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...there are also unknown unknowns – the ones we don’t know we don’t

know. And if one looks throughout the history of our country and other

free countries, it is the latter category that tend to be the difficult ones.

-Donald Rumsfeld,

13th and 21st United States Secretary of Defense

...this little girl hardly paid attention, and in this drawing lesson she

did. The teacher was fascinated and she went over to her and she said,

“What are you drawing?” and the girl said, “I am drawing a picture of

God” And the teacher said, “But nobody knows what God looks like.”

And the girl said, “They will in a minute!”

-Sir Ken Robinson,

Educationalist
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Nomenclature

+ If we have protein A and protein B, then A+B means

A co-expressed with B

−GFP or −mRFP If we have protein A then A-GFP or A-mRFP, will

stand for protein A fused with green fluorescent pro-

tein or with monomeric red fluorescent protein.

∆ Gene deleted, for example: if a gene produces protein

A, then A∆ means that such gene was deleted

Abp Actin binding protein

ADF Actin depolymerization factor

Aip1 Actin interacting protein 1

AX − 2 Dictyostelium discoideum axenic cell line 2

BCMCM − cAMP 6, 7- Bis(carboxymethoxy)coumarin- 4- yl)methyl-adenosine-

3’, 5’- cyclic monophosphate

cAMP 3’-5’-cyclic adenosine monophosphate

CAR cAMP receptors

Crn Coronin 1A

F − Actin Filamentous Actin

GAP GTP-ase activating protein
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GDP Guanosine diphosphate

GEF GDP-GTP exchange factor

HL− 5 Axenic medium

LatA Latrunculin A

PI3K Phosphoinositide 3-kinase

PIP2 Phosphatidylinositol 4,5- biphosphate

PIP3 Phosphatidylinositol 4,5- triphosphate

PTEN Phosphatase and Tensin homolog on chromosome ten

RBD Ras binding domain

Scar Suppressor of CAR (independent of its name, it con-

trols the activity of polymerization nucleation pro-

moting factors)

WT Wild type cells - Defined here as cells with no ge-

netical mutation, or with mutations for fluorescent

labelling only
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Chapter 1

Introduction

It has been 12 years since Michael G. Vicker proposed that actin filaments in Dic-

tyostelium discoideum propagate as a self organized reaction-diffusion wave [108,

109]. Several studies since then have endeavoured to quantify the formation of

lateral waves in several organisms [27, 66, 86], showing the existence of charac-

teristic spatiotemporal scales. During the developmental stage of Dictyostelium

discoideum, this propagation can be induced by changing the external concen-

tration of cAMP, resulting in the translocation from cytosol to cortex of several

proteins with a characteristic time scale of one minute [32]. The development of

flow photolysis [8] has brought the possibility of stimulating single cells with short

pulses of one second by using photoactivated cAMP.

The mean cytosolic response of Dictyostelium discoideum cells to a single short

pulse of cAMP is reminiscent to the dynamics of a damped oscillator. This concept

is supported by the existence of a resonance frequency when the cells are stimulated

periodically with short pulses [113, 114]. In addition, mutant cells lacking the

regulators of the Arp2/3 complex (SCAR/PIR) show periodic actin polymerization

cycles that suggests the existence of an oscillatory instability [51]. So even as the

actin cytoskeleton is composed of 138 proteins, according to the Dictyostelium

discoideum genome [30], current evidence shows that it behaves as a nonlinear

oscillator with low degrees of freedom.

In this work we have continued to study the dynamical properties behind the

previously observed responses and dynamical states of actin polymerization using
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Dictysotelium discoideum as a model organism. The first question we have ad-

dressed is the dynamical nature behind the observed self sustained oscillations.

To gain information behind this process we have perturbed randomly single cells

anticipating that some of them will show oscillatory activity. We discovered that

self oscillating cells respond differently to external pulses of cAMP, some of them

show a short transient response where the cell keeps oscillating afterwards, while

others show a long transient response where the oscillatory activity ceases com-

pletely to then be recovered after ∼ 100 s. The recovery is gradual suggesting that

these polymerization cycles corresponds to limit cycle oscillations. In cells showing

coherent oscillations, there are periodic pseudopod extensions that are correlated

with the actin dynamics, showing the relevance of this process for understanding

cell motility.

Mesoscopic systems are susceptible to noise given their interaction with the

environment and for which the actin cytoskeleton is no exception. Standard fluc-

tuations analysis has shown the possible existence of a decorrelation mechanism

in these oscillations that depends on the signal variance. We have analyzed our

data using the Stuart-Landau oscillator in its Langevin version, and with it we

have constructed two different scenarios that can reproduce our experimental ob-

servations. Numerical and analytical calculations suggest one of them as the valid

mechanism in which the majority of the observed oscillations are noise induced.

Also it has been shown, using geometrical arguments in phase space, that this

two component model cannot take into account the observed long transients. The

physical interpretation of this result is the existence of a slow process that is qui-

escent during oscillatory actin polymerization, and when a cell is stimulated with

external cAMP it becomes active terminating with the observed activity.

In the second part of this work we have studied the dynamics of actin polymer-

ization along with its regulators, Aip1 and Coronin 1A. Single cAMP pulse stim-

ulation experiments were performed in cells having fluorescent markers in these

proteins, where we have characterized their translocation dynamics to the cell cor-

tex. As mentioned the actin cytoskeleton has many components which details we

ignore, therefore we have used a proposed method that give information on the

possible effective interactions between them. It consists of transforming the ob-

served responses into a sequence of symbolic dynamics that give the activating and
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inhibiting interactions between the observables [81, 82]. We have verified how the

predicted interactions hold by studying the cAMP response of mutant cells miss-

ing either Aip1 or Coronin 1A. Our interpretation of the data led us to conjecture

the existence of a component that is inhibited by the cooperative effect of Aip1

and Coronin 1A, when any of these two regulators are missing this hypothetical

component enhances polymerized structures.
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Chapter 2

Background

The actin cytoskeleton constitutes the basis for cell motility and during its opera-

tion, several processes inside the cell are regulating its dynamics [85]. As a cell is

crawling in its natural environment, it will be detecting external chemoattractant

gradients, and it will incline its motion towards the source. For this to happen

several components are in charge of guiding the directionality, which we denomi-

nate as the signaling system [100]. At the same time actin polymerization will be

regulated by proteins such as Aip1 and Coronin 1A.

Figure 2.1 shows the ordering on how external signals of cAMP are biochemi-

cally transmitted to the actin cytoskeleton. The external cAMP molecules interact

with the cell receptors, which at the same time interact with the components of the

signaling system. The actin cytoskeleton by itself is an autonomous system, which

receives information from the signaling system to regulate its activity [76]. In this

work we are interested in learning the basic principles behind actin polymerization

and regulation, and for that we study the physiological response of Dictyostelium

discoideum to cAMP.

As also shown in the scheme of Figure 2.1, we control in experiment the amount

of cAMP given to the cell and observe the activity of the actin cytoskeleton. We

extract time series from those observations which will be used to analyze and

interpret them. For an optimal data interpretation it is important to review what

is known about the signaling system, since its time scales might be reflected in our

observations. But also it is necessary for studying the dynamics of polymerization
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regulators Aip1 and Coronin 1A, to review what its known about them from in

vitro and in vivo experiments performed by other authors.

This chapter will be organized as follows, in the first section details of the

model organism Dictyostelium discoideum are reviewed. Next the details of the

signaling system for this particular organism are discussed followed by a review of

the actin cytoskeleton. A literature survey for Aip1 and Coronin 1A will be next

in which the results from several in vitro and in vivo experiments from various

organisms will be discussed. Finally a discussion on the time scales observed

in these processes and the aim of the project are discussed. The introduction

and background of experimental and analysis techniques will be left for Chapter

3 - Materials and methods, leaving this chapter exclusively for the review of the

current knowledge about the molecular biology and dynamics behind the regulation

of actin polymerization.

 
cAMP 

 

Receptors 

 
Actin cytoskeleton 

 

Signaling 

Experimental 
Control 

Observable 

Time Series 
Analysis 

t

x 

Interpretation 

Figure 2.1: Scheme showing how cAMP signals are transmitted to the actin cy-
toskeleton. In experiment we control the external amount of cAMP and observe
the activity of the cytoskeleton, time series are then retrieved and analyzed.
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2.1. DICTYOSTELIUM DISCOIDEUM AS A MODEL ORGANISM

2.1 Dictyostelium discoideum as a model organ-

ism

Dictyostelium discoideum is an amoeba that lives in the soil and has a solitary life

feeding on bacteria [54]. If a colony of cells is kept without nutrients long enough,

the cells will aggregate and form a multicellular organism increasing its chances

for survival. This self organized process happens as the interplay of single cell pro-

duction of cyclic adenosine monophosphate (cAMP) and the detection of resulting

waves which feedbacks into its production [37]. This interaction results in cAMP

spiral waves patterns reminiscent to the ones observed in excitable media [22].

After two hours from the formation of spiral waves, the cells crawl towards the

center of the spiral which they localize by detecting cAMP gradients [94].

This particular ability to detect external chemical gradients and crawl towards

them is denominated as chemotaxis, and in this work we are interested in study-

ing cells during the chemotactic stage. Each cell has a myriad of different pro-

teins assigned for the processes of detection, motility and polarization [100]. With

detection it refers to the before mentioned ability to detect the external cAMP

gradients, which is due to the expression of cAMP receptors (CAR) at the cell

wall. As the cell detects chemoattractant gradients it crawls towards them, and

the process is denominated as motility. While polarization refers to the elongation

of cell shape with a well defined front, where the dissociation rates at the CAR

are higher and protrusions called pseudopods are more likely to be created. These

three processes have been observed to occur independently, as detection can occur

in non motile cells while motility can happen in non polarized cells and without

any chemoattractant [100].

In this work we are interested in studying the machinery in charge of cell

motility, Figure 2.2 shows the basic components for this process. Motility is com-

plemented by contraction in the back assisted by the motor protein Myosin [69].

While pseudopods are created by the polymerization of filamentous actin (F-

Actin), which dynamical states and regulation are the subject of this work. It

has been shown that a physiological polymerization response is induced by ex-

ternal stimulation of cAMP [114], this stimulation must be processed by several

components before it acts on the cytoskeleton [100]. This signaling network is in
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2.2. SIGNALING NETWORK

charge of bridging the receptors and the actin cytoskeleton, and will be reviewed

next .

cAMP 
(cyclic Adenosine 
monophosphate) 

cAR 
(cAMP 

Receptor) 

Pseudopod extension 
by F-Actin 

polymerization 

Myosin assisted 
contraction 

Figure 2.2: Basic components of the chemotaxis machinery of Dictyostelium dis-
coideum, the cell reaches the chemoattractant source by extending pseudopods
and contracting its back.

2.2 Signaling network

Dictyostelium discoideum has an intrinsic machinery to detect and localize an ex-

ternal source of cAMP. This machinery consists of proteins arranged in different

modules which processes these external signals, and consequently the cell will bias

its motion towards the source. The components of the chemotactic machinery can

exhibit autonomous activity, or can be activated by external addition of chemoat-

tractant. Figure 2.3 is a representation of one of the most studied biochemical

signaling pathways for chemotaxis. The pathway shown in Figure 2.3 is an over-

simplification of the actual pathway [100], but contains the essential proteins for

chemotaxis in which the links represent their indirect interaction. This pathway

is divided into three stages: the first being the cAMP receptor module in charge

of detecting the external concentrations of cAMP. Following is the RasC module

(mentioned as Ras in the remaining part of the section) which reflects the internal

18



2.2. SIGNALING NETWORK

compass of the cell, and finally the phosphatidylinositol (PIP) module which bias

the direction of actin polymerization. The components of this pathway reflects the

processes of sensing, polarity and motility observed in chemotaxing cells. This pic-

ture might not be completely accurate since there are possible feedbacks between

different modules, but several experimental evidence supports this approximation.

They consist of observing the sequential activation of components along with the

repercussions when one is genetically removed. Here some results from several

studies are reviewed.

Figure 2.3: Essential components of the Dictyostelium discoideum signaling cas-
cade for biasing the motion towards cAMP sources. The cascade is divided in
three modules: 1- CAR module, 2 - Ras module and 3-PIP module.
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2.2. SIGNALING NETWORK

2.2.1 G-coupled receptors module

The first step in the signal processing is the binding of cAMP with its receptors

(CAR). Dictyostelium discoideum has four different cAMP receptors, CAR 1-4, in

which the disruption of CAR 1 and CAR 3 completely terminates with the ability

of a cell to chemotax [100]. CAR belong to a class of receptors called G-coupled

receptors, these are embedded in the cell wall with half of the protein standing

outside the cell and the other half inside. Inside the cell wall next to the receptor,

there is a protein complex with three subunits called Gα, Gβ and Gγ [67]. The

Gα subunit is a GTP-ase, which is a molecule with guanosine diphosphate (GDP)

attached to it during its inactive state. When a cAMP molecule binds to the recep-

tor the Gα subunit is activated by the exchange of Gα-GDP→Gα-GTP, mediated

by the GDP-GTP exchange factor (GEF). Upon activation the protein subunits

detaches from the cell wall and splits into two groups, one tandem being of Gβ and

Gγ and the other being of Gα and GTP. When the ligand disengages from the re-

ceptor, a GTP-ase activating protein (GAP) hydrolyzes Gα-GTP→Gα-GDP and

Gα, Gβ and Gγ return to their previous state [67]. These subunits are responsible

for transmitting the information to other modules of the signaling network [100].

The kinetics of these proteins differ between the ones at the front of a crawling cell

towards a chemoattractant compared to the ones at the back [106]. In polarized

Dictyostelium discoideum, it has been shown that the ligands have a shorter res-

idence time in the receptors at the pseudopods compared to the ones in the tail.

By preparing the cell membranes with GTP it was shown to induce a decrease in

ligand binding lifetime [106], while preparing them with GDP induces the oppo-

site effect. Therefore the difference between front/back with activated/deactivated

receptors reflects the polarity of chemotaxing cells.

2.2.2 Ras module

The information transmitted by the G proteins is received by secondary messengers

in cascade manner. In chemotaxis the essential secondary messengers associated

with the activation of the actin cytoskeleton (which is reviewed in the next sec-

tion) are Ras C and Ras G [100]. The Ras proteins are also GTPases that have an

inactive state associated with a GDP molecule embedded to it which is activated
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2.2. SIGNALING NETWORK

via its own Ras-GEF [67]. Interestingly the spatial distribution of activated Ras

in the cell membrane reflect the external spatial cAMP concentration profiles im-

posed to it. In a series of experiments the cells were imposed an external cAMP

gradient in which the protein RBD (Ras binding domain),which diffuses to the cell

cortex when Ras is activated, was fluorescencently labeled [53]. RBD translocated

to the cell cortex and reflected the external gradient profile. The mapping of ex-

ternal cAMP profiles by Ras proteins is independent of the cytoskeleton as it was

shown by treating the cells with Latrunculin A (Lat A, a toxin that inhibits the

polymerization of the actin cytoskeleton) [53]. In a detailed study of the initiation

of chemical sensing, it was shown that Ras reflected different stages of sensing

activation. The cells responded around one second after stimulation by a gener-

alized activation of Ras all over the cell cortex, then at 20 s the cell adapted to

a state in which Ras deactivated to their previous levels, followed by a symmetry

breaking at 40 s directed in which Ras was directed towards the source followed

by a confinement of Ras to a smaller crescent [57].

2.2.3 Phosphotidylinositol module

Sequentially the activity of RasG activates the phosphatidylinositol module (de-

noted with 3 in Figure 2.3) important for the directionality of pseudopod exten-

sion [49]. In a similar manner as with the GTP-ases Gα and Ras, the phospholipid

of this module has two states for promoting pseudopod extension: inactive, called

phosphatidylinositol 4,5- biphosphate (PIP2) and active, called phosphatidylinosi-

tol 3,4,5- triphosphate (PIP3). The transitions between these two states are medi-

ated by two enzymes, the transition PIP2→PIP3 is mediated by Phosphoinositide

3-kinase (PI3K) and the transition PIP3→PIP2 by the phosphatase and Tensin

homolog on chromosome ten (PTEN) [100].

The thought of an induced transition of PIP2 into PIP3 by the activity of Ras

is supported by a couple of experimental observations. The first one from [93],

consists in the observation of sequential activation between the proteins RBD and

PH-CRAC which translocates from cytosol to the cortex when Ras and PIP3 are

activated respectively. In these experiments it was observed that PI3K translo-

cated from the cortex apparently at the same time as RBD, therefore for the
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2.2. SIGNALING NETWORK

scheme in Figure 2.3 to be fulfilled the response time of PI3K must be very fast

compared to the one for RBD. Usually enzymes has fast dynamics and could jus-

tify this [67], another possibility is that of a positive feedback loop between Ras

and PI3K that causes the two labels to correlate. In another set of experiments

the activity of the Ras-GAP was disrupted, which is achieved by the genetical re-

moval of nfaA. In these experiments the second translocation of RBD from cortex

to cytosol takes significantly longer than in the wild type, meaning that the tran-

sition Ras-GTP→Ras-GDP was slowed down. In consequence to this mutation

the kinetics of PIP3 also slowed down dramatically suggesting that it is due to the

slowing down of the Ras dynamics [123].

The phospholipids PIP2, PIP3 and the enzymes PI3K and PTEN also encode

the spatial profile of cAMP. In [53] it is shown that in cells treated with Lat A,

PI3K translocates to the front side where the concentrations levels of cAMP are

high while PTEN goes to the rear where the concentrations levels are low. This

spatial localization is also been observed in cells crawling in cAMP gradients [89].

All the molecules of Figure 2.3 integrate the external changes of cAMP, but Ras

and PIP3 adapt by returning to the previous basal level after some time. Though

in [75] it is shown that the amount of cells showing spatial transient activations of

PIP3 increases with the amount of cAMP background concentration. Also these

cells have shown persistent domain formations of PIP3 that traveled around the

cell cortex, these domains are not present when there is no background cAMP.

Cells with a knockout in PI3K can still chemotax but disruption of PTEN has

severe phenotypes. The response kinetics of PTEN∆ cells are similar to those of

nfaA∆ cells in which the translocation back to the cytosol took significantly longer

than compared to wild type. These cells while chemotaxing extended three or more

pseudopods in random directions and as a consequence some of the movements

were in the opposite direction from the chemical source and its trajectory was

more circular compared to the the straight trajectories performed by the wild

type [49]. Therefore it is thought that PTEN is necessary for the proper regulation

of pseudopod extension in Dictyostelium discoideum making it an essential link

between the signaling pathway and the actin cytoskeleton.
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2.3. ACTIN CYTOSKELETON

2.3 Actin cytoskeleton

The cell cytoskeleton is essential for the mechanical properties, motility and en-

dogenous organization of an eukaryotic cell. It is composed of three parts: the

microtubules, which are straight hollow rods that are capable of organizing and

moving organelles. Following are the intermediate filaments which give mechanical

properties such as shear stress resistance, and finally the actin cytoskeleton which

provides the basis for shape deformation and motility [1].

As we are concerned with the properties of cell motility, our study is centered

in the dynamical properties and regulation of the actin cytoskeleton. It consists

of a network of polymerized filaments spread all over the cell volume. A single

filament has a persistence length 10 µm which is comparable with the typical cell

length, and therefore they are basically straight inside the cell volume [10]. The

filamentous actin is constructed with the polymerization of basic units called g-

actin monomers. Each monomer has a weight of 42 kDa [10] and half of the actin

inside the cell is in this state [13].

The structure of the cytoskeleton is complicated and consists of different struc-

tural organizations identified as: branched networks, crosslinked networks, parallel

bundles and antiparallel contractile bundles. Before discussing the role of specific

structures it is useful to visualize a heuristic picture of a small actin filament net-

work with constant length (Figure 2.4). As the cytoskeleton is a structure far from

thermodynamic equilibrium, the steady state of this single filament would consists

of a constant polymerization and depolymerization process [17]. This polymeriza-

tion/ depolymerization process is controlled inside the cell by a myriad of actin

binding proteins, in Dictyostelium discoideum these proteins falls at least into 7

classes being in total 138 [30]. Though the observed polymerization dynamics can

be observed in vitro by adding the following basic compounds (Figure 2.4): actin,

actin depolymerization factor(ADF)/cofilin, a capping protein, Arp2/3 complex,

an activator of the Arp2/3 complex (like Scar for example ) and profilin [85].

The monomeric and filamentous actin are ATP-ases that can be in either one

of these states: ATP-actin, ADP-actin and a transient hydrolysis state ADP+P-

actin. The single actin filaments are polar, on one end the association rate is higher

where actin monomers are recruited and elongates. This end of fast elongation is
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called the barbed end (denoted as red filaments in Figure 2.4). On the other

side of the filaments the dissociation rates are higher and therefore disassembly is

promoted, and this part is called the pointed end. The following table summarizes

the association and dissociation rates on both sides as measured in an actin only

assay (Table 2.1) [84].

ATP-actin ADP-actin
Barbed Pointed Barbed Pointed

k+(µM−1s−1) 11.6 1.3 3.8 0.16
k−(s−1) 1.4 0.8 7.2 0.27

Table 2.1: Association and dissociation constants for actin monomers taken from
Pollard, 1986 [84].

The association constants k+ depends linearly on the amount of available actin

monomers, it can be noticed that the association rate for the barbed end is roughly

four times higher for ATP-Actin compared to ADP-Actin. On the contrary the

dissociation rate is roughly 6 times higher for ADP-Actin on the barbed end,

therefore the polymer on the barbed end consists of an overwhelming majority of

ATP actin. As an actin polymer grows, the components in the filament ages and

they undergo an hydrolysis process transforming Actin-GTP→Actin-GDP. Most

of the actin present in the actin filament is in the intermediate state ADP+P-Actin

but at the back of the filaments, where the older filaments reside, the components

are already in the hydrolized ADP-Actin state. It is noticeable that in the back

the dissociation and association rates are higher for ATP-actin. In vitro [9] and

in vivo [10] the actin in the pointed end is in the ADP state, therefore other

proteins are contributing to maintain this state (Figure 2.4). The Arp2/3 complex

inhibits the association and dissociation in the pointed end contributing to the

maintenance of filament polarity [73].

Nucleation of actin polymers is thermodynamically unfavorable, but once oligomers

are formed spontaneous nucleation can occur if the concentration is above a criti-

cal concentration [10]. The ratio k−/k+ gives the critical concentration for spon-

taneous nucleation which corresponds to the value 0.1µM [85]. Therefore to avoid

spontaneous nucleation actin monomers are complexed with profilin, which se-
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questers the actin monomers individually. In this process the Arp2/3 complex

plays the role of a nucleation promoting factor (NPF), that controls the nucleation

of filaments whenever is needed. The nucleation happens on the sides of preformed

filaments making an angle of 70o, making dense branched networks [73]. The ma-

jority of the filaments are formed on the sides of ADP-actin or ADP+P-actin and

the absence of the Arp2/3 complex results in very long filaments [9], which conse-

quently the resulting actin network is not dense and affects the mechanical prop-

erties of cells [10]. The Arp2/3 complex by itself is not an effective nucleator and

needs to be activated by proteins such as Scar (suppressor of cAMP receptor, orig-

inally discovered in D.d.), that belongs to the family of WASP (Wiskott-Aldrich

syndome protein). Another important factor for the creation of dense networks are

the capping proteins, these proteins inhibit the growth of filaments at the barbed

end [10].

To have effective cell motility the actin filaments must be dismantled to recy-

cle the monomeric actin pool and polymerize at different cell sites. The intrinsic

depolymerization kinetics of actin filaments would not be enough to account for

the observed actin turnover times observed in vivo. A set of proteins are in charge

in dismantling these filaments by severing them into small pieces, the most stud-

ied protein in this context is ADF/Cofilin [85]. Although it has been found that

the proteins of Figure 2.4 have specific roles and are necessary to reproduce the

observed polymerization and depolymerization kinetics in vitro, there is also a

synergy between them that regulate their operation. A combination of cofilin,

capping protein and arp2/3 complex is necessary for the optimal branching ob-

served in experiments [9].

One of the objectives of this work is to study the role of two different proteins

known to be important for the regulation of actin turnover, Aip1 (actin interacting

protein 1) and Coronin 1A (Crn). In several in vivo and in vitro experiments it

has been shown that these two proteins interact and regulate with the basic com-

ponents of the cytoskeleton [70, 77, 18, 63, 36, 59, 104, 14, 59]. In the following

subsections a survey of the observations and conclusions of several studies deter-

mining the roles of Aip1 and Coronin 1A will be reviewed. But first the indirect

marker used to monitor the activity of filamentous actin, LimE, will be discussed.
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ATP - Actin 
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Figure 2.4: Schematic of the minimum amount of components to reproduce actin
filaments treadmilling in vitro.

2.3.1 D.d. LimE as a filamentous actin sensor

Fluorescent labeling offers a practical way to study the dynamics of the cytoskele-

ton, its components can be followed by either addition of external substances

(such as antibodies and toxins), labeled monomers or genetical modification. In

Dictyostelium discoideum a strain which permanently produces a fusion of actin

and green fluorescent protein was developed to track the polymerization dynam-

ics of the actin cytoskeleton [115]. Control measurements with cells labeled with

phalloidin-red and actin - GFP were performed to monitor their spatial distribu-

tions. Phalloidin-red labels selectively filamentous actin only and therefore these

cells have a high fluorescence at the edges, the cell cortex, while the cytosol re-

mains dark. In these experiments it was shown that the high fluorescence patterns
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of phalloidin-red and actin-GFP matched at the edges in the cortical region, but

actin-GFP could still be found in the cytosol because filamentous and monomeric

actin are labeled in the same way. Also the observed polymerization dynamics

in cells slows down once GFP is fused directly into actin, an alternative available

is the direct labeling of actin with a small peptide called Lifeact that does not

interferes with polymerization dynamics [90].

Half of the actin present in a cell is in the monomeric stage and therefore in-

terferes with the imaging of single actin filaments. In Bretschneider et al. [13],

it was concluded that fusing LimE with GFP was a suitable genetical modifi-

cation to follow actin polymerization. Figure 2.5 shows an electro micrograph

taken from cells with inmunogold labeling in either Arp2/3-GFP (panels A, B and

C) or LimE∆coil-GFP [95] (panels D,E, and F), it can be seen that Arp3 and

LimE translocates to sites where actin filaments are present making them suitable

candidates to follow filamentous polymerization. Though the Arp2/3 complex co-

localizes in regions with high density actin clusters, LimE is distributed uniformly

along in the actin network. This observation led the authors to conclude that

LimE was a a label suitable for tracking actin polymerization.

2.3.2 Polymerization regulator Actin interacting protein 1

(Aip1)

As explained in the previous section the dynamical processes of actin treadmilling

can be described by the interactions between actin, cofilin, capping proteins and

nucleation promoting factors like profilin. In vitro experiments fail to reproduce

the observed actin turnover (disassembly) rates found in vivo [78]. Therefore

additional regulators promoting and inhibiting the components of the cytoskeleton

are needed. Cofilin, responsible for the severing of filaments, was found to have its

activity enhanced or complemented by other proteins. By genetical dissection it

is found that Actin interacting protein 1 (Aip1) has binding sites to interact with

F-actin and cofilin [20], making it an ideal candidate involved in the regulation of

severing.

The absence of Aip1 in Dictyostelium discoideum results in different pheno-

types, cytokinesis is slowed down by 36 % compared to wild type. The growth
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Figure 2.5: Pictures taken with an electron microscope comparing the distribution
of GFP-Arp3 and LimE∆coil-GFP from Bretschneider et al. 2004 [13]. It can be
seen that GFP-Arp2/3 localizes preferentially in F-Actin clusters while LimE is
distributed over F-Action therefore it is used as a polymerization sensor.
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doubling time is prolonged to 12 h compared to the 8 h of the wild type, cell ve-

locity of vegetative cells is reduced from 3.7µm/s to 1.7µm/s, and the formation

of phagocytic cup takes from inception to engulfment of a yeast particle 70-120

s compared to the 20-40 s of the wild type [56]. In all of these activities the

cytoskeleton is essential and shows that disruption of Aip1 slows down the actin

dynamics in Dictyostelium discoideum.

In Saccharomyces Cerevisiae (SC) long actin tails arrested to the endocytic ma-

chinery results from the deletion of the Sla2 protein, in this case it is found that

Aip1 co-localizes with cofilin. In the presence of Lat A, remnant polymerization

can still be observed in these tails. This polymerization was reasoned to rely on the

presence of species that are not sequestrable by Lat A, thus actin oligomers [77].

This hypothesis was tested in an in vitro assay made from extracts from Sla2∆

cells: in the first test, actin was kept constant and cofilin varied from 0 to 2.0 µM.

Western blots have shown that actin monomers had a fold increase up to 1.5 times

compared to its initial concentration, while dimers, trimers, tetramers and pen-

tamers increased up to 3.5, 3.0, 2.5 and 2.0 times from their initial concentration,

respectively. When Aip1 is added to the assay, the monomers increases 3.0 times

from their initial concentration and dimers increased 2.5 times, while other species

decreased in their number. Therefore it was hypothesized that Aip1 is important

for the maintenance of actin monomers needed for polymerization.

It has been observed that the distribution of other actin capping proteins is

affected by the genetical removal of Aip1 in Sla2∆ SC cells [70]. The distribution

of capping protein Cap2, has its maxima at the front of actin tails where the

majority of ATP rich actin filaments reside. On the contrary Aip1 has its maxima

at the back where ADP rich actin resides. Once Cap2 is removed from the cell,

the maxima of Aip1 distribution shifts towards the front by 0.13 µM suggesting

that more binding sites are available to Aip1. Since Aip1 mainly bind to ADP

actin this suggests that Cap2 is restricting the binding places for Aip1. While

removal of Aip1 redistributes Cap2 to the whole region of actin tails. There is

mutual inhibition between Aip1 and Cap2 and therefore Aip1 indirectly regulates

the capping of actin filaments by restricting Cap2 to the ATP rich area.

Figure 2.6 summarizes these observations interpreted for a treadmilling actin

filament: in a wild type cell there are two sources for polymerization. In the first
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path of ( Figure 2.6 , left ; 1,2,3,4) the actin filament is severed into oligomers but

fails to be converted into single monomers by cofilin alone. Profilin then binds into

the oligomer which consequently changes its nucleotide state, and after that the

oligomer can be promoted for actin binding. In the alternative path (1,2,5,6; Figure

2.6 , left) the acting oligomer breaks into single monomers and after nucleotide

exchange by profilin they are ready to bind to the barbed end of the filament. For

the case when Aip1 is missing (Figure 2.6 , right), the most likely path to happen

is the first one since Aip1 is responsible for the fast dissociation into monomers.

Also the capping protein Cap2 can be distributed in either pointed and barbed

end of the filament since Aip1 is not present to restrict its position to the barbed

end. Therefore with the current observations Aip1 is in charge of restoring the

pool of actin monomers and the indirect spatial regulation of capping proteins.
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Figure 2.6: Visualization of Aip1 role in actin treadmilling. In wild type cells the
severed actin components can turn into monomers due to the presence of Aip1,
and in its absence result in polymerization with oligomers.

2.3.3 Polymerization regulator Coronin 1 A (Crn)

Coronin 1 A is a 49 kDA actin binding protein discovered in Dictyostelium dis-

coideum, its name comes from its association with the crown-shape surface projec-

tions during its growth phase [23]. Its absence results also in a variety of motility
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and developmental phenotypes. Cells show slow motility in buffer of 3 µm/min

and are defective in cytokinesis with similarities to Myosin II∆ cells [24]. These

cells are also multinucleated, their development into mature fruiting bodies takes

30 h and phagocytosis is reduced, as has been shown by measuring the internal-

ization rate of yeast and E. coli [96].

In Dictyostelium discoideum it has been shown that Coronin 1A indirectly

regulates the levels of Myosin II [99]. These facts have shown that Coronin 1A

is important for the regulation of the cytoskeleton, and several experiments have

given insight on their dynamics at the molecular level. Also it has been shown

that cells fail to initiate their developmental program when Coronin 1A is missing,

by addition of external cAMP the cells restore their developmental program [110].

In Gandhi et al. [36], in vitro and in vivo experiments with yeast were per-

formed to test the binding affinity of Coronin 1A in dependence to the nucleotide

state of F-actin. The in vitro assays from yeast extracts have shown that when

cofilin is present, the disassembly rate for ATP-actin increases 4.5 times while

ADP-actin increases 3 times. This shows that ATP-actin becomes more sensitive

to due to the presence of cofilin. The effect is illustrated in Figure 2.7 a where

oligomers are produced from both sides and the pointed end is larger since it less

sensitive to severing. With the addition of Coronin 1A into the assay, ATP F-actin

recovered its stability to the same levels as if cofilin was not present. Then it is

suggested that Coronin 1A has the role of stabilizing the barbed end against cofilin

in vivo.

On the contrary the addition of Coronin 1A to the ADP-actin+cofilin assay

increases the disassembly rate 9 times, suggesting that cells takes advantage of this

effect for fast actin turnover rates. In vivo observations of actin tails have shown

that the distribution of cofilin changed when Coronin 1A was knocked out, and it

overlapped with that of Abp1 (actin binding protein1, an alternative actin marker).

This redistribution indicates that cofilin was not confined to specific nucleotide

sites of the actin filaments anymore, showing that the in vitro observations are

relevant in the actin dynamics of living cells.

Also it has been observed that Coronin 1A interacts with the Arp2/3 com-

plex [18]. A well characterized effect, is that of a Coronin 1A concentration

dependent switch for promoting actin polymerization [63]. In an actin+Arp2/3
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complex assay the concentrations of Coronin 1A were varied from 0 to 100 nm.

The polymerization rate increases monotonically from 4 to 8 nM/s. After that,

a critical point is reached and further increase results in a monotonic decrease

in polymerization up to to 1 nM/s. Figure (2.7 b) shows this effect in which at

high Coronin 1A concentrations the Arp2/3 complex nucleation and branching is

inhibited, while branched networks will be present as long as Coronin 1A is below

the critical concentration (Figure 2.7 c).
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Figure 2.7: Visualization of a) the severing observed in the absence of Crn , and
the F-actin branching process when b) Crn is above a critical concentration and
c) when its below the critical concentration.

2.3.4 Cooperative effects of Coronin 1A and Aip1

There is evidence of cooperative effects between Coronin 1A and Aip1 in Dic-

tyostelium discoideum regulating the dynamics of the actin cytoskeleton [50]. Re-
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moval of these two proteins by genetical techniques results in cell migration veloc-

ities decreased 6-fold in the growth phase and 7-fold in the developmental phase.

The cell colony growth rate decreases by 60 % in a double knockout strain com-

pared to the wild type and it takes 4 hours more to enter into the early develop-

mental (chemotactic) phase. The cells also have an excess of filamentous actin and

are multinucleated. These cells were also impaired in disassembling the filamen-

tous actin after endocytosis which lasted 2 times longer than in wild type cells.

These observations can be explained by observation of the cooperative effects be-

tween Cofilin, Coronin 1A and Aip1 in in vitro studies. These cooperative effects

are actin bursting and shielding of capping proteins [59].

Both of these effects have been observed in in vitro assays that consisted of

induced actin polymerization in perfusion chambers by flowing HeLa cell extract

with Listeria monocytogenes adhered to the cover slips. Listeria monocytogenes

is a parasitic bacteria that infects cells and creates actin comet tails to propel

around [104]. As the extract flows through the chamber the Listeria will polymerize

actin, and to depolymerize it the authors replaced the Hela solution with one

having the depolymerization factors. In [14] the actin filaments were pre incubated

with either cofilin, Aip1 or Coronin 1A and then a flow was started with the

remaining depolymerization factors. If pre incubation was done with either cofilin

or Aip1 the filaments were stable. Though if the filaments were pre incubated with

Coronin 1A the filaments were unstable at the moment the rest of depolymerization

factors were flown (Figure,4.11, left).

In [59] the authors using the same assay observed that the actin filaments would

have sudden bursts with exponentially distributed random times. In the same

fashion as in the previous experiment they studied the effects of pre incubation with

CapZ, a protein that caps actin filaments with high affinity. If the actin filaments

were pre incubated with depolymerization factors, the flow of CapZ would have

low affinity to the actin filaments. The other way around when CapZ was used to

pre incubate the actin filaments, the depolymerization factors would not recognize

the actin filaments (Figure,4.11, left). These results can be interpreted as a mutual

inhibition between the depolymerization factors and the capping proteins, this is

similar to what was concluded in a study reviewed in a previous section [70].
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Figure 2.8: Cooperative effects of Coronin 1A and Aip1. Incubation with Coronin
1A causes the actin filament to burst (left). Shielding depolymerization when actin
filaments are incubated with capping proteins and shielding of capping proteins
when incubated with depolymerization factors (right).

2.4 Dynamical properties and time scales of the

signaling cascade and actin cytoskeleton

As a living organism, the biological processes inside a cell operate at different

time scales in order to confront the survival demands imposed by external cues.

In the case of Dictyostelium discoideum the dynamics of the biological processes

have been investigated for several years . Although these processes are complex

in nature, their study on the basis of nonlinear dynamics and pattern formation

has been shown useful to understand them better [43, 102, 4, 121, 48]. The times

scales involved in these phenomena ranges from fast time scales in the order of mil-

liseconds to slower ones in the range of hours. A given time scale is not associated

to an specific component of the actin cytoskeleton or signaling system, instead

several time scales can be observed in the same component. Here we review the

observed dynamical properties sorted by the time scales in which they appear.
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2.4.1 Fast time scales, order ∼ 1 s

As discussed before the first step in the detection of cAMP is carried out by

binding to the CAR. The dissociation rates of the cAMP receptors are in the

order of 1 s−1 according to their phosphorylation state [106] and the association

rate is 5.6 µM−1s−1 [3]. As we will review this is the fastest process for the signaling

cascade and therefore there are three orders of magnitude in the difference between

the time scales with the slowest time scale which is related to cAMP production.

2.4.2 Intermediate time scales, order ∼ 10 s

The dynamics of the signaling network present variations in time scales of two

order of magnitude between autonomous and induced responses. By changing

the external background concentration of cAMP, Ras becomes transiently acti-

vated [100]. From response initiation to adaptation to a new cAMP background

takes around 20 s [93]. The ability of the cell to adapt to external background

changes has been investigated, on [61] it was proposed that the adaptation kinet-

ics can be explained by an incoherent feedforward loop model which the authors

named LEGI (Local excitation and global inhibition). The model relies in the

existence of a hypothetical fast activation process that acts on the cell membrane

while a slower diffusive inhibition process changes the sensitivity to the environ-

ment. This hypothesis was tested by comparing the responses of Ras to external

doses of cAMP, it was concluded an incoherent feedforward model fits best the

data than an integral feedback model (which also shows adaptation). From this

study it was proposed that RasGEF acted as the fast activator and RasGAP as

the slow inhibitor [101].

Under external cAMP stimulation the responses of PIP3 and PTEN have the

same time scales as Ras (∼ 20 s) [32]. As mentioned in a previous section it

is known that the presence of PTEN is essential for a cell to guide towards the

chemoattractant. In Etzrodt et al. [32] the cAMP responses of several components

of the cytoskeleton were measured, such as Aip1 and Coronin 1A. It was shown

that these proteins exhibit similar response time scales of around 20 s. In this work

we will concentrate in the time scales of the components of the actin cytoskeleton.

Periodic forcing with pulses of cAMP revealed a resonance of around 20 s (a

35



2.4. DYNAMICAL PROPERTIES AND TIME SCALES OF THE SIGNALING
CASCADE AND ACTIN CYTOSKELETON

detailed account of these experiments will be given later) [114]. But also it has

been observed by the author of this work and colleagues that the cytoskeleton also

shows time scales of around 10 s with periodic polymerization/depolymerization

cycles.

2.4.3 Slow time scales, order ∼ 100 s

Developmental and genetical processes inside cells occur over the time scales of

hours. For example, the expression of cAMP receptors can be induced in labo-

ratory by withholding nutrients from the cell and pulsing external cAMP every

six minutes for six hours [100]. After expressing CAR the cells will emit pulses of

cAMP, the periodicity of the pulses changes over time and can range from 30 min

to 6 min after 5 and 7 hours of nutrient deprivation respectively. In experiments

using perfusion chamber it was found that the ratio between cell density and flow

speed was a critical parameter for the initiation of cAMP pulsing [43].

The phosphatidylinositol (PIP2 and PIP3) system is the one that has its dy-

namics characterized better. In cells treated with Latrunculin A, which depolymer-

izes the cytoskeleton, it was observed that in a confocal slice of the cell membrane

displays rotating PIP3 waves. The time series obtained from a single point dis-

play fast time scales associated with concentration changes and slow ones in which

concentrations are nearly stable. This process has a periodicity of T ∼ 200 s and

is reminiscent to relaxation oscillations [4]. Observations on the lower part of the

cell membrane from another study have shown the existence of spiral waves, and

it was claimed by the authors that the nucleation and collision of resulting phase

singularities with the cell edges are correlated to morphological changes [102].

Motile cells exhibit patches of PIP3 that are related to pseudopod extension,

with a typical lifetime of one minute [86]. The mechanism proposed for this obser-

vation has been an excitable system, in which the inhibiting variable diffuses faster

resulting in small patches [46]. In [121] the authors performed numerical studies

and concluded that coupling the LEGI model with an excitable system reproduces

many of the observed features in cells. In steady state the cell membrane has a

low PIP3 and a high PTEN concentration, occasionally the PTEN levels are de-

pleted in small regions that travel around [40]. These domains termed holes where
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modeled in [55] by coupling a bistable reaction diffusion system with an excitable

system as a central pattern generator.

In [39] the dynamics of actin polymerization and signaling system were vi-

sualized. Cells were labelled with LimE and PTEN and monitored during their

recovery from Latruculin A, it was shown that the observed actin and PTEN waves

had timescales in the order of hundred of seconds. By using FRAP (fluorescence

recovery after photobleaching) [62] it was concluded that these waves consisted of

actin treadmilling instead of active transport by molecular motors [12]. A detailed

analysis in the morphodynamics during gradient sensing has shown that the cell

shape changes over time can be explained by two wave modes obtained by prin-

cipal components analysis. The periodicity of these transitions are in the order

of 200 s similar to the observed periodicities in the phosphatidylinositol system

when treated with Lantruculin A. An understanding of the different timescales ap-

pearing in most components of the chemotactic machinery is far from understood,

a proposal made to reconcile these ideas was of a slow signaling cascade is cou-

pled to a fast cytoskeleton [48], though it would not explain the intermediate time

responses of PTEN when a cell is stimulated. It is possible that this time scale

distribution arise naturally in biochemical networks with a high number of degrees

of freedom. Finally an important concept while analyzing data is the intrinsic cell

to cell response variability, this will affect the statistical averaging since it implies

that every cell has different internal parameters. In [92] it was shown that an

statistical average of induced Ras responses by steps of cAMP had a high amount

of variation between cells. Though repeated single responses in a single cell would

have a low amount of variation between each other. Also it has been observed that

from cell to cell there is a different threshold to induce a response [111]. These

effects are taken into account while analyzing the data in this work and will be

explained in the next chapter. This survey of time scales assists in understanding

the observed phenomena in this current work.

2.5 Objective

In Westendorf et al. [114] we have studied the physiological responses of the actin

cytoskeleton to external pulses of cAMP. It was shown that the average cytosolic
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intensity, which corresponds to the amount of actin monomers, depletes and relaxes

back to equilibrium showing an overshoot (Figure 2.9 a). The time series were

reminiscent to the response of a damped oscillator. Further investigations with

periodic stimulation have shown that it has a resonant frequency at T ∼ 20 s,

confirming its oscillatory properties. It was shown also that genetical knockouts,

Aip1∆ and Crn∆, responded differently at this frequency, reflecting their specific

role in the dynamics.

A remarkable observation is that in ∼ 10% of the observed cells exhibit self

sustained polymerization cycles reminiscent to limit cycle oscillations (Figure 2.9

d). It was conjectured that this appears as a consequence of the actin cytoskele-

ton being operating near an oscillatory instability, and due to natural cell to cell

variability, each cell would be at a certain distance from Hopf bifurcation. The

detailed nature of these oscillations was not determined, for example they could

arise by a purely deterministic mechanism, as they could also be purely stochastic

in nature, being induced by the environmental noise [71]. As we are studying a

biological system both deterministic and stochastic processes must be present. For-

tunately there are several theoretical studies that guide us into looking for specific

dynamical and statistical parameters that can be extracted from the data [60, 91].

Therefore one of the objectives of this work is to do a systematic comparison be-

tween different possible mechanisms and their predicted parameters, to eventually

determine the mechanistic nature of these oscillations.

The second part of this thesis will be devoted to the following questions: How

are the responses of actin polymerization affected in the absence of the proteins

Aip1 and Coronin 1A? and what biochemical roles can be inferred by observing the

biophysical processes? So in a similar manner as in [114] the cytoskeletal response

to cAMP pulses will be studied by monitoring LimE and the proteins that regulate

depolymerization, along with genetical knockouts of Aip1 or Coronin 1A.
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Figure 2.9: Average cytosolic fluorescence intensity for LimE [114] in response
to a pulse of cAMP. The responses are reminiscent to damped oscillations: a)
average time trace, b) cell with fast damping and c) with slow damping. While d)
corresponds with self sustained activity reminiscent to limit cycle oscillations.
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Chapter 3

Materials and methods

In this section we will review the methods and tools used to perform our experi-

ments and data analysis. As mentioned in Chapter 2 we are interested in studying

cells during their chemotactic stage. Therefore it is essential to mention the pro-

cedures to store cell spores for long times, as also the starvation protocol to drive

cell colonies from the vegetative to the developmental stage. These protocols have

been used in different strains where either cells are coexpressing Aip-GFP or Coro-

nin 1A-GFP with the filamentous marker LimE-mRFP, or in knockouts of Aip1

or Coronin 1A with LimE-GFP marked.

In the experiments single cells were stimulated with pulses of cAMP by means

of flow photolysis [8]. Space will be devoted to review the advantages of flow

photolysis and as well the precautions that need to be taken when using it. Since

flow photolysis is performed in microfluidic devices, details of techniques used for

soft lithography will be mentioned, as also details of the experimental set up and

the parameters used during experimentation.

The details of how the imaging was performed will be mentioned, we visualized

confocal images of fluorescent markers coming from single cells using a confocal

laser scanning microscope (CLSM). The images obtained were segmented using the

Chan-Vese algorithm to calculate the average cytosolic fluorescence. From these

time series were obtained, the analysis used will be mentioned such as fluctuation

analysis via the autocorrelation function. Finally we also mention the theoretical

interpretations of the parameters obtained from the autocorrelation function, that
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have been vital for the later interpretation of our data.

3.1 Cell culture

All the cells used in this work belong to the axenic cell line AX-2 [112]. An axenic

cell line is one that has the ability to survive without their natural aliment. So

instead of using bacteria, the cells are maintained in dishes with HL-5 medium

(composition found in [112]) for their nourishment [33]. For long term storage

spores are kept in a freezer at −80o C and for usage they are thawed in a water bath

at 37o C. Then they are transferred to 10 ml of HL-5 and are allowed to recover

for 30-60 min at 21-23o C [33]. These strains have a doubling time of 8-9 h with a

saturation cell density at 4×106 cells/ml, and grow optimally at 21-23o C. The cells

used in this work had the following mutations: LimE-mRFP+ Coronin 1A-GFP,

LimE-mRFP+Aip1-GFP, LimE-GFP+Aip1∆ and LimE-GFP+Crn∆ (details of

the constructs can be found in [34, 38, 56, 50]). For subculture the cells are kept

in Petri dishes filled with 10 ml of HL-5 at 22o C, the cells are splitted every

2-3 days for LimE mRFP+Crn-GFP and LimE-mRFP+Aip1-GFP, and every 1-2

weeks for LimE-GFP+Aip1∆ and LimE-GFP+Crn∆. After 11-13 passages the

cells are discharged and a new stock is taken from the freezer.

The cell cultures were prepared for experiment one day in advance. A drop of

cell solution with 1x106 cells (determined with the Neubauer chamber) is mixed

with 25 ml of HL5 medium in a flask. The flask is then put into shaking culture at

150 rpm and the temperature maintained at 22o C. 7 hours before the experiment

the cells are centrifuged at 1000 rpm at 4o C for 3 minutes. The supernatant is

then removed and the cells are washed with 10 ml of phosphate buffer (pH=6), this

process is repeated twice. The remaining pellet is resuspended afterwards in 20 ml

of phosphate buffer and then transfer to a 50 ml flask. The culture is shaken for

30 minutes in phosphate buffer, after that it receives two drops of 25 µl of cAMP

(at 16.7 µM) every six minutes for six hours. This cAMP pulsing protocol is for

stimulating the expression of CAR’s in the cells [100]. After the six hours have

passed, the cells are centrifuged again with the same parameters as before. The

remaining pellet is suspended and mixed with 2 µl of phosphate buffer and the

cells are inserted into a microfluidic device for experiment.
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3.2. FLOW PHOTOLYSIS

3.2 Flow photolysis

As discussed in Chapter 2 the response to cAMP is in the order of seconds for

several components of the actin cytoskeleton [32]. Therefore to understand the

underlying dynamics of this system, we need to provide chemical stimuli that is

quantitatively controlled at a subsecond resolution and at single cell scales. The

experimental technique of flow photolysis was developed to address these issues [8].

The technique subjects the cells to a constant flow of caged compound in a straight

microfluidic channel, Figure 3.1-1, a. The caged compound consists of a chemical

caged fused with the ligand of interest, cAMP in this case, and is released from

its cage by exposing it to short wavelength radiation. The caged compound is

biologically inert and therefore the cell cannot sense it before photoactivation. As

shown in Figure 3.1-1 (b) the caged compound can be release in front of the cell,

with the possibility of exposing it to local gradients by controlling the irradiation

region.

In using microfluidic devices for single cell stimulation, the effects of the inter-

play between solute diffusion and fluid flow must be taken into account. Geoffrey

Taylor showed in 1953 that for a straight laminar flow in a pipe, diffusion is en-

hanced in the direction perpendicular to the flow. Later Aris [5] generalized this

analysis for any tube geometry, and this effect is called the Taylor-Aris dispersion.

In [6] the effects of the Taylor-Aris dispersion given by the uncaging switching time

were studied for a straight microfluidic channel. The switching time was defined

the time needed to increase the concentration of a photoactivated compound from

5% to 95% of maximal concentration. Figure 3.1 (2) shows their findings, it can

be seen that there is a dependence for the switching time against the distance

downstream from the source. The switching time monotonically increases the fur-

ther is the target from the uncaging region, this implies that a single cAMP pulses

becomes broader in the time domain as it travels through the device.

3.3 Experimental set up

The basic setup for this experiment consisted of four parts : The first is a straight

channel microfluidic device which is filled with the solution containing the cells
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3.3. EXPERIMENTAL SET UP

Figure 3.1: 1) Schematic of flow photolysis for cell stimulation, the uncaging area
must be set in front of the cell. 2) The relation between switching time, which is
the time needed to uncage from 5 % to 95 % of chemical concentration, and the
distance from the uncaging region. The farther is the cell the longer it takes to
get to the highest concentration, this is due to the Taylor-Aris dispersion. (Figure
modified from Bae et al. [6])
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(Figure 3.2 a). Next in the list is the BCMCM caged cAMP which was used to

stimulate the cells, this was flown into the microfluidic device by a 250µl syringe

(Hamilton, Bonaduz, Switzerland) mounted on a Standard Infuse Syringe Pump

(Harvard Apparatus PHD 2000, Holliston, MA) (Figure 3.2 b) at constant speed.

In order to visualize the cells and release cAMP from its cage, an Olympus FV-1000

confocal microscope was used (Figure 3.2 c).

Figure 3.2 shows the experimental set up used in every experiment, in the left

picture it can be observed the syringe pump (Figure 3.2 b). The pump contains

a 400 µl Hamilton syringe (model 750) containing the BCMCM caged cAMP and

attached to the syringe there is tubing connecting it with the microfluidic device.

In the left picture of Figure 3.2 we can see the microfluidic device with its tubing

(dimensions, 0.56×1.07 mm) connected to the syringe pump, the device is on the

confocal microscope and below it is the objective to visualize the cells. In the next

sections these components are explained in more detail.

Figure 3.2: Experimental set up, a) Microfluidic device for cell stimulation, b)
Standard Infuse syringe pump and c) Olympus FV-1000 confocal microscope.

45
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3.3.1 Soft lithography

A sketch of the microfluidic device used in this work is shown in Figure 3.3, it

consists of straight channels of 500 µm in width, 30 mm long and with a height of

26 µm. The microfluidic devices were created from the master wafer by covering

it with a mixture of 60 g of polydimethylsiloxane (PDMS) (Sylgard 184 Silicone

Elastometer, Dow Corning) and 6 g of its curing agent (Sylgard 184 Silicone Elas-

tometer Curing Agent, Dow Corning). The master wafer with the mixture was

brought into an dessicator for degasing and then it was cured for two hours at

75o C.

Single devices were cutted out with a scalpel and cleaned with magic tape

several times. Then the inlets/outlets were punched with a 19 gauge stainless steel

syringe tip. The cover slip was also cleaned with magic tape and then brought

into a plasma cleaner (Harrick Plasma Cleaner, Ithaca, NY) along with the device.

The device was held at the plasma cleaner for 1.5 minutes, in the first minute the

vacuum was set and in the remaining time the radio frequency radiation (RF)

was turned on at the highest level to create the plasma. After plasma cleaning

the coverslip and PDMS were adhered to each other and brought into the oven at

75o C for one minute.

Figure 3.3: Design of microfluidic device used in flow photolysis experiments.
(taken from Westendorf et al. 2012 [113])
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3.3.2 Caged compounds

In all the experiments the caged compound used was BCMCM-cAMP (6, 7-

Bis(carboxymethoxy)coumarin- 4- yl)methyl- adenosine- 3’, 5’- cyclic monophos-

phate) (Biolog Life Sciences Institute, Bremen, Germany). The BCMCM powder

was dissolved in phosphate buffer and diluted to 10 µM . The solution was kept

in 500 µl aliquots at −75 oC until thawing prior to the experiment. Then it

was inserted into a 500 µl syringe (Hamilton, Bonaduz, Switzerland) covered in

aluminum foil.

3.3.3 Confocal microscopy

The experiments were performed using the confocal laser scanning microscope

Olympus FV1000. For all the experiments the microscope had an UPLSAPO

60XO objective with oil immersion. A multiline 30 mW Argon laser (Melles Griot,

Carlsbad, Ca) was used to excite the GFP fusioned with the proteins, for this the

488 nm laser line was used at 10% of maximum intensity for each cell. The fusioned

mRFP was excited by using 1 mW HeNe laser (Melles Griot, Carlsbad, Ca) with

a wavelength of 543 nm, for each experiment the laser intensity was set to 20%

of maximum intensity. The photoactivation of caged compounds was done with a

laser diode with a wavelength of 405 nm, for each experiment the laser was used

at full power of 25 mW. The image detection was performed in separate channels

when two fluorophores were present and with each image scanned sequentially,

the voltages of the photomultipliers were varied from 400-600 mV to maximize

the dynamic range. The images were scanned sequentially in order to avoid the

artifacts of spectral bleeding (which happens when the spectra of two fluorophores

have an overlap and can be detected by both channels). As shown in Figure 3.4, a

region of 48× 48 µm (120× 120 pixels) was determined for imaging, on the most

left side another region of 0.4 × 48 µm (1 × 120 pixels) was determined for the

uncaging of cAMP by the scanning laser (405 nm; 25 mW). Each cell was imaged

at a height ∼ 2 µm from the bottom of the coverslip, and the cell was centered as

much as possible to keep it ∼ 20 µm from the uncaging region. The flow profile

streamed perpendicular from the uncaging region from left to right of the imaging

region. The images for both green and red lasers were scanned at a rate 4 µs/pixel
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taking 0.48 ms per image, we used a frame rate of one second to scan between

images of the same fluorophore. A rate of 2 µs/pixel was used for the LD laser

and took 0.24 ms for a single scan, in each experiment the cAMP administered

to the cell lasted 1 s and in that time the uncaging region was scanned ∼ 4166

times.

Figure 3.4: A) Schematic of the microfluidic device along with the 48 × 48 µm
imaging region, the uncaging region is denoted by a red line. B) Time series of the
uncaging profile measured with fluorescein at the pixel denoted by a blue square
in A. (Taken from Westendorf et al. 2013 [114])

3.4 Signal processing

3.4.1 Data retrieval

To analyze the images recorded from the confocal microscope, the routines written

by Christian Westendorf were used [113]. The first step to retrieve the data is to

segment the image for extracting cell contours. As the cell is imaged continuously,

its fluorophores photobleaches [105] and the mean fluorescence intensity decreases

over time. Therefore if a boundary is found by segmenting an image with a fixed
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fluorescence threshold, the boundary would be subject to photo bleaching giving

deceiving results. An adaptive algorithm is needed then, and in this work we have

used the Chan-Vese algorithm for image segmentation [19].

The Chan-Vese algorithm uses a Free energy functional of the form

F (c1, c2, C) = µLength(C) + νArea(inside(C))

+λ1

∫
inside(C)

|u0(x, y)− c1|2 dxdy

+λ2

∫
outside(C)

|u0(x, y)− c2|2 dxdy

(3.1)

where C is an involving curve that evolves over time to the image objects bound-

aries, u0(x, y) is the image, c1 and c2 are the averages of u0(x, y) inside and outside

the curve C respectively, µ ≥ 0, ν ≥ 0, λ1 > 0 and λ2 > 0 are constant parameters.

The time evolution of curve C is defined by

inf
c1,c2,C

F (c1, c2, C) (3.2)

Figure 3.5 shows an example of image segmentation performed to an image with

a single cell. An initial curve C circling the whole imaging region, will evolve to

the boundary of the cell denoted by the blue curve. We have used the parameters

µ = 0.25, ν = 0, λ1 = −1 and λ2 = 1 which are the same used by the authors of

the Chan-Vese algorithm in the original paper [19].

Once the cell is detected two regions are determined: the cell cortex is a band

surrounding the cell that goes from the cell boundary to 1.6 µm inside the cell,

and the rest was defined as the cytosol. To quantify the dynamics of both regions

over time, their mean spatial fluorescence intensity over time was calculated

I(t)∗cyt,cor = I(t)cyt,cor − I(t)Bgnd (3.3)

where I(t)cyt,cor is the mean fluorescence averaged over the cytosol, and I(t)Bgnd

is the mean background fluorescence. As mentioned in the background section,

there is a cell to cell variability due to their different internal physical parameters.
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In the next subsection we describe how the time series I(t)∗cyt,cor were analyzed for

single cells.

Figure 3.5: The Chan-Vese algorithm detects the cell contour to extract fluores-
cence intensity. We have defined the cortex as the region covering four pixels from
the contour and the rest as the cytosol. The red line depicts the cAMP uncaging
region. (Image from Christian Westendorf used with permission)

3.4.2 Correlation analysis

As mentioned in the previous chapter, to discern between different physical mech-

anisms we need to manipulate its internal physical parameters or give external

perturbations. Unfortunately in biological experiments we might not have access

to one or neither of them, so we complement the analysis by extracting physi-

cally meaningful parameters from the observed data. In this work we have relied

substantially in techniques traditionally used in statistical mechanics [58], as the

autocorrelation function
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Cxx(τ) =
〈
x(t− τ)x∗(t)

〉
(3.4)

It gives the statistical features between different points of a signal, as well the time

scales behind the physical process [15]. At τ = 0 the autocorrelation function gives

the variance σ2 of the time series. The decay rate of the autocorrelation function

is given by the correlation time [97]

τc =
1

Cxx(0)

∫ ∞
0

|Cxx(τ)| dτ (3.5)

which is a measure of how fast several points decorrelate in a time series. The next

tool is a measure of the relation between different points between two different

signals called the cross correlation function

Cxy(τ) =

〈
x(t− τ)y(t)

〉√
Cxx(0)Cyy(0)

(3.6)

similar to the autocorrelation function except that is normalized. A value of one

in the cross correlation means completely correlated and a value of 0 completely

decorrelated.

If the Fourier transform of a signal is defined as F [x(t)] = X(ω), then the

power spectral density (|X(ω)|2) and autocorrelation function are related via the

Wiener-Khinchin theorem [15], expressed as

Cxx(τ) =

∫ ∞
−∞
|X(ω)|2e−iωτ dω (3.7)

These tools can be readily used to characterize the data, but also there is a theo-

retical framework for its interpretation, we proceed with a small review in terms

of Langevin dynamics.

Interpretation

The tools just mentioned are useful by themselves, but it helps to give a physical

interpretation of the parameters obtained. Here we review some of the interpre-

tations that are given in the framework of linear dynamics [58], and as well in the

framework of nonlinear oscillators [60, 91]. We start with the linear case, suppose
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a physical system that can be defined by the following set of ordinary differential

equations

d

dt
~x(t) = A~x+ ~ξ(t) (3.8)

where ~x(t) ∈ Rn, ~ξ(t) ∈ Rn and A ∈ RnxRn. The elements of the vector ~ξ(t) are

defined as
〈
ξi(t1)ξj(t2)

〉
= Dδijδ(t1 − t2), where D is the noise intensity, δij is the

Kronecker delta and δ(t1−t2) is the Dirac delta. The physical meaning of Equation

3.8 belongs to a system that is constantly forced with internal or external noise,

for example: a passive particle in a fluid forced by the environment (Langevin

Equation) [58], or as modelled in [68], an active cochlea hair bundle with internal

and external noise.

Any system defined by Equation 3.8 cannot be directly solved analytically, but

its statistical features can be obtained. By Fourier transforming Equation 3.8 we

arrive at

~X(ω) = B~Ξ(ω) (3.9)

where F [~ξ(t)] = ~Ξ(ω) is the Fourier transform of the external noise vector, and

B = (iωIn −A)−1 (3.10)

where In is the identity matrix. Finally the expression for the power spectral

density (PSD) is given by

|Xi(ω)|2 = |
N∑
j=1

BijDi|2 (3.11)

this quantity can be easily measured from the time series from an experiment.

The following information can be obtained from the power spectral density: the

number of major slopes in the curve gives number of components n of the system.

For example when ~x(t) ∈ R1, the PSD will contain one major decaying slope only,

as in the well known example of the Ornstein-Uhlenbeck process.

For the explicit case of a damped harmonic oscillator
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A =

(
−λ −ωo
ωo −λ

)
(3.12)

~ξ(t) =

(
ξ1(t)

ξ2(t)

)
√
D (3.13)

we get the following PSD

|Xi(ω)|2 =
D

λ2 + (ω − ωo)2
(3.14)

and with the Wiener-Khinchin theorem (Equation 3.7) we get

Cxx(τ) =
D

2λ
e−λτeiωoτ (3.15)

Notice that the two important parameters mentioned before characterizes the dy-

namics of the oscillator, the variance σ2 = D
2λ

is given by the balance between

noise strength and dissipation rate, and the correlation time τc = 1
λ
, is given by

the dissipation rate of the oscillator. Another measure for the fidelity of the sig-

nal is given by the bandwidth of the PSD called the full width at half maxima

(FWHM) which is proportional to the correlation time ∆ω ∼ 1
τc

.

For nonlinear systems there is no general expressions for the PSD, though in

the case of analyzing a self sustained oscillator, several features observed in the

PSD and autocorrelation function can also be linked to the dynamical properties

of the system. For example the variance of the signal will also reflect the interplay

between noise strength and energy input/dissipation rate σ2 (λ,D) [91]. On the

other hand, the correlation time is not easily defined for all parameters of a self

sustained oscillator. In the case of large amplitude oscillations, we can approximate

the amplitude by the variance a(t) ≈ σ2 [60]. In this case the signal decorrelates

by the oscillators phase fluctuations called phase drift, these are influenced by the

amplitude, and therefore the correlation time also depends on the variance τc(σ
2).

Notice that even without explicit expressions, these parameters reflect the same

properties as in the linear case. Since biological systems are noisy by nature [31],

we will use these parameters to characterize the autonomous dynamics of the actin

cytoskeleton of D. discoideum.

53



3.4. SIGNAL PROCESSING

54



Chapter 4

Autonomous activity of the actin

cytoskeleton

As mentioned in the background section, a percentage of Dictyostelium discoideum

cells exhibit periodic activity in actin polymerization [114]. The objective of this

section is to gain some understanding on the mechanism leading to these oscilla-

tions. Several difficulties makes this task hard. First, the presence of experimental

noise hinders the extraction of parameters. Also systems with fundamentally dif-

ferent dynamics may show similar characteristics. For example the behavior of

a bistable system in the presence of noise [35], may be very similar to a sys-

tem exhibiting relaxation oscillations [98], in the sense that the dynamics in both

cases involves fast and slow time scales. More generally, distinguishing features

attributable to the deterministic part of the dynamics, and to stochastic aspects

in the system is the challenge we are addressing. Thus if a system is exhibiting

both fast and slow times scales and periodicity, its mechanism cannot be identified

without further tests. In this chapter, we used two main ways to distinguish be-

tween stochastic and deterministic aspects: one is the natural variation of internal

parameters that an isogenic cell line will present [92, 111] and the second is giving

external cAMP perturbations to analyze its response.

The first recorded instance of Dictyostelium discoideum cells with self sustained

actin oscillations came from the double knockout Scar∆/PIR121∆ [51], this sug-

gested that an imbalance in the activators of the ARP2/3 complex was respon-
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sible for the transition between oscillatory and non-oscillatory states. An ideal

experiment to test this hypothesis would consist in varying systematically the ex-

pression levels of SCAR and PIR, but the current genetical tools in Dictyostelium

discoideum are limited to test it directly. Therefore our approach consists in per-

turbing the basal state of the actin cytoskeleton by applying external pulses of

cAMP, and from its response infer some of their dynamical properties. As the

control parameters for manipulating actin oscillations are unknown, we exploit

the fact that an isogenic cell line exhibits a natural cell to cell variability in their

biophysical properties [92, 111]. This reflects the internal distribution of control

parameters that manipulate these oscillations, and as a consequence a percentage

of cells are in the oscillatory state. At the same time other cells will exhibit the

characteristic fluctuations induced by the environment, these are highly amplified

when a dynamical system is close to a transition point between oscillatory and non-

oscillatory states [116, 117]. We have exploited all these facts to give a complete

characterization of the oscillatory actin cytoskeleton in chemotactic amoeba.

To identify the dynamical states in which the cells are, we used tools that are

often used in statistical physics. The measured time series are characterized by

the parameters given by the autocorrelation function (which contains its statistical

features [15]). This is not the first time that these tools are used to analyze the

dynamics of living cells, auto and cross correlation functions were used to discern

the connectivity between different genes in E.coli. For example, the authors of

a study measured the fluctuating expression levels of different proteins and they

were able to relate the observed cross correlation with the pairwise interaction

between genes [28]. In another case it has been used in eukaryotic cells to analyze

the dynamics of the p53 DNA repair system. The authors fitted measured power

spectral densities of the system components with solutions from Langevin equa-

tions. It was concluded that the interaction between different components could

be tracked by this approach [41].

As mentioned in section 3.4.2, we interpret our measured autocorrelation func-

tions using the seminal work of Melvin Lax (1967) [60] and the Fokker-Planck for-

malism for oscillators [91] as a guide. In these works the basis are laid to calculate

the parameters that characterizes the autocorrelation function of a self sustained

oscillator forced with additive noise. An important observation from these works
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is that the correlation time, which measures the decay rate of the autocorrelation

function, can either be related to the oscillators amplitude or phase fluctuations

(also known as phase drift). The amplitude fluctuations will only contribute to the

background of the power spectral density, and therefore affects the autocorrelation

function in its variance. The development of these techniques to calculate these

parameters proven to be vital for the interpretation of our results.

4.1 Experimental protocol and measured param-

eters

The cells used in this experiment coexpressed two fluorescent labels, either Coro-

nin 1A-GFP+LimE-mRFP or Aip1-GFP+LimE-mRFP. To capture the cells in

their different dynamical states they were chosen randomly in the microfluidic

device for stimulation. Each cell was recorded either 400 s or 200 s by imaging

sequentially both labels (the protocol was changed from 200 s to 400 s when a

preliminary analysis had shown that it was more appropriate to record for longer

times). After the first 100 s of recording, the cells were stimulated with a pulse of

uncaged BCMCM cAMP, at a concentration of 10µM , for one second, and with

the bleaching laser set to maximum intensity. The time series for average cytosolic

fluorescence intensity were extracted for LimE and its companion label (Figure

4.2 a), an example of a cell expressing Coronin 1A-GFP+LimE-mRFP is shown in

Figure 4.1. After the extraction of the time series the following steps were done.

First, the average value of the time series for the first 100 s was calculated and

subtracted from the data. As the measurement progresses the fluorescence inten-

sity will drift by photobleaching [62] or by a change in focal plane as the cell moves.

Then, to detrend the slow time scales associated with these artifacts, a third order

polynomial was fitted by using the least squares minimization method, and then it

was subtracted from the data. Finally the fluorescence expression level also varies

from cell to cell and the data needs to be scaled. The data was normalized based

on the actin response induced by external cAMP stimulation, a parabola was fitted

to the observed minimum by using the preceding and succeeding points. With the

obtained algebraic expression for the parabola the minimum was found, and the
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time series were divided by the absolute value of this minimum.

The dynamical state of the cell is not readily recognizable during the measure-

ment, therefore the following steps were done to recognize it. The autocorrelation

function (Eq. 3.4) was calculated for cytosolic LimE (Figure 4.2 b, red line), and

for measurements in which the autocorrelation presented at least one oscillation

cycle, it was classified as an oscillating cell. In total we have found 31 out of 119

cells to be classified as oscillatory. To extract parameters from the autocorrelation

function the following formula was fitted (Figure 4.2 b, dashed black line)

Cxx(τ) = σ2
Expexp

[
−|τ |
τc

]
cos(ω0τ) (4.1)

From the fit the parameters correlation time τc and variance σ2
Exp were obtained

to characterize the cells. The autocorrelation function was fitted with a com-

mercial software package ( MATLAB R2012b, The MathWorks Inc., Natick, MA,

2012 ) using the Levenberg-Marquardt algorithm for nonlinear least squares fitting

(NLSF). A NLSF algorithm needs a parameter estimation as an initial condition,

for the correlation time it was obtained by using Equation (3.5), to estimate the

variance we used the value of the autocorrelation function at zero lag Cxx(0), and

for estimating ωo, we used the frequency of the main peak in the power spectral

density. The cross correlation between LimE and the secondary label was also

calculated with Eq. 3.6, an example is shown in Figure 4.2 c.

4.2 Actin binding proteins and pseudopod ex-

tension

An important issue to address for the study of cell motility, is the relationship

between cytosolic fluorescence depletion of actin binding proteins and pseudopod

extension. The control of pseudopod extension is the direct link known so far in

the interaction between the signaling cascade and the actin cytoskeleton. This link

has been shown for example by depriving cells from the gene that encodes PTEN,

which results in a significant impairment on the directionality of pseudopods [49].

The question per se needs a detailed study correlating the spatiotemporal dynamics
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6 s 9 s 12 s 15 s 18 s 

Figure 4.1: Example of a cell exhibiting periodic polymerization episodes in the
actin cytoskeleton, the cell is labeled with green for Coronin 1A and red for LimE.
The picture sequence corresponds to one period of oscillation. A region where
a pseudopod was formed is marked by a white arrow, as the cytosol gets darker
the pseudopod is extended even though after the cytosol recovers the pseudopod
maintains its position.

of the cell boundary (with parameters such as curvature) and the mean cytosolic

fluorescence signal, which is outside the scope of this work. As a first step to

gain insight into this relation, we have taken the best measurement available and

study the relation between pseudopod extension and the time series of cytosolic

fluorescence intensity.

As mentioned in the materials and methods, we tracked the cell boundary with

the Chan-Vese algorithm over time. In Figure 4.3 (right) we see the time evolution

of the cell contour during one period of LimE oscillation. Each boundary is color

coded for the observation time, which was defined such that t = 0 s corresponds to

the minimum value of fluorescence in the given period. The contours were taken

for the times −6 s ≤ t ≤ 6 s with respect to the fluorescence minimum value and

the coordinate system is given with respect to the center of mass of the cell at the

frame t = −6 s.

Figure 4.3 (left) summarizes how the time evolution of the contours was quan-

tified. For every oscillation period, the regions where the cell membrane protruded

or retracted were identified. A straight line was drawn along a small region of the

cell membrane (dashed black line in Figure 4.3 left), and normal to it an arrow was
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Figure 4.2: Data extracted from the cell shown in Figure 4.1. a) Extracted time
series for mean cytosolic fluorescence for LimE (red) and Coronin 1A (blue), the
black arrow corresponds to the time when the cell is stimulated with cAMP. b) The
autocorrelation function from the LimE time series (red), the function of Equation
(4.1) was fitted (black dashed line). c) Cross correlation function between LimE
and Coronin 1A.
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4.2. ACTIN BINDING PROTEINS AND PSEUDOPOD EXTENSION

drawn pointing to the region the membrane evolves. In this example, an arrow

was drawn normal to the cell membrane and is pointing outwards meaning that

the cell membrane protruded. But also there are cases where the cell membrane

retracted, meaning that the boundary would evolve inwards with respect to the

cell center of mass (Example in Appendix D). Also there are cases where at the

beginning protrudes and then retracts, the boundary in this case first evolved out-

wards and then inwards. The positions of the cell membrane touching the arrow

were extracted and the time evolution for the length of the protrusion (retraction)

were obtained by

L(t) =
√

(x(t)− xo)2 + (y(t)− yo)2 (4.2)

where xo and yo are the position of the cell membrane at t = −6 s.

Our main finding from this analysis is summarized in Figure 4.4, on the left

side of the figure we have an overlap of all the depletion periods with their cor-

responding minima centered at t = 0 s. On the right side of the figure we have

all the observed protrusion lengths for the corresponding time series. For each

oscillation period, one or several pseudopods were created, so each line in Figure

4.4 (right) corresponds to a single protrusion. We can see that the times of pseu-

dopod extension are well defined in the period −4 s ≤ t ≤ −3 s before reaching

the cytosolic fluorescence minima. Intuitively, we would have expected that LimE

depletion at the cytosol would be correlated with pseudopod extension while flu-

orescence recovery with pseudopod retraction. We observed that the pseudopod

length saturates and remains at that maximum point for a long time, while LimE

fluorescence at the cytosol is recovered with no observed pseudopod retraction.

The times to reach length saturation varied between pseudopods, but within the

first two seconds of initiation reaches its maxima. This is fast compared to the

LimE oscillation period which in this case was T = 14.28 s. This suggest a relation

between pseudopod length and the fluorescence signal x(t) of the form

L(t) ∼
∫ t

0

f(x(s)) ds (4.3)

Meaning that cytosolic LimE fluorescence depletion represents the transient force

exerted on the pseudopod (or cell membrane).
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4.3. PERIOD AND PHASE DISTRIBUTION

The dynamics of membrane retraction seem to be uncorrelated (Figure 4.5,

right) with the fluorescence values. The retraction seems to be happening contin-

uously with no actual defined timing for starting or finishing. Looking at Figure

4.5 (right), we see that the length of membrane retraction increases continuously

in steps. Retraction is related to the dynamics of the motor protein MyosinII [21].

It is possible that MyosinII is exerting its force continuously opposite to actin

polymerization. This observation supports the hypothesis in which the observed

oscillations reflects the treadmilling of actin filaments and not an active translo-

cations of filaments caused by molecular motors. Figure 4.5 (left) shows cases of

apparent competition between protrusion and retraction, as it can be seen that

the length of a pseudopod increases, but instead of reaching length saturation it

decreases at later times. To the best of the author’s knowledge the results pre-

sented here are new. These might help to understand the more general case when

the polymerization dynamics are not periodic.

4.3 Period and phase distribution

From the parameters available, we proceeded to characterize two basic biophysical

properties: period distribution and the phase lag between different proteins. The

phase lag is defined as the phase angle where the cross correlation function has its

maximum. This can be calculated by using ∆φ = ωoτmax, where τmax is the time

lag where the cross correlation is the highest, and ωo is the extracted frequency

from the LimE autocorrelation function.

First, with the extracted frequencies we proceed to analyze the oscillation pe-

riod distribution. Figure 4.6 shows the distribution for the LimE time series. It

can be observed that the majority of the cells (n=17) have an oscillation period

between 11.1 s and 14.5 s, followed by cells whose oscillation period lies between

14.5s and 18.8 s (n= 10). Also some marginal cases have an oscillation period

higher than 18.8 s. In our previous studies of periodic forcing [114] we found that

the response with highest amplitude was given at a period of T = 20 s. The

discrepancy between the resonant frequency and the current period distribution

suggests two possibilities: a) The response is nonlinear and amplitude dependent,

and so the the amount of cAMP concentration will define the resonant frequency
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EXP

(this line of research is currently investigated by H. Hsu), or b) there is a time

scale distribution for the components of the cytoskeleton and the signaling system,

which would be reflected with different resonant and oscillation frequencies.

A dynamical system which exhibit periodic behavior needs at least two compo-

nents [98], one acting as an activator and the other as an inhibitor, and they will

exhibit a time delay with respect to each other. Also there is an alternative repre-

sentation for a one component system, which is inhibited by a time delayed version

of the same signal [74]. In both cases the inhibition profile is delayed, and therefore

it is expected that the proteins that inhibit actin polymerization (such as Coronin

1A and Aip1) will be time delayed with respect to LimE. For example in Figure

4.2, Coronin 1A has a time periodic profile which is delayed with respect to LimE.

Therefore we have obtained the phase lag between Coronin 1A and LimE (Figure

4.7, left) and between Aip1 and LimE (Figure 4.7, right). In both histograms,

except for two cells, their values span the negative side of the axis meaning that

LimE is the leading signal for both proteins. The histogram for Coronin 1A is

peaked at ∆φ = −1.1π and its values span continuosly from ∆φ = −1.58π to

∆φ = −.524π, with two marginal cases centered at ∆φ = −.0511π. In the case

of Aip1 the distribution is more uniform from ∆φ = −1.84π to ∆φ = −0.28π

with also two separate cases centered at ∆φ = −2.28π. The uniform distribution

could be caused by the fact that is harder to measure an Aip1 signal since the

label expression for Aip1-GFP tends to be weak and therefore difficult to measure.

The phase lags supports the inhibitory role of Aip1 and Coronin 1A discussed in

Chapter 2, though this topic will be studied more thoroughly in a Chapter 5.

4.4 Correlation time τc and variance σ2
Exp

As mentioned in Chapter 3, the autocorrelation function characterizes the statis-

tical properties of a signal via the correlation time, which is a measure of signal

coherence, and the variance, which is an indirect measure of amplitude. Figure

4.8 a shows the collected values for 31 cells (N = 12 Aip1-GFP+LimE-mRFP and

N = 19 Crn-GFP+LimE-mRFP) which showed at least one oscillation period in

the autocorrelation function. There is a cluster of points limited by the values

τc ∼ 90 s and σ2
Exp ∼ 0.25 (denoted by a black triangle), this cluster of cells were
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classified as cells that exhibit short transients (defined and discussed in section

4.6). The outlying points from this region corresponds to cells that were classified

as long transient cells (discussed also in section 4.6). The majority of the outlying

cells have a correlation time one order of magnitude higher than in the cluster and

therefore they are highly coherent. There is an apparent inverse relation between

the correlation time and variance of these points, in which points with higher co-

herence exhibit lower amplitudes. Zooming into the area bounded by τc ∼ 90

s and σ2
Exp ∼ 0.25 also shows another cluster of points with lower variance and

correlation time, but another set of points in this region follow an inverse relation.

After a careful analysis of these plots, we concluded that if we interpreted as

if the observed oscillatory cells are all above the critical point, then they do not

match the typical scenario that is expected. As the amplitude of an oscillator

increases, the dissipation at the radial direction of phase space becomes stronger

and amplitude fluctuations become negligible. All statistical properties are then

given by the oscillators phase, these depends on the inverse of amplitude and

therefore the correlation time increases as the amplitude increases. This would

give as an expectation a monotonic increasing relation between correlation time

and variance [60], which is followed in our plots only for some points. Therefore

it is natural to ask, if actin polymerization is oscillating at above criticality, what

are the conditions needed to get an inverse relations between correlation time (τc)

and variance (σExp)?

On the other hand, the distribution of correlation times might reflect the fact

that some cells operate below the critical point. A nonlinear oscillator set to the

parameter regime where it does not exhibit self sustained oscillations, would be

fluctuating due to the forcing exerted by the environmental noise [11]. It would

show a high cross correlation between its components, the autocorrelation func-

tion would show a finite frequency with a short correlation time [97]. As one of

the control parameters is varied towards criticality, the oscillator becomes more

sensitive to external fluctuations [116, 117, 16], close to the transition point the

amplitude increases steeply to parameter variation [91]. If this second scenario is

true, then we can ask, how many cells are below/above critical point? and how

much noise is contributing to the dynamics? In the next section, we discuss the

minimum mechanisms necessary to reproduce our experimental observations.
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4.5 Origin of the statistical properties of actin

oscillations.

As mentioned in the previous section, there is an apparent inverse relation between

the correlation time of the LimE time series with its own variance. Though we can

see in Figure 4.8 that the points are scattered through the {τc, σExp} plane. To

test how meaningful this scattering is, we proceed by doing a theoretical analysis

of these signals. In this study we have tested systematically two hypotheses: In

the first one, the internal parameters of the system are close to the transition point

of an oscillatory instability, while at the same time the environment is affecting

the actin cytoskeleton in the form of noise. The observed dynamics can be a

consequence solely from the environments influence, but also from the internal

mechanisms of actin polymerization. In the second the system is far from the

transition point, where the amplitude is relatively insensitive to external noise

and the statistical properties are given by the oscillators phase drift. In this case

we also add a multiplicative noise term which as a consequence gives an inverse

relation between correlation time and variance.

4.5.1 Close to an oscillatory instability with additive noise

We start by analyzing a canonical model for self oscillating processes called the

Stuart-Landau model [83] subject to external fluctuations

dz

dt
=
(
λ+ iωo − ε|z|2

)
z +
√

2Dξ(t) (4.4)

This is a generic model for the emergence of self sustained oscillations and is

defined in the complex plane where z(t) = x(t) + iy(t). The parameters λ and ε

are the linear and nonlinear dissipation rates respectively, ωo is the eigenfrequency

of the oscillator, ξ(t) is an stochastic variable defined as < ξi(t− τ)ξi(t) >= δ(t),

and D characterizes the noise variance. The parameter λ controls the dynamical

state of the system, when λ < 0 the system is stable and when perturbed from its

equilibrium it returns to its basal state. As the parameter is increased to λ > 0

the basal state becomes unstable and the amplitude of the system increases to

a finite value where the input energy is balanced by the nonlinear dissipation.
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When D > 0 it corresponds to the Langevin version and presents fluctuations

in both regimes. These fluctuations are strongly amplified near the transition

point [116, 117] and these properties have been used to model the amplification

properties of the cochlea [16].

The dynamics of the system close to the transition point, can be studied by

solving the Fokker-Planck equation corresponding to the amplitude equation [91]

obtained by using z(t) = a(t)eiφ(t) (for the remainder of the analysis we set ε = 1).

This has an exact solution for the probability distribution function (PDF) of the

squared amplitude

P (a2) =
1√

πD(1 + erf( λ
2
√
D

))
exp

[−1

4D
(a2 − λ)2

]
(4.5)

Notice that this expression already provides a way to classify graphically in which

dynamical state the cells are. Since the amplitude is defined only for positive

values, Equation 4.5 will have a well defined maxima when λ > 0, while for λ < 0 it

will correspond to a monotonically decaying function. Figure 4.9 shows an example

of two cases in which the squared amplitude was extracted from two experimental

LimE signals using the Hilbert Transform. The distribution of Figure 4.9 A has

a well defined maxima, we can infer that actin in this case would exhibit self

oscillations in the absence of noise, and the spreading of the distribution reflects the

external noise intensity. The second distribution (Figure 4.9 B) is a monotonically

decaying function and therefore in this case actin polymerization is only driven by

noise.

The distribution function in Equation 4.5 is effectively a Gaussian with the

mean set to λ and a variance of 2D. We extracted the parameters of this PDF

using the NLSF algorithm, as it was used for the autocorrelation function in section

4.4. The parameters could not be extracted in all cases as the algorithm would

find a large confidence interval when the distributions were monotonic. In this

case we fitted the limiting case P (a2) ≈ Co exp
[
λ

2D
a2
]
, in which the decay rate

gives the ratio between λ and noise variance. To compare this hypothesis with

the experimental data, we make use of the predicted signal variance calculated by

using Equation 4.5
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σ2
T = λ+

√
4D

π

1

(1 + erf( λ
2
√
D

))
exp

[
−
(

λ

2
√
D

)2
]

(4.6)

where σ2
T stands for theoretical or predicted variance. By using the parameters λ

and
√
D, in which NLSF algorithm was able to extract separately, we constructed

the value σ2
T .

Figure 4.10 A shows the ratio between the variance obtained directly from the

experimental signals σ2
Exp and the predicted variance σ2

T against the dimensionless

parameter λ√
D

. The majority of the cells lie very close to the
σ2
Exp

σ2
T

= 1 line with

an agreement of ∼ 20% for all but 7 cells. The blue crosses in Figure 4.10 A

corresponds to LimE-GFP data provided by H. Hsu. To see how much noise

influenced the dynamics of self polymerizing cells, we defined the Relative Noise

Contribution (RNC), which is the percentage of amplitude contributed by the

noise

RNC =
σ2
Exp − σ2

Det

σ2
Exp

(4.7)

where σ2
Det = λΘ(λ) is the deterministic contribution to the variance and Θ(.)

corresponds to the Heaviside function. For negative values of λ the RNC = 1,

since only noise contributes to the observed dynamics. There is a remarkably good

agreement between the measured RNC and its theoretical prediction (Figure 4.10

B). Notice that the majority of the cells shown are below the value λ√
D
< 1,

where noise contributes at least to 35% of the amplitude. Solving σT = σExp we

have determined the values of λ and
√
D for the rest of the cases, Figure 4.10 C

restates that the majority of the cells lie in the λ√
D
< 1 region, and according to

this hypothesis the majority of the actin oscillations are predominantly driven by

noise.

4.5.2 Multiplicative noise and far from the oscillatory in-

stability point

As mentioned before in the materials and methods chapter, when the amplitude is

high enough, the correlation time of an oscillator is defined by the phase drift [60].

72



4.5. ORIGIN OF THE STATISTICAL PROPERTIES OF ACTIN
OSCILLATIONS.

0 1 2 3
0

0.05

0.10

0.15

0.20

0.25

0.30

a
2

P
(a

2
)

0 0.02 0.04 0.06
0

0.10

0.20

0.30

0.40

0.50

a
2

P
(a

2
)

LimE−mRFP
self oscillating and
driven with noise 

LimE−mRFP
only driven 
with noise

A B

Figure 4.9: Examples of squared amplitude distributions for two different LimE-
mRFP signals. A) The distribution function has a well defined maxima and a
Gaussian distribution can be fitted, according to Equation 4.5 corresponds to an
cell self-oscillating driven by noise at the same time. B) Monotonically decaying
distribution function corresponding to case where actin is only driven by noise.

By rewriting Equation (4.4) in polar coordinates we arrive to the phase equation

dφ

dt
= ωo −

√
2D

σ2
ξ(t)sin(φ) (4.8)

where σ2 is the variance of z, ao is the steady state amplitude, and the approxima-

tion σ2 ≈ a2
o is used. Notice from Equation (4.8) that when the variance increases

the effects of external noise becomes weaker. As mentioned in Chapter 3 the cor-

relation time τc quantifies the influence of phase fluctuations, so at high variance

values the phase drift decreases resulting in higher correlation times. In that case

there will be a monotonically increasing relation between variance and correlation

time. This system cannot reproduce our experimental observations since we have

observed inverse relations between these two parameters (Figure 4.8).

To overcome this drawback we introduced two noise sources in Equation (4.4),

one multiplicative and one additive. The resulting equation is of the form

dz

dt
=
(
λ+ iωo − ε|z|2 − i

√
2D1ξ1(t)|z|

)
z +

√
2D2ξ2(t) (4.9)
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where D2 is the variance of the additive noise and D1 is the variance of the intro-

duced multiplicative noise. Notice that the multiplicative term is coupled with |z|
making it amplitude dependent and is also multiplied by the imaginary number

i, indicating that it influences the feedback each component senses. The resulting

phase equation for this case is

dφ

dt
= ωo −

√
2D1σ2ξ1(t)−

√
2D2

σ2
ξ2(t)sin(φ) (4.10)

We can observe that the multiplicative term in Equation (4.9) will induce higher

phase drifts as the variance increases.

Our measurements of LimE are related to the variable x(t), while y(t) is the

effective inhibiting feedback that LimE senses correlated to either Coronin 1A or

Aip1. As we have reviewed in Chapter 2, Coronin 1A and Aip1 behaves as an

effective inhibitor for the cytoskeleton as they enhance the disassembly of actin

filaments. Also in section 4.3 we have shown that Aip1 and Coronin 1A show the

phase lag expected for inhibitors. In Figure 4.11 (left) we have an schematic of

the model Equation (4.9) with its two noise sources. The role of the multiplicative

term is to act as an internal noise source that corrupts the feedback between the

two nodes. The second noise source is an external one, which represents either

the ambient thermal noise or an stochastic signal coming from another module in

the cells biochemical network. In Figure 4.11 (right) there is the comparison of

a numerical realization of Equation (4.10) (x-red, y-blue), and a measured time

series (LimE-red, Coronin 1A-blue). It can be seen that several features of the

experimental data is reproduced by the model.

To validate this model, an analytical expressions for the relation between cor-

relation time and variance were obtained. From Equation (4.10) we can derive an

expression valid at high amplitudes

τc =
σ2

2D1σ4 +D2

(4.11)

details on the derivation are given in Appendix A. In Figure 4.8 we fitted Equation

(4.11) for the outlying points where the majority show highly coherent oscillations

with the parameters D1 = 0.0348 & D2 = 0.68 × 10−4, while for cells with low

75



4.5. ORIGIN OF THE STATISTICAL PROPERTIES OF ACTIN
OSCILLATIONS.

correlation times we used D1 = 0.416 & D2 = 2.00 × 10−4 (the parameters were

fitted by hand). The black dashed line corresponds to the case were there is

only an additive noise source (Stuart-Landau equation), we can see that for low

variance values the relation between correlation time and variance is linear. As the

variance increases the deviation from the linear relation becomes more apparent,

the effects of the multiplicative noise turn important for giving an inverse relation.

Therefore we concluded that having multiplicative (internal) noise in addition

with the additive (external) noise is a plausible scenario to explain the observed

properties actin polymerization.

4.5.3 Interpretation of both scenarios

Both hypotheses presented in this section are plausible scenarios on how noise

influences actin polymerization. Our measured time series are short, and it is

possible that this is inducing artifacts in our parameter estimation. Therefore we

resorted to do a numerical study to reproduce short time series with Equation 4.4

to realize how well the variance σ2
Exp and correlation time τc are estimated (see

Appendix B for details). The correlation time τc is not well estimated in short time

series, as the dispersion of values obtained from several single simulations is large

(details in Appendix A). It still provides a measure of coherence and the ensemble

average converges to the theoretical prediction, but the number of measurements

needed to compare it with any model would be too high. On the other hand the

dispersion in variance σ2
Exp is not as high and is estimated well for short time

series. With this in mind and the good agreement in Figures 4.10 A and 4.10 B,

we concluded that the actin cytoskeleton of D. discoideum operates very close to

the onset of a dynamical instability (as conjectured before [114]). The strength of

noise is high for the majority of cells exhibiting self sustained oscillations, where

it contributes to at least 35% of the amplitude. It might be possible that D.

discoideum takes advantage of this sensitivity in order to keep high amplitudes at

low metabolic spending, where this is represented by low or negative values of λ

(see Figure 4.10 D).
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Figure 4.11: Left, schematic of the two variable model Equation (4.9). Right,
comparison between a measurement and simulation from Equation (4.10). The
simulation was performed with the Euler-Maruyama method [47] (Time step ∆t =
0.01, σ2 = 0.1423, D1 = 0.416 and D2 = 2.00× 10−4).
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4.6. TRANSIENT RESPONSES

4.6 Transient responses

During our analysis we found that cells classified as oscillatory respond differently

to cAMP stimulation. Figure 4.12 shows the time series for two different oscillatory

cells labeled with LimE-mRFP+Crn-GFP, at t = 100 s both cells were stimulated

(marked by a black arrow in both plots). At first inspection of Figure 4.12 a, we can

see that the time series are noisy, oscillatory and cross correlated. The coefficients

characterizing the time series are τc = 13.75 s, with a main period of T = 14.66 s

and the maximum cross correlation value is 0.61. When the cell is stimulated

we can see that there is a transient response, the values of LimE decreases and

then overshoots, and in the same manner Coronin 1A does the same. This is the

characterizing LimE response observed in our previous study [114]. After 30 s of

stimulation the previous fluctuating activity continues with no apparent signature

of the previous stimulation (other examples are shown in Appendix C, Figure C.2).

In Figure 4.8 and 4.10 these cells correspond are marked in light green.

Some cells presented stationary nearly periodic activity in their cytosolic fluo-

rescence and responded differently. Figure 4.12 b, shows the time series of a cell

with such activity, with a correlation time of τc = 236 s which is one order of

magnitude higher than in the previous case. The maximum cross correlation value

is 0.91 and it oscillates with a period of T = 14.28 s. After stimulation this cell

shows a transient response which terminates completely the observed oscillations.

At around 100 s after stimulus, the oscillation reappears with the amplitude grad-

ually increases, and it takes around four oscillation periods to recover. In Figure

C.1 of Appendix C we have time series of six out of the seven cells that exhibited

long transients, these cells are represented in Figure 4.8 and 4.10 with a red marks.

We noted that all the cells with this type of response have a positive values of λ√
D

,

even though positive values of λ√
D

is not a precondition for this (see Figure 4.10).

The gradual amplitude recovery around a well defined mean is a trademark of a

Hopf Bifurcation [44], though the halting and subsequent recovery of these oscil-

lations can be due to several mechanisms. In the next section we systematically

analyze the possible scenarios giving rise to these responses, as they reveal some

of the principles behind them.
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Figure 4.12: Different observed transients, a) corresponds to a cell with short
transient and low correlation time and b) to a cell with a long transient and high
correlation time (Red,LimE-mRFP and Blue, Cor-GFP ).

4.7 Modeling long transients

4.7.1 Phase portraits of different scenarios

This chapter finalizes with the analysis of the dynamics implicit in the appearance

of long transients, such as those shown in Figure 4.12 b. First we notice the form

of the amplitude response extracted from a single cell. Figure 4.13 shows the time

evolution for the amplitude of an oscillating LimE-mRFP+Coronin 1A-GFP cell

with a long transient response. We defined amplitude as

a(t) =
√
LimE(t)2 + Coronin1A(t)2 (4.12)

At t = 100 s the stimulation is applied, before it the amplitude is fluctuating around

a constant value. Then as the cell is stimulated, the amplitude increases sharply

to then decrease to a lower value than the original base line. This time evolution

is representative for all cells since it was always observed that after stimulation
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4.7. MODELING LONG TRANSIENTS

the amplitude always increases.

To understand what this pulse implies we will use geometrical arguments on

the possible phase portraits to disentangle the dynamics behind it. We start by

defining a generalized model for a self sustained oscillator in normal form

dz

dt
= (f (|z|) + iωo)z (4.13)

where z = x + iy and ωo is the natural frequency. By standard linearization

methods we get [44]

dz

dt
≈
( |zo|2

2

∂f (|zo|)
∂|z| + f (|zo|) + iωo

)
z (4.14)

which corresponds to an eigenvalue equation. We can see that the real part of

the eigenvalue is <e[λ] = |zo|2
2

∂f(zo)
∂z

+ f (|zo|) and determines the stability of the

amplitude at each point zo. If the eigenvalue is positive around zo the amplitude

will be unstable and if negative it will be stable. Therefore the form of f (|z|) will

determine under which conditions a finite amplitude oscillation becomes unstable

towards a quiescent state.

Without loss of generality we start by defining a first model by choosing

f(|z|) = −λ+ ε|z|2 − η|z|4 (4.15)

in Figure 4.14 (left) we have the corresponding phase portrait for λ = 1, ε = 2,

η = 0.5 and ωo = 0.8. In the phase portrait we have two basins of attraction

divided by an unstable limit cycle (denoted by a brown circle). The vector fields

converge either to a stable limit cycle or to a stable fixed point, therefore the

two regimes observed experimentally (Figure 4.12 b) are accessible in this model.

The interpretation is readily available by looking at the phase portrait, if the

concentrations of LimE and its inhibitor are driven to a certain minimum value

the reaction cannot be sustained anymore and the oscillation dies out.

This phase portrait already gives us a prediction on the characteristic amplitude

time series we must observe if this case is true. The stable fixed point is at the

center of both limit cycles, and in order to reach it, any trajectory must start inside

the unstable cycle which at the same time is inside the stable one. This would
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4.7. MODELING LONG TRANSIENTS

be represented in the time series as a decrease in amplitude before reaching the

new equilibrium level after being perturbed externally. Figure 4.15 (left) shows a

numerical realization of this equation forced by both additive noise and an external

short time perturbation (details on the numerical simulations performed in this

work are given in Appendix B). It can be seen that the amplitude shows no pulsatile

response when making a transition to the new equilibrium level. We argue that

independently of the nonlinearity or model, a two component differential equation

cannot reproduce the observed dynamics in Figure 4.12 b. This is due to the

fact an equilibrium level inside the limit cycle will never be reached by perturbing

the variables outside of it, and the vector field in the phase portrait cannot cross

with itself [44, 98]. Experimentally we have observed that addition of cAMP

always increases the amplitude independently of the transient response. Using

other nonlinearities in Equation 4.14 will deviate the shape of limit cycles from

circle to another closed form, or establish more fixed points and limit cycles, but it

would be impossible to create a topology that creates the experimentally observed

scenario.

Therefore by using this new conclusion we extend the initial model by adding

more variables

dz

dt
= (f(|z|, w) + iωo)z

dw

dt
= g(z, w)

(4.16)

where again without loss of generality we define the following functions

f(|z|, w) = −λ(|z|, w)− ε|z2|

g(z, w) = −αw +
β

2
(1 + λ(|z|, w))

λ(|z|, w) = tanh(η[w +
wo
zo
|z| − wo])

(4.17)

By defining amplitude as a(t) = |z(t)|, Figure 4.14 (right) shows a phase portrait

given the parameters ε = 1, α = 1, β = 0.75, η = 100, wo = 1.5 and zo = 1.0. This
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phase portrait is divided in two basins of attraction making the system bistable,

with one attracting fixed point at a∗ = 1.0 and w∗ = 0.0 and another at a∗ = 0.0

and w∗ = 1.5. Also in this case, as in the previous, the experimentally observed

stable states are also available. From the phase portrait it can bee seen that is

possible to reach a∗ = 0.0 starting from a∗ = 1.0 by perturbing the amplitude a(t)

to higher values. Figure 4.15 (right) shows a numerical realization of Equation

(4.16), after the perturbation there is a pulse before decreasing to the second

stable value. Therefore three components are needed at least, to reproduce the

transition to low amplitudes as observed in the experiments.

The amplitude might be recovered after stimulation by two possible simple

mechanisms. In the first one, w can be affected by external noise inducing transi-

tions back to the initial basin of attraction where a∗ = 1.0 resides. If we allow noise

to be the recovery mechanism, then in the same manner we should observe sudden

amplitude decreases. Since the system is bistable such systems noise induced tran-

sitions should be observed be observed [45]. In all performed experiments so far

we have not observed a cell whose actin is polymerizing (oscillating) prominently

and then stopping its activity without external cAMP stimulation. Since we find

this mechanism unlikely we proposed another possibility, a deterministic one. It

can be obtained by adding a variable v, which feeds from w, and at the same time

inhibits it slowly, the coupling would be of the form

dw

dt
= g(z, w)− v

dv

dt
=

1

τ
(w − v)

(4.18)

A numerical realization with τ = 33.33 s of such a system is shown in Figure 4.16 a,

we have in the top panel the dynamics of the observed activator and inhibitor and

the inferred variables w (black) and v (green). From these dynamics we can see an

interplay between fast and slow time scales as were mentioned at the introduction

for the signaling cascade and the actin cytoskeleton.
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4.7.2 Interpretations for the fast and slow time scales

The model of Equations 4.16 and 4.18 shows that the state of the oscillator is

controlled by external variables operating at slower time scales. Assuming mod-

ularity in the coupled signaling/actin cytoskeleton system, we can associate the

slow time scales to the signaling system (e.g. PTEN/PIP3) and the fast time

scales with the actin cytoskeleton [48]. This is supported by the slow waves (in

the order of t = 100 s) observed for the signaling system when the cells are treated

by Latrunculin A [4, 102, 48]. In these experiments the actin cytoskeleton is com-

pletely decoupled from the signaling system, and it would be worth to observe the

times scales of PTEN/PIP3 when coupled to it. For the moment we do not have

such data for self oscillating cells, but still we can discuss possible predictions. If

the modularity assumed of the signaling cascade/actin cytoskeleton is valid, then

PTEN and PIP3 would present dynamics with similar time scales to those of v and

w. But since the signaling cascade and actin cytoskeleton are coupled it is possible

that both fast and slow time scales would be observed in PTEN and PIP3.

In order to see how could this happen, we construct a model easily using

Equations 4.16 and 4.18 as a basis for a new model. We change the coupling

between the variables by changing the coordinate system of the observed phase

space from ~g = {x, y, v, w} → ~g′ = {x′, y′, v′, w′}. This is achieved easily by a

linear transformation

~g′ = M~g (4.19)

As an example we can use the following matrix to induce an arbitrary transforma-

tion

M =


1 0 0 1

0 1 1 0

0 −1 1 0

−1 0 0 1

 (4.20)

which we have used to transform the time series from Figure 4.16 a, into the time

series of Figure 4.16 b. The exact form of the new ODE model (d
~g′

dt
= f

(
~g′
)

)

is of no interest to us, but only the fact that all the variables in the new model
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are coupled to each other. Notice in Figure 4.16 b that all four variables exhibit

both slow and fast time scales. This shows that if the components of the actin

cytoskeleton and the signaling system are indirectly coupled to each other, there

is the possibility of observing both fast and slow time scales.

To summarize, in this section we have shown that to reproduce the observed

long transients we need at least a three component model. These long transients

were observed in cells with positive values of λ√
D

. The model shown in Equation

(4.16) reproduces the observed transitions from finite to zero amplitude in a pul-

satile manner. There are two possible mechanisms for recovering the amplitude

after its transition, one is by the action of additive noise and the other by coupling

Equation (4.16) with a slow inhibitor. The numerical solutions of Equation 4.16

coupled with a slow inhibitor are shown in Figure 4.16 a. It can be seen that the

variable v increases rapidly after stimulation inhibiting the oscillation amplitude,

and after that v stays at a finite value for some time and then it goes back to zero,

then the oscillation amplitude is recovered. This would predict that there must

be an important component inside the cell that once it becomes active the actin

oscillations stop. But it was shown that another model can be constructed easily

by using the components of Equations 4.16 and 4.18 and then doing a simple linear

transformation. In this constructed model all of its components oscillate and show

long transients, showing that in the experimental system a single time scale might

not be associated with either the signaling cascade or the actin cytoskeleton.

4.8 Chapter summary

To study the biophysical properties of the observed periodic polymerization cy-

cles in Dictyostelium discoideum, we have performed a series of experiments where

we stimulated individual cells with a single pulse of cAMP. Since the control pa-

rameters that induces oscillations are not known, we have chosen cells randomly

expecting that a small percentage would be in the oscillatory regime. The ob-

served frequencies are below the resonance response of non-oscillatory cells when

perturbed with periodic pulses of cAMP [114]. Also as noted in the Background

chapter, these frequencies are one order of magnitude below the observed ones for

the signaling system when it is decoupled from the actin cytoskeleton [102, 4, 48].
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Figure 4.13: Amplitude obtained from a LimE-mRFP+Crn-GFP time series with
high correlation time, the time of cAMP stimulation is denoted by a black arrow.
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Figure 4.15: Numerical simulations of the amplitude dynamics for Equations 4.13
(left) and 4.16 (right).
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Figure 4.16: a) Numerical solution of Equation (4.16) where x − red, y − blue,
w−black and v−light green. b) Time series of the linear transformation ~g′ = M~g,
where ~g′ = {x′ − red, y′ − blue, w′ − black, v′ − light green} .
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Preliminary studies have shown that there is an integral relation between pseu-

dopod extension and cytosolic LimE fluorescence. Meaning that when the cytosolic

fluorescence depleted also a pseudopod is extended, but when the fluorescence re-

covers the pseudopod does not retract back. It is the hope that this result will

help to understand subsequent studies on the control of pseudopod extension and

its interactions with the signaling cascade.

A statistical analysis has been performed in the LimE time series which were

classified as oscillatory. If the autocorrelation function of those time series had at

least one oscillation period then it was defined as oscillatory. Each autocorrelation

function is characterized by three parameters: frequency ωo, correlation time τc and

variance σ2. We interpreted these parameters by doing a systematic comparison

of two possible scenarios with modelling. We have found that the majority of cells

are dominated by stochastic effects
(

λ√
D
≤ 1
)

. In cells with self sustained actin

oscillations we have found that the relative noise contribution is 35% ≤ RNC ≤
100% when dominated by stochastic effects. We conjecture that D. discoideum

developed a sensitivity to environmental noise in order to maintain high amplitudes

at low metabolic costs.

When a cell is stimulated with cAMP it exhibits a transient cytosolic depletion

of actin binding proteins. In cells characterized with positive λ√
D

, we have seen

an interplay between fast and low time scales in their transient response. These

cells after being stimulated would halt their oscillatory activity completely, and

then reestablish it after ∼ 100 s. We have found the basic mathematical com-

ponents needed to reproduce these transients. In the process we have realized

that a two component model would not reproduce the observed responses. The

addition of another variable would have two possible implications: a) a biological

component quiescent during oscillatory activity destabilizes the amplitude when

the cell is stimulated, or b) these time scales arise just by the mere distribution of

the interaction parameters where all components are interconnected to each other.

All models presented in this Chapter are extensions of the Stuart-Landau os-

cillator. The fluctuations dependent effects and the cAMP induced long transients

are independent from each other. Therefore we can write a generalized model

describing our experimental observations. To construct it we need to take the ad-

ditive noise from Equation (4.4), and the terms that induces amplitude transients

87



4.8. CHAPTER SUMMARY

from Equation (4.16). The generalized model would have the following form,

dz

dt
=
(
λ(|z|, w) + iωo − ε|z|2

)
z +

√
D2ξ2(t)

dw

dt
= −αw +

β

2
(1 + λ(|z|, w))

λ(|z|, w) = tanh(η[w +
wo
zo
|z| − wo])

(4.21)

but of course it is convenient to study both mechanisms separately.

Similar studies have been performed in Dictyostelium discoideum and other

organisms. In mast cells antigen stimulation induces global oscillations and also

traveling waves of actin binding proteins. It was found that in the case of global

oscillations the calcium levels would also oscillate, but during actin traveling waves

they were stable [120]. It would be interesting to see if a similar relationship

holds in Dictyostelium discoideum, as it could elucidate details on the biochemical

energy source behind these oscillations. Traction force microscopy measurements

in Dictyostelium discoideum gives the traction energy exerted by a cell to the

substrate [26]. The traction energy time profile is similar to that of a noise driven

oscillator, it was found that the cell velocity and the local period (the time to made

an oscillation cycle) have an inverse relation. The observed local periods range

from 1 to 4 minutes, it would interesting to see if our observed fast oscillations

also holds a relation with velocity.

To the knowledge of the author this is the first time that fluctuations in the

actin cytoskeleton of Dictyostelium discoideum are studied formally. Fluctuations

analysis has been used in other systems to study the cross correlation between

ensembles of neurons [25], the connectivity of genetical networks [28, 31, 79], and

the repair mechanism of the p53 system [41]. Studies on intrinsic and extrinsic

noise has also been done in genetical networks [28, 31] with the aim to find their

interconnectivity. So far the exact dynamical role of Coronin 1A and Aip1 in

the cell cytoskeleton has not been addressed, in the next chapter we will analyze

the responses of wild type cells along with genetical knockouts to confront this

question.
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Chapter 5

Dynamical responses of actin

regulating proteins

The actin cytoskeleton is a structure that it is constantly regulated by several actin

binding proteins. Even when this structure is in its steady state, the interaction

of the cytoskeleton with the abp’s results in a continual polymerization and disas-

sembly process in which the filaments have constant length on average. As we have

seen in Chapter 4, Dictyostelium discoideum cells exhibit transient polymerized

structures when stimulated with pulses of cAMP, and during this course its regu-

lators, Coronin 1A and Aip1, also translocate to the cell cortex. In this chapter we

will take advantage of this and study the dynamics of actin polymerization along

with its regulators, Coronin 1A and Aip1. The goal will be to infer their possi-

ble biological roles by studying their dynamical properties. These observations by

themselves will not give us a complete picture of their regulatory role, therefore

we will complement them by observing the polymerization dynamics, when either

of these two regulators were genetically removed.

The first challenge that we face is the unknown distribution of internal pa-

rameters, as we have seen in Chapter 4, each cell has a different set of internal

parameters (such as correlation time and variance). In the non oscillatory regime

this distribution is reflected by the different physical properties of single responses

such as the decay rate and frequency. The data by itself is noisy, as we have

already seen fluctuations play an important role in the cell dynamics. Calculat-
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5.1. ARTIFACTS FROM AVERAGED TIME SERIES

ing ensemble averages of signals blindly to resolve the data might give misleading

results, therefore we have developed a simple method to sort the data by their

similarity in parameters. From the observed oscillatory properties of the induced

actin polymerization, we know that the system is effectively behaving as a system

regulated by a negative feedback loop.

In order to extract the possible effective feedback between LimE, Coronin 1A

and Aip1, we have used a recently proposed method to transform the observed

dynamics into symbols [81, 82]. Finally we will see how the predictions obtained

by the symbolic dynamics, differ from the response of genetical knockouts. For

this it has been prove useful to characterize the signal curvatures at the extrema,

since is a direct measure of the rate of change of the feedback at those times. This

will provide us information on how the feedback has changed in the physiologi-

cal responses between WT cells and knockouts. Finally we will give a heuristic

interpretation of our results, which suggest that Aip1 and Coronin 1A inhibit a

promoter of actin polymerization.

5.1 Artifacts from averaged time series

The recorded data from single cell experiments is noisy, and it is common prac-

tice to create an ensemble average from the recorded time series to resolve them.

From these time series the experimenter will study the dynamical properties of

the physical process, to possibly infer the mechanism behind it. As we have seen

in Chapter 4, each cell will present different values of its internal parameters, up

to the possibility of being in a different dynamical state to that of its neighbours.

Therefore, averaging these time series might lead to misleading artifacts in the

observed waveforms.

We can notice the possible artifacts that might appear by studying a simple

thought experiment. Suppose that we record a signal x(t) precisely at the time

when the cell is stimulated. The response waveform consists of a sinusoidal with

an exponential decay. The recording is corrupted by an additive stochastic term,

and our observation can be expressed as

x(t) = ao exp(−(λ− iω)t) + ξ(t) (5.1)
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where by definition, 〈ξ(t)〉 = 0. Then by doing an ensemble average from different

measurements we would remove the effects of noise

〈x(t)〉 = ao 〈exp(−(λ− iω)t)〉 (5.2)

and keep an average of the deterministic part of the responses.

As different cells have different internal parameters, an isogenic population

would be described by a parameter probability distribution P (λ, ω). The average

response of the population would be

〈x(t)〉 = ao

∫ ∞
−∞

∫ ∞
−∞

P (λ, ω)exp(−(λ− iω)t)dλ dω (5.3)

With this expression we can test the possible artifacts that might be given by

different parameter distributions.

Then as a first case to study we define

P (λ, ω) = δ(λ− 〈λ〉)δ(ω − 〈ω〉) (5.4)

which correspond to a population with identical internal parameters. Using Equa-

tion (5.3) we calculate the observed averaged response function

〈x(t)〉 = ao exp(−(〈λ〉 − i〈ω〉)t) (5.5)

In this case averaging removes the observed fluctuations and gives an exact rep-

resentation of the response waveform. For this particular example we can extract

significant parameters of the averaged signal and study its mechanism.

This case is unrealistic since we have observed already cells with different in-

ternal parameters in Chapter 4. To mimic these effects we can define

P (λ, ω) =
Θ(λ)

〈λ〉 exp
(
− λ

〈λ〉

)
1√

2πσ2
ω

exp

(
−(ω − 〈ω〉)2

2σ2
ω

)
(5.6)

where Θ(λ) corresponds to the Heaviside function. The distribution of Equation

(5.6) corresponds to an exponential and a Gaussian distribution for λ and ω re-

spectively. For this population the observed averaged response would be
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〈x(t)〉 = ao
exp (−2σ2

ωt
2 + 2i〈ω〉t)

1 + 〈λ〉t (5.7)

We can notice three features from this result. First, there is a damping term

that appeared due to the distribution for ω, this term would appear even if the

there was no damping term λ. This is due to the destructive interference that

results from averaging different sinusoids of different frequencies. Second, the

decay term due to λ is not exponential anymore, so even in the absence of a

sinusoidal part, the system would decay differently from how each cell actually

does. Third, the response is going to oscillate with twice the average frequency

from the distribution. Therefore the observed average will differ substantially from

a single cell response since it depends on the parametric distribution.

In experiment we do not know neither the expression of the response waveform,

nor the parameter distribution. Therefore it is not possible to know beforehand

how severe will be the effects of the parametric distribution, and how much the

observed waveform will deviate from the deterministic part of a single cell re-

sponse. Therefore in this work we will study the response from single cells, but

since fluctuations are present, it its also necessary to do averaging. In the next

section we will describe the algorithm to systematically select similar waveforms

for averaging. This will avoid the arbitrary selection that an experimentalist does

between ”responsive” and ”non responsive” cells, and also to reject measurements

that consist in pure noise drift.

5.2 Data segregation for averaging

As mentioned in the last section and investigated experimentally in [92, 111], iso-

genic Dictyostelium discoideum cells respond differently to chemoattractant stim-

ulation due to its natural cell to cell variability. But the intrinsic cell to cell

variability will induce new artifacts which cannot be eliminated by simple averag-

ing. With this problem in mind the following question arose: How to group cells

with similar internal parameters for averaging the time series?

Using simple concepts of dynamical systems we developed a simple algorithm.

Suppose that our system has its internal parameters constant during our observa-
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tion time. Such system can be defined by a set of deterministic rules given by a

differential equation of the form

d~x

dt
= f(a, ~x) (5.8)

where a is the set of internal parameters and ~x is the state of our system. Equation

(5.8) will have a unique solution for any given initial condition ~xo, given that

f(a, ~x) is Lipschitz continuous [44]. All possible solutions of Equation (5.8) can

be mapped into a vector field called the phase portrait [98]. For a given initial

condition the system will evolve on a specific trajectory of this phase portrait,

experimentally this initial condition would be given by disturbing the steady state

of the cell with a pulse of cAMP. Since some of our cells have two labels present,

these can be used to map a two dimensional phase portrait. If two cells have

similar internal parameters, its response must be marked by a similar trajectory

in their phase portrait, and in the same way, for cells differing by much in its

internal parameters the trajectories will deviate by a large amount.

Figure 5.1 shows an example of different realizations for a simple two variable

system, {x, y}, with a decay rate λ and a frequency ω. The time series shown

in panels 1,2,3 & 4 have different parameters (details of model and simulations

are given in Appendix B). The trajectories in the phase portrait are also shown

and are numbered according to its corresponding panel. It can be seen that some

trajectories have similar paths, while the difference is higher for others. Therefore

to quantify the similarity between parameters, the following measure between a

pair of trajectories is used

〈d(x, y)i,j〉 =
〈√

(xj(t)− xi(t))2 + (yj(t)− yi(t))2
〉
< ε (5.9)

where ε is a threshold value that defines the maximum value that two trajectories

can differ. If two trajectories have a distance below ε, then they have similar

internal parameters and belong to the same group. In the phase portrait of Figure

5.1 it can be seen that trajectory 4 is very close to trajectory 3 (〈d34〉 = 0.1546)

compared to its distance with 1 (〈d14〉 = 0.3580) and 2 (〈d24〉 = 0.4374). This is

because in the performed simulations the parameters for the time series in panels

4 and 3 do not differ by much (details are given in Appendix B).
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Figure 5.2 shows the phase space distance dij between a single trajectory

{xj, yj} and a set of trajectories {xi, yi}. For these simulations the values of λ

and ω were varied for {xi, yi} and kept constant for {xj, yj} to λo and ωo (details

in Appendix B). In the set of curves in Figure 5.2 it can be seen that they have

a general minimum at around λo. Deviating the values of ω also increases the

value of dij, where in Figure 5.2 it can be seen that the minimum is also around

ωo. Further it can be noted that this measure is very sensitive to changes in ω for

some values of λ.

Therefore in practice we did the following, for each cell line the value of ε was

set to a constant value. The phase space distance was determined for each of

the measured time series with respect to the others. For each cell it was found

the amount of matching trajectories that fulfilled the condition 〈di,j〉 < ε, then

they were grouped and the arrays with the highest number of matches were taken

for analysis. Since the selection of the value ε will be arbitrary, we cannot get

away completely from the effects of parameter distribution, the main success of

the algorithm was to take out time series that show a substantial amount of noise

drift. The drifting time series contribute to the time dependence of the error bar,

and therefore the physical process would appear as non stationary [15].

In Figure 5.3 we have a comparison of the total recorded LimE time series before

implementation of the algorithm (a) and after implementation (b). In these time

series the second label was Coronin 1A, so the measured phase portrait trajectory

distance is in the LimE and Coronin 1A space. We can notice the differences of

the error bars in both panels, if we do not implement the proposed algorithm the

standard deviation of the time series increases over time (Figure 5.3 a). This is

a signature of the non-stationarity of some of the series which do not contain a

constant baseline [15]. After implementing the algorithm, with ε = 0.25, we can

see that the standard deviation drift is reduced dramatically (Figure 5.3 b). The

base line at the beginning and at the end of the time series are not the same,

this can be attributed to fluorophore photobleaching [62], which decreases the

fluorescence intensity when exposed to the excitation laser. In the case of knock

out cell lines in which we can only visualize LimE, but this algorithm can also

be implemented even though Equation (5.9) is less restrictive. A test as the one

shown in Figure 5.2 had shown that the results are qualitatively the same if we
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have only one fluorescent label and using 〈d(x)i,j〉 =
〈√

(xj(t)− xi(t))2
〉
< ε.
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Figure 5.1: Different realizations for a two variable model, x-red and y-blue. Each
panel, 1-4, corresponds to time series with different parameters λ and ω. On the
right side plot is the phase space trajectories for each panel is shown. Due to the
difference in parameters the average distance between trajectories are different.

5.3 Wild type cells

As mentioned in chapter 2, we subjected our cells to an external flow of BCMCM-

cAMP (parameters given in the Materials and Methods section). The recording

time was set to one minute for all cell lines, except for Aip1∆ cells which was set

to 100 s. After 7 s of recording, a one second pulse of cAMP was administered to

the cells and the consequential cytosolic fluorescence depletion was quantified. In

Figure 5.4 we have the time evolution of a LimE-mRFP+Coronin 1A-GFP cell, the

white spot in the picture sequence corresponds to the time of cAMP uncaging. At

14 s we can see that the LimE label (red) has translocated to the cell cortex, as it

can be noticed by the darkening of the cytosol and the increase in brightness at the

cortex. During this time frame the cytosolic fluorescence for Coronin 1A (green)

is practically unchanged, but later at t = 18 s, the cytosol becomes darker for the

95



5.3. WILD TYPE CELLS

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

λ /λ
o

<
 d

i 
j >

 

 

0.95

1

1.05

ω /ω
o

Figure 5.2: Phase space trajectory distance between trajectories created by sim-
ulation. One trajectory {xj(t), yi(t)} was kept with constant parameters λo and
ωo, while for trajectories {xi(t), yi(t)} its parameters λ and ω were varied. We can
notice that a general minima is situated around λo and ωo

green label and also the cortex brighter. This shows that there is a delay between

the functional response of LimE and Coronin 1A. At 27 s both labels appear

to be recovered, but an analysis from the extracted time series shows details that

cannot be discerned just by looking at the picture sequence (Figure 5.6). A similar

progression is shown in Figure 5.5 for a LimE-mRFP+Aip1-GFP cell, though the

cytosolic depletion of Aip1 is not discernible by naked eye. The measurements of

average cytosolic fluorescence will show again details of the functional response of

Aip1.

In Figure 5.6 a, we have the average cytosolic response for LimE-mRFP (red

line, n = 31/59 cells), Aip1-GFP (black line, n = 16/35 cells) and Coronin 1A-
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Figure 5.3: Recorded LimE time series for a LimE-mRFP+Crn-GFP cell. a) All
the time series recorded for this particular cell line. b) The remaining time series
after implementing the Equation (5.9) with ε = 0.25

GFP (blue line, n = 15/24 cells). As in the previous chapter, all the raw signals

had their mean of the first seven seconds subtracted and were normalized to their

minima, which is found by fitting a parabola to the lowest measured point along

with its preceding and succeeding points. To segregate the time series we set the

threshold value of Equation (5.9) to ε = 0.25. In the figure the time when the cells

are stimulated is denoted by a black arrow. Figure 5.6 b, c, & d, shows the first

17 s for each protein with their respective error bars.

The response of LimE consists of a sudden fluorescence decrease after stimula-

tion, followed by an overshoot and then relaxing back to equilibrium. The response

for Coronin 1A and Aip1 are qualitatively the same as the one for LimE, except

that they show a delay, consistent with our previous observations in Chapter 4.

The polymerization process can be easily interpreted by comparing the LimE pic-

ture sequence (Figures 5.4 & 5.5, red label) along with its time series (Figure 5.6,

red curve). When the cytosolic fluorescence depletes, the time series drop to the

minimum, and at the same time a fluorescent ring is created at the cell cortex.

This means that during this time actin is being polymerized at the cell cortex, and
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in the same way when the fluorescence is recovering the actin cortex is being de-

polymerized. Therefore the observed overshoot can be understood as a reduction

of filamentous actin at the cortex and the consequential relaxation as its recovery.

The response time for LimE-mRFP can be estimated by looking at the time

when the signal deviates from its base line (Figure 5.6b). The standard deviation

has an average value of 0.035 before applying stimulation, therefore a significant

deviation must be higher than that value. The first significant deviation is observed

at t = 11 s, where the fluorescence value is −0.47± .23. Then we can conclude that

LimE starts translocating at around 3 s ≤ t ≤ 4 s after stimulation. For Aip1-

GFP the values around the baseline are fluctuating strongly. But still the response

time can be estimated, after one second of stimulation the signal for Aip1 decays

monotonically (Figure 5.6c). A close inspection shows that before stimulation

the average standard deviation is 0.097, and the first significant deviation is at 9 s

with a fluorescence value of −0.10±.11. The line continues to decay monotonically

with only one point being an exception at t = 11 s, suggesting that this could be

related to the activation of LimE. The translocation time for Aip1-GFP is between

2 < t < 3 s after stimulation, ahead of that of LimE, which suggest that Aip1

displaces before actin polymerizes.

Finally the same analysis for Coronin 1A shows an average standard deviation

of 0.077, before stimulation, and at 12 s the fluorescence is −0.19± 0.13, therefore

it translocates between 4 < t < 5 s after stimulation. Therefore these proteins are

activated in sequential order, Aip1 → LimE → Coronin1A. But the arrival of

the three signals to their minima is not in the same order (analyzed in detail in

the section 5.3.2). Also it can be seen that there is a strong correlation between

Coronin 1A and Aip1 specially during their minima.

5.3.1 Cell to cell variability in WT

Here we are going to analize the different responses that we have obtained by im-

plementing the algorithm proposed in this chapter. Figure 5.7 shows the different

responses sorted for wild type cells. The difference in internal parameters will be

reflected in different characteristics of the response waveform, such as decay rate

and frequency, to mention some. In panel a) we see time series with a similar LimE
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1 s 14 s 18 s 27 s 30 s 40 s 7 s 

Figure 5.4: Time sequence of a double labeled cell with LimE (red) and Coronin
1A(green). At 7 s a pulse of cAMP is released and consequently the proteins
transiently translocate, as can be seen by the darkening of the cytosol.

7 s 13 s 18 s 27 s 33 s 45 s 

Figure 5.5: Time sequence of a double labeled cell with LimE (red) and
Aip1(green). At 7 s a pulse of cAMP is released and consequently the proteins
transiently translocate, as can be seen by the darkening of the cytosol.
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Figure 5.6: Time evolution of the mean cytosolic fluorescence. a) Averaged time
series for LimE (red), Coronin 1A (blue) and Aip1 (black). b), c) and d) show
the first 15 s of the time series with their corresponding errorbars for LimE, Aip1
and Coronin 1A respectively. These were used to quantify the time for initiation
of the translocation.
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response for cells either co-expressing Coronin 1A-GFP or Aip1-GFP. The LimE

signals differ in the way they decay towards equilibrium, after the overshoot the

decay is slower compared to the LimE signal shown in Figure 5.6. It can be seen

that the series have such a degree of similarity that they overlap on top of each

other, except for their individual fluctuations. The co-expressed labels also present

a similar decay rate, though the LimE signal in panel a) differ in their turnover

at the minima between cells co-expressing Coronin 1A or Aip1. This turnover is

slower for cells co-expressing Aip1 than for the ones with Coronin 1A. So although

these signals present some degree of similarity, the difference in turnover shows

that they have also different internal parameters.

In panel b) for both Coronin 1A and Aip1, the LimE signal keeps oscillating

for at least two cycles after the first overshoot, it is interesting that Coronin 1A

has a lower baseline after the overshoot and no apparent signs of ringing. Which

is the opposite for Aip1, that shows a higher baseline after the overshoot, but also

it has no discernible signs of ringing. In case c) we have cells which exhibited

a higher overshoot in the three labels compared to the series of Figure 5.6. In

case d) for LimE-mRFP+Aip1-GFP, the signals showed a pulse response with no

detectable overshoot, which may indicate that in these cells there is a very weak

feedback between its components. Case d) for LimE-mRFP+Coronin 1A-GFP

shows a marginal case with very strong overshoot and weak damping. In this

section get an insight of the different responses that can be detected from different

cells, but also it has shown that the response segregation algorithm proposed has

been successful in sorting.

5.3.2 Symbolic dynamics

The timing of translocations to the cell cortex and their oscillatory properties,

suggest that there is a causal relation between LimE, Coronin 1A and Aip1. To

uncover these possible indirect interactions, we have used a method proposed to

transform the observed dynamics into a symbolic sequence [81, 82]. With this

sequence it is possible to uncover the possible effective feedback loop, which gives

information on the activating and inhibitory interactions between components.

To transform the observed signals into symbols, the following algorithm has to be
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Figure 5.7: Different types of responses obtained in WT cells by applying the
algorithm mentioned in section 5.2. It is evident that these cells have different
internal parameters as they present different overshoots and ringing.
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followed [81]:

• Localize each extrema in the observed signals to divide it into different seg-

ments. Each segment is bounded by the extremum of one signal and by the

next observed extremum from another signal, therefore it is necessary that

the observed extrema is sequential. In our case it would be the extrema of

the LimE, Aip1 and Coronin 1A time series.

• Once the signals are segmented, assign the symbols ” + ” to signals with

positive slopes and ”− ” to signals with negative slopes.

• Look at the sequential changes of the symbolic progression to infer the in-

teractions of each segment. For example if we measure two species, {A,B},
and find the following sequence {+,+} → {−,+} → {−,−} → {+,−} →
{+,+}, we can infer their interaction by making the following observations.

In the first transition B stayed with a positive slope while A changed to a

negative one, then from that segment it can be inferred that B inhibits A.

This is since the positive increase of B slows down A, up to the point of

changing its slope. In the same way in the second transition, A activates

B, since the decreasing values of A de accelerates B into the direction of its

decrease.

This method is justified only if the interactions between elements are monotonous,

meaning that activators always work as activators and inhibitors always work as

inhibitors. A technical explanation of this method is based on the division of the

phase portrait by the nullclines into different sections. These are the regions in

the phase portrait where the time derivative of a component is zero, once a phase

space trajectory crosses a nullcline [81], one of the components will show an ex-

trema. The symbols are representing the transition to different sections of the

phase portrait [42, 118].

Therefore the first step to apply this method consists in localizing the extrema

observed in the LimE, Coronin 1A and Aip1 signals. For each measured signal,

included in the averaging of Figure 5.6, we have localized their extrema. To obtain

these parameters we fitted a fourth order polynomial to the LimE signal for the

range 13 s ≤ t ≤ 22 s and also for Aip1 and Coronin 1A at the ranges 15 s ≤
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t ≤ 26 s and 14 s ≤ t ≤ 26 s respectively. The curves were fitted by minimization

of least squares and with the obtained algebraic expression we have localized the

minima. Figure 5.8 (top left) shows an overlay of the obtained polynomials along

with their mean values for the minima, showing error bars for intensity and time.

The times where the minima are reached are τminLimE = 6.30 ± 0.71 s for LimE,

τminAip1 = 11.04± 0.90 s for Aip1 and τminCoronin1A = 10.70± 1.25 s for Coronin. Using

the same procedure we obtained the times of the maxima, except that this time

we fitted a third order polynomial to the Aip1 and Coronin 1A signals. We used

the ranges 23 s ≤ t ≤ 46 s for LimE, 25 s ≤ t ≤ 40 s for Coronin 1A and

25 s ≤ t ≤ 47 s for Aip1, the found values for the maxima after stimulation were

τmaxLimE = 21.85± 2.23 s, τmaxCoronin1A = 23.66± 1.84 s and τmaxAip1 = 26.06± 3.11 s.

This information along with the slopes of the signal is enough to reconstruct the

given symbolic dynamics, in Figure 5.9 (left) we have the reconstructed dynamics.

In the first transition LimE changes slope while Coronin 1A and Aip1 stay with

the same one, this suggest an indirect inhibition of LimE by either Coronin 1A

or Aip1. In the second transition Coronin 1A changes slope to the same as LimE

and in the third Aip1 changes to a positive slope. After that LimE has a negative

slope then is followed by Coronin 1A and finally Aip1 also changes. Therefore

the suggested loop is LimE activates Coronin 1A, Coronin 1A activates Aip1 and

Aip1 inhibits LimE. In Figure 5.9 (right) we have the inferred interaction topology,

along with the possible links that cannot be distinguished by this method (denoted

by red links). As mentioned in the previous section, when the time series of LimE

has a negative slope the cell is effectively depolymerizing and polymerizing when

positive. The graph in Figure 5.9 gives the following prediction: In the absence of

Coronin 1A or Aip1, the polymerization and depolymerization turnover rates will

be slowed down. Now we can proceed to analyze the data from the knockouts and

determine how this picture deviates from the actual experimental responses.

5.4 Knockout cells

To observe if there is any causal relation between LimE, Coronin 1A and Aip1,

we performed the same experiments with their respective genetical knockouts. In

these cells the signals measured was LimE, in the cell lines LimE-GFP+Aip1∆
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Figure 5.8: Time to reach the minimum (left) and the maximum (right) in the
responses of LimE(red), Coronin 1A(blue) and Aip1(black) in WT cells.

and LimE-GFP+Coronin 1A∆. In general the variability of responses in knockout

cells is higher than in the wild type. In Figure 5.10 a, we have the time evolution

for an ensemble average measured for 11/19 cells from the LimE-GFP+Aip1∆ cell

line and 10/23 cells from the LimE-GFP+Coronin 1A∆ cell line (LimE wild type

is the same as in the previous section). It is obvious that there are immediate

consequences on the removal of these two proteins, proving that these are of high

relevance for the polymerization dynamics.

As in the previous section we start by analyzing the activation times, in Figure

5.10 c we can see clearly that the activation time for the Aip1∆ is identical to

the one of the wild type within the limits of experimental resolution. The average

standard deviation before stimulation is 0.064, at t = 11 s the fluorescence value

is −.30± .2094 which is a significant deviation from the base line.Though for the

Coronin 1A∆ cell the activation time appears to be between 2 < t < 3 s after

stimulation, since a significant deviation since the fluorescence values at 10 s is

−0.13 ± .1215 and the average standard deviation before measurement is 0.081.

The change of the activation time for LimE in Coronin 1A∆ cells opens the follow-
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LimE 

Crn1 Aip1 

Figure 5.9: Symbolic dynamics obtained by the algorithm proposed in [81, 82].
Left, the evolution of the symbolic dynamics for LimE, Coronin 1A and Aip1 for
WT cells. Right, the inferred interaction graph with excitatory links (pointed
arrows), inhibitory links (ball arrows) and unknown links (red).

ing question: is the response of LimE faster due to a change in the dynamics of the

cytoskeleton or due to changes in the signaling system? It has been observed that

Coronin 1A not only has functions in the cytoskeleton but also in development

[110]. In the following sections we will analyze in more detail the single cell re-

sponses and interpret the data with some tools developed to interpret biochemical

networks.

5.4.1 Cell to cell variability in Knockouts

Figure 5.11 shows the variability of responses for knockout cells. A first look

into the figure, we can see that Aip1∆ has a higher variability on the response

waveforms since they differ substantially from each other. For example in panel

a, we observe a response with a sharp turnover at the minimum and a sharp

overshoot, indicating fast depolymerization and polymerization respectively. The

response shown in panel b is considerably different from the response in a. This

waveform has interesting features consequence of the absence of Aip1, such as a

very slow turnover at the minima, where the signal maintains this level for roughly

10 s. Therefore during this period the actin filaments that were polymerized at

the cell cortex are stable for reasonably long time. After that these filaments

depolymerize and repolymerize fast as can be seen by the sharp overshoot. In
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Figure 5.10: Time evolution of the mean cytosolic fluorescence. a) Averaged time
series for LimE-WT (red), LimE-Aip1∆ (gold) and LimE-Coronin 1A∆ (brown).
b), c) and d) show the first 15 s of the time series with their corresponding errorbars
for LimE-WT, LimE-Aip1∆ and LimE-Coronin 1A∆ respectively. These were used
to quantify the time for initiation of the translocation.
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the wild type cells, after the overshoot the signal relaxes back to its basal levels,

meaning the degree of polymerized filaments is recovered. Though in this case the

signal has a second and strong drop, showing that the filaments are repolymerized

to higher levels than their basal length. After this repolymerization, the signal

relaxes very slowly to its steady state. It is evident that the lack of Aip1 in

these cells resulted in a very weak depolymerization, consistent with the reports

in literature where lacking Aip1 results in weak depolymerization [78, 70, 77].

The remaining LimE signals for Aip1∆ also show different phenotypes, such

as strong ringing (panel c), that differs from a sinusoidal waveform, as also broad

overshoots (panel d). For the Coronin 1A∆ cells the waveforms are very similar

but differ on the strength of their overshoot. For example in panel a) the overshoot

is substantially higher, around 5 times higher than in the wild type. This is an

indication that in these cells the depolymerization is strongly unregulated, as high

fluorescence is an indicator of a high amount of depolymerized actin. The rest

of the panels also show a higher overshoots than the wild type, but to different

degrees.

5.4.2 Concavity

A biochemical network has a large amount of components, in Dictyostelium dis-

coideum there are at least 138 proteins dedicated to the actin cytoskeleton [30].

This fact makes it hard to have specific information on the roles of Aip1 and Coro-

nin 1A, and furthermore to predict the effects of their absence. In the previous

section we have determined the possible roles of Aip1 and Coronin 1A by mapping

the observed signals into symbols, suggesting a set of effective interactions between

them. Inspired in this technique we established an interpretation of the concavity

at the signal extrema.

We have seen that removing Aip1 or Coronin 1A changes dramatically the LimE

response, and so the feedback felt by the actin cytoskeleton changes when removing

one of these regulators. We can quantify how much the feedback has changed by

measuring the concavity at the extrema of the time series. This interpretation can

be developed by writing a generalized model for the observed protein
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Figure 5.11: Different types of responses obtained in cells with genetical knock-
outs by applying the algorithm mentioned in section 5.2. The differences in the
responses is higher than in the WT cells..
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dx

dt
=
∞∑
n=0

anx
n + ρ(t) (5.10)

where the first term in the r.h.s. represents the linear and nonlinear self terms,

which represent dissipation and autocatalysis, and the term ρ(t) represent the

feedback given by all the components interacting with x.

If we take the derivative of Equation (5.10) we get

d2x

dt2
=
∞∑
n=0

annx
n−1dx

dt
+
dρ(t)

dt
(5.11)

and similarly to the method of symbolic dynamics, we will concentrate in the

extrema of the signals. If the extrema of the signal occurs at time T , by basic

calculus rules we have

dx(T )

dt
= 0 (5.12)

which means that the feedback and the self terms balance each other. By plugging

the values of the derivative of x into Equation (5.11), we arrive to the following

expression

d2x(T )

dt2
=
dρ(T )

dt
(5.13)

which can be interpreted as a measure of the local feedback strength sensed by the

protein at those times.

Therefore by measuring the concavity at the extrema we will gain information

on how the feedback has changed. To visualize why this is a measure of the

feedback strength and not only of the rate of change, we can analyze a simple

example. Suppose that φ(t) depends on a variable y such that φ(y(t)). Then if an

extrema is at {xo, yo}, by linearization Equation (5.10) becomes

110



5.4. KNOCKOUT CELLS

dx(T )

dt
=

(
∞∑
n=0

nanx
n−1
o

)
x(T ) +

∂φ(yo)

∂y
y(T ) (5.14)

around the extrema, where the term in front of y(t) is the feedback strength. Then

by calculating the second derivative we get

d2x(T )

dt2
=
∂φ(yo)

∂y

dy(T )

dt
(5.15)

which shows that the concavity is proportional to the strength of the feedback.

Having in mind the scheme of Figure 5.9, it predicts that the removal of Aip1 or

Coronin 1A must reduce the strength of the negative feedback, and consequently

the concavity must be also reduced. We proceed to see how the concavity changes

in the mutant cell lines compared to the wild type.

5.4.3 Concavity distribution

As the concavity at the extrema will give us a measure of feedback strength, we

need to localize the maxima and minima for the knockouts time series. For that,

we fitted a fourth order polynomial at 11 s ≤ t ≤ 19 s and at 10 s ≤ t ≤ 25 s for

LimE-GFP+Aip1∆ and LimE-GFP+Coronin 1A∆ respectively. We obtained the

time to reach the minima for Aip1∆, τminAip1∆ = 7.90 ± 1.12 s and for Coronin

1A∆, τminCoronin1A∆ = 7.59±1.33 s. The mutation affects clearly the time to reach

the minima as it takes longer to reach it. For Aip1∆ cells some of the minima

times overlap with those of the wild type. To further understand the effects of the

mutation, we continued by analyzing the concavity distribution.

In Figure 5.12 we have the concavity distribution for the first minima in LimE

for wild type (WT) and for the mutants Aip1∆ and Coronin 1A∆ cell lines. In the

mutants we can see that their concavity distribution is peaked in a value lower than

for the wild type. The removal of Aip1 results in shifting the distribution peak to

a value (Concavity = 0.027) below than a quarter of the WT value (Concavity =

0.112). This means that the feedback has slowed down significantly taking a longer
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5.4. KNOCKOUT CELLS

time to turnover the polymerized network into depolymerization. Figure 5.14 a,

shows the overlap of the time series around the minima, corresponding to the bin

of Figure 5.12 (Aip1∆) which contains the most cells, compared with the time

series of the wild type. It is evident that the set of curves for Aip1∆ (gold curves)

have a much lower curvature compared to the wild type (red curves). Some of the

Aip1∆ time series show that the polymerized network is very stable for around 10 s

, which is very slow compared to the turnover in the wild type. We can conclude

that for the first minima, the absence of Aip1 results in a slower depolymerization

since the feedback has slowed down substantially. This in agreement with the

scheme of Figure 5.9 which predicted a slower turnover.

The concavity distribution peak in the Coronin 1A∆ cells also fall substantially

to (Concavity = 0.069), Figure 5.14 b shows an overlap of the time series for

Coronin 1A∆, corresponding to the bins with the highest amount of cells, also

compared to the wild type. The effect is not as dramatic as in the absence of

Aip1, but also we can conclude that is necessary for fast depolymerization at the

minimum. Although in the scheme of Figure 5.9, a direct link is not found with the

methods of [81, 82], it is inferred that Coronin 1A enhances the depolymerization

by a cooperative effect with Aip1.

The change in the second extrema of the LimE signals will give insight into the

transition from depolymerization to polymerization. The concavity distributions

for this case are shown in Figure 5.13, it is remarkable that for the wild type

the distribution is very peaked showing that this part of the signal is very robust

between cells. Also the concavities have a value of −.0086 which is 7% of the

absolute value for the minima. Therefore such a small value of concavity is due

to the stationary feedback that is received in the WT. The concavity distribution

for the knockouts results in absolute values higher than for the wild type, meaning

that the feedback is enhanced at this section of the time series. In this case the

Aip1∆ distribution is peaked around the value Concavity = −0.0554, which means

that the magnitude of this value is 72% higher than in the wild type. So opposite

than in the minima here the absolute concavity became higher. This implies that

the transition from effective depolymerization to polymerization is enhanced, this

asymmetry is not contemplated in the scheme of Figure 5.9.

The absence of Coronin 1A also results in concavity values with higher mag-
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nitude at the maxima. The distribution has two peaks at Concavity = −0.0186

and Concavity = −0.0377, therefore it has a similar effect as the Aip1 knockout

but with lower magnitude. Therefore we can conclude that the effects of Aip1 and

Coronin 1A are asymmetric with respect to the polymerization to depolymeriza-

tion transition and the depolymerization to polymerization transition. Aip1 and

Coronin 1A increases the depolymerization transition in the wild type, this is in

agreement with the literature reviewed in the Background chapter. Where effects

like filament bursting [59, 14] and increased sensitivity of ADP-rich filaments [36]

were discussed. The second effect of enhanced polymerization can be due to indi-

rect regulation of polymerization nucleation factors. It is known that Coronin 1A

acts as an inhibitor of the Arp2/3 complex at high concentrations [18]. Therefore

it is possible that since Coronin 1A is not present, the Arp2/3 complex is not as

strongly regulated and polymerization is promoted. Such an effect has not been

recorded for Aip1 so far, therefore the enhancement of depolymerization and the

inhibition of depolymerization could be a cooperative effect between these two

proteins.

5.5 Interpretation

In this section we give a heuristic interpretation of our observations. We have

observed the translocation of LimE, Coronin 1A and Aip1 from cytosol to the

cortex induced by external cAMP stimulation. The average cytosolic fluorescence

of LimE, presents a characteristic response after stimulation. There is an initial

drop to lower levels of fluorescence, then an overshoot followed by the recovery to

its steady state, this response is reminiscent to a damped oscillation. Even though

there is substantial cell to cell variability in our observed cells, there are similarities

between the responses. For example, after stimulation the average cytosolic signal

for LimE is the first one to reach its minimum, then its followed by either Coronin

1A or Aip1. We have quantified the sequential order in which the minima are

reached and found that the first one is LimE, followed by Coronin 1A, and then

by Aip1, the maxima is also found in the same sequential order.

Using a proposed algorithm to convert the observed signals into symbolic dy-

namics [81, 82], we have extracted a possible feedback loop in which LimE activates
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Figure 5.12: Concavity distribution measured at the first minima after stimulation
of the LimE responses for wild type (red), Aip1∆ (gold) and Coronin 1A∆ (brown)
cells.
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Figure 5.14: Comparison of the concavities at the first minima between: a, wild
type (red) and Aip1∆ (gold) cells, and b,wild type (red) and Crn∆ (brown) cells.

Coronin 1A, Coronin 1A activates Aip1, and Aip1 inhibits LimE. This loop pre-

dicted that in the absence of either Aip1 or Coronin 1A the inhibition of LimE will

be compromised. Figure 5.15 shows our interpretation of this scenario. In the first

panel we have a polymerized structure (actin monomers denoted by red circles)

at the cell cortex, this structure is the one formed by external cAMP stimulation

and corresponds to the observed minimum in the LimE time series. Suppose the

existence of an inhibitory molecule that represent all the molecules that inhibit the

cytoskeleton (denoted by gray circles in panel 2), the interaction of this molecule

becomes weaker in the absence of Aip1∆ and Coronin 1A∆ cell lines.

As the negative feedback has been compromised in the knockout cell lines,

there is a slow build up of the inhibitory molecule and takes longer to inhibit

the polymerized structure (panel 2, Figure 5.15 ). As the build up is slower the

depolymerization also becomes slower, and as the cytoskeleton is depolymerizing

the monomers return to the cytosol. As a consequence of the positive feedback

given to the inhibitory molecule it will retract back to the cytosol slowly. During

this retraction is where the maxima of LimE is observed in our time series. There-

fore the translocation of both species from cytosol to cortex and back and forth is
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slowed down for both of them. A simple physical analogy would be the dynamics

of a damped oscillator, in such a system the reduction of the negative feedback

results in lower frequencies. We conjecture without proof that this should hold

even in the presence of nonlinear interactions, as long as the interactions remain

monotone, meaning that the inhibitor is always an inhibitor and the activator is

always an activator.

We have observed in the previous section lower concavity at the minima for the

time series of the knock outs cell line. Therefore the first two panels of Figure 5.15

are in agreement with experiment, but the observed maxima became narrower in

the knock outs. Figure 5.16 shows a modified scheme from the previous one that

resembles our experimental observations, it differs in the last two panels. It is

useful to use as a guide the signal shown in Figure 5.11 b for Aip1∆, this extreme

case simplifies the interpretation. In panel 3, the scheme starts to differ from the

earlier one, as the levels of the inhibitory protein are high in the cytosol there is

a sudden decrease on their influence on the cytoskeleton. This can be interpreted

as if the inhibitory proteins suddenly leave the cytosol, leaving room to the actin

monomers to polymerize, or a sudden desensitization of actin from the inhibitory

proteins. Then the former actin structure is created again as there is no inhibition

and is free to polymerize.

We conjecture that such interaction must be mediated by another actin binding

protein that we are not observing. With this scenario in mind, the absence of

Coronin 1A or Aip1 results in a weaker depolymerization process but also in a

very strong polymerization. It has been discussed in Chapter 2 that these proteins

confine capping proteins [70] and cofilin [36] indirectly to certain positions of the

cytoskeleton, this could not be the explanation since the role of those proteins is

to limit the growth and sever actin filaments respectively. Coronin 1A has been

shown in vitro to have inhibitory interactions with the Arp2/3 complex [18] which

enhances polymerization. It is possible that in vivo Coronin 1A and Aip1 inhibit

cooperatively the Arp2/3 complex. It would be interesting to label other proteins

in these mutants to see if their activity is enhanced in the knockouts. With this

heuristic interpretation we hypothesize that there must be a set of proteins that

inhibit suddenly the action of inhibitory proteins, or that promote polymerization

strongly.
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Sudden polymerization 
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stimulation 

Slow build up of 
inhibitory species 

Slow retraction of 
inhibitory species 

Slow retraction of 
inhibitory species 
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of polymerized 
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Figure 5.15: Interpretation of the scheme predicted by the symbolic dynamics in
the absence of Coronin 1A or Aip1. In panel 1, we have the sudden polymerization
induced by cAMP stimulation. In 2 is a very slow build up of an inhibitory protein
that induces the disassembly of the cytoskeleton. Then there is a slow retraction
of the inhibitory protein to the cytosol in panel 3, and finally in panel 4 a very
slow recovery of the polymerized structure.
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Figure 5.16: Interpretation of the experimental results, panels 1 and 2 are the same
as in Figure 5.15. In panels 4 and 3 shows a sudden retraction or desensitization
of the inhibitory protein resulting in a sudden polymerized structure.
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5.6 Chapter summary

In this chapter we have studied the transient polymerization/depolymerization ob-

served in Dictyostelium discoideum when stimulated with a single pulse of cAMP.

Coronin 1A and Aip1 were known to act cooperatively to enhance the disassembly

of filaments [59, 14], this knowledge was acquired by a series of in vitro and in vivo

experiments. It is known that Coronin 1A inhibits polymerization by interacting

with the Arp2/3 complex [18], while an indirect regulation of capping proteins was

known for Aip1 [70].

The time series for the LimE average cytosolic intensity showed a decrease

followed from the stimulation, then an overshoot and finally a relaxation to a

steady state. In the first decrease the actin cortex becomes brighter implying the

growth of actin filaments and during the overshoot it became darker implying a

decrease in filament size. Therefore at the times that LimE has a negative slope

is interpreted as polymerization while positive slopes as depolymerization.

It was found that the LimE, Aip1 and Coronin 1A translocated in a sequential

manner, the progression was the following: Aip1→LimE→Coronin 1A. To infer

the possible causality and interactions between these proteins we have used the

algorithm proposed in [81, 82], which consists in transforming the observed time

series into symbolic dynamics. The effective feedback loop extracted was LimE

enhances Coronin 1A, Coronin 1A enhances Aip1 and Aip1 inhibits LimE. The

prediction of this loop was that in the absence of Aip1 or Coronin 1A the turnovers

at the minima and the overshoots would be slowed down.

To prove the degree of agreement and deviation with this scheme, LimE was

measured in cell lines where either Coronin 1A or Aip1 were genetically removed.

The time series of these cell lines highly differ from that of the wild type. To

quantify the degree of deviation, we have measured the concavity in the extrema

of those signals. It was proved that the concavity is a direct measured of the rate

of change, and an indirect measure of the strength of the feedback acting on LimE.

Therefore by measuring concavity we obtain useful information on the regulatory

feedback, without any detailed knowledge of the involved dynamics for LimE.

We have observed a large cell to cell variability in the response waveform of

LimE for the knockout cell lines, this was reflected also by their concavity distri-
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bution. For both Aip1 and Coronin 1A the concavity decreases for the minima,

the slowing down in the feedback implies a decrease in the capability to exert the

inhibition to LimE. This is in agreement with the scheme obtained with symbolic

dynamics. In the maxima the effect has been the opposite, the absolute values of

the concavity increased, resulting in sharper overshoots which imply very strong

polymerization. This is not in agreement with the scheme obtained, therefore

there must be an asymmetry in the interactions with LimE. The removal of this

proteins results in inhibited depolymerization and enhanced polymerization.

In the last section we have introduced an interpretation of our data, where

we proposed an indirect regulation of Coronin 1A and Aip1 for inhibiting poly-

merization. In the literature survey done in the Background chapter, it has been

shown that high doses of Coronin 1A inhibits the binding of the Arp2/3 complex

to actin filaments [18]. Therefore we conclude that in the absence of these two

proteins not only results in decreased depolymerization but also in an increased

polymerization.
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Chapter 6

Conclusions and discussion

This work has been dedicated to study the dynamical properties of the actin

cytoskeleton, as well the regulation exerted by Coronin 1A and Aip1. We have

used the chemotactic amoeba Dictyostelium discoideum during the starvation stage

as a model organism to study these matters. By means of flow photolysis we were

able to perturb the basal dynamics of the cells by stimulating them by a short pulse

of cAMP. During this stimulation the cell presents a physiological response where

a transient actin structure is created. The dynamics of the actin cytoskeleton

can be tracked by the indirect marker LimE-mRFP and the average cytosolic

fluorescence is a measure of its translocations. When the cell is stimulated with

a pulse of cAMP the fluorescence levels deplete, then they overshoot and finally

relaxes back to equilibrium, the observed time trace is reminiscent to the response

of a damped oscillator.

In a previous study we have observed that the cell cytoskeleton exhibit os-

cillatory properties such as a resonance frequency and the exhibition of self sus-

tained oscillations [114]. In this work we proceeded in investigating the dynamical

properties of cells exhibiting self sustained oscillations and co-expressing LimE-

mRFP+Coronin 1A-GFP or LimE-mRFP+Aip1-GFP. To identify them and char-

acterize their properties, we did an statistical analysis on the measured time series

via the autocorrelation function. We have found many interesting properties such

as: an integral relation between the fluorescence values of LimE and pseudopod

extension, indications of an inverse relation between the times series variance and
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correlation time, and the exhibition of different transients after stimulation. We

have proposed a couple of well supported hypothesis on the mechanisms behind

our observations, giving an intuitive perception of the biophysical processes

The role of fluctuations in chemical and biological systems has been discussed

since the early works of far from equilibrium thermodynamics [87, 88]. We have

shown that the actin cytoskeleton is no exception, and we have proposed two

hypotheses regarding the type of fluctuations that explain the observed physical

properties. In the first scenario the system is very close to criticality and sus-

ceptible to environmental noise, the analysis has shown that the majority of cells

are strongly dominated by stochastic effects. For self oscillating cells the majority

shows a relative noise contribution (RNC) of at least 35%, its is conjectured that

cells take advantage of this for having a high sensitivity to internal changes and

maintaining high amplitudes at low metabolic costs. In the second hypothesis

the competition between internal and external fluctuations explain the observed

relations between the signal variance and its correlation time. For this we used a

phase reduction method to reproduce the properties of our observed autocorrela-

tion functions. The main component of the second model is a multiplicative noise

term coupled with the feedback of the oscillator, this component decorrelates the

observed time series at high amplitudes. The physical interpretation is the corrup-

tion of the feedbacks between the cytoskeleton and its regulators, possibly done

by molecules in low copy numbers that are in charge of mediating the interaction

between these proteins.

Even though our theoretical hypothesis matches well our observations, we

need to be particularly careful in finding the set of parameters where are valid.

The phase reduction approximation date backs to 1967 from the work of Melvin

Lax [60], but recently a debate of its validity has been reopened [122, 103], in

particular on the usage of the Stratonovich and Ito interpretations for Stochas-

tic calculus. Both interpretations infer different physical scenarios, Ito calculus

is suitable when assuming that the forcing fluctuations consists of discrete pulses

while Stratonovich calculus assumes that it is a continuous function [107]. This

debate is not open only in the phase approximation of dynamical systems, but

also in the experimental observation of general physical systems such as electrical

circuits [80]. We have addressed these issues conducting further investigations of
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the Fokker-Planck formalism for self sustained oscillators. It has been concluded

that correlation time (τc) is poorly estimated from short time series in comparison

with theoretical estimates. On the other hand the variance (σ2) is well estimated

and suitable for comparison with theory making the analysis of the first hypothesis

reliable, while the second one remains a possibility but it is indistinguishable by

our current methods. We have studied only the statistical properties of the time

series neglecting its local properties, we can learn the lessons from spiral defect

chaos, where it has been shown that both the statistical [72] and local [29] prop-

erties play an important role. Further studies must give insightful results since a

motile cell is changing parameters over time.

In the background chapter we have reviewed the different times scales in which

different components of the actin cytoskeleton and the signaling system operate.

We have shown an interplay between fast and slow time scales in the response

dynamics of some cells classified as oscillatory. A small percentage of cells with high

variance, and in some cases high correlation time, in their time series, stopped their

activity after stimulation (shown in Figure C.1). At a time of around 100 s after

stimulation the oscillatory activity is recovered. A theoretical analysis of these

time series has shown that these transients cannot be explained by the nonlinear

interactions between a single activator and a single inhibitor. It was shown that

is necessary to add another variable that is quiescent during oscillatory activity,

where the driving to higher amplitudes activates this variable and terminates the

oscillations. This variable would represent a physical process that is maintained

active for ∼ 10 oscillation periods, the components of the signaling system, such

as PIP3 and PTEN, are ideal candidates to be investigated during this process

since they present dynamics with time scales of the same order.

Several tools from the areas of applied mathematics will help to interpret better

future data, for example in control theory a set of tools have been developed to infer

the dynamics of a system with the minimum amount of observations [52]. A recent

remarkable observation has shown that is possible to determine the minimum

number of observations via a graphical method [64, 65] which avoids the need to

do extremely tedious calculations. Unfortunately to do the full reconstruction of

the dynamics their interactions must be known, it was particular frustrating for

the author not to find generalized theorems for the observations of limit cycles.
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The following question arose during this research: If one particular element of

a physical system is showing periodic dynamics, what can we infer for the non

observed elements?. This question originated since we have observed periodic

oscillations in LimE, Coronin 1A and Aip1, in which we have shown the existence of

causal interactions between them. If such a question is answered soon, it would be

utterly useful for interpreting future experiments where more elements of the actin

cytoskeleton and signaling system are observed during these periodic oscillations.

In the second part of this work we endeavoured in studying the regulating

properties of the cytoskeleton, for that we studied the dynamical properties of the

damped fluorescence oscillations exhibited by LimE, Coronin 1A and Aip1. The

latter and former proteins has been known to have cooperative effects to disassem-

ble the barbed end of the actin cytoskeleton as well to protect the pointed end.

We have dealt with the natural cell to cell variability, in this work we addressed

this issue by developing a simple algorithm for sorting data and study the bio-

physical features of single cells. The possible artifacts due to averaging have been

discussed, this is not the first time that the problem is addressed. In studies of the

p53 system, that assists in DNA repair, due to averaging the researchers thought

for a long time that the system exhibited damped oscillations when stimulated,

but in reality the system exhibited self sustained oscillations [7].

Among the biophysical properties of cAMP response time series we have ob-

served a sequential translocation of these proteins, were Aip1 translocated first,

followed by LimE and the by Coronin 1A. The times to reach the extrema of the

signals were also sequential were LimE reached first the minimum, followed by

Coronin 1A and then by Aip1, for the maximum the order was the same. This

information was useful to translate the observed dynamics into symbolic dynam-

ics [81, 82], from this we can extract an inferred effective feedback loop. We

concluded that the symbolic dynamics were in accord with a loop where LimE ac-

tivated Coronin 1A, which activated Aip1, which inhibited LimE. We interpreted

as a prediction from this graph that the negative feedback loop will be weakened

in the absence of Coronin 1A or Aip1.

To confirm the proposed hypothesis we proceeded by studying the LimE re-

sponse in cells lacking either Aip1 or Coronin 1A. We have found remarkable

properties in these responses such the maintenance of actin structures for long
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times, as well a higher variability on single cell response. We have chosen to mea-

sure the concavity at the extrema of the signal to characterize the changes between

the response from wild type cells to those of the mutants. We have proven that

the concavity at the extrema is a measure of the feedback felt by actin, this is

particularly useful since we lack detailed knowledge on the interactions between

the components. Remarkably we have found an asymmetry on the concavities at

the extrema of the knockout cell lines. For the minima we have found that the

curvature of the signals was always lower, showing that the feedback rate of change

(and indirectly the strength) has decreased but at the maxima of the signals the

curvature was higher showing an increased feedback. Showing that the scheme

obtained from the symbolic dynamics is in agreement at the minima of the signal

but not on the maxima.

A hypothesis has been discussed for interpreting the data that we obtained.

We start by supposing the existence of an inhibitory specie that disassembles the

actin cytoskeleton, this specie will translocate to the cell cortex whenever actin is

polymerized, since actin exerts a positive feedback on the inhibitory specie. If the

negative feedback exerted by this specie is weakened, it will result also in a weak

positive feedback. Therefore it takes longer to translocate to the cell cortex and

the actin structures are maintained for longer times. Once it has inhibited the

actin at the cell cortex, it will translocate back to the cytosol slowly and therefore

the recovery would be slower. This would have been reflected in the experimental

data as a lower concavity at the maxima. Therefore we hypothesized a sudden

desensitization of the cytoskeleton to the influence of these species happens, or a

sudden release retreat back to the cytosol of the inhibitory species. Therefore an

unobserved component must be in charge of inhibiting the activity of the inhibitor,

and in WT cells this unobserved specie is regulated. A possible candidate for this

unobserved specie is the ARP2/3 complex, since it promotes nucleation of actin

filaments and it has been shown to be inhibited Coronin 1A [18].

In this work we have shown that we are able to study the dynamics of the

cell and learn about their internal biophysical processes in spite of our ignorance

on the distribution of internal parameters, which are reflected in the variability of

responses and different dynamical states. Still in the future it will be necessary

to be able to manipulate the genetics of the Dictyostelium discoideum up to the
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point of controlling their expression levels. This will allow us to study explicitly the

physical properties and bifurcation structures behind the mechanisms inside the

cell. In E. coli this is possible, for example Leibler, Barkai and Alon have studied

the adaptation properties to aspartate by manipulating the expression levels of

CheR [2]. But also the physicist need to become familiar with the biological

tools available. It is the hope of the author that this study will help to the

further understanding of the connection of the actin cytoskeleton with the signaling

system, as well the regulation of the cytoskeleton in-vivo.
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Appendix A

Analytical and numerical

calculations of correlation time τc

and variance σ2

A.1 Correlation time in multiplicative noise model

In section 4.5.2 we have proposed the following model for the self sustained oscil-

lations observed in the actin cytoskeleton

dz

dt
=
(
λ+ iωo − ε|z|2

)
z − i

√
D1ξ1(t)|z|z +

√
D2ξ2(t) (A.1)

since the system is defined in the complex plane then we can transform Equation

(A.1) into polar coordinates by rewriting in term of amplitude and phase as z(t) =

a(t)exp(iφ(t)), then we get

da

dt
= λa− εa3 +

√
D2ξ2(t)cos(φ)

dφ

dt
= ωo −

√
D1aξ1(t)−

√
D2

a
ξ2(t)sin(φ)

(A.2)

we can also rewrite the definition for the autocorrelation function in polar coordi-

nates, and by defining a variable transformation as ψ = φ− ωot
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A.1. CORRELATION TIME IN MULTIPLICATIVE NOISE MODEL

〈
z(t− τ)z∗(t)

〉
= a2exp(−iωoτ)

〈
exp(i(ψ(t− τ)− ψ(t)))

〉
= σ2exp(−iωoτ)exp

(
−
〈
(ψ(t− τ)− ψ(t))2

〉
2

) (A.3)

where we have approximated the variance as σ2 = a2
o, where ao is the is the steady

state amplitude of the oscillator in the absence of fluctuations. The transform of

the exponential term is given by the fact that ψ is a Gaussian variable [60].

Therefore the phase equation can be rewritten as

dψ

dt
= −

√
D1σ2ξ1(t)−

√
D2

σ2
ξ2(t)sin(ψ + ωot) (A.4)

and its time evolution will be given by

ψ(t)− ψ(t− τ) ≈ −
∫ t

t−τ

√
D1σ2ξ1(s) +

√
D2

σ2
ξ2(s)sin(ωos) ds (A.5)

where we have used the approximation ψ + ωot → ωot, commonly used in engi-

neering [60]. We can calculate the mean of the square of A.5

〈
(ψ(t− τ)− ψ(t))2

〉
=
〈
(ψ(t)− ψ(t− τ))2

〉
=

D1σ
2

∫ t

t−τ

∫ t

t−τ

〈
ξ1(s1)ξ1(s2)

〉
ds1 ds2

+2
√
D1D2

∫ t

t−τ

∫ t

t−τ

〈
ξ1(s1)ξ2(s2)

〉
sin(ωos2)ds1 ds2

+
D2

σ2

∫ t

t−τ

∫ t

t−τ

〈
ξ2(s1)ξ2(s2)

〉
sin(ωos1)sin(ωos2)ds1 ds2

(A.6)

since the fluctuating variables are defined as
〈
ξi(s1)ξi(s2)

〉
= δ(s1 − s2) and〈

ξi(s1)ξj(s2)
〉

= 0 we can calculate the integrals in A.6 as
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A.2. NUMERICAL VALIDATION FOR SHORT TIME SERIES

〈
(ψ(t− τ)− ψ(t))2

〉
=

D1σ
2τ +

D2

σ2

(
τ

2
− sin(2ωo(t− τ))− sin(2ωo(t)))

4ωo

)
≈

2D1σ
4 +D2

2σ2
τ

(A.7)

finally the correlation time is given by

τc =
4σ2

2D1σ4 +D2

(A.8)

In Figure A.1 we can see the comparison between analytical and numerical

calculations. The phase equation (A.2) was simulated by varying the parameter

σ and keeping D1 and D2 constant. For each value of σ, 100 realizations were

simulated using the Euler-Maruyama algorithm. The cloud of black dots are single

realizations of the obtained values of τc and the red curve represent their mean

value. We can see that the average values of correlation time and the analytical

prediction are in close agreement.

A.2 Numerical validation for short time series

We have checked the effects of determining parameters from short time series

by doing numerical simulations. Equation 4.4 was simulated using the Euler-

Maruyama algorithm (details in Appendix B) for long time series of 10000 s and

ensembles of short time series of 100 s. Notice that for the correlation time there is

a strong disagreement between the correlation time of long time series (black line)

vs the mean of the ensemble for short time series (red dashed line), also the variance

is very large (denoted by the colored area). It can be seen that the variance for

long time series and the mean for short time series are in good agreement, also the

dispersion given by the short time series is not as large. Therefore we conclude

that the variance it is well estimated while the correlation time poorly estimated,

then the first hypothesis of section 4.5.1 is validated.
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A.2. NUMERICAL VALIDATION FOR SHORT TIME SERIES
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Figure A.1: Relation between τc and σ2 obtained from numerical simulations of
Equation (4.10) performed with the Euler-Maruyama method [47]. The input
parameters are parameters D1 = 0.2080, D2 = 1.6×10−4 and ∆t = 0.01, the values
of σ2 = k∆σ2 were obtained varying k from 0 to 100 using ∆σ2 = .005. For each
value of σ2, 100 realizations were performed, we can observe the agreement between
the average value of the obtained parameters with the analytical calculation.
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A.2. NUMERICAL VALIDATION FOR SHORT TIME SERIES
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Figure A.2: Left, correlation time (τc) obtained by simulating time series of 100 s
(red dashed line) and of 1000 s (black line). The colored area is denoting the
variance obtained from the 100 s. Right, variance (σ2) for short (100 s, red dashed
line) and long time series (1000 s, black line), notice that both lines converge.
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A.2. NUMERICAL VALIDATION FOR SHORT TIME SERIES
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Appendix B

Numerical simulations

During this work we have performed several numerical simulations, using the Euler-

Maruyama algorithm [47], which is used for stochastic differential equations. In

this Appendix we shall state the used parameters by figure. In our simulations

we used always a random number generator from a commercial software package (

MATLAB R2012b, The MathWorks Inc., Natick, MA, 2012 ) that created numbers

from a normal distribution with zero mean and variance of one.

B.1 Figure 4.11 and A.1

We performed several simulations of Equation (4.10), where we integrated

φi+1 = ωo∆t+

(√
D1

k∆σ2
ξ1i +

√
D2k∆σ2ξ2i

)
√

∆t+ φi (B.1)

with ∆t = 0.01, D1 = 0.2080, D2 = 0.2080, ∆σ2 = .005 and varied 1 ≤ k ≤ 100

for Figure A.1. For each value of k used, 100 realizations were performed and

the parameters correlation time, τc, and variance, σ2, were extracted from the

autocorrelation function by doing a nonlinear fit as it was done in the experimental

data. In Figure 4.11 a single realization was performed with the values D1 = 0.832,

D2 = 2×104 and k∆σ = 0.1423. We used 10000 steps ∆t for each calculated time

series.
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B.2. FIGURE A.2

B.2 Figure A.2

To test the artifacts given by estimating parameters from short time series, we

simulated Equation 4.4

xi+1 =
(
λxi − ωoyi − (x2

i + yi)
2
)

∆t+ ξ1i

√
D∆t+ xi

yi+1 =
(
λyi + ωoxi − (x2

i + yi)
2
)

∆t+ ξ2i

√
D∆t+ yi

(B.2)

with the parameters set to ∆t = 0.01, D = 0.1 ωo = 1. The values were varied

−0.2 ≤ λ ≤ 0.2 with increments of ∆λ = 0.004, for the short time series of 100 s

we simulated an ensemble of 100 realizations for each value of λ, while for the long

time series of 10000 s a single realization was made.

B.3 Figure 4.16

The aim of this simulations was to show the mechanism for halting the self sus-

tained oscillations. The model consists of Equations (4.16), (4.17) and (4.18). We

simulated 10000 steps from the complete set of equations

xi+1 =
(
λixi − ωoyi − (x2

i + yi)
2 − pi

)
∆t+ ξ1i

√
D∆t+ xi

yi+1 =
(
λiyi + ωoxi − (x2

i + yi)
2
)

∆t+ ξ2i

√
D∆t+ yi

wi+1 =

(
−zi − vi +

β

2
(1− λi)

)
∆t+ ξ3i

√
D∆t+ wi

vi+1 =
1

τ
(wi − vi) ∆t+ ξ4i

√
D∆t+ vi

λi = −tanh
(
η

[
w +

wo
zo

√
x2 + y2 − wo

])
(B.3)

where the external perturbation was defined pi = 7 at 5000 ≤ i ≤ 5100. The

values were set to ∆t = 0.01, ωo = 5.0, D = .0150, β = 1.5, τ = 33.33, η = 10,

wo = 1.0 and zo = 1.5. The time series shown in Figure 4.15 (right) was taken

from this simulation using ai =
√
x2
i + y2

i .
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B.4. FIGURE 4.15, LEFT

B.4 Figure 4.15, left

We simulated the amplitude equation corresponding to Equations (4.13) and 4.15

ai+1 =
(
−λai + εa3

i − ηa5
i + pi

)
∆t+ ξi

√
D∆t+ ai (B.4)

with the parameters λ = 1, ε = 2 and η = 0.5. The perturbation given was

pi = −4.5 at 5000 ≤ i ≤ 5100, the number integration steps and ∆t are the same

as in the previous section, as well as the value of
√
D.

B.5 Figure 5.1 and 5.2

To test our algorithm for data segregation, we have used a linear damped harmonic

oscillator

xi+1 = (−λixi − ωoyi + pi) ∆t+ ξ1i

√
D∆t+ xi

yi+1 = (−λiyi + ωoxi) ∆t+ ξ2i

√
D∆t+ yi

(B.5)

where we have used D = 0.05, ∆t = 0.01 and integrated for 7000 steps. The

external perturbation was given at 1000 ≤ i ≤ 1900 with a value of pi = −1.

In Figure 5.1 we have set the values of {λ, ωo} as {0.1, 0.4181}, {0.15, 0.523},
{0.20, 0.402} and {0.21, 0.385} for the curves of panels 1, 2, 3 and 4 respectively.

To characterize the phase space distance dij of Equation (5.9) we calculated a

single reference trajectory {x, y} with parameters λ = 0.1 and ωo = .3501. As a

next step we calculated a set of trajectories to measure their phase space distance

with respect to the reference trajectory. We calculated these trajectories with

different values of λ = m∆λ and ωo = n∆ωo with ∆λ = 0.16 and ∆ωo = 0.0389.

We varied the values of 1 ≤ m ≤ 150 and 1 ≤ n ≤ 150 and the obtained trajectories

were used to measure the phase space distance against the reference trajectory.
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B.5. FIGURE 5.1 AND 5.2
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Appendix C

Samples of self sustained

oscillations and colored noise

In this section we present several measurements of cells that were classified as

oscillatory in Chapter 3. In Figure C.1 we have six examples (out of seven) of

cells that exhibited oscillations with high amplitude and in some cases with high

correlation time. The data on these figures is raw with only its average for the

first 100 s subtracted. In some cases the oscillations are detectable in both labels,

indeed we have found that for many cells both signals are highly cross correlated.

We conjecture that the dim signals do not reflect the actual expression of the

protein. Naturally this question has been addressed before, where fluorescence

levels have been found to be well correlated with the readings from western blots

[119]. Though western blots represent a population average measure of protein

expression and not from single cells. Also we have observed LimE responses from

the experiments of Chapter 5, where the second label was not detectable, the

response waveform was similar from the other cells. If we would assume that not

detecting the second label represents the absence of the protein, then we would

observed the similar response to one of a knockout, so far we have not observed

that. Figure C.2 shows cases in which the signals have shown low correlation time.

Some cases show very clearly that after perturbing the dynamics the activity of

the cell continues , and in others cannot be discerned very well. Also it can be

seen that in some cases both labels are very well cross correlated.
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Figure C.1: Set of signals for LimE-mRFP+Aip1-GFP and LimE-mRFP+Crn-
GFP cells showing a long transient response after stimulation. This is a sample of
the data set used in Chapter 3.
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Figure C.2: Set of signals for LimE-mRFP+Aip1-GFP and LimE-mRFP+Crn-
GFP cells showing apparently a short transient response after stimulation. This
is a sample of the data set used in Chapter 3.
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Appendix D

Example of membrane retraction

and oscillation

When correlating fluorescence values with pseudopod extensions in Chapter 4,

we found that the membrane can retract or oscillate. Retraction was define as a

membrane front evolving towards the cytosol, and oscillation a membrane front

that evolved outwards and then inwards.
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Figure D.1: Left, membrane oscillation and Right, membrane retraction.
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