
Dynamic Resource Scheduling in Cloud Data
Center

Dissertation

zur Erlangung des Doktorgrades
Dr. rer. nat.

der Mathematisch-Naturwissenschaftlichen Fakultäten
der Georg-August-Universität zu Göttingen

im PhD Programme in Computer Science (PCS)
der Georg-August University School of Science (GAUSS)

vorgelegt von

Yuan Zhang
aus Hebei, China

Göttingen
im August 2015

Betreuungsausschuss: Prof. Dr. Xiaoming Fu,
Georg-August-Universität Göttingen

Prof. Dr. Dieter Hogrefe,
Georg-August-Universität Göttingen

Prüfungskommission:
Referent: Prof. Dr. Xiaoming Fu,

Georg-August-Universität Göttingen

Korreferenten: Prof. Dr. K.K. Ramakrishnan,
der Prüfungskommission: University of California, Riverside, USA

Weitere Mitglieder Prof. Dr. Dieter Hogrefe,
Georg-August-Universität Göttingen
Prof. Dr. Carsten Damm,
Georg-August-Universität Göttingen
Prof. Dr. Winfried Kurth
Georg-August-Universität Göttingen
Prof. Dr. Burkhard Morgenstern
Georg-August-Universität Göttingen

Tag der mündlichen Prüfung: 14. September 2015

Abstract

Cloud infrastructure provides a wide range of resources and services to companies and
organizations, such as computation, storage, database, platforms, etc. These resources and
services are used to power up and scale out tenants’ workloads and meet their specified
service level agreements (SLA). With the various kinds and characteristics of its workloads,
an important problem for cloud provider is how to allocate it resource among the requests.
An efficient resource scheduling scheme should be able to benefit both the cloud provider
and also the cloud users. For the cloud provider, the goal of the scheduling algorithm is
to improve the throughput and the job completion rate of the cloud data center under the
stress condition or to use less physical machines to support all incoming jobs under the
overprovisioning condition. For the cloud users, the goal of scheduling algorithm is to
guarantee the SLAs and satisfy other job specified requirements. Furthermore, since in a
cloud data center, jobs would arrive and leave very frequently, hence, it is critical to make
the scheduling decision within a reasonable time.

To improve the efficiency of the cloud provider, the scheduling algorithm needs to joint-
ly reduce the inter-VM and intra-VM fragments, which means to consider the scheduling
problem with regard to both the cloud provider and the users. This thesis address the cloud
scheduling problem from both the cloud provider and the user side. Cloud data centers typ-
ically require tenants to specify the resource demands for the virtual machines (VMs) they
create using a set of pre-defined, fixed configurations, to ease the resource allocation prob-
lem. However, this approach could lead to low resource utilization of cloud data centers as
tenants are obligated to conservatively predict the maximum resource demand of their appli-
cations. In addition to that, users are at an inferior position of estimating the VM demands
without knowing the multiplexing techniques of the cloud provider. Cloud provider, on the
other hand, has a better knowledge at selecting the VM sets for the submitted application-
s. The scheduling problem is even severe for the mobile user who wants to use the cloud
infrastructure to extend his/her computation and battery capacity, where the response and
scheduling time is tight and the transmission channel between mobile users and cloudlet is
highly variable.

This thesis investigates into the resource scheduling problem for both wired and mobile
users in the cloud environment. The proposed resource allocation problem is studied in
the methodology of problem modeling, trace analysis, algorithm design and simulation ap-
proach. The first aspect this thesis addresses is the VM scheduling problem. Instead of
the static VM scheduling, this thesis proposes a finer-grained dynamic resource allocation
and scheduling algorithm that can substantially improve the utilization of the data center

IV

resources by increasing the number of jobs accommodated and correspondingly, the cloud
data center provider’s revenue. The second problem this thesis addresses is joint VM set se-
lection and scheduling problem. The basic idea is that there may exist multiple VM sets that
can support an application’s resource demand, and by elaborately select an appropriate VM
set, the utilization of the data center can be improved without violating the application’s
SLA. The third problem addressed by the thesis is the mobile cloud resource scheduling
problem, where the key issue is to find the most energy and time efficient way of allocating
components of the target application given the current network condition and cloud resource
usage status.

The main contribution of this thesis are the followings. For the dynamic real-time
scheduling problem, a constraint programming solution is proposed to schedule the long
jobs, and simple heuristics are used to quickly, yet quite accurately schedule the short job-
s. Trace-driven simulations shows that the overall revenue for the cloud provider can be
improved by 30% over the traditional static VM resource allocation based on the coarse
granularity specifications. For the joint VM selection and scheduling problem, this thesis
proposes an optimal online VM set selection scheme that satisfies the user resource demand
and minimizes the number of activated physical machines. Trace driven simulation shows
around 18% improvement of the overall utility of the provider compared to Bazaar-I ap-
proach and more than 25% compared to best-fit and first-fit. For the mobile cloud schedul-
ing problem, a reservation-based joint code partition and resource scheduling algorithm is
proposed by conservatively estimating the minimal resource demand and a polynomial time
code partition algorithm is proposed to obtain the corresponding partition.

Acknowledgements

I would need to thank many people. They helped me a lot during my PhD process. Without
their help, this thesis could never have been possible.

I give my deepest grateful to my advisor Prof. Dr. Xiaoming Fu. It was his constant
guidance, support, and encouragement that inspired me to pursue my research. Prof. Dr.
Xiaoming Fu’s valuable ideas, suggestions, comments and feedbacks formed a substantial
input source of my work.

I also need to thank Prof. Dr. K.K. Ramakrishnan. Prof. Dr. K.K. Ramakrishnan spends
many hours in discussing my problem and revising my work. His experience, vision and
wisdom guide this work onto the right track.

I would thank the China Scholarship Council who supports my study and living in Ger-
many. Without their generous financial aid, I would never have the chance to pursue my
PhD. I would also thank my previous advisor Prof. Dr. Yongfeng Huang from Tsinghua
University, who helps a lot in my scholarship application and job hunting.

I owe a lot of thanks to my former and current colleagues at the Computer Networks
Group at the University of Göttingen, especially Dr. Jiachen Chen, Dr. Lei Jiao, Dr. Konglin
Zhu, Dr. David Koll, Narisu Tao, Hong Huang, Lingjun Pu, Jie Li, Dr. Stephan Sigg and
Dr. Xu Chen. They helped me during the last 4 years by discussing the work with me and
facing some technical troubles together. They also act as good examples for me to learn
from.

I would appreciate a lot that Prof. Dr. Dieter Hogrefe agreed to be a member of my thesis
committee; I also thank Prof. Dr. Dieter Hogrefe, Prof. Dr. Winfried Kurth, Prof. Dr.
Carsten Damm, Prof. Dr. Burkhard Morgenstern, and Prof. Dr. K.K. Ramakrishnan for
serving as the exam board for my thesis. Their comments made this thesis more test proof.

Last but not the least, I would thank my my family. Their love, support and understanding
are the best encouragement to me. To them I will dedicate this thesis.

Contents

Abstract III

Acknowledgements V

Table of Contents VII

List of Figures XI

List of Tables XIII

1 Introduction 1
1.1 Problem and Definitions: Cloud Resource Scheduling 2
1.2 Dissertation Organization . 4

2 Background and Related Work 9
2.1 Cloud Scheduling . 10
2.2 Cloud Workload: Characterization and Prediction 10

3 Framework and Architecture 13
3.1 Trace-driven VM Scheduling Algorithm 14
3.2 Joint User and Cloud Scheduling . 14
3.3 Cloud Scheduling for Mobile Users . 15

4 Deadline Aware Multi-Resource Scheduling in Cloud Data Center 17
4.1 Background and Motivation . 19
4.2 System Model . 20

4.2.1 Pricing Policy . 20
4.2.2 Integer Programming . 21

4.3 Combined Constraint Programming and Heuristic Algorithm 22
4.3.1 Trace Analysis . 23
4.3.2 Constraint Programming and Gecode Solver 23
4.3.3 Heuristic Algorithms . 25
4.3.4 Combined Algorithm . 26

Contents VIII

4.4 Evaluation . 26
4.4.1 Resource Utilization . 28
4.4.2 Completion Rate . 28
4.4.3 Comparison to Pure CP and Pure Heuristic Algorithms 29
4.4.4 Impact of Job Demand Profile . 29
4.4.5 The Impact of Reservation Ratio 31

4.5 Chapter Summary . 32

5 VM Set Selection 35
5.1 Background and Motivation . 36
5.2 VM Set Selection and Scheduling Model 38

5.2.1 User SLA Requirement and Utility Function 38
5.2.2 Minimizing Active Physical Machines 39
5.2.3 Maximizing Overall Utility . 40

5.3 VM Set Selection and Scheduling . 41
5.3.1 VM Set Selection . 41
5.3.2 VM Scheduling . 43

5.4 Evaluation . 45
5.4.1 VM Set Selection . 46
5.4.2 VM Scheduling . 47
5.4.3 Reservation Threshold . 52

5.5 Chapter Summary . 57

6 Mobile Cloud Resource Scheduling 59
6.1 Background and Motivation . 61
6.2 Call Graph Model . 63
6.3 Joint Partition and Scheduling Model . 64
6.4 Partition and Allocation Algorithm . 66

6.4.1 Code Partition . 67
6.5 Evaluation . 72

6.5.1 Code Partition and Resource Estimation 72
6.5.2 Overall Performance . 74

6.6 Related Work . 75
6.6.1 Mobile Code Partition . 75
6.6.2 Cluster Resource Scheduling . 76

6.7 Chapter Summary . 77

7 Dissertation Conclusion 83

8 Bibliography 87

IX Contents

Curriculum Vitae 97

List of Figures

1.1 Illustration of how fixed VM will lower down the resource utilization rate
on task level . 6

1.2 Illustration of how fixed VM will lower down the resource utilization rate
on job/application level . 7

3.1 Two representative utility functions for best-effort applications 13

4.1 Market pricing policy and its nonlinearity with memory usage 21
4.2 Resource utilization: our approach vs. heuristic approaches 28
4.3 Three representative job demand profiles 30
4.4 Impact of reservation ratio to the revenue of combined algorithm 32
4.5 Impact of reservation ratio under different pricing models 33

5.1 Number of physical machines needed using each VM set selection scheme.
Greedy-optimal is our VM selection in Section III 47

5.2 Two representative utility functions for best-effort applications 49
5.3 Completion rate for inverse proportional function with 2048 physical ma-

chines and random VM selection for best-fit and first-fit 50
5.4 Completion rate for inverse proportional function with 2048 physical ma-

chines and greedy-optimal VM selection for best-fit and first-fit 51
5.5 Completion rate for linear drop function with 2048 physical machines and

random VM selection for best-fit and first-fit 52
5.6 Completion rate for linear drop function with 2048 physical machines and

greedy-optimal VM selection for best-fit and first-fit 53
5.7 Completion rate w.r.t. different cluster scales under inverse proportional

utility functions . 54
5.8 CPU utilization ratio with 2048 under inverse proportional utility function . 54
5.9 Completion rate w.r.t. different deadlines under inverse proportional utility

function in a 2048 physical machine cluster 55
5.10 Initial reservation threshold . 55

6.1 Process of mobile cloud computing and the role of code partition 62
6.2 Overall performance in terms of end-to-end delay 63

List of Figures XII

6.3 Call Graph for a face recognition application. A 42kB jpeg is recognised
among a set of 32 images of same size. White vertices (in contrast to grey
ones) indicate remotely executable methods; The number on the right hand
side of a method with underline and italics format is its execution time on
server side with the minimal amount of resource. Vertices are labelled with
million CPU cycles of methods; Edges are labelled with sizes of input ant
return states . 68

6.4 First feature of minimal offload property: once a node is to be run on the
server side, all its descendants should be run on the server 79

6.5 Second feature of minimal offload property: once a node is to be run on the
mobile side, its descendants that would run on the server are clustered . . . 80

6.6 Comparison of the optimal minimal time partition with call link based par-
tition in terms of overall time . 80

6.7 Portion of methods run locally vs. user specified completion time 81
6.8 Portion of methods run on the server vs. user specified budget limit. As-

suming rent the basic unit for one minute be 100 81
6.9 Completion rate of the jobs with varying server capacity. Red line: mini-

mal feasible resource demand; blue line: minimal overall time partition in
CloudNet . 82

List of Tables

4.1 Classification in All Dimensions . 24
4.2 Completion rate (market pricing model) 30
4.3 Completion rate (linear pricing model) . 30
4.4 Our combined algorithm vs. pure CP vs. 2D-best fit 31
4.5 Performance with 3 different representative job profiles 31
4.6 Summary: best reservation ratio in different parameters 33

5.1 Application resource demand and VM & PM capacity 36
5.2 VM configurations (normalized to) . 47
5.3 Utilization with different cluster scales for the two utility functions 50
5.4 Comparison of overall utility with 2048 physical machines and inverse pro-

portional utility functions . 51
5.5 Our combined algorithm vs. pure CP . 52
5.6 Reservation Threshold with 2048 physical machines 53
5.7 Reservation Threshold with 1024 physical machines 54

6.1 Code Partition Efficiency . 74

Chapter1
Introduction

Cloud computing provides tenants the resources and services in a pay-as-you-go manner no
matter when and where the requests are submitted. To support the submitted applications
at a large scale, an efficient and effectively resource scheduling scheme is an important part
to both cloud providers and tenants. This chapter would specify the resource scheduling
problem studied in this thesis.

In this section, the cloud scheduling problems are identified. To be specific, two steps are
taken in looking at the cloud scheduling problem. In the first step, this work considers the
intra-cloud scheduling, where the cloud provider aims to improve the inter-VM fragments
via elaborately designing a problem-specific scheduling algorithm. In the second step, this
work extends the vision into a world where user job resource demand is leveraged to further
jointly reduce the intra-VM and inter-VM fragments.

Chapter 1 Introduction 2

1.1 Problem and Definitions: Cloud Resource Scheduling

The development of cloud computing offers the opportunity to deploy and use resizable,
available, efficient, and scalable computation resources on demand. Users can request com-
putation resources in terms of virtual machines (VM) provided by the cloud provider. Once
the resources are allocated, the users would have the complete control of the computing
resources. These resources are used to support various kinds of applications, such as online
social networks, video streaming, search engine, email, and etc.

To efficiently and effectively schedule the user submitted applications over cloud data
center is an important issue for application performance, system throughput, and resource
utilization. The workload of the cloud data center is tremendous. As stated in [2], on
each day, thousands of jobs are submitted to the public cloud and the peak rate would
be as high as tens of thousands scheduling requests per second. In the meanwhile, the
submitted jobs are also quite diverse in terms of resource demand, duration, throughput,
latency and jitter [61, 74]. The massive size and diverse resource demand characteristics
of the workloads make the scheduling process more difficult. Despite the effort by various
studies to improve the physical machines’s energy efficiency, the energy consumption of the
current on-shelf physical machines is still not proportional to the load of the machine and
the lower the utilization rate is, the more energy would be wasted. Hence, low utilization
rate would result in a huge waste of data center energy. Furthermore, the revenue of the
cloud provider will be lowered down since less workloads can be hosted.

Specifically, an efficient and effective cloud scheduler should satisfy the following re-
quirements.

1. Accurate or near accurate decision. The scheduling decision is the key point for
the cloud throughput and utilization, hence accuracy is the main measurement of the
cloud scheduler. This requirement would also be referred to as the effective require-
ment of the cloud scheduler.

2. Fast, online scheduling. Since the scheduler needs to make tens of thousands of
scheduling decisions per second [2], scheduling speed would hence become an im-
portant factor for online scheduling. This requirement would also be referred to as
the efficiency requirement of the cloud scheduler.

3. Compatible for heterogeneous workloads. The physical machines in the cloud data
center could have various resource capacity. The cloud workload would also have dif-
ferent resource demand, duration, and SLA requirements. The cloud scheduler should
be able to make the fast yet accurate scheduling decisions w.r.t the job characteristics.

3 1.1 Problem and Definitions: Cloud Resource Scheduling

The computation resources in public cloud are provided in various types of VMs and
various ways of using this VMs. For example, as stated on its website [46], Amazon EC2
provides General Purpose Instances like T2, M4 and M3; Compute Optimized Instances like
C4 and C3; Memory Optimized Instance like R3; GPU Instance like G2; Storage Optimized
Instances like I2 and D2. There are three ways of purchasing the instances (VMs), namely
“On-Demand Instances, Reserved Instances and Spot Instances” [47].

To use the On-Demand Instances, users should purchase the VMs on an hourly basis.
This is suitable for applications of short duration and spiky or unpredictable workloads.

To use the Reserved Instances, users should purchase the VMs with an upfront payment.
They would then get a discount for the hourly fee. This is suitable for applications with long
duration and steady workloads. By using Reserved Instances, it is possible for this kind of
applications to save a lot of money.

The price of the Spot Instances is not constant but will fluctuate w.r.t the supply and
demand relationships. To use the Spot Instances, the users should provide a maximum
amount of fee they would like to pay which is their bid and is usually lower than the price
of the On-Demand Instances. If the price of the Spot Instances goes lower than the user’s
bid, AWS would allocate his/her the type and number of VMs they specified. If the the
price of the Spot Instances goes higher than the user’s bid, the allocated VMs would be
shut down. Spot Instances is suitable for applications with flexible start times and is only
meaningful at a low price.

However, there are some problems with the current VM based resource provisioning and
purchasing scheme.

On the task level, the fixed VM configuration would lower down resource utilization
rate1. Although there are several VM types and configurations been provided, the actual
number is still limited. Tenants need to choose among these limited configurations to cater
to their resource demand. However, the resource could be wasted due to fixed VM config-
uration. Fig. 1.1 shows an example of how the fixed configuration would lower down the
throughput.

In this example, there are two types of resources: CPU and memory. Let’s assume there
are four VM types with configurations and two tasks need to be allocated. The VM and
physical machine configurations and tasks’ resource demands are listed in the figure. If the
tenants are able to estimate their resource demands accurately, both of the two tasks would
choose VM 3 to accommodate the workload. In this case, two physical machines are needed

1In this thesis, the term “task” is used to represent the minimum granularity of the workload that cannot be
split anymore; the term “applications” and “jobs” are used interchangeably to represent the tasks from the
same tenant

Chapter 1 Introduction 4

to host the submitted tasks as shown in Fig. 1.1a. However, if flexible VM scheduling is
allowed, only one physical machine would suffice as shown in Fig. 1.1b.

On the application/job level, the current VM-based resource provisioning is depart
from the user concern and would further lower down the resource utilization rate.
Current VM-based resource provisioning scheme require tenants to specify their resource
demands in terms of the number and types of VMs they need. However, tenants are at an
inferior position to estimate the VM demands without knowing the underlying VM multi-
plexing scheme. In addition to increasing the user burden, user specified VM demand would
also lower down the cloud provider’s profit. This can be illustrated in the following example
Fig. 1.2.

In this example, there are also two types of resources: CPU and memory. The VM types
with configurations and job resource demands are also listed in the figure. To accommodate
the job resource demand, the user could use <1 VM1, 1 VM2> or <3 VM1, 0 VM2>.
As shown in Fig. 1.2, the first VM demand would use 1 physical machines and the second
scheme would need 3 physical machines. Since the physical machine configuration and its
realtime usage status is only known to the cloud provider, to improve the utilization rate the
cloud provider should take the responsibility of VM set selection for the tenants.

1.2 Dissertation Organization

The other chapters in this dissertation will be discussed as the following structure.

Chapter 2 provides a thorough overview of the existing cloud scheduling solutions. The
problems of these solutions are discussed which lead to potential improvements. This chap-
ter also provides information of several related fields to cloud scheduling such as workload
characterization and flexible VM provision.

Chapter 3 states the underlying correlations between the three works in this thesis. The
goal is to provide an overall solution to cloud scheduling problem. The work starts from
the general VM scheduling problem inside a data center. It designs a problem specific
scheduling algorithm to due with the stochastic bin-packing problem. Afterwards, the vision
extends to a real world operation scenario with both the cloud provider and the user. The
third work represents a special use case for cloud scheduling with mobile users. Due to
the lack of computation power and battery life, one needs to deliberately select the piece of
work to run on the cloud side.

Chapter 4 studies the dynamic VM scheduling problem. Rather than using the fixed
VM configuration based resource allocation, this chapter proposes a fine grained resource

5 1.2 Dissertation Organization

scheduling scheme where each VM is shaped into the size of the user workload. A
reservation-based VM scheduling scheme is proposed. Experiment results show that the
flexible VM scheduling scheme could substantially improve the utilization of the data cen-
ter and the job completion rate. This chapter is based-on the work in [88].

Chapter 5 studies the joint VM scheduling and VM set selection problem. This chap-
ter proposes a multi-resource scheduler that first translate the tenants’ resource demand
i.,,R5ZXs; it then uses the reservation-based scheduling to allocate the VM sets onto physi-
cal machines with the goal to achieve user SLA as well as to improve the overall utility. An
optimal online VM set selection algorithm is designed to satisfy the user resource demand
and reduce the number of activated physical machines.

Chapter 6 studies a use case of the cloud resource scheduling problem. This work extends
the initial cloud resource scheduling problem to a mobile case, where the mobile users try to
leverage the remote resource to execute its computational work. The system delays include
execution time on both the client and server, the transmission between the parts, as well as
the code partition time on the server side. An optimal code partition algorithm is proposed
and evaluations are done in real life environment. This chapter is based-on the work in [89].

Chapter 7 summarizes this work with a discussion of dissertation impact and future di-
rections.

Chapter 1 Introduction 6

Task2

CPU Memory

VM1 1 2

VM2 2 2

VM3 3 4

VM4 7 5

Available VMs in the system

CPU Memory

Task1 2 3

Task2 3 2

Task size

CPU Memory

machine 7 5

Machine capacity

Task1 VM3

VM3

Machine 1 Machine 2

(a) Fixed VM configuratin.

CPU Memory

Task1 2 3

Task2 3 2

Task size

CPU Memory

machine 7 5

Machine size

Machine 1

CPU Memory

VM1 2 3

VM2 3 2

VM size

Machine 2

Task1
(VM1)

Task2
(VM2)

(b) Dynamic VM configuratin.

Figure 1.1: Illustration of how fixed VM will lower down the resource utilization rate on
task level.

7 1.2 Dissertation Organization

CPU Memory

VM1 3 2

VM2 4 3

Available VMs in the system CPU Memory

Job1 7 5

Job size

CPU Memory

machine 7 5

Machine capacity

Machine 1

VM2

Machine 1

VM 1 VM 1

Machine 2

VM 1

Machine 3

VM 1

<1 VM1, 1 VM2> <3 VM1, 0 VM2>

Figure 1.2: Illustration of how fixed VM will lower down the resource utilization rate on
job/application level.

Chapter2
Background and Related Work

This chapter provides an overview of the state-of-the-art work of cloud scheduling and
workload characterization. It also presents the background knowledge and some terminolo-
gies of cloud resource scheduling.

Chapter 2 Background and Related Work 10

2.1 Cloud Scheduling

The scale and impact of cloud data centers grow significantly during last decades. Large
data centers such as Amazon EC2 and Microsoft Azure, usually contain tens of thousands of
physical machines with a sophisticated network topology. In the meanwhile, the workload
in cloud data center is heterogenous since it comes from various types and functions of
applications. In a complicated system like this, it is usually difficult to develop scalable
scheduling schemes to handle the enormous number and quite diverse jobs/tasks [60]. To
be specific, it is hard for the cloud providers to make online decisions of which tasks should
be run on which physical machine at what time.

A number of solutions have been proposed for the scheduling problem in large scale
cloud data centers [30] [19]. The ASRPT [60] approach can provide a scheduler with an
accuracy bound of two compared to the optimal solution. However, the scalability of AS-
PRT is not good enough since it contains a sorting procedure whose time complexity grows
significantly w.r.t. the number of physical machines.

There are also some works that leverages the BvN [12] heuristic to design their schedul-
ing policies. To use the BvN heuristic, one need to know the distribution of the arrival pro-
cess. The scheduler could guarantee the queue stability by requiring an maximum waiting
time for each schedule in the BvN decomposition matrix. The problem with the BvN-based
schedulers is the maximum waiting time can be quite large and would grow significantly
with the number of ToR switches [11]. Hence the scalability of the BvN-based scheduler is
not good enough either.

There are also some other works that take the cloud pricing into their consideration. The
goal is to maximize the provider profit [91] [90] or to improve the overall social welfare [92].
The problem with this kind of works is that their auction policies are derived from empirical
studies of spot instances which may not reflect the future interests of the cloud provider and
user.

2.2 Cloud Workload: Characterization and Prediction

A number of works have studied the public cloud workload characteristics [14]. [15] com-
pares Amazon EC2 to several high-performance computing (HPC) clusters. [16] conducts
a similar study that compares EC2 to NASA HPC cluster. Their finding is that the network
utilization in the public cloud is not as high as in operational clusters. [17] deploys several
networking benchmarks on Amazon EC2 and also finds that EC2 VMs has a lower resource
utilization ratio and higher variability than private scientific computation cloud. [18] finds

11 2.2 Cloud Workload: Characterization and Prediction

that heterogeneity of the physical machine hardware is the key factor that increases the per-
formance variance. [13] provides a measurement study of resource usage patterns in EC2
and Azure and finds out that a daily usage pattern.

Chapter3
Framework and Architecture

This chapter discusses the underlying correlations between the three works. It first considers
the problem from the provider’s point of view with the goal to maximize the profit. The
work does not stop there. It extends the problem to take the user purchase process into
consideration. Interestingly, with user level information, both the cloud provider and the
end user would benefit. The third part of this dissertation takes the step further onto the
specific mobile users. The system architecture is shown as follows.

Figure 3.1: Two representative utility functions for best-effort applications.

Chapter 3 Framework and Architecture 14

3.1 Trace-driven VM Scheduling Algorithm

The first setting considers a scenario where the workload comes as individual tasks. The
aim of this work is to improve the cloud utilization by reducing the inter-VM fragments,
which we called the external fragments.

The work starts from going through literature work when three different existing schedul-
ing approaches are studied. The problem with these work is that they cannot balance be-
tween the scheduling accuracy and scheduling speed. Hence, this work try to provide high
cloud utilization within a reasonable scheduling time.

To better understand the problem specific scheduling input, a trace-driven analysis is done
to study the workload characteristic. The finding is that duration is the deterministic factor
of task importance.

Therefore, this work proposes a combined constraint programming and heuristic algo-
rithm. The constraint programming algorithm is used to provide an accurate scheduling
result for the long and important tasks. The heuristic algorithm is used to schedule the short
and less important tasks.

A trace-driven simulation is done to evaluate the scheduling algorithm. It is worth notic-
ing that the solution is not restrict to the two heuristic been selected. Results show that the
combined algorithm can achieve around 18% CPU and memory utilization improvement.

3.2 Joint User and Cloud Scheduling

The second setting extends the vision to a real world cloud operation scenario where users
have to buy VM sets from the cloud provider. There exist multiple VM sets that can satisfy
the user resource demand while not all of them would have the same quality. By delicately
choosing the VM set for the users, the cloud provider would further improve its resource
utilization.

This part of work first illustrates why the low quality VM set would cause both internal
and external fragments. Then it provides a solution to find the optimal VM set when the
cloud users arrive as a stochastic process. It has be proved by theoretical analysis that the
proposed algorithm can achieve global optimal.

15 3.3 Cloud Scheduling for Mobile Users

3.3 Cloud Scheduling for Mobile Users

The third setting discussed the mobile cloud scenario when the cloud users has more re-
strict requirement for the timely response and local side energy saving. The work uses two
applications namely the face recognition and natural language processing as examples to
illustrate the joint cloud partition and resource scheduling problem.

This work proposes a scheme for multiple cloud users to share the common cloud infras-
tructure. It contains a mobile to cloud code partition process and cloud resource scheduling
process. Since the network condition will impact the state transmission between the mobile
user and the cloud provider, Instead of making an offloading decision on each node, the
code partition process transfers the call graph into a call link to get the optimal offloading
and integrating points.

Chapter4
Deadline Aware Multi-Resource Scheduling
in Cloud Data Center

This chapter considers the dynamic cloud resource scheduling problem on the task level.
Cloud data centers typically require tenants to specify the resource demands for the virtual
machines (VMs) they create using a set of pre-defined, fixed configurations, to ease the
resource allocation problem. Unfortunately, this leads to low resource utilization of cloud
data center as tenants are obligated to conservatively predict the maximum resource demand
of their applications.

The work in this chapter argues that instead of using a static VM resource allocation, the
finer-grained dynamic resource allocation and scheduling scheme can substantially improve
the utilization of the data center resources by increasing the number of tasks accommodated
and correspondingly, the cloud data center provider’s revenue.

The dynamic real-time scheduling of tasks can also ensure that the performance goals
for the tenant VMs are achieved. Examining a typical publicly available cluster data center
trace, an observation is that the cloud workloads follows the 80/20 principle. A large number
of tasks are short and require and only a small proportion of tasks are long and which require
substantial compute or memory resources. This observation can be used to facilitate the
resource scheduling algorithm design.

This work proposes an optimization based approach that exploits this division between
the short and long jobs to dynamically allocate a cloud data center’s resources to achieve
significantly better utilization by increasing the number of tasks accommodated by the data
center.

The rest of the chapter is organized as follows. Section 4.1 gives an overview of the
scheduling algorithms and resource allocation strategies. Section 4.2 presents the integer
programming model to describe the scheduling problem. Section 4.3 provides our com-

Chapter 4 Deadline Aware Multi-Resource Scheduling in Cloud Data Center 18

bined constraint programming and heuristic solution. Simulation results and evaluations
are presented in Section 4.4. This chapter is summarized in Section 4.5.

19 4.1 Background and Motivation

4.1 Background and Motivation

Public cloud services are known for their flexibility to offer compute capability to enterpris-
es and private users on a pay-as-you-go basis. It provides a variety of resources, such as
CPU, memory, storage and network resource to tenants. An essential aspect of cloud com-
puting is its potential to statistically multiplex user demands into a common shared physical
infrastructure to improve efficiency. However, the average utilization of each active phys-
ical machine in cloud data center is still relatively low. In an ideal case, cloud services
could allow the tenants to dynamically request their computing resources just based on
their instantaneous needs. However, this is not quite the case in reality. According to recent
reports, the estimated utilization ratio of AWS data center is approximately 7% [7], while
the utilization rate at a corporate datacenter is approximately 40% -60% [42]. Despite the
effort by various studies to improve the energy efficiency of physical machine, the energy
consumption of current on-shelf physical machines is still not proportional to its load, and
the lower the utilization rate is, the more energy would be wasted. Hence, low utilization
rate would result in a waste of datacenter energy. Furthermore, since less workloads can be
hosted in the system, the revenue of the cloud provider will be lowered down.

The efficiency of a cloud infrastructure relies heavily on the underlying resource alloca-
tion mechanism. The de-facto policy adopted by today’s cloud operators is virtual machine
(VM)- based resource allocation, where a cloud operator provides a set of pre-defined, fixed
VM configurations. To get access to the resource, tenants need to choose among these
limited configurations and specify the time and number of VMs they need. The cloud
operator then allocates the corresponding resources to the tenants. One issue of this ap-
proach is that users have to purchase the resources based on their estimation of each VM’s
maximum resource demand. However, the average consumption is often lower than the
peak value, resulting in resource wastage. Recently, several proposals have been made
for resource scheduling of cloud infrastructures with an aim to improve the resource ef-
ficiency [21, 61, 90]. However, the inherent problem of resource waste due to fixed VM
configuration limits the gains.

This work argues that using finer-grained resource scheduling can benefit both the cloud
operator and the tenants. In addition to evaluation metrics of job completion rate and re-
source utilization rate, we also consider the overall revenue of the cloud operator as the
optimization objective which can be seen as a direct reflection of the cloud operator’s in-
terest. This also results in meeting the job’s deadline. With objective of maximizing the
revenue and taking into account the data center’s capacity constraint, the multi-resource
scheduling problem is modeled as an integer programming problem. However, the tradi-
tional integer programming solvers are not applicable here due to the strict requirement for
online resource scheduling to determine the solution quickly and schedule the job so that it

Chapter 4 Deadline Aware Multi-Resource Scheduling in Cloud Data Center 20

completes within the deadline. As summarized in [24], even for a very small scale of jobs
and number of servers, the time to solve the problem would be unacceptable. For example,
in one case tested with 4 machines and 22 jobs, the solution time is 1957.6 seconds on Intel
Xeon E5420 2.50 GHz computers with 6 MB cache and 6 GB memory.

The work analyzes the resource demands of jobs from a public cluster trace [49], and
find out that they have a clear relationship to the job duration. The relatively small number
of long duration jobs consume the majority of the computing resources. This motivates the
approach to get a tradeoff between scheduling accuracy and scheduling speed: since the few
long duration jobs consume most of the resources, a sophisticated scheduling algorithm that
can reach an optimal solution is used; on the other hand, for short duration jobs, due to their
large number, fast scheduling is important. Therefore, a combined constraint programming
and heuristic scheduling algorithm is proposed. We use constraint programming as the tool
to find an optimal scheduling for the long duration jobs. For the jobs with short durations,
our experiments show that simple heuristics such as first fit or best fit suffice.

4.2 System Model

This work models the multi-resource scheduling problem in a public cloud as an integer
programming problem with an objective to maximize the overall revenue of cloud opera-
tor. The overall revenue is defined to be the sum of the utility of jobs that have met their
deadlines. For jobs that cannot get allocated, they do not contribute to the cloud operator’s
revenue.

4.2.1 Pricing Policy

Multi-resource pricing is challenging for public cloud operators. Many approaches have
been proposed to get a fair, profitable, and proportional pricing scheme for the multi-
resource environment [84] [26] [27] [29]. Since the pricing policy is orthogonal to the
resource scheduling problem, two simple pricing policies are used in this work, as present-
ed below.

4.2.1.1 Market Pricing

The first pricing policy been used is the policy adopted by current cloud operators [48].
Currently the Google Compute Engine provides 3 VM types, namely standard, high mem-
ory and high CPU. The configurations that are not covered by the policy are calculated by

21 4.2 System Model

0
5

10
15

20

0

50

100

150
0

0.5

1

1.5

2

of virtual coresMemory (GB)

P
ric

e

(a) Interpolation of market pricing.

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

of virtual cores

P
ric

e

3.75 GB memory / virtual core
6.5 GB memory / virtual core
0.9 GB memory / virtual core

(b) Nonlinearity with memory.

Figure 4.1: Market pricing policy and its nonlinearity with memory usage.

interpolation. Fig. 4.1a shows the interpolation results. A take-away message from the
market pricing policy is that the price grows nonlinearly with memory usage. As can be
seen from Fig. 4.1b, the price grows linearly with the CPU usage, however the gap between
memory usage is nonlinear. When the amount of memory increases, the incremental cost
decreases.

4.2.1.2 Linear Pricing

For simplicity a linear pricing model is used for comparison. Based on current pricing by
cloud providers, CPU plays a more important role for pricing than memory does. Hence the
linearity of price is based on the CPU requirements. The baseline been used is the standard
VM type in Google Compute Engine [48] where the price will increase by 0.104 if the
number of virtual cores increase by 1.

4.2.2 Integer Programming

The goal of resource scheduling is to maximize the revenue for all the jobs completed with
the capacity constraint on each machine. We assume that a job is fine-grained enough that
it needs no more than 1 physical machine to execute. Furthermore, we do not allow job
preemptions in our system. This nonpreemption requirement implies that we immediately
know whether a job contributes to the overall revenue the moment it gets scheduled.

Let R j,t denote the resource demand of job j at time t. Let’s consider a multi-resource
scenario here, thus R j,t is a vector. Cm is the capacity of machine m, which is also a vector.

Chapter 4 Deadline Aware Multi-Resource Scheduling in Cloud Data Center 22

Notice that the homogeneity property is not imposed on the resource capacity of machines.
xm, j,t is a Boolean variable, where 1 indicates job j is assigned to machine m at time t and
0 otherwise. Lm,t is the utilization vector of machine m at time t. All machines shouldn’t
exceed their capacities at anytime. D j is the deadline of job j while Fj is its finishing time.
U j is the utility of job j. Let’s define U j to be the w j which is the revenue obtained for a
job j if it completes before its deadline and 0 otherwise. This leads to the following integer
programming model:

max ∑
j∈J

U j (4.2.1)

s.t.∑
j∈J

R j,t × x j,m,t = Lm,t ∀m ∈M, t ∈ T (4.2.2)

∑
j∈J

Lm,t ≤ Cm ∀m ∈M, t ∈ T (4.2.3)

x j,m,t ∈
{

0,1
}

(4.2.4)

∑
m∈M

xm, j,t ∈
{

0,1
}
∀ j ∈ J, t ∈ T (4.2.5)

∑
t∈T,t>0

|x j,m,t − x j,m,t−1| ≤ 2 (4.2.6)

U j =

{
w j Fj ≤ D j

0 Fj > D j
(4.2.7)

4.3 Combined Constraint Programming and Heuristic
Algorithm

The combined problem of job scheduling with resource constraints and deadline require-
ments is NP-hard [33]. There are two challenges that make the existing approaches using
an integer programming model impractical in this situation. One is that a global optimal
solution needs information (arrival time, resource demand) of future jobs, which would
cause the system become non causal. Another is that unlike allocation problems, a schedul-
ing problem requires an online solution. The scale and speed requirements are difficult to
achieve by current integer linear programming solvers. Thus, a new approach is needed for
this multi-resource scheduling problem.

The scheme been adopted here is the reservation mechanism, a practical approach used
by parallel computing to provide more reliable service to high priority jobs [38]. It fits the
problem well since the portion of more privileged jobs is small and their duration is long;
once they get accommodated, they usually occupy that resource for a while hence allow the
scheduling engine enough time for the next iteration.

23 4.3 Combined Constraint Programming and Heuristic Algorithm

Constraint programming (CP) is a set of tools that provides a high performance solution
to constraint-based discrete variable problems using constraint propagation and decision-
making based search. The optimization engine of CP software is a set of logical deductive
inferences rather than the relaxations techniques of integer programming algorithms. The
CP solutions for resource allocation and planning have been shown to be usually 10+ times
faster than the integer programming solvers for resource scheduling [56, 78].

4.3.1 Trace Analysis

The Google Cluster Trace from a 12,000-machine cluster over about a month-long peri-
od [49] is used in our study. The trace contains a trace of resource demand over time and
a trace of machine availability. Resource requests and measurements are normalized to the
largest capacity of the resource on any machine in the trace (which is 1.0). Due to normal-
ization, CPU and memory usage range from 0 to 1.

Efficient VM scheduling scheme would demand a thorough understanding of the resource
usage pattern of the submitted applications. The basic step of resource usage pattern anal-
ysis is to accurately yet efficiently classify the workloads into groups. To get a clear un-
derstanding of the workload features, the K-means (a multi-dimension statistical clustering
algorithm) algorithm [74] is used to determine the classification of large and small in each
of the 3 dimensions of a job (CPU, memory and duration).

One extream direction for job classification is to define each job as a class. However this
approach would cause a large number of classes when there are many jobs which is a typical
case in public cloud. On the other extream direction, is to use single class, which would
provide no benefit for the resource scheduling problem. The tradeoff used here is to define
two types on each of the resource dimensions.

The initial 8 classes are summarized in Table 4.1. The numbers are the mean values
of all jobs within that class and the unit of duration is hours. As can be seen from the
table, duration shows a clearer distinction of small and large than CPU and memory. Using
duration as the clustering factor, the jobs with a duration < 2.06 hours are classified as small
or short duration jobs, while those with a duration >= 2.06 hours are defined as large or
long duration jobs.

4.3.2 Constraint Programming and Gecode Solver

In our multi-resource datacenter scheduling problem, each job has a start and end time, and
a resource demand for each kind of resource. Each physical machine can execute multiple

Chapter 4 Deadline Aware Multi-Resource Scheduling in Cloud Data Center 24

Table 4.1: Classification in All Dimensions.
Initial classes Duration CPU Memory Percentage

SSS 0.0833 0.03 0.15 29%
SSL 0.0890 0.05 0.37 32%
SLS 0.2387 0.12 0.21 11%
SLL 0.5731 0.12 0.59 6%
LSS 19.34 0.05 0.49 17%
LSL 21.23 0.05 0.47 1%
LLS 19.57 0.11 0.12 1%
LLL 21.65 0.53 0.48 3%

jobs as long as the aggregate resource demand does not exceed the machine capacity.

Solving the scheduling problem for jobs with deadlines using integer programming,
even for a single resource with constraints on the aggregate demand, can take a long
time [78].The problem of accumulative resources of one resource is already considered pro-
hibitively hard for integer programming solver. In our multi-resource datacenter scheduling
problem, each job has a start and end time, and a resource demand for each kind of resource.
Each physical machine can execute multiple jobs as long as the accumulated resource de-
mand does not exceed the machine capacity. The problem of accumulative resources with
deadline requirements is known to take long time for integer programming solver.

Fortunately, it matches with the “cumulatives” constraint [57] provided by the multi-
resource scheduling package in the Gecode solver [50], where the resource demand of each
job can be specified in the TASKS parameter set. Therefore, we chose CP to solve the
datacenter multi-resource scheduling problem. The declaration of the “cumulatives” func-
tion [20] from the Gecode solver is shown as follows code 4.3.2.

Listing 4.1: Cumulatives Propagator.

vo id Gecode : : c u m u l a t i v e s (Home home ,
c o n s t I n t V a r A r g s & m,
c o n s t I n t V a r A r g s & s ,
c o n s t I n t V a r A r g s & p ,
c o n s t I n t V a r A r g s & e ,
c o n s t I n t V e c t o r A r g s & u ,
c o n s t I n t V e c t o r A r g s & c ,
boo l a t m o s t ,
I n t C o n L e v e l i c l = ICL DEF

)

25 4.3 Combined Constraint Programming and Heuristic Algorithm

As stated in [20], in the “cumulatives” function, m denots the machine assigned to the
job; s is the start time assigned the job; p is the processing time of the job; e is the end time
assigned to the job; u is the amount of resources consumed by the job; c is the capacity of
each machine; both u and c are vectors for each input.

Even though the CP solver is much faster than the integer linear programming solution
approaches, it still cannot catch up with the pace of job arrival and departure events of
just the long duration jobs. To speedup the search process, a technique is used to avoid
repeatedly visiting the same search point for each iteration. This work exploits the fact
that no preemption is allowed in our system. Hence, a job runs to completion on the same
machine. Leveraging this property, the number of variables that need to be determined for
each iteration is reduced significantly. For example, the number variables is reduced from
1,458,176 to 6,144 in one iteration.

4.3.3 Heuristic Algorithms

We use two basic 2-dimensional first fit and best fit algorithms as the heuristic for schedul-
ing short jobs. While the corresponding 1-dimensional first fit and best fit algorithms are
thoroughly studied and tested, the definition of their 2-dimensional counterparts is some-
what more flexible in its definition to match the application scenario. We define the notion
of 2-dimensional first fit and best fit in our scheduling problem as follows.

4.3.3.1 2-dimensional First Fit

In the 2-dimensional first fit, we assign an incoming job to the first machine that can execute
the job within its capacity. In the 3-layer tree topology for the datacenter, we define the order
of assignment as being from the leftmost machine moving to the right.

4.3.3.2 2-dimensional Best Fit

In the 2-dimensional best fit heuristic, the incoming job is assigned to the machine that has
a residual capacity that is closest to the job’s requirements. More precisely, the heuristic is

argmin
{mr

m j
+

cr

c j

}
mr ≥ m j,cr ≥ c j (4.3.1)

Chapter 4 Deadline Aware Multi-Resource Scheduling in Cloud Data Center 26

4.3.4 Combined Algorithm

The combined algorithm and the heuristic algorithms are presented in Algorithm 5 and
Algorithm 6, respectively. To schedule pending jobs, we adopt a basic deadline-based ap-
proach as in Algorithm 7.

Based on the statistics of job resource demands, we reserve a portion of machines for
accommodating large jobs (see further discussions on best reservation ratio in Section V.E)
When a large job arrives, it is scheduled (using CP) to one of the reserved machines. How-
ever, it is still possible that due to the dynamics of the job resource demand, a reserved
machine is not available to execute this newly arrived job. In this case, this job will get
scheduled to an unreserved machine using the heuristic algorithm.

Algorithm 1 Combined CP and Heuristic Algorithm

1: Symbols: α – duration threshold (2.06 of the Google trace case), H – type of heuristic
(either best fit or first fit)

2: When {a job J arrives}
3: if Job Duration < α then
4: Heuristic scheduler(J, H); assign J to an unreserved machine
5: else
6: CP scheduler(); assign a reserved machine to J
7: if CP failed to assign a reserved machine to J then
8: Heuristic scheduler(J, H); assign J to an unreserved machine
9: end if

10: end if
11: When {a job J running in machine M finishes}
12: Release machine M resources for J
13: Schedule a queued job(M)

4.4 Evaluation

We perform trace-driven simulations to demonstrate the performance benefits of our ap-
proach. We use the public Google Cluster Trace [49] which contains 500 files of job spec-
ifications ordered by their arrival time. Each file has information for approximately 5,000
jobs. We consider a datacenter with 1,024 machines, and each physical machine is consid-
ered to have 1 unit of CPU and memory. The datacenter network is the standard 3-layer
tree topology, where each of the Top-of-the-Rack (ToR) switches is connected to 16 ma-

27 4.4 Evaluation

Algorithm 2 Heuristic scheduler(J, H)
1: Symbols: J – job to be scheduled, H – type of heuristic
2: if H = First Fit then
3: for Machine M ∈ Unreserved cluster do
4: if Capacity(M)≥ Demand(J) then
5: Assign job J to machine M
6: end if
7: end for
8: else
9: for MachineM ∈ Unreserved cluster do

10: Find min
{mr

m j
+ cr

c j

}
mr ≥ m j,cr ≥ c j; 2D-best fit

11: end for
12: Assign job J to machine M
13: end if
14: if No unreserved machine available then
15: Insert job J to the deadline-ordered queue Q
16: end if

Algorithm 3 Schedule a queued job(M)

1: Symbols: M – available machine
2: for Job J ∈ job queue Q do
3: if Capacity(M)≥ Demand(J) then
4: Assign job J to machine M return
5: end if
6: end for

Chapter 4 Deadline Aware Multi-Resource Scheduling in Cloud Data Center 28

0 200 400 600 800 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time(s)

C
P

U
 U

til
iz

at
io

n

Combined Algorithm
2D−Best Fit
VM−based

(a) CPU utilization.

0 200 400 600 800 1000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(s)

M
em

or
y

U
til

iz
at

io
n

Combined Algorithm
2D−Best Fit
VM−based

(b) Memory utilization.

Figure 4.2: Resource utilization: our approach vs. heuristic approaches.

chines. Each aggregation switch is connected to 8 ToR switches and there are 8 aggregation
switches that are then linked by a core switch.

4.4.1 Resource Utilization

The CPU and memory utilization for our combined algorithm using the market pricing
model is shown in Fig. 4.2. The results are averaged by scheduling the jobs specified in
each of the 500 files, across all the 1,024 machines. We align the time of the files to the
same startup time and evaluate the variation in the utilization over time.

Fig. 4.2 shows that our combined algorithm can achieve about 20% higher CPU and
memory utilization than the alternatives of a pure ‘best-fit’ and the VM-based scheduling
policies. Thus, the combined algorithm completes a correspondingly larger number of jobs
than the alternatives and more efficiently uses resources. This indicates in an oversubscrip-
tion scenario, our approach allows more efficient use of resources.

4.4.2 Completion Rate

The completion rate indicates the proportion of jobs that are completed before their dead-
line. The average completion rate is shown in Tables 4.2 and 4.3 under the two pricing
models. Note that since the datacenter as a whole is overloaded, the completion ratio for
all the algorithms are not much higher than 50-60%. As can be seen from both tables, the

29 4.4 Evaluation

proposed combined algorithm can improve the overall completion rate, especially for large
jobs. This result reflects the fact that large jobs can use both the reserved resources and the
unreserved resources. The completion ratio for the short jobs is significantly lower, showing
the effectiveness of the scheduling with reservations for the large jobs.

4.4.3 Comparison to Pure CP and Pure Heuristic Algorithms

Table 4.4 compares our combined algorithm at its best reservation ratio against a pure Con-
straint Programming algorithm or a pure heuristic (2-dimensional best fit). The overall
revenue is normalized with respect to the pure CP solution for comparison purposes. The
computation time for scheduling is estimated based on running the algorithm on a work-
station with quad-core 2.0GHz processor and 16GB RAM. Since the CP simulation takes a
long time and all traces are of a similar nature, we compare the performance on one typical
trace out of the 500 traces. As can be seen from the table, although CP can achieve the best
performance, its time complexity makes the approach impractical. Our combined algorithm
on the other hand, can provide reasonably good results within a short amount of time for
scheduling (12 minutes for our combined algorithm, 3 minutes for heuristic and 1,775 min-
utes or 29.6 hours for the pure CP). Our combined algorithm improves the overall revenue:
going from 0.59 for the 2-dimensional best fit heuristic to 0.76 (28.8% increase). It is only
24% lower than CP. Finally, our algorithm improves the CPU utilization (28.6% higher than
heuristic) and memory utilization (29% higher than heuristic).

4.4.4 Impact of Job Demand Profile

The profile of the individual job’s resource demand over time also affects the efficiency of
the scheduling algorithm. By far this work assumes a uniform distribution which means a
job will keep consuming the same amount of resource within its duration as in Fig. 4.3b.
Intuitively, the performance of the scheduling algorithm could benefit from priori informa-
tion of the job characteristics. This work considers three representative profiles shown in
Fig. 4.3, which are used to represent three different types of jobs: a) an initial high demand
followed by a reduced demand, b) constant resource demand during the job lifetime (which
is used for the evaluation so far), and c) increased demand after a period. Since the Google
Trace does’t have the field to specify the changes of the workloads, the change point of the
first and the third shape is decided to be in the middle of its duration. The performance of
our combined algorithm is shown in Table 4.5, where the overall revenue is normalized to
the case when the demand is constant(profile (a)) for comparison purposes.

As can be seen from Table 4.5, the increase in computation time for scheduling large jobs

Chapter 4 Deadline Aware Multi-Resource Scheduling in Cloud Data Center 30

Time

R
es

o
u

rc
e

D
em

an
d

(a) Shape a: decreasing.

Time

R
es

o
u

rc
e

D
em

an
d

(b) Shape b: rectangular.

Time

R
es

o
u

rc
e

D
em

an
d

(c) Shape c: increasing.

Figure 4.3: Three representative job demand profiles.

Table 4.2: Completion rate (market pricing model).

Category VM-based 2D-First 2D-Best
Combined

First
Combined

Best
Long jobs - - - 93.7% 94.6%
Short jobs - - - 43.1% 44.3%

Overall 36.7% 43.9% 45.2% 54.2% 56.1%

is acceptable (12-16 minutes, rather short considering the 2.06 hour threshold we use for
the duration of large jobs). The increase of the computation time is primarily because of
the recalculation of what the remaining resources are upon a job arrival. This is needed for
both the CP and the heuristic components of our algorithms. The benefit of our ability to
factor in the job profile, rather than thinking of the resource demand as being constant is
the improvement in overall revenue: for the second and third profiles it is 14% and 16%
respectively.

Table 4.3: Completion rate (linear pricing model).

Category VM-based 2D-First 2D-Best
Combined

First
Combined

Best
Long jobs - - - 96.7% 97.6%
Short jobs - - - 41.9% 43.2%

Overall 34.0% 42.2% 44.0% 54.0% 55.2%

31 4.4 Evaluation

Table 4.4: Our combined algorithm vs. pure CP vs. 2D-best fit.

Category
Constraint

Programming
2D-Best

Combined
Algorithm

Computation time for scheduling 1775min 3min 12min
Overall revenue 1 0.59 0.76
CPU utilization 89% 56% 72%

Memory utilization 94% 62% 80%

Table 4.5: Performance with 3 different representative job profiles.
Profile (a) Profile (b) Profile (c)

Computation time for scheduling 12min 16min 16min
Overall revenue 1 1.14 1.16
CPU utilization 72% 82% 84%

Memory utilization 80% 89% 91%
Completion rate 56.1% 64.4% 66.1%

4.4.5 The Impact of Reservation Ratio

We evaluate the average revenue for all jobs in each of 500 files as the reservation ratio
ranges from 0 to 100 percent, and the results for two pricing models are shown in Fig. 4.4.
As shown in Fig. 4.4, the overall revenue increases with the reservation ratio at first, and
then drops. This is consistent with our intuition that when more jobs get scheduled using the
optimal solution, the overall revenue would increase as long as the resources are available
for the incoming large jobs. However, when the reservation ratio gets too high, more small
jobs couldn’t be accommodated, hence the revenue would begin to decrease. The upper
and lower bounds of the 90% confidential interval are quite close to the mean value, which
means the result is quite consistent across the 500 different trace files.

When the first fit heuristic is used, the best reservation ratio is 15% using the linear pricing
model compared to 20% using market pricing. The best fit case also shows a similar trend:
the best reservation ratio for linear pricing is lower than that for market pricing (see Fig. 4.5
and Table 4.6). With market pricing, short jobs appear to play a more important role. Be-
cause of this, the effect of reservation may not be as obvious as in the linear pricing model.
Fig. 4.5 also shows 2-dimensional best fit always slightly outperforms 2-dimensional first
fit.

Chapter 4 Deadline Aware Multi-Resource Scheduling in Cloud Data Center 32

0 20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Reservation ratio

N
or

m
al

iz
ed

 r
ev

en
ue

Average linear pricing, first fit
Upper value of 90% confidence interval
Lower value of 90% confidence interval

(a) Linear pricing, first fit.

0 20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Reservation ratio

N
or

m
al

iz
ed

 r
ev

en
ue

Average linear pricing, best fit
Upper value of 90% confidence interval
Lower value of 90% confidence interval

(b) Linear pricing, best fit.

0 20 40 60 80 100

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Reservation ratio

N
or

m
al

iz
ed

 r
ev

en
ue

Average market pricing, first fit
Upper value of 90% confidence interval
Lower value of 90% confidence interval

(c) Market pricing, first fit.

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Reservation ratio

N
or

m
al

iz
ed

 r
ev

en
ue

Average market pricing, best fit
Upper value of 90% confidence interval
Lower value of 90% confidence interval

(d) Market pricing, best fit.

Figure 4.4: Impact of reservation ratio to the revenue of combined algorithm.

4.5 Chapter Summary

Currently, the cloud provider use fixed, pre-defined VM settings to cater to the resource
demand from the tenants. However, this cause the low utilizatin rate and thus low profit of
the cloud provider.

This chapter proposes a fine-grained resource scheduling approach to improve the dat-
acenter’s resource utilization. As scheduling is done in a granularity finer than VM, an
online scheduling scheme is required. Leveraging the distribution pattern between short
and long jobs, this chapter introduces a combined constraint programming and heuristic
based scheduling algorithm to achieve fast, yet accurate scheduling. Trace-driven simula-
tions show that this approach can improve the overall revenue and resource utilization by
25-30% over pure heuristic based scheduling.

33 4.5 Chapter Summary

Table 4.6: Summary: best reservation ratio in different parameters.
Linear pricing Market pricing

First fit 15% 20%
Best fit 14% 18%

0 20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

0.9

1

Reservation ratio

N
or

m
al

iz
ed

 r
ev

en
ue

Linear pricing, first fit
Linear pricing, best fit

(a) Linear pricing.

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Reservation ratio

N
or

m
al

iz
ed

 r
ev

en
ue

Market pricing, first fit
Market pricing, best fit

(b) Market pricing.

Figure 4.5: Impact of reservation ratio under different pricing models.

Chapter5
VM Set Selection

Current cloud resource allocation schemes usually require the tenants to specify their re-
source demand in terms of the number of VMs in spite of the fact that the tenants are at an
inferior position to estimate the VM demands. This chapter shows that there may exist mul-
tiple VM sets that can support an application’s resource demand and by elaborately select
an appropriate VM set, the utilization of the data center can be improved without violating
the application’s SLA.

This chapter proposes a multi-resource scheduler that allocates applications to VM sets
and then to physical machines with the goal to achieve user SLA and to improve the overall
utility. This work contains four parts: 1. an optimal online VM set selection scheme satisfy-
ing the user resource demand and minimizing the number of activated physical machines; 2.
an integer programming model to maximize the overall utility of the cloud provider under
the capacity constraint; 3. a reservation-based combined constraint programming approach
to the problem; 4. a trace driven simulation to evaluate our VM set selection and VM
scheduling approach.

The rest of the chapter is organized as follows. Section 5.1 and 5.2 illustrates the VM
set selection and scheduling problem and presents the system model respectively. Section
5.3 provides a greedy algorithm to select the VM set for each application. The proof of its
optimality is in both the static and dynamic scenario. Simulation results and evaluations are
presented in Section 5.4. This chapter is concluded with discussions on some open issues
in Section .

Chapter 5 VM Set Selection 36

Table 5.1: Application resource demand and VM & PM capacity.

Res1 Res2
App1 15 13
App2 6 14
VM1 5 3
VM2 2 4

PM 7 7

5.1 Background and Motivation

Today’s data center applications diverse in their rich variety of functions, such as video
streaming [39], websites [40] and data analysis [41] etc. These applications usually demand
various kinds of resources (CPU, memory, storage, etc.), on different levels and occupy the
allocated resources for different time periods. The resource demand are then packed into a
set of pre-defined VM configurations provided by the cloud service provider [45, 48]. For
example, Amazon EC2 offers balanced resource VMs of M2 instances, compute-optimized
VMs of C3 and C4 instances, memory-optimized VMs of R3 instances, storage-optimized
VMs of I2 and HS1 instances and GPU-intensive VMs of G2 instances. In current cloud
datacenters, users are obliged to specify their VM requirements. For example, a user may
specify her VM requirement as 10 C3 VM and 2 G2 VM, each for 7 days. However, the
direct concern of a cloud user is usually not the VM type and numbers, but rather the SLA
requirements [71], such as completion time and resource demand. In the meanwhile, the
providers would also benefit if users are allowed to just provide their resource demands. Ta-
ble. 5.1 is a simple example. Let’s consider a homogenous system with 2 types of resources
and 2 types of VMs. The specifications of the application’s resource demand and the VM
and physical machine capacity is listed in 5.1.

In this example, both App1 and App2 have more than one Pareto optimal VM sets2. The
Pareto optimal for App1 is 5 VM1, <3 VM1, VM2>, <12 VM1, 3 VM2>, <1 VM1, 5
VM2>, or 8 VM2. The other VM sets would be no better than these Pareto optimal VM
sets. If use 5 VM1 or 1 VM1 and 5 VM2, then it would need 5 physical machines. If use 3
VM1 and 1 VM2 or 2 VM1 and 3 VM2, then 3 physical machines would suffice. However,
8 VM2 would use 8 physical machines. Similarly, the other applications would also have
multiple VM combinations. An insight from this example is that there could be flexible
VM sets to satisfy the resource demand of the application. Among the multiple possible
VM sets, there could be one or more solutions that use less physical machines than the

2The Pareto optimal VM set means a VM combination in which it is impossible to reduce the number of VMs
for any type of without increasing the number of VMs of another type.

37 5.1 Background and Motivation

others. By elaborately select an appropriate VM set, the utilization of the data center can be
improved.

Recent studies like [58, 61, 70, 74, 79] show that the applications run on cloud have di-
verse service level requirements in terms of throughput, latency, and jitter. They further
illustrate that the applications can be coarsely classified into two types: deadline-sensitive
applications and best-effort applications [61,70,80]. The deadline-sensitive applications of-
ten consume large amount of resource and have long durations. Furthermore, they are often
critical to business, and have strict deadline requirements. The best-effort applications typi-
cally consume less resource and do not have explicit deadlines. However, finishing the job at
an earlier time would improve the users’ satisfaction. Hence we propose a cloud scheduling
system aiming at guaranteeing the deadline requirements of the deadline-sensitive applica-
tions as well as to improve the completion time of the best-effort applications. Through
extensive trace-driven analysis, we find that the number and the resource consumption of
the deadline-sensitive and best-effort applications follows the 80/20 principle. While ma-
jority of these applications are best-effort applications, up to 80% of the cloud data center
resource is consumed by deadline-sensitive applications [61, 74, 79]. We will leverage this
property to design an efficient resource scheduling algorithm later.

In this chapter, it is shown that the multiple Pareto optimal VM set property of the appli-
cations can be used to improve the overall utilization of the system. We propose a multi-
resource scheduler that allocates applications to VM sets and then to physical machines with
the goal to minimize the number of activated physical machines as well as to maximize the
overall utility. The utility function of the deadline-sensitive applications is defined as a 1-0
function where the utility would stay the same when it is within its deadline and drop to zero
when the it exceeds its deadline. For the best-effort applications, a soft utility function is
used where the utility drops gradually [70]. This chapter first provides a greedy yet optimal
algorithm to find the VM set that can minimize the activated physical machines and still
satisfy the resource requirement. Using the VM sets as input, we model the VM scheduling
problem as an integer programming problem with the goal to improve the overall utility
of all applications. By leveraging the 80/20 property of the deadline-sensitive applications
and best-effort applications, we propose a combined constraint programming and heuristic
algorithm. We reserve a dynamic number of physical machines for the deadline-sensitive
applications and use constraint programming to get a more accurate scheduling result. Due
to the huge number and the less resource consumption of the best-effort applications, we
use heuristic scheduling policy to get a fast yet acceptable scheduling result. Trace driven
simulation shows over 25% improvement of the overall utility compared to best-fit and first-
fit using the optimal VM selection algorithm, over 30% improvement compared to best-fit
and first-fit using random VM selection scheme and 18% improvement compared to the
Bazaar-I approach.

Chapter 5 VM Set Selection 38

The main contributions of this chapter are summarized as follows:

1. according to recent studies of cloud workload heterogeneity, we classify the user
applications into two types, namely deadline-sensitive applications and best-effort
applications. We demonstrate that allowing application specific SLA would improve
the cloud utilization and in the meanwhile guarantee the application performance.

2. we illustrate the multiple VM combination problem of application-aware scheduling
and propose a greedy algorithm to choose the optimal VM combination in the sense
of minimizing the activated physical machines

3. we develop a combined constrained programming scheduling algorithm exploring
the 80/20 property of the two types of cloud workload which provides an accurate
scheduling for deadline-sensitive applications and fast yet acceptable scheduling for
best-effort applications

4. we use trace-driven simulation to evaluate our algorithm with comparison of both the
VM set selection and scheduling algorithm.

5.2 VM Set Selection and Scheduling Model

This section illustrates the VM set selection and scheduling problem which aims to satisfy
the user resource demand, meanwhile minimizing the number of activated physical ma-
chines. We first identify the user SLA requirements of two types of applications and then
provide a model to minimize the activated physical machines while satisfying the resource
demand. After that, we present the overall model aiming to improve the utility over all the
applications.

5.2.1 User SLA Requirement and Utility Function

There are two aspects considered for SLA requirements of an applications:

1. resource demand and duration: an application use resource bundle [61], such as
<16GB memory, 2 2.60GHZ CPUs, 100G SSD, 2 hours> to specify its resource
demand. Both deadline-sensitive and best-effort applications should provide their
resource demands and durations.

2. deadline requirement: each deadline-sensitive applications would provide an exact
deadline associated with its resource demand. The best-effort applications do not

39 5.2 VM Set Selection and Scheduling Model

have such requirements.

In addition to the SLA requirements, each application has a utility function which de-
pends on the completion time. For the deadline-sensitive applications, we use a 1-0 utility
function which drops directly to zero after the deadline. As for best-effort applications, we
allow different types of decreasing functions [70].

5.2.2 Minimizing Active Physical Machines

Without loosing generality, let’s assume there are R types of resources and I types of VMs
in the cloud system where {V M1,V M2, ...,V MI} denote the I types of VMs. The capacity
of the type i VM on each type of resources is (bi,1,bi,2, ...,bi,R) while the capacity of the
physical machine is (c1,c2, ...,cR).

For each application, a feasible VM set should be able to support its resource demand on
every resource dimension. Assume for application k, the resource demand for type r is ak,r,
and xi,k is the number of V Mi allocated to that application. Hence, the resource demand for
application k would be:

I

∑
i=1

bi,r× xi,k ≥ ak,r ∀r ∈ {1,2, ...,R} ,k ∈ {1,2, ...,K} (5.2.1)

Assume we have M physical machines and K applications in total. For each physical
machine, the VMs allocated to that physical machine should not exceed its capacity on every
resource dimension. Let zi be the number of type i VM allocated on a physical machine.
Then the capacity constraint on that physical machine would be,

I

∑
i=1

bi,r× zi ≤ cr ∀r ∈ {1,2, ...,R} (5.2.2)

Actually, the capacity of a physical machine can be calculated in a simple way. In a
system of I types of VMs, the maximum number of VM1 that can be accommodated on a
physical machine would be min{ c1

b1,1
, c2

b1,2
, ... cR

b1,R
}, which is the case when only VM1 and no

other VMs are allocated. Similarly, the maximum number of VM2 that can be accommo-
dated on a physical machine would be min{ c1

b2,1
, c2

b2,2
, ... cR

b2,R
}. More generally, the maximum

number of V Mi would be mini≤I,r≤R{ ci
bi,r
}. Let’s denote vi to be the maximum number of

V Mi that can be hold on a single physical machine (which means vi = mini≤I,r≤R{ ci
bi,r
}).

Chapter 5 VM Set Selection 40

As in equation 5.2.2, the number of VMs allocated on a physical machine is linearly relat-
ed to each other. If non-integer VM numbers is allowed, the Pareto optimal VM capacity3

would be the multi-dimensional plane formed by the linear combination of all the maximum
number of VMs. Specifically, the Pareto optimal solution is, {α1v1,α2v2, ...,αIvI}, where
0 ≤ αi ≤ 1,∑I

i=1 αi ≤ 1. Hence, the Pareto optimal configuration for N physical machines
would be {α1v1,α2v2, ...,αIvI}, where 0≤ αi ≤ N,∑I

i=1 αi ≤ N.

The goal of VM set selection for an application is to use a minimal number of physical
machines to satisfy its resource demand. It is possible that not all the applications could be
accommodated by the M physical machines when the workload exceeds the capacity of the
cluster.

min
N≤M

N (5.2.3)

s.t.
I

∑
i=1

bi,r× xi,k ≥ ak,r (5.2.4)

K

∑
k=1

xi,k ≤ αivi (5.2.5)

0≤ αi ≤ N,
I

∑
i=1

αi ≤ N (5.2.6)

5.2.3 Maximizing Overall Utility

The goal of the VM set scheduling is to maximize the overall utility of all the applications
for the cloud provider, while still guaranteeing the resource demands and deadline require-
ments. We do not allow preemption among applications, hence we will know whether an
application would be completed or not when it gets scheduled.

Let x∗i,k,t be the number of V Mi needed by application k at time t. ym,i,k,t is the number of
V Mi of application k assigned to machine m at time t. We use Dk to denote the deadline of a
deadline-sensitive application k. Uk is the utility function of application k. αi,mvi is the total
number of V Mi accommodated on physical machine m. Then the VM scheduling problem
can be modeled as follows:

3The Pareto optimal VM capacity means a VM combination in which it is impossible to increase the number
of VMs for any type of without decreasing the number of VMs of another type

41 5.3 VM Set Selection and Scheduling

max
K

∑
k=1

Uk (5.2.7)

s.t. ∑
m∈M

ym,i,k,t = x∗i,k,t ∀m ∈M, t ∈ T (5.2.8)

K

∑
k=1

ym,i,k,t ≤ αi,mvi ∀0≤ i≤ I,m ∈M, t ∈ T (5.2.9)

0≤ αi,m ≤ 1,
I

∑
i=1

αi,m ≤ 1 (5.2.10)

∑
1<t<T−1

|ym,i,k,t − ym,i,k,t−1| ≤ 2 (5.2.11)

In this model, inequation (9) is the capacity constraint of physical machine i, inequation
(11) is the nonpreemption requirement.

5.3 VM Set Selection and Scheduling

This section presents the greedy algorithm to select the VM set with minimum activated
physical machines and a reservation-based VM scheduling algorithm.

5.3.1 VM Set Selection

We will first present the optimal VM set selection scheme and then prove its correctness.
The optimal VM set selection algorithm is to greedily choose the VM set that will use the
minimal number of physical machines for each application. We will prove in Theorem 1 and
2 that finding optimal VM set {x∗1,k,x∗2,k, ..,x∗I,k} in a dynamic scenario can be transformed
into the following linear programming problem.

x∗i,k =argmin
xi,k

I

∑
i=1

xi,k

vi
(5.3.1)

s.t.
I

∑
i=1

bi,r× xi,k ≥ ak,r (5.3.2)

xi,k ∈ N (5.3.3)

Chapter 5 VM Set Selection 42

Theorem 1 {x∗1,k,x∗2,k, ..,x∗I,k} is the VM set that can support the resource demand and
use minimum number of physical machines for application k when only application k is
considered in the system.

Proof. The number of physical machines used by a VM set {α1v1,α2v2, ...,αIvI} would be
d∑I

i=1 αie, which is the minimum integer no less than ∑
I
i=1 αi. Since αi =

xi,k
vi

and ceiling
function is non decreasing, the optimal VM set for application k when only application k is
considered in the system would be {x∗1,k,x∗2,k, ..,x∗I,k}.

Theorem 2 {x∗1,k,x∗2,k, ..,x∗I,k} is the VM set that can support the resource demand and
use minimum number of physical machines for application k when applications arrive as a
stochastic process.

Proof. If we can prove {x∗1,k,x∗2,k, ..,x∗I,k} is the optimal VM set when there are two ap-
plications, then we can prove Theorem 2 without loss of generality. We denote the two
applications as application 1 and application 2 and assume application 1 arrives earlier than
application 2. In the naive case when application 2 arrives, application 1 already leaves the
system then x∗1,k and x∗2,k would obviously be the VM set for the two applications with mini-
mum activated physical machines. In a more complicated case, applications 1 and 2 coexist
in the system for a while and we would consider this scenario from now on. In this case,
the VM set with the minimal number of activated physical machines for each application
would still be selected from the Pareto optimal VM sets (which can be easily proofed by
contradiction). The optimal VM set for applications 1 and 2 would then be,

x∗i,1,x
∗
i,2 =arg min

xi,1,xi,2

I

∑
i=1

xi,1 + xi,2

vi
(5.3.4)

s.t.
I

∑
i=1

bi,r× xi,1 ≥ a1,r (5.3.5)

I

∑
i=1

bi,r× xi,2 ≥ a2,r (5.3.6)

xi,a,xi,b ∈ N (5.3.7)

Since ∑
I
i=1

xi,1+xi,2
vi

=∑
I
i=1

xi,1
vi
+∑

I
i=1

xi,2
vi

and the constraints can separate, {x∗1,1,x∗2,1, ..,x∗I,1}
and {x∗1,2,x∗2,2, ..,x∗I,2} are the optimal VM set for the application 1 and 2 respectively, which
means the VM set with minimum activated physical machines can be selected separately.

According to the above theorems, the VM set that satisfies the resource demand and uses
minimum activated physical machines can be find by Algorithm 4. The complexity of VM
set selection algorithm is Θ(1).

43 5.3 VM Set Selection and Scheduling

Algorithm 4 VM Set Selection
step 1: Define the Lagrange multiplier as

L(x1,k,x2,k, ...,xI,k,λ1,λ2, ...,λr) =

∑
I
i=1

xi,k
vi
+∑

I
i=1 λi(bi,rxi,k−ak,r)

step 2: Find the partial derivative OL = 0
Which derives λ t

i =− 1
vibi,r

,xt
i,k =

ak,r
bi,r

step 3: The optimal VM set would be{
d ak,r

b1,r
e,d ak,r

b2,r
e, ...,dak,r

bI,r
e
}

5.3.2 VM Scheduling

After obtaining the optimal VM set of each application, we can use it as input and allocate
the VMs to physical machines. On one side, the VM scheduling problem is NP-hard [83],
where no polynomial time optimal solution is available by now. On the other side, the utility
functions of applications decrease with time and scheduling time would be an overhead for
the system. These concerns lead us to design a scheduling algorithm with fast scheduling
process and yet provides acceptable performance.

Recall that the deadline-sensitive applications and best-effort applications have the 20/80
property and the deadline-sensitive applications have a more strict scheduling requirement.
Hence we can use an accurate scheduling algorithm for the deadline-sensitive applications
and a fast scheduling algorithm for the best-effort applications.

The scheme been adopted here is a reservation-based combined constrained programming
and heuristic algorithm [29] which uses constrained programming scheduler for deadline-
sensitive applications and a heuristic scheduler for best-effort applications. A dynamic por-
tion of physical machines is reserved for the deadline-sensitive applications through time.
We will describe the design specifications in this section.

5.3.2.1 CP Scheduler for Deadline-sensitive Applications

This chapter uses a constraint programming solver [50] for the deadline-sensitive appli-
cations, which is found to be 10+ times faster than the integer programming solvers for
multi-resource scheduling problem [56, 78]. Since we do not allow preemption in our sys-
tem, an application stays on the same machine during its execution. We can further speedup
the scheduling process using this assumption: as describe in Algorithm 5 an application is
excluded from the variable set once it has been allocated on a physical machine.

Chapter 5 VM Set Selection 44

5.3.2.2 Heuristic Scheduler for Best-effort Applications

This chapter uses maximum residue as the heuristic scheduler for best-effort application-
s. Let’s define the maximum residue scheduler as selecting the physical machine m that
satisfies the following expression,

argmax
m

R

∑
r=1

[lm,r(bi,r

I

∑
i

xl
i,k)] (5.3.8)

where lm,r is the remaining number of type r resource (CPU, memory, storage, etc.) that
can be hold on physical machine m. xl

i,k is the remaining number of type i VM that haven’t
been allocated of application k. The heuristic uses dot product to capture the similarity
between the remaining VM capacity vector of the physical machine and the remaining VM
demand vector of the application. The VMs of an application is assigned to the physical
machine with a residual capacity that is closest to the application’s remaining VM demand.

The combined constraint programming and the heuristic scheduling algorithms are p-
resented in Algorithm 5 and Algorithm 6. To schedule pending jobs, we adopt a basic
deadline-based approach as in Algorithm 7.

Algorithm 5 Combined CP and Heuristic Algorithm

1: When {application k arrives}
2: if k is deadline sensitive then
3: Heuristic scheduler(k); assign k to an unreserved machine
4: else
5: CP scheduler(); assign a reserved machine to application k
6: if CP failed to assign a reserved machine to k then
7: Heuristic scheduler(k); assign k to an unreserved machine
8: end if
9: end if

10: When {an application k running on machine m finishes}
11: Release machine m resources for k
12: Schedule a queued job(m)

5.3.2.3 Cluster Reservation for Deadline-sensitive Applications

To better guarantee the deadline requirements for deadline-sensitive applications, this work
reserves and dedicates part of the physical machines to accommodate them. When a

45 5.4 Evaluation

Algorithm 6 Heuristic scheduler(k)
1: Symbols: k – job to be scheduled
2: for Machine m ∈ Unreserved cluster do
3: Find min

{mr
mk

+ cr
ck

}
mr ≥ mk,cr ≥ ck

4: end for
5: Assign application k to machine m
6: if No unreserved machine available then
7: Insert application k to the deadline-ordered queue Q
8: end if

Algorithm 7 Schedule a queued job(m)

1: Symbols: m – available machine
2: for Application k ∈ job queue Q do
3: if Capacity(m)≥ Demand(k) then
4: Assign application k to machine m return
5: end if
6: end for

deadline-sensitive application arrives, it is scheduled (using CP) to one of the reserved ma-
chines if there are any left. If no reserved machines is available, it will be scheduled to
an unreserved machine using the heuristic algorithm. We use Algorithm 8 to dynamically
determine the reservation threshold. The more physical machines are reserved, the higher
probability that a best-effort application will get rejected. On the other side, more physi-
cal machines are provided for general use, more deadline-sensitive applications would be
scheduled with the less accurate heuristic scheduler. An appropriate reservation threshold
is important to maintain a high utilization rate for the cluster.

5.4 Evaluation

This work evaluates the VM selection and scheduling algorithm in this section using trace-
driven simulations. Google Cluster Trace [49, 59] is a public cloud trace from a heteroge-
nous workload cloud with around 12,000 machines for a month long period. This work uses
Google Cluster Trace since it contains both resource demand trace from each application
and resource usage trace from the physical machines. Resource demand and usage are nor-
malized to the largest capacity of the resource on any machine in the trace (which is 1.0).
The resource demand trace contains 500 files of application resource demands (in terms
of CPU, memory, storage), each with around 5000 applications. Note that an application
usually contains multiple tasks and each task has a resource demand. However, in this work

Chapter 5 VM Set Selection 46

Algorithm 8 Reservation Threshold(k)
1: Symbols: θ – current reservation threshold, ε – adjustment threshold, θ0 – initial

threshold get by tuning, η – adjustment factor get by tuning, qd ,qb – accumulated
weighted resource demand for deadline-sensitive and best-effort applications respec-
tively, qk – weighted resource demand of application k

2: When {application k arrives}
3: if k is deadline sensitive then
4: qd ← qd +qk
5: else
6: qb← qb +qk
7: end if
8: if qd

qb
< θ0− ε then

9: θ ← θ − ηqk
qb

10: else if qd
qb

> θ0 + ε then
11: θ ← θ + ηqk

qb
12: end if

we do not dive into the granularity of tasks and will sum up the resource demand of the
tasks into the resource demand of an application. Each application has a field indicating its
priority in terms of high, middle and low. We define the application with high priority as
deadline-sensitive applications and the rest as best-effort applications. Since the trace does-
n’t have a deadline field for the applications, we add a deadline for the deadline-sensitive
applications by ourselves. We first add the deadline as 10% of an application’s duration,
and will vary the deadlines and see their effects in later evaluations. We would also vary
the utility functions for best-effort application to see their effects in the following part. We
assume 6 primary VM instances listed in Table 5.2. The configurations of the VMs is pro-
portional to the VM instances provided by [45]. We will use part of these VM settings in
our later simulation. The constraint [57] of the Gecode scheduler been used is the “cumu-
latives” constraint provided by the multi-resource scheduling package [50]. The simulation
is done on a workstation with quad-core 2.0GHz processor and 16GB RAM.

5.4.1 VM Set Selection

We compare our VM set selection scheme with the resource selection specified in [71] and
the random selection approach (from the Pareto optimal VM sets). The number of physical
machines used by the three approaches is shown in Fig. 5.1.

As can be seen from the figures that the greedy-optimal VM set selection algorithm will

47 5.4 Evaluation

Table 5.2: VM configurations (normalized to).
Category CPU memory storage price

m3.medium 0.0625 0.0625 0.0125 0.067
m3.xlarge 0.25 0.25 0.25 0.266
c3.large 0.125 0.0625 0.1 0.105

c3.4xlarge 1 0.5 1 0.84
r3.large 0.125 0.25 0.1 0.175

r3.4xlarge 1 1 0.5 0.7

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

Number of physical machines

P
er

ce
nt

ag
e

of
 a

pp
lic

at
io

ns

Greedy−Optimal
Bazaar−I
Random

(a) With VM 1-6.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

Number of physical machines

P
er

ce
nt

ag
e

of
 a

pp
lic

at
io

ns

Greedy−Optimal
Bazaar−I
Random

(b) With VM 1,2,4,6.

Figure 5.1: Number of physical machines needed using each VM set selection scheme.
Greedy-optimal is our VM selection in Section III.

use less physical machines than random VM selection within feasible VM set or the pro-
portional resource selection in [71] in both two VM configurations. From now on, we will
use all VM configurations in Table 5.2.

Note that the random selection approach would need to compute the Pareto optimal VM
sets. The time complexity is Θ(∏I

i=1gk,i) where gk,i is the number of using V Mi alone to
support application k. Hence, the random selection would be very time costly when the
resource demand grows large.

5.4.2 VM Scheduling

We compare our combined VM scheduling algorithm with several scheduling approaches,
namely first-fit, best-fit and Bazaar-I with various forms of utility functions for the best-

Chapter 5 VM Set Selection 48

effort applications. For best-fit and first-fit scheduling, we will use both greedy-optimal and
random scheme as the VM selection algorithm.

5.4.2.1 Utility Functions

We evaluate the VM scheduling algorithms using two utility functions, namely, the inverse
proportional function and the linear drop function as shown in Fig. 5.2.

The inverse proportional function is defined as the profit of the application when the
time after its arrival is within its duration and then will drop by an inverse proportional
function. Specifically, the utility function for the best-effort applications is pk

1+min{Ek−Dk,0} ,
where pk is the profit of application k, Dk and Ek are the duration and existing time for
application k respectively.

The linear drop function is defined as the profit of the application when the time after
its arrival is within its duration and then will drop by a linear function. Specifically, the
utility function for the best-effort applications is max{pk−min{Ek−Dk,0} ,0}.

5.4.2.2 Completion Rate

Completion rate is an important factor to indicate the fulfilment of user SLAs. Fig. 5.3
and Fig. 5.4 shows that our combined algorithm can achieve higher completion rate of both
deadline-sensitive applications and best-effort applications than Bazaar-I, best-fit and first-
fit policies using both random and greedy-optimal as the VM set selection algorithm with
2048 physical machines under the inverse proportional utility function.

As can be seen from both figures, the proposed combined algorithm can improve the
overall completion rate, especially for deadline-sensitive applications. This result reflects
the fact that deadline-sensitive applications can use both the reserved resources and the
unreserved resources.

Fig. 5.5 and Fig. 5.6 shows the comparison of the four approaches under the linear drop
utility function. The completion rate of the best-effort applications is a little lower w.r.t.
the inverse proportional case and the completion rate for the deadline-sensitive applications
increases. We can see from the figures that the inverse proportional utility function pays
more attention to the deadline-sensitive applications than linear drop utility function.

Fig. 5.7 shows the completion rate of the deadline-sensitive and best-effort applications
w.r.t. the cluster scale using our VM selection and scheduling algorithm. The original
Google Cluster Trace contains around 12000 physical machines to record the usage data.

49 5.4 Evaluation

0 2 4 6 8 10
0

1

2

3

4

5

Existing time

U
til

ity

Illustration of two utility functions

Inverse proportional
Linear drop

Figure 5.2: Two representative utility functions for best-effort applications.

Chapter 5 VM Set Selection 50

CP Bazaar−I first−G best−G
0

20

40

60

80

100

C
om

pl
et

io
n

R
at

e
(%

),
 d

ea
dl

in
e−

se
ns

iti
ve

With 2048 physical machines

VM Selection: Random

(a) Deadline-sensitive Applications.

CP Bazaar−I first−G best−G
0

20

40

60

80

100

C
om

pl
et

io
n

R
at

e
(%

),
 b

es
t−

ef
fo

rt

With 2048 physical machines

VM Selection: Random

(b) Best-effort Applications.

Figure 5.3: Completion rate for inverse proportional function with 2048 physical machines
and random VM selection for best-fit and first-fit.

Table 5.3: Utilization with different cluster scales for the two utility functions.
Nr. of PMs 128 256 512 1024 2048

Inverse Proportional 93.0% 92.9% 92.6% 92.8% 92.6%
Linear Drop 93.0% 92.7% 92.5% 92.6% 92.4%

However, we can see that 4000 machines would almost be suffice to hold all applications
using our scheduling scheme.

5.4.2.3 Resource Usage

Fig. 5.8 shows the averaged CPU utilization ratio of the activated (have a non-zero work-
load) physical machines for the four schemes in a cluster of 2048 physical machines under
the inverse proportional utility function. As can be seen from the figure, the proposed solu-
tion will improve the utilization ratio of the activated machines.

The averaged resource usage of activated physical machines of our VM selection and
scheduling schemes with scales is shown in Table .5.3. As can be seen from the table, our
VM selection and scheduling algorithm will keep a high utilization ratio for various cluster
scales. We also find that using inverse proportional as the utility function will provide a little
higher resource utilization ratio since it will still try to schedule the best-effort application
with long waiting time when there are available physical machines.

51 5.4 Evaluation

CP Bazaar−I first−G best−G
0

20

40

60

80

100
C

om
pl

et
io

n
R

at
e

(%
),

 d
ea

dl
in

e−
se

ns
iti

ve

With 2048 physical machines

VM Selection: Greedy−Optimal

(a) Deadline-sensitive Applications.

CP Bazaar−I first−G best−G
0

20

40

60

80

100

C
om

pl
et

io
n

R
at

e
(%

),
 b

es
t−

ef
fo

rt

With 2048 physical machines

VM Selection: Greedy−Optimal

(b) Best-effort Applications.

Figure 5.4: Completion rate for inverse proportional function with 2048 physical machines
and greedy-optimal VM selection for best-fit and first-fit.

Table 5.4: Comparison of overall utility with 2048 physical machines and inverse propor-
tional utility functions.

Category Inverse Proportional Linear Drop
CP 1 0.9872

Bazaar-I 0.9144 0.9089
first-G 0.5382 0.5426
best-G 0.7809 0.7801

5.4.2.4 Overall Utility

The overall utility shows a similar trend with the completion rate. We show our result in
Table. 5.4. Note that the overall utility is normalized to our greedy-optimal and combined
constrained programming solution under inverse proportional utility function for compar-
ison purposes. For all four schemes, the overall utility by using inverse proportional and
linear drop are almost the same.

5.4.2.5 Scheduling Speed

Table. 5.5 compares the VM scheduling speed and its accuracy of our combined algorithm
with pure constraint programming on one of the 500 traces.

As can be seen from the table, although CP can achieve higher accuracy, the time com-

Chapter 5 VM Set Selection 52

CP Bazaar−I first−R best−R
0

20

40

60

80

100

C
om

pl
et

io
n

R
at

e
(%

),
 d

ea
dl

in
e−

se
ns

iti
ve

With 2048 physical machines

VM Selection: Random

(a) Deadline-sensitive Applications.

CP Bazaar−I first−R best−R
0

20

40

60

80

100

C
om

pl
et

io
n

R
at

e
(%

),
 b

es
t−

ef
fo

rt

With 2048 physical machines

VM Selection: Random

(b) Best-effort Applications.

Figure 5.5: Completion rate for linear drop function with 2048 physical machines and ran-
dom VM selection for best-fit and first-fit.

Table 5.5: Our combined algorithm vs. pure CP.

Category
Constraint

Programming
Combined
Algorithm

Computation time for scheduling 1775min 12min
Overall utility 1 0.76

plexity makes it impractical for online use. Our combined algorithm on the other hand, can
provide reasonably good results within a short amount of time for scheduling.

5.4.2.6 Extending Deadlines

We extend the deadlines for the deadline-sensitive applications to see their effects on com-
pletion rate. We tested for a cluster with 2048 physical machines and the result is shown in
Fig. 5.9.

5.4.3 Reservation Threshold

The initial reservation threshold and the adjustment factor are learned from the training pro-
cess using 1

5 of the cluster data. We use the first 100 files of the resource demand trace to
determine the initial reservation threshold and the second 100 files to determine the adjust-
ment factor.

53 5.4 Evaluation

CP Bazaar−I first−R best−R
0

20

40

60

80

100
C

om
pl

et
io

n
R

at
e

(%
),

 d
ea

dl
in

e−
se

ns
iti

ve

With 2048 physical machines

VM Selection: Greedy−Optimal

(a) Deadline-sensitive Applications.

CP Bazaar−I first−R best−R
0

20

40

60

80

100

C
om

pl
et

io
n

R
at

e
(%

),
 b

es
t−

ef
fo

rt

With 2048 physical machines

VM Selection: Greedy−Optimal

(b) Best-effort Applications.

Figure 5.6: Completion rate for linear drop function with 2048 physical machines and
greedy-optimal VM selection for best-fit and first-fit.

Table 5.6: Reservation Threshold with 2048 physical machines.
Nr. of Traces 100 200 300 400 500

Estimated Threshold - 73.6% 74.2% 74.6% 74.7%
Calculated Threshold 73.4% 74.2% 74.8% 74.5% 75.1%

The initial reservation threshold is computed by changing the reservation threshold from
0 percent to 100 percent, calculate and record the overall utility for the two utility functions
and then find the ratio that will render the highest overall utility. The process to determine
the initial threshold for the two utility functions is shown in Fig. 5.10. The overall utility is
also normalized to its maximum value for simple comparison. In both cases, the overall u-
tility increases with the reservation threshold at first and drops afterwards. This is consistent
with our explanation of reservation threshold in Section III.

To get the adjustment factor, we first calculate the best reservation threshold for the first
120, 140, 160, 180 and 200 trace files, and denote it as θ1,θ2,θ3,θ4 and θ5. Then the adjust-
ment factor η is calculate as η ← 1

5 ∑
5
i=1 |θi−θi−1|qbi

qi
, where qbi and qi is the accumulated

weighted resource demand for deadline-sensitive applications and application i respective-
ly. We evaluate the threshold estimation a comparison of the estimated threshold and the
calculated best reservation threshold in Table 5.6 and Table 5.7.

As can be seen from Table 5.6 and Table 5.7 the estimated threshold is very close to our
calculated threshold with various cluster scales and reservation threshold. Hence with the
initial reservation threshold and adjustment factor we can provide an accurate estimation of
the optimal reservation threshold.

Chapter 5 VM Set Selection 54

10
2

10
3

10
4

0

20

40

60

80

100

Number of physical machines in the Datacenter

C
om

pl
et

io
n

R
at

e
(%

)

Deadline−sensitive
Best−effort

Figure 5.7: Completion rate w.r.t. different cluster scales under inverse proportional utility
functions.

0 200 400 600 800 1000 1200 1400
20

30

40

50

60

70

80

90

100

Time(s)

U
til

iz
at

io
n

(%
)

CP
Bazaar−I
first−G
best−G

Figure 5.8: CPU utilization ratio with 2048 under inverse proportional utility function.

Table 5.7: Reservation Threshold with 1024 physical machines.
Nr. of Traces 100 200 300 400 500

Estimated Threshold - 79.8% 79.5% 80.9% 81.0%
Calculated Threshold 80.2% 79.3% 79.8% 81.5% 81.1%

55 5.4 Evaluation

0.1 0.12 0.14 0.16 0.18 0.2
93

94

95

96

97

98

99

100

Deadline/duration for Deadline−sensitive Applications

C
om

pl
et

io
n

R
at

e
(%

)

Deadline−sensitive
Best−effort

Figure 5.9: Completion rate w.r.t. different deadlines under inverse proportional utility
function in a 2048 physical machine cluster.

0 20 40 60 80 100
0.8

0.85

0.9

0.95

1

Reservation Rate (%)

O
ve

ra
ll

U
til

ity
 (

%
)

With 2048 PMs

Inverse Proportional
Linear Drop

Figure 5.10: Initial reservation threshold.

Chapter 5 VM Set Selection 56

The adjustment threshold ε will affect the stability of the system in terms of adjustment
frequency. If ε is too small there will be frequent changes between consecutive scheduling
decisions; on the other hand, if ε is too large, the estimated threshold will depart from its
true value. In this paper, we define the adjustment threshold to be 0.01.

A number of existing works study the VM scheduling problem in cloud environment.
The basic VM scheduling problem is related to the multi-dimensional bin packing prob-
lems. The primary goal is to use a minimal number of bins to hold all the incoming items
with jobs arrive and leave in a stochastic manner. The VM scheduling with random arrive
and departure time is NP-hard that has no polynomial time optimal solution by now [86]. A
summary of heuristics of the multi-dimensional stochastic bin packing problems can be find
in [75]. [72] addresses a joint routing and VM placement problem which extends the bin
packing constraints to account for the communication between VMs. [55] gives a good dis-
cussion of recent multi-dimensional bin packing problem for theoretical references. How-
ever, the stochastic bin packing problem only considers the scheduling from VM to physical
machines.

There are also literature works address the dynamic VM scheduling problem in a practi-
cal way. Yanagisawa et al. [94] proposed an allocation scheme that assigns VMs to phys-
ical machines based on the fluctuated CPU demand using mixed integer programming.
They partitioned the time-horizon into intervals and allocate the resource periodically to
reduce the scheduling time. [29] proposed the combined constraint programming approach
for VM scheduling with fixed deadlines for each applications. [73] considers maximizing
the throughput of a queueing system with a finite number of servers in asymptotic way.
The problem with these three approaches is they only consider the VM scheduling prob-
lem however there exists multiple feasible VM sets. Jalaparti et al. [71] proposed the idea
of user-oriented resource provisioning. They designed an online scheduler that allows the
cloud provider to choose among feasible VM sets to improve the utilization for MapReduce
jobs. Wieder et al. [85] also aims to select the appropriate VM set for MapReduce jobs, so
that users can specify their goals, such as minimizing monetary cost or completion time.
The problem with these two approaches is that they use a heuristic VM set selection algo-
rithms, hence would use more physical machines compared to the optimal solution. When
the system is overloaded, this would cause low completion rate of the applications. [70]
proposed a deadline-aware VM allocation scheme modeling job utilities as a function of
completion time. The scheme aims to maximize the minimum utility across all jobs while
the utilization and profit of the cloud provider is not considered.

In contrast to these works, our work not only allows users to specify their SLA require-
ment but also allow various SLAs according to the applications’ characteristics. To the best
of our knowledge, we are also the first to propose the optimal VM set selection algorithm
which minimizes the number of physical machines for each application.

57 5.5 Chapter Summary

5.5 Chapter Summary

This chapter demonstrates that multiple VM sets can satisfy the application’s resource de-
mand and the cloud provider could leverage this property to improve its resource utiliza-
tion rate and without violating the applications’ SLAs. We propose a VM set selection
and scheduling approach using combined constraint programming and reservation-based
scheme. We dynamically determine the reservation threshold for deadline-sensitive appli-
cations.

Future work includes refining our model to account for the energy consumption for pro-
viding datacenter services. The energy consumption for the commodity physical machines
is not proportional to its workload, and the higher the utilization the more energy efficient
it would be. Hence, our goal to improve the utilization is consistent with saving energy.
Another issue is to incorporate the networking cost between VMs of the same application
to the VM scheduling problem. The problem could also be modeled into the mixed integer
programming form. The difficulty lies in transforming the new model into the constraints
provided by the CP solver.

Chapter6
Mobile Cloud Resource Scheduling

Leveraging remote computing resources to execute part of the computation workload from
mobile device could improve its performance (in terms of time and scope of applications)
and battery life. The underlying rationale is that the speedup by using more powerful remote
computation resources could potentially overcome the communication delay and scheduling
time overhead. The goal of the scheduler is to improve the performance and battery life of
mobile devices while at the same time maximizing the cloud provider’s profit. There are
two aspects of mobile cloud resource scheduling problem.

1. Online code partition and offloading. Not all parts of the mobile application should
run on the cloud side. Some parts of the application are unremoteable and could only
run on the mobile side (such as user interactive components, sensor related compo-
nents, etc.). The partition decision is also relevant to the current networking status.
The scheduler needs to make the partition decision at runtime w.r.t the latency and
bandwidth status.

2. Resource scheduling on cloud side. When there are multiple mobile users request-
ing the cloud resource at the same time, the cloud resources are shared by the offload-
ed mobile application requests. The cloud scheduler also needs to make the resource
allocation decisions among the submitted mobile requests. The cloud side scheduling
also needs to maintain the mobile side SLA and to improve the cloud side utilization
rate.

This chapter presents an efficient code partition algorithm with high partition accuracy
and a cloud resource scheduler that can improve the resource utilization. Our design is
motivated by the clustered offloading property of the call graph, which is based on the
observation that when a method is offloaded, the subsequent invocations will be offloaded
with a high chance. Hence, instead of making an offloading decision for each method as
in the 0-1 ILP approach, this work proposes a solution that determines the best offloading

Chapter 6 Mobile Cloud Resource Scheduling 60

and integrating points, which are several starting and ending methods pairs that would have
a minimal cost if all the execution sequence in between are offloaded. This work proposes
a time complexity code partition algorithm using depth-first search (DFS) and a linear time
searching scheme, where is the number of remoteable methods and is the number invoking
relations in the application. This work evaluates the proposed scheme using two mobile
applications, namely face recognition and natural language processing. Experiments results
show that the partition algorithm is 2 orders of magnitude speed up for the face recognition
application and the natural language processing application than the 0-1 ILP approach with
more than 90% accuracy.

This chapter is based on the work in [89].

61 6.1 Background and Motivation

6.1 Background and Motivation

A new class of cognition augmenting applications for smartphones such as face or object
recognition, image or video editing, natural language processing and augmented reality is
emerging and attracts increasing attention [63, 64, 69]. This kind of applications require
a large amount of computation, storage and energy which cannot be satisfied by off-the-
shelf mobile devices [87]. While more sophisticated hardware can be adopted to carry out
these application tasks, its usage will be limited by its size, weight and monetary cost. An
alternative way of facilitating augmented cognition applications on mobile devices is to
leverage cloud service or nearby infrastructure to support part of the execution. When the
connection quality to the server is good, offloading some execution to the cloud could be
beneficial. Given the ubiquitous deployment of WiFi/3G networks [76, 77], the ongoing
development of 4G systems [77], and the availability of commercial cloud infrastructure,
the future of mobile cloud computing is promising.

More and more mobile computing devices are enjoying the advanced services and appli-
cations offered by servers and more recently the cloud infrastructure, ranging from text and
image editing, games, to virus detection, natural language processing, or scientific comput-
ing. Each of these applications or jobs require different resource demands, and has different
service level agreement (SLA) requirements in terms of response time or completion time.
For example, interactive applications like image editing or voice detection require a tight
response time, typically a few seconds. Some production jobs, like virus detection may have
a more relax SLA requirements, where users may only require an overall completion time
delay. However, in some cases, no specified completion time delay is provided; instead,
the main concern is to get the job done within a overall budget. In fact, various literatures
have shown that the workloads in public clouds are quite diverse in terms of priority, SLA
requirement, resource requirement, and job duration [53, 74].

To execute the code on mobile device in mobile cloud computing paradigm, the mobile
device would offload part of the code from remote infrastructure. A key issue here is to de-
termine what’s the most energy- and/or time-efficient way of allocating the components of
the target application given the current network condition and cloud resource usage status,
which is also known as the code partition problem [10], [23], [9], [22]. While cloud infras-
tructure provides high computation and service capacity, transferring the input and return
state is time and energy consuming.

In extreme cases, when the wireless connection is too weak or the amount of state needed
to be transferred is too big, executing code on cloud can impair the performance and waste
energy. Hence, before actually running its code on the cloud environment, an offloading
decision should be made for the components of the target application with regard to the
current network condition and device capacities. We follow the mobile cloud system archi-

Chapter 6 Mobile Cloud Resource Scheduling 62

Mobile Agent Cloud Agent

App ID, Device ID

Partition decision

Input state

Return state

……

Task scheduling

(using App ID, RTT, Device ID)

Pre-execution

Real execution

Overhead

Benefit

Input

Call graph

Output

Methods layout

Figure 6.1: Process of mobile cloud computing and the role of code partition.

tecture [10] shown in Fig. 6.1. As can be seen from the figure, the mobile cloud computing
system usually contains two agents, one on the smartphone and one on the cloud. Code
partition process is conducted before the real execution on the server based on the appli-
cation identifier, device identifier and the RTT between the smartphone to the cloud. This
kind of information provides the server with the knowledge of program complexity, hard-
ware capacity and network conditions. After getting the partition layout, the smartphone
would transfer the necessary state to enable remote execution. Even though a good partition
layout can improve the performance, the decision making process itself is an overhead of
the real computing 6.2. Thus, the code partition algorithm should be both accurate and fast.
Furthermore, a good code partition algorithm should also have the following characteristics:

1. Real time adaptability. The partition algorithm should be adaptive to network and
device changes. For example, an optimal partition for a high bandwidth low latency
network and low capacity client might not be a good partition for a high capacity
client with bad network connection. Since the network condition is only measurable
at run time, the code partition algorithm should be a real time online process.

2. Partition efficiency. At the early stage of mobile cloud computing, researchers used
to adopt the full Virtual Machine (VM) migration approach, in which the mobile de-
vice serves as a dumb client that receives and renders data [35, 36]. This approach
is gradually discarded by current designs [10, 23], and most recently approach [82],
which generally take a more fine-grained perspective (typically at a method-level
granularity) and only migrate computation intensive parts of the application. For
simple applications (e.g., an alarm clock), making code partition decisions for these
methods at real time is not difficult. However, some popular applications (e.g.,
speech/face recognition) are quite complex and contain many methods. Therefore,
a highly efficient algorithm that can perform real-time code partition for applications
with a large number of methods is demanded.

On the other hand, since multiple mobile users may request service at the same time, it

63 6.2 Call Graph Model

Mobile User

Remote execution

Local execution Local execution

Input state

transfer

Output state

transfer

Remote Server

Cloudlet

Mobile User

Figure 6.2: Overall performance in terms of end-to-end delay.

would be possible that the cloud infrastructure would exceed its resource capacity. Hence,
in addition to carefully schedule the job requirements in the cloud computing infrastructure,
a code partition decision should be made for the components of the target application w.r.t
the current network condition and resource usage status.

Despite the need of strict response time by mobile cloud services, the current VM pro-
visioning scheme in public cloud is not designed for the mobile cloud offloading scenari-
o. The average boosting time is about 27 seconds in Amazon [82], and minimum unit of
purchasing an VM/instance is an hour. However, the mobile applications need immediate
response and usually takes several minutes. Hence, to use the cloud resources for mobile
cloud applications, new resource multiplexing scheme should be proposed at the cloud side.

6.2 Call Graph Model

The interaction relationship between the mobile device and the cloud infrastructure can be
represented by a call graph model. A call graph is a directed weighted graph. The vertices
are methods of the application, while the edges represent the calling relationship from caller
to callee [89]. As describe in [89], each vertex and each edge has two weights, where the
weights of a vertex are the cost of executing the method on the infrastructure and on the
mobile device, respectively, and the weights of an edge are the cost of transferring the
input and return states if the caller and callee methods are executed on different places. In

Chapter 6 Mobile Cloud Resource Scheduling 64

order to correctly execute an application on two separate machines, the system needs to
transfer all potential states that could be accessed by the callee or caller. Specifically, the
input state is the input parameter plus the public state which includes the current object’s
member variables (including nested member variables), the static classes, and the public
static member variables. The return state is the return value plus this public state.

For a given application, the execution cost is affected by input parameters and device
characteristics, while the transfer cost is related to the input and network condition. The
metric of cost can either be time or energy consumption. Our partition algorithm is appli-
cable to both metrics. However, without loss of generality, we adopt time as the cost metric
hereafter because the profiling process does not need any extra device (e.g., a power meter).
Given that the computation capacity of the cloud computing infrastructure is stronger than
that of the mobile device, we assume that the execution time on the infrastructure is smaller
than that on the mobile device. This assumption still holds when using energy consumption
as the cost metric, where only the cost on the mobile device is taken into account.

Not all methods can be executed remotely [9, 10]. For example, methods that interact
with the user interface or access I/O devices and local hardware should not be offloaded
(e.g., GPS, accelerator or other sensors). In addition, remote execution might raise security
threats. In such cases, offloading should be avoided. Automatic classification of suitability
for remote execution is possible using static analysis [9].

6.3 Joint Partition and Scheduling Model

The joint code partition and scheduling model is provided in this section. It is worth to
mention that the mobile cloud computing model differs from our previous work [88] in that
it satisfies both the cloud computing provider and the mobile user. The goal of the cloud
provider is to maximize its income with fixed number of machines. For the mobile user
side, the goal is to meet his or her SLA requirement. To achieve these goals, a new model
is needed to describe the mobile cloud computing system. Similar to public cloud service,
to achieve a fair, profitable, and efficient utilization of the available resources at the cloud
computing infrastructure, we consider the multi-resource pricing policy for mobile cloud
computing. Since the pricing policy is orthogonal to our resource scheduling problem, we
consider two widely-adopted pricing policies in literature [26, 27, 29, 84]: Market Pricing
and Linear Pricing.

Market pricing adopts current cloud operators’s policies [48]. The Google Compute En-
gine provides three VM types, namely standard, high memory and high CPU. The config-
urations that are not covered by the policy are calculated by interpolation. In this pricing

65 6.3 Joint Partition and Scheduling Model

policy, the price grows nonlinearly with memory usage.

Contrast from market pricing, linear pricing is often adopted by researchers to evaluate
their for simplicity [84]. The baseline we use is the standard VM type in Google Compute
Engine [48] where the price will increase by 0.104 if the number of virtual cores increases
by 1.

In this paper, we allow the flexibility that the cloud computing infrastructure provider
can adopt either the market pricing policy or linear pricing policy. Then the joint code
partition and resource scheduling problem in cloud computing can be modeled as a mixed
integer programming problem with an objective to maximize the overall revenue of the
infrastructure provider:

max ∑
j∈J1∪J2

Pj (6.3.1)

s.t. ∑
j∈J1∪J2

R j,t × x j,m,t ≤ Cm ∀m ∈M, t ∈ T (6.3.2)

Tv,r = h(Rv,r) ,∀v ∈Vi, j ∈ J1∪ J2 (6.3.3)

Pj = ∑
v∈Vj

Iv×Tv,r×g(Rv,r) , j ∈ J1∪ J2 (6.3.4)

∑
v∈Vj

[Iv×Tv,r +(1− Iv)×Tv,l]+ (6.3.5)

∑
(u,v)∈E j

| Iu− Iv | ×Tu,v ≤ D j,∀ j ∈ J1

Pj ≤ B j∀ j ∈ J2 (6.3.6)

x j,m,t ∈
{

0,1
}

(6.3.7)

∑
m∈M

xm, j,t ∈
{

0,1
}
∀ j ∈ J, t ∈ T (6.3.8)

where J1 is the set of jobs without budget limit, J2 denotes the set of budget-constrained
jobs. Pj is the income of having job j running on the cloud data center. The total time
horizon is T . For a time slot t ∈ T , R j,t denotes the resource demand of job j at that time
slot. We consider a multi-resource scenario here, thus R j,t is a vector of multiple resource
types. Cm is the resource capacity of machine m, which is also a vector. Notice that we
do not impose the homogeneity property on the resource capacity of machines. That is,
different machines can have heterogenous resource capacities. For the code partition of job
j, v ∈ Vj is a flexible method that can be downloaded from the cloud data center. Iv is a
binary variable indicating that the corresponding method is running remotely (i.e., Iv = 1)
or locally (i.e., Iv = 0). Rv,r is the allocated resource for method v on the remote side,
Tv,r = h(Rv,r) is the execution time of running method v on the cloud data center using
resource Rv,r. Tv,l is the execution time of running method v on the mobile user locally.

Chapter 6 Mobile Cloud Resource Scheduling 66

Tu,v is the time overhead for invoking parameter exchange if two interactive methods u
and v are not running on the same location. g(Rv,r) is the time-unit pricing function to
charge the method v for utilizing the resource Rv,r from the cloud data center. xm, j,t is a
binary scheduling variable, where 1 indicates job j is assigned to machine m at time t and
0 otherwise. For jobs with completion time requirements (i.e., D j), the overall execution
and data transmission time should not exceed its completion time. For jobs with budget
limit (i.e., B j), its payment should not exceed its budget. Similar to [88], for any physical
machine, the resource usage should not exceed its capacities at anytime.

Note that if the workload exceeds the infrastructure’s capacity, not all jobs would get allo-
cated in the infrastructure. It is possible that the jobs that do not have a specified completion
time would be postponed. Furthermore, jobs might fail to finish within their specified com-
pletion times and violate their SLAs. In this case, they should not contribute to the overall
revenue of the service provider. We assume, jobs can be split such that no job requires more
than 1 physical machine to execute.

As can be seen, this model differs from our [88] work in that it considers the influence of
code partition towards resource scheduling which is equation 3 to 6.

6.4 Partition and Allocation Algorithm

When all methods are executed on the cloud data center, the joint code partition and re-
source scheduling problem will reduce to the SLA-aware multi-resource scheduling prob-
lem, which is NP-hard [33]. Hence, the original code partition and resource scheduling
problem is also NP-hard. In mobile cloud computing, no user specified resource demand
is available, hence existing resource scheduling algorithms do not apply here. In the mean-
while, previous code partition [9, 10] algorithms, including our own approach in [89] aim
to minimize the overall time or energy consumption rather than get the specified resource
demand based on a user provided SLA code partition algorithm needs to be developed.

In this section, we first conservatively estimate the resource demand by leveraging a
polynomial time code partition algorithm in our previous work [89]. After obtaining the
resource demand, the jobs are allocated to physical machines using a reservation-based
scheduling scheme as describe in our previous work in [88], where the resource demand is
used as the input for resource scheduling.

67 6.4 Partition and Allocation Algorithm

6.4.1 Code Partition

In mobile cloud computing, the mobile users do not explicitly specify their resource demand
as in normal resource scheduling problems. Instead, an SLA requirement is specified for
each job. To get the user requests allocated, the first thing is to convert the SLA requirement
into specified resource demand for the completion time-aware jobs, we then illustrate how
to deduce the resource estimation algorithm for completion time-aware jobs to budget limit
jobs.

In the following part, we illustrate the resource estimation scheme for completion time-
aware jobs leveraging an optimal polynomial time code partition algorithm. This resource
estimation algorithm differs from our previous work [89] in two ways:

1. the code partition algorithm here is to get a feasible partition and its corresponding
resource demand, while in [89], the goal is to get a partition that would minimize the
overall time.

2. the code partition algorithm here works on a general call graph while in our previous
work [89], we need to convert the call graph into a call link.

3. the code partition algorithm provided here is an optimal polynomial time algorithm
while the algorithm in [89] is a heuristic one.

In the following part, we first proposed a general property on a call graph, so called the
minimal download property. Using that property we can obtain a polynomial time code
partition algorithm with the goal to minimize the overall time. To estimate the resource
demand, we use a binary search approach to conservatively find the resource demand.

6.4.1.1 Minimal Offload Property

We will illustrate the minimal offload property in the following part. Note that in [89], we
have proposed a similar one time offload property. The difference resides in two folds:

1. the minimal offload property works for a general call graph rather than a coverted
call link. Hence, not only the first part of the minimal offload property works on the
different context, the second part of the minimal download property never exists in
our previous work.

2. the code partition algorithm provided here is an optimal polynomial time algorithm
while the algorithm in [89] paper is a heuristic one.

Chapter 6 Mobile Cloud Resource Scheduling 68

Figure 6.3: Call Graph for a face recognition application. A 42kB jpeg is recognised among
a set of 32 images of same size. White vertices (in contrast to grey ones) indicate
remotely executable methods; The number on the right hand side of a method
with underline and italics format is its execution time on server side with the
minimal amount of resource. Vertices are labelled with million CPU cycles of
methods; Edges are labelled with sizes of input ant return states.

As illustrated in [89], Fig. 6.3. shows the code partition result of the face recognition App
to achieve the minimal overall time using the basic unit of resource on cloud data center
using 0-1ILP with RTT equals 150 ms. As can be seen from the figure, the partitioned
results present a clustered feature, which means that the method that would executed on
the cloud data center reside very close to each other. Similar results are observed with
different RTTs and applications [89]. The clustered code partition layout is consistent with
our intuition that clustered execution would avoid extra transferring cost. Moreover, since
the execution cost on the cloud is less compared to the execution cost on the mobile device,
sequentially offloading further saves the cost by reducing the execution cost.

In the following part of this subsection, we would proof two features of the minimal
offload property, which are

1. Once a method is decided to be run on the cloud computing infrastructure, all its
descendants methods should be running on the cloud data center.

2. If a method is unremoteable or decided not to be run on the remote side, but at least
two of its descendants are decided to be run on the cloud computing infrastructure,
all the remoteable methods that are between the two methods can be offloaded.

The proof of the first part is as follows:

Proof. In mobile cloud computing, the computation capacity of the mobile device is lower

69 6.4 Partition and Allocation Algorithm

compared to the cloud computing server, and this is still true when the basic unit of resource
is allocated on the server side. Hence the execution time of the same method would be
less when it runs on the cloud computing than on the mobile device. Let’s consider a
simple example with three nodes as illustrated in Fig 6.4, where all the three methods can
be executed both locally and remotely. Assume that the caller of method A will be run on the
cloud data center and TA1,TB1,TC1 are the time of transferring the input state, TA2,TB2,TC2
are the time of transferring the return state, EA1,EB1,EC1 are the time of executing the
method on the mobile device, while EA2,EB2,EC2 are the time of executing the method on
the cloud data center using the basic resource unit. Since the computation capacity of the
mobile device is lower compared withe the cloud data center, we have EA1 > EA2,EB1 >
EB2,EC1 > EC2. Hence, if method A is to be run on the server, then in the minimal overall
time scheme, method B and C would also be run on the server, since it eliminates the time
of transferring the input and returns state as well as saves time by running the method on
the server.

Another feature of the minimal offload property is that if a method and at least two of its
descendants are to be run on the server side, all the methods between these two descendants
should be run on the server. The proof is as follows:

Proof. Let’s consider a general case as shown in fig. 6.5 where all the shown methods are
remoteable. Assume method A is decided not to be run on the server side and two of its
descendants method B and method D are decided to be run on the server side. Since within
a single thread, all the methods are run sequentially, which means for any method to run, all
its left-hand side brothers are already run. Our claim is that to minimize the overall time any
method Ci should be run on the server side. We use the contradiction methodology to prove
our point. Consider a partition Pk which at least one method Ck is decided to run on the
mobile device. Compared to the partition where each Ci to be run on the server, Pk would
definitely takes more time since it needs both more transferring time and execution time.

6.4.1.2 Minimal Overall Time

In this part, we describe how to find the partition with minimal overall time leveraging the
minimal download property we just proved. As shown by the minimal download property,

1. Once a method is decided to be run on the cloud data center, all its descendants
methods should be running on the cloud data center.

2. Once a method is not decided to be run on the cloud computing infrastructure, its
descendants should also be run on the server in a clustered manner.

Chapter 6 Mobile Cloud Resource Scheduling 70

We define the minimal remote couple of each method is the starting and ending point of
two methods that would locally minimize the overall time if the method itself is decided not
to be run on the server side. The feasible searching space of each method either its minimal
remote couple or itself to be run on the server. In this way, instead of the O(2V) feasible
searching space of the 0-1 ILP, the searching space now is O(V), since when a method is
decided not to be run on the server, the searching space would be reduced to the minimal
remote couple.

6.4.1.3 Resource Estimation

Leveraging the minimal offload property, a slow start and binary search algorithm to es-
timate the resource demand of the mobile user is provided. The approach we adopt here
is similar to the slow-start algorithm in TCP congestion-avoidance [28]. The idea can be
explained as follows, at first, we allocate the resource on the server side using the basic
unit of resource and get the minimal overall time. If this overall time satisfies the user SLA
requirement, the corresponding partition would be the one and the resource demand would
be the basic resource unit. Else if this overall time exceeds the user specified SLA, double
the resource allocated on the server side. Repeat this doubling procedure until the overall
time satisfies the user specified SLA. Then use binary search to find the minimal resource
demand within a range of ε .

The pseudocode code in Algorithm 9 shows how to conservatively find the minimal re-
source demand that satisfies the SLA requirements. The first while loop finds a feasible
partition and its corresponding resource demand that satisfy the user SLA requirement. The
second while loop finds the minimal resource demand and its corresponding partition that
satisfy the user SLA requirement.

6.4.1.4 Resource Estimation for Budget Limit Jobs

Until now we have illustrated how to obtain the resource demand and its corresponding
partition of the completion-time aware jobs. In this following part, we will describe how
to leverage the proposed method to obtain the resource demand of the budget limit jobs in
Algorithm 10. Similarly to the resource estimation algorithm of the completion time-aware
jobs, this algorithm finds the resource demand that is closest to its budget limitation.

71 6.4 Partition and Allocation Algorithm

Algorithm 9 Slow Start Binary Search Resource Estimation

1: Symbols: A – the particular application or software in discussion, D – user defined
completion time, ε – the acceptable tolerance with regard to the user defined comple-
tion time, r – the amount of resource allocated to that user on the cloud computing
infrastructure, r0 – the basic unit of resource on the cloudd computing infrastructure,
r1 – the last explored amount of resource on the cloud computing infrastructure, t – the
minimal overall time with a specified allocated resource

2: r← r0
3: t← codepartition(A,r0)
4: if t ≤ D then return r0
5: end if
6: r← 2∗ r
7: r1← r0
8: while t ≥ D do
9: t← codepartition(A,r)

10: r1← r
11: r← 2∗ r
12: end while
13: while |D− t| ≥ ε do
14: r← r+r1

2
15: t← codepartition(A,r)
16: end while

Algorithm 10 Resource Estimation for Budget Limit Jobs

1: Symbols: A – the particular application or software in discussion, B – user defined
budget limit, G – the call graph of A, V – the set of methods in A, E – the set of
edges of the corresponding call graph of A, r1 – the last explored amount of resource
on the cloud data center, w(e) – the cost of edge e, g(v) – the cost of method v,
resource estimation time(G,D) – the resource estimation algorithm of call graph G
with completion time of D, and

2: for each e in E do
3: w(e)← 0
4: w(v)← g(v)
5: end forreturn resource estimation time(G,B)

Chapter 6 Mobile Cloud Resource Scheduling 72

6.5 Evaluation

In this section, we first evaluate the code partition and resource estimation algorithm. In
order to better understanding our method, this work implements the remote execution plat-
form on Android devices and a server. As illustrated in the following, the proposed partition
and estimation algorithm can accurately render a partition result given different user SLA.

Designing an accurate and efficient code partition algorithm for cognition augmenting
applications is challenging. This kind of applications is usually sophisticated and contains
a number of remoteable components [10] (i.e., methods that can be offloaded to the cloud).
To better understand the characteristics of such applications, we downloaded 3 popular
apps (Adobe Photoshop Express [66], Gesture Search [67], and Visidon AppLock [68])
from Google Play. We use reverse engineering tools [51, 52] to disassemble the dex files
and find that each of them contains more than 20 remoteable components. We also built two
applications one face recognition application (The face recognition application is built upon
an open source code, which implements the Eigenface face recognition algorithm [43]), and
one natural language processing application (The natural language processing application
is built upon an open source code [44]) from open source code, and find that each of them
contains also more than 15 remoteable components. The time required for solving the
code partition problem by existing works with a 0-1 Integer Linear Programming (0-1 ILP)
solver [10,23] is not negligible. For example, in the natural language processing application
with 73 components the time needed for partition with 0-1 ILP solver is 7.3s compared to
21s time saving.

After getting the resource demand information, the joint code partition and resource al-
location problem becomes a pure cluster resource scheduling problem and is solved by
our [88] work. Here we just present several results from that work.

6.5.1 Code Partition and Resource Estimation

We implement our code partition and resource estimation algorithm in C on a dual core Intel
Pentium 2.0GHz processor, 4G RAM desktop. Even though the code partition method itself
is totally different from [89], the input of the code partition algorithm is the same, which
is a call graph which represents the call graph with the following fields: execution time on
the desktop, execution time on the mobile device, a pointer to its first child, a pointer to its
next sibling, size of the input state to invoke this method, size of the return state, and the
network bandwidth. The output of the two algorithms is the partition layout. To obtain the
execution time of a method, we insert a timer in each method and log the execution time
both on the mobile device and the desktop. The smartphone being used here is the Samsung

73 6.5 Evaluation

Galaxy ACE GT-S5830 with 278 MB RAM and Android 2.3.3 OS. The desktop is equipped
with a dual core Intel Pentium 2.0GHz processor and a 4G RAM. To get the data size, we
currently use the Sizeof tool developed by Roubtsov [32]. The Sizeof tool calculates an
object’s size in the heap, which is sufficient for obtaining the input of a partition algorithm.
In real implementation scenario, we need to actually access the object in heap. This could
be done via the reflection attribute of the Java language.

As the same with [89], we simulate the transfer time of the input and return state using
the following rough estimation:

T =
state size
bandwidth

(6.5.1)

6.5.1.1 Partition Accuracy

As proved in section 6.4, the proposed code partition algorithm is an optimal polynomial
time algorithm that would find the partition with minimal overall time. The resource es-
timation algorithm is also an optimal solution that is bound to find the resource demand
closest to user’s SLA requirement within O(V 2 log2V) time. Hence, the partition accuracy
is evaluated against the heuristic algorithm in our [89] work.

Fig. 6.6 shows the comparison of the optimal minimal time partition with call link based
partition in terms of overall time. Since the proposed scheme in this paper is an optimal
solution, hence the partition performance is better compared with the heuristic solution
in [89]. Note that the gab between the optimal solution in this paper and the heuristic
solution gets larger when network delay becomes longer, which shows that the performance
of the heuristic algorithm gets worse when network condition gets worse. The optimal
solution enlarges the possibility of using cloud data center, which is the primary gain of
mobile cloud computing.

6.5.1.2 Partition Efficiency

In this part, we will evaluate the code partition speed of the proposed optimal code partition
algorithm compared with both 0-1 ILP [9, 10] and call link partition [89]. The result is
shown in Table 6.1.

As can be seen from the table, the partition speed of the proposed scheme is much higher
than the brutal force 0-1 ILP solver and is quite acceptable with the fact that the computation
capacity of the cloud data center is high.

Chapter 6 Mobile Cloud Resource Scheduling 74

Table 6.1: Code Partition Efficiency.
Time (ms) MinDownload Brutal Force 0-1 ILP CallLink
FaceReg 12.4756 886.9383 4.5051

NLP 70.2601 7282.8045 19.4476

6.5.1.3 Resource Estimation

In this part, we evaluate our resource estimation algorithm. As far as we are aware, there is
no previous work on the resource estimation in mobile remote execution scenario and our
algorithm is an optimal one, hence, no literature is available to be compared with. In this
case, the resource estimation evaluated with different SLA requirements.

As can be seen from Fig. 6.7, the portion of methods run locally grows with the user
specified completion time. This is because our resource estimation algorithm always con-
servatively require the minimal amount of the resource on the cloud data center, hence,
when the SLA requirements releases, more methods would run on the mobile side.

Fig. 6.8 shows the portion of methods run on the server with regard to the budget limit.
Here we assume renting the basic unit for one minute cost 100. Contrast to the completion
time-aware jobs, the budget limit jobs tend to use more server resource as possible within
their user specified budget. Hence, it shows a different trends from the the completion
time-aware jobs.

6.5.2 Overall Performance

We evaluate the overall performance of the joint code partition and resource scheduling
algorithm in terms of the total number of supported jobs in the system compared to the
work in [89]. Since we don’t have the real workload trace with call graph information,
we synthesize the mobile workload by ourselves. The workload generation procedure is as
follows:

1. we first generate the total number of methods in each job. The number of methods is
drawn from uniform distribution with the range [10, 100].

2. the weight of each method, which is the resource demand of the method when the
basic resource unit is allocated is drawn from uniform distribution with the range
[0.01, 1].

3. the size of input and output states are drawn from uniform distribution with the range

75 6.6 Related Work

[100, 1000].

We vary the computation capacity on the server side, hence the allocated resource using
[89] would also change correspondingly. The result is shown in Fig. 6.9.

In Fig. 6.9, the server capacity is normalized to the basic resource unit while the Y axis
is the job completion rate. As can be seen from the figure, using the joint code partition and
resource scheduling algorithm achieve higher job completion rate than the work in [89]. We
also note that the completion rate using [89] would first increase with the server capacity
and then drop. This can be explained by the fact that when more resource are allocated
to a single job, the utilization ratio of the cluster would be low, hence less jobs would be
accommodated.

6.6 Related Work

6.6.1 Mobile Code Partition

Several works are proposed to design systems that combine the computation efforts of mul-
tiple machines. Agent Tcl [8] was one such a system that allowed a programmer to easily
let computation jump from one endpoint to another. MAUI [10] enabled automated of-
floading and demonstrated that offloading could be an effective tool for performance and
energy gains. However, it still requires annotation of what could be offloaded by develop-
ers. CloneCloud [9] to extend this design by using static analysis to automatically decide
what could be offloaded.

The code partition problem for mobile cloud computing can be categorized by the gran-
ularity and partition algorithm been used, current work follows three approaches.

6.6.1.1 Full migration

[35, 36] can also be viewed as an example of the software as a service, which is often
adopted by early stage research. The inflexibility and coarse granularity of full migration
are the main drawback of this approach.

Chapter 6 Mobile Cloud Resource Scheduling 76

6.6.1.2 Pre-calculated offline partitions

Pre-calculated offline partitions CloneCloud [9] follows this approach. It aims to profile
as many execution paths as possible by alternating the inputs and partitions each execution
path under two different network conditions (WiFi and 3G) for time metric or eight states
(<CPU, Scr, Net> triples) for energy metric. The smartphone searches for a matching
partition in the database at run time. However, real network and device conditions cannot
be generalized into fixed amount of states, and using the pre- calculated partitions cannot
cover all the offloading scenarios.

6.6.1.3 Making decision at runtime

Examples of this approach are Odessa [22], MAUI [10] and Wishbone [23]. Odessa uses
a greedy strategy by estimating whether to offload the current stage would be beneficial.
Although the greedy algorithm is fast and can adapt to input and network changes, the
decision is quite unreliable. MAUI and Wishbone formulate the partition problem into a
0-1 ILP where each variable is an indicator of whether the corresponding method should be
offloaded. By using the previous profile of last run as an estimator of current run, the whole
call graph can be partitioned with regard to the current network condition. However, the
cost of solving the 0-1 ILP is not negligible in terms of time and memory even if it is on the
server side, which is a NP-hard problem and no polynomial solution is available.

The most recent work of mobile cloud resource scheduling are [81, 82]. [81] proposes
the idea to use computation offloading as a service to mobile devices in order to jointly
solve the code partition and resource sharing problem. The problem with this work is that
it doesn’t consider the scheduling time cost. However, as it is shown in the evaluation part
of this work, the scheduling actually is critical to the overall performance. [82] presents
a mobile cloud offloading system that considers the end-to-end delay of cloud-enhanced
mobile applications. The problem is that it assumes infinite resource on the cloud side.
[95] models the code partition and offloading problem into the minimum cut problem and
propose an polynomial time k-cut approximation algorithm. The problem with their work
is that there exist some unremoteable components which cannot be represented by the the
minimum cut model

6.6.2 Cluster Resource Scheduling

A number of works have been proposed to allocate resource among a fixed number of ma-
chines. Yanagisawa et al. [94] presented a resource allocation approach that assigns virtue

77 6.7 Chapter Summary

machines to physical machines based on the fluctuated CPU demand using mixed integer
programming. To deal with the long processing time of the mixed integer programming
solver, they developed a technique to partition the time-horizon into intervals and allocate
the resource periodically. The division of intervals makes the scheme insufficient for an
online solution. Niu et al. [34] proposed an iterative resource allocation algorithm with the
goal of maximizing the sum of user utilities minus the cloud operator cost. The convergence
time of their approach is 5 times faster than the gradient methods. Nevertheless, as illus-
trated in [24], the speed improvement though significant, still cannot fill up the gap towards
an online scheduling. Jalaparti et al. [71] designed an online scheduling scheme to allow
the cloud operators to choose among all the eligible resource combination to maximize the
utilization ratio for MapReduce jobs. Wieder et al. [85] developed a system to select the
most appropriate VM for the uses for MapReduce computations, so that users can specify
their goals, such as minimizing monetary cost or completion time. The problem of [71, 85]
lies in that they still assume the fixed and pre-defined VM configurations. As a result, the
resource utilization in these approaches is still limited. Our approach differs from these
existing works in that we exploit the distinct resource requirements for two different types
of jobs and make a tradeoff between them, while able to schedule resources in an online
and fairly accurate manner. In order to achieve the job specified SLA and to efficiently
use the resources in the cloud data center, effective resource scheduling mechanism should
be employed to carefully assign the incoming jobs onto the appropriate physical machines.
Several studies have been proposed to improve the resource efficiency in public cloud data
center. To handle heterogeneous workloads, Bhattacharya et al. proposed [54] Hierarchical
Dominant Resource Fairness (H-DRF), which is an online scheduler that achieve high effi-
ciency scheduling by equalizing the dominant resource share between each pair of sibling
nodes in the hierarchy. [2] proposed an estimation-based opportunistic scheduling algorithm
that can dynamically allocate the resources to each job while maintaining high usage ratio.
However, none of these approaches could be directly applied to the mobile cloud comput-
ing environment. The problem lies in the interaction between the mobile code partition and
the resource scheduling. The combination of mobile code partition and workload diversity
brings new challenges that do not exist in the traditional resource scheduling setting, and
are not fully addressed by the above-mentioned efforts.

6.7 Chapter Summary

Mobile cloud computing is a new computing paradigm that enables mobile users to demand
computing services from ubiquitous computing infrastructures to access various kinds of
applications, softwares, and even operation systems. In order to achieve the job specified
SLA and to efficiently use the resources in the cloud computing infrastructure, effective
resource scheduling mechanism should be employed to carefully assign the incoming jobs

Chapter 6 Mobile Cloud Resource Scheduling 78

onto the appropriate physical machines. However, no existing approaches could be directly
applied to the mobile cloud computing environment. The problem lies in the interaction
between the mobile code partition and the resource scheduling. The combination of mo-
bile code partition and workload diversity brings new challenges that do not exist in the
traditional resource scheduling setting, and are not fully addressed by the above-mentioned
efforts.

In this paper, we propose a reservation-based code partition and resource scheduling al-
gorithm, which is a joint code partition and resource scheduling algorithm. We first estimate
the reservation threshold of the delay-sensitive or completion time-aware jobs, and conser-
vatively estimate resource that is available on the cloud computing infrastructure. Giving
the estimated available resource, an linear time code partition algorithm is proposed to get
the minimal completion time. An adjustment of the allocated resource is made for delay-
sensitive or completion time-aware jobs if the minimal completion time violates the user
specified SLA.

79 6.7 Chapter Summary

1

000: EA1+EB1+EC1
001: EA1+EB1+EC2+TC1+TC2
010: EA1+EB2+EC1+TB1+TB2
011: EA1+EB2+EC2+TB1+TB2+TC1+TC2
100: EA2+EB1+EC1+TA1+TA2+TB1+TB2+TC1+TC2
101: EA2+EB1+EC2+TA1+TA2+TB1+TB2
110: EA2+EB2+EC1+TA1+TA2+TC1+TC2
111: EA2+EB2+EC2+TA1+TA2

A

B C

TA1 TA2

TB1 TB2 TC1 TC2

EA1/EA2

EB1/EB2 EC1/EC2

TA1TB1TC1: input cost

TA2TB2TC2: output cost

EA1EB1EC1: local execution cost

EA2EB2EC2: remote execution cost

(a) A general graph.

EA1>EA2, EB1>EB2, EC1>EC2

000: EA1+EB1+EC1
001: EA1+EB1+EC2+TC1+TC2
010: EA1+EB2+EC1+TB1+TB2
011: EA1+EB2+EC2+TB1+TB2+TC1+TC2
100: EA2+EB1+EC1+TA1+TA2+TB1+TB2+TC1+TC2
101: EA2+EB1+EC2+TA1+TA2+TB1+TB2
110: EA2+EB2+EC1+TA1+TA2+TC1+TC2
111: EA2+EB2+EC2+TA1+TA2

A

B C

TA1 TA2

TB1 TB2 TC1 TC2

EA1/EA2

EB1/EB2 EC1/EC2

A

B C

Should A be run on the server, 1

candidate

Should B be run on the server,

flexibility = 21, 2 candidates

Should C be run on the server,

flexibility=21, 2 candidates, overlap

B C B C

A A

(b) In mobile cloud computing.

Figure 6.4: First feature of minimal offload property: once a node is to be run on the server
side, all its descendants should be run on the server.

Chapter 6 Mobile Cloud Resource Scheduling 80

A

B C1 Cn D
EB1/EB2 ED1/ED2

ECn1/ECn2EC11/EC12

Figure 6.5: Second feature of minimal offload property: once a node is to be run on the
mobile side, its descendants that would run on the server are clustered.

50 100 150 200
0

1

2

3

4

5

6

7

RTT (ms)

O
ve

ra
ll

T
im

e
(s

)

Call Link
Minimal Download

(a) Face Recognition.

50 100 150 200
0

5

10

15

RTT (ms)

O
ve

ra
ll

T
im

e
(s

)

Call Link
Minimal Download

(b) Natural Language Processing.

Figure 6.6: Comparison of the optimal minimal time partition with call link based partition
in terms of overall time.

81 6.7 Chapter Summary

Figure 6.7: Portion of methods run locally vs. user specified completion time.

Figure 6.8: Portion of methods run on the server vs. user specified budget limit. Assuming
rent the basic unit for one minute be 100.

Chapter 6 Mobile Cloud Resource Scheduling 82

Figure 6.9: Completion rate of the jobs with varying server capacity. Red line: minimal
feasible resource demand; blue line: minimal overall time partition in CloudNet.

Chapter7
Dissertation Conclusion

This work argues that using finer-grained resource scheduling can benefit both the cloud
operator and the tenants. In addition to evaluation metrics of job completion rate and re-
source utilization rate, we also consider the overall revenue of the cloud operator as the
optimization objective which can be seen as a direct reflection of the cloud operator’s in-
terest. This also results in meeting the job’s deadline. With objective of maximizing the
revenue and taking into account the data center’s capacity constraint, the multi-resource
scheduling problem is modeled as an integer programming problem. However, the tradi-
tional integer programming solvers are not applicable here due to the strict requirement for
online resource scheduling to determine the solution quickly and schedule the job so that it
completes within the deadline.

Using finer-grained resource scheduling can benefit both the cloud operator and the ten-
ants. In addition to evaluation metrics of job completion rate and resource utilization rate,
we also consider the overall revenue of the cloud operator as the optimization objective.
This also results in meeting the job’s deadline. With objective of maximizing the revenue
and taking into account the data center’s capacity constraint, the multi-resource scheduling
problem is modeled as an integer programming problem. However, the traditional inte-
ger programming solvers are not applicable here due to the strict requirement for online
resource scheduling to determine the solution quickly and schedule the job so that it com-
pletes within the deadline. As summarized in [24], even for a very small scale of jobs and
number of servers, the time to solve the problem would be unacceptable. For example, in
one case tested with 4 machines and 22 jobs, the solution time is 1957.6 seconds on Intel
Xeon E5420 2.50 GHz computers with 6 MB cache and 6 GB memory.

We analyze the resource demands of jobs from a public cluster trace [49], and find out
that they have a clear relationship to the job duration. The relatively small number of long
duration jobs consume the majority of the computing resources. This motivates our ap-
proach to tradeoff between scheduling accuracy and scheduling speed: since the few long

Chapter 7 Dissertation Conclusion 84

duration jobs consume most of the resources, a sophisticated scheduling algorithm that can
reach an optimal solution is used; on the other hand, for short duration jobs, due to their
large number, fast scheduling is important. Therefore, we propose a combined constraint
programming and heuristic scheduling algorithm. We use constraint programming as the
tool to find an optimal scheduling for the long duration jobs. For the jobs with short dura-
tions, our experiments show that simple heuristics such as first fit or best fit suffice.

Recent studies like [58,61,70,74,79] show that the applications run on cloud have diverse
service level requirements in terms of throughput, latency, and jitter. These applications can
be coarsely classified into two types: deadline-sensitive applications and best-effort appli-
cations [61, 70, 80]. The deadline-sensitive applications often consume large amounts of
resource and have long durations. Furthermore, they are often critical to business, and have
strict deadline requirements. The best-effort applications typically consume less resource
and do not have explicit deadlines. However, finishing the job at an earlier time would im-
prove the users’ satisfaction. Based on this observation, we believe that it is highly desirable
to design a cloud scheduling system aiming at guaranteeing the deadline requirements of the
deadline-sensitive applications as well as to improve the completion time of the best-effort
applications. Through extensive trace-driven analysis, we find that the number and the re-
source consumption of the deadline-sensitive and best-effort applications follows the 80/20
principle: While a majority of these applications are best-effort applications, up to 80% of
the cloud data center resources are consumed by deadline-sensitive applications [61,74,79].
We will leverage this property to design an efficient resource scheduling algorithm later.

In this paper, we show that the multiple Pareto optimal VM set property of the appli-
cations can be used to improve the overall utilization of the system. We propose a multi-
resource scheduler that allocates applications to VM sets and then to physical machines with
the goal to minimize the number of activated physical machines as well as to maximize the
overall utility. The utility function of the deadline-sensitive applications is defined as a 1-0
function where the utility would stay the same when it is within its deadline and drop to
zero when the it exceeds its deadline. For the best-effort applications, a soft utility func-
tion is used where the utility drops gradually [70]. We first provide a greedy yet optimal
algorithm to find the VM set that can minimize the activated physical machines and still
satisfy the resource requirement. Using the VM sets as input, we model the VM scheduling
problem as an integer programming problem with the goal to improve the overall utility
of all applications. By leveraging the 80/20 property of the deadline-sensitive applications
and best-effort applications, we propose a combined constraint programming and heuristic
algorithm. We reserve a dynamic number of physical machines for the deadline-sensitive
applications and use constraint programming to get a more accurate scheduling result. Due
to the huge number and the less resource consumption of the best-effort applications, we
use heuristic scheduling policy to get a fast yet acceptable scheduling result. Trace-driven
simulation shows over 25% improvement of the overall utility compared to best-fit and first-

85

fit using the optimal VM selection algorithm, over 30% improvement compared to best-fit
and first-fit using random VM selection scheme and 18% improvement compared to the
Bazaar-I approach.

Chapter8
Bibliography

Bibliography

[1] A. A. Bhattacharya, D. Culler, E. Friedman, A. Ghodsi, S. Shenker, and I. Stoica, Hier-
archical Scheduling for Diverse Datacenter Workloads, SoCC, 2013.

[2] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, and L. Zhou, Apollo:
Scalable and Coordinated Scheduling for Cloud-Scale Computing, OSDI, 2014.

[3] C. J. Wong, S. Sen, T. Lan, and M. Chiang. Multi-resourceallocation: Fairness-
efficiency tradeoffs in a unifying framework. In INFOCOM, pages 1206–1214, 2012.

[4] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica. Multi-resource fair queueing for packet
processing. In SIGCOMM, 2012.

[5] H. Ying, W. Yang, G. Wang, Wireless Multicast for Mobile Transparent Computing,
High Performance Computing and Communications (HPCC), 2013.

[6] W. Liang, Y. Xiong, M. Wu, A Cross Platform Computing Method and Its Applica-
tion for Mobile Device in Transparent Computing, High Performance Computing and
Communications (HPCC), 2013.

[7] H. Liu. A Measurement Study of Server Utilization in Public Clouds. Int. Conf. on
Cloud and Green Computing (CGC), Dec. 2011.

[8] R. S. Gray, Agent Tcl: A flexible and secure mobile-agent system, Technical Report,
Dartmouth College Hanover, 1998

[9] B. G. Chun, S. Ihm, P. Maniatis, M. Naik and A. Patti. Cloud: Elastic Execution be-
tween Mobile Device and Cloud. EuroSys 2011.

[10] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, R. Chandra, and P.
Bahl, MAUI: Making Smartphones Last Longer with Code Offload, MobiSys 2010.

[11] C. Wang, T. Javidi and George Porter. End-to-End Scheduling for All-Optical Data
Centers. INFOCOM 2015.

[12] G. Birkhoff. Tres observaciones sobre el algebra lineal. Univ. Nac. Tucuman Rev. Ser.

Bibliography 90

A5, no. 147-150, 1946.

[13] L. Wang, A. Nappa, J. Caballero, T. Ristenpart and A Akella. WhoWas: A Platform
for Measuring Web Deployments on IaaS Clouds. INFOCOM IMC 2014.

[14] M. Conley, A. Vahdat and G. Porter. Achieving Cost-efficient, Data-intensive Com-
puting in the Cloud. ACM SoCC 2015.

[15] E. Walker. Benchmarking Amazon EC2 for high-performance scientific computing.
LOGIN, 2008.

[16] P. Mehrotra, J. Djomehri, S. Heistand, R. Hood, H. Jin, A. Lazanoff, S. Saini, and
R. Biswas. Performance evaluation of Amazon EC2 for NASA HPC applications. In
ScienceCloud, 2012.

[17] G. Wang and T. E. Ng. The impact of virtualization on network performance of Ama-
zon EC2 data center. IEEE INFOCOM, 2010.

[18] J. Schad, J. Dittrich, and J. Quiane-Ruiz. Runtime measurements in the cloud: Ob-
serving, analyzing, and reducing variance. In VLDB, 2010.

[19] F. Chen, M. Kodialam, and T. Lakshman. Joint scheduling of processing and shuffle
phases in mapreduce systems. IEEE INFOCOM, 2012.

[20] http://www.gecode.org/doc-latest/reference

[21] C. Delimitrou, D. Sanchez, and C. Kozyrakis, Tarcil: Reconciling Scheduling Speed
and Quality in Large Shared Clusters, SoCC 2015.

[22] M. R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govindan. Odessa:
Enabling Interactive Perception Applications on Mobile Devices. MobiSys 2011.

[23] R. Newton, S. Toledo, L. Girod, H. Balakrishnan, and S. Madden. Wishbone: Profile-
based Partitioning for Sensornet Applications. NSDI 2009.

[24] S. Heinz, J. C. Beck. Solving Resource Allocation/Scheduling Problems with Con-
straint Integer Programming. Workshop on Constraint Satisfication Techniques for
Planning and Scheduling Problems, 2011.

[25] M. Mihailescu, Y. M. Teo. Dynamic Resource Pricing on Federated Clouds. CCGrid
2010.

[26] L. Popa, G. Kumar, et al. FairCloud: Sharing the Network in Cloud Computing. ACM
SIGCOMM 2012.

91 Bibliography

[27] H. Roh, C. Jung, et al. Resource Pricing Game in Geo-distributed Clouds. IEEE IN-
FOCOM 2013.

[28] W. Stevens, RFC2001: TCP Slow Start, Congestion Avoidance, Fast Retransmit, and
Fast Recovery Algorithms, tools.ietf.org/html/rfc2001

[29] H. Zhang, B. Li, H. B. Jiang. A Framework for Truthful Online Auctions in Cloud
Computing with Heterogeneous User Demands. IEEE INFOCOM 2013.

[30] Y Zheng, N. B. Shroff, R. Srikant and P. Sinha. Exploiting Large System Dynamics
for Designing Simple Data Center Schedulers. IEEE INFOCOM 2015.

[31] Y. Chen, S. Alspaugh, A. Ganapathi, R. Griffith, R. Katz, Statistical Workload Injector
for MapReduce(SWIM): https://github.com/SWIMProjectUCB/SWIM/wiki

[32] V. Roubtsov, Sizeof, http://www.javaworld.com/javaworld/ javatips/jw-
javatip130.html

[33] M.P.J. Fromherz. Constraint-based scheduling. American Control Conference, 2001.

[34] D. Niu, B. Li. An Efficient Distributed Algorithm for Resource Allocation in Large-
Scale Coupled Systems. IEEE INFOCOM 2013.

[35] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The Design and Implementation of Zap:
A System for Migrating Computing Environments. OSDI 2002.

[36] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The Case for VM-based
Cloudlets in Mobile Computing. IEEE Pervasive Computing, 8(4), 2009.

[37] A. Wieder, P. Bhatotia, et al. Orchestrating the Deployment of Computations in the
Cloud with Conductor. USENIX NSDI 2012.

[38] L. E. Dubois, G. Mounie, D. Trystram, Analysis of Scheduling Algorithms with Reser-
vations. IEEE IPDPS 2007.

[39] http://aws.amazon.com/solutions/case-studies/netflix/

[40] http://aws.amazon.com/solutions/case-studies/notre-dame/

[41] http://aws.amazon.com/solutions/case-studies/major-league-baseball/

[42] P. Garraghan, P. Townend, J. Xu. An Analysis of the Server Characteristics and Re-
source Utilization in Google Cloud. IEEE Int. Conf. on Cloud Engineering, Sep. 2013.

[43] http://darnok.org/programming/face-recognition/

Bibliography 92

[44] http://nlp.stanford.edu/software/index.shtml

[45] http://aws.amazon.com/ec2

[46] http://aws.amazon.com/ec2/instance-types/

[47] https://aws.amazon.com/ec2/purchasing-options/

[48] Google Compute Engine Pricing. https://cloud.google.com/products/compute-engine/

[49] https://code.google.com/p/googleclusterdata/

[50] http://www.gecode.org/

[51] http://code.google.com/p/dex2jar

[52] http://java.decompiler.free.fr/?q=jdgui

[53] Q. Zhang, M. Zhani, R. Boutaba, and J. L. Hellerstein. Dynamic Heterogeneity-aware
Resource Provisioning in the Cloud. ICDCS 2013.

[54] A. Bhattacharya, D. Culler, E. Friedman, A. Ghodsi, S. Shenker, and I. Stoica. Hierar-
chical Scheduling for Diverse Datacenter Workloads. ACM SOCC 2013

[55] N. Bansal, A. Caprara, M. Sviridenko. A New Approximation Method for Set Cover-
ing Problems, with Applications to Multidimensional Bin Packing. SIAM J. Comput.,
2009, Vol.39, No.4, pp.1256-1278.

[56] R. Bartak. Guide to Constraint Programming.
http://kti.ms.mff.cuni.cz/∼bartak/constraints/intro.html

[57] N. Beldiceanu and M. Carlsson. A New Multi-Resource Cumulatives Constraint with
Negative Heights. Principles and Practice of Constraint Programming, 2002.

[58] R. Boutaba, L. Cheng and Q. Zhang. On cloud computational models and the hetero-
geneity challenge. J. Internet Services and Applications, 3(1):77–86, 2012

[59] C. Reiss and J. Wilkes, Google cluster-usage traces: format + schema, 2011

[60] L. Zhang, C. Wu, Z. Li, C. Guo, M. Chen and F. C.M. Lau. Moving Big Data to
The Cloud: An Online Cost-Minimizing Approach. IEEE Journal on Selected Areas in
Communications (JSAC), 2015.

[61] C. Curino, D. Difallah, C. Douglas, S. Krishnan, R. Ramakrishnan and S. Rao.
Reservation-based Scheduling: If You’re Late Don’t Blame Us! ACM SOCC 14.

93 Bibliography

[62] D. Gamarnik. Stochastic Bandwidth Packing Process: Stability Conditions via Lya-
punov Function Technique. Queueing Systems, 2004, Vol.48, pp.339-363.

[63] J. Cohen, Embedded speech recognition applications in mobile phones: Status, trends,
and challenges, IEEE ICASSP 2008.

[64] Apple Litigation Marks A New Era Of Expectations For Voice Recogni-
tion, http://seekingalpha.com/article/432161-apple-litigation-marks-a-new-era-of-
expectations-for-voice-recognition, March 2012.

[65] J. C. Mogul and R. R. Kompella. Inferring the Network Latency Requirements of
Cloud Tenants. In Proc. of USENIX HotOS, 2015

[66] Adobe Photoshop Express, https://play.google.com/store/apps/details?id=com.adobe.psmobile

[67] Gesture Search, https://play.google.com/store/apps/details?id=com.google.android.apps.gesturesearch

[68] Visidon AppLock, https://play.google.com/store/apps/details?id=visidon.AppLock

[69] G. Hua, Y. Fu, M. Turk, M. Pollefeys, and Z. Zhang, Introduction to the Special Issue
on Mobile Vision, International Journal of Computer Vision, vol. 3, pp. 277-279 , 2012.

[70] Z. Huang, B. Balasubramanian, M. Wang, T. Lan, M. Chiang, and D. Tsang, Need
for Speed: CORA Scheduler for Optimizing Completion-Times in the Cloud. IEEE
INFOCOM 2015.

[71] V. Jalaparti, H. Ballani, P. Costa, T. Karagiannis, A. Rowstron. Bridging the Tenant-
Provider Gap in Cloud Services. ACM SOCC 2012.

[72] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang. Joint VM Placement and Routing
for Data Center Traffic Engineering. IEEE INFOCOM 2012.

[73] S. T. Maguluri, R. Srikant, and L. Ying. Stochastic Models of Load Balancing and
Scheduling in Cloud Computing Clusters. IEEE INFOCOM 2012.

[74] A. Mishra, J. Hellerstein, W. Cirne, and C. Das. Towards characterizing cloud backend
workloads: insights from Google compute clusters. ACM SIGMETRICS 2010.

[75] R. Panigrahy, K. Talwar, L. Uyeda, U. Wieder. Heuristics for Vector Bin Packing. In
MSR TR, 2011.

[76] J. Xia, The third-generation-mobile (3G) policy and deployment in China: Current
status, challenges, and prospects. Telecommunications Policy, 2011

Bibliography 94

[77] Global mobile statistics 2012 Home: all the latest stats on mobile Web, apps, mar-
keting, advertising, subscribers and trends. http://mobithinking.com/mobile-marketing-
tools/latest-mobile-stats/

[78] C. L. Pape. Constraint-Based Scheduling: A Tutorial.

[79] C. Reiss, A. Tumanov, G. Ganger, R. Katz, and M. Kozuch. Heterogeneity and Dy-
namicity of Clouds at Scale: Google Trace Analysis. ACM SOCC 2012

[80] M. Schwarzkopf, A. Konwinski, M. Malek, and J.Wilkes. Omega: flexible, scalable
schedulers for large compute clusters. ACM EuroSys, 2013

[81] C. Shi, K. Habak, P. Pandurangan, M. Ammar, M. Naik, and E. Zegura. COSMOS:
computation offloading as a service for mobile devices. ACM MobiHoc, 2014

[82] L. Ravindrantah, J. Padhye, R. Mahajan, and H. Balakrishnan. Timecard: Controlling
User-Perceived Delays in Server-Based Mobile Applications. ACM SOCC 2014.

[83] A. L. Stolyar, Y. Zhong. A large-scale service system with packing constraints: Mini-
mizing the number of occupied servers. ACM SIGMETRICS 2013, Pittsburgh, PA, Jun.
2013.

[84] M. Mihailescu, Y. M. Teo. Dynamic Resource Pricing on Federated Clouds. CCGrid
2010.

[85] A. Wieder, P. Bhatotia, A. Post, and R. Rodrigues, Orchestrating the Deployment of
Computations in the Cloud with Conductor. USENIX NSDI 2012

[86] G. J. Woeginger. There Is No Asymptotic Ptas For Two-Dimensional Vector Packing.
In Information Processing Letters, 1997.

[87] T. Park, J. Lee, I. Hwang, C. Yoo, L Nachman, and J. Song, E-Gesture: a collaborative
architecture for energy-efficient gesture recognition with hand-worn sensor and mobile
devices. SenSys 2011

[88] Y. Zhang, X. Fu, K. K. Ramakrishnan, Fine-Grained Multi-Resource Scheduling in
Cloud Datacenters, The 20th IEEE International Workshop on Local and Metropolitan
Area Networks (LANMAN 2014), invited paper, May 2014.

[89] Y. Zhang, H. Liu, L. Jiao, X. Fu, 1st IEEE International Conference on Cloud Net-
working (CloudNet 2012), Paris, France, November 2012.

[90] L. Zheng, C. J-Wong, C. W. Tan, M. Chiang, and X. Wang. How to Bid the Cloud.
SIGCOMM 2015.

95 Bibliography

[91] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron. Decentralized task-aware
scheduling for data center networks. ACM SIGCOMM 2014.

[92] N. Jain, I. Menache, J. S. Naor, and Yaniv, J. Near-optimal scheduling mechanisms for
deadline-sensitive jobs in large computing clusters. ACM Trans. on Parallel Computing,
2015.

[93] J. Nair, V. G. Subramanian, and A. Wierman. On competitive provisioning of cloud
services. ACM SIGMETRICS 2014.

[94] H. Yanagisawa, T. Osogami, R. Raymond. Dependable Virtual Machine Allocation.
IEEE INFOCOM 2013.

[95] Y. H. Kao, B. Krishnamachari, M. R. Ra and F. Bai. Hermes: Latency Optimal Task
Assignment for Resource-constrained Mobile Computing. IEEE INFOCOM 2015.

YUAN ZHANG

Office Address: Georg-August-Universität Göttingen Home Address: Bonhoefferweg 2

Institute of Computer Science D-37075 Göttingen

Goldschmidtstr. 7 Mobile Phone: +49-17661357319

37077 Göttingen, Germany or: +86-13269478826

Date of Birth: Dec. 14, 1985 Email: zhang@cs.uni-goettingen.de

Education

Sep. 1, 2011-Present Ph.D. Candidate, Computer Science, University of Göttingen

Sep. 1, 2008-Jun.29, 2011 M.S.E., Computer Science, Tsinghua University, GPA 85.9, rank 38/219

Sep. 1, 2004-Jun. 20, 2008 B.E., Telecommunications, Beijing University of Posts and Telecommunications, GPA 91.8, rank 1/585

Publications

1. Yuan Zhang, Xiaoming Fu, K. K. Ramakrishnan, “Fine-Grained Multi-Resource Scheduling in Cloud Datacenters”, 20th

IEEE Workshop on Local and Metropolitan Area Networks (LANMAN 2014), May 2014.

2. Yuan Zhang, Hao Liu, Lei Jiao, Xiaoming Fu, “To Offload or Not to Offload: An Efficient Code Partition Algorithm for Mobile

Cloud Computing”, 1st IEEE International Conference on Cloud Networking (CloudNet 2012), Nov 2012.

3. Yuan Zhang, Yongfeng Huang, Jian Yuan, Jiaxi Long, “An efficient group rekey scheme for P2P IPTV DRM”, IEEE

Conference 2011, pp 1479-1483

4. Yuan Zhang, Yongfeng Huang, Bo Xiao, Baolin Liu, Detection of Steganographic VoIP Communications via Sliding Windows,

Computer research and development, 2009.

5. Bin Xiang, Konglin Zhu, Xiaoyi Zhang, Yuan Zhang, Yumei Wang and Lin Zhang, “Modeling and Crowdtesting Application-

Based QoE in Mobile Networks”, The 20th IEEE Symposium on Computers and Communications (ISCC), 2015.

6. Yongfeng Huang, Yuan Zhang, Shanyu Tang. “Detection of Covert Voice-over Internet Protocol Communications Using

Sliding Window-Based Steganalysis”, IET Communications, 2012.

7. Chao Zhang, Yuan Zhang, Yongfeng Huang, Xing Li, Peer selection algorithm in mixed IPv4/6 P2P network, In proceeding

of 2010 International Workshop on NGI and P2P Systems, 2010.7.

Research Projects

Mar. 20, 2013- Present Resource Scheduling for Public Cloud, University of Göttingen

1. Proposed a dynamic resource scheduling algorithm under heterogeneous workload scenario; the maximum

revenue is bounded by Lyapunov optimization theory; this work is the first work by far that can take both job

deadline and network topology into consideration.

2. Implemented a Hadoop based cloud platform, four benchmark applications are used to get real trace.

3. Experiment shows that the total revenue would improve by 40% compared to the static pricing model.

Sep. 1, 2011- Mar. 19, 2013 Mobile Cloud Computing, University of Göttingen

1. Designed and implemented an Android-based mobile cloud computing platform; using face recognition and

natural language processing as the study case, an offloading middleware is developed which is also applicable

for the Apps whose source code is not available.

2. Proposed a high speed code partition algorithm which can reduce the scheduling cost and save energy cost.

3. The code partition algorithm is test under 3G and WiFi environment, the overall execution time would

increase by 30% compared to the Maui system.

May. 1, 2009- Jun. 29 2011 Digital Right Management of P2P IPTV application (CNGI Program), Tsinghua University

1. Design and implemented a P2P IPTV DRM system and proposed an efficient key distribution algorithm.

2. The DRM module is deployed on the SIPP2P system and opened to students and employees in Tsinghua.

3. The maximum online number exceeds 200; shown as a demo platform at the 100 anniversary of Tsinghua.

Jan. 2008- Oct. 2008 Information Hiding Detection in real time environment, Tsinghua University

1. Designed and implemented the RS-based information hiding detection system.

2. The detection rate can reach 95% for last bit flip hiding.

Internships and Working Experience

Sep. 1, 2010-Jan. 31, 2011 User Advertisement Projecting Algorithms Engineer, Sogou Corporation

Sep. 1, 2009-Mar. 30, 2010 Research Assistant, China Telecom Beijing Research Institute

Selected Honors and Awards

Sep. 1, 2011-Aug. 30, 2015 CSC Scholarship, China Scholarship Council

Oct. 30, 2009 Honorable Scholarship, Tsinghua University

Jun. 20, 2008 Outstanding Bachelor Graduates, Beijing University of Posts and Telecommunications

Visiting Scholars

Sep. 1, 2014-Oct. 26, 2014 Visiting scholar at Beijing University of Posts and Telecommunications, Tsinghua University and

Nanjing Unversity, sponsored by EU FP7 IRSES Mobile Cloud Project (Grant No. 612212)

Aug. 26, 2012-Sep. 8, 2012 Visiting scholar at Fudan University, sponsored by DAAD/CSC PPP China Project Principles and

Design of Next-Generation Internet Media Streaming

Teaching Experiences

Oct. 1, 2014-Mar 30, 2015, Practical Course Networking Lab, Teaching Assistant, University of Göttingen

Apr. 1, 2014-Sep. 30, 2014, Seminar on Internet Technologies, Teaching Assistant, University of Göttingen

Oct. 1, 2012-Mar 30, 2013, Advanced Topics in Computer Networking, Teaching Assistant, University of Göttingen

Apr. 1, 2012-Sep. 30, 2012, Advanced Topics in Mobile Communications, Teaching Assistant, University of Göttingen

Professional Activities

Paper reviews on IEEE International Conference on Computer Communications (INFOCOM)

IEEE International Conference on Network Protocols (ICNP)

IEEE/ACM International Symposium on Quality of Service (IWQoS)

EURASIP Journal on Wireless Communications and Networking (JWCN)

Computer Communications

References

Professor Xiaoming Fu Institute of Computer Science, Georg-August-Universität Göttingen

Professor K. K. Ramakrishnan Computer Science University of California Riverside

Professor Yongfeng Huang Electronic Engineering Department, Tsinghua University

Professor Lin Zhang Department of Telecommunications, Beijing University of Posts and Telecommunications

Professor Wenzhong Li Department of Computer Science and Technology, Nanjing University

Professor Yuezhi Zhou Department of Computer Science and Technology, Tsinghua University

Professor Jin Zhao School of Computer Science, Fudan University

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Problem and Definitions: Cloud Resource Scheduling
	Dissertation Organization

	Background and Related Work
	Cloud Scheduling
	Cloud Workload: Characterization and Prediction

	Framework and Architecture
	Trace-driven VM Scheduling Algorithm
	Joint User and Cloud Scheduling
	Cloud Scheduling for Mobile Users

	Deadline Aware Multi-Resource Scheduling in Cloud Data Center
	Background and Motivation
	System Model
	Pricing Policy
	Integer Programming

	Combined Constraint Programming and Heuristic Algorithm
	Trace Analysis
	Constraint Programming and Gecode Solver
	Heuristic Algorithms
	Combined Algorithm

	Evaluation
	Resource Utilization
	Completion Rate
	Comparison to Pure CP and Pure Heuristic Algorithms
	Impact of Job Demand Profile
	The Impact of Reservation Ratio

	Chapter Summary

	VM Set Selection
	Background and Motivation
	VM Set Selection and Scheduling Model
	User SLA Requirement and Utility Function
	Minimizing Active Physical Machines
	Maximizing Overall Utility

	VM Set Selection and Scheduling
	VM Set Selection
	VM Scheduling

	Evaluation
	VM Set Selection
	VM Scheduling
	Reservation Threshold

	Chapter Summary

	Mobile Cloud Resource Scheduling
	Background and Motivation
	Call Graph Model
	Joint Partition and Scheduling Model
	Partition and Allocation Algorithm
	Code Partition

	Evaluation
	Code Partition and Resource Estimation
	Overall Performance

	Related Work
	Mobile Code Partition
	Cluster Resource Scheduling

	Chapter Summary

	Dissertation Conclusion
	Bibliography
	Curriculum Vitae

