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Abstract

This thesis deals with the generalization of two dimensional obstacle scattering
theory to polygonally bounded obstacles. Our main objective is to derive an
upper bound for the counting function of the scattering poles. The counting
function counts the number of scattering poles on the analytical continuation of
the scattering matrix which, in even dimensions, lives on the Riemann surface
of the logarithm.
The starting points for our investigation are P. D. Lax and R. S. Phillips’ for-
mulation of scattering theory in an even number of spatial dimensions and R.
Melrose’s polynomial bound for the counting function in an odd number of spa-
tial dimensions. We restrict ourselves to polygonally bounded obstacles with
edges of C∞-type. The key ingredient is the application of Mellin pseudodiffer-
ential methods. In the course of this work, we analyse the mapping behaviour
of the single and double layer potentials and their traces on the boundary, the
Calerón projectors. As a by-product, we derive modified jump conditions for
the layer potentials.

Zusammenfassung

Diese Dissertation beschäftigt sich mit der Verallgemeinerung der zweidimen-
sionalen Streutheorie auf polygonal berandete Objekte. Ziel dieser Arbeit ist
die Herleitung einer oberen Abschätzung für die sogenannte Zählfunktion. Diese
Zählfunktion zählt die Anzahl der Streupole, die innerhalb eines Kreises mit dem
Radius r > 0 enthalten sind.
Die Ausgangspunkte unserer Untersuchung sind die geradedimensionale For-
mulierung der Streutheorie nach P. D. Lax und R. D. Phillips und der Be-
weis einer oberen Abschätzung für die Zählfunktion von R. Melrose. Neu ist
die Einführung des sogenannten Mellin-Kalküls aus der singulären Analysis.
Dieses ersetzt den konventionellen Kalkül der pseudodifferentiellen Operatoren.
Im Verlaufe der Arbeit untersuchen wir außerdem das Abbildungsverhalten der
Einfach- und Doppelschichtpotentiale und Ihrer Spur auf dem Polygonalen Rand
des Streuobjekts. Als ein Nebenprodukt leiten wir modifizierte Sprungrelatio-
nen her.
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Chapter 1

Introduction

This thesis deals with the problem of obstacle scattering theory in two spatial
dimensions.1 The goal is to derive an upper bound for the counting function of
the scattering poles in the case of a single, polygonal obstacle. The counting
function counts the number of scattering poles on the meromorphic continuation
of the scattering matrix which, in even dimensions, lives on the logarithmic cover
of C\{0}.
Although investigators have always implicitly made this distinction, we would
like to mention explicitly that one has to carefully distinguish between to types
of poles in the context of scattering theory. Namely:

• resolvent resonances, and

• scattering resolvances,

the former being the poles of the cut-off resolvent, the latter of the meromorphic
continuation of the scattering matrix.
The investigation of upper bounds for the counting function has started with
R. Melrose’s seminal work [Mel83] on the Schrödinger equation. Since then,
researchers have extended this area of research by investigating various types of
potentials, improving the bounds, or by including the search for lower bounds
into their work. Some publications in these directions are [Zwo89], [Bar99],
[Chr02], [CH05], and [Chr06]. Bounds for scattering in an even number of spatial
dimensions have been investigated in [Int86]. For an overview up to the year
1994, consider the survey [Zwo94]. The educational paper [His12] also gives
a comprehensive overview. Other lines of investigations included considering
perturbations of the underlying metric, e.g., [Vod91b], [Vod91a], and [Vod92].
The topic of object scattering, however, seems to have been rather neglected:
Except for [Mel84], progress has been scarce.
Only very recently, however, there has been a renewed interest in this theme
([CH10], [CH14b], [CH14a], and [Chr15]). T. Christiansen and P. D. Hislop
have published various estimates for the counting function, based on the idea
of black box scattering. Their method avoids the difficult technicalities of layer
potentials by considering a self-adjoint perturbation P which is defined outside

1We shall note that, when occasionally using ”n dimensions”, we actually mean n space
dimensions.

1



2 CHAPTER 1. INTRODUCTION

a connected open set U ⊂ Rn as

Pu|Rn\U = − ∆|Rn\U

for all u ∈ D(P ). Using this abstract framework, they were, e.g., able to deter-
mine the maximal order of growth of the counting function in even dimensions.
The general problem of scattering for non-smooth obstacles has been investi-
gated by C. H. Wilcox [Wil75] for Neumann-type homogeneous boundary con-
ditions, and by P. D. Lax and R. S. Phillips in [LP78], extending their infamous
theory of scattering to domains which satisfy the so-called compactness prop-
erty.
Having given a short overview of the history of the subject, we can state the
two main ingredients which we will need in order obtain an upper bound. Those
are:

1. The formulation of scattering theory in two dimensions by P. D. Lax and
R. D. Phillips [LP72].

2. The introduction of Mellin pseudodifferential calculus [Sch98].

The theory of scattering by P. D. Lax and R. D. Phillips, also known as Lax-
Phillips theory, is well-known among mathematical analysts. Introduced in
[LP64] and widely disseminated by their monograph [LP67], it is applicable to
the wave equation, but also to symmetric hyperbolic systems as well as the
Schrödinger equation [LP67]. Lesser known, however, is their extension to sys-
tems in even dimensions [LP72] and to non-smooth domains [LP78]. The latter
two papers provide the basis for our investigation, as the techniques used in
them allow us to analytically continue the S-matrix to the Riemann surface of
the logarithm.
The elliptic theory for pseudodifferential operators for singular domains is del-
icate and quite demanding (cf. [RS89],[Sch91],[EB97], and [Sch98]). Elliptical
pseudodifferential theory in singular domains has been developed by different
groups of researchers, among the main proponents the school around Schulze
and Rempel which has been heavily influenced by Russian scholars, the other
being the b-calculus, developed by American researchers around Melrose. We
have chosen Schulze’s calculus (sometimes also called the Mellin calculus) for its
usage of the Mellin transformation. Although the investigation of singularities
for elliptic problems does not necessarily require methods of Mellin pseudodiffer-
ential calculus (cf. [Dau88], [Gri85], and [Gri92]), in our case it is necessary for
the construction of a parametrix for the Calderón projector C01(λ), an integral
operator which lives on the boundary of the obstacle. Furthermore, we will need
pseudodifferential methods for the reformulation of the single and double layer
potential operators as potential operators in the sense of Schrohe and Schulze
(cf. [SS94] and [SS95]).
This leads us to the second pillar of this thesis which involves using the ideas
of Boutet de Monvel’s calculus in conical domains. The first advantage, is the
conceptual simplicity which emerges by just rewriting the scattering problem in
terms of Boutet de Monvel’s algebra. The solution operators, i.e. the residual
operator of the Laplacian in the exterior domain Ω and the layer potentials are
identified with the interior and potential operators of the algebra, respectively.
As for the radiation condition, it can be formulated as an operator and regarded
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as a part of the algebra’s trace operator. As it happens quite often in the
course of science, this idea turned out quite fruitful since E. Schrohe and B.-W.
Schulze have developed a theory of Boutet de Monvel algebras for spaces with
conical singularities ([SS94] and [SS95]). Their toolbox turned out as useful
by providing both accurate definitions and propositions about the continuity of
potential operators.
In addition to the mentioned methods, we also make use of some results pio-
neered by the mathematical physics community, which involve identifying R2

with C and parametrizing the vicinity of the vertices with complex radial co-
ordinates. Petri Ola and Lassi Päivärinta considered one dimensional graphs
and applied the methods of Mellin calculus to the single layer potential of the
standard Laplacian in [OP04]. This resulted in the explicit calculation of the
Mellin symbol of the Laplacian’s single layer potential, thereby revealing its pole
structure.

The Formulation of the Problem

Consider the scattering of acoustic waves by a single obstacle O with bound-
ary ∂Ω. Denote the exterior domain by Ω. The boundary shall be polygonal
with edges of class C∞. Then, assuming the outgoing Sommerfeld radiation
condition, the problem may be posed as

(∆ + λ2)u = 0,

u|∂Ω = g,

lim
r→∞

r
n−1
2 (∂ru− iλu) = 0.

(1.1)

In two dimensions, the scattering matrix Ŝ(σ) admits an meromorphic continua-
tion to the Riemann surface of the logarithm, Λ. The poles of this meromorphic
continuation are called scattering resonances. Let Λm ⊂ Λ be the mth sheet
of Λ. We may identify this sheet with the upper or lower half of the complex
plane, i.e. Λ±m

∼= C±.

Theorem (Main theorem). The counting function N±m(r), which counts the
scattering poles within a radius r > 0 of the origin on the mth sheet, satisfies
the inequality

N±m(r) ≤ Cr2.

We will require the edges at the corners to be straight. This simplifies the proofs
considerably, as they are technical even in this simplified situation.

Outline of the Proof

The basic idea of the proof is to find an analytic function that has zeros at
exactly the same locations and of the same multiplicity as the scattering reso-
nances. Using this analytic function, we can apply Jensen’s formula and derive
an upper estimate.
Let r > 0, h(z) be a meromorphic or holomorphic function, and {zk}k∈N a
countable family of roots for h(z). Then Jensen’s formula states that
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Nh(r) ≤ 1

2π log(2)

∫ 2π

0

log
|h(2reiθ)|
|h(0)|

dθ.

In the case of scattering with Dirichlet boundary conditions, a function which
suits our needs is the functional determinant

d(λ) = det (1+ R(λ)) ,

where R(λ) is the remainder of the parametrix Q applied to C01(λ), the bound-
ary limit of the single layer potential:

Q C01(λ) = 1+ R(λ).

R. B. Melrose has proved the following identity for the case of an obstacle with
smooth boundary using the well-known methods of Fourier pseudodifferential
operators:

Proposition ([Mel84]). Consider the above scattering problem (1.1) for n = 3
and an obstacle with smooth boundary ∂Ω. If ∆∂Ω is the induced Laplacian on
∂Ω, then

(1 + ∆∂Ω)
1
2 C01(λ) = 1 + R(λ),

where R(λ) is an entire family of pseudodifferential operators of order -1 such
that -1 is an eigenvalue of R(λj) with algebraic multiplicity at least that of λj
as a pole of R(λ).

Consider the functional determinant

d(λ) = det
(
1+ Rn(λ)

)
, with n = dim(∂Ω) + 1.

It is d(λj) = 0 with multiplicity for the scattering poles λj . Using Jensen’s
formula (theorem A.2.1) for the function d(λ) yields the upper bound

|d(λ)| ≤ CeC|λ|
n

.

In order to generalize this result to polyhedral obstacles, we have to introduce
the machinery of Singular Analysis. This means that the central role of pseu-
dodifferential operators based on the Fourier transformation will be substituted
with Mellin pseudodifferential operators. The latter are based on the Mellin
transformation, i.e. a transformation of the form

Mu(z) =

∫ ∞
0

rz−1u(r) dr, z ∈ C, u ∈ C∞0 (R+).

The drawback of applying Mellin pseudodifferential calculus is its higher com-
plexity, even in the simple case of a one dimensional boundary ∂Ω. Choosing
the Mellin calculus as our main tool yields two problems:

(i) Finding appropriate function spaces for both the boundary and the interior
and exterior domains.

(ii) Defining an operator algebra in which we can embed the potential opera-
tors and their interior and exterior limits on the boundary.



5

Fortunately, we are able to make use of B.-W. Schulze and E. Schrohe’s re-
search on Boutet de Monvel algebras in [SS94] and [SS95]. Their development
of a symbolic calculus for boundary value problems in conical domains provides
a fertile environment for the study of layer potentials. Although we do not need
the full calculus of Boutet de Monvel-algebras, their formulation of Boutet de
Monvel-valued symbols provides a useful line of thought. We attempt to re-
formulate the single and double layer potentials as potential operators in the
sense of Schulze and Schrohe and study their interior and exterior limits on the
polygonal boundary ∂Ω. These limits turn out to be Mellin pseudodifferential
operators which operate on the boundary and can be considered as the lower
right entries of the elements of Boutet de Monvel algebra.
In general, all the operators we use in the course of our work, let them be
potential or boundary operators, are of the form

A = AM + Aψ + AG .

Here, the term Aψ is certainly most familiar to the reader. It is a standard (i.e.
Fourier) pseudodifferential operator defined on the interior of the edges, where
the curved parts are bounded away from the corners.
In contrast to this, the terms AM denotes the Mellin contribution of the operator
in question. It is basically an operator of the form

opγM[h]u =M−1
γ h(r, z)Mγu, u ∈ C∞0 (R+)

where h(r, z), the Mellin symbol, is a function which is holomorphic or mero-
morphic in the variable z (with additional properties). In general, this so-called
Mellin symbol is also dependent on several more variables, such as parametriza-
tions of the edge. But since we require the edges in a neighborhood of the corners
to be straight, the Mellin symbols will mostly depend on solely one variable ϑ
which parametrizes an angle.
Finally, the term AG is the so-called Green operator. It is smoothing and
has been included into the calculus of Mellin pseudodifferential operators for
composition purposes and is named by analogy after the Green operator which
is part of Boutet de Monvel’s algebra for boundary value problems.
One of the drawbacks for Mellin pseudodifferential and potential operators in
our situation is that the Mellin symbols are not scalar valued, but rather matrix-
valued. To be more precise, a Mellin symbol for a potential operator in a wedge-
like domain X∧ has the form h̄ = (h1, h2), a 1×2-matrix, which reflects the fact
that the boundary of the domain without the origin consists of two semi-lines:
∂X∧ = Y1 ] Y2.
The Mellin symbols of the operator on the boundary, on the other hand, are
given by the 2× 2-matrices

ĥ =

[
h11 h12

h21 h22

]
,

where the off-diagonal entries are so-called smoothing Mellin symbols. These
peculiarities require some effort in notation and book-keeping. As we have
already suggested, matrices will be denoted, depending on their type, by a ‘bar’
or a ‘hat’. This also affects the frequently used cut-off functions which will often
appear as diagonal matrices φ̂. All these aspects will be explained in greater
detail in chapter 4.
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The algebra of Boutet de Monvel does in fact play a small role in chapter 4 of this
thesis. Although certainly a triviality, we attempt to reformulate the scattering
problem (1.1) and its solution operator in terms of Boutet de Monvel, thereby
introducing the notions of the potential and interior operators, the former being
sometimes also called Poisson operators. It seems to make the concept of the
solution for scattering problems as done in the treatise [Tay13] conceptually
simpler, at least for the uninitialized reader.
The fundamental solution plays a central role since it and its normal derivative
are the operator kernels of the single and double layer potentials. The study of
these kernels is contained in chapter 6. Although a boundary of dimensionality
one does simplify the elliptic theory, in even dimensions it is essentially given
by the Hankel functions of first and second kind, and thereby add again more
complexity due to their more involved expansions. For example, for two dimen-
sions, it is given by (denoting the outgoing solution with the superscript ‘o’ and
the incoming solution by the superscript ‘i’):

r∗0(λ|x− y|) =


− i

4
H

(2)
0 (λ|x− y|), for ∗ = o,

+
i

4
H

(1)
0 (λ|x− y|), for ∗ = i.

for x 6= y ∈ R2 and λ ∈ Λ. Then, in chapter 6, we will demonstrate that the
layer potentials are indeed elements of the class of potential operators on Ω,
Pµ(Ω; Λ), µ ∈ R. Furthermore, we will show that there exists an expansion of
the form

Sli/o(λ)−
M∑
k=0

(−1)k

(k!)2

(
λ

2

)2k

Tlog,k ∈ PM+1(Ω; Λ)

and

Dli/o−T̃sing −
M∑
k=0

(−1)k

(k!)2

(
λ

2

)2k

T̃log,k ∈ PM+1(Ω; Λ),

where Tlog,k, Tsing, and T̃log,k, k ∈ N0 are certain integral operators. The
details of this will be explained in the four Theorems 6.7 to 6.13.
In the penultimate step, we have to apply the parametrix to the above families
of operators. It turns out, due to a factorization of the Mellin symbols, that
these operators map classical fractional Sobolev spaces Hs(∂Ω) onto Sobolev
spaces of higher regularity, e.g.,

Q Tlog,k : Hs(∂Ω)→ Hs+2k(∂Ω).

The subsequent approximations are based on Weyl’s convexity estimate (Theo-
rem A.4.3):

|d(λ)| ≤
∞∏
j=1

(
1 + χj

(
R(λ)

))
.

The singular values χj(R(λ)) themselves are approximated by exploiting the
above expansion of the boundary operators and then approximating the num-
bers χj(Q Tk) again by their operator norm and the entropy numbers of the
embeddings H2k(∂Ω)→ L2(∂Ω). This is the content of Carl’s Inequality (The-
orem A.5.1). The concept of entropy numbers is explained in the appendix in
section A.5.
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Outline

• Chapter 2 will introduce the reader to the general concepts of scatter-
ing theory. While the first section mentions the most general algebraic
aspects, such as wave operators, the notions in subsection 2.2 are more
specific to the theory of obstacle scattering. Although some of them will
be reintroduced in chapter 5, we aimed for preparing the reader’s mind
and chose redundancy over brevity.

• Chapter 3 will introduce the necessary function spaces and some theory
of Mellin pseudodifferential operators on the positive real axis. The re-
sults form the technical basis for the algebra of boundary operators in the
subsequent chapter.

• Chapter 4 will provide the reader with the definitions of the operator
classes. We will focus on the potential and boundary operators since
these are the classes which the layer potentials belong to. In addition,
we outline the algebra of Boutet de Monvel for boundary value problems
for conical singularities without going into details. Some understanding
of standard pseudodifferential operators will be required.

• In chapter 5 we establish basic results about scattering theory for poly-
gonally bounded obstacles. By modifying an argument by Lax and Phillips
[LP72], we provide a proof for the existence of the resolvent operator for
the exterior problem for polygonal boundaries. The results on the wave
operators and the S-matrix are standard results, which only need a trivial
modification by incorporating Green’s identities for polyhedral domains.

• Chapter 6 is thematically divided into two parts: The first one deals with
the asymptotic expansions of the fundamental solutions. The fundamental
solution and its normal derivative are the kernels of the single and double
layer potentials. Investigating their expansions for |x−y| → 0 and |x| → ∞
provides a basis for the analysis of layer potentials in the subsequent part
of the chapter. There, we will show that the layer potentials are potential
operators in the sense of chapter 4. We will understand their mapping
properties and their exterior and interior limits on the boundary. An
important result is the derivation of modified jump relations for the double
layer potential.

• Chapter 7 focuses on the proof of the main theorem. We will construct
a parametrix for the boundary limit of the single layer potential. We
provide the reader with a simple example: The explicit construction of
the parametrix for the boundary of a square in two dimensions. The
remainder of this chapter is dedicated to the proof of the upper estimate.
This chapter is very technical and requires some knowledge about entropy
numbers. Their basic properties are provided in the appendix.

• Finally, chapter 8 will give the reader an outlook onto the problem in
three dimensions. It turns out that the elliptic theory is much more in-
volved, whereas the scattering problem itself simplifies considerably.
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Chapter 2

Fundamentals of Scattering
Theory

In this chapter we will outline the fundamental ideas of scattering theory. In
section 2.1 we introduce the most basic principles of scattering theory, i.e. the
idea of comparing a free and a perturbed problem with each other. Section 2.2
is a short account on the standard notions of obstacle scattering theory.

2.1 Abstract Scattering Theory

Consider the pair (H,H) which consists of a Hilbert space H and a self-adjoint
operator H : D(H) → H, with D(H) ⊆ H being the domain of the operator H.
According standard spectral theory, the Hilbert space H may be decomposed
as a direct sum of the three subspaces:

H ∼= Hpp ⊕Hsc ⊕Hac.

Here, Hpp denotes the pure point spectral eigenspace of H, Hsc the singular
continuous eigenspace, and Hac the absolutely continuous eigenspace.
The absence of the singular continuous eigenspace is a feature of realistic physi-
cal systems. Up to this point, no realistic systems are known where the singular
continuous spectral eigenspace is non-trivial. The states which are contained
in the singular continuous spectrum and the absolutely continuous eigenspaces
can be given physical interpretations by means of the so-called RAGE theorem.
The objective of scattering theory is to understand the absolutely continuous
spectrum of the full Hamiltonian H. In order to do this, one considers a pair
(H0,H0) of a free Hilbert space and free Hamiltonian H0, the latter again being
a self-adjoint operator. One seeks to construct a unitary equivalence between
the absolutely continuous eigenspace Hac and the free Hilbert space H0. Here,
we are already implying that H0 = Hac0 , that is the free Hilbert space consists
solely of the absolutely continuous subspace of H0.
Since both H and H0 are self-adjoint operators, they give rise to one-parameter
strongly continuous unitary groups {U(t) = e−iH t}t∈R+

and {U0(t) = e−iH0}t∈R+
,

respectively. These groups are used to construct the wave operators which func-
tion as the unitary mappings between H and H0.

9



10 CHAPTER 2. FUNDAMENTALS OF SCATTERING THEORY

In full generality, the wave operators are defined as

Wout(H,H0; J0,PM ) := s-lim
t→∞

eiH t J0 e
−iH0 t PM ,

and
Win(H,H0; J0,PM ) := s-lim

t→−∞
eiH t J e−iH0 t PM ,

if the limits exists. Here, PM : H0 → H0 is the projection onto a closed subspace
M ⊆ H0, and the operator J0 : H0 → H is an embedding operator.1

free trajectory

’perturbed’ trajectory

center of
attractive
potential

Figure 2.1: Free and perturbed trajectories of a classical particle

The wave operators relate the free solution, i.e. the solution of the ’easier’ prob-
lem, to the perturbed problem. This is expressed by the intertwining property

eiH t Wi/o(H,H0; J0,PM ) = Wi/o(H,H0; J0,PM )eiH0 t.

This easier problem may, depending from case to case, be either a linearization
of a non-linear problem, a Schrödinger equation without potential, or a trivial
geometry.

Definition 2.1 (Completeness of Wave Operators). The wave operatorWi/o(H,H0)
is called complete, if

ran Wout(H,H0) = Hac,

asymptotically complete, if

Hpp ⊕ ranWi/o(H,H0),

and weakly asymptotically complete, if

ran Wout(H,H0) = ran Win(H,H0).
1A variant of the identification operators is especially important for multichannel scattering

theory.
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There are numerous techniques developed to deal with the problem of existence
and completeness of wave operators. Most notable is Cook’s lemma which is the
foundation of almost all theorems on the existence of these operators. Further-
more, there are trace class methods by Kato, Rosenblum, and Pearson. And
finally, the techniques by Enss with further simplifications by Davies and Perry.
The scattering operator which relates the solutions of the incoming free space
to solutions in the outgoing free space is defined by

S := Wout(H,H0)∗Win(H,H0). (2.1)

The scattering operator S is decomposable in L2(R+, σ
n−1dσ;L2(Sn−1)), i.e.

{S(k)}k∈R being the direct integral of the operator S. The operator for fixed
σ ∈ R is being called the scattering matrix. It is the S-matrix which may be
meromorphically continued to either the complex plane (odd dimensions) or the
Riemann surface of the logarithm (even dimensions).

2.2 Obstacle Scattering

2.2.1 Formulation of the Problem

LetO ⊂ R2 be a compact obstacle, its complement Ωc = R2\Ω connected. In the
classical theory of obstacle scattering, one usually assumes that its boundary,
∂Ω, is smooth. Hence, for n spatial dimensions, the scattering problem for
steady-states can be formulated by

(∆ + λ2)u = 0,

u|∂Ω = f,

lim
r→∞

r
n−1
2 (∂ru∓ iλu) = 0.

(2.2)

One has the choice between different boundary conditions, e.g., one has the
Dirichlet condition, the Neumann boundary condition, and the so-called Robin
condition, which is given by

∂νu(x) = α(x) · u(x), (R)

α being a smooth function on the boundary, i.e.α ∈ C∞(∂Ω).
The last equation of (2.2) implies that there are two different possibilities: The
minus sign designates the incoming Sommerfeld radiation condition, if there is
a plus sign, one speaks of the incoming Sommerfeld radiation condition.

2.2.2 Spectral Theory

The limiting absorption principle allows one to construct families of generalized
eigenfunctions and thereby construct spectral representations for the self-adjoint
operators H and H0. In the case of the free Laplacian in Rn, the spectral
representation is the well-known Fourier transformation. That is,

Φ : L2(Rn)→ L2(Rn),

Φf(k) =
1

(2π)n/2

∫
R2

e−ikxf(x) dx,
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where the integral is to be understood as a L2-limit. One can then easily see
that

Φ(−∆)Φ∗ = |k|2, k ∈ R3.

We will recast this representation in the language of scattering theory as follows:
Denote the set of plane wave functions by

ψ0(x, ω, σ) =
1

(2π)n/2
e−ixωσ, x ∈ R3, (σ, ω) ∈ R+ × S1

We make the observation that the plane waves satisfy both the reduced wave
equation and the outgoing Sommerfeld condition: (∆ + λ2)ψ0(x, k) = 0,

lim
r→∞

r
n−1
2

(
∂rψ0 − iλψ0

)
= 0.

(2.3)

The set {ψ0(x, k) | x, k ∈ Rn} forms a family of generalized eigenfunctions for
the free Laplacian −∆Rn in L2(Rn). The Fourier transformation can then -
using radial coordinates in Fourier space - be rewritten as

Φf(k) =

∫
Rn
ψ0(x, ω, σ)f(x) dx. (2.4)

In order to construct similar spectral representation for the Laplacian on a
domain with obstacle, one has to construct a family of generalized eigenfunc-
tions and define a modified Fourier transformation. Assuming a Laplacian with
Dirichlet boundary conditions, we solve the following equations by utilizing the
Limiting Absorption principle:

(∆x + λ2)vi/o(x, ω, σ) = 0, x ∈ Ω,

vi/o(x, ω, σ) = −eiλxω, x ∈ ∂Ω,

lim
r→∞

r
n−1
2

(
∂rv ∓ iλvi/o

)
= 0 .

(2.5)

These equations however, yield two distinct families of generalized eigenfunc-
tions, each one fulfilling the outgoing and incoming radiation condition, respec-
tively. Denote these families by {ψi/o(x, ω, σ) | (x, ω, σ) ∈ Ω×R+ × S1}, where
‘i’ stands for incoming and ‘o’ for outgoing. Generalized eigenfunctions of this
kind are called scattered waves.
Adding the a plane wave to the scattered waves yields the distorted plane waves:

ψi/o(x, ω, σ) = e−iσxω + vi/o(x, ω, σ).

The families {ψi/o(x, ω, σ) | (x, ω, σ) ∈ Ω×R+×Sn−1} can be used to to define
spectral representations analogously to (2.4), namely Φi/o : L2(Ω) → L2(Rn)
with

Φi/of(ω, σ) :=
1

(2π)n/2

∫
Ω

ψi/o(x, ω, σ)f(x) dx. (2.6)

The integral is again to be understood in the L2-sense. In order to define the
wave operators for the scattering problem, we may utilize the spectral represen-
tations Φ and Φi/o by setting

Wout := Wout(H,H0) := ΦΦ∗out,

and
Win := Win(H,H0) := ΦΦ∗in.
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2.2.3 The Scattering Matrix

The scattering operator is then, following the abstract definition (2.1), given by

S = W∗out Win, (2.7)

and is therefore a bounded operator B(L2(Rn)). Set Ŝ := Φ S Φ∗. Then one can
that the scattering operator commutes with the spectral measure {Π0(σ)}σ∈R+

of the free Hamiltonion:

Π0(σ) Ŝ = Ŝ Π0(σ), σ > 0.

This commutation relation has a interesting consequence (cf. [RS78] for a more
detailed account). Namely, one can show that Ŝ is decomposable:

Proposition 2.2. The Fourier transform of the scattering operator is decom-
posable, i.e. there is a family of operators Ŝ(σ), σ ∈ R+, such that

(
ϕ, Ŝψ

)
=

∫
R+

〈ϕ(σ), Ŝ(σ)ψ(σ)〉L2(Sn−1) dσ, ϕ, ψ ∈ L2(Rn).

The operators Ŝ(σ) are called the fibers of Ŝ at σ. One can go further and show
that the fibers (assuming two spatial dimensions) have the following form:

Ŝ(σ) = 1+
( σ

2πi

) 1
2

A(σ).

This will be discussed in chapter 5. It is a well known fact that for an odd number
of spatial dimensions the S-matrix can be analytically continued to the complex
plane C. Specifically Lax-Phillips theory in odd dimensions provides powerful
theorems which guarantee the existence and under quite general conditions (cf.
[LP67] and [LP78] for modifications incorporating domains satisfying the finite
tiling property). The counting function for the scattering poles can then simply
be defined as the number of scattering poles within a ball Br(0) of radius r > 0
and center 0 in the complex plane C.
For an even number of spatial dimensions however, the S-matrix can be ana-
lytically continued to a meromorphic function on the Riemann surface of the
logarithm, Λ. In order to define the counting function on Λ, one needs to select
a specific sheet first, Λm ⊂ Λ, first. Define

Λ+
m := {reiφ | r > 0, 2πm < φ < (2m+ 1)π}.

Λ−m := {reiφ | r > 0, (2m− 1)π < φ < 2π}.

The definition of the counting function for an even number of spacial dimension
is then as follows:

Definition 2.3. The resonance counting function for even spatial dimen-
sions, N±m(r), for the mth sheet Λm, m ∈ Z, is defined as the number of

poles λj of Ri/o(λ) with modulus less or equal than r, i.e. |λj | ≤ r and
mπ < arg λj < (m+ 1)π.
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Chapter 3

Fundamentals of Mellin
Calculus

Having introduced the necessary foundations of scattering theory, we now have
to take a look at the elliptic theory. As we have already mentioned in the intro-
duction, the elliptic theory for one dimensional graphs is considerably simpler
than the higher dimensional ones. Still, even in the one dimensional case we
have to invent a readable notation for bookkeeping purposes. The ultimate goal
will be to rewrite the boundary values of the single and double layer potentials
in terms of this algebra. This will be the goal of chapter 6.
Summarized, this chapter introduces technical preliminaries such as:

• Definitions and nomenclature of the obstacle’s geometry (section 3.1),

• Function spaces (section 3.2),

• The definition of the Mellin pseudodifferential calculi (sections 3.3 and
4.3).

3.1 Curvilinear Polygon in Two Dimensions

∂Ωj

vj

vj−1

∂Ωj−1

∂Ωj+1

Ωc

Ω

αj−1

αj

Figure 3.1: Naming convention of the edges and corners of the boundary

15
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We are dealing with two dimensional Euclidean scattering, i.e. the surrounding
space is R2 with the standard Euclidean product x · y := x1y1 +x2y2, x, y ∈ R2.
The corresponding norm shall simply be defined by |x| :=

√
x · x, x ∈ R2.

As we have mentioned in the introduction, we will denote the exterior domain
by Ω and the obstacle by the complement Ωc. We consider the boundary of the
obstacle to be piecewise smooth, i.e.

∂Ω =

N⋃
j=1

∂Ωj ,

where each ∂Ωj ⊂ Mj is a smooth hypersurface embedded in a larger hyper-
surface Mj . This definition is a special case of the Definition A.1.2 given by
[Dau88]. Each edge ∂Ωj may be parametrized by arc length, i.e. by a curve
xj : (0, lj) → ∂Ωj , t 7→ xj(t), where lj > 0. Furthermore, this curve may be
extended to (−ε, lj + ε) 7→ Mj . The vertices shall be denoted by vj , 1, . . . , N .
The terms ‘vertex’ and ‘corner’ will be used synonymously.

Remark 3.1. It is very important to note that we assume the edges to be
straight near the vertices. That is, for each vertex vj , there is a neighborhood
containing vj such that in this neighborhood, the edges ∂Ωj and ∂Ωj+1 are
straight semi-lines. This will make the subsequent calculations of the Mellin
symbols easier.

We define the outer and inner limits for u ∈ C∞(R2) and t ∈ ∂Ω by

γ+
0 u(t) := lim

x→t
x∈Ω

u(x), (3.1)

γ−0 u(t) := lim
x→t
x∈Ωc

u(x). (3.2)

We need to define normal vector fields for a piecewise smooth boundaries. The
(outward pointing) normal vector field is only defined on the interior of the
edges, i.e. piecewise:

∂νj(t) := νj(t) · ∇x, for t ∈ ∂Ωj , j = 1, . . . , N. (3.3)

The inward pointing normal vector field is then simply defined by ν−j,x := −ν+
j,x.

Denote by v 7→ ∂v the canonical isomorphism C∞(R2;R2) ∼= Diff1(R2). Then
y 7→ ν̃y ∈ R2 is the normal vector field written as a field with values in R2

instead of a differential operator of order 1 via the canonical isomorphism.

γ±1 u(t) := γ±0 ∂νu(t) (3.4)

Notice that, in the case of piecewise smooth boundaries, we have to define the
operator for each smooth segment separately, i.e.

γ±1 u(t) :=

N∑
j=1

γ±0,∂Ωj
∂νju(t).

Of course, this shouldn’t irritate us, and for this reason we will stick to notation
(3.4). The boundary operator is then defined as the column vector

γ± :=

[
γ±0
γ±1

]
.
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We will be constantly using cut-off functions of the following sort: Consider a
vertex vj , j = 1, . . . , N . φj shall denote a function C∞(∂Ωj) which is identically
one near the vertex j and zero outside a small neighborhood. Setting θj :=

1∂Ωj − φ
j
j − φ

j+1
j , we obtain a function θj ∈ C∞c (∂Ωj). The interior angles of

the corners will be denoted by α1, . . . , αN . Hence, we have a partition of unity
of the graph ∂Ω:

∑
j(φ

j+1
j + φjj + θj) = 1∂Ω.

vj−1 ∂Ωj vj

ωjj−1
ωjjθj

Figure 3.2: The cut-off functions on an interval

The parametrizations xj(σ) induce a metric on each edge of the boundary.

Dxj(σ) : R ∼= TσR→ Tp∂Ωj .

Of course, in our simple case, Dxj(σ) = x′j(σ) ∈ R2 pointwise. We have

|x′j(σ)| =
√
x′j(σ) · x′j(σ).

This notation comes in handy when defining the Lebesgue space on the boundary
below. We denote this norm as

|·|t : Tt∂Ωj → [0,∞).

This notation will come in handy when we are dealing with pseudodifferential
operators operators defined on the boundary. It is almost unnecessary to say
that Tt∂Ωj ∼= R.
This metric immediately defines a Lebesgue measure on the boundary. For
f : ∂Ωj → C measurable and a parametrization xj : [0, lj ]→ ∂Ωj , we set∫

∂Ωj

f dsj :=

∫ lj

0

(f ◦ xj)|x′j(σ)| dσ.

L1(∂Ω, dsj) is then defined as the space of integrable functions. On the bound-
ary ∂Ωj , we define the spaces L2(∂Ωj , dsj) with scalar product

〈fj , gj〉∂Ωj :=

∫
∂Ωj

fjgj dsj . (3.5)

Finally, we may define the space L2(∂Ω, ds) :=
⊕N

j=1 L
2(∂Ωj , dsj). The scalar

product is given by

〈f, g〉 :=

N∑
j=1

〈fj , gj〉∂Ωj .

Notice, that we have avoided the subscript ∂Ω for the L2-product on the whole
boundary.
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ωjj
ωjj

ωjj−1

ωj−1
j−1

Ω

Ωc

Figure 3.3: The cut-off functions on at a segment of the boundary

3.2 Weighted Spaces with Asymptotics

In the following three subsections we will introduce all necessary function spaces
which we will need both on the boundary and in the exterior and interior do-
mains. We still require basic knowledge of standard Sobolev spaces, e.g., the
spaces Hs(Rn), Hs

0(Ω) for bounded domains Ω ⊂ Rn, Sobolev spaces of compact
support, and localized Sobolev distributions.
For the exterior domain, we will define Sobolev spaces which have weighs and
asymptotics in a neighborhood of the vertices of the obstacle. Away from the
vertices, they will be based on the standard Sobolev spaces mentioned above.
Only in chapter 4, we will add the radiation condition to these spaces in order
to obtain the proper solution spaces for our scattering problem.
The Sobolev spaces on the boundary will be defined as the weighed Sobolev
space on each edge. We choose the weights γ ∈ R to be the same at the
ends of each segment. By introducing asymptotics and requiring compatibility
conditions at each vertex, we define the ordinary Sobolev spaces Hs(∂Ω) on the
boundary.
An extremely detailed account for function spaces in the context of Mellin pseu-
dodifferential operators can be found in [RS89], chapter 1. We encourage the
reader to delve into this treatise since it offers a complete overview on this
subject.

3.2.1 Sobolev Spaces with Asymptotics in a Cone

The Mellin transformation has the same pivotal role in singular analysis as the
Fourier transformation has in the standard pseudodifferential calculus. It maps
functions defined on the positive real axis into the space of meomorphic functions
on the complex plane. The basic properties of the Mellin transformation may be
found in, e.g., the monographs [Sch91] and [Sch95]. We begin with an important
definition: For β ∈ R we define the parallel lines to the imaginary axis by:

Γβ :=
{
z ∈ C | Re (z) = β

}
. (3.6)

Let u(r) ∈ C∞c (R+). The Mellin transformation is then initially defined by

M0u(z) =

∫ ∞
0

rz−1u(r) dr.



3.2. WEIGHTED SPACES WITH ASYMPTOTICS 19

It may then be extended to the isomorphism

M0 : L2(R+)
∼=−→ L2(Γ 1

2
).

For γ ∈ R, set Mγf(z) :=M(rγf)(z). The Mellin transformation with weight
γ serves as an isomorphism

Mγ : rγL2(R+)
∼=−→ L2(Γ 1

2−γ
).

The inverse of the Mellin transformation is then given by

(M−1
γ g)(r) =

1

2πi

∫
Γ 1

2
−γ

r−zg(z) dz,

where g ∈ L2(Γ 1
2−γ

). Important identities are

M(rβu)(z) = (Mu)(z + β),

and

M
(
(−r∂r)u

)
= zMu(z).

Definition 3.2. Let X be a n-dimensional, smooth manifold with boundary.
Define the cone X∧ with base space X by R+×X. We define the spaceHs,γ(X∧)
as the completion of C∞c (R+ ×X) with respect to the norm

‖u‖2s,γ =
1

2πi

∫
Γn+1

2
−γ

∫
Rn

(1 + |z|+ |ξ|)s|Mn
2−γF(ϕu)(z, ξ)|2 dξdz.

where the functions φj , j = 1, . . . , N , are a partition of unity of X, and the
space

Ks,γ(X∧) = ωHs,γ(X∧) + (1− ω)Hs(X∧),

for a cut-off function ω ∈ C∞c (R+) near the origin andHs(X∧) := Hs(R×X)|R+×X .

Note that the Mellin transformation yields an isometric isomorphism of the
form:

(u, v)H0,0(X∧) =
1

2πi

∫
Γn+1

2

(
Mu(z),Mv(z)

)
L2(X)

dz.

The pair (γ,Θ), γ ∈ R and Θ = (ϑ, 0], −∞ ≤ ϑ < 0 is called weight data.
In order to define weighted Sobolev spaces with asymptotics, we first have to
introduce consider the space

Ks,γΘ (X∧) := lim←−
ε>0

Ks,γ−ϑ−ε(X∧).

Indeed, Ks,γΘ (X∧) is the subspace of all u ∈ Ks,γ(X∧) such that for an arbitrary
cut-off function ω(r) the Mellin transform

h(z) :=Mγ−n2 (ωu)(z)

has the following two properties:
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1. h(z) ∈ A({z ∈ C | n+1
2 − γ − ϑ < Re(z)}),

2. for hβ := h(β+iρ) and any coordinate neighborhood on X with associated
cut-off function φ,

F−1
ρ→thβ(t)φ(x) ∈ Hs(Rn+1

t,x )

uniformly in c ≤ β ≤ c′ for every n+1
2 − γ + ϑ < c < c′ <∞.

After this characterization, we introduce the asymptotic types:

Definition 3.3. A discrete asymptotic type P associated with the weight data
(γ,Θ) is a finite set of triples

P =
{

(pj ,mj , Lj)
∣∣ pj ∈ C,mj ∈ N0, j = 1, . . . , N

}
such that Lj ⊂ C∞(X) a finite-dimensional subspace, and

πCP ⊂
{
z ∈ C

∣∣ n+ 1

2
− γ + ϑ < Re(z) <

n+ 1

2
− γ
}
.

To a given asymptotic type P and a fixed cut-off function ω we attach the set
of singular functions given by

ωpj ,kj (t) := t−pj lnk(t)ω(t)lj j ∈ N, 0 ≤ k ≤ mj , lj ∈ Lj .

The Mellin transformsM(ωp,k) of these functions are meromorphic in the com-
plex plane. They are of the form (z−p)−k−1h(z) where h is entire and decreases
rapidly along lines parallel to the imaginary axis.

C

Re(z)

Im(z)

Γn+1
2 −γ

(z − p)−k−1h(z)

p

Γn+1
2 −γ+ϑ

Figure 3.4: Poles p ∈ C of an asymptotic type associated with (γ,Θ)

Definition 3.4. Let P be an asymptotic type. Then we define the space EP (R+)
as the linear span of the functions ωp,k, where (p, k) ∈ P .

Definition 3.5. We define the weighted Sobolev space with asymptotics as

Ks,γP (X∧) := Ks,γΘ (X∧) + Es,γP (X∧).
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Note that the space Es,γP (X∧) has the topology of a finite dimensional vector
space. We proceed with giving examples of spaces with asymptotics for the one
dimensional case (i.e. X = {pt}):

Example 3.6. For s ∈ R, define the number

κ(s) :=
{
k ∈ N | k < |s| − 1/2

}
. (3.7)

Set for s > 1/2

T := {(−j, 0) | j ∈ N0},
T s := {(−j, 0) | j = 0, 1, . . . , κ(s)}.

Both these asymptotic types describe Taylor asymptotics. The corresponding
spaces are

ET s(R+) := span{tj | j ∈ N0}

and

ET s(R+) := span{tj | j = 0, 1, . . . , κ(s)}.

Furthermore, for the following theorem, we define (s < −1/2):

EDs(R+) := span{ d
j

dtj
δ0 | j = 0, 1, . . . , κ(s)},

where δ0 is the Dirac delta function with supp δ0 = {0}. Notice that we have
EP(R+) ⊂ K∞,γ(R+).

Theorem 3.7. Let s ∈ R, then there are canonical isomorphisms

Hs(R+) ∼=

{
Ks,s(R+) + ET s(R+) for s ≥ 0, s 6= 1

2 mod Z,

Ks,s(R+) for s ≤ 0,

and

Hs
0(R+) ∼=

{
Ks,s(R+) for s ≥ 0,

Ks,s(R+) + EDs(R+) for s ≤ 0, s 6= 1
2 mod Z.

The isomorphism for Hs(R+) follows by identifying distributions on R+ and that
for Hs

0(R+) by duality. The identifications are continuous in both directions.

Of course, there is the possibility to define the weighted Sobolev space with
different weights at each end of the edge ∂Ωj . However, this is not necessary
for the problem of this thesis.
Notice also, that in the interior of the edge the space Hs,γ(∂Ωj) is equivalent to
an ordinary Sobolev space of order s ∈ R. In symbols, θjHs,γ(∂Ωj) ∼= θjH

s(R)
and ‖u‖s,γ = ‖u‖s for u ∈ Hs,γ(∂Ωj) with support bounded away from the
endpoints.

Definition 3.8. A function χ ∈ C∞(C) is called an A-excision function for
some A ⊂ C, if 0 ≤ χ ≤ 1, χ(z) = 0 for all z in an open neighbourhood of A,
χ(z) = 1 outside another open neighborhood of A.
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So far, we have only dealt with weighted spaces with finite asymptotics. Defining
spaces with infinite asymptotics does not pose a great challenge, though.
Let {Pl | l ∈ N}, be a sequence of discrete asymptotic types with Pl ⊆ Pl+1 for
all l. Then, using the continuous embeddings Ks,γPl+1

(X∧) ↪→ Ks,γPl (X∧) for all
l ≥ 0, we may endow the resulting space with a Fréchet topology:

Definition 3.9. We define the weighted space with infinite asymptotics P by
the projective limit

Ks,γP (X∧) = lim←−
l∈N
Ks,γPl (X∧).

3.2.2 Sobolev Spaces on the Boundary

Since the boundary ∂Ω is not smooth but polygonal, the definition of the space
Hs(∂Ω) needs some more preparation. The usual way to define Sobolev spaces
on a hypersurface is to define them as the traces of Sobolev spaces in the sur-
rounding space. But since we are working with Mellin pseudodifferential oper-
ators on the boundary, we need to take the technically more cumbersome route
and define them intrinsically via the Mellin transform.
For m ∈ N0, define the Sobolev space with weight γ ∈ R on the positive real
axis as

Hm,γ(R+) :=

{
u ∈ L2(R+) |

(
−r d

dr

)j
u ∈ L2(R+), j = 0, 1, . . . ,m

}
.

Definition 3.10. The weighted Sobolev space Hs,γ(R+), s, γ ∈ R is defined as
the closure of C∞0 (R+) with respect to the norm

‖u‖s,γ =

√√√√ 1

2πi

∫
Γ 1

2
−γ

〈Im(z)〉2s|Mγu(z)|2dz,

where 〈ξ〉 =
√

1 + |ξ|2 is the usual Japanese bracket.

Some easy consequences of this definition are, for example,

Hs,γ(R+) = tγHs,0(R+) = tγHs(R+),

and
Ks,0(∂Ωj) = Hs(∂Ωj).

The analogue of the Rellich’s lemma does also exist for weighted Sobolev spaces:

Proposition 3.11. Let a > 0. Then the embedding

Hs
′,γ′
(
[0, a)

)
↪→ Hs,γ

(
[0, a)

)
,

is compact if and only if s′ > s and γ′ > γ.

Hence, one needs improvement in the decay at the origin in order to obtain
compactness. As we will see in theorem 6.10, this is the reason why the double
layer potential fails to be compact on the boundary of a polygon.1

1This fact has been mentioned in [OP04] for the context of weighted Sobolev spaces without
any proof or calculation.
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Consider the parametrization xj : (0, lj) → ∂Ωj and let ω1 and ω2 are cut-
off functions in C∞c (R+) with ω1 supported in a small neighborhood of 0, ω2

supported in a small neighborhood of lj . Then set Hs,γ((0, lj)) := ω1Hs,γ(R+)⊕
ω2Hs,γ((−∞, lj)), where the latter space is defined in the obvious way.

Definition 3.12. For s, γ ∈ R, define the Sobolev space on the edge ∂Ωj of
regularity s and weight γ as

Hs,γ(∂Ωj) := x∗jHs,γ((0, lj)).

The norm of this space is given by

‖u‖2s,γ := ‖x∗jω1u‖2s,γ + ‖x∗jω2u‖2s,γ .

Note that C∞c (∂Ωj) is dense in Hs,γ(∂Ωj) with repect to this topology.

Definition 3.13. Let s, γ ∈ R. We define the space of weighed Sobolev func-
tions on the boundary ∂Ω with weight γ and regularity s as the direct sum

Hs,γ(∂Ω) :=

N⊕
j=1

Hs,γ(∂Ωj). (3.8)

Of course, we could have defined the function space with different weights and
regularities for each edge of the boundaries. But for our purposes, it suffices
to stick to global parameters s and γ. The norm and topology for Hs,γ(∂Ω) is
defined in the obvious way.

Definition 3.14. Let m ∈ N0. Then we define

Hm(∂Ω) :=

{
(fj)

N
j=1 ∈

N∏
j=1

Hm(∂Ωj) | (fj)Nj=1 satisfy condition 3.9

}
,

where condition is

f
(l)
j (vj) = f

(l)
j+1(vj) ∀vj ∀l = 0, 1, . . . ,m− 1. (3.9)

We define the corresponding norm simply as

‖u‖k =

N∑
j=1

‖uj‖k.

For s > 0, H−s(∂Ω) will be defined as the dual to Hs(∂Ω).

The space Hs,γ(∂Ω) is a natural space on which our calculus of Mellin pseudod-
ifferential operators can be defined on in section 4.3.

3.2.3 Sobolev Spaces in the Exterior Domain

The standard Sobolev spaces Hs(Rn) and Hs(Ω), Ω ⊆ Rn shall be defined in
the ordinary fashion. It will be our last task to define the spaces in the exterior
domain with weights and asymptotics.
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C
Re(z)

Im(z)

θ
X∧θ

Figure 3.5: The sector X∧θ

In other words, a neighborhood of the corner exterior domain is mapped onto
the sector X∧θ , 0 < θ < 2π, defined by

X∧θ := {reiϕ ∈ C | r > 0, 0 < ϕ < θ}. (3.10)

If we set X := (0, θ), then actually X∧θ
∼= R+ × (0, θ). In order to define a

weighted Sobolev space for the exterior domain of a polygonal obstacle, let Υj :
Uj → Vj be the diffeomorphism which maps the vicinity of the vertex vj onto
a neighborhood of the origin of the sector X∧2π−αj . Since we are assuming that
the edges are straight in a neighbourhood of each vertex, this diffeomorphism
will be of the form2

Υj(z) := eiθjx− vj ,

where 0 ≤ θj < 2π, vj ∈ R2, where vj ∈ R2 is being used as the vertex’
coordinate and θj ∈ [0; 2π) an appropriate angle. Υj maps a neighborhood of
the corner onto Vj such that vj ∈ Uj , Ψj(vj) = 0, Υj(∂Ωj) = Vj ∩ (e−iαjR+),
and Υj(Uj ∩ ∂Ωj+1) = Vj ∩ R.
We then define the weighted Sobolev space for the exterior domain:

Definition 3.15. For s, γ ∈ R and a general exterior domain of an obstacle
fulfilling the straight-edge condition, we define the space

Ks,γ(Ω) :=

N∑
j=1

ΦjΥ
∗
jHs,γ(X∧2π−αj ) + (1−

N∑
j=1

Φj)H
s
loc(Ω). (3.11)

Of course, it will be necessary to equip these spaces with asymptotics. Since
this is done in a straightforward way, we will omit the construction here.

Remark 3.16. Throughout this thesis we will make extensive use of the above
coordinate transformation. However, in order to keep the notation simple, we
will ignore mentioning them explicitly in any way.

3.3 The Mellin Calculus on R+

Having defined the necessary function spaces, the next step will be to define
the calculus of operators on the boundary ∂Ω. Again, we will first define them
on R+, and only afterwards define the whole algebra on the boundary which

2Abusing the letter vj both as denotation of a vertex and as a coordinate vj ∈ R2.
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is essentially a closed graph with valence number two. While standard pseu-
dodifferential calculus will still play a role in the interior of the edges, Mellin
pseudodifferential operators will be the appropriate substitution at the ends of
each edge. Like pseudodifferential operators, Mellin pseudodifferential operators
come in different flavours through the use of different symbols.

3.3.1 Mellin Pseudodifferential Operators

Let X be a closed C∞-manifold. By Lm(X; Γβ) we shall denote the space of
parameter-dependent pseudodifferential operators on X. However, as we will
only encounter degenerate base spaces (i.e. X = {pt}), these spaces reduce to
Lm(X; Γβ) = Sm(Γβ).
Before we continue to define the symbol spaces, recall the definition of excision
functions (Definition 3.8). We are now in a position to define the spaces of
Mellin symbols:

Definition 3.17 (Mellin symbols).

1. Let P be an asymptotic type, m ∈ R. The space of meromorphic symbols
of order m and asymptotic type P , Mm

P , is defined as the set of meromor-
phic functions h(z) on C with poles at z = pj of order mj+1. The principal
part of the Laurent expansion of h(z) at z = pj is

∑mj
k=0 djk(z − pj)−k,

djk ∈ C for 0 ≤ k ≤ mj .

For a πCP -excision function χ ∈ C∞(C) and β0 < β1 ∈ R arbitrary, we
have χ(z)h(z)|Γβ ∈ S

m(Γβ) uniformly for β ∈ [β0;β1].

2. The space of holomorphic symbols of order m, Mm
O , is defined as the

space of all holomorphic functions h(z) ∈ A(C) such that h|Γβ ∈ S
m(Γβ)

uniformly for β ∈ [β0;β1], β0 < β1 ∈ R.

3. Finally, M−∞P shall be the space of all functions h(z) ∈ A(C\πCP ;S−∞)
which are rapidly decreasing along Γβ with Γβ ∩ πCP = ∅.

Remark 3.18. Note that a decomposition of the Mellin symbols of the form

Mm
P = Mm

O +M−∞R (3.12)

as it is usual for non-trivial base spaces is not necessary.

Definition 3.19. Let γ ∈ R and f be a holomorphic function. We denote the
corresponding shift operator by τγ . That is,

τγf(z) := f(z + γ), (3.13)

together with an appropriate shift of the domain.

Definition 3.20 (Mellin pseudodifferential operators). An operator

f 7→ tδ−γω opM[τγh](tγωf)

with ω a cut-off function at zero, h a Mellin symbol, and µ ∈ R, is called a
Mellin operator of conormal order δ.
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The natural domain of Mellin pseudodifferential operators are the weighted
Sobolev spaces Hs,γ(R+).

Proposition 3.21. Let A be a Mellin pseudodifferential operator of order m
and conormal order ρ. Let h ∈ MP be the Mellin symbol. Then A can be
expended to a continuous operator

A : Hs,γ(R+)→ Hs−m,γ−ρ(R+).

Furthermore, if P is the asymptotic type, then A induces

A : Hs,γ(R+)→ Hs−m,γ−ρP (R+).

Later, we will have to deal with the behaviour of functions with asymptotics
under the application of a Mellin pseudodifferential operator. According to
Lemma 3.24, this basically amounts to the multiplication of two meromorphic
functions. Let hPi ∈ A(C\πCPi), i = 1, 2, Pi = {(pj ,mj)}j∈Z be meromorphic
with poles at pj of multiplicity mj + 1, and hPi nonzero on the complement of
πCPi. Then the poles of the product hP1hP2 are of type P1 +P2 which is defined
as follows:

Definition 3.22. Let P1, P2 be two asymptotic types as defined above. Denote
by P1+̇P2 the set which is characterized by

πC
(
P1+̇P2

)
= πCP1 ∪ πCP2

and

(p,m)+̇(q, n) =

{
(p,m) ∪ (q, n) when p 6= q,

(p,m+ n+ 1) when p = q.
(3.14)

Using this definition, we can tell something about the transformation of asymp-
totic types under the mapping of Mellin pseudodifferential operators. The proofs
are straightforward.

Proposition 3.23. Let P,Q be two asymptotic types. Let h ∈ Mm
Q , u ∈

Hs,γP (R+). Then

opγM h : Hs,γP (R+)→ Hs−m,γ
P +̇Q

(R+).

Lemma 3.24. Let h1 and h2 be two Mellin symbols with hi ∈ MPi , i = 1, 2,
with two asymptotic types Pi. Then h1h2 ∈Mm1+m2

P1+̇P2
and

opγM[h1h2] = opγM[h1] opγM[h2].

In addition,
opγM[h1h2] : Hs,γ(R+)→ Hs,γ−m1−m2

P1+̇P2
(R+).

The following example illustrates how Mellin pseudodifferential opertors occur
naturally:

Example 3.25. Let u and f be in C∞c (R+). Consider the (multiplicative)
convolution operator on R+:

(f ∗ u)(r) :=

∫ ∞
0

f
( t
s

)
u(s)

ds

s
,
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where ∗ denotes the convolution with respect to the multiplicative group (R+, ·).
We can express this operator in the Mellin image by utilizing Plancherel’s the-
orem, i.e. calculating

Mγ

[
f ∗ u

]
(z) =

∫ ∞
0

tz+γ−1

[∫ ∞
0

f
( t
s

)
u(s)

ds

s

]
dt

=

∫ ∞
0

sz+γ−1f(s)

[∫ ∞
0

( t
s

)z+γ−1

u(s) dt

]
ds

s

=Mγf(z) · Mγu(z).

Hence, setting hγ(z) :=Mγf(z), the operator may be written as

opγM[h]u(r) :=M−1
γ

[
hγ(z) · Mγ [u](z)

]
(r).

3.3.2 Conormal Symbols and Ellipticity on R+

Having settled the definition of Mellin operators in the previous section, we may
start to define the calculus of Mellin operators on R+. Defining the calculus will
include intruducing the so-called Green operators G and the smoothing Mellin
operators M . We will define the space CG(R+,g), CM+G(R+), and finally the
operator algebra Cm(R+,g). The cone algebra on R+ with discrete asymptotics
is a certain subspace of {tδ opM(f)t−γ | f(t, t′, z) ∈ Sµcl(R+×R+×Γ 1

2
)}, γ ∈ R,

and some weights γ, δ ∈ R.

Theorem 3.26. If A is an elliptic operator of order m on a compact graph
with respect to a weight factor γ, then there is a singularity type P such that
the operator

A : Hs,γ(R+)→ Hs−m,γ−mP (R+)

defines a Fredholm map.

Definition 3.27 (Green operator). Denote by

CG(X,g)P,Q

the subspace of Green operators with fixed asymptotic types P,Q. Then is a
Fréchet space in a natural way if we use the canonical Fréchet topologies of
An operator G ∈ L−∞(R+) inducing continuous maps

G : Ks,γ(R+)→ SδP (R+),

G∗ : Ks,−δ(R+)→ S−γQ (R+)

for all s ∈ R and discrete asymptotic types P and Q with weight data (δ,Θ)
and (−γ,Θ), respectively, is called a Green operator with discrete asymptotics.
The space of these operators is denoted by CG(R+, (γ, δ,Θ)). Here,

SγP (R+) :=
{
ωu+ (1− ω)v | u ∈ K∞,γP (R+), v ∈ S(R+)

}
,

with S(R+) := S(R)|R+
.
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Definition 3.28 (Smoothing Mellin operator). Smoothing Mellin operators will
be defined as finite linear combinations of operators of the form

Aj = r−µ+jω op
αj

M [hj ]ω0, j ∈ N,

hj ∈M−∞Rj , Rj an asymptotic type with πCRj∩Γ 1
2−αj

, and ω, ω0 being arbitrary
cut-off functions with ωω0 = ω0.

Remark 3.29. Given two operators of the form AM with the same h0, . . . , hk−1

but different cut-off functions or shifts, their difference belongs to CG(R+, (γ, δ,Θ)).

Definition 3.30. Denote by CM+G(X, g) the space of all operators

A = M + G with M =

k−1∑
j=0

Aj

with arbitrary Aj of the form Aj = r−µ+jω op
αj

M [hj ]ω0 as above, the αj satisfying
γ − j ≤ αj ≤ γ, and Green operators G ∈ CG(X, g). We set

σm−jM (M)(z) = hj(z), j = 0, 1, . . . , k − 1,

called the conormal symbol of A of conormal order (m− j).

Definition 3.31. The space Cµ(R+,g) of all cone operators of order µ ∈ R
on R+ with discrete asymptotics and weight data g = (γ, δ,Θ), γ, δ ∈ R, Θ =
(−(k + 1), 0], k ∈ N, is defined as the set of all operators of the form

A = ωtδ−γ opγM[h]ω0 + (1− ω)A(1− ω1) + M + G

with cut-off functions ω, ω0, ω1 satisfying ωω0 = ω0, ωω1 = ω1, and

1. h(t, z) ∈ C∞(R+,M
m
O ),

2. M + G ∈ CM+G(R+,g),

3. A ∈ Lµcl(R+) ∩ Lµ;0(R+).

An operator A ∈ Cµ(R+,g) for g = (γ, δ,Θ) induces continuous maps

A : Ks,γ(R+)→ Ks−µ,δ(R+)

as well as
A : Ks,γP (R+)→ Ks−µ,δQ (R+)

for all s ∈ R and any asymptotic type P ∈ As(γ,Θ), with some resulting
asymptotic type Q. Note that we have Cµ(R+,g) ⊂ Lµcl ∩ Lµ;0(R+).
The conormal symbol of A is defined as the operator family

σmM(A)(z) = h(0, z) + h0(z),

with σmM(W)(z) and z ∈ Γ 1
2−γ

. The poles are determined by the asymptotic

type R of h0(z), more precisely by πC(R). We also have the conormal symbols
of lower orders

σm−jM (A)(z) =
1

j!

(
∂j

∂rj
h

)
(0, z) + σm−jM (M)(z)

for j = 0, . . . , k − 1, Θ = (−k, 0].
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Definition 3.32 (Ellipticity). Let the operator A be of order m, i.e. both its
interior and conormal orders are equal to m. For a real number γ, we say that
a cone-degenerate operator is elliptic with respect to γ if

(i) the interior symbol is elliptic in the usual sense,

(ii) the principal conormal symbol of order m has no zeros on the line Γ 1
2−γ

.
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Chapter 4

Obstacle Scattering in
Terms of Boutet de
Monvel’s Algebra

In this chapter, we will recast the scattering problem into the language of Boutet
de Monvel’s algebra. It is the author’s intention to provide a line of thought
and some systematization for the uninitiated reader. We will avoid giving a
full-blown introduction into the machinery of the algebra.
The last section of this chapter contains a technical definition of the potential
operators which are operators occuring in the right upper corner in Boutet de
Monvel’s algebra. The definitions are not difficult to understand and will come
to use in chapter 6 when we are analysing the mapping properties of the layer
potentials.
The elements of Boutet de Monvel algebras consist of 2×2-matrices of operators:

[
A+ + G K

T Q

]
:

C∞(Ω, E)
⊕

C∞(∂Ω, E′)
→

C∞(Ω, F )
⊕

C∞(∂Ω, F ′)
,

where E,F are finite dimensional vector bundles over Ω, and E′, F ′ are finite
dimensional vector bundles over ∂Ω, respectively. The matrix consists of four
different types of operators which, upon localization, have different local mani-
festations. We denote the different types of operators as:

A+: the interior operator,
G: the Green operator,
K: the potential (or Poisson) operator,
T: the trace operator,
Q: the operator on the boundary.

Before we are able to define an algebra for the whole problem, we need to give
each of the above classes of operators a local meaning. Of course, it is necessary
to distinguish between the situation in the smooth interior of the boundary’s
edges and in a neighborhood of the vertices. Also, these operators will in general
depend on a parameter, in our case, on a complex parameter λ.

31
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Again, we will only outline the theory, since a thorough treatment would require
too much space. For details, the reader is invited to consult [Gru09] for the the-
ory for smoothly bounded domains, and the two-parted publication Boundary
Value Problems and Conical Singularities I + II ([SS94] and [SS95]) for the
theory in conical domains. We will mostly focus on the potential and boundary
operators and only take a quick glance at the interior operators since the latter
will not play large role in subsequent chapters.

Throughout our discussion, we will use a finite open covering of Ω of the follow-
ing sort:

Definition 4.1. Let Uj ⊂ Ω, j = 1, . . . , N , be a mutually disjoint set of neigh-
borhoods of the vertices vj ∈ Uj . Let Vj ⊂ Ω, j = 1, . . . , N ′ be a set of mutually

neighborhoods such that ∂Ω ⊂ ∪Nj=1(Uj∪Vj). Set W :=
⋃N
j=1 Uj∪

⋃N ′
j=1 Vj ⊂ Ω.

W is obviously a neighborhood of ∂Ω in Ω. Its complement is a unbounded open
set which is bounded away from ∂Ω. Let θj , j = 1, . . . , N and Φj , j = 1, . . . , N
be cut-off functions supported in Uj and Vj , respectively. We demand that

Φj ≡ 1 in a neighborhood of vj , and
∑N
j=1(Φj + Θj) ≡ 1 in a neighborhood of

∂Ω. We call a the family of pairs {(Φj ,Θj) | j = 1, . . . , N} a partition of unity
adapted to the boundary ∂Ω.

vj

supp Φj

supp Θj

supp Θj+1

Ωc

Figure 4.1: The cut-off functions Φj , Θj , and Θj+1.

Note that this definition, while not necessary for the following definitions, will
be helpful for our calculations in Chapter 6. In the following sections, we will
make frequent use of pairs of cut-off functions Θ′jΘj = Θj and Φ′jΦj = Φj as
they are defined above.

4.1 Interior Operators

Definition 4.2. Denote by Mµ
P (X) the Fréchet space consiting of all operator

families h(z) ∈ A(C, Lµcl(X)) such that h(β + iρ) ∈ Lµcl(X) for all c ≤ β ≤ c′,
c < c′.

Let h ∈ C∞(R+ × R+,M
µ
P (X)) for µ ∈ R and a Mellin asymptotic type P .
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Then, for f ∈ Hs,γ(X∧), we define the operator opγM[h]f by

opγM[h]f :=
1

2π

∫
Γn+1

2
−γ

∫ ∞
0

( r
r′

)−z
h(r, r′, z)f(r)

dr′

r′
dz.

One can show that opγM[h]f ∈ Hs−µ,γ(X∧). As we will observe during the course
of our work, the Mellin symbols also depend holomorphically on a complex
parameter λ ∈ Uλ, Uλ ⊂ C a domain. Therefore, we introduce the spaces

A(Uλ)⊗̂πMµ
P (X) ∼= A(Uλ,M

µ
P (X))

of Mellin symbol-valued holomorphic functions.

Definition 4.3. A parameter-dependent interior operator A of order µ is a
family of operators {A(λ) | λ ∈ U} of the form

A(λ) = AM(λ) + Aψ(λ) +AM(λ),

where

1. AM =
∑N
j=1 Φ′j opγM[hj ]Φj , hj ∈ A(C,Mµ(Xj)) for a (n− 1) dimensional

base manifold Xj ,

2. Aψ =
∑N
j=1 Θ′j opψ[hψj ]Θj , h

ψ
j ∈ Sµ(I × I × R).

3. AM is a smoothing operator.

The algebra of interior operators depending on a complex parameter will be
denoted by Iµ(Ω;U).

4.2 Potential Operators

One peculiarity of the theory for two dimensional singular domains is that the
conical boundary can be decomposed into two connected components. In other
words, ∂X∧ = Y1 ∪ Y2 for a sector X∧ ⊂ R2, where Yi ∼= R+ for i = 1, 2. Let
µ ∈ R and P a Mellin asymptotic type. For

h̄ := (h1, h2) ∈Mµ
P ⊕M

µ
P (4.1)

we denote the corresponding operator by

opγM[h̄]

[
f1

f2

]
:= opγM[h1]f1 + opγM[h2]f2 ∈ Hs+

1
2−µ,γ+ 1

2 (X∧),

where fi ∈ Hs,γ(Yi), i = 1, 2. Note that we have

A(Uλ,M
µ
P ⊕M

µ
P ) ∼= A(Uλ,M

µ
P )⊕A(Uλ,M

µ
P ).

Of course, we could have chosen different orders and asymptotic types for the
two components h1 and h2 of the symbol (4.1). But since we do not need this
freedom, we choose both to be equal.
In order to define potential operators on the whole boundary ∂Ω, we need
to index the symbols by a subscript. Mind however, that the boundary in a
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neighborhood of the vertex vj splits up into two components, namely ∂Ωj and

∂Ωj+1. With Φj |∂Ωj
= φjj and Φj |∂Ωj+1

= φj+1
j , we can further define the

‘matrix-valued’ cut-off functions

φ̂j := Φj |∂Ω =

[
φj+1
j 0

0 φjj

]
. (4.2)

These ‘cut-off matrices’ map Hs,γ(∂Ωj)⊕Hs,γ(∂Ωj+1) onto itself.

Definition 4.4. Let U ⊆ C be a domain. A parameter-dependent potential
operator K of order µ on Ω is a family {K(λ) | λ ∈ U} of operators K(λ) :
C∞0 (∂Ω)→ D′(Ω) of the form

K(λ) = KM(λ) + Kψ(λ) + KG(λ).

We require these operators, when localized, to have the following form:

1. KM(λ) =
∑N
j=1 Φ′j K(λ)φ̂j , where Φj KM(λ)φ̂j = Φj opM[h̄j(λ)]φ̂j with

Mellin symbols h̄j ∈ A(U,Mµ)⊕A(U,Mµ).

2. Kψ(λ) =
∑N
j=1 θ

′
j K(λ)θj , where Kψ(λ) are ordinary (Fourier) pseudodif-

ferential operators with symbols hψ ∈ A(U)⊗̂πSµ(I × I,R;S(R+)), I ⊂
∂Ωj an open interval.

3. Finally, KG is a regulating operator, that is KG(λ) : Hs,γ(∂Ω)→ C∞(Ω).

It has locally the form KG(λ) =
∑N
j=1 Φ′j K(λ)(1− φ̂j).

The set of potential operators with holomorphic dependency in U will be de-
noted by Pµ(Ω;U).

As we will see in a moment, the potential operators are the operators in the
upper right corner of the elements of Boutet de Monvel’s calculus.

4.3 The Operators on the Boundary

Definition 4.5. We define the Mellin symbol at the vertex vj by the matrix

ĥ(λ) :=

[
h1,1(λ) h1,2(λ)
h2,1(λ) h2,2(λ)

]
, (4.3)

with h1,1(λ), h2,2(λ) ∈Mµ
P , and the off-diagonal elements h1,2(λ) and h2,1(λ) in

M−∞P for some Mellin asymptotic type P . We denote by opγM[ĥ(λ)] the operator[
opγM[h1,1(λ)] opγM[h1,1(λ)]
opγM[h2,1(λ)] opγM[h2,2(λ)]

] [
f1

f2

]
∈ Hs,γ(Y1)⊕Hs,γ(Y2),

for fi ∈ Hs,γ(Yi), i = 1, 2. We denote this space of Mellin symbols byMµ
P (M2×2).

An easy consequence of this definition is (cf. Lemma 3.24):

Lemma 4.6. For ĥ1 and ĥ2 ∈Mµ
P (M2×2) we have

opγM[ĥ1ĥ2] = opγM[ĥ1] opγM[ĥ2],

with ĥ1ĥ2 being the 2× 2-matrix product of ĥ1 and ĥ2.
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Having discussed this model case for a corner, we can proceed to define the po-
tential operators for the whole boundary. As in the case of the Mellin operators
on the boundary, we will introduce subscripts to our symbols.

Definition 4.7. Let hj , j = 1, . . . , N , be a family of Mellin symbols of the
form (4.3). We define the algebra Cµ(∂Ω,g;U) as the set of operators with
meromorphic dependence on the parameter λ ∈ U as the family of operators
A(λ) with the following decomposition:

A(λ) = AM(λ) + Aψ(λ) + AG(λ),

where

1. AM(λ) =
∑N
j=1 φ̂

′
j opγM[ĥj(λ)]φ̂j ,

2. Aψ(λ) =
∑N
j=1 θ

′
j opψ[hψj (λ)]θj ,

3. AG(λ) =
∑N
j=1 Gj(λ)

with ĥj ∈Mµ
P (M2×2), hψj ∈ A(U)⊗̂πSµ(I × I ×R). and Gj ∈ CG(∂Ω,g;U) are

Green operators.

We are in a position to define the principal symbol of an operator in the calculus
on ∂Ω. In contrast to the calculus on the real half line R+, we will have to deal
with a whole family of symbols, parametrized by the set of vertices {v1, . . . , vN}.

Definition 4.8. The family

σm(A(λ)) =
(
σM,j(A(λ)), σψ,j(A(λ))

)
j=1,...,N

of pairs, where

σM,j(A(λ)) :=

[
h1,1
j (z) h1,2

j (z)

h2,1
j (z) h2,2

j (z)

]
,

and
σψ,j(A(λ)) := σψ(hψj (λ)),

is called the principal symbol of the operator A ∈ Cm(∂Ω,g;U). Here, σψ(hψj )
denotes the principle part of the symbol.

Definition 4.9. We define the operator class L∞(∂Ω) as the smoothing oper-
ator in the interior, CM+G(X,h) as the smoothing operator at the corner.

Theorem 4.10 (Multiplication of operators). Let A ∈ Cm(∂Ω,g),
Ã ∈ Cm̃(∂Ω, g̃) with (γ, γ − m,Θ) and g̃ = (γ − m, γ − (m + m̃),Θ). Then
A Ã ∈ Cm+m̃(∂Ω,h), h = (γ, γ − (m + m̃),Θ), with the principal conormal
symbol given by the Mellin translation product:

σµ+µ̃
M,j (A Ã)(z) = {τ µ̃σµM,j(A)(z)}σµ̃M,j(Ã)(z). (4.4)

The interior principal symbol of the product A Ã is simply given by

σµ+µ̃
ψ (A Ã) = σµ̃ψ(A)σµψ(Ã). (4.5)
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The composition of Mellin pseudodifferential operators plays a central role
in this thesis, since an important part is devoted to the construction of a
parametrix for the boundary value of the single layer potential. Instead of
proving the theorem here, we give a more detailed account when actually we
need the composition in the proof of theorem 7.1.

Lemma 4.11. Let A ∈ Cµ(∂Ω,g) and B ∈ Cµ̃(∂Ω, g̃) smoothing. Then AB is
a smoothing Mellin operator of conormal order µ+ µ̃.

Lemma 4.12. A product of a smoothing Mellin and a Green operator is a Green
operator, and if A ∈ Cµ(∂Ω,g), B ∈ Cµ̃(∂Ω, g̃) are both smoothing with Mellin
symbols h1 and h2, then the product AB ∈ Cµ+µ̃(∂Ω,h), h = (γ, γ−(m+m̃),Θ)
is a sum of an Mellin operator with a Mellin symbol h and a Green operator.

Remark 4.13. The conormal symbols of AB can be calculated by the Mellin
translation product, i.e.

σµ+µ̃−j
M (A B)(z) =

∑
p+q=j

(
τµ−jσµ̃−jM (A)

)
(z)σm−qM (B)(z)

for j = 0, 1, . . . , k − 1.

The notion of ellipticity for the calculus Cµ(∂Ω,g), µ ∈ R, is a slight modification
of Definition 3.32. In theorem 7.1 we are going to proof that the potential
operator in our scattering theory is in fact elliptic.

Definition 4.14 (Ellipticity). An operator in the calculus Cµ(∂Ω,g) will be
called elliptic, if the internal symbols are elliptic in the sense of ordinary Pseu-
dodifferential operators, and all the principal conormal symbols associated with
the vertices are invertible matrices on the line Γ 1

2−γ
.

This enables us, according to the general theory of Mellin pseudodifferential
operators to construct a parametrix:

Theorem 4.15 (Fredholm property and Parametrix). If A is elliptic of order µ
and conormal order m, then is Fredholm for all s ∈ R. There exists a parametrix
Q of A in the sense of . Furthermore,

Au = f ∈ Hs−m,γ−m(∂Ω)

for any s ∈ R and

u ∈ H−∞,γ(∂Ω)

implies u ∈ Hs,γ(∂Ω). Finally,

Au = f ∈ Hs,γP1
(∂Ω)

for some asymptotic type P1 to (γ−m,Θ) and u ∈ H−∞,γ(∂Ω) imply Hs,γP2
with

an asymptotic type P2 to (γ,Θ) for all s ∈ R.

The proof of this theorem is exactly the same as in the case of calculi on conic
spaces X∧.
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4.4 Boutet de Monvel’s Algebra

Since we only need the subalgebra of operators on the boundary, we will solely
outline the definition without going into any details.[

Φj 0
0 Φj |∂Ω

]
Definition 4.16. Let Ω ⊂ Rn be an exterior domain with polygonal boundary
∂Ω. Let U ⊂ C be an open subset. The idea of Boutet de Monvel is to formulate
a calculus of operators with elements A ∈ Bµ(Ω;U) := A(U,Bµ(Ω)) of the form,
λ ∈ U ,

A(λ) =

[
A(λ) K(λ)
T(λ) Q(λ)

]
:

C∞(Ω)
⊕

C∞(∂Ω)
→

C∞(Ω)
⊕

C∞(∂Ω)
.

which is a non-pseudodifferential term which has to be included to make compo-
sitions in the algebra work. Notice that this operator is the one which inspired
the naming of the Green operator in singular analysis.
The elements of the algebra are localized in such a way that they are either
supported in a neighborhood Uj of a corner vj or in a neighborhood Vj of the
smooth interior of an edge ∂Ωj . Along the smooth parts of the boundary, the
algebra is constructed in a straightforward manner (cf. [Gru09] or [SS94] for de-
tails), whereas in the vicinity of the vertices, meromorphic Mellin symbols with
values in the Boutet de Monvel algebra of the base space of the corresponding
cone come into play [SS95]. Defining the algebra in the exterior domain is then
done as follows:

Definition 4.17. We write A ∈ Bµ(Ω;U) for operators

A(λ) :
C∞(Ω)
⊕

C∞(∂Ω)
→

C∞(Ω)
⊕

C∞(∂Ω)
.

depending on a complex parameter λ ∈ U which can be written in the form

A =

N∑
j=1

Φ̂j A Ψ̂j +

N∑
j=1

Φ̂jA(1− Ψ̂j) (4.6)

and satisfy the following conditions

1. For every j, the operator Φ̂jAΨ̂j belongs to Bµ(Vj ;U).

2. For every j, the operator Φ̂jAΨ̂j belongs to Bµ(Uj ;U).

3. The sum
∑N
j=1 Φ̂jA(1− Ψ̂j) is induced by an integral operator

C∞(Ω)⊕ C∞(∂Ω)→ C∞(Ω)⊕ C∞(∂Ω)

depending on the complex parameter λ ∈ U . This integral operator has a
kernel of C∞-class.

We denote the following subsets of the algebra Bµ,d(Ω;U) as follows:
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Iµ(Ω;U): the set of interior operators A,
Pµ(Ω;U): the set of potential operators K,
T µ(Ω : U): the set of trace operators T,
Cµ(∂Ω;U): the set of operators on the boundary Q.

Once again, Cµ,d(∂Ω) is an algebra in its own right. It is this algebra in which
the traces of the layer potentials belong to, and in which we will construct the
parametrix Q.

4.5 Calderón Projectors

Definition 4.18. The Calderón projectors associated with the potential oper-
ator K(λ) are definied as the traces of the potential operators, i.e.

C±(λ) := γ±K±(λ). (4.7)

The second row of the Calderón projector, denoted as

N±(λ) = γ±1 K±(λ), (4.8)

is called the Dirichlet-to-Neumann-operator.

Depending on whether one takes the trace on the exterior (′+′) or the interior
(′−′) side of the domain’s boundary. The Calderón projector for the exterior
domain, C+(λ), written as a 2× 2-Matrix, is given by

C+(λ) =

[
C+

00(λ) C+
01(λ)

C+
10(λ) C+

11(λ)

]
. (4.9)

The Calderón projector is indeed a projection, i.e. it satisfies (C+)2 = C+.
The Calderón projector for the exterior and interior domains are related by
C−(λ) = (1 − C+(λ)). They are (Mellin) pseudodifferential operators on the
boundary of the domain, which means that with regards to Boutet de Monvel’s,
they are of the form

A±Calderón =

[
0 0
0 C±(λ)

]
.

For the scattering problem, one usually only considers the outer side of the
boundary. Therefore, we shall omit the plus sign when referencing to the exterior
domain, i.e. C01(λ) = C+

01(λ).



Chapter 5

Basic Results

5.1 Pseudodifferential Boundary Problems

Consider the scattering problem with Dirichlet boundary conditions:
(∆ + λ2)u

i/o
λ = f in Ω,

γ+
0 u

i/o
λ = g,

lim
r→∞

r
1
2

(
∂r ∓ iλ

)
u

i/o
λ = 0.

(5.1)

Here, γ0 : Hs(Ω) → Hs− 1
2 (∂Ω), s > 1/2, is the conventional trace operator for

Sobolev spaces on smooth hypersurfaces, and rad
i/o
λ the operator implementing

the outgoing (’rad+’) or incoming (’rad−’) radiation conditions, respectively:

rad
i/o
λ u(ω) := lim

r→∞
r

1
2

(
∂ru(rω)∓ iλu(rω)

)
, r > 0, ω ∈ S1.

For the scattering problem (5.1), we may set

P(λ) := ∆ + λ2 : C∞(Ω) −→ C∞(Ω), (5.2)

whereas the trace operator is given by the column matrix

Ti/o(λ) :=

[
γ+

0

rad
i/o
λ

]
: C∞(Ω̇)→

C∞(∂Ω)
⊕

C∞(S1)
. (5.3)

In the well-known (cf. [Tay13]) that the general solution of this boundary value
problem may be written as

uλ(x) = Ri/o(λ)f(x) + Ki/o(λ)g(x), x ∈ Ω ∪ Ωc, λ ∈ Λ,

where Ri/o is the resolvent of the problem with homogeneous Dirichlet boundary
conditions, and Ki/o is a linear combination of the single and double layer surface
potentials.

Definition 5.1. Let s, γ ∈ R, P an asymptotic type. Then we define the space

Ks,γi/o(Ω) :=
{
u ∈ Ks,γ(Ω) | rad

i/o
λ u = 0

}
. (5.4)

39



40 CHAPTER 5. BASIC RESULTS

We are initially defining them as

Ri/o(λ) : C∞0 (Ω)→ C∞(Ω),

fulfilling the conditions 
(∆ + λ2) Ri/o(λ) = 1 in Ω,

γ+
0 Ri/o(λ) = 0,

rad
i/o
λ Ri/o(λ) = 0,

and as the operator
Ki/o(λ) : C∞(∂Ω)→ C∞(Ω),

with the properties 
(∆ + λ2) Ki/o(λ) = 0 in Ω,

γ+
0 Ki/o(λ) = 1,

rad
i/o
λ Ki/o(λ) = 0.

We will demonstrate the existence of these solution operators and their contin-
uation to more general function spaces. This will be the content of chapter 6.
Instead of proceeding as in [Tay13], we will introduce the unifying beauty of
pseudodifferential boundary operators and Boutet de Monvel’s algebra. The
solution operator may then be written as

A−1(λ) :=

[
Ri/o(λ) Ki/o(λ)

0 0

]
.

The solution is then given by

u(x) := Ri/o(λ)f + Ki/o(λ)g = π1

(
A−1(λ)

[
f
g

])
,

where the square brackets indicate the projection onto the first component of a
vector.
Although Boutet de Monvel’s framework offers conceptual clarity, the hard work
of a mathematical analyst still remains: To show that the problem (5.1) is well-
posed, i.e. both operators exist and are continuous. The interior operator will
be dealt with in the following section. More involved however is the potential
operator, where a thorough treatment can only be done with the full machinery
of Mellin pseudodifferential operators. This will be the main topic of chapter 6.

5.2 The Free Resolvent

The fundamental solution for the Helmholtz equation is of major importance in
the study of scattering poles. Its asymptotic expansion will be important when
discussing its mapping properties and parametrix construction in chapters 6 and
7. The fundamental solutions for the free problem in two spatial dimensions are
given, depending on the radiation condition, by either a Hankel function of the
first kind, or the second.1 Denote the Hankel functions of first and second kinds

and order zero by H
(i)
0 , i = 1, 2, respectively.

1For general information on special functions see for example [Wat66] or [Olv74].
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Definition 5.2. Let x 6= y and λ ∈ Λ, where Λ denotes the Riemann surface
of the logarithm. The outgoing fundamental solution is then given by

rout
0 (λ|x− y|) := − i

4

(
λ

2π|x− y|

)n−2
2

H
(2)
0 (λ|x− y|) (5.5)

or by

rin
0 (λ|x− y|) :=

i

4

(
λ

2π|x− y|

)n−2
2

H
(1)
0 (λ|x− y|), (5.6)

for the incoming Sommerfeld radiation condition.

As we will see later (equation 6.8), the fundamental solutions are both related
to each other by

rout
0 (λτ) = rin

0 (λτ)− i

2

(
λ

2πτ

)n−2
2

Jn−2
2

(λτ), τ > 0, (5.7)

where Jn−2
2

is the Bessel function. Note that the Bessel function may be ex-

panded as, ν ∈ R,

Jν(z) = (
1

2
z)ν

∞∑
s=0

(−1)s
( 1

4z
2)s

s! · Γ(ν + s+ 1)
.

For ν = 0, this expansion takes the form

J0(λτ) =

∞∑
k=0

(−1)k

(k!)2

(
λ

2

)2k

τ2k.

One major aspect of the fundamental solutions are their limits at infinity.

Lemma 5.3. Let y ∈ R2 and λ ∈ Λ be fixed. Then

r
i/o
0 (λ|x− y|) =

1

2
√
λ

1√
2π

e∓iλ|x|√
|x|

e∓iλ
x
|x|y +O

(
1

|x|

)
(5.8)

and
∂r

i/o
0

∂ν(x)
(λ|x− y|) =

1

2
√
λ

1√
2π

e∓iλ|x|√
|x|

e∓iλ
x
|x|y +O

(
1

|x|

)
(5.9)

as |x| → ∞.

Proof. We have for the Hankel funktions for |z| → ∞ the asymptoticals [Olv74]:

H
(1)
0 (z) ∼

√
2

πz
ei(z−

π
4 )
∞∑
s=0

is
As(0)

zs
for −π < arg(z) < 2π,

H
(2)
0 (z) ∼

√
2

πz
e−i(z−

π
4 )
∞∑
s=0

(−i)sAs(0)

zs
for −2π < arg(z) < π,

where

As(0) = (−1)s
(12)(32) · · · (2s− 1)2

s! · 8s
.
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In addition we have for |x| → ∞:

|x− y| = |x|
√

1− 2
xy

|x|2
+ y2 = |x| − x

|x|
y +O

(
1

|x|

)
.

Now set ω := x/|x| ∈ S1. Then:

r
i/o
0 (λ|x− y|) =

1

2
√
π

1√
2π

e∓iλ|x|√
|x|

+O

(
1

|x| 32

)
as |x| → ∞. (5.10)

A fact which we will not use until 6, but which is interesting nonetheless:

Lemma 5.4. The leading singularity for the limit x→ y is given by

r
i/o
0 (|x− y|;λ) = − 1

2π
ln|x− y|+A+ o(|x− y|2−ε)

for ε > 0, where A := γE− ln(2)+ i/4, γE being the Euler-Mascheroni constant.

We will postpone the proof of this assertion until theorem 6.3.

Definition 5.5. Then the residual mapping R0(λ) = (∆+λ2)−1 on R2 is simply
given by the singular integral

R
i/o
0 (λ)f(x) :=

∫
Rn
r

i/o
0 (λ|x− y|)f(y) dy ∈ H2(R2), (5.11)

for f ∈ L2
comp(R2).

Lemma 5.6. The resolvent operator for the free probelem, R
i/o
0 ∈ I−2(Ω; Λ).

Let f ∈ L2
comp(Ω). Then the limit in infinity is given by

R
i/o
0 (λ)f(x) =

e∓iλ|x|√
|x|

∫
R2

e−iλωyf(y;λ) dy +O

(
1

|x|

)
(5.12)

as |x| → ∞.

Proof. Insertion of equation (5.5) into (5.8).

Will will continue our discussion of the fundamental solution’s kernel in section
6.1 where we will take a closer look at the expansion for |x− y| → 0.

5.3 The Resolvent for the Problem with Bound-
ary

In this subsection we will show the existence of the resolvent operators Ri/o(λ).
The proof is essentially the same as in [LP72, Theorem 5.4], but utilizes the
elliptic theory of cone-degenerate differential operators when dealing with the
intermediate problem (5.10).
Note that Lax and Phillips have already extended this result to non-smooth
domains by themselves [LP78]. However, using our techniques from singular
analysis, we are in principle able to resolve more detail when dealing with the
intermediate problem (5.10) below.
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Theorem 5.7. The resolvent operator is an internal operator Ri/o ∈ I−2(Ω; Λ)

Ri/o(λ) : L2
comp(Ω)→ Ks,γ− 1

2

(Ω), λ ∈ Λ.

(a) Ri/o(λ) is holomorphic for λ ∈ Λ−0 ,

(b) Ri/o(λ) is meromorphic on Λ.

Proof. Let ϕ ∈ C∞0 (R2) be a cut-off function with ϕ ≡ 1 in a neighborhood of
the obstacle and ϕ ≡ 0 in a neighborhood of the circle S1

ρ = {|x| = ρ}. Let Mϕ

be the associated multiplication operator. Let Hζ ψ be the solution operator of
the following system: 

(∆ + ζ2)hζ = 0 in Ω,

γ+
0 hζ = ψ on ∂Ω,

hζ = 0 on S1
ρ.

(5.13)

One can easily verify that Hζ is a linear operator. Suppose that g ∈ L2(Ωρ) ⊂
L2(R2) and set:

vi/o := R
i/o
0 (λ)g ∈ H2(R2),

and with h
i/o
ζ := Hζ γ

+
0 v

i/o:

ui/o := vi/o −Mϕ h
i/o
ζ . (5.14)

One can easily see that ui/o is a solution of the system (5.1) with homogeneous
Dirichlet bondary conitions and f given by:

(∆ + λ2)ui/o = (∆ + λ2)vi/o − (∆ + λ2)ϕhζ (5.15)

= g − (∆ + λ2)ϕhζ︸ ︷︷ ︸
Ti/o(λ)g:=

. (5.16)

Note that Ti/o(λ)g is indeed an operator dependent on g because ultimately
hζ is a function of g. Since v|∂Ω obviously satisfies the extended compatibility
conditions.
Using the well-known identity ∆(ϕhζ) = hζ∆ϕ+2∇ϕ ·∇hζ +ϕ∆hζ and ∆hζ =
−ζ2hζ , we can derive

Ti/o(λ)g = 2∇ϕ∇hζ + (∆ϕ)hζ + (ζ2 − λ2)ϕhζ . (5.17)

That is, only first order differentials act on hζ . We will demonstrate that

Ti/o(λ) : L2(Ωρ) → L2(Ωρ) is a compact operator. In order to achieve this,
we will have to analyse the solution of the system (5.10) thoroughly. ‖Hζ ψ‖ ≤
c‖ψ‖. On the other hand, ‖γ+

0 R0(λ)g‖ ≤ c′‖R0(λ)g‖ ≤ c′′‖g‖.
The solution for this problem can be written as h = hreg +hsing, hreg ∈ H2(Ωρ)
and hsing ∈ H1+θ(Ωρ). Hence, we may estimate:

‖h‖1+θ ≤ CCλ‖g‖0,0.

Now T(λ) is an operator dependent on at most first derivatives of h:

‖Ti/o(ζ)g‖θ,γ ≤ C‖h‖θ+1,γ+1 ≤ Cζ‖g‖0,0
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But H0,0(Ωρ) ∼= L2(Ωρ). Thus, Ti/o(λ) : L2(Ωρ)→ L2(Ωρ) is a compact opera-
tor.
Now let Im(λ) ≤ 0, λ 6= 0. In order to show that (1 − Ti/o(λ)) is invertible,

suppose that (1 − Ti/o(λ))g = 0 for a g ∈ L2(Ωρ). According to (??), ui/o is
then a solution of the reduced wave equation, i.e. f = (∆ + λ2)ui/o = 0. If
Im(λ) = 0, λ 6= 0, ui/o = 0 by Rellich’s uniqueness theorem. For λ ∈ Λ−0 ,
consider {

(∆ + p)z = 0,

z = 0,

where p is given by

p =

{
ζ2 in Ωc

λ2 in Ωρ

One can see that z is a solution of (∆ + p)z = 0 with p|S1ρ = 0. This leads to∫ (
|∇z|2 − p|z|2

)
dx = 0.

But since Im(ζ2) 6= 0 and Im(λ2) 6= 0, we can infer∫
Ωρ

|z|2 dx = 0.

Hence, z ≡ 0 ⇒ h ≡ 0, and finally g ≡ 0 due to equation (??).

It is clear by its very definition that R
i/o
0 (λ) is a holomorphic function on Λ.

That T i/o(λ) is holomorphic can be seen by (5.12) and by acknowledging the
fact that hλ is holomorphic, too. The analytic Fredholm theorem (theorem

A.3.1) implies that (1 − Ti/o(λ))−1 : L2(Ωρ) → L2(Ωρ) is an operator-valued
function which is meromorphic on Λ−1\D, where D ⊂ Λ is a discrete subset.
Now set

u
i/o
λ := (1−Mϕ Hζ γ

+
0 ) R

i/o
0 (λ)(1− Ti/o(λ))−1f. (5.18)

This function obviously solves the reduced wave equation, i.e. (∆+λ2)u
i/o
λ = 0.

For |x| > ρ, the second term vanishes and one is left with the expression

u
i/o
λ = R

i/o
0 (λ)(1− Ti/o(λ))−1f for |x| > ρ. (5.19)

Both the radiation condition and the function space follow immediately. Using
lemma (5.6) and setting F := (1− Ti/o(λ))−1f yields the result, i.e.

u
i/o
λ (x) =

1

2
√
λ

1√
2π

e±iλ|x|√
|x|

∫
Ωρ

e∓iλωyF (y;λ) dy

Notice that for smooth boundaries, the target space of Ri/o(λ) is H2
loc(Ω). It is

only due to the appearance of singular functions that the maximal regularity is
lower.
The poles of the resolvent Ri/o(λ) are directly related with the scattering poles
of the scattering matrix. Our next step will be to show that the poles correspond
to the zeroes of the operator C01(λ) both in location and multiplicity.
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S1
ρ

Ωρ

Ωc

Figure 5.1: The neighborhood Ωρ around the obstacle

5.4 Solution Operator

This section is essentially a generalization of well-known facts to the setting
with polygonal boundaries. The main purpose is to show that, for the Dirichlet
problem, the scattering poles of the resolvent R±(λ) are identical to the poles
of Calderón operator C01(λ).

Let E : Hs(∂Ω) → Hs+ 1
2 (Ω) be the extension operator, i.e. the (nonunique)

operator which maps ϕ to a function Eϕ ∈ Hs+ 1
2 (Ω) such that γ+ Eϕ = ϕ.

Proposition 5.8. Define the operator

Ki/o(λ) := E + Ri/o(λ) P(λ) E, (5.20)

K i/o is indeed an exact potential operator in the sense of definition ??. Then
for λ ∈ Λ−1 the Neumann operator, N(λ), can be represented as

N(λ)ϕ = γ+
1 Eϕ+ γ+

1 Ri/o(λ)P(λ)Eϕ. (5.21)

The Neumann operator is defined on the Riemann surface Λ, and its poles are
identical with those of the Resolvent R(λ). Finally, K i/o(λ) can be represented
as

ϕ 7→ Ki/o(λ)ϕ := Dli/o(λ)ϕ(x) + Sli/o(λ) N(λ)ϕ(x). (5.22)

Proof. Let ϕ ∈ Hs(∂Ω) satisfy the compatibility conditions. Consider the iden-
tity

Ki/o(λ)γ+ = 1+ Ri/o(λ)P(λ) .

Multiplication from the right with an extension operator E yields

Ki/o(λ) := E + Ri/o(λ)P(λ)E,

where we have γ+ E = 1H(∂). Application of the normal vector field yields the
result

γ+
1 Ki/o(λ) = γ+

1 + γ+
1 Ri/o(λ)P(λ)E,

which is, by definition, the Dirichlet-to-Neumann operator.
The arguments given for the last part largely resemble the ones in [LP67], al-
though the appear in a slightly different context. In order to show the last part,
set uλ(x) := K(λ)ϕ(x) for x ∈ Ωρ and assume that ρ > 0 large enough such
that it contains the whole scattering object.

uλ(x) =

∫
Ωρ

δ(2)(x− y)uλ(y) dy =

∫
Ωρ

(∆y + λ2)r
i/o
0 (λ|x− y|)uλ(y) dy
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Since uλ is a solution of the Helmholtz equation, we may subtract the following
term:

0 =

∫
Ωρ

r
i/o
0 (λ|x− y|)(∆y + λ2)uλ(y) dy.

Since equation (5.16) can be reformulated by Green’s second identity,

uλ(x) =

∫
Ωρ

[
∆yr

±
0 (λ|x− y|)uλ(y)− r±0 (λ|x− y|)∆yuλ(y)

]
dy (5.23)

=

N∑
j=1

∫
∂Ωj

[ ∂r±0
∂νj(y)

(λ|x− y|)γ+
0 uλ(y)− r±0 (λ|x− y|)γ+

1 uλ(y)
]
dsj(y)

(5.24)

−
∫
S1ρ

[ ∂r±0
∂ν(y)

(λ|x− y|)γ+
0 uλ(y)− r±0 (λ|x− y|)γ+

1 uλ(y)
]
dsρ(y),

(5.25)

where ∂ν(y) in the last line denotes the outward pointing normal vector field of
S1
ρ. The first term is by definition Dl(λ)ϕ(x)+Sl(λ) N(λ)ϕ(x). The second term

vanishes if we take the radiation condition into consideration and take the limit
ρ→∞.

Corollary 5.9. C00(λ) + C01(λ) N(λ) = 1.

5.5 Scattered Plane Waves and Wave Operators

The scattered wave obviously satisfies the Dirichlet boundary condition.{
(∆ + λ2)vi/o = 0,

γ+
0 v

i/o = −e−iλxω.
(5.26)

Consider the ansatz f(x, ω) := −ϕ(x)e−iλxω ∈ H2(R2), where ϕ ∈ C∞c (R2) is
a cut-off function which is supported in Bρ(0). Then, according to Proposition
5.8 above, the solution is given by

vi/o(x, ω, λ) := fω(x) + Ri/o(λ) P(λ)fω(x).

For |x| > 0, f vanishes, and the second term reduces to

vi/o(x, ω, λ) = R
i/o
0 (λ)F (x, ω) for |x| > ρ,

where F (x, ω, λ) = (1 − Ti/o(λ))−1 P(λ)f(·, ω). Notice that F inherits the

meromorphic structure of the resolvent Ri/o.
We define the incoming and outgoing scattered plane waves by

ψi/o(x, ω, λ) :=
1

2π

[(
1− ϕ(x)

)
e−iωxλ + Ri/o(λ) P(λ)fω(x)

]
. (5.27)

Definition 5.10. Define the operators Φin,Φout : L2(Ω)→ L2(R2
ξ) by

Φi/of(ω, σ) :=

∫
Ω

ψi/o(x, ω, σ)f(x) dx. (5.28)
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Lemma 5.11. Φin and Φout are unitary operators.

Proof. We will first prove that both operators are isometrical .

Corollary 5.12. The adjoints of the operators Φi/0 are given by

Φ∗ing(x) =

∫
R2

ψin(x, ω, σ)g(ω, σ) dωdσ. (5.29)

Definition 5.13. The incoming and outgoing wave operators are defined by

Win := Φ∗Φin and Wout := Φ∗Φout. (5.30)

Both are unitary mappings L2(Ω)→ L2(R2
x).

Notice that the footnotes ‘x’ and ‘ξ’ emphasized the physical interpretation that
the wave operators map into the asymptotic space with physical coordinates as
opposed to Fourier space.
It is a well established fact that, for the wave equation, the definition of the
scattering operator in the dynamical picture and in the static picture both
coincide. We state this fact in the following proposition, but leave away the
proof, since, for one, its methods go through with only slight modifications,
and in addition, one could simply start with Definition 5.13 as an axiom. The
interested reader may consult, for example, the monograph by Wilcox [Wil75].

Proposition 5.14. Under general considerations, with the Hamiltonians H0

and H defined in the obvious way,

Win = s-lim
t→∞

eit
√

H0 JΩ e
−it
√

H0 ,

Wout = s-lim
t→−∞

eit
√

H0 JΩ e
−it
√

H0 ,

with JΩ : L2(Ω) → L2(R2) being the embedding through extension by zero on
Ωc.

5.6 The S-Matrix and Scattering Poles

Return to our discussion in section 2.2.3 and recall that the Scattering operator
is defined by:

S := Wout W∗in . (5.31)

As a simple consequence, the Fourier transform of the scattering operator is
given by

Ŝ = Φ S Φ∗ = ΦoutΦ
∗
in. (5.32)

In order to achieve a representation of the scattering operator as a direct integral,
we need to apply Proposition 2.2. Therefore, we need the following lemma:

Lemma 5.15. Let ϕ ∈ C0(R) be an even function. Then

ϕ(|ξ|)Ŝ = Ŝϕ(|ξ|). (5.33)

Consequently, Ŝ can be written as a direct integral, i.e.

Ŝ =
∑
σ∈R+

Ŝ(σ).
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Given these prerequisites, we may prove the main theorem of this section:

Theorem 5.16. The modified scattering matrix is of the form

Ŝ(σ) = 1+
( σ

2πi

) 1
2

A(σ), (5.34)

where A(σ) is a bounded operator L2(S1)→ L2(S1) given by:

Ŝ(σ)f̂ in(ω) = f̂ in(ω) +
( σ

2πi

) 1
2

∫
S1
sin(−θ, ω, σ)f̂ in(θ) dθ. (5.35)

The Schwartz kernel depends on the scattered wave vin by

sin(θ, ω, σ) := lim
r→∞

r
1
2 e−iσrvin(rθ, ω, σ). (5.36)

Proof. Set
wσ(y, ω) := ψout

σ − ψin
σ = vout

σ − vin
σ . (5.37)

We will demonstrate that the assertion is equivalent to

w(y, σω) = −
( σ

2πi

) 1
2

∫
S1ρ
sin(ω, θ, σ)ψout(y, θ, σ) dθ. (5.38)

Recall that S = ΦoutΦ
∗
in. By definition of Φi/o, one quickly calculates

Sψin
σ = ψout

σ .

Now observe that (∆y + σ2)wσ(y, ω) = 0 and γ+
0 wσ = 0. As in (??), we may

express wσ with the help of the third Green identity for polyhedral domains
(corollary A.1.6) as:

wσ(x, ω) = −
∫
S1ρ

[
γ+

0 wσ(y, ω)∂rr
i/o
0 (σ|x− y|)− γ+

1 wσ(y, ω)r
i/o
0 (σ|x− y|)

]
ds(y).

(5.39)
since ∂ν(y) = −∂r on S1

ρ. Now, as r →∞,

wσ(x, ω) =
( σ

2πi

) 1
2 1

r
1
2

[
eiσr − e−iσr

]
+O

(
1

r
3
2

)
and

∂rwσ(x, ω) = iσ
( σ

2πi

) 1
2 1

r
1
2

[
eiσr − e−iσr

]
+O

(
1

r
3
2

)
.

Together with the asymptotics (5.5) and (5.6) this yields for the integrand

sin(−θ, ω, σ)ψout(y, θ, σ)r−1 +O
(
r−2
)

as r →∞. (5.40)

Evaluating the integral in radial coordinates yields the measure r dθ. Inserting
these expressions into (??) yields∫

S1ρ

[
wσ(y, ω)∂rr−∂rwσ(y, ω)

]
ds(y) + o(1) as r →∞.
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By Lemma 5.6, where

sin(θ, ω, λ) =
1

4π

(
λ

2πi

)n−3
2
∫

Ωρ

e−iλθ·yF (y, ω, λ) dy.

Therefore, we obtain as a corollary:

Corollary 5.17. The scattering matrix Ŝ(σ) has an analytical continuation to
the logarithmic Riemann surface Λ. It is holomorphic on the lower half of the
principal sheet, i.e. on Λ−0 , and meromorphic everywhere else, the poles being
the discrete subset D from Theorem 5.7.
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Chapter 6

Mapping Properties of the
Layer Potentials

This chapter deals with the layer potentials in the case of polygonal boundaries.
This means that we will recast them as potential operators in the sense of
Definition 4.4 and, by understanding their symbolic structure, show that they
can be continuously extended to continuous operators,

Sli/o(λ) : Hs,γ(∂Ω)→ Ks+
3
2 ,γ+ 3

2

i/o (Ω) λ ∈ Λ±0 ,

and

Dli/o(λ) : Hs,γ(∂Ω)→ Ks+
1
2 ,γ+ 1

2

i/o (Ω) λ ∈ Λ±0 .

Equally important are their traces on the boundary, both from the outside and
the inside of the scattering obstacle. However, as it has been demonstrated in
[Kre99], the jump relations have to be modified for polygonal obstacles. We are
able to derive the same results by an application of Mellin pseudodifferential
methods. We will see that these have to be modified in the case of the double
layer potential for polygonal domains. As a reminder, we will state these relation
for the case of a smooth boundary:

Theorem 6.1 (Jump relations for smooth boundaries). Assume that the bound-
ary ∂Ω of the exterior domain is smooth. Let ϕ ∈ Hs(∂Ω), s ≥ 0. Then the
following jump relations hold:

γ+
0 Sl(λ)ϕ = γ− Sl(λ)ϕ, γ±1 Sl(λ)ϕ = ±1

2
ϕ− 1

2
ϕ,

γ±0 Dl(λ)ψ = ±1

2
ψ − 1

2
N(λ)ψ, γ±1 Dl(λ)ψ = ±1

2
ψ − 1

2
N(λ)ψ.

The boundary limits of the layer potentials are the Calderón projectors C00(λ)
and C01(λ). We will prove that these operators are elements of the calculus
Cµ(∂Ω,g; Λ), with µ = −1 and g = (γ, γ + 1,Θ) for the single layer potential
and µ = 0, (γ, γ,Θ) for the double layer potential. The latter proves that the
boundary limits of the double layer potential are not compact with respect to
the weighted Sobolev spaces Hs,γ(∂Ω).

51
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6.1 The Layer Potentials

The realization of the operator Ki/o(λ) is somewhat more difficult and requires
the use of the so-called layer potentials. We are seeking a realization of the form

Ki/o(λ)g(x) = Dli/o(λ)ϕ(x) + Sli/o(λ)ψ(x), x ∈ Ω ∪ Ωc.

We initially define for ϕ,ψ ∈
∏N
j=1 C

∞
c (∂Ωj) the potential operator

Ki/o(λ) :

[
ϕ
ψ

]
7→ Dli/o(λ)ϕ(x) + Sli/o(λ)ψ(x).

Definition 6.2. For ϕ,ψ ∈
∏N
j=1 C

∞
c (∂Ωj), ϕ = (ϕj)

N
j=1 and ψ = (ψj)

N
j=1, we

define the single layer and double layer potentials as the integral operators

Sli/o(λ)ψ(x) :=

N∑
j=1

∫
∂Ωj

r
i/o
0 (λ|x− y|)ψj(y) dsj(y), x ∈ Ω ∪ Ωc (6.1)

and

Dli/o(λ)ϕ(x) :=

N∑
j=1

∫
∂Ωj

∂

∂νj(y)

(
r

i/o
0 (λ|x− y|)

)
ϕj(y) dsj(y), x ∈ Ω∪Ωc, (6.2)

respectively.

Notice that both layer potentials are defined in the interior as well as in the
exterior of the obstacle, in other words, in both connected components of Ω∪Ωc.
It is of importance to define the traces of both Sl(λ)ϕ and Dl(λ)ψ on the interior
and exterior side of the boundary ∂Ω. We shall however postpone this until later.

Ω
Ωc

|x− y|

x

y ∈ ∂Ω

Figure 6.1: Integrating along ∂Ω

Having defined the layer potentials, we may now set Since our main concern is
the Dirichlet problem (5.1), we are exclusively interested in the operators in the
first line, that is

C00(λ)ψ = γ+
0 Dl(λ)ψ and C01(λ)ϕ = γ+

0 Sl(λ)ϕ.

The other two Calderón operators are

C10(λ)ψ = γ+
1 Dl(λ)ψ, and C11(λ)ϕ = γ+

1 Sl(λ)ϕ.
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It will be one of our tasks in chapter 6 to prove that K i/o(λ) can be extended
to a mapping

Ki/o(λ) : Hs,γ(∂Ω)→ Ks+
1
2 ,γ

i/o (Ω). (6.3)

The function space is defined in (3.15). This will be the subject of chapter 6.
We continue the investigation of the fundamental solution’s properties.
In order to simplify notation on the following pages, we define the entire func-
tion1

F (z) :=

∞∑
k=0

ak
(−1)k

(k!)2

(z
2

)2k

, (6.4)

where ak =
∑k
m=1 1/m and γE is the Euler-Mascheroni constant. This function

converges.

Theorem 6.3. The single layer potential may be rewritten as

Sli/o(λ) = − 1

2π

(
Tlog(λ) + Treg(λ)

)
(6.5)

where the kernels of the corresponding integral operators are given by tlog(|x −
y|, λ) and treg(|x− y|, λ) with

tlog(τ, λ) := ln(τ)J0(λτ) (6.6)

and

treg(τ, λ) := κ · J0(λτ)− 1

2
F (λτ) + ln(λ)J0(λτ), (6.7)

Here, κ := γE − ln(2) + i/4 is a complex constant, {ak}k∈N the sequence of
partial sums of the harmonic series.2

Proof. The Hankel function of order zero may be written as

i

4
H

(1)
0 (λτ) = −1

4
Y0(λτ) +

i

4
J0(λτ), (6.8)

where Y0 is the Neumann function of order zero.3 Notice, that the Neumann
function may be expanded as (treating the product λτ as one variable):

Y0(λτ) =
2

π

[
ln

(
λτ

2

)
+ γE

]
J0(λτ)− 2

π
F (λτ). (6.9)

Adding (i/4)J0(λτ) gives the desired result.

Finally, we will discuss the relation of the fundamental solution on different
sheets of the logarithmic Riemann surface.

Corollary 6.4. Let τ, λ ∈ C, m ∈ Z. Then

Sli/o(eimπλ) = Sli/o(λ) + i
m

2
T (λ)

with

T (λ)ϕ(x) :=

N∑
j=1

∫
∂Ωj

J0(λ|x− y|)ϕj(y) dsj(y).

1Note that this function, although it occurs in the asymptotic expansion of the Hankel func-
tion, is to the author’s knowledge not a canonical special function. We have only introduced
this notation for convenience.

2γE := limn→∞
(
− ln(n) +

∑n
k=1

1
k

)
= 0.57721 . . .

3The Neumann function is also sometimes called Bessel functions of the second kind.
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Proof. It is a well-known fact, that

H
(i)
0 (eimπλτ) = H

(i)
0 (λτ)− i2m · J0(λτ). (6.10)

Recall that both Hankel functions are related by

H
(1)
0 (λτ) = H

(2)
0 (λτ) + 2iJ0(λτ), τ > 0,

where J0(z) is a Bessel function of the first kind and order zero.
One can see this by checking J0(eimπλτ) = J0(λτ) and F (eimπλτ) = F (λτ).
For the middle term in (6.6) we simply use the fact that ln(eimπλ) = ln(λ)−m.
The result follows immediately.

Analogously to Theorem 6.3 we claim:

Theorem 6.5. The double layer potential may be rewritten as

Dli/o(λ) =
1

2π

(
T̃sing + T̃log(λ) + T̃reg(λ)

)
. (6.11)

where the kernels of the corresponding integral operators are given by t̃sing(x−y),
t̃log(x− y, λ), and t̃reg(x− y, λ):

t̃sing(x− y) :=
νj(y) · (x− y)

|x− y|2
,

t̃log(x− y, λ) := λ ln(τ)
1

τ
J ′0(λτ)

∣∣∣∣
τ=|x−y|

νj(y) · (x− y),

and

t̃reg(x− y, λ) :=
[1

τ
t′reg(τ, λ) +

1

τ2
(J0(λτ)− 1)

]
τ=|x−y|

νj(y) · (x− y).

Proof. By the chain rule, we can calculate the kernel of the double layer potential
as

∂

∂νj(y)

(
r

i/o
0 (|x− y|;λ)

)
= −ri/o′

0 (τ ;λ)
νj(y) · (x− y)

τ

∣∣∣
τ=|x−y|

.

By equations (6.5) and (6.6) we have

(r
i/o
0 )′(τ, λ) = − 1

2π

(
t′log(τ ;λ) + t′reg(τ ;λ)

)
with

t′log(τ, λ) =
1

τ
J0(λτ) + λ ln(τ)J ′0(λτ) (6.12)

and

t′reg(τ, λ) = λκJ ′0(λτ)− λ1

2
F ′(λτ) + λ ln(λ)J ′0(λτ). (6.13)

We consider the variable τ > 0 in the denominator together with ri/o′(τ ;λ), i.e.

t′log(τ, λ)
1

τ
=

1

τ2
J0(λτ) + λ ln(τ)

1

τ
J ′0(λτ) (6.14)
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and

t′reg(τ, λ)
1

τ
= λκ

1

τ
J ′0(λτ)− λ

2

1

τ
F ′(λτ) + ln(λ)

1

τ
J ′0(λτ). (6.15)

It is easy to see by their series expansions that multiplying J ′0(λτ) and F ′(λτ)
with τ−1 yields smooth functions in τ . Hence τ−1t′reg(τ ;λ) is smooth in τ . On
the other hand, the first term of equation (6.11), J0(λτ)τ−2, has a singularity
of order ∼ τ−2. The second term has a logarithmic singularity, more precisely,
a factor of the form ln(τ).
Taking into account the the sign in the above equation yields the decomposition

∂

∂νj(y)

(
r

i/o
0 (|x− y|;λ)

)
=

1

2π

(
t̃sing(x− y) + t̃log(x− y, λ) + t̃reg(x− y, λ)

)
,

where

t̃sing(x− y) :=
νj(y) · (x− y)

|x− y|2
,

t̃log(x− y, λ) := λ ln(τ)
1

τ
J ′0(λτ)

∣∣∣∣
τ=|x−y|

νj(y) · (x− y),

and

t̃reg(x− y, λ) :=
[1

τ
t′reg(τ, λ) +

1

τ2
(J0(λτ)− 1)

]
τ=|x−y|

νj(y) · (x− y).

Corollary 6.6. Let τ, λ ∈ C, m ∈ Z. Then

Dl(eimπλ) = Dl(λ) + i
m

2
T ′(λ)

with

T ′(λ)ϕ(x) :=

N∑
j=1

∫
∂Ωj

J ′0(λ|x− y|)ϕ(y) dsj(y).

Proof. One can either take the identity (6.9), substitute τ with |x−y|, and apply
the derivative ∂ν(y). Alternatively, one can check directly that F ′(eiπmλ) =
eiπmF ′(λ), J ′0(eiπmλ) = eiπmJ ′0(λ). These functions are each multiplied with
the factor eiπmλ.
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6.2 The Single Layer Potential

Theorem 6.7. The single layer potential Sli/o is a potential operator of order
-1. More precisely, Sli/o ∈ P−1(Ω; Λ) with

Sli/o(λ) : Hs,γ(∂Ω)→ Ks+
3
2 ,γ+ 3

2

i/o (Ω), λ ∈ Λ±0 .

More specifically, Sl(λ) may be written as the sum

Sli/o(λ) = − 1

2π

{
Tlog(λ) + Treg(λ)

}
, (6.16)

where Tlog ∈ P−1(Ω; Λ) and Treg ∈ P−∞(Ω; Λ). Here,

Tlog(λ) =

N∑
j=1

Φ′jr opM[h̄log,j ]φj +

N∑
j=1

Θ′j opψ[hψj ]θj

with the Mellin symbols given by the pairs

h̄log,j(ϕ, λ, z) =
(
hαj (ϕ, λ, z), h0(ϕ, λ, z)

)
∈M−1

P ⊕M−1
P ,

where hϑ(ϕ, λ, z) = h0(ϕ− ϑ, z)h̃(λ, z) with

h0(ϕ, z) := π
cos((π − ϕ)z)

sin(πz)
(6.17)

and

h̃(λ, z) :=

∞∑
k=0

(−1)kλ2k (2k)!

22k(k!)2

2k+1∏
j=1

1

z − j
. (6.18)

The full symbols for the edges are hψj ∈ S
−1
cl (Ij × Ij × R), Ij ⊂ ∂Ωj.

Proof. We will first prove that each operator Tlog(λ) is a continuous operator:
Recalling that

Sli/o(λ) = − 1

2π

{
Tlog(λ) + Treg(λ)

}
,

we focus out attention onto the first term with logarithmic kernels. Its expansion
is

Tlog(λ) =
1

2π

M∑
k=0

(−1)k

(k!)2

(
λ

2

)2k

Tlog,k .

The kernel of the integral operators Tk,log are given by tlog,k(|x − y|) = |x −
y|2k ln(|x − y|). They can be regarded as a linear combination of generalized
potentials in the sense of Duduchava [Dud99]. That is, we consider

|x− y|2k ln(|x− y|) =

k∑
j=1

(x− y)2βj ln(|x− y|),

where βj ∈ N2
0 with |βj | = k. Let E : Hs,γ(∂Ω) → Hs+ 1

2 ,γ+ 1
2 (Ω) be the

extension operator. Consider

Eϕ 7→
∫

Ω

FA(x, y;λ)Eϕ(y) dy.
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This (pseudodifferential) operator is continuous as Hs,γ(Ω)→ Hs+2k,γ(Ω), and
ϕ 7→ Eϕ is continuous. Hence,

Tlog,k : Hs,γ(∂Ω)→ Hs+2k+ 1
2 ,γ+2k+ 1

2 (Ω)

is continuous. Having established the continuity of the family of operators, we
proceed with establishing their pseudodifferential nature in the sense of Defini-
tion 4.4. Set

R1 :=
(

1−
N∑
j=1

(Φ′j + Θ′j)
)

T̃log.

R1 is regularizing and vanishes in a neighborhood of the boundary. Due to
our choice of cut-off functions, we can reduce each localized term to one of the
model cases, i.e. either a cone X∧θ or a half-space R+×Ω′, Ω′ ⊂ R. We will only
consider the localization in a corner since the interior of the edges are covered
by the standard theory of pseudodifferential operators. Choose a vertex vj and

a cut-off function φ̂j , and consider

Φ′j Tlog(λ) = Φ′j Tlog(λ)φ̂j + Φ′j Tlog(λ)(1− φ̂j). (6.19)

In the vicinity of the corner vj there are only two relevant terms, namely

Φj+1
j Tlog φ

j
j and Φj Tlog φ

j
j . Consider only the first term, i.e. Φ′j Tk φ

j+1
j . Con-

sider an affine transformation of the form

z 7→ eiθjz − vj ,

C

2π − αj

vj

∂Ωj

∂Ωj+1

Parametrization by re−iϕ, r > 0

Re(z)

Im(z)

ϕ

Figure 6.2: Local parametrization in the complex plane

We now make use of the fact that R2 ∼= C and parametrize the edges according
to figure 6.2. That is, we set x = reiϕ and y = s:

Φj Tlog φ
j+1
j = Φj(re

iϕ)

∫ ∞
0

ln|reiϕ − s|J0(λ|reiϕ − s|)φj+1
j f(s) ds.

Notice that the interior of the scattering obstacle is parametrized by 0 < ϑ < αj ,
the exterior domain by αj < 2π − αj . Due to the identity

tlog(|x− y|;λ) = ln|x
y
− 1|J0(λ|x− y|) + ln|y|J0(λ|x− y|)︸ ︷︷ ︸

negligible

,
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we may neglect the second term. Recall that tlog(τ, λ) is defined as the series

tlog(τ ;λ) =

∞∑
k=0

(−1)k

(k!)2

(
λ

2

)2k

ln(τ)τ2k. (6.20)

Using complex radial coordinates, we can calculate:

tlog,k(reiϑ − s, λ) = s2k ln
(
|r
s
eiϕ − 1|

)
|r
s
eiϕ − 1|2k

= r2k+1
(r
s

)−(2k+1)

ln
(
|r
s
− e−iϑ|

)
|r
s
− e−iϕ|2k 1

s
.

Set
lk(σ, ϕ) := σ−(2k+1)tlog,k(σ − eiϕ).

Having rewritten the operator as a Mellin convolution operator, we will apply
a Mellin transformation onto its convolution kernel (cf. example 3.25). Set,
ϕ ∈ [−π, π],

lk(σ, ϕ) := σ−(2k+1)|σ − eiϕ|2k ln|σ − eiϕ|.
The formula itself can be calculated by using

|t− eiϕ| =
√
t2 + 2t cos(π − ϕ) + 1

applying integration by parts multiple times, and evaluating the integral [GR07,
formula (4.296,3)], m ∈ N0:

1

2

∫ ∞
0

σz|σ − eiϕ|m ln|σ − eiϕ| dσ
σ

= π
Γ(m)Γ(z)

Γ(z +m+ 1)

cos((π − ϕ)z)

sin(πz)
,

for −1 < Re(z) < 0. Using the well-known formula

Γ(z)

Γ(z +m+ 1)
=

m∏
j=0

1

(z + j)
, m ∈ N, (6.21)

and Γ(m) = (m− 1)! yields (6.17) for m = 2k, k ∈ N0:

gk(ϕ; z) = (2k)!

2k+1∏
j=1

π

z − j
cos((π − ϕ)(z − 2k − 1))

sin(πz)
. (6.22)

This symbol may be analytically continued. If we set

h0(ϕ, z) := π
cos((π − ϕ)z)

sin(πz)
,

then we can write

hk(ϕ, z) = h0(ϕ, z) · (2k)!

2k+1∏
j=1

π

z − j
.

Although the asymptotic type can be read off immediately, for the order we
have two possibilities:

hk(ϕ; z) ∈

{
M
−(2k+1)
Pk

if ϑ = 0 or ϑ = ±π,
M−∞Pk if ϑ ∈ (−π, π)\{0},
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where the Mellin asymptotic type in both cases is

Pk = {(j, 0) | j ∈ Z}+̇{(j, 0) | 1 ≤ j ≤ 2k + 1}. (6.23)

In order to see the property hϑk ∈ M−∞Pk for ϕ ∈ (−π, π)\{0}, consider the

representations cos(z) = (eiz + e−iz)/2 and sin(z) = (eiz − e−iz)/(2i) and the
limits τ → ±∞ for z = β + iτ , β ∈ R fixed.
So far, we have only considered one single term in the expansions (??). In fact,
we can also consider the whole series:

h̃(λ, z) :=

∞∑
k=0

(−1)k

(k!)2

(
λ

2

)2k

gk(ϕ, z)

=

∞∑
k=0

(−1)kλ2k (2k)!

22k(k!)2

2k+1∏
j=1

1

z − j
.

Notice that h̃(λ, z) defines a meromorphic function on C with simple poles at
−N0. Setting

h(ϕ, λ, z) := h0(ϕ, z)h̃(λ, z)

yields the desired Mellin symbol. For α ∈ [0, 2π), set hα(ϕ, λ, z) := h(ϕ−α, λ, z).
Using this definition, we can start to put our results together and define the
potential operator’s Mellin symbol at the jth vertex as

z 7→ h̄log,j(ϕ, λ, z) :=
(
h0(ϕ, λ, z), hαj (ϕ, λ, z)

)
∈M−1 ⊕M−1.

By the general theory of Mellin pseudodifferential operators,

opM h̄log,j :=
(
opM h0

j , opM h
αj
j

)
:
Hs,γ(R+)
⊕

Hs,γ(R+)
→ Hs+ 1

2 ,γ+ 1
2 (X∧αj )

is a continuous operator. Using this notation, we can write

Φj Tlog = Φ′j opγM[h̄log,j ]φ̂j + Φ′j Tlog(1− φ̂j). (6.24)

Iterating over all N vertices vj yields

Tlog =

N∑
j=1

Φ′j opγM[hlog,j ]φ̂j +
(

1−
N∑
j=1

Φ′j

)
Tlog

(
1−

N∑
j=1

φj

)
. (6.25)

Cutting out the areas around the interior of the edges yields

Tlog =

N∑
j=1

Φ′j opγM[h̄log,j ]φ̂j +

N∑
j=1

Θ′j opψ[hψlog,j ]φ̂j +R1(λ) +R2(λ). (6.26)

The term R2 contains terms resulting from cut-off functions which are overlap-
ping in the interior of the edges. Naturally, these are ordinary pseudodifferential
operators. Finally, set

SlM(λ) :=
1

2π

N∑
j=1

Φ′j opγM[h̄log,j ]φ̂j ,
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Slψ(λ) :=
1

2π

N∑
j=1

Θ′j opψ[hψj ]θj +R2(λ).

Finally, we also have to consider the term Treg(λ). Setting

SlG(λ) :=
1

2π

{
Treg(λ) +R1(λ)

}
,

we can write Sli/o(λ) = SlM(λ) + Slψ(λ) + SlG(λ), and thus have succeeded in
showing that Sl(λ) is indeed a potential operator in the sense of Definition 4.4.

What remains to be shown is the asymptotic behaviour of Sli/o(λ)ϕ in infinity,

i.e. |x| → ∞. But this is an easy consequence of Lemma 6.3. Hence, Sli/o(λ) ∈
Ks+

3
2 ,γ+ 3

2

i/o (Ω).

Corollary 6.8. There is a family of potential operators Tlog,k ∈ P−2k−1(Ω),
k ∈ N0, such that

Sli/o− (−1)

2π

M−1∑
k=0

(−1)k

(k!)2

(
λ

2

)2k

Tlog,k ∈ P−2M−1(Ω; Λ) (6.27)

for every integer M ≥ 0.

Theorem 6.9. The boundary limits of the operator Sl(λ) exist and are identical,
i.e.

γ+
0 Sl(λ)f = γ−0 Sl(λ)f. (6.28)

Furthermore, in the sense of Definition 4.4,

γ+
0 Sl(λ) ∈ C−1(∂Ω,g; Λ), (6.29)

with g = (γ, γ + 1,Θ). The Mellin symbols are given by

ĥlog,j(λ, z) =

[
h(0, λ, z) h(−αj , λ, z)
h(αj , λ, z) h(0, λ, z)

]
, (6.30)

where the functions h(ϕ, λ, z) = h0(ϕ, z)h̃(λ, z) are those from Theorem 6.7.

Proof. We will first show the existence and value of the limits (3.1) for each
t ∈ ∂Ω. Only then we will recast the boundary value into a (Mellin) pseudodif-
ferential operator in the sense of Definition 4.4.
It is clear that we will have to focus on the situation in a neighborhood of the
corners vj since in the interior of any edge ∂Ωj , the behaviour is exactly the
same as in the situation with smooth boundary.

Tlog = Tlog φ
j+1
j + Tlog(1− φj+1

j )

Like in the proof of the preceding theorem, we start with some preparations.
Using polar coordinates, we need to consider the limits for r → 0 and α→ α±j .
In order to understand the limit r → 0, consider the decomposition

Tlog = Tlog φ̂j + Tlog(1− φ̂j).
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C

vj

Σj

Σj+1

Re(z)

Im(z)

ϑ→ 0−
ϑ→ α+

j

Figure 6.3: Exterior Limit

Having established the boundary limits of the single layer potential, we continue
with reformulating the operator as a Mellin pseudodifferential operator. This
is of course not difficult to do, since most of the work has already been done in
the previous theorem.

γ±0 SlM(λ) = − 1

2π

N∑
j=1

t2k+1φ′j opγM[ĥlog,j ]φj ,

γ±0 Slψ(λ) = − 1

2π

N∑
j=1

θ′j opψ[hψj ]θj .

The Mellin symbols for the vertices can be calculated as

ĥlog,j(λ, z) :=

[
h(0, λ, z) h(−αj , λ, z)
h(αj , λ, z) h(0, λ, z)

]
.

6.3 The Double Layer Potential

In this section we are able to reproduce the same modified jump relations as in
[Kre99, equation (6.45)] by using the methods of singular analysis. We believe
that these methods could lead to generalized jump relations in the three dimen-
sional case (cf. chapter 8). This might be an interesting problem to tackle in
future investigations.

Additionally, we can demonstrate that the double layer potential, which we
have defined in equation (6.2), is not compact. To understand this, we need to
consider the leading singularity in Theorem 6.5.

Theorem 6.10. The double layer potential Dli/o(λ) is a potential operator of

order 0. More precisely, Dli/o ∈ P0(Ω; Λ) with

Dli/o(λ) : Hs,γ(∂Ω)→ Ks+
1
2 ,γ+ 1

2

i/o (Ω), λ ∈ Λ±0 .
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More specifically, Dl(λ) may be written as the sum

Dli/o(λ) =
1

2π

{
T̃sing + T̃log(λ) + T̃reg(λ)

}
, (6.31)

where T̃sing ∈ P0(Ω; Λ), T̃log P−1(Ω; Λ), and T̃reg ∈ P−∞(Ω; Λ). In particular,
the operators can be written as

T̃sing =

N∑
j=1

Φ′j opM[ḡsing,j ]φj +

N∑
j=1

Θ′j opψ[gψsing,j ]θj

and

T̃log(λ) =

N∑
j=1

Φ′jr opM[ḡlog,j ]φj +

N∑
j=1

Θ′j opψ[gψlog,j ]θj ,

where Mellin symbols are given by

ḡsing,j(λ, z) =
(
gαj (ϕ, λ, z), g0(ϕ, λ, z)

)
∈M0

P ⊕M0
P ,

ḡlog,j(λ, z) =
(
gαj (ϕ, λ, z), g0(ϕ, λ, z)

)
∈M−1

P ⊕M−1
P ,

where gϑ(ϕ, λ, z) = g0(ϕ− ϑ, z)g̃(λ, z) with

g0(ϕ, z) := π
cos((π − ϕ)z)

sin(πz)
, (6.32)

g̃(λ, z) :=

∞∑
k=0

(−1)kλ2k (2k)!

22k(k + 1)!(k!)

2k∏
j=0

1

z + j
. (6.33)

The full symbols along the edges are hψsing,j ∈ S0(I×I×R) and hlog,j ∈ S−1
cl (I×

I × R).

Proof. The proof follows essentially the same line of thought as the one for
Theorem 6.7: The continuity of Dli/o(λ) is established in the same manner as
for the single layer potential.
Next, for the calculation of the Mellin symbols at the vertices, we first consider
the term T̃sing. We start with realization that

T̃singψ(x) :=

N∑
j=1

∫
∂Ωj

t̃sing(x− y)ψj(y) ds(y),

with the kernel

t̃sing(x− y) =
ν(y)(x− y)

|x− y|2
.

We perform an affine transformation such that we can locally identify Γj+1
∼=

R+. The nominator can then be written as

ν(y)(x− y)|y2=0 = x2.

Using polar coordinates, in particular setting x2 = r sinϑ, we gain for the
operator kernel:

t̃sing(r, ϕ, s) = − r sinϕ

|reiϕ − s|2
= − 1

s2

r sinϕ

|e−iϕ − r
s |2

.
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The operator may therefore be written as

T̃singφ
j+1
j ψj+1(r, ϕ) =

∫ ∞
0

−r
s

sinϕ

|e−iϕ − r
s |2

φj+1
j ψj+1(s)

ds

s
. (6.34)

Rewriting the kernel’s denominator as

|e−iϕ − σ|2 = 1− 2σ cosϕ+ σ2

= 1 + 2σ cos(π − ϕ) + σ2,

and using [GR07, formula (3.252,12)], we may calculate:

1

2

∫ ∞
0

σz
( −σ sinϕ

|e−iϕ − σ|2
) dσ
σ

= π
sin((π − ϕ)z)

sin(πz)
. (6.35)

This identity is true for −1 < Re(z) < 1 and 0 < ϕ < 2π, but can be analytically
continued. With 0 < ϕ < αj this means that

T̃singφ
j
jψj(r) =

∫ ∞
0

∫
Γ 1

2

(r
s

)−z
g̃sing(z;ϕ)ψj(s) dz

ds

s
(6.36)

with

g̃sing(z;ϕ) = π
sin((π − ϕ)z)

sin(πz)
, −1 < Re(z) < 1. (6.37)

As in the proof of Theorem 6.7, this can be interpreted as a Mellin symbol
M0
Q(Xαj ). Furthermore, the corresponding operator does not induce any shift

of the conormal order. The contribution from the adjoint edge, T̃singφ
j
j , is

T̃singφ
j
jψ(r, ϕ) =

∫ ∞
0

−r
s

sin(ϕ− αj)
|e−i(ϕ−αj) − r

s |2
φjjψj(s)

ds

s
. (6.38)

The Mellin symbol at the jth vertex is therefore given by

g̃sing =
(
g̃αj (λ, ϕ, z), g̃0(λ, ϕ, z)

)
,

and therefore

T̃sing = opγM[ḡsing,j ]φ̂j + T̃log(1− φ̂j). (6.39)

Calculating the symbols of the second term, T̃log is done in the same manner as
in the case of the single layer potential. Again, we are able to sum everything
up, with the result

g̃(λ, ϕ, z) :=

∞∑
k=0

(−1)k

(k + 1)!k!

(
λ

2

)2k 2k∏
j=0

1

z + j
.

Iterating over all N vertices vj yields:

T̃log(λ) =

N∑
j=1

opγM[ḡlog,j ]φ̂j + T̃log(λ)
(

1−
N∑
j=1

φ̂j

)
. (6.40)
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Taking the interior of the curvilinear edges into account:

T̃log =

N∑
j=1

Φj opγM[glog,j ]φ̂j +

N∑
j=1

Θj opψ[gψj ]θj +R, (6.41)

where

R =
(

1−
N∑
j=1

(Φj + Θj)
)

T̃log.

We can reaggange the terms and finally set

Dl
i/o
M (λ) :=

N∑
j=1

Φj opγM[ḡsing,j ]φj +

N∑
j=1

Φj opγM[ḡlog,j ]φj ,

Dl
i/o
ψ (λ) :=

N∑
j=1

Θj opψ[gψsing,j ]θj +

N∑
j=1

Θj opψ[gψlog,j ]θj .

Absorbing the mollifying terms into Dl
i/o
G (λ), we have achieved the decomposi-

tion in the sense of Definition 4.4.
Again, it remains to demonstrate the asymptotic behaviour for |x| → ∞. But

this is again only an application of lemma . Therefore, Dli/o(λ)f ∈ Ks+
1
2 ,γ+ 1

2

i/o (Ω),

as claimed.

Corollary 6.11. There exists a family of potential operators T̃log,k ∈ P−2k(Ω),
k ∈ N0, such that

Dli/o− 1

2π
T̃sing −

(−1)

2π

M−1∑
k=0

(−1)k

(k!)2

(
λ

2

)2k

T̃log,k ∈ P−2M (Ω,Λ) (6.42)

for every integer M ≥ 0.

Definition 6.12. For ψ ∈
∏N
j=1 C

∞
c (∂Ωj), λ ∈ Λ, and x ∈ ∂Ω define the

operator

N(λ)ψ(x) :=

N∑
j=1

∫
∂Ωj

∂

∂νj(y)

(
r

i/o
0 (λ|x− y|)

)
ψj(y) dsj(y). (6.43)

Note that this operator is already defined on the boundary, in contrast to the
definition of the double layer potential.

Theorem 6.13. The exterior and interior limits of Dli/o(λ) satisfy certain jump
conditions. For ψ ∈ Hs(∂Ω), s > 1/2, i.e. for conventional Sobolev spaces, they
are given by

γ±0 Dl(λ)ψ(x) =

{
± 1

2ψ(x)−N(λ)ψ(x) for x ∈ ∪Nj=1∂Ωj ,

± 1
2δ
±
j ψ(x)−N(λ)ψ(x) for x ∈ {vj | j = 1, . . . , N} .

(6.44)
where

δ+
j =

1

π

(
2π − αj

)
, and δ−j =

αj
π
. (6.45)
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Both limits, denoted by C±00(λ)ψ = γ±0 Dl(λ)ψ are elements of the algebra
C0(∂Ω,g; Λ), where g = (γ, γ,Θ).
The operator N(λ) can be represented, modulo a smoothing term, as

C±00(λ) =

N∑
j=1

φ̂′j opM[ĝsing,j ]φ̂j +

N∑
j=1

φ̂′j opM[ĝsing,j ]φ̂j +

N∑
j=1

θ̂′j opM[gψj ]θ̂j

The Mellin symbols of the resulting operators at the vertices vj are given by

ĝsing,j(λ, z) :=

[
g̃sing(0, z) g̃sing(−αj , z)
g̃sing(αj , z) g̃sing(0, z)

]
, (6.46)

and

ĝlog,j(λ, z) :=

[
glog(0, λ, z) glog(−αj , λ, z)
glog(αj , λ, z) glog(0, λ, z)

]
, (6.47)

where the functions g(ϕ, λ, z) are given by

g̃sing(ϕ, z) = π
sin((π − ϕ)z)

sin(πz)

and

glog(ϕ, λ, z) = h0(ϕ, z) ·
∞∑
k=0

(−1)k
(2k)!

(k + 1)!k!

(
λ

2

)2k 2k+1∏
j=1

1

z − j
,

respectively.

Proof. The method of proof is exactly the same as in Theorem 6.9. However,
the operator T̃sing will yield more interesting boundary limits. As in Theorem
6.9 we consider the decomposition

T̃ing = T̃singφ
j+1
j + T̃sing(1− φj+1

j ). (6.48)

Again, we primarily need to consider the first two terms. The first term, using
Cartesian coordinates such that ∂Ωj+1 is identified with the positive half-line
of real numbers. Taking advantage of complex polar coordinates, we can write
this operator’s kernel as

T̃singφ
j+1
j ψ(r, ϕ) =

∫ ∞
0

−r
s

sinϕ

|e−iϕ − r
s |2

φj+1
j ψj+1(s)

ds

s
(6.49)

We are interested in the boundary limits, where t ∈ ∂Ωj and φj+1
j (t) = 1. We

can show the limit either directly in ’x-space’ or by using the Mellin operator
formulation. We start with the former: Consider the decomposition |eiϕ−σ|2 =
(eiϕ + σ)(e−iϕ − σ) of the denominator in (6.40):

−σ sinϕ

(eiϕ + σ)(e−iϕ − σ)
=

1

2i

(
eiϕ

eiϕ − σ
− e−iϕ

e−iϕ − σ

)
.

One can easily see that, using the well-known distributional identity

lim
ε→0+

1

x± iε
= ∓iπδ(x) + PV

1

x
,
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PV being the principal values, that

lim
ϕ→0+

e±iϕ

e±iϕ − σ
= ±iπδ(σ − 1)− PV

1

σ − 1
.

Notice the different sign on the right-hand side above. For the limit from the
exterior, i.e. ϑ→ 0−, we obtain

lim
ϕ→0−

e±iϕ

e±iϕ − σ
= ∓iπδ(σ − 1) + PV

1

σ − 1
.

As a result,

lim
ϕ→0±

−σ sinϕ

|eiϕ − σ|2
= ±πδ(σ − 1)

in the sense of distributions, or

lim
ϕ→0±

∫ ∞
0

−σ sinϕ

|eiϕ − σ|2
φj+1
j ψj+1(s) ds = ±1

2
ψj+1(t).

The limit in terms of the Mellin operator formulation is simply by the observa-
tion

lim
ϕ→0

∫
Γ 1

2

r−z
sin((π − ϕ)z)

sin(πz)
M(ψj+1)(z) dz

But in this case, the limit can simply be pulled under the integral which yields

1

2

∫
Γ 1

2

r−zMf(z) dz = ±1

2
ψj+1(r).

The second term is given by

T̃sing(1− φj+1
j )ψ(x) =

N∑
j=1

∫
∂Ωj

tlog(|x− y|;λ)(1− φj+1
j )ψj(y)ds(y).

But x 6= y, which means that T̃log(1−φj+1
j )ψ ∈ C∞. Therefore, the limit exists

anyway and is identical to

T̃sing(1− φj+1
j )ψ(t) =

N∑
j=1

∫
∂Ωj

tlog(|t− y|;λ)(1− φj+1
j )ψ(y) ds(y).

Also notice that ∫
∂Ωj

tsing(|t− y|;λ)φj+1
j ψj(y) ds(y) = 0.

As a consequence,

γ± Sl(λ)ψ(t) = ±ψ(t)−N(λ)ψ(t) for t ∈ [0, ε).

The argument is the same for all t ∈ ∂Ωj such that φjj(t) = 1. In order to
obtain the limit for Ω 3 x→ vj or Ωc 3 x→ vj , i.e. the limit for a corner point
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either from the inside or outside of the obstacle, we have to apply a standard
technique of singular analysis. Consider the decomposition

T̃log = T̃logφ̂j + T̃log(1− φ̂j). (6.50)

So far, we have assumed that ψj ∈ Hs,γ(∂Ωj), j = 1, . . . , N . Assume instead
ψ ∈ Hs(∂Ω), where the restrictions ψj = ψ|∂Ωj

fulfil the compatibility condi-

tions (3.9) at both ends of each segment of the boundary.
The first two terms in (6.41) will be interpreted as Mellin pseudodifferential
operators, just as we have derived in Theorem 6.10. This means that we write

T̃logφ̂j = Φ′j opγM φ̂j +R(λ),

where R is a regularizing term which vanishes in the vicinity of the vertex:

R = (1− Φ′)T̃logφ̂j

with Φ′ :=
∑N
j=1 Φ′j . Since φj+1

j ψj+1 ∈ Hs(∂Ωj+1), its Mellin transform has
simple poles at 0,−1, . . . ,−κ(s). In particular,

M(φj+1
j ψj+1)(z)− ψj+1(vj)

z
∈ A({−1 < Re (z) < 1}),

i.e. the difference is a holomorphic function on the strip {z ∈ C | −1 < Re(z) <
1}. Observe that the Mellin symbol (6.30) has at most simple poles at Z\{0}.
From this we can conclude that

resz=0

(
π

sin((π − ϕ)z)

sin(πz)
M(φj+1

j ψj+1)(z)

)
= (π − ϕ)ψj+1(vj). (6.51)

As a result, for 1/2 < β < 1, we have∫ ∞
0

∫
Γ 1

2
−β

(r
s

)−z
g̃0

sing,j(z;ϕ)ψj(s) dz
ds

s
−(π−ϕ)ψj(vj) ∈ rβH∞(X∧αj ). (6.52)

Analogously, for the second term:∫ ∞
0

∫
Γ 1

2
−β

(r
s

)−z
g̃
αj
sing,j(z;ϕ)ψj(s) dz

ds

s
+
(
π− (ϕ−αj)

)
ψj(vj) ∈ rβH∞(X∧αj ).

(6.53)
We have to be careful with the signs. For example, the orientation of normal
vector field matters. Moreover, we have to remind ourselves of the compatibility
conditions, which imply ψj(vj) = ψj+1(vj). Adding these two terms leads us to
the limit δ−ψ(vj) as desired:

1

2π

(
opM[ḡsing,j ]φ̂jψ

)
−
(
−αj
π

)
ψj(vj) ∈ rβH∞(X∧αj ).

For the limit r → 0 from the exterior, we can proceed analogously by rotating
the coordinate system by the angle αj , changing signs for the Mellin symbols
due to the relative orientation of the normal vector fields, and using the angle
2π − αj instead of αj . The corresponding asymptotics are

1

2π

(
opM[ḡsing,j ]φ̂jψ

)
−
(

2π − αj
π

)
ψj(vj) ∈ rβH∞(X∧2π−αj ).
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In both cases, β > 1/2, so the remainder functions which are (locally) in
rβH∞(X∧θ ), θ ∈ {αj , 2π − αj}, both vanish as r → 0.

γ±0 DlM(λ) =
1

2π

N∑
j=1

t2kφ̂′j opγM[ĝlog,j ]φj

The calculation of the Mellin symbols is done in a straightforward way:

ĝlog,j(λ, z) :=

[
g(0, λ, z) g(−αj , λ, z)
g(αj , λ, z) g(0, λ, z)

]
.

The pseudodifferential symbols in the interior of the edges are again calculated
in the familiar fashion:

γ±0 Dlψ(λ) =
1

2π

N∑
j=1

θ′j opψ[gψj ]θj ,

where gψj ∈ S0(Ij × Ij × R).



Chapter 7

Construction of the
Parametrix and Proof of
the Main Theorem

As the title of this penultimate chapter suggests, we will perform and apply
a parametrix construction for the boundary value of the single layer potential,
C01. However, one observes that the singular nature of the polygonal boundary
comes into play. One important observation is the appearence of the Green
operators. The original proof of Melrose [Mel84] utilizes standard pseudodiffer-
ential calculus for smooth manifolds. Due to the presence of the singularities
in the corner however, an alternative approach has to be pursued. Instead of
using the standard Laplacian, we will construct a parametrix as an element of
the algebra C1(∂Ω,g).

7.1 Ellipticity and Parametrix Construction

Theorem 7.1. The operator C01(λ) is elliptic. In particular, there exists a
parametrix Q ∈ C1(∂Ω,g), g = (1, γ,Θ), such that

Q C01(λ) = 1 + R(λ), (7.1)

where R(λ) : Hs(∂Ω)→ Hs+2(∂Ω) is an entire family of compact operators.

Remark 7.2. Notice that with regards to Boutet de Monvel’s algebra, the
parametrix corresponds to an operator of the form

Apara =

[
0 0
0 Q

]
∈ B1(Ω).

Proof. Recall that the Mellin symbol at the vertex vj for the operator C01(λ)

is given by the product ĥj(ϕ, λ, z) = ĥj,0(ϕ, z)h̃(λ, z), where the first factor is
given by

ĥj,0(z) = π

[
cotπ(z − 1)

cos((π+αj)(z−1))
sin(πz)

cos((π−αj)(z−1))
sin(πz) cotπ(z − 1),

]
. (7.2)
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Notice that the off-diagonal functions are of class M−∞P . The second factor can
be expanded as

h̃(λ, z) =
1

z + 1

1

z
·
[
1 +

∞∑
k=1

(−1)kλ2k (2k)!

22k(k!)2

2k∏
j=2

1

z + j

]
· 12×2.

In order to construct the parametrix, we therefore focus on inverting the factor
h0. We start with calculating the determinant,

dethj,0(z) = π2 sin2(αjz)

sin2(πz)
, (7.3)

and conclude that hj,0 is invertible as long as Γγ for the weight γ does not cross
the poles or roots of the determinant. The potential locations for those are easy
to determine:

zinv ∈ Z or zinv ∈
π

αj
Z.

Notice that nominator and denominator in (7.3) can cancel each other out for
z 6= 0. This is, as will see in the example in section 7.2, the case for αj = π/2
and z ∈ 2Z. Calculating the inverse matrix yields:

ĥj,0(z)−1 =
1

π

sin2(πz)

sin2(αjz)

[
cot(πz) − cos((π+αj)z)

sin(πz)

− cos((π−αj)z)
sin(πz) cot(πz)

]
. (7.4)

Note that the Mellin asymptotic type for the inverse matrix is a subset of

Rj ⊆
(
Z× {1}

)
+̇
{

(
π

αj
j, 1) | j ∈ Z\{0}

}
.

Set q̂j(z) := ĥ−1
j,0(z) and define the parametrix by

Q :=

N∑
j=1

t−1φ̂′j opγM[q̂j ]φ̂j +

N∑
j=1

θ′j opψ[qj ]θj . (7.5)

By the standard theory of Mellin pseudodifferential operators, the parametrix
is a continuous mapping

Q : Hs,γ(∂Ω)→ Hs−1,γ−1(∂Ω),

with norm ‖Q‖ ≤
∑N
j=1

∑
m,n=1,2 c(q

m,n
i ), where

c(qj) := sup
z∈Γβ

‖〈Im (z)〉s−1qj(z)〈Im (z)〉−s‖L(L2) <∞.

Furthermore, it induces asymptotics

Q : Hs,γ(∂Ω)→ Hs−1,γ−1
Rj

(∂Ω).

The application of the parametrix is essentially given by Theorem 4.10. Since
we have not given a proof of that theorem, we outline the technicalities here.
In order to technically simplify the proof, we assume that the edges ∂Ωj of the
boundary consist of straight lines. Edges which are smoothly curved away from
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the vertices, are covered by the standard theory of pseudodifferential calculus.
Write

Tlog =

N∑
j=1

φ̂′j opM[ĥlog,j ]φ̂j ,

where ĥlog,j , j = 1, . . . , N , is the family of 2× 2-matrix valued Mellin symbols.

Application of the parametrix yields, using φ̂′j φ̂j = φ̂j ,

Q Tlog =

N∑
j=1

φ̂′j opM[q̂j ]φ̂j opM[ĥlog,j ]φ̂j . (7.6)

Using φ̂j = 1− (1− φ̂j), where 1 is the identity on Hs,γ(∂Ω), and Lemma 4.6,

Q Tlog =

N∑
j=1

φ̂′j opM[q̂j ĥlog,j ]φ̂j −
N∑
j=1

φ̂′j opM[ĝj ](1− φ̂j) opM[ĥj ]φ̂j︸ ︷︷ ︸
S:=

.

But q̂j ĥlog,j = h̃ · 12×2 for j = 1, . . . , N . Finally, we set

R(λ) :=

N∑
j=1

φ̂′j opM[h̃(λ)]φ̂j + S

with

h̃(λ, z) =
1

z + 1

1

z
·
[ ∞∑
k=1

(−1)kλ2k (2k)!

22k(k!)2

2k∏
j=2

1

z + j

]
· 12×2.

One can easily see that h′(λ, z) converges and is holomorphic in the half-plane
{z | −2 < Re(z)}. As a result, the Mellin asymptotic type of h̃ induces asymp-
totics such that

R(λ) : Hs(∂Ω)→ Hs+2(∂Ω).

As a preparation for the proof of the main theorem in chapter ??, we will need
a specific estimate for the composition Q Tlog,k, k ∈ N0:

Proposition 7.3. For each k ∈ N0:

‖Q Tlog,k‖s,γ,s+2k,γ+2k ≤ (2k!). (7.7)

Proof.

Q Tlog,k : Hs,γ(∂Ω)→ Hs+2k,γ+2k(∂Ω),

We know by standard theory that Tlog,k is a continuous operator Hs,γ(∂Ω) →
Hs+2k+1,γ+2k+1(∂Ω). Let s ∈ N0, γ ≥ 0 real numbers. For g ∈ Hs,γ(Ωc),
consider the integral operator

Fg(x) :=

∫
Ωc

ln(|x− y|)|x− y|2kg(y) dy, x ∈ Ωc,
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which defined a function in the interior of the obstacle, Fg ∈ Hs+2k+ 3
2 ,γ+2k+ 3

2 (Ωc).

‖Fg‖2m,γ =
∑
|α|≤m

∫
Ωc

r2(|α|−γ−m)|DαFg(x)|2 dx,

with r = |x|, m ∈ N0, and differentiating yields the norm ‖Fg‖m+2k+1,γ ≤
(2k)!‖g‖m,γ . Using complex interpolation, we can extend the result to

‖Fg‖m+2k+ 3
2 ,γ
≤ c(2k)!‖g‖m,γ , c > 0.

The factorial can be found by using the identity

dn

dxn
(
ln(|x|)x2k

)
= x2k−n(2k)n

(
ln(|x|) + ψ(2k + 1) + ψ(2k + 1− n)

)
,

where (k)n = k(k + 1) · · · (k + n − 1) is the Pochhammer symbol, and ψ(k)
being the Digamma function. Setting n = 2k + 1 yields the result. Now,
‖u‖s,γ = inf{‖U‖s+ 1

2 ,γ+ 1
2
| U |∂Ω = u}, which leads to

‖γ−0 Fg‖s+2k,γ+2k ≤ (2k)!‖g‖s,γ .

On the other hand, we know that the extension operator E : Hs,γ(∂Ω) →
Hs+ 1

2 ,γ+ 1
2 (Ω) is continuous.

‖γ−0 FEg′‖s+2k,γ+2k ≤ (2k)!‖Eg′‖s,γ ≤ (2k)!‖g′‖s,γ .

for a g′ ∈ Hs,γ(∂Ω). But γ−0 FEg
′ = Tlog,k g

′.

7.2 Example: Square as a Scattering Object

In order to illustrate the parametrix construction we will study an example
which is inspired by the triple junction graph in [OP04] in which the authors
study a vertex of degree 3. In the case of a square which is a closed graph
of degree 2, all four angles α1, . . . , α4 are equal to π/2. This enables us to
diagonalize the principle conormal symbol (interior symbols are unnecessary)
and it therefore yields a simple expression. An obstacle shaped like a square
enables us to diagonalize the principle conormal symbol since both α = π/2 and
π − α = π/2.

π
2

v1

v2v3

v4

Figure 7.1: An obstacle shaped as a square



7.2. EXAMPLE: SQUARE AS A SCATTERING OBJECT 73

Since all the four edges are straight lines, we may set the interior operators to
zero and distribute their contributions to the Mellin operators. Consider the
leading operators at the vertex vj :

Hs,γ(∂Ωj+1)⊕Hs,γ(∂Ωj)→ Hs+1,γ+1(∂Ωj+1)⊕Hs+1,γ+1(∂Ωj)

In the particular case of a rectangular obstacle, a square like in our example,
we may diagonalize the above mapping by using a transformation of the form

Ûvj :

[
fj+1

fj

]
7→ 1√

2

[
fj+1 − ifj
fj+1 + ifj

]
.

Notice that we are making use of the identification φHs,γ(∂Ωj) ∼= φHs,γ(R+)
for a cut-off function φ, and pay attention to the compatibility conditions. This
results into the diagonal matrix[

φ̂j+1,′
j T0 φ̂

j+1
j +˜̂φj+1

j T0 φ̂
j
j 0

0 i[φ̂j,′j T0 φ̂
j
j −˜̂φjj T0 φ̂

j+1
j ]

]
.

The conormal symbol is then given by (using αj = π/2, j = 1, 2, 3, 4):

σ−1
M,j

(
T0

)
(z) =

π

z − 1
τ−1

[
cos(πz)+cos(π2 z)

sin(πz) 0

0 i
cos(πz)−cos( 3

2πz)

sin(πz)

]
Notice that τ−1 denotes the shift to the right by 1 in the complex plane.

σ−1
M,j

(
T0

)
(z) =

2π

z − 1
τ−1

 cos( 3π
4 z) cos(π4 z)
sin(πz) 0

0 i
sin( 5π

4 z) sin(π4 z)
sin(πz)


The symbol is elliptic for weight γ 6∈ Z. Now set

Ĝ(z) :=

 cos( 3π
4 z) cos(π4 z)
sin(πz) 0

0 i
sin( 5π

4 z) sin(π4 z)
sin(πz)

 .
Notice that the nominators have roots in . We define the parametrix by setting
q(z) := 1

2π zG(z)−1 and

Q :=

4∑
j=1

φ̂′jt opγM[q̂j ]φ̂j ∈ C1(∂Ω,g),

with g = (1, γ,Θ), Θ = (−N, 0].
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7.3 Proof of the Inequality

Theorem 7.4 (Main theorem). There is a constant C > 0 such that

N±m(r) ≤ Cr2, m ∈ Z.

The proof of the main theorem consists of a series of lemmas which culminate
in the following result:

Lemma 7.5. There exists a holomorphic function on the Riemann surface of
the logarithm d : Λ→ C which satisfies the two properties:

1. The zeros of d coincide with the poles of the scattering matrix both in
location and multiplicity. I.e. if λj is a scattering pole of multiplicity
k ≥ 0, then d(λ) = 0 with the same multiplicity and vice versa.

2. |d(λ)| ≤ Cec|λ|2 , λ ∈ Λ±m for each m ∈ Z.

Applying this inequality to Jensen’s formula (Theorem A.2.1) proves the main
theorem. The first step is to apply Weyl’s convexity estimate to the operator
1+ R(λ):

|d(λ)| ≤
∞∏
j=1

(
1 + χj

(
R(λ)

))
.

Then, we have to estimate the individual factors on the right hand side, i.e.
χj(R(λ)

)
, j ∈ N. This is done by using the inequalities (A.7) and (A.8):

χj(R(λ)) ≤ χj(Q Tlog(λ)) + χj(Q Treg(λ)) (7.8)

The two terms on the right hand side are estimated by

χj(Q Tlog(λ)) ≤
∑
k≥1

1

(k!)2

(
λ

2

)2k

χj
(
Q Tlog,k

)
(7.9)

and

χj(Q Treg(λ)) ≤ Aj +Bj + Cj , (7.10)

where

Aj := κ
∑
k≥1

1

(k!)2

(
λ

2

)2k

χj
(
Q Treg,k

)
,

Bj := −1

2

∑
k≥1

ak
1

(k!)2

(
λ

2

)2k

χj
(
Q Treg,k

)
,

Cj := ln(λ)
∑
k≥1

1

(k!)2

(
λ

2

)2k

χj
(
Q Treg,k

)
.

It is therefore of crucial importance to estimate the numbers χj
(
Q Tlog,k

)
and

χj
(
Q Treg,k

)
for j ≥ 1.
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Theorem 7.6. The singular values satisfy the following estimate:

χj(Q Tlog,k) ≤ c2k, (7.11)

χj(Q Tlog,k) ≤ c2k(2k)!j−2k (7.12)

for a constant c > 0.

χj(Q Treg,k) ≤ c2k, (7.13)

χj(Q Treg,k) ≤ c2k(2k)!j−2k. (7.14)

The proof of this assertion is based on Carl’s inequality (Theorem A.5.1). Before
we can continue with the proof, we first need to take a glance at the definition
of entropy numbers:

Definition 7.7. Let T : A → B be a compact, linear operator between two
complex Banach spaces A and B. Let BA ⊂ A and BB ⊂ B be the unit balls,
respectively. Then we define the jth entropy number of T , j ∈ N0, as

εj(T ) := inf
{
ε > 0

∣∣∣ T (BA) ⊆
2j−1⋃
m=0

(pm + εBB), pj ∈ B
}
.

Definition 7.8. Denote the compact embeddings between Sobolev spaces on
∂Ω for s′ > s ≥ 0 by

ιs
′

s : Hs′(∂Ω) ↪→ Hs(∂Ω).

Lemma 7.9. There exists a constants c > 0, independent of the positive integers
j and k, such that

εj(ι
2k
0 ) ≤ cj−2k (7.15)

for all j, k ∈ N0.

Since for f ∈ H2k(∂Ω) the restrictions fj = f |∂Ωj
satisfy the compatibility

conditions (3.9) at the vertices vj , we may identify f with a Sobolev function in
H2k(I), I ⊂ R a suitable interval. The proof follows the arguments of [ET96,
Theorem 3.3.2], but is very long and technical. One can verify that the constant
c > 0 is independent of s′ > 0.

Remark 7.10. It is clear that the above argument is a rather weak link. How-
ever, a formal analysis of Edmund’s and Triebel’s proof requires more effort
beyond of which we are capable in this thesis.

Remark 7.11. Notice that there is a lift operator l2 : Hs+2(∂Ω)→ Hs(∂Ω) on
the scale of Sobolev spaces. Although its usefulness has diminished during the
course of this thesis, its proof of existence is shown in Lemma A.6.1 nonetheless.

Proof of Theorem 7.6. The inequalities without factorials are standard L2 esti-
mates. We therefore focus on the other two ones. Since, for k ∈ N0, Q Tk,log :
Hs(∂Ω) → Hs+2k(∂Ω), considered as Hs(∂Ω) → Hs(∂Ω), is a compact opera-
tor, we may apply Carl’s inequality (Theorem A.5.1). That is, for j ∈ N0 we
may estimate the jth entropy number as:

χj(Q Tk,log) ≤
√

2 · εj(ι2k0 )‖Q Tk,log‖0,2k.
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Due to Lemma 7.9, we know that

εj(ι
2k
0 ) ≤ cj−2k.

By Proposition 7.3, we have

‖Q Tlog,k‖s,s+2k ≤ (2k)!.

The estimate (7.6) follows immediately.

Going back to the estimate (??), our next goal is to find an upper estimate for
the singular numbers χj(R(λ)), j ∈ N0:

Lemma 7.12. There exists a constant C > 0 such that either

χj(R(λ)) ≤ CeC|λ|
2

for j < C|λ|, (7.16)

or
χj(R(λ)) ≤ C|λ|2j−1 for j > C|λ|. (7.17)

Proof. Using both inequalities (A.7) and (A.8) yields

χj(R(λ)) ≤
∑
k≥1

1

(k!)2

(
|λ|
2

)2k

χj
(
Q Tlog,k

)
+Aj +Bj + Cj , (7.18)

where Aj , Bj , and Cj have been defined above. We only consider the first term
with the sum.
Case j ≤ c|λ|: Using Theorem 7.6, inequality (7.6),

∑
k≥1

1

(k!)2

(
|λ|
2

)2k

c2k =
∑
k≥1

1

k!

(
|λ|
2

)2k

c2k

≤
∑
k≥1

1

k!
(c|λ|2)k

≤ ec|λ|
2

.

Case j > c|λ|: We make use of and the geometric series. Using the estimate
(7.7) yields

∑
k≥1

1

(k!)2

(
|λ|
2

)2k

χj
(
Q Tlog,k

)
≤
∑
k≥1

(2k)!

22k(k!)2
|λ|2kc2kj−2k.

One can easily see that 22k(k!)2 ≥ (2k)!. Hence, we can conclude

∑
k≥1

1

(k!)2

(
|λ|
2

)2k

χj
(
Q Tlog,k

)
≤
∑
k≥1

(
c|λ|
j

)2k

.

Due to the condition j > c|λ|, this series is bounded by twice the first term.
Estimating the other terms is done analogously.

Having proven the necessary lemmas, we may proceed to prove the main in-
equality:



7.3. PROOF OF THE INEQUALITY 77

Proof. Now, our function is given by

d(λ) = det
(
1+ R(λ)

)
.

Weyl’s convexity estimate (Theorem A.4.3) yields:

|dR(λ)| ≤
∞∏
j=1

(
1 + χj

(
R(λ)

))
=

∏
j<C|λ|

(
1 + χj

(
R(λ)

))
︸ ︷︷ ︸

I

∏
j>C|λ|

(
1 + χj

(
R(λ)

))
︸ ︷︷ ︸

II

.

Using Lemma ??, we may estimate the first factor, I, by inequality (??), i.e.∏
j<C|λ|

(
1 + χj

(
R(λ)

))
≤

∏
j<C|λ|

(
1 + CeC|λ|

2
)
≤ C ′eC|λ|

2

,

and the second factor, II, by inequality (??):

∏
j>C|λ|

(
1 + χj

(
R(λ)

))
≤

∏
j>C|λ|

(
1 +

C|λ|2

j

)
<∞.

Combining these two yields our sought-after result, namely

|d(λ)| ≤ C ′′eC|λ|
2

, λ ∈ Λ. (7.19)

We are now in a position to apply Jensen’s formula (Theorem A.2.1) and finalize
the proof of the main theorem:

Proof of the main theorem. Inserting (7.13) into Jensen’s formula, equation (A.6),
yields

N+
0 (r) ≤ 1

π

∫ π

0

ln|d(reiθ)| dθ − ln|d(0)|.

Now with |d(reiθ)| ≤ CeCr2 and |d(0)| = C, we can calculate

N+
0 (r) ≤ C ′r2,

which is the desired upper estimate.
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Chapter 8

Outlook: Scattering Theory
in Three Dimensions

As we have indicated in the introduction, the scattering theory for the three
dimensional problem is simpler, the elliptic theory more involved. The scattering
theory can be followed along the lines of the monograph [LP67] with some easy
modifications due to the non-smooth nature of the obstacle [LP78].

For the elliptic theory, consider only a single corner: Let X be the base manifold.
Since we are dealing with a polyhedron, X decomposes into N one dimensional
segments X = X1 ∪ X2 ∪ . . . ∪ XN (A cube would only have a base manfold
consiting of three segments, for example). In the corner, we would have to deal
with operator-valued symbols of the form

z 7→
N∑
j=1

∫
Xj

a(ξ, η; z)fj(η) dsj(η),

where ξ, η ∈ X, fj ∈ Hs,γ(Xj), and ds is the surface measure on the cone base
X.

R+
X3

X1
X2

Figure 8.1: Corner of a polyhedral obstacle in three dimensions
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The fundamental solution of wave equation in three dimensions is given by

r0(x, y;λ) =
1

4π

eiλ|x−y|

|x− y|
for x 6= y, and λ ∈ C.

The term of leading order as x→ y of course

a1(x) =
1

4π

1

|x|
, x ∈ R3\{0}.

It is well-known [Sch89] that the Mellin transform of the fundamental solution
of the Laplacian given by

z 7→ 1

4 sin(πz)
Pz−1(−ξ · η), ξ, η ∈ X

where Pµ = P 0
µ denotes the Legendre function of first kind and (complex) degree

µ ∈ C:1

Pz−1/2(cos θ) =
2

π

∫ θ

0

(
2 cos s− 2 cos θ

)− 1
2 cos(sz) ds

One can see that for ξ → η and z ∈ C fixed, that

Pz−1(−ξ · η) ∼ − ln|ϕ− ψ|+ . . . .

This is indeed the qualitative behaviour which we are expecting.
One of the complexities in three dimensions, aside of higher notational efforts, is
that we have to deal with the edges. That is, we would need to consider integral
operators of the form

R 3 σ 7→
∫
R+

1√
σ2 + (r − r′)2

f(r′) dr′,

where f ∈ C∞c (R+), where σ ∈ R parametrized the edge. A brute force approach
by calculating the Mellin transform of the kernel does not seem to be fruitful,
so the question arises whether one should continue to proceed via calculations
or via abstract theory.
The formulation of the three dimensional theory would almost certainly involve
elements of edge calculus [Sch98].
Other points of concern are the modifications of the jump relations. We have
seen in Theorem 6.10 that the jump relations for the double layer potential in
two dimensions have to be modified for the singular case. Are there analogous
modifications in the three dimensional case? This will certainly be the case, but
this time we will need to modify the relations in the corners of the polyhedron as
well as along the edges. The modifications along an edge E would perhaps be of
the form αE(σ)/π, where αE(σ) is the (interior) contact angle between the two
faces meeting in E, and σ is again a parametrization of the edge. The form of
the modifying factor in a corner V will look different from the two dimensional
case and is a matter of calculating the appropriate asymptotics. All in all, the
three dimensional problem seems to be a challenging problem.

1Legendre functions are a generalization of Legendre polynomials
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Appendix

A.1 Singularities in Boundary Value Problems

A.1.1 Green’s Identity

This subsection contains definitions and results for elliptic boundary value prob-
lems in a more general context. They can all be found in [Dau88].
Let Ω ⊂ Rn be a polyhedral domain.

Definition A.1.1. A d-face of Ω, d ∈ {1, . . . , n}, ∂d,iΩ, i = 1, . . . , Id denoted
by ∂′Ω, nx = d. Each ∂d,iΩ is a domain in a n−d dimensional smooth manifold
Md,i. The set ∂d,iΩ is called the canonical set of faces of Ω.

Definition A.1.2. An admissible set of faces {∂d,iΩ | d, i} is a partition of ∂Ω
such that

1. ∂d,iΩ is a Lipshitz polyhedral domain in a smooth (n − d) dimensional
manifold Md,i.

2. For each x ∈ ∂d′,i′Ω, d′ ≥ 2, there is a smooth chart χx sending a neigh-
borhood of x in Ω onto a neighborhood of 0 in a cone Cx, and, for any (d, i)
such that x ∈ ∂Ω sending a neighborhood of x in onto a neighborhood of
0 in a polyhedral cone.

For an admissible set {∂d,iΩ} of Ω. In each point x ∈ ∂d,iΩ, (d, i) fixed, there
are local coordinates (ν, τ) such that

ν = (ν1, . . . , νd) are normal to M (d,i),

τ = (τ1, . . . , τn−d) are tangential to M (d,i).

Denote the normal derivatives by ∂ν and the tangential derivatives by ∂τ .

Definition A.1.3. The family {Bd,i,α(x, ∂x) | α ∈ Nd, |α| ≤ l} is called a
l-order normal system of nth order on ∂d,iΩ, if

1. Bd,i,α are operators with order |α| and smooth coefficients on a neighbor-
hood of ∂i,dΩ in M i,d.

2. For each x ∈ ∂d,iΩ and each j = 0, . . . , l, the principle parts of {Bd,i,α(x0, ∂ν , 0) |
|α| = j} form a basis of the homogeneous degree j operators with con-

stant coefficients on Rn, and, for (d, i) such that x ∈ ∂d,iΩ, sending a

neighborhood of x in ∂d,iΩ onto a neighborhood of 0 in a polyhedral cone
∂d,iCx ∈ Cn−d. The ∂d,iCx are a partition of the boundary of Cx.
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For l = 1, this is the usual definition of a normal system.

Theorem A.1.4. Let Ω be a polyhedral domain and {∂d,iΩ} an admissible set
of faces. Let m ∈ N. For each (d, i), let {Bd,i,α | α} be a (m− d)-order normal
system on ∂Ω. Let a be a integrodifferential form with C∞(Ω)-coefficients and
let L be the 2m-order operator associated to a. Then there exists operators
Cd,i,α with order 2m−|α|−d and C∞(Md,i) coefficients such that the following
Green’s formula holds for any u ∈ H2m(Ω) and v ∈ Hm(Ω):

a(u, v) =

∫
Ω

Luv dy +
∑

1≤d≤n

∑
1≤i≤Id

∑
|α|≤m−d

∫
∂d,iΩ

Cd,i,αuBd,i,αv ds(y) (A.1)

If m− d < 0, the system is empty. If d = n, ∂n,iΩ reduces to a point x0 and∫
∂d,iΩ

f dy = f(x0).

Corollary A.1.5. Consider the gradient form

a(u, v) =

∫
Ω

∇u∇v dy.

As m = 1, only the 1-faces can be equipped with a normal system with order 0.
The Green’s formula may then be written as

a(u, v) = −
∫

Ω

∆uv dy +
∑

1≤i≤1

∫
∂1,iΩ

∂νuv ds(y). (A.2)

Corollary A.1.6.∫
Ω

[
∆uv − u∆v

]
dy =

∑
1≤i≤I1

∫
∂1,iΩ

[
∂νuv − u∂νv

]
ds(y). (A.3)

A.1.2 Regularity of Solutions of Cone-Degenerate BVPs

In contrast to the case of a domain Ω with smooth boundary, Poisson’s equation

∆u = f ∈ L2(Ω) (A.4)

with homogeneous Dirichlet boundary condition does not simply have a solution
u ∈ H2(Ω). Rather, the solution is a sum u = uR + using of a regular term
uR ∈ H2(Ω) and a singular term using ∈ H2−δ(Ω), 0 < δ < 2. The latter
consists of explicit terms which are localized in the vicinity of the domain’s
corners and have the form

Sj,1(r, ϑ) = r
π
αj sin

(
π
ϑ

αj

)
, (A.5)

where αj is the interior angle at the vertex vj .
2 Of course, the theory may

be extended to different boundary conditions, i.e. homogeneous and inhomo-
geneous Dirichlet and Neumann conditions. Moreover, one may apply different
boundary conditions to different edges. However, these considerations are not
important for the problem and their further study is left to the reader [Gri92].
Summarizing this discussion, we obtain the following result.

2Note, that we are considering the Laplace equation in the interior of the domain at the
moment, whereas our scattering problem deals with the exterior of the domain.



A.2. JENSEN’S FORMULA 85

Theorem A.1.7. Consider the Poisson equation (A.4) on a polygonal domain
with straight edges and homogeneous Dirichlet boundary equations. Then there
exists an unique solution u ∈ H2−δ(Ω), δ = max{π/αj | j = 1, . . . , N} of the
problem. The solution is of the form λj,m = mπ/αj.

u = uR +

N∑
j=1

( ∑
0<λj,m<1

cj,mSj,m

)
,

where uR ∈ H2(Ω) is the regular part, and cj,m ∈ C.

A.2 Jensen’s Formula

Jensen’s formula relates the number of zeros of an analytic function h to its
growth properties:

Theorem A.2.1 (Jensen’s formula). Let h be a analytic function in a region in
the complex plane which contains the closed disk Dr(0) of radius r > 0 about the
origin. Let {zk}Nk=1 be the zeros of h in the interior of Dr(0), counted according
to their multiplicity. Then Jensen’s formula states

log|h(0)| =
N∑
k=1

log

(
|zk|
r

)
+

1

2π

∫ 2π

0

log|h(reiθ)| dθ.

Corollary A.2.2. Let Nh(r) be the number of zeros of h in the interior of the
disc Dr(0). Then this number can be estimated by

Nh(r) ≤ 1

2π log(2)

∫ 2π

0

log
|h(2reiθ)|
|h(0)|

dθ. (A.6)

Proof. Of the Nh(r) zeros in Dr(0),consider only the first Nh(r/2) zeros which
are contained in the interior of D r

2
(0) and satisfy

|zk| <
r

2
, k = 1, . . . , Nh (r/2)

This means we can estimate

log 2 ≤ log

(
r

|zk|

)
, k = 1, . . . , Nh (r/2) ,

and for the rest of the elements in the annulus Dr(0)\D r
2
(0):

0 ≤ log

(
r

|zk|

)
, k = Nh (r/2) + 1, . . . , Nh(r),

This again implies

Nh(r/2) · log(2) ≤
Nh(r/2)∑
k=1

log(2) ≤
Nh(r)∑
k=1

log

(
r

|zk|

)
.

Inserting the integral, we have

Nh(r/2) ≤ 1

2π log(2)

∫ 2π

0

log
|h(reiθ)|
|h(0)|

dθ.

Substituting r with twice the radius, i.e. 2r, yields the desired result.
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A.3 Analytic Fredholm Theorem

Theorem A.3.1. Let D ⊂ C be a connected open subset, G(z) a compact,
operator-valued, holomorphic function of z ∈ D. Suppose that 1 + G(z) is
invertible at some point z0 ∈ D. Then 1 + G(z) is invertible everywhere on D
except at most for a discrete set D ⊂ U , and (1 + G(z))−1 is meromorphic on
U .

A.4 Trace Class Operators

Let H be a Hilbert space, T : H → H a compact operator. Denote the eigenval-
ues of T by λk(T ). If T is self-adjoint, then the operator has a complete set of
eigenvalues with only zero as accumulation point. If T is not self-adjoint, then
we may consider |T | :=

√
T ∗T , T ∗ being the adjoint of T .

Definition A.4.1 (Singular values). The singular values of the operator T
are eigenvalues its modulus, |T |, ordered in decreasing order. I.e., we have
χk(T ) := λk(|T |) for all k ∈ N and

χ1(A) ≥ χ2(A) ≥ . . .→ 0. (A.7)

Definition A.4.2 (Fredholm determinant). Let T be of trace class. We define
the Fredholm determinant det(1+ T ) by

det(1+ T ) :=

∞∏
k=1

(1 + λk(T )).

The product is convergent.

Theorem A.4.3 (Weyl’s convexity estimate). Let T be an operator of trace
class.

|det(1+ T )| ≤
∞∏
j=1

(
1 + χj(T )

)
= det(1 + |T |) ≤ etr|T |.

Theorem A.4.4. Let S : H → H be bounded.

χj(ST ) ≤ ‖S‖χj(B)

If S is compact, then

χi+j−1(S + T ) ≤ χi(S) + χj(T ), (A.8)

χi+j(ST ) ≤ χi(S)χj(T ). (A.9)

A.5 Carl’s Inequality

Theorem A.5.1 (Carl’s inequality). Let T : A→ A be a compact linear opera-
tor in a complex Banach space A. Let (χk(T ))k∈N be the sequence of eigenvalues
of |T | as above. Then:

χk(T ) ≤
√

2ek(T ) for all k ∈ N.
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Corollary A.5.2. Let S : Hs(Ω) → Hs′(Ω) be a bounded linear operator,
s > s′, Ω ⊂ Rn a domain. Denote kth entropy number of the compact embedding
ιs
′

s : Hs′(Ω)→ Hs(Ω) by εk(ιs
′

s ). Let S′ := ιs
′

s S with singular values (χk(S′))k∈N
as above. Then

χk(S′) ≤
√

2εk(ιs
′

s )‖S‖s,s′ for all k ∈ N,

where ‖−‖s,s′ denotes the operator norm in L(Hs(Ω), Hs′(Ω)).

A.6 A Technical Lemma

Lemma A.6.1. Consider the scale of Sobolev spaces Hs(∂Ω), s ≥ 0. The
operator

T = (1− ∂2
τ ) : Hs+2(∂Ω)→ Hs(∂Ω)

is a positive and self-adjoint isomorphism with ‖Tf‖s ≤ 2‖f‖s+2.

Proof. Consider the operator −∆∂Ω on ∂Ω. On ∂Ωj , assuming parametrization
by arc length, we have−∆Γ = −∂2

t . Consider the maximal operator T = 1−∆∂Ω

with maximal domain D(Tmax) =
∏N
j=1H

2(∂Ωj), and set

w(f, g, t) := det

[
f(t) g(t)
∂τf(t) ∂τg(t)

]
, t ∈ ∂Ωj .

Recall that the scalar product on ∂Ω is given by

〈f, g〉∂Ω :=

N∑
j=1

∫
∂Ωj

fj(t)gj(t) dsj(t).

Now consider

N∑
j=1

(
〈fj , ∂2

τgj〉∂Ωj − 〈∂2
τfj , gj〉∂Ωj

)
=

N∑
j=1

(
w(fj , gj , lj)− w(fj , gj , 0)

)
(A.10)

=

N∑
j=1

(
w(fj−1, gj−1, lj−1)− w(fj , gj , 0)

)
,

(A.11)

where we have rearranged the sum in the last line. We need to choose adequate
boundary conditions at the endpoints of the intervals in order to define a self-
adjoint operator. The minimal choice would be to demand fj , gj ∈ H2

0 (∂Ω1,j)
for all j. One other possible choice is to set[

fj−1(lj−1)
∂τfj−1(lj−1)

]
= α

[
fj(0)
∂τfj(0)

]
, α ∈ C with |α| = 1. (A.12)

This choice leads the column vectors of the Wronski determinant to be linearly
dependent such that and the right hand side of (A.10) will vanish. Since we
demand compatibility conditions, set α = 1. T is therefore symmetric.
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That T is strictly positive follows immediately by partial integration,

〈f, Tf〉 =

N∑
j=1

∫ lj

0

(
|∂τfj(t)|2 + |fj(t)|2

)
dsj(t) > 0

for any non-zero f ∈ D(T ). The injectivity of T follows immediately from its
positivity. The estimate can be seen by a calculation with respect to the norm

‖f‖m =

N∑
j=0

m∑
k=0

∫
∂Ωj

|∂kτ f(t)|2 dt, m ∈ N0,

and a subsequent estimate. Again, complex interpolation yields the result.
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