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Abstract

Diffusion is themost important transport mechanism in biological membranes and essential
for processes such as signalling or trafficking. Many different techniques have given insight into
this matter, most of which are based on fluorescence microscopy. Applying these to synaptic
vesicles or nanoscopicmembrane domains, which aremuch smaller than the diffraction-limited
resolution of a light microscope, is an ambitious task. In this thesis, two methods based on
fluorescence correlation spectroscopy (FCS) are presentedwhich circumvent the resolution limit
and enable diffusion coefficient estimations in vesicles less than 200 nm in diameter. At this
scale, the influence of membrane curvature on viscosity, diffusion speed, or lipid composition
becomes dominant.

The first approach, dynamicMIET, exploits the interaction energy transfer of a fluorescent
lipid in close proximity to a thin metal sheet. The resulting fluctuation in fluorescence intensity
strongly depends on their distance to each other, which can in turn be obtained by FCS, making
it possible to extract themembrane diffusion coefficient of a surface-tethered vesicle of arbitrary
size. A robust and highly specific binding assay has been developed, but the organic dyes used
for labelling were neither bright nor stable enough to obtain proper correlation curves. A de-
tailed analysis revealed drastically increased dark state transitions and photo-bleaching of the
lipid-conjugated dyes compared to their free counterparts.

The second technique is based on measuring the polarisation-resolved rotational diffusion
of a fluorescent lipid within a vesicle bilayer. By fixing the dye-to-membrane orientation, ro-
tational and translational diffusion components can be measured and extracted separately. A
3D diffusion model incorporating the vesicle size distribution fits the correlation curves very
well, but the obtained diffusion coefficients are biased towards higher values, especially for
larger liposomes. However, the fluorophore used in these experiments was found to have ex-
cellent photo-physical characteristics which could help to resolve the issues encountered in the
dynamicMIET measurements.

To handle the data evaluation formanyof the control experiments, I developedTrackNTrace,
an open-source framework for fluorescence microscopy image analysis. TNTwas originally de-
signed as a localisationmicroscopy and particle tracking tool, but is extendible through a simple
plugin system. It provides many state-of-the-art implementations of important algorithms and
is aimed at novices as well as experienced researchers. An extensive visual feedback mechan-
ism allows inspecting the program’s output at all times, facilitating parameter optimisation and
error recognition. These concepts were validated by comparing TrackNTrace against similar
programs. The software has been a great help in analysing many of the experiments presented
in this thesis and will hopefully turn out to be similarly beneficial for other scientists.
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Chapter 1

Introduction

The lipidmembrane is a sheet-like barrier that separates biological compartments from
their environment and organises into distinct functional domains according to its com-
position and surroundings. It envelopes virtually all living cells and viruses as well as
organelles within a cell such as the nucleus or mitochondria, and encapsulates fluids in
the form of vesicles which are then transported where needed [3–5].

Generally, it consists of a lipid bilayer and a variety of different proteins which fulfil
a large number of fundamental tasks. They serve as anchors for a cell’s actin andmicro-
tubule cytoskeleton [6] or form porous channels which regulate ion and water flux [7,
8]. Binding sites for antibodies, signalling proteins or other macromolecules form the
basis of inter- and intra-cellular communication, trafficking, and sensing – processes
which also involve (un-)binding and fusion of lipid vesicles [9–11]. For this delicate
network of interactions to work, both lipids and proteins have to be able to move and
react together in spite of the crowded environment they permeate. This is necessary
for the formation of fusion pores [12], the oligomerisation of monomeric subunits [13],
or for allowing structural changes of the cytoskeleton [14]. As directed transport is re-
served to a smaller number of interactions, the most important mechanism of motion
is diffusion. Therefore, characterising and quantifying lipid and protein diffusion in
membranes is essential for understanding the biological processes they are involved in.

In 1975, Saffman and Delbrück published a membrane diffusion model describing
proteins as large cylinders moving through a “sea of lipids” imagined as an infinitely
wide, homogeneous plane [15]. Despite its simplicity, the model has been highly suc-
cessful throughout the decades since its introduction and is still in wide use today [16].
However, there are some shortcomingswhich become relevant especiallywhenmoving
from in vitro experiments with artificial membranes to biological samples. Functions to
be maintained by real cell membranes differ greatly between their cytosolic and outer
halves. They are asymmetrical and highly heterogeneous [17, 18], with typically several
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1. Introduction

dozen kinds of lipids and up to a thousand proteins in a simple E.coli prokaryote cell
partitioned to the bilayer’s two leaflets [19]. In addition to long-range forces initiated
by binding partners on both sides of the membrane, these conditions make it difficult
or even impossible to define diffusion model parameters which accurately describe the
bilayer both locally and globally.

Another quality not accounted for in the Saffman-Delbrück-model (SD-model) is
curvature. Undulations present in any membrane are restricted to the micrometre
length scale and thus not relevant for the motion of a single lipid. In vesicles and
fusion pores with diameters on the order of 10 nm however, the local particle dens-
ity changes drastically between both leaflets or patches of lipids only a few molecules
in length, thus making curvature the dominant influence on diffusion speed [20–23].
In the brain, for example, neurotransmitter carrying vesicles detach from the synaptic
membrane of one neuron, traverse the synaptic cleft, and eventually fuse with the re-
ceiving neuron’s membrane. This fusion process is mediated by so-called SNARE pro-
teins responsible for membrane disruption, bending, and reorganisation [24, 25]. How
do proteins and lipids operate in such a highly curved environment? What influence
does such a high curvature have on theirmolecular interactions and distributionwithin
the membrane? While theoretical calculations and molecular dynamics simulations
have given some insight into this matter [26–28], experimental verification is scarce as
the size of such vesicles, usually about 30 nm, is well below the resolution of typical
microscopes which is fundamentally limited by diffraction to about 200 nm. Super-
resolution fluorescence microscopy techniques such as stochastic optical reconstruc-
tion microscopy (STORM [29]), photo-activated localisation microscopy (PALM [30]),
and stimulated emission-depletion (STED [31]) microscopy have pushed far beyond
this boundary, but are still constrained by their low temporal resolution [32]. Dynamic
processes such as diffusion, which occur at the sub-ms scale, require different tech-
niques. Nuclear magnetic resonance (NMR) spectroscopy is one such method and has
been employed to obtainmembrane diffusion coefficients fromvesicles in solution since
the early 1970s [33]. Unfortunately, the large sample concentrations or measurement
times required by an NMR experiment limit its applicability in scenarios where biolo-
gical samples can only be purified in small amounts, are difficult to stabilise, or require
unique labelling strategies.

In this thesis, I introduce two novelmethods based on fluorescence correlation spec-
troscopy (FCS) which are capable of measuring diffusion coefficients in small unilamel-
lar vesicles (SUV). With diameters between 50 nm and 200 nm, they are comparable in
size to synaptic vesicles and thus a perfect model system for highly curved bilayers.
The first approach exploits the interaction of a fluorescent dye with a thin metal sheet
leading to an energy transfer between the two. The resulting fluctuation in fluores-
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cence intensity strongly depends on their distance to each other, which can in turn be
obtained by FCS. This makes it possible to extract themembrane diffusion coefficient of
a metal-surface-tethered vesicle containing dye-tagged lipids. The second technique is
based on the realisation that the movement of a fluorescently labelled molecule in the
bilayer of a freely diffusing vesicle can be decomposed into vesicle rotation and bilayer
diffusion components. If the vesicle radius is known, which is simple to measure, the
rotational part can be subtracted. Although both procedures were initially designed to
study membrane motion, the great temporal resolution of FCS could be used to study
any kind of fast dynamic process.

Furthermore, I ampresenting TrackNTrace (TNT), an open-source program for fluo-
rescence imaging data analysis. Parts of TNTwere initiated as a side project to comple-
ment fluorescence imaging measurements necessary for control experiments. It was
eventually developed into a fully featured software suite together with my colleague
Simon Christoph Stein. TNT takes a different approach thanmost other applications in
this field in that it combines a simple but versatile user interface and visualisationmech-
anismwith a powerful and highly flexible plugin add-on system. The visualiser allows
quick inspections of preview results and greatly facilitates parameter adjustment that
way. Being programmed in MATLAB, which is especially popular in the life sciences,
TrackNTrace allows for easymodification of existing and development of new routines.
Although originally conceived as a single-molecule particle tracking (SPT) tool to study
membranediffusion, it is also equipped for localisationmicroscopy, defocused imaging,
drift correction, image filtering, and related procedures.

The following introductory chapter will give an overview of the membrane model
systems employed in this work and explore the physics of lipid diffusion which serve
as the foundation of this research.
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1. Introduction

1.1 Membrane structure & composition

The concept of biological membranes as a bilayer made up of lipids and proteins was
fully conceived for the first time by Singer and Nicolson [3] based on decades of re-
search started in the early 20th century. Although this so-called fluidmosaic model has
been gradually revised over time [4, 14, 34], it remains largely intact and continues to
be in use today. At the model’s core, the lipid bilayer is described as a two-dimensional
fluid which can exist in either a solid, gel-like phase or as a disordered, viscous liquid
made up of lipids. In this picture, proteins are regarded as associated or inserted units
which define the membrane’s function with respect to its environment and the degree
of compartmentalisation necessary to fulfil this role. The bilayer’s physical character-
istics – such as thickness, phase, viscosity, polarity, curvature, or bending rigidity – are
primarily defined by its lipid make-up.

Common to allmembranes is the ability to self-assemble in solution owing to the am-
phiphilic nature of all lipids. The hydrophilic headgroups are exposed to the aqueous
solvent, keeping the hydrophobic fatty acid residue backbone free from water, thus
minimising the entropic forces. The bilayer’s structure and composition are highly di-
verse: Lipids differ by number of residues, chain length, number and form (cis/trans)
of double bonds – the degree of unsaturation – headgroup type and charge, or polarity.
Fig. 1.1 gives a broad overview of the different classes.

Mammalian cellular membranes consist of approximately 65% glycerophosphol-
ipids and up to 10% sphingolipids, with sterols, mainly cholesterol, accounting for
the remaining percentage [35]. The distribution can vary by orders of magnitude even
within a single cell as an organelle such as the endoplasmic reticulum requires a very
different lipid composition than the nucleus, the mitochondria, or the Golgi apparatus.

The same principle also holds for the two leaflets of each bilayerwhich can be highly
asymmetric in terms of their lipid content. Cells need to recruit different proteins on
the cytoplasmic and the outer-leaflet side, requiring contrasting malleability, viscosity,
or adhesiveness. Curvature can be non-existent in the outer leaflet while the inner one
maintains a negative curvature [36], which is possible due to the vast size and shape
differences of lipids. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE)
molecules, the most abundant sub-classes of phospholipids in eukaryotes, for example,
are distinctly cylindrical and cone-shaped, respectively [37]. Despite this diversity, total
lipid concentration and membrane thickness are relatively homogeneous across differ-
ent cells and their compartments. With a hydrophobic tail length of roughly 1.5 nm to
2.0 nm and a headgroup area of 0.25 nm2 to 1.0 nm2, a 1 µm2 membrane patch typically
reaches a thickness of 4 nm to 5 nm and contains several million lipids [35, 38].
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1.1. Membrane structure & composition

PC PE PS Sphingolipid PtdIns Glycolipid Prenol

Polyketide

Sterol

0.5 nm

Figure 1.1: Categories of cellular membrane lipids (examples): Phosphatidylcholine
(POPC), Phosphatidylethanolamine (POPE), Phosphatidylserine (Brain-PS), Phos-
phosphingolipid (Sphingomyelin), Phosphatidylinositol (Liver-PI), Glycolipid (Glyco-
Cer(d18:1/22:0)), Prenol (Vitamin A), Polyketide (Doxycyclin), and Sterol (Choles-
terol). The suffix-giving functional group is highlighted in red. Adapted and extended
from [39].

Providing a unified view of a typical cell bilayer becomes even more complicated
when membrane proteins are included into the picture. Two classes of proteins are
defined based on their proximity to the membrane and their significance to its make-
up. The most important type is the integral membrane protein (IMP) which is perman-
ently bound to the bilayer. IMPs not only perform the most crucial tasks necessary
for the survival of the cell, they can also associate with certain types of lipids, form-
ing micro-domains in the process, and are essential to the preservation of the bilayer’s
structure. Examples of integral proteins include ion channels, signal receptors, adhe-
sion molecules, or proteases. Most but not all IMPs are transmembrane proteins con-
taining a globular main unit connected to one or several α-helices which span across
the whole height of the bilayer in a loop-like fashion.

5



1. Introduction

Extrinsic, or peripheral membrane proteins are either weakly linked to the lipid
bilayer or frequently attach and re-attach as is the casewith signallingproteins. They are
closely associated with the membrane but can nevertheless be removed from it without
disturbing the bilayer’s integrity or the stability of any other micro-domains such as
the ones formed by IMPs. Tethering and scaffolding, curvature inducement, as well as
enzyme regulation are typical functions executed by these proteins. As they are not per-
manently bound to one of the leaflets, they do not share a common structure, although
many possess either lipid binding sites or fatty acid residues for brief insertion [40].

Some authors define a third class, the membrane associated proteins (MAP), com-
posed of cytoskeletal anchors, glycoproteins, and similar molecules. Although import-
ant, and in some cases essential for cell regulation, MAPs usually couple to other mem-
brane proteins and do not directly interact with the membrane at all, therefore having
far less influence on the bilayer’s dynamics.

The complex network of interactions between lipids, proteins, cytoskeleton, and ex-
tracellular objects naturally restricts the mobility of all membrane constituents in many
different ways. Aside from direct coupling to the intra- and extracellular matrix, the
most significant modification of the fluid mosaic model in terms of diffusive confine-
ment is the discovery ofmicro- and nano-domains [14, 41]. A large portion of lipids and
transmembrane proteins are suspected to partition into clusters either bymutual attrac-
tion or confinement by membrane-associated anchors. Within these patches, fluidity is
lowered and molecules can become contained by oligomerised obstacles, temporarily
fenced off, or immobilised altogether. While the exact size, survival time, and origin
of these corral meshes and lipid rafts is still hotly debated, no other concept has been
advanced in the same way to explain all the different experimental evidence gathered
in the last decades [42].

Fig. 1.2 tries togive anoverviewof a typical cellularmembrane, depicting someof the
microscopic assemblywhichwaspreviously described. Apart from themicromolecular
composition of the membrane, the most important influence on structure and diffusiv-
ity is the temperature which determines the liquid phase. At low temperatures� 0◦C,
the bilayer assumes a solid, lamellar crystalline phase Lc which transforms into a highly
viscous gel phase Lβ upon heating. After passing a certain temperature threshold Tm ,
Lβ undergoes a melting transition into the liquid-crystalline – or liquid-disordered –
Lα,d phase, the most relevant one in biological systems. Here, the membrane behaves
like a viscous fluid (ηm ∼ 102 mPa · s) and lipids can freely diffuse within the bilayer.
Tm increases with chain length due to the larger van-der-Waals forces, and with the de-
gree of trans-unsaturation which causes denser chain packing. Depending on the lipid
mixture, intermediate phases such as a tilted or rippled Lβ gel can also occur. Choles-
terol is a key player in this regard as it inserts into the membrane in between the head-
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1.2. Artificial membranes

Surface Cholesterol
Protein channel

Peripheral protein
Integral protein

Cytoskeleton

α-helical proteinGlycolipidLipid raftGlycoprotein

protein

Figure 1.2: Model view of cellularmembranewithmajor intra- and extracellularmatrix
components.

groups, thereby decreasing the fluidity in most cases. The so-called liquid-ordered Lo

phase produced in this manner is immiscible with liquid-disordered bilayers, making
researchers suspecting cholesterol to be the main element in lipid rafts [43, 44].

In summary, the cellular membrane is a very complex object produced and main-
tained by a vast array of interconnected reactions and forces. Isolating a particular
property such as the local curvature and studying its relation to the network of dynam-
ics is a very challenging task. For this reason, model bilayer systems are employed in
this work instead.

1.2 Artificial membranes

In vitro membrane experiments are less cumbersome to set up, highly reproducible,
and allow direct manipulation of important control parameters such as lipid mixture,
viscosity, membrane phase, or curvature [45]. The most commonly employed model
system in this scenario is the supported lipid bilayer (SLB). SLBs are formed by spread-
ing lipid vesicles onto a glass substrate or slowly dragging the substrate through an
aqueous solution with a lipid monolayer on top. The planar membrane created this
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1. Introduction

way is stable, highly resistant to shear flow, and can be studied with invasive probing
experiments such as atomic forcemicroscopy. While not completely flat due to substrate
defects causing bilayer deformation, SLBs are immobile anddonot undulate, an import-
ant requirement for some fluorescence and scattering microscopy techniques sensitive
tomovements along the optical axis. The SLBs’ close proximity to the surface, while use-
ful in some scenarios, is also its biggest disadvantage. Membrane-substrate interactions
lead to a decrease in diffusion speed by a factor of∼ 10 compared to free-standing bilay-
ers. As the majority of membrane proteins span the whole bilayer’s height, their func-
tion can be significantly perturbed by surface coupling. Although passivation schemes
suchaspolymer cushioning canalleviate these issues to somedegree, caremust be taken
when interpreting and comparing results gained solely from SLB experiments [46].

Free-standing bilayers, also called black lipid membranes (BLM), could be regarded
as a counterpart to SLBs. BLMs are typically created by flushing solubilised lipids
through an aperture submerged in an appropriate buffer solution. The hydrophobic
solvent partitions to the edge of the polymer aperture, leaving behind a spontaneously
formed, single lipid bilayer. BLMs are much less stable than SLBs and susceptible to
undulation, but are not hindered by any interactions with their surroundings, with the
exception of the solvent annulus [47]. Both fluid channels above and below the bilayer
are independently accessible, enabling straightforward protein incorporation as well
as electroporation experiments or asymmetric labelling. Instead of using one single,
larger aperture, BLMs can also be created by spreading a lipid film on a functionalised
micropore array chip. The free-standing bilayers painted over the micropore cavities
are solvent-free, less prone to rupture, and can therefore be more easily manipulated.
Hundreds of pores can be imaged at the same time in a multiplexing fashion [48].

The third important asset of a membrane experimentalist’s toolbox are unilamellar
vesicles. Vesicles can be fabricated in sizes ranging from 101 nm (SUVs) to 102 µm (giant
unilamellar vesicle, GUV), either mimicking the various types of cellular liposomes or
the planar cell membrane itself. GUVs are created by electroformation; a lipid film is
deposited on an electrode surface, rehydrated, and topped off by another electrode be-
fore applying a sinusoidal current. The film swells, single lamellae are budding off and
eventually cleaved into solution. The finished GUVs can be collected and later tethered
to a surface to avoid drift during data acquisition [49]. GUVs provide inexpensive,
interaction-free planar membranes and do not require any organic solvents or elabor-
ate equipment as is the case with BLMs. Owing to their nearly spherical shape, GUV
bilayers can be probed in a polarisation-dependent manner and are particularly suited
for the study of lipidmixtures. Their stability is comparatively high, facilitating protein
incorporation and permitting experiments involving high amounts of mechanic stress,
e.g. optical tweezer studies. Their only significant drawback is the difficulty of exchan-
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1.2. Artificial membranes

ging the buffer without causing major osmotic stress, formation of pores, and collapse.
However, this property can also be exploited to fine-tune the inclusion of transmem-
brane proteins [50]. In this thesis, GUVs are utilised as solvent- and interaction-free
planar membranes for control measurements.

The main model system used here are SUVs. SUVs are synthesised by lipid extru-
sion or sonication, both ofwhich start from a rehydrated lipid film vigorously shaken to
form multilamellar vesicles. The lamellae are then sheared off by flushing the solution
through a polycarbonate membrane or disrupting them with ultrasound. Both pro-
cesses yield unilamellar vesicles with a narrow size distribution (σd ∼ 15 nm) around
a mean diameter of 30 nm to 200 nm [51]. This is also the size range where the largest
changes in diffusive speed due to increasing curvature are expected, making SUVs the
ideal study object for this thesis. Apart from serving as an in vitro imitation of cellu-
lar liposomes such as synaptic vesicles, SUVs are essential for membrane fusion assays
and mainly employed as a protective environment to be used for protein incorpora-
tion or drug delivery. Care must be taken when handling SUVs near a surface instead
of in solution as they quickly adsorb to and spread on both hydrophilic and hydro-
phobic substrates, creating an SLB in the process. If the surface is mostly passivated
and then functionalised at low density, vesicles can be anchored and used to study
single-molecule events, as can be seen in chapter 2.

1–2 nm

4 nm
5 nm

10–100 µm

SLB

SLM

tSLB
sBLM

BLM

tSUV GUV

20–200 nm

Figure 1.3: Common membrane model systems: Supported lipid bilayer (SLB), sup-
ported lipid monolayer (SLM), tethered/cushioned SLB (tSLB), black lipid mem-
brane (BLM), tethered/supported BLM (sBLM), small unilamellar vesicle (SUV), giant
unilamellar vesicle (GUV).

A higher degree of control over the physical characteristics of model membranes
and their reduced complexity with respect to cell membranes make it easier to under-
stand the dynamics within these sophisticated biological structures. This allows us to
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1. Introduction

describe, model, and measure the diffusive behaviour of fluorescent probes within a
lipid bilayer, as laid out in the next section.

1.3 Diffusion in lipid membranes

Diffusion typically describes the randommovement of amolecule or atomwithin a sur-
rounding fluid due to collisionswith themedium’s particles caused by thermalmotion.
Also known as Brownian motion named after its discoverer, diffusion can be described
by a probabilistic differential equation,

∂
∂t

p(r, t) = D∆ p(r, t) , (1.1)

with the Laplace operator ∆ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 and the diffusion coefficient D
which is given by the Einstein relation

D = µkBT . (1.2)

A special case of the fluctuation dissipation theorem, it relates the amplitude of the
random thermal impact force to the dissipative friction caused by hydrodynamic drag.
In solution, a spherical particle experiencing conventional Stokes drag with mobility
µ = 1/(6πηR) has a diffusion coefficient of

D = kBT
6πηR

, (1.3)

with dynamic viscosity η, temperature T, Boltzmann coefficient kB and particle radius
R [52]. The thermal motion observed in a lipid bilayer is more difficult to quantify: The
target particles are constrained to two-dimensional movement in a highly viscous sheet
while experiencing a traction force from the outside liquid which is usually muchmore
fluid. Saffman and Delbrück first predicted a logarithmic dependence on the particle
radius, giving

D = 1
4πηm h

(
log

(
ηm h
ηR

)
− γE

)
, (1.4)

where h is the bilayer height, ηm themembrane viscosity1, and γE the Euler-Mascheroni
constant [15]. The model is valid for smaller inclusions having 2Rη/(ηm h) = R/lSD � 1
which is the case for nanometre-sized lipids andproteins. The Saffman-Delbrück length
lSD is the characteristic length scale where the 2D-like hydrodynamical approximation
begins to break down.

1Some authors denote η′ = ηm h as the membrane viscosity, usually in units of cP · nm.
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1.3. Diffusion in lipid membranes

In the case of larger inclusions, and especially in highly curved membranes, lipid-
protein height mismatch, lipid chain stretching, and in-plane viscous stress can drastic-
ally alter the diffusion speed further. Experiments on tethered bilayer cylinders have
proven that curvature not only slows down the bulk diffusion but also leads to lipid
and protein sorting [22]. Depending on charge, size, or chain unsaturation, cone- and
cylinder-shaped lipids will associate into patches of different curvature as well as raft-
like nanodomains in the case of lipid mixtures [53]. For spherical bilayers, i.e. vesicles,
an analytical expression for the hydrodynamic drag in the limit of high curvature Rη/
(ηm h) = R/lc � 1 was given by Henle and Levine [54]:

D = kBT
4πηm h

(
log

(
R
a

)
− 11

12

)
(1.5)

Here, R and a are the radii of thevesicle and themembrane inclusion, respectively, and lc

is analogous to the previously mentioned SD-length. Notably, the diffusion still scales
logarithmically with the inclusion size but is now solely determined by the bilayer’s
fluidity; instead of contributing to the particle diffusion itself, an outside traction force
leads to a rotation of the vesicle as a whole. As it turns out, this rotation is energetic-
ally favourable compared to a deformation of the inclusion-associatedmembrane patch
within the highly strained bilayer. Cancelling out the rotation term in a co-rotating
frame of reference then leads to eq. (1.5).

Assuming a lower limit of 102 mPa · s for ηm in the Ld-phase, a buffer viscosity of
1 mPa · s, and a membrane height of 4 nm [55], the cutoff radius Rcut/lc ∼ 0.3 above
which the model begins to break down is Rcut ∼ 120 nm. Thus, curvature studies in
this thesis are limited to SUVs andLUVswithR ≤ 100 nm. In another simplification, the
membrane viscosity ηm is approximated as constant. In small vesicles, thiswill certainly
not be the case as the lipid-packing density is radius-dependent and differs between the
compressed inner and the more disordered outer monolayer. This behaviour has only
recently been explored by molecular dynamics simulations [56], however, and has not
been verified experimentally.

Evidently, curvature is a very important property and its influence is assumed to
be especially relevant in the case of vesicle budding, docking, and fusion, as has been
mentioned already. A thorough treatment basedon accurate andprecisemeasurements
is absolutely vital for the understanding of these physiological processes. However,
experimental evidence is scarce and almost exclusively drawn from nuclear magnetic
resonance studies [57] which are expensive, require rather high sample concentrations,
and suffer from poor temporal resolution and precision. For this reason, fluorescence
microscopy is presented as a viable alternative.
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1. Introduction

1.4 Measuring lipid membrane diffusion with
fluorescence microscopy

To observe the motion of membrane lipids or proteins and estimate their diffusion
speed, these molecules obviously have to be detected or visualised first. Fluorescence
microscopy is the foremost choice in this regard [58–60]. In fluorescence microscopy,
an object of interest is labelled with a chromophore which can be excited by the light
of a laser or arc lamp. After absorbing a photon of wavelength λabs, and spending a
certain time τF ∼ 100 ns in an excited state, another photon is emitted at a wavelength
λem > λabs. The energy loss resulting fromvibrational relaxations, the so-called Stokes-
shift, makes it possible to separate and filter excitation and emission light. Since the first
detection of single fluorescent molecules at room temperature almost 30 years ago [61],
technological advances in filter quality, camera sensitivity and speed, laser excitation,
chromophore design, and labelling efficiency have helped fluorescence microscopy to
an unprecedented level of contrast and specificity unmatched by any other imaging
technique. Three principal methods have established themselves over the years to de-
termine diffusion coefficients in biological samples: Fluorescence recovery after photo-
bleaching (FRAP, [62]), the aforementioned single particle tracking [63, 64], and fluor-
escence correlation spectroscopy.

The basic idea behind FRAP is very simple: Instead of imaging diffusing fluores-
cent probes directly, the time it takes for fluorophores to fill a previously depleted area
is measured. In practice, a second laser beam with a defined but smaller excitation
area and very high intensity is used to bleach all fluorophores in a region of known
size. The original laser beam excites the complete field of view throughout the experi-
ment and a camera records the remaining fluorophores diffusing into the bleached spot.
The fluorescence recovery rate can be fitted with an appropriate model to extract the
diffusion coefficient. FRAP works well in two-dimensional, densely labelled, homo-
geneous systems if the fluorescence recovery is diffusion-limited and the bleaching is
instantaneous. These pre-requisites are usually met for synthetic planar bilayers but
quickly break down when transitioning to slightly more complex systems. Axial mo-
tion in three-dimensional environments is difficult to account for, as is diffusion out of
the region of interest during bleaching. In the presence of several diffusing species or
at faster diffusion speeds, FRAP curve fitting becomes unreliable. While the bleaching
spot canbe reduceddown to thediffraction limit in theory, determining thefluorescence
recovery in such a case is much less accurate. Thus, FRAP is essentially an ensemble-
averaging technique without single-molecule sensitivity or high spatial resolution. As
both covalent fluorescent labelling itself and the high labelling density required in these
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1.4. Measuring lipid membrane diffusion with fluorescence microscopy

experiments negatively impact lipid diffusion [65], the method’s applicability to more
delicatemembrane structures isdebatable. A similar argument canalsobemadeagainst
the influence of the bleaching pulse on the sample. Combined with FRAP’s inability
to determine diffusion coefficients in sub-diffraction-sized objects like SUVs, it is clear
that such an approach is unsuitable for the type of study conducted in this work.
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bottom: Fluorescence recovery after photo-bleaching (FRAP), single particle tracking
(SPT), and fluorescence correlation spectroscopy (FCS).
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1. Introduction

Single particle tracking on the other hand is capable of both ensemble averaging
and single-molecule sensitivity based on the experimenter’s preferences. Here, single
fluorescently labelled molecules are recorded while diffusing through solution. The
resulting movie is analysed by localising the particles in all frames and subsequently
linking these positions in time to form trajectories. These trajectories represent the ran-
domwalks the probes undergo, where the size of the cleared area after a certain time t
– the mean-squared displacement (MSD) – is 2Dt · d, d being the dimensionality. The
MSD can be calculated for one single molecule or for all of them together, meaning that
SPT can reveal the averaged dynamics of a whole system or just one small part of it. As
the centre of a fluorophore’s image can be determined with much higher accuracy than
its width, a fact exploited to great success in single-molecule localisation microscopy,
SPT can achieve a very high spatial accuracy given sufficient signal quality. Instead of
imaging emitters in a fixed field of view, particles can also be actively tracked [66]which
allows following molecules for minutes and is especially beneficial in live-cell experi-
ments. The capacity of SPT to directly image changes in kinetics at the single-molecule
level without needing to model or cross-check them using different methods has led to
the discovery of non-Brownian motion and non-ergodicity [67] in complex biological
systems, specifically the cell membrane.

The main limitations of particle tracking are sample concentration and temporal
resolution. At densities & 1 µm−2, orders ofmagnitude belowphysiological conditions,
algorithms used to link particle positions in time begin to break down, making careful
labelling strategies essential or prohibiting the use of SPT altogether. Furthermore,
although SPT could in principle be used to resolvemolecularmotionwithin diffraction-
limited structures such as SUVs, this would necessitate integrating the signal for longer
durations, making the sub-millisecond time domain inaccessible. For the study of lipid
diffusion in planar membranes such as GUVs, however, particle tracking is an excellent
tool and is extensively used for control experiments in this thesis.

Whereas both FRAP and SPT are, in the most general sense, imaging-based tech-
niques, fluorescence correlation spectroscopy extracts information from the temporal
dynamics of a fluorescence signal. In FCS, a laser beam is focused on the sample, typic-
ally in solution, and the fluorescence intensity I(t) is recordedwith picosecond accuracy
using a single-photon counting detector. The signal is then correlated in time to meas-
ure how fast the fluorescence signal fluctuates which is related to the time-scale of the
underlying physical processes:

g(τ) = 〈I(t)I(t + τ)〉t (1.6)

The correlation function g denotes the probability of detecting photons at times t and
t+τ from the samemolecule. It contains information about any spatial and temporal dy-
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1.4. Measuring lipid membrane diffusion with fluorescence microscopy

namics encoded in the fluorescence intensity fluctuation. These include concentration
changes due to diffusion in and out of the focus, photo-physical transitions, chemical re-
actions, aggregation, or energy transfer events such as Förster resonance energy transfer
(FRET) [68–72]. While FCS can be performed on a single emitter, correlation curves are
typically obtained from an ensemble average over many signal sources. In the optimal
case, a diffraction-limited focus should contain only one molecule in a femtolitre-sized
volume which makes fluorescence correlation spectroscopy ideal for dealing with con-
centrations closer to physiological values. As a result of the tremendous temporal res-
olution, an FCS experiment can give access to a large range of parameters in the period
of a single measurement. Simultaneously determining the diffusion coefficient, folding
time, and binding or unbinding rates of a protein is a typical example of this, provided
the time-scales do not overlap completely. Additionally, the picosecond to nanosecond
regime informs about fluorescence lifetime, dipole orientation, or photon antibunch-
ing, among other properties. Fluorescence lifetime imaging (FLIM [73]) and rotational
anisotropy [74] are two prominent applications based on such measurements.

Although a versatile technique, FCS does have weaknesses. Most importantly, the
size and shape of the excitation and detection volumes have to be precisely known to
correctly model and quantify the relationship between intensity fluctuations and spa-
tial changes. Careful calibration is paramount to reduce the margin of error, but only
modified FCS methods such as two-focus FCS (2f-FCS [75]) or scanning FCS [76] pos-
sessing an in-built calibration standard can succeed in this regard. Similar to FRAP, the
diffraction-limited focal size imposes a lower limit on the achievable spatial resolution.
For a near-infrared dye and a high-numerical-aperture (NA) objective, the diffraction-
limited point spread function (PSF) size is roughly 300 nm. While methods such as
STED-FCS [77] mitigate this issue to some degree, resolving the diffusion dynamics
within a 30 nm liposome is still out of reach. In the following chapter, two new FCS
techniques are introduced which circumvent most of these problems and enable diffu-
sion measurements in sub-diffraction-sized vesicles.
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Chapter 2

Diffusion measurements in vesicles

Whenperformingfluorescence spectroscopy experiments on sub-diffraction-sized sam-
ples, there are two strategies to circumvent the resolution limit if a manipulation of the
PSF has already been ruled out. One is to have the fluorescence intensity fluctuation
depend on principles other than the location within the excitation volume, the other is
to use the magnificent temporal resolution of FCS. These same principles also apply to
the methods introduced in this thesis.

The first technique exploits the fluorescence lifetime change of a dye in close prox-
imity to a metal surface due to energy transfer between excited molecule and surface
plasmons. This so-called metal-induced energy transfer (MIET [78, 79]) leads to a de-
crease of the fluorescence lifetime which monotonically depends on the distance of the
fluorophore to the surface. Single-molecule studies by Karedla et al. [80] have shown
that a lifetime-to-distance conversion can be realised to nanometre accuracy. As it is not
possible to make such a “lifetime snapshot” of a lipid dye at the temporal resolution re-
quired for diffusionmeasurements, the fluorescence intensity can be used instead of the
lifetime, as both are related by a simple linear transform. The experiment is realized
by recording intensity traces from several surface-bound, labelled SUVs and calculating
their individual correlation functions according to (1.6). By averaging over all vesicles to
achieve sufficient statistics, the diffusion coefficient can be determined from the decay
curves which represent the axial fluorophore movement resulting from the spherical
surface diffusion. The complete particle dynamics are recovered in the process and the
technique is dubbed dynamic MIET, or dynaMIET for short.

The secondmethoduses rotational diffusion FCSmeasurements of SUVs in solution.
A fluorescent label attached to a lipid molecule in such a vesicle could itself rotate, co-
diffuse with its binding partner, and co-rotate with the entire vesicle lab-frame. The
first mechanism happens on a completely different time-scale while the latter two are
not discernible due to the diffraction limit. The situation changes if the fluorophore’s
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2. Diffusion measurements in vesicles

orientation with respect to the bilayer is fixed, i.e. by using a lipophilic dye such as
BODIPY. Though the vesicle rotation remains the same, the dye rotation is now directly
coupled to the lateral diffusion, all ofwhich takeplace in theµs-range. Bymeasuring the
total rotational diffusion with FCS and determining the vesicle radius, the translational
component can be extracted by simply subtracting the lab frame rotational component.

Before showing the outcome of both approaches, the chapter will begin by laying
out the theory behind them.
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2.1. Materials & Methods

2.1 Materials & Methods

2.1.1 Fluorescence correlation spectroscopy (FCS)
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Figure 2.1: Schematic of theMicrotime 200 setup. The two linearly polarised, pulsed di-
ode lasers (pulse length 50 ps, λex = 640 nm) are rotated 90◦ with respect to each other,
combined with a polarising beam splitter and coupled into a polarisation-maintaining
fibre. They are operated in pulsed-interleaved-excitation mode (PIE) at a repetition
rate of 40 MHz per pulse. After collimation, the beam can be narrowed with an iris
aperture to expand the focus in the sample plane and is then reflected by a dichroic
mirror (FITC/TRITC, Chroma Technology, USA) onto the objective which uses either wa-
ter (UPLSAPO 60× NA 1.2) or oil (UAPON 100× NA 1.49, both Olympus, Germany) as
an immersion medium. The latter is only used for surface measurements which also
depend on a piezo-electric x yz-scanning stage from Physik Instrumente GmbH, Germany.
The back-reflection of the coverslip surface is imagedonto aCCDcamera (FC-25C,Ganz,
USA) for alignment purposes.
The emission light is collected, directed through the dichroicmirror, and focused onto a
pinhole aperture 150 µm in diameter. After collimationwith a second lens, the emission
light is split either by a 50/50 non-polarising or a polarising beam splitter and collected
by two sets of one or two detectors (two τ-SPAD and two SPCM-AQR-13, PerkinElmer
Optoelectronics, Germany). In the latter case, the beam is split again with a 50/50 splitter.
Each SPAD is equipped with a 679/41 emission filter (BrightLine HC, AHF, Germany).
The signals are recorded with a HydraHarp 400 module connected to the main unit
which also controls the Sepia II module responsible for laser operation. All parts and
hardware are provided by PicoQuant GmbH, Germany if not mentioned otherwise.

19



2. Diffusion measurements in vesicles

The setup used in this thesis for all FCS experiments is built on top of a standard
confocal microscope attached to a commercial MicroTime 200 FCS system as pictured
in fig. 2.1. The excitation unit is composed of two collimated, linearly polarised, pulsed
diode lasers coupled into a polarisation-maintaining fibre. Their light is reflected by
a quad-band dichroic mirror onto the back-focal-plane of a water-immersion objective
with an NA of 1.2, creating an ideal, diffraction-limited focus in the sample plane with
a dimension of roughly (0.5 µm)2×2 µm. Collected by the same objective, the emission
light is transmitted through the dichroic and focused onto a pinhole which cuts off out-
of-plane light, greatly reducing background fluorescence. After collimation, the beam
is either focused onto a single-photon avalanche diode (SPAD), or directed through
multiple beam splitters to several SPADs operating in tandem.

The SPADs are connected to a photon-counting unit which records the arrival time
of every detected photon in time-tagged, time-resolved mode. Here, the SPADs are
synced to the laser pulses and both the time of excitation, and the time between an
incoming signal and thenext pulse is recordedwithpicosecondaccuracy. Before further
processing, these arrival times can be binned to create a time-correlated single photon
counting (TCSPC) histogram as detailed in fig. 2.2 fromwhich the fluorescence lifetime
τF can be extracted, among other variables.

 

 

Fit

Histogram

F
re

q
u

en
cy

[–
]

τ [ns]
0 5 10 15 20

102

103

104

105

106

107

Figure 2.2: Exemplary TCSPC histogram of Atto655 in PBS. The complete histogram
is a convolution of the exponential fluorescence decay curve, including background,
and the instrument response function (IRF) which has a FWHMof typically 200 ps. An
exponential tail fit excluding the IRF region (shaded) gives a fluorescence lifetime of
τF = 1.78(2) ns.

In conventional FCS, only one laser and SPADare employedwhich reduces the avail-
able correlation functions to one as stated in eq. (1.6). This auto-correlation function,

20
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however, always contains artefacts related to the detector hardware. The electronics
can falsely report an additional photon resulting from spurious charge following an
actual event and, in rare cases, the silicon chips themselves are excited by the incident
light which is later re-emitted in the form of fluorescence or phosphorescence. These
effects are known as after-pulsing and after-glow, respectively, and cause an artificial
correlation spike in the (sub-)µs-domain. While both can be mitigated through care-
ful data analysis and use of proper emission filters, electronic dead-times on the order
of 102..3 ns ultimately limit such an ordinary FCS setup to the study of slow-moving
molecules.

For this reason, modern FCS systems use at least two detectors, enabling the calcu-
lation of cross-correlations (CCF)

gαβ(τ) =
〈
Iα(t)Iβ(t + τ)

〉
t , (2.1)

where α and β denote the detector index. After-pulsing is an entirely independent,
uncorrelated noise source and thus vanishes from the CCF and the dead-time issue is
resolved completely.

In such a configuration, FCS can be used to investigate the diffusion of small fluoro-
phores (D ' 400 µm2 s−1) [75] or fast photo-physical processes like singlet-triplet inter-
system crossing (τT ' 100 µs) and cis-trans isomerisation (τC ' 102 ns) [81]. However,
this is only valid as long as the intensity fluctuation is solely dependent on proper-
ties inherent to the molecule of interest. In rotational diffusion or FRET experiments,
changes in fluorescence intensity are related to excitation polarisation or wavelength
which depend on the laser. It is therefore necessary to record traces for multiple laser
sources at the same time. The simplest way of doing this is pulsed interleaved excita-
tion (PIE). Here, all n laser sources are pulsed one after the other, reducing the original
repetition or cycling rate f0 to fPIE = f0/n. If f0 is chosen so that fPIE

−1 � τF, the
fluorescence intensity will have decayed almost completely before the next laser pulse
arrives. This makes it possible to associate each photon with its respective excitation
source via time-gating, as seen in fig. 2.3.

The full correlation function is then given as

gγδαβ(τ) =
〈
Iγα (t)Iδβ (t + τ)

〉
t

, (2.2)

denoting the laser pulses with γ and δ. With nl lasers and nd detectors, a total of (nl ×
nd)2 correlation functions can be calculated, 2nlnd of which are ACFs and therefore
not used. Extracting all relevant parameters M from the CCFs requires developing a
theoretical model for all fluorescence transitions of each molecular species present. For
a single molecule, g would represent the probability U(θ′) of detecting the molecule
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Figure 2.3: Pulsed interleaved excitation scheme. After calculating the TCSPC histo-
gram for a rotational diffusion experiment, time gates for each pulse (green and blue
shade) can be set automatically and every photon is attributed to a laser-detector pair
according to its time channel. In this instance, detectors ‖1 and ‖2 show a higher signal
for the second laser pulse, which has a parallel polarisation, as they lie in the parallel
detection path.

in a state θ′, multiplied by the probability G(M, θ′, θ) to transition to another state θ,
and finally the possibility of detecting it in said state. While FCS is essentially a single-
molecule technique, one usually averages over an ensemble of all N molecules within
the detection volume V , expressed by a volume integral over all possible states:

gγδαβ(τ,M) = g(∞) + c
∫

V
dθ

∫
V
dθ′ εδβU

δ
β (θ) · G(M, θ′, θ, τ) · εγαUγ

α (θ′) (2.3)

c is the concentration N/V and ε is a measure for the molecular brightness and detec-
tion efficiency. U(θi) is also known as the molecular detection function (MDF) and G
is typically Green’s function for the general Fokker-Planck equation in the case of diffu-
sion. The exact correlation models relevant to this work are laid out in the subsequent
sections.

2.1.2 Dynamic metal-induced energy transfer (dynaMIET)

A direct application of MIET to FCS for lipid diffusion measurements in vesicles is a
challenging task. In addition to translational and rotational diffusion of the vesicle, and
spherical diffusion of the fluorophore inside the bilayer, energy transfer in proximity to
the surface has to be taken into account. As the energy transfer depends both on the
fluorophore’s axial distance to the surface and its orientation, an analytical expression
of (2.3) is difficult to obtain without a few important approximations.
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First, the vesicles investigated here are roughly 30 nm to 100 nm in diameter. In this
range, the relative change in fluorescence lifetime due to MIET can be well expressed
by a linear function as seen in fig 2.4. As the vesicles are much smaller than the PSF
both laterally and axially and are anchored to the coverslip, the excitation intensity is
constant. All fluorescence fluctuations therefore depend solely on the distance between
fluorophore and surface. Second, while the orientation of the lipid anchor within the
bilayer is fixed, the fluorophore can rotate freely and does so on a time-scale much
faster than the diffusion. Hence, neither the detection efficiency nor theMIET efficiency
relate to the dipole orientation. Thus, the task of determining the CCF for dynaMIET in
surface-anchored SUVs is reduced to finding Green’s function for the axial component
of a spherically diffusing particle.
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Figure 2.4: DynaMIET scheme for SUVs and fluorescence lifetime calibration curve.
The silica spacer height can be adjusted such that the complete bilayer shell is still
within the linear regime of the fluorescence intensity curve. For the calibration curves,
a fluorophore with lifetime τF = 2 ns, quantum yield Φ = 0.7, and emission wavelength
λem = 670 nm is considered, the Au thickness is 10 nm.

Let us start from the advection-free three-dimensional diffusion equation:

∂
∂t

p(r, t) = D
(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
p(r, t) = D∆ p(r, t) , (2.4)

where p(r, t) is the probability density of finding the particle at position r at a time t and
D is the isotropic, time-independent diffusion coefficient. Transforming to spherical
coordinates (r, ϕ, θ) and keeping the vesicle radius r = R constant, one finds:[

1
sin θ

∂
∂θ

(
sin θ ∂

∂θ

)
+ 1

sin2 θ

∂2

∂ϕ2

]
p(ϕ, θ, t) = ∆S p(ϕ, θ, t) = R2

D
∂
∂t

p(ϕ, θ, t) (2.5)

23



2. Diffusion measurements in vesicles

Using a product ansatz p(ϕ, θ, t) = Φ(ϕ, θ)T(t), the solution can be easily expressed in
terms of the Laplace operator’s eigenfunctions in spherical coordinates, the spherical
harmonics Ym

l :

∆SYm
l (ϕ, θ) = −l(l + 1)Ym

l (ϕ, θ) with (2.6)

Ym
l (ϕ, θ) =

√
2l + 1

4π
(l − m)!
(l + m)!

Pm
l (cos θ) exp(imϕ)

Pm
l (x) =

(−1)m

2l l!
(1 − x2)m/2 dl+m

dx l+m
(x2 − 1)l

Pm
l are associated Legendre polynomials. In this new basis, p(ϕ, θ, t) is expressed as

p(ϕ, θ, t) =
∞∑

l=0

∑
|m |≤l

am
l (t)Ym

l (ϕ, θ) , (2.7)

and the time-dependent coefficients am
l (t) can be obtained by separation of variables,

am
l (t) = bm

l (t0) exp(−l(l + 1)qt) , (2.8)

so that

p(ϕ, θ, t) =
∞∑

l=0

∑
|m |≤l

bm
l (t0) exp(−l(l + 1)qt)Ym

l (ϕ, θ) , (2.9)

where the abbreviation q = DR−2 was used. At t0 = 0, the start of the particle’s random
walk, p should be δ-distributed, that is,

p(ϕ, θ, 0) = δ(ϕ − ϕ′, θ − θ′)

=
∞∑

l=0

∑
|m |≤l

Ym
l
∗(ϕ′, θ′)Ym

l (ϕ, θ) (2.10)

The second identity follows from the fact that spherical harmonics form a complete
orthonormal basis in Hilbert space. Inserting into eq. (2.9) and comparing coefficients
for t = 0, one finally finds

p(ϕ, θ, t) =
∞∑

l=0

∑
|m |≤l

exp(−l(l + 1)qt)Ym
l
∗(ϕ′, θ′)Ym

l (ϕ, θ) . (2.11)

With this result, the dynaMIET correlation curve can be calculated by inserting
eq. (2.11) into eq. (2.3) and integrating over all possible angles Ω = (ϕ, θ) and Ω′. As
excitation and detection intensity scale with the axial dimension only, the MDFs can be
expressed as εiR(1 + cos θi) up to a constant factor εi . We thus obtain:

g(τ) = R2
∫
dΩ ε2(1 + cos θ)

∫
dΩ′ε1(1 + cos θ′) ×

∞∑
l=0

∑
|m |≤l

Ym
l
∗(Ω′)Ym

l (Ω) exp(−l(l + 1)qτ) (2.12)
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By exploiting the fact that 1 + cos θ =
√

4π Y0
0 (Ω) +

√
4π/3 Y0

1 (Ω), a real function, the
integrals are easy to carry out due to the orthonormality criterion∫

dΩ Ym
l
∗Ym′

l′ = δmm′δll′ , (2.13)

which leads to

g(τ) = ε1ε2R2
∞∑

l=0

∑
|m |≤l
(4πδm0δl0 + 4π/3δm0δl1) exp(−l(l + 1)qτ) , (2.14)

and subsequently

g(τ) = 4πR2ε1ε2

(
1 + 1

3
exp(−1 · (1 + 1)qτ)

)
= 4πR2ε1ε2

(
1 + 1

3
exp

(
−2Dτ

R2

))
. (2.15)

This remarkably simple result tells us that the lipid diffusion in a spherical layer will
lead to a single exponential decay in the correlation curve which scales with the square
of the vesicle radius. Fig. 2.5 shows a theoretical plot for typical ranges of diffusion
constants and radii. With the radius measured in a different experiment, the diffusion
constant can be extracted directly as Dexp = Rexp

2/(2τfit).
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Figure 2.5: Theoretical dynaMIET correlation curves for spherical diffusion (normal-
ised) for different radii.
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2. Diffusion measurements in vesicles

2.1.3 Rotational diffusion

In a dynaMIET experiment, the vesicles can neither rotate nor diffuse, and the fast rota-
tion of the fluorophore can be disregarded compared to the slower lipid diffusion. For
a freely diffusing vesicle, all of these mechanics have to be taken into account both in
findingGreen’s function and in calculating theMDFsdue to the polarisation-dependent
detection.

D⊥

D‖

D⊥

a

b

c

Figure 2.6: Complete rotational diffusion of a fluorophore within a vesicle bilayer. The
fluorophore’s dipole axis is tangential to the vesicle surface and can rotate with rota-
tional diffusion coefficient D‖ . Perpendicular to this axis, the fluorophore’s motion is
a linear combination of translational diffusion of the fluorophore through the bilayer
and rotational diffusion of the vesicle as a whole denoted by D⊥.
If the vesicle is illuminated in the in axial direction with a plane wave, the electric field
vectors are oriented in the x y-plane (ab-plane in vesicle rest frame) parallel to the equat-
orial plane. Thus, for two opposite spots at the equator, the field vectors are exactly
perpendicular to the dipole axis and the fluorophore cannot be excited.

Consider a completely spherical, dye-tagged vesicle as depicted in fig 2.6 which is
excited by a linearly polarised laser. The fluorophore is inserted tangentially with its
dipole axis oriented parallel to the bilayer surface. Assuming complete orthogonality
between molecular rotation and dipole axis, three diffusion modes are present in the
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vesicle’s rest frame r = (a , b , c): A fast motion representing in-plane rotation of the
fluorophore perpendicular to the dipole axis, and two slower components which stem
from lipid diffusion and rotation of the whole vesicle. The latter two are indistinguish-
able and both add to a compound diffusion component around the axes a and b, re-
spectively. This symmetric-top rotor can be described analogous to eq. (2.4), following
earlier derivations for rotating proteins in solution [81]:

∂
∂t

p = −
(
D⊥ Ĵ2

a + D⊥ Ĵ2
b + D‖ Ĵ2

c
)

p , (2.16)

where a, b, and c denote the principal axes of rotation, Ĵi are their angular momentum
operators, p = p(ϕ, θ, ψ) is the probability density of finding the molecule rotated by
Euler’s anglesϕ, θ, andψwith respect to the lab frame, andD⊥ andD‖ are the rotational
diffusion coefficients1. It is assumed here that the electric field travels along the axial
direction c and is polarised along a and b. To simplify matters, one can express p in
terms of the lab frame coordinates, that is

p(ϕ, θ, ψ) = R̂ |l ,m〉 = Rz(ϕ)Ry(θ)Rz(ψ) |l ,m〉 . (2.17)

Ri are Cartesian rotation matrices using the z-y-z convention and |l ,m〉 are eigenfunc-
tions of the angular momentum operator obeying the following relations:

Ĵ2 |l ,m〉 = l(l + 1) |l ,m〉 (2.18)

Ĵz |l ,m〉 = m |l ,m〉 (2.19)

Inserting into eq. (2.16) yields

∂
∂t

R̂ |l ,m〉 = −R̂
[
D⊥(Ĵ2 − Ĵ2

z ) + D‖ Ĵ2
z
]
|l ,m〉 (2.20)

= −
[
D⊥(l(l + 1) − m2) + D‖m2] R̂ |l ,m〉 . (2.21)

The transformed eigenfunctions R̂ |l ,m〉 are Wigner rotation matrices defined by:

D l
km(ϕ, θ, ψ) = 〈l , k |R̂(ϕ, θ, ψ)|l ,m〉 = exp(ikϕ + imψ)d l

km(θ) with (2.22)

d l
km(θ) = 〈l , k |Ry(θ)|l ,m〉 =

√
(l + k)! (l − k)! (l + m)! (l − m)!

k!
×∑

n

(−1)l+k−n[cos(θ/2)]2n−m−k[sin(θ/2)]2l+m+k−2n

(l + m − n)! (l + k − n)! (n − m − k)!
(2.23)

They are closely associated with the spherical harmonics introduced in the last section,
forming an orthogonal basis represented by the relation∫π

0
dθ sin θ

∫2π

0
dϕ

∫2π

0
dψD l

km
∗(ϕ, θ, ψ)D l′

k′m′(ϕ, θ, ψ) = 8π2

2l + 1
δll′δkk′δmm′ . (2.24)

1Note that the signs of eqn. (2.16) and (2.18) are reversed w.r.t. the previous section in accordance
with the quantum mechanical definition of angular momentum used in this derivation.
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2. Diffusion measurements in vesicles

As shown in the previous section, applying 〈l , k | to eq. (2.21), solving for t, and com-
paring coefficients for t = 0, returns Green’s function. In this case, it represents the
probability that a molecule has rotated from its initial orientation Ω′ = (ϕ′, θ′, ψ′) to a
new orientation Ω during a time t, given as

G(Ω,Ω′, t) =
∞∑

l=0

∑
|m |,|k |≤l

2l + 1
8π2 exp

(
−λl

m t
)

D l
km(Ω)D l

km
∗(Ω′) , (2.25)

where λl
m = D⊥l(l + 1) + (D‖ − D⊥)m2.

To calculate the MDFs Ui , the dipole orientation is the most important quantity to
consider. In the vesicle lab frame, the symmetric-top rotor’s dipole axis v′ is always
parallel to the surface. After a rotation by Euler’s angles, the new orientation will be

v = Rz(ϕ)Ry(θ)Rz(ψ)v′ . (2.26)

The dipole is excited by two lasers which are linearly polarised along the x- and y-
direction, subsequently denoted ‖ and ⊥. If depolarisation effects of the high-NA ob-
jective are neglected, Uexc can be expressed as

U‖(ϕ, θ, ψ) = ε1vx
2, U⊥(ϕ, θ, ψ) = ε2vy

2 , (2.27)

assuming the vesicles are much smaller than the PSF volume and the vesicle transla-
tional diffusion is much slower than its rotation speed. In good approximation, emis-
sion and detection dipoles are co-linear, and the same definitions hold for the detection
MDFs, with ε1 and ε2 being proportionality constants.

Equations (2.25) and (2.27) are sufficient to calculate the full two-photonpolarisation-
resolved correlation curve gγδαβ for detection channels α, β and excitation pulses γ, δ for
the first and the second photon, respectively. For a single event, the probability of excit-
ing the molecule with pulse γ in orientation Ω′, letting it rotate into a new orientation
Ω after time t, and detecting a photon in channel α after the same time is given by

Qγ
α(Ω) = Uα(Ω)

∫∞
0
dt

∫
dΩ′ p(t)G(Ω,Ω′, t)Uγ(Ω′) . (2.28)

The integral over t ensures that all possible rotation times are accounted for, with the
fluorescencedecay curve p(t)used as aweighting function. The full correlation function
is represented by the product of two detection event probabilities and an intermittent
rotation, integrated over all possible orientations:

gγδαβ(τ) =
〈
Iγα (t)Iδβ (t + τ)

〉
t

(2.29)

=
∫
dΩ

∫
dΩ′Qδ

β(Ω)G(Ω,Ω′, τ)Qγ
α(Ω′) (2.30)
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The correlation curves are calculated analytically in Mathematica (Wolfram Research,
USA), given in explicit form in the appendix (see sec. A.2). Out of the (2 + 2)2 possible
curves, only six unique ones remain after symmetry considerations:

g‖‖‖‖ = g⊥⊥⊥⊥ (2.31)

g‖‖⊥‖ = g‖‖‖⊥ = g⊥⊥⊥‖ = g⊥⊥‖⊥ (2.32)

g⊥‖‖‖ = g‖⊥‖‖ = g‖⊥⊥⊥ = g⊥‖⊥⊥ (2.33)

g⊥‖⊥‖ = g‖⊥‖⊥ (2.34)

g‖‖⊥⊥ = g⊥⊥‖‖ (2.35)

g⊥‖‖⊥ = g‖⊥⊥‖ (2.36)

The translational vesicle diffusion happens on a slower time-scale and can be fitted and
subtracted from the correlation curves before fitting eq. (2.30). An example is given in
fig. 2.7.
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Figure 2.7: Theoretical polarisation-resolved FCS curves for vesicle rotational diffusion.
The chosen parameters are τF = 2.5 ns, D‖ = 1.4 · 106 s−1, and D⊥ = 1.8 · 104 s−1. g⊥⊥‖‖
and g⊥‖‖⊥ overlap almost completely in this case. The curves are background-corrected

and normalised w.r.t. g‖‖‖‖(τ = 0).
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2. Diffusion measurements in vesicles

2.1.4 Dynamic light scattering

In an actual experiment, the correlation curves represent an average over all molecules
traversing the detection volume. As both the translational lipid and the rotational ves-
icle diffusion, as well as the probability to detect a vesicle at all, scale with its diameter,
the fit model for the curves has to include the vesicle size distribution %(R). One simple
way to obtain %(R) is dynamic light scattering (DLS). Here, the constructive and de-
structive interference between a laser source focused into a solution of molecules and
the back-scattered light collected at some angle θ is measured, correlated in time, and
the hydrodynamic radius distribution %I(R) extracted from it. %I(R) scales with the
scattering intensity which depends on the scattering volume V and a form factor Fq

representing the particle geometry. The true number distribution %N(R) can be back-
calculated using the expression

%N(R) =
%I(R)��V(R)Fq(q , R)

��2 with q = 4πn
λ

sin θ , (2.37)

where q is the scattering factor, n is the vesicle index of refraction, and λ is the laser
wavelength [82]. The vesicles can be approximated as thin spherical shells of thickness
ζ having a volume of V = 4πζ(R − ζ/2)2 and a form factor of

Fq = 3
x3(1 − γ3)

sin x − sin γx − x cos x + γx cos γx (2.38)

with x = qR and γ = (R − ζ/2)/R [83].
The contribution of a vesicle to the correlation depends on the probability of con-

taining at least one fluorescent label which scales with the product of its surface area
and is given by %FCS(R) = R4%N(R)/

∫
R4%N(R)dR. Unsurprisingly, %FCS(R) ≈ %I(R) as

ζ � R.

2.1.5 Chemicals & reagents

1,2-dielaidoyl-sn-glycero-3-phosphocholine (18:1 ∆9-Trans-PC2), 1,2-dioleoyl-sn-glyce-
ro-3-phosphoethanolamine-N-(biotinyl) sodium salt (BPE), and a Mini-Extruder were
bought fromAvanti, USA. Chloroform,methanol, acetone, pyridine, and (3-glycidyloxy-
propyl) trimethoxysilane were obtained from Sigma Aldrich, Germany. Atto-Tec, Ger-
many provided the fluorescent labels Atto647N, Atto655, and their headgroup-labelled
1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DPPE) variants with the ex-
ception of KK114-DPPE from Abberior, Germany3. α,ω-bis-amino-polyethylene glycol

2The chemical is denoted as DEPC18 in this thesis, as DEPCusually refers to 1,2-dierucoyl-sn-glycero-
3-phosphocholine.

3Lipid-conjugated dyes are denoted by a l superscript.
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(PEG, 2 kDa), α-methoxy-ω-amino-PEG (MeO-PEG, 2 kDa), and α-biotinyl-ω-amino-
PEG (Biotin-PEG, 3 kDa) were purchased from Rapp Polymere, Germany. NeutrAvidin4
protein as well as 1,1’-Dioctadecyl-3,3,3’,3’-tetramethylindodicarbocyanine perchlorate
(DiD) were acquired from Thermo Scientific, USA. dSQ12S dye [84] was kindly provided
by Andrey S. Klymchenko and his group (Laboratoire de Biophotonique et Pharmaco-
logie, Université de Strasbourg, France).

Unless stated otherwise, all reactions were performed in phosphate buffered saline
(PBS, 137 mM NaCl, 2.7 mM KCl, 1.5 mM KH2PO4, and 8.1 mM Na2HPO4, chemicals
by Sigma Aldrich) at a pH of 7.4 using Milli-Q water (filter system by Millipore Corp.,
USA) as solvent. Coverslips of various sizes and thickness #1.5 were all purchased
from Menzel, Germany combined with immersion oils Immersol518F and ImmersolW
by Zeiss, Germany and adhesive strip incubation wells by Grace Bio-Labs, USA.

2.1.6 Vesicle sample preparation

DEPC18, BPE, and all lipid-conjugated organic dyes were dissolved in chloroform at
concentrations of 10 mg ml−1 for DEPC18 and 0.01 mg ml−1 for the lipid conjugates
while dSQ12S was kept in methanol at 15 µM. 60 µl DEPC18 and 0.2 µl dye conjugate
were mixed in a chloroform-cleaned glass vial. In case of surface tethered SUVs, 0.1 µl
of 0.1 mg ml−1 BPE was added beforehand. For GUVs, the BPE volume was increased
to 1 µl.

Small unilamellar vesicles were prepared by evaporating the solvent in vacuum for
30 min at 30◦C and rehydrating the dryed lipid film with 500 µl of PBS. After 5 min
of swelling and 1 min of vortexing, the vial was shaken for 1 h at 1400 rpm and 30◦C
in a thermomixer (Eppendorf, Germany). The multilamellar vesicles obtained this way
were then extruded through polycarbonate membranes of various pore sizes (30 nm
to 200 nm, Whatman, USA), shearing off the different layers until unilamellar vesicles
remained and the solution was clear. Extrusion was performed for 31 cycles, sufficient
to achieve amostly uniform size distributionwith an average diameter close to the pore
size. Using a custom-made motorised extruder, the cycle number could be increased
considerably, yielding a more symmetrical distribution which was stable for a longer
time. If not used directly, the vesicles were stored at 4◦C for up to four days.

In case of the rotational diffusion experiments, 49.5 µl PBSwith 0.5 µl dSQ12S stock
solution was vortexed briefly and immediately added to 50 µl unlabelled SUV suspen-
sion. The mixture was shaken at 1200 rpm and 30◦C for 1 h. Due to efficient mem-
brane insertion and negligible fluorescence of dSQ12S outside of membranes, the solu-
tion could be applied for further use without additional purification steps. The struc-

4NeutrAvidin is a trademark name, the chemical is referred to as neutravidin in the thesis.
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tural integrity of any vesicles could be examined by mixing the hydration and extru-
sion buffer with pyridine. Pyridine is a fluorophore with an emission wavelength of
λem,max = 542 nm, well below the near-infrared spectra of the membrane dyes. Lu-
men and membrane could therefore be imaged simultaneously in two separate colour
channels. Only intact vesicles showed a signal in both channels.

Giant unilamellar vesicles were produced in a custom-built electroformation cham-
ber pictured in fig. 2.8. After assembling the chamber, the lipid mixture was pipetted
onto the bottom metal plate and the solvent evaporated as detailed above. The sus-
pension was rehydrated in 500 µl of 280 mM sucrose (aq) and the container closed with
the upper electrode. Electroformation was performed for 3 h at 15 Hz AC and a peak-
to-peak voltage of 1.2 V. Afterwards, 50 µl supernatant was immediately discarded
and the remaining solution was drawn into a pipette while simultaneously rinsing the
electrode surface. The size of the thus prepared GUVs ranged from 10 µm to 50 µm.

Copper plate
Aluminium plate

Rubber spacer

Teflon ring

Figure 2.8: Electroformation chamber for GUV assembly. Two aluminium electrode
surfaces surrounded by a teflon ring are contacted by a copper plate and an aluminium
body. The square-wave AC current of Vpp = 1.2 V at 15 Hz is supplied by a HM 8030-2
function generator from Hameg, Germany.

2.1.7 Surface coating & vesicle immobilisation

For the dynaMIET experiment, vesicles had to be selectively bound to a glass surface
without interacting with it in any way. The latter was a very important requirement as
the spherical shape had to be kept intact for the FCS theory to apply. In the case of rota-
tional diffusion in solution, surface treatment was generally less important. However,
due to the length of the measurements, it was beneficial to use passivated coverslips
because the vesicles could otherwise accumulate on the surface, depleting the solution
until their concentration was too low. A popular strategy for tetheringmacromolecules
to the coverslip is biotinylation. Here, a biotin molecule is attached to the particle of
choice and the surface is coated with streptavidin. Streptavidin forms a very strong
bond with biotin and possesses four binding pockets in its wild-type form. This makes
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it possible to chain-link them in a biotin-streptavidin-biotin (BSB) interaction, allow-
ing for a high degree of flexibility. Passivation against vesicles, on the other hand, is
muchmoredifficult owing to their amphiphilic nature. Treating the surfacewith bovine
serum albumin [85], poly-L-lysine [86], or similar compounds can considerably reduce
non-specific binding without compromising the BSB scheme. In the final approach,
two different PEGylation methods developed in the labs of Ha [87] and Piehler [88]
were combined. Here, the coverslip was coated with a monolayer of polyethylene gly-
cols containing a methoxy group at one end. This alkoxy group is neither hydrophilic
enough to bind the polar lipid headgroups, nor does it interact with their alkyl chains.
A small amount of Biotin-PEG could be added to bind vesicles in a specific way.

Gold-coated coverslipswere assembled throughvapourdepositionof titanium, gold
and silica onto a standard #1.5-thickness coverslip using a Univex 350 (Leybold, USA).
Normal and coated coverslips were cleaned and the surface hydrophilised in a plasma
cleaner (PDC-001, Harrick Plasma, USA) for 20 and 4 min, respectively. The surfaces
were washed in Milli-Q water and dried in a N2 stream before being incubated in pairs
with a drop of silane at 80◦C for 60 min. The silanised slides were washed in acetone
and blown dry again. The powderised PEG was molten at 80◦C and a 25 µl drop was
applied to each surface pair. After another incubation period of 4 h at 80◦C, they were
cleaned thoroughly in water using a sonication bath and stored at 4◦C for up to four
weeks. Tethering coverslips were prepared through a 90/10 w/w% mix of MeO- and
Biotin-PEG instead of pure MeO-PEG and stored for two weeks.

Biotin-PEG
Methoxy-PEG

Silane

Neutravidin

Label

Biotinylated lipid

Figure 2.9: PEGylated surfaces employed in vesicle FCS experiments.

For control experiments, double-sided adhesive strip wells were attached to the
surfaces to contain the sample volume. The biotinylated coverslips were incubated
in 0.1 mg ml−1 neutravidin diluted in PBS for 1 h, rinsed, and then filled with 120 µl
GUV solution. For the dynaMIET experiments, a flow chamber was built instead using
double-sided tape. After incubation with neutravidin and thorough rinsing, SUVs di-
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luted by a factor of 1 to 100 were flushed in and left to incubate for 30 min. Finally, the
chamber was rinsed again and the experiment started. Rotational diffusion FCS was
performed with passivated slides using the same strip wells mentioned above without
adding neutravidin. The final surface configurations are pictured in fig. 2.9.

The advantage of using molten-PEGylated slides is twofold: Exchanging PEGs or
silanes allows for a large variety of functional surface groups without having to revise
the whole protocol. Furthermore, the application of highly concentrated molten PEG
is straightforward, reliable in its complete coverage, and highly reproducible. The sur-
faces are smooth, stable, and chemically inert except for the functional groups. The
protocol is thus very flexible and the coverslips created this way are ideal for dealing
with aggressive reagents.

2.1.8 Experimental data acquisition & evaluation

Diffusion coefficients of lipid dyes in planar lipid bilayers were determined by imaging
GUVs. Fluorescence imaging of GUVs immobilised on the surface was performed on
a standard IX71 wide-field fluorescence microscope (Olympus, Germany) employing a
PhoxX 488 or PhoxX 647 laser (Omicron-Laserage, Germany), an iXon Ultra 897 (Andor,
Ireland), and a UPLSAPO 60× NA 1.2 objective (total magnification M = 96). The mi-
croscope was focused onto the top of a GUV and 5000 frames were recorded at 200 Hz
in fastest-frame mode at an EM-gain of 100 and a laser power of 100 mW. This was
repeated for at least 10 different GUVs. Movies of diffusing lipids were analysed by
single particle tracking and diffusion coefficients extracted using the TrackNTrace soft-
ware package as detailed in chap. 3. Photo-physical characteristics of conjugate-free
and lipid-bound dyes were recorded on the same setup in the same fashion. Single-
molecule intensity traces were extracted with the particle tracking subroutine of Track-
NTrace. From these trajectories, distributions of emission intensities, fluorescence on-
and off-rates, and photo-bleaching lifetimes could be calculated directly.

DynaMIET measurements were carried out on the MicroTime 200 using the built-
in SymphoTime software. The excitation laser was pulsed at 40 MHz with an average
energy output of 1 µW and a surface scan of a 20 µm×20 µm areawas recorded. Bright,
circular spots likely to be vesicles andnot agglomeratedmaterialweremarkedmanually
after which the software would perform an automated point scan for 20 s on each spot.
This process was continued for several hundred spots. Cross-correlations of all spots
were calculated, averaged, and fittedwith the use of in-house built software as outlined
before [81]. MIET calibration curves were calculated with an analysis suite developed
by Daja Ruhlandt and published on Jörg Enderlein’s website [89].

Prior to use, SUVs intended for rotational diffusion experiments FCS were charac-
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terised by dynamic light scattering to determine the vesicle size distribution. These
experiments were made possible with the kind help of Dr. Christian Roßner, Dr. Den-
nis Hübner and Wentao Peng5 and were performed on a Zetasizer Nano S (Malvern
Instruments, UK). Solution measurements were performed on the MicroTime 200 with
two lasers and four detectors as explained above, the power was adjusted to 3 µW per
laser per pulse. Photon arrival times were recorded for at least 3 h and correlated with
the same software used in the dynaMIET experiments. The curves were fitted in MAT-
LAB by a trust-region reflective non-linear least-squares algorithm using the model
parameters D⊥ and D‖ , and the vesicle size distribution %(R):

gfit(τ) =
∫

gtheo(τ,D⊥,D‖)%(R)dR (2.39)

D⊥ = Dtrans

R2 + Drot = Dtrans

R2 + kBT
8πηR3 (2.40)

η is the solvent’s dynamic viscosity which is assumed to be the same as that of water.
Instead of integrating over the correlation curve, one can also integrate over the diffu-
sion coefficient itself, as done by Yoshii et al. [57]. Both methods are employed in this
work.

5Macromolecular Chemistry Group, Fakultät für Chemie, Universität Göttingen.

35



2. Diffusion measurements in vesicles

2.2 Results

2.2.1 Preliminary experiments

Free diffusion coefficient

To better quantify the diffusive speed of fluorescent dyes in curvedmembranes of differ-
ent compositions or lipid phases, one compares against a known calibration standard,
in this case GUVs. Due to their size of > 10 µm, GUVs are sufficiently planar at the
molecular level and free of any surface interaction apart from the contact site. One dif-
ficulty in using them for diffusionmeasurements, however, are membrane undulations
resulting from the solvent convection or osmotic pressure differences. In an FCS experi-
ment, they can drastically alter the decay of the correlation curve and thus the estimated
diffusion coefficient.
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Figure 2.10: Singleparticle tracking inDEPC18 GUVs fordSQ12Sdye. Thedisplacement
histograms represent over 22000 trajectories from 10 different movies. The colour shift
from red to purple indicates an increase in displacement time. A linear fit of the MSD
curve returns DMSD = 4.58(3) µm2 s−1.
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dSQ12S DiD Atto655l

D [µm2 s−1] 4.58(3) 5.3(3) 6.0(5)

Table 2.1: Diffusion coefficients of lipid dyes in GUVs.

For this reason, particle tracking is employed in its stead. Fig. 2.10 displays the result
of one such experiment and tab. 2.1 shows the diffusion coefficients for the dSQ12S dye
used for rotational FCS, the similar DiD, and the organic dye conjugate Atto655l . The
diffusion coefficients are slightly lower than would be expected for a poly-unsaturated
lipid like DEPC18 but still agreewell with literature values for similar lipids such as 22:1
DEPCorSLPC, asmeasuredbyFCSandNMR[90, 91]. DEPC18 has amuchhigherphase
transition temperature of Tc = 12◦C than other PC fatty acids with Tc values usually
below 0◦C owing to its mono-trans-unsaturation as depicted in fig. 2.11. This translates
into a comparatively high membrane viscosity at room temperature and thus slower
diffusion. DiD and Atto655l show very similar results in accordance with previous
experiments [92, 93]. Thenotably lowerdiffusion coefficient of dSQ12S canbe attributed
to its structure (fig. 2.11).

Figure 2.11: Chemical structures of dSQ12S (adapted from [84]) and DEPC18.
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The ammonium sulphate group, a zwitterionicmoiety, greatly increases the binding
affinity of the dye. It is related to hydrophobic mismatch between lipid backbone and
dye andanatural characteristic of slowerdiffusingmembrane compounds [94]. Mixture
effects can be ruled out as the dye-to-lipid ratio was kept at 1 : 10000 or lower so as to
avoid the formation of any lipid domains.

Surface preparation

As noted in the methods section, the surfaces employed in all vesicle measurements
have to fulfil two roles: Prevent non-specific binding of vesicles to the surface, and
tether functionalised lipids in such a way so as not to disturb the spherical shape. In a
control assay, a dual-channel flow chamber was constructed from a single biotin-MeO-
PEGylised coverslip. Both chambers were filled with pyridine- and Atto655l-labelled
SUVs and incubated with neutravidin but the control group SUVs lacked biotinylated
lipid. After letting the liposomes settle on the surface, the chambers were flushed again
with PBS to get rid of any pyridine in solution. Fig. 2.12 shows dual-colour scan images
of both channels.
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Lumen Membrane Merge

Figure 2.12: Dual-colour surface control images of multilabelled SUVs. The intens-
ity was normalised with respect to each individual image for maximum contrast. The
actual intensity in the control group is about ten times lower when compared to the
biotinylated vesicles. Scale bar is 5 µm.

Adding biotinylated lipid to the SUVs leads to an increase in surface binding by
a factor of 10. It is evident that the biotin-neutravidin-biotin scheme does not dam-
age the SUVs as most fluorescent membrane patches correspond to a pyridine signal,
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indicating intact vesicles. Furthermore, non-specific binding to the membrane is rare
despite neutravidin being slightly hydrophilic in part due to several exposed lysine
residues. In most cases, it seems to be limited to lipid aggregates and not vesicles. In
a dynaMIET experiment, such intensity traces can be easily identified from their low
amplitude and correlation, and discarded. Without the protein, non-specific binding is
practically eliminated (data not shown).

The last remaining issue is shape distortion of the liposome. If a vesicle is bound to
more than one neutravidin molecule, biotinylated lipids can agglomerate at the contact
site. This leads to increased tethering which causes vesicles to get squashed [95]. While
both surface and SUVmembrane are highly biotinylated, the neutravidin concentration
is adjusted to an average of 10 µm−2 which should be sufficiently low to prevent such
issues.

2.2.2 Dynamic MIET in small unilamellar vesicles

Determining the diffusion coefficient of a membrane compound in nanometre-sized
vesicles through dynamic MIET is a challenging task, though not obviously so. Con-
ceptually, dynaMIET is relatively simple to set up: Any laboratory equipped with a
conventional FCS setup is capable of performing such an experiment. The main dif-
ficulties lie in preparing the metal-coated coverslip, preserving the sample during the
measurement, and collecting enoughphotons from the vesicles to calculate a correlation
curve with sufficient precision.

Metal-coating ofmicroscopy slides is performed in the faculty’s clean-room facilities
using a vacuum evaporationmachine. The thin gold layer of 10 nm to 15 nm is wedged
between 2 nm of titanium which increases adhesion. A top layer of SiO2 protects the
metals from corrosion and enables the use of silanes during surface treatment. The
silica thickness is adjusted such that the maximum distance between fluorophore and
metal layer is well within the linear MIET regime.

The second issue is easily tractable by dynaMIET. For every experiment, the vesicles’
radii have to be known to extract the diffusion coefficient from the correlation curve as
stated in eq. (2.15). They can either be measured by FCS during sample preparation
on the same setup or independently by SPT. I am choosing the latter due to the small
measurement time of several seconds compared to 30 min for a typical FCS study. The
MIET correlation curves are then compiled by scanning the surface for single-vesicle
patterns and performing a point scan on each signal source until the fluorophore is
photo-bleached. The correlation function is calculated for each vesicle separately and
then averaged. Additionally, all photons can also be collected into a single TCSPC curve
from which an average lifetime can be determined. This lifetime can then be back-
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calculated to an average height of the fluorophores above the surface if their dipole
orientations are known. Since the dye can rotate freely, the orientation is assumed to be
random. The lifetime-to-height calibration curve is therefore simply the average of the
curves of a completely vertically or completely horizontally polarised dipole. Fig. 2.13
illustrates the outcome of such a measurement gathered from 212 intensity traces.
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Figure 2.13: Vesicle height on Biotin-MeO-PEG surface determined by MIET. An expo-
nential tail-fit of the TCSPC histogram returns a lifetime of τF = 2.04(1) ns. Assuming
a free-space lifetime of τF,0 = 2.9 ns, and a quantum yield of ν = 0.46, this translates to
a height of 43.7(1) nm. The MIET calibration curve is given here for a glass coverslip
coated in 2/12/2/25 nm Ti/Au/Ti/SiO2.

The determined height of hMIET = 43.7(1) nm is slightly higher than the hydro-
dynamic radius rH = 34(1) nm measured by SPT. However, the more distant a fluoro-
phore is to the metal layer, the higher its contribution to the average TCSPC curve will
be. The two values are thus in very good agreement, confirming that the vesicles indeed
retain their spherical shape when being tethered.

The total cross-correlation for the same experiment is shown in fig. 2.14. It is im-
mediately obvious that the average photon count per vesicle is not nearly sufficient to
obtain a quantifiable result. In the µs- to ms-time region of lipid diffusion, the cross-
correlation is entirely noise-dominated. Although an exponential decay function can
be fitted to the data, the converted diffusion coefficient of Dfit = 0.13(1) µm2 s−1 is a
factor of ≈ 100 smaller than expected. Most likely, it represents axial movement of the
tethered vesicles or results from intensity fluctuations not caused by diffusion. Fig. 2.15
depicts several typical vesicle timetraces from the same experiment.
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Figure 2.14: DynaMIET cross-correlation curves of Atto655l-labelled vesicles. The ex-
ponential decay time τfit = 4.8(1) ms would suggest a diffusion coefficient of Dfit =
0.13(1) µm2 s−1.
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Figure 2.15: Timetraces of Atto655l-labelled vesicles from dynaMIET measurement.

In addition to the low fluorescence emission rate of Φ ≤ 103 s−1, the molecules
also seem to bleach unusually fast in an abnormal, linear to exponential fashion. As
the vesicles are underlabelled, most traces should show step-wise bleaching with one
step. Increasing the excitation intensity only damages the fluorophores faster whereas
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2. Diffusion measurements in vesicles

doing the opposite to extend themeasurement time even further is not feasible. Another
behaviour observed in a larger number of traces is fluorescence intensity decay followed
by intermittent, spurious bursts as seen in fig. 2.15c. This “blinking” from and into a
dark state is common in fluorophores where singlet-triplet inter-system crossing or the
formation of a radical ion state are possible. However, these processes usually occur on
µs- to ms-time-scales.

To get a better understanding of the underlying photo-physics, bleaching and off-
state-switching behaviours of several lipid-conjugated dyes in different environments
were examined further. This is achieved by imaging surface-bound fluorophores at
low concentration with a wide-field microscope and tracking them. From these traject-
ories, fluorescence amplitudes, number of emitters and off-state lengths can be histo-
grammed. One can then fit bleaching times τb and off-state durations τdark to these
distributions, and calculate mean intensity traces.
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Figure 2.16: Bleaching and off-state distributions of Atto647Nl in PBS. The photo-
bleaching curve is fitted with a bi-exponential decay function, returning τb1 = 0.58 s
and τb2 = 3.04 s. The off-state distribution follows a mono-exponential decay with
τdark = 0.10 s.

It has been known for a long time that both bleaching and blinking of most organic
dyes can be well described by an exponential decay function [60]. Fig. 2.16 shows that
this still holds for the lipid-conjugated variants, in this case Atto647Nl . The photo-
bleaching distribution of all analysed dyes also show a second, short component which
accounts for 30% of all emitters in some cases. Neither surface impurities nor buffer
could have been responsible as they did not show any fluorescence in separate meas-

42



2.2. Results

urements. A dependence on surface coating could not be determined, either. Tab. 2.2
gives an overview of all dyes with the photo-bleaching rate averaged over both species.

Dye Sample 〈τb〉 τdark
[s] [s]

Atto655l PBS 3.25(8) 0.17(2)
SUV 0.80(3) 0.47(3)

KK114l PBS 4.30(9) 0.33(3)
SUV 1.74(3) 0.22(1)

Atto647Nl PBS 2.05(4) 0.16(2)
SUV 0.12(9) 0.56(1)

Table 2.2: Average bleaching times 〈τb〉 and dark-state durations τdark of lipid-
conjugated dyes. All bleaching curves show a bi-exponential decay, the number given
here is the weighted average of both times.

All photo-bleaching survival times are well below 10 s regardless of fluorophore.
This is already worrying considering that the same dyes in non-conjugated form can
typically survive up to severalminutes at higher excitation intensities [80]. Remarkably,
the dyes consistently perform even worse when incorporated into SUVs. Both photo-
damage and blinking increase substantially with the exception of KK114l which is only
moderately affected upon bilayer addition. While a rise in bleaching rate simply leads
to longer measurement times, the consequence of longer blinking is less obvious.
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Figure 2.17: Off-state saturation of lipid-conjugated dyes.

The advantage of analysing the photo-physics by particle tracking is the possibility
of distinguishing betweendyes coming back to the on-state or just appearing for the first
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2. Diffusion measurements in vesicles

time. By setting each trajectory’s start to the beginning of the experiment and compiling
a list of all emitters’ states, it is possible to calculate the off-state saturation Noff/Ntot:

ÛNoff = −konNoff + koffNon where ÛNon + ÛNoff = 0 (2.41)

−→ Noff
Ntot

= koff
kon + koff

·
[
1 − exp(−t(kon + koff))

]
(2.42)

The total number of molecules Ntot = Noff + Non is determined for each frame individu-
ally and bleaching is not considered. These curves allow for a more balanced compar-
ison of the off-state population dynamics of the dyes. The total switching rate is similar
across all dyes and increases for SUVs as could be expected from the dark state dura-
tions. In all cases, the steady state equilibrium t →∞ is reached in less than 10 s. The
amplitudes differ greatly, starting at 30% with Atto647Nl and approaching a dark-state
saturation of up to 80% in Atto655l-labelled vesicles. KK114l is again less influenced by
a change in environment.
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Figure 2.18: Intensity distributions of lipid-conjugated dyes.

These findings are consistent with the fact that the fluorescence intensity of the lipid
dyes drops sharply at the onset of a dynaMIET experiment. They would also explain
how the fluorophores only rarely recover after a few seconds as theywould either spend
most of the time in the dark state or simply bleach altogether. Normalising all intens-
ity traces and averaging over them shows a brief drop in fluorescence at the beginning

44



2.2. Results

which quickly stabilises (see fig. A.1) in accordance with the saturation curves. The
problems caused by increased blinking in liposomes are mirrored by the intensity dis-
tributions, as shown in fig. 2.18. In a dynaMIET experiment, the metal layer absorbs
an additional 32% of the signal, meaning these curves already represent a best-case
scenario.

In summary, organic fluorophores employed with great success in previous single-
molecule MIET studies can perform poorly when attached to a phospholipid. Photo-
stability is drastically reducedwhile dark state switching becomesmore prevalent at the
same time. The situation deteriorates further when these lipid dyes are inserted into
a bilayer. Due to the necessity of performing time-consuming surface pre-scans and
single-moleculepoint scans togetherwith thesephoto-physical issues, the signal collect-
ible in one measurement is simply too low. All dynaMIET experiments were conceived
under the assumption that only the most bright, stable dyes commonly used in local-
isation microscopy would provide an adequate signal-to-noise ratio. Membrane dyes
frequently used in biology such as BODIPY-derived fluorophores, Texas Red, plasma
membrane stains like CellMask Deep Red, or DiI and its variants were ruled out from
the start due to low extinction coefficients, high bleaching rates, or presence of, some-
times several, triplet states. With no alternatives to turn to at the time of the experi-
ments, I shifted to rotational diffusion as an alternative tomeasuremembrane diffusion
in liposomes.

2.2.3 Rotational diffusion of small unilamellar vesicles

Vesicle size distributions

Analysis of the rotational diffusion FCS curves requires precise knowledge of the vesicle
diameter. In contrast to a typical single-molecule experiment, the vesicle size follows
a unimodal distribution which has to be taken into account during data fitting accord-
ing to eq. (2.40). The vesicle size distribution is determined in tandem with the FCS
experiment via dynamic light scattering. Fig. 2.19 shows the results together with the
averaged radii 〈R〉 =

∫
R%(R)dR.

In most cases, the average diameters are larger than the extrusion membrane pore
size 2Rp . Both the membrane and the vesicle itself are relatively flexible, meaning the
SUVs can squeeze through the membrane pores even if their size should prevent them
from doing so, given sufficient pressure. Another explanation for the vesicle sizes is
spontaneous fusion. As DEPC18 is a closely packed planar lipid, its equilibrium vesicle
diameter is larger thanmost pore sizes. All samples were stored below the phase trans-
ition temperature, however, which prevents the vesicles from fusing together during
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storage. The size difference between freshly prepared and stock SUVs was negligible,
meaning size fluctuations during data acquisition can be safely ruled out.
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Figure 2.19: Vesicle size distributions for different extrusion pore diameters Rp . Solid
lines indicate number distributions %N(R), dashed lines indicate intensity distributions
%I(R). The circles denote the average radii 〈R〉 =

∫
R%(R)dR.

In addition to the DLSmeasurements, the hydrodynamic radius can also be determ-
ined by 2f-FCS. While 2f-FCS only provides an average size instead of a distribution, it
does inform about fluorescence labelling efficiency: When converting the number dis-
tribution %N to the intensity distribution %I , it is generally assumed that the labelling
scales with the vesicle surface area. For a highly curved bilayer, however, the outer
monolayer is more fragmented and vulnerable to dye insertion. The vesicle diameter
observed in an FCS experiment could therefore be lower than 〈R〉I depending on the
average size. The outcome of one such 2f-FCS measurement is depicted in fig. 2.20.

All average radii and their standard deviations are listed in tab. 2.3. As suspected,
the 2f-FCS results lie somewhere between both distribution averages, indicating that the
fluorophore’s affinity for curved membranes is indeed higher. The fit error, which was
obtained by bootstrapping in this case, reflects the overall brightness distribution and
is generally higher for larger vesicles. A “blank” sample containing only fluorescent
dye displayed only negligible intensity which was completely uncorrelated. It can thus
be safely assumed that the fluorophore integrates quickly into the membrane and stays
non-fluorescent in solution as suggested [84], with the exception of dye aggregates.
These are very rare, however, and can easily be eliminated from the analysis by filtering
out the respective photon bunches. For clarity, in addition to an integration over both
distributions, the rotational analysis is also carried out with the fixed RFCS values.
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Figure 2.20: 2f-FCS experiment of vesicles extruded through 50 nm pore. Evenwithout
polarised detection, the rotational tumbling is already visible in the sub-ms range due
to the finite focal volume.

Rp 〈R〉N σR,N 〈R〉I σR,I DFCS RFCS
[nm] [µm2 s−1] [nm]

15 26.2 8.1 39.9 13.4 7.1(8) 30(4)
25 31.6 9.5 46.3 14.6 7.0(10) 31(5)
40 42.8 13.5 65.2 21.5 3.9(16) 55(23)
50 43.2 14.0 67.8 23.2 4.0(7) 53(9)
100 65.2 19.7 95.4 29.8 2.5(10) 86(35)

Table 2.3: Vesicle hydrodynamic radii determined from size distributions obtained by
DLS and 2f-FCS. Rp is the extrusion pore radius, 〈R〉N is the number-distribution av-
eraged vesicle radius, 〈R〉I is the intensity-distribution averaged radius, and RFCS is
determined by 2f-FCS.

Translational lipid diffusion coefficient

The time-scales of translational vesicle and rotational vesicle plus translational lipid
diffusion slightly overlap and have to be disentangled during analysis. This is done by
fitting a stretched single-focus 3D-diffusion model to the slow time-domain and sub-
tracting the outcome. One example of such a reduced correlation is shown in fig. 2.21.

While it is theoretically possible to obtain a direct estimate for the vesicle radius
and measure the rotational diffusion within the same experiment, this is not done for
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several reasons: Single-focus FCS has to be calibrated against a sample with a known
diffusion coefficient but is still heavily influenced by optical aberrations as well as the
size fluctuations inherent to the vesicles. Furthermore, the rotational diffusion meas-
urements require a very large focal volume to impose an approximately flat excitation
intensity profile. As such a modification makes it even harder to obtain a quantifiably
robust estimate for the vesicle diffusion, it is used for correcting the curves only and no
physical meaning is attached to the exponential coefficients.
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Figure 2.21: Polarisation-resolved FCS curves of Rp = 15 nm vesicles. The correlation
is performed from τmin = 50 ns to τmax = 1 s in this case and the diffusional correlation
is subtracted. The rotational curves are then fitted up to τ′max = 0.1 ms.

Judging from the fit curves, the rotational diffusion model – shown here for Rp =
15 nm vesicles – matches the correlation functions very well. Residuals stay below 5%
and do not show any non-random fluctuation except near the vesicle diffusion range at
which point the rotational part has almost completely decayed. The figure also shows
how important it is in rotational diffusionmeasurements to have access to the complete
set of correlation curves which are only available with a two-laser, four-detector setup.
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Although the fit quality is remarkable, the same cannot be said about the diffusion
coefficients Dtrans obtained throughout the measurements plotted in fig. 2.22. Given
the hydrodynamic radii acquired through 2f-FCS, it could be assumed that the true
value for Dtrans lies between the ones determined for the two distributions %I and %N .
When comparing to the planar-limit diffusion coefficient from the GUV experiments,
this concept holds up for the Rp = 15 − 25 nm vesicles at best. The lipid diffusion coef-
ficients of the larger vesicles are obviously systematically inflated, up to a factor of 10
in the case of the Rp = 100 nm pore with %I as the size distribution. This picture is un-
affected by the manner in which the vesicle radius is factored into the fitting function
as demonstrated by fig. 2.22b. While it is not impossible to think of a mechanism that
would allow lipids to diffuse faster in SUVs than GUVs, the magnitude of the deviation
and the discontinuity necessary to explain the data are much too severe. The method’s
sensitivity in itself is adequate as evidenced by fig. 2.22c which shows the diffusion
coefficient of Rp = 25 nm liposomes at different temperatures. As expected, diffusion
slows down for lower temperatures and begins to drop significantly when starting to
approach the phase transition temperature. Cooling the sample down further was un-
fortunately prevented by condensation water forming around the tubing which could
have damaged the electronics. Assuming sufficient precision, the accuracy could have
been affected by a number of factors.

One of these is triplet state transition which happens on a similar time-scale as the
diffusionprocesses and could seriouslydistort the correlation curves if not taken into ac-
count. Three things point against this: First, triplet transitions are intensity-dependent
and the laser intensity was specifically adjusted to a very low level such that no triplet
state could be detected in the GUV experiments. Next, the membrane dye DiD, which
is known to exhibit photo-blinking in membranes even at low excitation, was also ad-
ded to vesicles and analysed. The resulting correlation (fig. A.2), when fitted without
a triplet model, clearly shows how difficult it would be to overlook an additional de-
cay in the data, especially when it comes to the complete anti-correlation function g⊥‖⊥‖ .
Last, a triplet model added to the fit yields transition amplitudes below 0.1% and has
no quantifiable influence on residuals or Dtrans.

Another source of artefacts is depolarisation. Depolarisation refers to the possibility
of both lasers not being completely linearly and orthogonally polarised with respect to
each other due to defects in the dichroic mirror and transmission through the high-NA
objective. In FCS, however, this mainly changes the relative amplitudes of all curves,
not the time-scales [81], and would affect all vesicle sizes equally. A rather subtle effect
that does in fact depend on the vesicle radius is the finite excitation volume: As has been
mentioned, the laser beam before the objective is contracted to achieve a flat, widened
excitation focus in the sample plane.
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Figure 2.22: Lipid diffusion coefficient as a function of vesicle radius and temperature.
(a) The complete correlation curves are integrated over the size distribution during fit-
ting. The determined translational lipid diffusion coefficient is plotted against the av-
erage hydrodynamic radius of the respective size distribution. (b) The size-dependent
diffusion coefficient D⊥ is integrated over the vesicle radius distribution instead of the
whole correlation. (c) For a specific vesicle size (pore radius Rp = 25 nm), the sample
temperature is varied over a small range to ascertain the method’s sensitivity.
RN and RI denote results obtained with the number and the intensity distribution, re-
spectively. The dashed lines indicate the GUV diffusion coefficient.
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This is done to ensure that the fluorescence intensity fluctuation during rotation or
translation of the fluorophore will only depend on the orientation of the dipole axis,
not its position. As the time-scale of translational diffusion is much slower than ro-
tational diffusion, this always holds true in the limit of a point-like particle. A larger
vesicle situated at the edge of the focal volume, however, would experience a significant
excitation intensity gradient. This gradient would translate into an additional term in
the correlation curve with a time-scale τI ∼ τrot whose amplitude mainly depended
on vesicle radius and laser beam waist. For a near-infrared Gaussian laser beam 1 mm
in diameter, the intensity plateau in the sample plane is about 2 µm wide. Again, this
makes itself felt mostly for the Rp = 100 nm vesicles and is not, by itself, sufficient to
cause such large deviations.

The biggest influence on Dtrans, and thus the largest potential source of errors, is
obviously the size distribution. However, given the accuracy of 2f-FCS and DLS exper-
iments, together with the reproducibility of vesicle preparation by extrusion, it seems
rather implausible that the real vesicle radiuswould bemuch lower than all of themeas-
urements suggested. Disregarding unknown issueswith themeasurement setup, there
is unfortunately no concrete evidence at the time of writingwhich could explain the an-
omalous results.
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Chapter 3

TrackNTrace

In this thesis, single particle tracking (SPT) is frequently relied upon to measure diffu-
sion coefficients in bilayers and collect intensity traces of surface-bound molecules for
photo-physical analysis. Since its introduction as “nanovid microscopy” in 1985 [96],
SPThas becomean important tool in the life sciences to study cellular dynamics. Particle
tracking relies on localising fluorescent emitters within a movie and subsequently link-
ing them in an automated fashion to form trajectories. Parameters such as diffusive
speed or velocity can be readily extracted from these trajectories which in turn inform
about binding kinetics, local geometry, or viscosity, to name a few examples. In addi-
tion to position and intensity, criteria such as size, shape, or direction of motion can
determine if two particles at different points in time should be connected, increasing
the demand for ever more sophisticated programs.

The list of software packages to choose from and features to be supported has been
steadily growing to a point where researchers may find it difficult to select a program
most suited to their needs. While comparativemeta-studies have sought to remedy this
problem to some degree [63], selecting the best algorithm for a given dataset is often
cumbersome for scientists. Being implemented in low-level programming languages
most of the time, adding features or adapting routines to the task at hand is often very
challenging or even impossible in the case of closed-source software. Inspecting res-
ults to trace the effect of parameter changes is further complicated by poor visualisation
interfaces which are often limited to only show a histogram of localisations or a list of
trails. Thus, missed emitters, wrongly connected tracks, or prematurely ending traject-
ories can easily go unnoticed.

When my colleague Simon Christoph Stein faced similar difficulties in his single-
molecule localisation microscopy (SMLM, [97]) studies, we decided to collaborate on
a software project which would address these issues. The result is TrackNTrace [1],
a plugin-based framework for single molecule localisation and tracking applications.
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The software is designed to allow the rapid integration of existing algorithms for de-
tecting, fitting, or tracking single molecules with minimal effort through automated
integration in the TrackNTrace graphical user interface (GUI). TNT is implemented
in MATLAB, a high level programming language that simplifies prototyping and is
popular within the life sciences. In addition to its own algorithms, which are de-
signed to be robust and fast, TNT also includes state-of-the-art localisation and track-
ing methods previously released as standalone software for MATLAB. A built-in pre-
view function allows processing sections of a movie with the results being displayed
superimposed on it. This greatly facilitates parameter optimisation and comparative
studies, and makes it easy to develop and test new ideas. TNT also supports gen-
eral image processing plugins to permit the seamless integration of, for example, non-
localisation based super-resolution methods such as super-resolution optical fluctu-
ation imaging (SOFI). TrackNTrace is freely distributed as open source and is available
at https://github.com/scstein/TrackNTrace.

In this chapter, the general structure, user interface, and plugin system of TNT will
be presented alongside a detailed explanation of the algorithms involved. The perform-
ance of TrackNTrace is then evaluated on simulated and experimental data. The chapter
concludes with a short summary of side projects I conducted which relied on TNT for
data processing.

Parts of this chapter are closely based on and expand upon the original TrackNTrace
paper published in:

S. C. Stein and J. Thiart. ‘TrackNTrace: A simple and extendable open-source
framework for developing single-molecule localization and tracking algorithms’.
Scientific Reports 6 (1) 2016 [1].
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3.1. Materials & Methods

3.1 Materials & Methods

3.1.1 Framework composition & plugin system

The TrackNTrace framework consists of four principal analysis stages: First, the movies
can be corrected for artefacts and the analogue-digital-converter counts of the camera
converted to photon numbers. Next, any signal sources above a certain background
threshold are identified to obtain a position list of so-called candidate detections. Based
on these rough estimates, more accurate information is collected for each candidate in
the refinement stage, including subpixel position or particle shape. Finally, all positions
are connected frame-by-frame in the tracking step to retrieve themolecules’ trajectories,
if needed.

After starting the program and defining a list ofmovies to evaluate, the user is direc-
ted to an input mask as shown in fig. 3.1. Here, all parameters pertaining to the current
movie and set of chosen plugins are entered. The preview button opens a visualiser
where results for a small portion of a movie, generated with the currents settings, can
be inspected. A manual review of this data can easily reveal undetected molecules,
badly fitted emitters, or prematurely ending tracks. By repeatedly switching between
input mask and preview, all variables can be optimised until the result is deemed satis-
factory. The user can then advance to the next movie or carry over the current settings
for all remaining films. Eventually, the evaluation starts and the complete output is
saved in a .mat file which contains the results alongside all utilised plugins and their
respective parameters. The data can be inspected with the visualiser or post-processed
using various functions, e.g. for drift correction, localisation histogramming, or diffu-
sion coefficient estimation.

TrackNTrace plugins are defined in a single .m file and contain a header and the
parameters to be manipulated in the GUI. The header specifies the functions to execute
before, during, and after the analysis aswell as plugin name, type, and description. The
input variables – e.g. float or string – are initialised by default value, tooltip, and range
where appropriate. The accompanying help text is mandatory so that users unfamiliar
with the inner workings of a plugin are nonetheless able to use it. From this layout,
an entry in the input mask is automatically generated without requiring any further
assistance by the user or knowledge about the interface. In accordance with this simple
structure, writing aplugin for TNT is designed to be as straightforward as possible. If an
output function such as a PSF fitter is already available, translating it into a TNT plugin
can be achieved with only a dozen lines of code. Thus, even programming novices can
test and develop their own applications with TrackNTrace.
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Figure 3.1: TrackNTrace input and visualiser GUI. For each movie, a different set of
plugins and parameters can be specified and the input GUI is rebuilt accordingly, with
each parameter having its own tooltip. A preview based on the current settings can
be inspected in the visualiser, where unsuitable settings or algorithms can be quickly
identified by the faulty output they produce (indicated by arrows). This allows adjust-
ing all settings to the user’s satisfaction. Either the next movie is loaded or given inputs
are used for the complete movie stack.
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3.1.2 Algorithms & developed plugins

TrackNTrace is being delivered with a variety of different plugins to choose from for
each of the three main processing stages – candidate detection, refinement, and track-
ing. While some functions have merely been ported to TrackNTrace from previously
publishedMATLAB software packages, most of them have been specifically created by
Mr. Stein and myself. This section will give a detailed overview of these scripts. A list
of all currently available plugins is given in tab. 3.1.

Name Type Description

Cross-correlation Candidate O PSF template matching
Defocused patterns Candidate P Defocused dipole pattern matching [98]
Defocused refinement Refinement O See above
Gauss-2D-Circ Refinement P PSF matching by matrix inversion [99]
Image filtering Candidate O Multi-purpose image filtering
GPU-Gauss MLE Refinement P PSF fitting in C & CUDA [100]
p-value filtering Candidate O Hypothesis-test-based thresholding
Radial symmetry Refinement P Radial-symmetry-based centroid estima-

tion [101]
TNT fitter Refinement O PSF fitting using ceres library [102]
TNT z-Calibration Refinement O Astigmatic imaging calibration
TNT NearestNeighbor Tracking O Nearest-neighbour tracking
u-Track Tracking P Global optimum tracking [103]
Wavelet filter Candidate O Wavelet filtering

Table 3.1: List of TrackNTrace plugins. “P” indicates ported plugin, “O” previously
unavailable and/or original contribution.

Cross-correlation

The patterns of sub-diffraction-sized emitters distributed in the microscope’s field of
view closely resemble its point spread function. Then, the image correlation between
patches containing such an emitter and the PSF should be relatively high whereas the
noisy background would not appear correlated at all. Cross-correlation can thus be
used to roughly estimate the positions of possible signal sources. The two-dimensional
in-focus PSF of a microscope can be well-approximated by a symmetric Gaussian func-
tion

p1(x , y) = exp

(
−

(x − µx)2

2σ2
PSF

−
(y − µy)2

2σ2
PSF

)
, (3.1)

where σPSF = λ/(4
√

log 2 NA) and λ is the emission wavelength. Alternatively, a pixel-
integrated Gaussian can be chosen instead which more closely resembles the actual
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experimentwhere emitted photons impact upon the camera chip’s pixel grid. It is given
by integrating the above expression over the area of a single pixelwhich is assumedhere
to have a fill factor of 100%:

p2(x , y) =
∫+1/2

−1/2
dx

∫+1/2

−1/2
dy p1(x , y) (3.2)

=
πσ2

PSF
2

[
erfc

(
−

x − µx + 1/2
√

2σPSF

)
− erfc

(
−

x − µx − 1/2
√

2σPSF

)]
×[

erfc
(
−

y − µy + 1/2
√

2σPSF

)
− erfc

(
−

y − µy − 1/2
√

2σPSF

)]
Using one of these patterns with µx = µy = 0, one can calculate the normalised cross-
correlation between the image I(x , y) and the (2n + 1) × (2n + 1) pixel pattern p(x , y):

NCC(x , y) = 1
(2n + 1)

√
〈p(x , y) − 〈p(x , y)〉〉2

×

n∑
i=−n

n∑
j=−n

(
I(x + i , y + j) − 〈I(x + i , y + j)〉i j

)
p(x + i , y + j)√

〈I(x + i , y + j) − 〈I(x + i , y + j)〉i j〉2i j

. (3.3)

By this definition, NCC(x , y) ∈ [−1, 1]. In regions containing a point-source emitter, the
cross-correlation with the Gaussian template will be significant whereas pixels which
only represent background noise will show a correlation close to 0. The pixel centres of
all emitters above a certain threshold are determined by grayscale image dilation with
a structuring element S:

Idilated(x , y) = max
(i , j)∈S

{I(x − i + n , y − j + n) + S(i , j)} (3.4)

S is simply a (2n + 1) × (2n + 1) matrix of ones. Therefore, in every (2n + 1) × (2n + 1)
neighbourhood, the dilated image will show elevated values except for a point where
Idilated(xl , yl) = I(xl , yl) which is the local maximum of its respective neighbourhood.
Both cross-correlation and image dilation are directly implemented in the MATLAB
image processing toolbox, thus being high-performance.

The coordinates of all local maximums above a certain threshold cthresh are returned
as candidates. The user can choose cthresh, σPSF, and n, as well as the pattern model.

Defocused patterns & refinement

The defocused image of a fluorophore heavily depends on its emission dipole orient-
ation. Applications such as metal-induced energy transfer depend upon the precise
knowledge of this orientation. Recording a large number of molecules at the same time
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and matching the defocused patterns to theoretical templates is the fastest way to per-
form such control measurements.

The TrackNTrace implementation is based on code published by Jörg Enderlein [98]
which serves as the foundation for calculating the theoretical patterns. The user can
specify the necessarymicroscopeparameters (magnification,NA, emissionwavelength,
camera pixel size, focal distance) as well as the angular step size of the radial and azi-
muthal dipole angles. The original code ismassively sped up by using cross-correlation
for templatematching as discussed above, and allowing the program to save and re-use
patterns if no settings are changed.

Figure 3.2: Defocused pattern fitting in TrackNTrace. The right panel shows the fitted
final templates (Supplementary Figure 2 [1], data provided by Narain Karedla).

If necessary, the preliminary results can be passed on to a refinement routine which
uses the candidate data as initial guesses for a custom conjugate-gradient solver. Here,
patterns are fitted to smaller subimages around the emitter centroids either by least-
squares or maximum-likelihood optimisation. The refined templates can be visually
inspected by the user as depicted in fig. 3.2.

Image filtering

The idea ofmicroscopy imagefiltering in general is to elevate intensity levels originating
from actual emitters and suppress any background noise or spurious signals. All local
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maximums above a certain intensity threshold typically set by the user are then counted
as candidates. Many digital filtering techniques are linear operationswhichmeans they
can be expressed by a convolution of the original n × n image I with a k × l filter kernel
H:

I′(x , y) = I ∗ H =
bk/2c+1∑

i=−bk/2c+1

bl/2c+1∑
j=−bl/2c+1

H(i + bk/2c , j + bl/2c) · I(x − i , y − j) . (3.5)

It is assumed that the image index starts at (1, 1). Here, as inmost cases, H is a symmetric
k×k matrixwith k < n. InTrackNTrace, all linearfilters are also separable,meaning they
can be expressed by vector multiplication as H = h ·hT . Then, instead of using one two-
dimensional convolution, the operation can be decomposed into two one-dimensional
convolutions

I′(x , y) = (I(x , y) ∗ h) ∗ hT , (3.6)

reducing the number of operations from (nk)2 to 2n2k. Six different filter functions are
available in TNT: Moving average, difference of averages, Gaussian, zero-mean Gaus-
sian, difference of Gaussians, and median. Fig. 3.3 displays the actions of these filters
on a typical microscopy image.

The moving average filter, also known as boxcar, is one of the most commonly used
in signal processing. The vector kernel is simply a list of ones divided by the length,
havg = (1, 1, ..., 1)/k. Higher pixel values appear dilated while noise is blurred out and
deflated. By convolving the image with a larger averaging kernel of size p × p , p > k,
and subtracting it from the first filtered frame, elevated intensities appear less dilated
and the contrast is increased. This difference-of-average filter restores emitter shapes
to more closely resemble the original image but can lead to more artefacts.

Gaussian blur is primarily used as a smoothing filter but in contrast to the moving
average, it is circularly symmetric. The vector kernel is expressed as a exp

(
−x2/(2σ2)

)
where a is a normalisation constant and x ∈ [− bk/2c , bk/2c]. The window size is auto-
matically chosen such that k = 2 d3σe+1. Both the difference-of-Gaussians filter and the
zero-meanGaussian blur aremodified versionswhichwork similar to the difference-of-
averages filter: High intensities are still elevated, butwashed out features are subtracted
to reduce dilation. The former works exactly as its averaging counterpart, while the lat-
ter is implemented with the kernel exp

(
−x2/(2σ2)

)
− 1/k

∑
x exp

(
−x2/(2σ2)

)
.

The median filter is the only one in the list which cannot be expressed as a linear
operation. Here, the intensity of each pixel pair (x , y) is replaced by the median value
of all pixels in a k× k neighbourhood. Again, local maximums are dilated but edges are
preserved. Thus, the filter is most suited to images distorted by spurious noise such as
hot pixels and similar artefacts.
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(a) Original image

(b) Moving average (c) Diff. of averages (d) Median

(e) Gaussian (f) Zero-mean Gaussian (g) Diff. of Gaussians

Figure 3.3: Examples of image filtering in TrackNTrace. All images were taken using
the respective filter’s default settings.

Molecule centroids in the filtered images are extracted by grayscale dilation with
thresholding as explained above. The user can determine the size of the normal and
enlarged windows, σ, as well as local maximum search radius and detection threshold.

p-value filtering

The noisy background in a fluorescence microscopy image is a complex combination
of Poisson shot noise, camera chip artefacts, read-out noise, and other sources. In most
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cases, however, it can be well-approximated by a Gaussian distribution [104]. p-value
filtering, also called hypothesis filtering, is based on the concept of statistical hypothesis
filtering. Here, both mean µb and standard deviation σb of the local background of all
pixels in an image are calculated approximatively. It is assumed that the intensity of
any pixel in an emitter-free image originates from a Gaussian-distributed background
N(µb , σb)which is the null hypothesis H0. If a pixel violates this assumption at a confid-
ence level p, that is CDFN (I(x , y , ), µb , σb) > p, the null hypothesis is rejected (H1). The
result is a binary mapwhere clusters of ones are associated with fluorescent molecules.
Any four-connected neighbourhood is counted as a cluster and its centroid position ex-
tracted to be used as an emitter candidate. The user can specify p and the minimum
cluster size in addition to the frequency at which the local background is determined.
The latter is based on a least-median squares routine [105].

TNT fitter

After candidate detection, a model PSF can be fitted to a small image window around
every estimated position to retrieve additional, refined parameters. In most cases, the
subpixel position and the background-corrected intensity are sufficient, which can be
used to create a localisation histogram of the data or perform particle tracking. In some
cases, the particle shape is an equally important parameter if the PSF is being manipu-
lated to encode additional information such as the sample’s z-position. The TNT fitter
supports 3D-localisation through astigmatic imaging by using an elliptic, rotatedGaus-
sian as a PSF model:

G(x , y) = A exp
(
−

[
q1(x − µx)2 + q2(y − µy)2 − 2q3(x − µx)(y − µy)

] )
+ B (3.7)

qi is related to the PSF standard deviations σx ,y and the in-plane rotation angle θ as
follows:

q1 = cos2 θ

2σ2
x

+ sin2 θ

2σ2
y

(3.8)

q2 = sin2 θ

2σ2
x

+ cos2 θ

2σ2
y

(3.9)

q3 = −sin 2θ
4σ2

x
+ sin 2θ

4σ2
y

(3.10)

While less intuitive at first, fitting q instead of the original model parameters is prefer-
able as it avoids divergences and is numerically more stable. The back-transformation
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yields:

θ = 1
2

arctan
(
−

2q3

q2 − q1

)
(3.11)

σx =
(
q1 + q2 −

2q3

sin 2θ

)−1/2

(3.12)

σy =
(
q1 + q2 +

2q3

sin 2θ

)−1/2

(3.13)

withθ ∈ [−π/4, π/4). If the angle is not optimised, themodel reverts back to eqn. (3.1) or
(3.2) with σx = (2q1)−1/2 and σy = (2q2)−1/2. Theminimisation is performed in C++ using
the ceres-solver library [102]. Both Levenberg-Marquardt least-squares regression and
maximum likelihood estimation are available.

The routine can be further improved by calculating better initial guesses instead of
relying solely on the estimates obtained during candidate detection. A straightforward
approach is the use of image moment analysis. Assuming a background-subtracted
k × k image I, image moments are defined by the equation

Mmn =
k−1∑
i=0

k−1∑
j=0

im jnI(i , j) (3.14)

The first order moments simply return the centroid intensity while higher order mo-
ments are related to eccentricity, skewness, or scale. More information can be extracted
by constructing the covariance matrix Σ,

Σ =
©­­«

M′20 −
(
M′10

)2
M′11 −M′10M′01

M′11 −M′10M′01 M′02 −
(
M′01

)2
ª®®¬ with M′mn = Mmn/M00 (3.15)

whose eigenvectors represent the two major intensity axes of the image and whose ei-
genvalues λ1,2 correspond to σx and σy . The angle of rotation is then given as the angle
between the eigenvector with the largest eigenvalue towards the nearest axis. For a
Gaussian pattern, one obtains

θ = 1
2

arctan
(

2Σ12
Σ11 − Σ22

)
· sign(Σ11 − Σ22) (3.16)

σx =
(
Tr(Σ)/2 + sign(Σ11 − Σ22)

√
(Tr(Σ))2/4 −Det(Σ)

)−1/2
(3.17)

σy =
(
Tr(Σ)/2 − sign(Σ11 − Σ22)

√
(Tr(Σ))2/4 −Det(Σ)

)−1/2
. (3.18)

Through careful startingparameter estimation,multi-threading, and the computational
speed advantage of C++ over MATLAB, the TNT fitter is able to fit close to 106 emitters
per second1 which is sufficient for large-scale localisation microscopy experiments.

1This estimate is based on a standard office PC with a Core i7-3770 CPU.
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The user has to provide an initial value for σPSF and can choose the fit model (sym-
metric, elliptic, or rotated, and pixel or pixel-integrated) as well as the fitting algorithm
(least-squares minimisation with optional maximum likelihood estimation).

TNT NearestNeighbor

Nearest-neighbour tracking (NNT) is themost common formof automated single parti-
cle tracking. For every position ri at time t, an associated position r j at time t + ∆t is
sought which fulfils



ri − r j


 = ri j ≤ rmax, where rmax is a user-supplied variable. The

positions are paired into a set of trajectoriesTk = {r1k , ..., rik , r jk} subject to the constraint

Tk ∩ rj

��� min
i , j

{∑
i

∑
j

ri j

}
. (3.19)

If no nearest neighbour for particle i is found, the trajectory Tk ends and r j is the start
of a new one.

For Brownian particles, seeking the global minimum of eq. (3.19) over all frames
and all possible particle combinations yields the optimal trajectory set. In practice,
this is only rarely done due to the computational demand imposed by the combina-
torics involved and the limitations of Brownian diffusion models. Typically, nearest-
neighbour tracking is performed frame-to-frame and reserved to simplistic scenarios
with low particle densities, low mobility, or high time resolution. The TrackNTrace
NNT plugin is implemented in the same frame-to-frame fashion using kd-tree traversal
implemented in C++ via the nanoflann library [106]. The function can handle millions
of localisations almost instantaneously and thus serve as a precursor to more sophistic-
ated tracking algorithms. The plugin can also handle blinking fluorophores which are
temporarily invisible by re-tracking all trajectories from the first part of the analysis. If
a molecule vanishes but reappears in a later frame, the tracker tries to link the end of
the first trajectory and the start of the second one. If the two segments of minimum
length lS ≤ lT are closer than a specified distance rgap in space and tgap in time, they
are recombined into a single trajectory. The user can change rmax and the minimum
allowed trajectory length lT as well as rgap and tgap.

Wavelet filter

The wavelet transform is a spatial frequency band-pass filter. By continuous removal
of lower frequency components, differently sized features are elevated depending on
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the number of filtering passes. It is recursively defined as:

Wi = Fi−1 − Fi (3.20)

Fi =


I if i = 0,

(Fi−1 ∗ hi) ∗ hT
i otherwise.

(3.21)

Here, Wi is the wavelet image, hi is a low-pass filter kernel, and Fi is the respective
filter image. The first wavelet level contains only high-frequency components such as
noise while the lower levels are composed of increasingly larger features. The specific
implementation relies on choosing the right low-pass filter and the best wavelet level
to use for feature extraction. Izeddin et al. [107] suggest an “à trous” wavelet algorithm
of second order using upsampled B-spline kernels recursively defined in the following
way:

B1(x) =


1 if 0 ≤ x < 1,

0 otherwise.
(3.22)

Bm(x) = x
m − 1

Bm−1(x) + m − x
m − 1

Bm−1(x − 1) (3.23)

The initial filter kernel is then calculated as h1( j) = a−1Bm

(
2 j−k−1+sm

2

)
, where i ∈ [1, k],

k = 2 dsm/2e − 1 , and a is a normalisation constant. m ∈ �+ is the spline order and
s ∈ �+ is a scaling factor. Higher order kernels are constructed by inserting zeros
between the coefficients. m = 3 and s = 2 are the default values to be changed by the
user on request.

(a) Original image (b) W2 (c) Threshold mask

Figure 3.4: Wavelet filtering in TrackNTrace. The images are created with the default
settings (t = 0.9, m = 3, s = 2).

One of the great advantages of using wavelet filtering for particle candidate identi-
fication is its capability of automated intensity thresholding. As the first wavelet level
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is essentially feature-free, it can be exploited for background estimation. More spe-
cifically, only local maximums fulfilling the condition W2(x , y) > tσ(W1) are accepted
as candidates where σ is the standard deviation of all intensity values and t is a user-
specified variable which should be close to 1. Since W1 is calculated for each frame, the
threshold is updated with it at no cost in performance. This property is especially use-
ful for movies where the background changes on relatively short time-scales. Fig. 3.4
shows the filter in action.

3.1.3 Performance evaluation

The main focus of TrackNTrace as a framework lies on the integration and develop-
ment of localisation and tracking algorithms. It is nevertheless important to compare it
to established software to validate its suitability for common applications. As any chal-
lenging particle tracking scenarios can be handled by a plugin version of u-Track, which
has been extensively benchmarked by its original authors [103], the evaluation focuses
on localisation microscopy only. Three programs – TrackNTrace, rapidSTORM [108],
and ThunderSTORM [109] – were examined in simulations and TNTwas tested on two
biological samples.

Simulation

Simulated fluorescencemicroscopymovies were created by randomly distributing sub-
diffraction-sized emitters on a Siemens star object with n arms assuming imaging con-
ditions typical for localisation microscopy as described previously [110]. The particle
density was fixed at % = 7.5 pixel−1 and emitter positions r = (µx , µy) were drawn
from a uniform distribution such that the condition cos (arctan(r · n)) > 0 was fulfilled.
Blinking was implemented by drawing a random number of activation events from
a Poisson distribution Poiss(kacnframes) and obtaining the active-state duration from
an exponential distribution Exp(kdeac). If the blinking cycles reached a maximum of
nbleach = 1 + Geom(pbleach), the respective emitter was considered bleached. Geom(x)
refers to the geometric distribution with probability density ρ(p) = (1 − p)k−1p for k
trials and event probability p. The rates were coupled to ensure a sufficiently sparse set
of fluorescing molecules in each frame,

kdeac = koff + kbleach (3.24)

kac =
(

1
kdeac

+ 1
kon

)−1

(3.25)

pbleach = kbleach
kdeac

, (3.26)
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with kon = koff/(5%), koff = 1 frame−1 and kbleach = 0.15 frame−1. For each emitter and
each frame, a normalised on-time amplitude A ∈ [0, 1] was calculated this way. The
field of viewwas discretised as a 256 × 256 px2 gridwith a pixel size2 of 100 nm. At each
particle subpixel position, an integrated Gaussian AN × gm + B was added to the image
where N is the maximum number of photons emitted by a fluorophore and gm is the
Gaussian mask from eq. (3.2) with a standard deviation of σPSF = λ/(4

√
log 2 NA). For

all simulations, λ = 670 nm, NA = 1.4, and N = 50 were chosen, with the background B
adjusted such that a signal-to-noise ratio (SNR) of 1 to 5 was achieved. The simulations
were carried out for 1500 frames with typically 3 · 105 emitters per movie and the end
result was distorted by Poisson shot noise.

For the execution speed measurement, a rectangular array of 16 × 16 emitters was
evenly distributed on a 512 × 512 px2 grid. The SNR was set to 10 to ensure every soft-
ware would localise the same number of molecules regardless of the settings used. The
movie frame was duplicated 3500 times for a total of 896, 000 spots. The execution time
was measured on a Dell Optiplex 70103 running on Windows 7x64 and was corrected
for reading and saving any data.

Analysis

All programs were operated with the same settings if possible, with a few exceptions.
rapidSTORM lacks wavelet filtering and was run with a difference-of-averages filter
instead. It also cannot fit an integrated Gaussian PSF by default. To provide optimal
comparability, a number of different parameter values producing similar outputs were
chosen and the result achieving the highest test scores was selected.

Three different quality scoreswere compiled for each software by comparing output
data set Lobs and ground truth Lref. These included the Jaccard index (JAC), the root-
mean-square error (RMSE), and the Fourier ring correlation (FRC). The JAC indicates
how well a localisation routine can detect actual emitters and distinguish them from
background noise while the RMSE simply states how well the positions are fitted:

JAC =
|Lobs

⋂Lref |
|Lobs

⋃Lref |
= TP

TP + FP + FN
(3.27)

RMSE2 = 1
TP

∑
i∈Lobs

⋂Lref

(
µi

x ,obs − µ
i
x ,ref

)2
+

(
µi

y ,obs − µ
i
y ,ref

)2
(3.28)

A correctly localised particle counts as a true positive (TP) whereas a false negative
(FN) or a false positive (FP) does not appear in the experimental or the ground truth
set, respectively.

2The unit “px” denotes the length of one pixel, not its area.
3Intel Core i7-3770 CPU, 16 GB RAM, SSDSC2CT180A4 drive.
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The FRC as a resolution criterion stems from electron microscopy and was intro-
duced to the super-resolution microscopy field by Nieuwenhuizen et al. [111]. It quan-
tifies the spatial correlation between two subimages I1 and I2 of a structure in Fourier
space:

FRC(qr) =
∑
|q|≤qr Î1(q)Î2(q)√∑

|q|≤qr

��Î1(q)
��2 ·∑|q|≤qr

��Î2(q)
��2 (3.29)

I1 and I2 are localisation histograms of Lobs and Lref created at a tenth of the ori-
ginal pixel size. For increasing frequencies, which correspond to smaller features in
real space, the FRC decreases until reaching a noise threshold. The image resolu-
tion is then given as the inverse spatial cutoff frequency

(
qr,cut

)−1 where the FRC has
dropped to a specific value. Manydifferent possibilities of qr,cut exist in literature. Here,
{qr,cut | FRC(qr,cut) = FRC(qmin)/7} was chosen as suggested in the original publication.

3.1.4 Biological examples

Apart from synthetic benchmarks, TrackNTrace was evaluated in two experimental
scenarios, dSTORM imaging of βIV-spectrin in a mouse hippocampal neuron axon ini-
tial segment, and single particle tracking of lipids and proteins in a black lipid mem-
brane.

dSTORM of βIV-spectrin in mouse hippocampal neurons

The movie analysed in this thesis was recorded and provided byMelanie Dannemeyer.
Both the microscope setup and sample preparation have been described in detail in
her thesis [112]. Briefly, a hippocampal neuron extracted from a mouse brain matured
for 11 days in vitro was fixed and immunolabelled against N-terminal βIV-spectrin. A
secondary, Alexa647-conjugated antibody was added for fluorescence labelling. The
cells were immersed in a STORM-compatible imaging buffer (10 mM TRIS, 100 mM
cysteamine hydrochloride, 4 mg ml−1 glucose oxidase, 0.57 mg ml−1 catalase, and 10%
glucose at pH = 8.4) andmounted on a coverslip. The fluorophores were excitedwith a
647 nm laser and a 100×UApoNTIRF-objective (NA = 1.49) inHILOmode and imaged
onto a DU-885 EMCCD at an effective pixel size of 80 nm.

The resulting movie was evaluated with TrackNTrace and its cross-correlation and
nearest-neighbour tracking plugins. The latter was employed to detect and discard
clusters of molecules or dirt visible for longer than 25 frames. Defocused or dim emit-
ters with a size deviation of ∆σ > 0.4 px or signal-to-background ratio below 0.8 were
likewise rejected. The remainingpositionswere assembled into a localisationhistogram
with a super-resolution pixel size of 10 nm.
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Diffusion in black lipid membranes

Black lipid membranes were created with a Bilayer Explorer system (Ionovation, Ger-
many) by adding a 3 : 2 weight mixture (cfinal = 10 mg ml−1) of POPE and POPC
dissolved in dodecane to the Explorer fluid channel chip which was filled with PBS
(137 mM NaCl, 2.7 mM KCl, 1.5 mM KH2PO4, and 8.1 mM Na2HPO4 at pH = 7.4).
By repeatedly pumping the solution through a 120 µm polytetrafluoroethylene pore, a
stable bilayer with a diameter of 100 µm was formed. DPPE, Cytochrome B5, and KcsA
potassium channel monomers from Streptomyces lividanswere expressed, labelled with
Atto655, andaddedviadirect addition asdescribedbefore [113]. The lipidswerebought
from Avanti, USA.

Movies of diffusing particles were recorded on a custom-built wide-field setup as-
sembled from a λ = 637 nm CUBE diode laser (Coherent, Germany), a 60× 1.2 NAUPLS-
APO water-immersion objective (Olympus, Germany), and an iXon3 DU-860D EMCCD
(Andor, Ireland). To achieve high excitation rates, the laser light was focused on the back-
focal plane of the objective with an f = 300 mm lens, resulting in a small field of view
10 µm in diameter. The emission light was collected through the same objective and fo-
cused onto the camera chip by an f = 200 mm tube lens and a 3.33× post-magnification
system (MAP1030100-A, all optics by Thorlabs, UK). Imaging was performed at an ac-
quisition rate of 950 Hz and an effective pixel size of 108 nm.

Single particle tracking

The movies were analysed in TrackNTrace using wavelet filtering and the TNT fitter
plugin. The determined positions were passed on to the nearest-neighbour tracker and
the tracks visualised. Parameters such as particle size, maximum allowed particle-to-
particle linking distance, andminimum trajectory lengthwere optimised iteratively un-
til the outcome was deemed satisfactory. These settings were transferred to the u-Track
plugin which itself optimises these parameters through forward-backward Kalman fil-
tering. As u-Track seeks a solution to a global optimisation problem instead of only link-
ing adjacent frames, it is better equipped to dealwith overlapping trajectories or particle
motion heterogeneity. The results were interpreted by an MSD fit routine. Here, dis-
placement vectors of each trajectory’s N position vectors ri = (xi , yi), i = 1, ...,N were
calculated for all possible frame intervals ∆ti j :

di j = ri − r j , 1 ≤ j < i ≤ N (3.30)

∆ti j = (i − j) ta (3.31)

ta is the camera acquisition time. From this point, the displacements
{
di j

}
, i − j = k

for one frame interval kta could be processed in three different ways: Calculate and fit
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the MSD for each individual trajectory, average over all trajectories first and then fit, or
perform MSD histogram analysis. Choosing the latter option, the displacements were
binned into a single, normalised histogram and then fit for each time interval:

P (dk) =
∑

i

wi(√
2πσ2

i

)ν exp

(
− |dk − v × kta |2

2σ2
i

)
(3.32)

P (|dk |) =
∑

i

wi

σ2
i

|dk | exp

(
− |dk |2

2σ2
i

)
, (3.33)

where each diffusing species contributes to the histogramwith aweight 0 < wi ≤ 1 and∑
i wi = 1. The bell curve histogram can be fitted for ν = 1 or 2 dimensions with and

without a velocity component v. If the diffusion is isotropic, x- and y-displacements can
be pooled into a single data set which is advantageous if the statistics are inadequate.
The jump distance distribution on the other hand is more sensitive to discrepancies in
the data such as incorrectly chosen linking distance and noisy tracks. While imax can
be chosen automatically through hypothesis F-testing, it was forced to 1 in this case.
Diffusion was assumed to be isotropic with ν = 1 and the velocity taken as 0. The MSD
values σ2 obtained from the histogram analysis were subsequently fitted to a line to
extract the diffusion coefficient D:

σ2(k) = 2Dkta + ε (3.34)

ε is a measure for the fit accuracy affected by the localisation uncertainty and finite
camera exposure time [114].
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3.2 Results

3.2.1 Performance evaluation

Although initially developed as a framework for testing and developing, TrackNTrace
wasultimatelydesignedas a fully-featuredfluorescence imaging software. As ademon-
stration, its effectiveness in typical applications is evaluated and compared to two other
well-established programs: rapidSTORM, awidely used standalone software for PALM
and STORM, and ThunderSTORM, an ImageJ plugin which ranked first among several
dozen SMLM software packages in a recent comparative meta-study [97]. Simulated
fluorescence localisation microscopy movies of a Siemens star test structure were pre-
pared and the localisation quality and execution speed of each software was assessed.

(a) (b) (c) (d)

Figure 3.5: Simulated test structures for performance evaluation. (a) Sum intensity im-
age of Siemens star test structure at an average SNR of 3. (b) Zoom-in of inner spoke
region at SNRs of 1 (upper right) and 3 (lower left). (c) Reconstructed localisation histo-
gram of the same region at SNR = 3 with Gaussian rendering using TrackNTrace with
cross-correlation for candidate detection. (d) Execution speed test grid at SNR = 10.
All scale bars correspond to a length of 2 µm.

Fig. 3.5 shows an overview of the simulation course. If all frames of the movie are
simply summed up, which represents a wide-field image of the structure, no details are
visible, the edges are blurredout and the central spokepattern is completelyunresolved,
especially at low signal-to-noise ratios (SNR). A super-resolved localisation image of
the same region clearly reveals the amount of detail that was lost in the conventional
recording and restores the core structure. The rendering stylemakes use ofGaussian re-
weighting of all localisations. Here, a Gaussian PSF is added to the histogram instead of
simplybinningall positions. The emitter amplitude isproportional to thefitprecision so
that higher-quality localisations are represented to a greater extent in the reconstructed
object. The result quality is examined by calculating the Jaccard index (JAC), root-mean-
square error (RMSE), and the Fourier ring correlation (FRC). In the execution-speed test,
emitters are distributed on a grid in a regular fashion and at a very high SNR of 10. As
a consequence, the number of fitted positions becomes independent of the candidate
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detectionmethod, and thefitperformance –whichhas the largest influenceonexecution
speed – is emphasised. The respective graphs are displayed in fig. 3.6.
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Figure 3.6: Simulation performance evaluation results. (a–c) Overview of simulation
results: Jaccard index, root-mean-square error, and Fourier ring correlation of emitters
localised with different programs at various average SNR levels. TrackNTrace is eval-
uated using wavelet filtering and cross-correlation for emitter candidate detection. (d)
Execution time of programs on Siemens star and high-SNR emitter grid.

The Jaccard index, which almost completely depends upon the candidate detection
method, suggests that wavelet filtering is less suited for lower SNRs whereas TNT’s
cross-correlation and especially rapidSTORM’s difference-of-averages filter score con-
sistently well across the whole SNR range. All curves saturate at a relatively low JAC
of 0.65 which is understandable given the exponential emitter intensity distribution.
These performance differences, however, do not directly translate into a correspond-
ing change in fit accuracy when comparing JAC and RMSE. Here, rapidSTORM does
not benefit from its higher detection efficiency and loses to TrackNTrace using either
cross-correlation or wavelet filtering. This outcome suggests that a higher number of
low-signal localisations tends to have negligible impact on resolution improvement. Re-
gardless of these discrepancies, all software packages achieve virtually the same struc-
tural resolution which is given by the FRC. This result is unaffected by confining the
FRC calculation to different parts of the Siemens star, meaning that the result is not

72



3.2. Results

dominated by the layout of the structure itself. When it comes to execution speed,
TrackNTrace is on par with rapidSTORM and even surpasses it on the high-SNR grid
whereas ThunderSTORM takes an order of magnitude longer to finish. This comes
as a surprise given that rapidSTORM is programmed exclusively in C++, a testament
to TNT’s efficiency. Overall, TrackNTrace performs on the same level as established
programs and meets the demands currently imposed upon SMLM software.

3.2.2 Experimental examples

With TrackNTrace’s performance in synthetic benchmarks proving to be satisfactory,
the next logical step was to assess its viability in real experiments. Fig. 3.7 pictures the
outcome of a dSTORMmeasurement from amouse hippocampal neuron labelled with
anAlexa647-tagged antibody against theN-terminus of βIV-spectrin. Themovie,which
depicts the tubular membrane of an axon initial segment, was recorded and kindly
provided by Melanie Dannemeyer [112].
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Figure 3.7: dSTORM imaging of a mouse hippocampal neuron axon initial segment
(AIS). (a) dSTORM histogram of Alexa647-labelled βIV-spectrin in an AIS with wide-
field image for comparison. Inset: Normalised 1D intensity projection of rectangle.
Scale bar is 1 µm. (b) Fourier spectrum of intensity projection from inset region (upper)
and whole image (lower), showing the periodicity of the βIV-spectrin clusters.

While no features of any kind can be identified in the wide-field image, the STORM
reconstruction prominently displays the periodic spectrin-actin cytoskeletal structure
characteristic for the axon terminal membrane. Through the removal of dirt and non-
blinking aggregates by particle tracking, the resolution could be improved up to amax-
imum of about 20 nm for some of the spectrin clusters. The inter-cluster distance can be
determined by taking all intensity values along and near the structure’s backbone, pro-
jecting them along the wide axis, and calculating the Fourier transform Î(q). A sharp
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peak in the spatial frequency spectrum corresponds to a spacing of 1/q = 181 nm, the
same as discovered in earlier publications [115].
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Figure 3.8: Single particle tracking in black lipid membranes. (a) Example of Atto655-
DPPE diffusing in a BLM with overlaid tracks. (b) Diffusion analysis results. (c–e)
Displacement histograms and MSD curves with fit results.

The particle tracking module was evaluated by incorporating lipids and membrane
proteins labelled with Atto655 into an artificial black lipid membrane (BLM) spanned
over a polytetrafluoroethylene pore 120 µm in diameter. The labelled probes – either
DPPE, Cytochrome B5, or a monomeric subunit of the potassium ion channel protein
KcsA –were recordedwhile diffusing through the POPC/POPE BLM and trackedwith
both NearestNeighbor- and u-Track plugins.
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Using the previewer in combination with the very fast nearest-neighbour tracker
makes it possible to quickly fine-tune the most important tracking parameters such as
maximum particle linking distance or minimum trajectory length which then serve as
inputs for themore sophisticated but slower u-Track. This supervised trackingmakes it
possible to achieve a high level of tracking accuracy in a small amount of time without
having to repeat all analysis steps over and over. The diffusion coefficients obtained
by mean-squared displacement histogram analysis range from 9.1(1) µm2 s−1 for the
KcsA monomer to 11.5(1) µm2 s−1 for DPPE, in excellent agreement with earlier FCS
measurements [113].

To summarise, TrackNTrace is a versatile tool for the analysis of fluorescence micro-
scopy data. The user-friendly interface in combination with a powerful visual feedback
mechanismallows for a high degree of control andflexibility. Parameters can be quickly
adjusted and iteratively optimised instead of requiring the user to resort to educated
guessing. Small adjustments to existing routines as well as large-scale projects can be
implemented with relative ease due to the modular nature of the plugin schema. The
largeprevalence ofMATLAB in the life sciences ensures that scientists canquickly famil-
iarise themselves with the framework and gain access to a large array of useful methods
from the start.

3.3 Additional plugin development & experiments

TNT can quickly and easily be adapted to a diverse range of experiments. Apart from
supporting the data analysis performed during this thesis, it was also used to help
along with collaborations and other group members’ projects. The following section
will briefly summarise the most important ones.

3.3.1 Diffusion on membrane-coated silica beads

Membrane fusion is a complex process that is typically studied by observing the reac-
tion of differently labelled, sometimes surface-bound SUVs with each other. A simpler
approach towards such an assay is to use artificial silica beads and coat them with a
fluorescent lipid mixture, similar to a supported lipid bilayer. Beads brought in close
contact by chance or on purpose, e.g. through optical trapping, can be bleached in
specific places or doped with other fluorophores. The diffusive speed inferred from
position and magnitude of the changes in fluorescence intensity can be used to estim-
ate fusion contact zone size or fusion speed, as performed in a recent publication by
Savić et al. [2].
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To make sure the FRAP-based method would give robust enough measures of the
fusion contact zone, the bilayer diffusion coefficients of these beads was determined
independently by single particle tracking usingMOSAIC [116] and an earlier version of
TNT. Only the top cap of the beads, with a diameter of roughly 4 µm against the 6.5 µm
bead size, was imaged. The error made by projecting the molecules diffusing within
the spherical surface on the 2D camera grid before performing localisation and tracking
is 8% at most. The average diffusion coefficient obtained this way, 〈D〉 = 1.3(2) µm2 s−1,
is typical for a supported bilayer, with a broad range of values as depicted in fig. 3.9.
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Figure 3.9: Single particle tracking in silica beads coated with a 50:24.997:25:0.003 mix-
ture of DOPC/DOPE/Cholesterol/Atto655-DPPE (a) Image of single Atto655-DPPE
molecules in the coated bead bilayer. The blue circle marks the tracking area, the white
circle indicates the bead diameter. Scale bar is 1 µm. (b) The lipid diffusion coefficients
differ greatly between individual beads, with an average of 〈D〉 = 1.3(2) µm2 s−1. The
figure and the data used to create it was published in [2].

3.3.2 On-/off-state distribution in carbon nanodots

Carbon nanodots (CND) are carbon-based, fluorescent nanoparticles combining prop-
erties of organic dyes and quantumdots. They are extremely photo-stable, can easily be
tuned to a specific spectral range, and are bio-compatible in contrast to quantum dots.
Like their semiconductor analogues, CNDs show pronounced blinking with an on- or
off-state-duration distribution that follows a power law whereas organic dye states are
exponentially distributed [117]. On one hand, such a behaviour can be beneficial as
blinking can then be observed on any time-scale, but the overall spread of the on-/
off-timings, in the same vein, is much higher compared to conventional fluorophores.
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Understanding and thereby being able to modify this blinking property is crucial to
increase the viability of CNDs for techniques such as STORM and SOFI [118] which
depend on precise switching of molecules.
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Figure 3.10: Results of on-/off-state analysis obtained by TNT. (a) Example trace recor-
ded with an acquisition time of tmin = 70 ms at room temperature showing switching
behaviour. (b) Power-law state distributions obtained fromwhole samplewith fit using
the equation f (t) = a(t/tmin)−α + b. Data recorded by Syamantak Khan, analysis and
figure done by Alexey Chizhik (review pending).

When imaging surface-immobilisedCNDs, theon- andoff-statedistribution caneas-
ily be extracted with TrackNTrace by particle tracking. CNDs are localised and tracked
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within a radius of r = 2 px to account for sample drift and jitter with a certain detection
gap size of N frames. On- and off times can then be determined simply by collecting
the lengths of all continuous localisation events and gaps. The time-scale of both on-
and off-distributions is limited by the camera acquisition time ton/off,min and the max-
imum gap size N · tframe. Hundreds of emitters can be imaged at the same time, and a
statistically robust amount of data can be collected within seconds – much faster than
any FCS experiment, for example.

To determine if CNDs could be viable for photo-switching experiments at cryogenic
temperatures, their blinking behaviour at 300 K versus 89 K in vacuum was determ-
ined. With liquid-nitrogen cooling, fluorophore photo-stability is generally increased
while the probability for a triplet-state transition is decreased at the same time. This
reduces the applicability of organic fluorophores in such cases which is one reason car-
bon nanodots and quantum dots have seen more interest in recent years. The results
of such an experiment are depicted in fig. 3.10, showing an exemplary fluorescence
trace together with the state analysis. While the TNT routine was written by myself,
the data was recorded by Syamantak Khan and both the analysis as well as the figure
itself was provided byAlexey Chizhik. As expected, the CNDs observed in this case ex-
hibit power-law-distributed blinking. Decreasing the temperature naturally prolongs
the time that the CND stays in the on-state whereas the off-times shows no such be-
haviour. This supports the idea that the fluorescence intermittency of CNDs is reliant
on surface charge transfer via electron tunnelling which is unaffected by temperature
change and already known to occur in ordinary quantumdots [119]. Calibration objects
for STORM and SOFI are being prepared at the moment to determine how well-suited
these probes are for super-resolution microscopy.

3.3.3 Membrane signalling protein activation in Dictyostelium
discoideum

Dictyostelium discoideum is a so-called “social amoebae”, a slime mould composed of
single, independent cells that can organise into a multi-cellular organism if starved for
food. Themechanism allowing the cells to synchronise and cluster is based on secretion
of cyclic adenosinemonophosphate (cAMP).When detected by receptor proteins on the
cell membrane, a signalling cascade is activated which in turn triggers a reorganisation
of the whole cytoskeleton. The D. d. cells begin to migrate within the cAMP gradient
towards the strongest concentration, a process known as chemotaxis. As D. d.’s gen-
ome is fully sequenced, it has become the prime model organism for cell sensing and
migration, with the latter being similar to human cancer cells [120]. Learning how these
amoebae survey and move through their surroundings is therefore highly beneficial.
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The signal transduction chain ofD. d. is made up of a large, highly complex protein
network which is still not fully understood, forcing researchers interested in the topic
to concentrate on small subsets of the complete protein family. Together with Marco
Tarantola’s group from the Max Planck Institute for Dynamics and Self-Organization,
I collaborated on a project focused on investigating the activation rates of RasG, a pro-
tein within the Ras subfamily. In D. d., Ras is responsible for relaying cAMP activation
events between a receptor’s transmembrane domain and the cytosolic part of the trans-
duction network. RasG is a GTPase, or G-protein, which can exist in two structurally
distinct forms. In its “off”-state, RasG is bound by guanosine diphosphate (GDP) and
connected to the plasmamembrane. After upstreamactivation4 of a differentG-protein,
the expression of guanine nucleotide exchange factors (GEF) is promotedwhich in turn
switches RasG to an “on”-state, swapping GDP with its triphosphate analogue, GTP.
The protein can be turned off again by GTPase-activating proteins (GAP) hydrolysing
the GTP [121].

Ras-GDP

GEF
GAP

GFP-Raf
GTP
GDP

Ras-GTP
Membrane

On-state Off-state Intermediate

Figure 3.11: Presumed diffusive states of RasG in Dictyostelium discoideum. In its active
form, RasG is GTP-bound by reaction with a nucleotide exchange factor (GEF) and is
ready to interact with other proteins. It is switched off by GAP, hydrolysing GTP to
GDP, but stays membrane-bound. Instead of labelling RasG directly, the D. d. cells
are genetically modified to express RBD-Raf–GFP, a green-fluorescent-protein variant
which binds to RasG-GTP.

When active, RasG binds and interacts with other proteins responsible for different
parts of the cell migration engine. Evidently, it should be possible to extract on- and
off-switching rates bymeasuring the diffusion of RasG and the probabilities to occupy a
specific diffusive state with particle tracking. Mathematically, the trajectory data can be
expressed as experimentallymeasuredoutcomesof ahiddenMarkov chainmodel [122].
Here, the observed particle is thought to occupy a state si(Di) at time t, with the prob-
ability pi j to change to – or stay in – a state s j(D j) between t and t + ∆t. The transition

4“Up” refers to the position of a signal protein within the transduction hierarchy. The highest point,
associated with the earliest changes, is occupied by the cAMP receptors.
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depends solely on the present state and is therefore memoryless (“Markovian”) but
both the currently observed state as well as the total number of states is not explicitly
known to the observer (”hidden”). They can, however, be determined approximat-
ively by computational optimisation using iterative Monte Carlo modelling such as the
variational-Bayes algorithm (vbSPT, [123]) which was employed in this thesis.

The schematic of the various possible binding and diffusion states of RasG is laid
out in fig. 3.11. It is important to note that instead of labelling RasG directly, D. d. is
genetically modified to express RBD-Raf-GFP which in turn binds to RasG-GTP. RBD-
Raf-GFP is a binding domain engineered from Ras-related proteins spliced together
with green fluorescent protein (GFP) which can be excited by a λexc = 488 nm laser.
The reason for doing so is the concentration of RasG within the cell which is too high
to conduct any single-molecule experiments. While the protein expression level can
be reduced, it was decided that this could alter the cell function too much and so an
indirect labelling scheme was chosen instead [124, 125].

To observe RasG cycling through on- and off-states, D. d. cells were placed in a
microchannel and subjected to a weak cAMP gradient of ∆c/∆x = 4 nMµm−1. The
gradient was created by flushing two solutions of cAMP and normal buffer through an
array of flow resistors interconnected in such a way as to mix both fluids in discretised
steps from 0% to 100%. The cells are introduced further downstream and then tracked
whilemoving between the two channelwalls. Fig. 3.12 shows a diagramof this gradient
mixer together with a densely labelled fluorescent cell moving towards the gradient.
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Figure 3.12: Gradient mixer with moving Dictyostelium discoideum cell. (a) Gradient
mixer microchannel made by fusing a polydimethylsiloxane cast onto a conventional
glass coverslip. (b) Fluorescently labelled D. d. cell moving through the channel to the
top right in the direction of the gradient. Images taken with an iXon-885DU EMCCD
(Andor, Ireland) at an acquisition speed of 200 Hz. Scale bars are 2 µm.

Using TNT in conjunction with vbSPT, the diffusive state analysis was carried out
both on thewild typeD. d. cells aswell as a positive control (Ras-G12V, [125]). The latter
was modified to express a constitutively active form of RasG which cannot be hydro-
lysed and is permanently switched on. TNT’s preview function is especially helpful in
this case as localisation and tracking settings differ from cell to cell depending onmigra-
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tion speed or particular labelling efficiency, and unsuitable recordings can be identified
immediately.

State

DWT [µm2 s−1] 0.33 0.41 1.13 1.69 2.97
pWT 0.06 0.10 0.06 0.25 0.53

Dpos [µm2 s−1] 0.30 0.62 0.76 1.26 –ppos 0.18 0.25 0.30 0.27

Table 3.2: Result of vbSPT analysis for wild type and positive control D. d. cells. pi is
the probability to find the fluorophore in the respective diffusive state.

The results are given in tab. 3.2. The diffusion coefficients of both cell types are
roughly the same, but the fastest, possibly cytosolic diffusion observed for theWT cells
is absent in the positive control. In similar fashion, the occupancies of the slower diffus-
ive states rise, indicating increased RasG activity. Diffusion coefficients of 0.3 µm2 s−1

to 1.3 µm2 s−1 are typical for membrane-associated proteins, but the cytosolic diffusion
of the RBD-Raf-GFP marker was expected to be at least an order of magnitude higher.
This raises the question if the cytosolic fraction is misrepresented by or even completely
missing in the tracking data.
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Figure 3.13: MSD plots for positive and negative D. d. controls with diffusion coeffi-
cients and respective correlation coefficients. (a) Positive control. (b)Negative control,
showing no change in diffusion coefficients except for a missing faster component, the
opposite of what can be expected for unbound RBD-Raf-GFP.
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To quantify the fluorophore’s randommotionwhen not bound to RasG and increase
the likelihood of obtaining accurate transition rates by identifying all unbound, non-
membrane states, a negative control was prepared. Here, RasG was knocked out and
replaced by the permanently inactive variant RasGS17N. If the labelling scheme and
the assumptions about RasG’s diffusive states were correct, the negative control would
have shown either no activity at all, since RBD-Raf-GFP could not have been recruited
to the membrane, or only display one fast diffusion component. When performing the
experiments, however, the cells looked identical to the positive control at first glance
and a multivariate displacement histogram analysis confirmed this suspicion, as can
be seen in fig. 3.13. One reason for this unexpected behaviour is a possible affinity of
RBD-Raf-GFP for similar proteins within the Ras family, e.g. RasC [126]. Given the
negligible change in diffusion coefficients, it is not unlikely that the particle motion
is the result of unspecific binding and completely unrelated to RasG activity. In both
cases, the assumptions made about how to approach the project would be completely
wrong and allmeasurementswould have to be repeatedwith directly labelled RasG, for
example. As a consequence, further experiments were put on hold for the time being.
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Chapter 4

Conclusion & outlook

Improving fluorescencemicroscopy to a point where structures and dynamic processes
can be visualised at the nanometre scale does not only require clever new experimental
techniques, but advanced data processing methods as well. To this purpose, the last
chapter introduced TrackNTrace, an open-source framework for the analysis of fluores-
cencemicroscopy imageswritten inMATLAB. Originally designed as a localisationmi-
croscopy and particle tracking tool, TrackNTrace is readily extendible through a simple
plugin system. The software iswritten to be understood and operated by programming
novices and researchers previously unfamiliar with this field, providing many state-of-
the-art implementations of important algorithms out-of-the-box. An extensive visual
feedback mechanism allows inspecting the program’s output at all stages of the pro-
cessing pipeline, facilitating parameter optimisation and error recognition. To validate
these concepts, TrackNTrace was set against similar software applications and found to
perform comparable to or even better than them. The program has been a great help in
analysing many of the experiments presented in this thesis and will hopefully turn out
to be similarly beneficial for other scientists.

The main focus of this work lies on enabling diffusion measurements in sub-diffrac-
tion-sized vesicles. The aptly nameddynaMIET relies onmetal-induced energy transfer
determined by fluorescence correlation spectroscopy to resolve the motion of fluores-
cently labelled lipids below the resolution limit. With MIET being a near-field effect,
the liposomes have to be brought into close proximity to the metal surface. For this
purpose, a highly specific, versatile, and reproducible surface passivation protocol was
developed. The assay combines the adaptability of previous PEG-based approaches
without requiring any kind of incubation buffer or solvent that can destabilise the coat-
ing. Unspecific binding is effectively prevented, tethered vesicles retain their spherical
shape, and the functional groups can be changed with ease if needed, e.g. to exper-
iment with cushioned supported bilayers. Although the preparation has turned out
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4. Conclusion & outlook

well, the same, unfortunately, cannot be said about the experiment itself. The effective
photon yield and stability of the organic dyes is lower than expected from previous
experiments by several orders of magnitude – too low to calculate a proper intensity
correlation. This is due to the fact that the fluorophores not only photo-bleach much
faster than their non-conjugated variants, but can be effectively locked into a dark state
which reduces their average brightness considerably. As this happens even at very low
excitation intensities and for dyes known not to show triplet state transitions in solu-
tion, the most likely reason is dye-lipid interaction, for example quenching by the polar
lipid headgroups.

Without being able todetermine andeliminate the cause behind themembranedyes’
weak performance, a solution-based approach was developed which uses polarisation-
resolved FCS to recover lipid diffusion coefficients. As vesicles automatically move
in and out of the excitation focus, the signal quality is less of an issue compared to
dynaMIET, where it is necessary to scan each individual vesicle one at a time. How-
ever, these measurements would require a label possessing a fixed bilayer-to-dipole
orientation which makes it possible to determine its angular displacement. The fluoro-
phore I have been using in this work, designed in the lab of Andrey Klymchenko, not
only meets this criterion, but apart from that is also a highly efficient membrane stain,
exhibiting exceptional photo-stability, photon yield, and membrane specificity. To de-
scribe this symmetric-top rotor diffusing through the spherical bilayer, amodel has been
developed which also incorporates the vesicle size distribution. While the acquired
rotational-diffusion correlation functions are fit very well by the theoretical curves, the
diffusion constants thus obtained are heavily biased towards higher values, especially
for large liposomes. Several potential artefact sources have been deliberated but none
could explain the results adequately.

Although a more successful outcome would certainly have been preferable, the ro-
tational diffusion experiments have still proven to be useful thanks to the squaranine
membrane dye discovered in the process. As the fluorophore has all the qualities that
the organic dyes used in the dynaMIET experiments lacked, it could turn out to be
the key factor in solving the photon yield issues. By using circularly polarised laser
light, the orientational dependence of the emission can be eliminated and the measure-
ments conducted the same way as before. The advantages of pursuing dynaMIET in
favour of other techniques are clear: It can be combined with any standard vesicle sur-
face assay and adapted to particular experimental conditions by choosing the optimal
metal surface. Instead of using gold, as done in this case for vesicles up to 100 nm in
diameter, MIET can be tweaked towards sub-nanometre sensitivity. Furthermore, the
method is single-molecule sensitive, so that diffusion could potentially be estimated on
a per-vesicle basis given sufficient emission intensity. Finally, calculating an average
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lifetime in addition to the intensity correlations allows us to immediately identify and
filter deformed vesicles which is impossible with other techniques.

As has become clear during the course of this thesis, single-moleculemeasurements
in sub-diffraction-sized vesicles present a difficult challenge due to a decline in fluoro-
phore performance which could not be anticipated from previous fluorescence micro-
scopy experiments. Despite some setbacks, I am confident that the ideas and findings
gathered in this work provide the necessary foundation to successfully probe the dif-
fusion of lipids and proteins in membranes beyond the microscopic scale.

85



Appendix A

A.1 Additional figures and tables
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Figure A.1: Normalised average intensity traces of lipid-conjugated dyes.
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A.1. Additional figures and tables
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Figure A.2: Polarisation-resolved FCS curves of Rp = 25 nm vesicles labelled with DiD.
The curves were purposefully fitted without a triplet state model, demonstrating how
clearly a triplet transition previously unaccounted for is visible in the correlation curves.
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A.2. Rotational diffusion FCS functions
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