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        Chapter 1 
 

General Introduction 

 

Climate Change and Forest Management 
 

Anthropogenic climate change, including increasing surface temperatures and changes in 

precipitation endangers ecosystems all over the world. The period 2003-2012 revealed an 

overall increase in global temperature of about 0.8 °C compared to the first decade the 20th 

century with an even higher increase in mean annual temperature in Europe compared to the 

average global warming (IPCC 2007, IPCC 2013). Furthermore, the predicted increase in mean 

annual temperature ranges from about 2 – 5 °C until the end of the 21st century compared to 

the end of the 20th century (Christensen et al., 2007). Water availability is a major factor 

influencing the distribution and productivity of vegetation (Gholz et al., 1990). Therefore, 

increasing temperatures and changes in precipitation regimes will distinctly alter forest 

ecosystem conditions. Additionally extreme weather events such as heat waves and severe 

drought events are likely to become more frequent (Easterling et al., 2000; Luterbacher et al., 

2004; Meehl and Tebaldi, 2004; Schär et al., 2004). Such severe drought events with 

exceptional high temperatures and in higher frequency became evident all over Europe during 

the years 2003, 2006 (Rebetez et al., 2008, 2006) and 2010 in  large parts of eastern Europe 

and Russia (Barriopedro et al., 2011). The increased intensity and frequency of such severe 

drought events already led to severe consequences for forest ecosystems: a significant 

decrease of primary production, increasing tree mortality and even the die-back of whole 

stands (Allen et al., 2010; Cailleret et al., 201ϰ; CaƌŶiĐeƌ et al., ϮϬϭϭ; Čateƌ, ϮϬϭϱ; DoďďeƌtiŶ et 

al., 2007; Norman et al., 2016; Williams et al., 2010). 

While the consequences of such severe drought events in terms of  productivity and 

vulnerability are well documented for forest stands and on the single tree level, the 

physiological mechanisms responsible for the growth decline and tree mortality of trees are 

still under debate (W. R. L. Anderegg et al., 2012; Bréda et al., 2006; Chaves, 1991; Hartmann 

et al., 2015; Körner, 2003; McDowell et al., 2008; McDowell, 2011; Sevanto et al., 2014). 
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Recent research focusing on the drought response of tree species considers three main 

hypotheses of tree mortality: hydraulic failure, carbon starvation and/or dying via bio agents. 

Most likely a complex combination of the three leads to the actual death of a tree, but the 

process itself is still far from being fully understood (Hartmann et al., 2015; McDowell, 2011; 

Mcdowell et al., 2013).  

Transpiration is the main driving force of water flow from the soil through the tree to the 

atmosphere and determines the water potential gradient of the soil-tree-atmosphere 

continuum (Bréda et al., 2006). At the leaf-atmosphere interface the main driver for 

transpiration is the evaporative demand (i.e. VPD, irradiance). Decreasing soil water content 

during drought leads to an increase of the hydraulic resistance at the root-soil interface and 

in combination with high evaporative demand on the leaf level to a decreasing water potential 

along the whole pathway (Bréda et al., 2006). With ongoing soil water deficit this leads to 

hydraulic failure (McDowell et al., 2008). In general, tree species are able to respond to 

decreasing soil water availability with different physiological strategies on a gradient of 

stomatal regulation. First, the more isohydric strategy, including stomatal regulation at earlier 

stages of soil water deficit which prevents a greater hydraulic safety margin (i.e. 

gymnosperms), and second a more anisohydric response with marginal stomatal regulation 

and decreasing plant water potential with decreasing soil water potential (i.e. angiosperms) 

and therefore a narrower safety margin to hydraulic failure (Choat et al., 2012).  

In summary, though the processes are not clear yet, severe drought events have already led 

to a significantly decrease in primary production of forest stands and increased tree mortality 

;AlleŶ et al., ϮϬϭϬ; Cailleƌet et al., ϮϬϭϰ; CaƌŶiĐeƌ et al., ϮϬϭϭ; Čateƌ, ϮϬϭϱ; DoďďeƌtiŶ et al., 

2007; Norman et al., 2016; Williams et al., 2010).  

Norway spruce (Picea abies [L.] Karst.), a drought sensitive tree species, may be severely 

affected by climate change (Ammer et al., 2008; Kölling et al., 2009; Temperli et al., 2012). 

Norway Spruce stands cover large areas in Europe and represent the economically most 

important European tree species (Spiecker, 2000). In Germany, Norway spruce occupies about 

2.7 million hectares and covers c. 25% of the total forest area. In the south of Germany, the 

percentage is even higher, with almost 40% of the total forest area and 1.4 million hectare 

(BMELV 2012). Centuries of forest management has led to spruce monocultures outside its 

natural range. i.e. in areas with higher temperatures and lower precipitation (Kahle et al., 



Chapter 1 

 

3 

 

2005; Spiecker, 2000). Due to the distribution outside of its natural range and the monoculture 

structure, Norway spruce is highly susceptible to abiotic stress like drought, storm, fire and 

snow. Preconditioned by the abiotic stress it is threatened by biotic stressors such as bark 

beetles leading to severe losses in forest ecosystems and timber production (Dobbertin et al., 

2007; Hanewinkel et al., 2013; Schelhaas et al., 2003; Schlyter et al., 2006). 

 

Forest management measures 
 

͞IŶ eĐosǇsteŵs suďŵitted to dƌought, ƌesistaŶĐe, aǀoidaŶĐe oƌ toleƌaŶĐe to stƌess is dƌiǀeŶ ďǇ 

eitheƌ stƌuĐtuƌal oƌ phǇsiologiĐal adjustŵeŶts, oƌ ďǇ a ĐoŵďiŶatioŶ of ďoth͟ (Bréda et al., 

2006). Accordingly, the question arises which forest management measures may be used to 

mitigate future exacerbating drought events and the uncertainties of climate change for forest 

ecosystems (Ammer, 2016; Bolte et al., 2009; Bravo-Oviedo et al., 2014; Keenan, 2015; Kölling 

et al., 2009; Spiecker, 2003). 

 

Altering tree composition 
 

In general, mixing tree composition as a potential forest adaption measures include the 

reduction in resource competition (light, water, nutrition) (Lebourgeois et al., 2013) and the 

potential of facilitation within mixed stands (Holmgren et al., 1997; Pretzsch et al., 2014) by 

admixing broadleaf species into conifer monocultures. From a reaction pattern point of view 

there is evidence of increasing productivity of mixed vs. monoculture stands (Amoroso and 

Turnblom, 2006; Pretzsch et al., 2015, 2010), reduced economical risk (Knoke et al., 2008; 

Kölling et al., 2010 Neuner et al., 2015) reduced risk by biotic stress agents (Heiermann and 

Schütz, 2008) , an increase in biodiversity (Mielikäinen and Hynynen, 2003; Spiecker, 2003) 

and reduced susceptibility to drought (Metz et al. 2016). Nevertheless, recent studies revealed 

that the complementary effect of mixed stands under changing climate and water deficits vary 

in respect to site conditions (Jucker et al., 2016; Pretzsch et al., 2010), the temporal dynamics 

(del Río et al., 2014; Forrester, 2015), species composition (Pretzsch et al., 2015, 2014; Soares 

et al., 2016) and stand density with different stocking degrees (Condés et al., 2013; Forrester, 

2015). The interaction and possible trade-offs of different tree species with different 
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functional traits in mixed stands are far from being fully understood (Pretzsch et al., 2014). 

Nevertheless, the most promising approach seems to be the combination of tree species with 

different functional traits to increase the complementary effect via reducing the intra-specific 

competition (Ammer, 2016).  

 

Altering stand density 

 

While altering the stand composition of forest ecosystems may be promising on the long-term 

(Ammer, 2016), the conversion is not suitable for the adaption of current young Norway 

spruce stands on the short- to medium-term (Ammer et al., 2008; Knoke et al., 2008). 

Therefore, the forest management strategy of reducing interspecific competition via thinning 

in particular, is a frequently discussed option (Bolte et al., 2009; Lasch et al., 2002; Lindner, 

2000). Although thinning as a forest management measure, was repeatedly studied on growth 

development and wood properties (Cao et al., 2008; Jaakkola et al., 2005; Mäkinen and 

Isomäki, 2004) less studies examined the potential of thinning to mitigate drought. Thinning 

may reduce the interspecific competition via altering the leaf-atmosphere and the root-soil 

interface on the tree and stand level and therefore reducing the competition for water, light 

and nutrients. In general, the reduced competition increases radial growth of the remaining 

trees during the following years and therefore may also improve tree growth in absolute terms 

during exceptional droughts (Brooks and Mitchell, 2011; Martínez-Vilalta et al., 2012; 

McDowell et al., 2003). Furthermore, thinning may increase growth resistance to drought at 

least on the short-term (Misson et al., 2003) and in young thinned stands ;D͛Aŵato et al., 

2013) by increasing soil water availability. Additionally, thinning may decrease reported 

drought induced defoliation (McJannet and Vertessy, 2001), drought induced secondary pests 

(Netherer et al., 2015) and reduce tree mortality (Giuggiola et al., 2013). Moreover, the 

remaining trees in the thinned stands seem to be more resilient to drought with enhanced 

relative radial growth in the post-drought years compared to trees in un-thinned stands 

(Kohler et al., 2010; McDowell et al., 2006), which may partly be attributed to structural 

changes of the remaining trees. Nevertheless, it has also been shown that the radial growth 

of the remaining trees in thinned stands is more sensitive during drought (i.e. higher decline 

in radial growth during drought) compared to trees in un-thinned stands with increasing 

timespan between thinning and the drought event (Kohler et al., 2010; McDowell et al., 2006). 
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Therefore, the potential of thinning to mitigate drought stress during the drought event may 

depend on the possibility to increase the available soil water content. Whereas the potential 

of thinning to improve growth recovery after the drought may additionally depend on 

enhanced resource capture, greater quantities of stored reserves and increased availability of 

recent photosynthetic assimilates. 

Nevertheless, the studies comprise different species, climatic conditions, thinning intensities 

and time spans between thinning and the drought events. The reaction pattern in radial 

growth of crop trees may differ between species, climatic conditions, thinning intensities, and 

time spans between the thinning interventions. Therefore, it is important to investigate the 

underlying variables of the water balance changed with increasing thinning intensities and 

additionally the drought response of the remaining trees. 

The reduction of the stand leaf area index (LAI) may increase soil water availability by 

decreasing interception (Bréda et al., 1995a; Donner and Running, 1986; Simonin et al., 2007; 

Stogsdill et al., 1992), reducing stand transpiration (del Campo et al., 2014; Morikawa et al., 

1986) and reduced above and belowground competition (Aussenac and Granier, 1988; 

McDowell et al., 2003). Nevertheless, the mentioned studies with in-situ measurements only 

comprise the first years after the thinning intervention and the underlying processes of 

increasing water availability differed between the studies. For example, in the study of 

Stogsdill (1992) the increased soil water availability after removing 50-75% of the basal area 

in a young Pinus taeda was more a function of reduced interception than of reduced 

transpiration. The reduction of LAI by thinning reduces aboveground competition (i.e. for 

light), which also implies an increase in insolation and wind flow at the crown level and 

therefore an increasing water demand on the single-tree level of the remaining stand (Bréda 

et al., 1995b; del Campo et al., 2014; Lagergren et al., 2008). Therefore, the benefit of thinning 

on the water availability may be equalized or even be off-set by the increasing water demand 

and leaf area of the remaining trees within a few years after the thinning intervention. The 

timespan with reduced water loss and increased water input may partly be dependent on the 

thinning intensity. For example, already in the second season after thinning, the transpiration 

of the thinned stand (ca. 25% of basal area removed) exceeded the reference stand in a Picea 

abies and Pinus sylvestris stand (Lagergren et al., 2008). Hence, potentially increasing the 

drought stress for the remaining trees during exceptional drought events, already in the 
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second year after thinning. In contrast the reduction of c. 50% of the basal area in a Douglas 

fir stand (Pseudotsuga menziesii var. menziesii) improved soil water reserves during at least 

three subsequent years (Aussenac and Granier, 1988).  

The period until equalization in stand transpiration and the different underlying processes for 

increased soil water availability of the thinned compared to un-thinned stands may be 

attributed to differences in thinning intensity. However, with increasing thinning intensity 

emerging ground vegetation, contributing to the water balance by increasing stand 

transpiration and interception could become crucial (Black et al., 1980; Cregg et al., 1990; 

Simonin et al., 2007; Whitehead et al., 1984). In addition, the potential of thinning on the 

medium to long-term mitigation effect may also depend on the plasticity and therefore, the 

rate by which trees are able to occupy available above- and belowground space (McDowell et 

al., 2003). As mentioned above the interaction of water demand on the leaf-atmosphere 

interface with the water delivery from the root-soil interface may be crucial for the impact of 

severe drought events. 

Against this background the research presented in this dissertation studied the effect of 

increasing thinning intensities on the water balance of Norway spruce stands and the response 

of the remaining trees to drought along two different methodical approaches.  

 

The leading hypotheses were the following: 

- Drought stress during drought is mitigated and the recovery from drought is improved 

by increasing thinning intensities 

 

- Stand transpiration and interception is reduced with increasing thinning intensities, 

hence improving soil water availability for the remaining trees 

 

- The benefits of thinning on the water balance are temporary, but can be extended by 

increasing thinning intensity  
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Basic methodical approaches 
 

Due to the lack of knowledge on the mitigation potential of thinning, the uncertainties and 

possible changes within the underlying processes with ongoing time after thinning, a two-tier 

approach was chosen. First, the possible mitigation effect of increasing thinning intensities 

during exceptional drought events was investigated via dendrochronology including isotopic 

signal analyses of tree rings. Second, an experimental thinning trial was established to improve 

the mechanistic understanding of tree and stand water relations altered by thinning. 

 

Retrospective approach 
 

In order to investigate tree response during exceptional drought years and the potential of 

increasing thinning intensity to mitigate drought stress two long-term thinning experiments 

in southern Germany were used. One stand is located near Göggingen in South-Western 

Germany (Baden- Württemberg) and the second stand in South-Eastern Germany (Bavaria) 

(see chapter 2) with similar climatic and site conditions. In 1974, at a stand age of ca. 27 years 

with about 5500 trees ha-1 both thinning experiments were established with increasing 

thinning intensities. To address the research question three thinning intensities were selected  

 

ϭ. UŶthiŶŶed ͞CoŶtƌol͟ ǁith Ŷo iŶteƌǀeŶtioŶs;  

Ϯ. ͞Modeƌate thiŶŶiŶg͟ ;MTͿ to ϰϬϬ futuƌe Đƌop tƌees peƌ ha of pƌofitaďle tiŵďeƌ ƋualitǇ 

and/or dimension through 3-4 thinning interventions. (Göggingen: 1974, 1986, 1993 and 

1997, Freising: 1974, 1989 and 1996) with removal of 1–2 competing trees per crop tree in 

each intervention  

ϯ. ͞HeaǀǇ thiŶŶiŶg͟ ;HTͿ to ϮϬϬ futuƌe Đƌop tƌees peƌ ha thƌough ƌeŵoǀal of all otheƌ tƌees iŶ 

interventions (Göggingen in 1974, 1980 and 1993; Freising 1974, 1981 and 1996).  

 

 

The study focused on changes in tree growth and isotopic signals of tree rings related to the 

exceptional pan-European drought events in 1976 and 2003. Tree growth and year ring width 
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are known to be highly related to changes in climatic and biotic stress (Bréda and Badeau, 

2008; Fritts, 1976; Hughes et al., 1982; Schweingruber, 1996, 1988). Dendroecology can take 

the advantage of this pattern using growth chronologies of the trees, to reveal retrospectively 

the tree response of different thinning intensities to severe drought events (Cescatti and 

Piutti, 1998; Kohler et al., 2010; Misson et al., 2003). Based on an approach suggested by 

(Lloret et al., 2011), the growth decline during the drought year compared to the pre-drought 

year(s) was defined as the resistance of the crop trees to the drought and the increase in the 

following year(s) as the recovery from the drought year. 

Although different growth responses of trees can be used as an indicator of vitality (Dobbertin, 

2005) the dendrochronological approach is solely based on a reaction pattern. Therefore, to 

reveal possible differences in the physiological response to drought and to get an idea of the 

underlying mechanism, a stable isotope analysis of year rings was included. Several studies 

haǀe shoǁŶ that the isotopiĐ sigŶal iŶ tƌee ƌiŶgs is a useful tool to ƌeǀeal plaŶt͛s ĐaƌďoŶ aŶd 

water relations in dependency to climatic variability (Barnard et al., 2012; Leuenberger et al., 

1998; Saurer et al., 1997; Schleser et al., 1999).  

Besides stomatal conductance (mainly driven by water availability and evaporative demand) 

the staďle ĐaƌďoŶ isotope ƌatio ;δ13C) in plant material depends on the rate of carbon 

assimilation (can also change with light/ nutrition availability) (Farquhar et al., 1989). 

Therefore, drought conditions causing a reduction in stomatal conductance (reduced 

photosynthetic discrimination against 13CO2) as well as thinning with increasing light /nutrient 

aǀailaďilitǇ ŵaǇ iŶĐƌease the δ13C in tree rings (Powers et al., 2010; Warren et al., 2001). To 

attƌiďute the ƌespoŶse iŶ δ13C to either water availability or light availability, additionally the 

oxygen -isotope ƌatio ;δ18O) with the dual isotope approach was used to separate changes in 

the stomatal conductance vs. photosynthesis (Barbour, 2007; Grams et al., 2007; Scheidegger 

et al., 2000).  
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Experimental (in-situ) approach  
 

The vast majority of long-term thinning experiments were established to investigate the 

potential of different thinning intensities to increase productivity and/or timber quality. 

Retrospective approaches often lack in information concerning the thinning effect on 

stand/tree structure, physiology and morphology and even more important in data of 

temporal changes of these parameters after thinning interventions. Although, additional 

isotopic signals improve retrospective approaches, the mechanism and environmental factors 

underlying the isotopic composition in tree rings are not fully explored (Offermann et al., 

2011; Roden and Siegwolf, 2012; Roden and Farquhar, 2012)  

A thinning experiment was established in 2008 to address the physiological, morphological 

and structural modifications by thinnings and their potential for drought stress mitigation. The 

study was conducted near Landshut (48°38´20´´ N, 11°57´49´´E, Bavaria, Germany) in a 26-

year-old monoculture of Norway spruce (Picea abies [L.] Karst.). Different thinning treatments 

were applied on plots with similar site condition (see chapter 3). About 430 future crop trees 

(target trees) per ha were selected prior to thinning.  

In February 2009 three thinning intensities were conducted  

1. Not-thiŶŶed ͞NT͟ ǁith no intervention (basal area c. 42 m² h-1);  

 

2. Modeƌate thiŶŶiŶg ͞MT͟ ƌeduĐed staŶd ďasal aƌea ďǇ Đ. ϰϯ.Ϭ%. MT ƌepƌeseŶted the 
thinning treatment commonly applied in Germany, i.e. thinning from above by 

removing two competitors per target tree on average 

 

3. HeaǀǇ thiŶŶiŶg ͞HT͟ On the HT plots all trees but the target trees were removed, 

resulting in basal area reduction of c. 67.0%. 

 

Fostering over 400 target trees on MT was more intense compared to the fostering of about 

100 target trees in the Bavarian State Forestry (Schröpfer et al., 2009).  

Prior to the thinning intervention and over seven years after the interventions all parameters 

concerning the water balance of the different stands were measured in-situ (for details see 

chapter 3+4). The continuous measurements during the years after the thinning interventions, 

and ongoing records of climatic variables, are essential to predict the potential of different 
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thinning intensities to mitigate drought and to explore the structural, morphological and 

physiological adaption on the tree/stand level to thinning.  

The two-tier approach, i.e. retrospective analyses and continuous in-situ measurements 

promise to provide a deeper insight in the potential and limits of adapting Norway spruce 

stands to drought by decreasing inter-specific competition. Moreover, it may allow to 

disentangling the underlying mechanisms, and providing information on temporal changes. 

Hence, the approach should also allow distinguishing between short- medium and long-term 

effects of increasing thinning intensity. 
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Abstract 

 

We hypothesize that reductions in stand density through thinning improve the recovery of 

radial stem growth in Norway spruce trees (Picea abies) from severe drought. However, 

thinning may not lead to higher relative radial growth during drought. Annual stem growth 

and stable carbon and oxygen isotopes in early- and latewood were assessed in trees from 

heavily thinned (HT), moderately thinned (MT) and un-thinned control stands at two sites in 

southern Germany. Physiological performance of trees as inferred from stable isotope analysis 

was used to interpret annual stem growth in response to the drought events in 1976 and 2003. 

Only in recently thinned stands, trees maintained growth probably through higher soil water 

availability during the drought year when compared to controls. In contrast, thinning 

improved the growth recovery in the years following the drought irrespective of the time span 

between thinning and drought. We conclude that thinning improves drought recovery 

response in the short and long term and should be considered as an effective management 

strategy to increase drought tolerance of Norway spruce stands. 

 

 

Introduction 
 

Global climate change will distinctly alter ecosystem conditions through rising temperatures, 

reduced precipitation and more frequent weather extremes (IPCC, 2007; Lasch et al., 2002; 

Meehl and Tebaldi, 2004). In Europe, this became evident during and after the extreme 

drought of 2003, which was characterized by prolonged water shortage in combination with 

significant heat waves (Ciais et al., 2005; Rennenberg et al., 2006; Rebetez et al., 2008). Severe 

drought episodes instantly affect physiological processes in trees such as transpiration, 

photosynthesis and carbon (C) allocation followed by resulting in increased tree susceptibility 

to secondary stressors such as by phytophagous insects or parasitic fungi (Bréda et al., 2006; 

Desprez-Loustau et al., 2006; Rouault et al., 2006). This may lead to reduced primary 

productivity and eventually whole-stand decline (Bréda et al., 2006; Jyske et al., 2009). 

In Germany, Norway spruce (Picea abies [L.] Karst.), planted predominately in even-aged and 

mono-specific stands, is economically the most important tree species and occupies 30% of 

the total forest area (BMELV, 2008). Yet, large tracts of Norway spruce forests are growing 
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near the perceived drought limit of the species, and with climate change, may be exposed to 

even more unfavorable conditions in the future (Koelling et al., 2009). As a consequence, 

Norway spruce has been already lost a substantial proportion of the previously cultivated area 

(Polley et al., 2009).  

Most strategies to adapt forest ecosystems to climate change have long-term goals such as 

diversification of species composition or introduction of drought tolerant species (Kazda and 

Pichler 1998; Ammer et al., 2008). However, there are few sylvicultural adaptation approaches 

for immature and juvenile stands. For existing stands, intensive thinning has been discussed 

as an option to mitigate drought impacts (e.g. Cescatti and Piutti, 1998; Laurent et al., 2003; 

Martin-Benito et al., 2010).  

In the short-term, thinning has been found to reduce stand transpiration (Bréda et al., 1995; 

Lagergren et al., 2008), interception of precipitation and competition aboveground and 

belowground (Aussenac and Granier, 1988; Bréda et al., 1995) so that soil water content is 

increased (Stogsdill et al., 1992; McDowell et al., 2003). However, increasing within-stand 

radiation and air flow in the canopy in recently thinned stands can also increase transpiration 

of remaining trees and promote the development of understory vegetation, causing a 

decrease in soil water availability (Bréda et al., 1995; Mueller and Bolte, 2002). In the long-

term, the positive effects of thinning on soil water availability may be offset by an increased 

water demand of exposed trees by enlarged foliage area. For ponderosa pine in semi-arid 

Arizona, McDowell et al. (2006) attributed the large relative decline in basal area increment 

during drought and more variable gas exchange in thinned compared with unthinned stands 

to an enlarged foliage area per tree.  

One possibility to examine short-term and long-term effects of thinning on drought response 

of trees is through retrospective analysis of tree growth using dendrochronological 

approaches (Bréda et al., 1995; Cescatti and Piutti, 1998; Laurent et al., 2003). Only recently, 

Lloret et al. (2011) suggested that theoretical models of tree resilience; i.e. the capacity of 

trees or stands to maintain/regain pre-disturbance structures (resilience) can be examined 

empirically by calculating indices of relative changes in tree radial growth during and after 

disturbance events. According to the definitions provided by Lloret et al. (2011), we define 

resistance as the ratio of growth levels during the drought compared to those before the 
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drought and recovery as the ratio of growth levels after the drought compared to those during 

the drought.  

In a previous study, intense thinning was found to improve drought recovery of radial growth 

in Norway spruce when compared to unthinned stands (Kohler et al., 2010). However, the 

relative growth reduction during the drought year was similar to that of moderately and un-

thinned stands. The study, however, was based solely on dendrochronological data from one 

single stand so that underlying causes for the diverging growth responses during and after 

drought could not be ascertained.  

At non-limiting sites of temperate regions tree growth often displays little or no inter-annual 

variation and correlation with drought-related climatic parameters (Fritts et al., 1965). Under 

these circumstances and owing to the strong relation between isotopic composition and water 

availability, stable isotope analysis has been suggested as a more reliable approach to obtain 

climate signals (Barnard et al., 2012). In recent years, analysis of stable isotopes in 

dendrochronological studies helped to infer physiological responses of trees to environmental 

conditions (Robertson et al., 2008).  

The stable carbon-isotope ratio (δ13C) of plant material depends on (1) the stomatal 

conductance, mainly driven by water availability and evaporative demand of the atmosphere, 

and (2) on the rate of carbon assimilation (Farquhar et al., 1989). Drought conditions reduce 

stomatal aperture and thus leaf-internal CO2 partial pressure and hence decreases 

photosynthetic discrimination against 13CO2 (Farquhar et al., 1989). Likewise, δ13C of plant 

material may increase in response to thinning as light and/or nutrient availability increases, 

both affecting photosynthetic capacity (e.g. Warren et al., 2001; Powers et al., 2010). Hence, 

responses in δ13C upon thinning cannot be attributed unambiguously to either increases of 

water or light availability.  

Oxygen-isotope ratio (δ18O) has been used to separate effects of stomatal aperture (g) and 

photosynthesis (A) on δ13C by the dual- isotope approach (Scheidegger et al., 2000; Grams et 

al., 2007). While sharing the dependency on stomatal conductance with the δ13C signature, 

δ18O is not influenced by rubisco activity (Barbour and Farquhar, 2000). The δ18O of plant 

material is mainly driven by the isotopic signature of source water and its evaporative 

enrichment during transpiration. Furthermore, the exchange rate of 18O between oxygen in 
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sucrose and later during phloem transport and stem cellulose synthesis in the developing cell 

has to be considered. This exchange rate is estimated in the range of 40%, but may vary during 

the growing season (Barbour et al., 2007; Offermann et al., 2011). 

Roden and Siegwolf (2012) recently suggested that one should interpret results of the dual 

isotope approach rather as changes in canopy-integrated photosynthesis (A_INT) and not as 

changes in photosynthetic capacity (Amax) because microclimatic variation (of light, 

temperature and tree water status) can alter A without influencing Amax. Despite multiple 

sources of error associated with the dual- isotope approach (Roden and Siegwolf, 2012), it has 

been successfully used to explain physiological mechanisms underlying differences in growth 

patterns among trees (Martin-Benito et al., 2010; Powers et al., 2010; Moreno-Gutiérrez et 

al., 2011) and so far, it remains the most powerful tool for retrospectively studying tree 

physiological responses in relation to climatic extremes in non-controlled environments.  

The objectives of the present study are to unveil the effects of thinning on the physiological 

responses of stem growth to drought. 

We hypothesized that: 

 

1. The decline in radial stem growth during years of severe drought is not necessarily 

mitigated by thinning. 

 

2. That the recovery of stem growth during years following severe drought is improved 

by thinning. 

 

 

3. That differences in drought resistance and recovery of growth among treatments can 

be related to enhanced soil water availability and adjustment in water-use efficiency. 

 

 

To examine these hypotheses, we combined analyses of radial growth of Norway spruce with 

carbon and oxygen isotopic information from tree rings, i.e. the dual-isotope approach, in two 

long-term thinning experiments from Southern Germany. 
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Material and methods 
 

Study sites and thinning experiments 

 

Trees were sampled from two thinning experiments at different sites in Southern Germany. 

OŶe site, ͚͚GöggiŶgeŶ͛͛ (GG), is located in the Alpine Foreland of South-Western Germany 

(Baden- Württemberg) at 650 m above sea level (a.s.l.). The second site, ͚͚FƌeisiŶg͛͛ ;F“Ϳ, is paƌt 

of the Tertiary Hill country in South-Eastern Germany (Bavaria) at an altitude of 500 m a.s.l. 

Both stands are situated on even terrain with similar soil types representing (endo)stagnic 

Cambisols and Luvisol in Göggingen and Freising, respectively. Available soil water storage 

capacity (ASWSC) at Göggingen was c. 150 mm m-1 of soil profile, whereas at Freising it 

reached levels of c. 250 mm m-1 (data extrapolated from Nikolova et al., 2009). During 1970–

2006, mean annual precipitation was c. 780 and c. 790 mm along with mean annual 

temperatures of 7.5 and 7.9 °C at Göggingen and Freising, respectively. 

At both sites, four thinning treatments and control plots were established in 1974 in 27-year-

old homogeneous pure stands of Norway spruce (with a total size of c. 10 ha each). In each 

case c. 5500 trees ha-1 out of the 10,000 trees ha-1 initially planted had remained at the time 

of establishment of thinning trials. At both sites, treatments consist of two randomly assigned 

replicates (rectangular plots of 0.1 ha), separated by buffer zones. About 400 future crop trees 

per ha were selected by diameter at breast height previous to the first thinning intervention. 

At both sites, three treatments were investigated for the purpose of this study 

 

- Un-thinned control (C). 

- Moderate thinning (MT) to 400 future crop trees ha-1 of profitable timber quality 

and/or dimension through 3–4 thinning interventions. (Göggingen: 1974, 86, 93 and 

97, Freising: 1974, 89 and 96) with removal of 1–2 competing trees per crop tree in 

each intervention. 

- Heavy thinning (HT) to 200 future crop trees through removal of all other trees in 3 

interventions (Göggingen in 1974, 80 and 93; Freising 1974, 81 and 96). 
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Thinning intervals ranged from six to thirteen-years and stem numbers in the respective 

thinning treatments were comparable between the study sites in 2006 (Table 2-1), the year of 

the last inventory. Natural self-thinning in control stands was more advanced at Göggingen 

than at Freising resulting in 1100 and 1500 trees ha-1, respectively, at the end of the study 

period in 2006. 

 

 

Table 2-1 Stem numbers per hectare (ha) for the control and the two thinning treatments after each 

of the four thinning interventions (T1–T4) and at the time of data collection in 2006 (Final) in Freising 

and Göggingen. 

Site  Treatment Year     

  Stem number per ha      

  T1 T2 T3 T4 Final 

 Freising  1974  1981 1989 1996 2006 

 Control (C) 5600* n/a n/a 1868 1535 

  Moderate Thinning (MT) 4810 n/a  n/a 1209 910 

  Heavy Thinning (HT) 3240 420 n/a 243 243 

       

Göggingen  1974  1980 1986 1993 2006 

 Control (C) 5200* 3050 1950 1600 1100 

 Moderate Thinning (MT) 4970 2790 1560 1240 757 

  Heavy Thinning (HT) 3110 393 393 211 211 

* Data representative for the whole initial stand. 

 

Sampling and tree-ring analyses 

 

Dendrochronological data from Göggingen were obtained from Kohler et al. (2010), who had 

collected stem discs at breast height (1.3 m) from the HT (11 trees) and MT (9 trees) plots in 

early spring 2007. In the same year, 8 trees per control plot had been sampled at breast height 

with two increment cores oriented in North and West direction each. In Freising, two 

increment cores (oriented North and West) were extracted at breast height in summer 2009 

from 10 trees per treatment (C, MT, HT). At both sites, stem discs and cores were collected 

from (co-) dominant trees, which appeared healthy and uninjured. Mean annual basal area 
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increments (BAI, mm2 year-1) of trees were calculated from annual radial increments (mm). 

We averaged eight radii per disc or two cores per tree, assuming cross-sectional incremental 

areas of concentric shape in the absence of site inclination. Resulting BAI curves (1974–2006) 

were standardized to eliminate tree size effects using the following formula (ARSTAN software 

of the University of Arizona, http://www.ltrr.arizona.edu): 

 

It=bt/gt                  (1)    

                                                                                                                             

where It is the relative growth index for year t, bt is the basal area growth increment measured 

for year t, and gt represents the basal area estimated by the Hugershoff model (Cook, 1985) 

for year t. The model accounts for the long-term growth trends of tree individuals, so that 

variation in It, is mainly due to short-term fluctuations of climatic factors. Standardized growth 

series of each treatment and site produced by ARSTAN are based on a robust estimation of 

annual means of It minimizing the effect of outliers (Cook, 1985).  

For analyzing drought responses, the two pan-European droughts of 1976 and 2003 were 

selected by data of Palmer Drought Severity Index (PDSI), precipitation and vapor pressure 

deficit (VPD) during early summer (May–June) and late summer (July–August) from each site. 

Despite the strong growth decline visible in all tree-ring series, we decided against analyzing 

tree response to the 1992 drought. This decision was based on this year coinciding with a 

heavy masting event, which we expected might have caused additional background noise in 

our isotope data. Similar to the indices suggested by Lloret et al. (2011), resistance to and 

recovery from drought was calculated as ratios of standard growth indices (It) using either one 

year or the mean of two or three years as reference periods: 

 

Resistance 1 = It DY / It PreDY and Resistance 2 = It DY / Mean It 2 or 3 PreDYs             (2&3) 

Recovery 1 = It PostDY / ItDY and Recovery 2 = It Mean 3 PostDYs/DY              (4&5) 

 

where DY is the drought year, PreDY is DY-1, PostDY is DY+1, Mean 2 or 3 PreDYs is ((DY-

1)+(DY-2))/2) or ((DY-1)+(DY-2)+(DY-3))/3, and Mean 3 PostDYs is ((DY+1)+(DY+2)+(DY+3))/3. 
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Analyses of stable carbon and oxygen isotopes 
 

 

At each site and treatment, five representative sample trees were selected for tree-ring 

aŶalǇsis of ĐaƌďoŶ aŶd oǆǇgeŶ isotope ƌatios ;δ13C aŶd δ18O, respectively). We sampled two 

years before and 3–5 after the drought years (1976 and 2003) from the North-orientation and 

separated earlywood from latewood. For a subsample, we compared isotope values in bulk 

wood with those in cellulose in order to determine the necessity to extract cellulose in our 

trees. This methodological study suggested that bulk wood and extracted cellulose displayed 

sigŶifiĐaŶt ĐoƌƌelatioŶs iŶ δ13C aŶd δ18O (Fig. 2-1a and b) confirming earlier findings in Pinus 

species (Barbour et al., 2001) and in Norway spruce (Jaggi et al., 2002). 

 

 

Figure 2-1 CoŵpaƌisoŶ of Δ 13C (a) and δ18O (b) in whole wood and wood cellulose of annual growth 

rings. Linear regression models gave a goodness of fit of (a) R2 = 0.92 (P < 0.001, N = 60) and (b) R2 = 

0.67 (P < 0.01, N = 30). 
 

OŶ aǀeƌage, δ13C iŶ Đellulose ǁas ϭ.ϯϱ‰ higheƌ thaŶ that iŶ ďulk ǁood, which is similar to the 

difference of 1.34–ϭ.ϯϳ‰ fouŶd ďǇ Boƌella et al. ;ϭϵϵϴͿ foƌ the saŵe speĐies. MeaŶ δ18O in 

Đellulose ǁas ϱ.ϵ‰ higheƌ thaŶ iŶ ďulk ǁood, ďeiŶg ĐoŶsisteŶt ǁith the ϱ.ϱ‰ iŶ Ŷeedles of 

adult spruce trees (Grams et al., 2007). Based on these findings, we used bulk wood samples 

rather than extracted cellulose for isotope analysis as sample sizes were limiting. Quantities 

of 0.2–ϭ.Ϭ ŵg peƌ saŵple ǁeƌe ǁeighed iŶto tiŶ ;δ13CͿ aŶd silǀeƌ ;δ18O) capsules. For analyses 

of δ13C, wood samples were combusted in an elemental analyser (NA 2500; CE Instruments, 

Milan, Italy) coupled to an isotope-ratio mass spectrometer (IRMS, Delta- Plus, Finnigan MAT 
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GŵďHͿ ďǇ a CoŶflo II iŶteƌfaĐe. Foƌ δ18O analysis, samples were pyrolised in a high 

temperature conversion/ elemental analyser (TC/EA; Finnigan MAT GmbH, Bremen, 

Germany), which was linked to an IRMS (DeltaPlus XP, Finnigan MAT GmbH) by a Conflo III 

iŶteƌfaĐe ;FiŶŶigaŶ MAT GŵďHͿ. The δ13C of ǁood ǁas ĐoƌƌeĐted foƌ the deĐliŶe iŶ δ13C of 

atmospheric CO2 ;δ13Ca) over the study period (McCarroll and Loader, 2004) and 

discrimination against 13CO2 (Δ13C) was calculated as follows (Farquhar et al., 1989): 

 

Δ13C [‰] = (δ13Ca - δ13C)/ (1+ δ13Ca)                                                                                           (6) 

 

To faĐilitate iŶteƌpƌetatioŶ of ĐhaŶges iŶ δ18O as primarily influenced by stomatal conductance 

the following prerequisites have to be fulfilled: A major assumptioŶ is that souƌĐe ǁateƌ δ18O 

is siŵilaƌ aŵoŶg tƌees so that the ŵajoƌitǇ of δ18O variation in organic matter is driven by the 

evaporative enrichment (Barbour, 2007; Grams et al., 2007; Roden and Siegwolf, 2012). In 

additioŶ, δ18O of atmospheric vapor, relative air humidity and leaf temperature must be 

constant over time and similar between the treatments. Source ǁateƌ δ18O (i.e. xylem water) 

depeŶds oŶ the δ18O of soil water, thus varies with soil depths and precipitation. In our case, 

the latter varied ďǇ ŵoƌe thaŶ Ϯ‰ fƌoŵ Ǉeaƌ to Ǉeaƌ aŶd ďǇ ŵoƌe thaŶ ϭϬ‰ ďetǁeeŶ diffeƌeŶt 

months (data not shown). Since variations are hard to quantify in retrospective studies against 

this ďaĐkgƌouŶd Ŷoise, ǁe deƌiǀed thiŶŶiŶg effeĐts oŶ δ18O of wood as the difference between 

thinned and control plots (cf. Brooks and Mitchell, 2011) assuming that trees took up water 

with a similar isotopic signature. This assumption is justified by the lack of slope at both sites 

and similar vertical distributions of fine root biomass among plots at Göggingen (Omari, 2010). 

Thus, δ18O iŶ ǁood of eaĐh tƌee iŶ the thiŶŶed plots ǁas ƌelated to the ŵeaŶ of δ18O of the 

control trees for each year and site. Along this line, we also assumed leaf temperature, relative 

huŵiditǇ aŶd δ18O of water vapor to be similar among our treatments, considering the well 

coupled canopy in mature stands of Norway spruce. However, having not measured these 

parameters, we acknowledge that in particular differences in leaf temperature may add some 

variation that we could not account for. 
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Statistical analyses 

 

We used the Man-Whitney U test (MWU-test) (a < 0.05) to test for differences in resistance 

and recovery of growth indices between treatments. Regression analysis was performed to 

model the effects of year, site, thinning treatment, wood type (earlywood or latewood), or 

interactions (e.g. site times treatment) on the relationship between Δ13C and δ18O. 

Orthogonally contrasted dummy variables were used coding site, thinning treatment and 

wood type. In order to detect significant inter-annual changes in Δ13C and δ18O relative to the 

control, repeated measures ANOVA followed by pairwise comparisons was performed 

separately for trees from each site, wood type and thinning treatment. The same statistics 

were used to identify interactions between year (within-subject factor) and thinning 

treatment (between-subject factor) in isotope series. Correlation analysis was conducted to 

examine relationships between carbon and oxygen isotopes in earlywood and latewood of 

each thinning treatment and site. Quantitative statistics were performed using the software 

package SPSS 2008 (SPSS Statistics 17.0, Inc., Chicago IL.). 

 

Results 

 

At both sites, thinning altered the trajectory of the relationship between the basal area (BA) 

and basal area increment (BAI) of trees (Fig. 2-2). Maximum BAI increased with BA and 

thinning intensity. The BAI peaked at about 30, 35 and 70 cm2 year-1 in control, moderate 

thinning (MT), and heavy thinning (HT), respectively. At Freising, 32 years after the first 

thinning, i.e. in 2006, the average accumulated BA amounted to 800 cm2, 1000 cm2 and 1700 

cm2 for control, MT and HT trees, respectively. At Göggingen, maximum basal area of MT trees 

did not differ from the control (c. 900 and 1000 cm2, respectively) and reached 1550 cm2 for 

HT trees. In total, 66% the variation in δ18O could be explained by the variables discrimination 

against 13C, i.e. Δ13C, site and year (Table 2-2). Based on these results, we decided to analyze 

drought response of radial growth and isotopes separately for each site and the two periods 

1974–1981 and 2001–2006. 
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Figure 2-2 Relationship between basal area (BA) and basal area increment (BAI) of dominant and co-

dominant trees from three different thinning treatments for the period 1965– 2006 at two sites (N = 

8–11). Closed triangles represent control (C), open squares moderate (MT) and closed squares heavy 

thinning (HT). Vertical and horizontal bars indicate ± 1 standard error for means of BAI and BA, 

respectively. Curves result from fitting of a second order polynomial function for each series (R2 = 0.5–
0.7). 

 

Table 2-2 Summary of the dummy regression model for the dependent variable δ18O. Only 

predictors that increased R by at least 5% are shown. 

Model predictors R Adjusted R2 
Std. Error of the 

Estimate 
Changes of R² 

∆13C   0.47a 0.22 1.87 0.22 

∆13C, Site 0.76b 0.57 1.38 0.35 

∆13C, Site, Year 0.82c 0.66 1.24 0.09 

 

 

Drought response of radial growth 

 

In 1976, i.e. two years after the first thinning, drought during spring and early summer led to 

the formation of false year rings at both the Göggingen and the Freising site (cf. Kohler et al., 

2010). During this drought event, standardized growth (It) of control trees at Freising declined 

by c. 25% compared to the previous year (resistance 1) or previous two years (resistance 2) 

(Table 2-3, Fig. 2-3) indicating lower drought resistance than in MT (resistance 1 and 2) and 
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HT (resistance 2) trees, which were hardly affected. At the same site, growth recovery in the 

first year following drought (recovery 1) and the three years following drought (recovery 2) 

was fastest in HT trees, with standardized growth (It) increasing by up to 60% compared to 

values of the drought year while this was no more than 20–35% in control and MT trees. At 

Göggingen, the standardized growth index (It) of control trees decreased only by 5–15% in 

1976 compared to the previous year(s). Drought resistance was similar among treatments 

(Table 2-3, Fig. 2-3). However, growth recovery of HT trees was slower relative to MT trees 

(recovery 1 and 2) and control trees (recovery 2) by c. 20%. During the drought of 2003, the 

growth index of control trees dropped by c. 50% compared to 2002 (Table 2-3, Fig. 2-3). A 

similar response was found for MT trees whereas growth decline was even higher for HT trees 

(up to 60% at Göggingen). Correspondingly, drought resistance in trees from HT plots was 

lowest at both sites (Table 2-3). Growth recovery in 2004 (recovery 1) was stronger by c. 20–

40%, albeit far from being complete, in HT trees when compared to MT and control trees at 

both sites. 

Climate data suggest that no water limitation for tree development occurred during the two 

vegetation periods preceding the selected drought years (Fig. 2-4 – 2-7g and h). Thus, 

observed reductions of radial growth can be related to the distinct droughts in the years 1976 

and 2003 and respective preceding radial growth in the absence of water limitations can be 

used as reference for the calculations of drought resistance. 
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Table 2-3 Effects of thinning intensity (moderate thinning (MT), heavy thinning (HT) on the resistance 

and recovery of standardized growth (It) for drought years 1976 and 2003. Resistance relates the 

growth in the drought year to that of the previous year (resistance 1) or the previous 3 years (resistance 

2). Recovery relates the growth of one (recovery 1) or 3 (recovery 2) years following drought to the 

drought year. 

Different letters indicate significant differences between treatments at P < 0.05, N = 8, 9 and 11 for control, 

moderate thinning and heavy thinning, respectively. 

 

 

 

Figure 2-3 Dimensionless growth indices (It) at Freising and Göggingen: BAI of the post-thinning period 

1974–2006 was detrended using the Hugershoff growth functions in ARSTAN. Closed triangles: control 

(C), open squares: Moderate thinning (MT) and closed squares: heavy thinning (HT). Dashed lines 

indicate year of first thinning and arrows point to drought events of 1976 and 2003. 

 

 

 

Drought 

year 

Growth 

indices 

Freising Göggingen 

Control MT HT Control MT HT 

1976 

Resistance 1 0.78a 1.05b 0.94ab 0.95a 1.00a 0.91a 

Resistance 2 0.75a 1.02b 1.03b 0.86a 1.07a 0.91a 

Recovery 1 1.37a 1.20a 1.61b 1.12ab 1.20a 1.02b 

Recovery 2 1.29ab 1.13a 1.38b 1.06a 1.09a 0.88b 

2003 

Resistance 1 0.53ab 0.56a 0.43b 0.46a 0.47a 0.40a 

Resistance 2 0.57a 0.60a 0.46b 0.45ab 0.45a 0.39b 

Recovery 1 1.17a 1.32a 1.50b 1.39a 1.33a 1.70b 

Recovery 2 1.41a 1.39a 1.58a 1.60a 1.27a 1.48a 



Chapter 2 

 

35 

 

Isotopes 

 

At both sites and across treatments, Δ13C in earlywood was (marginally) significantly 

correlated (P < 0.01) with Δ13C in latewood of both the same and the preceding year (Table 2- 

4). The same was found for δ18O, except for control trees in Göggingen, where the correlation 

was weaker between earlywood and latewood of same years (P < 0.05) and not significant 

between earlywood and latewood of the previous years 

 

Table 2-4 Correlation coefficients (Pearson-‘Ϳ of Δ13C aŶd δ18O in earlywood of current year with 

latewood of both previous and current year under the three treatments (control, moderate thinning 

(MT), heavy thinning (HT) at both sites (Göggingen and Freising). 

All correlations are significant at P < 0.001, except for * where P < 0.05 and the italic number where P > 0.05 

(N = 65–80). Significance levels were calculated using Fischer-P, two-tailed test. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Latewood 

       Earlywood / Freising Earlywood / Göggingen 

 

Control 

 

MT 

 

HT 

 

Control 

 

MT 

 

HT 

Δ13C 

Previous year 0.50 0.62 0.42 0.89 0.76 0.86 

Current year 0.49 0.60 0.31 0.86 0.73 0.87 

δ18O 

Previous year 0.71 0.53 0.38 0.10 0.59 0.49 

Current year 0.68 0.49 0.41 0.25* 0.64 0.46 
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Figure 2-4 a–f MeaŶs ;±“EͿ of Δ13C ;a aŶd ďͿ, aŶd δ18O (c and d) for the post-thinning period of 1974–
1981 in earlywood (a and c) and latewood (b and d) in control (closed triangles), moderate (open 

squares) and heavy thinning (closed squares) at Freising (N = 5 each). Differences of MT and HT trees 
iŶ δ18O relative to control trees are given for earlywood (e) and latewood (f). Dashed lines in e-f indicate 

± 1 standard error of control trees. One and two stars indicate significant differences between 

subsequent years at P < 0.05 and P < 0.01, respectively (repeated measures ANOVA). (g and h) Long-

term (1973–2006) and annual (1974–1981) means of VPD (at 2 pm; dashed lines) and precipitation 

(solid lines). Data are averaged for Mai to June (g) and from July to August (h) for comparison with 

early- and latewood, respectively; grey area shows drought event of 1976. 
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Figure 2-5 a–f MeaŶs ;±“EͿ of Δ13C ;a aŶd ďͿ, aŶd δ18O (c and d) for the post-thinning period of 1974–
1981 in earlywood (a and c) and latewood (b and d) in control (closed triangles), moderate (open 

squares) and heavy thinning (closed squares) at Göggingen (N = 5 each). Differences of MT and HT 

tƌees iŶ δ18O relative to control trees are given for earlywood (e) and latewood (f). Dashed lines in (e–
f) indicate ±1 standard error of control trees. One and two stars indicate significant differences 

between subsequent years at P < 0.05 and P < 0.01, respectively (repeated measures ANOVA). (g and 

h) Long-term (1973–2006) and annual (1974–1981) means of VPD (at 2 pm, dashed lines) and 

precipitation (solid lines). Data are averaged for Mai to June (g) and from July to August (h) for 
comparison with early- and latewood, respectively; grey area shows drought event of 1976. 
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Figure 2-6 a–f Means (±SE) of Δ13C (a and b), and δ18O (c and d) for the post-thinning period of 2001–
2008 in earlywood (a and c) and latewood (b and d) in control (closed triangles), moderate (open 

squares) and heavy thinning (closed squares) at Freising (N = 5 each). Differences of MT and HT trees 

in δ18O relative to control trees are given for earlywood (e) and latewood (f). Dashed lines in e–f 

indicate ± 1 standard error of control trees. One and two stars indicate significant differences between 

subsequent years at P < 0.05 and P < 0.01, respectively (repeated measures ANOVA). (g and h) Long-

term (1973–2006) and annual (2001–2008) means of VPD (at 2 pm, dashed lines) and precipitation 

(solid lines). Data are averaged for Mai to June (g) and from July to August (h) for comparison with 

early- and latewood, respectively; grey area shows drought event of 2003. 
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Figure 2-7 a–f Means (±SE) of Δ13C (a and b), and δ18O (c and d) for the post-thinning period of 2001–
2006 in earlywood (a and c) and latewood (b and d) in control (closed triangles), moderate (open 

squares) and heavy thinning (closed squares) at Göggingen (N = 5 each). Differences of MT and HT 

trees in δ18O relative to control trees are given for earlywood (e) and latewood (f). Dashed lines in e-f 

indicate ± 1 standard error of control trees. One and two stars indicate significant differences between 

subsequent years at P < 0.05 and P < 0.01, respectively (repeated measures ANOVA). (g and h) Long-

term (1973–2006) and annual (2001–2006) means of VPD (at 2 pm, dashed lines) and precipitation 

(solid lines). Data are averaged for Mai to June (g) and from July to August (h) for comparison with 

early- and latewood, respectively; grey area shows drought event of 2003. 
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At Freising, during the drought year 1976, i.e. two years after the initial thinning, Δ13C in 

lateǁood of ĐoŶtƌol tƌees teŶded to deĐƌease ďǇ aďout ϭ ‰ ;P = Ϭ.ϬϳͿ, ǁheƌeas Ŷo sigŶifiĐaŶt 

drought effects were found in Δ13C in latewood of MT and HT trees and in any of the three 

earlywood series (Fig. 2-ϰa aŶd ďͿ. IŶ eaƌlǇǁood δ18O of HT trees increased significantly 

relative to controls during the drought year 1976 (Fig. 2-ϰĐ aŶd eͿ. IŶ lateǁood δ18O of the 

same trees decreased significantly during the drought and subsequently increased 

significantly in the following year relative to controls (Fig. 2-4d and f). In Göggingen, during 

the 1976 drought and following years, we found no significant inter-annual changes either in 

Δ13C or δ18O relative to controls in earlywood or latewood (Fig. 2-5). The increases in δ18O in 

earlwood of 1976 are similar in all treatments (Figs. 2-4c and 2-5c) and are likely caused by 

enriched δ18O of precipitation (data not shown).  

During the 2003 drought, Δ13C in latewood decreased (significantly) by ca. 1–Ϯ‰ at ďoth sites 

and for all treatments (Figs. 2-6b and 2-7b). In the following year, a small positive trend 

(significant for MT trees) was observed in Freising but values did not recover to pre-drought 

levels until 2005 (Fig. 2-6b). At Göggingen, no changes occurred in latewood Δ13C in the first 

post-drought year but one year later, values of MT and HT trees increased significantly (Fig. 2-

7b). The corresponding decrease of Δ13C in earlywood during 2003 was somewhat smaller at 

both sites (significant for MT trees in Freising and HT trees in Göggingen) and continued at 

least for one more year (Figs. 2-6a and 2-7a).  

The developments of δ18O in earlywood and latewood at the two sites showed no consistent 

pattern during the 2003 dƌought. At FƌeisiŶg, δ18O relative to controls significantly decreased 

in2003 in earlywood of HT trees (Fig. 2-6c and e). In the following year, the same trees showed 

a sigŶifiĐaŶt iŶĐƌease iŶ δ18O relative to control in both early and latewood (Fig. 2-6e and f). 

At Göggingen, in ĐoŶtƌast, ǁe fouŶd a ;sigŶifiĐaŶtͿ iŶĐƌease iŶ eaƌlǇǁood aŶd lateǁood δ18O 

relative to the control in trees of the MT and HT treatments during the 2003 drought and a 

(significant) decrease in the following year (Fig. 2-7c–f).  
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Discussion 
 

The present study assessed the effects of thinning on the drought response of stem growth in 

Norway spruce from two thinning experiments in Southern Germany. We hypothesized that 

thinning (1) does not mitigate the growth reduction, i.e. increase resistance, during a drought 

year, but (2) enhances recovery of stem growth during following years. These hypotheses 

were corroborated through our analysis for the 2003 drought, but not in all cases for 1976. To 

facilitate retrospective inference of physiological drought responses of trees, the different 

growth resistance to and recovery from drought are interpreted on the basis of tree ring 

isotope data (hypothesis 3) by means of the conceptual models using the dual isotope 

approach (Scheidegger et al., 2000; Grams et al., 2007; Roden and Siegwolf, 2012).  

 

Growth response to drought in 1976 

 

In contrast to our hypothesis 1 that thinning does not increase growth resistance to drought, 

we found a significantly higher resistance in 1976 in trees from thinned compared to 

unthinned stands at Freising. At the second site, Göggingen, there were no differences in 

resistance among treatments. However, this outcome must be seen within the context of the 

moderate growth suppression in 1976 of control trees at Göggingen by 5–15% compared to 

25% at Freising. Considering the normal to wet climatic conditions during the two preceding 

years at both sites (Figs. 2-4g, h and 2-5g, h), it is unlikely that control trees at Freising had a 

higher predisposition to succumb to drought than at Göggingen. However, the larger growth 

reduction at Freising may be related to a longer duration of drought during the 1976 growing 

season at this site compared to Göggingen. Rainfall during late summer was still below average 

at Freising whereas it was higher than the long-term average at Göggingen (Figs. 2-4 and 2-

5h). 

It is likely that the higher drought resistance of trees from thinned compared to control stands 

at Freising resulted from the short time period since the initial thinning in 1974. During 

earlywood formation when drought peaked, the model of Scheidegger et al. (2000) suggests 

that trees responded with a reduction of both stomatal conductance (g) and assimilation (A) 

(i.e. no change in Δ13C aŶd iŶĐƌease iŶ δ18O relative to control) compared to the pre-drought 

year. This effect was strongest in HT trees. For recently thinned Douglas Fir stands on 
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Vancouver Island, a similar isotopic response in earlywood formed during drier spring seasons 

was related to a decrease of g along with a decrease in relative humidity and/or increase in 

leaf temperature (Brooks and Mitchell, 2011). However, we cannot rule out that the increase 

iŶ δ18O in HT relative to control stands during the drought may have been at least partly 

related to more enriched source water in open stands due to comparably more evaporation 

loss of more exposed soils in recently thinned stands (cf. Moreno-Gutiérrez et al. 2011, 2012). 

As soon as growth conditions improved later during the growing season, the dual isotope 

approach suggests that HT trees iŶĐƌeased ďoth g aŶd A ;Ŷo ĐhaŶge iŶ Δ13C and significant 

deĐƌease iŶ δ18O relative to control) compared to values of the previous year. Thus, despite a 

possibly short period of more restricted gas exchange during early summer including the 

formation of false year rings, the recent heavy thinning (i.e. two years ago) allowed for 

enhanced stomatal aperture once water availability improved during late summer. In turn, 

assimilate availability apparently increased in support of growth as compared to control trees.  

In addition, the favorable climatic conditions in the two years after thinning and before the 

drought in 1976, may have replenished soil water stores in the thinned stands, and hence 

mitigated growth reductions during the drought (Hartmann et al., 2008). Our results  support 

findings of Moreno-Gutiérrez et al. (2011) who attributed increases in g and A along with 

growth during the first year following heavy thinning in a Pinus halepensis stand in semiarid 

Spain to reduced competition for limited water.  

At Göggingen, the generally modest growth reductions in 1976 are likely to have caused the 

similar resistance across treatments as opposed to the increased resistance of HT trees at 

Freising. The limited drought period at the Göggingen site during early summer led to the 

formation of false tree rings that were least distinct in HT trees. Isotopic composition of tree 

rings during the drought remained largely unaffected by the thinning treatments, reflecting 

comparable growth response in thinned and unthinned stands. Comparing both experiments, 

the high drought resistance of HT trees was found at the site with higher soil water holding 

capacity (i.e. Freising), confirming findings by Laurent et al. (2003) for recently thinned stands 

of Norway spruce in the Belgian Ardennes.  

In addition to their higher drought resistance, HT trees from Freising recovered faster after 

the drought in 1976 compared to trees in denser stands, confirming our second hypothesis. 

The faster growth recovery of HT trees was probably facilitated by the humid conditions during 
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the post-drought period. Considering the high water holding capacity of the soil at lower stand 

density, HT trees should have high soil water availability. The positive growth trend of HT trees 

throughout the whole post-thinning period indicates an ongoing positive thinning effect. Even 

during the drought, radial growth was similar to the two pre-drought years. Following the 

drought, isotopes indicate a larger range for g and A in HT compared to control trees (stable 

Δ13C and several significant deviations of lateǁood δ18O relative to control), which may 

suggest a higher potential to take advantage of favorable growth conditions when soil water 

availability was high (cf. McDowell et al., 2006).  

Conversely at Göggingen, heavy thinning led to a significantly slower growth recovery, in the 

three years after the 1976 drought compared to trees in denser stands. The reason for the 

slower recovery of HT trees remains obscure, in particular as isotopic signatures suggest 

similar photosynthetic responses of trees irrespective of the thinning treatment. 

 

Growth response to drought in 2003 

 

The 2003 drought occurred about 30 years after the initial and 7–10 years after the last 

thinning intervention. Meanwhile trees grown at thinned plots developed both larger leaf area 

and fine root mass per tree compared to controls (Sohn et al., 2012). The 2003 drought led to 

a stronger decline in radial growth (40–60% less than in 2002) compared to 1976, at both sites 

and regardless of the thinning treatment. This agrees well with the more severe and longer-

lasting drought in 2003 than in 1976 (Figs. 2-6g, h and 2-7g, h). Overall, growth resistance was 

lower in heavily thinned trees compared to moderately thinned and control trees. This 

confirms our first hypothesis that for severe drought events the related decline of radial 

growth is not mitigated by thinning. At Freising, in correspondence with the stronger decline 

in radial growth, isotopes in latewood suggested a similar drop in g along with a larger decline 

iŶ A of HT Đoŵpaƌed to ĐoŶtƌol tƌees ;i.e. sŵalleƌ ƌeduĐtioŶ iŶ Δ13C at siŵilaƌ iŶĐƌease of δ18O). 

Likewise at Göggingen, HT trees displayed a smaller growth resistance compared to control 

trees. As indicated by stable isotopes, the smaller resistance was accompanied by a decrease 

of g at a sŵalleƌ A ;iŶĐƌease iŶ δ18O relative to control at a similar deĐƌease iŶ Δ13C) at this site. 

Hence, the corresponding decline in growth rate of HT compared to control trees at both sites 

may be related to a higher transpirational demand owing to a larger total leaf area per tree 
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(McDowell et al., 2006) and/or decreased boundary layer due to increased air flow in the 

canopy.  

At both sites, radial growth of HT trees recovered faster than in trees growing in denser stands, 

confirming our second hypothesis. Nevertheless, full recovery was only achieved two year 

after the drought event in both growth and stable isotopes.  

At Freising, in contrast to the better growth recovery of HT trees, isotopes implied a decreased 

g aŶd A ƌelatiǀe to the ĐoŶtƌol ;i.e. iŶĐƌeased δ18O relative to controls and similarly constant 

Δ13C) and all treatments had a temporal delayed recovery in isotopes, implying minor water 

shortage in 2004. The reason for the diverging results of radial growth and isotopic 

compositions could not be clarified completely, but the combination of higher fine root 

surface and leaf area of HT trees (Sohn et al., 2012) should greatly increase whole-tree C gain 

and hence provide the basis for a better growth recovery (c.f. McDowell et al., 2006). 

In contrast, at Göggingen C and O isotopic composition suggest that the faster growth 

recovery was paralleled by a recovery of photosynthetic C gain. Trees of the heavily thinned 

stands significantly increased g (i.e. decreased δ18O) relative to controls in the post-drought 

years. At the same time, Δ13C in latewood stayed rather constant after the drought, suggesting 

more effective CO2 fixation at higher g. 

 

Conclusion 
 

The mitigating effect of thinning during the drought depends on the time span between 

thinning and drought. In recently thinned stands, increased water availability likely allows 

trees to maintain higher stomatal aperture and growth rates during droughts compared to 

control stands. This advantage is reduced over time by the increased water demand of the 

remaining trees caused by an increasing leaf area and fine root biomass. This confirms findings 

of McDowell et al. (2006) that tree structures have to be considered when interpreting growth 

patterns using stable isotopes in tree rings – in particular if the thinning treatment was 

conducted more than one decade ago. As a consequence, 30 years after the initial and 7–10 

years after the last thinning the growth decline of HT trees during the 2003 drought was larger 

than in control stands.  
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The growth recovery of trees immediately after the drought was improved through thinning 

irrespective of the time span between thinning and drought. This resulted from a likely 

increase in soil water availability in recently thinned stands. In the medium to long term and 

after several thinnings, the more rapid post-drought recovery of stem growth may be 

attributed to a structural adaptations of large trees, i.e. high foliage area and fine root 

biomass, that allow them to take advantage of improving conditions. Overall, we conclude 

that repeated thinning improves drought response of Norway spruce and should be 

considered as a management strategy for immature Norway spruce stands. 
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Abstract 
 

Predicted intense and prolonged drought events challenge forest management. Thinning is 

debated as a silvicultural measure for reducing drought risk in densely established forest 

stands. We report on a thinning experiment in a 26-year-old Norway spruce stand (Picea 

abies), comprising of two thinning intensities and one unthinnned control. The removal of 43% 

(moderate thinning, MT) and 67% (heavy thinning, HT) of the initial basal area led to increased 

water availability during the entire three-year observation period. Stand-level transpiration 

(Es) was decreased by about 25% upon moderate, and by about 50% upon heavy thinning 

during the first year after the interventions had been carried out. However, differences in Es 

across the treatments decreased within three years after thinning mainly due to increased 

single-tree transpiration and additional understory evapotranspiration at HT. Nevertheless, 

due to lower interception and transpiration on the thinned plots three years after treatment 

MT and HT still showed a substantial surplus in extractable soil water. The results showed that 

the main determinants concerning the extent of the mitigation effect with increasing thinning 

intensity were the available soil water storage capacity and the emerging understory 

vegetation. We conclude that repeated moderate thinning, through enhancing the water 

availability to the remaining trees, can mitigate drought risk in young spruce standsand thus, 

represent a viable silvicultural measure in anticipating possible water limitations due to 

climate change 
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Introduction 
 

The expected increase in air temperature during growing sea-sons in combination with severe 

and extended periods of drought (Meehl and Tebaldi, 2004) challenge forest management all 

over the world: decreasing primary productivity or whole-stand decline caused by pest may 

threaten forestry (Ciais et al., 2005; Bréda et al., 2006; Rouault et al., 2006). Present forest 

management strategies for counteracting the consequences of climate change in Central 

Europe are to diversify tree species composition and to convert mono-specific stands of 

drought sensitive species into mixed-species stands (Bolte et al., 2009). Norway spruce (Picea 

abies [L.] Karst.), a drought sensitive tree species, may be severely affected by climate change 

(Ammer et al., 2008; Kölling et al., 2009; Temperli et al., 2012). However, in Germany, Norway 

spruce occupies more than 3.3 million ha (c.30% of total forest area) 32.7% of the Norway 

spruce stands are still even-aged and mono-specific (BMELV, 2008). In Bavaria (Southern 

Germany), even 43% of the forests consist of pure Norway spruce, which is by far the 

economically most important tree species in Germany. However, on sites where its future 

cultivation in mono-cultures is questioned, spruce stands older than 60 years may be replaced 

by another more drought tolerant species or they may be converted into mixed stands by 

under-plantings with a different tree species (for review see Ammer et al., 2008). This is no 

option for the Norway spruce stands <40 years of age growing on more than 1.0 million 

hectares in Germany (BMELV, 2008). Therefore, the question arises whether silvicultural 

interventions may help to mitigate the risk of drought on young Norway spruce stands. One 

frequently discussed option is thinning (Bolte et al., 2009). Experimental evidence from 

different studies covering a variety of species suggests that thinnings may help to substantially 

reduce climatic stress by augmenting water supply (Lagergren et al., 2008; Magruder et al., 

2013; Hawthorne et al., 2013; Giuggiola et al., 2013). Moreover, retrospective tree ring 

analyses revealed trees of thinned stands to be favoured in recovery after exception-ally dry 

Ǉeaƌs ;Kohleƌ et al., ϮϬϭϬ; “ohŶ et al., ϮϬϭϯͿ. D͛Aŵato et al. (2013) confirmed these findings 

but only for young stands. Reversal effects were found for old stands. However, dendro-

chronological studies cannot fully disentangle thinning effects from such of cli-mate on growth 

(Laurent et al., 2003). Common silvicultural thinning practice in immature Norways pruce 

stands is promoting the future crop trees in growth and stability by reducing light competition 

through successively removing competitors (Röhrig et al., 2006). Although effects of thinning 
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intensity and frequency have been repeatedly studied on single tree performance and stand 

growth, structural development and wood properties (Misson et al., 2003; Mäkinen and 

Isomäki,2004; Jaakkola et al., 2005a, b; Slodicak et al., 2005; Cao et al.,2008; Wallentin and 

Nilsson, 2011), much less is known on the effect on tree water consumption and stand water 

balance. As for light (Binkley et al., 2013) the response of single trees to improved soil water 

conditions may be completely different from the response of the entire stand. Thus, thinning 

may increase single-tree transpiration due to increase in light, air flow in the crown and water 

availability but reduce stand water consumption on a short-term scale (Morikawa et al., 1986; 

Aussenac and Granier, 1988; Hager, 1988; McJannet and Vertessy, 2001; Simonin et al., 2006, 

2007). Water interception is decreased while the water status of the remaining trees is 

improved due to rising soil moisture (Donner and Running, 1986) Conversely, in some studies 

the thinned stands showed increasing transpiration, already after the second year (Stogsdill 

et al., 1992; Bréda et al., 1995; Lagergren et al., 2008). The differing results may partly be 

explained by thinning intensity. As Aussenac and Granier (1988) reduced total basal area of a 

Douglas fir stand (Pseudotsuga menziesii var. menziesii) down to 50%, which resulted in 

increased soil water reserves during at least the three subsequent years, Bréda et al. (1995) 

and Lagergren et al. (2008) performed less intense thinnings (basal area removed 35%and 25% 

respectively). Although Stogsdill et al. (1992) reduced basal area down to 50% and 75%, 

improved water availability occurred only during humid years, due to increased throughfall. 

However, the water status of an entire stand is controlled by both the residual trees after 

thinning and the understory vegetation which may establish shortly after the silvicultural 

intervention. To our knowledge understory effects on ecosystem-level water consumption 

after thinning have been considered only by Simonin et al. (2007). They showed that in dry 

years the contribution of understory evapotranspiration compensated the lower overstory 

evapotranspiration. In summary, it can be concluded that the reliability of thinning for 

mitigating drought risk is not yet clear. Overall, knowledge and mechanistic understanding of 

graduated thinning affecting stand-level water relations and productivity, taking water 

consumption by trees and understory vegetation into account, is scarce. In this study, we 

report on an experiment in a mono-specific Norway spruce stand where two thinning 

intensities were carried out and compared with an un thinned control. The aim of our study 

was to clarify to which extent increasing thinning intensity may promote water availability of 
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the remaining trees in parallel to reducing the stand-level water consumption. Both the water 

demand of tree and understory vegetation were taken into account.  

It was hypothesized (i) that increasing thinning intensity decreases stand-level transpiration 

while increasing soil water content, (ii) that such effects decline over time due to increases in 

tree and understory transpiration and understory interception, and (iii) that the water use 

efficiency of target trees released from competition is lower than that of control trees. 

Table 3-1 Stand characteristics: mean basal area per tree (BA tree−1), leaf area index of the stand (LAI), 

stand basal area (BA ha−1) and stand sapwood area (As ha−1) of the unthinned control plots (NT), 

moderately thinned plots (MT) and heavily thinned plots (HT) before and upon thinning in 2009-1. 

 

Materials and methods  
 

Experimental stand and site 

The study was conducted near Landshut (48◦38´20´´N, 11◦57´49´´E, Bavaria, Germany) in a 

monoculture of Norway Spruce (Picea abies [L.] Karst.). The mean annual precipitation in the 

region reaches 778 mm and the mean annual temperature was 7.9◦C(DWD). The stand was 

planted in 1982 on luvisol (loess over tertiary) with approx. 3700 seedlings ha−1. Available soil 

water storage capacity (ASWSC) reached about 160 l m−2(per ground area down to 60 cm soil 

depth). The experiment was initiated in 2008 and has continuously been monitored since that 

time. The research area (75 m × 50 m) was subdivided into 6 plots of 25 m × 25 m each. In 

January 2008, the stem diameter at breast height (1.30 m, DBH) of all trees was measured and 

their co-ordinates were mapped. Prior to initiation, about 430 future crop trees (target tree) 

per hectare were selected. Target trees were defined as dominating vital trees (in most cases 

the trees with the highest diameter). DBH increments of all trees were recorded after each 

growing season and up-scaled to stand level. In February 2009 four out of six randomly 
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selected plots were thinned, while two plots remained unchanged as control (NT = not 

thinned). Two plots each were moderately (MT) or heavily thinned (HT; Table 3-1; Fig. 3-1). 

MT represented the stand treatment commonly carried out in Germany, i.e. thinning from 

above by removing two competitors per target tree on average. MT reduced stand basal area 

by c. 43.0%. On HT all trees but the target trees were removed, resulting in BA reduction of c. 

67.0%. Thinning was performed by a harvester.  

 

 

 

 

Figure 3-1 The research area (75 m × 50 m), subdivided in 6 plots of 25 m × 25 m with an inner intensive 

measurement area 10 m × 10 m each (triangle). Each circle represents one tree. About 430 future crop 

trees (target trees) per ha (black circles) were selected prior to thinning. Four out of the six randomly 

selected plots were thinned, while two plots remained unchanged as control (NT = not thinned). Two 

plots each were moderately (MT) or heavily thinned (HT). 

 

Motor-manual felling were done inside the centre of the plots in order to maintain the 

integrity of prior instrumental installations which were placed on a central 10 m × 10 m subplot 

on each plot. Leaf area index (LAI) of the plots was calculated by the allometric relationship 

between basal area (BA, cross sectional area at breast height) and projected leaf area (LA) of 

the trees. For LAI determination 12 trees were harvested covering the entire range of DBH. 
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After assessing crown projected area the trees were cut and all first order branches were 

counted and their diameters were measured. For a subsample of c. 10% of the branches from 

sun-exposed and shaded crown parts, the total length of all lateral branches was assessed. 

Subsequent with another subsample consisting c. 10% of the total length of all lateral 

branches, the projected LA per branch was determined in the laboratory. Using the correlation 

of projected LA to branch diameter whole tree projected LA was calculated and scaled to stand 

level (LA = 2592.4 × BA − 5.2525; R2= 0.9269). LAI was calculated using the corresponding 

crown projection area. 

 

Meteorological parameters 

Air temperature (Tair) and Pg (gross- precipitation) were measured at an open field climate 

station on a meadow at a distance of about 100 m from the experimental forest site (Table 2). 

Due to technical failure temperature was sporadically missing. In these cases mean daily Tair 

data were interpolated by linear regression (R2> 0.90) using Tair measured at the climate 

station Feistenach (Bavarian Institute for Agriculture, LfL) which was located in 30 km distance 

to the experimental site. To account for missing data of the cumulated Pg per growing season 

in 2010 and 2011, a correction factor was calculated between cumulated Pg per growing 

season at the study site and the climate station of Feistenach in 2009. To account for Ps 

(throughfall) a 10 m long rain gorge with a collecting area of 1.0 m2 was installed permanently 

on each central 100 m2 subplot. Ensuring representativeness, gorges were split into one 6 m 

and one 4 m section each, arranged by an angle of 110◦ to each other. Both sections of each 

gorge discharged into one tip-ping bucket. The interception of the overstory (Io) was therefore 

assessed by  

 

Io = Pg – P               (1)  

where is the overstory interception, Pg the gross–precipitation (open field precipitation) and 

Ps the throughfall. 
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Soil water content and fine root biomass 

For measuring volumetric soil water content (θ) TDR – sensors (Time Domain Reflectometry, 

Soil moisture Equipment Corp., Santa Barbara, California) combined with MiniTrase 6050X3 

(Soilmoisture Equipment Corp., Santa Barbara, California) were installed at three locations on 

a diagonal transect across each subplot. At each location waveguides were installed 

horizontally in the upper three soil horizons and one sensor per subplot plot was positioned 

at about 1 m depth into the deepest quarter (C- horizon). Measurements were recorded every 

20 min for each sensor throughout the study period. In total 60 sensors (6 subplots × 3 

locations × 3 sensors + 1 in the deepest horizon) provided data on θ.  

Undisturbed soil samples per horizon were taken during sensor installation to measure soil 

water retention curves of each soil horizon in the lab-oratory (3–4). Plant extractable soil 

water content (We) down to 60 cm depth (comprising more than 90% of total fine-root 

biomass) was calculated and accumulated for each location by the measured extractable 

storage capacity (range between field capacity and permanent wilting point) and the thickness 

of each soil horizon. Each year upon thinning, fine-root biomass was measured at the end of 

the growing season in soil core samples taken with a cylindrical soil corer (0.08 m × 1 m; 10 

samples down to 1 m depth per year and plot). The samples were randomly selected, using a 

1 m × 1 m grid omitting positions of previous samplings. 

 

Stand transpiration 

Sap flux density per unit sapwood area As (u) was assessed by the heat dissipation method 

(Granier, 1985, 1987). On each central subplot two sensors were installed opposite to each 

other on five target trees at breast height. u was measured (condensed to 10-min means) in 

the outer part of the xylem (0–20 mm), while the radial u profile was assessed with additional 

sensors in one further tree on each plot, inserted 20–40 mm and 40–60 mm deep into the 

trunks and averaged including all plots. The attenuation factor of u towards heartwood was 

calculated for the 20–60 mm depth (n = 6), extrapolated for 60–80 mm and employed in 

determining whole-tree transpiration. Radial sapwood depths of individual trees were derived 

from increment cores taken with a Suunto increment borer (5 mm in diameter), covering the 

range of stem diameters of the trees (N = 13) present at the site. As and BA per tree were then 
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correlated to calculate total stand As (As= 0.7537* BA − 0.0012; R2= 0.9853). With the 

corrected u and the total stand As the total daily overstory transpiration (Eo) was calculated 

and expressed per unit ground area (kg m−2 d−1). On NT and MT with negligible under-story 

vegetation during the entire observation period, Eo is assumed to represent whole stand 

transpiration (Es). In contrast to NT and MT, on HT understory vegetation emerged by the 

second year after thinning. Therefore, for calculating Es on HT evapotranspiration of the 

understory vegetation (Eu, see below) was taken into account. Due to high annual radial 

growth of the trees all sensors had to be re-installed on the same trees every year before the 

growing season 

 

Understory vegetation 

Composition and dominance (% of ground area) of understory vegetation was monitored 

during the growing seasons of 2009,2010 and 2011 according to standard protocols 

(Dierschke, 1994). On NT and MT plots understory vegetation reached dominance between 0 

and 4% and was putatively negligible in water balance calculations. On HT plots more than 

60% of the understory vegetation was composed of Rubus idaeus and Rubus fruticosus 

covering c. 52% in 2010 and 75% in 2011. Eu was assessed with a closed chamber approach 

(vol. 0.32 m3) in combination with a HOBO-logger (Onset Computer Corporation, Bourne, MA, 

USA) in July 2010 at the peak of leaf area development of the Rubus plants (Müller and Bolte, 

2002). After preceding measurements of air temperature and air humidity within the 

understory vegetation (c. 50 cm height) the chamber was positioned. Subsequently the 

increase in air humidity yielded the evapotranspiration rate (kg s−1) inside the chamber. To 

prevent bias due to stomata closure (darkness) and temperature-related changes of 

transpiration rate and air humidity the derivation of evapotranspiration rate was confined to 

the linear time dependence of the increase in air humidity (R2> 0.97, max. 300 s). In order to 

calculate Eu per foliage area and therefore to scale up to stand basis, foliage area per ground 

area was assessed. For that purpose total foliage was harvested on 6 m × 0.25 m subplots and 

the projected LA scanned in the laboratory. With the scanned projected LA and the dominance 

of the understory vegetation at each HT-plot total projected LA of the HT plots was calculated. 

Total Eu was up-scaled to the stand level per ground area (kg m−2d−1) and related to the 

overstory transpiration (Eo) during the corresponding time interval. Subsequently to 



Chapter 3 

 

62 

 

calculating daily total Es of the HT plots, the additional daily Eu in respect to Eo was added to 

Eo on a daily basis. The interception of the understory vegetation (Iu) was assessed by 

Iu = Ps − (ΔWe + Eo + Eu + Rg)            (2) 

where Ps is the throughfall, ΔWe the difference in extractable water before and after the rain 

events, Eo the overstory transpiration, Eu the understory evapotranspiration and Rg the 

groundwater runoff during the rainy period. To calculate mean Iu and eliminate Rg only months 

without We saturation were taken into account (2 months in 2010 and 4 in 2011). Due to the 

dependency of Iu on the intensity of rain events (kg m−2d−1) Iu was calculated both as monthly 

mean (N = 6) and for rain events with Ps > 5 mm d−1(N = 11). Subsequently mean Iu (%) was 

assessed including the weighting factor as based on the percentage of the sum of Ps > 5 mm 

d−1to total Ps during the respective months. 

 

Table 3-2 Climatic parameters; long- teƌŵ ŵeaŶ ;LTM; pƌoǀided ďǇ ͞DeutsĐheƌ WetteƌdieŶst͟ DWDͿ, 
mean daily air temperature and cumulated gross precipitation (mm) of the years 2008 through 2011 

and for the growing seasons (gs, i.e. April through October each). Cumulated stand precipitation on 

the unthinned (NT), moderately (MT), and heavily thinned (HT) plots for the growing seasons 2009 

through 2011. 

 

 

Water balance 

The periods under observation covered the growing seasons and therefore the difference in 

We before and after the growing season was included in the following water balance  

Pg + ΔWe = Io + Iu + Eo + Eu + Rg            (3) 

where Pg is the measured gross- precipitation (open field precipitatioŶͿ, ΔWe is the difference 

in measured extractable soil water at the beginning and at the end of the growing season, Io 

the calculated interception of the overstory, Iu the calculated interception of the understory, 
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Eo the measured overstory transpiration, Eu the measured understory transpiration, Rg the 

ground water runoff. 

 

Water-use efficiency 

Water use efficiency is the ratio of assimilated carbon per transpired water. Here, to assess 

the effect of thinning on the water-use efficiency of the target trees (WUEt) and the whole 

stand (WUEs) basal area increment (BAI) per growing season was used to represent 

assimilated carbon. Therefore the water- use efficiency for the target trees was assessed by  

 

WUEt = BAIt / Et              (4) 

where BAIt is the basal area increment of the target tree per growing season and Et the 

transpiration of the target tree accumulated over the respective growing season. For the 

whole stand the water-use efficiency was assessed by  

WUEs = BAIs / Es              (5) 

where BAIs is the stand basal area increment per growing season and Es the total stand 

transpiration. 

 

Statistical analysis  

Statistical tests were conducted using IBM SPSS Statistics 21(Release Version 21.0.0; IBM SPSS 

Inc.). Data from both plots were pooled for calculating differences between thinning 

intensities. Differences between treatments and between years within the same treatment 

were tested via one-way ANOVA. 

  



Chapter 3 

 

64 

 

Results 
 

Growth  

 

Stand basal area (BAs), and leaf area index (LAI) were reduced by the thinning treatments 

down to 57% (MT) and 33% (HT) of the corresponding value on the control (NT) (Table 3-1). 

However, although BAs was still highest at NT (48.2 m2 ha−1) in 2011, the stands on the thinned 

treatments had already reached 69% (MT) and 47.7% (HT) of this value. In 2008, before 

thinning, no differences had existed in relative basal area increment (rBAI, basal area 

increment divided by the initial basal area) of the target trees (Fig. 3-2). After thinning, rBAI of 

the target trees on the thinned plots was significantly increased (p < 0.0005) compared to NT. 

rBAI was increased by 98% (MT) and 145.0% (HT) relative to NT (Fig. 3-2) during the first year 

after thinning. rBAI of target trees on the thinned plots did not differ significantly from one 

another and between years. 

 

Fine root biomass  

Following thinning in February 2009 total fine root biomass down to 60 cm soil depth was 

significantly reduced by 57.2 (MT)and 60% (HT) relative to NT (Fig. 3-3a). Contrasting to the 

results of total fine root biomass, fine root biomass related to foliage area of the individual 

trees did not differ between treatments and years after thinning (exception MT in 2009) (Fig. 

3-3b). 
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Figure 3-2 relative basal area increment (rBAI) of target trees in the unthinned (NT), moderately (MT), 

and heavily thinned (HT) plots before (2008) and after thinning in 2009, 2010 and 2011 (N = 10). The 

capital letter represents significant differences (p < 0.05) between thinning treatments, and the lower-

case one between years within the same treatment. 

 

 

Figure 3-3 Total fine root biomass down to 60 cm soil depth (a; N = 20) and fine root biomass per 

projected leaf area (b) in unthinned (NT), moderately thinned (MT) and heavily thinned (HT) plots one 

(2009) two (2010) and three (2011) years after thinning (N = 20). The capital letters represents 

significant differences (p < 0.05) between thinning treatments, and the lower-case one between years 

within the same treatment. 
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Transpiration 

On the thinned plots Es was reduced by 113.8, 72.2 and 40.3 kg m−2(MT) and by 200.7, 93.4 

and 51.0 kg m−2(HT) in 2009, 2010 and 2011, respectively (Fig. 3-4). In two out of the three 

years significant differences in Es occurred. Nevertheless, Es was levelled during the three 

years. At HT, evapotranspiration of the understory vegetation (Eu) was 35.3% of tree 

transpiration Eo. Consequently, in2010 and 2011 the transpiration of the ground vegetation 

increased Es at HT by additional 56.2 and 66.2 kg m−2, respectively. Es as derived from sap flux 

accounted for about 100% (±2%) of water loss calculated by the stand precipitation and soil 

water depletion (Es= Ps+ ΔWe) on NT during the monitored growing seasons. On MT Es 

accounted for c. 76%, 79% and 91% and on HT for c. 42%, 52%and 71% in 2009, 2010 and 

2011, respectively. On a single-tree basis, thinning led to increased daily u of the target trees. 

Mean daily sapflux density increased by 28.7, 31.0 and 36.6% (MT), and by 54.0, 45.5 and 

60.6% (HT) during the growing seasons of 2009, 2010 and2011, respectively (Fig. 3-5). 

 

 

Figure 3-4 cumulated stand transpiration Es (kg m−2 ground area) of the unthinned (NT), moderately 

(MT) and heavily thinned (HT) plots for growing seasons (April to September) of 2009, 2010 and 2011. 

In 2010 and 2011, transpiration of the under-story vegetation and soil evaporation was included into 

the HT values. The capital letter represents significant differences (p < 0.05) between thinning 

treatments, and lower-case one between years within the same treatment. 
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Precipitation 

Rainfall during the growing seasons 2009–2011 was by 95–178 mm higher than the long-term 

mean at the study site (Table 3-2). Canopy throughfall increased with thinning intensity, being 

enhanced on MT plots during growing seasons by 31.8, 44.8and 6.5 mm in 2009, 2010 and 

2011, respectively, and on HT plots by 163.0, 179.8 and 137.2 mm, respectively, compared to 

NT plots. Canopy interception (Ic), being c. 53.8% of precipitation on NT plots, was reduced to 

49.2% (MT), and 26.9% (HT) on the thinned plots. The weighted interception mean Iu of 

understory vegetation accounted for an additional loss in water input of about 13.0% at HT 

during the second and third year after thinning. In total, interception at HT was 39.9% of the 

precipitation during the years 2010 and 2011. 

 

Extractable soil water 

In 2008, before thinning, no differences (p > 0.05) in soil water content existed between plots. 

Reduced interception and stand transpiration after thinning led to a significant (p < 0.005) 

increase in mean daily We (Fig. 3-6). At MT, the mean daily We was increased by 21.0, 19.0 

and 29.5 kg m−2, and at HT by 42.9, 38.1 and 50.2 kg m−2 compared to NT during the growing 

seasons of 2009, 2010 and2011, respectively. Three years after treatment, the thinned plots 

showed still substantial surplus in extractable soil water compared to NT. 

 

Water use efficiency  

Stand-level WUEs was increased on the thinned plots MT and HT throughout the three years 

by thinning up to 217% (MT, 2011) compared to NT. Throughout the three years upon thinning 

WUE on stand level was lower than WUEt in all treatments. Reductions were 30.2, 40.6 and 

55.6% at NT, 24.9, 38.4 and 32.0 at MT during 2009, 2010 and 2011, respectively. On HT the 

additional transpirational loss by the ground vegetation reduced the WUEs by 44.7and 42.1% 

in 2010 and 2011, respectively. Also on the single tree basis, thinning induced increased WUEt 

throughout the three years after treatment. Increases relative to NT were 87.7, 82.4 and 

62.1%at MT and 88.4, 66.5 and 65.3% at HT during 2009, 2010 and 2011, respectively (Fig. 3-

7). 
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Figure 3-5 Mean daily xylem sap flux density (u) of the target trees in moderately (MT) and heavily 

(HT) thinned plots, related for normalization to the unthinned treatment (NT, dashed line) during 

growing seasons of 2009 through 2011 (April-September each; in 2008, mid-July–October). 

 

 

Figure 3-6 Mean daily extractable soil water content in kg m−2(ground area) down to60 cm depth in 

unthinned (NT), moderately (MT) and heavily thinned (HT) plots during growing seasons (April–
September each) 2009–2011 upon thinning (N = 6each). The capital letter represents significant 

differences (p < 0.05) between thinning treatments, and the lower-case one between years within the 

same treatment. 
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Figure 3-7 Water-use efficiency of the target trees (WUEt; N = 10 each)) and up-scaled to stand (WUEs; 

N = 2) for the growing seasons 2009, 2010 and 2011. The capital letter represents significant 

differences (p < 0.05) between thinning treatments, and the lower-case one between years within the 

same treatment. 
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Discussion 
 

Water consumption 

 

Increased thinning intensity led to reduced total stand transpiration and increased soil water 

content. Thus, our first hypothesis can be accepted. The thinnings removed around 40 to 70% 

of the initial BA. This led to decreased stand-level transpiration (Es) of 25.4 (MT) and 49.7% 

(HT) during the first year after thinning. Thus, the reduction in Es was lower than the reduction 

in stand density. This finding is in line with other thinning experiments. Bréda et al. (1995) 

reported on a removal of 35% of BA in sessile oak which corresponded to a reduction in Es by 

about 25%. Morikawa et al. (1986) found the transpiration rate of a Chamaecyparis obtusa 

stand to decrease by 17% after reduction of foliage mass by 22%. In our study the 

disproportional decrease in Es compared to BA and LA reduction was related to the significant 

increase of mean daily sap flux density by 28.7 (MT) and 54% (HT) of the target trees due to 

increased sun-light exposure and reduced leaf boundary layer caused by Increased air flow 

within the crown. Conversely, Lagergren et al. (2008) found initial over-proportional decrease 

of Es by 40% after the removal of 24% of BA in a mixed Norway spruce-Scots pine forest. They 

assumed the remarkable effect to be caused by a light shock of the previously shaded leaves 

and/or root injury by the thinning operation. Nevertheless, the variability of sap flux density 

and rBAI of the target trees increased with progressive thinning intensity as in our study 

indicating different crown proportions amongst target trees exposed to direct sunlight by 

thinning with differential transpiring effects. Courses of Es during 2009 and 2011 confirmed 

also our second hypothesis which stated declining differences of stand transpiration across 

treatments during the years after thinning. Differences in Es successively vanished from 2009 

through 2011 due to increased stand transpiration on the thinned plots, but in 2011also partly 

due to reduced transpiration on NT caused by water limitation. The difference on HT would 

have been larger if the ground vegetation had not responded so quickly to the increased light 

and water availability after thinning. Hence, Eu diminished the differences in Es to NT by 26%. 

This is in line with the estimated Eu contribution of 26% to total Es as reported by Granier et 

al. (1996). Lüttschwager et al. (1999) found that the proportion of the understory vegetation 

(dominated by Calamagrostis epigeios and Deschampsia flexuosa) in stand-level transpiration 

was even up to 50% in three stands of Scots pine. However, Calamagrostis epigeios is known 
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to have a higher transpiration rate per leaf area than Rubusidaeus (Müller and Bolte, 2002), 

which was, beside Rubus fruticosus, the dominant species on our plots. Our results showed 

that under-storey vegetation has to be taken into account when calculating mitigation effects 

of thinnings. 

 

Water balance 

The reduction of LAI by 40% at MT led to a slight increase of cumulative throughfall during 

growing seasons. Water loss due to interception varied highly between plots and treatments 

through-out the study period. Canopy interception is highly influenced by climatic factors 

including differences in wind velocity, temperature, relative air humidity and global radiation 

during rain events and primarily by the intensity of the rain events. Under rain of low intensity 

high water adherence of the canopy can be expected (Aussenac and Granier, 1988; Frischbier, 

2012). Therefore, the decrease of cumulative differences in Ps between NT and MT during the 

years 2010 and 2011 are assumed to be mainly a result of differences in total amount of rain 

and rain intensity during the growing seasons. We was improved over the whole study period 

on the MT and HT plots. Moreover, We clearly increased with increasing thinning intensity, 

even though increased single tree transpiration of the thinned stands and additional Eu and Iu 

on the HT plots partly compensated for the positive progressive thinning effect on water 

availability in 2011. While the differences between treatments in Es were successively 

reduced, the differences in mean daily We of the thinned plots increased on the MT and HT 

plots compared to the control plots, during the years after thinning. However, higher 

throughfall (Ps) and reduced stand transpiration (Es) on the thinned plots led to We close to 

available soil water storage capacity (ASWSC) during the first growing seasons after thinning. 

Consequently ground water runoff (Rg) based on the water balance accounted for up to c. 30% 

on MT and up to 57% on HT of total water loss of the thinned plots. In contrast on NT the 

water loss due to Rg was negligible. Therefore, the differences between the thinning 

treatments and NT on potential available soil water content also declined during the years 

after thinning, but were restricted by ASWSC. In conclusion, besides the emerging understory 

vegetation, ASWSC was the second major factor influencing the extent of the mitigation effect 

of progressive thinning. In our study the loss of water due to transpiration and interception of 

the up-coming understory vegetation in the second and third year on HT was considered when 
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calculating Es and the water balance. In contrast, evaporation from the litter and soil was not 

taken into account which may have led to a slightly overestimation of Rg on MT and for the 

first year on HT. Beside LAI, evaporation from the forest floor is mainly determined by the 

wettability of the understory vegetation and water storage capacity of the litter and highly 

decreases with decreasing water content of these components (Wilson et al., 2000; Kelliher 

et al., 1993; Köstner et al., 2001; Barbour et al., 2005; Staudt et al., 2011; Ringgaard et al., 

2012). In our case on MT and in the first year on HT emerging understory vegetation was 

negligible and therefore stored and evaporated water in the litter may mainly have led to a 

slight over-estimation of ground water runoff Rg. Furthermore, litter decreases soil evapora-

tion acting as a diffusion barrier and reducing light and temperature penetration to the deeper 

soil layers. Therefore, we assumed that soil evaporation was negligible. However, 

evapotranspiration by the vegetation on the forest floor was taken into account and con-

tributed substantially to stand water loss. 

 

Water use efficiency  

Thinning led to an increase of sap flux density in the target trees by about 30% and 50% in 

relation to increases in rBAI by 107 and 137% at MT and HT, respectively. Therefore, thinning 

of increasing intensity enhanced the productivity-related water-use efficiency(WUE) in target 

trees by up to 90%. Thus, our third hypothesis stating that WUE of target trees released from 

competition is lower than that of control trees is clearly rejected. The over proportional 

increase of BA compared to the increase of transpiration of the tar-get trees indicates that 

light was the limiting resource on NT during the observation periods. Gspaltl et al. (2013) 

recently found that light-use efficiency of wood production of Norway spruce trees increased 

along with tree size. Apparently, the efficiency of resource use (e.g. light or water) of single 

trees and forest stands can positively correlate with rates of resource capture (Binkley et al., 

2004). This view is supported in our study by the observation that WUEt of target trees was 

higher than stand-level WUEs, irrespective of treatment and study year. This is in line with a 

study on Eucalyptus nitens where the largest 200 trees per ha showed a 23% greater 

transpiration and 21% higher WUE three years after thinning compared to 200 control trees 

of an unthinned stand (Forrester et al., 2012). Therefore, subdominant trees seem not only to 

capture less resources but also are less efficient in resource use when compared to the 
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dominant target trees (Binkley et al., 2002). In an extensive review Forrester (2013) could not 

find a single study reporting on significant declines in light use efficiency (LUE) or WUE with 

increasing tree size. 

 

Conclusions 
 

Thinning can enhance the stand-level capacity for plant-available water at sites stocked with 

Norway spruce. Such an effect persisted in the present study throughout, at least, three years 

after thinning. However, heavy thinnings such as HT are not likely to be accepted by forests 

practice. Although they might be a reasonable option in terms of economics (Knoke, 1998), if 

wooden biomass production is to be maximized they are not the best option. From a 

silvicultural point of view the extensively spread ground vegetation at the HT sites are 

unwanted. First, it competes with the trees for water. Second it occupies belowground space 

by fine roots which may become crucial for the trees under severe drought. Third, at later 

stages it may hinder natural regeneration. The extent of risk mitigation by the two thinning 

intensities applied in our experiment still needs to be verified under prolonged and severe 

summer drought episodes. At the current stage however, repeated moderate thinnings seem 

to be a reasonable option to reduce the risk of drought stress of young Norway spruce stands. 

 

Acknowledgements 
 

We thank Georg Reitmaier for the opportunity to use his property for many years as an 

experimental site, and Thomas Feuerbach, Peter Kuba, Josef Heckmair, Winfried Grimmeisen, 

Karl-Heinz Heine, Andreas Parth, Michael Unger, Ulrike Westphal, and Alfred Wörle for 

supporting the laborious field work. Many thanks go to Wolfgang Schmidt for repeatedly 

assessing species composition and coverage of the ground vegetation. The work has amply 

been funded by the Bavarian Forest Service (Grant No. W 37). 

 

 

 



Chapter 3 

 

74 

 

References 
 

Ammer, C., Bickel, E., Kölling, C., 2008. Converting Norway spruce stands with beech– a review 

of arguments and techniques. Aust. J. For. Sci. 125, 3–26. 

Aussenac, G., Granier, A., 1988. Effects of thinning on water stress and growth inDouglas-fir. 

Can. J. For. Res. 18, 100–105. 

Barbour, M.M., Hunt, J.E., Walcroft, A.S., Rogers, G.N.D., Mc Seveny, T.M., Whitehead,D., 

2005. Components of ecosystem evaporation in a temperate coniferous rain-forest, with 

canopy transpiration scaled using sapwood density. New Phytol.165, 549–558. 

BMELV, 2008. National Forest Inventory (BWI): Alle Ergebnisse und Berichte. Avail-able at 

http://www.bundeswaldinventur.de/ 

Binkley, D., Campoe, O.C., Gspaltl, M., Forrester, D.I., 2013. Light absorption and use efficiency 

in forests: why patterns differ for trees and stands. For. Ecol. Manage.288, 5–13. 

Binkley, D., Stape, J.L., Ryan, M.G., Barnard, H., Fownes, J., 2002. Age related decline in forest 

ecosystem growth: an individual-tree, stand structure hypothesis. Ecosystems 5, 58–67. 

Binkley, D., Stape, J.L., Ryan, M.G., 2004. Thinking about efficiency of resource use in forests. 

For. Ecol. Manage. 193, 5–16. 

Bolte, A., Ammer, C., Löf, M., Madsen, P., Nabuurs, G.J., Schall, P., Spathelf, P., Rock, J.,2009. 

Adaptive forest management in central Europe: climate change impacts, strategies and 

integrative concept. Scan. J. For. Res. 24, 473–482. 

Bréda, N., Granier, A., Aussenac, G., 1995. Effects of thinning on soil and tree water relations, 

transpiration and growth in an oak forest (Quercus-Petraea (Matt)Liebl). Tree Physiol. 15, 

295–306. 

Bréda, N., Huc, R., Granier, A., Dreyer, E., 2006. Temperate forest trees and stands under 

severe drought: a review of ecophysiological responses, adaptation pro-cesses and long-term 

consequences. Ann. For. Sci. 63, 625–644. 

Cao, T., Valsta, L., Härkönen, S., Saranpää, P., Mäkelä, A., 2008. Effects of thinning and 

fertilization on wood properties and economic returns for Norway spruce. For. Ecol. Manage. 

256, 1280–1289. 

Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., Aubinet, M., Buchmann, N., 

Bernhofer, C., Carrara, A., 2005. Europe-wide reduction in primary productivity caused by the 

heat and drought in 2003. Nature 437, 529–533. 

D͛Aŵato, A., Bƌadfoƌd, J.B., Fƌaǀeƌ, “., Palik, B.J., ϮϬϭϯ. EffeĐts of thiŶŶiŶg oŶ dƌought 

vulnerability and climate response in north temperate forest ecosystems. Ecol. Appl. 23, 

1735–1742. 

Dierschke, H., 1994. Pflanzensoziologie: Grundlagen und Methoden. Ulmer, Stuttgart, pp. 683. 



Chapter 3 

 

75 

 

Donner, B.L., Running, S.W., 1986. Water stress response after thinning Pinus contorta stands 

in Montana. Forest Sci. 32 (3), 614–625. 

Forrester, D.I., Collopy, J.J., Beadle, C.L., Warren, C.R., Baker, T.G., 2012. Effect of thinning, 

pruning and nitrogen fertiliser application on transpiration, photosynthesis and water-use 

efficiency in a young Eucalyptus nitens plantation. For. Ecol. Manage. 266, 286–300. 

Forrester, D.I., 2013. Growth responses to thinning, pruning and fertiliser application in 

Eucalyptus plantations: a review of their production ecology and interactions. For. Ecol. 

Manage. 310, 336–347. 

Frischbier, N., 2012. Untersuchungen zur einzelbaumverursachten kleinräumigen Variabilität 

und regenhöhenbasierten Dynamik des Bestandesniederschlages am Beispiel zweier Buchen-

Fichten-Mischbestände. Dissertation Technische Universität Dresden. 

Granier, A., 1985. Une nouvelle méthode pour la mesure du flux de sève brute dansle tronc 

des arbres. Ann. Sci. For. 42, 193–200. 

Granier, A., 1987. Evaluation of transpiration in a Douglas-fir stand by means of sapflow 

measurements. Tree Physiol. 3, 309–320. 

Granier, A., Biron, P., Köstner, B., Gay, L.W., Najjar, G., 1996. Comparison of xylemsap flow 

and water vapour flux at the stand level and derivation of canopy conductance of Scots pine. 

Theor. Appl. Climat. 53, 115–122. 

Giuggiola, A., Bugmann, H., Zingg, A., Dobbertin, M., Rigling, A., 2013. Reduction ofstand 

density increases drought resistance in xeric Scots pine forests. For. Ecol.Manage. 310, 827–
835. 

Gspaltl, M., Bauerle, W., Binkley, D., Sterba, H., 2013. Leaf area and light use efficiency 

patterns of Norway spruce under different thinning regimes and age classes. For.Ecol. 

Manage. 288, 49–59. 

Hager, H., 1988. Stammzahlreduktion: Die Auswirkungen auf Wasser-, Energie-und 

Nährstoffhaushalt von Fichtenjungwüchsen. Österr. Ges. Waldökosystem-forschung und 

experimentelle Baumforschung BOKU Wien 1. 

Hawthorne, S.N.D., Lane, P.N.J., Bren, L.J., Sims, N.C., 2013. The long term effects of thinning 

treatments on vegetation structure and water yield. For. Ecol. Manage.310, 983–993. 

Jaakkola, T., Mäkinen, H., Sarén, M.P., Saranpää, P., 2005a. Does thinning intensity affect the 

tracheid dimensions of Norway spruce? Can. J. For. Res. 35, 2685–2697. 

Jaakkola, T., Mäkinen, H., Saranpäa, P., 2005b. Wood density in Norway spruce: changes with 

thinning intensity and tree age. Can. J. For. Res. 35, 1767–1778. 

Kölling, C., Knoke, T., Schall, P., Ammer, C., 2009. Überlegungen zum Risiko des Fichtenanbaus 

in Deutschland vor dem Hintergrund des Klimawandels. Forstarchiv 80, 42–54. 

Kohler, M., Sohn, J., Nägele, G., Bauhus, J., 2010. Can drought tolerance of Norway spruce 

(Picea abies (L.) Karst.) be increased through thinning? Eur. J. For. Res.129, 1109–1118. 



Chapter 3 

 

76 

 

Köstner, B, Tenhunen, J.D., Alsheimer, M., Wedler, M, Scharfenberg, H.-J., Zimmerman, R., 

Falge, E., Joss, U., 2001. Controls on evaporation in a spruce forest catchment of the 

Fichtelgebirge. In: Tenhunen, J.D., Lenz, R., Hantschel, R. (Eds.), Ecosystem Approaches to 

Landscape Management in Central Europe. SpringerVerlag. Ecological Studies 14, 377–415. 

Knoke, T., 1998. Die Stabilisierung junger Fichtenbestände durch starke 

Durchforstungseingriffe - Versuch einer ökonomischen Bewertung. Forstarchiv 69,219–226. 

Lagergren, F., Lankreijer, H., Kucera, J., Cienciala, E., Molder, M., Lindroth, A., 2008.Thinning 

effects on pine-spruce forest transpiration in central Sweden. For. Ecol.Manage. 255, 2312–
2323. 

Laurent, M., Antoine, N., Joël, G., 2003. Effects of different thinning intensities on drought 

response in Norway spruce (Picea abies (L.) Karst.). For. Ecol. Manage.183, 47–60. 

Lüttschwager, D., Rust, S., Wulf, M., Forkert, J., Hüttl, R.F., 1999. Tree canopy and herblayer 

transpiration in three Scots pine stands with different stand structures. Ann. For. Sci. 56, 265–
274. 

Mäkinen, H., Isomäki, A., 2004. Thinning intensity and growth of Norway spruce stands in 

Finland. Forestry 77, 349–364. 

Magruder, M., Chhin, S., Palik, B., Bradford, J.B., 2013. Thinning increases climatic resilience 

of red pine. Can. J. For. Res. 43, 878–889.  

McJannet, D., Vertessy, R., 2001. Effects of thinning on wood production, leaf area index, 

transpiration and canopy interception of a plantation subject to draught. Tree Physiol. 21, 

1001–1008. 

Meehl, G.A., Tebaldi, C., 2004. More intense, more frequent, and longer lasting heatwaves in 

the 21st century. Science 305, 994–997. 

Misson, L., Vincke, C., Devillez, F., 2003. Frequency responses of radial growth series after 

different thinning intensities in Norway spruce (Picea abies (L.) Karst.) stands. For. Ecol. 

Manage. 177, 51–63. 

Morikawa, Y., Hattori, S., Kiyono, Y., 1986. Transpiration of a 31-year-old Chamaecyparis 

obtusa Endl. stand before and after thinning. Tree Physiol. 2, 105–114. 

Müller, J., Bolte, A., 2002. Verdunstung der Bodenvegetation verbreiteter Vegetationsformen 

der Kiefer in Abhängigkeit von der Art und ihrem Deckungsgrad. In: Anders, S., Beck, W., Bolte, 

A., Hoffmann, G., Jensen, N., Krakau, U.K., Müller,J. (Eds.), Ökologie und Vegetation der 

Wälder Nordostdeutschlands. Verlag Dr. Kessel, Remagen-Ow, pp. 99–105. 

Ringgaard, R., Herbst, M., Friborg, T., 2012. Partitioning of forest evapotranspiration: the 

impact of edge effects and canopy structure. Agric. For. Meteorol. 166–167,86–97. 

Rouault, G., Candau, J.N., Lieutier, F., Nageleisen, L.M., Martin, J.C., Warzée, N., 2006.Effects 

of drought and heat on forest insect populations in relation to the 2003 drought in Western 

Europe. Ann. For. Sci. 63, 613–624. 



Chapter 3 

 

77 

 

Röhrig, E., Bartsch, N., von Lüpke, B., 2006. Waldbau auf ökologischer Grundlage, 7thed. 

Verlag Eugen Ulmer, Stuttgart, 479 pp. 

Simonin, K., Kolb, T.E., Montes-Helu, M., Koch, G.W., 2006. Restoration thinning and influence 

of tree size and leaf area to sapwood area ratio on water relations of Pinus ponderosa. Tree 

Physiol. 26, 493–503. 

Simonin, K., Kolb, T.E., Montes-Helu, M., Koch, G.W., 2007. The influence of thinning on 

components of stand water balance in a ponderosa pine forest stand during and after extreme 

drought. Agric. For. Meteorol. 143, 266–276. 

Slodicak, M., Novak, J., Skovsgaard, J., 2005. Wood production, litter fall and humus 

accumulation in a Czech thinning experiment in Norway spruce (Picea abies (L.) Karst.). For. 

Ecol. Manage. 209, 157–166. 

Sohn, J.A., Gebhardt, T., Ammer, C., Bauhus, J., Häberle, K., Matyssek, R., Grams, T.E.E.,2013. 

Mitigation of drought by thinning: short-term and long-term effects on growth and 

physiological performance of Norway spruce (Picea abies). For. Ecol.Manage. 308, 188–197. 

Stogsdill, W.R., Wittwer, R.F., Hennessey, T.C., Dougherty, P.M., 1992. Water use in thinned 

loblolly pine plantations. For. Ecol. Manage. 50, 233–245. 

Temperli, C., Bugmann, H., Elkin, C., 2012. Adaptive management for competing forest goods 

and services under climate change. Ecol. Appl. 22, 2065–2077. 

Wallentin, C., Nilsson, U., 2011. Initial effect of thinning on stand gross stem-volume 

production in a 33-year-old Norway spruce (Picea abies (L.) Karst.) stand in Southern Sweden. 

Scand. J. For. Res. 26, 21–35.  

Wilson, K.B., Hanson, P.J., Baldocchi, D.D., 2000. Factors controlling evaporation and energy 

partitioning beneath deciduous forest over an annual cycle. Agric. For. Meteorol. 102, 83–103. 

  



Chapter 3 

 

78 

 

  



Chapter 4 

 

79 

 

                      Chapter 4  
 

Medium-term potential of drought 

avoidance in Norway spruce (Picea abies) 

stands by increasing thinning intensity 

 (to be submitted) 

Timo Gebhardt 1, Karl-Heinz Häberle, Rainer Matyssek, Christian Ammer 

 

 

 

1The candidate made substantial contribution to the conception and design of the study, 

conducted the data collection, the analysis and interpretation of data and was lead author of 

the article draft. Karl-Heinz Häberle contributed to the interpretation of the data and the draft 

of the article. Christian Ammer and Rainer Matyssek made substantial contributions to the 

conception and the design and assisted the article draft.  



Chapter 4 

 

80 

 

  



Chapter 4 

 

81 

 

 

Medium-term potential of drought 

avoidance in Norway spruce (Picea abies) 

stands by increasing thinning intensity 
 (to be submitted) 

Timo Gebhardt1*, Karl-Heinz Häberle2, Rainer Matyssek2, Christian Ammer1 

1 Dept. of Silviculture and Forest Ecology of the temperate Zones, Georg-August-

Universität, D-37077 Göttingen, Germany 

 2 Dept. of Ecology/Ecophysiology of Plants, Technische Universität 

München/Weihenstephan, D – 85354 Freising, Germany 

Key words:  climate change, Norway spruce, relative extractable soil water content, resistance, growth 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ∗Corresponding author. Timo Gebhardt Tel.: +49 8161 714872; fax: +49 8161 714576. 

E-mail addresses: Timo.Gebhardt@forst.uni-goettingen.de, timo_gebhardt@gmx.de  



Chapter 4 

 

82 

 

Abstract 
 

Mitigation of adverse climate change effects on forest stands, like declining precipitation and 

increased temperatures during summer, becomes increasingly important in silvicultural 

management. Therefore, thinning as a silvicultural measure to mitigate drought on the short 

to medium-term in young forest stands are frequently discussed. In the present study we 

report on a thinning trial, with increasing thinning intensity in a young Norway spruce (Picea 

abies) stand and hypothesized, that the potential of increasing thinning intensity to reduce 

the time span below critical relative soil water content (REWcrit) on the medium-term will be 

diminished. The benefits on the REW between the moderate thinning (MT, stand basal area 

reduction of 43%) and the heavy thinning (HT, and stand basal area reduction 67%) was 

diminished within 2 years which was attributed to emerging ground vegetation on HT. 

Furthermore, the belowground competition of the ground vegetation suppressed the fine root 

recovery on the heavy thinning plots, at least for 5 years following thinning. Both thinning 

intervention reduced the time below (REWcrit) between 5 and 7 years compared to the un-

thinned stand (stand basal area 42m² ha-1) leading to a similar intensity of the soil water deficit 

during the dry spells in 2013 and 2015. Hence, leading to a decline in relative basal area 

increment during the drought years irrespective of the treatment 5 and 7 years following the 

thinning intervention and to a similar recovery in radial growth increment during 2014. We 

concluded, that frequent thinning interventions by avoiding the establishment of a vital 

ground vegetation should be considered as a silvicutural measure to increase the potential of 

drought avoidance in young Norway spruce stands. 

 

Introduction 
 

Sustainability of forest stands is mainly determined by silviculture in view of climate 

prediction. Mitigation of adverse climate change effects on forest stands becomes increasingly 

important in silvicultural management (Ammer, 2016; Bolte et al., 2009). Limitations are 

expected through declining precipitation and increased temperatures during summer, 

projected for Central Europe as prolonged and intense drought periods (IPCC, 2013, 2007). 

Most strategies for adapting forest ecosystems to climate change follow long-term aims, such 

as tree species diversification or introduction of drought-tolerant species (Ammer et al., 2008; 
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Knoke et al., 2008). However, short to medium- term approaches for adapting young stands 

to drought are scarce. For example, thinning has been discussed as an adaptive measure for 

mitigating drought impacts (Martín-Benito et al., 2010; Misson et al., 2003; Sohn et al., 2013), 

as immediate effects reduce stand transpiration and interception (del Campo et al., 2014; 

Gebhardt et al., 2014) and, therefore, increase soil water availability.  

However, water loss via stand transpiration could equalize or even outperform within a few 

years between the thinned and the un-thinned stands by the increased transpiration of the 

remaining trees (Bréda et al., 1995b; Lagergren et al., 2008). Additionally, increasing within-

stand insolation may foster ground vegetation growth in heavy thinned stands, which 

additionally increase the evapotranspiration on stand-level (Gebhardt et al., 2014; Simonin et 

al., 2007). 

In previous studies, the relative growth decline during the drought year of remaining trees in 

thinned compared to un-thinned stands was found to be similar (Kohler et al., 2010) or depend 

on the time-lag between thinning and the drought event (Sohn et al., 2013). 

Besides the intensity, the duration of the drought is of particular importance (McDowell et al., 

2008). With increasing time-lag between the thinning intervention and the drought event, 

stand-level evapotranspiration may be enhanced upon thinning, thus leading to an increased 

time span of the remaining trees below critical soil water content, exacerbating drought stress 

in remaining trees. Thus, additionally rendering tree species like Norway spruce (Picea abies) 

susceptible to secondary pests. Wind-throw, drought and subsequent bark beetle attacks 

have been ranked as the major risks for decay and break-down of forest (Anderegg et al., 2012; 

ChƌistiaŶseŶ et al., ϭϵϴϳ; DoďďeƌtiŶ et al., ϮϬϬϳ; LeǀaŶič et al., ϮϬϬϴ; WeslieŶ aŶd “Đhƌoedeƌ, 

1999). 

Relative extractable soil water content (REW) with values lower than 0.4 (REWcrit) was found 

to be a viable threshold explaining soil water deficit induced stomatal regulation for different 

tree species under various soil types (Bréda et al., 1995b; Granier, 1987; Granier et al., 2007, 

1999; Grossiord et al., 2014). Two variables are important for the potential of thinning to 

reduce the time span below REWcrit, the initial REW at the beginning of the drought event and 

the decline rate during the drought. Both depending on the stand transpiration and 

interception. 
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In this study, we report on a thinning experiment with three thinning intensities in a mono- 

specific Norway spruce stand. The aim of our study was to clarify to what extent increasing 

thinning intensities improve the relative soil water content during the growing seasons. 

Furthermore, to what extent the initial REW at the beginning of the drought and the decline 

rate may change with increasing time-lag after thinning between the thinned and the un- 

thinned stands. Therefore, possibly extending the time span below REWcrit soil water deficit 

for the remaining trees of the thinned stand and contributing to a increased growth decline 

compared to trees in the un-thinned stand. 

We hypothesized that 

1. Thinning increases the relative extractable soil water content during the growing 

seasons, but not necessarily with increasing thinning intensity   

 

2. The potential of increasing thinning intensity to reduce the time span below critical soil 

water content will be diminished over time  

 

3. The relative higher decline in radial growth during drought years of target trees in the 

thinned compared to un-thinned on the medium-term can be related to an increased 

time span below critical soil water 

 

 

Material and methods 
 

Experimental site and meteorological parameters 

 

The experimental site and design have been described in Gebhardt et al. (2014).  Briefly, the 

study was conducted 2008 in a 26-year-old monoculture of Norway Spruce (Picea abies [L.] 

Kaƌst.Ϳ Ŷeaƌ LaŶdshut ;ϰϴ° ϯϴ´ϮϬ͞N, ϭϭ° ϱϳ´ϰϵ͞E, Bavaria, Germany).  The stand was planted 

on luvisol (loess over Tertiary) with a mean annual precipitation and air temperature in the 

region of 778 mm and 7.9 °C, respectively (DWD).  
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The research area (75 x 50 m) was subdivided into 6 plots of 25 x 25 m each. Prior to initiation, 

about 430 future crop trees (target tree) per hectare were selected. Target trees were defined 

as dominating vigorous trees (trees with the highest diameter). The initial stem diameter at 

breast height (1.30m DBH) of the trees within the plots were measured before the thinning 

intervention in February 2009 and the increments were recorded within and after each 

growing season. 

In February 2009 four out of six randomly selected plots were thinned, while two plots 

remained unchanged as control (NT=not-thinned). Two plots each were moderately (MT) 

thinned with a reduction of stand basal area (BA) by ca. 43 % and heavily thinned with a BA 

reduction of ca. 67 % compared to the basal area of 42.4 m² on the NT- plots. The moderate 

thinning was carried out via thinning from above by removing 1-2 competitors of the target 

trees and for the heavy thinning all trees, besides the target trees were removed. Open field 

gross- precipitation (Pg) and air temperature (Tair) were measured at a climate station on a 

meadow with about 100 m distance from the experimental site. Occasional data failure in 

mean daily Tair was interpolated by linear regression (R² > 0.90) using Tair measured at the 

climate station Feistenaich (Bavarian Institute for Agriculture, LfL). Regarding data gaps of 

seasonal Pg, a correction factor was calculated correlating to Pg at the climate station of 

Feistenaich. For further details on the experimental design see Gebhardt et al. (2014). 

 

Relative extractable soil water content and fine root biomass 

As desĐƌiďed iŶ Geďhaƌdt et al. ;ϮϬϭϰͿ ǀoluŵetƌiĐ soil ǁateƌ ĐoŶteŶt ;θͿ ǁas ŵeasuƌed ǁith 

TDR- sensors (Time Domain Reflectometry, Soilmoisture Equipment Corp., Santa Barbara, 

California) combined with MiniTrase 6050X3 (Soilmoisture Equipment Corp., Santa Barbara, 

California). The waveguides were installed horizontally in the upper three soil horizons and 

one sensor per subplot was positioned at about 1 m depth into the C horizon at three locations 

on a diagonal transect across each subplot. In total 60 sensors (6 subplots x 3 locations x 3 

seŶsoƌs + ϭ iŶ the deepest hoƌizoŶͿ pƌoǀided data oŶ θ eǀeƌǇ ϮϬ ŵiŶutes thƌoughout the studǇ 

period.  

To ĐalĐulate ŵaǆiŵuŵ plaŶt aǀailaďle soil ǁateƌ ĐoŶteŶt, the ŵiŶiŵuŵ θ duƌiŶg the ϴ Ǉeaƌs͛ 

period (mean of 2 weeks during the drought 2015) for each soil layer was identified and 
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defined as the lower margin of soil water content (high transpirational demand but no changes 

iŶ θͿ. ‘egaƌdiŶg the ƌelatiǀe eǆtƌaĐtaďle soil ǁateƌ ;‘EW60), for each location the daily 

extractable soil water content down to 60 cm (comprising > 90% of the fine root biomass) was 

related accordingly to the maximum extractable soil water content within the 8 years (mean 

of 2 weeks) of each location. 

Regarding the potential to extend the time to reach critical REW60 or complete soil water 

depletion with increasing thinning intensity, the initial REW60 (dependent on stand 

transpiration and stand precipitation prior to the dry spell), and the depletion rate (dependent 

on stand transpiration) of NT and MT was calculated at the beginning and during the dry spells, 

respectively. The differences of initial REW60 and the decline on NT and MT compared to HT 

(Fig. 3, 4, 7 and 8), was calculated during dry spells of at least 9 to 11 days without an increase 

of soil moisture during the growing season and considered as the beginning of a drought 

period. At each instant, initial REW60 of NT and MT was related to HT and the decline was 

calculated via linear regression and related to the decline of REW60 on HT to analyze the 

extended desiccation time of HT compared to NT and MT. 

Four times upon thinning (2009, 2010, 2011, 2013), fine-root biomass was sampled at the end 

of the growing season by cylindrical soil cores down to 1m (10 samples per year and plot). The 

samples were randomly selected, using a 1 m × 1 m grid while omitting positions of previous 

samplings. 

 

Basal area increment  

The basal area increment of each year and target tree was recorded via permanent measure 

tapes installed in 2008. 

The relative basal area increment of each year (rBAI) was calculated by 

rBAI (%) = 100*1

t

tt

BA

BABA 
           (1) 

where BAt represents the basal area of the target tree at the end of the growing season and 

BA t-1 the basal area at the end of the previous year. 
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The relative basal area increment until July of each year was calculated by 

rBAIJuly (%) = 100*
BAI

BAI July
            (2) 

were rBAIJuly represents the basal area increment amounted by July of the growing season 

and BAI the basal area increment of the whole growing season. 

 

 

Resistance and recovery 

The resistance to and the recovery from the drought events was calculated similar to the 

indices suggested by Lloret et al. (2011) by 

 

Resistance 1 = rBAI DY/ rBAI PreDy        3 

Resistance 2 = rBAI DY/ mean rBAI 4-6 PreDY      4 

Recovery 1 = rBAI PostDY/ rBAI DY        5 

 

where DY is the drought year, PreDY is DY-1, PostDY is DY+1, Mean 4 or 6 PreDYs are the 

mean rBAI of the 4 post drought years for 2013 and the mean rBAI of the 6 post drought 

years for 2015 

 

Results 
 

Relative extractable soil water content  

After thinning in February 2009, the REW60 of MT and HT was enhanced throughout the first 

post-thinning summer. REW60 of NT decreased during spring to 40% and c. 30% in June. In 

contrast, on MT and HT REW60 decreased only to 60% and 70 %, respectively, due to reduced 
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transpirational depletion and increased replenishment (Fig. 4-2). High precipitation at the end 

of June and during July (Fig. 4-1) increased REW60 to saturation on MT and HT and to c. 80% 

on NT. After the rain event the steep decline combined with lower Pg on NT compared to MT 

and HT (Fig 4-1.) led to desiccation of REW60 to below 40% within 2 weeks and to a minimum 

of c. 10% by the end of September. On MT and HT, minimum REW60 during the growing season 

2009 was distinctly higher (37 % and 60 %, respectively). During the following post-thinning 

years (2010- 2012) decreased depletion and increased replenishment on MT and HT led to an 

overall enhanced REW60 compared to NT. During this period REW60 in NT was below the 

threshold of 40% during 39%, 30 %, 80%, 89% of the days during growing seasons in 2009, 

2010, 2011 and 2012 respectively. In contrast the REW60 on HT did not decrease below 40% 

REW during this period. On MT, the REW60 was substantially below 40% in the fourth year 

after the treatment (2012) with 46% of the days during growing seasons.  

In 2013 (five years upon thinning), REW60 of both MT and HT did not differ from NT during the 

growing season (Fig 4-5). In addition, high PG (200 mm) during June saturated REW60 across 

treatments, whereas the hot-dry conditions later-on generally lowered REW60 towards 10% 

(Fig 4-5). Therefore, the remaining trees of MT and HT in addition with the emerging ground 

vegetation (upon HT only) compensated the thinning effect on stand transpiration, so that 

decline rates were similar across treatments during spring through summer (Fig. 4-6).  

In the following year 2014 Pg was more scattered over the whole growing season (Fig 4-4.) 

which led to an increased replenishment on the thinned plots compared to the un- thinned 

plot and therefore REW60 was enhanced with increasing thinning intensity, despite similar 

depletion rates (Fig 4-5). Nevertheless, REW60 of all treatments decreased below the threshold 

of 40 % during summer. 

Also, the second drought year 2015 (7 years upon thinning) differed by rain events which were 

evenly distributed until the end of July at similar moisture depletion rate in NT, MT and HT 

compared to the growing season 2013. Nevertheless, the exceptionally hot-dry weather 

conditions (Fig 4-4.) decreased REW60 across treatments by September (Fig 4-5.).   

However, during late summer REW60 of NT consistently was below 40%, contrasting with HT 

at below 40 % during 2013 through 2015 (i.e. 5-7 years upon thinning). 
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With the same initial REW60 at the beginning of the first growing season 2009, the thinning on 

MT and HT led to a c. 50 % slower depletion of REW during spring compared to NT (Fig.4-2, 

Fig. 4-3). During the growing season the additional stand throughfall on the thinned plots and 

the decreased depletion rate added up to an increased initial REW60 in mid and late-summer 

of 2009. Therefore, the 40% lower initial REW60 in summer 2009 of NT relative to HT in 

combination with the significant higher depletion rate on NT relative to HT could extend the 

time to reach critical soil water deficit by about 80% on HT compared to NT (Fig. 4-3). As 

mentioned above during late summer of 2009, the REW60 of NT was below the threshold of 

40%, thus the difference in depletion rate relative to HT was reduced (Fig. 4-3). Nevertheless, 

the difference in initial REW60 during late summer was up to 70 % between NT and HT. 

In 2010, the initial REW60 in spring and summer due to the high Pg did not differ between the 

treatments at the end of May and June (Fig. 4-3). The depletion rate on NT relativ to HT was 

higher during spring compared to summer and therefore the extend in time of HT compared 

to NT was about 60 % and 40 % during spring and summer respectively. The emerged ground 

vegetation during increased the stand transpiration during the summer on HT (Gebhardt et al. 

2014) and therefore reduced the difference to NT. 

Depletion rates and initial REW60 of MT resembled those of HT during the growing seasons 

except a slightly reduced initial REW60 late summer of 2009 and 2015 (data not shown).  

In 2013 the above mentioned high Pg and similar depletion rates during spring and early 

summer led to similar initial REW60 at the beginning of the drought period in July irrespective 

of the treatment. Furthermore, the increased stand transpiration 5 years after the thinning 

treatment on HT (and MT) led to a similar depletion rate compared to NT (Fig. 4-6) and 

therefore no benefit on HT in relation to extended desiccation time was found.  Therefore, 

the duration under soil water deficit (REW60 < 40%) during the summer drought in 2013 was 

similar for all treatments. 

Nevertheless, permanently increased throughfall at HT and MT in 2015 (the second year with 

a summer drought period and 7 years after the thinning intervention) added up to a significant 

difference of the initial REW60. Hence initial REW60 of HT was increased compared to NT by 

20%, 30% and 40% during spring, summer and late summer, respectively (Fig.4-6). The 

differences at the beginning of the summer drought reduced the duration under soil water 

deficit (REW60 < 40%) on HT. (Fig. 4-6) 
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Figure 4-1 mean daily air temperature (°C) and VPD (kPa) and daily precipitation (Pg mm d-1) during 

the post-thinning years 2009 – 2012 



Chapter 4 

 

91 

 

 

Figure 4-2 relative extractable soil water content down to 60 cm (REW 60) of NT (no thinning) MT 

(moderate thinning) and HT (heavy thinning) during the post-thinning years 2009 – 2012 
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Figure 4-3 depletion rate of REW60 of NT relative to HT during the post-thinning years 2009 and 2010. 

In 2009 spring represents the time span between 4/7/2009 and 4/16/2009, summer 8/11/2009 and 

8/19/2009 and late summer 9/6/2009 and 9/14/2009. In 2010 spring represents the time span 

between 4/3/2010 and 4/11/2010 and summer from 6/21/2010 to 6/29/2010. Stars at the y-axis 

indicate significant differences of the starting point (p < 0.001) and the stars at the lines indicate 

significant differences (p < 0.001) of the slope of NT compared to HT. 
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Figure 4-4 mean daily air temperature (°C) and VPD (kPa) and daily precipitation (Pg mm d-1) during 

the post-thinning years 2013 – 2015 
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Figure 4-5 relative extractable soil water content down to 60 cm (REW 60) of NT (no thinning, control) 

MT (moderate thinning) and HT (heavy thinning) during the post thinning years 2013 – 2015 

 



Chapter 4 

 

95 

 

 

Figure 4-6 depletion of REW60 of NT relative to HT during the post thinning years 2013+2015. In 2013 

spring represents the time span between 4/12/2013 and 4/19/2013, summer between 7/7/2013 and 

7/15/2013 and late summer between 7/30/2013 and 8/7/2013. In 2015 spring represents 4/7/2015 

until 4/17/2015 summer from 5/29/2015 until 6/6/2015 late summer 7/13/2015 until 7/21/2015. Stars 

at the y-axis indicate significant differences of the starting point (p < 0.001) and the stars at the lines 

indicate significant differences (p < 0.001) of the slope of NT compared to HT. 
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Basal area increment 

Basal area increment (BAI) and the relative basal area increment (rBAI) did not differ between 

target trees before thinning in 2008 (Fig. 4-7, Fig. 4-8). Thinning significantly stimulated BAI 

and rBAI in HT and MT during the examined seven years upon thinning compared to NT 

(except BAI MT 2009 and 2015). During the post-thinning years 2011 through 2014, BAI of HT 

was significantly higher than that of MT, whereas rBAI stayed similar in these two thinning 

treatments. 

 

Figure 4-7 basal area increment of the target trees on NT (no thinning), MT (moderate thinning) and 

HT (heavy thinning) during 2008, the year before thinning and post-thinning years 2009 – 2015 

 

During growing seasons 2013 and 2015 with hot-dry during late summer (see 3.1), the rBAI of 

the all treatments was significantly decreased relative to preceding humid year (s). During 

2013, rBAI declined significantly by 15%, 25% and 31% compared to previous years each at 

NT, MT and HT, respectively (Resistance 1, table 4-1). Compared to the previous 4 years 

(Resistance 2, table 4-1), the rBAI declined by 22 %, 22%, 20 % on NT, MT and HT respectively.  

During 2015 the rBAI declined by 26 %, 46 % and 54% on NT, MT and HT compared to the 

previous year (Resistance 1) and by 48%, 58% and 63 % on NT, MT and HT compared to the 

previous 6 years (Resistance 2).  

Although there was no significant difference between Resistance 1 and Resistance 2 in 2013 

and 2015 across treatments, target trees on HT tended to be reduced in growth resistance 
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compared to the target trees on NT during dry-hot late summers. Furthermore there was no 

significant recovery from the drought year in all treatments, irrespective of thinning intensity. 

Nevertheless, in absolute terms the BAI and rBAI of MT and HT were still higher compare to 

the NT during the drought years 2013 and 2015 (Fig. 4-8) 

 

Figure 4-8 relative basal area increment (rBAI) of the target trees on NT (no thinning), MT (moderate 

thinning) and HT (heavy thinning) during 2008, the year before thinning and post-thinning years 2009–
2015 

 

Table 4-1 Resistance 1 and Resistance 2 in 2013 and 2015. Resistance relates the rBAI in the drought 

year to that of the previous year (resistance 1) or the previous 4 years (resistance 2) in 2013 and the 

previous 6 years in 2015 (resistance 2) and Recovery 1 2013 relates the rBAI after the drought year to 

that of the previous year. Bold letters indicate significant difference in the drought year. No differences 

of resistance occurred between the treatments 
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However, BAI of target trees on NT achieved by July, showed 70% completion already (Fig 4-

9) when related to whole-year BAI (i.e. rBAIJuly), regardless of the exceptional drought, 

attributed to soil water deficits on NT also in late summer with high Pg during the growing 

seasons (Fig. 4-1 +4-4). Springs were more dry in 2011 and 2014, when rBAIJuly stayed low. 

Thinning significantly reduced rBAIJuly in MT and HT compared to NT by c. 15% during years 

without dry spells, while absolute BAI achieved till July was increased. Furthermore, the 

absolute BAI from July to the end of each growing season of MT and HT was enhanced by 

thinning, also during the dry spell in 2013 (Fig. 4-11). This was not the case for 2015. 

 

 

Figure 4-9 relative basal area increment of the target trees till July relative to the BAI of the same 

year (rBAI July) during the post- thinning years 2009 – 2015. Letters indicate significant differences 

(p<0.05) between the treatments. 
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Figure 4-10 basal area increment of the target tress till July (BAI July) during the post-thinning years 

2009 – 2015. Letters indicate significant differences (p<0.05) between the treatments. 

 

Figure 4-11 basal area increment of the target tress after July (BAI rest) during the post-thinning years 

2009 – 2015. Letters indicate significant differences (p<0.05) between the treatments 
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upper soil of 40- 50 cm depth (Fig. 4-12). In HT, instead, increase of tree fine root biomass of 

the remaining trees stayed absent along the depth profile. Under consideration, however, of 

the understory fine root biomass, MT and HT did not differ (Fig. 4-13).  

 

Figure 4-12 fine root biomass on NT (no thinning), MT (moderate thinning), HT (heavy thinning) in 

the post thinning years 2009 -2011 +2013. Letters indicate significant differences (p<0.05) within the 

same treatment 
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Figure 4-13 cumulated fine root biomass of the overstory on MT and HT relative [kg m²] to NT down 

to 1m soil depth in the post-thinning years 2009-2011 +2013. The stars represent the tree fine root 

biomass plus the fine root biomass of the ground vegetation. 

 

 

 

 

 

 



Chapter 4 

 

102 

 

Discussion 
 

Relative extractable soil water content 

Our first two hypotheses, that with increasing thinning intensity the relative soil water content 

is enhanced during the following growing seasons, but the potential to reduce the duration 

below critical soil water content diminishes, can be accepted.  Thinning led to an increased 

relative soil water (REW) content on the moderate (MT) and the heavy thinning (HT) during 

the growing seasons following the intervention, but besides parts of first year the REW60 

between MT and the heavy thinning HT did not differ. Furthermore, the benefit in REW60 of 

the thinned plots compared to the un-thinned plots was reduced over time.  

While thinning can increase single-tree transpiration due to increased insolation, increasing 

air flow in the crown (Ma et al., 2010), the overall stand transpiration is reduced (del Campo 

et al., 2014; Gebhardt et al., 2014; Morikawa et al., 1986). Furthermore, the reduction in basal 

area and therefore leaf area leads to a decrease of intercepting surface, increasing stand 

precipitation and therefore enhanced soil water content (Donner and Running, 1986; Stogsdill 

et al., 1992). 

The enhanced relative REW in the present study is in line with findings of a thinning 

experiment in 43-year-old Quercus petraea stand, in which Bréda et al. (1995) reported an 

increased relative extractable soil water in the thinned stand for the following 2 years. 

Likewise, del Campo et al. (2014) reported increased soil water content following thinning in 

a semiarid pine plantation. Moreover, Cotillas et al. (2009) reported an increase of soil 

moisture after thinning, but also reported a fast decline of the positive effects within three 

years, which was partly attributed to fast resprouting of the thinned stumps.  

The fast equalization reported in the present study between MT and HT from the second year 

on, especially in the decline of REW, can be attributed to the additional evapotranspiration of 

emerging ground vegetation on HT on the study site (Gebhardt et al., 2014). The ground 

vegetation added an additional 26 % to the total stand transpiration and increased the 

interceptional loss by about 13 % over the growing seasons (Gebhardt et al., 2014). The 

contribution of ground vegetation to total stand evapotranspiration dependents primarily on 

the leaf area index of the overstory, the species, climatic conditions and soil water content 
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(Black and Kelliher, 1989; Granier et al., 1990; Simonin et al., 2007). The potential of thinning 

interventions to reduce the duration below REWcrit over time is primarily determined by the 

increase of stand transpiration and interception of the remaining stand during the years 

following the thinning intervention. Hence, regulating the initial REW at the beginning of a dry 

spell and the decline in REW during a dry spell. Stand transpiration of thinned stands 

compared to un-thinned stands has been shown to be equalized or even enhance within a few 

years following thinning (Lagergren et al., 2008; Stogsdill et al., 1992). After the initial increase 

on tree-level caused by increased insolation of former shaded leaves, changes in stand 

transpiration and interception primarily depend on the crown expansion and the increment 

of the LAI during the years following the thinning intervention. Both dependent on the tree 

(ground vegetation) species and the age of the stand. For example, Pokorný et al. (2008) 

reported a recovery of LAI within 2 years after a thinning related LAI reduction of about 18 % 

in a young mountain Norway spruce stand. In contrast, the leaf area index in a 43-year-old oak 

forest did not increase following thinning (Bréda et al., 1995b).  

In the present study the potential of thinning to reduce the duration below REWcrit by reducing 

the decline in REW was abscent in the 5th years. Therefore, increased stand transpiration and 

on the thinned compared to the un-thinned plots in the present study led to similar duration 

below REWcrit during the dry spell in late summer 2013. Nevertheless, minor differences in 

stand transpiration and interception during the growing season prior to the dry spell increased 

the initial REW at the beginning of the dry spell in late summer 2015 and therefore slightly 

reduced the duration below REWcrit. 

 

Basal area increment 

In contrary to our third hypothesis that the higher decline in radial growth during drought 

periods of target trees in heavy thinned stands can be related to an increased duration below 

critical relative extractable water (REWcrit), we found that the duration was similar or slightly 

reduced. The resistance (decline in relative basal area increment during the drought years 

compared to pre-drought years) of the target trees on HT tended to be lower (26% compared 

to NT) 7 years after the thinning treatment. This is in line with Sohn et al. (2013) who found 

lower resistance of the target trees during the summer drought of 2003 on heavily thinned 

plots 7-10 years after the thinning treatment. Furthermore, McDowell et al. (2006) reported 
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for a thinning experiment in a Pinus ponderosa stand a higher sensitivity (i.e. greater relative 

decline) to drought for trees in low basal area treatments.  On the target tree level thinning 

leads to an increased leaf area (Cregg et al., 1990; Guiterman et al., 2012), hence to an 

increased evaporative demand. Furthermore, in open stands canopy conductance primarily 

depends, besides radiation on the vapor pressure deficit (VPD) (Bréda et al., 2006). Under high 

radiation the canopy conductance sharply decreases with increasing VPD (Granier et al., 

1996). This may have led to an enhanced reduction of the canopy conductance on the thinned 

compared to the un-thinned trees in 2015 relative to the pre-drought year (s). 

Moreover, on HT an increase of fine root biomass by the remaining trees following thinning 

trees was non-existent for at least 5 years in contrast to the MT plots. The beginning of 

belowground recolonization of unoccupied soil compartments can be expected within the first 

few years (Ammer and Wagner, 2002; Aussenac and Granier, 1988; López et al., 2003). In the 

present study, the non-existent increase of fine root biomass on HT following thinning may be 

mainly attributed to belowground competition with the ground vegetation. In addition, 

increased water and nutrient supply after thinning may have caused changes in carbon 

allocation towards the aboveground biomass (i.e. leaf area and stem growth). Therefore, on 

the target tree level at HT increased aboveground water demand (leaf area, exposition) in 

combination with lower fine root biomass per leaf area (insufficient water supply) could have 

led to increased drought stress. In addition, during the year 2015 the drought was coincided 

with a heavy masting event causing an additional decline in the annual growth irrespective of 

the dry spell during late summer, which was also indicated by the reduced rBAI till July in all 

treatments. 

Nevertheless, despite the tendency of higher sensitivity of the target trees on the thinned 

plots compared to the un-thinned, the BAI as well as the rBAI of the target trees was higher 

also during the drought years. This is in line with findings in the literature (Kohler et al., 2010; 

McDowell et al., 2003, 2006; Sohn et al., 2013). For example, Martínez-Vilalta et al.  (2012) 

reported a greater drought impact on fast-growing Pinus sylvestris trees compared to slow-

growing trees, but also higher absolute growth rates both during and after the drought.  

Furthermore, whereas the basal area increment on NT was already finished by more than 70% 

in July of each year, whatever the gross precipitation, the basal area increment untill July on 

MT and HT represented about 55% of the BAI of the whole growing season. This indicates 
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recurring drought stress on NT during late summers of the pre-drought years whatever the 

gross precipitation and illustrates the avoidance of these drought events by thinning.  

Furthermore, it is important to examine the recovery after the drought in 2015 which has 

been shown to be improved by heavy thinning interventions regardless of the time span 

between thinning and the drought event (Sohn et al. 2013) but which was non-existent in this 

study regardless of the thinning intensity and which may, besides the climatic conditions, be 

partly attributed to the ground vegetation on HT on the medium-term. The recovery on the 

medium to long-term may be attributed to increased leaf and fine root biomass per target 

tree and therefore structural changes rather than changes in the gas exchange (Fernández-

de-Una et al., 2016; McDowell et al., 2006). Improved performance during the drought and 

enhanced recovery from the drought may be of particular importance for trees like Norway 

Spruce, highly susceptible to secondary pests.  

Conclusion 
 

Thinning as a silvicultural measure can improve the relative extractable soil water content and 

reduce the time span below critical soil water contents during the years following the 

intervention. Furthermore, thinning enhanced tree growth in absolute terms also during 

drought years. However, the benefits in water relations decrease with increasing time-lag 

between thinning and the drought event.  Moreover, heavy thinning intensities may foster 

ground vegetation, hence diminishing the benefits in water availability and the potential to 

reduce the duration of soil water deficit compared to intense moderate thinning without 

ground vegetation. Furthermore, ground vegetation increased belowground competition for 

the target trees impeding fine rot biomass increment. In conclusion, repeated intense thinning 

from above which release the target trees from competition but avoid the establishment of 

competing ground vegetation in intervals of around 5 years (in the early stages) are suggested.  
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                      Chapter 5  
 

Synthesis 
 

As described in the introduction the main aim of this study was to examine the potential of 

increasing thinning intensities as a forest management measure to mitigate drought stress in 

young Norway spruce stands. Furthermore, the underlying mechanisms and consequences of 

different thinning intensities for temporal changes of the stand water balance were 

disentangled. 

To clarify the potential and the limits of increasing thinning intensities to mitigate drought 

stress and to provide recommendations for forest management a two-tier approach, i.e. 

retrospective analyses and continuous in-situ measurements, was conducted. 

The radial growth is known to be highly related to climatic changes. Therefore, the 

consequences of two severe drought periods on the annual radial growth of future crop trees 

within increasing thinning intensities were examined retrospectively, at two different stands 

in the first part of the study (see chapter 2). Short-term, the drought resistance of radial 

growth increment (growth levels during the drought year compared to those before the 

drought year) was higher with increasing thinning intensity (i.e. 2 years after thinning) but 

lower with increasing thinning intensity on the mid- to long-term (i.e. ca. 30 years after first 

and 7-10 years after last thinning). These findings were confirmed by the results at the 

experimental site (see chapter 4) with the lowest resistance in radial growth by trend of future 

crop trees on the heavy thinning treatment during summer drought in 2015 (i.e. 7 years after 

the thinning intervention). Nevertheless, the recovery (growth levels after the drought year 

compared to those during the drought year) from the drought years 1976 and 2003 was higher 

for the target trees on the heavy-thinned compared to the un-thinned stands on the short-

term as well as on the medium to long-term (chapter 2). This was not the case on the 

experimental site following the summer dry spell in 2013 (i.e. 5 years after the initial thinning 

intervention) (chapter 3). Nevertheless, the annual basal area increments of the future crop 

trees in absolute terms on the thinned plots were higher also during the drought years 

(chapter 2, 3, 4). The results of the stable isotope analysis indicated that the potential of 
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thinning to mitigate drought stress during the drought years may mainly depend on the 

benefits of thinning on the water balance, whereas the recovery from the drought seems to 

depend additionally on structural changes of the future crop trees (i.e. increased fine root 

biomass and leaf area).  

 

Effects of increasing thinning intensity on the water balance 

 

The experimental study showed, that the benefits on the water balance on stand-level of both 

thinning intensities decreased over time and lasted 5-7 years. The benefits between the 

moderate and heavy thinning intensity were diminished for the most part within the first 3 

years. The water balance was altered by the different stand densities regarding water input 

(via throughfall) and water consumption (via evapotranspiration) and therefore the available 

soil water content. 

Thinning leads to a reduction of the leaf area index (LAI) and therefore reducing interception, 

hence leading to increased throughfall precipitation with increasing thinning intensity. 

Nevertheless the increase in throughfall was lower than the reduction in LAI (see chapter 2, 

(Aussenac and Granier, 1988; Teklehaimanot et al., 1991). Besides the reduction of the LAI, 

canopy interception is highly dependent on climatic variables like wind velocity, temperature 

and humidity during the rain event and most important the intensity of the rain event 

(Aussenac and Granier, 1988; Frischbier, 2012). Although not proportional to thinning 

intensity, increased throughfall has been shown as one of the most important variable of the 

water balance, altered by thinning, for increasing soil water availability and reducing drought 

stress on a tree level (chapter 4 (Molina and del Campo, 2012; Simonin et al., 2007; Stogsdill 

et al., 1992, 1989). 

Furthermore, as a consequence of the reduced LAI, the reduced water loss via stand 

transpiration is the second component of the water balance altered by thinning in order to 

mitigate drought stress during drought years. With increasing thinning intensity, the water 

loss via transpiration on stand-level is reduced (chapter 3, (Aussenac and Granier, 1988; del 

Campo et al., 2014; Morikawa et al., 1986). Nevertheless, as for the interception, the decrease 

in stand transpiration was not proportional to thinning intensity and LAI reduction. 
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Accordingly, the reduction in stand transpiration during the first year after thinning was lower 

than the reduction in stand density, due to increased transpiration of the remaining trees on 

tree level (chapter 3). In the present study, the removal of 43% (moderate thinning, MT) and 

67% (heavy thinning, HT) of the stand basal area reduced the stand-level transpiration by 

about 25% upon MT and 50% upon HT during the first year following thinning. This was 

attributed to increased insolation of former shaded leaves in the canopy of the remaining tree 

and the increase in available soil water content. Changes in the microclimate including 

increased insolation and additionally increased soil water availability leads to an increase of 

the transpiration on tree level (chapter 3, (Aussenac, 2000; del Campo et al., 2014). 

Measurements of microclimate changes in forest stands are very laborious and show high 

spatial variability. Existing studies reported significant changes of the microclimate within 

forest stands following thinning. For example, Ma et al. (2010) reported for an overstory 

thinning treatment in a mixed coniferous stand increasing air temperatures, decreased 

relative humidity, increased vapour pressure deficit and increased wind speed compared to 

the pre-thinning references. They also reported that the changes in microclimate variables 

corresponded with thinning intensity. Furthermore, overstory-thinning led to more extreme 

daily ranges and maxima of daily temperatures and vapour pressure deficit in a mixed- 

coniferous stand in Sierra Nevada (Rambo and North, 2009). Nevertheless, the present study 

and the literature showed an overall increase in growth related water use efficiency during 

the first years following thinning, which is in line with numerous findings in literature (see 

chapter 2, (Fernandes et al., 2016; Martín-Benito et al., 2010; McDowell et al., 2003, 2006).  

However, the increase in transpiration of the remaining trees in thinned stands decreases the 

benefit of LAI reduction in relation to decreased stand transpiration and equalizes or even 

amplifies transpiration at stand level on the thinned compared to the un-thinned controls 

within the first years after thinning (Bréda et al., 1995; Lagergren et al., 2008; Stogsdill et al., 

1992). Besides increasing water demand per unit leaf area and increased soil water 

availability, this may be attributed to leaf area increment of the remaining trees (Aussenac, 

2000) and fertilization effect (Lagergren et al., 2008) (see chapter 3). Changes in stand 

transpiration and interception following thinning may mainly depend on the canopy 

expansion and therefore the increase of LAI during the years after thinning. Hence, leading to 

a similar water balance of the thinned plots compared to the un-thinned plots within a few 

years. The increase in leaf area following thinning depends on thinning intensity, tree species 
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and stand age. For example, the leaf area index in a 43-year-old oak forest (Quercus petraea 

(Matt.) Liebl.) did not increase following thinning (Bréda et al., 1995) which was attributed to 

the slow growing oak trees. On the contrary, the leaf area index in a 10-year-old loblolly pine 

stand, with a basal area reduction of 50 and 75% , increased within one year following thinning 

by c. 9% and 20% respectively (Cregg et al., 1990). Likewise, in a 20-year-old Douglas-fir stand 

the water balance was recovered within the subsequent 3-5 years which was attributed to 

foliage and root biomass recovery (Aussenac and Granier, 1988). Furthermore, the LAI 

reduction by about 18% following thinning was recovered within two years in a 24-year-old 

Norway spruce stand (Pokorný et al., 2008).  

In addition, thinning could lead to a rapidly invading herbaceous species dominated 

understory (Cregg et al., 1990; Thomas et al., 1999) which would contribute to stand water 

loss via additional evapotranspiration (Whitehead et al., 1994). This was the case on the heavy 

thinning plots on the experimental site in the second year following thinning (see chapter 2). 

The contribution of the ground vegetation to the stand transpiration was found to range from 

6 to over 60%, depending on the overstory LAI, climatic variables, time of the year and species 

(see ref. in Black and Kelliher, 1989; Whitehead et al., 1994). For example, the understory 

transpiration was estimated to account for about 28 to 30 % of total stand transpiration in a 

Pinus pinaster stand during summer with 358 stems ha-1 and a LAI of 2.3 (Granier et al., 1990). 

This result is in line with the measured mean contribution of 26% to the total stand 

transpiration on the heavy thinning plots of the present study by the emerging ground 

vegetation with similar stand density and LAI (see chapter 3). As a result, the additional 

transpiration of the ground vegetation in the present study diminished the differences in stand 

transpiration between the moderate and the heavy thinning already in the second year after 

thinning (see chapter 2) as well as added an additional water loss via interception of around 

13%.  

 

Potential of increasing thinning intensity to mitigate drought 
 

As mentioned above the retrospective approach showed a lower resistance in growth with 

increasing thinning intensity on the medium to long-term (i.e. 30 years after first and 7-9 years 

after last thinning). This was most likely attributed to increased stand transpiration of the 
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thinned stands with ongoing time after the thinning and therefore similar or even more 

intensive soil water deficit (see chapter 2). The future crop trees at the experimental site 

showed a similar reduction in relative basal area increment during the summer drought seven 

years (2015) after the thinning treatment, with by trend a decreasing resistance with 

increasing thinning intensity (see chapter 4). Nevertheless, the annual basal area increments 

of the future crop trees in absolute terms on the thinned plots in general were higher also 

during the drought years (chapter 2, 3, 4). 

The consequences of drought stress depend mainly on the duration and the intensity of the 

drought. Relative extractable water with values dropping below 40% have been shown as an 

index for soil water deficit induced stomatal regulation on forest trees (Granier et al., 2007, 

1999; Grossiord et al., 2015; Rambal et al., 2003). Therefore, with increasing time span of the 

relative extractable soil water content below the threshold the drought stress on tree level 

increases. Consequently, the initial relative extractable water content at the beginning of the 

drought and the rate of reduction during the drought may be decisive to reduce the duration 

below critical soil water content and therefore mitigating drought stress. The experimental 

approach showed that the time span below the threshold of critical soil water content was 

reduced by thinning up to 5 and 7 years (see chapter 4). The combination of reoccurring short 

dry spells and rain events during the growing season can accumulate minor differences in 

throughfall and stand transpiration over the growing season. Hence leading to an increased 

REW on the thinned plots compared to the un-thinned plots at the beginning of the drought 

period (see chapter 4). Nevertheless, the intensity of the soil water deficit at the end of the 

growing season was similar on all treatments 5 and 7 years after the initial thinning.  

The comparison of the resistance during drought events between different thinning intensities 

also depends on the radial growth during the pre-drought year(s). In the case, that tree growth 

in the un-thinned dense stands was limited by reduced soil water content also in the pre-

drought summer months the decline during the actual summer drought will be less prominent 

for trees in the un-thinned compared to the thinned plots (see chapter 4). Moreover, the basal 

area increment of the future crop trees on the thinned stand was overall higher during post-

thinning period, also during the drought years (see chapter 2,3). This is in line with numerous 

findings based on a range of tree species, tree ages, thinning intensities and climate zones (for 

example ;Cotillas et al., ϮϬϬϵ; D͛Aŵato et al., ϮϬϭϯ; MĐDoǁell et al., ϮϬϬϯ; MissoŶ et al., ϮϬϬϯ; 



Chapter 5 

 

116 

 

White et al., 2009). Furthermore, Martínez-Vilalta et al. (2012) reported that fast-growing 

trees were proportionally more affected in growth by drought events, but performed better 

in absolute terms during as well as after the drought. The relative higher growth decline with 

increasing thinning intensity compared to the un-thinned future crop trees seven years after 

the intervention may partly represent a change in resource allocation to belowground 

biomass or from growth- to defence related metabolism due to current needs (see extended 

͞Gƌoǁth- Differentiation- BalaŶĐe TheoƌǇ͟ (Matyssek et al., 2005)). In contrast to the high 

density of the un-thinned stands, in which the trees may undergo a crucial trade-off associated 

to ensure competitiveness versus defence with resource loss (Matyssek et al., 2012), 

resources for defence may not to be limited for the remaining trees on the thinned plots. 

Indicated also by an overall higher absolute basal area increment also during the drought 

years. This may be important particularly for Norway spruce endangered by secondary pests 

like bark beetle attacks.  

Nevertheless, stomatal regulation is not only depended on the available soil water content. 

With lower LAI in recently thinned stands, transpiration is directly coupled to changes in 

climatic parameters (Bréda et al., 1995). As mentioned above thinning leads to an increase in 

VPD and wind flow (reducing the boundary layer), which was reported to last up to one decade 

following thinning indicated by wood isotope analyses (Brooks and Mitchell, 2011; Martín-

Benito et al., 2010). In combination with increased leaf area on tree level (Guiterman et al., 

2012), this will lead to an increased evaporative demand on tree level. Under high radiation 

the canopy conductance decreases more sharply with increasing VPD (Granier et al., 1996). 

Leading to an intensified reduction of the canopy conductance on the heavy-thinned 

compared to the un-thinned trees during the drought event relative to the pre-drought 

year(s).  

Furthermore, it is crucial that the benefit of increased soil water content and the increased 

demand can be supplied via belowground root biomass. There are only a few studies that 

measured belowground changes following thinning, but in general an increment in fine root 

biomass, but including a time delay, after thinning was reported. For example, in a boreal 

Picea abies forest no recovery of the tree root system was found in experimental gaps within 

2–3 years (Taskinen et al., 2003). Furthermore, Aussenac and Granier (1988) attributed the 

reduced differences in radial growth between thinned and control stands in the fourth year 
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after thinning to root recolonization and foliar mass increment. Likewise, López et al. (2003) 

reported an increase of fine root biomass in holm oak stands 4-5 years following thinning. 

Nevertheless, on stand-level, the total fine root biomass of overstory Norway spruce has been 

shown to be still lower in a stand four years after thinning (Petritan et al., 2011). This is in line 

with the experimental study, showing an increment in fine root biomass on the moderate 

thinning within the first 5 years (see chapter 4). On the long-term and after repeated thinnings 

on one of the sites (Göggingen) of the retrospective approach it has been shown that no 

differences in total fine root biomass were apparent between the thinning treatments (30 

years after initial thinning) indicating an increased fine root biomass per tree (see chapter 2). 

The effective recolonization of unoccupied soil compartments and increased fine root biomass 

per tree is in line with model estimations for a 75-year-old Norway spruce stand including a 

gap formation 10 years earlier (Ammer and Wagner, 2002).  

However, this was not the case on the heavy-thinned plots of the experimental site on the 

short to medium-term. The combination of two mechanisms may be responsible for the 

absence of fine root biomass increment on the heavy-thinned plots. According to the 

balanced-growth-hypothesis, an increase in water and nutrient availability may foster carbon 

allocation to the above ground biomass (Shipley and Meziane, 2002). For example, on a low 

productivity site, 36.4 % of total net primary production was used for fine root biomass 

production compared to 7.9 % on the high productivity site in a 40-year-old Douglas fir stand 

(Keyes and Grier, 1981). Additionally, the belowground competition with the emerged ground 

vegetation suppressed the recovery on the heavy-thinning plot compared to the moderate 

(see chapter 4).  

The increased leaf area and evaporative demand on the heavy thinned plots, but relative 

reduced fine root biomass could lead to increased drought stress on tree level, on the heavy 

thinning. Simonin et al. (2007) reported on a thinned ponderosa pine stand, where the basal 

area was reduced by 82% and the leaf area index by 45% that the understory 

evapotranspiration compensated for the lower overstory transpiration during drought. 

Furhermore, the recovery on the medium to long-term may also partly be attributed to both, 

increased leaf and fine root biomass per target tree and therefore structural changes rather 

than changes in the gas exchange (see chapter 2,4) (Fernández-de-Una et al., 2016; McDowell 

et al., 2006). 
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Conclusion and forest management recommendation 
 

In summary, it can be concluded from the presented results and the findings in the literature 

that thinnings have the potential to mitigate drought during the drought event and increase 

the recovery from such events. The mitigation of drought was attributed to a temporarily 

reduced soil water deficit by reducing transpiration and interception on the stand level in 

addition with fostering leaf area and root expansion. However, it has also been shown that 

thinning intensity and frequency seems to be crucial to increase available soil water, as well 

as leaf and root expansion for the remaining trees. On the one hand, if the thinning intensity 

is too low (by fostering not enough future crop trees) and therefore insufficient removal of 

basal area on stand level, the thinning intervention may increase the evaporative demand and 

insolation of the future crop tree without improving the water balance of the whole stand. On 

the other hand, if the thinning intensity is too heavy the emerging ground vegetation may 

diminish the benefit of increased thinning intensity on the water balance compared to a more 

moderate thinning intervention without ground vegetation. The competition with the ground 

vegetation for water and belowground expansion may exacerbate drought stress for future 

crop trees under severe and prolonged drought.  

The intense moderate thinning on the experimental site (removal of about 40 % basal area, 

fostering ca. 400 target trees, by removing 1-2 competitors), but with a relative short thinning 

frequency for the first interventions of about 5 years seems to be a viable option to mitigate 

drought during and in combination with fostering leaf and fine root biomass increment of the 

target trees, to improve the recovery from drought. 

Furthermore, thinnings are silvicultural measures which shall not only improve the water 

balance, but also increase productivity and stand stability. Very heavy thinning may lead to 

total stand productivity which does not reach a desired threshold. Particularly, high radial 

growth may also lead to reduced timber quality and trees which are temporally susceptible to 

windthrow. Thrown trees, however, attracts bark beetles. 

Therefore, the present study suggests that frequent and intense thinning interventions while 

preventing the establishment of a vital ground vegetation seems to be the most promising 
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forest measure to mitigate drought without increasing risks and without losing sight of 

economic needs. 
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Summary 
 

The predicted increase in frequency of intense and prolonged drought events challenges 

forest management.  Centuries of forest management has led to Norway spruce (Picea abies 

[L.] Karst.) monocultures outside its natural range. In Germany, Norway spruce covers ca. 25% 

of the total forest area and represents the economically most import tree species. Thinning as 

a silvicultural measure has been discussed to reduce drought risk in young Norway spruce 

stands. 

The aim of the present study is to investigate the potential and the limits of increasing thinning 

intensity to mitigate drought by reducing intraspecific competition and increasing the 

availability of soil water. A two-tier approach (i.e. retrospectively and in-situ measurements) 

was applied to examine differences in tree response to severe drought within increasing 

thinning intensities and the effects of such thinning intensities on the water balance. 

To investigate tree response to severe drought events radial growth increments in 

combination with stable carbon and oxygen isotopes in the early- and latewood per year ring 

were measured retrospectively at two long-term thinning experiments in southern Germany. 

The initial thinning with increasing intensities was conducted in 1974 within a ca. 27-year-old 

Norway spruce stand. Annual radial growth and stable isotope analyses were used to unveil 

differences in physiological performance and radial growth between trees within increasing 

thinning intensities to the exceptional drought events 1976 and 2003.  

To address changes in the stand water balance modified by increasing thinning intensity and 

therefore to investigate the potential to mitigate drought, a thinning experiment was 

established in 2008 in a 26-year-old un-thinned Norway spruce monoculture. Prior to the 

thinning treatment at the beginning of 2009 about 430 target trees per hectare were selected. 

On the experimental site 3 thinning intensities were conducted: A ͞Ŷot-thiŶŶed͟ ĐoŶtƌol ;NTͿ 

with a stand basal area of 42 m² ha-1, a moderate thinning (MT) with a reduction of the stand 

basal area by 43 % (thinning from above and fostering the target trees by removing 1- 2 

competitors) and a heavy thinning (HT) with a reduction of 67% (removal of all trees except 

the target trees). Besides the variables of the water balance, like open field precipitation, 

throughfall, soil water content and stand transpiration, structural changes (i.e. fine root 
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biomass, ground vegetation) altered by the increasing thinning intensities were continuously 

assessed on the research plots. 

The retrospective approach showed, that the drought induced decline in radial growth during 

drought years was reduced by intense thinning on the short-term but increased on the 

medium to long-term. The higher resistance in radial growth on the short-term was attributed 

to increased soil water availability, but this advantage is likely to be reduced over time. After 

the drought events, the recovery was increased on the heavy-thinned plots from a likely 

increase of available soil water content in recently thinned stands and additionally structural 

adaptions of the target trees fostered by repeated intense thinning interventions (i.e. higher 

foliage area and fine root biomass) on the medium to long-term.  

The experimental approach showed, that the removal of basal area and therefore leaf area 

reduced transpiration on stand-level and an increased throughfall within the first years 

following the thinning intervention. But the thinning effect on stand transpiration and on 

Interception was not proportional to the reduction in basal area. The thinning led to an 

increased transpiration on tree-level of the remaining trees. Nevertheless, thinning increased 

the growth-related water use efficiency on tree- and stand level. Furthermore, over the whole 

study period the basal area increment was enhanced by thinning, also during the drought year. 

Furthermore, both thinning intensities allowed for a reduced time span below critical soil 

water content up to 5-7 years. However, with increasing time-lag after the thinning 

intervention the potential of thinning to reduce the time span decreased. Furthermore, the 

fast establishment of vital ground vegetation on the heavy-thinned plots added an additional 

water loss via evapotranspiration. The additional transpiration of the ground vegetation 

diminished the differences between MT and HT in stand transpiration within 2 years. Similar 

to the retrospective approach the radial growth decline in the target trees with increasing 

thinning intensity tended to be higher during the drought year in 2015 (7 years after initial 

thinning). This may partly be attributed to an intensified reduction of the canopy conductance 

compared to the pre-drought year(s) due to the open position of the target trees. 

Nevertheless, on HT the vital ground vegetation enhanced the competition for soil water. 

Moreover, the belowground competition of the ground vegetation also suppressed the 

recovery of fine root biomass on the heavy thinning plots compared to the more moderate 

thinning on the medium-term. The reduced fine root biomass compared to the increased leaf 
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area on tree-level of HT and the competition for water may intensify drought stress for the 

target trees during the drought period and decrease the above mentioned favourable thinning 

effect on the recovery from the drought for HT on the medium-term.   

In summary it can be concluded, that thinnings have the potential to mitigate drought during 

and to improve the recovery from drought. However, it has also been shown, that the benefits 

of a thinning intervention on the water balance are temporary and heavy thinnings may foster 

ground vegetation, enhancing competition for water and belowground fine root recovery. 

Furthermore, if the thinning intensity is too low (by fostering not enough future crop trees) 

and therefore insufficient removal of basal area on stand level, the thinning intervention may 

increase the evaporative demand and insolation of the future crop tree without improving the 

water balance of the whole stand. Nevertheless, if the thinning intensity is too heavy the 

emerging ground vegetation may diminish the benefit of increased thinning intensity on the 

water balance compared to a more moderate thinning intervention without ground 

vegetation. The intense moderate thinning on the experimental site (removal of about 40 % 

basal area, fostering ca. 400 target trees, by removing 1-2 competitors), but with a relative 

short thinning frequency for the first interventions of about 5 years seems to be a viable option 

to mitigate drought during and in combination with fostering leaf and fine root biomass 

increment of the target trees, to improve the recovery from drought. This may be particularly 

important for Norway spruce endangered by secondary pests. 

Therefore, the present study suggests that frequent and intense thinning interventions while 

preventing the establishment of a vital ground vegetation seems to be the most promising 

forest measure to mitigate drought in young Norway spruce stands without increasing risks 

and without losing sight of economic needs. 
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Zusammenfassung 

 

Die prognostizierte Zunahme der Häufigkeit von intensiven und langanhaltenden 

Trockenheitsereignissen stellt die Forstwirtschaft vor eine Herausforderung. Jahrzehntelange 

Forstwirtschaft führte zu einer monokulturartigen Struktur der Fichte (Picea abies [L.] Karst.) 

außerhalb ihres natürlichen Verbreitungsgebietes. In Deutschland stellt die Fichte, mit einem 

Flächenanteil von ca. 25% der gesamten Waldfläche, die ökonomisch wichtigste Baumart dar. 

Aus diesem Grund werden Durchforstungen als waldbauliches Mittel zur Abmilderung des 

Trockenstressrisikos in jungen Fichtenbeständen diskutiert. 

Das Ziel der vorliegenden Arbeit ist es, das Potential und die Grenzen zunehmender 

Durchforstungsstärken im Hinblick auf die Abschwächung von Trockenheitsereignissen durch 

die Verringerung intraspezifischer Konkurrenz und erhöhter Wasserverfügbarkeit zu 

untersuchen. Um Unterschiede in der Reaktion der Bäume bei zunehmender 

Durchforstungsstärke auf strenge Trockenzeiten zu untersuchen und die Auswirkungen 

solcher Durchforstungsstärken auf den Wasserhaushalt festzustellen, wurde ein zweistufiger 

Ansatz mit retrospektiven Untersuchungen und in-situ Messungen gewählt. 

Um die Reaktionen der Bäume auf strenge Trockenzeiten zu erfassen wurden retrospektiv auf 

zwei langfristigen Durchforstungsversuchen in Süddeutschland die Zuwachsreaktionen der 

Bäume in Verbindung mit den stabilen Kohlenstoff und Sauerstoff Isotopen im Früh- und 

Spätholz der Jahrringe aufgenommen. Die Erstdurchforstung mit ansteigender 

Durchforstungsstärke wurden 1974 in einem ca. 27-jährigen Fichtenbestand durchgeführt. 

Um mögliche Unterschiede in der physiologischen Reaktion und im Zuwachs zwischen den 

Bäumen auf den Flächen mit unterschiedlichen Durchforstungsstärken in den 

außergewöhnlichen Trockenjahren 1976 und 2003 aufzudecken, wurden die jährlichen 

Radialzuwächse sowie die Stabilisotopen-Analyse verwendet.  

Um die Änderungen im Wasserhaushalt mit zunehmender Durchforstungsstärken und das 

Potenzial der Durchforstungseingriffe Trockenheit abzumildern, zu untersuchen, wurde 2008 

in einer ca. 26-jährigen undurchforsteten Fichtenmonokultur ein Durchforstungsexperiment 

etabliert. Vor dem Durchforstungseingriff Anfang 2009 wurden ca. 430 Auslesebäume pro 

Hektar ausgewählt. Dabei wurden auf dem Standort 3 Durchforstungsstärken ausgeführt: eine 

undurchforstete Fläche (NT) mit einer Bestandesgrundfläche von ca. 42 m2 ha-1, eine 
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moderate Durchforstung (MT) mit einer Reduktion der Bestandesgrundfläche von 43% 

(Förderung der Auslesebäume durch die Entnahme der stärksten 1-2 Bedrängern) und eine 

starke Durchforstung (HT) mit einer Reduktion der Bestandesgrundfläche um 67% (Entnahme 

aller Bäume mit Ausnahme der Auslesebäume). Neben den Variablen des Wasserhaushaltes, 

wie Freilandniederschlag, Bestandesniederschlag, Bodenwassergehalt und Wasserverbrauch 

des Bestandes, wurden auch die strukturellen Änderungen (z.B. Feinwurzelbiomasse, 

Bodenvegetation) fortlaufend auf der Versuchsfläche aufgenommen. 

Der retrospektive Ansatz zeigte, dass der trockenheitsbedingte Zuwachseinbruch kurzfristig 

nach dem Eingriff durch eine intensive Durchforstung verringert wurde, aber mittel- und 

langfristig erhöht war. Die kurzfristig erhöhte Resistenz im Zuwachs wurde auf eine zeitlich 

begrenzte erhöhte Wasserverfügbarkeit zurückgeführt. Nach beiden Trockenjahren, war die 

Erholung im Jahreszuwachs auf den stark durchforsteten Flächen verbessert. Sehr 

wahrscheinlich durch eine Verbesserung der Wasserverfügbarkeit in den kürzlich 

durchforsteten Beständen und längerfristig durch zusätzliche strukturelle Anpassungen 

(höhere Blattfläche und Feinwurzelbiomasse) der Auslesebäume durch wiederholte intensive 

Durchforstungseingriffe. 

Der experimentelle Ansatz zeigte, dass die Entnahme der Grundfläche und dadurch der 

Blattfläche zu einer verringerten Transpiration und einem erhöhten Niederschlag auf 

Bestandesebene führte. Jedoch zeigte sich auch, dass die Auswirkungen auf die 

Bestandestranspiration und der Interzeption nicht proportional der Reduktion der 

Bestandesgrundfläche entsprachen. So führte die Durchforstung zu einer erhöhten 

Transpiration auf Einzelbaumebene der verbliebenen Bäume. Dennoch führte die 

Durchforstung zu einer erhöhten zuwachsbezogenen Wassernutzungseffizienz sowohl auf 

Baum- als auch auf Bestandesebene. Des weiteren, zeigten die Auslesebäume auf den 

durchforsteten Flächen über den gesamten Untersuchungszeitraum, auch während des 

Trockenjahres 2015, einen erhöhten Jahreszuwachs im Vergleich zu den Bäumen auf den 

undurchforsten Flächen. Bis zu 5-7 Jahre nach dem Durchforstungseingriff zeigten beide 

Durchforstungsstärken einen reduzierten Zeitraum unterhalb kritischer Bodenwassergehalte 

im Vergleich zu den undurchforsteten Flächen. Jedoch zeigte sich auch, dass mit 

zunehmendem zeitlichen Abstand nach der Durchforstung das Potenzial, den Zeitraum mit 

kritischen Bodenwassergehalten zu verringern, abnimmt. Des weiteren, führte die starke 
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Durchforstung zu einer raschen Entwicklung einer vitalen Bodenvegetation und dadurch zu 

einem zusätzlichen Wasserverbrauch durch Evapotranspiration. Die zusätzliche Transpiration 

der Bodenvegetation führte innerhalb von 2 Jahren zu einer Angleichung im Wasserverbrauch 

zwischen der moderaten und der starken Durchforstung. 

In ähnlicher Weise, wie auch im retrospektiven Ansatz zeigte sich während des Trockenjahres 

2015 (7 Jahre nach der Durchforstung), dass die Auslesebäume mit zunehmender 

Durchforstung während des Trockenjahres tendenziell stärker im Zuwachs eingebrochen sind. 

Dies könnte zum Teil auf eine verstärkte Reduktion der Kronenleitfähigkeit, aufgrund der 

Freistellung der Auslesebäume zurückzuführen sein. Dennoch, führte die Bodenvegetation auf 

der starken Durchforstung zu einer Verstärkung der Konkurrenz um das Bodenwasser. Des 

weiteren, führte die unterirdische Konkurrenz der Bodenvegetation in den Jahren nach dem 

Durchforstungseingriff zu einer Unterdrückung der Erholung der Feinwurzelbiomasse des 

Baumbestandes auf den starken Durchforstungen im Vergleich zu der moderaten 

Durchforstung. Die verringerte Feinwurzelbiomasse im Verhältnis zu der erhöhten Blattfläche 

auf Baumebene und die Konkurrenz um Wasser kann den Trockenstress für die Auslesebäume 

während der Trockenheit erhöhen und mittelfristig die oben beschriebene verbesserte 

Erholung von Trockenzeiten abschwächen.  

Zusammenfassend konnte gefolgert werden, dass Durchforstungen das Potenzial besitzen 

Trockenstress abzumildern und die Erholung zu verbessern. Jedoch wurde auch gezeigt, dass 

die Vorteile eines Durchforstungseingriffes auf die Wasserbilanz zeitlich begrenzt sind und 

eine starke Durchforstung das Aufkommen einer Bodenvegetation fördern kann, welche die 

Konkurrenz um Wasser und um unterirdischen Feinwurzelzuwachses für die Auslesebäume 

erhöht. Bei einer zu schwach ausgeprägten Auslesedurchforstung (z.B. zu geringe Anzahl an 

geförderten Auslesebäumen) und dadurch eine nicht ausreichende Entnahme an 

Bestandesgrundfläche, wird die Nachfrage nach Wasser der Auslesebäume erhöht, ohne 

jedoch den Wasserhaushalt auf Bestandesebene zu verbessern. Eine zu starke 

Erstdurchforstung wiederum, kann zu einer aufkommenden Bodenvegetation führen, die die 

Vorteile auf den Wasserhaushalt der starken Durchforstung im Vergleich zu einer mehr 

moderaten Durchforstung verringert und möglicherweise das Trockenstressrisiko für die 

Auslesebäume erhöht. Die intensive moderate Durchforstung des Durchforstungsversuches 

(Entnahme von ca. 40% der Bestandesgrundfläche durch die Förderung von ca. 400 
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Auslesebäumen pro Hektar) - aber mit einer kurzen Zeitspanne zwischen den Durchforstungen 

von ca. 5 Jahren (für die ersten Durchforstungseingriffe) scheint eine praktikable Möglichkeit 

zu sein, um Trockenstress während einer Trockenheit abzumildern und in Kombination mit 

geförderten strukturellen Anpassungen der Auslesebäume die Erholung zu verbessern. Dies 

kann vor allem für die durch Sekundschädlinge gefährdete Fichte von besonderer Bedeutung 

sein. 

Aus diesem Grund scheinen wiederholte intensive Durchforstungseingriffe, bei gleichzeitiger 

Vermeidung aufkommender Bodenvegetation, die erfolgversprechendste forstwirtschaftliche 

Maßnahme in jungen Fichtenbeständen zu sein, um Trockenzeiten abzumildern ohne das 

Risiko für die Auslesebäume zu erhöhen und ohne den Blick auf die ökonomischen 

Anforderungen zu verlieren. 
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