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Summary 

 

The greenhouse whitefly Trialeurodes vaporariorum – Westwood is one of the most 

important insect pests in crops. The spatial dynamics and population grow of the 

insects are affected by different biotic and abiotic factors like the host plant quality, 

the control by natural enemies or the presence of another kind of pest such as 

mildew fungus. Patterns of the population behavior in tomato crops were used to 

develop an age-structured, spatially explicit, individual-based model with a 

description of the developmental biology of the whitefly individuals. The model 

comprises three types of entities: 1) plant leaves, 2) pest insects, 3) parasitoid insects 

and the presence of the fungus Oidium neolycopersici (powdery mildew). The plants 

are modeled only as space units with a dynamic size to store insects. The insects’ 

populations are modeled in an age-structured design to mimic their growth and 

development as in real systems. For the pest insects, the key process is the dispersal, 

in which the individuals decide where to move, for this purpose four different basic 

rules under density dependent and density independent context were tested with 

respect to their ability to create patterns similar to the patterns observed in nature. 

The parasitoid insect Encarsia formosa is also modeled in an age-structured 

population and its effect on the pest insect is implemented to affect the second stage 

of nymphs, mimicking host-feeding, and the third and fourth stage of nymphs, 

representing the parasitization. The mildew fungus, that affects the behavior of E. 

formosa is modeled as present or absent in the leaves and its effect on the behavior 

of the insects was tested. The results show that whitefly dispersal follows rules 

probably related with chemical or visual cues to orient their flights and these rules 

can be used to represent population growth patterns and spatial distribution. The 

effect of biocontrol by E.formosa is important and varies with the three dispersal 

rules tested, where the exponential function gives the more realistic representation 

of the parasitoid foraging behavior. Furthermore, the presences of mildew in the 

leaves affecting the parasitoid foraging activity result in an increase of dispersion of 

the whitefly population. As the interaction between the fungi and whiteflies is not 
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explicitly modeled in this study the results suggest that the presence of mildew have 

a negative direct effect on the parasitoids foraging behavior and a positive indirect 

effect on the whiteflies increasing its dispersion probably because the presence of 

mildew makes the infected leaf a protected refuge for the whitefly. This interaction 

deserves more research in the field and in real experiments in order to get more 

details to be included later in the simulations to study a more realistic scenario. The 

severity or incidence of mildew in the crop related with the dynamics of whiteflies 

and parasitoids in real-like experiments could help to improve the knowledge about 

these multitrophic interactions. The main conclusion is that this research tool can be 

used to orient the future research on this system. Some gaps in knowledge were 

found that can be important to better understand the function of the systems. 
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1 General Introduction 

  

The crop production losses to pests can vary from 7% (Oliveira et al., 2014) up to 80% 

(Oerke, 2006). Tomato crops are often affected by pests like the greenhouse whitefly 

Trialeurodes vaporariorum – Westwood and tomato powdery mildew Oidium neolycopersici. 

T. vaporariorum is one of the most important phytophagous insects in vegetables and 

ornamentals (Greenberg et al., 2009). One of the successful methods to reduce the impact 

of T. vaporariorum on crops is the biological control strategy using the parasitoid Encarsia 

formosa - Gahan (van Lenteren et al., 1996). O. neolycopersici is known to cause problems in 

tomato since the 1980´s in Europe, especially in greenhouses (Mieslerová et al., 2004). 

Additionally, the presence of O. neolycopersici affects the interaction between 

T.vaporariorum and E. formosa by reducing the parasitization rate (Focke, 2000).  

Different approaches have been used to study the dispersal process of insects in agriculture, 

showing the importance of factors like wind, humans, or the interactions with other 

organisms (Mazzi and Dorn, 2012; Schellhorn et al., 2014). Until now the dispersal patterns 

of T. vaporariorum and E. formosa, as well as O. neolycopersici in tomato crops, have been 

studied separately  (Chelal and Hau, 2015; Jiang et al., 1999), but the interactions between 

the pathogens and insects and the effects on their spatial distribution in crops have not been 

studied yet. To my knowledge, this is the first study to approach this complex system in a 

way that includes the pest, parasitoids, and phytopathogens, building up from the simple 

pest – crop model to the most complex pest – parasitoid – fungus – crop model.  

 

Insect pest Trialeurodes vaporariorum 

 

The dispersal process of whiteflies Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) has 

been studied in laboratory and greenhouses (Gabarra et al., 2004; Rincon et al., 2015). T. 

vaporariorum foraging times spent on the leaves show a preference for young leaves and 
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shorter times on old leaves for experienced adults. The within-plant movement takes place 

mainly one day after the emergence of the adult and can be on average 2.5 leaves up. The 

between-plants movement also starts on the day of emergence and can reach the distance 

of up to 125 cm from the plant of emergence. This pattern can explain the aggregated 

distribution observed in crops (Noldus et al., 1986a, 1986b, 1985; Pérez et al., 2011a). 

Factors such as temperature and insects density can affect the pest movement length 

(Bonsignore, 2014) but also chemical and visual cues from plants can be used by the pest to 

orient the flight (Bleeker et al., 2009). 

The whitefly flight and dispersal are very complex processes and therefore, it is important to 

understand their functioning in crops more than in well-studied laboratory conditions. 

However, the experiments already conducted in crops prove it difficult to collect the data, 

due to the small size of the insects and the difficulty to intercept all the flights  (Bonsignore, 

2014). Therefore, in this study, I used the simulation approach in order to elucidate the 

components that could be playing an important role in the dispersal process. Furthermore, I 

tested the effects of different dispersal behavior rules of whitefly adults on the dynamics of 

its population. 

 

Insect parasitoid Encarsia Formosa 

 

Encarsia formosa (Hymenoptera: Aphelinidae) is a successful biological control agent for T. 

vaporariorum in crops. As primary parasitoid, E. formosa reproduces parthenogenetically by 

the parasitization of nymph stages of whiteflies like T. vaporariorum (van Lenteren et al., 

1996). The foraging behavior of Encarsia formosa in the crop is a crucial aspect to 

understand and explain the success of biocontrol in the system. The behavior of the 

parasitoid in the leaves is well studied (Fransen and Lenteren, 1993; van Lenteren et al., 

1995; van Roermund et al., 1997) but its ability to distinguish between infested and 

uninfested leaves from a distance seems unclear. Studies in wind tunnel reported 

contradictory results, for example, according to (Noldus and Van Lenteren, 1990) the 

presence of the host pest on leaves has no influence on plant choice. However,  another 



                                                                                           General Introduction 

9 
 

study shows differences in the plant selection when the host pest is present (Guerrieri, 

1997). 

As insects´ dispersal is difficult to follow in field studies, some insights can be inferred from 

simulations based on parameters and observations of the behavior and distribution of the 

insects. In an individual-based simulation model of E. formosa and T. vaporariorum   

Roermund et al. (1997) assumed a random search dispersal for E. formosa in the leaf and the 

same exponential empirical function to move between plants for both pest and parasitoid 

differing only in one parameter that described the decrease in the probability to find a new 

plant as the distance between plants increases. Though this simulation study shows good 

control of the pest by the parasitoid, the parasitoid’s dispersal behavior remains unclear. 

Therefore, I extended the whitefly - tomato model to include the effects of the parasitoid on 

the dispersion and biocontrol of T. vaporariorum.  

 

Tomato powdery mildew Oidium neolycopersici 

 

The tomato powdery mildew, Oidium neolycopersici, is reported as a pest in greenhouses 

since the 1980´s (Fletcher et al., 1988). O. neolycopersici is an obligate biotrophic pathogen 

in more than 60 plants species, making white lesions in leaves and stems in the glasshouse 

and open field crops (Jones et al., 2001). The optimal conditions for development range from 

15 to 25°C and 60% to 90% relative humidity in experimental conditions for the spore 

germination, appressoria formation, and sporulation. The increase in temperature and/ or 

relative humidity reduces the activity and success of the pathogen in the leaves (Jacob et al., 

2008; Whipps and Budge, 2000). However, the inhibition of development of O.neolycipersici 

was not observed in six different plant genera including 10 species of the genus 

Lycopersicon, but a delay in development was present in some cases. Furthermore, low light 

intensity and dark periods can delay or inhibit the development of the pathogen  

(Mieslerová and Lebeda, 2010; Mieslerová et al., 2004).  

The effect of O. neolycopersici on its host plant tomato and the synchrony of the disease 

with the host plant growth seems to be important to understand the dynamics of this plant 
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disease and its damage to the crop. The importance to take into account not only the 

pathogen but also the host-plant dynamics was highlighted as a more realistic approach as 

opposed to the epidemiological studies about the disease alone (Chelal and Hau, 2015). The 

presence of O. neolycopersici can also negatively affect the parasitization rate of E. formosa 

on whiteflies in experimental conditions (Focke, 2000). Thus, to understand the dynamics of 

pest and parasitoid in crops it was necessary to extend the model by adding O. 

neolycopersici. The aim was to study the effects of O. neolycopersici on the dispersion of pest 

and parasitoid populations. 

 

Simulation model approaches 

 

Simulation models are versatile tools used to develop theory and to perform virtual 

experiments that can be difficult in nature (Zurell et al., 2010). They can help to identify gaps 

in knowledge or guide the design of real experiments (Peck, 2004). Individual-based and 

differential equation population-based models are used to study different aspects of 

ecosystems, for example, the individual-based model of aphid population dynamics used to 

study the interactions between aphids with different landscapes configurations (Parry et al., 

2006) or the population-based model used to study mass rearing mites population growth 

under different management aspects (Bustos et al., 2016). The individual-based approach is 

suitable to use when the individual behavior or the variability between individuals is 

essential to answer the research question (DeAngelis and Grimm, 2014).  

Individual-based models have been used to study the spatial distribution of immature stages 

of whiteflies in tomato plants (Rincon et al., 2015). They generate a more realistic 

distribution than the simple assumption of uniform distribution based on laboratory 

experiments, showing a good match between simulation and real data of insects distribution 

on plants. A similar individual-based approach was used to study the biocontrol effect of E. 

formosa on T. vaporariorum (Roermund et al., 1997). The results show the complexity of the 

system, and the importance of parameters like the number and the size of leaves, or the 

time of the parasitoid to leave the leaflet, as well as the number of release strategies of the 

parasitoid that are necessary for the successful biocontrol. 
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Epidemiological models to study the conditions for population development of O. 

neolycopersici (Jacob et al., 2008) show that temperatures between 15 and 25°C for one to 

four weeks are positively correlated with the development of the epidemics in crops.  

Furthermore, differential equation-based models (Chelal and Hau, 2015) shows the 

importance of the synchrony between the disease progress curve and the host plant growth 

curve. However, there are no studies at crop scale about the influence of the O. 

neolycopersici on other organisms like insects.     

 

Most of the studies about Trialeurodes vaporariorum, Encarsia formosa and Oidium 

neolycopersici in tomato deal with population dynamics in a laboratory or experimental 

conditions and only a few in crops (Eggenkamp-Rotteveel et al., 1982a; Gabarra et al., 2004; 

Pérez et al., 2011a). At the same time, different explanations are given for the individual 

movement of T. vaporariorum, i.e random search within a range of nearest neighbor plants 

or following cues from plants (Bleeker et al., 2009; Roermund et al., 1997). The individual 

behavior of the parasitoid is even less studied and is usually assumed to be similar to the 

whitefly for the between plants movement (Roermund et al., 1997). Although, more recent 

studies show that chemical volatiles from infested plants could be used by the parasitoid to 

guide the search behavior from a distance (Birkett et al., 2003). Furthermore, the presence 

of O. neolycopersici on the plants can affect the volatiles emitted by infested plants and in 

consequence affects the ability of the parasitoid to find the infested plant (Focke, 2000).  

 

Aims 

 

The aim of this study was to understand : 1) the flight and dispersal processes of whitefly in 

an applied setting i.e. in crops; 2) the foraging behavior of the parasitoid; 3) the dynamics of 

mildew and its effect on parasitization rate of the whitefly and finally to overcome the 

difficulties in empirical research by using a simulation approach. 
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2 Methods 

2.1 Patterns and model structure 

2.1.1 Characteristic patterns 

 

Pattern 1: The spatial distribution of whiteflies in crops is clumped at the beginning of the 

infestation and follows a negative binomial distribution afterward. This pattern is based on 

the actual spatial distribution of the pest observed in controlled experiments in small 

greenhouses and sample studies in commercial greenhouses (Basso et al., 2001; Noldus et 

al., 1986a).  

Pattern 2: The whitefly population increases exponentially in the absence of control 

strategies but the growth can be reduced by the introduction of the parasitoids (Roermund 

et al., 1997).   

 

2.1.2 Model structure from patterns 

 

The dynamic and spatially explicit model represents the population size changes over time by 

taking into account the whitefly densities in different plants. The foraging process of 

individual whitefly adults drives the observed patterns, and therefore, should be included 

with an individual-based modeling approach. One day time step mirrors the usual frequency 

of surveys in greenhouse experiments.  
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2.2 Model validation 

 

2.2.1 Spatial distribution  

 

In order to compare the model outputs for adults spatial distribution with field data, a field 

experiment and a virtual experiment following a setup from literature (Noldus et al., 1986a) 

were conducted (See table 1). 

The field experiment used “artificial plants”, which are tomato leaves placed individually in a 

test tube and three of these leaves placed on a wood stick to emulate real plants. In 

consequence, the plants and leaves are not growing. The setup consisted of an arrangement 

of 10 x 10 plants with 3 leaves each.  At time zero 762 adults of whitefly were introduced in 

the central plant. The position of the insects was followed daily for eight days.  

 

2.2.2 Population growth. 

 

The simulation outputs for population growth were compared with six different 

experimental data sets reported in the literature (Roermund et al., 1997) with three 

different setups as follows (See Table 1): 

a. Two datasets of experiments with five plants infested with 50 females (Approx. 10 

females/plant). The population surveys were done at 35, 48 and 63 days (Joosten and 

Elings, 1985).  

b. Three datasets of experiments with 10 plants infested with 100 females (Approx. 10 

females/plant). The surveys were done at 40, 47, 60, 93 and 95 days (Elzinga, 1982; 

Joosten and Elings, 1985). 

c. One dataset of one experiment with 15 plants, infested with 300 females (Approx. 20 

females/plant). The surveys were done at 53 and 93 days (De Ponti and Steenhuis, 

Unpub.). 
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2.2.3 Final population size 

 

To calculate the final size of the whitefly population, a simulation experiment with an 

arrangement of 10 x 10 plants and an initial population of 10 females in the central plant 

was run for 340 days.  The adults used the eight nearest neighbor dispersal rule under 

density-independent option. 

Since the maximum carrying capacity of one plant is 371654 individuals (21862 

individuals X 17 leaves) the modeled system was above the computing capacity of the 

computer. To overcome this limitation the carrying capacity of each plant was limited to 

8925 individuals (525 individuals per leaf).   

 

2.3 Model description 

 

The model description follows the ODD (Overview, Design concepts, Details) protocol for 

describing individual- and agent-based models (Grimm et al., 2010, 2006).  

 

2.3.1 Purpose 

 

The model´s purpose is to test the effects of different dispersal rules of the insect pest 

Trialeurodes vaporariorum – Westwood on its spatial and temporal distribution in tomato 

crops. Additionally, the model tests the effects of the initial density and location of insects on 

population’s development over time. 
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2.3.2 Entities, state variables, and scales 

 

2.3.2.1 Entities 

 

There are three types of entities: leaves, plants, and pests. Each leaf is characterized by its 

spatial coordinates (x, y, and z) and a carrying capacity.  A plant is composed of a group of 

leaves with the same x and y coordinates but different z coordinate. A pest is a mobile 

individual with state variables for location, degree-days, stage of development, eggs per 

degree day, sex and age. The number of leaves, their carrying capacity and the number of 

insects change over time. 

The temperature, time step, distance between plants, and the order of the execution of the 

processes for the three entities are managed by the greenhouse class (Figure 1; Section: 

2.2.6.7).  The temperature is defined as constant from the beginning of the simulation (Table 

1) and maintained for all simulations. 
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Table 1. Initial conditions of pest simulation experiments. 

 

 

Parameter 

Experiment (Section) 

Spatial 

distribution 

100 plants 

(section 

2.2.1) 

Population growth   

5 plants              10 plants         15 plants 

(section 2.2.2a)    (section2.2.2b)     (section 

2.2.2c) 

Population 

analysis 

100 plants 

(section  

2.2.3) 

Simulation 

time (days) 

8  70  100  100  340 

Number of 

plants 

100 5 10 15 100 

Initial 

number of 

pest (♀) 

762 50 100 300 10 

Time of 

infestation 

0 0 0 0 0 

Pest  initial 

spatial 

distribution 

Aggregated 

(central 

plant) 

Random Random Random Aggregated 

(central plant) 

Leaf  carrying 

capacity 

21862 21862 21862 21862 525 

Pest dispersal 

rule 

(See section 

2.3.6.4)  

(See section 

2.3.6.4)) 

(See section 

2.3.6.4)) 

(See section 

2.3.6.4)) 

Eight nearest 

neighbor - 

density-

independent 

Reference (Noldus et 

al., 1986a) 

(Joosten 

and Elings, 

1985) 

(Elzinga, 

1982; 

Joosten and 

Elings, 

1985) 

(De Ponti and 

Steenhuis, 

Unpublished.) 

- 
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Figure 1. Static structure of the spatially explicit model of whitefly dispersion in Unified 

Modeling Language (UML). Each class is represented by one box, the first part of the box 

corresponds to the class name, the second to the key attributes and the third to processes. 

Every individual (instance of a class) in the model has its own values for each one of the 

attributes. Links signify association. 
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2.3.2.2 State variables  

 

Degree-days variable is used for all entities and is defined as the accumulation of thermal 

units over the lower thermal threshold of development. Age in days, stage of development 

and sex are also used to represent characteristics of the individuals. 

 

2.3.2.3 Scales 

The spatial extent is n by n plants in a grid (Figure 2), with the same distances between plants 

(i.e. one meter). Space is represented as toroidal: insects going beyond the edge jump to 

plants at the opposite edge. The smallest space unit is one leaf. 

All events in the model happen in discrete 1-day time steps with no explicit difference 

between day and night. The simulation duration varies depending on the experiment (See 

Table 1).  

n     

…     

3  X   

2     

1 2 3 … n 

 

Figure 2. A grid representation of the plants´ arrangement in the greenhouse. Each cell 

represents one plant placed in the center of the cell and the “X” an infested plant.  

 

2.3.3 Process overview and scheduling 

 

For each time step, the following actions happen in the same order. All state variables are 

updated as soon as the new value is calculated in each process. 
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Plants’ growth. Plants produce new leaves based on the accumulation of degree-days 

(thermal units over the lower thermal threshold, Section 2.1.7.8).  

Leaves’ growth. The growth of the leaves is not explicitly modeled but each leaf has a certain 

carrying capacity to store individuals, that changes over time until it reaches its maximum 

(Section 2.1.7.5.1). 

 At the beginning of the crop cycle, each leaf has an initial carrying capacity (Table1). 

Thereafter, in each time step, the leaf grows 1/21 of the maximum carrying capacity until it 

reaches the maximum carrying capacity. New leaves produced by a plant start with a carrying 

capacity of zero following the same grow process until they reach the maximum carrying 

capacity (Table 1).  

Pests’ mortality. Insects die with a constant probability, dependent on the life stage (Table 2).  

Pests’ growth. The ageing process is modeled by changing the “stage variable” when a 

number of necessary degree-days for the stage is reached (Table 2). 

Pests’ dispersal. Dispersal is executed only by adult females and comprises two types of 

movement: a) within the plant and b) between plants.  

Pests’ reproduction.  Adult females reproduce each time step during the whole adult stage 

under the condition that the number of insects in the current leaf is smaller than the carrying 

capacity of that leaf. 

Harvest. If the plant has more than 21 leaves, the three lowest leaves are removed to 

simulate the pruning of leaves that follows the fruits harvest in real crops. 

 

2.3.4 Design concepts 

 

Basic principles: In the dispersal submodel, to reproduce the observed population dispersion 

pattern, adult females choose to move according to four alternative rules. 

Emergence: The whiteflies’ spatial distribution and population size emerge from the number 

of plants and leaves in the crop and the dispersal behavior of whitefly adults. 
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Adaptation: The dispersal and reproduction processes are the adaptive behavior for this 

model. The insects decide which is the next leaf to visit and if they oviposit or not each day. 

Sensing: Adult insects sense the space availability for oviposition on their leaf. 

Stochasticity: Stochasticity is included to simulate variability in the duration of stages, the 

daily probability of insect mortality and in the direction of female dispersal behavior.  

Observation: Summary statics of the number of leaves per plant, the insect population size 

per leaf, stages, and location of insects are saved after each time step. 

 

2.3.5 Initialization 

 

At time zero, one plant is a group of 3 leaves sharing x and y coordinates but with different z 

coordinate. The carrying capacity of each leaf is set to the initial value (Table 2). The number 

of plants, time step for insect infestation, stage of insects infesting the plants and their 

location are assigned according to the experimental design (see Table 1). 

 

2.3.6 Submodels 

 

The following subsections describe in detail how the processes are simulated in the model. 

 

2.3.6.1 Plants’ growth 

 

Plants grow by accumulating degree-days over the lower thermal threshold (see section 

2.1.7.8). The variable accumulated energy is obtained by the multiplication of accumulated 

degree-days by the node initiation rate. When the accumulated energy is more than 1.00 a 

new leaf is produced and one unit is discounted from accumulated energy, the remained 

fraction is kept in the variable for the next time step. 
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All new leaves have the carrying capacity equal to zero and the value increases each day by 

1/21 of the maximum carrying capacity value (Table 2). Each leaf grows for 21 days. 

 

2.3.6.2 Pests’ mortality 

 

To calculate the value of mortality per degree-day for each stage, the mortality values for 

each developmental stage (Roermund and Lenteren, 1992) were divided by the duration of 

the stage in degree days. Each time step, insect mortality is the mortality per degree-day 

multiplied by the number of degree-days of that day.  

 

2.3.6.3 Pests’ growth 

 

The insects have five immature stages (Egg and four nymph stages) and the adult stage. For 

each new insect, the values in degree days for the duration of each stage of development are 

assigned randomly within the range of values for each stage (Table 2). The insects grow by 

accumulating degree days over the lower thermal threshold (see section 2.1.7.8). When an 

individual accumulates the necessary amount of degree days to complete a development 

stage, the state variable stage changes to the next stage value mimicking the aging process. 

When the individual reaches the adult stage, the sex is assigned randomly (with a probability 

of 0.48 for a female) (Table 2). 

 

2.3.6.4 Pests’ dispersal  

 

Dispersal is the key process in this model and is executed exclusively by females. The males 

of whitefly stay in the plant where they emerged and only the females search for different 

plants (Roermund and Lenteren, 1997). In this model, males are included only to occupy 

space on leaves but not in reproduction or dispersal processes.   
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The location of individuals is followed over successive time steps and the dispersal process is 

executed 73% of times, the remained 27% the individuals stay in the plant where they 

emerge (Noldus et al., 1985).  

The dispersal process happens: 1) independent of density when individuals execute the 

move action every day (Figure 3a), or 2) dependent on density when the move action is 

executed only if there is no space for oviposition on the current leaf where the insect is 

(Figure 3b).  The individual can move: a) within-plant or b) between-plants (Figure 3). Once 

any of these actions is executed, it is counted and can be repeated until the insect finds a 

suitable host plant or the maximum number of attempts is reached (Table 1). 

a) Within-plant movement: If there are leaves above the location of the leaf where the insect 

is, then the individual moves up one or two leaves maximum (Bonsignore, 2014), otherwise 

the between-plants movement is executed. 

b) Between-plants movement is executed using one of the four different rules as follows: 

 

2.3.6.4.1 Random uniform 

A random uniform probability is used to let the individuals choose the next plant to 

visit. In consequence, all plants in the crop can be chosen with an equal probability. 

This behavior is used as a baseline assumption to compare with other behaviors in 

which different rules are followed by insects to find a new plant. 

2.3.6.4.2 Eight nearest neighbors 

Eight nearest neighbors dispersal behavior allows the individuals to choose a 

random plant from the eight nearest plants. 

2.3.6.4.3 Negative exponential 

A negative exponential function (Roermund et al., 1997) Is used, 

𝑃 (𝑟) =∝  𝑒𝑥𝑝(−𝛼𝑟)/2𝜋𝑟 

where r is the distance between two plants, 𝛼 =
0.3

𝑃𝑙𝑎𝑛𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
. 
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This function assumes that the highest probability lies on the source plant (where 

the individual is) and decreases with the distance from the source plant, making it 

less probable to move to a more distant plant. 

 

2.3.6.4.4 Following cues  

 

Following cues, behavior represents the interaction between plants and insects, 

where insects follow chemical and visual cues from plants as a guide to finding new 

plant resources (Bleeker et al., 2009). In this behavior, when the insect searches for a 

new plant, 25% of the time the individual stays on the same plant, otherwise it uses 

the eight nearest neighbors dispersal rule (2.1.7.4.2).  

 

2.3.6.5 Pests´ reproduction 

 

Reproduction is executed before dispersal behavior in density-dependent cases and always 

executed after dispersal behavior in the density-independent cases (see Figure 1). Females 

reproduce only if the number of individuals on the leaf is lower than the current carrying 

capacity. The value of oviposition per day at a given constant temperature is expressed here 

as eggs per degree-day (Table 2). The number  
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Figure 3.  Daily basic dispersal and reproduction rules for female adults: a) density-

independent where the decision to move is priority over the reproduction, b) density-

dependent where the space for reproduction is priority over dispersal and the maximum 

number of attempts per time step is eight (Bonsignore, 2014) 

a. 

NO 

Are there 

leaves above? 

Move 

 within-plant 

Move 

 between-plants 

STOP 

YES 

Is there space? Reproduce 
STOP 

NO 

YES 

b. 

+ 1 

Attempt NO 

NO 

Are there 

leaves above? 

Move  

within-plant 

Move 

 between-plants 

YES 

Is there 

space? 

Reproduce 
STOP 

YES 
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of eggs per degree-day is multiplied by the number of degree-days of the current time step 

to give an integer number of eggs to be placed in the current leaf. The decimal part of this 

calculation is saved and added to oviposition in the next time step. 

 

2.3.6.5.1 Calibration of carrying capacity 

 

 The number of individuals that can be on a tomato leaf was estimated with mean leaf area 

(Decoteau, 2007) and the size of nymph 4 (Cardona et al., 2005), resulting in a potential 

range between 10046  and 80974 individuals per leaf. All leaves of the same age have the 

same carrying capacity. 

The carrying capacity for leaves was calibrated by testing percentages of the above-

mentioned values until the simulation outputs represented the trends of empirical data used 

for validations. The final value after the calibration was 27% of the initial values, which 

means between 2712 and 21862 individuals per leaf. Hereafter, these values are used in all 

simulation experiments. 

 

2.3.6.6 Degree-days calculation  

 

This model uses the averaging method (Arnold, 1960) when the lower thermal threshold of 

the individual is less than the minimum temperature of the day. Otherwise, the single sine 

method is used (Allen, 1976).: 

𝐿𝑇 = 𝐿𝑜𝑤𝑒𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

𝑚𝑖𝑛𝑇 = 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑦 

𝑚𝑎𝑥𝑇 = 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑦 

 

The formula for average method is  degree days =  
𝑚𝑖𝑛𝑇+𝑚𝑎𝑥𝑇

2
 – 𝐿𝑇  
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 And the single sine method formula is:  

𝛼 =  
𝑚𝑎𝑥𝑇 − 𝑚𝑖𝑛𝑇

2
 

𝜃1 =  
𝑆𝑖𝑛−1 [(𝐿𝑇 −  

𝑚𝑎𝑥𝑇 + 𝑚𝑖𝑛𝑇
2  )

𝛼
 

𝑑𝑒𝑔𝑟𝑒𝑒 𝑑𝑎𝑦𝑠 =  
1

𝜋
 [( 

𝑚𝑎𝑥𝑇 + 𝑚𝑖𝑛𝑇

2
− 𝐿𝑇 ) (

𝜋

2
−  𝜃1) +  𝛼 cos 𝜃1] 
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Table 2. Parameters of the plants and pest used in the model. 

 

 

Parameter   Value   

 

Initial Minimum Maximum 

Greenhouse    

Temperature 20°C   

    

Plant  
 

 

Lower Thermal Threshold (Zotarelli et al., 2009)  10.00 °C  

Node initiation rate  (Roermund and Lenteren, 

1992) 
 0.031dd-1  

Number of leaves per plant 3 
 

17 

    

Distance between plants 1.0 m   

Number of plants  (see Table 

1) 
  

    

Leaf    

Carrying capacity 
2712 insects 0 

21862 

insects 

Lower Thermal Threshold (Zotarelli et al., 2009)  10  

    

Pest  
 

 

Lower Thermal Threshold  5.2 °C  

Stages (number of degree-days)    

Egg 

assigned 

randomly 

within the 

range 

113.43 184.76 

Nymph 1 53.89 100.19 

Nymph 2 37.55 74.59 

Nymph 3 53.10 128.93 

Nymph 4 125.72 218.10 

Female 141.79 789.69 

Male  Female * 0.5 Female * 
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0.5 

 

 
 

 

Intrinsic mortality (% of individuals entering the 

stage) (Roermund and Lenteren, 1992) 
 

 

 

Egg  3.70  

Nymph 1  4.20  

Nymph 2  2.60  

Nymph 3  3.70  

Nymph 4  7.30  

 

 
 

 

Sex ratio (♀ proportion in offspring) (Roermund 

and Lenteren, 1992) 
 0.48  

Oviposition  (Burnett, 1949)  1.2+/-0.42  

Attempts (Bonsignore, 2014) 8   

 

 

2.3.6.7 Software 

 

The model was implemented in C++ language with Qt-Creator development environment 

(Qt-Creator 5.5) using the object-oriented programming approach. There are four classes: 

greenhouse, plant, leaf, and pest. The greenhouse class is used as a manager of the 

processes taking place in the crop, and the individuals are created by creating objects in each 

one of these classes (Figure 1).  

 

2.4 Simulation procedures 

 

Under two decision options, (1. Density-independent and,  2. Density-dependent) for adults 

to execute the between-plants movement, four dispersal behaviors were tested (Section 

2.3.6.4, Figure 3, and Table 3). Every virtual experiment was repeated five times. 
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Table 3. Dispersal behaviors of whitefly adults tested in each one of the virtual experiments. 

Decision 

option  

for adults 

Experiment 

number  

Between-plants behavior (Section 2.3.6.4) 

 

Density-

independent 

1 Random uniform 

2 Eight nearest neighbors 

3 Negative exponential 

4 Following Cues 

 

Density-

dependent 

5 Random uniform 

6 Eight nearest neighbor 

7 Negative exponential 

8 Following cues 
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3 Results and discussion 

3.1 Model validation 

3.1.1 Spatial distribution 

 

The experimental data show that the most intensive dispersal of adult whiteflies happens 

during the first three days after infestation (ref.). Afterward all plants are colonized in similar 

quantities. This means that the first few days of insect-spread are very important for 

determining the dispersion pattern.  

The simulations data with four different dispersal rules for whitefly adults tested under density-

independent (Figures 4 – 7) and density-dependent (Figures 8 - 11) options give insights about 

this pest’s behavior. Neither of the results representing dispersal behaviors in the density-

dependent option (Figures 8-11) nor the random uniform behavior in the density-independent 

option (Figure 4) show agreement with the experimental data. However, the other three 

dispersal behaviors in the density-independent option (eight nearest neighbors, cues following 

and exponential function) were able to recreate the experimental distribution. 

Adults’ decision to select the next plant to visit randomly resulted in a uniform distribution in 

both density-dependent and independent option (Figures 4 and 8). The random uniform 

distribution was far from the experimental data trend. This shows that the insects do not move 

randomly in the crops and instead follow certain rules. 

In the density-independent option, if the insects moved according to the eight nearest 

neighbors rule, dispersing individuals initially stayed on the plants around the starting plant but 

the area of colonized plants increased every time step (Figure 5). However, in the density-

dependent option, the individuals stayed in the same central plants during the whole simulation 

time (Figure 9). Even though in the density-independent option, on the day 1, the number of 

individuals on plants around the starting plant was overestimated compared to the 
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experimental data, the distribution of the individuals matched the experimental trends already 

from day 2. 

The negative exponential function used by insects as a rule to choose the new plant, in the 

density-independent behavior, was able to closely reproduce the experimental data trend 

except day 2 where the simulation showed a smoothed curve while the experimental data 

showed more aggregated distribution around the starting plant (Figure 6). Conversely, for the 

density-dependent option, this behavior overestimated the population size in the first three 

days but matched the experimental data for the rest of the simulation time (Figure 10). 

In density-independent option, the simulations of the following cues dispersal behavior resulted 

in the general trend similar to the experimental data (Figure 7). Only on day 1 the number of 

individuals on the starting plant and the closest neighbors was overestimated. However, this 

dispersal behavior under density-dependent option overestimated the size of the population 

during the whole evaluation period (Figure 11).  

The density-dependent option did not match the experimental data with any of the four 

behaviors tested. This suggests that at this short time scale density-dependence is not playing a 

role in the distribution of insects. On the other hand, density-independent option matched the 

experimental data well, especially for following cues behavior. Therefore, the dispersal behavior 

of the insects can be explained here as an initial phase of colonization where the rules for 

movement within and between plants are not playing a role or at least are not easy to identify.  

 

The dispersal rules that reproduced the experimental data (following cues, exponential 

function, and eight nearest neighbors) fit the well-known aggregated distribution of whiteflies 

reported in different studies (Eggenkamp-Rotteveel et al., 1982a; Noldus et al., 1986a; Pérez et 

al., 2011a; Rincon et al., 2015). This distribution is explained by the foraging behavior of the 

insects, where the new emerging adults fly short distances to neighbor leaves or plants, where 

they settle for several days to oviposit (Noldus et al., 1986a), similar to the eight nearest 

neighbors and following cues dispersal behavior used here. Also, the preference of whiteflies for 
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new leaves in the upper part of the plants (the higher content of nutrients and water ) causes 

the individuals to aggregate there frequently (Noldus et al., 1986b) resulting in a dispersal 

pattern similar to following cues behavior.  

The whiteflies´ search behavior and movement between leaves and plants suggest that short 

flights of the insects are more common (Bonsignore, 2014). This can explain the uniform 

distribution obtained in the simulations after 3 or 4 days. Nevertheless, short time and small 

spatial scale allow clarifying only one part of the complex dispersal behavior.  

The following cues dispersal behavior uses a complex mix of factors including the density-

independent decision to move, the probability to stay in the current plant, the probability to 

find a new plant using chemical and visual cues from the plant and finally the choice of the new 

plant within the nearest neighbors. The fact that this behavior closely replicated the 

experimental data shows that even at the small scale some dispersal rules are important. 

 

3.1.2 Population growth 

 

In the simulation with five plants, for all four dispersal behaviors in the density-independent 

option, the model was able to reproduce the trend of experimental data (Figures 12a, c, and 

13a, c). In density-dependent option, only the eight nearest neighbors’ dispersal behavior fitted 

the experimental data while the other three behaviors overestimated the population size 

(Figures 12b, d, and 13b, d). 

In the second experiment with 10 plants, the population growth was also well reproduced by all 

dispersal behaviors in the density-independent option (Annex 1, Figures 1a, 1c, 2a and 2c) and 

also the random uniform dispersal behavior in the density-dependent option (Annex 1, Figure 

2b). Meanwhile, for eight nearest neighbors and negative exponential function, the model 

replicated the population trend but an exponential growth at the end of the experiment 

overestimated the population size (Annex 1, Figure 1b and 1d). The following cues behavior 
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under the density-dependent option resulted in the faster increase and an early overestimation 

of the population size (since the day 60). 

The results of the third experiment using 300 females growing on 15 plants fitted the first data 

point at 53 days with almost all dispersal behaviors in density-dependent and independent 

options. Only following cues behavior in density-dependent option did not fit the data because 

of the faster growth of the population size (similar to the experiment with ten plants) (Annex 1: 

Figures 3 and 4). Though, the second data point, at 93 days, was reproduced only by eight 

nearest neighbors and negative exponential dispersal behaviors in the density-dependent 

option. However, the experimental data reported two different values (400.000 and 800.000 

individuals) at 93 days and the simulations reached only the lower value. Unlike the two 

previous experiments with 5 and 10 plants, in this case, all behaviors in density-independent 

option underestimated the population size (Annex 1: Figures 3a, 3c, 4a, and 4c).  

In the experiments with 5 or 10 plants, all dispersal behaviors under density-independent 

option reproduced the experimental data. In the experiments with 15 plants, the density-

dependent behaviors: eight nearest neighbors and exponential function represented the data 

better than density-independent rules, while the following cues behavior showed earlier 

growth and the larger population size than the experimental data. 

 Density-independent options consider one movement per time step, while density-dependent 

options represent a more intensive search for places to oviposit (up to eight times per day). 

Because these conditions allow more attempts they lead to a higher population size especially 

when the density of insects on the leaf is close to the carrying capacity.  

There are approximately 10 individuals per plant to infest in the five and 10 plants experiments 

and approximately 20 individuals per plant in the 15 plants experiment. Initially, in low 

densities, a low search effort represented by density-independent rules can reproduce the 

experimental data while in a more populated experiment the more intense search for space is 

important to reproduce the experimental data. As the population size increases the role of the 

dispersal behavior of insects becomes more relevant to the population growth in all 

experiments. 
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The development of integrated pest management programs has recently considered the pests´ 

dispersal, which shapes the pests´ spatial distribution (Mazzi and Dorn, 2012). Making the 

decision to disperse, pest insects consider several characteristics of the environment, for 

example, the host quality  (Noldus et al., 1986b). As implemented in this study, the host quality 

causes the insects to move upward. In the case of within-plants movement, the insects follow 

the chemical and visual cues from plants (Bleeker et al., 2009). Therefore, following cues 

behavior implemented in the model, works better for the spatial experiments than for 

population growth analysis. All these factors can be important in low densities of the insects in 

early stages of colonization of the crop. On the other hand, the results for population growth 

show that density-dependent dispersal process can play a role at high densities of pest insects 

because the population growth speeds up the decrease in plant quality (Stewart, 1996).  

In conclusion, the dispersal behavior of the insects is a complex process that can be dependent 

on its density but also on the environmental factors and availability and quality of resources. 

The dispersal behavior deserves further studies to determine the exact interplay of all known 

factors. However, according to the results of this study, early stages of pest colonization in 

crops with low densities of the pest can be controlled using the traditional approach On the 

other hand, in the advanced stages of population development new strategies oriented 

towards insect dispersal behavior would highly improve the pest control.  

 

3.1.3 Population analysis at theoretical equilibrium 

 

The empirical data from literature as well as laboratory experiments usually deal with short 

time frames while the field experiments are difficult to conduct without intervention or control 

measures for the pest. Therefore, a virtual experiment can provide some insights about the 

population size at equilibrium and measure the effect of different dispersal rules. 
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Three increases in population size are evident in this experiment (Figure 15a), at 40, 80 and 120 

days when adults and eggs were the most abundant stages in the population (Figure 14a) 

corresponding to the first, second and third generation of the population. The population size 

increased for approximately 150 days, afterward it oscillated around 200000 individuals. As the 

plants are growing all the time and the lower 3 leaves are pruned from the plants weekly the 

amount of available resources changes causing the oscillating pattern in population size 

trajectory (Figure 15a).  

After 150 days, instantaneous growth rate started oscillating around 1.0 and intrinsic growth 

rate close to zero (Figure 14b). The growth rates, variation in population size (Figure 15a) and 

stages distribution (Figure 14a) changes were affected only by pruning procedure. These results 

show that the population reached the equilibrium point in this system and did not increase 

above 200000 individuals. Interestingly, the initial adult population colonized up to 40 plants 

and the first generation increased the number of colonized plants up to 60 (Figure 15c). 

However, the following generations were not able to colonize more than 60 plants. The 

population of adults at equilibrium was about 300adults/plant, but approximately 500 

adults/infested plant (Figure 15b and 15d).   

The equilibrium point in the development of a pest population cannot be reached due to the 

management of the crop but also due to other factors like changes in environmental conditions, 

the presence of other competitor or natural enemies. However, this analysis shows the 

synchrony of the pest population growth with the crop growth, the discrete generations were 

present even though only one infestation happened. The knowledge of generations’ cycle is 

very important to properly apply the control measures and break the life cycle of the pest.  
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Figure 4. Distribution of whitefly adults for the random uniform dispersal behavior under density-independent option (Experiment 

number 1, Table 3) in an arrangement of 10 x 10 plants and 762 adults in the central plant at time zero, followed during eight days. 
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Figure 5. Distribution of whitefly adults for the eight nearest neighbor plants dispersal behavior under density-independent option 

(Experiment number 2, Table 3) in an experiment of 10 x 10 plants and 762 adults in the central plant at time zero. 
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Figure 6. Distribution of whitefly adults for the empirical negative exponential function for the dispersal behavior under density-

independent option (Experiment number 3, Table 3) in an experiment of 10 x 10 plants and 762 adults in the central plant at time 

zero. 
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Figure 7. Distribution of whitefly adults, for the following cues dispersal behavior under density-independent option (Experiment 

number 4, Table 3) in an experiment of 10 x 10 plants and 762 adults in the central plant at time zero.
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Figure 8. Distribution of whitefly adults for the random uniform dispersal behavior under density-dependent option (Experiment 

number 5, Table 3), in an experiment of 10 x 10 plants and 762 adults in the central plant at time zero. 
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Figure 9. Distribution of whitefly adults for the eight nearest neighbors dispersal behavior under density-dependent option 

(Experiment number 6, Table 3), in an experiment of 10 x 10 plants and 762 adults in the central plant at time zero. 
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Figure 10. Distribution of whitefly adults for the negative exponential dispersal behavior under density-dependent option 

(Experiment number 7, Table 3), in an experiment of 10 x 10 plants and 762 adults in the central plant at time zero. 
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Figure 11. Distribution of whitefly adults for the following cues dispersal behavior under density-dependent option (Experiment 

number 7, Table 3), in an experiment of 10 x 10 plants and 762 adults in the central plant at time zero. 
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 Figure 12. Population growth of whiteflies (mean +/- s.d. of five runs) in five plants infested 

with 50 females at day zero. The dispersal behaviors were: eight nearest neighbors (a and b) 

and negative exponential function (c and d), in density-independent (a and c) and density-

dependent (b and d) decision option (see table 2). Circles and triangles represent two 

experimental data sets from  Joosten and Elings (1985) 



                                                                                             Results and discussion  

45 
 

 

Figure 13. Population growth of whiteflies (mean +/- s.d. of five runs) in five plants infested 

with 50 females at day zero. The dispersal behaviors were: random uniform (a and b) and 

following cues (c and d), in density-independent (a and c) and density-dependent (b and d) 

decision option (see table 2). Circles and triangles represent two experimental data sets from  

Joosten and Elings (1985). 
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Figure 14. Whitefly population growth in an arrangement of 10 by 10 plants infested with 10 females at time zero, when the adults 

move to the eight nearest neighbor plants daily. 
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Figure 15. Example results showing the pest population (adults only) in time. Density-independent eight nearest neighbor plants 

dispersal behavior.  
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Small experiments are not suitable to describe the insects’ dispersal since the only limited 

place to move is available unlike in the real systems. Studies in the wind tunnel, contribute 

to elucidate the possible cues involved in the foraging behavior of chemicals emitted by host 

plants (Bleeker et al., 2009).  However, the presence of other factors like different plants, or 

insects can affect the behavior at some point (Inbar and Gerling, 2008) changing the 

dispersal pattern. For example, the small scale experiments following population growth 

cannot be extrapolated to a higher number of plants or to a crop due to the difference in the 

conditions available for the population to grow and disperse. 

The foraging behaviors tested here show the important effect of the density-dependent 

decision rules for the increasing population size (Figures 4-7 and Figures 8-11). Many of the 

field studies show difficulties in following the numerous flights of the small size individuals 

10 hours a day (Bonsignore, 2014). Therefore, simulation studies on the dispersal process 

can help to understand and predict the dispersion patterns of the insects in crops, using the 

individual-based approach.  
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4 Extension of the model: Pest - Parasitoid   

 

The dynamics of the pest populations can be affected by abiotic and biotic factors like 

temperature, humidity, and natural enemies. To take into account such case, in this model 

the introduction of the parasitoid Encarsia Formosa was implemented. The parasitoid 

development follows a similar stage structure based on the accumulation of degree days. 

This model extension allows testing the dispersal patterns of the parasitoid and the effects 

of parasitoid spread on pest population dynamics.  

The foraging behavior of the parasitoid E. formosa on leaves is well documented.  Times for 

landing, walking and handling host until the parasitoid leaves the leaf are described in 

tomato (Roermund and Lenteren, 1995) and Gerbera (Sutterlin and Lenteren, 1999). A 

simulation model of the parasitoid behavior shows that the parasitoid searches and 

encounters the host randomly, and also that the walking activity affects the oviposition in 

low densities of pest (Van Roermund et al., 1996).  

Studies on the long distance search for the host by E. formosa show no response when the 

plants are infested with whiteflies but a positive response to the green light transmitted 

through the tobacco leaves. In a short distance search study a non-volatile contact 

kairomone from honeydew of nymph 3 and 4 causes longer searching times (Romeis and 

Zebitz, 1997). In contrast, the study of (Guerrieri, 1997) shows the increase in oriented long 

distance flights when the host is present on the plant and in short distance flights the 

importance of visual and chemical cues.  

(Roermund et al., 1997) conducted a simulation study of the pest-parasitoid dynamics where 

they assumed no preference for the foraging behavior of E. formosa and used an 

exponential function to let the individuals of pest and parasitoid select the next plant to visit. 

Later studies suggested that the parasitoid is more likely to leave the pest´ patch with the 

increase of time from the last encounter despite the host distribution (Burger et al., 2006).  
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4.1 Model description:  

 

Only the new elements for this extension are described below, for the main model 

description see chapter X.  

4.1.1 Purpose: 

 The purpose of this extension is to test if the foraging options used for whiteflies could be 

applied to parasitoid E. Formosa.  

4.1.2 Entities, state variables, and scales:  

The parasitoid is a mobile individual with state variables for location (x, y and z coordinates), 

age, stage and number of eggs per day (Figure 4.1). The scales of the model are the same as 

for the pest model (Section 2.3.2.3).  

4.1.3 Process overview and scheduling:  

The process of parasitoid is scheduled to happen after the pest processes. 

Parasitoids’ growth. The ageing process is modeled by changing the “stage variable” when a 

number of necessary degree-days for the stage is reached (Table 4). 

Parasitoids´ dispersal. Only adults execute dispersal and follow the same rules as the pest. 

Parasitoids´ host feeding. Parasitoid feeds up to three nymphs stage 2 per day. 

Parasitoids´parasitization. The reproduction for the parasitoid is the parasitization process 

and implies the death of a host-pest and immediately a new parasitoid in the system. 
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Figure 16. Static scheme of the model extension of whitefly and E. formosa dispersion 

(Chapter 2, Figure 17) with the parasitoid extension (discontinuous lines).  

 

4.1.4 Design concepts 

 

Basic principles: The same four alternative dispersal rules used for the pest were tested for 

the parasitoid in order to elucidate the foraging behavior. 

Emergence: The population size of pest and parasitoid emerge from the combination of 

dispersal behaviors and plants growth in the model. 
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Adaptation: Parasitoids adults decide to feed the host or to parasitize depending on the 

stage of development of the host. Otherwise, they move to look for another patch of pest. 

Stochasticity: Stochasticity is included in stages duration variability and in the direction of 

adults´ dispersal behavior.  

Observation. Summary statistics for the parasitoid population in time and space are saved 

each time step. 

 

Table 4. Parameters for the parasitoid extension of the model.  

Parameter   Value   

 

Initial Minimum Maximum 

Parasitoid  

 

 

Lower Thermal Threshold (Roermund and Lenteren, 

1992) 
 10.5 °C - 

 

 

 

 

Stages (number of degree-days)(Osborne, 1982)    

Egg – black scale assigned 

randomly 

within the 

range 

80.8 93.0 

Black scale - Adult 93.7 105.7 

Adult 178.0 199.8 

 

 

 

 

Oviposition  (Aragón et al., 2008)  13 - 

Host feeding  3 - 

Attempts 6   
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4.1.5 Initialization.  

 

The number, location and time to introduce the parasitoids are assigned according to each 

experiment (Table 5). 

4.1.6 Submodels  

4.1.6.1 Parasitoids ´ growth. 

 

 The parasitoids have three stages 1) egg, 2) black scale and 3) adult. The duration of each 

stage is assigned randomly within a range of values (Table 4). The parasitoids grow in the 

same way as pest (See section 2.3.6.3). 

 

4.1.6.2 Parasitoids dispersal. 

 

 The dispersal process happens daily up to six attempts per time step. The between-plants 

movement follows the random uniform, eight nearest neighbor and exponential function 

rules as for pest (See section 2.3.6.4), the only difference is that the parameter alfa for the 

exponential function was changed to 0.95 as was reported by Roermund et al. (1997). The 

cues option was not used parasitoids as there are different studies showing no evidence of 

chemical cues to find plants with suitable host and the color attraction from plants is the 

only cue used (Roermund et al., 1997; Romeis and Zebitz, 1997), but is not explicitly model 

here as all plants have the same characteristics. 

 

4.1.6.3 Parasitoids´ host feeding.  

 

The parasitoid senses the availability of host nymph stage 2 and can eat up to 3 individuals 

per day.  
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4.1.6.4 Parasitoids´ parasitization.  

 In order to use the most realistic data the value of the number of hosts parasitized is taken 

from the greenhouse experiments (Aragón et al., 2008)(Table 4). Maximum 6 attempts per 

time step and the parasitization number in one leaf can be a number between zero and five 

where zero means cases where even with available host the parasitoid is not parasitizing. 

The stages to parasitize are nymph 3 and nymph 4 of whiteflies. In this model 50% of the 

time they choose nymph stage 3, otherwise, the stage 4 is selected to parasitize. 

4.1.6.5 Degree days.  

The thermal units for development of parasitoids are calculated in the same way as for the 

pest and plants but with the lower thermal threshold (Table 4). 

4.2 Simulation procedures 

In order to test the behavior of the parasitoids and its effect on the whiteflies population 

dynamics the following simulation was run: 

Table 5. Initial conditions of pest – parasitoid simulation experiment. 

Parameter Value 

Experiment (Section) Small patch  (section 4.2.1) 

Simulation time (days) 112 

Number of plants 1344 

Initial number of pest (♀) 18 

Time of infestation 0 

Pest  initial spatial distribution Aggregated (18 central plants) 

Parasitoid initial spatial distribution Central plant 

Leaf  carrying capacity 21862 

Pest dispersal rule Eight nearest neighbor plant 

Parasitoid dispersal rule (See section 4.1.6.2) 

Initial number of adult parasitoids (Time of release) 1304 (23 days) 

 
3629 (37 days) 

 
6048 (51 days) 

 
3333 (65 days) 

Reference (Eggenkamp-Rotteveel et al., 1982b) 
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4.2.1 Field patch experiment 

A virtual experiment of a patch of 1344 plants infested with whiteflies in a tomato 

greenhouse with four releases of the parasitoids (Eggenkamp-Rotteveel et al., 1982b) was 

run. The initial conditions are given in table 5.  

 

4.3 Results and discussion 

 

4.3.1 Patch experiment 

The experiment in the greenhouse patch with 1344 plants show a clear effect of the 

parasitoids by host feeding on nymph 2, the parasitization on nymph 3 and 4 and the 

consequences of the parasitoid control on the whitefly adult population (Figure 17). The 

three behaviors tested (random, eight nearest and exponential) to find the next plant were 

effective to reduce the pest population. The random search and the exponential show 

similar tendency but the eight nearest seems to be extremely effective and let the 

parasitoids to use almost all the host nymphs available in the plants (Figure 18). The number 

of individuals of nymph 2 is higher than the number of stage 3 and 4 which is explained by 

the less host feeding effect compare with the effect of parasitism. However, the host feeding 

seems to be important for the control of pest population (Figure 17a).      
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Figure 17. Simulated number of individuals, of different stages of whiteflies in treatments 

without parasitoids, and with four releases of parasitoids (See table 5) using three different 

dispersal rules.   

 

The number of nymphs 4 fluctuate below 300 and 700 individuals in the field data, while in 

the simulations produce two clear increases at 40 and 80 days corresponding to the first and 

second generation of the whiteflies. The maximum simulated value for the first generation 

was approximately 400 individuals and for the observed data was 600 individuals. After that, 

the simulations and field data agree, but the simulations predict a high number of individuals 

at around 85 days and then a faster decrease explained by the natural dynamics of the 

population that is going to be new adults, which start to emerge at this time (Figure 17d).  

The exponential function seems to be the most realistic representation of the parasitoid 

behavior of the three tested. However, the differences between field data and simulations 

suggest that some other details must be taken into account to understand and predict the 

parasitoid efficacy in crops. The effect of other factors that affect the pest population can be 

also affect directly or indirectly the parasitoid behavior (Inbar and Gerling, 2008). The lack of 

evidence of cues used by parasitoids to localize their host pest from distance (Romeis and 

Zebitz, 1997) seems to explain to some degree the whitefly population dynamics under 
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biocontrol of the parasitoids in crops. Nevertheless, the fact that the exponential function 

behavior reproduces a lower number of whiteflies closer to field data, suggest that probably 

other factors apart from randomness are involved in this parasitoid foraging behavior. 

Experiments on gerbera plants found more parasitoids on plants already infested with 

whiteflies than in plants not infested (Sütterlin and Lenteren, 2000), as well the parasitoids 

were reported more attracted by infested plants to orient their flights (Guerrieri, 1997). 

The underestimation of the population size at 40 days and the overestimation at 80 days can 

be explained by an adaptable behavior proposed for the parasitoid in which at low host 

densities the individuals tend to leave the searching patch and with high host densities 

increases the probability to stay in the same searching patch (Burger et al., 2006). This 

flexible condition for the parasitoids was not included in this simulations as the parasitoids 

behavior works independently of the host density for all simulations, but also independent 

of the spatial distribution of the whiteflies in the leaf. This makes the parasitoid efficiency 

similar under any host density and dependent only on the presence or absence of then pest 

in the leaf.  

The behavior of parasitoids in the leaves is already well and detailed studied (Roermund and 

Lenteren, 1995) and here the number of leaves visited per day were used as a summary of 

the behavior daily behavior.  

The number of adults per plant was higher in the random dispersal, followed by exponential 

and eight nearest (Annex 1, Figures 5a, 6a, and 7a). The exponential behavior agrees with 

the values reported in the study of van Roermund et al. (1997). For this experiment, the 

maximum number of plants with adults was 15 with about 25 (Annex 1, Figure 7 c) 

individuals per infested plant. In this plants, where they emerge on the lower leaves and 

then move up to the middle and upper part of the plant (Annex 1, Figures 5d, 6d, and 7d).  

However, the population tends to be placed in the middle and lower part because as the 

plants produce new leaves the adults move there to get fresh resources but the lower leaves 

are pruned by crop managers changing the relative position of the individuals. This vertical 

spatial distribution that emerges from the behavior of the insects and the management of 

the crop reproduce well the vertical spatial distribution reported in different studies 

(Eggenkamp-Rotteveel et al., 1982a; Manzano and van Lenteren, 2009; Noldus et al., 1985; 

Pérez et al., 2011b) 
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Figure 18. Number of nymphs stage 4 in the three parasitoid foraging behavior scenarios. 

Empty point are field data counts (Eggenkamp-Rotteveel et al., 1982b) and the black 

triangles represent the releases of the parasitoid(see Table 5). 

 

5 Powdery mildew – Oidium neolycopersici 

 

There is evidence of the effect of mildew presence on the behavior of the parasitoid, where 

the parasitization rate was reduced by 25% in laboratory experiments (Focke, 2000). 

However, there is not conclusive information about the quantities of mildew to affect the 

insects. Therefore, here is considered just the presence in the leave to change the behavior 

and the aim is to test if there is an effect on the biological control of the pest population 

when mildew is present.  
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5.1 Simulation procedures 

 

The experimental design of small patch used for the pest- parasitoid (Table 5) was used here 

with the only difference that 1% of the leaves are randomly infected by mildew at the 

beginning of the experiment. Not growth or quantity of the pathogen in the leaves is 

simulated. 

The same dispersal rules for parasitoids were tested except that when the insect land on a 

leaf infected with mildew, the parasitoid chooses to move to another leaf and not 

parasitization or host feeding happen in an infected leaf.  

 

5.2 Results and discussion 

 

The sole presence of mildew in 1% of the leaves, produce an effect on the parasitoids 

biocontrol activity. A decrease in the parasitoids biocontrol activity given more nymphs stage 

4 present in the crop for the random and eight nearest neighbor parasitoids dispersal 

behaviors (Figure 19 a and b) but for the exponential function the effect was the opposite 

resulting in an increase in the biocontrol effect (Figure 19c). In this experiment, the whitefly 

initial population was placed in the central plants and the parasitoid start from the central 

plant as well. As the two different insects used the same rules to disperse the probability of 

the parasitoid to find its host insect is higher in exponential than in the other two behaviors 

(random and eight nearest). The presence of mildew makes the parasitoid search for 

another leaf which may increase the probability to parasitize, as the number of attempts per 

day to parasitize can be higher than in cases where there is no mildew. 

The effect of mildew on the parasitization was also observed in nymph 3, especially after 60 

days where the population size is increasing (Figure 20). An opposite effect happens in the 

exponential behavior where the number of individuals is lower in the presence of mildew 

than in its absence, similar to the results for nymph 4. 
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The presence of mildew in the leaves change also the spatial distribution of the adults 

increasing the number of adults in the random dispersal rule experiment but reducing the 

number for the eight nearest and exponential dispersal experiments (Annex 1, Figures 8c, 9c, 

and 10c). This results must be evaluated in real experiments, because as was shown in the 

last two chapters the exponential or eight nearest rules can reproduce well the population 

growth and distribution of whiteflies, and the experiments in this chapter indicate that the 

presence of the mildew in crops can increase the dispersion of whitefly adults indirectly by 

the change in the parasitoid foraging behavior who avoid leaves infected with mildew. The 

vertical spatial distribution of whiteflies was not affected by the presence of mildew (Annex 

1, Figures 8-10), therefore the distribution in the plant can be explained by the interaction 

between the pest and the plant dynamics but the horizontal distribution can be affected by 

other factors like the presence of a disease. 
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Figure 19. Effect of mildew presence on the population size of nymph stage 4 of whiteflies 

on 1344 plants (see Table 5), for the parasitoid dispersal behaviors: a) Random, b) Eight 

nearest neighbor and c) Exponential function.  
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Figure 20. Effect of mildew presence on the population size of nymph stage 3 of whiteflies 

on 1344 plants (see Table 5), for the parasitoid dispersal behaviors: a,) Random, b) Eight 

nearest neighbor and c) Exponential function.  

 



                                                                                Powdery mildew – Oidium neolycopersici 

63 
 

 

Figure 21. Effect of mildew presence on the population size of nymph stage 2 of whiteflies 

on 1344 plants (see Table 5), for the parasitoid dispersal behaviors: a,) Random, b) Eight 

nearest neighbor and c) Exponential function.  
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6 General conclusions 

 

- To my knowledge, this is the first simulation approach validated for spatial 

distribution and population size in time. This characteristic makes the model robust 

enough to reproduce real experiments in small scale (less than 20 plants) and in crop 

patches (more than 1000 plants).  

- The foraging behavior of whiteflies seems to be non-random and some rules are 

followed by the insects probably related with chemical or visual cues from the plants 

as the cues following dispersal rule can reproduce well the population behavior of 

field data. The empirical exponential function also works well to reproduce the 

population distribution and growth but as a statistical empirical model based on the 

field distribution, it is expected to reproduce the distribution without explanations of 

the causes of the distribution or movement. 

- The whitefly population can spend more than 150 days in crop simulations to reach 

the stable stages distribution where the population intrinsic rate is close to zero. 

However, this a more theoretical than a practical conclusion as the real populations 

are affected by different abiotic and biotic factors that can change its dynamics, for 

example, the natural enemies or a phytopathogen. 

- The presence of mildew on the system can affect the effectivity of the parasitoid as a 

biocontrol agent by reducing its parasitization rate. The increase in the parasitization 

rate and host feeding when parasitoid uses the exponential function can be explained 

by the use of a more exhaustive search per day. However, this increase result also in 

an increase in the whitefly adults’ dispersion as the parasitoid foraging activity takes 

place in the mildew-free leaves. 
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8 Annex 1 Complementary plots of different simulation experiments 

  

Figure 1. Population growth of whiteflies (mean +/- s.d. of five runs), in 10 plants infested with 

100 females at day zero. The dispersal behaviors were: Eight nearest neighbors (a and b) and 

Exponential function (c and d), in density independent (a and c) and density dependent (b and 
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d) decision option (see table 2). Data points of experimental data comes from literature 

(Elzinga, 1982; Joosten and Elings, 1985) 

 

 Figure 2. Population growth of whiteflies (mean +/- s.d. of five runs), in 10 plants infested with 

100 females at day zero. The dispersal behaviors were: Random uniform (a and b) and Cues (c 
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and d), in density independent (a and c) and density dependent (b and d) decision option (see 

table 2). Data points of experimental data comes from literature (Elzinga, 1982; Joosten and 

Elings, 1985) 
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Figure 3. Population growth of whiteflies (mean +/- s.d. of five runs), in 15 plants infested with 

300 females at day zero. The dispersal behaviors were: Eight nearest neighbors (a and b) and 

Exponential function (c and d), in density independent (a and c) and density dependent (b and 

d) decision option (see table 2). Data points of experimental data come from literature (De 

Ponti and Steenhuis, Unpublish). 
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Figure 4. Population growth of whiteflies (mean +/- s.d. of five runs), in 15 plants infested with 

300 females at day zero. The dispersal behaviors were: Random uniform (a and b) and Cues (c 

and d), in density independent (a and c) and density dependent (b and d) decision option (see 

table 2). Data points of experimental data come from literature (De Ponti and Steenhuis, 

Unpublish). 
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Figure 5. Adult population in the random dispersal rule for parasitoids. 

 



                                                                                                                                         Annex 1  

 

77 
 

 

 

Figure 6. Adult population in the eight nearest dispersal rule for parasitoids. 
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Figure 7. Adult population in the exponential function dispersal rule for parasitoids. 
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Figure 8. Adult population in the random dispersal rule for parasitoids with mildew presence in 

leaves. 
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Figure 9. Adult population in the eight nearest dispersal rule for parasitoids with mildew 

presence in leaves. 
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Figure 10. Adult population in the exponential function dispersal rule for parasitoids with 

mildew presence in leaves. 
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