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1 Introduction
Solid state physics is situated at the boundary between the microscopic and macro-
scopic world. The classical sample of interest is a cube of dimension 1cm3 containing
6 ·1023 particles. This imaginary object is of tangible size, still many of its properties
are governed by microscopic laws of physics, namely quantum mechanics. Electrons
and atoms determine the properties of the sample, Coulomb interaction and Pauli
principle are the driving forces. Gravitation, paramount in the macroscopic world,
and weak and strong interaction, the forces of the subatomic world of the nuclei of
the atoms, are mostly irrelevant for the physics of the solid. Thus, the stage is set.

Quantum mechanics provides a clear description for every system composed of
electrons and atoms, in principle allowing for an exact solution of the problem. The
large number of particles, however, renders an exact solution impossible in almost
all cases. This is true for classical systems and even more so for quantum mechanical
systems, due to the exponential growth of the Hilbert space.

Two approaches exist to overcome this obstacle. The first is the simplification
of the Schrödinger equation. Instead of solving the Hamiltonian involving all de-
grees of freedom of the system, simplifications are introduced to reduce the number
of degrees of freedom. To this end, degrees of freedom and interactions that are
deemed irrelevant for the problem at hand are removed and, if necessary, are re-
placed by effective interactions. An example is the neglect of atomic motion, known
as the Born-Oppenheimer approximation [1], and the coupling of the electrons to
the atomic degrees of freedom. If the coupling of the electrons to the atoms cannot
be neglected, the concept of elementary lattice vibrations, so-called phonons, can be
introduced along with an effective interaction between electrons and phonons.

The second approach consists in the development of new methods that are partic-
ularly well suited for a given problem, exploiting symmetries and special properties
that are unique for a given situation. Symmetries can include translational and
rotational invariance. Special properties can be a small entanglement entropy in
one dimension, that is exploited for example in the density matrix renormalization
group [2]. Another example is nearly-free electron behavior in many metals, where
Fermi liquid theory [3, 4] can be applied successfully. Other approaches rely on
an expansion around a known solution in terms of a small parameter. These ap-
proaches are known as perturbation theory [5]. An approach can be analytical, i. e.
a pen-and-paper solution, purely numerical, e. g. a straight forward diagonalization
of the Hamiltonian by means of numerical algorithms, or a combination of both.

In general, it is not enough to use one of the two approaches above. A successful
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1 Introduction

solution for a given problem often requires to find an effective, minimal model that
covers all relevant aspects of the problem and then find a method that is suitable for
solving the model. Usually, this requires some analytical work. This can lead to a
satisfactory solution of the problem or be the starting point for numerical methods.

In this thesis we are interested in the situation of strongly correlated electron
systems with disorder, where disorder refers to defects in the crystal and strongly
correlated means that electrons strongly repel each other via the Coulomb interac-
tion. Materials with strongly correlated electrons include transition-metal oxids [6]
and heavy fermions [7, 8, 9, 10, 11]. They are interesting because of their rich phase
diagram [12, 13] and are promising candidates for applications [14], e. g. smart
windows using VO2 [15].

Disorder is often neglected in effective models, but to a certain degree, disorder in
the form of impurities, vacancies, dislocations, etc. is present in all systems at finite
temperature. Hence, it is necessary, to study the effects of disorder and see how it
affects the physical properties. Strong disorder can even be the dominant factor,
e. g. in the event of a metal-insulator transition known as Anderson localization
[16]. Close to the Anderson transition from the metal to the Anderson localized
state the wave function takes on a multifractal nature [17, 18], highlighting the
complex behavior associated with disorder. Even in strongly correlated electron
systems, the impact of disorder on transport and thermodynamic properties is often
not negligible [19, 20].

An important model for disordered interacting systems is the disordered Hubbard
model [21, 22, 23], also known as the Anderson-Hubbard model [24]. It is a lattice
model for electrons that can hop from one site to another. The electrons can have
up or down spin and interact via a repulsive Coulomb interaction if two electrons
occupy the same site. Disorder is taken into account by a local random potential
that equally affects up and down electrons. In the model, electrons obey the Pauli
principle, i. e. only electrons of different spins can occupy the same site. There is
only one orbital in the simplest form of the model. This is an oversimplification that
is only justified, if one is interested in general properties of the Hamiltonian. For
applications to real materials the single orbital model is not suited.

The Anderson-Hubbard model is a seemingly simple model, but even the Hubbard
part alone, i. e. hopping and interaction, is hard to solve. Generally, quantum Monte
Carlo [25] can be used, but it only allows to treat small systems, far away from the
thermodynamic limit. Also, away from half-filling it suffers from the infamous sign
problem [25], which means that the computational cost scales exponentially with
system size and inverse temperature. This is believed to be a manifestation of the
exponential growth of the Hilbert space.

In 1989 Metzner and Vollhardt introduced dynamical mean-field theory (DMFT)
[26, 27, 28, 29] that allows to treat interacting systems in the thermodynamic limit
and is exact in infinite dimensions. It was extended in [30, 31] to treat disordered
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interacting systems. DMFT treats local correlations exactly by mapping the lattice
problem to an impurity problem that is solved self-consistently, but DMFT ignores
non-local correlations altogether when employed for finite-dimensional systems. This
is an approximation away from the limit of infinite dimensions and it fails when
non-local correlations become important. Unlike quantum Monte Carlo for lattice
models, it does not suffer from the sign problem for a single orbital model.

Cluster extensions of DMFT are the dynamical cluster approximation (DCA)
[32, 33] and cellular DMFT [34]. For the Hubbard model both methods often use
quantum Monte Carlo to solve the cluster problem and thus indirectly suffer from
the sign problem.

The methods mentioned so far are either not working in the thermodynamic limit,
neglect non-local correlations, or suffer from the sign problem. A possible way out
are diagrammatic extensions of DMFT [35] that rely on an impurity problem to
capture the local physics and treat non-local correlations using perturbation theory.
Two such methods for purely interacting systems are the dual fermion approach
[36, 37] and the dynamical vertex approximation [38, 39]. Prior to this work, the
dual fermion approach has also been applied to purely disordered systems [40] as
well.

In this thesis, we want to combine the two dual fermion approaches for disordered
and interacting systems to a method that treats both disorder and interaction on
equal footing. We develop the formalism for the Anderson-Hubbard model and
Anderson-Falicov-Kimball model [41], which is a simplified version of the Anderson-
Hubbard model. Both models are introduced and discussed in chapter 2.

We are interested in the case of macroscopic systems. In this context a macro-
scopic system is a system that is much larger than the coherence length of the
electrons. In general, such systems are too large to be simulated directly. Thence,
we exploit the self-averaging property of electrons and use disorder-averaging. This
allows to model a macroscopic system by a set of smaller subsystems that can be sim-
ulated, and physical properties of the original system are calculated as the average of
the corresponding properties of the subsystems. A drawback of the disorder-average
is that it is not suited for an accurate treatment of Anderson localization, meaning
results around the critical disorder strength have to be taken with care.

In chapter 3 we introduce DMFT and DCA for disordered interacting systems.
DMFT is the method we want to improve and DCA, an established cluster method,
acts as a benchmark for our approach.

Chapter 4 is the main result of this thesis. We present a detailed discussion of the
dual fermion approach for disordered interacting systems. This includes a discussion
of the perturbative treatment of the dual single-particle Green function and the self-
consistency loop. The chapter ends with the calculation of vertex corrections for the
conductivity, which is used as an example to show how the dual fermion approach
can be used to calculate two-particle quantities.
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1 Introduction

DMFT, DCA and the dual fermion approach require the solution of an impurity
or cluster problem. In all three cases quantum Monte Carlo can be used. The
interaction expansion algorithm [42, 43, 44] is discussed in chapter 5, along with
modifications needed for the inclusion of disorder.

Chapters 6 and 7 present results for the Anderson-Falicov-Kimball model and the
Anderson-Hubbard model. The Anderson-Falicov-Kimball model serves as a test
case, therefore we limit our studies to the 1d and 2d system. We compare the dual
fermion approach to DCA in 1d and obtain a phase diagram in 2d as a function of
interaction and disorder strength.

The discussion of the Anderson-Hubbard model starts with a comparison between
dual fermions and DCA in 1d, as well. After that, we turn to the 3d case and inves-
tigate phase transitions, namely the antiferromagnetic transition, Mott transition
and Anderson transition. Prominent 3d materials with interactions and disorder are
alloys like brass, bronze or cast iron.

Throughout this thesis we set ~ = kB = 1, where ~ is the reduced Planck constant
and kB is the Boltzmann constant. A quantity is regarded as finite if it is less than
infinity and non-zero.
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2 Models
The purpose of this chapter is to introduce two models for disordered interacting
systems. It is organized as follows.

First, in section 2.1 some phenomena in interacting systems will be presented and
the Hamiltonian for the Hubbard model [21, 22, 23] will be introduced, as well as
the Hamiltonian for the Falicov-Kimball model [45]. The Hubbard model is a lattice
model that describes two types of electrons that repel each other if they occupy the
same site. The Falicov-Kimball model is similar, except only one electron species is
mobile, the other is localized.

Second, in section 2.2 concepts for disordered systems will be introduced along
with some phenomena caused by disorder. The Hamiltonians of the Anderson-
Hubbard model and Anderson-Falicov-Kimball model for disordered-interacting sys-
tems will be introduced along with a discussion of the disorder potential in sec-
tion 2.2.2. Section 2.2.3 concludes this chapter with a discussion of the self-averaging
property of electrons and we supplement the Hamiltonians given in section 2.2 with
the disorder-average as the final ingredient for the disorder models for macroscopic
systems.

2.1 Interacting Systems
It was a common practice in the early days of condensed matter theory to ignore
the effects of electron-electron interactions entirely or just use a mean-field approx-
imation, e. g. the Hartree-Fock method [46, 47]. Surprisingly enough, this yielded
good qualitative as well as quantitative results for some materials and led to the
invention of band theory [48]. Band theory led to an understanding of the mech-
anisms that make a material a metal, insulator or semiconductor. Unfortunately,
one of its predictions, namely that a material with one free electron per unit cell is
a metal was proved wrong by experiment for several materials including transition
metal oxides [6] such as V2O3. In these materials strong repulsive Coulomb interac-
tions prevent electrons from hopping to neighboring sites and thereby localize them.
These type of materials are called Mott insulators [49]. An additional effect that
is observed in V2O3 is the formation of an antiferromagnetic state due to the local
Coulomb repulsion [13]. The antiferromagnetic state allows for virtual hopping pro-
cesses which lower the energy [50]. A phase diagram for V2O3 at various levels of
doping is shown in fig. 2.1.
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Figure 2.1: The schematic phase diagram of V2O3 based on the data of [13]. The phase
diagram shows three different phases that can be explained by the Hubbard
model. The metal for high temperatures and weak interactions is dominated
by the kinetic energy term in the Hamiltonian. Upon increasing the pressure
via doping, V2O3 becomes a Mott insulator, dominated by the local Coulomb
repulsion. For low temperatures and sufficient pressure, the material enters an
antiferromagnetic state, caused by the interplay between both the kinetic and
potential energy terms in the Hamiltonian. The Coulomb repulsion prevents
double occupancies, but the antiferromagnetic order allows for virtual hopping,
which lowers the energy.

Another effect of electron-electron interactions is the formation of Fermi liquids [3].
Landau introduced the idea of a Fermi liquid in his seminal paper in 1956 [4]. The
Fermi liquid is adiabatically connected to the free electron gas. While the excited
states of the free electron gas are stable, the excited states of the Fermi liquid have
a finite, yet long life time. For many purposes, their longevity allows to treat them
like elementary particles with a renormalized mass. These excitations are called
quasiparticles.

The Fermi liquid state can be regarded as the ordinary metallic state. In phase
diagrams for strongly interacting materials, the metallic phase is often separated
into a Fermi liquid regime and a non-Fermi liquid regime. Non-Fermi liquid is quite
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2.1 Interacting Systems

unspecific, e. g. it can mean that exponents of thermodynamic quantities stray from
the Fermi liquid value. An example is Y1−xUxPd3 [51], where the exponent for the
temperature dependence of the resistivity was found to be n ≈ 1.13± 0.04, whereas
a Fermi liquid has an exponent n = 2. Another example is the transition from a
Fermi liquid to a Luttinger liquid upon a dimensional crossover from 2d to 1d [52].

In some materials the renormalized mass can be up to 103 electron masses. Ma-
terials with this property are called Heavy Fermion compounds [7, 8, 9, 10, 11] if
rare-earth elements like Ce, Yb or Y or actinides like U are involved. These ma-
terials have a partially occupied 4f/5f shell as well as a conduction band made of
other orbitals which may hybridize with the f -bands. The strong spatial confine-
ment of the f orbitals gives rise to a strong local Coulomb repulsion which is so
strong that double occupancy is prohibited and the f -electrons act as isolated spins.
These spins can couple to the spins of the conduction electrons and cause a variety
of phenomena, for example the Kondo effect [53] if the concentration of magnetic
moments is small. One model used to describe Heavy Fermion systems is the Kondo
lattice model [54, 55].

2.1.1 The Hubbard Model
In this thesis we will investigate systems with Coulomb interactions that are strong
but still allow for double occupancy. This is the case for transition metals like
Ni, Fe, V, Co and Mn as well as their oxides. Transition metals have partially
filled d-shells [49]. The d-orbitals are relatively narrow, such that the repulsion
between electrons in the same orbital is strong but double occupancy is still possible.
A common model for these materials is the Hubbard model [21, 22, 23] with the
Hamiltonian

HHubb = −
∑
ij,σ

(tij,σ + µeffδij)(c†σicσj + h.c.) + U
∑
i

(ni↑ −
1
2)(ni↓ −

1
2). (2.1)

Here, i and j denote site indices, σ = ↑, ↓ is the spin index, c(†)
σi annihilates (creates)

an electron of spin σ at site i, nσi = c†σicσi is the particle number operator for
electrons of spin σ at site i. U parametrizes the local Coulomb repulsion, µeff =
µ − U

2 is the effective chemical potential and µ is the chemical potential. For half-
filling µeff is zero. tij,σ is the hopping amplitude for an electron with spin σ and
only depends on the difference |i− j| between sites i and j because a translationally
invariant lattice is assumed. In the Hubbard model the spin dependence of the
hopping amplitude is usually dropped. The Hamiltonian in eq. (2.1) neglects non-
local Coulomb interactions. This is a simplification that is justified if the screening of
the Coulomb interaction in the material is strong. In this simple form, the Hubbard
model has only one orbital.

Overall, the Hubbard model is an oversimplification if quantitative predictions for
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2 Models

experiments are required. Although this Hamiltonian is very simple, too simple to
model real materials, no one has succeeded in finding a general analytic solution in
more than one [56] and less than ∞ [26] dimensions. Despite these two problems,
the Hubbard model is very popular. It was successfully applied to study the Mott
metal-insulator transition as well as itinerant magnetism, where it provides a simple
environment [57]. In these studies the simplicity of the model can be an advantage
as it allows to determine more easily the physical origin, hopping or local Coulomb
repulsion, of observed features. Compared to models with more parameters and
thus more possible origins this is a clear benefit.

Although no general analytic solution exists, a lot of progress in understanding
this model has been made [58]. Besides analytic treatment of the large and small
U limit, numerical methods shed some light on the underlying physics [59]. Such
methods include exact diagonalization (ED) [60], quantum Monte Carlo (QMC) [25],
dynamical mean-field theory [26, 27, 28, 29] and non-local extensions thereof. These
include the dynamical cluster approximation (DCA) [32, 33, 61], cellular DMFT
(CDMFT) [34] or the dual fermion approach [42, 43]. The dual fermion approach is
used and developed further in this thesis.

2.1.2 The Falicov-Kimball Model
Another model for rare-earth and transition metal materials is the Falicov-Kimball
model [45]. It can be regarded as a simplified Hubbard model and is obtained from
the Hubbard model by letting tij,σ → 0 for one spin degree of freedom. Now, there
exist two types of fermionic particles that are fundamentally different. One species is
immobile and is distributed on the lattice according to a thermal distribution. These
particles are called f electrons, because of the f orbitals in rare-earth elements that
the model was developed for. The other species is mobile and can hop from one
site to another, depending on the hopping-elements tij. These particles are called
conduction electrons or just c electrons. Due to their fermionic nature, a site cannot
be occupied by more than one c or f electron. If both types of electrons occupy
the same site, they will experience a repulsive interaction U . The corresponding
Hamiltonian reads

HFK =
∑
k

(εk − µ)c†kck + U
∑
i

ncin
f
i , (2.2)

where µ is the chemical potential, c(†)
k annihilates (creates) a c electron of momentum

k and nc/fi measures the density of c/f electrons at site i. The kinetic part has been
Fourier transformed and has been written in terms of the dispersion relation εk.

The Falicov-Kimball model is the simplest model that displays long-range order
[62, 63, 64]. However, the simplicity comes at a price, for example in combination
with the coherent potential approximation [65, 66] it only yields a crossover for the
metal-insulator transition [67].
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2.2 Disordered Systems

In this thesis we opted to use the Falicov-Kimball model as a test case. The
impurity problem that one has to solve in dynamical mean-field theory and the dual
fermion approach is particularly simple for the Falicov-Kimball model and thus
testing numerical algorithms for this model is fast.

2.2 Disordered Systems
In many physical theories of the solid a perfect lattice or crystal is assumed. This
leads to translational invariance with respect to a shift by a lattice vector and the
conservation of crystal momentum. In a lattice, electronic momentum k is not fully
conserved but only up to a reciprocal lattice vector

k = k̃ +G, (2.3)

where the crystal momentum k̃ is a vector in the first Brillouin zone and here G is a
reciprocal lattice vector. This facilitates analytic as well as numerical calculations.
However, it completely ignores that no crystal is ever perfect, which follows from
entropy based arguments.

In this thesis, we want to go beyond the perfect crystal. Instead, we will take
into account that there will always exist a number of defects in the group of atoms
forming the lattice or crystal. A few possible deviations from the perfect crystal are
illustrated in fig. 2.2.

Whatever it is, the potential and hopping parameters around those defects will be
changed and depending on the nature of those defects and their concentration the
behavior of a sample may change as well. A famous example is the Kondo effect [53],
where a low concentration of magnetic impurities in a metal may cause an increase
in resistivity at low temperatures. Another effect of introducing defects in a crystal
is visible in electron diffraction. Here, the clear peaks in the diffraction pattern of
the clean sample begin to smear out when disorder starts to break the translational
invariance and long-range order of the crystal [68, 69]. Arguable the most prominent
influence of disorder is its diminishing effect on the conductivity which can localize
electrons entirely. This effect is known as Anderson localization [16] and it is caused
by coherent backscattering of electrons from impurities. If the backscattering does
not lead to localization but only to a reduction of the conductivity it is called weak
localization [70].

Before we move on, let us mention a few effects where disorder and interaction
act together. As was presented above, both interaction and disorder can lead to
localization and insulating behavior [16, 49]. For a long time it was believed that
the ground state of a 2d system is always insulating if one has disorder or interaction.
This does not hold if both are present [71, 72, 73]. In this case, a metallic ground
state is possible.
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Impurity atom

Self-interstitial atom

Interstitial impurity

Vacancy

Figure 2.2: Possible deviations from the perfect crystal. An atom can be replaced by an
impurity atom or be removed from its position and leave a vacancy. It is
also possible to have atoms that do not occupy a lattice site. This can be
an interstitial impurity as well as a self-interstitial atom, which is a displaced
atom from the regular lattice.

Figure 2.3: Anderson localization is caused by coherent backscattering of electrons from
the randomly distributed impurities. The impurities give rise to a random
potential throughout the crystal.
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2.2 Disordered Systems

An interesting example of the influence of disorder is the superconducting state in
thin films. As has been observed in FeSe, the superconducting critical temperature
Tc in thin films is increased by a factor of nearly ten [74]. On the other hand,
decreasing the film thickness is regarded as a way to introduce disorder in the system
[75, 76] and in effect the critical temperature is reduced, e. g. in [75] it was found
that increasing amounts of disorder can change the temperature dependence of the
resistivity in thin films of NbN from a metal ( dρ

dT
> 0) to that of an insulator

( dρ
dT

< 0). However, the transition to a superconductor survived, albeit moved to
lower temperatures. Nb is a transition metal, thus electron-electron interactions
can be assumed to play a crucial role. The amount of disorder was tuned by the
thickness of the sample. In [77] disorder in the samples was tuned by annealing and
this also led to a decrease in Tc.

The interplay of the increase of Tc in thin films with the effects of disorder make
these kind of systems worth studying, for example a bulk superconductor with
Tc,Bulk = 30K would give a Tc at room temperature if a similar increase in thin
films could be realized.

An effect that we will study in section 7.2.1 is that disorder can also increase the
Néel temperature for strongly interacting systems, which was shown in [24].

2.2.1 The Anderson Disorder Models
The models used in this thesis for disordered interacting systems are based on the
Hubbard model and Falicov-Kimball model. A general extension of the Hubbard
Hamiltonian for an interacting disordered system will take a form like

HHubb,Dis = HHubb −
∑
i,σ

viσniσ. (2.4)

In the disordered system the hopping tij,σ depends on the two individual sites in-
volved and viσ is a random site-dependent potential, also called the disorder poten-
tial. It may be spin-dependent. Finally, the Hubbard interaction U could become a
site-dependent random variable as well.

These modifications make for a quite complex Hamiltonian. The explicit site-
dependence of the hopping is not very well suited for an approach in momentum
space. In this thesis it is assumed that the hopping and disorder potential do not
depend on spin, i. e. the energy of the impurities does not depend on whether an
electron with up or down spin is added. We will restrict ourselves to the disordered
potential and neglect the influence of the potential on the hopping. This is called
diagonal disorder. We obtain the Anderson-Hubbard Hamiltonian

HAH = −
∑
ij,σ

(tij + µδij)(c†σicσj + h.c.)−
∑
i,σ

viniσ + U
∑
i

(ni↑ −
1
2)(ni↓ −

1
2) (2.5)
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2 Models

for interacting disordered systems. For vi ≡ 0 we recover the Hubbard model. We
will also refer to this situation as the clean system. Throughout this thesis, the
Anderson model [16] refers to this Hamiltonian for U = 0. It is not to be confused
with the single impurity Anderson model [78] or the periodic Anderson model [79].

Analogous to the Hubbard model, the Falicov-Kimball model is supplemented by
a disorder potential. The random potential vi, that was introduced in eq. (2.5), is
added to HFK . It will act on the c electrons only. The Hamiltonian for the model
reads

HAFK = HFK −
∑
i

vin
c
i . (2.6)

This model is called Anderson-Falicov-Kimball model [41] and it serves as a first
test ground for the dual fermion method that we developed and that is introduced
in chapter 4.

2.2.2 Model for the Disorder Potential
In the following, we will examine how the potential vi can be constructed for both
models [70]. To this end, we introduce Nimp impurities that are randomly distributed
on the lattice. The potential at r will be

V (r) =
Nimp∑
j

u(r − Pj), (2.7)

where Pj is the position of the jth impurity. In a solid, an electrical charge is
screened with a screening length a. The Coulomb potential thus becomes a Yukawa
potential [80] u(r) = − e2

0
|r|e
− |r|

a . The first approximation that is made is to neglect
the spatial extend of an atom and set vi = V (ri) where ri is the position of the ith
atom. This means the potential is assumed to be constant on the scale of an atom.

The potential will look quite random as the impurities are randomly distributed,
but due to the positions of the impurities the values of the random potential on
neighboring sites will still be correlated. This will be ignored to facilitate the mod-
eling and make it more general. Instead, a truly random potential is chosen for each
site, uncorrelated with its neighbors.

In this thesis two different disorder distributions are used. The first is binary
disorder with the distribution function

pBin(vi) = 1
2

[
δ
(
vi −

V

2

)
+ δ

(
vi + V

2

)]
. (2.8)

The second is box disorder with a continuous distribution function

pBox(vi) = 1
V

Θ
(
V

2 − |vi|
)
. (2.9)

12



2.2 Disordered Systems

Θ is the Heaviside function

Θ(x) =

0 if x < 0
1 if x ≥ 0

. (2.10)

V defines the strength of the disorder in both distributions. The Hamiltonians
2.5 and 2.6 in general lack translational invariance as mentioned above, thus crystal
momentum is not conserved and single-particle observables depend on two momenta.

The following section expands on the disorder term in our models and how it
influences the comparison with experiments, especially for intermediate-sized and
macroscopic systems. Here, a system of macroscopic size is a system that is much
larger than the coherence length of the electrons, and an intermediate-sized system
ranges from about hundred to a thousand atoms to the macroscopic system. It will
become obvious that there are severe problems for systems of intermediate size.

At the level of macroscopic systems the self-averaging effect helps to overcome this
problem by introducing a disorder-average. It provides a solution of the problem
that allows to make general statements about macroscopic disordered systems and
it introduces a pseudo-momentum conservation such that Okk′ ∝ δkk′ for a single-
particle observable O.

2.2.3 Modeling Disorder in Macroscopic Systems
The models described in eqs. (2.5) and (2.6) share the random potential term. A
priori it is unclear what one should do with this term. A four-site system with
binary disorder can be used to illustrate this point. There are 24 = 16 possible
configurations for this system. The properties of this system will depend strongly
on the realization of the disorder, e. g. the system with all four local potentials equal
to V/2 will be very different from the system with all four local potentials equal to
−V/2.

As a consequence, one realization of the disorder will not be enough to make gen-
eral statements about systems with a given disorder distribution. In fact, for small
systems as just described one can only make statements for specific realizations.
This complicates comparison with experiments as experimentalists would have to
gain full knowledge about their sample such that it can be simulated. Also, exper-
imental results should most often be reproducible not just for one sample, but for
all samples that can be considered similar for a given experiment. For intermediate-
sized systems, the situation becomes even worse as a given system may be too large
to simulate in its entirety and translational invariance cannot be exploited for ap-
proximations. The bottom line is, the Hamiltonians given in eqs. (2.5) and (2.6)
can only be applied directly to very small systems if comparison with experiments is
the goal. This would make the use of these Hamiltonians pointless for macroscopic
systems if there were not the effect of self-averaging.
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Self-averaging occurs for electrons traveling in a disordered system if the coherence
length of the electron is much smaller than the sample size. The conductivity shall
serve as an example. If the coherence length is long, backscattering of different
impurities can lead to interfering paths of the electron. This in turn can lead to
weak localization and thus to a reduced conductivity or even to Anderson localization
and to a vanishing conductivity. If the coherence length is short, the scattering from
multiple impurities will not lead to interference on larger length scales and Anderson
localization is not possible. The conductivity may still be reduced but the effect is
weaker.

What happens in a macroscopic sample? As the electron is influenced by interfer-
ence effects only in the region defined by its coherence length, we can decompose the
sample into subsystems. Under the assumption that no macroscopic regions exist
in the sample that are either insulating or superconducting and can thus dominate
the conductance, the conductivity of the sample will be the average over the partial
conductivities of those subsystems. If we further assume that these subsystems are
themselves large compared to the microscopic scales, they may each be viewed as
independent realizations of disorder, hence the previous average can also be viewed
as an average over different realizations of disorder. This is the self-averaging effect.

The self-averaging effect can be incorporated in the disorder models described
above by imposing an averaging procedure for the evaluation of observables. In this
thesis the procedure is referred to as disorder-averaging. To this end, the replica
trick is used. As observables are calculated from the free energy F = −T lnZ, the
free energy and thus lnZ have to be averaged. Z is the partition function and T
the temperature. The replica trick [81, 82]

{lnZ} = lim
m→0

{Zm} − 1
m

(2.11)

allows to integrate out the disorder analytically and thus restore pseudo-momentum
conservation. {. . . } =

∫
dvp(v) . . . denotes the disorder-average according to a

probability density p for the disorder. Equation (2.11) follows from

ln x =
∫ x

1
dt

1
t

= lim
m→0

∫ x

1
dt

1
t1−m

= lim
m→0

xm − 1
m

. (2.12)

m is taken to be an integer and it is assumed that in the end the limit m → 0
can be performed. Within the replica trick one has to deal with m replicas of Z
instead of {lnZ}. This facilitates analytic calculations and is a standard trick used
for disordered systems as well as spin-glass systems [83].
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Using the replica trick, {lnZ} becomes

{lnZ} =
∫ ∏

i

dvip(vi) lnZv

= lim
m→0

( 1
m

∫ ∏
i

dvip(vi)
∫ ∏

α

D[cα, c̄α]e−SvR − 1
)
,

(2.13)

where

SvR = −
∑
α

∑
ωkσ

c̄αωkσ(ω + µ− εk)cαωkσ −
∑
i,α

∫ β

0
dτvin

α
i (τ) +

∑
i,α

∫ β

0
dτUnα↑i(τ)nα↓i(τ)

(2.14)
is the action for a given disorder configuration and Zv is the corresponding partition
function. α is a replica index. In the above, the replica limit introduced limm→0

−1
m

.
This terms is a constant with respect to derivatives of the partition function and thus
it can be ignored. As such derivatives are performed before the replica limit, there
will be no problem with 1

0 . Now, the disorder can be integrated out analytically
[84]: ∫

dvip(vi)evi
∑

α

∫
dτnαi (τ) = eW (ñi) (2.15)

with
W (ñi) =

∞∑
l=2

1
l!〈v

l
i〉cñli (2.16)

and
ñi =

∑
α

∫
dτnαi (τ). (2.17)

〈vli〉c denotes the lth cumulant of the disorder distribution. This can be seen by
means of the cumulant-generating function which is defined as the logarithm of the
left-hand side of eq. (2.15). It follows that

W ′(ñ) = ln
( ∫

dvp(v)evñ
)

=
∞∑
l=1

1
l!〈v

l〉cñl. (2.18)

Finally, it is assumed that 〈v1〉c = 0 such that the disorder does not change the filling.
If 〈v1〉c 6= 0, it can be absorbed in the chemical potential. The effective interaction
W that originates from the disorder-average is local in space and translationally
invariant. This implies that any single-particle observable Okk′ ∝ δkk′ is diagonal in
momentum. In this sense, momentum conservation is restored.
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2.3 Summary
In this chapter the Hubbard model and Falicov-Kimball model were introduced.
Both models describe two types of interacting electrons on a lattice, the difference
between the two models is that both types of electrons are mobile in the Hubbard
model, but only one type is for the Falicov-Kimball model.

In section 2.2 disorder was incorporated in both models with a disorder potential
that acts on the mobile electrons. The resulting models are the Anderson-Hubbard
model and the Anderson-Falicov-Kimball model. Section 2.2.2 dwelled on the physi-
cal origin of the disorder potential and the section concluded with the two probability
distributions that are used in chapters 6 and 7 to model disorder.

We convinced ourselves that for microscopic systems the solution of the model
depends strongly on the disorder realization, therefore the solution of a microscopic
system is hardly suitable as an approximation for macroscopic systems. Hence, it
was necessary to add disorder-averaging in section 2.2.3 as an additional step in
modeling macroscopic disordered systems.

Using the replica trick, it was possible to perform the disorder-average by inte-
grating out the disorder term analytically in favor of an effective translationally
invariant interaction between different replicas. The disorder-average restored a
pseudo-momentum conservation such that Green functions and other quantities are
diagonal in momentum space. This simplifies the methods for disordered interacting
lattice problems that are introduced in the following two chapters.
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3 Conventional Mean-Field Methods
for Correlated Lattice Models

The purpose of this thesis is to develop a method that treats disorder and interac-
tions on equal footing. To this end, we will first introduce the dynamical mean-field
theory (DMFT) [26, 27, 28, 29] to approximately handle systems with local inter-
actions. DMFT includes local quantum fluctuations exactly but ignores non-local
correlations altogether. This can lead to wrong result when non-local correlations
become important, e. g. DMFT predicts the wrong line shape for the metal-insulator
transition on the UT -plane in 2d [85]. Therefore, an important aspect of this thesis
is to also introduce and further develop a method that allows to incorporate these
non-local correlations.

In spite of its deficiencies DMFT is a useful method. An advantage is that it allows
for calculations at very low temperatures even if quantum Monte Carlo (QMC) is
used to solve the impurity problem. It does so by mapping the lattice problem to
an impurity problem which is numerically relatively cheap to solve. Thus, DMFT
allows for quick parameter scans to get a general idea of what to expect for a given
system. After such a parameter scan more elaborate methods can be used to study
the physics of the system in more detail, taking into account non-local correlations.

In section 3.1 the basic ideas of DMFT are introduced, i. e. the mapping of the
lattice problem to an impurity problem and the self-consistency loop. The discussion
of the self-consistency loop starts with the original loop of the clean system and is
then extended to include disorder [30, 31]. The section on DMFT ends with a brief
discussion of the so-called typical-medium-theory (TMT) [86]. TMT is designed to
distinguish localized states from extended states which enables it to detect Anderson
localization. In this thesis, the critical disorder strength from TMT is compared with
the dual fermion result to estimate how good the dual fermion approach is in the
strong disorder regime.

In section 3.2 the dynamical cluster approximation (DCA) [32, 33] is introduced.
It has been used for disordered, interacting and disordered interacting systems. DCA
includes short-range correlations by replacing the impurity of DMFT by a cluster
embedded in a momentum-dependent dynamical mean-field. Here, it will be shown
how to modify the corresponding self-consistency loop to include both disorder and
interactions [87, 88].

DCA is numerically much costlier than DMFT. If QMC is used to solve the
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3 Conventional Mean-Field Methods for Correlated Lattice Models

Figure 3.1: In dynamical mean-field theory the lattice of interacting sites is mapped to
a single impurity in a non-interacting bath. Instead of solving the lattice
problem, an impurity problem is solved self-consistently.

cluster problem, DCA will also suffer from the infamous sign problem away from
half-filling. The sign problem is discussed in appendix A. As QMC is the standard
cluster solver for interacting quantum systems in DCA, the range of applicability
of DCA is limited. Nevertheless, DCA is a well established method that adds back
non-local correlations. Comparing the dual fermion approach with DCA will show
how good the dual fermion approach is compared to established cluster methods.
Thus, it will allow us to estimate how reliable the results will be when new regions
of the parameter space are explored.

3.1 Dynamical Mean-Field Theory
The basic idea behind a mean-field approach is to treat non-local correlations approx-
imately by considering only one site that is coupled to a mean-field. The mean-field
represents the action of the rest of the lattice and in case of fermionic or bosonic
models one usually speaks of an impurity coupled to a non-interacting bath. This
idea is illustrated in fig. 3.1. The application of this idea to quantum lattice problems
with local interactions is called dynamical mean-field theory (DMFT) or sometimes
dynamical mean-field approximation, depending on the dimensionality. In infinite
dimensions the method is exact and is regarded as a theory, in finite dimensions it
is an approximation. In the literature the name dynamical mean-field theory and
the abbreviation DMFT are often used independently of the dimension. We will use
this convention.

DMFT allows to solve the Hubbard model in infinite dimensions exactly [26] and
to investigate the Mott metal-insulator transition [89, 90]. In general, it is a good
approximation if the dominant physics is of local nature. If non-local effects start
to play a role, the approximation will start to give inaccurate and finally erroneous
results. A derivation of the mean-field equation is given in [29].
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3.1 Dynamical Mean-Field Theory

In the Hubbard model the hopping term is the only non-local term. DMFT treats
the hopping processes in terms of a mean-field function G0(τ) that depends on
imaginary time τ . The action describing the impurity problem is a functional of G0.
It reads

Seff = −
∫∫

dτdτ ′
∑
σ

c†oσ(τ)G0(τ − τ ′)−1coσ(τ ′)

+U
∫ β

0
dτ
(
no↑(τ)− 1

2

)(
no↓(τ)− 1

2

)
.

(3.1)

Here, o labels the impurity site. In frequency space G0 can be calculated from the
impurity self-energy Σ = Σ[Seff ] and the local lattice Green function Gloc = Gloc[Σ]
according to

G0(iω)−1 = Gloc(iω)−1 + Σ(iω). (3.2)

The following definition of the single-particle Green function is used:

Gij(τ) = −〈Tτci(τ)c†j(0)〉. (3.3)

Tτ is the imaginary-time ordering operator. As usual, i and j label sites.
This set of equations can be solved self-consistently and the procedure will be

described in section 3.1.1. We start with the loop for the clean system and then
extend it to include disorder. In section 3.1.2 we conclude our introduction of DMFT
by presenting the typical-medium-theory (TMT). TMT replaces the average density
of states by the typical density of states, which requires access to the real frequency
Green function. Otherwise the self-consistency loops of TMT and DMFT are the
same.

3.1.1 Self-Consistent Description of the Local Green Function
The DMFT equations form a closed set of equations that can be solved self-consistently.
The scheme is the following:

0. Make an initial guess for the self-energy, e. g. Σ = 0.

1. Calculate Gloc(iω) = 1
N

∑
k

1
iω+µ−εk−Σ(iω) .

2. Calculate G−1
0 (iω) = G−1

loc(iω) + Σ(iω).

3. Fourier transform G0(iω) to obtain G0(τ). This step is only needed for quan-
tum Monte Carlo methods.
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Initial guess for Σ, e. g. Σ = 0

Gloc(iωn) =
1
N

∑
k

1
iωn+µ−ǫk−Σ(iωn)

G−1
0 (iωn) = G−1

loc(iωn) + Σ(iωn)

Fourier transform G0(iωn) to obtain medium G0(τ)

Calculate impurity self-energy Σ

Figure 3.2: DMFT loop for the self-consistent solution of the lattice problem.

4. Solve the impurity problem defined by the medium G0 and obtain Σnew(iω).

5. Continue with step 1 until convergence for Σ is reached.

The superscript “new“ refers to the self-energy after the impurity problem. The self-
energy Σnew becomes Σ when the loop starts all over again with step 1. Figure 3.2
shows an illustration of the self-consistency loop. There are different ways to test for
convergence, e. g. max({|Σnew(iω)− Σ(iω)|}) can be used to check the convergence
or 1

N

∑N−1
n=0 |Σnew(iω)− Σ(iω)| where N is the number of frequencies used.

DMFT, as described above, only works for clean interacting systems. In [30, 31]
disordered-interacting systems have been treated following the spirit of DMFT. A
coherent potential has been introduced to account for the disorder. This procedure
is analogous to the Coherent Potential Approximation (CPA) [65, 66] that can be
described as DMFT for disordered non-interacting systems. In fact, DMFT for
disordered interacting systems reduces to CPA in the non-interacting limit.

The extension of DMFT to include disorder consists of adding disorder-averaging
as described in section 2.2.3. The disorder-average is performed on the level of the
impurity problem, i. e. one impurity problem is replaced by a collection of impurity
problems with different local potentials. The bath Green function for an impurity
with a given on-site potential vn is given by

Gvn
0 (iω) = 1

G−1
0 (iω)− vn

(3.4)

in real space for disorder realization n. G0 is the bath Green function for the
translationally invariant system. The self-consistency loop of DMFT is altered to
the following:
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3.1 Dynamical Mean-Field Theory

0. Make an initial guess for the self-energy, e. g. Σ = 0.

1. Calculate Gloc(iω) = 1
N

∑
k

1
iω+µ−εk−Σ(iω) .

2. Calculate G−1
0 (iω) = G−1

loc(iω) + Σ(iω).

3. Solve the disordered impurity problem:
a) Calculate Gvn

0 = 1
G−1

0 −vn
for all disorder realizations.

b) Solve the impurity problem defined by the mediumGvn
0 and obtain gvn(iω),

which is the impurity Green function for the disorder potential vn. Do
this for all disorder realizations.

c) Calculate g = 1
N

∑N
n=1 g

vn , where N is the number of disorder realizations.

d) Calculate Σnew = G−1
0 − g−1.

4. Continue with step 1 until convergence for Σ is reached.

3.1.2 Alternative Disorder-Average: The
Typical-Medium-Theory

In the previous subsection the disorder-average was defined as the arithmetic aver-
age over disorder configurations. The arithmetic average is most useful in situations
where a quantity is symmetrically distributed around its mean value, examples are
Gaussian or Lorentzian distributions. For asymmetric distributions like a Poisson
distribution or a logarithmic distribution the mean value may not be very meaning-
ful. Instead, the most probable or typical value of a distribution provides a better
description of the distribution. The typical value can be obtained from the geometric
average.

Weak disorder introduces some variation in the local density of states, which
depends on the local potential, but the deviations from the average local density of
states (LDOS) will be approximately symmetric. For the case of strong disorder,
when the Anderson localization is approached the variation will become stronger and
asymmetric as small densities for given ω become more and more frequent and larger
values the exception. When we enter the Anderson insulator the continuous density
of states will acquire discrete energy levels for the localized states. These states will
be at random energies, thus for a given energy we would expect an LDOS that is
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3 Conventional Mean-Field Methods for Correlated Lattice Models

typically zero. This means that the average value of the LDOS for a given energy
does not reflect what one expects to measure. These considerations have been used
to develop the typical-medium-theory (TMT) [86]. It can be described as a DMFT
where the arithmetic disorder-average is replaced by a geometric disorder-average
for the LDOS ρ in the self-consistency according to

ρtyp(ω) = exp
[ ∫

dvnp(vn) ln ρ(ω, vn)
]
. (3.5)

ρtyp is used in the Hilbert transform for the typical local lattice Green function

Gtyp(ω) =
∫
dω′

ρtyp(ω′)
ω − ω′

, (3.6)

which corresponds to step 1 in the DMFT self-consistency loop.
TMT can distinguish extended states from localized states, therefore it is capable

of detecting Anderson localization. The typical LDOS is used as an order parameter.
If the typical LDOS vanishes, the system enters the Anderson insulator. TMT is
surprisingly good at detecting Anderson localization but the estimate for the critical
interaction strength VA can be improved. This is done by extending the single-site
TMT approach to a cluster approach, namely cluster-TMT [91] or typical-medium
dynamical cluster approximation (TMDCA) [92].

Although TMT is very good at detecting Anderson localization, it is not the
method of choice in all cases where disorder is involved. In fact, it has a number
of severe drawbacks, i. e. it does not produce correct two-particle quantities and
without cluster-extensions it cannot capture true non-local physics. Additionally, it
is not capable of producing correct critical exponents [86]. The cluster extensions
require the solution of an interacting cluster, thus from a numerical point of view
they share the general problems of the dynamical cluster approximation that will
be introduced in the next section.
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3.2 Dynamical Cluster Approximation for Disordered Interacting Systems

3.2 Dynamical Cluster Approximation for Disordered
Interacting Systems

The dynamical cluster approximation (DCA) [32, 33] is an approximation that goes
beyond DMFT by including short range correlations within a finite cluster that
is used as a reference system. Similar to DMFT the cluster is embedded in a
momentum dependent mean-field, which is illustrated in fig. 3.3. The original lattice
coordinate x = x̃+X is written in terms of the cluster position x̃ and the position X
inside the cluster. The lattice momentum k = K+k̃ is written in terms of the cluster
momentum K and the momentum k̃ of the superlattice. This is illustrated in fig. 3.4.
Real space and momentum space are related by discrete Fourier transformations

f(X, x̃) = Nc

N

∑
k̃

eik̃x̃f(X, k̃) (3.7)

f(X, k̃) =
∑
x̃

e−ik̃x̃f(X, x̃) (3.8)

f(X, k̃) = 1
Nc

∑
K

ei(K+k̃)Xf(K, k̃) (3.9)

f(X, k̃) =
∑
X

e−i(K+k̃)Xf(X, k̃) (3.10)

for some function f . Nc is the number of cluster sites and N the number of lattice
sites. The self-energy Σ(iω, k) is replaced by the cluster self-energy Σc(iω,K) which
only depends on the cluster momentum K. For k̃ 6= 0 we set

Σ(iω, k) = Σc(iω,K) (3.11)

such that |k − K| is minimal. The cluster self-energy is obtained from the Green
function Gc of the isolated cluster via

Gc(iω) =
[
(iω + µ)1− tc −Σc(iω)

]−1
. (3.12)

Bold symbols denote matrices inK-space. tc is the hopping matrix inside the cluster.
For the models considered, all quantities are diagonal in spin space.

In a diagrammatic treatment of the full lattice problem, momentum sums have
to be performed and momentum conservation is retained at each vertex. This is
enforced by the Laue function

∆ =
∑
x

eix(k1+k2+···−k′1−k′2−... ) = Nδk1+k2+...;k′1+k′2+.... (3.13)
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Figure 3.3: The lattice problem is mapped to a cluster embedded in a mean field or bath.
In DCA momentum conservation is retained only up to the cluster momenta
K.

. . . . . .

x1

x2

x x̃

X

1st Brillouin Zone

k1

k2

K
k k̃

π

π

−π

−π

Figure 3.4: The lattice is tiled and a superlattice is introduced. The coordinates of the
superlattice are denoted by x̃. The position inside the tiles or clusters are
denoted X. This leads to a tiling of the Brillouin zone. The coordinates of
the superlattice in k-space are K and the coordinates within the tiles are k̃.
Patches around equivalent K-points have the same color.
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In DCA the Laue function is replaced by

∆DCA = NcδK1+K2+...;K′1+K′2+.... (3.14)

This means that the cluster approximation neglects the full momentum conservation.
For Nc →∞ it is systematically restored and for Nc = 1 one obtains DMFT.

3.2.1 Self-Consistent Description of the Cluster Green Function
In DCA the coarse-grained lattice Green function Ḡ is equated with the cluster
Green function Gc. In practice, one has to solve a self-consistency loop that relates
the cluster and lattice quantities. The self-consistency loop for the DCA goes as
follows [84]:

0. Choose a self-energy Σc(iω,K) for the initial calculation. Σc(iω,K) ≡ 0 is
a common choice, but perturbative results can also be used in the hope to
reduce the number of self-consistency iterations.

1. Now obtain the coarse-grained lattice Green function

Ḡ(iω,K) = Nc

N

∑
k̃

1
iω + µ− εK+k̃ − Σc(iω,K) . (3.15)

2. Calculate the mean-field function

G0 = (Ḡ−1 + Σc)−1. (3.16)

3. Obtain the new cluster self-energy Σnew
c .

Disorder: For the purely disordered system
3.1. Fourier transform G0(iω,K) to the G0(iω, i, j) matrix representation

in real space.

G0(iω, i, j) = 1
Nc

∑
K

G0(iω,K) exp[iK(xi − xj)] (3.17)

3.2. Calculate
Gc = {(G−1

0 −V)−1} (3.18)

where {. . . } indicates the disorder average and V is the diagonal
disorder potential matrix in real space.
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3.3. Transform back to reciprocal space and obtain

Σnew
c = G−1

0 −G−1
c . (3.19)

After the disorder-average Gc is diagonal, such that the scalar inverse
can be used in the above.

Interaction: For the purely interacting system solve the cluster problem to obtain
Σc(K). For QMC, G0 has to be transformed to the right representation
in imaginary time and real space:

3.1. Fourier transform G0(iω,K) to the imaginary time domain G0(τ,K).

3.2. Fourier transform G0(τ,K) to the real space G0(τ, i).

3.3. Solve the cluster problem and obtain Σnew
c (iω,K).

4. Start from step 1. again, setting Σc = Σnew
c .

Now, we have to merge these two algorithms that differ in step 3. To this end, let
us understand what the main difference is. For the purely interacting problem all
quantities are diagonal in momentum space. For the disordered system, however, V
breaks the translational invariance of the cluster and therefore the Green function
Gconf
c for a single disorder configuration is no longer diagonal in momentum space.

It will only be diagonal after the disorder average {. . . } has been performed. The
step we have to modify is 3.2. for the disordered system, where the term in {. . . }
has to be replaced by the solution of the interacting disordered cluster. The effect
of disorder is to change G0 for the individual disorder configurations:

(Gconf
0 )−1 = G−1

0 −V. (3.20)

We are now dealing with a Gconf
0 that is neither diagonal in real space nor in mo-

mentum space.
QMC (c. f. chapter 5) is used in this work to solve the disordered interacting

cluster problem. In the following we present in detail, how Gconf
0 (τ, i, j) is obtained.

Additionally, Gconf
0 (iω,K,K ′) is needed to calculate Gconf

c (iω,K,K ′) as we will see
later.

Starting from G0(iω,K) we do the following steps:

1. We Fourier transform from reciprocal to real space

G0(iω, i, j) = 1
Nc

∑
K

G0(iω,K) exp[iK(xi − xj)]. (3.21)

26



3.2 Dynamical Cluster Approximation for Disordered Interacting Systems

2. Then Gconf
0 (iω, i, j) = (G−1

0 −V)−1(iω, i, j) is evaluated.

3. Next, a Fourier transform leads back to the reciprocal space Green function

Gconf
0 (iω,K,K ′) = 1

Nc

∑
ij

Gconf
0 (iω, i, j) exp[−i(Kxi −K ′xj)]. (3.22)

The factor 1
Nc

is needed to adjust the dimensionality in terms of Nc.

4. Then Fourier transformingGconf
0 (iω,K,K ′) to the imaginary time domain leads

to Gconf
0 (τ,K,K ′).

5. Finally, a Fourier transformation is performed to get back to real space. Only
the diagonal entries are needed in

Gconf
0 (τ, i, j) = 1

N2
c

∑
KK′

Gconf
0 (τ,K,K ′) exp[i(Kxi −K ′xj)]. (3.23)

With Gconf
0 (τ, i, j) one can calculate Σc using QMC to solve the cluster problem. At

first glance it may seem we perform some unnecessary Fourier transforms. However,
for the imaginary time Fourier transform we need high-frequency conditioning. High-
frequency conditioning means that we treat the high-frequency behavior of the Green
function analytically. This is particularly simple in (iω,K)-space where the Green
function decays as 1/(iω) [93, 94].

3.2.2 Changes to the Impurity Solver for Clean Systems
We start from a QMC code for a translationally invariant cluster, which is introduced
in chapter 5. Therefore, quantities only depend on the difference between two sites
but not the sites themselves. This is different for disordered systems, where we need
the full real space matrix G0 for the updates.
Furthermore, also the measurement of the Green function is changed if we want
to measure in K and iω space. For the measurement we use the equation (c. f.
eq. (5.25))

G(iω,K) = G0(iω,K)− 1
β
G2

0(iω,K)
〈 k∑

pq

exp[iK(np−nq)] exp[iω(τp−τq)](Mk)pq
〉

QMC
.

(3.24)
M is the configuration matrix of the Monte Carlo simulation and p and q are matrix
indices. 〈. . . 〉QMC denotes a Monte Carlo average. We have to adopt this formula
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3 Conventional Mean-Field Methods for Correlated Lattice Models

to account for the off-diagonal parts of Gconf
0 which replaces G0 for the disordered

system. Performing the Fourier transform in two space variables leads to

Gconf(iω,K,K ′) = Gconf
0 (iω,K,K ′)− 1

βN2
c

∑
K1K2

Gconf
0 (iω,K,K1)Gconf

0 (iω,K2, K
′)×

×
〈 k∑

pq

exp[i(K1np −K2nq)] exp[iω(τp − τq)](Mk)pq
〉

QMC
.

(3.25)

At the end, Gconf will be disorder averaged and only the terms diagonal in K will
survive.

Alternatively, one can measure the cluster Green function in r and τ space. One
has to measure only the diagonal elements in r space, because all other elements will
not survive the disorder-averaging. This is because the Green function is diagonal
in k-space after the disorder-average as shown in section 2.2.3.

3.3 Summary
In this chapter, we introduced two mean-field methods for the solution of interacting
electrons on a disordered lattice. These methods have been developed prior to the
dual fermion approach. Both rely on the mapping to an impurity or cluster problem
that has to be solved self-consistently.

First, in section 3.1 DMFT was introduced. It is exact in infinite dimensions, but
ignores non-local correlations altogether if applied to finite dimensional systems.
This neglect of non-local correlations is what we want to overcome. The section
about DMFT was closed with an introduction of TMT, which is a modification of
DMFT that is able to detect Anderson localization.

Second, in section 3.2 DCA was discussed, a method developed to improve DMFT
by including short-range correlations. DCA is a powerful method for interacting
systems, but it is limited to relatively small system sizes, especially in 3d. Generally
Quantum Monte Carlo is used to solve the cluster problem, which means that DCA
indirectly suffers from the sign problem away from half-filling. We use DCA as a
benchmark for the dual fermion approach presented in the next chapter.
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4 The Dual Fermion Approach for
Disordered Interacting Systems

The dynamical mean-field theory (DMFT) presented in section 3.1 neglects non-
local correlations. Thus, depending on the system under investigation, DMFT can
be quite a crude approximation giving qualitatively wrong results, for example in
the vicinity of antiferromagnetism or charge-density waves.

One way to add back non-local correlations is by means of cluster methods, e. g.
the dynamical cluster approximation (DCA) [32, 33], cellular DMFT (cDMFT) [34]
or large scale quantum Monte Carlo (QMC) [42, 43] simulations. If DCA and
cDMFT use QMC to solve the cluster problem, all three methods will in general
suffer from the sign problem. Therefore, these three methods are often limited to
rather short-ranged correlations as the cluster sizes are usually quite small because
an increasing cluster size worsens the sign problem. This is especially problematic
in more than one dimension.

In one dimension it is possible to overcome the sign problem [44]. For translation-
ally invariant single-orbital Hubbard-like systems the sign problem can be overcome
at half-filling as well. However, in the case of disorder there will generally be disor-
der realizations that are away from half-filling. Thus, in more than one dimension
the sign problem is typically present.

Other cluster methods in the context of disorder are the traveling cluster approxi-
mation [95, 96], the molecular coherent potential approximation [97, 98, 99] and the
cluster coherent potential approximation [100, 101, 102, 103, 104].

Another way to add back non-local correlations is to use a perturbative approach.
The calculations involved are usually less costly and they do not suffer from the
sign problem if a corresponding reference system can be chosen. However, ordinary
perturbation theory suffers from the problem that one has to find a small expansion
parameter, which is not an easy task for the Hubbard model.

A way out is to introduce new degrees of freedom that allow to do a perturbative
expansion in the non-local correlations only. Around the DMFT result for small
values of U non-local correlations will be small. On the other hand, for strong inter-
actions, i. e. around the atomic limit, non-local correlations will not be significant
either. Therefore, an expansion in terms of the non-local contributions is desirable.
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4 The Dual Fermion Approach for Disordered Interacting Systems

This can be achieved by means of a Hubbard-Stratonovich transformation1 which is
shown in [105, 36, 37] for an interacting system. The Hubbard-Stratonovich transfor-
mation introduces new degrees of freedom which are referred to as dual fermions. We
will refer to the original degrees of freedom as real fermions. Terletska et al. [40] ap-
plied the approach to a disordered system. Here, we want to apply it to a disordered
interacting problem. For the derivation of the formalism we extend the derivation of
Terletska et al.[40]. We published the application to the Anderson-Falicov-Kimball
model in [106]. The derivation for this model is presented in appendix C. Here, we
will focus on the derivation for the Anderson-Hubbard model.

By construction, the dual fermion approach is not a mean-field method, i. e. there
is no a priori need to do some coarse graining as for DMFT and DCA. In practice, the
dual fermion approach uses a self-consistency loop. The self-consistency condition
is formulated in terms of local quantities and calculating those quantities essentially
requires coarse-graining. Therefore, dual fermions are likely to retain a mean-field
character.

One has to note that other approaches that extend DMFT by means of a pertur-
bative expansion do exist, going back to [35]. One such approach is the dynamical
vertex approximation (DΓA) [39, 38], which is the main competitor of dual fermions.
DΓA uses the local irreducible vertex function to create an approximation for higher
order reducible vertex functions.

4.1 Derivation of the Formalism

The derivation of the formalism will be done using the path integral formalism2 for
the partition function. We will apply the formalism to quenched disorder. Unlike for
the clean system or systems with annealed disorder, one has to deal with {lnZ} 6=
ln{Z}, where {. . . } as usual denotes a disorder-average. Instead of introducing the
dual degrees of freedom for Z, as done in [105, 36, 37], we will do so for {lnZ}. The
action of the lattice model will be rewritten in terms of an impurity action. Then
the replica trick is used to express {lnZ} in terms of powers of {Z} and to integrate
out the disorder. A Hubbard-Stratonovich transformation is used to decouple the
non-local real degrees of freedom and introduce dual degrees of freedom. As a result,
the real degrees of freedom can be integrated out. This is done by defining the dual
potential and deriving an expression for it.

As has been discussed in section 2.2.3, the disorder-average is applied to observ-

1The transformation used is actually more general than a Hubbard-Stratonovich transformation,
but the name has established itself in the field of dual fermions and thus it is used in this thesis.

2An introduction to path integrals can be found in [107].
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ables, e. g. for the Green function this implies

{Gk} = − δ

δη
{lnZ}

∣∣∣∣
η=0

, (4.1)

where η is a source field and Z is the partition function. The partition function is
defined as

Z =
∫ ∏

ωk

dc̄ωkdcωke
−S (4.2)

in the path integral formalism. c and c̄ are Grassmann numbers. To shorten the
notation, ω ≡ iωn is used to label Matsubara frequencies and k is a momentum
label.

The action for a given disorder configuration is

Sv[c̄, c] = −
∑
ωkσ

c̄ωkσ(ω + µ− εk)cωkσ +
∑
i

Svi [c̄i, ci] (4.3)

with the local part of the action

Svi [c̄i, ci] = −
∫ β

0
dτvini(τ) +

∫ β

0
dτUn↑i(τ)n↓i(τ) (4.4)

at site i. In terms of an impurity action

Sv,imp
i [c̄i, ci] = −

∑
ω,σ

c̄ωσ[(ω + µ)−∆ω]cωσ + Svi [c̄i, ci] (4.5)

the action Sv is rewritten as

Sv[c̄, c] =
∑
i

Sv,imp
i [c̄i, ci]−

∑
ωkσ

c̄ωkσ(∆ω − εk)cωkσ. (4.6)

∆ω is a hybridization function that is not yet specified. In section 4.4 we will show
how it can be determined self-consistently.

As it is inconvenient to deal with {lnZ}, we use the replica trick [81, 82] to
integrate out the disorder as shown in section 2.2.3. In this approach, we use the
replica trick to derive the formalism and to obtain diagrams. We will not use it to
do calculations and extrapolate m→ 0 for our data. This extrapolation is done only
for the diagrams. Therefore, we are not concerned about replica symmetry breaking
[83].
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4 The Dual Fermion Approach for Disordered Interacting Systems

The replica trick leads to

{lnZ} =
∫ ∏

i

dvip(vi) lnZv

= lim
m→0

1
m

( ∫ ∏
i

dvip(vi)
∫
D[c̄i, ci]e−S

v
R − 1

)
,

(4.7)

where

SvR =−
∑
α

∑
ωkσ

c̄αωkσ(ω + µ− εk)cαωkσ −
∑
i,α

∫ β

0
dτvin

α
i (τ) +

∑
i,α

∫ β

0
dτUnα↑i(τ)nα↓i(τ)

=−
∑
α

∑
ωiσ

c̄αωiσ(ω + µ−∆ω)cαωiσ −
∑
α

∑
ωkσ

c̄αωkσ(∆ω − εk)cαωkσ

−
∑
i,α

∫ β

0
dτvin

α
i (τ) +

∑
i,α

∫ β

0
dτUnα↑i(τ)nα↓i(τ)

=
∑
i

Sv,imp
i,R −

∑
α

∑
ωkσ

c̄αωkσ(∆ω − εk)cαωkσ

(4.8)

with

Sv,imp
i,R = −

∑
α

∑
ωσ

c̄αωiσ(ω + µ−∆ω)cαωiσ −
∑
α

∫ β

0
dτvin

α
i (τ) +

∑
α

∫ β

0
dτUnα↑i(τ)nα↓i(τ)

(4.9)
and D[c̄i, ci] = ∏

ωα dc̄
α
ωidc

α
ωi. Greek letters α, β . . . ε that appear as indices here

and in the following are replica labels. Be aware not to confuse the replica label β
and ε with the inverse temperature β and the dispersion relation ε. In the above,
the replica limit introduced limm→0

−1
m

. This terms is a constant with respect to
derivatives of the partition function and because such derivatives are performed
before the replica limit there will be no problem with 1

0 .
It is now possible to integrate out the disorder as was done in section 2.2.3. This

leads to the action

SR =
∑
i

Siimp −
∑
α

∑
ωkσ

c̄αωkσ(∆ω − εk)cαωkσ (4.10)

with

Siimp = −
∑
α

∑
ωσ

c̄αωiσ(ω + µ−∆ω)cαωiσ −W (ñi) +
∑
α

∫ β

0
dτUnα↑i(τ)nα↓i(τ). (4.11)
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The effective disorder interaction is given by

W (ñi) =
∞∑
l=2

1
l!〈v

l
i〉cñli (4.12)

and
ñi =

∑
α

∫
dτnαi (τ). (4.13)

〈vli〉c is the lth cumulant of the disorder distribution. This was derived in sec-
tion 2.2.3.

In the following, we will omit the spin index for better readability. It is easy to
reintroduce the spin index if needed. All configurations which conserve the spin are
possible, e. g., 〈c↑c↓c̄↑c̄↓〉 is possible, 〈c↑c↓c̄↑c̄↑〉 is not.

The next step is to perform a Hubbard-Stratonovich transformation

ec̄
α
ωkA

2
ωkcωk = A2

ωk

λ2
ω

∫
D[f̄ , f ]e

−λω(c̄αωkf
α
ωk+f̄αωkc

α
ωk)− λ2

ω
A2
ωk

f̄αωkf
α
ωk
, (4.14)

which introduces new f degrees of freedom. These are Grassmann numbers3, i. e.
they follow fermionic commutation relations. Hence the formalism is called dual
fermions. The measure above is defined as D[f̄ , f ] = ∏

ωkα df̄
α
ωkdf

α
ωk. Comparing

eqs. (4.10) and (4.14), one finds that

A2
ωk = ∆ω − εk, (4.15)

but λω remains arbitrary. It follows that

{lnZ} = lim
m→0

1
m

[(∏
ωk

∆ω − εk
λ2
ω

)m ∫
D[f̄ , f ]e−

∑
ωkα

λ2
ω f̄

α
ωk(∆ω−εk)−1fαωk×

×
∫
Dc̄Dce−

∑
i
Sisite − 1

] (4.16)

with
Sisite = Siimp +

∑
ωα

λω(c̄αωifαωi + f̄αωic
α
ωi). (4.17)

Ssite does not contain any non-local terms. In fact, all non-local correlations have
been removed from the c-degrees of freedom and have been transfered to the f -
degrees of freedom by means of the Hubbard-Stratonovich transformation. There-
fore, the c-degrees of freedom can be integrated out.

In the following, the dual potential will be defined and an expression for it will
be derived. It will turn out that the dual potential is related to two-particle vertex

3To shorten the notation and increase the readability, we sometimes refer to the c/f Grassmann
numbers as c/f operators.
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4 The Dual Fermion Approach for Disordered Interacting Systems

functions. In appendix D two-particle Green functions and vertex functions are
discussed in more detail.

The dual potential is defined via∫
D[c̄, c]e−Ssite[c̄α,cα;f̄α,fα] = Zimpe

−
∑

ωα
λ2
ωg(ω)f̄αω fαω−Vd[f̄α,fβ ], (4.18)

where g is the disorder-averaged impurity Green function. Note that expectation
values with respect to Ssite include the disorder-average. The impurity partition
function Zimp is defined as

Zimp =
∫
D[c̄, c]e−Simp . (4.19)

Equation (4.18) is expanded on both sites and compared order by order.
We start with expanding the left hand side of eq. (4.18) and we obtain

∫
D[c̄, c]e−Ssite =

∫
D[c̄, c]e−Simp

∞∑
n=0

(−1)n
n!

(∑
ωα

λω(c̄αωfαω + f̄αω c
α
ω)
)n
. (4.20)

Only even orders of n survive the integration, because expectation values like 〈c〉,
〈c̄cc〉, . . . with an odd number of operators vanish. Also, for even orders, only contri-
butions with the same number of c̄ and c have to be considered because expectation
values like 〈cc〉 vanish for the models in this thesis.

In lowest order the expansion yields

n = 0 :
∫
D[c̄, c]e−Simp = Zimp. (4.21)

For the second order the contribution is

n = 2 :
∫
D[c̄, c]e−Simp

1
2
∑
αβωω′

λωλω′(c̄αωfαω + f̄αω c
α
ω)(c̄βω′f

β
ω′ + f̄βω′c

β
ω′) (4.22a)

=
∫
D[c̄, c]e−Simp

1
2
∑
αβωω′

λωλω′(c̄αωc
β
ω′f

α
ω f̄

β
ω′ + cαω c̄

β
ω′ f̄

α
ω f

β
ω′) (4.22b)

=
∫
D[c̄, c]e−Simp

1
2
∑
αβωω′

λωλω′(c̄αωc
β
ω′f

α
ω f̄

β
ω′ + cαω c̄

β
ω′ f̄

α
ω f

β
ω′)δωω′δαβ (4.22c)

=
∫
D[c̄, c]e−Simp

1
2
∑
αω

λ2
ω(c̄αωcαωfαω f̄αω + cαω c̄

α
ωf̄

α
ω f

α
ω ) (4.22d)

=
∫
D[c̄, c]e−Simp

1
2
∑
αω

λ2
ω2c̄αωcαωfαω f̄αω (4.22e)

= −Zimp
∑
ωα

λ2
ωg

α
ω f̄

α
ω f

α
ω . (4.22f)
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Equation (4.22c) follows from eq. (4.22b) by noting that there is no travel of electrons
between different replicas and time translational invariance, i. e. 〈cαω c̄

β
ω′〉 ∝ δαβδωω′ .

Finally, the definition of the Green function eq. (3.3) leads to eq. (4.22f).
In fourth order the expansion yields

n = 4 : 1
24

∫
D[c̄, c]e−Simp

∑
αβγδ

ω1ω2ω3ω4

λω1λω2λω3λω4(c̄αω1f
α
ω1 + f̄αω1c

α
ω1)

× (c̄βω2f
β
ω2 + f̄βω2c

β
ω2)(c̄γω3f

γ
ω3 + f̄γω3c

γ
ω3)(c̄δω4f

δ
ω4 + f̄ δω4c

δ
ω4) (4.23a)

= 1
24

∫
D[c̄, c]e−Simp

∑
αβγδ

ω1ω2ω3ω4

λω1λω2λω3λω4

× (c̄αω1c
β
ω2 c̄

γ
ω3c

δ
ω4f

α
ω1 f̄

β
ω2f

γ
ω3 f̄

δ
ω4 + c̄αω1 c̄

β
ω2c

γ
ω3c

δ
ω4f

α
ω1f

β
ω2 f̄

γ
ω3 f̄

δ
ω4

+ c̄αω1c
β
ω2c

γ
ω3 c̄

δ
ω4f

α
ω1 f̄

β
ω2 f̄

γ
ω3f

δ
ω4 + cαω1 c̄

β
ω2 c̄

γ
ω3c

δ
ω4 f̄

α
ω1f

β
ω2f

γ
ω3 f̄

δ
ω4

+ cαω1 c̄
β
ω2c

γ
ω3 c̄

δ
ω4 f̄

α
ω1f

β
ω2 f̄

γ
ω3f

δ
ω4 + cαω1c

β
ω2 c̄

γ
ω3 c̄

δ
ω4 f̄

α
ω1 f̄

β
ω2f

γ
ω3f

δ
ω4) (4.23b)

= 1
4

∫
D[c̄, c]e−Simp

∑
αβγδ

ω1ω2ω3ω4

λω1λω2λω3λω4c
α
ω1c

β
ω2 c̄

γ
ω3 c̄

δ
ω4 f̄

α
ω1 f̄

β
ω2f

γ
ω3f

δ
ω4 (4.23c)

= Zimp

4
∑
α

ωω′ν

λω+νλ−ωλ−ω′λω′+ν〈cαω+νc
α
−ω c̄

α
−ω′ c̄

α
ω′+ν〉Uimpf̄

α
ω+ν f̄

α
−ωf

α
−ω′f

α
ω′+ν

+ Zimp

4
∑
αβ
ωω′ν

λω+νλ−ωλ−ω′λω′+ν〈cαω+νc
β
−ω c̄

β
−ω′ c̄

α
ω′+ν〉V=

impf̄
α
ω+ν f̄

β
−ωf

β
−ω′f

α
ω′+ν

+ Zimp

4
∑
αβ
ωω′ν

λω+νλ−ωλ−ω′λω′+ν〈cαω+νc
β
−ω c̄

α
−ω′ c̄

β
ω′+ν〉V×impf̄

α
ω+ν f̄

β
−ωf

α
−ω′f

β
ω′+ν

(4.23d)

= Zimp

4
∑
α

ωω′ν

λω+νλ−ωλ−ω′λω′+ν〈cαω+νc
α
−ω c̄

α
−ω′ c̄

α
ω′+ν〉Uimpf̄

α
ω+ν f̄

α
−ωf

α
−ω′f

α
ω′+ν

+ Zimp

2
∑
αβ
ωω′ν

λω+νλ−ωλ−ω′λω′+ν〈cαω+νc
β
−ω c̄

β
−ω′ c̄

α
ω′+ν〉V=

impf̄
α
ω+ν f̄

β
−ωf

β
−ω′f

α
ω′+ν .

(4.23e)

Here, 〈. . . 〉V=(×)
imp denotes an average in the horizontal (crossed) channel where no

Hubbard interaction lines connect Green function lines on the two-particle level,
i. e. all the two-particle diagrams one obtains for U = 0 and V > 0. Corresponding
diagrams are shown in a) of fig. 4.1. The diagrams in the top row of a), b) and c)
correspond to the horizontal channel, the diagrams in the lower rows belong to the
crossed channel.
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Figure 4.1: Different contributions to the vertex function. Depending on the spin config-
uration not all shown diagrams may be possible. The contributions in the top
row of a) are part of 〈ccc̄c̄〉V= and the contributions in the bottom row of a)
are part of 〈ccc̄c̄〉V×. These two expectation values also contain the uncon-
nected two-particle Green functions, which are not depicted in the above. The
contributions in b) and c) are part of 〈ccc̄c̄〉U . Note that the Green function
lines denote dressed single-particle Green functions. (Based on figure by S.-X.
Yang)
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〈. . . 〉Uimp denotes an average, where the two Green functions involved are connected
by at least one Hubbard interaction line that fixes replica indices. Alternatively,
one can describe 〈. . . 〉Uimp as containing all the additional diagrams that are created
on the two-particle level when the Hubbard interaction U is turned on. Example
diagrams are shown in b) and c) of fig. 4.1.

The final expression in eq. (4.23) is obtained as follows. From eq. (4.23a) to
eq. (4.23b) it was used that only six from the possible sixteen terms of the product
can survive the integration. Then the c- and f -operators are commuted and relabeled
such that only one term is left. Equation (4.23d) follows by integrating out the c-
electrons.

Evaluating the replica indices requires some care as contributions with Hubbard
interactions are different from contributions without. Hubbard interaction lines fix
all replica indices as the Hubbard interaction does not act between different replicas.
This leads to the first line of eq. (4.23d) and explains the need to define 〈. . . 〉Uimp.
〈. . . 〉V=(×)

imp contains terms without Hubbard interactions, thus replica indices are
only fixed by electron travel. Two connections are possible: the one in the second
line of eq. (4.23d) corresponds to the horizontal channel and the one in the third
line corresponds to the crossed channel.

For the final expression, the c- and f - numbers are commuted and the frequencies
relabeled such that only one term is left for the disorder contribution. We opted for
the horizontal channel because in the following it will be related to the disorder chan-
nel of the two-particle vertex, which has no crossed contribution. Time-translational
invariance was used for the frequency indices. The separation of the two-particle
Green function in a purely disordered part and the rest is necessary for the deriva-
tion of the formalism. Later on, it can be convenient to combine both contributions
to the dual potential for calculations. Reintroducing the crossed channel for the
disorder part can facilitate calculations as well.

We continue with expanding the right hand side of eq. (4.18). To this end, the
ansatz

Vd = a2f̄
αfβ + a4f̄

αf̄βfγf δ + . . . (4.24)

is used. In principle, one has to go up to infinite order in f̄ and f and then the
mapping to the dual degrees of freedom is exact. However, for practical reasons, we
will limit ourselves to second order.

The expansion reads

Zimpe
−
∑

ωα
λ2
ωg(ω)f̄αω fαω−Vd[f̄α,fβ ] = Zimp

(
1−

∑
αω

λ2
ωg(ω)f̄αω fαω

+ 1
2
∑
αβωω′

λ2
ωλ

2
ω′g(ω)g(ω′)f̄αω fαω f̄

β
ω′f

β
ω′ − Vd ± . . .

)
.

(4.25)
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The ansatz for Vd is inserted and the coefficients for the dual potential are read off
by comparing order by order. One finds that

a2 =0 (4.26)

a4 =− 1
4λω1λω2λω3λω4〈cαcαc̄αc̄α〉Uimp

− 1
2λω1λω2λω3λω4δαβ〈cαcβ c̄β c̄α〉V=

imp

+ 1
2λ

2
ω1λ

2
ω2g

α
imp(ω1)gαimp(ω2)δω1ω3δω2ω4δαβ.

(4.27)

Next, 〈cαω+νc
α
−ω c̄

α
−ω′ c̄

α
ω′+ν〉Uimp and 〈cαω+νc

β
−ω c̄

β
−ω′ c̄

α
ω′+ν〉V=

imp are examined in more de-
tail such that we know how to calculate them. Both terms contribute to the two-
particle Green function of the replicated system. This is clear from eq. (4.23) which
implies

〈cαω+νc
β
−ω c̄

β
−ω′ c̄

α
ω′+ν〉imp = 2〈cαω+νc

β
−ω c̄

β
−ω′ c̄

α
ω′+ν〉V=

imp + 〈cαω+νc
α
−ω c̄

α
−ω′ c̄

α
ω′+ν〉Uimpδαβ, (4.28)

and the definition of the particle-particle Green function

χpp(ω, ω′, ν) = 〈cω+νc−ω c̄−ω′ c̄ω′+ν〉. (4.29)

Taking into account the third contribution in eq. (4.27), λ = g−1 seems a natural
choice as the dual potential then becomes a two-particle vertex function.
〈cαω+νc

β
−ω c̄

β
−ω′ c̄

α
ω′+ν〉Vimp is particularly easy, as this is the disordered particle-particle

Green function. Combining it with the third contribution in eq. (4.27) yields

γvp =
〈cαcβ c̄β c̄α〉V=

imp − gαimpg
α
impδαβ

gαimpg
β
impg

β
impg

α
imp

(4.30)

as one coefficient for the dual potential. 〈cαω+νc
α
−ω c̄

α
−ω′ c̄

α
ω′+ν〉Uimp is obtained from

the disorder-averaged particle-particle Green function by subtracting the disorder-
averaged unconnected particle-particle Green functions

〈cαω+νc
α
−ω c̄

α
−ω′ c̄

α
ω′+ν〉Uimpδαβ = 〈cαω+νc

β
−ω c̄

γ
−ω′ c̄

δ
ω′+ν〉imp

(
δαδδβγ − δαγδβδ

)
− 〈cαcβ c̄β c̄α〉V=

imp + 〈cαcβ c̄αc̄β〉V×imp

(4.31)

and the corresponding term for the dual potential becomes

γUp(ω, ω′, ν) = 〈cαcαc̄αc̄α〉U

gαimp(ω + ν)gαimp(−ω)gαimp(−ω′)gαimp(ω′ + ν) . (4.32)

In eq. (4.31) the crossing-symmetric disorder particle-particle Green function is sub-
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4.1 Derivation of the Formalism

tracted from the particle-particle Green function, which follows from eq. (4.23d).
The final expression for the dual potential reads

Vd = −1
4γ

Upf̄αf̄αfαfα − 1
2γ

vpf̄αf̄βfβfα. (4.33)

Now the dual action can be written as

Sd[f̄α, fβ] = −
∑
ωk

f̄α(G0
d)−1fα +

∑
i

V i
d [f̄αi , f

β
i ] (4.34)

with

G0
d(ω, k) = −gω

[
gω + (∆ω − εk)−1

]−1
gω

= G(ω, k)− gω
(4.35)

being the bare dual Green function.
Equations (4.30) and (4.32) contain disorder-averaged quantities that depend on

replica indices. The replica indices are needed for the evaluation of diagrams as
they impose restrictions on the topology. It is our goal to evaluate the replica limit
before actual calculations are done. Therefore, we need expressions for the dual
potential after the replica limit to evaluate diagrams numerically. In the following
〈. . . 〉 denotes only quantum averages and {. . . } denotes the disorder-average. gv is
the impurity Green function for an individual disorder realization.

It turns out that γvp for the particle-particle channel is nothing but the disorder-
average of the product of two interacting impurity Green functions, thus

γvpσσ′(ν)ωω′ = {g
v
σ(ω + ν)gvσ′(−ω)} − gσ(ω + ν)gσ′(−ω)
gσ(ω + ν)gσ′(−ω)gσ′(−ω)gσ(ω + ν) δωω′ (4.36)

after the replica limit. Note that this term can only survive the replica limit as part
of a diagram because there are two replica indices left before limm→0 is evaluated.

It is sometimes convenient to have the crossed component

γvp×(ν)ω,ω′ = −γvp(ν)ω,−ω′−νδω+ω′+ν,0 (4.37)

as well. For γvp and γvp× all possible spin configurations have the same numerical
value as we look at systems with spin symmetry. We introduce the symbols

Vvp ≡ γvpσσ′ (4.38)
V ×vp ≡ γvp×σσ′ (4.39)
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4 The Dual Fermion Approach for Disordered Interacting Systems

for the disorder part of the dual potential. Correspondingly, one obtains

γUpσ1σ2;σ3σ4(ν)ωω′ = {〈cω+ν,σ1c−ω,σ2 c̄−ω′,σ3 c̄ω′+ν,σ4〉imp}
gσ1(ω + ν)gσ2(−ω)gσ3(−ω′)gσ4(ω′ + ν)

+
{gvσ1(−ω)gvσ2(ω′ + ν)(δσ1σ3δσ2σ4δω+ω′+ν,0 − δσ1σ4δσ2σ3δω,ω′)}

gσ1(ω + ν)gσ2(−ω)gσ3(−ω′)gσ4(ω′ + ν)

(4.40)

for the terms with Hubbard interactions. Note that the crossing-symmetric uncon-
nected two-particle Green function is subtracted before the disorder-average. Only
a limited number of spin configurations is needed, e. g. only the pairing channel for
the dual potential in the particle-particle channel

Vp(ν)ωω′ = γUp↑↓;↑↓(ν)ωω′ . (4.41)

It is related to the dual potential Vt for the triplet channel via

Vt(ν)ωω′ = γUp↑↓;↑↓(ν)ωω′ + γUp↑↓;↓↑(ν)ωω′
= Vp(ν)ωω′ − Vp(ν)ω,−ω′−ν
= Vp(ν)ωω′ + V ′p(ν)ω,ω′ .

(4.42)

Crossing symmetry was used in the above. The other two components of the triplet
channel are γUp↑↑;↑↑ and γUp↓↓;↓↓. All three contributions are equal due to SU(2) symme-
try.

For higher-order approximations the particle-particle channel and particle-hole
channel are not equivalent. Therefore the dual potential for the particle-hole channel
is needed. It is given by

γvσσ′(ν)ωω′ = {g
v
σ(ω + ν)gvσ′(ω)} − gσ(ω + ν)gσ′(ω)
gσ(ω + ν)gσ′(ω)gσ′(ω)gσ(ω + ν) δωω′ (4.43)

for the purely disordered part and

γUσ1σ2;σ3σ4(ν)ωω′ = {〈cω+ν,σ1 c̄ω,σ2cω′,σ3 c̄ω′+ν,σ4〉imp}
gσ1(ω + ν)gσ2(ω)gσ3(ω′)gσ4(ω′ + ν)

+
{gvσ3(ω)gvσ1(ω′ + ν)(δσ1σ4δσ2σ3δω,ω′ − δσ1σ2δσ3σ4δν,0)}

gσ1(ω + ν)gσ2(ω)gσ3(ω′)gσ4(ω′ + ν)

(4.44)

for the part containing Hubbard interactions. Here, it is convenient to introduce the
vertical disorder potential

V ||v = Vv(ω − ω′)ω′,ω′δν,0, (4.45)
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4.2 Perturbation Theory for the Self-Energy

where Vv ≡ γvσσ′ . For the interacting part we use

Vd/m(ν)ωω′ = γU↑↑;↑↑(ν)ωω′ ± γU↑↑;↓↓(ν)ωω′ . (4.46)

These are the density and magnetic channels. A more detailed discussion of two-
particle vertices is presented in appendix D.

This concludes the introduction of the dual degrees of freedom. The bare dual
Green function and the dual potential define the dual lattice problem.

4.2 Perturbation Theory for the Self-Energy
In this section the dual self-energy is calculated by means of perturbation theory. In
section 4.2.1 the evaluation of the replica limit is discussed and the Feynman rules for
the self-energy are given. Additionally, the Schwinger-Dyson equation is introduced,
which relates the self-energy to the vertex function and serves as a starting point for
the second order and fluctuation exchange (FLEX) approximations. In section 4.2.2
the first and second order approximations are calculated. Section 4.2.3 introduces
the FLEX approximation which takes into account ladder diagrams up to infinite
order.

We start with the first order diagram which serves as an example to illustrate
how diagrams are evaluated. The workhorse in this thesis is the second order ap-
proximation as it adds non-local correlations but is not susceptible to divergences
as FLEX. FLEX usually leads to stronger renormalizations of the Green function
than the second order approximation. In practice, it provides better values for the
antiferromagnetic transition temperature but contributions from FLEX diverge if
the leading eigenvalue of the Bethe-Salpeter equation becomes greater or equal to
one. The Bethe-Salpeter equation is introduced and used in section 4.2.3.

4.2.1 Replica Limit and Feynman Rules for Self-Energy
Diagrams

When we want to obtain self-energy diagrams for the dual fermions, we have to
evaluate the replica limit. For diagrams with γU this is trivial as there is no true
dependence on the replica index. Diagrams that contain γV have to be considered
in more detail. This is shown for a first order diagram in fig. 4.2 and for a second
order diagram in fig. 4.3. Taking the replica limit means to perform limm→0

1
m

.
Figures 4.2 and 4.3 show that diagrams that contain a closed Fermi loop do not
survive the replica limit if the loop is connected to the rest of the diagram through
disorder vertices alone. Examples of closed Fermi loops are given in fig. 4.4. They
are not to be confused with closed loops that represent local Green functions.

We obtain the following Feynman rules for an n-th order diagram for the self-
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ǫǫ
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ǫǫ

ǫ

ǫ

→

a) b)

c) d)
β

α

β

α

β

α

β

α

β

α

β

α

Figure 4.2: The box represents the dual potential, the green lines with arrows represent
f(f̄) operators. In first order, there are four possible ways to connect the in-
and outgoing f(f̄) operators to the dual potential. For the crossing symmetric
component of the dual potential all replica indices are fixed to ε, because the
Hubbard interaction is local within a replica and electrons travel only within
one replica. Therefore only one free replica index is left and the replica sum is
of order m. The diagrams will survive the replica limit. Because of the crossing
symmetry of the interaction, all four contributions a)-d) give the same result.
This cancels the factor 1

4 in the dual potential. For the crossing asymmetric
component, diagrams a) and b) are not possible, because top and bottom are
of the diagram are only connected by the effective disorder interaction which
connects different replica. The replica sum is of order m2 and does not survive
the replica limit. For diagrams c) and d), the internal Green function fixes
the replica indices and the replica sum will be of order m. Thus, the diagram
survives the replica limit. The two diagrams are equivalent and cancel the
factor 1

2 in the dual potential.

β

α

β

α

ǫǫ →
β

α

β

α γ

δ δ δ

γ γ γ

δ β

α

β

α γ

δ δ

γǫ ǫ

ǫ

ǫ

a) b)

Figure 4.3: In second order up to sixteen connections are possible, depending on whether
all internal Green function lines are distinguishable. Two of these diagrams are
shown in this figure. All possibilities are equivalent to one of the two chosen
above. If one of the vertices is crossing-symmetric it is enough to pick one of
the two as they are related by crossing symmetry. In this case, only one free
replica index remains as the crossing-symmetric vertices have only one free
replica index. If both vertices are not crossing-symmetric both diagrams have
to be taken into account as they are not equivalent. In this case, only diagram
b) survives the replica limit. Diagram a) has two free replica indices remaining.
Both times all prefactors cancel up to a factor 1

2 for two indistinguishable
Green function lines. This generalizes to 1

k! for k indistinguishable lines in
higher orders.
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4.2 Perturbation Theory for the Self-Energy

Figure 4.4: Two diagrams with closed Fermi loops that have a free replica index. The red
line shows the closed Fermi loop. The example on the right uses the crossed
disorder vertex. It is not part of the dual potential as it has been derived, but
at times it can be convenient to add the crossed contribution back to the dual
potential.

energy:

1. Draw n boxes and connect them in all topologically different ways via directed
lines. Exactly two corners must have no connections.

2. Associate a dual Green function Gd with each line.

3. The boxes are associate with a factor γU + γV . Draw diagrams for every com-
bination of γU and γV .

4. Attach replica labels to the boxes and lines.

5. Determine which replica labels are fixed, either by γU or by Green function
lines.

6. Remove all diagrams that have more than one free replica index. These dia-
grams contain closed Fermi loops that are connected to the rest of the diagram
only through disorder vertices. Figure 4.4 shows two examples of closed Fermi
loops. Now, the replica limit has been performed and the replica labels can
be removed from the diagrams.

7. Attach frequency, spin and momentum labels to each Green function line.

8. Sum over all internal frequencies, spins and momenta, obeying energy, spin
and momentum conservation.
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→

→

Figure 4.5: Contracting the box that represents the vertex to a single line determines
whether one has a closed loop or not. In the upper example one has a closed
loop, but not in the lower one.

9. Every independent frequency summation gives a factor 1/β and every inde-
pendent momentum summation a factor 1/N . β is the inverse temperature
and N the number of dual lattice sites.

10. Multiply by 1/k! for every set of k indistinguishable lines, e. g. the two internal
Green function lines in the two diagrams in fig. 4.4 are indistinguishable for
equal spin.

11. For every diagram determine the number of closed loops and multiply with
a factor of (−1)nl where nl is the number of closed loops. Closed loops are
identified as follows. For interaction vertices contract the boxes to lines. Do
this consistently for the whole diagram. If a Green function line ends at its
starting point, i. e. it is local, it counts as a closed loop. This is illustrated
in fig. 4.5. These loops are not to be confused with the closed Fermi loops
illustrated in fig. 4.4 For disorder vertices the corresponding diagrams are
removed by the replica limit in step 6.

These rules are an adapted form of the rules given in [105] to accommodate the
changes due to disorder.

A natural question to ask is why dual diagrams with closed Fermi loops are
removed. If one constructs real fermion diagrams with the same topology, one finds
that it is not possible to construct such diagrams with the Feynman rules of the
disorder-averaged real fermion system. This is illustrated in fig. 4.6.

A good starting point for approximations of the self-energy is the Schwinger-
Dyson equation. It relates the self-energy to the full vertex function. It is shown for
the dual degrees of freedom in figure 4.7. For the particle-hole channel the equation
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→

→

Figure 4.6: Two examples of diagrams that are removed by the replica limit. The topology
of the dual fermion diagrams (left) is mapped to corresponding real fermion
diagrams (right). These diagrams are not possible for real fermions. The
conclusion is that the replica limit removes diagrams with a topology that is
unphysical for real fermions. This fact underlines that there is a close relation
between dual and real fermion excitations. Section 4.3 investigates this in more
detail.

F̃Σ p
= ṼṼ +

p pp′

p′ + q

p+ q

p p

p+ qa)

b)

F̃ pΣ p
= Ṽ pṼ p +

p pp′

−p′ + q

−p+ q

p p

−p+ q

Figure 4.7: Illustration of the Schwinger-Dyson equation for the particle-hole and particle-
particle channel. (Illustration by S.-X. Yang [106])

45



4 The Dual Fermion Approach for Disordered Interacting Systems

ph pp

Figure 4.8: Spin configurations in first order for the particle-hole (ph) and particle-particle
(pp) channel.

reads

Σph
σ (ω, k) =− T

N

∑
qσ′
Ṽ (ν)ω;ωG

d
σ′(ω + ν, k + q)

− T

2N
∑

ω′,k′,ν,q
σ′,σ′′,σ′′′

Ṽ (ν)ω,ω′Gd
σ′(ω′ + ν, k′ + q)Gd

σ′′(ω′, k′)×

× F̃ (ν, q)ω′k′;ωkGd
σ′′′(ω + ν, k + q),

(4.47)

where Ṽ is the dual potential, i. e. the impurity vertex, and F̃ is the full dual vertex.
Spin indices on Ṽ and F̃ have been suppressed for readability. Note that for U = 0
the bare vertex does not exist for the real fermion system. Therefore, the Schwinger-
Dyson equation does not exist. However, for the dual degrees of freedom the bare
vertex can be defined and thus the Schwinger-Dyson equation can be derived for the
dual system.

4.2.2 First Order and Second Order Contributions

The first order contribution has two possible spin configurations. These are shown in
fig. 4.8. In first order, contributions from the particle-particle channel and particle-
hole channel are topologically equivalent, therefore only one contribution has to be
taken into account. For the particle-particle channel it follows that

Σ(1)
pp (ω, k) = T

N

∑
ν,q

(Vp(ν, q)−ω;−ω + Vt(ν, q)−ω;−ω + V ×vp(ν = 0, q)−ω;−ω)×

×Gd(ω + ν, k + q)

= T

N

∑
ν,q

(2Vp(ν, q)−ω;−ω + V ′p(ν, q)−ω;−ω + V ×vp(ν = 0, q)−ω;−ω)×

×Gd(ω + ν, k + q).

(4.48)
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Figure 4.9: The three different spin configurations for the particle-particle channel. The
first contribution has a symmetry factor of 1

2! due to the two indistinguishable
Green function lines. This is an example of Feynman rule 10. The second and
third contributions are topologically equivalent, therefore there is a symmetry
factor 1

2 .

For the particle-hole channel one obtains

Σ(1)
ph (ω, k) = − T

N

∑
ν,q

(1
2Vd(ν, q)ω;ω + 3

2Vm(ν, q)ω;ω +V ||v (ν = 0, q)ω;ω

)
Gd(ω+ν, k+ q).

(4.49)
It can be shown that a restriction to first order does not change the DMFT result
(cf. [105]) as the exact DMFT solution gives Σ(1) ≡ 0.

In the interest of obtaining the second order contribution for the self-energy one
approximates F̃ by Ṽ in the Schwinger-Dyson equation. To calculate the self-energy,
it is helpful to introduce the vertex ladder. For the particle-particle pairing channel
the vertex ladder is defined as

Φ(2)
p (ν, q)ωk;ω′k′ =

∑
ω′′
Ṽp(ν)ωω′′χ̄pp0 (ν, q)ω′′Ṽp(ν)ω′′ω′

−
∑
ω′′
Vvp(ν)ωδω;ω′′χ̄

pp
0 (ν, q)ω′′Vvp(ν)ω′δω′′;ω′

(4.50)

in second order. The name vertex ladder comes from the included diagrams which
look like ladders with the vertices as rungs. Here, Ṽp is defined as

Ṽp(ν)ω;ω′ = Vp(ν)ω;ω′ + Vvp(ν)ωδω;ω′ . (4.51)

Further, the k-averaged unconnected two-particle Green function is

χ̄pp0 (ν, q)ω = T

N

∑
k

χpp0 (ν, q)ωk (4.52)

with the unconnected two-particle Green function

χpp0 (ν, q)ωk = −Gd(ω + ν, k + q)Gd(−ω,−k). (4.53)

The second term in equation 4.50 removes the unphysical disorder contribution.
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This is due to the replica limit. For the triplet channel, i. e. the left diagram in
fig. 4.9, one obtains

Φ(2)
t (ν, q) =

∑
ω′′
Ṽt(ν)ωω′′χ̄pp0 (ν, q)ω′′Ṽt(ν)ω′′ω′ −

∑
ω′′
Vvp(ν)ωχ̄pp0 (ν, q)ω′′Vvp(ν)ω′δω;ω′ ,

(4.54)
where

Ṽt = Ṽp + Ṽ ′p (4.55)

and
X ′(ν)ω;ω′ := −X(ν)ω;−ω′−ν (4.56)

defines a rotation for some vertex function X. With this, Φ(2)
t becomes

Φ(2)
t (ν, q)ωk;ω′k′ =

∑
ω′′
Ṽp(ν)ωω′′χ̄pp0 (ν, q)ω′′Ṽp(ν)ω′′ω′

+
∑
ω′′
Ṽp(ν)ωω′′χ̄pp0 (ν, q)ω′′Ṽp′(ν)ω′′ω′

−
∑
ω′′
Vvp(ν)ωδω;ω′′χ̄

pp
0 (ν, q)ω′′Vvp(ν)ω′δω′′;ω′

=Φ(2)
p (ν, q)ωk;ω′k′ + Φ(2)′

p (ν, q)ωk;ω′k′ − Φ(2)
vp (ν, q)ωk;ω′k′ .

(4.57)

Here, we defined

Φ(2)
p (ν, q)ωk;ω′k′ =

∑
ω′′
Ṽp(ν)ωω′′χ̄pp0 (ν, q)ω′′Ṽp(ν)ω′′ω′ (4.58)

Φ(2)′
p (ν, q)ωk;ω′k′ =

∑
ω′′
Ṽp(ν)ωω′′χ̄pp0 (ν, q)ω′′Ṽp′(ν)ω′′ω′ (4.59)

Φ(2)
vp (ν, q)ωk;ω′k′ =

∑
ω′′
Vvp(ν)ωδω;ω′′χ̄

pp
0 (ν, q)ω′′Vvp(ν)ω′δω′′;ω′ . (4.60)

Therefore, the total vertex ladder for second order in the particle-particle channel
reads

Φ(2)
pp = 2(Φ(2)

p − Φ(2)
vp ) + Φ(2)′

p . (4.61)

The self-energy is calculated as

Σ(2)
pp (ω, k) = T

N

∑
ν,q

Φ(2)
pp (ν, q)−ω;−ωG

d(ω + ν, k + q). (4.62)

Alternatively, it is possible to calculate the second order self-energy from the particle-
hole channel. This is equivalent to the particle-particle channel because the diagrams
are topologically equivalent.

Three different spin configurations are possible for the particle-hole channel. These
are shown in fig. 4.10. The vertices can be expressed in terms of the magnetic and

48



4.2 Perturbation Theory for the Self-Energy

Figure 4.10: The three different spin configurations for the particle-hole channel. The
second and third contributions are topologically the same, therefore there is
a symmetry factor 1

2 . The first contribution has the same symmetry factor
due to the two indistinguishable Green function lines.

charge channels. To take into account disorder in a natural fashion we define

Ṽd(ν)ω;ω′ = Vd(ν)ω;ω′ + Vv(ν)ωδω;ω′ (4.63)
Ṽm(ν)ω;ω′ = Vm(ν)ω;ω′ + Vv(ν)ωδω;ω′ . (4.64)

For the particle-hole channel the k-averaged unconnected two-particle Green func-
tion is

χ̄ph0 (ν, q)ω = T

N

∑
k

χph0 (ν, q)ωk (4.65)

with the unconnected two-particle Green function

χph0 (ν, q)ωk = Gd(ω + ν, k + q)Gd(ω, k). (4.66)

With these definitions it follows that

Φ(2)
d (ν, q)ω;ω′ =

∑
ω′′
Ṽd(ν)ω;ω′′χ̄

ph
0 (ν, q)ω′′Ṽd(ν)ω′′ω′

+2Ṽd(ν)ω;ω′′χ̄
ph
0 (ν, q)ω′′V ||v (ω′′ − ω′)ω′δν,0

+2V ||v (ω − ω′′)ω′′δν,0χ̄ph0 (ν, q)ω′′Ṽd(ν)ω′′ω′

(4.67)

Φ(2)
m (ν, q)ω;ω′ =

∑
ω′′
Ṽm(ν)ω;ω′′χ̄

ph
0 (ν, q)ω′′Ṽ m(ν)ω′′ω′ (4.68)

Φ(2)
v (ν, q)ω;ω′ =

∑
ω′′
V =
v (ν)ωδω;ω′′χ̄

ph
0 (ν, q)ω′′V =

v (ν)ωδω′′;ω′

+V ||v (ω − ω′′)ω′′δν,0χ̄ph0 (ν, q)ω′′V ||v (ω′′ − ω′)ω′δν,0.
(4.69)

Then, the second order self-energy from the particle-hole channel is

Σ(2)
ph (ω, k) = − T

N

∑
ν,q

(1
4Φ(2)

d (ν, q)ω;ω + 3
4Φ(2)

m (ν, q)ω;ω −Φ(2)
v (ν, q)ω;ω

)
Gd(ω+ ν, k+ q).

(4.70)
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Figure 4.11: Example of an (unphysical) ring type diagram. The red line marks the way
of the electron through the diagram.

4.2.3 The FLEX Approximation

For the FLEX approximation one has to sum all ladder and ring type diagrams,
which corresponds to a combination of the Random Phase Approximation (RPA)
and T-matrix approximation [108]. The contributions from the T-matrix approxi-
mation (ladder diagrams) are easily seen by replacing the boxes for the vertices by
interaction lines. To see the RPA-like (ring type diagrams) contributions one can
look at the unphysical diagram where one replaces all vertices by V ||v , c. f. fig. 4.11.
This diagram clearly has a ring type structure. It does not survive the replica limit,
but the crossing symmetric vertices contain corresponding contributions as well.
The full dual vertex can be calculated according to Bethe-Salpeter equation

F̃ (ν, q)ωk;ω′k′ = Ṽ (ν)ω;ω′ +
∑
ω′′k′′

Γ̃(ν, q)ωk;ω′′k′′χ̄0(ν, q)ω′′k′′F̃ (ν, q)ω′′k′′;ω′k′ . (4.71)

Here, Γ̃ is the irreducible dual fermion vertex. For the FLEX the irreducible dual
vertex is approximated by the dual potential Γ̃ ≈ Ṽ . Then the equation for F̃ can
be solved as

F̃ (ν, q)ωk;ω′k′ =
[ 1
1− Ṽ (ν)χ̄0(ν, q)

× Ṽ (ν)
]
ωk;ω′k′

=
[
Ṽ (ν)× 1

1− χ̄0(ν, q)Ṽ (ν)

]
ωk;ω′k′

.
(4.72)

Now we can define the vertex ladder as

Φ(ν, q)ωk;ω′k′ = F̃ (ν, q)ωk;ω′k′ − Ṽ (ν)ω;ω′ . (4.73)

For the calculation of the self-energy, Φ(2) has to be subtracted from Φ because
the second-order contribution is special and has to be treated separately. First,
additional symmetry factors do exist in second order. These symmetry factors do
not appear in higher order diagrams and therefore the prefactor is not suitable for
the ladder summation. Second, this avoids double counting because in second order
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Figure 4.12: Particle-hole diagrams for the third order contributions to the FLEX.

the particle-particle and particle-hole diagrams are topologically equivalent.
For the pairing channel one obtains

F̃ p(ν, q)ωk;ω′k′ =
[ 1
1− Ṽ p(ν)χ̄pp0 (ν, q)

× Ṽ p(ν)
]
ωk;ω′k′

(4.74)

and for the triplet channel

F̃ t(ν, q)ωk;ω′k′ =
[ 1
1− Ṽ p(ν)χ̄pp0 (ν, q)

×
(
Ṽ p + Ṽ p′(ν)

)]
ωk;ω′k′

(4.75)

From this the FLEX contribution to the self-energy can be calculated for the particle-
particle channel as

ΣFLEX
pp (ω, k) = T

N

∑
ν,q

[
2(Φp(ν, q)−ω,−ω − Φp(2) − Φvp(ν, q)−ω,−ω)

+(Φp′(ν, q)−ω,−ω − Φp(2)′(ν, q)−ω,−ω)
]
Gd(ω + ν, k + q)

(4.76)

where

Φvp(ν, q)ωk;ω′k′ =
[ 1
1− Vvp(ν)χ̄pp0 (ν, q) × Vvp(ν)

]
ωk;ω′k′

− Vvp(ν)ω;ω′χ̄
pp
0 (ν, q)Vvp(ν)ω;ω′

− Vvp(ν)ω;ω′

(4.77)

removes the contributions that do not survive the replica limit.
Unlike for the first and second order contributions, for the FLEX one has to take
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into account both, particle-particle and particle-hole channel contributions. The
diagrams from the two channels are topologically different.

The third order diagrams for the particle-hole channel are shown in fig. 4.12. One
result of the replica limit is that one cannot have diagrams with only V =

v that are
closed in a Hartree-like fashion. Hartree-like fashion means that the Green function
line connecting the left and right of the diagram connects the top left to the top
right corner. In a Fock-like diagram, the connection goes from the lower right corner
of the diagram to the top left. These two connections are shown in fig. 4.3. Instead
of including the Fock-like diagram, one can replace one of the V =

v vertices by V ||v
for the particle-hole channel. Only one term of V ||v is possible, otherwise one has
a free Fermi loop. This removes all diagrams with a free replica index, because
limm→0 · · · = 0 for these diagrams. Now the vertex ladder can be calculated as

ΦFLEX
ph =1

2

(
Ṽd

1− Ṽdχ̄ph0
− Ṽdχ̄ph0 Ṽd − Ṽd

)
+ 1

1− Ṽdχ̄ph0
V ||v

1
1− χ̄ph0 Ṽd

− Ṽdχ̄ph0 V ||v − V ||v χ̄
ph
0 Ṽd − V ||v

+3
2
( Ṽm

1− Ṽmχ̄ph0
− Ṽmχ̄ph0 Ṽm − Ṽm

)
−2
( V =

v

1− V =
v χ̄

ph
0
− V =

v χ̄
ph
0 V

=
v − V =

v

)
(4.78)

and the self-energy contribution reads

ΣFLEX
ph (ω, k) = − T

N

∑
ν,q

ΦFLEX
ph (ν, q)ω;ωG

d(ω + ν, k + q). (4.79)

The final formula for the self-energy is

ΣFLEX = Σ(2)
ph/pp + ΣFLEX

pp + ΣFLEX
ph . (4.80)

This concludes the calculation of the self-energy. The next section discusses the
connection between dual and real quantities. This will enable us to formulate a
self-consistency loop in section 4.4.

4.3 Relations between Dual and Real Quantities
So far, the dual Green function can be calculated, but the quantities of interest
are real Green functions. Fortunately, simple exact relations between dual and real
quantities do exist. This section starts with the derivation of a relation between
the lattice Green functions and continues with a relation between the dual and
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real vertex function. The relations obtained here are very similar to the relations
derived in [105]. Similar relations do exist for higher Green functions, as well as for
the corresponding cumulants and ultimately the vertex functions.

In section 4.5 vertex corrections for the conductivity are calculated using the real
fermion vertex. Non-local corrections to the vertex are calculated at the level of
the dual degrees of freedom and a simple relation for the vertex functions allows to
translate the dual vertex to the real vertex.

The starting point for both examples is the functional

F [K̄,K] =
{

lnZf
∫
D[c̄, c]D[f̄ , f ] exp(−S[c̄, c; f̄ , f ] + K̄1f1 + f̄2K2)

}
(4.81)

in which source fields K̄ and K are introduced, summation over repeated indices
is implied and Zf = ∏

ωk g
−2
ω

(
∆ω − εk

)
. Arabic numbers are a combined index for

spin, frequency and momentum. Integrating out the c-degrees of freedom yields

F [K̄,K] =
{

ln Z̃f
∫
D[f̄ , f ] exp(−Sd[f̄ , f ] + K̄1f1 + f̄2K2)

}
(4.82)

with Z̃f = Z
Zd

and
Zd =

∫
D[f̄ , f ]e−Sd[f̄ ,f ]. (4.83)

Now functional derivatives like

−δ
2F [K̄,K]
δK2δK̄1

∣∣∣∣
K̄1=K2=0

=
{
− δ

δK

1
Zd

∫
D[f̄ , f ]f1 exp(−Sd[f̄ , f ] + K̄1f1 + f̄2K2)

}
=
{
− 1
Zd

∫
D[f̄ , f ]f1f̄2 exp(−Sd[f̄ , f ] + K̄1f1 + f̄2K2)

+ 1
Z2
d

∫
D[f̄ , f ]f1 exp(−Sd[f̄ , f ] + K̄1f1 + f̄2K2)×

×
∫
D[f̄ , f ]f̄2 exp(−Sd[f̄ , f ] + K̄1f1 + f̄2K2)

}
=
{
− 1
Zd

∫
D[f̄ , f ]f1f̄2 exp(−Sd[f̄ , f ] + K̄1f1 + f̄2K2)

}
=Gd

(4.84)
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can be taken. For the two-particle cumulant

δ4F [K̄,K]
δK4δK3δK̄2δK̄1

∣∣∣∣
K̄1=K̄2=K3=K4=0

= lim
m→0

1
m

δ4

δK1δK2δK̄3δK̄4
Z̃m
f ×

×
∫
D[f̄ , f ] exp(−Sd[f̄ , f ] + K̄µfµ + f̄νKν)

= lim
m→0

1
m

∫
D[f̄ , f ]

∑
αβ
γδ

fα1 f
β
2 f̄

γ
3 f̄

δ
4 exp(−Sd[f̄ , f ] + K̄µfµ + fνKν)

= lim
m→0

1
m

∫
D[f̄ , f ]

∑
αβ

(
δαβf

α
1 f

α
2 f̄

α
3 f̄

α
4 + fα1 f

β
2 f̄

β
3 f̄

α
4 + fα1 f

β
2 f̄

α
3 f̄

β
4

)
×

× exp(−Sd[f̄ , f ] + K̄µfµ + fνKν)

= lim
m→0

1
m

∑
αβ

(
χdα1234δαβ +Gdα

14G
dβ
23 −Gdα

13G
dβ
24

)
(4.85)

is obtained. Next, the f -degrees of freedom are integrated out from eq. (4.81). One
obtains

F [K̄,K] =
{
K̄1[g(∆ω − εk)g]K1 + ln

∫
D[c̄, c] exp(−S[c̄, c]

+K̄1[g(∆ω − εk)]c1 + c̄1[(∆ω − εk)g]K1)
}
.

(4.86)

by completing the square

− λ
2

A2 f̄f − λc̄f − λf̄c+ K̄f + f̄K

=−
(
λ

A
f + Ac̄− A

λ
K
)(

λ

A
f + Ac̄− A

λ
K
)

+ A2c̄c+ A2

λ2 K̄K −
A2

λ
K̄c− A2

λ
c̄K.

(4.87)

The same derivatives as in eqs. (4.84) and (4.85) are performed to obtain Gd and
χd1234 + Gd

14G
d
23 − Gd

13G
d
24 in terms of the c-degrees of freedom. For the dual Green

function the result is

−δ
2F [K̄,K]
δK2δK̄1

∣∣∣∣
K̄1=K2=0

=
{
−gω(∆ω − εk)gω

− 1
exp(F )

∣∣∣∣
K̄1=K2=0

∫
D[c̄, c] exp(−S[c̄, c])× (4.88)

× [gω(∆ω − εk)c2c̄1(∆ω − εk)gω]
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+
( 1

exp(F )

∣∣∣∣
K̄1=K2=0

)2 ∫
D[c̄, c] exp(−S[c̄, c])× (4.89)

× c2

∫
D[c̄, c] exp(−S[c̄, c]c̄1)

}
=− gω(∆ω − εk)gω + gω(∆ω − εk){Gv}(∆ω − εk)gω = Gd.

(4.90)

For χd1234 +Gd
14G

d
23 −Gd

13G
d
24 it follows that

δ4F

δK4δK3δ̄K2K̄1

∣∣∣∣
K=0

= δ4

δK4δK3δ̄K2K̄1

∣∣∣∣
K=0

1
m

∫
D[c̄µ, cµ] exp(−S[c̄µ, cµ]+

+ K̄1[g(∆ω − εk)]cµ2 + c̄µ1 [(∆ω − εk)g]K2)
∣∣∣∣
K=0

= δ3

δK4δK3δ̄K2

1
m

∫
D[c̄, c][g(∆ω − εk)]cµ2 exp(−S[c̄µ, cµ]+

+ K̄1[g(∆ω − εk)]cµ2 + c̄µ1 [(∆ω − εk)g]K2)
∣∣∣∣
K=0

=[g(∆ω − εk)][g(∆ω − εk)][(∆ω − εk)g][(∆ω − εk)g]×

× lim
m→0

1
m

∑
αβγδ

∫
D[c̄µ, cµ]cα1 c

β
2 c̄
γ
3 c̄
δ
4 exp(−S[c̄µ, cµ])

=[g(∆ω − εk)][g(∆ω − εk)][(∆ω − εk)g][(∆ω − εk)g]×

lim
m→0

1
m

∑
αβ

(
χα1234δαβ +Gα

14G
β
23 −Gα

13G
β
24

)
.

(4.91)

Equations (4.84) and (4.90) combined give

G(ω, k) =
(
∆ω − εk

)−1
+ Gd

g2
imp(∆ω − εk)

(4.92)

for the single particle real lattice Green function. Combining eqs. (4.85) and (4.91)
yields

χα1234δαβ +Gα
14G

β
23 −Gα

13G
β
24 = Gdα

11
(g1(∆1 − ε1)Gα

11)
Gdβ

22
(g1(∆1 − ε1)Gβ)×

×
(
χdα1234δαβ +Gdα

14G
dβ
23 −Gdα

13G
dβ
24

)
×

× Gdβ
33

(g3(∆3 − ε3)Gβ
33)

Gdα
44

(g4(∆4 − ε4)Gα
44)

(4.93)

for the two-particle vertex. In eq. (4.93) replica indices are kept because the vertex
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is used to construct diagrams. If the replica limit is performed at the level of the
vertex all terms that contain only disorder are removed. With that vertex one would
miss diagrams that are important for the vertex corrections of the conductivity in
section 4.5.

Dual and real fermion quantities are related by linear relations. These relations
show that excitations of the real and dual system are the same [105], on the single-
particle level as well as for many-particle excitations.

4.4 Self-Consistency in the Dual Fermion Approach
Two levels of self-consistency exist in the dual fermion approach, which are defined
by the solution of two problems, namely the impurity problem and the dual fermion
problem. The expansion of the partition function for the dual fermions is written
in terms of skeleton diagrams. To include further diagrams, the dual perturbation
theory is solved self-consistently. Additionally, the hybridization function ∆ω has
not yet been specified. A second loop analogous to the DMFT self-consistency is
used to determine ∆ω. As is shown in [105], an analogous choice of the hybridization
function for the dual fermion approach is

∆new
ω = ∆old

ω + ξ
[
g−1
ω Gd,loc

ω (Gloc
ω )−1

]
, (4.94)

where ξ ∈ [0, 1] controls the mixing between the old and new hybridization function.
The solution is self-consistent if Gd,loc ≡ 0. This means that all diagrams containing
a closed dual loop are summed at the level of the impurity problem, independently
of their topology.

Calculating local quantities is equivalent to coarse-graining. Thus, it is at this
point where a certain mean-field character is introduced in the dual fermion ap-
proach. Let us stress that this is only because the dual problem is not solved
exactly. Figure 4.13 shows the self-consistency loop, which goes as follows:

0. Initialize the simulation with an impurity self-energy and an impurity vertex
function, e. g. from DMFT. Go to step 2.

1. Solve the impurity problem and calculate the impurity self-energy and impu-
rity vertex function.

2. Parametrize the dual fermion calculation with the impurity self-energy and
vertex function.
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Figure 4.13: Self-consistency loop for the dual fermions. First, the dual fermion self-
consistency loop is initialized, e. g. with the DMFT solution. Second, the
dual fermion problem is solved and defines a new impurity problem. Third,
the impurity problem is solved and the output is used as input for the dual
fermion problem. This is iterated until self-consistency is reached. (Based on
illustration by S.-X. Yang [106])
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3. Solve the dual fermion problem using self-consistent perturbation theory.

4. Calculate the new hybridization function and check for self-consistency.

5. If no self-consistent solution is reached, start over with step 1. Otherwise:
STOP.

It should be remarked that the self-consistency loop presented here does not guar-
antee that one finds the optimal solution. The self-consistency condition given in
eq. (4.94) is derived heuristically. In practice it turns out to give good results but a
priori it is not clear that it sums relevant diagrams or is biased in some way.

This concludes the derivation of the self-consistent dual fermion approach. In the
last section of this chapter we will show how the dual degrees of freedom can be
used to construct an approximation for the vertex correction to the conductivity.
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4.5 Observable of Interest: Conductivity

Vertex corrections to the conductivity vanish in DMFT [109] because the vertex lad-
der has no momentum dependence. Dual fermions retrieve momentum dependence
and thus vertex corrections remain finite and can be taken into account by means
of the parquet equations [110]. According to [106, 111] the dc conductivity can be
approximated as

σdc = β2

π
χxx(q = 0, τ = β

2 ). (4.95)

χxx = 〈jx(q, τ)jx(−q, 0)〉 is the current-current correlation function. In the deriva-
tion it was assumed that Imχxx ≈ ωσdc holds for an energy range Ω much larger than
the temperature T [111]. This assumption does not hold for Fermi liquids as Ω ∝ T 2

at low temperatures. Hence, for small values of U and V in the Anderson-Hubbard
model, eq. (4.95) is not a good description of the conductivity. Fortunately, we are
interested in the conductivity around metal-insulator transitions, i. e. not in the
Fermi liquid regime.
χxx is related to its Fourier transform in frequency space via

χxx(q = 0, τ = β

2 ) = T
∑
iνm

e−iνm
β
2χxx(q = 0, iνm). (4.96)

The current operator for the q = 0 component reads [70]

J(q = 0) = T

N

∑
kσ

vkc
†
kσckσ, (4.97)

where vk = d
dk
ε(k). χxx(q = 0, iνm) can be calculated as

χxx(q = 0, iνm) = T 2

N2

∑
ω,ω′;k,k′

χxx(q = 0, iνm)ω,ω′;k,k′ (4.98)

=− T

N

∑
ω;k

v2
kχ0(q = 0, iνm)ω;k

− T 2

N2

∑
ω,ω′;k,k′

vkχ0(q = 0, iνm)ω;k×

× F rf (q = 0, iνm)ω,ω′;k,k′χ0(q = 0, iνm)ω′;k′vk′ . (4.99)

Here, F rf is the real fermion vertex which can be calculated from the dual fermion
vertex F d via

F rf (q)pp′ = T (p+ q)T (p)F dT (p′ + q)T (p′) (4.100)
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with
T (p) = − 1

1 + g(p)Σd(p) . (4.101)

The transformation formula follows from eq. (4.93) and

G−1(∆− ε)−1g−1Gd = −(1 + Σdg). (4.102)

The last equality is shown in [105]. F d can be approximated by the vertex ladder.
From the calculation of the self-energy the construction for the second order and
FLEX approximations are known, but several changes have to be made compared
to the self-energy. The external Green functions impose different constraints for the
conductivity than for the self-energy. For example,

J ∝
∑
σ

c†σcσ (4.103)

allows only for contributions where the in- and out-going Green functions on each
side of the vertex ladder carry the same spin index. Also, a chain only consisting
of disorder vertices is physical here, since the replica indices are now all fixed due
to the in and out-going Green functions. The corresponding diagrams are created
when the bubble diagram is disorder-averaged. The bubble diagram is obtained by
contracting the ends of the unconnected horizontal two-particle Green function, and
it is given by the contribution in the first line of eq. (4.99).

4.5.1 Horizontal Channel
In first order, the bare vertex is used. There are two possible spin configurations.
The final result for the first order contribution is

Φ1st = 1
2
(
Ṽd + Ṽm

)
+ 1

2
(
Ṽd − Ṽm

)
= Ṽd. (4.104)

Inserting this contribution in eq. (4.99) yields zero for the vertex corrections as
there is no momentum dependence. For a momentum-independent vertex function
the vertex correction is zero.

Four spin configurations are possible for the particle-hole channel. They are de-
picted in fig. 4.14. The vertex function F , and thus the dual potential, has three
different contributions, the interaction vertex, the disorder vertex and the rotated
disorder vertex. They have to be combined such that only allowed diagrams are
constructed. Figures 4.15 to 4.18 show all possible spin configurations with the nine
possible combinations of vertex functions. Unphysical diagrams are crossed out.
The bottom right diagram is removed due to the replica limit in all cases.

The rotated disorder vertex is special for the particle-hole horizontal channel.
Before the disorder-average is performed the corresponding diagrams decay into two
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F F
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F F
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Figure 4.14: Possible spin configurations for the particle-hole horizontal channel.

parts which represent expectation values of the current operator. Without external
fields these expectation values are zero and thus the corresponding diagrams cannot
be present after the disorder-average. All other diagrams are removed because the
spin configurations are not possible for the given combination of vertices.

The diagrams shown in figs. 4.15 to 4.18 are diagrams for the conductivity. Dia-
grams for the vertex ladder are obtained by removing the outer four Green functions.
First, diagram fig. 4.15 translates to:

Φph
1 = 1

2(Vd + Vm)χ̄ph0
1
2(Vd + Vm) + 1

2(Vd + Vm)χ̄ph0 V0

+V0χ̄
ph
0

1
2(Vd + Vm) + V0χ̄

ph
0 V0.

(4.105)

For fig. 4.16 one gets

Φph
2 = 1

2(Vd − Vm)χ̄ph0
1
2(Vd − Vm). (4.106)

For fig. 4.17 one obtains

Φph
3 = 1

2(Vd + Vm)χ̄ph0
1
2(Vd − Vm) + V0χ̄

ph
0

1
2(Vd − Vm). (4.107)

Finally, for fig. 4.18 one gets

Φph
4 = 1

2(Vd − Vm)χ̄ph0
1
2(Vd + Vm) + 1

2(Vd − Vm)χ̄ph0 V0. (4.108)

Defining
Ṽd = Vd + V0 (4.109)

the particle-hole vertex ladder can be written as

Φph=
2nd = Φph

1 + Φph
2 + Φph

3 + Φph
4 = Ṽdχ̄

ph
0 Ṽd. (4.110)
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Figure 4.15: There are nine possible diagrams for the second order contribution to the
conductivity. Above, the (↑↑) → (↑↑) → (↑↑) contribution is analyzed. For
all possible spin configuration, the bottom right diagram is removed by the
replica limit. Additionally, all diagrams with the vertical disorder vertex
vanish, because they are proportional to 〈~j〉 = 0 before the disorder average.
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Figure 4.16: For the (↑↑) → (↓↓) → (↑↑) contribution only the upper right diagram is
allowed. This is because all interactions conserve spin.

This can be continued for higher order terms and one can derive

Φph=
FLEX = Ṽd

1− Ṽdχ̄ph0
(4.111)

for the FLEX approximation. The horizontal channel has no momentum depen-
dence, therefore it does not contribute to the vertex corrections. It has been pre-
sented in this much detail for instructional purposes.
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Figure 4.17: For the (↑↑) → (↑↑) → (↓↓) contribution two diagrams are possible. The
difference between the two diagrams on the second line is that on the left the
disorder vertex connects different spins, which is not allowed, whereas on the
right it connects the same spin.
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Figure 4.18: For the (↑↑)→ (↓↓)→ (↓↓) contribution two diagrams are possible. The first
diagram on the second line is possible because the disorder vertex connects
the same spin. In the second diagram the disorder vertex connects different
spins and thus the diagram is not possible.
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4.5.2 Vertical Channel

The contributions to the particle-hole vertical channel can be calculated by rotating
the vertical vertex ladder to the horizontal one. This is illustrated in fig. 4.19. It
follows

Φph||
c (q = 0; ν)ω,ω′;k,k′ = −Φph=

c (k′ − k;ω′ − ω)ω,ω+ν;k,k (4.112)

where the index c represents the channel and the approximation (2nd order, FLEX).
There are three allowed spin configurations for the second order. These are shown
in fig. 4.20. Note that the replica limit removes all diagrams with more than one
disorder vertex in the vertical channel. Unlike in the horizontal case, the rotated
disorder vertex can appear now, though only once. Otherwise, there would be a
closed Fermi loop and the diagram would be canceled by the replica limit.

For diagram 1, one obtains

Φph||
1 = 1

2(Vd + Vm)χ̄ph0
1
2(Vd + Vm) + 1

2(Vd + Vm)χ̄ph0 V0 + V0χ̄
ph
0

1
2(Vd + Vm)

+1
2(Vd + Vm)χ̄ph0 V

||
0 + V

||
0 χ̄

ph
0

1
2(Vd + Vm) + V0χ̄

ph
0 V0 + V0χ̄

ph
0 V

||
0 + V

||
0 χ̄

ph
0 V0.

(4.113)

Diagram 2 gives

Φph||
2 = Vmχ̄

ph
0 Vm + Vmχ̄

ph
0 V0 + V0χ̄

ph
0 Vm + V0χ̄

ph
0 V0 (4.114)

and diagram 3

Φph||
3 = 1

2(Vd− Vm)χ̄ph0
1
2(Vd− Vm) + 1

2(Vd− Vm)χ̄ph0 V
||

0 + V
||

0 χ̄
ph
0

1
2(Vd− Vm). (4.115)

Overall, the vertex ladder reads

Φph||
2nd = 1

2V
∗
d χ̄

ph
0 V

∗
d − 2V ||0 χ̄ph0 V

||
0 + 3

2 Ṽmχ̄
ph
0 Ṽm − 2V0χ̄

ph
0 V0 (4.116)

F

F

13

24

2 ↔ 3

F F
1

34

2

Figure 4.19: To calculate the contributions from the particle-hole vertical channel, the
vertex is rotated to the particle-hole horizontal channel by exchanging 2↔ 3.
Note that this rotation comes with a minus sign.
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F F F F F F

1 2 3

Figure 4.20: The possible spin configurations for the second order contributions.

Figure 4.21: Maximally crossed diagrams in second and third order.

with
V ∗d = Vd + V0 + 2V ||0 Ṽm = Vm + V0. (4.117)

The pure disorder term is removed because left and right of the diagram are only
connected via disorder and two replica indices remain. Including higher orders, the
FLEX approximation is obtained as

Φph||
FLEX = 1

2
Ṽd

1− Ṽdχ̄ph0
+ 3

2
Ṽm

1− Ṽmχ̄ph0
+ 1

1− Ṽdχ̄ph0
V
||

0
1

1− χ̄ph0 Ṽd
− 2 V0

1− χ̄ph0 V0
.

(4.118)

4.5.3 Maximally Crossed Channel

A third class of diagrams can be included up to infinite order. These are the maxi-
mally crossed diagrams which are shown in fig. 4.21. These diagrams can be trans-
formed such that they look like particle-particle diagrams internally. That way, they
can be calculated from the particle-particle vertex, which is shown in fig. 4.22. The
transformation leads to a total momentum of k + k′ and total energy of ω + ω′ + ν
for the vertex ladder

Φph×
c (q = 0; ν)ω,ω′;k,k′ = −Φpp

c (k + k′;ω + ω′ + ν)−ω′,−ω;−k′,−k. (4.119)

For the particle-particle channel three spin configuration appear to be possible.
These are shown in fig. 4.23. The first diagram carries a factor 1

2 because the two
internal lines are indistinguishable. It corresponds to the triplet channel.

It is useful to remember the definition

Ṽp = Vp + V0 (4.120)
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F FF

Figure 4.22: By exchanging the bottom left and bottom right corner of the vertex ladder,
the maximally crossed diagram is transformed to a diagram that is internally
a particle-particle diagram.

F F F F F F

1 2 3

Figure 4.23: Spin configurations for the particle-particle channel. The first contribution
carries a factor 1

2 because the two internal lines are indistinguishable. The
second and third diagrams are topologically equivalent.

and then write the triplet vertex as

Ṽt = Ṽp + Ṽ ′p . (4.121)

Using Ṽp it is easy to include the disorder contributions. Ṽt is crossing symmetric,
therefore one has to take into account only the first diagram in fig. 4.23.

For the first diagram one gets

Φt
2nd = Ṽpχ̄

pp
0 Ṽp + Ṽpχ̄

pp
0 Ṽ

′
p − V0χ̄

pp
0 V

×
0 , (4.122)

which is second order approximation. V0χ̄
pp
0 V

×
0 has to be subtracted because this

diagram can be cut into the left and right part by cutting only disorder vertices.
Thus, it is zero before the disorder-average.

Equation (4.122) can easily be generalized to higher orders and the FLEX ap-
proximation becomes

Φt
FLEX = 1

1− Ṽpχ̄pp0
(Ṽp + Ṽ ′p)−

V ×0
1− V0χ̄

pp
0
. (4.123)

Note that there is no particle-particle vertical channel. The corresponding contri-
bution is already included in the horizontal particle-particle channel because of the
crossing symmetry.

Finally, the dual vertex reads

F d =2(Φph=
c (q = 0; ν)ω,ω′;k,k′ − Φph=

c (k′ − k;ω′ − ω)ω,ω+ν;k,k

− Φpp
c (k + k′;ω + ω′ + ν)−ω′,−ω;−k′,−k).

(4.124)
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4.6 Summary

The factor of 2 comes from the fact that we ignored half of the spin configurations
which are connected to the contributions above by spin symmetry.
The next step is to transform the dual vertex to the real fermion space. This is
easily done using the transformation matrices for vertices ([105]A.136-138)

F rf (q)p,p′ = T (p+ q)T (p)F d(q)p,p′T (p′ + q)T (p′) (4.125)

where
T = − 1

1 + gΣd
. (4.126)

This concludes the calculation of the conductivity. It is possible to apply the same
reasoning for other quantities like the susceptibility. This is shown for the clean
system in [112].

4.6 Summary
In this chapter we presented the dual fermion approach for disordered interacting
systems, the main result of this thesis. We started with the derivation of the for-
malism, where we used the replica trick to replace {lnZ} by powers of the disorder-
averaged partition function {Z}. After the replica trick, it was possible to integrate
out the disorder in favor of an effective interaction between replicas. The dual de-
grees of freedom were introduced and the dual potential has been calculated. With
the dual potential at our disposal, we were able to obtain a perturbative solution
of the dual fermion lattice problem in terms of a self-consistent second order and
FLEX approximation.

Unlike for the clean system [105], the replica limit imposes topological restrictions
on the dual fermion diagrams. These restrictions remove dual diagrams that have
a topology that is impossible for real fermion diagrams. This was already a hint at
the strong relation between dual and real excitations.

Next, dual and real fermion quantities were related by exact linear relations, thus
giving a prescription to obtain physical quantities from the dual degrees of freedom.
The fact that these relations are linear, is interpreted as dual and real fermions
having the same excitations.

To conclude the formalism, we wrote down the self-consistency loop for the dual
fermion approach, which is analogous to the DMFT self-consistency loop. We use
the self-consistency condition that the local dual Green function vanishes. Hence,
all dual fermion diagrams with a local dual Green function are implicitly summed.

At the end, the exact relation for the vertex function was used to calculated vertex
corrections for the conductivity. The conductivity will be used later on to determine
the metal-insulator transition for strong disorder.

So far, we did not specify how to solve the impurity and cluster problems in sec-
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tions 3.1 and 3.2 and chapter 4. In the next chapter, the continuous-time Quantum
Monte Carlo method is introduced to tackle this task.
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5 Quantum Monte Carlo for
Impurity Problems

One common aspect of all the methods presented in sections 3.1 and 3.2 and chap-
ter 4 is the underlying impurity problem. Several methods exist for the solution
of impurity problems. These methods are referred to as impurity solvers or just
solvers. Which solver is used depends on the specifics of the problem at hand, i. e.
calculations at T = 0 or T > 0, are two-particle quantities needed or how many
orbitals or sites comprise the impurity?

The solver of choice for dynamical mean-field theory (DMFT) involving only one-
particle quantities is arguably the numerical renormalization group (NRG) [113,
114]. It provides real frequency spectra and can be applied over a wide range of
parameters. However, practical calculations are mostly limited to one orbital or
one site, respectively. This eliminates NRG from the list of possible solvers for the
dynamical cluster approximation (DCA). The access to two-particle quantities is
very expensive which makes it a bad choice for the dual fermion approach, where
two-particle quantities are needed with their full dependence on three independent
frequencies.

An alternative method for impurity problems is exact Diagonalization (ED). ED
in the context of DMFT and cluster extensions thereof is reviewed in [115]. As the
name suggests, the Hamiltonian is diagonalized by means of numerical algorithms.
The solution is exact at most up to machine precision, depending on the algorithm
used. Popular examples are the Lanczos algorithm [116] and the Jacobi-Davidson
algorithm [117]. Which ED algorithm is used depends on the problem, e. g. are
there degeneracies that one wishes to resolve, is one only interested in the ground
state or are excited states needed?

Despite its flexibility the applicability of ED is limited to small systems. The
exponential growth of the Hilbert space restricts ED to a relatively small number of
sites, e. g. ≈ 20 for the square lattice Hubbard model around half-filling [118, 119]. A
further drawback is the limitation to a discretized bath as the continuum of states of
the infinite lattice is mapped to a finite cluster with discrete energy levels. This can
lead to systematic errors. Therefore, one has to check that the self-energy converges
as the number of bath sites is increased. If this convergence can be achieved, ED
is a good choice for DMFT. Its applicability to dual fermions is less ideal, though.
The calculation of vertex functions with the full dependence on three frequencies is
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quite expensive.
In [115] the number of possible cluster sites for cluster-extensions of DMFT is

given as six. This small number comes from the fact that bath sites are needed.
Even in 1d, this does not give a converged result in the number of cluster sites and
hence ED is not suited for DCA in the context of this work.

Finally, a very popular method for 1d systems is the density matrix renormal-
ization group (DMRG) [2]. There are attempts to utilize it as an impurity solver
[120, 121, 122] but it has not yet established itself as such. It is a promising can-
didate for DMFT, but its applicability to DCA, which is mainly used in 2d and 3d
systems, has yet to be explored. DMRG is not suited for dual fermions because
access to the two-particle Green function is numerically too costly.

Quantum Monte Carlo (QMC) can be readily applied for 1d, 2d and 3d systems as
well as for a single impurity. Two particle quantities can be expensive to calculate,
but still come at reasonable computational cost. An advantage of QMC is that
it can be easily parallelized such that it can exploit high performance computing
resources. Until the beginning of the 21st century, the standard method was Hirsch-
Fye quantum Monte Carlo [123]. It suffers from a systematic error which is due to the
discretized imaginary time variable, but this error can be removed by a systematic
extrapolation ∆τ → 0. Nowadays, new algorithms [42, 43, 124, 125, 25] allow to
avoid the discretization of the time variable altogether and thereby avoid systematic
errors. These methods are referred to as continuous-time quantum Monte Carlo
(ctQMC). One major drawback of QMC is that efficient equilibrium algorithms
work in imaginary time, whereas one desires dynamical quantities in real-time. This
requires analytic continuation [126] if one wishes to look at quantities like the density
of states. Real-time algorithms do exist [127, 128] but their usage is not advisable
for equilibrium systems.

Its versatility and the high potential for parallelization make ctQMC the method
of choice for this thesis. As the same ctQMC solver can be applied to the impurity
problem in section 3.1 and chapter 4 and to the cluster problem in section 3.2, it
is better to adopt this single method and use a highly optimized code than to try
different impurity solvers and find the best solver for each individual problem. Also,
method development is the main scope of this thesis, such that a solver that can be
easily adapted to handle more complex impurities and interactions is desirable and
at present only ctQMC fulfills this requirement. In the remainder of this chapter
the basic ideas of the interaction expansion ctQMC [42, 43, 44] are introduced.

5.1 Basic Ideas of the Monte Carlo Method
The starting point for ctQMC is the partition function

Z = Tre−βH . (5.1)
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In general, the trace cannot be evaluated exactly. The associated sums or integrals
are usually high-dimensional. In our case we have a bath in the thermodynamic limit
which means we have infinite dimensions. Integration1 routines sum contributions
to an integral by employing a systematic grid to discretize a continuous system
and approximating integrals by sums. This can become very inefficient for such
a high-dimensional system. The scaling of the error is generally of the form N−

c
d

[129] where N is the number of sample points, c is a constant that depends on the
algorithm and d is the dimension of the integral.

A way out are Monte Carlo simulations [130]. In a Monte Carlo simulation sample
points are chosen at random to approximate the integral. Using this method, a
scaling of the error as N− 1

2 can be achieved. This scaling is independent of the
dimension of the integral [131].

Monte Carlo methods require that a weight or probability is attached to every
sample point. To this end, we rewrite the partition function as a sum

Z =
∑
C

wC , (5.2)

where C denotes a configuration and wC the corresponding weight. ”Configuration”
is part of the Monte Carlo vocabulary and is just another name for a sample point.
In principle, wC can be positive or negative, e. g. expanding the exponential e−βH
explicitly introduces minus signs. As probabilities can only be greater or equal zero,
so should the weights. Thus we have to modify eq. (5.2) such that we have positive
weights only. We get

Z =
∑
C

sgn(wC)|wC |. (5.3)

Here, sgn(wC) is the sign of wC . Now |wC | ≥ 0 can be used as a weight for a
configuration. Expectation values can be calculated according to

〈O〉 ≈ 〈O〉MC =
∑N
i=1 OCiwCi∑N
i=1wCi

=
∑N
i=1OCisgn(wCi)|wCi |∑N
i=1 sgn(wCi)|wCi |

, (5.4)

where N is the number of configurations, 〈O〉MC is a Monte Carlo estimate and Oi

denotes the expectation value of O in the configuration i. Equation (5.4) follows
from eqs. (5.1) and (5.3) by taking a logarithmic derivative with respect to some
source field. Approximating the sum over all configurations by a sum over a finite
number of random configurations yields the Monte Carlo estimate.

Using eq. (5.4) it is possible to calculate expectation values of observables, but
in general it will not be efficient. Simply creating random configurations carries
the risk of sampling unimportant contributions and missing the important ones,
thereby requiring a very large number of configurations. To overcome this problem,

1Here and in the following “integration“ includes summation as well.
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importance sampling [131] is used. Importance sampling creates configurations with
a probability proportional to their weights. One benefit of importance sampling is
that observables can be estimated as [132]

〈O〉MC ≈
1
N

N∑
i=1

Oi (5.5)

if the right scheme for creating configurations is employed. This scheme will be
introduced in this section. The variance Var(O) is estimated according to

Var(O) ≈ 〈O2〉MC − 〈O〉2MC . (5.6)

Equation (5.6) is only valid if the Oi are uncorrelated [133], otherwise eq. (5.6) will
underestimate the variance.

Importance sampling generally improves the efficiency of Monte Carlo algorithms.
The gain in efficiency depends on the problem at hand. For a constant function,
every sample point has the same weight and is as important as all others. There
would be no gain in efficiency if importance sampling is used. Trying to obtain
uncorrelated data generally means one has to create additional configurations and
as a result Monte Carlo procedures with importance sampling would even be less
efficient than the algorithm without. If the integrand has non-zero contributions
in only one percent of the sample space, only one percent of truly random sample
points will contribute. Only those relevant sample points will be created if impor-
tance sampling is used. That way, the ratio of sample points to important sample
points would be 100 times higher. If ten Monte Carlo steps are needed to obtain
uncorrelated data the total gain in efficiency will be a factor of ten.

A random walk in configuration space is used to implement importance sampling.
Starting from a configuration C0, a chain of configurations

C0 → C1 → C2 → · · · → Cn (5.7)

is created. The probability for creating a certain configuration Cn depends on con-
figuration Cn−1 only, i. e. the random walk is memoryless. Such a random walk is
called a Markov chain. Markov chains reduce memory usage as only one configu-
ration has to be kept and it is not necessary to keep track of the trajectory of the
random walk. For a large number of steps the Markov chain will approach a station-
ary distribution which is independent of the starting configuration. The probability
distribution for a given random variable will become Gaussian in this limit. Be-
sides these statistical properties that facilitate the evaluation, Markov chains are
relatively easy to implement.

One way to create configurations according to their weights is to obey the following
two conditions:
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• Ergodicity: In principle, any configuration CA must be reachable from any
other configuration CB within a finite number of steps.

• Detailed Balance: The probability |wCA| · t(CA → CB) of going from CA to CB
must be equal to the probability |wCB | · t(CB → CA) of going from CB to CA.

This is achieved by employing a Metropolis-Hastings scheme [130, 132]. The tran-
sition probability t is split into the proposal probability p and the acceptance prob-
ability a

t(Cn → Cn+1) = p(Cn → Cn+1) · a(Cn → Cn+1). (5.8)

Combining this with the detailed balance condition yields

a(Cn → Cn+1)
a(Cn+1 → Cn) = |wCn+1| · p(Cn+1 → Cn)

|wCn| · p(Cn → Cn+1) (5.9)

for the ratios of the acceptance probabilities. This equation is satisfied by

a(Cn → Cn+1) = min
(

1, p(Cn+1 → Cn) · |wCn+1|
p(Cn → Cn+1) · |wCn|

)
. (5.10)

This means that if the probability of accepting a move from Cn to Cn+1 is greater
than the probability of accepting a move from Cn+1 to Cn we set it equal to one and
accept the move. Using eq. (5.10) to determine the acceptance probability ensures
a random walk with importance sampling.

5.2 The Interaction Expansion
The ideas and concepts outlined above can be applied in a variety of ways. There
are the hybridization expansion [124], the interaction expansion [42, 43, 44] and
a variation thereof, based on auxiliary fields [125]. We will use the interaction
expansion. In this section, we provide some of the details of the random walk and
the measurements of one- and two particle quantities.

5.2.1 Monte Carlo Weights and the Random Walk
For the derivation of the details of the ctQMC we follow [44]. First, we have to
derive the configurational weights for the random walk. We start from the Hubbard
Hamiltonian

HHubb = −
∑
ij,σ

t(c†σicσj + h.c.)
︸ ︷︷ ︸

H0

+U
∑
i

(ni↑ −
1
2)(ni↓ −

1
2). (5.11)
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The interaction term is modified according to

U

2
∑
i

∑
s=±1

(ni↑ −
1
2 − sδ)(ni↓ −

1
2 + sδ), (5.12)

where δ is a parameter that can be adjusted to reduce the infamous sign problem
(cf. appendix A). This modification does not change the Hamiltonian except for a
constant, so the physics is not affected. In the next step the partition function is
expanded as

Z

Z0
=
∞∑
n=0

(−U
2

)n ∫ β

0
dτ1

∑
i1,s1

. . .
∫ τn−1

0
dτn×

×
∑
in,sn

∏
σ

〈[ni1,σ(τ1)− ασ(s1)] . . . [nin,σ(τn)− ασ(sn)]〉0
(5.13)

with ασ(s) = 1
2 + σsδ and 〈. . . 〉0 = Tr[e−βH0 . . . ]/Z0 and Z0 = Tr[e−βH0 ]. Time-

ordering is encoded in the upper bounds of the integrals and removes the factor
1
n! which is usually associated with the expansion of an exponential. Note that we
have Z/Z0 instead of Z as before. As we are interested in observables and not the
partition function itself we have to calculate logarithmic derivatives and the factor
1/Z0 is removed:

d

dη
ln Z[η]

Z0

∣∣∣∣
η=0

= 1
Z

dZ[η]
dη

∣∣∣∣
η=0

, (5.14)

where η is a source field. The one-particle Hamiltonian H0 does not couple different
spins, therefore the expectation value in eq. (5.13) decouples in spin up and spin
down. This simplifies the evaluation of the expectation value as it is generally
cheaper to calculate the determinants of two n × n matrices than to calculate one
determinant of a 2n× 2n matrix as the computational cost scales as O(n3)2.

Next, we have to evaluate the expectation values 〈. . . 〉0 for an individual config-
uration. As H0 is only quadratic in c and c† this can be done by applying Wick’s
theorem [107] to eq. (5.13):

〈[ni1,σ(τ1)− ασ(s1)] . . . [nin,σ(τn)− ασ(sn)]〉0 =

det


G0
i1,i1(τ1, τ1)− ασ(b1, s1) G0

i1,i2(τ1, τ2) . . . G0
i1,in(τ1, τn)

G0
i2,i1(τ2, τ1) G0

i2,i2(τ2, τ2)− ασ(b2, s2) . . . G0
i2,in(τ2, τn)

... ... . . . ...
G0
in,i1(τn, τ1) G0

in,i2(τn, τ2) . . . G0
in,in(τn, τn)− ασ(bn, sn)

 ,
(5.15)

2It is possible to calculate determinants using fast matrix multiplication and thereby achieving a
complexity of n2.373 [134]
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where the non-interacting Green function is

G0
ij(τ1, τ2) = −〈Tτci(τ1)c†j(τ2)〉0. (5.16)

It is assumed to be spin-independent. If necessary, it can be easily generalized to
be spin-dependent, as the one-particle Hamiltonian does not couple different spins.

We can rewrite eq. (5.13) as a sum over weights using the definition

∑
Cn

=
∞∑
n=0

∫ β

0
dτ1

∑
i1,s1

. . .
∫

0
dτn

∑
in,sn

. (5.17)

A configuration is a set of tuples

Cn = {[i1, τ1, s1] . . . [in, τn, sn]}. (5.18)

The partition functions then becomes

Z

Z0
=
∑
Cn

(
−U2

)n∏
σ

detMσ(Cn), (5.19)

where Mσ is the matrix on the right-hand side of eq. (5.15). The weight of a
configuration for the random walk is

|wCn| =
∣∣∣∣(−U2

)n∏
σ

detMσ(Cn)dτn
∣∣∣∣, (5.20)

where the infinitesimals from the integrals are included in the weight. For simplicity,
addition and removal of a vertex are suggested with equal probability. This gives a
factor of 1

2 for the addition and removal probability and thus cancels out in eq. (5.10).
Every vertex has three components that have to be chosen at random. Without prior
knowledge about the importance of configurations, it is advisable to attach equal
probability to the possible choices for spin up and spin down, the choice of cluster
site and the imaginary time τ . Choosing a spin thus results in a factor 1

2 , a factor of
1
Nc

comes from the choice of one out of Nc equally likely cluster sites, and a factor dτ
β

from picking a random time τ in the interval [0, β). The probability for proposing
the addition of a certain vertex is therefore

P (n→ n+ 1) = dτ

2βNc

. (5.21)

The proposal probability of removing a given vertex is just inversely proportional
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to the number of vertices Nv, therefore

P (n+ 1→ n) = 1
Nv

. (5.22)

At this point, the weights |wCn| and the probability P (n→ n+ 1) contain infinites-
imal factors of dτ . Careful examination of eq. (5.10) shows that these factors cancel
in the acceptance probability: In the numerator P (n+1→ n) contributes no factor,
|wCn+1 | contributes n+ 1 factors. In the denominator P (n→ n+ 1) contributes one
factor and |wCn| contributes n factors, such that we have a total of n+ 1 factors as
well, and thus the infinitesimals cancel.

5.2.2 Single-Particle Measurements

According to eq. (5.4), the Monte Carlo estimate for an observable O is

〈O(τ)〉QMC =
∑
Cn |wCn|〈〈O(τ)〉〉Cn∑

Cn |wCn|
. (5.23)

The expectation value in a single configuration reads

〈〈O(τ)〉〉Cn =
∏
σ〈Tτ [n̂i1σ(τ1)− ασ(b1, s1)] . . . [n̂inσ(τn)− ασ(bn, sn)]Oσ(τ)〉0∏

σ〈Tτ [n̂i1σ(τ1)− ασ(b1, s1)] . . . [n̂inσ(τn)− ασ(bn, sn)]〉0
. (5.24)

The term in the denominator is proportional to |w(Cn)| and is introduced to obtain
the desired notation in eq. (5.23). For the single-particle Green function one obtains

〈〈Tτc†i (τ1)cj(τ2)〉〉Cn = G0
ij(τ1, τ2)−

n∑
p,q=1

G0
i,ip(τ1, τp)

(
M−1

σ

)
pq
G0
i,iiq

(τq, τ2). (5.25)

This formula follows from eq. (5.24) and the fast matrix update formulas in ap-
pendix B. Equation (5.25) is the building block for all quantities that one wishes to
calculate, because Wick’s theorem holds in all configurations and hence all expecta-
tion values of creation and annihilation operators can be decomposed and rewritten
in terms of the single-particle Green function.

5.2.3 Two-Particle Measurements

In the dual fermion method, two-particle quantities are particularly important. Here
we show how they are measured.

The first thing to note is that for every configuration Wick’s theorem can be
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applied. This leads to [105]

〈c(ω + ν)c†(ω)c(ω′)c†(ω′ + ν)〉0 =gc(ω + ν, ω)gc(ω′, ω′ + ν)
−gc(ω′, ω)gc(ω + ν, ω′ + ν).

(5.26)

Here, the dependence on spin indices has been ignored. Note that within a single
Monte Carlo configuration, gc is the value of the impurity Green function and it
depends on two frequencies. Only after the QMC calculation becomes the impurity
single-particle Green function g diagonal in frequency space, i. e.

g(ω, ω′) = 〈gc(ω, ω′)〉QMC = g(ω)δωω′ . (5.27)

This is a consequence of time-translational invariance.
First, we look at the particle-hole Green function. χph↑↑;↑↑ and χph↑↑;↓↓ are needed for

the dual potential. Spin symmetry is used to improve the statistics of the measure-
ment. For the first case the result is

χph↑↑;↑↑(ν)ω,ω′ =− 1
2β

[
〈gc
↑(ω′, ω)gc

↑(ω + ν, ω′ + ν) + gc
↓(ω′, ω)gc

↓(ω + ν, ω′ + ν)〉QMC

− 〈gc
↑(ω + ν, ω)gc

↑(ω′, ω′ + ν) + gc
↓(ω + ν, ω)gc

↓(ω′, ω′ + ν)〉QMC

+ 1
2〈g

c
↑(ω + ν, ω) + gc

↓(ω + ν, ω)〉QMC×

× 〈gc
↑(ω′, ω′ + ν) + gc

↓(ω′, ω′ + ν)〉QMC

]
.

(5.28)

Note that the disconnected part has to be subtract in the vertical channel. This
follows from the definition of the particle-hole Green function and in section 4.1 we
established that the vertex obtained from the disorder averaged particle-hole Green
function is part of the dual fermion potential. For the second case the result is

χph↑↑;↓↓(ν)ω,ω′ = 1
2β

[
〈gc
↑(ω + ν, ω)gc

↓(ω′, ω′ + ν) + gc
↓(ω + ν, ω)gc

↑(ω′, ω′ + ν)〉QMC

− 1
2〈g

c
↑(ω + ν, ω) + gc

↓(ω + ν, ω)〉QMC×

× 〈gc
↑(ω′, ω′ + ν) + gc

↓(ω′, ω′ + ν)〉QMC

]
.

(5.29)

For the particle-particle channel the interaction of an up spin with a down spin is
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the contribution we need. This is the pairing channel. We have to calculate

χpp↑↓;↑↓(ν)ω,ω′ = 1
2β

[
〈gc
↓(−ω,−ω′)gc

↑(ω + ν, ω′ + ν)〉QMC

+〈gc
↑(−ω,−ω′)gc

↓(ω + ν, ω′ + ν)〉QMC

]
.

(5.30)

To shorten the notation for the particle-particle channel, we introduce

χp(ν)ω,ω′+ν ≡ χpp↑↓;↑↓(ν)ω,ω′ . (5.31)

We can now exploit crossing symmetry to obtain

χpp↑↓;↓↑(ν)ω,ω′ = −χp(ν)ω,−ω′−ν . (5.32)

Using eq. (D.15) and SU(2) symmetry, it is now possible to obtain the two-particle
Green function and vertex function for all possible spin configurations that we may
need.

5.2.4 Disorder-Averaged Quantities from Monte Carlo
Simulations

In the above, we looked at the measurement of one- and two-particle Green functions
for one disorder configuration. The solution of the disordered impurity problem
requires that we perform a disorder-average. The disorder-average is performed
after the Monte Carlo simulation is converged for a given configuration and the
disorder-averaged expectation value is

{O} = {〈O〉QMC} = 1
NDis

NDis∑
i=1
〈O〉iQMC (5.33)

for an observable O, where {. . . } denotes the disorder average over configurations i,
NDis is the number of disorder configurations used and 〈. . . 〉iQMC denotes the Monte
Carlo estimate for a disorder configuration i. This is illustrated in figs. 5.1 and 5.2.

For the dual potential we need the disorder two-particle Green function. It is
obtained according to

{g(ω + ν)g(ω)} = 1
NDis

NDis∑
i=1

gi(ω + ν)gi(ω) (5.34)

for the particle-hole channel. gi denotes the impurity Green function obtained by
the solver for the disorder configuration i. This quantity depends on only two
frequencies and does not require additional measurements in the Monte Carlo run,
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therefore it is much cheaper than the interacting two-particle Green functions. The
measurement is illustrated in fig. 5.3.

5.3 Summary
In this chapter we have motivated the use of continuous-time quantum Monte Carlo
and introduced the basic ideas of Monte Carlo methods. The interaction expansion
algorithm (CT-INT) was discussed in more detail as this is the algorithm that was
used in this thesis. CT-INT relies on an expansion in terms of the interaction
part of the Hamiltonian and is in principle exact. However, it is best for small to
intermediate interaction strength as the size of the configuration matrix growth as
U3 [44].

In section 5.2.3 the measurement of two-particle quantities was explained as these
quantities, namely the two-particle Green functions, are key to the dual fermion
approach. In the end, we combined the interacting impurity problem with the
disorder-average that is needed for DMFT, DCA and dual fermions. The disorder-
average is performed over multiple realization of the disorder for the impurity or
cluster problem.

This concludes the discussion of numerical methods and models. The following
two chapters present results for the Anderson-Falicov-Kimball model and Anderson-
Hubbard model that were obtained by means of the dual fermion approach for
disordered interacting systems.
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=

−= δw,w′ − F

− δν,0{ }

{
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w′
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= − δν,0{ }

w′

w′ + ν

w

w + ν
χ

Figure 5.1: Definition of the particle-hole Green functions in terms of the Monte-Carlo
measurement. 〈. . . 〉 denotes a Monte Carlo average for a single configuration,
{. . . } denotes the disorder average (Based on illustration by S.-X. Yang [106]).
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={ }

−w′

w′ + ν

−w

w + ν
χp

Figure 5.2: Definition of the two-particle pairing Green function in terms of the Monte-
Carlo measurement. 〈. . . 〉 denotes a Monte Carlo average for a single configu-
ration, {. . . } denotes the disorder average (Based on illustration by S.-X. Yang
[106]).

=

w′

w

w′

w
χ′

{ }
Figure 5.3: Definition of the particle-hole disorder Green function in terms of the Monte

Carlo measurement. For this illustration spins have been omitted as the result
does not depend on the spin configuration (Illustration by S.-X. Yang [106]).
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6 Test Case for the Dual Fermion
Algorithm: The
Anderson-Falicov-Kimball Model

Material published in S.-X. Yang, P. Haase, H. Terletska, Z. Y. Meng, T. Pruschke,
J. Moreno, and M. Jarrell. Dual-fermion approach to interacting disordered fermion
systems. Phys. Rev. B, 89:195116, May 2014

A first test for our algorithm is the Anderson-Falicov-Kimball model, which was
introduced in section 2.2.1 and has the Hamiltonian

HFK =
∑
k

(εk − µ)c†kck + U
∑
i

ncin
f
i −

∑
i

vin
c
i . (6.1)

It is a good test case, because the solution of the impurity problem is trivial and thus
the computational cost is low. The particle-particle interaction is static and leads
to a vertex function that depends only on two frequencies. Dynamical mean-field
theory (DMFT) gives a temperature-independent solution. This is because DMFT
for the Anderson-Falicov-Kimball model at half-filling is equivalent to DMFT for the
Anderson model, which has no dynamics and is thus temperature-independent. This
is not in accordance with results from the dynamical cluster approximation (DCA).
Thus, it is clear that dual fermions have to recover a temperature-dependent solution
to be considered an improvement over DMFT.

First, the 1d system is addressed. Comparisons with DCA calculations are easily
done because DCA is relatively cheap in 1d. We examine the local Green function
to observe how well the dual fermion approach performs compared to DCA and to
get a first idea of the influence of disorder. Next, we present results for the relative
corrections compared to DMFT results for the local Green function. The corrections
allow us to identify in which parameter region non-local correlations are important.

Second, we move on to the 2d system and calculate a phase diagram on the UV
plane. To this end, we calculate the difference

ImδG = ImGloc(3iπT )− ImGloc(iπT ). (6.2)

The sign of ImδG indicates a qualitative change in the local Green function from
metallic behavior to more insulator-like behavior. This quantity is not suited to
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Figure 6.1: The local Green function obtained from DMFT and dual fermions for U =
0.8W and various temperatures. Results for the clean system are shown on
the left, and results for disorder with V = 1.0W on the right. For the lowest
temperature T = 0.01W we added DCA results for comparison. (Data from
[106])

study the Anderson transition as it does not distinguish between localized and ex-
tended states. Box disorder cannot open a gap in the spectrum and thus ImδG
cannot become negative. We supplement the Green function data by the conduc-
tivity and find that it is strongly reduced for large values of the disorder strength
V .

In the following, all results were obtained for half-filling of the system with c and
f electrons. The disorder is distributed according to a box probability distribution
pBox(vi) = 1

V
Θ(V2 − |vi|), where V denotes the strength of the disorder. In plots and

equations, DF stands for the dual fermion approach, DF-2nd represents the second
order approximation and DF-FLEX the dual fermion FLEX, which is sometimes
reduced to FLEX in the text. The dispersion relation reads εk = −2t∑d

i=1 cos(2π
Li
ki),

where t = 0.25 is the hopping constant, d the dimensionality, Li the linear dimension
of the lattice in direction i and ki the ith component of the momentum vector.

In [135] the dual fermion approach has been applied to the clean Falicov-Kimball
model.

6.1 Dual Fermion Corrections in 1d
We start by examining the imaginary part of the local Matsubara Green function
for a 1d system shown in fig. 6.1. The bandwidth is W = 1 in 1d. For the clean
system (V = 0) in fig. 6.1, the solutions display insulator-like behavior. This can
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Figure 6.2: Relative corrections to the DMFT result for the local Green function at
ω = iπT . The results on the left are for T = 0.01W and are compared to
DCA results. On the right, the results are for T = 0.02W and show how the
corrections from dual fermions change with increasing disorder strength. (Dual
fermion data from [106].)

be inferred from ImGloc(iπT ) going to zero for decreasing temperature. The DMFT
solutions are essentially on one curve, indicating that the result is temperature-
independent. This is in contrast with the dual fermion results which show a clear
temperature-dependence.

To obtain an estimate for the quality of the results we add a DCA solution for
Nc = 8 for the lowest temperature T = 0.01W . The dual fermion and DCA results
are essentially the same. These results show that the temperature dependence in the
Falicov-Kimball model at half-filling is strongly linked with non-local correlations
[106].

For the interacting system with disorder, ImGloc is shown in the right panel of
fig. 6.1. The DMFT result is again essentially temperature-independent and shows
metal-like behavior. For the dual fermions, the low-temperature result shows insu-
lating behavior and for increasing temperatures we observe a transition to a metallic
solution.

The DCA solution for the disordered interacting system shows the same trend as
the dual fermion result, namely an increase in the absolute value of ImGloc(iπT )
compared to the clean system, but the agreement with the dual fermion result is
not as good as for the clean system. However, the results underline the importance
of the non-local correlations for the physics of the Anderson-Falicov-Kimball model,
which appear even stronger in case of a disordered interacting system.

To get a better understanding of how and where non-local correlations change the
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DMFT result we look at the relative correction

σ(Gloc) = ImGNL
loc (iπT )− ImGDMFT

loc (iπT )
|ImGDMFT

loc (iπT )| , (6.3)

where NL stands for either dual fermions or DCA.
We observe a general agreement with the DCA result for T = 0.01W for the clean

system in fig. 6.2 on the left panel. The main difference is that the corrections from
DCA are larger for small values of U . In the large U limit DCA and dual fermions
are nearly on top of each other. For the disordered interacting system, the dual
fermions overestimate the correction compared to the DCA calculation for small
values of U . In fig. 6.2 on the right panel the temperature has been increased to
T = 0.02W with the effect that the relative corrections are decreased. From both
plots in fig. 6.2 we can see that the corrections are strongest for intermediate values
of U . For large values of U the model approaches the atomic limit and DMFT
becomes a good approximation which is apparent from the decreasing of σ(Gloc).

Increasing disorder moves the maximum correction to larger values of U , which is
seen from both the dual fermion and DCA results. At least in the case of the dual
fermion results, disorder broadens the region for which the corrections are significant.

The main message of this section is that dual fermions capture important effects
from non-local correlations and significantly improve the DMFT results [106]. Dual
fermion results agree with DCA results qualitatively for the disordered interacting
system. For the clean system, there often is a remarkable quantitative agreement
as well.

6.2 2d Phase Diagram
In this section our aim is to extract a phase diagram on the UV -plane for the 2d
system for which the bandwidth is W = 2. We examine ImδG (eq. (6.2)) as an
easily accessible quantity, which allows us to assess whether the Green function is
metallic or insulator-like. Insulator-like means ImδG is negative, i. e. the imaginary
part of the local Green function has a minimum and ImGloc(iπT ) converges to zero
as T → 0. Results are shown in fig. 6.3.

Strictly speaking, this criterion only holds at zero temperature. We thus refrain
from calling the phase an insulator but rather call it a bad metal [106]. For the
clean system this agrees with reference [135]. We find that for box disorder we can
detect a transition for large values of U , but we find no sign of Anderson-localization
for large values of V . The arithmetic averaging used in the dual fermion formalism
does not distinguish between localized and extended states and thus cannot capture
the transition on the single-particle level.

To understand the driving force behind the localization for a small disorder param-
eter, we plot in fig. 6.4 the leading eigenvalue (LEV) λ of the equation Γχ0φ = λφ
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Figure 6.3: Phase diagram on the UV -plane from ImδG from (a) DMFT, (b) 2nd order
dual fermions and (c) dual fermion FLEX for T = 0.025W . (Data from [106])
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Figure 6.4: Leading eigenvalue of the charge-density channel on the UV -plane from (a)
DMFT, (b) 2nd order dual fermions and (c) dual fermion FLEX for T =
0.025W . (data from [106])
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for the charge density channel, where Γ is the irreducible vertex and χ0 the bare
lattice susceptibility. We find that the LEV is close to one around the metal-bad-
metal crossover. This shows that the bad metal in the vicinity of the clean system
is susceptible to the formation of a charge-density-wave.

ImδG is only a rough estimate, therefore we supplement it by calculating the dc
conductivity as well. We include vertex corrections, thereby taking into account
corrections to the bubble diagram, which contains the lowest order contributions.
The conductivity is shown in fig. 6.5 which reveals that the conductivity decreases
for large values of U and V , but always remains finite. This can be due to the
approximation, as well as the fact that at the temperature under consideration the
system is indeed merely a bad metal and not yet an insulator. We fix the critical
value of the conductivity by determining Uc for V = 0. The corresponding value of
the conductivity is σdc = 0.04. We find a smooth connection on the UV -plane from
the U -axis to the V -axis, thereby determining an estimate for the phase boundary in
the whole plane. For V � W

2 the phase diagram from σdc and ImδG are very similar
and show that small amounts of disorder help to mobilize the charge carriers. For
strong disorder and weak interaction the slopes of the lines of equal conductivity
are negative, indicating that interactions help to localize the c-electrons [106]. This
behavior is in contrast with the result from [41, 136]. Those results were obtained
within DMFT on the infinite dimensional Bethe lattice for the ground-state phase
diagram, whereas we work in 2d and for T > 0. More importantly, however, we
take into account non-local correlations through our dual fermion formalism. As we
have seen already in the previous sections, especially the latter can become quite
important for stronger disorder, thus explaining the difference. Let us stress that it is
possible that we nevertheless still miss the correct behavior as Anderson localization
is not a self-averaging effect.

6.3 Summary
The Anderson-Falicov-Kimball model served as a first test for the new formalism.
We started by looking at the local single-particle Green function and how it com-
pares to DMFT and DCA. We found that dual fermions significantly improve the
DMFT results and compare quite well with the DCA results. The best agreement
is achieved for the clean or weakly disordered system. For strong disorder dual
fermions and DCA still show qualitative agreement but quantitatively we observe
noticeable deviations, not just in value but also in the qualitative line shape of the
corrections.

For the Anderson-Falicov-Kimball model in 2d the dual fermion approach gives
good results for weak disorder. However, in the region of strong disorder it possibly
fails to produce the correct phase diagram. This is not completely unexpected as the
arithmetic averaging is not able to detect Anderson localization. Also, for strong
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Figure 6.5: Phase diagram from the conductivity from (a) DMFT, (b) 2nd order dual
fermions and (c) dual fermion FLEX for T = 0.025W . (data from [106])
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disorder the quantitative agreement between DCA and dual fermions is reduced,
which might indicate that dual fermions miss some important contributions.

For the Anderson-Hubbard model in the next section, the shape of the metallic
region for strong disorder is qualitatively different and does indeed meet the expecta-
tions based on the previous work in reference [137]. We suspect that the particularly
bad behavior of the DMFT, i. e. temperature independent Green functions, provides
a bad starting point for the dual fermions in case of the Anderson-Falicov-Kimball
model at half-filling. A bad starting point means that the small parameter for the
perturbative expansion is actually not as small as one would like. As the solution of
the impurity problem and the disorder-averaging look the same, it is possible that
the disorder vertex and the interaction vertex act together in a way such that the
effective expansion parameter is not small. However, we did not find a way to verify
that this conjecture is true.
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7 Results for the Anderson-Hubbard
Model

In this chapter, we present results for the Anderson-Hubbard model that were ob-
tained using the dual fermion approach. The Anderson-Hubbard model was intro-
duced in section 2.2.1 and has the Hamiltonian (c. f. eq. (2.5))

HAH = −
∑
ij,σ

(tij + µδij)(c†σicσj + h.c.)−
∑
i,σ

viniσ + U
∑
i

(ni↑ −
1
2)(ni↓ −

1
2). (7.1)

In section 7.1 we compare the dual fermion results with dynamical cluster ap-
proximation (DCA) results in 1d to see how well dual fermions perform compared
to established cluster methods. First, we look at the imaginary part of the local
Green function ImGloc to get a general idea of the quality of the dual fermion ap-
proach. Second, we look at the relative corrections to the dynamical mean-field
theory (DMFT) result for ImGloc(iπT ). This quantity allows to show results for a
wide range of parameters in compact form.

In section 7.2 we continue with results for the 3d system. We opt for the 3d
system because it displays an Anderson transition, a finite temperature transition
from the paramagnet to the antiferromagnet and a Mott metal-insulator transition
for the paramagnetic Hubbard model. All three transitions are investigated within
the dual fermion approach. We find quantitative corrections as well as qualitative
ones compared to the DMFT results, e. g. for the temperature dependence of the
Mott metal-insulator transition in section 7.2.2.

All results were obtained for the half-filled system. If not mentioned otherwise, we
use binary disorder and second order dual fermions. The dispersion relation reads
εk = −2t∑d

i=1 cos(2π
Li
ki), where t = 0.25 is the hopping constant, d the dimension-

ality, Li the linear dimension of the lattice in direction i and ki the ith component
of the momentum vector. In plots and equations, DF stands for the dual fermion
approach, DF-2nd represents the second order approximation and DF-FLEX the
dual fermion FLEX, which is sometimes reduced to FLEX in the text.
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Figure 7.1: Imaginary part of the dual Green function for βW = 20 and V = 1.0. On the
left we have U = 2W and on the right U = 0. For U = 0 the dual fermion
FLEX calculation did not converge.

7.1 1d Results
The one-dimensional case is the worst-case scenario for methods that retain a mean-
field character as non-local correlations become particularly important in 1d. Nev-
ertheless, it is a good test ground for the dual fermion approach, as it allows for a
comparison with DCA. This is because DCA calculations in 1d are relatively cheap
for reasonably large cluster sizes. The performance of DCA in 1d [138] is well known,
so we can estimate the quality of the dual fermion results. But what we are really
interested in is the comparison of the dual fermion approach with established cluster
approximations, as these are the competitors of our approach.

The goal is to establish a reliable alternative technique for simulations off half-
filling when quantum Monte Carlo based methods are needed, which is often the
case in more than one dimension. The expectation is that if we are able to capture
the DCA results with some accuracy in 1d, we should expect the same in higher
dimensions. Also, the overall quality of the approximation should improve in higher
dimensions as the importance of non-local correlations is reduced, and the results
become more mean-field like.

First, we take a look at the imaginary part of the local Green function ImGloc.
Figure 7.1 shows examples of ImGloc from various approximations for U = 2.0W
and V = 1.0W . The bandwidth is W = 1.0 in our units. Both dual fermion results
and the DCA result show insulator-like behavior in the left panel of fig. 7.1, i. e.
ImGloc has a minimum. Dynamical mean-field theory (DMFT) gives a metallic
solution. The plot on the right of fig. 7.1 shows results for the non-interacting
system. DMFT overestimates the effect of the disorder, showing an insulator-like
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Figure 7.2: Relative correction as a function of U for multiple values of V for binary
disorder at βW = 20.

solution. Both second order dual fermions and DCA show a solution on the edge
between metallic and insulator-like behavior. There is no FLEX result, as the FLEX
calculation did not converge.

For a more systematic study of the effect of non-local correlations we compare
dual fermions and DCA by looking at the relative corrections compared to the
DMFT result according to eq. (6.3). The relative corrections are a measure for the
importance of non-local correlations. Results are shown in figs. 7.2 and 7.3.

In all plots results for 2nd order dual fermions, dual fermion FLEX and DCA with
Nc = 12 are shown. With increasing interaction strength (figs. 7.2a to 7.2c) the
correction increase until a maximum is reached. For the clean system (fig. 7.2a) and
the weakly disordered system (fig. 7.2b) the strongest correction are around 1.5W .
This is the region of the metal-insulator transition when non-local correlations are
included, whereas the transition happens in DMFT for larger values of U . With
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Figure 7.3: Relative correction of ImGloc(iπT ) with respect to the DMFT as a function of
U = V for (a) binary and (b) box disorder for βW = 20.

increasing disorder strength (from fig. 7.2a to fig. 7.2c) the maximal corrections are
reduced from about 80 percent to about 60 percent for the FLEX and shifted to
larger values of U from 1.4W to 2W .

Figure 7.2d shows corrections for the non-interacting system. The picture is the
same as for the interacting system but this time the maximal corrections occur
slightly below the bandwidth W . In figs. 7.2c and 7.2d the FLEX calculations did
not converge around V = W and weak interactions. This is the region where binary
disorder opens a gap. We did not observe this problem for the Mott gap and a possi-
ble explanation is that disorder opens the gap quicker than the Hubbard interaction
does, leading to stronger fluctuations that interfere with the FLEX calculation.

In fig. 7.3 results are shown for the special case U = V . For binary disorder the
maximal corrections we found were small, i. e. below 15 percent. At U = V =
4.5W the maximum has not yet been reached. For box disorder the corrections are
significantly larger, the maximal corrections are reached around U = V . 2W and
are about 35 percent.

The qualitative agreement between all three approaches is good, except for the
non-convergent FLEX results. In fig. 7.2 the FLEX results show good quantitative
agreement with the DCA results below the interaction strength UM of the maxi-
mal corrections. Above UM the 2nd order results show better agreement, but are
not as good as the FLEX for U < UM . Exceptionally good agreement is found
between FLEX and DCA for U = V in fig. 7.3. The results are nearly on top of
each other, whereas the 2nd order results show qualitative agreement but otherwise
underestimate the corrections, especially pronounced for box disorder.

We use the results in fig. 7.2 to compare the numerical efficiency. For the case of
binary disorder for U = 4W the computational effort to obtain the DCA result is
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roughly ten times higher than for the dual fermion FLEX. The reason is that for
binary disorder there are only two disorder configurations for dual fermions but 4096
configurations for DCA with Nc = 12. We sampled 200 random configurations for
DCA which led to a converged solution with respect to the number of configurations.
Still, the DCA data is much noisier than the dual fermion data. In case of box dis-
order, the computational effort becomes comparable. The dual fermion calculation
requires a larger number of configurations whereas DCA needs less configurations
compared to binary disorder as the different random configurations are more similar
to each other. In that case the efficiency depends on the specific parameters and the
number of iterations needed. It can be expected that dual fermions will gain an edge
over DCA as the temperature is lowered and the sign problem becomes more severe.
We had to abort the DCA calculations at smaller values of U = V as we were not
able to obtain converged results. This is probably caused by the sign problem.

In figs. 7.2c and 7.2d the weakness of the dual fermion FLEX approximation be-
comes apparent. In the case of binary disorder around V = W the FLEX calculation
does not converge. This is around the transition from a metallic local Green func-
tion to an insulating one. The failure is not apparent from the leading eigenvalue of
the Bethe-Salpeter equation. This underlines the fact that the FLEX approximation
has to be used with care. As we can see from the small U limit in fig. 7.2c the FLEX
result becomes much worse than the 2nd order approximation but still converges. It
is therefore advisable to always check the FLEX results against the 2nd order results
for consistency and look at surrounding data points to see whether any divergences
are close by.

The physical interpretation of the results is that disorder reduces the effect of non-
local correlations from the Hubbard term [24]. This is apparent from the reduced
maximal correction. Also, stronger interactions are necessary for maximal non-local
correlations. This result confirms our expectations. If the underlying lattice does
not show long-range order, it is natural to expect that the electrons on the lattice
do not show long-range order either.

We conclude that the dual fermion approach is able to recover non-local correla-
tions on a level that is comparable to DCA. Thus, we can expect good qualitative
and quantitative results in higher dimensions. If applicable, the FLEX approxima-
tion is the method of choice for small to intermediate values of U and weak disorder.
For larger values of U the 2nd order approximation gives results closer to DCA. For
a final evaluation comparisons with other quantum cluster methods are desirable,
but go beyond the scope of this thesis.

For the case of binary disorder the FLEX has to be handled with care as it
can show non-convergent behavior and give nonsensical results. We point out that
the dual fermion approach gives better results in the presence of disorder for the
Anderson-Hubbard model than for the Anderson-Falicov-Kimball model. The reason
is possibly that for the Hubbard model the DMFT solution is already a better
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approximation to the true solution than for the Anderson-Falicov-Kimball model,
where the DMFT result is essentially temperature independent.

7.2 3d Results
Our main interest for the Anderson-Hubbard model lies in the 3d case. Here, we
want to take a closer look at phase transitions. These are the antiferromagnetic
transition, Mott transition and Anderson localization.

First, for the antiferromagnetic transition we look at the leading eigenvalue of
M = Ṽmχ̄0, which determines where the sum over the ladder diagrams for the
antiferromagnetic susceptibility diverge. We compare results obtained from DMFT,
2nd order dual fermions and dual fermions with FLEX.

Second, we address the Mott metal-insulator transition. At high temperatures
one observes a crossover, whereas for lower temperatures the transition is of first
order. This leads to a hysteresis for the double occupancy D as a function of U . We
investigate the effect of disorder and temperature on the hysteresis.

Third, for Anderson localization, we have two quantities we look at. These are
ImδG and the conductivity. ImδG is only applicable for binary disorder, because
box disorder will not open a gap in the spectrum. As we cannot detect localized
states from the arithmetically averaged density of states, we have to go beyond
single-particle quantities for box disorder. We will use the conductivity, which is a
defining quantity for an insulator. Therefore, it is supposed to work for both binary
and box disorder.

In this chapter vertex corrections for the conductivity have been obtained only
for the disorder component. In the region of the metal-bad-metal transition due to
interactions the vertex corrections become very noisy and the noise translates to the
conductivity, thus making calculations too costly for our purpose. Additionally, we
suspect that the vertex correction do not fulfill the Ward identities [139], which relate
the irreducible vertex with the self-energy. Instead, we relate the self-energy to the
full vertex via the Schwinger-Dyson equation. The reason that we keep the vertex
correction from disorder is that eq. (4.95) was originally introduced for disordered
systems and it worked well in [40].

7.2.1 Antiferromagnetic Transition
The 3d Hubbard model has an antiferromagnetic phase. We want to map out
this phase and investigate how this region changes upon introducing disorder. The
natural way to determine this phase transition is to look at the antiferromagnetic
susceptibility and where it diverges. In the dual fermion formalism, the antiferro-
magnetic susceptibility can be calculated from the dual fermion FLEX vertex ladder.
The antiferromagnetic susceptibility will diverge if the dual fermion vertex ladder
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Figure 7.4: The LEV for the magnetic channel as a function of temperature for V/W = 1/3
and various values of U . To extract the transition temperature we make a linear
extrapolation to the data around LEV= 1.

diverges in the magnetic channel. This is equivalent to a leading eigenvalue (LEV)
of 1 of the matrix M = Ṽmχ̄0. Therefore, we limit ourselves to determining the LEV
of M .

To this end, calculations are performed around the Néel temperature TN . In
cases of the second order calculation and DMFT a linear fit is used to determine the
transition temperature. The change of the LEV for the second order dual fermion
calculation with temperature is shown in fig. 7.4.

The FLEX calculation is a bit more involved as it becomes unstable for |T −
TN | < δ for some finite value of δ. To stabilize the calculation we check the leading
eigenvalue in every step of the dual fermion calculation. If it exceeds 0.999 we set it
to 0.999. This trick allows to perform stable calculations at lower temperatures and
to obtain fully self-consistent solutions even if in-between results may have a leading
eigenvalue greater than one. Again, a linear extrapolation is used just between the
two data points around LEV = 1. There is some arbitrariness, though, as one could
just as well use the last data point with LEV < 1 as an upper bound and the value
for LEV > 1 is of course not very meaningful.

We see that TN first increases with interaction strength U and then is reduced
again. We did this for multiple values of V and the results for binary disorder are
shown in fig. 7.5. Disorder suppresses the antiferromagnetic phase for small values of
U and for large values of U it increases TN . The results in fig. 7.5 agree qualitatively
with the findings for the infinite-dimensional Anderson-Hubbard model in reference
[24]. Dual fermions decrease TN compared to DMFT and this effect is even stronger
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Figure 7.5: The phase diagram on the UT plane for various values of V for binary disorder.
In (a) the result for the DMFT calculation is shown, (b) shows the 2nd order
dual fermion result and (c) shows the dual fermion FLEX result. All three
methods agree qualitatively. Disorder suppresses antiferromagnetism for small
values of U and enhances it for large values of U . The effect of non-local
correlations is to reduce the transition temperature for intermediate and large
values of U . This effect is stronger for the FLEX calculation than for the 2nd
order dual fermion results.
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for the FLEX approximation. DMFT as a mean-field method overestimates the
antiferromagnetic phase. This is because mean-field methods interpret short-range
antiferromagnetic correlations as long-range correlations. Dual fermions at least
partially overcome this pathology.

For the clean system in the large-U limit for the 2nd order calculation the phase
boundary approaches a Weiss mean field solution for the Heisenberg-model. It is
possible, that the FLEX solution approaches the exact solution for the Heisenberg-
model[105, 140]. Recent results [141] indicate that this is not the case for the value of
Tc but it has been found that the critical exponent of the inverse antiferromagnetic
susceptibility for large values of U takes on the value of the Heisenberg model.
Hence, FLEX provides a qualitative improvement over DMFT and second order
dual fermions.

In [24] the effect of disorder on the antiferromagnetic phase is explained physically.
For small U disorder reduces antiferromagnetic order. This is because disorder
reduces the long-range order of the lattice, which in turn affects the long-range
order of the electrons.

To understand how disorder promotes antiferromagnetism it is useful to look at
two neighboring sites that are occupied by one electron each, both of different spins.
For large U and U � V virtual hopping between the two sites with energy difference
∆V leads to a reduction of energy J1 = −t2/(U − ∆V ) for virtual hopping from
site 1 to site 2 and J2 = −t/(U + ∆V ) for the other direction. The effective spin
coupling is

J = J1 + J2 = 2t2
U

[
1 +

(∆V
U

)2]
. (7.2)

If one assumes that TN ∝ 〈J(∆V )〉dis, it follows with ∆V = V1 − V2 that

TN(U, V )
TN(U, 0) =

∫
dV1

∫
dV2J(V1 − V2)p(V1)p(V2) = 1 + λ

(
V

U

)2
, (7.3)

where λ is a parameter that depends on the disorder distribution. This shows that
weak disorder increases TN for large U and U � V and it qualitatively explains the
phase diagram that we observe. The DMFT result does indeed show an increase
from 2.7% to 10% for the relative increase of TN when V is doubled. We do not
observe this for the dual fermion results. The results show some noise for large values
of U and the relative change is very small such that the quantitative agreement is
not very good. Also, U � V is not fulfilled, which may explain why we cannot see
this behavior.

7.2.2 Mott Metal-Insulator Transition
A natural question to ask is how disorder affects the Mott metal-insulator transition.
To address this question we investigate the change in the hysteresis of the double oc-
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Figure 7.6: Hysteresis at βW = 120 for binary disorder and various values of V . On the
left, the 2nd order dual fermion result is shown, the right figure shows the
DMFT result. In both cases disorder shifts the hysteresis to larger values of
U and reduces the area of the hysteresis. The effect of non-local correlations
is to move the hysteresis to smaller values of U and increase the area of the
hysteresis. Note the different scaling of the D axis in both figures to see the
increase in the area for the green and red curves. (DMFT data by S.-X. Yang)

cupancy D. As the Mott transition is covered by the the antiferromagnetic phase we
can only use the second order dual fermion approach. Figure 7.6 shows the hysteresis
of the double occupancy for various values of V . With increasing V the hysteresis is
shifted to larger values of U , the area and width of the hysteresis are reduced. This
is true both for the dual fermion results as well as for the DMFT results. The effect
of the dual fermions is to reduce the lower and upper critical interaction strengths
Uc1 and Uc2 while increasing the area of the hysteresis compared to DMFT. The
reduction of Uc comes from short-ranged antiferromagnetic correlations [142] that
are present in the system even if we do not allow for antiferromagnetic ordering.

The qualitative agreement between dual fermions and DMFT changes when the
temperature dependence of the hysteresis is investigated. Figure 7.7 presents the
temperature dependence of the hysteresis for the clean system obtained from both
dual fermions and DMFT. For DMFT decreasing temperature leads to an increase
in Uc1 and Uc2 , while in case of dual fermions, a decrease for the lower critical
interaction strength Uc1 can be observed instead. The effect on the upper critical
interaction strength Uc2 is unclear from fig. 7.7, as the data is too noisy to extract
an unambiguous result. In fig. 7.8 we show the hysteresis for V/W = 1/6 and
V/W = 1/3. Weak disorder does not change the reduction of Uc1 with decreasing
temperature but it is now visible that decreasing temperature increases Uc2 .

This qualitative change demonstrates that even in 3d non-local correlations are
important for a qualitatively correct physical picture. The reduced area and possible
vanishing of the hysteresis indicate that disorder changes the order of the transition.
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from fig. 7.7 does not change with disorder.
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7.2.3 Anderson Localization and Phase Diagram

In this section we take a look at Anderson localization and the possibilities of its
detection. In the following second order dual fermions is used.

To study the Anderson transition we look at ImδG and the conductivity on the
UV -plane. ImδG is shown in fig. 7.9a for binary disorder and in fig. 7.10a for box
disorder. If we use the sign of ImδG to determine the phase boundary between
metal and bad metal, we find traces of localization for both large values of U and
V for binary disorder. The shape of the metallic region is in agreement with [143],
but we obtain smaller critical values for U and V .

For box disorder, we find that the criterion only works for large values of U , but
fails on the V -axis. Still, contour lines for ImδG > 0 allow to guess the shape of the
metallic region. To confirm this guess we take a look at the conductivity. We can see
from figs. 7.9b and 7.10b that the conductivity is strongly reduced both for binary as
well as for box disorder for large values of U and V , indicating Anderson localization.
The general shape of the contour lines is the same for both the conductivity as well as
for ImδG. This confirms our guess from above, that the contour lines of ImδG reveal
information about the shape of the metallic region. We fix the phase boundary by
the value of the conductivity σdc = 0.04 at Uc, where ImδG(Uc) = 0.

To test the accuracy of our approach, we compare with results obtained within the
typical medium theory (TMT) [86]. TMT estimates the critical V for binary disorder
as VA ≈ 0.4W and for box disorder as VA ≈ 1.1W [144] at T = 0. Typical medium
DCA (TMDCA) increases the critical values to VA ≈ 0.46W for binary disorder and
VA ≈ 1.4 for box disorder [144]. Dual fermions give VA ≈ 0.4W at βW = 60 for
binary disorder and VA ≈ 1.0W at βW = 60 for box disorder. For binary disorder,
our result agrees with TMT and is relatively close to the TMDCA result. For box
disorder, our result is close to the TMT result but deviates significantly from the
TMDCA result.

The reason that our results show better agreement for binary disorder is probably
due to the fact that binary disorder opens a gap in the spectrum and non-self-
averaging effects thus play less of a crucial role. This is underlined by the fact that
our estimate for VA from ImδG is VA ≈ 0.45, which is much closer to the TMDCA
solution.

Possible improvements with our approach could be made by reducing the temper-
ature and using a better approximation for the conductivity. Small changes in the
value of the conductivity for the metal-bad-metal transition can change the critical
disorder strength considerably. Nevertheless, we want to emphasize that the arith-
metic disorder-average is not appropriate for an accurate treatment of Anderson
localization as this is a non-self-averaging effect. Hence, we had no reasonable hope
from the start to obtain a close-to-exact unambiguous value from our approach.

We conclude that dual fermions can be used to map out a finite-temperature
phase diagram on the UV -plane including the Anderson insulator. Our results are
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Figure 7.9: (a) ImδG and (b) the conductivity per spin as function of U and V for βW =
60. For both quantities we find the same general shape of the phase diagram.
For such a high temperature, the elevated region can be interpreted as a metal
whereas the lower region as a bad metal.
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Figure 7.10: (a) ImδG and (b) the conductivity per spin as function of U and V for βW =
60. In this case, ImδG and the conductivity show similar behavior close to the
clean system. For stronger disorder the difference is quite noticeable because
for box disorder ImδG does not show any signs of Anderson localization.
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7 Results for the Anderson-Hubbard Model

in qualitative agreement with the phase diagram in [137, 145]. However, the critical
disorder strength VA does not match the TMT and TMDCA results. For binary
disorder, the estimate is relatively close to the numerical solution of [144]. Using
the conductivity worsens the result in this case.

For box disorder, VA cannot be estimated from ImδG. Our estimate from the
conductivity is too small, but improved results for the conductivity on the U axis
may help to improve the estimate for VA and for the overall phase diagram.

If precise values for the critical disorder strength are needed, typical medium based
methods may provide better results that can be used to obtain better estimates for
the defining conductivity for the metal-insulator or metal-bad-metal transition.

7.3 Summary
In this chapter we applied the dual fermion formalism to the Anderson-Hubbard
model. We started with a 1d system in section 7.1, where the dual fermion approach
was compared to DCA. Both methods gave qualitatively comparable results for
the non-local corrections to DMFT. The quantitative agreement depends on the
approximation used to solve the dual fermion problem. The FLEX approximation
tends to provide better results if it is applicable.

We continued with the 3d system in section 7.2 and looked at various phase transi-
tions. In section 7.2.1 we investigated the effect on the antiferromagnetic transition.
From [105] it is known, that dual fermions are capable of giving good approximate
results for the transition temperature. The addition of weak disorder suppresses an-
tiferromagnetism for small values of U and enhances it for large values. This result
was know from DMFT [24], dual fermions provide a quantitative improvement and
possibly a qualitative improvement for the large U limit. Unfortunately we were not
able to study this limit as the computational cost becomes prohibitive.

Next, we investigated the effect of disorder on the Mott metal-insulator transition.
To this end, we calculated the hysteresis of the double occupancy. The results show
that disorder moves the critical values Uc1 and Uc2 to larger values and reduces the
area of the hysteresis, indicating that for strong disorder the nature of the phase
transition changes, possibly to a crossover. The effect of dual fermions is two-fold.
For fixed temperature both Uc1 and Uc2 are decreased and the area of the hysteresis
increases, but otherwise the qualitative picture stays the same.

A qualitative change appeared when the temperature dependence was investi-
gated. DMFT predicts that Uc1 and Uc2 increase with decreasing temperature. Our
dual fermion results show that Uc1 decreases with decreasing temperature, which is
qualitatively different from the DMFT result. At least in the case of disorder Uc2

increases with decreasing temperature, which indicates that the upper critical value
of U is governed by mean-field behavior.

Finally, the Anderson transition was addressed in section 7.2.3. Although the dual
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fermions do not distinguish between localized and extended states, we were able to
determine values for VA for binary and box disorder. In the case of box disorder, the
results for VA do not agree very well with the results for VA from typical medium
based methods, which have proved to be good approximations to the exact solution
at T = 0. This indicates that dual fermions have trouble dealing with non-self-
averaging effects. Additionally, we calculated the phase diagram on the UV plane,
which agrees qualitatively with the results of [143, 145].

We conclude that dual fermions add non-trivial modifications to the DMFT re-
sults. Quite often these are of a quantitative nature, but when non-local correlations
are particularly important the changes can be qualitative as well, as we saw for the
temperature dependence of the hysteresis.
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8 Summary and Perspective
The main goal of this thesis was the development of a numerical method that treats
disorder and interaction on equal footing and goes beyond the dynamical mean-field
approximation. To this end we started from the dual fermion approach which had
been developed for interacting systems and which had been applied to disordered
systems. We combined both approaches to treat disordered interacting systems.

Disorder was modeled with a local random potential that did not affect the hop-
ping matrix elements. To obtain answers for macroscopic systems, i. e. systems
which are self-averaging, we employed disorder-averaging.

In the derivation of the dual fermion formalism, the replica trick was used to
perform the disorder-average on powers of the partition function Z instead of the
free energy F = −T lnZ. As a result, the disorder-average became part of the
impurity problem for the dual fermions and no disorder-average had to be done for
the dual degrees of freedom. The replica trick introduced restrictions for the dual
diagrams, thereby eliminating excitations for the dual degrees of freedom that are
unphysical for the real degrees of freedom.

First, the dual fermion formalism was applied to the Anderson-Falicov-Kimball
model. It is a good test ground, because the impurity problem for the dual fermion
approach is trivial, but the model itself has non-trivial features like long-range order.
The simplicity of the impurity problem manifests itself in the two-particle vertex
function that only depends on two frequencies instead of three, as is the case for the
Anderson-Hubbard model. Also, the DMFT solution for the single-particle Green
function is essentially temperature independent. As our DCA calculations showed
in 1d, this is not the correct answer but an artifact from ignoring the non-local
correlations. We found that the dual fermion approach is able to reintroduce the
correct temperature dependence.

For the 2d Anderson-Falicov-Kimball model we calculated the phase diagram on
the UV plane at T = 0.025W , where U parametrizes the local Coulomb repulsion
and V the disorder strength. We found a metal-bad-metal transition for large values
of U and for large values of V , albeit the shape of the metallic region does not
coincide with results obtained by other groups [41, 136]. We include non-local
correlations whereas [41, 136] use geometric averaging, which is better suited to
observe Anderson localization. It is thus hard to tell which result is correct. Possibly
TMDCA [144] could provide an answer. The case of strong disorder and weak
interaction poses the main challenge for the dual fermion approach as the physics
becomes non-self-averaging.
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The driving force of the metal-bad-metal transition for weak disorder and strong
Coulomb interactions is the formation of a charge density wave, which we learned
from the leading eigenvalue of the Bethe-Salpeter equation. This is in accordance
with reference [136, 146, 62]. On a bipartite lattice for interaction and weak disorder
the ground state of the Anderson-Falicov-Kimball model is a checkerboard ordering
of the c and f electrons. For the Anderson-Falicov-Kimball model results were shown
exclusively for box disorder.

Second, the dual fermion approach was applied to the Anderson-Hubbard model,
which is our model of interest. It has true quantum correlations, i. e. the two-particle
vertex has the full dependence on three frequencies. Unless otherwise stated, all
results were obtained for binary disorder. Again, we started with a comparison with
DCA in 1d. The agreement is better than for the Anderson-Falicov-Kimball model,
which might be due to the fact, that DMFT, which acts as a starting point for the
dual fermion approach, provides a better, temperature dependent solution for the
lattice problem.

The comparison with DCA is followed by results for the 3d system, which shows
a variety of phase transitions. Emphasis was put on those phase transitions. We
started with the phase diagram on the UT plane and distinguished two phases,
namely paramagnetic metal and antiferromagnetic insulator. Results were shown
for different values of the disorder strength V . DMFT, 2nd order dual fermions
and dual fermion FLEX were used to obtain the phase diagram. All three methods
gave the same shape of the phases and the effects of disorder were the same as
well, specifically the reduction of antiferromagnetism for weak interaction and the
enhancement of antiferromagnetism for strong interactions. In comparison with
DMFT, 2nd order dual fermions reduced the critical temperature and dual fermion
FLEX even more so. This was known for the clean system [105], and is assumed to
be the correct behavior, based on DCA and quantum Monte Carlo studies [147, 140].

We continued with the Mott transition. To this end, we calculated the hysteresis
of the double occupancy, which was approximated by the double occupancy of the
impurity problem. As the Mott transition is concealed by the antiferromagnetic
phase in the three dimensional unfrustrated system, the leading eigenvalue of the
Bethe-Salpeter equation is greater than one, thus dual fermion FLEX could not be
used. Therefore, we only obtained results for 2nd order dual fermions and DMFT.

At equal temperature, DMFT and dual fermions showed the same qualitative be-
havior. Disorder increases the critical interaction strength and reduces the area of
the hysteresis. Dual fermions lower the critical interaction strength and increase the
area of the hysteresis compared to DMFT. This is due to short-range antiferromag-
netic correlations that are not present in DMFT. It would be interesting to extend
the calculation to the strongly frustrated system and see the effect of FLEX on the
Mott transition.

A qualitative difference between dual fermions and DMFT was found when we
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investigated the temperature dependence of the hysteresis. In DMFT the upper
and lower critical value of the interaction strength are increased with decreasing
temperature. With dual fermions we found that at least the lower critical interaction
strength decreases. Our data was too noisy to extract unambiguous results for the
upper critical value for the clean system. Upon the introduction of disorder the
upper critical value is clearly increased with decreasing temperature, thus showing
mean-field behavior. We expect this for the lower critical value as well when disorder
is strong enough, but we were not able to obtain data at sufficiently strong disorder
as increasing disorder meant calculations at large values of U , unaccessible to us.

Lastly, Anderson localization was investigated. The main focus was placed on
the question of how to detect it and how it compares with established methods like
typical-medium-theory or the newer and very promising TMDCA [148]. For detec-
tion, we used the imaginary part of the local Green function, namely the difference
between the lowest two frequencies, which determines whether the imaginary part
has a minimum or not. This criterion only worked for binary disorder. Therefore, we
calculated the conductivity as well, which allowed to determine a phase boundary.
Our results for the shape of the metallic region agree with results obtained previously
[143]. Unfortunately, our estimate for the critical disorder strength for box disorder
does not match results obtained within typical medium theory and TMDCA. This
is not completely unexpected, as Anderson localization is a non-self-averaging effect
and thus the disorder-average we used is not suited to detect it.

Our results from both the Anderson-Falicov-Kimball model and the Anderson-
Hubbard model suggest that dual fermions add non-trivial corrections to the DMFT
result and do so on a level that is qualitatively and oftentimes quantitatively com-
parable with DCA. Hence, we believe that the formalism developed in this thesis
can help further grow the understanding of disordered interacting systems. For ex-
ample, it is an interesting topic, how disorder influences superconductivity. Is it
possible, that disorder enhances superconductivity in certain cases as it does with
antiferromagnetism and can this be quantified?

A particularly interesting case consists in the application to real materials. For this
purpose, the dual fermion formalism has to be combined with first-principle meth-
ods like density functional theory (DFT)[149, 150]. In order to include quenched
disorder, it has to be worked out, whether it is possible to start from a DFT solution
for a clean system and add disorder only at the impurity and dual fermion level or
whether disorder has to be treated already on the DFT level. In the latter case, the
interfacing between the DFT part and the dual fermion part has to be addressed.

Finally, we want to propose a further extension of the dual fermion formalism.
In [151] experiments on layered f -electron systems are presented. These layered
systems have been investigated by means of inhomogeneous or real-space DMFT
(rDMFT) [152]. To this end, the dual fermion formalism for the periodic Anderson
model could be used to solve individual layers. The coupling between different layers
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8 Summary and Perspective

could be treated analogously to rDMFT. Additionally, such a scheme could be used
to investigate thin film superconductors as were mentioned in section 2.2.

This proposal shows that there is still a wide range of possible applications of the
dual fermion approach, be it for interacting, disordered or interacting disordered
systems.
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A The Sign Problem in Quantum
Monte Carlo Simulations

The following discussion is based on the explanation of the sign problem in [25].
Quantum-Monte Carlo methods are very powerful tools if applicable. Although
many algorithm scale at least with (UNcβ)3, calculations at lower temperatures and
larger cluster sizes will be achievable as long as computers become faster. However,
if it is impossible to retain positive weights for all Monte Carlo configurations for a
given system, Quantum-Monte Carlo methods hit a hard wall. In the following we
will discuss why that is.

We start from the partition function

Z = Tre−βH =
∑
C

wC . (A.1)

∑
C denotes a sum over configurations as discussed is chapter 5 and wC are the

corresponding contributions to the partition function. The form of wC depends on
the algorithm that is used.

Now we want to use Monte Carlo methods to sample the configurations C. This
requires that wC ≥ 0. We will assume that this is not the case for our problem and
that there is no known trick to achieve this. In that case, we can write

Z =
∑
C

wC =
∑
C

sgn(wC)|wC |, (A.2)

and we can use |wC | as weights for the Monte Carlo simulation. For the expectation
value of an observable O we have

〈O〉 = 1
Z

∑
C

OCwC =
∑
C

sgn(wC)OC |wC | =
〈sgnO〉|w|
〈sgn〉|w|

. (A.3)

Here, OC is the value of O in configuration C and 〈. . . 〉|w| denotes an expectation
value with respect to |wC |.

Equation (A.3) shows how to deal with negative weights. At this point there is
no reason to expect that there might be a problem beyond numerical accuracy - and
such a problem can be solved by trading time for accuracy by using special purpose
libraries.
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A The Sign Problem in Quantum Monte Carlo Simulations

We proceed by taking a look at the average sign

〈sgn〉|w| =
∑
C sgn(wC)|wC |∑

C |wC |
. (A.4)

The nominator is just the partition function of our system, the denominator is a par-
tition function for a system with only positive weights. According to thermodynam-
ics, the partition function can be written in terms of the free energy F = −kBT lnZ
where 1/β = kBT . kB is the Boltzmann constant and T temperature. It follows
that

〈sgn〉|w| = e−β∆F . (A.5)

We know that 〈sgn〉|w| ≤ 1, therefore ∆F ≥ 0. This means the average sign becomes
exponentially smaller for increasing β and for increasing ∆F . When we approach
the thermodynamic limit, i. e. all relevant correlations are included in the cluster
for the Monte Carlo simulation, we will have ∆F ∝ Nc. This means the sign scales
exponentially in β and NC . This is still no unsolvable problem, all we need is the
corresponding numerical accuracy. This costs time but in principle it should be
possible.

Next, we look at the variance of the sign:

Var(sgn) = 〈sgn2〉|wC | − 〈sgn〉2|wC | = 1− e−2β∆F (A.6)

The Monte Carlo error of an observable O after N iterations is

∆MC(O) ∝

√
Var(O)
√
N

. (A.7)

The relative error of the sign is

∆sgn ∝

√
Var(sgn)/N
〈sgn〉|wC |

≈ eβ∆F
√
N

(A.8)

after N Monte Carlo measurements. This means that in order to obtain the sign with
reasonable accuracy the number of Monte Carlo measurements has to be increased
exponentially. This is the reason the sign is a problem. The time needed to solve a
given problem with the needed accuracy scales exponentially.
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B Fast Matrix Updates for Quantum
Monte Carlo

For the ctQMC random walk it is necessary to calculate the ratio of two determi-
nants. For arbitrary matrices the calculation of the determinant is of order N3 and
such would be the time to calculate the ratio. However, the smaller of our two
matrices appears in the larger one. This can be expressed as [25]

N (n+1) =
(
N (n) Q
R S

)
, (B.1)

where N (n) is a matrix of rank n. For the cases of importance in this work, S is a
number, Q a column vector and R a row vector. The inverse of N (n+1) is

(N (n+1))−1 =
(
P̃ Q̃
R̃ S̃

)
. (B.2)

A matrix that consists of four blocks can be decomposed as(
A B
C D

)
=
(
A 0
C 1

)
·
(
1 A−1B
0 D − CA−1B

)
, (B.3)

which is verified by direct calculation. If one of the off-diagonal blocks is zero, the
determinant is

det
(
A B
0 D

)
= detA · detD. (B.4)

The matrices S̃, Q̃, R̃ and P̃ are given by [131]

S̃ = (S −R(N (n))−1Q)−1 (B.5)
Q̃ = −(N (n))−1QS̃ (B.6)
R̃ = −S̃R(N (n))−1 (B.7)
P̃ = (N (n))−1 + (N (n))−1QS̃R(N (n))−1. (B.8)
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Combining all this together, we arrive at

detN (n+1)

detN (n) = det(S −R(N (n))−1Q) = 1
det S̃

(B.9)

for the matrix ratios. In the ctQMC algorithm N−1 is stored, therefore eq. (B.9)
is particularly cheap for the removal of a vertex. It is only necessary to look up
S̃, which is O(1). For the addition of a vertex, matrix-matrix multiplication is
necessary, which is O(n2). The same holds true for the update of the matrix.
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C Dual Fermion Mapping for the
Anderson-Falicov-Kimball Model

The derivation of the dual fermion approach for the Anderson-Falicov-Kimball model
is similar to the Anderson-Hubbard model. Instead of spin up and down we have the
c- and f -degrees of freedom. Here, we closely follow the derivation that we published
in [106]. In the following, the f -degrees of freedom will be denoted as cf so they are
not confused with the dual degrees of freedom f . We start the derivation from the
disorder-averaged Green function

{Gk} = − δ

δηk
{lnZv[ηk]}|ηk=0, (C.1)

following [106]. ηk is a source field, {. . . } denotes a disorder-average and Xv is
the quantity X in the disorder configuration v. The partition function Z for the
Anderson-Falicov-Kimball model reads

Zv[ηk] =
∫
D[c, c̄]

∫
D[cf , c̄f ]e−Sv [c̄,c;c̄f ,cf ;ηk] (C.2)

in a configuration v. The action for this configuration is

Sv[c̄, c; c̄f , cf ; ηk] = −
∑
ω,k,σ

c̄ω,k,σ(ω + µ− εk − ηk)cω,k,σ +
∑
i

Svi [c̄i, ci; c̄fi , c
f
i ] (C.3)

with
Svi [c̄i, ci; c̄fi , c

f
i ] =

∫ β

0
dτvini(τ) +

∫ β

0
dτUnci(τ)nfi (τ). (C.4)

We rewrite the action in terms of an impurity action

Sv,imp
i [c̄i, ci; c̄fi , c

f
i ] = −

∑
ω

c̄ωi[(ω + µ)−∆ω]cωi + Svi [c̄i, ci, c̄fi , c
f
i ]. (C.5)

Here, we introduced a hybridization function ∆ω. The action reads

Sv[c̄, c; c̄f , cf ] =
∑
i

Sv,imp
i [c̄i, ci]−

∑
ω,k,σ

c̄ω,k,σ(∆ω − εk)cω,k,σ (C.6)
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in terms of the impurity action Sv,imp
i . Note that the hybridization function drops

out if we insert the impurity action.
Next, we apply the replica trick [81, 82]

〈lnZ〉dis = lim
m→0

〈Zm〉dis − 1
m

(C.7)

and the Green function now reads

〈Gk〉dis =− δ

δηk

∫ ∏
i

dvip(vi) lnZiv

=− lim
m→0

1
m

δ

δηk

∫ ∏
i

dvip(vi)
∫ ∫ ∏

α

D[cα, c̄α]D[cfα, c̄fα]eSvα .
(C.8)

α is a replica index that goes from 1 to m.
Disorder can be integrated out[84] according to∫

dvip(vi)e−vi
∑

α

∫
dτnαi (τ) = eW (ñci ). (C.9)

This leads to an effective elastic interaction W between replicas that reads

W (ñ) =
∞∑
l=2

1
l!〈v

l
i〉cñl. (C.10)

ñ =
∑
α

∫
dτ(nc)αi (τ). (C.11)

〈vli〉c denotes the lth cumulant of the disorder distribution.
In the next step, the dual degrees of freedom are introduced via a Hubbard-

Stratonovich transformation

ec̄
α
ωkA

2
ωkcωk = A2

ωk

λ2
ω

∫
Df̄Dfe

−λω(c̄αωkf
α
ωk+f̄αωkc

α
ωk)− λ2

ω
A2
ωk

f̄αωkf
α
ωk
. (C.12)

The f -numbers are Grassmann numbers, which follow fermionic commutation rela-
tions. For A we obtain

A2
ωk = ∆ω − εk − ηωk, (C.13)

and λω remains arbitrary as in the derivation for the Anderson-Hubbard model.
After the Hubbard-Stratonovich transformation the Green function reads

Gωk =− lim
m→0

1
m

δ

δηωk

(∏
ωk

∆ω − εk − ηωk
λ2
ω

)m
×

×
∫
Df̄Dfe−

∑
ωkα

λ2
ω f̄

α
ωk(∆ω−εk−ηωk)−1fαωk

∫
Dc̄Dce−

∑
i
Sisite

∣∣∣∣
ηωk=0

.

(C.14)
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The c- and cf -degrees of freedom both appear only locally and can be integrated
out. Now, the local part of the action reads

Sisite = Siimp +
∑
ωα

λω(c̄αωifαωi + f̄αωic
α
ωi) (C.15)

with

Siimp = −
∑
α

∑
ω

c̄αωi[(ω + µ)−∆ω]cαωi −W (ñi) +
∑
α

∫ β

0
dτUnc,αi (τ)nf,αi (τ). (C.16)

Note that only the c-degrees of freedom couple to the f -degrees of freedom. This is
because the cf -degrees of freedom only appear locally in the Hamiltonian eq. (2.6)
and are thus part of the impurity problem.

We can now write down the defining equation for the dual potential which reads∫ ∏
αω

dc̄αdcαdc̄f,αdcf,αe−Ssite = Zimpe
−
∑

ωα
λ2
ωgimp(ω)f̄αω fαω−Vd[f̄α,fβ ] (C.17)

for the Anderson-Falicov-Kimball model. As an index, β labels replicas.
The impurity partition function is

Zimp =
∫ ∏

αω

dc̄αdcαdc̄f,αdcf,αe−Simp . (C.18)

At this point we choose λω = g−1
ω and obtain

Vd[f̄α, fβ] = 1
2V

p,0(ω, ω′)f̄αf̄βfβfα + 1
4V

p,1
ν (ω, ω′)f̄αf̄αfαfα. (C.19)

gω is the impurity Green function. This is analogous to the derivation of the dual
potential for the Anderson-Hubbard model. Again, we restricted ourselves to the
lowest order in the dual potential.

Finally, we can perform the derivative with respect to the source field ηk and
obtain

G(ω, k) =
(
∆ω − εk

)−1
+ Gd

g2
ω(∆ω − εk)

(C.20)

for the real fermion Green function. The dual Green function Gd is defined as

Gd = − lim
m→0

1
m

m∑
α′

∫ ∏
ρ,ω,k

df̄ρω,kdf
ρ
ω,kf

α′ f̄α
′
e−
∑

ωkα′ Sd0e
∑

iαβω
Vd[f̄α,fβ ]. (C.21)

The non-interacting action Sd0 reads

Sd0 = f̄αωk

[(∆− εk)−1 + gω
g2
ω

]
fαωk. (C.22)
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For non-interacting dual fermions this gives the DMFT result, which therefore ap-
pears as a zeroth order approximation in this formalism.
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D Two-Particle Green Functions

The following definitions are taken from [153, 105]. The two-particle Green functions
are defined via functional derivatives of the free energy as

χph = δ4F [K̄,K]
δK4δK̄3δK2δK̄1

∣∣∣∣
K̄1=K2=K̄3=K4=0

(D.1)

for the particle-hole channel. The particle-hole Green function reads

χph(τ1, τ2; τ3, τ4) =
〈
Tτc(τ1)c†(τ2)c(τ3)c†(τ4)

〉
−
〈
Tτc(τ1)c†(τ2)

〉 〈
Tτc(τ3)c†(τ4)

〉
.

(D.2)
For the particle-particle channel the two-particle Green function is defined as

χpp = δ4F [K̄,K]
δK4δK3δK̄2δK̄1

∣∣∣∣
K̄1=K̄2=K3=K4=0

(D.3)

and the particle-particle Green function reads

χpp(τ1, τ2; τ3, τ4) =
〈
Tτc(τ1)c(τ2)c†(τ3)c†(τ4)

〉
. (D.4)

For the particle-hole Green function the vacuum term is subtracted which follows
from the chain rule. For the particle-particle channel the chain rule leads to 〈cc〉〈c†c†〉
which is zero for all models in this thesis.

We obtain the Fourier transformed two-particle quantities for the particle-hole
Green function via

χph(ω1, ω2;ω3, ω4) =
∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ3

∫ β

0
dτ4χ(τ1, τ2; τ3, τ4)ei(ω1τ1−ω2τ2+ω3τ3−ω4τ4).

(D.5)
Time-translational invariance requires ω1+ω3 = ω2+ω4. This means χ only depends
on three frequencies, two fermionic ones and one bosonic one, which is the difference
ν := ω1 − ω2 = ω4 − ω3 of two fermionic frequencies. ν denotes the total energy of
the particle-hole pair, 1(4) denotes the initial (final) electron, 2(3) the initial (final)
hole. We use time-translational invariance to introduce the three frequency notation
[105]

χph(ν)ω,ω′ := χph(ω + ν, ω;ω′, ω′ + ν), (D.6)

which is shown in fig. D.1. The particle-particle Green function is Fourier trans-
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χph
↑↑;↓↓(ν)ωω′ =

=χph
↑↑;↑↑(ν)ωω′

ω′ + ν ω + ν

ω′ ω

ω′ + ν ω + ν

ω′ ω

Figure D.1: The two particle-hole Green function shown here are all Green functions
needed for an SU(2) symmetric system.

=χpp
↑↓;↑↓(ν)ωω′

ω′ + ν ω + ν

−ω′ −ω

Figure D.2: In the particle-particle channel we need only the pairing channel Green func-
tion. We can construct all other particle-particle Green functions from it.

formed via

χpp(ω1, ω2;ω3, ω4) =
∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ3

∫ β

0
dτ4χ(τ1, τ2; τ3, τ4)ei(ω1τ1+ω2τ2−ω3τ3−ω4τ4).

(D.7)
In this case the bosonic frequency is defined as ν := ω1 + ω2 = ω4 + ω3. 1 and 2 are
the initial electrons, 3 and 4 the final electrons. The three frequency notation is

χpp(ν)ω,ω′ := χpp(ω + ν,−ω;−ω′, ω′ + ν), (D.8)

which is illustrated in fig. D.2. The difference in sign for the frequencies in the
particle-hole and particle-particle channel comes from the convention that a particle
with frequency label ω carries the energy ω whereas a hole with the frequency label
ω carries the energy −ω. The total energy is the sum of the top and the bottom
where a hole introduces an additional minus sign. If ν is to denote the total energy
of the particle-hole (particle-particle) pair we obtain the notation as as shown above.
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D.1 Channels

For the two-particle Green function we have not only the particle-hole and particle-
particle channel, but we have six different possible spin configurations as well. For
the particle-hole channel these are (↑↑; ↑↑), (↓↓; ↓↓), (↑↑; ↓↓), (↓↓; ↑↑), (↑↓; ↓↑) and
(↓↑; ↑↓). The first four have sz = 0 for the initial and final state, whereas the last
two have sz = 1 and sz = −1. A hole of spin up is effectively a down spin because
the lack of an up spin leaves an uncompensated down spin.

We have to measure these channels using quantum Monte Carlo. It is possible
to exploit symmetries to reduce the number of channels we have to measure down
to two for the particle-hole channel. This reduces the memory needed to store the
vertex function and the time needed to measure the particle-hole Green functions
by a factor of three.

First we note that the last two configurations have a total spin S = 1. There is
one state missing for a triplet. We can create this state via

χm0 = 1√
4

(χph↑↑;↑↑ + χph↓↓;↓↓ + χph↑↑;↓↓ + χph↓↓;↑↑) (D.9)

which defines the magnetic channel m with sz = 0. For the magnetic channel the
initial and final states have a total spin S = 1. we can see this by symbolically
writing

1√
4
(
(↑↑; ↑↑) + (↓↓; ↓↓) + (↑↑; ↓↓) + (↓↓; ↑↑)

)
= 1√

2
(
(↑↑) + (↓↓)

) 1√
2
(
(↑↑) + (↓↓)

)
.

(D.10)
The initial and final states are the third triplet state.

We can create a singlet state with S = 0 according to

χd = 1√
4

(χph↑↑;↑↑ + χph↓↓;↓↓ − χ
ph
↑↑;↓↓ − χ

ph
↓↓;↑↑). (D.11)

We call this channel the density channel d. In the symbolic notation from above we
obtain

1√
4
(
(↑↑; ↑↑) + (↓↓; ↓↓)− (↑↑; ↓↓)− (↓↓; ↑↑)

)
= 1√

2
(
(↑↑)− (↓↓)

) 1√
2
(
(↑↑)− (↓↓)

)
.

(D.12)
The initial state and final state have indeed a total spin S = 0.

We can now exploit the symmetry between spin up and down. Two channels that
are related by flipping all spins are equal because of the spin symmetry. For the
density channel d and the magnetic channel m0 we obtain

χd/m0(ν)ωω′ = χph↑↑;↑↑(ν)ωω′ ± χph↑↑;↓↓(ν)ωω′ . (D.13)
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Furthermore, SU(2) symmetry demands that χm1 = χm0 = χm−1 . This reduces the
number of independent particle-hole channels to two. In this thesis we work with
χd/m0 and measure the two particle-hole Green functions on the right hand side of
eq. (D.13).

For the particle-particle channel we have six possible spin configurations as well.
These are (↑↑; ↑↑), (↓↓; ↓↓), (↑↓; ↑↓), (↓↑; ↓↑), (↑↓; ↓↑) and (↓↑; ↑↓). The first two
have a total spin S = 1 for the inital and final state, the last four have sz = 0 but
they are no eigenstates of the square of the total spin operator.

Again, we can exploit symmetries to reduce the number of channels we have to
measure. We start from the pairing channel Green function

χp(Q)ωω′ = χpp↑↓;↑↓(Q)ωω′ . (D.14)

The corresponding diagram is shown in fig. D.2. The pairing channel is related to
the singlet/triplet channel via

χs/t(ν)ωω′ = χpp↑↓;↑↓(ν)ωω′ ∓ χpp↑↓;↓↑(ν)ωω′ = χp(ν)ωω′ ± χp(ν)ω,−ω′−ν . (D.15)

From the spin symmetry we get the (↓↑; ↓↑) channel. The crossing symmetry relates
the pairing channel with χpp↑↓;↓↑. We proceeded the same way as we did for the
particle-hole channel to obtain eq. (D.15) and find the singlet and triplet channels.
In this case, we only have to measure the particle-particle Green function for the
pairing channel.

The disorder two-particle Green function is defined via

χv(ν)ωω′ = χ=
v (ν)ωω′ = {gω+νgω} (D.16)

for the particle-hole channel. χ=
v refers to the horizontal channel. It is depicted in

fig. D.3 on the left and the lowest order contribution to it is illustrated in fig. D.4.
Here, g is the impurity Green function. For the particle-particle channel it is calcu-
lated according to

χ=
vp(ν)ωω′ = {gω+νg−ω}. (D.17)

For the disorder two-particle Green function we omit the spin index as it does
not depend on the spin configuration for the models we study. {. . . } denotes the
disorder average, the two Green function lines in the diagrammatic representation of
χ are connected through disorder scattering only. The lack of the vertical (crossed)
component makes this Green function crossing-asymmetric. For the particle-hole
disorder vertex we can construct the vertical component according to

χ||v(ν)ω,ω′ = −χ=
v (ω − ω′)ω′,ω′δν,0, (D.18)

which connects the horizontal channel with the vertical channel. The vertical chan-
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nel is unphysical, but can be convenient to use in some calculations. We find this

→ −
ω′ + ν ω + ν

ω′ ω ω′ + ν

ω + ν

ω′

ω

Figure D.3: Relation of the horizontal channel and the vertical channel for the disorder
vertex.

relation from the crossing symmetry by switching the upper right corner of the two-
particle Green function with the lower left one as is shown in fig. D.3. For the
particle-particle channel we relate the crossed channel to the horizontal one via

χ×vp(ν)ω,ω′ = −χ=
vp(ν)ω,−ω′−νδω+ω+ν,0. (D.19)

a) b)

Figure D.4: In a) we have a contribution to the horizontal disorder channel, b) shows a
contribution to the vertical disorder channel.

D.2 Vertices

Fd/m= - -χph
d/m

Figure D.5: The Bethe-Salpeter equation for the particle-hole channel.

The full vertex is obtained from the two-particle Green function via the Bethe-
Salpeter equation

χd/m(ν)ωω′ = −g(ω + ν)g(ω)δωω′ − g(ω + ν)g(ω)Fd/mg(ω′ + ν)g(ω′) (D.20)

for the particle-hole channel and

χp(ν)ωω′ = g(ω + ν)g(−ω)δωω′ − g(ω + ν)g(−ω)Fpg(ω′+ν)g(−ω′) (D.21)
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Fp= -χp

Figure D.6: The Bethe-Salpeter equation for the particle-particle channel.

for the particle-particle channel. It follows that we have to remove the disconnected
part first, and then remove the four Green function legs by division.

For the particle-hole channel we obtain

Fd/m(ν)ωω′ = −βχd/m(ν)ωω′ + gωgω+νδωω′

gω+νgωgω′gω′+ν
. (D.22)

The particle-particle vertex reads

Fp(ν)ωω′ = β
−χp(ν)ωω′ + gω+νg−ωδωω′

gω+νg−ωg−ω′gω′+ν
. (D.23)

Finally, for the disorder vertex in the particle-hole channel we get

F=
v (ν)ωω′ = −βχ

=
v (ν)ωω − gωgω+ν

gω+νgωgωgω+ν
δωω′ . (D.24)

As a summary, in fig. D.7 all the vertices we need in this thesis are presented with
their diagrammatic representation. Here, Fd/m/p have been replaced in the diagrams
by graphic symbols.

=

=

F=
v

F=
vp

=F×
vp

=F ||
v

=Fp

=Fd/m

Figure D.7: Definition of the different vertices in terms of diagrammatic building blocks.
The solid green lines for the disorder vertices indicate for which connection
from corner to corner the energy is conserved.

130



E Comment on the Use of the
Replica Trick

In several discussions, the question was raised whether the replica trick is necessary
to derive the dual fermion approach for disordered or disordered interacting systems
or it was just stated that it should be. We use the replica trick to easily integrate
out the disorder and for book-keeping purposes, that is to account for the correct
diagrams and remove unphysical ones.

Alternatively, one could proceed to solve the lattice problem for a single disor-
der configuration and perform the disorder-average for the dual quantities. Before
the disorder-average the vertex has only one contribution, namely from the interac-
tion. For the purely disordered system the dual potential would be zero before the
disorder-average.

Unlinked diagrams for the dual Green function would not appear, the same way
as they do not appear for the real fermion Green function. Thus, the diagrams
that contain what we call Fermi loops cannot be created. The disorder-average for
the dual diagrams might be possible the same way that it can be done for the real
fermion system [70] and it is thus possible to guess the correct equations.

Nevertheless, without an in-depth analysis the details of the disorder-average for
the dual fermion system remain unclear. Practically, this is more involved as it may
seem at a first glance. In the end, we found using the replica trick easier.

In that sense, it is pretty straight forward to see what the replica limit does for
the diagrams and where it comes from. It is not as straight forward to actually do
the derivation.
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[31] V. Dobrosavljević and G. Kotliar. Strong correlations and disorder in d =∞
and beyond. Phys. Rev. B, 50:1430–1449, Jul 1994.

[32] M. H. Hettler, A. N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke, and H. R. Kr-
ishnamurthy. Nonlocal dynamical correlations of strongly interacting electron
systems. Phys. Rev. B, 58:R7475–R7479, Sep 1998.

[33] M. H. Hettler, M. Mukherjee, M. Jarrell, and H. R. Krishnamurthy. Dynami-
cal cluster approximation: Nonlocal dynamics of correlated electron systems.
Phys. Rev. B, 61:12739–12756, May 2000.

[34] Gabriel Kotliar, Sergej Y. Savrasov, Gunnar Pálsson, and Giulio Biroli. Cel-
lular Dynamical Mean Field Approach to Strongly Correlated Systems. Phys.
Rev. Lett., 87:186401, Oct 2001.
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