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Abstract 
 

During neurodevelopment several structural, molecular and functional changes 

take place in the brain to promote its maturation. These changes occur at multiple levels, 

including changes in protein expression, in the strength of synaptic transmission and in 

the susceptibility to experience-driven plasticity.  

In the present study, using whole-cell patch-clamp electrophysiology, I examined 

the roles of PSD-93, a postsynaptic scaffolding protein, in the developmental profile of 

cortical glutamatergic synapses, in the strength of basal neurotransmission and in the 

mechanisms of synaptic plasticity. Furthermore, I analyzed how exposure to an enriched 

environment (EE), with enhanced physical, social and cognitive stimulation, affects both 

excitatory and inhibitory neurotransmission in the visual cortex of mice.  

My results show that, in visual cortex, the normal maturation of glutamatergic 

neurotransmission was characterized by a robust reduction in the fraction of AMPAR-

lacking synapses (silent synapses): from 80% at Postnatal days 3-5 (PD3-5), to about 

50% at PD10-12 and further to 25% at PD21-30.  

PSD-93 deletion caused accelerated synaptic maturation. The percentage of silent 

synapses was precociously decreased at PD10-12 (30%), and also at PD21-30 (0%). In 

depth electrophysiological analysis revealed that this accelerated synaptic maturation, 

represented by absence of silent synapses at PD21-30, caused a functional increase in the 

strength of postsynaptic AMPAR neurotransmission, while basal NMDAR function 

remained normal.  

In contrast, PSD-95 deletion prevented synaptic maturation after PD10-12, so the 

fraction of silent synapses stayed high at PD21-30 (about 50%). Direct comparison of 

PSD-93 and PSD-95, by simultaneous deletion of both proteins, revealed that the fraction 

of silent synapses remained indistinguishable from Control at PD21-30. Thus, the present 

study reveals a novel scenario in which PSD-93 and PSD-95 present opposite roles 

governing the maturation of glutamatergic neurotransmission.  

Furthermore, PSD-93 deletion did not affect basal NMDARs, but impaired 

NMDAR-dependent LTD, converting it into LTP. This suggests PSD-93 involvement in 
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coupling NMDAR activity to downstream signaling mechanisms related to synaptic 

plasticity.  

Taken together, these results expand the knowledge about the molecular 

mechanisms underlying synaptic maturation in visual cortex; and enrich the current view 

concerning the roles of PSD-93 and its functional interactions regulating synaptic 

transmission and plasticity.  

Concerning EE, it was previously shown that it can increase experience-driven 

plasticity in the visual cortex, using ocular dominance plasticity (ODP) as a model. 

Essentially, ODP gradually declines and is absent beyond PD110. However, if mice are 

raised in EE, ODP is preserved throughout adulthood beyond PD130. In this context, my 

results show that, beyond PD130, EE mice presented reduced intracortical inhibition 

when compared to age-matched controls. Furthermore, inhibition levels in old EE mice 

were indistinguishable from the inhibition levels observed in young mice at PD21-30. 

Additional results from our collaborators evidenced that the preserved ODP in old EE 

mice was almost totally abolished by pharmacological boosting of inhibitory 

neurotransmission.  

Thus, the gradual reduction in experience-driven cortical plasticity can be 

prevented by exposing mice to an enriched environment with enhanced physical, social 

and cognitive stimulation. The present data show that modulation of intracortical 

inhibition, by environmental stimulation, plays a key role in this process. 
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1 Introduction 
 

Every vertebrate has a central nervous system (CNS) which integrates information 

from the body and external environment. It plays a critical role coordinating, influencing 

and generating most aspects of an individual’s behavior and physiology.   

The CNS is composed by two major parts: the brain and spinal cord. Neurons are 

the core component of the CNS; they are electrically excitable cells that communicate 

with one another via their synapses. Electrical synapses are direct conductive junctions 

between two neurons. Chemical synapses involve release of neurotransmitters by 

presynaptic neurons and consequent activation of membrane receptors which drive and 

modify the activity of postsynaptic cells.  

 

1.1 Synaptic transmission. 

Compared to electrical synapses, chemical synapses are the most abundant in the 

brain. When an action potential reaches the presynaptic terminal, activation of voltage-

gated calcium channels at the cell membrane leads to increased calcium levels.  Calcium 

triggers fusion of synaptic vesicles with the presynaptic membrane leading to 

neurotransmitter release at the synaptic cleft. After release, neurotransmitters diffuse and 

bind to ionotropic and metabotropic receptors at the postsynaptic membrane.  

Ionotropic receptors are ion channels which open following neurotransmitter 

binding. Ionic current through open channels promotes rapid changes in postsynaptic 

potentials which can be depolarizing (excitatory) or hyperpolarizing (inhibitory). 

Excitatory and inhibitory potentials are electrotonically transmitted along the dendritic 

tree, where their amplitude or time-course can be modulated by voltage-gated ion 

channels, and finally integrated in the cell body, increasing or decreasing the probability 

of action potential generation, respectively.  

Metabotropic receptors are transmembrane proteins coupled to intracellular 

metabolic pathways. Their activation does not cause rapid changes in membrane potential, 

but modifies neuronal metabolism and eventually changes membrane permeability 
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though modulation of synaptic and non-synaptic ion channels. Thus, metabotropic 

receptors modulate neuronal functionality. 

The action of a neurotransmitter is defined by the kind of postsynaptic receptor it 

interacts with. Excitatory, inhibitory and modulatory neurotransmitters activate cation 

channels, anion channels and metabotropic channels, respectively. In the brain, excitatory 

neurotransmission is primarily mediated by glutamate, inhibitory neurotransmission by 

GABA; and modulatory neurotransmission by a number of transmitters, including 

serotonin, dopamine and others.  

 

1.1.1 Glutamatergic synaptic transmission. 

Glutamate is the major excitatory neurotransmitter in the brain. Its fast excitatory 

function is mediated by three types of postsynaptic cationic receptors: AMPA receptors 

(AMPARs), NMDA receptors (NMDARs) and kainate receptors. In addition, glutamate 

presents an alternative modulatory role activating G-protein coupled metabotropic 

receptors. AMPARs and NMDARs are the main ionotropic glutamate receptors and the 

focus of the present study. 

 

1.1.1.1  AMPA receptors. 

AMPARs mediate the vast majority of information flow in the brain. AMPARs 

are tetramers of the subunits GluA1-GluA4. The different subunits bind to distinct 

interacting partners, differentially modulate AMPAR trafficking and control the ionic 

conductance of single-channels (Malinow and Malenka, 2002; Bredt and Nicoll, 2003).  

Each subunit contains a glutamate-binding site (Mayer, 2005). When two subunits 

are simultaneously activated by glutamate, the channel opens allowing cations to flow 

according to their electrochemical gradients (Rosenmund et al, 1998). In case additional 

subunits are activated, single-channel conductance increases (Armstrong et al, 2006). The 

intracellular C-terminus of GluA1 is longer when compared to GluA2 subunits. It is 

suggested that trafficking of GluA1 subunits to synaptic sites is activity-dependent and 

relies on NMDAR activation. In contrast, trafficking of GluA2 subunits appears to be 
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constitutive and receptors containing this subunit mediate basal AMPAR 

neurotransmission (Hayashi et al, 2000; Passafaro et al, 2001).  

GluA2 subunits render AMPARs calcium impermeable. In contrast, GluA2-

lacking AMPARs are permeable to calcium and pass less current at positive potentials 

due to voltage-dependent block by intracellular polyamines. In addition, given its calcium 

conductance, GluA2-lacking AMPARs are suggested to play a role in activating 

downstream signaling pathways which can potentially modulate postsynaptic 

mechanisms (Wiltigen et al, 2010).  

 

1.1.1.2 NMDA receptors. 

NMDARs are tetramers of four subunits: GluN1-4 (Nakanishi, 1992; Hollmann 

and Heinemann, 1994). They are permeable to calcium, sodium and potassium. Most 

NMDARs are composed of two obligatory GluN1 and two GluN2 subunits. GluN1 

subunits contain the binding site of co-agonists glycine and D-serine. GluN2 subunits 

contain the binding site for glutamate, render NMDAR calcium permeable and control 

channel activity mediating its blockade by extracellular magnesium at negative potentials 

(Mayer and Armstrong, 2004).  

In general, GluN2B subunits are predominantly expressed in early postnatal 

development. However, during maturation, GluN2A subunits are gradually added to the 

synapses, exceeding the number of GluN2B subunits (Liu et al, 2004). In addition, 

GluN2A-containing NMDAR excitatory postsynaptic currents (EPSCs) present faster 

decay time when compared to GluN2B-containing NMDAR EPSCs. 

NMDARs are coincidence detectors. Their activation requires simultaneous 

release of glutamate and postsynaptic depolarization. When these two conditions are 

established, NMDARs are relieved of magnesium block and ionic flow takes place 

through the channel (Mayer et al, 1984; Nowak et al, 1984).  

The complexities of NMDAR-associated signaling are a topic of intense interest, 

given its involvement in mechanisms as diverse as neuronal plasticity, neurodevelopment, 

learning and disease (Paoleti et al, 2013). Efficient functional coupling between 

NMDARs and specific intracellular signaling pathways, instead of mere receptor 

activation, appears to be the key feature determining how NMDAR-mediated calcium 
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influx governs neuronal plasticity and development (Sattler et al, 1999). As an example, 

deletion of PSD-95 (a scaffolding protein in excitatory synapses) disrupts NMDAR-

dependent synaptic plasticity but has no effect on basal NMDAR EPSCs (Beique et al, 

2006; Migaud et al, 1998; Carlisle et al, 2008). Therefore, the identification of molecular 

players specifically linking NMDARs with intracellular signaling pathways will enrich 

the current knowledge about NMDAR function and the mechanisms it is involved with, 

such as synaptic plasticity, neurodevelopment and learning (Paoletti et al, 2013).  

 

1.1.1.3 NMDAR-dependent synaptic plasticity. 

Synaptic plasticity is the ability of synapses to strengthen or weaken in response 

to changes in their activity (Hughes, 1958). Several mechanisms are involved, including 

changes in the efficiency of postsynaptic response or alterations in neurotransmitter 

release. Long-term potentiation (LTP) and long-term depression (LTD) refer to synaptic 

strengthening and weakening, respectively. Synaptic plasticity is suggested to be a key 

brain mechanism underlying learning, memory and proper network refinement during 

development (Katz and Shatz, 1996).  

NMDAR-dependent forms of synaptic plasticity were described in different brain 

regions (Bliss and Gardner-Medwin, 1973; Artola et al, 1996; Tsien et al, 1996). They 

can be induced by specific patterns of synaptic stimulation or by selective activation of 

distinct NMDAR subpopulations (Hrabetova et al, 2000). 

In NMDAR-dependent LTP, activation of NMDARs, by concomitant pre- and 

postsynaptic activity, leads to high intracellular calcium levels. In general, synaptic 

strengthening requires activation of calcium/calmodulin kinase II (CaMKII) and insertion 

of AMPARs at postsynaptic sites. (Malinow et al, 1989; Malenka et al, 1989; Giese et al, 

1998). Therefore, NMDAR-dependent LTP is achieved by increases in postsynaptic 

response to glutamate.  

Concerning NMDAR-LTD, NMDAR activation can lead to protein kinase A 

(PKA) activation and clathrin-dependent endocytosis of postsynaptic AMPARs (Crozier 

et al, 2007). Additionally, it is suggested that endocannabinoids released by the 

postsynaptic neuron, in a calcium dependent manner, can diffuse along the synaptic cleft 

to activate presynaptic cannabinoid 1 receptors (CB1Rs) and induce LTD via reduction of 
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glutamate release (Sjöstrom et al, 2003). Therefore, NMDAR-dependent LTD can be 

achieved by decreased postsynaptic response or by reduction in neurotransmitter release. 

The functional coupling between NMDARs and the signaling mechanisms related 

to LTP and LTD is puzzling. Despite their opposite effects on synaptic transmission, both 

LTP and LTD are triggered by NMDAR activation. Identification of the molecular 

players specifically linking NMDARs to signaling pathways related to LTD or LTP, and 

their differential recruitment by different patterns of synaptic activity, consists a key step 

required to clarify this scenario.  

In addition, the lesser studied NMDAR-independent forms of synaptic plasticity 

can be mediated by metabotropic glutamate receptors, calcium permeable AMPARs and 

other calcium permeable channels (Kullman and Lansa, 2011). 

 

1.1.2 GABAergic synaptic transmission.  

Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the 

brain. It activates two membrane receptors: GABAA, an ion channel; and GABAB, a G-

protein coupled metabotropic receptor.  

 

1.1.2.1 GABAA receptors. 

GABAA receptors mediate most of the physiological activities of GABA. Upon 

activation, GABAA receptors open allowing flow of chloride to the intracellular 

compartment. The resulting hyperpolarization has an inhibitory influence decreasing the 

probability of actions potential to occur.  

GABAA are pentamers composed of different subunits. In humans there are six 

types of α subunits, three βs, three γs, one δ, one ε, one π and one θ. Both α and β 

subunits are required to produce a GABA-activated channel and the most common 

GABAA receptors are composed by two α subunits, two βs and one γ. GABA binding 

sites are located at the interfaces between α and β subunits, thus the most common 

GABAA receptors present two binding sites for GABA (Martin and Dunn, 2002; 

Colquhoun and Sivilotti, 2004).  
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Neurons that produce and release GABA are, in general, small locally-projecting 

interneurons They are key elements organizing neuronal networks to generate rhythmic 

activity, and play a critical role modulating the glutamatergic influence on local 

microcircuits (Freund, 2003; McBain and Fisahn, 2001). Exceptions to this rule are the 

spiny medium neurons in basal ganglia or inhibitory neurons in zona incerta (Lin et al, 

1990). 

 

1.2 DLG-MAGUKs. 

Glutamate receptors at the postsynaptic membrane are part of an electron-dense 

protein-enriched complex known as postsynaptic density (PSD). The PSD controls the 

trafficking of glutamate receptors and allows proper modifications in synaptic strength 

during synaptic plasticity. DLG-MAGUKs (disc-large membrane-associated guanylate 

kinases) are four different scaffolding proteins expressed at the PSD: PSD-93 

(postsynaptic density protein 93), PSD-95, SAP-97 (synapse associated protein 97) and 

SAP-102.  

All DLG-MAGUKs share a common molecular structure. They consist of three 

PDZ (PSD-97/Disc-large/Zona occludens-1) domains, one Src-homology 3 (SH3) 

domain and one guanylate kinase (GK) domain which is catalytically inactive. Despite 

their common structure, DLG-MAGUKs are distinct concerning the aminoacid sequence 

of their N-terminal domains, which can present unique functions (Schlüter et al, 2006) 

PSD-93, PSD-95 and SAP-102 interact with AMPARs via transmembrane 

AMPAR regulatory proteins (TARPs). TARPs bind to both MAGUKs and AMPARs. 

SAP-97 is the only MAGUK which directly binds to AMPARs at their GluA1 subunits 

(Leonard et al, 1998). In contrast, all MAGUKs directly interact with GluN2A and 

GluN2B NMDAR subunits (Kornau et al, 1995; Niethammer et al, 1996). The ability to 

interact with both AMPARs and NMDARs suggests that MAGUKs can be central 

players regulating the trafficking of glutamate receptors and orchestrating the functional 

organization of the PSD.  

SAP-97 Knock out (KO) is lethal. However, SAP-97 deletion in conditional KO 

mice was reported to cause no major impact on basal glutamatergic neurotransmission 

and plasticity (Howard et al, 2010). SAP-97 overexpression is reported to increase 
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(Rumbaugh et al, 2003; Howard et al, 2010), or have no impact on postsynaptic 

AMPARs (Schnell et al, 2002; Erlich and Malinow, 2004; Schlüter et al, 2006).  

SAP-102 deletion decreases AMPAR neurotransmission specifically at immature 

synapses (Elias et al, 2006). In the mature state, basal neurotransmission is normal but 

NMDAR-dependent LTP enhanced in the absence of SAP-102 (Cuthbert et al, 2007). 

Additionally, SAP-102 can have a compensatory role counteracting the loss of synaptic 

AMPARs caused by PSD-95 deletion (Elias et al, 2006; Bonnet et al, 2013). The last two 

MAGUKs, PSD-93 and PSD-95, will be introduced in the following sections.  

 

1.2.1 PSD-95. 

PSD-95 is the most abundant and better characterized DLG-MAGUK. 

Concerning NMDARs, PSD-95 might play a role mediating the switch of GluN2B to 

GluN2A subunits during normal synaptic maturation. However, PSD-95 deletion has no 

impact on basal NMDAR neurotransmission at mature synapses. Concerning AMPARs, 

PSD-95 levels are directly related to the strength of AMPAR neurotransmission. PSD-95 

deletion and overexpression leads to decreased and increased AMPAR function, 

respectively (Elias et al, 2006; Nakagawa et al 2004; Schlüter et al, 2006).  

Changes in the number of silent synapses are a crucial point defining PSD-95 

roles of AMPAR neurotransmission. It is known that some synapses contain functional 

postsynaptic NMDARs but not AMPARs. Therefore, at resting membrane potential, 

neurotransmitter release fails to elicit EPSCs in these synapses and for this reason they 

are considered to be silent (Isaac et al, 1995; Liao et al, 1995). In general, changes in the 

fraction of silent synapses are electrophysiologically characterized by modified AMPAR 

miniature EPSC (mEPSC) frequency. mEPSCs are postsynaptic responses to single 

spontaneously released synaptic vesicles. Changes in AMPAR mEPSC amplitude reflect 

changes in AMPAR number or single-channel conductance at existing synapses. Changes 

in AMPAR mEPSC frequency reflect changes in presynaptic release of glutamate or 

changes in the fraction of silent synapses. High and low fraction of silent synapses cause 

decreased or increased mEPSC frequency, respectively.  

Manipulations of PSD-95 levels modify the frequency, but not amplitude, of 

spontaneous miniature AMPAR EPSCs (mEPSCs), without changing glutamate release. 
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It is suggested that PSD-95 promotes insertion and stabilization of AMPARs at silent 

synapses leading to increased AMPAR mEPSC frequency. On the other hand, PSD-95 

deletion decreases the strength of AMPAR neurotransmission by increasing the number 

of silent synapses. (Stein et al, 2003, Beique and Andrade, 2003, Beique et al, 2006).  

Furthermore, PSD-95 deletion leads to enhanced LTP and blocked LTD, while 

PSD-95 overexpression has exactly the opposite effect (Migaud et al, 1998; Stein et al, 

2003). This suggests that PSD-95 has a role modulating NMDAR-dependent trafficking 

of AMPARs to synaptic sites (Xu et al, 2008), an idea further reinforced by the direct 

interaction between PSD-95 and NMDARs. 

 

1.2.2 PSD-93. 

Information about PSD-93 is limited when compared to PSD-95.  

In cerebellum, PSD-93 appears to have no major effect on synaptic transmission 

and associated motor behavior (McGee et al, 2001). However, PSD-93 deletion decreases 

cell-surface expression of NMDARs in forebrain and spinal cord (Tao et al, 2003; Liaw 

et al, 2008), and reduces NMDAR-mediated toxicity in cortical cultures (Zhang et al, 

2010). In contrast, AMPARs are reported to be unaffected in the aforementioned brain 

areas.  

In hippocampus the scenario is different. According to Elias et al (2006), PSD-93 

deletion reduces AMPAR neurotransmission in organotypic cultures, evidencing a 

redundant role when compared to PSD-95. However, genetic PSD-93 Knockout has 

minor or no influence on basal AMPAR neurotransmission in this brain region (Carlisle 

et al, 2008; Krüger et al, 2013). Furthermore, the relationship between PSD-93 levels and 

the number of silent synapses was not addressed. While it is a consensus that basal 

NMDAR function is normal, PSD-93 deletion causes deficits in NMDAR-dependent LTP, 

but not in LTD (Carlisle et al, 2008). In contrast, as commented earlier, PSD-95 deletion 

has an opposite effect enhancing LTP and blocking LTD (Beique et al, 2006; Migaud et 

al, 1998; Carlisle et al, 2008). It is unclear why PSD-93 and PSD-95 have opposite roles 

in synaptic plasticity but apparently redundant functions on basal AMPAR 

neurotransmission.  Additional direct comparisons between these two MAGUKs are 

essential to solve this question. 
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Furthermore, as exposed in the previous paragraph, PSD-93 function might 

depend on a multiplicity of different factors including the synapses and brain region 

under analysis. In contrast, PSD-95 appears to have similar roles on neurotransmission 

irrespective of brain region. Thus, region-specific PSD-93 functions consist another 

important issue which needs to be better clarified.  

 

1.2.3 Developmental profile of DLG-MAGUKs. 

DLG-MAGUKs present distinct developmental profiles in rodents. SAP-102 

reaches its highest levels at postnatal day 10 (PD10), consistent with its critical role 

regulating AMPARs at immature synapses (Sans et al, 2000). SAP-97 is already 

expressed at birth and reaches adult levels around PD14 (Wang et al, 2006). PSD-93 and 

PSD-95 are poorly expressed at birth, but their levels start to increase around PD10, 

reaching adult levels around PD35 (Sans et al, 2000). Thus, given their differential 

expression profiles, the relative importance of MAGUKs can vary depending on the 

developmental stage at which synaptic transmission and plasticity are analyzed.  

However, an in depth analysis of the functional interplay between MAGUKs 

regulating the development of NMDAR and AMPAR neurotransmission, including PSD-

93, is not available. This is an important topic which might reveal that different scaffolds 

can differentially regulate neurotransmission depending on the developmental stage, and 

also play distinct roles governing synaptic maturation.  

 

1.3 Visual cortex. 

The visual system of rodents and other mammals present many similarities. 

Visual information from retina is transmitted as action potentials, via the optic nerve, to 

the lateral geniculate nucleus in the thalamus and further to primary visual cortex (V1).  

For each eye, fibers from medial retina cross to the contralateral hemisphere at the 

optic chiasm, before reaching the lateral geniculate nucleus.  In contrast, fibers from the 

lateral retina do not cross and, therefore, send information to the ipsilateral hemisphere. 

As a result, fibers from the left part of retina of both eyes send visual information to the 
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left hemisphere and vice-versa. Since stimuli from the right visual field activate the left 

part of retina, each hemisphere receives information from the contralateral visual field.  

Visual stimulation presented to the contralateral eye evokes stronger responses in 

neurons at V1 when compared to similar stimulation presented to the ipsilateral eye. Thus, 

V1 neurons are primarily activated by visual stimuli of the contralateral eye, a condition 

referred to as contralateral ocular dominance (OD) (Dräger 1975; Mangini and Pearlman 

1980; Wagor et al. 1980; Metin et al. 1988). Closing the contralateral eye of a mouse for 

a few days causes neurons in V1 to respond almost equally to visual stimuli presented to 

each eye. Thus, OD shifts in favor of the open eye. This process is known as ocular 

dominance plasticity (ODP) and is one of the most studied forms of brain plasticity 

(Dräger, 1975; Gordon and Stryker, 1996; Espinosa and Stryker, 2012). 

 

1.3.1 Age-dependent ODP in visual cortex. 

In neurodevelopment, critical period is a time frame in which greater shaping and 

plasticity of neuronal networks can be carried out. In mice, ODP has greater magnitude 

around PD19-PD32 during the so called critical period for ODP. This form of brain 

plasticity gradually declines and is absent beyond PD110 if animals are raised in standard 

cages (SC) (Lehmann and Löwel 2008). The neuronal factors underlying this age-

dependent decline are not completely understood. If rodents are housed in an enriched 

environment (EE) with enhanced cognitive, physical and social stimulation, ODP is 

preserved throughout adulthood and can be successfully induced after PD130 (Baroncelli 

et al, 2010; Scali et al, 2012). Intracortical levels of inhibition appear to play a key role, 

as extracellular GABA levels are reduced in the visual cortex of EE rodents (Sale et al, 

2007). Moreover, by increasing GABAA activity with the allosteric agonist diazepam, the 

preserved ODP of EE rodents can be completely blocked (Baroncelli et al, 2010).  

Despite the aforementioned evidence suggesting inhibitory tone to play a critical 

role in regulating the expression of ODP, the integrity of GABAergic synaptic 

transmission was not evaluated by direct measurement of GABAA inhibitory postsynaptic 

currents (IPSCs) in cortical neurons of EE-mice.  

In addition to increased inhibitory tone, several other factors are suggested to play 

a role in reducing and abolishing ODP in PD>110 mice. These factors include reduced 
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function of modulatory neurotransmitters (Maya Vetencourt et al, 2008; Morishita et al, 

2010), maturation of structural elements of the extracellular matrix (Carulli et al, 2010; 

Miyata et al, 2012) and myelination (Syken et al, 2006).  

 

1.3.2 Molecular mechanisms of ODP in visual cortex. 

The ODP induced by 4 days of monocular deprivation, during the critical period 

(PD19-PD32), is characterized by reduced responsiveness of the contralateral V1 to 

visual stimuli presented to the deprived eye. NMDAR-dependent LTD at cortical 

glutamatergic synapses was suggested to be the key synaptic mechanism underlying this 

form of experience-dependent brain plasticity. This notion is supported by several studies. 

Intracortical infusion of NMDAR antagonist APV disrupts ODP in juvenile individuals 

(Kleinschmidt et al, 1987; Bear et al, 1990), NMDAR-dependent LTD is maximum 

during the critical period and decreases with age (Kirkwood et al, 1997; Sermasi et al, 

1999), and NMDAR-dependent LTD, studied ex vivo, is occluded in the deprived visual 

cortex (Crozier et al, 2007). It is suggested that prior synaptic depression in vivo during 

ODP occludes subsequent induction of LTD ex vivo in acute brain slices (Heynen et al, 

2003). 

In contrast, several other studies failed to show a direct relation between 

NMDAR-dependent LTD and ODP. For example, overexpression of calcineurin has no 

effect on NMDAR-dependent LTD but prevents ODP in mice (Yang et al., 2005). 

Furthermore, autophosphorylation of αCaMKII is necessary for ODP (Taha et al., 2002), 

but not for LTD (Giese et al., 1998). In addition, recent studies suggest that reduction in 

V1 responsiveness to the deprived eye is achieved through modulation of intracortical 

inhibition (Yazaki-Sugiyama et al, 2009). 

Therefore, it appears that ODP is not solely mediated by NMDAR-dependent 

LTD. Further studies are necessary to better elucidate the additional mechanisms 

employed by the brain during this form of experience-driven plasticity.  
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1.4 Scope of this thesis 

 

1.4.1 PSD-93 roles in synaptic transmission. 

Glutamate receptors at the postsynaptic membrane are part of an electron-dense 

protein-enriched complex known as postsynaptic density (PSD). The PSD controls the 

trafficking of glutamate receptors and allows proper modifications in synaptic strength 

during synaptic plasticity. PSD-95 is the prototypical scaffolding protein at the PSD. 

Essentially, PSD-95 levels are directly related to the strength of AMPAR 

neurotransmission. PSD-95 deletion and overexpression are reported to decrease and 

increase AMPAR function, respectively (Elias et al, 2006; Nakagawa et al 2004; Schlüter 

et al, 2006). Furthermore, PSD-95 regulates AMPAR neurotransmission by modulating 

the number of AMPAR-lacking silent synapses (Stein et al, 2003, Beique and Andrade, 

2003, Beique et al, 2006). PSD-93 was suggested to have a similar role, when compared 

to PSD-95, in hippocampus (Elias et al, 2006). However, additional studies failed to show 

the same effect of PSD-93 deletion reducing AMPAR neurotransmission (Carlisle et al, 

2008). Furthermore, it is not known whether PSD-93 influences the number of silent 

synapses, as suggested for PSD-95.  

Concerning other brain regions, PSD-93 deletion was reported to decrease 

NMDAR cell-surface expression in forebrain and spinal cord (Tao et al, 2003; Liaw et al, 

2008), and to reduce NMDAR-mediated toxicity in cortical cultures (Zhang et al, 2010), 

while AMPARs were apparently unaffected. However, synaptic receptors were not 

specifically evaluated. Thus, further analyses of PSD-93 in synapses from different brain 

regions are necessary, considering its potential region-dependent roles differentially 

governing AMPARs and NMDARs.  

In the present study, PSD-93 roles were specifically evaluated during synaptic 

development of the visual cortex, between PD3-5 and PD21-30. The objective was to 

dissect how and when PSD-93 starts to govern basal neurotransmission in the time-course 

of normal cortical neurodevelopment.  In visual cortex, the fraction of silent synapses 

gradually decreases during development (Rumpel et al, 1998, 2004). Therefore, a direct 

comparison between PSD-93 and PSD-95 roles regulating the fraction and maturation of 

silent synapses was carried out. The objective was to establish the functional interplay 
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between these two scaffolds. Are they really similar concerning basal neurotransmission? 

How do they functionally interact to maintain the integrity of glutamatergic synapses and 

normal synaptic maturation? 

Furthermore, PSD-93 roles on basal synaptic AMPARs and NMDARs were 

evaluated in detail using a combination of different electrophysiological approaches, in 

order to verify how the previously reported changes in global NMDAR cell-surface 

expression relate specifically to synaptic receptors. Is PSD-93 deletion really reducing 

NMDAR neurotransmission? Is it possible that PSD-93 differentially regulate synaptic 

and extra synaptic NMDARs? What about synaptic AMPARs? 

Finally, the implications of NMDAR basal neurotransmission and PSD-93 for 

NMDAR-dependent plasticity were evaluated. What’s the critical factor governing 

NMDAR-dependent synaptic plasticity? Basal NMDAR function? The functional 

coupling between NMDARs and intracellular signaling pathways? What’s the role of 

PSD-93 in this context? 

By addressing the aforementioned questions, knowledge about the molecular 

mechanisms underlying synaptic maturation in visual cortex will be expanded. 

Additionally, it will enrich the current view concerning the roles of PSD-93 and PSD-95 

and their functional interactions governing synaptic transmission and plasticity. 

Therefore, using a combination of whole-cell patch-clamp electrophysiology, 

transgenic mice and viral mediated knockdown of endogenous DLG-MAGUKs in vivo; 

the present study aims to define the specific role of PSD-93 on AMPAR and NMDAR 

neurotransmission and NMDAR-dependent plasticity in cortical synapses. 

 

1.4.2 Synaptic changes induced by Environmental Enrichment. 

In primary visual cortex (V1), neurons are primarily activated by visual stimuli of 

the contralateral eye, a condition referred to as contralateral ocular dominance (OD) 

(Dräger 1975; Mangini and Pearlman 1980; Wagor et al. 1980; Metin et al. 1988). 

Closing the contralateral eye for a few days makes neurons in V1 respond similarly to 

visual stimuli presented to each eye. This is known as ocular dominance plasticity (ODP) 

and is one of the most studied forms of brain plasticity (Dräger, 1975; Gordon and 

Stryker, 1996; Espinosa and Stryker, 2012).  
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ODP gradually declines and is absent beyond PD110 if mice are raised in standard 

cages (SC) (Lehmann and Löwel 2008). However, if rodents are housed in an enriched 

environment (EE) with enhanced cognitive, physical and social stimulation, ODP is 

preserved throughout adulthood (Baroncelli et al, 2010; Scali et al, 2012). Intracortical 

levels of inhibition appear to play a key role, as extracellular GABA levels are reduced in 

the visual cortex of adult EE rodents (Sale et al, 2007). Moreover, by increasing GABAA 

activity with the allosteric agonist diazepam, the preserved ODP of EE rodents can be 

completely blocked (Baroncelli et al, 2010).  

Despite the aforementioned evidence suggesting inhibitory tone to play a critical 

role in regulating the expression of ODP, the integrity of GABAergic synaptic 

transmission was not evaluated by direct measurement of GABAA IPSCs in cortical 

neurons of EE-rodents. Furthermore, it is not known whether excitatory synapses were 

additionally affected.  

Therefore, using ex vivo whole-cell patch-clamp electrophysiology, the present 

study aims to define how GABAergic neurotransmission changes during normal 

maturation of V1, and how EE affects this process. Does GABAergic neurotransmission 

increase between initial stages of development and adulthood to reduce ODP? Does EE 

inhibit this process? What about glutamateric neurotransmission? Does EE have an 

additional effect of AMPAR and NMDAR EPSCs? Elucidation of these questions will 

determine how EE influences synaptic transmission in V1 and enhance our knowledge 

about which factors facilitate the experience-driven ODP. 
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2 Materials and Methods 

 

2.1 Mice and housing conditions. 

Mice were bred in standard conditions (12-h light/dark cycle). Food and water 

were available ad libitum. PSD-93 KO, PSD-95 KO, PSD-93/95 double-KO and wild-

type mice were weaned at PD20. After weaning, males and females were housed in 

separated cages.  

 

2.1.1 Housing at enriched environment. 

C57BL/6J mice were raised by Dr. Franziska Greifzu. For reference see Greifzu 

et al. (2014). One week before delivery, pregnant females were placed in commercially 

available enriched environment (EE) cages (Marlau, Viewpoint, France). Pups, born in 

EE or standard cages (SC), were weaned at PD30 and males separated from females.  

EE-cages (56x37x32cm) were larger than standard cages (SC; 26x20x14cm).  

Each EE-cage contained three running wheels and a red tunnel in which mice could 

protect themselves from light exposure. The two floors in each EE-cage were connected 

by a ladder and a tube, so animals could freely move up and down. In order to obtain 

food and water, mice had to pass through a maze in the upper floor and, after that, move 

to the lower floor where food and water were available. The maze was changed 3 times 

each week, from a total of 12 different possible configurations. To ensure a social 

enrichment condition (up to 16 animals in each EE cage), mice from at least 2-3 litters 

were raised together. In contrast, fewer mice were kept together in standard cages. Mice 

raised in EE or SC were used for patch-clamp experiments. 
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2.2 Genotyping. 

2.2.1 Genotyping of PSD-93 KO mice. 

The PSD-93 Knockout (KO) mouse line was described by McGee et al, 2001. 

Genotype was defined through Polymerase Chain Reaction (PCR) of DNA obtained 

from 1-2 mm tail pieces of each mouse. Tails were digested for at least 3 hours in PBND 

buffer (150 l, 55 °C, constant shaking). Once digestion was complete, the proteinase K 

present in the PBND buffer was inactivated at 99°C for 10 min. For each PCR 2 l of 

lysate were used: 

 

PCR mix: PCR program: 

 

2.2 l 10X TNK buffer Time/Temp  

2l dNTP mix (Bioline) 5’ 94°C initialization 

}x35 

0.2l Primer (PSD-93intron)  45’’ 94°C denaturation 

0,2l Primer (PSD-93exon-n2) 1’ 61°C annealing 

0.2l Primer (PSD-93neo) 2’ 72°C elongation 

15l H2O 10’ 72°C extention 

0.2l MangoTaq Polymerase (Bioline)   

2l Lysate   

 

 

PCR products from wild-type and PSD-93 KO alleles have, respectively, 330 base 

pairs and 750 base pairs. Bands were separated by horizontal electrophoresis (120V for 

35 min in 1% sodium tetraborate agarose gel), and visualized using an UV-illuminator 

with INTAS imaging system.  

 

Primers: 

Primer (PSD-93intron): GTGCGGAATGTTGTTGTGCAGTGC 

Primer (PSD-93exon-n2): CACAACAGTCTCCAATATGGGTCGC 

Primer (PSD-93neo): GCCTTCTATCGACTTCTTGACGAG 
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Solutions:  

PBND buffer: 10mM Tris, 50mM KCl, 2.5mM MgCl2.6H2O, 0.1 mg/ml gelatine, 

0.45% (v/v) Nonident P40, 0.45% (v/v) Tween 20, 1.2 mg/ml proteinase K, pH 8.3. 

 

10X TNK buffer: 100mM Tris, 15mM MgCl2, 500mM KCl, 50mM NH4Cl. 

 

1% agarose sodium tetraborate gel: 1% agarose, 5mM sodium tetraborate 

decahydrate, 15l/L of ethidium bromide 1%.   

 

2.2.2 Genotyping of PSD-93/PSD-95 double-KO mice. 

PSD-93/PSD-95 double-KO mice used were generated in our animal facility by 

systematic crossing of PSD-93 KO and PSD-95 KO mice. PSD-93 genotype was defined 

as described in section 2.2.1. PSD-95 genotype was defined as described in section 2.2.1 

with the following modifications: 

 

PCR mix: PCR program: 

 

2.2 l 10X TNK buffer Time/Temp  

2l dNTP mix (Bioline) 5’ 94°C initialization 

}x35 

0.2l Primer 1 45’’ 94°C denaturation 

0,2l Primer 2 45’’ 55°C annealing 

15.2l H2O 1’ 72°C elongation 

0.2l MangoTaq Polymerase (Bioline) 10’ 72°C extention 

2l Lysate   

 

PCR products from wild-type and PSD-95 KO alleles have, respectively, 255 base 

pairs and 355 base pairs. Bands were separated by horizontal electrophoresis (120V for 

45 min in 1% sodium tetraborate agarose gel). 

Primers: 
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Primer 1: CAGGTGCTGCTGGAAGAAGG. 

Primer 2: CTACCCTGTGATCCAGAGCTG. 

 

2.3 Virus preparation and in vivo injections into the visual cortex of newborn mice. 

A shRNA construct to knockdown endogenous PSD-95 was prepared as described 

previously (Schlüter et al, 2006). The shRNA construct was under the control of a CAG 

promoter in an adeno-associated viral vector. Viruses were produced as described before 

(Suska et al, 2013).  

In order to further evaluate the role of endogenous PSD-95 on the developmental 

profile of silent synapses in PSD-93 KO mice, in vivo injections were carried out by Dr. 

Xiaojie Huang (European Neuroscience Institute Göttingen, Germany). Briefly, PSD-93 

KO newborn mice (PD0-PD2) were anesthetized on ice (10 min) and immobilized in a 

home made holder under the binocular. A glass capillary, filled with a high titer large-

scale virus solution containing the shRNA construct against endogenous PSD-95, was 

coupled to a Nanoject II microinjector. The thin skin of newborns allowed visual 

identification of the injection site. The tip of the capillary was placed just above the 

visual cortex, at a 90° angle, and a quick move of the microinjector pierced both the skin 

and the skull. The capillary tip was placed 1 mm deep in the brain and viruses were 

delivered to each hemisphere. After injection, the capillary was slowly removed and 

animals kept on a heating plate (30°C) until recovery from anesthesia. At the end of the 

procedure mice were returned to their home cages. At PD10-PD12 or PD21-PD30, acute 

brain slices were prepared for electrophysiological recordings. 

 

2.4 Preparation of acute brain slices. 

Coronal brain slices (400 μm), containing the primary visual cortex, were 

prepared from SC, EE, wild-type, PSD-93 KO and PSD-93/PSD-95 double-KO mice. 

Animals were deeply anesthetized with isoflurane and decapitated. The brain was rapidly 

removed in ice-cold sucrose cutting buffer (composition in µM: sucrose, 204; KCl, 2.5; 

MgSO4, 4; NaH2PO4, 1; NaHCO3, 26; D-(+)-glucose, 10; and CaCl2, 1, bubbled with 95% 

O2/5% CO2 [pH 7.4]). Slices were cut on a vibrating microtome (Leica VT-1200S), 
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recovered in artificial cerebrospinal fluid (aCSF): (composition in mM: NaCl, 119; KCl, 

2.5; MgSO4, 1.3; NaH2PO4, 1; NaHCO3, 26; D-(+)-glucose, 20; and CaCl2, 2.5, bubbled 

with 95% O2/5% CO2) at 35°C for 20-30min, and stored at room temperature until use 

(1–7 h).  

2.5 Electrophysiology. 

Whole-cell patch-clamp recordings were performed in layer 2/3 pyramidal 

neurons, visually identified with an infrared-differential interference contrast microscope 

(Zeiss, examiner D1). Acute slices were placed in a recording chamber continuously 

perfused with aCSF (29±2°C) at 1-2ml/min rate. In voltage-clamp experiments, patch 

pipettes (3–6 MΩ) were filled with (in mM): cesium gluconate, 120-130; HEPES, 20; 

EGTA, 0.4; NaCl, 2.8; TEACl, 5; MgATP, 4; NaGTP, 0.3; and adjusted to pH 7.2-7.3 

with CsOH (285-290 mOsm). For current-clamp experiments, patch pipettes were filled 

with (in mM): potassium gluconate, 116; KCl, 6; NaCl, 2; HEPES, 20; EGTA, 0.5; 

MgATP, 4; NaGTP, 0.3; adjusted to pH 7.2-3 with KOH (300 mOsm). 

Pipette capacitance was minimized in all recordings. Series and input resistance 

were continuously monitored and the liquid junction potential not corrected. Data were 

acquired at 10 kHz and filtered at 3 kHz using an ELC-03XS patch-clamp amplifier (npi, 

electronic instruments for the life sciences, Germany). For analysis, custom routines in 

Igor (Wavemetrics, Lake Oswego, OR) and Minianalysis (Synaptosoft, Fort Lee, NJ) s 

were used.  

 

2.5.1 Intrinsic excitability. 

Input resistance and resting membrane potential were measured immediately after 

obtaining current-clamp configuration.  Intrinsic excitability was assessed by measuring 

the number of action potentials triggered by current steps applied to the pipette (in pA): 

50, 75, 100, 125, 150, 175, 200, 225, 250, 275 and 300. Each current step had a fixed 

duration of 500 ms.  
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2.5.2 Basal synaptic transmission. 

Synaptic transmission was recorded with voltage-clamp electrophysiology. In all 

experiments aCSF contained 50M picrotoxin to block inhibition, unless otherwise 

specified. 

 

2.5.2.1 Spontaneous synaptic events. 

Spontaneous miniature Excitatory Post-Synaptic Currents (mEPSCs) were 

recorded in aCSF supplemented with TTX 1M. Membrane voltage was -70mV and, for 

each neuron, 400 mEPSCs were analysed. 

 

2.5.2.2 Synaptic events evoked by electrical stimulation. 

A concentric bipolar stimulating electrode was placed in layer IV and evoked 

synaptic events were recorded from layer II/III pyramidal cells. Excitatory and inhibitory 

postsynaptic currents (EPSCs and IPSCs, respectively) were evoked at a constant rate of 

0.2-0.12Hz.  

To estimate the percentage of silent synapses in visual cortex a “failure analysis of 

minimal EPSCs” was used. Minimal EPSCs were obtained by adjusting the electric 

stimulus to evoke a combination of postsynaptic responses and failures. For each 

experiment 50-60 sweeps at -60mV and +40mV were recorded. Percentage of silent 

synapses was calculated with the following equation: 1- LN(F-60)/LN(F+40). F-60 and F+40 

represent failure rates of minimal EPSCs at -60mv and +40mV, respectively.  

For the AMPA/NMDA ratio protocol, AMPAR EPSCs were calculated by 

averaging 30 EPSCs at −60mV and measuring the peak (0.5ms window) compared to the 

baseline (10ms window). NMDAR EPSCs were calculated by averaging 30 EPSCs at 

+40mV and measuring the amplitude (0.5ms window) 60ms after the EPSC peak to 

ensure the absence of AMPAR component.   

To obtain rectification index of AMPARs, 20 EPSCs were recorded at -70mV,   -

50mV, -30mV, -10mV, +10mV, +30mV and +50mV. NMDAR EPSCs were blocked by 

APV 50M and the internal solution contained spermine 100M. 
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Recording of asynchronous EPSCs (aEPSCs) was performed at -70mV in a 

modified aCSF containing SrCl2 8mM and no CaCl2.  

For GABA/AMPA ratio recordings, aCSF contained no picrotoxin and was 

supplemented with APV 50M, to block NMDAR EPSCs. AMPAR EPSCs were 

calculated by averaging the peak of 30 EPSCs at -70mV (equilibrium potential for 

GABAR IPSCs), and GABAR IPSCs were calculated by averaging the peak of 30 IPSCs 

at +5mV (reversal potential for AMPAR EPSCs).  

 

2.5.3 Synaptic plasticity. 

Long-Term Depression (LTD) of AMPAR EPSCs was induced in acute slices. 

After 10 minutes of stable baseline recording at -65 mV, LTD was triggered by pairing 

presynaptic stimulation with postsynaptic depolarization to -45mV (100ms). Pairings 

were at a constant rate of 1Hz for 5 min. A modified aCSF containing CaCl2 2.0mM, 

MgSO4 1.0mM and picrotoxin 10M was used. Cells with stable series and input 

resistance were considered for analysis.  

 

2.6 Statistical analysis. 

Intra and inter-group comparisons were analyzed by two-tailed t-test with 

Bonferroni correction. Spontaneous AMPAR miniature EPSCs were analyzed with 

Kormogorov-Smirnov test. Significance was set at p<0.05. Data is presented as mean ± 

Standard Error of the Mean (SEM).  
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3 Roles of PSD-93 in synaptic transmission 

3.1 Selective increase of AMPAR to NMDAR EPSCs in the absence of PSD-93. 

In order to evaluate whether endogenous PSD-93 plays a role governing the 

strength of basal glutamatergic neurotransmission at L4-L2/3 synapses, voltage-clamp 

electrophysiology was used to record AMPAR and NMDAR EPSCs in acute brain slices 

from PSD-93 KO mice.  

The ratio of AMPAR EPSCs to NMDAR EPSCs (AMPA/NMDA ratio) is a 

standard approach to detect postsynaptic changes that differentially modulate AMPAR 

and NMDAR function (Crair and Malenka, 1995; Carroll et al, 2001, Beique et al, 2006). 

In this context, PSD-93 deletion selectively increased AMPAR to NMDAR EPSCs at 

L4/L2-3 synapses (Fig 3.1; Control, 1.64 ± 0.19 [neurons/mice {n/m} = 11/3]; PSD-93 

KO, 2.57 ± 0.17 [n/m = 13/4]; p<0.05 t-test). 

 

 

Figure 3. 1: Increased AMPA/NMDA ratio in the absence of PSD -93. 

 
A: Sample average traces of AMPA/NMDA ratio recordings in Control and PSD-93 KO slices at PD21-30. 

AMPAR EPSC is the peak value at -60 mV; late NMDAR EPSC was recorded 60 ms after AMPAR peak, 

at +40 mV. B:  Summary bar graph of AMPA/NMDA ratio results (Control vs. PSD-93 KO, p<0.05 t-test). 

Inhibition was blocked by picrotoxin 50M. 
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Increased AMPA/NMDA ratio can be the result of increased AMPAR or 

decreased NMDAR function. Previous works reported that PSD-93 deletion decreases 

NMDAR cell-surface expression in spinal cord and forebrain (Tao et al, 2003; Liaw et al, 

2008), and reduces NMDAR-mediated toxicity in cortical cultures (Zhang et al, 2010). In 

contrast, AMPARs were unaffected. Authors from the above mentioned studies suggested 

that synaptic NMDARs might be decreased in the absence of PSD-93. An idea apparently 

supported by the increased AMPA/NMDA ratio observed in spinal cord cultures from 

PSD-93 KO mice (Tao et al, 2003).  

 

3.2 Roles of PSD-93 in regulating synaptic NMDARs. 

In order to analyze the integrity of synaptic NMDARs specifically in L4-L2/3 

synapses of visual cortex, two electrophysiological approaches were used: recording of 

unitary NMDAR EPSCs and pharmacological evaluation of NMDAR subunit 

composition. 

3.2.1 Normal unitary NMDAR EPSC amplitude in the absence of PSD-93. 

To obtain unitary L4-L2/3 NMDA responses (uEPSCs), a bipolar stimulating 

electrode was placed in L4 and L2/3 neurons were voltage-clamped at +40 mV. In each 

recording, stimulation intensity was slowly increased until the smallest evoked EPSC, 

here defined as uEPSC, could be identified. Once this condition was obtained, 60-100 

sweeps were recorded. The weak presynaptic stimulation caused a combination of 

postsynaptic responses (uEPSCs) and failures. Presumably, uEPSCs are putative single 

axon evoked EPSCs from axons in L4 to L2/3 pyramidal neurons (Fig. 3.2).  

NMDAR uEPSC recordings are technically demanding. Isolated NMDAR 

uEPSCs do not present a sharp onset, as observed for AMPAR uEPSCs (see section 3.7), 

rendering them more difficult to be identified. In addition, neurons voltage-clamped at 

+40 mV present lower input resistance, increased noise level and generally less stable 

baseline when compared to -70mV. Combination of the above mentioned factors 

complicate the recording and analysis of NMDAR uEPSCs. Therefore, special 

procedures were used to analyze the data. 
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Figure 3. 2: Normal NMDAR uEPSC in the absence of PSD-93. 

 

A:  Sample traces of NMDAR uEPSCs (top left) and synaptic failures (top right) from a Control slice. 

Average trace of identified NMDA uEPSCs evidencing an outward synaptic current (down left). Average 

trace of synaptic failures consisting of a straight line (down right).  AMPARs were blocked by NBQX 5M 

and inhibition blocked by picrotoxin 50MB: Summary bar graphs showing that PSD-93 deletion causes 

no change on NMDAR uEPSC amplitude (left; Control vs. PSD-93 KO, p>0.05, t-test), or NMDA uEPSC 

Success ratio (right; Control vs. PSD-93 KO, p>0.05, t-test). Data presented as mean ± SEM.  
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For each recording, synaptic responses and failures were manually separated by 

the experimenter during analysis. Sweeps containing responses and sweeps containing 

failures were averaged separately. The averaged trace of failures consists of a straight 

line; the averaged trace of responses is characterized by a small outward deflection, the 

NMDAR uEPSC (Fig 3.2A). Amplitudes of NMDAR uEPSCs were systematically 

measured 15-20 ms after extracellular stimulation. 

NMDAR uEPSC amplitude at L4-L2/3 synapses appears to be normal in the 

absence of PSD-93 (Fig 3.2B; Control, 13.08 pA ± 1.72 [n/m = 12/3]; PSD-93 KO, 12.77 

pA ± 1.28 [n/m = 13/3]; p = 0.88, t-test).  As mentioned, in uEPSC recordings a fraction 

of presynaptic stimulations fails to elicit detectable EPSCs. Success ratio was defined as 

the number of detected uEPSCs divided by the total number of presynaptic stimulations. 

Consistent with no change in NMDAR uEPSC amplitude, PSD-93 deletion did not affect 

the success ratio of evoked NMDAR uEPSCs (Fig. 3.2B; Control, 0.78 ± 0.03 [n/m = 

12/3]; PSD-93 KO, 0.84 ± 0.03 [n/m = 13/3], p>0.05, t-test). 

3.2.2 Normal NMDAR subunit composition in the absence of PSD-93. 

To further analyze the role of PSD-93 in regulating NMDAR neurotransmission, a 

pharmacological approach was used to evaluate NMDAR subunit composition in PSD-93 

KO slices.  

NMDARs are tetramers composed of four subunits (Nakanishi, 1992; Hollmann 

and Heinemann, 1994). Each NMDAR contains two GluN1 subunits combined with 

GluN2A and/or GluN2B subunits, resulting in the formation of di- or tri-heteromeric 

receptors. The GluN2B subunit is predominantly expressed in early postnatal 

development. However, during maturation, GluN2A subunits are gradually added to the 

synapses, exceeding the number of GluN2B subunits.  

Isolated NMDAR EPSCs were recorded at +40mV. After 5 min of stable baseline, 

GluN2B containing NMDARs were selectively blocked by wash in of Ifenprodil 3M. 

The fractional block of NMDAR EPSCs by ifenprodil was not affected by PSD-93 

deletion (Fig. 3.3; Control, 0.77 ± 0.08 [n/m = 9/3]; PSD-93 KO, 0.80 ± 0.05 [n/m = 6/3]; 

p = 0.69, t-test), suggesting normal NMDAR subunit composition in synapses of PSD-93 

KO slices.  

 



Results 

 

26 

 

 

Figure 3. 3: Normal GluN2B contribution to NMDAR EPSCs in the absence of PSD-93. 

 

A: Representative Control and PSD-93 KO NMDAR EPSCs before and 25 min after GluN2B blockade by 

Ifenprodil 3M. AMPARs and inhibition were continuously blocked by NBQX 5M and picrotoxin 50M, 

respectively. B: Time course of GluN2B blocking by Ifenprodil wash-in. C: Bar graphs showing NMDAR 

EPSC amplitude 15-25 min after Ifenprodil 3M normalized to the initial NMDAR EPSC amplitude. The 

fractional block is not affected by PSD-93 deletion (Control vs. PSD-93, p>0.05 t-test). Data presented as 

mean ± SEM.  

 

The results suggest that PSD-93 does not modulate basal NMDAR 

neurotransmission in L4-L2/3 synapses at PD21-30. The reduced NMDAR cell-surface 

expression reported by other groups might represent an age-dependent or selective 

modulation of extra synaptic NMDARs by PSD-93. The increased AMPA/NMDA ratio 

in PSD-93 KO might be the result of increased postsynaptic AMPAR function in L2/3 

neurons.  

 

3.3 Increased AMPAR mEPSC frequency, but normal mEPSC amplitude, in the 

absence of PSD-93. 

To further dissect the possible role of PSD-93 governing AMPAR 

neurotransmission, spontaneous AMPAR miniature EPSCs (mEPSCs) were recorded in 

1M TTX to block action potential evoked EPSCs. Each mEPSC is the response of 
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single synapses to a single spontaneously released vesicle (Fatt and Katz, 1952; Burgard 

and Hablitz, 1993).  

mEPSC amplitude is defined as quantal size: the postsynaptic response of single 

synapses to the release of single vesicles. mEPSC frequency represents the number of 

synapses activated in a given time interval. It is the combined result of release probability 

(Pr) and number of AMPAR-containing synapses.  

Pr is directly correlated with mEPSC frequency; in high Pr mEPSC frequency 

tends to be higher and in low Pr lower. Alternatively, high number of AMPAR-

containing synapses can lead to higher mEPSC frequency and low number of AMPAR- 

containing synapses to lower mEPSC frequency. 

Increased mEPSC frequency (represented as reduced average inter-event interval) 

was detected in the absence of PSD-93 (Fig. 3.4; Control, 0.28s ± 0.03 [n/m = 17/3]; 

PSD-93 KO, 0.19s ± 0.01 [n/m = 17/3]; p<0.05, Kolmogorov-Smirnov test). In contrast, 

mEPSC amplitude was not influenced (Fig 3.5; Control 14.67 pA ± 0.67 [n/m = 17/3]; 

PSD-93 KO, 14.02 pA ± 0.30 [n/m = 17/3]; p = 0.95; Kolmogorov-Smirnov test), 

excluding a role of PSD-93 in regulating quantal size.  

As commented earlier, changes in mEPSC frequency can be interpreted as 

changes in Pr or number of AMPAR-containing synapses. Therefore, both hypotheses 

were tested with electrophysiological approaches (for Pr see section 3.4; for AMPAR-

containing synapses see section 3.8). 
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Figure 3. 4: Increased AMPAR neurotransmission in the absence of PSD-93. 

 
A: sample traces of mEPSCs recorded from Control and PSD-93 KO slices. Action potentials were blocked 

by TTX 1M and inhibition blocked by picrotoxin 50M.  B: Summary bar graphs showing increased 

mEPSC frequency (reduced inter event interval), but normal mEPSC amplitude, in PSD-93 KO. C: 

Cumulative distribution of the data. For each neuron, 400 mEPSCs were recorded. Data presented as mean 

± SEM. 
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3.4 Normal release probability in the absence of PSD-93. 

3.4.1 Analysis of release probability with paired pulse ratio experiments. 

To unequivocally determine whether the increased AMPAR neurotransmission in 

PSD-93 KO was influenced by changes in release probability (Pr), Paired-Pulse Ratio 

(PPR) of AMPAR EPSCs was measured. PPR is a form of short-term plasticity 

classically thought to be inversely correlated with Pr at glutamatergic synapses (Dobrunz 

and Stevens, 1997; Zucker and Regehr, 2002). Pairs of AMPAR EPSCs were evoked 

with inter-stimulus intervals of 50 ms and 100 ms, PPR was the ratio of second to first 

EPSC peak amplitude.   

Paired pulse facilitation is observed when the second AMPAR EPSC is higher 

than the first. When an action potential reaches the presynaptic terminal, membrane 

depolarization activates voltage-gated calcium channels, which mediate calcium influx 

required for vesicle fusion and neurotransmitter release. In low Pr many vesicles are not 

released after an action potential and stay docked to the pre-synaptic membrane. If an 

additional action potential follows shortly after, residual calcium from the first action 

potential, which has not been totally cleared, will build up with calcium from the second 

action potential. The resulting increase in calcium leads to greater vesicle fusion and, 

therefore, higher postsynaptic response.   

Paired pulse depression is observed when the second AMPAR EPSC is lower than 

the first. In high Pr many vesicles are released when the terminal is depolarized by an 

action potential, depleting the readily-releasable pool. In this scenario, fewer vesicles will 

be left for a second action potential, and the magnitude of vesicle fusion will be lower 

even in the presence of increased calcium. 

Therefore, synapses with low initial Pr are likely to exhibit facilitation, and 

synapses with high initial Pr are likely to exhibit depression. In the present work, both 

Control and PSD-93 KO synapses showed paired pulse facilitation and were not different 

(Fig 3.5; Control, 1.20 ± 0.07 at 50ms, 1.05 ± 0.04 at 100ms, [n/m = 10/3]; PSD-93 KO, 

1.15 ± 0.09 at 50ms, 1.06 ± 0.07 at 100ms, [n/m = 10/5]; Control vs. PSD-93 KO, p = 

0.66 at 50ms and p = 0.50 at 100ms, t-test). The results suggest normal Pr in the absence 

of PSD-93. 
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Figure 3. 5: Normal Paired pulse ratio in the absence of PSD-93. 

 
A Average traces showing paired AMPAR EPSCs (50 and 100 ms apart), for both Control and PSD-93 KO 

slices. B The modest paired pulse facilitation is not affected by PSD-93 deletion (Control vs. PSD-93 KO, 

p>0.05 at 50ms and 100ms, t-test). Data presented as mean ± SEM. 

 

3.4.2 Analysis of release probability with MK-801. 

Despite its common use to evaluate Pr, PPR can be potentially affected by 

postsynaptic AMPAR desensitization (Heine et al, 2008) and by changes in presynaptic 

calcium channels during repetitive stimulation (Xu et al, 2007). Therefore, Pr was 

measured more directly using a standard assay: the rate of blockade of NMDAR EPSCs 

by MK-801, an irreversible open-channel blocker (Hessler et al, 1993, Rosenmund et al, 

1993). This approach is AMPAR-independent and does not involve repetitive 

stimulations that cause changes in presynaptic calcium channels. Furthermore, it is 

suitable to the present study as NMDARs were not affected by PSD-93 deletion.  

In the presence of MK-801, presynaptic stimulation leads to NMDAR blockade 

only at synapses which release a vesicle. MK-801 is an irreversible blocker, therefore 

continuous stimulation leads to a progressive decay in NMDAR EPSC amplitude. In high 

Pr, more vesicles are released following presynaptic stimulation; more NMDARs are 

activated and blocked leading to faster decay of NMDAR EPSCs. In low Pr, fewer 

vesicles are released following presynaptic stimulation, less NMDARs are activated and 

blocked leading to slower decay of NMDAR EPSCs. Therefore, the time constant of 

NMDAR EPSC decay is inversely related to Pr.  
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The progressive blockade of NMDAR by MK-801 5M was not affected by PSD-

93 deletion (Fig. 3.6), consistent with results from PPR experiments. Single exponential 

fit showed no difference in decay constant between Control and PSD-93 KO (Control 

10.51 ± 0.94 [n/m = 10/3]; PSD-93 KO,  = 10.52 ± 1.42 [n/m = 11/3]; p>0.05). 

The results suggest that Pr is not affected by PSD-93 deletion. Therefore, changes 

in Pr are unlikely to influence AMPAR neurotransmission in PSD-93 KO slices, 

reinforcing a specific postsynaptic role of PSD-93.  

 

 

Figure 3. 6: PSD-93 deletion does not affect NMDAR EPSC decay in the presence of MK-801. 

 
A: sample NMDAR EPSCs from a control slice recorded at the 1

st
, 10

th
, 20

th
, 30

th
, and 40

th
 consecutive 

presynaptic stimulation, respectively. Note the progressive decay of synaptic responses in the presence of 

MK-801 5M. AMPARs were blocked by NBQX 5M and inhibition by picrotoxin 50M. B: Summary 

graph showing no change in NMDAR EPSC decay in the absence of PSD-93. Data presented as mean ± 

SEM.  
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3.5 Normal quantal size at L4-L2/3 synapses in the absence of PSD-93. 

Analyses of spontaneous mEPSCs are widely used to evaluate the integrity of 

glutamatergic neurotransmission in brain slices. However, mEPSCs lack specificity, as 

they can originate from any synaptic connection into the recorded neuron.  

To record quantal responses specifically at L4-L2/3 synapses, voltage-clamp 

experiments were performed in a modified aCSF containing strontium 8mM and no 

calcium. In the presence of calcium, action potentials cause synchronous release of 

synaptic vesicles by presynaptic terminals. When calcium is replaced with strontium 

synchronous release is suppressed. In this scenario, presynaptic stimulation leads to a 

prolonged asynchronous release of synaptic vesicles (Fig 3.7A).  

 

 

Figure 3. 7: Normal quantal size at L4-L2/3 synapses in the absence of PSD-93. 

 
A: Representative trace of an aEPSC experiment, vertical dashed lines define the time window in which 

aEPSCs were measured (200-300 ms after presynaptic stimulation). At least 50 aEPSCs were recorded per 

neuron. Extracellular calcium was replaced with strontium 8mM and inhibition blocked by picrotoxin 50 

mM. B: Summary bar graphs showing no effect of PSD-93 deletion on aEPSC amplitude (Control vs. PSD-

93 KO, p>0.05, t-test). Data presented as mean ± SEM. 

 

In strontium, EPSCs evoked by presynaptic stimulation are characterized as 

discrete asynchronous mEPSC-like responses (aEPSCs). Each aEPSC is the response to a 

single synaptic vesicle released from the stimulated presynaptic afferent. Thus, the 

quantal size of AMPARs, specifically at L4-L2/3 synapses, can be measured in relative 

isolation from other synaptic inputs.  
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aEPSCs were identical in Control and PSD-93 KO slices (Fig. 3.7; Control, 14.15 

pA ± 1.07 [n/m = 6/2]; PSD-93 KO, 13.84 ± 0.40 [n/m = 8/2]; p = 0.94, t-test). Therefore, 

in agreement with mEPSC experiments, PSD-93 deletion does not alter quantal size at 

L4-L2/3 synapses. 

 

3.6 Normal AMPAR current-voltage relationship in the absence of PSD-93. 

To further analyze the role of PSD-93 in regulating AMPAR neurotransmission, a 

rectification index experiment was used to evaluate AMPAR subunit composition in 

PSD-93 KO slices. 

AMPARs are tetramers of the subunits GluA1-GluA4. The different subunits bind 

to distinct interacting partners, differentially modulate AMPAR trafficking and control 

the ionic conductance of single-channels (Malinow and Malenka, 2002; Bredt and Nicoll, 

2003). GluA2 subunits render AMPARs calcium impermeable.  In contrast, GluA2-

lacking AMPARs are permeable to calcium and pass less current at positive potentials. 

As a consequence of these biophysical differences, GluA2-containing AMPARs present 

linear current-voltage relationship. GluA2-lacking AMPARs present inward rectification 

(reduced current at positive potentials) due to voltage-dependent block by intracellular 

polyamines. Thus, GluA2-containing AMPAR EPSCs at positive membrane potentials 

are higher than GluA2-lacking AMPAR EPSCs. Consequently, rectification index 

(AMPAR EPSCs at -70mV normalized to AMPAR EPSCs at +50mV) is lower for 

GluA2-containing AMPARs.  

The AMPAR rectification index was not affected by PSD-93 deletion (Fig. 3.8; 

Control, 2.13 ± 0.29 [n/m = 7/2]; PSD-93 KO, 2.04 ± 0.25 [n/m = 5/2]; p = 0.82, t-test), 

suggesting no major role for PSD-93 in regulating AMPAR subunit composition in 

cortical synapses.  

 



Results 

 

34 

 

 

Figure 3. 8: Normal AMPAR rectification index in the absence of PSD-93. 

 
A: Summary graph showing current -voltage (I - Vh) relationship of isolated AMPAR EPSCs from Control 

and PSD-93 KO slices. NMDARs were blocked by APV 50M, inhibition blocked by picrotoxin 50M 

and internal solution supplemented with spermine 100M. B: Samples traces of AMPAR EPSCs recorded 

at -70 mV (inward current) and +50 mV (outward current) from Control and PSD-93 KO slices. C: 

rectification index is AMPAR amplitude at -70 mV normalized to AMPAR amplitude at +50 mV. 

Summary bar graphs showing normal rectification index in the absence of PSD-93 (Control vs. PSD-93 KO, 

p>0.05, t-test).  Data presented as mean ± SEM. 

 

3.7 Increased AMPAR unitary EPSCs in the absence of PSD-93. 

In order to directly measure the strength of AMPAR neurotransmission at L4-

L2/3 connections, unitary AMPAR responses (uEPSCs) were recorded. A bipolar 

stimulating electrode was placed in L4 and L2/3 neurons were voltage-clamped at -70 

mV. In each recording, stimulation intensity was slowly increased until the smallest 

evoked EPSC, here defined as uEPSC, could be identified. Once this condition was 

obtained, 50 sweeps were recorded at 0.17Hz. The weak presynaptic stimulation leads to 

a combination of postsynaptic responses (uEPSCs) and failures. Presumably, uEPSCs are 

putative single axon evoked EPSCs from axons in L4 to L2/3 pyramidal neurons. The 

monosynaptic nature of these responses is evidenced by the short and constant delay 

between presynaptic stimulation and uEPSC peak amplitude, at the range of 5-7 ms (fig 

3.9A).  
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Figure 3. 9 Increased AMPAR uEPSC in the absence of PSD-93. 

 

A: sample consecutive traces of AMPAR uEPSCs (black) and synaptic failures (gray) in Control and PSD-

93 KO slices. Extracellular stimulation was applied as indicated in red. AMPAR uEPSCs peaks were 

within 5 to 8 ms after stimulation. Recording was at -70 mV and inhibition blocked by picrotoxin 50M.  

B: Analysis of AMPAR uEPSCs (black) and synaptic failures (gray) in a Control slice. C: Summary bar 

graphs showing increased AMPAR eEPSC (Control vs. PSD-93 KO, p<0.05, t-test), and increased success 

ratio (Control vs. PSD-93 KO, p<0.05, t -test) in PSD-93 KO slices. Data presented as mean ± SEM. 

 

Consistent with the increased AMPA/NMDA ratio and no change in NMDAR 

uEPSCs, PSD-93 KO slices presented increased AMPAR uEPSC amplitude (Fig 3.9; 

Control, 28.27 pA ± 1.27 [n/m = 19/4]; PSD-93 KO, 40.85 pA ± 3.33 [n/m = 21/4]; 

p<0.05, t-test). As mentioned, in uEPSC recordings a fraction of presynaptic stimulations 

fail to elicit detectable EPSCs. The success ratio was defined as number of detected 

uEPSCs divided by total number of presynaptic stimulations. In uEPSC experiments, a 

modest increase of success ratio was observed in PSD-93 KO when compared to Control 

slices (Fig. 3.9; Control, 0.49 ± 0.03 [n/m = 19/4]; PSD-93 KO, 0.60 ± 0.04 [n/m = 21/4]; 

p<0.05; t-test).  
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The present data supports the notion that postsynaptic changes at L4-L2/3 

connections characterize the increased AMPAR neurotransmission in PSD-93 KO at PD-

21-30. This postsynaptic change is not caused by modifications is the number or 

conductance of AMPAR at existing synapses. Thus, PSD-93 deletion might cause an 

increase in the number of AMPAR-containing synapses in L4-L2/3 connections. 

 

3.8 Silent synapses in visual cortex. 

In the brain, some synapses contain functional postsynaptic NMDARs but not 

AMPARs. At resting membrane potential, neurotransmitter release fails to elicit EPSCs 

in these synapses and for this reason they are considered to be silent (Isaac et al, 1995; 

Liao et al, 1995). These AMPAR-lacking silent synapses are suggested to be immature 

synapses; their relative number tends to decrease as AMPARs are gradually added to 

postsynaptic sites during normal brain development (Rumpel et al, 1998).   

In order to evaluate whether silent synapses could be detected in L4-L2/3 

connections of mouse visual cortex, a failure analysis of minimal EPSCs was performed 

in slices from mice at PD3-5, PD10-12 just before eye-opening and PD21-30 at the 

critical period for cortical plasticity. L2/3 pyramidal neurons were voltage-clamped and 

minimal EPSCs were obtained by adjusting extracellular stimulation to evoke 

postsynaptic responses and failures at L4-L2/3 synapses (Fig 3.10A-B). Percentage of 

silent synapses was estimated by comparing the failure rate at -60 mV and +40mV (Liao 

et al, 1995; Huang et al 2009).  

The percentage of silent synapses gradually decreased during normal development 

of L4-L2/3 connections (Fig. 3.10C; Control PD3-5, 80.0% ± 5.2 [n/m = 13/3]; Control 

PD10-12, 58.6% ± 4.3 [n/m = 13/3]; Control PD21-30, 23.8% ± 5.7 [n/m = 18/6]), in 

agreement with the general assumption that they turn into mature transmitting synapses 

during development (Rumpel et al, 1998).  
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Figure 3. 10: Silent synapses in visual cortex. 

 
A-B: sample traces of minimal EPSCs recorded at -60mV and +40 mV in two different ages (at PD3-5 [A] 

and PD21-30 [B]). Corresponding EPSC analysis is under the sample traces (synaptic responses are black 

and failures gray). Traces in A show no synaptic response at -60 mV; therefore in this experiment 100% 

synapses were silent. C: Percentage of silent synapses at different ages (Control PD3-5 vs. Control PD10-

12, p<0.05; Control PD10-12 vs. Control PD21-30, p<0.05; Control PD3-5 vs. Control PD21-30, p<0.05, t-

test with Bonferroni correction). Inhibition was continuously blocked by picrotoxin 50M. Data presented 

as mean ± SEM. 

 

3.9 PSD-93 and PSD-95 present opposite roles in synaptic maturation. 

In order to analyze whether PSD-93 increases AMPAR neurotransmission by 

changing the fraction of silent synapses, failure analysis of minimal EPSCs was 

additionally performed in PSD-93 KO slices.  

Silent synapses were not affected by PSD-93 deletion at PD3-5 (Fig 3.11; Control 

PD3-5, 80.0% ± 5.2 [n/m = 13/3]; PSD-93 KO PD3-5 85.3% ± 3.7 [n/m = 11/4]; p=0.44, 
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t-test).  However, when compared to Control, PSD-93 deletion reduced the percentage of 

silent synapses both at PD10-12 and PD21-30. (Fig. 3.11; Control PD10-12, 58.6% ± 4.3 

[n/m = 13/3]; PSD-93 KO PD10-12, 30.5% ± 6.1 [n/m = 22/5]; p<0.05, t–test. Control 

PD21-30, 23.8% ± 5.7 [n/m = 18/6]; PSD-93 KO PD21-30, 1.0% ± 6.4 [n/m = 12/6]; 

p<0.05, t-test). Thus, PSD-93-lacking synapses appear to present accelerated synaptic 

maturation. In addition, unaffected silent synapses at PD3-5 is consistent with the 

absence of PSD-93 in this developmental stage (Sans et al, 2000) 

Previous work on hippocampus suggested that PSD-93 and PSD-95 appear to 

have redundant roles on basal glutamateric neurotransmission (Elias et al, 2006). 

However, PSD-95 deletion is strongly related to reductions in AMPAR 

neurotransmission and, in the present work, PSD-93 deletion had the opposite effect, 

increasing AMPAR neurotransmission. Thus, in order to better clarify this scenario, silent 

synapses were measured in PSD-95 KO mice, at PD10-12 and PD21-20.  

PSD-95 KO and Control slices exhibited similar percentage of silent synapses at 

PD10-12 (Fig. 3.11; Control PD10-12, 58.6% ± 4.3 [n/m = 13/3]; PSD-95 KO PD10-12, 

55.3% ± 3.2 [n/m = 10/3]; p=0.57, t-test). However, the percentage of silent synapses 

remained high in PSD-95 KO at PD21-30 (Fig. 3.11; Control PD21-30, 23.8% ± 5.7 [n/m 

= 18/6]; PSD-95 KO PD21-30, 48.1% ± 5.1 [n/m = 8/3]; p<0.05, t-test). This suggests 

that normal synaptic maturation failed to occur in PSD-95 KO after PD10-12, as about 

50% of synapses remained silent at PD21-30. 

The results suggest that PSD-93 and PSD-95 might play opposite roles governing 

silent synapses in visual cortex. PSD-93 deletion caused accelerated synaptic maturation, 

characterized by reduced fraction of silent synapses at PD10-12 and PD21-30. In contrast, 

PSD-95 deletion resulted in reduced synaptic maturation and increased fraction of silent 

synapses when compared to Control at PD21-30. These opposite roles were unexpected; 

therefore, to better clarify this scenario, silent synapses were additionally measured in the 

absence of both PSD-93 and PSD-95.  
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Figure 3. 11: PSD-93 and PSD-95 have opposite roles in synaptic maturation. 

 
A: PSD-93 and PSD-95 play opposite roles in regulating maturation of silent synapses. (Control PD10-12 

vs. PSD-93 KO PD10-12, p<0.05; Control PD21-30 vs. PSD-93 KO PD21-30, p<0.05; Control PD21-30 vs. 

PSD-95 KO PD21-30, p<0.05, t-test with Bonferroni correction). Data presented as mean ± SEM. PSD-95 

KO data was obtained by Xiaojie Huang. PSD-93/95 KO data was obtained by Xiaojie Huang and Plinio 

Favaro.  

 

Effective deletion of PSD-93 and PSD-95 was obtained with two different 

approaches. First, silent synapses were recorded in slices from PSD-93/95 double KO 

mice at PD3-5 (n/m =5/1), PD10-12 (n/m = 5/1) and PD21-30 (m/n = 13/3). A second 

approach involved viral-mediated knock-down of endogenous PSD-95 in PSD-93 KO 

mice. A viral vector containing shRNA against PSD-95 was injected into the visual 
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cortex of PSD-93 KO newborn mice. shRNA expression was coupled to GFP, therefore 

infected neurons lacking both PSD-93 and PSD-95 presented fluorescence and were 

visually identified in acute brain slices at PD10-12 (n/m = 23/4) and PD21-30 (n/m = 

16/4). Results obtained with the two different approaches were similar and therefore 

combined. 

Similarly to PSD-93 KO, there was a tendency towards reduction of silent 

synapses in PSD-93/95 KO when compared to Control at PD10-12 (Fig. 3.11; Control 

PD10-12, 58.6% ± 4.3 [n/m = 13/3]; PSD-93/95 KO PD10-12, 42.0% ± 5.0 [n/m = 28/6]; 

p=0.043, t-test), however the difference was rejected by posthoc Bonferroni correction. 

At PD21-30, PSD-93 KOs have less silent synapses and PSD-95 KOs more silent 

synapses. In contrast, PSD-93/95 double KOs remained indistinguishable from Control 

(Fig. 3.11; Control PD21-30, 23.8% ± 5.7 [n/m = 18/6]; PSD-93/95 KO PD21-30, 32.6% 

± 4.6 [n/m = 29/7]; p=0.31, t-test).  

Results obtained with PSD-93/95 double KO support the unexpected idea that 

PSD-93 and PSD-95 play opposite roles governing maturation of cortical synapses. The 

increased percentage of silent synapses in the absence of PSD-95 is consistent with 

previous works, in which the strength of AMPAR neurotransmission and the relative 

number of silent synapses are modulated by bidirectional changes in PSD-95 levels (Stein 

et al, 2003; Beique and Andrade, 2003; Beique et al, 2006). 

Concerning PSD-93, less information was available. The present data supports the 

notion that accelerated synaptic maturation, evidenced by precocious unsilencing of silent 

synapses at L4-L2/3 connections, leads to increased AMPAR neurotransmission in PSD-

93 KO at PD-21-30. Furthermore, a novel and unexpected scenario appears to emerge, 

with PSD-93 presenting an opposite role, when compared to PSD-95, on basal 

glutamatergic neurotransmission. 

 

3.10 Normal membrane properties in the absence of PSD-93. 

PSD-93 KO synapses presented increased AMPAR neurotransmission. In juvenile 

rodents, changes in strength of excitatory synapses can trigger homeostatic changes in 

excitability of cortical pyramidal neurons (Maffei and Turrigiano, 2008). Additionally, 

PSD-93 is known to interact with Kv4.2, an A-type K
+
 channel widely expressed in soma, 



Results 

 

41 

 

dendrites and spines of inhibitory and excitatory cortical neurons (Kim and Sheng, 2004; 

Burkhalter et al, 2006). Kv4.2 channels are suggested to play specific roles in the 

generation of action potentials and regulation of repetitive firing. Indeed, increased cell-

surface expression of Kv4.2 leads to reduced neuronal excitability in hippocampus 

(Varga et al, 2004). Thus, PSD-93 can potentially affect neuronal excitability directly, by 

interacting with Kv4.2 channels; and indirectly, by modulating excitatory synaptic 

transmission and eliciting compensatory changes in intrinsic excitability. 

To probe PSD-93 roles in neuronal excitability, whole-cell current-clamp 

electrophysiology was used. Resting membrane potential and input resistance were 

measured just after obtaining the current-clamp configuration. Intrinsic excitability was 

assessed by measuring the number of action potentials triggered by different levels of 

depolarizing currents (Fig. 3.12).  

 

 

 

Figure 3. 12: Normal intrinsic excitability in the absence of PSD-93. 

 

A: Example firing in response to depolarizing current (250mA/500ms) for a Control and a PSD-93 KO 

pyramidal neuron. AMPARs and NMDARs were blocked by NBQX 5M and APV 50M, respectively. 

Inhibition was not blocked as it causes unstable current-clamp recordings. B: Number of actions potentials 

versus current intensities for Control and PSD-93 KO, showing no influence of PSD-93 deletion on induced 

cell-firing. (Control vs. PSD-93 KO, p>0.05 for all current intensities, t-test). Data presented as mean ± 

SEM. 
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PSD-93 deletion had no effect on resting membrane potential (Control, -74.85mV 

± 1.60 [n/m = 13/2]; PSD-93 KO, -75.14mV ± 1.22 [n/m = 22/2]; p=0.93, t-test), input 

resistance (Control, 103.61MOhm ± 8.15 [n/m = 13/2]; PSD-93 KO, 116.76MOhm ± 

7.16 [n/m = 22/2]; p=0.24, t-test), or intrinsic excitability (Fig 3.12). 

 

3.11 Normal GABA/AMPA ratio in the absence of PSD-93. 

Inhibitory GABAergic interneurons are key elements regulating the activity of 

local cortical circuits. As an example, by reducing the relative levels of intracortical 

inhibition it is possible to promote plasticity within the visual cortex (Sales et al, 2007; 

Greifzu et al, 2014).  Glutamatergic input is a crucial factor determining the activity of 

inhibitory interneurons, which are known to express not only PSD-93, but also PSD-95 

and SAP-97 (Akgul et al, 2010).  

GABAergic inhibitory postsynaptic currents (GABAA IPSCs) were reliably 

evoked on L2/3 pyramidal neurons by extracellular stimulation delivered to L4. Isolated 

GABAA IPSCs were recorded at +5mV (reversal potential for AMPARs), and AMPAR 

EPSCs were recorded at -70 mV (reversal potential for GABAA). NMDARs were 

continuously blocked by APV 50M. GABA/AMPA ratio is defined as GABAA IPSC 

amplitude normalized to AMPAR EPSC amplitude.  

Electrical stimulation at L4 evokes GABAA IPSCs at L2/3 neurons via two 

different mechanisms: 1) monosynaptically, by direct stimulation of GABAergic axons; 

and 2) bisynaptically, by stimulating glutamate release on GABAergic interneurons, 

inducing consequent firing and GABA release at the L2/3 target neuron.  

In the present recording configuration it is estimated that, on average, 70% of 

GABAR IPSCs are blocked by AMPAR antagonist NBQX, suggesting most of GABAA 

IPSCs to be evoked bisynaptically (Huang, 2014). Therefore, GABAA IPSCs recorded at 

L2/3 pyramidal neurons strongly relies on the integrity of AMPAR neurotransmission at 

inhibitory interneurons. 

PSD-93 deletion caused increased AMPAR neurotransmission in L4-L2/3 

synapses at PD21-30. In case PSD-93 has a specific role in those synapses, but not in 

excitatory inputs to inhibitory interneurons, a decrease in GABA/AMPA ratio would be 

expected.  
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However, the GABA/AMPA ratio was not affected by PSD-93 deletion (Fig. 

3.13; Control, 2.07 ± 0.17 [n/m = 18/3]; PSD-93 KO, 2.20 ± 0.18 [n/m = 22/3]; p = 0.60 

t-test). 

 

 

Figure 3. 13: Normal GABA/AMPA ratio in the absence of PSD-93. 

 

A: representative average AMPAR EPSCs recorded at -70mV (reversal potential of GABAR), and average 

GABAR IPSCs recorded at +5mV (reversal potential of AMPAR).  NMDARs were blocked by APV 50M. 

B: Summary bar graph showing normal GABA/AMPA ratio in the absence of PSD-93 (Control vs. PSD-93 

KO, p>0.05 t-test). Data presented as mean ± SEM.  

 

In theory, the maintenance of normal GABA/AMPA ratio in PSD-93 KO can be 

accomplished by a multiplicity of different mechanisms. For example, PSD-93 deletion 

can result in increased AMPAR neurotransmission also in inhibitory neurons, an idea 

reinforced by the expression of PSD-93 in this cell type. Alternatively, GABAergic input 

could be homeostatically up regulated in order to maintain a physiological level of 

intracortical inhibition, when compared to excitation. This homeostatic up regulation can 

be expressed as increases in the excitability of interneurons, number of GABAergic 

synapses, release of GABA and others. Additional experiments with direct comparison of 

GABAA IPSCs and NMDA EPSCs will further confirm whether PSD-93 deletion affects 

GABAergic neurotransmission. 
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3.12 Impaired LTD in the absence of PSD-93. 

Synaptic plasticity is the ability of synapses to strengthen or weaken in response 

to changes in their activity (Hughes, 1958). Several mechanisms are involved, including 

changes in the efficiency of postsynaptic response or alterations in neurotransmitter 

release. Long-term potentiation (LTP) and long-term depression (LTD) refer to synaptic 

strengthening and weakening, respectively. PSD-93 deletion has no effect on basal 

NMDAR neurotransmission in hippocampus; however it impairs NMDAR-dependent 

LTP in this that brain region (Carlisle et al, 2008). Therefore, to check whether PSD-93 

also plays a role in visual cortex, NMDAR-dependent synaptic plasticity was evaluated in 

L4-L2/3 synapses of PSD-93 KO slices at PD21-30.  

Previous work on acute slices show that Low Frequency induced LTD at L4-L2/3 

synapses relies on the integrity of postsynaptic NMDARs (Crozier et al, 2007).  

In Control slices LTD was successfully induced by pairing postsynaptic 

depolarization to -45 mV (100 ms) with presynaptic stimulation of L4/L2-3 synapses at 

1Hz for 5 min (Fig. 3.14 and 3.15; Control 63.9% ± 6.1 [n/m = 7/5]). Consistent with 

previous reports, L4-L2/3 LTD relied on NMDARs, as LTD could not be reliably 

induced in the presence of NMDAR blocker APV 100M (Fig 3.14B-F; Control + APV, 

90.5% ± 8.4 [n/m = 4/6]).  

In thalamocortical and hippocampus synapses, NMDAR-dependent LTD requires 

PKA activation and clathrin-dependent endocytosis of postsynaptic AMPARs. Thus, 

synaptic weakening is achieved through reduced postsynaptic response to glutamate. In 

L4-L2/3 synapses, NMDAR-dependent LTD is blocked by CB1-cannabinoid receptor 

(CB1R) antagonists but not by inhibitors of PKA or clathrin-dependent AMPAR 

endocytosis (Crozier et al, 2007). It is suggested that endocannabinoids released by the 

postsynaptic neuron, in a calcium dependent manner, diffuse along the synaptic cleft to 

activate presynaptic CB1Rs and induce LTD (Sjöstrom et al, 2003). Thus, synaptic 

weakening is proposed to be achieved through reduction in glutamate release.  

Again, consistent with previous reports, blockade of CB1Rs by AM-251 2M 

prevented LTD induction in acute slices (Fig 3.14C-F; Control + AM-251, 93.3% ± 7.5 

[n/m = 4/2]).  
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Furthermore, the LTD protocol induced AMPAR EPSC potentiation, instead of 

depression, in PSD-93 KO slices (Fig 3.14D-F; PSD-93 KO, 146% ± 5.8 [n/m = 4/4]). 

Experiments performed in the presence of APV 100M showed that NMDAR 

antagonism blocks the potentiation caused by PSD-93 deletion (Fig 3.14D-F; PSD-93 KO 

+ APV, 94.6 ± 10.1 [n/m = 5/3]).  

PSD-93 does not regulate basal NMDAR neurotransmission; however it plays a 

key role in regulating NMDAR-dependent synaptic plasticity at L4-L2/3 synapses. This 

result evidences a function of PSD-93 in regulating NMDAR-associated downstream 

signaling pathways which play a physiological role in modulating the strength of 

glutamatergic synapses through synaptic plasticity mechanisms. 
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Figure 3. 14 (previous page and this page): Impaired LTD in PSD-93 KO mice. 

 
 

A: scheme of pairing protocol to induce LTD, 

postsynaptic depolarization to -45 mV was 

paired with presynaptic stimulation at 1 Hz for 

5 min. LTD was induced after 10 min of stable 

baseline recording. B-D: Summary traces of 

LTD in Control (B-D, black circles), Control + 

NMDAR blocker APV 100M (B, red circles); 

Control + CB1R blocker AM-251 2M (C, 

green circles); PSD-93 KO (D, orange circles), 

and PSD-93 KO + NMDAR blocker APV 

100M (D, purple circles). E: Cumulative 

distribution of EPSC amplitudes 25-30 min 

after LTD induction normalized to initial EPSC 

amplitude. F: Summary bar graph showing EPSC amplitudes 25-30 min after LTD induction normalized to 

initial EPSC amplitude for each group (Control vs. APV, p<0.05; Control vs. AM251, p<0.05; Control vs. 

PSD-93 KO, p<0.05; Control vs. PSD-93 KO + APV, p<0.05; PSD-93 KO vs. APV, p<0.05; PSD-93 KO 

vs. AM251; p<0.05; PSD-93 KO vs. PSD-93 KO + APV, p<0.05; t-test). Data presented as mean ± SEM.  
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4 Environmental enrichment preserves juvenile-like levels of 

intracortical inhibition throughout adulthood.  

 

In visual cortex, ocular dominance plasticity (ODP), induced by monocular 

deprivation (MD), declines during development and is absent in adulthood, after PD110. 

However, by raising mice in an enriched environment (EE) with enhanced social, 

physical and cognitive stimulation, ODP was preserved and reliably induced beyond 

PD130 (Greifzu et al, 2014).  

In order to dissect the synaptic changes underlying preserved brain plasticity in 

EE at PD>130, brain slices from mice raised in EE and standard cages (SC) were 

prepared. Extracellular stimulation was delivered at L4 and synaptic responses (EPSCs 

and IPSCs) recorded from L2/3 neurons using the voltage-clamp configuration. 

 

4.1 Normal AMPA/NMDA ratio in EE mice. 

To evaluate whether EE affects basal glutamatergic neurotransmission, AMPAR 

EPSCs were recorded at -60mV and late NMDAR EPSCs were recorded at +40mV (Fig. 

4.1A).  In agreement with the idea that AMPARs are gradually added to postsynaptic 

sites during development, there is a selective increase in AMPAR EPSCs to NMDAR 

EPSCs in adult SC mice at PD>130 (SC) compared to juvenile SC mice at PD21-30 (SC 

juvenile). EE mice at PD>130 showed similar AMPA/NMDA ratio when compared to 

age-matched SC mice. (Fig. 4.1A-B; SC juvenile, 1.61 ± 0.15 [n/m = 13/4]; SC, 2.37 ± 

0.29 [n/m = 21/5]; EE, 2.37 ± 0.19 [n/m = 17/9]).  

The results suggest that increases in AMPAR EPSCs to NMDAR EPSCs at 

excitatory synapses are a signature of normal brain development. Both EE and SC 

synapses present similar AMPA/NMDA ratio at PD<130, indicating that changes in basal 

glutamatergic neurotransmission do not contribute to the preserved brain plasticity of EE 

mice.  
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Figure 4. 1: Environmental enrichment preserves juvenile-like levels of intracortical inhibition 

throughout adulthood. 
 

A: Sample average traces of AMPA/NMDA ratio recordings in slices from SC, EE and SC juvenile mice. 

AMPAR EPSC is the peak value at -60 mV; late NMDAR EPSC was recorded 60 ms after AMPAR peak, 

at +40 mV. Inhibition was blocked by picrotoxin 50M. B: Summary bar graph of AMPA/NMDA ratio 

results (SC vs. SC juvenile, p<0.05; EE vs. SC juvenile, P<0.01; t-test). C: representative average AMPAR 

EPSCs recorded at -70mV (reversal potential of GABAA), and average GABAA IPSCs recorded at +5mV 

(reversal potential of AMPAR).  NMDARs were blocked by APV 50M. D: Summary bar graph of 

GABA/AMPA ratio results (SC vs. SC juvenile, p<0.05; SC vs. EE, p<0.01; t-test). Data presented as mean 

± SEM.  

 

 

4.2 Juvenile-like levels of inhibition in adult EE mice.  

Inhibitory GABAergic interneurons are key elements regulating the activity of 

local cortical circuits. Consistent with this notion, the preserved cortical plasticity 
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observed in EE mice at PD>130 can be partially abolished by boosting GABAergic 

neurotransmission with diazepam (Greifzu et al, 2014), suggesting intracortical inhibition 

to be a key factor modulating this form of brain plasticity. 

In order to evaluate inhibitory tone directly, isolated GABAA IPSCs were 

recorded at +5mV (reversal potential for AMPARs), and AMPAR EPSCs were recorded 

at -70 mV (reversal potential for GABAA). NMDARs were continuously blocked by APV 

50M. GABA/AMPA ratio was defined as GABAA IPSC amplitude normalized to 

AMPAR EPSC amplitude.  

The GABA/AMPA ratio was robustly increased in adult SC mice at PD>130 (SC) 

when compared to juvenile SC mice at PD21-30 (SC juvenile), suggesting that, during 

normal development, intracortical inhibition increases in a higher rate when compared to 

AMPAR neurotransmission. In adult EE mice at PD>130 the GABA/AMPA ratio was 

indistinguishable from juvenile mice, evidencing that environmental enrichment 

preserves a juvenile-like level of inhibition/excitation ratio throughout adulthood. (Fig. 

4.1B-C; SC juvenile, 2.07 ± 0.17 [n/m = 18/3]; SC, 4.04 ± 0.43 [n/m = 12/3]; EE, 2.53 ± 

0.20 [n/m = 16/3]).  

Taken together, the results point out that environmental enrichment preserves a 

juvenile-like inhibitory tone into adulthood without affecting basal excitatory 

glutamatergic neurotransmission.  
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5 Discussion 

 

5.1 Maturation of glutamatergic synapses in visual cortex. 

In visual cortex, the normal maturation of L4-L2/3 glutamatergic synapses was 

characterized by a robust reduction in the fraction of silent synapses: from 80% at PD3-5 

to about 25% at PD21-30 (Fig. 3.10). Generally, silent synapses which exhibit functional 

postsynaptic NMDARs, but not AMPARs, are observed at the initial periods of 

synaptogenesis. During further development, they are converted into functional ones by 

gradual insertion and stabilization of AMPARs at the postsynaptic site (Rumpel et al, 

1998).  

Silent synapses exhibit NMDAR EPSCs at positive membrane potentials, but not 

at hyperpolarized potentials due to voltage-dependent blockade of NMDARs by 

extracellular magnesium. In contrast, AMPAR EPSCs are undetectable. Thus, at resting 

membrane potentials silent synapses present no EPSCs following neurotransmitter release 

and are considered functionally silent (Isaac et al, 1995; Liao et al, 1995).  

Consistent with this notion, in visual cortex failure analysis of unitary EPSCs 

systematically showed higher EPSC failure rates at -60mV when compared to +40mV 

(Fig 3.10). In case both AMPARs and NMDARs were co localized at postsynaptic sites, 

the failure rates at different potentials should be indistinguishable. Thus, the present 

results suggest the existence of silent synapses, which contain only NMDARs at the 

postsynaptic site. Furthermore, silent synapses were directly confirmed by observing pure 

NMDAR EPSCs at +40mV and no AMPAR EPSCs at -60mV in some L2/3 neurons at 

PD3-5 (Fig. 3.10A).   

Interestingly, in the rat it was reported that the fraction of silent synapses was 

initially very low in L2/3 neurons; it increased up to 50% around PD12 and then 

gradually decreased during further development. This finding was considered to be an 

exception to the notion that silent synapses decrease and not increase, during 

development (Rumpel et al, 2004). Furthermore, the same study showed that in L4 the 

fraction of silent synapses was initially very high, and then decreased during normal 
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development. In this context, the present findings in mice, involving analysis of silent 

synapses in 29 L2/3neurons (fig 3.10-3.11), are similar to the findings in L4 neurons of 

rats.  

 

5.2 PSD-93 deletion accelerates synaptic maturation. 

Gradual decreases in the fraction of silent synapses are a signature of normal brain 

development. However, the molecular and cellular mechanisms underlying this process 

are poorly understood. 

Currently, the dominant view suggests that AMPARs are added to silent synapses 

in an activity-dependent manner, requiring NMDAR activation in an LTP-like fashion 

(Isaac et al, 1995, 1997; Liao et al, 1995; Durand et al, 1996, Rumpel et al, 1998).  Thus, 

normal synaptic maturation relies on a proper functional interplay between NMDAR-

activity and AMPAR trafficking. In this context, DLG-MAGUKs are supposed to present 

key functions given their potential ability to control the trafficking and membrane 

expression of both AMPARs and NMDARs and their critical roles governing NMDAR-

dependent plasticity (Stein et al, 2003; Cuthbert et al, 2007; Carlisle et al, 2008).  

Consistent with this notion, PSD-93 and PSD-95 were identified as key scaffolds 

orchestrating the proper maturation of AMPAR neurotransmission in the developing 

visual cortex (Fig 3.11).  

PSD-93 deletion caused accelerated maturation of L4-L2/3 synapses (Fig. 3.11). 

The percentage of silent synapses was precociously decreased at PD10-12, and also at 

PD21-30. Furthermore, at PD21-30 EPSC failure rates at -60mV and +40 mV were 

indistinguishable, reflecting the complete absence of silent synapses in PSD-93 KOs. In 

contrast, PD3-5 synapses were normal, consistent with previous reports showing that 

PSD-93 is not reliably expressed before PD10 (Sans et al, 2000).  

In depth electrophysiological analysis revealed that the accelerated synaptic 

maturation, represented by absence of silent synapses at PD21-30, caused a functional 

increase in the strength of AMPAR neurotransmission at L4-L2/3 synapses (Fig. 3.9). 

Such increases were not influenced by changes in neurotransmitter release (Fig 3.5 and 

3.6), subunit composition of AMPARs (Fig. 3.8) or number/conductance of AMPARs at 
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existing synapses (Fig 3.4 and 3.7). Furthermore, PSD-93 deletion caused no additional 

effect on basal NMDAR neurotransmission at PD21-30 (Fig. 3.2 and 3.3).  

Thus, PSD-93 has a specific role orchestrating the proper insertion and 

stabilization of AMPAR at postsynaptic sites synaptic development.  

As PSD-93 starts to be expressed around PD-10, the fraction of silent synapses at 

PD3-5 was not affected by its deletion. Furthermore, as synapses mature faster in the 

absence of PSD-93, the present results suggest that endogenous PSD-93 plays an 

important role preventing precocious synaptic maturation in visual cortex.  

 

5.3 PSD-93 and PSD-95 play opposite roles governing synaptic maturation. 

The functional relationship between PSD-95 and AMPARs appears to be widely 

consistent. PSD-95 levels are directly related to the strength of AMPAR 

neurotransmission (Stein et al, 2003; Beique and Andrade, 2003; Beique et al, 2006; 

Schlüter et al, 2006). This notion was further confirmed in the present study. While PSD-

95 deletion had no role at PD10-12, likely due to its poor expression at this age range, it 

caused reduced AMPAR neurotransmission at PD21-30 (Fig. 3.11). During normal 

development, the percentage of silent synapses decreased from about 50% at PD10-12, 

just before eye opening, to about 25% at PD21-30. In contrast, the fraction of silent 

synapses remained about 50% at PD21-30 in the absence of PSD-95. Consistent with the 

present data, PSD-95 overexpression strengthens AMPAR neurotransmission and reduces 

the fraction of silent synapses in neocortex (Beique and Andrade, 2003).  

Therefore, PSD-95 presents a role promoting synaptic maturation and 

stabilization of AMPAR at postsynaptic sites. In contrast, endogenous PSD-93, to some 

extent, counteracts synaptic maturation.   

Thus, a novel and unexpected scenario appears to emerge: The idea that PSD-93 

and PSD-95 present opposite functions concerning synaptic maturation and AMPAR 

trafficking. This idea was further analyzed by measuring silent synapses in the absence of 

both PSD-93 and PSD-95. As expected, PSD-93/95 double deletion rendered the fraction 

of silent synapses at L4-L2/3 connections indistinguishable from Control (Fig. 3.11).  
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These results expand the knowledge about the molecular mechanisms underlying 

synaptic maturation in visual cortex; and enrich the current view concerning the roles of 

DLG-MAGUKs and their functional interactions. As commented earlier, PSD-93 deletion 

was suggested to play a similar role, when compared to PSD-95, reducing AMPAR 

neurotransmission at hippocampus synapses (Elias et al 2006, Elias and Nicoll, 2007). 

However, further studies did not detect the same strong role of endogenous PSD-93 

(Carlisle et al, 2008; Krüger et al, 2013).  For these reasons, PSD-93 has been viewed as a 

minor player in the DLG-MAGUK family, having a redundant role when compared to 

PSD-95 concerning AMPAR basal synaptic transmission. 

The present study on cortical synapses suggests that the aforementioned notion, 

based in hippocampus studies, cannot be generally accepted. In cortical synapses PSD-93 

opposes, not mimics, PSD-95. Both DLG-MAGUKs differentially regulate the strength 

of AMPAR neurotransmission during synaptic development.   

 

5.4 NMDAR-dependent modulation of silent synapses. 

In vitro, silent synapses can be converted to functional synapses by induction of 

NMDAR-dependent LTP (Isaac et al, 1995, 1997; Liao et al, 1995; Durand et al, 1996). 

In this context, the specific molecular mechanisms and signaling pathways mediating the 

functional interplay between NMDAR activity and AMPAR trafficking to the synapses 

are not fully established. It is suggested that activation of CaMKII by NMDAR-mediated 

calcium influx can trigger AMPAR modifications during synapse unsilencing (Shirke and 

Malinow, 1997). As an example, expression of constitutively active CaMKII in frog 

tectal neurons caused accelerated AMPAR trafficking to silent synapses, promoting 

precocious synaptic maturation (Wu et al, 1996). Additionally, NMDAR-dependent LTP 

can promote CaMKII-dependent phosphorylation of AMPARs as an additional 

mechanism to control its trafficking (Barria et al, 1997). Therefore, PSD-93 and PSD-95 

can be key players coupling NMDAR activity to downstream signaling pathways 

necessary for proper insertion and stabilization of synaptic AMPARs. Although the 

specific molecular mechanisms are unclear, the present work suggests that PSD-93 

couples NMDARs to signaling mechanisms facilitating LTD, while PSD-95 couples 
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NMDAR activity to signaling pathways which promote the insertion and stabilization of 

synaptic AMPARs.  

 

5.5 Experience-driven maturation of silent synapses. 

The fraction of silent synapses gradually decreases during normal development of 

visual cortex. It is suggested that this process involves NMDAR-dependent insertion of 

AMPARs at postsynaptic sites, in an LTP-like manner (Rumpel et al, 1998). Furthermore, 

just before eye-opening 50% of the synapses are silent. After eye-opening, the gradual 

stabilization of AMPAR at postsynaptic sites is strongly driven by visual experience. As 

an example, if rodents are dark-reared, synaptic maturation fails to occur at L2/3 neurons 

and the strength of AMPAR neurotransmission (i.e fraction of silent synapses) remains 

similar to the observed before eye-opening (Funahashi et al, 2013).  

Interestingly, the present work shows that PSD-95 deletion prevents experience-

driven synaptic maturation, which takes place after PD10-12 (Fig. 3.11). In contrast, at 

PD10-12 just before eye-opening, PSD-95 deletion did not affect the fraction of silent 

synapses, reinforcing the notion that endogenous PSD-95 might be selectively involved 

in mediating experience-driven synaptic maturation.  

The complexity of this scenario is further revealed by the fact that PSD-93 

deletion already promoted accelerated synaptic maturation at PD10-12 (Fig. 3.11), before 

eye-opening. Therefore, if PSD-93 is merely opposing PSD-95, it is puzzling why PSD-

93 deletion already affects synaptic transmission before eye-opening, when endogenous 

PSD-95 had no detectable effect. One possible explanation is that before eye-opening the 

maturation signals provided by visual experience are still too weak, so endogenous PSD-

93 effectively prevents any experience-driven AMPAR insertion into the developing 

synapses. However, in the absence of PSD-93 the weak signals can be, to some extent, 

already enough to promote synaptic unsilencing. To clarify this scenario, it will be 

necessary to raise PSD-93 KO mice in an environment with no visual stimulation (dark-

rearing). In case PSD-93 is specifically opposing experience-driven maturation, the 

percentage of silent synapses should stay 50% at PD10-12 and also at PD21-30, as 

described for dark-reared animals in previous studies (Funahashi et al, 2013).  
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5.6 Basal NMDAR neurotransmission does not require PSD-93. 

PSD-93 deletion is reported to decrease cell-surface expression of both GluN2A 

and GluN2B subunits of NMDARs in spinal cord and forebrain (Tao et al, 2003; Liaw et 

al, 2008), and reduce NMDAR-mediated toxicity in cortical cultures (Zhang et al, 2010). 

In contrast, AMPAR cell-surface expression was reported to be unaffected. 

At a first glance the mentioned reports appear to contradict the present results, 

which show normal NMDAR EPSCs in the absence of PSD-93 at PD21-30 (Fig. 3.2 and 

3.3) and increased AMPAR neurotransmission at PD21-30 (Fig. 3.4, 3.9 and 3.11). 

However, several factors might contribute to explain these apparently discrepant results.  

First, the biochemical method used to evaluate NMDAR cell-surface expression 

involved biotin labeling of membrane receptors, followed by quantitative western blotting. 

While this approach is powerful for analyzing cell-surface expression, it is not able to 

differentiate between synaptic and extra-synaptic NMDARs, as both, in principle, are 

similarly biotinilated. In contrast, the electrophysiological approaches used in the present 

study are selective to evaluate synaptic NMDARs. Therefore, PSD-93 deletion might 

have a selective effect disrupting cell-surface expression of extra-synaptic NMDARs, 

while synaptic NMDARs stay unchanged.  

Additionally, NMDAR-dependent neurotoxicity, reported to be impaired in the 

absence of PSD-93, is suggested to rely on extra-synaptic NMDARs, while synaptic 

NMDARs appear to have an apparent protective role (Parsons and Raymond, 2014). Thus, 

reduced NMDAR surface expression and blunted NMDAR-mediated toxicity can be fully 

explained by selective changes in the function of extra-synaptic receptors.  

 

5.7 NMDAR-dependent plasticity requires PSD-93. 

Basal NMDAR neurotransmission at L4-L2/3 synapses was not affected by PSD-

93 deletion. However, PSD-93 directly binds to both GluN2A and GluN2B subunits of 

NMDARs and, therefore, can play a role regulating the functional coupling between 

NMDAR activity and subsequent regulation of intracellular signaling mechanisms, 

including the ones related to synaptic plasticity (Carlisle et al, 2008; Liaw et al, 2008).  
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Consistent with this notion, PSD-93 deletion impaired NMDAR-dependent LTD 

in L4-L2/3 synapses (Fig 3.14). PSD-93 deletion resulted in NMDAR-dependent synaptic 

strengthening, and not weakening, following LTD induction. In contrast, NMDAR-

dependent LTD was normal, while NMDAR-dependent LTP was blunted in PSD-93- 

deficient hippocampus (Carlisle et al, 2008).  

Thus, PSD-93 deletion does not affect NMDAR-dependent LTD in hippocampus, 

but disrupts NMDAR-dependent LTD in L4-L2/3 connections of visual cortex. In this 

context it is important to emphasize that hippocampus LTD is mechanistically different 

from L4-L2/3 LTD. In hippocampus, NMDAR-dependent LTD requires PKA activation 

and clathrin-dependent endocytosis of postsynaptic AMPARs (Malenka and Bear, 2004). 

In L4-L2/3, NMDAR-dependent LTD does not involve AMPAR endocytosis, but 

requires endocannabinoids which are suggested to diffuse from the postsynaptic neuron 

to activate presynaptic CB1Rs and reduce glutamate release (Crozier et al, 2007). It is not 

known whether lateral diffusion of AMPARs to perisynaptic sites might play an 

additional role.   

Although the underlying molecular alterations responsible for the changes in 

NMDAR-dependent LTD induction in PSD-93 deficient mice remain to be identified, the 

present results, in L4-L2/3 synapses, suggest that endogenous PSD-93 is responsible for 

coupling NMDARs to signaling molecules that facilitate LTD induction.   

At the network level, NMDAR-LTD at L4-L2/3 synapses is suggested to be an 

important, however not unique, mechanism underlying ODP during the critical period 

(Heynen et al, 2003; Crozier et al, 2007). As PSD-93 KO mice exhibit disrupted LTD at 

PD21-30, during the critical period for ODP, it is possible that ODP might be also 

compromised. In this scenario, the present results, combined with further studies 

involving monocular deprivation in PSD-93 KO mice, might enhance the current 

knowledge by revealing PSD-93 as an additional player regulating synaptic plasticity and 

ODP in visual cortex.    

Concerning the maturation of silent synapses, NMDAR-activation is suggested to 

promote the gradual increase of AMPARs into synapses during development. PSD-93 

deletion facilitated insertion of AMPAR into synapses during development (fig 3.11), and 

blocked NMDAR-dependent LTD, converting it into LTP. Thus, PSD-93 deletion 
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facilitates the strengthening of AMPAR neurotransmission in two different conditions. 

This suggests that endogenous PSD-93 might have an inhibitory role preventing the 

NMDAR-dependent insertion and stabilization of AMPARs at postsynaptic sites. 

Therefore, PSD-93 does not affect basal NMDAR neurotransmission, but appears to have 

a key role coupling NMDAR activity to downstream signaling pathways involved in 

synaptic maturation and synaptic plasticity. Future studies should address whether the 

similar NMDAR-associated downstream mechanisms are involved in both synaptic 

maturation and synaptic plasticity. The involvement of PSD-93 in both scenarios suggests 

that this can potentially be the case.  

 

5.8 EE influences the maturation of inhibitory neurotransmission in visual cortex. 

Raising mice in EE from birth preserved ODP throughout adulthood (Greifzu et al, 

2014). Electrophysiological analysis showed that EE prevented maturation of 

GABAergic neurotransmission, so the intracortical inhibition levels of adult EE mice 

(PD>130) remained low and indistinguishable from PD21-30 mice (Fig 4.1).  

EE did not affect the number of Parvalbumin positive GABAergic interneurons 

(Greifzu et al, 2014), suggesting that the decreased inhibition might be specifically 

caused by functional changes in the cortical circuits. However, the abundance of other 

inhibitory interneurons was not analyzed. 

GABAA IPSCs were evoked in L2/3 neurons by extracellular stimulation 

delivered to L4. In this recording configuration it is estimated that, on average, 70% of 

GABAA IPSCs rely on AMPAR neurotransmission into inhibitory interneurons (Huang, 

2014). Therefore, the reduced inhibition observed in EE mice can be caused by a 

multiplicity of different mechanisms.  

For example, EE can reduce AMPAR neurotransmission at inhibitory neurons, 

reducing their activity and consequently affecting GABA release. This hypothesis will be 

clarified by measuring AMPAR EPSCs directly at inhibitory neurons.   

Additionally, EE can reduce intracortical inhibition by decreasing the intrinsic 

excitability of interneurons, a feature which can be directly assessed with whole-cell 

current-clamp electrophysiology. Lastly, reduced inhibitory tone can be the result of 
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altered GABAergic neurotransmission. This scenario will be further clarified through 

analysis of GABAA mIPSCs in L2/3 pyramidal neurons. Changes in mIPSC frequency or 

amplitude will suggest alterations in GABA release or postsynaptic GABAA function, 

respectively.  

Once the reduced GABAergic function is fully characterized, the following step 

will be to define how reduced inhibition facilitates ODP in EE mice. Addressing this 

issue will be more challenging, as the crucial questions concerning the fundamental 

mechanisms of ODP remain open. The specific contribution of changes in excitatory or 

inhibitory neurotransmission, mediating ODP, is in dispute for more than 30 years (Smith 

and Bear, 2010; Espinoza and Stryker, 2012).  
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