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Introduction 
 

From infancy up to adulthood and beyond, the brain reacts adaptively to the 

continuously changing environment. This capacity is termed “plasticity” and describes 

the ability of the brain to develop, react to environmental demands by producing proper 

behavior and repair itself after a disease or injury. Neuroplastic modifications of brain 

structure and functions are also thought to be important physiologic mechanisms of 

learning skills and remembering events in our life. Two functional changes taking place 

at the glutamatergic but also other synapses, namely long term potentiation (LTP) and 

long term depression (LTD), are considered as synaptic correlates of learning and 

memory processes (Jay, 2003). Pioneering attempts to study and understand the basic 

mechanisms of LTP and LTD induction and expression were conducted in slice 

preparations and in vivo animal studies. However, over the last decades, non-invasive 

brain stimulation (NBS) techniques such as transcranial magnetic stimulation (TMS), 

transcranial direct current stimulation (tDCS) and paired associative stimulation (PAS) 

(Barker et al., 1985; Nitsche and Paulus, 2000; Stefan et al., 2000) emerged, which allow 

the induction and exploration of plasticity which share some properties with plasticity 

induced in animal models also in humans. Recently, combining these techniques with 

central nervous system (CNS) active drugs and imaging techniques (Ziemann, 2004; Ko 

et al., 2013; Saiote et al., 2013) has given us additional opportunities to study 

mechanisms and effects of cortical plasticity in the intact human brain.  

Neuroplasticity is influenced by substances termed neuromodulators. Among 

these neuromodulators, dopamine has received the most attention since the discovery that 

L-3,4-dihydroxyphenylalanine (L-DOPA), the synthetic precursor of dopamine, can 
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alleviate the motor symptoms of Parkinson’s disease (Abbott, 2010), and that 

antagonizing dopamine receptor subtypes can relieve positive symptoms of schizophrenia 

(Seeman, 1987). In physiological and cognitive studies in animals, a complex, 

heterogeneous, sometimes opposing pattern of effects of alteration of dopaminergic 

activity emerges, depending on dosage, affected receptor subtypes, and basal brain 

activity (Seamans and Yang, 2004).  The results of human electrophysiological studies 

improved our knowledge about the impact of dopamine on neuroplasticity (Kuo et al., 

2008; Monte-Silva et al., 2009; Nitsche et al., 2009; Monte-Silva et al., 2010; 

Thirugnanasambandam et al., 2011), however, it is still far from being complete. 

Specifically, the impact of dopamine receptor subtypes on neuroplasticity in humans was 

not explored systematically so far. Given the presumed relevance of neuroplasticity for 

cognition and behavior in health and disease, improving this knowledge might enhance 

our understanding of respective processes.  

In this project we were interested to explore the dosage-dependent, specific 

effects of dopamine receptor subtype activation on functional plasticity of the human 

brain. The first chapter will give an introduction into the basic concept of plasticity, its 

relation to cognitive processes, and modulation by dopamine, and the techniques of 

inducing and evaluating plasticity in humans. The second chapter contains the main 

component of the thesis; each subchapter consists of published projects or projects 

accepted for publication. Finally, the last chapter will discuss the main findings of the 

present work, including limitations, and future directions for research.  
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Chapter 1: Plasticity in the central nervous system 
 

Plasticity can be defined as any enduring change of cortical properties, either 

morphological or functional (Donoghue, 1995). Plasticity can occur at different levels of 

the central nervous system, from a single neuron, to synaptic levels and up to 

subcortical/cortical networks (Figure 1). An example for macroscopic structural changes 

is the increase of finger representations of the motor cortex of monkeys and rats observed 

after grasping training (Kleim et al., 1996; Nudo et al., 1996; Kleim et al., 1998). In 

humans, parts of the brain involved in skill training and learning were also shown to gain 

volume (Kami et al., 1995; Pascual-Leone, 1995). TMS mapping and magnetic resonance 

imaging (MRI) revealed an increase in gray matter volume and cortical representations in 

some brain areas of professional musicians (Elbert et al., 1995; Sluming et al., 2002; 

Gaser and Schlaug, 2003), mathematicians (Aydin et al., 2007) and athletes (Tyč et al., 

2005; Park et al., 2009) whereas among dancers a decrease in gray and white matter 

volume was evident (Hänggi et al., 2010).  Injuries can also lead to structural brain 

changes, the loss of afferent input is followed by neuroplastic alterations of cortical 

functions, e.g. re-organization of somatosensory cortex representation maps after limb 

amputation (Borsook et al., 1998), or of the visual cortex in blind patients (Pascual-Leone 

and Torres, 1993; Boven et al., 2000). Additionally, brain lesions are followed by 

structural and functional plastic changes (Carmichael, 2003; Schaechter et al., 2006) of 

both, the injured and  non-injured motor cortex (Nudo et al., 2003).   

Most kinds of neuroplastic processes seem to improve adaption to environmental 

or internal changes and cause beneficial effects like skill enhancement or recovery from 

brain injury (Peterson, 2012). On the other hand, plasticity in the brain can be also 
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maladaptive, when it leads to behavioral loss or even the development of disease 

symptoms (May, 2011). For instance, the age-related decline in the efficiency of 

plasticity in humans (Freitas et al., 2011) might explain the accompanying cognitive 

decline at least partially. Human plasticity studies also revealed aberrant plasticity 

mechanisms in conditions like autism (Oberman et al., 2012; Jung et al., 2013), 

Alzheimer’s disease (Battaglia et al., 2007; Koch et al., 2011; Koch et al., 2012)  and 

schizophrenia (Fitzgerald et al., 2004; Frantseva et al., 2008; McClintock et al., 2011). 

Thus, naturally occurring plasticity in the human brain has been implied to be of 

profound importance for a multitude of normal, but also pathological brain functions.  

At the synaptic level, plasticity is accomplished by structural and functional re-

organization of the respective connections via the strengthening or weakening of 

synapses (Citri and Malenka, 2007). Structural remodeling includes changes in synapse 

morphology (Lamprecht and LeDoux, 2004; Barnes and Finnerty, 2010; Foscarin et al., 

2012), such as the experience-dependent stabilization and destabilization or formation 

and elimination of synapses in mice’s barrel cortex (Trachtenberg et al., 2002; Holtmaat 

et al., 2006; Knott et al., 2006) and injury-induced axonal sprouting in the motor cortex 

of squirrel monkeys (Dancause et al., 2005). The experimental work of the thesis will 

focus on another type of plasticity termed “functional plasticity” of the glutamatergic 

synapse, the main excitatory synapse in the human brain. It is accomplished by the 

increase or decrease of the efficiency of an already existing synapse. With regard to the 

duration of the effects, the first 60 minutes of functional plasticity are referred to as 

“early” phase and the longer lasting protein-synthesis-dependent part (duration of hours 

or up to weeks or months) is called the  “late” phase (Malenka and Bear, 2004). Another 



 

 6 

important feature of functional plasticity is its direction. For long term synaptic plasticity, 

which has received the most attention due to its possible role in memory and learning 

processes, long term potentiation (LTP), which refers to enhanced cortical excitability, 

and long term depression (LTD), which is a long-lasting reduction of excitability of the 

target synaptic connections, can be discerned. LTP and LTD are presumably expressed in 

all excitatory brain circuits as well as at the inhibitory GABAergic synapse (Kano, 1995; 

Malenka and Bear, 2004; Rueda-Orozco et al., 2009).  

 

 

 

Figure 1. Schematic diagram of different types of plasticity which lead to structural and 

functional changes at the level of the synapses. (Adapted from Trojan and Pokorny, 

Physiological research / Academia Scientiarum Bohemoslovaca, 1999).  
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Plasticity is thought to be the underlying mechanism of learning and memory. The 

Hebbian theory was the first to offer an explanation on how neurons adapt during a 

learning process. According to this concept, strengthening of a synapse occurs when two 

neurons are active at the same time (Hebb, 1988). The LTP induced at glutamatergic 

synapses in the hippocampus of the anaesthetized rabbit via repetitive stimulation at high 

frequency of the perforant path leading to strengthening of the synapse between perforant 

path and granule cells (target cells) of the dentate gyrus (Bliss and Gardner-Medwin, 

1973; Bliss and Lømo, 1973) satisfies the criteria proposed by Hebb making it a viable 

model of long term memory storage (Bliss and Collingridge, 1993; Bliss and Cooke, 

2011).  LTD on the other hand, first demonstrated in rat hippocampal slices in vitro  and 

in the dentate gyrus of anaesthetized rats (Lynch et al., 1977; Levy and Steward, 1979), 

also exhibits properties like occurrence (that is, LTD can be induced experimentally in 

the neural circuits that are relevant for a specific cognitive function), necessity (that is 

blocking LTD disrupts the respective function), and sufficiency (that is, induction of LTD 

produces behavior similar to the function) that suggest it has a role in learning and 

memory too (Collingridge et al., 2010).  Subsequently, LTP- and LTD-like plasticity was 

also induced electrophysiologically in many other cortical areas like the barrel (Fox, 

2002), visual (Kirkwood and Bear, 1994; Heynen and Bear, 2001), auditory (Pereda et 

al., 1998; Newton and Sur, 2005), the somatosensory and motor cortex (Castro-

Alamancos et al., 1995), suggesting that plasticity is an ubiquitary mechanism of the 

CNS. In accordance with electrophysiological studies, experience-induced anatomical 

changes in the brain have been shown also in animal (Rioult-Pedotti et al., 1998a; 

Trachtenberg et al., 2002; Gruart et al., 2006; Holtmaat et al., 2006; Whitlock et al., 
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2006) and human studies (Draganski et al., 2004; May, 2011). Furthermore, a study that 

showed that the suppression of LTP after learning can erase a previously learned skill 

strengthened the idea that LTP maintenance is necessary for memory maintenance as well 

(Bliss et al., 2006).  

 Therefore, exploring the mechanisms of neuroplasticity in humans is relevant for 

improving our comprehension of brain physiology in health and disease, as well as 

understanding the neural basis of learning and memory mechanism in humans.  

 

1.1 Mechanisms of functional glutamatergic plasticity 

 

Plasticity of the glutamatergic system is accomplished primarily via calcium-

permeable NMDA (N-methyl D-aspartate) receptors (Malenka and Bear, 2004; Bliss and 

Collingridge, 2013). Dependent on the amount of calcium influx into the subsynaptic 

neuron, both, LTP, and LTD, can be induced (Lisman, 2001). It has been demonstrated 

that a strong calcium increase results in LTP, and a weak elevation of calcium 

concentration triggers LTD (Hansel et al., 1996; Yang et al., 1999; Cormier et al., 2001) 

(see figure 2).  

When the postsynaptic membrane is significantly depolarized via presynaptic 

glutamate release, and consecutive opening of α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptors, which have sodium channel properties, the 

voltage-dependent block of the NMDA receptor by magnesium is relieved allowing 

calcium to enter the postsynaptic dendritic spines, soma or the axon. This rise in 

postsynaptic calcium, if sufficiently large, triggers  the activation of intracellular 
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signaling cascades that include several protein kinases, most notably the 

calcium/calmodulin dependent kinase (CaMKII) (Lynch et al., 1983; Malenka et al., 

1988; Malenka et al., 1999; Malenka, 1999 ; Lisman et al., 2002).  Activation of these 

kinases results in insertion of AMPA receptors in the postsynaptic plasma membrane, 

therefore resulting in larger depolarization of the postsynaptic neuron following a given 

presynaptic glutamate release, and thus enhanced efficacy of the respective synaptic 

connection (Malenka et al., 1999; Malenka and Bear, 2004). LTD on the other hand is 

thought to result from a smaller rise in postsynaptic calcium (Lisman, 1989; Artola and 

Singer, 1993; Hansel et al., 1997; Nishiyama et al., 2000). This triggers a different subset 

of calcium-dependent intracellular signaling molecules than those required for LTP, 

including serine/threonine phosphatases which dephosphorylate critical synaptic 

substrates, including the AMPA receptor, which de-activates the latter. The depression of 

synaptic strength in case of LTD is additionally due to the removal of synaptic AMPA 

receptors via dynamin- and clathrin-dependent endocytosis (Malenka and Bear, 2004).  

For intermediate calcium concentrations, the existence of a zone between LTP and LTD, 

called the “ no man’s land”, was reported, which does not result in any plasticity (Cho et 

al., 2001; Lisman, 2001). Moreover, calcium levels above the threshold for LTP 

induction might prevent plasticity probably due to the activation of hyperpolarizing 

potassium channels (Misonou et al., 2004). 
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Figure 2. Schematic illustration of LTP and LTD at the glutamatergic synapse. The level 

of calcium influx into the postsynaptic membrane determines the direction of plasticity. 

Strong calcium increase leads to cascades of events resulting in the insertion of AMPA 

receptors in the postsynaptic membrane which causes strengthening or potentiation of 

synaptic strength (LTP). Weak calcium increase leads to the removal of AMPA receptors 

from the postsynaptic membrane causing synaptic weakening or depression (LTD). 

(Adapted from Hauser, L. 2013. Derived copy of Biology 102. OpenStax-CNX, July 15, 

2013. http://cnx.org/content/col11541/1.1/.). 

1.2 Exploring Plasticity in the Human Brain 

 

Our knowledge about plasticity in the human brain is still far from being complete. A 

limited set of studies explored LTP at the cellular level.  It could be shown in vitro in 

hippocampal and temporal cortex tissues of epileptic patients that LTP can be induced 

also in the human brain via stimulation techniques which were developed in animal 
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experimentation (Chen et al., 1996a; Beck et al., 2000; Cooke and Bliss, 2006). This 

approach is however restricted, because respective brain material is rare, and because of 

missing spontaneous activity, and disease-related alteration of cortical architecture, the 

results might not easily be transferred to the healthy human brain in vivo. During the last 

decades, however, technological advances in the field of non-invasive brain stimulation 

(NBS) techniques emerged allowing the controlled induction of prolonged cortical 

excitability alterations, as well as the monitoring of respective effects in awake human 

subjects. These include transcranial magnetic stimulation (TMS), repetitive transcranial 

magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS) and paired 

associative stimulation (PAS) (Barker et al., 1985; Nitsche and Paulus, 2000; Stefan et 

al., 2000; Nitsche and Paulus, 2001; Huang et al., 2005) (Figure 3). In accordance with 

the functional relevance of plasticity, these techniques can also alter behavior and 

cognitive functions non-invasively in both healthy and patient populations (Fregni et al., 

2006; Salatino et al., 2013; Park et al., 2014). In the present work we will focus on tDCS 

and PAS as means for inducing plasticity; and single pulse TMS to measure the increase 

and decrease in excitability of neurons in the human motor cortex.  
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Figure 3. Non-invasive Brain Stimulating Techniques: Single pulse transcranial magnetic 

stimulation (TMS) can be used for monitoring excitability changes in the motor cortex. 

Repetitive transcranial magnetic stimulation (rTMS), transcranial direct current 

stimulation (tDCS) and paired associative stimulation (PAS) are mainly used to induce 

LTP and LTD-like plasticity in the motor cortex. (Figure adapted and modified from 

Bliss and Cooke, Clinics, 2011). 

 

1.2.1 The motor cortex as a model for studying plasticity 

 

Although the primary motor cortex (M1) was for a long time perceived solely as 

an effector area for the initiation of movements, plasticity of this region is well 

documented (Pascual-Leone et al., 2005), and in accordance with recently published 

studies this area is more actively involved in motor learning and memory formation than 

previously thought (Rioult-Pedotti et al., 2000; Muellbacher et al., 2002; Nitsche et al., 

2003b). Thus this region is principally well suited to study plasticity and physiological 

cognitive/behavioral interactions in the human brain. It is furthermore well suited to serve 

as a model system because of the following reasons: First, the anatomical, physiological 

and functional properties of the human motor cortex are well established. It consists of 

six layers of cells with layer 5 as the descending output layer containing the giant Betz 

cells. Cells of the primary motor cortex (M1) are the most excitable and encode for 

movement force and control (Pruszynski et al., 2007). The horizontal connections within 

the primary motor cortex (M1) are suggested to have a capacity for long-lasting synaptic 

modification, such as strengthening of horizontal cortical connections following motor 
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skill learning (Kleim et al., 1998; Rioult-Pedotti et al., 1998b; Sanes and Donoghue, 

2000). Second, its location at the cerebral surface, which holds true especially for the 

hand area, makes it an accessible target for non-invasive brain stimulation techniques. 

Finally, excitability, and activity of this area can be easily monitored via TMS/MRI to 

explore global corticospinal excitability, and specific transmitter/neuronal systems 

(Rothwell, 1993; Ziemann, 2004).  

 

1.2.2 Plasticity induction in the human brain 

 

Prior to the invention of transcranial electrical stimulation (TES) by Morton and 

Merton in 1980, most of the techniques developed were applied for therapeutic purposes 

only, and not intended for research. TES was the first non-invasive technique suited for 

stimulating neurons of the intact human brain (Merton and Morton, 1980). It uses supra-

threshold low frequency high-intensity pulses, and is painful, making its application as an 

experimental technique problematic. In 1985, Barker and colleagues introduced a new 

non-invasive brain stimulation technique, called Transcranial Magnetic Stimulation 

(TMS) (Barker et al., 1985). This technique later gave rise to the development of rTMS, 

another technique for inducing plasticity, which is however beyond the scope of this 

thesis. In the experiments included in the present thesis, we used paired associative 

stimulation (PAS), which combines peripheral nerve stimulation with single pulse TMS, 

which induces an associative kind of plasticity (Stefan et al., 2000), and tDCS, which 

uses subthreshold electrical stimulation to induce changes of cortical excitability (Nitsche 

and Paulus, 2000).  



 

 14 

1.2.2.1 Transcranial direct current stimulation (tDCS) 

 

The fact that tonic application of relatively weak direct currents can induce 

neuronal excitability and activity alterations in animals was first demonstrated in the 

1960’s.  It was observed that applying positive polarizing currents in vitro and in vivo 

causes an increase in the frequency of spontaneous neuronal spiking, whereas negative 

polarizing currents reduce neuronal firing compared to baseline values (Creutzfeldt et al., 

1962; Bindman LJ, 1964; Purpura and McMurtry, 1965). The effects during stimulation 

are due to direct current (DC)-induced subthreshold changes of the resting membrane 

potential (Bindman LJ, 1964; Purpura and McMurtry, 1965). Later experiments  revealed 

that after effects, which can last for many hours after the end of stimulation for a few 

minutes, depend on protein synthesis (Gartside, 1968), alter intracellular cAMP 

concentration (Hattori et al., 1990), and intracellular calcium concentration and gene 

expression mediated by NMDA receptors (Islam et al., 1995a; Islam et al., 1995b). 

Therefore, the after-effects depend on plasticity mechanisms similar to those obtained in 

LTP and LTD induced by more “classic” stimulation protocols (Islam et al., 1995a). In 

2000, Nitsche and Paulus published a study in which they could show that transcranial 

direct current stimulation induces similar effects on motor cortex excitability in awake 

humans (Nitsche and Paulus, 2000). Analogous to the effect of polarizing currents 

observed in animals studies (Bindman LJ, 1964; Purpura and McMurtry, 1965), if applied 

for 13 minutes, anodal stimulation with an intensity of 1mA (milliampere) induces a 

prolonged increase of cortical excitability, whereas cathodal tDCS for 9 minutes induces 

opposite effects (Nitsche and Paulus, 2001; Nitsche et al., 2003a; Nitsche et al., 2008). 

Furthermore, similar to the results obtained in animal experiments, the primary effects of 
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tDCS depend on shifts of membrane polarization hence, the voltage-gated calcium 

channel blocker flunarizine and Na-channel blocker carbamazipine abolished the effects 

of depolarizing anodal stimulation, but had no impact on membrane-hyperpolarizing 

cathodal stimulation. Furthermore the NMDA receptor antagonist dextromethorphan and 

GABAA receptor agonist lorazepam had no effect during stimulation, in accordance with 

a primary effect of tDCS on neuronal membranes, but not synapses (Nitsche et al., 2003c; 

Nitsche et al., 2004b). The after effects on the other hand, which usually last for 1 hour, 

and thus are in the range of early LTP/LTD, are both NMDA- and calcium channel-

dependent (Liebetanz et al., 2002; Nitsche et al., 2003c; Nitsche et al., 2004a) suggesting 

similar mechanisms as shown for glutamatergic LTP and LTD induced in animal models 

(Malenka and Bear, 2004). The  weak subthreshold direct current applied over the scalp 

stimulates underlying cortical neurons tonically but nonspecifically, thus the effect is not 

focal (Nitsche and Paulus, 2000). Evidence exists that the plastic changes in the human 

motor cortex induced by tDCS are predominantly cortical rather than subcortical (Nitsche 

and Paulus, 2000; Nitsche et al., 2005; Miranda et al., 2006; Wagner et al., 2007). 

 TDCS can also modulate cognitive functions (for a review see, (Kuo and Nitsche, 

2012). Anodal tDCS at the motor cortex applied during performance improved motor 

sequence learning (Nitsche et al., 2003b) and enhanced motor skill learning (Reis et al., 

2009). Stimulation at the motor cortex and visual cortex of healthy subjects also 

improved performance in the learning phase of a visuo-motor coordination task  (Antal et 

al., 2004). Additionally, temporal lobe stimulation with anodal tDCS reduced false 

memories in healthy subjects, while it improved recognition memory and working 

memory in Alzheimer’s and Parkinson’s disease patients respectively (Boggio et al., 
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2006; Boggio et al., 2009b; Boggio et al., 2009a). The enhancing effect of anodal tDCS 

on learning can be hypothetically explained by the synergistic effects of tDCS-induced, 

and learning-generated LTP on task-dependent cortical networks (Stagg and Nitsche, 

2011). 

1.2.2.2 Paired-associative stimulation (PAS)  

 

PAS is a technique which combines stimulation of somatosensory afferents of a mixed 

peripheral nerve with motor cortex TMS (Stefan et al., 2000; Stefan et al., 2002; Wolters 

et al., 2003). In the “classic” protocol, a peripheral electrical stimulus with an intensity 

set to 300% of the sensory perceptual threshold  is applied to a peripheral nerve. This is 

combined with a suprathreshold TMS pulse to the contralateral motor cortex with an ISI 

of 10 or 25ms at a frequency of 0.05 Hz for 30 minutes (Stefan et al., 2000; Wolters et 

al., 2003). Like tDCS, the effect of PAS on the motor cortex are localized intracortically 

(Müller-Dahlhaus et al., 2010), however, PAS induces phasic suprathreshold synaptic 

activation. The physiological mechanism behind PAS is based on the principles of spike 

timing-dependent plasticity (STDP) initially observed in animal studies (Gustafsson et 

al., 1987; Markram et al., 1997; Bi and Poo, 1998; Debanne et al., 1998). Similar as in 

STDP, neuroplastic excitability alterations induced by PAS critically depend on the 

interstimulus interval (ISI) between the peripheral nerve stimulus and the TMS pulse. An 

interval of 10ms (PAS10) (Wolters et al., 2003) results in an excitability reduction, while 

an interval of 25ms (PAS25) increases excitability, longer ISI (100, 525 and 5000 ms) 

however, have no effect  (Stefan et al., 2000).  In PAS10, the afferent inputs elicited by 

median nerve stimulation reaches the motor cortex after the TMS pulse, causing an 

asynchronous activation of the motor cortex. In accordance, in animal models, an action 
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potential (AP) preceding an excitatory post synaptic potential (EPSP) induces calcium-

dependent NMDA receptor inactivation which induces LTD (Zucker, 1999). In PAS25, 

the afferent input precedes the TMS pulse causing a synchronous activation of the motor 

cortex. Again in accordance, back-propagated APs triggered by large EPSPs or by other 

inputs enhance calcium influx through NMDA receptors causing LTP in animal models 

(Zucker, 1999).  PAS is thought to induce LTP-like or LTD-like plasticity at 

glutamatergic synapses. The NMDA receptor blocker dextromethorphan blocks both LTP 

and LTD-like plasticity induced by PAS (Stefan et al., 2002; Wolters et al., 2003) while  

nimodipine, an  L-type voltage-gated calcium channel blocker, prevents the LTD-like 

effect of PAS10 (Wolters et al., 2003).  This suggests that the mechanism of PAS shows 

some similarities with cellular STPD.  The proposed plastic effect of PAS are largely 

restricted to synapses connecting the sensory and motor cortex  (Stefan et al., 2000), 

hence compared to tDCS its effect is more specific or focal. 

1.2.3 Monitoring plasticity in the human brain  

1.2.3.1 Transcranial Magnetic stimulation (TMS) 

 

TMS is based on the principles of electromagnetic induction. The magnetic field 

generated by the coil induces a secondary electric current in a postero-anterior direction 

in the underlying cortex, which depolarizes cortical neurons, which in turn activates the 

respective pyramidal tract neurons, causing a motor evoked potential (MEP) (Di Lazzaro 

et al., 1998). MEP latency reflects central nervous system (CNS) conduction time in the 

corticospinal tract, whereas the size of the MEP amplitude reflects corticospinal 

excitability (Rothwell, 1993). Comparing the changes in MEP amplitudes before and 

after intervention thus provides a measure of excitability alterations induced by the 
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respective intervention. Other TMS protocols like double pulse or paired pulse TMS 

protocols allow the specific exploration of excitatory and inhibitory intracortical systems 

(Kujirai et al., 1993; Tokimura et al., 1996; Ziemann et al., 1996).  

1.3 Dopaminergic modulation of neuroplasticity  

 

 Neuromodulators are transmitters that can alter plasticity but are not essential for 

its occurrence (Malenka and Bear, 2004). They induce little or no change in basal 

neuronal activity, but potentiate or attenuate responses evoked by other transmitter 

substances (Barchas et al., 1978). Dopamine is one of the major neuromodulators in the 

brain and exerts its action by binding to specific receptors at the postsynaptic and 

presynaptic membrane (Vallone et al., 2000). The five dopamine receptors are grouped 

into two subfamilies depending on their signaling, physiological and pharmacological 

properties (Kebabian and Calne, 1979; Sokoloff and Schwartz, 1995; Beaulieu and 

Gainetdinov, 2011). The D1 and D5 receptors belong to the D1-like, while, D2, D3 and 

D4 receptors constitute the D2-like receptor family.  

1.3.1 Plasticity studies in animals 

 

In electrophysiological studies in animals, dopamine application results in both, 

inhibitory and excitatory responses in neurons of the prefrontal and motor cortices, 

although inhibitory responses predominate (Bernardi et al., 1982; Bradshaw et al., 1985; 

Sawaguchi et al., 1986; Awenowicz and Porter, 2002). These cellular effects are reflected 

by the impact of dopamine on plasticity, showing both facilitatory as well as inhibitory 

effects on LTP and LTD (Jay, 2003), in accordance with the assumption that dopamine is 

not a driver, but a modulator of synaptic plasticity. In general, the  impact of dopamine 



 

 19 

on neuronal excitability/plasticity is complex and depends on receptor subtype, dosage or 

level of stimulation, and the kind of plasticity being induced (Jay, 2003; Seamans and 

Yang, 2004).  

With regard to the contribution of dopaminergic receptor subtypes, is was shown 

that D1 receptors have an enhancing effect on NMDA and GABAergic synaptic currents 

(Seamans and Yang, 2004), and a positive impact on LTP and LTD. Animal experiments 

are in favor for a supportive role of the D1 receptor for LTP induction in the PFC 

(Gurden et al., 2000; Huang et al., 2004) striatum (Kerr and Wickens, 2001; Centonze et 

al., 2003) and hippocampus (Otmakhova and Lisman, 1996; Bailey et al., 2000). 

Activation of the D1 receptors also enhances LTD in the striatum (Calabresi et al., 1992; 

Calabresi et al., 2000) however, reversal of LTD into a transient potentiated state in the 

hippocampus of the rat was reported in another study (Mockett et al., 2007). In contrast, 

the D2 receptor has a reducing effect on NMDA and GABAergic synaptic currents as 

revealed by electrophysiological studies in the striatum and prefrontal cortex (PFC) 

(Tseng and O'Donnell, 2004). Compared to the D1-mediated impact, D2 receptor 

activation resulted in mixed effects, causing LTP enhancement in-vitro/in-vivo in the 

hippocampus and in the basolateral amygdala–dentate gyrus pathway (Frey et al., 1989; 

Manahan-Vaughan and Kulla, 2003; Abe et al., 2008), LTD enhancement in-vitro at the 

prefrontal cortex and striatum (Otani et al., 1998; Spencer and Murphy, 2000; Centonze 

et al., 2001; Tang et al., 2001), but also diminishing effects on LTD and LTP were 

reported (O'Donnell and Grace, 1994; Chen et al., 1996a). An impact of dopamine on 

cognitive functions, which can be assumed to base on the physiological effects of the 

substance, was first observed in the pioneering work of Brozoski and colleagues. They 
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observed impaired performance of a delayed response task following dopamine depletion 

in the PFC of monkeys (Brozoski et al., 1979). Succeeding studies across different animal 

species suggest a non-linear dopaminergic dose-response relationship (Murphy et al., 

1996; Arnsten, 1997; Arnsten and Goldman-Rakic, 1998; Mizoguchi et al., 2000). For the 

dosage-dependent impact of dopamine receptor subtypes on cognition, a dosage-

dependency of D1 receptor-mediated effects was first studied in recordings of PFC 

neurons of animals engaged in a working memory task. The results of respective studies 

confirm that activation or inhibition of the D1 receptor has a dosage dependent non-linear 

effect on neuronal firing, and performance (Williams and Goldman-Rakic, 1995; Cai and 

Arnsten, 1997; Zahrt et al., 1997; Seamans et al., 1998; Goldman-Rakic et al., 2000; 

Floresco and Phillips, 2001; Sawaguchi, 2001; Lidow et al., 2003; Vijayraghavan et al., 

2007; Kroener et al., 2009). Specifically, in these studies too much or too little D1 

receptor stimulation impaired performance, and reduced firing rates, whereas optimal 

stimulation enhanced firing rates and improved cognitive performance (Williams and 

Goldman-Rakic, 1995; Murphy et al., 1996; Seamans and Yang, 2004). An inverted U-

shaped effect of D2-like receptors stimulation is not well explored in cognitive studies in 

animals. However, a behavioral study in rats revealed such an effect on yawning  (Collins 

et al., 2005).  

1.3.2 Plasticity studies in humans 

 

Plasticity research in the human brain aimed to disentangle the role of dopamine 

has been initiated some years ago. Two electrophysiological studies explored the dosage-

dependency of global dopamine activation on functional glutamatergic plasticity. Here an 
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inverted U-shaped impact of non-specific dopaminergic stimulation was demonstrated. 

Low and high doses of L-dopa abolished or impaired plasticity, whereas under medium 

dosage plasticity was preserved except for the anodal tDCS LTP-like after-effect which 

was reversed into inhibition (Monte-Silva et al., 2010; Thirugnanasambandam et al., 

2011). With regard to the contribution of dopaminergic receptor subtypes to these effects, 

electrophysiological studies concerning the impact of D1-like receptor stimulation are 

rare due to the lack of selective agonists and antagonists available for human use. In 

motor cortex plasticity studies, using an indirect approach by relatively enhancing D1 

receptor activation by D2 receptor block abolished LTP and LTD-like plasticity, but 

adding L-DOPA under D2 receptor block, which should result in a relatively specific 

activation of D1-like receptors, re-established both types of plasticity (Nitsche et al., 

2009), suggesting a crucial function of D1 receptor activation for plasticity induction. D2 

receptor activity seems to be also relevant for plasticity induction in the human brain, 

since D2 receptor block by sulpiride abolishes different kinds of plasticity in the human 

motor cortex (Nitsche et al., 2006; Monte-Silva et al., 2009; Nitsche et al., 2009; Monte-

Silva et al., 2011). A study using the  D2/D3 agonist ropinirole showed a non-linear 

effect of D2-like receptor activation on human motor cortex plasticity (Monte-Silva et al., 

2009). However, ropinirole is a predominant D3 receptor agonist with a greater affinity 

for the D3 receptor (Coldwell et al., 1999). In animals, an opposing effect of D2 and D3 

receptor activation on physiologic processes in the brain was observed (Collins et al., 

2005; Collins et al., 2007; Collins et al., 2009). Therefore this study was not suited to 

elucidate the specific contribution of D2 receptor activation on plasticity in humans.  
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1.3.3 Cognitive studies in humans 

 

 Many domains of cognitive functions in humans such as learning and memory 

formation, behavioral flexibility, and attention are critically dependent on dopaminergic 

activity, particularly of the prefrontal cortex and striatum (Nieoullon, 2002; D’Ardenne et 

al., 2012; Klanker et al., 2013; Costa et al., 2014). Hereby, the specific effects seem to 

depend on receptor subtypes, concentration, the type of task, baseline performance and 

stage/phase of learning process (Kimberg et al., 1997; Cools and D'Esposito, 2011).   

 In healthy individuals, global/non-specific dopaminergic activation with 100mg 

L-dopa was shown to enhance the speed, overall success, and long-term retention of word 

learning (Knecht et al., 2004) and enhance motor learning in the elderly (Flöel et al., 

2005). This beneficial effect on learning was also observed in acute and chronic stroke 

patients (Scheidtmann et al., 2001; Rösser et al., 2008). With regard to the contribution of 

dopamine receptor subtypes, like in plasticity studies in humans, the impact of D2 

receptors is better explored compared to that of D1-like receptors. To date, only 2 clinical 

studies have used selective D1 agonists and antagonists to explore their impact on 

cocaine abuse (Haney et al., 1999; Haney et al., 2001), however, the bioavailability of 

these agents was low (Breitenstein et al., 2006). In one study, the D1 agonist AB-431 did 

not affect the frequency of cocaine smoking, however, it dose-dependently decreased the 

subjective effect of cocaine (Haney et al., 1999). The D1 antagonist ecopipam on the 

other hand significantly decreased cocaine craving in the presence of placebo cocaine 

while it increased cocaine self-administration in the presence of active cocaine (Haney et 

al., 2001). With regard to D2-like receptor involvement in cognitive processes, some 

more studies, however with heterogeneous results, have been conducted. The D2-like 
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agonist bromocriptine was shown to have a facilitating effect on visuospatial working 

memory (Luciana et al., 1992; Luciana and Collins, 1997; Luciana et al., 1998; Mehta et 

al., 2001), but this effect was not observed in other studies (Kimberg et al., 1997; Müller 

et al., 1998; Gibbs and D’Esposito, 2005). D2 receptor antagonists like sulpiride also 

resulted in mixed outcomes, showing negative (Mehta et al., 1999; Mehta et al., 2004) 

and no effect on working memory performance (Mehta et al., 2005). Dosage-dependent 

non-linear effects, which might contribute to these heterogeneous effects, have not been 

explored in humans directly so far. However, some dosage-dependent effects might be 

present. This assumption is suggested by genetic studies showing that a polymorphism of 

the catechol-O-methyltransferase (COMT), an enzyme that metabolizes dopamine, 

determines working memory performance. Carriers of the Met-allele (low COMT 

activity, higher dopamine level in the PFC) are performing better than Val-allele carriers 

(high COMT activity, low dopamine level in the PFC) in a working memory task (Egan 

et al., 2001; Rosa et al., 2010). However, other studies suggest that there is no 

homogeneous effect of the COMT polymorphism on cognition (Barnett et al., 2007). 

Moreover, the effect, if present, might be task-dependent (Cools et al., 2001; Kimberg 

and D’Esposito, 2003; Cools and D'Esposito, 2011). It was argued that the impact of 

dopamine on cognitive processes might be determined by the respective cognitive 

demand. Tasks which require flexible manipulation of neural information/representation 

would demand cognitive flexibility (de-focusing effect) via D2 receptor-mediated 

processes, whereas tasks requiring stable maintenance of information/representation 

would require cognitive stability (focusing effect) via a D1 receptor-mediated process 

(Costa et al., 2014). This hypothesis was conceptualized by the computational model put 
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forward by Durstewitz and colleagues. In this model, a D1-dominated state favors 

cognitive stability by focusing on high activity states and increasing the threshold for 

noise, a D2-dominated state would allow cognitive flexibility via updating information by 

transition from different low activity states (Durstewitz et al., 2000; Seamans and Yang, 

2004).  

Evidence for such a task-dependent effect of dopaminergic modulation of 

cognition was observed in both healthy subjects and patients.  Performance of healthy 

subjects taking the D2 receptor blocker sulpiride was impaired in a set switching task 

which involved cognitive flexibility, but improved in a delayed response task which 

requires cognitive stability (Mehta et al., 2004). Similar effects were also observed in an 

fMRI study involving healthy subjects. Here, after the intake of the D2 agonist 

bromocriptine, an improvement in switching performance, which was accompanied by a 

drug-induced modulation of activity in the putamen (D2 dominant area) during learning 

was observed, whereas lateral frontal (D1 dominant area) activity was unaltered.  

However, lateral frontal activity, but not striatal activity was modulated by bromocriptine 

during distraction, which might require more stable information processing in the 

presence of noise (Cools et al., 2007). This latter study also suggests that dopaminergic 

modulation of learning is not only influenced by task demands, but might depend also on 

the specific phase of task. Further support for this hypothesis originates from animal 

studies (Ichihara et al., 1988; Sigala et al., 1997; Puig and Miller, 2012), however, 

empirical evidence is still limited. 
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1.4 Aims of the thesis 

 

 The general aim of the thesis is to explore the influence of dopamine on 

neuroplasticity in humans. Specifically, the two projects are designed to explore the 

effect of dopamine receptor subtypes on human motor cortical plasticity. 

Project I- This project specifically aims to define the contribution of D1-like receptors 

on motor cortex plasticity with specific regard to a dosage-dependency of the effect, as 

well as its impact on focal and non-focal plasticity. This project challenges the 

unavailability of a specific D1 agonist suitable for application in humans by using an 

indirect approach of activating D1-like receptors via combination of global dopamine 

enhancement with D2 receptor block.   

Project II- This project aims to identify the specific dosage-dependent role of D2 

receptor stimulation on motor cortex plasticity. By using a D2 agonist, we discern the 

impact of specific D2 receptor activation from the result of an earlier study which used a 

mixed D2/D3 agonist (Monte-Silva et al., 2009).   
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Chapter 2: Original articles and manuscripts   
  

 

This chapter contains the two published papers included in the thesis. The first 

study focuses on the dose-dependent effect of the dopamine D1 receptor on focal and 

non-focal plasticity in healthy human subjects. The second study explores the specific 

dose-dependent effect of D2 receptor activation also on focal and non-focal plasticity in 

healthy human subjects with the specific aim of disentangling this effect observed from 

results of a previous study which used a mixed D2/D3 receptor agonist. 

 

I- Fresnoza S, Paulus W, Nitsche MA, Kuo M-F (2014) Nonlinear Dose-Dependent 

Impact of D1 Receptor Activation on Motor Cortex Plasticity in Humans. The 

Journal of Neuroscience 34(7):2744-2753 (Published) 

 

 

 

II- Fresnoza S, Stiksrud E, Klinker F, Liebetanz D, Paulus W, Kuo M-F, Nitsche MA 

(2014) Dosage-dependent effect of D2 receptor activation on motor cortex 

plasticity in humans. The Journal of Neuroscience (Accepted)  
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2.1 Nonlinear Dose-Dependent Impact of D1 Receptor Activation 

on Motor Cortex Plasticity in Humans   

 

Studies exploring the impact of the D1-like receptors on plasticity are rare in humans due 

to the lack of D1-selective agents available for application in humans. Data from 

electrophysiological studies in animals suggest a “focusing effect” of D1 receptor 

activation by suppressing irrelevant neuronal activity, increasing signal-to-noise ratio 

(Williams and Goldman-Rakic, 1995; Vijayraghavan et al., 2007). Cognitive studies in 

animals suggest that an optimum concentration of dopamine is needed for such a 

focusing effect, since too much or too little D1 receptor stimulation impaired, whereas 

medium/optimal dosage facilitated performance in a working memory task (Seamans and 

Yang, 2004). In humans, a similar focusing effect of dopamine on neuroplasticity was 

initially revealed by electrophysiological studies on human motor cortex plasticity. 

Global dopamine activation with 100mg L-dopa reversed the non-focal excitability 

enhancing effect of anodal tDCS into inhibition, but stabilized the PAS-induced synapse-

specific excitability increase (Kuo et al., 2008). Moreover, a non-linear dosage dependent 

impact of global dopamine receptor activation was observed in motor cortex plasticity 

studies in humans. Too much or little dopamine receptor stimulation impaired or 

abolished, whereas medium/optimal stimulation preserved plasticity induced by tDCS 

and PAS except for the effect on anodal tDCS, which was reversed into inhibition in line 

with the previous result of Kuo and colleagues in 2008 (Monte-Silva et al., 2010; 

Thirugnanasambandam et al., 2011). These previous human studies however, did not 

account for a specific dosage dependent effect of D1 receptor stimulation observed in 

animal studies. Here, using an indirect approach by blocking the D2 receptors with 
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sulpiride and enhancing D1 receptor activity by different doses of L-dopa shows that too 

much and too little activation inversed, inhibited or abolished plasticity induced by tDCS 

and PAS, whereas under medium dosage, the excitability increase induced by anodal 

tDCS and excitatory PAS was preserved. For the excitability-diminishing effect of 

cathodal tDCS and inhibitory PAS, the effect was abolished and trendwise reversed under 

the medium dosage. Thus, D1 receptor activation also has a non-linear dosage dependent 

effect on motor cortex plasticity, however a focusing effect was not observed in this 

study. The present study also revealed that D1-like receptor stimulation seems to favor 

the excitability-enhancing effect of anodal tDCS and excitatory PAS to a certain degree 

compared to the excitability-diminishing plasticity inducing protocols.           
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2.2 Dosage-dependent effect of D2 receptor activation on motor 

cortex plasticity in humans   

 

 The impact of D2 receptor stimulation on plasticity (LTP and LTD) and 

behaviour in animals revealed conflicting findings (Jay, 2003). Enhancing, diminishing 

or null effects were reported, which might be associated with a non-linear dosage 

dependent effect of D2 receptor stimulation on respective processes.  In humans, D2 

receptor agonists and antagonists resulted in comparable heterogeneous effect on 

cognitive functions (Cools and D'Esposito, 2011), probably also caused by different 

degrees of receptor activation. Supporting evidence from electrophysiological studies in 

humans regarding a dosage-dependent effect however is scarce so far. A pioneering study 

exploring such a dosage-dependent effect of D2 receptor stimulation used the D2/D3 

receptor agonist ropinirole. The results of this study show an inverted “U”-shaped dose-

response curve on plasticity for facilitatory tDCS and PAS and for inhibitory tDCS. No 

dosage-dependent effect was evident for inhibitory PAS (Monte-Silva et al., 2009). 

However, ropinirole is a mixed agonist with a greater affinity for D3 receptors, which 

exhibit different, and in some instances opposing effects to those of D2 receptors. In the 

present study, we specifically targeted the D2 receptors by bromocriptine. The results 

show that D2 receptor activation has a non-linear dosage dependent effect on focal and 

non-focal plasticity induced by tDCS and PAS respectively. Low and high dosage 

impaired or abolished plasticity, whereas under medium dosage the plasticity induced by 

cathodal tDCS and inhibitory PAS was preserved. In contrast, non-focal excitability 

enhancement by anodal tDCS was abolished, while the focal excitability enhancement 



 

 40 

induced by excitatory PAS was diminished. Thus D2 receptor stimulation facilitated 

inhibitory plasticity, but reduced excitatory plasticity. Interestingly, a focusing effect was 

observed under the D2 receptor stimulation with regard to facilitatory plasticity, but to a 

minor degree, as compared with global dopamine receptor stimulation.        
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Dosage-dependent effect of D2 receptor activation on motor cortex 

plasticity in humans   

Shane Fresnoza¹, Elisabeth Stiksrud¹, Florian Klinker¹, David Liebetanz¹, Walter 

Paulus¹, Min-Fang Kuo¹*, and Michael A. Nitsche¹*  

¹Department of Clinical Neurophysiology, Georg-August-University, Robert-Koch-Strasse  

40, 37075 Göttingen 

* These co-authors contributed equally  

 

Abstract 
The neuromodulator dopamine plays an important role in synaptic plasticity. The effects 

depend on receptor subtypes, affinity, concentration level and the kind of neuroplasticity 

induced.  In animal experiments, D2-like receptor stimulation revealed partially 

antagonistic effects on plasticity, which might be explained by dosage-dependency. In 

humans, D2 receptor block abolishes plasticity, and the D2/D3, but predominant D3 

receptor agonist ropinirol has a dosage-dependent non-linear impact on plasticity. Here 

we aimed to determine the specific impact of D2 receptor activation on neuroplasticity in 

humans, because physiological effects of D2, and D3 receptors might differ. Therefore 

we combined application of the selective D2 receptor agonist bromocriptine (2.5mg, 

10mg and 20mg, or placebo medication) with anodal and cathodal transcranial direct 

current stimulation (tDCS), which induces non-focal plasticity, and with paired 

associative stimulation (PAS) generating of a more focal kind of plasticity in the motor 

cortex of healthy humans. Plasticity was monitored by transcranial magnetic stimulation 

(TMS)-induced motor evoked potential amplitudes (MEP). For facilitatory tDCS, 
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bromocriptine prevented plasticity induction independent from drug dosage. Its 

application resulted however, in an inverted U-shaped dose-response curve on inhibitory 

tDCS, excitability-diminishing PAS and to a minor degree on excitability-enhancing 

PAS. These data support the assumption that modulation of D2-like receptor activity 

exerts a non-linear dose-dependent effect on neuroplasticity in the human motor cortex, 

which differs from predominant D3 receptor activation, and that the kind of plasticity 

induction procedure is relevant for its specific impact. 

 

Introduction 

 
Dopamine modulates learning and memory formation. This effect is probably 

based on its impact on neuroplasticity, such as long term potentiation (LTP) and long 

term depression (LTD), as observed in animal studies (Jay, 2003). The precise 

mechanism of the dopaminergic impact on plasticity is complex, and depends on receptor 

subtype, concentration level and type of plasticity (Seamans and Yang, 2004; Kuo et al., 

2008). Therefore, obtaining knowledge about dosage-dependent effects of specific 

dopamine receptor activation on synaptic plasticity in vivo in humans is critical. 

Animal cognitive and human electrophysiological studies revealed non-linear 

dosage-dependent effects of non-selective and D1-like receptor activation on 

performance and plasticity (Seamans and Yang, 2004; Monte-Silva et al., 2010; 

Thirugnanasambandam et al., 2011; Fresnoza et al., 2014). Insufficient or too much 

dopamine impairs, while an optimum dose facilitates performance (Williams and 

Goldman-Rakic, 1995). Accordingly, the impact of global dopaminergic and D1 receptor 

activation on plasticity in humans differs with regard to dosage, plasticity-induction 
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procedures and direction of plasticity (facilitatory versus excitability-diminution) (Monte-

Silva et al., 2010; Thirugnanasambandam et al., 2011; Fresnoza et al., 2014). For the 

contribution of D2-like receptors however, variable effects on plasticity have been 

obtained in animal experimentation (Chen et al., 1996b; Otani et al., 1998; Manahan-

Vaughan and Kulla, 2003) and human cognitive studies (Breitenstein et al., 2006; 

Meintzschel and Ziemann, 2006). The D2/D3 agonist Ropinirole revealed a non-linear 

dosage-dependent effects on facilitatory, but not inhibitory plasticity in humans (Monte-

Silva et al., 2009). However, ropinirole predominantly activates D3 rather than D2 

receptors (Coldwell et al., 1999). Animal experiments suggest different effects of D2, and 

D3 receptors on memory consolidation and locomotor activity in rats (facilitation by D2 

and inhibition by D3 receptor activation) (Kling-Petersen et al., 1995; Sigala et al., 1997). 

For neurotensin gene expression in rats, D2 has a negative, while D3 has a positive effect 

(Diaz et al., 1994). For a full overview of the contribution of dopaminergic receptor 

subtypes on human brain plasticity, a clarification of the specific effect of D2 receptor 

activation on plasticity in humans is warranted.  

To this aim, we applied transcranial direct current stimulation (tDCS) and paired 

associative stimulation (PAS) in combination with three doses (2.5, 10, 20mg, and 

placebo) of bromocriptine, a selective D2 receptors agonist. tDCS induces a polarity-

dependent, non-focal type of glutamatergic plasticity (Nitsche et al., 2008). Anodal 

stimulation enhances, while cathodal tDCS diminishes excitability of the primary motor 

cortex. PAS induce focal/synapse-specific glutamatergic plasticity of somatosensory-

motor cortical connections. The mechanism resembles to a certain degree spike timing-

dependent plasticity. The synchrony between motor cortex stimulation and an afferent 
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somatosensory stimulus elicited by peripheral nerve stimulation determines the effect 

direction (Stefan et al., 2000; Stefan et al., 2002; Wolters et al., 2003).  

We hypothesized that specific D2 receptor activation has a non-linear impact on 

plasticity, which depends on the kind of plasticity induction protocol. 

 

Materials and Methods 

 
Subjects. Twelve right-handed, healthy subjects participated in each experiment [tDCS 

experiment: 7 males, 5 females, age 27.92 + 1.60 years (mean + SD) and PAS 

experiment: 7 males, 5 females, age   28.42 + 1.08 years (mean + SD)]. Subjects with a 

history of medical diseases, metallic or electric implants in the body, intake of medication 

during or up to 2 weeks before participating in the study, and smokers and recreational 

drug users were excluded. Pregnancy was ruled out by a pregnancy test. Subjects gave 

written informed consent prior to participation. The study was approved by the Ethics 

Committee of the University of Göttingen and conforms to the Declaration of Helsinki.  

Monitoring of corticospinal excitability. The peak-to-peak amplitudes of motor evoked 

potentials (MEP) induced over the motor cortex representation of the right abductor digiti 

minimi muscle (ADM) by TMS was used to monitor corticospinal excitability. Initially, 

single-pulse TMS generated by a Magstim 200 magnetic stimulator (Magstim Company) 

at a frequency of 0.25 Hz via a figure of eight magnetic coil (diameter of one winding = 

70 mm,  peak magnetic field = 2.2 tesla) was used to determine optimal coil position, 

defined as the site where stimulation resulted in the largest MEP amplitudes. The coil 

was held tangentially to the scalp at an angle of 45° to the midsagittal plane with the 

handle pointing laterally and posteriorly generating an anterior-posterior current 

direction in the brain. Electromyographic (EMG) recording was obtained from the right 
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ADM with Ag–AgCl electrodes attached in a belly–tendon montage. Signals were 

filtered (30 Hz to 2 kHz), amplified (Digitimer 360, Digitimer Ltd, Welwyn Garden City, 

Herts, UK), and then stored on a computer via a Power 1401 data acquisition interface 

(Cambridge Electronic Design Ltd, Cambridge, UK). Analysis was carried out using 

Signal Software (Cambridge Electronic Design). TMS intensity was adjusted to elicit 

baseline MEPs of averaged 1 mV peak-to-peak MEP amplitude and was kept constant for 

the post-stimulation assessment unless adjusted (see below). 

 

Nonfocal plasticity induction by tDCS (experiment 1). A battery-driven constant 

current stimulator (NeuroConn GmbH, Ilmenau, Germany) with a maximum output of 

4.5 mA was used for tDCS via a pair of saline-soaked surface sponge electrodes each 

measuring 7x5 cm. We positioned one electrode over the motor cortex representation 

area of the right ADM, and the other above the right supra-orbital area. A current strength 

of 1 mA was administered for 13 min for anodal tDCS and 9 min for cathodal tDCS, 

which induce cortical excitability alterations lasting for about 1 hour after the end of 

stimulation (Nitsche et al., 2008). 

Focal plasticity induction by PAS (experiment 2). A single TMS pulse with the 

stimulation intensity resulting in an MEP amplitude of approximately 1 mV was 

combined with a peripheral nerve stimulus (Digitimer D185 stimulator, Digitimer Ltd, 

Hertfordshire, England), which delivered an electrical pulse to the right ulnar nerve at the 

wrist level (cathode proximal, square waveform of 50µs duration). The intensity was set 

to three times higher than the individual sensory perceptual threshold. Peripheral nerve 

stimulation was followed by the TMS stimulus with interstimulus intervals (ISI) of 10 ms 
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(inhibitory PAS: PAS10) for LTD-like plasticity or 25 ms (excitatory PAS: PAS25) for 

LTP-like plasticity induction. For PAS10, the somatosensory stimulus reaches the motor 

cortex relevantly earlier than the TMS stimulus applied over the motor cortex, while 

PAS25 results in synchronous arrival of the somatosensory and TMS stimulus at this 

area. Ninety pairs of stimuli were administered at a frequency of 0.05 Hz for 30 min 

(Stefan et al., 2000; Stefan et al., 2002; Wolters et al., 2003).  

Pharmacological Intervention. Two hours before the start of the plasticity-inducing 

protocols, the participants received low (2.5 mg), medium (10 mg) or high (20 mg) 

dosages of bromocriptine or placebo medication at each experimental session. These 

dosages cause systemic changes of cortical activity and performance (Kimberg et al., 

2001; Franken et al., 2008). To prevent systemic side effects of bromocriptine like nausea 

and vomiting, subjects received 20 mg of the peripheral acting dopaminergic antagonist 

domperidone three times per day for two days prior to the experiment and also 2 hours 

before bromocriptine intake. 20 mg domperidone alone exerts no effects on motor 

cortical excitability (Grundey et al., 2013).  

Experimental procedures. The experiment was conducted in a double-blinded, 

randomized and placebo-controlled design. Each subject participated in 8 sessions 

(experiment 1 or 2) separated by an interval of at least 1 week to avoid interference 

effects. Subjects were seated on a reclining chair with head and arm support, and were 

asked to relax, but maintain their eyes open during the course of the experiment. EMG 

electrodes were placed at the right ADM using a belly-tendon montage. To ensure 

consistency, a skin marker was placed on the position of the EMG electrodes and motor 

cortex hotspot as identified by TMS.  Then the TMS intensity which resulted in a MEP 
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amplitude of about 1 mV was identified (SI1mV). At least 25 MEPs were recorded as 

baseline 1 with this stimulus intensity. Immediately after the baseline measurement, the 

participants received placebo medication or 2.5, 10 or 20mg bromocriptine. After 2 

hours, another set of 25 MEPs (baseline 2) was obtained to check for any drug-induced 

change of MEP amplitudes.  If baseline 2 differed relevantly (0.2 mV) from baseline 1, 

TMS intensity was re-adjusted to produce stable MEP amplitudes of about 1 mV 

(baseline 3). Then anodal tDCS (13min), cathodal tDCS (9 min), PAS25, or PAS10 was 

applied. Following intervention, 25 MEPs were recorded at the time points of 0, 5, 10, 

15, 20, 25, 30, 60, 90, and 120 min, same day evening, next morning, next afternoon and 

next evening (Figure 1). Based on the results of previous studies, significant after effects 

at the post-intervention days could not be ruled out. This warrants the long-term 

monitoring of excitability in the present experiment (Kuo et al., 2008; Monte-Silva et al., 

2009; Monte-Silva et al., 2010; Thirugnanasambandam et al., 2011).  

Data analysis and statistics. The individual MEP amplitude means of baselines 1, 2, and 

3 and all time points after plasticity induction were calculated. Post-intervention MEP 

amplitudes were normalized to baseline 2 only if baseline 2 did not differ significantly 

from baseline 1, otherwise baseline 3 was used for normalization. Normalized MEP 

amplitudes were pooled together session-wise by calculating the grand average across 

subjects for each condition and time point. After checking for normal distribution 

(Shapiro-Wilk Test), a mixed linear model analysis (SPSS 21, SPSS Inc. Chicago, 

Illinois) with subject as the random-effect covariate was applied with the MEP amplitude 

(as measured over time from baseline up to the next evening) as the dependent variable. 

Stimulation (tDCS and PAS), polarity (anodal and cathodal tDCS; PAS25 and PAS10), 
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drug dosage (2.5, 10, 20 mg of bromocriptine and placebo) time and the respective 

interactions were treated as fixed-effect covariates. We used the partial eta squared (η²) 

calculated from an univariate ANOVA model to obtain effects sizes, since linear mixed 

models do not provide respective values. Fisher’s LSD post hoc tests (paired, two-tailed, 

p < 0.05), which do not correct for multiple comparisons, were performed to compare (1) 

the mean MEP amplitudes at all time points after tDCS or PAS versus baseline 2 or 3 and 

(2) the mean MEP amplitude obtained at a specific time point for the various drug 

conditions against the respective placebo medication condition. Baseline 1, 2 and 3 MEP 

amplitudes were compared to test for any drug influence alone on cortical excitability, 

and to exclude baseline differences between medication/stimulation conditions. 

Furthermore, we performed the same mixed linear model analysis with subjects as 

random factor for the standardized MEP amplitudes pooled for the first 60 min after 

plasticity induction. Then a Fisher’s LSD post hoc test (paired, two-tailed, p < 0.05) was 

used to compare the first 60 minutes MEP amplitude of the respective placebo 

medication conditions with the first 60 minutes MEP amplitudes under real medication 

for all plasticity induction protocols.  

 

Results 

With regard to side effects, two hours after oral intake of 20 mg bromocriptine, 3 

subjects experienced dizziness, nausea and vomiting, while hypotension was observed in 

one subject. 1 session had to be cancelled. Under low dosage, one subject experienced 

dizziness and one hypotension, under medium dosage only one subject developed 
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dizziness. All symptoms were fully reversible and the remaining subjects tolerated the 

drugs well.  

Baseline peak-to-peak MEP amplitudes and baseline TMS intensity in percentage of  

maximal stimulator output were not affected by the drug, and did not differ between 

conditions (P ≥ 0.05, Student's paired, two-tailed t test; see Table 1).  

The data were normally distributed (Shapiro-Wilk test, all p > 0.05). Results of 

the mixed linear model analysis revealed significant effects of drug dosage (df = 3, F = 

20.015, p = <.001, ƞ² = .020), polarity (df = 1, F = 139.812, p = <.001, ƞ² = .046), time 

course (df = 14, F = 1.947, p = .015, ƞ² = .010), and significant interactions stimulation x 

dosage (df = 3, F = 4.337, p = .005, ƞ² = .004), dosage x polarity (df = 3, F = 75.237, p = 

<.001, ƞ² = .073), stimulation x dosage x polarity (df = 3, F = 5.111, p = .002, ƞ² = .005), 

polarity x time course  (df = 14, F = 6.701, p = <.001, ƞ² = .032), and drug dosage x 

polarity x time course (df = 42, F = 3.361, p = <.001,  ƞ² = .047), (see Table 2).  Further 

analysis of the MEP amplitudes for the first 60 minutes after stimulation using a mixed 

linear model with subjects as random factor revealed significant main effects of 

stimulation (df = 1, F = 4.594, p = .032), drug dosage (df = 3, F = 18.018, p = <.001), 

polarity (df = 1, F = 172.777, p = <.001), and significant interactions stimulation x 

dosage (df = 3, F = 3.070, p = .027), polarity x dosage (df = 3, F = 86.633, p = <.001) and 

stimulation x dosage x polarity interactions (df = 3, F = 3.484, p = <.015).  

 

Dose-dependent effect of D2 receptor activation on tDCS-induced neuroplasticity 

As revealed by the respective post hoc tests, under placebo medication anodal tDCS 

increased excitability compared to baseline for up to 30 min after stimulation, while 
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cathodal tDCS significantly decreased excitability for 25 min (Figure 2A, 2B). Low 

dosage bromocriptine prevented any effect of tDCS, as compared to the respective 

baseline MEP values. For anodal tDCS, the low-dosage bromocriptine condition 

consequently differed from placebo until same evening, while for cathodal tDCS, the 

respective difference was significant for up to 25 minutes after stimulation (Figure 2A, 

2B). Under medium dosage bromocriptine, the anodal tDCS-induced after effect was 

trendwise reversed until 30 minutes after stimulation and the evening of the second day. 

For cathodal tDCS, medium dosage bromocriptine prolonged the MEP-reducing after 

effect significantly for up to 60 minutes after stimulation compared to baseline. 

Compared to placebo medication, the anodal tDCS-elicited after effect was significantly 

different from medium dosage bromocriptine until 30 minutes after tDCS, while for 

cathodal tDCS no significant difference between placebo and medium dosage 

bromocriptine was observed (Figure 2A, 2B). High-dosage medication resulted in similar 

effects as low dosage medication on tDCS-generated excitability alterations. For anodal 

tDCS, MEP amplitudes did not differ from baseline values, but were significantly 

reduced relative to placebo medication for up to 30 minutes after stimulation. For 

cathodal tDCS, similarly, MEP amplitudes did not differ relative to baseline, but differed 

from cathodal tDCS-generated excitability reductions under placebo medication for 20 

minutes (Figure 2A, 2B). For the pooled MEP amplitudes (first 60 minutes after anodal 

tDCS), low (p = <.001), medium (p=<.001) and high dosage (p=<.001) were significantly 

different compared to placebo medication (Figure 4A) (post hoc t-test, two-tailed, p < 

0.05). However, only low (p=<.001) and high dosage (p=<.001) conditions were 

significant compared to placebo medication after cathodal tDCS (Figure 4A) (post hoc t-
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test, two-tailed, p < 0.05). In summary, bromocriptine dosage-dependently prevented or 

modified tDCS-induced excitability changes towards an excitability-diminishing 

direction. As can be seen from figure 4B, relevant interindividual variability was present 

throughout the different medication conditions, especially with regard to low, and high 

dosage bromocriptine application. 

Dose-dependent effect of D2 receptor activation on PAS-induced neuroplasticity 

The results of the post hoc tests show that under placebo medication PAS25 

increased excitability significantly compared to baseline for 30 min, whereas PAS10 

decreased excitability for 60 minutes after stimulation compared to baseline (Figure 3A, 

3B). For low dosage bromocriptine, excitatory and inhibitory PAS had no impact on 

MEP amplitudes, as compared to baseline. Compared to placebo medication, MEP 

amplitudes differed significantly until 90 minutes after PAS25 and PAS10 after plasticity 

induction (Figure 3A, 3B). Under medium dosage bromocriptine, MEP amplitudes were 

significantly enhanced versus baseline only for 20 min after excitatory PAS. In relation to 

the placebo medication condition, the respective excitability enhancement was 

significantly diminished for 30 minutes after plasticity induction. The MEP amplitudes 

after PAS10 were significantly reduced compared to baseline values until 90 min after 

stimulation. Compared to placebo medication, MEP amplitudes were not significantly 

different for PAS10 (Figure 3A, 3B). High dosage bromocriptine prevented any after-

effects of PAS, as compared to baseline MEP values. Consequently MEP amplitudes 

differed significantly from those under placebo medication for 30 minutes after PAS25 

and 25 min after PAS10 (Figure 3A, 3B). For the pooled MEP amplitudes (up to 60 min 

after stimulation), the after effects of excitatory PAS under bromocriptine were 
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significantly different compared with the placebo medication condition [(low dose 

(p=<.001); medium dose (p=<.001) and high dose (p=<.001)] (Figure 4A) (post hoc t-

test, two-tailed, p < 0.05).  For inhibitory PAS, low (p=<.001) and high dosages 

(p=<.001) of the drug were significantly different from the placebo medication condition 

while the medium dosage (p=.339) did not result in significant differences (Figure 4A) 

(post hoc t-test, two-tailed, p < 0.05). In summary, D2 receptor activation by 

bromocriptine has a non-linear dosage-dependent effect on PAS-induced plasticity: 

whereas low and high dosages prevented any PAS-induced neuroplasticity, the medium 

dosage preserved PAS10-induced LTD-like plasticity, and did diminish, but not 

completely abolish the after-effects of PAS25. Similar as for the tDCS data, condiderable 

interindividual variability of the results can be seen in figure 4B, which is largest for 

medium and high bromocriptine for PAS25, and for the low, and high dosage of the drug 

for PAS10. 

Discussion 

D2 receptor activation had non-linear dosage-dependent effects on motor cortex 

plasticity in humans. Low and high D2 receptor activation prevented plasticity induction 

irrespective of the specific stimulation protocol. Medium activation preserved inhibitory 

plasticity however, diminished focal and prevented non-focal facilitatory plasticity. These 

effects differ from those of combined D2/D3 activation (Monte-Silva et al., 2009).  

D2 receptor modulation of LTP-like plasticity 

  D2 receptor activation caused non-linear dosage-dependent effects on LTP-like 

plasticity induced by focal plasticity induction and prevented non-focal plasticity 
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irrespective of drug concentration. Low, and high receptor activation prevented plasticity. 

Under medium-dosage bromocriptine, focal PAS-generated plasticity was diminished, 

while non-focal facilitatory plasticity was prevented. Thus D2 activation, as performed in 

the present study, has a deleterious effect on LTP-like plasticity. This does not mean that 

D2 receptor activity per se has a disruptive effect on LTP-like plasticity. D2 receptor 

block abolished LTP-like plasticity in previous experiments (Nitsche et al., 2006; Nitsche 

et al., 2009), and in the present experiment bromocriptine in any dosage enhanced D2 

activity on top of physiological activity. Therefore physiological activity of D2 receptors, 

which is compromised by both, D2 receptor block, or hyperactivity induced by 

bromocriptine, might be necessary for optimal plasticity induction. Since bromocriptine 

had however heterogeneous effects on cognitive functions in humans (Luciana et al., 

1992; Kimberg et al., 1997; Luciana and Collins, 1997; Müller et al., 1998; Mehta et al., 

2001) including improvement, it might also be argued that state-dependent heterogeneous 

optimal physiological levels of D2 activity do exist, which to a certain degree are 

mimicked by pharmacological intervention. In accordance, global activation of the 

dopaminergic system, and predominant activation of D3 or D1 receptors did not in each 

case disrupt plasticity (Monte-Silva et al., 2009; Monte-Silva et al., 2010; 

Thirugnanasambandam et al., 2011; Fresnoza et al., 2014). The non-linear effect of D2 

receptor activation on focal LTP-like plasticity is in accordance with results of D2/D3 

receptor activation and of non-selective dopamine receptor activation (Monte-Silva et al., 

2009; Thirugnanasambandam et al., 2011). However, the plasticity-preventing effect of 

bromocriptine on non-focal plasticity (anodal tDCS) under the medium dose differs from 

the conversion to LTD-like plasticity accomplished via global dopamine receptor 



 

 54 

activation (Kuo et al., 2008; Monte-Silva et al., 2010), suggesting a role of D1 receptor 

activation for this type of plasticity (Fresnoza et al., 2014). It also differs from the results 

obtained by predominant D3 receptor activation, which preserved the respective after-

effects. The differences between D2 and D3 receptor activation might be mechanistically 

explained by the fact that D3 receptors modulate cortical activity by coactivation with D1 

receptors (Avalos-Fuentes et al., 2013). Thus enhanced activation of D3 receptors 

together with spontaneous D1 activity could cause the effects of ropinirole. Accordingly, 

medium-dosage D1 activation resulted in similar effects (Nitsche et al., 2009).  

The effect of D2 receptor activation on LTP-like plasticity can be explained by 

pre-, and postsynaptic effects. Low concentrations of the drug act primarily on 

presynaptic auto-receptors, thus reducing freely available dopamine (Benoit-Marand et 

al., 2001), which would result in reduced glutamatergic activity and calcium release 

needed for plasticity induction (Lisman, 2001). Indeed, reduction of postsynaptic 

dopaminergic activity has been shown to prevent tDCS-, and PAS-induced plasticity 

(Nitsche et al., 2006; Nitsche et al., 2009). For the medium dosage, D2 receptor 

stimulation diminished the excitatory effect of PAS25, and prevented plasticity induction 

by anodal tDCS. This can be explained the activation of postsynaptic D2 receptors, which 

diminish GABAergic, and glutamatergic receptor activity (Seamans and Yang, 2004). 

For PAS, which induces phasic suprathreshold synaptic activation, the reduction of 

glutamate-driven calcium influx in the postsynaptic neuron might have been not 

sufficient to block LTP-like plasticity, while being sufficient to reduce the tonic, lower-

level calcium influx induced by subthreshold tDCS to prevent plasticity. Alternatively, 

GABA reduction might have caused a lack of inhibition, and thus might have resulted in 
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calcium overflow predominantly for tDCS-induced LTP-like plasticity, which could 

result in larger calcium levels as compared to PAS, because it is synaptically less 

restricted, and causes tonic calcium influx. In accordance, excessive duration of anodal 

tDCS induces LTD-like plasticity (Monte-Silva et al., 2013). These mechanisms would 

then be responsible also for the abolishment of LTP-like plasticity independent from the 

induction procedure in case of high level D2 receptor activation. 

D2 receptor modulation of LTD-like plasticity 

The impact of D2 receptor activation on LTD-like plasticity follows an inverted 

U-shaped curve, strengthening the assumption that LTD depends on D2 receptor 

activation (Wilson, 2006), and consistent with the effect of global dopaminergic 

activation on  cathodal tDCS and PAS10 (Monte-Silva et al., 2010; 

Thirugnanasambandam et al., 2011), as well as with the impact of D3/D2 receptor 

activation on cathodal tDCS (Monte-Silva et al., 2009). In difference, ropinirole had no 

impact on PAS10-induced plasticity at any dosage.  

Mechanisms of action might be similar to the effect of D2 agonism on LTP-like 

plasticity, since PAS10 and cathodal tDCS also induce glutamatergic and calcium-

dependent plasticity (Liebetanz et al., 2002; Wolters et al., 2003). Under low-dosage 

bromocriptine, D2 autoreceptor activation could prevent plasticity due to reduced 

dopamine release. For the medium dose, the preservation of both focal and nonfocal 

LTD-like plasticity would have been caused by a sufficient calcium influx via D2 

activation for LTD-like plasticity induction. High dosage bromocriptine would abolish 

the after effects of both, cathodal tDCS and inhibitory PAS, by exceeding calcium 

increase caused by reduced GABAergic inibition. In accordance, cathodal tDCS with an 
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intensity of 2 mA, which should result in larger calcium increase compared to 1 mA 

stimulation, as applied in the present study, induces no LTD-like plasticity (Batsikadze et 

al., 2013). Alternatively, D2 receptor-dependent reduction of NMDA receptor activation 

(Seamans and Yang, 2004) could have abolished plasticity, since both, cathodal tDCS, 

and PAS10, require NMDA receptor activation.  

 

General Remarks 

The present study together with former experiments (Nitsche et al., 2006; Kuo et 

al., 2008; Monte-Silva et al., 2009; Nitsche et al., 2009; Monte-Silva et al., 2010) adds 

information about the contribution of dopamine receptor subtypes to neuroplasticity. Our 

results support to some extent the contribution of D2 receptors to the “focusing effect” 

(strengthening of focally induced, but weakening/conversion of non-focally induced 

LTP-like plasticity) observed under global dopaminergic activation (Kuo et al., 2008). 

Focal facilitatory plasticity was diminished, but not abolished, whereas non-focal 

plasticity was prevented. This effect might underlie the signal-to-noise modulation that 

dopamine exerts on task-relevant neural processes. Accordingly, optimal dopamine levels 

would modulate task-related neural processing allowing for flexible use of information, 

whereas low level of dopamine would reduce the likelihood that a memory trace will be 

retained and excessive dopamine levels prevent the updating or replacement of 

information in current memory stores (Durstewitz et al., 2000). Whereas these 

mechanisms were proposed primarily for working memory functions, the results of our 

studies propose that they might also be relevant for long-term memory storage. The non-

linear effects of D2 receptor stimulation on plasticity do not only imply the need for an 
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optimal degree of D2 receptor activation, but might also explain the contribution of D2 

receptor over-activity for the development of psychotic symptoms (Seeman and Kapur, 

2000). Specifically, the lack of plasticity present under high activation of D2 receptors 

might enhance noise in brain networks, and therefore lead to erroneous information 

processing. Furthermore, the involvement of D2-like receptors in the facilitatory control 

of memory consolidation (Sigala et al., 1997) might have a promising therapeutic 

potential for patients suffering from Parkinson’s disease, where rehabilitation involves 

improving cognitive functions as well.  

Some potential limitations of the present study should be taken into account. First, 

the mechanistical explanation of the results is speculative at present. However, our 

findings correlate well with known D2 receptor action. Second, high variability in the 

response to tDCS was reported recently (Wiethoff et al., 2014), and variability, although 

to a somewhat minor degree, was also present in this study. Differences of variability 

between studies might be caused by the fact that our plasticity-induction protocols differ 

from that performed in the aforementioned study. Stimulation with an intensity of 2 mA, 

as compared with 1 mA stimulation, as performed in the present study, might result in 

non-linear effects of tDCS (Batsikadze et al. 2013). Third, dopaminergic medication 

seems to enhance interindividual variability. This is probably caused by the dosage-

dependent modulatory effect of dopamine, which could in combination with genetic 

polymorphisms (Hung Choy Wong et al., 2000; Witte and Flöel, 2012; Witte et al., 2012; 

Kristin et al., 2013), and differences of resorption of the substance, which we both did not 

explore, result in interindividually different activation of D2 receptors in spite of identical 

dosages. Finally, blinding might have been compromised in 1 subject for whom the 
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respective session had to be cancelled due to vomiting after the high dosage of 

bromocriptine. In the majority of subjects however, side effects, if present, occurred 

across different dosages of the drug, thus blinding should have been maintained in these 

cases. Additionally, multiple sessions, blinded tDCS and PAS protocols, medication, and 

identical after-measurement durations in all conditions should have guaranteed blinding 

in general. 
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Table 1. Peak-to-peak MEP amplitudes and TMS intensity before and after 

application of bromocriptine. 

 Bromo 

Criptine 

Baseline 1 Baseline 2 Baseline 3 

  MEP (mV) MSO (%) MEP (mV) MSO (%) MEP (mV) MSO (%) 

Anodal  2.5mg 1.078+0.03 41.5+ 1.7 1.207+0.15 41.5+ 1.7 1.135+0.03 40.4+ 1.8 

tDCS 10mg 1.122+0.02 40.0+1.5 1.067+0.10 40.0+1.5 1.064+0.03 40.7+ 1.6 

 20mg 1.115+0.02 41.5+ 2.0 1.074+0.06 41.5+ 2.0 1.079+0.02 39.0+ 1.5 

Cathodal 2.5mg 1.080+0.03 42.2+ 1.7 1.241+0.12 42.2+ 1.7 1.082+0.03 39.7+ 2.0 

tDCS 10mg 1.051+0.02 41.7+ 2.1 1.021+0.04 41.7+ 2.1 1.040+0.02 41.2+ 0.7 

 20mg 1.063+0.02 42.2+ 1.6 1.234+0.20 42.2+ 1.6 1.123+0.02 43.0+ 1.7 

PAS25 2.5mg 1.071+0.03 47.6+ 2.8 0.971+0.10 47.6+ 2.8 1.045+0.03 48.0+ 3.2 

 10mg 1.070+0.02 47.6+ 2.7 0.879+0.13 47.6+ 2.7 1.045+0.02 46.4+ 2.7 

 20mg 1.106+0.02 50.2+ 3.5 0.966+0.10 50.2+ 3.5 1.120+0.03 49.0+ 2.1 

PAS10 2.5mg 1.079+0.03 50.2+ 3.1 1.164+0.14 50.2+ 3.1 1.064+0.03 49.8+ 3.2 

 10mg 1.119+0.03 47.2+ 2.7 0.966+0.06 47.2+ 2.7 1.041+0.03 39.5+ 3.0 

 20mg 1.018+0.02 47.7+ 2.7 1.029+0.10 42.3+ 2.4 1.011+0.03 50.4+ 4.0 
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Shown are the mean MEP amplitudes and stimulation intensities (percentage of 

maximum stimulator output, MSO) mean ± S.E.M. of baselines 1, 2 and 3. There was no 

significant difference between these parameters across the different conditions (Student’s 

t test, paired, two-tailed, p > 0.05). 

 

Table 2. Results of the ANOVA conducted for tDCS and PAS.  

 df F value p value ƞ² 

Stimulation 1 1.624 .203 .001 

Dosage  3 20.015 <.001* .020 

Polarity 1 139.812 <.001* .046 

Time course 14 1.947 .015* .010 

Stimulation x dosage 3 4.337 .005* .004 

Stimulation x polarity 1 3.373 .066 .001 

Dosage x polarity 3 75.237 <.001* .073 

Stimulation x dosage x polarity 3 5.111 .002* .005 

Stimulation x time course 14 .756 .718 .004 

Dosage x time course 42 .882 .687 .013 

Stimulation x dosage x time 

course 

42 .541 .993 .008 

Polarity x time course 14 6.701 <.001* .032 

Stimulation x polarity x time 

course 

14 .379 .981 .002 

Dosage x polarity x time course 42 3.361 <.001* .047 

Stimulation x dosage x polarity x 

time course 

42 .571 .988 .008 
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The ANOVA encompasses the time course of the MEP measures up to next evening after 

stimulation. Asterisks indicate significant results (p<0.05). df, Degrees of freedom; ƞ², 

partial eta squared (measure of effect size). 

 

Figures: 

 

Figure 1.  Course of the Experiments. MEPs elicited by single-pulse TMS over the 

motor hot spot of the right ADM were recorded at 1 mV intensity before drug intake 

[baseline 1 (BL TMS 1)]. Two hours after drug intake, baseline 2 (BL TMS 2) was 

recorded to look for an effect of the drug on cortical excitability. In case of any MEP 

alterations from baseline 1, baseline 3 (BL TMS 3) was recorded by adjusting the 

stimulator output to obtain a mean MEP amplitude of 1 mV. Then tDCS (anodal or 

cathodal) or PAS (excitatory or inhibitory) were administered, immediately followed by 
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MEP after-measurements that covered 120 min. Additional after-measurements were 

performed at the same evening (SE), and the morning (NM), afternoon (NA) and evening 

(NE) of the second day following plasticity induction. 
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Figure 2. Dose-dependent effect of D2 receptor activation on nonfocal plasticity 

induced by anodal and cathodal tDCS (experiment 1). The x-axis displays the time 

points (in minutes) of after-measurements during the experiment. MEP amplitudes 

standardized to the corresponding baseline values (mean ± SEM) are plotted on the y-

axis. The graphs show that under placebo medication, anodal tDCS induces an 

excitability enhancement lasting for about 30 min, whereas cathodal tDCS diminishes 

excitability for 25 min following stimulation. A, Low-dose (2.5mg), medium dose 

(10mg) and high-dose (20mg) bromocriptine prevented the anodal tDCS-generated 

aftereffects. B, Low dose and high dose bromocriptine prevented the cathodal tDCS-

generated aftereffects, while under medium dose the aftereffects were preserved. Filled 

symbols indicate statistically significant deviations of the post-tDCS MEP values 

compared to baseline. The “#”“*” “X” symbols indicate significant differences of the 

real medication compared with the placebo medication conditions at the same time points 

after plasticity induction (Fisher LSD post hoc test , paired, two-tailed, p ≤ 0.05). SE: 

same evening; NM: next morning; NA: next afternoon; NE: next evening. Error bars 

show standard error of mean (S.E.M.). #: 2.5mg bromocriptine. *: 10mg bromocriptine. 

X: 20mg bromocriptine.  
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Figure 3. Dose-dependent effects of D2 receptor activation on focal neuroplasticity 

induced by PAS25 and PAS10 (experiment 2). The x-axis displays the time points (in 
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minutes) of after-measurements during the experiment. MEP amplitudes standardized to 

the corresponding baseline values (mean ± SEM) are plotted on the y-axis. The graphs 

show that under placebo medication, excitatory PAS (PAS25) induces an excitability 

enhancement lasting for about 30 min, whereas inhibitory PAS (PAS10) diminishes 

excitability for 60 min following stimulation. A, Low dose (2.5 mg) and high dose 

(20mg) bromocriptine suppress the aftereffects of PAS25 respectively, whereas medium 

dose (10mg) reduced, but did not abolish them. B, Low dose (2.5mg) and high dose 

(20mg) bromocriptine prevented the PAS10 aftereffects. Filled symbols indicate 

statistically significant deviations of the post-tDCS MEP values compared to baseline. 

The “#”“*” “X” symbols indicate significant differences of the real medication compared 

with the placebo medication conditions at the same time points after plasticity induction 

(Fisher LSD post hoc test, paired, two-tailed, p ≤ 0.05). SE: same evening; NM: next 

morning; NA: next afternoon; NE: next evening. Error bars show standard error of mean 

(S.E.M.). #: 2.5mg bromocriptine. *: 10mg bromocriptine. X: 20mg bromocriptine. 
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Figure 4. Dose-dependent effects of D2 receptor activation on nonfocal  and focal 

plasticity induced by tDCS and PAS. The horizontal line represent the baseline value of 

1mv before the start of the each stimulation condition, while the vertical line (y-axis)  

represent the MEP amplitudes standardized to the corresponding baseline values. A, D2 

receptor activation by bromocriptine has a non-linear dosage-dependent effect on 

neuroplasticity induced by cathodal tDCS and inhibitory PAS. Low and high dosages 

impaired or prevented excitability alterations while the medium dosage preserved these. 

In contrast, the effects of anodal tDCS and excitatory PAS were either impaired or 

prevented in all dosages. Each column represents the baseline–standardized MEP 

amplitudes pooled for 60 minutes after anodal/cathodal tDCS and PAS25/PAS10 from 24 
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participants.  Error bars represent the standard error of mean (S.E.M.) of the 

measurement immediately after until 60 minutes post stimulation.  The “#” symbol 

indicates significant differences of the real medication compared with placebo medication 

(Post hoc t test, paired, two-tailed, p ≤ 0.05). B, Each point represents the mean of the 

MEP amplitude (calculated for the first 60 min after intervention) from each subject for 

each drug/stimulation condition combination.  The results show considerable 

interindividual variability, especially under bromocriptine. 
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Chapter 3: Summary, Limitations and Conclusions  
 

 

 The present thesis further explored the contribution of the dopaminergic system to 

functional plasticity mechanisms in the human brain. The results of the studies help to 

elucidate the specific contribution of dopamine receptor subtypes as well as the effect of 

dosage or level of receptor activation on plasticity induction in the human motor cortex. 

Under global/non-specific dopamine receptors stimulation, a non-linear dosage-

dependent effect on stimulation induced by tDCS and PAS was observed in previous 

studies (Monte-Silva et al., 2010; Thirugnanasambandam et al., 2011). Low and high 

dose L-dopa abolished or impaired plasticity induced by both protocols, whereas under 

medium dosage plasticity induced by excitatory and inhibitory PAS was preserved. For 

tDCS, medium dosage preserved the excitability-reducing effect of cathodal tDCS, but 

reversed the excitability-enhancing effect of anodal tDCS into inhibition.  

In the present project, we have shown that specific activation of D1-like (first study) and 

D2 receptors (second study) also has a non-linear dosage-dependent effect on plasticity. 

For D1-like receptor activation, low and high dosages impaired or reversed, whereas 

medium dosage preserved the focal and non-focal excitability-enhancing effect of 

excitatory PAS and anodal tDCS respectively. However, the excitability-reducing effect 

of inhibitory PAS was reversed and the after effect of cathodal tDCS was abolished. In 

general, these results suggest that D1-like receptor activation is relevant for the induction 

of LTP-like plasticity. However, as compared to global dopaminergic activation, which 

had a focusing effect on facilitatory plasticity, the promoting effect of D1 activation on 

facilitatory plasticity was independent from the focality of the plasticity-induction 

procedure. This result is in accordance to the enhancing effect of optimal D1 receptor 
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activation on LTP observed in animal plasticity and cognitive studies (Seamans and 

Yang, 2004) and provides the first evidence of related effects in the human brain, at least 

electrophysiologically. Taking into account the impact of D1 receptor activation on LTP-

like plasticity, as well as positive cognitive effects, as explored in animal experiments, 

modulation of D1 receptors could have beneficial effects especially in the field of 

cognitive rehabilitation. In the PFC, the area with the largest density of D1 receptors 

(Camps et al., 1990; Lidow et al., 1991), activation of the D1 receptor is relevant for 

maintaining active memory representation (Cohen et al., 2002). In accordance, 

insufficient D1 receptor signaling results in working memory deficits, which can be 

ameliorated by D1 receptor stimulation  (Goldman-Rakic et al., 2004). In schizophrenia, 

alteration of D1 receptor activity and its signaling pathway in the PFC has been 

associated to impairment of working memory and negative symptoms (Kashima, 1991; 

Okubo et al., 1997; Karlsson et al., 2002; Koh et al., 2003; Potkin et al., 2003). Impaired 

LTP and LTD recently observed in schizophrenic patients (Harvey and Lacey, 1997; 

Hasan et al., 2011) corroborates with our findings that dysregulation of dopamine 

modulation can alter plasticity. Furthermore, in Parkinson’s disease a critical role of D1 

receptors in attenuating Parkinsonian symptoms was suggested. D1 receptor activity 

enhancement improved symptoms in the monkey model of Parkinson’s disease, and also 

in humans (Taylor et al., 1991; Blanchet et al., 1998; Rascol et al., 1999; Goulet and 

Madras, 2000; Rascol et al., 2001). Thus, agents targeting the D1 receptors might be an 

interesting direction in Schizophrenia and Parkinson’s disease treatment in the future.  

The second study elucidated the specific impact of the D2 receptor on motor 

cortex plasticity via bromocriptine. This substance exerted a non-linear dosage-dependent 
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effect on LTP- and LTD-like plasticity induced by tDCS and PAS. Low and high D2 

receptor activation prevented plasticity induction irrespective of the specific stimulation 

protocol. Medium activation preserved inhibitory plasticity, however it diminished focal 

and prevented non-focal facilitatory plasticity. These effects differ from global receptor 

activation with regard to facilitatory plasticity gradually, since plasticity induced by 

anodal tDCS under medium dosage was reversed while the excitatory PAS after effect 

was preserved under L-Dopa (Kuo et al., 2008; Monte-Silva et al., 2010; 

Thirugnanasambandam et al., 2011). The results differ moreover clearly from those 

obtained via application of the combined D2/D3 receptor agonist ropinirole. In that study, 

the effect of anodal tDCS under medium dosage was preserved and there was no non-

linear dosage dependent effect observed on inhibitory PAS regardless of dosage (Monte-

Silva et al., 2009). These differences might be caused at least partially by a co-activation 

of D1 receptors accomplished by D3 receptor activation. Indeed, the impact of a medium 

dosage of ropinirole on facilitatory plasticity resembled those of medium D1 receptor 

activation. Under physiological conditions, D2 receptor activation is proposed to 

phasically gate signals in order to update the contents of working memory (Cohen et al., 

2002; Gibbs and D'Esposito, 2005). Thus, the predominant induction of LTD-like 

plasticity observed under D2 receptor activation  might be beneficial for tasks requiring 

flexibility or the ability to update and manipulate neural information/representation, 

because D2 receptor activation would prevent in this case dys-functional stabilization of 

task-related connections (Nicholls et al., 2008). With regard to implications of D2 

receptor effects on plasticity for cognitive performance, so far heterogeneous effects have 

been obtained. Beyond the above-mentioned task-dependent effects, this might be caused 
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by the non-linear dosage-dependent effects of receptor activation on plasticity.  For task-

dependent effects, future studies dealing with specific cognitive demands involving the 

D2 receptor might shed light on the still poorly understood mechanisms. The impairment 

of plasticity induction seen under both, low and high dosages of bromocriptine could also 

account for symptoms observed in schizophrenia and Parkinson’s disease. In 

schizophrenia, where the dopaminergic system is assumed to be hyper-active, although 

not associated with the severity of positive symptoms per se, increased activity of striatal 

D2 receptors is associated with the first episode of illness and subsequent episodes of 

illness exacerbation (Howes and Kapur, 2009). In Parkinson’s disease on the other hand, 

low doses of D2 agonists occasionally worsen motor symptoms (Tolosa et al., 1987). 

Bradykinesia was also observed in a rat model following high dosage of L-dopa or D2 

agonists, which could be due to overstimulation of postsynaptic D2 receptors (Picconi et 

al., 2003; Picconi et al., 2008). Although speculative, the lack of plasticity observed in 

our study under low and high dosages may underlie these symptoms. Thus, titrating the 

dosage to achieve an optimal stimulation of the D2 receptors could improve the 

therapeutic use of D2 receptor stimulation.  

Taken together, as compared to global dopamine receptor activation, D1-like 

receptor activation favors LTP-like plasticity induction (first study) and D2 receptor 

activation favors LTD-like plasticity induction (second study). The signal-to-noise 

modulator function of dopamine as suggested by animal (Sawaguchi et al., 1990; 

Sawaguchi, 2001) and human electrophysiological studies (Kuo et al., 2008; Monte-Silva 

et al., 2010; Thirugnanasambandam et al., 2011) can then be accounted for at least 

partially by the results of each study. Specifically, the results of our studies suggest that 
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global dopamine receptor activation inhibits non-focal facilitatory plasticity probably via 

D2 receptor activation, while D1 receptors might be relevant for the stabilization of focal 

facilitatory plasticity. The functional implications of these findings for learning and 

memory mechanisms have to be explored in future studies. These might be conceptually 

analogous to the effects of dopamine on working memory performance. Here, suboptimal 

dopamine levels are assumed to reduce the likelihood that a memory trace will be 

retained through a delay interval (no plasticity at low doses), whereas excessive 

dopamine levels may prevent the updating or replacement of information in current 

memory stores (no plasticity at higher doses) (Durstewitz et al., 2000; Cohen et al., 2002; 

Gibbs and D'Esposito, 2005). In contrast, an optimal dopamine level may modulate task-

related neural processing to allow for the flexible use of information encoded in working 

memory (LTD-like effect under medium dosage of D2 receptor stimulation) (Gibbs and 

D'Esposito, 2005) while keeping this information stable for future use (LTP-like effect 

under medium dosage of D1 receptor stimulation) (Durstewitz et al., 2000; Seamans and 

Yang, 2004).  

Some limitations of our studies have to be taken into account: First, in the 

majority of animal electrophysiological and cognitive studies, specific D1 receptor 

agonists and antagonists were used, whereas we used L-dopa under D2 receptor block to 

stimulate D1-like receptors in the first study. There are specific differences in the 

pharmacological profile of L-dopa and dopamine agonists that should be considered, 

because these might affect the physiological outcomes. Dopamine agonists do not 

increase the presynaptic availability of dopamine and are thus not capable of enhancing 

phasic dopamine signaling, but rather exert a tonic effect on postsynaptic dopamine 
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receptors (Jaber et al., 1996; Breitenstein et al., 2006). L-dopa on the other hand, 

increases presynaptic dopamine availability and has the potential to mimic the 

endogenous dopamine-mediated phasic release observed e.g. during learning (Floel et al., 

2005), where phasic neuronal impulses  are required for stimulus salience coding 

(Schultz, 2002; Breitenstein et al., 2006). This limitation should apply too when 

comparing the result of the second study to other studies, in which L-dopa or dopamine 

were administered. Second, plasticity studies in animals are usually conducted in 

hippocampal, PFC, and striatal neurons or slices, whereas our study was conducted in the 

motor cortex of awake humans. This must be taken in consideration since anatomic 

differences in the distribution of dopamine receptors are present between different 

cortical regions across species.  For instance, D1 receptors in rodent’s PFC  are restricted 

to layer V (Vincent et al., 1993; Goldman-Rakic et al., 2004),whereas in primates D1 

receptors are abundant in layers II, III and V (Lidow et al., 1991). These limitations can 

be a challenge for future translational studies exploring specific dopamine receptors 

functions. Furthermore, our information on how dopaminergic modulation affects 

plasticity in humans is still limited. Studies using TMS or new imaging techniques such 

as magnetic resonance spectroscopy, which deliver information about receptor activation, 

and transmitter concentration non-invasively, might be suited to clarify this to a larger 

extent. To explore the dosage-dependent impact of D1 receptors on plasticity also for de-

activated states, and thus to explore the full range of non-linear dosage-dependent effects, 

block of D1 receptors by respective antagonists might be a promising approach.  

 In conclusion, this project confirmed the findings from animal studies regarding 

the dosage-dependent effect of dopamine receptor subtype activation on plasticity. The 
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results of these studies also further our understanding of the complex mechanisms 

underlying the dopaminergic modulation of plasticity especially in humans and help to 

set a foundation with regard to future research concerning dopamine receptor functions. 

Future studies should explore the specific physiological mechanisms how dopamine 

exerts these effects to a larger extent, and explore the relevance for cognitive and 

behavioral processes.       
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