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Chapter 1 

Introduction 

Magnetic resonance spectroscopy (MRS) was established, upon independent 

discovery of nuclear magnetic resonance (NMR) phenomenon, by Bloch and Purcell in 

1946 (Bloch, 1946, Bloch et al., 1946b, Bloch et al., 1946a, Purcell et al., 1946). They 

observed resonance absorption and emission of spins placed in a static, strong external 

magnetic field and described time evolution of the nuclear magnetization - in relation to 

the external magnetic fields and to the relaxation times (T1 and T2). The method was 

initially of interest only to physicists for measuring the gyromagnetic ratios (γ) of 

different elements in the periodic table. However, four years later, the chemical shift 

phenomenon came to light, in which influence of the chemical environment of a 

nucleus, on its resonance frequency, was realized (Dickinson, 1950, Proctor and Yu, 

1950). Following the discovery of the spin echo (Hahn, 1950) and of spin–spin coupling 

(Ramsey and Purcell, 1952), NMR spectroscopy gradually developed into the most 

versatile technique for non-invasive probing of molecular structure, as well as molecular 

motions and reaction dynamics. The diagnostic value of (proton) NMR in medical 

applications was apprehended first by Damadian (Damadian, 1971), reporting the 

different magnetic relaxation times of malignant tumors from those of normal tissues. 

With the advent of linear magnetic field gradients (Lauterbur, 1973, Mansfield and 
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Grannell, 1973), new opportunities were presented to derive spatial density information 

of nuclei inside an object that paved the way for technical developments of modern 

localized spectroscopy. 

Complementary to the insights provided by structural and functional magnetic 

resonance imaging (MRI) methods, magnetic resonance spectroscopy (MRS) offers 

unique access to major tissue metabolites concentration in vivo. This particularly applies 

to proton MRS (1H MRS) studies of the central nervous system, where spectral 

recordings cover metabolites involved in energy metabolism, membrane turnover, glial 

proliferation, and neuroaxonal integrity. Accessible key metabolites are N-

acetylaspartate (NAA), a neuroaxonal marker linked to neuronal viability and function, 

creatine (Cr) and phosphocreatine (PCr) as important energy metabolites and 

constituents of all cells, choline-containing compounds (Cho) representing formation 

and degradation products of cell membranes such as glycerophosphocholine (GPC) and 

phosphocholine (PCh) which are predominantly present in oligodendrocytes, and myo-

inositol (Ins) as a marker for astrocytes. Alterations of these compounds have been 

demonstrated to be indicative for a variety of pathological processes and they are 

monitored during the course of disease progression. Other metabolites such as lactate 

(Lac), alanine (Ala), N-acetylaspartylglutamate (NAAG), aspartate (Asp), γ-aminobutyric 

acid (GABA), and taurine (Tau) can be used for a more detailed analysis of affected brain 

tissue. Specific marker compounds could be identified, through MRS, for glial cells 

(oligodendrocytes, astrocytes) and neurons (including their axons). As a consequence, 

technical developments of suitable localization sequences were rapidly followed by 

applications to human brain under both physiologic and pathologic conditions. STEAM 

(STimulated Echo Aquisition Mode)(Frahm et al., 1989a) and PRESS (Point RESolved 

Spectroscopy)(Bottomley, 1987) localization techniques are among those used for 

volume selection and have gained widespread acceptance. Pertinent studies cover a 

broad range of disorders, including focal brain lesions as well as neurometabolic and 

neurodegenerative diseases.  Questions not only address diagnostic issues but expand to 

the (early) monitoring of therapeutic success. 
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So far, a variety of localized spectroscopy studies were carried out on animals 

including mice (Schwarcz et al., 2003), rats (Gyngell et al., 1991a, Gyngell et al., 1991b, 

Gyngell et al., 1992, Fujimori et al., 1998, Michaelis et al., 1999, Wick et al., 1999, 

Liebetanz et al., 2003) and tree shrews (Czeh et al., 2001, Michaelis et al., 2001, van der 

Hart et al., 2002, Czeh et al., 2005). However, previous animal MRS studies were limited, 

in terms of spatial resolution and/or sensitivity, because of the use of relatively low field 

strength of 2.35 T. Applications of MRS at high field is faced with several important 

hurdles that need to be surmounted, some of which involve signal loss due to J-

modulation of spin-coupled resonances, T2 relaxation, chemical shift displacement error, 

increased magnetic susceptibility, residual eddy currents, and magnetic field instability 

(Frahm et al., 1989b, Howe et al., 1993, Di Costanzo et al., 2003). The recent availability 

of MR systems operating at higher magnetic fields, as well as the subsequent technical 

and methodological advances, have brought about substantial improvements in 

sensitivity and in spatial, temporal and spectral resolution, allowing reliable 

quantification of a much larger number of metabolites from smaller brain regions in 

reasonable measuring time (Gruetter et al., 1998).  

Several years ago in vivo 1H NMR spectroscopy at 9.4 T has first been 

demonstrated on the rat brain (Pfeuffer et al., 1999, Tkád et al., 1999) and later on the 

mouse brain (Tkád et al., 2004). However, there are several limitations in their method: 

(i) Very short echo time of 2 ms was selected for the acquisition of spectra. This may 

cause considerable contribution of the signal of unspecific macromolecules, which have 

very short T2 relaxation times. This hampers the quality of the baseline of the spectra 

and, thus, increases the risk of under- and over-estimation in quantifying the 

concentration of metabolites. (ii) A surface coil was used, not only for signal reception 

but also for radiofrequency (RF) excitation. This may pose a risk of inhomogeneous 

excitation profile (B1), which has an influence on the quality of the localization of the 

volume-of-interest (VOI), in particular, when it is localized at distances far away from the 

surface coil. (iii) The instability of B0 caused a noticeable frequency drift in the course of 

measurement, which required a correction for each spectrum, prior to averaging. (iv) An 

additional step was required in correction of spectra, possibly because application of 
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very strong spoiler gradients, forced by the very short echo time, caused substantially 

uncompensated eddy currents. The spoiler gradients must be applied for spoiling the 

unwanted echo. (v) Seven RF pulses were used for the suppression of the water signal. 

This increases the risk of unwanted echo formation. In addition, magnetization exchange 

with water protons, as a result of long water suppression scheme, can attenuate methyl 

signal of creatine. (vi) Only orthogonal volumes-of-interest were used, which limit the 

localization for specific brain regions.  

In the current work, centering on STEAM, the method of choice for single-voxel 

localization, these limitations will be overcome respectively: (i) optimal echo time (TE) of 

10 ms will be employed, which minimizes the unspecific macromolecule signals while 

reducing substantial T2 relaxation losses and J-modulation of coupled spins. (ii) Use of 

quadrature volume resonator will provide more homogeneous excitation profile. This 

will enable a sufficiently reliable localization to obtain adequate signals - even from the 

brain regions remote from the surface coil. (iii) state-of-the-art magnet and shim coils 

will ensure stability in B0. (iv) 12 cm inner diameter self-shielded gradient coil insert 

(Resonance Research Inc, Billerica, MA, USA) will provide sophisticated eddy current 

compensation, while being capable of supplying up to 400 mTm−1 in 80 μs rise time. (v) 

Use of only three RF pulses in water suppression scheme, in analogy to what is proposed 

by Ernst et al (Ernst and Hennig, 1995), will minimize the risk of unwanted echo 

formation. (vi) Use of oblique volume-of-interest will facilitate localization for specific 

brain regions. 

With these improvements, the primary objective of the research presented in 

this thesis is to implement and optimize a STEAM localization technique on a 9.4 T MRI 

system, to perform state-of-the-art single-voxel 1H MRS in vivo, taking full advantage of 

the gain in SNR and chemical shift dispersion at higher field strengths. Further, these 

modifications will require, (i) systematic investigation of bandwidths and inter-pulse 

delays of water suppression pulses for in vitro condition as well as for mouse brain in 

vivo, (ii) systematic investigation of the relative detectability of strongly coupled 

metabolite resonances at 9.4 T compared to lower field strength. 
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The second objective of this project is concerned with the absolute quantification 

of regional neurochemical profiles in healthy mouse brain in vivo, to test and validate 

the developed spectroscopic method and the quantification technique. Development of 

in vivo techniques for characterizing the brains of mice is of great importance because a 

growing number of mutant mice are being generated for a better understanding of 

pathological mechanisms, which underlie human brain disorders. The non-invasiveness 

of 1H MRS enables repeated assessment of longitudinal treatment on behaving mice, 

which represents a model of chronic human disorders. In this regard, high 

reproducibility of the method is essential to unveil subtle variation of neurochemical 

profile in the longitudinal investigations of physiological or pathophysiological processes. 

So far, there are only a few laboratories that can perform proton MRS studies of the 

mouse brain in vivo, probably because it has specific requirements (Lei et al., 2010, Öz et 

al., 2010, Oberg et al., 2008). Immobilization of mice is challenging because anesthetics 

may alter cerebral metabolism. The small size of the sample is another challenge 

because signal must be collected from much smaller subregions of the mouse brain, 

compared to that of human. In the previous work, using the smallest volume-of-interest 

(VOI) for mouse brain in vivo, metabolite concentrations were determined for only four 

different regions (Tkád et al., 2004). Further, scyllo-Ins has not yet been described for 

mice in vivo, despite its detectable concentration in human brain (Michaelis et al., 

1993a, Seaquist and Gruetter, 1998). Only one study has investigated the intra- and 

inter-individual variability in mouse brain in vivo (Öz et al., 2010).  

Thus, to achieve the second objective of this project, (i) experimental setup, e.g., 

the selection of the coils, the method of anesthesia, the maintenance of body 

temperature, and the fixation of the head of the mouse, will be developed for repeated 

MRS of the same mouse and for examining the reproducibility of the method, (ii) VOI 

localization technique for MRS will be optimized for 10 different brain regions of 

anesthetized mice, (iii) T1 and T2 relaxation times from different brain regions of 

anesthetized mice will be measured for a correct quantification of metabolite 

concentrations, (iv) intra- and inter-individual reproducibility of MR spectroscopic 

acquisition protocol and of quantified data analysis will be assessed, (v) absolute 
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concentrations of 16 different brain metabolites, including scyllo-Ins from anesthetized 

mice, will be quantified and presented with necessary statistical values. Once 

established, the new high-field MRS protocol will be ready to be exploited for future 

studies on metabolic and cellular characterization of the brain in a large number of 

existing animal models. This will enable us to assess the metabolic profiles in genetically 

modified mice, including models of human brain in basic neuroscience studies. In fact, 

the experimental setup, which has been developed and established in the present work, 

recently provided a new insight into cerebral metabolism (Michaelis et al., 2009, 

Boretius et al., 2013). 

In this thesis, after the physical basis of 1H MRS is described (Chapter 2), 

optimization of STEAM sequence parameters as well as attributed modules is presented 

in Chapter 3. Firstly, the issues of water suppression, outer-volume suppression and 

automatic localized shimming techniques are addressed because they are stringent 

requirements for short-TE 1H NMR spectroscopy that needs to be complied with. 

Further, relative detectability of strongly coupled metabolites at low-field (2.35 T) 

strength is compared to that at high-field (9.4 T) to further clarify the relative merits of 

field strengths. In Chapter 4, the experimental development for MRS of the brain of 

anesthetized mice is described. The acquisition of metabolite model spectra and the 

generation of the basis set, as a priori knowledge, are essential for the employed 

quantification technique, which enables a user-independent analysis. Special emphasis is 

placed on the characterization of potential impacts of signal loss, associated with T1 and 

T2 relaxation, as well as of cerebrospinal fluid (CSF) contribution on metabolite 

quantification. Finally, the reliability and reproducibility of the in vivo metabolite 

concentration measurements are assessed. 
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Chapter 2 

Physical Basics of Magnetic Resonance 

2.1 Spin Magnetization 

Particular nuclei hold a property that is termed spin. Any atomic nucleus with an 

odd number of neutrons and/or protons, possesses angular momentum L and a 

magnetic dipole moment, µ which they are related according to: 

 𝝁 = 𝛾𝑳 =  𝛾ℏ𝑰 (2.1) 

   

Where 𝛾 is called gyromagnetic ratio, an intrinsic constant the particular nucleus 

that is determined by the ratio of the nuclear charge to its mass, I is the nuclear spin 

quantum number, and ℏ is Planck’s constant over 2π. The magnetic parameters of some 

selected nuclei commonly used in clinical MRS are enumerated in Table 2.1. 
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 Table 2.1 Basic properties of some popular nuclei in in vivo NMR 

 

 

In the presence of a static magnetic field (𝐵0), there are  2𝐼 + 1  possible spin 

states with integer steps ranging from +𝐼 to −𝐼, which is known as the Zeeman splitting. 

As an example, 1H nucleus with I = 
1

2
 can take two possible spin states of +

1

2
 and −

1

2
 

corresponding to the parallel or anti-parallel alignment of nuclear magnetic moments 

with respect to the external magnetic field. It should be noted that larger magnetic fields 

give rise to greater alignment of the spins. 

 

Figure 2.1: Zeeman splitting of nuclear spin states. In the absence of an external magnetic field (B0 = 0), 

the two energy eigenstates of the spin 1/2 particle are degenerated. For B0  0, Zeeman splitting is 

observed. Reproduced from (Pohmann, 2011) 

  

Nucleus Spin  γ/2π  
 
 
 
(MHz T−1) 

  
(MHz T−1) 

1H 
1

2
 42.58 

13C 
1

2
 10.71 

19F 
1

2
 40.05 

23Na 
3

2
 11.26 

31P 
1

2
 17.23 

                                       Reproduced from (Storey, 2005) 
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The anti-parallel aligned level has a higher energy (𝐸
𝐼=−

1

2

) than the parallel level 

(𝐸
𝐼=+

1

2

). In this case, energy difference between two different energy eigenstates of 

±1/2𝛾ℏ𝐵0 will be (see Fig. 2.1) 

 ∆𝐸 = 𝛾ℏ𝐵0  (2.2) 

 

Therefore, the Larmor frequency, ω0, which is the angular frequency at which the 

angular momentum precesses about the magnetic field axis, can be expressed as:  

 𝜔0 = 𝛾𝐵0 (2.3) 

 

The population difference between the spin states, under thermal equilibrium 

conditions, is given by the Boltzmann's distribution Law:  

 𝑁𝐻𝑖𝑔

𝑁𝐿𝑜𝑤
= 𝑒

−
∆𝐸

𝑘𝐵𝑇 = 𝑒
−

𝛾ℏ𝐵0
𝑘𝐵𝑇  (2.4) 

 

Where ∆𝐸 is known as the energy difference between adjacent Zeeman levels, 

kB  is the Boltzmann's constant  kB = 1.38 ∙ 10−23  𝐽𝐾−1  and 𝑇 is the (absolute) 

temperature.  

 

Given that the difference between energy state for protons at room temperature 

will be small for relatively small 𝐵0, 𝛾ℏ𝐵0 𝑘𝐵𝑇 ≪ 1, it is reasonable to make a first-

order approximation of 𝑒𝑥 ≈ 1 + 𝑥. 

Thus, 

 𝑁𝐻𝑖𝑔

𝑁𝐿𝑜𝑤
= 1 −

𝛾ℏ𝐵0

𝑘𝐵𝑇
 (2.5) 

 

NMR signal intensity is dependent on the excess in population of nuclear spin in 

the lower energy state which is extremely small (e.g.,  𝑁𝐿𝑜𝑤 − 𝑁𝐻𝑖𝑔 𝑁𝐿𝑜𝑤 ≈

𝛾ℏ𝐵0

𝑘𝐵𝑇
~10−5 for 1 Tesla). This is translated into an intrinsically low sensitivity of magnetic 

resonance techniques. The equilibrium magnetization 𝑀0 is given by: 

 𝑴𝟎 =  𝑁𝐿𝑜𝑤 − 𝑁𝐻𝑖𝑔 𝝁 (2.6) 
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The net magnetization in a system of nuclei with a spin 𝐼 in an external field 𝐵0 

and gyromagnetic ratio 𝛾 can be described by the following equation: 

 

 
𝑀0 =

𝑁𝑠𝛾
2ℏ2𝐼 𝐼 + 1 

3𝑘𝐵𝑇
𝐵0 (2.7) 

Where 𝑁𝑠  is the total number of spins in the sample. Hence, higher static 

magnetic fields give rise to increased equilibrium magnetization, which is, in fact, an 

enhancement of the MR signal and sensitivity. 
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2.2 Chemical shift 

The underlying concept of NMR spectroscopy is based on the chemical shift 

phenomenon. Nuclei in different molecular environments precess at slightly different 

frequencies. This is a consequence of the fact that the rotation of the electron cloud 

around the nucleus induces diamagnetic shielding that opposes the external field 𝐵0. 

Thus, the effective magnetic field experienced by the nucleus can be expressed as: 

 𝐵 = 𝐵0 1 − 𝜎  (2.8) 

 

where 𝜎 is a shielding (or screening) constant. Chemical shift is normally 

expressed in the dimensionless unit of parts per million (ppm) instead of in Hz, which 

makes it independent of external magnetic field strength. It can be defined as: 

 𝛿𝑝𝑝𝑚 =
𝜔𝑖 − 𝜔𝑟

𝜔𝑟
× 106 (2.9) 

 

where 𝜔𝑖  is the resonance frequency of the given nuclei and 𝜔𝑟  is an arbitrary 

chosen reference frequency. TMS [Tetramethylsilane, Si(CH3)4] and DSS (sodium 2,2-

dimethyl-2-silapentane-5-sulphonate) are commonly used substances as internal 

chemical shift reference  𝛿𝑝𝑝𝑚 = 0 , in in vitro 1H and 13C spectroscopy. In in vivo 

situation, methyl singlet of N-acetyl aspartate (NAA) with a chemical shift value of 2.01 

ppm is often used as an in vivo standard in 1H NMR spectrum. 
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Figure 2.2: 
1
H NMR spectrum acquired from a sample consisting of the fat and water. Reproduced from 

(de Graaf, 2007) 

 

 

As an example, protons in the fat tissue experience stronger shielding than those 

in water. Therefore their resonance frequency is slightly lower, leading to approximately 

3.5 ppm shift of the spectral line to the right in the spectrum as shown in Figure 2.2. To 

this end, different metabolites can be identified on account of the fact that chemical 

shift values for given nuclei are different in each chemical environment. 
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2.3 spin-spin coupling 

Along with the chemical shift, the resonance frequency of a nucleus can be 

altered through another molecular interaction known as spin-spin coupling or J-coupling. 

This phenomenon results in the fine structure of the NMR resonances in the forms of 

splittings (or multiplets). The spin of one nucleus perturbs the energy levels of 

neighboring magnetic nuclei, through polarization of the bonding electrons within a 

molecule. The effective magnetic field sensed by one nucleus is dependent on the spin 

state of a vicinal coupled nucleus. 

The frequency difference between the multiplet peaks reflects the J-coupling 

constant. This constant, which is measured in Hz, implies intensity of coupling. In 

contrast to the chemical shift, J- coupling constant is independent of static magnetic 

field strength. The spin-spin coupling can be found for both heteronuclear (e.g., 1H–13C) 

and homonuclear (e.g., 1H–1H) interactions. Accordingly, the coupling constants 

observed for directly coupled spins (heteronuclear) are in the range of 100–200 Hz, 

while those from the indirect couple spins are in the range of 1–15 Hz [refrence from 

H3]. The number of lines that appeared in the multiplet is 2𝑛𝐼+1 where 𝑛 is the number 

of equivalent coupled nuclei and 𝐼 their nuclear spin. 

Considering the magnitude of J-coupling constants, with respect to the value of 

chemical shift distinction observed between the spins, coupling can be categorized into 

weak (J ≪ δ) or strong (J ≈ δ). For weak coupling, spectral analysis can be treated by 

first-order approximation; however, quantum-mechanical treatment is required for a 

strong coupling regime. 

 By convention, in the terminology used to describe spin systems, each individual 

spin will be assigned to letters, where alphabetical proximity of the letters indicating the 

coupling strength. e.g. AB is a strongly coupled spin system whereas AX is a weakly 

coupled one. The same hold true for systems with more than two spins, such as AX3 

(e.g. lactate) and AMNPQ (e.g. glutamate). 
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Figure 2.3: Molecular structure and 
1
H spectrum of lactate. The experimental Localized 

1
H MRS 1D STEAM 

spectrum for a 50 mM Lac phantom (27 μL volume) at 9.4 T (TR/TE = 15000/10 ms, 32 scans) shows a 

doublet due to the CH3 group at 1.33 ppm, and a quartet from the CH group at 4.10 ppm. The “sinc 

wiggles” seen around the base of the peak are originated from truncation of data before FID has decayed 

to noise level, whereas the T2 values of metabolites in vitro are likely to be longer than those in in vivo 

condition. 

 

1H spectrum of lactate, as shown in Figure 2.3, is a typical example for a “weakly 

coupled system” and can be used to explain spin coupling. The resonance caused by 

methyl protons in the lactate molecule (X in the AX3 system) produces a doublet 

centered at 1.33 ppm due to interactions with the methine proton (A), which holds two 

possible states of up or down. 
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On the other hand, the methine (CH) resonance at 4.10 ppm is split into a 

quartet because of the coupling with three equivalent protons of the methyl group (CH3) 

since, for each of which, four states are assumed. 

 

 

2.4 Single-Voxel MR Spectroscopy 

The simplest setup for NMR experiment can be established by applying an 

excitation RF pulse followed by detecting the induced oscillating current, arising from 

the rotating magnetic moments in an RF coil. The resultant signal, often called free 

induction decay (FID), is an exponentially damped sine wave. Fourier transform of the 

FID produces the NMR spectrum, providing the information on constituent nuclei of the 

sample. 

In in vivo 1H NMR spectroscopy, it is essential that information be obtained only 

from certain regions of the tissue. The advent and availability of static field gradients led 

to the development of numerous methods for in vivo localized MR spectroscopy.  

STEAM (STimulated Echo Aquisition Mode (Frahm et al., 1987, Frahm et al., 

1989a) spectroscopy and PRESS (Point RESolved Spectroscopy, (Bottomley, 1987)) 

localization technique, also known as double spin-echo, are among those used for 

volume selection and have gained widespread acceptance. 

Both methods provide single-shot capabilities to acquire spectroscopic data from 

the VOI and are particularly advantageous over multi-shot techniques like image 

selected in vivo spectroscopy (ISIS), which is inherently based on multiple excitation 

followed by phase cycling scheme (Ordidge et al., 1986). This makes ISIS vulnerable to 

motion and contaminated with unwanted signal outside the VOI (Frahm and Hänicke, 

2000). An additional advantage of single-shot is the ability to perform localized 

shimming, water suppression, and RF pulse gain adjustments on the desired VOI. 

Both techniques employ three consecutive frequency-selective RF pulses in the 

presence of mutually orthogonal magnetic field gradients to achieve three-dimensional 
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localization (volume selection). In this way, the desired VOI can be defined by the 

intersection of three perpendicular slices. 

While STEAM uses three 90° slice-selective excitation pulses, in PRESS the second 

and the third ones are replaced by two 180° slice-selective refocusing RF pulses. In 

comparison with STEAM, application of 180° pulses increases RF power requirements 

and results in a higher amount of power deposition. This problem becomes even more 

pronounced at higher field strength. Moreover, inferior voxel definition is assumed due 

to sensitivity to pulse imperfections (B1 inhomogeneity, non-ideal pulse shapes, off-

resonance effects, phase-shift errors)(Hore, 1983). This necessitates the use of pairs of 

spoiler gradients around the refocusing pulses to eliminate inadvertently generated 

transverse magnetization (Keevil, 2006), making the minimum attainable TE times longer 

and, consequently, resulting in more signal losses through T2 mechanisms compared to 

STEAM (Gillies and Morse, 2005). In addition, pulse imperfections give rise to a far more 

complicated evolution behaviour, which was investigated analytically, simulated 

numerically, and discussed in detail in previous publications (Trabesinger et al., 2005, 

Lange et al., 2006). 

Figure 2.4 shows the STEAM pulse sequence, which will be used in this work. 

Application of three 90° degree RF pulses initiates three FIDs (following each pulse), four 

normal spin-echoes, and one special signal generated after the third pulse, which is 

referred to as a ‘stimulated echo’ (Hahn, 1950). Spoiler gradients are required to 

preserve the desired signal, while eliminating the unwanted ones. 
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Figure 2.4: Schematic diagrams of the RF pulse and magnetic field gradients sequences commonly applied 

for localized Single-Voxel MRS in vivo. PRESS (top) and STEAM (bottom) sequence. 
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The amplitude of the resultant signal in STEAM is theoretically half of that in its 

spin-echo counterparts PRESS, as a result of isotropic spin distribution (de Graaf, 2007). 

However, to preclude aforementioned limitations, STEAM was considered the 

method of choice in this thesis, since it offers advantages for observation of very short T2 

metabolites with significant J-coupling modulation. 
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Chapter 3 

Localized proton magnetic resonance 

spectroscopy at high magnetic field 

strength 

3.1 Introduction 

3.1.1 Localized shimming 

Placing the object inside the magnet will disturb the static magnetic field 

homogeneity. In localized magnetic resonance spectroscopy, this results in a variation of 

the Larmor frequency inside the volume of interest and thus, leads to a poor 

localization. In addition, magnetic field inhomogeneities will cause a widening of the 

resonance peaks of metabolites, a distortion of spectral lineshapes and thus, a reduction 

in the signal-to-noise ratio (SNR), which potentially reduces the accuracy of the 

metabolite quantitation. Another adverse outcome is spectral overlap, which has a 

profound effect on quantification accuracy of metabolite concentration (Stanley et al., 

1995, Gruber et al., 2003, Macrì et al., 2004, Bartha, 2007). Moreover, macroscopic field 

heterogeneity causes deterioration in water (or fat) suppression quality, particularly 

when selective saturation method must be applied. Therefore, the improvement in 

magnetic field homogeneity is vital for spectral resolution and hence, for reliable and 

reproducible quantification of metabolites. 
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Fast Automated Shimming Technique by Mapping Along Projections (FASTMAP) 

(Gruetter and Boesch, 1992, Gruetter, 1993, Gruetter and Tkád, 2000) is a widely used 

localized automated shimming approach, which rapidly acquires information from six 

linear field map projections to adjust all first- (X, Y, Z) and second-order (Z2, ZX, ZY, X2-

Y2, 2XY) shim coils (see Fig. 3 .1)(Faber and Webb, 2007, Koch et al., 2009). In other 

words, the required correction current changes for the second-order spherical harmonic 

shim fields are calculated through decomposition of magnetic field inhomogeneities into 

first- and second-order spherical harmonic functions. 

 

Figure 3 .1: Six linear field-map projections diagonally acquired along rectangular columns (sticks) defined 

by the intersection of the two orthogonal slices through the selected shim voxel. (Reproduced from 

ParaVision manual, Advanced Users Manual D-4: Fastmap)  
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3.1.2 Water Suppression 

In the brain tissues, the concentrations of brain metabolites are much lower than 

the concentration of water. Whereas the concentration of water protons is roughly 

80M, cerebral metabolite levels are on the order of mM. Consequently, the localized 1H 

MR spectrum is dominated by the signal from water. Hence, water suppression 

techniques are pivotal to observe the metabolite resonances in in vivo 1H spectroscopy. 

Figure 3.2 shows a perfect example of a water-suppressed localized proton NMR 

spectrum of aqueous solution of GABA, using STEAM spectroscopy in comparison to that 

acquired without application of water suppression. 

 

Figure 3.2: Localized proton NMR spectrum of an aqueous solution of 200 mM GABA obtained without (a) 

and with (b) applying CHESS water suppression module. Axial RARE image (inset) illustrates the location of 

the VOI in the center of spherical phantom. The water signal intensity is reduced drastically. Accordingly, 

resolved proton resonances of GABA are clearly visible in the spectrum. 

 

Incomplete water suppression will result in baseline distortion and, 

consequently, degrades the quantification certainty. A desirable water suppression 
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method should reduce the water amplitude well below the metabolite amplitude, 

without overflowing the digitizer, for a limited dynamic range of analog-to-digital 

converters (ADCs) of the RF receiver channel. Moreover, this eliminates baseline 

distortions linked to residual water and prevents spurious signals such as sidebands 

aroused from system instabilities. However, a consistent amount of residual water can 

be readily exploited for phase and eddy current correction (Klose, 1990) or 

quantification of metabolite.  

Several attempts have been made and many techniques have been suggested for 

more efficient suppression of water signal, mainly including relaxation based techniques, 

binomial based, frequency selective refocusing or excitation and frequency selective 

saturation. 

 WEFT (water eliminated Fourier transform) was initially developed on the basis 

of the difference in longitudinal T1 Relaxation and employed in high resolution NMR 

(Patt and Sykes, 1972). This is similar to inversion recovery sequence, which consists of 

180° selective inversion pulse followed by a delay to main sequence. After 180° pulse, a 

spoiler gradient is applied when water longitudinal magnetization recovered to its zero 

value, in order to dephase water signal prior to the localization pulse sequence. 

Therefore, metabolite magnetization is partially preserved during delay to excitation 

pulse. This is the reason why it is also considered to be an inversion nulling method. The 

result can be further enhanced in in vivo application for several T1, using multiple 

inversion nulling with optimized delay (Berkelbach van der Sprenkel et al., 1992, Duijn et 

al., 1992). An alternate water suppression method for taking advantage of T1 differences 

by using 90◦–t–180◦–t–90◦ sequence was reported by Becker, in which t is considered as 

an inter-pulse delay (Becker et al., 1969, Shoup et al., 1972). Driven equilibrium Fourier 

transform (DEFT) has been introduced in the past as a method of signal enhancement 

for acquisitions with short repetition times in pulsed 13C magnetic resonance 

spectroscopy. The appropriate selection of t brings about nulling of the longitudinal 

component of the water magnetization after inversion pulse whereas metabolite 

magnetization recovered before excitation pulse. However, in several respects, the use 

of T1 based methods is disadvantageous for the suppression of water resonance in vivo. 

In particular, relatively minor differences of T1 relaxation time between water and 
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metabolite in the in vivo situation, lead to attenuation of metabolite as well, 

consequently resulting in unreliable metabolite quantification. 

Additionally, beside the T1-selective method pointed out above, another 

category of water suppression techniques were established on binomial pulses, which 

originally have proven to be useful to achieve selective excitation for water suppression 

applications at high resolution NMR spectroscopy (Hore, 1983). Longitudinal 

magnetization of solvent is nullified in excitation profile of frequency-selective pulse 

trains, for example, DANTE RF pulses (delays alternating with nutation for tailored 

excitation) employs a series of rectangular (hard) pulses with short duration (Morris and 

Freeman, 1978). Albeit, it was recognized that periodical frequency response of these 

pulses may induce phase and amplitude modulations over the spectrum. Potential 

limitations can be stated for these approaches, namely, high power deposition due to 

using hard pulses but less than low power saturation of the water signal technique. 

Another weakness is the difficulties in utilizing in short echo time single shot localization 

sequences like STEAM or PRESS. 

WATERGATE (water-suppression by gradient-tailored excitation) method is a way 

of achieving enhancement of the frequency profile generated by tailored selective 

excitation pulses, which has been presented by Piotto and Sklenar et al. (Piotto et al., 

1992, Sklenar et al., 1993). In this approach, performance of binomial pulse in pulse train 

has been noticeably improved by numerical optimization of sub-pulses property such as 

inter-pulse intervals, pulse lengths and phases. However, Gradient field distortion, 

originating entirely from eddy currents, is considered as a potential problem for the 

methods employing pulse field gradients (Guéron and Plateau, 2007). 

Along with all of the aforementioned methods, presaturation of the water signal 

in in vivo MRS can be accomplished by chemical shift selective (CHESS) (Haase et al., 

1985) saturation, which is one of the most robust and popular approaches for water 

suppression. Figure 3.3 shows a schematic diagram of CHESS water suppression, which 

was employed in this thesis. Three successive frequency-selective excitation rf pulse and 

associated spoiler gradients are instantly applied, prior to localization pulse sequence. 

Various versions of CHESS have been established to result in further improvement in 

suppression performance. By employing more than one CHESS cycle (Frahm et al., 1990) 
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and optimization of corresponding Gaussian pulses flip angle (Webb et al., 1994, Ernst 

and Hennig, 1995), suppression factor of more >1000 can be typically achieved over a 

range of T1 relaxation times.  

 

 

Figure 3.3: Schematic illustration of the chemical-shift-selective (CHESS) water suppression sequence used 

for localized proton spectroscopy of mouse brain at high magnetic field (9.4 T). Sequence comprised of 

three successive Gaussian pulses of duration 7.83 ms, giving a saturation bandwidth of 350 Hz together 

with associated spoiler gradients. The interleaved outer volume suppression blocks are not shown, but are 

applied after each CHESS element. τ is the inter-pulse delay. 

 

DRYSTEAM (drastic reduction of water signals in spectroscopy with the 

stimulated echo acquisition mode) additionally utilizes CHESS pulses during mixing time 

(TM) of STEAM sequence when the magnetization vector is longitudinal (Moonen and 

Vanzijl, 1990). However, this approach was not pursued in the present work, since 

mixing time was kept short to avoid signal attenuation caused by subject motion or as a 

result of diffusion in the period between the two B0 magnetic field gradients in TE 

(Frahm et al., 1990).  

Likewise, to reduce the impact of longitudinal relaxation decay during TM, which 

might introduce complications on spectral quantification, other variants of CHESS 

method have also been proposed by applying more than three CHESS cycles. In a variant 

known as WET (water suppression enhanced through T1 effects), Ogg et al. attained T1- 

and B1-insensitive suppression by utilizing four Gaussian pulse with numerically 
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optimized flip angle (Ogg et al., 1994). Another suppression method to further 

circumvent the disadvantages of sensitivity to B1 and T1 was proposed (Tkád et al., 1999). 

VAPOR (variable pulse power and optimized relaxation) applies seven asymmetrical and 

numerically optimized RF pulses. It is important to bear in mind that the increased 

number of CHESS elements may increase the risk of occurrence of unwanted echoes, 

due to using a number of RF and gradient pulses. Moreover, magnetization exchange 

with water protons, as a result of long water suppression scheme, can attenuate methyl 

signal of creatine. Therefore, the suppression scheme in the current work only employed 

three CHESS RF pulses, based primarily on the properties of Ernst et al (Ernst and 

Hennig, 1995). 

One of the primary goals of this study was to find out the proper water 

suppression parameters (e.g., RF shape, band width, inter-pulse delay, and spoiler 

gradient strength) at 9.4 T in such a way that any important information on metabolite 

resonances in the typical spectral range (up to 4.2 PPM) will not be lost. To achieve this 

goal, the influence of each parameter on the applied water suppression performance 

was systematically investigated for optimization. The effectiveness of suppression was 

verified in both phantom and for mouse brain in vivo. 

3.1.2 Outer Volume Suppression (OVS) 

 

In short, echo time localized spectroscopy, particularly in cortical regions, intense 

lipid signal predominantly stemming from skull with short spin-spin relaxation time, can 

obscure metabolites resonances such as lactate and alanine, owing to their spectral 

overlap. On the other hand, concerning the localization performance quality of 

sequence, one should keep in mind that employing a larger crusher gradient may 

introduce eddy current artifact to spectrum, while insufficient spoiling may raise the 

chance for occurrence of unwanted coherences from outside of volume of interest, like 

those arising from regions with inferior field homogeneity (i.e. mouth or sinuses). In this 

work, the effects of different strategies for mitigating possible signal contamination, 

originating from outside of the selected volume, were investigated.   
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3.1.4 The relative detectability of strongly coupled 

metabolite resonances in proton MR spectra at low- and 

high-field strength  

  

Most major cerebral metabolites are detectable in short-echo time proton MRS at both 

low (e.g., 2.35–4.7 T) and high field strengths (≥ 7.0 T). High fields certainly offer 

advantages in terms of SNR and, therefore, allow for the use of reasonably small 

volumes-of-interest (VOI). In addition, the precision of metabolite quantification and 

detectability of weakly represented metabolites has been reported to increase 

substantially at 7T, relative to 4T (Tkád et al., 2009). On the other hand, a potential 

merging of multiplet signal pattern may offer a better relative detectability of its 

respective resonance at low magnetic fields. The purpose of this work was to evaluate 

the relative detectability of strongly coupled metabolites at 2.35 T and 9.4 T, by 

comparing their respective peak intensities to those of uncoupled singlet resonances.1 

The results further clarify the relative merits of field strengths, as discussed in previous 

publications (Michaelis et al., 1991, Michaelis and Frahm, 2005, Tkád and Gruetter, 

2005) 

  

                                                      

1 A part of this work was accepted for an e-Poster presentation at the 25th Annual Meeting of the 

European Society of Magnetic Resonance in Medicine and Biology, Valencia, October 2008 and also was 

appeared in a review article by Michaelis et al. MICHAELIS, T., BORETIUS, S. & FRAHM, J. (2009) Localized 

proton MRS of animal brain in vivo: Models of human disorders. Progress in Nuclear Magnetic Resonance 

Spectroscopy, In Press, Corrected Proof. 
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3.2 Methods 

3.2.1 FASTMAP 

In the present study, to achieve high spectral resolution, nonlinear local field 

inhomogeneities were automatically corrected by adjustment of second-order shim 

coils.  

Optimisation of static magnetic field homogeneity (i.e. shimming) was 

accomplished by using FASTMAP. Field homogeneity further improved prior 

spectroscopic measurements by using optimised values for FASTMAP sequence 

parameters. For a 3 mm cubic voxel of interest, stick size of 1.25 mm, repetition time of 

1000 ms, spectral bandwidth of 5000 Hz, and acquisition averages of 2 were set, such 

that the whole adjustment of all linear and quadratic shim coils was accomplished within 

2 min. 

 

3.2.2 Water Suppression 

 

As discussed earlier in chapter 3.1.2., the current version of water suppression 

consists of three successive CHESS pulses (90 90 180), each of which is followed by 

associated spoiler gradients, as has been proposed earlier by (Frahm et al., 1990, 

Moonen and Vanzijl, 1990, Ernst and Hennig, 1995), preceding the STEAM localization 

sequence.  

As stated earlier, the RF amplitude of the CHESS-type water suppression pulses 

and, therefore, the overall water suppression performance could be affected by the RF 

homogeneity profile of the transmitter coil (B1), as well as the magnetic field 

homogeneity (B0) within the voxel. Susceptibility to B1 inhomogeneities was 

considerably alleviated in this work by using a birdcage volume resonator, which allows 

the generation of relatively uniform RF fields together with the advantage of providing 

whole-head coverage, although it still depends on exact calibration of the 90° pulse 

power. The influence of B0 inhomogeneities was reduced by automated, localized 
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shimming of all first- and second-order terms using FASTMAP (fast automatic shimming 

technique by mapping along projections) (Gruetter, 1993, Gruetter and Tkád, 2000) for 

each volume of interest (VOI). In all measurements, efficiency of CHESS pulses was 

optimized with respect to flip angle of the RF pulses after localized shimming, by 

minimizing the signal intensity of residual water in the volume of interest (VOI), just 

prior to final acquisition.  

The efficiency of the current water suppression method was carefully optimized 

on a phantom containing aqueous model solutions of cerebral metabolites, with regard 

to our experimental setup. In addition, performance was monitored and assessed in 

vivo, with respect to CHESS sequence parameters, in order to guarantee sufficient 

suppression over different regions of mouse brain. 

As mentioned earlier, increasing the gradient amplitude would pose a potential 

risk of introducing artifact to the spectrum, due to eddy current effects, without 

improving the suppression performance. Thus, prior to the optimization of the band 

width and the inter-pulse delay, the influence of the amplitude of the spoiler gradient in 

the CHESS sequence on water suppression was investigated in a pilot study. The strength 

of the applied gradients was incremented from 80 mTm−1 to 160, 240 and 320 mTm−1, 

whereas the duration, orientation and polarity remained constant. In vivo magnetic 

resonance spectra obtained from mouse brain were evaluated by considering the 

residual water signal height, as well as the quality of spectra. It turned out that the 

linewidth, baseline and phase remain unaffected by increasing the gradient spoiling 

powers. No significant change was observed for residual water resonance. Based on 

these results, minimum spoiling capacity was chosen because increasing the gradient 

amplitude may cause artifacts due to eddy current effects. Nevertheless, it ensured a 

sufficient dispersion of transverse water coherences, which guarantees robust water 

suppression as well as consistent spectral quality. 
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Bandwidth 

A series of localized water suppressed proton spectrum with varied bandwidth of 

Gaussian RF pulses were obtained from the centre of spherical phantom of a 10 mm, 

containing a mixture of Lac and Cr (1:2). All the other experimental parameters were 

kept unchanged during measurement. The spectra scaled individually to methyl signal of 

creatine, which was considered unaffected from suppression. Methine quartet of 

lactate, as a resonance of interest, were evaluated to determine the effective water 

suppression bandwidth.  

Influence of this parameter on water suppression performance and critical 

resonances in the vicinity of the water signal were also evaluated in vivo. 8 ml VOI was 

selected in midbrain and all spectra were measured using identical acquisition 

parameters as those used for the phantom experiment, except that repetition time was 

set to 6 sec (see Chapter 2.3 for more details). The measurement repeated several times 

with continuous change of a selected parameter, e.g. RF bandwidth in CHESS water 

suppression sequence. Absorption (real) spectra were manually phased and reported 

directly, without baseline correction or resolution enhancement. 

 

Inter-pulse delay 

After finding the optimal bandwidth for CHESS RF pulses, the influence of 

different intervals between the RF pulses in the current water suppression scheme was 

assessed. This was accomplished by varying the length of the corresponding inter-pulse 

delay between CHESS RF pulses in a series of experiments, without altering 

measurement parameters. Quality of water suppression was verified in a phantom, as 

mentioned previously, by comparing the signal intensity of the residual water obtained 

at different inter-pulse delays. Fully relaxed spectra (TR = 10000 ms) were acquired from 

a 125 μL (5 x 5 x 5 mm3) volume of interest (VOI). Interval values were varied from 25 to 

225 with increments of 25 ms (part of data not shown for simplicity), whereas water 

suppression bandwidth was kept constant at 350 Hz (TE = 10 ms, 8 scans). Spectra were 

individually scaled to the intensity of the methyl signal of creatine as a reference.  
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This procedure was repeated to verify suppression performance in a in vivo 

condition by analysis of a series of spectrum, measured by using the same parameter for 

CHESS sequence. 

Settings of the delays were verified by the analysis of a mouse brain spectrum. In 

vivo 1H NMR spectra of the healthy mouse brain were measured using STEAM with TE = 

10 ms. A VOI size of 2.7 × 2.3 × 2.5 mm localized in the central thalamus. In the final 

version of water suppression, utilizing Gaussian pulses of duration 7.83 ms, with 

bandwidths of 350 Hz and interleaved outer volume suppression module enabled a 

minimum inter-pulse delay of 50 ms. Overall duration of the CHESS module was 147 ms. 

The inter-pulse delay was incremented as indicated in the Figure 3.9, while keeping the 

suppression bandwidth constant (350 Hz). 

For each measurement, Flip angle adjustment was performed to balance the 

effect of T1 relaxation (Moonen and Vanzijl, 1990). Choosing the shortest feasible inter-

pulse delay enhanced T1 insensitivity, in addition to shortening the entire water 

suppression module. 

The current water suppression scheme {τ, τ, 0.87τ; θ, θ, 2θ}, suggested by Ernest 

et al (Ernst and Hennig, 1995), was compared to that of equidistant timing type {τ, τ, τ; θ, 

θ, 2θ}. Therefore, only the third inter-pulse delay (the interval between the third RF 

pulse and the start of the localization sequence) differed in two sequences. The values of 

75, 100, and 125 ms were chosen for τ in CHESS sequence, while the bandwidth of the 

RF pulses were kept constant. Then the spectra were compared to those obtained with 

0.87τ for the third inter-pulse delay. Spectra were acquired with 15 ml VOI (2.5 × 2.0 × 

3.0 mm 3) position in the mid brain, within measuring times of 4.3 min each (TR 8,000 

ms, 32 scans). Spectra were processed in magnitude mode and analytically compared on 

the basis of the ratio of intensities of residual water peak, over that of methyl resonance 

of creatine, as reference.  
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3.2.3 Outer Volume Suppression (OVS) 

Problems associated with the suppression of lipid signals from subcutaneous 

fatty tissues have been tackled by various strategies in this work: 

By means of oblique volume of interest, the excitation volume was positioned 

confined to brain regions - especially in the cortical area - in order to exclude 

subcutaneous fat. Localization performance was improved, using adequate amounts of 

crusher gradients to dephase unwanted signal contamination from outside the VOI, in 

conjunction with employing broad band selective RF pulses to alleviate the volume 

misregistration problem, additionally considering a proper applied excitation order of 

coronal–axial- sagittal in pulse sequence and thirdly, placing spatial saturation bands, 

precisely surrounding the volume to suppress any confounding signal (Connelly et al., 

1988, Duyn et al., 1993, Posse et al., 1993, Shungu and Glickson, 1993).  

 

 

Figure 3.4: Schematic illustration of the employed three outer volume suppression (OVS) blocks (marked 

by the dashed line) used to reduce contamination arising from outside of volume of interest. OVS block 

applied after each CHESS element and comprised of six 1.0 msec hyperbolic secant RF pulses. Each pair of 

pulses selected the sides of the voxel in different directions.  
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On the latter approach, excitation of magnetization from unwanted regions of 

the brain was followed by rapid dephasing, pursuant to applied crusher gradients. In this 

work, CHESS water suppression pulses were interleaved with three blocks of outer 

volume suppression, as illustrated in Figure 3.4. Hence, the improvement in localization 

performance was particularly obtained in the regions closest to the skull  

The OVS comprised of 37 msec blocks with six 1.0 msec full-passage hyperbolic secant 

band-selective pulses, with 90° nominal flip angle and a bandwidth of 20 kHz in each, 

followed by a crusher of 10 msec of amplitude 40 mTm−1. The OVS module extended 

over 3 mm around the VOI, with a 0-mm gap to the voxel. The first two pulses selected 

the sides of the voxel in the right–left direction, and the second and third pairs selected 

the anterior–posterior and head–feet directions, respectively.  

 

  



 

Localized 1H MRS at high-field                                                                                                                            33 

 

3.2.4 The relative detectability of strongly coupled 

metabolite resonances in proton MR spectra at low- and 

high-field strength 

 
Fully relaxed, localized proton MRS (STEAM) was performed at 2.35 T and 9.4 T. 

Solutions of metabolite mixtures of Ins:Cr (50:50 mM), Glc:Cr (50:50 mM) and 

NAA:Glu:Gln (50:50:25 mM) were investigated in vitro. Line broadened in vitro MR 

spectra (6 Hz and 12 Hz for 2.35 T and 9.4 T, respectively) were compared to MR spectra 

of NMRI mouse brain in vivo. Line-broadened versions of spectra were produced by 

multiplying exponential decay function (12 Hz and 6 Hz for 9.4 T and 2.35 T, respectively) 

to render them representative of limited spectral resolution in vivo (which is reflected in 

e.g., broaden line-width) at each field strength, with a modification to the method 

described previously (Michaelis et al., 1991). 

2.35 T: MRBR 4.7/400 mm magnet (Magnex Scientific, Abingdon, England), 

AVANCE II (Bruker BioSpin, Ettlingen, Germany). In vitro MRS was performed with a 10 

cm Helmholtz transmit/receive coil (TR/TE/TM = 10000/10/10 ms, 10 x 10 x 10 mm3, 64 

accumulations). In vivo MRS was performed with a 10 cm Helmholtz coil for RF excitation 

in conjunction with a 16 mm surface coil for signal reception (TR/TE/TM = 6000/20/10 

ms, 4.0 x 3.0 x 4.0 mm3) in a central position of the forebrain (512 accumulations). 

9.4 T: 94/30 USR BioSpec, AVANCE II (Bruker BioSpin, Ettlingen, Germany). In 

vitro MRS was performed with a 72mm quadrature birdcage transmit/receive coil 

(TR/TE/TM = 15000/10/10 ms, 8 x 8 x 8 mm3, 16 accumulations). In vivo MRS was 

performed with a 72mm quadrature birdcage coil for signal excitation and a quadrature 

mouse brain surface coil for signal reception (TR/TE/TM = 6000/10/10 ms) in a central 

position of the forebrain (4.0 x 3.0 x 4.0 mm3, 32 accumulations) and in the 

hippocampus (2.0 x 1.2 x 2.2 mm3, 128 accumulations). 
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3.3 Results 

3.3.1 FASTMAP 

 

Figure 3.10 elucidates the putative role of localized second-order shimming to provide 

superior spectral resolution and sensitivity, compared to the one where only global 

shimming were applied, to refine the static field. In addition, uncompensated 

inhomogeneity of the B0 magnetic field results in imperfect water suppression. This is 

largely due to the frequency-selective mechanism of employed CHESS pulses. Efficient 

shim system (shim coils and shim drivers) was capable of producing maximum shim 

strengths of X = 8741 Hz/cm, Y = 8715 Hz/cm, and Z = 8651 Hz/cm for the linear shim 

terms and X2_Y2 = 698 Hz/cm2, ZX = 3715 Hz/cm2, Z2 = 1243 Hz/cm2, ZY = 2466 Hz/cm2, 

XY = 557 Hz/cm2 for the second-order ones. Optimal application of this shim system 

resulted in the linewidths (FWHM) of 11–14 Hz for the unsuppressed water signals from 

most of the brain regions of mice in vivo. For most metabolites in aqueous solutions (27 

ml), reproducible water linewidths of 1.5–2.0 Hz were achieved. 
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Figure 3.5: The effect of high-order shimming on spectral resolution and sensitivity of spectrum, obtained 

using localized proton MRS (STEAM, TR/TE/TM=6000/10/10 ms, 15.5 μl VOI, 2 × 128 accumulations) from 

the thalamus of a mouse in vivo at 9.4 T. The suppression of the water signal after second-order shimming 

using FASTMAP (top) is clearly superior to that without it (bottom, only with global shimming). Each 

spectrum is individually scaled to the largest peak for comparison. 

 

 

3.3.2 Water Suppression 

Bandwidth 

Figure 3.6 depicts proton spectra of a mixture of lactate (Lac) and creatine (Cr), 

acquired with different bandwidths of Gaussian-shaped CHESS pulses. In order to 

eliminate the problem arising from different phasing, the spectra were presented in 

magnitude mode and shifted along the chemical shift axis to a different degree for a 

better visualization of suppression effect. Residual water signal served as chemical shift 

reference. Comparison of the quartet signal of Lac shows a decrease in amplitude when 

the suppression band width of  
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Figure 3.6: Proton NMR spectra of a 1:1 mixture of lactate (Lac) and creatine (Cr) at different water 

suppression bandwidths ranging from 300 to 450 Hz. (9.4 T, VOI 5 × 5 × 5 mm
3
, TR/TE/TM = 10,000/10/10 

ms, 32 transients) displayed in magnitude mode. For a better visualization of the results, the spectra 

acquired with 300, 400, and 450 Hz bandwidth were shifted along the chemical shift axis by -15, +15, and 

+30 Hz, respectively. Chemical shifts are given in parts per million (ppm) and referenced to residual water 

signal. While the heights of the quartet signal of Lac at 350 Hz (arrow) remain unchanged compared to 

those at 300 Hz, a decline of Lac can be seen in spectrum obtained with water suppression band width 

more than 350 Hz.   
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greater than 350 Hz is applied. The chemical shift difference between the water 

resonance and methine quartet of lactate in in vitro is equivalent to that of water and 

methylene singlet resonance of creatine in in vivo condition. Therefore, as it can be 

concluded from Figure 3.7, CH2 resonance of creatine remained intact from attenuation, 

by choosing 350 Hz bandwidth for CHESS pulses, while water signal was eliminated 

efficiently. 

 

Figure 3.7: In vivo water-suppressed 
1
H MR spectra of the mouse brain measured using STEAM with 

different bandwidth of CHESS pulses to demonstrate effect of this parameter on overall water 
suppression. Other parameters: 9.4 T, VOI 40 × 25 × 30 mm

3
, TR = 6000 ms, 256 accumulation. The full 

chemical shift range of the spectra is shown to demonstrate the accessible water suppression under the 
experimental conditions used.  
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Inter-pulse delay 

The series of water-suppressed proton spectra in Figure 3.8 demonstrates the 

inter-pulse delay dependence of CHESS water suppression sequence. Despite the 

marked changes that occurred in residual water in shorter inter-pulse delay, no changes 

in the peak height of Lac and Cr resonances were observed. 

 

Figure 3.8: Proton NMR spectra of a 1:1 mixture of lactate (Lac) and creatine (Cr) at different inter-pulse 

delay of CHESS water suppression sequence. (9.4 T, VOI 5 × 5 × 5 mm
3
, TE=10 ms, TR= 10,000 ms, 8 scans). 

interval value was varied from 25 to 225 with increment of 25 ms (part of data not shown for simplicity) 

whereas water suppression bandwidth was kept constant at 350 Hz. Magnitude spectra presented to 

obviate any phase error from the signal and scaled to the creatine (Cr) intensity for comparison. Chemical 

shifts are given in parts per million (ppm) and referenced to residual water signal. Improved water 

suppression was observed in spectrum obtained with the shortest possible inter-pulse delay of CHESS 

pulses.   
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As can be seen from the residual water signals in Figure 3.9, the same holds for in 

vivo condition, but is not quite as salient as observed in the phantom study. The 

minimum possible inter-pulse delay of 50 ms, considering the time required for the 

interleaved outer volume suppression (OVS) part of the sequence, gave rise to sufficient 

suppression of water resonance. 

 

Figure 3.9: In vivo water-suppressed 
1
H MR spectra of the mouse brain measured using STEAM with 

different inter-pulse delay of CHESS water suppression sequence to demonstrate effect of this parameter 

on overall water suppression. Other parameters: 9.4 T, VOI 2.7 × 2.3 × 2.5 mm
3
, TR = 6000 ms, 256 

accumulation. The full chemical shift range of the spectra is shown to demonstrate the accessible water 

suppression under the experimental conditions used. 
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It is of note that no significant difference in suppression performance was observed 

between the equidistant timing scheme and the fined tuned one {τ, τ, 0.87τ} at all 

selected inter-pulse delay (τ). 

 

3.3.3 Outer Volume Suppression (OVS) 

 

In close analogy to the CHESS, by repeating the OVS module three times, the sensitivity 

to B1 field inhomogeneity was reduced and therefore, guarantees a successful 

elimination of spurious signal from outside the desired region of interest, predominantly 

from extracranial lipids (see Fig. 3.10). 

 

 

 

Figure 3.10: Effect of application of outer volume suppression (OVS) on localization performance and 

spectral quality. Localized proton MRS (9.4 T, STEAM, TR/TE = 6000/10 ms, 3.0 × 1.2 × 3.0 mm
3
, 64 

accumulations) from cortical region of healthy mouse brain (a) in comparison to that obtained with OVS 

(b). 
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3.3.4 The relative detectability of strongly coupled 

metabolite resonances in proton MR spectra at low- and 

high-field strength 

 

 

Phantom Experiments  

Inositol 

 

Proton MR spectra of a mixture of Ins and Cr obtained at both field strengths, 

with and without line broadening, are depicted in Figure 3.11. A doublet-of-doublet 

centered at 3.52 ppm and a triplet at 3.61 ppm are the two prominent multiplets of Ins 

at 9.4 T and each of them correspond to two protons. This complex multiplet resonance, 

merges into an apparent singlet resonance at 2.35 T. As a consequence, the peak 

intensity ratio of Ins to Cr at 2.35 T is decreased by about 50% at 9.4 T, after line 

broadening to in vivo conditions. 

In addition, the intensity of the triplet at 3.27 ppm, originating from the 5CH 

proton, reduced significantly at 2.35 T. This triplet is typically obscured by the prominent 

singlet of the trimethylamine group of choline-containing compounds (Cho) at 3.21 ppm 

and the triplet of taurine (Tau) centered at 3.25 ppm. The 2CH triplet at 4.05 ppm 

remains at 2.35 T, however, it overlaps with the methine quartet of lactate and could be 

influenced by inadequate selection of water suppression bandwidth (Cerdán et al., 

1985). 
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Figure 3.11: (Left) Localized proton MRS of solution with 1:1 mixture of myo-inositol (Ins) and 

creatine (Cr) at 9.4 T (TR/TE = 15000/10 ms) and at 2.35 T (TR/TE = 10000/10 ms) and (right) their line 

broadened versions produced by multiplying exponential decay function (12 Hz and 6 Hz for 9.4 T and 2.35 

T, respectively) to render them representative of in vivo linewidth under the influence of limited 

resolution in each field strength. The peak intensity ratio of Ins to Cr at 2.35 T is decreased by about 50% 

compared to that at 9.4 T. 

 

 

Glucose 

In analogy to Ins, similar reductions apply to the strongly coupled resonances of 

Glc, as shown in Figure 3.12.  

The fully relaxed, localized proton STEAM spectrum of an aqueous solution of a 

1:1 mixture of glucose and creatine, acquired at 9.4T, significantly differs from that at 

2.35 T. The strongly coupled resonances of glucose appear in the range of 3.2–3.88 ppm 

at 9.4T. Instead, in light of strong coupling effects at lower fields, the appearance of the 

respective resonances efficiently simplified at field strength of 2.35 T. Namely, doublet-

of-doublets, centered at 3.23 ppm, disappears at low field whereas its remaining 

complex multiplet pattern, convert to apparent singlet at 3.43 and 3.80 ppm. In 
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addition, these prominent resonances can be clearly observed in line-broadened version 

of spectra, which imitate the in vivo resolution. 

However, these apparent glucose singlets overlap with S-CH2 resonances of Tau 

α-CH resonances from Glu and Gln, respectively (Gyngell et al., 1991b, Tkád and 

Gruetter, 2005, Michaelis et al., 2009). 

 

 

Figure 3.12: Localized proton MRS of a 1:1 mixture of glucose (Glc) and creatine (Cr) at 2.35 T (TR/TE = 

10000/10 ms) and at 9.4 T (TR/TE = 15000/10 ms) and their line broadened versions. The peak intensity 

ratio of Ins to Cr is clearly lower at 9.4 T than at 2.35 T. 

 

 

 Glutamate and Glutamine 

Glutamate and glutamine have similar structures and are considered to be 

examples for strongly coupled metabolites. Both have two methylene groups and a 

methine group that constitutes the strongly coupled AMNPQ spin system (Thompson 

and Allen, 1998, Govindaraju et al., 2000, Thompson and Allen, 2001). This strong scalar 

coupling interaction leads to a complex 1H spectrum with distributed signal over many 

low intensity multiplet resonances.  
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Fully relaxed proton MR spectra and their corresponding line-broadened version 

of a 2 : 2 : 1 mixture of N-acetylaspartate (NAA), glutamate (Glu), and glutamine (Gln) 

are shown in Figure 3.13. Comparing a spectrum obtained in both field strengths, 

illustrates the assignment problem, as a result of completely different spectral patterns 

in different field strengths. Strongly coupled multiplets, originating from two methylene 

groups of Glu, are closely grouped around 2.04 and 2.35 ppm, while those of Gln are at 

2.12 and 2.45 ppm.  

 

 

Figure 3.13: Localized proton MRS of a 2:2:1 mixture of N-acetylaspartate (NAA), glutamate (Glu), and 

glutamine (Gln) at 2.35 T (TR/TE = 10000/10 ms) and at 9.4 T (TR/TE = 15000/10 ms) and their line 

broadened versions. The improved separation of the Glu (2.35 ppm) and Gln (2.45 ppm) multiplets at 9.4 T 

is clearly visible. 

 

Since the resonances of glutamate and glutamine overlap with those of NAA 

aspartyl moiety and GABA in this range, specific identification of their individual signal 

contributions in vivo is, thereby, complicated. Contrary to the myo-Ins and glucose 

spectral behavior at high field, improved separation of the Glu (2.35 ppm) and Gln 

multiplets (2.45 ppm) at 9.4 T leads to a better detectability and a greatly enhanced 
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quantification accuracy. On the other hand, since the separation of Glu and Gln becomes 

very difficult at low field, their contribution is, therefore, commonly combined 

(designated Glx), which improves quantification accuracy. 

 

 

In Vivo Experiments 

Figure 3.14 compares in vivo localized proton MR spectra of the healthy mouse 

brain obtained at two different field strengths. Major metabolites, e.g., tNAA, tCr, Cho, 

Ins, Glc, Tau, and Glu, can be readily identified. The better identification of Ins and Glc at 

2.35 T, as well as Tau and Glu at 9.4 T, is demonstrated in proton MR spectra of mouse 

brain in vivo. The ability to acquire sufficient SNR in short measuring time is exemplified 

by successful outcomes of NMR spectroscopy on tiny structure, such as the 

hippocampus. 
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Figure 3.14: Localized proton MRS of the brain of mice (from the same strain: NMRI) in vivo at different 

field strengths. In comparison to (top) 2.35 T (STEAM, TR/TE = 6000/20 ms, 512 accumulations), (middle) 

9.4 T (STEAM, TR/TE = 6000/10 ms) allows for a much lower number of accumulations (32 accumulations) 

for the same volume-of-interest placed in the forebrain (4.0 × 3.0 × 4.0 mm
3
) as described by Schwarcz et 

al. (Schwarcz et al., 2003). The spectral resolution at 9.4 T is worse (which is reflected in broader line-

width) than those from smaller VOI shown in other figures because the large VOI is composed of different 

brain structures (e.g., gray and white matter, CSF), where a better resolution is hard to achieve. (Bottom) 

alternatively, high-field MRS provides sufficient SNR for a much smaller volume (2.0 × 1.2 × 2.2 mm
3
 

covering the hippocampus) at still reduced measuring time (128 accumulations). 
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3.4 Discussion 

The improvement in local static field homogeneity, achieved by FASTMAP 

shimming, resulted in high and reproducible spectral resolution, which can be seen from 

the highly resolved spectra, obtained from different brain regions or from model 

solutions (Figs. 4.3 and 4.4). Consequently, efficient water suppression was attained as a 

result of improvement in crusher gradient performance in frequency-dependent water 

suppression (Moonen et al., 1992). For the selected small VOIs which were studied, first 

and second-order terms were sufficient for compensation of field inhomogeneities. 

The achieved optimal water suppression allowed a reliable detection of critical 

metabolite signals, despite their close proximity to the water resonance. CH2 resonance 

of creatine remained intact from attenuation by choosing 350 Hz bandwidth for CHESS 

pulses, while the water signal was eliminated efficiently (see Fig 3.6.). This approach 

guaranteed that optimal bandwidth for CHESS pulses were used for water suppression. 

Further, the quality of spectra (e.g., the baseline) from different regions of the mouse 

brain confirmed that the applied water suppression scheme is effective over a range of 

T1 and B1 values, expected for different brain regions. This is mainly achieved by 

judicious choice of inter-pulse delay, between each Gaussian CHESS pulse. Since the 

selected timing scheme was found to have an insignificant effect on the suppression 

performance, {τ, τ, 0.87τ; θ, θ, 2θ} scheme was preferred in all measurements to shorten 

the sequence length. Therefore, signal strength was well preserved within the 

localization procedure.  

The 20 kHz bandwidth of OVS RF pulses (pulse duration of 1.0 ms) reduced the 

chemical shift displacement error of the OVS to values comparable with chemical 

displacement error of the VOI. STEAM localized spectra of cortical areas that are devoid 

of lipid contamination, justified efficacy of the incorporated OVS scheme. This was 

further supported by the result shown in Figure 4.4, showing data from different 

locations and VOI sizes. This approach allowed us substantial improvement in detection 

and quantification of lactate and alanine in different regions of the mouse brain. 

The superior peak intensity ratios of Ins and Glc to Cr at 2.35 T refer to a better 

relative detectability of their respective resonances at low magnetic fields. This is due to 
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the fact that their complex multiplet pattern simplifies to an apparent singlet at low 

field. In contrast, the larger chemical shift dispersion at 9.4 T yields an improved 

detectability of Glu and Tau resonances at high field strengths. With regard to the other 

major metabolites with singlet resonances, the relative detectability is field-

independent. In general, the most important advantage of a high field is a gain in SNR. 

This provides access to adequately small VOIs, which allows for a metabolic assessment 

of regional structures of mouse brain, such as the hippocampus. Alternatively, the gain 

in SNR may be exploited for detection and quantification of weakly represented 

metabolites (e.g Ala, NAAG, GABA, Asp, scyllo-Ins), which cannot be identified at 2.35 T 

(Schwarcz et al., 2003). 
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Chapter 4 

Regional metabolite concentrations of 

mouse brain in vivo  

4.1 Introduction 

 

In order to understand the structure and the function of the central nervous system, in 

the context of genetic information, a growing number of mutant mice are generated and 

investigated. Characterization of genetically modified mice is, thus, of special 

importance for a better understanding of pathological mechanisms, which underlie 

human brain disorders. To fully exploit the rapid progress in neurogenetics, the 

development of in vivo assessment techniques, such as noninvasive NMR technology, is 

highly desirable. In this regard, a number of studies using transgenic mice have 

demonstrated a great potential of in vivo MRI for providing detailed morphologic 

insights into the brain. The non-invasiveness of NMR has allowed a repeated assessment 

of behaving mice, which may allow an assessment of longitudinal treatment on animal 

models of chronic human disorders. Despite this proven advantage, there are only a 

limited number of published proton MRS studies on the brain of mice in vivo, probably 
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due to rigorous requirements. In addition to the technical requirements described in 

Chapter 3, the anesthesia may be much more challenging for MRS because cerebral 

metabolism can be more susceptible to an altered physiological condition or to a 

pharmacological effect of anesthetics, in comparison to cerebral morphology. 

Furthermore, the small size of the brain of mice poses a specific challenge for VOIs to be 

localized within an even smaller subdivision of the brain. In previous work, which 

employed the smallest VOI for mouse brain in vivo, metabolite concentrations were 

determined for only four different regions (Tkád et al., 2004). To overcome these 

challenges, a special experimental protocol must be developed, which includes (i) 

selection of suitable transmit and receive coils, (ii) an anesthesia method, (iii) 

maintenance of body temperature, and (iv) reproducible placement of the receive coil, 

together with the heads of mice. In addition, T1 and T2 relaxation times are determined 

for systematic errors in metabolite quantification to be reduced because (i) the water 

content of the tissue in vivo, (ii) the signal attenuation between the tissue in vivo and the 

metabolite model solution in vitro, and (iii) the partial volume effect of the cerebrospinal 

fluid, may influence the quantification.  

 High reproducibility is essential to unveil subtle variation of neurochemical 

profiles in the longitudinal investigations of physiological or pathophysiological 

processes. Intra-individual variability in the data from single-voxel localized 1H MRS 

examinations are generally associated with various factors, including biological 

variability, instrumental instability, animal and the VOI positioning, operator variability 

and spectral analysis methods. Several studies have been conducted to demonstrate the 

degree of reproducibility in 1H MRS of the human brain in vivo, either using different 

localization sequences, locations and timing parameters (Geurts et al., 2004, Inglese et 

al., 2006) or different field strengths of 1.5 T (Alger et al., 1993, Brooks et al., 1999, 

Geurts et al., 2004, Hammen et al., 2005, Helms, 2000, Kreis et al., 2005, Schirmer and 

Auer, 2000), 2.0 T (Choi and Frahm, 1999, Michaelis et al., 1993b), 3.0 T (Milne et al., 

2009, Hancu et al., 2005), 4.0 T (Bartha et al., 2000, Bartha, 2007), and 7.0 T (Tkád et al., 

2009, Tkád et al., 2002). So far, however, only a few studies have experimentally 

investigated the intra- and inter-individual variability in rodent brain in vivo (Pfeuffer et 

al., 1999, Öz et al., 2010, Hong et al., 2011b). Therefore, in the present study, Intra- and 
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inter-individual reproducibility of MR spectroscopic acquisition protocol and 

corresponding LCModel data analysis were assessed, based on the variability of 

metabolite concentrations in healthy mouse brain at 9.4 T using a localization sequence, 

based on stimulated echo acquisition mode [STEAM]. Absolute metabolite 

concentrations (mean ± SD), the coefficients of variation (CV) and Crame´r–Rao lower 

bounds from intra-individual studies were compared to those from inter-individual 

studies, obtained under similar experimental conditions. 

 

4.2 Materials and Methods  

Animal preparation 

All studies were performed in accordance with German animal protection laws 

and approved by the responsible governmental authority. The experiments were 

performed on nine adult healthy female NMRI mice (body weight in the range 34-38 g). 

Anesthesia was induced, using a chamber pervaded with 5% isoflurane in oxygen. The 

mice were intubated with a purpose-built polyethylene endotracheal tube and artificially 

ventilated afterward. Anesthesia was maintained with 1 to 1.5% isoflurane in a 1:1.5 

mixture of oxygen and ambient air. The animals were then placed in a prone position on 

a home-built palate holder, equipped with an adjustable nose cone and ear bars. This 

sophisticated stereotaxic animal cradle ensured stability and reproducibility of the 

experimental setup by properly immobilizing the animal's skull during measurements. 

Body temperature was maintained constant around 37°C using heated water blankets, 

placed over the animal and connected to a temperature-controlled circulating water 

bath. A rectal thermosensor was utilized for temperature verification throughout the 

experiment. Respiration was monitored by a pressure transducer, which was fixed to the 

animal’s chest. Details of the experimental setup used for in vivo MRI/MRS of mouse 

brain at 9.4 T are shown in Figure 4.1. 
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Figure 4.1: Experimental setup for localized 
1
H MR spectroscopy of mouse brain at 9.4 T. Radiofrequency 

excitation and signal reception were accomplished by a quadrature birdcage coil (not shown) and a 

quadrature mouse brain surface coil (1), respectively. The body temperature was maintained constant 

using a heated water blanket (2) positioned around the body. The animals were anesthetized and 

intubated with a polyethylene endotracheal tube (3) and artificially ventilated. Their heads firmly fixed by 

means of a home-made stereotaxic palate holder with an adjustable nose cone. Source: from Michaelis et 

al., (Michaelis et al., 2009). Courtesy of Dr. Roland Tammer (rtammer@gwdg.de). 

 

 

Proton MR Spectroscopy 

The experiments were performed at 400 MHz on a 9.4 T horizontal superconducting 

magnet with 30 cm bore size (Bruker Biospec Avance ll 94/30; Bruker, Karlsruhe, 

Germany) and equipped with a 12 cm inner diameter self-shielded gradient coil insert 

(Resonance Research Inc, Billerica, MA, USA), capable of supplying up to 400 mTm−1 in 

80 μs rise time. RF amplifier with 2 kW peak power was used because preliminary study 

has shown that it allows shorter slice-selection RF pulse, which consequently reduces 

the extent of the chemical shift displacement error, in comparison with standard 1 kW 

RF power amplifier. 

A commercially available, 72 mm quadrature volume coil was used for excitation 

and a quadrature mouse brain surface coil (Bruker, Karlsruhe, Germany) was used for 

signal detection. For the measurement of 1H NMR spectra from forebrain regions (e.g., 

cerebral cortex, striatum, thalamus, and hippocampus), the surface coil was located 

mailto:rtammer@gwdg.de
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upon the head of the mouse, as shown in Fig. 4.1. For spectra from hindbrain regions 

(e.g., cerebellum and brainstem), it was relocated caudally to maximize signal reception. 

The system was interfaced to a Linux operating system, running Topspin 1.5 and Para 

Vision 4.0 imaging software (Bruker Biospin, Germany). 

Axial and sagittal T2-weighted multi-slice RARE (Rapid Acquisition with Relaxation 

Enhancement) (Hennig et al., 1986) images were obtained to carefully select VOI 

positions for localized proton MRS. The timing parameters used to collect the MRI data 

were TR/TE = 4200/14 ms, RARE factor = 8, number of averages = 2, slice thickness = 0.5 

mm, field of view = 26 × 26 mm, matrix size = 128 × 128. Figure 4.2 shows typical 

placement of the volumes-of-interest (VOIs) for 1H-MRS of ten different brain regions, 

with sizes ranging from 4.2 to 15.5 μl. Since no lateralisation of metabolite levels in 

normal adult brain was observed in previous studies (Choi and Frahm, 1999, Nagae-

Poetscher et al., 2004), VOIs were unilaterally localized in the left hemisphere for the 

cerebral cortex (5.6 μL, “Lateral Cortex”), callosal fibres (4.2 μL), striatum (11 μL), 

thalamus (9.2 μL, “Lateral Thalamus”) and hippocampus (4.6 μL). In addition, VOIs are 

selected for the medial part of the frontal cortex (6.75 μL, “Medial Cortex”), corpus 

callosum (4.76 μL), thalamus (15.52 μL, “Medial Thalamus”), brainstem (8.25 μL) and 

cerebellum (6.12 μL). Lateral VOIs were placed in the left hemisphere of the mouse 

brain. As the “Lateral Cortex” and the “Medial Cortex” were close to the scalp, these 

VOIs were carefully placed to exclude the fat tissue of the scalp. For the corpus callosum 

and the brainstem, the VOI was tilted around the X axis in order to achieve a better 

localization. For the “Lateral Cortex” and the callosal fibres, a tilt around the X axis, along 

with a tilt around the Z, was applied. This double-oblique localization was necessary for 

the “Lateral Cortex” to exclude the neighbouring white matter, whereas it enabled an 

optimal exclusion of the grey matter from the “callosal fibres”. As far as the brainstem 

was concerned, the VOI included both the pons and the medulla oblongata. With regard 

to the cerebellum, the VOI covered its medial portion, including the vermis. To minimize 

the inter-individual variability in the placement of these VOIs, a number of anatomical 

structures were used as landmarks (e.g. the midsagittal plane, the lateral wall of the 

anterior horn of the lateral ventricle, the rostral border of the dorsal hippocampal 

formation, and the border between the hypothalamus and the basal cistern). 
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The oblique, rather than orthogonal localization, may lead to an inadequate 

performance which causes a variation in concentration, although it offers a potential 

advantage of accurate localization with optimal SNR, while minimizing partial volume 

effect (i.e., contamination of CSF or other brain tissue). Optimization of VOI can facilitate 

selection of any desired volume. Therefore, the performance of oblique localization was 

investigated. To ascertain the possible effect of choosing oblique VOI on the 

corresponding localization performance, VOI of 27 μL were measured with different 

angles and directions, with respect to the main coordinate axes x, y, z.  

  

Table 4.1. Concentration of creatine in 6 different oblique VOI determined by LCModel 

normalized to Cr obtained in orthogonal VOI (angle = 0)  

Axis Angle 

Cr 

(normalized) 

 

    0 100.0 ± 2.1 

X +45 95.7 

X −45 102.0 

Y +45 99.0 

Y −45 94.9 

Z +45 96.8 

Z −45 98.3 

 

The absolute creatine concentration obtained from an orthogonal VOI in the 

center of a 3-cm diameter glass sphere (filled with distilled water containing 50 mM 

creatine) was normalized to 100. The quantitative analysis of the determined 

concentrations, summarized in Table 4.1, revealed that variation of concentration 

remained within experiment reproducibility, therefore indicating an adequate 

localization performance. 
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Figure 4.2: T1-weighted 3D multi-slice RARE images (TR/TE = 4200/14 ms, RARE factor = 8, matrix size = 

128 × 128) of the mouse brain (NMRI) representing typical placement of volumes of interest (VOIs) 

selected for 
1
H-magnetic resonance spectroscopy of the Medial Cortex (a), corpus callosum (a), striatum 

(a,c), hippocampus (b,c), Medial Thalamus (b), Cerebellum (c,d), Lateral Cortex (d), callosal fibers (d), 

Lateral Thalamus (d), brainstem (d). 

Two sequential fully relaxed short echo-time proton MR spectra (STEAM, 

TR/TE/TM=6000/10/10 ms, 128 averages) were obtained from the corresponding brain 

regions. For each measurement, spectral width was set to 5000 Hz and 4096 data points 

were acquired. The unsuppressed water signal, measured from the same VOI, was 

exploited as an internal reference for quantification (Barker et al., 1993, Soher et al., 

1996). In order to alleviate unwanted effect of frequency drifting or shim instability, 

during acquisition on spectral line width, the number of accumulations was restricted to 

128 for each recording. Mean spectra were created from acquired individual in vivo 

spectra, consisting of 2 × 128 for each animal, yielding satisfactory signal-to-noise ratio 
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(SNR) as well as reliability of metabolite detection and quantification. Adjustment of all 

first and second order shim terms were performed automatically for each VOI using 

FASTMAP (Gruetter, 1993) method. Optimization of field homogeneity (shimming) 

routinely resulted in unsuppressed water signal line widths (full-width at half-maximum 

[FWHM]) of 11–14 Hz and 9 Hz for metabolites in vivo (measured on the Cr/PCr CH3 peak 

at 3.0 ppm). Optimized CHESS-type (Frahm et al., 1990, Ernst and Hennig, 1995) method 

was employed for water suppression and to improve quality of localization, interleaved 

with outer volume saturation. Both preceded the STEAM sequence. The parameters 

used for MRS data acquisition and FASTMAP shimming are a consequence of method 

optimization, described in the third chapter, and therefore, are only briefly outlined 

here. 

 

Quantification of metabolites 

The resulting in vivo spectra were analysed in the frequency domain by using 

LCModel 6.2-0 (Linear Combination of Model spectra of metabolite solutions in vitro). 

This user-independent and fully automated fitting routine estimates absolute metabolite 

concentrations by incorporation of a priori knowledge, which are usually referred to as a 

“basis set” into the data evaluation (Provencher, 1993). Basis spectra are obtained from 

individual metabolites at known concentration in aqueous solution, under identical 

experimental conditions as those in the in vivo acquisition. LCModel obtains an optimal 

fit to the in vivo spectra by finding the smoothest line shape and baseline, consistent 

with the data, using a constrained regularisation algorithm (Provencher, 2001). The 

method takes advantage of full spectral features of each individual basis spectrum for 

evaluation, rather than individual resonances. Therefore, it allows discrimination 

between metabolites with overlapping signals. Raw data obtained from measurement 

was directly supplied to LCModel. Adjustment of phases, determination of referencing 

shift, estimation of baseline and the uncertainties in the concentrations (Crame´r–Rao 

lower bounds), as well as eddy current correction, are automatically accomplished. 

Unsuppressed water signal, measured from the same VOI under identical 

conditions, was used for metabolite quantification, assuming a constant brain water 
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concentration of 43.7 mol/L (Schwarcz et al., 2001, Schwarcz et al., 2003). Hence, 

concentrations are expressed as mM, i.e., millimoles of metabolite per volume of tissue 

[mmol/ (litre VOI)]. Using water referencing inherently overcome problems arising from 

different coil loadings, different voxel sizes in addition to regional inhomogeneities in 

surface coil sensitivity profile. Therefore, it allows feasibility of reliable and accurate 

absolute quantification with use of surface coil (Kreis et al., 1993a, Danielsen and 

Henriksen, 1994, Kreis, 1997, Michaelis et al., 1999, Pfeuffer et al., 2004, Jansen et al., 

2006). 

Spectra of 16 brain metabolites were included in LCModel basis-set: alanine 

(Ala), aspartate (Asp), creatine (Cr), phosphocreatine (PCr), γ-aminobutyric acid (GABA), 

glucose (Glc), glutamate (Glu), glutamine (Gln), glycerophosphorylcholine (GPC), 

phosphorylcholine (PCh), myo-inositol (Ins), lactate (Lac), N-acetylaspartate (NAA), N-

acetylaspartylglutamate (NAAG), scyllo-inositol (scyllo-Ins) and taurine (Tau). 

Furthermore, sum concentrations were evaluated for those metabolites with a strong 

cross-correlation, originating from similarity in their structure and spectral patterns. 

Therefore, the sums of NAA + NAAG, GPC + PCho (total choline-containing compounds), 

PCr + Cr (total creatine) and Glu + Gln were reported. LCModel analysis was performed 

in the chemical shift range of 0.5–4.2 ppm. 

Crame´r-Rao lower bounds (CRLB) of LCModel analysis were used to assess 

accuracy and reliability of the fitting, which is regarded as the metabolites concentration 

estimated errors and reflect the estimated standard deviation (%SD) of the metabolite 

fit (Cavassila et al., 2001, Kreis, 2004, Helms, 2008). CRLB higher than 50% was 

considered as exclusion criterion for metabolite evaluation. Thus, only concentrations 

with CRLB below 50% were taken into account in the analysis. In addition, the residuals 

(original spectrum minus fitted spectrum) for each spectrum were visually inspected for 

presence of spurious artifacts to check adequate convergence of the peak fitting. Other 

rejection criteria, such as poor SNR (<6), existence of strong baseline distortions and line 

widths (full-width at half-maximum peak height, FWHH), which exceeded the 

expectations limits, were applied (Jansen et al., 2006, Poullet et al., 2008). 

To account for the potentially confounding effect of fast relaxing 

macromolecules and mobile lipids on metabolites quantitation in short-echo 1H MR 



 

Regional metabolite concentrations of mouse brain in vivo                                                                                             58 

 

spectroscopy, their corresponding simulated signal were incorporated into the basis set 

of LCModel (Behar and Ogino, 1993, Michaelis et al., 1993b). Regularized spline baseline 

modelling of LCModel imitates most physiological characteristics of short-T1 

macromolecules spectrum (Provencher, 2001). Hofmann et al evaluated the influence of 

using an experimentally determined macromolecule baseline as prior knowledge 

(Hofmann et al., 1999, Hofmann et al., 2002) on metabolite concentration estimation 

and compared the results with conventional LCModel fit. For that reason, in this study, 

no further attempt was made to experimentally include the physiological 

macromolecular pattern in the basis set of LCModel. However, to incorporate measured 

macromolecule signals, one can acquire In vivo metabolite-nulled spectra which, allow 

reliable quantification of macromolecules (Pfeuffer et al., 1999, Auer et al., 2001, Seeger 

et al., 2003). 

 

 

Measurement of the basis set 

Model spectra were recorded from aqueous model solution of alanine (Ala), 

aspartate (Asp), phosphocholine (PCh), glycero-PCh (GPC), creatine (Cr), 

phosphocreatine (PCr), γ-aminobutyric acid (GABA), glucose (Glc), glutamine (Gln), 

glutamate (Glu), glutathione (GSH), myo-inositol (mI), Scyllo-inositol (sI), lactate (Lac), N-

acetylacetate (NAA), N-acetylaspartylglutamate (NAAG), taurine (Tau), 

phosphorylethanolamine (PE), ascorbic acid (Asc), glycine (Gly), acetate (Ace), threonine 

(Thr), propylenglycol (Pgc)and ethanol (Eth), according to Provencher (S. Provencher, 

LCModel & LCMgui User’s Manual, http://s-provencher.com/pages/lcmodel.shtml). 

Spectrum of scyllo-inositol was simulated by shifting the singlet of glycine from 

3.55 to 3.35 ppm. All chemicals were purchased from Sigma-Aldrich and Fluka. 

Metabolites were dissolved separately in an aqueous phosphate buffer (72 mM K2HPO4, 

28 mM KH2PO4), containing 3-(trimethylsilyl)-propanesulfonic acid sodium salt (DSS), as 

chemical shift reference (0 ppm) and pH was subsequently adjusted to 7.20. 200 mM 

sodium formate was added for automatically phasing and scaling of model spectra by 

using its singlet at 8.44 ppm. For choline containing compounds, the phosphate buffer 

http://s-provencher.com/pages/lcmodel.shtml
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was replaced by 100 mM potassium chloride (KCl). Metabolite signal of the model 

solution was obtained by measuring a VOI size of 3-4 cm3 centrally located in a spherical 

phantom of 11 ml. The scaled spectra from all solutions are presented in Figure 4.3. 

A 72 mm quadrature birdcage coil was used for both signal excitation and 

reception. Fully relaxed basis sets were acquired with sufficiently long repetition time 

(TR=15 s), obviating the need for in vitro T1 relaxation correction but with otherwise 

identical experimental conditions (STEAM, TE/TM=10/10 ms) to those of the in vivo 

measurements. 

Due to the fact that “Auto-Phasing” failed to correctly phase the acquired Basis 

Spectra, accurate values for zero- and first-order phase correction, φ0 and φ1, were 

manually determined for each metabolite in the Basis Set. 

For precise and consistent quantification, concentrations of GPC, NAAG and all 

other prominent singlets were individually calibrated to the CH3 resonance of creatine 

peak. For this purpose, it is necessary to consider how many protons effectively 

contribute to the singlet. This method resolves the ambiguity in determining 

concentration, which arises from the preparation of model solution, i.e., (i) uncertainty 

in the molecular weight of GPC because GPC in vitro needs cadmium chloride adduct, 

and (ii) inaccurate water content value for hydrated compounds, e.g., PCr. It should be 

noted that the method exploits the fact that the concentration of the dissolved 

anhydrous creatine can be precisely determined. 
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Figure 4.3: Representative short-echo basis spectra for LCModel, measured with the STEAM sequence 

from model solutions (pH 7.20). (For details and abbreviations, see text.)  
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Figure 4.3: Continued.   
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Assessment of the T1 and T2 relaxations and their impact 

on metabolite quantification 

 

Nevertheless, a precise estimation of water content is essential for absolute 

quantification of metabolite concentration by LCModel because the signal of 

metabolites must be calibrated to that of water. Metabolite signal is supposed to be 

originated mainly from brain tissue, while a localized volume-of-interest may contain, 

not only brain tissue, but also cerebrospinal fluid (CSF). Thus it has been proposed that 

compartmentation information has to be determined on the basis of image 

segmentation (C.W. Brooks et al., 1999, Schuff et al., 2001, Horská et al., 2002) or 

spectroscopy pulse sequence (Hennig et al., 1992). Further, T1 and T2 attenuation of 

water signal may lead to potential errors for accurate absolute metabolite 

quantification. The water content of the localized volume-of-interest may be calculated 

from T1 relaxation time of the brain tissue. 

The water T1 relaxation time was determined in all the aforementioned brain 

structures. A series of STEAM experiments, without water suppression, and with varying 

repletion times of 580, 700, 800, 1000, 1200, 1500, 1700, 2000, 3000, 5000, 6000, 7000, 

8000, 10000, 12000 and 15000 ms were obtained. To yield apparent T1, the water 

signals were fitted to mono-exponential function, according to Equations 4.2 and 4.4. 

Other parameters of the applied STEAM sequence were kept identical: TE = 10 msec, 

mixing time (TM) = 10 msec and 8 accumulations. 

For T2 measurement, peak heights of unsuppressed water FIDs, obtained from 

aforementioned series of STEAM experiments, were fitted to monoexponential decay 

functions. This procedure obviates problems arising from variability of linewidth, due to 

different quality of achieved shimming. 

 

Partial volume effect  

Spectroscopic T2 method was exploited to determine the contributions from 

cerebrospinal fluid (CSF) within the selected volumes. This has been accomplished for all 
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locations - even for the relatively small voxels used in this study. Series of the 

unsuppressed water signal in proton MR spectra were acquired at 12 different echo 

times (10 ms - 1000 ms) and water signal intensities from time-domain data (FIDs) were 

fitted to a bi-exponential model function (Ernst et al., 1993, Kreis et al., 1993b), 

according to the following equation: 

 
𝑆 = 𝑆TE=0,BW . exp  −

𝑇𝐸

𝑇2,BW
 +  𝑆TE=0,CSF . exp  −

𝑇𝐸

𝑇2,CSF
  (4.1) 

 

STE=0,BW and STE=0,CSF are relaxation-corrected signal amplitudes for brain water 

(BW) and cerebrospinal fluid (CSF), respectively. Standard least squares fitting procedure 

was performed with curve-fitting tool of Matlab (Version 7.1; The MathWorks, Inc., 

Natick, MA, USA). Fractional water content of the selected voxel with mixed proportions 

of CSF and brain matter (partial volume averaging) was calculated from the component 

analysis, considering the fact that longer T2 component ascribed to CSF (T2, CSF). 

A survey of potential partial volume contributions from the cerebrospinal fluid 

(CSF) within the investigated VOIs was achieved by analyzing least squares fit of TE series 

data points to a bi-exponential and mono-exponential model functions, according to 

Equations 4.1 and 4.2. The mono-exponential fitting always resulted in better fit and the 

long T2 component of the bi-exponential decay, assigned to CSF, was not detected. 

These findings indicate that localization was optimal and CSF contribution to the 

volumes can be considered to be negligible.  

 

Signal attenuation 

Water attenuation can be regarded as representative of potential error for 

accurate absolute metabolite quantification, whereas unsuppressed water signal served 

as internal reference. To examine influence of relaxation attenuation, transverse 

relaxation times (T2) of water, as well as its longitudinal relaxation (T1), were determined 

in different regions. 

Equation 4.2 describes attenuation of the NMR-visible water signal as a result of 

relaxation effects in STEAM. 
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 𝑆 𝑇𝑅, 𝑇𝐸, 𝑇𝑀 = 𝑆0 . 𝑓T2 . 𝑓T1    (4.2) 

 

where 

 

 
𝑓T2 = exp  −

𝑇𝐸

𝑇2
  (4.3) 

 

 
𝑓T1 = exp  −

𝑇𝑀

𝑇1
 [1 − exp  −

𝑇𝑅

𝑇1
 ] (4.4) 

 

𝑓T2 and 𝑓T1 indicate corresponding relaxation losses as a consequence of T2 and 

T1, involving those throughout the middle interval (TM), where the delay is within the 

second and third pulses of the STEAM sequence. 

LCModel’s control parameter atth2o, which is basically 𝑓T2 × 𝑓T1, takes care of 

correction for relaxation attenuation of water signals. Owing to the sufficiently short 

echo time (TE=10 ms) and long repetition time (TR=6000 ms) used in all in vivo 

measurements, this attenuation factor was kept constant (ATTH2O=0.7), although, the 

impact of regional variability of the relaxation on this factor was evaluated. 

It is assumed that model spectra were acquired with identical parameters as in 

vivo data and that metabolites possess different relaxivity in in vitro and in vivo 

conditions. As a consequence, pertinent correction factors, induced by residual T2 

relaxation effects 
2

( )Tf and differential T1 saturation 
1

( )Tf , can be estimated for each 

metabolite from: 

 
1

 

1

 

1

1 exp( / )

1 exp( / )

in vitro

in vivoT

TR T
f

TR T


 


 
 (4.5) 

 
2

 

2

 

2

exp( / )

exp( / )

in vivo

in vitT ro

TE T
f

TE T






 (4.6) 

 

Two major metabolites, glutamate as a strongly coupled one and creatine as an 

uncoupled one, were chosen to exemplify possible correction factors, accounting for the 

differential T2 attenuation between in vivo and in vitro conditions. In the light of 

correction of concentrations for residual T2 relaxation effects, the T2-values were taken 

from literature (Xin et al., 2008) and regional variations in T2 relaxation times of 
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metabolites were disregarded. Diffusion-induced signal attenuation, brought about by 

incorporation of crusher gradient into the TE/2 intervals, was disregarded due to its 

minor contribution and steady presence in employed STEAM sequence (de Graaf et al., 

2001). 

To evaluate the amount of signal attenuation due to relaxation, quantitative 

localized T2 measurements were pursued in vivo for all structures used in this study. T2 

relaxation times of tissue water were obtained by mono-exponential fitting. Table 4.2 

summarizes the T2 relaxation times (mean values and SDs) of water in various mouse 

brain regions measured in vivo at 9.4 T. The results from the analysis, as presented in 

Table 4.2, showed regional differences of brain water T2 relaxation, of which, highest 

values were observed in the cortex, while those of brain stem and cerebellum were at 

the lowest. 

 

Table 4.2 Mean and SD of tissue water proton T2 relaxation times (ms) determined in 

different region of the normal mouse brain in Vivo 

     Structure    

 mcx lcx cc cf st mth lth hc cb bs 
 n=8 n=7 n=9 n=8 n=8 n=9 n=9 n=9 n=8 n=5 
T2 (ms) 36.6 36.0 34.9 35.0 35.4 35.3 33.7 36.0 32.8 33.0 
SD (ms) 0.7 1.0 1.6 1.5 0.7 0.5 0.5 1.1 0.5 0.7 

mcx = medial cortex, lcx = lateral cortex, cc = corpus callosum, cf = callosal fibres, st = striatum, mth = medial 
thalamus, lth = lateral thalamus, hc = hippocampus, cb = cerebellum, bs = brainstem 

 

The estimated longitudinal and transverse relaxation attenuation (𝑓T1, 𝑓T2) of the 

brain tissue water, along with the respective LCModel’s control parameter atth2o, for 

exemplary locations, are given in Table 4.3. Relaxation attenuations for water signal 

were derived by employing measured T1 and T2 values of water, according to Equations 

4.3 and 4.4. 

 

Table 4.3 Water signal attenuation caused by T1 and T2 relaxation and pertinent atth2o 

estimated for medial cortex and brainstem  

Structure T1 (ms) T2 (ms) fT1 fT2 atth2o  

mcx 2002 37 0.95 0.76 0.72 

bs 1709 33 0.96 0.74 0.71 

mcx = medial cortex, bs = brainstem 
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 T1 values for proton spins of metabolites in aqueous solution are much longer 

than those in the brain (Michaelis et al., 1993b, Pouwels and Frahm, 1998, Pfeuffer et 

al., 1999, in 't Zandt et al., 2001). Taken together with the fact that both model spectra 

and in vivo brain spectra are obtained under fully relaxed conditions, using sufficiently 

long repetition times, it dispenses the need of correction for differential T1 relaxation for 

absolute metabolite quantification. 

With regard to T2 relaxation, the total signal loss of water signal at the short TE of 

10 ms is 28% and 29% in medial cortex and brainstem, respectively. To account for this 

attenuation, the corresponding correction factors of 1.03 and 1.01 may be applied in 

metabolite concentration. Therefore, for all the regions, atth2o=0.7, i.e., signal loss of 

30%, was used, because it is unnecessary to measure T1 relaxation time for each region 

and animal. 

Exemplarily, differential T2 attenuations were determined for glutamate and 

creatine CH3 assuming the corresponding mean T2 relaxation times of 190 ms and 376 

ms in vitro together with 89 ms and 113 ms for those in vivo (Xin et al., 2008). The 

resulting signal loss of 6 % (TE = 10 ms) was estimated for these resonances, using 

Equation 4.6 in Sec. 4.2. Consequently, the related correction factor of only 1.06 may be 

derived, which required to be multiplied to their concentrations, which was thus 

neglected in the current work.  
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Water content  

The water content of the localized regions was calculated, based on measured T1, 

as suggested earlier by Schwarcz et al in a study of water content quantification of 

vasogenic edema in mouse brain, at 9.4 Tesla. Equation 4.7 indicates the expected 

linearity between the inverse of longitudinal relaxation (1/T1) of the water protons and 

the inverse of the total water content (1/W), where W is the percent concentration of 

water. This was previously presented and experimentally verified at 400 MHz (Schwarcz 

et al., 2001). 

 

 

1

1 1
3.106 3.2998

T W
   (4.7) 

 

 

The molar brain water content, essential for absolute quantification, is derived 

from the water content (W), assuming a concentration of 55.6 mol/liter for pure water 

and brain density of 1.047 g/ml (Torack et al., 1976, Brooks et al., 1980, Rieth et al., 

1980, Kreis et al., 1993a). 

Water longitudinal relaxation times (T1) in different regions of the mouse brain 

were determined in vivo at 9.4 T. T1 relaxation times were calculated from selected 

volumes of interest (VOIs) on a mono exponential fitting basis, according to Equations 

4.2 and 4.4. Calculated values ranged from 1709 ms in brain stem to 2002 ms in medial 

cortex. Consequently, corresponding calculated fractional water content, ranged from 

80% to 82%, respectively (Equation 4.7). Assuming a pure water concentration of 55.6 

mol/liter and brain tissue density of 1.047 g/ml (Takagi et al., 1981, Kreis et al., 1993a), 

water content of 42.5 and 43.5 mol/liter were yielded for the regions stated before. 

From the repeated measurements of water content in the cortical area, individual 

reproducibility error was assessed. The small standard deviations of less than 1% 

demonstrated the excellent reproducibility of the experiments. As described in section 

4.2, water signal was used as an internal reference for quantification of metabolite 

concentrations.  

The obtained value turned out to be in line with 43.7 mol/L, determined by 

Schwarcz et al. (Schwarcz et al., 2001, Schwarcz et al., 2003). Therefore, this value was 
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used for the quantification of metabolites from each mouse because the spectroscopic 

T1 measurement requires considerable prolongation of measuring time. However, the 

described method will be of essential importance for quantification of metabolites in 

tissue with altered water concentration, e.g., tumor, edema, or infection. 

 

 

Reproducibility assessment 

 
The intra-individual reproducibility study was carried out by acquiring six spectra 

from the medial cortex region (MCX) of an animal under similar experimental conditions, 

in three different sessions, spaced several months apart. For the inter-individual study, 

data was obtained from 9 animals and each, of which, was measured only once. In order 

to minimize variability, due to voxel positioning, an oblique VOI of 6.75 μL was carefully 

placed in MCX by a single investigator during all the scans. As previously mentioned, a 

stereotaxic holder, incorporated in a home-built animal slider, was used to appropriately 

immobilize the head of the anaesthetized mice. The coefficient of variation (CV) (given 

as %CV = (SD/M) × 100 where M and SD are the mean and standard deviation of the 

metabolite concentration reported by LCModel) was determined to characterize intra- 

and inter-individual variability.  

 



 

69 

 

 

 

 

 

 

4.3 Results  

Regional Differences 

High-quality multi-slice RARE images of the mouse brain ensured accurate and 

reproducible positioning of the VOI in different brain regions. Representative water-

suppressed in vivo proton MR spectra of the investigated mouse brain regions clearly 

show the well-resolved resonances of numerous cerebral metabolites signals (see Fig. 

4.4), obtained with sufficiently consistent spectral quality, e.g., SNR and linewidth, Table 

4.5.  

The spectra include resonances from Ala, Asp, Cr, PCr, GABA, Glu, Gln, Cho, Ins, 

Lac, NAA, NAAG and Tau. Considerable spectral variations among the various 

investigated brain regions can be observed. 
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Figure 4.4: Localized proton MR spectra (STEAM, TR/TE/TM=6000/10/10 ms, 4.2 to 15.5 μl VOIs, 2 × 128 

accumulations per animal) from selected locations in normal mouse brain obtained in vivo at 9.4 T. For 

illustration purposes only, spectral post-processing comprised of zero-filling to 4K data points, mild 

Lorentz–Gauss apodization in the time-domain (half width 88 msec, corresponding to 5 Hz line 

broadening) and phase correction according to LCModel. Spectra were scaled in absolute units in 

proportion to the brain water concentration.   
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The LCModel analysis of a typical proton MR spectra from the thalamus of a 

NMRI mouse brain are presented in Figure 4.5 to illustrate the principle of employed 

fitting method in the frequency domain. The fitted spectrum is decomposed into its 

component model spectra from individual brain metabolites, which are individually 

scaled. The fitting residual, i.e. the difference between the measured and fitted spectra, 

is small, flat and artifact-free, which is a clear indication of the excellent fit by LCModel, 

achieved through a proper inclusion of metabolites model spectrum in the basis set. Flat 

macromolecular ‘‘baseline” estimated by LCModel, specifically in the spectral region 

from 0.5 to 2.0 ppm, is an indication of its successful simulation of fast-relaxing signals 

from macromolecule. 

Furthermore, the C4 proton resonances of Glu (2.35 ppm) were completely 

resolved from those of Gln (2.45 ppm). Additionally, the GABA C4 resonance at 2.28 ppm 

was discernible from the resonance of Glu C4. And its C3 quintet, centered at 1.89 ppm, 

was clearly discriminated from the signal of NAA. The latter was most notably observed 

in the thalamus and striatum, where GABA concentrations are maximally, and it was 

least notably detected in other regions where GABA was hardly visible.  
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Figure 4.5: LCModel fit of a representative proton MR spectrum from the thalamus of the mouse brain in 

vivo at 9.4 T obtained with use of a short-echo time STEAM sequence (see Fig. 3.5). From the top: 

residuals, in vivo spectrum, fitted spectrum, macromolecules, and spectral contributions of individual 

metabolites to the total spectral fit. All spectra are scaled consistently. See text for abbreviations.  
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Basic spectral parameters, determined by LCModel, were compared in Table 4.4 

to demonstrate detailed regional differences in the achieved spectral quality so that its 

impact on reliability of the concentration estimates could be evaluated. Mean 

metabolite linewidths, determined from full linewidth at half maximum (FWHM) of total 

creatine singlet at 3.03 ppm, reflect the results of localized shimming using FASTMAP. 

Signal-to-noise ratios (SNRs) were calculated in frequency domain, using the 

maximum height of signal at the position of NAA methyl resonance at 2.008 ppm, 

divided by the root mean square (rms) of the residues. Mean linewidths vary across the 

investigated regions, however this observation was independent of the VOIs size and 

mainly depended on VOI locations and dimension. First of all, tissue heterogeneities 

within selected VOIs can cause line broadening. For example, the VOI of 170 x 700 x 

4000 μm3 was selected for the corpus callosum, which ensures a reasonable covering of 

the structure, while providing sufficient SNR within a limited measuring time. However, 

the actual volume of white matter in this VOI is much smaller. This means that different 

types of tissue (e.g., cell body assemblies, neuropils), other than the white matter, are 

included in the VOI, which may lead to magnetic field heterogeneities due to 

susceptibility differences. The placement of VOI within pure white matter is excluded, 

because the dimension of pure white matter can be estimated to be 250 × 100 × 500 

μm3 (Michaelis et al., 2009). The selection of such small VOI attenuates the SNR by a 

factor of 38 and therefore causes unrealistic measuring time. Further, increased FWHM 

in corpus callosum, callosal fibres and cerebellum can be partly explained by the need 

for positioning larger cubical volume of FASTMAP which encompassed the other 

undesired brain region rather than the selected VOI itself. Apart from that, localized 

shimming is impaired in BS, due to the fact that it is located further away from the 

surface coil. The resulting lower SNR deteriorates the shimming performance of 

FASTMAP. 

As described in the methods, the mean CRLBs of LCModel analysis across all 

metabolites were utilized to assess the reliability of metabolite quantification. The mean 

of the estimates of fitting error expressed in % are consistent with those expressed in 

units of concentration (mmol/liter VOI). As expected, it is noticed that the precision of 
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metabolite quantification slightly degraded [deteriorated] in the location with the lower 

SNRs and larger linewidths, e.g., in the callosal fibers and brainstem. 

 

Table 4.4. Comparison of metabolite linewidths and SNR of spectra together with CRLB 

determined using LCModel from different mouse brain region to characterize the 

achieved spectral quality and the reliability of metabolite quantification. 

           Structure 
 

      

 
mcx lcx cc cf st mth lth hc cb bs 

  n=8 n=7 n=9 n=8 n=8 n=9 n=9 n=9 n=8 n=5 
Volume (μl) 6.8 5.6 4.8 4.2 11.0 15.5 9.2 4.6 6.1 8.3 
SNR 14.1 12.4 8.6 7.7 13.9 18.4 11.7 9.4 11.9 7.8 
FWHM (Hz) 8.8 10.4 12.4 11.6 9.6 8.0 8.4 7.2 9.6 12.0 
CRLB (%) 9.8 10.2 12 12.7 9.9 9.3 11.3 12 13.6 15.5 
CRLB (mM) 0.29 0.3 0.4 0.43 0.3 0.27 0.34 0.4 0.45 0.51 

mcx = medial cortex, lcx = lateral cortex, cc = corpus callosum, cf = callosal fibres, st = striatum, mth = medial 
thalamus, lth = lateral thalamus, hc = hippocampus, cb = cerebellum, bs = brainstem 

 

Absolute concentrations (mean ± SD) of 16 metabolites were reliably quantified 

in different brain regions, which were obtained by the LCModel analysis of all acquired 

in vivo 1H NMR spectra (NT = 256) from nine animals measured at 9.4 T. Results of 

quantitative evaluation of metabolites, along with four combined pairs of metabolites, 

are illustrated in Figure 4.6. 

The corresponding average Cramer–Rao lower bounds (CRLB), which are the 

approximations of fitting errors and uncertainties of metabolite concentrations, were 

below 20% for most of the metabolites, for all regions. 

Total NAA, i.e., N-acetylaspartate and N-acetylaspartylglutamate (tNAA, NAA + 

NAAG), total creatine, i.e., creatine and phosphocreatine (tCr, Cr + PCr), total choline, 

i.e., glycerophosphocholine and phosphocholine (tCho, GPC + PCh), combined glutamate 

and glutamine (Glx, Glu + Gln), taurine (Tau), NAA, Cr, Glu and lactate (Lac) were 

quantified with average CRLB < 8 %. 

For some weakly represented metabolites, CRLB was greater than 20% in some 

brain regions. The CRLB was between 6 % and 40% for alanine (Ala), while it was in the 

range of 15–30% for NAAG. However, γ-aminobutyric acid (GABA) concentration was 

measured with the estimate of fitting error ranging from 5 to 15 %. Aspartate and 
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glucose were only detected (CRLB < 50%) in three and four animals for the striatum, 

respectively. 

In spite of the fact that scyllo-Ins signal was incorporated into the basis set of 

LCModel as a model component, corresponding concentration was only possible to 

quantify in the medial thalamus (0.19 ± 0.01 mM, N = 3); thus, this metabolite was not 

further evaluated and it was disregarded from the bar diagram in Figure 4.6. 
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  Figure 4.6: Cerebral metabolite concentrations (in mM per liter VOI) determined by LCModel analysis of 

the in vivo 
1
H NMR spectra of ten different regions in brain of mice. Error bars indicate standard 

deviations. mcx = medial cortex, lcx = lateral cortex, cc = corpus callosum, cf = callosal fibres, st = striatum, 

mth = medial thalamus, lth = lateral thalamus, hc = hippocampus, cb = cerebellum, bs = brainstem. 
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  Figure 4.6: Continued.   
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 Figure 4.6: Continued. 

 

 

More detailed information on absolute metabolite concentration estimates, 

along with corresponding Crame´r-Rao lower bounds of LCModel, are given in Table 4.5.  
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Reproducibility 

Figure 4.7 shows spectra obtained from the same VOI in the medial cortex region of an 

individual animal on three different occasions. The bottom trace represents the spectra 

from back-to-back measurements on each session. The spectral quality was highly 

reproducible, as indicated by the resemblance among all the spectra.  

 

 

Figure 4.7: Representative in vivo 
1
H NMR spectra from 6.75 μL volume in the medial cortex of an 

individual animal from three different sessions (top trace) and their corresponding spectra from back-to-

back measurements (bottom trace). Acquisition and processing parameters as well as peak assignments 

are the same as in Fig. 4.4.  
 

The intra- and inter-individual variability of metabolite concentrations as well as the 

respective mean CRLB values are summarized in Table 4.6 for medial cortex.  
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Table 4.6 Absolute metabolite concentrations (mean ± SD), the coefficients of 

variation (CV) and Crame´r–Rao lower bounds (CRLB) from the intra- and inter-

individual studies, obtained by LCModel analysis of in vivo NMR spectra from medial 

cortex region of the healthy mouse brain. 

 

                    intra (n = 6)                      inter (n = 9) 

Metabolite  Mean ± SD CV CRLB  Mean ± SD CV CRLB 
  (mM) (%) (%)  (mM) (%) (%) 

Ala  1.17 ± 0.43 37 29  1.07 ± 0.39 36 29 
GABA  2.24 ± 0.30 13 12  2.10 ± 0.26 12 12 

Glc  3.99 ± 1.22 31 18  3.72 ± 1.79 48 20 

Tau  7.67 ± 0.43 6 4  8.24 ± 0.68 8 4 

NAA  7.45 ± 0.44 6 4  7.46 ± 0.57 8 3 

NAAG  0.94 ± 0.26 28 26  0.95 ± 0.22 23 24 

Cr  6.50 ± 0.70 11 7  6.25 ± 1.16 19 8 

PCr  2.11 ± 0.49 23 22  2.37 ± 0.70 30 19 

Gln  4.40 ± 0.32 7 9  3.60 ± 0.35 10 11 

Glu  10.93 ± 0.63 6 4  11.61± 0.96 8 4 

GPC  0.95 ± 0.10 11 10  0.83 ± 0.13 16 11 

PCh  1.19 ± 0.11 9 8  1.26 ± 0.19 15 7 

Ins  2.78 ± 0.43 15 11  2.79 ± 0.21 8 10 

Lac  3.27 ± 0.92 28 9  3.13 ± 0.72 23 9 

Asp  1.92 ± 0.31 16 29  2.00 ± 0.59 30 29 

NAA+NAAG  8.38 ± 0.40 5 4  8.41 ± 0.61 7 4 

Cr+PCr  8.60 ± 0.35 4 3  8.62 ± 0.55 6 3 

GPC+PCh  2.14 ± 0.20 9 5  2.09 ± 0.29 14 5 

Glu+Gln  15.33 ± 0.54 4 4  15.21 ± 0.90 6 4 

 

The intra-individual coefficient of variation (CV) for most metabolites (NAA, Cr, 

Glu, Gln, Tau, GPC, PCh, tCr, tCho, tNAA, Glu+Gln) was ≤ 11% and was below 15% for 

GABA and myo-Ins. Additionally, this value ranged from 16% to 37% for weakly 

represented metabolites (Asp, NAAG, Ala). These are in agreement with results of the 

rat brain, reported by Pfeuffer and Hong at field strengths of 9.4 T and 16.4 T, 

respectively (Pfeuffer et al., 1999, Hong et al., 2011b). The inter-individual CV was found 

to be rather similar to that observed in the study of intra-individual variability.  

The lower CV of the summed metabolites indicates that the resonances of the 

related individual components are obscured by spectral overlap and hence, were only 

partially resolved. This is further characterized by decreased mean CRLB (estimate of the 
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fitting error) for the summed metabolites, compared to their individual values in both 

intra- and inter-individual reproducibility studies, as can be seen in Table 4.2.  

The CRLBs estimated by LCModel were consistent with the CVs values, measured 

for each metabolite concentration. The mean CRLB values for all metabolites were 

nearly identical in intra- and inter-individual studies, representing the reliability and 

robustness of the LCModel fitting analysis, from a single spectra, to quantify the 

metabolite concentrations within and across the same animals. 
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4.4 Discussion 

Care was taken to optimize dimension of VOIs for every region to ensure better 

localization and to include maximum area of the brain structure. This leads to 

diminished partial volume effects and avoids ventricular space contribution, within the 

selected volume. However, the remnant uncompensated susceptibility results in 

inhomogeneous line broadening and in deterioration of the achievable spectral 

linewidths, which are markedly noticeable in locations with strong susceptibility 

gradients.  This may be caused by air–tissue interfaces in inferior regions of the brain or 

it may be induced by paramagnetic properties of blood, close to the vessels. This 

influence is manifested as a distortion in magnetic field homogeneity which thus, limits 

spectral resolution and increases resonance linewidths from 7.2 ± 1.6 Hz for tCr obtained 

in hippocampus to 12.0 ± 1.6 Hz and 12.4 ± 1.6 Hz attained in brainstem and corpus 

callosum, respectively (see Table 4.4). As far as the optimization of the hardware is 

concerned, the replacement of the standard 1 kW RF power amplifier by that of 2 kW 

allowed shortening of the slice-selection RF pulse duration, which greatly reduced the 

extent of the chemical shift displacement error to below 10% of the voxel dimension. 

The high spectral quality achieved over the entire chemical shift range (0.5–4.2 

ppm) ensured reliable and reproducible quantification of each of the brain metabolites. 

Signals of many metabolites were clearly resolved as a consequence of increased 

chemical shift dispersion at 9.4 T. For example, this is reflected in the complete 

separation of the coupled resonances of Tau from myo-inositol resonances at 3.42 ppm. 

Furthermore, the C4 proton resonances of Glu (2.35 ppm) were completely resolved 

from those of Gln (2.45 ppm). Additionally, the GABA C4 resonance at 2.28 ppm was 

discernible from the resonance of Glu C4. And its C3 quintet centered at 1.89 ppm was 

clearly discriminated from the signal of NAA, notably in the thalamus and striatum 

where the maximum GABA concentration observed and hardly visible in other 

structures. 

Furthermore, the singlet resonances from methylene-protons of creatine and 

phosphocreatine, differing by 0.02 ppm, were partially resolved at 3.9 ppm (Gruetter et 

al., 1998, Pfeuffer et al., 1999, Tkád et al., 2003) and they were discernible in the 1H NMR 

spectra, obtained from most of the brain regions. Here, it may be worth noting that the 
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strong negative correlation between Cr and PCr, as estimated from the covariance 

matrix by the LCModel, would imply a decrease in reliability of individual quantification. 

In fact, this can give rise to overestimation of one constituent concentration, to the 

detriment of underestimation of the other (Hofmann et al., 2002, Tkád et al., 2009). 

However, the sum of Cr and PCr concentration were quantified with high precision. The 

measured concentrations of tCr in the current study are in good agreement with 

previously published concentration values for normal mouse (Renema et al., 2003, 

Schwarcz et al., 2003, Öz et al., 2010) and rat brain in vivo (Pfeuffer et al., 1999, Tkád et 

al., 1999, Hong et al., 2011a, Hong et al., 2011b, Hong et al., 2011c). Similar arguments 

hold true for signal from tCho at 3.2 ppm, which comprises resonances predominantly 

from the trimethyl amine N-(CH3)3 groups of GPC and PC, although an even stronger 

LCModel correlation coefficient of <-0.85 may lead to large uncertainties in 

measurement of the individual constituent. 

In addition to notable reductions in scan time, increased sensitivity and spectral 

resolution at 9.4 T, compared to those at 2.35 T, resulted in a substantial improvement 

in accuracy and precision of the quantification of metabolites - particularly for those 

weakly represented. The higher CRLB observed for metabolites with J-coupled spin 

systems, compared to uncoupled ones, can be explained by the pronounced splitting of 

their resonances, which considerably overlap with those of more abundant metabolites. 

A plausible explanation emerges from the analytical expressions of the CRLBs on spectral 

parameters, as derived by Cavassila, demonstrating the influence of overlap on the 

model parameter estimates (Cavassila et al., 2000, Cavassila et al., 2001, Cavassila et al., 

2002, Kreis, 2004). In this context, it is important to note that the larger standard 

deviations in metabolite concentration values, obtained in e.g., the brainstem and 

corpus callosum, can be attributed to systematic errors introduced by reduced SNR and 

increased line width (see Table 4.4 and Fig. 4.6). Indeed, overestimation of weakly 

represented metabolites as a function of SNR has been reported by Tkád et al (Tkád et 

al., 2002). Influences of linewidth and SNR on estimated metabolites concentration have 

also been shown (Kreis and Boesch, 2003, Bartha, 2007).  
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The observed regional differences of metabolite concentrations in vivo are in line 

with literature data, except for tCho (choline-containing compounds, i.e., GPC + PC), Lac, 

and Ala. The observation of elevated tCho concentrations in the striatum, reported here 

for the first time, was highly reproducible and consistent among animals, while the 

concentration of about 2.0 mM in the hippocampus, thalamus, and medial cortex is 

higher than expected from a previous report (Tkád et al., 2004). These discrepancies may 

be explained by the difference in the strain of mice used (NMRI in the present report vs. 

C57BL/6, CBA, and CBA/BL6 in the previous report).  

The observation of the pronounced differences in Lac and Ala content, among 

various brain regions, generally agree with those reported by others in rats (Tkád et al., 

2003) and mice (Tkád et al., 2004, Boretius et al., 2011) at 9.4 T. A new finding of the 

present study, however, was markedly higher (37 %) Lac concentration of brainstem, 

compared to striatum (see Fig. 4.6). These novel findings may be related to the mouse 

strain used and may also depend on the procedures used for anesthesia. Indeed, the 

experimental setup which has been established within the frame of this thesis recently 

provided data, which partially explains the altered cerebral metabolism, under the 

applied anesthesia (Boretius et al., 2013). The observed alterations can be explained by 

the effect of used volatile anesthetic, i.e., isoflurane, which may induce a stimulation of 

adrenergic pathways, in conjunction with an inhibition of the respiratory chain. The 

higher Lac concentration in the brainstem suggests that the brainstem may be more 

vulnerable to the induced physiological conditions, possibly because of its high content 

of adrenergic neurons. 

Scyllo-Ins, a potential marker for human cerebral pathology, has been supposed 

to have a constant concentration, relative to myo-ins. In The concentration of scyllo-Ins 

was reported to be 0.4-0.6 mM in human brain (Seaquist and Gruetter, 1998), while that 

of myo-ins is approximated to be about 6 mM (Michaelis et al., 1993a). In the present 

study, the concentration of scyllo-Ins cannot be quantified with sufficient reliability, 

except from the medial thalamus (0.19 ± 0.01 mM) and the detected concentration of 

myo-ins, ranging between 1.82 and 6.37 mM, is in line with previously reported data of 

both humans and mice  (Tkád et al., 2004). This lack of reliable detection in most regions 
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of the brain, presumably due to its low concentration, can be explained by the 

assumption of Seaquist and Gruetter that scyllo-Ins metabolism may be regulated 

independently from myo-ins. 

The high reproducibility and reliability of the presented quantitative, single-voxel 

proton MRS measurements in the mice brain at 9.4 T, as emphasized by the small CV 

and CRLB in Table 4.6, correspond well with previous data (Öz et al., 2010) and hold 

great promise for the ability to reliably detect subtle changes in metabolite 

concentration - for example, those associated with the progression of 

neurodegenerative diseases or therapeutic response to pharmacotherapy. The excellent 

agreement observed between the CRLB values returned by LCModel and the calculated 

CV values (see Table 4.6), which were measured for each metabolite concentration, 

confirms the good quality of the obtained data and the subsequent successful 

approximation by the model functions. 

 The lower value for CRLB was considered to stem from the fact that it represents 

the lower bound on the variance of unbiased estimate of the model parameter in the 

presence of normally distributed noise and reflects only the statistical uncertainty of the 

estimate; therefore, the larger scatter (e.g., standard deviation) in the observed data 

(Table. 4.5 and 4.6) can be explained by the systematic errors, e.g., incorrect prior 

knowledge and numerous artifacts (Provencher, 1993, Kreis, 1997, Cavassila et al., 2000, 

Cavassila et al., 2001, Kreis, 2004, Helms, 2008). These are generally not reflected in 

CRLB. 
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Chapter 5 

Summary and Outlook 
 

 

 The first achievement of this work was implementation and optimization of MRS 

technique. To achieve this goal, (i) MR spectra, acquired with different bandwidths and 

inter-pulse delays of water suppression pulses, were systematically investigated for in 

vitro condition as well as for mouse brain in vivo. Sufficient water suppression allowed a 

reliable detection of critical metabolite signals, despite their close proximity to the water 

resonance. Minimum spoiling capacity chosen ensured a sufficient dispersion of 

transverse water coherences. (ii) The implemented outer-volume-suppression scheme 

allowed substantial improvement in quantification of metabolites in mouse brain. (iii) 

The improvement in local static field homogeneity, achieved by FASTMAP shimming, 

resulted in high and reproducible spectral resolution. (iv) The relative detectability of 

strongly coupled metabolite resonances was systematically compared between low and 

high field strengths, using a single phantom and mice of matching strain, gender, and 

age. 

 The second achievement was the acquisition of MR spectra and representation 

of the neurochemical profiles from ten different brain regions of anesthetized mice at 

9.4 T. Experimental setup was developed, including the selection of the coils, the 

method of anesthesia, the maintenance of body temperature, and the fixation of the 
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head of mice for repeated MRS from the same mouse and for examining the 

reproducibility of MRS. VOI localization technique was optimized for different brain 

regions of anesthetized mice. Measurement of T1 and T2 relaxation times from different 

brain regions of anesthetized mice may be used for a correct quantification of 

metabolite concentrations in order to calculate the partial volume effect of the 

cerebrospinal fluid, the signal attenuation difference between the tissue in vivo and the 

metabolite model solution in vitro, and the water content of the tissue in vivo. Absolute 

concentrations of 15 different brain metabolites from anesthetized mice were presented 

with their necessary statistical values. Elevated tCho and Ala concentrations in the 

striatum as well as elevated Lac concentration in the brainstem, so far not reported, 

were firstly demonstrated. Scyllo-Ins signal was quantified, for the first time, from the 

brain of mice in vivo. High reproducibility of MRS was demonstrated from the same 

mouse over four months.  

A further reduction in chemical shift displacement error remains an issue, 

although it was reduced to below 10% of the voxel dimension by the application of 

optimal RF power amplifier, together with the shortening of the slice-selective RF pulse, 

in the present work. An optimal use of adiabatic slice selective RF pulses, e.g., hyperbolic 

secant pulses, may provide even larger bandwidth, which thus minimizes the chemical 

shift displacement error. 

Further improvement in spectral resolution may be achieved by a phase coherent 

averaging. Development of an interleaved navigator scan may counteract motion 

artifacts and magnetic field instabilities. Consequently, SNR improvement is also 

expected. The signal-to-noise gain may be further expected, when full advantage is 

taken of phased-array coil (Natt et al., 2005) or of cryo-probe. Further, the basic 

knowledge acquired here, from comparison between 2.35 T and 9.4 T, will be useful for 

optimization of MRS at even higher fields.  

For the quantification of metabolites, an assumed value of water content was 

used for all regions because the spectroscopic T1 measurement requires considerable 

measuring time. A faster imaging technique for spin density mapping may be developed 

to derive water content of each region. This will be of great importance when 

characterization of pathology with altered water content is required. Furthermore, 
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metabolite-nulled spectra can be acquired in vivo (Pfeuffer et al., 1999, Auer et al., 2001, 

Seeger et al., 2003) and included into the basis set of LCModel, signals from 

macromolecules can be quantified. 

 In summary, High-field localized proton NMR spectroscopy, accompanied by 

LCModel analysis, enabled detection of regional differences in the neurochemical 

profiles of the normal mouse brain in vivo. This allows detailed studies of metabolic 

heterogeneity to be conducted in a region-specific manner that hitherto could only have 

been made on larger animals such as rats and nonhuman primates. The data yield 

unique non-invasive insights into the intracellular metabolism and the cellular 

composition of the tissue. The comprehensive data of absolute metabolite 

concentration presented in this thesis will serve as a reference for all future MRS 

studies, using behaving mice in a variety of circumstances. Pertinent studies may lead to 

a better understanding of the pathophysiological mechanisms underlying human 

neurological and psychiatric disorders. 
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