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1 Summary 

The insect head is a composite structure of several segments and an anterior non-segmental 

region. Due to head involution, the Drosophila larval head is strongly reduced and for 

technical reasons the developmental basis of head formation has not been comprehensively 

studied in Drosophila. In order to elucidate this process I used the red flour beetle Tribolium 

castaneum as model, focussing on the anterior median region (AMR) of the head, which 

harbors labrum and stomodeum. This region is patterned by a different set of genes than the 

surrounding tissues. The AMR development has already been studied using the candidate 

approach, which focused on genes previously identified in Drosophila. In order to identify a 

comprehensive list of genes involved in the formation of the AMR independent from previous 

knowledge, I used the unbiased large scale RNA interference screen (iBeetle-screen).  

From the iBeetle results, I was able to identify three interesting genes which are required for 

proper labrum formation. Both Tc-Serrate and Tc-mib1 are components of the Notch 

signaling pathway, which is known to be required e.g. for the formation of the joints and 

growth of adult legs and appendages in Drosophila and Tribolium. I showed that Tc-Ser is 

expressed during early AMR formation, but is not necessary for the early pattering process. 

During early labrum formation Notch signaling is required for the regulation of cell 

proliferation like in the Drosophila eye and wing imaginal discs. The labrum was suggested to 

be an appendage like structure, patterned by the same regulatory gene network. However, the 

results in this work indicate that Notch-signaling is acting upstream of the leg patterning 

network in the labrum in contrast to its function in the legs.  

Another novel gene required for labrum development is the GATA transcription factor Tc-

grain. In Drosophila, grain is required for neurogenesis by regulating the axon guidance and 

in morphogenesis of the adult legs and the larval posterior spiracles. I showed that the 

expression of Tc-grn is conserved to Drosophila. Additionally, I showed that Tc-grn in 

Tribolium is likely to be involved in amnion development and is required for proper labrum 

formation probably by regulating morphogenesis. 
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2 Introduction 

2.1 Segmental composition of the insect head 

The phylum of arthropods evolved the greatest species diversity within the animal kingdom 

(Mehlhorn, 1995) where the class of insects alone comprises more than a million described 

species. One of the main reasons of the evolutionary success is the subdivision of the body 

into single segments which allows for high morphological plasticity (Tautz, 2004). The body 

of insects is subdivided into three tagmata, i.e. head, thorax and abdomen. For example the 

heads evolved a great number of different forms each one of them adapted to a particular 

feeding style. While in some insects biting mouth parts are facing towards the ground 

(hypognathous) others evolved mouth openings directed to the anterior (prognathous) or 

posterior (opistognaghous). Nevertheless, all different head morphologies derived from one 

ancestral form (Snodgrass, 1935).  

Furthermore, each tagma is built by a defined number of segments. While the number of 

segments building the thorax (three) and abdomen (eleven) is largely accepted (Snodgrass, 

1935), the definition of the number of segments contributing to the insect head is disputed. 

Although data including classical morphological analysis but also molecular and genetic 

approaches were collected for the last decades, the number of segments and the possible 

existence of a non segmented region remains disputed (Budd, 2002; Diederich et al., 1991; 

Haas et al., 2001a; Haas et al., 2001b; Jürgens et al., 1986; Posnien et al., 2010; Rogers and 

Kaufman, 1996; Schmidt-Ott and Technau, 1994; Schmidt-Ott et al., 1994; Scholtz and 

Edgecombe, 2006). 

Functionally the insect head is subdivided into a posterior region primarily involved in the 

feeding process (gnathocephalon) and an anterior region (procephalon) mostly involved in 

sensory processing. The gnathocephalon is formed by three segments including the labial, 

maxillary and mandibular segments (Snodgrass, 1935). The number of segments forming the 

procephalon is still under dispute but it is generally accepted that the intercalary and the 

antenna are true serially homologous segments. As they share a adjacent expression of the two 

segment polarity genes wingless (wg) and engrailed (en), these five segments are seen as 

homologous to the trunk segments (Rogers and Kaufman, 1996; Schmidt-Ott and Technau, 

1992). In addition, some authors also include the ocular region to the true segments (Rogers 

and Kaufman, 1996; Rogers and Kaufman, 1997). However, the term ocular/protocerebral 
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region is preferred by others (Posnien et al., 2010; Scholtz and Edgecombe, 2006). The origin 

of the labrum is still enigmatic. During embryogenesis this structure arises as a pair of labral 

buds and fuses to form an unpaired structure located anterior to the mouth opening. Here it 

covers the mouth opening and is often called the insect upper lip (Rogers and Kaufman, 

1997). For the last decades some authors argued that the labrum originated as an appendage of 

an anterior segment (Cohen and Jürgens, 1991; Finkelstein and Perrimon, 1991; Schmidt-Ott 

and Technau, 1992). Other suggested that the labrum is an appendage of the intercalary 

segment (Budd, 2002; Haas et al., 2001a; Haas et al., 2001b) or an integral part of the acron 

(Posnien et al., 2009a; Posnien et al., 2010; Rogers and Kaufman, 1997; Scholtz and 

Edgecombe, 2006). The acron is a putative non-segmental anterior head region. The acron 

concept  originates from the assumption that arthropods and annelids share a common 

ancestor and that arthropods need to have a structure homologous to the anterior non-

segmantal prostomium of annelids(Scholtz and Edgecombe, 2006). New insights in molecular 

data showed that these two taxa are more distantly related (Eernisse et al., 1992). Anyway, the 

anterior regions of all bilateral animals are homologous (Arendt et al., 2008; Lowe et al., 

2003; Reichert, 2009; Reichert and Simeone, 2001) and studies indicated the existence of an 

anterior head region which is not delimited by parasegment boundaries (Kittelmann et al., 

2013; Posnien et al., 2009a). Nevertheless, the term “acron” is decrepit and was suggested to 

be replaced by „anterior-non-segmental region“.  

 

2.2 Head patterning in insects 

The first insights into the metamerization process from a uniform into a fully segmented 

embryo originated in genetic and molecular studies in Drosophila. Analyses of mutant 

phenotypes affecting the segmental pattern in embryos revealed that a genetic cascade 

gradually subdivides the embryo into smaller compartments (Lewis, 1978; Nüsslein-Volhard 

and Wieschaus, 1980). First, the products of maternal effect genes give the initial positional 

information for the blastodermal axes (for example bicoid). In a concentration dependent 

manner these genes activate a cascade of zygotic genes, starting with the expression of gap 

genes. The gap genes define regional areas in the embryo which results in expression of pair 

rule genes. These genes are active in every other segment and thus subdivide the embryo into 

rough segments and activate segment polarity gene expression which defines the parasegment 

boundaries. The identity of each segment is defined by genes of the antennapedia and bithorax 

complex which are also known as Homeotic selector genes (Hox genes) (Akam, 1998; 

http://dict.leo.org/ende/index_de.html#/search=decrepit&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
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Ingham, 1988; St Johnston and Nüsslein-Volhard, 1992). The segments including the labial, 

maxillary and mandibular segments are patterned mostly like the trunk , whereby the latter 

includes also input of the head gap-like genes (Vincent et al., 1997). However, the 

procephalon is patterned in a different way. Expression of a Hox cluster gene is only present 

in the posterior most region of the procephalon, the intercalary segment (labial/Hox1) 

(Abzhanov and Kaufman, 1999; Diederich et al., 1989; Diederich et al., 1991; Merrill et al., 

1989; Posnien and Bucher, 2010). In contrast, the most anterior region including labrum, eyes 

and antenna are completely free of Hox cluster genes. In addition, the procephalon is 

patterned without pair rule genes while segment polarity genes require the action of head gap-

like genes (Cohen and Jürgens, 1990; Crozatier et al., 1999; Grossniklaus et al., 1994; 

Wimmer et al., 1997). These head gap like genes include genes like orthodenticle, empty-

spiracles, buttonhead (Cohen and Jürgens, 1990; Cohen and Jürgens, 1991) and sloppy paired 

(Grossniklaus et al., 1992).  

 

 

Figure 2.1: Composition and patterning of the insect head - (A) Schematic view of an elongating embryo. (B) 

Schematic subdivision of the head and pattering processes. The anterior head (procephalon) compromise labrum, 

ocular region, antennal and intercalary segments. The posterior part (gnathocephalon) is subdivided into 

mandibular, maxillary and labial segments. The dotted line represents the ventral midline of neurogenic genes 

including the anterior split (A). Formation of the procephalon occurs without pair rule patterning and Hox genes 

are only expressed up to the intercalary segment. The gnathocephalon is mostly patterned like the trunk segments 
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(B). labrum (lr); ocular region (oc); antennal (an); intercalary (ic); mandibular (md); maxillary (mx); labial (lb). 

Images taken from (Posnien et al., 2010). 

 

Despite the fact that the anterior and the posterior head regions are regulated by different 

segmentation cascades and some genes and interactions could be identified, a comprehensive 

understanding of the anterior pattering process is not available in Drosophila so far.  

 

2.3 Using Tribolium castaneum as a model for insect head patterning 

Drosophila melanogaster is the most studied insect model organism which provides powerful 

tools to understand the genetic basis of development. Unfortunately, in order to get a 

comprehensive understanding of the regulatory network for insect head development 

Drosophila is not the best suited model organism.  Beside the fact that Drosophila undergoes 

long germ embryogenesis where segments are formed simultaneously in early blastoderm (St 

Johnston and Nüsslein-Volhard, 1992), the gene bicoid which is involved in the establishment 

of the anterior portion of the embryo could not be found in insects other than dipterans so far 

(Brown et al., 2001; Stauber et al., 1999). In addition, during late embryogenesis the main 

head structures undergo a morphogenetic event which causes internalization of the larval head 

into the thorax (Jürgens et al., 1986; Turner and Mahowald, 1979; VanHook and Letsou, 

2008; Younossi-Hartenstein et al., 1993). This process is called head involution and results in 

a highly derived and reduced head structure in larvae. In addition to the fact that this process 

reflects not the insect-typical head development since it only occurs in higher dipterans 

(Younossi-Hartenstein et al., 1993), its reduction results in poor morphological markers. 

Beyond that, mutations of head pattering genes are not easy to interpret because head 

involution is often disrupted which causes secondary defects (Merrill et al., 1989).  

In contrast to that, the red flour beetle Tribolium castaneum reflects are more ancestral mode 

of arthropod segmentation and development (Bucher and Wimmer, 2005; Davis and Patel, 

2002; Klingler, 2004; Schoppmeier and Schröder, 2005; Schröder et al., 2008; Tautz et al., 

1994). One important fact is that Tribolium undergoes short germ embryogenesis. Here, 

anterior segments are specified during early blastoderm stages, while posterior segments are 

added step-by-step from the posterior growth zone of the embryo (Davis and Patel, 2002; 

Sarrazin et al., 2012; Schoppmeier and Schröder, 2005; Tautz et al., 1994). Furthermore, 

Tribolium develops a larval head with external insect typical and well distinguishable 

structures (Bucher and Wimmer, 2005). In addition, a characteristic bristle pattern facilitate 

the identification of certain head regions (Posnien and Bucher, 2010; Schinko et al., 2008). 
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Moreover, a growing tool set for functional analysis was developed over the last years. Beside 

an accessible genome (Richards et al., 2008),  a robust RNA interference (RNAi) method is 

available to knockdown gene function. In particular the response is transmitted systemically 

allowing manipulation of genes at every stage of development because dsRNA can be easily 

injected in pupae or adult and the effect is even transmitted to the offspring (Brown et al., 

1999; Bucher et al., 2002; Tomoyasu and Denell, 2004; Tomoyasu et al., 2008). In addition, a 

piggyBag based transgenic insertional mutagenesis screen provided enhancer trap lines 

marked with EGFP (Berghammer et al., 1999; Trauner et al., 2009). Moreover, imaging lines 

were produced (Posnien et al., 2011b; Sarrazin et al., 2012) and misexpression techniques 

were established (Schinko et al., 2010; Schinko et al., 2012). 

 

2.4 Direct comparison of Drosphila and Tribolium head patterning 

As already mentioned, the head development of Drosophila is derived within insects. Indeed 

the patterning of the anterior region of the head is not highly conserved in direct comparisons 

to Tribolium. The upstream regulator bicoid of the head gap like genes is completely missing 

outside higher dipterans (Brown et al., 2001; Lemke et al., 2008; Stauber et al., 1999) but Tc-

axin mRNA is required for anterior development (Fu et al., 2012) and also the head gap like 

genes itself show great functional variation.  While Tc-buttonhead has no role at all, the 

function of Tc-empty spiracles is restricted to the posterior ocular and anterior portion of the 

antennal segments. The gene Tc-orthodenticle1 has an additional role in axis formation 

(Schinko et al., 2008; Schröder, 2003) and the genes Tc-huckebein and Tc-tailless are not 

involved in head development  (Kittelmann et al., 2013; Posnien et al., 2011b; Schoppmeier 

and Schröder, 2005; Schröder et al., 2000). In contrast, other genes which function in a 

different developmental context in Drosophila showed essential function in head 

development, for example the gene Tc-knirps (Cerny et al., 2008). However, more 

downstream genes like cnc, croc and collier show conserved expression and function 

(Coulcher and Telford, 2012; Economou and Telford, 2009; Kittelmann et al., 2013; Schaeper 

et al., 2010).   

 

2.5 The labrum arises in the anterior median region (AMR) 

Due to the difference to trunk patterning, the anterior procephalic region is especially 

interesting. The labrum is located in the non-segmental anterior-median region which is 
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bordered by neuroectoderm. While neurogenic genes (for example Tc-mae, Tc-spitz, Tc-

asense and Tc-achaete-scute) are expressed as two separated stripes along the ventral midline, 

they split in the anterior head outwards, thereby shaping a “Y” (dotted line in Figure 2.1A). 

The median tissue framed by neuroectoderm is called anterior median region (AMR) and 

gives rise to the labrum and stomodeum (Bucher and Klingler, 2005; Kittelmann et al., 2013; 

Wheeler et al., 2003). In addition, the expression of the segment polarity gene Tc-wingless 

(Tc-wg) shows this Y shaped pattern framing the AMR. While the stripes of Tc-wg are 

perpendicular to the body axis, antennal and ocular domains are twisted outwards (Posnien et 

al., 2010). This region also expresses a specific set of genes (Tc-six3, Tc-crocodile (Tc-croc), 

Tc-cap´n´collar (Tc-cnc), Tc-scarecrow (Tc-scro), and Tc-forkhead (Tc-fkh) which is 

expressed inside the AMR but not in each segment. This indicates that the AMR is patterned 

by another genetic regulatory network than the surrounding tissue (Economou and Telford, 

2009; Posnien et al., 2009a; Posnien et al., 2011b; Schröder et al., 2000). Indeed functional 

analysis showed that knockdown of Tc-six3 led to deletion of this region but the surrounding 

tissue remained largely unaffected (Posnien et al., 2009a; Posnien et al., 2011b). Tc-six3 is 

required for early AMR patterning and acts upstream of Tc-cnc and Tc-croc. While Tc-cnc is 

involved in labrum formation in the anterior AMR, Tc-croc is required for stomodeum 

development in the posterior AMR (Kittelmann et al., 2013). 

The labrum structure itself requires the genetic regulatory network of appendage 

development. In situ staining of appendage patterning genes revealed expression in a similar 

relative position in both labrum and trunk segments including the genes Tc-wg, Tc-Distal-less 

(Tc-Dll), Tc-decapentaplegic (Tc-dpp), Tc-homothorax (Tc-hth) and Tc-dachshund (Tc-dac) 

(Beermann et al., 2001; Nagy and Carroll, 1994; Posnien et al., 2009a; Prpic et al., 2001; 

Sanchez-Salazar et al., 1996). Moreover, functional analysis of Tc-Dll indicated that it is both 

involved in appendage and labrum patterning, since distal portions of the labrum and 

appendages are deleted in Tc-Dll (Short antennae (Sa)) mutants (Beermann et al., 2001). 

Conversely, recent studies indicated that the regulatory gene network of the appendages 

function in a different way in the labrum because activation of Tc-Dll depends on Tc-wg and 

Tc-hedgehog (Tc-hh) in the appendages but not in the labrum (Posnien et al., 2009a). 

Therefore the labrum has been suggested to be an appendage like structure, but not located in 

the segmental part of the embryo. 
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2.6 Identification of novel head patterning genes  

So far, the study of head development has relied on candidate genes known for Drosophila 

and vertebrates. Based on these genes the understanding of the regulatory network of the 

anterior median region including the patterning of the labrum was expanded over the last 

years. However, there is still no comprehensive set of genes available that are required for 

AMR patterning. For example, the mode of activation of Tc-six3 is still enigmatic and 

upstream activators of the posterior AMR are missing (Kittelmann et al., 2013). In order to 

find novel genes required for AMR patterning, genes showing a head phenotype in a genome 

wide RNAi screen (iBeetle screen) were identified in this work.  

The iBeetle screen uses the knockdown of randomly selected genes via RNAi to identify 

novel gene functions in an unbiased way. Here, two screens were performed in parallel at 

different developmental stages to allow the identification of novel gene functions during 

oogenesis, embryogenesis, and metamorphosis. In the “pupal injection screen”, injected 

female pupae were scored for late metamorphosis phenotypes and their offspring were 

analyzed for both muscle and cuticle phenotypes. In addition, ovaries were analyzed for 

oogenesis defects, if reduced egg production was observed. The “larval injection screen”, 

focused on the insect metamorphosis and development of the odoriferous glands by injection 

in L5/6 larvae. In the first screening period 5,300 genes in the “pupal” and 4,480 genes in the 

“larval injection screen” were screened (Schmitt-Engel et al., accepted). The RNAi 

phenotypes of both screens are annotated in an online database available at http://ibeetle-

base.uni-goettingen.de/ using the vocabulary based on the Tribolium morphological ontology 

(TrOn) (Dönitz et al., 2013; Dönitz et al., 2014).  

 

2.7 The developmental function of Notch signaling  

During this work, two genes were analyzed, which showed a labrum specific phenotype in the 

screen. Both genes were components of the Notch signaling pathway. In Drosophila the 

Notch signaling pathway is involved in a wide variety of cell fate decisions and other 

developmental processes (Artavanis-Tsakonas et al., 1999; Lai, 2004). A well characterized 

function of Notch is those affecting neurogenesis in flies and vertebrates by mediating lateral 

inhibition of neural precursors (neuroblasts) (Artavanis-Tsakonas et al., 1999; Cabrera, 1990; 

Martín-Bermudo et al., 1995; Simpson, 1990).  

Moreover, the Notch signaling pathway interacts with other pathways for instance with the 

Wnt signaling pathway in wing margin formation (Axelrod et al., 1996; Diaz-Benjumea and 
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Cohen, 1995; Hing et al., 1994). Further, Notch is also involved in regulating cell 

proliferation. For instance, by control of cell proliferation eye primordium formation and 

wing disc grow are influenced (Go et al., 1998; Kenyon et al., 2003; Speicher et al., 1994). In 

leg formation, Notch signaling plays a role in growth control and is also specifying the 

location and number of leg joints. Starting with proximal-distal patterning of the leg disc 

induced by wg and dpp (Figure 2.2A), this genes act together to regulate the expression of the 

leg gap genes homothorax (hth), dac and Dll (Figure 2.2B) (Abu-Shaar and Mann, 1998; 

Brook et al., 1996; Duncan et al., 1998; Lecuit and Cohen, 1997; Wu and Cohen, 1999). In a 

next step these genes establish the expression of leg segmentation genes in ring shaped 

domains including genes of the Notch signaling pathway, i.e. Serrate and Delta (Figure 2C) 

(Bishop et al., 1999; Rauskolb, 2001; Rauskolb and Irvine, 1999).  

 

 

 

 

Figure 2.2: Leg segmentation 

in Drosophila - (A) Proximal-

distal axis patterning in the leg 

imaginal disc is promoted by the 

combined action of wg and dpp. 

(B) These genes regulate the 

expression of the genes hth, dac, 

Dll, and spineless (ss). (C) In a 

combinatorial action of these 

genes rings of expression of fng, 

Ser, and Dl are established 

(Rauskolb, 2001), possibly also 

with direct input from wg and 

dpp. (D) Notch signaling and 

genes at higher levels of the 

hierarchy, influences the 

expression of e.g, nub, odd and 

presumpably bab (Godt et al., 

1993). Schema taken from 

(Rauskolb and Irvine, 1999). 
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2.7.1 The Notch pathway 

Components of the Notch signaling pathway are well characterized in invertebrates and 

vertebrates, including humans. Since The Notch gene was first characterized in Drosophila 

melanogaster (Kidd et al., 1986; Wharton et al., 1985), the number of identified proteins 

which are involved in transmission or regulation of the Notch signal increased (Artavanis-

Tsakonas et al., 1999). To allow cell-to-cell communication between neighboring cells, the 

interaction of two transmembrane proteins is needed. Active signaling is provided if a signal 

sending cell expresses the ligand Delta or Serrate (in vertebrates Serrate is called Jagged 

(Fleming, 1998)) on their surface, and comes in contact with the extracellular domain of the 

Notch receptor of a signal receiving cell (Artavanis-Tsakonas et al., 1999). Both ligands and 

receptor contain extracellular domains with epidermal growth factor (EGF)- like repeats 

(Rebay et al., 1991) which are necessary to bind to each other. If an activated ligand binds to 

the receptor, two proteolytic cleavages are induced. The first cleavage is catalyzed by 

ADAM-familiy metalloproteases (Pan and Rubin, 1997), while the second is promoted by 

gamma-secretase (Figure 2.3, S2 and S3) (Fortini, 2002; Selkoe and Kopan, 2003).  After the 

second cleavage the Notch intracellular domain (Nicd) translocates to the nucleus where it 

promotes transcription after interaction with a DNA binding protein CSL (CBF1,  Su(H) and 

LAG-1) and its co activator Mastermind (Mam) (Borggrefe and Oswald, 2009; Bray, 2006; 

Fortini, 2002; Fryer et al., 2004; Mumm and Kopan, 2000; Struhl and Adachi, 1998).  
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Figure 2.3: The Notch signaling pathway. Ligand binding of Delta (green) or Serrate (not shown) of the signal 

sending cell to the Notch receptor of another cell results in two proteolytic cleavages (S2, S3). ADAM 

metalloproteases catalyze the S2 cleavage while S3 is catalyzed by gamma-secretases. After cleavage the Notch 

intercellular domain (Nicd) enters the nucleus and interacts with DNA-binding Protein (CSL) and its co-activator 

Mastermind (mam) to promote transcription. Additionally, co-repressors (Co-R; blue and grey) are released. 

Scheme from (Bray, 2006). 

 

2.7.2 Regulation of Notch signaling 

While simple at first, Notch signaling becomes very complex when its regulation is 

considered. As already mentioned, Notch signaling requires activation of its two ligands Delta 

and Serrate. For a long time endocytosis of ligands and receptors was thought to induce 

downregulation of cell-cell signaling (for instance targeting receptors for lysosomal 

degradation). However, new insights estimated that endocytosis might also be required for 

signal transduction (Klueg and Muskavitch, 1999; Kooh et al., 1993; Le Borgne et al., 2005a; 

Parks et al., 2000; Seugnet et al., 1997). For the last years, several models have been proposed 

to answer the question how endocytosis is associated with receptor activation but it is still not 

fully understood (Le Borgne and Schweisguth, 2003a; Le Borgne et al., 2005a; Parks et al., 

2000; Wang and Struhl, 2004). Recent investigations have described that ubiquitination plays 

a key role in endocytosis of the ligands by the two E3 ubiquitin ligases Neuralized (Neur) and 
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Mind bomb 1 (Mib1) in vertebrates and invertebrates (Artavanis-Tsakonas et al., 1999; Chen 

and Casey Corliss, 2004; Itoh et al., 2003; Lai, 2004; Schweisguth, 2004). Previously, it was 

thought that ubiquitin targets proteins for their destruction in proteasomes. However, recent 

insights showed that it also plays a role in endocystosis and activation of Notch ligands 

(Figure 2.4) (Bonifacino and Weissman, 2002; Hicke, 2001; Weissman, 2001). The multistep 

process of ubiquitination includes an addition of an ubiquitin, composed of 76 amino acids, to 

a substrate protein.  Beside the E3 ligases this process involves two other classes of enzymes 

including E1 (ubiquitin-activating enzymes) and E2s (ubiquitin-conjugating enzymes) 

(Bonifacino and Weissman, 2002).  

 

Figure 2.4: Ligand activation via ubiquitination – While the ligands Delta and Serrate are inactive, they can 

be either endocytosed or degraded. Neur and Mib (Ub) mediated ubiquitination of Notch ligands is required for 

Epsin mediated endocytosis. After endocytosis ligands are able to signal but can also be targeted for degradation. 

Figure from (Bray, 2006). 

 

Neur and mib1 are related to distinct ligase families. Thus, differ in their primary structure but 

show sequence homology (C-terminal RING fingers) and similarity in their activities (Lai et 

al., 2005; Le Borgne et al., 2005b; Wang and Struhl, 2005). Both E3 ligases can directly 

interact with Delta and Serrate (Daskalaki et al., 2011; Glittenberg et al., 2006)  to allow 

endocytosis and are interchangeable to some degree. Nevertheless, it appears that they have 
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distinct developmental functions in Drosophila. While neur shows a restricted expression in 

sensory cells (Boulianne et al., 1991), mib1 is uniformly expressed in imaginal dics (Lai et al., 

2005; Le Borgne et al., 2005b). Furthermore, recent data showed that mib1 is required for 

Notch events which do not need neur gene activity. Neur is required for lateral inhibition 

during neurogenisis (Lai and Rubin, 2001; Lehmann et al., 1983; Yeh et al., 2000) and is also 

involved in cell fate decisions in the bristle lineage (Le Borgne and Schweisguth, 2003). The 

latter does not need mib1 activity (Le Borgne et al., 2005b). Thus, Drosophila mib1 was 

missed in earlier screens for Notch pathway components, because the related phenotypes were 

only weakly neurogenic. In contrast mib1 is involved in Notch signaling events where neur is 

not needed, like wing margin formation, leg segmentation and vein formation (Lai et al., 

2005; Le Borgne et al., 2005b; Wang and Struhl, 2005). Additionally, Mib1 might prefer 

Serrate as a substrate because D-mib1 mutant cells showed that Mib1 is required for Serrate 

but not Delta endocytosis (Le Borgne et al., 2005b; Wang and Struhl, 2005) and Serrate 

accumulation defects occur in imaginal disc (Lai et al., 2005).  

 

2.7.3 The Notch signaling pathway in Tribolium 

In Tribolium the Notch signaling pathway is also involved in different processes during 

development. Here, Notch and its ligand Delta have a major role during telotrophic oogenesis, 

which explains the high sterility after N and Dl RNAi (Baumer et al., 2012). Moreover, it was 

previously shown that downstream targets of Delta-Notch signaling (bHLH-O repressors 

E(spl)1 and E(spl)3) mediate lateral inhibition in the neuroectoderm (Kux et al., 2013). In 

addition, a role for Notch signaling in growth control of the leg was suggested before, since 

knockdowns of Tc-Delta resulted in shortened legs compared to the wild type (Aranda, 2006). 

Furthermore, Tc-Serrate is expressed in rings in the legs, marking the positions of the leg 

joints. This gave evidence for the involvement of Notch signaling in joint formation 

(Beermann et al., 2004). During metamorphosis, joint formation in the antenna and legs as 

well as metamorphosis of the maxillary endites requires the activation of Notch signaling. 

Here, it is also involved in growth control of the legs (Angelini et al., 2009; Angelini et al., 

2012a; Angelini et al., 2012b). Additionally, the sensory patterning in the labrum during 

metamorphosis is linked to the Notch signaling pathway (Smith et al., 2014). 
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2.8 The GATA transcriptions factor grain 

In Drosophila, three genes pannier (pnr), serpent (srp) and grain (grn) encode GATA 

transcriptions factors. The gene pnr plays a role in the development of dorsal ectoderm 

derivatives and extraembryonic tissue where it is involved in the dpp signaling pathway 

(Heitzler et al., 1996; Ramain et al., 1993; Winick et al., 1993). The gene srp is known to be 

involved in the development of the gut and the fat body (Abel et al., 1993; Rehorn et al., 

1996; Reuter, 1994). In recent years also grn was further analyzed and revealed that this gene 

is involved in different developmental processes. This includes a role in neurogenesis by 

regulating the axon guidance due to activation of the unc-5 in dorsal motoneurons (Garces 

and Thor, 2006; Zarin et al., 2012; Zarin et al., 2014). In addition, it also plays a role in cell 

rearrangement during morphogenesis (Brown and Castelli-Gair Hombría, 2000). Here grn is 

involved in shaping the adult legs and the larval posterior spiracles controlling cell 

rearrangements in the embryo and imaginal discs. Interestingly, this study also showed an 

involvement in head development. A localized expression domain of grn starts during late 

blastoderm stages in the procephalon and cuticle analysis revealed that the head cuticle has 

defects mostly in the dorsal bridge and in the lateralgräten. These structures belong to the 

anterior non segmental part of the embryo and the mandibular segment (Jürgens et al., 1986).  

 

2.9 Aims 

The main aim of this work was to find and characterize novel insect head patterning genes 

with focus on the anterior median region. This included three different steps. First, potential 

patterning genes were selected from the iBeetle screen which showed head phenotypes after 

knockdown. Second, all selected candidate gene were rescreened to check for reproducibility 

and specifity. Finally, the most promising reproduced candidates were selected for more 

detailed analysis.  

Based on the expression and function of the Tc-mib1 and Tc-Ser, I hypothesised the hierarchy 

of Notch signaling within the leg patterning network in the labrum and the leg. This was 

mostly tested by analysis of marker genes after knockdown. Additionally, I analyzed Notch 

mediated cell proliferation in proper labrum and leg formation.  

Since Tc-grn knockdown indicated to be involved in labrum formation, I used expression and 

functional analysis to gain insight into the role of Tc-grn in Tribolium. Finally, I compared the 

data for Tc-grn in Tribolium with the corresponding expression and functional data of 

Drosophila in order to hypothesise the function of Tc-grn in labrum formation. 
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3 Material and methods 

3.1 Stock keeping 

Strains of Tribolium castaneum were reared under standard conditions on full grain flour 

supplemented with 5% yeast at 32°C or 25°C (Brown et al., 2009). For experiments the wild 

type strain San Berndardino or the strain Pig-19 (pBa19) were used. Female pupae of the Pig-

19 strain were mated to males of the Black strain (Sokoloff et al., 1960) for an easily 

discrimination between injected females and not injected males. For egg collections beetles 

were kept on white flour provided with 5% dry yeast at 32°C.  

 

3.2 Candidate gene selection 

To identify novel head patterning genes potential candidates were selected based on head 

phenotypes found in the iBeetle screen. Phenotypes were searched on the iBeetle database 

(http://ibeetle-base.uni-goettingen.de/) (Dönitz et al., 2015) using data gathered at day 15 

(pd15) of the pupal injection screen. The following search terms were used: 

 

“pd15, head, labrum” 

 

“pd15, vertex triplet” 

 

“pd15, head capsule” 

 

“pd15, procephalic head” 
 

 

To eliminate non head specific phenotypes all results were in addition searched for defects of 

the entire cuticle and embryos which did not form a cuticle. Such datasets were removed. In 

order to avoid missing interesting phenotypes head phenotypes were not filtered for low 

penetrance. 

 

3.3 Orthology and phylogenetic analysis 

In order to retrieve the gene sequences of the targeted genes, the corresponding ibeetle ID 

number (e.g. iB_05634) was searched in the Tribolium gene browser (http://bioinf.uni-

http://bioinf.uni-greifswald.de/gb2/gbrowse/tribolium/
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greifswald.de/gb2/gbrowse/tribolium/). Orthologs were identified by BLAST analysis using 

translated nucleotide sequences against non-redundant protein sequences of Drosophila 

melanogaster  and Mus musculus with the blastp algorithm on the NCBI database (National 

Center for Biotechnology Information NCBI, http://blast.ncbi.nlm.nih.gov/Blast.cgi (BLAST; 

(Altschul et al., 1990)). The protein sequences of the three best hits were used for alignments 

and phylogentic trees. Potential paralogs of Tribolium were obtained using the BeetleBase 

BLAST (http://www.Beetlebase.org; (Kim et al., 2010; Tribolium Genome Sequencing 

Consortium et al., 2008; Wang et al., 2007)). All protein sequences were aligned using 

clustlW alignment algorithm implemented in MEGA4 

(http://www.megasoftware.net/mega4/mega.html) or Geneious 7 software (Biomatters, 

Auckland, New Zealand) using standard settings. Phylogenetic analysis was done using the 

Geneious Tree Builder with the Jukes-Cantor genetic distance model. As tree-building 

method the neighbor-joining (Saitou and Nei, 1987) method was used. Details for each 

candidate gene were retrieved by searching for the identified orthologs of Drosophila on 

flybase (http://flybase.org/) (McQuilton et al., 2012). 

 

3.4 Molecular biology 

Gene specific primers were designed based on AUGUSTUS gene predictions (AUGUSTUS 

UTR and hints from cDNA) from a project internal Tribolium gene browser. Primer synthesis 

was performed by Eurofins MWG Operon (Ebersberg, Germany). Genes of Tribolium were 

cloned following standard methods (Sambrook and Russel, 2001) from complementary DNA 

(cDNA) of 0-72 h old embryos using gene specific primers. cDNA was synthesized by Jonas 

Schwirz with the SMART PCR cDNA kit (ClonTech). Respective gene fragments were 

amplified using the Phusion chain polymerase and cloned into the pJET1.2 vector. A number 

of clones was generously provided from the clone collection of the department or other 

laboratories (Table 3.1). Cloned gene fragments were sequenced by Macrogen (Seoul, Korea 

and Amsterdam, Netherlands) using standard pJet Primer (pJET1.2 Forward Sequencing 

Primer, 23-mer 5’-CGACTCACTATAGGGAGAGCGGC-3’ and pJET1.2 Reverse 

Sequencing Primer, 24-mer 5’-AAGAACATCGATTTTCCATGGCAG-3’). All gene specific 

primer generated in this thesis are listed in the appendix. 

 

 

 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.beetlebase.org/
http://flybase.org/
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Clone Provided by Length Used for 

Tc-Delta Manuel Aranda 500bp Probe preparation 

Tc-Serrate Manuel Aranda 610bp Probe preparation, dsRNA synthesis 

Tc-Dll Nico Posnien 948bp DsRNA synthesis 

Tc-dac Martin Klingler 950bp Probe preparation 

Tc-grain Cristina De Miguel Vijandi 588 bp Probe preparation 
 

Table 3.1: cDNA clones provided by other people. Indicated is the name of the gene, the provider, the length 

of the clone and what they were used for in this work. 

 

3.5 Knock down by RNA interference (RNAi) and injection techniques 

Knockdown of gene function in Tribolium castanuem was performed according to previously 

published protocols (Posnien et al., 2009b) by injection of double stranded RNA (dsRNA) 

into pupae. Required templates for in vitro transcription were amplified via PCR using 

primers with an attached T7 polymerase promoter sequence (pJET_fw-upT7 5’-

ACACTTGTGCCTGAACACCATACC-3’ and pJET12_rev_T7 5’-

TAATACGACTCACTATAGGAAGAACATCGATTTTCCATGGCAG-3’). The generation 

of dsRNA was done using the Ambion® MEGAscript® T7 kit (Life Technologies, Carlsbad, 

CA, USA). To test for off-targets (unspecific knockdown due to sequence homologies) of the 

genes of interest, non-overlapping fragments were generated for each gene. The cDNA 

sequences of the final selection of candidate genes used for dsRNA synthesis were also 

analyzed using E-RNAi on the website of the German Cancer Research Center (DKFZ) 

(http://www.dkfz.de/signaling/e-rnai3/) (Horn and Boutros, 2010). Moreover, most fragments 

were injected both in the SB and the Pig-19 strain to check whether the fragments exhibit 

strain specific phenotypes. Only fragments showing the same phenotype in both strains were 

used for final experiments. For the rescreen analysis dsRNA at a concentration of 1μg/μl and 

3µg/µl was injected into female pupae and for ongoing experiments a concentration of 1µg/µl 

up to 2µg/µl of dsRNA was chosen. Buffer injections without dsRNA were performed as 

control. All injections into female pupae were done using a FemtoJet® express device 

(Eppendorf, Hamburg, Germany) with an applied injection pressure of 300–700 hpc. 

Embryonic injections were performed according to published protocol (Berghammer et al., 

2009) using a FemtoJet® express device (Eppendorf, Hamburg, Germany). 
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3.6 Histology 

 

3.6.1 Probes 

In situ probes were synthesized with the DIG (Digoxigenin) and FLU (Fluorescein) labeling 

kits from Roche using T7 polymerase for all genes cloned into the pjet1.2 vector and for the 

probe preparation of the provided clones of Tc-grain (pST Blue-1)  and Tc-Dl (pBluescript). 

The T3 polymerase was used for probe synthesis of Tc-Ser (pBluescript) and Tc-dac (pCR 

Script). 

 

3.6.2 Egg collections and fixation 

For in situ hybridization (ISH) and immune histochemistry embryos of an age between 0-48 h 

were used. For staining of the cell membranes with FM® 1-43 eggs of 0-69 h were collected. 

For cell proliferation assay 19-20 h old embryos were used. If not mentioned otherwise 

fixations of embryos were done according to given standard protocols (Schinko et al., 2009). 

Fixation buffer was modified after (Sandmann et al., 2006) 1mM EDTA, 0.5mM EGTA, 

100mM NaCl, 2.5% formaldehyde, 50mM HEPES, pH 8. The embryos were agitated for a 

maximum of 25 minutes at 220-230 rpm.  

 

3.6.3 Whole mount in situ hybridization (ISH) 
ISH was done with an alkaline phosphatase driven Nitro blue tetrazolium (NBT) and 5-

Bromo-4-chloro-3-indolyl phosphate (BCIP) reaction using described protocols (Schinko et 

al., 2009). Staining was also performed after the protocol described previously  (Oberhofer et 

al., 2014). 

 

Double in situ hybridization was performed using NBT/BCIP and a horseradish peroxidase 

(POD) mediated tyramide signal amplification (TSA). The TSA tyramide Dylight 550 

conjugate was used as substrate (synthesized by Georg Oberhofer). Staining was performed 

with anti-Dig-AP (Roche) for the NBT/BCIP and anti-Fluo-POD (Roche) for the TSA 

reaction (Oberhofer et al., 2014; Schinko et al., 2009). 

Embryonic nuclei were detected using 0,6ng/μl Hoechst 33342 during the last washing steps, 

followed by at least two washing steps with PBT.  
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3.6.4 FM® 1-43 staining 

Fixed embryos were rehydrated in 1:1 methanol/PBT and washed for two times with PBT 

Staining was done using 0,0005 ng/µl N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino) 

styryl)pyridinium dibromide (FM® 1-43; Invitrogen/Life Technologies, Carlsbad, CA, USA) 

for 30 minutes. Afterwards embryos were washed for at least 3 washing steps with PBT. 

Staining of nuclei was performed with Hoechst. 

 

3.6.5 Cleaved Drosophila death caspase-1 (Dcp-1) staining 

For antibody staining with the cleaved Drosophila Dcp-1 (Asp216) antibody (Cell Signaling 

Technology) fixed embryos were rehydrated in 1:1 methanol/PBT and then washed two times 

in PBT. After another two washing steps of about 15 minutes each, embryos were blocked for 

at least one hour in 1 ml 3% BSA in PBT.  

The incubation with the primary antibody was done over night on a wheel at 4°C diluted 

1:100 in 3% BSA. After incubation embryos were rinsed two times with PBT followed by 

two additional washing steps for 30 minutes on the wheel. After adding the secondary 

antibody (anti-rabbit coupled with Alexa Fluor 488; 1:1000) embryos were protected from 

light during all following incubation and washing steps. Incubation was performed for at least 

90 minutes on wheel and then rinsed for two times with PBT. Staining of nuclei was 

performed with Hoechst. 

 

3.6.6 Edu proliferation assay and analysis 

To visualize cell proliferation in developing embryos a Click-iT
®
 EdU (5-ethynyl-2´ 

deoxyuridine) assay (Click-iT
® 

EdU Alexa Fluor
® 

488 Imaging kit, Life technologies, Eugene 

OR, USA) was used (Salic and Mitchison, 2008). Egg collections of 0-1 h old embryos were 

kept for 16 h at 32°C. Embryos were dechorionated two times in 1% commercial bleach for 

40 seconds and placed on a microscope slide as described previously (Berghammer et al., 

2009). Injection was performed using an end concentration of 50µM/µl EdU dissolved in 

injection buffer. The injection procedure was done for a maximum of 1 hour at room 

temperature to keep the development of the embryos to a minimum. EdU was injected at the 

anterior part of the egg directly into the yolk. After each injection the microscope slides were 

placed on apple juice agar plates to avoid drying out of the embryos and incubated for three 

hours at 32°C to allow for proliferation. Afterwards embryos were dechorionated with 50% 
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commercial bleach and washed on the slides using a pipette and a piece of paper tissue to 

carefully remove bleach and water without touching the embryos. Embryos were carefully 

transferred into scintillation vial with a paintbrush and fixed as usual. After fixation eggs still 

floating in the interphase were collected, washed with methanol for several times and 

transferred into PBT to allow dissection with beveled glass capillaries to release germ bands 

from their vitelline membrane. Staining of EdU treated embryos was done according to the 

ISH protocol (Schinko et al., 2009) and the manufacturer’s instructions as described below. 

Before staining, embryos were rehydrated in 2:1 MeOH/PBT and 1:2 MeOH/PBT and then 

washed two times in PBT. Afterwards they were post fixed for 15 minutes in 1ml PBT and 

140µl Formaldehyde (37%). After washing with PBT, embryos were digested with 8µg 

Proteinase K for a maximum of 6 minutes and again post fixed, followed by two additional 

washing steps in PBT. After washing in BBT, embryos were incubated in 0,5% TritonX100 

for 20 minutes followed by two washing steps with BBT (last one for 20 minutes). The Click-

iT® reaction cocktail was prepared according to manufacturer instructions shortly before 

using 500µl for approximately 30µl of embryos. After addition of the reaction cocktail 

embryos were protected from light and incubated for at least 30 minutes, followed by at least 

two washing steps in PBT. Afterwards, nuclei were stained for 10 minutes with 0,6ng/μl 

Hoechst 33342 in PBT and washed for additional three times with PBT.  

 

3.6.7 Embedding 

After staining, germ bands of the embryos were transferred to 100 % glycerol to dissect 

remaining yolk with an eyelash glued to a pipette tip. Whole mount in situ hybridization 

(ISH), EdU proliferation assay and cleaved Dcp-1 stained embryos were mounted in 100 % 

glycerol. FM® 1-43 stained embryos were also mounted in 100 % glycerol, but in order to 

avoid the squeezing of germ bands small pieces of plasticine were added to the cover slips as 

spacers.   

 

3.6.8 Cuticle preparations  

After egg collection, embryos were stored on small sieves (mesh size 300µm) for additional 4 

days at 32°C. Eggs and first instar larvae were dechorionated in 50 % commercial bleach. 

Afterwards they were embedded in 1:1 of Hoyer’s medium/ lactic acid and incubated at 65°C 

overnight as described previously (Bucher and Klingler, 2004).  
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3.6.9 Statistical analysis 

Cell counting analysis was done using whole stacks of EdU treated wild-type and RNAi 

embryos. Cell counting of embryo stacks was done using Image J (Schneider et al., 2012). 

Each stack was divided into specific counting regions including the upper half of the 

headlobes as control, the labrum anlagen, as well as the first outgrowing leg pair (fig). The 

number of proliferating cells in the defined areas was counted with the “cell counter” plug-in 

from Image J. Statistical analysis of counted cells was performed using the statistics program 

R (http://www.r-project.org/) in combination with the R commander plug-in (RcmdrPlugin). 

To estimate the homogeneity of variances between counted cells both boxplot analysis and 

Saphiro Wilk test were performed (Shapiro and Wilk, 1965). Normal distribution was tested 

between both sides of one embryo. Since no significant difference between both sides was 

detected (see Figure 7.1), proliferating cells of each side were summed and the mean values 

generated. Subsequent tests were performed with this mean values. Normal distribution and 

significance was tested for proliferating cells in wild type against Tc-mib1 RNAi embryos of 

all counted embryos. For samples, where normal distribution was reached, a two sample t- test 

was done. Samples showing no normal distribution were analyzed with the Welch t-test. 

 

3.6.10 Microscopy and imaging 

Phenotype screening of whole cuticles was done with a Zeiss Axioplan 2 Microscope using 

dark field. To analyze head bristle pattern as described (Schinko et al., 2008) the DIC filter set 

was used. Images of cuticles were taken using the FITC filter set with a mercury vapor lamp 

to visualize auto fluorescence and the ImageProPlus (Media Cybernetics, Rockville, USA) 

software. For z-projections of the cuticle stacks about 10-30 planes were recorded and 

deconvoluted using the “No Neighbour” method of ImageProPlus. For generation of one 

image “Maximum Projection” or “Sum Slices” of ImageJ was used. Imaging of embryos 

stained with NBT/ BCIP was done with the DIC filter sets. To detect the fluorescence of the 

Hoechst and TSA staining either DAPI or Cy3 filter sets were used. EdU incorporation was 

visualized using the yfp filter sets. For z-projections of the embryo stacks about 20-30 planes 

were recorded and deconvoluted using the “No Neighbour” method of ImageProPlus. For cell 

counting analysis z-stacks were inverted and levels adjusted using Image J. For visualization 

of dying cells with cleaved Drosophila Dcp-1 antibody staining, the FITC filter set was used. 
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Imaging of embryos stained with Hoechst and FM® 1-43 was done with a Zeiss LSM780 

using 405 nm for Hoechst and 550 nm lasers for FM® 1-43 stainings. Stacks of whole 

embryos were loaded into Amira v5.3.2.  3D models of the confocal stacks were rendered 

with the voltex module and default settings. All images were assembled and levels adjusted in 

Photoshop (versions CS2 or CS5). Labeling of figures and generation of schemes was 

performed in Photoshop (versions CS2 or CS5) or Inkscape. 
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4 Results 

4.1 Selection of head phenotypes from the iBeetle screen 

In order to find yet unknown genes which could be potentially involved in the patterning of 

the most anterior part of the head, I used the iBeetle database with datasets of a large scale 

RNA interference (RNAi) screen in the red flour beetle Tribolium castaneum (Schmitt-Engel 

et al., accepted). I used data available on the iBeetle base after the first major screening phase 

of the iBeetle screen, where around 5,300 datasets were annotated. Each dataset included 

information related to phenotype induced by the injection of one individual iBeetle dsRNA 

fragment. This information comprised some experimental details, a detailed description of 

several types of phenotypes and related pictures. For my purpose the database was searched 

for cuticle phenotypes found in L1 larvae in the pupal injection screen (status 18.9.11). The 

data was searched broadly for head defects (examples in Figure 4.1) and the results were then 

further classified using all available data. Criteria were: 

 Specific:  Head phenotypes coupled with defects of abdominal segments were chosen 

only if the head phenotype was obvious. 

 

 Interesting gene: phylogenetic analysis indicated to be a gene of interest because either 

function of the gene was not described in Drosophila so far or the gene was not 

implicated with head patterning processes before.  

 

 

All in all 18 different phenotypes (see Table 4.1 and section 4.1.1) were selected for re-

injection. 
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Figure 4.1: Examples of head phenotypes selected from the screen – Anterior is to the left. (A) Lateral 

view of a wild type cuticle. (B-D) Cuticle phenotypes. (B) Phenotype of iB_01021 resulted in a missing 

labrum. (C) RNAi of iB-00765 caused a displacement of the labrum and a reduction of the procephalic head. 

(D) Malformation of the procephalic head and protruding structures after knockdown of iB_03557. 

 

4.1.1  Rescreen and selection of final candidate genes 

It was recently shown that, some RNAi phenotypes depended on the genetic background of 

the injected strain (Kitzmann et al., 2013). In order to identify genes that produce similar 

phenotypes in different strains, dsRNA fragments of each gene were injected into the wild 

type strain San Bernadino. For iB_00765, iB_05247, iB_02692, iB_02582, iB_05264, 

iB_02268, iB_05634 and iB_03352 fragments were injected also into the strain Pig-19 which 

was already used in the screen. In addition, non-overlapping fragments of each gene were 

generated to check for possible off target effects. Moreover, gene knockdown was performed 

with two different concentrations (1µg and 3µg) to determine if the strongest phenotype was 

already described in the screen. The offspring of both strains was collected around 9 days 

after injection of pupae and cuticle analysis was done. Hatched L1 larvae were also analyzed 

for phenotypes. Based on these experiments 13 out of 18 genes were discarded due to 

different reasons (Table 4.1). The labrum phenotype of the genes iB_00765, iB_05247, 

iB_02582 and iB_01766 was reproduced with lower frequency but additional defects 

appeared like an enhanced amount of empty eggs (embryos which were not able to produce a 

cuticle at all) or unspecific disturbance of the abdominal segments. The annotated head 

phenotypes of the genes iB_02692 and iB_02350 were reproduced but additional unspecific 
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defects were observed. For the genes iB_01725 and iB_04199 a part of head defects and 

defects of the abdominal segments were reproduced but not the labrum phenotype itself. The 

labrum phenotypes which showed only a penetrance under 30% (iB_01021 and iB_01027) in 

the screen were not reproduced at all. Further, the head phenotypes of the genes iB_00951, 

iB_3557 and iB_00561 were not reproduced. In most cases, instead of the specific phenotype, 

phenotypes of the entire cuticle or a decreased egg production were observed as well as 

increased lethality. No obvious alteration was observed between the different dsRNA 

concentrations used in the injections.  

ID-number Tc-number Screen annotation 
Fragment/Strai

n 
Reason to discard 

iB_00765 TC_004781 

Labrum lost (30-50%) or displaced 

(<30%) head partly not present 

(<30%) 

NOF + iB / SB + 

Pig19 

 

Labrum phenotype 

reproduced with lower 

frequency but 

additional unspecific 

defects observed 

iB_05247 TC012475 

Labrum irregular (<30%) head shape 

irregular (50-80%), antenna 

decreased (<30%) 

NOF / SB + 

Pig19 

iB_02582 TC016377 

labrum irregular  Procephalic head 

lost (<30%), head irregular (50-

80%), lr irregular 30-80%, lr split > 

30% 

NOF / SB + 

Pig19 

iB_01766 TC010938 labrum not present (<30%) NOF/SB 

iB_01725 TC010758 

Labrum and antenna elongated (50-

80%) head capsule decreased (80%) 

maxilla increased (50-80%) 

NOF / SB 

Labrum phenotype not 

reproduced 

 

iB_04199 TC006711 

Labrum not present (30-50%); head 

capsule missing (<30%), head 

appendages randomly missing 

(<30%) 

NOF / SB 

iB_01021 TC006255 Labrum not present (<30%) NOF / SB 

iB_01027 TC006291 Labrum not present (<30%) NOF / SB 

iB_02692 TC003063 Labium not present (30-50%) NOF/SB + Pig19 

Labium phenotype 

reproduced but 

additional unspecific 

defects observed 

iB_02350 TC014911 
Head capsule dorsal decreased; head 

missing (<30%), many hatched 
NOF/SB 

Head defects but 

additional unspecific 

defects observed 

iB_00951 TC005877 
Head capsule missing less 30% 

many hatched 70-100% 
NOF/SB 

Head phenotype not 

reproduced 

 

iB_03557 TC003442 
Procephalic head reduced (50-80%) 

Head capsule reduced (50-80%) 
NOF/SB 

iB_00561 TC003368 

Head capsule not present 30-50%, 

head appendages randomly missing 

(30-50%) 

NOF/SB 
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Table 4.1: Genes discarded after re-injection - Given are iBeetle ID number (ID-number), the corresponding 

gene number found on the Tribolium gene browser (TC-number), the annotation of head defects from the screen 

(Screen annotation), injection of non-overlapping fragments (NOF) and original iB-fragments (iB) in SB and/or 

pig-19 (Fragment/Strain) and the reason why this gene was no longer of interest (Reason to discard). 

 

The phenotypes of four genes were reproduced. Both the iBeetle fragment and non-

overlapping fragment of iB_05264 (TC012539) led to a partial depletion of the vertex bristle 

pattern of the head capsule in both strains (SB and pig-19). Upon rescreen analysis the 

depletion was specified as the two setae marking the posterior and lateral vertex triplet setae 

(Figure 4.2B) Moreover, setae were not only depleted but sometimes duplicated and roundish 

cuticle structures remained at the location of the missing setae. Phylogenetic analysis revealed 

the gene Down syndrome cell adhesion molecule as closest fly homolog (Dscam). 

Nevertheless Tc-Dscam turned out to be mostly involved in sensory organ development but 

not in labrum formation. Therefore, this gene was not included in the final selection of 

candidate genes. 

In addition, the phenotype of the iB_02268 (TC014275) fragment was successfully 

reproduced by non-overlapping fragments in the Pig-19 and the SB strain. The ventral setae of 

the vertex triplet were irregular.  Furthermore, the bristle pattern of the dorsal ridge was 

disturbed at the junction separating the posterior head from the trunk and dorsal closure of the 

trunk was affected (Figure 4.2C). Moreover, the urogomphi were affected (not shown). This 

gene was identified as an ortholog of the Drosophila gene kismet. Since the phenotype 

indicated an involvement in dorsal closure and thereby potentially in a more morphogenetic 

process, this gene was not included in the final selection of candidate genes.  

 



Results 

 

  29   

 

Figure 4.2: Phenotypes of 

iB_05264 and iB_02268 - 

Cuticles in dorsal view. Anterior 

is towards the left. (A) Wild 

type cuticle marking the vertex 

triplet (black triangle). (B) 

Cuticle with iB_05264 

phenotype. The most posterior 

setae of the vertex triplet was 

missing (compare triangle in A 

with open triangle in B). (C) 

Cuticle after iB_02268 

knockdown. Mostly posterior 

setae of the vertex triplet were 

missing and the joint between 

head and thorax was irregular 

(compare region marked with 

open arrowhead in A and C). In 

addition, dorsal closure of the 

thorax was irregular (marked by 

black arrow in C).  

 

Furthermore, the knockdown of the iBeetle fragment iB_03352 (TC002315) was annotated 

with a highly penetrant (over 80%) head phenotype comprising a decreased head capsule with 

irregular head bristle pattern and particularly the lack of labrum tissue.  In addition, also 

tracheal openings were lost or decreased. Upon rescreen analysis, the injection of one non-

overlapping fragment in the SB and the Pig-19 strain resulted in a reproduction of all 

annotated phenotypes with similar penetrance. Phylogenetic analysis revealed the gene grain 

as closest fly homolog. This phenotype was further studied to some extent (see section 4.3 for 

detailed analysis). 

The knockdown of the iBeetle fragment iB_05634 led to a highly penetrant labrum and leg 

phenotype (50-80%). In the screen, dsRNA injection of this gene resulted in over 80% of the 

“L1 cuticle” in a complete loss of the labrum. The injection of two non-overlapping fragments 

resulted in a reproduction of all annotated phenotypes with similar penetrance in both strains 

(Pig-19 and SB). IB_04764 was annotated with a phenotype highly similar to the iB_05634 

phenotype. Moreover, the annotated shortened leg phenotype (more than 80%) was similar to 

the iB_05634 phenotype since structures of the leg were missing or fused.  The gene with the 

ID number iB_05634 (TC014445) was identified as an ortholog of the Drosophila gene mind 

bomb1 and iB_04764 (TC010113) as an ortholog of the Drosophila gene Serrate. Injection of 

non-overlapping fragments in SB was not performed since it was already published that Tc-
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Serrate plays of a role in metamorphic labrum, antenna and leg formation (Angelini et al., 

2009; Angelini et al., 2012c; Smith et al., 2014). These phenotypes were studied in detail (see 

following sections). 

 

4.2 Notch signaling is involved in labrum formation 

4.2.1 iB_05634 (Tc-mind bomb 1) and iB_04764 (Tc-Serrate) identified as 

genes both involved in the Notch signaling pathway 

AUGUSTUS gene predictions revealed that the dsRNA fragment with the iBeetle number 

iB_05634 targets a gene with the gene number TC014445. BLAST analysis of the protein 

sequence of this gene against non-redundant protein sequences of Drosophila melanogaster 

identified the gene mind bomb 1 as the closest fly homolog. (CG5841; Flybase ID 

FBgn0263601. The gene is also known as D-mib, l(3)72CDa, Dmib and Mib in Drosophila. 

The dsRNA fragment of iB_04764 targeted the gene with the number TC010113. The 

BLAST analysis of this gene revealed Serrate as the closest fly homolog. Interestingly, Tc-

Serrate functions as a ligand of the Notch pathway directly interacting with mib1 in 

Drosophila (Le Borgne et al., 2005b). In the following sections TC014445 and TC010113 

will be referred as Tc-mind bomb1 (Tc-mib1) and Tc-Serrate (Tc-Ser), respectively. 

Phylogenetic analysis shows that Tc-Ser is the single ortholog of Dm-Ser while Tc-mib1 is the 

single ortholog of Drosophila mib1. 

 

Figure 4.3: Phylogenetic analysis of iB_05634 (TC014445) and iB_04764 (TC010113) - Tree and image 

created with Geneious version 7.0.  Phylogenetic analysis of the protein sequence showed that the gene 

TC014445 is the single ortholog to Dm-mib and Mm-mib1. Dm-mib2 is derived (A). Phylogenetic sequence 

analysis of TC010113 turned out to be the ortholog of Dm-ser and Mm-jagged. Dm= Drosophila melanogaster; 
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Mm=Mus musculus 

4.2.2 Functional analysis of Tc-mind bomb1 and Tc-Serrate  

Quantitative analysis of 50 cuticles of both Tc-mib1 and Tc-Ser knockdowns in the strain Pig-

19 revealed in a labrum phenotype with 100% penetrance. Mostly, the entire labrum was 

missing (compare arrowheads in Figure 4.4) including all four labrum quartet setae (for 

names of head setae see (Schinko et al., 2008)). The labrum was more frequently deleted 

(strong) in Tc-Ser RNAi animals because in a few cuticles of Tc-mib1 RNAi animals the 

labrum was only reduced (weak) (Table 4.2). In addition, both knockdowns resulted in a 

shortened leg phenotype with 100% penetrance, with fused femur and tibiotarsus and a 

missing trochanter (Figure 4.4B
2
 and C

2
). The leg phenotype after Tc-Ser knockdown was less 

strong. 42% of the analyzed cuticles showed a malformation comparable to Tc-mib1 RNAi 

individuals (Table 4.2). Remnants of the trochanter and less shortening (weak) of the legs 

were observed in 58% of the analyzed Tc-Ser RNAi cuticles. Both RNAi treatments led to a 

malformed antenna. Mostly, one antenna was bent due to a malformation of the junction 

between antennifer and scapus (open arrowheads in Figure 4.4B
3
 and C

3
). Again the antenna 

phenotype in Tc-mib1 RNAi cuticles was more penetrant (Table 4.2). Both cuticle phenotypes 

also showed an irregular abdominal bristle pattern in some animals. In contrast to Tc-mib1 

RNAi, Tc-Ser RNAi resulted in an irregular maxillary palp surface at low frequency. 

Moreover, cuticles after Tc-Ser RNAi led to reduction or loss of tracheal openings with high 

frequency.  

 

 

Phenotype 
Tc-mib1 RNAi 

(penetrance in %) 

Tc-Ser RNAi 

(penetrance in %) 

Labrum affected 100 (84 strong; 16 weak) 100 (96 strong, 4 weak) 

Antennal malformation 82 30 

Legs shortened 100 100 (42 strong; 58 weak) 

Abd. bristle pattern disturbed 22 4 

Maxilla abnormal - 30 

Tracheal openings lost/decreased - 98 
 

Table 4.2: Quantitative analysis of Tc-mib1 and Tc-Ser RNAi phenotypes - Quantitative analysis of 50 

cuticles. The penetrance of each phenotype is given in percent. Tc-mib1 and Tc-Ser RNAi showed a similar 

phenotype with comparable penetrances. Tc-Ser resulted in additional defects of the maxilla and tracheal 

openings. Abd= Abdominal.  
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Figure 4.4: Cuticle phenotypes of Tc-mib1 and Tc-Ser RNAi - (A-A
3
) Wild type cuticles (

1
-
3
 represent higher 

magnification of the cuticle of head, leg and antenna). (B-B
3
) cuticles after Tc-mib1 RNAi. (C-C

3
) Cuticles after 

Tc-Ser knockdown. Anterior is to the left. (A
1
) In wild type cuticles the labrum (lr) was located between the 

antennae. (A
2
) The leg is subdivided in five segments including coxa (cx), trochanter (tr), femur (fe), tibiotarus 

(tt) and claw (cl) (Grossmann et al., 2009). (A
3
) The antenna consists of the antennifer (af), scapus (sc), 

pedicellus (pc), and flagellum (fl) (Toegel et al., 2008). After Tc-mib1 and Tc-Ser RNAi the labrum was 

completely missing (compare arrowheads in A
1
 with B

1
 and C

1
). In addition, in both knockdowns a shortened leg 

phenotype was observed with a decreased or completely missing trochanter. Furthermore, the detected 

shortening of the legs was presumably enhanced to a fusion of femur and tibiotarsus (compare A
2 

with B
2
 and 

C
2
). In some RNAi cuticles, the antenna was bent and the junction between antennifer and scapus was slightly 

malformed (compare A
3 

with black arrowheads in B
3
 and C

3
). 

 

 

In order to see when in embryogenesis the observed defects arise, and if RNAi embryos of Tc-

mib1 and Tc-Ser resulted in different defects, embryos were stained for expression of the 

segment polarity gene Tc-wg. RNAi of both genes resulted in loss of Tc-wg expression in the 

labrum anlagen indicating a role in early development. Since Tc-mib1 was known to be 

required for activity of the Tc-Ser ligand (Le Borgne et al., 2005b) and no obvious difference 

was observed regarding the labrum phenotype, all subsequent experiments were done using 

the Tc-mib1 knockdown.   
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4.2.3 Labrum development is initialized after disruption of Notch signaling 

pathway but fails to grow 

Previous investigations showed that the mutants of the gene Tc-Distal-less led to a complete 

loss of the labrum at cuticular level but that it remained visible as a reduced structure during 

embryogenesis (Beermann et al., 2001). Therefore, the embryonic phenotype of Tc-mib1 

RNAi was analyzed in detail. To estimate the stage at which labrum development is affected, 

RNAi embryos were stained with the membrane marker FM® 1-43. The morphology of these 

embryos was recorded with a confocal microscope and the resulting stacks were used for 3D 

reconstruction. During development the labrum starts to grow out as two buds (arrows in 

Figure 4.5A). Later during development, this two labral buds fused and formed a lobe like 

structure located between the antennae and anterior to the gnathal appendages (arrow in 

Figure 4.5B, E, E
1
) (Posnien et al., 2010). In contrast to the complete loss of the labrum 

observed in the first instar larval cuticle, the initial outgrowth of the labrum anlagen during 

embryogenesis was not disturbed since two distinguishable buds remained visible after Tc-

mib1 RNAi (arrows in Figure 4.5C, D; F). However, a high reduction of the distal portion of 

the labrum was detected (compare arrows in Figure 4.5A with C). Later in development, the 

two labrum buds failed to fuse in RNAi embryos and two small bulb structures were still 

visible between the antennae (arrows in Figure 4.5D and F
1
). In addition, a view of a single 

slice in the middle of the embryo also showed the reduction of labrum tissue (compare arrows 

in Figure 4.5E
2
 with F

2
). Cuticle analysis of sibling embryos confirmed that strong 

phenotypes were analyzed. 

 

 

 

 

 

 

 

 



34 
 

 

 

 

 

 

Figure 4.5: The labrum is reduced but not lost during embryogenesis after Tc-mib1 RNAi - (A, B, E-E
2
) 

Wild type embryos. (C, D, F-F
2
) Tc-mib1 RNAi embryos. (A-F

1
) 3D projections of stacks of FM® 1-43 stained 

embryos. (E
2
and F

2
) Detailed view of the head of the embryos seen on the left. Heads are shown in a different 

angle. (E
2
 and F

2
) Single slices of the respective stack seen on the left; (A-D) Anterior is up; (E and F) anterior is 

left. (A) In wild type embryos the labrum (lr) is initialized as two separated labral buds (arrows). (B, E) Later in 

development the two labral buds fuse and are located between the antennae (ant, asterisk). (C) After knockdown 

of Tc-mib1 the labral bulbs also start as two separated buds but were reduced in size (compare arrows in A, B 

with C, D).  (E
2
, F

2
) The reduction after Tc-mib1 RNAi was also clearly observed looking at the single slice in 

the middle of the embryonic head (compare arrows in E
2
 with F

2
). (F

1
) The labrum anlagen remained as two 

small separated buds between the antennae in Tc-mib1 RNAi embryos (compare arrows in E
1
with F

1
).  
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4.2.4 Notch signaling components are active in developing labrum and leg 

anlagen 

In order to analyze the expression pattern of Tc- mib1 during development in Tribolium in situ 

hybridisation with antisense and sense probes as negative control were performed. Tc- mib1 

was expressed ubiquitously during development. This was in accordance to the data available 

from D-mib1 which was reported to be uniformly distributed in imaginal discs (Le Borgne et 

al., 2005b). 

 

Figure 4.6: Expression of Tc-mib1 - Anterior is to the left. Expression of Tc-mib1 was expressed ubiquitously 

in germ rudiments and older elongating embryos. 

 

Former investigations already demonstrated a localized expression pattern of Tc-Ser in the 

outgrowing labrum anlagen, antenna and in the leg as ring shaped domains, at late elongation 

stages. So far the role of Tc-Ser during embryogenesis was described in the context of Notch 

signaling analysis in Tc-hairy stripe formation in the growth zone (Aranda, 2006) and with 

respect to joint formation in the legs (Beermann et al., 2004). The phenotype analysis of Tc-

Ser revealed that the labrum was missing and legs shortened. Therefore, I determined the 

expression of Tc-Ser at different developmental stages throughout development with focus on 

the labrum and leg domains. The first expression domain of Tc-Ser was observed already in 

early elongating stages as two lines along the anterior fold located in the anterior median 

region (AMR) (Kittelmann, 2012) (arrowheads in Figure 4.7A
1
 and B

1
). This is in accordance 

with expression analysis of Serrate in Drosophila where expression also first occurred in the 

clypeolabrum (Fleming et al., 1990). During germ band elongation Tc-Ser expanded to form a 

broad domain marking the two labral buds which remained visible throughout development 

(arrowheads in Figure 4.7C
1
-F

1
). In addition, a second less intense domain arose in the head 

presumably marking cells of the nervous system (open arrowhead in Figure 4.7C
1
). Later a 

ring domain appeared in the outgrowing legs (asterisk in Figure 4.7D
2
) as well as expression 

started in the antenna and gnathal appendages (arrows in Figure 4.7D). During leg growth 

four additional rings of expression were observed marking the positions of the future leg 

joints (compare Figure 4.7E
2 

and F
2
) (Beermann et al., 2004).  
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Figure 4.7: Tc-Serrate expression in Tribolium during development - (A-F) Embryos are oriented anterior to 

the left. (A
1
-F

1
 and D

2
-F

2
) Detailed view of head and legs of the embryos seen on the left anterior to the top. 

(A,B) The expression of Tc-Ser started during early germ band elongation in the AMR (arrowheads in A
1
, B

1
). 

(C-F) As elongation proceeded, this domain expanded to a broad domain in the growing labrum anlagen (C
1
-

F
1
). (C) Additionally, a domain arose presumably marking cells of the nervous system (open arrowhead inC

1
). 

(D-F) After outgrow was initialized expression was also found in the appendages (arrows in D) and in a ring 

shaped domain in the leg anlagen (asterisk in D
2
 and E

2
). (F) In elongated legs five distinguishable ring domains 

were observed (F
2
). Legs in E

2
 and F

2
 are marked with dotted lines. 

 

4.2.5 Notch signaling is not acting upstream of the AMR network  

The labrum develops as part of the anterior median region (AMR) (Hunnekuhl and Akam, 

2014; Kittelmann et al., 2013). In order to test a possible role of Notch signaling in the gene 

regulatory network of the AMR, staining of genes which are expressed in this region and the 

surrounding tissue of different stages of development was performed after Tc-mib1 RNAi. 

Expression pattern of Tc-cnc; Tc-croc, Tc-chx and Tc-six4 have been previously described in 
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Tribolium (Economou and Telford, 2009; Koniszewski, 2011; Posnien et al., 2011a) and will 

only briefly be mentioned with focus of the expression domains in the head. During early 

elongation, expression of Tc-cnc seemed not to be affected after Tc-mib1 knockdown, since 

two small domains remained expressed along the anterior fold of the embryo inside the AMR 

(compare Figure 4.8A with B). During development Tc-cnc expression expanded to a broad 

domain marking the labrum anlagen. After RNAi no clear difference could be detected in 

comparison to the wild type embryos (compare Figure4.8A
1
 with B

1
). Only at later stages, 

when labrum and appendages already started to grow out, the Tc-cnc labrum expression 

domain was reduced in sice of the tip of the labrum in RNAi embryos (compare arrowheads 

in Figure 4.8A
2
 and B

2
). Nevertheless expression in the proximal part was not affected 

including the half ring around the posterior rim of the stomodaeum (asterisk in Figure 4.8A
2
 

and B
2
). Morphological analysis of the embryonic phenotype after loss of Tc-mib1 function 

revealed that the labrum is initially formed but reduced in the most distal part of the buds. 

Therefore, this slight alteration of Tc-cnc expression was likely due to the loss of the labrum 

structure rather than due to direct regulation by Notch signaling.  

No alteration of Tc-croc expression was observed in Tc-mib1 RNAi embryos throughout 

development. Both in wild type and in RNAi embryos a single domain of expression was 

detected in early germ rudiments (Figure 4.8C, D). Even the Tc-croc domain in the proximal 

labrum and the domain which arose in the ocular region were not affected (compare Figure 

4.8C
1-2

 with D
1-2

).  
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Figure 4.8: Early AMR patterning is not affected by Tc-mib1 RNAi – All embryos anterior to the top. (A 

and C) Wild type embryos stained for Tc-cnc and Tc-croc. (B and D) Corresponding expression in Tc-mib1 

RNAi embryos at approximately the same age. (A) During early elongation Tc-cnc expression was observed in 

the AMR and expanded later in the outgrowing labrum (A
1
). (A

2
) At later stages an additional line of expression 

was observed surrounding the stomodeum posterior (asterisk). (B-B
1
) After Tc-mib1 RNAi these expression 

patterns were not affected during early elongating, but they were slightly reduced at later stages (B
2
). The distal 

portion of labrum expression was reduced (see black arrowhead in A
2
 and B

2
) but unchanged in the proximal 

portion (asterisk in A
2
 and B

2
). (C) In wild type embryos Tc-croc expression started as a broad domain in germ 

rudiments. (C
1
 and C

2
) During elongation the expression became restricted to the proximal part of the labrum 

and the stomodaeum. (D-D
2
) After knockdown no alteration was found (compare embryos in D with C). 

 

Tc-chx is expressed in a domain in the proximal part of the labrum and a stronger expression 

is marking neurogenic tissue lateral to the labrum (Figure 4.9A, C) (Koniszewski, 2011; 

Posnien et al., 2011b). In older elongating embryos an additional small domain in the ocular 

region was observed (arrowhead in Figure 4.9C).  After Tc-mib1 RNAi no alteration in size 

and intensity in all domains could be detected (compare Figure 4.9 A, C with B, D). However, 

the expression of the neurogenic tissue was slightly shifted (compare dotted lines in Figure 

4.9C with D). As with Tc-cnc and Tc-croc, the difference between untreated and treated 

animals was more likely due to the reduction of the labrum after the knockdown.  
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A similar effect was found for the expression domain of Tc-six4 in Tc-mib1 RNAi embryos. 

In the head, Tc-six4 is expressed in the anterior rim region of the head lobes in wild type 

embryos (Figure 4.9E) (Posnien et al., 2011a). Tc-Six 4 expression after knockdown showed 

only a slight alteration of the orientation of the expression domain but no change in size and 

intensity (compare dotted lines in Figure 4.9C with D). This might be due to the loss of the 

distal portion of labrum tissue, which causes a slight movement of the surrounding head 

lobes. 

In summary, the early aspects of expression of AMR marker genes were not affected. Later, 

slight alterations in the expression patterns in the AMR were observed. These alterations were 

changes in orientations of the expression domains rather than domain size or intensity. These 

results indicated that Notch signaling in the labrum is not involved in early AMR pattering.  

 

 

Figure 4.9: Mild shifts of expression domains of Tc-chx and Tc-six4 in Tc-mib1 RNAi - Anterior is to the 

left. Embryos in one row are approximately of the same age. (A, C, E) wild type embryos. (B, D; F) RNAi 

embryos. (A-D) The expression of Tc-chx was not affected after Tc-mib1 RNAi regarding to the insensitivity of 
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expression. Both domains in the labrum and the surrounding tissue were observed (compare A; C with B; D). 

(C, D) In older elongating embryos the expression of Tc-chx marking the neurogenic tissue seems to be slightly 

shifted apart (compare marked region in C with D). (E, F) The intensity of Tc-six4 expression was also not 

affected after Tc-mib1 RNAi but showed a shift inwards (compare angle of dotted lines in E with F).  

 

4.2.6 Role of Notch signaling in the appendage regulatory gene network 

It was shown previously that the genetic network of appendage and labrum patterning is 

probably conserved since expression domains arose in similar domains both in labrum and leg 

anlagen. However, loss of function analysis revealed a difference between appendages and the 

labrum. For instance, the labrum need neither Tc-hedgehog nor Tc-wingless signals to become 

initiated (Posnien et al., 2009a). In order to test to what extent the labrum malformation after 

disruption of Notch signaling was due to disturbance of the appendage regulatory network, 

expression dynamics of appendage marker genes in relation to Tc-Ser expression and their 

alteration after Tc-mib1 RNAi was analyzed.  

 

4.2.7 Expression dynamics of proximal-distal patterning genes in labrum 

and legs 

Besides Tc-Ser, expression in both labrum and trunk appendages has already been known for 

other proximal-distal patterning including the genes Tc-dpp, Tc-wg, Tc-Dll and Tc-dac. In 

order to analyse the dynamics of expression in the labrum was initiated in comparison to these 

genes staining was performed in embryos approximately at the same time point of 

development. The expression of Tc-dpp, Tc-wg, Tc-Dll and Tc-dac was described in detail 

before (Beermann et al., 2001; Nagy and Carroll, 1994; Prpic et al., 2001; Sanchez-Salazar et 

al., 1996) and will only be mentioned in the analyzed context. Tc-Ser was the first gene to be 

expressed in the AMR shortly before expression of Tc-dpp and Tc-Dll was detectable 

(compare arrowheads in Figure 4.10A with B
1
 and C

1
). Later, during germ band elongation, 

two stripes of Tc-wg expression were observed (arrowhead in Figure 4.10D
2
). When the legs 

started to grow out, Tc-dac became expressed in the labrum (arrowhead in Figure 4.10E
3
). In 

addition, it became apparent that only Tc-Ser and Tc-Dll were expressed inside the head 

before additional expression in the posterior part of the embryo was initiated (Figure 4.10A 

and C
1
). This order of expression indicated that Tc-Ser may act upstream in labrum 

development compared to the other genes. In contrast to the early expression in the AMR, 

expression of Tc-Ser in the trunk appendages started when the legs grow out (open arrowhead 
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in Figure 4.10A
3
). This was shortly after the expression domains of Tc-dpp, Tc-Dll and Tc-

dac were already initialized in the trunk appendages (compare Figure 4.10A
2
 with open 

arrowheads in B
2
-D

2
). 

 

 

Figure 4.10: Initialization of labrum expression in proximal-distal patterning genes - Each column 

represents the expression domain of the same gene during development. Embryos in a row show approximately 

the same developmental time point.  All embryos are oriented with the anterior to the top.  (A, D and E) 

Embryos were stained with TSA reaction (Dylight 550). (B and C ) Embryos stained with NBT/BCIP reaction. 

(A-A
1
) Expression of Tc-Ser was visible inside the AMR along the anterior fold in two separated domains 

marking the labrum anlagen during early germ band elongation. (A
2
-A

3
) As development proceeded this 

expression expanded within the labral buds. (B
1
, C

1
) Slightly later, during elongation also the expression of Tc-

dpp and Tc-dll started inside the AMR along the anterior fold (arrowheads in B
1
 and C

1
). (D

2
) When appendage 

outgrow was initialized, Tc-wg expression was observed in a small domain marking the labrum anlagen. (E
3
) 

Later, also Tc-dac expression domains arise in the labrum as two weak spots in a dorso-lateral position. (B
2
-D

2
) 

Expression domains of Tc-dpp, Tc-Dll and Tc-wg in the trunk appendages is initialized before leg appendages 

are morphological visible.  (A
3
 and E

3
) Shortly later, expression of Tc-Ser and Tc-dac is visible in the trunk 

appendages (open arrowheads). 
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In order to determine the expression of Tc-Ser both in labrum and leg anlagen relative to the 

expression of the proximo-distal patterning genes, double stainings were performed. In the 

labrum the most distal part of Tc-Ser expression probably overlapped the most proximal 

domains of Tc-dpp and Tc-Dll expression (Figure 4.11A
3
, A

4 
and B

3
, B

4
). In contrast, no 

overlap was found in the outgrowing legs since Tc-Dll and Tc-dpp were separated from the 

more proximal ring domain of Tc-Ser expression at this time of development where only one 

of the five ring domains was present (Figure 4.11A
3
, A

5 
and B

3
, B

5
). In the labrum no overlap 

was observed regarding to Tc-wg expression (Figure 4.11C
3
, C

4
) but probably in the leg 

(Figure 4.11C
3
, C

5
). Tc-dac expression occurred as a half-circle in the distal portion of the 

labrum but due to its more lateral domain it did not overlap with Tc-Ser expression (Figure 

4.11D
3
, D

4
)  However, it did share a small region of expression in the leg in a weaker ring 

domain located proximal of the outgrowing limb (Figure 4.11D
3
, D

5
).  
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Figure 4.11: Double staining of Tc-Ser with Tc-dpp, Tc-Dll, Tc-wg and Tc-dac – (A-D) Anterior is to the left. 

Staining of elongating embryos shortly after limb outgrow. (A
3
-D

3
) overlay of embryos seen in A

1
-D

1
 and A

2
-D

3
. 

(A
4
-D

4
, A

5
-D

5
) Detailed view of marked regions seen in A

3
-D

3
. (A, B) Tc-dpp and Tc-dll expression in black 

(NBT/BCIP); Tc-Ser in red (TSA-Dylight550). (C, D) Tc-Ser in black (NBT/BCIP); Tc-wg and Tc- dac 

expression in red (TSA-Dylight550). (E) Schema of proximal-distal patterning genes in the trunk appendages 

and the labrum. (A) In the labrum Tc-dpp expression overlaps in his most proximal part with Tc-Ser (A
4
). No 

overlapping region was observed in the legs where Tc-dpp expression was localized much more distal (A
5
). (B) 

The expression domain of Tc-Dll in the growing limbs was observed in the most distal portion. In the labrum it 

was presumably overlapping with the distal part of Tc-Ser expression (B
4
) but not in the legs B

5
). (C

2
, C

3
) Tc-wg 

was expressed in a proximal-distal stripe both in the labrum and the leg anlagen, but expression only overlapped 

with Tc-Ser in the labrum (C
4
). (D

2
, D

3
) Tc-dac was detected in two separated ring domains.  In the proximal 

part a weakly and in the distal part of the leg a more intense domain was observed. The Tc-Ser expression 

domain was located in between these two rings overlapping with the proximal one (D
5
). No overlap was 

observed in the labrum where Tc-dac is expressed in a dorsal-lateral position (D
4
). (E) In the outgrowing trunk 

appendages the expression Tc-Dll overlaps with Tc-wg and the distal Tc-dac expression (Posnien et al., 2009a; 

Prpic et al., 2001). In addition, Tc-Ser presumably shared the expression domain with Tc-wg and the proximal 

Tc-dac expression ring. In the labrum Tc-Dll overlaps with Tc-wg, Tc-dac (Posnien et al., 2009a; Prpic et al., 

2001) and Tc-Ser. Furthermore, Tc-Ser expression in the labrum overlaps with Tc-dpp.  
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4.2.8 Changes in expression after Tc-mib1 RNAi 

Knockdown of Tc-mib1 and Tc-Ser RNAi resulted in a strong phenotype in the legs and the 

labrum. In addition, Tc-Ser expression was localized in these structures. In order to test 

whether both phenotypes originated due to a similar disturbance of the appendage regulatory 

network, the expression of the appendage marker genes in Tc-mib1 RNAi embryos was 

investigated. Effects on Tc-wg expression were investigated after Tc-mib1 (Figure 4.12) and 

Tc-Ser RNAi (not shown). In wild type embryos, Tc-wg expression was observed in a 

longitudinal stripe both during the outgrowth of the labrum and the legs (Figure 4.12A and C.) 

In Tc-mib1 RNAi embryos the expression domain of Tc-wg in the labrum was lost (compare 

arrowheads in Figure 4.12A-D). In contrast, the expression domain in the leg anlagen showed 

no alteration between wild type and knockdown embryos (compare open arrowheads in 

Figure 16A-D). Likewise, after knockdown of Tc-Ser the same alteration of Tc-wg expression 

was observed in the labrum domain but not the legs (not shown). In wild type embryos a weak 

domain of Tc-dac expression is observed in a half circle in the labrum shortly after outgrowth 

of the labral buds and a corresponding ring domain in the outgrowing legs (Figure 4.12E). 

Later, also a second ring domain of Tc-dac expression was detected in the legs (Figure 

4.12G). After Tc-mib1 RNAi, the expression domain was deleted in the labrum anlagen 

similar to the loss of Tc-wg expression (compare arrowheads in Figure 4.12 E-F). In the legs 

no alteration could be detected in both ring expression domains of Tc-dac (compare open 

arrowheads in Figure 4.12E-F).  
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Figure 4.12: Tc-mib1 RNAi affects expression of Tc-wg and Tc-dac in the labrum - Anterior is to the left. 

Embryos in one column are of the same age. (A,C,E,G) Wild type embryos; (B; D; F, H) Embryos after Tc-

mib1 knockdown. (B, D) Tc-wg expression was completely lost in the labrum after Tc-mib1 RNAi (compare 

black arrowheads in A, C with B, D). In the legs, the Tc-wg expression was not altered (compare open 

arrowhead in A, C with B, D). (F, H) The expression domain of Tc-dac was not detectable in the labrum after 

knockdown of Tc-mib1 (compare arrowheads in E,G with F,H) but expression in the legs remained unaffected 

(compare open arrowheads in E, G with F, H). (lr= labrum, t1= throraric segment 1). 

 

In early elongating embryos the expression of Tc-Dll starts in the procephalic head region, the 

antennal and maxillary segments. At the same time, expression also occurred in two small 

domains along the anterior fold marking the future labral buds (Figure 4.13A). While 

expression domains in the gnathal and thoracic segments were added one by one the, 

expression domain marking the two labral buds increased (Figure 4.13C). Later during 

development, the expression domain in the labrum was localized in the most distal portion of 

the labral bud (Figure 4.13E, G). After knockdown of Tc-mib1 a weak domain of Tc-Dll 

expression remained in the labrum but the expression level was strongly decreased in 
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comparison to the wild type throughout development (compare arrowheads in Figure 4.13A, 

C, E and G with B, D, F, H). Alterations of expression domains of the gnathal and trunk 

appendages were not observed between wild type and RNAi embryos (compare open 

arrowheads in Figure 4.13A, C, E and G with B, D, F, and H). 

 

 

Figure 4.13: Expression of Tc-Dll was affected after Tc-mib1 RNAi in the labrum throughout 

development - Anterior to the left. Embryos in one row are of similar stages of development. (A, C, E, G) 

Expression of Tc-Dll in wild type embryos. (B, D, F, H) Expression of Tc-Dll in RNAi embryos. (A) In wild 

type Tc-Dll expression was first detected inside the AMR along the anterior fold (arrowhead). (B) After Tc-

mib1 RNAi expression in the AMR was decreased (compare arrowheads in A with B). (C, E) As development 

proceeded expression was added in the segments comprising antennae, gnathal and thoracic appendages (t1). 

Expression in the labrum (lr) was now as much intense as in the other segments. (D, F) The expression domain 

in the labrum was decreased (compare arrowheads in C, E with D, F) but not in the trunk appendages (compare 

open arrowheads in C, E with D, F). (G) In older elongating embryos the domain of Tc-Dll in the labrum ranged 

from the most distal tip with an intense expression to a weaker expression domain in the posterior part of the 

labrum. (H) After Tc-mib1 RNAi expression of Tc-Dll is decreased in the labrum (compare arrowheads G with 
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H). In contrast, the expression of Tc-Dll in the trunnk appendages was not affected after Tc-mib1 RNAi. 

(compare open arrowheads in G with H).  

 

In contrast to Tc-wg and Tc-dac, Tc-Dll expression was not deleted but strongly reduced in 

Tc-mib1 RNAi embryos. In order to test the possibility that Notch signaling and Tc-Dll 

interact with each other, Tc-Dll was knocked down and Tc-Ser staining was performed. The 

mutant phenotype of Tc-Dll was reproduced with knockdown (Beermann et al., 2001, 8). 

RNAi resulted in the reduction of distal structures of gnathal and trunk appendages and the 

antennae were completely missing (Figure 4.14B). In addition, Tc-Dll RNAi cuticles lacked 

almost the complete labrum tissue but the bristle of the clypeus remained (compare A with B). 

In RNAi embryos Tc-Ser expression was reduced in size (compare arrowheads Figure 18C, E, 

G with D, F, H). However, the labrum tissue in Tc-Dll RNAi embryos was also reduced in 

size (compare arrows in Figure 18E with F). 

 

 

Figure 4.14: Tc-Ser expression reduced in the labrum in Tc-Dll RNAi - (A) Wild type cuticle of Tribolium 

first instar larvae (B) Cuticle after Tc-Dll RNAi (B). Anterior is to the left. (C, E, G) Wild type embryos. (D, F, 

H) RNAi embryos (D). (C-H) Embryos stained with Tc-Ser (TSA-Dylight550). Anterior to the top. Embryos in 

one row are of similar age. (B) After Tc-Dll RNAi the antennae was completely missing and the distal portion 

of trunk and gnathal appendages except for the mandible was reduced. Additionally, the labrum tissue was 

highly reduced but the bristle marking the clypeus was still visible in most cuticles (compare arrowhead in A 

with B). (D, F, H) Expression of Tc-Ser in RNAi embryos was decreased in the distal portion of the labrum 

(compare arrowheads in C, E, G, with D, F, H). (F) In RNAi embryos a reduction of the labral buds was 

observed (compare arrows in E with F).  
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In wild type embryos Tc-dpp is expressed in the labrum anlagen (arrows in Figure 4.15A, C, 

and E) and the distal part of the outgrowing legs (open arrowheads in Figure 4.15A, C, and 

E). After Tc-mib1 RNAi the expression in the labrum was reduced in advanced elongating 

embryos (compare arrows in Figure 19). Shortly after outgrowth of the labrum, expression of 

Tc-dpp was only slightly affected in the most distal portion (compare arrowheads in Figure 

4.15A, C, and E with B, D, and F). The proximal weak expression of Tc-dpp in the labrum 

was unaffected throughout development (compare arrows in Figure 4.15 A, C, E with B, D, 

and F). Like with Tc- Dll, no alteration was detected in the expression of Tc-dpp in the legs 

after Tc-mib1 RNAi (open arrowheads in Figure 4.15). However, this slight alteration of Tc-

dpp expression might be due to the loss of the labrum structure. Cuticle analysis of sibling 

embryos confirmed that strong phenotypes were analyzed. 

 

 

Figure 4.15: Expression of Tc-dpp was slightly affected in the labrum after Tc-mib1 RNAi – (A, C, E) Wild 

type embryos stained with Tc-dpp. (B, D, F) Tc-mib1 RNAi embryos. (A) While labrum and appendages started 

to grow out, a localized expression of Tc-dpp was detected in the distal portion (arrowhead) and the most 
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proximal part of the labrum (arrow). (C, E) During elongation expression increased with a more intense domain 

in the distal ventral portion (arrowhead) and a weaker proximal domain (arrow). (B, D) In RNAi embryos, 

shortly after limb growth initialization, the distal part of one labral bud showed a reduction in expression of Tc-

dpp (compare black arrowheads in A, C with B, D). (F) At later stages, the domain was reduced in size but was 

still detectable after Tc-mib1 RNAi (black arrowhead in F). (A-F) After Tc-mib1 RNAi no difference in the 

expression domain of Tc-dpp In the outgrowing legs in comparison to the wild type was observed (compare 

open arrowheads). 

 

4.2.9 Notch signaling regulates cell proliferation during early labrum 

formation 

The role of Notch signaling to induce cell proliferation is well studied in Drosophila imaginal 

discs (Go et al., 1998). In addition, also in the spider Cupiennius salei cell proliferation via 

Notch signaling is necessary for the formation of the legs (Prpic and Damen, 2009). In order 

to investigate whether the reduced labrum anlagen in Tc-mib1 RNAi embryos was due to 

reduced cell proliferation during outgrowth of the labrum, I etablished the EdU cell 

proliferation assay in Tribolium castaneum embryos via injection. With this method, detection 

of DNA synthesis in proliferating cells is visualized by a fluorescent azide in a Cu(I)-

catalyzed [3 + 2] cycloaddition reaction (Rostovtsev et al., 2002; Tornøe et al., 2002) after 

incorporation of EdU during the S-phase of the cell cycle (Salic and Mitchison, 2008). An 

increased number of proliferating cells in the labrum was visualized in 19-20 h old wild type 

embryos after three hours of EdU treatment (arrowheads in Figure 4.16A, C). After Tc-mib1 

RNAi, proliferation was reduced in the labrum anlagen (compare arrowheads in Figure 4.16 

A-D) but not in the outgrowing legs at this time point of development (open arrowheads in 

Figure 4.16A-D). For quantification, all proliferating cells marked by EdU incorporation were 

counted in 22 wild type and 38 Tc-mib1 RNAi embryos. Three different areas in the embryo 

were selected for counting: The first area compromised both outgrowing labral buds (blue 

area in Figure 4.16A). In the cuticle phenotype of Tc-mib1 RNAi treated animals no clear 

reduction of the head size was detected. Moreover, the embryonic phenotype showed no 

alteration in the head lobe. Therefore, the head lobe was selected as negative control. Only the 

anterior half of the head lobes was chosen since most RNAi embryos showed slight 

alterations of the orientation of the head lobes due to the reduction of labrum tissue (grey in 

Figure 4.16A). Therefore, no consistent separation between head lobe and antenna anlagen 

could be done in the posterior part. The third area of interest was the first thoracic leg pair 

(purple in Figure 4.16A). Counts of the left and right side of each embryo were summed up 

and the mean values were used for the determination of alteration in the number of 

proliferating cells between wild type and Tc-mib1 RNAi embryos (see section 3.6.9 for 
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statistical analysis). No significant difference could be detected in the counted area of the 

head lobe (p-value = 0.1102) after knockdown (Figure 4.16E). In addition, no significant 

alteration was detected in the outgrowing leg pair (p-value = 0.2342) at this time point of 

development (Figure 4.16E). In contrast, the outgrowing labrum showed a significant 

reduction in proliferating cells after Tc-mib1 RNAi (p-value = 3.695e
-07

) (Figure 4.16E).  
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Figure 4.16: RNAi of Tc-mib1 leads to reduction of cell proliferation in the labrum - (A-D) Anterior is left. 

Embryos in one row are approximately the same age. Boxes mark the areas of the head and the thoracic 

segments which were analyzed. (A, C) Wild type embryos after EdU incorporation. (B, D) EdU incorporation 

after Tc-mib1 RNAi. (A) Colored regions represent the different counted regions used in wild type and Tc-mib1 

RNAi embryos. The grey colored area marked the upper half of the head lobes, blue the two labral buds and 

purple the first leg pair. (E) Statistical analyses of counted cells in wild type and RNAi embryos. (A, C) In wild 

type embryos, proliferation of cells was concentrated in the labrum (arrowheads) and the outgrowing thoracic 
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appendages (open arrowheads). (B, D) After Tc-mib1 RNAi, proliferation was reduced in the labrum (compare 

arrowheads in A, C with B, D) but unaffected in the legs (compare open arrowheads in A, C with B, D). (E) 

Statistical analysis revealed that the number of proliferating cells in the head lobes (p-value = 0.2342) and the 

first leg pair (p-value = 0.1102) showed no significant alteration between wild type and RNAi treated embryos. 

In contrast, after knockdown of Tc-mib1 the cell proliferation in the labrum was significantly reduced (p-value 

= 3.695e
-07

). lr=labrum; t1=thoracic segment 1; hl= head lobe 

 

4.2.10 Tissue loss of labrum after knockdown not due to increased cell death 

The regulation of tissue-size underlies not only the process of cell division but also a 

controlled cell death during development. In order to test if enhanced cell death played a role, 

apoptotic cells were detected by cleaved Drosophila Dcp-1 antibody staining in wild type and 

Tc-mib1 RNAi embryo. During early elongation both wild type embryos and dsRNA treated 

embryos showed a similar amount of dying cells in a diffuse pattern throughout the whole 

embryonic tissue (compare Figure 4.17A and B). Shortly after outgrowth of labral buds and 

appendages enhanced cell death was observed in the head and the midline in the developing 

nervous system of the embryo (arrows in Figure 4.17C, D). After Tc-mib1 RNAi no obvious 

alteration of the labrum and leg could be detected at this time point of development (compare 

Figure 4.17C with D).  

 

 

 

 

Figure 4.17: Cell death was 

not enhanced after Tc-

mib1 RNAi - Anterior to the 

left. A, C) Wild type 

embryos showed a number 

of dying cells throughout 

development. (C) In older 

embryos a higher number of 

apoptosis especially in the 

developing nervous system 

was detected. (B, D) After 

RNAi no enhancement of 

cell death could be detected 

in the labrum and the legs at 

both time point of 

development. 
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4.3 Involvement of the GATA transcription factor Tc-grain in labrum 

formation 

4.3.1 Identification of iB_03552 as Tc-grain (Tc-grn) 

AUGUSTUS gene predictions revealed that the dsRNA fragment with the ibeetle ID number 

iB_03352 targets a gene with the number TC002315. BLAST analysis of the protein sequence 

against non-redundant protein sequences of Drosophila melanogaster identified the gene 

grain as the closest fly homolog which was also confirmed by phylogenetic analysis using the 

neighbour joining method (Figure 4.18). The annotation ID of this gene was CG9656-PB with 

the Flybase ID FBpp0289317. In Drosophila this gene is also known as GATAc, dGatac and 

gra and encodes a GATA transcription factor. In the following sections TC002315 will be 

referred to as Tc-grain (Tc-grn), respectively.  

 

Figure 4.18: Tc-grain is targeted by iB_03552 (TC002315) - Tree and image created with Geneious version 

7.0.  Phylogenetic analysis of the protein sequence showed that the gene TC002315 is the single ortholog to 

Dm-grain. The paralog found in Tribolium (TC010407) clustered with Dm-pannier. Dm= Drosophila 

melanogaster; Mm=Mus musculus. 

 

During rescreen analysis, two non-overlapping fragments did not reproduce the annotated 

phenotype but resulted in lethality and sterility. However, re-injection of the original iBeetle 

fragment into the strain pig-19 reproduced the results. Therefore, the two NOFs were 

analyzed using E-RNAi on the website of the German Cancer Research Center (DKFZ) 

(http://www.dkfz.de/signaling/e-rnai3/) (Horn and Boutros, 2010).   Both fragments targeted 
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other genes (fragment 1: TC011229, TC005779; fragment 2: TC011229, TC005779, 

TC002343, TC002364 and TC011219). The gene FK506-bp1 was found to be the closest fly 

homolog to TC005779.  In Drosophila, phenotypic data described high lethality for this gene 

(flybase).  In order to exclude possible off targets a third fragment was synthesized by E-

RNAi which did not target any other gene and was non-overlapping with the iBeetle 

fragment. This non-overlapping fragment reproduced all phenotypes found in the screen in 

both pig-19 and SB strains. 

 

4.3.2 Functional analysis of Tc-grain  

Quantitative analysis of the cuticle phenotype showed that Tc-grn RNAi resulted in a 

decreased size of the head capsule with 100% penetrance (Figure 4.19B
1
). In addition, the 

labrum was completely missing including all bristles of the labrum quartet with 100% 

penetrance.  In all Tc-grn RNAi cuticles the tracheal openings were reduced or missing 

(compare marked area in Figure 4.19A with B). The abdominal bristle pattern was also 

disturbed at lower frequency (74 %, not shown). In the Tribolium first instar larvae distinct 

regions of the head are marked with a constant pattern of different setae and bristles (Schinko 

et al., 2008).  Quantitative analysis in Tc-grn RNAi animals revealed that the pattern of setae 

and bristles was disturbed. In wild type larvae a row of four sensillae (bell row) is found at 

dorsal lateral position near the junction separating the head from the trunk. After Tc-grn 

RNAi the number of sensillae was only reduced with 15 % penetrance (Figure 4.20B) but the 

arrangement of these sensillae was disturbed in 88% (compare yellow and orange dots in 

Figure 4.19A with B). Dorsal to the bell row the vertex triplet is located compromising 

posterior, anterior and ventral setae shaped as a triangle (purple triangle in Figure 4.19A
2
). 

After Tc-grn knockdown mostly the anterior seta was missing (81%, Figure 4.20B). Since 

RNAi animals lacked labrum tissue no setae of the labrum quartet were found (Figure 4.20B).  
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Figure 4.19: Cuticle phenotype after Tc-grn RNAi - Anterior is to the left in (A-A
1
 and B-B

1
). (A

2
, B

2
) Dorsal 

view of cuticle heads. (A) Wildtype cuticles. (B) Cuticles of Tc-grn RNAi animals. The groups of setae are 

indicated by colored lines (purple triangle= vertex triplet; red and three yellow dots= bell row; blue quadar= 

labrum quartet; red dots= vertex triplet bristle). (B) In Tc-grn RNAi cuticles most of the tracheal openings were 

lost (compare detailed view of marked area in A with B). (B
1
) In addition, the size of the head capsule was 

highly reduced and the labrum (lr) tissue was completely missing (arrowhead in B
1
). (B

2
) In the head, the bristle 

pattern of the labrum quartet and bristles in the region of the vertex triplet were lost (compare red dots in A
2
 

with B
2
). The vertex triplet was shifted and the anterior setae were often missing (compare purple triangle in A

2 

with lines in B
2
). The number of bell row bristles was not reduced but shifted (compare A

2
 with B

2
). 

 

Moreover, quantitative analysis of the head bristle pattern revealed that the triplet bristle of 

the vertex triplet was highly reduced in numbers and the antenna basis bristle could not be 

found in 91% of the analyzed cuticles (compare red dots in Figure 4.19A
2
 with B

2
). In wild 

type, the lateral portion of the head is marked by three setae called the gena triplet. In RNAi 

cuticles, mostly the posterior seta was missing (Figure 4.20B). Furthermore, in wild type the 

so called maxilla escort is located below to the gena triplet marking the bulge of the maxilla 

segment with three setae. After RNAi all three setae were mostly lost (Figure 4.20B). The 

dorsal ridge marking the junction between head and trunk was not affected after Tc-grn 

RNAi.  

Taken together, not only the labrum including the dorsal portion of the cuticle head but also 

tissue of the lateral portion was missing in Tc-grn RNAi cuticles (Figure 4.20A
3
). 
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Figure 4.20: Quantitative analysis of the head bristle pattern after Tc-grn RNAi – (A
1
-A

3
)

 
Schematic 

overview of the Tribolium head with colored bristle pattern (picture taken from (Schinko et al., 2008)). (A
3
) the 

red area marks the deletion of labrum tissue. Grey areas marking presumptive deletions of head cuticle after Tc-

grn RNAi. (B) Quantitative analysis of the head bristle pattern after Tc-grn RNAi. The percentage of cuticles 

that lacked the respective bristle or setae is given. Bars were colored according to the color code seen in (A). 

After Tc-grn RNAi, the bell row and the dorsal ridge were mostly unaffected in the number of bristle and setae. 

In contrast, the vertex triplet was disturbed. In around 80 % of all cuticles the most anterior seta was missing. 

Additionally, the bristle triplet and the antenna basis bristle were lost in ~ 90% of analyzed bristle pattern. 

Furthermore, the posterior seta of the gena triplet was missing in over 80 % percent. All cuticles of Tc-grn RNAi 

lacked the labrum quartet and in over 90% the maxilla escort was missing.
 

 

4.3.3 Embryonic phenotype of Tc-grn 

In order to see if Tc-grn RNAi showed a similar phenotype in the cuticle and embryos, 

nuclear staining with Hoechst was investigated in RNAi embryos. Surprisingly, analysis of 

Tc-mib1 RNAi embryos already showed that the labrum appeared to form properly initially 

but stopped to increase in size over time. While in RNAi cuticles the labrum was completely 
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lost, in embryos the labrum tissue was still visible. Interestingly, in contrast to the wild type 

situation these two labral buds were fused precociously (compare arrowheads in Figure 4.21 

A with B).  

 

 

Figure 4.21: The labral buds are fused precociously in Tc-grn RNAi embryos - Anterior is to the left. 

Nuclei stained with Hoechst. (A) Wild type embryo. (B) Tc-grn RNAi embryo. (B) During embryonic 

development the labrum was present after Tc-grn RNAi. (A,B) In contrast to the wild type labral buds, which 

were still separated at this time of development (arrowheads in A), RNAi embryos showed already a fusion at 

the distal tip of the labrum anlagen (compare arrowheads in A with B). 
 

 

4.3.4 Tc-grn is expressed in the head throughout development 

Analysis of grain in Drosophila showed that expression occurred during early gastrulation in 

the procephalic head region and later during embryonic development in the developing 

posterior spiracles, central nervous system, midgut primordia, the optic lobes and the tip of 

clypeolabrum (Lin et al., 1995). Since expression of Tc-grain was not described in Tribolium 

so far, in situ staining was performed. Expression of Tc-grn was already detected in early 

germ rudiments marking serosa cells in the anterior portion (open arrowhead in Figure 

4.22A). In late germ rudiments three distinct expression domains were detected; the first still 

visible in serosa cells (open arrowhead in Figure 4.22B), the second marking the head lobes 

(arrow in Figure 4.22B) anterior-lateral and the third localized at the middle plate as a patch 

of cells (Figure 4.22B). This ventral patch of stained cells expanded during early elongation 

of the embryos (Figure 4.22C, E) and vanished at later stages of development (Figure 4.22F). 

While expression of a few serosa cells was still visible in early elongating embryos, 
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expression of Tc-grn was not only observed in the head lobes (arrow in Figure 4.22D), but 

also in the amnion   (asterisk in Figure 4.22D). During early elongation the expression domain 

of Tc-grn became more restricted to the most anterior portion of the head lobes (Figure 4.22E) 

and was now also visible along the anterior fold (arrowheads in Figure 4.22E). Later during 

development, the expression in the head lobes split into three separated domains (Figure 

4.22F). One marking the ocular region of the embryo (circle in Figure 4.22F), the second 

became located lateral to the labrum presumably marking neurogenic tissue (cross in Figure 

4.22F) and inside of the outgrowing labrum (arrowhead in Figure 4.22F). In addition, an 

additional domain arose posterior to the ocular domain as a line of cells lateral to the antennae 

(Figure 4.22F). Both expression domains of the ocular region and the one surrounding the 

antennae were stable during later development (Figure 4.22G). While the labral buds started 

to grow and were clearly visible as two bulbs, the expression of Tc-grn split up. A cap of 

expression was visible in the most distal portion of the labrum anlagen located lateral of the 

labrum bulb (arrowhead in Figure 4.22G
1
). Beyond that, a domain in the proximal part of the 

labrum arose (arrowhead in Figure 4.22G
1
) and Tc-grn was also detected at the ventral tissue 

connecting the head lobes (Figure 4.22G
2
).  
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Figure 4.22: Expression of Tc-grain during development - (A-C and E-F) anterior is to the left. (D) Detailed 

view of one head lobe (approximately the same age as in C). (E
1
-G

2
) Detailed view of the head of the embryos 

seen on the left with anterior to the top. (E
1
 and G

2
) Ventral view of the heads. (A) Expression of Tc-grn started 

already in early germ rudiments marking serosa cells (open arrowhead). (B) Later, expression was still visible in 

serosa cells (open arrowhead), but also in the head lobes (arrow) and in a small domain ventral in the middle 

plate marking mesodermal cells. (C, D) In early germ bands the expressions of the two lateral domains were still 

located in the anterior tip of the head lobes and the domain of the middle plate got more expanded. In addition, 
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expressed also occurred in the amnion (asterisk). (E) Later in development, the expression domains in the head 

lobes were most anterior (neurogentic tissue marked with a cross, ocular region is marked with a circle) and 

fused along the anterior fold which marks the labrum anlagen and stomodaeum (arrowhead). Furthermore, the 

expression of Tc-grn now started also in the trunk segments. (F) As elongation proceeded, the ventral expression 

in the middle of the head started to vanish and the domains in the anterior head lobe split. Now a few cells 

marking the anterior tip of the outgrowing labrum anlangen (arrowhead) showed Tc-grain expression.  In the 

ocular region (circle) of the head lobes, a defined area of Tc-grn expressing cells became visible. Posterior to the 

ocular domain a small line of expressing cells was detected surrounding the antennae. (G) In older elongating 

embryos the expression of the trunk, which started as patches (see E and F), became connected along two lateral 

domains. In the head a precise domain of the Tc-grn expression was observed in the ocular region (circle). 

(G
1
)The expression in the labrum (arrowhead) was visible as a cap concentrated at the most distal lateral portion. 

In addition, a less intense domain was also found more proximal of the labral buds. (G
2
) Expression of Tc-grn 

was also observed at the connection between both head lobes. 

 

4.3.5 Tc-grn is not an upstream regulator of the AMR network  

In order to test if Tc-grn acted upstream of the gene regulatory network of the AMR, staining 

of genes which were expressed inside this region and the surrounding tissue was performed in 

Tc-grn RNAi embryos. The expression domains of Tc-cnc, Tc-croc and Tc-six4 were not 

affected after Tc-grn RNAi (compare Figure 4.23A-C with E-H). Both expression domains 

inside the labrum and the surrounding tissue, marking the neurogenic tissue, were detected 

after Tc-grn RNAi. Nevertheless, a slight alteration was observed because the expression 

domain in the neurogenic tissue was shifted towards anterior (arrows in Figure 4.23D, I). The 

proximal expression domain inside the labrum was shifted towards anterior, too (dotted lines 

in Figure 4.23D, I).  

However, this alteration was more likely due to morphological alterations of the labrum and 

head lobe tissue. In summary, no evidence for Tc-grn acting upstream of these genes was 

found.  
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Figure 4.23: Expression of AMR marker genes not affected after Tc-grn RNAi - Anterior to the top. (A -D) 

Wild type embryos stained for Tc-cnc, Tc-croc, Tc-six4, Tc-chx. (E-I) Corresponding expression in Tc-mib1 

RNAi embryos of similar age. (A-C and E-H) Pictures provided by Tobias Vollmer. (E-H) Expression of Tc-cnc, 

Tc-croc and Tc-six4 was not affected after Tc-grn RNAi (compare A-C with E-H). (I) The expression domains 

Tc-chx in the labrum and neurogenic tissue of was not affected after Tc-grn RNAi. However, the expression in 

the neurogenic tissue and the labrum was slightly shifted towards anterior after Tc-grn RNAi (compare arrows 

and dotted lines in D with I). 

 

4.3.6 Tc-grn is involved in the appendage regulatory gene network  

In situ stainings of Tc-grn RNAi embryos with AMR marker genes revealed that this gene 

was not acting upstream of this regulatory network. The appendage regulatory network is 

known to be involved in gnathal and trunk appendage and in labrum formation (Posnien et al., 

2009a). In order to test if Tc-grn was involved in this regulatory network, in situ staining of 

Tc-wg, Tc-dac and Tc-Dll were performed in RNAi embryos. After knockdown of Tc-grn the 

expression domain of Tc-wg and Tc-dac was completely lost in the labrum (compare 

arrowheads in Figure 4.24A, C with B, D). Beyond that the expression level of Tc-Dll was 

decreased in the labrum after Tc-grn RNAi (compare arrowheads in Figure 4.24E with F). 

This results indicated that Tc-grn might act upstream of the appendage regulatory network in 

the labrum.  
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Figure 4.24: Expression of proximal- distal patterning genes in the labrum affected after Tc-grn 

RNAi - Anterior is to the left. Embryos in one column are of the same age. (A, C, E) Wild type embryos; (B, 

D, F) Tc-grn RNAi embryos. (B, D)Tc-wg and Tc-dac expression in the labrum (lr) was completely lost after 

Tc-grn RNAi (compare arrowheads in A, C  with B, D). (F) After Tc-grn RNAi, expression of Tc-Dll in the 

labrum was decreased (compare arrowheads in E with F).  
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5 Discussion 

5.1 Low number of new head development genes detected in the iBeetle 

screen  

The data collected during this work supports the notion that the iBeetle screen is an efficient 

approach to identify genes with novel functions (Schmitt-Engel et al. accepted). Using an 

unbiased screen, I was able to indentify five genes with novel functions in Tribolium in 

comparison to Drosophila knowledge. Two genes were not required for head patterning, but 

showed new functions in Tribolium, which could be interesting for other projects: The 

ortholog of Drosophila Dscam is known to be a cell adhesion gene with extensive alternative 

splicing. In Drosophila, Dscam is not only involved in many aspects of neurogenesis, but also 

in immunity (Schmucker and Chen, 2009; Schmucker et al., 2000; Watson et al., 2005). 

During my work, I identified an additional role in sensory organ formation in Tribolium. The 

ortholog of the Drosophila chromatin ATPase kismet (a trithorax group protein) is involved in 

activating Hox genes throughout development. Loss of function mutants phenocopy aspects 

of the Scr, UBX and AbdB mutants (Daubresse et al., 1999; Srinivasan et al., 2005; Srinivasan 

et al., 2008). In my work, I identified an additional function in dorsal closure of the trunk.  

Interestingly, three candidates showed evidence to be involved in the formation of the labrum. 

Two genes were identified as the orthologs of Drosophila mib1 and Serrate. Both genes are 

known to be components of the Notch signaling pathway. While Notch signaling contributes 

to a large number of different developmental processes (Andersson et al., 2011; Artavanis-

Tsakonas et al., 1999) a role in labrum formation was not reported so far. Furthermore, the 

ortholog of Drosophila grain turned out to have a major role in labrum formation, while in 

Drosophila it is mostly connected to neurogenesis (Garces and Thor, 2006; Zarin et al., 2012; 

Zarin et al., 2014) and for shaping the adult legs and the larval posterior spiracles via cell 

rearrangement. Although head phenotypes were also found in Drosophila, they were not 

studied (Brown and Castelli-Gair Hombría, 2000).  

However, the number of identified genes contributing to head development was unexpectedly 

low (Schwirz, 2014). One explanation could be that most of the genes required for head 

development are already known. Additionally, the first screening phase of the iBeetle screen 

biased genes with a high expression. Likewise, some genes could be missed in this first phase 

and will be found in the next round. However, the unbiased screen in Tribolium at least 
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complemented the candidate gene approach which already revealed that the regulatory 

network in the head differs between Tribolium and Drosophila. (Bucher et al., 2005; Fu et al., 

2012; Kittelmann et al., 2013; Posnien et al., 2011b; Schinko et al., 2008; Schoppmeier and 

Schröder, 2005; Schröder, 2003; Schröder et al., 2000) 

 

5.2 Notch signaling is involved in labrum and leg formation 

During this work, knockdown of the two components of the Notch signaling pathway (Tc-

mib1 and Tc-Ser) resulted in severe defects of the labrum and the trunk appendages. 

Therefore, these data suggested that the Notch signaling pathway in Tribolium has a major 

role both in labrum and leg formation.  

5.2.1 Conserved function of Notch signaling in arthropod leg development 

As expected, Notch signaling plays a similar role in Tribolium leg patterning as in other 

arthropods. In Drosophila not only the location and number of joints in the adult legs, but also 

the growth of the segments in the leg is controlled by Notch signaling by a combinatorial 

activation by Ser and Dl. The Notch pathway is acting downstream of a gene cascade that 

patterns the leg (see Figure 2.2) (Bishop et al., 1999; Celis et al., 1998; Lecuit and Cohen, 

1997; Rauskolb, 2001; Rauskolb and Irvine, 1999). Within arthropods, the function of Notch 

signaling in the legs is highly conserved. Expression and functional analysis of the Notch 

signaling components in the spider Cupiennius salei (Chelicerate, which is the most basally 

branching arthropod) and Gryllus bimaculatus (cricket), an intermediate-germ band embryo, 

showed that Notch signaling mediates leg formation in a similar way to the fly Drosophila 

(Mito et al., 2011; Prpic and Damen, 2009). Previously, a putative role for Notch mediated leg 

formation via the ligand Delta was shown for Tribolium (Aranda, 2006). Additionally, it had 

been known that the ligand Tc-Ser is expressed in ring shaped domains marking the leg joints 

during late embryogenesis (Aranda et al., 2008; Beermann et al., 2004). This expression 

pattern is comparable to the expression pattern of Ser in the legs of both spiders and flies 

(Bishop et al., 1999; Prpic and Damen, 2009).  

The data presented in my work indicated that the Notch pathway plays a similar role in 

Tribolium leg formation. The disruption of Notch signaling via the ligand Tc-Ser led to 

shortened legs, where the joints were missing and tibiotarsus and femur were completely 

fused. However, down regulation of the ubiquitin ligase Tc-mib1 resulted in stronger 

phenotypes in the legs than Tc-Ser RNAi individuals (see Table 4.2).  One explanation for a 
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weaker malformation of the legs of Tc-Ser RNAi cuticles is that like in Drosophila, a 

combination of Tc-Ser and Tc-Dl signals may be necessary to induce Notch signaling for leg 

development. The need of both ligands to induce Notch signaling in the leg seems to be 

conserved in Tribolium, because leg phenotypes are also reported in Tc-Dl RNAi background 

(Aranda, 2006). Moreover, during metamorphosis, the knockdown of Notch or either one of 

its ligands results in a failure of appendage joint development indicating that Notch signaling 

in the legs is activated by both ligands (Angelini et al., 2012a).  

In Drosophila, Notch signaling is controlled by the leg gap genes Dll and dac (Rauskolb, 

2001). The expression of both genes is dependent on a combination of wg and dpp signaling 

(Lecuit and Cohen, 1997; Rauskolb and Irvine, 1999). Likewise, analysis in the spider showed 

that Notch signaling is presumably acting downstream of these genes and that the leg gap 

genes are not dependent on Notch signaling (Prpic and Damen, 2009). In this work, I could 

demonstrate that the same is true in Tribolium. 

 

5.2.2 A novel role of Notch signaling in labrum formation 

The results of my work demonstrated that activation of Notch signaling via the ligand Tc-Ser 

is required for proper formation of the labrum during embryogenesis. In contrast, Tc-Dl seems 

not to be involved in this process during embryogenesis, since knockdown of Tc-Dl induces 

malformation of the gnathal appendages, but specific labrum defects are not reported (Aranda, 

2006). Recently, studies of metamorphic labral axis patterning in Tribolium showed that 

depletion of Tc-N induces loss of the distal sclerite at low frequency. Depletion of Tc-N or Tc-

Dl also causes defects in the patterning of the epipharyngeal sensillum located at the ventral 

side of the labrum, while Tc-Ser is mostly connected to ventral appendage development 

(Angelini et al., 2012a; Smith et al., 2014). The role of Notch in embryonic labrum formation 

has not been studied in Drosophila. While head defects of Ser knockout animals were 

mentioned before, functional analysis concentrated mostly on the gnathal appendages where 

Ser is required for normal maxilla mouth hook morphogenesis (Wiellette and McGinnis, 

1999).  

The labrum phenotype of Tc-mib1 and Tc-Ser was similar to the one of Tc-six3 and Tc-cnc, 

which are genes of the AMR patterning network (Kittelmann et al., 2013; Posnien et al., 

2009a; Posnien et al., 2011b). Additionally, Tc-Ser expression started already in early 

elongating embryos in the AMR. In Drosophila, Ser expression starts at late stage 10 embryos 

localized in the clypeolabrum (Fleming et al., 1990; Thomas et al., 1991) slightly later at a 
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similar stage than Tribolium, indicating that it could be involved similarly later in embryonic 

labrum formation. However, Notch does not appear to act in pattern formation of the AMR. 

FM® 1-43 staining of Tc-mib1 RNAi embryos demonstrated that the initial outgrowth of the 

labral anlagen was not affected. These results suggest that Notch signaling in labrum 

formation plays a later role. Second, analysis of early pattering genes including Tc-cnc and 

Tc-croc in Tc-mib1 RNAi background showed no evidence for Tc-Ser acting upstream of 

these genes. Neverthess, it would be interesting to see if Tc-Ser could be a downstream target 

of these genes by analyzing the expression of Tc-Ser in Tc-cnc and Tc-croc RNAi 

background. 

Although not involved in early patterning of the AMR, I was able to show that the growth of 

the labrum during embryogenesis is mediated by Notch signaling due to its control of cell 

proliferation. After loss of Tc-mib1 function cell proliferation was significantly reduced in the 

labrum. A function for Notch signaling in coordinating cell proliferation events was also 

reported earlier in Drosophila and vertebrates in a different developmental context 

(Andersson et al., 2011; Estella et al., 2015; Hori et al., 2013). In Drosophila, mediation of 

cell proliferation upon Notch signaling is best reported in the eye (Baonza and Freeman, 

2005; Chao et al., 2004; Domínguez and de Celis, 1998; Kenyon et al., 2003; Kumar and 

Moses, 2001; Reynolds-Kenneally and Mlodzik, 2005) and wing imaginal discs (de Celis and 

García-Bellido, 1994; Giraldez and Cohen, 2003; Go et al., 1998; Johnston and Edgar, 1998). 

Furthermore, it is also assumed to be necessary for the growth of the leg (Bishop et al., 1999; 

Celis et al., 1998; Rauskolb and Irvine, 1999).  

However, the initial outgrowth of the labrum was not dependent on Notch signaling, although 

Tc-Ser is already active in the embryo before the outgrowth is morphologically visible. In 

addition, cell proliferation was reduced but not abolished in RNAi animals. This could be 

explained in a situation where cell proliferation is also induced by other genes or by technical 

issues, e.g. that the knockdown is not complete. The most known upstream regulator of AMR 

Tc-six3 was already proposed to play a role in proliferation in Tribolium (Kittelmann, 2012), 

because in  Xenopus and zebrafish six3 is also connected to proliferation events (Del Bene et 

al., 2004; Gestri et al., 2005). Another potential candidate which could contribute in this 

growth event is the gene Tc-Dll. Tc-Dll expression starts before outgrowth of the limbs and 

might contribute in growth control. To test this hypothesis cell proliferation assays should 

also be performed in Tc-Dll RNAi embryos. A cross-talk between Notch and other signaling 

pathways to regulate cell proliferation is also known in the Drosophila and vertebrates in 
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some detail (Hurlbut et al., 2007). For example, Notch and Wg act synergistically to promote 

tissue growth in the wing imaginal disc of Drosophila (Giraldez and Cohen, 2003).  

5.2.3 Notch signaling has a distinct role in the appendage regulatory 

network in the labrum  

The evolution of the labrum is still enigmatic and debated. While some authors state that the 

labrum is a true appendage (Haas et al., 2001a; Kimm and Prpic, 2006; Popadíc et al., 1998), 

other argue that the labrum cannot be seen as a true homolog of the trunk appendages because 

of its divergent position, albeit it shows structural similarities (Posnien et al., 2009a). One 

explanation for the similarity of non homologous structures is based on co-option of gene 

regulatory networks (Moczek and Rose, 2009; Posnien et al., 2009a; Smith et al., 2014). If the 

labrum originated from appendages of a serial homolog of trunk segments, a similar function 

of genes in the patterning network of the trunk and labrum would be expected. However, I 

showed with respect to Notch signaling that the network is quite different, since Notch 

signaling acts earlier and more upstream of the leg pattering network.  

Recent studies already demonstrated that a number of genes, which are involved in the 

appendage patterning network, show a similar expression in the labrum anlagen. This includes 

the genes Tc-homeothorax, Tc-BarH, Tc-bowl2, Tc-buttonhead, Tc-Dll, Tc-wg, Tc- dac and 

Tc-dpp (Beermann et al., 2001; Nagy and Carroll, 1994; Posnien et al., 2009a; Prpic et al., 

2001; Schinko et al., 2008; van der Zee et al., 2006). Indeed, Tc-Ser is also expressed in a 

similar pattern in the labrum and the trunk appendages at late stages (Aranda et al., 2008). 

However, I showed that Tc-Ser expression starts much earlier in the AMR than in the legs. 

This data suggests that Tc-Ser has an earlier function in labrum development than in leg 

formation. In contrast to that, the expression domains of Tc-Dll, Tc-dac and Tc-wg in the 

labrum arise later in development.   

It was predicted previously that a comparatively severe phenotype in the labrum in contrast to 

other appendages after Tc-Dll knockdown is an indication for a different role of Tc-Dll in the 

labrum (Schoppmeier and Damen, 2001; Smith et al., 2014). This was also true for the 

deletion of Tc-Ser and Tc-mib1 in Tribolium, where the labrum was deleted while the legs 

were just shortened. 

In this work, I also showed that disruption of the Notch signaling pathway abolished the 

expression domains of Tc-Dac and Tc-wg. This was different in comparison to the leg where 

Tc-Dac and Tc-wg were unaffected upon Tc-mib1 deletion. In addition, my data demonstrated 

that disruption of Notch signaling at least reduced the expression of Tc-Dll in the labrum and 
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vice versa. This suggests that the Notch signaling pathway in the labrum is acting upstream in 

this network, while it is presumably acting downstream of the appendage patterning genes in 

the leg (Prpic and Damen, 2009; Rauskolb and Irvine, 1999). Moreover, the reduction of Tc-

Dll in Tc-mib1 RNAi background and vice versa indicated that these genes are interacting 

with each other in the most distal portion of the labrum but not the legs. In summary, the 

position of Notch signaling in the patterning network is different between legs and labrum. 

However, it is difficult to determine whether the loss or reduction of the expression after 

knockdown of Tc-mib1 is due to direct activation. Another explanation could be that the 

expression of these genes is reduced or lost due to missing tissue. Heat shock mediated 

ectopic expression of Tc-Ser could shed light into this question. Additionally, ectopic 

expression of a cell cycle regulator like CycE could be an alternative to rescue the reduced 

cell proliferation phenotype in Tc-mib1 RNAi animals. In Drosophila, Notch signaling was 

thought to act upstream of the Ey/Pax6 pathway and thereby promoting eye field identity 

(Kumar and Moses, 2001; Kurata et al., 2000). However, a distinct study demonstrated that 

loss of Notch function does not affect the selector gene expression. Here they could partially 

rescue both reduced growth of the eye disc and expression of Eyes absent (Eya) by ectopic 

expression of the cell cycle regulator Cyclin-E (CycE) which is  a G1-S phase cyclin. Thus, 

the reduction in Eya expression is only a secondary consequence of reduced cell proliferation 

(Kenyon et al., 2003).  

Another difference between labrum and leg is the timing of proliferation. I was able to show 

that Notch mediated cell proliferation is required for the proper outgrowth of the labrum. In 

contrast, a comparable early role for Notch in controlling cell proliferation at the beginning of 

the leg outgrowth excluded in this work. 

However, my data did not exclude an involvement during later development. Indeed, it is 

likely that later in development Notch mediated cell proliferation might be important. The 

shortened leg phenotype after knockdown of Tc-mib1 and Tc-Ser already indicated that not 

only joint formation but also growth of the appendages is disturbed.  

This specific leg phenotype is similar to the one of other insects. In Drosophila, growth 

defects observed in Notch mutant legs are predicted to be a consequence of disturbed cell 

proliferation, but confirming data is still missing (Bishop et al., 1999; Rauskolb, 2001; 

Rauskolb and Irvine, 1999). Nevertheless, analysis of Notch and its ligand Ser in the spider 

cupiennius already demonstrated that knockdown of both genes results in reduced cell 

proliferation in the leg (Prpic and Damen, 2009). To test if Notch signaling plays also a role in 



Discussion 

 

  69   

regulation of cell proliferation in the leg, EdU proliferation assays should be performed at 

later stages of development in Tribolium. 

Former investigations suggested another fundamental difference in the activation of Tc-Dll in 

the labrum than in ventral appendages. Here, It was shown that Tc-Dll expression depends on 

Tc-hh and Tc- wg function in all appendages but the labrum (Posnien et al., 2009a).  

In summary, the function of Notch signaling in the appendage regulatory network and the 

labrum in Tribolium differs in four aspects. First, expression of Tc-Ser started in the AMR 

before it was detectable in the appendages. Second, the labrum phenotype after Tc-mib1 and 

Tc-Ser RNAi is stronger in the labrum than it is in the legs. Third, Notch signaling in the 

labrum is acting more upstream of the appendage patterning network, while it is presumably 

acting downstream in the leg. Finally, Notch signaling led to reduction in proliferating cells 

during outgrowth of the labrum, while it plays no role in the initial outgrowth of the legs. 

Based on my results as well as on previous data, the gene regulatory network in the labrum 

reveals some major differences in the use of Notch signaling in the leg and the labrum (Figure 

5.1).  

 

Figure 5.1: Comparison of the gene regulatory networks in the leg and the labrum of Tribolium - Arrows 

indicate activation. Asterisk indicate direct or indirect activation (A) Tc-wg function in leg allocation and distal 

and ventral leg patterning (Grossmann et al., 2009). Tc-wg regulation requires Tc-hh activation in the leg, 

because over-activation of hh signaling leads to over-expression of Tc-wg and down regulation of Tc-hh abolish 

expression of Tc-wg in the legs (Farzana and Brown, 2008; Posnien et al., 2009a). Additionally, expression of 
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Tc-Dll is depended upon Tc-hh and Tc-wg function (Posnien et al., 2009a). The role of Tc-dpp in leg 

segmentation is still unclear (indicated by questionmark) (Ober and Jockusch, 2006; van der Zee et al., 2006). 

Tc-Dll in turn is a positive regulator of Tc-dac (Prpic et al., 2001). Downstream of the patterning network, Notch 

signaling induces joint formation and growth of the leg (Angelini et al., 2012b; this work). (B) In contrast to the 

leg, expression of Tc-Dll in the labrum is independent of Tc-hh and Tc-wg function (Posnien et al., 2009a). A 

major role for Notch signaling is the induction of cell proliferation for early labrum growth. The Notch signaling 

pathway acts either directly or indirectly upstream of Tc-dac and Tc-wg (asterisk). In addition, Notch signaling 

and Tc-Dll might interact with each other.  

 

5.3 Further Outlook 

Whether neurogenesis is affected in the head after disruption of Notch signaling was not 

tested in this work. In Drosophila, the ubiquitin ligase neur is a fly neurogenic gene, which 

activates Notch signaling via the ligand Dl. Ser and mib1 are only weakly neurogenic in 

Drosophila (Daskalaki et al., 2011; Lai and Rubin, 2001; Lai et al., 2005; Le Borgne et al., 

2005b; Lehmann et al., 1983).  However, mib is a neurogenic gene in vertebrates and was 

originally characterized in zebrafish for its role in lateral inhibition (Itoh et al., 2003). To test 

a neurogenic role in Tribolium Tc-mib1 RNAi could be performed in a Tribolium brain 

imaging line (Koniszewski, 2011; Posnien et al., 2011b). Furthermore, in situ hybridization 

with early markers of neural specification could be done in Tc-mib1 RNAi embryos, e.g. Tc- 

achaete–scute  or Tc-snail (Kux et al., 2013; Wheeler et al., 2003).  

 

5.4 The role of the GATA transcription factor Tc-grn in labrum formation 

in Tribolium 

During this work, Tc-grn was identified as a transcription factor gene contributing to labrum 

formation. I showed that expression of Tc-grn in Tribolium starts in the extraembryonic 

membranes in a few serosa cells and in the amnion. This expression could be connected to the 

head phenotype observed after Tc-grn RNAi. It was suggested previously, that the shape of 

the anterior head depends on morphogenetic movements including both the germ band and the 

extraembryonic tissues. While the serosa is probably not important for the proper 

development of the insect head (Kittelmann, 2012; van der Zee et al., 2005), amnion 

development and formation of the labrum are suggested to be connected. Knockdown of the 

gene Tc-tailup (tup) which is also expressed in the extraembryonic membranes, leads to 

deletion of the labrum. Moreover, the knockdown of members of these ush-group genes 
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including tup leads to defects in head formation and dorsal closure of the scuttle fly Megaselia 

(Rafiqi et al., 2010). Thus, the role of Tc-grn in amnion development should be considered in 

future experiments. 

As in Drosophila, Tc-grn expression is found in the procephalon in Tribolium where it marks 

the developing headlobes and in three separated domains, i.e. the labrum, the surrounding 

neurogenic tissue and in the ocular region in the head during later development (Lin et al., 

1995). Loss of Tc-grn function led to a strong head phenotype where the labrum was missing 

and the head capsule was reduced in size. An abnormal head skeleton in grn mutants was also 

reported in Drosophila but detailed analyses were not performed (Brown and Castelli-Gair 

Hombría, 2000). Interestingly, my results indicated that Tc-grn was required rather for the 

proper morphogenetic movement of the labrum than pattern formation by regulating the 

expression of head patterning genes. Indeed, the expression of genes required for early AMR 

and labrum development (Tc-cnc and Tc-croc) were not affected in Tc-grn RNAi animals. 

However, this should be confirmed by staining further genes, which are also known to be 

required during early AMR and labrum development, in Tc-grn RNAi background. This 

includes, e.g. the genes six3 and Tc-tup (Kittelmann et al., 2013; Posnien et al., 2009a; 

Posnien et al., 2011b).  

With respect to the appendage pattering network, my data gave evidence that Tc-grn could 

have a later role during development of the labrum by the activation of Tc-wg, Tc-dac and Tc-

Dll. In Tc-grn RNAi animals the expression domains of Tc-wg and Tc-dac were abolished and 

the level of Tc-Dll expression reduced. In the appendages, these genes are known to be 

involved in the patterning process but the function during labrum development is still 

enigmatic. It remains to be studied, whether Tc-grn is activating these genes or whether the 

change in cell proliferation/morphogenesis secondarily lead to changes in expression patterns. 

Moreover, the observed loss of the labrum in Tc-grn RNAi first instar cuticles was not due to 

a lack of labrum anlagen during embryogenesis, which was shown by DAPI stainings. 

Apparently, the labrum anlagen were initiated normally and grew out as two separated labral 

buds. Interestingly, the labral buds fused precociously, e.g. during elongation of the 

appendages and not after the end of germ band retraction (Kimm and Prpic, 2006). 

Additionally, an abnormal rotation of the buds was observed. Tc-chx is normally expressed in 

the base of the labrum and in surrounding neurogenic tissue. In Tc-grn RNAi background, 

both expression domains of Tc-chx were not affected in expression level but slightly shifted 

towards anterior. Thus, the results of my work suggest that Tc-grn could be required for 

proper cell movement during morphogenesis of the labrum. During morphogenesis, cells 
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undergo different strategies, including cell movements by migration or rearrangement, shape, 

death and proliferation (Fristrom, 1988).   

Indeed, head formation in Tribolium is accompanied by complex morphogenetic movements. 

The embryonic condensation is suggested to be accompanied by a variety of morphogenetic 

processes including cell rearrangement (Benton et al., 2013). Furthermore, the proper 

formation of the AMR requires the backfolding of anterior tissues. Here, initially anterior 

cells are displaced towards posterior (Kittelmann et al., 2013). Major morphogenetic 

movements are also required to transform the two dimensional head anlagen into a three 

dimensional head capsule (Posnien et al., 2010). It was demonstrated previously, that the loss 

of structures during embryogenesis (e.g. the loss of the stomodeum after Tc-croc RNAi) 

causes aberrant morphogenetic tissue movements which lead to misplacement of the labrum 

(Kittelmann et al., 2013). Additionally, cell movements are predicted to be an explanation for 

changes of the expression domains from the anterior tip of the germ band to a more posterior 

positions during later stages (Kittelmann, 2012).  

An involvement of Tc-grn in such process is not unlikely, as a major role of grn in the 

morphogenetic mechanisms is already known for Drosophila. Here, grn is required for cell 

rearrangements of the posterior spiracles and the leg imaginal disc. The external structure of 

the spiracle called stigmatophore develops by cell rearrangement leading to protrusion of the 

structure. In grn mutant embryos the structure does not protrude because cells remaining in 

their position. On the other hand, ectopic expression of grn causes invagination of abdominal 

segments and the unsegmented telson (Brown and Castelli-Gair Hombría, 2000). In addition, 

these authors assumed that the changed shape of the legs in grn mutant cells could be linked 

to an alteration of cell rearrangement in the primordium.  

In order to test the role of Tc-grn in morphogenesis of the labrum several tests could be 

performed. First, the morphology of Tc-grn RNAi embryos could be studied by FM® 1-43 

staining throughout development. This could show when the tissue of the labrum is lost. This 

could be combined with fluorescent staining of Tc-chx or Tc-six3 in combination with FM® 

1-43 and DAPI. To further analyze the role of Tc-grn in labrum development, in vivo imaging 

experiments should be carried out both in wildtype and Tc-grn RNAi embryos. In the 

zebrafish in vivo imaging by scanned light sheet microscopy already gave comprehensive 

insights into rearrangement, division and migration of cells (Keller et al., 2008). In Tribolium 

live imaging was also already used successfully to record different cell and tissue dynamics 

during embryonic development (Benton et al., 2013; Kittelmann, 2012; Panfilio et al., 2013; 

Strobl and Stelzer, 2014). Additionally, ectopic expression could help to get a better insight 
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into the function of Tc-grn in morphogenesis of the head. In Drosophila ectopic grn 

expression leads to defects in head involution (Brown and Castelli-Gair Hombría, 2000). In 

order to see if the labrum phenotype of Tc-grn RNAi could be also explained by aberrant cell 

proliferation or cell death, EdU proliferation assays and cleaved Drosophila Dcp-1 antibody 

staining should be performed, respectively.  
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7 Appendix 

7.1 Primer list  

Table 7.1: Primer list- The name of the gene, the name of the primer and primer sequence are indicated. 

Gene Primer Sequence 

TC006255 1021_f_1 CAAGCGAAAGTGTGCAAAAC 

  1021_r_1 TACTGCCCATACCTTGCATC 

  1021_f_2 GTGTTTGCAAGCAAGCGAAAGTGT 

  1021_r_2 ATAGGAAGGGATGATCGGCT 

  1021_f1 GCAGATGTGTACAAGGAAATC 

  1021_r1 GAAGTAAAGGGCGTTTATGA 

  1021_f2 GCCCAACTGGAACAGGTCTA 

  1021_r2 ACCTCGGGCGAAACAACT 

TC010758 1725_f1 ACGAAGTTGTCAGAACGAGTA 

  1725_r1 GACTGGAGCAAGCTTCTG 

  1725_f2 AGTCGTCTGGAATCCTAATTG 

  1725_r2 CAGTGATAGTGATCGTTTTGC 

TC005877 951_f1 ACCACAAGGGCCGTAATC 

  951_r2 GACGCCTTTGGCCTTAAC 

  951_f2 CACGGAAGTAGACAGTAAGC 

  951_r2 GAGCTGACTTGAGTTTCG 

TC003368 561_f1 GACTGAACTAGTGCTCAGCTCA 

  561_r2 CGAACATGAACGTGTCAATC 

  561_f2 GCGGTAATCGACAACATC 

  561_r2 CATGCCTATGCTGGAGTC 

TC003442 3557_f1 CAGGGCATGAACCAGTCTG 

  3557_r1 GTAACCTCGCCTGGTCAATTC 

  3557_f2 GACGAAATACACCCAGAGTTG 

  3557_r2 CGGTCTCCACTAGCCCTATC 

TC010938 1766_f1 CGGTTTCAGTCAATGCGA 

  1766_r1 CGTGTAATCGGGGATTTTAATC 

  1766_f2 CTAGCGATGAAACTTCTGGACTA 

  1766_r2 GACCCGTAAGGACCAATTCTA 

TC012475 5247_f1 CACGAGGAAGAGCCGATA 
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  5247_r1 CGTAGCAAACTGGCGTTAC 

  5247_f2 GACGTGATCTTGGTCACTTAC 

  5247_r2 CGCCACAGACATTAGAATG 

TC016377 02582_cds_F1 GTAGTTGTGGAAATTCCTGA 

  02582_cds_R1 GCTATGTCTTGGGCAGTA 

TC012539 05264_cds_F3 TCGTTTGTGTCCGATCATGT 

  05264_cds_R3 CCATCATTCGTGTGAATTGC 

TC014275 02268_cds_F3 CGGAAGAACACGGAGATG 

  02268_cds_R3 CCAGATAATGCCTGACGACT 

TC014445 05634_cds_F1 TAGGCACCGTCCGTAACTTC 

 
05634_cds_R1 TTTGCTAGCCACTTTGGTGA 

TC004781 756_f1 GACGATGATGCGGTTGAGT 

  756_r2 CGGCTCCTGGATGTCTCTGTA 

  756_f2 CGAACAGTTCAGTCGTAATC 

  756_r2 CTGAATTCGTGCTAGATTGA 

TC014911 2350_f1 ACGACGATTGCGACGACT 

  2350_r1 GCGATCCCGCCTACTGTA 

  2350_f2 GTACACGAAGCGGTACGA 

  2350_r2 ACTAGCGACTTTACCGTCAGT 

TC002315 nof2_grn_fwd TGGAGATGACGAACGAACGAGTCT 

  nof2_grn_rev ATAGCCAAGGGTGGAGGG 

 

7.2 Non-overlapping fragments synthesized by Eupheria 

Table 7.2 - Primer for non-overlapping fragments synthesized by Eupheria 

Gene NOF Primer left Primer right 

TC006711 2 CGCCCTCTGGAGACAAATAG GTTTTGATCGCTTCCTCCTG 

TC014445 2 CAACACGACCTGGACCTACA TCCAGCAACATCTTCACGAC 

TC014275 2 CCTCGGCTACTCAAACCAAC GTTGTTGGGGGCCATATTC 

TC006291 2 TGACAGTGGGGTGTTTTCAA CTTCCTCCAAGTCCCATCCT 

TC012539 2 GTTTTGGGTTACCGCAGCTA CCACACAGCAACTTCTCCAA 

TC003063 3 TGTTAGGTCAGCGTTTGCTC ATGCCAGAGCTGCAGTAGGT 

 
2 GGACGGAACGCTGAGTTATG CTCGTTGTGGAGGTCGATTT 

TC016377 2 TGGTAATTCCAAGGGGTTTG CTTGTTTCATGGGCCTGTTT 

 

7.3 Number of proliferating cells in wild type and Tc-mib1 RNAi Embryos 

Table 7.3: Numbers of proliferating cells per embryo - Cells were counted in three different areas on both 

sides of each embryo (see Figure 4.16A). 

Treatment Head lobe left Head lobe right  Labrum left Labrum right Leg left Leg right 
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WT 10 1 98 62 11 24 

WT 12 7 84 80 35 29 

WT 9 12 69 105 124 202 

WT 18 17 58 70 157 131 

WT 29 15 100 92 122 93 

WT 24 2 75 127 135 218 

WT 13 13 101 113 127 164 

WT 20 6 119 106 117 59 

WT 15 12 77 95 75 72 

WT 22 9 105 96 140 112 

WT 11 17 117 93 43 65 

WT 26 29 88 84 178 162 

WT 4 6 84 69 95 36 

WT 27 25 66 57 112 115 

WT 19 42 95 59 140 126 

WT 9 13 78 65 15 55 

WT 17 20 102 132 105 111 

WT 14 8 44 27 40 10 

WT 17 9 81 92 213 128 

WT 27 11 81 52 168 196 

WT 1 3 74 59 45 49 

WT 9 18 41 55 109 111 

mib1_RNAi 23 22 73 83 103 103 

mib1_RNAi 1 5 12 21 63 66 

mib1_RNAi 10 12 25 25 105 77 

mib1_RNAi 27 9 66 54 91 100 

mib1_RNAi 0 0 37 37 111 137 

mib1_RNAi 21 11 47 16 101 89 

mib1_RNAi 32 15 61 43 92 105 

mib1_RNAi 10 13 63 68 132 124 

mib1_RNAi 27 22 90 75 158 125 

mib1_RNAi 12 12 62 64 130 121 

mib1_RNAi 24 17 45 46 146 147 

mib1_RNAi 0 5 70 51 37 45 

mib1_RNAi 21 23 25 64 98 140 

mib1_RNAi 2 0 44 44 203 213 

mib1_RNAi 22 13 85 74 212 182 

mib1_RNAi 18 37 88 82 152 143 

mib1_RNAi 9 6 32 37 80 101 

mib1_RNAi 21 20 71 32 132 118 

mib1_RNAi 5 18 75 84 123 158 

mib1_RNAi 18 32 67 75 87 117 

mib1_RNAi 42 59 72 77 111 105 

mib1_RNAi 1 2 70 40 100 113 

mib1_RNAi 10 3 30 30 137 122 

mib1_RNAi 23 17 61 59 130 126 
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mib1_RNAi 3 0 29 72 127 122 

mib1_RNAi 0 10 46 27 155 162 

mib1_RNAi 4 0 62 37 143 138 

mib1_RNAi 13 11 29 45 99 110 

mib1_RNAi 12 3 77 78 168 153 

mib1_RNAi 3 0 26 44 141 94 

mib1_RNAi 0 0 52 49 144 138 

mib1_RNAi 6 19 56 90 112 103 

mib1_RNAi 2 11 58 71 145 115 

mib1_RNAi 12 8 51 64 68 35 

mib1_RNAi 25 7 55 51 150 138 

mib1_RNAi 0 0 30 31 192 134 

mib1_RNAi 0 3 38 24 199 151 

mib1_RNAi 4 1 9 32 42 37 

 

Table 7.3: Numbers of proliferating cells per embryo - Mean values of proliferating cells for calculation of 

statistical analyses between wild type and RNAi (see Figure 4.16E). 

Head lobe_mean value Labrum_mean value Leg_mean value 

5,5 80 17,5 

9,5 82 32 

10,5 87 163 

17,5 64 144 

22 96 107,5 

13 101 176,5 

13 107 145,5 

13 112,5 88 

13,5 86 73,5 

15,5 100,5 126 

14 105 54 

27,5 86 170 

5 76,5 65,5 

26 61,5 113,5 

30,5 77 133 

11 71,5 35 

18,5 117 108 

11 35,5 25 

13 86,5 170,5 

19 66,5 182 

2 66,5 47 

13,5 48 110 

22,5 78 103 

3 16,5 64,5 

11 25 91 

18 60 95,5 
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0 37 124 

16 31,5 95 

23,5 52 98,5 

11,5 65,5 128 

24,5 82,5 141,5 

12 63 125,5 

20,5 45,5 146,5 

2,5 60,5 41 

22 44,5 119 

1 44 208 

17,5 79,5 197 

27,5 85 147,5 

7,5 34,5 90,5 

20,5 51,5 125 

11,5 79,5 140,5 

25 71 102 

50,5 74,5 108 

1,5 55 106,5 

6,5 30 129,5 

20 60 128 

1,5 50,5 124,5 

5 36,5 158,5 

2 49,5 140,5 

12 37 104,5 

7,5 77,5 160,5 

1,5 35 117,5 

0 50,5 141 

12,5 73 107,5 

6,5 64,5 130 

10 57,5 51,5 

16 53 144 

0 30,5 163 

1,5 31 175 

2,5 20,5 39,5 
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Figure 7.1: Comparison of proliferating cells between left and right side of each embryo – (A) wild 

type. (B) Tc-mib1 RNAi. No significant difference in proliferating cells between the left and the right 

side of each embryo was observed. 
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