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General Introduction 

 

Cooperative behavior is widespread among humans and the animal kingdom. It occurs 

in very simple organisms like social amoebae (Santorelli, Thompson et al. 2008), 

viruses (Turner and Chao 2003), eusocial insects (Nowak, Tarnita et al. 2010), fish 

(Bshary and Grutter 2006), birds (Ligon 1983), non-human primates (Cheney, 

Moscovice et al. 2010) and, of course, humans (Melis and Semmann 2010). However, 

in terms of evolution by natural selection, such cooperative behavior seems to be harder 

to explain than selfish behavior. The heart of the problem can be conveniently described 

with the language of game theory. Game theory is a mathematical theory to describe 

game-like situations. Originally, game theory was used to analyze classic games like 

chess or poker (Zermelo 1913). Soon, economists realized that it can be applied to a 

variety of economic interactions (e.g. Nash Jr 1950). Since the 1970’s, evolutionary 

game theory became a big field of research by itself (Smith and Price 1973), extending 

its applications to biology, ecology, mathematics, physics and many more branches. 

So, how does game theory help to understand the evolution of cooperation? One of the 

most prominent examples of a “game” in the sense of game theory is the so-called 

prisoner’s dilemma game. Here, we assume that two players must decide 

simultaneously between two options. They can either (i) cooperate or (ii) defect. Their 

earnings depend on both, their own action and the action of the other player. If player I 

cooperated, but player II defected, player I receives the so-called suckers payoff S and 

player II gets the temptation T. If both players cooperate, they receive the reward R and, 

finally if both defect, they receive the punishment P. The precise numerical values of S, 
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T, R and P can vary but the order between them is characteristic for the prisoner’s 

dilemma game: 

T > R > P > S 

Note that irrespective of the other player’s action, defecting always yields the better 

result, because T > R and P > S. However, if both players defect, they receive less than 

if both had cooperated. Thus, self-interested behavior leads to a poor outcome for both 

players. More generally, situations where group-interest and self-interest are in conflict 

are called social dilemmas. Another prominent example besides the prisoner’s dilemma 

is the so-called public goods game, which describes a similar situation for more than 

two players. 

Clearly, without any modification of this game, cooperative behavior cannot persist 

since defectors will always bring home the higher payoff. However, if embedded in a 

certain context, cooperation might be able to out-compete defection. Because such 

contexts work like a mechanism to promote cooperative behavior, they are often 

referred to as “mechanisms of cooperation”. One well-established distinction between 

such mechanisms is due to Martin Nowak (Nowak 2006):  

Mechanisms of Cooperation: 

- kin selection 

- direct reciprocity 

- indirect reciprocity 

- group (multi-level) selection 

- network reciprocity 
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Kin selection (Hamilton 1964) refers to a situation where closely related individuals 

encounter a social dilemma. A gene that codes for cooperative behavior can be selected 

for, because helping close relatives implies helping bearers of this very gene. Famous 

examples are eusocial insects. 

Direct reciprocity (Trivers 1971) is a straight-forward mechanism where we imagine 

that the prisoner’s dilemma game is played repeatedly. As long as the chance to 

encounter an individual in the future is high enough, cooperative behavior can out-

compete defective behavior. Since multiple rounds of prisoner’s dilemma games are 

played, individuals can adopt potentially infinitely many strategies (i.e. combinations of 

cooperate and defect). The famous computer tournament by the political scientist Robert 

Axelrod (Axelrod and Hamilton 1981) aimed to detect best-performing strategies. It is 

remarkable that of all participating strategies, one of the simplest turned out to perform 

best: It played “cooperate” in the first round and then copied the opponent’s move of the 

previous round; therefore it was called Tit-for-Tat. 

Indirect reciprocity (Nowak and Sigmund 1998) works somewhat similar, except that 

the cooperative action is received by a third person. Cooperative behavior can succeed if 

individuals cooperate only with “good” individuals, but defect with “bad” individuals. 

Here, “good” individuals are those who helped others whereas “bad” individuals are 

those who did not help. Thus, reputation is the essence of indirect reciprocity. 

Multi-level selection (e.g. Traulsen and Nowak 2006) refers to the fact that there might 

be different units of selection: Genes, groups of genes, individuals or groups of 

individuals. What might appear as cooperative behavior at one level of selection could 
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be something different at another level. If selection is faster on the latter level, 

cooperation on the former level could persist. 

Network reciprocity is in the focus of the larger part of this thesis (chapter I) and thus 

deserves a more thorough introduction. In the 90’s of the previous century, an 

evolutionary model (Nowak and May 1992) showed that cooperation could, in 

principle, be promoted by spatial structure. Here, individuals interact with neighbors, 

instead of with random individuals of the entire population. Thus, cooperators can 

assort into clusters and achieve higher payoffs than defectors. Interestingly, 

experimental attempts to find evidence of such a cooperation-enhancing mechanism in 

humans failed (Cassar 2007; Kirchkamp and Nagel 2007; Grujić, Fosco et al. 2010; 

Traulsen, Semmann et al. 2010; Gracia-Lázaro, Ferrer et al. 2012; Grujić, Rohl et al. 

2012). To understand this, we must look at the assumptions of the evolutionary model. 

First, it uses the prisoner’s dilemma game (see above) to model the interaction. Another 

model (Hauert and Doebeli 2004) showed that a very similar but slightly different 

game, the snowdrift game (Sugden 1986), does not lead to cooperation under the same 

circumstances. The only difference between the snowdrift game and the prisoner’s 

dilemma game is that in the former, the order of payoffs is T > R > S > P. However, the 

above-mentioned experiments failed to show increased cooperation on spatial structure 

despite using the prisoner’s dilemma game. The most likely reason for this is that 

humans do not update their behavior in any way that is assumed by evolutionary 

models. In general, evolutionary models consist of two major parts. First, the interaction 

between individuals is modeled, e.g. as a prisoner’s dilemma game. Second, 

assumptions are made how individuals update their behavior in the game, e.g. whether 

they cooperate or defect. So-called imitation updating is one of the most frequently used 
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update mechanisms in evolutionary models. Therefore, we shall look at it in more 

detail. Out of the entire (possibly large) population, we look at four individuals (Fig.1, 

colored circles). 

 
 

Figure 1. Segment of a network. Circles represent individuals, connected individuals can interact. 

 

Lines between individuals mean that they can interact with each other (e.g. play a 

prisoner’s dilemma game). Let us focus on the blue individual. The other individuals 

may also have interactions with other individuals that are not shown in Fig.1. The 

algorithm of a typical evolutionary model could look like this: 

Step 1 

Individuals play prisoner’s dilemma games with all their neighbors (neighbors are 

indicated by a line between individuals). Their payoff from all of their prisoner’s 

dilemma games is summed up and is called their payoff. An example of possible 

payoffs is shown in Fig.2. 
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Figure 2. Examples of possible payoffs resulting from prisoner’s dilemma games. 

 

Step 2 

To calculate the fitness, we use the function 

fitness = 1 - w + w * payoff 

where the selection coefficient w determines the strength of selection: w = 1 for strong 

selection and w → 0 for weak selection. Thus, we get the fitness following values 

(Fig.3.) 

 

Figure 3. Fitness values resulting from payoffs. 
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Note that we can always choose a w such that the fitness of all possible payoffs is 

positive, which is important for calculating the relative fitness: 

Step 3 

relative fitness = fitness / (sum of fitness of all agents) 

 

Figure 4. Relative fitness of individuals. 

 

The relative fitness determines the probability that the target player will have the 

strategy of the respective agents in the next round. In this case, target node will keep its 

strategy with probability 27%, and will switch to the strategy of one of its neighbors 

with probabilities according to the relative fitness. 
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As we can see, evolutionary models like the one described assume rather specific and 

simplified learning behavior about the individuals. This may be a justifiable abstraction 

for very simple organisms, but it seems very unrealistic for humans. A recent study 

suggests that humans learning behavior resembles closely to so-called moody 

conditional cooperation (Grujić, Gracia-Lázaro et al. 2014). Here, individuals are more 

likely to cooperate if they, themselves cooperated in the previous round and are 

surrounded by enough other cooperators. However, as an updating mechanism, moody 

conditional cooperation does not seem to promote network reciprocity (Gracia-Lázaro, 

Cuesta et al. 2012). Therefore, static networks do not enhance cooperation among 

humans 

However, the situation is different on dynamic networks. In contrast to the static 

networks that we discussed above, dynamic networks allow the individuals to change 

their neighbors over time. Recent models (e.g. Santos, Pacheco et al. 2006; Fu, Hauert 

et al. 2008; Pacheco, Traulsen et al. 2008; Fu, Wu et al. 2009; Wu, Zhou et al. 2010) 

have shown that dynamic networks allow for cooperation levels beyond the ones of 

static networks. Unlike with static networks, experiments with human participants did 

indeed show increased cooperation on dynamic networks (Fehl, van der Post et al. 2011; 

Rand, Arbesman et al. 2011; Wang, Suri et al. 2012). However, as I argue in chapter I, 

the main reason for this is different from the mechanisms suggested in the models. 

Although models use a variety of different assumptions, the cooperation levels always 

depend on how often individuals change their neighbours. In chapter I, I provide 

evidence where cooperation levels only depend on whether participants have the option 

to change their partners, but not on how often they actually do it. 
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While in evolution of cooperation, the state of empirical research is constantly lagging 

behind the development of new models, the situation seems to be rather opposite in 

behavioural psychology. In chapter II, I will develop a normative model of decision 

making. Although this is a rather different topic than the evolution of cooperation I will 

point out in the general discussion section of this thesis how the two topics could inspire 

each other. One important aspect of decision making is how to evaluate available 

information, e.g. advice from experts. A robust finding from various experiments (e.g. 

Harvey and Fischer 1997; Yaniv and Kleinberger 2000)  is that participants do not use 

the information given by advisors in an optimal way, although advice generally 

increases the accuracy of judgements (e.g. Sniezek, Schrah et al. 2004; Gino and 

Schweitzer 2008; Minson, Liberman et al. 2011). A good framework to study how 

humans use information by peers is the so-called Judge-Advisor-System (Sniezek and 

Buckley 1995). Here, one person, “judge”, first estimates an unknown quantity. Then, 

the judge gets advice from another independent person, the “advisor”. Finally, the judge 

adjusts her or his estimate by taking into account the advisor’s estimate. The question is 

how much weight should be put on either of the two initial estimates. The most 

prominent model on the Judge-Advisor-System (Soll and Larrick 2009) focuses on two 

strategies: averaging and choosing. Averaging is a strategy that weights both initial 

estimates equally and in the choosing strategy one first attempts to find out the more 

accurate initial guess and neglect the other. To this end, the model (Soll and Larrick 

2009) uses three parameters: the ability differences between judge and advisor (A), the 

probability that the judge can identify these differences (P) and the amount of 

systematic bias of both judge and advisor (R). It is called (R) because systematic bias of 

judge and advisor leads to redundant information. Because of these three parameters, 
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the model has become known as the PAR model. The main predictions from the PAR 

models are that judges should prefer the averaging strategy in most cases. Only if the 

ability differences are large and easy to detect, choosing outperforms averaging. 

Additionally, choosing performs well if the amount of systematic bias is very high. In 

this case, both estimates tend to either over- or underestimate the target quantity and 

therefore choosing outperforms averaging. Although the restriction to these two simple 

strategies seems to be backed up by their empirical data, where roughly 70% of the 

participants used one of the two, neither of them is optimal, except in rare examples. 

Therefore, I will present a model that compares the two strategies with a more accurate 

weighting strategy (which shall simply be called weighting). Weighting aims to identify 

the ability difference quantitatively (i.e. not only who is better, but also how much) and 

then assign weights accordingly. In chapter II, I derive a mathematical model to show 

that whenever the difference is large and moderately detectable, weighting is the best 

strategy.  
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Chapter I: Costs for switching partners reduce network dynamics but 

not cooperative behaviour  

 

with Katrin Fehl¹ & Dirk Semmann¹, 

Proceedings of the Royal Society B: Biological Sciences 281: 20141661 

 

 ¹Research Group Evolution of Cooperation and Prosocial Behaviour, Courant 

Research Centre Evolution of Social Behaviour, University of Göttingen, 
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SUMMARY 

Social networks represent the structuring of interactions between group members. 

Above all, many interactions are profoundly cooperative in humans and other animals. 

In accordance with this natural observation, theoretical work demonstrates that certain 

network structures favour the evolution of cooperation. Yet recent experimental 

evidence suggests that static networks do not enhance cooperative behaviour in humans. 

In contrast, dynamic networks do foster cooperation. However, costs associated with 

dynamism like time or resource investments in finding and establishing new 

partnerships have been neglected so far. Here, we show that human participants are 

much less likely to break links when costs arise for building new links. Especially, 

when costs were high the network was nearly static. Surprisingly, cooperation levels in 

prisoner’s dilemma games were not affected by reduced dynamism in social networks. 

We conclude that the mere potential to quit collaborations is sufficient in humans to 

reach high levels of cooperative behaviour. Effects of self-structuring processes or 

assortment on the network played a minor role: participants simply adjusted their 

cooperative behaviour in response to the threats of losing a partner or of being expelled. 

 

KEYWORDS cooperation, dynamic network, partner switching, prisoner’s dilemma, 

evolutionary game theory 
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INTRODUCTION 

One common way to deal with an unpleasant peer is to get out of her or his way and 

to become friends with someone else. In fact, the breaking of links serves as an effective 

mechanism to control cheating in social relationships and the evolution of cooperation 

among unrelated individuals (e.g. Santos, Pacheco et al. 2006; Fu, Hauert et al. 2008; 

Pacheco, Traulsen et al. 2008; Fu, Wu et al. 2009; Wu, Zhou et al. 2010). The process 

of finding new friends leads to assortment and populations with a social structure. First, 

this means that not all but only subsets of individuals interact with each other. Second, 

the social structure is dynamic. As such, dynamism in social networks has for instance 

been described in humans (Kossinets and Watts 2006; Saramäki, Leicht et al. 2014), 

bottlenose dolphins (Lusseau and Newman 2004), or chacma baboons (Henzi, Lusseau 

et al. 2009). Recent experiments (Fehl, van der Post et al. 2011; Rand, Arbesman et al. 

2011; Wang, Suri et al. 2012) show that human cooperation is substantially higher in 

dynamic networks compared to static ones. For that matter, static network structures - 

though in theory impacting cooperation positively (Nowak and May 1992; but see 

Hauert and Doebeli 2004; Lieberman, Hauert et al. 2005; Ohtsuki, Hauert et al. 2006) - 

have trouble producing cooperative outcomes in experimental settings (Cassar 2007; 

Kirchkamp and Nagel 2007; Grujić, Fosco et al. 2010; Traulsen, Semmann et al. 2010; 

Gracia-Lázaro, Ferrer et al. 2012; Grujić, Rohl et al. 2012). It has to be noted that while 

most of the mentioned research assume that individuals make one decision for all 

partners, we allow them to choose freely for each of their partners, as in (Fehl, van der 

Post et al. 2011; Rand, Arbesman et al. 2011; Wang, Suri et al. 2012). This setup seems 

to be more realistic for human societies. 
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Conscious care of one’s partnerships is beneficial for cooperation in humans. Both, 

evolutionary models and experiments, show that the directed breaking of social links to 

cheaters or so-called defectors in joint endeavours eventually leads to cooperative 

outcomes (Fu, Wu et al. 2009; Szolnoki and Perc 2009; Perc and Szolnoki 2010; Wu, 

Zhou et al. 2010; Fehl, van der Post et al. 2011; Rand, Arbesman et al. 2011; Wang, 

Suri et al. 2012; Shirado, Fu et al. 2013); further, long-term relationships occur between 

like-minded cooperators (Pacheco, Traulsen et al. 2006; Santos, Pacheco et al. 2006; Fu, 

Hauert et al. 2008; Wu, Zhou et al. 2010; Fehl, van der Post et al. 2011; Wang, Suri et 

al. 2012). However, not only humans make use of partner switching as control 

mechanism to achieve cooperative outcomes: Long-nosed parrotfishes stop interacting 

(at least temporarily) with their cleaner wrasses and choose a different cleaner station 

when being cheated on (Bshary and Schäffer 2002).  

Real-world interactions offer a large variety of potential costs of partner switching in 

terms of resources like food, grooming, or money. Further, psychological, effort- and 

time-based costs may also occur. Theoretical evidence is sparse in regard to modelling 

link-related or partner switching-related costs and their effects on the evolution of 

cooperation. When costs in terms of distance - the further away a partner the larger 

associated (e.g. contacting or traveling) costs - arise for individuals, they are prone to 

choose those in close reach and hence with lower associated costs (Li, Min et al. 2013). 

Other approaches impacting the evolution of cooperation include the introduction of 

migration costs (Liu, Chen et al. 2012), participation costs (Masuda 2007; Szolnoki, 

Perc et al. 2008), and time-related costs (Poncela, Gómez-Gardeñes et al. 2011). 

Surprisingly, present experiments on cooperative behaviour in dynamic human 

networks (Fehl, van der Post et al. 2011; Rand, Arbesman et al. 2011; Wang, Suri et al. 
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2012; Shirado, Fu et al. 2013) assume that altering partners is cost-free. In sum, 

exploring the consequences of partner-switching costs on cooperation need to be 

investigated as the experimental evidence is lagging behind of insights of natural 

observations and the development of models.  

While partner-switching costs might impact the positive effect of dynamic social 

networks on cooperative behaviour, they can also affect the dynamism per se. 

Conflicting work exists on the question how much partner switching in dynamic 

networks is optimal. On the one hand, higher rates of network dynamism should 

generally lead to more cooperation (Santos, Pacheco et al. 2006; Fu, Hauert et al. 2008; 

Rand, Arbesman et al. 2011; Wang, Suri et al. 2012). On the other hand, recent work 

suggest that the optimal rate of changing partners must be in medium ranges (Fu, Wu et 

al. 2009; Shirado, Fu et al. 2013) or the maximum number of partners has to be limited 

(Szolnoki, Perc et al. 2008; Szolnoki and Perc 2009). If defective individuals switch 

their partners too rapidly, they can exploit newly-linked partners and thus will out-

compete cooperative individuals. According to (Fowler and Christakis 2010), another 

reason may be that defectors need to stay connected to cooperators in order to learn and 

adopt their strategy, yet recent experimental data suggest that humans imitate only 

selfish behaviour, but not cooperative behaviour (Jordan, Jordan et al. 2013). Former 

studies (Fu, Hauert et al. 2008; Fu, Wu et al. 2009; Wang, Suri et al. 2012; Shirado, Fu 

et al. 2013) approach this question by controlling for how often partners can be 

exchanged. Instead, we will keep the opportunity to switch partners at a maximum and 

constant throughout treatments, but expect that varying levels of costs influence partner-

switching rates - with a so far unexplored impact on cooperative behaviour in humans.  
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Here, we examine the cooperative behaviour of human participants while either a 

static social structure or dynamic social structures define interaction partners. The 

switching of partners in dynamic networks occurs at (i) no, (ii) low, or (iii) high costs 

(i.e. breaking of social links is cost-free; however, costs occur for setting up a new link). 

Participants interact with three partners and play independent prisoner’s dilemma games 

(PD; Rapoport and Chammah 1965; Axelrod and Hamilton 1981; see Electromic 

Supplementary Material [ESM] for a game decription). Only if the game allows for 

repeated interactions then direct reciprocity (Trivers 1971; Nowak and Sigmund 1992; 

Nowak and Sigmund 1993) can produce cooperative outcomes. In general, as our 

experimental setup permits repeated interactions without a known endpoint, we expect 

cooperative behaviour of participants in both social structures. In particular, cooperation 

levels are predicted to be higher in the three dynamic networks (despite possible costs 

for partner switching). Especially, we will address the impact of costs of partner 

switching in dynamic networks: As costs for new partners increase, we expect 

participants’ tendency to end partnerships will decrease and hence reduce the dynamism 

in the network. We therefore infer reduced cooperative behaviour under low and high 

costs compared to no costs for partner switching. Nonetheless, we predict to find 

directed link breaking in all dynamic network setup: mainly to unwanted, that is to 

defective, participants. In addition, we will examine the specific link-breaking 

behaviour that occurs along with no, low, or high costs of setting new partnerships. 
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MATERIAL AND METHODS 

The participants 

We conducted computerized experiments with 400 students, tested in fall 2009 and 

2012. Students were recruited from a German University via the online recruitment 

system ORSEE (Greiner 2004) and came from a broad range of disciplines. They were 

composed of 49% females and were aged 22.07 ± 3.194 (mean ± s.d.). Upon arrival 

participants were randomly seated in front of computers separated by opaque partitions. 

Participants were informed via written instructions about the game rules (available upon 

request) and came to know that their decisions were made anonymous towards other 

participants and the experimenters. They were forbidden to communicate except via 

computers. To allow for in-game identification while ensuring anonymity in regard to 

their real identity participants were given pseudonyms (randomly-assigned names of 

moons of the solar system). These pseudonyms were also used to ensure anonymous 

payment at the end (as described in Semmann, Krambeck et al. 2005; known by 

participants from written instructions). Sessions lasted approximately 90 minutes and 

participants earned 17.53€ ± 5.02.  

 

Static-network treatment and three dynamic-network treatments 

We ran 10 sessions for each of our four treatments with 10 participants in each 

session, respectively: STATIC, DYNAMIC, DYNAMIC10 and DYNAMIC50 (see 

ESM Fig. S1-S5). 

For STATIC interaction partners of participants were defined by the structure of the 

so-called Petersen graph (Holton and Sheehan 1993). This graph consists of 10 nodes 

(vertices; here players) and each node is linked to exactly three other nodes summing up 
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to a total of 15 interaction links. Importantly, players have identical starting positions in 

terms of network properties. Note, that participants did not receive any information 

regarding the network nor their position within. At the beginning of each session, 

participants were randomly assigned to one of these nodes. With each of their three 

linked partners, participants played independent PD games (i.e. different decisions 

could be made for different partners). Each of the three games lasted 30 rounds. To 

avoid end-round effects, participants were not informed about the duration. In each PD 

round, participants simultaneously decided whether to cooperate or to defect. However, 

instead of saying “to cooperate” and “to defect” we used the terms “ORANGE” and 

“BLUE” to avoid morally burdened language (cf. Fehl, van der Post et al. 2011). After 

all decisions in a PD round were made, participants were shown their own and their 

partners’ decisions and payoffs. For mutual cooperation (defection) the players received 

0.25€ (0.00€) and if one player cooperated and the other defected the former received -

0.10€ while the latter received 0.40€. Participants received only local information, that 

is, they were not informed about the outcomes and payoffs resulting from their partners’ 

interactions with others. Thereafter, the next round of PD games started. This treatment 

is called STATIC, because the network did not change throughout the experiment (no 

partner switching allowed). 

Generally, in the three dynamic treatments the initial network in form of the Petersen 

graph could change over time due to link breaking (in all treatments, the maximum 

number of partners remained limited to three). DYNAMIC followed the setup of 

STATIC. Participants played three independent PD games but in addition they were 

given the option to quit any of their partnerships after learning the results of the current 

PD round. Independent link-breaking decisions were made. For a link to be broken, at 
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least one player had to decide to end the partnership. Thereafter, participants were 

informed about their and their partners’ decisions. For each broken link, participants 

were randomly re-assigned to any other participant with less than three partners. 

Afterwards, the next round would start. Because of the random re-linking procedure, 

occasionally no partner could be found and participants had less than three partners 

(known by participants from written instructions; this situation generates the same 

payoff as mutual defection in partnerships, 0.00€). Further, depending on the total 

number of broken links in the network, there was a chance to get re-linked to the same 

partner (which could be noticed by pseudonyms).  

In DYNAMIC10 and DYNAMIC50, participants made PD decisions followed by 

link-breaking decisions and, additionally, were asked - if they had less than three 

partners - whether they would like to buy a new link at the cost of 0.10€ / 0.50€, 

respectively, or not. Thus, there was no automatic re-linking to other available 

participants. The program randomly assigned partners to those willing to buy a new 

link; otherwise participants did not receive a new partner in the current round. If no new 

partner could be connected, the costs were not deducted. Note, that only in 

DYNAMIC10 participants could immediately compensate the costs of a new link either 

due to mutual cooperation (0.25€ payoff - 0.10€ costs) or due to exploitation of the new 

partner (0.40€ payoff - 0.10€ costs). However, DYNAMIC50 would require either the 

sum of payoffs of at least two partners or the sum of payoffs of at least two rounds with 

the new partner to compensate the initial costs for a new link. 
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Statistical analysis 

We conducted group-level analyses as the behaviour of participants within each 

session was interdependent and thus required the unit of analysis to be groups rather 

than individuals. For statistical analysis R 2.15.2 (R Core Team 2013) was used. 

Probabilities are reported as two tailed at a 5%-significance level. Pairwise comparisons 

were corrected using the Bonferroni method (reported below are corrected probabilities 

for significant results).  
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RESULTS 

Link-breaking behaviour in dynamic networks 

Overall, the experiment showed that costs for setting new links affected the 

willingness of participants to break them. We found significant differences in the link-

breaking rate between each of the three dynamic treatments: the higher the costs, the 

lower the link-breaking rate (Fig. 1a; Wilcoxon rank-sum test: DYNAMIC vs. 

DYNAMIC10: W = 0, n1,2 = 10, p < 0.001; DYNAMIC vs. DYNAMIC50: W = 0, n1,2 = 

10, p < 0.001, DYNAMIC10 vs. DYNAMIC50: W = 17, n1,2 = 10, p < 0.05; see ESM 

Tab. S1). 

 

 

Figure 1. Average rates of link breaking in the dynamic networks (a) and average cooperation levels in 
the prisoner’s dilemma games (b). Interactions occurred either on a static structure (STATIC) or on 
dynamic structures. Here, social links could be broken after each round. Setting new links was either cost-
free (DYNAMIC), or else low costs of 0.10€ (DYNAMIC10) or high costs of 0.50€ (DYNAMIC50) 
arose.  
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Additionally, we found that links were broken mostly during the first few rounds of 

the experiment (Fig. 2; comparing link-breaking rates of the average of rounds 1 to 10 

against rounds 21 to 30, Wilcoxon signed-rank test: DYNAMIC: V = 0, n = 10, p < 

0.01; DYNAMIC10: V = 0, n = 10, p < 0.01; DYNAMIC50: V = 1, n = 10, p < 0.01). 

 

 

 

Figure 2. Average link-breaking rates over rounds. Participants played prisoner’s dilemma games with 
three partners and could break social links after each round. Setting new links was either cost-free 
(DYNAMIC), or else low costs of 0.10€ (DYNAMIC10) or high costs of 0.50€ (DYNAMIC50) arose. 
Average link-breaking rates differed significantly between treatments (p’s < 0.05) and link-breaking rates 
significantly decreased over time (p’s < 0 .01). 

 

 

Now, we asked which behaviour was likely to trigger link breaking. Generally, 

within all dynamic treatments significantly more links were broken to defectors than to 

cooperators (break rate to defectors: DYNAMIC: 82.9% ± 8.3; DYNAMIC10 89.5% ± 

7.0; DYNAMIC50: 91.3% ± 7.5; Wilcoxon signed-rank test: V = 0, n = 10, p < 0.01 for 

all dynamic treatments). Here, we also found that the link-breaking rates to defectors 

marginally significantly differed between the dynamic treatments (Kruskal-Wallis test: 

χ² = 5.17, df = 2, p = 0.075). Moreover, when taking the participants own behaviour into 

account we observed that if both players cooperated participants almost never broke 
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such a link. Out of a total of 4706 mutually-cooperative PD outcomes in DYNAMIC50 

only one link was broken (DYNAMIC10: 1 out of 4828; DYNAMIC: 12 out of 5040). 

 

 

 

Cooperative behaviour in the prisoner’s dilemma games 

Next, we examined the cooperative behaviour of participants as well as its relation to 

link-breaking behaviour. The overall cooperation levels between the four treatments 

were significantly different. Detailed analysis revealed that cooperation levels were 

significantly lower in STATIC compared to all dynamic treatments (Fig. 1b; Wilcoxon 

rank-sum test: STATIC vs. DYNAMIC: W = 4, n1,2 = 10, p < 0.001; STATIC vs. 

DYNAMIC10: W = 13, n1,2 = 10, p < 0.05; STATIC vs. DYNAMIC50: W = 5, n1,2 = 10, 

p < 0.01, for a round-by-round figure, see ESM Fig S2). However, we did not find 

significant differences between the dynamic treatments themselves (see ESM Tab. S2). 

To understand the high levels of cooperation in the dynamic treatments despite very 

different dynamism in the networks (note, the network structure in DYNAMIC50 was 

nearly static), we first looked at the readiness to cooperate when a participant received a 

newly linked partner (i.e. participants who had no current partnership, but who might 

have met each other before; behaviour of the first round was excluded). We found 

significantly higher cooperation levels of participants with a new link in DYNAMIC50 

than in DYNAMIC (Fig. 3; Wilcoxon rank-sum test: W = 10, n1,2
 = 10, p < 0.01; see 

ESM Tab. S3). Second, we examined the willingness of participants to reciprocate 

defection, that is, to defect when a link to a defector remained in place (note, this 

required the approval of both players; level of defection in DYNAMIC 64.9% ± 8.1; 
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DYNAMIC50: 72.2% ± 8.5; DYNAMIC10: 74.8% ± 4.3). We found significant higher 

levels of reciprocating a defection in DYNAMIC compared to DYNAMIC10 

(Wilcoxon rank-sum test: W = 11, n1,2 = 10, p < 0.05; see ESM Tab. S4). 

 

 

 

Figure 3. Average cooperation level in the prisoner’s dilemma game of two newly linked participants. 
After each prisoner’s dilemma round participants could break social links. Setting new links was either 
cost-free (DYNAMIC), or else low costs of 0.10€ (DYNAMIC10) or high costs of 0.50€ (DYNAMIC50) 
arose.  
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DISCUSSION 

In accordance with a previous series of experiments (Fehl, van der Post et al. 2011; 

Rand, Arbesman et al. 2011; Wang, Suri et al. 2012; Shirado, Fu et al. 2013) we 

contribute evidence on the beneficial effects of dynamic networks on cooperative 

behaviour in humans. More specifically, we build upon a rather new approach 

introduced in (Fehl, van der Post et al. 2011) where participants can choose independent 

actions for each partner. Here, cooperation in dynamic networks went beyond the purely 

reciprocity-guided cooperation of static networks. We advance previous findings by 

introducing costs that arise when one is in search for new partners. The willingness to 

break social links was clearly reduced when low costs arose. When costs were so high 

that they could not be compensated within a single interaction, participants further 

reduced their link-breaking behaviour. Nonetheless, high levels of cooperation in 

prisoner’s dilemma games were achieved (i.e. cost treatments did not differ from a 

treatment without costs). Interestingly, though participants of dynamic networks with 

no, low or high costs differed quantitatively in their link-breaking behaviour, they 

followed similar strategies. In all dynamic treatments, link-breaking rates decreased 

over time, participants mostly broke links to defective players and under mutual 

cooperation participants almost never broke links. 

Contrary to our assumption we found no impact of reduced dynamism on 

cooperative behaviour. This notion supports the view that the mere option to end 

partnerships is enough to maintain cooperation. The option of link breaking provides (i) 

the possibility to get rid of defectors, (ii) the threat of losing a partnership, as well as 

(iii) the option to stay with like-minded cooperative partners. While avoiding link 

breaking when costs occurred, participants adjusted their behaviour in the PD games in 
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response: Participants under high costs were more willing to cooperate with a newly-

linked partner compared to participants who did not have to pay for new links; and 

participants under low costs reacted themselves with higher levels of defection when a 

link to a defective partner remained in place compared to participants who did not have 

to pay for new links. These behavioural adjustments played an important role for 

maintaining high levels of cooperation. 

Currently, there is an on-going debate of how much partner switching is necessary to 

achieve the highest possible level of cooperation (Fu, Hauert et al. 2008; Fu, Wu et al. 

2009; Wang, Suri et al. 2012; Shirado, Fu et al. 2013). Previously, different rates of 

partner-switching were achieved by actively controlling them (e.g. partner-switching 

every round versus every fifth round of an evolutionary game). Contrasting, our 

dynamic-network treatments in principal allowed for the same rates of switching. 

However, rates varied greatly across treatments due to different incentives resulting 

from costs. In fact, in our high-cost dynamic networks participants broke only 2.5% of 

the existing links and still cooperated 20% more than in the static networks. Our study 

implies that it is important to investigate effects which constrain or lead to network 

dynamics naturally, in addition to the approach of setting different rates exogenously. 

Thus, our findings can inspire this debate by showing a different perspective of partner-

switching. 

In our experiment, assignment of new partners was random. As such, we have 

implemented active link breaking but not active link seeking. Both, models and 

experimental findings support the view that partner-choice based on behavioural (Wang, 

Suri et al. 2012; Shirado, Fu et al. 2013) or reputational information (Fu, Hauert et al. 

2008; Du and Fu 2011; Wang, Wang et al. 2012) fosters cooperation. Future research 
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will have to address questions whether costly partner choice will increase individuals’ 

willingness to break social links as they are given more control over future partners as 

well as whether this will make partner-switching mechanisms faster and more efficient 

in achieving cooperative outcomes.  

Furthermore, our experiment included also a more implicit form of costs as we 

constrained the maximum number of partners to three (true for all treatments). Time 

might be such a factor limiting ones interactions; but theoretically have not been found 

to derogate cooperative incentives of individuals (Poncela, Gómez-Gardeñes et al. 

2011). Moreover, while our study provides important first insights into the impact of 

costs as of seeking new interaction partners, further experiments should investigate the 

impact of different types of costs on cooperation. As discussed in the theoretical 

literature (Liu, Chen et al. 2012; Li, Min et al. 2013) such costs may, for instance, relate 

to geographical distance or migration. 

The mechanism of costly link breaking demonstrated here can also be seen as 

punitive incentive. Related cheater-control mechanisms are ostracism (Cinyabuguma, 

Page et al. 2005; Maier-Rigaud, Martinsson et al. 2010) and costly punishment (Fehr 

and Gächter 2002) of defective individuals. An Advantage of link-breaking mechanisms 

lies in the fact that they are based on individual decisions that lead to assortment and 

self-organizing processes on the level of the network (Fehl, van der Post et al. 2011). 

Hence, unlike ostracism they achieve isolation or even final exclusion of defectors 

without the necessary cooperative and coordinated decision of all group members. 

Further, costly punishment often suffers from ongoing retaliations and antisocial 

punishment (e.g. Herrmann, Thöni et al. 2008; Fehl, Sommerfeld et al. 2012). Such 

detrimental behaviour is avoided in settings where links can simply be broken. Which 
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of the two - partner switching or costly punishment - is the more favourable behaviour 

most likely depends on the environmental or social ecology of individuals. The 

interspecies mutualism of the cleaner wrasse and their clients (i.e. various reef-fish 

species) provides an example: Clients switch to a new cleaner after defection by their 

current one if they have access to several cleaners (Bshary and Schäffer 2002). This 

forces the cleaner to be more cooperative (Bshary and Grutter 2005). Whereas clients 

with access to only one cleaner  make use of punishment by chasing defective cleaners 

(Bshary and Grutter 2002).  

To conclude, we emphasize that the mere option to break the social link to a partner 

promotes cooperation among humans. Despite being reluctant to pay costs for seeking 

new partners and reducing link-breaking behaviour, participants cooperated at very high 

levels. Due to the minuscule network dynamics there was barely any room left for 

participants to assort and to alter their social environment. Thus, the difference in 

cooperation levels between the “nearly static” and the static network is even more 

remarkable. Hence, besides assortment, making relationships costly, and therefore 

valuable, is an additional way to achieve cooperative outcomes in dynamic networks. 
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APPENDIX to Chapter I: Electronic Supplementary Material (ESM) 

The Prisoner’s Dilemma Game 

A common tool to analyse human cooperation is the so-called Prisoner’s Dilemma 

game. In this simple two-player game, both players are given the choice between 

cooperation (play C) or defection (play D). They make their decision simultaneously 

and without communicating with each other, that is decisions are made in private. If 

both cooperate, they each receive the reward payoff (R). If one defects and the other 

cooperates, the defector receives the temptation payoff (T) and the cooperator obtains 

the sucker’s payoff (S). However, if both defect, they each receive the punishment 

payoff (P). The assumptions T > R > P > S must hold (and if the game is repeated 2R > 

T + S):  

		� �        �� �	� �� 		
      [1] 

 

If the individuals cooperate, both do better than if they had both defected (R > P). For a 

single individual, it is always better to defect no matter what the partner does (T > R 

and P > S). It is clear that under these simple rules, only defection can be evolutionarily 

stable. In other words, cooperative behaviour is vulnerable to exploitation in one-shot 

interactions. However, the dilemma can be resolved in repeated interactions by direct 

reciprocity: “If you help me, I will help you next time”. It has been shown that 

cooperation can evolve if the probability of another round is high enough and that 

humans use direct reciprocity to establish cooperation.  
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Figure S1. Decision and feedback diagram of one round. Participants played prisoner’s 

dilemma (PD) games with three partners (STATIC, panel A) or could break social links 

and receive new partners at random in either dynamic-network treatment. Setting new 

links was cost-free (DYNAMIC, panel B) or else low costs of 0.10€ (DYNAMIC10, 

panel C) or high costs of 0.50€ (DYNAMIC50, panel C) arose. For the PD decision, 

participants were asked “Do you want to play ‘orange’ or ‘blue’ ?” (orange-/blue-

buttons, see methods for details). For a link-breaking decision they were asked “Do you 

want to keep playing with this partner in the next round?” (yes-/no-buttons). If there 

were open links they were asked for a link-making decision “Do you want to receive a 

random new partner for costs of 10 [50] cents?” (yes-/no-buttons). 

 

Screenshots: decision making during the experiment  

During the experiment participants were confronted with different decisions. In the 

STATIC treatment participants saw Fig. S3 and Fig. S4 (however, no decisions could be 

made in the latter case). Additionally, in the DYNAMIC treatment participants saw Fig. 

S5a and in DYNAMIC10 and DYNAMIC50 treatments they saw Fig S5b. 

 

 

Figure S3. In the prisoner’s dilemma game, participants were asked whether to play 

“orange” (orange, in this particular case cooperation) or “blau” (blue, defection) and had 

to make one decision for every linked partner.  
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Figure S4. Participants were provided with the outcome of the prisoner’s dilemma 

decisions (the third column indicates the participant’s payoff and the fifth column the 

partner’s payoff). In the link-breaking stage of the dynamic treatments participants were 

asked whether to continue playing with a partner and could answer “ja” (yes) or “nein” 

(no). They had to make one decision for every linked partner.  

 

Figure S5a. In the DYNAMIC treatment participants were provided with a summary of 

the link-breaking decisions. Here, the participant continues to play with Rhea 

(pseudonym); Dione declined to keep playing with the participant; and in the case of 

Nereid the participant declined to continue the relationship. Thus, the participant would 

receive two new, randomly chosen partners.  
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Figure S5b. In the DYNAMIC50 (DYNAMIC10) treatment participants were also 

provided with a summary of the link-breaking decisions. In addition, for each broken 

link, participants must decide whether they wish to seek a new partner at a cost of 0.50€ 

(0.10€), i.e. answer “ja” (yes) or “nein” (no).  

 

Table S1. Statistical test details of differences in the link-breaking rate between each of 

the three dynamic-network treatments where no (DYNAMIC), low (DYNAMIC10), or 

high costs (DYNAMIC50) arose for receiving new links. 

 χ2 / W n df p 

general test: Kruskal-Wallis test 

 21.17 10 2 < 0.001 

multiple comparisons with Wilcoxon rank-sum test (3 tests) 

DYNAMIC vs. DYNAMIC10 0 10  < 0.001 

DYNAMIC vs. DYNAMIC50 0 10  < 0.001 

DYNAMIC10 vs. DYNAMIC50 17 10  < 0.05 
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Figure S2. Average cooperation rates over rounds. Participants played prisoner’s 

dilemma games with three partners. Those partners were either fixed (STATIC) or 

participants could break social links after each round. In the latter case, setting new 

links was either cost-free (DYNAMIC), or else low costs of 0.10€ (DYNAMIC10) or 

high costs of 0.50€ (DYNAMIC50) arose. 
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Table S2. Statistical test details of differences in the average cooperation level in the 

prisoner’s dilemma games of the static-network treatment (STATIC) and the three 

dynamic-network treatments where no (DYNAMIC), low (DYNAMIC10), or high costs 

(DYNAMIC50) arose for receiving new links. 

 χ2 / W n df p 

general test: Kruskal-Wallis test 

 16.23  10 3 < 0.01 

multiple comparisons with Wilcoxon rank-sum test (6 tests) 

STATIC vs. DYNAMIC 4 10  < 0.001 

STATIC vs. DYNAMIC10 13 10  < 0.05 

STATIC vs. DYNAMIC50 5 10  < 0.01 

DYNAMIC vs. DYNAMIC10 42 10     0.58 

DYNAMIC vs. DYNAMIC50 42 10     0.58 

DYNAMIC10 vs. DYNAMIC50 47 10     0.85 

 

 

Table S3. Statistical test details of differences in the readiness to cooperate when a 

participant received a newly linked partner in the dynamic-network treatments where no 

(DYNAMIC), low (DYNAMIC10), or high costs (DYNAMIC50) arose for receiving 

new links. 

 χ2 / W n Df p 

general test: Kruskal-Wallis test 

 12.42  10 2 < 0.01 

multiple comparisons with Wilcoxon rank-sum test (3 tests) 

DYNAMIC vs. DYNAMIC10 25 10     0.06 

DYNAMIC vs. DYNAMIC50 10 10  < 0.01 

DYNAMIC10 vs. DYNAMIC50 31 10     0.16 
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Table S4. Statistical test details of differences in the willingness of participants to 

reciprocate defection in the three dynamic-network treatments where no (DYNAMIC), 

low (DYNAMIC10), or high costs (DYNAMIC50) arose for receiving new links. 

 χ2 / W n df p 

general test: Kruskal-Wallis test 

 12.95  10 3 < 0.01 

multiple comparisons with Wilcoxon rank-sum test (3 tests) 

DYNAMIC vs. DYNAMIC10 11 10  < 0.05 

DYNAMIC vs. DYNAMIC50 31 10     0.17 

DYNAMIC10 vs. DYNAMIC50 64 10     0.32 
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Additional figures of conditional behaviour 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure S6. The x-axis shows behaviour of both partners in the previous round, i.e. CC 

means both players played C, CD means one player played C, the other player D, etc. In 

case the link between the two players was not broken, the plots show the frequency of 

actions in the following round. For example, in DYNAMIC treatment (a), if both 

players played C and kept the link, then in the following round they both played C in 

93,65% (orange bar) of the cases. Similarly for DYNAMIC10 (b), DYNAMIC50 (c) 

and STATIC (d). This picture does not reveal how often links were kept and who of the 

players decided to break the link (cf. Fig. S7.) 
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(a) 

 

(b) 

 (c) 

Figure S7. The x-axis shows behaviour of both partners in the previous round. The 

plots show the frequency of all possible bilateral actions of the players in the following 

round: BB, if both players decided to break the link, BK or KB, if one player decided to 

break the link and the other player decided to keep it. If both players decided to keep the 
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link (KK), their actions in the following prisoner’s dilemma game can be DD, DC, CD 

or CC. Because all links are automatically kept in the STATIC treatment, it is already 

covered in Figure S6d.  
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Abstract 

We investigate decision-making in the Judge-Advisor-System where one person, 

the “judge”, wants to estimate the number of a certain entity and is given advice by 

another person. The question is how to combine the judge’s initial estimate and that of 

the advisor in order to get the optimal expected outcome. A previous approach 

compared two frequently applied strategies, taking the average or choosing the better 

estimate. In most situations, averaging produced the better estimates. However, this 

approach neglected a third strategy that judges frequently use, namely a weighted mean 

of the judges’ initial estimate and the advice. We compare the performance of averaging 

and choosing to weighting in a theoretical analysis. We find that weighting outperforms 

both of these strategies when the judge can, without error, detect ability differences 

between judge and advisor. If we introduce errors in the assessment of the ability 

differences, the relative performance of weighting compared to averaging or choosing 

depends on the size of the actual ability differences as well as the magnitude of the 

error. However, for a wide range of ability differences and errors, weighting is 

preferably to averaging and more so to choosing. Our analysis expands previous 

research by showing that weighting is an appropriate advice taking strategy and under 

which circumstances judges benefit most from applying it. 

 

Keywords: judgment; decision making; advice taking; modelling;  
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Optimal Decision Making under Uncertainty in the Judge-Advisor System 

 

A famous saying holds that “two heads are better than one”. Accordingly, when 

making important judgments we rarely do so on our own. Instead, we consult others for 

advice in the hope that our advisor will provide us with additional insights, expert 

knowledge or an outside perspective – in short, an independent second opinion. 

Previous research on advice taking has consistently shown that heeding advice does, in 

fact, increase the accuracy of judgments (e.g. Sniezek, Schrah et al. 2004; Gino and 

Schweitzer 2008; Minson, Liberman et al. 2011). However, a commonly observed 

phenomenon is the suboptimal utilization of advice, that is, judges do not heed the 

advice as much as they should according to its quality (e.g. Harvey and Fischer 1997; 

Yaniv and Kleinberger 2000); for reviews see (Yaniv 2004; Bonaccio and Dalal 2006). 

As a consequence, the de facto improvement in judgment quality observed in many 

judge-advisor studies is inferior to the improvement that judges could have obtained if 

they had utilized the advice in the optimal way (Minson and Mueller 2012). The critical 

question, however, is what constitutes the optimal advice taking strategy. Our main goal 

is to provide an answer to this question that goes beyond previous research. To this end, 

we will first discuss the existing approach on the optimal utilization of advice and, then, 

build on it to arrive at a normative model of advice taking. 

Our analysis will build on the logic of the framework commonly used for 

studying advice taking, the judge-advisor-system (JAS, Sniezek and Buckley 1995). In 

the JAS, one person (the “judge”) first makes an initial estimate regarding a certain 

unknown quantity and then receives advice in the form of the estimate another person 
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(the “advisor”), provided independently. The judge then makes a final, and possibly 

revised, estimate. Comparison of the initial and final estimates allows to determine the 

degree to which the judge utilized the advice, and advice utilization is usually expressed 

as the percent weight of the advice when making the final estimate (e.g. Harvey and 

Fischer 1997; Yaniv and Kleinberger 2000). The critical question is how strongly the 

judge should heed the advice in order to come up with the best possible final estimate. 

So far, our understanding of the optimal degree of advice utilization is rather limited. In 

situations in which judge and advisor are known to be equally competent or in which 

comparable expertise is the best assumption – for example when judge and advisor are 

drawn from the same population and there is not valid information on their relative 

expertise – the normatively correct strategy is to average the initial estimate and the 

advice (e.g. Harvey and Fischer 1997; Yaniv and Kleinberger 2000; Soll and Larrick 

2009). However, for situations in which there are ability differences between judge and 

advisor, determining the optimal advice taking strategy is more difficult. To the best of 

our knowledge, there is only one formal model that addresses the question of optimal 

advice utilization in the face of ability differences between judge and advisor, the PAR 

model by Soll and Larrick (Soll and Larrick 2009). 
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The PAR model of advice taking 

The PAR model makes statements about the effectiveness of advice taking 

strategies based on the three parameters of the JAS, ability differences between judge 

and advisor (A), the probability of the judge detecting these differences (P), and the 

degree to which the two judgments contain redundant information (R). Based on these 

parameters, the PAR model compares two very specific weighting strategies, namely 

equal weighting (i.e. averaging) and choosing the supposedly more accurate estimate. 

Averaging is a powerful strategy because it is a statistical truth that the arithmetic mean 

of the judges’ initial estimate and the advice is, on average, equally or more accurate 

than the initial estimate (Soll and Larrick 2009). If the advisor’s estimate is independent 

from the judge’s initial estimate, averaging the initial estimate and the advice results in 

a reduction of unsystematic and - in some cases - systematic errors (Yaniv 2004; Soll 

and Larrick 2009).   

The averaging strategy performs best if judge and advisor are equally competent. 

However, in real life, this might rarely be the case. For obvious reasons, averaging two 

judgments strongly differing in accuracy is unlikely to be optimal. The critical question, 

then, is how judges should utilize advice when they perceive it to be different from their 

own initial estimates with regards to accuracy. The PAR model offers an alternative to 

averaging in the form of the choosing strategy, that is, the judge either maintains the 

initial estimate or fully adopts the advice, depending on which of the two estimate he or 

she thinks is more accurate.  

The theoretical analysis of the performance of the two advice taking strategies 

suggests that judges should average their initial estimate and the advice in most of the 
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cases. That is, even if judge and advisor differ regarding their ability to perform the 

judgment task, averaging often provides better results than choosing. The exception to 

this rule are situations in which there are strong and easily identifiable ability 

differences, and the advantage of choosing increases even more if judge and advisor 

share a systematic bias. In those cases, judges are usually better off simply choosing the 

supposedly more accurate estimate. 

A possible downside of the PAR model is its focus on only two advice taking 

strategies. Soll and Larrick (Soll and Larrick 2009) provide strong arguments for this 

restriction, namely that these strategies are simple to use and that these strategies, 

averaging and choosing, account for about two thirds of the strategy choices in advice 

taking. They back up this argument with data from four experiments showing that 

judges used a choosing strategy in close to 50% of the cases and relied on averaging in 

about 20% of the cases. However, by implication this means that judges also  may have 

adhered to a third strategy more than 30% of the time, namely weighting1. In fact, while 

less frequent than choosing, judges seemed to prefer a weighting strategy to pure 

averaging based on the results of Soll and Larrick’s experiments. A study by Soll and 

Mannes (Soll and Mannes 2011) showed a similar pattern; depending on the 

experimental conditions, judges utilized a weighting strategy in about 30 to 40% of the 

trials. 

As previous studies (Soll and Larrick 2009; Soll and Mannes 2011) show, judges 

seems to engage in three rather than only two strategies when utilizing advice: 

                                                           
1 In the following, we refer to “weighting” as taking a weighted mean of the two initial estimates, with the 
weights being based on perceived competence difference. Technically, one could argue that judges apply 
one strategy which is weighting, and that averaging and choosing are simply specific manifestations of 
this strategy. While this is certainly true, we will still refer to weighting, choosing, and averaging as three 
distinct strategies in order to maintain comparability to previous research. 
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choosing, averaging, and weighting. However, the PAR model only allows us to 

compare the effectiveness of choosing and averaging. In order to make claims about the 

appropriateness of weighting, we require a different model that informs us about the 

optimal weight of advice. Ideally, we want to know for any given constellation of a 

judge and an advisor who may differ with regards to their judgmental accuracy, how 

much weight the judge should assign to the advice in order to maximize the accuracy of 

the final estimates. Importantly, and comparable to the PAR model, these optimal 

weights need to be of normative character rather than being calculated post-hoc, that is, 

we need to state - a priori - which weighting scheme has the lowest expected judgmental 

error. In the following, we will describe a model that – similar to the PAR model – 

determines the effectiveness of weighted averaging based on ability differences between 

judge and advisor, as well as the ability of the judge to detect these differences. We will 

then compare the accuracy of the final estimates that would result from weighting to the 

expected accuracy of a pure averaging strategy as well as a choosing strategy and test 

under which conditions weighting is the more appropriate strategy. 
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2 The Model 

 

2.1 A weighted mean minimizes the error of the final estimates 

 

For the purpose of our model, and in accordance with the basic JAS, we assume 

that two people, a judge A and an advisor B, are tasked with estimating an unknown 

quantity (e.g. the distance between two cities). They first provide independent estimates, 

and then A wants to find the best possible final estimate after receiving B´s estimate as 

advice. Let us denote A´s a priori estimate by xA and B´s a priori estimate by xB. Let us 

further assume for simplicity that the judgments of both judge and advisor follow a 

Gaussian distribution centered on the true value xT with variances σA² and σB². First, we 

determine the most accurate final estimate in the case that A knows both his or her own 

error variance and that of the advisor. We compute the most likely estimate x̃ with the 

Maximum-Likelihood method. Since xA and xB are drawn from independent 

distributions, their joint density function is given by 

��
���� = 	�������
���� = ����������²���� 	� 12 !��"���
��#����²��#� 	� 12 !
�"	

= ��$�%�������²��� &��#����²�#� '
2 !�!
  

To optimize the expression with respect to x̃ we get 

((�� )�log	���
�����- = −12 ((�� %��� − ���²!�� + ��
 − ���²!
� '	



56 

 

= 1!�� ��� − ���² + 1!
� ��
 − ���² = 0 

Solving with respect to x̃ gives 

�� = ��!
� + �
!��!�� + !
�  

which is a weighted average of xA and xB. In other words, our formal analysis shows that 

if the error variance of judge and advisor are known the expected error of the final 

estimate is minimal if that estimate is a weighted average of the judge’s initial estimate 

and the advice. From the expression above, we can further derive that the optimal 

weight of the advice is 

1
 = !��!�� + !
� 

Under the assumptions stated above, the optimal weight of the advice is the ratio 

of the advisor´s error variance and the sum of the combined error variances of judge and 

advisor. In other words, this weight represents the proportion of error variance in the 

combined estimate that is due to the judge´s imprecision. Likewise, the weight of the 

judge’s estimate is the ratio of the advisor´s error variance and the combined error 

variances of the two judgments. On a conceptual level, the model indicates that the 

advice should be weighted more the higher the imprecision of the judge´s initial 

estimate is. For example if the judge´s error variance is 1 arbitrary unit and the advisor´s 

error variance is 3 of those units, we can easily compute that the weight that should be 

placed on the advice is 25%, and if both error variances are equal, the optimal strategy 

is to weight the advice by 50%. 
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2.2 Comparing weighting to averaging and choosing 

In this section we fist compare the optimally weighted average with the 

arithmetic (non-weighted) average x̄. 

�̅ = 12 ��� + �
� 
First, let us recall that for any random variable X and a real number a, we have 

Var�67� = 6²Var�7� 
Further, if X and Y follow independent Gaussian distributions �89 , !9²� and �8;, !;²�, 
respectively, then their sum X+Y also follows a Gaussian distribution with expected 

value 89&; = 89 + 8;	and variance !²9&; = !²9 + !²;. 

 

Now we look at the distributions of x̃ and x̄. Since they are both linear transformations 

of xA and xB we can directly apply the above two rules. Thus, x̃ and x̄ follow a Gaussian 

distribution with expected value xT and the variances 

!<� = !��!
�!�� + !
�	
!=� = 14 �!�� + !
�� 

where !<�  is the error variance of the weighted mean and !=� is the error variance of the 

arithmetic mean. As stated above, weighting will perform equal or better than averaging 

because !<� ≤ !=� with equality only if !�� = !
�.  
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Further, and also in line with our reasoning stated above, we can see that 

!<� ≤ min	�!��, !
��. This means that for any quality of advisors (that is, for any !
�), the 

judge will necessarily provide a more accurate final estimate when taking the weighted 

mean  x̃ instead of choosing either the initial estimate xA or the advice xB with equality 

only if either !�� or !
� equals zero. The same does not hold for the arithmetic mean x̄: 

for example, if the advisor is much worse than the judge (more precisely: if 3!�� ≤ !
�.), 

averaging will lead to less accurate final estimates than choosing the initial guess xA. In 

other words, unlike pure averaging the optimal weighing strategy is always superior to 

choosing. 

The downside of both weighting and choosing is, obviously, the need for 

additional information, namely knowledge of the ability difference between judge and 

advisor. We express these ability differences as the ratio of error variances. 

D = !
�!�� 

The ratio m expresses how much the judge is more accurate than the advisor. If 

m > 1 the judge is more accurate than the advisor and if m < 1 the advisor is more 

accurate than the judge. We only require this single piece of additional information 

because we can express the weighted mean x̃ as a function of m: 

�� = D1 +D�� + 11 +D�
 

 

Essentially, the model further yields two intuitive insights: first, as long as the 

error variance of both the judge and the advisor is nonzero and limited, their judgments 
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should never be completely ignored, that is, weighting is bound to yield more accurate 

judgments than choosing the more accurate judgment. Second, the expected error of the 

weighted average is always smaller or equal to that of the arithmetic mean (they are 

equal if the optimal weight is 0.5). On a theoretical level perfect weighting is therefore, 

per definition, superior to the PAR-models choosing and averaging strategies.  
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2.3 The effect of errors in assessing the ability differences 

As we have shown in the previous section, perfect weighting is superior to 

choosing and equal to or better than pure averaging. However, perfect weighting 

requires that the ability difference between judge and advisor is known to the judge. 

Despite judges’ ability to differentiate between good and bad advice beyond chance 

level (e.g. Harvey and Fischer 1997; Harvey, Harries et al. 2000; Yaniv and Kleinberger 

2000; Yaniv 2004), exact knowledge of m is rather unlikely. Let us, accordingly, 

assume that m has to be estimated by the judge and is, therefore, subject to errors or 

biases. In essence, regardless of whether such a mistake is systematic or not, the judge 

can either under- or overestimate the true value of m, and we denote the degree to which 

the judge does so by the factor p. If p equals 1, the judge has a perfect representation of 

the ability differences. In contrast, values greater than 1 indicate that the judge’s 

perception of the ability erroneously shift in his or her favor, whereas values smaller 

than 1 mean that the judge overestimates the ability of the advisor. Assuming the judge 

estimates the competence difference m with a mistake of p, the final result reads as 

�� = �� ED1 + ED + �
 11 + ED 

And the variance of ���E� is given by 

!F� =	D²E²!�� + !
��1 + ED�²  

In this case, the final estimate obtained by weighting the two initial estimates 

differently might end up being worse than taking the simple average. This would 

happen if the competence difference is (i) not very large and (ii) poorly estimated. The 
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weighted mean might also end up being worse than choosing the better guess. This 

would happen if the ability difference is actually large, but is perceived as small, but in 

the correct order. To see the full picture we map the relative improvement 

G = error	variance	of	final	estimateerror	variance	of	initial	estimate 

 

of the judge against the real competence difference m. Values smaller than 1 indicate 

that the error variance of the final estimates is smaller than that of the initial estimate, 

that is, the final estimates are more accurate. In contrast, if the final estimates are less 

accurate than the initial estimates, r will assume values greater than 1. We determined 

the expected values of r for the three advice taking strategies as a function of the 

parameters m and p.  

For the simple average, we get 

G=NOP=QRSQ�D� = !=�!�� = 14!�� + !
�!�� = 1 +D4  

  

For weighting, we get 

	
G<ORQTURSQ�D, E� = !F�!�� =	D²E²!�� + !
��1 + ED�²!�� = D²E²�1 + ED�² + D�1 + ED�² = D�1 + E²D��1 + ED�²  

Assuming that the better expert is identified correctly, the ratio r of the variances of 

initial and final estimate is given by 
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GVTWWXRSQ,VWPPOVU�D� = Y1, Z�	D > 1D, Z�	D < 1 

If the wrong expert is chosen, then 1 and m must be exchanged in the formula. 

GVTWWXRSQ,<PWSQ�D� = YD, Z�	D > 11, Z�	D < 1  

Whether the correct expert is identified or not depends on m and p. If the judge has 

higher expertise and is overconfident (m > 1, p > 1) the choice is correct. Similarly, if 

the advisor has higher expertise and the judge overestimates the advisor’s expertise (m < 

1, p < 1), the choice will also be correct. In general, the choice is correct if and only if 

the perceived competence ratio pm and the real competence ratio m are either both 

greater than 1 or less than 1.  

GVTWWXRSQ�D, E�
= ]GVTWWXRSQ,VWPPOVU�D�, if	�D > 1	and	ED > 1�	or	�D < 1	and	ED < 1�GVTWWXRSQ,<PWSQ�D�,																																																																																											else  

In order to provide a simple comparison of the three advice taking strategies, we 

plotted their respective values of r against the ability differences m. We used a LogLog 

Plot2 (Fig.1) to visualize the relevant part of the parameter space. In line with the 

reasoning above, the left panel of Figure 1 shows that in an ideal environment, in which 

the judge can correctly assess the ability differences, weighting is bound to outperform 

both averaging and choosing. However, as the right panel shows, the relative 

                                                           
2
 A brief explanation for readers unfamiliar with LogLog plots: Since the variables m and r that we wish 

to plot are relations, we need to scale the axes accordingly. A value of m = 0.5 means that the judge is 

twice as good as the advisor while m = 2 means that the advisor is twice as good as the judge. Similarly 

for m = 0.1 and m = 10. This means that we need to treat the two intervals (0; 1) and (1;∞) equally. 

Further, we must center the plot around 1 instead of 0 because a value of m = 1 indictaes equal accuracy 

of judge and advisor. Log(-arithmic) scaling does both of these things. Double logarithmic scaling (i.e., 

LogLog Plots) scales both axes logarithmically. 
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performance of the three strategies changes when we introduce errors in estimating the 

ability differences. In the example we chose, the judge overestimates his/her ability 

relative to that of the advisor by 200% (i.e. p = 3). In this case, averaging outperforms 

weighting for small ability differences, and choosing outperforms weighting if the 

advisor is substantially more accurate than the judge.  

 

 

(a) 

 

(b) 

Figure 1: Plots of relative improvement of accuracy (i.e., reduction of variance) before 
and after considering the advisor’s advice using three different methods: Choosing the 
better estimate (red), averaging both estimates equally (blue), and weighting the 
estimates according to competence difference (green). In (a) we assume that weighting 
and choosing are perfectly correct. In (b), the judge overestimates his/her ability relative 
to that of the advisor by 200% (i.e., p = 3), resulting in imperfect weighting and, for 
some values of m, choosing the wrong estimate. Both axes are in logarithmic scale.  

 

This brief example shows that we need a more detailed analysis to shed light on 

the question which advice taking strategy performs better in a given situation. To this 

end, we need to compare the relative improvement in accuracy obtained by the different 
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strategies as a function of the model parameters p and m. Specifically, we are interested 

in the relative performance of weighting on one hand and either choosing or averaging 

on the other (for an in-depth comparison of choosing and averaging, see Soll and 

Larrick, 2009), which we denote as 

_=NOP=QRSQ = P`abcdebfcPghaigcbfc  and _VTWWXRSQ = P`abcdebfcPjdkklbfc , respectively. 

A value of k = 1 indicates that weighting and the comparison strategy (averaging or 

choosing) perform equally well whereas values of k > 1 indicate superior performance 

of weighting and values of k < 1 indicate that the respective comparison strategy 

performs better. The target value k is represented by the color and shade in the contour 

plot spanned by the parameters m and p (see Fig. 2). The bold line separating the blue 

and green areas is the iso-accuracy curve which indicates that the accuracy of the 

weighting strategy equals that of the comparison strategy (i.e. k = 1).  For each 

subsequent line in the green area, k increases by 0.1, that is, the weighting-method 

performs 10% better than the comparison strategy, while in the blue area the opposite is 

true. In the same fashion we can compare weighting and choosing (Fig.2b). 
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(a) 

 

(b) 

Figure 2: Contour plot of the relative difference of averaging/weighting (a) and 
choosing/weighting (b). In the green area, weighting is the better option despite 
erroneous assessment of the ability differences between judge and advisor, while in the 
blue area simple averaging (a), or choosing (b), performs better. The contour lines 
denote increases or decreases in steps of 10%. 

 

 As can be seen in the left panel of Figure 2, if there are ability differences 

between judge and advisor and the judge has a rough representation of these differences, 

weighting is superior to pure averaging. In contrast, whenever the ability differences are 

small and/or difficult to detect, judges will benefit more from averaging. The accuracy 

differences between weighting and choosing are more pronounced (see the left panel of 

Figure 2). Obviously, the judge must make extreme errors when assessing m in order for 

choosing to be the better advice taking strategy. In addition, choosing can outperform 

weighting only if the more accurate person’s estimates are chosen. This is the case 

above the white diagonal (Fig. 2b) for m > 1, and below the diagonal for m < 1. Note 

that the second prerequisite creates an asymmetry in the results. This asymmetry is 

rooted in the fact that choosing is heavily penalized if the judge erroneously chooses the 
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wrong estimate while weighting is much less prone to such extreme errors because it 

still assigns some weight to the more accurate judgment. 

  



67 

 

2.4 Combining Averaging and Choosing 

Our analysis so far revealed that weighting is quite a powerful strategy when 

comparing it to either weighting or choosing. However, one rationale that we can derive 

from Soll and Larrick’s (2009) PAR model is that judges should switch between 

averaging and choosing in order to maximize the accuracy of their final estimates. 

Specifically, they should average when ability differences are small and/or difficult to 

detect and choose when the opposite is true. An interesting vantage point, then, is to 

compare weighting to a combination of choosing and averaging. Let us, for simplicity, 

assume that judges know when they should switch from averaging to choosing based on 

their (potentially biased) perception of m. We can easily compute this threshold by 

equating GVTWWXRSQ,VWPPOVU and G=NOP=QRSQ which gives pm = 3 or pm = 1/3. In other 

words, a perfect application of the combined strategy implies that judges average their 

initial estimates and the advice until they perceive the initial estimates to be three times 

as accurate as the advice or vice versa; if this threshold is passed, they choose the more 

accurate estimate. If m is estimated without error (i.e., p = 1), dynamically switching 

between choosing and averaging is an extremely powerful strategy. However, we have 

to take into account that if p ≠ 1, choosing will not always be correct, since the judge 

may erroneously choose the less accurate judgment. This problem may drastically 

reduce the performance of the combined strategy, because choosing the wrong expert 

has highly negative consequences.  

In order to compare weighting to the combined strategy of choosing and 

averaging, we first determine the accuracy gains relative to the initial estimates that 

would result from a combination of choosing and averaging, GVWmnRSOo. Figure 3 (left 

panel) compares the accuracy ratios of the combined strategy as well as that of 
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weighting as a function of m and assuming that the judge is strongly overestimating his 

or her own  accuracy (p = 3). We next calculated the ratio of the accuracy gain obtained 

by weighting and that obtained by the combined strategy 

_VWmnRSOo = P`abcdebfcPjkpqbfar .   

The right panel of Figure 3 shows _VWmnRSOo as a function of m and p. The white 

lines denote the threshold at which judges switch from averaging to choosing based on 

their perception of the relative accuracy of judge and advisor (i.e. when the product pm 

is greater than 3 or smaller than 1/3). The bold lines, again, denote the iso-accuracy-

curves. The analysis reveals some interesting findings. First, weighting is superior to the 

combined strategy in a wide range of situations. Second, the superiority of the 

weighting strategy is mostly due to the relatively weak performance of choosing. 

Specifically, application of the combined strategy leads judges to choose in situations in 

which averaging would outperform weighting but choosing does not, for example when 

ability differences are small but difficult to assess.  Instances where the choosing part of 

the combined strategy performs better than the weighting strategy occur only for 

extreme competence differences outside of the parameter range of Figure 3. 
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(a) 

 

(b) 

Figure 3: Comparing weighting to the combination of choosing and averaging. In (a) 
we plot the relative improvement of accuracy (as in Fig.1) of weighting (green) and the 
combined method (red), both for p = 3.  Note that imperfect estimation of m leads to 
choosing the wrong judgment in a specific area. In (b) we generalize the picture by 
allowing for varying p (as in Fig. 2). In the green area, weighting is the better strategy, 
while in the blue area the combined method performs better. The contour lines denote 
increases or decreases in steps of 10%. 
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3 Discussion 

The aim of our theoretical analysis was to answer the question which advice-

taking strategy judges in a judge-advisor system should utilize in order to maximize the 

accuracy of their revised estimates. Previous research has suggested that judges should 

average their initial estimates and the advice unless the difference in accuracy between 

the two estimates is large and easily identifiable; in such cases they should simply 

choose the more accurate estimate (Soll & Larrick, 2009). It is a mathematical fact that 

averaging two independent and unbiased estimates leads to, on average, more accurate 

judgments (e.g. Yaniv 2004; Larrick and Soll 2006). However, if the error variance of 

the two judgments is unequal, there is an optimal weight of advice that produces 

combined estimates that are always equal or better than simple averaging with regards 

to accuracy. As a consequence, judges in a judge-advisor system would benefit the most 

from weighting the advice according to its accuracy relative to that of the judges’ initial 

estimate (Budescu, Fiedler et al. 2006; Budescu and Yu 2006). Similar to choosing the 

better estimate, the potential superiority of the weighting strategy compared to pure 

averaging comes at the cost of additional information, namely knowledge of the ability 

difference between judge and advisor.  

If this ability difference is known, a weighting strategy is bound to be superior to 

both, averaging and choosing. Yet, it is rather unlikely that judges will be able to 

correctly recognize differences between their own and their advisor’s ability with 

perfect accuracy. Instead, previous research suggests that while judges have some 

ability to assess the relative quality of advice they frequently underestimate it (e.g. 

Harvey and Fischer 1997; Harvey, Harries et al. 2000; Yaniv and Kleinberger 2000). In 

other situations, for example, when judges perceive the task as very difficult (Gino and 
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Moore 2007) or when they are very anxious, they are prone to overestimate the quality 

of the advice relative to that of their own initial estimates (Gino, Brooks et al. 2012). If 

judges’ assessment of the ability differences are subject to errors the resulting weighting 

strategy will result in less accurate judgments, and if these errors become too large, 

simple averaging turns out to be the better strategy. The fact that the averaging strategy 

can outperform weighting strategies that are based on erroneous weights has been 

previously documented in multi-cue judgments (Dawes 1979), and the advantage of 

averaging increases as the number of cues grows. Hence, the first question we aimed to 

answer was under which conditions imperfect weighting outperforms averaging. To this 

end, we compared he expected performance of both strategies as a function of ability 

differences between judge and advisor as well as the accuracy of the judge when 

estimating these differences. 

Our analysis revealed that imperfect weighting outperforms averaging as long as 

there are at least moderate ability differences. This performance advantage of the 

weighting strategy is rather robust against moderate misperceptions of the ability 

differences. For example, if the judge’s error was 50% larger than that of the advisor, 

weighting is superior to averaging even if the judge under- or overestimates the ability 

difference by 50%. Additionally, the larger the ability differences become the more 

robust the weighting strategy becomes against erroneous assessment of these 

differences. In other words, averaging is likely to produce better estimates than 

imperfect weighting only when ability differences are small and/or difficult to detect. 

We also compared an imperfect weighting strategy to imperfect choosing, 

finding that the former outperformed the latter with very few exceptions. Specifically, 

choosing was superior to weighting only when there were large differences in accuracy 
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which the judge recognized but severely underestimated. The reason for this finding is 

that the choosing strategy is insensitive to the magnitude of the ability differences 

whereas the weighting strategy is not. Consider the case where the advisor is much 

more accurate than the judge but the judge erroneously perceives the advisor to be only 

slightly better than him- or herself. In this case the judge will still correctly identify the 

advisor as the expert, and because the actual difference in expertise is large, choosing 

the advice will produce a rather good result. In contrast, weighting will produce a final 

estimate that is not too different from (but slightly superior to) the one obtained by 

averaging because the difference in weights is bound to be small. Based on the 

misperception of the ability differences, the judge does not assign enough weight to the 

advice. 

Finally, we compared imperfect weighting to a strategy that dynamically 

switches from averaging to choosing when the (potentially biased) perceived ability 

differences between judge and advisor become large (Soll and Larrick, 2009). Our 

analysis revealed that weighting is superior to the combined strategy in a wide range of 

situations. Interestingly, weighting is better than the combined strategy mainly because 

the application of the combined strategy leads judges to choose between estimates in 

situations where averaging would outperform weighting. These situations are 

characterized by the judge correctly recognizing whether the advisor is more competent 

than him- or herself or vice versa, but at the same time extremely overestimating the 

ability differences. The interesting thing about those situations is that simple averaging 

would have performed better than weighting, but since the ability differences are 

perceived as too high, the combined strategy must use choosing instead. 
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Implications and directions for future research 

An important implication of our analysis is that weighting is a viable strategy in 

advice taking. The fact that participants in previous studies adhered to this strategy in a 

substantial number of trials (Soll and Larrick 2009; Soll and Mannes 2011) as well as its 

potential superiority to averaging highlight its importance when studying advice taking. 

Whereas the PAR model suggests that judges should engage in averaging in case of 

small or difficult to detect ability difference and rely on choosing otherwise, our 

analysis makes a partially different statement. In case of small and difficult to detect 

ability differences, averaging is still the best option. However, in case the ability 

differences become larger and easier to detect, judges should attempt to weight the two 

judgments by perceived accuracy instead of choosing between the two. Interestingly, 

weighting the two estimates by their perceived accuracy allows judges to mimic an 

aggregation strategy that has proven to be very effective if three or more judgments are 

involved, namely taking the median. Research on group judgment (Bonner & Baumann, 

2008; Bonner, Gonzalez, & Sommer, 2004; Bonner, Sillito, & Baumann, 2007) suggests 

that the way in which groups or judges combine the individual estimates is best 

described by the median or similar models that discount outliers. The same is true when 

judges combine several independent judgments (Yaniv, 1997) or receive advice from 

multiple advisors (Yaniv & Milyavsky, 2007). Importantly, the median strategy 

outperforms the average because it discounts extreme judgments which are usually less 

accurate. Naturally, in the JAS with only one advisor, the median is per definition, equal 

to the mean, but assigning more weight to the more accurate judgment, even if the 

weight is not optimal due to misperceptions of the ability differences, also leads to 

discounting the less accurate judgments. 
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Our theoretical analysis does not only provide a normative framework to 

compare the expected performance of different advice taking strategies. It also allows to 

evaluate the effectiveness of judges’ advice taking strategies. Similar to (Soll and 

Larrick 2009) empirical analysis, our model provides performance baselines against 

which to compare the de facto improvements in accuracy between judges’ initial and 

final estimates. Soll and Larrick’s analyses already showed that in the majority of the 

cases frequent averagers outperformed frequent choosers. An interesting question 

would, then, be whether or under which conditions frequent weighting can outperform 

frequent averaging. 

Finally, a potential venue for further developing our model would be to include 

biased judgments. In our theoretical analysis, we made the simplifying assumption that 

there is no systematic bias in the judge´s and advisor´s estimates. Incorporating 

systematic biases of judge and advisor will necessarily make the model more complex, 

but it may be worthwhile if it allows us to draw conclusions about the relative 

performance of weighting, choosing and averaging in a wider range of decision 

situations. 

Conclusion 

Advice taking is not only an integral part of our daily social reality; it is also one 

of the most effective ways to increase the quality of our judgments and decisions. In 

order to make the best use of the wisdom of others, we need a thorough understanding 

of how well we utilize advice depending on its quality. An elegant way to provide 

answers to this question is provided by normative models of advice taking. We built on 

and extended the most prominent normative model of advice taking and, by doing so, 
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furthered our understanding of how effective different advice taking strategies are in 

different situations. More importantly, however, normative modelling allows us to 

detect and, ultimately intervene against, deviations from optimal strategies, that is, they 

can help us utilize the benefits of advice to its full effect. 
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General Discussion 

The evolution of cooperation has become a widely-studied interdisciplinary field of 

research. Nevertheless, the processes related to cooperative behavior are still not fully 

understood, especially among humans. Empirical studies are consistently lagging 

behind models, because they are often difficult to design and time-consuming compared 

to modelling. In chapter I, I present a study which contributes to the literature on 

empirical studies of network reciprocity. The key feature of dynamic networks is that 

individuals can switch partners. Realistically, switching partners requires costs in terms 

of time or resources. Since such costs have been neglected in most of the present 

models and in all present experiments this work closes this gap. I showed that costs 

significantly reduce the dynamism on dynamic networks. But most importantly, 

cooperative behavior stayed at high levels even with such a reduced dynamism. 

Essentially, this sheds new light on the mechanism that drives cooperation on dynamic 

networks. The important difference for cooperation is whether participants have the 

option to switch partners or not.  

Chapter II of the present thesis is concerned with advice taking. In the context of advice 

taking, I investigated how advice should be weighted optimally. I derived a 

mathematical model that compared three strategies, choosing, averaging and weighting. 

If the advisor’s competence is sufficiently different from the judge or if the difference is 

easy to guess, weighting is the best strategy. Averaging turns out to be optimal if the 

difference is small or hard to guess. Choosing is best only in exceptional and unrealistic 

parameter regions. My results extend present models by highlighting the benefits of 

weighting and justify empirical findings where participants seemed to prefer weighting 

over other strategies. 
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Currently, there is only minimal scientific exchange between these two research areas. 

However, in the evolution of cooperation, information plays an important role, 

particularly in form of reputation. While reputation seems to be especially relevant for 

humans, other species are able to make use of reputation, too. A recent study shows that 

cleaner fish and their clients effectively use reputation to maintain cooperative behavior 

(Bshary and Grutter 2006). In advice taking literature, a robust finding is that 

participants are inclined to put too much weight on their own opinion (e.g. Harvey and 

Fischer 1997; Yaniv and Kleinberger 2000). Interestingly, the very opposite has been 

found in an experiment on the effects of gossip on human cooperation (Sommerfeld, 

Krambeck et al. 2007). Here, participants received full information on the cooperative 

behavior of their partners and, additionally, gossip about them. The gossip consisted of 

short statements of other players who had previously played with that person. 

Surprisingly, participants adjusted their behavior due to gossip even though it contained 

no additional information. 

A possible explanation of the difference between over-using information from gossip in 

cooperation experiments and under-using information in advice taking is that humans 

are sensible to the specific kind of information. In advice taking, typical tasks include 

guessing difficult quantities, e.g. the average yearly water consumption of Japanese 

households. Future work could focus on identifying whether different types of 

information lead to different weighting patterns and, if so, why. On the other hand, 

experiments on human cooperation could be inspired by the advice taking literature as 

well. If participants received some information about the behavior of their partners by 

others and some by own observation, it could be analyzed how they distribute weights 

on the two sources of information. 
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Thus, the major outlook for future research is to integrate reputation in social networks, 

and also take into consideration how humans deal with advice by others. Clearly, future 

models must give specific and testable predictions. Empiricists, on the other hand 

should try to understand the underlying mechanisms of models. Understanding and 

good communication between empiricists and theoreticians are especially relevant in the 

evolution of cooperation and advice taking, because both topics rely on a balanced 

progress of theoretical and empirical knowledge.  
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Summary 

 

Cooperative behaviour is widespread among humans and throughout the animal 

kingdom. Previous models suggest that the evolution of cooperation can be enhanced by 

network structure. However, recent experiments were not able to detect cooperation-

enhancing capabilities in static networks. Only if the network is dynamic, experiments 

with humans report increased cooperative behaviour. Since dynamic networks imply the 

possibility of changing partners, an important aspect is how costs for changing partners 

affect behaviour. Since this aspect has been neglected so far, chapter I of this work is 

dedicated to close this gap and explore the effects of costs on dynamic networks. I 

showed that the willingness to break links is drastically reduced when links to new 

partners are costly. For very high costs, the rate of breaking links was so low that the 

network was nearly static. Interestingly, cooperative behaviour stayed at a high level 

nevertheless. This implies that cooperative behaviour depends, above all, on whether 

there is an option to switch partners or not. Even if costs are so high that this option is 

rarely used, cooperation levels are substantially higher than without the option.  

Chapter II of this thesis is dedicated to the investigation of decision-making. In the so-

called Judge-Advisor-System, one person, the judge, estimates an unknown quantity. 

Then, the judge receives advice from another person, the advisor. Importantly, the 

estimates by the judge and the advisor are made independently. The task is to find out 

how the judge should best use the information from the advisor. Existing approaches 

mainly focused on two methods, (i) taking the average, and (ii) choosing one of the 

initial estimates. This simplistic approach is mainly driven by empirical data, where it 

seems that in some experiments over 70% of participants used one of these methods. 
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However, other weights are also frequently assigned and a thorough theoretical 

investigation of optimal weights is necessary. Therefore, I derived a normative model 

that tells under which circumstances it is better to (i) take the average, to (ii) choose 

what you think is the better estimate or to (iii) try to assign proper weights. Which of 

the three is the best depends on the difference in expertise of judge and advisor as well 

as on the judge’s likelihood to know this difference. If the judge has a good 

representation of this difference, assigning weights is always the best bet. The simple 

average is useful if the difference in expertise is small or difficult to guess. Finally, 

choosing performs well if the difference is large but its amount is difficult to guess. 

Motivated by previous approaches, I also explored the performance of a combination of 

choosing and averaging, i.e. a method that uses averaging for small difference in 

expertise and choosing for a large difference. Surprisingly, the performance of this 

combined method was very poor. The main reason is the uncertainty in guessing the 

difference of expertise. Therefore, assigning proper weights is almost always better than 

using the combined method. Since choosing the worse expert has performs so poorly, 

the combined method requires that the risk of choosing the wrong person is low. But 

this means that the difference in expertise is easy to guess and therefore weighting is the 

best method. Over all, I showed that weighting is a viable method for a wide range of 

parameters. 
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Zusammenfassung 

Kooperatives Verhalten lässt sich in vielen Bereichen menschlichen Zusammenlebens 

sowie im gesamten Tierreich beobachten. In evolutionären Modellen wurde gezeigt, 

dass Netzwerkstrukturen die Kooperation erhöhen können. Empirische Studien 

versuchten vergeblich diesen Mechanismus auch bei Menschen nachzuweisen. Es 

scheint, als würden Netzwerke nur dann die Kooperation erhöhen, wenn die Strukturen 

nicht statisch sind, sondern dynamisch. Das heißt, dass die Individuen die Möglichkeit 

haben, ihre Partner zu wechseln. Eine wichtige – aber bislang unerforschte – 

Eigenschaft dynamischer Netzwerke ist jedoch, dass derartige Wechsel von Partnern in 

der Regel Kosten verursachen, ob in Form von Zeit oder Ressourcen. Kapitel I meiner 

Arbeit schließt diese Lücke, in dem es sich mit den Effekten von Kosten auf 

dynamischen Netzwerken befasst. Ich konnte nachweisen, dass Menschen seltener 

Interaktionen mit Partnern beendeten, wenn die Kontaktaufnahme mit einem neuen 

Partner mit Kosten verbunden war. Bei sehr hohen Kosten, wurden Partner so selten 

gewechselt, dass das Netzwerk fast statisch war. Interessanterweise blieb die 

Kooperation dennoch sehr hoch. Das bedeutet, dass für kooperatives Verhalten 

entscheidend ist, ob man die Möglichkeit hat, Partner zu wechseln. Im Gegensatz zu 

bisherigen Annahmen ist es daher nicht wichtig, wie oft tatsächlich Partner gewechselt 

werden, sondern lediglich ob es die Möglichkeit dazu gibt.  

In Kapitel II beschäftige ich mich mit optimalem Entscheidungsverhalten. Im 

sogenannten Judge-Advisor-System geht es darum, dass eine Person, der Judge, eine 

unbekannte numerische Größe schätzen will. Dazu erhält der Judge eine zweite 

unabhängige Schätzung als Rat von einer zweiten Person, des Advisor. Schließlich ist 

die Frage, wie der Judge optimal den Rat verwerten kann um seine Anfangsschätzung 



82 

 

zu verbessern. Bisherige Forschung konzentrierte sich hauptsächlich auf zwei mögliche 

Methoden, (i) das Bilden des Mittelwerts und (ii) das Wählen der besseren 

Anfangsschätzung. Das Hauptargument für diese einfachen Methoden ist deren häufige 

Verwendung in bisherigen Experimenten. Allerdings wurden sehr wohl auch andere 

Gewichtungen beobachtet und daher ist eine gründliche Analyse der optimalen 

Gewichtung erforderlich. In der vorliegenden Arbeit leitete ich ein normatives Modell 

her, das beschreibt, unter welchen Bedingungen welche Methode das bestmögliche 

Ergebnis liefert. Es wurden drei Methoden verglichen: (i) das Bilden des Durchschnitts, 

(ii) das Wählen der besseren Anfangsschätzung, und (iii) das Bilden eines gewichtetet 

Mittelwerts, wobei das Gewicht vom Kompetenzunterschied abhängt. Welche Methode 

optimal ist, hängt davon ab, wie groß der Kompetenzunterschied ist und wie gut er vom 

Judge erkannt wird. Die Durchschnittbildung ist immer dann vorteilhaft, wenn der 

Kompetenzunterschied nicht groß ist, oder nur schwer richtig eingeschätzt werden kann. 

Wenig überraschend lohnt sich das Wählen der besseren Anfangsschätzung, wenn der 

Kompetenzunterschied hinreichend groß ist, vorausgesetzt es wird tatsächlich die 

bessere Anfangsschätzung gewählt. Wenn der Kompetenzunterschied vom Judge gut 

eingeschätzt werden kann, ist eine Entsprechende Gewichtung immer die beste 

Methode, unabhängig vom tatsächlichen Unterschied. In Übereinstimmung mit 

bisheriger Forschung wurde auch die Kombination von Durchschnittbildung und 

Wählen der besseren Anfangsschätzung untersucht. Diese Kombinationsmethode beruht 

darauf, bei als gering eingeschätztem Kompetenzunterschied den Durchschnitt zu bilden 

und ansonsten die bessere Anfangsschätzung zu wählen. Interessanterweise schneidet 

diese Kombinationsmethode sehr schlecht ab, was hauptsächlich daran liegt, dass zu oft 
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die falsche Anfangsschätzung genommen würde. Insgesamt ist das gewichtete Mittel 

also eine geeignete Methode für einen großen Parameterbereich. 
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