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Abstract

This thesis presents novel results in the areas of closed loop electrophysiology and neuronal
population coding. This work begins by presenting the first known attempt to control the
spike rate of a neuron or neurons using a feedback controller that drives a stochastic pho-
tostimulus. Using this controller, in vitro experiments were performed that look into the
response of a population of cortical neurons to subtle changes in the mean of a correlated,
stochastic photostimulus. This work then presents a numerical examination of how stimuli
targeting specific elements of a neuron’s structure, referred to as “subcellular targeting,”
affect the response speed of the population, the action potential onset of its constituent neu-
rons and their effective passive bandwidth. The results presented here demonstrate that it is
indeed possible to regulate the spike rate of a neuron or neurons using a feedback controller
that scales the mean and variance of a correlated, stochastic photostimulus. Furthermore,
using this controller, trial-based experiments were implemented in the laboratory. These
demonstrate that an in vitro population of cortical neurons can provide robust albeit slow
responses to subtle changes in the mean of a correlated, stochastic photostimulus. Finally,
in numerical experiments, mean modulated, correlated, stochastic photostimuli were applied
to either the entire cell, the soma or the basal dendrites of a morphologically realistic con-
stituent neuron. The results show that this subcellular targeting of constituents produces a
faster population response when the soma is targeted, followed by the basal dendritic then
the global target. Although a strong statistical argument is difficult to make, the results do
suggest congruent increases in the response speed of a neuronal population under subcellular

targeting, the onset rapidness of its constituent neurons and their passive bandwidths.
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Introduction

An ensemble of neurons working in concert can not only encode information, but can do it
faster than a neuron working alone. Termed “population coding,” this strategy has been
shown to enable “ultra-fast,” high bandwidth encoding of signals that modulate the mean
of a correlated, stochastic process. In other words, a population of neurons can respond to
a small change in the mean of its inputs within a millisecond, and the signals that it can
encode can have frequencies in the hundreds of Hertz (Boucsein et al. 2009; Brunel et al.
2001; Fourcaud-Trocmé et al. 2003; Higgs and Spain 2009; Ilin et al. 2013; Kondgen et al.
2008; Naundorf et al. 2005; Ostojic et al. 2015; Tchumatchenko et al. 2011; Wei and Wolf
2011). This work looks at these results from a new perspective: Whether the speed of the
population response is influenced by the application point of the stimulus, what I refer to as
“subcellular targeting.” This work also looks into the size of the stimulus used to generate
the ultra-fast response, namely whether the size of the modulation matters. In addition to
this, this thesis presents work done to extend upon current closed loop electrophysiological
techniques (Bolinger and Gollisch 2012; Hodgkin et al. 1952; Neher and Sakmann 1976;
Newman et al. 2015; Sharp et al. 1993; Wallach 2013; Wallach et al. 2011), to produce an
experimental set up capable of controlling the rate of activity of a neuron or neurons under

a correlated, stochastic stimulus.

This work extends upon emerging techniques in closed loop electrophysiology. More
specifically, it examines the use of a “closed loop” technique to regulate the rate at which a
cell generates action potentials (a.k.a spikes), the electrical impulses of a few milliseconds in
length that a neuron uses to communicate with its downstream counterparts. Closed loop
electrophysiology is, in its most abstract form, the application of a feedback loop between
the measurement of potential or current on or within a cell and the application of a stimulus
to said cell. It encompasses techniques that allow experimentalists to control e.g. the voltage
at or current through the membrane of a cell (Hodgkin et al. 1952; Neher and Sakmann 1976;
Sharp et al. 1993) or the probability of response of a neuron (Bolinger and Gollisch 2012;
Wallach 2013; Wallach et al. 2011). More recently, Newman et al. (2015) have shown that
it is possible to regulate the spike rate of a cell using a deteministic stimulus. In this work,
I describe a novel experimental configuration, that demonstrates that this is also possible

using a correlated, stochastic process.

This new closed-loop approach was crucial to the implementation of population response



2 INTRODUCTION

experiments I performed in the laboratory. These experiments looked into how an in vitro
neuronal population (i.e. a cell culture) responds to very small changes in the mean of a
correlated, stochastic process. This is inspired by previous work performed by our group
(Tchumatchenko et al. 2011), in which experiments demonstrated that a neuronal popu-
lation could detect, within a millisecond, a change in the mean of a correlated, stochastic
stimulus. To achieve this fast response, these experiments employed a 20 pA step in the
stimulating current, which corresponds to a single strong synaptic (neuron-to-neuron) in-
put. The experiments described in this thesis take a slightly different approach. Rather
than defining an absolute step size, the size of the step is defined relative to the mean of
the correlated, stochastic process required to generate a spike rate of 1 Hz. Furthermore,
the chosen size of the step relative to the mean is the smallest observed that produced a
response. The results of these experiments demonstrate that a small step size produces a
slow neuronal population response speed. They also, however, provide testament to the

extreme robustness of the population code.

Finally, this thesis discusses the idea of “subcellular targeting,” i.e. stimulating a specific
portion of a neuron’s structure. The ubiquitous stimulation techniques of woltage clamp
(Kenneth Cole') and current clamp (Hamill et al. 1981) typically target the soma of a
cell — its main body — by either manipulating the membrane potential or by injecting a
current. A neuron, however, comprises not just a soma, but also dendrites and an axon.
The dendrites are branched projections that receive inputs, which are integrated by the
soma. The output is the axon, a longer projection whose initial segment is the point at
which an action potential is initiated. Using the newer and increasingly popular optogenetic
techniques (Boyden et al. 2005; Nagel et al. 2002; Nagel et al. 2003), all of these subcellular
components are potential targets. With this technique, one can infect a cell such that it
produces light gated ion channels in its membrane, which open and close in response to a
photostimulus, allowing an ionic current to flow through the cell membrane. In this work, I
look into how the response of a neuronal population is affected by the subcellular targeting
of its constituents. The effect of subcellular targeting appears to be predicted, somewhat, by
the literature that relates the neuronal population response to the onset of a constituent’s
action potential and the electrical loading of its dendritic tree. One property of a neuron’s
action potential, its onset rapidness, i.e. the rate at which the spike initiates, has been
shown to influence the speed at which an ensemble of said neurons can respond to changes
in its inputs. Namely, the faster a constituent neuron’s action potential onset, the faster
the response of the population (Eyal et al. 2014; Fourcaud-Trocmé et al. 2003; Ilin et al.
2013; Naundorf et al. 2005; Wei and Wolf 2011). A rapid onset is thought to be the product
of fast opening sodium channels, i.e. the channels that open at the beginning of an action
potential, allowing positive, ionic charge to flow into the cell (Fourcaud-Trocmé et al. 2003).

However, there is theoretical evidence that points to cell morphology having an important

1The invention of voltage clamp is attributed to Kenneth Cole by Purves et al. 2004



influence, more specifically, that the size of a neuron’s dendrites is proportional to the onset
rapidness of its action potential (Eyal et al. 2014). They claim that, when one stimulates a
cell at the soma, the dendritic tree represents a large current sink into which action potential
onset currents flow. The larger this sink, the better its ability to draw spike onset currents,
the faster the onset and the faster the population response. If one were to stimulate the
dendritic tree such that ion channels on the dendritic membrane open, allowing current to
flow into the cell through the dendrites first, then the sink effect of the dendrites should
be reduced, if not eliminated. This points to the idea that, when it comes to population
encoding, the point of input matters. This work demonstrates that the subcellular targeting
of constituent neurons effects the speed with which a neuronal population response and also
takes the first steps in understanding what lies behind this change in response speed.

The work done to examine subcellular targeting, modulation size and spike rate control
is presented by first outlining the key literature in Chapter 1. This is followed by Chapter 2,
which describes the experimental methods and materials employed during the course of this
work. Chapters 3 and 4 present the experimental results. The former looks into the results
of feedback control, the latter subcellular targeting and modulation size. Finally, Chapter 5

discusses the results, presents the final conclusions and future work.
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Chapter 1

Background

The three key themes of this work are 1) closed loop electrophysiology, 2) the response
speed of an in vitro neuronal population to subtle changes in stimulus and 3) the relationship
between the response speed of a neuronal population, the onset rapidness of its constituents,
their passive bandwidth and how this relates to the targeting of specific elements of a
neuron’s structure, what I refer to as “subcellular targeting.” The background material
relating to these three topics is presented in this chapter. Sections 1.1 and 1.2 present
literature on closed loop electrophysiology and the proportional-integral-derivative (PID)
controller respectively. This material was used in the implementation of a novel closed loop
electrophysiological system, capable of regulating the spike rate of a neuron or neurons under
a correlated, stochastic photostimulus. The closed loop system was used in the laboratory
to measure the response of an in vitro neuronal population to subtle changes in the mean of
a correlated, stochastic photostimulus. Section 1.3 follows. This presents the literature on
onset rapidness and population coding. This is followed by Sect. 1.4, which summarises the
background literature on the effects of dendritic loading on onset rapidness. The material
in these last two sections is key to understanding the numerical experiments performed
during the course of this work, which look into the relationship between neuronal population
response, the onset rapidness of constituent neuron’s, their passive bandwidth and how this

relates subcellular targeting.

1.1 Closed Loop Electrophysiology

‘Closed loop’ electrophysiology describes, in essence, the hybridisation of neuron and silicon,
whereby a neuron or neurons are stimulated and their response is recorded; this response
is then used to modify the stimulus — i.e. it is fed back. The idea behind an in silico
feedback path in a neuronal circuit forms the weft of electrophysiology’s historical fabric.
The arguably most famous implementations of this idea, the “voltage clamp” (Kenneth
Cole; Hodgkin and Huxley 1952a) and patch clamp (Neher and Sakmann 1976), are impor-

tant electrophysiological techniques, which incorporate electronic feedback circuits to clamp
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membrane voltage. The techniques of voltage clamp and patch clamp led to the “dynamic
clamp” (Sharp et al. 1993), where e.g. voltage is recorded from a cell or cells and currents
are injected (fed back), calculated using e.g. membrane or synaptic conductances modelled
in silico. Wagenaar (2005) extended the dynamic clamp idea by employing an in silico feed-
back path adjusting an electrical stimulus so as to reduce bursting within a neuronal culture.
The “response clamp” (Bolinger and Gollisch 2012; Wallach 2013; Wallach et al. 2011) fol-
lowed, generalising the idea that one can control the response probability of a neuron using
feedback control of the stimulus. Eventually these closed loop techniques were employed in
combination with optogenetics (Newman et al. 2015) to show the feedback control of a spike
rate using a deterministic stimulus. Indeed, voltage clamp, patch clamp, dynamic clamp and
response clamp form a continuous line of techniques that led to what is today described as
“closed loop electrophysiology” or, in a broader context, “close loop neuroscience” (Arsiero
et al. 2007; El Hady 2016; Grosenick et al. 2015; Potter et al. 2014): The insertion of a
silicon-based feedback path between the output of a cell or cells and their input. In this
work, I extend on the work of Newman et al. (2015), Wagenaar (2005), and Wallach et al.
(2011) by demonstrating that an adaptive proportional-integral-derivative (PID) controller
can be used to drive a stochastic stimulus and control the rate of neuronal activity measured

at a probe point within a cortical culture.

1.2 PID Control

‘Feedback control’ is the term used, when a controller regulates the output of some system
or ‘plant’ by feeding said plant’s output, after some manipulation, back to its input. Such
a controller performs ‘closed loop’ control, in contrast to ‘open loop’ control, where the
controller drives the input of the plant without knowledge of its actual output. One exceed-
ingly popular closed loop controller is the proportional integral derivative or PID controller.
First treated academically in the 1920’s and 1930’s (Hazen 1934; Kiipfmiiller 1928; Minorsky
1922; Nyquist 1932), the PID controller has become “the standard tool for solving industrial
control problems” (Astr'dm and Hagglund 2006). The PID controller is described as

u(t) = Kye(t) + K, /O Cet)dt + Ko dil(tt), (1.1)

where e(t) is the controller error; K}, K; and Kq are the P, I and D coefficients respectively;
and u(t) is the output of the controller used to drive the plant. The controller (Fig. 1.1)
calculates the error, e(t), between a plant’s output, y(¢), and the target output, r(¢), and
propagates this along three different paths, where it is amplified (proportional - P), inte-
grated (I) or differentiated (D). The P path weights the instantaneous error, the I path the
history of the error and the D path the ‘future’ error (i.e. the instantaneous error slope).
A gain is applied to each path, and the summed result is fed back to the plant’s input as
the control signal. The PID controller is tuned by adjusting the gains (a.k.a. weights or
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Figure 1.1: The proportional integral derivative (PID) controller (Image: Urquizo 2011),
where r(t) is the target output, y(t) is the actual output of the plant, e(¢) the controller
error and u(t) is the output of the controller used to drive the plant. P, I and D are the
proportional, integral and derivative parts respectively. K, K; and K are the proportional
integral and derivative coefficients respectively.

coefficients), K, K; and Kgq.

In industrial processes, the exact behaviour of the plant is often not only non-linear, but
also unknown (Astrém and Hiagglund 2006; Astrom and Murray 2008). Thus, many meth-
ods have been developed to adjust (or ‘tune’) the PID controller weights for the unknown
plant. These involve either heuristic or adaptive tuning. Heuristic methods typically involve
performing tests on the plant to identify response parameters such as lag or rise time, then
calculating the PID coefficients using heuristics (most notably Astrém and Hagglund 2006;
Chien et al. 1972; Cohen and Coon 1953; Ziegler and Nichols 1942). Adaptive methods
adjust the PID weights while the controller and plant are in service. Typical approaches can
be categorised as ‘adaptive control’, where the PID coefficients are adjusted continuously,
online until reaching some convergence point; and ‘gain scheduling’, where a set of PID
coeflicients are precomputed for different ranges of plant dynamics. For the purposes of this
work, the former approach has been taken, more specifically, the “adaptive interaction” PID
controller (Cominos and Munro 2002; Lin et al. 2000).

The “adaptive interaction” PID controller (Fig. 1.2, Lin et al. 2000), performs gradient
descent, minimising the control error as a function of the PID coefficients K, K;, K4. The
approach separates the closed loop control system into four separate but interacting (con-
nected), single-input single-output, linear devices: P, I, D and plant. Using the theory of
adaptive interaction (Brandt and Lin 1999), where the PID coefficients are viewed as the

interaction parameters, they derive the adaptation rules

Kp = —’yeyp
K;=—yey, (12)
Kq=—veya,

where + is the learning rate, e is the controller error and y,, y; and yq are the outputs (before

weighting) of the unity gain (proportional part), derivative and integrator respectively.
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Figure 1.2: The adaptive PID controller topology. Here, the output y of the ‘plant’ (con-
trolled system), G(s), is subtracted from the desired output r, to produce the error signal
e. This error is fed, in turn, to the controller, comprising unity gain, derivative (‘s’) and
integrator (‘1/s’) paths. The adaptive portion of the circuit requires an adaptation rate, ~.

1.3 Population Coding & Onset Rapidness

Population coding describes a strategy by which neurons work in concert to code information.
A significant body of evidence points to a relationship between the speed with which such
a population can respond to a stimulus, and the onset speed of its constituents’ action
potentials. The following sections describe both population coding, onset rapidness and

their relationship, beginning with the action potential.

1.3.1 The Action Potential

Neurons, the cellular building blocks of our nervous system and brain, can communicate with
each other through their action potentials (AP). These APs, first described by Emil Heinrich
Du Bois-Reymond in 1848 (Pearce 2001), can be measured electrically, at the membrane
of a cell, as jumps of tens of millivolts over a few milliseconds. In the given biological
context, this behaviour is somewhat brief and sharp and has earned the action potential the
pseudonym ‘spike’. The act of producing a spike is thus called ‘spiking’. Figure. 1.3 plots
an example of an action potential recorded from the giant axon of the squid.

The action potential is the composition of activity from ion channels and pumps embed-
ded in the membrane of the neuron. These facilitate the flow of charged ions in and out
of the cell, thus hyperpolarising and depolarising the cell, generating respectively the up-
and down-swing observed in an action potential. A diversity of channels has been identified
to date, each with different properties. These channels fall into two groups: voltage gated,
which open or close depending on the membrane potential; and ligand gated, which open
and close in response to chemical signals — i.e. those involved in synaptic transmission.
The ionic currents involved in action potentials are comprised of Nat, Ca?t, Kt and CI—

ions. Typically Na™ channels are responsible for hyperpolarisation (in some cells this role is
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Figure 1.3: The first known recording of an action potential using a microelectrode inserted
into a cell (Image: Hodgkin and Huxley 1939, p.711). This particular recording was taken
from the giant axon of the squid, Loligo forbesi (Hodgkin and Huxley 1939).

filled by Ca?*) and KT for depolarisation. Ca?* channels typically modify the shape of the
action potential and C1~ channels control excitability (Bernstein 1902; Fatt and Katz 1953;
Hodgkin and Huxley 1952d; Miller and White 1980; Neher and Sakmann 1976; Purves et al.
2004).

1.3.2 Onset Rapidness

One parameter used to characterise an action potential (AP or spike) is its onset rapidness.
Onset rapidness describes how quickly an action potential rises immediately after it has
been triggered. One method used to quantify onset rapidness is the slope of the AP’s phase
plane plot at some, specified gradient. Eyal et al. (2014) used this approach in their work.
They took the example of three simulated action potentials (Fig. 1.4a) and compute their

phase plane plots (Fig. 1.4b). This is simply the spike potential (v(t), horizontal axis) plotted

dv

&, vertical axis). These phase plots are then used

against the gradient of the spike potential (
to estimate the onset rapidness by computing the gradient of the phase plane plot % (%)

f 22 in this case 2 = 10mV ms~!. One sees

(Fig. 1.4b inset, solid lines) at a specific value of %7, T

in this example that, if the correct point of onset rapidness measurement is chosen, a sharper
‘kink’ (Fig. 1.4a inset) corresponds to a higher phase plane plot gradient (Fig. 1.4b inset)
and therefore a higher onset rapidness value. Onset rapidness plays a key role in population
coding. This role is discussed in detail in Section 1.3.4. First however, Section 1.3.3 discusses

population coding.

1.3.3 Population Coding

The mammalian nervous system is fast. In 5 — 10 ms sensory stimuli can reach the cortex
(Swadlow and Hicks 1996), in 30 ms a perceptual decision can be made (Stanford et al. 2010),

in 150-200 ms, a natural image can be processed (Thorpe et al. 1996). However, experimental
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Figure 1.4: One method of measuring onset rapidness (Image: Eyal et al. 2014, p.8065).
a) Three superimposed simulated action potentials. a inset) Contrasting the onset ‘kinks’
of each of the action potentials ) The corresponding phase plane plots. These show the
potential of the spike on the horizontal axis against the gradient of this potential on the
vertical axis. b inset) The reference point chosen to measure the phase plane plot’s gradient,
in this case, is dv/dt =10mV ms™! (black dashed line). The dashed coloured lines correspond
to the phase plane plots. The solid coloured lines correspond to the gradients of the phase
plane plots at the onset rapidness measurement point. The sharper the ‘kink’ the faster one
expects the onset rapidness rapidness to be.

evidence shows that neurons generate action potentials at low rates and sparsely (Brecht
et al. 2003; Brecht and Sakmann 2002). Thus, to achieve such high processing rates, it has
been suggested that neurons act in concert as a population or ensemble, hence “population
coding.” Indeed, evidence of such behaviour has been observed experimentally in e.g. sensor
and motor areas of the brain. For example, arm movement was shown to be encoded in a
population of motor cortical neurons (Georgopoulos et al. 1986), eye movement in a neuronal
population in the superior colliculus (Lee et al. 1988; Sparks et al. 1976). Maunsell and Van
Essen (1983) found a population in the visual area middle temporal tuned to the direction
of movement of observed objects. Given this, neuroscientists have sought to understand
these populations and how they could be encoding information (Paradiso 1988; Pouget et
al. 2000; Salinas and Abbott 1994; Seung and Sompolinsky 1993), how correlated noise
effects the accuracy of such codes and, depending on its structure, can improve or limit the
code’s accuracy (Abbott and Dayan 1999; Averbeck et al. 2006; Sompolinsky et al. 2001;
Vogels 1990; Wu et al. 2002; Zohary et al. 1994). This lead, of course, to work in measuring
the correlation structure of noise within the brain (Cohen and Kohn 2011; Ecker et al.
2010; Zohary et al. 1994). In parallel, experimentalists have tried to measure the speed and

bandwidth of populations, i.e. how quickly a population can respond to external stimuli.

1.3.3.1 Speed & Bandwidth

Of the experimental work to date, one area of focus has been the encoding bandwidth of

neuronal populations under mean and variance modulated noise signals. Modulating the
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mean could correspond to the effect of synaptic transmission on post synaptic neurons,
whereas modulating the variance could correspond to the stimulation of networks where
excitation and inhibition are balanced, as is implied by observed behaviour in the neocortex
(Okun and Lampl 2008). In this case individual neurons observe a change in variance at their
inputs, but little change to their mean. Evidence shows that in vitro populations are more
sensitive to mean modulation of a correlated noise signal than to modulation of its variance
(Tchumatchenko et al. 2011). Also using correlated noise, Boucsein et al. (2009) found
that populations could phase lock to sinusoids modulating either mean or amplitude for
frequencies of up to 2200 Hz and ~100 Hz respectively. Koéndgen et al. (2008) found similar
results for sinusoids modulating the mean of a correlated noise signal. In the uncorrelated
noise case Silberberg et al. (2004) demonstrated that variance modulations of a noise signal

could be better encoded that mean modulations.

1.3.4 Onset Rapidness Influences Population Encoding Speed

A wealth of experimental, theoretical and numerical evidence points to a relationship be-
tween the encoding bandwidth of a neuronal population and the action potential (AP) onset
rapidness of its constituent neurons. From the work of Brunel et al. (2001) to more recent
experimental work (Ilin et al. 2013), the evidence shows that neuronal populations are capa-
ble of encoding information at frequencies of up to hundreds of Hertz, when this information
modulates a correlated noise signal. The upper bound of frequencies that can be encoded,
the cutoff, is defined by the form of the action potential of the constituent neurons, more
specifically, the APs onset rapidness: The faster the AP onset, the higher the frequencies
that can be encoded.

One of the most important first steps along this path was the realisation that a neuron’s
encoding bandwidth can be greater than the cutoff frequency defined by its membrane.
Brunel et al. (2001) demonstrated theoretically and numerically that the encoding capabili-
ties of a leaky-integrate-and-fire (LIF) neuron are dependent on the qualities of the ‘carrier’
signal. Signals that modulate the mean of white noise are limited to the cutoff frequency of
the membrane model; however, low-pass filtering this noise, i.e. introducing a time-constant,
increases the bandwidth of frequencies that a LIF can encode. For the filter time-constants
studied, up to 7 = 40ms (a cutoff of &~ 4Hz), Brunel et al. (2001) showed that increasing
T increases bandwidth. E.g. where 7 = 0ms gives a normalised rate response cutoff of
~11 Hz, introducing 7 = 40 ms gives a normalised rate response of ~1 in the high frequency
limit. Brunel et al. (2001) tied this result to population coding by also showing the popula-
tion response to a step. Visual inspection of the resulting peri-stimulus time histograms for
7 =1{0,2,5,10} ms shows clear differences in the population responses. The rise time of the
7 = 10ms case is ~2ms, in the 7 = O ms case, ~10 ms.

Some of the first inklings that action potential initiation has an influence on population

encoding bandwidth came soon after. For example, the work done by Fourcaud-Trocmé et
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al. (2003) looked at the role of the sodium channel in action potential onset and population
encoding. Sodium channel opening being the major physical mechanism behind the initial
changes in potential observed in a neuron’s spike. They used numerical simulations to
demonstrate that the characteristics of fast sodium channels determine the speed at which
a population of neurons can track changes to noise modulated by a sinusoidal stimulus.
Fourcaud-Trocmé et al. (2003) developed a one-variable model, the “exponential integrate
and fire neuron” (EIF), and showed that it is sufficient to capture the activation dynamics
of near threshold sodium channels in a conductance based model. They then used this
EIF model to show that above the cutoff frequency of a neuron’s membrane, the decay in
population coding gain follows a power law, C'/ f*, where « is dependent on the non-linearity

of spike initiation.

A deeper examination of the role of action potential (AP) initiation on bandwidth fol-
lowed thereafter. Naundorf et al. (2005) studied the effect of AP onset dynamics on the
response speed of neuronal populations. They found that a neuronal ensemble’s speed, at
high frequencies, is not dependent on the action potential onset speed of its constituents,
but rather on the phase at which their action potentials are emitted. In this theoretical and
numerical study, Naundorf et al. (2005) examined the response of neuronal populations to
oscillations embedded in noise currents. They generalised the 6-neuron (Ermentrout and
Kopell 1984; Gutkin and Ermentrout 1998), a phase oscillator model, to provide an ad-
justable AP onset dynamic, mimicking, in effect, the fast activation of sodium channels.
They analysed the behaviour of an ensemble of generalised f-neurons in the high frequency
limit for different types of inputs (mean modulated, amplitude modulated, correlated and
uncorrelated noise) and found that the response amplitude depends only on the phase of

the oscillator.

In the wake of this theoretical and numerical work, the experiments presented in sev-
eral key articles gave biological evidence of high frequency encoding. Kondgen et al. (2008)
performed experiments in brain slices with layer V pyramidal neurons from the rat so-
matosensory cortex. They injected correlated noise currents, mean modulated by sinusoids.
The response of cells was measured using the “modulation depth”, where they generated
peri-stimulus time histograms describing the population response, and fitted a sinusoid, the
amplitude of this sinusoid was then normalised by the mean firing rate. Plotting modulation
depth against frequency, they were able to show cutoff frequencies of approximately 200 Hz.
Using a similar experimental approach and analysis, Boucsein et al. (2009) confirmed high
frequency cutoffs for both mean and amplitude modulated signals, where cutoffs of approx-
imately 100 Hz were measured in the former case, 200 Hz in the latter. Similarly, Higgs and
Spain (2009) performed experiments using layer 2/3 pyramidal neurons from rat neocortical
slices. They found that cells demonstrate high frequency resonances at approximately 250,

400 and 250 Hz in response to 7 = 1ms exponential noise, 7=5ms exponential noise and
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‘1/f noise! respectively. Ostojic et al. (2015) also report a 200 Hz resonance in populations
of Purkinje cells in rat slices.

By 2011, several experimental studies had demonstrated that neuronal populations are
indeed capable of encoding information at frequencies of up to hundreds of Hertz. The
biophysical models of the time predicted, however, lower cutoffs. To remedy this, Wei and
Wolf (2011) introduced a dynamical model that is both capable of encoding high frequency
signals and also captures action potential dynamics in an analytically tractable fashion for
uncorrelated noise stimuli. For white noise modulated by a signal, they used their model
to show that the cutoff frequency of a neuronal population can be modulated by, and is
proportional to the action potential onset rapidness of its constituents. Although, in the
white noise case they found that the encoding bandwidth was limited to the cutoff frequency
of the membrane, they were able to show numerically, that the introduction of a finite
correlation time lifted this restriction, as per Brunel et al. (2001).

A key work tying the experimental, theoretical and numerical findings together came
from Ilin et al. (2013). In laboratory experiments they tested the theoretical prediction that
action potential (AP) onset influences population encoding bandwidth (Fourcaud-Trocmé
et al. 2003; Naundorf et al. 2005; Wei and Wolf 2011). Experiments with rat brain slices
demonstrated that the encoding capabilities of neocortical neurons, with naturally short
AP onset times, were severely reduced when either extracellular Na™ was reduced, or with
the introduction of the neurotoxin, tetrodotoxin (TTX), to the axon initial segment, both
of which have the effect of reducing the onset rapidness of an action potential at the axon
initial segment (AIS).

Thanks to the combined work of Boucsein et al. (2009), Brunel et al. (2001), Fourcaud-
Trocmé et al. (2003), Higgs and Spain (2009), Ilin et al. (2013), Kondgen et al. (2008),
Naundorf et al. (2005), Ostojic et al. (2015), and Wei and Wolf (2011) we can say, with
confidence, that populations of neurons are capable of encoding signals that modulate the
mean of correlated noise at frequencies in the hundreds of Hertz. Furthermore, the response
speed of a neuronal population increases with the onset rapidness of its constituent’s action
potentials. This does, however, raise the question, what makes the onset of an action po-
tential fast or slow? In their theoretical work, Fourcaud-Trocmé et al. (2003) found a link
between fast sodium channels, onset rapidness and population response speed. More re-
cently, scientists found a link between morphology, onset rapidness and population response

speed. Sect. 1.4 describes this morphological link in more detail.

1.4 Dendritic Loading & Onset Rapidness

A neurons electrical behaviour is determined by factors typically divided into two groups,

those influencing the cell’s ‘active’ electrical response, and those influencing its ‘passive’

11.e. noise with a spectrum that decays at the rate of 1/f.
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response. In the active case, one speaks of gated ion channels, channels embedded within
the membrane of a cell that can open and close allowing ionic currents to flow both into
and out of the cell. A cell’s passive properties, however, influence the flow of ionic currents
within and their diffusion through the walls of its membrane. A cell’s passive response
can be understood through the analogous case of electrical transmission, the ‘transmission
line’. The flow of electrical currents along a transmission line or cable are influenced by the
impedance properties of said cable; typically modelled as a series of connected impedances,
each comprising a resistance, capacitance and inductance. In the case of a neuron, it is
sufficient to consider only resistance and capacitance (Dayan and Abbott 2002).

Just as the structure, materials and dimensions of a transmission line influence its overall
impedance, the passive electrical properties of a cell are a function of the cell’s morphology.
Work in this area has demonstrated examples of “morphology-induced resonance” (Ostojic
et al. 2015) or the influence of the dendritic tree on the structure of firing patterns (Mainen
and Sejnowski 1996). Specific to the work in this thesis are the results obtained by Eyal et al.
(2014). They examine the role of the dendrites in action potential formation and encoding
bandwidth. They were able to show that increasing dendritic load increases action potential
(AP) onset rapidness and improves the encoding bandwidth of a neuronal ensemble. In their
simulations of a simple ball-and-two-sticks compartment model, they increase the dendritic
load by enlarging one of the two sticks, and in each case, stimulate with a fluctuating noise
current, whose mean is modulated with a sinusoid. They show that, the larger the dendritic
‘stick’ the faster the onset rapidness and the better the cell can phase-lock to the sinusoid
at higher frequencies. This work is, however, somewhat contradicted by theoretical work
presented by Vacuciakova (2016). Looking at the transfer function of a passive cell, she
shows that increasing dendritic diameter causes a corresponding decrease in gain, due to
the increased surface which must be charged. Vacué¢iakovd (2016) also demonstrates that
increasing dendritic length has no significant influence on the response above the length con-
stant for direct current (DC), i.e. the distance over which a DC signal has some measurable

influence.



Chapter 2

Materials & Methods

This thesis presents a novel closed loop electrophysiological system, and demonstrates how
it can be used to perform experiments examining the response of an in wvitro neuronal
population to subtle changes in the mean of a correlated, stochastic photostimulus. In
addition to this, this work also presents the results of numerical experiments that look into
the relationship between the response speed of a neuronal population, the onset rapidness of
its constituents, their passive bandwidth and how this relates to the targeting of stimuli to
specific elements of the neuron’s structure, what I refer to as “subcellular targeting.” The
materials and methods required to implement these numerical and in vitro experiments are
described in this chapter. This begins with a description of the experimental set-up used in
the laboratory in Sect. 2.1. Section 2.2 presents the tools used in the numerical simulations.
This is followed by Sect. 2.3 which shows the form of the stimuli applied in both the in vitro
and in numerical experiments. Section 2.4 presents the analyses applied to experimental
data. Finally, Sect. 2.5 presents the protocols that were used in the execution of both in

vitro and numerical experiments.

2.1 Experimental Set-Up

Experiments were performed at the laboratories of the Max Plank Institute for Experi-
mental Medicine, Dept. for the Molecular Biology of Neuronal Signals (director, Walter
Stithmer). The experiments employed devices already existing in the lab. The devices were
integrated using software that I both designed and implemented, to create a closed-loop

electrophysiological platform.

2.1.1 Hardware

The core hardware components are the multi-electrode array (MEA) system, a personal
computer (PC), a light stimulator and an inverted microscope (Fig. 2.1). The MEA system
(MEA1060-Inv, Multi Channel Systems GmbH (2012a)) comprises a PC (Intel Core-2 Duo)

with an on-board data acquisition card (the ‘MC_Card’, an analogue-to-digital converter,

15
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Figure 2.1: The experimental set-up. This comprises a personal computer (PC), digital to
analogue converter (DAC), a blue light (470 nm) emitting diode (LED), an LED driver, and
a heater above which a cell culture sits, grown on a multi-electrode array (MEA). The MEA
is connected to an amplifier, which sends data to an analogue to digital converter (ADC)
card sitting in the card slot of the PC.
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Figure 2.2: The multi-electrode array (Image: Multi Channel Systems GmbH 2012b). a)
The key measurements for the 60MEA multi-electrode array used in this work. Electrodes
are circular with a diameter of 30 u()m and a centre-to-centre spacing of 200 um. Electrodes
are laid out in an 8 by 8 grid without electrodes in the corners, making 60 electrodes, one
of which (electrode 15) acts as a reference, thus leaving 59 from which to record signals. a)
An image of the electrode array showing tracks and electrodes. The tracks and electrodes
(indium tin oxide) are embedded in a glass substrate. Tracks are insulated from the culture
with a thin layer of glass.

ADC), which accepts signals from an amplifier, connected, in turn, to the multi-electrode
array. The PC is also responsible for driving stimuli via a digital-to-analogue converter
(DAC, the STG2008, Multi Channel Systems GmbH 2008), which is connected to an LED
driver, built by Michael Giinther in the electronics workshop of the Max Planck Institute
for Dynamics & Self-Organization. The LED driver powers a Philips Luxeon Rebel Blue
LED (Koninklijke Philips N.V. 2016), with a wavelength of approximately 470nm. This
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LED performs ‘whole-field’ illumination, i.e. it illuminates the entire recording-electrode
field of the multi-electrode array. During experiments, a multi-electrode array is placed in
its amplifier which sits on the stage of an inverted microscope (Axiovert 200, Carl Zeiss
2001), the stimulating LED is mounted in a brass enclosure which sits in the microscope’s
turret. For an external reference of the stimulus, a photodiode (OPT101, Texas Instruments
Inc. 1994) is mounted in the microscope’s condenser. Its output is also connected to the data-
acquisition card. The multi-electrode array used in this work (60MEA200/30iR-Ti, Fig. 2.2,
Multi Channel Systems GmbH 2012b) comprises a grid of 60 x 30 um diameter titanium
nitride electrodes, with a centre-to-centre spacing of 200 um, one electrode is reserved as a

reference electrode.

2.1.2 Software

The software that I built for this project interfaces with the aforementioned analogue-to-
digital and digital-to-analogue converters (Section 2.1.1) via an application programming
interface (API) called MscUsbNet.dll (Multi Channel Systems GmbH 2016) written for
Microsoft’s .NET Framework (Microsoft Corporation 2016). Using these interfaces, the
software implements feedback control of the spike-rate measured at a user-selected electrode,
and can also embed a protocol in the stimulus that it generates. The software does this
by recording voltage traces captured by the ADC from user-selected electrodes. It then
filters these traces, removing low frequency oscillations, and performs simple threshold spike
detection. The software uses an exponential window to calculate a spike rate which is fed to
an adaptive PID controller, the output of which is used to scale the mean (u) of an Ornstein-
Uhlenbeck (OU) process. The standard deviation (o) of the OU process is scaled relative
to the mean, such that o = /2. As the signal is eventually fed to the LED driver, which
is active only for positive input voltages, the OU process is clipped for values below 0. If a
user-provided protocol is present, this is then added to the OU process. Finally, the software
sends the stimulus to the DAC, which is ultimately used to illuminate the multi-electrode

array.

2.1.3 Optogenetic Photostimulation

Light stimulation has grown in popularity in the last decade, becoming a standard tool in
the electrophysiologist’s tool kit. Although earlier examples of photostimulation were proven
successful (Callaway and Katz 1993; Fork 1971), it is the introduction of genetic techniques
that brought about a paradigm shift in the approach not only to light stimulation, but to
stimulation in general (Banghart et al. 2004; Boyden et al. 2005; Lima and Miesenbdck
2005; Zemelman et al. 2002, 2003). Termed “optogenetics,” cells are infected with a viral
vector enabling them to produce light gated channels in the neuronal membrane. Of the
aforementioned optogenetic approaches, it is the discovery of channelrhodopsins (Nagel et

al. 2002; Nagel et al. 2003), and their introduction to electrophysiology (Boyden et al. 2005)
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Figure 2.3: The Channelrhodopsin-2 structure (Image: Bamberg 2016): A 7-transmembrane
protein, covalently linked to a retinal chromophore through a protonated Schiff base. Blue
light (/460 nm wavelength) induces a change in the retinal complex which, in turn, opens
the channel’s pore. Channelrhodopsin-2 is a non-specific cation channel, conducting Na™,
K+, H* and Ca?+4. The C-terminal end of Channelrhodopsin-2, which reaches into the cell,
can be replaced with e.g. a yellow fluorescent protein (YFP) (Boyden et al. 2005; Nagel
et al. 2003).

that has arguably had the greatest impact (Reiner and Isacoff 2016). Channelrhodopsin-
2 is a non-specific cation channel (Fig 2.3), which, when exposed to blue light, opens its
channel pore. Boyden et al. (2005) were able to show that, compared to previous optogenetic
methods (e.g. Banghart et al. 2004; Lima and Miesenbock 2005; Zemelman et al. 2002,
2003), Channelrhodopsin-2 is able to offer sub-millisecond activation times, significantly
faster than the seconds or minutes reported previously. Since their initial discovery, a
range of new channelrhodopsin variants and approaches has been introduced, providing e.g.
temporally stationary spike trains (Gunaydin et al. 2010), transgenic animals (Madisen et al.
2012), longer open states (Berndt et al. 2009; Dawydow et al. 2014), two-color activation
(Klapoetke et al. 2014) and even faster activation times (Chronos: Klapoetke et al. 2014).

Channelrhodopsin-2 (ChR-2) was a key component in the implementation of this work.
One important property of ChR-2 is its behaviour as a low pass filter. Namely, a light
stimulus has been shown, under voltage clamp, to induce currents that are a low pass filtered
version of the stimulus (Neef et al. 2013; Tchumatchenko and Newman 2013). ChR-2 acts
as a low pass filter with a cutoff of ~70Hz at 36°C (Fig. 2.4a, Tchumatchenko and Newman
2013). At 24°C, ChR-2 acts as a low pass filter with a cut off of 25 Hz (Fig. 2.4b; Ricardo

Merino, Max Planck Inst. for Experimental Medicine).

The hardware arrangement for these experiments (Fig. 2.1) facilitates the illumination of
the entire electrode field of the multi-electrode array, also called “whole field” illumination.
Whole field illumination allows the experimenter to apply the same input to the entire cul-
ture simultaneously. Of course, variations in channel density between cells, thei<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>