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1 INTRODUCTION 
 

Oilseed rape (Brassica napus L.; genome AACC, 2n = 38) is the world’s second-leading source of 

vegetable oil for human nutrition and industrial products, after soybean. The production contributes 

to about 14 % of the world vegetable oil supply (Carré and Pouzet, 2014). The main consumers of 

oilseed rape cultivation is not only the food and fuel industries, but also the by-product of oilseed 

rape, the meal, is deemed to be a valuable market. In EU countries, the demand is continuously 

growing, and the total production is about 20.6 million tons (FEDIOL, 2016). Oilseed rape meal, as 

also other crop meals, like soybean, sunflower and cotton seeds, are utilized as livestock feed. The 

demand of protein meal will continue to rise together with the increase of global livestock 

production demand. 

Considering the nutritional values of the meal, the meal of oilseed rape has excellent balanced 

composition of essential amino acids (Tan et al., 2011).  For feeding purposes, the absorption of the 

nutritional values in oilseed rape meal can be improved by reducing limiting factors like dietary 

fibers and some anti-nutritional compounds, such as glucosinolates.  

Yellow seed character has been becoming a subject of interest in oilseed rape for the last two 

decades. It has been associated with lower dietary fiber content, also higher oil and protein content 

(Wang et al., 2015). Yellow seed color is often accompanied by thinner and transparent seed coat 

(testa), which enabled the yellow cotyledons inside to be seen (Neubert et al., 2003). The testa color 

is determined by the type of pigment deposited in the seed coat cells. Yellow seeded genotypes 

were reported to have lower pigment content and smaller testa proportion than the black seeded 

ones (Zhang et al., 2006).  The pigments are mostly of flavonoid groups, normally present at high 

levels in most seeds. Seed flavonoids seem to play protective role against solute leakage, imbibition 

damage, pathogen or pest attacks, and also contribute to physiological functions, such as seed 

maturation, dormancy, viability and seedling vigor as well as protection against ultraviolet (UV) light 

(Zhang et al., 2006, Neubert et al., 2003).  

Unfortunately, thinner seed coat (testa) also means the seed is more prone to be damaged by 

various environmental factors, and also easier to be imbibed by water (Debeaujon et al., 2000). Seed 

viability and vigor are important aspects of seed quality, and important in determining the success of 

a planted crop (Nonogaki et al., 2010). The seed longevity, or seed ability to germinate after being 

stored for a period of time, tends to decline more easily in yellow seeded genotypes compared to 

the black seeded ones.  Poor seed longevity can result in economic losses, due to the impossibility of 
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carry-over of seed lots which lost their vigor and viability, so that they are no longer marketable 

(Pereira-Lima et al., 2017).  

The objective of this work was to study the inheritance of several seed quality traits, in relation to 

seed germination and seed longevity traits in three different DH populations. Two of the populations 

were segregating for yellow seed character, as both were originated from crosses with Express 617, 

a black seeded winter type line cultivar. The other parent of the first population was 4042, an old 

yellow seeded winter type Gӧttingen germplasm. 4042 x Express 617 consisted of 77 genotypes, and 

was grown in five environments in Germany (Reinshof and Einbeck) during the years 2014 to 2016. 

The second DH population used was a cross between Express 617 and DH line 1372, a yellow seeded 

spring type oilseed rape line from Canada (Burbulis and Kott 2005). The field experiment was grown 

in Reinshof 2015 and 2016. The harvested seeds of both populations were subjected to germination 

test, twice for each genotype, before and after aging treatment. The seed germination test before 

aging was completed at University of Gӧttingen laboratory. Later, seed artificial aging treatment and 

seed germination observation was executed at IPK Gatersleben.  

In the first population of 4042 x Express 617, bulk segregant SNP-marker analysis which was 

segregating for low vs high ADL content was performed, in cooperation with KWS SAAT SE, 

www.kws.de). The experiment was further continued with identification of candidate genes that can 

be responsible for ADL content. Afterwards, non-targeted metabolism fingerprinting was carried out, 

in cooperation with Department of Plant Biochemistry, University of Gӧttingen, in order to identify 

the differences of the compounds level between immature seed samples of low vs high ADL content 

genotypes. KASP genotyping assay was also carried out to verify the result of bulk segregant analysis 

at allele level. The study of first population is presented in Chapter 3, while Chapter 4 describes the 

variations and associations found within seed quality, morphology, seed germination, and seed 

longevity traits of the second population, DH 1372 x Express 617 from two years of field experiment 

at Reinshof (2015 and 2016).   

Suma et al. (2014) said that two main obstacles for studying natural aging process in seeds are the 

time needed for natural aging to take place, and how to control the degree of seed deterioration. 

Artificially aged seeds are known to germinate and grow into seedlings in a normal manner which is 

comparable to naturally aged seeds to a certain degree (Rajjou et al., 2008, Suma et al., 2014). This 

allows many researchers to draw safe enough conclusions regarding the loss of seed viability and 

mechanism of seed deterioration under storage. However, application of different aging protocols 

(Rajjou et al., 2008) or even just a slight change in temperature of deterioration treatment (Nagel et 

al., 2011) might alter the seed germination performance after artificial aging greatly. After all, an 

http://www.kws.de/
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artificial seed aging treatment is at best only tried to imitate the actual natural seed ageing process 

(Rajjou et al., 2008).  

The third part of the study is investigating seed longevity on naturally aged seeds, presented in 

Chapter 5. The old seeds of DH Sollux x Gaoyou seeds which being stored in an ambient storage 

room temperature of University of Göttingen for 13 years (2001 - 2014) was used in this experiment. 

The population consisted of 291 genotypes of DH Sollux x Gaoyou (Zhao, 2002), harvested in 2001 in 

four different environments (two locations in China and two others in Germany). Both parents are 

black seeded winter type oilseed rape. Sollux is a commercial German cultivar, and Gaoyou is a local 

Chinese cultivar. New plants of this population were regenerated from an old stock of self-pollinated 

seeds in the green house in 2016, and the newly harvested seeds were used as control treatment 

which representing the seed germination ability before seed natural aging. Spearman’s rank 

correlations were also estimated between the seed germination traits of the present study and their 

seed quality traits previously measured by Suprianto (2014).  

The last chapter presents a general discussion, covering the comparison of the findings from all 

these three studies. Before these results are presented, the following chapter gives a short literature 

review on the inheritance of seed germination and seed longevity traits, in relation to seed color and 

seed quality traits of B. napus. 
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2 LITERATURE REVIEW 
 

2.1 IMPORTANCE OF OILSEED RAPE 

 
Oilseed rape (Brassica napus L.; genome AACC, 2n = 38) is one of the most important members of 

Brassicaceae family. This amphidiploid species bears the A and C genomes of both progenitors, 

turnip rape (Brassica rapa L., syn campestris; genome AA, 2n = 20) and cabbage (Brassica oleracea L.; 

genome CC, 2n = 18). Created by natural interspecific hybridization, it is thought to be a ‘new’ 

species. The earliest reliable record appears only 500 years ago (Gomez-Campo et al., 1999). In the 

present day, B. napus becomes one of the most important oilseed crops. Besides serving as a source 

of edible oil for human consumption, oilseed rape also provides protein-rich meal for livestock feed. 

As feed ingredient, its meal is a good source of vitamins and minerals, high in sulfur, containing 

amino acids and quality protein (Sarwar et al., 2013). However, some anti-nutritional components 

including glucosinolates, sinapine and relatively high fiber level limit its inclusion in animal rations 

(Matthäus, 1998). 

As potential outlook for the three major oilseed crops soybean, rapeseed, and sunflower, both the 

demand and production are high. The European Union market, for example, was still importing 4.8 

million tons of oilseed rape in 2016 / 2017, increased by 380,000 tons from the previous year (USDA, 

2017). The worldwide production of oilseed rape in 2017 / 2018 is predicted to reach a new high 

record of 72.6 million tons. That will be around 4.5 % increase from the five year average production 

(USDA, 2017). The rising demand for biofuel and industrial oils has resulted in an even stronger 

increase in production of this species, up to almost 70% in Europe since 2003. Out of 21.7 million 

tons of the total oilseed crops harvested in Europe in 2015, 68 % of it was contributed by oilseed 

rape. France was the largest producer with 24.5 % of the total production. Other important 

producers were Germany (23.1 % share), Poland (12.4 %) and the United Kingdom (11.7 %, Eurostat 

2017).  

 

2.2 IMPORTANCE OF YELLOW SEED CHARACTER IN OILSEED RAPE 

 
Weightman et al. (2014) suggested that an improved oilseed rape genotype having characteristics of 

low glucosinolates, thinner seed coat with higher oil and protein and less fiber, would be highly 

valued financially in the feed market. Moreover, if this genotype was also of yellow seed type with 

reduced polyphenols in the seed coat, their taste as feed ingredients will be improved and thereby 

their uptake by the cattle/poultry will increase. Weightman et al. (2014) further evaluated the cost 
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ratio of an improved variety (containing 4 % more of oil + protein (93 % DM basis) with a thinner, 

yellow seed coat. In meal form, the improved (yellow) variety seems to achieve the best value in pig 

rather than poultry feeds. For whole seed, the improved seed type would be favored in poultry 

broiler diets. Within the poultry sector, the improved rape meal would appear to provide a higher 

value in layer diets than broiler. By industrial scale, the improved type is worth an extra € 25 to € 33 

/ton of seeds, with the value of conventional oilseed rape estimated at € 378 /ton in 2014. 

Yellow seed is a long sought character in oilseed rape in the last two decades. As one of the main 

desirable targets in oilseed breeding program, this trait proved to be very elusive. Many studies have 

been dedicated to this particular trait. There is no known spontaneous mutation of yellow seeded 

types of B. napus (Rahman et al., 2011), although seed color variations are common in B. rapa L., B. 

juncea Czern and Coss and B. carinata Braun (Tang et al., 1997). According to Tang et al. (1997) 

spontaneous mutations more likely resulted in yellow-seeded variants after the formation of these 

species. In B. rapa (AA), the evidence supports theory of seed color monogenic control, although a 

distorted segregation pattern was observed in some generations (Chen and Heneen, 1992). Other 

reports of one to three genes inheritance patterns in the same species are also available (Stringam 

1980; Hawk 1982). In B. juncea (AABB), the black or brown seed color was regulated by two 

independent dominant genes (Vera and Woods, 1982). It is then assumed that the genomes of B. 

rapa and B. nigra (BB) each donates one of the two genes for seed color of B. juncea. In contrast, the 

inheritance of seed color in C genome is more complicated. A possibility of digenic control of seed 

color in the B. alboglabra genome (a form of B. oleracea, CC) was indicated by resynthesized B. 

napus (AACC) crosses (Tang et al., 1997). Pure yellow seeded lines of C genome are also hard to be 

obtained. An interspecific cross between black seeded B. alboglabra and yellow-seeded B. carinata 

resulted in only a light brown seeded B. alboglabra (Chen et al., 1988). Until now, no true bred 

yellow seeded variety of B. napus has been achieved (Tang et al., 1997). 

There may be various pathways for seed color pigmentation of seed color in B. rapa and B. oleracea, 

parallel with high polymorphic variations within the two species. Hence, it is suggested that the C 

genome of natural B. napus may be also has a complex pathway for pigmentation (Tang et al., 1997). 

All available yellow seeded B. napus lines were developed from interspecific crosses with related 

species, for instance, B. rapa, B. oleracea spp. alboglabra, B. juncea and B. carinata. Several 

molecular markers associated with the seed coat color trait in B. napus, B. juncea, and B. rapa have 

been developed by various research groups (Badani et al., 2006, Liu et al., 2005, Yu et al., 2013). 

Yellow seed color is often associated with less seed fiber and more seed oil and protein content 

(Badani et al., 2006). As dark color resulted from accumulated tannin, yellow seeds have thinner 
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seed coat or testa (Neubert et al., 2003). The yellow color of the seed itself is actually not coming 

from yellow pigment on the seed coat, but from transparent one, which gives way to the yellow 

color of the cotyledons underneath. Seed color is controlled by a complex mechanism that is still 

poorly understood. Beside environmental factors such as light and temperature, genetic factors also 

play a significant role (Liu et al., 2012).  

 

2.3 SEED DEVELOPMENT 

 
A seed is basically a small embryonic plant, enclosed in a hull called the seed coat, usually 

accompanied by some food storage (Shaban, 2013). In general, plant seeds can be divided into three 

major components: (1) embryo, composed of cotyledon(s), hypocotyl, and radicle; (2) endosperm, 

which provides nourishment for the developing embryo; and (3) seed coat, which surrounds the 

embryo and the endosperm (Shaban, 2013, Ohto et al., 2007). Ohto et al. (2007) further added that 

in mature rapeseed seeds, the endosperm degenerates and the seed coat enwraps the embryo 

tightly. 

According to Bewley et al. (2006), during the first weeks of seed development, the seed coat 

expands inside the young pod (silique). At this stage, the seed is almost translucent, and the embryo 

develops rapidly within the seed coat, filling the space which previously was occupied by fluid. The 

seed weight increases and seed filling are completed in 35-45 days after pollination. During this time 

the cotyledons are filled with oil and protein reserves. At maturity, the embryo fills up the entire 

seed, bright yellow in color, and having moisture content of 10 to 20%. Seed filling is followed by 

seed maturation and ripening. These two processes are characterized by color changes. The seed 

coat alters from green to yellow to brown, and the silique changes from green to straw color. 

Hajduch et al. (2006) added that at 5 WAF (weeks after flowering), the seed development would 

enter the desiccation phase. Protein content will be increased dramatically during this period and 

reach about 10% of fresh seed weight at 6 WAF. 

Bewley et al. (2006) further explained that Brassica inflorescence is formed from multiple 

indeterminate racemes. At this time the lower pods on the main raceme have elongated and turned 

green and most of the leaves have died. The green silique walls and stems become the main source 

of photosynthate during seed maturation. The uppermost pods at the main racemes are usually the 

longest and contain the largest seeds, but the pollination, seed filling and maturation will continue 

on lateral racemes as long as products of photosynthesis are available. At 40 to 60 days after first 

flowering, the seeds in lower pods have ripened fully and changed to their final seed coat color.  
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2.4 SEED GERMINATION 

 
The human interest in seed germination and its influence on plant performance has started since the 

beginning of agriculture in around 10.000 B.C. Today, nearly 80 % of economically important crops 

are propagated by seeds (Marcos-Filho, 2015). The germination starts as the dry seeds begin to take 

up water, and ends when the embryonic axis elongates. The radicle tip protrusion through the seed 

envelope is the visual sign of seed germination (Debeaujon et al., 2000, Nonogaki et al., 2013). Seed 

viability is the ability of the embryo to germinate (Shaban, 2013). Many factors, both genetic and 

environment, can affect the seed viability, such as the ability of the plant to produce viable seeds, 

pathogen damage, and climate (Shaban, 2013).  

In mature seeds, only the aleurone (outermost of endosperm) layer is physiologically active, while 

seed coat or testa layers are filled with dead cells. These cells expire after vigorous developmental 

changes during late seed maturation. The seed coat itself protects the embryo from the various 

detrimental environmental factors. Testa pigmentation provides better resistance against solution 

leakage, imbibition damage, and soil-born fungal infection; therefore it improves the seed vigor and 

germination (Kantar et al., 1996).  

 

2.5 SEED LONGEVITY 

 
The seed age also affects its germination ability, since seeds are living embryos. Over time, cells 

eventually die and cannot be replaced (Shaban, 2013). Maximum physiological potential is achieved 

close to seed maturity and just after this stage, seeds become prone to deterioration depending on 

harvest time, environmental conditions, and procedures adopted for seed drying, processing and 

storage. The most obvious sign of initial seed aging is a reduction in germination speed of viable 

seeds, followed by a decrease in seedling size, and an increased incidence of abnormal seedlings 

(Marcos-Filho, 2015).  

 

2.5.1 Natural seed aging 

Physiological aging (or deterioration) is a reduction in the ability of seeds to carry out all the 

physiological functions that allow them to perform. It starts before harvest and continues during 

harvest, processing and storage. It progressively reduces performance capabilities, for example due 

to changes in cell membrane integrity, enzyme activity and protein synthesis. These biochemical 

changes can occur very quickly (a few days) or more slowly (years), depending on genetic, 

production and environmental factors which are not yet fully understood (Shaban, 2013). The rate of 
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seed aging, as expressed by the rate constants of seed germination loss and vigor decline, increased 

exponentially with increasing water content. Biochemical deterioration and viability loss are rapidly 

increased in seeds stored under a high critical temperature (Murthy et al., 2003). Lipid rich seeds 

have limited longevity due to their specific chemical composition (Balešević-Tubić et al., 2010). 

 

2.5.2 Artificial seed aging 

Artificially aged seeds are known to germinate and grow into seedlings in a normal manner 

comparable to naturally aged seeds, making it possible to arrive at safe conclusions regarding the 

loss of seed viability and mechanism of seed deterioration under storage (Suma et al., 2014). 

Artificial aging of seeds is generally accepted to mimic extended seed storage because similar 

changes in the proteome, oxidation of proteins and detoxification of metabolites were observed 

(Rajjou et al. 2008). However, as soon as aging conditions are modified, different genomic regions 

are activated to deal with the stress (Nagel et al., 2011). Therefore, germination behavior after long-

term storage might be different to what is observed after artificial aging. Accelerated seed aging, i.e., 

seed lot exposure to high temperature and high relative humidity leads to a loss of vigor and 

eventually to a loss of viability (Balešević-Tubić et al., 2011). Accelerated aging test was considered 

effective to predict the length of storage life of sunflower and soybean seed (Balešević-Tubić et al., 

2010). 

 

2.6 SEED QUALITY CHARACTERS  

 
NIRS (Near-infrared Reflectance Spectroscopy) has a light source which shines through a 

monochromator. Its light will be reflected by a set of samples, and the detector will measure the 

absorbed radiation. This equipment utilizes a developed calibration equation to relate to the 

samples properties. The NIR region of electromagnetic spectrum itself ranges from 780-2526 nm 

(Reich, 2005).   NIRS has many advantages compared to chemical-based analysis. It is non-

destructive, rapid, and cost-effective, not requiring labor intensive sample processing, 

environmentally safe, and allowing several traits to be measured simultaneously in one sample. How 

reliable is the estimation of compounds in routine analysis by NIRS is determined by the calibration 

equation quality being used (Stuth et al., 2003).  

 

2.6.1 Seed oil, protein, and glucosinolates 

Beside yield, other main objectives of oilseed rape breeding are the seed quality characters, such as 

oil, protein, fatty acid, glucosinolates, fiber contents etc. Increase in seed oil content is a major goal 
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for oilseed rape breeding. However, seed oil content is under a complex genetic determinism. As the 

pressed meal of oilseed rape is commonly used as animal feed, protein content is also being 

considered. Seed protein content is generally negatively correlated with seed oil content (Zhao et al., 

2006) and improvement of the seed quality in oilseed rape has been conducted with little attention 

paid to the protein fraction. Many of these seed quality traits are tightly related to each other, and 

also to the seed germination and seed longevity (Nesi et al., 2008).  

 

2.6.2 Seed fiber 

Determination of fiber content values can be done by several methods, but the most popular one is 

the detergent system which was developed by Van Soest et al. (1991). This method is based on the 

principle that the plant cell walls can be divided into two materials: the less digestive walls, which 

consisted of hemicellulose, lignin, and cellulose; and the second is the easily digestive cell contents, 

which consisted of starch, proteins, and sugar. These two materials can be separated using neutral 

and acid detergent solutions. The traits of seed fiber is usually explained by three 

fraction/component values, based on the detergent system which was developed by Van Soest et al. 

(1991). 

The remaining component of the meal sample after the digestion with neutral detergent solution 

(Na-lauryl sulfate, EDTA, pH =7.0), followed by gravimetric determination of the fiber residue is 

called neutral detergent fiber (NDF).  It represents the “total” seed fiber, which comprises cellulose, 

hemicellulose and lignin, although a small amount of fiber may escape during the digestion process 

(Von Soest et al., 1991). NDF value is important for nutritionist when creating animal feed ration 

formulations, because this value reflects the amount of feed that animals can consume (Möller, 

2008). In general, the intake of dry matter will be less as NDF percentage increases (Suprianto, 

2014). 

After meal sample was digested by acid detergent solution (5 % sulfuric acid), ADF value is 

determined as the residue remaining after adding an acidified solution. It is basically the NDF 

without the hemicelluloses, refers to meal proportion which belongs to cellulose and lignin. Cetyl 

trimethyl-ammonium bromide (CTAB) separates proteins from the remaining cellulose and lignin, 

and minerals (ash), while the acid detergents solution recovers cellulose and lignin (Zaklouta et al., 

2011). This value represents how much of feed that an animal can digest. The higher the ADF value, 

the feed digestibility will be reduced. Combined with ADL, ADF is used as indicators of dietary energy 

and intake (Möller, 2008).   
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Animal nutritionists suggest that ADL is the most nutritionally relevant fiber fraction. Largely consists 

of lignin related phenolic compounds, the poor digestibility of ADL, both in ruminant and 

monogastric animals, reduces the energy uptake from high-ADL meals (Kracht et al., 2004). The ADL 

fraction was found to have a positive correlation with seed color, both in yellow and dark seeded 

population. Correlations of ADL to seed coat phenolic compounds suggest that low ADL content is 

associated with reduced seed coat thickness (Wittkop et al., 2012). 

 

2.7 LIGNIN PATHWAY/BIOSYNTHESIS: RELATION TO SEED COLOR 

 

Besides cellulose, lignin is the most prominent polymer on Earth (Vogt, 2010). Plant lignins are 

produced via another branch of the phenylpropanoid pathway. Lignin is related to 

proanthocyanidins (PAs) by sharing the precursor 4-coumaroyl CoA in the phenylpropanoid pathway 

(Yu et al., 2013). Marles and Gruber (2004) noted that lignin and PAs are deposited in different 

compartments. Lignin accumulation is normally within the cell wall, while PAs are accumulated in 

the plant vacuole. Pigments are initially deposited in the inner integument of the seed coat, which is 

located next to the highly lignified palisade cells. Lignin variability may influence the pigment 

transferability to seed coat outer layers. 

 

2.8 FLAVONOID BIOSYNTHESIS: RELATION TO SEED COLOR 

 

The pigments that give color to seeds, flowers, and fruits are mostly flavonoids as plant secondary 

metabolites (Koes et al., 2005). The genetic and biochemical study of flavonoid metabolism during 

seed development focuses mainly on PAs accumulation in Arabidopsis. PA information of Brassica 

seeds is scarce, perhaps due to the complexity of compound extractions and analyses (Yu et al., 

2013). According to Li et al. (1997), their high reactivity made flavonoids chemically too toxic to be 

kept inside the cytoplasm. Therefore, right after synthesis they are immediately being removed from 

cytoplasm, either by exclusion in the central vacuole (as for anthocyanins and PAs), or by excretion 

into the cell wall. Vacuoles offer a larger storage space than cell walls, added Klein et al. (2000), 

which are important for flavonoids to reach great enough concentrations to function as attractant, 

protection against predators and pathogens, or as UV light sunscreens. 

The pigmentation process of the seed coat in dark seeded Arabidopsis was explained by Debeaujon 

et al. (2001) in two steps. During the heart stage of embryo development, colorless PAs fill up the 

vacuoles. Visible brown pigments appeared on the late torpedo stage, as products of PA oxidation. 

These colorless phenolic compounds are prone to react with oxygen molecules inside the vacuoles, 
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and color is changing from colorless to brown. Lepiniec et al. (2006) later suggested, as early as 1-2 

days post-fertilization, proanthocyanidins begin to accumulate inside the embryo. The accumulation 

spread further 5 to 6 days after fertilization. Afterwards, PAs oxidation which brings the brown 

pigment formation occurs 30 to 40 d after fertilization, during the seed desiccation. In the end, 

Debeaujon et al. (2001) reported that the pigments diffused through 3 parenchyma layers and 

turned the dead cells of seed coat layers dark brown as the seed matured.  

 

2.9 TRANSPARENT TESTA GENES 

 
Mutants deviating from normal dark seed color as the outcome of the colorless PAs oxidation at 

maturity, among some other names, have been termed transparent testa (tt) (Lepiniec et al., 2006). 

Until recently, 26 mutations in the flavonoid pathway involved in seed color have been identified, 

and 23 of them had been identified at molecular level. Nineteen belong to tt genes family (Table 1), 

and either correspond to enzymes (CHS, CHI, F3H, F3′H, DFR, LDOX, FLS, GST, ANR, LACCASE), 

transporters (TT12, TT19), or regulatory factors (TT1, TT2, TT8, TT16) (Baxter et al., 2005). The nature 

and function of TT9, TT13, and TT17 is still unclear (Debeaujon et al., 2000, Nesi et al., 2002).  

Debeaujon et al. (2001) said that in tt12 seeds, a reduction of PAs accumulation may lead to limited 

formation of the brown flavonoid pigment. This might explain the light seed color phenotype of the 

tt12 mutant. Debeaujon et al. (2000) confirmed that structural and/or pigmentation defects of the 

Arabidopsis seeds can affect dormancy, germination, and longevity, together with seed morphology 

(slight reduction in size and weight). They encountered these morphological changes in most tt 

mutants. Histological analysis of the mature tt12 testa by Debeaujon et al. (2001) revealed a lack of 

phenolic compounds in the endothelium layer. A vanillin assay confirmed the defect existence, 

either in biosynthesis or in the PAs deposition (Debeaujon et al., 2000). In nature, PAs exist in 

polymeric state and they are able to bind proteins. These characteristics might explain their 

impermeability and cell-cementing properties, and furthermore their role in the germination-

restrictive action of the testa (Debeaujon et al., 2001). 

Chai et al. (2009) isolated two TT12 genes from B. napus, one gene from B. oleracea, and one gene 

from B. rapa. Southern hybridization confirmed the result, thus validated B. napus as an 

amphidiploid. BrTT12 and BoTT12 are the progenitors of BnTT12-1 and BnTT12-2, respectively. All 

Brassica TT12 proteins displayed high levels of identity (> 99 %) to each other and also to AtTT12 (> 

92 %).  
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Table 1 Transparent testa related mutants in Arabidopsis thaliana and their functions (adapted 

from Yu et al., 2013) 

TT 

mutant 

GenBank 

accession no. 

Function 

 

Seed coat 

color 

References 

 

tt1 At1g34790 WIP subfamily zinc finger proteins Golden yellow Sagasser et al. (2002) 

tt2 At5g35550 R2R3MYB DNA binding domain 

proteins 

Golden yellow Nesi et al. (2001) 

tt3 At5g42800 Dihydroflavonol 4-reductase 

(DFR) 

Grayish yellow Shirley et al. (1992) 

tt4 At5g13930 Chalcone synthase (CHS) Pale yellow Shirley et al. (1995) 

tt5 At3g55120 Chalcone isomerase (CHI) Lemon yellow Shirley et al. (1992) 

tt6 At3g51240 Flavanone 3-hydroxylase (F3H) Pale brown Pelletier and Shirley 

(1996) 

tt7 At5g07990 Flavonoid 3′-f-monooxygenase/ 

hydroxylase (F3′H) 

Pale brown Schoenbohm et al. 

(2000) 

tt8 At4g09820 Basic helix–loop–helix (bHLH) 

DNA binding domain transcription 

factors 

Yellow Nesi et al. (2000) 

tt9 (unknown) (unknown) Grayish beige Shirley et al. (1995) 

tt10 At5G48100 Laccase-like Pale brown Pourcel et al. (2005) 

tt18/ 

tt11 

At4g22880 Leucoanthocyanidin reductase 

(LDOX) 

Yellowish 

brown, pale 

Abrahams et al. 

(2003) 

tt12 At3g59030 MATE (multidrug and toxin 

compound extrusion) transporter 

Dull pale 

brown 

Debeaujon et al. 

(2001) 

tt13 (unknown) (unknown) Pale brown Debeaujon et al. 

(2003) 

tt14/ 

tt19 

At5G17220.1 ATGSTF12 : glutathione S-

transferase phi 12 (GST) 

Pale brown Kitamura et al. 

(2004) 

tt15 At1g43620 UDP-glucose: sterol 

glycosyltransferase UGT80B1 

Pale greenish 

brown 

DeBolt et al. (2009) 

tt16 At5g23260 BSISTER MADS domain Straw-colored Nesi et al. (2002) 

tt17 (unknown) (unknown) Brown yellow Bharti and Khurana 

(2003) 

 

MATE is a family of proteins which function as drug/sodium or proton antiporters (Brown et al., 

1999). TT12 gene encodes a membrane protein with 12 predicted transmembrane helices, and 

belongs to MATE (multidrug and toxic compound extrusion) transporter family, also known as multi-

antimicrobial extrusion protein or multidrug and toxin extrusion. In Arabidopsis, AtTT12 encodes a 

protein of MATE transporter TT12 at vacuolar membrane, and acts as a proton-dependent 
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antiporter, assisting vacuolar localization of proanthocyanidins in the testa (Debaujon et al., 2001, 

Marinova et al., 2007, Zhao and Dixon, 2009, and Chai et al., 2009). 

 

2.10 KASP GENOTYPING 

 

Single nucleotide polymorphism (SNP) refers to a single base change in a DNA sequence. The 

measurement of genetic variation caused by SNPs starts with the identification or determination of 

the genotypes of the particular individuals of the same species, namely “genotyping” (He at al., 

2014). Genotyping by next-generation sequencing is an emerging method of SNP genotyping being 

increasingly adopted for discovery applications. One of the widely used SNP genotyping platforms is 

Kompetitive Allele Specific PCR (KASPTM) from KBioscience or LGC Genomics 

(http://www.lgcgenomics.com) (Semagn et al., 2014).  

KASP can deliver high levels of flexibility, handling starting from 1 SNP over at least 22 samples, until 

thousands of SNPs over thousands of samples, generating millions of data points in a day. This 

platform has been utilized by small and large laboratories in research for genetic improvement of 

animals and field crops (Robinson and Ganske, 2012). Comparing it to the performance of chip base 

Illumina ‘GoldenGate’ assay, Semagn et al. (2014) found that 81 % of the SNPs used in GoldenGate 

assay were transferable to KASP. Furthermore, the average genotyping error in positive control DNA 

samples by KASP was evidently lower.  

According to Patterson et al. (2017), a common reverse primer paired with two forward primers can 

discriminate two alleles of a SNP, one specific to each allele. Each forward primer also has a 

nucleotide sequence that hybridizes to either the HEX or FAM fluorophore quencher. Amplification 

would permit forward primers to bind, only if they are perfectly complementary to the template 

sequence. Fluorescence is released from the quencher molecule when a forward primer is 

incorporated in a PCR product, and will be detected at the end of the assay by a real-time PCR 

machine. The proportion of fluorescence from HEX, FAM, or both, indicates the sample genotype. He 

et al. (2014) indicated that in case of a homozygous genotype at a given SNP, only one of the two 

possible fluorescent signals will be generated. However, if the individual is heterozygous, the result 

will be a mixed signal.  
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3 INHERITANCE OF SEED QUALITY TRAITS, SEED GERMINATION AND SEED 
LONGEVITY IN THE WINTER OILSEED RAPE DOUBLED HAPLOID POPULATION 

4042 X EXPRESS 617, SEGREGATING FOR THE YELLOW SEED CHARACTER 
 

3.1 INTRODUCTION 

 
Oilseed rape (rapeseed; Brassica napus L., genome AACC, 2n = 38) resulted from spontaneous 

hybridization between turnip (Brassica rapa) (AA, 2n = 20) and cabbage (Brassica oleracea) (CC, 2n = 

18) (Nesi et al., 2008). The oilseed rape oil production contributed to about 14% of the world 

vegetable oil supply; made it the second largest world oilseed, after soybean (Carré and Pouzet, 

2014).  Except for production of high-quality edible oil, the by-product, oilseed rape meal, is also 

utilized as livestock feed (Shahidi, 1992). 

Considering the nutritional values, the meal of oilseed rape has excellent balanced composition of 

essential amino acids (Tan et al., 2011). Digestibility of the meal is greatly influenced by the presence 

of high amounts of fiber in residual hulls. For feeding purposes, the nutrition absorption and 

digestibility of the meal can be improved by reducing the dietary fiber and some anti-nutritional 

compounds (Nesi et al., 2008). 

Yellow seed color has become an important breeding objective in rapeseed (Jiang et al., 2007).  

Yellow seed character is often associated with lower dietary fiber content, higher oil and protein 

content (Meng, 1998, Rahman and McVetty, 2011). Since no yellow seed genotypes occurred 

naturally in B. napus, yellow-seeded lines have been developed through interspecific introgression of 

yellow seed coat color genes from related species (B. rapa, B. carinata, B. juncea (Nesi et al., 2008).  

Despite important research efforts during the last 20 years, attempts to develop a true breeding 

rapeseed that consistently yields pure and bright yellow seeds under a wide range of environmental 

conditions have not been successful (Rahman, 2001). The dark color of oilseed rape seeds is due to 

the accumulation of condensed tannins or proanthocyanidins (Qu et al., 2013). According to Badani 

et al. (2006), the yellow seed color only occurs when one or more gene(s) which encode different 

enzymes are mutated in the flavonoid biosynthetic pathway. This mutation brings the failure of 

proanthocyanidin accumulation in the seed, and further produces a transparent seed coat which 

made the yellow embryo visible, resulting in yellow seed color. The recent molecular study has 

successfully identified 26 independent loci involved in seed coat pigmentation (the so-called 

Transparent Testa [TT] genes) (Xu et al., 2006, Yu et al., 2013). Some of the BnTT genes were 

proposed to co-localize with QTL for seed color and fiber content (Badani et al., 2006). 
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Most of the time, the seed coat (testa) inhibits its own seed germination by being impermeable to 

water and/or oxygen, or by providing mechanical resistance to radicle protrusion. In many species, 

these properties have been positively correlated with seed coat color, due to phenolic compounds 

(Debeaujon et al., 2000). In spite of all advantages of yellow seed coat, the thinner testa in yellow-

seeded type also means the seed is more prone to damage by various environmental factors 

(Neubert et al., 2003).  

Seed longevity is defined as seed viability after seed dry storage for a period of time. It describes the 

total seed life span (Rajjou and Debeaujon, 2008). During seed storage, seeds will slowly deteriorate, 

lose vigor, become more sensitive to stresses during germination, and ultimately die. The aging rate 

depends on the seed moisture content, temperature, initial seed quality (Walters et al., 2005), and 

also on genetic factors (Nagel et al., 2010).  The seed longevity of yellow-seeded type also tends to 

drop more easily compared to the black-seeded ones (Debeaujon et al., 2003).  Since materials of 

naturally aged seeds are not always available, artificial seed aging protocols are often utilized. 

Exposure of seeds to high temperature and moisture conditions had been the commonly used 

method for aging seeds in the laboratory (Suma et al., 2014). 

Line 4042 is an old yellow-seeded oilseed rape line from Gottingen, while Express 617 was a popular 

black-seeded German line cultivar. The aim of this experiment was to study the inheritance of seed 

germination and seed longevity in a doubled haploid (DH) populations derived from the cross 

between line 4042 and Express 617, also to study the inheritance of seed quality traits in this 

populations (oil, protein, fiber content, etc.) and their correlation to seed germination and seed 

longevity. 

 

3.2 MATERIALS AND METHODS  

 

3.2.1 Plant materials 

The plant material consisted of 77 genotypes; 75 double haploid lines derived from crossing 

between line 4042 x Express 617 and both parents. Line 4042/2002 is an old local doubled haploid 

line originated from the Department of Crop Sciences at the Georg-August-Universität Göttingen 

which has yellow seed coat. The second parent is Express 617, a popular oilseed rape line cultivar 

with a black seed coat. Both parents were of winter oilseed rape type.  
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3.2.2 Field experiment 

In total, five field experiments have been conducted for DH population 4042 x Express 617; at 

Reinshof in 2014, at both Reinshof and Einbeck in 2015, also repeated at Reinshof and Einbeck in 

2016. The field experiment was designed with no replication for all locations. One hundred seeds 

were spread in two rows for each genotype plot. At maturity around 5-10 main racemes of each plot 

was harvested randomly and bulked in one sample bag for each genotype. All harvested seeds were 

dried, cleaned from the pods and stems, and stored separately for every sample.  

 

3.2.3 Analytical methods  

NIRS prediction analysis was conducted using seed samples around 3 g using by Near Infrared 

Reflectance Spectroscopy (NIRS) monochromator model 6500 (NIRSystem Inc., Silverspring, MD, 

USA). WINISI software is used to predict several seed quality traits, e.g. seed oil content, protein 

content, glucosinolates, etc. The fiber content values (NDF, ADF, and ADL) are estimated by 

calibration equation fibr2013.eqa which developed by Suprianto (2014). All fiber content values are 

given as percentage of fiber in the defatted meal. Meanwhile, oil, protein, and glucosinolates 

contents were predicted separately, using commercial calibration equation of raps2012.eqa 

provided by VDLUFA Qualitätssicherung NIRS GmbH (Am Versuchsfeld 13, D-34128 Kassel, 

Germany). Three values (oil, protein and glucosinolates), were estimated at seed basis of 91% dry 

matter. Oil and protein are expressed as percentages, and glucosinolates are expressed as mol/g 

seeds. Total seed oil and protein content (oil+P) was obtained by simply adding contents of oil 

content (Oil) and protein (P). 

The values of oil and protein content further were used to calculate protein of defatted meal value 

(PDM) following Suprianto (2014), which estimated as below: 

Protein of defatted meal (%) = [% protein / (100 - % oil)] x 100 

Beside NIRS-predicted traits, three other seed characters were also collected: thousand seed weight 

(TSW), percentage of pre-harvest germination (PHG), and seed coat color (SC). Thousand seed 

weight (TSW) was obtained by weighing samples of 500 seed weight, times 2 to reach one thousand. 

Percentage of pre-harvest germination (PHG) was gained by counting the number of seeds indicating 

pre-harvest germination in 100 random seeds of the sample. 

Seed color was scored visually, from color score 1 (uniform yellow) to 9 (uniform black, Figure 1). 

The  color scoring code was as followed: (1) uniform yellow; (2) mix yellow and pale brown; (3) mix 

of yellow as predominant color and small portion of dark brown/black; (4) mix pale brown and dark 



25 
 

brown/black; (5) uniform brown/mix 50:50 yellow and black; (6) mix of dark brown as predominant 

color and small portion of yellow ; (7) dark brown; (8) reddish black/grey; and (9)  uniform black. As 

the observed seeds were sometimes mixed of two or more colors, even though harvested from one 

individual plant, the scoring system is based on the predominant color, or the ratio of mixed colors. 

 

Fig. 1 The proposed oilseed rape seed coat color scoring system  

 

3.2.4 Germination test 

Germination test were conducted two times for each seed sample. The first germination test was 

performed before seed aging, and the second one was completed after controlled seed 

deterioration treatment, or also known as artificial seed aging test. The fresh seed germination test 

was performed using freshly harvested seeds; at least they have been stored for 6 weeks after 

harvesting from the field (Table 2).  

The germination test was carried out in Petri dishes (92 x 16 mm, Sarstedt, reference code 82.1473), 

using customized filter paper (90 mm in diameter, Macherey-Nagel, GmbH & Co. KG, reference code 

400866009.1) with 50 indented holes each, to hold 50 sample seeds per genotype tested. De-ionized 

water was added, 12 ml each Petri dishes. The sample seeds were chosen randomly, eliminating the 

broken, abnormal, and pre-harvest germinated seeds.  The Petri dishes containing seeds that already 

being watered were then placed into plastic trays. The trays afterward covered with thin cellophane 

to reduce evaporation. These trays were then placed into dark germination chambers for 10 days, 

ambient temperature 16.5 – 17.5 
o
C, RH 90-95%. Germination in dark condition would provide 
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uniform environment to all seed samples and to eliminate the light competition factor in seed 

germination vigor. 

 
Table 2 Schedule for fresh seed germination test of DH population of 4042 x Express 617 

Population Harvest time Start Germination 
(9-10 days) 

Start Counting 

Reinshof 2014 4. Jul 2014 20. Oct 2015 29. Oct 2015 

Reinshof 2015 20. Jul 2015 20. Oct 2015 29. Oct 2015 

Einbeck 2015 17. Jul 2015 21. Oct 2015 30. Oct 2015 

Reinshof 2016 19. Jul 2016 23. Sep 2016 3. Oct 2016 

Einbeck 2016 25. Jul 2016 20. Oct 2016 29. Oct 2016 

 

Observations were carried out on day 9 - 10 of dark period, to count the radicle protrusion 

percent\age (RPP), full germination percentage (FGP), non-germination percentage (NGP), hypocotyl 

length (HL), and infected seed percentage (ISP) (Fig 2). Radicle protrusion is defined as the condition 

when the seed radicle has visually elongated and protruded out of seed coat, but the cotyledons 

were not yet swollen and still embedded within the seed coat. Full germination is defined as the 

condition when the radicle has fully elongated, and both cotyledons are outside of the seed coat. 

Hypocotyl length is measured in centimeter (cm), representing the average value of the hypocotyl 

length of all germinated seeds in one Petri dish.  Infected seeds were identified by bacterial infection 

of the seeds on the filter paper. 

 

 

 

Fig. 2 Examples on visual scoring determination of seed germination-related traits 

Note: a) seed with radicle protrusion, b) fully germinated seed, c) non germinated seed, d) infected 

seed, e) seeds without (first row) and with pre-harvest germination (second row). 

 
The artificial seed aging or controlled deterioration tests were performed at IPK Gatersleben 

(Abteilung Genbank: PD Dr. Andreas Börner and Dr. Manuela Nagel), following the protocol of 
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Cromarty et al. (1982). It starts at the equilibration stage, in which the seeds are exposed to 47 % RH, 

20
o
C for ten days. The seed aging stage came next, in which the seeds were incubated at 45

o
C and 60 

% RH for 50 days. The last step is the germination test which takes 9 - 10 days at 16.5 - 17.5
o
C and 

90-95 % RH in dark condition. All three stages were completed at IPK Gatersleben. The seed material 

was divided into two working batches in different year (Table 3).  

 

Table 3 Timetable for artificial seed aging treatment DH population of 4042 x Express 617   

 

 

 

 

 

 

 

 

 

 

More variations are expected to arise after seed aging. Each seed sample is consisted of 100 seeds, 

and divided into two Petri dishes. The first batch was being carried out for seeds from the first three 

environments: Reinshof 2014, Reinshof 2015 and Einbeck 2015. It started on 3-5 December 2015 

and finished on 9 – 11 February 2016. The second batch was consisted of seeds of the year 2016, 

harvested from Reinshof and Einbeck. The harvest was completed in August 2016, followed by 

drying and seed cleaning and processing. The freshly harvested seed germination test was 

performed at University of Göttingen in October 2016. The equlibration treatment began on 15 - 16 

December 2016 and the observation on germination test was performed on 22 - 23 February 2017.  

The germination protocols are slightly different between the first and second batch. For the first 

batch, the germination test was performed on 3 - 4 layers of regular filter paper (without indented 

holes) and utilizing 50 seeds or sometimes more per sample. The observation data was later 

converted into percentage. The second batch was performed on customized filter paper (90 mm 

Seed samples Begin 

equilibration 

(10 days) 

Begin seed aging 

(50 days) 

Begin 

germination 

test (9 days) 

Begin 

counting 

R 2014 Rep 1 03. Dec 15 13. Dec 15 01. Feb 16 9. Feb 16 

R 2015 Rep 1 04. Dec 15 14. Dec 15 02. Feb 16 10. Feb 16 

E 2015 Rep 1 05. Dec 15 15. De 15 03. Feb 16 11. Feb 16 

R 2014 Rep 2 03. Dec 15 13. Dec 15 01. Feb 16 9. Feb 16 

R 2015 Rep 2 04. Dec 15 14. Dec 15 02. Feb 16 10. Feb 16 

E 2015 Rep 2 05. Dec 15 15. Dec 15 03. Feb 16 11. Feb 16 

R 2016  Rep 1 15. Dec 16 25 Dec 16 13 Feb 17 22. Feb 17 

E 2016 Rep 1 15. Dec 16 25 Dec 16 13 Feb 17 22. Feb 17 

R 2016 Rep 2 16. Dec 16 26 Dec 16 14 Feb 17 23. Feb 17 

E 2016 Rep 2 16. Dec 16 26. Dec 16 14 Feb 17 23 .Feb 17 
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diameter, Macherey-Nagel, GmbH & Co. KG, reference code 400866009.1), and using exactly 50 

seeds per sample. Both germination batches were performed in Petri dishes of 92 x 16 mm diameter 

(Sarstedt, reference code 82.1473). 

 

3.2.5 Statistical analysis  

Analysis of variance and prediction of heritability values were performed by PLABSTAT software (Utz, 

2011). All the experiments were conducted without replicate; therefore, the significance of the G x E 

factor could not be estimated. Both environment and genotype factors were considered as random 

variables. The general model for analysis of variance is as follow: 

Y ij = µ + gi + ej + geij 

where Y is observation of genotype i in environment j; µ is general mean; gi and ej were the effects 

of genotype i and environment j; geij is the interaction between genotype x environment of 

genotype i with environment j. Broad sense heritability (h2) was calculated as follow: 

ℎ2 =  
𝛿2𝐺

𝛿2 𝐺+
𝛿 2𝐺𝐸

𝐸

  

where σ2g  was variance component for genotype, σ2e are was variance component for 

environment, and σ2ge was variance component for interaction between genotype and 

environment. Spearman’s ranks of correlation coefficients between traits and t-test mean value 

comparison were predicted from mean values of the genotypes across all environments. 

 

3.2.6 Non-targeted metabolite fingerprinting 

Non-targeted metabolite finger printing was applied to detect metabolic differences between yellow 

and black seeded DH lines (Bruckhoff et al., 2016). First, fully mature dry seeds were used for the 

analysis. However, no clear differences for metabolites between the two groups could be found. For 

seed metabolite fingerprinting, seeds ideally should have a solid endosperm but still having a soft 

texture and should not have started to change the color to dark (Hajduch et al., 2006).  

Fifteen genotypes were chosen as representative from each groups of high and low ADL contents. 

The non-targeted metabolism analysis was long, detailed, and laborious, therefore only few 

genotype samples can be accommodated.  Two seeds per genotype were sown in small pots. Plants 

were grown in the green house in June 2016. Green/immature siliques were harvested 3 to 4 weeks 
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after self-pollination. Harvest took place between 16th of August and 2nd of September 2016 and 

siliques were put directly in Petri dishes on ice. In the lab about 30 green seeds per genotype were 

isolated and collected in Eppendorf tubes, their fresh weight was determined and they were frozen 

immediately in liquid nitrogen and stored in the -80 oC freezer. Selected genotypes were split into 3 

bulk samples (Table 4).   

 

Table 4 Selected genotypes of DH population of 4042 x Express 617 for non-targeted metabolite 

fingerprinting 

Bulk Yellow group (low 

ADL content) 

ADL 

content 

Bulk Black group (high ADL 

content) 

ADL 

content 

1 DH 4042 x E – 14 4.55 4 DH 4042 x E - 63 9.40 

 DH 4042 x E – 53 4.84  DH 4042 x E - 40 9.91 

 DH 4042 x E – 29 4.98  DH 4042 x E - 8 10.01 

 DH 4042 x E - 46 5.15  DH 4042 x E - 47 10.10 

 DH 4042 x E - 70 5.43  DH 4042 x E - 21 10.10 

2 DH 4042 x E - 4 5.58 5 DH 4042 x E - 10 10.61 

 DH 4042 x E - 31 5.62  DH 4042 x E - 51 11.00 

 DH 4042 x E - 30 5.71  DH 4042 x E - 64 11.48 

 DH 4042 x E - 12 5.78  DH 4042 x E - 25 11.93 

 DH 4042 x E - 35 5.80  DH 4042 x E - 39 12.11 

3 DH 4042 x E - 72 5.82 6 DH 4042 x E - 23 12.19 

 DH 4042 x E - 13 5.84  DH 4042 x E - 28 12.20 

 DH 4042 x E - 15 5.85  DH 4042 x E - 3 12.41 

 DH 4042 x E - 19 5.86  DH 4042 x E - 5 13.02 

 DH 4042 x E - 54 5.87  DH 4042 x E - 9 13.67 

 

Seeds of each group were sent to Göttingen Center for Molecular Biosiences (GZMB), Department of 

Plant Biochemistry (Prof. Ivo Feußner) for further analysis, using the same protocol as in Bruckhoff et 

al. (2016). The procedure in general was divided into two steps, non-targeted metabolic 

fingerprinting and structure determination of marker metabolites. 

 

For the analysis seed samples were kept frozen in liquid nitrogen and homogenized. Each bulked 

sample then being analyzed twice by Ultra Performance Liquid Chromatography (UPLC), connected 
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to a photo diode array (PDA) detector and an orthogonal time-of-flight mass spectrometer (TOF-

MS). Liquid chromatography was performed at 40 °C temperature, 0.2 ml/minute flow rate and with 

a binary gradient of solvent A (water/formic acid (100/0.1, v/v) and solvent B (acetonitrile/formic 

acid (100:0.1, v/v). For liquid chromatography, an ACQUITY UPLC BEH RP18 column (1 x 100 mm, 1.7 

μm particle size) was used for the non-polar extraction phase samples and an ACQUITY UPLC HSS T3 

(1 x 100 mm, 1.8 μm particle size) for these of the polar extraction phase. The following gradient was 

applied for the sample analysis of the polar extraction phase: 0 – 0.5 min for 10% solvent B, 0.5 – 3 

min from 10% to 28% solvent B, 3 – 8 min from 28% up to 95% solvent B, 8 – 10 min 95% solvent B 

and 10 – 14 min 10% solvent B. For the sample analysis of the non-polar extraction phase: 0 – 0.5 

min 46% solvent B, 0.5 – 5.5 min 46 to 99% solvent B, 5.5 – 10 min 100% solvent B and 10 – 13 min 

46% solvent B. The TOF-MS was operated in W optics to ensure a mass resolution larger than 10,000 

in negative as well as positive electrospray ionization (ESI) mode. The capillary and the cone voltage 

were kept at 2,700 V and 30 V and the temperature for desolvation and source were 350°C and 

80°C, respectively.  

 

Raw data were acquired and processed by MassLynx 4.1 software. Further data processing was 

carried out with the toolbox MarVis (MarkerVisualization, http://marvis.gobics.de). An ANOVA test 

combined with a multiple testing (Benjamini and Hochberg, 1995) was performed to filter and 

extract features with a false discovery rate (FDR) < 10−4. Subsequently, the data from the bulk 

samples were matched. Selected high quality features were chosen and their masses were corrected 

for the negative ionization mode. The data sets were combined, used for visualization by cluster 

analysis and automated database search. For database search, the following databases were used: 

KEGG (http://www.genome.jp/kegg), LipidMaps (http://www.lipidmaps.org), Aracyc 

(https://www.arabidopsis.org/biocyc), Knapsack (http://kanaya.naist.jp/KNApSAcK) and Inhouse 

databases. The identity of marker metabolites was confirmed by UHPLC-ESI-MS/MS analysis. 

 

The second part is the structure determination of marker metabolites. The identity of marker 

metabolites from metabolite fingerprinting was confirmed by UHPLC-ESI-MS/MS analysis. The 

samples were analyzed by LC 1290 Infinity (Agilent Technologies, USA) coupled with an 6540 UHD 

Accurate-Mass Q-TOF LC MS instrument with Agilent Dual Jet Stream Technology as ESI source 

(Agilent Technologies, USA). For liquid chromatography, an ACQUITY UPLC HSS T3 column (2.1 x 100 

mm, 1.8 μm particle size, Waters Corporation, USA) was used at 40°C, flow rate 0.5 ml/min. The 

solvent system consists of solvent A (water/formic acid (100/0.1, v/v) and solvent B 

(acetonitrile/formic acid (100/0.1, v/v). The gradient was comparable as applied for UPLC TOF-MS 
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analysis. The Q-TOF MS instrument was operated with a detection frequency of 2 GHz in the 

Extended Dynamic Range and the targeted MS/MS mode. The source conditions were: gas 

temperature: 250°C; drying gas flow: 8 l min-1; nebulizer pressure: 35 psi; sheath gas temperature: 

300°C; sheath gas flow: 8 l min-1; VCap voltage: 3 kV; nozzle voltage: 200 V; fragmentor voltage: 100 

V. Samples were ionized in negative and/or positive ESI mode with collision energy 10–30 eV. 

Isolation of precursor ions occurred within the narrow isolation width of 1.3 m/z. Data were 

acquired by Mass Hunter Workstation Acquisition software B.05.01 (Agilent Technologies, USA). 

Mass Hunter Qualitative Analysis B.06.01 (Agilent Technologies, USA) was used for data analysis. The 

quantitative data of identified compounds are expressed in nmol/g fresh weight. 

 

3.2.7 Bulk Segregant SNP-marker Analysis   

From the frequency distribution of seed ADL content of DH population of 4042 x Express 617 of 

three first environments (Reinshof 2014, Reinshof 2015, and Einbeck 2015), a bimodal type of 

frequency distribution was found. It suggested a major gene controlling this particular trait. In order 

to investigate further, a bulk segregant analysis was performed in cooperation with KWS SAAT SE 

(www.kws.de; Dr. Frank Breuer). Frequency distribution of ADL content of DH 4042 x Express 617 

from 3 environments is displayed on Fig. 3. 

   

Fig. 3 Frequency distribution of ADL content of DH population of 4042 x Express 617 from 3 

environments.  

Note: the black lines representing the mean values of the sample bulk groups taken. 

 

Twenty genotypes were selected from the middle of each group, which has the highest frequency. 

Further, the 20 genotypes were divided into 4 bulk groups, having 5 genotypes in each group. There 

were two groups, one with yellow seed color and one with black color, so in total we used 40 
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genotypes divided into 8 bulks as shown in Tab 5. Seeds of the 40 genotypes were sent to KWS SAAT 

SE for DNA extraction and SNP genotyping with the KWS SAAT SE proprietary Illumina 20K SNP chip.  

 

Table 5 Eight selected bulks of DH population of 4042 x Express 617 representing the yellow and 

black genotypes 

Bulk code No Genotype ADL 
content 

(%) 

Bulk 
code 

No Genotype ADL 
content 

(%) 

Yellow - I 1 DH 4042 x E - 12 5.78 Black -I 21 DH 4042 x E - 63 9.4 
2 DH 4042 x E - 35 5.8 22 DH 4042 x E - 40 9.91 
3 DH 4042 x E - 36 5.82 23 DH 4042 x E - 8 10.01 
4 DH 4042 x E - 72 5.82 24 DH 4042 x E - 47 10.1 
5 DH 4042 x E - 13 5.84 25 DH 4042 x E - 21 10.1 

Yellow - II 6 DH 4042 x E - 15 5.85 Black - II 26 DH 4042 x E - 10 10.61 
7 DH 4042 x E - 19 5.86 27 DH 4042 x E - 7 10.65 
8 DH 4042 x E - 54 5.87 28 DH 4042 x E - 24 10.81 
9 DH 4042 x E - 37 5.88 29 DH 4042 x E – 51 11.00 

10 DH 4042 x E - 18 5.94 30 DH 4042 x E - 62 11.06 
Yellow - III 11 DH 4042 x E - 68 6.03 Black - III 31 DH 4042 x E - 22 11.35 

12 DH 4042 x E - 59 6.09 32 DH 4042 x E - 64 11.48 
13 DH 4042 x E - 41 6.17 33 DH 4042 x E - 58 11.62 
14 DH 4042 x E – 15b 6.18 34 DH 4042 x E - 25 11.93 
15 DH 4042 x E - 38 6.27 35 DH 4042 x E - 52 11.96 

Yellow - IV 16 DH 4042 x E - 27 6.27 Black - IV 36 DH 4042 x E - 39 12.11 
17 DH 4042 x E - 32 6.28 37 DH 4042 x E - 23 12.19 
18 DH 4042 x E - 2 6.3 38 DH 4042 x E - 28 12.2 
19 DH 4042 x E - 17 6.31 39 DH 4042 x E - 1 12.3 
20 DH 4042 x E - 66 6.31 40 DH 4042 x E - 3 12.41 

 

 

3.2.8 Candidate genes identification 

The bulk segregant SNP-marker analysis revealed a number of bulk-specific SNP-markers on linkage 

group C03. Using the SNP-marker sequence information (Clarke et al. 2016), the BRAD database of 

Brassica oleracea genome (brassicadb.org) indicated that there are 450 gene loci located within the 

interval marked by the SNP-markers on chromosome C03. In order to identify which genes that 

correspond to ADL function, each loci within the gene region was compared to NCBI database 

through BLAST (Basic Local Alignments Search Tool) function (https://blast.ncbi.nlm.nih.gov/) to 

identify its gene name and function. The Plant Ensemble genomic database (plants.ensemble.org) of 

three Brassica species: B. napus, B. rapa, and B. oleracea was also cross-checked for more gene 

function information, and in case for B. rapa, for investigating synteny possibilities. The most 
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probable candidate genes where then selected from the identified gene list, considering the gene 

name, position, length, and function. 

Additionally, a molecular physical map was constructed for chromosome C03 (MAPCHART version 

2.2; Voorrips, 2002) using the information from detected polymorphic markers. This physical map 

identified the assumed loci positions of the two candidate genes related to the seed ADL content 

within the targeted gene interval. 

 

3.2.9 KASP genotyping 

For confirming the SNP-marker results from the bulk segregant analysis, a number of KASP-markers 

based on the SNP sequence information (Table 6) were ordered from the LGC Group 

(www.lgcgroup.com/genomics). Seeds of the 77 genotypes were sown in the green house in the tray 

pots, one seed per genotype. Young leaf sample was taken from the germinated plants and used for 

DNA extraction (innuPREP DNA Mini Kit; https://www.analytik-jena.de/de).  

DNA was successfully isolated from 73 genotypes of DH population of 4042 x Express 617, including 

both parents. The KASP genotyping was performed at University of Göttingen with Bio-rad CFX96 

TouchTM Real Time PCR Detection System, C1000 Thermal Cycler (www.bio-rad.com). Three out of 6 

KASP markers responded well and gave clear results (BN-SCAFF_18322_1-P1044275, BN-

SCAFF_18322_1-P1238111, and BN-SCAFF_18322_1-P1655555). 

The KASP genotyping assay protocol was as followed. First, DNA samples were arrayed into the 96-

well reaction plate, including no-template controls (NTCs) on the same plate. The genotyping mix 

was prepared, with wet/dry DNA method. All reagents need to be vortexed before used. For each 

sample, 5 ul DNA was required, and added by 2 x KASP master mix 5 µl and KASP Assay mix 0.14 µl. 

After dispensing the genotyping mix into the wells, the reaction plate was sealed with clear seal to 

avoid evaporation. The centrifuge then arranged at 550 x. 

The next step was running the thermal plate using standard thermal cycle (Table 7).  After the 

thermal cycling was completed, and the temperature cooled down to under 40oC, the plate reading 

was performed through software Bio-rad CFX Manager version 3.1. HEX allele was reported on Y 

axis, and FAM allele was reported on Y axis. 
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Table 6 List of primers and the sequences 

Primers Oligo sequences (5’ to 3’) 

BN-

SCAFF_18322_

1-P1044275 

F AAAATCGGGTGGAAGCAAATACCAGTCAACATATGAAGGCTACRGTTCCCCGGT

AAGCTG[A/G] 

R TATTCTTTTTCTGTGTTTGTATGTATTTATGTGGCGCTGACATGACCTGATGATTCC
TTA 

BN-

SCAFF_18322_

1-P1103558 

F CATATATTTGGTAGATTTCAAATGCTAGTCTAGCAGATTTATATTAATCTACGGAT

ACTC[A/G] 

R GCAGAGYGTTTACTCTACTTTYATAGCAGACTAGGAAACTGCACAACWTATGAAA

GTCTA 

BN-

SCAFF_18322_

1-P1238111 

F TTACAAGCGCTTTTAAATCAAGAAGCTGTAGTACCTCCACAATAAGGAGCTTCTT

GTCCC[T/C] 

R GTGGAAAAGCTSTGKCATGCTGTAMTGCCTACTGGTGGTTTTCTTTTTCCYTATTT

CGTA 

BN-

SCAFF_18322_

1-P1490938 

F GCAGTATTCTTTTATTGAAGAGAAWATTATAGTTAWAGTCTCATCCATGTCAATG

TGACT[T/C] 

R ATCAGGTATAATATCTATGAGAAGGATGATCAAGCATATAACAAAACTAGATAAC

CAGTM 

BN-

SCAFF_18322_

1-P1655555 

F CCACATTTCCAGATGATGGACGAACAGGAACATGGGTACCATCTAAAGCACCTA

GCTATGCAATTCTTAAAGTAAGGCCAATACTGCGAATTCTCTACTAGCATTTGTGA

ACTCATTCCTAGTCAGTTTCACAATGTCTGATGCAAGCTT[T/C] 

R AAGACAGAACTTAAAACCTCTTCTAGCTTCCTACTCACAGTGTCAGTTGAATGCTG

ATAACGCTCTGCTATAACCCGTACTGTTGCGTCTTKTCCAGCTGTCTCTAGGAACA

TTGCAACACTCTCCTCAAGGTAAACATTAAGAGTCTCT 

BN-

SCAFF_18322_

1-P1717349 

F GCAGCAATCAATAACTCTATATTATCTTGGAAAAGGAAAGCAACACGGATCAAAT

TCTGCAAGTGCTAATCACAACATTGCTCCAAAAGACTACTAAAATTCCCATTACCA

GAAAAGGCATCATGCAACCAAAACTGCGTCTCAGATGGA[A/G] 

R CAACAAAGACAAAACACTCAATTCAATTAAAATAGAACGTTGATTCATACACAAA

CACAACAGAAAACAGATAGATCTCGACAAACTGAAACCAAAACTATGTCTCAGA

AGCAACATCAAAGACAAGAATTAAAGGCTATCTTACCAGTT 

 

There were several genotypes giving blank results on the first reading of the plates. To improve the 

clarity of the reading, the plates were given additional 3 cycles and then read again. The first step 

was denaturation (94 oC) for 20 second, followed by annealing/elongation step (57 oC) for 60 second. 
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The additional thermal cycles were repeated 3 – 4 times, until the readings give clear results for 

almost all the genotypes.  

 

Table 7 Thermal cycling condition for the KASP chemistry 

Step Description Temperature Time No. of cycles/step 

1 Activation 94oC 15 minutes 1 cycle 

2 Denaturation 94oC 20 sec 10 cycles 

Annealing/elongation 61-55oC 60 sec (drop 0.6oC/cycle) 

3 Denaturation 94oC 20 sec 26 cycles 

Annealing/elongation 55oC 20 sec 

 

 

3.3 RESULTS  

3.3.1 Variation among traits 

Significant genotypic differences were found for all seed traits, except for the percentage of infected 

seeds in the DH population of 4042 x Express 617 consisting of 77 genotypes (Table 8). The effect of 

the environment was highly significant for all traits. The size of the variance component for the 

effect of environment for most traits was much larger than the effect of the genotype. Heritability 

values ranged from low for glucosinolates content to high for the fiber component traits. 

Both genotype and environment factors were significant for the seed color, TSW (thousand seed 

weight), and pre-harvest germination percentage.  Seed color heritability trait was the highest 

among observed traits (0.95), while heritabilities for TSW and pre-harvest germination percentage 

were 0.72 and 0.61, respectively.  

The variance components for seed germination traits were very diverse. The radicle protrusion 

percentage has significant effects only by environment. The percentage of full germination and no 

germination indicated that environment factor was insignificant to these two traits. Hypocotyl length 

displayed significant effects for both factors. The percentage of infected seeds revealed significant 

effect only for environment factor. Heavy seed infection in one field experiment (Reinshof 2016) was 

noted. The infection level in average was nearly 40% (data not shown). Meanwhile, the mean values 

of the infected seed percentage in the other four environments were all under 10%, two were even 

under 1%. During the harvesting time at Reinshof 2016, many of the oilseed rape pods were heavily 



36 
 

infected by fungi in the field. Heritability ranged from 0.33 for radicle protrusion percentage to the 

0.71 for full germination percentage.  

 

Table 8 Variance components for seed traits of DH population of 4042 x Express 617 tested in five 

environments 

Source of variance Genotype (G) Environment 

(E) 

G x E Heritability 

(h2) 

Oil content (% ) 1.20** 4.85** 3.34 0.64 

Protein content (%) 0.37** 6.81** 1.46 0.56 

Oil+Protein (%) 0.48** 1.17** 1.22 0.66 

Glucosinolates (umol/g seed) 14.44** 59.92** 21.01 0.26 

Protein defatted meal (%) 0.44* 14.31** 2.13 0.51 

NDF (%) 3.18** 10.58** 4.64 0.81 

ADF (%) 2.88** 5.59** 2.98 0.85 

ADL (%) 2.05** 3.81** 3.64 0.86 

Seed color 2.12** 0.02** 0.62 0.95 

Pre-harvest germination (%) 0.41** 0.20** 1.28 0.61 

Thousand seed weight (g) 0.17** 0.89** 0.32 0.72 

Radical protrusion (%)  0.34* 0.23** 3.42 0.33 

Full germination (%)  4.84** 0.13 9.78 0.71 

Hypocotyl length (cm)  0.92** 0.11** 0.42 0.52 

Infected seeds (%)  6.12 12.12** 24.36 0.50 

Radicle protrusion (%) (AA1) 6.52* 44.34** 71.81 0.31 

Full germination (%)(AA1) 116.15** 149.92** 266.23 0.69 

Hypocotyl length (cm) (AA1) 0.06** 0.28** 0.29 0.53 

Infected seeds (%)(AA1) 35.18** 7.96** 97.75 0.64 
1  following Artificial Aging 

** marked as significant at level P=0.01 

 

After the aging treatment, the seed germination test was repeated. Analysis of variance showed 

significant effects for both genotype and environment. Beside hypocotyl length, all other traits 

showed high G x E values. Percentage of radicle protrusion has the lowest heritability of 0.31, while 

full germination percentage has the medium values (0.69). Hypocotyl length and infected seeds 

percentage scored 0.53 and 0.64 for heritability. 

Line 4042, yellow in seed color, contained less oil, protein, total oil and protein than Express 617, 

also less fiber (NDF, ADF, ADL) contents (Table 9). Both parents’ seed size was almost similar (TSW 

4.53 g in 4042 compared to 5.03 g in Express 617). For seed germination traits, both before or after 
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artificially aged treatment, Express 617 seeds were superior to 4042 in all aspects. Full germination 

rate of Express 617 was 100 % in freshly harvested seeds and 68.19 % in aged seeds, whereas in line 

4042 the values were only 97.20 % and 40.05 %, consecutively. The hypocotyl length was better in 

Express 617 for both treatments. The level of seed infection and radicle protrusion of Express 617 

was constantly lower than line 4042.  

 

Table 9 Descriptive statistics of the DH population of 4042 x Express 617 (mean values over five 

environments)  

Traits 4042 

(P1) 

Express 

617 (P2) 

Min Max Means SD LSD 5% 

Oil content (%) 40.7 44.8 39.4 46.9 44.3 1.37 2.28 

Protein content (%) 18.9 16.9 18.9 20.6 17.1 0.81 1.50 

Oil & protein content (%) 59.7 61.6 59.1 63.8 61.5 0.85 1.38 

Glucosinolates (umol/g 

seed) 

43.0 22.9 22.9 64.9 48.3 0.93 18.04 

NDF (%) 22.6 33.0 22.6 33.4 30.4 1.99 2.42 

ADF (%) 16.2 24.1 16.3 24.8 21.1 1.89 2.06 

ADL (%) 4.1 10.9 4.1 13.3 8.5 2.16 2.28 

Protein defatted meal (%) 31.8 30.4 29.2 34.0 30.6 0.93 1.82 

Seed color (score 1-9) 3.6 8.8 3.2 9.0 6.6 1.50 0.98 

Pre-harvest germination 

(%) 

0.6 0.2 0.0 4.7 0.8 0.82 1.41 

Thousand seed weight (g) 4.5 5.1 3.7 6.5 4.9 0.48 0.71 

Radical protrusion (%) 2.4 0.0 0.0 14.0 0.9 1.01 2.30 

Full germination (%) 97.2 100.0 81.5 100.0 98.4 2.61 3.89 

Hypocotyl length (cm) 4.2 5.6 4.0 5.8 4.9 0.42 0.81 

Infected seeds (%) 24.2 5.2 0.0 34.6 3.2 7.91 20.15 

Radicle protrusion (%) 

(AA1) 

19.0 16.6 4.1 29.2 13.6 4.57 10.55 

Full germination (%)(AA1) 40.0 68.2 20.8 86.2 62.8 13.02 20.31 

Hypocotyl length (cm) 

(AA1) 

1.3 2.6 0.9 2.7 2.1 0.35 0.67 

Infected seeds (%)(AA1) 38.7 5.8 2.1 39.7 11.0 7.40 12.31 

1  following Artificial Aging 
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Based on 91% seed dry matter, the average seed oil content was 44.3 %, the protein content was 

17.1 %, total oil & protein was 61.5 %, and glucosinolates 48.3 umol/g seeds. For seed fiber, the 

range of NDF value was 22.6 – 33.4 %, ADF was 16.3 – 24.1 %, and ADL was 4.1 – 13.3 %. The seed 

color score for DH population of 4042 x Express 617 ranged between 2 to 9, with 6.6 as average. Pre-

harvest germination was between zero to 9 %, and average value was under 1 %. TSW (Thousand 

Seed Weight) was quite diverse, ranging between 2.6 – 7.9 g, and the mean value was 4.9 g.  

The radicle protrusion percentage for DH population of 4042 x Express 617 seeds was low, ranged 

between zero to 14 %, and in average was less than 1 %. After germination test without aging 

treatment, in average 98.40 % were fully germinated. Seed infection across five environments was 

very diverse, from zero to 100 % infection, but average was only 3.23 %. The hypocotyl length was 

ranged between 3 – 8 cm, indicating good seed vigor, and the average value was 4.94 cm. After 

artificial aging treatment, the value ranges were changed. Full germination percentage were 

becoming very diverse, ranged from zero to 98.04 %, with mean value 62.83 %. Radicle protrusion 

was increased, between 0 to 51.08 % (means 13.61 %). Hypocotyl length was also shortened, ranging 

from 0.50 – 4.50 cm, with average 2.07 cm. 

 

3.3.2 Frequency distributions 

The frequency distribution for seed fiber component (NDF, ADF, and ADL) contents and seed color, 

consisted of 77 genotypes of DH population of 4042 x Express 617  over 5 environments, were 

developed (Fig. 4). The first graph, NDF content, showed more or less a normal distribution with few 

outliers (including parent 4042) separated from the rest of the population. The ADF content graph 

started to shift from normal distribution to bimodal distribution, and exhibited two peaks at 21 and 

24 %. The graph of ADL content displayed clearer bimodal distribution, segregated into two groups 

at 10 % value. Previously ADL frequency distribution graph has been generated (Fig. 3) from 3 earlier 

environments (Reinshof 2014, 2015, and Einbeck 2015). A scatterplot test (Fig. 5) confirmed that the 

mean values of ADL content from 3 (Fig. 3) and 5 environments (Fig. 4) has high similarity with R2 = 

0.93. The seed color frequency distribution also had two peaks (at 6 and 9), its shape was 

somewhere between normal and bimodal distribution type.  
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Fig. 4  Frequency distribution of seed fiber contents (NDF, ADF, and ADL) and seed coat color of DH 

population of 4042 x Express 617 over 5 environments 

     

Fig. 5 Scatterplot graph of ADL mean values of DH population of 4042 x Express 617 between 3 and 

5 environments  

0

5

10

15

20

25

22 23 24 25 26 27 28 29 30 31 32 33 34 35

N
o

. o
f 

D
H

 ;
lin

e
s

NDF content (%)

0

5

10

15

20

25

30

16 17 18 19 20 21 22 23 24 25 26

N
o

. o
f 

D
H

 li
n

e
s

ADF content (%)

0
2
4
6
8

10
12
14
16
18

4 5 6 7 8 9 10 11 12 13 14 15

N
o

. o
f 

D
H

 li
n

e
s

ADL content (%)

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9

N
o

. o
f 

D
H

 li
n

e
s

Seed color score (1-9)

y = 0.74x + 2.72
R² = 0.93

0

2

4

6

8

10

12

14

0 5 10 15

M
e

an
s 

o
f 

5
 e

n
vi

ro
n

m
e

n
ts

 (
%

)

Means of 3 environments (%)

E-617 

4042 4042 
E-617 

4042 

x̄ 

x̄ 

E-617 

E-617 

4042 

x̄ 
x̄ 



40 
 

   

   

    

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 8 9 10

N
o

. o
f 

D
H

 li
n

e
s

Radicle protrusion (%)

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

N
o

. o
f 

D
H

 li
n

e
s

Radicle protrusion after aging (%)

0

10

20

30

40

50

60

70

8
0

8
2

8
4

8
6

8
8

9
0

9
2

9
4

9
6

9
8

1
0

0

N
o

. o
f 

D
H

 li
n

e
s

Full germination (%)

0

5

10

15

20

25

30

35

20 30 40 50 60 70 80 90 100

N
o

. o
f 

D
H

 li
n

e
s

Full germination after aging (%)

0

5

10

15

20

25

30

35

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6

N
o

. o
f 

D
H

 li
n

e
s

Hypocotyl length (cm)

0

5

10

15

20

25

30

35

40

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

N
o

. o
f 

D
H

 li
n

e
s

Hypocotyl length after aging (cm)

x̄ E-617 

4042 

x̄ 

4042 E-617 

E-617 

4042 

x̄ 

4042 
E-617 

x̄ 

E-617 

4042 

x̄ 

4042 

x̄ 

E-617 



41 
 

     

Fig. 6 Frequency distribution of seed germination and seed longevity traits of DH population of 

4042 x Express 617 from five environments 

 
The segregations of seed germination traits in comparison to both parents were more clearly 

displayed by frequency distribution graphs on Fig. 6. In full germination percentage and hypocotyl 

length traits, Express 617 was performed better than the average value and line 4042. In term of 

radicle protrusion, Express 617 has zero value, while the other parent (line 4042) displayed higher 

percentage of seeds with radicle protrusion than average. For seed infection, however, both parents 

scored higher compared to the mean value, although the seed infection level from the black-seeded 

parent of Express 617 (5.20 %) was much lower than from the yellow-seeded line of 4042 (24.20 %).   

The segregation of seed longevity traits were again better displayed through frequency distribution 

graphs (Fig. 6), in comparison to the values of both parent materials. As previously in the seed 

germination traits, the full germination percentage and hypocotyl length of Express 617 was higher 

than both the average value and line 4042. For radicle protrusion, both parents exhibited higher 

percentage of seeds with radicle protrusion compared to the mean value. The black-seeded Express 

617 was having slightly lower radicle protrusion (16.55%) than yellow-seeded line 4042 (19.05 %). 

For seed infection, while the mean value was 11.00 %, the difference between two parents was 

quite far. The black-seeded Express 617 infection level was low at 5.83 %, but the yellow seeds of 

line 4042 were more susceptible to seed infection with 38.75 %.   

 

3.3.3 Spearman’s rank of correlation coefficients 

The estimation of Spearman’s rank of correlation coefficients among traits were executed using 

mean values over five field environments. The coefficient values are shown in Table 10.   Close and 
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significant correlations were found between seed oil, protein, total oil and protein, and protein of 

defatted meal. Seed oil is negatively correlated to protein, but no correlation to protein of defatted 

meal. Positive correlations were found between seed oil and total oil and protein, also between seed 

protein and protein of defatted meal. The association between seed protein and total seed and 

protein content is negative. Glucosinolates content has no correlations to any traits. Strong positive 

correlations were found among the three fiber content components: NDF, ADF, and ADL with values 

over 0.90. In this study, seed fiber components have strong positive association to seed color (0.84 – 

0.87), but not to oil or protein content. 

There were no correlations observed between TSW (Thousand Seed Weight) and pre-harvest 

germination percentage. Pre-harvest germination percentage was negatively correlated to seed oil 

and protein (-0.30 and -0.31, respectively), also to NDF value (-0.33). Seed size or TSW (Thousand 

Seed Weight) has no correlation to any traits except to radicle protrusion percentage before aging. 

Light seed color was associated with lower full germination percentage (0.31), and higher probability 

of radicle protrusion (-0.41) and seed infection (-0.44). All three seed fiber components (NDF, ADF, 

ADL) have significant contributions to the increase of radicle protrusion percentage (-0.37 to 0.43), 

but only ADL was correlated to the increase of seed infection (-0.30). Obviously, high percentage of 

full germination would have strong negative correlation to both radicle protrusion (-0.78) and 

infected seed percentage (-0.31), but interestingly not to hypocotyl length. Radicle protrusion also 

correlated to infected seed percentage (0.37). Hypocotyl length has no significant correlations with 

any seed germination traits. 

The seed longevity traits were measured after artificial aging. Seeds with higher total oil and protein 

content has better seed germination rate after aging. High seed fiber components and dark seed 

color were found to be positively prolonged the seed longevity. Similar associations were also 

observed for total oil and protein content in relation to seed longevity traits. Full germination 

percentage and hypocotyl length would be improved by the increase of seed fiber (NDF, ADF, ADL), 

dark seed color, and higher total oil and protein content, while chance of getting radicle protrusion 

or seed infection would become lower. TSW and pre-harvest germination have no correlations to 

any seed longevity traits.  

 

                       

 



43 
 

Table 10 Spearman’s rank of correlation among traits of DH population of 4042 x Express 617 over five environments 

XP -0.71** 
         

       

XLP  0.86** -0.31** 
        

       

PDM -0.28*  0.84**  0.17 
        

       

GSL -0.21  0.17 -0.13  0.16 
       

       

NDF  0.27* -0.23*  0.19 -0.15 -0.27* 
      

       

ADF  0.08 -0.08  0.04 -0.07 -0.27*  0.93** 
     

       

ADL  0.06  0.07  0.08  0.06 -0.18  0.92**  0.97** 
   

       

SC  0.05  0.04  0.11  0.08 -0.14  0.84**  0.84**  0.87** 
  

       

PHG -0.30**  0.31** -0.19  0.25*  0.01 -0.33** -0.25* -0.23* -0.28* 
  

       

TSW -0.02  0.13  0.08  0.17  0.08 -0.12 -0.12 -0.13  0.04  0.21 
 

       

HL -0.14  0.16 -0.09  0.06 -0.08 -0.02  0.04  0.02  0.05  0.10  0.18        

RPP -0.06 -0.01 -0.13 -0.01  0.02 -0.43** -0.37** -0.43** -0.41**  0.31**  0.12 -0.23*       

FGP  0.03  0.04  0.11  0.05  0.08  0.24*  0.20  0.26*  0.31** -0.28* -0.06  0.22 -0.78**      

ISP  0.07 -0.21 -0.09 -0.29* -0.08 -0.26* -0.24* -0.30** -0.44**  0.13  0.03 -0.14  0.38** -0.37**     

RPPA  0.23*  0.10  0.41**  0.29* -0.11 -0.26* -0.22* -0.30**  -0.31** 0.02 0.08  0.12 0.11 0.04 0.20    

FGPA 0.22 0.10 0.42** 0.29* -0.07 0.43** 0.40** 0.47** 0.49** -0.03 0.08  0.14 -0.38** 0.20 -0.31** -0.54**   

HLA  0.18  0.06  0.32**  0.20 -0.16  0.48**  0.46**  0.52** 0.51** -0.10 0.04  0.02 -0.39** 0.25* -0.36** -0.53**  0.78**  

ISPA -0.21 -0.11 -0.37** -0.25*  0.13 -0.52** -0.46** -0.53** -0.54** 0.03 -0.07 -0.11 0.46** -0.25* 0.39**  0.30** -0.78** -0.62** 

 
XL XP XLP PDM GSL NDF ADF ADL SC PHG TSW HL RPP FGP ISP RPPA FGPA HLA 

** marked as significant at level P=0.01 

Abbreviation notes 
XL : oil content 
XP : protein content 
XLP : total oil and protein content 
PDM : protein of defatted meal content 
GSL : glucosinolates content 
NDF : neutral detergent fiber 
ADF : acid detergent fiber 
ADL : acid detergent lignin 

SC : seed color 
PHG : pre-harvest germination 
TSW : thousand seed weight 
RPP : radicle protrusion percentage 
FGP : full germination percentage 
HL : hypocotyl length 
ISP        : infected seed percentage 

RPPA  : radicle protrusion percentage after     
aging 

FGPA   : full germination percentage after   
aging 

HLA      : hypocotyl length after aging 
ISPA     : infected seed percentage after aging 
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Seed longevity traits were not correlated directly to full germination rate before aging. Instead, 

significant relations were found between full germination (-), hypocotyl length (-), and seed infection 

(+) after aging to both radicle protrusion and seed infection percentage before aging. Four observed 

seed longevity traits were each strongly correlated with each other. Full germination has positive 

association to hypocotyl length, and negative association to radicle protrusion and seed infection 

percentage. 

 

3.3.4 T-test two mean values comparison 

There were the two distinct groups formed by the different level of seed ADL contents based on 

mean value of 3 environments, separated by the missing 9 % seed ADL content (see Fig. 4). The 

member of the two groups was more or less the same in the frequency distribution histogram of 

mean value of 5 environments (Fig. 5), except for one genotype. The first group with low seed ADL 

content (below 10 %) consisted of 49 genotypes, while the second group with high seed ADL content 

(10 % and higher) has 28 genotypes.  In order to confirm whether these two groups were differing 

also in other characters, a T-test comparison was executed (Table 11).  

Between the two groups, there were no differences found in term of seed quality traits except in 

seed fiber components. Also, no differences were found for seed germination traits, except for 

infected seed percentage. The significant differences were revealed for seed fiber components (NDF, 

ADF, ADL), seed color, infected seed percentage, and all seed longevity traits (radicle protrusion, full 

germination, infected seed percentages, and hypocotyl length).  
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Table 11 T-test comparison between 2 groups of yellow seeded (low ADL content) and black 

seeded genotypes (high ADL content) (means over five environments are presented) 

Traits Low ADL Means High ADL Means T-test 

Oil 48.9 48.2 ns 

Protein 18.1 18.5 ns 

Oil+Protein 67.1 66.7 ns 

Glucosinolates 53.1 51.2 ns 

NDF 30.8 34.7 10.0** 

ADF 18.3 22.6 16.0** 

ADL 5.9 11.3 21.3** 

Protein of defatted meal 29.5 29.8 ns 

Seed color 5.8 8.4 15.1** 

Pre-harvest germination (%) 1.1 0.8 ns 

Thousand seed weight (g) 5.1 5.0 ns 

Radicle protrusion (%) 0.8 0.5 ns 

Full germination (%) 98.6 98.2 ns 

Hypocotyl length (cm) 5.0 5.1 ns 

Infected seeds (%) 3.6 2.0 2.32** 

Radicle protrusion (AA1) (%) 10.6 6.9 3.4** 

Full germination (AA1) (%) 66.8 78.6 3.9** 

Hypocotyl length (AA1) (cm) 2.3 2.7 4.4** 

Infected seeds (AA1) (%) 13.4 8.0 3.2** 
1 following Artificial Aging (AA) 

** marked as significant at level P=0.01 

 

3.3.5 Seed metabolite fingerprinting 

The samples used for the analysis were bulked into different groups from samples used for the KASP 

genotyping, since only 15 samples were chosen each from low and high ADL group. The exact 

compounds detected from non-targeted metabolite fingerprinting and mass spectroscopy listed in 

Fig. 7 & 8 are still putative at best. Purification and quantification of each compound would be 

needed to find out the further details. There were noticeable differences of metabolite levels 
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revealed between the high ADL vs low ADL content bulk groups. The seeds with high ADL content 

were mostly dark (score 7-9), and the seeds with low ADL content were lighter in color (score 3-5) 

(data not shown). The differences in compounds’ quantity started from phenylpropanoid 

biosynthesis pathway, continued to proanthocyanidins pathway, and also influenced 

flavonols/flavones, amino acids, and some other compounds. The two metabolites in 

phenylpropanoid pathway, sinapoyl glucose and caffeoyl shikimate, was found to be abundant in 

black seed samples, but was nearly zero in yellow seed samples.  

 

 

 Fig. 7 Comparison of compound contents related to phenylpropanoids and proanthocyanidins 

pathway between yellow vs black-seeded pools of 4042 x Express 617 

Note: Each data point represents the mean value of the compound quantity within seed samples 

(nmol/g fresh seed weight) ± SD of 3 replicates. The biosynthesis pathways were adapted from 

Debeaujon et al. (2000) and Debeaujon et al. (2003).  
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Among the different compounds of the proanthocyanidins pathway, most of them gave nearly 

similar results, in which black seeded samples contain higher amount of some compounds compared 

to the yellow seeded ones. The yellow-seeded samples produced some results for catechin-feruloyl-

coumaroyl-glucopyranoside and epicathecin-epicathecin-epigallocathecin compounds, but the levels 

were still below the black-seeded ones. 

 
         

 

 

 Fig. 8 The comparison of compound contents related to flavonoids, amino acids and other 

compounds between yellow vs black seeded pools of DH population of 4042 x Express 617 .  

Note: Each data point represents the mean value of the compound quantity within seed samples 

(nmol/g fresh seed weight) ± SD of 3 replicates. 

 

Some flavones or flavonols compounds were also detected (Fig. 8). Pelargonidin-

glucosylcaffeylglucoside-5-glucoside and myricetin-3-sambubioside were found abundantly for both 

bulk samples, but their levels in the black seeded samples were about twice as much as the yellow 

seeded ones.  Other flavones/flavonols such as kaempferol-rhamnopyranoside-rhamnopyranoside, 

quercetin-methyl ether-glucoside-sulfate, and rhamnetin-3-galactoside-diglucoside were only being 
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produced in high levels in black-seeded samples. The seeds with yellow color have very low level for 

these metabolites. The amount of two amino acids, tyrosine and glutamic acid, were detected in 

slightly lower level in yellow seeds compared to the black ones. The traces of other compounds were 

also detected in different amounts. Arogenate, pipecolic acid, citric acid, glycerol-3-phosphocholine, 

and O-hexanoyl-R-carnitine were identified in both seed sample groups, but the yellow seeds gave 

consistently lower results. Jasmonoyl-ACC was only spotted in black seeded group. 

 

3.3.6 Bulk Segregant Analysis  

In total, there were 40 genotypes of DH population of 4042 x Express 617 utilized for Bulk Segregant 

Analysis (BSA). Twenty genotypes represented the low ADL content group, and another 20 

genotypes represented the high ADL content group. For seed ADL content, two peaks were observed 

in the frequency distribution over the first three environments (Fig. 3). This method compares two 

contrasting bulks on a particular trait, using two bulk groups of contrasting values. From each groups 

of low vs high ADL contents, four bulk groups each consisted of 5 genotypes were chosen. 

 

Table 12 List of markers giving polymorphic results in DH population of 4042 x Express 617  

 

 

 

 

 

 

 

 

 

 

 

From 20,000 SNP markers of 20K chip by KWS, eleven were giving polymorphic bands between the 

two pooled groups of low ADL and high ADL content. All of the eleven polymorphic markers were 

detected in chromosome C03, with physical map position between 7,298,559 and 8,053,064 bp 

(Table 12).  

 

 

Marker name (Clarke et al., 2016) 
Chromo-

some 
Physical 

position (bp) 

N-SCAFF_18322_1-P1655555 C3 7298559 
BN-SCAFF_18322_1-P1717349 C3 7405366 
BN-SCAFF_18322_1-P1612916 C3 7476656 
BN-SCAFF_18322_1-P1490938 C3 7591715 
BN-SCAFF_18322_1-P1412794 C3 7664631 

KWS-Marker C3 7698435 
BN-SCAFF_18322_1-P1238111 C3 7800453 
BN-SCAFF_18322_1-P1229371 C3 7808488 
BN-SCAFF_18322_1-P1103558 C3 7959152 
BN-SCAFF_18322_1-P1044275 C3 8030301 

KWS-Marker C3 8053064 
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3.3.7 Identification of candidate genes 

There were eleven polymorphic markers located in the chromosome C03. Altogether, those markers 

covered an interval of ± 760,000 base pairs. Through comparison with the Brassica database 

(brassicadb.org/brad), at least 450 identified genes on the C genome were detected within the 

mentioned interval. The sequences of these genes were compared against NCBI database through 

BLAST function. Later, the annotations were checked for gene function, size, and position. Similar 

inquiries were also performed through Ensembl Plants website (plants.ensembl.org) against three 

Brassica species genome databases: B. napus, B. rapa, and B. oleracea. From 450 genes, a large 

portion encoded unknown proteins. Only 70 genes were recorded to have annotations in Brassica 

species.  

BoI028063 was identified as MATE (multi-antimicrobial extrusion protein) transporter, also known as 

TT12 gene, which involved in seed coat pigmentation. BoI028063 was a short gene. Its full length 

was 735 bps, located in chromosome C03, and its locus position was started from 7,828,189 until 

7,828,924 bps (Table 13). The second candidate gene was discovered a little beyond the flanking 

interval. Bol004610 was also located on chromosome C03, and its locus position was started from 

8,139,451 to 8,141,336 bps, in total 1,885 bps in size. This gene encodes for C4H (cinnamate 4-

hydroxylase) protein, which was one of the vital precursors to lignin biosynthesis. 

Table 13 Proposed candidate genes responsible for seed ADL content 

 Chromosome Start Stop Function 

BoI028063 C03 7828189 7828924 MATE transporter (TT12) 

Bol004610 C03 8139451 8141336 cinnamate 4-hydroxylase 
(C4H) 

MATE: Multi-antimicrobial extrusion protein.  

C4H: cinnamate 4-hydroxylase, one of the precursors to lignin biosynthesis. 

 

A molecular physical map of chromosome C03 was generated by MAPCHART version 2.2, focusing on 

specific gene region of the targeted flanking interval (Fig 9). The exact positions of the eleven 

polymorphic markers and the two candidate genes were displayed in this map in order to provide 

better perspective of their positions. Further SNP analysis with more markers downstream of the 

range in the future would provide verification of the exact position of the C4H locus.  
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 Fig. 9 The molecular physical map of chromosome C03, based on identified polymorphic marker 

positions on Table 12. 

 

3.3.8 KASP genotyping 

The KASP genotyping was carried out for 73 genotypes of DH population of 4042 x Express 617, 

including the two parental lines. Four of the original 77 genotypes failed to produce good quality 

DNA during DNA extraction in KWS. PCR was performed with 3 KASP primers, representing the 

beginning (BN-SCAFF_18322_1-P1655555), the middle (BN-SCAFF_18322_1-P1238111), and the end 

(BN-SCAFF_18322_1-P1044275) of the marker interval mentioned in Table 12 and Fig. 9. The 

outcome of KASP genotyping (Fig. 10) confirmed the result of Bulk Segregant Analysis (BSA). The 

genotypes of low ADL proved to have different alleles compared to genotypes of high ADL content. 

Aside from few blank readings, the allelic distributions from three different KASP markers were 

giving identical results. At the point of 10 % seed ADL content value, the allelic distributions clearly 

segregate and changed from allele 1 to allele 2 type.  The line 4042 as parent exhibited the smallest 

ADL content from the whole population. Express 617, while possessing allele 2, contained the 

second lowest ADL content from the group of genotypes with allele 2 type.  
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 Fig. 10 The allelic distributions generated by three KASP markers of DH population of 4042 x 

Express 617  based on seed ADL content mean value frequency distribution over 5 environments 

 

In general, seeds from genotypes of allele 1 type were lighter in seed color appearance, while 

genotypes of allele 2 type were darker. The first group, however, had wider range of seed color 

(mean value of 3.2 to 7.6) compared to the second group (7.8 to 8.8) (data not shown).  

One genotype (#11) was suspected to be an outlier. Even after the KASP genotyping for its DNA 

sample was repeated, this genotype was consistently detected having allele 2 type by all three 

different KASP markers. However, it has relatively low ADL content (mean value 7.73) so that this 

genotype was isolated from the rest of allele 2 genotype group in the frequency distribution in Fig 

10. The seeds of this genotype exhibited dark color with score 7.8.  
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3.4 DISCUSSION 

 

3.4.1 Variation among traits 

In the present study, a significant and large variation was found for nineteen characters among 77 

DH lines originated from a cross between yellow seeded and black seeded winter oilseed rape 

cultivars evaluated in field experiments at five environments in Germany.  The environment showed 

a dominant effect on all seed quality traits, also on seed color and pre-harvest germination 

percentage. One of the parent, line 4042 was an old yellow-seeded line originated from Göttingen, 

while Express 617 was a double low (00) modern canola cultivar, suggesting a segregation in 

glucosinolates level.  Glucosinolates content variance for was high compared to other seed quality 

traits. Bushan et al. (2013) reported lower glucosinolates content for infected plants. In one of the 

field experiment (Reinshof 2016), the plants were heavily infected by fungi. This event could be 

reflected on low heritability (0.26), and the high value of both environment and G x E.  

Heritabilities were high (above 0.80) for NDF, ADF, ADL and even higher for seed color (0.95). In 

comparison, Körber et al. (2016) discovered heritability higher than 0.80 for NDF, ADF, and ADL 

content traits among 405 oilseed rape accessions in winter trials, and above 0.90 at spring trials. 

Zhang et al. (2006) stated that seed color in B. napus is mostly controlled by maternal genotype, 

although at times can be influenced by interaction between maternal and embryonic effects.  

In the present study, analysis of variance showed significant effects of both genotype and 

environment, for germination traits after aging treatment. The similar result was achieved by 

Schatzki et al. (2013) for seed longevity. They claimed that environmental factors as nutrient supply 

and growth conditions of the mother plant may affect the longevity of the harvested seeds, as also 

stated by Kochanek et al. (2011). Beside hypocotyl length trait, all other traits (radicle protrusion, full 

germination, no germination and infected seed percentages) showed high G x E component values. 

Mersal (2011) listed many factors affecting the accelerated aging test results, i.e. relative humidity, 

temperature, exposure period, seed size and seed chemical composition which play an important 

role in water absorption. All of these might induce some variations in the test result and affect the 

test accuracy. 

Heritabilities were low (0.24 to 0.53) for seed germination and seed longevity traits. Schatzki et al. 

(2013) also obtained moderate heritability values (0.70 to 0.71) for seed germination rate before 

and after artificial aging from black-seeded materials. 
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3.4.2 Spearman’s rank of correlations 

In order to determine the associations among nineteen observed traits of DH population of 4042 x 

Express 617 population, the estimation of Spearman’s rank of correlation coefficients were 

performed by PLABSTAT. Strong positive correlations were found among the three fiber 

components. In this study, all seed fiber components have strong positive association to seed color, 

but none to oil or protein content. Pre-harvest germination percentage was negatively correlated to 

seed oil and protein, also to NDF value.  

Yellow seed color was associated with low full germination percentage (0.31), and high probability of 

radicle protrusion and seed infection. All seed fiber components contributed to the increase of 

radicle protrusion percentage, but only ADL was correlated to the increase of seed infection. In other 

crops like rice (Umnajkitikorn et al., 2013), lower tannin contents were associated with higher risk of 

the seed embryo being damaged by biotic and abiotic stress. The germinated seeds of pigmented 

cultivars are more robust against salinity stress, due to antioxidant capacity. Obviously, high 

percentage of full germination would have strong negative correlation to both radicle and infected 

seed percentage, but interestingly not to hypocotyl length. Radicle protrusion also correlated to 

infected seed percentage. Hypocotyl length has no significant correlations with any seed 

germination traits. 

The seed longevity traits had interesting results. Although these traits have no association to seed 

color or seed size, but they were significantly correlated to seed fiber contents. All fiber traits (NDF, 

ADF, ADL) were strongly correlated with seed longevity traits. They were positively associated to 

percentage of both full germination and hypocotyl length, and negatively correlated to percentage 

of seed infection. It was possible that the thick testa, fortified by high fiber content, would help 

protecting the seeds from deterioration during the storage. Phenylpropanoid based polymers, like 

lignin or condensed tannins which accumulated only in the seed coat, provide substantial protection 

against mechanical or environmental damage (Vogt, 2010). It may also explain the lower infection 

level for seeds with darker color. In nature, condensed tannins exist in polymeric state, and able to 

bind proteins. These characteristics might explain their impermeability properties, also their role in 

the germination-restrictive action of the testa (Debeaujon et al., 2001). 

Similar associations were also observed for total oil and protein content in relation to seed longevity 

traits. Full germination percentage and hypocotyl length were improved by the increase of seed fiber 

and total oil and protein contents, while chance of getting radicle protrusion or seed infection would 

become lower. Seeds with less oil content has better seed longevity rate. Schatzki et al. (2013) 

experiment revealed a weak negative relationship between oil content and seed longevity as also 
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observed in the present study (-0.32). Nagel and Börner (2010), also earlier found the same 

association between oil content and seed longevity across different species of cereals, legumes, and 

oilseeds. The existence of oil can be detrimental to seed viability in long term. Lipid oxidation 

induced an increase of free fatty acid level and free radicals (Grilli et al., 1995). Free fatty acid can 

act as detergent agent and harmed the lipid bilayer of the membrane. Free radicals can also 

destroyed membrane, enzymes, protein, DNA, and in the end the cellular repair mechanism (Booth 

& Bai, 1999). Pritchard & Dickie (2004) earlier confirmed that oily seeds aged more rapidly, and 

further suggested that not only membranes that were susceptible to lipid oxidation. Oil-rich seeds 

owned reserved lipids which can provide more free radicals attack throughout the seeds. However, 

adjustment of moisture content during equilibration process might counteract this effect. 

Seed longevity traits are not correlated to full germination rate before aging. Instead, significant 

relations are found between full germination (-), hypocotyl length (-), and seed infection (+) after 

aging to both radicle protrusion and seed infection percentage before aging. Only radicle protrusion 

after aging trait is free from such correlations to seed longevity.  

Also, there was no correlation between seed color to both oil and protein content. This was contrary 

to Rahman and McVetty (2011) which mentioned that yellow seeded Brassica spp. was often 

associated with high oil and protein content. Comparing yellow vs brown seeded lines of B. napus 

originated from eight different sources, Tang et al. (1997) previously discovered that the seed coat 

oil content of yellow seeds are superior to dark seeds. However, the oil content of the embryo and 

total oil content are mainly determined by their genetic background, not by seed color or seed coat 

thickness.  

  

3.4.3 Frequency distribution and T-test two means comparison 

The seed fiber components showed a certain degree of similarity among their frequency distribution 

graphs. All demonstrated segregation toward two peaks within the distribution, although the 

clearest segregation was exhibited in seed ADL content. Comparing the two groups of low vs high 

ADL contents, the mean value of the low ADL group was 5.9 %, and the high ADL group was 11.3 %. 

In comparison, Wittkop et al. (2009) obtained 3.2 % of ADL content of a yellow seeded doubled 

haploid line, and 5.9 % of a black seeded one.  

In the present study, there was no significant difference found in oil or protein content between 

yellow and black-seeded lines. Simbaya et al. (1995) discovered that in average, the yellow-seeded 

types contained 2 % more protein than the brown-seeded ones, although they utilized only 33 
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genotypes which came from various Brassica species. Tang et al. (1997) mentioned that although 

most of the times yellow seeded lines have higher oil content than the black ones, it depends also on 

their genetic background. There are some cases where they found that the yellow seeds are inferior 

instead.  

Dietary fiber content in yellow seeded samples is found to be significantly 6 % lower from the dark 

seeded types. Lower dietary fiber content in yellow seeded samples as compared to dark seeded 

samples was reflected in a lower content of lignin with associated polyphenols (4.3% vs 8.2%, 

Simbaya et al., 1995). Strong correlations between seed color and acid detergent lignin (ADL) are 

also noted by Liu et al. (2012), but not between ADL and cellulose or hemicellulose contents. 

In this population, the seed size (TSW/Thousand Seed Weight) was also not significantly different 

between two groups. Tang et al. (1997) stated that TSW is not influenced by seed color, but by 

genetic background. Minkowski (2002) suggested that the seed size matters to determine seed oil 

content. Larger seeds tend to have lower seed hull proportion, with larger portion of cotyledon and 

less portion of seed coat. Yan et al. (2009) proved that seed hull proportion was negatively 

correlated to oil content. In this case, although the two groups of yellow and black seeds have 

different seed fiber levels, the seed size was not affected, and therefore the other seed quality traits 

(seed oil, protein, total oil & protein, protein of defatted meal, glucosinolates contents) were also 

not differ significantly. 

 

3.4.4 Seed metabolites fingerprinting 

According to Hajduch et al. (2006), the energy and metabolism-related protein groups were 

represented the highest in the immature or developing seed of Brassica napus, as much as 24.3 % 

and 16.8 % of the total proteins, respectively. The abundance of these amino acid metabolism 

expression profiles was the highest at 2 WAF (Week after Flowering), then it slowly decreased until 

reached midpoint of seed filling, and remained constant afterwards. The earlier transcript analysis 

profiles by Dong et al. (2004) also confirmed that the seeds at 10-20 DAP (Days after Pollination) has 

the highest active cell proliferation, which used to develop metabolic networks for further seed 

maturation. Therefore, to get better reading at the various metabolite levels of the seeds, the 

metabolite analysis was at best to be performed on immature seeds. 

There were significant differences of compound content levels revealed between the high ADL vs 

low ADL content groups (Fig. 9). The differences can be observed starting from phenylpropanoid 

biosynthesis pathway, continued to flavonoid and proanthocyanidins pathway. According to Vogt 
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(2010), the biosynthesis pathways of lignin and flavonoids are interrelated. Phenylpropanoids, 

proanthocyanidins, and several flavones or flavonols are the by-products of these two pathways. 

Lignin itself is mostly built based on phenylpropanoid units, derived from the oxidative 

polymerization of hydroxycinnamoyl alcohol derivatives. Seed flavonoids were classified into several 

groups: flavonols, anthocyanins, phlobaphenes, isoflavones, and proanthocyanidins (Lepiniec et al. 

2006). Proanthocyanidin, also known as condensed tannin, was only accumulated in the seed coat. 

This compound was synthesized through a phenylpropanoid pathway in the flavonoid pathway 

(Lepiniec et al. 2006). Seed flavonoids are involved in defense against biotic and abiotic stresses and 

contribute to physiological processes such as reinforcement of seed longevity and dormancy (Auger 

et al., 2010).  

Anthocyanins and PAs were accumulated in the vacuole, where polymerization of PA precursors was 

followed by conversion to brown oxidation products (Lepiniec et al., 2006). Comparing mutant tt12 

seeds to the wild type, Marinova et al. (2007) observed the absence of epicathecin in PA 

(proanthocyanidins) pathway. The metabolism fingerprinting for DH population of 4042 x Express 

617 seeds obtained the same result for yellow seeded vs black seeded samples. Further, Marinova et 

al. (2007) also found that the quantity of quercetin-3-O-rhamnoside (Q3R) was reduced to 30% in 

tt12 mutant seeds. 

 

3.4.4 Bulk Segregant Analysis (BSA) and identification of candidate genes 

According to Shoba et al. (2012), in QTL mapping, normally each plant of a large mapping population 

should be genotyped with numerous molecular markers. This process is considered time consuming 

and labor intensive. The difficulty of genotyping all the plants in a mapping population can be 

reduced through selective genotyping through Bulked Segregant Analysis or BSA. This molecular 

analysis involves selection of two extreme phenotypic outcomes (e.g. resistant vs recessive 

genotypes), and pooling their DNA into two bulks (Michelmore et al., 1991).  

In an artificial aging study in maize by Ku et al (2014), 22 candidate genes related to seed vigor were 

detected. These candidate genes had functions related to responses to stress, molecular 

chaperones, hydrolase activity, energy, cell growth and division, protein targeting and storage, signal 

transduction, translation, protein metabolism, amino acid metabolism and play important roles in 

seed ageing and seed vigor. Previously, Wang et al. (2015) detected similar genes controlling seed 

ADL content on C05, A05, and A09 chromosomes in the oilseed rape genome. The constructed 

physical map of chromosome C03 (Fig. 10) contains the predicted positions of both candidate genes 
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(MATE and C4H). The loci of the two candidate genes are located close to each other (±310 kbps on 

physical map). It is possible that these two loci are linked and being inherited together. 

TT12 (Transparent Testa 12) gene was first time identified by Debeaujon et al. (2001) in Arabidopsis. 

Its gene function encodes MATE transporter, and turns the seed coat color to dull pale brown. Yu et 

al. (2013) included gene TT12 (GenBank accession number At3g59030) in the list of the transparent 

testa and related mutants in Arabidopsis thaliana. Chai et al. (2009) confirmed the existence of TT12 

gene(s) in B. napus and its parental species (B. oleracea and B. rapa). According to Chai et al. (2009), 

all Brassica TT12 proteins displayed high levels of identity to each other (>99 %) and to AtTT12 (>92 

%). 

Marinova et al. (2007) specified the importance of TT12 or MATE transporter gene for accumulation 

of proanthocyanidins in the vacuoles of the Arabidopsis seed coat cells. Proanthoyanidins inside the 

vacuoles would interact with oxygen molecules, being oxidized, and give color of brown or black. As 

the seed matures, the outer cells of the seed gradually died, and the pigments were osmotically 

transported from inner layer to the seed coat cells. The higher the accumulation of oxydized 

proanthocyanidins, the darker the seed coat color would become.  

The second candidate gene, BnCH4, is not found within the predicted chromosome interval, but a bit 

downstream of the last identified marker position. The estimated position of BnCH4 at 8,139,451 – 

8,141,336 bps on chromosome C03 is based on Qu et al. (2013) reference, and its existence in this 

population needs to be verified in the future. Lignin provides mechanical strength and aids in 

resistance to pathogen attack and water impermeability to the cell wall (Vanholme et al., 2010). 

Chen et al. (2007) has successfully cloned two isoform genes which encoding cinnamate 4-

hydroxylase (C4H) from B. napus. Chen et al. (2007) further detected strong expression of these 

genes at both high lignin organs (hypocotyl and stem), and low lignin organs (cotyledon, flower and 

bud). Therefore, C4H might have additional role in other process, such as flavonoid biosynthesis.  

Beside its lignification function, C4H was acknowledged as the second key enzyme to the common 

phenylpropanoid pathway. According to Vogt (2010), 4-coumaroyl CoA can be changed into catechin 

through proanthocyanidins pathway, into flavonoids, and lignin. The initial three steps of the 

pathway, catalyzed by 3 enzymes (phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase 

(C4H), and 4-coumaroyl CoA-Ligase (4CL)) (see Fig. 11), were mandatory and provide the basis for all 

subsequent branches and resulting metabolites.  
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 Fig. 11 Positions of BnC4H and BnTT12 in modified model for molecular mechanisms controlling 

seed coat color in B. napus, based on Qu et al. (2013) 

Note: BnPAL, l-phenylalanine ammonia-lyase; BnC4H, cinnamate 4-hydroxylase; Bn4CL, 4-coumaroyl 

CoA ligase.  

 

To achieve their function/s, secondary metabolites generally accumulate to high concentrations in 

different tissues and/or cell types. Storage in suitable compartments suggests that this process is 

highly regulated, since some of the secondary metabolites are toxic to the plants themselves (Yazaki, 

2005). Secondary metabolites are transported in various ways, either between tissues or within a 

cell. Vacuoles play a central role in the storage of secondary metabolites such as alkaloids and 

flavonoids in plant cells. Vacuolar membranes (tonoplasts) contain a large number of transporters, 

channels and pumps (Marinova et al., 2007). Polinceusz (2011) mentioned that since modified 

flavonoids are hydrophilic, their intra- and inter- cellular transport depends heavily on membrane 

bound transporters.  

Debeaujon et al. (2001) proposed that MATE transporter could transport potential PA precursor(s) 

into the vacuole. Zhao and Dixon (2009) and Polinceusz (2011) provided further genetic and 

physiological evidence which implicated the importance of TT12, a MATE transporter, to facilitate 
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vacuolar uptake of epicatechin 3’-O-glucoside. Epicatechin 3’-O-glucoside is a precursor for 

proanthocyanidin biosynthesis. Debeaujon et al. (2001) confirmed that the blocking of flavonoid 

transport from the cytosol into the central vacuole might reduce anthocyanin and PA production, 

and multidrug and toxin extrusion (MATE) transporter proteins have been shown genetically to be 

involved in both anthocyanin and PA precursor transport. 

 

3.4.5 KASP genotyping 

The outcome of KASP genotyping has confirmed the result of Bulk Segregant Analysis (BSA). The 

genotypes of low ADL proved to have different alleles from genotypes of high ADL content. The 

allelic distributions from three different KASP markers were giving identical results.  

In general, genotypes of allele 1 type are lighter in seed color appearance, and allele 2 type 

genotypes are darker. The first group, however, has wider range of seed color (mean value of 3.2 to 

7.6) than the second group (7.8 to 8.8) (data not shown). It means that the seeds of genotypes of 

allele 1 type have wider color spectrum, can vary from yellow to dark brown, whereas the genotypes 

of allele 2 type only vary from dark brown to black. Comparing to the segregation in earlier sub 

chapter of seed metabolites fingerprinting, there the first group has more narrow seed color range 

(3-5), and the second group ranged from 7-9. 

One genotype (#11) was consistently detected having allele 2 type by all three different KASP 

markers, despite located in the first peak. However, it has relatively low ADL content (mean value 

7.73) so that this genotype was isolated from the rest of the group of allele 2 genotypes in the 

frequency distribution in Fig 10. Its seed color was dark (score 7.8), therefore if grouped based on 

seed color, it belonged to the second group.  

The proportion of first group with low ADL/yellow seeds (n=49) are much larger than the second 

group with high ADL/dark seeds (n=28). It can be because there are more numbers of yellow seeded 

DH lines being generated successfully from F1 plants compared to the black seeded DH lines in this 

population.  

In this study, only half of the tested KASP markers were verified. 50 % conversion rate was less than 

what Islam et al. (2015) achieved (66.7 %), but still higher than earlier work of Byers et al. (2012) 

with 35.8 %. Islam et al. (2015) assumed that the validation failure of some SNP markers in KASP 

genotyping might be due to the incorrect primer design near SNP, the presence of duplicate loci, the 

wrong identification of fake SNPs, and the less than optimal PCR condition. Higher conversion rate 
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from selected SNPs to functional KASP assays could probably be increased by optimization of primer 

design and amplification conditions.  

 

3.5 CONCLUSIONS 

In DH population of 4042 x Express 617 population, most of the seed quality traits showed strong 

significance for both genotype and environment factor. The environment showed a dominant effect 

on all seed qualitative traits, also on seed color and pre-harvest germination percentage. 

Heritabilities were high (above 0.80) for NDF, ADF, ADL and seed color. The seed color has strong 

positive correlation to seed fiber content (0.6 - 0.8), however the seed color in this population was 

not associated with oil and protein content. No significant difference of seed size between yellow vs 

black seed groups might be the reason of the absence of those correlations. Usually yellow seeds 

were smaller in size, and have seed coat and cotyledon ratio, which in turn improve the seed oil 

content. 

Light seed color was associated with lower full germination percentage, and higher probability of 

radicle protrusion and seed infection. All three seed fiber components have significant contributions 

to the increase of radicle protrusion percentage, but only ADL was correlated to the increase of seed 

infection.  Radicle protrusion also correlated to infected seed percentage. Hypocotyl length has no 

significant correlations with any seed germination traits. 

The seed longevity traits had no association to seed color or size, but they were significantly 

correlated to seed fiber contents. All three fiber traits were strongly correlated with seed longevity 

traits, they were positive to percentage of full germination and hypocotyl length, and negative to 

percentage of seed infection. It was possible that the thick testa, fortified by high fiber content, 

would help protecting the seeds from deterioration during the storage.  

Through seed metabolite fingerprinting, significant differences of compound levels were revealed 

betwen the high ADL vs low ADL content groups. Low ADL/yellow seed group has consistently lower 

levels of compounds involved in phenylpropanoid biosynthesis pathway, also flavonoid and 

proanthocyanidins pathway. The high content of flavonoids in dark seeds, in contrast to yellow 

seeded genotypes, could also help prolong the seed longevity and protect from seed infection. 

We found two candidate genes that possibly controlling ADL content in chromosome C03. The 

constructed physical map of chromosome C03 contained the predicted positions of both candidate 

genes (MATE and C4H). The first candidate gene was TT12 (Transparent Testa 12) or MATE 
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transporter gene which responsible for the accumulation of proanthocyanidins in the vacuoles of the 

seed coat cells. The second candidate gene, C4H (trans-cinnamate 4-hydroxylase) was encoding a 

precursor to lignin biosynthesis, and may be further involved also in flavonoid biosynthesis. Its 

position needs a further verification study, by employing more KASP markers for DH population of 

4042 x Express 617 to the downstream direction from the gene interval investigated in this study. 
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4 INHERITANCE OF SEED QUALITY TRAITS, SEED GERMINATION AND SEED 
LONGEVITY IN SPRING X WINTER OILSEED RAPE DOUBLED HAPLOID 

POPULATION DH 1372 X EXPRESS 617, SEGREGATING FOR YELLOW SEED 
CHARACTER 

 

4.1 INTRODUCTION 

 
Oilseed rape (Brassica napus) is the second most important oilseed crop worldwide (Nguyen et al., 

2016). Yellow seed coat color is a desirable trait in many oilseed Brassica species. Yellow-seeded 

cultivars were reported to have thinner seed coat than black-seeded ones (Liu et al., 2005). 

Furthermore, Wightman et al. (2014) suggested that the seed meal from yellow-seeded cultivars 

contains higher protein and lower fiber content, which improves the meal feeding value for 

poultry and livestock.  

However, thick seed coat also provides protection for seed embryo from the harsh environment 

outside. Seeds of darker color would imbibe water and germinate later than yellow seeds, probably 

due to their thicker seed coat and phenolic compounds which are affecting the seed coat 

permeability (Debeaujon et al. 2000, Rahman et al. 2001, Neubert et al., 2003). 

Mature seeds of B. napus will gradually lose their viability during long term storage; this process is 

defined as natural aging (Yin et al., 2015). Seed viability can be influenced by several environmental 

factors, such as seed maturity and physiology, but partly also determined by genetic factors (Nagel 

et al., 2010). Seed aging is an acknowledged problem for agriculture, and the involved mechanisms 

which bring the loss of seed viability and vigor are worth investigating. The aging process is well 

displayed through delayed germination and emergence, slower growth rate, increased susceptibility 

to disease and environmental stress, and finally, by germination failure (Kruger-Giurizatto et al., 

2012).  

Running the seed longevity test using natural seed aging process is not an easy task. For accurate 

prediction of seed response to storage time, it is mandatory to use a reliable assay (Ku et al., 2014). 

In ambient storage condition of 20oC and 50 % relative humidity, generally it takes 7.3 years for 

Brassica spp. seeds to lose half of their viability (Nagel and Börner, 2010). However, there are several 

artificial seed aging techniques to achieve nearly similar effect of natural aging, with various degree 

of success (Suma et al., 2014; Yin et al., 2015). Some examples of these methods are hot water aging 

(immersion into hot water of 58oC ),  controlled deterioration (raising the seed moisture content to 

15 % at 40oC), and potassium nitrate method (exposing seeds to high relative humidity of 95 % using 

saturated solution of potassium nitrate at 40oC) . Suma et al. (2014) found that the controlled 
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deterioration protocol was the most reliable from the three, and Rajjou et al. (2008) said that it was 

able to imitate many of the seed molecular and biochemical events as if during natural seed aging.  

The inheritance of seed color (seed coat pigmentation) has been studied in several Brassica species 

in which black- and yellow-seeded types occur, such as B. rapa (Stringam, 1980, Hawk, 1982), B. 

juncea (Vera and Woods, 1982, Negi et al., 2000), B. oleracea var. alboglabra (Heneen and Brismar, 

2001), and B. napus (Liu et al., 2005). In earlier studies (Rahman and McVetty., 2001, Liu et al., 

2005), it was assumed that one to four gene loci were involved in the seed color determination, and 

that yellow seed coat color was recessive trait. Until recently, 26 independent loci involved in seed 

coat pigmentation (the so-called Transparent Testa [TT] genes) have been identified (Xu et al., 2006, 

Yu et al., 2013). Some of the BnTT genes were proposed to co-localize with QTL for seed color and 

fiber content (Badani et al., 2006). 

During two reciprocal crosses by Liu et al. (2005) in B. napus, the immediate F1 seeds from both 

crosses had the same color as the self-pollinated seeds of the respective black- and yellow-seeded 

female parents, giving evidence of the maternal control of seed color. Furthermore, the F1 plants 

produced yellow-brown seeds, suggested the partial dominance of yellow seed over black. However, 

Rahman et al. (2005) reported that when the yellow-seeded lines were used as maternal parent and 

black-seeded parents were used as pollen source, the F1 seed coat color turned dull yellow or 

yellowish brown. This indicated that pollen grains from the black seeded parent may give a xenia 

effect on yellow seeded maternal lines. 

Digestibility of rapeseed meal is highly influenced by fiber amount in residual hulls. Meal of high 

seed fiber content can be partially digested by pig, but not at all by poultry (Nesi et al., 2008). 

Yellow-seeded B. napus is considered more favorable for the meal quality thanks to a thinner seed 

coat and higher protein content [Wittkop, 2009], along with reduced quantities of fiber (cellulose 

and hemicellulose) and anti-nutritional polyphenolics (acid detergent lignin: ADL; Simbaya et al., 

1995).  

The oilseed rape breeding for seed quality has resulted in the development of ‘canola’ type with zero 

or low erucic acid and low glucosinolates (Kennedy et al., 2011). DH 1372 is a yellow-seeded 

Canadian canola spring type, and Express 617 is a black-seeded German oilseed rape winter cultivar. 

The aim of this experiment was to study the inheritance of seed quality traits, seed germination and 

seed longevity using artificial seed aging treatment in a doubled-haploid oilseed rape population of 

DH 1372 x Express 617, which segregated for yellow seed character. 
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4.2 MATERIALS AND METHODS  

4.2.1 Plant material 

The plant material was a doubled haploid population generated from microspore culture of F1 plants 

cross between line DH1372 and Express 617. DH 1372 is a yellow seeded doubled haploid double 

low (“00”) quality Canadian spring canola genotype, derived from a cross between two black seeded 

cultivars, Star and Bolero (Burbulis and Kott, 2005). Express 617 is an inbred line of the black seeded 

German winter oilseed rape cultivar Express. The crossing between DH line 1372-15 (an increase 

from line NL310-1, from Burbulis and Kott, 2005) and Express 617 was performed in 2012 in 

Göttingen. Express 617 served as the father plant. Reciprocal crossing was also performed but 

unsuccessful. The seeds of F1 obtained was brown in color (Fig. 12), in total 95 seeds were produced. 

  

 Fig. 12 Seed coat color of the Star and Bolero (parental cultivars of DH 1372), DH 1372, Express 

617, and F1 DH 1372 x Express 617 

 

In May 2013, five F1 plants of DH 1372-15 x Express 617 were grown in a phytochamber for 

microspore culture donor. In September 2013, microspore culture from three F1 plants (individual 

number 1, 3, and 5) was very successful. The embryos were incubated for 10 days at 2 oC in the dark 

in B5 medium, Afterwards, around 300 embryos were grown on filter paper (each filter paper 
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contain 50 embryos), and another 300 in NLN medium, both were kept for 30 days at 2 oC in the 

dark. In October 2013, 144 embryos from each media were transferred to soil and B5 medium in 

small tray pots. After being treated in vernalization chamber for flowering induction, in February 

2014, three plant trays were transferred to individual pots, and maintained in the green house. The 

plants were self-pollinated with individual plastic bags and harvested per individual plants in May 

2014. In total there are 224 DH lines that were successfully generated, although for some DH lines, 

the seeds obtained were very few (less than 10 seeds).  

 

4.2.2 Field experiments 

The self-pollinated seeds of DH 1372 x Express 617, 224 genotypes in total, was sown without 

replicate in small observation plots in the field at oilseed rape breeding nursery at Reinshof in 

September 2014. For each genotype, 100 seeds were sown in the field in two rows. Due to cold and 

rainy weather, the germination rate in the field of 2014 was not very high and only about two third 

of the DH lines survived the winter in the field. In total, 119 open-pollinated and 136 self-pollinated 

genotypes were harvested in August 2015. Open pollinated seeds were bulked from 5-10 main 

racemes of individual plants for each genotype. Self-pollinated seeds were collected from main 

raceme which covered by pollination bag during flowering period.  

The 224 DH lines from green house experiment of 2014 was being sown again without replicate for 

the field experiment in Reinshof in August 2015, and harvested in July 2016. In this experiment, 204 

DH lines survived and matured to produce seeds. In this year, only open pollinated seeds were 

harvested. In this year both parents were sown together with DH lines, but only Express 617 survived 

the winter.  

 

4.2.3 Analytical methods 

All harvested seeds were dried and cleaned separately for each genotype. NIRS prediction analysis 

was conducted using seed samples around 3 g using by Near-infrared Reflectance Spectroscopy 

(NIRS) monochromator model 6500 (NIRSystem Inc., Silverspring, USA).  The measurements to 

obtain the NIRS predicted values, thousand seed weight (TSW), percentage of pre-harvest 

germination (PHG), and seed color scoring system was the same as explained previously in Chapter 

3. Among seed quality traits, the oil, protein, total oil & protein contents (in percentage), also 

glucosinolates content (in µmol/g seeds) are expressed on a seed basis at 91 % dry matter content.   
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4.2.4 Seed germination test 

Seed germination test was carried out for all harvested genotypes using bulked seeds from 5 to 10 

open pollinated plants.  The germination test was performed in Petri dishes (92 x 16 mm  diameter, 

Sarstedt, reference code 82.1473), and customized filter papers (90 mm diameter, Macherey-Nagel, 

GmbH & Co. KG, reference code 400866009.1) with 50 indented holes to fit exactly 50 seeds on each 

filter paper. After placing sample seeds on filter paper with forceps, 12 ml of de-ionized water was 

applied to each Petri dish. The Petri dishes filled with sample seeds furthermore being placed into 

plastic trays, and the trays were covered with thin cellophane film to reduce evaporation. Next, 

these trays were kept in a dark germination chamber with ambient temperature 16.5 – 17.5 oC, RH 

90-95 % for 10 days period. The observation was performed on the tenth day. Observed traits for 

germination test were radicle protrusion percentage (RPP), full germination percentage (FGP), 

hypocotyl length in cm (HL), and infected seed percentage (ISP).  

Germination test was performed twice for each seed sample. The first test was using seeds without 

any aging treatment. After being harvested, these seeds were dried, processed and cleaned from 

stems and pods. There should be at least six weeks period after harvesting before the fresh seed 

germination test can be started, to break the seed dormancy. The aim of this first test is to predict 

the original germination viability of the genotype, before the seed aging treatment. The schedule for 

the first seed germination test is shown in Table 14. 

 

Table 14 Schedules of seed germination test for DH 1372 x Express 617  

Location/Harvest year Seed Harvest Start Germination Start Counting 

Reinshof 2015  20. Jul 2015 9. Nov 2015 29. Nov 2015 

Reinshof 2016*  19. Jul 2016 14./24. Oct 2016 24. Oct/4. Nov 2016 

*(germination testing was performed in 2 batches) 

 

The second test is seed germination following artificial aging treatment, or controlled deterioration 

test. The test was performed at IPK Gatersleben laboratory, following the protocol of Cromarty et al. 

(1982), as explained in Chapter 1. The first stage is called equilibration, in which the seeds are 

exposed to 47% RH, 20 oC for ten days. The treatment was followed by seed aging stage for 50 days 

at 60% RH and 45 oC. The last step is the germination test which takes 9-10 days, under dark 

condition of 90-95 % RH, 16-17 oC. The total number of genotypes was 140 of each location, each 
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genotype has two sample replications, and each seed sample has 50 seeds. The same traits as in the 

seed germination test were observed and recorded for this artificial seed aging treatment (Table 15). 

 

Table 15 Timetable for artificial seed aging treatment DH 1372 x Express 617 in 2017 

 

For seeds harvested in 2015, it was expected that the result of germination might underwent slight 

seed deterioration and have lower viability compared to the 2016 samples prior to longer storage 

period. The first one has been stored for 18 months, while the second was only 4 months old from 

harvest time. Throughout the time interval, the seeds were stored in the cold seed storage chamber 

(temperature 4 oC) to preserve the seed viability.  

 

4.2.5 Statistical analysis 

There are 3 data sets available for the statistical analysis: the OP Reinshof 2015 population (119 DH 

lines), the self-pollinated Reinshof 2015 population (139 DH lines), and the OP Reinshof 2016 (204 

DH lines).  For combined data analysis, only 109 genotypes were consistently present in all three 

data sets. With 145 genotypes, minimal 2 out of 3 data sets were represented for each genotype. 

These 145 genotypes were used for further analysis, except for seed germination related traits which 

only have 140 genotypes. 

The analysis of variance and estimation of heritability values was completed by PLABSTAT software 

(Utz, 2011). The experiments have been conducted with no replicate. Therefore, the significance of 

the G x E interactions could not be tested.  Environment and genotype were considered as random 

variables. The general model for analysis of variance is as follow: 

Y ij = µ + gi + ej + geij 

Population Begin equilibration 

 (14 days) 

Begin seed aging  

(50 days) 

Begin 

germination test  

Begin 

counting  

Reinshof 2015 Rep 1 02. Jan 15. Jan 06. Mar 15. Mar 

Reinshof 2015 Rep 2 03. Jan 16. Jan 07. Mar 16. Mar 

Reinshof 2016 Rep 1 04. Jan 17. Jan 08. Mar 17. Mar 

Reinshof  2016 Rep 2 05. Jan 18. Jan 09. Mar 18. Mar 
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Where Y is observation of genotype i in environment j; µ is general mean; gi and ej are the effects of 

genotype i and environment j; geij is the interaction between genotype i with environment j. 

Heritability (h2) of the mean values over environment was calculated from components of variance 

according to Hill et al. (1988):  

 ℎ2 =  
𝛿2𝐺

𝛿2 𝐺 +
𝛿 2𝐺𝐸

𝐸

 

where σ2g  is variance component for genotype, σ 2e is variance component for environment and σ 

2ge  is variance component for interaction between genotype and environment. Spearman’s ranks of 

correlation coefficients between traits were predicted from mean values of the genotypes across all 

environments. 

 

4.3 RESULTS 

4.3.1 Phenotypic variation and heritabilities  

Considerable variations were revealed for the nineteen traits observed in 145 genotypes of DH 1372 

x Express 617 over three environments: OP seeds Reinshof 2015, self-pollinated seeds Reinshof 

2015, and OP seeds Reinshof 2016. The traits can be broken down into of  seed quality traits (seed 

oil, protein, total oil and protein, protein of defatted meal, glucosinolates, and NDF, ADF, ADL 

contents), seed characteristics (seed color, TSW (Thousand Seed Weight), and pre-harvest 

germination percentage), seed germination and  seed longevity traits (both covered % radicle 

protrusion, % full germination, % infected seeds, and hypocotyl length). The values of variance of 

components are displayed in Table 16. 

There are significant effects found both in genotypes and the environment factors for seed quality 

traits from NIRS prediction for the population of DH 1372 x Express 617.  The genotype influence is 

higher than environment for protein, glucosinolates, and NDF content traits. For protein of defatted 

meal, both genotype and environment effects are equally significant. For oil, total oil & protein, ADF 

and ADL content traits, the environment factor has stronger influence. The heritability values for 

seed quality traits are ranged from low to high. Protein and protein of defatted meal content was 

similarly low with 0.55 and 0.54. Oil, total oil & protein, and glucosinolates contents have medium 

score of 0.73 and 0.70, and 0.75, respectively. Among the fiber components, NDF kept medium 

heritability (0.72), while ADF and ADL scored higher at 0.88 and 0.89, respectively. 
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Table 16 Variance component of DH 1372 x Express 617 over 3 environments (n=145)  

Source of variance Genotype (G) Environment (E) GxE Heritability 

(h2) 

Oil content (%) 0.52** 1.75** 1.95 0.73 

Protein content (%) 0.36** 0.08** 0.89 0.55 

Oil & Protein (%) 1.36** 1.43** 1.18 0.70 

Glucosinolates (µmol/g seeds) 23.01** 3.63** 22.97 0.75 

NDF (%) 3.42** 2.38** 3.97 0.72 

ADF (%) 3.34** 9.12** 1.37 0.88 

ADL (%) 4.42** 5.67** 1.63 0.89 

Protein defatted meal (%) 0.50** 0.49** 1.28 0.54 

Seed color 1.66** 0.08** 0.95 0.84 

Pre-harvest germination (%) 1.47** 0.01 2.98 0.60 

Thousand seed weight (g) 0.17** 0.06** 0.21 0.70 

Radical protrusion (%)  0.16 0.03 10.83 0.03 

Full germination (%)  0.07 0.07 21.50 0.06 

Hypocotyl length (cm)  0.14** 0.02* 0.50 0.37 

Infected seeds (%)  72.00** 15.48** 261.04 0.36 

Radicle protrusion (%) (AA1) 26.00** 6.02** 68.37 0.43 

Full germination (%)(AA1) 182.18** 0.00 305.36 0.54 

Hypocotyl length (cm) (AA1) 0.05* 0.00 0.24 0.31 

Infected seeds (%)(AA1) 55.58** 0.00 137.65 0.45 

1  following Artificial Aging 

* marked as significant at P= 0.05, ** as significant at P=0.01 

Note: All the seed germination traits (before and after AA) were analyzed using 140 genotypes and 2 

environments (self-pollinated seeds Reinshof 2015 and OP seeds of Reinshof 2016) 

 

The seed characteristics are also significantly influenced by both genotype and environment factors, 

except for pre-harvest germination percentage which only influenced by genotype. In all three traits 

(seed color, TSW, and pre-harvest germination), genotype factor has the higher influence to the 

population variance compared to environment. Heritability of seed color trait is high (0.84), while 

TSW and pre-harvest germination has medium heritability of 0.60 and 0.70, respectively.  
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In seed germination traits, the radicle protrusion and full germination percentage were not affected 

by either by genotype or environment factors. The infected seed percentage are influenced by both 

genotype and environment factors. For hypocotyl length, only genotype factor was significant. 

Percentage of infected seeds has the highest variance values among all germination traits (Table 16). 

The seed germination traits in general are very low in heritability. The radicle protrusion and full 

germination percentage are each 0.03 and 0.06, respectively. For other traits, the heritability values 

are also still low, 0.37 for hypocotyl length, and 0.36 for seed infection percentage. After aging, the 

variance among seed germination traits was drastically increased. Most of the seed longevity traits 

have significant effects on genotype factor, except hypocotyl length. Environment effect is only 

significant for radicle protrusion. The heritability values for seed longevity traits are low, the lowest 

is hypocotyl length (0.31), followed by radicle protrusion and infected seed percentages (0.43 and 

0.45), then full germination (0.54). 

The minimum, maximum, and mean values, standard deviation and LSD 5 % of DH 1372 x Express 

617 over 3 environments are listed in Table 17. Only the values of one parent material (Express 617) 

are available. The seed quality traits are also diverse. The average oil content at 91 % of seed dry 

matter is 43.6 %,  protein 18.87 %, total oil & protein content  62.67 %, and protein of defatted meal 

33.6 %. Since both parents are from canola (00) type, the glucosinolates values are relatively low. 

The mean of glucosinolates content is 20.2 umol/g seeds. The fiber components, start from the 

smallest to the largest value is ADL (average 28.9 %), ADF (20.9 %), and NDF (8.6 %). There is no 

genotype which has average seed color of score 1 or uniform yellow across the environments, 

therefore the range for seed color is start from 2 (mix yellow and pale brown) to 9 (uniform black). 

Pre-harvest germination percentage is quite low, between 0 to 14 % occurrences in seed samples. 

The seed size, represented by TSW is diverse, ranged between 3.46 – 7.48 g. 

 
Radicle protrusion percentage is ranged between 0 to 20 % maximum, although the mean value is 

very low at 1.71 %. Full germination rate is relatively high with average value of 97.51 %. The seeds 

of both environments (2015 and 2016) of DH 1372 x Express 617 showed a very good germination 

and vigor before seed aging (data not shown), in spite of the different storage time.  Seed infection 

rate has full range from no infection to 100 % infection, and the average value is only 7.81 %. The 

hypocotyl length is also high, ranged from 3 – 7 cm, with 4 cm as average. After aging treatment, the 

percentage of seeds with radicle protrusion ranged between 0 – 64 %, with average 17.85 %. Full 

germination has reduced drastically for some genotypes, although some managed to maintain the 

viability. The range became very diverse from zero to 95 %, and average 57.55 %. Infected seed 
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percentage is a bit reduced by the value range (0 – 90 %), but increased by mean value (10.11 %). 

Hypocotyl length is severely reduced to average value of 1.50 cm. 

Table 17 Descriptive statistics of DH 1372 x Express 617 over three environments (n=145) 

Traits  DH 

1372 

(P1) 

Express

617 

(P2) 

Min Max Mean SD LSD 

5% 

Oil content (%) - 45.4 36.1    49.0    43.6   2.34 3.26    

Protein content (%) - 17.6 15.3     23.1    18.9   0.66 2.29   

Oil & protein (%) - 63.0 59.4 64.7 62.7 1.15 2.15 

Glucosinolates (umol/g seed) - 17.3 10.7 42.3 20.2 5.53 10.61 

NDF (%) - 30.9 17.0 31.96 28.9 2.30 3.21 

ADF(%) - 24.7 16.6 25.5 20.9 1.80 1.88 

ADL (%) - 12.2 3.0 13.7 8. 6 2.13 2.05 

Protein defatted meal (%) - 32.2 31.1 36.4 33.6 1.02 1.82 

Seed color - 8.7 2.0 9.00 6.3 1.36 1.56 

Pre-harvest germination (%) - 0.01 0.0 14.0 1.3 1.46 2.78 

Thousand seed weight (g) - 5.2 3.5 7.5 5.5 1.50 0.75 

Radical protrusion (%)  - 0.0 0.00 20.0 1.7 2.36 6.52 

Full germination (%) - 100.0 87.0 100.0 97.5 3.38 9.19 

Hypocotyl length (cm)  - 4.0 3.0 7.0 4.6 0.63 1.39 

Infected seeds (%)  - 5.4 0.0 100.0 7.8 14.22 32.01 

Radicle protrusion (%) (AA1) - 29.5 0.0 64.0 17.9 7.85 16.35 

Full germination (%)(AA1) - 60.5 0.0 88.5 57.6 18.65 34.56 

Hypocotyl length (cm) (AA1) - 2.0 0.0 3.3 1.5 0.46 0.96 

Infected seeds (%)(AA1) - 6.5 0.0 90.0 10.1 11.27 23.20 

1  following Artificial Aging 

Note: All the seed germination traits (before and after AA) were analyzed using only 140 genotypes 

and 2 environments (self-pollinated seeds Reinshof 2015 and OP seeds of Reinshof 2016) 

 

4.3.2 Frequency distributions 

Frequency distributions would display the number of observations occurred within a given interval 

or range. In this study, the graphs have exhibited diverse frequency distributions among 75 
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genotypes of DH 1372 x Express 617. This sub chapter is focusing on seed fiber components, seed 

color, and seed germination traits before and after seed aging.  

The frequency distribution graph for NDF mean values (Fig. 13) is heavily skewed to the right. For 

ADF mean values, the frequency distribution is starting to show bimodal distribution. The bimodal 

shape is even more pronounced in the similar graph of ADL mean values, indicating that one major 

gene may control the particular trait. The first peak is larger than the second peak, which perhaps 

caused by skewed segregation. It is likely that within the DH 1372 x Express 617 population, there 

are more genotypes which regenerated from the low ADL genotypes than from the high ADL.  

      

   

 Fig. 13 Frequency distributions of mean values of seed fiber components and seed coat color of 

DH 1372 x Express 617 in 3 environments (n=145) 

 

For seed coat color frequency distribution, the graph resembles a normal distribution which skewed 

to the right. The seed coat color with highest frequency is category 6, which is dark brown mixed 
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with yellow. From the observation, the seeds of population of DH 1372 x Express 617 exhibit a high 

occurrence of mixed seed color (Fig. 14).  

 

 Fig. 14 Some examples of genotypes having mixed color seeds of DH 1372 x Express 617 

Note: left: score 5 (#305), middle: score 6 (#153), right: score 8 (#119). The close-up photo of the 

seeds was taken from the middle genotype. 

 

The comparison of frequency distributions of seed germination traits from DH 1372 x Express 617, 

measured from 140 genotypes, before and after seed aging treatment are shown in Fig. 15. Some of 

the histograms are skewed and not following normal distribution, such as in radicle protrusion and 

full germination percentage before aging. After applying few types of data transformation, however, 

the resulted histograms remain more or less the same. Therefore, in this study, the original values 

are used to produce the following graphs.  
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 Fig. 15 Frequency distributions of mean values of seed germination traits of DH 1372 x Express 

617 before and after aging for Reinshof 2015 & 2016 (n=140) 

 

The percentage of seeds with radicle protrusion is very low. More than 50 % of the population has 

zero radicle protrusion percentage, and none of them exceeded 11 %. For full germination, 97 % of 

the DH population has 100% germination rate, and the lowest germination score is 87.5 %. The 

hypocotyl length ranged from 3.5 to 6.5 cm, with the highest frequency at 4.5 cm. The majority of 
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the population has zero to 20 % seed infection, and for the rest of the population, only very few 

genotypes has seed infection rate above 30 to 80 %. The value range of infected seed percentage is a 

bit reduced (maximum 90 %) but the average is increased from 7.8 to 10.1 %.  

The percentage of seeds with radicle protrusion increased drastically after artificial aging treatment. 

Before the treatment, among the DH 1372 x Express 617 population, none of the genotypes has the 

percentage of radicle protrusion over 11 % (Fig 5). After seed aging treatment, the maximum value 

was raised to 45 %, with the most common (highest frequency) value is 20 % of radicle protrusion. 

Full germination percentage after aging has a very large variation, ranged from zero to 90%. Only 

three genotypes had failed to germinate at all, while the rest of the population managed to fully 

germinate with various degrees of success. It can be seen from the frequency distribution graph 

which skewed to the right that the majority of the population can retain their germination ability. 

The mean value for full germination percentage is 57.6 %, while the highest frequency is at 70 %. 

In comparison to the range values of each trait, in this segregating population for the yellow seed 

color character, the Express 617 parent is found near to maximum value for oil, protein of defatted 

meal, fiber content, seed color, hypocotyl length after aging, and full germination percentage for 

both treatments, and near to the minimum value for protein, pre-harvest germination, seed 

germination traits (except full germination), and seed longevity traits (except full germination and 

hypocotyl length).  

 

4.3.3 Spearman’s rank correlations 

The Spearman’s ranks of correlation coefficients are given in Table 18. Naturally there are strong 

correlations among oil, protein, total oil & protein, and protein of defatted meal contents, since they 

are related to each other. From all three fiber component traits, only NDF value has positive 

correlation value, which is related to oil (0.33). Both NDF and ADF exhibit negative correlation to 

protein content (-0.41 and -0.26), and protein of defatted meal content (-0.22 and -0.29). It is 

interesting that ADL has no correlation at all to oil and protein traits, although the correlation values 

among the fiber components are strongly positive (0.78 to 0.96). However, there are no correlations 

between fiber component traits and total oil and protein content.  
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Table 18 Spearman’s rank of correlations of DH 1372 x Express 617 traits (Reinshof 2015 & 2016) 

XP  -0.74** 
         

        

XLP  0.82** -0.27** 
        

        

GSL -0.18*  0.18 -0.12 
        

       

PDM -0.18  0.77** -0.17  0.07 
       

       

NDF  0.36** -0.41**  0.21*  0.00 -0.27** 
      

       

ADF -0.10 -0.26** -0.05  0.09 -0.29**  0.77** 
     

       

ADL -0.04 -0.10  0.02  0.11 -0.12  0.82**  0.96** 
   

        

TSW -0.03  0.04 -0.02  0.00  0.04 -0.07 -0.02  0.01 
  

        

SC -0.09  0.10  0.12  0.13  0.17  0.70**  0.78**  0.85**  0.03 
  

       

PHG -0.44**  0.29** -0.44**  0.01  0.02 -0.38** -0.22* -0.25**  0.10 -0.23** 
 

       

HL -0.02      0.12      0.12      0.21*  0.03  0.06  0.08  0.10  0.05  0.10  0.01        

RPP -0.14      0.04 -0.19* -0.12 -0.05 -0.34** -0.27** -0.32**  0.17 -0.33**  0.43**  0.08       

FGP  0.17  -0.05     0.23*     0.13  0.08  0.37**  0.29**  0.35** -0.12  0.39** -0.46** -0.04 -0.88**      

ISP -0.15      0.07    -0.18 -0.14  0.00 -0.42** -0.42** -0.46**  0.04 -0.46**  0.29** -0.13  0.45** -0.55**     

RPPA  0.05  -0.06      0.01   -0.08 -0.01  0.06 -0.02 -0.02 -0.05  0.01 -0.01 -0.03 -0.01 -0.02  0.10    

FGPA  0.01  -0.11 -0.04      0.04 -0.15 -0.04  0.11  0.08 -0.01  0.01  0.14  0.08  0.27** -0.30**  0.06 -0.27**   

HLA  0.02  -0.06 -0.02   -0.04 -0.09 -0.15 -0.01 -0.04  0.09 -0.11  0.12  0.05  0.30** -0.25**  0.01 -0.26**  0.54**  

ISPA  0.09   -0.03      0.08   -0.07  0.01  0.06 -0.04 -0.02 -0.02  0.00 -0.12 -0.13 -0.14  0.10  0.04  0.17 -0.40** -0.33** 

 
XL XP XLP GSL PDM NDF ADF ADL TSW   SC PHG HL RPP FGP ISP RPPA FGPA HLA 

 

Abbreviation note 
 
XL : oil content 
XP : protein content 
XLP : total oil and protein content 
PDM : protein of defatted meal content 
GSL : glucosinolate content 
NDF : neutral detergent fiber 
ADF : acid detergent fiber 
ADL : acid detergent lignin 
SC : seed color 

PHG : pre-harvest germination 
TSW : thousand seed weight 
RPP : radicle protrusion percentage 
FGP : full germination percentage 
HL : hypocotyl length 
ISP : infected seed percentage 
RPPA     : radicle protrusion percentage after  

aging 

FGPA  : full germination percentage after 
aging 

HLA     : hypocotyl length after aging 
ISPA    : infected seed percentage after aging
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Seed color has weak but significant negative correlation to pre-harvest germination (-0.23). 

Therefore, yellow seeds would have higher percentage of pre-harvest germinated seeds in 

comparison to seeds of darker color.  Black seeds are rarely containing pre-harvest germinated 

seeds. Other trait that significantly correlated to pre-harvest germination percentage is oil, protein, 

and total oil and protein content. The correlation is positive for protein content (0.29), and negative 

for oil and total oil and protein content (both -0.44). It implies that the seeds with high oil or total oil 

and protein content will have less percentage of pre-harvest germinated. But seeds with high 

protein content will have higher chance to contain pre-harvest germinated seeds.  

It is interesting that the hypocotyl length trait has no significant correlation with four other 

germination traits (percentage of radicle protrusion, full germination, non-germination, seed 

infection). However, among these four traits, the correlations are all strongly significant. Full 

germination percentage is negatively correlated to radicle protrusion (-0.88) and infected seed 

percentage (-0.55). Meanwhile, radicle protrusion and infected seed percentages are positively 

correlated to each other (r= 0.45 - 0.49). Pre-harvest germination also significantly correlated to 

almost all seed germination traits, except hypocotyl length, but also no correlation to seed longevity. 

The correlation is negative for full germination percentage (-0.46), and positive for radicle protrusion 

and infected seed percentage. 

There are significant correlations among most of seed longevity traits. In contrast to before aging 

results, hypocotyl length after aging is significantly correlated to all seed longevity traits, except 

radicle protrusion percentage. Radicle protrusion percentage only has weak but significant negative 

correlations with both full germination (-0.27) and hypocotyl length (-0.26). A strong positive 

correlation is found between full germination and hypocotyl length (0.54), and negative ones to 

infected seeds (-0.40).  

Seed color very has strong positive correlation with all three fiber component traits (NDF, ADF, and 

ADL) (range of 0.70 to 0.85). Another trait, pre-harvest germination percentage, displayed negative 

significant correlations with these three traits, although much weaker (-0.22 to -0.38). Thousand 

Seed Weight (TSW), has no significant correlation with any other measured traits. In this population, 

the seed size has no influence either on seed quality traits or seed germination traits of both 

treatments (with and without aging). Seed color is also has no influence on seed size in this 

population.  

There are no significant correlation between seed quality traits and seed germination traits, except 

for the fiber components. NDF, ADF, and ADL are significantly correlated to most seed germination 
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traits, including percentage of radicle protrusion, full germination, and seed infection. The exception 

is only for hypocotyl length, which has no correlations with any fiber components. The absence of 

correlation for hypocotyl length is perhaps because little variations were found within this trait 

(most seeds germinated well with shoot length range 3 - 7 cm). Positive correlations are found 

between full germination percentage and NDF, ADF, ADL (0.29 to 0.37), while for all other 

germination traits (percentages of radicle protrusion and infected seeds) the results are significantly 

negative but weak (-0.12 to -0.46). The seeds which contain high fiber inclined to have better 

germination rate. The similar seeds would also have lower percentage of seeds with radicle 

protrusion, and infected seeds.  

Seed color also proved to affect the seed germination performance before aging treatment. 

Percentage of full germinated seeds is positively correlated (0.39) to seed color, while all other seed 

germination traits (percentages of seeds with radicle protrusion and infected seeds) are showing 

negative correlation values. Hypocotyl length is again has no significant correlation to seed color. It 

means that the darker seeds performed better in seed germination, although there is no significant 

relation found between seed color and the hypocotyl length.  

There are no significant correlations between seed longevity traits and any seed quality traits, or 

with seed phenotypic traits. Seed color, especially, have no influence on seed longevity for DH 1372 

x Express 617. However, between seed germination and seed longevity traits, there are weak but 

interesting significant correlations. Full germination percentage before aging is negatively correlated 

to both full germination (-0.30) and hypocotyl length after aging (-0.25). Radicle protrusion 

percentage before aging is positively correlated to full germination (0.27) and hypocotyl length 

(0.30) after aging.  

 

4.4 DISCUSSION 

4.4.1 Variation among traits 

In this study, a doubled haploid population developed from a cross between a yellow seeded spring 

type DH 1372 of Canada origin and a black seeded winter type German cultivar of Express 617 was 

tested in Reinshof field experiment in the year 2015 and 2016. The population sizes were 

inconsistent for each data set due to several environmental factors, especially by their winter 

survival in the field. One of the parent material (DH 1372) is an oilseed rape spring type, thus some 

members of the offspring may have inherited its lack of winter hardiness. Winter types such as 

Express 617 cultivar are mostly grown in Western Europe, where winters are quite mild. They are 

sown in late summer and require a period of cold to set flowers (Nesi et al., 2008).  On the contrary, 
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spring cultivars, such as DH 1372, are usually sown at the end of winter, predominate in northern 

latitudes (e.g., Eastern Europe, Canada, Asia) and Australia. In our field experiment, none of plants of 

the parent line DH 1372 survived in the field. However, there was no specific problem of the 

germination detected under controlled laboratory condition for the seed germination before aging 

treatment.   

The variance revealed in this doubled haploid population was mostly significant for genotype and 

environment factors. The exceptions to this observation were for seed germination and seed 

longevity traits. Low heritability in seed germination traits may arose from narrow variation within 

the measured traits. Most seed samples from all locations and genotypes performed well in 

germination test. Almost all genotypes reached 100% germination. Regardless of the genotypes, 

these traits have no or little variation. However, genotype factor has some significant influence over 

the variability in hypocotyl length and the percentage of infected seed.  

 
Infected seed percentage after aging is reduced by the value range (maximum 90 % instead of 100 

%), but increased by mean value (10.1 % instead of 7.8 %). Perhaps the aging treatment of exposing 

seeds to higher temperature (45oC) had killed some of the seed borne pathogens, but not by much. 

Higher humidity of 65 % RH may also somehow supported microbial growth.  

 
The seed color trait is partly influenced by environmental factor, such as temperature (Van Deynze 

et al., 1993). Burbulis and Kott (2005) indicated that this was the case for DH line 1372. Together 

with some other sister lines, DH 1372 grown in Canada increased its seeds yellowness with high 

temperatures, and turned darker with cooler temperatures. The present study showed that both 

genotype and environment factors are significant for variance in seed color of DH 1372 x Express 

617. The genotype effect on seed color trait is very strong with heritability 0.84, but a high 

occurrence of mixed seed color, even mottled seeds were observed. Rahman and McVetty (2011) 

mentioned that the seed color was often affected by the environment changes, thus sometimes 

resulting in darker seeds and/or black spots on the seed coat. Similar phenomenon of seeds 

exhibited half-black half-yellow color was also reported by Chen and Heneen (1992). Van Deynze et 

al. (1993) suggested that the high ambient temperatures may inhibit biochemical processes which 

lead to pigments’ production and the thickening of secondary wall in rapeseed. In the case of the 

mottled seeds, it can be that the dark pigments were already accumulated in the seeds, since the 

pigment accumulation was started from seed formation. But on the last ripening month, the heat 

drastically goes up, diminishing the pigment input thus creating lighter spots on the dark seed coat. 

The opposite situation might lead to yellow seeds with dark spots. In this study, some genotypes, 
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especially which fall under score 5, 6 and 7 has mottled seeds, in which one single seed has mosaic 

color of both dark and yellow spots.  

Seeds are living embryos, and over time cells die and cannot be replaced (Shaban, 2013). Therefore, 

the seed age may affect its germination ability. The seeds of both harvest years (2015 and 2016) 

showed a very good germination and vigor (SD 3.39 for full germination and 0.63 for hypocotyl 

length), despite of the storage time difference. The seeds harvested in 2015 were stored for longer 

period, more than a year (18 months old), while the ones harvested in 2016 were only 4 months old. 

However, the seeds of both populations were kept in a cold storage room which maintained at 4 oC. 

According to Ramiro et al. (1995) in the cold storage of 5 oC and 8 % RH, seeds of B. montana and B. 

cretica can maintain their viability up to 10-12 years. For long term seed preservation, FAO/IPGRI 

(1994) recommends the combination of storage temperature below 8 oC and 3 - 7 % moisture 

content. 

 

4.4.2 Spearman’s rank of correlation coefficients 

Yellow seeds are generally believed to be related to high oil content in rapeseed (Jiang et al., 2007). 

This study did not find any association between seed color and oil or protein content. Many 

publications which showed higher oil content for yellow seeds compared to the black/brown seeds, 

suggesting the seed size difference as the main reason for increased oil content. Tang et al. (1997), 

for example, revealed 3 % differences between seed oil content of yellow vs dark seeds of same 

genetic background, and the seed coat ratio of yellow seeds was 4.2 % lower. Hu et al. (2013) 

observed a significant positive correlation (0.43) between the cotyledon ratio and seed size or TSW 

(Thousand Seed Weight). Neubert et al. (2013) mentioned that yellow-seeded oilseed rape has 

smaller seed size, and therefore the improved proportion between seed hull and endosperm will 

bring better seed oil and protein contents. Hu et al. (2013) stressed the importance of cotyledon 

ratio in relation to seed oil content, since around 80 -90 % seed oil is accumulated in cotyledon cells. 

They also confirmed that not all high oil content lines are yellow in color. Jiang et al. (2007) implied 

that the low oil content plants were belonging to the yellow-seeded group, and high oil content 

plants belonged to the brown-seeded one. Further, they recommended that the yellow seeded trait 

should not be considered as the sole character for high oil content in breeding.  

Significant genotype variance was found for seed size trait in DH 1372 x Express 617 population, but 

no significant correlation was found between seed size and seed color. In fact, the seed size, 

represented by Thousand Seed Weight (TSW), was not correlated with any other measured traits. In 

this study, the seed size has no influence either on seed quality traits (oil, protein, glucosinolates 
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etc.), seed color, or seed germination traits of both treatments (seeds with and without aging).  

Bettey et al. (2000) similarly failed to find correlation between seed weight or size to seed 

germination percentage in B. oleracea.  

From all three fiber component traits, the correlation values among the fiber components (NDF, 

ADF, and ADL) are strongly positive. NDF is positively correlated to seed oil content (0.36) and 

negatively correlated to protein content (0.41), while ADF is only negatively correlated to protein 

content (-0.26). Simbaya et al. (1995) found strong negative correlation (-0.71) of dietary seed fiber 

(unspecified of the type, most probably NDF) with protein content. Badani et al. (2006) also found 

significant negative correlations (-0.55 and -0.56) between ADF and protein content in two crosses of 

yellow vs black seeded lines.  

NDF can be divided into hemicellulose, cellulose, and lignin; ADF into cellulose and lignin; and ADL 

into undigestible lignin (Von Soest et al., 1991). Simbaya et al. (1995) found identical non starch 

polysaccharide (NSP) profiles after comparing meal quality from yellow vs brown seeded oilseed 

rape cultivars. NSP (mostly cellulose and hemicellulose, largest element of NDF and ADF) is the 

biggest constituents of dietary fibers. Major differences were found for non-NSP fractions (such as 

lignin and polyphenols and cell wall protein). The different compositions of seed fiber constituents of 

selected parents may affect also the relationship of seed fiber and other seed quality characters. 

Therefore, research utilizing different kinds of parent cultivars may lead to slightly different result. 

Badani et al. (2006) was employing two segregating populations of yellow seed character as main 

objective, regardless of both parents’ oil/protein contents. Tang et al. (1997) also revealed that the 

content of cellulose in yellow seed testa is significantly and consistently less than in the dark seeds, 

regardless of their genetic background (average differences are 17.74 %).  

Despite significant correlations between NDF to oil (+) and both NDF and ADF to protein (-), these 

two fiber traits have no relation with total oil and protein content. Hu et al. (2013) mentioned that 

cotyledon cells have major contribution to seed oil content. In mature seeds, the cytoplasm of 

cotyledon cells was completely filled with oil and protein bodies. The more the oil bodies in the 

cytoplasm, the less the protein bodies were found. The capacity of the cytoplasm itself is relatively 

constant.   

In this study, high correlations were revealed between seed color and seed fiber components (NDF, 

ADF, ADL). The seeds with high fiber contents are darker in color, and the seeds with low fiber 

contents have lighter seed color. Similar results were obtained by Badani et al. (2006), Burbulis and 

Kott (2005), and Wang et al. (2017). Yellow seed color and low fiber are coincided together, perhaps 
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because the biochemical pathways to pigment and lignin synthesis have common precursors (Nesi et 

al., 2008). 

The seeds with high fiber contents tend to have lower percentage of pre-harvest germination, and 

vice versa, the seeds with less fiber contents are more likely to have higher pre-harvest seed 

germination percentage. Bewley et al. (2013) mentioned that some seeds may initiate the 

germination process or complete the emergence of the radicle out of the seed coat barrier, but fail 

on the next step to develop into normal seedlings and judged to be abnormal. Further, the seeds 

that failed to exhibit any visible signs of germination are considered to be dead. Another trait that 

significantly correlated to pre-harvest germination percentage is oil, protein, and total oil and 

protein content. The seeds with high oil or total oil and protein content will have less percentage of 

pre-harvest germinated. But seeds with high protein content will have higher chance to contain pre-

harvest germinated seeds.  Ruan et al. (2000) found reduced seed oil content in seeds contain high 

percentage of pre-emergence sprouting (also known as vivipary seeds) in hybrid oilseed rape, but it 

has no significant effect on seed protein content.  

Pre-harvest germination in this study is significantly correlated to almost all seed germination traits, 

except hypocotyl length. It also has no correlation to seed longevity. This result is supported by Ruan 

et al. (2006) who also observed reduction in seed germination percentage and hypocotyl length in 

vivipary seeds. Ren and Bewley (1998) suggested that the testa structure of vivipary mutant seeds is 

altered, with thinner testa as a result of less secondary cell wall materials. Seeds of thinner testa are 

more prone to mechanical damage, which lead to higher ratio of abnormal or dead seeds and less 

viability, and also less protection against fungal/bacterial infections. 

The only seed quality traits influencing seed germination are the fiber components. The seeds 

containing high fiber are inclined to have better full germination percentage. The similar seeds 

would also have lower percentage of seeds with radicle protrusion, non-germinating seeds, and 

infected seeds. The fiber component (NDF, ADF, ADL) contents constructing the largest part of seed 

coat or testa (Von Soest at al., 1997). The thicker the testa, the better will be its impermeability 

against mechanical damage which reduces seed viability (Neubert et al., 2003). Hypocotyl length, 

unlike other seed germination traits, has no correlations with any fiber components.  

Seed color also proved to affect the seed germination performance. The darker seeds performed 

better in seed germination in comparison to yellow seed. This result is similar to Neubert et al. 

(2006), which also added that yellow oilseed rape seeds have reduced seed vigor (hypocotyl length) 
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and field emergence in breeding nurseries. In contrary, this study found no significant relation 

between seed color and the hypocotyl length.  

In DH 1372 x Express 617, seed longevity traits are not associated with observed seed quality or seed 

morphology traits. In comparison, after 10 days of artificial seed aging test by Zhang et al. (2006), the 

yellow seeds almost lost their germination ability to zero, while the black seeds retained higher 

germination percentage of 32 %, and vigor index by 21 %. Seed longevity traits in this study were 

only correlated to the initial seed germination, before aging treatment. This is supported by Walters 

et al. (2010) who proposed that the seed aging rate depend on the seed moisture content, 

temperature, and initial seed quality.  There might be other factors besides seed color and seed fiber 

contents which control seed longevity.  The genetic basis of seed longevity is still unclear (Nguyen et 

al., 2012).  

The seeds could accumulate some internal protection against desiccation: heat shock proteins, 

sugars, proteins (Mach, 2015), and enzymes (Wagner et al. 2012). Some of the aging harmful effects 

are associated with deterioration at membrane, nucleic acids and protein levels (Fujikura and 

Karssen, 1995). Protein age-damaged repairs mechanism could be responsible also for seed 

longevity. Eleven thermal-stable proteins were identified in high concentration in 1,300 years old 

viable sacred lotus seed (Nelumbo nucifera) (Shen-Miller et al., 2013). Ogé et al. (2008) confirmed 

that PIMT1 (protein l-isoaspartyl methyltransferase) overexpression would improve both seed 

longevity and germination vigor in Arabidopsis. In addition, accumulation of enzymes involves in free 

radical ROS (reactive oxygen species) scavenging in oilseed rape could also prolonged their seed 

storage potential (Wagner et al., 2012). 

 

4.5 CONCLUSIONS 

 
Yellow seed character is an important trait in oilseed rape breeding program. It was often 

represented higher seed oil and lower seed fiber contents, which are all desirable traits in oilseed 

rape. In the segregating population for the yellow seed color character of DH 1372 x Express 617 

over 3 environments, there was no association of seed color to seed oil, protein, total oil and 

protein, and protein of defatted meal contents. The reason was perhaps because there was also no 

correlation between seed color and seed size or TSW (Thousand Seed Weight). Yellow seeds have 

better oil contents since they have thinner seed coat, which lead to better cotyledon ratio. Since 

there was no significant seed size differences between yellow and black seeds, the seed oil content 

of both seed color groups. 
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There is strong correlation between seed color and all three fiber content values (ADL, ADF, and 

ADL), but only NDF and ADF has significant correlations to seed oil and protein contents. Seed color 

is sometimes influenced by temperatures, resulted in occasional mottled seeds, but in general the 

seed color score is stable in different environments (h2 = 0.94). Pre-harvest germination rate is 

associated many other traits, including seed fiber contents, seed color, and seed germination traits, 

except for hypocotyl length.  

Before artificial seed aging treatment, yellow seeds has better germination rate compared to the 

black seeded genotypes. Similar condition also applied to seed fiber contents (NDF, ADF, ADL). 

Before artificial seed aging treatment, the seeds containing high fiber would show significant higher 

germination ability, has less radicle protrusion and seed infection compared to low fiber seeds. But 

after subjected to artificial seed aging, the association between seed longevity traits and seed fiber 

contents is gone.   

In DH 1372 x Express 617, seed longevity traits were only correlated to the initial seed germination. 

These traits are not associated with any observed seed quality traits, such as seed oil, protein, total 

oil and protein, glucosinolates, protein of defatted meal contents) or seed morphology traits, such as 

seed color, TSW (Thousand Seed Weight), or pre-harvest germination percentage. Seed longevity 

traits in this study are perhaps controlled by other mechanisms other than seed color, which 

become the focus of this study.  

It is necessary to continue this study with DNA extraction of the existing populations, KASP marker 

analysis utilizing BSA (Bulk Segregant Analysis) of two contrasting groups of high and low ADL 

content. For further investigation, an identification of candidate genes controlling the ADL content 

within this population will be essential.  
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5 INHERITANCE OF SEED QUALITATIVE CHARACTERS IN RELATION TO SEED 
GERMINATION AND SEED LONGEVITY IN NATURALLY AGED SEEDS OF 

DOUBLED HAPLOID WINTER OILSEED RAPE DH SOLLUX X GAOYOU  
 

5.1 INTRODUCTION 

 
Oilseed rape (Brassica napus L.) is an important agricultural crop in the last thirty years and has now 

become one of the world’s largest sources of vegetable oil (Kennedy et al., 2011). Seed viability is 

one of the important issues which can potentially influence crop yield by disrupting seedling 

establishment, particularly under adverse environmental conditions. Some seeds can remain viable 

under optimal conditions for many years, and others for only a season cycle (Ghassemi-Golezani et 

al., 2010). Lutman and Lόpez-Granados (1998) mentioned that in Europe, the seeds of oilseed rape 

could re-emerge in the field as voluntary plants until 10 years or more.  

Over the time, seeds would slowly deteriorate and gradually lose its viability. This process is defined 

as natural seed aging (Yin et al., 2015). In general, for any member of Brassica family, half-viability 

period is estimated to be 7.3 years under ambient storage conditions (20°C, 50% RH; Nagel and 

Börner, 2010). Artificial aging methods can be applied to mimic seed behavior in storage, since data 

of longer term stored seeds are rarely available. Therefore, more studies on seed longevity were 

based on artificial seed aging (Zhang et al., 2006, Ku et al,. 2014, Yin et al., 2015), which subjected 

the seeds to heat and high humidity to simulate the natural seed aging.  

Seed longevity relates to how well seeds can retain its germination capability after being stored for 

certain time period. It is a complex trait (Bentsink et al., 2000) which genetic basis is still not well 

understood (Nguyen et al., 2012). Bentsink et al. (2000) and Clerkx et al. (2004) showed in 

Arabidopsis that seed longevity is controlled by several genetic factors, which act either through cell 

structure protection or damage recovery system. Clerkx et al. (2004) identified several quantitative 

trait loci affecting seed viability, which were located on different chromosomes. This finding 

suggested that seed longevity is a multigenic trait including various seed traits. Other molecular 

studies also support the idea of the complex genetic basis of seed longevity, as diverse mechanisms 

were documented to play a role. For example, Arabidopsis mutants affected in either flavonoid 

(Debeaujon et al., 2000) or tocopherol (Sattler et al., 2004) biosynthetic pathways, both mutant 

seeds displayed reduced longevity. Protection against reactive oxygen species (ROS) production is 

also said to be vital for Arabidopsis seed longevity (Clerkx et al., 2004). Other than genetic factors, 

environmental constraints during seed development may also affect seed germination and seedling 

emergence (Zhang et al., 2008). 
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Chinese landraces and European cultivars of oilseed rape belong to two distinct gene pools (Zhao et 

al., 2005). Combination of both gene pools could bring improvements for both regions. In this study, 

we utilized oilseed rape seeds of a doubled haploid population, originated from a cross between 

Sollux and Gaoyou, both are black-seeded oilseed rape cultivars. Sollux is an old German winter 

cultivar, and Gaoyou is a semi-winter Chinese cultivar from the Zhejiang Province. The open-

pollinated seeds of DH Sollux x Gaoyou were harvested in both Germany and China in 2001 and have 

been kept for 13 years under ambient storage conditions in Germany. This study investigated the 

germination rate and the germination vigor of seeds of the DH population of Sollux x Gaoyou after 

thirteen years of storage in a normal seed storage room. 

The aim of this research is to study the inheritance of seed longevity in the naturally aged seeds of a 

DH population and its correlation to seed quality traits which have been analyzed before (Zhao et al. 

2005, 2012; Suprianto, 2014). 

 

5.2 MATERIALS AND METHODS 

 

5.2.1 Plant materials 

The plant material used consisted of 291 genotypes of a doubled-haploid population developed from 

F1 cross of Sollux x Gaoyou cultivars. Sollux is an old winter oilseed cultivar from Germany, while 

Gaoyou is a semi-winter cultivar from China (Zhejiang province). Both cultivars are of black-seeded 

type. Previously in 2001, Zhao (2002) has grown and harvested the DH Sollux x Gaoyou population in 

field trials in four different locations. Two field experiments were located in Germany, i.e. 

Weende/Dragoner-Anger and Reinshof, and two others were located in China (Xian and Hangzhou). 

According to Zhao et al. (2005), Gaoyou cultivar is normally sown in autumn in China. However, it 

needs no vernalization and its winter hardiness is poor. In Germany, Gaoyou behaved more like a 

spring type. Both cultivars have high erucic acid, glucosinolate, and seed oil contents. The field 

experiment design used was randomized complete block design with two replicates for every 

genotype in each location. Zhao et al. (2005) also mentioned that the seeds were sown in double 

rows for each plot, with rows of 2.5-m length and a spacing of 0.33 m between rows. The plant 

distance within rows in Germany was 0.12 m and in China was 0.15 m. The seeds used in the present 

study were collected and bulked from 5 - 10 main racemes of open-pollinated plants.  
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5.2.2 Seed germination test after aging 

After the drying, processing and cleaning, the harvested seeds from open-pollinated plants were 

ever since stored at the University of Göttingen in a normal seed storage room. The ambient storage 

temperatures varied from 7 to 25°C depending on the season.  

Starting from July 2014 (Table 19), these naturally aged seeds were germinated. The seed 

germination protocol and data collection were as mentioned earlier in Chapter 3 and 4. 

Observations were carried out on day 10 of dark period, to count the radicle protrusion percentage 

(RPP), full germination percentage (FGP), hypocotyl length (HL), and infected seeds percentage (ISP), 

exactly as in Chapter 3. Fifty seeds per seed sample were germinated on customized filter paper in a 

Petri dish. 

Table 19 Timetable for germination test of naturally aged seeds of DH Sollux x Gaoyou (harvested 

in four locations in 2001) 

Replication Location  No. of  Genotype Start Germination 
(9-10 days) 

Start Counting 

I Hangzhou 1 (#1-90) 11. Jul 2014 21. Jul 2014 

  2 (#191-185) 15. Jul 2014 25. Jul 2014 

  3 (#186-291) 16. Jul 2014 26. Jul 2014 

 Xian 1 (#1-140) 25. Jul 2014 4. Aug 2014 

  2 (#141-291) 27. Jul 2014 7. Jul 2014 

 Reinshof 1 (#1-100) 15. Aug 2014 25. Aug 2014 

  2 (#101-200) 18. Aug 2014 28. Aug 2014 

  3 (#201-291) 19. Aug 2014 29. Aug 2014 

 Weende 1 (#1-140) 9. Sep 2014 19. Sep 2014 

  2 (#141-291) 10. Sep 2014 20. Sep 2014 

II (40 selected 
genotypes) 

Hangzhou + Xian 80 (40 + 40) 24. Nov 2014 3. Dec 2014 

Reinshof + Weende 80 (40 + 40) 1. Dec 2014 11. Dec 2014 

 

There are 291 genotypes of DH Sollux x Gaoyou that were tested for each location. The observation 

was split out in many batches, in average 100-150 samples per batch. After samples of the first 

replicate from all four locations was completed their germination tests and scored, the best and 

worst 20 genotypes were chosen. From the second replication seed batch, these 40 genotypes from 

each four locations were selected to undergo the second replicates of the seed germination test. The 
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results of both replicates (replicate 1 (n=291) and replicate 2 (n=40) was combined together, and the 

mean values of both replicates in four locations was then used in further analysis. 

5.2.3 Seed germination test before aging 

 Beside naturally aged seeds, newly harvested seed material was also needed as a control treatment 

to represent initial seed viability before seed aging. Therefore, the self-pollinated seeds of DH Sollux 

x Gaoyou were sown again in the University of Göttingen green house to produce new seeds.  Since 

there was no new seed stock available for this DH population, the old stock of self-pollinated seeds 

(harvested from green house in 2000) was sown in the green house at 23-24 November 2015. For 

each genotype, 2 – 3 seeds were sown on soil in small tray pots.  

The germination rate was low, less than 50% of the total genotypes were successfully germinated on 

the first sowing. Re-sowing the non-germinating seeds was performed twice, 1 December and 9-10 

December 2015. The germination of old seeds was at much slower rate than normal ones. For many 

genotypes, the prolonged radicle finally emerged from the soil in 3-4 weeks after sowing. For about 

30% of the population, it was necessary to conduct germination in Petri dishes in controlled 

laboratory condition on January 2016, then after 1-2 weeks the seeds were transplanted to soil in 

tray pots.  

The established plants were transferred to cold chamber for vernalization treatment in January and 

February 2016, and transferred back to the green house and moved to individual pots in April 2016. 

In the end, 258 out of 291 original genotypes were able to be maintained in the green house and 

harvested in July 2016.  In regards of the parent materials, only Sollux survived and produced new 

seeds, while Gaoyou seeds by chance failed to germinate. 

The new harvested seeds of DH Sollux x Gaoyou from the green house were then subjected to 

another seed germination test. Two replicates were performed according to the timetable of Table 

20, and each replicates were divided into two batches. Most genotypes were represented by two or 

three plants, which harvested individually. Replicates for seed germination test were taken from 

seeds of the same genotypes but coming from different plants.  

Table 20 Schedules of seed germination test before aging for DH Sollux x Gaoyou  

Replication Harvest 
period 

Batch Start Germination Start Counting 

1 7-11. Jul 
2016 

I 
II 

19. Aug 2016 
23. Aug 2016 

29. Aug 2016 
1. Sep 2016 

2 7-11. Jul 
2016 

I 
II 

3. Sep 2016 
6. Sep 2016 

12. Sep 2016 
16. Sep 2016 
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5.2.4 Analytical analysis of seed quality traits 

The analytical analysis of seed quality traits by NIRS (Near Infrared Spectroscopy) of DH Sollux 

Gaoyou seed samples were completed previously by Suprianto (2014), only for the seeds from 

Reinshof and Weende in 2001. The method was similar as explained in Chapter 3 and 4. The traits 

measured were oil, protein, total oil and protein, glucosinolates (all by 91 % dry matter base), 

protein of defatted meal, and fiber contents (NDF, ADF, ADL). Since both parent cultivars were of 

black seeded type, no seed coat color score was performed.  

 

5.2.5 Statistical analysis 

The analysis of variance and estimation of heritability for both germination experiments before and 

after natural aging was completed by PLABSTAT software (Utz, 2011). The natural aging germination 

has been conducted with two replicates of unequal sizes. The first replicate was using the whole 

population (n=291), and the second one was only of 40 selected genotypes. Both replicates were 

involving seeds from 4 environments (Xian, Hangzhou, Reinshof, and Weende). After conducting 

natural aging germination test for all 291 genotypes of DH Sollux x Gaoyou from four environments, 

the mean value of the observed traits were calculated. The 291 genotypes were sorted according to 

their full germination percentage. Twenty genotypes of the highest mean value and twenty of the 

lowest one was selected, and the seeds of the chosen genotypes from replication 2 of all four 

locations were subjected to the second replicates of seed germination test.  

Analysis of variance and heritability estimations was performed involving the total 291 genotypes 

without replicate. The observation values for 40 genotypes with replicates were represented by its 

mean value across 2 replicates in ANOVA calculation. Therefore, the significance of the G x E 

interactions could not be tested. Environment was considered as the random variable. The ANOVA 

for natural aging germination test data across 4 environments were performed by using this model:  

Y ij = µ + gi + ej + geij 

where Y is observation of genotype i in environment j; µ is general mean; gi and ej are the effects of 

genotype i and environment j; geij is the interaction between genotype i with environment j. 

Heritability (h2) was calculated as follow: 

ℎ2 =  
𝛿2𝐺

𝛿2 𝐺+
𝛿 2𝐺𝐸

𝐸
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where σ2g  is variance component for genotype, σ2e is variance component for environment and σ 

2ge  is variance component for interaction between genotype and environment.  

The observation values for 40 replicated genotypes were analyzed separately by ANOVA model as 

followed:  

Y ijk = µ + gi + ej + rk + geij + grik + erjk + gerijk 

where Y is observation of genotype i in environment j and replicate k; µ is general mean; gi, ej and rk 

are the effects of genotype i, environment j and replicate k; geij, grik, erjk  and gerijk are the 

interactions between genotype i, environment j, and replicate k. Heritability (h2) was estimated by 

this formula: 

ℎ2 =  
𝛿2𝐺

𝛿2 𝐺+
𝛿 2𝐺𝐸

𝐸
+

𝛿2𝐸

𝐸𝑅

  

where σ2g  is variance component for genotype, σ2e is variance component for environment, σ2r is 

variance component for replication, σ2ge is variance component for interaction between genotype 

and environment, E is number of environments and R is number of replicates.  

The third analysis of variance and heritability estimations was performed for seed germination test 

of 258 genotypes harvested from the green house experiment. Two replicates were performed for 

every genotype. The significance of the G x R interactions could not be tested. Both genotype and 

replicate were considered as the random variable. The ANOVA was performed by using this model:  

Y ik = µ + gi + rk + grik 

where Y is observation of genotype i in replicate k; µ is general mean; gi and rk are the effects of 

genotype i and replicate k; grik is the interaction between genotype i with replicate k. Heritability (h2) 

was calculated as this formula: 

ℎ2 =  
𝛿2𝐺

𝛿2 𝐺+
𝛿 2𝐺𝑅

𝑅

  

where σ2g  is variance component for genotype, σ 2r is variance component for replicate and σ 2gr  is 

variance component for interaction between genotype and replicate, R is number of replicates. 

In all the first and third ANOVA analyses, the genotype and/or environment and/or replicate are 

treated as random effect. The second ANOVA analysis treats the genotype as fixed effect, since the 

genotypes involved were intentionally selected previously, while environment and replicate were 

used as random effects. 
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Suprianto (2014) in an earlier study has measured the values of seed quality traits (seed oil, protein, 

total oil and protein, glucosinolates, protein of defatted meal, NDF, ADF, and ADL contents) of the 

same seeds of DH Sollux x Gaoyou by NIRS analysis. Seed samples and genotype identities were 

available for only 233 genotypes, and only for the two locations in Germany. Data from these 233 

genotypes were used for estimating the Spearman’s rank of correlation coefficients among traits, 

combining 3 data sets (seed quality, natural aging germination and fresh seed germination). The 

mean values of the genotypes across two German environments (Reinshof and Weende in 2001) of 

the first replicate were used to represent naturally aged seed germination and seed quality traits. 

Meanwhile, the values representing seed germination traits before aging were obtained from mean 

values of 2 replicates of seeds harvested from green house experiment in 2016.   

 

5.3 RESULTS  

 

5.3.1 Variation among traits 

5.3.1.1 Seed germination traits after natural aging (n=291) 

There were large and highly significant differences in the seed germination traits of the DH 

population after 13 years of storage (Table 21). High significant effects of the locations are observed, 

in all four measured traits for natural seed aging treatment. The variance components are all 

showing significant contributions of both genotype and location factor in the four germination traits.  

Table 21 Variance components of seed germination traits in DH Sollux x Gaoyou (2001) from four 

environments 

Source of variance Genotype (G) Environment (E) G  x E Heritability 

(h2) 

Radical protrusion (%)  2.52** 2.24** 23.80 0.30 

Full germination (%)  115.20** 17.10** 203.14 0.68 

Hypocotyl length (cm)  0.24** 0.06** 0.57 0.63 

Infected seeds (%)  4.85** 5.20** 34.47 0.36 

** marked as significant at level P=0.01 

Genotype plays dominant role for full germination and hypocotyl length, but percentage of infected 

seeds is influenced more by environment. Heritabilities are low for radicle protrusion (0.30) and 

infected seeds percentage (0.36), but relatively high for full germination percentage (0.68) and 

hypocotyl length (0.63).  
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Table 22 presents the descriptive statistics of the observed germination traits from naturally aged 

seeds of DH Sollux x Gaoyou harvested in four different environments. For radicle protrusion rate, 

the values of both parents are not much different. Radicle protrusion of Sollux seeds is 2.50 % of, 

and of Gaoyou is 3.00 %.  

Table 22 Descriptive statistics of seed germination traits in DH Sollux x Gaoyou (2001) from four 

environments (no replicates) 

Observed traits Sollux 

(P1) 

Gaoyou 

(P2) 

Min Max  Mean SD LSD5% 

Radical protrusion (%) 2.50 3.00 0.00 16.00 5.12 0.03 6.77 

Full germination (%) 1.75 21.50 0.00 57.25 18.34 0.13 20.26 

Hypocotyl length (cm) 3.00 0.50 0.00 3.10 0.95 0.62 1.05 

Infected seeds (%) 0.13 0.65 0.00 29.50 3.53 0.04 8.17 

 

Full germination percentage is the most diverse among observed traits. After being stored in 

ambient storage condition for 13 years (2001 – 2014), the full germination rate varied between 0 - 

57.25 %. However, in average, only 18.34 % of the oilseed rape seeds managed to attain full 

germination. The performance of both parents was displaying a contrasting result (Table 4). Sollux 

has very low germination (1.75 %) but high seed vigor (hypocotyl length 3.00 cm), while Gaoyou has 

better germination (21.50 %), but low vigor (0.50 cm). Seed infection rate in both parents are low, 

both under 1 %. The value varied between 0 to 29.50 %. However, the average values were much 

lower (3.53 %).  

Seeds harvested from different environments might behave differently during germination test, 

after being kept for long period. Table 23 displayed the mean values of seed germination traits from 

seeds taken from four environments. The average full germination percentage is slightly higher in 

the China grown seeds (19.94 %) compared to the German ones (16.85 %). However, it was not 

always the case in each growing locations. The full germination rate of Weende seeds was 18.85 %, a 

little higher than of Xian seeds which were 15.78 %.  Seed longevity of Hangzhou seeds is the highest 

at 24.09 %, while of Reinshof seeds were the lowest at 14.85 %. The seeds harvested in China in 

general contained very little seeds with radicle protrusion percentage (1.85 %) compared to the ones 

from Germany (5.92 %). 

Hypocotyl length from germinated seeds from China is better compared to the ones harvested in 

Germany. In germination test of seeds from both locations in China, the mean values are either 1.00 
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cm (Hangzhou) or higher (1.26 cm of Xian), while the germinated seeds from both German locations 

were under 1 cm of length (0.69 cm of Reinshof and 0.87 cm of Weende). 

 
Table 23 Mean values of DH Sollux x Gaoyou seed germination traits after natural aging (from each 

environment) 

Mean value Xian Hangzhou Reinshof Weende China Germany LSD 5% 

Radical Protrusion (%) 3.16 0.54 6.85 4.98 1.85 5.92 6.77 

Full germination (%) 15.78 24.09 14.85 18.85 19.94 16.85 20.26 

Hypocotyl Length (cm) 1.26 1.00 0.69 0.87 1.13 0.78 1.05 

Infected seeds (%) 1.63 6.70 3.79 2.03 4.17 2.91 8.17 

  

The infection level varied from none to 29.50 %, but the average is quite low (3.53 %). Seeds from 

China has heavier infection rate (4.17%) than Germany (2.91 %), although the heaviest infection 

were only exhibited by seeds from Hangzhou with 6.70 %.  

The performance of naturally aged seeds harvested in four different environments in germination 

test can be exemplified in Fig. 16. Genotype #40 and #74 are representatives of genotypes of low 

germination rate, while #111 and #206 represent the genotypes of good germination ability. Seed 

infection is formed by fungi or bacteria infestation. In some cases both pathogens, or even from few 

different strains at once were present on one Petri dish.  
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 Fig. 16 Germination test of naturally aged seeds of DH Sollux x Gaoyou (harvested in 2001 in 4 

locations) 

Note: The two upper rows (#40 and #74) are representatives of genotypes with low germination 

percentage, and the two lower rows (#111 and #206) are representatives of genotypes with high 

germination percentage. 

 
Gaoyou seeds from all four environments are in general having better germination rate than Sollux 

(Fig. 17) but the seedlings were mostly very short.  Although the maximum length of hypocotyl 

length is 5 cm, 80 % of the population has less than 2 cm hypocotyl length (Table 22). 
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 Fig. 17 The germination performance of 2 parental cultivars (Sollux and Gaoyou)  

 

5.3.1.2 Seed germination traits after natural aging (n=40) 

Twenty genotypes of the highest mean value and twenty of the lowest one from the first replicate of 

the previous population of total 291 genotypes was chosen to be included in the second replicate of 

germination test of naturally aged seeds. The low germination genotype group was ranged from zero 

to 3 % full germination, and the high germination group, consisted of genotypes with 40 – 70 % full 

germination percentage. Another analysis of variance component was performed separately. The 

ANOVA and descriptive statistics of the sub population of DH Sollux x Gaoyou (n=40) is displayed in 

Table 24 and 25 below.  

 

Table 24 Variance components of seed germination traits of DH Sollux x Gaoyou (n=40) 

Source of variance Genotype 

(G) 

Environment 

(E) 

GE Replicate 

(R) 

Heritability 

(h2) 

Radical protrusion (%)  3.27** 0.25* 10.87** 0.66 0.70 

Full germination (%)  447.90** 36.96** 263.07** 80.6 0.93 

Hypocotyl length (cm)  1.04** 0.07** 0.75** 0.11 0.92 

Infected seeds (%)  0.60 2.42** 1.56* 0.33 0.21 

** marked as significant at level P=0.01 
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The variabilities within each trait were mostly higher than the initial population. All seed longevity 

traits showed dominant effects of genotype, except for seed infection rate, which was only 

influenced by environment factor. Variations among G x E in seed germination test were significant, 

except for seed infection rate. Heritabilities were high for full germination rate and hypocotyl length 

(0.93 and 0.92), moderate for radicle protrusion (0.70), but low for seed infection rate (0.21). 

The value ranges across four environments for 40 genotypes were narrower than the total 

population of 291 genotypes in term of radicle protrusion and infected seeds percentages (Table 25). 

For full germination rate and hypocotyl length, the value ranges remained the same. Radicle 

protrusion percentage was ranged from none to 7.50 %, and for infected seeds was from none to 

8.25 %. The average values, however, were mostly increased in this sub population of 40 genotypes, 

except for hypocotyl length which was reduced from initially 0.95 cm to 0.85 cm.   

 

Table 25 Descriptive statistics of seed germination traits after natural aging of DH Sollux x Gaoyou 

over 4 environments (n=40, r=2) 

Traits Min Max Means LSD 5% 

Radical protrusion (%) 0.00 7.50 3.15 3.25 

Full germination (%) 0.00 57.25 22.65 15.97 

Hypocotyl length (cm) 0.00 3.10 1.13 0.85 

Infected seeds (%) 0.00 8.25 2.60 4.24 

 

Correlation coefficients between the values of selected 40 genotypes from the first and second 

replicates are shown in Table 26 below.  The full germination percentage has the strongest 

correlation value (0.71) among all 4 measured germination traits. The value of hypocotyl length is 

also strongly correlated (0.59). On the other hand, weak and no correlations are subsequently found 

between 2 replicates of radicle protrusion (0.26) and infected seed rate (-0.05). 

 

Table 26 Correlation coefficients between the first and second replicates (n=40) of DH Sollux x 

Gaoyou 

RPP FGP ISP HL 

0.26 0.71 -0.05 0.59 
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5.3.1.3 Seed germination traits before natural aging  

Among 258 genotypes of DH Sollux x Gaoyou, generated from the green house experiment, some 

variation in seed germination traits was detected. Full germination, hypocotyl length and infected 

seeds percentage showed significant genotype effects in the analysis of variance (Table 27). 

Meanwhile, significant replicate effects were displayed only by hypocotyl length and percentage of 

infected seeds.  

 

Table 27 Variance component of seed germination traits before aging of DH Sollux x Gaoyou 

(n=258) 

Source of variance Genotype (G) Replicate (R) G  x R Heritability 

(h2) 

Radical protrusion (%)  0.13* 0.00 0.85 0.24 

Full germination (%)  17.63** 0.16 43.30 0.45 

Hypocotyl length (cm)  0.40** 0.85** 1.16 0.41 

Infected seeds (%)  30.37** 3.60** 62.92 0.49 

** marked as significant at level P=0.01 

 

Genotype was a dominant factor for radicle protrusion, full germination and infected seeds 

percentage, but hypocotyl length was more determined by replicate factor. G x R interaction values 

were high for both full germination and infected seeds percentages. Heritability estimations were 

low for all traits. Heritability of radicle protrusion was 0.24, full germination was 0.45, hypocotyl 

length was 0.41, and infected seeds percentage was 0.49.  

The values of the parent cultivar, minimum, maximum, average, and LSD 5 % of the seed 

germination traits measured for DH Sollux x Gaoyou population of 258 genotypes before aging 

treatment is included in Table 28. Unfortunately, Gaoyou cultivar has no seeds available from seed 

regeneration experiment in the green house. 

Sollux seeds showed perfect germination (100 % germination rate). The germinated seeds of Sollux 

cultivar had average hypocotyl length of 5.5 cm, and the seed infection level of 4.0 %. Among 258 

genotypes utilized in this experiment, most of them were germinating well. Although the radicle 

protrusion rate were between zero to 6.0 %, but the mean value was nearly zero (0.2 %). The 

average for full germination percentage was 98.7 % (range 52.0 – 100 %), for hypocotyl length was 

5.5 cm (range 2.4 - 8.3 cm), and infected seeds percentage was 5.2 % (range 0 - 72.6 %). 
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Table 28 Descriptive statistics of seed germination traits before aging of DH Sollux x Gaoyou 

(n=258) 

Traits Sollux  

(P1) 

Gaoyou 

(P2) 

Min Max Means LSD 5% 

Radical protrusion (%) 0.0 - 0.0 6.0 0.2 1.81 

Full germination (%) 100.0 - 52.0 100.0 98.7 12.97 

Hypocotyl length (cm) 5.5 - 2.4 8.3 5.5 2.12 

Infected seeds (%) 4.0 - 0.0 72.6 5.2 15.63 

 

 

5.3.2 Frequency distribution 

Frequency distribution graphs were generated in order to get better perspective of the variations of 

seed germination traits of DH Sollux x Gaoyou (Fig. 18). The graphs represented the mean values of 

radicle protrusion, full germination, hypocotyl length and infected seeds percentage of DH Sollux x 

Gaoyou from seed germination test before and after natural seed aging. The seed germination test 

before aging was involving 258 genotypes and 2 replicates. Meanwhile, the seed germination test 

after aging was using 291 genotypes, average from 4 environments and 2 replicates. Some of the 

traits presented here are not displaying normal frequency distribution. Some data transformation 

efforts have been performed, but the frequency distribution remained more or less the same. 

Therefore, these frequency distribution graphs are generated by original data. 
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 Fig. 18 Frequency distribution of DH Sollux x Gaoyou mean values of seed germination traits 

before and after natural aging (n = 258). 

    

0

50

100

150

200

250

300

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

N
o

. o
f 

D
H

 li
n

e
s

Full germination (%)

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

N
o

. o
f 

D
H

 li
n

e
s

Full germination (after aging) (%)

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

N
o

. o
f 

D
H

 li
n

e
s

Hypocotyl length (cm)

0
20
40
60
80

100
120
140
160
180
200

1 2 3 4 5 6 7 8 9 10

N
o

. o
f 

D
H

 li
n

e
s

Hypocotyl length (after aging) (cm)

0

20

40

60

80

100

120

0 5 10 15 20 25 3035 40 45 50 55 60 657075 80

N
o

. o
f 

D
H

 li
n

e
s

Infected seeds (%)

0

50

100

150

200

250

0 5 101520253035404550556065707580

N
o

. o
f 

D
H

 li
n

e
s

Infected seeds (after aging)(%) 

Sollux 

𝑥̅ 

Gaoyou 
𝑥̅ 

Sollux 

Sollux 

Sollux 

Gaoyou 

Sollux 

𝑥̅ 

𝑥̅ 

Sollux 
Gaoyou 

𝑥̅ 𝑥̅ 



100 
 

The radicle protrusion percentage before aging was very low. More than 90 % of the genotypes were 

exhibited under 1 % radicle protrusion. Its highest value was less than 5 %. After natural aging of 13 

years, the rate increased significantly. Almost none of the genotypes have zero radicle protrusion 

rates anymore. This trait made a normal frequency distribution that skewed to the left, with the 

highest frequency at 5 %, and none above 17.5 %.  

In seed germination test before aging, 13 genotypes showed less than 98 % germination rate from 

total 258 genotypes tested, or 5 % of total population. For these genotypes, another replication of 

germination test was performed to test whether the result is persistent. The mean values of these 

two replicates were then used as final result. Among 258 genotypes, only one has 55 % germination 

rate, one has 75 %, and three has 80 %. Two percent of the total population has less than 95 % 

germination rate.   

Before aging treatment, the full germination percentage was mostly near 100 %. But after 13 years 

of storage, the seeds deteriorated gradually and lost their viability. Although very few genotypes 

showed zero germination, the highest frequency distribution was under 20 %. 

The hypocotyl length frequency distribution graph showed a balanced normal distribution before 

aging, and more skewed to the left after aging. The values were also reduced from 3 – 9 cm to below 

4 cm. There were some outliers in seed infection trait, but most of the population before aging 

treatment has less than 30 % infection rate. After aging, again there were some outliers, but the 

majority of the population has less infection level, all below 12.5 %. 

 

5.3.3 Correlation between seed quality traits and seed germination traits 

Only 233 genotypes were available in all three data observations: seed quality (mean value of 2 

German environments), natural aging seed germination (mean value of 2 German environments), 

and seed germination before aging (mean value of 2 replicates). The data set of 233 genotypes of DH 

Sollux x Gaoyou were then used to generate the Spearman’s rank of correlation coefficients, in order 

to find the associations among seed quality traits, seed germination traits, and seed longevity traits. 

The seed quality traits were measured by Suprianto (2014) only for seeds harvested from German 

locations. Table 29 displayed the correlation values of the observed traits from 233 genotypes of DH 

Sollux x Gaoyou, grown in two German environments (Reinshof and Weende). 

Seed fiber components were all associated positively with seed oil content (0.20 – 0.27), negatively 

with seed protein (-0.26 to -0.39) and protein of defatted meal content (-0.25 to -0.43), but there 
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were no correlations to total oil and protein content. Among seed fiber content (NDF, ADF, ADL), 

interestingly only ADF and ADL are correlated (0.68). Glucosinolates content was only correlated to 

NDF content (-0.43).  

There are four traits measured for seed germination traits before aging: radicle protrusion, full 

germination, hypocotyl length, and infected seeds percentage. Among these four traits, the only 

association found was between full germination and radicle protrusion percentages (0.25). Radicle 

protrusion rate was also had weak but significant correlation to NDF content (-0.18).  

The same four traits were measured in seed germination test for naturally aged seeds, also called as 

seed longevity traits. Among these traits, radicle protrusion has positive association to hypocotyl 

length (0.35) and full germination rate (0.50). Full germination rate also have strong positive 

correlation to hypocotyl length (0.75). Percentage of seed infection after aging was only found to be 

correlated to full germination percentage after aging (-0.18) and to NDF content (0.20). 
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Table 29 Spearman’s rank of correlation of DH Sollux x Gaoyou (n=233) 

ADF  0.12 
        

      

ADL  0.09  0.68** 
       

      

XL  0.24**  0.20**  0.27** 
       

     

XP -0.39** -0.26** -0.39** -0.84** 
      

     

XLP -0.01  0.04  0.05  0.77** -0.35** 
     

     

GSL -0.38**  0.11  0.06 -0.06  0.12  0.03 
    

     

PDM -0.43** -0.25** -0.39** -0.51**  0.88**  0.09  0.15* 
  

      

HLA -0.06  0.09  0.12 -0.07  0.07 -0.07  0.04  0.04 
 

      

RPPA  0.03 -0.01  0.08 -0.04  0.03 -0.06  0.06  0.02  0.35** 
 

     

FGPA -0.05  0.00  0.10 -0.05  0.07 -0.02  0.02  0.07  0.75** 0.50**      

ISPA  0.20**  0.01  0.05 -0.02 -0.04 -0.04 -0.07 -0.10 -0.12 -0.07 -0.18**     

RPP -0.18** -0.11 -0.05  0.04  0.03  0.10  0.04  0.07 -0.01 -0.13* -0.05 -0.06    

FGP  0.02  0.03  0.02  0.07 -0.08  0.04  0.04 -0.06  0.04 -0.02  0.02 -0.08  0.25**   

ISP -0.15* -0.01 -0.03  0.11 -0.05  0.15* -0.04  0.01 -0.04 -0.13* -0.08 -0.09  0.14*  0.08  

HL  0.00 -0.03  0.05  0.14* -0.14*  0.09 -0.06 -0.12  0.09 -0.05  0.12 -0.05  0.07 -0.04  0.04 

 NDF ADF ADL XL XP XLP GSL PDM HLA RPPA FGPA ISPA RPP FGP ISP 

                

** marked as significant at level P=0.01 

Abbreviation notes 

XL : oil content 
XP : protein content 
XLP : total oil and protein content 
PDM : protein of defatted meal content 
GSL : glucosinolate content 
NDF : neutral detergent fiber 
ADF : acid detergent fiber 
ADL : acid detergent lignin 
RPP : radicle protrusion percentage 

FGP : full germination percentage 
HL : hypocotyl length 
ISP : infected seed percentage 
RPPA : radicle protrusion percentage after aging 
FGPA : full germination percentage after aging 
HLA : hypocotyl length after aging 
ISPA : infected seed percentage after aging
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5.4 DISCUSSION 

 

5.4.1 Variation among traits 

Seed longevity is a quantitative trait in which variations among accessions are commonly raised 

(Nguyen et al., 2012). The variance components of 291 genotypes of DH Sollux x Gaoyou harvested 

from 4 environments after 13 years of storage were showing significant contributions of both 

genotype and environment. Nagel et al. (2011) agreed that seed germination rate was in part 

genetically determined. The second group of selected 40 genotypes and two replicates mostly has 

higher variabilities within each trait than the initial population. For example, in the first ANOVA 

(n=291), for radicle protrusion heritability is low (0.30), but improves to moderate (0.70) in the 

second ANOVA. The sub population of 40 genotypes was consisted of selected genotypes of 2 

extremes, eliminated the intermediates, and then added with another replicate. Identical with the 

result of the original population, in the second ANOVA all seed longevity traits showed dominant 

effects of genotype, except for seed infection rate, which was only influenced by environment. In the 

second ANOVA, it was found that variations among replicates were significant, and their effects were 

larger than environment, except for seed infection rate.  

Leimu et al. (2006) stated that there are generally positive close relationships between population 

size, genetic variation, and fitness. Therefore, population size should always be taken into account in 

multi-population studies of genetic variation. Small populations would suffer negative consequences 

of reduced genetic variation due to loss of rare alleles through genetic drift. In comparison to this 

study, Sorensen and Gill (1984) practiced disruptive selection (selection of two extremes) in 

Drosophila for 3 generations, and the heritability rose from 0.37 to 0.68. The heritability was declined 

after a random mating event. 

The seed infection rate trait has interesting result. In the first ANOVA, utilizing 291 genotypes, both 

genotype and environment factor are significant, and environment played a bigger role. The second 

ANOVA showed that this trait was influenced only by environment. Both analyses resulted in low 

heritability values. Although at times resistant genotypes may have less seed infection, in this case 

seed infection rate depend a lot on growing environment conditions: climate, humidity, temperature, 

and severity of bacterial or fungi infection on the field. Both parent cultivars (Sollux and Gaoyou) 

exhibited very low (less than 1 %) seed infection rate after aging. Water splash in wet, windy 

conditions favors the bacteria dispersal from droplets and the rapid disease spread among field crops 

(Kocks et al., 1999). Roberts et al. (1999) added that seeds that already infected from the field may 

carry the initial inoculum and expressed during germination. It becomes a critical factor which 

determines the infection severity, and will vary within and between seed lots. 
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Sollux has very low germination rate (1.75 %) but high seed vigor (hypocotyl length 3.00 cm), while 

Gaoyou has better result germination rate (21.50 %), but low vigor (0.50 cm). In all four 

environments, Sollux seeds in general had better germination rate than Gaoyou but the seedlings 

were mostly very short. Although some of the genotypes showed better performance than the 

parents, but in general the germination rate and hypocotyl length of this population is low. By 

comparison, the average B. napus seed viability gradually dropped to 92.9, 79.1 and 65.7 % after 7, 

10 and 26 years of storage in IPK Gatesleben, respectively (Nagel et al., 2011). However, they were 

kept in controlled storage room of 7 ± 3 oC and 6 ± 2 % RH. 

Strong correlations are found for full germination rate and hypocotyl length between the 

measurement results of replicate 1 and 2 (n=40) over 4 different environments. On the other hand, 

radicle protrusion and infected seed rate have subsequently weak and no correlations at all. These 

somehow correspond to the second ANOVA result, which shows highest heritability (above 0.90) for 

both full germination rate and hypocotyl length. Among 4 traits, infected seed percentage is the only 

one with no significant genotype influence. Radicle protrusion rate (R=0.26) has strong heritability 

(0.70) and significant genotype role, but the performance among different environments are not 

significantly different. Since the correlation value was estimated from individual data of each one of 

4 environments, the lack of environment role for radicle protrusion rate made the correlation 

between the two replicates weak. 

The seed longevity performance found in this study after 13 years of storage was better than what 

Nguyen et al. (2012) observed in Arabidopsis seeds of different natural aging period. The eleven 

years old seeds of Arabidopsis failed to germinate at all, even after water imbibition treatment of 30 

days. Two other naturally aged seed samples in Nguyen et al. (2012) experiment were 7 and 8 years 

old, and presented maximum germination of about 45 % and 23 %, respectively.  

In soybean, germination capacity was obtained early during seed filling, but seed longevity reached 

maximum at later stage during maturation, and progressively doubled until the seeds reached the 

dry state (Pereira Lima et al., 2017). Walters et al. (2010) mentioned that seed longevity can be 

determined by seed moisture, storage temperature and seed traits that are influenced by genetic 

and environmental interactions during seed maturation and harvest. Interactions among these 

factors are believed to contribute to the wide variation observed within and among seed lots and 

species. Zhao et al. (2005) explained that during growing period in 2000 - 2001, the climate at the 

Germany locations was 1 – 4 oC lower than at both China locations. The average total growth periods 

in Germany were 84 days longer, and the plants grown at Xian was 8 days longer than at Hangzhou. 

The growth periods from flowering to maturity were 72, 58, and 55 days at Germany, Xian, and 

Hangzhou respectively. On average, the Chinese parent, Gaoyou, was 25 and 15 days earlier in 

flowering and maturity, respectively, than Sollux.  
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The highest seed germination rate was found in Hangzhou grown seeds, which has the shortest 

growing period. However, seeds from Xian, which also matured at shorter growth period, have lower 

germination rate than German grown seeds. Pereira Lima et al. (2017) discovered 18 % reduction of 

P50 (half-life viability) on the soybean seeds harvested from hotter year with 3.7oC temperature 

increase. Zanakis et al. (1994) suggested that delaying harvest could increase the risk of rapid 

deterioration of mature seeds in the field due to high humidity and temperature. Through 

physiological, sugar and transcriptome analysis, Pereira Lima et al. (2017) also found that seed 

maturation has not fully stopped at physiological maturity, and an extra 14 days period after 

physiological maturity would be beneficial to achieve maximum longevity. 

By definition, germination of a seed begins with the water uptake, and is completed with the embryo 

emergence, in most species it is the radicle first, through the surrounding structure. Thereafter, the 

seed is considered as having germinated (sometimes termed ‘visible germination’, Nonogaki et al. 

2010). Only 258 genotypes of the old seeds of 2001 were able to germinate in the green house and 

grown into mature plants which produced seeds. Full germination, hypocotyl length and infected 

seeds percentage showed significant genotype effects in the analysis of variance. Genotype was a 

dominant factor for radicle protrusion, full germination and infected seeds percentage, but hypocotyl 

length was more determined by replicate factor. Heritability estimations were low for all traits.  

It was obvious that most of the 258 genotypes utilized in the fresh seed germination test were 

germinating well. The germination rate was approaching 100 %. The radicle protrusion and infected 

seeds percentages were very low, and the germinated seeds showed vigorous hypocotyl length. 

Nevertheless, the G x R interaction was high for full germination and infected seeds percentages. 

High G x R interaction indicates that some genotypes performed differently in another replicate. The 

seed were harvested gradually throughout 5 days period (7-11 July 2016) (Table 20). The first batch 

of germination test was executed on 19 August 2016, nearly 6 weeks after the last day of harvesting. 

According to post harvest ripening theory (Adolphe, 1979), freshly harvested seeds were still 

metabolically active, so their heat production and respiration were high. This period of active 

respiration may continue up to six weeks after harvest. Within this period, the seeds were largely 

dormant. It was possible that some genotypes on the first batch of germination test were harvested 

on later days. The seed dormancy might inhibit their seed germination performance on the first 

replicate, but on the second replicate (2 weeks after the first) these genotypes displayed optimal 

seed germination. 

5.4.2 Spearman’s rank of correlation coefficients among traits 

This study found a strong positive association for radicle protrusion and full germination rate (0.50) 

after natural aging. It was also positively correlated to hypocotyl length after aging (0.35). It was 
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worth noted that after natural aging, both the mean values of seed germination rate and hypocotyl 

length were very low (18.34 % and 0.95 cm, respectively).  The majority of the seeds were not 

germinated at all. A seed with radicle protrusion stands for incomplete germination, in which the 

radicle has elongated and pierced the seed coat barrier, but cotyledons were still within the seed 

coat. The presence of seeds with radicle protrusion in the germinated seed samples was still a sign 

that the seeds were somehow viable, even if not able to fully complete the germination process.  

None of seed longevity traits had significant associations with any of seed quality traits, except 

percentage of seed infection after aging to NDF content. Likewise, Nagel et al. (2015) did not find any 

correlations between seed deterioration and seed oil, protein, and tocopherol-related compound 

contents in an artificial seed aging test in barley. 

NDF (Neutral Detergent Fiber) is the only seed fiber components in this study that associated with 

any seed germination or longevity traits.  What made NDF different from both ADF and ADL was that 

NDF contained the hemicellulose content (Von Soest, 1991). Pereira-Lima et al., (2017) added that 

seed longevity was also associated with the presence of raffinose family oligosaccharides (RFO), 

which possibly involved in protection against oxidative damage during storage. RFOs are known as 

protectant agent against seed desiccation (Sengupta et al., 2015). Galactinol, the precursor of RFO, 

was also found to be a marker for seed longevity in Arabidopsis, cabbage and tomato (de Souza 

Vidigal et al., 2016). In this study, NDF was only associated with radicle protrusion rate before aging 

and infected seeds rate after aging, which might be connected to the seed coat protection against 

adverse environment or pathogen infection.  

There are several reasons why it has been so difficult to identify the key events to the completion of 

germination. Some reasons relate to the nature of the seed itself. It is a multi-cellular organism in 

which the major cell mass is storage tissue. There is limited mobilization of reserves during 

germination, perhaps to provide a source of sugars and amino acids, but this is very small compared 

to reserve utilization following germination (Nonogaki et al., 2010).  

Many further works can still be done following this study. QTLs analysis regarding seed longevity 

traits of this population is in progress. The new seeds of DH Sollux x Gaoyou from the green house 

experiment were sown in Reinshof field experiment and will be harvested in August 2017. The 

acquired seeds could be subjected to artificial seed aging like similar experiments of Chapter 3 and 4. 

Seed companies in general rely more on artificial aging to predict seed storability. However, Nagel et 

al. (2011) proved that even a small change in controlled deterioration protocols, such as 2 oC 

temperature increase, can give major impacts to the expression of relevant genes. Therefore, a 

comparison study to investigate the physiological and molecular mechanisms of both natural and 

artificial seed aging would be appreciated.  
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Seed longevity study utilizing long term (more than 10 years) naturally aged seeds, especially in 

oilseed rape, from ambient room temperature storage condition, are still rare. Nagel et al. (2011) 

provide B. napus seed longevity data from naturally aged seeds of up to 26 years old, but those seeds 

were kept in cold storage room under 10oC. More studies were available in other crops, such as 

Arabidopsis of four year storage (Debeaujon et al., 2000 and Bentsink et al., 2000), several years in 

5oC refrigerator (Rajjou et al., 2008), 20 months (Clerkx et al., 2016), also in sunflower and soybean, 6 

and 12 months (Balesevic-Tubic et al. 2010), and soybean, 120 days (Kruger-Giurizzato et al., 2012). 

5.5 CONCLUSIONS 

Diverse variations were found among seed germination traits before and after natural seed aging in 

the population of DH Sollux x Gaoyou. In average, the seed germination rate and hypocotyl length 

after aging were low. Radicle protrusion percentage was positively correlated to full germination 

percentage and hypocotyl length, perhaps due to this low germination issue. In contrast, the mean 

value of seed germination rate of DH Sollux x Gaoyou population before natural aging treatment is 

nearly 100 %.  

The first ANOVA for the original population (n=291 genotypes, no replicates) over 4 environments 

exhibits significant variabilities for both genotype and environmental effects, but low and moderate 

heritability. The second ANOVA for second population (40 genotypes, 2 replicates) over the same 4 

environments resulted in higher variability in genotype, environment, and replicate, also higher 

heritability for radicle protrusion, full germination percentage, and hypocotyl length.  

After natural seed aging, the seedlings from the China grown seeds have better hypocotyl length 

than the German ones. The seed physiological maturity may play some role in this matter, since 

China seeds were grown in warmer temperatures and have shorter growing period than the 

Germany seeds.  

Seed infection in naturally aged seeds of DH Sollux x Gaoyou was most probably controlled only by 

environmental or replication effect. Genotype effects were significant for full germination 

percentage, hypocotyl length, and infected seeds percentage. The heritabilities found were very low, 

due to narrow variabilities within traits.  

No correlation was found among any measured seed quality traits with seed germination or seed 

longevity traits, except weak but significant association to NDF content. NDF was found to be 

correlated to radicle protrusion percentage before aging, and infected seeds percentage after aging. 

NDF might be connected to the seed coat characteristics as the seed main protection mechanism 

against adverse environment and pathogen infection.  
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6 GENERAL DISCUSSIONS 
 

6.1 Variations among traits 

 
The first two doubled haploid populations (DH population of 4042 x Express 617 and DH 1372 x 

Express 617) were originated from a cross between yellow and black seeded types. They both have 

higher proportion of yellow seeded genotypes than the black ones. The first population, DH 

population of 4042 x Express 617 contains 63.6 % yellow seeded genotypes from the total 77 

genotypes. DH 1372 x Express 617, by comparison, have higher ratio of 72.4 % yellow seeded 

genotypes (105 yellow and 40 black seeded genotypes). These findings are in the contrary to Van 

Deynze and Pauls (1994) report which said that black seed was dominant over yellow. Controlled by 

3 independent genes, the yellow seeds were produced only when all three loci were in the recessive 

homozygosity. In both of our populations, the higher ratio of yellow seeded genotypes can be just 

coincidence. During the development of doubled haploid population, there might be more of the 

yellow seeded genotypes over the black ones that survived from the plantlets generated from F1 

microspore culture. Temperature has been reported to also affect the seed color of parent DH 1372 

(Burbulis and Kott, 2010). This perhaps explains why there are more mixed color seeds or mottled 

seeds in DH 1372 x Express 617. Both populations of DH population of 4042 x Express 617  and DH 

1372 x Express 617 in general exhibited stable seed color in different environments (h2 = 0.94 and 

0.84, respectively). 

The inheritance of yellow seed color in B. napus is complex. It shows both dominant and recessive 

effects, and influenced by intra-and inter-genomic actions (Zhang et al., 2011). Mumtaz et al. (2015) 

came to the same conclusions in a review comparing previous studies in several Brassica species. 

Conflicted theories exist of either epistasis, partial dominance, or total dominance, controlled by 1 - 3 

genes. Zhang et al. (2009), so far gave the most comprehensive QTLs study for B. napus seed color 

inheritance. They suggested that yellow seed color (Y gene) is partially dominant over black 

(controlled by B and C genes), with two or three dominance epistasis ratio (also supported by Liu et 

al., 2005 and Badani et al., 2006). In some other crosses, however, black is dominant over yellow 

seeds. A new dominant D gene was revealed, which inhibit the action of a previously dominant 

yellow gene, resulting in black seed color. They concluded that the inheritance of seed color in B. 

napus is controlled by at least 4 genes, an intricate combination of B, C, Y and inhibitor D genes.  

In both populations of Chapter 3 and 4, the correlations between seed color and ADL content is 

strongly positive. Light color seeds have less ADL content, and vice versa. DH population of 4042 x 

Express 617 is more loyal to this association with only one out of 77 genotypes deviates from this 

trend (1.3 %). In comparison, in total there are 17.9 % of the DH 1372 x Express 617 genotypes not 
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following the trend. It is interesting to see that in the first case, ADL showed less heritability than 

seed color (0.86 and 0.95, respectively).  ADL heritability was higher than seed color (0.89 compared 

to 0.84) in the second case. Beside the environment factor which slightly influence the second 

population, it is possible that gene(s) interaction mentioned in Zhang et al. (2009) also played some 

role. Further molecular works on this population are still needed to make this issue clearer. 

 

6.2 Correlations among traits 

There is a strong positive correlation between seed coat color and seed fiber contents (ADL, ADF, and 

ADL), but no correlation is found between seed color and other seed quality traits (oil, protein, total 

oil & protein, protein of defatted meal, and glucosinolate contents). These are applied to both 

populations of yellow x black-seeded types, 4042 x Express 617 and DH 1372 x Express 617.  

In both populations, seed color is also significantly correlated to some seed germination traits, such 

as radicle protrusion, infected seed, and full germination percentages. Before artificial aging, in both 

populations seed color has strong positive correlation to full germination percentage. It means that 

black seeded lines has better germination rate compared to the yellow seeded ones. After aging 

treatment, there is no correlation exist between seed color and seed longevity traits in both 

populations. Black seeds have better germination ability than the yellow ones, but seed color is not 

very reliable to identify whether the seeds have good longevity or not. 

Seed size or Thousand Seed Weight (TSW) has no influence on any observed traits in both 

populations. The pre-harvest germination percentage, on the other hand, seems to be significantly 

correlated to many traits. In short, in both populations, seeds with high percentage of pre-

emergence sprouts would have less oil content, higher protein content, lower NDF content and 

germination rate, also higher percentage of radicle protrusion. Especially for DH 1372 x Express 617 

population, the genotypes exhibiting this trait will be also mostly yellow in color, contain lower total 

oil & protein content, lower seed fiber components (NDF, ADF, ADL), and higher seed infection rate. 

In DH 617 population of 4042 x Express, the correlations between fiber contents (NDF, ADF, and ADL) 

and seed germination traits are only exist for radicle protrusion (-0.35  to -0.42) and infected seed (-

0.37 to -0.42) percentages. Therefore, the high content of seed fiber components has no influence to 

full germination rate or seed vigor, but only effective against seed infection or occurrence of 

incomplete germination, which represented by percentage of radicle protrusion. After aging, the 

correlations between fiber contents (NDF, ADF, ADL) and seed longevity traits (percentages of radicle 

protrusion, full germination, infected seeds, and hypocotyl length) are significant. Seeds with low 

fiber contents tend to deteriorate more than high fiber seeds, indicated by lower full germination 

rate and hypocotyl length, and higher rate of radicle protrusion and seed infection. In DH 1372 x 
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Express 617, seed fiber components would display significant correlations to most seed germination 

traits, except hypocotyl length. The seeds containing high fiber would be inclined to have higher full 

germination, less radicle protrusion and seed infection percentages compared to low fiber content 

seeds. But such associations ceased to exist between seed fiber and seed longevity traits. Some of 

the seed fiber components in DH 1372 x Express 617 population is also associated to higher seed oil 

content (only NDF), and higher of seed protein and protein of defatted meal contents (both only for 

NDF and ADF). 

Seed longevity in the second populations did not have any correlations with seed quality traits, 

including seed fiber components. It is also true for most seed phenotypic traits. There are significant 

correlations exist between seed germination and seed longevity traits, but only in DH 1372 x Express 

617. The relations are found between radicle protrusion and full germination rate (before aging) and 

full germination, non-germination, and hypocotyl length after aging. There are no such correlations 

found in DH population of 4042 x Express 617. 

 

6.3 Natural vs artificial aging test 

After seed aging, the mean value of germination rate is reduced from nearly 100 % to 62.83 % for DH 

population of 4042 x Express 617 and 57.55 % for DH 1372 x Express 617. The DH Sollux x Gaoyou 

germination rate for natural aging seeds was ranged from zero to 89%, and the China-grown seeds 

displayed better germination percentage compared to the German ones. The average value of seed 

germination rate is 95 %, and after natural aging of 13 years was reduced to 18 %.   

Clerkx et al. (2004) compared seed longevity in Arabidopsis mutants by CDT (controlled deterioration 

test) and natural aging of 4 year storage. The ats (abberant tests shape) mutants with seed coat 

alterations showed stronger germination rate reduction after storage. Nguyen et al. (2012) 

mentioned that CDT (controlled deterioration test) is not completely imitating natural aging. A QTL 

analysis detects a particular QTL (GAAS5), which appears to be specific for natural aging. This QTL is 

not found after controlled deterioration in the same populations. On the other side, Bentsink et al. 

(2000) favored the artificial seed aging over natural aging, since the major QTLs controlling storability 

were detected in both seed aging assays. The CDT effect that they found on seed viability was much 

stronger than natural aging, resulting in more accurate mapping. TeKrony (2005) added that artificial 

seed aging gives more accurate imitation of seed emergence on the field under stress environment, 

better than standard germination tests. The results from Chapter 3 and 4 indicates that the artificial 

seed aging treatment using CDT is effective enough to differentiate genotypes of low vs high seed 

longevity. 
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The ADL content in the first population exhibits a bimodal frequency distribution, an indication that 

this trait is controlled by a major gene. Through the bulk segregant SNP marker analysis, two 

candidate genes that possibly control the ADL content were found. Both are located in chromosome 

C03. The first one is MATE transporter, related to expression of TT12 gene, which encodes 

transparent testa lead to yellow seed coat trait. The second one is cinnamate 4-hydroxylase (C4H), 

encodes one of the precursors to lignin biosynthesis. DNA and marker analysis for the second 

population (DH 1372 x Express 617) will be essential for further investigation.  

These are more or less true if comparing the traits to the discussion of correlation values (see Table 6 

and sub chapter 2.4), except for seed longevity values, which have no significant correlations with 

seed color. If we check closely for seed longevity traits for Express 617, the values are not exactly at 

the minimum or maximum value range, so there can be other factors influencing the phenotypic 

segregation. Also, although there are no direct correlations between seed color and seed longevity 

traits, there are significant correlations between seed germination and seed longevity traits, which 

might give indirect effect to the seed longevity. 

Diverse variations were found among seed germination traits before and after natural seed aging in 

the population of DH Sollux x Gaoyou. In average, the seed germination rate and hypocotyl length 

after aging were low (18.34 and 0.95 cm, respectively). Radicle protrusion percentage was positively 

correlated to full germination percentage and hypocotyl length, perhaps due to this low germination 

issue. In contrast, the mean value of seed germination rate of DH Sollux x Gaoyou population before 

natural aging treatment is nearly 100 %.  

Seed infection in natural aging seeds of DH Sollux x Gaoyou was most probably controlled only by 

environmental or replication effect. Genotype effects were significant for full germination 

percentage, hypocotyl length, and infected seeds percentage. The heritabilities found were very low, 

due to narrow variabilities within traits. Spearman’s rank of correlation was not found among any 

measured seed quality traits with seed germination or seed longevity traits, except weak but 

significant association to NDF content. NDF was found to be correlated to radicle protrusion 

percentage before aging, and infected seeds percentage after aging. NDF might be connected to the 

seed coat characteristics as the seed main protection mechanism against adverse environment and 

pathogen infection.  

This is the first study to find ADL related gene on the chromosome C03 of Brassica napus. Qu et al. 

(2013) provided a list of the loci distribution of various TT genes (including the lignin biosynthesis 

related PAL and C4H) in the genome of B. rapa and B. oleracea. Wang et al. (2015) previously found 

some genes controlling ADL content on the chromosomes C05, A05, and A09. Liu et al. (2012) 

reported a single, dominant, major locus which brings a substantial reduction in ADL, which they 
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identified as a key gene in lignin biosynthesis, Bna.CCR1 (CINNAMOYL CO-A REDUCTASE 1), in the 

chromosome C08. Verification of the candidate genes of this research can be done in further study 

through gene cloning or developing transgenic plant of the particular gene. The identified mutants 

could provide a better understanding on the gene mechanism of controlling seed fiber content, in 

particular on ADL content in the oilseed rape breeding. 
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8  SUMMARY 
 

 

 
Oilseed rape (Brassica napus L.) is the world’s third largest source of vegetable oil for human 

nutrition; also the meal is regularly used as animal feed. Yellow seed is one of the target characters in 

the breeding program, as it associated to lower dietary fiber content and higher oil and protein 

content.  Mature seeds of B. napus will gradually lose their viability during long term storage; this 

process is defined as natural aging. Seed viability is influenced by several environmental factors, but 

partly it is also determined by genetic factors. Seed aging is an acknowledged problem in agriculture, 

because it is involved in mechanisms leading to loss of viability and vigor. Yellow-seeded genotypes 

tend to deteriorate faster compared to the black-seeded ones. They show a reduced seed longevity, 

i.e. the ability to germinate after being stored for a longer period. Since material of naturally aged 

seeds are not always available, artificial seed aging protocols are often utilized to imitate the natural 

aging. Exposing seeds to high temperature and moisture have been commonly used for aging seeds 

artificially in the laboratory. The research aimed to study the inheritance of seed germination and 

seed longevity traits in two DH populations which segregate for yellow seed coat color, also in 

relation with several seed quality traits. A further objective was to investigate the inheritance of seed 

germination and seed longevity employing natural seed aging of the DH Sollux x Gaoyou population. 

This population has been stored in an ambient storage conditions at the University of Göttingen for 

13 years. 

The first two doubled haploid populations were derived from crosses between the two yellow-

seeded type 4042 (winter type) and DH 1372 (spring type) with the black seeded winter oilseed rape 

cultivar Express, inbred line 617. The 4042 x Express 617 population was grown in the five 

environments Reinshof 2014, Reinshof 2015, Einbeck 2015, Reinshof 2016, and Einbeck 2016. The DH 

1372 x Express 617 population was grown at Reinshof 2015 and 2016. The third DH population was 

derived from the cross of the old German cultivar Sollux and the Chinese semi-winter cultivar 

Gaoyou; both were black seeded. Field experiments have been performed at two locations each in 

China and in Germany in the year 2001. 

Seed quality traits (e.g. oil, protein, glucosinolates, and fiber components (NDF, ADF, ADL) were 

predicted by NIRS (Near Infrared Reflectance Spectroscopy) estimation of seed samples. Other seed 

phenotypic traits were also observed, such as seed color, TSW (Thousand Seed Weight), and pre-

harvest germination percentage. Comparison of seed germination before and after artificial aging 

treatment was carried out by determining percentages of radicle protrusion, complete germination, 

and of infected seeds. Hypocotyl length (cm) was also measured as an indicator for vigor. Statistical 

analysis was performed by PLABSTAT software for analysis of variance components, heritabilities and 

Spearman’s rank of correlation coefficients. 
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In both populations of yellow x black seeded types (4042 x Express 617 and DH 1372 x Express 617), a 

large genetic variation was found for seed oil, protein, glucosinolates, fiber contents (NDF, ADF, ADL), 

seed coat color, and full germination rate and hypocotyl length after aging. There is a strong positive 

correlation between seed coat color and fiber contents (ADL, ADF, and ADL), but no correlation is 

found between seed color and seed oil and protein content. Heritability is high (above 0.80) for both 

populations for seed color and seed fiber contents. 

The pre-harvest germination percentage in the present study is associated with many traits. In both 

populations, seeds containing high percentage of pre-emergence sprouts are also exhibit less seed oil 

content, higher protein content, lower NDF content and germination rate, also higher percentage of 

radicle protrusion. The yellow seeds of DH 1372 x Express 617 are exhibiting more of this trait, but 

there is no such association existed in DH population of 4042 x Express 617. Especially in DH 1372 x 

Express 617 population, these type of seeds are also associated with lower total oil & protein 

content, lower seed fiber components (NDF, ADF, ADL), and higher seed infection rate.  

In both populations, seed color is highly correlated to all seed fiber contents. Before seed aging 

treatment, seed color is positively correlated to full germination rate, negatively correlated to radicle 

protrusion and seed infection rate, and no correlation to hypocotyl length. It means that black-

seeded lines has better germination rate compared to the yellow-seeded ones. After artificial aging, 

seed color has no influence in seed longevity traits in both populations. The mean value of 

germination rate is dropped after aging treatment from nearly 100 % to 62.83 % for DH population of 

4042 x Express 617 and to 57.55 % for DH 1372 x Express 617.  

A different story was observed for seed fiber contents (NDF, ADF, ADL). In DH 1372 x Express 617, the 

seeds containing high fiber have significant higher germination rate, less radicle protrusion and seed 

infection compared to low fiber seeds. But after artificial seed aging, these correlations did not exist 

anymore. Before aging, in DH population of 4042 x Express 617, seed fiber contents only limit the 

radicle protrusion rate. Seeds with high fiber contents will have better full germination rate and 

hypocotyl length, and less radicle protrusion and seed infection rate. Less full germinated rate after 

seed aging are exhibited by seeds of high oil content and total oil and protein. 

The ADL content in the first two populations exhibits a bimodal 1:1 frequency distribution, an 

indication that this trait is controlled by a major gene. For 4042 x Express 617 population, a bulk 

specific SNP-markers was performed at KWS SAAT SE in Einbeck with an Illumina Infinium 20K SNP 

chip for low and high ADL content bulks. The result was later confirmed with individual genotypes 

through KASP genotyping. In addition, non-targeted metabolite fingerprinting analysis was executed 

on green seeds of this population to measure the content of metabolite compounds related to the 

ADL content. Eleven polymorphic loci was detected in 4042 x Express 617, all are located in 
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chromosome C03. Two candidate genes that possibly control ADL content were identified. The first 

one is MATE transporter related to expression of TT12 gene, encodes transparent testa which lead to 

yellow seed color. The second one is trans-cinnamate 4-hydroxylase (C4H), encodes one of the 

precursors to lignin biosynthesis. DNA and marker analysis for the second population (DH 1372 x 

Express 617) will be essential for further investigation.  

The seeds of the DH population Sollux x Gaoyou were naturally aged by storing them in ambient 

room temperature for 13 years (2001 - 2014). Aged seeds were germinated and grown in the green 

house in 2016 to obtain fresh seeds (before aging treatment). The same germination method as 

described above was employed for both naturally-aged seeds and fresh harvested seeds. Data of 

seed quality traits was available only for German-grown locations from a previous study.  

The DH Sollux x Gaoyou germination rate for natural aging seeds was ranged from zero to 89 %. The 

China-grown seeds displayed better germination percentage than the German ones. The average of 

seed germination rate is 95 %, and after 13 years of natural aging it was drastically reduced to 18 %.  

Although there are some significant correlations among seed quality traits, there are no significant 

correlations between seed quality traits and seed germination or seed longevity traits worth noted, 

perhaps due to both parents are black-seeded cultivars, therefore having more narrow variability.  

For future outlook, further verification study is necessary to confirm the position of second candidate 

gene, C4H (trans-cinnamate 4-hydroxylase), by employing more KASP markers for DH population of 

4042 x Express 617 to the downstream direction from the gene interval investigated in this study. 

The second population, DH 1372 x Express 617 was grown again in 2017 in Reinshof. Similar 

observations will be completed after the harvest in August 2017 and added to the first two 

environment data. The extracted DNA has been sent for KASP marker analysis, and later will be 

followed by candidate gene identification. DH Sollux x Gaoyou has completed the natural aging 

treatment, and will have newly harvested seeds from Reinshof in August 2017. Subjecting these 

seeds to artificial seed aging treatment, then comparing the results with previous data will provide us 

with better understanding of the effects of both seed aging treatments (natural and artificial) to seed 

longevity. 
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