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1 Introduction 

1.1 Purpose of the present work 

The main aim of the following study was to assess whether statins, known for their  

lipid-lowering potential, do indeed possess also an anticancer and, eventually 

radiosensitizing/radioprotective effects on different tumour and normal tissue cell lines. Impact 

of statin addition to concomitant radiochemotherapy based on monoclonal antibodies (cetuximab 

and bevacizumab) has been evaluated as well. This has been examined using methods of cell 

survival, cell viability, and several methods of molecular biology (Western blot, reporter assay, 

caspase activity). 

1.2 Statins 

1.2.1 Definition of statins 

Statins are 3 - hydroxyl - 3 methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors that 

are widely used to lower levels of serum cholesterol in primary and secondary prevention of 

cardiovascular diseases (Zhou and Liao 2010; Wang et al. 2008). Recent clinical and 

experimental evidence suggests that the beneficial effects of statins may extend beyond their 

cholesterol-lowering effect and exert the pleiotropic effects. 

Statins were initially isolated and identified as secondary metabolites of fungi. In 1980, Alberts 

et al. isolated an active fungal inhibitor of HMG-CoA reductase inhibitor named lovastatin 

(mevinolin) from Aspergillus terreus (Alberts et al. 1980; Alberts 1988). Statins in general 

inhibit the rate-limiting step of cholesterol biosynthesis, the conversion of HMG-CoA to l-

mevalonic acid, through binding to HMG-CoA reductase’s active site and blocking the substrate 

product transition state of the enzyme (Istvan and Deisenhofer 2001). This leads to decreased 

hepatic cholesterol synthesis, upregulation of low-density lipoprotein (LDL) receptor, and 

increased clearance of plasma LDL-cholesterol. In addition, by inhibiting HMG-CoA reductase, 

statins could also inhibit the synthesis of important isoprenoid intermediates, such as 

farnesylpyrophosphate (FPP) and geranylgeranylpyrophosphate (GGPP) that lie downstream 

from l-mevalonic acid (Goldstein and Brown 1990). These intermediates serve as important lipid 

attachments for the post-translational modification of intracellular proteins such as nuclear 

lamins, Ras, Rho, Rac and Rap (Van Aelst and D’Souza-Schorey 1997). Thus, it is possible that, 

in addition to cholesterol lowering, the inhibition of these intracellular isoprenoid-dependent 

proteins may contribute to some of the biological effects of statins (see figure 1.1). 
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Fig. 1.1: Mechanisms of action of statins (from Fritz et al. 2011, p. 18). 

Indeed, HMG-CoA reductase is a rate-limiting enzyme involved in the so-called mevalonate 

pathway that aims at generating several fundamental end-products such as cholesterol and 

isoprenoids. Apart of all, dysregulation of this mevalonate pathway seems to have certain 

oncogenic potential to drive tumorigenesis. HMG-CoA itself appears to be capable of promoting 

the transformation of transformed, nontransformed, and normal cells, too (Clendening et al. 

2010). How this dysregulation occurs is not yet well defined. The overlap between essential 

mevalonate pathway dependent functions and many processes involved in tumour cell 

metabolism and oncogenesis elucidates how statins may exhibit tumour-selective anticancer 

activity (Clendening and Penn 2012). 

Lovastatin 

Within all existing statins, lovastatin is probably the most widely studied one. This one, being 

the first available statin on market since 1987 (Grundy 1998), has demonstrated anticancer 

properties in vitro and in vivo (Chan et al. 2003). Preclinical data of lovastatin on animals 

(including mouse, rat, rabbit and dog) revealed linear pharmacokinetics. Doses close to 

200 mg/kg/day would produce serum concentrations in the range of 2 – 20 µM. Circulating 

serum concentrations of 2 – 4 µM were well tolerated for months in all animal models whereas 



3 

 

 

levels of 20 – 25 µM were associated with progressive anorexia and death in rabbits (Kornbrust 

et al. 1989). 

The therapeutic dose for the treatment of hypercholesterolemia is approximately 1 mg/kg/day 

which yields serum concentration of 0.1 µM. 

A phase I study aimed to define the highest tolerable dose of lovastatin in men (Thibault et al. 

1996). This HMG-CoA reductase inhibitor was administered in patients with a confirmed solid 

tumour at different concentration, ranging from 2 to 45 mg/kg/day (2, 4, 6, 8, 10, 25, and 45 

mg/kg/day) over 7 consecutive days in monthly cycles. Lovastatin serum levels were examined 

as well throughout the treatment course. These have been revealed to be in the range of 0.1 to 

3.92 µM regardless the dose of lovastatin administered. Regarding the toxicity, most commonly 

described side effects were gastrointestinal problems (nausea, anorexia, and diarrhoea) which 

represented 56 % of all episodes. The most severe side effects were related to musculoskeletal 

system (muscle weakness, myalgia). They have occurred at lovastatin doses starting at 

25 mg/kg/day and did not differ in higher doses.  

The cytostatic effect of lovastatin has been evaluated on various tumour cell lines 

(adenocarcinoma, melanoma, neuroblastoma) and a half maximal inhibitory concentration (IC 50) 

in the range of 0.3 – 2 µM has been found (Prasanna et al. 1996). This could make lovastatin a 

promising drug. However, studies on other cell lines (glial tumour, prostate cancer) demonstrated 

that the levels of lovastatin required to induce apoptosis may be as high as 30 – 100 µM that is 

not life compatible in animal models and could be related to important toxicity in man. 

1.2.2 Anticancer activity of statins 

During the past 20 years, a large amount of studies have demonstrated the antiproliferative and 

proapoptotic effect of statins both in vitro and in vivo models of cancer (Sanli et al. 2011). 

Growth inhibition, cell cycle arrest, and induction of apoptosis in cancer cells have been 

demonstrated (Sassano and Platanias 2007). The interest in these drugs was enhanced by 

epidemiological studies indicating that patients being treated by statins may have lower risk of 

development of colorectal carcinoma (Broughton et al. 2012; Poyntner et al. 2005) or lung 

cancer (Khurana et al. 2007). Promising results were as well observed among men taking 

metformin for type 2 diabetes associated to statins intake (Lehman et al. 2012). This combination 

showed to be beneficial in the term of reduction of prostate cancer incidence in comparison to 

those taking neither statin nor other medication (statins or oral antidiabetics).  
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Furthermore, once a prostate cancer is diagnosed, statin use is suggested to decrease the risk for 

advanced and metastatic cancer in epidemiological studies (Platz et al. 2006) to slow the disease 

progression after radical prostatectomy (Hamilton et al. 2010), and to reduce the disease 

recurrence in patients treated with curative radiotherapy (Kollmeier et al. 2011; Gutt et al. 2010).  

Statin use, and especially lipophilic statin (simvastatin), in women with stage I – III breast 

carcinoma was associated with a reduced risk of breast cancer recurrence (Ahern et al. 2011). In 

this population-based prospective cohort study, no association between hydrophilic statin use 

and breast cancer relapse was observed. 

Under in vitro conditions, HMG–CoA reductase inhibitors have been shown to synchronize 

tumour cells by blocking the transition of G1-S in the cell cycle and thereby exerting their 

antiproliferative effect (Keyomarsi et al. 1991). Apoptosis induced by statins appears to be 

mediated predominantly through depletion of geranylgeranylated proteins (Xia et al. 2001) and 

lovastatin itself seems to decrease the expression of the antiapoptotic protein Bcl-2 and increase 

the expression of the proapoptotic protein Bax (Agarwal et al. 1999). 

1.2.3 Statins and irradiation 

1.2.3.1 Radiosensitizing effect of statins 

The potential radiosensitizing effect of statins could be explained by the arrest of cells in the late 

G1 phase of the cell cycle in which cells are more sensitive to radiation-induced cell death as in 

the S-phase (Chan et al. 2003). 

However, cell sensitivity to irradiation is determined by other numerous factors. The most 

important are DNA repair and radiation-induced signalling mechanisms that cause changes in 

gene expression, cell cycle progression, and apoptosis (Cortez et al. 2001). DNA damage caused 

by irradiation causes activation of DNA damage-specific kinases ATM/ATR and DNA-PKcs 

(Iliakis et al. 2003; Cortez et al. 2001; Yang et al. 2003). Subsequently, downstream functions 

such as p53 and checkpoint kinases are activated and result in changes in repair and cell cycle 

progression and, probably, induction of cell death (Sancar et al. 2004). Apart from DNA 

damage–triggered functions, irradiation also causes activation of cell surface receptors that 

eventually lead to the activation of mitogen-activated protein kinases (MAPK) and transcription 

factors, e.g. activator protein-1 (AP-1) and nuclear factor-κB (NF-κB). Similar to DNA damage–

triggered stress responses, signal mechanisms originating from activated cell receptors also 

affect the cellular susceptibility to irradiation (Chen et al., 1996). 
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A pharmacologic approach for intervening with radiation-induced stress responses is based on 

the fact that Ras and Rho GTPases, which are required for genotoxic stress-stimulated activation 

of MAPK and NF-κB, are subject to COOH-terminal prenylation. Attachment of a C15 or C20 

lipid moiety to the cystein of the COOH terminal– located CAAX box is essential for the 

physiologic activity of Ras/Rho because it is required for their correct localization at the cell 

membrane. Statins cause depletion of the cellular pool of isoprene precursor molecules. Thereby, 

statins eventually lead to a down-modulation of Ras/Rho-regulated signal mechanisms (Walker 

and Olson 2005). The Ras-related GTPase RhoB affects the susceptibility of cells to killing by γ-

rays and Ras dependent mechanisms interfere with γ-ray-triggered cellular stress responses and 

cell survival as well. Furthermore, inhibitors of farnesylation, which affect Ras- and RhoB 

regulated signalling, modulate cellular resistance to tumour-therapeutic drugs and irradiation 

(McKenna et al. 2002). This is also the case of statins. Therefore, the combination of inhibitors 

of the Ras/Rho pathways with radiotherapy appears to be a promising experimental strategy in 

cancer treatment (Gabryś et al. 2008). However, because of a not very tumour specific cytotoxic 

effect of statins, apoptosis has been observed in normal tissue cells as well, e.g. in HUVEC (Li et 

al. 2002). 

Beneficial antiproliferative and radiosensitizing effects of statins have been already documented 

in various in vitro studies on different tumour cell lines. Gabryś et al. (Gabryś et al. 2008) 

studied U87MG glioblastoma cell line and FaDu squamous cell head and neck carcinoma 

associated with lovastatin. Using in vitro models, they documented an accumulation of the cells 

in G0-G1 phase of the cell cycle in vitro associated with a significant decrease of tumour cell 

proliferation. Nevertheless, the described combination of lovastatin and irradiation had similar 

antiproliferative effect as the lovastatin alone. 

Sensitizing a cervical carcinoma cell line, HeLa cells, to irradiation by lovastatin has been 

shown. This could be related to an abrogation of the radiation-induced G2 block and an increase 

in apoptotic and necrotic cell death (Fritz et al. 2003). Cell death through apoptosis has been 

observed as a mechanism of radiosensitizing effects demonstrated on lung cancer cells (A 549) if 

a combination of lovastatin and irradiation (Sanli et al. 2011) was used. 

1.2.3.2 Radioprotective effect of statins 

Despite improved radiation techniques (e.g. intensity modulated radiation therapy (IMRT)) 

aiming at reducing the radiation-induced side effects, the latter are still clinically highly relevant 

as it is for acute or for chronic effects. These are mostly driven by the production and release of 
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pro-inflammatory cytokines from death or differentiated cells as well as the upregulation of the 

endothelial cell adhesion molecules (e.g. E-selectin) which promote inflammatory processes 

(Hallahan et al. 1996). As a consequence of reactive and reparative processes of normal tissue, 

fibrotic tissue remodelling occurs. This results in severe and irreversible damaged tissue 

architecture that may lead to important organ dysfunctions. Hence, different strategies of 

radioprotection are being explored. 

As for pharmacological approach, reduction of radiation-induced DNA damage and inhibition of 

pro-apoptotic DNA-damage repair systems seem to be a desired therapeutic target. However, 

‘non-target’ (i.e. DNA damage independent) effects of radiation therapy are supposed to be 

strongly harmful as well. Thus, inhibition of pro-inflammatory and pro-fibrotic stress responses 

regulated by such pathways as Rho/NF-κB and Rho/ROCK, respectively (where Rho GTPases 

are localized in the outer cell membrane) is a very tempting therapeutic way, too. 

Statins have anti-inflammatory properties and therefore appear to be ideal candidates for 

protecting normal tissue from the acute and chronic toxicity provoked by radiotherapy (Fritz et 

al. 2011). 

In vitro data showed that statins abolish radiation-induced activation of NF-κB (Nübel et al. 

2006; Ostrau et al. 2009) which is the key transcription factor required for the expression of 

interleukin-6 (IL-6) and tumour necrosis factor alpha (TNF-α). Furthermore, statins diminish 

radiation-induced expression of transforming growth factor beta (TGF-β) and its downstream 

effector connective tissue growth factor (CTGF) where both play a role in fibrosis (Haydont et 

al. 2005). 

Pre-clinical in vitro and in vivo studies published up to now consider a pleiotropic effect of 

statins (apart of all anti-inflammatory and anti-fibrotic) to be beneficial in terms of protection 

against radiation-induced tissue harms. 

1.3 Targeted therapy and irradiation 

Recently, several new targeted drugs appeared and tend to be promising therapeutic candidates 

with comparatively low toxicity profile due to their targeted action (Niyazi et al. 2011). 

However, beside few exceptions, the possible toxicity of the targeted treatment and radiotherapy 

has not been studied into details yet. Along with the action of targeted therapy on neoplastic 

signaling pathway we should not omit the fact that there exists a considerable overlap between 

cancer and normal cell signaling pathways. Therefore, in a case of association of these to 
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irradiation this may result in worsening of the already present radiation induced side effects on 

normal tissue (Mangoni et al. 2012). 

The idea of combining targeted treatment instead of standard chemotherapy and radiotherapy is 

very seductive. Since at present we do not have enough information about their real interactions 

within normal cells (and also possible negative side effects) one of the solutions could be to 

define an agent that would potentially enhance the cytotoxic effect of the targeted drug without 

further harm on normal tissue and permit to reduce the effective dose to a minimum. Or, 

otherwise, to find an agent that would be able to provide a radioprotection to in-field organs at 

risk. If such an agent would possess a relatively good radiosensitizing effect this could be the 

reason for its use instead of any other chemotherapy or even targeted therapy. 

1.3.1 Anti-EGFR and anti-VEGF therapy 

The epidermal growth factor receptor (EGFR, HER-1, c-erbB-1) is a 170 kDa transmembrane 

protein consisting of an extracellular EGF-binding domain, a short transmembrane region, and 

an intracellular domain with ligand-activated tyrosine kinase activity (Cohen et al. 1982). Two 

ligands can activate EGFR: EGF and transforming growth factor alpha (TGF-α). Once ligands 

are attached to a receptor, an increased synthesis of DNA is triggered as well as the proliferation 

and differentiation of target cells (Chen et al. 1989). ErbB-1 is a member of the EGFR family 

that consists of different oncogenes ranging from erbB-1 to erbB-4 (Barnea et al. 2013). 

EGFRs are expressed in various normal epithelial tissues and can be detected using antibody 

staining in such tissues like epidermal cells of skin, oesophagus, kidney, testis, placenta, and 

prostate. 

Overexpression of EGFR is present in many neoplasias (endometrial carcinoma, squamous cell 

carcinoma, adenocarcinoma or neuroendocrine lung tumour, head and neck squamous cell 

carcinoma, or glioblastoma multiforme). High expression is often, at least in head and neck 

cancer, correlated with worse prognosis of the disease. 

Anti-erbB-1 (cetuximab) is a chimeric human/mouse monoclonal antibody that binds specifically 

to the extracellular domain of the receptor and prevents ligand binding and activation of 

downstream signalling pathway. The radiosensitizing effect of cetuximab has been explained by 

several potential mechanisms including regulation of cell cycle progression, blockage of 

radiation-induced EGFR transport into the nucleus, and interference with DNA repair 

mechanisms (Saki et al. 2012). 
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The vascular endothelial growth factor (VEGF) belongs to a family of five related mammalian 

growth factors: VEGFA (the prototype), VEGFB, VEGFC, VEGFD, and PlGF (placental growth 

factor). They are homodimeric polypeptides although naturally occurring heterodimers of 

VEGFA and PlGF have been described (Koch et al. 2011). 

The VEGF receptors play a pivotal role in the maintenance of vascular integrity, endothelial cell 

survival, and angiogenesis (O’Reilly 2006). Radiotherapy per se may have a systemic/local 

effect on angiogenesis since increased expression of pro-angiogenic factors such as VEGF have 

been observed after irradiation (Gorski et al. 1999). In this context, drugs targeting VEGF (e.g. 

anti-VEGFA = bevacizumab) have been developed aiming at inhibiting angiogenesis and act as 

anticancer treatment. Unfortunately, angiogenesis is not tumour restricted but it is also found in 

many other physiological and pathological conditions (e.g. normal growth, wound healing, 

inflammation, etc.). Hence anti-angiogenic therapy alone or combined with other treatment 

approaches (such as radiotherapy) may increase normal tissue toxicity (Mangoni et al. 2012). 

1.3.2 Target therapy and statins 

As it was observed in the study of Sanli and his co-workers (Sanli et al. 2011), lovastatin 

possesses an ability to selectively abrogate EGF-induced phosphorylation of EGFR as well as 

that of its downstream effector protein Akt. This information could be very promising as far as 

irradiation itself activates the downstream effector pathway of EGFR such as PI3k – Akt – 

mTOR (mammalian target of rapamycin) and the Raf – MEK 1 – ERK (Park et al. 2006; 

Zimmermann et al. 2006). These are known to mediate cell survival and radiation resistance, 

gene expression, and protein synthesis (Nakamura et al. 2005; Le Tourneau and Siu 2007). 

EGFR is also involved in the development and progression of cancers derived from these tissues 

including squamous cell carcinomas of the head and neck and of the cervix, non–small cell lung 

carcinomas (NSCLC), and colon cancer (Mantha et al. 2005). Thus, blocking the 

radiation-induced EGFR activation process and/or its downstream pathways would possibly 

enhance cell death and render cells more radiosensitive. This is nowadays the role of so called 

anti-EGFR molecular antibodies or inhibitors of tyrosin-kinase receptors. 

However, response to these molecules is strongly attributed to the presence versus absence of 

mutations affecting residues contributing to the ATP binding site of the EGFR (Lynch et al. 

2004; Paez et al. 2004). Nevertheless, in a study that dealt with different squamous head and 

neck, and cervix cancer cell lines, lung, colon and breast cancer cell lines it was concluded that 

in vitro lovastatin inhibits the function of the EGFR and PI3k – Akt pathway and that this is 
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independent of the mutational status of the ATP binding site of EGFR (Mantha et al. 2005). The 

only condition for lovastatin to act in this way is the expression of EGFR at the cellular surface. 

Furthermore, a combination of statin and the thyrosin-kinase inhibitor gefitinib yielded a 

synergistic effect of these both. 

Regarding all these statements about an anti-cancer potential of statins we assumed that in vitro 

research on HMG-CoA reductase inhibitors in combination with irradiation and/or targeted 

therapies on various human tumour and normal tissue cell lines could be of interest. For this 

purpose we have chosen to work with lovastatin and two well known monoclonal antibodies, 

cetuximab and bevacizumab. 
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2 Materials and methods 

2.1 Cell culture 

2.1.1 Cell lines 

In all performed experiments, only human cell lines have been used. We worked with four 

tumour and three normal tissue cell lines. For experiments, all were taken from stocks 

maintained in a liquid nitrogenous tank in the property of the Department of Radiotherapy and 

Radiation Oncology in Göttingen. 

ZMK-1 cell line 

This cell line represents a poorly differentiated (grade 2) squamous cell carcinoma of an 

oropharyngeal tumour from a 47-year-old female patient obtained through the tumour resection 

performed in 1996 at the Department of Maxillofacial surgery (Klinik für Zahn-Mund-Kiefer-

Chirurgie) in Universitätsklinikum Göttingen. Cells from this tumour were then isolated and 

cultivated at the Department of Radiotherapy and Radiation Oncology in Göttingen (Rave-Frank 

et al. 1996). 

A 549 cell line 

A 549 cells are adenocarcinomic human alveolar basal epithelial cells. They were for the first 

time described and developed in 1972 by D. J. Giard (Giard et al. 1973) from the cancerous lung 

tissue in an explanted tumour of a 58-year-old Caucasian man. Cells were obtained from the 

American Type Culture Collection (ATCC). 

MO59K and MO59J 

Both of these cell lines have been isolated concurrently from the same tumor specimen from a 

glioblastoma brain tumor of a 33-year old man. The difference between these two lines is the fact 

that MO59J cells lack DNA-dependent protein kinase (DNA-PKcs) activity while MO59K cells 

express normal levels of DNA-PKcs. This causes that MO59J are approximately 30-fold more 

sensitive to irradiation than MO59K. MO59J are DNA double strand break repair deficient 

(Allalumnis-Turner et al. 1993). The cells were obtained from the ATCC. 

Human fibroblasts 

These not immortalized cells were obtained from a skin spindle coming from two different 

women, a 55-year and an 85-year-old. Cells were isolated and cultivated in November 2012 by 

Ms. Bitter, a laboratory and research assistant (Department of Radiotherapy and Radiation 

Oncology, UMG, Göttingen). 
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HUVEC-VI and HUVEC-VII cell lines 

HUVECs are not immortalized human umbilical vein endothelial cells. These have been isolated 

in laboratory conditions within the Department of Radiotherapy and Radiation Oncology by Mrs. 

Kasten-Krapp, laboratory and research assistant in July 1998 from two different umbilical cords. 

After few days of cultivation cells were frozen and hold in liquide nitrogenous tank as a reserve. 

HaCaT cell line 

This line represents an immortalized but highly differentiated human keratinocyte cell line. It is a 

spontaneously transformed human epithelial cell line that was obtained in 1988 from a 

histologically normal skin specimen from a distant periphery of a melanoma of a 62-year old 

male patient (Boukamp et al. 1988). HaCaT cells present a heteroploid stemline with specific 

stable marker chromosomes but remain not tumorigenic. 

2.1.2 Culture conditions and media 

The origins of all materials i. e. chemicals and pharmaceuticals, devices, experimental and 

detection kits, software tools, and accessories that were used during the experiments are 

described within the chapter Appendix in tables 6.1, 6.2, 6.3, 6.4, and 6.5 respectively. 

In order to avoid all possible contaminations all manipulations with cells were performed under 

strict sterile conditions using a clean bench. All materials coming to clean bench were 

decontaminated by a 70 % ethanol impregnated towel before use. 

Prior to any experiments, all cell lines have been tested for presence of Mycoplasma infection 

using a MycoAlert
TM

 mycoplasma detection kit. Cells that have revealed to be Mycoplasma 

positive have been treated by a combination of antibiotics comprised in Mynox
®
Gold and once 

the treatment was over they have been re-tested after 4 weeks again. In our condition, all tumor 

cell lines (except A 549) were initially contaminated by this intracellular bacterium. The 

treatment has been successful in all instances except for the ZMK-1 cell line where eradication 

of Mycoplasma could not be achieved despite numerous attempts. 

Cells from each cell line serving as a reserve were maintained at -80 °C in freezing resistant 

plastic vials in quantity of 1 million cells per vial. Each vial contained 1.8 ml of solution of 

culture medium and 9 % dimethyl sulphoxide (DMSO) that permitted a protection against 

potential freezing associated cell damages. Thawing and seeding procedure is described in 

chapter 2.1.3. 
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During the use, cells were maintained in sterile 50 and 200 ml flasks at the temperature of 37 °C 

and at CO2 concentration of 5 % in an incubator. Cells were growing attached to the bottom of 

the flasks so the mean volume of medium present in 50 ml flask was 10 ml and in 250 ml flask 

was 20 ml in order to cover correctly the whole surface of the flask wall. 

The cell medium was changed every 2-3 days. Once the cell confluence in monolayer was 90 % 

or more, cells were trypsinized and seeded in new flasks at different cell densities. For the 

HUVEC cell line and fibroblasts, the passage number was strictly marked on each flask so that 

only the same passage cells were used for the same experiment and that the number of passages 

for these cell lines did not exceed 15. The passage number for all tumor cell lines and HaCaT 

cells was not noted since all of these cell lines are immortalized. 

All reagents and mediums in use were stored at 4 to 8 °C in a refrigerator. Long term storage of 

fetal calf serum, trypsin and antibiotics was insured by placement into a -20 °C freezer. Just 

before use, reagents and mediums were carefully warmed to 37 °C. Compositions of each cell 

line-related medium are listed in table 2.1. 

 

Tab. 2.1: Culture mediums used for the cell lines. 

Cell line Medium description and contents 

ZMK-1 Dulbecco’s Minimum Essential Medium (DMEM) and RPMI 1640 in 

ratio 1:1 including 10 % inactivated fetal calf serum (FCS) and 1 ml 

Ampicillin (Ampicillin 0.5 g/10 ml) 

A 549 Idem as for ZMK-1 cell line 

MO59K DMEM including 10 % inactivated FCS, 2.5 ml 

Penicillin/Streptomycin (10 000 U/ml / 10 000 µg/ml) and 1 ml 

Ampicillin  

MO59J DMEM including 15 % inactivated FCS, 2.5 ml 

Penicillin/Streptomycin  and 1 ml Ampicillin 

Fibroblasts DMEM incl. 10 % active FKS 

HUVEC VI, 

HUVEC VII 

Endothelial Cell Growth Medium (ECGM) + supplement mix 

Supplements within the supplement mix and their concentration after 

addition to the medium: FCS 0,02 ml/ml; Endothelial Cell Growth 

Supplement 0.004 ml/ml; Epidermal Growth Factor 0.1 ng/ml; Basic 

Fibroblast Growth Factor 1 ng/ml; Heparin 90 µg/ml; Hydrocortisone 

1 µg/ml 

HaCaT DMEM including 10 % FCS 
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2.1.3 Cell culturing 

Cell trypsinization 

Because all cultured cells were in normal conditions firmly attached to the flask’s bottom, they 

needed to be detached from it before an experiment in order to gain a mass of freely swimming 

cells, i. e. a cellular suspension. This was ensured by the process of trypsinization. This was also 

inevitable in case of high cell confluence with the aim to create new passaged cells reserve 

flasks. 

In the first step, after the removal of the medium from the flask, cell layer was washed by 2-3 ml 

of Phosphate Buffered Saline (PBS) without calcium and magnesium.  

Afterwards, 1 ml (for 50 ml flasks) or 2 ml (for 250 ml flasks) of trypsine (0.5 % Trypsin; 0.2 % 

ethylenediaminetetraacetic acid in PBS) was added and the flask was placed for 5 - 10 minutes 

into an incubator so that the trypsine effect was increased. 

The above described procedure was suitable for all cell lines except HUVEC and HaCaT. They 

turned out to be more strongly attached to the flask bottom. Because of that a reinforced 

procedure was applied. 

The procedure consisted of a prior addition of 1 ml of EDTA (ethylenediaminetetraacetic acid) 

solution into the flask after the previous washing by PBS. One to three minutes later, EDTA was 

removed and 1 ml of trypsine was added and maintained in a flask in an incubator for 5-10 

minutes as in the procedure mentioned above. 

After 5 – 10 minutes, the flask was removed from the incubator and slightly shaken by hand. 

That has permitted to detach the cells mechanically. The cells were controlled under the 

microscope whether all of them were correctly freed from the flask’s bottom. 

Then, a fresh medium was added in the amount of 9 ml and 19 ml for 50 ml and 250 ml flask, 

respectively, in order to obtain a cell suspension. 

Cell counting using a Neubauer counting chamber 

A Neubauer chamber is a thick crystal slide with a size of a glass slide. Its dimensions are 

30 x 70 mm and thickness of 4 mm. There exist either single or double chamber slides. For our 

purposes, only double chamber slides were used. There are two separate counting areas: the 

upper and the lower chamber. 

A small quantity of previously prepared cell solution after trypsinization is aspirated into a sterile 

Pasteur pipette and loaded into both chambers. 
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Once both chambers are filled, the slide is placed under the light microscope. Cells laying in 

each of the 25 small squares of the big central square are counted. The counted number of cells is 

registered and the same procedure is repeated for the second chamber. 

Two different numbers are obtained which permits us to calculate the mean value. Multiplying 

this value by 1 x 10
4
 will give us a number of cells present in 1 ml of our cell suspension. From 

this obtained value, volume containing the desired amount of cells for new suspension can be 

calculated using a simple cross-multiplication equation. 

2.1.4 Cell irradiation 

For all performed experiments, a X-ray tube was used. The parameters of the accelerator during 

use were as follows: voltage 200 kV, current 15 mA, 0.5 mm thick copper filter, temperature of 

22-24 °C. The table high, defined as a distance between the table and the radiation source, was 

modified according to the desired dose rate. This high was 500 mm and 351 mm for a dose rate 

of 1 Gy/min and 2 Gy/min, respectively. 

The irradiation was performed at different time points according to the cell seeding following 

various treatment regimes and procedures (see appropriate chapters describing each experimental 

procedure). 

2.2 Treatment molecules 

2.2.1 Statins 

Lovastatin 

Lovastatin was donated by courtesy of Dr. Corcos (INSERM U1078-ECLA, Brest, France) in a 

powder form. Thirteen milligrams of this powder were dissolved in 1.3 ml of DMSO and a 

solution with a molar concentration of 25 mM was obtained. This one was later diluted once 

again in DMSO in order to gain stock dilutions of 12.5 and 2.5 mM. Because concentrations 

used in the experiment were much smaller, the necessary dilutions with DMSO have been 

performed short before each use. All solutions were held in sterile plastic 2 ml vials in a freezer 

at -20 °C. Before use, the vials were decontaminated by a 70 % ethanol impregnated paper towel, 

placed under the airflow and maintained at room temperature few minutes to defreeze 

spontaneously. 

 



15 

 

 

2.2.2 Targeted therapies 

Cetuximab, bevacizumab 

These monoclonal antibodies were kindly donated by the Department of Oncological Pharmacy, 

Regional University Hospital Morvan in Brest, and UMG Göttingen. 

Cetuximab (Erbitux
®
) was obtained in its clinical presentation of 5 mg/ml (molar concentration 

of 32.89 µM) and stored at 4 °C. The solution also contained the following inactive ingredients: 

sodium chloride, glycine, polysorbate 80, citric acid monohydrate, sodium hydroxide, and water 

for injections. 

Bevacizumab (Avastin
®
) was also obtained in its clinical presentation of 25 mg/ml (molar 

concentration of 168 µM) and stored at 4 °C. Except of the active agent, the solution contained 

also α,α-trehalose dihydrate, monobasic monohydrate sodium phosphate, dibasic sodium 

phosphate, polysorbate 20, and water for injections. 

The desired final concentrations of both molecules were obtained by diluting the primary 

solutions in a cell medium (in ECGM for HUVEC cell line and in DMEM for the other cell 

lines). The used concentrations were 0.1 µM and 16.8 µM for cetuximab and bevacizumab, 

respectively. Theses concentrations have been chosen without any previous particular dose 

determination according to the values used in already published in vitro studies (Lee et al. 2011; 

Kil et al. 2012). 

Incubation time for cetuximab has been defined to be 1 hour prior to irradiation. This decision 

was supported by the experiments performed in the study of Saki and co-workers (Saki et al. 

2012). Concerning bevacizumab, a decision for 24-hour incubation interval before irradiation 

was taken (Mangoni et al. 2012). 

2.3 Preliminary experiments 

2.3.1 Assays of cell survival and viability 

2.3.1.1 Colony formation unit assay 

Clonony formation unit assays (CFU assays) represent the basis of cellular response studies in 

tumours, and in some normal tissues, and have a central role in tumour radiobiology. They aim 

to detect the presence of clonogenic cells (either of a tumour or normal tissue) by their ability to 

form a colony within a defined growth environment (Joiner and van der Kogel 2009).  

In general, a certain known number of cells is seeded into two or more sterile plates or Petri 

dishes where one part is irradiated and the other one is kept as a non-irradiated reference. 
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Assuming that irradiation will kill some cells, a larger number of cells are plated within the 

irradiated plates. After a suitable period of incubation, the colonies are counted and the plating 

efficiency (PE) is determined by dividing the number of colonies through the number of seeded 

cells. In order to get the information about colony formation capacity and treatment sensitivity of 

our cell line the surviving fraction is calculated: 

Surviving fraction =
PEtreated

PEcontrol
 

 

Thus we take into consideration the correction for the efficiency of undamaged clonogenic cells 

and for the different number of cells plated. The obtained values of the surviving fraction for 

different treatment conditions permit thereafter to create the so-called survival curves (see 

below). 

Seeding schemes 

Different seeding and cell culture preparation procedures for this assay are available and 

possible. Within this work, two approaches have been performed. The choice of the particular 

approach depended on the cell line behaviour and its characteristics. 

In the first method, a single-cell suspension of cells was prepared according to the procedure 

described above (chapter 2.1.3) and divided into various parts according to the number of 

different radiation doses tested. As already mentioned, one part of cells was kept without 

irradiation (eventually without any particular treatment) as a control of the assay. 

Suspensions with the desired total number of cells were prepared in plastic sterile tubes and 

carefully marked in order to avoid an exchange of the cell numerated suspensions. Tubes were 

subsequently irradiated using the X-ray tube within the laboratory at doses that were previously 

defined. These used to be 1, 2, 3, 4, and 6 Gy while the dose rate was 2 Gy/min and the radiation 

parameters of the X-ray tube were as defined in chapter 2.1.4. During the irradiation the control 

cells were held in a tube under the clean bench. 

After the irradiation, the cell suspensions were dispensed on sterile 6-well plates in triplicate for 

each treatment condition. Usually, the total volume of cell suspension per well was 3 ml except 

for two cell lines (HUVEC and MO59J) in which this volume was raised to 4 ml per well 

because of the prolonged incubation time of these lines. 

The number of cells plated per well and per treatment condition varied according to the expected 

empirically obtained information about each cell line. In general 100 – 3500 cells/well have been 

seeded taking into consideration proliferative capacity of each line. If this number turned out to 
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be not sufficient and colonies have been detected with difficulty, the number of cells per well has 

been increased in the subsequent experiments. For more precise details about seeding cell 

number per cell line and condition see chapter 3.2.2.2 below. 

If there was another treatment except irradiation, this was added into cell suspensions before 

their plating into wells. The interval between addition of the treatment and irradiation has been 

strictly obeyed with respect to the treatment molecule and its defined procedure, e. g. for 

lovastatin and cetuximab the time intervals of 4 hours and 1 hour, respectively were preserved. 

All treatment molecules have been added into cell suspensions using pipette with sterile pipette 

tips of different volume according to the desired final volume and concentration of molecules. 

Cells that were supposed to serve as a control within the lovastatin experiment were treated with 

DMSO alone which volume corresponded to the volume of lovastatin needed to obtain the 

highest concentration. In cetuximab and bevacizumab treatment schemes, only a cell medium 

was added to the control cells since both antibodies have been diluted in it. Volume of the 

medium was equal to the volume of the antibodies used. 

For this seeding procedure, treatment and irradiation were performed on the same day. 

After seeding into wells, plates were placed into an incubator under standard conditions (see 

chapter 2.1.2) for a certain period which has varied between 8 to 14 days. This inhomogeneous 

incubation duration was influenced by different cell growth capacity of each line. This one was 

very slow for MO59J and HUVEC cells. 

The second seeding procedure consisted of preparation of a cell suspension in the first step 

followed by direct plating of the desired number of cells per well into sterile 6-well plates on day 

0 (D0). The prepared plates were placed into an incubator for 24 hours so that the cells had time 

to attach to the plate bottom before any treatment was applied. 

Cells were seeded in such a way that all cells that were meant to be irradiated at the same dose 

were placed in the same plate which was subsequently irradiated not sooner than 24 hours after 

seeding, i. e. on day 1 (D1) or on day 2 (D2) if a treatment by bevacizumab has preceded the 

irradiation by 24 hours. All other treatments associated have been added into wells in the desired 

moment according to the later irradiation. As for the incubation time and conditions these were 

similar to those described previously. 

All plates were continuously observed under the microscope with evaluation of colony growth. If 

these were considered to be sufficiently large, a fixation and staining of the colonies has been 

done as described in the following chapter. 
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Colony fixation and crystal violet staining 

In the first step, the cell culture medium was removed from all wells of the plates using a pipette. 

This procedure as well as the process of fixation and staining did not require sterile conditions. 

Two millilitres of 70 % ethanol have been pipetted into each well and maintained for 20 minutes. 

Afterwards, ethanol has been removed and empty plates have been placed into an incubator to 

dry overnight. On the next day, staining of the plates with crystal violet solution was performed. 

Once 2 ml of the solution has been added into each well they have rested for 20 minutes and then 

the solution was removed by washing with water. Using this procedure, the colonies became 

visible because the crystal violet has stained the cell membranes and they can be now easily 

counted. 

Plates with stained colonies were placed under the light microscope and only colonies formed of 

50 cells or more were taken into consideration with the exception of the colonies formed by 

MO59J and fibroblasts. These two cell lines had a poor growing capacity and have formed only 

very small colonies that consisted in general of 30 - 40 cells in maximum. For this reason, in 

these two cell lines the colonies that contained more than 30 cells (more than 10 cells for 

MO59J) were considered significant. The total number of colonies per well was later on related 

to the number of initially seeded cells as described above. 

Cell survival curves 

After the fixation and staining of colonies, these were counted and values of the surviving 

fraction per each treatment condition were defined as described above. Since every treatment 

condition has been performed in triplicate within each experiment and each experiment was 

repeated on average 3 times the mean values (expressed as points in curves) and the standard 

errors (SE) were determined and are plotted as error bars. If the error bars are not visible within 

the points this means that they are smaller than the size of the point. The obtained results of 

surviving fractions are transformed into a semi-logarithmic scale representation using a 

Kaleidagraph
®
 software version 4.1 (Synergy Software, Reading, USA) and OriginPro

®
 software 

version 7.5 (OriginLab Corporation, USA). The radiation dose forms the abscissa and the y-axis 

presents the respective quantities in a logarithmic scale. The curves are helpful for evaluation of 

the cell behaviour under the irradiation conditions associated or not with some other treatment 

regime. The form of the survival curves is unique for every cell line. 

Two types of survival curves were created for each cell line and experimental condition. First, 

without normalization of the results, i. e. only the control colonies (non-irradiated and untreated) 



19 

 

 

had SF equal to 1 (=100%). All other SF values were calculated by putting into relation (ratio) 

the plating efficiencies of irradiation and/or treatment with the plating efficiency of the control. 

These curves were plotted by a simple interpolation between obtained mean values of surviving 

fractions. The second ones were normalized curves where non-irradiated but pre-treated colonies 

were given the SF value of 1, i. e. all curves started at the same point of the y-axis and thus real 

impact of treatment caused only by irradiation could be observed. For these curves the 

normalized radiation survival was fitted using a linear quadratic model. 

Calculation of Sensitizer Enhancement Ratio 

Determination of Sensitizer Enhancement Ratio (SER) allows us to postulate whether certain 

molecules, if associated with irradiation, enhance the radiation effect or not. In practice, within 

normalized survival curves of all cell lines tested, a radiation dose (in gray, Gy) corresponding to 

a 50 % surviving fraction of untreated cells and cells treated with sensitizer (i. e. with lovastatin, 

cetuximab, bevacizumab or combinations) are put into relation as follows: 

SER =
Radiation dose without sensitizer

Radiation dose with sensitizer
 

 

SER > 1 is characteristic for a radiosensitizing agent because higher radiation dose without 

sensitizer is necessary to achieve the same effect as if the sensitizer (agent) is present. Values of 

SER below 1 describe a radioprotective effect of the agent. 

2.3.1.2 Cell viability determination 

In order to complete the CFU assay when testing cell viability and survival under different 

treatment conditions, the so-called CellTiter-Blue
®
 Cell Viability Assay (CTB assay) procedure 

was performed several times. 

This assay provides a homogenous, fluorometric method for estimating the number of viable 

cells present in multiwell plates. It uses the indicator dye resazurine to measure the metabolic 

capacity of cells. Viable cells retain the ability to reduce resazurine into resorufin which is highly 

fluorescent (Promega, Technical Bulletin, revised 6/09). 

Non-viable cells rapidly lose metabolic capacity, do not reduce the indicator dye, and thus do not 

generate a fluorescent signal. Resazurine is dark blue in colour and has little intrinsic 

fluorescence until it is reduced to resorufin which is pink and highly fluorescent. 

In practice, sterile 96-well black plates with clear bottom were used for the test. In the initial 

step, the quantity of seeded cells as well as the time of incubation before the CTB analysis 
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performance needed to be defined. Afterwards, assay on different cell lines with chosen 

treatment regimens could be done. 

 

Determination of optimal cell quantity and optimal incubation time within CTB assay 

Each cell line (tumour and normal tissue) has been tested separately. For each assay, three 

96-well plates were needed, i. e. for three different incubation times (48, 72, and 96 hours). First, 

a cellular suspension containing the necessary quantity of cells was prepared and maintained in a 

plastic 15 ml tube as described in chapter 2.1.3. One tube contained cells for control group (no 

irradiation, no treatment), the second tube was irradiated when the cellular suspension was ready. 

Irradiation was done according to the description in chapter 2.1.4. The total dose of 4 Gy was 

delivered with the dose rate of 2 Gy/min to all cell lines except of MO59J that received only 2 

Gy since this cell line is supposed to be more radiosensitive. After the irradiation, the cells were 

seeded into plates in such a manner that the final quantity of cells per each well was that as 

shown in figure 2.1 below. The green area represents non-irradiated cells (negative control) and 

the blue one irradiated cells. As seen, for each cell number and condition the test was done in 

triplicate. 

 1 2 3 4 5 6 7 8 9 10 11 12 

A Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium 

B Medium 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Medium 

C Medium 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Medium 

D Medium 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Medium 

E Medium 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Medium 

F Medium 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Medium 

G Medium 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Medium 

H Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium 

Fig. 2.1: Schematic representation of a 96-well plate seeded with cells and medium (see text). 

In order to complete and homogenize the volume per well, a serum-supplemented medium 

appropriate for the particular cell line was added into each well to obtain a total volume of 100 µl 

per well. The most peripheral wells on all four sides were maintained free of cells. They were 

filled with 100 µl of pure serum-supplemented medium. It should be noted that for further 

analysis, the contents of the wells in the first column (column 1), except the wells A1 and H1, 

were included into the analysis because they served as blank samples to determine a possible 

background fluorescence. 



21 

 

 

The prepared plates were placed into an incubator and maintained at standard incubation 

conditions (37 °C, 5 % CO2) for 48, 72, and 96 hours. One plate served for one defined 

incubation time. After the corresponding incubation time, the plate was removed from incubator 

and a CellTiter-Blue
®
 Reagent was added to cells in culture. Each cell-containing well as well as 

6 wells in the column 1 received 20 µl of reagent. After the reagent addition the plate was 

slightly shaken during 10 seconds. According to the general recommendation of the CTB 

protocol, once the reagent is added, the plate should be left for incubation at 37 °C for 1 – 4 

hours. In our conditions, the incubation time was empirically defined to be of 1 hour. 

Data analysis 

One hour after the above-mentioned procedure, a fluorescence analysis was performed using a 

Wallec1420 VICTOR
TM

 plate reader. The wavelength of the recorded fluorescence was 

560/590 nm. The obtained data were imported into Microsoft Office Excel (Microsoft, 

Albuquerque, USA) and calculations were done as follows. Fluorescence of the control wells 

(cell-free wells) was measured to obtain the fluorescence of the serum-supplemented medium. 

Mean values of these results were calculated and subsequently substracted from the raw 

fluorescence results of all experimental wells. Because each experimental condition was done in 

triplicate, the mean values and their standard deviations of these background corrected results 

were calculated as well. For better and easier visualisation, the results are plotted in graphic 

curves with strict differentiation between the irradiated and non-irradiated cells. The calculations 

were performed using the Microsoft Excel program and graphic outputs were plotted in 

OriginPro
®
 software version 7.5. The same procedure was repeated for all 3 plates after the 

defined interval of incubation. 

To determine the optimal time of incubation, the final curves of all three results were compared. 

As an optimal time for further explorations we took the incubation time after which it was 

possible to observe differences between the curves corresponding to the irradiated and non-

irradiated cells. When the curves overlapped each other it was an indication that longer 

incubation time is needed. An optimal quantity of seeded cells corresponded to cell counts 

located shortly before a “plateau” of the curve. This represents saturation of the test´s capacity to 

distinguish a difference in the fluorescence under the examined conditions. 

It is noteworthy that in majority of the experimental conditions the fluorescent signal for 

CellTiter-Blue
®

 Reagent is proportional to the number of viable cells. There is a linear 

relationship between the cell number and the fluorescence. 
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Use of CTB assay for various treatment regimens 

The notion of optimal cell quantity and incubation time permits to optimize the experimental 

process. Although using still a 96-well plate, the wells can be charged more effectively so that 

various treatment conditions can be applied on the same plate. An example of a different 

treatment distribution within the plate is shown in figure 2.2. 

 1 2 3 4 5 6 7 8 9 10 11 12 

A Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium 

B Medium           Medium 

C Medium           Medium 

D Medium           Medium 

E Medium           Medium 

F Medium           Medium 

G Medium           Medium 

H Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium 

Fig. 2.2: An alternative well seed using the same 96-well plate as in figure. 2.1 (see text). 

The green area corresponds to non-irradiated and untreated cells (negative control), the blue area 

is exposed only to irradiation, the yellow area contains chemical molecules (statin or monoclonal 

antibody), and the pink area represents a combination of irradiation and treatment molecules. 

In case when more treatment combinations are needed within the same experiment, e. g. 

irradiation with or without lovastatin and/or bevacizumab, one plate is not irradiated and another 

one is irradiated as designed. So each treatment condition can be examined with and without 

additional irradiation. 

In figure 2.2, each column corresponds to different cell numbers seeded per well. Thus, for each 

cell number the defined experiment is performed three times as seen in the figure. The final 

results represent mean fluorescence unit values obtained for each treatment condition and for 

each cell line normalised to values obtained for every 1000 cells/well fluorescence units. These 

mean values are plotted as columns and standard deviations (SD) are shown within each graphic 

representation as bars. 
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2.3.1.3 Determination of appropriate lovastatin concentration for further experiments 

Prior to any experiment based on lovastatin, a search for its suitable concentration was 

performed using colony formation assay. We searched for a dose that would permit a surviving 

fraction of approximately 80 % regardless the irradiation effect. 

For this purpose, two tumour cell lines have been tested, ZMK-1 and A 549, since these two 

possess rather high proliferation activity and thus easy manipulation. Cells were seeded into 

6-well plates as described in chapter 2.3.1.1 and cell number per well varied from 100 to 1000 

cells. Before the seeding itself cell suspensions have been pre-treated with different 

concentrations of lovastatin (0; 2.5; 5; 10; and 25 µM). One set of plates was left without 

irradiation, the other one was irradiated 4 hours after lovastatin addition and plates were left for 

incubation as long as needed (8-13 days). 

Colonies were subsequently fixed in alcohol and stained as described in chapter 2.3.1.1. 

2.3.2 Determination of the epidermal growth factor receptors (EGFR) expression status of 

the studied cells 

Since several experimental conditions included treatment with cetuximab, anti-EGRF 

monoclonal antibody, immunohistochemistry staining has been performed to determine EGFR 

expression within all studied cells. The detection procedure consisted of a cytocentrifugation 

prior to the staining itself. 

Cytocentrifugation 

A cellular suspension of each cell line was prepared and cells were counted according to the 

procedure described in chapter 2.1.3. For our purpose, 1 x 10
4 

cells were needed for the 

preparation of each glass slide. 

Once the cell suspension was prepared, construction of glass slide porters of the Cytospin 4 

cytocentrifuge was done. Each porter consisted of a stainless steel clip, glass microscopic slide, 

filter card, and a re-usable sample chamber as seen in figure 2.3. 
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Fig. 2.3: Composition of a glass slide porter: a – glass slide, b- filter card, c – re-usable sample 

chamber, d- slide clip (from Thermo Scientific, Instructions for use, revised 6/12, p. 1). 

For each glass slide, 100 µl of cellular suspension was inserted using a pipette inside the sample 

chamber when the whole porter was prepared and placed into a cytocentrifuge. The cells were 

centrifuged during 5 minutes at 1500 rpm using the program 1 (predefined for this purpose 

according to the manufacturer protocol). After 5 minutes, the slides were removed from the 

centrifuge and out of the clips and a cellular monolayer could already be observed on each glass 

slide. These were left to dry at room temperature overnight and were afterwards ready for 

staining. 

Immunohistochemistry EGFR staining method 

The procedure of staining was performed by Mrs. Jünemann (Department of General and 

Visceral Surgery, UMG, Göttingen). 

In the first step, A 549 cells were stained to confirm the reliability and feasibility of this test 

since A 549 is known to overexpress the EGF-receptors. Afterwards, all other cells lines were 

tested as well. 

Once the glass slides with cellular monolayer were ready, these were fixed in -20 °C acetone for 

8 minutes then dried at room temperature. The samples were subsequently placed in a Wash 

Buffer for few minutes and then the procedure of staining was ready to start. 

First, the samples were incubated for 28 minutes at 37 °C with the primary mouse anti-EGFR 

antibody diluted in 1:100 ratio. Next, an indirect detection of primary antibodies using OptiView 

DAB IHC Detection Kit was done. The system was based on the principle of peroxidase 
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inhibition. The samples were left to stain first at haematoxylin II during 8 minutes, then in bluing 

reagent for 4 minutes using automated slide stainer. 

After the staining, the samples were fixed once again in 75 % alcohol then in xylene and finally 

the cover glass was put on the glass slide with the samples and fixed using xylene-containing 

Vitro-Clud. 

For the final visualization, a light microscope with a magnification factor of 40 coupled with a 

camera was used and permitted to create photographic documentation of the observed images. 

If cells expressed EGFR this was seen as a brown staining either of the cell surface, cytoplasm or 

both in comparison to cells without EFGR expression or negative control that could be seen as 

blue ones. 

2.4 Molecular biology experiments 

2.4.1 Reporter assay 

2.4.1.1 Multi-pathway activity assay 

For this purpose, a Cancer Cignal Finder 10-Pathway Reporter Array kit was used. This array 

enables to pinpoint the pathways regulated by the gene products or chemical compounds which 

is very helpful for determination of the effects of lovastatin on cell lines examined in order to 

facilitate further experiments, i. e. Western blot assay. This kit contains of 10 different Cignal 

reporter assays (see table 2.2). 

Each reporter was a mixture of an inducible transcription factor responsive construct and 

consecutively expressing Renilla luciferase construct (40:1). The inducible transcription factor-

responsive construct encoded the firefly luciferase reporter gene under the control of a basal 

promoter element (TATA box) joined to tandem repeats of a specific Transcriptional Response 

Element (TRE). This construct monitored both increases and decreases in the activity of a key 

transcription factor which is a downstream target of a specific signalling pathway. The 

consecutively expressing Renilla construct encoded the Renilla luciferase reporter gene under the 

control of a CMV (cytomegalovirus) immediate early enhancer/promoter and acted as an internal 

control for normalizing transfection efficiencies and monitoring the cell viability. 

 

 



26 

 

 

Tab. 2.2: Cancer Cignal Finder 10-Pathway Reporter Array kit. 

 Pathway Transcription Factor 

1 Wnt TCF/LEF 

2 Notch RBP-Jκ 

3 p53/DNA Damage p53 

4 TGF-β SMAD2/3/4 

5 Cell cycle/pRb-E2F E2F/DP1 

6 NF-κB NF-κB 

7 Myc/Max Myc/Max 

8 Hypoxia HIF-1A 

9 MAPR/ERK Elk-1/SRF 

10 MAPK/JNK AP-1 

11 Negative Control  

12 Positive Control  

 

The negative control was a mixture of non-inducible reporter construct and consecutively 

expressing Renilla luciferase construct. The non-inducible reporter construct encoded firefly 

luciferase under control of a basal promoter element (TATA box) without any additional 

transcriptional response elements. It served to determine a background reporter activity. 

The positive control was a constitutively expressing GFP (green fluorescent protein) construct 

pre-mixed with a constitutively expressing firefly luciferase construct and a constitutively 

expressing Renilla luciferase construct. It was necessary for visual confirmation of transfection 

(Qiagen, Format Handbook, revised 01/2011). 

For our purpose, the transfection and treatment protocol for reporter assay with small 

molecule/organic compound was followed. 

Assay procedure 

In practice, the procedure was performed under sterile conditions. First, all compounds and 

solution were prepared in advance in sufficient quantities and maintained in 5 ml polysterene test 
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tubes. Transfection as well as revelation was performed using sterile white flat bottom 96-well 

plates. 

For experimental transfections based on per well basis, 1 µl of each Cignal reporter needed to be 

diluted in 25 µl of Opti-MEM
®
 serum-free culture medium. It is noteworthy that for each 

examined reporter, 4 wells were necessary in order to have 4 different lovastatin concentrations 

for examination (0; 0.25; 2.5; and 25 µM). For each experiment, a negative control was needed 

consisting equally of at least 4 wells (1 well per lovastatin concentration). At least one positive 

control was always associated to each experiment as well. 

In the next step, Attractene solution was prepared by dilution of 0.6 µl of Attractene in 25 µl of 

Opti-MEM
®
serum-free medium for every well. This dilution was let for incubation at room 

temperature for 5 minutes and added afterwards to the previously prepared reporter solutions so 

that there was at the end 25 µl of Attractene dilution per well. In order to allow occurrence of 

complex formation, this mixture was immediately shaken after addition of Attractene using a 

Vortex and incubated for 20 minutes at room temperature. 

Meanwhile, a cellular suspension needed to be prepared. Since various cell lines are believed to 

show a great deal of variation in the levels of signalling proteins, three different cell lines (two 

tumour, A 549, ZMK-1, and one normal tissue, HaCaT) were used in this experiment. 

This preparation aimed at obtaining a suspension that contained 4 x 10
5
 cells/ml. The final 

volume of suspension depended upon the number of wells needed. The cells were obtained by a 

process of trypsinization as described in chapter 2.1.3. The only difference was that once 

trypsinized the cells were resuspended in Opti-MEM
®
 medium containing 5 % of fetal calf 

serum. After the cell counting, as described in 2.1.3, the suspension was centrifuged in a 

centrifuge with 1200 rpm during 10 minutes at room temperature (22 °C). Afterwards, the 

supernatant was removed and the cells were resuspended this time in Opti-MEM
®
 containing 

5 % of FCS and 1 % of non-essential amino acids (NEAA). 

After 20 minutes of incubation for complex formation, 50 µl of specific complexes were 

aliquoted into appropriate wells and 100 µl of cell suspension was added into each well already 

containing constructs-Attractene complexes. 

The plate with all prepared and filled wells was maintained for incubation at 37 °C and 5 % CO2 

for 6 hours. 
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Six hours after transfection, the medium had to be changed to assay medium consisting of Opti-

MEM
®
 containing 0.5 % FBS, 1 % NEAA, 100 U/ml Penicillin, and 100 µg/ml Streptomycin. 

This time, 75 µl of the assay medium was added per well. 

Treatment with lovastatin was done 24 hours after transfection. The volume of the diluted 

lovastatin that was added into appropriate wells depended upon the desired final concentration in 

each well. In case of control wells without lovastatin, DMSO was used instead. 

Six to eighteen hours after the experimental treatment, a revelation using Dual Luciferase Assay 

was performed. 

 

2.4.1.2 Dual-Luciferase reporter assay 

For the revelation of the results Dual-Glo
®

Luciferase Assay System was used 6-18 hours after 

treatment according to the manufacturer’s protocol (Promega, Technical Manual, revised 9/11) 

as follows. 

Because of its high sensitivity, the firefly luciferase assay permits a simple detection of 

upregulation of genetic elements. In order to be able to determine gene downregulation as well, a 

normalization of the expression of an experimental reporter (firefly luciferase in this case) to the 

expression of a control reporter (Renilla luciferase) needs to be done. This will allow the 

differentiation between nonspecific cellular response (cell death) and specific cellular response 

(gene downregulation). 

Both of these luciferases are widely used as co-reporters permitting quick and sensitive 

normalized studies. Firefly luciferase is a 61 kDa and Renilla luciferase a 36 kDa protein. None 

of them requires post-translational processing so that they can be used as genetic reporters 

immediately after translation. 

To generate luminescence firefly luciferase requires beetle luciferin, ATP, magnesium, and 

molecular oxygen. Renilla luciferase requires only coelenterate luciferin (coelenterazine) and 

molecular oxygen. Both luciferases undergo spontaneous inactivation after generating 

luminescence. 
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Assay procedure 

In practice, in the first step of the revelation, a volume of Dual-Glo
®

Luciferase Reagent equal to 

the culture medium volume (75 µl) was added into each well of the plate. This reagent induced 

cell lysis and acted as a substrate for firefly luciferase. After the first reagent was added, this was 

left for an incubation of approximately 15 – 45 minutes at room temperature. 

After 15-45 minutes of incubation, firefly luminescence was measured using a luminometer and 

expressed in RLU (relative luminescence units). The measurement of firefly luminescence was 

performed at room temperature without prior shaking. It was repeated 3 times in 10-minute 

intervals. In the second step, Dual-Glo
®
Stop & Glo

®
Reagent of the same volume as the first 

reagent (75 µl) was added into each well and left for an incubation of 15 – 45 minutes at room 

temperature. This reagent quenched the luminescence from the firefly reaction and provided 

substrate for Renilla luciferase. Measurement of Renilla luminescence was done in the same way 

as the firefly luminescence, i. e. after 15 – 45 of incubation and repeated 3 times in 10-minute 

intervals. 

Normalizing ratio, Relative Response Ratios, and data analysis 

Since firefly luciferase is immediately functional upon translation, as described above, if the 

amount of luminescence from an experimental sample (firefly luciferase) is greater than the 

luminescence from a control sample (Renilla luciferase) an increase in transcription or 

translation occurs. A decrease in experimental reporter response can be due to specific effect on 

the reporter or due to global effect, e. g. cell death. Normalization of an experimental reporter 

(firefly) with a control reporter (Renilla) from the same sample permits a distinction between 

specific and global effects. For this reason, a ratio of firefly : Renilla luminescence has to be 

calculated for each well. Since in our conditions each measurement (firefly and Renilla 

luciferase) was performed in triplicate a mean value of these three results was determined and 

then the ratio of both luminescence outcomes was calculated. All calculations were performed 

using the Microsoft Excel program. 

In order to determine a quantitative impact of an experimental treatment (lovastatin at different 

concentrations in this case) on reporter gene expression a Relative Response Ratio (RRR) 

calculation is very helpful. 
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This calculation requires the presence of both positive and negative controls on each plate and 

for each cell line tested. In this case, positive control was without any treatment and the negative 

one was treated with lovastatin. 

At first, the experimental reporter luminescence/control reporter luminescence (firefly : Renilla 

luminescence) was calculated for all wells as already explained above. So we obtained the 

experimental sample ratio, negative and positive control ratios and calculated the RRR for each 

experimental treatment using this formula: 

 

RRR =
 experimental sample ratio − (negative control ratio)

 positive control ratio − (negative control ratio)
 

 

Once this relative response ratios were calculated, a relation was done in a manner that no 

treatment (i. e. lovastatin 0 µM = DMSO, in these condition) RRR was considered to represent 

100 % and subsequently all other RRR for experimental treatments were put into relation with it. 

A negative control would generate a RRR of 0 %. Those experimental treatments that would 

give negative RRR will be the most significant ones because they would be more effective 

inhibitors than the negative control. The more this negativity increases with increasing 

concentration of lovastatin the higher inhibitory effect is observed. On the other hand, positive 

and increasing values of RRR of the experimental treatment mean that this therapeutic molecule 

activates the specific cellular pathway. 

2.4.2 Determination of apoptosis through caspase-3 and caspase -7 activity 

Apoptosis is a highly regulated form of cell death that can be either a result of conditions 

occurring within the cell itself or from signals generated externally such as those from a 

surrounding tissue or immune cells (Taylor RC et al. 2008). Members of the cysteine aspartic 

acid-specific protease (caspase) family play a key role in apoptosis in mammalian cells. 

Detection of caspase-3 and/or -7 activity in the treated cells (and control) permits to obtain the 

information about apoptotic potential of different treatment approaches used. 

2.4.2.1 Principles of the caspase-3 and caspase -7 activity assay 

The Caspase-Glo
®
3/7 Assay provided a luminogenic caspase-3/7 substrate which contained the 

DEVD tetrapeptide sequence in a reagent optimized for caspase activity, luciferase activity, and 

cell lyses. Adding of this substrate resulted in cell lyses followed by caspase cleavage and 

generation of a “glow-type” luminescent signal produced by luciferase. The measured 
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luminescence is proportional to the amount of caspase activity present (Promega, Technical 

Bulletin, revised 12/12). 

2.4.2.2 Assay procedure 

At first, a cellular suspension of 1 x 10
5 

cells/ml for each examined cell line and for every 

treatment condition (lovastatin 2.5 µM, irradiation = 4 Gy, lovastatin + irradiation, and control) 

was prepared under sterile conditions as described above. 

If a combined treatment should be done, the cells had to be first pre-treated with a 2.5 µM 

lovastatin and then irradiated in 4 hours with 4 Gy. The cells were subsequently seeded into a 

white 96-well plate with flat bottom, 100 µl in each well. Within each experiment, every 

treatment condition (and control) was seeded in triplicate. Afterwards, the cells were left for 

incubation at standard conditions (chapter 2.1.2) for 6 – 48 hours depending on the cell line. 

After the defined incubation time and before starting the assay, the cells were removed from the 

incubator and left to equilibrate to room temperature. A Caspase-Glo
®
3/7 Reagent (reconstituted 

of Caspase-Glo
®
Substrate and Caspase-Glo

®
Buffer) was added into each well in a volume of 

100 μl and the contents of the wells were mixed using a plate shaker at 400 rpm for 30 seconds. 

The plate was then incubated at room temperature for 1 hour. 

Each plate consisted, except of the assay wells, also of a blank and negative control. For blank 

reaction the cell medium was mixed with DMSO (solvent used to dissolve lovastatin) and 

Caspase-Glo
®
3/7 Reagent whereas negative control contained DMSO-treated cells in medium 

and Caspase-Glo
®
3/7 Reagent. Blank reaction was used to measure the background 

luminescence which value was subsequently subtracted from the experimental and negative 

control values. 

After the first hour of reagent incubation, luminescence in RLU was performed using a 

luminometer in the same way as in the assay described in chapter 2.4.1.2. The second 

measurement, still for the same plate, was repeated one hour later in order to assess whether 

there was a difference in luminescence performance with time. As mentioned in the 

manufacturer’s protocol, the peak of luminescence should be reached within 1 – 2 hours of 

reagent incubation. 

 

 



32 

 

 

Data analysis 

As already mentioned, once the results (expressed in RLU) were obtained, the mean of the three 

blank values within each experiment was calculated and subsequently subtracted from each 

experimental value in order to remove a potential influence of the background. The mean values 

from these experiments and their standard deviations could be calculated and expressed in graphs 

as columns and error bars, respectively. The calculations were accomplished with the Microsoft 

Excel program and graphs plotted with OriginPro
®
 software version 7.5 (OriginLab Corporation, 

USA). 

2.4.3 Western blot assay  

Also known as protein immunoblot, this technique is used to detect specific proteins in different 

tissues or cell culture samples. Gel electrophoresis is used to separate proteins with respect to the 

length of the polypeptide. These proteins are subsequently transferred to a nitrocellulose 

membrane where they are stained with antibodies specific to the target protein (Tobwin et al. 

1979). 

2.4.3.1 Preparation of samples and cell lyses 

Since a large quantity of cells is required for this kind of experiment, ZMK-1, A 549, and HaCaT 

cell lines have been chosen to be explored due to their high proliferation activity. The initial cell 

suspension was prepared under sterile conditions as described in chapter 2.1.3 and appropriate 

quantities of cells (10 x 10
6
 and 20 x 10

6
) were resuspended in 20 ml of medium and seeded into 

250 ml flasks. 

Seeding was performed on day 1 and the experimental treatments on day 2 (approximately 20 

hours later). For assays with lovastatin, 4 flasks needed to be prepared: control (no lovastatin, no 

irradiation, addition of DMSO exclusively), lovastatin 2.5 µM alone, irradiation alone (4 Gy), 

and combination of lovastatin and irradiation. In the case of combined treatments, the cells were 

first pre-treated with lovastatin 2.5 µM and irradiated 4 hours later by 4 Gy (dose rate = 

1 Gy/min). Lovastatin or DMSO was added into a cell appropriate medium which replaced the 

medium given on day 1 during the seeding. 

Two hours after the irradiation, the medium was removed under unsterile conditions from each 

flask and the cell layer was washed by 2-3 ml of PBS in order to remove all residual medium 

using unsterile 10 ml pipettes. Once the cell layer was free of medium, the cells were scraped 

using a cell scraper inside the flask. PBS was used to create a suspension that was subsequently 
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transported into unsterile 50 ml plastic tubes (one tube per experimental condition, i. e. 4 tubes in 

total). These cell suspensions were centrifuged at 1200 rpm for 10 minutes at room temperature. 

After the centrifugation, the PBS supernatant was removed. Prior to the cell harvesting, a lyses 

buffer was prepared that consisted from the substances listed in table 2.3. 

 

Tab. 2.3: Composition of the lyses buffer. 

Substrate Molecular weight Dilutions 

20 mM Tris HCl (ph=7.5) 157.60 0.0315 g/100 ml water 

150 mM NaCl 58.60 0.0876 g/100 ml water 

1 mM MgCl2 203.30 0.002 g/100 ml water 

1 mM CaCl2 147.02 0.0014 g/100 ml water 

1 % NP-40 -- 1 ml 

10 % glycerol -- 10 ml 

 

For our purpose and volumes, 1 pill of Mini, EDTA-free, a protein inhibitor, was dissolved in 

8 ml of the lyses buffer. Note that both the lyses buffer solution and the tubes with cell 

suspension/sediment were maintained over the whole duration of the preparation process in an 

ice-filled box (ice was produced in an ice machine). 

When the cell sediment was obtained, 500 µl of our lyses buffer was added into each tube with 

sediment using unsterile pipette and mixed together within the tube. In order to facilitate the cell 

lyses and protein liberation, ultrasound was used with the following parameters: duration 15 

seconds; intensity 42 %. 

Afterwards, the cells – buffer suspension was left for 10 minutes without any action in order to 

let the foam descend, still in an ice box. To enhance the protein liberation, a series of 5 – 6 

passages through a tiny insulin injection was done manually and repeated after 10 minutes once 

again. For each experimental condition/tube, the same injection was strictly used. After the last 

passage, the whole content of each tube was transferred into unsterile plastic 1.5 ml cups and 

these were centrifuged at 6000 rpm for 10 minutes at 4 °C. 

Supernatant (lysate) from each cup was removed into a new separate 1.5 ml cup and served for 

protein assay and Western blot. If not used immediately, aliquots containing 20 µl of supernatant 

per cup were prepared and stored at -20 °C. 
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2.4.3.2 Bradford protein assay 

In order to determine the adequate amount of protein required for further steps of Western blot 

analysis a Bradford colorimetric protein assay based on standard protein concentrations and their 

standard curve were done (Bradford, 1976). 

 

Data analysis 

A standard curve was created by plotting the standard absorbance values on the y – axis and their 

concentrations in mg/ml on the x – axis. The experimental sample concentration was determined 

using the standard curve. Because two independent measurements were performed per 

experimental sample, the mean value was calculated. It corresponds to the protein concentration 

within 20 µl of lysate. In order to determine the amount of lysate necessary to obtain 20 µg of 

proteins, 20 (volume in µl) was divided by the mean concentration value. We obtained the 

volume of lysate to be loaded into gel. In addition, we calculated the volume of SDS (sodium 

dodecyl sulphate) buffer (see the chapter below) that needed to be added to obtain a final volume 

of 20 µl. 

2.4.3.3 Gel electrophoresis 

This procedure serves to separate proteins of the samples using electric charge according to their 

molecular weight. In general, a polyacrylamide gel is used for migration and separation of these 

proteins. 

Before the electrophoresis can start, all samples that are supposed to be loaded had to be 

prepared following the volumes determined according to standard curve calculations as 

described in the previous chapter. If protein lysates have not been used immediately for 

migration, they had to be frozen at -20 °C. For this reason, in the first step, the lysates needed to 

be thawed at room temperature. SDS buffer (cleavage buffer) should already be ready in 

advance. Its consistence is the following: 30 mM Tris-Base, 9 % sodium dodecyl sulphate 

(SDS), 15 % glycerine, 0.04 % bromphenol blue Na-salt. Immediately before use, 10 % of 

2-mercaptoethanol was added. These samples and solutions were prepared under an unsterile 

clean bench because of the characteristic and very intensive smell of 2-mercaptoethanol. 

Once the experimental lysate samples were ready for use, adequate volumes of these and SDS 

buffer – mercaptoetahnol solution were mixed together in unsterile cups and centrifuged for few 

seconds by rapid acceleration. Afterwards, these mixtures were incubated for 5 minutes at a 

temperature of 95 °C. 
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Meanwhile, a montage of migration device was done. For our purposes, precast 10-well 

polyacrylamide gels were used. These gels were placed within the migration set that consisted of 

a tank, lid, and an electrode assembly (two assemblies could enter into one tank) while two gels 

could be fixed onto one electrode assembly simultaneously. 

Once the montage was finished, the combs serving as spacers for wells of each gel were 

carefully removed and 20 µl of our sample-SDS buffer solution was loaded into each well 

according to the previously defined loading design. The whole volume was transferred onto 

wells using an unsterile pipette. Note that one of the wells needed to be loaded by a marker, i. e. 

a commercially available mixture of proteins having the defined molecular weights and stained 

so as to form visible, coloured bands. 

Once all wells were filled with samples and a marker, the migration tank and space between two 

gels was filled with a migration buffer to facilitate the electrophoresis. 

The tank was covered with the lid and the electrodes placed at its top were bond to the electricity 

source. The following parameters were chosen for migration of 2 gels: current of 30 mA, voltage 

of 200 V. The samples were left for migration and were frequently observed until they 

descended to the bottom of the gel. This process lasted approximately 2 hours. Once the 

migration was over, a transfer of the proteins from gel onto a membrane was executed as the 

next step. 

2.4.3.4 Transfer of the proteins from gel onto membrane 

In order to proceed subsequently to antibody detection of our proteins, these need to be moved 

from the polyacrylamide gels onto a membrane. This membrane can be either made of 

nitrocellulose or polyvinylidene difluoride (PVDF). The procedure of protein transfer is based on 

the principle of electroblotting, i. e. using an electric current that pulls the proteins from the gel 

onto the membrane while their organisation as it was within the gel is maintained. 

Electroblotting was executed using a Trans-Blot Turbo
TM

 Transfer System. This consisted of the 

device itself and two cassettes that consisted of two electrodes (cathode and anode). Between 

these two electrodes, a “blotting sandwich” was assembled. The sandwich was formed of two ion 

reservoir stacks one at the top and the other at the bottom of the sandwich; 0.2 μm nitrocellulose 

membrane (being a part of one of two transfer packs) and gel after the electrophoresis. When the 

sandwich was ready, it was placed on the anode, covered with the lid of the cassette (electrode) 

and inserted into the device. One gel was inserted into one cassette. Maximum two cassettes 
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could be blotted simultaneously. Following the manufacturer’s manual, an appropriate transfer 

protocol was chosen with respect to the type of the gel. The transfer time was 3 minutes. 

After the transfer, the membranes were removed from the sandwiches and stained using a 

sodium salt of a diazo dye to assess the loading and transfer efficiency. This was later on 

reversed by simple water washing and membranes were ready for blocking and incubation with 

antibodies. 

2.4.3.5 Membrane blocking and antibodies incubation 

For the purpose of membrane blocking and antibody probing, a WesternBreez
®

 Chromogenic 

Western blot immunodetection kit was used. 

In the first step, it is essential to prevent non – specific binding of antibodies to the membrane by 

blocking the spaces of the membrane that are not already occupied by proteins. By preventing 

the interactions between the membrane and the antibodies, the target proteins can be detected 

without any confusion. 

In practice, once the membrane was stained in Ponceau S solution and presence of protein bands 

was verified, it was subsequently washed in pure water, placed into 10 ml of blocking solution in 

a covered plastic dish and incubated for 30 minutes on a rotary shaker. Then the solution was 

decanted and the membrane was rinsed with 10 ml of distilled water for 5 minutes. This 

procedure was repeated once. Prior to the following step, a solution of our primary antibody 

needed to be prepared. For the study, mouse anti-ERK IgG2a antibody, rabbit anti-caspase 3, 

rabbit anti-p-ERK1/2 phosphorylated at Thr202/Tyr204, and rabbit anti-p-Akt antibody 

phosphorylated at Thr308 were used. A part of specific antibodies, a control of appropriate 

protein presence within bands was ensured using monoclonal mouse anti-β-actin antibody that is 

in normal conditions always detectable since actin is a structural protein. Its molecular weight is 

42 kDa. 

The primary antibodies were diluted in 10 ml of blocking solution in order to obtain dilutions 

recommended by the manufacturers. For anti-ERK and actin, a dilution 1:4000 was performed. 

Anti-p-Akt was diluted 1:1000, anti-p-ERK 1:2000 and anti-caspse -3 1:200. For anti-p-ERK1/2, 

anti-p-Akt and anti-caspase 3 antibodies, no combination with actine was possible because of 

incompatible hosts (rabbit and mouse respectively). 

Thus, in the next step, the membrane was left for incubation in 10 ml of primary antibody 

solution for one hour still placed on a rotary shaker. After one hour, the membrane was washed 
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for 5 minutes in 10 ml of antibody wash that consisted of distilled water and antibody wash 

solution diluted 15:1. This was repeated three times. Subsequently, the membrane was incubated 

for 30 minutes in 10 ml of secondary antibody solution adapted according to the primary 

antibody, i. e. mouse or rabbit, than washed again for 5 minutes in 10 ml of antibody wash three 

times. After the last antibody wash, the membrane was rinsed again in 10 ml of distilled water 

for three times 2 minutes. 

The last step was the incubation with 5 ml of chromogenic substrate, this time without shaking. 

The incubation time was supposed to vary from one antibody to another. The development was 

completed in general in 1 to 60 minutes. For our antibodies, 10 minutes were enough for 

visualisation of the bands. 

Finally, the membrane needed to be washed three times in 10 ml of distilled water for 2 minutes 

and was then left to dry on a clean piece of filter paper at open air at room temperature. 

Data analysis 

After all washing procedures, the unbound probes were washed away and only the probes 

labelled and bound to proteins of interest were detected. Size approximations were ensured by 

visual comparison of the stained bands to that of the marker loaded during electrophoresis. 

Another way of confirmation was the position of structural protein (actin) that should not change 

between samples. Actin served also to normalize the amount of the target protein in order to 

detect eventual errors or an incomplete transfer. 

2.5 Statistical analysis of results 

All results obtained in CFU, CTB, and caspase-3 and caspase -7 activity assays were tested in 

order to determine if these were statistically significant or not. For this purpose, a Student t-test 

in Kaleidagraph
®

 software version 4.1 was used. Appropriate values for pre-treated cells, i. e. 

lovastatin, cetuximab, bevacizumab, were compared to untreated cells irradiated at the same 

dose. 

The p-values inferior to 0.05 were considered as statistically significant. A star sign (*) was 

placed within the figures and curves over the points or columns that were significant. To 

determine the p-values, results for experimental treatment molecule (i .e. lovastatin, cetuximab, 

bevacizumab or their combinations) were compared with the result obtained for the same cell 

line irradiated with the same dose without experimental molecule. 
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3 Results 

3.1 Preliminary experiments 

3.1.1 Appropriate lovastatin concentration for further experiments 

In order to detect the most suitable lovastatin concentration for all upcoming experiments, a CFU 

assay procedure as described in chapter 2.3.1.2 was adopted. 

As seen in figure 3.1, 25 µM lovastatin even alone exhibits a highly toxic effect in both cell 

lines. However, this concentration has been used in few experiments of cell viability to prove its 

toxicity. On the other hand, the 2.5 µM lovastatin exerted slight but sufficient decrease of 

clonogenic cell potential and thus turned out to be the most appropriate for further studies. Since 

5 and 10 µM lovastatin did not seem to sensitize particularly the A 549 cells and seemed quite 

harmful in ZMK-1 these concentrations were almost completely omitted in this work. 
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Fig. 3.1: Mean value of surviving fraction plotted against concentration of lovastatin for two different 

cell lines (figure (a) for ZMK-1, figure (b) for A 549) exposed to irradiation with the dose of 2 Gy and 

without irradiation. Pre-treatment by lovastatin was applied 4 hours before the irradiation. 

Experiments were performed once in triplicate. 

3.1.2 Optimal incubation time and cell number within cell viability assay 

According to the procedure described above (chapter 2.3.1.3) the determination of sufficient 

incubation time as well as of optimal cell quantity per well could be achieved as documented in 

table 3.1 below. 

Thus all experiments using CTB assay were performed with an incubation time of 72 and 96 

hours for all examined cell lines. 
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Tab. 3.1: Review of optimal cell number to seed, incubation time, and radiation dose for CTB assay according to 

each cell line. 

Cell line Nb cells to seed Incubation 

time [h] 

Radiation dose [Gy] 

HGT 1 4000 – 5000 72; 96 4 

ZMK – 1 6000 72; 96 4 

MO59J 4000-5000 72; 96 2 

MO59K 3000 – 4000 72; 96 4 

A 549 4000 - 5000 72; 96 4 

HaCaT 4000-5000 72; 96 4 

HUVEC 3000-5000 72; 96 4 

fibroblasts 3000-5000 72; 96 4 

 

 

3.2 Imapct of lovastatin on all cell lines examined 

3.2.1 Lovastatin alone 

Surviving fraction representation 

Using Kaleidagraph
®
 software, all surviving fraction (SF) values of non-irradiated and untreated 

cells obtained within all performed experiments were gathered and mean SF and standard 

deviations were calculated. The same procedure was applied for the cells treated with 2.5 µM 

lovastatin. As already mentioned above, lovastatin 25 µM had a very toxic effect on ZMK-1 and 

A 549 cells in colony formation tests and that is why the results presented concern uniquely 

lovastatin 2.5 µM association. 

Graphic representation of all cell lines shown in figure 3.2 except fibroblasts permits to observe 

a differential effect of low dose lovastatin in comparison with the untreated cells. Fibroblasts 

turned out to be very lovastatin responsive and for this reason few complementary CFU assays 

were performed using 0.25 µM lovastatin. However, even this concentration attenuated the cell 

survival in a very important manner, thus SF outcomes for this cell line are not presented in this 

work. 
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Fig. 3.2: Mean survival fraction values of untreated (i.e. non-irradiated, no lovastatin) and lovastatin 

2.5 µM pre-treated cell lines. Each experiment has been done three times, always in triplicate. 

Cell viability representation 

Similar to the previous procedure, also the cell viability results were assembled for the untreated 

(non-irradiated) cells and for the cells that were pre-treated with lovastatin 2.5 and 25 µM. 

Subsequently, the mean values of fluorescence that correlate directly with the cell viability 

(metabolic activity), and their standard deviations were calculated. The scheme of the 

experiments that permitted to obtain these results was already mentioned in chapter 2.3.1.2. The 

seeding and incubation conditions were adapted according to the results shown in chapter 3.1.2. 

Figures 3.3 and 6.1 show that for the lovastatin 2.5 µM treatment, a clear difference in cell 

viability can be observed regarding tumour and normal tissue cell lines. The latter are noticeably 

less active. This could be also seen in CFU assays where normal tissue cell lines (especially 

HUVEC cells) and MO59J as tumour cell line needed more time to create sufficiently large 

colonies. 

As for the incubation time, the viability seems to be slightly higher if longer incubation is 

applied although the tendencies within the cell lines are maintained similar. 

Of all tumour cell lines, A 549, MO59K, and MO59J are rather lovastatin-sensible. However, 

even ZMK-1 presents significant decrease in cell viability if pre-treated with lovastatin. Activity 

of HaCaT and HUVEC cells remains unchanged with 2.5 µM lovastatin. Lovastatin induced 

decreased viability of fibroblasts is in accordance with the CFU assay results. 
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Fig. 3.3: Cell viability expressed in fluorescence units per cell line without treatment and with 

lovastatin 2.5 µM pre-treatment. Incubation time was 96 hours. Each experiment has been performed 

at least once, always in triplicate. 

For 25 µM lovastatin treatment (figures 3.4 and 6.2), MO59J and fibroblasts were excluded from 

the experiments because of already very strong sensitizing effect at even low doses of lovastatin 

within CFU assays as well as because of extremely slow cell growth (permanently insufficient 

quantity of cells for the CTB assay). It is obvious that high dose lovastatin causes significant cell 

viability decrease for all other cell lines similar as in the CFU assay. 
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Fig. 3.4: Cell viability expressed in fluorescence units per cell line without treatment and with 

lovastatin 25 µM pre-treatment. Incubation time was 96 hours. Each experiment has been performed 

at least once, always in triplicate.  

3.2.2 Lovastatin associated with irradiation 

3.2.2.1 Comparison of overall impact 

In order to better visualize graphically the impact of lovastatin (2.5 and 25 µM) on cells together 

with irradiation, the mean values of fluorescence obtained in cell viability assays were calculated 
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in the same way as in the previous cases (chapter 3.2.1) together with SD bars. This allows us to 

determine whether there exists a radiosensitizing effect of statin or not. 

As for the 2.5 µM lovastatin (figures 3.5 and 6.3), a slight but significant decrease in cell 

viability can be observed in ZMK-1. Lovastatin 2.5 µM alone lowers activity in A 549, MO59K, 

and HaCaT and association with irradiation does even enhance this lowering tendency. HaCaT 

cells do not respond to lovastatin even if combined with irradiation. HUVEC cells seem to 

respond mostly if combined effect of irradiation and lovastatin and fibroblasts are highly sensible 

to lovastatin with or without additional irradiation. 
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Fig. 3.5: Mean values of cell viability expressed in fluorescence units per cell line without any 

treatment, with irradiation alone (4 Gy), with lovastatin 2.5 µM pre-treatment alone or combination of 

lovastatin 2.5 µM pre-treatment 4 hours prior to irradiation (4 Gy). Incubation time was 96 hours. 

Each experiment has been done at least once, always in triplicate. 

While MO59J cell line is considered to be highly radiosensitive, a dose of 2 Gy of irradiation 

was delivered and the obtained results appear separately below in figure 3.6. 

As expected, already 2 Gy of irradiation lowered the cell viability in a very important manner. 

Furthermore, an addition of lovastatin 2.5 µM sensitized the cell even more. 

For the association of irradiation and lovastatin 25 µM the following results, as seen in figures 

3.7 and 6.4, were achieved. 

As for CFU assay, in CTB test treatment with highly concentrated lovastatin abolishes 

significantly activity of all cell lines without exception coupled with a strong radiosensitizing 

effect. Effect over HUVEC cells seems to be the most toxic one. As well as in other CTB tests, 

difference in incubation time does not play any role. 
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Fig. 3.6: Mean cell viability values in fluorescence units exclusively for MO 59 J cell line without any 

treatment, with irradiation alone (2 Gy), with lovastatin 2.5 µM pre-treatment alone or combination of 

lovastatin 2.5 µM pre-treatment 4 hours prior to irradiation (2 Gy). Incubation times 72 and 96 hours 

are presented. Experiment was performed once in triplicate.  
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Fig. 3.7: Mean values of cell viability expressed in fluorescence units per cell line without any 

treatment, with irradiation alone (4 Gy), with lovastatin 25 µM pre-treatment alone or combination of 

lovastatin 25 µM pre-treatment 4 hours prior to irradiation (4 Gy). Incubation time was 96 hours. Each 

experiment has been done once always in triplicate.  

3.2.2.2 Impact according to cell lines 

Here, using the results of CFU assays, surviving fraction curves that have been created as 

described in chapter 2.3.1.1, are presented for each cell line separately. Furthermore, survival 

curves with and without correction for effects induced by lovastatin are given in order to 

compare how important the differences are if the results are normalized, i. e whether irradiation 

related lovastatin pre-treatment affects the cell survival. 
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The sensitizer enhancement ratios of lovastatin 2.5 and 0.25 µM (for HUVEC exclusively) at a 

survival fraction of 50 % were calculated as mentioned in chapter 2.3.1.1 and are listed in table 

3.2. 

The SER could not be determined for fibroblasts since in CFU assay no colonies could be 

observed after the pre-treatment with lovastatin at 2.5 µM. No other concentrations of lovastatin 

were tested because of slow cell growth and uneasy culturing conditions of this cell line. Cell 

lines that turned out to be radiosensitized by the effect of lovastatin are mostly the normal tissue 

cells (especially HaCaT) and MO59J cell line that is already known for its high intrinsic 

sensitivity to IR. All other tumour cell lines were protected by addition of lovastatin. 

Tab. 3.2: Sensitizer enhancement ratio of two lovastatin concentrations (2.5 and 0.25 µM) on 6 cell lines. 

Cell line Lovastatin [µM] SER (50%) Cell line Lovastatin [µM] SER (50%) 

ZMK-1 2.5 1 MO59J 2.5 1.36 

A 549 2.5 0.86 HUVEC 0.25 1.06 

MO59K 2.5 1 HaCaT 2.5 1.53 

 

ZMK-1 

Seeding and treatment procedure for this cell line corresponds to the first seeding method 

mentioned in chapter 2.3.1.1. Since ZMK-1 cells grew quickly the number of cells that were 

seeded per well varied between 100 and 1000. Colonies were fixed and stained 8 – 10 days after 

seeding. 
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Fig. 3.8: Surviving fraction curves of ZKM-1 cell line with irradiation alone (full lines) and pre-

treated with 2.5 µM lovastatin 4 hours before irradiation (dotted lines): SF curves before correction 

for lovastatin-induced effects on colony formation (a);SF curves after correction for lovastatin-

induced effects on colony formation (normalized survival) (b). 
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The curves in figure 3.8 show that lovastatin alone, without normalizing the outcomes, leads to 

decrease of cell survival however the tendency remains similar to irradiation alone at different 

radiation doses. Lovastatin normalized to irradiation has even radioprotective effect on this cell 

line. 

 

A 549 

For this cell line, the seeding and treatment scheme is equivalent to that of ZMK-1. For the 

experiments, 100 to 1000 cells were seeded per well and left for incubation during 8 – 12 days. 

Similar results should be concluded in the case of A 549 as for ZMK-1, i. e. lovastatin 2.5 µM 

alone lowers slightly the cell survival without sensitizing to the associated irradiation. On 

contrary, the same aspect of radioprotection is observed. The obtained data are given in figure 

3.9. 
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Fig. 3.9: Surviving fraction curves of A 549 cell line with irradiation alone (full lines) and pre-treated 

with 2.5 µM lovastatin 4 hours before irradiation (dotted lines): SF curves before correction for 

lovastatin-induced effects on colony formation (a); SF curves after correction for lovastatin-induced 

effects on colony formation (normalized survival) (b). 

 

MO59K 

MO59K and HaCaT cell lines were exceptions within the CFU assays since a part of lovastatin 

2.5 µM and lovastatin 5 µM was tested, too. Concerning seeding and treatment procedures, these 

were designed as described in chapter 2.3.1.1 (second detailed method, i. e. treatment by 

lovastatin was done 24 hours after seeding followed by irradiation 4 hours later). In general, 

200 – 2000 cells/well were seeded and 12 – 14 days were left for colony formation. 

Interestingly, there is almost no difference between normalized and non normalized curves in 

figure 3.10. Furthermore, in both considerations (with or without normalization) a 
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radiosensitizing tendency of lovastatin can be observed. However, SER of 2.5 µM lovastatin 

does not confirm this theory (SER 50 % = 1). As supposed, higher concentration of lovastatin is 

more toxic. The only significant outcomes were obtained for cells pre-treated with 5 µM 

lovastatin and irradiated by a dose of 1 Gy. 
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Fig. 3.10: Surviving fraction curves of MO59K cell line with irradiation alone (full black lines), pre-

treated with 2.5 µM lovastatin (full gray lines) or 5 µM lovastatin (dotted lines) 4 hours before 

irradiation (dashed lines): SF curves before correction for lovastatin-induced effects on colony 

formation (a); SF curves after correction for lovastatin-induced effects on colony formation 

(normalized survival) (b). L5 = lovastatin 5 µM. 

 

MO59J 

The seeding and treatment scheme was similar to the scheme for MO59K except for the fact, that 

only 2.5 µM lovastatin was added and that the irradiation consisted of only 1 and 2 Gy (plus 

control). As it was already mentioned above, MO59J cells revealed an extremely slow growth 

thus the incubation time before colony fixation and staining was at least 14 days long. 

Furthermore, high cell mortality even in conditions of standard cultivation obliged us to seed 

relatively high number of cells per well, in this case 1000 – 3000 cells. Despite such elevated cell 

quantity, the final character of colonies was very unsatisfactory. 

Numerous single-cell or very few-cell colonies could be visualized. Since almost no colonies of 

50 or more cells were present, all colonies formed of up to 10 cells were taken into 

consideration. As far as survival curves in figure 3.11 with or without normalization are 

concerned, both show strong sensitization of cells to lovastatin with a proved radiosensitizing 

effect already at small radiation doses. 
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Fig. 3.11: Surviving fraction curves of MO59J cell line with irradiation alone (full lines) and pre-

treated with 2.5 µM lovastatin 4 hours before irradiation (dotted lines):. SF curves before correction 

for lovastatin-induced effects on colony formation (a); SF curves after correction for lovastatin-

induced effects on colony formation (normalized survival) (b).  

 

HUVEC 

For colony formation assays on HUVEC, the cells were seeded according to the second method 

described in chapter 2.3.1.1, i. e. pre-treatment with lovastatin was done 24 hours after seeding 

and 4 hours before irradiation. In the very first experiments, lovastatin 2.5 µM was used. This 

concentration demonstrated extremely high cell toxicity within CFU assays with no detectable 

colonies after even long incubation time and for this reason 10-times lower dose of 0.25 µM was 

chosen for the further experiments. One thousand to three thousand five hundred cells were 

seeded per well and the incubation time needed was 15 days. 
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Fig. 3.12: Surviving fraction curves of HUVEC cell line with irradiation alone (full lines) and pre-

treated with 0.25 µM lovastatin 4 hours before irradiation (dotted lines): SF curves before correction 

for lovastatin-induced effects on colony formation (a); SF curves after correction for lovastatin-

induced effects on colony formation (normalized survival) (b). 
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As demonstrated in figure 3.12, even a low concentration of lovastatin induces decreased cell 

survival, however in comparison with the irradiation alone the addition of lovastatin does not 

have such toxic effect as expected. 

HaCaT 

As it was already mentioned for the MO59K cells, even HaCaT were exceptionally treated 

during the initial experiments with two different low concentrations of lovastatin, i. e. 2.5 and 

5 µM according to the scheme similar to HUVEC, MO59K, and MO59J. In average, 500 – 3000 

cells were seeded per well and these well growing cells were maintained for incubation during 

11 – 15 days. Both concentrations of lovastatin sensitize HaCaT cells as seen in figure 3.13. It is 

noteworthy that in association with irradiation the 2.5 µM lovastatin seems to radiosensitize the 

cells more than the 5 µM lovastatin although these results are not significant. The pure effect of 

statins should be logically higher for elevated concentrations of lovastatin. 
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Fig. 3.13: Surviving fraction curves of HaCaT cell line with irradiation alone (full black lines), pre-

treated with 2.5 µM lovastatin (full gray lines) or 5 µM lovastatin (dotted lines) 4 hours before 

irradiation: SF curves before correction for lovastatin-induced effects on colony formation (a); SF 

curves after correction for lovastatin-induced effects on colony formation (normalized survival) (b). 

 

Fibroblasts 

Within the initial experiments, fibroblasts were tested using lovastatin 2.5 µM in the same 

manner as in the four previous cell lines. However, these cells exhibited very slow growth 

potential and even after 16 days of incubation no relevant colonies could be observed. 

Furthermore, lovastatin at this concentration acted very toxically even without concurrent 
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irradiation. Thus, the outcomes received for this cell line could not be presented. Fibroblasts 

were subsequently excluded from all CFU assays and only cell viability test were maintained. 

3.3 Association with the targeted therapies 

Since seven different cell lines and two monoclonal antibodies were investigated within this 

study, combinations of them would expect a large number of experiments and material. For this 

reason and in order to follow relevant clinical indications, only three cell lines were tested per 

monoclonal antibody, namely ZMK-1, A 549, and HaCaT for cetuximab and A 549, MO59K, 

and HUVEC for bevacizumab. 

Association of cetuximab in head and neck cancers as well as in lung tumours is known and 

performed in every day clinical practice. The main side effect of cetuximab, acne, is related to 

the fact that keratinocytes of human skin express high EGF receptors and thus become targets of 

this treatment as well. 

Bevacizumab is often indicated in lung tumours and as the second line treatment of malignant 

glioblastoma. Because of acting on VEGF, the choice of the HUVEC cells as the third cell line to 

be tested seemed relevant. 

3.3.1 Cetuximab 

3.3.1.1 EGFR status of all cell lines 

Presence of EGFRs on cell membrane and in cytoplasm was explored as described in chapter 

2.3.2. 

The following pictures in figure 3.14 show the results obtained for each cell line that was studied 

in this work including negative control. 

Brown staining correlates with the presence of EGF receptors. The more receptors are expressed 

the browner the cells are. Receptor-free cells remain blue in colour. 

Thus, when compared to the negative control it can be seen that all cell lines except HUVEC 

express more or less these receptors both on the membrane and in cytoplasm. Remarkable high 

expression status within HaCaT cells could be correlated with high response to cetuximab-based 

treatment as it will be discussed later in chapter 3.3.1.3. 
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(h) 
Fig. 3.14: Cells stained using IHC method (anti-EGFR antibody) to detect the outer membrane and cytoplasm 

EGF receptor in different cell lines. 40 x magnifications in light microscope. Cell lines: a – negative control 

on A 549, b – ZMK-1, c – A 549, d – MO59K, e – MO59J, f – HUVEC, g – HaCaT, h – fibroblasts. 
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3.3.1.2 Impact of cetuximab alone in three cell lines 

Here, the results of cell viability assay on 3 cell lines (ZMK-1, A 549 and HaCaT) treated with 

cetuximab 0.1 µM and untreated control are presented. The seeding procedure was mentioned in 

chapter 2.3.1.1. The choice of the following concentration of cetuximab as well as the interval 

between treatment and irradiation were based upon the results of the recently published works 

(Lee et al. 2011; Saki et al. 2012). 

Within this viability test cetuximab seems to hardly affect the activity of tumour cells as 

demonstrated in figures 3.15 and 6.5. On the other hand, it induces rather strong and significant 

decrease in keratinocytes. This could be explained probably by the fact that HaCaT cells express 

highly EGF receptors as seen in figure 3.14. 
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Fig. 3.15: Cell viability expressed in fluorescence units per cell line without treatment and with 

cetuximab 0.1 µM pre-treatment. Incubation time was 96 hours. Each experiment has been performed 

twice, always in triplicate.  

 

3.3.1.3 Combination of cetuximab, lovastatin, and irradiation according to cell lines 

Survival curves obtained from CFU assays and outcomes of cell viability tests are shown in 

order to compare the impact of cetuximab, lovastatin or irradiation alone and of their 

combination on the three cell lines. 

For colony formation assays, the results were corrected for both treatments preformed and are 

shown together with the uncorrected ones. It should be noted that a difference in seeding 

procedure was adopted if all treatment steps (i. e. lovastatin, cetuximab and irradiation) were 

used together. The cells were seeded on day 0 (D0) and further treatments were planed in order 
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to perform irradiation 24 hours after seeding (on D1). Lovastatin was administered 4 hours and 

cetuximab one hour prior to irradiation. This was similar for ZMK-1, A 549, and HaCaT as well. 

In the cell viability assays, the seeding scheme followed the method described in chapter 2.3.1.2. 

The cell quantity corresponded to the results shown in chapter 3.1.2. Similar to the CFU assay, 

the lovastatin was administered 4 hours and cetuximab 1 hour prior to irradiation. 

Survival curves obtained for each cell line permitted to determine the SER of cetuximab 0.1 µM 

as well as of the combination cetuximab – lovastatin at a survival fraction of 50 % as seen in 

table 3.3. 

Treatment by cetuximab alone sensitizes tumour cells to irradiation whereas further association 

with lovastatin renders cells resistant to this sensitization. This can be explained by the fact that 

lovastatin alone possesses a radioprotective effect on ZMK-1 and A 549 cell lines as seen in 

table 3.2. No outcomes could be revealed for HaCaT cells because of a highly toxic impact of 

cetuximab 0.1 µM that allowed no colonies to be grown up under this experimental condition. 

Tab. 3.3: Sensitizer enhancement ratio of cetuximab 0.1 µM +/- lovastatin 2.5 µM on 3 cell lines. 

Cell line 
SER (50%) 

cetuximab 0.1 µM 

SER (50%) 

cetuximab 0.1 µM + 

lovastatin 2.5 µM 

ZMK-1 1.2 0.95 

A 549 1.2 1.04 

HaCaT -- -- 

 

ZMK-1 

Cells for the CFU assay were seeded as described above. In general, 100 – 2000 cells per well 

were plated and incubated during 10 days before alcohol fixation and staining. 

Figure 3.16 shows that cetuximab itself is less toxic for ZMK-1 cells than lovastatin alone 

however, after normalization to irradiation cetuximab sensitizes cells better. No experimental 

point was significant. In these conditions, lovastatin acts rather as a protector against IR-induced 

toxicity and cancels toxic effect of cetuximab if administered concurrently. 
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Fig. 3.16: Surviving fraction curves of ZKM-1 cell line with irradiation alone (full black lines), pre-

treated with 0.1 µM cetuximab 1 hour before irradiation (dotted lines), pre-treatment by 2.5 µM 

lovastatin 4 hours before irradiation (full gray lines) and combination of both molecules (dashed 

lines): SF curves before correction (a); SF curves after correction for cetuximab- and lovastatin-

induced effects on colony formation (normalized survival) (b).  

 

Results within the test of cellular viability (figures 3.17 and 6.6) are comparable to the CFU 

results since cetuximab alone has no particular toxic impact in comparison with lovastatin. 

Treatment with lovastatin associated with cetuximab or not decreases cell viability in 

comparison to untreated cells even without irradiation. A significant radiosensitizing effect can 

be seen if irradiation is associated with lovastatin and cetuximab pre-treatment. 
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Fig. 3.17: Cell viability expressed in fluorescence units in ZMK-1 pre-treated with 2.5 µM lovastatin 

and 0.1 µM cetuximab 4 and 1 hour(s) before irradiation (4 Gy) respectively and the same treatment 

without irradiation (0 Gy). Incubation time was 96 hours. Experiment has been performed at least 

once, always in triplicate. 
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A 549 

For this cell line, the same seeding scheme is applied as for the ZMK-1 cells with the same 

quantity of the seeding used. The incubation was of 10 – 12 days. 

In figure 3.18, comparable results can be observed as in the case of ZMK-1, i. e. more toxic 

effect of lovastatin than cetuximab if given alone. However, once results are normalized 

according to the radiation itself cetuximab lowers slightly the clonogenic potential of A 549 

(SER 50 % = 1.2) whereas if combined with lovastatin this sensitizing effect disappears. 
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Fig. 3.18: Surviving fraction curves of A 549 cell line with irradiation alone (full black lines), pre-

treated with 0.1 µM cetuximab 1 hour before irradiation (dotted lines), pre-treatment by 2.5 µM 

lovastatin 4 hours before irradiation (full gray lines), and combination of both molecules (dashed 

lines): SF curves before correction (a); SF curves after correction for cetuximab- and lovastatin-

induced effects on colony formation (normalized survival) (b). 
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Fig. 3.19: Cell viability expressed in fluorescence units in A 549 pre-treated with 2.5 µM lovastatin 

and 0.1 µM cetuximab 4 and 1 hour(s) before irradiation (4 Gy) respectively and the same treatment 

without irradiation (0 Gy). Incubation time was of 96 hours. Experiment has been performed at least 

once, always in triplicate.  
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As presented in figures 3.19 and 6.7, the effect of cetuximab, lovastatin and irradiation alone or 

in combination one with another gives approximately the same results as in the case of ZMK-1, 

i. e. lovastatin seems more harmful than cetuximab both in non-irradiated or irradiated cells. 

Combination of all three therapeutic modalities demonstrates a significant decrease in cell 

activity in comparison with the untreated cells although the final effect is less prominent than the 

effect of lovastatin alone. 

HaCaT 

In contrary to the previously described cetuximab treated cell lines, HaCaT cells exhibited an 

extreme toxicity induced by cetuximab 0.1 µM within CFU assays. For this reason, the 

formation of clonogenic curves was impossible. Thus, a CFU assay aiming at exploring different 

rising cetuximab concentrations (0.001; 0.01; and 0.1 µM) upon HaCaT was performed 

according to the same seeding procedure as described above with exception of irradiation. In 

each well 500 – 2000 cells were plated. 

Figure 3.20 demonstrates that all tested concentrations of cetuximab act very toxically even 

without concurrent irradiation. No further colony formation tests were performed in this field. 
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Fig. 3.20: Dose-effect relation of cetuximab at different concentrations on HaCaT cells. Experiment 

has been performed once in triplicate. 

 

Combination of irradiation, cetuximab, and lovastatin was evaluated in the cell viability assay as 

it was for ZMK-1 and A 549 described above and the results are presented in figures 3.21 and 

6.8. 

Similar observations of an important cetuximab-induced decrease in cell viability can be 

mentioned within this test, too. Moreover, combination of lovastatin and cetuximab promote a 

significant radiosensitizing effect upon this cell line. 
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Fig. 3.21: Cell viability expressed in fluorescence units in HaCaT pre-treated with 2.5 µM lovastatin 

and 0.1 µM cetuximab 4 and 1 hour(s) before irradiation (4 Gy) respectively and the same treatment 

without irradiation (0 Gy). Incubation time was 96 hours. Experiment has been performed at least 

once, always in triplicate. 

3.3.2 Bevacizumab 

3.3.2.1 Impact of bevacizumab alone in three cell lines 

Here, the results of cell viability essay upon the 3 cell lines (A 549, MO59K and HUVEC) 

treated with bevacizumab 16.8 µM and untreated controls are presented. The seeding procedure 

was already mentioned in chapter 2.3.1.1. 

In figures 3.22 and 6.9 we can see that bevacizumab alone decreases significantly the viability 

exclusively in normal tissue cell line, HUVEC, whereas two tumour cell lines seem completely 

untouched and even a significant protective effect can be observed for A 549 cell line. 
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Fig. 3.22: Cell viability expressed in fluorescence units per cell line without treatment and with 16.8 

µM bevacizumab pre-treatment. Incubation time was 96 hours. Each experiment has been performed 

twice, always in triplicate. 
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3.3.2.2 Combination of bevacizumab, lovastatin, and irradiation according to cell lines 

As it was for cetuximab, the survival curves obtained in colony formation assays and the results 

of the cell viability tests are shown here in order to compare the impact of bevacizumab, 

lovastatin or irradiation alone and of their combination on the three cell lines. 

For CFU assays, the results were corrected for both treatments preformed and they are shown 

together with the uncorrected ones. A difference in seeding procedure was observed if all 

treatment steps (i. e. lovastatin, bevacizumab and irradiation) were applied all together. The cells 

were seeded on day 0 (D0), bevacizumab was administered approximately 24 hours after the 

seeding (D1), and 24 hours before irradiation (D2). Lovastatin was added 4 hours prior to 

irradiation on day 2. This was similar for A 549, MO59K and HUVEC except the fact that 

HUVEC cells were treated with 10-times lower lovastatin concentration, i. e. 0.25 µM. 

In the cell viability assays, the seeding scheme followed the method described in chapter 2.3.1.2. 

The cell quantity corresponded to the results shown in chapter 3.1.2. Similar as in the CFU 

assay, bevacizumab was administered 24 hours and lovastatin 4 hours prior to the irradiation. 

Like in the combination with cetuximab, even for bevacizumab the SER was calculated for all 

three cell lines (see table 3.4). 

No radiosensitizing potential was found in these cell lines either for bevacizumab or for 

lovastatin co-association. Inversely, for HUVEC cells lovastatin promoted a protective effect 

against irradiation. Because of almost complete absence of colonies in plates pre-treated with 

association lovastatin – bevacizumab SER could not be calculated. 

 

Tab. 3.4: Sensitizer enhancement ratio of bevacizumab 16.8 µM +/- lovastatin 2.5 µM (lovastatin 0.25 µM for 

HUVEC) on 3 cell lines. 

Cell line 
SER (50%) 

bevacizumab 16.8 µM 

SER (50%) 

 bevacizumab 16.8 µM + 

lovastatin 2.5 or 0.25 µM 

A 549 0.86 1 

MO59K 1.03 1 

HUVEC 0.36 -- 
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A 549 

The seeding procedure was described above. In principle, 100 – 2000 cells were plated per well 

and incubated during 11 days before alcohol fixation and staining. 

Pure bevacizumab and lovastatin administration decreases the clonogenic potential accompanied 

by more pronounced toxicity if combined together. However, if normalized to irradiation, 

radioprotective rather than radiosensitizing potential of both, lovastatin and bevacizumab, can be 

noted as seen in figure 3.23. 
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Fig. 3.23: Surviving fraction curves of A 549 cell line with irradiation alone (full black lines), pre-

treated with 16.8 µM bevacizumab 24 hours before irradiation (dotted lines), pre-treatment by 2.5 µM 

lovastatin 4 hours before irradiation (full gray lines), and combination of both molecules (dashed 

lines): SF curves before correction (a); SF curves after correction for bevacizumab- and lovastatin-

induced effects on colony formation (normalized survival) (b).  

 

0 Gy 4 Gy
0

200 000

400 000

600 000

800 000

1 000 000

1 200 000

1 400 000

1 600 000

**
**

* **

F
lu

o
re

s
c
e

n
c
e
 u

n
it
s

Radiation dose (Gy)

 untreated

 lovastatin 2.5 M

 bevacizumab 16.8 M

 lovastatin 2.5 M 

        + bevacizumab 16.8 M

 
 

Fig. 3.24: Cell viability expressed in fluorescence units in A 549 pre-treated with 16.8 µM 

bevacizumab and 2.5 µM lovastatin 24 and 4 hours before irradiation (4 Gy) respectively and the 

same treatment without irradiation (0 Gy). Incubation time was 96 hours. Experiment has been 

performed at least once, always in triplicate.  
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Within the cell viability assay (figures 3.24 and 6.10), there exists a strong and significant 

sensitizing effect of the association of lovastatin and bevacizumab whereas bevacizumab alone 

has no particular impact upon A 549 cells. Irradiation does not seem to modify the effect of these 

two molecules. 

 

MO59K 

The seeding procedure was the one as described above with 200 – 2000 cells plated per well and 

incubated during 14 days. Figure 3.25 demonstrates that bevacizumab alone initiates higher 

survival rates of MO59K however lovastatin decreases slightly its clonogenic potential. If the 

results are normalized according to the irradiation alone there is a mild radiosensitization of the 

cells if pre-treated with bevacizumab (SER = 1.03). The only significant decrease of 

clonogenicity is present in cells pre-treated with lovastatin and bevacizumab and irradiated by a 

dose of 1 and 4 Gy. 
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Fig. 3.25: Surviving fraction curves of MO59K cell line with irradiation alone (full black lines), pre-

treated with 16.8 µM bevacizumab 24 hours before irradiation (dotted lines), pre-treatment by 2.5 µM 

lovastatin 4 hours before irradiation (full gray lines) and combination of both molecules (dashed 

lines): SF curves before correction (a); SF curves after correction for bevacizumab- and lovastatin-

induced effects on colony formation (normalized survival) (b). L+B = 2.5 µM lovastatin and 16.8 µM 

bevacizumab. 

 

A similar strong toxic effect of combination of lovastatin and bevacizumab exists within MO59K 

cells as in A 549. This can be noted in figures 3.26 and 6.11. Interestingly, although not 

significant, untreated and bevacizumab pre-treated cells show comparable cell viability. 
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Fig. 3.26: Cell viability expressed in fluorescence units in MO59K pre-treated with 16.8 µM 

bevacizumab and 2.5 µM lovastatin 24 and 4 hours before irradiation (4 Gy) respectively and the 

same treatment without irradiation (0 Gy). Incubation time was 96 hours. Experiment has been 

performed at least once, always in triplicate.  

 

HUVEC 

Even HUVEC cells were seeded according to the procedure described at the beginning of this 

chapter. For CFU assay, 1000 – 3500 cells were plated in each well and incubation lasted 15 

days. As already noticed, since 2.5 µM lovastatin turned out to be highly toxic in colony 

formation assay, for this purpose and for the purpose of the cell viability test 0.25 µM lovastatin 

was implemented. 

Concurrent administration of bevacizumab and lovastatin caused an extremely important 

decrease of clonogenic potential (figure 3.27). Almost no colonies were observed within the 

plates. That is the reason, why these results are not presented within the survival curves. 

Bevacizumab alone is highly harmful but in contrast to tumour cells, if this is related to 

irradiation, it does not lead to cell toxicity. Besides, a possible radioprotective effect can be 

described (SER = 0.36) with a significant difference for bevacizumab-pre-treated cells and 

irradiated by 4 Gy in comparison to irradiated bevacizumab-free cells. 

On the contrary, as seen in figures 3.28 and 6.12, cell viability is significantly lowered after pre-

treatment with 0.25 µM lovastatin, 16.8 µM bevacizumab and their combination. Because the 

activity is almost similar after lovastatin-pre-treatment and lovastatin + bevacizumab-pre-

treatment we can assume that the toxic effect depends on lovastatin-induced cell toxicity. 
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Fig. 3.27: Surviving fraction curves of HUVEC cell line with irradiation alone (full black lines), pre-

treated with 16.8 µM bevacizumab 24 hours before irradiation (dotted lines) and pre-treatment by 0.25 

µM lovastatin 4 hours before irradiation (full gray lines): SF curves before correction (a); SF curves 

after correction for bevacizumab- and lovastatin-induced effects on colony formation (normalized 

survival). 
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Fig. 3.28: Cell viability expressed in fluorescence units in HUVEC pre-treated with 16.8 µM 

bevacizumab and 0.25 µM lovastatin 24 and 4 hours before irradiation (4 Gy) respectively and the 

same treatment without irradiation (0 Gy). Incubation time was 96 hours. Experiment has been 

performed once and in triplicate. 

 

3.4 Molecular biology experiments 

3.4.1 Multi-pathway reporter assay in three cell lines (A 549, ZMK-1, HaCaT) 

With the purpose to determine the major molecular pathways being modified by lovastatin, a 

reporter assay was performed as described in chapter 2.4.1. The advantage of this assay was that 

multiple various pathways could be explored at the same time using 10 different transcription 
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factors. Only three cell lines were used within this method. The choice of ZMK-1, A 549, and 

HaCaT was supported by the fact that these 3 lines had a high growth potential. Three different 

concentrations of lovastatin were examined (0.25; 2.5; and 25 µM) with a control (DMSO). 

The results of the assay (expressed in relative response ratios, RRR) permitted to define the final 

effect of lovastatin and its different concentration that could be either activating (positive or 

increasing values of RRR) or inhibiting (negative or decreasing values of RRR). 

In the very first experiments, all reporters were tested (i. e. 10). Unfortunately, repeated 

experiments within each cell line turned out to be not reproducible for certain reporters and thus, 

in the end, 6 pathways were maintained for further assays. The ultimate lovastatin-induced 

effects on each cell line and on pathways are shown in table 3.5. 

Lovastatin itself, regardless of concentration, activates 6 pathways implicated in cell functioning 

in all the three cell lines examined. HaCaT cells have strongly reacted to the treatment and thus 

several results were difficult to interpret. 

 

Tab. 3.5: General effect of lovastatin on cell lines and 6 pathways in reporter assay. A = activation, Tox = toxic 

effect. Three concentration of lovastatin were explored. Each experiment has been done twice for ZMK-1 and A 

549, once for HaCaT. 

 Cell line 

Pathway ZMK-1 A 549 HaCaT 

Wnt A A A 

Notch A A Tox 

TGF-β A A Tox 

NF-κB A A A 

MAPK/ERK A A A 

MAPK/JNK A A A 

 

By observing more particularly the impact of increasing concentrations of lovastatin, the 

following tendencies can be noticed as shown in table 3.6. 
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The more the concentration of lovastatin rises, the more inhibitory the effect of this statin seems 

to be, particularly for HaCaT and partially for certain pathways of ZMK-1 and A 549. MAPK 

pathways seem to be generally the mostly inhibited pathways that are related to the increasing 

dose of lovastatin. 

In majority of the explored pathways, lovastatin 25 µM has revealed to be rather toxic on all 

three cell lines tested since both firefly and Renilla luminescence values were abolished in 

comparison to the untreated control and this was due to global impact, i. e. the cell death. 

 

Tab. 3.6: Tendency of lovastatin-induced effect on cell lines and 6 pathways in reporter assay with increasing 

lovastatin concentration (from 0 to 25 µM). A = activation, I = inhibition, Tox = toxic effect. Each experiment has 

been done twice for ZMK-1 and A 549, once for HaCaT. 

 Cell line 

Pathway ZMK-1 A 549 HaCaT 

Wnt I A I 

Notch A A A 

TGF-β A A I 

NF-κB A A I 

MAPK/ERK I I I 

MAPK/JNK I I I 

 

3.4.2 Caspse-3 and caspase -7 activity in three cell lines (ZMK-1, A 549, HUVEC) 

As well as in the previous experimental method, the choice of cell lines for the caspase activity 

assay was based on the growth potential, i. e. ZMK-1 and A 549 cells were chosen. The third cell 

line, HUVEC, seemed to be an interesting candidate for this assay because of its high sensitivity 

to lovastatin. 

The procedure was performed as described in chapter 2.4.2.2. One unique concentration of 

lovastatin and only one radiation dose were used because of technical reasons. 

For each experiment, luminescence measurement was done 1 hour after the incubation with 

Caspase-Glo®3/7 Reagent and this was repeated another hour later (i. e. after 2 hours of reagent 
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incubation) in order to compare the performance of the measurement. It should be noted, that no 

particular difference in luminescence can be observed at hour 1 and 2 in all three cell lines. Both 

these incubation times were maintained in future experiments within this assay. 

ZMK-1 

For this cell line, the measurement of caspase- 3 and -7 activity was performed 24, 48, and 72 

hours after the treatment with lovastatin 2.5 µM and/or irradiation by 4 Gy. 

Figure 3.29 shows that lovastatin alone does not increase the caspase activity neither after 24 nor 

after 48 hours of incubation whereas the irradiation alone starts to promote caspase-3 and -7 

associated apoptosis only after 48 hours. The combination of both treatment regimens induced 

significant elevation of caspase-3 and -7 levels 24 and 48 hours after the treatment. Interestingly, 

caspase-3 and -7 activities decreased on the third day after lovastatin pre-treatment and 

irradiation. These outcomes were significant when compared to irradiated cells without statin. 
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Fig. 3.29: Caspse-3 and -7 activity expressed in RLU with background subtraction in ZMK-1 cell line. 

In case of association lovastatin – irradiation, pre-treatment by lovastatin 2.5 µM 4 hours prior to 

irradiation (4 Gy). Each experiment has been done once, in triplicate. 

 

A 549 

This cell line was tested for caspase activity after 24 and 48 hours. The therapeutic scheme is 

similar to ZMK-1. 

As seen in figure 3.30, after 24 hours only 2.5 µM lovastatin pre-treatment and concurrent 

irradiation caused a significant increase in caspase-3 and -7 activities. Equally, 48 hours after 

treatment, lovastatin together with 4 Gy activated significantly both caspase-3 and caspase-7. 



65 

 

 

24 48
0

5 000

10 000

15 000

20 000

25 000

*

L
u
m

in
e
s
c
e
n
c
e
 (

R
L
U

)

Incubation time (hour)

 untreated

 4 Gy

 lovastatin 2.5 M

 lovastatin 2.5 M + 4 Gy
*

 

Fig. 3.30: Caspse-3 and -7 activity expressed in RLU with background subtraction in A 549 cell line. 

In case of association lovastatin – irradiation, pre-treatment by lovastatin 2.5 µM 4 hours prior to 

irradiation (4 Gy). Each experiment has been done once, in triplicate. 

 

HUVEC 

Concerning the HUVEC cells, the fact that these are very responsive already to lovastatin alone, 

no association with irradiation was adopted in this case. Treatment by lovastatin 0 and 2.5 µM 

alone was followed by the luminescence measurement 6, 24, and 48 hours later. 

An increased caspase activity can be noticed even after lovastatin alone which remains in 

accordance with the results of the cell viability and colony formation assays upon this cell line. 

The first peak appeared 24 hours after treatment but significant increase was achieved only after 

48 hours (figure 3.31). 
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Fig. 3.31: Caspse-3 and -7 activity expressed in RLU with background subtraction in HUVEC cell 

line. Each experiment has been done once, in triplicate. 



66 

 

 

3.4.3 Western blot analysis 

Following the results obtained in multipathway reporter assays (see chapter 3.4.1), we decided to 

confirm the overexpression or not of proteins that are involved in pathways of MAPK/ERK and 

Akt. These experiments were performed on three cell lines exclusively. Namely, ZMK-1, A 549, 

and HaCaT were chosen for this purpose because of their capacity of rapid cell growth and 

because they have already been tested within other molecular biology assays as well. 

The procedure of Western blot analysis was already described in chapter 2.4.3. 
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Fig. 3.32: Western blot performed on nitrocellulose membrane using mouse anti-ERK and anti-β-actin 

antibodies on three different cell lines. Columns 1, 5, 9 – control; 2, 6 – 4 Gy alone; 3, 7 – lovastatin 

2.5 µM alone; 4, 8 – 4 Gy + lovastatin 2.5 µM; 10 – marker. Corresponding protein weights are 

visualized on the right side of the membrane. 

 

In the first step, we searched for expression of ERK protein using mouse anti-ERK antibody. 

Two separate membranes were created, one being made of nitrocellulose (figure 3.32) and the 

other one of PVDF (figure 3.33). On each of these two membranes, two cells lines were 

explored. Thus, results concerning one cell line (A 549) were obtained twice. This served as a 

control of reproducibility. Furthermore, in order to benefit of all available spaces on membranes, 

the last band (corresponding to position number 9) represents the non-irradiated and lovastatin 

free control of the third cell line left. 
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Fig. 3.33: Western blot performed on PVDF membrane using mouse anti-ERK and anti-β-actin 

antibodies on three different cell lines. Columns: 1, 5, 9 – control; 2, 6 – 4 Gy alone; 3, 7 – lovastatin 

2.5 µM alone; 4, 8 – 4 Gy + lovastatin 2.5 µM; 10 – marker. Corresponding protein weights are 

visualized on the right side of the membrane. 

 

Because anti-ERK antibody was of mouse origin, as well as anti-β-actin antibody, both of these 

antibodies were applied on both membranes simultaneously. For this reason, various bands can 

be distinguished within the membranes. 

Bands contributed to presence of actin located at the proximity of marker band of protein weight 

equal to 37 kDa are found on both membranes which means that transfer as well as protein 

amounts were sufficient. Actin molecular weight is 42 kDa. Thinness of bands corresponding to 

ZMK-1 cells may be explained by smaller amount of protein contents in experimental samples. 

Bands located below actin bands should be the bands corresponding to ERK 2 (molecular weight 

of 42 kDa) and bands in the proximity of marker band of protein weight 100 kDa represent 

MAPK kinase which molecular weight is 85/90 kDa. 

Despite different treatment conditions within membrane columns, no difference can be observed 

either concerning MAPK kinase or ERK 2 expression. This conclusion is however desirable 

since all cells are supposed to express both of these proteins in unphosphorylated form regardless 

of additional treatment or irradiation. 
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Fig. 3.34: Western blot performed on PVDF membrane using rabbit anti-p-ERK antibody on three 

different cell lines. Top figure: columns: 1, 5 – control; 2, 6 – 4 Gy alone; 3, 7 – lovastatin 2.5 µM 

alone; 4, 8 – 4 Gy + lovastatin 2.5 µM; 9 – marker. Bottom figure: columns: 1 – control; 2 – 4 Gy 

alone; 3 – lovastatin 2.5 µM alone; 4 – 4 Gy + lovastatin 2.5 µM; 5 – marker. Corresponding protein 

weights are visualized on the right side of the membrane. 
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In the second step, phosphorylated forms of ERK (p-ERK) and Akt (p-Akt) were determined in 

all three cell lines. 

As for p-ERK (figure 3.34), which molecular weight is equal to 44/42 kDa, expression is to be 

noticed in A 549 and ZMK-1 cell line whereas no bands appeared in HaCaT cells. 

Concerning A 549 cells, p-ERK expression increases in irradiated cells, lovastatin pre-treated 

cells and attain maximum if concurrent irradiation-lovastatin treatment was executed. 

In ZMK-1 cells, no particular difference in expression is seen in cells pre-treated with lovastatin 

only. On the other hand, irradiation by 4 Gy induced higher protein expression which is even 

enhanced if combined with lovastatin. 

Explanations of lack of p-ERK expression in HaCaT cells are numerous. Anti-p-ERK antibody 

was targeting only ERK phosphorylated at epitopes Thr202/Tyr204. Therefore, if 

phosphorylation was induced this might have occurred on different epitope. Otherwise, there 

may be no phosphorylation induction at all. 

Figure 3.35 demonstrates the results obtained using 60 kDa anti-p-Akt antibody. No expression 

of the protein in ZMK-1 cells may be explained in the same way as the lack of protein p-ERK in 

HaCaT cells as mentioned above, i.e. phosphorylation occurred on epitope other than Thr308 or 

no phosphorylation is induced. 

As supposed, expressions of this protein in the control group (position columns 1 and 5) are low 

whereas irradiation induces an overexpression in both A 549 and HaCaT cells. Interestingly, 

lower expression is seen in lovastatin pre-treated HaCaT cells in comparison to control ones. 

Moreover, this expression decrease is even more pronounced after additional irradiation. 

Contrariwise, A 549 cells express high p-Akt after stimulation with lovastatin as well as with 

irradiation and both treatments reinforce the production of phosphorylated form of Akt. 

Finally, caspase-3 (45 kDa full length, 32-35 kDa partial intermediate, and cleaved 17/20 kDa 

fragment) expression was detected. We decided to examine this protein despite the fact that cells 

were harvested already 2 hours after irradiation. This short incubation period may explain why 

no bands could be seen in ZMK-1 in figure 3.36. Bands in A 549 cells remain difficult to 

interpret because of no difference between various treatment conditions. 
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Fig. 3.35: Western blot performed on PVDF membrane using rabbit anti-p-Akt antibody on three 

different cell lines. Top figure: columns: 1, 5 – control; 2, 6 – 4 Gy alone; 3, 7 – lovastatin 2.5 µM 

alone; 4, 8 – 4 Gy + lovastatin 2.5 µM; 9 – marker. Bottom figure: columns: 1 – control; 2 – 4 Gy 

alone; 3 – lovastatin 2.5 µM alone; 4 – 4 Gy + lovastatin 2.5 µM; 5 – marker. Corresponding protein 

weights are visualized on the right side of the membrane. 
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Fig. 3.36: Western blot performed on PVDF membrane using rabbit anti-caspase-3 antibody on two 

different cell lines. Columns: 1, 5 – control; 2, 6 – 4 Gy alone; 3, 7 – lovastatin 2.5 µM alone; 4, 8 – 4 

Gy + lovastatin 2.5 µM; 9 – marker. Corresponding protein weights are visualized on the right side of 

the membrane. 
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4 Discussion 

 

In this study we intended to explore in vitro effects of a combination of lovastatin and irradiation 

on various human tumour and normal tissue cell lines as well as its potential mechanism of 

action. The main reason that motivated this exploration was the fact that statins in general are 

known for their anti-cancer potential. Several in vitro, in vivo, as well as clinical studies dealing 

with concurrent statins intake and irradiation have already been published. 

The aim was to determine whether lovastatin, as one of the members of a statin family, has a 

radiosensitizing and/or radioprotective effect in vitro and whether these results correlate with 

those published. 

In the second part, we associated lovastatin into concurrent treatment regimen consisting of 

irradiation and monoclonal antibody based targeted therapies, bevacizumab, and cetuximab. 

In our preliminary experiments we observed that the cytotoxic effect of lovastatin is strongly 

dose-dependent, i. e. the higher the concentration was the more cytotoxicity was achieved. For 

further assays we decided to focus on a dose that permitted an 80 % survival fraction in tumour 

cells. This dose was at the same time supposed to be clinically relevant. Indeed, as already 

mentioned, plasma concentration of lovastatin in patients being treated by this molecule for a 

lipid-lowering purpose varies in the range of 0.1 to 3.92 µM (Thibault et al. 1996). For this 

reason, confirmation of a possible radiosensitizing potential of low dose lovastatin could be an 

interesting and achievable therapeutic approach in human. 

In our initial experiments, we decided to determine clonogenic cell survival capacity and cell 

viability and, interestingly, different results were obtained. 

Regardless the modifying impact of concurrent irradiation, lovastatin induced a decrease of 

clonogenic cell survival while the tendency of this decrease at different radiation doses followed 

the tendency of irradiation alone. However, if the survival curves were normalized for the effect 

of lovastatin alone, no radiosensitization was observed. On the contrary, we could conclude that 

it protected tumour cells (except MO59J) and destroyed the normal tissue ones. 

On the other hand, assays conducted on cell viability showed that even 2.5 µM lovastatin alone 

was significantly cell toxic and the toxicity increased if lovastatin pre-treated cells were 
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irradiated. The only exception was the HaCaT cell line where no significant difference was 

observed. 

The question that arose was what caused this evident difference in results obtained within these 

two experimental methods. 

We assume that lovastatin has a strong cell toxic potential and therefore induces an important 

decrease of cell viability. However, cells that survive, even not too many, may be those 

described as clonogenic ones, i.e. those which give subsequently birth to new colonies. Hence, 

survival curves are in favour of maintained survival despite pre-treatment by lovastatin. Yet, we 

assume that both of these results are not comparable since endpoints of these two experimental 

methods are not similar at all. Still, they give a prediction of cell behaviour in different treatment 

conditions. 

The association with targeted therapies has demonstrated that neither cetuximab nor 

bevacizumab had a particular cytotoxic effect on tumour cell lines with a SER almost equal to 1 

if used in concentrations of 0.1 µM for cetuximab and 16.8 µM for bevacizumab. Contrariwise, 

normal tissue cells suffered significantly because of their administration. This may correlate with 

various side effects clinically observed in patients being treated by these molecules, e. g. skin 

rash after cetuximab treatment. 

As supposed, addition of lovastatin to this combined treatment renders tumour cells even more 

resistant to irradiation and abolishes even their smallest cell toxicity. 

As for cell viability, on contrast to the above-mentioned outcomes, lovastatin acted highly 

toxically either alone or in combination with monoclonal antibodies. Furthermore, monoclonal 

antibodies alone potentiated in certain tumour cell lines the cell viability, e. g. cetuximab in 

ZMK-1 and bevacizumab in A 549 and MO59K. 

More detailed explication of particular effects of these treatment molecules and lovastatin is 

described below separately for each cell line explored. 

The literature describes various cell signalling pathways that are modified by statins explaining 

their pleiotropic effects (Wang et al. 2008; Fritz et al. 2011). Assays conducted with lovastatin 

alone without irradiation in our conditions permitted to explore six different pathways on three 

different cell lines. Generally taken, lovastatin has an activating tendency, however the more its 

concentration rises, the more this tendency turns towards an inhibitory effect. 
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Regardless of their anti-cancer potential, in vitro and in vivo statins were denoted to prevent from 

fibrosis formation as well as from epithelial-mesenchymal transition of various forms of 

fibroblasts or epithelial cells (Park et al. 2012; Urakami et al. 2012; Schaafsma et al. 2011; 

Rodrigues-Díez et al. 2010; Meyer-Ter-Vehn et al. 2008). In these studies, the goals were 

achieved by inhibiting effects of statins on the expression of transforming growth factor β 

(TGF-β). The reporter assay performed in our condition using only lovastatin treated cells 

without irradiation showed that in ZMK-1 as well as in A 549 cell lines this treatment induced an 

activation of TGF-β what was in discordance with the above mentioned properties. One of the 

reasons for this difference could be the fact that the studies that we mention worked with higher 

concentrations of statins. Thereby we tested also the impact of higher concentrations but still the 

overall tendency was rather in favour of TGF- β activation in tumour cells and inhibition was 

exclusively observed in HaCaT cells. 

Another interesting pathway that was explored was the Wnt signalling pathway which is 

implicated, except of genesis of various cancers, also in metabolism of glucose. An in vitro study 

carried out by Lin et al. in 2008 revealed that simvastatin permitted to restore high glucose-

induced downregulation of Wnt in mesangial cells (Lin et al. 2008). At this point our results 

correlate with those of Lin since lovastatin had an activating impact on all three cell lines. 

However, rising concentrations of lovastatin seem to have an inhibitory tendency in our ZMK-1 

and HaCaT cells. 

Notch pathway is an intracellular signalling pathway involved in the process of angiogenesis, 

arteriogenesis as well as in cell differentiation, proliferation, and apoptosis. In vivo (Zacharek et 

al. 2009) and in vitro studies (Xu et al. 2009) demonstrated that statins, especially simvastatin, 

are able to induce the activation of this pathway and subsequently by overexpression of various 

proteins (Notch, presenilin 1, NCID-Notch Intracellular Domain) permit a better endothelial cell 

differentiation and proliferation. Our reporter assay on lovastatin is in accordance since 

activation of Notch was noted in all three cell lines. The question remains whether this effect is 

of a positive value regarding tumour cells whose proliferation may be similarly enhanced in this 

way. 

We explored equally the status of the nuclear factor kappa-light-chain-enhancer of activated B 

cells (NF-κB) and its activation or inhibition after lovastatin treatment. This regulator of gens 

may be often altered, i. e. constitutively active, in tumour cells where it leads to uncontrolled cell 

proliferation, survival, and protects against apoptosis. Hence, its inhibition would be desirable. In 
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a study conducted on breast cancer cells, addition of simvastatin inhibited activity of NF-κB 

(Ghosh-Choudhury et al. 2010). Our results were rather in favour of activation (except of HaCaT 

cell line pre-treated with low-dose lovastatin). 

Pathways that preoccupied our interest the most were pathways being regulated through 

mitogen-activated protein kinases (MAPK). Indeed, this family of serine/threonine protein 

kinases is involved in various cellular programs such as cell proliferation, differentiation, 

motility, and death. One of these is also the p44/42 MAPK (ERK1/2) signalling pathway that 

may be activated as a response to diverse extracellular stimuli. 

Initial reporter assays demonstrated that 2.5 µM lovastatin had an activating impact on 

MAPK/ERK pathway whereas increasing concentration of lovastatin had a more inhibiting effect 

on gene expression. In complementary experiments based on Western blots we found that the 

expression of the phosphorylated form of ERK increased in two of three cell lines tested (ZMK-1 

and A 549) after previous irradiation, lovastatin pre-treatment, and especially after combination 

of both of these. These findings are in correlation with the results obtained in colony formation 

assays where irradiated cells survived as well or even better with lovastatin in comparison to 

irradiation alone. 

Another important protein kinase aiming to control the cell survival and apoptosis is Akt that 

may be activated by different growth factors via phosphatidylinositol 3-phosphate kinase (PI3- 

kinase) pathway. Iradiation alone has been described to induce activation of Akt (Nakamura et 

al. 2005; Le Tourneau and Siu 2008). For this reason a molecule that could act here as an 

inhibitor would be of high interest to ensure a radiosensitization. Unfortunately, in our treatment 

conditions pre-treatment by 2.5 µM lovastatin enhanced expression of p-Akt in A 549 cell line if 

used alone and even potentiated p-Akt expression if associated to irradiation. This is 

contradictory to various published studies (Sanli et al. 2011). On the other side, it is noteworthy 

that in HaCaT cells the p-Akt expression decreased after lovastatin treatment also after additional 

irradiation. Hence, the beneficial radiosensitizing effect of lovastatin on tumour cells could not 

be concluded. Furthermore, toxicity was remarkably high in normal tissue cell lines. The impact 

of lovastatin and/or irradiation on p-ERK and p-Akt expression will be discussed more 

specifically in chapter below for each cell line separately. 

Both of these protein kinases, ERK and Akt are activated not only via radiation but also through 

epidermal growth factor receptors (EGFRs). We consider interesting and worth of search to 

understand this mechanism more deeply, possibly by associating not only lovastatin to 
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irradiation but targeted therapies (anti-EGFR) as well. Further studies could be carried out for 

this purpose. 

Finally, we aimed at determining whether caspase-3 and caspase-7 activation participate in cell 

death processes induced by lovastatin or not, i. e. whether apoptosis plays a role in cell 

destruction. Assessment of these activities after lovastatin treatment or irradiation or 

combination of both showed that already after 24 hours of incubation lovastatin increases 

caspase-3 and -7 activities and thus induces death by apoptosis. Caspase-3 expression was tested 

also using Western blot. However, no bands were observed because of very short incubation 

time after irradiation. 

4.1 Individual work outcomes according to cell lines 

4.1.1 ZMK-1 cell line 

This cell line, being cultivated at the Department of Radiotherapy and Radiation Oncology in 

Göttingen, possess a high proliferation potential and therefore was used in all experiments, 

including molecular biology research. 

As already mentioned, cell growth or viability inhibition induced by lovastatin was dose-

dependent. In colony formation assays, lovastatin at the concentration of 2.5 µM, as a reference 

dose, did not induce any radiosensitization if administered prior to irradiation. However, cell 

viability was lowered either by lovastatin alone or in combination with irradiation at 4 Gy. A 

staining method permitted to detect that this cell line strongly expresses intracellular and 

membrane EGF receptors. Unfortunately, experiments with 0.1 µM cetuximab showed no 

sensitization. 

Regarding the molecular biology, all 6 signal pathways mentioned above were activated by 

lovastatin. This is in accordance with the results of Western blot were lovastatin and radiation-

induced p-ERK overexpression was noticed. Furthermore, it may provide the explication of cell 

resistance to this statin. 

Finally, activation of caspase-3 and caspase-7 in process of death of ZMK-1 cells was shown in 

particular assay with their increased activity 48 hours after concurrent lovastatin and irradiation 

effect. 

Various studies on head and neck squamous cell carcinoma cells already demonstrated that 

statins have a dose-dependent cytotoxic effect (Takeda et al. 2007; Mantha et al. 2003). For 
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example, according to Takeda et al., simvastatin exerted an important cell growth inhibition with 

already low doses. In contrast to our results, in the previous study, expression of p-ERK was 

reduced after simvastatin pre-treatment that explained its toxic effect. Mantha et al. reported a 

potential of statins to target EGFR downstream signalling and thus question of synergistic effects 

of these and anti-EGFR agents rose. On our cell line, there was no benefit observed after 

cetuximab and lovastatin association as for the cell survival. 

4.1.2 A 549 cell line 

For this lung cancer cell line similar results were obtained as for the previous ZMK-1 line, i. e. 

effect of lovastatin was dependent on dose. Its concentration that was chosen for further 

experiments (2.5 µM) revealed to be not high enough to induce a radiosensitization, however it 

decreased cell viability. Sanli et al. (Sanli et al. 2011) performed a series of assays on A 549 cells 

with lovastatin and found that even low concentrations of this statin (5 µM) induced an 

important decrease of cell survival. Moreover, they tested the expression of p-Akt and p-ERK 

using Western blot in the same way as we did. Both of these proteins were overexpressed in our 

conditions after lovastatin treatment and irradiation and even enhanced after association of two 

of these. This was in contrast to what could be seen in the study of Sanli at al. since expression 

of p-Akt as well as of p-ERK was abolished after 5 or 10 µ M lovastatin treatment. The 

explication is not clear but we cannot exclude that low concentrated lovastatin acts in association 

with irradiation rather as a cell protector than sensitizer in this cell line. Unfortunately we did not 

test higher concentrations of lovastatin except of very first experiments of cell survival. Indeed, 

we noticed the first significant cell survival decrease at the dose of 10 µM and not below. 

Neither cetuximab nor bevacizumab sensitized lung tumour cells to irradiation. In contrary, we 

observed a protection and improved cell growth after their treatment. But the addition of 

lovastatin decreased slightly although not significantly the cell survival. 

As mentioned above, in our study p-ERK expression undesirably raised after lovastatin 

treatment. A recently published in vitro study carried out on the same cell line and using 

simvastatin demonstrated an inhibitory potential of simvastatin on MAPK/ERK signalling 

pathway (Liu et al. 2013). 

4.1.3 MO59K and MO59J cell line 

In the DNA-PKs proficient MO59K cell line, lovastatin did not exert a radiosensitization at 

2.5 µM but did at 5 µM. However, cell viability was lowered even with lower concentrated 
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lovastatin. Bevacizumab alone had no radiosensitizing effect and induced neither a cell viability 

decrease, yet it was diminished significantly after combination of lovastatin and bevacizumab. 

Contrary to our results, an in vitro study showed that even low concentrations of lovastatin could 

already induce a decreased growth of other glioblastoma cell line such as A 172, U 251, U 373, 

and U 87 (Prasanna et al. 1996). Though, it is difficult to compare various sorts of gliobastoma 

cells. 

Unlike the DNA-PKs proficient MO59K cell line, MO59J cells were highly sensitized to 

irradiation after pre-treatment by lovastatin. 

4.1.4 HUVEC cell line 

Initial experiments with our conventional dose of lovastatin, i. e. 2.5 µM exerted high cellular 

toxicity within this cell line that was characterised by already a very slow cell growth. But 

interestingly the cell viability was not significantly affected by this concentration. In contrast to 

other normal tissue cell lines and their association with targeted therapy, bevacizumab in 

HUVECs, instead of toxic impact, protected cells against irradiation. But as soon as lovastatin 

was added, the cell growth was interrupted immediately. Cell death was probably due to 

apoptosis since activation of caspases could be noticed 48 hours after incubation with lovastatin. 

Nübel and colleagues postulated in their in vitro study differing conclusions (Nübel et al. 2006). 

In fact a low dose of lovastatin (1 µM) protected HUVECs from radiation damages and only 

doses above 10 µM had pro-apoptotic potential. Hence, discordance with our outcomes is met. 

4.1.5 HaCaT cell line 

Similar to HUVEC cells, also this cell line was highly sensitive to all treatments performed, i. e. 

we observed a strong radiosensitizing effect with SER of 1.53. On the other hand, 2.5 µM 

lovastatin did not decrease significantly cell’s viability. Cetuximab treatment turned out to be 

very cell toxic even at very low concentrations presumably because of high expression of EGF 

receptor within and on the surface of these cells. 

Within molecular biology experiments we found out that various signalling cancer pathways 

were activated by 2.5 µM lovastatin including NF-κB. This pathway was otherwise described by 

Qi et al. to be inhibited by fluvastatin decreasing simultaneously cell viability (Qi et al. 2009). At 

the same time we could conclude that several pathways, e. g. Notch and TGF-β, were highly 
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affected by lovastatin, however the results are difficult to interpret because of important cell 

toxicity. 

4.1.6 Fibroblasts 

This very sensitive primary cell culture exerted an extremely slow cell growth potential thus, 

only initial cell survival and cell viability assays were performed as mentioned above. Even these 

were difficult to perform because after lovastatin treatment no colonies were observed. Hence we 

can conclude that fibroblasts are highly affected even by a low dose of lovastatin. 

Radioprotection was seen neither in our condition neither in other published studies (Nübel et al. 

2005). 

 

To summarize, it is noteworthy that according to our results and amongst tumour cells, lovastatin 

at physiologically and clinically relevant doses, i. e. 2.5 μM, has a radiosensitizing effect only in 

the highly radiosensitive MO59J cell line whereas all other tumour cell lines remained 

unaffected or were even protected against radiation effects. Confirmation was obtained by the 

results of Western blot where various proteins connected with radioresistance and cell survival 

were overexpressed. We are in accord with the already published in vitro studies that dealt 

equally with statin treatment that as for tumour cell lines, effects of statins are dose-dependent. 

Indeed, 25 μM lovastatin was clearly toxic in our tumour cells and decreased cell survival and 

viability. 

Disappointing results were obtained with targeted therapies. No radiosensitization was seen after 

monoclonal antibodies administration in tumour cells. Only improvement in the term of 

diminished survival was gained with the addition of lovastatin. On the other hand, the same 

concentrations of these were harmful for normal tissue cells. 
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5 Conclusions 

 

Pleiotropic potential of HMG-CoA reductase inhibitors, statins, has already been described by 

several authors and within various domains of medicine (cardiology, neurology, oncology, etc.). 

One of such potentials is an anti-cancer effect which is still not clearly explained in detail, up 

today. Many theories have been postulated according to in vitro and in vivo experiments but need 

to be validated in clinical practice. 

Nowadays, statins are frequently administered to patients undergoing a treatment by 

radiotherapy because of their lipid-lowering purpose. Thus, the potential interactions of 

lovastatin, one of the members of the statin family, with irradiation could be of high interest. In 

order to remain clinically relevant, low dose lovastatin was used within our work. 

Our in vitro study demonstrated that 2.5 µM lovastatin tends to protect tumour cells against 

irradiation, and at the same time destroys normal tissue cells. Thus we are in discordance with 

several already published in vitro studies. More methods of molecular biology might be applied 

in order to find an explanation of this difference. Interestingly, association of lovastatin and 

monoclonal antibodies enhanced the cytotoxic effect of these antibodies alone both in tumour 

and normal tissue cells. 

It may be also of great interest to compare the effects of various lovastatin concentrations and 

mechanisms of action of each of them as well as the effect of other sorts of statins. Still, we 

assume that to remain clinically relevant only effects of low doses of statins should be taken into 

consideration. 

Confirmation of significant and relevant anti-cancer potential of statins in men is still far from 

being done even if we should bear in mind that these drugs are often administered in oncological 

patients and thus co-administration of chemotherapeutics or targeted therapies together with 

irradiation may induce yet unknown positive or negative interactions. 

Further experiments are required to study the exact potential of statins in tumour cells. 
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6 Appendix 
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Fig. 6.1: Cell viability expressed in fluorescence units per cell line without treatment and with 

lovastatin 2.5 µM pre-treatment. Incubation time was 72 hours. Each experiment has been performed 

at least once, always in triplicate. 
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Fig. 6.2: Cell viability expressed in fluorescence units per cell line without treatment and with 

lovastatin 25 µM pre-treatment. Incubation time was 72 hours. Each experiment has been performed 

at least once, always in triplicate. 
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Fig. 6.3: Mean values of cell viability expressed in fluorescence units per cell line without any 

treatment, with irradiation alone (4 Gy), with lovastatin 2.5 µM pre-treatment alone or combination of 

lovastatin 2.5 µM pre-treatment 4 hours prior to irradiation (4 Gy). Incubation time was 72 hours. 

Each experiment has been done at least once, always in triplicate. 
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Fig. 6.4: Mean values of cell viability expressed in fluorescence units per cell line without any 

treatment, with irradiation alone (4 Gy), with lovastatin 25 µM pre-treatment alone or combination of 

lovastatin 25 µM pre-treatment 4 hours prior to irradiation (4 Gy). Incubation time was 72 hours. Each 

experiment has been done once, always in triplicate. 
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Fig. 6.5: Cell viability expressed in fluorescence units per cell line without treatment and with 0.1 µM 

cetuximab pre-treatment. Incubation time was 72 hours. Each experiment has been performed twice, 

always in triplicate. 
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Fig. 6.6: Cell viability expressed in fluorescence units in ZMK-1 pre-treated with 2.5 µM lovastatin 

and 0.1 µM cetuximab 4 and 1 hour(s) before irradiation (4 Gy) respectively and the same treatment 

without irradiation (0 Gy). Incubation time was 72 hours. Experiment has been performed at least 

once, always in triplicate. 
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Fig. 6.7: Cell viability expressed in fluorescence units in A 549 pre-treated with 2.5 µM lovastatin and 

0.1 µM cetuximab 4 and 1 hour(s) before irradiation (4 Gy) respectively and the same treatment 

without irradiation (0 Gy). Incubation time was 72 hours. Experiment has been performed at least 

once, always in triplicate. 
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Fig. 6.8: Cell viability expressed in fluorescence units in HaCaT pre-treated with 2.5 µM lovastatin 

and 0.1 µM cetuximab 4 and 1 hour(s) before irradiation (4 Gy) respectively and the same treatment 

without irradiation (0 Gy). Incubation time was 72 hours. Experiment has been performed at least 

once, always in triplicate. 
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Fig. 6.9: Cell viability expressed in fluorescence units per cell line without treatment and with 

bevacizumab 16.8 µM pre-treatment. Incubation time was 72 hours. Each experiment has been 

performed twice, always in triplicate. 
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Fig. 6.10: Cell viability expressed in fluorescence units in A 549 pre-treated with 16.8 µM 

bevacizumab and 2.5 µM lovastatin 24 and 4 hours before irradiation (4 Gy) respectively and the 

same treatment without irradiation (0 Gy). Incubation time was 72 hours. Experiment has been 

performed at least once, always in triplicate. 
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Fig. 6.11: Cell viability expressed in fluorescence units in MO59K pre-treated with 16.8 µM 

bevacizumab and 2.5 µM lovastatin 24 and 4 hours before irradiation (4 Gy) respectively and the 

same treatment without irradiation (0 Gy). Incubation time was 72 hours. Experiment has been 

performed at least once, always in triplicate. 
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Fig. 6.12: Cell viability expressed in fluorescence units in HUVEC pre-treated with 16.8 µM 

bevacizumab and 0.25 µM lovastatin  24 and 4 hours before irradiation (4 Gy) respectively and the 

same treatment without irradiation (0 Gy). Incubation time was 72 hours. Experiment has been 

performed once and in triplicate. 
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Tab. 6.1: List of chemicals and pharmaceuticals used during the work. 

Name of product 
Name of the company 

(city and country of origin) 

Mynox
®
Gold Minerva Biolabs (Berlin, Germany) 

Dimethyl sulphoxide (DMSO) Sigma-Aldrich (Steinheim, Germany) 

Dulbecco’s Minimum Essential Medium 

(DMEM) Biowest (Nuaillé, France) 

RPMI 1640 

Fetal calf serum (FCS) standardized 

Biochrom AG (Berlin, Germany) 

Penicillin/Streptomycin (10 000 U/ml / 

10 000 µg/ml) 

Phophate Buffered Saline (PBS) 

0.5 % Trypsin, 0.2 % 

ethylenediaminetetraacetic acid in PBS, 10x 

Ampicillin 0.5 g/10 ml Ratiopharm (Ulm, Germany) 

Endothelial Cell Growth Medieum (ECGM) 

+ supplement mix 
PromoCell (Heidelberg, Germany) 

Titriplex III, 100 mg diluted in 100 ml PBS 

Merck (Darmstadt, Germany) 

Crystal violet solution 

CaCl2 

2-mercaptoethanol 

NaCl 

Erbitux
®
 

Avastin
®

 Roche (Basel, Switzerland) 

Ethanol Chemie-Vertrieb (Hannover, Germany) 

Anti-EGFR antibody Invitrogen (San Diego, USA) 

Vitro-Clud 
R. Langenbrinck (Emmendingen, 

Germany) 

Opti-MEM
®

 serum-free culture medium, 1x 
Gibco (Grand Island, USA) 

Non-essential amino acids (NEAA), 100x 

Attractene Qiagen (Hilden, Germany) 

Tris HCl Roth (Karlsruhe, Germany) 

MgCl2 

Sigma (Saint Louis, USA) 
NP-40 

Sodium dodecyl sulphate (SDS) 

Anti-β-actin antibody 

Glycerol 

Serva (Heidelberg, Germany) 
Bromphenol blue Na-salt 

Migration buffer for Western blot 

Ponceau S diazo dye 

Mini, EDTA-free pills Roche (Mannheim, Germany) 

Protein marker Precision Plus Protein 

WesternC
TM

 
Bio-Rad (Hercules, USA) 

Anti-ERK antibody 
BD Transduction Laboratories (San Jose, 

USA) 

Anti-caspase 3 antibody Chemikon (Darmstadt, Germany) 

Anti-p-ERK 1/2 antibody 
Cell signalling (Danvers, USA) 

Anti-p-Akt antibody 
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Tab. 6.2: List of devices used during the work. 

Name of product 
Name of the company 

(city and country of origin) 

Clean bench 

Heraeus (Hanau, Germany) Incubator 

Tube centrifuge 

Deep freezer (- 80 °C) Sanyo (Osaka, Japan) 

Refrigerator (4 – 8 °C) 
Liebherr (Biberach, Germany) 

Freezer (-20 °C) 

X-ray tube Gulmay (Surrey, England, UK) 

Light microscope Carl Zeiss (Jena, Germany) 

Wallec1420 VICTOR
TM

 plate reader PerkinElmer (Turku, Finland) 

Cytospin 4 cytocentrifuge Thermo Scientific (Rockford, USA) 

Automated slide stainer Ventana BenchMark (Tucson, USA) 

Vortex shaker Heidolph (Schwabach, Germany) 

Luminometer Tecan (Crailsheim, Germany) 

Plate shaker MS1 Minishaker IKA (Taquara, Brazil) 

Ice-machine Ziega (Isernhagen, Germany) 

Ultrasonic homogenizer Bandelin (Berlin, Germany) 

Small cup centrifuge 
Eppendorf AG (Hamburg, Germany) 

Thermomixer comfort 

Unsterile clean bench 
Norddeutsche Laborbau (Kaltenkirchen, 

Germany) 

Western blot migration set Mini-PROTEAN 

Tetra System 

Bio-Rad (Hercules, USA) 
Electrophoresis power supply Power Pac 

300 

Electroblotting transfer system Trans-Blot 

Turbo
TM 

Rotary shaker Zeipel (Bovenden-Lenglern, Germany) 
 

Tab. 6.3: List of experimental and detection kits used during the work. 

Name of product 
Name of the company 

(city and country of origin) 

MycoAlert
TM

 mycoplasma detection kit Lonza (Rockland, USA) 

CellTiter-Blue
®
 Cell Viability Assay 

Promega (Madison, USA) Dual-Glo
®

Luciferase Assay System 

Caspase-Glo
®
3/7 Assay 

OptiView DAB IHC Detection Kit Ventana BenchMark (Tucson, USA) 

Cancer Cignal Finder 10-Pathway Reporter 

Array kit 
Qiagen Science (Maryland, USA) 

Bradford colorimetric protein assay 

Bio-Rad (Hercules, USA) Electophoresis transfere pack Trans-Blot 

Turbo 

Western blot immunodetection 

WesternBreez
®
Chromogenic kit 

Invitrogen (San Diego, USA) 
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Tab. 6.4: List of software tools used during the work. 

Name of software 
Name of the company 

(city and country of origin) 

Kaleidagraph
®
 version 4.1 Synergy Software (Reading, USA) 

OriginPro
®
 software version 7.5 

OriginLab Corporation (Northampton, 

USA) 

Microsoft Office Excel  Microsoft (Albuquerque, USA) 
 

Tab. 6.5: List of accessories used during the work. 

Name of product 
Name of the company 

(city and country of origin) 

Freezing resistant plastic vials 

Greiner Bio-One (Frickenhausen, 

Germany) 

Plastic sterile 15 and 50 ml tubes 

Sterile/unsterile 1, 2, 10, and 25 ml pipettes 

Sterile 50 and 200 ml flasks 

Sterile 50 and 200 ml flasks 
Cyto One (Tokyo, Japan) 

Sterile 6-well plates 

Neubauer chamber 
Paul Marienfeld (Lauda-Königshofen, 

Germany) 

Pipette 

Eppendorf AG (Hamburg, Germany) Sterile pipette tips 

Unsterile plastic 1.5 ml cups 

Sterile 96-well black plates with clear bottom Costar (New York, USA) 

Stainless clip Shandon Cytoclip™ 

Thermo Scientific (Rockford, USA) Filter card 

Re-usable sample chamber 

Glass microscopic slide 
Thermo Scientific (Braunschweig, 

Germany) 

Sterile white flat bottom 96-well plates Nunc (Roskilde, Denmark) 

Sterile cell scraper Sarstedt (Newton, USA) 

Sterile insulin injections Braun (Bad Arolsen, Germany) 

Precast 10-well polyacrylamide gels Mini-

PROTEAN
®

TGX
TM

, any kD
TM Bio-Rad (Hercules, USA) 

5 ml polystyrene test tubes BD Falcon (San Jose, USA) 
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List of abbreviations 

 

AP-1  activator protein-1 

ATM/ATR ataxia telangiectasia mutated/ATM- and Rad3-related 

ATP  adenosine triphosphate 

CFU  colony formation unit 

CTB  CellTiter-Blue® 

CTGF  connective tissue growth factor 

DMEM Dulbecco’s minimum essential medium 

DMSO  dimethyl sulphoxide 

DNA-PKs DNA dependent protein kinase 

ECGM  endothelial cell growth medium 

EDTA  ethylenediaminetetraacetic acid 

EGRF  epidermal growth factor receptor 

ERK  extracellular signal-regulated kinases 

FCS  fetal calf serum 

FPP  farnesylpyrophosphate 

GFP  green fluorescent protein 

GGPP  geranylgeranylpyrophosphate 

GTP-ase guanosine triphosphatase 

HMG-CoA 3 - hydroxyl - 3methylglutaryl-coenzyme A 

IMRT  intensity modulated radiation therapy 

IL  interleukin 

IR  ionizing radiation 

LDL  low-density lipoprotein 

MAPK  mitogen-activated protein kinases 

mTOR  mammalian target of rapamycin 

NCID  Notch intracellular domain 
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NF-κB  nuclear factor kappa-light-chain-enhancer of 

activated B 

NSCLS non–small cell lung carcinoma 

PBS  phosphate buffered saline 

PE  plating efficiency 

PI3 - kinase phosphatidylinositol 3-phosphate kinase 

PlGF  placental growth factor 

PVDF  polyvinylidene difluoride 

Raf  rapidly accelerated fibrosarcoma 

Ras  rat sarcoma 

Rho/ROCK Rho/Rho-associated protein kinase 

RLU  relative luminescence units 

RRR  relative response ratios 

SD  standard deviation 

SDS  sodium dodecyl sulphate 

SE  standard error 

SER  sensitizer enhancement ratio 

SF  surviving fraction 

TGF-β  transforming growth factor beta 

TNF-α  tumour necrosis factor alpha 

TRE  transcriptional response element 

VEGF  vascular endothelial growth factor 
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