LB) broth, Muller Hinton (MH) broth and 

Barin-heart infusion (BHI) broth was investigated. The OD600 reading was taken after every 

4h for a period of 20h. STATISTICA software was used to analyze the growth differences by 

one-way ANOVA. In the auxotyping exeperiment, all 291 isolates were tested for their ability 

to grow in the absence of arginine, lysine, serine, leucine, isoleucine, valine, cysteine 

hydrochloride, cystine, proline, methionine, and a combination of leucine, isoleucine and 

valine. Isolates which demonstrated growth on the typing media were designated as 

prototrophs and those that demonstrated no growth on the typing media were designated 

auxotrophs.  
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(iii) Comparison of C. jejuni growth in defined campylobacter broth with and without labelled 

arginine and lysine  

The prototrophic isolate 81-176 and the arginine-auxotrophic isolate av4258 (Table 5) were 

cultured in MCD broth containing both heavy L-arginine (
13

C6
15

N4-Arg, Silantes, Munich, 

Germany) and L-lysine (
13

C6
15

N2-Lys, Silantes, Munich, Germany) and MCD broth 

containing both unlabeled arginine (Sigma-Aldrich) and unlabeled lysine (Sigma-Aldrich) at 

42
°
C under microaerophilic conditions (5% O2, 10% CO2, 85% N2) while shaking at 150rpm 

over a period of 48h. During this period, the OD readings were taken after every 4h and 

growth compared. In addition, at 16h, live-dead-staining using the LIVE/DEAD BacLight 

Bacterial Viability kit L13152 (Invitrogen detection technologies) was performed on each of 

the cultures and examined under fluorescence microscope as in accordance to the 

manufacturer‘s instructions. 

(iv) Labeling 

The isolates av4258 and 81-176 were cultured over 6 passages in broth containing unlabeled 

lysine and unlabeled arginine. Incubation time for each passage was 32h which corresponds to 

2X generation time under microaerophilic conditions (5% O2, 10% CO2, 85% N2). 81-176 

was cultured on Columbia Blood Agar for 16h at 42 °C under microaerophilic conditions and 

harvested with MCD broth with and without labeled arginine/lysine. The OD600 was measured 

and adjusted to OD600 1 by adding appropriate quantities of corresponding broth. The adjusted 

labeled and unlabeled CDM broth cultures were incubated for 32h at 42 °C under 

microaerophilic conditions becoming the first passage. At the end of each 2X generation time 

and before passaging the next passage, samples for protein extraction were collected from 

both and agar cultures for protein extraction. 

(v) Protein extraction and acetone precipitation 

Cells were harvested by centrifuging at 4000 rpm for 10 minutes. The resulting pellets in both 

situations were resuspended in 1 ml of 0.9% aqueous sodium chloride solution. The 

suspensions were sonicated on ice using 5 bursts at a setting of 3 and 30% duty cycles 

(Branson Model 250) for 30s with 30s intervals until the suspension became clear. Cell debris 

were discarded by centrifuging at 12000 rpm at 4
°
C for 15 min. Protein concentration in the 

supernatant was quantified using either Bradford assay (Bio-Rad, Munich, Germany) or 

NanoDrop2000-pedestal model (Thermo Scientific, Germany). This was followed by 

visualization on 12% SDS-PAGE gel electrophoresis.  
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The crude protein extract was concentrated using the acetone precipitation technique. Acetone 

and ethanol (80%) were cooled to -20
°
C. 400µl  of the each protein supernatant was 

transferred into a 2ml eppendorf tube and centrifuged for 10 min at 4
°
C and 13300 rpm. 1600 

µl of -20
°
C cooled acetone was added, vortexed thoroughly and incubated at -20

°
C overnight. 

The samples were centrifuged for 30 mins at 4
°
C and 13300 rpm. As much supernatant 

(acetone) as possible was carefully removed from the tubes by pipetting without damaging the 

protein pellets. The tubes were then left open to air-dry under clean bench for 1 hour to 

completely remove acetone from the pellets. Subsequently, -20
°
C cooled 400 µl ethanol 

(80%) was added into the tubes and the pellets washed by centrifugation for 30 min at 4
°
C and 

13300rpm. As much supernatant (ethanol) as possible was carefully removed from the tubes 

by pipetting without damaging the protein pellets. The tubes were further left to air-dry under 

a clean bench for 1h to completely remove ethanol from the pellets. This was followed by 

analyzing the incorporation efficiency of heavy arginine and lysine. 

(vi) Determination of Incorporation Efficiency 

Sample preparation: protein pellets were reconstituted in 1× NuPAGE LDS Sample Buffer 

(Invitrogen) and separated on 4-12 % NuPAGE Novex Bis-Tris Mini Gels (Invitrogen). The 

gels were stained with Coomassie Blue for visualization. Each band was cut and sliced into 

small pieces (app. 1 mm
3
 cubes) which were destained and dehydated in 50µL 

acetonitrile/25mM NH4HCO3 (2:1) for 15 minutes. The cubes were rehydrated in 25mM 

NH4HCO3 for 10 to 20 minutes. The rehydration solution was discarded and the pieces dried 

in SpeedVac for 30 min. The pieces were further reduced by incubation at 60
°o

C for 1h in 

25µL solution of 10mM dithiothreitol (DTT) and 25mM NH4HCO3. DTT was discarded and 

the pieces alkylated in 25µL of 55mM 2-iodoacetamide in the dark at room temperature for 

45min. The pieces were washed in 25mM NH4HCO3 and dried in a SpeedVac for 30 min. 

Finally, the pieces were digested with 70µL trypsin (sequencing grade, promega) in 25mM 

NH4HCO3 and incubated at 37
°
C overnight. The peptides were extracted by socking the 

mixture in 2% acetonitrile for 10 min and sonication for 10min. They were concentrated by a 

drying in SpeedVac and reconstituted in a solution of 2% acetonitrile and 0.1% formic acid 

for nanoLC-MS/MS analysis as previously described (Gillet et al., 2012). 

NanoLC-MS/MS analysis: Mass spectrometry was performed on a hybrid quadrupole-orbitrap 

mass spectrometer (Q Exactive, Thermo Fisher Scientific, Bremen, Germany) equipped with 

a Flexion nanospray ionization source, operated under Excalibur 2.4 software and coupled to 

a nanoflow chromatography system (Easy nanoLC-II, Thermo Fisher Scientific). 
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Experimentally, the samples were enriched on a self-packed reversed phase-C18 precolumn 

(0.15 mm ID x 20 mm, Reprosil-Pur 120 C18-AQ 5 µm, Dr. Maisch, Ammerbuch-Entringen, 

Germany) and separated on an analytical reversed phase-C18 column (0.075 mm ID x 200 

mm, Reprosil-Pur 120 C18-AQ, 3 µm, Dr. Maisch) using a 37 min linear gradient of 5-35 % 

acetonitrile/0.1% formic acid (v:v) at 300 nl/min. For data dependent acquisition (DDA) the 

following experimental cycle was used: one full MS scan across the 350-1600 m/z range was 

acquired at a resolution setting of 70,000 FWHM, an AGC target of 1*10e6 and a maximum 

fill time of 60 msec. Up to the 12 most abundant peptide precursors of charge states 2 to 5 

above a 2*10e4 intensity threshold were then sequentially isolated at 2.0 FWHM isolation 

width, fragmented with nitrogen at a normalized collision energy setting of 25%, and the 

resulting product ion spectra recorded at a resolution setting of 17,500 FWHM, an AGC target 

of 2*10e5 and a maximum fill time of 60 ms. Selected precursor m/z values were then 

excluded for the following 15 s. Two technical replicates per sample were acquired. 

Data processing: Raw data were processed using MaxQuant Software version 1.5.2.8 (Max 

Planck Institute for Biochemistry, Martinsried, Germany). Peak lists were searched against 

the C. jejuni subsp. jejuni strain 81-176 (serotype O:23/36 ) proteome (UniProt v08.2016, 

1748 proteins) with common contaminants added. The search included carbamidomethlyation 

of cysteine as a fixed modification and methionine oxidation and N-terminal acetylation as 

variable modifications. The maximum allowed mass deviation was 6 ppm for MS peaks and 

20 ppm for MS/MS peaks. The maximum number of missed cleavages was two. The false 

discovery rate was determined by searching a reverse database. The maximum false discovery 

rate was 1%. The minimum required peptide length was six residues. The peptide list was 

filtered for lysine and arginine containing peptides with a valid heavy/light ratio. For each 

peptide, the incorporation was calculated as 1 _ (1/(ratio H/L _ 1)). The maximum of a 

density distribution of all peptides represents the estimated incorporation level. All 

calculations and plots were done with the R software package. 

3.3.2 SILAC analysis of proteomic response in 81-176 to DCA 0.05% 

This experiment was performed as described above (in section on establishment of SILAC for 

C. jejuni) with the following modifications: 

(i) Labeling, media composition and culture conditions: Following incorporation results, 81-

176 was cultured in Campylobacter defined broth supplemented with both labeled and 

unlabelled arginine and 1.20mM deoxycholic acid for 12h while shaking at 150rpm. Protein 
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samples were harvested, mixed in a 1:1 ratio (w/w) and processed for nanoLC-MS/MS 

analysis as described above.  

(ii) Preparation of samples for nanoLC-MS/MS analysis: After alkylation, samples were 

digested with Arg-C-endopeptidase (V1881, sequencing grade, Promega) instead of trypsin. 

(iii) Data analysis: Raw data were processed using MaxQuant Software version 1.5.2.8 (Max 

Planck Institute for Biochemistry, Martinsried, Germany). Peak lists were searched against a 

UniProtKB-derived C. jejuni strain 81-176 protein sequence database (v2016.07, 1748 protein 

entries) along with a set of common lab contaminants. The search included 

carbamidomethlyation of cysteine as a fixed modification; methionine oxidation and 

acetylation of protein N-terminal ArgC/P cleavage with a maximum of 2 missed cleavages as 

variable modifications. The maximum allowed mass deviation was 6 ppm for MS peaks and 

20 ppm for MS/MS peaks. The false discovery rate was determined by searching a reverse 

database. The maximum false discovery rate for both peptides and proteins was 1%. Perseus 

Software version 1.5.0.15 (Max Planck Institute for Biochemistry, Martinsried, Germany) was 

used to obtain relative protein quantitation values from the MaxQuant Software results and 

perform statistical evaluation. 

3.3.4 Label-free analysis of proteomic response in 81-176 to sublethal concentrations of 

different bile acid 

(i) Sample preparation: Strain 81-176 was cultured in Campylobacter defined broth for 12h 

while shaking at 150rpm supplemented with the following bile acid concentrations: CA 0.1%, 

DCA 0.05%, LCA 0.5%, TCA 0.5%, CDCA 0.05%, UDCA 0.5% and GCA 0.4%. At the 

same time, 81-176was cultured at 37
o
C and 42

o
C for 12h and 24h without bile acids. Protein 

samples were harvested and described in section (v) above. Proteins were purified by 

precipitation using a standard acetone precipitation protocol (acetone: sample 4:1, v/v, -20°C, 

overnight). Protein preparations were dissolved using sodium 3-[(2-methyl-2-undecyl-1, 3-

dioxolan-4-yl) methoxy]-1-propanesulfonate (Rapigest, Waters) cleavable surfactant (Yu et 

al., 2003). After reduction and alkylation of cysteine residues with dithiothreitol and 

iodoacetamide, proteins were digested using sequencing grade porcine trypsin (Promega) at a 

1:50 enzyme-to-substrate ratio (w:w). Following acidic cleavage of the surfactant, the 

resulting fatty acids were pelleted and removed by centrifugation. The resulting peptide 

mixtures were dried in a SpeedVac centrifuge and stored at -20 °C prior to analysis.  
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(ii) LC/MS/MS acquisition: Protein digests were analyzed on a nanoflow chromatography 

system (Eksigent nanoLC425) hyphenated to a hybrid triple quadrupole-time of flight mass 

spectrometer (TripleTOF 5600+) equipped with a Nanospray III ion source (Ionspray Voltage 

2200 V, Interface Heater Temperature 150°C, Sheath Gas Setting 10) and controlled by 

Analyst TF 1.6 software build 6211 (all AB Sciex). In brief, peptides from each digest were 

dissolved in loading buffer (2% aqueous acetonitrile vs. 0.1% formic acid) to a concentration 

of 0.5μg/μl, desalted on a trap column (Dr. Maisch RP-C18aq, particle size 5 µm, 30 x 0.150 

mm, 60 μL loading buffer) and separated by reversed phase-C18 nanoflow chromatography 

(Dr. Maisch RP-C18aq, particle size 3 µm, 250 x 0.075 mm, linear gradient 90 min 5%>35% 

acetonitrile vs. 0.1% formic acid, 300 nL/min, 50°C). 

Qualitative LC-MS/MS analysis was performed using a Top25 data-dependent acquisition 

(DDA) method with an MS survey scan of m/z 380-1250 accumulated for 250 ms at a 

resolution of 35.000 FWHM. MS/MS scans of m/z 180-1750 were accumulated for 100 ms at 

a resolution of 17.500 FWHM and a precursor isolation width of 0.7 FWHM, resulting in a 

total cycle time of 3.4 s. Precursors above a threshold MS intensity of 200 cps with charge 

states 2+, 3+ and 4+ were selected for MS/MS, the dynamic exclusion time was set to 15 s. 

Two technical replicates of 1.5μg protein equivalent of each sample were acquired for 

qualitative analysis, for protein identification and generation of a spectral library for targeted 

data extraction. 

For data-independent acquisition (DIA) SWATH analysis, MS/MS data were acquired for 100 

precursor segments of variable size (5-40 m/z each), resulting in a precursor m/z range of 400-

1250. Fragments were produced using Rolling Collision Energy Settings and fragments 

acquired over an m/z range of 380-1600 for an accumulation time of 40ms per segment. 

Including a 250 ms survey scan this resulted in an overall cycle time of 4.5 s. Three technical 

replicates of 2.0μg protein equivalent of each sample were acquired for quantitative analysis. 

(iii) LC/MS/MS data processing: Protein identification was achieved using ProteinPilot 

Software version 5.0 build 4304 (AB Sciex) at ―thorough‖ settings. A total of 551.443 

MS/MS spectra from the combined qualitative analyses were searched against the C. jejuni 

strain 81-176 proteome from UniProtKB (revision 07-2016, 1804 protein entries) 

supplemented with 51 commonly observed lab and workflow contaminants. Global false 

discovery rates (FDR) were adjusted to 1% at both the protein and peptide level using a 

forward/reverse decoy database approach.  
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SWATH peak extraction was achieved in PeakView Software version 2.1 build 11041 (AB 

Sciex) using the SWATH quantitation microApp version 2.0 build 2003. Following retention 

time alignment on a set of 12 endogenous peptides, peak areas were extracted for up to the 

eight highest scoring peptides per protein group at 6 transitions per peptide, an extracting ion 

current (XIC) width of 75 ppm and an XIC window of 8 min, and filtered to an estimated 

FDR of 1% (Lambert et al., 2013). The resulting peak areas were then exported at the 

fragment, peptide and protein level for further statistical analysis with Perseus Software 

version 1.5.0.15 (Max Planck Institute for Biochemistry, Martinsried, Germany). The 

Empirical Bayes Analysis for Mixed Models in R package limma was used to determine 

proteins that were significantly upregulated and downregulated in 81-176 by each bile acid 

(Smyth, 2004). Proteins which showed a twofold log change higher than 1 and an FDR-

adjusted p-value less that 0.05 were considered to be significantly expressed. 

Table 3: Components of Campylobacter defined broth used in this study 

Solution 1 

Compound stock 

solution 

(mg/ml) 

Pre-dilution stock solution 

(500 ml) 

Volume of stock 

solution for 1 L 

Final 

Concentration 

(mM) 

Aqua dest. - - 495 ml 100 mL - 

L - Aspartate 5.0 - 2.5 g 3.76 

L - Glutamate 13.0 - 6.5 g 8.83 

NaCl 58.0 - 29.0 g 100mM 

K2SO4 10.0 - 5.0 g 5.74 

MgCl2 . 6H2O 4.1 - 2.05 g 2.02 

NH4Cl 2.2 - 1.1 g 4.11 

EDTA 

0.037 1.85 g in 100 ml 

water 

1 ml 

 

0.013 

 

Stored in 50ml Red Cups; EDTA promotes solubility and maintains metal bondages.  

Solution 2 

Compound stock solution 

(mg/ml) 

Pre-dilution stock solution 

(500 ml) 

Volume of 

stock solution 

for 1 L 

Final 

Concentration 

(mM) 

Aqua dest. - - 500 10 mL - 

L - Arginine 

hydrochloride 

15.0 - 7.5 g 0.71 

Serine 5.0 - 2.5 g 0.48 

Stored in 50ml Red Cups 
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Solution 3 

Compound stock solution 

(mg/ml) 

Pre-dilution stock solution 

(500 ml) 

Volume of 

stock solution 

for 1 L 

Final 

Concentration 

(mM) 

Aqua dest. - - 500 10 mL - 

L - Leucine 9.0 - 4.5 0.69 

L - Isoleucine 3.0 - 1.5 0.23 

L - Valine 6.0 - 3.0 0.51 

Stored in 50ml Red Cups 

Solution 4 

Compound stock solution 

(mg/ml) 

Pre-dilution stock solution 

(1000 ml) 

Volume of 

stock solution 

for 1 L 

Final 

Concentration 

(mM) 

Aqua dest. - - 1000 200 mL - 

K2HPO4 17.4 - 17.4 g 20.0 

KH2PO4 13.6 - 13.6 g 20.0 

Stored in 1L Bottle 

Solution 5 

Compound stock solution 

(mg/ml) 

Pre-dilution stock solution 

(100 ml) 

Volume of 

stock solution 

for 1 L 

Final 

Concentration 

(mM) 

Aqua dest. - - 100 0.2 mL - 

NAD 10.0 - 1g 0.003 

Thiamine 

hydrochloride 

10.0 - 1g 0.006 

Calcium 

pantothenate 

10.0 - 1g 0.004 

Stored in Eppendorff Cups and 50ml Red Cup 

Amino acid mix 

Compound stock solution 

(mg/ml) 

Pre-dilution stock solution 

(500 ml) 

Volume of 

stock solution 

for 1 L 

Final 

Concentration 

(mM) 

Aqua dest. - - 500 ml 10 mL - 

L- 

phenylalanine 

5.0 - 2.5g 0.30 

L - Alanine 10.0 - 5.0g 1.12 

L – Histidine 5.0 - 2.5g 0.32 

L – Threonine 5.0 - 2.5g  0.42 

L – Lysine 5.0 - 2.5g  0.30 

L – Glycine 2.5 - 1.25g  0.33 

L - 

Trypthophan 

8.0 - 4.0g  0.39 

Stored in 50 ml Red Cups 
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Individual Components 

Compound stock solution 

(mg/ml) 

stock solution 

 

Storage vessel Volume of 

stock solution 

for 1 L 

Final 

Concentration 

(mM) 

L - Cysteine 

hydrochloride* 

17,5 1,75 g in 

100 mL 

50 mL  

Red Cup 

3,5 mL 0,35 

L - Cystine* 

12,0 1,2 g in  

100 mL 

250 ml 

Bottle 

3,0 mL 0,15 

Oxaloacetate 

2,0 2,0 g in  

1000 mL 

1 L Bottle 100 mL 1,52 

NaHCO3 

84,0 1,26 g in 

15 mL 

15 ml 

Blue Cup 

0,5 mL 0,5 

Biotin 

M=244,31 g/mol 

Saturated 

solution 

 

500 mg in 5mL 2 ml 

Eppendorf 

7,3 µL 

0,73293 mg 

0,003 

Thiamine 

pyrophosphate 

hydrochloride 

4,6 0,46 g in 

100 mL 

250 ml 

Bottle 

100 µL 0,001 

L - Proline 

5,0 2,5 g 

500 mL 

15 mL  

Blue Cups and 

500 mL Bottle 

10 mL 0,43 

L - Methionine 

14,9 1,49 g in 

100 mL 

50 mL  

Red Cup 

1,0 mL 0,1 

CaCl2 . 1H2O 

37,0 18,5 

in 500 mL 

500 mL 

Bottle 

1,0 mL 0,25 

Fe(NO3)3 . 9H2O 

4,0 2g 

in 500 mL 

500 mL 

Bottle 

1,0 mL 0,01 

*was freshly prepared before usages 
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3.4 Characterization of cjp47 (cjj81176_pVir0047) 

3.4.1 Bioinformatics analysis 

A search was carried out in UniProt to identify the name and other characteristics of protein 

Q8GJA8_CAMJJ. It was found to be cjp47 (cjj81176_pVir0047). In addition, multiple 

sequence analysis was carried out to understand the genetic relationship of cjp47 

(cjj81176_pVir0047) and other related genes. 

3.4.2 Construction of mutant 

Construction of mutant was chronologically done as described below:  

(i) Amplification of cjp47 (cjj81176_pVir0047). 

PCR primers containing an XbaI restriction site (underlined) Forward: 

(nnnnnntctagagggttttaaaagcttaaggtttgataaaccc); and Reverse: 

(nnnnnntctagaggcttatcttttagataggttgccccgtc) were used. Each 50 μl of PCR mixture contained 

40 ng genomic DNA, 10 mM TRIS-HCl pH8.3, 50 mM KCl, 1.5 mM MgCl2, all four dNTPs 

(each 0.2 mM) and 2.5 U Taq DNA polymerase. After initial incubation at 95C for 1 min, 35 

cycles at 95
°
C for 1min, 54

°
C for 1 min and 72

°
C for 1 min were carried out with a final 

incubation at 72
°
C for 5 min. PCR products were analyzed on 1% agarose gels stained with 

midori green (Nippon Genetics Co. Ltd., Japan). 

 

(ii) Restriction of cjp47 (cjj81176_pVir0047) PCR product and pBluescript vector (pBSK) 

PCR product with the right band size was purified and its concentration measured with 

NanoDrop2000 spectrophotometer - pedestal mode (Thermo Scientific). Similarly, the 

concentration of pBSK vector was measured. Both purified PCR product and pBSK vector 

were digested with enzyme XbaI (#R0145L, New England BioLabs, NEB) as recommended 

by the manufacturer to generate  ends. Hence, the reaction mixture was prepared as follows: 

2µl purified PCR product or pBSK vector, 1µl XbaI (NEB), 1µl Cutsmart buffer #B72045 

(NEB) and 6µl ddH2O. The mixture was incubated at 37
o
C for 2h. The restricted products 

were purified (Qiagen QIAquick PCR Purification Kit) and their concentration measured with 

NanoDrop2000. Restricted pBSK_XbaI vector was subsequently dephosphorylated using 

antartic phosphatase #M0289 as recommended by the manufacturer (NEB). In this study the 

reaction contained 2µl antarctic phosphatase reaction buffer (10x), 2µl antarctic phosphatase, 

and 16µl pBSK_XbaI. Both restricted and purified cjp47 (cjj81176_pVir0047)_XbaI PCR 

product and dephosphorylated pBSK_XbaI vector were stored at -20
°
C. 
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(iii) Ligation of digested cjp47 (cjj81176_pVir0047) PCR product with pBSK vector 

(constructing cjp47 (cjj81176_pVir0047)-pBSK vector) 

Quick Ligation Protocol (NEB# M2200) was used to ligate cjp47 (cjj81176_pVir0047)_XbaI 

PCR product with pBSK_XbaI vector. Both products were appropriately diluted to 

concentrations recommended. The mixtures were incubated at room temperature for 20 

minutes.  

High Efficiency Transformation Protocol C2992 (NEB) was followed to transform E. coli 

cells with 5µl of the ligation mixture. The transformants were cultured overnight at 37
°
C in 

LB agar supplemented with 100µg/mL ampicillin. Each resulting colony was picked and 

subcultured overnight at 37
°
C in LB broth supplemented with 100µg/mL ampicillin for 

plasmid extraction. GenElute Plasmid Miniprep Kit (Sigma-Aldrich, Germany) was used to 

extract the plasmids in accordance with the manufacturer's instructions. Successful ligated 

CJJ81176_pVir0047_pBSK vectors were identified by digesting the extracted plasmids with 

Xba1 and analyzing the results on 1% agarose gel electrophoresis. 

(iv) Construction of cjp47 (cjj81176_pVir0047)-pBSK Kanr knockout vector 

Primers: mazFinv1_Forward: (cttcattccattcatcaaatttcaaatc) and mazFinv2_Reverse: 

(gataataagagaaaaataacatttgaaagc) were used to construct CJJ81176_pVir0047-pBSK kanr 

knockout vector. 50µl reaction mix was prepared as follows: 25µl Master Mix, 1µl forward 

inverse primer, 1µl reverse inverse primer, 10µl plasmid and 13µl ddH2O. The inverse PCR 

was performed under initial denaturation 98
°
C 30sec, followed by 34 cycles of 98

°
C 10sec, 

57
°
C 30sec and 72

°
C 2 min (T100 Thermal Cycler, Bio-Rad). Successful results were 

confirmed by gel electrophoresis. The inverse PCR product with the correct band size was 

gel-extracted and purified (Qiagen QIAquick PCR Purification Kit) and its concentration 

measured with NanoDrop2000. Quick Ligation Protocol M2200 (NEB) was used to ligate 

successful inverse PCR product with kanamycin cassette as recommended by the 

manufacturer.  

High Efficiency Transformation Protocol C2992 (NEB) was followed to introduce 5µl  of the 

ligation mixture into competent E. coli cells. The transformants were cultured overnight at 

37
°
C in LB agar supplemented with 50µg/mL kanamycin. Each resulting colony was picked 

and subcultured overnight at 37
°
C in LB broth supplemented with 50µg/mL kanamycin for 

plasmid extraction. GenElute Plasmid Miniprep Kit (Sigma-Aldrich, Germany) was used to 

extract the plasmids in accordance with the manufacturer's instructions. Successful ligated 
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cjp47 (cjj81176_pVir0047)_XbaI_pBSK vectors were identified by digesting the extracted 

plasmids with XbaI and analyzing the results on a 1% agarose gel. Plasmids with expected 

right band size were sequenced in both directions with M13 primers. 

(v)   Transformation of of 81-176 with cjp47 (cjj81176_pVir0047)-pBSK kanr  

Prior to transformation, competent 81-176 WT cells were prepared as follows: 81-176 was 

cultured on Columbia Blood Agar (CBA) for 16h at 42
°
C under microaerophilic conditions. 

Cells were harvested using ice-cold 272 mM sucrose and 15% glycerol buffer and centrifuged 

at 5000g at 4
°
C for 10 min. The pellet was resuspended in 1ml ice-cold buffer and washed 

two more times by centrifuging at 5000g at 4
°
C for 10 min. The resulting pellet (competent 

cells) was resuspended in 400µl ice-cold buffer from where aliquots of 50µl were transferred 

into vials and stored at -80
°
C.  

Transformation of 81-176 with cjp47 (cjj81176_pVir0047)_pBSK_kanr vector into was 

performed using electroporation as described elsewhere (Tareen et al., 2010). In a nut shell, 

1µl of a 500ng/µl cjp47 (cjj81176_pVir0047)-pBSK kan
r
 vector (diluted in ddH2O where 

required) was transferred and gently mixed with 50 µl competent 81-176 WT. The mixture 

was incubated in ice for 1 minute and transferred to ice-cold 0.2-cm electroporation cuvettes.  

Electroporation was performed at 2.5kV, 25µF and 200Ω using a BTX Electro Cell 

Manipulator, Model ECM 600, 120V (BTX, Germany). Immediately after the pulse, 100µl 

SOC medium was added into the cuvette and the bacteria suspension was transferred onto 

non-selective CBA and incubated overnight at 37
°
C under microaerophillic conditions. Then, 

cells were harvested in 300µl Mueller-Hinton and cultured at 42
°
C in blood agar 

supplemented with 50µg/mL kanamycin under microaerophilic conditions for 3 to 4 days. 

Resulting colonies were analyzed for homologous recombination (cjp47 

(cjj81176_pVir0047)mutants, Δ).        

(vi) Analysis of homologous recombination (Δ cjp47 (cjj81176_pVir0047) 

PCR was performed using primers and conditions described in section (i) above to analyze 

successful homologous recombination. Prior to the reaction, DNA of colonies resulting from 

transformation experiment above were extracted using Qiagen QIAamp DNA Extraction Kit 

as recommended by the manufacturer. PCR products were analysed on a 1% agarose gel. 
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3.4.3 Comparison of invasion of Caco-2 cells by Δ cjp47 (cjj81176_pVir0047) and wild type  

Gentamicin Protection Assay were used to compare the ability of Δ cjp47 

(cjj81176_pVir0047) and wild type to invade Caco-2 cells in DMEM medium that is 

supplemented with 0mM, 25mM, 50mM and 100mM CA, LCA, TCA and GCA as described 

in section 3.1. In addition, their growth in MHB was compared as described before (Davis and 

DiRita, 2008b).  

3.5 ANOVA statistical analyses 

Analysis of varience (ANOVA) was widely used in this study. This analysis determines if 

there is a significant difference between means of the factors under consideration (Kim, 

2014). Both one-way and two-way ANOVA were used in this study where appropriate. One-

way ANOVA was used in cases where the statistical difference of one factor in different 

independent experimental groups was being investigated; for example, comparison of the 

growth of 81-176 in different types of broths. In this example, growth was the main factor 

under consideration. Hence, one-way ANOVA was used. On the other hand, two-way 

ANOVA was used in situations which involved two independent variables and a dependent 

variable. For example, it was applied in adherence and invasion assays. In these assays, type 

of bile acid and chosen concentrations were treated as independent variables while both 

adherence and invasion were treated as dependent variables. In addition, whenever statistical 

differences were found, a post hoc test was performed to determine the groups which were 

statistically different.       
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4.0 RESULTS 

4.1 Stable isotope labeling of C. jejuni proteins 

4.1.1 CDB is suitable for SILAC  

The first step towards establishing SILAC for analyzing the response of C. jejuni to sublethal 

concentrations of CA, DCA, LCA, TCA, CDCA, UDCA and GCA was to check the 

suitability of CDB. In this regard, the growth of C. jejuni 81-176 in CDB, LB broth, MH 

broth and BHI broth was compared at 12h, 16h and 20h. The results showed that the growth 

of 81-176 in CDB was similar to its growth in LB broth, MH broth and BHI broth (fig 1). 

This finding informed the decision to use CDB in SILAC experiments. 

 

 

 

4.1.2 C. jejuni av4258 is an arginine auxotroph 

The next step was to identify a suitable strain for SILAC experiments. A suitable strain meant 

one that could strictly feed on heavy labelled 
13

C
15

N-arginine and 4, 4, 5, 5 – 
2
H–lysine from 

CDB and efficiently incorporate them into its proteome (Zanivan et al., 2013). To identify this 

suitable strain, amino acid nutritional requirements analysis of 304 previously characterized 

C. jejuni strains were tested as described in Materials and Methods. This auxotyping analysis 

revealed that only 1 strain (av4258) in the collection strictly required either arginine or serine 

for growth; 17 strains strictly required methionine for growth and majority of the strains were 

Fig. 1. Comparison of growth of 81-176 in CDM, LB, MH and BHI at 12h, 16h and 

20h. One-way ANOVA revealed no significant differences in growth of 81-176 between 

these broths at each time point. p<0.05. This finding showed that the growth of 81-176 in 

CDM was comparable to LB, MH and BHI. The experiment was done in three biological 

replicates.  
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prototrophic (Table 4). These results are in agreement with those that were found in two 

previous studies (Tenover et al., 1985; Tenover and Patton, 1987).  

Table 4: Auxotrophism in 304 C. jejuni strains 

 

Nutrition requirement Number 

Prototrophs 285 

Methionine auxotrophs 17 

Arginine auxotroph (av4258) 1 

Serine auxotroph (av4258) 1 

 

4.1.3 Same percentage of heavy 
13

C
15

N-arginine incorporation efficiency in auxotroph and 

prototroph strains  

Having identified av4258 to be an arginine auxotrophic C. jejuni isolate, the next step was to 

confirm the efficiency at which both heavy isotope labeled 
13

C
15

N-arginine and 4, 4, 5, 5 – 

2
H–lysine in CDB were incorporated into its protein pool. Consequently, auxotroph av4258 

and prototroph gal4116 (acting as a control that belongs to the same MLST ST) were cultured 

in CDB containing 
13

C
15

N-arginine and 4, 4, 5, 5 – 
2
H–lysine for 6 passages of 32h each at 

42
o
C under microaerophilic conditions. The passage period of 32h was selected based on the 

findings of a previous in vitro study which showed that C. jejuni continues to actively grow 

up to 40h (Wright et al., 2009a). Therefore, it was reasoned that after 32h all essential C. 

jejuni proteins will have been synthesized. Hence an appropriate 
13

C
15

N-arginine and 4, 4, 5, 

5 – 
2
H–lysine incorporation efficiency percentage could be obtained. Protein samples were 

processed as described in Material and Methods and the mass spectrometry results revealed 

that both, av4258 and gal4116 strains achieved acceptable 
13

C
15

N-arginine incorporation 

efficiency standards of >95% at the third passage (Table 5). On the other hand, 4, 4, 5, 5 – 

2
H–lysine incorporation efficiency in both strains did not achieve the required standard of 

>95% with the highest being 80% after passage 6 (Table 5). LIVE/DEAD BacLight Bacterial 

Viability staining (ThermoFisher Scientific, Germany) was performed on the samples to 

determine if the failure to achieve acceptable 4, 5, 5 – 
2
H–lysine incorporation efficiency was 

due to toxicity effects. The results which are displayed in Fig.2 show that 
13

C
15

N-arginine and 

4, 5, 5 – 
2
H–lysines do not affect the growth of both av4812 and gal4116. Hence, toxicity was 

not the reason responsible for poor 4, 5, 5 – 
2
H–lysine incorporation efficiency. 
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Table 5: Incorporation of labeled arginine and lysine in C. jejuni strains av4258 and gal4116  

 

 Strain av4258 (auxotroph) Strain gal4116 (prototroph) 

Generation Arginine Lysine Arginine Lysine 

P1 86.9% 63.0% 75.3% 57.1% 

P2 98.1% 76.5% 94.6% 74.4% 

P3 99.3% 80.9% 98.3% 79.5% 

P4 98.6% 76.3% 98.9% 81.1% 

P5 98.6% 77.2% 99.2% 80.3% 

P6 99.3% 79.9% 99.4% 80.0% 
T-test analysis showed a significant difference between 

13
C

15
N-arginine incorporation efficiency in P1, P2 andd 

P3 of av4258 and gal4116 (p<0.05); there was no a significant difference between 
13

C
15

N-arginine incorporation 

efficiency in P3, P4, P5 and P6 of each strain (p>0.05); finally, there was a significant difference between 4, 4, 5, 

5 – 
2
H–lysine incorporation efficiency in P1, P2, P3, P4, P5 and P6 of each strain (p<0.05). (n = 3). 

 

 

 

 

Fig.2. Testing toxicity of 
13

C
15

N-arginine and 4, 5, 5 – 
2
H–lysine on gal4116 and av4258. 

LIVE/DEAD BacLight Bacterial Viability staining showing that 
13

C
15

N-arginine and 4, 5, 5 – 
2
H–lysine 

do not affect the growth of both gal4116 (A) and av4258 (B) as compared to the control (C) that was 

cultured in normal amino acids. These pictures represent results observed from three independent 

experiments. 
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4.1.4 Heavy 
13

C
15

N-arginine incorporation efficiency in other prototrophs  
13

C
15

N-arginine incorporation efficiency in C. jejuni prototrophic strains B17, 81-176, 11168 

and av518 was also determined. The decision for this analysis was based on the following 

three reasons. First, the experiment above showed similar incorporation efficiency of 
13

C
15

N-

arginine in av4258 (auxotroph) and gal4116 (prototroph). Second, biological and clinical 

information about av4258 was unavailable hence; it could be difficult to correctly interpret the 

proteomics results. Therefore, it was reasoned that well known strains B17, 81-176, 11168 or 

av518 should be used for SILAC experiment and subsequent investigations. However, this 

decision could be adopted if their 
13

C
15

N-arginine incorporation efficiency was comparable to 

that found in av4258 and gal4116. Consequently, analysis of 
13

C
15

N-arginine incorporation 

efficiency in B17, 81-176, 11168 and av518 was carried out as described in the section on 

Materials and Methods. Strains av4258 and gal4116 were employed as controls. Mass 

spectrometry results showed that all the strains achieved acceptable 
13

C
15

N-arginine 

incorporation efficiency (>95%) in passage 3 (Table 6). These findings lead to the selection of 

C. jejuni 81-176 to be used in this study. In addition, proteomics data and other useful 

biological information on 81-176 were freely available hence the results of this study could be 

correctly interpreted. 

Table 6: Comparison of 
13

C
15

N-arginine incorporation efficiency in 5 prototrophic strains (n = 3) 

 

Passage/Strain av4258 B17 81-176 11168 gal4116 av518 

P1 86.8% 83.4% 89.1% 84.4% 82.8% 87.4% 

P2 95.2% 96.2% 97.8% 95.6% 96.4% 95.8% 

P3 99.0% 98.7% 99.4% 98.8% 98.6% 98.6% 

P4 99.7% 99.5% 99.7% 99.5% 99.2% 98.0% 

P5 99.9% 99.6% 99.8% 99.5% 99.3% 98.4% 

P6 99.5% 99.7% 99.4% 99.7% 99.3% 98.7% 
T-test analysis showed a significant difference between 

13
C

15
N-arginine incorporation efficiency in P1 and P2 of 

each strain (p<0.05); there was a significant difference among 
13

C
15

N-arginine incorporation efficiency in P1 of 

each strain (p<0.05); there was a significant difference among 
13

C
15

N-arginine incorporation efficiency in P2 of 

each strain (p<0.05); there was no a significant difference between 
13

C
15

N-arginine incorporation efficiency in 

P3, P4, P5 and P6 of each strain (p>0.05); finally, there was no a significant difference among 
13

C
15

N-arginine 

incorporation efficiency in P3, P4, P5 and P6 of each strain (p>0.05).  

4.2 81-176 invasion into Caco-2 cells depends on the type of bile acid and its 

concentration 

This experiment was performed to test the assumption that bile acids influence the ability of 

81-176 to adhere and invade Caco-2 cells. The findings showed that CA, DCA, TCA, CDCA 

and GCA influenced 81-176 adherence and invasion of Caco-2 cells (Fig. 3a and b). Further, 

their influence increased with increase in concentration of these bile acids. At the individual 

level, CA, LCA and GCA had the greatest influence on adherence. On the other hand, DCA, 
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TCA, CDCA and GCA had the biggest influence on the invasion of Caco-2 cells. In both 

cases, the influnce was dose-dependent. However, the influnce of UDCA on the adherence 

and invasion of Caco-2 cells was not clear. These observations were essential in setting up 

experiments for evaluating the role of bile acids in promoting the pathogenesis of C. jejuni. 

 

 

 

 

   

Fig. 3b. GPA showing the influence of different concentrations of CA, DCA, LCA, TCA, CDCA, 

UDCA and GCA on invasion of 81-176 on Caco-2 cells. DCA, TCA, CDCA and GCA had a significant 

influence on the capability of 81-176 to invade Caco-2 cells, p<0.05. The experiment was done in three 

independent replicates. 

 

Fig. 3a.GPA showing the influence of different concentrations of CA, DCA, LCA, TCA, CDCA, UDCA 

and GCA on adherence of 81-176 on Caco-2 cells. CA, TCA and GCA had a significant influence on the 

capability of 81-176 to adhere on Caco-2 cells, p<0.05. The experiment was done in three independent 

replicates. 



 37 

4.3 CA, DCA, LCA, TCA, CDCA, UDCA and GCA have different IC50 

values 

4.3.1 CA, DCA, LCA, TCA, CDCA, UDCA and GCA have different IC50 concentrations 

One of the broad objective of this study was to investigate the physiological response of 81-

176 to low concentrations of bile acids. Hence, it was reasoned that a concentration of half of 

the IC50 of each bile acids was appropriate. To obtain the IC50 of each bile acid, samples were 

collected after cultivation for 18h in CDB with different concentrations and IC50 were 

determined as follows: Initially, minimum inhibition concentration of each bile acid was 

determined using the formula [(AveCtr–AveB)/AveCtr] × 100; In this formula: AveCtrl is the 

average OD600 readings of control in each test sample and AveB is the average OD600 

readings of three culture samples per bile acid (da Silva Gomes et al., 2014; Wang et al., 

2010). Subsequently, a linear regression analysis was done to establish a relationship between 

the MIC and concentration of each bile acid as described in probit analysis (Sakuma, 1998). 

Finally, an inhibition curve of colonies/ml (Y-axis) and concentration (mM) was drawn and 

the intercept of the two taken as the IC50 value of each bile acid shown in Table 7 (Sakuma, 

1998; Soothill et al., 1992). 

  Table 7: IC50 values of bile acids used in this study 

 

Bile acid MIC IC50 Half IC50 

CA 0.4% 0.2%  0.1%  

DCA 0.2% 0.1%  0.05%  

LCA 2% 1.00%  0.5%  

TCA 0.2% 0.1%  0.5%  

CDCA 0.2% 0.1%  0.05%  

UDCA 2% 0.1%  0.5%  

GCA 1.4% 0.74%  0.4%  
    

 

4.3.2 81-176 has different growth behaviour in sublethal concentrations of CA, DCA, LCA, 

TCA, CDCA, UDCA and GCA 

Growth of 81-176 in MHB that was supplemented with half IC50 concentration of each bile 

acid was evaluated over a period of 48h. OD 600 readings of each bile acid were taken after 

every 4h. The results revealed an interesting growth behaviour of 81-176 in these bile acids 

(fig 4). Briefly, the growth curves of all bile acids displayed an element of well defined lag 

and exponential phases between 0h and 16h. The lines of the growth curves of UDCA and 

control shared a similar path between 0h and 16h. Similarly, the lines of growth curves of 

The figures shown in this table are an average of three independent 

experiments and rounded off to one decimal place.  

Mean value n = 3, p<0.05. 
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LCA, control and UDCA shared a similar path between 0h and 8h. Interestingly, LCA 

displayed a similar growth pattern as UDCA. Both display a unique  growth pattern between 

16h and 32h and unexpected exponential growth after 36h. The lines of their growth curves 

travelled a distance apart from 8h but converged at 24h; and shared a similar path and growth 

trend between 36h to 48h.   

On the other hand, between 0h and 16h, the lines of the growth curves of CA, DCA, TCA, 

CDCA and GCA shared a similar pattern like the control and UDCA. But the lines of the 

growth curves of CA, DCA, TCA, CDCA and GCA were a distant from those of both the 

control and UDCA.  Interestingly, after 16h CA initiated a well defined stationary phase while 

DCA, TCA, CDCA and GCA initiated unique growth patterns. First, the growth curves of 

TCA and GCA portrayed a similar pattern from 16h and 48h with growth curve lines running 

parallel to each other and characterized by a short distance between them. A look at this 

pattern, reveals that: (i) they both displayed a unique  growth pattern between 16h and 36h; 

(ii) short stationery phase between 36h and 40h and; (iii) unexpected exponential growth after 

40h. Second, the growth curve of DCA displayed  (i) a V-shaped growth pattern between 16h 

and 24h; (ii) a brief stationary phase between 24h and 40h and; (iii) an exponential growth 

from 40h to 48h. Third, the growth curve of CDCA displayed (i) a decline in growth between 

16h and 20h; (ii) unexpected exponential growth between 20h and 36h; (iii) a brief stationary 

phase between 36h and 40h and (iv) a decline in growth from 40h to 48h.   

 
Fig. 4. A growth curve showing the comparison of the growth of 81-176 in MHB without bile acids 

(control_WT) and 81-176 in MHB supplemented with various bile acids at 37
o
C for a period of 48h. 

OD measurements were done after every 4h. The graph shows the average results of three independent 

experiments. However, due to a small standard deviation between the independent experiments, no 

error bars are visible. 
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4.4 Quantification of 81-176 proteomic expression in response to DCA 

0.05% using SILAC 

In order to gain a deeper insight into proteomic response of 81-176 to low concentration of 

DCA at 37
°
C, the following factors were employed: (i) 

13
C

15
N-arginine containing CDB was 

supplemented with DCA concentration of 0.05% (half IC50) was used for the investigation, 

(ii) samples for protein analysis were collected at 12h (mid-exponential phase) and (iii) 

culture temperature of 37
°
C was used (fig 5). Consequently, C. jejuni 81-176 was cultured in 

3ml CDB supplemented with DCA 0.05% for 12h at 37
°
C under microaerophilic conditions. 

To quantify the proteins, three replicates of heavy isotope labeled and unlabelled protein 

samples were independently purified and separated on SDS-PAGE (50µg  per lane). The 

bands were sliced into small pieces and digested with ArgC. The resulting peptides were 

measured using Quadrupole-orbitrap mass spectrometry as described in Materials and 

Methods. The arising raw data were analyzed using MaxQuant 1.5.3.8 and UniProtKB 

CAMJJ 2016-09 and identified 857 proteins. Of these proteins, 500 proteins were accurately 

quantified (fig. 5; scatter plot). 

A total of 128 proteins were significantly differentiated (Appendix 1). These proteins were 

categorized into the following biological functional groups: cell wall organization, 

chemotaxis, DNA transcription, DNA replication, metabolism, motility, pathogenesis, protein 

synthesis, stress response, transport, two-component regulatory system and uncharacterized 

(fig. 6). Examples of significantly upregulated proteins included: transcription termination 

factor Rho (Rho), aspartate aminotransferase (aspC), GTP cyclohydrolase-2 (ribA), dCTP 

deaminase (dcd), methionine aminopeptidase (map), succinate dehydrogenase, C subunit 

(sdhC), fibronectin-binding protein (cadF) and 60 kDa chaperonin (groL). Interestingly, 

common proteins which are known to promote invasion of epithelium cells were not 

significantly upregulated (Malik-Kale et al., 2008a). They include: Campylobacter invasion 

antigen B (ciaB), flagellar motor switch protein FliG (FliG), paralyzed flagella protein PflA 

(PflA), co-chaperone protein DnaJ (Dnaj), capsular polysaccharide ABC transporter and 

periplasmic polysaccharide-binding protein (kpsD). Lastly, other known DCA-induced 

proteins including: CmeABC efflux pump proteins, catalase A (katA) and flagellum protein 

FlaA (FlaA), Flagellar protein FlaG (flaG), Flagellar hook protein FlgE were significantly 

downregulated. These findings show that DCA 0.05% is not toxic to 81-176 and induces 

virulence associated proteins. Importantly, these results coupled with the observation in fig.3, 

insinuate that there are other yet to be known invasion proteins beyond the commonly known 

invasion proteins. 
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Fig. 5. SILAC of 81-176 quantitative proteomic response to DCA 0.05%. A: Shows the SILAC 

scheme that was developed. A total number of 500 proteins were quantified using persues (log2>1). B: 

Scatter plot showing the correlation of 81-176 protein expression between response to DCA 0.05% and 

control.  C: Histogram showing the distribution of the measured proteins in experiment B was 

homogenously distributed.  

Fig. 6. Functional categorization of SILAC quantified proteins. These proteins were extracted from 

81-176 which had been cultured in CDB supplemented with DCA 0.05% for 12h at 37
o
C. These 

proteins were quantified using persues where log2>1 was interpreted as significantly upregulated and 

log2<1 was interpreted as significantly downregulated.  
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4.5 Label-Free analysis with SWATH yields more quantifiable proteins 

than SILAC 

4.5.1 Comparison of SILAC and Label-Free analysis with SWATH 

This investigation was performed to determine a suitable quantitative method between SILAC 

and label-free analysis with SWATH for this study. An initial comparison of proteomic 

response in 81-176 to DCA 0.05% using SILAC and label-free analysis with SWATH showed 

that the latter yielded more quantifiable proteins; SILAC yielded 500 proteins while label-free 

analysis with SWATH yielded 957 proteins. In addition, label-free analysis with SWATH had 

the following advantages over SILAC: it was financially cheaper, faster to get results  

(6 days), required less technical expertise and was easy to perform. Due to these advantages, 

label-free analysis with SWATH was mainly used to analyze proteomic response of 81-176 to 

CA 0.1%, DCA 0.05%, LCA 0.5%, TCA 0.5%, CDCA 0.05%, UDCA 0.5% and GCA 0.4%. 

Fig. 7 and Fig. 8 show how the analysis was performed. As a result, a SWATH-MS spectral 

reference library containing 1079 proteins (14644 peptides) at 1% FDR was generated by data 

dependant acquisition (DDA) analysis of all 13 samples by injecting nanoLC/MS/MS (fig.9). 

 

 

 

 

Fig.7. Label-free analysis with SWATH analysis scheme used in the study. 

A DDA library of 1079 proteins was developed and a total number of 957 were 

quantified and identified.  
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Total Ion Chromatogram 

ToF MS Survey Scan 

25 MS/MS Scans 

Fig.8 Screenshots of DDA-nanoLC/MS/MS runs. The runs were displayed by the instrument control software 

MassLynx (Waters Corporation). Experimental conditions were: nominal 1.5µg digest on TT5600 for 90 min gradient, 

13 samples with 2 technical replicates resulting in 26 injections  
 



 43 

 

Fig 9: Protein, Peptide and Spectral level False Discovery Rates Analysis results from Protein Pilot 5.0 
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4.5.2 Classification of proteomic response in 81-176 to sublethal concentrations of different 

bile acids SWATH and Principal Component Analysis (PCA) 

PCA was performed to analyse the correlation between proteins of each sample replica and 

correlation between proteins that were induced by different bile acids. Subsequent to DDA 

analysis, 6 protein replicates of each 81-176 sample which had been cultured in CDB 

supplemented in CA 0.1%, DCA 0.05%, LCA 0.5%, TCA 0.5%, CDCA 0.05%, UDCA 0.5%, 

GCA 0.4% and 0% (control) respectively were subjected to SWATH through Data 

Independent Acquisition (DIA) method. Peptides/proteins present in each sample were 

quantified by generating a spectral library from the DDA data using PeakView 2.2 software 

with the SWATH microApp 2.0 (SCIEX).  These analyses lead to the reliable quantification 

of 957 proteins across all samples. MarkerView 1.2.1 software (SCIEX) was used to perform 

principal component analysis (PCA). The results displayed three distinguishable protein 

groups in the experimental samples: first group comprised DCA and CDCA proteins 

indicating that they are correlated; second group comprised CA, LCA, TCA and UDCA 

indicating correlation; and the third group comprised GCA proteins (fig.10). In addition, PCA 

showed that proteins of each sample replicates were closely positioned to each other 

indicating that the samples were reproducibly prepared. Hence, the mass spectrometry results 

were reliable and reproducible.   

 

 

 

 

Fig. 10. PCA analysis displaying the correlation between different protein biological 

replicates of C. jejuni 81-176 cultured in CBD supplemented with low concentrations of 

different bile acids for 12h at 37
o
C. Numbers are the following bile acids: 1a,b,c are 

replicates of CA 0.1%, 2a,b,c are replicates of DCA 0.05%, 3a,b,c are replicates of LCA 

0.5%, 4a,b,c are replicates TCA 0.5%, 5a,b,c are replicates of CDCA 0.05%, 6a,b,c are 

replicates of UDCA 0.05% and 7a,b,c are replicates of GCA 0.4%.  
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4.5.3 Plausibility check 

PCA having revealed that the samples were well prepared hence the data is reliable and 

reproducible. The next step was to check the plausibility of the expected results. A previous 

study showed that multidrug efflux transporter CmeABC plays an important role in bile 

resistance (Lin et al., 2002, 2003). Consequently, CmeABC was selected to check the 

plausibility of the proteomic response of 81-176 to CA, DCA, LCA, TCA, CDAC, UDCA 

and GCA. Using Markerview, the following observations were made in relation to the control: 

first, LCA, and UDCA had almost same activation signal of CmeA, CmeB and CmeC to that 

of the control. Second, CA, TCA and GCA activated CmeA, CmeB and CmeC with an almost 

equal signal and higher than the control. Lastly, DCA and CDCA activated CmeA, CmeB and 

CmeC with the highest signal. The findings are shown in figure 11 below. This plausibility 

check implied that each protein in 81-176 responded appropriately to each bile acid used in 

this study. Hence the results of the rest of the genes were reliable. 

 

  

 

   

 

 

 

 

 

 

 

 

 

 

Fig 11. 81-176 proteomic response plausibility check using CmeABC proteins. LCA and UDCA produced similar 

activation signal to the control. CA, TCA and GCA produced an almost equal activation signal but higher than the 

control. DCA and CDCA produced the highest activation signal. 

cmeA 
cmeB 

cmeC 
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4.5.4 Biological processes in 81-176 influenced by sublethal concentration of each bile acid 

DAVID GO analysis revealed that the 957 quantified proteins belonged to the following 

nineteen biological processes: cell cycle, cell division and septation (8 proteins), cell 

morphogenesis (1 protein), cell wall organization (4 proteins), chaperone (11 proteins), 

chemotaxis (14 proteins), DNA modification (2 proteins), DNA replication (19 proteins), 

DNA transcription (11 proteins), metabolism (327 proteins), motility (17 proteins), 

pathogenesis (31 proteins), peptidoglycan biosynthesis (5 proteins), protein modification (3 

proteins), protein synthesis (103 proteins), Protein synthesis regulation (1 protein), Ribosome 

biogenesis (3 proteins), stress response (49 proteins), transport (49 proteins), two-component 

regulatory system (8 proteins) and uncharacterized (291 proteins). Importantly, 700 of the 957 

proteins were significantly differentiated (459 known proteins and 241 uncharacterized 

proteins). But as shown in fig.12A and fig.12B, the significantly differentiated proteins 

belonged to fifteen biological processes in 81-176. These include: cell cycle and cell division, 

protein folding (chaperones), chemotaxis, DNA replication, DNA transcription, metabolism, 

motility, cell wall organization, protein modification, protein synthesis, pathogenesis, stress 

response, transport and two-component regulatory system. Interestingly, proteins which 

belonged to metabolism, protein synthesis and transport were the highest and were 

significantly regulated by DCA, CDCA, TCA and GCA.  For example, DCA significantly 

upregulated 57 proteins in metabolism, followed by CDCA (39 proteins) and GCA (27 

proteins). Similarly, GCA significantly upregulated 17 proteins in protein synthesis, followed 

by DCA (13 proteins) and TCA and CDCA (5 proteins each). In transport, GCA had the 

highest number of upregulated proteins (8) and CA, DCA, TCA and CDCA upregulated 

similar number of proteins. On the other hand, LCA and UDCA had the least number of 

proteins that were differentiated in the these biological processes. DCA, TCA, CDCA and 

GCA produced a similar trend of dominancy among the 241 uncharacterized proteins (134 

were significantly upregulated and 107 were significantly down regulated). In this group of 

proteins, GCA scored the highest number of upregulated proteins and TCA scored the highest 

number of downregulated proteins. 
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Fig 12A. SWATH: Number of significantly upregulated proteins (Log2FC≥1). The functional 

categories identified include: cell cycle and cell division (CC), chaperone (C), Chemotaxis (CT), 

DNA replication (DR), DNA transcription (DT), metabolism (MT), motility (MY), cell wall 

organization (CWO), pathogenesis (PG), protein modification (PM), protein synthesis (PS), signal 

transduction (ST), stress response (SR), transport (T), two-component regulatory system (TRS) and 

uncharacterized (U). Majority of the significantly upregulated proteins belonged to metabolism, 

protein synthesis and uncharacterized functional categories. DCA, TCA, CDCA and GCA had the 

greatest influence on each functional group while LCA and UDCA had the least influence.   
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Fig 12B. SWATH: Number of sgnificantly downregulated proteins (Log2FC≤1). The functional 

categories identified include: cell cycle and cell division (CC), chaperone (C), Chemotaxis (CT), 

DNA replication (DR), DNA transcription (DT), metabolism (MT), motility (MY), cell wall 

organization (CWO), pathogenesis (PG), protein modification (PM), protein synthesis (PS), signal 

transduction (ST), stress response (SR), transport (T), two-component regulatory system (TRS) and 

uncharacterized (U). Majority of the significantly upregulated proteins belonged to metabolism, 

protein synthesis and uncharacterized functional categories. DCA, LCA, TCA, CDCA and GCA had 

the greatest influence on each functional group while LCA and UDCA had the least influence.   
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4.5.5 Significantly differentiated proteins in 81-176 in response to sublethal concentration 

bile acids 

Empirical Bayes Analysis for Mixed Models in R package limma was used to determine 

proteins that were significantly upregulated and downregulated in 81-176 by each bile acid 

(Smyth, 2004). In mathematical terms, the problem was to evaluate the influence of each bile 

acid on each of the 957 proteins that had been recovered from 3 biological and 3 technical 

replicate protein test samples of 81-176. These samples were collected from cultures of seven 

different bile acids that had been grown for 12h at 37
o
C (biological samples, N = 24 and 

technical replicates, n = 72). For calculation purposes, the control was assigned a working 

number 9 while CA, DCA, LCA, TCA, CDCA, UDCA and GCA were assigned 1, 2, 3, 4, 5, 

6 and 7 respectively. Before the analysis, each protein was substituted by its gene using 

Uniprot. Consequently, mixed model analysis was performed in two stages: in the first stage, 

regression coefficient of the influence of each bile acid on the expression of each gene was 

determined independently; and in the second stage, the regression coefficients of each bile 

acid were compared in a single equation to create a relationship on influence of expression on 

genes between the bile acids. Finally, moderated t-statistics was used to measure protein 

expression between the bile acids. Proteins which showed a log2 fold change higher than 1 

and an FDR-adjusted p-value less that 0.05 were considered to be significantly expressed 

(Table 8; Appendix 2). 

Table 8: Number of significantly differentiated proteins in 81-176 by each bile acid 

 
 

Bile acid 
Number of significantly expressed proteins  

Significantly upregulatated 

(log2 Fold Change ≥1) 

Significantly downregulated 

(log2 Fold Change ≤1) 

Total 

0.1% CA 19 28 47 

0.05% DCA 113 79 192 

0.5% LCA 4 13 17 

0.5% TCA 51 60 111 

0.05% CDCA 89 80 169 

0.05% UDCA 2 4 6 

0.35% GCA 139 20 159 

 

VennPainter program was used to generate a spherical 7-Venn diagram (Lin et al., 2016). This 

diagram was useful in distinguishing proteins that were significantly induced by each 

individual bile acid and not the others (fig. 13 and Table 9). This analysis generated 

interesting results: in overall, GCA had the highest number of significantly upregulated 

proteins (77) that were not significantly upregulated by other bile acids. It was distantly 

followed by DCA (35), CDCA (24), TCA (14) and CA (4) respectively. LCA and UDCA did 
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not significantly upregulate proteins that other bile acids didn't. On the other hand, TCA had 

the highest number of downregulated proteins (39) that are not downregulated by other bile 

acids. This was followed by CDCA (19), DCA (17), GCA (4), CA (4), LCA (1) and UDCA 

(1). 

 

 

 

 

Table 9: Number of significantly expressed unique proteins by each bile acid 
 

 Significantly upregulated 

(log2 Fold Change ≥1) 

Significantly 

downregulated (log2 Fold 

Change ≤1) 

Tota1 

0.1% CA 4 4 8 

0.05% DCA 35 17 52 

0.5% LCA 0 1 1 

0.5% TCA 14 39 53 

0.05% CDCA 24 19 43 

0.05% UDCA 0 1 1 

0.35% GCA 77 4 81 

 

 

These proteins were further classified into biological process which they participate (fig 14A 

and fig 14B). Interestingly, majority of the upregulated proteins belonged to metabolism, 

protein synthesis, transport, stress response, chemotaxis and DNA replication in descending 

order. Only GCA upregulated a two-component regulatory system that was not expressed by 

other bile acids. Equally, GCA and TCA upregulated known pathogenesis factors that were 

not expressed by other proteins; GCA over expressed CJJ81176_pVir0047 (sialic synthesis) 

Fig. 13. A spherical 7-Venn diagram showing significantly expressed protein in 81-176 cultured in 

CDB which was supplemented with low concentrations of 7 different bile acids. 1_CA significantly 

expressed 8 proteins, 2_DCA significantly expressed 52 proteins, 3_LCA significantly expressed 1 

protein, 4_TCA significantly expressed 43 proteins, 5_CDCA significantly expressed 42 proteins, 

6_UDCA significantly expressed 1 protein and 7_GCA significantly expressed 81 proteins. See table A 

for details on number of upregulated and downregulated by each bile acid.   
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and TCA over expressed TatA (protein transport). GCA significantly expressed 32 

uncharacterized proteins, UDCA (10), TCA (6), and CA (4). It is worthwhile to note that 

UDCA and LCA had not significantly expressed proteins which were not significantly 

expressed by other bile acids. 

 

 

 

 

 

 

Fig 14A. SWATH: Significantly upregulated unshared proteins by each bile acid (Log2FC≥1). The 

functional categories identified include: cell cycle and cell division (CC), chaperone (C), Chemotaxis 

(CT), DNA replication (DR), DNA transcription (DT), metabolism (MT), motility (MY), cell wall 

organization (CWO), pathogenesis (PG), protein modification (PM), protein synthesis (PS), signal 

transduction (ST), stress response (SR), transport (T), two-component regulatory system (TRS) and 

uncharacterized (U). The figure shows that TCA and GCA induced the highest number of unique 

proteins. 
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Fig 14B. SWATH: Significantly downregulated unshared proteins by each bile acid (Log2FC≥1). 

The functional categories identified include: cell cycle and cell division (CC), chaperone (C), 

Chemotaxis (CT), DNA replication (DR), DNA transcription (DT), metabolism (MT), motility (MY), 

cell wall organization (CWO), pathogenesis (PG), protein modification (PM), protein synthesis (PS), 

signal transduction (ST), stress response (SR), transport (T), two-component regulatory system (TRS) 

and uncharacterized (U). Majority of the unique and significantly induced proteins belonged to 

metabolism, protein synthesis, pathogenesis, signal response, transport and uncharacterized functional 

categories. However, there was no bile acid that downregulated unique proteins in the following 

categories: protein modification, cell wall organization, DNA transcription and DNA replication.   
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4.5.6 Comparison of differentially expressed proteins in 81-176 at 12h and 24h cultured in 

CDB supplemented with DCA 0.05% at 37
o
C 

Fig 4. demonstrated diverse growth patterns of 81-176 in bile acids under examination in this 

study. DCA was selected to provide an insight into this phenomenon. Consequently, the 

proteomic expression at 12h and 24h in 81-176 cultured in CDB supplemented with 0.05% at 

37
o
C was evaluated. The results of significantly differentiated proteins at 24h indicated an 

active 81-176 but fighting various types of stresses (Appendix 3). Key examples to illustrate 

this observation include: (i) significantly upregulated BamA, YidC and PorA were (ii) 

significantly upregulated stress response factors: FtsH, PbpA, KatA, DnaJ, ClpX, GroL, and 

Cj81176_0717 (iii) CmeABC multidrug efflux system was significantly upregulated (vi) 

significantly upregulated: AtpA, AtpC, AtpD, AtpF, AtpG and AtpH (vi) significantly 

upregulated UbiE, UbiX and IlvC. (v) significantly upregulated SecD, SecF and SecG. 

Finally, PseC and PseI were significantly upregulated at 12h and PseD,E,F,J were 

significantly upregulated at 24h. In addition, significantly upregulated 34 uncharacterized 

proteins. As shown is figure 15 below, at 24h, 81-176 had 111 significantly upregulated 

distinct proteins and 134 significantly downregulated distinct proteins. These group of 

proteins could be responsible for V shaped growth pattern that was observed in figure 4. 

   

` 

 

 

4.6 Unexpected quantification strength and weakness of SILAC when 

compared to label-free analysis with SWATH 

Two very interesting observations arose from the quantification results of SILAC and label-

free analysis with SWATH. First, as mentioned in section 4.5.1, SILAC unexpectedly yielded 

Fig 15. Comparison of significantly differentiated proteins in 81-176 cultured in CDB supplemented 

with DCA 0.05%. A: control, 84 proteins were significantly upregulated; B: 178 distinct were 

significantly upregulated at 24h; C: 119 distinct proteins were significantly upregulated in 81-176 at 12h. 

D: control, 65 proteins were significantly downregulated; E: 167 proteins were significantly 

downregulated at 24h; F: 88 distinct proteins were significantly downregulated in 81-176 at 12h.    
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500 quantifiable proteins. Table 10 lists uniprot codes of the proteins that were quantified by 

label-free analysis with SWATH but not SILAC. Second, SILAC lead to the identification 

and quantification of 23 proteins which were not identified by label-free analysis with 

SWATH (table 11). Lastly, both SILAC and SWATH analyses produced 13 inconsistent 

quantification results (table 12). 

Table 10. List of uniprot codes of  proteins quantified by label-free analysis with SWATH but 

                 not SILAC 

 
UniProt_Accession UniProt_Accession UniProt_Accession UniProt_Accession UniProt_Accession 

A1VYE9 A0A0H3PC31 A1VXN9 A0A0H3PDW4 A0A0H3P9C2 

A0A0H3P9Z7 A1VXL7 A1VYI7 A0A0H3PAV1 A0A0H3PIC7 

A0A0H3PDA2 A0A0H3P9S3 A1W1J3 A0A0H3P9B0 A0A0H3PHT3 

A0A0H3P9C8 A1W0U9 A1VYJ3 A0A0H3P9M8 A0A0H3P9N8 

A1W0K3 A0A0H3PAK3 A1VZ23 Q2TJD3 A0A0H3PA18 

A0A0H3PH13 A1VYK3 A1VYB8 A0A0H3P9B9 A0A0H3PAL8 

A0A0H3PC09 A0A0H3PEH9 A1VYR0 A0A0H3P9J8 A0A0H3P991 

A0A0H3P9J1 A0A0H3PHX0 A0A0H3PID1 A0A0H3PAV3 A0A0H3P9M6 

A0A0H3P9H6 A0A0H3PEG0 A0A0H3PAZ6 A0A0H3PD19 A0A0H3PGL6 

A0A0H3PBE4 A0A0H3PAW0 A0A0H3P9K7 A0A0H3PBZ1 A0A0H3PCJ6 

A0A0H3P9J9 A0A0H3PBR0 A1VXI1 A0A0H3PBE2 A0A0H3PAU3 

A0A0H3PEF7 A0A0H3PB04 A1VY31 A0A0H3PAH4 A0A0H3PBM5 

A0A0H3P9C4 A0A0H3PHU2 A0A0H3PDX5 A0A0H3PJ52 A0A0H3PIU3 

A0A0H3PB49 A1W0W6 A1W162 A0A0H3PAS3 A0A0H3PAF3 

A0A0H3PA34 A0A0H3PAG4 A0A0H3PAE1 A0A0H3P986 A0A0H3PJ65 

A0A0H3PIF4 A0A0H3PHM5 A0A0H3PAL9 A0A0H3P9S8 A0A0H3PEL5 

A0A0H3PHS4 A0A0H3PJK7 A1VXM1 A0A0H3PCR9 A0A0H3PEP7 

A1VX79 A0A0H3PD90 A0A0H3PBB3 A0A0H3P973 A0A0H3PAA2 

A0A0H3PA99 A0A0H3PAQ1 A1VXV6 A0A0H3PGE8 A0A0H3PJ75 

A0A0H3PED7 A1VXU6 A0A0H3PDV7 A0A0H3P968 A0A0H3PAX9 

A0A0H3PBJ8 A1VZ01 A1W0R3 A0A0H3P9G9 A0A0H3PC13 

A0A0H3PH67 A0A0H3PAC7 A1VZU7 A0A0H3P971 A0A0H3PBJ6 

A0A0H3PGG1 A0A0H3PB10 A1W165 A0A0H3PGV9 A0A0H3PC06 

A0A0H3P989 A0A0H3PB89 A1VZW5 A0A0H3PCE6 A0A0H3PBR7 

A0A0H3PGQ1 A0A0H3P9Z1 A1VZH5 Q2A947 A0A0H3PF31 

A0A0H3P9Q7 A0A0H3PA24 A0A0H3PB64 A0A0H3PJE6 A0A0H3PC19 

A0A0H3PEX3 A0A0H3PHN4 A0A0H3PHQ7 A0A0H3PE72 A0A0H3PBN8 

A1W0W2 A0A0H3P9T0 A1VYA6 A0A0H3PAZ8 Q29W30 

A1VY40 Q29VW1 A1VZ20 A0A0H3PJA6 A0A0H3PB55 

A1W1X0 A0A0H3PH15 A1VXH9 A0A0H3PEH5 A0A0H3PBJ9 

Q29W37 A1VZB5 A1VXQ2 A0A0H3PAH9 A0A0H3PIW6 

A0A0H3PBS3 A0A0H3PHG1 A0A0H3PBY8 A0A0H3P9M3 A0A0H3PIY1 

A1W091 A0A0H3PBB5 A0A0H3P9Q3 A0A0H3PBW5 A0A0H3PAB4 

A1VZM8 Q0Q7I1 A0A0H3PA75 A0A0H3P9L3 A0A0H3PB96 

A0A0H3PAP1 A0A0H3PC48 A0A0H3PAG5 A0A0H3PJL7 A0A0H3PAI8 

A0A0H3PAM5 A0A0H3PBK5 A0A0H3PJI4 A0A0H3PJK4 A0A0H3PAP9 

A0A0H3PEB1 A0A0H3PBG9 A0A0H3P9V7 A0A0H3PBP0 A0A0H3PA27 

A1VX95 A0A0H3PIU0 A0A0H3PEB4 A0A0H3PJA2 A0A0H3PHF9 

Q5QKR5 A1W0M1 A0A0H3P9D2 A0A0H3PHF5 A0A0H3PHJ5 

A0A0H3PBU8 A0A0H3PCU6 A0A0H3PEV1 A0A0H3P9Z9 A0A0H3P9M2 

A1VXU8 A0A0H3PBF9 A1W0X9 A0A0H3P9T5 A0A0H3PAS8 

A0A0H3PJ70 A1VYU1 A0A0H3PED2 A0A0H3PBU4 Q0Q7K3 

A0A0H3P9A3 A1VYT7 A0A0H3PCT3 A0A0H3PAS6 A0A0H3PHH2 

A0A0H3PAM7 A0A0H3PDD6 A0A0H3PBG2 A0A0H3P9I3 A0A0H3PAS5 

A0A0H3PCZ7 A0A0H3PIY4 A0A0H3P9M1 A0A0H3PA44 A0A0H3PHG6 

A1VYF9 A0A0H3PAN1 A1VYZ7 A0A0H3PAA5 A0A0H3PDH2 

A1VZR0 A0A0H3PAY1 A0A0H3PAZ2 A0A0H3PBE5 A0A0H3PHP5 

A0A0H3PBD0 A0A0H3P9B6 A0A0H3PCA8 A0A0H3PJC9 A0A0H3PHH8 

A0A0H3PB78 A1W068 A0A0H3PA35 A0A0H3PH37 A0A0H3P9N1 

A0A0H3PD50 A1W035 A0A0H3PBJ5 A0A0H3PI86 A0A0H3PDB4 
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A1VZN9 A1VZB4 A0A0H3PAP0 A0A0H3PAT8 A0A0H3P981 

A0A0H3P9T9 A1VY70 A0A0H3PAE7 A1VYL9 A0A0H3PGX2 

A0A0H3PBH6 A0A0H3PJF7 A0A0H3PIA1 A0A0H3PBF8 A0A0H3PCX6 

A0A0H3PHN8 A0A0H3PHB9 A1VXG9 A0A0H3PB69 A0A0H3PAC0 

A0A0H3P9E4 A0A0H3P9E8 A0A0H3PIG5 A0A0H3P994 A0A0H3P9D1 

A0A0H3PET1 A1VY43 A0A0H3PDE7 A0A0H3PAR1 A0A0H3PH34 

A0A0H3P9A4 A0A0H3P9P3 A0A0H3PE25 A0A0H3PDU8 A0A0H3PAL5 

A0A0H3PHA3 A1W0S0 A0A0H3PAQ2 A0A0H3PBB8 A0A0H3PAL1 

A0A0H3PJ78 A1VYQ4 A0A0H3PA42 A0A0H3PBE0 A0A0H3P9D8 

A0A0H3PB53 A0A0H3PAH1 A0A0H3P9J0 A0A0H3PBM4 A0A0H3PAJ5 

A1W1K9 A1VY44 A0A0H3PA60 A0A0H3PEH2 A0A0H3PGW3 

A0A0H3PJ97 A1W062 A0A0H3PA66 A0A0H3PJB0 A0A0H3PAI2 

A1VZJ8 A0A0H3PIU8 A1VXJ1 Q8GJC7 A0A0H3PCX2 

A1W0D6 A0A0H3PIZ8 A0A0H3P9J7 A0A0H3PA26 Q2M5Q0 

A0A0H3PBH7 A0A0H3PA78 A0A0H3P9L8 A0A0H3PIS1 Q2M5Q9 

A1W0R9 A0A0H3PIF6 A0A0H3PBJ1 A0A0H3PES2 Q2M5Q7 

A1VXP5 A0A0H3PEY5 A0A0H3PBD1 Q6QNL7 A0A0H3PII9 

A0A0H3P9S5 A0A0H3PDD9 A0A0H3PAC4 Q0Q7J3 Q2M5R0 

A0A0H3PAJ2 A0A0H3PAR2 A0A0H3PA51 A1VZ10 A0A0H3PDS7 

A0A0H3PCG8 A0A0H3P9C5 A0A0H3PBL7 A0A0H3PAX0 A0A0H3PAF1 

A0A0H3PI21 A0A0H3PAC3 Q0Q7H5 A0A0H3PEN1 A0A0H3PBG0 

A0A0H3PA38 A0A0H3PCP5 A0A0H3PA76 Q29VV2 A0A0H3PB67 

A0A0H3P9L0 A0A0H3PAD9 A0A0H3PGP1 Q29VV3 A0A0H3PAA3 

A0A0H3PH05 A0A0H3PH73 A0A0H3PEA5 A1W0U8 A0A0H3PAM9 

A0A0H3PAU6 A0A0H3P9F0 A0A0H3PJB3 Q6QNL8 A0A0H3P9U1 

A0A0H3PA89 A0A0H3PB07 A0A0H3PHE3 Q29VV4 A0A0H3P9W6 

A0A0H3PCI0 A0A0H3PEE2 A0A0H3PJ16 A1VYV6 A0A0H3PAA1 

A0A0H3PIT1 A1VZQ5 Q0Q7I0 A0A0H3P9V0 A0A0H3PIL0 

A0A0H3PHL1 A0A0H3PAN7 A0A0H3P9B1 A0A0H3PAB7 A0A0H3P9V8 

A0A0H3PAL3 Q7X518 A0A0H3PIS5 A0A0H3PBC8 A0A0H3PHT8 

A0A0H3P9I4 Q7X517 A1W0G0 Q0Q7K6 A0A0H3PI11 

A1VZI4 Q2M5Q2 A0A0H3PAY0 Q0Q7K2 A0A0H3PDT4 

A0A0H3PEJ9 Q939J8 A0A0H3PDM3 Q0Q7K5 A0A0H3PE85 

Q29VV6 A0A0H3P9U7 A0A0H3PA17 Q0Q7K1 A0A0H3PAW5 

A0A0H3P9R1 A1W0U6 A0A0H3PAU0 Q2M5Q3 A0A0H3PA01 

A0A0H3PAP2 Q5QKR7 A0A0H3P9N4 Q0Q7K4 A0A0H3PIQ2 

A0A0H3PA70 Q5QKR8 A0A0H3PDF2 A0A0H3PJF3 A0A0H3PB39 

A1VZJ6 A0A0H3PAW3 A0A0H3P9R0 A0A0H3PAY9 A0A0H3PGL0 

A1VYQ1 A0A0H3PE81 A0A0H3PED0 A0A0H3PA59 Q8GJE8 

A1W0I0 A0A0H3PE69 A0A0H3PBQ0 A0A0H3PEC2 Q8GJE6 

A0A0H3P9U0 A1VZG5 A0A0H3PBI5 A0A0H3PEW9 Q8GJC6 

A0A0H3PI47 A1VZE6 Q2M5Q4 A0A0H3PDG2 Q8GJC5 

A0A0H3PE58 A1W1J5 A0A0H3P9P2 A0A0H3PA31 Q8GJA8 

A0A0H3P9U4 A1W1V6 A0A0H3PDG0 A0A0H3PA30 A1VZY1 

A0A0H3PAJ4 A1VXH7 A0A0H3PHZ5 A0A0H3P9J3   

A1VY36 A1W1V8 A0A0H3P9T3 A0A0H3PBF1   

A0A0H3PB29 A0A0H3PB47 A0A0H3P9H3 A0A0H3PD80   

 

Table 11: Proteins identified by SILAC and not label-free analysis with SWATH   

 

T: Protein IDs 

 

Gene name Protein name 

N: Razor + 

unique peptides N: Q-value 

A1VYG6 RpmB 50S ribosomal protein L28 6 0 

A1VZV2 RpmH 50S ribosomal protein L34 1 0 

A0A0H3PD07 DctA C4-dicarboxylate transport protein 1 0 

A0A0H3P972 CJJ81176_pTet0015 CCP20 1 0 

A1VZQ6 CheR Chemotaxis protein methyltransferase 2 0 

A0A0H3PJJ8 

PheA Chorismate mutase/prephenate 

dehydratase 6 0 

A0A0H3P9Y5 CJJ81176_pTet0016 Cpp21 3 0 

A0A0H3PA83 CJJ81176_0885 Cytochrome C 1 0.0037267 

A0A0H3PHE9 CJJ81176_0894 Flagellin 3 0 

A0A0H3PDZ8 FdhB Formate dehydrogenase, iron-sulfur 3 0 
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subunit 

A0A0H3P9F9 

CJJ81176_1025 Mechanosensitive ion channel family 

protein 1 0.0025773 

A0A0H3PAT6 CJJ81176_1251 Phosphatase, Ppx/GppA family 3 0 

A0A0H3PGN8 CJJ81176_0003 Pseudouridine synthase 4 0 

A0A0H3P9G2 CJJ81176_1023 Putative, Cell division protein FtsH 3 0 

A0A0H3PJC4 CJJ81176_0627 Putative, Chemotaxis protein MotB 1 0 

A0A0H3PAE0 CJJ81176_1535 RloH 4 0 

A0A0H3PD83 LepB Signal peptidase I 7 0 

A0A0H3PGQ9 SppA Signal peptide peptidase SppA, 36K type 2 0 

A0A0H3P9Y3 FtsY Signal recognition particle receptor FtsY 3 0 

A0A0H3PJ87 CJJ81176_0413 TPR domain protein 4 0 

A0A0H3PEZ9 CJJ81176_0207 Uncharacterized protein 3 0 

A0A0H3PHD0 CJJ81176_1050 Uncharacterized protein 2 0 

A0A0H3PI03 CJJ81176_1405 Uncharacterized protein 1 0 

 

 

Table 12: Inconsistent quantification results in SILAC and SWATH 

 

T: Protein IDs 

 

 

Gene name C: T-test Significant 

C: T-test 

Significant _T-

test Significant Expression in SWATH 

A0A0H3PAI3 CJJ81176_0586 

  

Significantly downregulated 

A0A0H3PAL0 cadF + +_+ Significantly downregulated 

A0A0H3PB02 CJJ81176_0220 

  

Downregulated 

A0A0H3PB43 CJJ81176_0637 

  

Significantly downregulated 

A0A0H3PCI2 CJJ81176_0072 + +_+ Significantly downregulated 

A0A0H3PCP8 CJJ81176_1045 

  

Significantly downregulated 

A0A0H3PCS4 ribE 

  

Significantly downregulated 

A0A0H3PD29 cobE + +_+ Downregulated 

A0A0H3PD33 sixA + +_+ Downregulated 

A0A0H3PEX7 CJJ81176_0438 + +_+ Downregulated 

A0A0H3PH47 CJJ81176_1185 + +_+ Significantly downregulated 

A0A0H3PH83 ssb + +_+ Significantly downregulated 

A0A0H3PJ30 nrdB + +_+ Downregulated 

A1W0Z5 selA + +_+ Downregulated 

A1W1H0 nuol + +_+ Downregulated 

A1W1U3 rpsE + +_+ Downregulated 

A1W1V5 rplV + +_+ Downregulated 

Q29W27 kpsD 

  

Downregulated 

Q3I354 luxS + +_+ Significantly downregulated 

 

4.7 Deletion of MazF (cjp47) affects growth of 81-176 in bile acids and 

decreased Caco-2 cell adherence and invasion in presence of bile acids. 

The biological functions of all proteins that were differentially expressed in this study were 

matched with those in other Gram negative bacteria. This comparison led to the identification 

of a number of proteins which could be playing a role in the pathogenesis of  

81-176 (Appendices 1 - 8). From this collection, gene cjp47 was chosen for further 

characterization. A BLAST search showed that it was a toxin-toxin system gene and was 

closely related to mazF of E. coli (fig. 16). This type of toxin-toxin has been found to play a 

role in the survival and pathogenesis of other bacterial pathogens (Kędzierska and Hayes, 

2016). It was hypothesized that cjp47 could be playing a similar role in 81-176. Consequently, 
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a mutant and complement of cjp47 was constructed (fig 17). The mutant, its complement and 

the wild type (WT) showed similar growth pattern in MHB (fig. 18). The growth of mutant in 

MHB that was supplement with CA 2.5mM, LCA 15mM, TCA 10mM, UDCA 15mM, DCA 

2.5mM, CDCA 2.5mM, and GCA 2.5mM. The growth curves of mutant growing in MHB 

supplemented with these concentrations showed no significant difference between WT, 

mutant and complement between 0h and 20h (p>0.05). However, after 20h, the growth curves 

of mutant growing in MHB supplemented with CA 2.5mM, TCA 10mM, DCA 2.5mM, 

CDCA 2.5mM and GCA 2.5mM showed a significant difference between the mutant and WT 

and complement (p<0.05; fig. 19).  

In the next experiment, GPA was used to test the effect of deleting gene mazF on the 

capability of 81-176 to adhere and invade Caco-2 cells. DMEM medium was supplemented 

with CA 2.5mM, LCA 15mM, TCA 10mM, UDCA 15mM, DCA 2.5mM, CDCA 2.5mM, 

and GCA 2.5mM. The mutant showed reduced adherence and invasion on Caco-2 cells in 

presence of these concentrations of bile acids (fig. 20). However, two-way ANOVA analysis 

revealed that the reduction in numbers related to adherences that were found in DCA, LCA, 

TCA, CDCA, UDCA and GCA were not significantly different from WT and complement. 

On the other hand, two-way ANOVA analysis of invasion results revealed that the reduced 

numbers that were found in DCA, LCA, CDCA, UDCA and GCA were not significantly 

different from the WT and complement (p<0.05). Therefore, deletion of cjp47 (i) significantly 

reduced the adherence of 81-176 in the presence of low concentration of CA and (ii) 

significantly reduced the invasion of cj81-176 in the presence of low concentration of CA and 

TCA. In both experiments, there was no significant difference between mutant, WT and 

complement in GPA with DMEM that was not supplemented with all bile acids.    

 

 



 58 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Fig. 17. Gel pictures showing the mutant construction scheme. A shows the size of mazF (570bp). B 

shows successful ligation of mazF and pbluescript vector (3.5bp). C shows successful construction of a sucide 

vector comprising ligation of pbsK (3bp), mazF and kanamysin cassette (1.5bp). D shows successful 

homologous in 81-176 upon transformation of suicide vector into 81-176. 

Fig. 16. Phylogenetic analysis of the relationship of cjp47 with mazF orthologs from other bacteria. 

The analysis was done through CLUSTRAL multiple sequence alignment by MUSCLE. The accession 

umbers for each MazF of bacteria species are: tr|Q8GJA8|Q8GJA8_CAMJJ Uncharacterized protein 

OS=Campylobacter jejuni subsp. jejuni serotype O:23/36 (strain 81-176), sp|P0AE70|MAZF_E. coli 

Endoribonuclease MazF OS=Escherichia coli (strain K12), ABA71736.1 pemK-like protein 

(Enterococcus faecalis), WP_011617512.1 antitoxin (Cupriavidus necator), WP_005817423.1 

MULTISPECIES: mRNA interferase PemK (Desulfitobacterium), WP_011375304.1 PemK family 

transcriptional regulator (Lactobacillus sakei), YP_430997.1 transcriptional modulator of MazE/toxin 

MazF (Moorella thermoacetica ATCC 39073), NP_814592.1 PemK family transcriptional regulator 

(Enterococcus faecalis V583), ZP_00229889.1 transcriptional regulator, PemK family (Listeria 

monocytogenes serotype 4b str. H7858), WP_011527995.1 toxin MazF (Streptococcus pyogenes), 

ZP_01229280.1 hypothetical protein CdifQ_02003809 (Clostridium difficile QCD-32g58), CAB12273.1 

endoribonuclease toxin (Bacillus subtilis subsp. subtilis str. 168), WP_000621175.1 MULTISPECIES: 

mRNA interferase MazF (Staphylococcus aureus) 
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Fig. 18. Growth curves showing the comparison of 81-176 WT, mazF mutant and its complement in 

MHB at 37
o
C. The graph shows the average results of three independent experiments. However, due to 

a small standard deviation between the independent experiments, no error bars are visible. 
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Fig 19: Growth curves of mazF mutant in bile acids used in this study. * on the graphs showed time points 

where significant differences between mutant and both wild type and complement were found (p<0.05). The 

graph shows the average results of three independent experiments. However, due to a small standard 

deviation between the independent experiments, no error bars are visible. 
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Fig.20a. Comparison of adherence and invasion of Caco-2 cell by WT, mutant and complement in 

DMEM medium supplemented with 2.5mM CA, 15mM LCA, 10mM TCA and 15mM UDCA. Two-

way ANOVA analysis showed that the deletion of mazF significantly impaired the adherence of 81-176 to 

Caco-2 cells in 2.5mM CA (p<0.05). However, its deletion did not significantly impair the adherence of 

cj81-176 to Caco-2 cells in the presence of TCA, LCA and UDCA. On the other hand, Two-way ANOVA 

analysis showed that the deletion of mazF significantly impaired the invasion of Caco-2 cells by cj81-176 

in the presence of 2.5mM CA and 10mM TCA (p<0.05). Howerver, its deletion did not significantly 

impair the invasion of Caco2-cells by cj81-176 in the presence of UDCA and LCA. The deletion reduced 

the number of 81-176 cells that were recovered from Caco-2 cells in all situations. The experiment was 

repeated three independent times. 

Fig.20b. Comparison of adherence and invasion of Caco-2 cell by WT, mutant and complement in 

DMEM medium without bile acids. Two-way ANOVA analysis showed that the deletion of mazF did 

not significantly impaired the adherence and invasion of 81-176 to Caco-2 cells (p>0.05). However, the 

delation of mazF reduced the number of cells that were recovered from Caco-2 cells. The experiment was 

repeated three independent times. 
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Fig.20c. Comparison of adherence and invasion of Caco-2 cell by WT, mutant and complement in 

DMEM medium supplemented with 2.5mM DCA, 2.5mM CDCA and 10mM GCA. Two-way 

ANOVA analysis showed that the deletion of mazF did not significantly impaired the adherence of 81-

176 to Caco-2 cells (p>0.05). However, its deletion reduced the number of C81-176 cells that were 

recovered from Caco-2 cells. The experiment was repeated three independent times. 

Fig.20d. Comparison of adherence and invasion of Caco-2 cell by WT, mutant and complement in 

DMEM medium without bile acids. Two-way ANOVA analysis showed that the deletion of mazF did 

not significantly impaired the adherence and invasion of 81-176 to Caco-2 cells (p>0.05). However, the 

delation of mazF reduced the number of cells that were recovered from Caco-2 cells. The experiment was 

repeated three independent times. 
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4.8 Metabolism proteins dominate number of significantly upregulated 

proteins under regular laboratory growth temperatures (37
o
C and 42

o
C) 

The last objective of this study was to compare proteomic shifts in 81-176 cultured at 37
o
C 

and 42
o
C over a period of 24h. This objective was driven by the outcomes that are observed 

when C.jejuni colonizes two different hosts, namely, chicken and human beings. In chicken, 

gut colonization by C .jejuni does not result in campylobacteriosis (Beery et al., 1988b). But 

in human beings, colonization of small intestines with C. jejuni results in campylobacteriosis 

(Black et al., 1988). Temperature is one of the contrasting physiological factors between these 

two hosts. The natural temperature of chicken is 42
o
C while the natural temperature of human 

beings is 37
o
C (Richards, 1970; Sund-Levander et al., 2002). This difference in temperature 

prompted a need for further investigation into the role of temperature in pathogenesis of C. 

jejuni.  

The first investigation focused on the proteomic shift in 81-176 growing at 37
o
C during 12h 

and 24h. The biological functional categorization criteria that was established in section 4.5.4 

was used to group the expressed proteins into various biological processes. As a result, 

significantly differentiated proteins belonged to the following biological processes: cell cycle 

and cell division, outer membrane, chemotaxis, DNA replication and transcription, 

metabolism, protein synthesis, stress response, transport and two-component regulatory 

systems  (Appendix 4, 5 and 6). Using 0h as the reference point, 242 proteins were 

differentially expressed at 12h; 43 significantly downregulated and 199 significantly 

upregulated (fig 21a and fig 21b) were detected. At 24h, 401 proteins were differentially 

expressed; 83 significantly downregulated proteins and 318 significantly upregulated proteins 

were detected. As shown in fig. 21a, the highest number of proteins that were significantly 

upregulated at 24h belonged to metabolism, stress response and protein synthesis. In addition, 

uncharacterized proteins. The additional stress response proteins that were identified at 24h 

include: CsrA, HslU, Cjj81176_1536, HypC, Cjj81176_1158, LuxS, SodB, Cjj81176_1101, 

NapD and PpiB. Interestingly, a pairwise comparison between differentially expressed at 12h 

and 24h revealed the following to be significantly expressed at 24h and not 12h (fig. 21c): (i) 

cell cycle: FtsZ, FtsA (ii) outer membrane: Ffh (iii) DNA replication and transcription: PolA, 

TopA, DnaX, DnaB, NusG, GreA, NusA (iv) metabolism: TrpE, HisD, GltD, PrsA, QueF, 

Fbp, AroQ (v) motility and chemotaxis: FliS, FliD, FliW, and CheW (vi) stress response: 

ClpX, CsrA, DnaJ, LuxS, SodB (vii) transportation: Fur and SecA.  
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Fig 21a. Functional categorization of significantly upregulated and downregulated proteins in 81-

176 cultured for 12h at 37
o
C ( A and B) and cultured for 24h at 37

o
C (C and D). A and B shows 

number of significantly downregulated and upregulated proteins at 12h respectively and the biological 

processes they are involved. Similarly, C and D shows number of significantly downregulated and 

upregulated proteins at 24h respectively and the biological processes they are involved and B shows 

significantly upregulated proteins. Log2FC≤1 was interpreted as significantly downregulated and 

log2FC≥1 significantly upregulated.   

Fig 21b. Venn diagram showing significantly differentiated proteins in an analysis comparing protein 

expression in 81-176 at 0h, 12h and 24h at 37
o
C. In summary, A: 31 significantly distinct proteins were 

significantly upregulated at 12h; B: 149 proteins were significantly upregulated at 24h; , 169 significantly 

upregulated proteins were shared at 12h and 24h. C: 82 proteins were significantly upregulated between 12h and 

24h (log2FC≥1). D: 15 proteins were significantly downregulated at 12h; E: 55 proteins were significantly 

downregulated at 24h; 28 proteins similar proteins were significantly downregulated at 12h and 24h; F: 65 

proteins were significantly downregulated between 12h and 24h (Log2FC≤1). 
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The second investigation entailed comparing proteins that were differentially expressed when 

81-176 was cultured at 37
o
C and 42

o
C for 24h (Appendix7). The initial comparison of the 

proteins that are significantly differentiated at 42
o
C and 37

o
C identified proteins that were 

significantly differentiated in 81-176 cultured 42
o
C for 24h (fig. 22). These included: (i) 

metabolism: significantly upregulated PurE, SdaA, SdaC, NrfA, NrfH, PetA, PetC, NuoC, 

NuoG, CydA, Peb1C, Ppk,and FrdC; (ii) stress response: ClpB, DnaJ-1, GroL, DnaJ, DnaK, 

DsbA, GrpE and TatA (iii) transportation: TatB (iv) cell division: PbpA. Similarly, a 

comparative analysis of differentially expressed proteins in 81-176 cultured at 42
o
C in CDB 

for 24h and 81-176 cultured at 37
o
C in CDB supplemented with bile acids for 12h (section 

4.5.4) was carried out. This analysis revealed additional essential proteins for adaptation to 

42
o
C (table 13).    

 

 

Fig.21c. Functional categorization of significantly upregulated and downregulated distinct proteins 

at 12h and 24h at 37
o
C. E shows number of significantly downregulated proteins (log2FC≤1) and 

biological processes where they are involded. F shows the number of significantly upregulated proteins 

(log2FC≥1) and biological processes where they are involved.   

Fig.22. Functional categorization of significantly upregulated and downregulated distinct proteins 

in 81-176 cultured for 24h at 42
o
C.  
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Table 13: Key proteins likely to promote adaptation of 81-176 from CDB suppl with 

      bile acids at 37
o
C to 42

o
C  

 

Biological category Gene name Expression level 

Chaperone groL, groS, hypD, hypE, clpB, clpX  

 

 

 

 

 

 

 

Significantly upregulated 

Chemotaxis cheB, cheY, cheA 

Cell cycle and division  ftsA, ftsZ, murC 

 

Transport 

CJJ81176_0137, CJJ81176_0446, 

CJJ81176_0897 

Two-component regulatory system trpS 

Stress Response dnaK, grpE, csrA, napD, dnaJ, dnaJ-1, 

clpB, sodB 

Protein transportation pathways tat and sec 

Protein synthesis Rnc, rpsJ, rpsH, rpsT, rpsE, rpsU, 

rpsK, rpsB, hypE, hypB, trpS, hypB 

Protein modification sixA, map 

 

Metabolism 

CJJ81176_0111, sdaA, 

pur(C,E,F,M,N,S), hom, gltA, ggt, 

tyrA,hisA, hisl   

Uncharacterized  38 proteins 

Chemotaxis cjj81176_1204  

Significantly downregulated Protein synthesis pepA, rpmJ 

Metabolism aspA, proB, thiE 
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5.0 DISCUSSION 

 

C. jejuni remains to be one of the most important gastrointestinal bacterial pathogens 

(Kaakoush et al., 2015). As a result, efforts are being put into understanding how it interacts 

with the human host at the molecular level so that appropriate preventive and treatment 

measures can be developed (Masanta et al., 2013). Bile acids and temperature are some of the 

environmental components which C. jejuni constantly encounters. For example, bile acids are 

lethal to bacteria (Begley et al., 2005b). Therefore, C. jejuni must overcome the effects of bile 

acids to survive in the small intestines. The physiological and total proteomic response in C. 

jejuni to different bile acids which are present in the human small intestines remains poorly 

understood. As a result, this study has mainly utilized a quantitative proteomic approach 

known as label-free with SWATH analysis to investigate the global proteomic response in 81-

176 to non-lethal concentrations of CA, DCA, LCA, TCA, CDCA, UDCA and GCA. In 

addition, there is necessity to look into how C. jejuni adapts into common temperature ranges. 

Therefore, this study: (i) has identified and compared adaption strategies that 81-176 utilizes 

to counter the antimicrobial activities of these bile acids (ii) has identified a broader role of 

bile acids in pathogenesis (iii) has detected previously unknown and uncharacterized proteins 

expressed in response to bile acids and (iv) has identified a toxin and characterized its 

influence of on the ability of C. jejuni to grow in bile acids and adhere and invade Caco-2 

cells (v) identified key proteins which aid C. jejuni to adapt to live at 37
o
C and 42

o
C.  

 

5.1 The choice of label-free analysis with SWATH for this study over 

SILAC 

Both SILAC and label-free analysis with SWATH are known to be reliable quantitative 

proteomic methods (Gillet et al., 2012; Ong et al., 2002). However, the success of SILAC 

depends on the ability of a cell to effectively incorporate external heavy labeled arginine and 

lysine amino acids into its proteome (Ong and Mann, 2007); incorporation efficiency of 95% 

and above is recommended for good results (Kim et al., 2016). One the other hand, the 

success of label-free analysis with SWATH depends on good sample preparation (Huang et 

al., 2015). In the present study, statistical analysis of the 81-176 proteome exposed to DCA 

0.05% at 37
o
C for 12h emerging from label-free analysis with SWATH found 957 

quantifiable proteins. Further, PCA analysis revealed good sample preparation and 
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reproducible results making it a choice for this study. However, statistical analysis of similar 

proteome resulting from SILAC found 500 quantifiable proteins.  

The difference of number of quantifiable proteins between these two methods can be 

attributed to the following: first, poor incorporation efficiency of external heavy labeled 

amino acids. This is demonstrated by the observation that arginine achieved an incorporation 

efficiency of above 95% at 42
o
C while lysine achieved a maximum of 80%. The inability of 

lysine to achieve the required incorporation efficiency of 95% hints at poor incorporation of 

external labeled amino acids in C. jejuni. This was also demonstrated by the auxotyping 

results which did not find a lysine auxotroph. These observations indicate that C. jejuni has 

robust internal lysine and arginine biosynthesis mechanism which prevented maximum 

incorporation of labeled heavy amino acids from an external source. These biosynthesis 

mechanisms seem to be present in other members of Epsilonproteobacteria. For example, a 

recent study on the SILAC of Helicobacter pylori evaluated the incorporation efficiency of 

heavy labeled 4, 5, 5 – 
2
H–lysine and obtained  78% lysine incorporation percentage (Müller 

et al., 2015). Second, heavy labeled arginine may have failed to achieve incorporation 

efficiency of 95% and above when 81-176 was cultured at 37
o
C. Similar conclusion was made 

in a recent study that applied SILAC in C. jejuni at 37
o
C and the expect proteomic 

quantification results were not achieved (Scanlan et al., 2017). C. jejuni 81-176 is known to 

have diverse metabolic pathways for survival in various environments (Hofreuter et al., 2006). 

Similarly, C. jejuni has been shown to synthesize arginine from glutamine through acetylation 

(Xu et al., 2007). Therefore, 81-176 could be having different arginine biosynthesis strategies 

at 37
o
C and 42

o
C. This phenomenon should be studied further and how it affects 

incorporation of external heavy labeled arginine determined. 

In spite of the incorporation challenge, quantification results of SILAC revealed that it is more 

precise that SWATH. This argument is supported by the finding that SILAC quantified 23 

proteins with SWATH didn't. This strength of SILAC can be attributed to its high accuracy 

(Lau et al., 2014). This accuracy is achieved through: first, mixing both the labeled and non-

labeled samples hence reducing differences in samples (Ong and Mann, 2007); and second, 

measuring ratios of heavy and light amino acids in peptides which eliminates poor 

quantification (Schmidt et al., 2014). These statements should not be taken to mean that 

SWATH quantification is not comparable to SILAC quantification. In fact, SWATH 

quantification is as accurate and precise as SILAC quantification in simple proteomic 

experiments (Collins et al., 2013; Gillet et al., 2012; Lambert et al., 2008; Liu et al., 2013). 

However, its accuracy is inconsistent in complex proteomic experiments in which proteins 
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have different abundance ratios (Huang et al., 2015). A good example is demonstrated in table 

13 of this thesis where SILAC and SWATH generated inconsistent quantification results of 19 

proteins. Therefore, in complex C. jejuni proteomic experiments both SILAC and SWATH 

should be used to complement each other. 

5.2 CDB and Auxotyping 

CDB was developed and utilized in the proteomic section of this study. This broth was 

selected because its components, namely, trace elements, metals ions, amino acids, vitamins 

and pH 6.8 resembles the fluid environment that is present in the duodenum of human small 

intestines (Kararli, 1995). It was reasoned that this broth would provide an environment for 

81-176 to synthesis proteins similar to those it does in when in the small intestines of human 

beings. In general, the growth of 81-176 in CDB was comparable to that in LB, MH and BHI. 

This finding agrees with the results of a previous study that was carried out by Birk and 

colleagues (Birk et al., 2012). Due to the composition of this broth, 81-176 expressed a good 

number of proteins. The DDA library was made up of a 1079 proteins which represents 

approximately 70% of the total number of proteins in C. jejuni were quantified and used to 

build a DDA library. Consequently, 957 differentially expressed proteins quantified 

representing 59.9% of the total number of proteins in 81-176 (Johnson et al., 2014).  

CDB was used to performed auxotyping analysis. Interestingly, 285 C. jejuni strains were 

prototrophic, one strain was both arginine and serine auxotrophic and 17 strains were 

methionine auxotrophs. These findings bring forth three biological factors about C. jejuni. 

First, the finding that 285 C. jejuni strains are prototrophic show that majority of strains do 

not have a strict nutritional requirement. This could be one of the traits which enables  

C. jejuni to colonize the guts of various hosts which have different nutrient compositions. 

This observation is supported by findings of a previous study which found that C. jejuni 

expresses a particular set of genes in response to nutrients which it meets in a host (Gripp et 

al., 2011). The easy at which C. jejuni alters its genes to suit environmental nutrition helps it 

to adapt and thrive in various hosts (Dearlove et al., 2016; Sheppard et al., 2014). Second, 

identification of one arginine auxotroph and zero lysine auxotroph shows the challenge of 

successful application of metabolomic labeling proteomic techniques e.g. SILAC in C. jejuni 

research. This challenge has been demonstrated in this study where the number of SILAC 

quantifiable proteins did not march that of SWATH analysis. Similarly, Scanlan and co-

workers arrived at a similar conclusion in their recent study where they used SILAC to study 

flagella associated proteins (Scanlan et al., 2017). Lastly, CDB lead to the identification of 17 

methionine C. jejuni auxotrophs. A recent study that was carried out to investigate essential 
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genes in NCTC 11168 did not find known methionine synthesis genes (Metris et al., 2011). 

Tenover and co-workers also identified a reasonable number of methionine auxotrophs 

(Tenover et al., 1985). Therefore, efforts are required to understand methionine synthesis in 

C. jejuni and how its auxotrophic behaviour can be exploited to advance C. jejuni research.     

5.3 Factors driving differential expression of proteins by CA, CDCA and 

biotransformants. 

The proteomic results of this study show that combinations of similar and dissimilar groups of 

proteins were differentially expressed by each bile acid. TCA, GCA and DCA are almost 

synthesized from CA (Lefebvre et al., 2009). Therefore, it would be expected that they 

differentially express similar proteins. However, fig. 4, fig. 10 and table 13 show that this is 

not the case. Similarly, LCA and UDCA are synthesized from CDCA (Smet et al., 1995). 

Hence, it would be expected to differentially express similar proteins. But fig. 4, fig 10 and 

table reveal the contrary.  

This diversity can be mainly attributed to the following: (i) chemical structure, (ii) 

hydrophobicity status, (iii) solubility, critical micelle concentration and (iv) critical micelle 

temperature of each bile acid (Armstrong and Carey, 1982; Heuman, 1989). However, 

hydrophobicity is the key factor. Primary bile acids are hydrophilic (Heuman, 1989). Taurine 

conjugation, glycine conjugation and biotransformation reduces the hydrophobicity status 

modified bile acids. As a result, taurine conjugates are more hydrophilic than glycine 

conjugates (Table 14). Therefore, the hydrophobic differences between these bile acids are 

responsible for the differences in differential expressed proteins that were observed in this 

study. For example: 

 

a) Bile acids with almost similar hydrophobicity values expressed similar and almost 

equal number of proteins. This is demonstrated by DCA and CDCA. These bile acids 

are not biologically identical; DCA is a secondary bile acid which is synthesized from 

CA through biotransformation while CDCA is a primary bile acid. However, their 

hydrophobicity values are almost equal. Hence, this study found that they 

differentially expressed mostly similar proteins and numbers; (i) DCA significantly 

upregulated 119 proteins and CDCA 98 proteins (ii) DCA significantly downregulated 

90 proteins and CDCA 88 proteins.  

b) Extreme hydrophilicity and hydrophobicity influenced the type of differentially 

expressed proteins. As shown in Table 14, UDCA is slightly more hydrophilic than 

CA. Therefore, it can be naturally assumed that CA and UDCA should express almost 
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similar and equal number of proteins. Contrary to this school of thought, this study has 

shown that UDCA significantly differentiated the lowest number of proteins. In this 

study, UDCA significantly upregulated 4 proteins and CA 30 proteins; UDCA 

significantly downregulated 16 proteins and CA 37 proteins. Similarly, LCA is 

slightly more hydrophobic than DCA and CDCA. Naturally it can be assumed that 

LCA, DCA and CDCA significantly differentiate similar and equal number of 

proteins. However, this study found that LCA significantly upregulated 12 proteins 

and downregulated 28 proteins. This number of significantly differentiated proteins is 

way below those of both DCA and CDCA and lack similarity. 

c) Conjugated bile acids (TCA and GCA) differentially expressed different number and 

type of proteins. TCA differentially upregulated 57 proteins and GCA 160 proteins. 

But TCA downregulated 69 proteins and GCA 25 proteins. This similar pattern was 

found to exist between primary bile acids and their corresponding secondary bile 

acids. Findings of this study show that CA, GCA, TCA and DCA did not differentially 

express similar and equal number of proteins. Similarly, CDCA, LCA and UDCA did 

not differentially express similar and equal number of proteins. 

 

Table 14: Hydrophobicity levels of the bile acids used in this study 

 

Bile acid Hydrophobicity indices (Hlx) Status 

CA 0 Hydrophilic 

DCA +0.69 Hydrophobilc 

LCA +1.23 Most hydrophobic 

TCA 0.90 Hydrophilic 

CDCA +0.53 Hydrophobic 

UDCA -0.47 Most hydrophilic 

GCA 0.07 Hydrophilic 

(Armstrong and Carey, 1982; Heuman, 1989; Roda et al., 1989) 

 

5.4 Adaption strategies of 81-176 to antimicrobial activities of sub lethal 

concentrations of CA, DCA, LCA, TCA, CDCA, UDCA and GCA 

As stated in the introduction, bile acids are very toxic to bacteria. MIC and IC50 are used to 

measure the antimicrobial effects of a chemical. Consequently, in order to get a general 

overview of the antimicrobial effect of bile acids used in this study to C. jejuni 81-176, 

relevant IC50 were investigated. The results were as follows: DCA (0.2%), CDCA (0.2%), CA 

(0.4%), GCA (1.4%), LCA (2%), TCA (0.2%) and UDCA (2%). These results implied that 

DCA, TCA and CDCA an almost similar toxicity effect in 81-176. Similarly, LCA and 
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UDCA have almost equal level of toxicity. These findings agree with findings of a study that 

was carried out by (Kurdi et al., 2006) which obtained similar CA and DCA MIC values for 

lactobacillus and bifidobacteria. In terms of toxicity strength, DCA, CDCA and TCA are very 

toxic to 81-176; followed CA and GCA; LCA and UDCA are less toxic. In a broader 

perspective, the proteomic and physiological response of a cell to the antimicrobial effects of 

a bile acid correlates to (i) the chemical structure and hydrophobicity status of a bile acid (ii) 

the ability of a bile acid to migrate across the cell wall and (iii) the proteins of a cell which 

interacts with the active sites of the bile acid (Perez, 2009).  

This study has used sub-lethal concentrations of bile acids to gain an insight into the 

proteomic response in C. jejuni against antimicrobial effects of CA, DCA, LCA, TCA, 

CDCA, UDCA and GCA. These responses are discussed below: 

 

5.4.1 Elevated synthesis of outer, inner membrane and periplasmic membrane proteins and 

general protein transport machinery 

Interestingly, in response to the antimicrobial activities of DCA and GCA, 81-176 synthesized 

more proteins for export to the outer membrane. This observation is supported by two 

findings: first, the significant upregulation of known outer membrane proteins, putative 

membrane proteins and putative periplasmic proteins (table 15). Second, the significant 

upregulation of the corresponding protein transport machineries, namely, (i) SecF and 

Cjj81176_0967 (outer membrane protein chaperone) by DCA and (ii) TatB, SecF, YajC, 

YidC and Cjj81176_0967 by GCA. In addition, TCA significantly upregulated two protein 

transport machineries: TatA and Cjj1584c. Hence, the results of this study suggest a raise in 

the synthesis of some proteins for export to the outer membrane in response to the 

antimicrobial activities of DCA, CDCA, TCA and GCA. From Table 15, it is evident that 

LCA and UDCA did not significantly upregulate as many outer, inner membrane and 

periplasmic membrane proteins as compared to CA, DCA, TCA, CDCA and GCA. The 

phenomenon of rise in outer, inner membrane and periplasmic membrane proteins under harsh 

environment is not unique to C. jejuni only. It has been established that most Gram-negative 

bacteria synthesize proteins targeted for the outer membrane in response to harsh 

environments (Rollauer et al., 2015). These proteins protect the synthesizing bacteria against 

effects of the harsh environment (Manning and Kuehn, 2011). However, this area requires 

further investigation to establish the proteins that are transported through the Sec and Tat 

protein transport systems and the role that they play in protecting C. jejuni against harsh 

environments. 
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Table 15: Significantly of upregulated proteins related to outer, inner and periplasmic 

membrane proteins and general transport machinery 

 

Protein Gene Name Location/Function  Bile acid  

A0A0H3PAU3 cjj81176_0159 Putative membrane protein TCA, GCA 

A0A0H3PC19 cjj81176_0428 Putative membrane protein GCA 

A0A0H3PIU3 cjj81176_0188 Putative membrane protein GCA 

A0A0H3P9L7 cjj81176_0128 Putative periplasmic protein TCA 

A0A0H3PCN0 cjj81176_0127 Putative periplasmic protein GCA 

A0A0H3PD99 cjj81176_0797 Putative periplasmic protein CA, LCA, TCA, GCA 

A0A0H3PDT4 cjj81176_1617 Putative periplasmic protein CA, DCA, TCA, CDCA 

A0A0H3PB39 cjj81176_1673 Putative periplasmic protein GCA 

A0A0H3PF03 fabF Fatty acid biosynthesis DCA 

A1VYF9 acpP Fatty acid biosynthesis DCA 

A1VZI4 fbp Carbohydrate biosynthesis DCA, CDCA 

A1W0I0 gpsA Membrane lipid metabolism DCA, CDCA, GCA 

A0A0H3PEG0 lpxB lipid A biosynthetic process CA, CDCA 

A0A0H3PAD5 lpxD LPS lipid A biosynthesis DCA, TCA, CDCA, GCA 

Q29VW1 gmhA-2 Carbohydrate biosynthesis CDCA 

A0A0H3P9T0 gmhA-1 Carbohydrate biosynthesis CDCA 

A0A0H3P9C5 mapA Lipoprotein CA 

A0A0H3PCP8 cjj81176_1045 Putative, Lipoprotein CA, DCA, TCA 

A0A0H3PH37 cjj81176_1222 Putative, Lipoprotein TCA, GCA 

A0A0H3PA50 cjj81176_0126 Putative, Lipoprotein CA, DCA, TCA, GCA 

A0A0H3PBE5 cjj81176_0430 Putative, Lipoprotein CDCA 

A0A0H3PI86 cjj81176_1476 Putative, Lipoprotein GCA 

A0A0H3PJC9 cjj81176_0518 Putative, Lipoprotein GCA 

A1W0G0 tatA Protein secretion TCA 

A0A0H3PAY0 tatB Protein secretion GCA 

A0A0H3PAN7 secF Protein secretion DCA, GCA 

A0A0H3PEE2 secG Protein secretion LCA 

A0A0H3P9B1 yajC Protein secretion GCA 

A0A0H3PAC3 cjj81176_1161 LOS sialylation DCA, TCA, CDCA, GCA 

 

5.4.2 Chemotaxis and motility 

The results of this study showed that essential proteins of the chemotaxis and motility systems 

of C. jejuni were significantly upregulated in the presence of CA, DCA, CDCA and GCA 

(Table 16). A brief look into the link between chemotaxis and motility systems of C. jejuni 

will be helpful in understanding the role displayed by the findings of this study. The 

chemotaxis system of C. jejuni is made up of Che proteins, Transducer-like proteins (Tlps) 

and aerotaxis proteins (Day et al., 2012; Marchant et al., 2002). Che proteins are a two-

component regulator-based backbone and comprises of CheW, CheY, CheB, CheR, CheA, 

CheV and CheZ. Transducer-like proteins (Tlps) are grouped into A, B and C. Group A is 

composed of Tlps 1, 2, 3, 4. 7 (7mc and 7m), 10, 11, 12 and 13 (Mund et al., 2016). This group 
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of Tlps is positioned in the membrane hence role is to sense and transmit the external stimuli 

(Blair, 1995; Krell et al., 2011). Group B comprise of Tlp9, Aer1 and Aer2 (Marchant et al., 

2002). They are positioned both in the membrane and the cytoplasm and are responsible for 

energy taxis. Tlp9, Aer2 and Aer1 are also referred to as Campylobacter energy taxis A 

(CetA), Campylobacter energy taxis C (CetC), and Campylobacter energy taxis B (CetB) 

respectively (Hendrixson et al., 2001; Reuter and van Vliet, 2013). Group C proteins are 

distinctly found in the cytoplasm and include: Tlp 5, 6, 7c and 8 (Marchant et al., 2002; 

Tareen et al., 2010). They are responsible for cytoplasmic chemotaxis signaling (Marchant et 

al., 2002; Zautner et al., 2012). Functionally, Tlps, Che proteins and flagella are interlinked. 

At the initial stage of response, Tlp become automatically methylated by CheR when 

chemosensors sense chemoeffectors (Aravind and Ponting, 1999; Kanungpean et al., 2011). 

Methylated Tlps interact with CheA making it phosphorylated (Blat et al., 1998). 

Phosphorylated CheA interacts with CheW which transduces the signal to CheY (Parrish et 

al., 2007). Subsequently, CheY communicates with flagella's FliM proteins directing the 

flagella to move towards a chemoattractant or away from a chemorepellent (Barak and 

Eisenbach, 2001). 

Based on the foregoing, expression of Che proteins, Tlps, 1, 2 and 4, Cet proteins and FliM, 

FilY, FilG and FliL by CA, DCA, TCA, and GCA shows that C. jejuni responds to the 

antimicrobial activities of these bile acids by movement. This finding concurs with a previous 

study by Hugdahl and colleagues which found that CA, DCA, TCA and GCA were 

chemorepellents for C. jejuni (Hugdahl et al., 1988). Similar findings were observed in bile 

acid resistance studies on Salmonella enterica spp. enterica ser. Typhimurium (Hernández et 

al., 2012). Although, LCA, UDCA and CDCA significantly upregulated some chemotaxis 

proteins, this study did not clearly established there in the response of 81-176 to the 

antimicrobial activities of these bile acids. DCA, CDCA and GCA significantly upregulated 

Tlp5. These bile acids are readily transported into the cytoplasm (Armstrong and Carey, 1982; 

Heuman, 1989). Therefore, it is right to speculate that this protein senses the presences of 

DCA, CDCA and GCA in the cytoplasm and signals the C. jejuni to respond appropriately. 

This assumption resembles the actions of Tlp and Tar which mediate the responses of E. coli 

to changing levels of cytoplasmic pH (Pham and Parkinson, 2011).  
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Table 16: Significantly upregulated chemotaxis and motility proteins 

 

 Protein  Gene name  Protein function  Bile acid 

A0A0H3P9J9 aer1/CetB Energy taxis TCA, GCA 

A0A0H3P9P7 aer2/CetC Energy taxis GCA 

A0A0H3P9T7 tlp4 Sensing external stimuli GCA 

A0A0H3PAG7 cheW Signal transducer TCA, GCA 

A0A0H3PAM0 cheA Transferase GCA 

A0A0H3PAN9 tlp9/CetA Signal transducer CA, TCA, GCA 

A0A0H3PB06 tlp5 Sensing internal stimuli DCA, CDCA, GCA 

A0A0H3PB49 tlp10 Sensing external stimuli LCA, UDCA 

A0A0H3PBN1  cheY Chemotaxis protein CheY DCA, CDCA 

A0A0H3PEF7 tlp 1 Sensing external stimuli CA, LCA, TCA, GCA 

A0A0H3PEL1 tlp2 Sensing external stimuli CA, TCA, GCA 

A0A0H3PAE1 cheR Methyltransferase DCA, CDCA 

A0A0H3P9L2 fliM C-ring protein GCA 

A0A0H3PA78 fliY Controls flagellar motor direction DCA, GCA 

A0A0H3PAL4 fliG C-ring protein CA, DCA 

A0A0H3PIF6 fliL Increases torque movement CA, TCA, GCA 

 

5.4.3 General stresses response 

This study identified a number of reactive oxygen stress (ROS) defense proteins that were 

significantly upregulated (table 17). This implies that ROS defense mechanism is another 

important bile acid adaptation strategy that C. jejuni employs. Bile acids have been shown to 

damage cells by generating reactive ROS (Perez, 2009). Studies on microbial physiology have 

established that ROS in bacteria is generated through tricarboxylic acid cycle (TCA) (Fernie 

et al., 2004; Kelly, 2001). But ROS species which are generated during normal bacterial 

metabolic activities are neutralized by the oxidative defense mechanism present in bacteria 

(Kohanski et al., 2007; Mailloux et al., 2007).  

An earlier study, (Kohanski et al., 2007) used microarray technique and showed that 

norfloxacin, ampicillin and kanamycin achieve their bactericidal activities in bacteria by 

stimulating TCA to generate uncontrollable quantities of hydroxyl radicals. Interestingly, 

results of this thesis strongly suggest that CA, DCA, TCA, CDCA and GCA use ROS to 

achieve their antimicrobial effect in C. jejuni. This is suggestion is supported by the 

significant upregulation of the following proteins in 81-176: arginine biosynthesis (ArgG), 

Acetyl-CoA biosynthesis (AckA, AcsA), glycolysis/gluconeogenesis (Pgi, Fbp), malate 

biosynthesis (Cjj81176_1304), C4-dicarboxylate transporters (DcuA and DucB), NAD 

(NadK), fumarate reductase C (FrdC) and succinate dehydrogenase (SdhB and SdhC). These 

proteins which were significantly upregulated play a vital role in the TCA cycle of  
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C. jejuni (Hofreuter, 2014; Stahl et al., 2012b). Therefore, it follows that this enhanced 

activities of TCA led to generation of ROS. 

In line to the findings of Kohanski and colleagues, it is correct to assume that 81-176 

significantly expressed three categories of defense proteins (table 17) against the detrimental 

effects of ROS. (i) Proteins for regulation of oxidative stress: Proteins that were grouped into 

in this category include: (a) SodB and AhpC which are known to convert O2
-
 to less harmful 

H2O2 and O2 (Kim et al., 2015). (ii) Proteins for DNA repair: CJJ81176_1101, HtrA, RadA 

and RecN were significantly upregulated. Further they indicate presence of extensive DNA 

damage especially by TCA and GCA. A similar heavy response to DNA damages has been 

found in transcriptomics studies on DNA extracted from C. jejuni invasion experiments done 

under human conditions (Gaasbeek et al., 2009; Mills et al., 2012). (iii) Proteins for guarding 

protein misfolding: DnaJ-1, Nth, HtpG, LigA and DsbD. These results show that GCA and 

TCA are a leading cause of protein misfolding. Previous studies have found that C. jejuni 

mutants of these proteins show minimal survival in oxidative stress (Flint et al., 2014; Kim et 

al., 2015; Konkel et al., 1998).   

 

Table 17: Significantly upregulated ROS defense proteins 

 

Protein Gene name Protein function Bile acid 

A0A0H3P9V7 cjj81176_1101 DNA repair DCA, GCA 

A0A0H3PA52 htrA DNA repair TCA 

A0A0H3PAG5 radA DNA repair TCA, GCA 

A0A0H3PJI4 recN DNA repair  GCA 

A0A0H3PB76 dnaJ-1 Protein folding CA, TCA 

A0A0H3PEB4 nth Protein folding GCA 

A1VYN0 htpG Protein folding GCA 

A1VYU6 ligA Protein folding GCA 

A0A0H3PBJ5 dsbD Protein folding  TCA 

A0A0H3PBY8 ahpC Regulation of oxidative stress  GCA 

A1VXQ2 sodB Regulation of oxidative stress DCA, CDCA 

 

5.4.4 General adaption responses 

Due to their ability to easily pass across the cell membrane, DCA, CDCA and GCA 

significantly upregulated: membrane and nucleotide biosynthesis systems and carbon 

utilization. Other bacteria have also been found to upregulate these biological processes 

during adaption to harsh environments (Brooks et al., 2011). Below is a brief discussion on 

the importance of each process in the adaptation of C. jejuni to bile acids. 
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(i) Nucleotide biosynthesis 

Like other bacteria, DCA, GCA and CDCA significantly upregulated the following proteins 

which are essential in nucleotide biosynthesis: DCA upregulated Dcd, PurS, PyrG, PyrE, Apt, 

and PurM. GCA upregulated: PyrD and Apt. CDCA upregulated: PurS and Apt. This is not 

unexpected because studies that have looked into the adaptation of lactobacillus and 

bifidobacteria in bile acid have found a similar trend (Ruiz et al., 2013b). Upregulation of 

nucleotide biosynthesis assists the bacteria to replace the DNA sections that are destroyed by 

bile acids. Similarly, upregulation of nucleotide biosynthesis has been found to aid the 

survival and growth of E. coli, Salmonella enterica and Bacillus anthracis in human blood 

(Samant et al., 2008). Taken together, enhanced nucleotide biosynthesis is essential for the 

survival of C. jejuni in bile acids.  

 

(ii) Carbon utilization 

C. jejuni utilizes amino acids as carbon sources in a sequential pattern (Stahl et al., 2012a). 

However, this study has found that during growth in DCA, GCA and CDCA, 81-176 

simultaneously upregulated proteins for the biosynthesis of arginine, serine, histidine, 

methionine, glutamine, cystine, lysine and leucine. According to (Ruiz et al., 2013b), this 

significant upregulation in requirements of energy assists bacteria growing in the presence of 

bile acids to actively synthesize various response mechanisms against effects of bile acids. 

 

(iii) Lipid and carbohydrate biosynthesis 

In this study, DCA, CDCA and GCA have significantly upregulated lipid biosynthesis 

proteins (IpxD, IpxB, cj88176, AcpP, GpsA), fatty acids biosynthesis proteins (FabF, AcpP) 

and carbohydrate biosynthesis proteins (RpIB, GmhA-1, Pgi, Fbp, GmhA-2). In addition, 

DCA, CDCA and GCA significantly upregulated protein CysQ. This protein guides the 

arrangement of proteins into the cell membrane, periplasmic membrane and cell wall (Di 

Paolo and De Camilli, 2006). Bile acids damage the cell wall of enteric bacteria (Begley et al., 

2005b). Consequently, enteric bacteria have been found to maintain the integrity of their cell 

wall by synthesizing more lipids and carbohydrates (Merritt and Donaldson, 2009). This 

information together, reveals that C. jejuni upregulates lipid biosynthesis proteins, fatty acids 

biosynthesis proteins and carbohydrate biosynthesis proteins to maintain the integrity of the 

cell membrane, periplasmic membrane and cell wall. 
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5.4.5 Two-component and other regulatory systems 

This study identified three regulatory systems which sensed the environment and stimulated 

81-176 to respond accordingly. They include: First, outer membrane protein R (OmpR) two-

component regulatory system which is known to regulate the expression of OmpF and OmpC 

in response to osmotic stress, temperature and pH (Itou and Tanaka, 2001). However, this 

system has not been identified in C. jejuni before hence its clear function remains unknown. 

Second, CmeR two-component regulatory system which is known to regulate the multidrug 

efflux pump CmeABC, membrane transporters, capsular polysaccharide biosynthesis and C4-

dicarboxylate transport proteins (Guo et al., 2008). Lastly, Campylobacter bile resistance 

regulator (CbrR) which drives bile acid resistance in C. jejuni (Raphael et al., 2005). The role 

of CmeR and CbrR in relation to this study is to promote resistance against bile acids. Further, 

they have been found to play an important role in the colonization of C. jejuni in chicken 

(Guo et al., 2008; Raphael et al., 2005). 

5.4.6 Adaptation to bile acid environment is a well managed process: A lesson from 81-176 

response to DCA at 12h and 24h 

As shown in fig. 15 a total number of 111 proteins were significantly upregulated between 81-

176 that was cultured in CDB supplemented with DCA at 24h and both 12h and CDB without 

DCA. Similarly, 116 proteins were significantly upregulated between 81-176 that was 

cultured in CDB supplemented with DCA at 12h and both 24h and CDB without DCA. 

Interestingly, the proteins that were significantly up- and downregulated at 24h were different 

from those that were up- and downregulated at 12h. But functional analysis showed that the 

proteins at 24h were enhancing the functions of those at 12h. This picture shows that 81-176 

expresses a set of genes in response to the need hence adapting comfortably into each 

situation. This observation is supported by the following two examples. 

First, at 12h  only SodB stress response factor was significantly upregulated. This shows that 

at this stage DCA presents a superoxide stress. Hence, SodB is significantly expressed to 

neutralize its effect (Flint et al., 2014). But at 24h, diverse stress response factors were 

significantly upregulated. These include: (i) CmeABC and which shows that the level DCA in 

the cytoplasm was high. Hence the pump was activated to actively pump it from the 

cytoplasm to the external environment (Lin et al., 2003). (ii) KatA for the detoxification of 

raised levels of H2O2 (Day et al., 2000). Similarly, significant upregulation of MacA which 

has been proven to detoxify H2O2 in S. enterica serova Typhimurium (Bogomolnaya et al., 

2013). Though its role in C. jejuni has not been investigated. (iii) chaperones DnaJ, DnaJ-1 

and GroL were significantly upregulated. Studies in E. coli have shown that these chaperones 
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work jointly to protect proteins from being damaged through misfolding (Gragerov et al., 

1992). It therefore implies that at 24h, DCA instituted misfolding of proteins in 81-176. 

Hence the upregulation of these chaperone to remedy the phenomenon. (iv) ClpX and FtsH 

were significantly upregulated to maintain appropriate level of essential protein in the cytosol. 

This is observation is supported by significant upregulation of genes for protein synthesis, 

namely, RplR,V,T,A,C, RpmC,G,T and RpsL,E,T. A previous study showed that DCA 

induced Shigella spp. to synthesis increased amounts of a group of proteins (Pope et al., 

1995). Therefore, the significant upregulation of these genes indicates that DCA induced 81-

176 protein synthesis machinery to synthesize large amount of necessary and unnecessary 

proteins. In response, 81-176 significantly upregulated ClpX and FtsH to eliminate those 

proteins that it did not need or harmful. This strategy is employed by E. coli during stressful 

situations to degrade proteins which are aimed at destroying its DNA (Ogura et al., 1999; 

Pruteanu and Baker, 2009).  

Second, strengthening the integrity of the outer membrane. At 12h, fatty acid biosynthesis 

gene, Fab, and lipid biosynthesis gene, IpxD, were significantly expressed. This showed that 

fatty acids and lipids were synthesized to enhance the integrity of the outer membrane. This 

observation is supported by the findings in previous studies which showed that bacteria 

defend themselves against effects of DCA by enriching their outer membrane fatty acids and 

lipids (Merritt and Donaldson, 2009). At 24h, BamA, LptD, PorA and YidC were 

significantly upregulated. These genes have been shown to play an important role in 

maintaining the integrity of outer membrane of bacteria. PorA a is a major component of the 

cell wall which ordinarily facilitates the transportation of solutes into the cytoplasm and 

enhances the integrity of the outer membrane (Bolla et al., 1995). A recent study showed that 

it is aids C. jejuni to colonize mice gut (Islam et al., 2010). Also it has been shown that a 

mutation in porA produces an hypervirulent strain (Wu et al., 2016). BamA has been shown 

to play a central role in the continuous biogenesis of OMP in E. coli, Neisseria gonorrhoeae 

and Borrelia burgdorferi (Albrecht et al., 2014; Lenhart and Akins, 2010; Volokhina et al., 

2013). It could be playing a similar role in C. jejuni. Equally, LptD has been proven to 

strengthen outer membrane integrity in E. coli, S. enterica serova Typhimurium and S. 

flexneri by inserting lipopolysaccarides into their outer membranes (Gu et al., 2015; Li et al., 

2015). A similar role in C. jejuni is speculated. This is supported by the significant 

upregulation of AccB. Finally, YidC has been shown to mediate insertion of sec-independent 

proteins into the membrane in E. coli (Samuelson et al., 2000). This thesis speculates a similar 

role in C. jejuni. This speculation is firmly supported by the significant upregulation of SecD, 



 80 

SecF and SecG. In addition, the significant upregulation of FtsH which has been shown to 

support the role of YidC (van Bloois et al., 2008). At 24h, this study identified numerous 

uncharacterized membrane, periplasmic and outer membrane proteins. Therefore, further 

investigations are required to link them to BamA, LptD and YidC and understand their role.  

5.5 Sublethal concentration of bile acids and Campylobacter associated 

virulence factors 

The link between bile acids and pathogenesis of enteric pathogens has been established. Two 

aspects have been of interest. First, the type of bile acid which induces expression of virulence 

genes. Second, the concentration of a particular bile acid which induces the expression of 

virulence genes. Both of these aspects were tested in this study. Initially, a survey was done to 

determine the influence of CA, DCA, LCA, TCA, CDCA, UDCA and GCA on 81-176 to 

adhere and invade Caco-2 cells. The results shown on fig. 3 have presented a loose picture 

about the influence of these bile acids on 81-176 to adhere and invade Caco-2 cells. These 

results show that CA, DCA, TCA, CDCA and GCA influenced 81-176 to adhere and invade 

Caco-2 cells. In addition, trend of the results on CDCA and DCA was similar to those that 

were found in a study on Shigella spp (Pope et al., 1995). However, the influence of LCA and 

UDCA on the invasion of Caco-2 cells was not clearly established. These findings are 

consistent to those that were obtained in the proteomic section of this study. 

LCA and UDCA are synthesized from CDCA. Both have an MIC value of 1% indicating that 

at lower concentrations they are not toxic to 81-176. This observation is further supported by 

the proteomics results. From the proteomic results, LCA significantly upregulated 4 proteins 

and significantly downregulated 13 proteins. Similarly, UDCA significantly upregulated 2 

proteins and significantly downregulated 4 proteins. Bile acids promote the capability of 

bacteria to adhere and invade cells by inducing a bacteria to synthesize and release proteins 

that facilitate the process (Pope et al., 1995). However, the proteins that LCA and UDCA 

significantly upregulated do not promote invasion. Importantly LCA and UDCA significantly 

upregulated Sec and Tat proteins. Also, they did not hinder the synthesis of colonization 

factors such as CiaC and MapA (Barrero-Tobon and Hendrixson, 2014; Johnson et al., 2014). 

Further, a previous study on invasion of cells by Helicobacter pylori found out that LCA 

didn't hinder invasion  (Oliveira et al., 2006). Additionally, UDCA is widely used to treat 

hepatitis infections with minimal side effects (LU et al., 1995). All these taken together, agree 

that LCA and UDCA do play a role in promoting the capability of C. jejuni to colonize the 

host. 
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Interestingly, DCA, TCA, CDCA and GCA induced 81-176 to significantly upregulate and 

downregulate a high number of proteins. This response assumes the principle associated with 

bile acids and bacterial pathogenesis. A previous study postulated that bile acids play a 

significant role in the process (Malik-Kale et al., 2008b). To prove this hypothesis, it was 

shown that 1% DCA enhanced the ability of C. jejuni to invade epithelia cells by secreting 

invasion proteins. These proteins were called Campylobacter invasion antigens (Cia). Further, 

CiaB was the first DCA induced protein to be identified and characterized. Since then, CiaC 

(Christensen et al., 2009; Neal-McKinney and Konkel, 2012), CiaD (Samuelson et al., 2013) 

and CiaI (Buelow et al., 2011) have been identified and their role in the pathogenesis process 

have been characterized and understood.  

DCA has been used to study the role of bile acids in the process of pathogenesis. The 

proteomic results of this study have identified that TCA, CDCA and GCA also play a role in 

the pathogenesis of 81-176 (Table 18). An earlier study had concluded that since CiaB was 

readily synthesized and secreted in the presence of DCA, the other bile acids will too induce it 

(Rivera-Amill et al., 2001). However, in this study only low concentrations of DCA and 

CDCA induced the significant upreguration of CiaB. Both CiaB and CiaC are required for 

maximum internalization of C. jejuni into host epithelia cells (Christensen et al., 2009; 

Konkel et al., 1999).  

DCA, TCA, CDCA and GCA concurrently induced the significant expression of 

glycosylation proteins PseC, PseF, PseG and PseI and flagella proteins FliG and FliY. 

Similarly, TCA and GCA induced the significant expression of glycosylation protein Pgi, 

PseB and flagella proteins FliM, FliY, and FliL. N-glycosylation of the flagella is important 

in the pathogenesis of C. jejuni (Larsen et al., 2004; Linton et al., 2005). Mutants of 81-176 

lacking pse glycosylation genes have demonstrated weak colonization power in chicken, 

inability to evade host immune and weak adherence and invasion of epithelia cells (Alemka et 

al., 2012) (Karlyshev, 2004). The functions of motility and chemotaxis are closely related to 

that of N-glycosylation. DCA, CDCA, TCA and GCA significantly upregulated motility 

factor. On the other hand, TCA and GCA significantly upregulated chemotaxis factors. A 

number of studies have shown that motility and chemotaxis play a significant role in aiding  

C. jejuni during colonization (Aihara et al., 2014; Lertsethtakarn et al., 2011). 

DCA, TCA, CDCA and GCA induced the expression of various subunits of cytolethal 

distending toxin (Cdt) system. CDCA induced the significant expression of CdtA; CA, DCA, 

TCA and CDCA induced the significant expression of CdtC; and finally, CA, DCA, TCA, 

CDCA and GCA induced the significant expression of CdtB. The complete CdtABC toxin 
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system is made up of three subunits CdtA, CdtB and CdtC. These subunits play an important 

role in the pathogenesis of C. jejuni (Lee et al., 2003). Functionally, CdtA and CdtC bind onto 

the cell membrane while CdtB is delivered into the cytoplasm resulting in cell death (Lara-

Tejero and Galan, 2001). Hence, CA, DCA, CDCA and GCA promote the activities of 

CdtABC.    

DCA, TCA, CDCA and GCA induced the significant expression of outer membrane proteins. 

These proteins play an important role in the adherence and invasion of cells by C. jejuni 

(Watson et al., 2014). This observation is supported by significant upregulation of Sec and Tat 

protein transportation pathways by DCA, LCA, TCA, and GCA. These pathways have been 

postulated to play a significant role in pathogenesis of C. jejuni (Young et al., 2007). Specific 

virulence associated proteins which are transported by these pathways remain unidentified. 

However, a previous study has unequivocally shown that C. jejuni requires Tat pathway for 

effective colonization in chicken (Rajashekara et al., 2009). In terms of specific proteins, first, 

DCA, TCA, CDCA and GCA significantly upregulated Cjj81176_1161. This gene plays a 

role in the sialylation of lipooligosaccharide (LOS). Sialylation of LOS helps C. jejuni to 

evade the host immune response and also enhances adhesion and invasion of epithelia cells 

(Louwen et al., 2008). In addition, LOS sialylation plays a major role in the establishment of 

GBS (Bax et al., 2011). Second, TCA significantly upregulated HtrA which is important 

during the binding of host cells and C. jejuni (Baek et al., 2011). Third, a group of metabolism 

genes which play a direct role in pathogenesis. DCA significantly upregulated FabF which 

plays a role in fatty acid biosynthesis. C. jejuni has been found to require FabD, FabF, FabG, 

FabH and FabZ for chicken colonization (Hu et al., 2014; Vries et al., 2017). This finding 

show that they play an important role in the pathogenesis process of C. jejuni. Also DCA and 

CDCA significantly upregulated Tig. Mutants of Tig have been shown to have impaired 

colonization in chicken (Hoang et al., 2012). DCA and CDCA significantly expressed Peb4 

while TCA and GCA significantly upregulated Peb1. Peb1, 2, 3 and 4 are cytoplasmic 

lipoproteins. They are important adherence factor. Their mutants have reduced adherence 

power (Asakura et al., 2007; Pei et al., 1998). Lastly, DCA, CDCA, TCA and GCA 

significantly upregulated 28, 32, 21 and 58 uncharacterized proteins. These proteins maybe 

playing a role in the pathogenesis of C. jejuni.  
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Table 18: Significantly upregulated known Campylobacter associated virulence factors 

 

Bile acid Genes of upregulated virulence factor 

 

DCA and CDCA 

fabF, tig, ipxD, pseC, pseD, cbf2 (peb4), cdtC, cdtA, CJJ81176_1161, 

motility (fliY, cj81176_08473, cj81176_0342) and uncharacterized 

proteins (DCA = 28; CDCA = 32) 

 

 

TCA 

tatA, htrA, pebC1, cdtC, cdtB, CJJ81176_1161, chemotaxis (cheW, 

cheA, cj81176_1498, cj81176_1128, cj81176_1205, cj81176_08473, 

cj81176_0180, cj81176_0046, cj81176_0289), pgi, motility (fliY, fliL, 

fliM), peb1, ciaC and 21 uncharacterized proteins. 

 

 

GCA 

 chemotaxis (cheW, cheA, cj81176_1498, cj81176_1128, 

cj81176_1205, cj81176_08473, cj81176_0180, cj81176_0046, 

cj81176_0289), cdtB, pgi, Motility (fliY, fliM, fliL), CJJ81176_1161, 

peb1, tatB, ciaC, cj81176_1161, and 58 uncharacterized proteins.   

 

5.6 Gene cjp47 influences the ability of C. jejuni to survive in bile acids, 

adhere and invade caco-2 cells in presence of bile acids 

Bioinformatics analysis revealed that the gene cpj47 is a MazF toxin. This toxin promotes the 

survival of a bacterium in harsh environments by inhibiting global mRNA translation 

(Starosta et al., 2014). A previous bioinformatics study showed the presence of gene mazF in 

C. jejuni (Yan et al., 2012). However, the conditions which swing it into action remain 

unknown. This thesis reports for the first time that bile acids induce the expression of mazF. 

The growth curve results reveal that mazF enhances the survival of C. jejuni in these bile 

acids. IC50 values of each of the bile acid used in this study show that each of them is toxic to 

C. jejuni. Therefore, these findings demonstrate an important role of mazF in the survival of 

C. jejuni in bile acids. Previous studies have shown the importance of mazF in the survival of 

bacteria in harsh conditions has been observed in other gastrointestinal pathogens. For 

example: mazF has been found to aid (i) Listeria monocytogenes to survive in ampicillin and 

gentamicin (Curtis et al., 2017), (ii) Staphylococcus aureus to survive in penicillin G and 

oxacillin as well as other harsh environments (Schuster et al., 2015) and (iii) E. coli to survive 

in multiple antibiotics, nutrient starvation, oxidative stress, DNA damage, high temperature 

(Aizenman et al., 1996; Hazan et al., 2004; Tripathi et al., 2014). 

In addition, the growth curves showed that mazF in 81-176 is activated in response to a 

particular stress at a particular time. This is shown by the fact that its effects were seen after 

20h in CA, DCA, TCA, CDCA and GCA. This observation is supported by the growth curve 
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of 81-176 cultured in CDB supplemented with DCA 0.05% differentially expressed different 

proteins at 12h and 24h. Indicating that the stress response after 20h necessitated the 

activation of mazF. A similar strategy is utilized by mazF in E. coli where it is activated by 

elevated levels of ROS (Engelberg-Kulka et al., 2009). However, this phenomenon 

contradicts the situation in S. aureus where mazF is always activated (Schuster et al., 2015).   

In addition to aiding survival of C. jejuni in bile acids, mazF toxin was found to play a role in 

influencing the ability of C. jejuni to adhere and invade Caco-2 cells. This implies that mazF 

could be playing a role in the pathogenesis of campylobacteriosis. In comparison to Type-II 

toxins, the role of mazF in pathogenesis is poorly investigated. Nevertheless, the contribution 

of mazF to pathogenesis of Leptospira interrogans has been established (Komi and et al., 

2015). The cellular damages of this pathogen on a host includes macrophage apoptosis. 

However, mutants lacking mazF failed to induce late stage as compared to wild-type. The role 

of type-II toxins has been found to play a role in the pathogenesis of the following bacteria: 

Staphylococcus aureus (Zhu et al., 2009), Enterococcus faecalis (Michaux et al., 2014), 

Mycobacterium tuberculosis (Tiwari et al., 2015), uropathogenic E. coli (Norton and Mulvey, 

2012), Salmonella enterica ssp. enterica ser. Typhimurium (Helaine and Kugelberg, 2014; 

Lobato-Márquez et al., 2015), Vibrio cholerae (Wang et al., 2015), Helicobacter pylori 

(Cárdenas-Mondragón et al., 2016) and Heamophilus influenzae (Ren et al., 2012). This 

information taken together, strengthens the findings of this thesis that mazF plays a role in the 

pathogenesis of campylobacteriosis.                      

5.7 Adaptation of 81-176 to 37
o
C and 42

o
C 

Regarding temperature adaptation, this study explored adaptation of 81-176 to three scenarios, 

namely, adaptation to growth at 37
o
C for 24h, adaptation to growth at 42

o
C for 24h and a 

computer simulated adaptation at 42
o
C for 24h after exposure to bile acids. As shown in fig. 

18, during  24h 81-176 is moving into stationary phase. Hence, a comparison between 

differential expression at 12h and 24h of the above scenarios shows that adaptation to the 

scenarios involved a shift of genes belonging to the following biological processes: 

metabolism, stress response, chemotaxis and motility. The key genes in all these categories 

are briefly described below. 

The results show that at 24h in both 37
o
C and 42

o
C, 81-176 utilized diverse branches of its 

respiration system to generate energy for adaptation. First, the significant upregulation of 

NuoC, NuoG, Cyf, PetA, and PetC pointed towards usage of aerobic respiration system 

(Hoffman and Goodman, 1982; Smith et al., 2000; Weerakoon and Olson, 2008). Second, 

significant upregulation of  NrfA, NrfH, FrdC, DcuA and DcuB reflects usage of anaerobic 
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respiration system (Pittman et al., 2007; Sellars et al., 2002). This respiration diversity has 

been shown to favour the survival of C. jejuni in host cells (Liu et al., 2012). Other sources of 

carbon were identified. First, the significant upregulation of SdaA and SdaC showed that 81-

176 utilized serine as a carbon source. Serine has been shown to aid C. jejuni in colonizing 

chicken gut (Hofreuter et al., 2012; Velayudhan et al., 2004).  Second, utilization of proline 

was shown by the significant upregulation of ProB. This is one of the enzyme which 

synthesizes proline from glutamine (Arentson et al., 2012). Proline is one of the important 

amino acids which C. jejuni uses as a carbon source when others have been extinguished 

(Wagley et al., 2014). Lastly, the significant upregulation of HisA and Hisl showed usage of 

histidine. C. jejuni utilizes histidine as a carbon source (Awad et al., 2015). Interesting, 81-

176 cultured at 37
o
C for 24h significantly upregulated Peb1C, CadF, MapA, CdtB and CiaC. 

These proteins play an important role in the pathogenesis of C. jejuni (Ó Cróinín and Backert, 

2012). Equally, NuoC, NuoG, Cyf, PetA, PetC  NrfA, NrfH, FrdC, DcuA, DcuB, SdaC, 

SdaA, and HisD are essential for C. jejuni to colonize the gut of chicken (Hofreuter, 2014). 

These taken together, show that most C. jejuni associated adherence, invasion and 

colonization factors are from its metabolic processes.   

The next group of intertwined adaptation factors are motility, chemotaxis and stress response 

proteins. The number of these group of factors was higher than at 12h. This can be explained 

in two ways. First, the significantly upregulated stress response proteins paint a picture of the 

stresses which 81-176 faced at 24h. These include: (i) chaperones (ClpB, DnaJ, GroL, DnaK, 

GrpE) which prevent protein misfolding (Andersen, 2005; Holmes et al., 2010), (ii) carbon 

starvation protein A (CstA) which regulates oxidative stress response, biofilm formation and 

adherence in C. jejuni (Fields and Thompson, 2008; Rasmussen et al., 2013), (iii) SodB which 

neutralizes O2 and H2O2 stresses (Flint et al., 2014) and (iv) cyanide-sensitive oxidase (CydA) 

which eliminates cyanide arising during respiration (Jackson et al., 2007). The second 

explanation is the reduced level of nutrients in the broth. This is supported by the significant 

upregulation of CstA and a previous study which showed reduced nutrients at 24h (Wright et 

al., 2009b). Taken together, 81-176 activated the flagella and chemotaxis to search for 

nutrients and less stressful environment.  
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6.0 CONCLUSION AND FUTURE WORK 

6.1 Conclusions 

This study has established the following: First, large scale C. jejuni proteomic research 

requires usage of complementary quantitative proteomic techniques. For example, the 

proteomic results of this study clearly showed that SILAC and SWATH have different 

advantages and disadvantages. But there complementary application could have generated 

improved data. Second, all bile acids are toxic to C. jejuni. As results, they lead to shift in 

metabolism pathways in C. jejuni. However, the shift depends on the ability of the bile acid to 

pass across the membrane. For example, DCA, CDCA and GCA easily migrate across the 

membrane of C. jejuni hence because increased energy biosynthesis. On the other side, LCA 

and UDCA find it difficult to pass across the membrane hence cause little shift in normal 

metabolism. Third, CA, DCA, LCA, TCA, CDCA, UDCA and GCA stimulates C. jejuni 

synthesize more membrane proteins. This implies that these bile acids damage the membrane 

hence the need to replenish it. Fouth, though DCA, CDCA, GCA and TCA migrate across C. 

jejuni membrane, they generate different reactive oxidative defense mechanisms. Fifth, this 

study found mazF toxin and a putative relBE toxin. These genes are expressed in the presence 

of different concentrations of bile acids: mazF is significantly expressed in the presence of 

low concentrations of CA, LCA, TCA and UDCA while putative relBE is significantly 

expressed in the presence of low concentrations of DCA, CDCA and GCA. This confirms that 

C. jejuni has a robust toxin-antitoxin system which assists it to survive in adverse 

environments. Sixith, all bile acids have the potential to stimulate C. jejuni to synthesize 

factors which aid it to adhere and invade epithelia cells. Adherence and invasion is driven by 

different proteins including lipoproteins, outer membrane proteins, chemotaxis, toxins and 

motility proteins, toxin-antitoxin proteins, proteins resulting from metabolism in adverse 

environments and transportation channels. Finally, this study has shown the mazF is 

important in the survival of C. jejuni in all bile acids but at different periods. Also in the 

adherence and invasion of epithelia cells in the presence of these bile acids. In conclusion, the 

information that this study has generated information that will further the understanding of the 

biology of C. jejuni.    
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6.2 Future work 

To the best of my knowledge, this is the first study which has comprehensively examined the 

proteomic response of 81-176 to sub lethal concentrations of dominant bile acids in the 

human small intestines. It has generated interesting results which have opened a door to a 

number of interesting questions which need further investigations. These include: 

a) Numerous uncharacterized outer, periplasmic and innre membrane proteins were 

differentially expressed. Therefore there is need to characterize them and understand 

their role in protecting the membrane against damage by bile acids. 

b) Bile acids uptake systems was unclear. There is a need for further investigation. There 

identity could be potential drug targets. 

c) A number of uptake systems were differentially expressed. Therefore, there is need for 

further investigations to understand which uptake systems transport bile acids across 

the cell membrane. 

d) Up-and-down-regulation of protein transport channels to the outer membrane, 

periplasmic membrane and inner membrane show the bile acids triggers 

rearrangement of proteins in these regions. Therefore, there is a need to investigate 

these changes. 

e) Differential expression and identification of putative YaaA. Therefore, further 

investigation is required to characterize it and understand its role in oxidative defense 

response. 

f) Differential expression of MazF and putative RelE toxins. Hence, further 

investigations are required to understand the molecular basis of their actions. 

g) All know virulence factors were differentially expressed. Hence, there is need for 

further investigation to understand the role of bile acids driven metabolism in the 

pathogenesis of C. jejuni. 

h)  A number of lipoproteins were differentially expressed. Hence, further investigation 

is required to understand lipoprotein export channels to the outer membrane and their 

role in protecting C. jejuni against the antimicrobial activities of bile acids. 

i) There is need to identify and compare proteins that are induced in 81-176 at 16h, 20h, 

24h, 36h and 48h. This analysis will provide insight into how 81-176 responds to bile 

acid generated stresses that are presented over a period of time.       
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APPENDICES 

 

Appendix 1: SILAC - Quantified Proteins 

T: Protein IDs 

C: T-test 

Significant  C: Filter 

C: T-test 

Significant 

_T-test 

Significant  Protein name 

N: Razor + 

unique 

peptides N: Q-value 

A0A0H3ADZ7 

 

Discard 

 

DNA binding protein HU 2 0 

A0A0H3P979 

 

Discard 

 

Hydrolase, carbon-nitrogen family 4 0 

A0A0H3P984 

 

Discard 

 

Uncharacterize protein 1 0 

A0A0H3P987 

 

Discard 

 

Putative, oxaloacetate decarboxylase 7 0 

A0A0H3P999 

 

Discard 

 

Uncharacterized protein 5 0 

A0A0H3P9B7 + Discard +_+ Cytochrome c553 1 0 

A0A0H3P9D3 

 

Discard 

 

Putative, dihydroorotase  2 0 

A0A0H3P9D4 

 

Discard 

 

Oligoendopeptidase F 7 0 

A0A0H3P9D5 

 

Discard 

 

ATP-dependent zinc 

metallopeptidase 9 0 

A0A0H3P9E6 

 

Discard 

 

Uncharacterized protein 4 0 

A0A0H3P9F6 

 

Discard 

 

CCP47 4 0 

A0A0H3P9F9 

 

Discard 

 

Mechanosensitive ion channel family 

protein 1 0.0025773 

A0A0H3P9G7 

 

Discard 

 

Coproporphyrinogen III oxidase 8 0 

A0A0H3P9H5 

 

Discard 

 

D-3-phosphoglycerate 

dehydrogenase 6 0 

A0A0H3P9I8 + Discard +_+ Arginine decarboxylase 3 0 

A0A0H3P9J4 

 

Discard 

 

Arylsulfate sulfotransferase, 

degenerate 15 0 

A0A0H3P9J6 

 

Discard 

 

Phosphate acetyltransferase 5 0 

A0A0H3P9K6 

 

Discard 

 

Type II restriction-modification 

enzyme 6 0 

A0A0H3P9K8 

 

Discard 

 

Iron-sulfur cluster binding protein 10 0 

A0A0H3P9L2 

 

Discard 

 

Flagellar motor switch protein FliM 9 0 

A0A0H3P9L6 

 

Discard 

 

Cell division protein FtsA 1 0 

A0A0H3P9L7 + Discard +_+ Uncharacterized protein 7 0 

A0A0H3P9M5 + Discard +_+ Adenylosuccinate lyase 10 0 

A0A0H3P9M7 

 

Discard 

 

Aconitate hydratase B 22 0 

A0A0H3P9N0 

 

Discard 

 

Flagellar biosynthetic protein FlhF 2 0 

A0A0H3P9N5 

 

Discard 

 

Cytochrome c family protein 3 0 

A0A0H3P9N6 

 

Discard 

 

Conserved domain protein 2 0 

A0A0H3P9P7 

 

Discard 

 

Methyl-accepting chemotaxis protein 11 0 

A0A0H3P9P8 

 

Discard 

 

Transketolase 6 0 

A0A0H3P9P9 

 

Discard 

 

Inosine-5'-monophosphate 

dehydrogenase 13 0 

A0A0H3P9Q2 

 

Discard 

 

Cytochrome c-552 9 0 

A0A0H3P9Q4 + Discard +_+ Catalase 6 0 

A0A0H3P9Q8 

 

Discard 

 

Oxidoreductase, 2-nitropropane 

dioxygenase family 11 0 

A0A0H3P9R4 

 

Discard 

 

L-serine ammonia-lyase 3 0 

A0A0H3P9R9 

 

Discard 

 

Cytochrome c oxidase, cbb3-type, 

subunit II 5 0 

A0A0H3P9S2 + Discard +_+ S-adenosylmethionine synthetase 5 0 

A0A0H3P9T1 + Discard +_+ 

Glyceraldehyde-3-phosphate 

dehydrogenase 6 0 

A0A0H3P9T4 + Discard +_+ Nitroreductase family protein 7 0 

A0A0H3P9T7 

 

Discard 

 

Methyl-accepting chemotaxis protein 5 0 

A0A0H3P9W4 

 

Discard 

 

2,3,4,5-tetrahydropyridine-2,6-

dicarboxylate N-succinyltransferase 3 0 

A0A0H3P9X6 + Discard +_+ Nitroreducatase family protein 3 0 

A0A0H3P9Y0 

 

Discard 

 

Peptidase, M23/M37 family 6 0 

A0A0H3P9Y3 

 

Discard 

 

Signal recognition particle receptor 

FtsY 3 0 
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A0A0H3P9Y5 

 

Discard 

 

Cpp21 3 0 

A0A0H3P9Y9 

 

Discard 

 

L-lactate dehydrogenase 2 0 

A0A0H3PA02 

 

Discard 

 

Peptidase, M16 family 3 0 

A0A0H3PA13 

 

Discard 

 

Putative sugar transferase 0 

 

A0A0H3PA14 

 

Discard 

 

Ribose-phosphate 

pyrophosphokinase 7 0 

A0A0H3PA15 + Discard +_+ 

Oxidoreductase, 

dehydrogenase/reductase family 6 0 

A0A0H3PA46 

 

Discard 

 

DNA topoisomerase 1 10 0 

A0A0H3PA47 

 

Discard 

 

Ribonuclease J 4 0 

A0A0H3PA50 

 

Discard 

 

Putative, Lipoprotein  7 0 

A0A0H3PA52 

 

Discard 

 

Protease DO 5 0 

A0A0H3PA63 

 

Discard 

 

Uncharacterized protein 3 0 

A0A0H3PA64 + Discard +_+ Gamma-glutamyltransferase 6 0 

A0A0H3PA74 

 

Discard 

 

Periplasmic nitrate reductase, 

electron transfer subunit 3 0 

A0A0H3PA81 

 

Discard 

 

Flavin-dependent thymidylate 

synthase 8 0 

A0A0H3PA82 

 

Discard 

 

Phosphomannomutase/ 

phosphoglucomutase 5 0 

A0A0H3PA83 

 

Discard 

 

Cytochrome C 1 0.0037267 

A0A0H3PA85 

 

Discard 

 

DNA gyrase subunit B 9 0 

A0A0H3PA88 + Discard +_+  Putative, Lipoprotein 4 0 

A0A0H3PA93 

 

Discard 

 

Putative, periplasmic solute binding 

protein 5 0 

A0A0H3PA94 + Discard +_+ Putative, Peptidase  4 0 

A0A0H3PA97 

 

Discard 

 

Putative, TolB protein  5 0 

A0A0H3PA98 

 

Discard 

 

Uncharacterized protein 3 0 

A0A0H3PAA8 

 

Discard 

 

DegT/DnrJ/EryC1/StrS 

aminotransferase family 2 0 

A0A0H3PAB0 + Discard +_+ Uncharacterized protein 5 0 

A0A0H3PAB8 

 

Discard 

 

Amidophosphoribosyltransferase 11 0 

A0A0H3PAB9 

 

Discard 

 

Putative, Endoribonuclease L-PSP  1 0 

A0A0H3PAC1 

 

Discard 

 

NADH-quinone oxidoreductase, G 

subunit 5 0 

A0A0H3PAC6 + Discard +_+ 

Delta-aminolevulinic acid 

dehydratase 4 0 

A0A0H3PAD0 

 

Discard 

 

Pyruvate-flavodoxin oxidoreductase 22 0 

A0A0H3PAD5 

 

Discard 

 

UDP-3-O-acylglucosamine N-

acyltransferase 2 0 

A0A0H3PAE0 

 

Discard 

 

RloH 4 0 

A0A0H3PAE3 

 

Discard 

 

Quinone-reactive Ni/Fe-hydrogenase 4 0 

A0A0H3PAE4 + Discard +_+ RND efflux system 7 0 

Q5QKR6;A0A0

H3PAF7 

 

Discard 

 

Acetyl-CoA carboxylase, biotin 

carboxylase 5 0 

A0A0H3PAG1 

 

Discard 

 

Pyridine nucleotide-disulphide 

oxidoreductase family protein 1 0 

A0A0H3PAG7 

 

Discard 

 

Purine-binding chemotaxis protein 

CheW 7 0 

A0A0H3PAG9 

 

Discard 

 

Hydrolase, TatD family 3 0 

A0A0H3PAH7 

 

Discard 

 

2-oxoglutarate:acceptor 

oxidoreductase, alpha subunit 11 0 

A0A0H3PAI4 

 

Discard 

 

Isoleucine--tRNA ligase 17 0 

A0A0H3PAI7 

 

Discard 

 

Uncharacterized protein 1 0 

A0A0H3PAI9 

 

Discard 

 

UDP-glucose 4-epimerase 8 0 

A0A0H3PAJ7 

 

Discard 

 

Quinone-reactive Ni/Fe-

hydrogenase, large subunit 10 0 

A0A0H3PAJ8 

 

Discard 

 

High affinity branched-chain amino 

acid ABC transporter, ATP-binding 

protein 2 0 

A0A0H3PAK2 

 

Discard 

 

Nitrogen fixation protein NifU 4 0 

A0A0H3PAK5 

 

Discard 

 

RNA polymerase sigma factor RpoD 6 0 

A0A0H3PAK6 + Discard +_+ TonB-dependent heme receptor 6 0 

A0A0H3PAL7 

 

Discard 

 

Putative, Malate:quinone 

oxidoreductase  2 0 

A0A0H3PAM0 

 

Discard 

 

Chemotaxis protein CheA 12 0 
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A0A0H3PAM2 

 

Discard 

 

Cell shape-determining protein MreB 9 0 

A0A0H3PAM8 

 

Discard 

 

Hydrolase, carbon-nitrogen family 3 0 

A0A0H3PAN9;

A0A0H3P9S7 

 

Discard 

 

Methyl-accepting chemotaxis protein 0 

 A0A0H3PAP4;

Q29W34 

 

Discard 

 

Putative, Oxidoreductase  13 0 

A0A0H3PAS0 

 

Discard 

 

UvrABC system protein B 6 0 

A0A0H3PAT0 

 

Discard 

 

Cysteine synthase A 3 0 

A0A0H3PAT6 

 

Discard 

 

Phosphatase, Ppx/GppA family 3 0 

A0A0H3PAT9 

 

Discard 

 

UvrABC system protein A 10 0 

A0A0H3PAU4 

 

Discard 

 

Putative, Molybdopterin biosynthesis 

MoeA protein  3 0 

A0A0H3PAU9 

 

Discard 

 

Uncharacterized protein 3 0 

A0A0H3PAV5 

 

Discard 

 

Cystathionine beta-lyase 8 0 

A0A0H3PAY8 + Discard +_+ 50S ribosomal protein L13 4 0 

A0A0H3PB06 

 

Discard 

 

Methyl-accepting chemotaxis protein 2 0 

A0A0H3PB11 

 

Discard 

 

DNA helicase 4 0 

A0A0H3PB14 

 

Discard 

 

D-isomer specific 2-hydroxyacid 

dehydrogenase family protein 1 0 

A0A0H3PB21 

 

Discard 

 

Iron-sulfur cluster carrier protein 3 0 

A0A0H3PB24 

 

Discard 

 

Fibronectin type III domain protein 11 0 

A0A0H3PB33 

 

Discard 

 

Biotin sulfoxide reductase 11 0 

A0A0H3PB37 

 

Discard 

 

Transcriptional regulator, MerR 

family 3 0 

A0A0H3PB56 

 

Discard 

 

UTP--glucose-1-phosphate 

uridylyltransferase 4 0 

A0A0H3PB58 + Discard +_+ Aspartokinase 8 0 

A0A0H3PB61 + Discard +_+ 

Transcription 

termination/antitermination protein 

NusA 5 0 

A0A0H3PB79 + Discard +_+ 

RND efflux system, inner membrane 

transporter CmeB 7 0 

A0A0H3PB91 + Discard +_+ Ferredoxin, 4Fe-4S 4 0 

A0A0H3PB93 

 

Discard 

 

ModE repressor domain protein 5 0 

A0A0H3PBA0 

 

Discard 

 

Carbamoyl-phosphate synthase small 

chain 4 0 

A0A0H3PBA4 + Discard +_+ Oxidoreductase, putative 10 0 

A0A0H3PBB6 

 

Discard 

 

Anthranilate synthase component I 3 0 

A0A0H3PBF3 + Discard +_+ DNA-binding response regulator 5 0 

A0A0H3PBG3 

 

Discard 

 

Hydrogenase expression/formation 

protein 4 0 

Q7X516;A0A0

H3PBG5 + Discard +_+ Flagellin 2 0 

A0A0H3PBH7 

 

Discard 

 

Carboxynorspermidine/carboxysper

midine decarboxylase 4 0 

A0A0H3PBI3 

 

Discard 

 

Bifunctional protein PutA 4 0 

A0A0H3PBK9 + Discard +_+ Flagellar protein FlaG 4 0 

A0A0H3PBL4 

 

Discard 

 

Hydrogenase expression/formation 

protein HypE 3 0 

A0A0H3PBN1 

 

Discard 

 

DNA-binding response regulator 4 0 

A0A0H3PBP8 

 

Discard 

 

Uncharacterized protein 2 0 

A0A0H3PBQ2 

 

Discard 

 

Succinate dehydrogenase, 

flavoprotein subunit 18 0 

A0A0H3PBR9 + Discard +_+ Cytochrome c551 peroxidase 1 0 

A0A0H3PBT1 + Discard +_+ Uncharacterized protein 3 0 

A0A0H3PBT4 

 

Discard 

 

SPFH domain / Band 7 family 

protein 7 0 

A0A0H3PBV6 

 

Discard 

 

Putative, Cysteine desulfurase  6 0 

A0A0H3PBV9 

 

Discard 

 

2-oxoglutarate:acceptor 

oxidoreductase, delta subunit 4 0 

A0A0H3PBW9 

 

Discard 

 

ATP-dependent chaperone protein 

ClpB 9 0 

A0A0H3PCA0 

 

Discard 

 

Cpp12 4 0 

A0A0H3PCE2 

 

Discard 

 

Carbon starvation protein A 1 0.0026008 

A0A0H3PCF8 

 

Discard 

 

Putative, Membrane protein 2 0 

A0A0H3PCH2 

 

Discard 

 

Rubrerythrin 4 0 
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A0A0H3PCH6 + Discard +_+ Ribosomal protein L3 6 0 

A0A0H3PCJ0 

 

Discard 

 

Site-determining protein 3 0 

A0A0H3PCK6 

 

Discard 

 

L-asparaginase 1 0 

A0A0H3PCL3 

 

Discard 

 

Cytolethal distending toxin,  

subunit B 7 0 

A0A0H3PCL7 

 

Discard 

 

Ribonucleoside-diphosphate 

reductase 6 0 

A0A0H3PCM5 

 

Discard 

 

Homoserine O-acetyltransferase 5 0 

A0A0H3PCN0 

 

Discard 

 

Uncharacterized protein 5 0 

A0A0H3PCQ6 

 

Discard 

 

High affinity branched-chain amino 

acid ABC transporter, periplasmic 

amino acid-binding protein 2 0 

A0A0H3PCR0 

 

Discard 

 

Cytochrome b 1 0 

A0A0H3PCT8 

 

Discard 

 

Cytochrome c biogenesis protein, 

CcmF/CycK/CcsA family 9 0 

A0A0H3PCU9 

 

Discard 

 

DNA gyrase subunit A 17 0 

A0A0H3PD07 

 

Discard 

 

C4-dicarboxylate transport protein 1 0 

A0A0H3PD54 + Discard +_+ 

Acetyl-CoA carboxylase, biotin 

carboxylase 15 0 

A0A0H3PD61 

 

Discard 

 

Uncharacterized protein 2 0 

A0A0H3PD65 

 

Discard 

 

High affinity branched-chain amino 

acid ABC transporter, periplasmic 

amino acid-binding protein 6 0 

A0A0H3PD77 

 

Discard 

 

Uncharacterized protein 2 0 

A0A0H3PD83 

 

Discard 

 

Signal peptidase I 7 0 

A0A0H3PD97 

 

Discard 

 

Signal recognition particle protein 9 0 

A0A0H3PD99 

 

Discard 

 

Uncharacterized protein 3 0 

A0A0H3PDC4 

 

Discard 

 

DNA-directed DNA polymerase 6 0 

A0A0H3PDD3 + Discard +_+ 

Molybdenum cofactor biosynthesis 

protein 3 0 

A0A0H3PDJ1 

 

Discard 

 

Oxidoreductase, zinc-binding 

dehydrogenase family 3 0 

A0A0H3PDK8 

 

Discard 

 

Uncharacterized protein 5 0 

A0A0H3PDT1 

 

Discard 

 

Uncharacterized protein 3 0 

A0A0H3PDU5 

 

Discard 

 

Tyrosine--tRNA ligase 5 0 

A0A0H3PDV4 + Discard +_+ Putative methyltransferase 3 0 

A0A0H3PE30 

 

Discard 

 

Adenylosuccinate lyase 4 0 

A0A0H3PE83 

 

Discard 

 

PDZ domain protein 5 0 

A0A0H3PE88 

 

Discard 

 

Uncharacterized protein 8 0 

A0A0H3PEA7 

 

Discard 

 

2-oxoglutarate:acceptor 

oxidoreductase, beta subunit 9 0 

A0A0H3PED8 + Discard +_+ Major antigenic peptide PEB3 4 0 

A0A0H3PEE7 

 

Discard 

 

2-oxoglutarate:acceptor 

oxidoreductase, gamma subunit 3 0 

A0A0H3PEF4 

 

Discard 

 

Fumarate reductase, flavoprotein 

subunit 20 0 

A0A0H3PEG8 + Discard +_+ 

Putative, Phosphate ABC transporter, 

periplasmic phosphate-binding 

protein  2 0 

A0A0H3PEI3 

 

Discard 

 

Rare lipoprotein A 6 0 

A0A0H3PEJ1 

 

Discard 

 

Acetolactate synthase 4 0 

A0A0H3PEK3 

 

Discard 

 

Branched-chain amino acid 

aminotransferase 7 0 

A0A0H3PEL1;

A0A0H3PEF7 

 

Discard 

 

Methyl-accepting chemotaxis protein 0 

 A0A0H3PEN5 

 

Discard 

 

Uncharacterized protein 1 0 

A0A0H3PEP2 

 

Discard 

 

DNA polymerase 4 0 

A0A0H3PET5 + Discard +_+ Putative, TonB-dependent receptor 8 0 

A0A0H3PEU8 + Discard +_+ 

Peptidoglycan-associated lipoprotein 

Omp18 4 0 

A0A0H3PEV5 + Discard +_+ Uncharacterized protein 1 0 

A0A0H3PEV8 

 

Discard 

 

Penicillin-binding protein 1A 5 0 

A0A0H3PEW2 

 

Discard 

 

Iron ABC transporter, periplasmic 

iron-binding protein 3 0 

A0A0H3PEW6 + Discard +_+ Uncharacterized protein 3 0 

A0A0H3PEZ1 

 

Discard 

 

Succinate dehydrogenase iron-sulfur 8 0 
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subunit 

A0A0H3PF03 

 

Discard 

 

3-oxoacyl-[acyl-carrier-protein] 

synthase 2 5 0 

A0A0H3PF06 

 

Discard 

 

Aminotransferase, classes I and II 11 0 

A0A0H3PF18 

 

Discard 

 

ABC transporter, ATP-binding 

protein 15 0 

A0A0H3PF34 

 

Discard 

 

Flagellar M-ring protein 9 0 

A0A0H3PGI9 

 

Discard 

 

Uncharacterized protein 4 0 

A0A0H3PGK7 

 

Discard 

 

Probable cytosol aminopeptidase 6 0 

A0A0H3PGM1 + Discard +_+ Aspartate ammonia-lyase 12 0 

A0A0H3PGP7 + Discard +_+ Flagellar hook protein FlgE 15 0 

A0A0H3PGQ5 

 

Discard 

 

GTP-binding protein TypA 16 0 

A0A0H3PGQ9 

 

Discard 

 

Signal peptide peptidase SppA, 36K 

type 2 0 

A0A0H3PGR5 

 

Discard 

 

Dissimilatory sulfite reductase 7 0 

A0A0H3PGS5 

 

Discard 

 

3-isopropylmalate dehydrogenase 2 0 

A0A0H3PGV5 + Discard +_+ 

Molybdopterin oxidoreductase 

family protein 6 0 

A0A0H3PGW7 

 

Discard 

 

Lon protease 11 0 

A0A0H3PGY0 + Discard +_+ Peptidyl-prolyl cis-trans isomerase 2 0 

A0A0H3PHD0 

 

Discard 

 

Uncharacterized protein 2 0 

A0A0H3PHD6 + Discard +_+ Glutamine synthetase 12 0 

A0A0H3PHD8 

 

Discard 

 

Valine--tRNA ligase 7 0 

A0A0H3PHE2 + Discard +_+ Lipoprotein, NLPA family 4 0 

A0A0H3PHE9 

 

Discard 

 

Flagellin 3 0 

A0A0H3PHJ0 

 

Discard 

 

5-hydroxyisourate hydrolase 1 0 

A0A0H3PHL6 

 

Discard 

 

Major antigenic peptide PEB2 2 0 

A0A0H3PHR2 

 

Discard 

 

Phenylalanine--tRNA ligase beta 

subunit 8 0 

A0A0H3PHX6 

 

Discard 

 

Uncharacterized protein 3 0 

A0A0H3PHZ1 + Discard +_+ Fumarate hydratase class II 4 0 

A0A0H3PI03 

 

Discard 

 

Uncharacterized protein 1 0 

A0A0H3PI37 

 

Discard 

 

NADH-quinone oxidoreductase 5 0 

A0A0H3PI41 

 

Discard 

 

Uncharacterized protein 3 0 

A0A0H3PI52 

 

Discard 

 

50S ribosomal protein L15 5 0 

A0A0H3PI76 

 

Discard 

 

Hydrogenase, (NiFe)/(NiFeSe) small 

subunit family 3 0 

A0A0H3PI81 

 

Discard 

 

Citrate synthase 15 0 

A0A0H3PI91 + Discard +_+ Major outer membrane protein 6 0 

A0A0H3PI95 + Discard +_+ DNA-binding response regulator 7 0 

A0A0H3PIA8 + Discard +_+ 

Enoyl-[acyl-carrier-protein] 

reductase [NADH] 3 0 

A0A0H3PID6 

 

Discard 

 

NADP-dependent malic enzyme, 

truncation 5 0 

A0A0H3PIE6 + Discard +_+ Uncharacterized protein 4 0 

A0A0H3PIR1 

 

Discard 

 

Formate dehydrogenase, alpha 

subunit, selenocysteine-containing 6 0 

A0A0H3PIS8 

 

Discard 

 

ATP-dependent Clp protease ATP-

binding subunit ClpX 6 0 

A0A0H3PIV6 

 

Discard 

 

3,4-dihydroxy-2-butanone 4-

phosphate synthase 2 0 

A0A0H3PIW2 + Discard +_+ Antioxidant, AhpC/Tsa family 7 0 

A0A0H3PIY7 + Discard +_+ Pyruvate kinase 8 0 

A0A0H3PJ06 

 

Discard 

 

Cyclic dehypoxanthine futalosine 

synthase 10 0 

A0A0H3PJ11 

 

Discard 

 

PP-loop family protein 5 0 

A0A0H3PJ24 

 

Discard 

 

Isocitrate dehydrogenase, NADP-

dependent 13 0 

A0A0H3PJ47 

 

Discard 

 

Outer membrane protein assembly 

factor BamA 12 0 

A0A0H3PJ87 + Discard +_+ TPR domain protein 4 0 

A0A0H3PJB7 

 

Discard 

 

Succinate dehydrogenase, iron-sulfur 

protein subunit 8 0 

A0A0H3PJC4 

 

Discard 

 

 Putative, Chemotaxis protein MotB 1 0 

A0A0H3PJH5 

 

Discard 

 

Carbamoyl-phosphate synthase large 

chain 15 0 
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A0A0H3PJH9 

 

Discard 

 

Carboxyl-terminal protease 6 0 

A0A0H3PJJ8 + Discard +_+ 

Chorismate mutase/prephenate 

dehydratase 6 0 

A0A0H3PJM2 

 

Discard 

 

Saccharopine dehydrogenase 5 0 

A1VX91 

 

Discard 

 

Dihydroxy-acid dehydratase (DAD) 9 0 

A1VXA6 

 

Discard 

 

CTP synthase 11 0 

A1VXG4 

 

Discard 

 

Cytolethal distending toxin subunit A 3 0 

A1VXH8 

 

Discard 

 

50S ribosomal protein L27 6 0 

A1VXI7 

 

Discard 

 

ATP synthase subunit delta 5 0 

A1VXI8 

 

Discard 

 

ATP synthase subunit alpha 16 0 

A1VXJ0 + Discard +_+ ATP synthase subunit beta 9 0 

A1VXL9 

 

Discard 

 

Translation initiation factor IF-2 7 0 

A1VXS0 + Discard +_+ 

ATP-dependent Clp protease 

proteolytic subunit 7 0 

A1VXS1 

 

Discard 

 

Trigger factor 5 0 

A1VXS2 + Discard +_+ GTP cyclohydrolase 1 4 0 

A1VXS5 

 

Discard 

 

4-hydroxy-tetrahydrodipicolinate 

reductase 9 0 

A1VXT5 

 

Discard 

 

Threonine--tRNA ligase 10 0 

A1VXT6 

 

Discard 

 

Translation initiation factor IF-3 5 0 

A1VXW7 + Discard +_+ 50S ribosomal protein L20 6 0 

A1VXZ7 

 

Discard 

 

3-hydroxyacyl-[acyl-carrier-protein] 

dehydratase FabZ 2 0 

A1VXZ8 

 

Discard 

 

UDP-N-acetylglucosamine 

acyltransferase 8 0 

A1VY04 

 

Discard 

 

Transaldolase 5 0 

A1VY10 + Discard +_+ Transcription elongation factor GreA 3 0 

A1VY17 

 

Discard 

 

Pantothenate synthetase 2 0 

A1VY30 + Discard +_+ 50S ribosomal protein L25 5 0 

A1VY45 

 

Discard 

 

Phosphoserine aminotransferase 2 0 

A1VY47 

 

Discard 

 

3-oxoacyl-[acyl-carrier-protein] 

synthase 3 2 0 

A1VY51 

 

Discard 

 

Nucleoside diphosphate kinase 2 0 

A1VY69 

 

Discard 

 

Tryptophan synthase beta chain 3 0 

A1VY80 

 

Discard 

 

Phosphoglucosamine mutase 7 0 

A1VY90 

 

Discard 

 

30S ribosomal protein S21 5 0 

A1VY92 

 

Discard 

 

Putative, Lipoprotein  2 0 

A1VY95 

 

Discard 

 

Uncharacterized protein 2 0 

A1VYA4 

 

Discard 

 

2-dehydro-3-deoxyphosphooctonate 

aldolase 4 0 

A1VYA9 

 

Discard 

 

Serine--tRNA ligase 5 0 

A1VYC1 

 

Discard 

 

Lysine--tRNA ligase 12 0 

A1VYC2 

 

Discard 

 

Serine hydroxymethyltransferase 11 0 

A1VYF1 

 

Discard 

 

2,3-bisphosphoglycerate-independent 

phosphoglycerate mutase 3 0 

A1VYG6 

 

Discard 

 

50S ribosomal protein L28 6 0 

A1VYG9 + Discard +_+ Phosphomethylpyrimidine synthase 4 0 

A1VYH4 

 

Discard 

 

tRNA-2-methylthio-N(6)-

dimethylallyladenosine synthase 4 0 

A1VYJ0 + Discard +_+ 50S ribosomal protein L11 4 0 

A1VYJ1 + Discard +_+ 50S ribosomal protein L1 3 0 

A1VYJ2 + Discard +_+ 50S ribosomal protein L10 2 0 

A1VYJ4 

 

Discard 

 

DNA-directed RNA polymerase 

subunit beta 23 0 

A1VYJ5 

 

Discard 

 

DNA-directed RNA polymerase 

subunit beta' 26 0 

A1VYJ6 

 

Discard 

 

30S ribosomal protein S12 4 0 

A1VYJ7 

 

Discard 

 

30S ribosomal protein S7 6 0 

A1VYJ8 

 

Discard 

 

Elongation factor G 15 0 

A1VYL8 

 

Discard 

 

Alanine--tRNA ligase 8 0 

A1VYN0 

 

Discard 

 

Chaperone protein HtpG 5 0 

A1VYP2 

 

Discard 

 

Succinate--CoA ligase [ADP-

forming] subunit beta 4 0 

A1VYQ2 

 

Discard 

 

Proline--tRNA ligase 4 0 

A1VYU6 

 

Discard 

 

DNA ligase 5 0 
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A1VYV7 

 

Discard 

 

Fructose-bisphosphate aldolase 5 0 

A1VYZ2 + Discard +_+ 

Ketol-acid reductoisomerase 

(NADP(+)) 5 0 

A1VYZ9 

 

Discard 

 

Adenylate kinase 5 0 

A1VZ00 

 

Discard 

 

Aspartate--tRNA(Asp/Asn) ligase 23 0 

A1VZ24 

 

Discard 

 

Argininosuccinate synthase 11 0 

A1VZ41 

 

Discard 

 

4-hydroxy-3-methylbut-2-en-1-yl 

diphosphate synthase (flavodoxin) 7 0 

A1VZ44 

 

Discard 

 

Acetate kinase 8 0 

A1VZ59 

 

Discard 

 

Glycine--tRNA ligase alpha subunit 3 0 

A1VZ65 

 

Discard 

 

30S ribosomal protein S16 6 0 

A1VZ69 

 

Discard 

 

50S ribosomal protein L19 14 0 

A1VZC8 

 

Discard 

 

Periplasmic nitrate reductase 21 0 

A1VZF4 

 

Discard 

 

4-hydroxy-tetrahydrodipicolinate 

synthase 2 0 

A1VZF8 

 

Discard 

 

NH(3)-dependent NAD(+) 

synthetase 2 0 

A1VZI8 

 

Discard 

 

Glutamate--tRNA ligase 1 7 0 

A1VZL9 

 

Discard 

 

30S ribosomal protein S15 5 0 

A1VZM0 

 

Discard 

 

DNA translocase FtsK 3 0 

A1VZN1 

 

Discard 

 

Phenylalanine--tRNA ligase alpha 

subunit 8 0 

A1VZQ4 + Discard +_+ Major cell-binding factor 2 0 

A1VZQ6 + Discard +_+ 

Chemotaxis protein 

methyltransferase 2 0 

A1VZR5 

 

Discard 

 

Phosphoenolpyruvate carboxykinase 

(ATP) 6 0 

A1VZT4 

 

Discard 

 

Protein translocase subunit SecA 18 0 

A1VZU4 

 

Discard 

 

Bifunctional purine biosynthesis 

protein PurH 3 0 

A1VZU6 + Discard +_+ 

Phosphoribosylformylglycinamidine 

synthase subunit PurL 6 0 

A1VZZ6 + Discard +_+ 3-dehydroquinate synthase 2 0 

A1VZZ8 

 

Discard 

 

Queuine tRNA-ribosyltransferase 4 0 

A1W057 

 

Discard 

 

30S ribosomal protein S6 3 0 

A1W059 

 

Discard 

 

30S ribosomal protein S18 4 0 

A1W078 

 

Discard 

 

Leucine--tRNA ligase 8 0 

A1W085 

 

Discard 

 

Aspartate carbamoyltransferase 8 0 

A1W0A5 + Discard +_+ Chemotaxis protein CheY homolog 3 0 

A1W0F6 

 

Discard 

 

Putative, transcriptional regulatory 

protein 3 0 

A1W0F9 

 

Discard 

 

Arginine--tRNA ligase 3 0 

A1W0G5 

 

Discard 

 

Elongation factor Ts 6 0 

A1W0G6 

 

Discard 

 

30S ribosomal protein S2 9 0 

A1W0H2 

 

Discard 

 

tRNA uridine 5-

carboxymethylaminomethyl 

modification enzyme MnmG 9 0 

A1W0I1; 

 

Discard 

 

Aspartyl/glutamyl-tRNA(Asn/Gln) 

amidotransferase subunit B 12 0 

A1W0I5 

 

Discard 

 

5-

methyltetrahydropteroyltriglutamate-

-homocysteine methyltransferase 10 0 

A1W0J3 

 

Discard 

 

Ribonuclease Y 9 0 

A1W0K3 

 

Discard 

 

10 kDa chaperonin 2 0 

A1W0M7 

 

Discard 

 

Uroporphyrinogen decarboxylase 3 0 

A1W0N3 

 

Discard 

 

GMP synthase [glutamine-

hydrolyzing] 11 0 

A1W0N8 

 

Discard 

 

Polyribonucleotide 

nucleotidyltransferase 10 0 

A1W0P5 

 

Discard 

 

Chaperone protein DnaJ 4 0 

A1W0Q9 + Discard +_+ Uridylate kinase 2 0 

A1W0S2 

 

Discard 

 

Glutamate--tRNA ligase 2 12 0 

A1W0X7 

 

Discard 

 

Polyphosphate kinase 3 0 

A1W116 

 

Discard 

 

Phosphoglycerate kinase 6 0 

A1W163 

 

Discard 

 

Peptide chain release factor 2 4 0 

A1W187 

 

Discard 

 

30S ribosomal protein S9 4 0 
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A1W1A5 

 

Discard 

 

Adenylosuccinate synthetase 11 0 

A1W1E0 + Discard +_+ Putative, protein 3 0 

A1W1H5 

 

Discard 

 

NADH-quinone oxidoreductase 

subunit D 4 0 

A1W1J4 

 

Discard 

 

30S ribosomal protein S13 5 0 

A1W1J6 

 

Discard 

 

30S ribosomal protein S4 30 0 

A1W1J7 

 

Discard 

 

DNA-directed RNA polymerase 

subunit alpha 2 0 

A1W1J8 

 

Discard 

 

50S ribosomal protein L17 6 0 

A1W1K1 

 

Discard 

 

Histidine biosynthesis bifunctional 

protein HisB 3 0 

A1W1K3 

 

Discard 

 

1-(5-phosphoribosyl)-5-[(5-

phosphoribosylamino)methylidenea

mino] imidazole-4-carboxamide 

isomerase 3 0 

A1W1L3 

 

Discard 

 

30S ribosomal protein S20 4 0 

A1W1L4 

 

Discard 

 

Peptide chain release factor 1 7 0 

A1W1S4 + Discard +_+ Enolase 10 0 

A1W1S5 

 

Discard 

 

Protein RecA 5 0 

A1W1U5 

 

Discard 

 

50S ribosomal protein L6 3 0 

A1W1U6 

 

Discard 

 

30S ribosomal protein S8 5 0 

A1W1U8 

 

Discard 

 

50S ribosomal protein L5 3 0 

A1W1V0 

 

Discard 

 

50S ribosomal protein L14 10 0 

A1W1V1 

 

Discard 

 

30S ribosomal protein S17 6 0 

A1W1V2 + Discard +_+ 50S ribosomal protein L29 1 0 

A1W1V4 

 

Discard 

 

30S ribosomal protein S3 13 0 

A1W1V7 

 

Discard 

 

50S ribosomal protein L2 12 0 

A1W1V9 + Discard +_+ 50S ribosomal protein L4 6 0 

A1W1W1 

 

Discard 

 

30S ribosomal protein S10 8 0 

A1W1X5 + Discard +_+ 

NADPH-dependent 7-cyano-7-

deazaguanine reductase 3 0 

Q0Q7I9 

 

Discard 

 

Glutamine--fructose-6-phosphate 

aminotransferase [isomerizing] 7 0 

Q0Q7K7 

 

Discard 

 

Chaperone protein DnaK 7 0 

Q0Q7K8 

 

Discard 

 

Protein GrpE 2 0 

Q1HG72 + Discard +_+ Glutamate synthase, small subunit 4 0 

Q1HG73 

 

Discard 

 

Uncharacterized protein 10 0 

Q1HG74 

 

Discard 

 

Glutamate synthase, large subunit 11 0 

Q29VH0 

 

Discard 

 

Arabinose-5-phosphate isomerase 2 0 

Q29VV5 

 

Discard 

 

Uncharacterized protein 0 

 Q29VV7 

 

Discard 

 

GDP-mannose 4,6-dehydratase 4 0 

Q2M5Q5 

 

Discard 

 

Putative, 3-oxoacyl-(Acyl-carrier-

protein) synthase 2 0 

Q2M5Q6 

 

Discard 

 

FkbH domain-containing protein 6 0 

Q2M5R1 

 

Discard 

 

Motility accessory factor 2 0 

Q2M5R2 + Discard +_+ Flagellin 8 0 

Q8GJA7 

 

Discard 

 

Uncharacterized protein 2 0 

Q8GJE2 

 

Discard 

 

DNA topoisomerase I 5 0 

Q8GJE5 

 

Discard 

 

Uncharacterized protein 6 0 

Q939J7 

 

Discard 

 

Flagellin modification protein, PseA 12 0 

Q9KIS1 

 

Discard 

 

VirB9 1 0 

A0A0H3P972 + Keep +_+ CCP20 1 0 

A0A0H3P982 

 

Keep 

 

Ribose 5-phosphate isomerase B 4 0 

A0A0H3P9A5 

 

Keep 

 

Cysteine-rich domain protein 3 0 

A0A0H3P9B2 

 

Keep 

 

ThiH protein 5 0 

A0A0H3P9G2 

 

Keep 

 

 Putative, Cell division protein FtsH 3 0 

A0A0H3P9G3 + Keep +_+ 

Transcription termination 

termination factor Rho 12 0 

A0A0H3P9I1 

 

Keep 

 

Uncharacterized protein 2 0 

A0A0H3P9I9 

 

Keep 

 

Ribosome-binding ATPase YchF 2 0 

A0A0H3P9J5 

 

Keep 

 

Invasion antigen B 10 0 

A0A0H3P9K9 

 

Keep 

 

Oxidoreductase 4 0 

A0A0H3P9L9 

 

Keep 

 

Ribosomal protein S1 5 0 

A0A0H3P9M4 + Keep +_+ Aspartate aminotransferase 5 0 

A0A0H3P9Q6 

 

Keep 

 

Cytochrome P450 family protein 7 0 
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A0A0H3P9R8 + Keep +_+ 

Sigma-54 dependent DNA-binding 

response regulator 7 0 

A0A0H3P9T6 + Keep +_+ GTP cyclohydrolase-2 2 0 

A0A0H3P9Z0 + Keep +_+ Cpp14 16 0 

A0A0H3P9Z2 

 

Keep 

 

Putative, Soluble lytic murein 

transglycosylase  5 0 

A0A0H3PA08 + Keep +_+ Uncharacterized protein 2 0 

Q5QKR4;A0A0

H3PA20 + Keep +_+ dCTP deaminase 2 0 

A0A0H3PA65 + Keep +_+ Methionine aminopeptidase 4 0 

A0A0H3PA86 

 

Keep 

 

Peptidase, U32 family 5 0 

A0A0H3PA90 

 

Keep 

 

Putative, 3-octaprenyl-4-

hydroxybenzoate carboxy-lyase  5 0 

A0A0H3PAD1 + Keep +_+ Aminopyrimidine aminohydrolase 2 0 

A0A0H3PAD3 

 

Keep 

 

Sulfurtransferase FdhD 2 0 

A0A0H3PAF2 

 

Keep 

 

Protein translocase subunit SecD 5 0 

A0A0H3PAG3 + Keep +_+ Succinate dehydrogenase, C subunit 1 0 

A0A0H3PAG6 

 

Keep 

 

Triosephosphate isomerase 1 0 

A0A0H3PAI3 

 

Keep 

 

Uncharacterized protein 5 0 

A0A0H3PAK7 

 

Keep 

 

Peptidase, M24 family 3 0 

A0A0H3PAL0 + Keep +_+ Fibronectin-binding protein 11 0 

A0A0H3PAL4 

 

Keep 

 

Flagellar motor switch protein FliG 6 0 

A0A0H3PAQ3 

 

Keep 

 

Uncharacterized protein 3 0 

A0A0H3PAQ5 

 

Keep 

 

Threonine synthase 5 0 

A0A0H3PAQ8 

 

Keep 

 

HAD-superfamily hydrolase, 

subfamily IIA 2 0 

A0A0H3PAU2 

 

Keep 

 

MloB 8 0 

A0A0H3PAU5 

 

Keep 

 

Paralyzed flagella protein PflA 2 0 

A0A0H3PAV9 

 

Keep 

 

Putative, Class I glutamine 

amidotransferase  4 0 

A0A0H3PB02 

 

Keep 

 

Uncharacterized protein 2 0 

A0A0H3PB43 

 

Keep 

 

Outer membrane efflux protein 2 0 

A0A0H3PB76 

 

Keep 

 

Co-chaperone protein DnaJ 2 0 

A0A0H3PB85 + Keep +_+ 

Transferase, hexapeptide repeat 

family 3 0 

A0A0H3PBB0 

 

Keep 

 

Uncharacterized protein 1 0.0038119 

A0A0H3PBF4 

 

Keep 

 

Flagellar assembly protein FliH, 

putative 2 0 

A0A0H3PBL2 + Keep +_+ Peptide deformylase 2 0 

A0A0H3PBV0 

 

Keep 

 

Acetolactate synthase, small subunit 6 0 

A0A0H3PBX6 

 

Keep 

 

 Putative, Chemotaxis protein MotB 5 0 

A0A0H3PBY2 + Keep +_+ ThiF family protein 3 0 

A0A0H3PCC6 

 

Keep 

 

Cpp45 3 0 

A0A0H3PCI2 + Keep +_+ Uncharacterized protein 4 0 

A0A0H3PCP8 

 

Keep 

 

Putative, Lipoprotein  1 0 

A0A0H3PCS4 

 

Keep 

 

Riboflavin synthase, alpha subunit 5 0 

A0A0H3PD29 + Keep +_+ NAD-dependent protein deacylase 2 0 

A0A0H3PD33 + Keep +_+ Phosphohistidine phosphatase SixA 3 0 

A0A0H3PDH6 + Keep +_+ 

3-deoxy-D-manno-octulosonate 

cytidylyltransferase 5 0 

A0A0H3PDN2 + Keep +_+ Putative methyltransferase 7 0 

A0A0H3PDQ6 

 

Keep 

 

Uncharacterized protein 3 0 

A0A0H3PDZ8 

 

Keep 

 

Formate dehydrogenase, iron-sulfur 

subunit 3 0 

A0A0H3PE18 + Keep +_+ 

Imidazole glycerol phosphate 

synthase subunit HisF 3 0 

A0A0H3PEI7 + Keep +_+ Dihydropteroate synthase 3 0 

A0A0H3PER2 

 

Keep 

 

Replicative DNA helicase 8 0 

A0A0H3PER6 + Keep +_+ 

Transcription 

termination/antitermination protein 

NusG 3 0 

A0A0H3PEX7 + Keep +_+ Uncharacterized protein 4 0 

A0A0H3PEZ9 

 

Keep 

 

Uncharacterized protein 3 0 

A0A0H3PG98 

 

Keep 

 

Cpp45 4 0 

A0A0H3PGN8 + Keep +_+ Pseudouridine synthase 4 0 

A0A0H3PGQ1 + Keep +_+ RNA polymerase sigma factor, 4 0 
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sigma-F 

A0A0H3PH47 + Keep +_+ Uncharacterized protein 15 0 

A0A0H3PH83 + Keep +_+ 

Single-stranded DNA-binding 

protein 8 0 

A0A0H3PH92 + Keep +_+ Glycolate oxidase, subunit GlcD 5 0 

A0A0H3PH94 

 

Keep 

 

Guanylate kinase 3 0 

A0A0H3PHE7 

 

Keep 

 

Phospho-2-dehydro-3-

deoxyheptonate aldolase 10 0 

A0A0H3PHF3 

 

Keep 

 

Peptidyl-prolyl cis-trans isomerase 

D, homolog 6 0 

A0A0H3PIL4 

 

Keep 

 

Histidinol dehydrogenase 2 0 

A0A0H3PIR6 

 

Keep 

 

Peptidase, M23/M37 family 2 0 

A0A0H3PIV9 

 

Keep 

 

Cation ABC transporter, periplasmic 

cation-binding protein 1 0 

A0A0H3PIX1 + Keep +_+ Uncharacterized protein 3 0 

A0A0H3PIZ2 

 

Keep 

 

GatB/Yqey family protein 5 0 

A0A0H3PJ30 + Keep +_+ 

Ribonucleoside-diphosphate 

reductase subunit beta 3 0 

A0A0H3PJ41 

 

Keep 

 

Response regulator/GGDEF domain 

protein 5 0 

A0A0H3PJ93 + Keep +_+ Diaminopimelate decarboxylase 5 0 

A1VXF1 

 

Keep 

 

3-dehydroquinate dehydratase 1 0 

A1VXI9 

 

Keep 

 

ATP synthase gamma chain 2 0 

A1VXV5 + Keep +_+ Orotate phosphoribosyltransferase 3 0 

A1VYA1 + Keep +_+ 

Orotidine 5'-phosphate 

decarboxylase 7 0 

A1VYA3 + Keep +_+ 

6,7-dimethyl-8-ribityllumazine 

synthase 2 0 

A1VYG1 

 

Keep 

 

Acetyl-coenzyme A carboxylase 

carboxyl transferase subunit alpha 2 0 

A1VYI6 + Keep +_+ Elongation factor Tu 16 0 

A1VYM4 + Keep +_+ 

Phosphoribosylaminoimidazole-

succinocarboxamide synthase 5 0 

A1VYR7 

 

Keep 

 

Gamma-glutamyl phosphate 

reductase 2 0 

A1VZ21 

 

Keep 

 

ATP-dependent protease ATPase 

subunit HslU 5 0 

A1VZ22 

 

Keep 

 

ATP-dependent protease subunit 

HslV 3 0 

A1VZB3 

 

Keep 

 

Histidine--tRNA ligase 6 0 

A1VZF0 

 

Keep 

 

Cysteine--tRNA ligase 6 0 

A1VZK1 + Keep +_+ 

UDP-N-acetylglucosamine 1-

carboxyvinyltransferase 5 0 

A1VZM9 

 

Keep 

 

3-phosphoshikimate 1-

carboxyvinyltransferase 5 0 

A1VZR4 + Keep +_+ Argininosuccinate lyase 4 0 

A1VZV2 

 

Keep 

 

50S ribosomal protein L34 1 0 

A1VZY2 + Keep +_+ Ornithine carbamoyltransferase 3 0 

A1W018 

 

Keep 

 

Elongation factor 4 6 0 

A1W038 + Keep +_+ 

Succinyl-diaminopimelate 

desuccinylase 5 0 

A1W043 

 

Keep 

 

UDP-N-acetylmuramate--L-alanine 

ligase 2 0 

A1W048 + Keep +_+ 

Glutamyl-tRNA(Gln) 

amidotransferase subunit A 5 0 

A1W0K4 + Keep +_+ 60 kDa chaperonin 13 0 

A1W0Z5 + Keep +_+ 

L-seryl-tRNA(Sec) selenium 

transferase 3 0 

A1W1D0 + Keep +_+ Diaminopimelate epimerase 1 0 

A1W1D6 

 

Keep 

 

Acetyl-coenzyme A synthetase 4 0 

A1W1H0 + Keep +_+ 

NADH-quinone oxidoreductase 

subunit I 8 0 

A1W1J9 

 

Keep 

 

ATP phosphoribosyltransferase 8 0 

A1W1T3 

 

Keep 

 

Biotin synthase 4 0 

A1W1U3 + Keep +_+ 30S ribosomal protein S5 5 0 

A1W1U4 

 

Keep 

 

50S ribosomal protein L18 3 0 
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A1W1V3 

 

Keep 

 

50S ribosomal protein L16 4 0 

A1W1V5 + Keep +_+ 50S ribosomal protein L22 2 0 

A1W1W9 + Keep +_+ 

3-isopropylmalate dehydratase small 

subunit 2 0 

A1W1X2 

 

Keep 

 

2-isopropylmalate synthase 6 0 

Q0Q7I4 

 

Keep 

 

Putative, Molybdopterin biosynthesis 

MoeA protein  2 0 

Q0Q7I7 

 

Keep 

 

Aminodeoxyfutalosine synthase 5 0 

Q29W27 

 

Keep 

 

Capsular polysaccharide ABC 

transporter, periplasmic 

polysaccharide-binding protein 5 0 

Q3I354 + Keep +_+ S-ribosylhomocysteine lyase 2 0 

Q8GJE0 + Keep +_+ 

Single-stranded DNA-binding 

protein 2 0 

 

Appendix 2A: Significantly differentiated proteins in 81-176 in response to  

                          cholic acid (CA) 0.1%. 

      

  

 Significantly downregulated proteins (Log2FC≤1) 

      

 UniProt_Accession Gene Name  Protein Function logFC P-Value 

 A0A0H3PBL4 hypE Chaperone -1.794878 1.18498E-05 

 A0A0H3PJ30 nrdB DNA Replication -1.017521 6.79936E-10 

 A0A0H3PHE7 cjj81176_0739 Metabolism -1.23618 3.961E-06 

 A1VYT7 queA Metabolism -1.210831 0.01318142 

 Q5QKR5 accB Metabolism -1.007544 1.43728E-06 

 A0A0H3P9J4 CJJ81176_0882 Metabolism -2.222816 8.40012E-10 

 A1W1K3 hisA Metabolism -1.166341 0.029595643 

 A0A0H3PB93 modE Metabolism -1.048745 0.26134271 

 A0A0H3P9R1 pglJ Metabolism -1.002706 0.196172497 

 A1VXF1 aroQ Metabolism -1.358573 0.104310674 

 A1VXG4 cdtA Pathogenesis -1.127145 0.034054452 

 A0A0H3PBB3 rbfA Protein synthesis -1.350807 0.01556003 

 A1VXM1 rimP Protein synthesis -1.34701 0.003010739 

 A1VXI1 fmt Protein synthesis -2.032699 0.00089605 

 A0A0H3PD33 sixA Protein modification -1.675605 0.074152534 

 A0A0H3PA35 dsbA Stress Response -2.156863 1.81536E-09 

 A0A0H3PIS5 cmeA Transport -1.038359 7.07783E-09 

 A0A0H3PB85 CJJ81176_0254 Uncharacterized protein -1.794007 0.006516277 

 A0A0H3PDG2 CJJ81176_0891 Uncharacterized protein -1.138389 0.002832467 

 A0A0H3PCE6 CJJ81176_0935 Uncharacterized protein -1.667115 0.004379536 

 A0A0H3P9L3 CJJ81176_0728 Uncharacterized protein -1.407008 5.31084E-05 

 A0A0H3PH34 CJJ81176_1055  Uncharacterized protein -2.439112 0.004588877 

 A0A0H3PIW6 CJJ81176_0547 Uncharacterized protein -2.115717 1.43821E-06 

 A0A0H3P9W6 CJJ81176_1493 Uncharacterized protein -2.024154 1.45319E-05 

 A0A0H3PAI3 CJJ81176_0586 Uncharacterized protein -1.726446 7.95784E-09 

 A0A0H3P9E6 CJJ81176_1179 Uncharacterized protein -1.552508 2.56625E-08 

 A0A0H3PBZ1 CJJ81176_0414 Uncharacterized protein -1.4829 0.001211042 

 A0A0H3PEL5 CJJ81176_0280 Uncharacterized protein -1.455998 0.006771213 

 A0A0H3PAF3 CJJ81176_0231 Uncharacterized protein -1.210513 5.11148E-06 

 A0A0H3PAM9 CJJ81176_1458 Uncharacterized protein -1.181354 0.014101442 

 A0A0H3PAA2 CJJ81176_0288 Uncharacterized protein -1.135368 0.000188526 

 A0A0H3PHH8 CJJ81176_0888 Uncharacterized protein -1.108932 0.01060921 

 A0A0H3PAA1 CJJ81176_1497 Uncharacterized protein -1.037728 2.42837E-06 

 A0A0H3PAI8 CJJ81176_0626 Uncharacterized protein -1.172738 0.02275865 

 A0A0H3P9T3 CJJ81176_1422 Uncharacterized protein -1.009229 0.028832285 

 A0A0H3PAF1 CJJ81176_1363 Uncharacterized protein -1.179186 0.026217311 

 A0A0H3P9I1 CJJ81176_0782 Uncharacterized protein -1.034632 1.46192E-05 
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 Significantly upregulated proteins (Log2FC≥1)     

 UniProt_Accession Gene Name Protein Function logFC P-Value 

 A0A0H3P9C5 mapA Cell wall organization 1.0756546 6.83826E-09 

 A0A0H3PAN9 cjj81176_1205 Chemotaxis 1.1703392 2.2605E-07 

 A0A0H3PEL1 cjj81176_0289 Chemotaxis 1.4390734 2.59977E-08 

 A0A0H3PEF7 cjj81176_0180 Chemotaxis 1.6447823 1.24231E-10 

 A0A0H3PA38 cydA Metabolism 1.091054 0.018998472 

 A0A0H3P9B7 cyf Metabolism 1.2168399 0.000811782 

 A0A0H3PI21 nrfH Metabolism 1.3245518 0.011897963 

 A0A0H3PEG0 lpxB Metabolism  1.2598027 0.002577961 

 A0A0H3PIF6 fliL Motility 1.0680729 1.36475E-05 

 A0A0H3PA17 putP Transport 1.0605275 0.010760836 

 A0A0H3PA76 cjj81176_1604 Transport 1.051132 0.000158674 

 A0A0H3PD65 cjj81176_1037 Transport 1.1387525 4.93231E-10 

 A0A0H3PEA5 CJJ81176_0635 Transport 1.3038455 0.015471587 

 A0A0H3PD99 CJJ81176_0797 Uncharacterized protein 1.0754752 0.001106957 

 A0A0H3PA50 CJJ81176_0126 Uncharacterized protein 1.0890366 0.000103921 

 A0A0H3PCP8 CJJ81176_1045 Uncharacterized protein 1.3923631 3.07213E-05 

 A0A0H3PEG8 CJJ81176_0642 Uncharacterized protein 1.3968882 0.00081135 

 A0A0H3PGI9 CJJ81176_0987 Uncharacterized protein 1.98572 2.94023E-11 

 A1VYL9 CJJ81176_0535 Uncharacterized protein 2.269712 0.0008154 

  

Appendix 2B: Significantly differentiated proteins in 81-176 in response to deoxycholic 

acid (DCA) 0.05%. 

 
    

  

Significantly downregulated 

proteins 
      

UniProt_Accession Gene name Protein Function logFC P-Value 

A0A0H3P9D5 ftsH Cell division -1.003282442 1.43426E-09 

A0A0H3PH83 ssb DNA Replication -1.296003625 1.90198E-13 

A1VZM0 ftsK DNA Replication -1.180538329 0.001622545 

A0A0H3PHL1 ubiX Metabolism -2.14860732 1.01405E-09 

A1VXJ0 atpD Metabolism -1.846577928 1.80567E-14 

A0A0H3PA38 cydA Metabolism -1.572398315 8.01142E-10 

A0A0H3PAE3 hydA Metabolism -1.560755539 1.19656E-14 

A0A0H3PCS4 ribE Metabolism -1.538831636 5.65435E-10 

A0A0H3PEJ9 frdC Metabolism -1.508509495 0.003042706 

A0A0H3PAJ7 hydB Metabolism -1.412003652 2.9533E-14 

A0A0H3P9I8 speA Metabolism -1.385389796 4.76079E-15 

A1W1S4 eno Metabolism -1.35915011 9.48311E-08 

A0A0H3PIR1 fdhA Metabolism -1.242889979 0.011511176 

A1VY43 ubiE Metabolism -1.213975605 0.024749231 

Q29W37 panB Metabolism -1.164425861 1.0781E-07 

Q5QKR5 accB Metabolism -1.094693102 0.000518742 

A0A0H3PCR0 petB Metabolism -1.084215285 3.17365E-08 

A0A0H3P9R9 ccoO Metabolism -1.027969837 2.48918E-10 

A0A0H3PHB9 petA Metabolism -1.008478573 2.18416E-08 

A0A0H3PBB6 trpE Metabolism -1.265119151 4.30949E-13 

A1VYZ2 ilvC Metabolism  -1.964891277 6.16136E-18 

A0A0H3PHD6 glnA Metabolism  -1.921103036 1.11502E-16 

A0A0H3P9I4 purU Metabolism  -1.644891275 1.13108E-07 

A0A0H3P9R1 pglJ Metabolism -1.371984336 0.128228077 

A1W085 pyrB Metabolism  -1.282202596 4.06965E-13 

A0A0H3PIT1 ftn Metabolism  -1.030556844 2.50532E-07 

A0A0H3PB49 CJJ81176_1548 Motility -1.766851698 0.001163017 
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A0A0H3PBX6 CJJ81176_0358 Motility -1.61665275 0.00495653 

A0A0H3PBG5 cjj81176_1338 Motility -1.450922078 2.19649E-13 

A0A0H3PAV1 CJJ81176_0359 Motility -1.019207272 3.78491E-08 

A0A0H3PIZ8 fliE Motility -1.009479684 3.20393E-06 

A0A0H3P9F0 pglF Pathogenesis -1.847223714 0.002523105 

A0A0H3PAD9 pglD Pathogenesis -1.827601879 0.002517774 

A0A0H3PAL0 cadF Pathogenesis -1.433202443 9.61348E-13 

A0A0H3PAF2 secD Pathogenesis -1.041994876 2.03701E-08 

A0A0H3PAN7 secF Pathogenesis -1.00272481 5.15858E-06 

Q2M5R2 flaA Pathogenesis -1.391968401 1.71751E-14 

Q7X517 pseE Pathogenesis -1.042454629 9.9974E-08 

A1VY30 rplY Protein synthesis -2.42052398 2.6086E-17 

A1VYJ1 rplA Protein synthesis -2.3954085 2.32701E-07 

A1W1V2 rpmC Protein synthesis -1.744034513 6.11766E-17 

A0A0H3PCH6 rplC Protein synthesis -1.528410607 3.35694E-15 

A1VXW7 rplT Protein synthesis -1.495896933 2.58784E-13 

A1W1L3 rpsT Protein synthesis -1.464048618 2.30234E-05 

A1VYI7 rpmG Protein synthesis -1.405120571 0.01569719 

A0A0H3PGK7 pepA Protein synthesis -1.91864899 1.32325E-12 

A0A0H3P9Q4 katA Stress Responce -1.078220647 5.87997E-11 

Q3I354 luxS Stress Response -1.560714685 0.003359118 

A1W0K4 groL Stress response -2.220545819 6.53678E-19 

A0A0H3PA75 comEA Stress Response -1.518431946 9.51326E-13 

A0A0H3PEV8 pbpA Stress Response -1.224369902 0.000215077 

A0A0H3PBJ5 dsbD Stress Response -1.036136095 0.02865686 

A0A0H3PIS5 cmeA Transport -3.01479507 2.51617E-18 

A0A0H3PB79 cmeB Transport -2.911680969 1.668E-13 

A0A0H3PAE4 cmeC Transport -2.381525121 4.6268E-09 

A0A0H3PAW0 corA Transport -1.078679114 0.014028751 

A0A0H3P9J7 CJJ81176_0137 Transport -1.064452729 0.204298534 

A0A0H3PAK6 chuA Transport -1.003106417 1.97079E-06 

A0A0H3PB37 CJJ81176_1244 

Two-component 

regulatory system -1.175074343 0.153535306 

A0A0H3PB43 CJJ81176_0637 Uncharacterized protein -1.27173741 0.013911469 

A0A0H3PDG2 CJJ81176_0891  Uncharacterized protein -1.529763099 0.001747932 

A0A0H3PB47 CJJ81176_1492 Uncharacterized protein -1.526101434 2.51631E-08 

A0A0H3P9J4 CJJ81176_0882 Uncharacterized protein -2.795499663 7.46144E-16 

A0A0H3PAI3 CJJ81176_0586 Uncharacterized protein -2.667730908 1.08082E-13 

A0A0H3PCI2 CJJ81176_0072 Uncharacterized protein -1.937374035 6.93187E-11 

A0A0H3PAI8 CJJ81176_0626 Uncharacterized protein -1.821859546 0.005038069 

A0A0H3P9W6 CJJ81176_1493 Uncharacterized protein -1.78587095 0.000165446 

A0A0H3PAC4 CJJ81176_1391 Uncharacterized protein -1.769026473 0.000262839 

A0A0H3P9D3 cjj81176_1210 Uncharacterized protein -1.70639506 1.37057E-16 

A0A0H3PH47 CJJ81176_1185 Uncharacterized protein -1.679381648 1.336E-10 

A0A0H3PCP8 CJJ81176_1045 Uncharacterized protein -1.58311534 5.55587E-09 

A0A0H3PBI5 CJJ81176_1639 Uncharacterized protein -1.5100786 0.007331941 

A0A0H3P9D1 CJJ81176_1051 Uncharacterized protein -1.420955427 1.22356E-14 

A0A0H3P9J0 CJJ81176_0912 Uncharacterized protein -1.378865295 0.001510567 

A0A0H3P9Y0 CJJ81176_1228 Uncharacterized protein -1.360148023 9.70451E-05 

A0A0H3PA15 cjj81176_0828 Uncharacterized protein -1.313904062 1.40255E-13 

A0A0H3PBE0 CJJ81176_0236 Uncharacterized protein -1.256737814 1.26504E-05 

A0A0H3PBF8 CJJ81176_1651 Uncharacterized protein -1.207473981 3.53578E-08 

A0A0H3P9N8 CJJ81176_0145 Uncharacterized protein -1.147788783 0.000482207 

A0A0H3P9U0 CJJ81176_1009 Uncharacterized protein -1.084569702 0.00070709 

Q29VV2 CJB1432c Uncharacterized protein -1.00417327 0.050963459 

Q29VW3 CJB1421c Uncharacterized protein -1.154507913 0.05201738 

A0A0H3PBU4 CJJ81176_0392  Uncharacterized protein -1.333309863 0.054582033 

A0A0H3PET5 cjj81176_0471 Uncharacterized protein -1.082223178 5.3541E-11 

A0A0H3PEU8 CJJ81176_0148 Uncharacterized protein -1.015567296 4.03599E-09 
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Significantly upregulated 
      

UniProt_Accession Gene name Protein Function logFC P-Value 

A0A0H3P9Z7 murE Cell cycle, Cell division 1.072463265 3.95606E-06 

A1VXS1 tig Cell cycle, Cell division 1.121080635 2.26186E-09 

A0A0H3P9H6 CJJ81176_0967 Chaperone 1.296706727 0.014071019 

A0A0H3PGG1 

CJJ81176_pTet

0031 DNA Replication 1.309533578 0.000367427 

A0A0H3PF03 fabF Metabolism 1.055285367 1.27193E-14 

A0A0H3P9J6 pta Metabolism 1.010430855 3.02541E-10 

A0A0H3PJ06 mqnC Metabolism 1.026456978 8.98215E-08 

A0A0H3PA20 dcd Metabolism 1.034888831 3.02922E-07 

A0A0H3PBH7 nspC Metabolism 1.054969328 0.006047851 

A0A0H3PAD5 lpxD Metabolism 1.056038562 1.35346E-10 

A1VXV5 pyrE Metabolism 1.05860604 0.002703813 

A1VYF9 acpP Metabolism 1.087110203 1.204E-05 

Q0Q7I1 purM Metabolism 1.108267274 9.89401E-06 

A0A0H3PEA7 oorB Metabolism 1.109816217 2.45167E-12 

A1VZ01 nadK Metabolism 1.113853817 0.001440012 

A0A0H3P9U4 hipO Metabolism 1.117479144 3.06172E-07 

A1W1W9 leuD Metabolism 1.162960387 3.01923E-05 

A0A0H3PB56 galU Metabolism 1.177847726 4.23304E-07 

A1VYR7 proA Metabolism 1.19586627 1.34306E-09 

A0A0H3PAD1 cjj81176_0466 Metabolism 1.214989403 6.52772E-06 

A1W1X0 leuC Metabolism 1.216702934 0.000332366 

A0A0H3PAQ8 cjj81176_0337 Metabolism 1.224123876 8.23434E-07 

A0A0H3PHM5 mobB Metabolism 1.245815218 0.011904394 

Q29VV6 fcl Metabolism 1.250144552 1.83873E-10 

A0A0H3PAH7 oorA Metabolism 1.287755907 3.41918E-15 

A1VZ24 argG Metabolism 1.34841277 2.71942E-11 

A0A0H3PAP1 thiJ Metabolism 1.373658913 9.25742E-07 

A0A0H3PA65 map Metabolism 1.388867058 8.45382E-06 

A0A0H3PBQ2 sdhA Metabolism 1.39834063 1.4503E-08 

A1W1K3 hisA Metabolism 1.406014995 0.023248273 

A0A0H3PAG3 sdhC Metabolism 1.427111021 4.31485E-08 

A0A0H3PAA8 cjj81176_0533 Metabolism 1.449295592 2.42379E-10 

A1VYB8 gatC Metabolism 1.482305401 0.000746731 

A0A0H3PH15 thiD Metabolism 1.584241938 3.83619E-08 

A0A0H3PBD0 bioA Metabolism 1.600474141 0.001952673 

A0A0H3P9T6 ribA Metabolism 1.711510283 0.000311869 

A1VZR0 apt Metabolism 1.902204652 0.000154875 

A0A0H3P982 rpiB Metabolism 1.955050403 2.11556E-09 

A0A0H3PAJ4 hisI Metabolism 2.125278034 2.22733E-05 

A0A0H3PC31 hom Metabolism 2.340793813 7.09804E-10 

A0A0H3PBK5 purS Metabolism 2.496620564 0.000497449 

A1VYU1 rppH Metabolism 1.153349736 0.000226588 

A0A0H3P9Z1 CJJ81176_1373 Metabolism 1.321839803 3.08931E-07 

A0A0H3PIZ2 CJJ81176_0601 Metabolism 1.024279332 0.014093347 

A0A0H3PB14 cjj81176_0397 Metabolism 1.145841906 6.88332E-11 

A0A0H3PDJ1 cjj81176_1533 Metabolism 1.18939729 2.32031E-13 

A0A0H3PBY2 CJJ81176_0318 Metabolism 1.206379152 0.001455795 

A0A0H3P9K9 cjj81176_0850 Metabolism 1.223247452 1.19386E-12 

A0A0H3PAM5 CJJ81176_0297 Metabolism 1.270286973 0.00094094 

A0A0H3P9Q8 CJJ81176_1286 Metabolism 1.31807062 4.98319E-12 

A0A0H3PGR5 cjj81176_0063 Metabolism 1.785672462 5.03196E-10 

A1VXA6 pyrG Metabolism  1.115481592 1.08311E-09 

A1VZ41 ispG Metabolism  1.120428427 1.82069E-06 

A0A0H3PJB7 sdhB Metabolism  1.276694973 5.29169E-09 
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A1VZI4 fbp Metabolism  1.280247721 3.46399E-13 

A1W0I5 metE Metabolism  1.329340317 1.89466E-09 

A0A0H3PIL4 hisD Metabolism  1.384865057 4.71104E-12 

A0A0H3P9P8 tkt Metabolism  1.513389732 2.97151E-12 

A1VY36 hisC Metabolism  1.659891461 2.59525E-08 

A1W0I0 gpsA Metabolism  1.037472572 1.53007E-06 

A0A0H3PBV9 oorD Metabolism 1.433702786 0.030515815 

A0A0H3PAV5 metC Metabolism  1.185786388 8.57234E-10 

A0A0H3PA78 fliY Motility 1.104913229 0.00072067 

A0A0H3PB06 cjj81176_08473 Motility 1.675317372 9.87858E-09 

A0A0H3PBF4 CJJ81176_0342 Motility 1.861436456 0.00575898 

A1W0U6 pseG Pathogenesis 1.484075242 0.051016804 

Q5QKR7 pseC Pathogenesis 1.206433894 1.91253E-06 

A0A0H3PA50 CJJ81176_0126 Putative lipoprotein 1.259487334 2.81378E-06 

Q939J8 pseI Pathogenesis 1.368126421 8.08852E-09 

A1VYV6 cbf2 (peb4A) Pathogenesis 2.23684879 1.18267E-16 

A1VZ23 rplI Protein synthesis 1.141727127 2.31179E-11 

A1W1U6 rpsH Protein synthesis 1.282637424 2.36465E-10 

A1VYQ2 proS Protein synthesis 1.007294248 1.14643E-12 

A1VYL8 alaS Protein synthesis 1.082008633 5.28935E-12 

A0A0H3P9S5 cysQ Protein synthesis 1.146927871 1.84926E-07 

A0A0H3PAI4 ileS Protein synthesis 1.171762016 7.63109E-15 

A1VZ00 aspS Protein synthesis 1.198918127 8.89443E-12 

A0A0H3PDU5 tyrS Protein synthesis 1.423238988 1.38102E-13 

A1W0I1 gatB Protein synthesis 1.502373102 2.89614E-15 

A1W048 gatA Protein synthesis 1.801909443 8.64309E-13 

A0A0H3PB64 trpS Protein synthesis 2.163815364 7.26977E-11 

A0A0H3PBL2 def Protein synthesis 2.847841384 5.58486E-05 

A0A0H3PAE1 CJJ81176_0192 Protein synthesis 1.306789539 0.012439928 

A0A0H3P9V7 CJJ81176_1101 Stress Responce 1.249758061 0.065954548 

A1VXQ2 sodB Stress Responce 2.300096572 1.06222E-10 

A0A0H3PF18 cj81176_0446 Transport 1.042072018 5.6717E-07 

A0A0H3PA76 cjj81176_1604 Transport 1.270064626 1.65383E-07 

A0A0H3PIV9 CJJ81176_0179 Transport 1.632399678 4.12748E-07 

A0A0H3PJ16 modA Transport 1.219265759 4.25999E-08 

A0A0H3PJ41 cj81176_0671 

Two-component 

regulatory system 1.100369849 5.15873E-08 

A0A0H3PBN1 cjj81176_0379 

Two-component 

regulatory system 1.27295878 4.55324E-07 

A1VYL9 CJJ81176_0535 Uncharacterized protein 1.983634398 0.016756019 

A0A0H3P9Z2 CJJ81176_0859 Uncharacterized protein 1.018360809 9.20584E-08 

A0A0H3PAV9 CJJ81176_1416 Uncharacterized protein 1.329443732 0.000119877 

A0A0H3PAH9 CJJ81176_1530 Uncharacterized protein 1.386238155 1.04067E-05 

Q2A947 Cj1451 Uncharacterized protein 1.608316593 0.00232559 

A0A0H3PBJ6 CJJ81176_0387 Uncharacterized protein 1.007066023 1.14793E-07 

Q2M5R0 Cj1342c Uncharacterized protein 1.086563404 2.13651E-05 

A0A0H3PEN1 cjj81176_0292 Uncharacterized protein 1.124550252 6.26605E-13 

A1VY95 CJJ81176_0398 Uncharacterized protein 1.131728012 1.71841E-05 

A0A0H3PGI9 CJJ81176_0987 Uncharacterized protein 1.140553017 3.75212E-05 

A0A0H3PC13 CJJ81176_0374 Uncharacterized protein 1.222683574 2.00275E-11 

A0A0H3PI41 A0A0H3PI41 Uncharacterized protein 1.2519668 1.77677E-15 

A0A0H3P9Y5 

CJJ81176_pTet

0016 Uncharacterized protein 1.253237438 0.003024591 

Q8GJE8 Cjp04 Uncharacterized protein 1.339577465 0.00497124 

A0A0H3PA63 CJJ81176_0729 Uncharacterized protein 1.393312514 1.07151E-12 

A0A0H3PJ75 CJJ81176_0306 Uncharacterized protein 1.434676924 0.00792529 

A0A0H3P991 CJJ81176_0018 Uncharacterized protein 1.509155115 7.02744E-08 

Q0Q7K3 CJJ81176_0779 Uncharacterized protein 1.532219075 1.43698E-05 

A0A0H3PDT4 CJJ81176_1617 Uncharacterized protein 1.618539679 0.002496734 
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A0A0H3PDV4 cj81176_1419 Uncharacterized protein 1.723137323 9.18852E-10 

A0A0H3PGW3 CJJ81176_1177 Uncharacterized protein 1.92854344 9.14616E-05 

A0A0H3PHX6 CJJ81176_1306 Uncharacterized protein 1.941674705 1.18219E-11 

A0A0H3P9A5 CJJ81176_0112 Uncharacterized protein 2.040097649 3.04708E-07 

A0A0H3PAU9 CJJ81176_0809 Uncharacterized protein 1.072446574 0.055552487 

A0A0H3PAA3 CJJ81176_1453 Uncharacterized protein 1.419151168 0.060189297 

A0A0H3PBJ6 CJJ81176_0387 Uncharacterized protein 1.007066023 1.14793E-07 

A0A0H3PHF9 CJJ81176_0723 Uncharacterized protein 2.34723418 4.91226E-07 

A0A0H3PBP8 CJJ81176_0462 Uncharacterized protein 2.890852381 3.07843E-08 

         

Appendix 2C: Significantly differentiated proteins in 81-176 in response to lithocholic 

                             acid (LCA) 0.5%. 

 

     

  

Significantly downregulated 
     

UniProt_Accession Gene Name Protein Function logFC P-Value 

A1VXF1 aroQ Metabolism -1.946233239 0.00672643 

A1VY40 dxs Metabolism -1.250684216 0.00048007 

A0A0H3PA64 ggt Metabolism -1.091364679 3.3679E-05 

A0A0H3P9B2 thiH Metabolism -1.004468139 0.00025826 

A0A0H3P9P3 CJJ81176_1159 Metabolism -1.106306132 0.17610262 

A0A0H3PAM5 CJJ81176_0297 Metabolism -1.015163843 0.00065335 

A1VXM1 rimP Protein synthesis -1.256610864 0.00590299 

A0A0H3PBL4 hypE Protein synthesis -1.32782401 0.00013553 

A0A0H3PAT8 CJJ81176_1274 Protein synthesis -1.31828289 0.00721395 

A0A0H3PDE7 CJJ81176_0897 Transport -1.399468332 0.03190218 

A0A0H3PDG2 CJJ81176_0891  Uncharacterized protein -1.071933555 0.01268505 

A0A0H3PCE6 CJJ81176_0935  Uncharacterized protein -1.604045037 0.01445481 

Q0Q7K5 CJJ81176_0777 Uncharacterized protein -1.306389919 0.18973704 

A0A0H3PA59 CJJ81176_1259 Uncharacterized protein -1.155378161 0.15068155 

A0A0H3PBB0 CJJ81176_1666 Uncharacterized protein -1.124759762 0.06000636 

A0A0H3PB02 CJJ81176_0220  Uncharacterized protein -1.036522129 0.04630988 

A0A0H3PAT8 CJJ81176_1274 Uncharacterized protein -1.31828289 0.00721395 

A0A0H3P9L3 CJJ81176_0728  Uncharacterized protein -1.236774433 0.00190423 

A0A0H3P9A4 CJJ81176_0120 Uncharacterized protein -1.302763765 0.00056081 

A0A0H3PEL5 CJJ81176_0280  Uncharacterized protein -1.343015099 0.0116004 

          

  

Significantly upregulated  
      

UniProt_Accession Gene Name Protein Function logFC P-Value 

A0A0H3PB49 CJJ81176_1548 Chemotaxis 1.265105214 0.01884375 

A0A0H3PEF7 cjj81176_0180 Motility 1.349493211 1.1433E-08 

A0A0H3PEE2 secG Pathogenesis 1.149406064 0.06638875 

A0A0H3P9J0 CJJ81176_0912 Transport 1.784378504 0.01318131 

A0A0H3P971 CJJ81176_pTet0052 Uncharacterized protein 1.1326771 0.10868569 

A0A0H3PGI9 CJJ81176_0987 Uncharacterized protein 1.343722157 0.00104637 

A0A0H3PD99 CJJ81176_0797 Uncharacterized protein 1.435712271 7.1365E-06 

Q8GJA8 Cjp47 Uncharacterized protein 0.979140122 0.18488404 
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Appendix 2D: Significantly differentiated proteins in cj81-176 in response to taurocholic 

                         acid (TCA) 0.5%. 

 

       Significantly downregulated     

UniProt_Accession Gene Name Protein Function logFC P-Value 

A0A0H3PA34 cheB Chemotaxis -1.226602134 9.46978E-06 

A0A0H3PJ30 nrdB DNA Replication -1.180021302 2.04063E-13 

A0A0H3P9R0 CJJ81176_1236 DNA Response regulator -1.092592157 3.45746E-07 

A1VXF1 aroQ Metabolism -2.436742783 0.001101997 

A0A0H3PBF9 rpe Metabolism -1.458789174 3.73715E-06 

Q5QKR5 accB Metabolism -1.445814976 1.74741E-10 

A1W1K3 hisA Metabolism -1.388482008 0.004050459 

A0A0H3P9S3 hydD Metabolism -1.287175521 0.001189336 

A0A0H3PHM5 mobB Metabolism -1.20117722 0.02038769 

A0A0H3PEI7 folP Metabolism -1.189189468 0.00699004 

A0A0H3PCS4 ribE Metabolism -1.085497094 8.09279E-06 

A0A0H3P9B2 thiH Metabolism -1.039720885 8.69139E-05 

A0A0H3PD29 cobB Metabolism -1.532800375 0.000279934 

A0A0H3PA64 ggt Metabolism -1.166367573 4.24829E-06 

A0A0H3PHE7 cjj81176_0739 Metabolism -1.451360641 2.14432E-08 

A1VY40 dxs Metabolism  -1.268605424 0.000130626 

A0A0H3PAG6 tpiA Metabolism  -1.24298309 0.001418108 

A1W0R9 mqnA Metabolism -1.174302311 0.116892298 

A1W0N3 guaA Metabolism  -1.170239402 9.84591E-08 

A1W062 fliW Motility -1.624957263 0.029733566 

A0A0H3PAR2 fliI Motility -1.143787081 0.014771905 

A1W0U6 pseG Pathogenesis -1.152879834 0.024087801 

A0A0H3PD33 sixA Protein modification -2.159988873 0.012063197 

A1W0R3 trmB Protein synthesis -2.059288049 9.05339E-05 

A1VY31 pth Protein synthesis -1.483064053 1.17701E-07 

A1VZW5 cmoB Protein synthesis -1.293130493 0.000929833 

A0A0H3PBL4 hypE Protein synthesis -2.082094284 4.99847E-08 

A1VXI1 fmt Protein synthesis -1.665727249 0.019355779 

A0A0H3PA35 dsbA Stress Response -3.364517181 3.08879E-14 

A0A0H3P9I9 ychF Stress Response -1.187359961 3.33152E-10 

A0A0H3P9M1 napD Transport -1.278147171 0.00425219 

A0A0H3PIS5 cmeA Transport -1.428082684 2.9816E-12 

A0A0H3PAX0 tpx Uncharacterized protein -1.037574676 1.38464E-05 

A0A0H3P9L3 CJJ81176_0728 Uncharacterized protein -1.250302129 0.007687957 

A0A0H3PB85 CJJ81176_0254 Uncharacterized protein -2.07207278 0.001137778 

A0A0H3P9J4 CJJ81176_0882 Uncharacterized protein -3.198992652 9.50327E-17 

A0A0H3PAI3 CJJ81176_0586 Uncharacterized protein -3.150110792 2.24208E-15 

A0A0H3P9T3 CJJ81176_1422 Uncharacterized protein -2.317175413 3.60752E-09 

A0A0H3PAF1 CJJ81176_1363 Uncharacterized protein -2.280876774 1.62761E-05 

A0A0H3PIW6 CJJ81176_0547 Uncharacterized protein -2.100410958 3.22962E-06 

A0A0H3P9W6 CJJ81176_1493 Uncharacterized protein -1.945433647 1.7386E-05 

A0A0H3PAT8 CJJ81176_1274 Uncharacterized protein -1.880296609 4.57567E-06 

A0A0H3PDW4 cjj81176_1424 Uncharacterized protein -1.669587613 0.000317528 

A0A0H3PHF5 CJJ81176_0907 Uncharacterized protein -1.561626275 1.88221E-09 

A0A0H3PHG6 CJJ81176_0854 Uncharacterized protein -1.559316859 0.018144143 

A0A0H3P9I1 CJJ81176_0782 Uncharacterized protein -1.556872277 2.53565E-09 

A0A0H3PAN1 cjj81176_1158 Uncharacterized protein -1.387338503 1.94861E-08 

A0A0H3PAA2 CJJ81176_0288 Uncharacterized protein -1.36130911 2.27899E-06 

A0A0H3P9A3 CJJ81176_0013 Uncharacterized protein -1.309926124 0.01642129 

A0A0H3P9E6 CJJ81176_1179 Uncharacterized protein -1.29672816 7.4028E-08 

A0A0H3PAA1 CJJ81176_1497 Uncharacterized protein -1.255004682 1.86926E-08 

A0A0H3P9A5 CJJ81176_0112 Uncharacterized protein -1.226860933 2.36353E-06 

A0A0H3PCA8 CJJ81176_pTet0048 Uncharacterized protein -1.186451631 5.7261E-10 
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A0A0H3PDS7 CJJ81176_1355 Uncharacterized protein -1.166619299 3.20708E-05 

A0A0H3PB78 CJJ81176_1414 Uncharacterized protein -1.163647029 9.32886E-10 

A0A0H3PAF3 CJJ81176_0231 Uncharacterized protein -1.145711317 5.16051E-06 

Q2M5Q6 cj81176_1318 Uncharacterized protein -1.13772247 3.59132E-05 

A0A0H3P9Z0 CJJ81176_pTet0010 Uncharacterized protein -1.118629421 0.000266962 

A0A0H3PBP0 CJJ81176_0442 Uncharacterized protein -1.070637671 4.23626E-12 

Q2M5Q3 Cj1305c Uncharacterized protein -1.061759102 5.98995E-06 

A0A0H3P9A5 CJJ81176_0112  Uncharacterized protein -1.226860933 2.36353E-06 

A0A0H3PII9 CJJ81176_1327 Uncharacterized protein -1.219121522 0.049200803 

A0A0H3PAH4 CJJ81176_0565 Uncharacterized protein -1.162555964 0.051367488 

A0A0H3PBP0 CJJ81176_0442 Uncharacterized protein -1.070637671 4.23626E-12 

Q2M5Q3 Cj1305c Uncharacterized protein -1.061759102 5.98995E-06 

A0A0H3PHF5 CJJ81176_0907  Uncharacterized protein -1.561626275 1.88221E-09 

A0A0H3PEL5 CJJ81176_0280 Uncharacterized protein -1.793989654 0.001350492 

A0A0H3PHH8 CJJ81176_0888 Uncharacterized protein -1.69475782 9.32964E-05 

          

          

  Significantly upregulated     

UniProt_Accession Gene Name Protein Function logFC P-Value 

A0A0H3P9J9 cjj81176_0046 Chemotaxis 1.036335028 0.000173983 

A0A0H3PAG7 cheW Chemotaxis 1.113400089 3.05581E-08 

A0A0H3PAN9 cjj81176_1205 Chemotaxis 1.117164062 4.12413E-07 

A0A0H3PEL1 cjj81176_0289 Chemotaxis 1.38527403 5.40841E-09 

A0A0H3PEF7 cjj81176_0180 Chemotaxis 1.663550865 2.6105E-10 

A0A0H3PDX5 rnc DNA Replication 1.731695009 0.006182112 

A0A0H3PAG5 radA DNA Replication 1.999618895 0.005959603 

A1VYR7 proA Metabolism 1.009132668 3.53952E-10 

A0A0H3PGP1 lctP Metabolism 1.34055812 0.012606899 

A0A0H3PI47 CJJ81176_1247 Metabolism 1.392403379 0.025089075 

A0A0H3PA51 napG Metabolism 1.424011974 0.000283441 

A0A0H3PA38 cydA Metabolism 1.659671162 0.001493063 

A1VYQ1 hemA Metabolism 1.310968059 0.057115356 

A0A0H3PAD5 lpxD Metabolism 1.729657515 5.2733E-12 

A0A0H3PIF6 fliL Motility 1.347230808 4.00901E-08 

A1W0G0 tatA Pathogenesis 1.250195315 4.94873E-05 

A0A0H3PA52 htrA Pathogenesis 1.012383395 1.81185E-12 

A1VZQ5 peb1C Pathogenesis 1.074665497 5.96012E-09 

A0A0H3PE81 CiaC Pathogenesis 1.87174585 0.00011936 

A1W1L3 rpsT Protein synthesis 1.019676169 0.00407909 

A1W1V3 rplP Protein synthesis 1.027409942 3.17054E-10 

A1W1V4 rpsC Protein synthesis 1.102830381 4.89003E-12 

A0A0H3PB64 trpS Protein synthesis 1.616322759 2.21865E-07 

A1W165 truD Protein synthesis 1.740343871 6.8171E-05 

A0A0H3PB76 dnaJ-1 Stress Response 1.136786135 0.008631516 

A0A0H3PBJ5 dsbD Stress Response 1.028011072 0.102095583 

A0A0H3PCE2 cstA Stress Response 1.302986402 2.76884E-07 

A0A0H3PA66 dcuB Transport 1.089621325 2.75254E-05 

A0A0H3PA17 putP Transport 1.878844877 0.000298502 

A0A0H3PA42 CJJ81176_0911 Transport 1.389768839 0.000397905 

Q0Q7I0 CJJ81176_1569 Transport 1.049186667 1.26849E-11 

A0A0H3P9J0 CJJ81176_0912 Transport 1.11729136 0.007246779 

A0A0H3P9C2 CJJ81176_1124 Uncharacterized protein 1.170249072 2.49245E-08 

A0A0H3PGG1 CJJ81176_pTet0031 Uncharacterized protein 1.39381591 1.43599E-11 

A0A0H3P9L7 CJJ81176_0128 Uncharacterized protein 1.008232908 0.000289218 

A0A0H3PCC6 CJJ81176_pTet0042 Uncharacterized protein 1.045925712 0.001508975 

A0A0H3PD99 CJJ81176_0797 Uncharacterized protein 1.047120111 0.000609426 

A0A0H3P9Y0 CJJ81176_1228 Uncharacterized protein 1.055185558 0.005322174 

A0A0H3PCF8 CJJ81176_0975 Uncharacterized protein 1.091090115 1.32648E-06 
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Q8GJA7 Cjp48 Uncharacterized protein 1.092112554 3.29008E-09 

A0A0H3PH37 CJJ81176_1222 Uncharacterized protein 1.115037771 0.000666304 

Q2M5Q9 CJJ81176_1315 Uncharacterized protein 1.131700017 2.97746E-06 

A1VY92 CJJ81176_0395 Uncharacterized protein 1.185734222 1.70747E-07 

A0A0H3PGE8 CJJ81176_pTet0018 Uncharacterized protein 1.221656562 1.88625E-10 

A0A0H3P9F6 CJJ81176_pTet0044 Uncharacterized protein 1.263478737 1.20815E-13 

A0A0H3PCP8 CJJ81176_1045 Uncharacterized protein 1.351483309 0.005830684 

A0A0H3PED7 CJJ81176_0477 Uncharacterized protein 1.364895946 0.000101422 

A0A0H3PAU3 CJJ81176_0159 Uncharacterized protein 1.517554583 0.000910309 

A0A0H3PEA5 CJJ81176_0635 Uncharacterized protein 1.673879027 0.009287528 

A0A0H3PGI9 CJJ81176_0987 Uncharacterized protein 1.705481603 7.42198E-06 

A0A0H3P9T9 CJJ81176_1157 Uncharacterized protein 1.93813911 0.003914575 

Q8GJA8 Cjp47 Uncharacterized protein 1.339364794 0.02680047 

A0A0H3PGX2 CJJ81176_1003 Uncharacterized protein 2.10407406 0.005728817 

A0A0H3PA50 CJJ81176_0126 Uncharacterized protein 2.265756552 5.52932E-08 

 

Appendix 2E: Significantly differentiated proteins in 81-176 in response to 

                         chenodeoxycholic acid (CDCA) 0.05%. 

 

  Significantly downregulated     

UniProt_Accession Gene Name Protein Function logFC P-Value 

A0A0H3PH83 ssb DNA Replication -1.56799 3.8E-13 

A1VZM0 ftsK DNA Replication -1.2322 0.00076 

A0A0H3PAE3 hydA Metabolism -2.19851 4.2E-16 

A1VXF1 aroQ Metabolism -2.03781 0.00791 

A0A0H3PHL1 ubiX Metabolism -1.77652 9E-08 

A0A0H3PAJ7 hydB Metabolism -1.77535 2.3E-14 

A0A0H3PEJ9 frdC Metabolism -1.66138 0.00169 

A0A0H3PCS4 ribE Metabolism -1.49456 1.4E-09 

A0A0H3PIT1 ftn Metabolism -1.48032 2.9E-14 

A1W085 pyrB Metabolism -1.45794 2.1E-11 

Q5QKR5 accB Metabolism -1.37429 2.2E-07 

A1W1S4 eno Metabolism -1.37324 6.8E-07 

A0A0H3PCR0 petB Metabolism -1.27761 5.1E-11 

A0A0H3PAC7 nuoM Metabolism -1.25239 0.00026 

A1VY43 ubiE Metabolism -1.2238 0.00262 

A0A0H3PBB6 trpE Metabolism -1.16377 8.2E-12 

A0A0H3PBU8 accD Metabolism -1.03475 0.00083 

A0A0H3P9E8 petC Metabolism -1.02676 2E-08 

A0A0H3P9T1 gapA Metabolism -1.01979 2.7E-12 

A0A0H3PI37 nuoC Metabolism -1.01048 3.8E-07 

A0A0H3PHD6 glnA Metabolism  -1.80965 8.3E-14 

A0A0H3P9I4 purU Metabolism  -1.7934 1.5E-06 

A1VYZ2 ilvC Metabolism  -1.56888 3.9E-15 

A0A0H3P9I8 speA Metabolism  -1.37572 3.5E-15 

A0A0H3P9M5 purB-1 Metabolism  -1.12237 4.5E-15 

A0A0H3PET1 trpD Metabolism  -1.07006 3.8E-10 

A0A0H3PBG5 cjj81176_1338 Motility -1.35474 4.7E-12 

A0A0H3PIZ8 fliE Motility -1.08333 1.1E-05 

A0A0H3PAN7 secF Pathogenesis -1.00579 3E-05 

A0A0H3PAD9 pglD Pathogenesis -2.1667 0.00024 

A0A0H3P9R1 pglJ Pathogenesis -1.95631 0.01258 

A0A0H3P9F0 pglF Pathogenesis -1.44391 0.01354 

Q7X517 pseE Pathogenesis -1.03117 2.3E-07 

Q2M5R2 flaA Pathogenesis -1.36689 4E-15 

A0A0H3PAL0 cadF Pathogenesis -1.25318 3.2E-10 

A1VY30 rplY Protein synthesis -2.2421 2.9E-16 
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A1VYJ1 rplA Protein synthesis -1.97717 2.6E-06 

A1VYI7 rpmG Protein synthesis -1.51249 0.00924 

A1W1V2 rpmC Protein synthesis -1.46742 2.6E-14 

A1VXW7 rplT Protein synthesis -1.36643 2E-11 

A0A0H3PCH6 rplC Protein synthesis -1.31708 3.6E-14 

A1VYJ0 rplK Protein synthesis -1.28281 1.5E-13 

A0A0H3PI52 rplO Protein synthesis -1.08329 5.4E-11 

A1VYJ2 rplJ Protein synthesis -1.04452 1.4E-11 

A0A0H3PGK7 pepA Protein synthesis -1.93379 5.1E-12 

A0A0H3P9B1 yajC Protein transport -1.1643 9.2E-06 

A1W0K4 groL Stress response -1.93314 1.1E-16 

A0A0H3PA75 comEA Stress Response -1.55786 5.2E-12 

A0A0H3PB76 dnaJ-1 Stress Response -1.02103 0.0035 

A0A0H3PIS5 cmeA Transport -3.08849 4.6E-18 

A0A0H3PB79 cmeB Transport -3.06466 3.2E-13 

A0A0H3PAE4 cmeC Transport -2.36633 1.1E-09 

A1VXJ0 atpD Transport -1.68961 4.5E-13 

A1VXI7 atpH Transport -1.4116 0.00437 

A1VXI9 atpG Transport -1.06101 1.1E-09 

A1VXJ1 atpC Transport -1.02116 0.00015 

A0A0H3PDG2 CJJ81176_0891 Uncharacterized protein -1.04461 0.00171 

A0A0H3PCE6 CJJ81176_0935 Uncharacterized protein -2.11684 0.00094 

A0A0H3PA15 cjj81176_0828 Uncharacterized protein -1.19494 2.4E-10 

A0A0H3P9U0 CJJ81176_1009 Uncharacterized protein -1.10052 0.00046 

A0A0H3P9J4 CJJ81176_0882 Uncharacterized protein -2.73346 1E-14 

A0A0H3PAI3 CJJ81176_0586 Uncharacterized protein -3.75876 1.5E-16 

Q9KIS1 CJJ81176_pVir0002 Uncharacterized protein -2.81982 0.00242 

A0A0H3PB49 CJJ81176_1548 Uncharacterized protein -2.20177 0.00018 

A0A0H3PBI5 CJJ81176_1639 Uncharacterized protein -1.64819 0.0013 

A0A0H3P9D3 cjj81176_1210 Uncharacterized protein -1.59431 5.3E-15 

A0A0H3PCI2 CJJ81176_0072 Uncharacterized protein -1.58186 1.1E-08 

A0A0H3PA02 CJJ81176_0826 Uncharacterized protein -1.55944 6.9E-11 

A0A0H3PH47 CJJ81176_1185 Uncharacterized protein -1.4049 1.2E-09 

A0A0H3P9D1 CJJ81176_1051 Uncharacterized protein -1.3945 3E-14 

A0A0H3P9J0 CJJ81176_0912 Uncharacterized protein -1.32296 0.00248 

A0A0H3P9M2 CJJ81176_0734 Uncharacterized protein -1.32066 0.01387 

A0A0H3P9W6 CJJ81176_1493 Uncharacterized protein -1.25253 0.00989 

A0A0H3P9N8 CJJ81176_0145 Uncharacterized protein -1.13124 0.00088 

A0A0H3PBE0 CJJ81176_0236 Uncharacterized protein -1.09599 0.00926 

A0A0H3PHJ5 CJJ81176_0726 Uncharacterized protein -1.08397 0.00157 

A0A0H3P9Y0 CJJ81176_1228 Uncharacterized protein -1.03956 0.0048 

A0A0H3PAQ1 CJJ81176_0849 Uncharacterized protein -1.0156 1.1E-05 

A0A0H3PB47 CJJ81176_1492 Uncharacterized protein -1.88091 6.2E-09 

A0A0H3P9V0 CJJ81176_1433 Uncharacterized protein -1.32626 0.0632 

A0A0H3PBZ1 CJJ81176_0414 Uncharacterized protein -1.00483 0.0185 

  

 

      

  Significantly upregulated      

UniProt_Accession Gene Name Protein Function logFC P-Value 

A0A0H3PB06 cjj81176_08473 Chemotaxis 1.37991 4.9E-08 

Q8GJE2 topA DNA Replication 1.03856 3.5E-05 

A0A0H3PGG1 CJJ81176_pTet0031 DNA Replication 1.06298 1.3E-09 

A1VZ44 ackA Metabolism 1.00921 2E-10 

A1VZJ8 folD Metabolism 1.03725 8.8E-07 

A0A0H3PAD5 lpxD Metabolism 1.04267 7.7E-11 

A1VZ24 argG Metabolism 1.04925 1.5E-11 

A1VY36 hisC Metabolism 1.06536 9.5E-07 

A0A0H3P9P8 tkt Metabolism 1.0755 2.1E-09 

A0A0H3P9U4 hipO Metabolism 1.08018 3.9E-07 
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A1W0I0 gpsA Metabolism 1.08052 2.8E-08 

A0A0H3PAP1 thiJ Metabolism 1.08057 0.0005 

A1VZI4 fbp Metabolism 1.08593 2.1E-11 

A0A0H3PH94 gmk Metabolism 1.0895 0.00974 

Q29VW1 gmhA-2 Metabolism 1.14757 0.00122 

A0A0H3PHM5 mobB Metabolism 1.1507 0.02014 

A0A0H3P9T0 gmhA-1 Metabolism 1.15201 0.00029 

A1W0I5 metE Metabolism 1.16243 2.8E-10 

A0A0H3PE18 hisF-2 Metabolism 1.18045 0.00025 

A1W1X0 leuC Metabolism 1.19265 0.00231 

A0A0H3PJB7 sdhB Metabolism 1.22214 1.1E-08 

A1VZF4 dapA Metabolism 1.22408 6.9E-12 

A1VZ01 nadK Metabolism 1.25749 0.0006 

A0A0H3PBQ2 sdhA Metabolism 1.27037 1.6E-07 

A0A0H3PB56 galU Metabolism 1.28866 6.7E-05 

A1VYG9 thiC Metabolism 1.34049 4.9E-07 

A0A0H3PEG0 lpxB Metabolism 1.34727 0.01274 

A0A0H3PC31 hom Metabolism 1.35845 8.8E-06 

A0A0H3PAG3 sdhC Metabolism 1.41291 4.3E-07 

A1VZR0 apt Metabolism 1.56291 5.7E-05 

A0A0H3PBD0 bioA Metabolism 1.58592 0.01147 

A0A0H3PBK5 purS Metabolism 1.61628 0.00037 

A0A0H3PCK6 ansA Metabolism 1.83226 2.8E-10 

A0A0H3PAJ4 hisI Metabolism 2.19192 6.2E-05 

A0A0H3P982 rpiB Metabolism 2.57291 2.5E-08 

A1VYU1 rppH Metabolism 1.21526 0.00045 

A1W1K3 hisA Metabolism 1.17107 0.07795 

A0A0H3P9T6 ribA Metabolism 1.10782 0.03354 

A0A0H3PID6 CJJ81176_1304 Metabolism 1.00951 5.2E-09 

A0A0H3P9Q8 CJJ81176_1286 Metabolism 1.1543 2.3E-13 

A0A0H3PAQ8 cjj81176_0337 Metabolism 1.06729 2E-05 

A0A0H3PB14 cjj81176_0397 Metabolism 1.08221 6.5E-12 

A0A0H3PDJ1 cjj81176_1533 Metabolism 1.0936 2E-14 

A0A0H3PB89 CJJ81176_1237 Metabolism 1.32453 0.01013 

A0A0H3PBF4 CJJ81176_0342 Motility 2.30781 1.2E-05 

Q939J8 pseI Pathogenesis 1.43849 3.2E-10 

A0A0H3PCP5 cdtC Pathogenesis 1.06123 0.12352 

A1VYV6 cbf2 (peb4A) Pathogenesis 1.71426 4.7E-08 

A0A0H3PA65 map Protein modification 1.17363 5.5E-12 

A0A0H3PAI4 ileS Protein synthesis 1.09221 1.5E-14 

A1W048 gatA Protein synthesis 1.37637 2.5E-10 

A1W0I1 gatB Protein synthesis 1.50893 9.7E-10 

A0A0H3PDU5 tyrS Protein synthesis 1.52475 1.7E-12 

A0A0H3PB64 trpS Protein synthesis 1.95546 7E-10 

A1VXQ2 sodB Stress Responce 2.0572 7.2E-11 

A0A0H3PJ16 modA Transport 1.42437 3.9E-09 

Q0Q7H5 CJJ81176_1574 Transport 1.80897 0.00022 

A0A0H3PIV9 CJJ81176_0179 Transport 1.48166 1.4E-09 

A0A0H3PA76 cjj81176_1604 Transport 1.2868 2.1E-08 

A0A0H3PED0 CJJ81176_0391 Two-component regulatory system 1.07716 0.00675 

A0A0H3PBN1 cjj81176_0379 Two-component regulatory system 1.14678 9.8E-08 

A0A0H3P9Z2 CJJ81176_0859 Uncharacterized protein 1.03678 3.6E-08 

A1VYL9 CJJ81176_0535 Uncharacterized protein 3.13746 6.9E-05 

Q2A947 CJJ81176_1444 Uncharacterized protein 1.23078 4.6E-13 

A0A0H3PEN1 cjj81176_0292 Uncharacterized protein 1.3502 1.2E-12 

A0A0H3PHT3 CJJ81176_1375 Uncharacterized protein 1.068 4E-10 

A0A0H3PBP8 CJJ81176_0462 Uncharacterized protein 1.01638 0.00432 

A0A0H3PA30 CJJ81176_0922 Uncharacterized protein 1.02573 0.02259 

A0A0H3PDV4 cj81176_1419 Uncharacterized protein 1.02871 1.4E-12 
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A0A0H3PA27 CJJ81176_0713 Uncharacterized protein 1.03061 0.00013 

Q2M5R0 CJJ81176_1341 Uncharacterized protein 1.03396 0.00017 

A0A0H3PAR1 napL Uncharacterized protein 1.06586 0.007 

A0A0H3PB55 CJJ81176_0474 Uncharacterized protein 1.0933 1.7E-06 

A0A0H3PBE5 cjj81176_0430 Uncharacterized protein 1.11025 5.5E-10 

A0A0H3PIY1 CJJ81176_0564 Uncharacterized protein 1.1291 0.01215 

A0A0H3PA63 CJJ81176_0729 Uncharacterized protein 1.1305 5.5E-12 

A0A0H3PAD1 cjj81176_0466 Uncharacterized protein 1.1315 8.4E-05 

A0A0H3PDB4 CJJ81176_0917 Uncharacterized protein 1.20457 3.3E-10 

A0A0H3PGW3 CJJ81176_1177 Uncharacterized protein 1.242 0.00166 

Q6QNL7 CJJ81176_1356 Uncharacterized protein 1.24768 0.00056 

A0A0H3P991 CJJ81176_0018 Uncharacterized protein 1.27929 2.9E-06 

A0A0H3PBJ6 CJJ81176_0387 Uncharacterized protein 1.28678 3.3E-07 

Q0Q7K3 CJJ81176_0779 Uncharacterized protein 1.30061 1.2E-05 

A0A0H3PAG9 CJJ81176_0672 Uncharacterized protein 1.31495 7.1E-09 

A0A0H3PAI2 CJJ81176_1230 Uncharacterized protein 1.31576 0.00024 

A0A0H3PHX6 CJJ81176_1306 Uncharacterized protein 1.34117 2.7E-08 

A0A0H3PEW9 CJJ81176_0659 Uncharacterized protein 1.38772 0.02264 

A1VY95 CJJ81176_0398 Uncharacterized protein 1.5365 5.1E-07 

A1VZY1 CJJ81176_1011 Uncharacterized protein 1.55314 0.0023 

A0A0H3PAJ5 CJJ81176_1107 Uncharacterized protein 1.60859 0.01119 

A0A0H3PE85 CJJ81176_1618 Uncharacterized protein 1.11372 0.04286 

A0A0H3PI41 CJJ81176_1600 Uncharacterized protein 1.63972 5E-17 

A0A0H3PDT4 CJJ81176_1617 Uncharacterized protein 1.69538 0.00146 

 

Appendix 2F: Significantly differentiated proteins in 81-176 in response to 

                            ursodeoxycholic acid (UDCA) 0.5%. 

 
          

UniProt_Accession Gene Protein Function logFC P-Value 

A1W0W6 mobA Metabolism -1.398854703 0.012429197 

A0A0H3P9T3 CJJ81176_1422 Uncharacterized protein -1.341740555 4.79977E-05 

A0A0H3PBZ1 CJJ81176_0414 Uncharacterized protein -1.181643952 0.005227225 

A0A0H3PB39 CJJ81176_1673  Uncharacterized protein -1.18289333 0.020056362 

A0A0H3P9G9 CJJ81176_pTet0032 Uncharacterized protein -1.13543441 0.160051784 

A0A0H3PCZ7 CJJ81176_1082 Uncharacterized protein -1.499240598 0.151252219 

A0A0H3PIW6 CJJ81176_0547 Uncharacterized protein -1.096335133 0.007491295 

          

          

UniProt_Accession Gene Protein Function logFC P-Value 

A0A0H3PI47 CJJ81176_1247 Metabolism 2.059418551 0.008336997 

A0A0H3PE81 CiaC Pathogenesis 1.809005206 8.95667E-08 

 

Appendix 2G: Significantly differentiated proteins in 81-176 in response to glycocholic 

                             acid (GCA) 0.4%. 

 

  Significantly downregulated     

UniProt_Accession Gene Name Protein Function logFC P-Value 

A0A0H3PJ30 nrdB DNA Replication -1.143835257 2.18709E-10 

A0A0H3PAK5 rpoD DNA Transcription -1.110678025 0.145086211 

A0A0H3P9J4 CJJ81176_0882 Metabolism -1.589490775 4.05121E-07 

A0A0H3P9Y9 ldh Metabolism -1.085995767 7.14287E-10 

A0A0H3P9X6 CJJ81176_1083 Metabolism -1.375508203 0.023936195 

A0A0H3PA02 CJJ81176_0826 Metabolism -1.048547551 5.21099E-08 

A0A0H3PBG5 cjj81176_1338 Motility -1.467081064 2.76046E-05 
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A0A0H3PIZ8 fliE Motility -1.014704626 0.006325288 

Q2M5R2 flaA Pathogenesis -1.274627167 9.48533E-05 

A0A0H3PD33 sixA Protein modification -2.346764883 0.013496177 

A1W1V8 rplW Protein synthesis -2.263809691 2.12135E-06 

A1VYI7 rpmG Protein synthesis -1.513581593 0.01881341 

A1W1L3 rpsT Protein synthesis -1.210796415 0.00607638 

A0A0H3PA35 dsbA Stress Response -2.400093188 1.45848E-07 

A0A0H3PIS5 cmeA Transport -1.207371022 1.437E-06 

A0A0H3PAE4 cmeC Transport -1.162826559 7.21125E-05 

A0A0H3PAI3 CJJ81176_0586 Uncharacterized protein -3.179907441 5.07141E-12 

A0A0H3PIW6 CJJ81176_0547 Uncharacterized protein -1.525318713 0.001084511 

A0A0H3PAF3 A0A0H3PAF3 Uncharacterized protein -1.222891049 6.07848E-05 

A0A0H3P9S8 CJJ81176_1184 Uncharacterized protein -1.20184073 1.43633E-05 

A0A0H3P9S8 CJJ81176_1184 Uncharacterized protein -1.20184073 1.43633E-05 

A0A0H3PHH2 CJJ81176_0808 Uncharacterized protein -1.047309078 0.005280099 

A0A0H3P9I1 CJJ81176_0782 Uncharacterized protein -1.029495338 9.2641E-06 

  

 

      

  

 

      

  Significantly upregulated      

UniProt_Accession Gene Protein Function logFC P-Value 

A1W043 murC Cell cycle, Cell division 1.30638759 2.14799E-07 

A0A0H3P9Z7 murE Cell cycle, Cell division 1.171759808 5.85253E-10 

A0A0H3P9J1 yidC Chaperone 1.159957255 0.008568378 

A0A0H3PAG7 cheW Chemotaxis 1.027041862 0.000219843 

A0A0H3P9T7 cj81176_1498 Chemotaxis 1.046157988 0.003569922 

A0A0H3P9P7 cjj81176_1128 Chemotaxis 1.054926312 2.61337E-09 

A0A0H3PAM0 cheA Chemotaxis 1.078586196 2.21771E-05 

A0A0H3PAN9 cjj81176_1205 Chemotaxis 1.091109732 0.013167756 

A0A0H3PB06 cjj81176_08473 Chemotaxis 1.139291369 4.87666E-06 

A0A0H3PEF7 cjj81176_0180 Chemotaxis 1.221795884 0.004841876 

A0A0H3P9J9 cjj81176_0046 Chemotaxis 1.474069681 0.000442611 

A0A0H3PEL1 cjj81176_0289 Chemotaxis 1.638007468 0.005497677 

A0A0H3PCL7 nrdA DNA Replication 1.062431781 5.56015E-05 

A0A0H3PB11 CJJ81176_1474 DNA Replication 1.477321213 6.60977E-09 

Q8GJE2 topA DNA Replication 1.57332997 5.25586E-05 

A0A0H3PEP2 polA DNA Replication 1.850885202 6.32125E-09 

A0A0H3PBJ8 CJJ81176_0612 DNA Replication 1.119513949 0.007981402 

A0A0H3PED7 CJJ81176_0477 DNA Replication 1.491543742 0.000775788 

A0A0H3P9R8 cjj81176_1043 DNA Transcription 1.428616588 6.52245E-07 

A0A0H3P9G3 rho DNA Transcription 1.059025918 3.56854E-06 

A0A0H3PAP2 pgi Metabolism 1.012691635 0.000278505 

A0A0H3PAC7 nuoM Metabolism 1.010236576 0.029368607 

A0A0H3PH15 thiD Metabolism 1.056040027 0.000103225 

A0A0H3PA89 pyrD Metabolism 1.09491081 9.72442E-06 

A0A0H3PJ78 CJJ81176_0401 Metabolism 1.197293268 0.000250901 

A0A0H3PCT8 cjj81176_1032 Metabolism 1.202727544 0.000370224 

A1W1X2 leuA Metabolism 1.239537156 1.74485E-06 

A0A0H3PAJ4 hisI Metabolism 1.38823583 0.001173788 

A0A0H3P9Q2 nrfA Metabolism 1.52794861 3.72101E-07 

A0A0H3PHG1 coaBC Metabolism 1.695279363 4.72584E-05 

A0A0H3PBH6 cj81176_1322 Metabolism 1.725931639 8.11058E-09 

A0A0H3PI21 nrfH Metabolism 1.753766277 4.27635E-05 

A1VYR7 proA Metabolism 1.851721081 1.54993E-06 

A1VZR0 apt Metabolism 2.257265786 7.49402E-05 

A0A0H3PAD5 lpxD Metabolism 2.451256332 3.29872E-08 

A1W1D6 acsA Metabolism 1.022475599 0.000262376 

A1W0W6 mobA Metabolism 1.318705744 0.056775699 

Q29VV6 fcl Metabolism 1.111559635 7.93591E-12 
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A1W0I0 gpsA Metabolism 1.408498417 6.76347E-10 

A0A0H3P9H5 serA Metabolism 1.290937906 2.60918E-08 

A0A0H3PJH9 ctpA Metabolism 1.149951956 2.28101E-07 

A0A0H3PB53 cjj81176_1596 Metabolism 1.466195445 9.26049E-06 

A1VYU1 rppH Metabolism 1.652548227 0.003120588 

A0A0H3PCI0 cjj81176 Metabolism 1.193667448 0.001078924 

A0A0H3PAW0 corA Metabolism 2.092660358 0.010257307 

A0A0H3PB89 CJJ81176_1237 Metabolism 1.106292834 0.044823262 

A0A0H3P9Y0 CJJ81176_1228 Metabolism 1.051574173 0.002356033 

A0A0H3P9T9 CJJ81176_1157 Metabolism 1.442731017 5.77388E-05 

A0A0H3PEX3 CJJ81176_0544 Metabolism 1.945370193 0.011501981 

A0A0H3PEJ9 frdC Metabolism 1.244114655 0.052599159 

A1VYM4 purC Metabolism  1.120206962 7.50334E-06 

A0A0H3PA78 fliY Motility 1.047934508 0.012086825 

A0A0H3PIF6 fliL Motility 1.087571319 0.014373096 

A0A0H3P9L2 fliM Motility 2.378593386 0.003061909 

A1VZQ5 peb1C Pathogenesis 1.128861745 0.00063624 

A0A0H3PAY0 tatB Pathogenesis 1.163206973 0.024829563 

A0A0H3PE81 CiaC Pathogenesis 1.339773352 0.000354885 

A0A0H3PAC3 CJJ81176_1161 Pathogenesis 1.864722951 1.32845E-09 

A1VXT6 infC Protein modification 1.523398384 7.77475E-06 

A1W1V4 rpsC Protein synthesis 1.02473971 6.01156E-06 

A1VZ23 rplI Protein synthesis 1.660099792 5.82011E-12 

A1VZ59 glyQ Protein synthesis 1.149476182 1.16337E-07 

A0A0H3PAZ6 hypB Protein synthesis 1.363303109 0.000148318 

A0A0H3PHD8 valS Protein synthesis 1.052169564 3.38209E-10 

A1VYL8 alaS Protein synthesis 1.223687733 5.12978E-11 

A0A0H3PBL2 def Protein synthesis 1.224371613 0.012570718 

A1VZN1 pheS Protein synthesis 1.314439796 0.000110534 

A1VYQ2 proS Protein synthesis 1.430432833 4.89263E-10 

A0A0H3PHR2 pheT Protein synthesis 1.450255078 7.88255E-08 

A0A0H3PID1 glyS Protein synthesis 1.540443645 1.81652E-13 

A0A0H3P9K7 metS Protein synthesis 1.541667562 9.21481E-08 

A1W165 truD Protein synthesis 1.641922345 0.000566212 

A0A0H3PDU5 tyrS Protein synthesis 1.933866117 1.80471E-10 

A0A0H3PB64 trpS Protein synthesis 2.713166919 8.45629E-08 

A0A0H3PDX5 rnc Protein synthesis 1.268587632 0.015096371 

A0A0H3PCJ0 CJJ81176_0101 Protein synthesis 1.354291925 1.03627E-07 

A1VY44 xseA Stress Response 1.917866767 0.002666005 

A0A0H3PEB4 nth Stress Response 2.079993069 5.37591E-05 

A1VYU6 ligA Stress Response 1.129567362 1.70097E-05 

A0A0H3PBY8 AhpC/Tsa Stress Response 1.007801231 0.000255865 

A1VYN0 htpG Stress response 1.270831186 0.000826664 

A0A0H3PEV8 pbpA Stress Response 1.028057706 0.014984185 

A0A0H3PCE2 cstA Stress Response 1.061589091 0.007125932 

A0A0H3PJI4 recN Stress Response 1.284566677 0.035303827 

A0A0H3PAG5 radA Stress Response 1.14732027 0.055603586 

A0A0H3PHF3 cjj81176_0717 Stress Response 1.035873548 1.91342E-05 

A0A0H3PHE3 metN Transport 1.100717694 0.000642589 

A0A0H3P9L8 atpF Transport 1.683509237 0.001492146 

A0A0H3PF18 cj81176_0446 Transport 1.116102467 0.00192143 

A0A0H3PA66 dcuB Transport 1.293582352 1.72574E-05 

A0A0H3PA60 dcuA Transport 1.709820081 1.39941E-09 

A0A0H3P9B1 yajC Transport 1.433773825 0.025248299 

A0A0H3PA76 cjj81176_1604 Transport 1.760880095 2.22661E-05 

A0A0H3PJB3 CJJ81176_0263 Transport 1.420042717 0.018000274 

A0A0H3PAQ2 CJJ81176_0494 Transport 2.206134019 0.000871678 

A0A0H3PBF3 cj81176_1241 Two-component regulatory system 1.361431748 9.08388E-05 

A0A0H3PED0 CJJ81176_0391 Two-component regulatory system 1.941070876 0.000951954 
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A0A0H3PJ41 cj81176_0671 Two-component regulatory system 1.087017298 1.39294E-10 

A1VYL9 CJJ81176_0535 Uncharacterized 1.998863847 0.000651394 

Q6QNL8 Cj1356c Uncharacterized 2.213285665 1.26517E-05 

A0A0H3PAV3 CJJ81176_0846 Uncharacterized 1.164012416 5.89684E-05 

A0A0H3P9Z2 CJJ81176_0859 Uncharacterized 2.080132578 3.86704E-09 

A0A0H3PBF4 CJJ81176_0342 Uncharacterized 1.444326928 0.012033914 

A0A0H3PI86 CJJ81176_1476 Uncharacterized 1.099729357 0.005302534 

A0A0H3PH37 CJJ81176_1222 Uncharacterized 1.302400463 8.67774E-05 

A0A0H3PA50 CJJ81176_0126 Uncharacterized 1.57224041 2.52682E-05 

A0A0H3PD99 CJJ81176_0797 Uncharacterized 1.041439818 0.007054014 

Q2M5R0 CJJ81176_1341 Uncharacterized 1.065593133 0.015840807 

A0A0H3PIL0 CJJ81176_1513 Uncharacterized 1.077566378 0.020973691 

A0A0H3PA08 CJJ81176_0742 Uncharacterized 1.094047949 0.012374995 

A0A0H3PC19 CJJ81176_0428 Uncharacterized 1.128295837 0.000296915 

A0A0H3PA18 CJJ81176_0942 Uncharacterized 1.148716667 0.002232561 

A0A0H3P9Z9 CJJ81176_0708 Uncharacterized 1.165436685 0.000393889 

A0A0H3PB67 CJJ81176_1452 Uncharacterized 1.167488132 0.007383591 

A0A0H3PAU3 CJJ81176_0159 Uncharacterized 1.169892818 0.004826395 

A0A0H3PAI2 CJJ81176_1230 Uncharacterized 1.177114669 0.002549107 

A0A0H3PCC6 CJJ81176_pTet0042 Uncharacterized 1.209258671 0.000100791 

Q1HG73 CJJ81176_0034 Uncharacterized 1.23406311 4.86216E-08 

A0A0H3PHT8 CJJ81176_1541 Uncharacterized 1.236412863 0.000280977 

Q8GJE8 Cjp04 Uncharacterized 1.244925612 0.00066129 

A0A0H3PHX6 CJJ81176_1306 Uncharacterized 1.275876656 5.00632E-06 

A0A0H3PAJ5 CJJ81176_1107 Uncharacterized 1.282709201 0.006616104 

A0A0H3PBE2 CJJ81176_0543 Uncharacterized 1.309783337 0.007152666 

A0A0H3PA98 CJJ81176_1344 Uncharacterized 1.363458043 1.01647E-06 

A0A0H3PDN2 CJJ81176_1418 Uncharacterized 1.424887664 2.03865E-06 

A0A0H3PBM4 CJJ81176_0677 Uncharacterized 1.440113545 0.001116171 

A0A0H3PJ65 CJJ81176_0275 Uncharacterized 1.493134748 9.86817E-07 

A0A0H3PBR7 CJJ81176_0420 Uncharacterized 1.49857783 0.016232645 

A0A0H3PIU3 CJJ81176_0188 Uncharacterized 1.507397539 0.00015927 

A0A0H3PJK4 CJJ81176_0436 Uncharacterized 1.520818826 1.49833E-06 

A0A0H3PDK8 CJJ81176_1475 Uncharacterized 1.52484768 1.24297E-08 

A0A0H3PAS5 CJJ81176_0840 Uncharacterized 1.557240634 0.000943813 

A0A0H3PCF8 CJJ81176_0975 Uncharacterized 1.581746809 0.003542892 

Q0Q7K3 CJJ81176_0779 Uncharacterized 1.643495037 3.22952E-07 

A0A0H3PGX2 CJJ81176_1003 Uncharacterized 1.678544949 0.006049199 

A0A0H3P991 CJJ81176_0018 Uncharacterized 1.695804477 0.009658057 

A0A0H3PA27 CJJ81176_0713 Uncharacterized 1.699192913 3.39798E-07 

A0A0H3PHF9 CJJ81176_0723 Uncharacterized 1.700744095 0.011289348 

Q2M5Q7 CJJ81176_1317 Uncharacterized 1.709578567 0.000752027 

A0A0H3PCA0 CJJ81176_pTet0008 Uncharacterized 1.731028923 6.59507E-07 

A0A0H3PC13 CJJ81176_0374 Uncharacterized 1.842944074 3.08318E-12 

A0A0H3PCN0 CJJ81176_0127 Uncharacterized 1.870282445 1.15494E-09 

A0A0H3PAS8 CJJ81176_0740 Uncharacterized 1.881068607 0.000394551 

A0A0H3PE85 CJJ81176_1618 Uncharacterized 2.027660503 0.000426093 

Q0Q7K1 cj0760 Uncharacterized 2.245727233 0.003470769 

A0A0H3PGL0 CJJ81176_1732 Uncharacterized 2.532902078 0.003326745 

A0A0H3P9J3 CJJ81176_0988 Uncharacterized 1.066400865 0.033590784 

A0A0H3PA31 CJJ81176_0693 Uncharacterized 1.163798268 0.117526572 

A0A0H3PB39 CJJ81176_1673 Uncharacterized 1.186264918 0.081739944 

A0A0H3PBU4 CJJ81176_0392 Uncharacterized 1.248619432 0.167949515 

A0A0H3PJC9 CJJ81176_0518 Uncharacterized 1.333414313 0.040484982 

A0A0H3PAS3 CJJ81176_0705 Uncharacterized 1.389532681 0.046693518 

A0A0H3P9T9 CJJ81176_1157 Uncharacterized 1.442731017 5.77388E-05 

A0A0H3PE25 CJJ81176_1654 Uncharacterized 1.55429974 0.052886054 

A0A0H3PCE6 CJJ81176_0935 Uncharacterized 1.161217324 0.100954548 

Q2M5Q9 CJJ81176_1315 Uncharacterized 2.749047464 7.83127E-06 
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Appendix 3: Significantly differentiated proteins between 81-176 cultured in CDB 

                         supplemented with DCA 0.05% at 37
o
C for 12h and 24h 

 
     

 

Significantly downregulated  
  UniProt_Accession Gene Name Protein function logFC P.Value 

A0A0H3PB06 TlpC Chemotaxis -1.534630721 1.11004E-08 

A1W0A5 cheY Chemotaxis -1.072770056 2.27169E-07 

A0A0H3PGG1 CJJ81176_pTet0031 DNA Replication -2.176509223 6.05531E-05 

A0A0H3P989 recJ DNA Replication -1.144633329 0.000310315 

A0A0H3PHM5 mobB Metabolism -2.289105969 3.63172E-09 

A0A0H3PAM5 CJJ81176_0297 Metabolism -2.225155586 6.10595E-07 

A0A0H3PD29 cobB Metabolism -2.061733731 0.000227175 

A0A0H3PGR5 cjj81176_0063 Metabolism -1.951654431 2.18894E-13 

A0A0H3PC31 hom Metabolism -1.949448199 7.65525E-11 

A1W1X0 leuC Metabolism -1.94754045 2.50273E-10 

A0A0H3P9B2 thiH Metabolism -1.931403378 5.08353E-11 

A0A0H3P9A4 CJJ81176_0120 Metabolism -1.84724992 2.96764E-06 

A0A0H3PAJ4 hisI Metabolism -1.779587205 1.07128E-13 

A0A0H3PBD0 bioA Metabolism -1.769616625 0.008901011 

A1VXL7 thrB Metabolism -1.767063041 2.48131E-05 

A1VZR0 apt Metabolism -1.734767843 8.47807E-12 

A0A0H3P982 rpiB Metabolism -1.713717284 0.000193393 

A0A0H3PAG3 sdhC Metabolism -1.678460176 5.61472E-12 

A0A0H3PB56 galU Metabolism -1.61044587 2.42396E-10 

A0A0H3PBK5 purS Metabolism -1.575394653 0.000890006 

A0A0H3P9E4 pepD Metabolism -1.558173863 0.000213678 

A0A0H3P9Z1 CJJ81176_1373 Metabolism -1.53105753 1.61516E-06 

A1VYU1 rppH Metabolism -1.50051283 2.73047E-05 

Q0Q7I1 purM Metabolism -1.496089294 2.22828E-08 

A1W1K3 hisA Metabolism -1.464787013 1.33985E-05 

A1W1W9 leuD Metabolism -1.426655645 6.4391E-10 

A0A0H3PJB7 sdhB Metabolism -1.418049631 2.33294E-14 

A0A0H3PEI7 folP Metabolism -1.416812645 0.000125525 

A1VXP5 moaA Metabolism -1.384868147 2.24678E-07 

A0A0H3PBQ2 sdhA Metabolism -1.383788401 3.9996E-12 

A0A0H3PB89 CJJ81176_1237 Metabolism -1.38237189 0.0241455 

A1VZJ8 folD Metabolism -1.351022602 4.68043E-05 

A0A0H3P9J6 pta Metabolism -1.321680589 6.74251E-14 

A0A0H3P9B6 thiF Metabolism -1.314800614 0.00041964 

A1VZI4 fbp Metabolism -1.310330523 2.48258E-14 

A1VXV5 pyrE Metabolism -1.302260891 0.000752522 

A1VZ41 ispG Metabolism -1.300968817 1.92483E-06 

A0A0H3PE58 CJJ81176_1470 Metabolism -1.295945237 0.003131783 

A0A0H3PIZ2 CJJ81176_0601 Metabolism -1.291103226 3.19107E-07 

A0A0H3PH94 gmk Metabolism -1.291085541 0.004938315 

A0A0H3P9R4 sdaA Metabolism -1.28828577 7.18377E-08 

A0A0H3PH73 pglE Metabolism -1.281261867 1.88466E-09 

A1VZ44 ackA Metabolism -1.262409482 7.70713E-11 

A0A0H3PJF7 coaX Metabolism -1.23483052 0.020671446 

A0A0H3PBS3 fabG Metabolism -1.227079887 2.56008E-13 

A1VZM9 aroA Metabolism -1.219767158 5.74613E-06 

A1VYB8 gatC Metabolism -1.211406746 3.49823E-10 

A0A0H3PE18 hisF-2 Metabolism -1.207889272 1.88098E-07 

A0A0H3P9T0 gmhA-1 Metabolism -1.206919932 9.82001E-05 

A0A0H3PB33 CJJ81176_0291 Metabolism -1.179805682 5.72858E-07 

A0A0H3PJ06 mqnC Metabolism -1.174422411 5.60488E-07 

A0A0H3PAD3 fdhD Metabolism -1.173277982 4.14031E-11 

A0A0H3PHL6 CJJ81176_0799 Metabolism -1.168451704 9.44047E-06 
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A0A0H3P9S5 cysQ Metabolism -1.168216915 0.000116334 

A1VZY2 argF Metabolism -1.164517176 0.000309723 

A1VZZ8 tgt Metabolism -1.142980114 0.005863137 

A0A0H3PAH1 tyrA Metabolism -1.136133556 5.07923E-05 

A1VY47 fabH Metabolism -1.13422335 4.41177E-06 

A1VZF4 dapA Metabolism -1.116745028 3.41227E-09 

A1W0W6 mobA Metabolism -1.105859675 0.020254191 

A0A0H3P9G7 hemN Metabolism -1.102795793 2.46272E-09 

A0A0H3P9M4 aspC Metabolism -1.101069446 6.65544E-08 

A0A0H3PBF9 rpe Metabolism -1.097938349 0.000184067 

A0A0H3P9K7 metS Metabolism -1.088022463 2.57612E-11 

A1VY36 hisC Metabolism -1.087038366 7.64178E-10 

A1VYR7 proA Metabolism -1.083293554 2.35355E-09 

A1W0U8 hisF2 Metabolism -1.081876993 0.059827283 

A0A0H3PCM5 metX Metabolism -1.079159296 1.40402E-09 

A1VX91 ilvD Metabolism -1.078272971 1.85463E-09 

A0A0H3PF06 CJJ81176_0186 Metabolism -1.070281228 1.40566E-10 

A0A0H3P9M7 acnB Metabolism -1.05519857 1.14214E-12 

Q5QKR7 pseC Metabolism -1.03813732 3.71904E-08 

A0A0H3PF03 fabF Metabolism -1.037174478 4.18632E-10 

Q939J8 pseI Metabolism -1.036392088 6.47106E-07 

A0A0H3PCK6 ansA Metabolism -1.032726469 7.26567E-06 

A0A0H3PIV6 ribB Metabolism -1.028543383 1.07019E-06 

A1W0I5 metE Metabolism -1.02577443 2.088E-10 

Q2M5Q2 pseF Metabolism -1.011511723 0.000507276 

A1W035 thiG Metabolism -1.007640233 6.05704E-10 

A0A0H3PB14 cjj81176_0397 Metabolism -1.004241639 9.40176E-11 

A1VYF9 acpP Metabolism -1.003103607 6.3537E-07 

A1W062 fliW Motility -1.793716999 0.009987511 

A1W0U6 pseG Pathogenesis -1.757353754 0.000385104 

A0A0H3PD33 sixA Protein modification -3.042123656 6.11302E-06 

A0A0H3PA65 map Protein modification -1.254302055 1.29781E-08 

A0A0H3PB64 trpS Protein synthesis -2.052688853 4.94296E-14 

A1W162 rimO Protein synthesis -1.709971097 1.41232E-06 

A0A0H3PBB3 rbfA Protein synthesis -1.578918451 0.070189606 

A1W048 gatA Protein synthesis -1.366271092 7.80038E-11 

A1W0I1 gatB Protein synthesis -1.298013236 1.59092E-09 

A0A0H3PAE1 CJJ81176_0192 Protein synthesis -1.260081481 0.022658867 

A1VZI8 gltX1 Protein synthesis -1.197827538 9.42759E-07 

A1VYC1 lysS Protein synthesis -1.175353636 2.79091E-12 

A0A0H3PDU5 tyrS Protein synthesis -1.151533665 5.04525E-13 

A0A0H3PAI4 ileS Protein synthesis -1.1132896 7.71337E-10 

A1W1L4 prfA Protein synthesis -1.015069632 7.51996E-09 

A1W1U6 rpsH Protein synthesis -1.012713367 2.17938E-08 

A0A0H3PBL2 def Protein synthesis -1.010121188 0.054905098 

Q3I354 luxS Stress Response -1.687624386 0.011716769 

A0A0H3P9Q3 csrA Stress Response -1.61842485 0.007022795 

Q0Q7K8 grpE Stress Response -1.365429908 1.5009E-07 

A0A0H3P9V7 CJJ81176_1101 Stress Response -1.319815791 0.010561711 

A0A0H3PBL4 hypE Stress Response -1.286790385 8.88023E-09 

A0A0H3PAC3 CJJ81176_1161 Stress Response -1.283249823 5.10693E-10 

A1VXQ2 sodB Stress Response -1.083981333 4.16353E-06 

Q0Q7H5 CJJ81176_1574 Transport -2.904280895 1.28308E-13 

A0A0H3PIV9 CJJ81176_0179 Transport -1.415883294 7.75629E-10 

A0A0H3PJ16 modA Transport -1.334639945 1.35986E-09 

A0A0H3PBL7 fur Transport -1.236790271 0.068498131 

A0A0H3PAG9 CJJ81176_0672 Transport -1.069939498 3.6333E-09 

A0A0H3PA76 cjj81176_1604 Transport -1.040698247 6.26529E-06 

A0A0H3PED0 CJJ81176_0391 Two-component -1.053551844 9.66291E-08 
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regulatory system 

A0A0H3PAS8 CJJ81176_0740 Uncharacterized -3.395499634 0.000125724 

A0A0H3PHH8 CJJ81176_0888 Uncharacterized -2.273851563 0.00055882 

A0A0H3PGW3 CJJ81176_1177 Uncharacterized -2.124432478 0.002463034 

A0A0H3P9I1 CJJ81176_0782 Uncharacterized -2.034013837 9.50885E-09 

A0A0H3P9L3 CJJ81176_0728 Uncharacterized -1.846362151 0.000681756 

A0A0H3P9G9 CJJ81176_pTet0032 Uncharacterized -1.832741674 0.001704366 

A0A0H3PI41 CJJ81176_1600 Uncharacterized -1.734572848 5.54876E-14 

A0A0H3PAF1 CJJ81176_1363 Uncharacterized -1.707873526 0.000712319 

A0A0H3PB96 CJJ81176_0611 Uncharacterized -1.682630282 0.006326735 

Q0Q7K1 cj0760 Uncharacterized -1.671608069 0.005405484 

A0A0H3PHG6 CJJ81176_0854 Uncharacterized -1.654926939 0.000469686 

A0A0H3PAT8 CJJ81176_1274 Uncharacterized -1.650434727 0.000376957 

A0A0H3PHF5 CJJ81176_0907 Uncharacterized -1.638369373 1.84875E-12 

A0A0H3PA59 CJJ81176_1259 Uncharacterized -1.611467114 4.29174E-07 

A0A0H3P9Y5 CJJ81176_pTet0016 Uncharacterized -1.576465209 0.000410273 

A0A0H3PBJ6 CJJ81176_0387 Uncharacterized -1.57120965 5.15548E-11 

A0A0H3PHU2 CJJ81176_1517 Uncharacterized -1.561956351 1.1584E-08 

A0A0H3P9T3 CJJ81176_1422 Uncharacterized -1.546128793 3.03535E-05 

A0A0H3PIY1 CJJ81176_0564 Uncharacterized -1.539276312 1.26619E-07 

A0A0H3PEL5 CJJ81176_0280 Uncharacterized -1.535329791 0.000695997 

A0A0H3PH34 CJJ81176_1055 Uncharacterized -1.530772415 0.019927418 

A0A0H3PDG2 CJJ81176_0891 Uncharacterized -1.53059867 0.019346873 

A0A0H3PAA1 CJJ81176_1497 Uncharacterized -1.490702487 2.61848E-10 

A0A0H3PEG8 CJJ81176_0642 Uncharacterized -1.486781416 6.9234E-05 

A0A0H3PIX1 CJJ81176_0650 Uncharacterized -1.483651219 4.07685E-05 

A0A0H3PB55 CJJ81176_0474 Uncharacterized -1.471043488 1.43002E-07 

A0A0H3PC13 CJJ81176_0374 Uncharacterized -1.451690112 4.2979E-14 

Q2A947 CJJ81176_1444 Uncharacterized -1.432051832 9.2821E-12 

A0A0H3PD80 CJJ81176_0830 Uncharacterized -1.394971406 0.000642855 

A0A0H3PJA2 CJJ81176_0520 Uncharacterized -1.357218846 0.000976082 

A0A0H3PEN1 CJJ81176_0292 Uncharacterized -1.314662722 2.28087E-10 

A0A0H3PA08 CJJ81176_0742 Uncharacterized -1.295589597 2.48463E-05 

A0A0H3PB85 CJJ81176_0254 Uncharacterized -1.290201949 0.147090706 

A0A0H3PJC9 CJJ81176_0518 Uncharacterized -1.266945882 0.061688801 

A0A0H3PAG4 CJJ81176_1510 Uncharacterized -1.266882381 1.65188E-07 

A0A0H3PA31 CJJ81176_0693 Uncharacterized -1.249801916 0.063061913 

A0A0H3PBB5 CJJ81176_0693 Uncharacterized -1.238206891 5.66522E-09 

A0A0H3PB58 CJJ81176_0610 Uncharacterized -1.229926949 3.09426E-08 

A0A0H3PDJ1 CJJ81176_1533 Uncharacterized -1.202103169 7.3123E-11 

A0A0H3P9A5 CJJ81176_0112 Uncharacterized -1.187920712 6.96931E-10 

A0A0H3PAD1 CJJ81176_0466 Uncharacterized -1.187338638 3.05249E-06 

A0A0H3PAK7 CJJ81176_0681 Uncharacterized -1.18385986 7.49103E-08 

A0A0H3PCP5 cdtC Uncharacterized -1.182000198 0.017584303 

A0A0H3PHE7 CJJ81176_0739 Uncharacterized -1.155225574 1.49838E-05 

A0A0H3P9J3 CJJ81176_0988 Uncharacterized -1.14196251 1.60798E-05 

Q0Q7K3 CJJ81176_0779 Uncharacterized -1.139419855 9.00761E-06 

A0A0H3P9K9 cjj81176_0850 Uncharacterized -1.129985874 6.0963E-13 

A0A0H3PAQ8 CJJ81176_0337 Uncharacterized -1.119511761 2.10814E-10 

A0A0H3PGL6 CJJ81176_0030 Uncharacterized -1.113400773 0.00884966 

A0A0H3P9Q8 CJJ81176_1286 Uncharacterized -1.10726362 5.93067E-12 

A0A0H3PHP5 CJJ81176_0887 Uncharacterized -1.106241806 0.000305572 

A0A0H3PBQ0 CJJ81176_0195 Uncharacterized -1.081195667 0.007115605 

A0A0H3PAR1 napL Uncharacterized -1.067540614 8.28608E-05 

A0A0H3PAI2 CJJ81176_1230 Uncharacterized -1.060892094 1.06996E-06 

A0A0H3PA98 CJJ81176_1344 Uncharacterized -1.042897512 8.70453E-12 

Q0Q7K6 CJJ81176_0776 Uncharacterized -1.028796474 3.7577E-07 

A0A0H3PAM8 CJJ81176_1076 Uncharacterized -1.003509512 7.39095E-08 
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  Significantly upregulated     

UniProt_Accession Gene Name Protein function logFC P.Value 

A0A0H3P9D5 ftsH 

Cell  cycle, cell 

division 2.173071713 3.52151E-10 

A1VZM0 ftsK Cell cycle, cell division 1.206609253 6.203E-05 

A0A0H3PEV8 pbpA Cell cycle, cell division 2.606146452 0.000107464 

A0A0H3PJ47 bamA Cell wall organization 1.547012526 3.51273E-12 

A0A0H3PI91 porA Cell wall organization 1.640234516 6.81376E-12 

A0A0H3P9C5 mapA Cell wall organization 1.773310002 4.45543E-12 

A0A0H3PB07 lptD Cell wall organization 1.82184033 0.017863088 

A0A0H3PAG7 cheW Chemotaxis 1.06966514 3.12795E-07 

A0A0H3P9C4 CJJ81176_1204 Chemotaxis 1.392566591 4.52485E-10 

A0A0H3PAM0 cheA Chemotaxis 1.406382402 1.32746E-10 

A0A0H3P9T7 cj81176_1498 Chemotaxis 2.236791754 1.03158E-10 

A0A0H3PB49 CJJ81176_1548 Chemotaxis 2.823808768 0.000505134 

A0A0H3PEL1 cjj81176_0289 Chemotaxis 2.886471206 1.2738E-08 

A0A0H3PAN9 cjj81176_1205 Chemotaxis 3.027306659 3.3978E-14 

A0A0H3P9J9 CJJ81176_0046 Chemotaxis 3.095805589 1.23666E-10 

A0A0H3PEF7 CJJ81176_0180 Chemotaxis 3.395299458 1.72665E-14 

A0A0H3PIS5 cmeA Transport 3.866187869 2.02331E-12 

A0A0H3PH83 ssb DNA replication 1.210711091 7.32275E-11 

A0A0H3P9U0 CJJ81176_1009 Metabolism 1.0114573 5.66619E-05 

Q7X517 pseE Metabolism 1.011534365 2.67661E-06 

A1VY43 ubiE Metabolism 1.034007976 0.004552774 

A0A0H3PAD9 pglD Metabolism 1.042328173 0.012131383 

Q5QKR5 accB Metabolism 1.085260353 1.71291E-05 

A0A0H3PAC1 nuoG Metabolism 1.095531654 1.99603E-08 

A0A0H3P9Q2 nrfA Metabolism 1.174567178 8.24316E-07 

A0A0H3PET1 trpD Metabolism 1.180370506 1.2593E-10 

A0A0H3PI47 CJJ81176_1247 Metabolism 1.203414777 0.061402896 

A0A0H3PI21 nrfH Metabolism 1.224664948 0.009156254 

A0A0H3PHD6 glnA Metabolism 1.258567077 3.39388E-12 

A0A0H3PCS4 ribE Metabolism 1.273775212 4.93874E-11 

A1W085 pyrB Metabolism 1.273882434 5.22552E-13 

A0A0H3PI37 nuoC Metabolism 1.28676503 7.08186E-05 

A0A0H3PAJ7 hydB Metabolism 1.290463488 3.50573E-10 

A0A0H3PIT1 ftn Metabolism 1.306756165 1.28904E-14 

A0A0H3PHL1 ubiX Metabolism 1.341669585 0.003022641 

A1W1H0 nuoI Metabolism 1.399191001 9.041E-08 

A0A0H3P9R9 ccoO Metabolism 1.453583933 6.45613E-11 

A0A0H3PBB6 trpE Metabolism 1.472737067 6.52535E-14 

A0A0H3P9T9 CJJ81176_1157 Metabolism 1.493144143 4.61332E-06 

A1VXS2 folE Metabolism 1.51352937 0.073046349 

A0A0H3P9R1 pglJ Metabolism 1.586503085 0.009810915 

A1VYZ2 ilvC Metabolism 1.606074532 2.12654E-16 

A0A0H3PB93 CJJ81176_1499 Metabolism 1.774882994 0.04524904 

A0A0H3PHB9 petA Metabolism 1.806541516 1.33916E-14 

A0A0H3P9J4 CJJ81176_0882 Metabolism 1.810384085 2.17323E-11 

A0A0H3PCR0 petB Metabolism 1.897178779 7.37089E-08 

A0A0H3P9F0 pglF Metabolism 2.030092135 0.000280704 

A0A0H3PCT8 cjj81176_1032 Metabolism 2.060543568 2.40615E-09 

A1VZQ5 peb1C Metabolism 2.077310837 1.18718E-08 

A0A0H3P9Y0 CJJ81176_1228 Metabolism 2.092152219 2.61481E-07 

A0A0H3P9I4 purU Metabolism 2.11822664 1.39929E-08 

A0A0H3PCI0 cjj81176 Metabolism 2.1908747 6.67048E-12 

A0A0H3P9E8 petC Metabolism 2.210383226 5.44201E-10 

A0A0H3PAL0 cadF Cell wall organization 2.273982894 2.73592E-12 

A0A0H3PDM3 sdaC Metabolism 2.332013205 1.02622E-10 

A0A0H3PAW0 corA Metabolism 2.491184165 0.0009348 
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A0A0H3PAE3 hydA Metabolism 2.866348588 7.75829E-12 

A0A0H3PAQ1 CJJ81176_0849 Metabolism 2.908527642 3.38968E-05 

A0A0H3PA38 cydA Metabolism 3.022213319 6.16298E-07 

A0A0H3PEX3 CJJ81176_0544 Metabolism 3.06025843 3.24908E-06 

A0A0H3PIZ8 fliE Motility 1.338098791 0.021614333 

A0A0H3PF34 fliF Motility 1.882282736 6.95475E-10 

Q2M5R2 flaA Motility 1.921724784 1.40944E-18 

A0A0H3PBG5 cjj81176_1338 Motility 2.039822623 1.16673E-17 

A0A0H3PIF6 fliL Motility 2.275821132 8.12241E-11 

A0A0H3PI52 rplO Protein synthesis 1.064371649 6.25159E-13 

A1VXH9 obg Protein synthesis 1.111162021 0.002148676 

A1W1U4 rplR Protein synthesis 1.114760357 1.68697E-10 

A1VYJ6 rpsL Protein synthesis 1.172090759 0.163837268 

A1W1U3 rpsE Protein synthesis 1.185601705 7.48658E-05 

A1W1V5 rplV Protein synthesis 1.206633281 1.05308E-12 

A1VXW7 rplT Protein synthesis 1.209336085 1.24733E-10 

A1VYJ1 rplA Protein synthesis 1.239341767 2.49062E-12 

A1W1V2 rpmC Protein synthesis 1.258787285 7.93274E-13 

A1W1L3 rpsT Protein synthesis 1.277591245 0.007747614 

A0A0H3PCH6 rplC Protein synthesis 1.3066351 1.18475E-14 

A0A0H3PA47 rnj Protein synthesis 1.327749013 5.70135E-10 

A1VYI7 rpmG Protein synthesis 1.362601965 0.001026053 

A1W1J3 rpmJ Protein synthesis 1.37457629 0.323756354 

A1W0J3 rny Protein synthesis 1.880780239 1.62554E-09 

A0A0H3PGK7 pepA Protein synthesis 1.936446829 2.94373E-13 

A1VY30 rplY Protein synthesis 2.358075658 7.616E-20 

A0A0H3P9Q4 katA Stress Response 1.005356501 4.66151E-08 

A1W0P5 dnaJ Stress Response 1.013013275 0.00053212 

A0A0H3PIS8 clpX Stress Response 1.020097139 5.43587E-07 

A0A0H3PB76 dnaJ-1 Stress Response 1.306834132 0.006246595 

A0A0H3PA35 dsbA Stress Response 1.319781243 0.001734695 

A1W0K4 groL Stress Response 1.364946809 9.48545E-16 

A0A0H3PHF3 cjj81176_0717 Stress Response 1.563331999 2.63829E-08 

A0A0H3P9J1 yidC Cell wall organization 1.580794826 7.54068E-09 

A0A0H3PBJ5 dsbD Stress Response 1.904425219 0.00619071 

A0A0H3PA75 comEA Stress Response 1.914335994 2.08722E-12 

A0A0H3PE81 CiaC Metabolism 1.931146363 1.97855E-06 

A0A0H3PCE2 cstA Stress Response 2.365352403 3.75519E-12 

Q29W27 kpsD Transport 1.085338779 2.64635E-10 

A0A0H3PEA5 CJJ81176_0635 Transport 1.168364064 0.033999043 

A1VXI7 atpH Transport 1.226584565 0.033513218 

A0A0H3PGP1 lctP Transport 1.236518175 0.024524006 

A0A0H3PA60 dcuA Transport 1.25434967 1.7428E-05 

A0A0H3PEE2 secG Transport 1.394747584 1.99684E-05 

A0A0H3PAK6 chuA Transport 1.400975447 1.80343E-08 

A0A0H3P9N4 kdpB Transport 1.417416867 0.000901219 

A0A0H3PA66 dcuB Transport 1.536759955 5.23718E-05 

A1VXI9 atpG Transport 1.541047665 4.0942E-08 

A0A0H3PHE3 metN Transport 1.719892587 1.78983E-08 

A0A0H3P9B1 yajC Transport 1.736855269 4.83408E-09 

A0A0H3PA42 CJJ81176_0911 Transport 1.748312971 0.000148306 

A0A0H3PAB7 CJJ81176_1434 Transport 1.751248681 5.30611E-09 

A0A0H3PE25 CJJ81176_1654 Transport 1.752945144 1.10125E-09 

A1VXI8 atpA Transport 1.756857943 2.14743E-11 

A0A0H3PBD1 ccoP Transport 1.773251843 1.23263E-08 

A1VXJ1 atpC Transport 1.855245074 1.1599E-08 

A0A0H3PBJ1 kpsE Transport 1.970657173 7.62848E-10 

A0A0H3PAF2 secD Transport 2.338629998 1.91572E-11 

A0A0H3PAN7 secF Transport 2.350826676 7.89427E-11 
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A0A0H3P9L8 atpF Transport 2.638521164 0.00023113 

A1VXJ0 atpD Transport 2.719165948 7.78808E-17 

A0A0H3PA17 putP Transport 2.750590717 3.36109E-05 

A0A0H3P9J0 CJJ81176_0912 Transport 3.013920027 7.41051E-05 

A0A0H3PAE4 cmeC Transport 3.155469016 5.26297E-12 

A0A0H3PB79 cmeB Transport 3.473684545 3.89008E-13 

A0A0H3PB37 CJJ81176_1244 

Two-component 

regulatory system 1.06422278 0.094260688 

A0A0H3P9T5 CJJ81176_1649 Uncharacterized 1.013796755 0.056675903 

A1VY92 CJJ81176_0395 Uncharacterized 1.035424134 1.20356E-05 

A0A0H3PIU3 CJJ81176_0188 Uncharacterized 1.082731981 0.001072951 

A0A0H3PD61 CJJ81176_1193 Uncharacterized 1.098124637 7.91067E-07 

A0A0H3PA88 CJJ81176_0125 Uncharacterized 1.118968966 4.78171E-09 

Q8GJA7 Cjp48 Uncharacterized 1.123805003 3.54599E-07 

Q29VV3 CJJ81176_1431 Uncharacterized 1.127757554 0.009811353 

A0A0H3PB43 CJJ81176_0637 Uncharacterized 1.165255782 8.72122E-07 

A0A0H3P9D3 cjj81176_1210 Uncharacterized 1.185324937 1.00405E-09 

Q0Q7J3 cj1355 Uncharacterized 1.229534636 6.55363E-08 

A0A0H3PES2 CJJ81176_0377 Uncharacterized 1.240296272 0.001386495 

A0A0H3PCX2 CJJ81176_1232 Uncharacterized 1.245569399 1.31379E-05 

A0A0H3ADZ7 hup Uncharacterized 1.264887744 6.21819E-09 

A0A0H3P9C2 CJJ81176_1124 Uncharacterized 1.31653347 7.36561E-08 

A0A0H3P9J8 cjaC Uncharacterized 1.36470193 3.33963E-09 

A0A0H3P9V0 CJJ81176_1433 Uncharacterized 1.367020908 8.85194E-05 

A0A0H3P9B9 cjaA Uncharacterized 1.411504315 1.65405E-08 

A0A0H3PGL0 CJJ81176_1732 Uncharacterized 1.436179708 1.68278E-09 

A0A0H3PHJ5 CJJ81176_0726 Uncharacterized 1.452301773 1.8819E-12 

A0A0H3P9D1 CJJ81176_1051 Uncharacterized 1.481422634 1.99861E-11 

A0A0H3PGE8 CJJ81176_pTet0018 Uncharacterized 1.548734895 1.43136E-09 

A0A0H3PB67 CJJ81176_1452 Uncharacterized 1.563369294 1.35156E-07 

A0A0H3PC19 CJJ81176_0428 Uncharacterized 1.566718528 3.27714E-08 

A0A0H3PAL8 CJJ81176_1027 Uncharacterized 1.573424266 0.012441403 

Q6QNL8 Cj1356c Uncharacterized 1.590681529 9.32244E-07 

A0A0H3PDT4 CJJ81176_1617 Uncharacterized 1.657154082 0.071166488 

A0A0H3PBI5 CJJ81176_1639 Uncharacterized 1.662964872 0.006063851 

A0A0H3PAU3 CJJ81176_0159 Uncharacterized 1.671975882 0.007456854 

A0A0H3PH37 CJJ81176_1222 Uncharacterized 1.682314971 3.33243E-05 

A0A0H3PET5 cjj81176_0471 Uncharacterized 1.705488763 1.9425E-10 

A0A0H3PIR6 CJJ81176_0166 Uncharacterized 1.715585118 7.88298E-07 

A0A0H3PAI8 CJJ81176_0626 Uncharacterized 1.718786651 4.74753E-06 

A0A0H3PAA5 CJJ81176_0419 Uncharacterized 1.811679797 7.37043E-11 

A0A0H3PBU4 CJJ81176_0392 Uncharacterized 1.852776167 3.57379E-05 

A0A0H3P994 CJJ81176_0144 Uncharacterized 1.881489245 1.23235E-09 

A0A0H3P9M2 CJJ81176_0734 Uncharacterized 1.893375893 1.12249E-09 

A0A0H3PBE0 CJJ81176_0236 Uncharacterized 1.901333108 1.17762E-12 

A0A0H3PBT4 cj81176_0295 Uncharacterized 1.951355007 2.88554E-11 

A0A0H3PA18 CJJ81176_0942 Uncharacterized 2.081688219 2.7245E-11 

A0A0H3PJB3 CJJ81176_0263 Uncharacterized 2.113533523 0.000383216 

A0A0H3PI86 CJJ81176_1476 Uncharacterized 2.115314941 2.97708E-10 

A0A0H3PBF8 CJJ81176_1651 Uncharacterized 2.141941675 7.73802E-08 

A0A0H3PCF8 CJJ81176_0975 Uncharacterized 2.143141581 0.000455117 

A0A0H3PH47 CJJ81176_1185 Uncharacterized 2.149501166 1.39504E-16 

A0A0H3PEU8 CJJ81176_0148 Uncharacterized 2.271650979 3.27023E-11 

Q29VV2 CJB1432c Uncharacterized 2.287195504 6.1859E-06 

A0A0H3PBX6 CJJ81176_0358 Uncharacterized 2.330585662 5.17289E-05 

A0A0H3PD99 CJJ81176_0797 Uncharacterized 2.397486078 1.06425E-09 

A0A0H3P9N8 CJJ81176_0145 Uncharacterized 2.407440325 2.94726E-09 

A0A0H3PBE2 CJJ81176_0543 Uncharacterized 2.470750781 8.11207E-09 

A0A0H3PAV1 CJJ81176_0359 Uncharacterized 2.490335773 1.65436E-10 
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A0A0H3PI11 CJJ81176_1608 Uncharacterized 2.683389403 2.60281E-08 

A0A0H3PCI2 CJJ81176_0072 Uncharacterized 2.714764272 8.55926E-08 

Q9KIS1 virB9 Uncharacterized 2.94560032 0.000146357 

A0A0H3PB47 CJJ81176_1492 Uncharacterized 3.208264906 5.38793E-14 

A0A0H3PAI3 CJJ81176_0586 Uncharacterized 3.584385466 4.75641E-14 

A0A0H3PCP8 CJJ81176_1045 Uncharacterized 4.070407695 8.69715E-08 

          

Appendix 4: Significantly differentiated proteins between 81-176 cultured in CDM at 

                           37
o
C for 12h and 24h 

 
     

 

Significantly downregulated 
  UniProt_Accession Gene Name Protein function logFC P.Value 

A0A0H3PDA2 ftsZ Cell cycle, cell division -1.124378927 0.001024381 

A0A0H3PA34 cheB Chemotaxis -1.023509806 0.000200879 

A0A0H3PAK5 rpoD DNA Transcription -1.14153773 0.004831498 

A1VXF1 aroQ Metabolism -1.929614046 0.010971065 

A0A0H3P9B2 thiH Metabolism -1.619986513 3.41504E-07 

A0A0H3PAH1 tyrA Metabolism -1.25838715 4.73533E-06 

A0A0H3P9A4 CJJ81176_0120 Metabolism -1.232835504 0.000439309 

A0A0H3PEI7 folP Metabolism -1.18645333 0.012832494 

A0A0H3P9B6 thiF Metabolism -1.163561192 0.00110726 

A0A0H3PHM5 mobB Metabolism -1.162065042 0.013164189 

A1W1K3 hisA Metabolism -1.157719247 0.024016809 

A1VY40 dxs Metabolism -1.156809817 0.002101453 

A1W1X0 leuC Metabolism -1.14404468 0.000591185 

A1W0W6 mobA Metabolism -1.133492511 0.040430667 

A1VYQ4 hemC Metabolism -1.127312453 1.15528E-05 

A1W0R9 mqnA Metabolism -1.122639313 0.1533829 

A0A0H3PD29 cobB Metabolism -1.111902205 0.010031723 

Q5QKR5 accB Metabolism -1.093490891 3.26702E-06 

A0A0H3PHE7 CJJ81176_0739 Metabolism -1.089224516 1.52624E-05 

A0A0H3PEL5 CJJ81176_0280 Metabolism -1.060459486 0.047857789 

A1VZZ8 tgt Metabolism -1.053973776 0.017731153 

A0A0H3PAG6 tpiA Metabolism -1.052270977 0.006153097 

A1W062 fliW Motility -1.544033778 0.057487147 

A0A0H3PEY5 fliS Motility -1.084384063 0.022819905 

A0A0H3PD33 sixA Protein modification -3.955299163 3.98644E-05 

A0A0H3PBB3 rbfA Protein synthesis -1.452643764 0.056937696 

A1VYB8 gatC Protein synthesis -1.219847877 8.15132E-08 

A1VYJ1 rplA Protein synthesis -1.125911081 0.000634579 

A1VXM1 rimP Protein synthesis -1.100409553 0.014747744 

A1VZW5 cmoB Protein synthesis -1.074223258 0.006817062 

A0A0H3P9Q3 csrA Stress Response -1.887225663 0.000449004 

A0A0H3PBL4 hypE Stress Response -1.705200182 4.13701E-06 

Q3I354 luxS Stress Response -1.395374976 0.022762402 

A0A0H3PGY0 ppiB Stress Response -1.389256161 6.73735E-09 

A0A0H3P9M1 napD Stress Response -1.313522895 0.010590837 

A0A0H3PAD9 pglD Stress Response -1.1200156 0.07668226 

A1W0U6 pseG Stress Response -1.055892337 0.048973283 

A0A0H3P9V7 CJJ81176_1101 Stress Response -1.003509865 0.047452082 

A0A0H3PDE7 CJJ81176_0897 Transport -1.173489552 0.101776228 

A0A0H3PDG2 CJJ81176_0891 Uncharacterized -2.806590388 0.000119465 

A0A0H3P9L3 CJJ81176_0728 Uncharacterized -2.147459285 1.6983E-06 

A0A0H3PHH8 CJJ81176_0888 Uncharacterized -1.889548153 0.004592447 

A0A0H3PB85 CJJ81176_0254 Uncharacterized -1.882613568 0.046580897 

A0A0H3PA59 CJJ81176_1259 Uncharacterized -1.872267063 0.01599769 

A0A0H3PH34 CJJ81176_1055 Uncharacterized -1.748157285 0.042847874 
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A0A0H3PB96 CJJ81176_0611 Uncharacterized -1.67477184 0.003428618 

Q8GJE8 Cjp04 Uncharacterized -1.636640091 0.005393802 

A0A0H3PHG6 CJJ81176_0854 Uncharacterized -1.589807192 0.012027374 

A0A0H3PIW6 CJJ81176_0547 Uncharacterized -1.562823986 4.8314E-05 

A0A0H3P9W6 A0A0H3P9W6 Uncharacterized -1.50085694 0.001973334 

A0A0H3P973 CJJ81176_pTet0021 Uncharacterized -1.412111873 1.83897E-05 

A0A0H3PAM9 CJJ81176_1458 Uncharacterized -1.367532524 0.001646516 

A0A0H3P9T3 CJJ81176_1422 Uncharacterized -1.35349802 0.000144934 

A0A0H3PDW4 CJJ81176_1424 Uncharacterized -1.340779726 0.003872782 

A0A0H3PAF1 CJJ81176_1363 Uncharacterized -1.322005508 0.009022957 

A0A0H3P9G9 CJJ81176_pTet0032 Uncharacterized -1.275777679 0.120526867 

A0A0H3PAT8 CJJ81176_1274 Uncharacterized -1.253360799 0.004097231 

A0A0H3P9J7 CJJ81176_0137 Uncharacterized -1.232835713 0.078405912 

Q0Q7K5 CJJ81176_0777 Uncharacterized -1.167199356 0.238795241 

A0A0H3PB39 CJJ81176_1673 Uncharacterized -1.154944735 0.01552709 

Q2M5Q6 CJJ81176_1318 Uncharacterized -1.114579632 0.00018542 

A0A0H3PAA2 CJJ81176_0288 Uncharacterized -1.087996906 0.000122953 

A0A0H3PB78 CJJ81176_1414 Uncharacterized -1.046853272 1.22934E-08 

A0A0H3P9M8 CJJ81176_0136 Uncharacterized -1.037985947 4.66345E-06 

A0A0H3PHF5 CJJ81176_0907 Uncharacterized -1.030620907 1.61063E-07 

  

  

    

 

Significantly upregulated 
  UniProt_Accession Gene Name Protein function logFC P.Value 

A0A0H3PEV8 pbpA Cell cycle, cell division 1.438319346 0.026404304 

A0A0H3PB07 lptD Cell wall organization 1.343297362 0.007515595 

A0A0H3PAG7 cheW Chemotaxis 1.13073066 6.38554E-08 

A0A0H3PAN9 cjj81176_1205 Chemotaxis 1.752430038 2.9729E-09 

A0A0H3P9T7 TlpA Chemotaxis 2.414797738 5.47608E-11 

A0A0H3PEL1 TlpA Chemotaxis 2.439369086 1.63873E-07 

A0A0H3P9J9 TlpB Chemotaxis 2.456105483 2.45604E-08 

A0A0H3PEF7 TlpA Chemotaxis 2.722413392 5.15972E-12 

A0A0H3P9B7 cyf Metabolism 1.003588353 0.001256929 

A0A0H3PCT8 cjj81176_1032 Metabolism 1.008996375 3.18937E-05 

A0A0H3P9T9 CJJ81176_1157 Metabolism 1.044683339 0.000223874 

A0A0H3P9E8 petC Metabolism 1.131114329 7.43666E-06 

A0A0H3PI37 nuoC Metabolism 1.202740944 4.57652E-05 

A0A0H3PCI0 cjj81176 Metabolism 1.266299832 2.40967E-08 

A1VXS2 folE Metabolism 1.306524137 0.12522755 

A1W0W2 dxr Metabolism 1.332629987 0.01775308 

A0A0H3PI47 CJJ81176_1247 Metabolism 1.41392327 0.024564539 

A0A0H3PI21 nrfH Metabolism 1.46794995 0.001771608 

A0A0H3PHB9 petA Metabolism 1.503579164 3.52021E-12 

A0A0H3PAQ1 CJJ81176_0849 Metabolism 1.740715498 0.005142159 

A0A0H3PAW0 corA Metabolism 1.764708303 0.006096685 

A0A0H3PA38 cydA Metabolism 2.279570537 3.1208E-05 

A0A0H3PA70 proB Metabolism 2.376846173 2.0936E-05 

A0A0H3PF34 fliF Motility 1.250050418 1.93049E-07 

A0A0H3PIZ8 fliE Motility 1.798950115 0.00094453 

A0A0H3PIF6 fliL Motility 1.926432008 6.62207E-09 

A0A0H3PAL0 cadF Pathogenesis 1.058846306 1.85629E-07 

A1VZQ5 peb1C Pathogenesis 1.132613153 4.28571E-05 

A0A0H3P9C5 mapA Pathogenesis 1.17678743 2.87743E-10 

A0A0H3PCL3 cdtB Pathogenesis 1.046402995 4.92885E-08 

A0A0H3PE81 CiaC Pathogenesis 1.542108368 6.5569E-05 

A0A0H3PEI3 rlpA Protein synthesis 1.017383375 2.02356E-06 

A1W1L3 rpsT Protein synthesis 1.036451932 0.040642106 

A1W1J3 rpmJ Protein synthesis 3.248334486 0.004122131 

A1VYJ6 rpsL Protein synthesis 7.436026834 4.23303E-12 
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A0A0H3PCE2 cstA Stress Response 1.238271042 2.45139E-07 

A1VYZ7 msrA Stress Response 1.365016476 0.042110313 

A1VXG9 ung Stress Response 1.496340666 0.000362753 

A0A0H3PB79 cmeB Transport 1.087544498 0.000107416 

A0A0H3PGP1 lctP Transport 1.117746513 0.010813319 

A0A0H3PBJ1 kpsE Transport 1.119839185 6.23036E-07 

A0A0H3PAF2 secD Transport 1.139555465 1.03512E-06 

A0A0H3PDM3 sdaC Transport 1.239908755 3.0713E-07 

A0A0H3PAK6 chuA Transport 1.283893641 9.72796E-07 

A0A0H3P9J0 CJJ81176_0912 Transport 1.294025258 0.082409608 

A0A0H3PA17 putP Transport 1.29619928 0.029325149 

A0A0H3PA66 dcuB Transport 1.310823641 5.4483E-05 

A0A0H3PD65 cjj81176_1037 Transport 1.328393494 6.58228E-12 

A0A0H3PAQ2 CJJ81176_0494 Transport 1.474653722 0.007750911 

A0A0H3PE25 CJJ81176_1654 Transport 1.556359341 3.76178E-07 

A0A0H3P9L8 atpF Transport 1.957270123 0.003460327 

A0A0H3PA88 CJJ81176_0125 Uncharacterized 1.007615008 2.84793E-10 

A0A0H3PB47 CJJ81176_1492 Uncharacterized 1.040958078 2.54501E-05 

A0A0H3PAJ5 CJJ81176_1107 Uncharacterized 1.066477033 0.092462427 

A0A0H3PAA5 CJJ81176_0419 Uncharacterized 1.088116518 2.08148E-07 

Q8GJA7 Cjp48 Uncharacterized 1.094037765 2.63401E-07 

A0A0H3P9N8 CJJ81176_0145 Uncharacterized 1.10055266 0.003208365 

A0A0H3PAU3 CJJ81176_0159 Uncharacterized 1.131457356 0.031081302 

A0A0H3P9C2 CJJ81176_1124 Uncharacterized 1.147900845 1.09697E-06 

A0A0H3PJB3 CJJ81176_0263 Uncharacterized 1.155979091 0.027133791 

A0A0H3PEU8 CJJ81176_0148 Uncharacterized 1.174445194 1.17727E-06 

Q6QNL8 Cj1356c Uncharacterized 1.20674499 1.64137E-07 

A0A0H3PA42 CJJ81176_0911 Uncharacterized 1.210730979 0.00239252 

A0A0H3PET5 CJJ81176_0471 Uncharacterized 1.215470958 1.05198E-07 

A0A0H3PA18 CJJ81176_0942 Uncharacterized 1.25558517 6.61143E-08 

A0A0H3PBE2 CJJ81176_0543 Uncharacterized 1.277031475 0.000654412 

Q0Q7J3 cj1355 Uncharacterized 1.300113084 2.01075E-09 

A0A0H3PBF8 CJJ81176_1651 Uncharacterized 1.33944721 5.67728E-05 

A0A0H3PI11 CJJ81176_1608 Uncharacterized 1.342418745 0.000145276 

A0A0H3PH47 CJJ81176_1185 Uncharacterized 1.345239856 3.87877E-09 

A0A0H3P971 CJJ81176_pTet0052 Uncharacterized 1.396062068 0.056915305 

A0A0H3P9S8 CJJ81176_1184 Uncharacterized 1.446222273 1.23807E-10 

A0A0H3PH37 CJJ81176_1222 Uncharacterized 1.500548794 4.0374E-05 

A0A0H3PD99 CJJ81176_0797 Uncharacterized 1.515129925 2.64072E-05 

A0A0H3PDT4 CJJ81176_1617 Uncharacterized 1.586314195 0.085306271 

A0A0H3PAV1 CJJ81176_0359 Uncharacterized 1.594697044 5.61714E-08 

Q29VV2 CJB1432c Uncharacterized 1.649001098 0.005167644 

A0A0H3PBB0 CJJ81176_1666 Uncharacterized 1.889649076 0.041203729 

A0A0H3PA50 CJJ81176_0126 Uncharacterized 2.055779415 2.58884E-05 

A0A0H3PEX3 CJJ81176_0544 Uncharacterized 2.121120765 0.000346329 

A0A0H3PGI9 CJJ81176_0987 Uncharacterized 2.151605665 1.24803E-06 

A0A0H3PCP8 CJJ81176_1045 Uncharacterized 2.646095737 6.90185E-05 

A0A0H3PCF8 CJJ81176_0975 Uncharacterized 2.831999088 1.72009E-06 
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Appendix 5: Significantly differentiated proteins in 81-176 cultured in CDB at 37
o
C for 

                         12h 

 
     UniProt_Accession Gene Name Protein function logFC P.Value 

A0A0H3PB49 CJJ81176_1548 Chemotaxis -1.012627601 0.129285813 

A0A0H3PGG1 CJJ81176_pTet0031 DNA Replication -1.265683704 1.16584E-11 

A0A0H3PAK5 rpoD DNA Transcription -1.08887503 0.120385054 

A1W1D6 acsA Metabolism -2.253249172 2.73796E-14 

A0A0H3PHJ0 CJJ81176_0738 Metabolism -1.555074314 1.86197E-11 

A0A0H3PD90 purE Metabolism -1.542966646 5.50823E-05 

A0A0H3P9X6 CJJ81176_1083 Metabolism -1.530750598 0.004182213 

A0A0H3PAL3 fldA Metabolism -1.436151362 3.08469E-08 

A0A0H3PEL5 CJJ81176_0280 Metabolism -1.392750562 0.035546827 

A0A0H3PBI3 CJJ81176_1495 Metabolism -1.254957503 2.00519E-12 

A0A0H3P9N5 cjj81176_0075 Metabolism -1.175341326 2.91935E-11 

A0A0H3PAT0 cysK Metabolism -1.114177273 2.10646E-09 

A0A0H3PHN8 cjj81176_0836 Metabolism -1.113971675 4.28145E-12 

A0A0H3PA64 ggt Metabolism -1.031197599 6.92921E-06 

A0A0H3PHL6 CJJ81176_0799 Pathogenesis -1.345093647 1.82945E-07 

A1W1L3 rpsT Protein synthesis -1.871963559 1.69947E-06 

A1W1V8 rplW Protein synthesis -1.024849048 0.006390824 

A0A0H3P9Q4 katA Stress Response -1.430300186 1.0351E-13 

Q0Q7K8 grpE Stress Response -1.050450015 7.35255E-13 

A1W0K4 groL Stress Response -1.029703387 8.24797E-16 

Q0Q7K7 dnaK Stress Response -1.001716295 1.61803E-12 

A0A0H3PA76 cjj81176_1604 Transport -1.884449664 8.53952E-16 

A0A0H3PAK6 chuA Transport -1.751857182 4.38503E-09 

A0A0H3PEW2 CJJ81176_0211 Transport -1.541574233 3.59883E-14 

A0A0H3PAU0 cjj81176_1525 Transport -1.461206947 1.51123E-15 

Q0Q7I0 CJJ81176_1569 Transport -1.387397935 1.38141E-14 

A0A0H3PE25 CJJ81176_1654 Transport -1.185587582 2.05211E-06 

Q8GJC5 Cjp29 Uncharacterized -2.247060614 3.43519E-05 

A0A0H3PA01 CJJ81176_1650  Uncharacterized -2.180824058 3.51434E-15 

A0A0H3PI41 CJJ81176_1600 Uncharacterized -1.664964927 2.61358E-16 

A0A0H3PEG8 CJJ81176_0642 Uncharacterized -1.50973595 1.767E-07 

A0A0H3PAX0 tpx Uncharacterized -1.451871548 2.02398E-06 

A0A0H3P9S8 CJJ81176_1184 Uncharacterized -1.410283174 1.71184E-12 

A0A0H3PBF8 CJJ81176_1651 Uncharacterized -1.393540848 5.37837E-10 

A0A0H3PET5 CJJ81176_0471 Uncharacterized -1.376462522 2.11491E-12 

A0A0H3ADZ7 hup Uncharacterized -1.328744595 1.40326E-05 

A0A0H3PAI8 CJJ81176_0626 Uncharacterized -1.26833221 0.015688389 

Q0Q7J3 cj1355 Uncharacterized -1.143875516 2.83942E-10 

A0A0H3PBB0 CJJ81176_1666 Uncharacterized -1.135400508 0.161195318 

A0A0H3PHG6 CJJ81176_0854 Uncharacterized -1.12694493 0.153348366 

A0A0H3PCC6 CJJ81176_pTet0042 Uncharacterized -1.09835524 4.70774E-09 

A0A0H3P9G9 CJJ81176_pTet0032  Uncharacterized -1.030780809 0.181887663 

A0A0H3PH34 CJJ81176_1055 Uncharacterized -1.02691582 0.202688409 

    

 

    

UniProt_Accession Gene Name Protein function logFC P.Value 

A0A0H3PDK8 CJJ81176_1475 Uncharacterized 1.002159309 0.00019233 

A1W043 murC Cell cycle,cell division 1.009311232 7.20424E-12 

A0A0H3PAM2 mreB Cell cycle,cell division 1.035714445 1.06369E-05 

A1VXS1 tig Cell cycle,cell division 1.196284841 1.10735E-13 

A0A0H3PE69 murI Cell wall organization 1.185132327 1.066E-08 

A0A0H3PB07 lptD Cell wall organization 1.268709341 0.000151021 

A1VZK1 murA Cell wall organization 1.820028278 3.01587E-13 

A0A0H3P9P7 cjj81176_1128 Chemotaxis 1.00326504 2.87938E-14 

A0A0H3P9J9 TlpB Chemotaxis 1.424856911 0.000770438 
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A0A0H3PAN9 cjj81176_1205 Chemotaxis 1.457940607 4.88379E-07 

A0A0H3PB06 TlpC Chemotaxis 1.677891777 5.73937E-09 

A0A0H3P9C4 CJJ81176_1204 Chemotaxis 1.937705384 1.06476E-06 

A0A0H3P989 recJ DNA Replication 1.135241488 0.000681861 

A0A0H3PB11 CJJ81176_1474 DNA Replication 1.209454757 6.30302E-11 

A0A0H3PH83 ssb DNA Replication 1.233668598 5.216E-12 

A0A0H3PGQ1 fliA DNA Transcription 1.099249421 0.053608625 

A0A0H3P9R8 CJJ81176_1043 DNA Transcription 1.127930017 7.78845E-06 

A0A0H3P9Q7 mfd DNA Transcription 1.965001499 2.59213E-09 

A1W091 ispE Metabolism 1.025009458 0.141946627 

A0A0H3PBB5 purD Metabolism 1.025110164 0.000182275 

A0A0H3PHG1 coaBC Metabolism 1.041583025 5.18985E-08 

A0A0H3P9S3 hydD Metabolism 1.052207753 0.098924033 

A1VY69 trpB Metabolism 1.056789278 6.7184E-08 

A1VYG9 thiC Metabolism 1.059826855 0.000497563 

A0A0H3P9P8 tkt Metabolism 1.071442652 2.41399E-07 

A1W0I0 gpsA Metabolism 1.072933807 1.95494E-08 

A0A0H3PF31 CJJ81176_0427 Metabolism 1.074899212 0.046731037 

A1W068 thiE Metabolism 1.080845641 0.004797753 

Q29VW1 gmhA-2 Metabolism 1.09507679 1.32445E-07 

A1VZU6 purL Metabolism 1.09873941 2.43639E-10 

Q1HG74 gltB Metabolism 1.102381848 1.17519E-08 

A0A0H3PH15 thiD Metabolism 1.110413003 0.001052757 

Q0Q7I1 purM Metabolism 1.112791882 2.80747E-06 

A0A0H3PC48 purQ Metabolism 1.119470852 8.67324E-05 

A0A0H3PHM5 mobB Metabolism 1.122899672 0.019986126 

A0A0H3PA89 pyrD Metabolism 1.146977601 1.05017E-05 

A0A0H3PAC7 nuoM Metabolism 1.168756148 0.006396825 

A0A0H3PEF4 frdA Metabolism 1.185823798 3.59285E-13 

A0A0H3PBF9 rpe Metabolism 1.199859352 0.002954458 

A0A0H3PH92 glcD Metabolism 1.199922796 8.92353E-07 

A0A0H3PEJ1 ilvB Metabolism 1.250608836 3.59495E-07 

A0A0H3PAA8 CJJ81176_0533 Metabolism 1.255604242 2.55083E-08 

A0A0H3PBA0 carA Metabolism 1.25831499 9.87768E-14 

A0A0H3PA66 dcuB Metabolism 1.265216732 6.3025E-06 

A1W0U9 hisH1 Metabolism 1.266775528 0.019291062 

A0A0H3P9T9 CJJ81176_1157  Metabolism 1.302265843 0.000901493 

A0A0H3PA90 cj81176_0571 Metabolism 1.312373136 2.45643E-08 

A1VZR0 apt Metabolism 1.320194604 3.56573E-10 

A0A0H3PBV9 oorD Metabolism 1.321433112 0.005068317 

A0A0H3PCH2 rbr Metabolism 1.357062113 1.93881E-14 

A0A0H3P9Q8 CJJ81176_1286 Metabolism 1.358014208 1.04547E-12 

A0A0H3PBC8 CJJ81176_1415  Metabolism 1.368268037 0.00222284 

A0A0H3P9V8 CJJ81176_1527  Metabolism 1.385245158 0.001501757 

A1W0I5 metE Metabolism 1.407347114 2.13111E-08 

A0A0H3PAD5 lpxD Metabolism 1.411517078 1.01067E-14 

A0A0H3PC31 hom Metabolism 1.419874613 6.69863E-05 

A1VY70 trpA Metabolism 1.516153864 8.50919E-08 

A1VXA6 pyrG Metabolism 1.519666462 8.42707E-11 

A1W0N8 pnp Metabolism 1.526016742 7.95408E-08 

A0A0H3PBH6 cj81176_1322 Metabolism 1.560431383 1.74836E-06 

A1VYG1 accA Metabolism 1.582313627 5.06598E-05 

Q29VV6 fcl Metabolism 1.593665031 4.89E-18 

A0A0H3PEZ1 frdB Metabolism 1.626765275 4.47613E-08 

A0A0H3PI21 nrfH Metabolism 1.627475968 0.000108993 

A1VY44 xseA Metabolism 1.656806261 0.000741322 

A1VYU1 rppH Metabolism 1.689949219 1.08795E-05 

A1VXZ8 lpxA Metabolism 1.700508093 5.65527E-13 

Q2M5Q4 accP Metabolism 1.70534272 5.52559E-14 
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A0A0H3P982 rpiB Metabolism 1.72540155 1.56788E-06 

A1VZ41 ispG Metabolism 1.745965219 1.87345E-06 

A1VXH9 obg Metabolism 1.811983562 1.21995E-05 

A1W1J4 rpsM Metabolism 1.825328487 2.12438E-05 

Q0Q7I7 mqnE Metabolism 1.826698062 7.20563E-14 

A0A0H3PCK6 ansA Metabolism 1.838291378 1.1417E-14 

A1W0W2 dxr Metabolism 1.845344029 0.001200837 

A1VYL8 alaS Metabolism 1.918137352 1.05528E-10 

A1VZF8 nadE Metabolism 1.973929954 4.49443E-06 

A0A0H3PJ93 lysA Metabolism 2.106400649 3.57213E-15 

A0A0H3P9Q2 nrfA Metabolism 2.155978903 1.86374E-11 

A0A0H3PJ06 mqnC Metabolism 2.199970247 1.1854E-06 

A0A0H3PBR9 ccpA-2 Metabolism 2.302530319 1.43161E-20 

A0A0H3PBD0 bioA Metabolism 2.306506813 0.000255391 

A0A0H3PGM1 aspA Metabolism 2.732611783 5.06594E-16 

A0A0H3PGR5 cjj81176_0063 Metabolism 2.857473624 2.78229E-09 

A0A0H3PAG3 sdhC Metabolism 2.960350146 1.8716E-09 

A0A0H3PJB7 sdhB Metabolism 3.610409082 2.96957E-15 

A0A0H3PBQ2 sdhA Metabolism 4.009521599 1.06359E-15 

A0A0H3PDD9 flaC Motility 1.203037594 0.000527575 

A0A0H3P9L2 fliM Motility 1.653968736 0.004056254 

A0A0H3PBK9 flaG Motility 2.404790948 0.000472864 

A0A0H3PDU5 tyrS Protein synthesis 1.026906445 3.75533E-12 

A1VYR0 efp Protein synthesis 1.058895312 9.31708E-07 

A1W0I1 gatB Protein synthesis 1.094938585 2.2664E-07 

A1VZB3 hisS Protein synthesis 1.095597171 1.24734E-10 

A1VYH4 miaB Protein synthesis 1.106075376 0.000386451 

A1W0R3 trmB Protein synthesis 1.138274912 0.030815194 

A0A0H3PB64 trpS Protein synthesis 1.140703337 6.65002E-05 

A0A0H3P9K7 metS Protein synthesis 1.155656945 9.85715E-09 

A1VYB8 gatC Protein synthesis 1.295690129 0.015177806 

A0A0H3PDV7 selB Protein synthesis 1.315073659 0.022819021 

A1W0J3 rny Protein synthesis 1.346451112 8.97237E-05 

A0A0H3PAI4 ileS Protein synthesis 1.354098576 3.11121E-15 

A0A0H3PCJ0 CJJ81176_0101 Protein synthesis 1.421402969 9.60517E-07 

A1VZ20 era Protein synthesis 1.743381929 0.01070401 

A0A0H3P9L9 rpsA Protein synthesis 1.779468629 3.40088E-15 

A1W165 truD Protein synthesis 1.846810707 2.05732E-05 

A0A0H3PJI4 recN Stress Response 1.115555263 0.007606851 

A1VYU6 ligA Stress Response 1.117436601 2.79765E-06 

A0A0H3PEV1 xth Stress Response 1.135087322 1.99535E-11 

A1VXS0 clpP Stress Response 1.255454361 7.18782E-11 

A1W0P5 dnaJ Stress Response 1.369575933 0.003826991 

A0A0H3PAC3 CJJ81176_1161  Stress Response 1.493826187 9.8901E-11 

A0A0H3PEB4 nth Stress Response 1.541948153 2.57175E-11 

A0A0H3PAG5 radA Stress Response 1.678139032 0.00326215 

A1W0U6 pseG Stress Response 1.984735749 0.011269854 

A0A0H3PIA1 CJJ81176_1539 Stress Response 2.043396392 3.13386E-07 

A0A0H3PE81 CiaC Stress Response 2.094853922 2.72258E-07 

A0A0H3P9D2 CJJ81176_1077 Stress Response 2.102450016 3.06109E-06 

A0A0H3PAU2 CJJ81176_1538 Stress Response 2.108432847 0.000200835 

A0A0H3PHE3 metN Transport 1.004496196 0.014042284 

A0A0H3PAG9 CJJ81176_0672 Transport 1.064360876 4.29364E-07 

A1W0G0 tatA Transport 1.096684068 0.012163065 

A1VXI7 atpH Transport 1.273941307 0.030916536 

A1VZC8 napA Transport 1.450701825 6.02982E-16 

A0A0H3PEE2 secG Transport 1.496929357 0.021056653 

A0A0H3PA74 napB Transport 1.619367939 2.8065E-12 

A0A0H3PA51 napG Transport 1.971268346 1.27661E-05 
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Q0Q7H5 CJJ81176_1574 Transport 2.414816468 5.1207E-09 

A0A0H3PA60 dcuA Transport 3.827759148 4.07846E-07 

A0A0H3PJ41 cj81176_0671 

Two-component 

regulatory system 1.112289782 1.13262E-10 

A0A0H3P9R0 CJJ81176_1236 

Two-component 

regulatory system 1.244439439 1.01919E-05 

A1VYV6 Putative cbf2  Uncharacterized 1.009478847 3.35689E-10 

A0A0H3PAU3 CJJ81176_0159 Uncharacterized 1.009592083 0.002276221 

Q2M5Q0 CJJ81176_1314 Uncharacterized 1.011356299 0.056700533 

Q0Q7K6 CJJ81176_0776 Uncharacterized 1.018914955 0.000384764 

A0A0H3PBU4 CJJ81176_0392 Uncharacterized 1.044219258 0.25580587 

A0A0H3PDW4 CJJ81176_1424  Uncharacterized 1.067121445 0.025373282 

A0A0H3PJ75 CJJ81176_0306 Uncharacterized 1.074796292 0.006979027 

Q2M5Q7 CJJ81176_1317  Uncharacterized 1.088798871 0.005949668 

A0A0H3PJA2 CJJ81176_0520  Uncharacterized 1.090483613 0.005199429 

A0A0H3P994 CJJ81176_0144 Uncharacterized 1.101162111 0.11512465 

A0A0H3P991 CJJ81176_0018 Uncharacterized 1.113943091 9.13358E-08 

A0A0H3PED7 CJJ81176_0477 Uncharacterized 1.114024196 0.001672857 

A0A0H3PEC2 CJJ81176_0189  Uncharacterized 1.114989621 0.046841276 

A0A0H3PB96 CJJ81176_0611 Uncharacterized 1.139074389 0.037100637 

A0A0H3PBE5 CJJ81176_0430  Uncharacterized 1.174311961 2.41486E-09 

A0A0H3PEN5 CJJ81176_0484 Uncharacterized 1.181155926 0.004957225 

A0A0H3PAB0 CJJ81176_0107 Uncharacterized 1.184171512 1.34449E-09 

A0A0H3P9Z9 CJJ81176_0708 Uncharacterized 1.213623076 0.003118232 

A0A0H3PC19 CJJ81176_0428 Uncharacterized 1.250734737 1.72127E-06 

A0A0H3PED0 CJJ81176_0391 Uncharacterized 1.280371266 0.002103489 

A0A0H3PAA3 CJJ81176_1453 Uncharacterized 1.301847945 0.05792168 

A0A0H3PCA8 CJJ81176_pTet0048 Uncharacterized 1.305945565 2.91411E-09 

A0A0H3PEH2 CJJ81176_0532 Uncharacterized 1.312207438 3.11278E-08 

A0A0H3PJE6 CJJ81176_0622 Uncharacterized 1.324036519 0.000236212 

Q2A947 CJJ81176_1444 Uncharacterized 1.326513791 2.85148E-13 

A0A0H3PAJ5 CJJ81176_1107 Uncharacterized 1.342943253 0.008375076 

A0A0H3PAS5 CJJ81176_0840 Uncharacterized 1.343673306 0.006966963 

A0A0H3PB78 CJJ81176_1414 Uncharacterized 1.344692686 0.005851801 

A0A0H3PJB0 CJJ81176_0403 Uncharacterized 1.358818649 0.000125312 

A0A0H3PCA0 CJJ81176_pTet0008 Uncharacterized 1.377305354 3.99301E-10 

A0A0H3PD99 CJJ81176_0797 Uncharacterized 1.400011602 0.00039195 

A0A0H3PBF4 CJJ81176_0342 Uncharacterized 1.403953147 0.0071964 

A0A0H3PJ11 CJJ81176_0153 Uncharacterized 1.413071245 3.12823E-08 

A0A0H3PGI9 CJJ81176_0987 Uncharacterized 1.420494898 0.016346357 

A0A0H3P9P2 CJJ81176_1326  Uncharacterized 1.433162751 2.24489E-07 

A0A0H3P968 CJJ81176_pTet0026 Uncharacterized 1.459991767 0.000224254 

A0A0H3PBZ1 CJJ81176_0414  Uncharacterized 1.472582137 0.005697302 

A0A0H3PGX2 CJJ81176_1003 Uncharacterized 1.493744709 0.019478149 

A0A0H3PAV9 CJJ81176_1416 Uncharacterized 1.50551169 3.78854E-07 

A0A0H3PAS3 CJJ81176_0705  Uncharacterized 1.518960907 0.022170492 

Q29VV4 CJJ81176_1430 Uncharacterized 1.530775757 3.34176E-15 

A0A0H3PAL1 CJJ81176_1102 Uncharacterized 1.537334839 9.37329E-07 

Q0Q7K3 CJJ81176_0779 Uncharacterized 1.557817115 2.12575E-05 

A0A0H3PGL0 CJJ81176_1732  Uncharacterized 1.569838789 0.013555967 

A0A0H3PJC9 CJJ81176_0518 Uncharacterized 1.572293153 0.002180475 

Q6QNL8 Cj1356c Uncharacterized 1.625331653 2.57189E-08 

Q1HG73 CJJ81176_0034 Uncharacterized 1.6344356 6.21578E-11 

A0A0H3PGW3 CJJ81176_1177 Uncharacterized 1.63860112 0.004211886 

A0A0H3P9I1 CJJ81176_0782 Uncharacterized 1.641085272 8.88753E-06 

A0A0H3PAF3 CJJ81176_0231  Uncharacterized 1.726887946 1.41038E-06 

A0A0H3PB47 CJJ81176_1492 Uncharacterized 1.742259894 4.26179E-06 

A0A0H3PBN8 CJJ81176_0437  Uncharacterized 1.749721868 1.84363E-08 

A0A0H3PJK4 CJJ81176_0436 Uncharacterized 1.768446654 2.407E-08 
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A0A0H3PAI7 CJJ81176_1559 Uncharacterized 1.790286229 1.85218E-13 

A0A0H3PEW6 CJJ81176_0447  Uncharacterized 1.891985563 1.56241E-09 

A0A0H3PDH2 CJJ81176_0856 Uncharacterized 1.94630326 0.002983055 

A1VYL9 CJJ81176_0535 Uncharacterized 1.947651838 0.004899868 

A0A0H3PHT8 CJJ81176_1541 Uncharacterized 1.954109344 5.73972E-05 

A0A0H3PIQ2 CJJ81176_1657  Uncharacterized 1.983313638 0.0023077 

A0A0H3PIU3 CJJ81176_0188  Uncharacterized 2.041955298 1.64234E-05 

A0A0H3PAS8 CJJ81176_0740 Uncharacterized 2.095112507 0.000356817 

A0A0H3PBM5 CJJ81176_0187 Uncharacterized 2.171819171 1.43559E-05 

Q2M5Q9 CJJ81176_1315  Uncharacterized 2.210649706 2.25513E-09 

A0A0H3PAE1 CJJ81176_0192 Uncharacterized 2.240578454 0.003079777 

Q2M5R0 CJJ81176_1341 Uncharacterized 2.310441987 1.57019E-12 

A0A0H3PB91 CJJ81176_0355 Uncharacterized 2.33854159 2.36564E-15 

A0A0H3PAR1 napL Uncharacterized 2.448651857 6.4748E-05 

A0A0H3P9D8 CJJ81176_1104  Uncharacterized 2.841286981 6.69656E-08 

A0A0H3PDT4 CJJ81176_1617 Uncharacterized 3.38488425 5.88243E-07 

 

Appendix 6: Significantly differentiated proteins in 81-176 cultured in CDB at 37
o
C for 

                           24h 

 
UniProt_Accession Gene Name Protein function logFC P.Value 

A0A0H3P9D5 ftsH Cell cycle, cell division -1.074010067 4.80113E-06 

A0A0H3PEL1 TlpA Chemotaxis -2.092142211 5.55915E-06 

A0A0H3PEF7 TlpA Chemotaxis -2.049395887 1.02916E-08 

A0A0H3P9T7 TlpA Chemotaxis -1.953210557 3.556E-09 

A0A0H3PB49 CJJ81176_1548 Chemotaxis -1.475173173 0.091313167 

A0A0H3P9J9 TlpB Chemotaxis -1.031248572 0.016788485 

A0A0H3PGG1 CJJ81176_pTet0031 DNA Replication -1.409694119 2.93398E-13 

A0A0H3PA38 cydA Metabolism -3.170368376 3.69671E-07 

A1VXS2 folE Metabolism -2.214052574 0.01497923 

A1W1D6 acsA Metabolism -1.980626235 5.88399E-12 

A0A0H3PAQ1 CJJ81176_0849 Metabolism -1.894068483 0.003074014 

A0A0H3PCI0 cjj81176 Metabolism -1.666789967 1.83549E-10 

A0A0H3P9N5 cjj81176_0075 Metabolism -1.651421119 1.31432E-14 

A0A0H3PD90 purE Metabolism -1.628850422 1.38436E-05 

A0A0H3PA70 proB Metabolism -1.554173328 1.29829E-05 

A0A0H3PHN8 cjj81176_0836 Metabolism -1.364416576 9.97899E-14 

A0A0H3PHB9 petA Metabolism -1.361258878 2.11835E-09 

A0A0H3P9B7 cyf Metabolism -1.160540717 0.001297993 

A0A0H3PBI3 CJJ81176_1495 Metabolism -1.160306918 1.14093E-13 

A0A0H3PHJ0 CJJ81176_0738 Metabolism -1.145940421 7.37491E-13 

A0A0H3PI47 CJJ81176_1247 Metabolism -1.112489041 0.086275419 

A0A0H3PAT0 cysK Metabolism -1.110579684 8.8231E-10 

A0A0H3PAW0 corA Metabolism -1.102312553 0.065214629 

A0A0H3PIR1 fdhA Metabolism -1.021237654 0.048466976 

A0A0H3PIF6 fliL Motility -1.792554519 4.86158E-09 

A0A0H3PED8 CJJ81176_0315  Pathogenesis -1.358677973 2.8684E-11 

A0A0H3PHL6 CJJ81176_0799 Pathogenesis -1.182353344 5.2266E-07 

A0A0H3PAL0 cadF Pathogenesis -1.084642831 3.08722E-07 

A1VYJ6 rpsL Protein synthesis -6.983238833 1.42492E-11 

A1W1J3 rpmJ Protein synthesis -3.420706882 0.002827918 

A1W1L3 rpsT Protein synthesis -2.908415491 1.34696E-06 

A0A0H3PA47 rnj Protein synthesis -1.03913326 6.60317E-08 

A0A0H3PCE2 cstA Stress Response -1.842407065 7.51471E-10 

A0A0H3P9Q4 katA Stress Response -1.619495824 2.78853E-12 

A0A0H3PA75 comEA Stress Response -1.266246242 6.18711E-10 
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A0A0H3PAP0 trx Stress Response -1.060108272 1.33863E-12 

A0A0H3PAK6 chuA Transport -3.035750823 4.65926E-13 

A0A0H3PA76 cjj81176_1604 Transport -2.864476221 1.86683E-17 

A0A0H3PE25 CJJ81176_1654 Transport -2.741946923 3.97144E-13 

A0A0H3PEW2 CJJ81176_0211 Transport -2.125939559 1.35993E-17 

Q0Q7I0 CJJ81176_1569 Transport -2.055410854 2.2467E-15 

A0A0H3PAU0 cjj81176_1525 Transport -1.846171823 7.37057E-17 

A0A0H3PAE4 cmeC Transport -1.682616742 1.57873E-09 

A0A0H3PA17 putP Transport -1.628286068 0.050433426 

A0A0H3P9L8 atpF Transport -1.402977331 0.026803117 

A0A0H3PD65 cjj81176_1037 Transport -1.359734649 4.03189E-14 

A0A0H3PIS5 cmeA Transport -1.244798369 6.38925E-05 

A0A0H3PB79 cmeB Transport -1.20679488 0.000200058 

A0A0H3PJ16 modA Transport -1.125669413 2.48076E-07 

A0A0H3PAY0 tatB Transport -1.082929869 0.017605787 

A0A0H3PCQ6 CJJ81176_1038 Transport -1.020547801 7.45264E-11 

A0A0H3PA01 CJJ81176_1650  Uncharacterized -3.120222479 1.55616E-17 

A0A0H3PBB0 CJJ81176_1666 Uncharacterized -3.025049584 0.00248412 

A0A0H3P9S8 CJJ81176_1184 Uncharacterized -2.856505447 1.93146E-15 

A0A0H3PBF8 CJJ81176_1651 Uncharacterized -2.732988059 2.15093E-09 

A0A0H3PET5 CJJ81176_0471 Uncharacterized -2.59193348 5.50167E-13 

Q0Q7J3 cj1355 Uncharacterized -2.4439886 1.15092E-14 

A0A0H3PCF8 CJJ81176_0975 Uncharacterized -2.326110762 4.85016E-05 

A0A0H3PCP8 CJJ81176_1045 Uncharacterized -2.218606712 0.000729609 

Q8GJC5 Cjp29 Uncharacterized -2.156888257 1.8022E-05 

A0A0H3ADZ7 hup Uncharacterized -2.070583157 7.98445E-09 

A0A0H3PA50 CJJ81176_0126 Uncharacterized -1.992516907 5.76066E-05 

A0A0H3PH47 CJJ81176_1185 Uncharacterized -1.981804674 7.42004E-15 

A0A0H3PI41 CJJ81176_1600 Uncharacterized -1.869659825 2.24794E-16 

A0A0H3PEX3 CJJ81176_0544 Uncharacterized -1.735376814 0.002373957 

Q29VV2 CJB1432c Uncharacterized -1.693639504 0.004517986 

A0A0H3PEG8 CJJ81176_0642 Uncharacterized -1.56083428 1.30015E-08 

A0A0H3PBX6 CJJ81176_0358 Uncharacterized -1.527453937 0.000317857 

A0A0H3PES2 CJJ81176_0377 Uncharacterized -1.503031759 9.88867E-06 

A0A0H3P9T5 CJJ81176_1649 Uncharacterized -1.493220011 0.009877019 

A0A0H3PA88 CJJ81176_0125  Uncharacterized -1.484601464 3.94867E-13 

A0A0H3P9B9 cjaA Uncharacterized -1.326559777 2.40839E-08 

A0A0H3PGE8 CJJ81176_pTet0018  Uncharacterized -1.322435353 7.38298E-10 

A0A0H3PBJ5 dsbD Uncharacterized -1.288045006 0.042164645 

A0A0H3PBE0 CJJ81176_0236 Uncharacterized -1.272034999 4.34741E-10 

A0A0H3PAV1 CJJ81176_0359 Uncharacterized -1.230962237 3.32231E-06 

Q8GJA7 Cjp48 Uncharacterized -1.198099905 1.73382E-08 

A0A0H3PA18 CJJ81176_0942 Uncharacterized -1.138138346 3.12462E-06 

A0A0H3PAP4 cjj81176_0439 Uncharacterized -1.137791038 8.25509E-11 

A0A0H3PGV9 CJJ81176_1198 Uncharacterized -1.11844178 0.03135851 

A0A0H3PBA4 CJJ81176_1508 Uncharacterized -1.08468241 1.02042E-12 

A0A0H3PI11 CJJ81176_1608 Uncharacterized -1.053392156 0.0008415 

A0A0H3PA44 CJJ81176_0124 Uncharacterized -1.053268697 6.41152E-09 

  

    UniProt_Accession Gene Name Protein function logFC P.Value 

A0A0H3PDA2 ftsZ Cell cycle, cell division 1.1408654 0.000346312 

A0A0H3P9L6 ftsA Cell cycle, cell division 1.302100974 5.02596E-06 

A0A0H3PAM2 mreB Cell cycle, cell division 1.333157894 1.36732E-06 

A1VXS1 tig Cell cycle, cell division 1.428507617 1.42184E-14 

A1W043 murC Cell cycle, cell division 1.45147549 7.80259E-16 

A0A0H3PD97 ffh Cell wall organization 1.186977837 3.02194E-07 

A0A0H3PE69 murI Cell wall organization 1.535901917 1.86606E-10 

A1VZK1 murA Cell wall organization 1.923267778 1.29695E-13 

A0A0H3P9P7 cjj81176_1128 Chemotaxis 1.27930677 2.8277E-15 
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A0A0H3PA34 cheB Chemotaxis 1.325162029 5.82475E-05 

A0A0H3P9C4 CJJ81176_1204 Chemotaxis 1.658325995 8.4036E-06 

A0A0H3PB06 TlpC Chemotaxis 1.955613085 9.31169E-09 

A0A0H3PEP2 polA DNA Replication 1.003642534 9.94153E-08 

A0A0H3PA46 topA DNA Replication 1.004165788 1.1225E-06 

A0A0H3PH83 ssb DNA Replication 1.012583599 2.0656E-09 

A0A0H3PH67 dnaX DNA Replication 1.16746783 0.003410521 

A0A0H3PB11 CJJ81176_1474 DNA Replication 1.213569156 1.20275E-10 

A0A0H3PBJ8 CJJ81176_0612 DNA Replication 1.357694609 0.000696323 

A0A0H3PER2 dnaB DNA Replication 1.473304034 9.51288E-05 

A0A0H3P989 recJ DNA Replication 2.123647667 1.59352E-07 

A0A0H3P9R8 CJJ81176_1043 DNA Transcription 1.043986407 2.28658E-05 

A0A0H3PGQ1 fliA DNA Transcription 1.237870878 0.025389376 

A0A0H3PER6 nusG DNA Transcription 1.267910116 3.68886E-11 

A1VY10 greA DNA Transcription 1.432257843 2.59249E-10 

A0A0H3PB61 nusA DNA Transcription 1.439390303 6.65591E-11 

A0A0H3P9Q7 mfd DNA Transcription 2.434489002 1.68169E-11 

A0A0H3PBB6 trpE Metabolism 1.003189125 6.0061E-10 

A0A0H3PBY2 CJJ81176_0318 Metabolism 1.006310949 0.001865944 

A0A0H3PAJ4 hisI Metabolism 1.014809361 1.6677E-09 

A0A0H3PA14 prsA Metabolism 1.025508685 2.78553E-09 

A0A0H3PIL4 hisD Metabolism 1.032790757 1.0399E-13 

Q1HG72 gltD Metabolism 1.036335448 5.04443E-09 

A1W0U9 hisH1 Metabolism 1.050387738 0.049152845 

A0A0H3PIY4 aroE Metabolism 1.074931759 2.52527E-07 

A0A0H3PEA7 oorB Metabolism 1.076483625 7.4671E-15 

A0A0H3P9V8 CJJ81176_1527  Metabolism 1.078298625 0.043097272 

A0A0H3PBC8 CJJ81176_1415  Metabolism 1.082007016 0.091170526 

A0A0H3PB58 CJJ81176_0610 Metabolism 1.08590804 7.91844E-07 

A0A0H3PET1 trpD Metabolism 1.130851725 1.37694E-10 

A0A0H3PA90 cj81176_0571 Metabolism 1.134427124 2.75768E-07 

A1VXU8 argB Metabolism 1.146965546 1.85255E-05 

A0A0H3PHU2 CJJ81176_1517  Metabolism 1.147912263 5.35909E-06 

A1W116 pgk Metabolism 1.148249164 8.38903E-10 

A1W1X5 queF Metabolism 1.162193924 0.043057037 

A1VXU6 argC Metabolism 1.162584654 2.15892E-05 

A0A0H3P9Q8 CJJ81176_1286 Metabolism 1.187518884 2.6617E-11 

A0A0H3PEE7 oorC Metabolism 1.194525073 7.07002E-07 

A0A0H3P9A4 CJJ81176_0120 Metabolism 1.212228258 7.43778E-05 

A1W0R9 mqnA Metabolism 1.214076693 0.001904392 

A1W1K3 hisA Metabolism 1.215753381 0.040471373 

A0A0H3P9A3 CJJ81176_0013 Metabolism 1.218159617 0.009926103 

A1VZI4 fbp Metabolism 1.222618407 4.3338E-14 

A0A0H3PE58 CJJ81176_1470 Metabolism 1.2290586 0.027978501 

A0A0H3PAJ2 CJJ81176_1039  Metabolism 1.237732666 6.28018E-08 

A0A0H3PHG1 coaBC Metabolism 1.248329797 6.8283E-09 

A0A0H3P9P8 tkt Metabolism 1.280218398 1.28551E-08 

A0A0H3PBG9 purN Metabolism 1.28323879 3.07067E-11 

A0A0H3P9P9 guaB Metabolism 1.289397339 1.78E-13 

A0A0H3P9Q2 nrfA Metabolism 1.292618327 4.99923E-09 

A0A0H3PBV9 oorD Metabolism 1.302291292 0.006953596 

A0A0H3PCK6 ansA Metabolism 1.311331491 5.36278E-15 

A0A0H3PHE7 CJJ81176_0739 Metabolism 1.312959243 6.81963E-05 

A0A0H3PJF7 coaX Metabolism 1.328366939 0.012221932 

A0A0H3PAU6 pyrC Metabolism 1.341597719 0.104250195 

A0A0H3PAK3 hisH-2 Metabolism 1.342677341 0.003139101 

A1W091 ispE Metabolism 1.343067248 0.005822463 

A0A0H3PA20 dcd Metabolism 1.358508874 1.40789E-10 

A0A0H3P9G7 hemN Metabolism 1.35948935 5.22666E-12 
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A0A0H3PC48 purQ Metabolism 1.381069155 8.7794E-06 

A0A0H3PAP2 pgi Metabolism 1.39339181 7.2788E-12 

A0A0H3PF06 CJJ81176_0186 Metabolism 1.404184091 4.54797E-13 

A1VZM8 ispH Metabolism 1.415169414 0.004440061 

A0A0H3PAA8 CJJ81176_0533 Metabolism 1.41685347 4.07597E-10 

A0A0H3PBA0 carA Metabolism 1.431771171 7.17243E-14 

A1W0I0 gpsA Metabolism 1.440378192 1.30312E-10 

A0A0H3PAC7 nuoM Metabolism 1.444783163 0.008752744 

A0A0H3PF31 CJJ81176_0427 Metabolism 1.44487348 0.022659681 

A0A0H3PH92 glcD Metabolism 1.45464072 4.33352E-08 

A0A0H3PAD5 lpxD Metabolism 1.457740599 2.87705E-14 

A1VXZ8 lpxA Metabolism 1.462139579 2.77241E-12 

A0A0H3PB10 CJJ81176_0255  Metabolism 1.478183573 6.51609E-07 

A1VZF0 cysS Metabolism 1.485927401 3.02098E-11 

A0A0H3PAG6 tpiA Metabolism 1.489387813 2.56575E-06 

A0A0H3PBB5 purD Metabolism 1.490061045 8.12768E-06 

A1VZJ6 hemL Metabolism 1.500375258 5.34246E-12 

A1VYG9 thiC Metabolism 1.505042952 1.42616E-05 

Q0ZSS3   Metabolism 1.505140619 8.68437E-14 

A1VYF9 acpP Metabolism 1.505819439 2.91892E-05 

Q1HG74 gltB Metabolism 1.510185162 1.21899E-11 

Q29VW1 gmhA-2 Metabolism 1.517891003 2.44883E-09 

A0A0H3PBV0 ilvH Metabolism 1.566697776 1.63556E-08 

Q29VH0 kpsF Metabolism 1.57311925 1.29174E-09 

A0A0H3PHX0 cjj81176_1379 Metabolism 1.594505859 6.97557E-06 

A0A0H3PBH6 cj81176_1322 Metabolism 1.600996888 1.70325E-06 

A0A0H3P9B6 thiF Metabolism 1.614767758 1.15048E-05 

A0A0H3PAH1 tyrA Metabolism 1.622698689 6.15934E-05 

A0A0H3P9S3 hydD Metabolism 1.650716691 0.009792 

A0A0H3PEI7 folP Metabolism 1.65311143 5.16213E-05 

A1VZZ8 tgt Metabolism 1.660724146 0.00484531 

A1W1W9 leuD Metabolism 1.671375897 6.74317E-09 

A1VY40 dxs Metabolism 1.682532191 8.17888E-05 

A0A0H3PCM5 metX Metabolism 1.709023388 1.44925E-05 

A1VY69 trpB Metabolism 1.720225813 2.56733E-11 

A1W068 thiE Metabolism 1.725062063 3.01406E-06 

Q29VV6 fcl Metabolism 1.73476975 7.41717E-18 

A0A0H3PH15 thiD Metabolism 1.735761228 9.66361E-06 

A0A0H3PIZ2 CJJ81176_0601 Metabolism 1.768583118 0.000119642 

Q2M5Q4 accP Metabolism 1.804263489 2.88463E-14 

A1VY70 trpA Metabolism 1.821044646 3.7185E-09 

A0A0H3PEJ1 ilvB Metabolism 1.835556939 1.46034E-10 

A1VXA6 pyrG Metabolism 1.848186797 1.21919E-11 

Q0Q7I1 purM Metabolism 1.860740172 8.53514E-10 

A1VXH9 obg Metabolism 1.875463509 0.000564786 

A1W0W6 mobA Metabolism 1.88532065 2.08662E-06 

A1W1X0 leuC Metabolism 1.888401688 1.13276E-09 

A0A0H3PD29 cobB Metabolism 1.908113094 0.000985836 

A1VZR0 apt Metabolism 1.926925569 6.91372E-14 

A1VZ41 ispG Metabolism 1.971925466 1.11281E-07 

A0A0H3PBF9 rpe Metabolism 1.987926018 1.25005E-05 

A0A0H3PBD0 bioA Metabolism 1.991192703 0.00330893 

A1W0I5 metE Metabolism 2.028422557 4.88455E-11 

A0A0H3P982 rpiB Metabolism 2.040743676 1.35659E-07 

A1VY44 xseA Metabolism 2.076710686 4.07431E-07 

A1VZF8 nadE Metabolism 2.084518532 1.70268E-06 

Q0Q7I7 mqnE Metabolism 2.117168109 1.81018E-13 

A0A0H3PEZ1 frdB Metabolism 2.138919185 1.53147E-07 

A1VYG1 accA Metabolism 2.168172853 1.36934E-07 
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A0A0H3PJ93 lysA Metabolism 2.171060285 1.52338E-15 

A0A0H3PBR9 ccpA-2 Metabolism 2.209146418 6.87342E-18 

A0A0H3PHM5 mobB Metabolism 2.284964714 8.84675E-09 

A1VYU1 rppH Metabolism 2.302246504 5.51762E-08 

A1VYL8 alaS Metabolism 2.366478893 4.15855E-12 

A0A0H3P9B2 thiH Metabolism 2.396720373 4.24782E-08 

A0A0H3PC31 hom Metabolism 2.40525962 1.96533E-08 

A1W0N8 pnp Metabolism 2.480065752 3.25744E-11 

A1VXF1 aroQ Metabolism 2.553944619 0.00091255 

A0A0H3PJ06 mqnC Metabolism 2.813863937 3.20786E-08 

A0A0H3PGM1 aspA Metabolism 2.919307004 1.03812E-17 

A0A0H3PGR5 cjj81176_0063 Metabolism 3.12742143 2.22382E-10 

A0A0H3PAG3 sdhC Metabolism 3.657099223 1.43621E-11 

A0A0H3PJB7 sdhB Metabolism 4.05847421 5.04621E-19 

A0A0H3PAD9 pglD Metabolism 1.516161068 0.009592022 

A0A0H3PBQ2 sdhA Metabolism 4.557015291 1.0262E-21 

A0A0H3PEY5 fliS Motility 1.133867454 0.002921781 

Q2M5R1 CJJ81176_1340 Motility 1.401756903 0.00721649 

A0A0H3P9L2 fliM Motility 1.460937551 0.009794324 

A0A0H3PIU8 fliD Motility 1.530766417 1.04017E-08 

A1W062 fliW Motility 1.614319716 0.028209869 

A0A0H3PDD9 flaC Motility 2.038788627 6.79442E-07 

A0A0H3PBK9 flaG Motility 2.303062456 0.000993683 

A0A0H3PD33 sixA Protein modification 3.50838383 2.40126E-08 

A1W165 truD Protein synthesis 1.028157144 0.066861889 

A1VYA9 serS Protein synthesis 1.034173751 3.63845E-14 

A1W1U6 rpsH Protein synthesis 1.060099802 2.30622E-07 

A1VZH5 trmA Protein synthesis 1.146227604 2.46356E-09 

A1VXT6 infC Protein synthesis 1.14763899 5.68313E-07 

A0A0H3PAZ6 hypB Protein synthesis 1.176579911 4.38416E-05 

A1W0I1 gatB Protein synthesis 1.259726121 3.69034E-08 

A0A0H3PDU5 tyrS Protein synthesis 1.288520058 2.86632E-13 

A1VZU7 mnmE Protein synthesis 1.290261118 0.057844223 

A1VXL9 infB Protein synthesis 1.323011744 3.19364E-08 

A1VYA6 der Protein synthesis 1.324954354 5.2472E-06 

A1VYR0 efp Protein synthesis 1.326666677 2.20448E-08 

A1W0H2 mnmG Protein synthesis 1.35272772 6.25583E-08 

A0A0H3PAI4 ileS Protein synthesis 1.383518332 3.19872E-15 

A1VXM1 rimP Protein synthesis 1.394635285 0.000216305 

A0A0H3PB64 trpS Protein synthesis 1.404087215 6.76275E-07 

A1W162 rimO Protein synthesis 1.412443976 6.97299E-06 

A1W048 gatA Protein synthesis 1.461525347 2.4725E-12 

A1VZW5 cmoB Protein synthesis 1.465588084 0.000719815 

A1W163 prfB Protein synthesis 1.535603691 2.2066E-11 

A1VYH4 miaB Protein synthesis 1.583679774 7.31594E-06 

A1W1L4 prfA Protein synthesis 1.59118897 2.06483E-09 

A0A0H3P9K7 metS Protein synthesis 1.593951393 2.57393E-11 

A0A0H3PCJ0 CJJ81176_0101 Protein synthesis 1.726454881 1.9167E-07 

A0A0H3PBB3 rbfA Protein synthesis 1.732167633 0.026284724 

A1VZB3 hisS Protein synthesis 1.777135779 5.78592E-16 

A1W0R3 trmB Protein synthesis 1.925358637 0.007751629 

A0A0H3P9L9 rpsA Protein synthesis 1.937216852 5.43025E-14 

A1W1J4 rpsM Protein synthesis 1.976800811 1.70131E-05 

A1VZ20 era Protein synthesis 2.218847896 0.002357589 

A1VYB8 gatC Protein synthesis 2.515538006 8.96293E-05 

A0A0H3PIS8 clpX Stress Response 1.000868316 4.11912E-08 

A0A0H3P9Q3 csrA Stress Response 1.010181468 0.023939028 

Q7X518 pseD Stress Response 1.069026011 6.20301E-05 

A1VXS0 clpP Stress Response 1.108983015 5.68675E-10 
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A1VZ21 hslU Stress Response 1.126012373 2.70991E-11 

A0A0H3PBY8 CJJ81176_0298 Stress Response 1.139662765 4.65604E-10 

A0A0H3PAZ2 slyD Stress Response 1.142440374 1.6743E-11 

A0A0H3PB76 dnaJ-1 Stress Response 1.179159393 0.092966683 

A0A0H3PHS4 CJJ81176_1536 Stress Response 1.186503532 0.013071774 

Q5QKR7 pseC Stress Response 1.213674551 6.19784E-07 

A0A0H3PC09 hypC Stress Response 1.253643969 0.000149657 

A0A0H3PAN1 CJJ81176_1158  Stress Response 1.27992193 5.64323E-08 

Q3I354 luxS Stress Response 1.288212661 0.100860533 

A1VXQ2 sodB Stress Response 1.342616101 1.81021E-10 

A0A0H3PAG5 radA Stress Response 1.542327732 0.00799796 

A1W0P5 dnaJ Stress Response 1.553230164 0.001104859 

A0A0H3PJI4 recN Stress Response 1.734055854 9.4529E-06 

A0A0H3PEB4 nth Stress Response 1.772489163 7.55877E-12 

A0A0H3PAC3 CJJ81176_1161  Stress Response 1.866184386 1.96754E-13 

A1VYU6 ligA Stress Response 1.866330728 2.06032E-09 

A0A0H3P9V7 CJJ81176_1101  Stress Response 1.896127554 4.22233E-08 

A0A0H3P9M1 napD Stress Response 1.969956486 0.000514118 

A0A0H3P9D2 CJJ81176_1077 Stress Response 2.128397855 4.8725E-06 

A0A0H3PGY0 ppiB Stress Response 2.153548917 1.22657E-10 

A0A0H3PIA1 CJJ81176_1539 Stress Response 2.663445686 1.75308E-09 

A0A0H3PAU2 CJJ81176_1538 Stress Response 2.870142876 9.92744E-07 

A1W0U6 pseG Stress Response 3.040628086 2.31316E-05 

A0A0H3PA51 napG Transport 1.100156175 0.003588484 

A0A0H3PBL7 fur Transport 1.253431932 0.090209041 

A1VZT4 secA Transport 1.287004642 4.43645E-07 

A1VZC8 napA Transport 1.325001806 4.45714E-12 

A1VXI7 atpH Transport 1.464762002 0.004297885 

A0A0H3PAG9 CJJ81176_0672 Transport 1.46688738 2.4599E-09 

A0A0H3PDE7 CJJ81176_0897  Transport 1.630136757 0.018923871 

A0A0H3PA74 napB Transport 1.770042288 4.1411E-13 

A0A0H3PEE2 secG Transport 1.882106369 0.003158638 

A0A0H3PA60 dcuA Transport 2.900436113 4.0325E-05 

Q0Q7H5 CJJ81176_1574 Transport 3.06743769 1.28427E-11 

A0A0H3PBF3 CJJ81176_1241 

Two component 

regulatory system 1.186590423 4.42809E-07 

A0A0H3PJ41 cj81176_0671 

Two component 

regulatory system 1.482600846 3.34561E-12 

A0A0H3P9R0 CJJ81176_1236 

Two component 

regulatory system 1.916532986 3.62374E-09 

A0A0H3PA31 CJJ81176_0693 Uncharacterized 1.011450668 0.139232646 

A0A0H3P991 CJJ81176_0018 Uncharacterized 1.046898695 3.55284E-07 

A0A0H3PAM9 CJJ81176_1458 Uncharacterized 1.069399224 0.000125353 

A0A0H3PBR7 CJJ81176_0420 Uncharacterized 1.069838273 0.124429478 

A0A0H3P9U1 CJJ81176_1487 Uncharacterized 1.071468129 3.43809E-10 

A1VYL9 CJJ81176_0535 Uncharacterized 1.076431392 0.156886486 

A0A0H3PE88 CJJ81176_1417 Uncharacterized 1.088019062 1.52733E-11 

A0A0H3PCE6 CJJ81176_0935 Uncharacterized 1.102228856 0.09896491 

A1VY95 CJJ81176_0398 Uncharacterized 1.107976374 5.993E-09 

A0A0H3PEC2 CJJ81176_0189  Uncharacterized 1.110044274 0.105298429 

A0A0H3PAS3 CJJ81176_0705  Uncharacterized 1.129127816 0.108896822 

A0A0H3PAA2 CJJ81176_0288 Uncharacterized 1.141692559 8.73309E-07 

A0A0H3PIE6 CJJ81176_1488  Uncharacterized 1.15819802 5.56613E-06 

A0A0H3P9Y5 CJJ81176_pTet0016 Uncharacterized 1.178538124 0.006376335 

A0A0H3P9J4 CJJ81176 Uncharacterized 1.196272957 1.73634E-06 

A0A0H3PDS7 CJJ81176_1355  Uncharacterized 1.217815208 0.000896173 

A0A0H3PDT1 CJJ81176_1265  Uncharacterized 1.229975051 1.30307E-05 

A0A0H3PGL0 CJJ81176_1732  Uncharacterized 1.23711704 0.032023131 

A0A0H3PAI2 CJJ81176_1230 Uncharacterized 1.24558028 3.65559E-06 
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A0A0H3PJC9 CJJ81176_0518 Uncharacterized 1.248801296 0.007101476 

A0A0H3PHT8 CJJ81176_1541 Uncharacterized 1.265629473 0.006830475 

A0A0H3PJE6 CJJ81176_0622 Uncharacterized 1.284662984 0.000457811 

A0A0H3PJ75 CJJ81176_0306 Uncharacterized 1.288539279 0.003029216 

A0A0H3PDK8 CJJ81176_1475 Uncharacterized 1.292190688 3.15307E-05 

A0A0H3PA27 CJJ81176_0713 Uncharacterized 1.305923998 1.20103E-09 

A1W0U8 hisF2 Uncharacterized 1.316691038 0.011944518 

A0A0H3PDH2 CJJ81176_0856 Uncharacterized 1.323851921 0.074311693 

Q29VV5 CJB1429c Uncharacterized 1.332425918 3.42607E-13 

A0A0H3PIQ2 CJJ81176_1657  Uncharacterized 1.408099612 0.022925976 

A0A0H3P9M3 CJJ81176_0048  Uncharacterized 1.411345637 0.000138788 

A0A0H3P9Z9 CJJ81176_0708 Uncharacterized 1.421875564 0.001365204 

A0A0H3P9P2 CJJ81176_1326  Uncharacterized 1.448402988 2.01788E-07 

A0A0H3PB39 CJJ81176_1673 Uncharacterized 1.448615032 0.009310839 

A0A0H3P9B0 CJJ81176_0135 Uncharacterized 1.45313159 1.12926E-06 

A0A0H3PAF1 CJJ81176_1363  Uncharacterized 1.459583714 0.002229546 

Q8GJE8 Cjp04 Uncharacterized 1.480258865 0.008283191 

A0A0H3PED7 CJJ81176_0477 Uncharacterized 1.480616811 0.000247027 

Q2M5Q7 CJJ81176_1317  Uncharacterized 1.488507364 0.000272481 

A0A0H3PAS5 CJJ81176_0840 Uncharacterized 1.499445897 0.003008268 

Q2M5Q6 CJJ81176_1318 Uncharacterized 1.50523359 2.58508E-07 

A0A0H3PAA3 CJJ81176_1453 Uncharacterized 1.548266497 0.055976986 

A0A0H3PA08 CJJ81176_0742 Uncharacterized 1.551026004 2.97742E-06 

A0A0H3PB55 CJJ81176_0474 Uncharacterized 1.559499087 2.45943E-12 

A0A0H3P9N1 CJJ81176_0889 Uncharacterized 1.564552176 9.694E-08 

A0A0H3P968 CJJ81176_pTet0026 Uncharacterized 1.604041968 1.66615E-05 

A0A0H3P9T3 CJJ81176_1422 Uncharacterized 1.604671486 2.52942E-05 

A0A0H3P9J3 CJJ81176_0988 Uncharacterized 1.605917139 0.00793143 

A0A0H3PCA8 CJJ81176_pTet0048 Uncharacterized 1.631468308 3.59433E-09 

A0A0H3PEH2 CJJ81176_0532 Uncharacterized 1.664236101 3.54751E-10 

Q0Q7K6 CJJ81176_0776 Uncharacterized 1.689324156 3.02022E-07 

A0A0H3P9W6 A0A0H3P9W6 Uncharacterized 1.690343647 1.70021E-05 

A0A0H3PCA0 CJJ81176_pTet0008 Uncharacterized 1.710466444 2.04289E-11 

A0A0H3PIU3 CJJ81176_0188  Uncharacterized 1.725670658 0.001227559 

A0A0H3PAV9 CJJ81176_1416 Uncharacterized 1.768729121 6.88555E-08 

A0A0H3PAB0 CJJ81176_0107 Uncharacterized 1.775596566 3.9107E-12 

A0A0H3P9M8 CJJ81176_0136 Uncharacterized 1.78274895 1.70867E-09 

Q0Q7K3 CJJ81176_0779 Uncharacterized 1.789819011 4.18066E-06 

Q29VV4 CJJ81176_1430 Uncharacterized 1.796746553 6.83196E-17 

A0A0H3PDT4 CJJ81176_1617 Uncharacterized 1.798570056 0.082903445 

A0A0H3PEN5 CJJ81176_0484 Uncharacterized 1.815247556 0.000511668 

Q2A947 CJJ81176_1444 Uncharacterized 1.81763975 9.43337E-15 

A0A0H3PAA1 CJJ81176_1497 Uncharacterized 1.834523941 1.03159E-11 

A0A0H3PDG2 CJJ81176_0891 Uncharacterized 1.869031325 0.004783325 

A0A0H3P9I1 CJJ81176_0782 Uncharacterized 1.872076498 2.76873E-06 

A0A0H3PJA2 CJJ81176_0520  Uncharacterized 1.889814326 2.51041E-05 

A0A0H3PED0 CJJ81176_0391 Uncharacterized 1.954712401 3.2561E-05 

A0A0H3PJ11 CJJ81176_0153 Uncharacterized 1.981378352 4.23823E-10 

A0A0H3PBF4 CJJ81176_0342 Uncharacterized 1.989755696 0.000631073 

A0A0H3PAI7 CJJ81176_1559  Uncharacterized 2.044239894 3.27283E-15 

A0A0H3PB85 CJJ81176_0254 Uncharacterized 2.063460325 0.018845967 

A0A0H3PA59 CJJ81176_1259  Uncharacterized 2.063765778 1.64128E-06 

A0A0H3P973 CJJ81176_pTet0021 Uncharacterized 2.07184484 1.89136E-07 

A0A0H3PBM5 CJJ81176_0187 Uncharacterized 2.103346614 2.16776E-05 

A0A0H3PBZ1 CJJ81176_0414  Uncharacterized 2.104108023 0.005175637 

A0A0H3PAE1 CJJ81176_0192 Uncharacterized 2.109777793 0.005282709 

A0A0H3PAT8 CJJ81176_1274 Uncharacterized 2.120615253 4.58826E-06 

A0A0H3P9L3 CJJ81176_0728 Uncharacterized 2.133251916 4.95086E-06 

A0A0H3PHH8 CJJ81176_0888  Uncharacterized 2.136170609 0.001343462 
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Q1HG73 CJJ81176_0034 Uncharacterized 2.144531973 7.09985E-14 

Q2M5Q9 CJJ81176_1315 Uncharacterized 2.191865091 3.76418E-08 

A0A0H3PJB0 CJJ81176_0403 Uncharacterized 2.285163654 4.47456E-07 

A0A0H3PGW3 CJJ81176_1177 Uncharacterized 2.288993451 0.000150261 

A0A0H3PJK4 CJJ81176_0436 Uncharacterized 2.294984015 2.3348E-08 

A0A0H3PAF3 CJJ81176_0231  Uncharacterized 2.337724249 2.36023E-10 

A0A0H3PAL1 CJJ81176_1102 Uncharacterized 2.373502542 4.55585E-10 

A0A0H3PB78 CJJ81176_1414 Uncharacterized 2.391545958 3.69242E-05 

A0A0H3PDW4 CJJ81176_1424  Uncharacterized 2.407901171 1.4773E-07 

A0A0H3PB91 CJJ81176_0355 Uncharacterized 2.451761394 3.19382E-17 

A0A0H3PBN8 CJJ81176_0437  Uncharacterized 2.454809835 4.91324E-11 

A0A0H3PAS8 CJJ81176_0740 Uncharacterized 2.542192699 8.43202E-05 

A0A0H3PEW6 CJJ81176_0447  Uncharacterized 2.751304085 9.69262E-13 

A0A0H3PB96 CJJ81176_0611 Uncharacterized 2.813846229 1.18082E-08 

A0A0H3PAR1 napL Uncharacterized 2.855113696 1.3788E-05 

Q2M5R0 CJJ81176_1341 Uncharacterized 3.008373278 1.27588E-14 

A0A0H3P9D8 CJJ81176_1104  Uncharacterized 3.29864659 2.81688E-08 

 

Appendix 7: Significantly differentiated proteins between 81-176 cultured in CDB at 37
o
C 

                         for 24h and 42
o
C for 24h 

 

 

Significantly downregulated 

  UniProt_Accession Gene Name Protein function logFC P.Value 

A1VZM0 ftsK 

Cell cycle, cell 

division -1.20474896 0.004230464 

A0A0H3P9C4 CJJ81176_1204 Chemotaxis -1.035823029 4.24941E-12 

A0A0H3P9Q7 mfd DNA Transcription -1.22666595 2.40029E-14 

A1W068 thiE Metabolism -2.009158025 2.23153E-05 

A0A0H3PGM1 aspA Metabolism -1.890099225 5.31322E-14 

A1VY44 xseA Metabolism -1.547614878 0.006384254 

A1VY70 trpA Metabolism -1.509672276 9.71639E-08 

A1VY69 trpB Metabolism -1.381791525 4.01416E-10 

A0A0H3PH15 thiD Metabolism -1.321444213 8.94999E-13 

A0A0H3P9S3 hydD Metabolism -1.308128592 0.001564111 

A0A0H3PCZ7 CJJ81176_1082 Metabolism -1.251112019 0.055654729 

A0A0H3PHM5 mobB Metabolism -1.182982394 0.060239688 

A0A0H3PBQ2 sdhA Metabolism -1.150476408 5.73816E-12 

A0A0H3PJB7 sdhB Metabolism -1.118747887 2.82749E-14 

A0A0H3PBB6 trpE Metabolism -1.101618852 8.21177E-07 

A1W062 fliW Motility -1.171004942 0.110800187 

A1W1J3 rpmJ Protein synthesis -4.445303331 0.0005841 

A0A0H3PBB3 rbfA Protein synthesis -1.417005111 0.109312767 

A1VXH9 obg Protein synthesis -1.381048955 0.008940218 

A0A0H3PDV7 selB Protein synthesis -1.062590486 0.068775623 

A1VZ20 era Protein synthesis -1.018442569 0.018310119 

A0A0H3PAU2 CJJ81176_1538 Stress Response -1.256788113 2.78386E-06 

Q3I354 luxS Stress Response -1.25277018 0.088147969 

A0A0H3P9V7 CJJ81176_1101 Stress Response -1.099808664 6.07096E-06 

A0A0H3PE81 CiaC Stress Response -1.090438163 0.019756288 

A0A0H3PA60 dcuA Transport -1.3731478 1.48649E-08 

Q0Q7H5 CJJ81176_1574 Transport -1.123500175 4.66337E-08 

A0A0H3PBF3 CJJ81176_1241 

Two-component 

regulatory system -1.1594126 2.09953E-09 

A0A0H3PH34 CJJ81176_1055 Uncharacterized -2.489932867 0.003187697 

A0A0H3PAF3 CJJ81176_0231 Uncharacterized -1.769249606 9.72991E-09 

Q8GJE8 Cjp04 Uncharacterized -1.733102229 0.019927421 
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A0A0H3PAL1 CJJ81176_1102 Uncharacterized -1.651613239 1.28592E-09 

A0A0H3PJA2 CJJ81176_0520 Uncharacterized -1.569143913 7.56635E-05 

A0A0H3PHG6 CJJ81176_0854 Uncharacterized -1.506690926 0.002479818 

A0A0H3PJ75 CJJ81176_0306 Uncharacterized -1.500720015 0.000493759 

Q2M5R0 CJJ81176_1341 Uncharacterized -1.256468072 6.02718E-10 

A0A0H3PIC7 CJJ81176_1509 Uncharacterized -1.256350259 0.009843407 

A0A0H3PIW6 CJJ81176_0547 Uncharacterized -1.159016383 0.001202373 

A0A0H3PJB0 CJJ81176_0403 Uncharacterized -1.144908063 1.64597E-06 

A0A0H3P9V0 CJJ81176_1433 Uncharacterized -1.135152327 0.059317961 

A0A0H3PGW3 CJJ81176_1177 Uncharacterized -1.132828646 0.014311253 

A0A0H3P9D8 CJJ81176_1104 Uncharacterized -1.074878404 5.55413E-05 

A0A0H3PEW6 CJJ81176_0447 Uncharacterized -1.069469976 6.49657E-12 

Q2M5Q9 CJJ81176_1315 Uncharacterized -1.014281314 5.72494E-07 

Q2M5Q0 CJJ81176_1314 Uncharacterized -1.013555098 0.172609895 

  

  

    

  
Significantly upregulated 

     

UniProt_Accession Gene Name Protein function logFC P.Value 

A0A0H3PEV8 pbpA 

Cell cycle, cell 

division 1.086928089 0.051214493 

A0A0H3P9T7 cj81176_1498 Chemotaxis 1.003934051 2.88928E-06 

A0A0H3PEL1 cjj81176_0289 Chemotaxis 1.864654961 2.43E-06 

A0A0H3P9E8 petC Metabolism 1.003628931 1.73188E-05 

A0A0H3PD90 purE Metabolism 1.003687748 0.00203151 

A0A0H3PDM3 sdaC Metabolism 1.034201918 2.30004E-06 

A1W0X7 ppk Metabolism 1.045897542 2.08733E-06 

A0A0H3PI37 nuoC Metabolism 1.076929531 0.000801471 

A0A0H3PCI0 cjj81176 Metabolism 1.090934978 1.50056E-08 

A0A0H3PAC1 nuoG Metabolism 1.109217101 2.27597E-11 

A0A0H3PB89 CJJ81176_1237 Metabolism 1.10969296 0.023202938 

A0A0H3PDD6 CJJ81176_0814 Metabolism 1.158767957 0.008647741 

A0A0H3P9R4 sdaA Metabolism 1.200300402 5.49352E-08 

A0A0H3P9Q2 nrfA Metabolism 1.22993766 2.56694E-10 

A0A0H3PEJ9 frdC Metabolism 1.243172386 0.001825513 

A0A0H3PEX3 CJJ81176_0544 Metabolism 1.311352748 0.017042922 

A0A0H3PAQ1 CJJ81176_0849 Metabolism 1.319366315 0.022040424 

A0A0H3PHB9 petA Metabolism 1.48190009 3.98065E-10 

A0A0H3PI21 nrfH Metabolism 1.691280791 0.000420962 

A0A0H3PA38 cydA Metabolism 1.729442395 0.004420028 

A0A0H3PIF6 fliL Motility 1.050277067 6.1643E-07 

A1W1U3 rpsE Protein synthesis 1.032367963 0.000292876 

A1VY90 rpsU Protein synthesis 1.16168108 5.90784E-10 

A1VYI7 rpmG Protein synthesis 1.239822446 0.002556072 

A1VXH8 rpmA Protein synthesis 1.635338757 4.07831E-11 

A1W1L3 rpsT Protein synthesis 1.756996902 0.001599569 

A1W1V8 rplW Protein synthesis 1.859007364 0.000136365 

A0A0H3PBW9 clpB Stress Response 1.009828881 1.23669E-11 

A0A0H3PB76 dnaJ-1 Stress Response 1.019217245 0.020208818 

A1W0K4 groL Stress Response 1.029285959 2.63301E-15 

A1W0P5 dnaJ Stress Response 1.094490901 2.39007E-09 

Q0Q7K7 dnaK Stress Response 1.120778286 2.11638E-18 

A0A0H3P9Z0 CJJ81176_pTet0010 Stress Response 1.146456678 0.000167558 

A0A0H3PA35 dsbA Stress Response 1.208240518 0.00243096 

Q0Q7K8 grpE Stress Response 1.429643573 5.60992E-13 

A0A0H3PDE7 CJJ81176_0897 Transport 1.118483048 0.000949373 

A0A0H3PAQ2 CJJ81176_0494 Transport 1.184647717 0.02614528 

A0A0H3P9L8 atpF Transport 1.299150728 0.034367151 

A0A0H3PAY0 tatB Transport 1.369143595 0.001863966 

A0A0H3PB37 CJJ81176_1244 Two-component 1.327856279 0.026858687 
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regulatory system 

A0A0H3PBU4 CJJ81176_0392 Uncharacterized 1.292671478 0.00123255 

A0A0H3PJB3 CJJ81176_0263 Uncharacterized 1.306677978 0.007967564 

A0A0H3PH47 CJJ81176_1185 Uncharacterized 1.332043969 1.10882E-12 

A0A0H3P9S8 CJJ81176_1184 Uncharacterized 1.430281836 5.58088E-10 

A0A0H3PEX7 CJJ81176_0438 Uncharacterized 1.502025847 0.002799808 

A0A0H3PEW9 CJJ81176_0659 Uncharacterized 1.605057927 0.000123031 

A0A0H3PCF8 CJJ81176_0975 Uncharacterized 1.660548853 0.006829101 

A0A0H3PAH4 CJJ81176_0565 Uncharacterized 1.743396073 0.011199139 

Q8GJC5 Cjp29 Uncharacterized 2.086928658 3.54031E-05 

A0A0H3PBB0 CJJ81176_1666 Uncharacterized 2.277171619 0.011192803 

 

Appendix 8: Significantly differentiated communal adaptation proteins between 81-176 

cultured in CDM supplemented with CA 0.1%, DCA 0.05%, LCA 0.5%, TCA 0.5%, CDCA 

0.05%, UDCA 0.5% and GCA 0.4% cultured at 37
o
C for 12h and 42

o
C for 24h 

 
Uniprot code Gene name Protein function 

A0A0H3PDA2 ftsZ Cell division 

A1W043 murC Cell structure 

A1W0A5 cheY Chemotaxis 

A0A0H3P989 recJ DNA recombination 

A0A0H3PED7 CJJ81176_0477 DNA replication 

A0A0H3PAM5 CJJ81176_0297 Metabolism 

A1W035 thiG Metabolism 

A0A0H3PHF5 CJJ81176_0907  Metabolism 

A1VZR0 apt Metabolism 

A0A0H3P9J6 pta Metabolism 

A0A0H3PB78 CJJ81176_1414  Metabolism 

Q29VH0 kpsF Metabolism 

Q2M5Q2 pseF Metabolism 

A0A0H3P9K9 CJJ81176_0850  Metabolism 

A0A0H3PC31 hom Metabolism 

A1W0I0 gpsA Metabolism 

A0A0H3PDU5 tyrS Metabolism 

A0A0H3PAH1 tyrA  Metabolism 

A0A0H3PBK5 purS Metabolism 

A0A0H3P9B2 thiH Metabolism 

A0A0H3PA59 CJJ81176_1259  Metabolism 

A1W0W6 mobA Metabolism 

A1VY40 dxs Metabolism 

A0A0H3P9K8 CJJ81176_0111 Metabolism 

A0A0H3PB85 CJJ81176_0254  Metabolism 

A0A0H3PI81 gltA Metabolism 

A0A0H3PA64 ggt Metabolism 

A0A0H3PGR5 CJJ81176_0063 Metabolism 

A1VY31 pth Metabolism 

Q0Q7I1 purM Metabolism 

A1VYU1 rppH Metabolism 

A0A0H3PD33 sixA Metabolism 

A0A0H3PH94 gmk Metabolism 

A1VYM4 purC Metabolism 

A1VYQ4 hemC Metabolism 

A1W1K3 hisA Metabolism 

A0A0H3PAJ4 hisI Metabolism 

A1W1W9 leuD Metabolism 

A0A0H3P9R4 sdaA Metabolism 
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A1VYA9 serS Metabolism 

A0A0H3PA78 fliY Motility 

A0A0H3PBL4 hypE Protein synthesis 

A0A0H3PB64 trpS Protein synthesis 

A0A0H3PAZ6 hypB Protein synthesis 

A0A0H3PDX5 rnc Protein synthesis 

A1W0R3 trmB Protein synthesis 

Q0Q7K8 grpE Stress Response 

Q0Q7K2 CJJ81176_0780 Stress Response 

A0A0H3PBW9 clpB Stress Response 

A1VXQ2 sodB Stress Response 

A0A0H3PED0 CJJ81176_0391  Transcription, Transcription regulation 

A0A0H3PDE7 CJJ81176_0897 Transport 

A0A0H3PF18 CJJ81176_0446  Transport 

A0A0H3P9J7 CJJ81176_0137  Transport 

A0A0H3PEX7   Uncharacterized 

A0A0H3PB55 CJJ81176_0474  Uncharacterized 

A0A0H3P9T3 CJJ81176_1422  Uncharacterized 

A0A0H3PAF1 CJJ81176_1363 Uncharacterized 

A0A0H3PDG2 CJJ81176_0891  Uncharacterized 

A0A0H3P991 CJJ81176_0018  Uncharacterized 

A0A0H3PAW5 CJJ81176_1624  Uncharacterized 

A0A0H3PC13 CJJ81176_0374  Uncharacterized 

A0A0H3PEW9 CJJ81176_0659 Uncharacterized 

A0A0H3PDS7 CJJ81176_1355  Uncharacterized 

A0A0H3PEL5 CJJ81176_0280 Uncharacterized 

Q8GJC5 Cjp29 Uncharacterized 

A0A0H3P9M1 napD Uncharacterized 

A0A0H3PDW4 CJJ81176_1424  Uncharacterized 

A0A0H3PA08 CJJ81176_0742 Uncharacterized 

A0A0H3PBF4 CJJ81176_0342 Uncharacterized 

Q0Q7K3 CJJ81176_0779 Uncharacterized 

A0A0H3PB96 CJJ81176_0611  Uncharacterized 

A1W0U8 hisF2 Uncharacterized 

A0A0H3PAA1 CJJ81176_1497 Uncharacterized 

A0A0H3P9U1 CJJ81176_1487  Uncharacterized 

A0A0H3P986   Uncharacterized 

A0A0H3P9Z0 CJJ81176_pTet0010 Uncharacterized 

A0A0H3P9L3 CJJ81176_0728  Uncharacterized 

A0A0H3PAC3 CJJ81176_1161 Uncharacterized 

A0A0H3P9G9 Cpp35 Uncharacterized 

A0A0H3PD80 CJJ81176_0830  Uncharacterized 

A0A0H3P9N6 CJJ81176_0110  Uncharacterized 

A0A0H3P973 CJJ81176_pTet0021  Uncharacterized 

A0A0H3P9B0 CJJ81176_0135  Uncharacterized 

A0A0H3PIZ2 CJJ81176_0601  Uncharacterized 

A0A0H3PJ41 CJJ81176_0671 Uncharacterized 

A0A0H3PBB8 CJJ81176_0472 Uncharacterized 

Q6QNL7 CJJ81176_1356 Uncharacterized 

A0A0H3P9J3 CJJ81176_0988  Uncharacterized 

A0A0H3PHU2 CJJ81176_1517  Uncharacterized 

A0A0H3P9B6 thiF Uncharacterized 

A0A0H3P9A5 CJJ81176_0112 Uncharacterized 
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