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SUMMARY 

Global biodiversity is increasingly found in fragmented landscapes and populations due to 

altered human land use. Expansion of agricultural land and changed agricultural practices 

to the detriment of natural and semi-natural habitats are the most important drivers of this 

process, caused by the rocketing human demand for agricultural products. Ensuring the 

persistence of biodiversity and the services it provides to humanity (management of 

biodiversity and ecosystem services) will require a sound understanding about how 

biological communities and ecological processes in fragmented landscapes are affected by 

potentially interacting factors at different spatial scales. However, it remains unclear how 

properties of fragmented landscapes (landscape composition, landscape configuration, local 

habitat quality) interact across spatial scales in shaping community structure and ecological 

processes. 

In this thesis I assess the relative role of landscape composition, landscape 

configuration and local habitat quality at different spatial scales for the conservation of 

biodiversity and ecosystem processes in fragmented human modified landscapes. My 

research had two geographical foci: In the first part, I capitalized on the well-known fauna 

and flora of a traditional, highly fragmented central European agro-ecosystem, to 

investigate general and trait-mediated patterns across a wide taxonomic range. In the 

second and third part, I studied bird communities and animal-mediated pollination in the 

tropics of Central America, which are highly biodiverse but currently sufferan intensive 

period of human modification.  

In the first paper of this study (chapter 2), I used small calcareous grasslands in 

Germany as our model system, a highly biodiverse, but threatened habitat. Using a large 

dataset with more than 600 species of nine taxa (bees, butterflies, grasshoppers, hoverflies, 

leafhoppers, rove beetles, spiders, true bugs, and plants), I tested the separate effects of 

habitat connectivity, landscape complexity and local management across taxa. In particular, 

we assessed species richness, community composition and universal, trait-mediated 

responses. While a high proportion of arable land resulted in a 29% loss of species richness, 

increasing connectivity generally enhanced species richness across taxa. Only the large 

species per taxon, assumed to be more dispersive, profited from increased connectivity. 
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While all three management types led to distinct communities, prolonged grazing reduced 

species richness and abundance, in particular so for red-listed species. In conclusion, we 

suggest a strategy of alternating mowing and short-term abandonment, focusing on 

connected sites in diverse landscapes for the conservation of small calcareous grasslands.  

The second paper (chapter 3) focuses on the effect of habitat configuration on 

animal-mediated pollination in tropical fragmented forest landscapes. In Costa Rica, I 

combined manipulative experiments and field observations to test if narrow woody strips 

(living fencerows and narrow riparian strips) enhanced pollinator movement, pollen 

transfer, pollinator availability and pollination success. Using experimental flowers and live 

plants, I show that such corridors consistently enhance functional connectivity for forest-

associated hummingbirds, and in turn pollen transfer between neighboring forest 

fragments. Corridors drastically increased forest-associated pollinator availability in small 

fragments, which approached zero in equally sized patches lacking such connections. In 

parallel, corridors not only substantially increased pollination success of an ornithophilous 

keystone herb, but averted complete pollination breakdown in small forest fragments. 

Overall, these results suggest that simple corridors elements can maintain pollination 

mutualisms and plant gene in tropical forest fragments through increased functional 

connectivity and pollinator availability. 

In the third paper (chapter 4), I evaluated the effect of landscape composition 

(landscape wide amount and type of forest) and configuration (fragment size and edge 

proximity) on bird communities, disentangling the effect of old growth forest from 

secondary forest in a human-modified landscape of southern Costa Rica. I characterized 

the entire bird community in 49 forest fragments, representing independent variation of 

patch size and landscape wide forest amount, and found that Į-diversity and abundance at 

the plot scale varied little between fragments. In contrast, Į - diversity and abundance of 

forest birds at the plot scale, in particular insectivores, was nearly halved in edges and 

secondary forest compared to core areas of primary forest. The same was found in small 

fragments, but only below a critical threshold of old growth forest within the landscape 

(22.6%). Similarly, ȕ - diversity of the entire bird community was strongly reduced among 

small fragments, but only at low landscape-level percentage of oldgrowth forest. Finally, 

bird communities were similar to primary forest only in fragments surrounded by a high 

proportion of old growth forest. Overall, the minimum local area (fragment size) required 

to support substantial levels of Į - andȕ - diversity is lowered in landscapes with a high 

proportion of old growth forest. Thus, the benefits of old growth not only manifest locally 
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but extend into the landscape scale - not the local fragment area, but the percentage of 

oldgrowth forest within a landscape drives biodiversity conservation success. Given that 

human land use is driving landscape structure, there is a need to keep a minimum amount 

of primary forest - thus, the conservation of old growth forest should remain a key 

conservation priority. 

In conclusion, the results of my dissertation show that biodiversity patterns 

areshaped by local habitat characteristics, and habitat composition and configuration at the 

landscape scale. Landscape configuration (corridors) strongly influenced movement 

between fragments, which in turn affected an ecosystem process (pollination). While small 

fragments can contribute significantly to conservation in the tropics, there is a need to keep 

old growth forest above a critical landscape-level threshold. Myresults emphasize that 

future conservation of biodiversity and ecosystem services in fragmented landscapes should 

not only aim to improve local habitat quality, but additionally improve habitat quality and 

configuration at an appropriate landscape scale. Conservation schemes lacking such a 

landscape perspective will likely fail to achieve an optimum conservation outcome and thus 

waste the limited resources available. 
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INTRODUCTION 

Human modification of ecosystems is irrefutably the major threat to biodiversity and 

ecosystem services worldwide (Sala et al. 2000, Tilman et al. 2001, Dirzo et al. 2014). This 

modification is mainly fuelled by increasing human demand for agricultural products, which 

causes (i) large scale-conversion of native habitat into farmland and (ii) changes in agricultural 

intensity on existing agricultural land, i.e. intensification (e.g. increased nitrogen input, irrigation, 

landscape homogenisation) or abandonment of unproductive marginal areas.  

Although agricultural expansion and changes to management intensity are predicted to 

increase at a global scale, the geographical importance of both processes for biodiversity 

conservation varies (Queiroz et al. 2014). In many high-income countries, particularly in Central 

Europe, a large proportion of biodiversity occurs in low-intensity agricultural systems (e.g. 

extensive grasslands and traditional orchards) and thus explicitly requires agricultural land use 

(WallisDeVries et al. 2002, Tscharntke et al. 2005). Nevertheless, much of this biodiversity has 

been lost during the second half of the last century, which was characterized by the conversion of 

traditional, low-intensity agro-ecosystems into homogenized, intensive landscapes (Tscharntke et 

al. 2005). Therefore, an important focus of conservation in Europe is the maintenance of 

traditional and extensive agricultural processes to protect semi-natural habitats. 

In contrast, tropical regions contain the majority of biodiversity hotspots worldwide 

(Myers et al. 2003), with most biodiversity persisting in relatively undisturbed, forested areas 

(Gibson et al. 2012, Laurance et al. 2012). As large-scale agriculture and the accompanying 

deforestation have only begun recently, many species are poorly adapted to agricultural land-use 

and require forested areas to prosper (Gibson et al. 2012, Frishkoff et al. 2014). This is particularly 

worrisome, as the majority of new croplands globally replace tropical forests (Gibbs et al. 2010), 

causing an annual forest loss of 5–10ௗmillion hectares (Mayaux et al. 2005, FAO 2011). 

Consequently, conservation efforts in the terrestrial tropics often focus on forest ecosystems 

(Gibson et al. 2012).  

 

Despite the different starting points, highly biodiverse habitats in the tropics and central 

Europe share a common feature: they are increasingly restricted to fragmented systems. In the 

tropics, ~ 25% of the existing rainforest already persists in fragments surrounded by agriculture 

(Wade et al. 2003). Similarly, many biodiverse grassland habitats in central European only persist 

in scattered remnants embedded in intensive agriculture (Tscharntke et al. 2005).  
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For sound biodiversity management, the (i) patterns of biodiversity and (ii) the processes 

determining these patterns have to be identified. In fragmented landscapes, biodiversity patterns 

and ecological processes occur at several spatial scales. The most intuitive spatial scale is the local 

(fragment) scale, which has been the focus of most ecological research (Tscharntke et al. 2012). 

Given that fragments often represent a biologically significant unit, i.e. the “local population” 

within which genetic exchange occurs (Slatkin 1977, Fahrig & Merriam 1994), they have been the 

traditional unit for conservation research and management (i.e. 1 fragment = 1 landowner). Thus, 

traditional management strategies often tried to maximize biodiversity at the fragment scale 

(Tscharntke et al. 2012). Previously studied local factors that shape biodiversity within a fragment 

include management-mediated habitat quality (e.g. Bailey et al. 2010, chapters 2 and chapter 4 of 

this thesis), edge effects (e.g. Malcolm 2014, chapter 4 of this thesis) or fragment size (Steffan-

Dewenter & Tscharntke 2000, chapter 4 this thesis).  

 

However, biodiversity patterns in fragmented landscapes are also determined by 

processes acting at the landscape scale. First, habitat fragments are linked to additional areas of 

habitat in the landscape by dispersal. Several theoretical frameworks describe this link, the two 

most important being island biogeography (MacArthur & Wilson 1967) and metapopulation 

theory (Levins 1970, Hanski 1998). Island-biogeography describes species richness of isolated 

islands as a function of island area, the extinction rate of populations and importantly, 

immigration of species from a mainland-source. Similarly, metapopulation theory describes the 

occurrence of species in habitat fragments as a function of dispersal processes between fragments, 

the available habitat in the landscape, and lacks the assumption of a mainland source. So far, both 

theories have had a fundamental influence on the conservation planning of fragmented 

landscapes. Following Fischer & Lindenmayer (2007), this conservation concept may be 

approximated as “the more, the better”, both in terms of the size of neighbouring fragments and 

the connectivity to them. That is, the persistence of species in a fragment is enhanced through 

immigration from nearby, preferentially large fragments (MacArthur & Wilson 1967, Hanski 

1998). Importantly, movement between fragments can be influenced by the intervening 

landcover type, the “matrix” (Ricketts et al. 1993, Dricsoll 2013). In addition to this, more recent 

research has demonstrated strong effects of the matrix, which are not directly linked to 

movement (reviewed in Driscoll et al. 2013): These include spillover processes from populations 

in adjacent habitats (Rand et al. 2007), input of matter (fertilizer, pesticides, Tilman 2001), or 

provision of alternative resources in the neighbouring landscape (Holzschuh et al. 2011).  
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Despite the traditional focus on fragment-scale conservation, policy makers increasingly 

acknowledge the importance of a holistic landscape perspective for optimized conservation 

outcomes. In parallel, research increasingly focuses on determining relevant spatial scales driving 

conservation outcomes, however large knowledge gaps remain (summarized in Tscharntke et al. 

2012), that this thesis aims to explore. A large research gap exists regarding the relative 

importance and potential interactions of factors across spatial scales: For example, when are local 

scale management regimes more important than landscape factors in determining the results of 

conservation efforts (chapter 2, chapter 4)? That is, can labour intensive management (e.g. 

manual mowing) provide high conservation outcomes in landscapes dominated by intensive 

farming? Similarly, the relative roles of local habitat amount vs. landscape scale habitat availability 

on biodiversity need to be clarified (chapter 4). In particular, more knowledge is needed with 

respect to critical thresholds, below or above which biodiversity collapses (chapter 4). A further 

research gap is the separate impact of landscape composition and configuration on 

metacommunity dynamics and biodiversity functions (Fahrig 2003, Fahrig 2013, chapter 3, 

chapter 4), particularly regarding ecosystem services in the tropical systems (Hadley and Betts 

2012). For example, which factors influence the transfer of individuals and genes between 

fragments (chapter 3)? In addition, many studies in fragmented landscapes restrict their analyses 

to species richness and abundance, but disregard completely species identities (chapter 4), 

conservation relevant characteristics such as red list status (chapter 2), or the contribution of 

species to ecosystem services (chapter 3). Finally, researchers increasingly investigate which 

factors drive the similarity of fragmented local communities at a landscape scale, and thus their 

potential to mutually complement the landscape wide species pool (ȕ – and Ȗ– diversity, 

Tscharntke et al. 2012, chapter 4).  

STUDY SYSTEMS AND REGIONS 

Calcareous grasslands in central Germany 

The first part of this thesis focuses on the conservation management of invertebrates and 

plants in European calcareous grasslands. These grasslands are one of the most species rich 

habitat types in Central Europe, hosting an extraordinarily diverse assemblage of thermophilic 

and specialised invertebrates and plants, many of which are red-listed (van Swaay 2002, Stoll et al. 

2009, chapter 2, Fig. 1). Calcareous grasslands are a semi-natural habitat that developed through 

traditional, low intensity grazing (predominantly by sheep) and mowing on rocky outcrops and 

shallow soils (Wilmanns 1993). This habitat has faced massive losses in area of up to 90% during 

the agricultural intensification of the last century (WallisDeVries et al. 2002). The major causes for 

this loss were changes in management, such as fertilisation, conversion to arable land or 
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abandonment and subsequent shrub encroachment (Poschlod & WallisDeVries 2002). In 

previous centuries, calcareous grasslands were also connected through the transport of diaspores  

by transhumance shepherding, but the cessation of this management practice has additionally 

contributed to the breakdown of dispersal processes between fragments (Wagner et al. 2013).  

 
Fig. 1: Calcareous grasslands around Göttingen. A) Ophrys insectifera. B) Ophrys apifera C) Zygaena carniolica and Zygaena 

cf. filipendulae  on Scabiosa columbaria. D) An abandoned grassland with Prunus spinosa. E) Mating Polymmatus icarus. F) 

Calcareous grassland (background ) surrounded by intense agriculture (to the front). G) Small wild bee (cf. Hylaeus) 

visiting Hippocrepis comosa. H) Verena Rösch doing suction sampling. I) Extensively grazed grassland. Photo I) by 

Verena Rösch, all others by U. Kormann.
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Here, we studied calcareous grasslands in southern Lower Saxony, Central Germany, 

situated in the districts of Göttingen and Northeim (51.5°N, 9.9°E). This region is characterized 

by intensive agriculture (cereals, oil seed rape and fertile meadows), but there are still ~ 220 

fragments of calcareous grassland in the region. Most of these fragments are small (< 1ha, Fig. 2), 

and increasingly threatened by shrub encroachment resulting from management cessation. 

Previous studies on these grasslands have reported reduced species richness and turnover for 

butterflies with decreasing fragment size, and a positive influence of landscape complexity on 

bees, syrphids and leafhoppers  (e.g. Krauss et al. 2003; Meyer et al. 2007, Rösch et al. 2013).  

 

Fig. 2. Fragment size distribution in the study area of the districts of Göttingen and Northeim. 

 

Forest fragments in Southern Costa Rica 

The second and third papers in this thesis focus on the conservation management of 

animal-mediated pollination and bird communities in tropical forest fragment of Central America. 

This region is part of the Central American biodiversity hotspots (Myers 2003), and hosts a high 

density of endemic species (Myers 2003, Fig.3 and Fig. 4).  

We worked in the human-modified landscape of the Coto Brus region, Southern Costa 

Rica, around the Las Cruces Biological Station (8°47N, 82°57W, Fig. 5.). The study area ranges 

from 850 – 1´500m a.s.l. and covers an area of ~30 000ha. Originally, this landscape was covered 

by contiguous Pacific pre-montane humid forest, but massive deforestation since the 1950s 

reduced the original forest cover to ~30% (~8´844 ha) of its former extent (Zahavi, Duran 
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&Kormann in prep., Fig. 5). Most deforestation occurred between 1960 and 1980 (annual 

deforestation rate ~ -3.81%, Zahavi, Duran & Kormann in prep.). Forest loss slowed strongly 

during the period 1980-1997 (annual deforestation ~-0.58%) and was relatively constant 

thereafter (annual deforestation 1999-2014 ~ -0.66%), despite a country-wide logging – ban after 

1996 (Steed 2003). Concomitantly, remaining forest shifted from a predominantly large single 

forested area to c. 2000 smaller forest patches, the majority of which range between 1-10ha in 

size (Fig.3A & 3D). With the fragmentation of forest into progressively smaller patches, the area 

of forest exposed to edge effects increased: The area of forest closer than 100 m to the nearest 

edge has risen from 1,000ha to almost 1,400hasince 1960. Further disturbance is generated by 

frequent selective illegal logging and poaching (Fig. 4). 

Today, approximately 70% of the current forest cover originates from before 1960, while 

most of the remaining 30% has to be considered secondary forest. This forest patchwork is 

largely embedded in an agricultural matrix of pasture (>90%), coffee plantations (~5%) and to a 

lesser extent human settlements (Hadley et al. 2014). Despite the increased degree of forest 

fragmentation, an extensive network of linear strips of woody vegetation remains in the 

landscape (Zahavi, Duran & Kormann subm., chapter 3). Previous studies in the region 

documented depauperated species communities in small forest fragments for a broad variety of 

taxonomic groups (e.g. birds Sekercioglu et al. 2002, orchid bees Brosi 2009, hummingbirds 

Hadley & Betts 2014). Further, breakdown of pollination mutualism in small forest fragments has 

been reported (Hadley & Betts 2014). In addition, small forest fragments have been identified as 

crucial elements to maintain bird-mediated pest control for coffee plantations in the region (Karp 

et al. 2013). 
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Fig. 3: Coto Brus study region and hummingbird community. A) Heliomaster longirostris at experimental feeder. B) 

Male Campylopterus hemileucurus. C)Phaethornis striigularis inspecting a feeder prototype.D)Female Lampornis castaneoventris 

(endemic). E) Elvira chionura (endemic).F)Amazilia edward (endemic). G) Phaethornis guy pollinating Heliconia tortuosa in 

an experiment. H) Living fencerow. I) Typical land use in the region. All photos by U. Kormann.
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Fig.4: Bird communities in forest fragments of the Coto Brus region. A) Aulacorhynchus prasinus at its nest. B) 

Chlorophanes spiza. C)Myadestesmelanops, a species commonly trapped for pet trade.D)Myrmecizaexsul, a forest 

insectivore. E) Tangaraguttata, afrugivore. F) Henicorhinaleucophrys, a forest insectivore. G) Jeisson Figueroa duringa 

point count. H) Illegal logging camp. I) Land clearing tothe front, forest fragments to the back. All photos by U. 

Kormann.
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Fig. 5: Characteristics of the Costa Rican study area. A) Geographic location. B)Size distribution of the current forest 

fragments in the study region. Included are old growth and secondary forest. C) Nearest neighbor distances between 

forest fragments. D) Regional deforestation history. Shown are forest cover maps for four points of time (1960, 

1980, 1997 and 2005-14). Maps are based or orthorectified, digitized aerial photos (Zahavi, Duran & Kormann 

submitted). 
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RESEARCH AIMS AND METHODS 

In this thesis, we investigate the importance of landscape composition, landscape 

configuration and local habitat quality at different spatial scales to inform appropriate biodiversity 

management in fragmented, human modified landscapes.This thesis comprises one observational 

landscape scale study on calcareous grassland communities in Central Europe (chapter 2). The 

second and the third studies focus on a fragmented neotropical forest landscape, where we 

studied corridor effects on hummingbird-pollination (chapter 3) and effects of forest 

composition and configuration on neotropical bird communities (chapter 4).   

In chapter 2, we tested the independent effects of habitat connectivity, landscape 

complexity (arable land within a 1km) and local management on species richness, community 

composition and trait-based responses (body size and Red List status) of nine taxa (butterflies, 

bees, grasshoppers, hoverflies, leafhoppers, rove beetles, spiders, true bugs, plants) in small 

calcareous grasslands in Central Germany. We used a large dataset (~20000 specimens, ~600 

species) to test (i) if local management, habitat connectivity and landscape complexity 

consistently shape species richness, abundance and community composition across taxonomic 

group (ii) if body size (as a proxy for dispersal capacity) indicates the sensitivity to landscape scale 

factors, i.e. if the larger-sized species of a taxon can benefit more from connectivity than the 

smaller ones and (iii) if negative effects of management cessation, decreasing connectivity and 

landscape simplification are more pronounced in Red-Listed species. 

In chapter 3, we evaluated the effect of an abundant landscape element, i.e. narrow 

wooded corridors, on animal-mediated pollination in a tropical human-modified landscape. In 

particular, we were interested if narrow woody strips (living fencerows and narrow riparian strips) 

can increase (i) pollinator movement, (ii) pollen transfer between forest fragments, (iii) pollinator 

availability and (iv) pollination success in a forest dependent, fragmented hummingbird-plant 

study system in Southern Costa Rica. To assess this, we combined manipulative experiments, 

observational data and novel statistical approaches.We collaborated with the Oregon State 

University (USA) and the statistical department at Gottingen University. 

In chapter 4, we assessed the effects of landscape composition and configuration and 

their potential interaction on bird communities in fragmented forest remnants of the Coto Brus 

study system, Costa Rica. For this, we characterized bird communities in forest fragments, which 

represented independent gradients in patch size and amount of forest in the surrounding 

landscape (forest cover within 1000m radius). We were interested if landscape wide forest 

amount, fragment size, old growth and secondary forest drive patterns of (i) Į- diversity (ii) ȕ-
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diversity and (iii) community shift after deforestation. This chapter also emphasizes the question 

of whether high landscape-wide forest amount has the capacity to mitigate negative effects of 

small patch size. This part of the thesis was also a collaboration with the Oregon State University 

(USA) and the Organisation for Tropical Studies OTS, Costa Rica. 

 

GENERAL CONCLUSION 

The aim of this thesis was to investigate the relative role of landscape composition, 

landscape configuration and local habitat quality at different spatial scales for the conservation of 

biodiversity and ecosystem processes in fragmented human modified landscapes. Seeking 

generalizability, we performed studies in two systems with contrasting biogeography, human land 

use history and conservation relevant vegetation type (i.e. forest vs. grassland).  

These studies provided the following new key insights: 

First, while connectivity generally enhanced species richness on calcareous grasslands, 

arable land-use in the matrix was detrimental. Connectivity was especially important for the large 

species per taxon. Communities changed with management type, and grazing was detrimental for 

red-listed species. Thus, conservation of small calcareous grasslands should focus on connected 

sites in diverse landscapes, potentially with an alternating strategy of mowing and short-term 

abandonment. 

Second, narrow woody corridors consistently enhanced all aspects of pollination by forest 

dependent hummingbirds. Importantly, increased connectivity by corridors averted complete 

pollination breakdown in small forest fragments. This highlights the importance of maintaining 

connectivity between small forest remnants, which are among the most common landscape 

elements throughout the tropics. Our results suggest that this can be done for some species by 

simple woody corridors that are widely accepted by farmers.  

Third, while Į-diversity and abundance of non-forest specialist birds remained stable, 

forest specialists depended strongly on primary forest, both at the local and at the landscape scale. 

The minimal local area (fragment size) required to maintain high levels of Į- and ȕ- diversity 

decreased if landscape-level amount old forest remains above a critical threshold (~25%). Thus,  

benefitsof old forest not only manifest locally but extend to the landscape scale - not local 

fragment area, but the percentage of old growth forest within a landscape drives biodiversity 

conservation success. Since human land use drives landscape structure, there is a need to 

maintain a minimum amount of primary forest – the conservation of old growth forest should 

remain a key conservation priority. 
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Despite the stark contrasts between the two study systems, our results support the idea 

that biodiversity patterns in both regions are not only determined by local habitat quality 

(management type, forest type), but to a large extent also by landscape composition (landscape 

level habitat amount, proportion of arable land) and landscape configuration (fragment size, 

corridors and edge effects). Importantly, we showed that adequate management of landscape 

configuration, i.e. increasing connectivity with simple corridors, not benefit biodiversity beyond 

species richness, but promotes ecosystem functioning.  

In conclusion, this thesisstrongly suggests that future conservation of biodiversity and 

ecosystem services in fragmented landscapes should not be restricted to habitat improvement at 

the local scale, but additionally improve habitat quality and configuration at an appropriate 

landscape scale. This will not only require a change of mind for local conservation practitioners – 

but importantly, of policy makers to preferentially channel available conservation funds to 

projects that take into account a landscape perspective. Further, our results emphasize that 

complementary to large scale conservation areas (e.g. nature reserves), small fragments and small-

scale improvements of landscape connectivity constitute a highly valuable contribution to 

conserve biodiversity and ecosystem processes in both temperate and tropical ecosystems. To 

inform adequate implementation, future research will have to identify critical compositional and 

configurational habitat thresholds, above which biodiversity, species interactions and ecosystem 

functions in human-modified landscapes can persist. 
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ABSTRACT 

Aim: Biodiversity across the globe is heavily eroded by intensified management at 

local and landscape scales. Species communities of calcareous grasslands, which are among 

Europe’s most diverse habitats, are severely threatened by the cessation of appropriate 

traditional management, loss of habitat connectivity and simplification of the surrounding 

landscape. However, our understanding of these often interrelated factors remains limited, 

in particular for trait-mediated responses across taxa. Here, we test the independent effects 

of local management (grazing, mowing and abandonment), habitat connectivity (measured 

by a connectivity index) and landscape complexity (indicated by the percentage of arable 

land) on nine taxa: plants, butterflies, bees, grasshoppers, hoverflies, spiders, true bugs, 

rove beetles and leafhoppers on small semi-natural calcareous grassland remnants (<1 ha).  

Location: Central Germany.  

Methods: We use a joint analysis across taxa to identify general and trait-mediated 

responses (body size and Red List status) in species richness, abundance and community 

composition. Results: We identified three key drivers of local diversity patterns: First, an 

increasing proportion of arable land from 10 to 80 % led to a 29 % loss of overall species 

richness. Second, despite differences between taxa, increasing habitat connectivity generally 

enhanced species richness. Connectivity effects were more accentuated in the large species 

per taxon, which can be expected to be good dispersers. Finally, grazing reduced species 

richness and abundance much more than annual mowing or short term abandonment (5-15 

years), in particular for red-listed species. We attribute this to of plant resource removal 

through overgrazing and trampling.  

Main conclusions: For the conservation management of small calcareous grasslands, 

we advocate an alternating strategy of mowing or lenient grazing and short-term 

abandonment, prioritising connected fragments surrounded by diverse landscapes. Despite 

taxon-specific responses, our study across nine taxa demonstrates universal, trait-mediated 
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effects of management, landscape complexity and connectivity on local biodiversity in 

fragmented communities. 

 

Keywords: community dissimilarity, calcareous grasslands, connectivity, 

habitatfragmentation, landscape composition, multi-taxon approach 
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INTRODUCTION 

Habitat fragmentation, habitat loss and agricultural intensification are major reasons 

for biodiversity decline worldwide (Sala et al., 2000; Fahrig, 2003; Fischer & Lindenmayer, 

2007), causing reductions in habitat area and connectivity. Small or isolated fragments are 

reached by fewer immigrants than large or connected ones (MacArthur & Wilson, 1967; 

Losos & Ricklefs, 2010). Furthermore, small fragments may experience higher extinction 

rates. The type of land use between fragments (matrix) also affects dispersal and 

persistence of species in fragmented landscapes. Simple landscapes with high proportions 

of arable land are a hostile matrix for many organisms (Ewers & Didham, 2006; Prugh et 

al., 2008). However, matrix types may influence permeability (Eycott et al., 2012; Öckinger 

et al., 2012), as shown e.g. for mass flowering crops (Holzschuh et al., 2013). 

In fragmented landscapes, surprisingly little is known about the effects of landscape 

factors like habitat connectivity and matrix complexity on invertebrate communities across 

taxa (Prugh et al., 2008). Previous studies focussed on few taxa with a bias on butterflies 

and bees (e.g. van Swaay, 2002; Krauss et al., 2003; Brückmann et al., 2010, but see Zulka 

et al., 2013) and were rarely designed to distinguish between local management, 

connectivity and landscape complexity (but see Sjödin et al., 2007; Pöyry et al., 2009). This 

lack of knowledge is particularly accentuated for trait-mediated patterns across taxa 

(Öckinger et al., 2010). These may be life history traits like body size or conservation-

relevant characteristics such as Red List status. Body size can mediate the response of 

species to habitat loss, predicting dispersal capability in many taxa (Jenkins et al., 2007; 

Öckinger et al., 2010; Sekar, 2012). 

In Central Europe, calcareous grasslands are among the most species-rich habitat 

types for both plants and invertebrates. Over centuries, calcareous grasslands have been 

maintained through traditional extensive (sheep) grazing and, less frequently, by mowing 

(Wilmanns, 1993). With increasing agricultural intensification, management has become 

progressively uneconomical for farmers. Therefore, up to 90 % of calcareous grasslands 

have been lost over the past decades due to changed management (Poschlod & 

WallisDeVries, 2002). As a result, the distribution of the remaining habitat patches is 

nowadays highly fragmented. Accordingly, many species occurring on these grasslands have 

been categorised as threatened in Red Lists (Binot-Hafke et al., 2011). The current 

conservation of calcareous grasslands primarily focuses on local habitat management, 
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aimed at mimicking traditional management. As rotational shepherding has become scarce, 

the remnants are often kept open by grazing, mowing or shrub removal. Contrastingly, the 

composition of the landscape surrounding a habitat fragment is often disregarded (Zulka et 

al., 2013). 

In the study area (southern Lower Saxony, Central Germany) the landscape 

surrounding calcareous grasslands is intensively managed. More than 70 % of all fragments 

are small (<1 ha, Fig. S1), yet of high conservation value due to their high biodiversity 

(Tscharntke et al., 2002; Rösch et al., 2013) and their potential role as stepping stones 

(Saura et al., 2014). Therefore, in order to avoid the confounding influence of differences 

in fragment size, we here focus on small fragments (<1 ha). We set up a landscape-scale 

mensurative experiment to disentangle the effects of local management, landscape 

complexity and connectivity on nine taxa (plants, butterflies, bees, grasshoppers, hoverflies, 

spiders, true bugs, rove beetles and leafhoppers).  

In particular, we test the following hypotheses:  

1) Species richness, abundance and community composition change with the 

composition and connectivity of the surrounding landscape and depend on 

the type of local management.  

2) Body size (as a proxy for dispersal capacity) indicates the sensitivity to 

landscape scale factors, i.e. the larger species of a taxon can benefit more 

from connectivity than the smaller ones.  

3) Negative effects of management cessation, decreasing connectivity and 

landscape simplification are more pronounced in red-listed species.  

 

METHODS 

Study area 

The study area was situated in Central Germany, southern Lower Saxony (51.5°N, 

9.9°E, see Map S1 in Supporting Information) in the districts of Göttingen and Northeim.  

About 30 % of the area is intensively managed arable land, with wheat, maize, sugar 

beet and oilseed rape grown in crop rotation. Forest fragments and grasslands make up 

another 40 % of the landscape. For the present study, we focused on fragments of 

calcareous grasslands (Mesobrometum erecti Koch 1926 (Ellenberg & Leuschner, 2010)) that 

are patchily distributed across the landscape (mainly on South-facing slopes). These 

grasslands are either mown or extensively grazed, or management has been abandoned. 
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Mowing occurs once a year, usually in autumn or winter to ensure successful ripening of 

plant seeds. Grasslands are grazed predominantly by ruminants such as sheep and goats, 

but to a lesser extent also by horses or cattle, starting in the middle of June at the earliest. 

Grazing frequently results in trampling, areas of open soil and in the removal of a large 

proportion of the available plant material. Management of abandoned fragments used in 

our study ceased between five and 15 years ago. We did not include fragments that had 

been abandoned for longer, since they did not display the characteristics of calcareous 

grasslands anymore.  

 

Study design 

The study was conducted between April and September 2011. A total of 30 small 

fragments of calcareous grasslands (0.045 – 0.69 ha, mean = 0.3 ha) were selected from a 

total pool of about 200 potential fragments usingdigital maps (ATKIS-DLM 25/1 

Landesvermessung und Geobasisinformationen Niedersachsen 1991–1996, Hanover, 

Germany) in ArcGIS 10.0 (ESRI Geoinformatik GmbH, Hanover, Germany) and 

extensive field surveys in the study area. Sites were selected to be either grazed, mown or 

abandoned (10 each). Fragments were grazed by single species (sheep, goats, cows, 

highland cattle, ponies or horses). For the type of livestock used on the grazed fragments 

see Table S3. Grazing intensity varied greatly from a few days to months.  

The fragments were selected with randomization along two orthogonal gradients (Fig. 1, 

Fig. S2, Table S3): (1) A landscape composition gradient, i.e. increasing percentage of 

arable land within a radius of 1000 m around fragments (9 – 78 %, mean = 44 %). We 

chose a radius of 1000 m since we expected some taxa to be dispersal limited (e.g. 

leafhoppers, plants, true bugs) so that the close surroundings of the fragments would be 

most important for them. Several previous studies have shown that the percentage of 

arable land (used here) is highly correlated with landscape Shannon diversity in the study 

region (e.g. Thies et al., 2003; Roschewitz et al., 2005). (2) A gradient in habitat connectivity, 

measured by a connectivity index (CI) as described in Hanski et al. (2000): 

CIi = 6exp( – Įdij)Aj
ȕ 

 

where Aj is the area (in m2) of the jth neighbouring fragment and dij is the edge-to-

edge distance (in m) between focal fragment i and neighbouring fragment j. Į is a species-

specific parameter describing species’ dispersal ability and ȕ is a parameter describing the 

scaling of immigration. Since we applied the connectivity index to entire communities 
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containing many taxa, both scaling parameters Į and ȕ were set to the commonly used 

value of 0.5 (e.g. Brückmann et al., 2010). Connectivity indices calculated withĮ = 0.5 or Į 

= 1 were highly correlated (Spearman’s rho = 0.997, p = <0.001). We included all 

fragments of calcareous grassland that were located a radius of 1000 m around the focal 

fragment. If only part of a fragment was inside the 100 m buffer and it continued outside it, 

we included the whole fragment area, weighted by the shortest distance to the central 

fragment.  Roadsides and field margins with plant species typical for calcareous grasslands 

(Krauss et al., 2003) were uncommon and were not taken into account. To ensure that 

fragments exhibited the characteristics of calcareous grasslands, we only included 

fragments that harboured more than five of the plant species that are characteristic for 

calcareous grasslands in the study area (Krauss et al., 2003). The values of the connectivity 

index ranged between 0 and 443 (mean = 121) with larger values indicating higher levels of 

connectivity.  

The explanatory variables habitat connectivity and landscape complexity were weakly, 

but non-significantly correlated (following Dancey and Reidy (2004), Pearson correlation, r 

= -0.19, t = -1.05, d.f. = 28, P = 0.303, Fig. S2). 

 

 

 
Fig. 1. Illustration of the study design, showing calcareous grasslands with high (left) and low (right) levels of 

habitat connectivity and high (above) and low (below) levels of landscape complexity (measured as percentage 

of arable land). 
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Sampling methods 

At the beginning of June 2011, we recorded the vegetation (only vascular plants) in 

four botanical plots per fragment (1 × 5 m). The plots were well spread across the 

fragments, about 10-15 maway from each other within a fragment (minimum distance 3 m); 

fragment edges were avoided.  

Leafhoppers (Hemiptera: Auchenorrhyncha), true bugs (Hemiptera: Heteroptera) 

and spiders (Arachnida) were sampled by suction sampling (modified SH 56 leaf blower, 

Stihl, Waiblingen, Germany) on the botanical plots (20 suction pulses per plot, i.e. 80 

pulses per fragment) in dry weather on three occasions in 2011 (early June, late July, early 

September). Transects were located on the botanical plots but exceeded them (length 

approximately 10 m). Spiders were sampled by both suction sampling and pitfall trapping 

(see below) to improve coverage of species sampled (Standen, 2000).  

Hoverflies (Diptera: Syrphidae) and bees (Hymenoptera: Apiformes) were surveyed 

with three pan traps per fragment during two three-day rounds (mid June, mid July). Each 

trap consisted of a yellow plastic cup (23 cm diameter, filled with salt water), treated with 

UV-reflecting paint and mounted at vegetation height to maximize trapping efficiency 

(Stephen & Rao, 2005; Westphal et al., 2008). Traps were separated by at least 15 m from 

the next trap and from the fragment edge (Westphal et al., 2008), to minimize potential 

interactions between traps and edge effects. 

We sampled butterflies (Lepidoptera: Hesperioidea, Papilionidea and Zygaenidae) 

using standardized visual transect walks (Krauss et al., 2003). Fragments were visited four 

times (late May – early September) under suitable weather (temperature > 18 ° C, wind 

speed < 4 Beaufort, < 50 % cloud cover, 10:00 – 17:30). Transects on each fragment were 

180 m long and divided into three non-overlapping 60-m subtransects. Butterflies were 

sampled during four minutes per subtransect using a butterfly net within a 5 m wide band, 

identified and released immediately or collected for genitalisation. 

We recorded grasshoppers (Orthoptera: Caelifera, Ensifera) during their peak density 

in late summer. Each fragment was sampled on two occasions (late July, late August) under 

dry and warm conditions (> 22 ° C, cloud cover < 50 %, 10:00 – 18:00). We applied a box-

quadrat procedure for sampling, using a foldable wooden construction (1 x 1 m) with gauze 

sides (70 cm high) that was repeatedly placed onto the vegetation. This method yields more 

consistent and unbiased abundance estimates than sweep netting (Gardiner et al., 2005; 

Gardiner & Hill, 2006). Grasshoppers were collected in five 1 × 1 m squares near each 

botanical plot, resulting in 40 1 × 1 m squares per fragment in total. Only adult specimens 
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were determined to species level and incorporated into further analyses. 

Rove beetles (Coleoptera: Staphylinidae) and spiders were sampled twice with pitfall 

traps for seven days each, in warly August and in late August/early September. We 

employed three pitfall traps per fragment (plastic cups filled with salt water & detergent, 12 

cm diameter, plastic roof) with >15 m distance from each other and >15 m away from the 

fragment edge.  

All specimens caught (except butterflies released after identification) were transferred 

into ethanol (70 % vol.) and identified to species level. Only adult specimens were 

determined and used for later analyses.  

For leafhoppers and true bugs, species feeding on woody host plants were excluded, 

except if host tree saplings were present in botanical plots. Species feeding on woody plants 

whose larvae fed on herbs or grasses were included in the analysis.  

For species with morphologically similar female specimens (e.g. Ribautodelphax, 

Anaceratagallia, Psammotettix) (Biedermann & Niedringhaus, 2004),species identity was 

inferred from male specimens; if this was not possible, identification stopped at genus level. 

If males of more than one species of a genus were present, the number of females was 

assumed to mirror that of males.  

Specification of traits 

All taxa were subdivided into habitat specialists and generalists, except for rove 

beetles for which no suitable literature was available. Plant habitat specialization was 

defined following Krauss et al. (2003). Arthropod habitat specialization was derived from 

(i) habitat requirements typical for calcareous grasslands (i.e. warm, dry habitat conditions; 

short, grazed swards; open soil) and (ii) diet preferences (i.e. host plants occurring 

exclusively on calcareous grasslands), based on published work and expert opinions (see 

References S1). Species were classified as habitat specialists if conditions (i) and/or (ii) were 

fulfilled, whereas it was classified as a generalist if neither (i), nor (ii) were fulfilled. 

Body sizes of species was defined as body length (from head to end of abdomen) taken 

from published literature (Supplementary References S1). For species with sexually 

dimorphic body sizes, we used mean body size of both sexes. For butterflies, we used 

median forewing length as this was a better indicator of dispersal ability. Species larger than 

the taxon-specific median body size were considered large; all others were considered small. 

Taxon´s Red List was based on the most recent and regional Red List available (Remane et 

al., 1997; Melber, 1999; Garve, 2004; Binot-Hafke et al., 2011; Westrich et al., 2011).  
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Statistical analyses 

Species richness and abundance of the nine taxa were summed over transects, 

vegetation plots and pan traps. Arthropod species richness and abundance were summed 

over the sampling occasions. 

We performed four types of analyses: (1) Analysis of species richness and abundance 

for every taxon separately and cumulated over all taxa.(2) Redundancy analysis for all taxa 

separately to assess changes in community composition. (3) A hierarchical analysis 

including all taxa simultaneously to determine general trends in species richness and 

abundance. (4) Two hierarchical analyses including all taxa simultaneously to determine if 

richness patterns are generally modified by relative body size and Red List status, 

respectively.  

 (1) Species richness and abundance were analysed for every taxon separately and 

cumulated over all taxa (additive species richness). Depending on the distribution of the 

response variables (assessed using R package fitdistrplus, URL: http://cran.r-

project.org/web/packages/fitdistrplus/index.html), we fitted either generalized linear 

models with negative binomial or Poisson errors (glm.nb or glm, R package MASS 

(Venables & Ripley, 2002)) or linear models (see Table S1), starting with the following 

explanatory variables: (1) habitat connectivity, measured as described in Equation 1, (2) the 

percentage of arable land in a 1000 m-buffer around each fragment and (3) habitat 

management (abandonment, grazing or mowing), including an interaction between 

connectivity and arable land. The families and link functions used in generalized linear 

models were selected based on residual deviance. In addition, we divided residual deviance 

by residual degrees of freedom to assess overdispersion. Model selection was then done 

using an automated stepwise selection procedure based on AICc (function stepAICc based on 

function stepAIC (R package MASS (Venables & Ripley, 2002), but corrected for small 

sample sizes, see URL: http://wwwuser.gwdg.de/~cscherb1/stepAICc.txt). Multiple 

comparisons between management types were conducted using the glht function in R 

package multcomp (Hothorn et al., 2008). Models showed no spatial autocorrelation of the 

residuals (i.e. Moran's I was > 0.05). 

(2) For the nine taxa, partial redundancy analyses (RDAs) with all three explanatory 

variables (management, connectivity and percentage of arable land) were performed with 

function rda from R package vegan (Oksanen et al., 2013). We performed four RDAs: one 

with each of the explanatory variables, with the two remaining ones as conditional variables, 

and an ordinary RDA including all three variables.  Interactions between explanatory 



CHAPTER 2 

 37 

variables were not tested. Prior to analysis, community data matrices were Hellinger-

transformed, weigting rare species lower (Legendre & Gallagher, 2001). A permutation test 

with 999 permutations with function permutest from R package vegan (Oksanen et al., 

2013)was used to asses statistical significance. 

(3) To identify general patterns of species richness across all taxa, we ran linear mixed 

models (Pinheiro et al., 2014) including all taxa simultaneously. In such a joint analysis, all 

taxa contribute equally to identify general responses, independent of overall species 

richness. This is in contrast to the analysis of cumulated species richness described above, 

which is strongly influenced by species-rich taxa. 

We standardized species richness per taxon by dividing it by the taxon’s mean species 

richness across all fragments. The resulting value reflects the relative increase in species 

richness, compared to the average species richness of the taxon, and can be compared 

between taxa. We fitted linear mixed-effects models to standardized species richness 

(function lme, R package nlme (Pinheiro et al., 2014)), using fragment as a random factor. 

Note that because taxon was the lowest level in the hierarchy, it was not included in the 

random-effects part of the model as this would have saturated the model with random 

effects. Taxon was included as a fixed factor into the maximal model. Heteroscedasticity 

was accounted for by an exponential variance function, where the variance was an 

exponential function of the fitted values (weights = varexp()). Models with and without 

variance function were fitted using restricted maximum likelihood; AICc values indicated 

that variance functions considerably improved model fit.  

In the fixed-effects part of the models, we started model selection with the same set 

of explanatory variables as for the taxon-specific models, but included interactions with 

taxon. Model selection was done using stepAICc for models fit by maximum likelihood. 

(4) Finally, we fitted two linear mixed effects models to test if explanatory variables 

affected species richness differently for small vs. large species of a taxon, and red-listed vs. 

unthreatened species of a taxon. Standardisation of species richness per taxon and model 

selection were performed as described above. In addition to management, connectivity and 

proportion of arable land, we included interactions of size class (large/small) or Red List 

status (red-listed/unthreatened) with all other explanatory variablesand their interactions. 

Fragment was treated as a random factor. Taxon was included as a fixed and not as a 

random factor. We ran additional models including a spatial correlation structure of the 

form "correlation=corCompSymm(form=~X+Y)". However, these models showed similar 



CHAPTER 2 

 38 

parameter values to those without correlation structure. Further, models with spatial 

correlation had consistently higher AICc values than those without (deltaAICc > 2). 

For consistency, we opted to not include fragment area in any of our analyses, as 

some of the models did not converge when fragment area was included.  

RESULTS 

On the 30 calcareous grassland fragments we recorded 604 species (154 specialists, 

360 generalists) with 19696 arthropod individuals (8016 specialists, 11680 generalists) 

within the nine taxa. The most species-rich taxon was plants with 148 species, followed by 

spiders (83 species), bees and true bugs (82 and 80 species, respectively). The least diverse 

taxon was grasshoppers with only 10 species (Table S2).  

In the analysis of abundance and species richness of all taxa combined and of each of 

the nine taxa individually we found that increasing the percentage of arable land always 

tended to negatively affect species richness (all nine taxa) and in most cases abundance (all 

arthropod taxa except hoverflies and rove beetles) (Table 1, Fig. S3, Table S4).  
Table 1. Generalized linear models and linear models on the effects of landscape context (% arable land), 

connectivity (a connectivity index described in Hanski et al. (2000)) and management on the abundance and 

species richness of all species, specialists and generalists. For management, successive differences between 

treatment levels are shown (g: grazed, m: mown, a: abandoned). Only variables included in the final models 

are shown. P-values < 0.05 are depicted in bold characters. 

    Abundance Species richness 
    Estimate SEM z  P Estimate SEM z  P 
All taxa Intercept 6.49 0.06 110.00 <0.001 5.15 0.07 68.75 <0.001 
  % Arable land           -0.01 <0.01 -3.08 0.002 
  Connectivity                  
  Management g-a                 
  Management m-a                 
  Management m-g                 
                    
Specialists Intercept 6.24 0.32 19.64 <0.001 3.98 0.14 29.07 <0.001 
  % Arable land   -0.02 0.01 -2.24 0.025 <-0.01 <0.01 -1.65 0.099 
  Connectivity                  
  Management g-a                 
  Management m-a                 
  Management m-g                 
                    
Generalists Intercept 5.73 0.08 73.66 <0.001 4.59 0.08 55.56 <0.001 
  % Arable land           -0.01 <0.01 -2.98 0.003 
  Connectivity                  
  Management g-a -0.35 0.11 -3.14 0.005         
  Management m-a -0.05 0.11 -0.49 0.878         
  Management m-g 0.29 0.11 2.65 0.022         
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Management significantly changed community composition of all taxa combined as well as 

for most taxa individually (except for grasshoppers, rove beetles and hoverflies, Fig. 2, 

Table 2). In particular, the three management types harboured three distinct communities, 

both for habitat generalists and habitat specialists. Except for hoverflies, where the 

abundance of species with aphidophagous larvae was increased in landscapes with a high 

proportion of arable land, the surrounding landscape did not have an effect on community 

composition.  

Among the three management types, grazing tended to reduce both species richness 

and abundance across arthropod taxa (Fig 3a, Table 3). The only case where grazing had a 

positive effect compared to abandonment was for bee species richness and abundance. In 

some arthropod taxa (butterflies, true bugs, spiders, leafhoppers), species richness and/or 

abundance were increased by abandonment (Table 1, Fig. S3, Table S4). Plant species 

richness was not affected by management. 

Accumulated species richness was strongly reduced in simplified landscapes (-29 %, 

Table 1, Fig. S3). Similarly, standardized species richness per taxon decreased in simplified 

landscapes (Fig. 3b, Table 4). Furthermore, standardized species richness also generally 

increased with connectivity, but this effect depended on the taxon (Fig. 3c, Table 3). In 

contrast to all other taxa, species richness of hoverflies and leafhoppers slightly decreased 

with increasing connectivity (Fig. 3c). Furthermore, the connectivity effect was modified by 

body size: The number of large-bodied species within each taxon significantly increased 

with increasing connectivity, whereas the number of small-bodied species per taxon did not 

(Fig. 4a, Table 4). Finally, grazing had a much stronger negative effect on red-listed species 

than on unthreatened species (Fig. 4b, Table 5). Interactions between management, 

proportion of arable land and connectivity was never retained in the best models in any 

analysis. 
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Table 2. Results of RDA analyses: influence landscape composition (% arable land), connectivity and 
management type on the community composition of all species, specialists, generalists, bees, butterflies, 
grasshoppers, true bugs, plants, spiders, rove beetles, syrphid flies and leafhoppers. P-values < 0.05 are 
depicted in bold characters.  
 

  
 partial RDA 

% of variation F P    
partial RDA % 

of variation F P 

All taxa % Arable 
land 3.2 0.98 0.500   

True bugs % Arable 
land 3.1 0.95 0.537 

  Connectivity 3.2 0.98 0.517     Connectivity 2.3 0.66 0.706 
  Management 11.6 1.77 0.001     Management 11.5 1.76 0.001 
  Total 18.4 1.41 0.001     Total 14.4 1.05 0.374 
                      
Generalists % Arable 

land 3.4 1.02 0.430   
Plants % Arable 

land 3.1 0.93 0.560 
  Connectivity 3.1 0.93 0.609     Connectivity 4.0 1.21 0.215 
  Management 11.1 1.67 0.001     Management 9.0 1.34 0.048 
  Total 17.4 1.32 0.003     Total 16.6 1.25 0.050 
                      
Specialists % Arable 

land 2.6 0.81 0.792   
Spiders % Arable 

land 2.3 0.67 0.937 
  Connectivity 3.5 1.09 0.307     Connectivity 2.5 0.75 0.870 
  Management 13.5 2.12 0.001     Management 11.9 1.77 0.001 
  Total 20.8 1.64 0.001     Total 16.4 1.23 0.049 
                      
Bees % Arable 

land 3.6 1.11 0.292   
Rove 
beetles 

% Arable 
land 1.8 0.53 0.882 

  Connectivity 2.7 0.83 0.723     Connectivity 3.8 1.11 0.326 
  Management 11.4 1.74 0.007     Management 9.3 1.36 0.151 
  Total 17.7 1.34 0.019     Total 14.1 1.02 0.401 
                      
Butterflies % Arable 

land 3.4 1.05 0.362   
Hoverflies % Arable 

land 6.0 1.79 0.012 
  Connectivity 3.8 1.19 0.234     Connectivity 2.6 0.78 0.786 
  Management 12.4 1.93 0.006     Management 7.7 1.15 0.236 
  Total 19.8 1.54 0.008     Total 16.6 1.24 0.089 
                      
Grass-
hoppers 

% Arable 
land 4.6 1.35 0.208   

Leaf-
hoppers 

% Arable 
land 2.6 0.85 0.637 

  Connectivity 2.3 0.66 0.746     Connectivity 3.0 0.95 0.540 
  Management 7.2 1.06 0.431     Management 15.5 2.49 0.001 
  Total 14.4 1.05 0.406     Total 22.5 1.81 0.002 
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Table 3. Effects of landscape context (% arable land), connectivity and local management on overall 

standardized species richness per taxon. Shown is a sequential analysis of variance table for terms retained in 

the best linear mixed-effects model showing effects of. Only variables included in the final model are shown. 

Variables significant at P �������DUH�SULQWHG�EROG��QXP')��GHQ')��QXPHUDWRU�DQG�GHQRPLQDWRU�GHJUHHV�RI�

freedom. 

  numDF denDF F P 
Intercept 1 208 1467.64 <0.001 
% Arable land 1 25 11.48 0.002 
Connectivity 1 25 0.07 0.792 
Taxon 8 208 1.00 0.368 
Management 2 25 8.95 0.001 
Connectivity : Taxon 8 208 2.41 0.016 
Management : Taxon 16 208 2.96 <0.001 
 
 

Table 4. Anova summary of the best linear mixed model for the overall trend in species richness across taxa 

in large and small species. Only variables included in the final models are shown. Variables significant at Į ��

0.05 are depicted in bold characters. 

  numDF denDF F P 
Intercept 1 434 1.52 <0.001 
% Arable land 1 25 11.00 0.003 
Connectivity 1 25 2.00 0.217 
Size 1 434 0.00 1.000 
Taxon 7 434 0.00 1.000 
Management 2 25 6.00 0.008 
Connectivity : Size 1 434 6.00 0.014 
Connectivity : Taxon 7 434 2.00 0.016 
 

 
Table 5. Anova summary of the best linear mixed model for the overall trend in species richness across taxa 

for red-listed and unthreatened species. Only variables included in the final models are shown. Variables 

significant at Į �������DUH�GHSLFWHG�LQ�bold characters. 

  numDF denDF F P 
Intercept 1 447 348.39 < 0.001 
% Arable land 1 26 2.29 0.142 
Connectivity 1 447 0.00 1.000 
Management 2 26 4.67 0.019 
RL status : Management 2 447 4.24 0.015 
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Fig. 3. Overall response of standardized species richness per taxon in relation to a) 

the significant interaction of management and taxon (sta = rove beetles, but = butterflies, 

spi = spiders, het = true bugs, zik = leafhoppers, gra = grasshoppers, syr = hoverflies, pla 

= plants, bee = bees), b) the proportion of arable land and c) the significant interaction of 

connectivity and taxon. Shown is the predicted standardized species richness per taxon (y-

axis) and 95 % CIs, based on the best linear mixed model. Standardized species richness is 

calculated as species richness divided by the mean species richness of that taxon across the 

study. For improved visualisation, average species richness per taxon (= 1) is indicated by a 

horizontal dashed line. 

 

Fig. 4. Response of trait-specific species richness per taxon predicted by the best 

linear mixed model including all species. a) Response of large and small species to habitat 
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connectivity, b) response of red-listed and unthreatened species to local management. 

Shown is the standardized species richness per taxon (y-axis). Standardized species richness 

is calculated as species richness divided by the mean species richness of that taxon for large 

or small species respectively in a), and divided by the mean species richness of that taxon 

for unthreatened and red-listed species respectively in b). For improved visualisation, 

average species richness per taxon (= 1) is indicated by a horizontal dashed line in b). 

DISCUSSION 

Our sampling approach combined with our joint analysis allowed us to disentangle the 

effects of local management, habitat connectivity and landscape complexity on a broad 

array of taxa. As hypothesized, high proportions of arable land reduced species richness for 

all taxa combined, whereas habitat connectivity increased overall species richness. Similar 

patterns were found at the taxon level. Local management strongly influenced community 

composition in most taxa. Grazing generally reduced species richness and abundance more 

than mowing or abandonment and affected red-listed species in particular. As expected, the 

effect of habitat connectivity was modified by body size. Within each taxon, increasing 

habitat connectivity increased species richness more in large than in small-bodied species.  

 

Landscape complexity 

Landscape simplification had a surprisingly consistent, negative influence on species 

richness across taxa. Simple landscapes dominated by agriculture are often characterized by 

low matrix quality, offering less alternative habitat, since many species require resources 

outside fragment borders (Öckinger et al., 2012). In addition, dispersing individuals may 

experience a lack of resources (Rösch et al., 2013) and an inhospitable matrix (e.g. Nowicki 

et al., 2014, Baum et al., 2004). Similar to our study, Prugh et al. (2008) emphasized the 

central importance of matrix effects for patch occupancy in a broad variety of species.  

Local communities are subsets of the landscape wide species pool (Tscharntke et al., 

2012). Since agriculturally dominated landscapes often show depauperate species pools 

(Steffan-Dewenter et al., 2002; Tscharntke et al., 2005; Ekroos et al., 2010), habitat 

fragments embedded in such landscapes will only gain few additional species through 

disperal. In contrast, complex landscapes harbour a more diverse species pool and can 

therefore be assumed to subsidize local species richness to a greater extent. Small 

fragments as studied by us may also experience greater edge effects and higher spillover 

from adjacent arable land (Rand et al., 2006).   
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Bee and butterfly abundance both decreased by approximately two thirds in highly 

simplified landscapes (Fig. S1). Effects of reduced pollinator availability in simple 

landscapes could include reduced pollination efficiency in insect-pollinated plants, 

threatening their persistence on grassland fragments (Meyer et al., 2007; Clough et al., 

2014). In contrast to all other taxa, hoverfly abundance (but not species richness) increased 

in agriculturally dominated landscapes. This likely resulted from increased densities of the 

hyperabundant species Syrphus vitripennis (869 vs, 400 specimens on fragments in simple vs. 

complex landscapes), whose aphidophagous larvae feed on cereal aphids (Speight et al., 

2008).  

 

Habitat connectivity 

Despite variation between taxa, increasing habitat connectivity generally boosted species 

richness, and this effect was most accentuated for butterflies, grasshoppers and rove 

beetles. This is in line with a previous meta-analysis (Öckinger et al., 2010), which showed a 

positive effect of connectivity on insect species richness across studies. As predicted by 

metapopulation theory, connected fragments can be reached by dispersing individuals more 

easily than isolated ones, recolonising them after extinction events (Hanski, 1998). 

Interestingly, we found that relative body size consistently modified the positive 

connectivity effect: The species richness of large species within each taxon increased with 

increasing connectivity, while species richness of small species did not. Large-bodied 

species tend to have stronger dispersal capacities and can thereby benefit from connectivity 

(Sekar, 2012), whereas smaller-bodied species appeared unable to bridge the given 

connectivity level in our landscapes. Apparently, the isolated small fragments of calcareous 

grassland were already too distant from each other for the majority of the small species, 

which can be assumed to be less dispersive. However, body size may not always be directly 

linked with dispersal ability: For example, several species of grasshoppers, leafhoppers and 

true bugs display a wing dimorphism or are short-winged, which impairs their flight ability 

and thereby their capability of bridging gaps between habitats (Biedermann & 

Niedringhaus, 2004; Wachmann et al., 2004, 2006, 2007, 2008; Baur et al., 2006). Further, 

large spiders disperse better by walking, but some small spiders can disperse aerially by 

ballooning (Crawford et al., 1995). This dichotomy explains well why connected patches 

were more easily reached by larger spiders, while small spiders were unaffected by 

connectivity (Oberg et al., 2008), as these could equally well transverse the matrix by 

ballooning (Weyman, 1993).  
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Effects of management 

Our results suggest that local management strongly modifies species richness, 

abundance and community composition. While vertebrate herbivory is often selective and 

long-term, mowing is a rather sudden event that unselectively removes a large part of the 

food resources available (Humbert et al., 2009). For most taxa, we found high species 

richness and abundances in mown patches. This supports previous research that showed 

that calcareous grasslands require management for long-term persistence (Poschlod & 

WallisDeVries, 2002). In contrast, the positive effect of short term abandonment was 

unexpected (but see Pöyry et al., 2006). Short-term abandonment (5-15 years) can be 

beneficial for species richness since it increases local habitat heterogeneity and leads to the 

development of different successional plant communities with associated arthropod 

communities (WallisDeVries et al., 2002). In contrast, long-term abandonment (>15 years) 

may lead to a gradual decrease in species richness due to increasing dominance of grass 

species (e.g. Brachypodium, Bromus), gradually replacing other plant species. The next stage is 

shrub encroachment by woody species like Prunus spinosa and Crataegus monogyna, ultimately 

leading to a loss of the characteristic open structure favouring thermophilic organisms 

(Butaye et al., 2005; Piqueray & Mahy, 2010). 

The traditional management paradigm of yearly grazing has been shown to 

efficiently keep calcareous grasslands open and support typical plant species, which in turn 

host specialist arthropod species (Pöyry et al., 2009; Westrich et al., 2011; Littlewood et al., 

2012). Grazing also generates and maintains areas of open soil that are important e.g. as 

nesting sites for bees (Westrich, 1989) and for the establishment of plant seedlings 

(Kahmen et al., 2002). These areas of open soil help to increase the temperatures near the 

ground level, generating microclimatic conditions preferred by thermophilic species (e.g. 

Krämer et al., 2012). Furthermore, sheep-mediated propagule dispersal guarantees genetic 

connectivity of plant populations, important for long-term persistence of isolated 

populations (Wagner et al., 2013; Rico et al., 2014).  

Surprisingly, our results starkly contrast with this paradigm: Grazing the way it is 

conducted at present seems to be the least appropriate management strategy for small 

fragments of calcareous grassland. Intensive and prolonged grazing by heavy livestock such 

as cattle or horses causes a drastic and continuous removal of food resources for 

herbivorous insects through consumption of plants and trampling. This either directly 

affects herbivores like leafhoppers or butterflies, or indirectly affects predatory arthropods 
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like spiders, which suffer from decreases in prey abundance and a loss of structural 

heterogeneity of the vegetation (e.g. Szinetár & Samu, 2012). Our results are particularly 

alarming, since we found that red-listed species, the focus of conservation management, 

were affected most strongly. These species can be assumed to be most vulnerable due to 

very specific habitat requirements (Davies et al., 2004). They are thus likely to be the first to 

be negatively affected by unsuitable management like grazing over a too long time period 

or with to high stocking rates.  Some previous studies have reported negative effects of 

grazing intensity, in particular on herbivorous insects (e.g. Kruess & Tscharntke, 2002; 

Pöyry et al., 2006; Körösi et al., 2012). In line with our results, these studies suggested that 

insect herbivores benefit from local breaks of one or a few years in grazing management, or 

from landscape-scale variation in grazing intensity (Öckinger et al., 2006; Pöyry et al., 2006; 

Konvicka et al., 2007). 

The decreasing number of sheep flocks combined with the necessity of keeping 

calcareous grasslands open, leads to increasing reliance on unsuitable livestock. However, 

our study shows that this management alternative entails a high uncertainty concerning the 

persistence of endangered communities.  

CONCLUSIONS 

Taxa as different as the ones studied here strongly differ in their ecological 

requirements and life history traits. Given this striking plurality, it is remarkable that our 

joint analysis revealed generalisable responses across taxa. Cross-taxon biodiversity was 

strongly affected both by landscape simplification and by connectivity. Large-bodied and 

more dispersive species benefited from connectivity. Intensive grazing led reduced species 

richness, with a particularly severe reduction in red-listed species. Given these results, 

grazing in the way it is currently practised, seems to be the least favourable management 

option.  

An intermediate management strategy, alternating between mowing or lenient grazing 

(preferably late-season) and short-term abandonment, combined with complex landscapes 

surrounding each fragment and low levels of habitat isolation, would benefit plant and 

arthropod species richness on small fragments of calcareous grassland most. We conclude 

that appropriate local management is essential, but must be complemented by a landscape 

perspective. 
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SUPPORTING INFORMATION 

Figure S1 

 
Fig. S1. Fragment size distribution in the study area. 

 

 

Figure S2: 

Fig. S2. Gradients of landscape complexity and connectivity of the 30 fragments of calcareous grassland. 
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Map S1. Location of the 30 small fragments of calcareous grassland. Grazed grasslands are marked in red, 

mown grasslands in blue and abandoned ones in yellow. 

 



CHAPTER 2 

 57 

 

Table S1. Models used for the analysis of abundance and species richness (SpR) of the nine taxa. 

 Abundance SpR 
All taxa glm.nb glm.nb 
Specialists glm.nb glm.nb 
Generalists glm.nb glm.nb 
Plants — glm.nb 
Bees glm.nb glm (poisson) 
Butterflies glm.nb lm 
Grasshoppers glm.nb lm 
True bugs glm.nb glm (poisson) 
Spiders glm.nb glm (poisson) 
Hoverflies glm.nb lm 
Rove beetles glm.nb glm (poisson) 
Leafhoppers glm.nb glm.nb 
 

 

Table S2. Overall species richness (SpR), overall abundances and mean ± SEM of abundances and species 

richness of all nine taxa on the 30 fragments of calcareous grassland. 

 Overall 
SpR 

SpR per 
fragment 

Overall 
abundance 

Abundance 
per fragment  

Plants 148 41.9 ± 2.1  -     -    
      Specialists 61 22.5 ± 1.2  -     -    
      Generalists 87 19.4 ± 1.2  -     -    
Bees 82 17.5 ± 0.9 4318 143.9 ± 27.2 
      Specialists 12 2.1 ± 0.2 2342 78.1 ± 25.4 
      Generalists 69 15.4 ± 0.8 1975 65.8 ± 4.8 
Butterflies 47 14.2 ± 1.0 2553 85.1 ± 9.5 
      Specialists 16 3.4 ± 0.5 960 32.0 ± 6.7 
      Generalists 31 10.7 ± 0.7 1593 53.1 ± 5.3 
Grasshoppers 10 3.8 ± 0.2 891 29.7 ± 4.5 
      Specialists 3 0.9 ± 0.2 136 4.5 ± 1.6 
      Generalists 7 2.9 ± 0.2 755 25.2 ± 3.8 
True bugs 80 11.8 ± 0.7 1167 38.9 ± 4.4 
      Specialists 20 3.4 ± 0.3 397 13.2 ± 2.6 
      Generalists 60 8.4 ± 0.5 770 25.7 ± 3.2 
Spiders 83 15.7 ± 0.7 1030 34.3 ± 2.2 
      Specialists 16 3.0 ± 0.2 147 4.9 ± 0.5 
      Generalists 67 12.7 ± 0.6 883 29.4 ± 2.1 
Hoverflies 46 12.2 ± 0.5 2528 84.3 ± 9.9 
Rove beetles 43 4.4 ± 0.5 1008 33.6 ± 7.8 
Leafhoppers 65 16.4 ± 0.8 6202 206.7 ± 31.8 
      Specialists 26 7.8 ± 0.5 4034 134.5 ± 20.5 
      Generalists 39 8.6 ± 0.7 2168 72.3 ± 16.2 



CHAPTER 2 

 58 

Table S3. Code number,site name, management, percentage of arable land in a 1000 m radius around each 

site, fragment area [m2] and values of a connectivity index (Hanski et al., 2000) of the 30 fragments of 

calcareous grassland. 

Code   Site name Management % Arable land Connectivity Area [m²] 
7   Volkerode abandoned 53.6 107.7 1306 
21   Bratental8 abandoned 34.4 442.7 5143 
46   Diemarden1 abandoned 57.1 150.3 1269 
88   Weende abandoned 45.9 0.0 452 
90   Dahlenrode1 abandoned 42.8 77.8 2548 
116   Orxhausen abandoned 34.1 21.0 1000 
138   Wellersen1 abandoned 55.3 23.5 2527 
151   Langenholtensen1 abandoned 46.5 66.4 5560 
170   Elkershausen1 abandoned 72.0 0.0 2499 
177   Ossenfeld ost abandoned 42.2 37.7 2707 
3   Nikolausberg1 grazed 22.0 318.8 4444 
20   Bratental4 grazed 41.9 418.9 2324 
58   Dransfeld4 grazed 77.5 38.7 1325 
111   Bratental1 grazed 39.8 271.2 1556 
139   Denkershausen grazed 36.2 0.0 1645 
143   Oldenrode1 grazed 49.3 32.5 6875 
146   Nienhagen5 grazed 53.7 147.7 2236 
187   Scheden2 grazed 42.7 414.2 6843 
202   Herberhausen grazed 35.5 73.8 4790 
203   Hedemünden10 grazed 29.5 58.9 5613 
1   Tiefetal mown 25.7 43.9 3372 
2   Emmenhausen1 mown 42.9 18.7 4017 
11   Roringen1 mown 18.9 0.0 2114 
63   Varmissen1 mown 61.3 0.0 4385 
71   Friedland1 mown 47.1 305.2 835 
125   Andershausen2 mown 52.9 0.0 1663 
172   Hedemünden1 mown 8.9 151.8 2324 
178   Reinhausen3 mown 49.8 141.1 3138 
192   Langenholtensen2 mown 42.6 94.2 2476 
193   Portenhagen1 mown 59.0 180.1 3016 
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Table S4. Generalized linear models and linear models on the effects of landscape context (% arable land), 

connectivity (a connectivity index described by Hanski et al. (2000)) and management on the abundance and 

species richness of all nine taxa. Only variables included in the final models are shown. P-values < 0.05 are 

depicted in bold characters. 

Abundance                         
  Plants Bees Butterflies 
  Estimate SEM z  P Estimate SEM z  P Estimate SEM z  P 
Intercept         4.74 0.41 11.49 <0.001 5.23 0.35 14.81 <0.001 
% Arable land           -0.01 0.01 -1.78 0.075 -0.02 0.01 -2.76 0.006 
Connectivity                          
Management g-a         1.18 0.27 4.42 <0.001 -0.42 0.23 -1.83 0.159 
Management m-a         0.84 0.27 3.11 0.005 0.26 0.23 1.12 0.504 
Management m-g         -0.34 0.26 -1.29 0.399 0.68 0.23 3.00 0.008 
  Grasshoppers True bugs Spiders 
  Estimate SEM z  P Estimate SEM z  P Estimate SEM z  P 
Intercept 3.39 0.1537 22.06 <0.001 3.79 0.15 24.51 <0.001 3.7329 0.09657 38.656 <0.001 
% Arable land                           
Connectivity                          
Management g-a         -0.74 0.22 -3.31 0.003 -0.46 0.14 -3.25 0.003 
Management m-a         0.16 0.22 0.72 0.751 -0.18 0.14 -1.33 0.381 
Management m-g         0.90 0.22 4.03 <0.001 0.28 0.14 1.93 0.131 
  Rove beetles Hoverflies Leafhoppers 
  Estimate SEM z  P Estimate SEM z  P Estimate SEM z  P 
Intercept 3.10 0.25 12.27 <0.001 3.68 0.27 13.42 <0.001 5.84 0.18 32.75 <0.001 
% Arable land           0.02 0.01 2.78 0.005         
Connectivity  0.003 0.001 1.96 0.050                 
Management g-a                 -1.19 0.25 -4.70 <0.001 
Management m-a                 -0.68 0.25 -2.70 0.019 
Management m-g                 0.51 0.25 2.00 0.112 
  

 
                      

Species richness 
 

                      
  Plants Bees Butterflies 
  Estimate SEM z  P Estimate SEM z  P Estimate SEM z  P 
Intercept 4.00 0.15 26.8 <0.001 2.94 0.17 17.50 <0.001 2.54 0.11 23.58 <0.001 
% Arable land   -0.01 0.003 -1.871 0.061 -0.01 0.003 -1.84 0.066         
Connectivity                  0.001 <0.001 2.59 0.016 
Management g-a         0.31 0.11 2.81 0.014 -0.45 0.15 -3.08 0.013 
Management m-a         0.17 0.11 1.51 0.287 0.14 0.14 1.02 0.570 
Management m-g         -0.14 0.10 -1.34 0.373 0.59 0.15 4.07 0.001 
  Grasshoppers True bugs Spiders 
  Estimate SEM z  P Estimate SEM z  P Estimate SEM z  P 
Intercept 1.65 0.20 8.43 <0.001 2.53 0.09 28.24 <0.001 2.86 0.08 37.68 <0.001 
% Arable land   -0.01 0.004 -2.02 0.053                 
Connectivity                          
Management g-a         -0.31 0.14 -2.23 0.066 -0.31 0.12 -2.64 0.023 
Management m-a         0.08 0.12 0.68 0.774 -0.02 0.11 -0.22 0.975 
Management m-g         0.39 0.13 2.90 0.011 0.28 0.12 2.43 0.041 
  Rove beetles Hoverflies Leafhoppers 
  Estimate SEM z  P Estimate SEM z  P Estimate SEM z  P 
Intercept 1.49 0.12 12.54 <0.001 2.47 0.05 53.15 <0.001 2.93 0.07 40.23 <0.001 
% Arable land                           
Connectivity                          
Management g-a                 -0.35 0.11 -3.06 0.006 
Management m-a                 -0.10 0.11 -0.95 0.608 
Management m-g                 0.25 0.12 2.12 0.086 

 

 



CHAPTER 2 

 63 

References S1. 

Experts who provided information on habitat specialisation and literature used for 

classification of species into specialists and generalists. 

H. Nickel (Göttingen), leafhoppers 

M. Goßner (Fronreute), true bugs 

R. Theunert (Hohenhameln), bees 

Biedermann, R. & Niedringhaus, R. (2004) Die Zikaden Deutschlands - Bestimmungstafeln für alle 

Arten. WABV Fründ, Scheeßel.  

Hanski, I., Alho, J. & Moilanen, A. (2000) Estimating the parameters of survival and 

migration of individuals in metapopulations. Ecology, 81, 239–251.  

Krauss, J., Steffan-Dewenter, I. & Tscharntke, T. (2003) How does landscape context 

contribute to effects of habitat fragmentation on diversity and population density of 

butterflies? Journal of Biogeography, 30, 889–900.  

Meyer, B. (2007) Pollinator communities and plant-pollinator interactions in fragmented 

calcareous grasslands. Georg-August Universität, Göttingen,  

Wachmann, E., Melber, A. & Deckert, J. (2004) Wanzen 2 - Tierw. Deutschlds., 75: 1-294. 

Goecke & Evers, Keltern.  

Wachmann, E., Melber, A. & Deckert, J. (2006) Wanzen 1 - Tierw. Deutschlds., 77: 1-263. 

Goecke & Evers, Keltern.  

Wachmann, E., Melber, A. & Deckert, J. (2007) Wanzen 3 - Tierw. Deutschlds., 78: 1-272. 

Goecke & Evers, Keltern.  

Wachmann, E., Melber, A. & Deckert, J. (2008) Wanzen 4 - Tierw. Deutschlds., 81: 1-230. 

Goecke & Evers, Keltern.  

 



CHAPTER 3 

 64 

CHAPTER 3 

 

CORRIDORS RESTORE ANIMAL-MEDIATED 

POLLINATION IN FRAGMENTED TROPICAL 

FOREST LANDSCAPES 

 

 

 

 

 

Urs Kormann, Christoph Scherber, Teja Tscharntke, Nadja Klein, Manuel Larbig,Jonathon 

J. Valente, Adam S. Hadley, Matthew G. Betts 

 

 

 

 

 

 

 

 

To be submitted to Proceedings of the Royal Society B 



CHAPTER 3 

 65 

 
ABSTRACT 
Tropical biodiversity and associated ecosystem functions are heavily eroded through habitat 

loss. Animal-mediated pollination is required in >94% of higher tropical plant species and 

75% of the world´s leading food crops, but it remains unclear if corridors avert 

deforestation-driven pollination breakdown in fragmented tropical landscapes. Here, we 

use manipulative resource experiments and field observations to show that corridors 

functionally connect neotropical forest fragments for forest-associated hummingbirds and 

increase pollen transfer. Further, corridors boosted forest-associated pollinator availability 

in fragments by 14.3 times compared to unconnected equivalents, increasing overall 

pollination success. Plants in patches without corridors showed pollination rates equal 

tobagged control flowers, indicating pollination failure in isolated fragments. This indicates, 

for the first time, that corridors benefit tropical forest ecosystems beyond boosting local 

species richness, by functionally connecting mutualistic network partners. We conclude that 

small-scale adjustments to landscape configuration safeguard native pollinators and 

associated pollination services in tropical forest landscapes.  

 

Keywords: Animal-mediated pollination, Costa Rica, dispersal, ecosystem function, 

fragmentation, functional connectivity, pollen flow, pollinator limitation 
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INTRODUCTION  

In an era of rocketing human-driven habitat modification, maintaining biodiversity 

and ecosystem functions is increasingly at risk (1,2). Animal-mediated pollination is such a 

crucial ecosystem function, required in 87% of higher terrestrial plant species and 75% of 

the world´s leading food crops (3,4). Critically, loss of pollinator function through 

increased habitat conversion is of global concern (2,5,6), particularly in the tropics, where 

high rates of habitat loss and fragmentation coincide with an above-average proportion of 

angiosperms dependent on animal-mediated pollination (> 94% species; (3,7,8)). 

Breakdown of pollination mutualisms through habitat modification (i.e. habitat loss 

and fragmentation), can result from reduced availability of suitable pollen donors, degraded 

pollinator pools and restricted movement of pollinators, and subsequently reduced 

pollenflow between habitat fragments (the “pollinator-movement-hypothesis” sensu (9)). 

In turn, many animal-pollinated plants suffer from impaired sexual reproduction as a 

consequence of pollination limitation after habitat loss and fragmentation (6,10), thus 

filtering plant communities towards non-animal-pollinated species (6,11). 

Corridors may benefit pollination services by facilitating pollinator movement 

among habitat fragments, improved pollinator demography and higher availability of 

pollinators and outcross pollen (10,12–15). To date, however, it remains unexplored 

whether corridors affect animal-mediated pollination in tropical, highly biodiverse systems, 

which are of global conservation importance (7,16) 

Narrow wooded elements such as living fencerows and slender riparian buffers (< 

15m, see Fig. 1C) often constitute the only abundant wooded structures outside forest 

remnants in tropical agricultural landscapes worldwide(17). In Latin America, these 

structures are often retained by local landowners, mostly for agricultural purposes, and 

recent studies highlight their capacity to harbor a substantial proportion of tropical 

biodiversity (17,18). To date, however, it remains unclear if such elements increase 

connectivity for species associated with remaining tropical forest and whether this 

ultimately translates into the provision of ecosystem processes such as pollination (19) 

Here, we tested whether linear wooded corridors between tropical forest remnants 

enhance functional connectivity (20) for pollinators and subsequently, animal-mediated 

pollination. In our southern Costa Rican study area, only ~30 percent of the original forest 

cover persists – mostly in scattered fragments surrounded by pasture and coffee plantations 

(21). However, narrow linear wooded corridor elements are quite common (18). Previous 

work in the study region has reported that forest loss and fragmentation erode insect and 
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avian pollinator communities (22–24). We used hummingbird-mediated pollination as a 

model system, as birds may be powerful agents for connecting fragmented plant 

populations, given their large potential foraging distances (25). Between 18 to 34% of 

neotropical understory flowering plants show adaptations for hummingbird pollination 

(26,27), however the species richness of hummingbird pollinated flowers may be reduced 

in highly disturbed landscapes (11). Further, forest gaps appear to limit hummingbird 

movement (28), resulting in pollen limitation of the understory herb Heliconia tortuosa, the 

most common, long-blooming floral resource in the regional hummingbird-plant 

pollination network (24,29,30) 

We tested if narrow woody corridors affect animal-mediated pollination by using four 

complementary approaches: First, we experimentally assessed if living fencerows promote 

hummingbird foraging movement through deforested land, expecting that such an effect is 

more accentuated for forest specialists compared to habitat generalist species. For this, we 

traced foraging visits of whole hummingbird communities along experimentally 

manipulated resource gradients placed in paired corridor / non-corridor set-ups. Second, 

we tested if hummingbird-mediated pollen dispersal between neighboring forest fragments 

is stimulated by corridors compared to pastures, by quantifying the transfer of analogue 

pollen in replicated experimental setups. Third, we tested if corridors boost the occupancy 

of the two most abundant forest specialist and habitat generalist hummingbird species in 

pollinator-depleted forest fragments. Fourth, we evaluated whether corridors increase 

pollinationin H. tortuosa in small, pollination-depressed forest fragments.  

METHODS 

We conducted the study in Southern Costa Rica around the Las Cruces Biological 

Station (8°47N, 82°57W). The region was originally characterized by contiguous Pacific 

premontane humid forest, but massive deforestation since the 1950s resulted in a 

patchwork of forest fragments (900 – 1500m asl), ranging from <1 to >1000ha in size 

surrounded by pastures (> 90%), coffee plantations and human settlements. Details are 

given in (24).  

Pollinator movement  

We tested the corridor effect on hummingbird foraging movement by measuring 

foraging visits in two replicated, standardized food titration experiments between April and 

June 2012 (Fig. 1A). Food titration experiments are a method for measuring the motivation 

of organisms to move through a given habitat type under standardized conditions. 
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Standardization is accomplished by experimentally supplementing resources (e.g., food) 

across a suite of land cover types differing in hypothesized functional connectivity (31). 

First, we measured rates of hummingbird visits to artificial flowers placed according to two 

experimental titration treatments replicated 16 times at spatially discrete sites (Fig. S1A). All 

sites were composed of a central forest fragment surrounded by pasture and an adjacent 

living fencerow. Fencerows consisted of rows of remnant or planted trees (length: 182m 

±35; width: 1.2m ±0.2; height: 7.5m ±0.6, mean ± SE, Fig. 1C). Within each site, we 

applied two treatments (Fig. 1A): seven artificial flowers placed along the living fencerow 

(treatment: corridor) and seven directly in pasture (treatment: no corridor). In both 

treatments, the first two flowers were placed at the forest edge, followed by five 

consecutive flowers placed in a line 10m apart, thus representing a crossed 

‘treatment*distance’ design. Treatments within sites were >150m apart. To limit potential 

confounds, existing flowers along the treatments were removed or covered with mesh bags 

to render them unavailable during the experiments.  

Artificial flowers consisted of 50 ml Falcon tubes equipped with a red plastic flower 

and a straight tubular ‘corolla’, mimicking a highly attractive ornithophilous flower with 

constant nectar supply (Fig. 1D). Although of high resource quality, these flowers are 

assumed not to substantially alter hummingbird foraging behavior, that is hummingbirds 

maintain typical behaviour such as traplining despite feeder presence (pers. obs. UK, ASH, 

MGB). 

Feeders were constantly available during five successive days per site, and daily 

refilled with 10% saccharose nectar. After three days of habituation, two observers visited 

each site on day four and five of exposure to visually quantify hummingbird visits during 

peak hummingbird activity (between 0530 – 1000 and 1430 – 1800) for a total of 40 

minutes per feeder. Treatments were randomly assigned to observers on day four and 

assignment changed on day five. We statistically analyzed the six most common species (> 

30 observations), which resulted in sufficient data for four forest-associated hummingbird 

species and two habitat generalist species, which also occur in open habitats (Table 1). 

Habitat affiliation was determined based on previous work in the region (30,32), field 

guides (33) and per. observations (UK, ASH, MGB, pers. obs.).  

Further, we conducted a second experiment at seven additional sites using the same 

design as above, but with experimental, live plants of H. tortuosa in lieu of artificial flowers. 

H. tortuosa requires visits of long-distance traplining hummingbird species with specialized 

bills for successful sexual reproduction (24,34), butpollen tubes can be initiated both by 
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self- and outcross pollen (partial self-compatibility;(34)). Individual H. tortuosa plants 

bloom for several month, but individualflowers are only open and pollen receptive for a 

single day before abscising, after which an indicative colour change occurs. Although H. 

tortuosa is mostly found in forest, it can thrive in open areas such as pastures and readily set 

seed given sufficient pollination (e.g.(34), pers. obs. UK). For each site, we selected 14 

plants with 4 - 6 flowers in the central forest patch, and transplanted them into the adjacent 

pasture. Importantly, nectar volume and sucrose concentration of bagged control flowers 

did not differ between transplanted corridor and pasture flowers (volumetwo-way 

ANOVA, F1,26 = 0.052, P = 0.822; sucrose two-way ANOVA : F1,26 = 0.462, P = 0.503). 

 
To quantify pollinator visits, we visited treatments on day four and five after plant 

transplantation between 0530 – 0930am, for a total of 40 minutes of observation per plant 

(2*20min). In addition, we collected 280 day-old styles from the exposed plants (mean = 

 
 

Fig.1:A) Experimental design to test the effects of narrow wooded corridors on hummingbird movement 

through pasture. Sites consisted of forest patches sourrounded by pasture and a living fencerow (‘corridor’, 

light green). Experimental food resources (artificial flowers or live H. tortuosa plants) were placed at 0 to 50 

m distance from the forest edge, at 10m intervals, along pasture or along the corridor. B.) Experimental 

design used to assess hummingbird-mediated pollen transfer between forest fragments. Sites had two forest 

patches surrounded pasture, connected by a living fencerow (‘corridor’, light green). A central artificial 

flower treated with pollen analogue (‘pollen donor’, d) was encircled by three ‘pollen receiver’ flowers 

placed at equal distances (arrows). ‘Pollen receivers’ differed in the type of intervening land cover to the 

‘pollen donor’: forest (f), corridor (c) or pasture (p). C) Slender woody corridor (living fencerow) used in 

this study. D) Hummingbird (Heliomaster longirostris) visiting an artificial flower. 
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3.42 styles per plant collected during at least two days) identified by indicative colour 

change according to (34) and (24). We determined pollen tube growth with epifluorescent 

microscopy (sensu (34), SI 2 for details ).  

We provide a statistical overview with methodological details in Table S1. We 

analyzed hummingbird visits at artificial and planted flowers, and number of pollen tubes 

observed per style with mixed Bayesian, Generalized Additive Models for Location, Scale 

and Shape (BGAMLSS (35)) implemented in BayesX (36) This method allowed us to (i) 

take into account the hierarchical data structure, (ii) incorporate the spatial dependency of 

neighboring flowers (serial autocorrelation) by a smoother, (iii) model the nonlinear effect 

of distance to forest via a nonparametric function for distance and (iv) to model the 

detected zero-inflation and/or overdispersion in the dependent variable (see SI 1 for 

details). We first selected the adequate response distribution by choosing among Poisson, 

zero-inflated Poisson (ZIP), negative binomial (NegBin), and zero-inflated negative 

binomial (ZINB) based on quantile residual-plots of the full model. Full models included 

corridor (linear), distance to forest (nonparametric) and their interactions as fixed factors, 

as well as Treatment nested within Site as random factor (further details on predictor 

specifications in S1). Second, we followed (35) to identify the relevant predictors by 

comparing models with all possible variable combinations, using the deviance information 

criterion (DIC, a Bayesian analogue of AIC) and significance values of parameters to 

determine the top candidate models (ǼDIC < 5). More details on model specifications 

and selection are given in S1 and Table S1. 

Pollen movement 

To test if corridors facilitate hummingbird mediated pollen flow between 

neighboring forest fragments, we tracked pollen transfer among artificial flowers using 

fluorescent dye as a pollen substitute (37) Fluorescent dyes have been shown to accurately 

mirror pollen movement by hummingbirds (38) and plant gene flow (37). In April and May 

2013, we established a pollen tracking experiment in 14 replicated landscapes, each with 

two neighboring forest fragments surrounded by pasture (Fig. 1B and Fig. S1B). Both 

fragments were connected by a living fencerow (corridor), ranging in length from 40 to 

120m. A central artificial flower was placed in the first fragment at the beginning of the 

corridor, the ‘pollen donor’. Three ‘pollen receiver’ flowers encircled the donor at equal 

distances (i.e. the length of the corridor): the ‘corridor flower’ at the corridor end in the 

second fragment, the ‘pasture flower’ also at the edge of the second fragment, but isolated 

from the donor by pasture, and the ‘forest flower’ at equidistant position inside the first 
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forest fragment. Pastures were virtually free of floral ressources. All feeders remained 

operative for ~96 hours, and were equipped on day three with filaments and the donor 

additionally with yellow fluorescent dye (RadgloR, Radiant Color, Belgium). After 24 h of 

exposure, filaments were collected, replaced by clean filaments for 24 hours, and dye 

reapplied. We then photographed the collected filaments under UV-light and used 

automated image analysis to count the number of pollen particles on filaments (function 

“AnalyzeParticle“ in ImageJ, (39), following (40)). We used generalized linear mixed models 

(41) with a negative-binomial distribution in R (3.0.3 beta) and stepwise backwards model 

selection based on AICc to identify the best fitting model (Table S1). The full model 

contained the number of deposited pollen particles as a function of distance to the dye 

source, intervening cover type (treatment) and their interaction. Flower position was nested 

within ‘site’ as a random factor. Multiple comparisions among treatments types were done 

using Tukey’s pairwise comparisons (glht function(42)). 

 

 

Pollinator presence in forest fragments 

To test if corridors increase pollinator availability in pollinator-depauperate forest 

fragments, we assessed the presence of the two most common hummingbird species, the 

highly mobile, but forest restricted P. guy (forest specialist) and the habitat generalist A. 

tzacatl. For this, we selected 26 small forest patches (2.23ha ± 1.29 SE, Fig. S1C), as 

previous studies in the region indicated strongly reduced hummingbird communities and 

abundances in small forest fragments (24). Patches represented a gradient in the number of 

corridor connections to other forest patches ([0-3], CORRIDOR). Corridors were 1-2 

trees wide, and either living fencerows or slender riparian buffers. Fragments were not 

connected to other forest fragments by any additional riparian strips, that is, all 

connecting corridors per patch were included in the design. Patches were selected based 

on aerial images and corridor integrity later verified in the field. For each patch, we 

measured patch size (SIZE), proportion of forest within a 250m radius of the patch 

centroid (PROPFOR) and altitude (ALT) based on existing digital forest cover maps (24).  

In 2012, we visited each forest fragment and assessed presence/absence of both 

hummingbird species visually and acousticallyat three haphazardly placed point count 

locations inside the forest (radius 25m, count duration 12 minutes). We detected P. guy and 

A. tzacatl during 35% and 60% of all point counts respectively (n = 78), corresponding to 

15 (58%) and 21 (80%) of all patches, respectively. We then used an occupancy modeling 
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approach  (43) to evaluate the effect of the explanatory variables (CORRIDOR, SIZE, 

PROPFOREST, and ALTITUDE) on patch use by each species while simultaneously 

accounting for detection probability. Points within patches were treated as spatial 

subsamples of the patch, and this sampling approach should yield unbiased occupancy 

parameter estimates for highly mobile species such as hummingbirds (44). All covariates 

were standardized by subtracting the mean and dividing by the standard deviation before 

inclusion in the models. We selected the single best combination of explanatory variables 

for each species by starting with a full model and using backwards variable selection based 

on AICc (Table S1). Because previous work indicates that individuals that utilize multiple 

forest patches may spend more time in the larger ones, we also included patch size as a 

covariate for detection probability in all models. 

Pollination success 

To test if enhanced hummingbird movement afforded by corridors subsequently boosted 

pollination, we assessed pollination rates in naturally occurring H. tortuosa in fragments 

differing in their connectivity. For this, we selected 13 small forest fragments (AREA: 

1.03ha ± 0.43, Fig. S1D, Tab. S8) surrounded by pasture and connected to neighbouring 

forest fragments by zero, one or two corridor elements (CORRIDOR). Again, linear 

corridor elements were either living fencerows or slender riparian buffers, ranging from 

one to two trees in width. In May 2013, we sampled ~20 one day old flowers per fragment 

(mean per fragment ± SD = 18.58± 2.39, following (24)) and systematically recorded H. 

tortuosa density per patch (FLOWER). We then determined the distance to the next forest 

>5ha (DISTANCE) and proportion of forest as described above (PROPFOREST). 

Pollination was then assessed for every flower by the presence of pollen tubes (see 

Supporting Methods S2). Of 238 collected H. tortuosa styles, 59 were pollinated (mean per 

fragment± SD = 26.46% ± 16.32). As a pollinator exclusion control, we further bagged 5-6 

inflorescenses in four sites with mesh bags and subsequently collected two one-day old 

flowers from each inflorescence (42 flowers in total). We then analyzed the proportion of 

styles with pollen tubes per patch using logistic regression with a binomial error structure in 

R (glm, (45)), including CORRIDOR, AREA, FLOWER, DISTANCE and 

PROPFOREST as explanatory variables. Here, we used stepwise model selection based on 

AICc to identify the best fitting model (Table S1). 
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RESULTS 

Pollinator Movement 

We quantified hummingbird visits at artificial flowers over a total of 1280 minutes. 

We analyzed the six most common species (n > 30 observations/ species) that accounted 

for 98.5% of all observations. During observation bouts all forest specialist individuals 

performed sequential foraging movement (traplining) along feeder transects; birds typically 

originated from the forest fragment, visited feeders sequentially, and returned to the 

fragment. In two cases we observed Green Hermits moving along the entire corridor, but 

starting from opposite direction. While the best-fitting additive model indicated that all 

four forest specialists visited more flowers along corridors (Fig. 2, effect significant in three 

of four species, P ���������7DEOH����7DEOH�6���7DEOH�6����ZH�GHWHFWHG�QR�FRUULGRU�HIIHFW�IRU�

the two habitat generalists (Fig. 2, Table 1, Table S1, Table S2). Further, visitation rates for 

all species showed significant and strong decays with increasing distance to forest (Fig. 2, 

Table S1, Table S2). An exception was the species most strongly affiliated with open land 

((30), (32)), Heliomaster longirostris, which showed a unimodal activity pattern peaking at 

intermediate distances to forest. 

 
Fig. 2: Effect of corridors and habitat preferences on hummingbird foraging movement through deforested 

habitat, to visit artificial resources placed at increasing distances to the forest edge. Shown are predicted 

visitation rates for four forest species without corridors (A) and along corridors (B), and for two habitat 

generalists along corridors (C) and without corridor (D). Visitation rates are scaled to [0,1] per species and 

based on the best fitting models. Numbers in the legend show the number of observed visits per species. 
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Next, in addition to counting visits to feeders, we examined hummingbird visits to 

experimental plants over 560 minutes (28 observation periods), resulting in a total of 37 

visits by the primary pollinator P. guy and only 4 by C. hemileucurus. Therefore, we analyzed 

only P. guy visits. Frequency of visits to artificial flowers were significantly greater along 

corridors (P = 0.008) and significantly decreased with increasing distance to forest (Table 

S2, Fig. S2). Also, the number of pollen tubes per style decayed significantly with increasing 

distance to forest, and tended to be higher along corridors (P = 0.12, n = 280 styles, Table 

S2, Fig. S1).  
 

Table 1: Linear effects (intercept and corridor) on predictors for visits of six hummingbird species at artificial 

flowers, based on the best fitting Bayesian model. Shown are posterior means (mean), lower 2.5% credible 

interval (p2.5) and upper 97.5% credible interval (p97.5). Significance (Sign.) indicates if the 95% credible 

interval includes 0 or not.  

 mean p2.5 p97.5 Sign. 
P.  guy 
Intercept -2.040 -2.989 -1.255 0 
Corridor 1.380 0.448 2.384 0.005 
C. hemileucurus     
Intercept -10.945 -20.791 -5.324 0 
Corridor 7.851 2.185 17.736 0.002 
H. jacula     
Intercept -3.528 -4.990 -2.284 0 
Corridor 1.002 -0.588 2.629 0.208 
L. castaneoventris     
Intercept -4.240 -6.177 -2.698 0 
Corridor 1.650  0.699  2.674 0.005 
A. tzacatl     
Intercept 0.036 -0.487 0.467 0.240 
H. longirostris     
Intercept -2.168 -3.509 -1.004 0.005 

 

Pollen movement 

The best model contained additive effects of “treatment” and “distance” only. Even 

though pollen was transferred up to 120m between feeders in some cases (Fig. 3), we 

found that the number of dye particles transferred decreased by a factor 9.92 (95% CI = 

[1.69 - 57.98]) along the 40 - 120m distance gradient (Fig. 3.; GLMM: z = -2.03, P = 0.042). 

While corridors and forest did not significantly differ in their permeability for 

pollen (P = 0.13; Table S3), pasture strongly impeded pollen transfer relative to corridor 

and forest treatments (Fig. 3; P = 0.00 each; Table S3). However, this compensation effect 

of corridors decreased with increasing distance between fragments (Fig. 3; Table S3).  



CHAPTER 3 

 75 

 
Fig. 3: Pollen transfer between artificial flowers with interjacent forest, corridor or pasture. Shown is the 

mean number of artificial pollen particles as a function of the distance to the pollen source and intervening 

cover type. Pollen transport decreased with increasing distance between feeders (P = 0.04) and was higher 

between feeders with interjacent forest (P< 0.0001) or corridors (P = 0.0003) compared to pasture. Circles 

represent data points. 

 

Pollinator presence in forest fragments 

The number of corridor connections to other forest patches was the only 

explanatory variable remaining in the best occupancy model for P. guy (Table S5, Fig. 4b). 

In contrast, the intercept-only occupancy model was chosen for the habitat generalist A. 

tzacatl (Table S5). Corridors substantially boosted P. guy occupancy rates in forest 

fragments (Figure 4), as the probability of use significantly increased by a factor 14 from 

nearly 0 in isolated patches (=0.14, 95% CI = [0.02 - 0.60]) to nearly 1 in patches with 3 

corridors (=0.98, 95% CI = [0.50- 1.00]). Indeed, we did not observe any P. guy during 

point counts in isolated patches (n = 4). These results not only suggest that corridors 

increase the patch use of the forest specialist pollinator, but that perhaps there may be a 

threshold in connectivity below which this species does not visit fragments. 
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Pollination success 

Paralleling the effect on the main pollinator, P. guy, connectivity to forests by 

corridors was the only variable that determined the proportion of pollinated flowers (Table 

S6). Pollen tube growth, the first critical step in successful fertilization, was significantly 

enhanced by corridors (Fig. 4B, GLM: z = 3,358, P = 0.000); the fraction of styles with 

pollen tubes was 5.66 times higher (95% CI = [4.32 - 7.01]) in patches with two corridors 

compared to isolated patches. Importantly, pollen tube growth rate in isolated patches was 

not different from bagged control flowers, suggesting a breakdown of the pollination 

mutualism in isolated patches (proportion of styles with tubes for isolated vs. bagged: 0.091 

vs. 0.077, GLM: z = -0.220, P = 0.826). This indicates that connectivity via the presence of 

corridors therefore not only strongly enhanced pollination rates, but also rescued plants in 

small patches from pollination failure. 

 
Fig. 4: Corridors and their effect on pollinator patch use (A) and subsequent pollination success (B) in small 

Costa Rican forest fragments. A.) Occupancy for the most common bird pollinator – P. guy strongly 

increased with increasing number of corridors connecting the fragment to a large forest (n = 26 fragments, P 

< 0.05). Shown are predicted occupancy values (black dots) and associated confidence intervals (bars). Red 

triangles represent naïve occupancy estimates (detection probability = 1), jittered circles show data points. (B) 

Pollen tube growth , measured as the proportion of flowers per forest fragment with pollen tubes, also 

significantly increased with the number of corridors (n = 13, P< 0.000, mean number of pollen tubes 

collected per fragment ± SD = 18.58 ± 2.39). Error bars show the 95% prediction intervals, jittered circles 

represent data points. 

 

 



CHAPTER 3 

 77 

DISCUSSION  

Our study provides four complementary lines of evidence for consistent and 

positive corridor effects on animal-mediated pollination in tropical landscapes: Corridors 

strongly enhanced (i) movement of habitat specialist hummingbirds and (ii) pollen transfer 

through highly modified farmland, and subsequently boosted (iii) pollinator patch 

occupancy and (iv) pollination rates. Overall, our experiments consistently suggest that 

simple wooded corridors canavert the breakdown of pollination mutualisms in tropical 

habitat fragments by restoring functional connectivity for mobile mutualism partners.  

Pollinator movement  

In accordance with our prediction, corridor effects on pollinator movement depended on 

habitat specialization: Structurally contrasting vegetation (pasture) strongly impeded 

foraging movement in all forest specialists but not for any habitat generalist hummingbirds.  

Similarly, we found that corridors enhanced movement of habitat specialists but not 

generalists. In particular, the pattern seen at the experimental heliconias mirrored exactly 

those seen at experimental flowers. 

These results corrobate previous studies which showed that forest specialists, in 

contrast to habitat generalists, (i) generally show a poor capacity to move between forest 

fragments (46), and are (ii) more dependant on corridors to move through highly 

fragmented habitats (47). However, this study provides, to our knowledge for the first time, 

experimental evidence that corridors facilitate movement of forest dependent pollinators 

across tropical landscapes. 

Pollen movement 

We found evidence that pastures strongly impede pollen transfer for hummingbird 

pollinated flowers, but that corridors can substantially bolster this detrimental effect. 

However, positive corridor effects on pollen transfer appear to dampen with increasing 

distance. That is, at high inter-patch distances (e.g., > 120m), corridors are unlikely to 

maintain sufficient pollen flow to guarantee high connectivity among plant populations. 

The observed pollen flow pattern is consistent with the pollinator movement hypothesis(9), 

i.e. the idea that non-suitable habitat (matrix) significantly hamper pollen transfer by 

habitat-restricted pollinators, but that even narrow corridors can significantly facilitate 

foraging movements and therefore functional connectivity through these areas. 

Alternatively, differences in pollen transfer may also result from different hummingbird 

species visiting corridor and pasture feeders. Nevertheless, the realized net pollen transfer 
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clearly differed between corridors and pasture. Thus, our results support the idea that plant 

gene flow through habitat-restricted pollen vectors can be drastically limited in highly 

modified landscapes (14,28).  

Pollinator presence in forest fragments 

Consistent with the strong effect of corridors on specialist movement, corridors 

were important drivers of within-patch specialist but not generalist presence in forest 

fragments. Indeed, P. guy appeared to be virtually absent from unconnected patches. This 

species is thought to be a key pollinator in the local hummingbird-plant pollination 

network, pollinating up to 35% of all hummingbird pollinated plant species in the region 

and elsewhere (30), so its absence may have potential negative consequences for the 

structure of the entire pollination network. Although recent findings suggest pollinators 

may shift their realized niche in absence of competing species and thus partly compensate 

for pollinator extinctions (48), this was not the case in our study system; apparent local 

extinction of P. guy in isolated patches was paralleled by nearly a complete breakdown of 

pollination in H. tortuosa, which was not ameliorated by the availability of the habitat 

generalist pollinator. Fortunately, our results show that potential perturbations to the 

network may be moderated by the maintenance of narrow wooded corridors. 

Pollination success 

A striking result of this study is that small-scale configurational landscape 

adjustments (wooded corridors) can benefit biodiversity in highly disturbed tropical 

landscapes beyond simply boosting local species richness (18,49) and movement (47), but 

have benefits to ecosystem functioning (19). Previous empirical studies have found that 

various animal taxa responsible for ecosystem functions increased along narrow corridors 

in fragmented systems (12,15,49). In contrast, our study is to our knowledge the first 

showing that simple wooded corridors may not only benefit biodiversity by providing 

additional habitat and movement conduits, but that these elements have the potential to 

functionally connect otherwise spatially isolated partners in a mutualistic network.  

Pollinators with strong edge avoidance behavior are unlikely to use narrow 

corridors (47). Therefore, in instances where such edge-avoidance behavior exist in native 

pollinators, conserving interactions will ultimately require the conservation of large pristine 

habitat patches (16). Overall, these results highlight the need to maintain movement of 

mobile, “linking“ species sensu (1) to ensure the persistence of pollination mutualisms in 

spatially structured, human modified landscapes. 
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CONCLUSIONS 

The broad consistency of outcomes among our approaches suggests that simple 

wooded corridors can reduce deforestation-driven breakdown of pollination services by 

boosting landscape connectivity for pollinators and subsequently pollen flow for animal-

pollinated plants. However, we note that our findings may also apply to other organism 

groups that disperse along corridor elements, potentially providing other ecosystem 

services. Our results thereforemay have broad implications for the conservation of 

ecosystem services in tropical landscapes in general. So far, wooded corridor elements have 

remained abundant in many tropical farmland landscapes (50,51)and appear to be widely 

accepted by farmers(17). 

However, as tropical forests are the globally most important source of new 

agricultural land (Gibbs et al. 2010), quick action will be required to avert the disappearance 

of corridor elements between fragments. If this suggestion is not followed, then there will 

be substantial losses of connectivity between forest fragments, leading to accelerated 

biodiversity loss. 

Complementary to large-scale conservation strategies (i.e.,formally protected areas), 

small-scale improvements in landscape connectivity (via simple corridors) constitute low-

cost – big-gain tools to conserve biodiversity and ecosystem processes in tropical 

landscapes. 
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SUPPORTING INFORMATION 

SI Methods 

SI 1: Statistical analysis of pollinator visits and pollen tube growth in the titration 

experiments 

The following text provides an intuitive description why and how we applied BAMMLSS 

to analyse the titration experiments. For further reading (particularly for people interested 

in the methodological background), we provide referencesat the end of SI1.  

We start by giving four reasons why we opted for choosing BAMMLSS (Bayesian 

Additive Mixed Model for Location, Shape and Scale) instead of a GLMM: 

 First, BAMMLSS allows the predictor to be either linear (like in a GLMM) or 

nonlinear. In our particular situation, this means that we can estimate the effect of 

„distance“ as either a linear or a semiparametric function based on a linear combination of 

flexible Basis functions. Compared to a linear estimation of a certain effect (as in GLMMs), 

using a nonparametric estimation has the advantage that it allows the effect of a predictor 

“to change along its range in a smooth way”. Note that the predictoris NOT to be 

confounded with the predicted values. 

 
Fig SI 1-1: The clearly non-linear effect of distance on the predictor (solid line), that is, f(distance) for P. guy 

and H. longirostris. The solid lines indicates the effect of distance on the predictor, the grey areas indicate the 

corresponding 95% credible intervals. A straight line would suggest that a linear predictor would be sufficient.  
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In our case, the clear non-linear trend of distance on the predictor was found in 

several species (P. guy,H.  longirostris, Fig. SI 1-1), thus making a linear model NOT 

sufficiently flexible to model the data.  

Second, we expected thatexperimental flowers placed at neighbouring distances 

show similar number of pollinator visits, and not to see an abrupt change in pollinator 

visits (i.e. serial correlation of pollinator visits). Smoothness of the effect of distance is 

achieved by the prior on the regression coefficients with second order difference matrix as 

precision. Additional variances (estimated with additional hyperprior) control the 

penalisation between neighbouring coefficients and the fit to the data. This replaces the 

implementation of a serial correlation structure (which would be required in most GLMM 

applications).  

Third, adding the "LSS" gives the possibility to explicitly account for zero-inflation 

and overdispersion in the response variable. This substantially improved model fits for L. 

castaneoventris , H. longirostris, P.guy visits to H. tortuosa and H.tortuosa pollen tube growth. 

Thus, we clearly required a method capable of performing Poisson, Negative binomial, 

Zero-inflated Poisson and Zero-inflated Negative binomial models. 

Forth, our experimental setup is clearly hierarchical, given that treatments are 

nested within sites. Thus, we required a method which can incorporate a hierarchical 

random effects structure.  

We are not aware of any frequentist (maximum likelihood-based approach) that 

would allow to include all the four requirements simultaneously. Therefore, we have 

chosen Bayesian inference ("B"), namely the BAMMLSS framework. 

The analysis process and the model selection for the Bayesian, Generalized 

Additive Models for Location, Scale and Shape (Bayesian GAMLSS) followed the 

procedure described in (1) This approach aims to identify sparse and parsimonious models 

and includes two successive steps. First, we selected the adequate response distribution for 

each species separately (also for the pollen tubes), choosing among Poisson (Pois), zero-

inflated Poisson (ZIP), negative binomial (NegBin) and zero-inflated negative binomial 

(ZINB). This was done via visual comparison of quantile residuals of the full models. 

Predictor variables for the full models were: corridor, distance to forest and their interaction as 

fixed factors, corridoras linear effect with effect (-1/1) coding, and distance to forest and the 

corridor*distance to forest interactions as non-parametric effects. Nonparametric effects were 

estimated based on Bayesian P-splines (2) of degree three and with 20 inner knots (3). 

Further, Treatment nested within Site was treated as random factor using the multilevel 
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framework recently developed in (4)ZIP and ZINB models additionally included Site as 

random factor in the zero-inflation part of the model. Second, we identified the relevant 

predictors for hummingbird visits and tubes, respectively. We then challenged models with 

all possible variable combinations including a null model, using the deviance information 

criterion (DIC)(5). The DIC is a commonly used criterion in hierarchical Bayesian model 

selection, and corresponds to the AIC but for Bayesian models. The lower the DIC; the 

better the predictive performance of the corresponding Bayesian model. In our case, the 

best modelswere those with the lowest DIC and a ǻDIC > 5 to all alternative models. 

When multiple models shared the top 5 DIC range, we excluded models with non-

significant effects (i.e., those where parametric or nonlinear effects included zero in their 

95% credible interval or simultaneous 95% credible band, respectively (6)). For the 

generalist species H. longirostris, however, we retained an only marginally significant distance 

effect in the best model, as the null model showed ǻDIC > 5. Models were run with 20000 

burn in, 100000 full iterations, a thinning parameter of 100 and proved stable across 

different seeds.   

We further tested the sensitivity to prior settings and alternative model 

formulations; as usual in additive regression models, nonparametric terms are regularized 

by an additional penalty term, thus imposing a certain degree of smoothness (7). Since we 

used a Bayesian approach, the corresponding penalty term was replaced by appropriate 

prior choices for the regression coefficients of nonparametric terms (8). Specifically, we 

used inverse gamma priors for smoothing variances with parameters a = 5 and b = 0.001. 

To check for prior sensitivity, we also we also applied less informative inverse gamma 

priors with parameters a = b = 0.001 for the smoothing variance, but this yielded 

qualitatively similar results. For the NegBin and the ZINB models, we additionally ran 

models where the dispersion parameter was a function of corridor or distance to forest, but this 

did not yield qualitatively different results and did not improve model fit.  

Literature:  

1.  Klein N, Kneib T, Lang S. Bayesian Generalized Additive Models for Location, 
Scale, and Shape for Zero-Inflated and Overdispersed Count Data. J Am Stat Assoc. 
Taylor & Francis; 2015;110(509):405–19.  

2.  Brezger A, Lang S. Brezger , Langௗ: Generalized structured additive regression based 
on Bayesian P-splines Projektpartner Generalized structured additive regression 
based on Bayesian. Comput Stat Data Anal. 2003;321.  
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SI 2: Pollen tube laboratory methods, adapted from (9) 

Pollen tubes are the first critical step in sexual plant reproduction and have been 

used widely to determine pollination success (10). We collected styles of abscised H. tortuosa 

flowers one day after blooming and fixed them in Formalin Aceto-Alcohol Solution (FAA) 

for >24 hours. For further lab analyses, we stored the styles in 40% Ethanol. Only one 

observer (Felix Klaus), naïve to treatment, then continued to examine the styles. Styles 

were stained with aniline blue dye following the methods of (2). Styles were then rinsed in 

distilled water for 24 hours, followed by soaking in an 8 M solution of sodium hydroxide 

(NAOH) for 24 hours. Then, styles were rinsed in two subsequent baths of distilled water 

for 48 hours. We then soaked the styles in a 0.05% solution of aniline blue for at least 6 

hours. We mounted the styles on slides using a drop of aniline blue dye and flattened them 

under a coverslip. Styles were then examined, again only one observer (Felix Klaus) naïve 

to treatment, by using an epifluorescence microscope for the presence of pollen tubes.  

Literature:  

1.  Hadley AS, Frey SJK, Douglas Robinson W, John Kress W, Betts MG. Tropical 
forest fragmentation limits pollination of a keystone understory herb. Ecology. 
2014;95(8):2202–12.  

2.  Kearns CA, Inouye DW. Techniques for pollination biologists. University Press of 
Colorado; 1993.  
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SI Figures : Maps of experiments and observational sites.  
 

 
 
Fig. SI A. Map showing the sites where hummingbird movement experiments were performed (n = 16, 

indicated by a green circle with central dot). Each site included a paired corridor and pasture. The red 

polygon depicts the perimeter of Las Cruces. 
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Fig. SI B. Map showing the sites where pollen transfer experiments were conducted (red dots, n=14). Each 

site had all three treatments (corridor, forest and pasture). The red polygon depicts the perimeter of Las 

Cruces. 
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Fig. SI C. Map showing the forest fragments where pollinator availability surveys were conducted (green 

squares with central dot, n = 26). The red polygon depicts the perimeter of Las Cruces.  
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Fig. SI D.Map showing the forest fragments where pollination success of Heliconia tortuosa was measured (red 

squares, n = 13). The red polygon depicts the perimeter of Las Cruces. 
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Figure S2: 

 

 
 
Fig. SI2: Effect of corridors on (A) on movement of the forest hummingbird P. guy through deforested 

habitat to visit planted H. tortuosa flowers placed at increasing distances to forest edges and (B) on pollen 

tubes per style found within these flowers. Visitation rates (A) were significantly higher along corridors and 

decrease with distance to forest (P = 0.012). The number of pollen tubes per style (B) tended to be higher 

along corridors also (p = 0.12). Lines are are predicted visitation rates during 40 minutes of observation in (A) 

and the number of pollen tubes predicted per style in (B). Dots represent jittered datapoints. Both graphs are 

based on the best fitting Bayesian additive ZINB mixed model. 
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Table S1:Overview of the statistical methodology, the model selection procedure and implemented random 

factors used in this paper, 

 

 
* In addition to stepwise model selection, we used model averaging as an alternative way to identify important predictor 
variables. Both methods consistently identified the same predictor variables to be important.  

Analysis Statistical model Model selection Radom factor Remarks 

Pollinator 

movement: 

Visits at 

experimenta

lly placed 

feeders and 

flowers  

Mixed Bayesian, 

Generalized Additive 

Models for Location, 

Scale and Shape 

(BGAMLSS 

implemented in 

Software  BayesX ) 

Manual selection of 

informative predictors 

based on deviance 

information criterion 

(DIC, a Bayesian analogue 

of AIC) and significance 

values of parameters 

(details given in S1) 

Site A separate model was 

run for every 

hummingbird species.  

Pollen 

movement 

Generalized linear 

mixed models (function 

glmer, package lme4 

for R)  

Stepwise model selection 

based on second order 

Akaikes information 

criterion (AICc).   

Site *   

Pollinator 

availability 

Occupancy models in 

R 

Manuel stepwise variable 

selection using 

bootstrapped 95% 

confidence intervals 

Treatment nested 

within Site 

* 

Pollination 

success 

logistic regression with 

a binomial error 

structure (function glm 

in R, Crawley 2007) 

AICc based, automated 

stepwise model selection 

(function stepAICc, URL: 

http://wwwuser.gwdg.de/

~cscherb1/stepAICc.txt), 

Not necessary for 

glms due to a lack of 

hierarchical structure 

* 
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Table S2A: Summary for selection of models predicting visits at artificial flowers. Statistical significance is 

shown for models in a ǻDIC range of 5 and based on 95% credible intervals for the corridor effect, and 

simultaneous 95% credible bands for distance and distance*corridor. Significance levels: * = 95%; ns = not 

significant. The best models, used for predicting visitation rates in illustration 1, are indicated in grey. 

P. guy (forest species) based on Poisson distribution (n = 159)  
Model structure Distance Corridor Distance*Corridor DIC ǻDIC 
Distance + Corridor +Distance * Corridor * * ns 370.25 2.51 
Distance + Corridor * *   368.83 1.1 
Corridor       403.85 36.12 
Distance *     367.73 0 
Null Model       402.84 35.11 
            

H. jacula(forest species) based on Poisson distribution (n = 72) 
Model structure Distance Corridor Distance*Corridor DIC ǻDIC 
Distance + Corridor +Distance * Corridor ns * * 233.72 0 
Distance + Corridor       242.85 9.13 
Corridor       268.83 35.12 
Distance       243.16 9.44 
Null Model       268.48 34.76 
            

C. hemileucurus(forest species) based on Poisson distribution (n = 40) 
Model structure Distance Corridor Distance*Corridor DIC ǻDIC 
Distance + Corridor +Distance * Corridor * * * 128.35 0 
Distance + Corridor       139.46 11.11 
Corridor       143.2 14.85 
Distance       138.83 10.48 
Null Model       142.6 14.25 
            

L. castaneoventris(forest species)based on zero-inflated Poisson distribution (n = 37) 
Model structure Distance Corridor Distance*Corridor DIC ǻDIC 
Distance + Corridor +Distance * Corridor * * ns 124.14 0 
Distance + Corridor * *   124.65 0.51 
Corridor       145.11 20.97 
Distance       131.44 7.3 
Null Model       152.75 28.61 
            

A. tzacatl (habitat generalist) based on Poisson distribution (n = 431) 
Model structure Distance Corridor Distance*Corridor DIC ǻDIC 
Distance + Corridor +Distance * Corridor * ns ns 645.7 0 
Distance + Corridor * ns   649.17 3.47 
Corridor       670.94 25.24 
Distance *     648.84 3.14 
Null Model       670.85 25.14 
            

H. longirostris(habitat generalist) based on negative binomial distribution (n = 75) 
Model structure Distance Corridor Distance*Corridor DIC ǻDIC 
Distance + Corridor +Distance * Corridor ns ns ns 251.38 0.35 
Distance + Corridor ns ns   251.03 0 
Corridor       256.43 5.4 
Distance ns     251.14 0.11 
Null Model       257.66 6.62 
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Table S2B: Summary for selection of models predicting visits at transplanted H. tortuosa flowers by the main 

pollinator P. guy, and thenumber of pollen tubes per style in transplanted H. tortuosa plants, respectively. 

Statistical significance is shown for models within a ǻDIC range of 5 and based on 95% credible intervals for 

linear effects (corridor), and simultaneous 95% credible bands for nonlinear effects (distance and 

distance*corridor). Significance levels: * = 95%; ns = not significant. The best models are indicated in grey 

and were those predicting visitation rates in illustration 1. 

 

Model structure for predicting P. guy visits to H. tortuosa based on a zero-inflated Negative 
Binomial distribution 
Model structure Distance Corridor Distance*Corridor DIC ǻDIC 
Distance + Corridor +Distance * Corridor * * ns 85.98 0.00 
Distance + Corridor * * 

 
88.05 2.07 

Corridor 
   

95.51 9.53 
Distance * 

  
87.76 1.78 

Null Model 
   

92.97 6.99 
 

Model structure for predicting pollen tube growth in H. tortuosa based on a zero-inflated Negative 
Binomial distribution 
Model structure Distance Corridor Distance*Corridor DIC ǻDIC 
Distance + Corridor +Distance * Corridor ns ns ns 368.38 2.34 
Distance + Corridor * ns 

 
366.04 0.00 

Corridor 
 

ns 
 

379.69 13.65 
Distance * 

  
367.24 1.20 

Null Model 
   

380.60 14.57 
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Table S3A: Nonlinear effects (distance to forest and distance*corridor) on predictors for visits of six 

hummingbird species at artificial flowers, based on the best-fitting Bayesian model. Shown are posterior 

means (mean), lower simultaneous 2.5% credible interval (p2.5) and upper simultaneous 97.5% credible 

interval (p97.5) estimated at the six feeder distances. Significance (Sign.) indicates if the simultaneous 95% 

credible interval includes 0 (ns) or not (*). The corridor – distance interaction only remained in the best 

model for C. hemileucurus and H. jacula. 

 Effect of distance to forest  Effect of interaction:  
Corridor * distance to forest  

Distance to forest 
[m] 

mean p2.5 p97.5 Sign. 
 

mean p2.5 p97.5 
 

Sign. 
 

 P.  guy 
0 0.759 0.430 1.108 *     
10 0.235 -0.154 0.527 ns     
20 -0.097 -0.480 0.213 ns     
30 -0.252 -0.518 -0.051 *     
40 -0.310 -0.547 0.000 ns     
50 -0.335 -0.874 0.253 ns     
 C. hemileucurus 
0 7.928 2.109 18.510 * -7.671 -18.378 -1.815 * 
10 4.744 1.226 11.106 * -4.607 -11.038 -1.078 * 
20 1.571 0.374 3.707 * -1.541 -3.675 -0.370 * 
30 -1.590 -3.685 -0.438 * 1.530 0.360 3.648 * 
40 -4.747 -11.111 -1.221 * 4.606 1.103 11.035 * 
50 -7.905 -18.544 -2.044 * 7.684 1.750 18.373 * 
 H. jacula 
0 1.836 0.948 2.835 * -1.491 -2.617 -0.458 * 
10 1.098 0.571 1.708 * -0.886 -1.584 -0.262 * 
20 0.359 0.116 0.597 * -0.293 -0.567 -0.048 * 
30 -0.374 -0.593 -0.177 * 0.294 0.035 0.556 * 
40 -1.100 -1.699 -0.575 * 0.887 0.280 1.576 * 
50 -1.818 -2.833 -0.904 * 1.490 0.488 2.636 * 
 L. castaneoventris 
0  1.414 0.528 2.298 *     
10 0.638 -0.134 1.430 ns     
20 0.011 -0.794 0.700 ns     
30 -0.380 -1.085 0.241 ns     
40 -0.674 -1.391 0.050 ns     
50 -1.010 -2.551 0.500 ns     
 A. tzacatl 
0 0.340 0.158 0.525 *     
10 0.211 0.088 0.334 *     
20 0.074 -0.024 0.182 ns     
30 -0.069 -0.159 0.021 ns     
40 -0.210 -0.331 -0.087 *     
50 -0.346 -0.578 -0.115 *     
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Table S3A (continued) 

 Effect of distance to forest  Effect of interaction:  
Corridor * distance to forest  

Distance to forest 
[m] 

mean p2.5 p97.5 Sign. 
 

mean p2.5 p97.5 
 

Sign. 
 

 H. longirostris 
0 -0.535 -1.378 0.270 ns     
10 -0.125 -0.744 0.595 ns     
20 0.108 -0.321 0.740 ns     
30 0.195 -0.155 0.694 ns     
40 0.200 -0.399 0.805 ns     
50 0.157 -1.057 1.246 ns     

 
Table S3 B: Effects of corridor and distance to forest on predictors for a) visits of P. guy at experimentally 

placedH. tortuosa plants and a) number of pollen tubes per style in these plants. Shown are posterior means 

(mean), lower 2.5% credible interval (p2.5) and upper 97.5% credible interval (p97.5), based on the best 

fitting. Bayesian ZINB models. Simultaneous credible intervals are shown for distance to forest(p.sim.2.5 and 

p.sim.97.5). Significance (Sign.) indicates if the 95% credible interval includes 0 (ns) or not (*).  

 

a) P. guy mean p2.5 p97.5 Sign. 

Corridor -3.768 -5.883 -1.887 * 
Intercept 2.447 0.384 5.035 * 

Distance to forest  pmean p.sim.2.5 p.sim.97.5 Sign. 

0 0.690 0.012 1.326 * 
10 0.405 -0.006 0.799 ns 
20 0.127 -0.062 0.333 ns 
30 -0.143 -0.337 0.039 ns 
40 -0.408 -0.794 -0.006 * 
50 -0.672 -1.347 0.013 ns 

 
 

b) Pollen tubes pmean p.2.5 p.97.5 Sign. 

Intercept  -1.203 -2.001 -0.452 * 
Corridor  0.695 -0.033 1.420 ns 

Distance to forest pmean p.sim.2.5 p.sim.97.5 Sign. 

0 0.812 0.261 1.353 * 
10 0.487 0.151 0.814 * 
20 0.154 -0.041 0.326 ns 
30 -0.178 -0.385 -0.010 * 
40 -0.492 -0.808 -0.148 * 
50 -0.783 -1.357 -0.191 * 
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Table S4:Summary statistics of the top model for pollen transfer between forest fragments, based on 
generalized linear mixed models (negative-binomial distribution). Shown are parametes estimates and 
standard errors for the effect of distance between forest fragments and intervening land cover type (Corridor, 
forest or pasture) on the number of transferred pollen particles. Comparisions among treatment types are 
Tukey’s pairwise comparisons (glht function of the R package multcomp, Hothorn et al., 2008). 

 

Variable Estimate  SE z  p -value 

Intercept 6.48     1.09 5.94 0.00 

Distance -0.03 0.01 -2.03 0.04 
Corridor - forest == 0 -0.82 0.43 -1.93 0.13 
Pasture - forest == 0 -23.00 0.44 -5.28 0.00 
Pasture - corridor == 0 -14.80 0.41 -3.61 0.00 
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Table S5: Details of the top occupancy models selected for P. guy (forest specialist) and A. tzacatl (habitat 

generalist) sampled with point counts in small Costa Rican forest fragments. Note that all explanatory 

variables were standardized prior to inclusion in these models. 

 

Species Parameter Estimate SE Z p-value 

P. guy 
      

 
Occupancy 

    

  
Intercept 0.619 0.591 1.05 0.295 

  
Fence 1.492 0.758 1.97 0.049 

 
Detection 

    

  
Intercept 0.405 0.401 1.01 0.312 

  
Size -0.456 0.349 -1.31 0.192 

A. tzacatl 
      

 
Occupancy 

    

  
Intercept 1.61 0.591 2.72 0.007 

 
Detection 

    

  
Intercept 0.884 0.309 2.865 0.004 

  
Size -0.214 0.353 -0.607 0.544 
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 Table S6: Summary statistics of the best model for predicting the proportion of heliconia 
flowers with pollen tubes in small forest patches, based on logistic regression with a 
binomial error structure (glm). 

Variable Estimate  SE z  p -value 

Intercept -23.752 0.358 -6.636 0.000 

Corridor 0.957 0.222 4.258 0.000 
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Table S7A: Characteristics of forest fragments used to investigate the effect of corridors on pollinator patch 
occupancy.  
 
Site Corridor Size[ha] Altitude 

m.a.s.l. 
Proportion 

of forest 
1 0 1.1 1160 0.26 

2 0 1.7 1111 0.24 

3 0 1.8 850 0.29 
4 0 1.3 850 0.26 

5 1 3.2 1229 0.08 

6 1 1.7 1221 0.55 

7 1 0.8 1016 0.45 

8 1 3.5 1271 0.45 
9 1 4.9 986 0.18 

10 1 4.0 1226 0.13 

11 1 3.2 1141 0.19 

12 1 3.4 1304 0.52 

13 1 0.7 912 0.70 

14 1 3.3 1166 0.30 
15 1 1.1 1127 0.26 

16 1 1.1 1400 0.25 

17 2 1.4 1443 0.66 
18 2 4.2 1054 0.49 

19 2 4.6 1052 0.54 
20 2 1.7 1345 0.48 
21 2 2.8 1342 0.47 

22 2 1.0 1258 0.49 

23 2 1.1 1130 0.11 

24 2 1.3 1300 0.19 
25 2 2.5 950 0.42 

26 3 0.8 1141 0.23 

 
Table S7B: Pearson correlation coefficients of explanatory variables used to investigate the effect of 

corridors on pollinator patch occupancy (S7A).  

 
 Corridor Size Altitude PropFor 

Corridor 1.00 0.03 0.35 0.24 

Size 0.03 1.00 -0.02 -0.06 
Altitude 0.35 -0.02 1.00 0.08 
PropFor 0.24 -0.06 0.08 1.00 

 



CHAPTER 3 

 103 

 Table S7C: Forest fragments used to investigate the effect of corridors on pollination success of Heliconia 

tortuosa. Shown are the number of corridor elements per fragment, the number of styles sampled per fragment, 

the number of styles with pollen tubes. and the number of styles without pollen tubes. 
 

 

 

 

 

 

 
 

 

 

 

FragmentID Corridor Styles Pollinated NotPollinated 

1 0 21 0 0 

2 0 20 3 0 

3 0 19 2 0 

4 1 20 4 1 

5 1 20 4 1 

6 1 20 6 1 

7 1 17 1 1 

8 2 20 7 2 

9 2 16 4 2 

10 2 20 8 2 

11 2 14 7 2 

12 2 20 9 2 

13 2 15 6 2 
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ABSTRACT 

Tropical conservation strategies traditionally focus on large tracts of pristine 

tropical forests, but human-modified landscapes with small forest remnants may also 

sustain biodiversity. Here, we disentangled the effects of landscape composition (amount 

of forest) and configuration (fragment size) on bird communities, separating the 

distribution of old growth forest from secondary forest in a human-dominated landscape 

of southern Costa Rica. Utilizing point counts and stopping-rule based surveys, yielding 

6906 individual detections, we characterized the bird community in 49 forest fragments 

representing independent gradients in patch size and amount of forest in the surrounding 

landscape (forest cover within 1000m radius). While the entire bird community showed no 

change in species richness and total abundance among fragments, richness and abundance 

of forest birds decreased in secondary forest and near fragment edges. Forest species, in 

particular insectivores, strongly declined in small fragments - but only when the amount of 

old growth forest within the landscape dropped below a critical threshold of 22.6%. 

Further, bird communities had significantly reduced levels of ȕ-diversity in small vs. large 

patches - but only in landscapes with little old growth forest. Landscape-scale amount of 

old growth forest, but not overall forest cover or local patch size, was the most important 

driver of bird community shifts in small and large fragments. In conclusion, our results 

show that not the local area of forest remnants, but the landscape-level percentage of 

oldgrowth forest drives biodiversity conservation success. Secondary forests on their own 

are unlikely to sustain tropical avian biodiversity and at most play a subordinate role in 

shaping forest bird communities. Hence, retaining oldgrowth forest within human 

modified landscapes above a critical threshold level (~ 25%) is decisive for sustaining 

biodiversity friendly landscapes. 

 

Keywords: fragmentation, habitat configuration, habitat composition, threshold, ȕ-diversity, 

community dispersion, community similarity, Costa Rica, secondary forest 
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INTRODUCTION 

Across the globe, native habitats are converted into human-modified landscapes, 

largely because of rising demands for agricultural and industrial products (Foley et al. 2005, 

Dirzo et al. 2014). This process erodes biodiversity at alarmingly high rates (Dirzo et al. 

2014), particularly in tropical forest regions, which are among the global biodiversity 

strongholds (Gibson et al. 2011, Laurance 2013). Worldwide, more than 50% of the tropical 

or subtropical forest has been altered by humans (Laurance et al. 2014), up to 36% of these 

forests existing in 2000 may have disappeared by 2050 (Wright 2010, MEA 2005), and 

approximately 25% of the existing tropical rainforest already persists in fragments (Wade et 

al. 2003).  

While traditional approaches to conserving tropical biodiversity have primarily 

focused on large forest tracts only, recent strategies increasingly recognize the importance 

of biodiversity management in human-modified landscapes (Perfecto & Vandermeer 2008, 

Perfecto & Vandermeer 2010,Laurance et al. 2014). Human modified landscapes may still 

contain millions of hectares of small tropical forest remnants (Turner & Corlett 1996), and 

the hope is that biodiversity can be maintained by creating landscapes where productive 

land coexists with natural forests (Fischer et al. 2011, Tilman et al.2011). This idea is 

enticing, but the potential for such landscapes to maintain biodiversity has remained 

unclear and controversial (Phalanet al. 2011, Meloet al. 2013, Fischer et al.2014). Further, 

this potential may be exaggerated given the critical shortage of knowledge about how 

different aspects of human modified landscapes affect their conservation capacity (Melo et 

al.2013, Burivalova et al.2014). In particular, the relative importance of retaining mature 

forest, the contribution of landscape configuration or the risk of 

deforestation/fragmentation thresholds, remain largely unclear (Melo et al. 2013, Villard & 

Metzger 2014).  

Changes in landscape composition (the relative amount of different habitat types), 

represent the primary processes affecting biodiversity in human modified landscapes 

(Fahrig 2003). Understanding the importance of forest composition and amount remaining 

within human modified landscapes is vital (Fahrig 2003). Expansion of secondary forests in 

abandoned agricultural landscapes may mitigate the effects of past and current 

deforestation trends (Chazdon et al.2009, Meloet al.2013, Laurance 2013). Some studies 

have found that a large proportion of the original biota is maintained (Gardeneret al. 2010, 

Steffan-Dewenteret al. 2007), while others suggest that these represent an impoverished 



CHAPTER 4 

 107 

subsample with limited conservation potential (Gibson et al.2011). In addition, it has been 

hypothesized that the capacity of regenerating tropical forest to sustain native biodiversity 

may rely on sufficiently high amounts of old forest within the landscape, providing a rich 

species pool for colonization (Clough et al.2009, Melo et al.2013).  

Landscape configuration (the spatial arrangement of habitat) can also affect 

biodiversity and thus determine the effectiveness of human modified landscapes as 

biodiversity safeguards (Fahrig 2003). In human modified landscapes, a large proportion of 

habitat is often in close proximity to edges, potentially limiting their capacity to sustain 

edge-avoiding species (Taberelli et al.2010). In addition, much remnant forest is often 

restricted to small fragments (Turner & Corlett 1996). Many tropical studies have 

documented negative effects of small fragment size on local species richness (Į-diversity, 

i.e. Stouffer & Bierregard1995, Lees& Peres 2006, Lens et al.2002). Nevertheless, some 

studies reported that small patches can provide habitat for numerous species (Turner & 

Corlett 1996, Fischer& Lindenmayer 2002, Arroyo-Rodriguez et al. 2008). In particular, it 

has been hypothesized that high proportions of forest in the landscape may counterbalance 

the detrimental effects of small fragment size, but that but below certain levels of forest 

cover, biodiversity in small fragments will collapse (Andren 1994, Villard & Metzger 2014). 

Despite its high importance for biodiversity management, this hypothesis has rarely been 

tested in tropical system. 

While it will be crucial to understand the capacity of human modified landscapes to 

maintain biodiversity at a local scale (Į -diversity), restricting the focus to Į-diversity will 

fail to assess the full potential for conserving tropical biodiversity (see Tylianakiset al.  2005). 

Importantly, the conservation value for a given set of landscape elements (e.g., small forest 

fragments), will also depend on the degree of species variation among sites of that set, that 

is, ȕ– diversity (community dispersion sensu Andersonet al. 2006 and Anderson et al.2010). 

A key task is to assess if only the same species consistently occur across all elements (biotic 

homogenization). Despite the high relevance, this question has received surprisingly little 

attention in human modified landscapes across the tropics (e.g. Tylianakis et al.2005, Karp 

et al.2012)  

We studied human modified landscapes in the Coto Brus region in southern Costa 

Rica. While part of the Mesoamerican biodiversity hotspot (Myers et al.2000), this region 

has lost approximately 70% of its original forest cover (Zahavi, Duran& Kormann 

submitted). The remaining forest is now scattered into approximately 2100 forest 

fragments, providing an ample spectrum of differently sized fragments varying in their 
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respective landscape context. Using the Coto Brus forest fragments as a human-modified-

landscape model system, we examined independent effects of landscape composition and 

configuration on tropical bird communities.  

Tropical birds not only maintain important ecosystem processes such as pollination 

and seed dispersal (Sekercioglou et al.2004, Sekercioglou 2006, Bregman et al.2014), but 

provide ecosystem services such as pest control to some of the economically most 

important crops (Maaset al. 2013, Karp et al. 2013). Further, they significantly contribute to 

tropical economies through ornithology-related tourism, for example ~41% of the one 

billion US$ that tourists spent 1999 in Costa Rica (Sekercioglu 2003). Recent studies show 

that disturbance of native forest patches through agricultural intensification (Frishkoff et 

al.2014, Karp et al. 2012) or intense selective logging (Burivalova et al.2014) drastically 

reduce avian sfunctional and phylogenetic diversity. Importantly, certain functional groups 

such as insectivorous forest species appear to suffer particularly under the conversion of 

native forest into patchily distributed fragments (Sekercioglouet al.2004).   

In this study, we focused on the effects of different deforestation parameters (i.e., 

fragment size, forest loss, degradation and edge effects) on a suite of bird diversity 

components: Local species richness and total abundance at the patch scale, undirected ȕ-

diversity measured as community dispersion at the fragment scale, and directed avian 

community shift of fragments relative to intact forests.  

In particular, we tested the following hypotheses: (i) If high landscape-wide forest 

amount has the capacity to mitigate negative effects of small patch size, we expect reduced 

species richness, abundance and ȕ-diversity in small fragments to occur only in landscapes 

with little remaining forest. Similarly, if (ii) fragment size and forest amount interactively 

drive bird community shifts in fragments after deforestation, we expect small isolated 

fragments to have the greatest dissimilarity to intact forest areas. (iii) If secondary forest is 

effective at maintaining avian communities then we expect that amount of old forest within 

the landscape will be no more important than total amount of remaining forest.   

 

MATERIAL AND METHODS 

Study area 

The study was performed in the Coto Brus region, Southern Costa Rica, around the 

Las Cruces Biological Station (8°47N, 82°57W). The original landscape cover consisted of 

Pacific pre-montane humid forest, but massive deforestation between ca. 1950 and 1980 
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reduced the original forest cover to app. 30% of its former extent (Zahavi, Duran 

&Kormann submitted). This degree of habitat destruction is representative for the situation 

in many areas of Costa Rica (FAO & JRC 2012), and many Latin American regions with 

moderately intense land-use. The remaining forest fragments range from <1 ha to >1000 

ha in size and span across an altitudinal gradient from ca. 850 – 1500 m a.s.l. Today’s forest 

patchwork is largely surrounded by an agricultural matrix consisting of pastures (> 90%), 

coffee plantations (~ 5%) and to a lesser extent by human settlements. A detailed 

description of the landscape can be found in Hadley et al. (2014). 

Study design 

Our experimental design consisted of forest patches selected to represent two 

uncorrelated gradients in patch size and forest amount (forest cover within 1000 m radius), 

stratified across altitude (Fig. 1, for details see Hadleyet al. 2014). Using forest cover maps 

and a geographical information system (see below), we randomly selected 40 forest 

fragments in 2011, representing four categories: Half of the selected patches were small (< 

5ha patch area) and the other half was large (< 35ha). In both size classes, forests 

Fig. 1: Map of the studied human modified landscape of the Coto Brus region, Southern Costa Rica, 

showing the distribution of the four different forest fragment types. Circles with a dot indicate the five 

reference forests used to calculate the community shift index.   
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represented a gradient along the available forest amount within a 1000m radius (5% to 

80%), and were either isolated (< 32% forest with 1000m radius) or connected (> 34% 

forest with 1000 m radius)(Fig. 2). Thus, fragments were small and isolated, small and 

connected, large and isolated or large and connected. We opted for a 1000m radius, as this 

distance represents the expected maximum daily movement distance for a forest specialist 

bird in the region (P. guy). Forest maps were constructed using ARCGIS 10.0 (ESRI 

Geoinformatik GmbH, Hanover, Germany) and orthophotos with a resolution of 2m. Two 

forest fragments were considered to be separate if they were at least 30 m apart. This 

distance already poses a severe barrier for the movement of many forest birds in the study 

region (see chapter 3: Kormann et al. in prep., Hadley & Betts 2009) and elsewhere (Lees & 

Perez 2009). 

 
Fig. 2: Four forest fragment, representing the four fragment categories of our study design to disentangle the 

effect of fragment size and forest amount (forest cover within a 1000m radius). A: large with high forest 

amount (> 35ha and >34% forest cover). B: small with high forest amount (<5ha and >34% forest cover). C: 

large with low forest amount (>25ha and <34% forest cover). D: small with low forest amount (<5ha and 

<34% forest cover). Circles represent the 1000m radius within forest amount was calculated. (Adapted after 

Hadley et al. (2014)) 

 

Further, fragments were stratified in altitude in each category, equally representing 

two altitudinal bands (880 - 1100 a.s.l. and > 1100 – 1500 a.s.l.) to avoid confounding 

effects of altitude. In 2012, we selected nine additional fragments to spread the different 

categories more homogeneously across the whole landscape. This selection guaranteed that 

patch size, forest amount and altitude were not strongly correlated (all Pearson’s r < 0.5, 

see Table S1).  
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Bird surveys and quantification of local variables in the field 

Our bird surveys served two goals: first, to assess bird abundance and local species 

richness per unit area. Second, to perform a rapid species inventory per fragment to 

characterize the bird community. For the first goal, we performed fixed radius point counts 

(r = 25m). However, neotropical bird communities often contain certain many rare and 

secretive species,which might stay undetected during point counts (Robinson 1999; 

Robinson et al. 2000). To address the second goal, we therefore combined the point counts 

with stopping rule-based walkabout surveys. The rationale behind walkabouts is to 

accumulate observations until levels of accumulated species richness stabilize. This can be 

achieved by surveying birds while walking across the fragment until no new species has 

been recorded for a previously fixed time span (Herzog et al.2002). Walkabout surveys have 

been successfully used for rapid assessments of neotropical bird communities and allow to 

maximize the number of sites sampled, while providing improved estimates of species 

richness compared to point counts (Robinson &Terborgh1995, Herzog et al.2002, Watson 

2010).  

Bird surveys were performed between May and June 2011 and in early June 2012, 

when most resident species reproduce (Slud 1976; Stiles & Skutch 1989). Only one 

fragment was surveyed per day. We randomized the visitation order: in 2011, we first 

randomly grouped all 40 fragments into 10 groups of four fragments, each containing one 

site of every category (small isolated, small connected etc.). The order of these groups was 

then randomized again, and all sites per group visited during a maximum of six subsequent 

days. As only nine sites were visited in 2012, we randomized visitation sequence completely 

in that year.  

Surveys consisted of the following protocol: upon entering the fragment, we started 

with the walkabout survey and recorded all birds visually and acoustically detectable inside 

the fragment. The observer kept slowly walking into the fragment (keeping track of new 

birds), until distance of 25m from fragment edge was reached. Here, the walkabout survey 

was stopped and a first 12min point count performed. Then, the walkabout continued, 

followed after app. 20minby the next point count and so on. In small fragments, we 

performed three, in large fragments six point counts. Point count plots did not overlap. 

After the last point count, walkabouts were continued until no new species was detected 

for half an hour. Birds crossing the forest by flight were not considered, except if they 

perched in the forest fragment. All surveys were performed during peak song activity, 

starting about half an hour before dawn and ending four hours after dawn at the latest. 
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Point counts with heavy rain or noise of cicadas were excluded from the analysis and visits 

were continued the next day. Birds not identified to species level (3 Contopus ssp., 1 

Euphonia sp., 6 hummingbirds, 1 pigeon, 3 woodcreepers) were excluded from richness 

analyses unless they represented an extra genus for the sample. They were excluded from 

abundance analysis in case of unclear diet or habitat affiliation, and always excluded in 

analyses of ȕ-diversity and community shift. Walkabouts lasted 80 ± 20min (means ± SE 

are given throughout) in small patches, and 155 ± 33min in large patches.    

Bird species were classified as forest insectivores, if their main diet consisted of 

insects and if their habitat was largely restricted to forest. Diet was based on Stiles & 

Skutch (1989). Habitat affiliation was based on three sources: Hughes et al.(2002), Stiles & 

Skutch (1989) and the assessment of WDR, an experienced ornithologist in the Neotropics. 

We considered a species to be forest-restricted, if at least two out of the three sources 

indicated so.  

Forest parameters 

For every point count (hereafter “plot”), we measured the distance to the nearest 

fragment edge, using the “distance on ground” function in Google Earth. Elevation was 

derived with a digital elevation model (NASA Shuttle Radar Topography Mission) based on 

the coordinates. In addition, the observer (JSF) directly assigned one of three alternative 

forest classes to each plot in the field: Primary forest, selectively logged forest (“bosque 

intervenido”) and secondary forest. Primary forests were characterized by no visible large-

scale disturbance such as logging inside the plot and a high abundance of large trees (DBH 

> 50cm). Selectively logged forests showed obvious, recent signs of selective logging and 

firewood removal (in all cases), and recent disturbance such as hunting (6 cases) or grazing 

(8 cases). Finally, secondary forests were characterized by apparent regrowth after heavy 

logging. For primary forest fragments, we additionally verified with historical aerial images 

if patches had existed 60 years ago, but we found no mismatch with field classification. 

Similarly, secondary forest plots were not older than 24 years, based on aerial imagery. With 

GIS, we additionally determined the amount of old-growth forest per plot within a buffer 

of r = 1000m. Areas were considered to be old growth, if they had been continuously 

forested during the last 60 years. Details on forest classification are given in Zahavi, Duran 

& Kormann (submitted).  
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Statistical analyses 

Species richness and abundance at the plot level 

To identify patterns of species richness and abundance at the plot level, we used 

linear mixed-effects models (function lme, package nlme, version 3.1-113, Pinheiro et al. 

2014) in R (R Core Team 2014). Species richness and abundance of all bird species and of 

forest insectivore bird species per plot were used as response variables. Variance functions 

were used to account for heteroscedasticity in the responses if necessary. Nonlinearity in 

explanatory variables was assessed using machine learning approaches with smooth 

components including a spatial component (function gamboost with bspatia(X,Y,knots=6), 

package mboost, version 2.3-0, Hothorn et al. 2014) and generalized additive mixed models 

with a spatial component (function gamm with ‘s(X,Y,k=6)‘,  package mgcv, version 1.8-3, 

Wood 2006). Both approaches suggested that the percentage of old forest, fragment area 

and edge distance had nonlinear effects.  

In the linear mixed effect models, we started with the following explanatory 

variables: local forest type (FORTYP), fragment area (AREA), proportion of old growth 

forest (OLDFOR), proportion of total forest amount (ALLFOR), edge distance (DIST), 

altitude (ALT), daytime (TIME) and interactions between AREA and OLDFOR, AREA 

and ALLFOR, and FORTYP and OLDFOR. Based on the explanatory analysis, we log10 – 

transformed AREA and DIST and included a quadratic term for OLDFOR. All models 

included fragment ID as random intercept and a spatial correlation structure 

(‘correlation=corLin(form=~X+Y‘). 

We used model averaging based on second-order Akaike’s information criterion 

(AICc) to identify the important predictor variables (function dredge, packageMuMIn, 

version 1.10.5, Bartonғ 2014). Variables were considered important, if they had a relative 

variable importance of > 0.7. The model including these variables was considered as the 

best model, was used for post-hoc comparisons between forest types (function glht, 

package multcomp, version 1.3-6, Hothorn et al.2008) and to graphically represent the results. 

We also performed all analyses at the plot scale with ALLFOR and OLDFOR measured at 

smaller radii (r = 100m and r = 500m), but model performance for these models was 

consistently worse (ǻAICc >3.5).  

Since ALLFOR and OLDFOR were strongly correlated (Pearson’s r = 0.69), we 

additionally performed model selection with the full suite of variables but without ALLFOR 

or without OLDFOR. However, this showed that model selection was robust against the 

simultaneous inclusion of both factors.  
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A loess smoother (effects package, version 3.0-1, Fox 2014) indicated that species 

richness of forest insectivore birds in small fragments not only declined with decreasing old 

forest amount, but steeply dropped at low levels (red line in Fig. 3). To identify thresholds, 

we applied nonlinear mixed-effects models using saturating Michaelis-Menten models. Due 

to convergence problems in models containing random effects, we employed nonlinear 

least-squares fits without random effects (function nls(SSmicmen), R stats base package, 

version 3.0.3 beta). These models were also more parsimonious and had lower AICc values. 

ȕ-diversity 

Since the amount of old growth forest appeared to drive patterns of local diversity 

and community shift (see results), we additionally assessed if the amount of old growth 

forest and fragment size affect patterns of ȕ-diversity.  For this, we first re-categorized 

forest fragments based on their proportion of old-growth forest. We used the median 

proportion of old forest as a cut-off between connected and isolated patches (25.6%). 

Then, we tested if the four fragment categories (large connected, large isolated, small 

connected and small isolated) differed in their degree of community dispersion.  

We used a test of multivariate homogeneity of group dispersions to infer 

differences in ȕ-diversity (function betadisper, package vegan, version 2.3-0, Oksanen et 

al.2013). This method uses a multivariate analogue of Levene's test for homogeneity of 

variances, and compares the mean distances of sites to their group centroids in multivariate 

species space (Anderson et al. 2006). A large mean distance to the group centroid can be 

interpreted as a high degree of ȕ-diversity (high community dispersion) and vice versa. 

Per fragment, we pooled the first three point counts to achieve equal sampling 

intensity across all fragments. Calculations were based on Raup-Crick similarities. This 

measure is based on null models and corrects for difference in Į–diversity between sites 

(Anderson et al. 2011). 

This resulted in slightly changed numbers of fragments in the four categories 

(11small isolated, 12 small connected, 11 large isolated, 15 large connected). To account for 

unequal group size (Stier et al.2013), we adjusted the group-wise mean distance to the 

centroidwith a sqrt(n/(n-1)) correction (n = number of sites per group). However, 

calculations based on balanced fragment numbers through random exclusion of surplus 

patches did not change the results. Significance for pairwise comparisons between groups 

was calculated with permutations tests (9999 permutations). Additional analysis based on 

the Walkabout dataset yielded similar results (data not shown).   
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Community shift 

To assess the effects of decreasing patch size and forest amount on bird 

community shifts, we tested their effect on a community shift index. This index is similar 

to the one used by Mendenhall et al.(2014), and describes the community shift of a 

fragment compared to large intact forest. The index ranges from 0 to 1. Small values 

indicate an intact bird community similar to large intact forests (reference forests), whereas 

large values indicate a strongly altered community. Given the better representation of rare 

species, this analysis was based on the walkabout dataset. Our community shift index (CSI) 

was defined as 

 
 

CSIi is the community shift index for fragment i out of n fragments, k is the number 

of reference forests, Dij a dissimilarity index between fragment i and reference forest 

j.Following Mendenhall (2014), we used Chao’s similarity index, a Jaccard type index which 

takes unseen pairs of species into account. 

Following the above equation,we first calculated the mean Chao-dissimilarity of 

every forest fragment to the five largest and undisturbed forests in our dataset (indicated by 

dotted blue circles in Fig. 2). These forests are spatially well spread and are assumed to 

harbour a largely undisturbed bird community. Finally, we standardized mean dissimilarity 

per fragment by dividing through its maximum value.  

To assess the importance of patch area and forest amount, we then fitted 

generalized linear models using family “Gaussian” (function glm, package MASS, 7.3-29, 

Venables & Ripley 2002), with the CSI as response variable. Explanatory variables were 

patch area, proportion of old-growth forest, proportion of all forest and altitude, including 

two way interactions. Explanatory values were averaged across the corresponding point 

counts. As Chao-dissimilarity and thus the CSI are influenced by abundance, we also 

included the total abundance of birds per fragment as an explanatory variable. Model 

residuals did not show any spatial autocorrelation (pMoran’s I = 0.16, package ´ape´, 3.0-11, 

Paradis et al.2004) and were not overdispersed. Model selection was accomplished by 

model averaging as for plot based analyses, but by mandatorily retaining abundance in all 

models. 
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RESULTS 

During 209 point counts (cumulative time = 2508min), we detected 2520 bird 

individuals from 174 species with 31 singletons. Of these, 977 individuals from 68 species 

were forest-restricted species (14 singletons), in particular 47 forest insectivore bird species 

(645 individuals, 8 singletons). The 49 walkabout surveys yielded 4386 individuals of 214 

species (26 singletons). As expected for highly diverse systems (Robinson et al. 2000, 

Watson 2010), species pools for both methods did not completely overlap: 16 species were 

exclusively found during point counts and 56 were restricted to walkabouts.   

Species richness and abundance at the plot level 

We found strong patterns for forest birds at the plot scale but not for the total bird 

community (Table 1, Table 2, Table S3, Table S4). Richness and abundance only 

moderately decreased with daytime. In contrast, forest type, edge distance, patch area and 

the proportion of old forest were important predictors for forest species, in particular for 

forest insectivore abundance and species richness (Akaike’s weight > 0.7). Importantly, we 

found four substantial effects for the conservation relevant forest insectivore birds: (1) 

small isolated fragments supported significantly fewer species and lower abundances of 

forest insectivores than small connected or large patches (interaction in best model: species 

richness p = 0.001; abundance p = 0.002). Small connected fragments, however, showed 

comparable species richness and abundances as large fragments (Fig.3, Table 1, Table 2,). 

(2) Michaelis-Menten models showed that the loss of species richness tended to accelerate 

below a critical threshold of 22.6 ± 15% of old forest cover (Table S2). However, this 

tipping point was only marginally significant (t = 1.482, p = 0.143). (3) Primary forest 

harboured 24% more species and 31% more individuals at the plot level than secondary 

forests (richness: 2.96 ± 0.16 vs. 2.21 ± 0.20, p = 0.016; abundance: 3.74 ± 0.22 vs. 2.67 ± 

0.26, p = 0.009, Fig. 3, Table S4). (4) Forest insectivore bird abundance and species 

richness strongly increased with increasing edge distance (p< 0.001 in both cases, Fig. 3, 

Table 1, Table 2). For example, 1.92 ± 0.16 species and 2.8 ± 0.21 individuals were found 

on average at 25m edge distance, while this increased to 3.00 ± 0.27 species and 4.41 ± 

0.35 individuals at 200m edge distance.  
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Table 1: Model averaging results for linear mixed-effects model (fit by Maximum Likelihood) predicting total 

abundance and species richness per plot, for all birds, forest birds and insectivorous forest birds, respectively. 

Shown are the relative variable importance (rel.var.imp) and the number of models containing the variable in 

the range of AICc <ǻ2 (n. models). Explanatory variables with a relative variable importance > 0.7 are 

indicated in bold and were those used for predictions.  
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all birds: 
species 
richness 

rel.var.imp 0.28 0.22 - 0.46 0.08 0.37 1.00 - -  
n. models 3 3 - 5 1 4 11 - - 11 

all birds: 
abundance 

rel.var.imp 0.47 0.1 0.05 0.47 0.12 0.14 1.00 - -  
n. models 6 2 1 6 2 2 11 - - 13 

forest birds: 
species 
richness 

rel.var.imp. 1.00 0.70 1.00 0.70 0.22 - 1.00 0.70 0.22  
n. models 3 2 3 2 1 - 3 2 1 3 

forest birds: 
abundance 

rel.var.imp 1.00 0.27 1.00 0.39 0.27 0.21 1.00 0.27 0.14  
n. models 6 2 6 3 2 1 6 2 1 6 

forest 
insectivores: 
species 
richness 

rel.var.imp 1.00 1.00 1.00 1.00 0.24 0.25 1.00 1.00 0.24  
n. models 3 3 3 3 1 1 3 3 1 3 

forest 
insectivores: 
abundance 

rel.var.imp 1 1 1 1 - 1 1 1 -  
n. models 1 1 1 1 - 1 1 1 - 1 

Abbreviations: * = interaction term. 
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Table 2: Anova results for the best models (those including all important explanatory variables) predicting 

total abundance and species richness per plot, for all birds, forest birds and insectivorous forest birds, 

respectively. Significant variables except the intercept are indicated in bold. Abbreviations: numDF= 

numerator degrees of freedom, denDF = denumerator degrees of freedom. 

 

Response Variable Explanatory Variable numDF denDF F-value p 
all bird 
species richness 

intercept 1 146 1121.34 <0.0001 
daytime 1 146 7.6875 0.0063 

all bird 
abundance 

intercept 1 146 13395.22 <0.0001 
daytime 1 146 49.54 0.0276 

forest bird 
species richness 

intercept 1 141 850.97 <0.0001 
forest type 2 141 19.43 <0.0001 
edge distance 1 141 9.55 0.0024 
area  1 47 1.91 0.1725 
old forest % 1 141 0.20 0.6506 
daytime 1 141 9.49 0.0025 
area * old forest % 1 141 7.03 0.0089 

forest bird 
abundance 

intercept 1 143 670.61 <0.0001 
forest type 2 143 20.16 <0.0001 
edge distance 1 143 7.92 0.0056 
daytime 1 143 9.21 0.0029 

forest insectivore 
species richness 

intercept 1 141 582.07 <0.0001 
forest type 2 141 152.84 <0.0001 
edge distance 1 141 146.55 0.0002 
area  1 47 0.09 0.7651 
old forest % 1 141 0.88 0.3481 
daytime 1 141 82.45 0.0047 
area * old forest % 1 141 110.22 0.0011 

forest insectivore 
abundance 

 

intercept 1 140 531.16 <0.0001 
forest type 2 140 19.18 <0.0001 
edge distance 1 140 13.08 0.0004 
area [log10ha] 1 47 0.26 0.6118 
old forest % 1 140 5.02 0.0266 
altitude 1 140 4.49 0.0357 
daytime 1 140 8.58 0.0040 
area * old forest % 1 140 10.17 0.0018 

Abbreviations: * = interaction term. 
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Fig. 3: Response of avian forest insectivores to four key parameters at the plot scale. Note that the entire 

forest bird community responded similarly. Shown is the response of total abundance (above) and total 

species richness (below) to edge distance (A & D), fragment size and amount of old growth forest within 

1000m radius (B & E) and forest type within the plot (C & F). Shown are predictions (black solid line / filled 

black dots) and 95% confidence intervals (thin dashed line / whiskers) for the best model. Circles represent 

partial residuals, the thick dashed line a loess smoother. The red line is a loess smoother, indicating the abrupt 

collapse of species richness below 22.3% cover (see text for details). In B & E, small and large refers to 

predictions for patches of 2.5 and 100ha size, respectively. Effects in A,B, D &E are all significant at Į = 

0.05. Significance for pairwise comparisons of forest types (C and F) are based on two-sided Tukeys post-hoc 

test; * indicates p < 0.05.  

 

Importantly, the proportion of all forest was a poor predictor of abundance and 

richness at the plot level, Model selection run without ALLFOR versus without OLDFOR 

additionally suggested that this was not only due the high correlation with old forest and 

subsequently down-biased variable importance; variable importance of ALLFOR never 

exceeded 0.5 in any model during model selection without OLDFOR. Further, the best 

model starting without OLDFOR always performed worse than those without ALLFOR 

(ǻAICc always > 2 for all responses). 

 

ȕ-diversity  



CHAPTER 4 

 120 

The analysis of multivariate dispersion indicated that the four groups significantly 

differed in ȕ-diversity (anova: df = 3, F = 6.747, p < 0.001).Generally, large connected 

fragments showed the highest ȕ-diversity, followed by large isolated, small connected and 

finally small isolated fragments. Small isolated fragments had significantly lower community 

dispersion than the other categories (Fig. 4A, Table 3), indicating very low turnover 

between small isolated fragments. However, ȕ-diversity did not only significantly differ for 

pairwise comparisons between the other three categories.  

 

 

Fig. 4: ȕ-Diversity and community shift of the entire bird community. A) Boxplots of ȕ-diversity (community 

dispersion based on Raup-Crick-dissimilarities) for four groups of forest fragments: Large and high amount 

of old growth forest (LH), large and low amount of old growth forest (LL), small and high amount of old 

growth forest (SH), and small low amount of old growth forest (SL). B) Avian community shift in forest 

fragments compared to pristine forest as a function of the amount of old forest within 1000m. Shown are 

predictions (black solid line), the 95% confidence interval (dashed), and partial residuals (circles) for the best 

model. High values represent a strong shift, low values high similarity to pristine forest. ** indicates 

significance at Į = 0.01. 
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Table 3: Effect of fragment type on ȕ-diversity, measured as community dispersion based on Raup-Crick 

distances. Shown are permutational p-values (9999 permutations) for pairwise comparisons between small 

isolated, small connected, large isolated and large connected fragments. Isolated refers to fragments with less 

than 25% of old forest at the landscape scale, connected to fragments with more than 25% of old forest at 

the landscape scale. Small fragments were smaller than 5 ha, large fragments larger than 35ha. Significant 

values are indicated in bold. 

 

 Large isolated Small connected Small isolated 
Large connected 0.5326 0.1161 0.0001 
Large isolated  0.4471 0.0008 
Small connected   0.0003 

    
 

 

Community shift 

The only important variable influencing community shift was the proportion of 

old-growth forest (variable weight = 1). The CSI significantly decreased with increasing 

proportion of old-growth forest (anova: Chisq = 36.209, df = 1, p< 0.001), indicating that 

bird communities were highly similar to pristine forest at high proportions of old-growth 

forest, irrespective of their size (Fig. 4B). Similar results were achieved with CSI based on 

Raup-Crick dissimilarities and with generalized additive models using a spatial smooth term.  

 

DISCUSSION 

 We found three key results: First, the entire bird community remained surprisingly 

stable at the plot scale. In contrast, forest bird richness, in particular insectivores, collapsed 

in small patches, but only at low levels (<23%) of old growth forest within the landscape. 

This shows that negative effects of small patch size were counterbalanced by positive 

landscape effects. Second, ȕ-Diversity for the entire bird community imploded in small 

fragments, but again, only at low amounts of old growth forest in the landscape. This 

implies homogenized bird communities small, isolated fragments. Third, the amount of old 

growth forest, but not fragment size, was the main factor affecting the similarity of avian 

communities found in fragments compared to near-primary forests. This demonstrates that 

landscape wide habitat composition is instrumental in shaping the trajectory of forest 

fragment inhabiting bird communities after land conversion.  

Plot scale: Effects of landscape characteristics 
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We show that the amount of old growth forest within human modified landscapes 

altered the capability of small forest fragments to harbour forest birds. Importantly, and in 

accordance with our first hypothesis, landscape-scale amount of old growth forest 

mitigated the detrimental effect of small patch size on plot-scale species richness and 

abundance; small patches exhibited significantly lower abundance and species richness than 

large ones, but only at low amount of old growth forest. This was particularly true for 

forest insectivores, which face drastic community collapses in anthropogenically 

fragmented landscapes (Stouffer & Bierregaard 1995, Sekercioglu et al.2002) and are thus 

assumed to be among the most threatened tropical bird guilds (Bregmanet al. 2014). The 

observed pattern suggests that small fragments depend on the pool of immigrants from the 

“old growth forest” metacommunity to maintain high levels of forest species diversity. This 

species pool, in turn, increases with habitat amount (Tscharntke et al. 2012, Hadley & Betts 

2012), leading to the positive effect we observed. In contrast, the small isolated fragments 

of this study appear to profit little from such a rescue effect. Negative effects of small 

fragments size and low habitat amount or connectivity have been reported previously 

(Stouffer & Bierregaard 1995, Lens et al.2002, Lees & Peres 2006). However, only few 

authors have explicitly addressed the interaction between fragment size and habitat amount 

within the landscape: Similar to our results, Roesch et al.(2013) found communities of 

habitat restricted insects to collapse in small isolated, but not small connected temperate 

zone grassland habitat fragments. Further, habitat restricted birds required a minimal patch 

size, but only so when patches were isolated (Betts et al.2006). In conclusion, this suggests 

that the minimal local area required guaranteeing the persistence of a local population is 

modified (downsized) in improved landscapes. 

In stark contrast to forest species, total abundance and species richness of the 

entire bird community was not significantly affected by any of the landscape metrics we 

examined. This is in accordance with a previous study in our region finding that total bird 

capture rates varied little between small and large forest fragments (Sekercioglu et al. 2002). 

Work from temperate regions suggests that the conversion of native habitat does not 

necessarily lead to decreased species richness or abundance in intensively human-

dominated areas, even if community shifts toward species with high mobility and low 

habitat specificity occur (Dormann et al. 2007). Indeed, 61% of the bird species we 

observed were not restricted to forest and have been found to use the agricultural 

countryside for foraging (Hughes et al. 2002). The observed stability was therefore largely 

driven by non-forest species.  
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Further, we found no positive landscape effect of secondary forest. This is 

surprising, given that secondary forests can facilitate colonization of forest fragments in 

several tropical forest birds (Stouffer & Bierregaard 1995, Antongiovanni & Metzger 2005). 

Regardless, our results suggest that secondary forests on their own are unlikely to sustain 

avian biodiversity and at most play a subordinate role in shaping forest bird communities. 

Plot scale: Effects of local site characteristics  

The capability of fragments to sustain bird communities also depended on forest 

type and edge proximity. Secondary forest plots supported significantly lower species 

richness and abundance of forest birds than old forest. This is consistent with 

Antongiovanni & Metzger (2005) and Barlow (2007), who reported that secondary forests 

support only a subset of biota found within older forest. Secondary forests lack many 

microhabitat elements such as dead trees or sparse understory vegetation that are of 

elementary importance for many forest birds, particularly insectivores (Sekecioglu et al.2002, 

Laurance 2008). This is critical, given that over 50% of the remaining humid tropical forest 

in human modified landscapes is secondary forest (Melo et al.2013). On the other hand, 

young stages of forest regrowth adjacent to old growth forest can mitigate edge-avoidance 

in forest-interior birds, and thus extend the undisturbed core area (Stouffer & Bierregaard 

1995, Lauranceet al. 2004). Overall, our results show that assuming that these secondary 

forests support equivalent levels of biodiversity to old growth remnants could be risky.  

Selective logging did not appear to affect the bird community, which can be 

expected given the relatively low intensity of selective tree removal in the Coto Brus region. 

In a recent global meta-analysis, Burivalova et al. (2014) found that bird species richness 

was even slightly elevated under selective logging. But importantly, this increase was driven 

by an influx of habitat generalist species, while forest specialist species richness decreased 

at higher levels of logging intensity. Logging can not only influence bird communities by 

local changes in habitat quality, but also further alter landscape-wide movement of birds 

(Graham 2001). Although a certain dietary flexibility may help some (insectivorous) forest-

birds to compensate altered food availability caused by selective logging (Edwards et al. 

2013), heavy forest perturbation can induce elevated, physiologically relevant stress levels 

(Lens 1999).  Thus, increased tree removal seen in other regions is likely to have larger 

effects on the bird community than we observed (Burivalova et al. 2014). 

Forest bird richness and abundance, in particular insectivores, decreased by ~ 50% 

in edge proximity compared to the interior (Fig 3). Fragment edges can have elevated 

predator and brood parasites levels (Gates & Gysel, 1978; Wilcove 1985). In combination 
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with our results, this suggests that increasing the core area of remaining forest fragments in 

human modified landscape is likely to have a positive effect. Further, this also suggests that 

increasing the width of common linear landscape elements, a dominant feature in tropical 

countrysides (Harvey et al.2005), may be important to increase their functionality in 

facilitating movements and functional connectivity between forest fragments (Gillies 

&Clair 2008).  

ȕ – diversity and community shift  

Contrasting with the plot scale, our results demonstrate that habitat amount and 

fragment size can determine ȕ-diversity of the entire bird community: The variation of 

species identities among fragments (community dispersion), appeared to decrease with 

increasing degree of forest degradation: Large, connected fragments varied most, followed 

by large isolated, small connected and small isolated. Importantly, small fragments showed 

significantly reduced levels of species variation between fragments, at low amounts of old 

forest within the landscape, but not at high amounts. This indicates that only a 

depauperated set of species occurred again and again in small, isolated fragment, whereas 

high levels of old growth forest mitigated community homogenization. Indeed, many 

typical forest restricted species such as the insectivorous Formicarius analis and the endemic 

hummingbird Lampornis castaneoventris did not occur at all in small isolated patches. Many 

rare species including insectivores and frugivores (e.g. Anabacerthia variegaticeps, 

Campylorhamphus pusillus, Chlorophonia callophrys) occurred only in a few large and connected 

fragments. Typical for many tropical organism groups, intact tropical bird communities 

generally contain a high proportion of rare species (Terborgh 1990, Robinson et al. 2000), 

many of them bound to a specific set of environmental factors (Laurance 2008).  These 

rare species bound to large connected patches also explain the at first counterintuitive high 

ȕ-diversity among the most intact fragments: many rare species were either only present in 

a few fragments or potentially present in many, but only detected in few surveys.Overall, 

this result suggests that bird communities in small, isolated patches undergo a broadly 

predefined trajectory of species loss, resulting in a homogenized subset of the original 

community (Lobo 2011). However, we show that this erosion of ȕ-diversity can be partly 

mitigated by a high landscape wide retention of old growth forest. 

We know of few previous studies that disentangled the effect of habitat amount 

and configuration on ȕ-diversity: Similar to our results, Arroyo-Rodriguez et al. (2008) 

found that small forest fragments could cumulatively harbour much of the native plant 

diversity through high levels of ȕ-diversity, but only with high forest cover remaining in the 
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landscape. Interestingly, our analysis based on the community shift index suggests, that the 

trajectory of avian communities in forest fragments strongly depends on the amount of old 

growth forest in the landscape. Thus, bird communities in forest fragments appear to be 

shaped most by the landscape wide species pool, which determines the number and the 

identity of potential immigrants. Importantly, this implies that also small forest remnants, 

which are among the most abundant tropical landscape elements, can harbour bird species 

found in pristine forests – given a high landscape-level percentage of old growth forest. 

A note on landscape thresholds 

Our results strongly suggest disturbance thresholds beyond which human modified 

landscapes rapidly support lower levels of native avian biodiversity. Reducing the amount 

of old forest on the landscape to less than ~23% appears to rapidly increase negative 

effects on forest insectivore birds. Further, ȕ - diversity (species variation between sites), 

even calculated with a measure independent of Į - diversity, appeared to implode at low 

levels of old growth forest cover. This implies, that fragment size is most important within 

landscapes of low forest amount, but less so in areas with high forest amount, and not only 

for Į -, but also for ȕ - diversity. Several studies have suggested a similar ‘fragmentation 

threshold’ for habitat amount in human modified landscapes, below which habitat 

configuration may become significant (Andren 1994; Betts et al. 2006; Tscharntke et al. 

2012; Villard & Metzger 2014). However, to our knowledge this study is among the first to 

report interactive effects of habitat amount and configuration on multiple diversity – 

dimensions simultaneously. Species area-relationships are often used in literature to predict 

species loss of habitat specialists after habitat loss (Lindenmayer & Fischer 2006). Our 

study suggests that ignoring the landscape context in such studies might lead to limited 

insights.  

 

CONCLUSIONS 

Our results caution against potentially misleading expectations that moderately 

human modified landscape may represent a panacea for the conservation of tropical 

biodiversity. We found that there are specific characteristics of human modified landscapes 

that affect their ability to sustain avian biodiversity. In particular our results emphasize 

previous calls (Gibson et al. 2011, Laurance et al.2012) on the importance of old growth 

forest for biodiversity conservation in tropical landscapes. Not only does old forest support 

higher levels of forest bird diversity, its benefits extend to mitigating fragmentation effects 
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in surrounding small fragments. Our study shows that the minimal local area (fragment 

size) required to maintain high levels of Į - and ȕ – diversity decreases if landscape-level 

amount old forest remains above a critical threshold (~25%). However, if too much old 

forest is lost, biodiversity in small patches will collapse and converge among fragments. 

Secondary forest supported lower levels of species richness and abundance and failed to 

offer the same capacity as old forest to mitigate fragmentation effects in small forest 

remnants. Additionally we found high levels of edge avoidance suggesting that increasing 

core areas may be valuable for conservation forest bird diversity within human modified 

landscapes. In general our results suggest that while human modified landscapes are a 

suitable option for conserving avian diversity in tropical landscapes care needs to be taken 

to insure that disturbance thresholds are not crossed. 
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SUPPORTING INFORMATION 

Table S1: Correlation coefficients of explanatory variables used in the study (Pearson´s r) and their 

significances, calculated at the plot level.   

Pearson 
correlation 
coefficient 

Edge 
Distance 

log10(Area[
ha]) 

Total 
Forest 

Old Growth 
Forest 

Altitude Daytime 

Edge Distance 1.00 0.52 0.42 0.26 0.04 0.29 
Area (log10[ha]) 0.52 1.00 0.43 0.13 0.07 0.44 
Total Forest 0.42 0.43 1.00 0.69 0.19 0.25 
Old Growth Forest  0.26 0.13 0.69 1.00 0.50 0.05 
Altitude 0.04 0.07 0.19 0.50 1.00 0.00 
Time of Day 0.29 0.44 0.25 0.05 0.00 1.00 
 

p-values Edge 
Distance 

log10(Area[
ha]) 

Total 
Forest 

Old Growth 
Forest 

Altitude Daytime 

Edge Distance 0.0000 0.0000 0.0003 0.5981 0.0000 
Area (log10[ha]) 0.0000  0.0000 0.0762 0.3148 0.0000 
Total Forest 0.0000 0.0000  0.0000 0.0068 0.0004 
Old Growth Forest  0.0003 0.0762 0.0000  0.0000 0.5084 
Altitude 0.5981 0.3148 0.0068 0.0000  0.9868 
Time of Day 0.0000 0.0000 0.0004 0.5084 0.9868  
 

 

 

Table S2: Threshold analysis for the effect of proportion of old forest on insectivore species richness small 

patches. Analysis is based on nonlinear, saturating Michaelis-Menten models.  

 

Variable Estimate Std. Error t - value p 
Maximum Species Richness 3.728 1.095 3.403 0.001 
Threshold Old Forest cover 0.227 0.153 1.482 0.143 
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Tables S3: Details on model selection based on model averaging, for abundance and species richness in all 

birds and forest insectivores. Shown are models in a ¨AICc range of 2. 

Abundance of all birds 
Model components1 df logLik AICc ¨AICc Weight 
56 6 -526.03 1064.51 0.00 0.14 
26 6 -526.27 1064.99 0.48 0.11 
236 8 -524.22 1065.21 0.70 0.10 
356 8 -524.28 1065.32 0.81 0.10 
36 7 -525.43 1065.46 0.96 0.09 
246 7 -525.50 1065.59 1.08 0.08 
6 5 -527.65 1065.61 1.10 0.08 
156 7 -525.54 1065.68 1.18 0.08 
256 7 -525.56 1065.71 1.20 0.08 
46 6 -526.76 1065.96 1.45 0.07 

  1Term codes:  

ALLPER ALTI FORTYPE AREA OLDPER TIME 

1 2 3 4 5 6 

 
Species richness of all birds  

Model components2 df logLik AICc ¨AICc Weight 
367 8 -559.60 1135.97 0.00 0.13 
67 6 -561.82 1136.08 0.11 0.12 
37 7 -560.78 1136.16 0.19 0.12 
7 5 -562.94 1136.19 0.22 0.11 
27 6 -562.10 1136.65 0.68 0.09 
36 7 -561.33 1137.25 1.28 0.07 
137 8 -560.32 1137.41 1.44 0.06 
17 6 -562.60 1137.65 1.68 0.05 
6 5 -563.68 1137.67 1.70 0.05 
267 7 -561.60 1137.79 1.82 0.05 
3567 9 -559.45 1137.86 1.90 0.05 
47 6 -562.71 1137.87 1.90 0.05 
347 8 -560.58 1137.93 1.96 0.05 

 2Term codes: 

ALLPER ALTI FORTYPE AREA DIST OLDPER TIME 
1 2 3 4 5 6 7 
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Tables S3 (continued): Details on model selection based on model averaging, for abundance and species 

richness in all birds and forest insectivores. Shown are models in a ̈ $,&F�UDQJH�RI��� 

 
Species richness of forest insectivores 

Model 
components3 

df logLik AICc ¨AICc Weight 

345679 11 -349.72 722.88 0.00 0.51 
2345679 12 -349.29 724.29 1.41 0.25 
13456789 13 -348.17 724.34 1.46 0.24 

3Term codes:  

ALLPER ALTI FORTYPE AREA DIST OLDPER TIME ALLREP:AREA OLDPER:AREA 

1 2 3 4 5 6 7 8 9 

 
 
Abundance of forest insectivores  

Model 
components4 

df logLik AICc ¨AICc Weight 

1234567 12 -402.14 829.99 0.00 1.00 
4Term codes:  

ALTI FORTYPE AREA DIST OLDPER TIME OLDPER:AREA 

1 2 3 4 5 6 7 
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Table S4 
Table S4: Pairwise comparisons for the effect of forest type on species richness and abundance based on the 

best linear mixed effects models. Results are based on Tukey´s post hoc tests. Forest types: p = old growth 

forest, i = selectively logged forest (bosque intervenido), s = secondary forest. Significant differences are 

indicated in bold. 

 
Response Forest  

Types 
Estimate Lower 

95% CI 
Upper 
95% CI 

z value p 

All forest birds 
Species Richness 

p - i 0.834 -0.122 1.789 2.042 0.101 
s - i -0.636 -1.581 0.308 -1.577 0.254 
s - p -1.470 -2.264 -0.676 -4.334 <0.001 

All forest birds  
Abundance 

p - i 1.270 -0.022 2.562 2.298 0.055 
s - i -0.898 -2.232 0.435 -1.575 0.254 
s - p -2.168 -3.206 -1.131 -4.885 <0.001 

Forest insectivore 
Species Richness 

p - i 0.206 -0.557 0.969 0.631 0.802 
s - i -0.540 -1.294 0.215 -1.673 0.214 
s - p -0.746 -1.380 -0.111 -2.751 0.016 

Forest insectivore 
Abundance 

p - i 0.220 -0.778 1.218 0.516 0.863 
s - i -0.832 -1.819 0.155 -1.973 0.118 
s - p -1.052 -1.884 -0.220 -2.958 0.009 
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