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Abstract

With the number of single nucleotide polymorphisms (SNPs) available in genetic data cur-
rently constantly increasing, the evaluation of SNP sets has become a successful approach
toward elucidating the genetic influence on various complex diseases. The joint investigation
of multiple SNPs increases the probability of detecting moderate and weak association signals
and bypasses the multiple testing problem inherent to testing procedures on the genome-wide
scale. Furthermore, this approach assists in the biological interpretation of analysis results,
which may be supported by the analysis of SNP sets representing a pathway, here denoting a
set of genes fulfilling a particular biological function jointly.

The association between a pathway-representing SNP set and a phenotype may be anal-
ysed appropriately with the kernel machine approach. This evaluates the genotypes of multi-
ple SNPs jointly by transforming them into a kernel matrix, comprising the genetic similarity
measures for any pair of individuals in the study. The kernel matrix is calculated by a pre-
defined kernel function. Multiple kernel functions have been proposed, some of which are
capable of integrating further biological knowledge on a pathway and allow for varying types
of effect. The network kernel function enables the direct incorporation of a pathway’s net-
work structure, while at the same time considering additive as well as interaction effects in
the investigated SNP set.

A multitude of databases are available nowadays offering an increasing amount of bio-
logically meaningful information on pathways, genes, and genetic markers. The initial work
in this thesis investigates possibilities and the impact of integrating additional biological in-
formation into existing approaches in the analysis of genetic data. The impact of marker
density, SNP-set aggregation with respect to linkage disequilibrium structures, and knowl-
edge sources were considered. In this context, the software package kangar00 was developed
in R, offering a wide range of functions relating to data download, pre-processing, transfor-
mation, and evaluation for single-pathway testing in the logistic kernel machine framework,
implemented, and made freely available.
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The identification of specific biological processes influencing disease risk is still very
challenging, despite the integration of growing amounts of biological data. Single-pathway
methods cannot usually discriminate causal processes influencing disease susceptibility from
isolated genetic effects included in a pathway resulting from gene overlaps. Moreover, they
usually lack the ability to predict any trait of interest.

The main objective of this thesis is the development of a new method in the evaluation of
SNP sets, focussing on the analysis of those representing pathways. The resulting analysis
approach enables the mutual investigation of multiple sets of SNPs through the adaptation of
a boosting algorithm.

Boosting originates from the field of machine learning, in which it was developed as a
classification approach. Its main idea is to combine functions with poor classification per-
formance iteratively into a strong classifying set. If the functions considered only depend on
a subset of the explanatory variables available, variable selection may be performed while
the model is fitted. We made use of this to perform selection on a set of pathways by em-
ploying a kernel function dependent on SNP sets representing pathways. Since all pathways
of interest are investigated jointly in the boosting algorithm, correlations between them are
also considered. We may therefore discriminate biological processes influential on disease
susceptibility from single effect genes included in a pathway resulting from gene overlap.
Our software package kangar00 includes an interface to a boosting algorithm, together with
which all functionalities necessary to apply kernel boosting are available.

Thanks to its inherent properties and the freely available software implementation, kernel
boosting has great potential to elucidate key biological functions involved in disease risk,
while creating a directly interpretable model to predict disease status.
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Introduction

Many common diseases are influenced by a complex interplay between multiple genetic and
non-genetic factors. The field of genetic epidemiology aims to elucidate the genetic elements
involved in disease susceptibility and development, while considering their interrelation with
environmental influences. Examples of common diseases include cancer, asthma, obesity,
and diabetes [1].

The genetic information of each and every individual is represented by the sequence of
base pairs found in deoxyribonucleic acid (DNA). Genetic locations that display alterations
in this sequence in a population are referred to as genetic markers [2]. The simplest and
most frequent type of genetic marker is a variation in a single base pair and is termed a SNP.
Although the occurrence of more than one form in the population is possible, a SNP typically
has one of two possible manifestations, which are called alleles. The less frequent allele in a
population is referred to as the minor allele and the percentage of its occurrence is defined the
minor allele frequency (MAF). Since most genetic loci exist on each copy of a chromosome
pair in the human genome, two alleles per SNP usually exist, forming the SNP’s genotype
[2]. In genome-wide SNP data, genotypes are often represented by the count of minor alleles
observed at the specific locus.

1.1 Association Analysis of Genetic Data

Genetic association studies aim to understand how genetic variants and certain characteristics
of an individual are related. We refer to these characteristics as traits or phenotypes and
attempt to identify genetic markers associated with them. A SNP is said to be associated with
a phenotype if one of its alleles occurs more frequently together with specific forms of the
phenotype than might be expected by chance. We can furthermore distinguish two types of
association: Direct association, in which the investigated genetic marker represents the locus
influential on the disease, and indirect association, which results purely from the considered
marker’s correlation to a causal locus [3]. Such a correlation among different genetic loci is
referred to as linkage disequilibrium (LD).

A genome-wide association study (GWAS) often involves hundreds of thousands of SNPs
distributed across the whole genome. Markers under consideration are selected based on the
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CHAPTER 1. INTRODUCTION

idea of covering the complete genetic information without genotyping every SNP in exis-
tence. This is possible, since SNPs in reasonably high LD can act as a substitute for each
other, so that effects of non-genotyped SNPs can be evaluated as indirect associations [1].
Genetic association studies are often case-control studies. Consequently, diseased probands
(cases) are recruited along with healthy individuals (controls). The genotypes of all study
participants are determined and, along with informative environmental covariates, used to
identify new genetic risk factors based on the distribution of genotypes among said cases and
controls [4].

When GWAS were first developed, diseases with a high prevalence in the population were
hypothesized as being caused by common genetic variants. This assumption is termed the
’common disease - common variant’ hypothesis, in which common variants typically refer
to those exceeding a frequency of 5%. Although several arguments in favour of this theory
exist, common SNPs were only able to explain a small proportion of the phenotypic variance
and cannot account for the levels of heritability discovered in family studies, a phenomenon
termed ’missing heritability’ [5]. Many complex diseases are probably influenced by both
frequent and rare variants, each contributing slightly to the overall disease risk [4].

GWAS data were often evaluated by individually analysing each involved SNP. This pro-
cedure leads to notable statistical challenges, one of which being the problem of multiple
testing [1]. This particular problem arises from an accumulation of possible type-I errors
across the multitude of statistical tests conducted. To maintain the overall type-I error on the
experimental level at the desired limit, the significance level for each test needs to be adjusted
accordingly [6]. This usually results in a very low p-value threshold required to identify a
globally significant association, which hinders the detection of moderate or weak genetic ef-
fects. The constantly increasing density of SNP data resulting from technological advances
and formation of data-sharing consortia over the last decades has further aggravated this sit-
uation. One answer to this problem is the joint investigation of multiple markers, aggregated
to SNP sets.

1.2 Linkage Disequilibrium

As mentioned in Section 1.1, correlated loci are said to be in LD, meaning that their alleles do
not occur independently of each other. We use the term association to refer to a relation be-
tween an allele at a genetic locus and a phenotype, while we use LD to describe a correlation
between two alleles at two different genetic loci [3]. A population in which allele combina-
tions at the considered loci only occur in frequencies expected at random formation is said
to be in linkage equilibrium at these loci. LD in a population is introduced and modified by
various factors, for example, the appearance of a new mutation. The pattern of LD therefore
provides insight into genetic processes emerging in the population [1].
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CHAPTER 1. INTRODUCTION

Different options exist to measure LD. Imagine two loci with possible alleles A or a and
B or b, respectively, and let pA and pB denote the corresponding probabilities of observing
allele A or B at its locus. If the two loci are not in LD and thus mathematically independent,
the probability pAB of observing A and B together can be derived by

pAB = pA · pB

In case of LD, this equation does not hold and we can derive the deviation from linkage
equilibrium

D = pAB − pA · pB

which depends on the allele frequencies at the considered loci. This dependency renders it
unsuitable as a general comparison measurement of LD, for which different standardizations
have been developed [3]. The methods most commonly employed are the measures D′ and
r2. D′ is a relative value of disequilibrium suggested by Lewontin [7]. In this case, D is
divided by the maximum possible value that it could take under the given frequencies. The
measure is specified by

D′ =
D

Dmax

(1.1)

with Dmax defined as

Dmax =

min{pA · (1− pB), (1− pA) · pB} if D > 0

max{−pA · pB,−(1− pA) · (1− pB)} if D < 0

The measure r2 is the square of Pearson’s product moment correlation and is given by

r2 =
D2

pA · (1− pA) · pB · (1− pB)
(1.2)

Possible LD values range from 0 to 1, with a value of 0 indicating no LD and 1 corresponding
to perfect correlation. SNPs are often categorized as strongly correlated, and thus suitable to
represent one another, if their LD exceeds a particular threshold. A typical requirement is an
r2 value of 0.7 or 0.8 [1].

LD is not only important in connection with the selection of GWAS SNPs, but also needs
to be taken into account in various genetic analysis scenarios. Depending on the method
utilized in the evaluation of SNP data, LD will either have to be corrected for or may be
exploited to assist in the detection of associations.

1.3 SNP Sets and Pathway Analysis

Genes act and interact with other genes in human beings following sophisticated mechanisms
to perform various biological functions. Thus, any isolated evaluation of single genes is not
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CHAPTER 1. INTRODUCTION

sufficient to understand the complex biological systems involved in disease susceptibility
[8]. One approach that takes this fact into account is the analysis of pathways. Pathways
are biologically defined networks of interacting genes, jointly fulfilling a specific function
[9]. As each gene can be represented by the SNPs located within its genomic boundaries,
a pathway may be represented by a set of SNPs. The joint investigation of multiple SNPs
forming a new unit of analysis has a number of benefits. It evidently reduces the number of
tests needed to evaluate GWAS data, which is why SNP-set analysis strategies emerged as
one reaction to the multiple testing problem inherent to the single testing of large numbers of
markers. Since SNPs are usually aggregated to represent an element of particular biological
function, SNP-set analysis more importantly assists the biological interpretation of results.
The mutual evaluation of multiple markers also facilitates the detection of several moderate
effects, which alone are not strong enough to be of genome-wide significance in single-SNP
tests. Furthermore, the evaluation of SNP sets allows us to take interactions between markers
into account [10].

The analysis of pathways has become a frequently used approach in the evaluation of
GWAS data and a multitude of statistical methods to this purpose exist nowadays. These can
be categorized according to their primary characteristics [11, 12, 13]. A clear and structured
classification is provided by Khatri and colleagues in [14] and is briefly explained:

Over-representation analysis evaluates the effect of a pathway based on the proportion of
influential genes it includes. Using a gene-level test, methods of this class firstly identify pu-
tative effect genes. In a second step, the fraction of effect genes in each pathway is evaluated,
in which a proportion higher than expected at random indicates an influential pathway. Limi-
tations of this class include the gene cutoff, involving only a part of the available information,
as well as the inability to consider interactions among genes. Gene set enrichment analysis
(GSEA) is a representative of this type of method [15].

Functional class scoring approaches do not rely on high-effect genes only, but aim to fa-
cilitate the detection of multiple interacting genes with moderate effects as well. These meth-
ods usually compute gene-level scores for all genes, which are then combined to pathway-
level statistics and tested for their influence on disease risk. Although pathway-level statistics
can be modelled to allow for interactions among genes, no direct information on the interac-
tion structure of the network is considered. Kernel methods [16, 17], which will be described
in Chapter 2, may generally be assigned to this class.

Pathway topology approaches follow a design similar to functional class scoring tech-
niques, but differing in the fact that they incorporate topological knowledge on a pathway into
the analysis in addition. They directly exploit interaction patterns of gene networks upon cal-
culations of pathway-level statistics, thus considering interaction between genes. However,
correlation between pathways remains unaccounted for. Kernels incorporating topological
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CHAPTER 1. INTRODUCTION

information, such as the network kernel [18] presented in the next chapter, are examples in
this class.

Two types of hypothesis may be considered when evaluating the influence of a pathway by
use of a statistical test. The self-contained null hypothesis evaluates the pathway’s effect
based on the genes of which it is composed, isolated from other pathways. The competitive
approach tests the pathway’s importance in comparison with all other pathways under inves-
tigation [19]. However, both approaches still only test a single pathway at a time without
accounting for any correlation between pathways. Such correlations between pathways may
occur as a result of genes being included in several different pathways. A particular impli-
cation of this is that individual genes involved in a network influential on disease risk may
also be found in other, non-causal pathways. Single-pathway analysis methods are incapable
of discriminating causal biological processes from these overlapping effect genes. The joint
investigation of multiple pathways is therefore a rather promising strategy to consider corre-
lations among gene networks, to assist in the identification, and foster the understanding of
biological systems affecting disease risk.

1.4 Objective and Outline of this Thesis

This work aims to enhance the existing toolbox in the analysis of SNP sets representing
pathways through the improvement of existing and the development of new investigation
approaches. The integration of additional biological information into tests of a single ge-
netic unit is explored. However, the focus here mainly lies on the development of a new,
joint-analysis approach for multiple pathways, aiming to overcome some of the limitations
inherent to single-pathway testing procedures. The kernel-boosting approach developed here
facilitates the mutual evaluation of the information represented by several pathways in a vari-
able selection framework, resulting in a prediction model for the investigated outcome.

This thesis is organized as follows: Chapter 1 introduces the genetic topics required to fol-
low further sections. Chapter 2 presents the kernel association approach for single-pathway
testing, along with its theoretical background. Chapter 3 provides a concise overview of
the idea behind boosting algorithms and their functionality, whereas Chapter 4 describes
the data considered in application examples. Chapter 5 comprises summaries of the peer-
reviewed journal publications constituting the main body of this thesis. As the work focusses
on method development rather than the application of analysis methods, the summaries centre
on the methodological aspects of the publications.
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Kernel Methods in Pathway Analysis

Kernel methods are a machine learning approach especially well suited to the evaluation of
pathways. They cope well with the high-dimensional data arising in GWAS analysis, while
remaining computationally efficient. Kernel methods are flexible in terms of incorporated
information without requiring any direct modelling of interaction structures [20]. The joint
association of a SNP set, as representative of a pathway, with a phenotype may be evaluated
conveniently in a kernel score test.

2.1 Kernel Machine Approach

On the introduction of pathway analysis as a novel approach, the information on interaction
patterns was very limited. Complex and partially or completely unknown network structures
rendered non-parametric analysis approaches advisable. A particularly suitable approach in
this context is the kernel machine method. It employs a regression framework, in which a trait
of interest is explained by parametrically modelled environmental covariates and the effect
of a SNP set incorporated perhaps parametrically or non-parametrically [16]. For a study on
i = 1, . . . , n participants, we consider the following regression model

yi = xxxtiβββ + h(zzzi) + ei (2.1)

in which yi denotes the trait measurement of individual i, xxxti is the transposed nq × 1 vector
of nq environmental covariates (including intercept) with corresponding coefficient vector βββ,
and zzzi denotes the ns × 1 dimensional genotype vector of individual i for the ns SNPs in
the SNP set under investigation. Furthermore, h(·) denotes an unspecified function of the
genotypes, and ei the error term of the regression model (assumed to follow ei ∼ N (0, σ2)).
The investigated trait may also be binary, for example indicating case-control status, in which
case we consider the logistic approach

logit(P (yi = 1)) = xxxtiβββ + h(zzzi). (2.2)

Here, the trait’s expected value E(yi) = P (yi = 1) is incorporated by use of the logit link
function logit(x) = log

(
x

1−x

)
[21, 22]. This logistic version is often referred to as logistic

kernel machine test (LKMT).
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CHAPTER 2. KERNEL METHODS IN PATHWAY ANALYSIS

In both regression models, the genetic influence is incorporated by an unspecified function
h(·). It is assumed to lie in a function spaceHK , generated by a chosen kernel function K(·).
This kernel function can be selected with a large degree of flexibility. It is however required
to be positive semidefinite. Owing to the mathematical characteristics of the space, any func-
tion h(·) ∈ HK may be represented as h(zzzi) =

∑J
j=1 αjK(zzzi, zzzj), a linear combination of

j = 1, . . . , J suitable parameters αj , and the kernel function evaluated at sample points zzzj .
As the form of h(·) is restricted to elements of the function space spanned byK(·), the kernel
function determines which kind of effect, such as linear effects or interactions, will be con-
sidered for the investigated SNP set.

In order to evaluate a pathway’s influence on the trait, it is helpful to see that the models given
in (2.1) and (2.2) may also be interpreted as mixed models

yi = xxxtiβββ + hi + ei or logit(P (yi = 1)) = xxxtiβββ + hi (2.3)

with fixed covariate effects xxxtiβββ, a genetic random effect hi, and normally distributed error
terms ei in the linear mixed model. The random effect is assumed to follow hi ∼ N (0, τKKK),
with an unknown variance component τ , and KKK the n × n kernel matrix derived by the
application of K(·) to the genotypes of each pair of study participants.

This connection was established by demonstrating that the estimators of βββ, ααα and h(·)
derived by maximizing the penalized likelihood in the semiparametric framework are equal
to the estimators obtained for the corresponding mixed models. The technical details may be
found in [16, 21].

2.2 Variance Component Test

Considering the regression models mentioned above, we wish to examine the overall associ-
ation of a SNP set with the investigated trait. Thus we are interested in the null hypothesis
H0 : h(zzz) = 0. From the mixed model representation (2.3), it can be seen that this is equiva-
lent to testing for a significant variance component of the random effect

H0 : τ = 0 vs H1 : τ > 0 (2.4)

This null hypothesis may be investigated efficiently in a score test which only requires estima-
tion of the null model. This is advantageous, since h(·) disappears under the null hypothesis
and thus does not have to be estimated. The test statistic is given by

Q =
(yyy − ŷ̂ŷy)tKKK(yyy − ŷ̂ŷy)

2
(2.5)

where yyy denotes the vector of all n trait observations, ŷ̂ŷy the estimated values obtained by fit-
ting the null model of the corresponding regression model, and KKK the kernel matrix derived

7



CHAPTER 2. KERNEL METHODS IN PATHWAY ANALYSIS

on the genotypes of the SNP set to be evaluated [17]. Not only is this test convenient to
compute, it is also not affected by the directionality of the SNP effects [10]. This character-
istic makes it well suited for evaluating multiple SNPs that might contain signals of opposite
association direction.

Test statistic Q follows a scaled χ2-distribution κχ2
ν , which may be approximated effi-

ciently by the Satterthwaite method [23, 24] or Davies’ algorithm [25]. The first approach
estimates the unknown parameters by equating the mean and variance of Q with those of the
unknown distribution, while the latter uses a numerical inversion of the characteristic func-
tion to compute the quadratic forms distribution [26]. Both approaches were implemented in
this work and yielded very similar results.

2.3 Kernel Functions and Pathway Information

The previous sections indicate the importance of kernel function K(·) in the kernel machine
approach. It implicitly determines which kind of effect will be considered for the investigated
SNP set. A linear kernel function restricts the included signals to additive effects of each SNP,
while a multiplicative kernel function may allow for interactions among SNPs. The selected
kernel function K(·) is applied on the genotype vectors of each two individuals, generating
an n× n matrixKKK with entries

KKKij = K(zi, zj) (2.6)

for i, j = 1, . . . , n. The resulting kernel matrix may be interpreted intuitively as a genetic
similarity matrix [17]. This implies that entryKKKij may be seen as a numeric value represent-
ing the genetic similarity between study participants i and j.

Linear Kernel: A frequent choice of kernel function is that of the linear kernel. IfZZZ denotes
the n× ns matrix formed by n genotype vectors of length ns for the considered SNP set, the
kernel matrix is calculated by

KKK = ZZZZZZt (2.7)

The linear kernel function evaluates the joint effect of all markers forming a particular SNP
set and thus can evaluate a pathway’s effect on the investigated outcome. However, it does
not include any interactions. All SNP effects are modelled in an additive fashion, implicitly
assuming a multiple (logistic) regression model [10]. Since SNPs are involved in complex
interactions within human beings, only considering their membership in a pathway alone will
not be sufficient to understand biological processes fully [8].

Network Kernel: A large extent of the available knowledge on a considered SNP set or
pathway may be incorporated by use of the network kernel function [18]. It also investigates
a SNP set representative of a pathway. However, in contrast to the linear kernel, it includes
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CHAPTER 2. KERNEL METHODS IN PATHWAY ANALYSIS

additional information during calculation of the kernel matrix. The network kernel assigns
SNPs to individual genes within the pathway and adjusts this mapping for the total number of
markers included per gene. Known interactions between genes are directly incorporated and
can be categorised as activating or inhibiting type. Furthermore, the network kernel function
allows for pair-wise interactions among the analysed SNPs. The corresponding kernel matrix
is calculated by

KKK = ZZZAAANNNAAAtZZZt (2.8)

ZZZ again denotes the n × ns genotype matrix as in (2.7). For ng genes in the considered
pathway, AAA maps the ns SNPs representing the pathway to the genes and therefore is of
dimension ns × ng. Interactions between the genes are incorporated via the ng × ng network
matrixNNN .

In order to visualise how information on the pathway is incorporated more effectively, let us
look at one particular entry of the resulting matrix. For individuals i and j, it is equal to

KKKij =

ng∑
u=1

ng∑
v=1

nuv ·
ns∑
r=1

girarv ·
ns∑
s=1

gjsasu (2.9)

The
∑ns

r=1 g..a.. part of the formula sums the genotypes per gene of a specific individual. Here,
g.. denotes the minor allele count, where a.. is an adjusted indicator variable mapping SNPs
to a gene while taking into account the gene’s size. It is equal to the reciprocal square root of
the number of SNPs in the gene if the SNP maps to the gene and 0 otherwise. For each two
genes, the corresponding gene-level sums of the two regarded individuals are multiplied, with
an additional factor accounting for the interaction between the genes. Here, n.. may equal 1
for an activating interaction, −1 for an inhibiting one, and 0 for no interaction. To ensure the
involvement of all SNPs, every gene is modelled as self-interacting by setting nuu = 1, for
all u = 1, . . . , p.

This function is of particular use, as it has been shown to be superior in terms of per-
formance in the analysis of interconnected effects, which are assumed to occur in pathways
influential on disease susceptibility [18].

Pathway Databases: Biological pathways are designed to map molecular reactions occurring
inside the cells of an organism. They are involved in numerous aspects, such as metabolism,
information processing, disease development or cellular processes, and are usually responsi-
ble for a specific product or cell function [9, 27]. More and more information on pathways
beyond mere gene membership is available nowadays and may be retrieved from numerous
online databases. A comprehensive overview of online resources with relation to pathways
can be found on the pathguide.org website [28]. The site currently lists over 640 re-
sources, with more than 350 including knowledge on human pathways.
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CHAPTER 2. KERNEL METHODS IN PATHWAY ANALYSIS

This abundance of sources makes it difficult to decide from where information should be
retrieved. The pathway databases available to date differ in a number of ways, such as avail-
able species, interaction types, focus, or employed pathway definition [8]. Thus, databases
currently demonstrate surprisingly little overlap in information, which may also be attributed
partially to the fact that they are still a work in progress [29]. As it is highly likely that no
database holds the full information on a pathway (yet), the integration of the knowledge avail-
able is desired. However, this poses quite a challenge, given the use of various data formats,
naming conventions, and lack of clarity as to whether differing information can be regarded
as either complementary or contradictory [29]. A well-considered choice is essential, as the
database selection may well influence the results of analysis. No gold standard pathway
database exists; however, several quality criteria can assist in selecting a suitable resource.
Knowledge should be updated periodically, in order to keep pace with new findings. Manu-
ally curated experimental data is considered to be of the highest quality, with computationally
inferred and electronically annotated data being viewed as lower in quality. Furthermore, the
coverage of a database should be taken into consideration, that is, determining how many
known genes are involved in one of the given interactions [8]. Finally, the database’s focus
should match the research question to provide the best fitting information possible for the
individual analysis.

One of the first pathway databases to be established was the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database [27, 29]. It was first released in 1995 with the aim of facil-
itating the biological interpretation of genetic information via pathway mapping. Reference
pathway maps were, and still are, manually drawn. KEGG focusses on pathways, but has
expanded in various directions over the last 20 years. It now consists of 16 databases, pro-
viding knowledge on various types of -omics data, mostly based on information derived from
published research articles [27]. KEGG is updated on a weekly to daily [8, 27] basis and
changes may be followed by reading the release notes on the website. The pathway informa-
tion considered in this work was derived solely from this database.
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Boosting

Boosting emerged out of the field of machine learning, in which it was designed as a classi-
fication approach. The main idea of boosting is to combine weak classifying functions with
poor performance into one new classifier with strong prediction ability. The algorithm assigns
more weight to the measurements difficult to classify [30]. The development of boosting is
attributed to the work of Schapire [31] and Freund and Schapire [32, 33]. They introduced
the first boosting algorithm, the now famous AdaBoost, which laid the foundations for all the
subsequent boosting algorithms.

The concept of boosting has been successfully adapted to the field of statistical mod-
elling, in which it provides a flexible framework for model fitting and variable selection. In
this context, boosting is especially well suited to biomedical applications such as the analysis
of GWAS data. This may be explained by its inherent properties: Boosting algorithms cope
well with high-dimensional data that can include more explanatory variables than observa-
tions, various types of variable may be incorporated into one prediction model jointly, and
model fitting can automatically include variable selection, thus reducing the set of available
predictors to those most relevant that are included in the model [34].

3.1 Introduction to Boosting

As mentioned above, boosting aims to combine weak classifiers in order to ’boost’ their per-
formance. We assume having data from a study of i = 1, . . . , n participants with observations
of a binary trait yi ∈ {0, 1} and a q×1 dimensional vector x̃̃x̃xi of measurements of q predictors.
The latter may be of differing kinds, such as continuous or categorical variables.

A weak classifier is a function f(x̃̃x̃xi) that predicts yi with an error rate only slightly better
than random guessing. The error rate can be derived as the number of falsely classified
observations divided by the total number of classifications performed [30]. In the boosting
framework, the weak classifiers fj(·) are typically referred to as base-learners.

From a statistical point of view, the boosting algorithm models the influence of the prediction
variables on the investigated trait by fitting a structured additive predictor
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η(x̃̃x̃xi) = β0 +
J∑
j=1

fj(x̃̃x̃xi) (3.1)

where β0 is the intercept and fj(·) are the j = 1, . . . , J base-learners considered. One
base-learner fj(·) often does not depend on all predictors in x̃̃x̃xi, but only on a part x̃̃x̃xij =

(x̃ij,1 , . . . , x̃ij,nj
) (nj ≤ nq). This implies that the J base-learners can incorporate differ-

ing effects for the same (subset of) variables. A dependency of several base-learners on the
same variables is possible and may be interpreted as modelling alternatives for the particular
prediction variable [35].

The quality of a predictor’s prognosis of the trait may be measured by an appropriate loss
function ρ(·), which indicates the discrepancy between η(x̃̃x̃xi) and yi. Different options for ρ(·)
exist, among which the squared error loss or a likelihood-based loss function are common
choices [30]. The optimal predictor η∗(·) would be the function minimizing the expected
value of the loss function for general (y, x̃̃x̃x)-values [36]. In practice, an approximation η̂(·) for
η∗(·) is determined by minimizing the empirical risk [37], that is, the loss function summed
over the (training) data

η̂(x̃̃x̃x) = argmin
η(x̃̃x̃x)

n∑
i=1

ρ(yi, η(x̃̃x̃xi)) (3.2)

A solution for (3.2) can be derived efficiently using a gradient descent algorithm, which
considers the steepest descent of the loss function to determine iteratively an estimate η̂(·).
This procedure may be combined with a stagewise inclusion of single base-learners into the
model, which is of particular interest in statistical modelling [34].

3.2 Component-Wise Functional Gradient Descent Boosting

If we interpret ηηη = (η1, . . . , ηn)
t = (η(x̃1), . . . , η(x̃n))

t as n-dimensional parameter vector
obtained by applying the additive predictor η(·) on the data points x̃̃x̃xi [30, 35], problem (3.2)
can be seen as searching for the minimizing vector of parameters

η̂̂η̂η = argmin
ηηη

n∑
i=1

ρ(yi, ηi) (3.3)

In each iteration m, the negative gradient of the loss function evaluated at the current param-
eter vector η̂[m−1](x̃̃x̃xi) (the estimate obtained in the previous iteration) is derived. This results
in an n× 1 dimensional gradient vector uuu[m] = (u

[m]
i , . . . , u

[m]
n ) with entries

u
[m]
i = −δρ(yi, η)

δη

∣∣∣∣
η=η̂[m−1](x̃̃x̃xi)

(3.4)
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for i = 1, . . . , n. The estimate of the additive predictor is initialized by a starting value
η̂̂η̂η = η̂̂η̂η[0], such as η̂i[0] = 0 for i = 1, . . . , n [35], and updated in each iteration according to
the steepest descent of the loss function. In gradient descent boosting, this update is given by

η̂̂η̂η[m] = η̂̂η̂η[m−1] + ν [m]uuu[m] (3.5)

where ν [m] denotes the step length for the update in iteration m. A suitable choice will be
discussed below.

Functional Gradient Descent: The updating step (3.5) may be adjusted such that it makes
use of the steepest descent direction, but at the same time connects the update to the desired
class of functions of the covariates given by the base-learners [36]. This link is established
by fitting a base-learner to the negative gradient of the loss function, e.g. via least squares
estimation [30]. The result is a constrained estimate

û̂ûu[m] = (û
[m]
1 , . . . , û[m]

n ) = (f̂ [m](x̃̃x̃x1), . . . , f̂
[m](x̃̃x̃xn)) = f̂̂f̂f (3.6)

of the steepest descent direction, in which f̂(·) denotes the fitted base-learner. By making use
of f̂̂f̂f instead of the negative gradient uuu[m] directly, the update in iteration m is changed to

η̂̂η̂η[m] = η̂̂η̂η[m−1] + ν [m] f̂̂f̂f (3.7)

which is known as functional gradient boosting.

Component-Wise Boosting: A single function f(·) was considered above to estimate the
negative gradient of the loss function. However, the inclusion of multiple base-learners in
functional gradient boosting is possible and often desired, as it allows for a component-
wise approach facilitating variable selection. Bühlmann and Yu introduced the concept of
component-wise functional gradient boosting [37]. It differs from the above outlined ap-
proach as it fits each base-learner fj(·) seperately to the negative gradient. This results in
estimates f̂̂f̂f j , j = 1, . . . , J . The best fitting base-learner f̂̂f̂f j∗ is determined via

j∗ = argmin
j

n∑
i=1

(u
[m]
i − f̂j(x̃̃x̃xi))2 (3.8)

as the one minimizing the residual sum of squares. In each iteration, the identified f̂̂f̂f j∗ is
added to the current estimate of the additive predictor according to

η̂̂η̂η[m] = η̂̂η̂η[m−1] + ν [m] f̂̂f̂f j∗ (3.9)
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in a stagewise fashion, leaving previously added function estimates unchanged [30]. In each
iteration, a single base-learner, multiplied by the step length, is incorporated into the model.
However, repeated selection of the identical base-learner is possible and will lead to an in-
creased weight of the corresponding function in the estimate of η̂(·). Thus, the final additive
predictor is a weighted sum over all base-learners selected in at least one iteration.

Since different base-learners typically depend on differing subsets of the considered vari-
ables, not selecting a particular base-learner indicates the exclusion of the respective variables
from the model. Hence, the sufficiently (but not too) early stopping of the procedure automat-
ically leads to variable selection. The algorithm then returns a prediction model for the trait of
interest and simultaneously identifies the most influential variables during model estimation
[34].

Choice of Parameters: The maximum number of iterations, mstop, is an important tuning
parameter of the algorithm. Additional iterations usually decrease the training risk. However,
this may lead to overfitting [30]. This phenomenon occurs if the training data are fitted to such
an extent that the determined predictor performs poorly for new observations. A well advised
choice of mstop is crucial to prevent overfitting [34]. An optimum number for mstop may
be determined in a single dataset by use of cross-validation techniques. Herein, the data are
repeatedly divided into training and test samples and subsequently used in parts to fit (training
data) and validate (test data) the model. The optimum mstop is the parameter leading to the
lowest empirical risk on the data [34].

The number of iterations is influenced by the step length ν [m] employed in the updating
step of the algorithm. For 0 < ν < 1, the step length is a shrinkage factor scaling the
contribution of each incorporated base-learner [30]. One way to derive an appropriate value
for ν [m] in a gradient descent approach is to define it as the minimizer

ν [m] = argmin
ν

ρ(y, η̂[m−1] + νu[m]) (3.10)

in each iteration step. The step length ν [m] can be understood as learning rate of the procedure.
It has been found empirically that smaller values (ν ≤ 0.1) are favourable, as they improve
the algorithm’s performance considerably as compared to no shrinkage (ν = 1) [30, 36].
Decreasing the step length, however, leads to a higher number of performed iterations and
thus increases the computational burden for the algorithm. In practice, (3.10) does not have
to be derived in every iteration. Instead, a small constant may be chosen for ν. A useful
default value is setting ν = 0.1 [34].

Data Focus: Boosting algorithms, as mentioned above, focus on the observations most dif-
ficult to classify. In traditional classification algorithms, such as AdaBoost, the data are re-
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weighted in every step. Previously incorrectly classified observations are upweighted, while
those correctly classified are downweighted by iteratively assigning more influence to the
difficult observations [30].

Gradient descent boosting implicitly shifts the focus on the more challenging measure-
ments by considering the gradient of the loss function instead. This may be regarded as fitting
the errors of the previous iteration [34] and can best be seen by looking at an exemplary loss
function, such as the commonly used squared error loss ρ(y, η(x)) = (y − η(x))2. Here,
the derived negative gradient is equal to 2(y − η̂(x)), basically leading to re-fitting of the
residuals.

3.3 Boosting with Kernel Functions as Base-Learner

We developed a novel kernel boosting approach, integrating a kernel function as base-learner
into the functional gradient descent algorithm. We consider an additive predictor incorporat-
ing the influence of environmental covariates as well as genetic effects to model the logit of
the probability of being a case. Mimicking the setup in the logistic kernel machine approach,
we model the effect of nq environmental covariates in the transposed nq × 1 vector xxxti with
corresponding coefficient vector βββ parametrically, while we incorporate the ns × 1 dimen-
sional genotype vector zzzi for the ns SNPs in the SNP set under investigation via a kernel
function. Note that nq + ns = q (as above). Assuming we have P different SNP sets, each
representing a particular pathway, this results in a model

logit(P (yi = 1)) = η(xxxi, zzzi) = xxxtiβββ +
P∑
p=1

fp(zzzi) (3.11)

where yi denotes the case-control status of individual i. Considering the matrix ZZZp of all
individuals’ genotypes for the SNP set representing pathway p, the kernel function base-
learner fp(·) is equal to

fp(ZZZp) =KKKpγγγ = ZZZpAAApNNNpAAA
t
pZZZ

t
pγγγ, (3.12)

where AAAp and NNNp denote the adjacency and network matrix as introduced in Chapter 2, re-
spectively, and γγγ = (γ1, . . . , γn)

t is the coefficient vector. In practice, we use an additional
smoothness constraint and estimate γγγ via penalized least squares with outcome uuu[m].

By defining a separate kernel base-learner for each pathway, component-wise functional
gradient boosting on GWAS data leads to the identification of a set of pathways most influen-
tial on disease risk. A prediction model composed of the pathways selected may be used to
predict the disease status of further individuals. Note that owing to the usual lack of a sepa-
rate validation dataset, the prediction accuracy of the model is optimized by cross-validation
inside the same sample.
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Kernel boosting, unlike testing procedures frequently employed in the investigation of
GWAS data, does not compute a mere p value for the investigated effects, but instead creates
a prediction model for the trait of interest, while simultaneously reducing the set of candidate
pathways. Further information on the kernel boosting approach may be found in Summary
5.3 and [38].
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Examples of Application

Three real-world datasets were considered in this work to investigate the performance of both
newly developed and existing methods in the analysis of genetic data. Here follows a short
description of the three datasets employed.

4.1 Lung Cancer

Cancers are complex diseases which are frequently analysed in the framework of GWAS
studies. Lung cancer, one of the most common and severe forms, especially in industrialized
nations, is responsible for the greatest proportion of deaths caused by cancer worldwide [39].
Although one of the major risk factors is tobacco exposure, a number of genetic influences
have already been revealed by many studies [40]. Nevertheless, the heritability of the dis-
ease still remains to be explained fully, as all the genetic factors contributing to the risk of
developing lung cancer have not been completely elucidated so far.

The German Lung Cancer GWAS consists of 488 lung cancer patients and 478 controls,
resulting from the combination of participants in three individual studies. These studies com-
prise Lung Cancer in the Young (LUCY), a population-based multicentre study carried out
by the University Medical Centre in Göttingen and the Helmholtz Zentrum München. Here, a
total of 847 lung cancer patients under the age of 51 and 5,524 family members were recruited
in 31 German hospitals until 2011 [41, 42]. The Heidelberg Lung Cancer Case-Control Study
was conducted by the Thoraxklinik in Heidelberg and the German Cancer Research Center
(DKFZ) [43]. More than 2000 cases and 750 controls have been recruited in an on-going
hospital-based study since 1997. The third study, Cooperative Health Research in the Augs-
burg Region (KORA) [44], is a population-based genome-wide study on more than 18,000
participants. It was carried out by the Helmholtz Zentrum München between 1984 and 2001.
A subset of the individuals considered in these studies were genotyped on a HumanHap 550K
SNP chip and form the German Lung Cancer GWAS.

4.2 Rheumatoid Arthritis

One of the most common inflammatory diseases of the joints is rheumatoid arthritis. It is one
of the major causes of disability and is known to be strongly influenced by genetic factors.
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The human leukocyte antigen (HLA) region located on chromosome 6 was revealed as highly
associated with rheumatoid arthritis disease susceptibility [45, 46].

We investigated a GWAS study conducted by the North American Rheumatoid Arthritis
Consortium (NARAC). Eight-hundred sixty-eight rheumatoid arthritis cases were collected
along with 1,194 controls matching the self-reported ethnic background. All the cases were
recruited from hospitals located in New York with rheumatoid arthritis being diagnosed ac-
cording to the criteria of the American College of Rheumatology. The study participants were
genotyped with the HumanHap500v1 array [47, 48].

4.3 San Antonio Family Studies

The Genetic Analysis Workshops intend to encourage the development, testing, and discus-
sion of new statistical methods in the analysis of genetic data. The family dataset distributed
in the context of Genetic Analysis Workshop 19 (GAW19) was taken from the Type 2 Di-
abetes Genetic Exploration by Next-generation sequencing in multi-Ethnic Samples (T2D-
GENES) Project 2, a pedigree-based study aiming towards the detection of variants influ-
encing the susceptibility of developing type-2 diabetes. The project involves 20 Mexican-
American families, recruited in the San Antonio Family Heart Study (SAFHS) and the San
Antonio Family Diabetes/Gallbladder Study (SAFDGS). SAFHS examined Mexican Ameri-
cans aged 40 to 60 years, randomly selected with regard to disease, and their family members
for 20 years, beginning in 1991. Starting in the same year, SAFDGS recruited Mexican
Americans with diagnosed type-2 diabetes and their relatives for three examinations per per-
son.

Whole-genome sequencing on the 20 pedigrees selected for T2D-GENES Project 2 was
performed at Complete Genomics Inc, with 464 individuals passing quality control filters.
Sequence data of these 464 family members and imputed GWAS data for an additional 495
individuals from the 20 families were provided for the odd-numbered autosomes in GAW19.
GWAS data for the second group of individuals were obtained from several Illumina chips,
including: HumanHap550v3, HumanExon510Sv1, Human660W-Quadv1, Human1Mv1, and
Human1M-Duov3 [49]. Phenotype data available in GAW19 included systolic and diastolic
blood pressure measurements, longitudinally collected at up to four points in time, along
with information on age, sex, year of examination, use of antihypertensives, hypertension
diagnosis, and smoking behaviour. Simulated blood pressure measurements were based on
real sequence data and pedigree information and available for 200 replicates. A total of
245 genes were simulated as having an effect on blood pressure traits, with varying effect
strengths [50].
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Summaries

5.1 Comparing Strategies for Combined Testing of Rare and Common
Variants in Whole Sequence and Genome-Wide Genotype Data

The overall association of a SNP set with a phenotype may be evaluated efficiently with the
kernel score test. It is capable of analysing genotype data from rare and common mark-
ers alike, making it suitable for the analysis of GWAS as well as sequence data. Multiple
kernel functions for the transformation of genotypes into a genetic similarity matrix have
been proposed, differing amongst other things in their ability to integrate interactions. Upon
calculation of the kernel matrix, optional weights can be assigned to individual SNPs. An
upweighting of rare markers, here denoting SNPs with a minor allele frequency below 5%,
allows them a greater overall contribution to the analysis results.

We evaluated several strategies for testing the association of a SNP set representing a
gene, taking into account marker density, frequency, different weighting schemes, several
SNP-set definitions, and two kernel choices. More precisely, we investigated the following
questions:

I Does a higher density of available markers lead to an increase in power?

I Can linkage disequilibrium information be used to improve the definition of SNP sets
representing genes? What impact does the set definition have on analysis results?

I What is the best strategy for joint investigation of SNPs with differing minor allele fre-
quencies? Are SNP weights capable of facilitating the detection of association signals?

I What influence does the choice of kernel function have?

We investigated these questions using real and simulated systolic blood pressure (SBP) data
taken from the family dataset distributed in the context of Genetic Analysis Workshop 19.
Considered were 706 individuals in real data and between 740 and 781 individuals in simula-
tions, dependent on the data quality and number of missing phenotypes. We concentrated on
the chosen candidate genes, AGTR1 on chromosome 3 in the real data, known to be influential
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on SBP in the family sample, as well as MAP4, TNN, LEPR, GSN, and FLT3 in simulated
data, with varying LD patterns.

Four SNP-set definitions, based on differently sized genetic regions, were employed to
represent the gene AGTR1. More precisely, we considered boundaries defined by first and
last exonic position, these limits enlarged by 30 kbp and 500 kbp flanking regions, as well
as a SNP set based on LD blocks. These LD blocks were calculated in the software package
Haploview [51], with the help of a Hapmap [52] reference sample for Mexican-American
ancestry. LD blocks were determined with Haploview’s default algorithm, in which a pair of
SNPs is defined to be in strong LD, if the 95% confidence bounds on D’ exceed certain limits
[53]. We set greater than 0.8 for the upper and 0.5 for the lower confidence interval limits
and declared a region to be an LD block if at least 70% of pairwise comparisons among SNPs
were categorized as strong LD. If a gene boundary overlapped with an LD block, we enlarged
the gene limit to the extent of the corresponding LD block. On analysis of the simulated data,
all gene-representing SNP sets were based on the LD-block definition.

The influence of genetic information on the trait was evaluated in the kernel score test
for family data [54]. We compared the results obtained for a linear kernel, only modelling
additive effects of the included SNPs, and a multiplicative kernel, considering interactions
between markers in addition. Environmental covariate information on age and sex was in-
cluded. It is possible either to use all SNPs in a considered set jointly to calculate a kernel
matrix for the score test, or split SNPs according to their MAF into rare and common markers.
The first way of proceeding results in a single test statistic and a corresponding p value. The
latter approach results in two separate kernel matrices with two corresponding test statistics.
These statistics may be combined by the weighted sum approach to form a composite statis-
tic, for which one p value reflecting the effect of all markers can be derived. Alternatively, a p
value for each of the two test statistics may be calculated and combined via Fisher’s p-value
pooling. We further examined the impact of three differing SNP weighting schemes. We
considered equal weights for all markers, weights according to the inverse MAF and weights
based on the beta distribution. The latter two approaches upweight rare marker alleles, with
beta weights distinguishing MAFs more moderately. All analyses were conducted on both
sequence and GWAS data.

The most important result is that the LD-block-based SNP-set definition had the highest
power to identify associations. It should thus be preferred in SNP-set analysis, as the kernel
exploits correlations between markers within the SNP set. The collective evaluation of rare
and common SNPs yielded better results than the investigation of only one of the groups. As
power of all joint tests was very similar, the approach with which the two types of marker
were combined had little effect. In most cases, the analysis of sequence data was more pow-
erful compared to that of GWAS data. Inverse MAF weights can improve performance for
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common markers, however, they must be used with caution for rare markers. The kernel
choice had almost zero effect on the analysis of single genes. Please refer to [55] for further
details on the methods investigated and the results.

5.2 Filtering Genetic Variants and Placing Informative Priors Based on
Putative Biological Function

Given the increase in marker density in genetic data currently, even large studies may be
underpowered to detect association signals. One possible way of countering this problem
is to incorporate additional biological knowledge into the analysis. Nowadays, a multitude
of tools and databases for this purpose are available, offering an increasing amount of bi-
ologically meaningful information on genetic markers. This article summarizes different
approaches to filtering, prioritising, and grouping SNPs which were contributed by the mem-
bers of the GAW19 discussion group Filtering variants and placing informative priors. All
analyses were carried out on the genotype data of families or unrelated individuals, repre-
sented in minor allele count coding for GWAS and sequence markers. Associations with real
and simulated blood pressure traits were evaluated, mostly employing regression approaches.
Furthermore, it was demonstrated how improvements in grouping and filtering of markers
can noticeably improve power in the evaluation of genotype data, and that the incorpora-
tion of additional knowledge can facilitate the detection of associations. Questions addressed
include:

I How can additional biological knowledge be integrated into the analysis of genotype
data and what impact does it have on power?

I From which sources may additional biological information be obtained and to what
extent does it differ between databases?

I Which strategies for filtering and grouping SNPs are beneficial and which weighting
schemes for SNPs, test statistics, or p values may be used?

I How can functional or structural information on markers be considered on evaluation
of p values?

Today, different databases and software tools are available to annotate both the location as
well as the function of a SNP, allowing various filtering and grouping strategies. Investigated
SNPs may be restricted to markers with known or supposed biological function, such as reg-
ulatory influence, or aggregated to represent a gene, exon, or other genomic unit of interest.
Among the contributions of the discussion group, two powerful regression frameworks for
SNP-set testing were considered: Firstly, tests of the burden type, which transform minor
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allele counts over a set of markers into a score for each individual. Association between this
score and the trait is evaluated. Secondly, the sequence kernel association test (SKAT; LKMT
is a test of SKAT type in the logistic context, see Section 2.1), that transforms all genotypes
into a matrix with entries reflecting the genetic similarity of any pair of individuals in the sam-
ple. Association is evaluated based on the variance component of the genetic effect. Within
both frameworks, weights reflecting additional knowledge may be assigned to single SNPs.
Typical weighting schemes are based on MAFs or functional importance: For example, rare
markers may be upweighted to allow them more overall contribution, or several SNPs may
be assigned higher scores reflecting their regulatory importance. Alternatively, weights can
be incorporated upon combination of different test statistics derived within a SKAT or burden
framework. These test statistics may originate from different SNP sets, as well as be calcu-
lated by varying methods. For example, separate kernel matrices (optionally incorporating
weights on single markers) can be used for rare and common SNPs, or SKAT and burden test
statistics may be combined. Moreover, the evaluation of p values may consider functional or
structural knowledge on the investigated SNP set. This is possible by weighting p values or
by adjusting the significance level according to the number of independent tests, considering
LD among investigated markers. Depending on the method employed, correlations between
markers may either be exploited in a suitable way or have to be accounted for in order to
prevent distortion of the results.

The results of analysis differed in the group, which may be explained to a large extent by
varying choices of genetic and phenotypic data. However, the choice of methods was also
an influential factor, as the application of varying methods to the same data yielded differing
results. The inclusion of biological knowledge generally increased power in the analysis of
association studies. Filtering of markers according to functional relevance was particularly
useful. However, filtering involves the risk of information loss through the exclusion of in-
fluential markers, as the rating of marker functions can vary substantially between different
databases. For example, the GAW19 simulations were based on PolyPhen2 functional predic-
tion scores [56], which can differ largely from SIFT [57] and RegulomeDB [58] scores. Thus,
the other scores provided non-matching priors for simulated blood pressure traits whenever
the database information varied. In real application scenarios, there is no ideal choice of func-
tional annotation, suggesting that one should consider multiple databases jointly. Weights can
assist in the detection of associations and had a strong influence on power on SKAT analy-
sis. Furthermore, structural information, as represented in LD patterns on the considered
SNPs, had an effect on the results. Kernel methods may benefit from the consideration of LD
patterns by exploiting correlations and therefore should be calculated on LD blocks. Corre-
lations also play a role in the calculation of the significance level, where the effective number
of independent tests may be determined using a beta distribution. The according adjustment
of the significance level leads to a strong reduction in the multiple testing burden. Thus, it is
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desirable to involve filtering, grouping, and weighting of SNPs, as well as an adjustment of
the significance level in combination, in order to reach the highest possible power in analysis.
More details on the results of the discussion group may be found in [59].

5.3 Pathway-Based Kernel Boosting for the Analysis of Genome-Wide
Association Studies

The investigation of pathway-representing SNP sets benefits from the advantages of set-
evaluation approaches. This includes lowering the multiple testing burden, facilitating the
detection of moderate effects, and assisting the biological interpretation of the results. Al-
though a suitable tool for the analysis of single pathways, kernel methods cannot account
for correlations between SNP sets and thus lack the ability to discriminate biological mecha-
nisms influencing disease risk from isolated effects included in a pathway resulting from gene
overlap. Furthermore, they can only evaluate a pathway’s impact and do not offer any trait
prediction. With the limitations of single pathway methods and the benefits resulting from
the simultaneous analysis of genetic information in mind, we aimed towards the develop-
ment of a new approach, enabling the mutual analysis of multiple pathway-representing SNP
sets. We intended to detect associations, while at the same time create a prediction model
for the considered trait, based on the pathways identified as influential. To this purpose, we
integrated kernel functions into a boosting algorithm. Our project had the following specific
aims:

I Develop a new method to enable the joint analysis of multiple pathways, building upon
the kernel-based pathway test and maintaining its beneficial properties.

I Enable the prediction of disease status based on pathways identified as being influential.

I Ensure flexibility in the approach in terms of included data, such that additional genetic
information or environmental covariates may be considered.

I Make sure that additional variables can either be subjected to the boosting algorithm or
included as mandatory effects in the model.

Our method integrates two existing, powerful approaches: The LKMT and the functional
gradient descent boosting algorithm. We chose to include the network kernel function as
base-learner in the boosting algorithm, as it allows for interactions between markers in the
considered SNP set and may incorporate topological information on the pathway.

We evaluated the performance of the method on simulated genotype data for SNPs rep-
resenting 50 randomly selected real-world pathways in existence obtained from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database. Six effect scenarios, differing in
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sample size and effect strengths, as well as non-informative genetic data (null case) were
considered. Each sample included equal numbers of cases and controls and was simulated
for 100 replications. Two pathways were chosen to each include three interconnected effect
genes, with two influential SNPs per gene. All effects were simulated as additive and equally
strong for all associated SNPs. Owing to the adaptation of real pathway structures, influential
genes overlapped into six further pathways.

As examples of application, we investigated a lung cancer and a rheumatoid arthritis
study. Here, 73 pathways with known connection to human diseases were analysed including
relevant environmental covariates. These covariates were incorporated as mandatory vari-
ables in a starting model for the algorithm, to prevent them from being subjected to the
boosting algorithm and compete with the investigated pathways. All kernel boosting results
were compared to the results given by LKMT single-pathway tests on the same data.

Kernel boosting performed reliably in terms of false positive results: The application on
non-informative genotype data resulted in few, randomly distributed selections, not sugges-
tive of any falsely detected association signal. The power to identify our causal pathways was
very high for both considered methods in scenarios including more individuals and stronger
effects. However, while the LKMT also detected pathways including any effect gene with a
high probability, the multivariable kernel boosting approach was able to discriminate path-
ways with highest explanatory power from those pathways including isolated effects owing
to gene overlaps. Association signals were less clearly identified by both methods in scenar-
ios with smaller samples or weaker effects, with a more pronounced drop in power for the
LKMT. By overcoming the multiple testing burden, kernel boosting may have greater poten-
tial to identify associations when the LKMT is underpowered. Analysis of the lung cancer
dataset resulted in the selection of one pathway by kernel boosting and no significant result
by the LKMT. In the rheumatoid arthritis dataset, p values for 46 pathways were significant
in single-pathway tests, while kernel boosting narrowed down the number of identified path-
ways to 32, providing a better basis for understanding the biological processes involved in
disease risk. Overall, we believe that kernel boosting constitutes a valuable and highly flex-
ible approach in GWAS analysis, capable of incorporating various datatypes and predicting
clinical outcomes. For more details on this method, please refer to [38].

5.4 Kangar00: Kernel Approaches for Nonlinear Genetic Association
Regression

Multiple kernel functions for the analysis of pathway-representing SNP sets were devel-
oped, which are able to integrate differing extents of biologically relevant information from
databases online. The incorporation of additional data on a pathway usually requires a num-
ber of data preparation steps. Processed database information and genotype data for a SNP
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set of interest can be used to form a kernel matrix, with which the influence of a considered
pathway on disease risk may be evaluated. To our knowledge up until the time of publication,
no software package for the kernel-based analysis of genetic data covering all functionali-
ties ranging from the download of required genetic information to the calculation of p values
reflecting the effect of a pathway on a trait had been available. We implemented all the neces-
sary functionalities in the R-package kangar00, which furthermore enables the application of
our newly developed kernel boosting approach (see Section 5.3). The key functions included
in the kangar00 package are the following:

I The downloading and processing of biological information on pathways, genes, and
SNPs from online databases, including the annotation of SNPs via genes to pathways.

I Evaluation of the effect of a pathway on disease risk through a logistic model frame-
work via integration of biological knowledge and genotype information.

I A choice of options: Three kernel functions implemented, along with two methods for
p-value calculation for the corresponding test statistic.

I Flexibility: Straightforward incorporation of covariates of differing types and easy
adaptation to the analysis of genes, LD blocks, or other genomic units.

I Interface to the R-package mboost, providing the ability to run kernel boosting and
creating a prediction model for a binary outcome based on the pathways selected.

Kangar00 offers several functions for the extraction and further processing of biological data
from online databases. For any chosen pathway of interest, all necessary information needed
to evaluate its effect on a binary outcome can be obtained, considering different levels of
structural information on the gene-interaction pattern. Information on the pathway itself is
downloaded from the Kyoto Encyclopedia of Genes and Genomes (KEGG) [60] database, re-
quiring the pathway to be identified by a KEGG id-number. Information on genes contained
in the pathway is obtained from the Ensembl [61] database. Listed are the gene names as well
as transcript start and end positions in the latest genomic build and the corresponding chro-
mosomes. SNPs contained in the considered GWAS study are mapped to those genes via base
pair positions in order to form pathway-representing SNP sets. In the case of non-matching
genomic builds for SNP and gene locations, SNP positions may be optionally updated to the
current build used in the Ensembl database, in order to match the considered gene bound-
aries. Interaction information on the pathway is converted into a quadratic adjacency matrix
representing the network structure. In the process, existing connections between genes are
categorized as either activating or inhibiting type. Furthermore, effect directions can be op-
tionally represented in the adjacency matrix.
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In kangar00, the influence of a pathway on the binary case-control status is evaluated
within the LKMT. The corresponding test statistic includes the kernel matrix, interpretable as
genetic similarity matrix, derived from the genotypes of the particular pathway-representing
SNP set. Our package offers a choice of three kernel functions, the linear kernel and the
network kernel (see Section 2.3), as well as a multiplicative, size-adjusted kernel, each dif-
fering in their ability to incorporate pathway characteristics upon calculation of the matrix.
For more information on the two more advanced kernels, refer to [18] and [20], respectively.
The resulting test statistic follows a mixture of χ2-distributions for which a p value can be
derived based on the Satterthwaite approximation or Davies’ algorithm [25]. Both options
are implemented within Kangar00.

Furthermore, kangar00 provides all the functions necessary to establish an interface to
mboost [62] and apply kernel boosting on a GWAS dataset under consideration. In particular,
functions relating to prediction of the case-control status based on selected pathways are
available. In addition, multiple options are available to visualize data, including a function to
plot pathway networks. All the functionalities are described in the package documentation,
with an explanation of their usage being given in the package vignette. The package can be
downloaded free of charge from the R repository CRAN at the URL given in [63].
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Discussion

Kernel methods constitute a well-established approach toward the analysis of biologically
meaningful sets of SNPs. They possess many characteristics desirable when investigating
genes or pathways. However, room for improvement still remains by considering additional
biological knowledge, or integrating kernel methods into a powerful analysis framework. We
examined how the performance of kernel-based SNP-set tests, such as the LKMT, is related
to the definition of a SNP set. In particular, it has been demonstrated that defining SNP sets
based on the boundaries of LD blocks is beneficial, as kernel methods can exploit correlations
among markers. This approach resulted in the improved detection of association signals and
was therefore implemented in all the following analyses.

In addition to correlations within a SNP set, dependencies may also occur between differ-
ent sets of SNPs. This can be caused by LD between SNPs in different sets, as well as by the
same markers being included in several sets. The latter can for example occur in the analysis
of pathway-representing SNP sets, in which case this results from gene overlaps. In contrast
to single-pathway testing methods, the joint evaluation of pathways in a selection framework
facilitates the consideration of correlations between pathways. From a biological point of
view, this allows us to discriminate causal biological mechanisms influential on disease risk
from isolated, overlapping effect genes. This constitutes an important step towards the under-
standing of the genetic effects involved in disease susceptibility. Our newly developed kernel
boosting approach is specifically designed to account for correlations between pathways to
enable this discrimination. Furthermore, the approach creates a prediction model for the dis-
ease status based on the pathways identified as influential on the trait. Our newly developed
R-package kangar00 constitutes a convenient way to perform single-pathway testing and, in
collaboration with the R-package mboost, provides all the functionalities necessary to run
kernel boosting. The automatic pipeline for the download and processing of required path-
way, gene, and SNP information simplifies the retrieval of the latest database information, ac-
counting for the fact that databases are always a work in progress and provide ever-changing
biological knowledge.

Owing to the mutual evaluation of several pathways and the cross-validation performed
by the algorithm, kernel boosting is computationally rather demanding. It is however fea-
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sible on current high-performance computing cluster systems for single GWAS studies, but
not (yet) possible for larger datasets, as are available nowadays from data-sharing consortia
or considered in meta-analysis. However, I am convinced that this limitation will play an
increasingly diminishing role in the future, as hardware systems continue to improve in both
performance and capacity.

I believe that boosting approaches and their capability of dealing with high-dimensional
data resulting in interpretable prediction models will be of great interest in the analysis of
genetic data in the future. Their flexibility, especially with respect to the incorporation of
various types of data simultaneously, gives me strong reason to be confident that they will
be of particular use in a large number of application scenarios. I trust that kernel methods
will further assist towards the elucidation of the genetic influence on disease in a general shift
from a framework of simply testing single pathways currently toward selection and prediction
in the context of powerful boosting approaches.

28



Bibliography

[1] Laird NM, Lange C. The Fundamentals of Modern Statistical Genetics. Statistics for
Biology and Health. Springer-Verlag New York; 2011.

[2] Zheng G, Yang Y, Zhu X, Elston RC. Analysis of Genetic Association Studies. Statistics
for Biology and Health. Springer US; 2012.

[3] Ziegler A, König IR, Pahlke F. A Statistical Approach to Genetic Epidemiology: Con-
cepts and Applications. Wiley-Blackwell; 2010. 2nd Edition.

[4] Bickeböller H, Fischer C. Einführung in die Genetische Epidemiologie. Statistik und
ihre Anwendungen. Springer Berlin Heidelberg; 2007.

[5] Palmer LJ, Burton PR, Smith GD. An introduction to genetic epidemiology. Health and
Society. Policy Press; 2011.

[6] Stram DO. Design, Analysis, and interpretation of Genome-Wide Association Scans.
Statistics for Biology and Health. Springer-Verlag New York; 2014.

[7] Lewontin RC. The Interaction of Selection and Linkage. I. General Considerations;
Heterotic Models. Genetics. 1964;49(1):49–67.

[8] García-Campos MA, Espinal-Enríquez J, Hernández-Lemus E. Pathway Analysis: State
of the Art. Frontiers in Physiology. 2015;6:383.

[9] Cork JM, Purugganan MD. The evolution of molecular genetic pathways and networks.
Bioessays. 2004;26(5):479–484.

[10] Wu MC, Kraft P, Epstein MP, Taylor DM, Chanock SJ, Hunter DJ, et al. Powerful SNP-
Set Analysis for Case-Control Genome-wide Association Studies. American Journal of
Human Genetics. 2010;86(6):929–942.

[11] Ackermann M, Strimmer K. A general modular framework for gene set enrichment
analysis. BMC Bioinformatics. 2009;10:47.

29



BIBLIOGRAPHY

[12] Maciejewski H. Gene set analysis methods: statistical models and methodological dif-
ferences. Briefings in Bioinformatics. 2014;15(4):504–518.

[13] Nam D, Kim SY. Gene-set approach for expression pattern analysis. Briefings in Bioin-
formatics. 2008;9(3):189–197.

[14] Khatri P, Sirota M, Butte AJ. Ten Years of Pathway Analysis: Current Approaches and
Outstanding Challenges. PLoS Computational Biology. 2012;8(2):e1002375.

[15] Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al.
Gene set enrichment analysis: A knowledge-based approach for interpreting genome-
wide expression profiles. Proceedings of the National Academy of Sciences of the
United States of America. 2005;102(43):15545–15550.

[16] Liu D, Lin X, Ghosh D. Semiparametric Regression of Multidimensional Genetic Path-
way Data: Least-Squares Kernel Machines and Linear Mixed Models. Biometrics.
2007;63(4):1079–1088.

[17] Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-Variant Association Testing
for Sequencing Data with the Sequence Kernel Association Test. American Journal of
Human Genetics. 2011;89(1):82–93.

[18] Freytag S, Manitz J, Schlather M, Kneib T, Amos CI, Risch A, et al. A Network-
Based Kernel Machine Test for the Identification of Risk Pathways in Genome-Wide
Association Studies. Human Heredity. 2013;76(2):64–75.

[19] De Leeuw CA, Neale BM, Heskes T, Posthuma D. The statistical properties of gene-set
analysis. Nature Reviews Genetics. 2016;17(6):353–364.

[20] Freytag S, Bickeböller H, Amos CI, Kneib T, Schlather M. A Novel Kernel for Correct-
ing Size Bias in the Logistic Kernel Machine Test with an Application to Rheumatoid
Arthritis. Human Heredity. 2012;74(2):97–108.

[21] Liu D, Ghosh D, Lin X. Estimation and testing for the effect of a genetic pathway on
a disease outcome using logistic kernel machine regression via logistic mixed models.
BMC Bioinformatics. 2008;9:292.

[22] Fahrmeir L, Kneib T, Lang S. Regression: Modelle, Methoden und Anwendungen.
Statistik und ihre Anwendungen. Springer Berlin Heidelberg; 2009.

[23] Zhang D, Lin X. Hypothesis testing in semiparametric additive mixed models. Bio-
statistics. 2003;4(1):57–74.

30



BIBLIOGRAPHY

[24] Satterthwaite FE. An approximate distribution of estimates of variance components.
Biometrics Bulletin. 1946;2(6):110–114.

[25] Davies RB. Algorithm AS 155: The distribution of a linear combination of χ 2 ran-
dom variables. Journal of the Royal Statistical Society Series C (Applied Statistics).
1980;29(3):323–333.

[26] Duchesne P, De Micheaux PL. Computing the distribution of quadratic forms: Further
comparisons between the Liu–Tang–Zhang approximation and exact methods. Compu-
tational Statistics & Data Analysis. 2010;54(4):858–862.

[27] Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new per-
spectives on genomes, pathways, diseases and drugs. Nucleic Acids Research.
2017;45(D1):D353–D361.

[28] Bader GD, Cary MP, Sander C. Pathguide: a pathway resource list. Nucleic Acids
Research. 2006;34(suppl_1):D504–D506.

[29] Stobbe MD, Houten SM, Jansen GA, van Kampen AH, Moerland PD. Critical assess-
ment of human metabolic pathway databases: a stepping stone for future integration.
BMC Systems Biology. 2011;5(1):165.

[30] Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. Springer
Series in Statistics. Springer-Verlag New York; 2009.

[31] Schapire RE. The strength of weak learnability. Machine Learning. 1990;5(2):197–227.

[32] Freund Y, Schapire RE. Experiments with a new boosting algorithm. In: Icml. vol. 96;
1996. p. 148–156.

[33] Freund Y, Schapire RE. A desicion-theoretic generalization of on-line learning and an
application to boosting. In: European conference on computational learning theory.
Springer; 1995. p. 23–37.

[34] Mayr A, Binder H, Gefeller O, Schmid M. The evolution of boosting algorithms.
From machine learning to statistical modelling. Methods of Information in Medicine.
2014;53(6):419–427.

[35] Hofner B. Boosting in structured additive models; 2011. LMU München; http://nbn-
resolving.de/urn:nbn:de:bvb:19-138053.

[36] Friedman JH. Greedy function approximation: A gradient boosting machine. The
Annals of Statistics. 2001;29(5):1189–1232.

31



BIBLIOGRAPHY

[37] Bühlmann P, Yu B. Boosting with the L 2 loss: regression and classification. Journal of
the American Statistical Association. 2003;98(462):324–339.

[38] Friedrichs S, Manitz J, Burger P, Amos CI, Risch A, Chang-Claude J, et al. Pathway-
Based Kernel Boosting for the Analysis of Genome-Wide Association Studies. Com-
putational and Mathematical Methods in Medicine. 2017;2017.

[39] Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer inci-
dence and mortality worldwide: sources, methods and major patterns in GLOBOCAN
2012. International Journal of Cancer. 2015;136(5).

[40] Brennan P, Hainaut P, Boffetta P. Genetics of lung-cancer susceptibility. The Lancet
Oncology. 2011;12(4):399–408.

[41] Sauter W, Rosenberger A, Beckmann L, Kropp S, Mittelstrass K, Timofeeva M, et al.
Matrix metalloproteinase 1 (MMP1) is associated with early-onset lung cancer. Cancer
Epidemiology and Prevention Biomarkers. 2008;17(5):1127–1135.

[42] Rosenberger A, Illig T, Korb K, Klopp N, Zietemann V, Wölke G, et al. Do genetic
factors protect for early onset lung cancer? A case control study before the age of 50
years. BMC Cancer. 2008;8(1):60.

[43] Dally H, Gassner K, Jäger B, Schmezer P, Spiegelhalder B, Edler L, et al. Myeloper-
oxidase (MPO) genotype and lung cancer histologic types: the MPO- 463 A allele is
associated with reduced risk for small cell lung cancer in smokers. International Journal
of Cancer. 2002;102(5):530–535.

[44] Wichmann HE, Gieger C, Illig T, study group M. KORA-gen-resource for population
genetics, controls and a broad spectrum of disease phenotypes. Das Gesundheitswesen.
2005;67(S 01):26–30.

[45] Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003;423(6937):356–
361.

[46] Raychaudhuri S. Recent advances in the genetics of rheumatoid arthritis. Current Opin-
ion in Rheumatology. 2010;22(2):109–118.

[47] Amos CI, Chen WV, Seldin MF, Remmers EF, Taylor KE, Criswell LA, et al. Data for
Genetic Analysis Workshop 16 Problem 1, association analysis of rheumatoid arthritis
data. BMC Proceedings. 2009;3(suppl 7):S2.

[48] Plenge RM, Seielstad M, Padyukov L, Lee AT, Remmers EF, Ding B, et al. TRAF1–C5
as a Risk Locus for Rheumatoid Arthritis - A Genomewide Study. New England Journal
of Medicine. 2007;357(12):1199–1209.

32



BIBLIOGRAPHY

[49] Almasy L, Dyer TD, Peralta JM, Jun G, Wood AR, Fuchsberger C, et al.; BioMed
Central. Data for Genetic Analysis Workshop 18: human whole genome sequence,
blood pressure, and simulated phenotypes in extended pedigrees. BMC Proceedings.
2014;8(Suppl 1):S2.

[50] Blangero J, Teslovich TM, Sim X, Almeida MA, Jun G, Dyer TD, et al. Omics-squared:
human genomic, transcriptomic and phenotypic data for genetic analysis workshop 19.
BMC Proceedings. 2016;10(Suppl 7):20.

[51] Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and
haplotype maps. Bioinformatics. 2004;21(2):263–265.

[52] Gibbs RA, Belmont JW, Hardenbol P, Willis TD, Yu FL, Yang HM, et al. The interna-
tional HapMap project. Nature. 2003;426(6968):789–796.

[53] Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, et al. The
Structure of Haplotype Blocks in the Human Genome. Science. 2002;296(5576):2225–
2229.

[54] Malzahn D, Friedrichs S, Rosenberger A, Bickeböller H. Kernel score statistic for
dependent data. BMC Proceedings. 2014;8(Suppl 1):S41.

[55] Malzahn D, Friedrichs S, Bickeböller H. Comparing Strategies for Combined Testing
of rare and common variants in whole sequence and genome-wide genotype data. BMC
Proceedings. 2016;10(Suppl 7):17.

[56] Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense
mutations using PolyPhen-2. Current Protocols in Human Genetics. 2013;0 7:Unit7.20.

[57] Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants
on protein function using the SIFT algorithm. Nature Protocols. 2009;4(7):1073–1081.

[58] Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, et al. Anno-
tation of functional variation in personal genomes using RegulomeDB. Genome Re-
search. 2012;22(9):1790–1797.

[59] Friedrichs S, Malzahn D, Pugh EW, Almeida M, Liu XQ, Bailey JN. Filtering genetic
variants and placing informative priors based on putative biological function. BMC
Genetics. 2016;17(Suppl 2):S8.

[60] Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic
Acids Research. 2000;28(1):27–30.

33



BIBLIOGRAPHY

[61] Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D, et al. Ensembl
2016. Nucleic Acids Research. 2016;44(D1):D710–D716.

[62] Hothorn T, Buehlmann P, Kneib T, Schmid M, Hofner B. mboost: Model-Based Boost-
ing; 2016. R package version 2.6-0. URL: http://CRAN.R-project.org/package=mboost.

[63] Manitz J, Friedrichs S, Burger P, Hofner B, Ha NT, Freytag S, et al.. kangar00: Kernel
Approaches for Nonlinear Genetic Association Regression; 2016. R package version
1.0. URL: https://CRAN.R-project.org/package=kangar00.

34



A References of Original Work

A.1 Articles

Malzahn D, Friedrichs S, Bickeböller H: Comparing Strategies for Combined Testing
of Rare and Common Variants in Whole Sequence and Genome-wide Genotype Data.
BMC Proceedings 2016, 10(Suppl 7):17; doi:10.1186/s12919-016-0042-9.
URL: https://doi.org/10.1186/s12919-016-0042-9

Friedrichs S*, Malzahn D*, Pugh EW, Almeida M, Liu XQ, Bailey JN: Filtering genetic
variants and placing informative priors based on putative biological function. BMC Ge-

netics 2016, 17(Suppl 2):S8; doi:10.1186/s12863-015-0313-x.
URL: https://doi.org/10.1186/s12863-015-0313-x. * these authors share first authorship

Friedrichs S, Manitz J, Burger P, Amos CI, Risch A, Chang-Claude J, Wichmann HE,
Kneib T, Bickeböller H, Hofner B: Pathway-Based Kernel Boosting for the Analysis of
Genome-Wide Association Studies. Computational and Mathematical Methods in Medicine

2017, vol. 2017; doi:10.1155/2017/6742763.
URL: https://www.hindawi.com/journals/cmmm/2017/6742763/

A.2 Software

Manitz J, Friedrichs S, Burger P, Hofner B, Ha NT, Freytag S, Bickeböller H: kangar00:
Kernel Approaches for Nonlinear Genetic Association Regression.
URL: https://CRAN.R-project.org/package=kangar00

35



PROCEEDINGS Open Access

Comparing strategies for combined testing
of rare and common variants in whole
sequence and genome-wide genotype data
Dörthe Malzahn*, Stefanie Friedrichs and Heike Bickeböller

From Genetic Analysis Workshop 19
Vienna, Austria. 24-26 August 2014

Abstract

We used our extension of the kernel score test to family data to analyze real and simulated baseline systolic blood
pressure in extended pedigrees. We compared the power for different kernels and for different weightings of
genetic markers. Moreover, we compared the power of rare and common markers with 3 strategies for joint testing
and on marker panels with different densities. Marker weights had much greater influence on power than the
kernel chosen. Inverse minor allele frequency weights often increased power on common markers but could
decrease power on rare markers. Furthermore, defining the gene region based on linkage disequilibrium blocks
often yielded robust power of joint tests of rare and common markers.

Background
The kernel score test is a global covariate-adjusted mul-
tilocus procedure that tests for overall association of sets
of markers (see Schaid [1] for a review). This reduces
the multiple-testing burden. Tested marker sets can, for
example, belong to a pathway or candidate gene. The
kernel score test can be applied to common and rare
variants alike, as well as to data of genome-wide associ-
ation studies (GWAS) or sequence data where it is
named SKAT (sequence kernel association test). The
kernel score test was developed for independent subjects
[1]. Recent contributions by others and ourselves [2–6]
extended the kernel score test to family data.
The kernel is chosen to describe genetic correlation

among subjects. Different kernels have been suggested
for genetic epidemiological applications. These kernels
differ in whether marker–marker interactions are mod-
eled and how complex the interaction effects may be. A
frequent choice is to apply the kernel function on
weighted minor allele dosage data (thus using an

additive coding of minor allele effects). The dosage
weights increase with decreasing minor allele frequency
corresponding to the a priori assumption that less-
frequent variants may have larger effects. Weighting al-
lows rarer variants to contribute more to the overall test
despite of their low frequencies.
With appropriate weighting, rare and common vari-

ants may be entered together into the kernel for joint
testing. Recently however, Ionita-Laza et al. [7] proposed
alternatives that can be more powerful. We explored
these alternative joint tests on rare and common variants
in the Genetic Analysis Workshop 19 (GAW19) family
data. Moreover, we compared the power of different
marker weights and kernels on sequence and GWAS
panels. As we focused on genes, we also explored how
size or positioning of a flanking region affects the test
power.

Methods
Data
We analyzed baseline systolic blood pressure (SBP) and
dosage data in the extended Mexican American pedi-
grees of the GAW19 family data, which are identical to
the Genetic Analysis Workshop 18 data [8]. As before
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[6], we considered subjects with known baseline SBP
and baseline diastolic blood pressure, sex, and age, who
were not on blood pressure medication (real SBP: 706
subjects, excluding the first listed monozygotic twin of 2
observed twin pairs; simulated SBP: 740 to 781 subjects,
numbers vary for 200 simulated study replicates because
of inclusion criteria). For real SBP, we considered candi-
date gene AGTR1 [9] on chromosome (chr) 3 that tends
to associate with SBP in the present family sample [6].
For simulated SBP, we selected from the simulation an-
swers 5 strongly associated genes with various linkage
disequilibrium (LD) structures: MAP4 (very homoge-
neous LD, chr3) and, in the order of increasing variabil-
ity of LD, TNN (chr1), FLT3 (chr13), LEPR (chr1), and
GSN (chr9). We used NCBI build 37, International
Haplotype Map Project (HapMap) [10] reference data
for Mexican Americans and the default algorithm in
Haploview 4.2 [11] with a required fraction of strong LD
of 0.7 and confidence interval limits of 0.5 and 0.8 to de-
termine LD-blocks based on the D’ measure. Gene re-
gions were defined as the LD-block(s) that contained the
gene. For AGTR1, we also considered the region from
the first to the last exonic position and flanking regions
of 30 kb or 500 kb. For the same subjects, we used 2
single-nucleotide polymorphism (SNP) panels: sequence
(allele dosage data) and GWAS (allele dosage data re-
duced to GWAS SNPs). Biallelic SNPs were included for
testing if their Hardy-Weinberg equilibrium test p values
were equal to or greater than 10−5 (rounding imputed
dosages for this purpose only) and if at least 7 observa-
tions of the minor allele were present in the sample. The
latter parallels minimum data requirements in paramet-
ric regression.

Kernel score test for family data
Here we briefly summarize our method introduced in
[6], denoting vectors and matrices by bold letters. Base-
line SBP is right-skewed distributed and was therefore
rank-normalized by Blom transformation [12] to stand-
ard normally distributed target variables Y = (Y1,…,Yn). Y
depend on fixed covariate effects b (intercept, age, sex,
age × sex interaction), random effects c that adjust for
familial polygenic background, a semiparametric model
h(G) of genetic markers G, and regression residuals e ~
N(0,s2I) with residual variance s2.

Y ¼ XbT þ ZcT þ h Gð Þ þ e ð1Þ

X, Z are the design matrices for fixed covariate effects
and random family effects. h(G) =KaT depends on a n × n
dimensional kernel matrix K of genetic similarities be-
tween n subjects on markers G, and multivariate normally
distributed random effects a ~N(0,τK) [1]. One tests for a
genetic covariance component τ.

The kernel score test is computed from restricted
maximum likelihood parameter estimates of the genetic
null model (where h(G) = 0). Thus, the null model esti-
mates fixed covariate effects bo, random pedigree effects
co, the variance s2fam of the polygenic familial component,
and the residual variance s2o. The null model was ad-
justed for polygenic familial background based on the
kinship coefficient matrix Φkin = ZZT using R-packages
kinship2 and coxme with R-function lmekin. The kernel
score test statistic is.

Q ¼ RTMR ð2Þ
R = Po

1/2Y are standard normally distributed residuals
and matrix M= (Po

1/2K Po
1/2)/2 incorporates the kernel

[6]. Po = Vo
−1–Vo

−1X(XTVo
−1X)−1XTVo

−1 is the null projec-
tion matrix with Vo = s2oI + s2famZZ

T. The p values for test
statistic (2) were calculated by Davies’ exact method [13]
with the R package CompQuadForm from sample esti-
mates Q and all eigenvalues of matrix M.

Kernels and single-nucleotide polymorphism weights
We applied all kernel functions on allele dosage data gi, gj
(for pairs of subjects i, j) on NSNP biallelic SNP markers.
The kernel matrix entries are

Linear kernel Kij ¼ gi
TWgj ð3Þ

Radial basis function RBFð Þ kernel Kij

¼ exp −μ−1 � gi−gj
� �T

W gi−gj
� �� �

ð4Þ

with diagonal weight matrix W. The linear kernel (3)
does not allow for SNP interactions opposed to the RBF
kernel (4), which yields polynomial models. Dosage
weights are normed Wmm = f(νm)/∑mf(νm) for any
chosen SNP set m = 1,…,NSNP and depend on the minor
allele frequency (MAF) ν of the respective SNP. We con-
sidered: f(νm) = 1 (treating SNPs alike), f(νm) = 1/νm, as
well as f(νm) = Beta(νm,1,25) for νm equal to or less than
5 % and f(νm) = Beta(νm,0.5,0.5) for νm greater than 5 %
as suggested earlier [7]. Beta-density weights distinguish
MAFs more moderately than 1/ν-weights. For the RBF
kernel (4), the scale parameter μ was the average
weighted squared genetic difference between subjects
Σi,j((gi-gj)

TW(gi-gj))/n
2 multiplied by the effective num-

ber of independent SNPs in the tested set [14].

Strategies for combined testing of common and rare
variants
By default, the kernel score test, Eq. (2), is performed
with a kernel matrix Kall computed on all dosages with a
weighting of common and rare SNPs.
In contrast, Ionita-Laza et al. [7] recently suggested

computing the kernel separately for rare SNPs (Krare)
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and for common SNPs (Kcommon), respectively, in a region
of interest. Analogous to Eq. (2), this yields matricesMrare,
Mcommon, test statistics Qrare, Qcommon, and p values prare,
pcommon. The null model, Po and R were always the same.
The weighted sum test (WS) on common and rare vari-
ants has test statistic [7].

QWS ¼ 1–φð Þ⋅Qrare þ φ⋅Qcommon ð5Þ
Weight φ = (tr(Mrare∙Mrare)/(tr(Mrare∙Mrare) + tr

(Mcommon∙Mcommon)))
1/2 may be chosen such that (1−φ)∙

Qrare and φ∙Qcommon have the same variance. P values are
obtained by Davies’ exact method from sample esti-
mates QWS and all eigenvalues of matrix ((1 − φ)∙Mrare +
φ∙Mcommon). Alternatively, Fishers p value pooling can be
applied.

QFISHER ¼ −2ln prareð Þ−2ln pcommonð Þ ð6Þ
Under H0, QFISHER/(1 + 0.25∙cov) is chi-square distributed

with 16/(4 + cov) degrees of freedom [7]. With r = tr(Mrare∙
Mcommon)/(tr(Mrare∙Mrare)∙tr(Mcommon∙Mcommon))

1/2, the co-
variance between prare and pcommon is cov ≈ r∙(3.25 + 0.75∙r)
for 0 ≤ r ≤1 and cov ≈ r∙(3.27 + 0.71∙r) for −0.5 ≤ r ≤0. Only
test statistic (6) yields approximate p values; all

other p values are obtained with Davies’ method and
are exact.

Results and discussion
Our test extension to families holds the nominal signifi-
cance level and correctly adjusts for a polygenic familial
variance component (as demonstrated in [6]). Table 1 lists
the p values obtained for association testing of AGTR1 on
real SBP, considering common SNPs (MAF >5 %) and rare
SNPs (MAF ≤5 %) as well as 3 joint tests (default test Kall,
WS, Fisher). Beta-weights (not shown) performed be-
tween equal weights and 1/ν-weights. The 1/ν-weight low-
ered p values particularly on common SNPs. AGTR1
association is suggested by common as well as rare SNPs.
Joint testing of rare and common SNPs was beneficial. In
particular, WS and Fisher test p values were often smaller
(and otherwise close to) the smallest p value of the separ-
ate rare and common SNP tests. When using ad hoc defi-
nitions of the AGTR1 flanking region, Fisher and WS p
values remained relatively stable and were also smaller
compared to the default test Kall. However, on the AGTR1
containing LD-block all joint tests performed highly simi-
lar, p values were the smallest and also relatively stable re-
gardless of SNP weights and SNP density.

Table 1 Analysis of real data: real SBP and candidate gene AGTR1

SNP
panel

Weight Common SNPs Rare SNPs Joint tests

MAF >5 % MAF ≤5 % Default WS Fisher

NSNP p value NSNP p value p value p value p value

AGTR1 with no flanking region, positions 148415571–148460795

GWAS equal 11 0.189 7 0.097 0.177 0.102 0.101

1/ν 11 0.113 7 0.050 0.054 0.044 0.043

SEQ equal 74 0.203 138 0.060 0.173 0.076 0.076

1/ν 74 0.160 138 0.098 0.083 0.088 0.090

AGTR1 with 30 kb flanking region, positions 148385571–148490795

GWAS equal 30 0.100 12 0.072 0.092 0.050 0.052

1/ν 30 0.045 12 0.069 0.030 0.029 0.029

SEQ equal 198 0.053 300 0.067 0.047 0.030 0.032

1/ν 198 0.039 300 0.172 0.045 0.044 0.050

AGTR1 with 500 kb flanking region, positions 147915571–148960795

GWAS equal 277 0.206 51 0.048 0.196 0.061 0.065

1/ν 277 0.151 51 0.064 0.102 0.059 0.066

SEQ equal 2170 0.192 2244 0.069 0.173 0.080 0.085

1/ν 2170 0.157 2244 0.051 0.062 0.057 0.060

AGTR1 containing LD-block, positions 148344702–148568958

GWAS equal 80 0.058 19 0.076 0.055 0.035 0.036

1/ν 80 0.040 19 0.114 0.034 0.036 0.039

SEQ equal 499 0.029 592 0.106 0.027 0.027 0.030

1/ν 499 0.027 592 0.112 0.025 0.026 0.030

Association of AGTR1 with real SBP was tested with a linear kernel on minor allele dosage data for GWAS and sequence (SEQ); p ≤0.05 bold. NSNP common and
rare SNPs, respectively, were combined into joint tests: kernel Kall (default), weighted sum test (WS), and Fisher’s p value pooling for correlated p values
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Next, we analyzed LD-blocks that contain the genes
MAP4, TNN, LEPR, GSN, or FLT3. Figure 1 displays the
average test power on 200 data replicates of simulated
SBP. Sequence-derived variants were often more powerful
than GWAS with some exceptions (Fig. 1 left and middle
panels, black solid lines vs. gray dashed lines). The best
were often 1/ν-weights (circle), otherwise equal weights
(diamond) were favored. Particularly 1/ν-weights may be
beneficial on common SNPs (LEPR) and occasionally det-
rimental on rare SNPs (MAP4). The latter is an excep-
tional finding but consistent with Table 1 on candidate
gene AGTR1. On rare MAP4 SNPs, 1/ν-weights lowered
the power, especially when testing also extremely rare
SNPs (encircled plus), but less so when testing only MAF
equal to or less than 5 % SNPs that had at least 7 observa-
tions of the minor allele (filled circle; sequence data). On
gene-containing LD-blocks, all joint tests (default test Kall,
WS, Fisher) often had similar power (Fig. 1, right panel:
LEPR, FLT3, TNN with highly similar results [only TNN
shown]; GSN sequence). However, default test Kall was the
most powerful test on the gene with homogeneous strong
LD (MAP4: sequence [Fig. 1, right] and GWAS [not
shown]) and on the gene with the most variable LD struc-
ture (GSN: when using GWAS SNPs, not shown). Then,
Kall likely exploited SNP correlations better. When LD-
blocks were enlarged by flanking regions, WS and Fisher
often were slightly more powerful than Kall (results not
shown). The linear kernel had always similar or better
power than the RBF kernel (results not shown).

Conclusions
As the power of kernel methods increases through the
exploitation of SNP correlations [2], this ability should

be utilized fully by analyzing LD-blocks. SNP weights have
a far greater impact on test power than the kernel chosen.
Currently, the benefit of 1/ν-weights may be underesti-
mated for common SNPs. On rare SNPs, 1/ν-weights often
improve power, but can also be detrimental. Findings are
consistent with both real and simulated data. Our results
suggest using 1/ν-weights on all SNPs in a single kernel
Kall testing LD-blocks and only SNPs with sufficient minor
allele observations. Alternatively, one may use WS with
1/ν-weights on common SNPs and equal weights on rare
SNPs in the kernels. WS upweights the rare variant contri-
bution globally; see Eq. (5).
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Abstract

High-density genetic marker data, especially sequence data, imply an immense multiple testing burden. This can be
ameliorated by filtering genetic variants, exploiting or accounting for correlations between variants, jointly testing
variants, and by incorporating informative priors. Priors can be based on biological knowledge or predicted variant
function, or even be used to integrate gene expression or other omics data. Based on Genetic Analysis Workshop
(GAW) 19 data, this article discusses diversity and usefulness of functional variant scores provided, for example, by
PolyPhen2, SIFT, or RegulomeDB annotations. Incorporating functional scores into variant filters or weights and
adjusting the significance level for correlations between variants yielded significant associations with blood pressure
traits in a large family study of Mexican Americans (GAW19 data set). Marker rs218966 in gene PHF14 and rs9836027
in MAP4 significantly associated with hypertension; additionally, rare variants in SNUPN significantly associated with
systolic blood pressure. Variant weights strongly influenced the power of kernel methods and burden tests. Apart
from variant weights in test statistics, prior weights may also be used when combining test statistics or to informatively
weight p values while controlling false discovery rate (FDR). Indeed, power improved when gene expression data for
FDR-controlled informative weighting of association test p values of genes was used. Finally, approaches exploiting
variant correlations included identity-by-descent mapping and the optimal strategy for joint testing rare and common
variants, which was observed to depend on linkage disequilibrium structure.

Background
With the availability of very dense genetic marker data
sets, such as sequence data, even large association stud-
ies can become underpowered. This raises the need to
filter, or prioritize, or jointly test genetic variants.
Filters or priors on genes may be derived from methy-

lation or expression data if available in the same individ-
uals. Alternatively, one may use external information.
Recently, multiple annotation tools have become available
using several databases and algorithms that predict

functional effects of genetic variants. Commonly used are,
for example, ANNOVAR (Annotate Variation) [1], Var-
iantTools [2], PolyPhen [3], SIFT (Sorting Intolerant From
Tolerant) [4], ENCODE (Encyclopedia of DNA Elements)
[5], RegulomeDB [6], CADD (Combined Annotation-
Dependent Depletion) [7], or Gerp++ [8]. Tools like
ANNOVAR additionally provide variant annotation to
genes and to regions such as conserved regions among
species, predicted transcription factor binding sites, and
segmental duplication regions. Many of the above-listed
tools also provide information on regulatory elements
that control gene activity. This article demonstrates
that functional scores can contribute to the success of
association studies. Simultaneously, functional scores may
differ substantially between databases and prediction tools
as they can be based on different functional aspects.
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Additionally, variant annotations to chromosomal positions
continue to be updated with the National Center for Bio-
technology Information (NCBI) [9] human genome build
as standard. Furthermore, variants can be annotated to
genes based on different sources, such as ENSEMBL [10],
Vega [11], GENCODE [12], and many more. Researchers
also use a variety of definitions of flanking regions. Finally,
genes may be grouped by function or biological pathway,
again with substantial variability between data bases such as
KEGG [13], Biocarta [14], or Pathway Interaction Database
[15]. This article discusses approaches that filtered or prior-
itized genetic variants, regions, or genes. Pathway-based
approaches, although also incorporating filters or priors,
are discussed separately by Kent [16].
Many researchers filter genetic variants. The simplest

forms of filters are minor allele frequency (MAF), candidate
genes or variants, or considering the exome. Filters and
statistical models are chosen to increase the power under a
hypothetical disease model. The advent of sequencing
renewed interest in disease mechanisms less frequent but
more penetrant than common single nucleotide polymor-
phisms (SNPs) of genome-wide association studies
(GWAS). This led, for example, to screening for recessive
variants by examining runs of homozygosity [17, 18]. When
multiple rare causal variants cluster within a gene, identity-
by-descent (IBD) mapping may be more powerful than
single-locus association testing [19]. IBD mapping can be
used in 2-step approaches. For example, Balliu et al [20]
identified regions where hypertension cases shared more
segments of IBD than controls in one part of the sample.
They modeled aggregate effects of each of these regions on
blood pressure (BP) in the sample remainder. Aggregation
tests are used especially for testing rare single-nucleotide
variants (SNVs). Aggregation tests are burden tests,
variance-component tests, or a combination of both, such
as SKAT-O (optimal unified sequence kernel association
test) (see, eg, Lee et al [21] for a review). Kernel-based
approaches (see Schaid [22] for a review) such as the
sequence kernel association test (SKAT) [23] are variance-
component tests. Examples of genetic burden tests are T5,
combined multivariate collapsing (CMC) [24], or C-α [25];
see also Santorico et al [26]. Aggregation tests can prioritize
SNVs by weighting minor allele dosages in the test statistic.
Typical weights account for MAF, but may also incorporate
putative functional relevance of SNVs [27, 28]. Moreover,
weights may be used to combine aggregation test statistics
[21, 29, 30], and one may weight p values while controlling
the false discovery rate (FDR) [31, 32]. For example, GWAS
p values may be weighted based on functional annotations.
For aggregation tests on genes, p value weights can be uti-
lized to integrate gene expression or other omics data [33].
This article summarizes contributions of the Genetic

Analysis Workshop (GAW) 19 group on filtering vari-
ants and placing informative priors (Tables 1 and 2).

These investigations found that improving SNV grouping
or selection can noticeably increase power. Moreover, in-
cluding functional scores or gene expression data as filters
or weights on variants, genes, or when combining test
statistics assisted in detecting associations. Some con-
tributions also exploited SNV correlations to increase
power or improved the multiple-testing adjusted sig-
nificance threshold by accounting for SNV correlations.

Materials
Analyzed data were provided by GAW 19 and included
a family sample (n = 959) with extended pedigrees of
Mexican Americans from the San Antonio Family Heart
Study (SAFHS) and the San Antonio Family Diabetes/
Gallbladder Study (SAFDS/ SAFGS) [34]. The family
sample also contained 103 unrelated sequenced subjects;
259 subjects had gene expression data. This study was
designed to identify low-frequency or rare variants influ-
encing susceptibility to type 2 diabetes (T2D) as part of
the T2D Genetic Exploration by Next-generation sequen-
cing in Ethnic Samples (T2D-GENES) Consortium. Pheno-
types included real and simulated longitudinal systolic (SBP)
and diastolic blood pressure (DBP) and hypertension (HT)
status. Available were sequence for 464 pedigree members
and GWAS SNPs for all 959 subjects. Additionally, all sub-
jects were imputed to sequence based on original genotypes
and familial relationships [34]. Approaches described herein
mostly analyzed imputed dosages to avoid missing geno-
types and to maximize sample size. Zhang et al [28] ana-
lyzed the GAW19 sample of 1943 independent Hispanic
subjects with whole exome sequence. This sample had been
ascertained by T2D status. However, GAW19 provided real
and simulated cross-sectional BP traits instead [35], using
the same trait-simulation model as for the family study.
All approaches described herein are nonlongitudinal

analyses of BP traits (SBP, DBP, or HT) in relation to minor
allele dosages of sequence SNVs or genome-wide SNPs.

Methods
Statistical methods employed by this group (see Table 1)
to incorporate filters or informative priors are mostly
based on regression models [27, 30, 33, 36, 37]; one is
also based on counting methods [28]. Analyses of family
data adjusted for familial dependence based on the kin-
ship matrix. They included the familial covariance in a
linear mixed model [27, 30, 36] or transformed the trait
to a conditionally independent surrogate variable [33].
Analyses of independent subjects accounted for popula-
tion structure (cryptic relatedness and admixture) [37]
by using the programs Eigensoft [38] and Admixture [39].

Annotating genetic variants for location and function
A variety of freely available genetic databases and highly
developed software tools support annotation of location
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and biological function of SNVs. In our group, SNV loca-
tions were obtained by ANNOVAR [28, 36] or determined
based on reference data, for example, from the Genome
Reference Consortium [40] or the International Haplotype
Map (HapMap) Consortium [41] [30, 37]. Reference data
were also used to determine linkage disequilibrium (LD)
blocks [30] with Haploview [42].
Kim and Wei [27] and Almeida et al [36] used functional

annotations from ENCODE, PolyPhen or PolyPhen2, and
SIFT, while Liu et al [37] used CADD. In contrast, Zhang
et al [28] annotated putative protein binding sites based on
2 different algorithms using random forest classifiers [43].

Filtering genetic variants
Not all areas of the genome were studied. Some
researchers filtered the data prior to analyses. Zhang
et al [28] investigated exome sequence and Almeida et al
[36] molecularly functional nonsynonymous SNVs pre-
dicted by PolyPhen and SIFT. Liu et al [37] examined
IBD sharing regions on chromosome 3. Malzahn et al
[30] considered gene-containing LD blocks for selected
candidate genes. Ho et al [33] analyzed rare SNV burden
in genes containing less than 50 and more than 1 rare
SNV (MAF <0.01).

Accounting for correlations between genetic variants
An important difference between methods is that variant
correlations can either be a nuisance or may be used to in-
crease power. For example, IBD mapping exploits variant
correlations. IBD mapping can be more powerful than
single-locus association testing when multiple causal rare
variants cluster within a gene [19]. Therefore, Liu et al
[37] tested the relationship between IBD sharing status
and trait differences and sums for pairs of individuals.
Moreover, the power of kernel methods such as SKAT
may be increased through the exploitation of variant cor-
relations [44]. This ability can be utilized fully by analyzing
LD blocks [30]. On the other hand, single-locus methods
need to account for variant correlations to appropriately
correct the significance level for multiple testing. Hence,
Almeida et al [36] determined the effective number of
independent tests by extreme value theory based on
replicates of a simulated unassociated trait.

Correcting the significance level for the number of
independent tests
The significance level used with multiple testing is al-
ways an issue as too conservative a correction will cause
false negatives and not correcting enough will cause false
positives.

Table 1 Statistical tests and analyzed data

Marker data Data set Statistical tests Covariates Trait(s)

Almeida et al [36]

Sequence Family study Single-variant regression in
SOLAR

Smoking, BP medication, PC1-3,
sex, age, age2, sex*age, sex*age2

Real SBP and DBP at first time
point, own simulated trait for H0

Liu et al [37]

Chr3: GWASmp
and sequence

Unrelated individuals
(from family study)

Regress pairwise DBP residual
difference and sum on IBD
sharing status; sequence data
analyses by SKAT-O

Sex, age, smoking, PC 1-3 Real DBP at first time point

Kim and Wei [27]

Sequence Family study Informative SNV weights in
burden test T5 and SKAT;
with R: seqMeta

Age, sex, smoking, BP
medication

Real SBP at earliest available
measurement

Zhang et al [28]

Exome
sequence

Unrelated individuals
(large Hispanic sample)

LRT, C-α, CMC on informatively
weighted SNV burden

None Simulated HT status; real SBP, DBP
with cutoffs for case-control status

Malzahn et al [30]

Sequence and
GWASmp

Family study SKAT with R (coxme, kinship2,
QuadCompForm); strategies
for joint testing of rare and
common SNVs

Sex, age, sex*age; subjects not
on BP medication

Real and simulated SBP at first
time point

Ho et al [33]

Sequence and
GWASmp

Family study, including
gene expression data

Seq-aSum-VS burden test;
regression on gene expression
data; gene set enrichment
analysis

PC1-3 Average real SBP and DBP

BP blood pressure, Chr Chromosome, CMC Combined multivariate collapsing, DBP diastolic blood pressure, GWASmp genome-wide association study marker panel,
HT hypertension, IBD identity-by-descent, LRT likelihood ratio test, PC principal component, SBP systolic blood pressure, SKAT sequence kernel association test, SNV
single nucleotide variant, Seq-aSum-VS sequential sum
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Almeida et al [36] adjusted the significance level for
single locus analyses by estimating the number of inde-
pendent tests [45]. A total of 1000 replicates of a quanti-
tative phenotype with no genetic effects were simulated
and tested on whole genome sequence data, using linear
mixed models in SOLAR (Sequential Oligogenic Linkage
Analysis Routines) [46]. The smallest p value per simula-
tion run was extracted. The density of these 1000 extremely
small p values was fitted to a theoretical beta distribution
beta(1,ne) where ne is the effective number of independent
tests [47]; yielding the adjusted significance level a� ¼ 0:05

ne
.

This procedure was applied to both whole genome se-
quence and functional nonsynonymous SNVs.

Identity-by-descent mapping
IBD mapping aims to detect loci sharing ancestral segments
in unrelated individuals. In particular, unrelated subject-
pairs with smaller trait differences are expected to share
significantly more rare causative variants than pairs with
larger trait differences. Liu et al [37] estimated IBD sharing
segments with BEAGLE [48]. The squared trait difference
(D) and squared trait sum (S) for trait DBP between pairs

of unrelated subjects was regressed on IBD sharing status.

This yielded parameter estimates for slopes ðβ̂ S; β̂DÞ and
variances (σS

2, σD
2 ), which were combined into an overall slope

estimate β̂ ¼ σ2D
σ2Sþσ2D

� �
β̂ s þ σ2S

σ2Sþσ2D

� �
β̂D. Linkage was tested

with test statistic t ¼ β̂

SE β̂ð Þ under the null hypothesis of an

overall slope of zero [37]. The significance threshold for non-
independent pairs was estimated by permutation procedure.

Priors on genes and variants
Genetic priors can be incorporated by variant weights in
aggregation tests such as burden tests or SKAT [21].
Burden tests collapse minor allele dosages xik of a set of
i = 1,…,m variants into a burden score sk = ∑i = 1

m ωixik per
individual k using a priori specified variant weights ωi.
One tests trait association with genetic burden sk. Al-
though burden tests are powerful when causal SNVs
have the same effect direction, SKAT is more powerful
when effect directions differ or if many noncausal SNVs
are included in testing [21, 49]. SKAT is based on an
underlying Bayesian model that estimates a random ef-
fect per SNV [50]. Specified is a kernel matrix of genetic

Table 2 Filters, priors, and findings

Filter Prior Conclusions Annotation

Almeida et al [36]

Functional annotation, LD-corrected
effective number of tests

None LD-correction in WGS reduces
multiple-testing burden by 85 %,
significant associations: PFH14
with SBP, MAP4 with DBP

Location: ANNOVAR; functional
annotation: PolyPhen, SIFT

Liu et al [37]

IBD sharing None No significances, ZPLD1 had
strongest evidence

IBD mapping: BEAGLE; functional
annotation: CADD

Kim and Wei [27]

Sliding window on MAF ≤5 % SNVs SNV-weights: based on MAF
or regulatory importance

Significant association: SNUPN Functional annotation: ENCODE,
RegulomeDB, PolyPhen2

Zhang et al [28]

Genes, exome-sequence SNV-weights: up-weight protein
binding sites, apply direction
weights

Top-ranked genes differ between
weighted burden tests LRT, C-α,
CMC; but good overlap with
literature

ANNOVAR, variant tools; random
forest classifiers assign SNVs to
protein binding sites; DSSP, PSAIA,
DOMINO

Malzahn et al [30]

Gene covering LD-blocks SNV-weights: using MAF SKAT: power depends on SNV
weights, exploiting LD is very
beneficial, optimal strategy for
joint testing rare and common
SNVs depends on LD structure

Haploview with HapMap data for
LD-calculation

Overall weight: on rare SNV
variance component in SKAT

Ho et al [33]

Rare SNVs in genes with >1 and <50
rare SNVs (MAF < 0.01)

p value weights: improve gene
ranking

Power of burden tests improved
by incorporating phenotype
associated gene expression into
p value weights

Genes: hg19; GO biological process
categories

CADD combined annotation dependent depletion, DBP diastolic blood pressure, DOMINO database of domain–peptide interactions, DSSP define secondary structure of proteins,
ENCODE encyclopedia of DNA elements, GO gene ontology, IBD identity-by-descent, LD linkage disequilibrium, MAFminor allele frequency, PSAIA protein structure and interaction
analyzer, SBP systolic blood pressure, SIFT sorting intolerant from tolerant, SKAT sequence kernel association test, SNV single nucleotide variant,WGS whole genome sequence
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between-subject similarity and this kernel constitutes a
prior on genetic model space [51]. SNV weights are incor-
porated in the kernel (see, eg, Malzahn et al [30]).
Typically, rarer SNVs get assigned more weight to coun-

terbalance their reduced power compared to more frequent
SNVs. Used are, for example, weights ωj ¼ 1

MAFj 1−MAFjð Þ
[52], inverse MAF weights ωj ¼ 1

MAFi
, or beta-weights such

as ωj = b(MAFi) [23], where b is the probability density
function of a beta(1, 25) random variable. Malzahn et al
[30] compared the power of SKAT when using different
SNV weights and different kernel functions that either
allow or do not allow for SNV interactions in the genetic
model. Alternatively, SNV weights may be based on regula-
tory importance [27] or protein binding effects [28].

Incorporating functional information into variant weights
Kim and Wei [27] categorized SNVs according to Regulo-
meDB and PolyPhen2 functional relevance scores. SNV
weights were defined based on f(s) = S2 where s equaled
the reverse order of categories, namely s = 6, 5, 4, 3, 2, 1
for category 1 (“most likely affecting binding and expres-
sion”) to category 6 (“not functionally relevant”). Kim and
Wei [27] tested rare SNVs jointly, in sets defined by slid-
ing windows of 4 kb size, for association with SBP. They
compared the power of SNV weighting schemes in SKAT

(ωj ¼
ffiffiffiffiffiffiffiffiffiffi
f sj
� �q

versus ωj = b(MAFj)), and burden test T5

(ωj = f(sj) versus ωj ¼ 1
MAFj 1−MAFjð Þ). SKAT and T5 provide

analytical asymptotically exact p values with good small
sample size behavior.
Zhang et al [28] used a likelihood ratio test (LRT) [53]

to test if the proportion of subjects with an informatively
weighted minor allele burden exceeding a given thresh-
old differed between HT cases and controls. P values
were obtained by permutation procedure. SNV weights
ωi accounted for putative effect direction and distin-
guished between functional SNVs in binding-sites (|ωi|
= 10), not in binding-sites (|ωi| = 5), and nonfunctional
SNVs (|ωi| = 1). The informatively weighted LRT was
compared with C-α and CMC burden tests.

Optimal joint testing of rare and common variants
When not filtering for rare or common SNVs, optimal
joint testing of both becomes an issue. Suppose, one com-
puted 2 SKAT statistics, Qrare and Qcommon, separately on
rare SNVs and common SNVs, in the same region of
interest, for the same trait, based on the same genetic null
model. As SKAT is a variance-component test, combining
Qrare and Qcommon [29]

Qws ¼ 1−λð Þ⋅Qrare þ λ⋅Qcommon ð1Þ
weights the rare SNV variance-component by overall a
priori weight (1-λ) relative to the common SNV variance-

component (see Ionita-Laza et al [29] and Malzahn et al
[30] for choices of λ). The weighted sum test (1) is another
way of structuring a prior in SKAT. Note that Qrare and
Qcommon may use different kernel functions or different
SNV weights. Malzahn et al [30] compared this form of
joint testing of rare and common SNVs with the default
choice of entering all SNVs with appropriate weights into
a single kernel. Exact p values for SKAT and weighted sum
test (1) were obtained by Davies method [54]. Another
investigated alternative was Fisher pooling of the corre-
lated p values resulting from the separate rare SNV and
common SNV SKAT statistics. Fisher pooling accounted
for correlations by Satterthwaite approximation and
Brown’s method ([55]; see also [29, 30]).
Note that analogously to equation (1), SKAT-O combines

SKAT and burden tests with statistic Q = (1 − ρ)QSKAT +
ρQburden where 0 ≤ ρ ≤ 1 [56].

Informed p value weighting for genes
Ho et al [33] obtained gene-wise p values, pg , for associ-
ation of average BP T with rare SNV burden sg in genes
g that had more than 1 and less than 50 rare SNVs
(MAF <0.01)

Tebs;g⋅sg ð2Þ
Restricting the number of rare SNVs avoids collapsing

too many null variants. Ho et al [33] used the sequential
sum test [57], which data-adaptively assigned SNV weights
ωi = 0, 1, − 1. Earlier, Genovese et al [31] and Roeder and
Wasserman [32] had proven that informative weighting of
p values

pg
νg

with weights vg > 0; �vg ¼ 1 maintains proper

FDR control; where
pg
νg
≤αFDR means significance. Ho et al

[33] determined such weights vg as follows. They tested if
rare minor allele burden s�g (with SNV weights ωi = 1, for

simplicity) also associated with gene expression Eg

EgjT e bE;g⋅s�g þ c⋅T ð3Þ

and further if gene expression Eg associated with trait
value T

T js�g e bT ;g⋅Eg þ d⋅s�g ð4Þ

Association tests (2) to (4) were made conditionally
independent by adjusting test (3) for trait value T and
test (4) for rare minor allele burden s�g (Fig. 1). P

value weights νg ¼ ν�g �v�g were derived as ν�g ¼ max

^bE;g
SE ^bE;gð Þ
� �2

� ^bT ;g
SE ^bT ;gð Þ
� �2

 !
where the maximum was

over all gene expression measurements and �v�g was

the average of all ν�g.
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Results and discussion
The results for this GAW19 working group varied widely
as a result of the different objectives of each contributor.
Table 2 provides a brief summary of specific results.
Under H0, extreme p values follow a beta distribution

[47]. Almeida et al [36] reported that the beta distribu-
tion provided an excellent fit to determine the effective
number of independent tests ne for n single-locus tests.
For whole genome sequence, ne

n ¼ 15%; that is, account-
ing for LD reduced the multiple-testing burden by 85 %.
However, significant associations could only be found
when LD-correcting the significance level after a priori
reducing sequence data based on functional annotations.
Then 2 SNPs were detected: rs218966 in gene PHF14 as-
sociated with SBP and rs9836027 in MAP4 associated
with DBP.
Liu et al [37] scanned chromosome 3 (GWAS data)

for IBD sharing segments that associated with DBP. No
genome-wide significance was found. However, several
risk variants were detected in the region of gene ZPLD1
by using CADD functional scores and sequence for the
most promising region at 3q12.3.
In the GAW19 trait simulation model, SNV effect

sizes were based on PolyPhen2 functional prediction
scores (Fig. 2) [35]. In Figs. 2 and 3, displayed SNV ef-
fects, PolyPhen2 scores, and the assignment to positions
and genes (NCBI build37, human genome build 19)
came from the simulation answers. To illustrate differ-
ences between functional annotations, SIFT scores (and
rs-numbers) were added by annotating sequence (variant
call format [vcf] files) with ANNOVAR and merging vcf
files and simulation answers by chromosome and position.
RegulomeDB scores were merged by dbsnp138 rs-identifier.
Furthermore, functional scores were transformed to have

the same directionality (Fig. 3). Different functional annota-
tions focus on different information about SNVs and only
annotate selected SNVs. PolyPhen2 and SIFT both annotate
nonsynonymous coding SNVs by a metric score that can be
categorized to distinguish benign mutations from damaging
ones affecting protein function. Nevertheless, PolyPhen2
and SIFT scores differ to a substantial extent in value and
category (Fig. 3a). RegulomeDB annotates regulatory SNVs
by an ordinal score ranging from the highest evidence
(eQTL, expression quantitative trait locus) to the low-
est. Figure 3c illustrates that some SNVs were rated to
affect gene expression and transcription factor binding
(RegulomeDB scores 1 to 5) but not the protein func-
tion (scored “benign” by PolyPhen2). For simulated BP,
SIFT and RegulomeDB annotations yield mismatched
filters or priors whenever they deviate from the Poly-
Phen2 score used to simulate SNV effects. For example,
SIFT annotated some SNVs with large effects in gene
TNN as benign mutations (Fig. 3b) and only few SNVs
in associated genes were rated to be of regulatory im-
portance (Fig. 3d). Nevertheless, for real SBP, several
multiple-testing adjusted significant windows (2 with
SKAT, 4 with burden test T5) were only found when in-
cluding RegulomeDB scores as variant weights for rare
SNV analysis [27]. One of these regions contained
SNUPN [27] which is a novel finding not previously re-
ported to associate with BP. T5 and SKAT maintained the
nominal significance level on simulated unassociated trait
Q1 also when incorporating RegulomeDB scores into vari-
ant weights [27]. Kim and Wei [27] and Zhang et al [28]

Fig. 1 Informed p value weighting for genes based on conditionally
independent associations between rare variant burden, gene expression,
and trait. The p value weight vg was defined as the product of the
association strengths of rare SNV burden with gene expression and
gene expression with trait value

Fig. 2 SNV effect sizes on GAW19 simulated DBP increase with
increasing PolyPhen2 scores. Depicted are 6 genes with a range of
SNV effect sizes that could be simultaneously displayed. Symbols
depict SNVs in the same gene: LEPR (▲), TNN (♣), HIF3A (●), MAP4(♥),
MUC13(✷), CGN(■)
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both recommended using relatively big differences in SNV
weights distinguishing functional from nonfunctional
SNVs. Zhang et al [28] observed that different burden
tests with functionally informative SNV weights yielded
different top ranked genes. Although no gene was signifi-
cant, many of them had been reported in the BP literature
before. For SKAT, Malzahn et al [30] found that variant
weights, but not kernel choice, had a strong influence on
power, for rare as well as common SNVs. Kernel methods
may gain power by exploiting SNV correlations. This can
be utilized fully by analyzing LD blocks [30]. LD structure
also influenced which strategy yielded the best joint test of
rare and common SNVs with SKAT [30].
When using gene expression data to informatively

weight gene-wise p values for association of rare SNV

burden with BP [33], 153 genes (out of 6118) reached
nominal significance (weighted p ≤0.05). P value
weights were determined such that evidence for pheno-
type associated gene expression lowered burden test
p values. As no gene reached multiple-testing adjusted
significance, Ho et al [33] used gene set enrichment
analysis as aggregation test to relate the 153 top genes
to biological pathways.

Conclusions
All analyses presented herein used a cross-sectional de-
sign by analyzing trait data of the first examination, the
first available examination, or longitudinally averaged
traits. This mainly contributed to differences in sample

Fig. 3 Comparison between the PolyPhen2, SIFT, and RegulomeDB functional prediction scores. Left column: Correlation of PolyPhen2 functional
prediction scores with (a) SIFT or (c) RegulomeDB scores. Functional scores were transformed to have the same directionality. Nonsynonymous
coding SNVs that alter the protein function should receive a PolyPhen2 score of 1 and a SIFT score of 0. Scores are metric and can be categorized as
displayed. RegulomeDB annotates regulatory SNVs by an ordinal score ranging from the highest evidence (eQTL, expression quantitative trait locus) to
the lowest. Right column: Filters or priors based on (b) SIFT or (d) RegulomeDB functional scores are partially mismatched on GAW19 simulated DBP.
Symbols depict SNVs in the same gene: LEPR (▲), TNN (♣), HIF3A (●), MAP4(♥), MUC13(✷), CGN(■)
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size and trait variability. Furthermore, analyzing trait
values at different time points may affect the marginal
effect of genes that interact with age.
Including biological knowledge increased the power of

association studies performed in our GAW group; espe-
cially filtering variants based on putative functional rele-
vance. Prior weights can be included at different stages
of the testing procedure. They can be incorporated into
the test statistic of SKAT or burden tests, used when
combining test statistics, or applied to association test p
values. Selecting variant-sets also should take genetic struc-
tures into consideration, such as LD or IBD sharing. More-
over, the effective number of independent tests can be
determined relatively easily by extreme value theory. This
enables appropriate adjustment of the significance level for
multiple testing to avoid an overly conservative approach.
Ideally, variant grouping and selection, inclusion of bio-
logical information, and significance level adjustment can
be applied simultaneously. Strategies like these are useful
in increasing power in analyses of highly dense genetic data
sets.
Filtering variants clearly boosted power in the discussed

studies. However, filtering might also lose information.
Functional scores such as PolyPhen2, SIFT, CADD, or
RegulomeDB differ as they focus on different information
about SNVs. Moreover, appropriateness of functional
scores for a considered trait is a priori unknown. Hence,
one is well advised to use and combine multiple functional
annotations into a single filter or prior. This is feasible
as functional annotations yield strong filters that greatly
reduce the SNV space.
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The analysis of genome-wide association studies (GWAS) benefits from the investigation of biologically meaningful gene sets,
such as gene-interaction networks (pathways). We propose an extension to a successful kernel-based pathway analysis approach
by integrating kernel functions into a powerful algorithmic framework for variable selection, to enable investigation of multiple
pathways simultaneously. We employ genetic similarity kernels from the logistic kernel machine test (LKMT) as base-learners
in a boosting algorithm. A model to explain case-control status is created iteratively by selecting pathways that improve its
prediction ability. We evaluated our method in simulation studies adopting 50 pathways for different sample sizes and genetic
effect strengths. Additionally, we included an exemplary application of kernel boosting to a rheumatoid arthritis and a lung cancer
dataset. Simulations indicate that kernel boosting outperforms the LKMT in certain genetic scenarios. Applications to GWAS data
on rheumatoid arthritis and lung cancer resulted in sparse models which were based on pathways interpretable in a clinical sense.
Kernel boosting is highly flexible in terms of considered variables and overcomes the problem of multiple testing. Additionally, it
enables the prediction of clinical outcomes. Thus, kernel boosting constitutes a new, powerful tool in the analysis of GWAS data
and towards the understanding of biological processes involved in disease susceptibility.
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1. Introduction

Many human diseases are complex in nature. They are
caused by an interplay of several, often moderate genetic
effects and environmental factors (i.e., demographic, clinical,
and other nongenetic data [1]). Their genetic architecture is
often analyzed in genome-wide association studies (GWAS).
Herein, genetic information is represented by the genotypes
of a multitude of single-nucleotide polymorphisms (SNPs)
located across the whole genome. Numerous SNPs asso-
ciated with various diseases have already been discovered
in GWAS analyses; however they cannot account for the
full heritability of the corresponding disease [2]. Different
methods to approach this problem ofmissing heritability have
been proposed, including the joint analysis of several SNPs
representing a particular part of the genetic information, such
as a gene or gene set.

Gene-set analysis methods facilitate the detection of
associations between an individual’s genetic information and
a phenotype of interest, for example, disease status. The joint
analysis of several genes often leads to increased power, as
it reduces the overall number of conducted tests and assists
in the detection of moderate associations [3]. Furthermore,
the results are usually more meaningful, as they are based
on functional units rather than on single SNPs. One form
of gene-set analysis is the investigation of pathways, such
as networks of interacting genes responsible for a specific
cell function or regulation [4]. The proteins coded by genes
within a pathway can enhance or reduce the expression of
other genes, to which we refer as activation or inhibition.
Thus, genes interact directly as well as indirectly in a series
of interconnected steps within pathways. Different types of
biological pathway exist, for example, involved inmetabolism
or signal transduction. Faults in function can occur and such
malfunction of biological pathways may lead to disease onset
and development.

Large sample sizes are required to detect weak genetic
effects influencing disease risk. Thanks to technical advances
and the formation of data-sharing consortia in particular,
larger GWAS datasets have become available over recent
years. However, genotyping and participant recruitment are
still cost and work intensive. Especially in rare diseases,
taking as an example the analysis of histological subtypes of
a disease, it is very challenging to achieve sample sizes that
result in adequate power in analyses [5]. Another challenge
we face is to understand the biological meaning of detected
associations. It is often difficult to interpret the results of
GWAS analysis in the elucidation of the precise biological
processes and corresponding functional units influencing
disease susceptibility. Single-pathway analysis methods are
often successful in the identification of genetic effects influ-
encing disease susceptibility. However, they usually can not
discriminate causal biological processes from isolated effects
included in pathways due to gene overlap [6, 7]. Another
limitation ofmany pathway analysis approaches is the lacking
ability to predict the disease state, or other outcomes of
interest, based on the identified genetic effects.

Kernel methods in statistics have already been dem-
onstrated as dealing well with the challenges faced when

analyzing GWAS data [8, 9]. They are capable of han-
dling high-dimensional data, without requiring any direct
specification of the functional relationship between genetic
effects. Furthermore, kernel methods are computationally
efficient and allow the straightforward incorporation of
environmental covariates [9–11]. Kernels are used to calculate
a quantitative value from genotype data, which may be
interpreted as reflecting the genetic similarity between each
pair of individuals. Different kernels have been proposed
in the analysis of pathways [9, 12, 13]. While some kernels
only evaluate SNP membership in genes, others can also
adjust for differing gene numbers and sizes or even include
gene interaction structures or other information (please refer
to Materials and Methods and [13] for an overview). We
focussed on the network-based kernel, as it allows us to
include interaction structures and has been demonstrated as
being superior in performance for interconnected effects [13].

We extend kernel-based analysis of GWAS data by inte-
grating a network-based kernel function into a boosting
framework, in order to identify genetic variation modulat-
ing disease susceptibility. Boosting emerged from the field
of machine learning and was later transferred to statisti-
cal modelling. It implements an ensemble of many weak
learners (so-called base-learners, simple models that are
slightly improved over random guessing) to optimize the
predictive accuracy of a model [14]. Since it is able to
combine the power from several predictors with weak signals
into a strong prediction set [15, 16], it may prove to be a
powerful tool in the analysis of GWAS. Component-wise
boosting enforces variable selection and includes additional
effect regularization, which makes it especially useful for
high-dimensional data [17]. Model-based boosting can be
seen as an extension of classic boosting approaches (see,
e.g., [18, 19]). Diverse base-learners, which represent special
effect types, may be chosen and combined arbitrarily [20].
Thus, boosting allows the simultaneous inclusion of genetic
information and demographic or other environmental data.
This joint investigation of multiple variables allows taking
into account correlations between different pathways andwill
likely facilitate discrimination of causal biological processes
from effects included in pathways only due to gene overlap.
The derived models can be assessed and interpreted directly.
Our kernel boosting approach overcomes the problem of
multiple testing thanks to its inherent variable selection
property [21]. Thereby the overall gain in power in the
analysis of GWAS supports the analysis of smaller samples
and moderate-to-weak genetic effects. Of note, the main
focus of boosting (as well as of other machine learning
methods) is not on hypothesis testing but on the development
of a multivariable prediction model.

We applied our approach to two GWAS datasets, one on
lung cancer and one on rheumatoid arthritis. Lung cancer
is one of the most common forms of cancer, especially in
industrialized nations. It is responsible for the greatest pro-
portion of deaths caused by cancer worldwide [22]. Although
the exposure to tobacco is known to be the major risk factor
for lung cancer susceptibility, a number of genetic influences
have been revealed by many studies [23]. The actual number
of known genetic influences, excepting some specific lung
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cancer syndromes, is still limited, and each only accounts
for a minor increase in disease risk. Rheumatoid arthritis is
the most frequently occurring inflammatory disease of the
joints, predominantly affecting the hands and feet. It is one
of the major causes of disability and is strongly influenced
by genetic factors in the human leukocyte antigen (HLA)
region located on chromosome 6 [24, 25]. The investigation
into these two diseases with different genetic architectures
provides the ideal platform to evaluate the performance of
our novel method.

In Section 2, we introduce the model structure utilized
and describe the construction of network-based kernel func-
tions. We provide a short introduction to boosting and
derive the novel boosting algorithm with kernel-based base-
learners. Section 3 comprises a description of the simulation
study used to evaluate the method’s performance and an
overview of the application to rheumatoid arthritis and lung
cancer GWAS datasets. The results of the simulation study
and GWAS analyses are summarized in Section 4. Finally, we
end the paper with a discussion and an outlook.

1.1. Software. Weused the statistical software environment R

[26] to perform all analyses unless stated otherwise. The
methodological developments were implemented in the R
packages kangar00 [27] and mboost [28]. An exemplary
application of the kernel boostingmethod to a simulated data
set is given in Supplementary Material 2, available online at
https://doi.org/10.1155/2017/6742763.

2. Materials and Methods

We aim tomodel the disease status of an individual, based on
environmental covariates and genetic information obtained
fromGWAS.The genetic information given by the genotypes
of different SNPs is mapped via genes to pathways. For
each pathway, we compute a kernel matrix transforming the
genotype vectors of each two individuals into a numeric
value, which may be interpreted as the genetic similarity
of the two individuals. Based on these matrices, we fit a
kernel-based boosting model to identify relevant pathways
and to find a prediction model for disease status. In the
following paragraphs, we define all the relevant parts to this
approach.

2.1. Model Definition and Notation. We assume an additive
logistic regression model for the conditional probability of
being a case for individual 𝑖, 𝑖 = 1, . . . , 𝑛:

logit [𝑃 (𝑦𝑖 = 1 | x𝑖, z𝑖)] = 𝜂 (x𝑖, z𝑖) , (1)

with additive predictor

𝜂 (x𝑖, z𝑖) = x𝑖𝛽 + 𝑓1 (z𝑖) + ⋅ ⋅ ⋅ + 𝑓𝑃 (z𝑖) , (2)

where 𝑦𝑖 is the case-control indicator (𝑦𝑖 = 0 control; 𝑦𝑖 =
1 case), x𝑖 = (𝑥𝑖,1, . . . , 𝑥𝑖,𝑛𝑐) is the 𝑛𝑐 dimensional environ-
mental covariate vector, and z𝑖 denotes the genotype vector
of the 𝑛𝑠 SNPs of the 𝑖th individual. Note that the non- or
semiparametrically modelled genetic effects 𝑓𝑝(z𝑖) usually

only depend on a pathway specific subset of SNPs, z(𝑝)𝑖 .
However, for the sake of notational convenience we dropped
the pathway index (𝑝).

The vector 𝛽 = (𝛽0, 𝛽1, . . . , 𝛽𝑛𝑐)
⊤ represents the regres-

sion coefficients (including an intercept 𝛽0) related to the
environmental covariates.They typically include information
on age, sex, or other traits relevant to the disease investigated.
The genotype variables z𝑖 are coded as number of minor
alleles, resulting in 𝑧𝑖,𝑠 ∈ {0, 1, 2} for any SNP 𝑠 and individual
𝑖. The nonparametric functions 𝑓𝑝, 𝑝 = 1, . . . , 𝑃, describe
how the risk of being affected by the disease depends on
the observed genotypes. Here, we aggregate the genotype
information according to SNP membership in 𝑃 different
gene interaction pathways.

2.2. Network-Based Kernels. Liu et al. [10] introduced the
kernel machine framework to the field of pathway analysis.
Since genes in pathways can include complex interactions,
nonparametric approaches are advisable. The logistic kernel
machine test (LKMT) can model the effect of a pathway on a
binary outcome nonparametrically, while including paramet-
ricallymodelled covariates. In the resulting logistic regression
model, the genetic influence is incorporated by a function
from the reproducing kernel Hilbert space generated by a
positive definite kernel function𝐾.

In a genetic application, this kernel function is evaluated
for the genotypes of each two individuals 𝑖 and 𝑗, whereby the
kernel matrix element 𝐾𝑖𝑗 = 𝐾(z𝑖, z𝑗) is obtained. This value
can be understood as the genetic similarity between the two
individuals. To embed this definition into themathematically
well-defined framework of a reproducing kernel Hilbert
space, the kernel matrix has to fulfill some requirements: it
has to be quadratic, symmetric, and positive semidefinite.
A variety of kernel functions are available. In the pathway-
based analysis of GWAS data, a network-based kernel can
be used, which is able to incorporate the pathway topology
[13].

Assume Z = (z1, . . . , z𝑛)
⊤ denotes the 𝑛 × 𝑛𝑠 pathway

specific genotype matrix consisting of the genotype vectors
z𝑖, which include only the SNPs relevant for pathway 𝑝, for
all 𝑖 = 1, . . . , 𝑛 individuals. Then, the network-based kernel is
defined by

K = ZANA⊤Z⊤, (3)

where A is an 𝑛𝑠 × 𝑛𝑔 matrix mapping all SNPs to the 𝑛𝑔
investigated genes (including an adjustment to account for
differing sizes of genes) and N represents the (modified) 𝑛𝑔 ×
𝑛𝑔 matrix network adjacency matrix of gene interactions. To
ensure positive semidefiniteness of the kernel, the network
adjacency matrix is processed in a number of preparatory
steps: if a gene is not represented by any SNPs in the investi-
gated GWAS dataset, it cannot be considered in the analysis.
To prevent loss of information about interactions in the
network, genes which have previously been connected via the
omitted gene will be linked directly. The new link’s weight is
determined in a multiplicative fashion, based on the weights
of the two omitted links. For a graphical representation refer
to Figure 1. The resulting matrix is further mirrored along
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Figure 1: Graphical representation of rewiring step in data prepa-
ration. Nodes are representing genes in the pathway, while edges
indicate interactions between the corresponding genes. Assume the
gene depicted in grey is not represented by any genetic markers
in the considered study and thus cannot be analyzed. To retain
information about the (indirect) interaction of the two genes
previously linked to the omitted gene, a new direct link is established
between them. Its interaction type is determined by multiplication
of the weights inherent to the two dropped links.

its diagonal and transformed to obtain positive semidefinite-
ness. The applied transformation is given by

𝜌N + (1 − 𝜌) I, (4)

where I denotes the identity matrix and 𝜌 is a weight based
on the smallest eigenvalue of N. For more details, see [13].

2.3. Model-Based Boosting. Model fitting in general aims to
minimize the loss when relating observed responses 𝑦𝑖 to
an estimated model characterized by the additive predictor
𝜂𝑖 fl 𝜂(x𝑖, z𝑖) as defined in (2). Thus, boosting minimizes the
empirical risk

1
𝑛

𝑛

∑
𝑖=1

− 𝑙 (𝑦𝑖, 𝜂𝑖) , (5)

where −𝑙(⋅) denotes a suitable loss function. Here, we use
the negative binomial log-likelihood as loss function, which
results in additive logistic regression models in analogy to
the LKMT. In general, the loss function characterizes the
model and can be defined in terms of a suitable negative log-
likelihood or other appropriate loss functions, for example,
the quadratic error loss for Gaussian regression or the
absolute error loss for quantile regression. For an overview
on loss functions see Hofner et al. [20]. Boosting solves
this optimization problem via functional gradient descent by
moving in the direction of the loss function’s steepest descent
along the additive effects of predictor (2). This can be seen in
the following (simplified) algorithm:

(1) Initialize the additive predictor with 𝜂[0]𝑖 = 𝑦, 𝑖 =
1, . . . , 𝑛, and all function estimates with 𝑓[0]𝑝 = 0, 𝑝 =
1, . . . , 𝑃+. Note that 𝑃+ includes all 𝑃 kernels and pos-
sibly additional effects for environmental covariates.

(2) For𝑚 = 1, . . . , 𝑚stop do the following:

(a) Compute the negative gradient of the loss func-
tion evaluated at the estimates of the previous
iteration:

𝑢[𝑚]𝑖 = −
𝜕 (−𝑙 (𝑦𝑖, 𝜂𝑖))

𝜕𝜂

𝜂𝑖=𝜂[𝑚−1](x𝑖 ,z𝑖)
, 𝑖 = 1, . . . , 𝑛. (6)

(b) Estimate the negative gradient vector u[𝑚] =
(𝑢[𝑚]1 , . . . , 𝑢[𝑚]𝑛 ) separately for each effect in the
additive predictor (2) by base-learners û[𝑚] =
f̂𝑝, 𝑝 = 1, . . . , 𝑃+, with f̂𝑝 fl (𝑓𝑝(x𝑖, z𝑖))𝑖=1,...,𝑛 by
fitting simple regression models via (penalized)
least squares. Thus, each base-learner regresses
the negative gradient vector u[𝑚] separately on
each of the predictors.

(c) Choose the best-fitting base-learner f̂𝑝⋆ with the
minimal residual sum of squares.

(d) Compute the update for the additive predictor
by adding the best-fitting base-learner with a
step-length factor 0 < ] ≤ 1:

�̂�
[𝑚] = �̂�[𝑚−1] + ] ⋅ f̂𝑝⋆ . (7)

The corresponding update of function estimate
f̂𝑝⋆ is given by

f̂[𝑚]𝑝⋆ = f̂[𝑚−1]𝑝⋆ + ] ⋅ f̂𝑝⋆ , (8)

while

f̂[𝑚]𝑝 = f̂[𝑚−1]𝑝 , (9)

for all 𝑝 ̸= 𝑝⋆.

Note that each base-learner f̂𝑝 usually depends on only one
environmental covariate or one pathway based on a suitable
subset of the genotypes of z. However, other dependencies
are also possible. For details on the algorithm, see [20]. A
graphical display of the main features of the kernel boosting
algorithm is given in Figure 2.

2.4. Model Tuning. The major tuning parameter of the func-
tional gradient descent boosting algorithm is the number of
iterations𝑚stop. We usually choose𝑚stop via cross-validation
methods (such as bootstrap, 𝑘-fold cross-validation, or sub-
sampling) in order to avoid overfitting: one fits the model on
the selected subset of the data and chooses 𝑚stop such that it
minimizes the empirical risk on the data that were not used
to estimate themodel. Subsampling is recommended to avoid
overly complex models [29]. The step-length ] is another
tuning parameter. In general it is ofminor importance as long
as it is relatively small. It determines the trade-off between
speed of convergence and variable selection ability and is
typically set to 0.1 [30].

The current estimate �̂�[𝑚] of the additive predictor 𝜂
usually depends on only a subset of the possible predictors:
as we select the best-fitting base-learner in each step and
choose 𝑚stop such that it maximizes prediction accuracy
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Figure 2: Graphical representation of the main features of the kernel boosting algorithm.

(i.e., usually relatively small so that not all base-learners are
selected), boosting selects base-learners and thus variables.
In our approach, we exploit this behaviour to identify genetic
associations. Note that a base-learner can be selectedmultiple
times. Hence, its function estimate f̂𝑝, 𝑝 ∈ 1, . . . , 𝑃+, is the
weighted sum with weights ] of the individual estimates over
all iterations in which the base-learner was selected (see (8)).

2.5. Boosting with Network-Based Kernel as Base-Learner.
To incorporate genotype data, aggregated to represent a

particular pathway, we utilize kernel-based base-learners.
Using a kernel function 𝐾, we transform the definition of
the genotypic information of all pairs of individuals to 𝐾𝑖𝑗 =
𝐾(z𝑖, z𝑗), 𝑖, 𝑗 = 1, . . . , 𝑛, as mentioned before, and collect
them in the kernel matrix K. With this matrix, we can
estimate

𝑓 (Z) = K𝛾 = ZANA⊤Z⊤𝛾, (10)

The function 𝑓(Z) is used to map the influence of SNP
profiles to the clinical outcome (see (2)). As we expect
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patients with similar SNP profiles to have similar outcomes,
we aim to discourage large differences in 𝑓(Z) for genetically
similar individuals. According to the standard penalization
approaches in the boosting context, we thus introduce an
additional smoothness constraint on the coefficient vector
𝛾 = (𝛾1, . . . , 𝛾𝑛)

⊤ based on the kernel distances:

J (𝛾) = 𝛾⊤K𝛾. (11)

Thus, we define a separate kernel base-learner for each
pathway in the boosting framework. Using the negative
gradient vector u[𝑚] = (𝑢[𝑚]1 , . . . , 𝑢[𝑚]𝑛 ) from the𝑚th boosting
iteration, we can estimate the coefficient vector 𝛾 of each
base-learner (see step 2b of the algorithm) via penalized least
squares

�̂�
[𝑚] = (K⊤K + 𝜆K)−1 K⊤u[𝑚], (12)

where we dropped the function index 𝑝 for the sake of
notational convenience. Note that kernel matrix K plays the
role of design matrix as well as the role of penalty matrix
with penalty parameter 𝜆, which governs the smoothness of
the estimate. Usually, the penalty parameter 𝜆 is chosen such
that all base-learners have equal degrees of freedom to allow
an unbiased selection. A common choice is four degrees of
freedom if only smooth effects are used or one degree of
freedom if linear effects are to be included; see Hofner et al.
[21] for details.

In some rare cases, the derived kernelmatrixK is numeri-
cally not positive semidefinite (i.e., minimal deviationsmight
occur), even though this should theoretically always be the
case. To ensure a numerically positive semidefinite matrix
K, we apply transformation (4) not only to N but also on
the resulting kernel matrix K. The proposed approach is very
fast and results in smaller absolute differences in the matrix
elements than alternatives such as the procedure suggested by
Higham [31] (results not shown).

For numerical reasons, we reformulate the estimation
problem from (12) by multiplying the design matrix with the
inverse of the square root of the penalty matrix [32].Thus, we
obtain the design matrix

K̃ = KK−1/2, (13)

while the penalty matrix simplifies to the identity matrix I.
Now, we can equivalently write

�̂�
[𝑚] = (K̃⊤K̃ + 𝜆I)

−1
K̃⊤u[𝑚]. (14)

A similar approach based on radial basis functions,
which, for example, uses correlation functions to measure
distances, was introduced to the boosting framework by
Hofner [33].

2.6. Model Prediction Using Kernels. Boosting specifically
aims to optimize prediction accuracy. As in all regression
models, we can use the estimated coefficients to predict the
outcome for new observations. However, some extra work is
required to set up the kernel, that is, the design matrix, with

new genotype data Z∗ = (z∗1 , . . . , z
∗
𝑛⋆)
⊤. In this context, the

kernel can be understood to compute the similarity between
genotype information of individuals to be predicted and the
observations used to fit the model, the training data Z itself.
Thus,

K⋆ = (𝐾 (z⋆𝑖 , z𝑗))𝑖=1,...,𝑛⋆ , 𝑗=1,...,𝑛 = Z⋆ANA⊤Z⊤. (15)

The resulting kernel K∗ has the dimension 𝑛∗ × 𝑛, with 𝑛∗
being new and 𝑛 previously used observations. Note that
kernel matrix K∗ must no longer be of full rank nor be
positive semidefinite. Using K∗, we can predict the effect of
a pathway on the outcome as

𝑓 (Z∗) = K∗�̂�, (16)

where �̂� is obtained as the weighted sum with weights ] over
the estimates from (14) for all iterations inwhich the𝑝th base-
learner was selected (see (8)).

2.7. Incorporation of Environmental Covariates. To incorpo-
rate environmental variables into the boosting model, we
can choose different base-learners suited to different types of
effect. Linear effect base-learners are suited to a continuous
covariate 𝑥 such as patient age, while categorical effect base-
learners facilitate the incorporation of categorical environ-
mental variables such as gender. For details on inclusion of
environmental variables, refer to [20].

With the inclusion of environmental variables as base-
learners, these are also subject to the selection process
inherent to boosting and compete with the pathway-based
genetic effects. However, one usually wishes to consider only
the added effect of genetic pathways. To ascertain that the
model is corrected for environmental variables, one may
include them as mandatory effects. This can be done by
fitting a standard logistic regression model for the effect
of the environmental variables on the clinical outcome and
using the estimates as a start model (offset) for the boosting
algorithm (see [34, 35]). This approach is very similar to
the LKMT procedure, which tests if the logistic regression
model can be improved via addition of a nonparametric effect
incorporating a particular pathway.

3. Simulations and Applications

3.1. Simulation Study. To evaluate the performance of ker-
nel boosting, we conducted a simulation study based on
simulated SNP data in combination with gene networks
from existing biological pathways. Pathway information
was extracted from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) [36]. For simulation purposes, we con-
sidered a sample of 50 networks, randomly chosen from the
total of 284 pathways available in January 2015. Please refer
to Figure 3 for a list of these pathways and refer to Table 1
for their network topology characteristics. The primary aim
of this study was to determine whether kernel boosting
can detect associated pathways and is able to distinguish
them fromnoninfluential pathways.Thus, we investigated the
method’s performance on data without genetic effects (null
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Kernel boosting results on noninformative genetic data
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Figure 3: Relative frequency of datasets in which a pathway was selected for 50 pathways in the noninformative simulation scenario.

Table 1: Description of network properties for pathway topology of pathways used in simulations, compared to the properties of the two
effect pathways hsa04020 and hsa04022. Nodes equal the number of included genes, links give the number of interactions, inhibition links
the count of interactions of inhibiting type, the average degree of a node is the mean number of adjacent edges, density is the ratio between
numbers of existing links and possible links, diameter denotes the distance to the farthest node in the graph, transitivity (also called cluster
coefficient) calculates the probability of adjacent vertices of a vertex being connected, and signed transitivity considers the type of interaction
in this calculation.

Min Mean Median Max hsa04020 hsa04022
Nodes 29.00 103.60 86.5 398.00 180.00 167.00
Links 1.00 197.81 87.5 1493.00 297.00 372.00
Inhibition links 0.00 27.08 10.50 148.00 7.00 67.00
Average degree 0.07 3.18 2.36 15.62 3.30 4.46
Density 0.00 0.03 0.03 0.16 0.02 0.03
Inhibition degree 0.00 0.52 0.24 2.62 0.08 0.80
Diameter 1.00 7.36 7.00 18.00 6.00 7.00
Transitivity 0.00 0.02 0.00 0.14 0.00 0.03
Signed transitivity −0.02 0.01 0.00 0.10 0.00 0.03

case) including 1000 individuals and in six effect scenarios,
differing in effect strengths (relative risk of 1.1 and 1.5 per
allele) and sample sizes (𝑛 ∈ {500, 1000, 2000} with a 1 : 1
ratio of cases to controls). Datasets for all scenarios were
simulated for 100 replications. Note that these scenarios are
small compared to typically available sample sizes nowadays.
The reason can be found in the computational demands of the
method for an insightful number of replications. Accordingly,
comparably strong effects of markers were chosen to match
the sample sizes used in our simulations.

For each simulated dataset, we fitted a boosting model
with pathway kernels. In order to tune the model, that is,
to derive the optimal number of boosting steps 𝑚stop, we
used 20-fold subsampling for each model on each of the
datasets with a maximum number of 200 iterations. Using
the network-based kernel function in both methods, we
compared the results from our kernel boosting approach on
multiple pathways to those obtained from the single-pathway

LKMT [9–11]. Additional simulations with cross-validated
models and amaximumnumber of up to 1000 iterations were
conducted to gain more insight into the proposed algorithm
and are presented in Supplementary Material 1, Section A.

All genotypes were simulated with the help of a reference
dataset from the International HapMap Consortium [37].
The reference data include 1,184 individuals of European
descent (CEU) and a total of 1,440,616 SNPs, of which 116,565
are located on chromosome one. For each gene included
in at least one of the 50 selected pathways, we defined a
pseudogene to represent the gene within our simulations.
Such a pseudogenewas a randomly selected DNA segment on
chromosome one of the reference data including five different
SNPs. Between each two sampled regions, we ensured a
distance of at least 100 kilo base pairs to prevent distortive LD
correlations between them [38]. The location of pseudogenes
was left unchanged for all simulations, resulting in a realistic
correlation structure for all simulation scenarios. In each of
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Table 2: Counts of included influential genes within pathways used for simulation purposes. Pathways without simulated causal genes are
not displayed.

KEGG id Name of pathway Effect genes included
hsa04020 Calcium signaling pathway 4
hsa04022 cGMP-PKG signaling pathway 5
hsa04024 cAMP signaling pathway 1
hsa04080 Neuroactive ligand-receptor interaction 2
hsa04270 Vascular smooth muscle contraction 2
hsa04540 Gap junction 2
hsa04610 Complement and coagulation cascades 1
hsa05200 Pathways in cancer 2

the 100 simulation runs, new genotype data for a total of
11, 665 SNPs in 2, 333 pseudogenes were simulated using the
HAPGEN2 software. This software generates new haplotype
data by combining a given set of reference haplotypes
with previously simulated data. The detailed procedure is
described in [39].

In the null case, noninformative genetic data were sim-
ulated for 1000 individuals. In each replication, new geno-
types without association signals were generated for 11, 665
SNPs. The disease status was assigned at random with 0.5
binomial probability of being a case, completely independent
of genotype information. In each of the six effect scenarios,
genotype data for a previously chosen equal number of cases
and controls were simulated such that two pathways affected
disease status. Association signals were included in three
genes per causal pathway. In each of the resulting six genes,
two randomly selected SNPs were chosen to be influential on
the binary clinical outcome. Within one simulation scenario,
all associated SNPs had the same effect strength and for
each SNP the minor allele was influential. All effects were
simulated as additive. To simplify the evaluation, we decided
not to include environmental variables in these settings.

We chose two typical pathways (KEGG ids hsa04020
and hsa04022) to include causal genes. In accordance with
the findings in [13], the influential genes in the two causal
pathways were chosen to be interconnected within the
corresponding pathway. Here, we additionally sampled one
effect gene in each pathway, with the probability of being
selected set to its betweenness centrality. Betweenness cen-
trality measures the amount of shortest connections between
each two genes in the network passing through the gene.
Different studies have indicated that genes in topologically
relevant positions of a pathway are more likely to be involved
in disease association [40]. Two neighbouring genes of
the sampled gene were randomly chosen to complete the
connected scenario. In hsa04020, the genes GNA11, TACR1,
and BDKRB2 were simulated to include SNPs influencing
disease susceptibility. For hsa04022, genetic effects were
placed on the genes PRKG2, ATP2B2, and KCNU1. For each
of these genes, two SNPs were simulated as being influential
on disease status. Note that existing biological pathways
can have genes in common. Thus, beside our two pathways
chosen to include influential effects, six additional pathways

contain association signals. Refer to Table 2 for an overview
of influential genes included in simulation pathways.

Application: GWAS for Rheumatoid Arthritis and Lung Can-
cer. We considered the German Lung Cancer study (GLC)
with 488 cases and 478 controls, based on the data of par-
ticipants taken from the following three individual studies:
Lung Cancer in the Young (LUCY), a population-based
multicentre study run by the Helmholtz Zentrum Munich,
and the University Medical Centre of the Georg-August-
University in Goettingen. This study includes data of lung
cancer patients under the age of 51 and family members
recruited in German hospitals [41, 42]. The Heidelberg
lung cancer case-control study, conducted by the German
Cancer Research Centre (DKFZ) and the Thoraxklinik in
Heidelberg, Germany, recruited cases and controls in a
hospital-based study [43]. Additional controls were provided
by Cooperative Health Research in the Augsburg Region
(KORA), a population-based genome-wide study carried out
by the Helmholtz Zentrum Munich [44]. A subset of the
study participants of these three studies was chosen to form
the German Lung Cancer GWAS. These individuals were
genotyped on a HumanHap 550K SNP chip.

The second GWAS is a rheumatoid arthritis study of
the North American Rheumatoid Arthritis Consortium
(NARAC). It includes 868 cases from New York hospitals, in
which rheumatoid arthritis was diagnosed based on the cri-
teria of the American College of Rheumatology. Additionally,
1,194 controls matching in self-reported ethnic background
were collected. All individuals were genotyped with the
HumanHap500v1 array [45, 46].

For the rheumatoid arthritis study, we utilized gender
as environmental covariate. In the lung cancer study, age
and smoking exposure, measured in pack years, were also
considered. To determine the pack year, one multiplies the
number of packs of cigarettes smoked per day by the number
of years an individual has smoked.

All GWAS data were subjected to strict quality control.
Only individuals with a genotype call rate of at least 95%
were considered. SNPs with more than 10% missing values
or with a minor allele frequency (MAF) below 0.1% were
excluded from further analysis. Missing values in remaining
markers were imputed with BEAGLE [47]. No SNPs beyond
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Table 3: Characteristics of analyzed GWAS datasets. Numbers of case and control individuals after quality control and SNP numbers for
several analysis stages are displayed. Preprocessing of SNPs included quality control of genotype data, as well as updating genomic SNP
positions according to the latest information (genomic build 38). The last column indicates the total number of all SNPs annotated to a
pathway under investigation.

Study Cases/controls SNPs genotyped SNPs after preprocessing SNPs in analysis
Lung cancer 467/468 561,466 533,062 148,938
Rheumatoid arthritis 866/1189 545,080 491,695 137,839

the original chip were imputed. The base pair positions
of all SNPs were updated to NCBI build 38 using the
Ensembl database [48], which was accessed using the R
package biomaRt [49, 50]. Gene start and end positions were
extracted from the same database, also using NCBI build 38.
SNPs with no unique position were excluded. Refer to Table 3
for an overview of the study characteristics. Note that, during
analysis, only SNPs mapped to genes within pathways were
considered. The assignment of SNPs to genes was based on
their base pair location and gene boundaries. SNPs closely
located to each other are often in linkage disequilibrium (LD).
For SNP annotation, we specified gene regions including LD-
blocks extending beyond gene boundaries, as recommended
in [51].

The KEGG database groups pathways in disjoint subsets
according to their biological functionality. In the analysis of
the rheumatoid arthritis and lung cancer data, we used a
subgroup of 73 pathways connected to human diseases (see
Table 4). The information on this group of pathways was
downloaded in April 2016. An offset model containing only
the environmental covariates was fitted for each of the studies
to serve as start model for the kernel boosting of pathways.

For each pathway analyzed, the network-based kernel
function with 4 degrees of freedom served as base-learner.
The optimal number of iterations 𝑚stop was derived via 20-
fold subsampling and the default step length of 0.1 was
used. For the purpose of comparison, each of the pathways
considered in GWAS data analysis was also tested individu-
ally on the corresponding data using the LKMT. The same
environmental variables that were used in the offset model
for boosting were also considered for the LKMT. Prediction
accuracy was measured by the misclassification rate and the
area under the ROC curve (AUC) for both datasets. Of note,
prediction accuracy is influenced by the applied model but
also by the dataset at hand, that is, the amount of information
contained in the data. Additionally, we provided the cross-
validation results, that is, the (average) negative binomial
likelihood on the data that was not used for model fitting (see
Supplementary Material 1, Section B, for these results).

4. Results

4.1. Simulation Results. We compared the number of path-
ways each approach identified as associated with disease risk
and considered the respective overlap in the results. The
noninformative genetic data simulation comprised genotype
data for 50 pathways and 1,000 individuals. Figure 3 displays
the percentage of runs in which a pathway was selected.
We can observe that the application of kernel boosting to

these data does not lead to a high selection frequency for
any pathway. Selection of pathways appears to be distributed
randomly across all networks, not suggesting any clearly
recognizable association with disease status. Note that, in
kernel boosting, we do not conduct tests to evaluate the
pathways’ influence but select pathways based on their
predictive performance. Thus, we cannot calculate a type I
error to evaluate ourmethod’s performance. However, we can
quantify the empirical type I error. Within 100 simulation
runs on 50 pathways, a total number of 88 false selections
occurred. Thus, a pathway was falsely selected in 1.76% of all
possible cases. In 51 out of the 100 simulation runs, no single
pathway was chosen by the algorithm. Hence, we conclude
that kernel boosting can be trusted to reliably avoid false
positive selections in noninformative data.

Figures 4 and 5 compare the results of effect simulations
with a relative risk of 1.5 per allele for 1,000 cases and 1,000
controls to those for 250 cases and 250 controls. (a) in each
figure contains barplots indicating selection frequencies of
the 50 pathways across all simulation runs when applying
kernel boosting to the corresponding simulation scenario.
(b) compares these results with the selection frequencies
using the LKMT. Here, both the percentages of results with
a 𝑝 value below 0.05 (lighter grey bars) and those with 𝑝
values below the Bonferroni-corrected significance level of
0.001 (darker grey bars) are indicated. Pathways containing
influential genes are additionally highlighted in italics.

The results of kernel boosting in the sample of 2,000
individuals (Figure 4(a)) display three pathways clearly iden-
tified as influential on the clinical outcome, as their selection
frequency is close to 100%.These are the pathways originally
chosen to include genetic effects, hsa04020 and hsa04022,
and the pathway hsa04610. It seems that the latter pathway
is able to depict some of the information of the influential
gene more effectively than the causal pathway for which it
was originally simulated. This can be explained, as hsa04610
has the highest transitivity (0.14), also known as global
clustering coefficient, of all simulation pathways and contains
an effect gene. As the network kernel was designed to work
especially well in detection of interconnected genetic effects,
the causal gene is identified very well in the pathway when
using this base-learner. Note that the same pathway did not
stand out in the noninformative simulation scenario. Thus,
we conclude that high transitivity facilitates the detection
of causal effects when using the network-based kernel but
does not lead to false positives (i.e., here, pathways which
do not contain any effect gene). Several other pathways
were also selected, but only with very low frequencies. In
the same simulation scenario, the LKMT had very high
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Figure 4: Relative frequency of datasets in which a pathway was selected using (a) kernel boosting (𝑛 = 2000, RR = 1.5) and (b) LKMT
(𝑛 = 2000, RR = 1.5) for a sample size of 2000 individuals. Pathways including effect genes are labeled in bold; numbers in brackets denote
the count of included influential genes within the pathway. All effects were simulated with a relative risk of 1.5 per allele.
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Figure 5: Relative frequency of datasets in which a pathway was selected using (a) kernel boosting (𝑛 = 500, RR = 1.5) and (b) LKMT
(𝑛 = 500, RR = 1.5) for a sample size of 500 individuals. Pathways including effect genes are labeled in bold; numbers in brackets denote the
count of included influential genes within the pathway. All effects were simulated with a relative risk of 1.5 per allele.
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Table 4: KEGG pathways in the human diseases class as downloaded in April 2016. Pathways are sorted according to 𝑝 value, derived from
LKMT application on the rheumatoid arthritis dataset, in ascending order. 𝑝 values for pathways significantly associated after Bonferroni
correction are listed. Pathways selected by kernel boosting on the same dataset are marked in italics. Pathways containing one or several
genes belonging to the HLA complex are marked with an asterisk behind the id number.

KEGG id Name of pathway 𝑝 value
hsa05133 Pertussis 1.562 × 10−32

hsa05150∗ Staphylococcus aureus infection 1.029 × 10−30

hsa04933 AGE-RAGE signaling pathway in diabetic complications 3.877 × 10−17

hsa05169∗ Epstein-Barr virus infection 2.651 × 10−16

hsa05144 Malaria 3.087 × 10−15

hsa05206 MicroRNAs in cancer 3.969 × 10−15

hsa05330∗ Allograft rejection 4.131 × 10−12

hsa05200 Pathways in cancer 7.695 × 10−11

hsa05166∗ HTLV-I infection 1.344 × 10−11

hsa05030 Cocaine addiction 1.353 × 10−11

hsa05323∗ Rheumatoid arthritis 1.466 × 10−11

hsa05310∗ Asthma 2.268 × 10−11

hsa05134 Legionellosis 1.699 × 10−05

hsa04940∗ Type I diabetes mellitus 3.591 × 10−10

hsa05031 Amphetamine addiction 3.735 × 10−10

hsa05145∗ Toxoplasmosis 4.555 × 10−10

hsa05203∗ Viral carcinogenesis 1.814 × 10−09

hsa05332∗ Graft-versus-host disease 5.940 × 10−09

hsa05020 Prion diseases 1.530 × 10−07

hsa05143 African trypanosomiasis 2.114 × 10−07

hsa05222 Small-cell lung cancer 3.782 × 10−07

hsa05205 Proteoglycans in cancer 1.236 × 10−06

hsa05322∗ Systemic lupus erythematosus 1.702 × 10−06

hsa05161 Hepatitis B 1.757 × 10−06

hsa05410 Hypertrophic cardiomyopathy (HCM) 1.980 × 10−06

hsa05010 Alzheimer’s disease 7.234 × 10−06

hsa05142 Chagas disease (American trypanosomiasis) 1.048 × 10−05

hsa05168∗ Herpes simplex infection 1.109 × 10−05

hsa05012 Parkinson’s disease 1.368 × 10−05

hsa04932 Nonalcoholic fatty liver disease (NAFLD) 1.823 × 10−05

hsa05321∗ Inflammatory bowel disease (IBD) 2.124 × 10−05

hsa04931 Insulin resistance 3.625 × 10−05

hsa05219 Bladder cancer 4.133 × 10−05

hsa05215 Prostate cancer 4.220 × 10−05

hsa05202 Transcriptional misregulation in cancer 7.697 × 10−05

hsa05220 Chronic myeloid leukemia 8.464 × 10−05

hsa05146 Amoebiasis 1.003 × 10−04

hsa05414 Dilated cardiomyopathy 1.014 × 10−04

hsa05231 Choline metabolism in cancer 1.504 × 10−04

hsa05032 Morphine addiction 1.672 × 10−04

hsa05162 Measles 2.390 × 10−04

hsa05214 Glioma 2.506 × 10−04

hsa05164∗ Influenza A 2.720 × 10−04

hsa05416∗ Viral myocarditis 3.384 × 10−04

hsa05132 Salmonella infection 5.147 × 10−04

hsa05014 Amyotrophic lateral sclerosis (ALS) 5.568 × 10−04

hsa04930 Type II diabetes mellitus Not significant
hsa05218 Melanoma Not significant
hsa05140∗ Leishmaniasis Not significant
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Table 4: Continued.

KEGG id Name of pathway 𝑝 value
hsa05213 Endometrial cancer Not significant
hsa05211 Renal cell carcinoma Not significant
hsa05340 Primary immunodeficiency Not significant
hsa05160 Hepatitis C Not significant
hsa05212 Pancreatic cancer Not significant
hsa05016 Huntington’s disease Not significant
hsa05221 Acute myeloid leukemia Not significant
hsa04950 Maturity onset diabetes of the young Not significant
hsa05412 Arrhythmogenic right ventricular cardiomyopathy (ARVC) Not significant
hsa05223 Non-small-cell lung cancer Not significant
hsa05034 Alcoholism Not significant
hsa05130 Pathogenic Escherichia coli infection Not significant
hsa05120 Epithelial cell signaling in Helicobacter pylori infection Not significant
hsa05131 Shigellosis Not significant
hsa05204 Chemical carcinogenesis Not significant
hsa05100 Bacterial invasion of epithelial cells Not significant
hsa05216 Thyroid cancer Not significant
hsa05152∗ Tuberculosis Not significant
hsa05210 Colorectal cancer Not significant
hsa05230 Central carbon metabolism in cancer Not significant
hsa05217 Basal cell carcinoma Not significant
hsa05320∗ Autoimmune thyroid disease Not significant
hsa05033 Nicotine addiction Not significant
hsa05110 Vibrio cholerae infection Not significant

power to detect the two pathways simulated to affect disease
risk, however, also detected other pathways including any
of the causal genes on the Bonferroni-adjusted significance
level (Figure 4(b)). Three of the six other effect-containing
pathwayswere selected in almost 100%of the replications and
two of the remaining ones in more than 60% and one other
pathway which contained an effect gene was hardly selected.

Overall, this indicates that kernel boosting can identify
the pathwayswith themost explanatory powerwith respect to
disease status and is less likely than LKMT to select pathways
due to overlapping effect genes (see [6] for a discussion).
The reason can be found in the multivariate nature of the
kernel boosting approach, in which pathways are not tested
separately for their influence, but a multivariate model is
fitted to incorporate multiple influential predictors at the
same time.

Figure 5(a) reveals that the selection frequencies of asso-
ciated pathways drop noticeably when sample size decreases.
The same three pathways as in the larger sample reached
the highest selection frequencies but here only between
20% and 60%. Simultaneously, the number of selections
across nonassociated pathways increased slightly compared
to the larger sample. This indicates that a reduction in
sample size leads to less clear identification of the main
influential pathways by kernel boosting. In Figure 5(b), we
notice a similar behaviour of the selection frequency in
LKMT analysis. Here again, the power to identify pathways,
previously well detected in the larger sample, drops clearly

with the smaller dataset. Regarding the percentage of detected
pathways on the Bonferroni-corrected significance level, the
drop is even more pronounced in the LKMT than for kernel
boosting. This indicates that kernel boosting is less strongly
influenced by sample size and may have greater potential
in the identification of causal effects in smaller datasets for
which the LKMT is underpowered.

Figures 6 and 7 compare the results of kernel boosting and
the LKMT for differing effect sizes in equally sized samples
of 1, 000 individuals. The graphics are structured as Figures
4 and 5, with kernel boosting selection frequencies plotted in
(a) and LKMT selection frequencies in (b). Figure 6 contains
a simulation scenario with relative risk of 1.5 per causal allele
and Figure 7 the results for a relative risk of 1.1 per allele.
Again, pathways containing influential genes are additionally
highlighted.

In the kernel boosting plot in Figure 6(a), the three
pathways standing out in Figure 4 again reached very high
selection frequencies. All three bars decreased slightly in
size compared to the scenario with 2, 000 individuals but
still illustrate selections in more than 80% of simulation
runs. Selection frequencies of the other effect pathways
increased compared to the scenarios in Figure 4. However,
as selections across noninfluential pathways occurred more
frequently here, they cannot clearly be identified as influential
based on their selection frequencies alone. In the LKMT
analysis of this sample, the power to detect causal effects
noticeably drops compared to the 2, 000 individuals’ sample
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Figure 6: Relative frequency of datasets in which a pathway was selected using (a) kernel boosting (𝑛 = 1000, RR = 1.5) and (b) LKMT
(𝑛 = 1000, RR = 1.5) for sample sizes of 1000 individuals. Effect strength was set to relative risks of 1.5 per allele. Pathways including effect
genes are labeled in bold; numbers in brackets denote the count of included influential genes within the pathway.
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Figure 7: Relative frequency of datasets in which a pathway was selected using (a) kernel boosting (𝑛 = 1000, RR = 1.1) and (b) LKMT
(𝑛 = 1000, RR = 1.1) for sample sizes of 1000 individuals. Effect strength was set to relative risks of 1.1 per allele. Pathways including effect
genes are labeled in bold; numbers in brackets denote the count of included influential genes within the pathway.
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illustrated in Figure 4(b). Comparing Figures 6 with 7, we
can see a drop in selection frequencies as well as in power to
detect associated pathways. In Figure 6, the two chosen effect
pathways were detected in almost 100% and around 80% of
simulation runs for both methods. In Figure 7, we observe
that kernel boosting reaches selection frequencies of around
80% and 40%, while the LKMT with Bonferroni correction
only achieves selection frequencies slightly greater than 60%
and 20%, respectively. In a similar fashion to the results of
the scenarios compared in Figures 4 and 5, both methods
have higher power to detect associations for stronger effects;
however the drop in power is less pronounced for kernel
boosting. We conclude that kernel boosting firstly has no
inferior performance in terms of power compared to the
LKMT. It may even prove more likely to identify influential
pathways with smaller genetic effects as it overcomes the
multiple testing problem. Secondly, we infer that, in contrast
to single-pathway testing approaches, kernel boosting has the
ability to discriminate crucial biological processes associated
with disease risk from effects included in pathways only due
to overlapping genes.

4.2. GWAS Analysis Results. Kernel boosting on the human
disease pathways in the lung cancer dataset resulted in
selection of only the prion diseases pathway (KEGG id
hsa05020). No other pathway was selected. The misclassi-
fication error of the tuned boosting model for lung cancer
(evaluated at the optimal cut point as defined by the minimal
Youden index) was 24.5% and the AUC was 0.785. The
ROC curve and the cross-validation results are presented in
the Supplementary Material 1, Section B. The LKMT with
network-based kernel did not detect any associated pathway
on the Bonferroni-corrected significance level. The prion
diseases pathway appears ranked 20 out of 73 pathways,
when sorting pathways according to ascending Bonferroni-
corrected 𝑝 values. Prions are misfolded proteins capable of
changing the structure of other, properly folded proteins into
their own incorrect prion structure. They have mostly been
reported in connection with neurodegenerative diseases [52].
Nevertheless, a connection with different forms of cancer has
also previously been suspected [53, 54]. A full table of results
from the analysis of the lung cancer dataset can be found in
Supplementary Material 1, Section B.

As expected, analysis of the rheumatoid arthritis dataset
discovered a variety of pathways (compare results in [13]).
Kernel boosting constructed an explanatory model for dis-
ease status based on 32 selected pathways (see pathways
written in italics in Table 4). It is well known that genes
belonging to the human leukocyte antigen (HLA) complex
are highly correlatedwith rheumatoid arthritis [55].TheHLA
family, located on the short arm of chromosome 6, is a
highly polymorphic genetic system mainly responsible for
the regulation of the immune system [56]. In the human
disease class, 18 pathways contain at least one of the HLA
genes.These pathways are marked with an asterisk in Table 4.
Between the 18 pathways containing HLA genes and the 32
pathways selected by kernel boosting, there is an overlap
of 10 pathways. This may be explained by the multivariate
nature of the method, in which only the pathwaymost clearly

representing a particular genetic effect will be selected, con-
ditionally on previously selected effects. Testing the human
disease pathways’ influence on disease status with the LKMT
resulted in a large number of 46 significantly associated
pathways out of 73 pathways after Bonferroni correction
(see pathways with 𝑝 values in Table 4). These included
almost all HLA pathways (15 out of 18). The more specific
identification of influential pathways by kernel boosting
provides a more complete basis to the understanding of the
crucial biological processes involved in disease susceptibility.
The misclassification error of the tuned boosting model for
rheumatoid arthritis (evaluated at the optimal cut point as
defined by the minimal Youden index) was 22.7% and the
AUC was 0.850. The ROC curve and the cross-validation
results are presented in Supplementary Material 1, Section B.

5. Discussion

We extend a successful method for single-pathway tests to
a multivariate selection approach for simultaneous analysis
of several pathways. The resulting kernel boosting method
benefits from the advantages of a kernel-based analysis, while
at the same time overcomes some of the limitations inherent
to testing procedures.

Moreover, our multivariable approach to GWAS data
analysis does not provide 𝑝 values, which only provide
limited information on the relevance of a genetic effect.
A more meaningful result would be an effect measure for
the investigated trait or better still the ability to predict an
outcome. Kernel boosting facilitates prediction, based on
the selected influential variables, as was elucidated in the
application where the overall prediction accuracy of each of
the models was reported. Thus, it is also possible to interpret
the influence of a specific genetic alteration by comparing
the change in the predicted outcomes. A high degree of
prediction accuracy for the model is ensured through the
convenient evaluation of its performance on subsamples of
the investigated dataset. This procedure usually results in
good prediction accuracy and a sparse model.

Owing to the built-in shrinkage, our boosting approach is
capable of dealing with correlated effects. Hence, correlated
pathways, which partly include the same genes, can be
handled within this framework. Thanks to the multivariable
nature of the approach, only the best-fitting pathways, evalu-
ated in terms of prediction accuracy, will be chosen to enter
themodel.Thus, only the pathwaymost clearly representing a
particular genetic effect will be selected, depending on those
pathways selected previously. Our observations support the
statement by de Leeuw et al. [57] that competitive gene-set
analysis methods (multivariate approach, pathways in com-
petition), in contrast to self-contained approaches (univariate
approach, one pathway at a time), can potentially differentiate
widely spread heritability of polygenetic outcomes from
causal biological processes. This property can be very helpful
in the identification and understanding of specific biological
functions involved in disease susceptibility.

We consider pathways as analysis units; however various
other options exist. Single SNPs in transcribed or untran-
scribed regions, and SNP sets aggregated to represent a
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specific genomic region, environmental variables, or other
variables, may be investigated and even combined arbi-
trarily within one model. For example, the application of
our method to the genes comprising a pathway may help
to identify key influential genes within the network (for
gene boosting, see also the work of Ma et al. [58]; for
good overviews of feature selection methods and machine
learning tools in bioinformatics refer to [59, 60]). Known
influential factors may be embedded in an initial model prior
to the selection procedure to adjust for environmental or
genetic effects. Furthermore, the considered effects can be
incorporated into the model via a multitude of possible base-
learners.

The choice of a base-learner can influence effect selec-
tions. We observed this behaviour during the simulations,
in which the highly connected pathway containing only
one effect gene was identified owing to the network-based
kernel’s high power on interconnected effects. Thus, the
well-considered selection of base-learners to be utilized is
advisable. We account for the high complexity of possible
gene interactions in pathways via the use of a kernel function,
which accounts for additive and interaction effects. Such a
kernel function will likely lead to a higher degree of predic-
tion accuracy than a simple linear kernel. The application of
our method to GWAS datasets on rheumatoid arthritis and
lung cancer returned biologically plausible results. Particu-
larly with the rheumatoid arthritis dataset, the number of
identified pathways could be reduced considerably compared
to single-pathway tests. While the LKMT resulted in 46
significantly associated pathways, kernel boosting narrowed
the selection down to 32 pathways. Genes within the HLA
region are known to have a strong influence on rheumatoid
arthritis.Their effects can reach far across pathways, such that
the LKMT detects many pathways including HLA genes as
significantly associated. Boosting seems to help to pinpoint
down signals even among those pathways and reduces the
number of identified pathways to a more reasonable level.

Our results indicate that kernel boosting outperforms
single kernel machine tests, as exemplified by the LKMT,
in certain genetic scenarios. It may help to discriminate
causal biological processes from isolated effects included in
pathways only due to gene overlap and facilitate discovering
weak signals, especially in studies of limited size. This is of
particular interest in the investigation of rare diseases and
disease subtypes, in which established methods often fail to
find any significantly associated pathways owing to a lack of
power.

Datasets of the size investigated here can be analyzed
with kernel boosting quite efficiently on current high-
performance cluster computing (HPCC) systems. However,
such analysis of very large datasets places a rather high
demand even on the most powerful HPCC systems to date.
Usually, our kernel base-learners are based on the pairwise
similarities of all observations. This leads to 𝑛 × 𝑛 similarity
matrices as design matrices and hence to parameter vectors
𝛾 of size 𝑛. Instead of using all pairwise similarities, it is
possible to compute the similarities only to a representative
subset of the observations, or so-called knots. These knots
can be chosen as subset of the observations which covers

the complete observation space (space-filling algorithm; see
[33, 61, 62]). Consequently, we obtain reduced-rank design
matrices of dimension 𝑛 × 𝑛, where 𝑛 is the number of
knots, and a parameter vector of size 𝑛. This reduces the
computational burden for the construction of the kernel base-
learners and effect estimation and makes kernel-based meth-
ods even feasible in situations with many observations. The
exact number of observations that can be processed depends,
among others, on the considered number of individuals,
SNPs, base-learners chosen, and the available hardware.

Kernel boosting constitutes a new and potentially pow-
erful tool in the analysis of GWAS data. It offers a highly
flexible and extensible framework, suitable for a wide range
of application scenarios. We account for the high complexity
of possible gene interactions via the use of kernel functions,
while reducing the complexity of the resulting model with
the built-in shrinkage of the boosting approach.The resulting
model enables us to predict traits and returns moremeaning-
ful results than a testing procedure. We conclude that kernel
boosting is a suitablemethodological addition for the analysis
of GWAS, which supports the detection and interpretation of
genetic risk factors influencing disease susceptibility.
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A Additional Analysis of Simulation Study

A.1 Choice and distribution of mstop

In the primary analysis of the simulation study, we tried to convey a clear picture of the
selection properties of the boosting algorithm, which can be easily related to the selection
of pathways based on LKMT tests. As such we chose a relatively small number of boosting
iterations to check if the influential pathways are selected early on and if they can be clearly
distinguished from non-influential pathways. Hence, in the analysis of simulation results
reported in the manuscript, the ideal number of iterations mstop was determined within
a search range of 0 to 200. Specifying a (relatively small) maximum number of possible
iterations might force an early stopping of the algorithm in some simulation runs.

To investigate this issue, we re-analysed all simulation scenarios with a larger number
of maximal iterations permitted, in order to allow the algorithm to reach the optimal
boosting iteration, i.e., to find an iteration mstop such that the out-of-bag risk is minimal.
The number of iterations needed usually depends on the strength of the signal (effect size),
the number of informative base-learners and the number of observations. In our simulation
study, the number of iterations was mainly influenced by the number of observations
(but also, though to a lesser extend) by the effect size. For simulation scenarios up to
1000 individuals, we considered a maximum of 500 iterations, while for samples of 2000
individuals, the algorithm was allowed to perform up to 1000 iterations.
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In Figure 1 we display the observed number of iterations required for each simulation
scenario to reach the optimal prediction accuracy as measured by the cross-validated out-
of-bag Binomial log-likelihood.

0 100 200 300 400 500 600

0.
00

0.
01

0.
02

0.
03

0.
04

n=500, RR=1.1

Number of iterations (m_stop)

D
en

si
ty

0 100 200 300 400 500 600

0.
00

0.
01

0.
02

0.
03

0.
04

n=500, RR=1.5

Number of iterations (m_stop)

D
en

si
ty

0 100 200 300 400 500 600

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

n=1000, RR=1.1

Number of iterations (m_stop)

D
en

si
ty

0 100 200 300 400 500 600

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

n=1000, RR=1.5

Number of iterations (m_stop)

D
en

si
ty

0 200 400 600 800 1000

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

n=2000, RR=1.1

Number of iterations (m_stop)

D
en

si
ty

0 200 400 600 800 1000

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

n=2000, RR=1.5

Number of iterations (m_stop)

D
en

si
ty

Figure 1: Kernel density estimates of the number of iterations (mstop) in the 100 simulation
runs for the different simulation scenarios.

A.2 Selection of Pathways

Increasing of the number of iterations, as discussed in the previous section, leads to an in-
crease in runtime and likely results in the selections of additional pathways. Even though
boosting tends to have a slow overfitting behavior [1, 2], at a certain point, non-influential
effects are selected as well. This is more pronounced for data sets with many observations
compared to the number of base-learners (i.e., ”n > p”). Especially in later boosting
iterations, it might happen that non-informative pathways are selected. However, these
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pathways are usually selected infrequently and with a small effect on the predicted out-
come. Pathways selected early and often will have much more influence on the prediction.

The additional selections of causal and also non-causal pathways results in a less clear
discrimination of influential biological processes. This disadvantage can be compensated
for, however, by evaluating the results of kernel boosting in more detail. As the boosting
algorithm can not only select a pathway once, but will usually select the same effect
variable multiple times, if it is highly influential on the outcome, we can interpret the
selection frequency of each pathway for a single simulated data set. This is one means to
take the clinical relevance into account. Alternatively, one could consider the effect size,
i.e., the size of the coefficient for linear base-learners or the norm of the coefficient vector
for pathway kernel base-learners.

In the following paragraph, we assess the selection properties of the boosting algorithm
when run until convergence. The upper panels of Figures 2 to 7 depict the relative selection
frequencies of each base-learner averaged over all 100 simulation runs per scenario. Here,
we firstly count how often each pathway has been selected in a single simulation run.
This number is then transformed into a proportion of selections by deviding it with the
chosen mstop in the corresponding run. Secondly, these proportions per pathway are
averaged across all 100 simulation runs. In this way, we are taking into account the
relative importance of that effect. For comparisons the lower panel in each of the figures
shows the relative frequency of simulation runs in which a base-learner was selected at
least once. The latter plots are equal in structure to those in the paper, they merely show
results for larger values of mstop.

We can see, that for the simulation scenarios of 500 and 1000 individuals, no remarkable
change was detected when increasing the maximum number of iterations. Especially in
the simulation scenarios with 500 individuals, hardly any difference between top and lower
barplots is visible (Figures 2 and 3). In simulation scenarios of 1000 individuals, depicted
in Figures 4 and 5, we can see that the influential biological processes, represent by the
two simulated effect pathways, are more precisely distinguished from non-causal pathways
when also taking into account relative selection frequencies. For the scenario with 2000
individuals (Figure 7) we can see that considering relative selection frequencies has more
impact in larger samples. Here a clear difference between the upper and lower barplot
is visible. When only considering if a pathway was ever selected (lower row), influential
and non-influential pathways can less clearly be discriminated. Additional evaluation
of the relative selection frequency (top row) gives a much clearer picture and facilitates
identification of the causal pathways. Note, that the top barplot for the scenario with
2000 individuals and a relative risk of 1.5 per allele (Figure 7) looks similar to Figure 4
in the Paper, which evaluated selections only on the same data for a smaller number of
iterations. This means, that we can identify the influential pathways in a dataset with a
noticeably reduction in computation time using early stopping.

We conclude that he discrimination of biologically relevant processes from gene overlaps
is possible by letting the algorithm run until the optimal mstop when taking not only into
account if a pathway was selected, but also considering the relative selection frequencies.
Using this approach, causal pathways were even more precisely distinguished from non-
causal pathways than in the case of evaluating only if a pathway was seletced at least once
or not.
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n = 500, RR = 1.1
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Figure 2: Barplots for the relative selection frequencies of each base-learner in a single
run averaged over all 100 simulation runs (top) and relative frequencies of simulation runs
in which a base-learner was selected at least once (bottom). The sample comprised 250
cases and 250 controls and the effect strength was set to relative risks of 1.1 per allele.
Pathways including effect genes are labeled in bold; numbers in brackets denote the count
of included influential genes within the pathway.
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Figure 3: Barplots for the relative selection frequencies of each base-learner in a single
run averaged over all 100 simulation runs (top) and relative frequencies of simulation runs
in which a base-learner was selected at least once (bottom). The sample comprised 250
cases and 250 controls and the effect strength was set to relative risks of 1.5 per allele.
Pathways including effect genes are labeled in bold; numbers in brackets denote the count
of included influential genes within the pathway.
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n = 1000, RR = 1.1
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Figure 4: Barplots for the relative selection frequencies of each base-learner in a single
run averaged over all 100 simulation runs (top) and relative frequencies of simulation runs
in which a base-learner was selected at least once (bottom). The sample comprised 500
cases and 500 controls and the effect strength was set to relative risks of 1.1 per allele.
Pathways including effect genes are labeled in bold; numbers in brackets denote the count
of included influential genes within the pathway.
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Figure 5: Barplots for the relative selection frequencies of each base-learner in a single
run averaged over all 100 simulation runs (top) and relative frequencies of simulation runs
in which a base-learner was selected at least once (bottom). The sample comprised 500
cases and 500 controls and the effect strength was set to relative risks of 1.5 per allele.
Pathways including effect genes are labeled in bold; numbers in brackets denote the count
of included influential genes within the pathway.
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n = 2000, RR = 1.1
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Figure 6: Barplots for the relative selection frequencies of each base-learner in a single
run averaged over 100 simulation runs (top) and relative frequencies of simulation runs
in which a base-learner was selected at least once (bottom). The sample comprised 1000
cases and 1000 controls and the effect strength was set to relative risks of 1.1 per allele.
Pathways including effect genes are labeled in bold; numbers in brackets denote the count
of included influential genes within the pathway.
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Figure 7: Barplots for the relative selection frequencies of each base-learner in a single
run averaged over all 100 simulation runs (top) and relative frequencies of simulation runs
in which a base-learner was selected at least once (bottom). The sample comprised 1000
cases and 1000 controls and the effect strength was set to relative risks of 1.5 per allele.
Pathways including effect genes are labeled in bold; numbers in brackets denote the count
of included influential genes within the pathway.
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A.3 Computational Requirements

In the following, we provide run times and memory requirements for exemplary simulation
runs. The measurements include the model fitting with 50 simulated pathways and 20-fold
cross-validation to determine the optimal mstop. Cross-validation was run in parallel on
20 cores. We report the runtime (time actually needed for the process), the CPU time
(sum of run time over all CPUs used; approximates the runtime if the process was run
sequentially) and maximum memory allocation:

• Kernel boosting for the simulation scenario with 500 individuals required a runtime
of 12.8 minutes (corresponding CPU time 3.5 hours) as well as a maximum memory
use of 11.6 GB to determine the optimal mstop between 0 and 500.

• Analysis of the simulation scenario including 1000 individuals resulted in a runtime
of 1.9 hours, equalling a CPU time of 24.9 hours, for the same search range of mstop.
The maximum memory use was approximately 40 GB.

• The simulation scenario with 2000 individuals needed a runtime of 23.3 hours (CPU
time 340.6 hours), and utilized a maximum memory of 132 GB. Here, the ideal
number of iterations was to be determined between 0 and 1000.

Note, that the actual runtime can vary (e.g. depending on the system, the CPU and
the memory available). In practice, the runtime is significantly smaller than the CPU
time, as can be seen above, as it is very easy to run the cross-validation in parallel.
Of course, parallelization also requires a higher amount of memory. Hence, running the
cross-validation sequentially will require less memory, but will take longer.

A.4 Details on Effect Pathways

A graphical display of the two networks that were simulated to contain effect genes is
given in Figures 9 and 8.
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Figure 9: Network structure and placement of effect genes (red nodes) in the pathway
hsa04022 used in simulations. 9



B Additional Results of Data Analyses

Figure 10 shows the out-of-bag risk for the 20-fold subsampling: The model is fitted 20
times on random subsets of the data and the (negative) Binomial likelihood is computed
for the derived model on the new data (for each value of mstop). Each of the gray lines is
the out-of-bag risk for one model. The black line is the averaged risk for all 20 models.
This estimates the goodness of fit, as measured by the likelihood, or better said the risk as
measured by the negative likelihood. Essentially, we see how well the model would perform
to predict the outcome for new data. The vertical dotted line indicates the optimal mstop

chosen on the dataset. The cross-validated risk for the lung cancer data shows that this
data set seems to contain very little information as the risk almost imediately starts to
increase. The optimal boosting iteration was chosen as mstop = 4. The cross-validated
risk for the rheumatoid athritis data shows that many updates were required to find the
optimal model (mstop = 993). It seems that this GWAS data set contains much more
information on the disease status. The Receiver operating characteristic (ROC) curves of
the two model for lung cancer and rheumatoid arthritis are depcited in Figure 11. These
graphs display the overall prediction accuracy of the derived models.
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Figure 10: Cross-validated out-of-bag prediction accuracy for the lung cancer (left) and
rheumatoid arthritis dataset (right).

Table 1 gives an overview the pathways used for the lung cancer data set together with
the p-values derived via LKMT.
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Figure 11: Receiver operating characteristic (ROC) curve depcting the prediction accu-
raccy of the boosted model for lung cancer (left) and for rheumatoid arthritis (right).

KEGG id Name of Pathway P-value
hsa05134 Legionellosis 0.0389
hsa05016 Huntington’s disease 0.0446
hsa05323 Rheumatoid arthritis 0.0986
hsa05231 Choline metabolism in cancer 0.1232
hsa05210 Colorectal cancer 0.1421
hsa05169 Epstein-Barr virus infection 0.1464
hsa05220 Chronic myeloid leukemia 0.1698
hsa04940 Type I diabetes mellitus 0.1754
hsa05143 African trypanosomiasis 0.1758
hsa05014 Amyotrophic lateral sclerosis (ALS) 0.1800
hsa05205 Proteoglycans in cancer 0.1933
hsa05223 Non-small cell lung cancer 0.1991
hsa05144 Malaria 0.2080
hsa05211 Renal cell carcinoma 0.2274
hsa05332 Graft-versus-host disease 0.2590
hsa05214 Glioma 0.2653
hsa05212 Pancreatic cancer 0.3032
hsa05010 Alzheimer’s disease 0.3177
hsa05031 Amphetamine addiction 0.3185
hsa05020 Prion diseases 0.3286
hsa05340 Primary immunodeficiency 0.3478
hsa05166 HTLV-I infection 0.3656
hsa05213 Endometrial cancer 0.4011
hsa04932 Non-alcoholic fatty liver disease (NAFLD) 0.4029
hsa05145 Toxoplasmosis 0.4054
hsa05218 Melanoma 0.4109
hsa05230 Central carbon metabolism in cancer 0.4262
hsa05330 Allograft rejection 0.4288
hsa04933 AGE-RAGE signaling pathway in diabetic complications 0.4297
hsa05206 MicroRNAs in cancer 0.4305
hsa05221 Acute myeloid leukemia 0.4315
hsa05219 Bladder cancer 0.4322
hsa05032 Morphine addiction 0.4411
hsa05133 Pertussis 0.4637
hsa05012 Parkinson’s disease 0.4690
hsa05310 Asthma 0.4709
hsa05033 Nicotine addiction 0.4756
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hsa05150 Staphylococcus aureus infection 0.4834
hsa05416 Viral myocarditis 0.5194
hsa05120 Epithelial cell signaling in Helicobacter pylori infection 0.5271
hsa05110 Vibrio cholerae infection 0.5287
hsa05161 Hepatitis B 0.5366
hsa05200 Pathways in cancer 0.5648
hsa04931 Insulin resistance 0.5697
hsa05217 Basal cell carcinoma 0.5736
hsa05030 Cocaine addiction 0.5852
hsa05215 Prostate cancer 0.5860
hsa05130 Pathogenic Escherichia coli infection 0.6437
hsa05204 Chemical carcinogenesis 0.6518
hsa05203 Viral carcinogenesis 0.6630
hsa05216 Thyroid cancer 0.6693
hsa05202 Transcriptional misregulation in cancer 0.6722
hsa05168 Herpes simplex infection 0.7000
hsa05131 Shigellosis 0.7154
hsa05100 Bacterial invasion of epithelial cells 0.7165
hsa05132 Salmonella infection 0.7292
hsa05320 Autoimmune thyroid disease 0.7341
hsa05152 Tuberculosis 0.7453
hsa05162 Measles 0.7702
hsa05222 Small-cell lung cancer 0.7793
hsa05140 Leishmaniasis 0.7971
hsa05142 Chagas disease (American trypanosomiasis) 0.8150
hsa05164 Influenza A 0.8419
hsa05322 Systemic lupus erythematosus 0.8594
hsa05146 Amoebiasis 0.8903
hsa05034 Alcoholism 0.8912
hsa04930 Type II diabetes mellitus 0.8960
hsa04950 Maturity onset diabetes of the young 0.9191
hsa05321 Inflammatory bowel disease (IBD) 0.9214
hsa05414 Dilated cardiomyopathy 0.9664
hsa05410 Hypertrophic cardiomyopathy (HCM) 0.9732
hsa05412 Arrhythmogenic right ventricular cardiomyopathy (ARVC) 0.9858
hsa05160 Hepatitis C 0.9863

Table 1: KEGG pathways in the Human Diseases class as downloaded in April 2016. Path-
ways are sorted according to p-value, derived from LKMT application on the lung cancer
dataset, in ascending order. No pathways reached a significant p-value after Bonferroni
correction are listed. The pathway selected by kernel boosting on this same dataset is
marked in bold.
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Kangar00: Kernel Approaches for Nonlinear Genetic
Association Regression

Stefanie Friedrichs
2017-04-26

Introduction

The genetic information collected in genome-wide association studies (GWAS) is represented by the genotypes
of various single-nucleotid polymorphisms (SNPS). Testing biological meaningful SNP Sets is a successful
strategy for the evaluation of GWAS data, as it may increase power as well as interpretation of results.
Via mapping of SNPs to genes forming a network, association between pathways and disease risk can be
investigated.
Kernel methods are particularly well suited to cope with the challenges connected to the analysis of large SNP
sets from GWAS data. They do not require to model a direct functional relationship between SNPs and effects,
while at the same time can deal with high-dimensional data and allow for straightforward incorporation of
covariates. The model for a logistic kernel machine regression of a pathway on a binary outcome is given by

logit(P (yi = 1|xi, zi)) = xtiβ + h(zi)(1)

where yi denotes the case or control status of individual i, xi is the vector including informative covariates
(such as age, sex, etc.) and zi represents the genotypes of individual i. β is the regression coefficients for the
parametric part of the model, while h(.) denotes an unknown function, non-parametrically incorporating the
pathway’s influence. The intercept is assumed to be included in xi. For more details see Liu et al (2008).

Different kernels have been proposed that convert the genomic information of two individuals into a quantitative
value reflecting their genetic similarity. This package includes the linear kernel as well as two more advanced
kernels, adjusting for size bias in the number of SNPs and genes in a pathway or incorporating the network
structure of genes within the pathway, respectively. The kernel functions are described in more detail in the
instructions below.

A variance component test, constructed around the similarity matrix, can be used to evaluate a pathway’s
influence on disease risk. In kangar00 p-values can be calculated with the Satterthwaite approximation or
Davies method as described in Schaid (2010) and Davies (1980), respectively.

Data extraction and preparation

Pathways

The kangar00 package offers several functions for data extraction from internet databases. In the following
they will be explained using the Circadian rhythm pathway as an example.

• In the KEGG database (Kanehisa et al 2014) this pathway is identified with the id hsa04710.

• The function pathway_info() can use this id to create a table listing all genes included in Circadian
rhythm. For each gene the startpoint, endpoint and the chromosome are listed.

• Gene membership is obtained directly from KEGG, while startpoints, endpoints and chromosome
information is extracted from Ensembl (Cunningham et al 2015). The database is accessed via the
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function getBM() in the biomaRt package. This means that the gene boundaries given will equal the
current build used in Ensemble. An internet connection is required for this step.

pathway_info('hsa04710')

will return a pathway_info object containing a data frame of the form

pathway gene_start gene_end chr gene
hsa04710 13276652 13387266 11 ARNTL
hsa04710 4979116 4985323 3 BHLHE40
hsa04710 26120026 26125127 12 BHLHE41
hsa04710 . . . . . . . . . . . .

listing information on all genes KEGG assigned to Circadian rhythm.

Pathway object

In kangar00 all information on a specific pathway is combined in a pathway object. It includes

• The pathway’s ID as used in KEGG.

• The adjacency matrix, which equals the network matrix without signs.

• A vector giving the signs for the interactions.

The following example creates a new pathway object, to which gene-interaction information has yet to be
added

pathw <- pathway(id='hsa04710', adj=matrix(0), sign=as.vector(matrix(0)[matrix(0)!=0]))

Networkmatrix

The gene-gene interactions within pathways are represented by a network matrix. This quadratic matrix
is of dimension equal to the number of genes in the corresponding pathway. It includes entries equal to 1
(representing an activation interaction), −1 (denoting an inhibiting interaction) or 0 (no interaction).

A network matrix can be created using the function get_network_matrix(). Gene interaction information
for a specific pathway is extracted from the KEGG database. It is accessed via the function retrieveKGML()
from the KEGGgraph package. An internet connection is required for this step.

pathw_complete <- get_network_matrix(pathw, directed=FALSE)

will download the KEGG XML file for the pathway with ID ‘hsa04710’ and save it in the working directory.
The function will convert the data into a network matrix and add it to the given pathway object. The
expanded pathway object will be returned. The user can specify whether the gene-interaction matrix should
be given directed (directed=TRUE) or undirected (directed=FALSE).

SNP positions

Kangar00 offers a function to download positions of the SNPs available in your GWAS dataset from the
Ensembl database.

• snp_info() will take a vector of rs-numbers and give the corresponding base pair positions.
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• Positions are extracted from the Ensembl database and thus equal the current build used on the website.
The database is accessed via the function getBM() from the package biomaRt. This requires an internet
connection.

snp_info("rs234")

will return a snp_info object containing the data frame

chr position rsnumber
7 105920689 rs234

Pathway Annotation

To define SNP sets representing a pathway, the function get_anno() can be used.

• Input arguments are a pathway_info as well as a snp_info object.

• If you do not want to change positions in your SNP file using the snp_info() function, you will have to
transform it into a snp_info object including a data frame listing all SNPs to be annotated. This data
frame must include the columns ‘chr’, ‘position’ and ‘rsnumber’, giving for each SNP the chromosome
it lies on, its base pair position on the chromosome and the rs-numbers identifier, respectively. See also
the output description of snp_info().

• For annotation the package sqldf is used.

get_anno(snp_info, pathway_info)

will return a data frame listing all SNPs that lie inside the boundaries of one or more genes in the pathway.
That means that genes can appear several times, depending on the number of SNPs mapped to them. A SNP
can and will be mapped to multiple genes if they overlap. The data frame will have the following format

pathway gene chr snp position
hsa04710 CSNK1E 22 rs11089885 38413480
hsa04710 CSNK1E 22 rs13054361 38336819
hsa04710 CSNK1E 22 rs135757 38307648
hsa04710 . . . . . . . . . . . .

GWAS data

Data from a case control study is needed to test a pathways influence on disease risk with the logistic kernel
machine test in kangar00. Here, GWAS data is represented by the GWASdata object. It includes

• Genotype data for each individual.

– Genotype data needs to be a matrix with one line per individual and one column for each SNP.
– Rownames give ID numbers for the individuals while columnames give the rs-numbers correspond-

ing to the SNPs genotyped in the study.

– Note that missing values are not allowed and SNPs with missing genotypes have to be imputed or
excluded from the sample prior to creation of the GWASdata object.

• Phenotype data for each individual.

– Phenotypes need to be given in a data frame with the first column including the individual IDs
as in the genotype sample.
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– Further columns can contain informative covariates (such as age, sex, . . . ) to be used in the logistic
regression model.

• Annotation of study SNPs to pathways created by get_anno.

– This data frame defines the SNP set representing a specific pathway. It can be created using the
function get_anno().

• A character describing the data can be added to the GWASdata object. This could for instance be the
name of the study.

A GWASdata object can be constructed as

my_gwas <- GWASdata(pheno=pheno, geno=geno, anno=anno, desc="study xy")

Calculation of Kernel Matrices

Once a GWASdata object is created, we can start to calculate kernel matrices to test a pathways influence on
disease risk. Kangar00 offers three different kernel functions to compute a similarity matrix for the individuals
in analysis. They will be explained in the following.

Linear Kernel (Lin)

The linear kernel assumes additive SNP effects. It is calculated as

ZZt(2)

where Z denotes the genotype matrix (See also Liu et al, 2010). In kangar00 a linear kernel can be created
using the function kernel_lin(). It requires as arguments

• A GWASdata object containing the genotype information.

• A pathway object specifying the pathway to be tested.

• A value for argument calculation to decide how the kernel should be calculated. Options are cpu for
calculation on cpu and gpu for gpu calculation.

K_lin <- lin_kernel(gwas, p, calculation='cpu')

will return a quadratic matrix of dimension equal to the number of individuals in the GWASdata object.

Size-adjusted Kernel (Sia)

The size-adjusted kernel takes into consideration the numbers of SNPs and genes in a pathway to correct for
size bias. It is calculated as

Ki,j = exp(−
√

1
rp

∑

g

(
||zgi − zgj ||
µgk

eff
g

)δg)(3)

Here zgi is the vector of individual i ’s genotypes in gene g and rp the number of genes in pathway p. Scaling
parameters keffg , µg and δg adjust for the number of genes in the pathway and the number of SNPs within
these genes (for more details refer to Freytag et al. 2012).

A kernel of this type can be calculated using the function kernel_sia() with
the following arguments

4



• A GWASdata object containing the genotype information.

• A pathway object specifying the pathway to be tested.

• A value for argument calculation to decide how the kernel should be calculated. Currently only cpu
for cpu calculation is available.

K_sia <- sia_kernel(gwas, p, calculation='cpu')

will return a quadratic matrix of dimension equal to the number of individuals in the GWASdata object.

Network Kernel (Net)

The network kernel incorporates information about gene-gene interactions into the model. It is defined as

K = ZANAtZt(4)

where matrix A maps SNPs to genes, N represents the underlying network structure, and Z is the genotype
matrix. The network based kernel matrix for a pathway can be calculated with the function kernel_net().
Following arguments are needed

• A GWASdata object containing the genotype information.

• A pathway object specifying the pathway to be tested.

• A value for argument ‘calculation’ to decide how the kernel should be calculated.

K_net <- net_kernel(gwas, p, calculation='cpu')

will return a quadratic matrix of dimension equal to the number of individuals in the GWASdata object.

Alternatively, kernel matrices can be calculated using the function calc_kernel(). Here the kernel type is
specified via an additional argument type. It can be set to lin, sia or net.

K <- calc_kernel(gwas, p, type='lin', parallel='none')

This function will simply call the suitable kernel function as described above and therefore has the same
output.

Variance Component Test

A pathways influence on the probability of being a case is evaluated in a variance component test. The test
statistic is

Q = 1
2(y − µ)tK(y − µ)(5)

with µ the vector of null model estimators given by µi = logit−1(xtiβ) for an individual i and K a kernel
matrix of the pathway to be tested. Q follows a mixture of X2 distributions which can be approximated using
the Satterthwaite procedure (Schaid 2012) or Davies method as implemented in the R package QuadCompForm
(Davies 1980). More details on the test can be found in Wu et al (2010).

In kangar00 the logistic kernel machine test can be applied to a SNP set defining a pathway with the function
lkmt. It needs the following arguments

• A formula specifying the null model to be used in the test. The dependent variable is the case control
status of the individual (in the example denoted as ‘pheno’) and is explained by an intercept and
optional covariates.

• A linear, size-adjusted or network kernel matrix calculated by one of the kernel functions kernel_lin(),
kernel_sia() or kernel_net().
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• A GWASdata object including the genotype based on which the test should be performed.

• A character specifying which method should be used to calculate the p-value. Available are ‘satt’ for
the Satterthwaite approximation (Schaid

2010) or ‘davies’ for Davies method (Davies 1980).

pval_net <- lkmt(pheno ~ 1+sex+age, K_mat, my_gwas, method='satt')

will return an object of type lkmt giving the test result for the pathway on which the kernel matrix ‘K_mat’
was calculated. The GWASdata object ‘my_gwas’ has to be the same as used to calculate the kernel matrix.
The formula above would for example fit for a phenotype file of the following format (IDs in first column are
always required in phenotype file)

ID pheno sex age smoker
ind1 1 1 41 1
ind2 0 0 38 0
ind3 1 1 56 1
. . . . . . . . . . . . . . .

note, that the columns to be used in the model are specified in the formula given to the lkmt() function and
not all covariates have to be used.
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kangar00-package kangar00 package

Description

This package includes methods to extract information on pathways, genes and SNPs from online
databases and to evaluate these data using the logistic kernel machine test (LKMT) (Liu et al. 2008).

We defined SNP sets representing genes and whole pathways using knowledge on gene membership
and interaction from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Kanehisa
et al. 2014). SNPs are mapped to genes via base pair positions of SNPs and transcript start and end
points of genes as documented in the Ensemble database (Cunningham et al. 2015).

In the LKMT, we employed the linear kernel (Wu et al. 2010) as well as two more advanced kernels,
adjusting for size bias in the number of SNPs and genes in a pathway (size-adjusted kernels), and
incorporating the network structure of genes within the pathway (pathway kernels), respectively
(Freytag et al. 2012, 2014). P-values are derived in a variance component test using a moment
matching methode (Schaid, 2010) or Davies’ algorithm (Davies, 1980).

Details
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• Wu MC, Kraft P, Epstein MP, Taylor DM, Chanock SJ, Hunter DJ, Lin X: Powerful SNP-
Set Analysis for Case-Control Genome-Wide Association Studies. Am J Hum Genet 2010,
86:929-42

anno Example annotation file for three pathways.

Description

A dataset containing an annotation example for 4056 SNPs in three different pathways.

Usage

data(anno)

Format

A data frame with 4056 rows and 5 variables:

pathway includes KEGG identifiers of three example pathways

gene names of genes in the pathways

chr specifies the chromosome

snp includes rs-numbers of example SNPs

position gives positions of example SNPs

Source

simulated data

calc_kernel Calculates the kernel-matrix for a pathway

Description

Uses individuals’ genotypes to create a kernel object including the calculated kernel matrix for
a specific pathway. Each numeric value within this matrix is calculated from two individuals’
genotypevectors of the SNPs within the pathway by a kernel function. It can be interpreted as
the genetic similiarity of the individuals. Association between the pathway and a binary phenotype
(case-control status) can be evaluated in the logistic kernel machine test, based on the kernel object.
Three kernel functions are available.
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Usage

## S4 method for signature 'GWASdata'
calc_kernel(object, pathway, knots = NULL,

type = c("lin", "sia", "net"), calculation = c("cpu", "gpu"), ...)

## S4 method for signature 'GWASdata'
lin_kernel(object, pathway, knots = NULL,

calculation = c("cpu", "gpu"), ...)

## S4 method for signature 'GWASdata'
sia_kernel(object, pathway, knots = NULL,

calculation = c("cpu", "gpu"), ...)

## S4 method for signature 'GWASdata'
net_kernel(object, pathway, knots = NULL,

calculation = c("cpu", "gpu"), ...)

Arguments

object GWASdata object containing the genotypes of the individuals for which a kernel
will be calculated.

pathway object of the class pathway specifying the SNP set for which a kernel will be
calculated.

knots GWASdata object, if specified a kernel will be computed.

type character indicating the kernel type: Use 'lin' to specify the linear kernel,
'sia' for the size-adjusted or 'net' for the network-based kernel.

calculation character specifying if the kernel matrix is computed on CPU or GPU.

... further arguments to be passed to kernel computations.

Details

Different types of kernels can be constructed:

• type='lin' creates the linear kernel assuming additive SNP effects to be evaluated in the
logistic kernel machine test.

• type='sia' calculates the size-adjusted kernel which takes into consideration the numbers of
SNPs and genes in a pathway to correct for size bias.

• type='net' calculates the network-based kernel. Here not only information on gene mem-
bership and gene/pathway size in number of SNPs is incorporated, but also the interaction
structure of genes in the pathway.

For more details, check the references.

Value

Returns an object of class kernel, including the similarity matrix of the pathway for the considered
individuals.
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If knots are specified low-rank kernel of class a lowrank_kernel will be returned, which is not
necessarily quadratic and symmetric.

Methods (by class)

• GWASdata: Calculates a linear kernel

• GWASdata: Calculates a size adjusted-kernel

• GWASdata: Calculates a network-based kernel

Author(s)

Stefanie Friedrichs, Juliane Manitz

References

• Wu MC, Kraft P, Epstein MP, Taylor DM, Chanock SJ, Hunter DJ, Lin X Powerful SNP-
Set Analysis for Case-Control Genome-Wide Association Studies. Am J Hum Genet 2010,
86:929-42

• Freytag S, Bickeboeller H, Amos CI, Kneib T, Schlather M: A Novel Kernel for Correcting
Size Bias in the Logistic Kernel Machine Test with an Application to Rheumatoid Arthritis.
Hum Hered. 2012, 74(2):97-108.

• Freytag S, Manitz J, Schlather M, Kneib T, Amos CI, Risch A, Chang-Claude J, Heinrich J,
Bickeboeller H: A network-based kernel machine test for the identification of risk pathways
in genome-wide association studies. Hum Hered. 2013, 76(2):64-75.

See Also

kernel-class,pathway

Examples

data(gwas)
data(hsa04020)
calc_kernel(gwas, hsa04020, knots = NULL, type='net', calculation='cpu')

geno Example genotypes for 50 individuals.

Description

A matrix containing example genotypes for 4056 SNPs of 50 individuals. Column names give the
rs-numbers of 4056 example SNPs, row names the identifiers of 50 example individuals.

Usage

data(geno)
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Format

A matrix with 5 rows and 4056 columns:
each entry in the matrix represents a simulated minor allele count for the corresponding SNP
and individual.

Source

simulated data

get_anno,snp_info,pathway_info-method

Annotates SNPs via genes to pathways

Description

A function to create the annotation for a GWASdata object. It combines a snp_info and a pathway_info
object into an annotation data.frame used for pathway analysis on GWAS. SNPs are assigned to
pathways via gene membership.

Usage

## S4 method for signature 'snp_info,pathway_info'
get_anno(object1, object2, ...)

Arguments

object1 A snp_info object with SNP information as returned by the snp_info function.
The included data frame contains the columns ’chr’, ’position’ and ’snp’.

object2 A pathway_info object with information on genes contained in pathways. It is
created by the pathway_info function and contains a data frame with columns
’pathway’, ’gene_start’, ’gene_end’, ’chr’, ’gene’.

... further arguments can be added.

Value

A data.frame mapping SNPs to genes and genes to pathways. It includes the columns ’pathway’,
’gene’, ’chr’, ’snp’ and ’position’.

Author(s)

Stefanie Friedrichs, Saskia Freytag, Ngoc-Thuy Ha

See Also

snp_info, pathway_info
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Examples

data(hsa04022_info)
data(rs10243170_info)
get_anno(rs10243170_info, hsa04022_info)

get_network_matrix,pathway-method

Function to calculate the network matrix for a pathway object

Description

This function creates the network matrix representing the gene-gene interaction structure within a
particular pathway. In this process a KEGG kgml file is downloaded and saved in the working
directory.

Usage

## S4 method for signature 'pathway'
get_network_matrix(object, directed = TRUE)

Arguments

object A pathway object identifying the pathway for which gene interaction infoma-
tion should be extracted. Here, KEGG IDs of format ’hsa00100’ are used and
information is downloaded from the KEGG database.

directed A logic argument, stating whether the network matrix should be returned di-
rected (TRUE) or undirected (FALSE).

Value

The altered pathway object, in which the slots 'adj' and 'sign' have been changed according to
the downloaded information on the pathway.

Author(s)

Stefanie Friedrichs, Patricia Burger
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gwas Example GWASdata object.

Description

An object of type GWASdata containing the example files for annotation, phenotypes and geno-
types.

Usage

data(gwas)

Format

An object of class GWASdata:

geno contains example genotypes

anno example annotation for three pathways

pheno exemplary phenotypes for all ’genotyped’ individuals

desc a description of the GWAS study, here ’example study’

Source

simulated data

GWASdata S4 class for an object representing a Genome-wide Assocaition Study.

Description

S4 class for an object representing a Genome-wide Assocaition Study.

'GWASdata' is a GWASdata object constructor.

show displays basic information on GWASdata object

summary summarizes the content of a GWASdata object and gives an overview about the information
included in a GWASdata object. Summary statistics for phenotype and genotype data are calculated.

GeneSNPsize creates a data.frame of pathway names with numbers of snps and genes in each
pathway.
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Usage

GWASdata(object, ...)

## S4 method for signature 'ANY'
GWASdata(geno, anno, pheno = NULL, desc = "")

## S4 method for signature 'GWASdata'
show(object)

## S4 method for signature 'GWASdata'
summary(object)

## S4 method for signature 'GWASdata'
GeneSNPsize(object)

Arguments

object A GWASdata object.

... Further arguments can be added to the function.

geno An object of any type, including the genotype information.

anno A data.frame containing the annotation file for the GWASdata object.

pheno A data.frame specifying individual IDs, phenotypes and covariates to be in-
cluded in the regression model.

desc A character giving the GWAS description, e.g. name of study.

Methods (by generic)

• GeneSNPsize: creates a data.frame of pathway names with numbers of snps and genes in
each pathway.

Slots

geno An object of any type, including genotype information. The format needs to be one line per
individual and on colum per SNP in minor-allele coding (0,1,2). Other values between 0 and
2, as from impute dosages, are allowed. Missing values must be imputed prior to creation of a
GWASdata object.

anno A data.frame mapping SNPs to genes and genes to pathways. Needs to include the columns
’pathway’ (pathway ID, e.g. hsa number from KEGG database), ’gene’ (gene name (hgnc_symbol)),
’chr’ (chromosome), ’snp’ (rsnumber) and ’position’ (base pair position of SNP).

pheno A data.frame specifying individual IDs, phenotypes and covariates to be included in the
regression model e.g. ID, pheno, sex, pack.years. Note: IDs have to be in the first column!

desc A character giving the GWAS description, e.g. name of study.

Author(s)

Juliane Manitz, Stefanie Friedrichs
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Examples

data(pheno)
data(geno)
data(anno)
gwas <- new('GWASdata', pheno=pheno, geno=geno, anno=anno, desc="some study")
# show method
data(gwas)
gwas
# summary method
data(gwas)
summary(gwas)

# SNPs and genes in pathway
data(gwas)
GeneSNPsize(gwas)

hsa04020 Example pathway object for pathway hsa04020.

Description

An object of class pathway for the pathway with KEGG identifier hsa04020.

Usage

data(hsa04020)

Format

A pathway object including 180 genes.

id KEGG identifier of the example pathways

adj gives the quadratic adjacency matrix for the pathway and with that the network topology.
Matrix dimensions equal the number of genes in the pathway

sign includes a vector of signs to distinguish activations and inhibitions in the adjacency matrix

Source

simulated data and Ensembl extract
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hsa04022_info Example pathway_info object for pathway hsa04022.

Description

An object of class pathway_info for the pathway with KEGG identifier hsa04020.

Usage

data(hsa04022_info)

Format

A pathway_info object including information on 163 genes.

info a data frame including information on genes included in pathway. Has columns ’pathway’,
’gene_start’, ’gene_end’, ’chr’, and ’gene’

Source

Ensembl extract

kernel-class An S4 class representing a kernel matrix calculated for a pathway

Description

An S4 class representing a kernel matrix calculated for a pathway

show displays the kernel object briefly

summary generates a kernel object summary including the number of individuals and genes for the
pathway

plot creates an image plot of a kernel object

Usage

## S4 method for signature 'kernel'
show(object)

## S4 method for signature 'kernel'
summary(object)

## S4 method for signature 'kernel,missing'
plot(x, y = NA, hclust = FALSE, ...)
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Arguments

object An object of class kernel

x the kernel object to be plotted.

y missing (placeholder).

hclust logical, indicating whether a dendrogram should be added.

... further arguments to be passed to the function.

Slots

type A character representing the kernel type: Use 'lin' for linear kernel, 'sia' for the size-
adjusted or 'net' for the network-based kernel.

kernel A kernel matrix of dimension equal to the number of individuals

pathway A pathway object

Author(s)

Juliane Manitz

Examples

data(net.kernel.hsa04020)
show(net.kernel.hsa04020)
summary(net.kernel.hsa04020)
plot(net.kernel.hsa04020)

lkmt-class An S4 class to represent the variance component test.

Description

An S4 class to represent the variance component test.

show Shows basic information on lkmt object

summary Summarizes information on lkmt object

Usage

## S4 method for signature 'lkmt'
show(object)

## S4 method for signature 'lkmt'
summary(object)

Arguments

object An object of class lkmt.

... Further arguments can be added to the function
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Value

show Basic information on lkmt object.

summary Summarized information on lkmt object.

Slots

formula A formula stating the regression nullmodel that will be used in the variance component
test.

kernel An object of class kernel representing the similarity matrix of the individuals based on
which the pathways influence is evaluated.

GWASdata An object of class GWASdata including the data on which the test is conducted.

statistic A vector giving the value of the variance component test statistic.

df A vector containing the number of degrees of freedom.

p.value A vector giving the p-value calculated for the \ codepathway object considered in the
variance component test.
For details on the variance component test see the references.

Author(s)

Juliane Manitz, Stefanie Friedrichs

References

• Liu D, Lin X, Ghosh D: Semiparametric regression of multidimensional genetic pathway data:
least-squares kernel machines and linear mixed models. Biometrics 2007, 63(4):1079-88.

• Wu MC, Kraft P, Epstein MP, Taylor DM, Chanock SJ, Hunter DJ, Lin X: Powerful SNP-
Set Analysis for Case-Control Genome-Wide Association Studies. Am J Hum Genet 2010,
86:929-42

Examples

# show method
data(lkmt.net.kernel.hsa04020)
lkmt.net.kernel.hsa04020
# summary method
summary(lkmt.net.kernel.hsa04020)

lkmt.net.kernel.hsa04020

Example test result for the network-based kernel for pathway
hsa04020.

Description

An object of class lkmt containing exemplary test results for an application of the logistic kernel
machine test, derived from the example data.
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Usage

data(lkmt.net.kernel.hsa04020)

Format

An object of class lkmt for the network-based kernel and the pathway hsa04020.

formular gives a formular defining the nullmodel used in the logistic kernel machine test

kernel includes the kernel object of the pathway to be evaluated

GWASdata gives the GWASdata object including the study data considered in testing

statistic gives the value of the test statistic

df specifies the degrees of freedom

p.value includes teh p-value resulting from the test

Source

simulated data and Ensembl extract

lkmt_test A function to calculate the p-values for kernel matrices.

Description

A function to calculate the p-values for kernel matrices.

For parameter 'satt' a pathways influence on the probability of beeing a case is evaluated in the
logistic kernel machine test and p-values are determined using a Sattherthwaite Approximation as
described by Dan Schaid.

For parameter 'davies' a pathways influence on the probability of beeing a case is evaluated
using the p-value calculation method described by Davies. Here the function davies from package
CompQuadForm is used.

Usage

lkmt_test(formula, kernel, GWASdata, method = c("satt", "davies"), ...)

## S4 method for signature 'matrix'
score_test(x1, x2)

## S4 method for signature 'matrix'
davies_test(x1, x2)
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Arguments

formula The formula to be used for the regression nullmodel.

kernel An object of class kernel including the pathway representing kernel-matrix
based on which the test statistic will be calculated.

GWASdata A GWASdata object stating the data used in analysis.

method A character specifying which method will be used for p-value calculation.
Available are 'satt' for the Satterthwaite approximation and 'davies' for
Davies’ algorithm. For more details see the references.

... Further arguments can be given to the function.

x1 A matrix which is the similarity matrix calculated for the pathway to be tested.

x2 An lm or glm object of the nullmodel with fixed effects covariates included, but
no genetic random effects.

Value

An lkmt object including the following test results

• The formula of the regression nullmodel used in the variance component test.

• An object of class kernel including the similarity matrix of the individuals based on which
the pathways influence is evaluated.

• An object of class GWASdata stating the data on which the test was conducted.

• statistic A vector giving the value of the variance component test statistic.

• df A vector giving the number of degrees of freedom.

• p.value A vector giving the p-value calculated for the pathway in the variance component
test.

Author(s)

Stefanie Friedrichs, Juliane Manitz

References

For details on the variance component test

• Wu MC, Kraft P, Epstein MP, Taylor DM, Chanock SJ, Hunter DJ, Lin X: Powerful SNP-
Set Analysis for Case-Control Genome-Wide Association Studies. Am J Hum Genet 2010,
86:929-42

• Liu D, Lin X, Ghosh D: Semiparametric regression of multidimensional genetic pathway data:
least-squares kernel machines and linear mixed models. Biometrics 2007, 63(4):1079-88.

For details on the p-value calculation see

• Schaid DJ: Genomic Similarity and Kernel Methods I: Advancements by Building on Mathe-
matical and Statistical Foundations. Hum Hered 2010, 70:109-31

• Davies R: Algorithm as 155: the distribution of a linear combination of chi-2 random vari-
ables. J R Stat Soc Ser C 1980, 29:323-333.
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Examples

data(net.kernel.hsa04020)
data(gwas)
lkmt_test(pheno ~ sex + age, net.kernel.hsa04020, gwas, method='satt')

lowrank_kernel-class An S4 class to represent a low-rank kernel for a SNPset at specified
knots

Description

An S4 class to represent a low-rank kernel for a SNPset at specified knots

Details

This kernel is used for predictions. If observations and knots are equal, better construct a full-rank
kernel of class kernel.

Slots

type character, kernel type: Use 'lin' for the linear kernel, 'sia' for the size-adjusted or 'net'
for the network-based kernel.

kernel kernel matrix of dimension equal to individuals

pathway pathway object

Author(s)

Juliane Manitz

Examples

data(gwas)
calc_kernel(gwas, hsa04020, knots=gwas, type='lin', calculation='cpu')
## Not run:
gwas2 <- new('GWASdata', pheno=pheno[1:10,], geno=geno[1:10,], anno=anno, desc=" study 2")
calc_kernel(gwas, hsa04020, knots = gwas2, type='net', calculation='cpu')

## End(Not run)
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make_psd,matrix-method

Adjust network matrix to be positive semi-definite

Description

Adjust network matrix to be positive semi-definite

Usage

## S4 method for signature 'matrix'
make_psd(x, eps = sqrt(.Machine$double.eps))

Arguments

x A matrix specifying the network adjacency matrix.

eps A numeric value, setting the tolance for smallest eigenvalue adjustment

Details

For a matrix N, the closest positive semi-definite matrix is calculated as N* = rho*N + (1+rho)*I,
where I is the identity matrix and rho = 1/(1 - lambda) with lambda the smallest eigenvalue of N.
For more details check the references.

Value

The matrix x, if it is positive definite and the closest positive semi-definite matrix if x is not
positive semi-definite.

Author(s)

Juliane Manitz, Saskia Freytag, Stefanie Friedrichs

References

• Freytag S, Manitz J, Schlather M, Kneib T, Amos CI, Risch A, Chang-Claude J, Heinrich J,
Bickeboeller H: A network-based kernel machine test for the identification of risk pathways
in genome-wide association studies. Hum Hered. 2013, 76(2):64-75.
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net.kernel.hsa04020 Example network-based kernel matrix for pathway hsa04020.

Description

An example of a kernel object.

Usage

data(net.kernel.hsa04020)

Format

An object of class kernel and type ’network’ for the pathway hsa04020.

type specifies which kernel function was used to calculate the kernel

kernel includes the kernel matrix calculated for the pathway

pathway includes the pathway object of the pathway, for which the kernel matrix was calculated

Source

simulated data and Ensembl extract

pathway An S4 class to represent a gene-gene interaction network

Description

An S4 class to represent a gene-gene interaction network

'pathway' is the pathway object constructor.

show displays the pathway object briefly

summary generates a pathway object summary including basic network properties.

pathway2igraph converts a pathway object into an igraph object with edge attribute sign

analyze pathway network properties

get_genes is a helper function that extracts the gene names in a pathway and returns a vector
containing character elements of gene names

plot plots pathway as igraph object

sample_genes function randomly selects effect genes in a pathway and returns a vector of length
no with vertex id’s of sampled genes
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Usage

pathway(object, ...)

## S4 method for signature 'ANY'
pathway(id, adj, sign)

## S4 method for signature 'pathway'
show(object)

## S4 method for signature 'pathway'
summary(object)

## S4 method for signature 'pathway'
pathway2igraph(object)

## S4 method for signature 'pathway'
analyze(object, ...)

## S4 method for signature 'pathway'
get_genes(object)

## S4 method for signature 'pathway,missing'
plot(x, y = NA, highlight.genes = NULL,

gene.names = c("legend", "nodes", NA), main = NULL, asp = 0.95,
vertex.size = 11, vertex.color = "khaki1", vertex.label.cex = 0.8,
edge.width = 2, edge.color = "olivedrab4", ...)

## S4 method for signature 'pathway'
sample_genes(object, no = 3)

Arguments

object An object of class pathway-class

... further arguments specifying plotting options in plot.igraph

id A character repesenting the pathway id.

adj A matrix respresenting the network adjacency matrix of dimension equaling
the number of genes (1 interaction, 0 otherwise)

sign A numeric vector indicating the interaction type for each link (1 activation, -1
inhibition) in the interaction network for the pathway.

x pathway object

y missing (placeholder)
highlight.genes

vector of gene names or node id’s, which should be highlighted in a different
color, default is NULL so that no genes are highlighted

gene.names character indicating whether the genes names should appear in a legend ('legend'),
as vertex label ('nodes'), or should be omitted (NA)
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main optional overall main title, default is NULL, which uses the pathway id

asp a numeric constant, which gives the aspect ratio parameter for plot, default is
0.95

vertex.size a numeric constant specifying the vertex size, default is 11

vertex.color a character or numeric constant specifying the vertex color, default is ’khaki1’
vertex.label.cex

a numeric constant specifying the the vertex label size, default is 0.8,

edge.width a numeric constant specifying the edge width, default is 2

edge.color a character or numeric constant specifying the edge color, default is ’olive-
drab4’

no a numeric constant specifying the number of genes to be sampled, default is 3

Value

analyze returns a data.frame consisting of

id pathway id,

vcount number of genes,

ecount number of links,

inh_ecount number of inhibition links,

density network density,

av_deg average degree,

inh_deg average degree of inhibition links,

diam network diamter,

trans transitivity, and

s_trans signed transitivity (Kunegis et al., 2009).

Methods (by generic)

• analyze:

• get_genes:

• sample_genes:

Slots

id A character repesenting the pathway id, e.g. hsa00100 as used in the KEGG database.

adj A matrix respresenting the network adjacency matrix of dimension equaling the number of
genes (1 interaction, 0 otherwise)

sign A numeric vector indicating the interaction type for each link (1 activation, -1 inhibition) in
the interaction network for the pathway.

Author(s)

Juliane Manitz
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References

Details to the computation and interpretation can be found in:

• Kolaczyk, E. D. (2009). Statistical analysis of network data: methods and models. Springer
series in statistics. Springer.

• Kunegis, J., A. Lommatzsch, and C. Bauckhage (2009). The slashdot zoo: Mining a social
network with negative egdes. In Proceedings of the 18th international conference on World
wide web, pp. 741-750. ACM Press.

Examples

pathway(id="hsa04022", adj=matrix(0), sign=as.vector(matrix(0)[matrix(0)!=0]))

#show method
data(hsa04020)
hsa04020
#summary method
data(hsa04020)
summary(hsa04020)
# convert to \code{\link[igraph]{igraph}} object
data(hsa04020)
str(hsa04020)
g <- pathway2igraph(hsa04020)
str(g)
# analyse \code{\link{pathway}} network properties
data(hsa04020)
summary(hsa04020)
analyze(hsa04020)
# extract gene names from \code{\link{pathway}}
get_genes(hsa04020)
# plot \code{\link{pathway}} as \code{\link[igraph]{igraph}} object
plot(hsa04020)
sample3 <- sample_genes(hsa04020, no = 3)
plot(hsa04020, highlight.genes = sample3)

# sample effect genes
sample3 <- sample_genes(hsa04020, no = 3)
plot(hsa04020, highlight.genes = sample3)
sample5 <- sample_genes(hsa04020, no = 5)
plot(hsa04020, highlight.genes = sample5)

pathway_info An S4 class for an object assigning genes to pathways

Description

An S4 class for an object assigning genes to pathways

This function lists all genes formig a particular pathway. Start and end positions of these genes are
extracted from the Ensemble database. The database is accessed via the R-package biomaRt.
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show Shows basic information on pathway_info object

summary Summarizes information on pathway_info object

Usage

pathway_info(x)

## S4 method for signature 'character'
pathway_info(x)

## S4 method for signature 'pathway_info'
show(object)

## S4 method for signature 'pathway_info'
summary(object)

Arguments

x A character identifying the pathway for which gene infomation should be ex-
tracted. Here KEGG IDs (format: ’hsa00100’) are used.

object An object of class pathway_info.

Value

A data.frame including as many rows as genes appear in the pathway. for each gene its name, the
start and end point and the chromosome it lies on are given.

show Basic information on pathway_info object.

summary Summarized information on pathway_info object.

Slots

info A data.frame including information on genes contained in pathways with columns ’path-
way’, ’gene_start’, ’gene_end’, ’chr’ and ’gene’.

Author(s)

Stefanie Friedrichs

Examples

pathway_info("hsa04022")

# show method
data(hsa04022_info)
hsa04022_info
# summary method
data(hsa04022_info)
summary(hsa04022_info)
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pheno Example phenotype file for 50 individuals.

Description

A dataset containing simulated example phenotypes for 50 individuals row names include the iden-
tifiers of 50 example individuals.

Usage

data(pheno)

Format

A data frame with 50 rows and 3 variables:

pheno includes the case-control status for each individual, coded as 1(case) or 0 (control)

sex includes gender information for the 50 individuals, coded as 1 (male) or 0 (female)

age numerical value giving the persons age

Source

simulated data

read_geno,character-method

read genotype data from file to one of several available objects, which
can be passed to a GWASdata object GWASdata.

Description

read genotype data from file to one of several available objects, which can be passed to a GWASdata
object GWASdata.

Usage

## S4 method for signature 'character'
read_geno(file.path, save.path = NULL, sep = " ",

header = TRUE, use.fread = TRUE, use.big = FALSE, row.names = FALSE,
...)
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Arguments

file.path character giving the path to the data file to be read

save.path character containing the path for the backingfile

sep character. A field delimeter. See read.big.matrix for details.

header logical. Does the data set contain column names?

use.fread logical. Should the dataset be read using the function fread fread from pack-
age data.table?

use.big logical. Should the dataset be read using the function read.big.matrix from
package bigmemory?

row.names logical. Does the dataset include rownames?

... further arguments to be passed to read_geno.

Details

If the data set contains rownames specified, set option has.row.names = TRUE.

Examples

## Not run:
path <- system.file("extdata", "geno.txt", package = "kangar00")
geno <- read_geno(path, save.path = getwd(), sep = " ", use.fread = FALSE, row.names = FALSE)

## End(Not run)

rewire_network Rewires interactions in a pathway, which go through a gene not rep-
resented by any SNPs in the considered GWASdata dataset.

Description

Rewires interactions in a pathway, which go through a gene not represented by any SNPs in the
considered GWASdata dataset.

Usage

## S4 method for signature 'pathway'
rewire_network(object, x)

Arguments

object pathway object which’s network matrix will be rewired

x A vector of gene names, indicating which genes are not represented by SNPs
in the considered GWASdata object and will be removed
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Value

A pathway object including the rewired network matrix

Author(s)

Stefanie Friedrichs, Juliane Manitz

Examples

## Not run:
data(hsa04020)
rewire_network(hsa04020, c("PHKB", "ORAI2"))

## End(Not run)

rs10243170_info Example snp_info object for SNP rs10243170.

Description

An object of class snp_info for rs10243170.

Usage

data(rs10243170_info)

Format

A snp_info object including information on the SNP as extracted from the Ensembl database.

info a data frame including the extracted information on the SNP. Columns given are ’chr’, ’po-
sition’, and ’rsnumber’

Source

Ensembl extract
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snp_info An S4 class for an object assigning SNP positions to rs-numbers (for
internal use)

Description

An S4 class for an object assigning SNP positions to rs-numbers (for internal use)

This function gives for a vector of SNP identifiers the position of each SNP as extracted from the
Ensemble database. The database is accessed via the R-package biomaRt.
show Shows basic information on snp_info object

summary Summarizes information on snp_info object

Usage

snp_info(x, ...)

## S4 method for signature 'character'
snp_info(x)

## S4 method for signature 'snp_info'
show(object)

## S4 method for signature 'snp_info'
summary(object)

Arguments

x A character vector of SNP rsnumbers for which positions will be extracted.

... further arguments can be added.

object An object of class snp_info.

Value

A data.frame including the SNP positions with columns ’chromosome’, ’position’ and ’snp’.
SNPs not found in the Ensemble database will not be listed in the returned snp_info object, SNPs
with multiple positions will appear several times.

show Basic information on snp_info object.

summary Summarized information on snp_info object.

Slots

info A data.frame including information on SNP positions

Author(s)

Stefanie Friedrichs
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Examples

# snp_info
data(rs10243170_info)
snp_info(c("rs234"))

# show
data(rs10243170_info)
rs10243170_info
# summary
data(rs10243170_info)
summary(rs10243170_info)
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