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ABSTRACT 

Most membrane proteins are found in clusters in the plasma membrane. For abundant proteins it 

is apparent that the clusters also tend to have patterned distributions, rather than being 

randomly scattered. To reveal the mechanism behind this observation, I have investigated all 

proteins in the plasma membrane simultaneously. This was achieved by large-scale metabolic 

labeling of proteins through incorporation of a non-canonical amino acid analogue and 

fluorescent tagging by click chemistry. Plasma membrane sheets were obtained from labeled 

PC12 and COS-7 cells and imaged by super-resolution stimulated emission depletion (STED) 

microscopy. Membrane proteins were found to form a mosaic like pattern. Heterogeneous 

domains, highly enriched in proteins, were distributed on a protein-poor background. I have 

termed these high-abundance domains “protein clouds” and assayed the contribution of different 

factors to their formation and maintenance. The protein cloud pattern was surprisingly robust 

and resisted to a variety of manipulations including changes in ionic composition and strength, 

decrease in protein density, disruption of cytoskeletal elements, and hydrolysis of phospholipids 

and sphingomyelin. Although actin disruption did not abolish the clouds, it resulted in formation 

of larger domains. Accordingly, actin was identified as a secondary factor that borders the clouds 

and prevents their coalescence. Depletion of cholesterol almost completely eliminated the 

protein clouds, in reversible fashion, suggesting that cholesterol is the major factor for the cloud 

patterning.  

 

The cloud pattern was confirmed by two additional, independent techniques: first, label-free 

secondary ion mass spectrometry (SIMS) and second, STED fluorescence correlation spectroscopy 

(STED-FCS). For reliable application of SIMS, a novel experimental scheme, named correlated 

optical isotopic nanoscopy (COIN), was developed and verified.  

 

To find out the relevance of clouds to specific proteins, distributions of different classes of 

proteins were investigated. All of the specific proteins analyzed were enriched in the protein 

clouds, but displayed differential enrichment profiles. Many proteins were preferentially located 

in particular areas, such as the edges or centers of the clouds. Some functional partners were 

observed to show similar profiles.  I conclude that enrichment of proteins in the clouds can act as 

a basic, low-hierarchy principle of membrane patterning, underlying the distributions of specific 

proteins. 
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1 INTRODUCTION 

1.1 A Brief History of the Plasma Membrane and Early Models 

The outer boundary of cells has been a subject of extensive research and discussion since the first 

microscopic observations of cells and formulation of the cell theory. The timeline of major 

contributions can be seen in Figure 1-1. Initially cell wall was referred as the “membrane” and was 

thought to be an indispensable part of the cell (Baker, 1952). Later, it was accepted not to be a 

necessary constituent of cells, and the focus was shifted to the protoplasm membrane (Leydig, 

1857). The first insights about the biophysical characteristics of the membrane, such as 

semipermeability and viscosity, were derived from studies of colloids and emulsions, pioneered 

by Lord Rayleigh, Moritz Traube and Otto Bütschli (Butschli, 1892; Loeb, 1906; Rayleigh, 1890). 

Based on the spherical shape the protoplasm adopts in water and the physical characteristics of 

the lipid layers, Georg Quincke suggested that the protoplasm should be enclosed by a semi-

permeable thin film of fat or oil (Quincke, 1888; 1893). Correspondingly, Charles Ernst Overton 

showed that the alcohols with large molecules were able to penetrate into the cells more readily 

than small salt molecules (Ling, 1984). The finding that cells showed highest permeability to 

narcotics like alcohol or ether, which have great solubility lipoids (such as phosphotidylcholine 

and cholesterin), indicated the presence of a lipoic membrane (Loeb, 1906; Meyer, 1899) 

 

Much of the basic knowledge about lipid layers was obtained through surface tension 

experiments. Development of Langmuir trough (Figure 1-2A) enabled the properties of lipid layers, 

such as flexibility or monolayer formation to be analyzed at a quantitative level (Langmuir, 1917; 

Pockels, 1891). By spreading the lipids extracted from a known number of erythrocytes on a 

Langmuir trough and calculating the surface area, Gorter and Grendel identified the bilayer 

nature and thickness of the cell membrane (Gorter and Grendel, 1925). Although the idea of a 

bilayer was accurate, their technically erroneous measurements were later corrected by the 

finding that the proteins also significantly contribute to the membrane surface (Bar et al., 1966; 

Singer, 2004). Based on surface tension measurements and permeability properties, it was 

expected that there would be an adsorbed layer of proteins on both sides of the membrane 

(Robertson, 1964). This early membrane model is known as the Davson-Danielli-Robertson (DDR) 

model (Figure 1-2B). With the introduction of electron microscopy (EM), a 90 Å-thick “rail-road 

track” like structure was repetitively seen around different types of cells and organelles. This 
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structure was ~2 nm thicker than the expected 70 Å bilayer and the DDR model attributed this 

difference to the presence of a protein layer.  

 

Later, images of chloroplast membranes obtained by the newly developed freeze-etch EM 

displayed a mosaic of repetitive lipoprotein units in contrast to the protein-lipid sandwich of the 

DDR model. This observation led to the proposal of the lipoprotein subunit model by Andrew 

Benson (Benson, 1966). In this model, the lipids were thought not to be in a classical bilayer, but 

completely intertwined with proteins (Figure 1-2C). Conversely, applications of spectroscopic 

methods demonstrated that ~1/3rd of the membrane proteins were found in a nonpolar 

environment and adopted a helical conformation (Lenard and Singer, 1966). These results 

suggested that instead of being intertwined with lipids, integral proteins were spanning the entire 

bilayer (Lenard and Singer, 1966; Wallach and Zahler, 1966). However, the cell surface proteins 

were still able to diffuse on a global scale demonstrating the fluidity of the membrane (Frye and 

Edidin, 1970). These observations were integrated together in the famous fluid mosaic model 

(Singer and Nicolson, 1972). In this model, the proteins integral to the membrane are described as 

globular molecules arranged in an amphipathic structure, nonpolar groups buried in the interior 

of the membrane and ionic groups protruding into the aqueous phase (Singer and Nicolson, 1972). 

The model proposes a viscous phospholipid bilayer to be the solvent for integral proteins, forming 

a two-dimensional fluid mosaic (Figure 1-2D). Such a membrane structure allows lateral free 

diffusion of proteins and lipids, whereas the rotational free diffusion is restricted contributing to 

the membrane asymmetry like in the case of oligosaccharides found only in the outer leaflet 

(Singer and Nicolson, 1972). 

 

In the meantime, lipid phase transitions of lipid systems and the membrane fluidity were also 

extensively studied (Edidin, 2003). Different phases were recognized, the main ones being the 

solid gel and liquid-disordered (Ld, also known as liquid-crystalline or fluid). The Ld phase was 

associated with a rather-stable long-range molecular organization assuming a relative disorder at 

the short range which allows flow and lability (Chapman, 1975). The possibility of different phases 

co-existing in the membrane and a bilayer asymmetry were proposed to create packing 

heterogeneities in the membrane with possible effects in the organization and function (Chapman, 

1975; Jain and White, 1977). 
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Figure 1-2 Langmuir trough and early membrane models. 
A. Langmuir trough. A monolayer of lipid molecules is depicted with polar headgroups facing towards water. 
The molecule of interest is dropped at one side of the liquid-filled trough. A sliding barrier can be moved to 
change the surface area available for the spread of the drop, creating a defined pressure on the surface film. 
The pressure affects the packing of lipid molecules altering the surface tension on the lipid-water interface. 
B. The electron micrograph of a permanganate-fixed erythrocyte membrane section with osmium-staining, 
displaying the appearance of the “unit membrane” structure. The graphic on the right represents the DDR 
model with extended polypeptide chains covering the phospholipid bilayer on each side. C. A depiction of 
the Benson model. The membrane is composed of lipoprotein subunits that are formed by packing of 
intertwined proteins and lipids together such that the hydrophobic regions are protected in the center and 
the charged and polar residues occupy the exterior side. D. The fluid mosaic model with randomly 
distributed globular integral proteins in the fluid phospholipid bilayer. The panels are reproduced with 
permission from Edidin, 2003; Robertson, 1964; Benson, 1966 and Singer and Nicolson, 1972, respectively.  

1.2 Composition of the Plasma Membrane 

1.2.1 The Membrane Lipids  

Cells devote ~5% of their genes to synthesize thousands of different lipids (van Meer et al., 2008). 

The structural lipids involved in compartmentalization are generally amphipathic molecules, i.e. 

they are polar (or hydrophilic) on one end and nonpolar (or hydrophobic) on the other end. 

Membrane lipids differ in the type of backbone, headgroup, acyl chain length and saturation. 

They are categorized in three classes (Alberts et al., 2007). The first class is glycerophopholipids, 

which have a glycerol backbone ester-bound to two fatty acyl tails of varying hydrocarbon lengths 

A C

B D
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and saturation. The most abundant glycerophospholipid is phosphatidylcholine (PC, Figure 1-3A). 

The choline headgroup is as wide as the tails, giving PC a cylindrical geometry. In comparison, 

phosphatidylethanolamine (PE) has a fairly small headgroup, yielding a conical shape, which 

creates negative curvature in membranes. Although they have positively charged headgroups, PE 

and PC do not have a net charge. In contrast, phosphatidylserine (PS) and phosphatidylinositol (PI) 

have a negative charge. PI constitutes a small fraction of the membrane, but a highly functional 

one. Reversible phosphorylation of inositol at different positions can produce differentially 

phosphorylated derivatives like phosphatidylinositol-4,5-bisphosphate (PIP2) and triply 

phosphorylated phosphatidylinositol-3,4,5-trisphosphate. Local synthesis and removal of these 

molecules have regulatory effects on signaling events and protein-lipid interactions (Honigmann 

et al., 2013b; McLaughlin and Murray, 2005). 

 

 

Figure 1-3 Structures of major membrane lipid species. 
A. Phosphatidylcholine is the most abundant glycerophospholipid. It is composed of two fatty acid chains 
(highlighted in pink and yellow) bound to glycerol and the choline head group bound to the phosphatidic 
acid moiety. B. Sphingomyelin is one of the major sphingolipids. Sphingolipids contain a sphingoid base 
(pink) amide linked to a fatty acid (yellow). C. Cholesterol is the exclusive membrane sterol of animal cells.  

 

The second class is sphingolipids, which have a sphingosine backbone. Unlike glycerol, 

sphingosine has a long hydrocarbon chain with two hydroxyl groups and one amino group. Amide-

linkage of a fatty acid to sphingosine creates ceramide. Phosphocholine modification of ceramide 

generates sphingomyelin (SM, Figure 1-3B), which is the major sphingolipid in mammalian cells, 

accounting for 30% of the extracellular surface of the plasma membrane on average (Sprong et al., 

2001). Sphingolipids mostly have saturated tails, yielding narrow and tall cylinders, allowing them 

to pack tightly and assume a rather ordered state. Sphingosine-derived lipids can be modified by 

addition of sugar molecules at their headgroup to form glycolipids (Alberts et al., 2007). These 
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sugar groups can vary from a single glucose (glucocerebroside) to complex sugar chains containing 

sialic acid (as in GM1 ganglioside). 

 

Sterols constitute the third class. These molecules have a planar, cyclic structure and are almost 

nonpolar. Presence of sterols is a ubiquitous feature of eukaryotic plasma membranes. Fungal 

cells contain ergosterol and plant cells have phytosterols, whereas cholesterol (Figure 1-3C) is the 

exclusive structural sterol in animals (Mouritsen and Zuckermann, 2004). The peculiarity of 

cholesterol as a membrane lipid makes it worthy of a more detailed discussion (as follows). 

1.2.1.1 Cholesterol 

In mammalian cells phospholipids of an astonishing diversity constitute slightly more than half of 

the plasma membrane lipids, the rest (accounting for 30-50 % of the total plasma membrane 

lipids), in contrast, is mostly made up by one major sterol, cholesterol, which is an indispensible 

molecule for viability (Ikonen, 2008). It is the single most abundant molecule in the plasma 

membrane and is structurally quite different. Like phospholipids cholesterol is amphipathic (polar 

on one side and apolar on the other), however its hydrophobic part consists of a short 

hydrocarbon tail and a planar steroid ring, giving it a smooth and rigid interaction face. Its polarity 

comes from a single hydroxyl group at the opposite end, which is exposed at the bilayer surface. 

Lengthwise, it can span the bilayer only partly. It is produced as the end product of a highly 

complex pathway in the ER requiring over 30 enzymatic reactions. However, it is found in rather 

low levels in the ER and gets enriched in the trans-Golgi compartments and at the plasma 

membrane (Ikonen, 2008). Up to 90% of the unesterified (free) cholesterol is found in the plasma 

membrane (Lange et al., 1989). Golgi compartments have an intermediate level, whereas the 

mitochondria contain the least amount of cholesterol. An alternative route to cholesterol 

synthesis is the cholesterol uptake from lipoproteins in the circulation through low-density-

lipoprotein (LDL) receptor or by direct desorption from the lipoprotein to the plasma membrane 

(Ohvo-Rekilä, 2002). 

 

The esterified forms of cholesterol (cholesteryl esters, much less polar lipids formed by addition 

of long-chain fatty acids to the hydroxyl group) are not found in the plasma membrane but are 

the preferred form for storage and transport of cholesterol.  

 

Cholesterol interacts with phospholipids in a dual mode. On one hand, it favors ordered smooth 

acyl chains, such as the ones of saturated fatty acids, directing an ordered system. On the other 
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hand, it does break when the packing of ordered acyl chains is very tight, as it is conformationally 

not very compatible. This bimodality has several effects in membranes. Firstly, it leads to 

stabilization of an intermediate state between the gel and liquid-cyrstalline, the liquid-ordered 

state (Lo). Lo state corresponds to a liquid state with high rotational mobility and lateral diffusion, 

but with an ordered arrangement of extended acyl chains (Veatch and Keller, 2005). When the 

bilayer is at a temperature above the phase transition temperature (Tm, the temperature at which 

the gel to liquid crystal phase transition occurs), cholesterol causes a decrease in fluidity, while it 

increases the fluidity of ordered chains below the Tm. Second, it has a strong effect on the 

permeability of the bilayer. By inducing tight packing, it improves the permeability-barrier. Finally, 

there are many models suggesting distribution of cholesterol in various heterogeneities and 

cholesterol-driven distribution (or condensation) of other lipids and proteins (Lingwood et al., 

2009; Simons and Ikonen, 1997; Smaby et al., 1996; 1994). 

 

Interesting insights into cholesterol-related cellular mechanisms have been provided by 

cholesterol depletion studies. Cyclodextrins (CDs) are cyclic oligosaccharides formed by starch 

degradation. They can polymerize at different degrees forming hexamers (α-CDs), heptamers (β-

CDs) and octamers (γ-CDs) that harbor hydrophobic cavities of different sizes. β-CDs can fit 

cholesterol in their cavities and are efficient in extracting cholesterol (Ohtani et al., 1989). 

Therefore, they have been extensively used for acute cholesterol depletion. Especially methyl-β-

CD (MBCD) is preferred for its increased water solubility (Zidovetzki, 2007). Another main 

alternative for depletion is the use of cholesterol oxidase, which yields 4-choleren-3-one. A 

longer-term method is metabolic reduction by growing cells in lipoprotein-deficient serum 

conditions and in presence of inhibitors for one of the enzymes (like statins which inhibit 

formation of mavelonate) involved in cholesterol synthesis (Shvartsman et al., 2006). 

 

Cholesterol depletion studies established the presence of two distinct kinetic pools of cholesterol 

at the plasma membrane. The fast pool is removed much more rapidly whereas the slow pool 

requires more time. However, the mechanism behind the two pools is not clear. Since 

cyclodextrins can only work on the outer leaflet in the whole-cell experiments, slow pool might be 

formed by the cholesterol that takes longer time to move from inner leaflet to the outer leaflet or 

alternatively slow pool cholesterol be found in association with other membrane components 

making its extraction more difficult (Haynes et al., 2000). 

 

Although there is a broad range of technique-dependent inconsistencies in the previous reports, 

cholesterol is accepted to flip-flop in the membrane rather fast with a half-time ≤ 1 second (Steck 
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et al., 2002). This fast exchange has been challenging the reliable quantification of transbilayer 

distribution of cholesterol for different cell types. One study in CHO cells employed naturally 

fluorescent sterols like dehydroergosterol and cholestatrienol to quantify the distribution in each 

leaflet by application of fluorescent quenchers (Mondal et al., 2009). Their addition from outside 

resulted in the quenching of only 15-32% of the sterol fluorescence. By comparing the quenching 

caused by permeabilization of cells or microinjection of the quenchers, 60-70% of the sterols in 

the plasma membrane was found to be in the cytoplasmic leaflet (Mondal et al., 2009). These 

values are in line with fluorescence quenching studies in erythrocytes, which reported ~75 % of 

the fluorescent sterols to be in the cytoplasmic leaflet (Schroeder et al., 1991). Quantifications of 

the transbilayer distribution in synaptic plasma membrane of neurons indicate presence of up to 

85% of the cholesterol in the inner membrane leaflet (Wood et al., 2011). 

 

In addition to the transbilayer distribution, the lateral distribution of cholesterol in the membrane 

is also controversial. PALM imaging of cholesterol-binding toxins showed cholesterol-enriched 

circular or elongated domains width 150 nm widths (Mizuno et al., 2011). However, distribution 

of dehydroergosterol, a naturally fluorescent analogue of cholesterol, was shown to follows the 

cellular topology closely, yielding a homogeneous distribution (Wüstner, 2007). Similarly, recent 

mass spectrometry imaging experiments with isotopic labeling of cholesterol also indicated a 

homogeneous distribution (Frisz et al., 2013a). 

1.2.2 The Membrane Proteins 

1.2.2.1 Integral Membrane Proteins 

Membrane proteins with bilayer spanning polypeptide chains are called integral membrane 

proteins (Singer, 1974). It is predicted that 20-30% of all open reading frames in the human 

genome code for integral membrane proteins (Wallin and Heijne, 1998). Among integral 

membrane proteins those that span the bilayer only once are classified as single-pass 

transmembrane proteins, whereas those that transverse the membrane at least twice are called 

the multi-pass proteins. In mammalian cells, transmembrane domains are usually α-helices made 

of 18-25 amino acids. Integral membrane proteins can be classified into different groups. From a 

topology point of view, single-pass transmembrane proteins are called bitopic integral since they 

have segments exposed to both sides of the membrane and the multi-pass ones are classified as 

polytopic integral. The other class is the monotopic integral proteins, which do not span the 
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bilayer and are presented only at one side. The membrane attachment can be established by 

insertion of an amphiphilic α-helix at one leaflet (Alberts et al., 2007). Another way is the covalent 

attachment of the protein to a PI in the outer leaflet via a specific oligosaccharide, creating the 

glycosylphophatidylinositol (GPI) anchor (Vidugiriene and Menon, 1994). Monotopic insertion can 

also be mediated through covalent modification of the protein with one or more lipid anchors 

attaching it to the membrane from the cytoplasmic face. The most common anchoring 

modifications are amide linkage to a 14C myristate at the N-terminal, thioester linkage to a 16C 

palmitate at a cysteine residue, or prenylation of a cysteine through thioether linkage to a 15C 

farnesyl or 20C geranylgeranyl (Bhatnagar and Gordon, 1997; Resh, 2006). 

1.2.2.2 Peripheral Membrane Proteins 

Peripheral membrane proteins do no get inserted at the membrane but are attached to it by 

interactions with membrane lipids or proteins. Unlike integral membrane proteins, peripheral 

proteins are released from the membrane relatively easily, as their attachment is usually affected 

by changes in ionic conditions. They can have domains for interaction with specific lipids or 

proteins. There are at least 12-conserved lipid binding domains, including well known PH, FERM, 

PDZ, BAR and FYVE (Scott et al., 2012). The non-covalent interactions of peripheral membrane 

proteins with the membrane are usually subject to regulation, making them important elements 

of signaling cascades (Stahelin, 2009). 

1.2.2.3 Glycosylation of Membrane Proteins 

Majority of the transmembrane proteins are glycosylated through addition of sugar residues in 

the lumen of the endoplasmic reticulum (ER) and the Golgi apparatus. The type of the 

glycosylation is determined by the linkage between the first carbohydrate residue in the glycan 

and the amino acid to be modified (Varki et al., 2009). Usually, carbohydrate chains can be 

attached to the amide nitrogen of asparagine, leading to N-linked glycosylation in the ER or to the 

hydroxyl group of serine and threonine through O-linked glycosylation in the lumen of Golgi 

(Lodish et al., 2008; Mellquist et al., 1998). 

1.2.3 The Membrane Asymmetry 

The complexity of cellular membranes does not only arise from the diversity of its components, 

but also from their asymmetric distribution. Synthesis and membrane insertion of integral 
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proteins occur in a directional manner and once integrated into the membrane they can generally 

not be transferred across. Post-translational modifications can add another level of asymmetry. 

Addition of oligosaccharides to proteins is carried out by the enzymes facing the lumen of the ER 

and Golgi (Varki et al., 2009). This mechanism ensures that glycosylated residues of proteins are 

facing the exoplasmic surface. Conjugation of glycosylphosphoinositide (GPI) anchor also occurs 

exclusively at the noncytosolic leaflet, targeting the anchored proteins to the extracellular leaflet. 

In contrast, other lipid anchors mediate membrane insertion from the cytoplasmic leaflet. 

 

Furthermore, lipids biosynthesis is also vectoral. For example, glycerophospholipids are generally 

synthesized on the cytoplasmic face of the ER while sphingolipids are rather synthesized or 

modified at the luminal site of the ER and Golgi (Daleke, 2007). The translational asymmetry 

generated with synthesis is preserved by the fact that most phospholipids and sphingolipids can 

cross the membrane bilayer only very slowly at half-times varying with charge, size and polarity of 

the headgroup. Transbilayer movement can be facilitated by lipid transport proteins such as 

flippases, floppases and scramblases (Daleke, 2007). However, these proteins are differentially 

distributed or activated in cellular membranes, meaning that the flip/flop of certain lipids can only 

happen in the organelles carrying the respective transport protein. As a result of these 

mechanisms, in eukaryotic cells, PE, PS and PI are enriched in the cytoplasmic leaflet whereas PC, 

SM and glycosphingolipids are enriched at the outer leaflet (van Meer et al., 2008). Due to 

accumulation of anionic lipids in the cytoplasmic leaflet, inner face of the membrane is more 

negatively-charged. Differential interactions of these asymmetrically positioned proteins and 

lipids with other lipids and the peripheral proteins create a higher level of asymmetry.  

1.3 Modern Models of Membrane Organization: The Lipid Side 

A long way has been traveled since the proposal of the fluid mosaic model; we now know much 

more about the basic composition of the plasma membrane and the general principles that 

govern it. However, a precise understanding of the membrane organization, especially at the 

nano-scale level has still not been gained.  

 

The membranes of living cells are very dynamic and immensely complex (with over thousand 

different components), making investigations under native conditions rather challenging. 

Therefore several model systems have been developed to mimic membrane behavior with 

reduced number of components and within a controlled environment. Although mechanistic 

relevance of these simplified systems to biological membranes is questionable, they provide 
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important insights and have been especially useful to study certain biophysical behaviors such as 

phase transitions, partitioning or curvature effects. For this reason, most of the work on 

membrane organization has been performed using simplified systems, such as model membranes. 

These models vary from suspended or supported mono or bilayers to liposomes of various sizes, 

containing a limited number of components.  

1.3.1 Phase Separation 

Phases can be formed even in bilayers of a single-component, under conditions of different 

temperature, pressure or depending on the properties of the solvent such as ionic strength or pH. 

For example, at low temperatures, the bilayer is in the gel phase, where the acyl chains would be 

densely packed and less hydrated. With increasing temperature, this order is gradually lost and 

the bilayer becomes more fluid. In the fluid phase, the mobility increases and the acyl chains 

become less stretched and packed, creating a thinner and more permeable membrane. 

 

When the number of components in the bilayer is increased, these phase transitions are not as 

smooth since each of the components has different Tm values. So depending on the temperature 

and concentrations of the components, mixed phases can appear and co-exist (Veatch and Keller, 

2005). The coexisting phases could be composed of long-lived, macroscopic patches at 

equilibrium or separate into microscopic or submicroscopic domains of more transient nature 

(Veatch, 2007). It is observed that for co-existing micron-scale phases membranes of at leas 

three-components are necessary (Veatch and Keller, 2005). At the molecular scale, a lipid 

molecule can partition into a domain depending on the length or saturation of its acyl chains, the 

form of its headgroup or its interaction with other molecules. Local preferences directed by such 

properties could create complexes with different characteristics and compositions than the 

surrounding bilayer, since these complexes can preferentially include or exclude other molecules 

(Almeida et al., 2005). 

 

In biological membranes, gel phase is not very compatible with the membrane functioning, and 

fluid phases are more relevant with a possibility of Ld and Lo phases co-existing. To create a similar 

situation in model membranes, usually ternary lipid mixtures that contain cholesterol and two 

lipids of varying Tm values are employed (de Almeida et al., 2003). In these systems it is possible to 

see complex phase diagrams with many transition versions of Lo and Ld phases co-existing (Veatch 

and Keller, 2005). In model systems as well as in cellular membranes, cholesterol is thought to be 

one of the most important determinants for phase behavior of the membrane and partitioning of 
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other components. However, even in model systems, a consensus on description of molecular 

interactions of cholesterol is not reached.  

 

One of the most successful attempts in this regard was the investigations of the lipid phases in 

plasma-membrane derived vesicles (Baumgart et al., 2007; Levental et al., 2009; Lingwood et al., 

2008). It was seen that these structures could undergo cholesterol-dependent large-scale phase 

separation, which suggested that in all its complexity plasma membrane can still be 

predominantly governed by the rules of simplified models. However, the large-scale phase 

separations seen in model membranes or plasma-membrane derived vesicles (Baumgart et al., 

2007; Lingwood et al., 2008) have not been observed in the plasma membrane of living cells 

under normal conditions. One shortcoming is that the extent of membrane composition 

preservation in GPMVs and the effect of used vesiculants are not very clear, and the membrane 

skeleton is known to be lost greatly in these structures (Baumgart et al., 2007). For example, N-

ethylmaleimide, one of the chemicals used to induce GPMV formation, was previously shown to 

cause a redistribution of cholesterol in the membrane, indicated by doubling of the fast extracting 

pool of cholesterol (Haynes et al., 2000). In a recent study, It was found that the membrane was 

composed of a sub-resolution mixture of 76% Lo and 24 % Ld by analyzing the fluorescence 

lifetime decay of Laurdan (Owen et al., 2012). 

1.3.1.1 Cholesterol-Lipid Interaction Models 

Based on its physical characteristics, a number of models have been suggested for cholesterol 

behavior. One of them is the umbrella model. The model is based on the finding that in model 

membranes cholesterol precipitates from the bilayer mixtures of PC and PE when certain molar 

cholesterol ratios (respective maximum solubilities) are reached (Huang and Feigenson, 1999). 

According to this, the phospholipid headgroups at the membrane surface act like umbrellas that 

shield the nonpolar part of cholesterol (which cannot be completely covered by cholesterol’s lone 

hydroxyl group) from exposure to water. Increasing cholesterol concentration causes the 

umbrella headgroups to reorient in order to cover more area, causing a tight packing of the acyl 

chains and cholesterol below the membrane interface (Figure 1-6). Further increases in 

cholesterol concentration are not energetically favorable as the headgroups cannot stretch and 

shield more than a certain number of cholesterol molecules (Huang and Feigenson, 1999) The 

main consequence of this model is that cholesterol-cholesterol interactions are highly 

unfavorable and at high cholesterol mole fractions, the mixing behavior should be based on 

avoiding this unfavourable free energy of unshielded cholesterol. 
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An important thermodynamic property of cholesterol is the chemical potential (Figure 1-6). 

Chemical potential is the cost of adding one more cholesterol molecule to a bilayer. This cost 

seems to be higher in unsaturated lipid bilayers, which suggest that the interaction between 

cholesterol and saturated chains are more favorable (Bennett et al., 2009). Also steep increases 

(jumps) in chemical potential are seen at certain molar fraction ratios of cholesterol depending on 

the other phospholipid component (Ali et al., 2007). For the umbrella model these jumps 

correspond to the points where more cholesterol cannot be protected under the phospholipid 

umbrella (Huang and Feigenson, 1999). 

 

The condensed complex model is based on the compaction seen in cholesterol containing model 

membranes to explain the changes in cholesterol chemical potential (Radhakrishnan et al., 2000). 

The model elaborates that cholesterol has the ability to form complexes with lipids, causing a 

condensation in size with smaller lateral area occupation compared to the uncomplexed form 

(McConnell and Radhakrishnan, 2003). The complexes can be explicitly formed with lipids that 

cholesterol favors, like those with long saturated chains (Figure 1-6). Through these condensed 

complexes the chemical potential of cholesterol is decreased and it becomes less available for 

extraction from membrane or for enzymes to act on (Ikonen, 2008). Here the jumps are defined 

by the stoichiometric composition of the complexes. However, most studies of condensed 

complexes are performed on monolayers that might have different behavior than bilayers 

(Radhakrishnan et al., 2000; 2001). 

 

Another model known as the superlattice model suggests that the small cross-sectional area of 

cholesterol in comparison to phospholipids can create a long-range repulsion between cholesterol 

molecules. This model takes this repulsion force as the predominant factor for cholesterol-

phospholipid interactions and predicts formation of fairly regular (non-random) superlattice 

distributions (Somerharju et al., 1999). When molar fraction of cholesterol is changed, different 

arrangement of superlattices are formed, accounting for the jumps in chemical potential (Huang, 

2009). The superlattice model partly agrees with the umbrella model for the regular distribution 

behavior of cholesterol, however different driving forces are proposed (Ali et al., 2007). 
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Figure 1-4 Interaction models of cholesterol with other lipids 
Graphic representations of the umbrella model, condensed complex model and complex formation 
dependent changes in the chemical potential of cholesterol are depicted. The figure is reprinted with 
permission from Ikonen, 2008. 

1.3.1.2 Sphingolipid Complexes 

Neutral glycosphingolipids such as gylcosylceramides, were found to self-associate and segregate 

into small domains in phospholipid bilayers of model systems (Thompson and Tillack, 1985). 

Electron spin resonance spectroscopy studies in mixed bilayers showed that the interaction of 

cholesterol is stronger with sphingomyelin than with glycerophospholipids (Sankaram and 

Thompson, 1990). Increasing the negative charge of the headgroup favors greater association 

with cholesterol, whereas the chain length and chain unsaturation seemed not to have as strong 

of an effect. In artificial monolayers interaction of cholesterol was found to induce condensation 

of the area sphingomyelin occupies (Radhakrishnan et al., 2001; Smaby et al., 1996) suggesting a 

possible association. It was also shown in monolayers that GM1 partitioned exclusively in 

condensed-complex rich phases (Radhakrishnan et al., 2000). In freeze-fracture immuno-EM 

experiments with fibroblasts gangliosides GM1 and GM3 in the outer leaflet were found to form 

clusters that are susceptible to cholesterol depletion (Fujita et al., 2007). 

 

However, there are also contradictory results obtained from artificial bilayers and large 

unilamellar vesicles arguing against a specific interaction between sphingolipids and cholesterol 

(Holopainen et al., 2004; Smaby et al., 1994). Cholesterol-induced condensation has been shown 

for other phospholipids like phosphatidylcholine species in monolayers, indicating that it is not 

unique to sphingomyelin, and the condensation effect of cholesterol was proposed to be 

determined by the hydrocarbon chain structure and headgroup together (Smaby et al., 1994). It 

should be kept in mind that the results obtained in these studies are largely dependent on the 
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model system and lipid species or fluorescent analogues used. Importantly, the relevance of 

either observation to the possible associations in cellular membranes is not very clear. In living 

cells, different fluorescent sphingomyelin analogs were found in micrometric patches (Tyteca et 

al., 2010). On contrast, probing of sphingomyelin with the high affinity toxin lysenin at high 

resolution showed round domains with a diameter of ~120 nm, which were not sensitive to 

cholesterol depletion (Mizuno et al., 2011). Recently, isotopic imaging of sphingolipids in 

fibroblasts partly supported this observation. 15N-sphingolipid microdomains with mean diameter 

of ~200 nm were observed (Frisz et al., 2013b). However these domains were not enriched with 

cholesterol, nor eliminated by cholesterol depletion, but were dependent on cortical actin 

cytoskeleton (Frisz et al., 2013a; 2013b). 

1.3.2 Protein-lipid interactions 

The above-mentioned models of lipid domain formation are mainly based on thermodynamic 

measurements in model membranes and molecular dynamics simulations, under conditions that 

proteins were usually ignored. However in cellular membranes proteins typically make 50% of the 

membrane by mass (Alberts et al., 2007) and are expected to have significant effects in the 

properties and organization of the membrane.  

 

An early perspective about protein-lipid interactions came from experiments with spin-labeled 

fatty acyl chains (Lange et al., 1985). These paramagnetic analogues incorporated into 

reconstituted membranes with or without protein. Electron spin resonance studies indicated 

existence of a subpopulation of lipids with decreased rotational mobility, only in protein 

containing membranes. These less mobile lipids were disordered compared to the rest (Marsh 

and Horváth, 1998). They are thought to form a shell around the hydrophobic regions of 

membrane proteins. The shell lipids might be distorted to pack the rigid protein surface, making 

them conformationally disordered but also restricted in motion. These lipids in immediate 

proximity of proteins are called the boundary or annular lipids (Lee, 2003). 

 

The lipid annulus concept has been taken to a different level by the lipid shell model (Anderson, 

2002). In this model, which can be thought as an extension of the condensed complex model 

(Section 1.3.1.1), the lipid shells are formed by long-term specific interactions of proteins with 

condensed lipid complexes. Here the lipid shell is like an extended annulus. Shell formation is a 

dynamic process that requires complex formation through self-assembly of cholesterol with 

phospholipids (predominantly sphingomyelin) and the affinity of the protein to the complex. 
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Many of the integral or peripheral membrane proteins have specific lipid-binding domains. 

Furthermore, depending on the structure of proteins, hydrophobic or electrostatic interactions 

between proteins and lipids might play a role for formation of lipid shells (Anderson, 2002). The 

shells are not expected to form separate phases but rather make thermodynamically stable 

mobile entities surrounding the proteins. Around each membrane embedded protein they 

generate a local environment of the certain size and composition that match the physicochemical 

requirements of the protein best. The shells can also generate high-affinity interactions with 

other proteolipidic assemblies, making them important for lateral domain formation. 

 

Principal modes of protein-lipid interactions are reversible association of peripheral proteins to 

membranes through electrostatic interactions or through the molecular surfaces of the proteins. 

Certain amphiphilic secondary structures or hydrophobic loops in the protein can mediate their 

reversible insertion in the membrane. For instance, banana-shaped lipid-binding domains, known 

as BAR domains, form dimers that insert into the curved membranes assisted by electrostatic 

interactions or by amphipathic helices (Bhatia et al., 2009; McMahon and Gallop, 2005). 

Furthermore, more specific lipid protein interactions mediated through lipid interaction domains 

pose important regulatory mechanisms for functional regulation and localization of proteins. 

Some protein families contain modular domains specialized in binding certain lipid species. For 

example, pleckstrin homology (PH) domain found in some signaling or cytoskeletal proteins, such 

as phospholipase C, dynamin, serine/threonine or tyrosine protein kinases, can specifically bind to 

PIP2 (Cho and Stahelin, 2005). Also ezrin/radixin/moesin (ERM) family of proteins, which are 

involved in the membrane association of cytoskeleton, bind the membrane through their FERM 

domains that interact with PIP2 and its derivatives (Hamada et al., 2000). 

 

When it comes to specific interactions with cholesterol, conserved cholesterol binding domains 

have been harder to discover. Some members of the cholesterol homeostasis and trafficking 

machinery possess a conserved sterol sensing domain made up of 5 transmembrane helix 

domains, although cholesterol binding capability of this domain was demonstrated for only one 

sterol regulator protein (Ikonen, 2008). In addition to these large hydrophobic pockets, some 

shorter motifs with cholesterol binding potential have also been identified, such as the 

cholesterol recognition/interaction amino acid consensus (CRAC) motif found in caveolin 1 (Epand 

et al., 2005). Although the CRAC domain seems to promote the interaction with cholesterol, the 

consensus sequence is quite broad and it does not implicate a specific 1:1 interaction with 

cholesterol (Epand, 2008). 
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Interactions with lipids or the lipid environment can have significant effects for the conformation 

and functioning of proteins. For example ganglioside GM3 was found to specifically inhibit the 

kinase domain activity of the eukaryotic growth factor receptor in a phase-separation sensitive 

manner (Coskun et al., 2011). In particular cases lipids are so tightly associated to proteins that 

they have been identified as part of the crystal structures (Coskun and Simons, 2011). These lipids 

that are found buried in the binding sites between the hydrophobic segments of the proteins are 

referred to as non-annular lipids; they can contact with the lipid annulus and help stabilize the 

protein conformation in the membrane (Lee, 2011). 

1.3.3 Hydrophobic Mismatch 

The concept of hydrophobic mismatch refers to a mismatch between the length of the 

hydrophobic segment of proteins and the thickness of the hydrophobic core of the lipid bilayer 

(Mouritsen and Bloom, 1984). To overcome the mismatch some adaptation can happen for both 

lipids and proteins. Flexible acyl chains of the lipids can adopt a more ordered or more disordered 

arrangement to change the thickness. Changes in membrane curvature can also modulate the 

bilayer thickness. The proteins can undergo a conformational change, or change the orientation 

of their hydrophobic segment by tilting it or by exposing it to the surface (Killian and Nyholm, 

2006). One way to change the orientation of the membrane spanning domains is palmitoylation. 

In other cases proteins can oligomerize or aggregate to minimize the exposure to lipids (Killian, 

1998). However, these adaptations are costly in energy, so it is expected that proteins will prefer 

the areas of the lipid bilayer whose thickness match the length of the membrane spanning 

sequences.  

 

The bilayer thickness is determined by the lipid composition. Long hydrocarbon chains and 

ordered chain arrangements increase thickness. Cholesterol is also known to cause thicker and 

stiffer membranes (Simons and Sampaio, 2011). When the relative increase of cholesterol from 

ER to plasma membrane is considered, the hydrophobic mismatch could be involved in sorting of 

proteins and formation of domains in different organelles (Mouritsen, 2011). This change actually 

coincides quite well with the increasing length of transmembrane domains of integral proteins 

along the secretory pathway (Sharpe et al., 2010). 
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1.4 Modern Models of Membrane Organization: The Protein Side 

Domains come in different flavors; on one edge are the lipid domains in model membranes, which 

are formed purely on thermodynamics; in the other edge are other functional nanodomains such 

as specific receptor clusters, which are formed through a complex set of interactions and with a 

functional basis (Edidin, 2001). Although formation of the latter cannot be uncoupled from the 

first, lipid and protein domains can be generally categorized based on the perspective and the 

experimental system. Here, protein domains refer to membrane domains that include proteins 

and that are not formed solely on lipid-lipid interactions. Some of the lipid domain models can be 

adapted to account for the presence of proteins and be predictive of possible protein-lipid 

interactions. However, to study interactions that include proteins, it is also necessary to 

experiment on more complex membranes that are either mimicking the main properties of the 

proteolipid membranes or are derived from cellular membranes directly (Simons and Gerl, 2010). 

1.4.1 Model Systems and Techniques 

1.4.1.1 Experimental Systems 

The simplest of these models are obtained by reconstitution of selected protein species to 

liposomes and or supported/suspended bilayers. Liposomes can be of different sizes and ipid 

compositions. The commonly used giant unilamellar vesicles (GUVs) are 10-100 µM (Sezgin and 

Schwille, 2012). These are especially useful to study the domain formation behavior or lipid 

interactions of a certain protein and the curvature mechanisms under controlled conditions. A 

more elaborate biological system is giant plasma membrane vesicles (GPMVs) (Scott, 1976; Sezgin 

et al., 2012a). These are micrometer scaled blebs produced from the cell membrane by treatment 

with chemical vesiculants such as paraformaldehyde (PFA) and dithiothreitol (DTT) or N-ethyl-

maleimide (NEM) (Baumgart et al., 2007). They have the full complexity of the plasma membrane, 

however most of the cytoskeleton was shown to be excluded from the blebs (Baumgart et al., 

2007). 

 

Plasma membrane spheres are principally similar to GPMVs, but are obtained by swelling of the 

cells, which causes formation of a spherical membrane outgrowth from the cell surface, having a 

diameter of 25-30 µm (Lingwood et al., 2008). Although these larger spherical systems are good 
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for fluorescence imaging, their spherical shape makes them not very ideal especially for high-

resolution imaging.  

 

An alternative is to obtain flat, inside-out patches of plasma membrane (membrane sheets) by 

shearing the cells physically (Avery et al., 2000). The shearing can be done in various ways, by 

applying a brief sonication pulse (Lang et al., 2001), or by hypotonic (Frick et al., 2007) or 

mechanical rupture (Lillemeier et al., 2006). It is necessary that the membrane is well-attached to 

a flat surface so that it is not lost after the shearing. Plasma membrane sheets have the advantage 

of presenting the full complexity of the membrane in the absence of other cellular constituents. 

Most of the time, peripheral membrane proteins, cytoskeletal elements and docked vesicles are 

still visible in the sheets. Using membrane sheets it was even possible to study endo-/exocytosis 

of secretory granules (Holroyd, 2002; Lang et al., 2001). Being thin and flat, they offer a possibility 

for higher-resolution and crisper images, since there is not out of focus fluorescence that can 

cause blurring. Because they are inside out, the cytoplasmic face is available for direct treatments 

or for labeling (without the need for permeabilization). Of course this also creates disadvantages 

such as loss of some components due to ease of extraction or aggregation of proteins over time 

(Frick et al., 2007): therefore, for this system it is beneficial to use stabilizing buffers or employ 

fixation protocols. 

 

Being one of the easiest cellular materials to isolate, plasma membrane of red blood cells 

(erythrocytes) has been the most extensively studied eukaryotic membrane. Osmotic hemolysis of 

erythrocytes makes them permeable, so the intracellular material can be washed out, leaving the 

resulting membrane behind, the so-called ghost. The basic cell shape is retained in the ghosts as 

the submembraneous cytoskeleton persists during this treatment. The major protein of the 

ghosts is spectrin, which forms a rigid scaffold beneath the membrane. In this permeable form 

both leaflets are accessible for treatments with reagents. Alternatively, the membrane can be 

allowed to reseal to study the two leaflets separately. It is also possible to obtain inside-out 

vesicles from the ghosts (Alberts et al., 2007). 

 

Erythrocyte ghosts have been extensively useful for biochemical analyses and for investigations of 

membrane composition and protein orientation, as they make it possible to assay the plasma 

membrane without the contamination of cytoplasmic material and membrane-bound organelles 

(Schroeder et al., 1991). One problem with erythrocyte ghosts is that different preparation 

conditions produce ghosts with different properties, so the results obtained with are method-

dependent. Another problem is the possible differences of erythrocytes compared to other cells. 
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For example, the cytoskeleton of most cell types is not as rich in spectrin and as robust as that of 

erythrocytes (Pumplin and Bloch, 1993). 

 

Expectedly, none of these can replace a fully functional living cell. Nowadays, it is becoming easier 

to perform experiments with living cells from a variety of cell lines. However, depending on the 

particular question it might be too complicated or even impossible to perform some 

measurements in living cells. In these cases, one of the more simplified systems above is 

preferred. In these systems apparently the dynamic regulation of the membrane and material 

flow mechanisms are lost along with some possible components. However, they can still provide 

snapshots of the membrane and give hints about how it might respond under different conditions 

while enabling more controlled experiments with less elaborate techniques. This is the reason 

why these systems are still employed much more often than living cells for studies of membrane 

organization.  

1.4.1.2 Experimental Techniques 

In the last two decades, a plethora of imaging based techniques has been increasingly engaged in 

studies of membrane patterning to complement the standard biochemical assays. One of the 

older techniques used to study the diffusion of membrane components is fluorescence recovery 

after photobleaching (FRAP). In FRAP experiments, a certain population of the fluorescently 

labeled molecules are bleached and the fluorescent recovery as a result of the movement of new 

molecules into the area (Kenworthy et al., 2004) is measured. This way, macroscopic diffusion 

coefficients and mobile fractions can be determined. A drawback of FRAP is that it can only follow 

the movement of a large population in the bleached area, instead of individual molecules. For 

example, in cases where the fluorescence does not recover it cannot differentiate between 

possible reasons such as true immobilization or confined motion (Alberts et al., 2007). 

 

An alternative method that addresses this problem is single particle tracking (SPT), where a small 

number of molecules are tagged and microscopically tracked (Ritchie and Kusumi, 2003). Analysis 

of particle trajectories presents different modes of movement and the related motion parameters. 

Hence, SPT offers a way for measuring microscopic diffusion coefficients (Kusumi et al., 1993). 

However, it is hard to perform single particle studies at high temporal resolution by using single 

fluorophores due to low signal-to-noise ratio. Therefore colloidal gold particles are commonly 

used to probe different molecules allowing up to 25 µs time resolution (Kusumi et al., 2010). 

However, these particles are 20-40 nm in diameter and are usually conjugated through antibodies. 
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It is possible that they affect the diffusion behavior. For example it is shown that for an 

unsaturated phospholipid molecule probing with 40 nm colloidal gold gave 2.5 times slower 

diffusion coefficients compared to the fluorescent probing with a small dye (Fujiwara et al., 2002). 

However this effect is seen rather at longer time windows (seconds) and is not as pronounced for 

time scales shorter than 100 ms. For the fluorescence tracking at high axial resolution particle SPT 

method can be combined with total internal reflection (TIRF) microscopy. Also other super-

resolution microscopy methods are being increasingly employed to study membrane organization.   

The issue of spatial resolution and basic principles of far-field super-resolution techniques are 

discussed below in Section 1.5.  

 

Additionally, Förster resonance energy transfer (FRET) is a technique that allows indirect probing 

of interactions at scales below resolution lipid. FRET is the nonradiative transfer of energy from an 

excited donor to a nearby acceptor. The FRET effect can be assayed either by the decrease in 

donor emission or the increase in acceptor fluorescence. The typical donor-acceptor distances for 

efficient FRET is 5-7 nm, offering a measure for the close proximity interaction between homo or 

hetero molecules at high spatial sensitivity (Klotzsch and Schütz, 2012). This way FRET can provide 

information about the clustering behavior of different molecules. However, in addition to simple 

clustering of tagged molecules, the degree of FRET can also be influenced by other factors such as 

the relative orientations, rotational mobilities or spectroscopic properties of the donor and 

acceptor (Lagerholm et al., 2005). Also, clustering-related factors like the cluster size, cluster 

density, number of donor and acceptor per clusters may have complex consequences in the FRET 

efficiency, making the results hard to interpret and compare (Kenworthy, 2008). 

 

Another method for diffusion-based studies is fluorescence correlation spectroscopy (FCS). 

Fluctuations of fluorophores within a confocal laser spot can be analyzed and information about 

the diffusion and oligomerization of molecules can be obtained (Lagerholm et al., 2005). Also by 

varying the FCS beam size, it is possible to determine the transition time of the molecule through 

the illumination spot versus the beam area. This gives the FCS diffusion law that defines the 

diffusion behavior and the mode of motion of the molecule (Lenne et al., 2006; Wawrezinieck et 

al., 2005). In this regard, it is complementary to SPT measurements. However, due to diffraction 

of light, the beam size cannot be made smaller than the resolution limit (see Section 1.5 for a 

brief discussion about resolution), blocking the measurements at small beam sizes relevant to 

nanodomains. With the application of STED technique to FCS studies, this limitation has been 

largely overcome. STED-FCS can decrease the spot diameter down to ~30 nm allowing detection 

of single molecules diffusing in nanosized membrane areas (Mueller et al., 2013). Remarkably, 
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STED-FCS measurements showed differences in the motion of different lipids that cannot be 

distinguished with confocal FCS (Eggeling et al., 2009). 

1.4.2 Examples of Specialized Protein Domains in Cellular Membranes 

One of the first and most-studied domains in the plasma membrane is caveolae. These cave-like 

indentations were first seen with EM in the gall bladder epithelium of mouse (Yamada, 1955) and 

later in many other cell types. These pits generally appear to be uncoated (Parton et al., 2006), 

however under certain preparation conditions a spiral coat made up of filaments can be visualized 

(Rothberg et al., 1992). This coat is formed by a protein called by caveolin 1 (Rothberg et al., 

1992), which is necessary for caveolae formation. Cholesterol is also critical for formation and 

maintenance of caveolae. In early freeze-fracture EM studies, it has been detected at the rims of 

the caveolae (Simionescu et al., 1983), although it was generally seen to be absent in plasma 

membrane invaginations in general (Montesano et al., 1979). Caveolin 1 seems to have a strong 

binding affinity to cholesterol (Murata et al., 1995), while the exact interaction mechanism is still 

not completely understood (Parton et al., 2006, also see Section 1.2.1.1). In addition, a recent 

molecular dynamics simulation suggested that even in the absence of a direct binding domain 

caveolin 1 would have a preference for cholesterol-rich bilayers, which can stabilize caveolin 

conformations required for generation of membrane curvature (Sengupta, 2012). What is clear is 

that cholesterol depletion causes caveolae to flatten (Rothberg et al., 1992) and increases the 

caveolin 1-GFP mobility in the membrane (Thomsen et al., 2002). The pits can elongate into flask-

shaped invaginations that are internalized and the caveolae domains are known to be important 

mediators of endocytosis and signal transduction. Interestingly, many proteins are found to be 

associated to these domains, such as GPI-anchored proteins or some receptors. Although there 

are controversial views about their biogenesis and composition, the recent view is that stable 

domains that are mainly constituted of caveolin 1 and possibly cholesterol are formed in the late 

Golgi compartment and trafficked to the cell membrane directly (Parton et al., 2006). 

 

The small Ras GTPases are another group of well-studied proteins. They are prominent signaling 

molecules that are activated through GTP binding. All three isoforms (H-, N- and K-Ras) are 

farnesylated (Hancock et al., 1989). Additionally, N-Ras undergoes palmitoylation and H-Ras 

undergoes double palmitoylation (Hancock et al., 1989; Resh, 2006). K-Ras harbors a polybasic 

domain at the C-terminal instead. The isoforms have differences in their clustering behavior, 

signaling capabilities and in their ability to activate various targets (Hancock, 2003). In membrane 

sheets, all isoforms were found in clusters irrespective of their activation state. In the GDP-state, 
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K-Ras clusters are predominantly insensitive to cholesterol depletion, whereas half of H-Ras 

clusters show sensitivity (Hancock, 2003; Prior et al., 2003). Interestingly activated H-Ras and K-

Ras are localized to distinct plasma membrane microdomains that are both not very sensitive to 

cholesterol depletion (Prior et al., 2003) and lipid anchoring seems to be an important 

determinant for correct micro-localization (Plowman et al., 2005). 

 

Besides Ras and caveolae, cellular membranes contain many other types of specialized protein 

domains or clusters (Lang and Rizzoli, 2010; Saito and Yokosuka, 2006; Simons and Toomre, 2000). 

An interesting feature of the plasma membrane is that in comparison to artificial membranes 

diffusion of both proteins and lipids are 5-50-fold slower in the plasma membrane (Fujiwara et al., 

2002; Jacobson et al., 1987; Kusumi et al., 2005). In a 1987 review, the main factors proposed to 

explain slower diffusion of membrane components were molecular crowding and protein density, 

membrane viscosity, interactions with the cytoskeleton and interactions with the extracellular 

matrix (Jacobson et al., 1987). After a quarter century, some of these factors formed the bases of 

major membrane organization models, which explain the heterogeneities and the slowed 

diffusion in the membrane from different perspectives. 

1.4.3 Membrane Skeleton: Picket-Fence 

In 1980, FRAP was applied to normal erythrocytes and spherocytic erythrocytes that lack the 

cortical cytoskeletal matrix components to reveal that diffusion of Concanavalin A-probed 

glycoproteins was 50 times faster in the absence of the cytoskeleton (Sheetz et al., 1980). Later 

optical trapping was used to drag the immunogold-labeled transmembrane or GPI-anchored 

major histocompatibility complex proteins until a barrier was encountered (Edidin et al., 1991). 

Barrier-free path lengths of 0.6 µm were measured for transmembrane and 1.7 µm for GPI-

anchored proteins at room temperature (RT). At higher temperatures, 5-fold longer paths were 

obtained for both. These results suggested presence of cytoskeleton-based compartments. 

 

In an earlier SPT experiment with 33 ms temporal resolution, integral membrane receptors, E-

cadherin, transferrin receptor (TfnR) and eukaryotic growth factor receptor (EGFR), were probed 

with colloidal gold particles conjugated to antibodies or ligands (Kusumi et al., 1993). Different 

modes of motion were identified by plotting the mean square displacement over time. These 

modes include a stationary mode (with microscopic diffusion coefficients <460 nm2/s), simple 

Brownian diffusion, directed diffusion, and confined diffusion. The confined diffusion was 

attributed to the presence of membrane compartments created by the membrane cytoskeleton 
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(Sako and Kusumi, 1994). While Brownian motion was observed within a compartment, 

intercompartmental “hops” (hop diffusion) were necessary for the long-range diffusion. Later, a 

fifth mode was added to this list: diffusion in a harmonic-like potential (like bouncing off flexible 

borders) due to anchorage to an elastic cytoskeleton (Kusumi and Sako, 1996). 

 

The membrane-skeleton fence model (Kusumi and Sako, 1996) was suggested based on the 

results of these FRAP and SPT-based diffusion studies of membrane molecules (Kusumi et al., 

1993; Sako and Kusumi, 1994; 1995) and the previous work on membrane skeleton (Edidin and 

Stroynowski, 1991; Edidin et al., 1991; Sheetz et al., 1980). This model stated that cytoskeleton 

found at close proximity to the membrane creates steric hindrance for the cytoplasmic portions of 

the membrane proteins, forming an elastic diffusion barrier. Thus, membrane skeleton 

compartmentalizes the membrane into small domains that confine single molecules and lead to 

the confined and hop diffusion pattern. Later they have added the transmembrane proteins as 

pickets to the fence (Fujiwara et al., 2002). The SPT measurements showed that even lipids and 

GPI-anchored proteins at the outer leaflet undergo confined and hop diffusion, although they are 

not directly confined by the cytoskeleton at the cytoplasmic side (Dietrich et al., 2002; Fujiwara et 

al., 2002). This was explained by the presence of immobilized and cytoskeleton-anchored 

transmembrane proteins, which act like pickets along a fence, transmitting the boundary effect of 

cytoskeleton to the outer leaflet (Fujiwara et al., 2002). This model commonly known as the fence 

and picket model is one of the most prominent models in the membrane organization (Ritchie et 

al., 2003). 

 

In the last two decades, Kusumi and colleagues have contributed SPT data for many molecules at 

different temporal resolutions (varying from 33 msec to 25µsec) and time windows (Fujiwara et 

al., 2002; Murase et al., 2004; Tomishige and Kusumi, 1999). Hop diffusion was observed for all 

the proteins and lipids that have been tracked (Kusumi et al., 2005). They have validated the 

picket-fence model on a variety of cell types based on the effects of actin-disrupting drugs, 

although in each cell type confinement zones of different sizes were found (Murase et al., 2004). 

Three-dimensional reconstructions by electron tomography enabled visualization of the actin 

meshwork at the membrane interface (within 10.2 nm) forming the membrane skeleton (Morone 

et al., 2006). 

 

The current state of the picket-fence model views the membrane skeleton, which forms 

compartments of 40-300 nm diameter, as the first level of organization hierarchy (Kusumi et al., 
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2011). This is followed by formation of small raft domains within the compartments and 

oligomerization of membrane proteins to form complexes.  

 

Recently, a different and more dynamic role of actin was proposed for formation of membrane 

nanoclusters (Gowrishankar et al., 2012). In addition to the static cortical actin meshwork, this 

model also puts forward the existence of short, dynamic actin filaments at the cortex and 

categorizes the proteins into 3 groups based on their interactions with these filaments. The “inert” 

proteins interact only with the static meshwork but not with the dynamic filaments. Passive 

molecules interact with the filaments but do not influence them, and active molecules not only 

interact with the filaments but also have a direct effect on them.   

1.4.4 Membrane Rafts 

In 1990’s there were many reports about the poor solubility of GPI-anchored proteins by nonionic 

detergents. After cold detergent treatment of cells, these proteins were found to associate with a 

low-density membrane fraction (Brown and Rose, 1992; Schroeder et al., 1994). This low-density, 

detergent-insoluble fraction (now commonly referred to as detergent-resistant membranes, 

DRMs) was found to include several proteins like caveolin (Murata et al., 1995) or hemagglutinin 

(Skibbens et al., 1989) beside GPI-anchored proteins. Based on their detergent insolubility, DRMs 

were predicted to be mainly in the Lo phase (Ahmed et al., 1997). In line with that, they showed 

an enrichment in sphingolipids and cholesterol in comparison to glycerophospholipids, suggesting 

that their composition was quite similar to that of apical plasma membrane of intestinal epithelia 

(Brown and Rose, 1992). 

 

The epithelia tissue lining the body cavities is made up of a single layer of polarized cells. These 

epithelia cells are exposed to two different environments at each side, the apical side faces the 

lumen of the cavity whereas the basolateral side contacts the blood supply and the extracellular 

matrix (Simons and Fuller, 1985). The apical membrane and the basolateral membrane are also 

different from each other compositionally. In intestinal epithelial cells, the apical membrane is 

rich in sphingomyelin and glycosphingolipids, and poor in phosphatidylcholine compared to the 

basolateral. These lipids are mainly localized to the exoplasmic leaflet of the membrane. However 

even for different polarized cells the relative enrichment is quite variable and the compositional 

differences for lipids are not that clear (Simons and Fuller, 1985). Nonetheless, for some proteins 

enrichment at one side seems to be much more significant in comparison to the lipids. One 

example is TfnR, which shows over 41-fold higher surface density on the basolateral surface 
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(Simons and Fuller, 1985). Conversely, GPI-anchored proteins are enriched on the apical 

membrane (Cao et al., 2012). One important factor for maintenance of the membrane in this 

polarized composition is the presence of tight junctions at the intersection between apical and 

lateral membranes, restricting the diffusion of membrane constituents. What is more interesting 

is the establishment of the membrane polarity and studies along this line have also contributed 

greatly to the understanding of membrane trafficking and also membrane domains. 

 

To explain polarized delivery to the apical domain, glycosphingolipid domains were proposed to 

form at the exoplasmic leaflet of the Golgi membrane, acting as sorting centers which 

concentrate proteins to be targeted to the apical membrane (Simons and Fuller, 1985; Simons 

and van Meer, 1988; Simons and Wandinger-Ness, 1990). This way, the lipid and proteins were 

sorted into carrier vesicles that transport them to the correct cell surface membrane. Many 

observations supported this proposal, like sorting of GPI-anchored proteins (Brown and Rose, 

1992; Rothberg et al., 1990) and viral proteins (Müsch et al., 1996; Yoshimori et al., 1996) and the 

glycosphingolipid/cholesterol-dependent formation of caveolar domains (Parton et al., 2006). 

 

This proposal led to the lipid-raft hypothesis(Simons and Ikonen, 1997). According to this model, 

lipid rafts are formed by self-association of sphingolipids in the exoplasmic leaflet. Since the 

sphingolipid headgroup occupies a larger area than the typically unsaturated fatty acyl chain, 

spacers are needed for tight packing. Planar cholesterol molecules in both leaflets act as spacers 

and fill the gaps between the acyl chains of sphingolipids. The complementary cytoplasmic leaflet 

is expectedly composed of phospholipids with saturated hydrocarbon tails. Lipid rafts can recruit 

specific sets of proteins such as GPI-anchored or doubly acylated proteins or some 

transmembrane proteins, and exclude others. Individual lipids can move in an out of these 

sphingolipid-cholesterol clusters, making them hard to detect (Simons and Ikonen, 1997). Lipid 

rafts were also proposed to be involved in many cellular functions, including membrane 

trafficking, sorting and signaling (Simons and Ikonen, 1997). 

 

The raft concept was also explaining the DRMs formed after cold Triton X-100 treatment (Harder 

and Simons, 1997; Simons and Ikonen, 1997). Based on the similarity in composition and assembly 

of DRMs, it was highly likely that they were originating from the lipid rafts (Harder and Simons, 

1997; Simons and Ikonen, 1997) Although, DRMs were essentially viewed as consequences of lipid 

rafts, together with lipid raft model, concerns about the detergent extraction were also raised 

(Simons and Ikonen, 1997). Detergent extraction does not show the original cellular locations of 

DRMs, as well as their presence in living cells. Also finding two proteins in DRMs cannot be an 
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indication of their interaction in the cell (Harder and Simons, 1997; Simons and Ikonen, 1997). Still, 

the proteins found in DRMs are generally accepted to be raft-interacting proteins and for years 

this method has been used to identify a plethora of proteins that associate with the lipid rafts 

(Blonder et al., 2004). 

 

Yet, over the years the terms lipid raft and DRMs have been used so often, regardless of the 

variation in the conditions and methods of to describe domains seen under various conditions and 

with numerous techniques, what a “raft” means was not really clear any more. To create some 

consistency in the field, scientists had to gather in a Keystone Symposium and agree on a broad, 

extended definition (Pike, 2006): “Membrane rafts are small (10–200 nm), heterogeneous, highly 

dynamic, sterol- and sphingolipid-enriched domains that compartmentalize cellular processes. 

Small rafts can sometimes be stabilized to form larger platforms through protein-protein and 

protein- lipid interactions.” 

  

The definition makes a distinction between the microdomains in cells and the domains in the 

model membranes (which are formed by an overlapping, but yet different set of rules), by 

applying only to the first (Pike, 2006). Membrane rafts include proteins as active participants of 

the microdomain formation and exclude domains formed solely by lipid-lipid interactions.  

 

After years of research, the behavior of raft phases in model systems is very well established and 

the potential raft proteins are identified by large scale lipid raft proteomics (Foster, 2008). In 

general, owing to the presence of cholesterol and high amounts of sphingomyelin, rafts are 

anticipated as Lo membrane phases giving them higher viscosity compared to the surrounding Ld 

phase (London and Brown, 2000). However, the biological extents of cholesterol/sphingomyelin 

complexes and phase segregation are still controversial (Munro, 2003; Shaw, 2006). In a recent 

study, degree of lipid packing in the membrane of living cells was addressed by imaging the 

fluorescence lifetime decay of an environment-sensitive lipid dye called Laurdan (Owen et al., 

2012). It was found that the membrane was composed of a sub-resolution mixture of 76% Lo and 

24% Ld domains. This observation is in line with the previous data from model PC:cholesterol 

bilayers showing that at cholesterol concentrations above 25 mol %, a more uniform Lo-like phase 

is seen rather than large coexisting phases (Thewalt and Bloom, 1992), and at even higher 

concentrations (50 mol %) cholesterol antagonizes lateral phase segregation (Silvius et al., 1996). 

Having a cholesterol concentration in between these two levels, plasma membrane was proposed 

to be largely Lo, with cholesterol stabilizing the boundaries between microdomains (Hao et al., 

2001). A largely Lo membrane partly contradicts with the view that equates rafts to ordered 
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microdomains, suggesting a more complicated scenario (London, 2005). In any case, it is also 

accepted that in the full complexity of a living cell, there is no standard Lo membrane raft but 

countless number of variations (Munro, 2003; Pike, 2009; Shaw, 2006). 

 

Apart from the lipid order, one immediate outcome of the sphingolipid-cholesterol rich rafts is the 

expected thickness of such domains. The increased thickness of rafts might be important for 

formation of platforms that segregate and sort proteins based on hydrophobic matching of their 

membrane spanning domains (Sharpe et al., 2010; Simons and Sampaio, 2011). 

1.4.5 Protein Densities, Domains, Islands  

Synaptic vesicle is a trafficking organelle in neuronal cells, which undergoes cycles of plasma 

membrane fusion and retrieval. Its composition has been very well characterized. For an average 

synaptic vesicle, 67.5% of the estimated total mass was found to be contributed by proteins 

(Takamori et al., 2006). This measurement can be in principle representative of the plasma 

membrane. In another study, shaving of erythrocyte ghosts demonstrated that >23% of the 

membrane area was occupied by transmembrane segments of proteins (Dupuy and Engelman, 

2008). This is expectedly an underestimate as there are probably more proteins that might be 

destabilized and lost during the procedure. When the perturbation of the membrane by the 

flanking protein segments and by the proteins bound at the surface is also considered, it can be 

imagined there is little room for the lipids to exist in a state similar to pure bilayers (Dupuy and 

Engelman, 2008). This means that even the simple presence of a high density of proteins in the 

membrane can introduce important organizational aspects which are absent in model 

membranes, underlining the necessity of considering the full protein complexity of the membrane 

more comprehensively.  

 

An early experiment investigating plasma membrane domains was performed on living fibroblasts 

by using anti-human cell Fab fragments conjugated to fluorophores (Yechiel and Edidin, 1987). 

Making gradual changes in the magnification, areas of different sizes were bleached and the 

fluorescence recovery was observed. They have detected an inverse relationship between the 

labeling intensity and protein diffusion, suggesting that the membrane consists of protein-rich 

and protein-poor areas. In support of this observation, a simulation of proteins in single-phase 

membranes predicted that protein density fluctuations influenced by nonspecific protein 

interactions can lead to significant protein heterogeneity in the membrane creating sub-micron 

scale domains (Abney and Scalettar, 1995). Implications of this model were presented by single 
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particle trajectories. The confined diffusion of membrane proteins observed by SPT (explained in 

1.4.3) is generally attributed to the transient confinement zones, formed by actin fences. 

However, an alternative explanation is also put forward (Destainville et al., 2008b). The inverse 

proportion between the microscopic diffusion coefficient and the local protein concentrations 

was explained by interprotein interactions (Daumas et al., 2003). As an alternative to the picket 

fence model, the SPT data was fit to a different model, called cluster phase. The idea comes from 

the physics of colloidal suspensions; proteins are represented by the colloid particles that are 

found in small clusters (Destainville, 2008). Cluster size is proportional to colloid concentration, 

whereas the diffusion coefficient of colloids is inversely proportional to both. Based on this, 

protein clusters in cells might be formed by non-specific short-range attractions and longer-range 

weaker repulsions (Destainville et al., 2008a). 

 

The role of inter-protein interactions versus raft partitioning was further assayed for signaling 

microdomains in T-cell membranes by using single-molecule microscopy (Douglass and Vale, 

2005). The diffusion of GFP-labeled raft-like proteins, Lck and LAT, and non-raft-like associated 

proteins, CD2 and CD45, were analyzed (Douglass and Vale, 2005). Multiple modes of diffusion 

were observed for individual molecules, with abrupt changes between mobile and immobile 

states, but a correlation with the raft-association was not detected. In the activated cells, more 

discrete microdomains (with co-clustering of CD2, LAT and Lck) were formed that were not 

maintained by actin or lipid raft interactions, as shown by actin-disrupting drugs and mutants that 

cannot associate to rafts. These domains limit the free diffusion of molecules and exclude or 

include (and trap) them depending on inter-protein interactions, where phosphorylated LAT plays 

a pivotal role. 

  

Plasma membrane sheets (introduced in Section 1.4.1.1) have been instrumental tools to study 

the protein organization as they make the inner membrane leaflet molecules readily accessible. 

To study the protein organization mast cells membranes were ripped with coated EM grids or 

coverslips and imaged by atomic force microscopy (AFM) and transmission EM and (Frankel et al., 

2006; Wilson et al., 2004). EM imaging uncovered dark patches that exist on the membrane for 

both resting and activated cells, but become more prominent upon activation by receptor 

clustering. The patches were formed by enhanced labeling with EM stains such as OsO4, indicating 

high levels of double-bond containing lipids such as unsaturated lipids, sphingomyelin or 

cholesterol (Wilson et al., 2004). Immunogold labeling revealed that different signaling proteins 

known to associate with DRMs were enriched in distinctive patches (Wilson et al., 2004). In AFM 

topography images irregular raised (thicker) domains that include different signaling components 
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were found (Frankel et al., 2006). These domains were cholesterol-dependent and were linked to 

each other through a fibrous meshwork.  

 

A similar EM study in ripped T-cell membranes targeted a broader range of proteins, by labeling 

subsets of proteins through biotinylation of their carboxyl or sulfhydryl groups on the cytoplasmic 

side and coupling to streptavidin-gold (Lillemeier et al., 2006). Like in mast cells the gold-labeled 

proteins were found to localize in dark patches on the membrane in both resting and activated T-

cells. Raft and non-raft markers were both found to be in these patches but clustered in distinct 

regions within them. These patches that occupied 20-50% of the membrane were termed 

“protein islands”, which were separated and surrounded by a ‘‘sea’’ of protein-free membrane. 

Actin and cholesterol were also found to be associated to the protein islands.  

 

In another study the lateral diffusion coefficients of GFP tagged proteins of different topologies 

(bitopic, polytopic, GPI-anchored and palmitoylated proteins) were measured by FRAP in COS-7 

cells (Frick et al., 2007). The observed slow diffusion of proteins in cell membrane was mediated 

by protein density, and not by cortical cytoskeleton.  

 

A systematic analysis, partly addressing this issue, has recently been performed in yeast cells 

(Spira et al., 2012). Distributions of >40 proteins were sequentially analyzed, through fusions to 

fluorescent proteins and high-resolution imaging. In each case a heterogeneous distribution was 

observed, with various type of domains ranging from patches to continuous networks (Spira et al., 

2012).  

 

Although these studies summarized above employed different techniques and experimental 

systems, they all point at the presence of protein-rich domains or assemblies in the plasma 

membrane. However, the extent or importance of these domains has not been thoroughly 

investigated. 

1.4.6 Electrostatic Interactions 

The inner leaflet of the plasma membrane contains a high concentration of negatively charged 

lipids, creating a negative surface potential (van Meer et al., 2008). This makes the membrane 

organization quite open to electrostatic interactions. For example, the importance of ionic 

interactions in membrane organization was demonstrated through reversible redistribution of a 
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structurally diverse set of proteins in response to changes in the concentrations of divalent 

cations, especially Ca2+ (Zilly et al., 2011). 

 

An important player in the membrane is the multianionic PIP2 that is known to interact with 

cationic residues in proteins. PIP2 can bind to many actin-regulating proteins and is involved in 

stabilizing the interactions between the plasma membrane and the actin cytoskeleton (Liu and 

Fletcher, 2006; Niggli et al., 1995; Sakisaka et al., 1997). PIP2 is also reported to affect the 

clustering of certain proteins like syntaxin 1 together with homophilic protein-protein interactions 

and a complex array of interactions with other proteins, cholesterol and Ca2+, leading to 

formation of the recruitment sites for vesicle exocytosis (Honigmann et al., 2013b; Lang et al., 

2001; Murray and Tamm, 2011; Sieber et al., 2007). PIP2 itself was also demonstrated to be 

concentrated in domains through local synthesis, interactions with proteins and electrostatic 

sequestration (Baker, 1952; Honigmann et al., 2013b; McLaughlin et al., 2002; Wang and Richards, 

2012). 

1.5 Technical Perspective: High-Resolution Microscopy 

A technical challenge in imaging of domains is to obtain high enough resolution to distinguish the 

labeled entities from each other. Although electron microscopy can provide higher resolution 

imaging, it also introduces difficulties in labeling as well as labor-intensive and artifactual sample 

preparation procedures. On the other hand, optical microscopy provides a direct way for 

visualization of domains and enables high-density labeling with small probes. Yet, due to 

diffraction limit of light, the resolution of optical microscopy is limited. Based on the theory of 

image formation, Ernst Abbe described the physical limit of resolution in optical systems as (Abbe, 

1873): 

d = Abbe Resolutionx,y, =
 

        
 

Equation 1. Abbe’s resolution limit 
λ is the wavelength of light. n is the refractive index of the medium between the lens and the coverslip 
(usually air, water, glycerol, or oil) and α is the half angle over which the objective can gather light from the 
specimen (i.e. half of the angular aperture of the objective).  

 

According to Equation 1, conventional microscopy cannot reach a resolution below ~200 nm. 

However, this limit is derived from some assumptions, such as the standard design of light 

collection by the objective and use of uniform excitation light. It also relies on single photon 

fluorescence with linear absorption and emission properties. Super-resolution microscopy is a 

collective term for light microscopy techniques that offer resolution beyond the diffraction limit. 
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To overcome the diffraction limit, super-resolution techniques emerging in the last two decades 

have circumvented these assumptions in different ways (Hell, 2007). One way is to modulate the 

point spread function by exploiting the stimulated emission depletion phenomenon.  

 

The theoretical principles of stimulated emission depletion (STED) microscopy were first 

introduced in 1994 (Hell and Wichmann, 1994). If an electron in excited state encounters a 

photon at an energy level similar to the difference between the electron's energy and the ground 

energy, the photon will stimulate the electron to fall into the ground energy state. This is realized 

through emission of a photon with the same wavelength as the incoming one. The excited 

molecule is therefore not allowed to undergo spontaneous emission of a fluorescence photon, 

but is subject to stimulated emission depletion and will emit a photon at the wavelength of the 

light used for the STED effect. These more red-shifted photons can be separated from the 

fluorescence emission by use of filters. Fluorescent dyes can thus be “de-excited” by additional 

irradiation with the red-shifted stimulated emission depletion beam. 

 

The STED microscope functions like an improved confocal laser-scanning microscope, in which a 

conventional excitation beam is used to turn on the fluorophores in a diffraction-limited spot 

(Figure 1-5A). The additional feature is the introduction of a second (STED) beam that is 

modulated by a phase plate into a doughnut-like shape. By alignment of the two beams the 

emission of fluorescence is only allowed from the center of the excited spot where the depletion 

beam has zero intensity, so a much smaller focal spot can be obtained (Hell and Wichmann, 1994; 

Klar et al., 2000) resulting in images with substantially higher resolution (Figure 1-5B). The image 

is generated through scanning of the chosen area. The obtained improvement in resolution is 

theoretically not limited by a physical barrier (Westphal and Hell, 2005). In principle if the 

intensity of the de-excitation beam is high enough, the focal spot can be decreased to molecular 

size (Hell, 2003), since it is defined to be independent of diffraction (Equation 2). STED microscopy 

has been used to uncover the clustered distributions of exo and endocytotic proteins in the 

plasma membrane (Hoopmann et al., 2010; Opazo et al., 2010; Sieber et al., 2007). 

 

      
  

      √   
    

 

Equation 2. Lateral resolution in STED microscopy 
λ and α denote the wavelength and aperture angle of the lens respectively. I is the maximal focal intensity 
applied for STED and Isat is a characteristic value at which the fluorescence excitation is reduced to half. 
Here it could be seen that when I/Isat is increased toward infinity, lateral resolution (dx,y) approximates to 
zero; hence resolution is now independent of diffraction (Westphal and Hell, 2005). 
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There are also other methods for obtaining super-resolution in optical microscopy. Structured 

illumination microscopy (SIM) is a wide-field technique that operates through insertion of a 

periodic diffraction grating of known pattern in the illumination beam path (Heintzmann and 

Cremer, 1999). The projection of the pattered illumination onto the sample causes the formation 

of coarse interference patterns, which can be used to back-calculate high-resolution spatial 

information. Alternatively, localization microscopy techniques such as photoactivated localization 

microscopy (PALM), stochastic optical reconstruction microscopy (STORM) and fluorescence 

photoactivation localization microscopy (FPALM) can also provide nanoscale resolution (Betzig et 

al., 2006; Hess et al., 2006; Rust et al., 2006). These wide-field techniques employ repeated single-

molecule switching cycles to find the localization of single molecules with high precision. The 

resolution, in this case, is independent of the wavelength and is dependent on the density and 

accuracy of the localization. In principle, the more photons detected from the molecule, the 

better is the localization precision. Localization microscopy techniques are recently finding 

increasing uses in membrane domain studies (Owen et al., 2010; Sengupta et al., 2011). 

 

 

Figure 1-5 STED microscopy 
A. STED imaging. A toroid-shaped depletion beam (red, adjusted through a phase modulator plate) is 
superimposed on the excitation beam (green), resulting in stimulated emission depletion of all fluorophores 
except those located in the zero-intensity center of the depletion beam. This combination of STED optics 
with the confocal elements (such as the detection pinhole or beam scanner) yields an effective fluorescent 
emission of sub-diffraction size (orange). B. Examples of confocal and STED images of a neuronal cell body 
immunostained for calnexin, processed by deconvolution. The graphs show line scans (red) through the 
protein cluster indicated by the white arrowheads. Signal intensities are shown as arbitrary fluorescence 
units (a.u.). The full-width-half-maximum obtained from Lorentzian fits (black) corresponds to 278 nm for 
the confocal and 51 nm for the STED images. 
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1.6 The Scope of the Thesis 

In the last two decades, it became apparent that the plasma membrane is composed of lipid or 

protein domains, although many times the particular domains that are observed in different 

systems are of different characteristics and scales (Maxfield, 2002; Mukherjee and Maxfield, 

2004). For protein domains (clusters), two different aspects need to be taken into account: the 

formation of the domains and the distribution of the domains in the membrane.  

 

The first aspect, cluster formation, is dependent on the nature of the specific proteins. The 

second aspect, the distribution of the clusters, has been studied less intensively. At first glance, 

the domains of abundant proteins seem to be distributed randomly across the membrane, for 

example for syntaxin 1 (Lang et al., 2001; Leydig, 1857; Rickman et al., 2010), syntaxin 4 (Sieber et 

al., 2006), SNAP25 (Bar-On et al., 2012; Halemani et al., 2010), synaptotagmin 1 (Willig et al., 

2006), synaptophysin (Hoopmann et al., 2010), synaptobrevin 2 (Rickman et al., 2010) or amyloid 

precursor protein (APP, Schreiber et al., 2012). However, when inspected more carefully, a more 

complex distribution pattern can be seen at least for abundant proteins. The domains do not 

spread evenly on the entire membrane: they actually gather in small, irregularly shaped areas 

with a breadth of up to a few hundred nanometers that are separated from each other by narrow 

regions lacking the protein (see Sieber et al., 2007; Willig et al., 2006 and the examples produced 

in our experimental conditions in Figure 1-6). The observation of such patterns for several 

proteins, which are structurally and functionally different, suggests that a common localization 

mechanism might affect them all. Such a mechanism should be a basic feature of the membrane, 

a general mechanism, rather than a specialized interaction that affects individual protein species. 

Since studies of protein patterning are usually performed for a limited number of individual 

protein species, it is possible that a basic, general organization is overlooked. 

 

 
Figure 1-6 Domains of specific proteins. 
Representative STED images showing distributions of specific proteins in the membrane of PC12 cells. 
Membrane fusion related proteins N-ethylmaleimide-sensitive factor (NSF), soluble NSF attachment protein 
receptors (SNARE) SNAP23, SNAP 25, syntaxin 1, and synaptophysin were immunostained on plasma 
membrane sheets from PC12 cells. Note the “patterned”, not fully homogeneous, distribution of domains. 
For each image, one example domain has been outlined in purple as a guide to the eye. 
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Many general mechanisms of protein localization have been proposed in the past, including the 

formation of membrane rafts enriched in cholesterol, sphingolipids and specific proteins 

(Lingwood and Simons, 2010; Pike, 2006), the segregation of specific proteins into areas fenced by 

actin (Kusumi et al., 2011; Ritchie et al., 2003), the formation of protein islands in a “sea” of 

protein-poor lipid membranes (Lillemeier et al., 2006), and finally the self-organization of 

different protein species in individual but overlapping domains, at least in yeast cells (Spira et al., 

2012). However, the extent of these mechanisms and their interplay for general protein 

patterning is still not clear.  

 

In this project I aimed to obtain a better understanding of the mechanisms behind the patterning 

of protein and protein domains by studying the organization of all proteins through metabolic 

labeling and super-resolution imaging. The questions I try to answer are as follows: 

 

1. When all proteins are considered, how does the membrane patterning look? 

2. What are the factors involved in such patterning? What are the relative contributions of 

previously suggested membrane organization mechanisms? 

3. How does this pattern affect the organization of individual protein species? 
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2 MATERIALS AND METHODS 

2.1 General Chemicals and Manufacturers 

Laboratory equipment and common or specific chemicals used in this work were either purchased 

from the following companies or provided by the groups in following institutions (Table 2-1). For 

the rest of the text, when the companies are specified for individual cases, only the short 

company name will be given. Please refer to Table 2-1 for more information. 

 

Table 2-1 Company/ institution information 

Company Name City/State Country 

Abberior GmbH Göttingen Germany 

Abcam Cambridge UK 

Active Motif La Hulpe Belgium 

AppliChem GmH Darmstadt Germany 

ATTO-TEC GmbH Siegen Germany 

Bandelin Electronic GmbH Berlin-Lichterfelde Germany 

BD Biosciences (Becton Dickinson 
and Company) 

Franklin Lakes, NJ USA 

Calbiochem San Diego, CA USA 

Cameca/ Ametek Gennevilliers France 

Cell Signaling Beverly, MA USA 

Clontech Saint-Germain-en-Laye France 

Dianova Hamburg Germany 

Eppendorf Hamburg Germany 

Fujifilm Tokyo Japan 

GE Healthcare Little Chalfont UK 

Gerhard Menzel GmbH Braunschweig Germany 

Gibco Paisley UK 

Invitrogen Carlsbad, CA USA 

Leica Microsystems GmbH Mannheim Germany 

Leibniz Institute for Baltic Sea 
Research 

Rostock Germany 

Life Technologies Carlsbad, CA USA 

LIMES Institute Bonn Germany 

London Resin Company Ltd London UK 

Lonza GmbH Cologne Germany 

Max-Planck-Institute for 
Biophysical Chemistry (MPI-BPC) 

Göttingen Germany 

Max-Planck-Institute for 
Experimental Medicine (MPI-EM) 

Göttingen Germany 

Merck Millipore Darmstadt Germany 

Molecular Probes Eugene, OR USA 
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Newport Spectra-Physics GmbH Darmstadt Germany 

Norvus Biologicals Cambridge UK 

Olympus Corporation Tokyo Japan 

PAA Laboratories GmbH Clöbe Germany 

Santa Cruz Biotechnology Dallas, TX USA 

Scientific Volume Imaging Hilversum The Netherlands 

Sigma-Aldrich St. Louis, MO USA 

Spectrum Laboratories Inc. Rancho Dominguez, CA USA 

Sorvall Centrifuges - Thermo Fischer 
Scientific Inc. 

Waltham, MA USA 

Synaptic Systems Göttingen Germany 

The Mathworks Inc. Natick, MA USA 

2.2 Instruments 

Table 2-2 Laboratory Equipment 

Instrument Manufacturer 

Sonoplus Sonifier Bandelin 

Cell culture incubator Eppendorf 

IX 71 Epi-fluorescence microscope  Olympus 

TCS SP5 STED microscope  Leica 

NanoSIMS 50L Cameca 

EM UC6 ultramicrotome Leica 

Fluorescence Scanner FLA9000 Fujifilm 

 

Table 2-3 Centrifuges and Rotors 

Centrifuge Rotor/Type Manufacturer 

Refrigerated table-top centrifuge 5417R Eppendorf 

Refrigerated centrifuge 5810R Eppendorf 

Discovery 90SE TH-641 Sorvall 

2.3 Buffers / Solutions 

Phosphate-buffered saline (PBS): 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4, pH 

7.4. 

Paraformaldehyde (PFA): 4% PFA (Merck) in PBS. 

Preparation: 8 g PFA was dissolved in 180 ml water through mixing and occasional heating. To 

increase solubility, 200 µl 10 M NaOH was added to the mixture. Later, pH was brought back to 

7.4 by addition of HCl and 20 ml 10X PBS, pH 7.4. The solution was divided into aliquots and 

frozen to be thawed freshly on the day of the experiment.  

PFA + Glutaraldehyde: 4% PFA and 0.2% glutaraldehyde (AppliChem) in PBS. 
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Sonication buffer: 120 mM potassium glutamate, 20 mM potassium acetate, 10 mM EGTA, 4 mM 

MgCl2, 2 mM ATP (Sigma), 0.5 mM DTT, 20 mM HEPES-KOH, pH 7.2, as described in Lang, 2008). 

K-Glu Buffer: 120 mM potassium glutamate, 20 mM potassium acetate, 10 mM EGTA, 4 mM 

MgCl2, 20 mM HEPES-KOH, pH 7.2. 

Click reaction buffers: The buffers for click reaction were purchased from Molecular Probes 

(Click-iT® Cell Reaction Buffer Kit). 

Ringer buffer: 124 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 30 mM D-glucose and 25 mM 

HEPES, pH 7.4. 

Dialysis buffer: 8 g NaCl, 0.4 g KCl, 0.35g NaHCO3, 1 g glucose, pH 7.4, as described before 

(Halpern et al., 1974). 

Sample buffer: 50 mM Tris-HCl, 4% sodium doedecyl sulfate (SDS), 0.01% Serva Blue G, 12% 

glycerol, pH 6.8. 

Homogenization buffer: 250 mM sucrose, 3mM imidazole, pH 7.4 (with HCl). Prepared fresh and 

kept cold (Barysch et al., 2010).  

Mowiol: 2.4 g Mowiol 4-88 (Merck), 6 g glycerol, 6 ml distilled water and  12 ml 0.2 M Tris buffer 

were mixed and the was adjusted to pH 8.5 with HCl. The mixture was stirred up to 5 days with 

occasional heating (up to 50°C). The solution was divided into aliquots (avoiding the remaining 

non-dissolved crystals) and snap-frozen to be thaw freshly on the day of the experiment. 

2.4 Cell Culture 

Thin coverslips (<100 µm, Gerhard Menzel) of 25 mm diameter were sequentially washed with 1 

M NaOH, 1 M HCl, and 100% ethanol. They were flamed and coated with 100 µg/ml poly-L-lysine 

(PLL, Sigma) for 1 h at RT. PC12 cells (Pheochromocytoma cells, Heumann et al., 1983) were 

cultured on PLL-coated coverslips as described before (Lang et al., 2001), in Dulbeccos’s modified 

Eagle’s medium (DMEM with 4.5 g/L glucose, from Lonza) with 100 units/ml penicillin and 

streptomycin (Lonza), 4 mM glutamine (Lonza), 5% fetal calf serum (FCS, from PAA) and 10% 

horse serum (Merck) with 5-10% CO2 and 90% humidity. For passaging, cells were harvested with 

trypsin/EDTA (Lonza) treatment. 

 

To label all proteins indiscriminately metabolic labeling of proteins was performed. For that, a 

methionine analogue, L-azidohomoalanine (Click-iT® AHA from Molecular Probes), was used in 

absence of natural methionine. Therefore, cells were grown in methionine-free medium 

(methionine-free variants of DMEM or RPMI media). Since serum also contains amino acids, fetal 

calf serum (FCS) and horse serum were dialyzed to remove the small amino acids. Dialysis was 
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done three times for >8 h each at 4°C in dialysis buffer using a dialysis membrane (Spectrum) with 

cut-off of 3500 Da, followed by filter-sterilization.  

 

 AHA-incubation medium for PC12 cells: DMEM (high glucose, no glutamine, no methionine, no 

cysteine; from Gibco) complemented with 4 mM glutamine, 10% dialyzed horse serum, 5% 

dialyzed fetal calf serum, 100 units/ml penicillin-streptomycin, complemented with 50 μM AHA 

and 400 μM L-cysteine (Sigma). In specified cases, 50 µM homopropargylglycine (HPG) was used 

as a methionine analogue instead of AHA. 

 

COS-7 cells (green monkey kidney cells, Invitrogen) were cultured as described before (Barysch et 

al., 2009) in the same medium as for PC12 cells but with 10 % FCS and no horse serum. For AHA 

incubation they were also grown for 3 days with AHA as above however with 10% dialyzed FCS 

and no horse serum). Alternatively, they were cultured in RPMI medium without methionine 

(Gibco) instead of methionine and cysteine-free DMEM. All further experiments with COS-7 cells 

were performed as for PC12 cells. 

2.5 Obtaining the Membrane Sheets 

Membrane sheets were generated by exposing to a brief ultrasound pulse cells in 150 ml ice-cold 

sonication buffer using a Sonoplus sonifier as shown in Figure 2-1 (Lang, 2008). The distance of 

the sonication tip and the power of the pulse are experimentally determined for each cell line 

depending on the adherence of the cells.  COS-7 cells were observed to be more adherent than 

PC12 cells. Therefore, COS-7 cells were sonicated at 75% of the full power and at a distance of 

~0.8 cm, while PC12 cells were sonicated at 60% and at a distance of 1 cm. The sheets were then 

washed with K-Glu buffer. Membrane protein organization in membrane sheets is unchanged 

compared to intact cells, as documented by unaltered membrane protein diffusion (Sieber et al., 

2007) and by similar membrane protein patterning (Schreiber et al., 2012). Membrane sheet 

treatments were performed with the concentrations of reagents and incubation times indicated 

in the figure legends. All incubations were done at 37°C, unless otherwise stated. For each 

experiment, control samples, which were incubated for the same time intervals with buffer alone 

or buffer with the solvent used for drug applications, typically dimethyl sulfoxide (DMSO), were 

prepared. 
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Figure 2-1 The sonication setup. 
The coverslip with cells facing up is placed in the center of the sonication chamber filled with ice-cold 
sonication buffer. The tip of the sonicator is centered in the chamber at a distance of ~0.8-1 cm from the 
coverslip. Two 1 cm high metal blocks are put at the sides of the coverslip in the chamber to be used as 
reference and also to keep the coverslip in place. A 1-second ultrasound pulse is applied at 65-75% of the 
full power 

 

After sonication, PC12 and COS-7 membrane sheets were fixed with 4% PFA for 10 minutes on ice 

and another 30 minutes at room temperature (RT) or with 4% PFA + 0.2% glutaraldehyde at RT, 

where indicated. They were then quenched with 100 mM NH4Cl for 25 minutes. Unless otherwise 

indicated in figure legends, click reactions were performed after fixation and quenching, as 

described below.  

2.6 Click Reactions 

All the clickable chemicals used in the experiments are listed in Table 2-4. Incorporated AHA (or 

other azide-containing reagents) was coupled to 2 µM Atto647N-alkyne (or 5 µM Chromeo494-

alkyne), using the Click-iT® Cell Reaction Buffer Kit (Molecular Probes) according to 

manufacturer’s protocol, by mixing the components following the order and concentrations given 

in Table 2-5. The table shows a typical reaction mixture for a 250 µl reaction. These volumes are 

scaled up or down appropriately for the number of coverslips (100 µl drop of reaction mixture per 

25 mm coverslip, incubation performed on parafilm). After addition of each component the tube 

was mixed vigorously and the reaction mixture is used freshly (in less than 15 minutes). The 

reaction is let to run for 30 minutes at RT. To label HPG or alkyne containing reagents the same 

reaction was prepared with azide-modified dyes. To block or remove unspecific binding to the 
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membranes, the preparations were washed for 15 minutes with PBS containing 5% bovine serum 

albumin (BSA) and 5% peptone, and briefly with PBS containing 3% BSA, both before and after the 

reaction.  

 

Table 2-4 Click reagents 

Click reagents Company Final concentration Incubation 
duration 

L-azidohomoalanine (AHA) Molecular Probes 50 µM 72h  

Homopropargylglycine (HPG) Molecular Probes  50 µM 72h 

Tetraacetylfucose alkyne Molecular Probes  50 µM 72h  

Tetraacetylated N-azidoacetyl-
D-mannosamine (ManNAz) 

Molecular Probes  
50 µM 72h 

Tetraacetylated N-
azidoacetylgalactosamine 
(GalNAz) 

Molecular Probes  

50 µM 72h 

Tetraacetylated N-
azidoacetylglucosamine 
(GlcNAz) 

Molecular Probes  

50 µM 72 h 

Geranylgeranyl alcohol azide Molecular Probes  50 µM 48h 

Farnesyl alcohol azide Molecular Probes  50 µM 48h 

Palmitic acid azide Molecular Probes  200 µM 24h 

Myristic acid azide Molecular Probes  50 µM 24h 

Fluorescent dyes for click    

Atto647N-alkyne Atto-tec 2 µM  

Atto647N-azide Atto-tec 2 µM  

Chromeo494-azide Active Motif 5 µM  

Chromeo494-alkyne Active Motif 5 µM  

 

Table 2-5 Click reaction mixture for cells 

Component Volume 

Double-distilled water 196 µl 

Click reaction buffer 
(Component A) 

22 µl 

100 µM CuSO4  
(Component B) 

5 µl 

Click reaction buffer additive 
(Component C) 

25 µl 

Clickable dye with complementary chemistry 2 µl (diluted to get the desired final concentration) 

Total 250 µl 

2.6.1 Click Labeling of Protein Modifiers 

To label various modified subsets of proteins, in parallel to 3-day AHA or HPG incubation for 

general protein labeling, PC12 cells were also incubated with one of the following metabolic 
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labeling reagents listed in Table 2-4. The incubations were done with the given concentrations 

and for given durations in AHA-incubation medium, either in presence of AHA or HPG (chosen 

based on complementary functionality to allow clicking to different fluorophores). Two click 

reactions were performed sequentially on membrane sheets obtained from these cells (separated 

by thorough washes), the first to label the proteins with Chromeo494, and the second to label the 

protein modifiers with Atto647N. 

2.7 Plastic Embedding 

As an alternative to sonication, whole cells were fixed and labeled by click chemistry as above. 

They were then embedded in 2,4,6-Tris[bis(methoxymethyl)amino]-1,3,5-triazine (also known as 

melamin), as described in the past (Hoopmann et al., 2010); this was followed by thin-section 

processing using an EM UC6 ultramicrotome, again as previously described (Hoopmann et al., 

2010). Sections of 10-20 nm thickness were used for STED imaging. 

2.8 Treatments / Perturbations 

2.8.1 Trypsinization of Membrane Sheets 

For a control of protein labeling specificity, after sonication PC12 membranes were washed with 

sonication buffer containing 3% BSA and subject to click reaction with Atto647N-alkyne without 

fixation. Following several washes with sonication buffer containing 3% BSA, unfixed PC12 

membrane sheets were treated with 1 mg/ml trypsin (from bovine pancreas, Sigma) or with 1 

mg/ml trypsin and 2 mg/ml trypsin inhibitor (Sigma). STED images were taken just before the 

addition of trypsin or trypsin + inhibitor and at 15 and 35 minutes after the addition. 

2.8.2 Ionic Alterations 

After sonication, membrane sheets were incubated for 20 minutes in high-salt buffer (sonication 

buffer containing 500 mM KCl), low ionic strength buffer (320 mM sucrose, 5 mM HEPES-KOH, pH 

7.2) or high-calcium buffer (sonication buffer containing 1 mM Ca2+). Alternatively, cells were 

incubated with 1 µM ionomycin (Sigma) for 5 minutes in HEPES-buffered DMEM (Gibco), in the 

presence of 5 mM CaCl2, with or without 10 mM EGTA. Membrane sheets were obtained from the 

treated cells after 3 brief washes with HEPES-buffered DMEM. 



 54 

2.8.3 Cytoskeleton Disruptions 

Before sonication, cells were incubated for 1 h in the AHA-incubation medium described above, 

containing 10 µM nocodazole (Sigma), 10 µM colchicine (Sigma), 1 µM latrunculin A (Calbiochem), 

10 µM cytochalasin D (Sigma) or 0.1% DMSO (as solvent control). They were then washed and 

subjected to sonication, followed by 4% PFA fixation.  

2.8.4 Lipid Perturbations 

For sphingomyelin removal, membranes were incubated with 20 units/ml sphingomyelinase 

(Sigma) for 15 minutes at 37°C, washed and fixed. The following phospholipases (PL; from Sigma) 

were similarly applied in the given final concentrations: 2 units/ml of PLA2 from bovine pancreas, 

2 units/ml of PLC from Clostridium perfringens, 1 unit/ml of phosphatidylinositol-specific PLC  (PI-

PLC) from Bacillus cereus, and 2 units/ml of PLD from Streptomyces sp. For cholesterol depletion, 

membranes were incubated for 5 minutes with 5 mM MBCD (Sigma), dissolved in sonication 

buffer at 37 °C. This step was followed by 3 washes with buffer, and by either a 10-minute 

incubation in sonication buffer at 37 °C or a 10-minute incubation in sonication buffer containing 

cholesterol complexed with 5mM MBCD at 1:8 molar ratio (for membrane repletion with 

cholesterol), as described previously (Christian et al., 1997). Alternatively, membranes were 

incubated with 0.2 units/ml cholesterol oxidase (Sigma) for 15 minutes, or with 25 mM (2-

Hydroxypropyl)-α-cyclodextrin (Sigma) or (2-Hydroxypropyl)-β-cyclodextrin (Sigma) for 5 minutes 

at 37 °C; this was followed by three washes and a 10-minute incubation in sonication buffer (to 

keep the total incubation time constant across different conditions).  

2.9 Genetic Constructs 

2.9.1 Plasmids 

All coding sequences used are listed in Table 2-6. The plasmids were generously provided by the 

indicated colleagues and collaborators. 
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Table 2-6 Plasmids 

Coding Sequence Explanation Source Vector Provided by Reference 

Syntaxin1-
pHluorin 

Rat Syntaxin 1 
sequence fused to 

pHluorin, a pH-
sensitive green 

fluorescent protein 
(GFP) variant) 

pEGFP-N1 
(Clontech) 
(EGFP was 

replaced with 
pHluorin) 

 (Hoopmann et al., 
2010) 

YFP-SNAP25 Yellow fluorescent 
protein (YFP) fused to 

rat SNAP25b 

pEYFP-C1 
(Clontech) 

Thorsten Lang 
(LIMES 

Institute) 

(Zilly et al., 2011) 

GFP-SNAP25 linker 
domain 

GFP sequence fused 
to a truncated 

SNAP25 mutant, 
includes the linker 

domain for 
palmitoylation, but 
lacks both SNARE 

domains 

pEGFP-C1 
(Clontech) 

(original EGFP 
was exchanged 

with monomeric 
GFP) 

Thorsten Lang 
(LIMES 

Institute) 

(Halemani et al., 
2010) 

GPI-ACP GPI-anchor signal 
sequence fused to 
acyl carrier protein 

(ACP) 

 Alf Honigmann 
(MPI-BPC) 

(Eggeling et al., 2009) 

2.9.2 Small Interfering RNAs (siRNAs) 

Syntaxin 1 and SNAP 25 knockdowns were performed with siRNAs. A combination of 3 siRNAs 

was employed to knockdown both isoforms of SNAP25, while 5 siRNAs were used to target 

both syntaxin 1A and 1B, as listed in Table 2-7. Except SNAP25_1, all siRNAs were designed by 

Ingrid-Cristiana Vreja (University of Göttingen Medical Center). Constructs were purchased from 

Thermo Scientific Dharmacon® as 2’-deprotected duplexes and resuspended in RNase-free 

solutions. The GenBank accession numbers for the sequences used are: NM_030991.2 for 

SNAP-25, NM_053788.2 for Stx1A and NM_012700.2 for Stx1B.  

 

Table 2-7 List of siRNAs used for knockdown 

siRNA Target Sequence 

SNAP25_1  (Cahill et al., 2006) 5’-GTTGGATGAGCAAGGCGAA-3’  

SNAP25_2 5’-GGATGAGCAAGGCGAACAA-3’  

SNAP25_3 5’-TAATATAGGGTTTGTCGAA-3’  

Syntaxin1A_1 5’-CACCAAAGGTCTCGGTAC-3’  

Syntaxin1A_2 5’-TTAAGAAGACAGCGAACA-3’  

Syntaxin1B_1 5’-GGTCCAAGTTGAAAGCGAT-3’  

Syntaxin1B_2 5’-GGAGGTAATGACCGAATAT-3’  

Syntaxin1A_4 5’-GCTAAAGAGCATCGAGCAG-3’  
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2.9.3 Transfection  

For transfection of plasmid DNA or siRNAs, Lipofectamine 2000 (Invitrogen) was used according to 

manufacturer’s protocol. Briefly, per 25 mm coverslips, 2-2.5 µg plasmid DNA and 6-7 µl 

Lipofectamine 2000 were separately diluted in 200 µl Opti-MEM Reduced Serum Medium (Gibco). 

They were then mixed together and incubated for 20 minutes before addition onto cells. 

 

For siRNA transfection, 100 pmol of each siRNA oligomer (per 25 mm coverslip) and 5 µl 

Lipofectamine 2000 Reagent were separately diluted in 250 µl Opti-MEM Reduced Serum 

Medium. They were then mixed and incubated for 20 minutes at room temperature, and applied 

onto the cells.   

 

Transfections were performed on AHA-incubated PC12 or COS-7 cells during the second day of 

the AHA incubation, and cells were allowed to express the proteins for 48 hours. 24 hours after 

transfection, cell media were exchanged.  

2.10 Labeling Protocols 

2.10.1 Immunostainings 

After click reaction, membrane sheets were immunstained with antibodies against cytoplasmic 

epitopes according to Table 2-8. An exception was made for flotillin 2 and PIP2 antibodies, which 

were applied onto sheets for 15 minutes prior to fixation. 

 

Table 2-8 List of antibodies used for immunostainings 

Antibodies 
against 

Company 
Catalogue 
number/ 

clone 
Species Epitope Incubation 

Actin (pan) Norvus 
NB 600-535/ 
ACTN05 
(C04) 

Mouse 
monoclonal 

Cytoplasmic 
1:75 in 1.5% BSA-
PBS, 1 h, RT 

APP Synaptic Systems 127002 
Rabbit 
polyclonal 

Cytoplasmic 
1:250 in 1.5% BSA-
PBS, 1 h, RT 

β-secretase 
(BACE) 

Santa Cruz Sc10748 
Rabbit 
polyclonal 

Cytoplasmic 
1:100 in 3% BSA-PBS, 
1 h, RT 

Bassoon Synaptic Systems 141002 
Rabbit 
polyclonal 

Cytoplasmic 
1:250 in 1.5% BSA-
PBS, 1 h, RT 

α-N-catenin Cell Signaling 2131 
Rabbit 
polyclonal 

Cytoplasmic 
1:100 in 1.5% BSA-
PBS, 1 h, RT 
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Caveolin 1 

Abcam (provided 
by Thorsten Lang, 
LIMES Institute) 

ab2910 
Rabbit 
monoclonal 

Cytoplasmic 
1:100 in 3% BSA-PBS, 
1 h, RT 

Clathrin heavy 
chain 

BD Biosciences 10499 
Mouse 
monoclonal 

Cytoplasmic 
1:100 in 1.5% BSA-
PBS, 1 h, RT 

Cortactin Synaptic Systems 313111 
Mouse 
monoclonal 

Cytoplasmic 
1:100 in 1.5% BSA-
PBS, 1 h, RT 

Dynamin 1,2,3 BD Biosciences 610245 
Mouse 
monoclonal 

Cytoplasmic 
1:100 in 1.5% BSA-
PBS, 1 h, RT 

ERM 
phospho-ezrin 
(Thr567) 
/radixin 
(Thr564) / 
moesin 
(Thr558) 

Cell Signaling 3149 
Rabbit 
polyclonal 

Cytoplasmic 
1:75 in 1.5% BSA-
PBS, 1 h, RT 

GFP Molecular Probes 
A-11120/ 
3E6 

Mouse 
monoclonal 

 
1:100 in 1.5% BSA-
PBS, 1 h, RT 

Flotillin 2 

Santa Cruz 
(provided by Anja 
Schneider, MPI-
EM) 

 
Mouse 
monoclonal 

Cytoplasmic 
1:50 in sonication 
buffer, 15 min, 4°C 

Munc18-1 Synaptic Systems 116002 
Rabbit 
polyclonal 

Cytoplasmic 
1:100 in 1.5% BSA-
PBS, 1 h, RT 

NSF Synaptic Systems 123002 
Rabbit 
polyclonal 

Cytoplasmic 
1:250 in 1.5% BSA-
PBS, 1 h, RT 

PIP2 Abcam 
ab11039/ 
2c11 

monoclonal  
1:50 in sonication 
buffer, 15 min, 4°C 

α-SNAP Synaptic Systems 112111 
Mouse 
monoclonal 

Cytoplasmic 
1:100 in 1.5% BSA-
PBS, 1 h, RT 

SNAP23 Synaptic Systems 111202 
Rabbit 
polyclonal 

Cytoplasmic 
1:100 in 1.5% BSA-
PBS, 1 h, RT 

SNAP25 Synaptic Systems 
 
111011/ 
71.1 

Mouse 
monoclonal 

Cytoplasmic 
1:100 in 1.5% BSA-
PBS, 1 h, RT 

Synaptophysin 

Provided by 
Reinhard Jahn 
(MPI-BPC) 

G95 and G96 
Rabbit 
polyclonal 

Cytoplasmic 
and 

extracellular 

1:100 in 1.5% BSA-
PBS, 1 h, RT 

Synaptotagmin Synaptic Systems 
105311/ 
604.2 

Mouse 
monoclonal 

Extracellular 
1:100 in 1.5% BSA-
PBS, 1 h, RT 

Syntaxin 1 Synaptic Systems 
110001/ 
78.2 (HPC-1) 

Mouse 
monoclonal 

Cytoplasmic 
1:100 in 1.5% BSA-
PBS, 1 h, RT 

Syntaxin 1 
(Fab fragment 
directly 
labelled with 
Atto647N) 

Synaptic Systems 110011 
Mouse 
monoclonal 

Cytoplasmic 
1:100 in 1.5% BSA-
PBS, 1 h, RT 

Syntaxin 13 Synaptic Systems 110133 
Rabbit 
polyclonal 

Cytoplasmic 
1:100 in 1.5% BSA-
PBS, 1 h, RT 

Syntaxin 4 Synaptic Systems 110042 
Rabbit 
polyclonal 

Cytoplasmic 
1:100 in 1.5% BSA-
PBS, 1 h, RT 

TfnR 
Novex (Life 
Technologies) 

13-6800 / 
H68.4 

Mouse 
monoclonal 

Cytoplasmic 
1:100 in 1.5% BSA-
PBS, 1 h, RT 
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TfnR Abcam Ab1086 
Mouse 
monoclonal 

Extracellular 
1:100 in 1.5% BSA-
PBS, 1 h, RT 

α -Tubulin Synaptic Systems 302203 
Rabbit 
polyclonal 

Cytoplasmic 
1:200 in 1.5% BSA-
PBS, 1 h, RT 

Secondary antibodies      

Rabbit IgG 
(Atto647N-
coupled) 

Sigma 40839   
1:100 in 1.5% BSA-
PBS, 1 h, RT 

Mouse IgG 
(Atto647N-
coupled) 

Sigma 50185   
1:100 in 1.5% BSA-
PBS, 1 h, RT 

Mouse IgG 
(Star635-
coupled) 

Abberior, 
Goettingen, 
Germany 

2-0002-002-
0 

  
1:75 in 1.5% BSA-
PBS, 1 h, RT 

2.10.2 Labeling of Whole Cells from the Extracellular Side 

PC12 cells were incubated in Ringer buffer on ice for 1 h with Atto647N conjugated α-

bungarotoxin (Molecular Probes). These cells were later sonicated to obtain membrane sheets 

and were then fixed and labeled by click reactions. Alternatively, whole cell immunostainings 

were performed as follows. Several primary antibodies with against extracellular epitopes (as 

listed in Table 2-8) were applied from extracellular side onto whole PC12 cells fixed with 4% PFA 

and 0.2% glutaraldehyde. For the whole cell experiments, fluorescently labeled fixed cells were 

embedded in plastic resin and sectioned as indicated above under “Plastic Embedding”. 

2.10.3 ACP Reaction 

COS-7 cells were transfected with GPI-ACP plasmid (Table 2-6). At the day of the experiment, the 

cells were incubated with ACP-synthase and Atto647-Coenzyme A in the cell medium for 30 

minutes at 37°C. ACP-synthase reaction specifically conjugates Atto647 onto ACP, as previously 

explained (Eggeling et al., 2009). After labeling and washing, cells were fixed and sonicated as 

standard. 

2.10.4 Aptamer Labeling 

Atto647N-coupled TfnR aptamer (sequence published in Wilner et al., 2012) was prepared as 

previously described (Opazo et al., 2012). Fresh before use, it was folded by heating in a 

thermocycler to 75°C (for 3 minutes in PBS containing 5 mM MgCl2), followed by cooling to 20°C 

at a rate of 1°C/min. PC12 cells were incubated for 20 minutes on ice with a final dilution of 400 
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nM of the folded aptamer in Ringer buffer containing 1 µg/ml salmon sperm DNA as a blocking 

reagent. The cells were then washed with Ringer buffer and sonicated. Membrane sheets were 

labeled with Chromeo494 through click reactions either directly after sonication (unfixed) or after 

fixation (with 4% PFA for 20 minutes on ice, and for 30 minutes at RT) and quenching. The unfixed 

sheets were washed and imaged in K-Glu buffer immediately after preparation, whereas the fixed 

membranes were embedded in Mowiöl before imaging. 

2.10.5 Synthesis of Cholesterol-PEG-KK114  

To synthesize a cholesterol analogue containing a far-red-fluorescent dye suitable for STED-

microscopy, a strategy which is known to dramatically improve the partitioning of other lipid 

analogues dramatically was employed (Honigmann et al., 2013a). Briefly, a long water-soluble 

PEG linker was placed between the membrane probe and the dye to keep the dye in the water 

phase. Chol-PEG(3400)-KK114 (structure is shown in Figure 2-2) was prepared from 1 µmol Chol-

PEG(3400)-amine (Nanocs Inc, USA) in 0.2 ml of dry N,N-dimethylformamide, 20 µL (0.15nmol) of 

triethylamine and 1 µmol of the NHS ester of the fluorescent dye KK114  (Kolmakov et al., 2012). 

The product was isolated by elution with a chloroform:methanol:water mixture (70:25:3). These 

steps were kindly performed by Vladimir Belov (MPI-BPC). 

2.10.5.1 Characterization of Phase Partitioning of Chol-PEG-KK114 in GUVs  

GUVs were prepared by swelling dried lipid films deposited on low melting point agarose (Horger 

et al., 2009). Briefly, 100 µl of a pre-heated 1% agarose solution was spin-coated (3000 rpm) on 

cleaned coverslips. After spin-coating, the agarose was dried by heating the coverslips to 40°C for 

30 minutes on a heating plate. Then, 30 µl of a 5 g/l lipid solution of Dioleoyl phosphatidylcholine 

(DOPC)/brain sphingomyelin/cholesterol, 2:2:1 (Veatch and Keller, 2005), dissolved in 

methanol/chloroform (1:1) was spin-coated (3000 rpm) on top of the agarose and residual solvent 

was removed by applying a vacuum for 20 minutes. Finally, the dried lipid film was hydrated in 

pure water at 50 °C for 5 minutes and then slowly cooled to RT. The lipid mixture contained 0.01 

mol % of Chol-PEG-KK114 and DiO. To estimate the partitioning of Chol-PEG-KK114 between the 

Ld and the Lo phase GUVs were imaged at the equatorial plane (Figure 2-2) and the distribution of 

DiO was used to identify phases (bright is Ld, dark is Lo). Lo partitioning was calculated according to 

Lo% = IntensityLo / (IntensityLo + IntensityLd). The characterization procedure was kindly performed 

by Alf Honigmann (MPI-BPC). 
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Figure 2-2 Lipid phase partitioning of Chol-PEG-KK114 in GUVs.  
A GUV exhibiting Lo/Ld phase coexistence was doped with the Ld marker DiO (green). From the profile the 
partition coefficient of Chol-PEG-KK114 (structure shown) was determined to be 51% Lo. The lower right 
inset shows the structure of the cholesterol analogue.  

2.10.6 Incorporation of Fluorescent Lipid Analogues into Membrane Sheets 

In order to check the integrity of the membrane sheets after the click reaction, the membranes 

were labeled with 1 µg/ml octadecyl rhodamine B (R18, Molecular Probes) for 10 minutes; then 

washed 3 times with PBS (10 minutes each), and embedded in Mowiöl. R18 imaging was 

performed in confocal microscopy. Alternatively, more specific lipids were used. A stock solution 

of 50 µM of Chol-PEG-KK114 was prepared in pure water containing 1% ethanol. A 100 µM stock 

solution of PE-Atto647N (N-(Atto647N)-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine with 

headgroup labeling) was prepared in 100 µM fat-free BSA water solution (Eggeling et al., 2009). 

For sphingomyelin (SM) two different fluorescent analogues of sphingosylphosphocholine were 

used. SM-Atto647N with acyl chain replacement, was purchased from ATTO-TEC and a stock of 10 

µM was prepared in fat-free BSA water solution (Eggeling et al., 2009). SM-PEG-KK114 was 

prepared as described above for Chol-PEG-KK114. The lipid stocks (except R18) were provided by 

Vladimir Belov and Alf Honigmann. 
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For imaging specific lipids, membranes were incubated (after click reactions) with 1:100-1:200 

dilutions from the stocks above in PBS for 30 minutes at RT, followed by washing with PBS and 

embedding in Mowiöl. Samples were imaged directly after preparation.  

2.10.7 Transfer of Fluorescent Probes to Plasma Membranes of Living Cells  

A stock solution of 50 µM of Chol-PEG-KK114 was prepared in pure water containing 1% ethanol. 

COS-7 cells were then incubated with 200 µl of a 1:200 dilution of the stock in cell medium, for 3 

minutes at RT. After incubation cells were washed with medium. WGA was diluted to 100 nM in 

PBS; cells were incubated with 100 µl of this solution for 3 minutes, and then washed with 

medium. 

2.10.8 Fluorescent Labeling of WGA 

For STED and STED-FCS imaging in living cells, WGA was labeled with the far-red fluorescent dye 

Star635 (Abberior). 1 ml from 2 mg/ml solution (pH 8.4) of WGA was incubated with 100 nmol 

Star635-NHS for 2 h at RT. Unreacted dye was removed by size exclusion chromatography using a 

Nap25 column (GE Healthcare). This protocol was kindly applied by Vladimir Belov (MPI-BPC). 

2.11 Endocytic Uptake Assays 

PC12 cells were grown for 3 days under normal conditions or in AHA-incubation medium with 

AHA. Cells were incubated with 100 µg/ml Dextran-Alexa488 (Molecular Probes) or 50 µg/ml 

transferrin-Alexa488 (Molecular Probes) for 5 minutes to label early endosomes (EE) at 37°C in 

Ringer buffer. Alternatively, incubations were done with 10 µg/ml choleratoxin B-Alexa594 

(Sigma) for 20 minutes or with 100 nM Lysotracker-DND99 (Molecular Probes) for 30 minutes in 

respective cell medium to label the late endocytic compartments. The cells were washed and 

either directly fixed (with 4% PFA for 20 minutes on ice and 25 minutes at RT) or in the case of 

transferrin let to recycle for 60 minutes and then fixed. Imaging was done with a 40X air objective 

(NA=0.75, Olympus) using an Olympus IX 71 microscope with a computer-operated CCD camera 

and a 100 W mercury lamp. Total fluorescence in the cells was analyzed by manual selection of 

the cell borders and compared for normal and AHA conditions, using a custom-written Matlab 

routine. 
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2.12 Neuronal Differentiation Assay 

Normal or AHA-treated cells were also given 100 ng/µl human neuronal growth factor (NGF-β, 

Sigma) for 3 days. After fixation, R18 was applied to see the morphology of cells and images of 

long axon-like protrusions was taken. The protrusion length was analyzed as indicative of the 

neuronal differentiation.  

2.13 Click Labeling of Cell Lysates 

PC12 cells, grown in culture dishes with AHA for 3 days, were scraped off the dish with ice-cold 

PBS containing protease inhibitors (0.2 mM PMSF, 1 µg/ ml pepstatin A, leupeptin and aprotinin). 

Collected cells were centrifuged at 2000 g for 5 minutes at 4°C and the supernatant liquid was 

discarded. The pellet was lysed in PBS with protease inhibitors, 0.5% sodium doedecyl sulfate 

(SDS) and 50 units/µl DNAse I (AppliChem) through vortexing and boiled at 96 °C for 10 minutes. 

SDS concentration was brought down to 0.1% by addition of PBS with a final volume of 0.2% 

Triton X-100.  The lysate was centrifuged again at 2000 g for 5 minutes at 4°C and the supernatant 

liquid was collected. Equal amounts were divided into tubes and click reaction was performed 

with or without Atto647N-alkyne. Then the samples were mixed with sample buffer loaded to a 

10% polyacrylamide (below). For in-gel labeling of all proteins, Coomassie Fluor Orange protein 

gel stain (Molecular Probes) was applied to the gel.  

2.14 SDS-Polyacrylamide Gel Electrophoresis (PAGE) 

Proteins were separated elecrophoretically using a 10% denaturing Tris/Tricin SDS-PAGE system 

as described before (Schägger and Jagow, 1987). 

Resolving gel: 10% bis-acrylamide (Roth), 1 M Tris (pH 8.45), 0.1% SDS and 10% glycerol.   

Stacking gel: 4% bis-acrylamide, 1 M Tris (pH 8.45), 0.1% SDS. 

TEMED (N,N,N',N'-Tetramethylethylenediamine) and ammonium persulfate were added to each 

for polymerization. Electrophoresis was done in a discontinuous buffer system, with anode buffer 

of 0.2 M Tris-HCl, pH 8.9 and cathode buffer of 0.1 M Tris, 0.1 M Tricin, 0.1% SDS, pH 8.25, at 70 V 

for 15 minutes followed by 60‐90 minutes at 120 V. 

 

Coomassie orange staining was done according to manufacturer’s protocol (Molecular Probes) and 

gels were documented using an FLA9000 fluorescence scanner (Fujifilm). 
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2.15 Organelles 

PC12 post-nuclear supernatants (PNS) were produced as described previously (Barysch et al., 

2010). Briefly, PC12 cells were grown to 80% confluency in 14.5-cm dishes in AHA incubation 

medium for 3 days. Cells were harvested by trypsin/EDTA treatment and collected after 

centrifugation at 4°C. The cell pellet was washed several times. It finally resuspended in 

homogenization buffer with protease inhibitors (0.2 mM PMSF and 1 µg/ml pepstatin A, leupeptin 

and aprotinin) and homogenized using a stainless steel ball homogenizer (Balch and Rothman, 

1985) applying 10-20 passages. The resulting homogenate was centrifuged at 4°C in a table-top 

centrifuge (Eppendorf 5417R) at 1200 g for 15 min. The supernatant (PNS) was collected, divided 

into single-use aliquots, snap-frozen and stored at -80°C until use. The protein concentration was 

determined by the Bradford assay. 

 

For studying endosomes, EE fractions were enriched from freshly obtained PNS by discontinuous 

sucrose gradient ultracentrifugation (in a Sorvall Discovery 90SE centrifuge) at 4°C for 90 minutes 

at 35,000 rpm using a TH641 rotor (Sorvall). A band (at the 25%-35% sucrose interface) highly 

enriched in EE was collected as described before (Bethani et al., 2009). EE fractions were divided 

into single-use aliquots, snap-frozen and stored at -80°C until use. The protein concentration was 

determined by the Bradford assay. 

 

For the experiment, organelles were diluted in cold PBS and centrifuged onto coverslips (Barysch 

et al., 2010) for 45 minutes in an Eppendorf 5810R centrifuge at 4°C and 2683 g. EE fractions were 

incubated in vitro with 45 mM MBCD, for 30 minutes at 37°C. For studying mitochondria, the PNS 

fractions were incubated in vitro with 5 mM cholesterol-MBCD complex (Christian et al., 1997) for 

30 minutes at 37°C, to load cholesterol into their membranes. Afterwards, the samples were 

washed and fixed, and AHA moieties were coupled to fluorescent dyes by click reactions. To 

identify mitochondria in the PNS specifically, samples were immunostained for the cytosolic 

mitochondrial epitope TOMM20 (using mouse anti-TOMM20, Sigma, WH0009804M1). 

2.16 Confocal and STED Imaging 

Fluorescence images were acquired with a Leica TCS SP5 STED confocal microscope (Leica) 

equipped with a 100× 1.4 N.A. HCX PL APO CS oil objective (Leica) using the Leica Application 

Suite Advanced Fluorescence software. In STED mode, the excitation of Atto647N was performed 

using a pulsed diode laser (Leica Microsystems) at 635 nm, and depletion was achieved by means 
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of a Spectra-Physics Mai Tai tunable laser (pulsed at 80 MHz; Titanium Sapphire, Newport 

Spectra-Physics) at 750 nm, with an output power of 1.6 W. For 2-color STED, Chromeo494 was 

excited with a pulsed diode laser at 535 nm and the same depletion laser was used for STED effect. 

For multichannel confocal images the following excitation lines were used: an Argon laser at a 

wavelength of 488 nm for GFP or Cy2, and Helium-Neon lasers at 594 nm for Cy3 and 633 nm for 

Atto647 or STAR635. Appropriate emission intervals were selected using an AOTF filter (Leica) and 

line by line sequential scanning at 1000 Hz was applied with 32 times line averaging for confocal 

and 96 times line averaging for STED. Signal detection was performed using photomultiplier tubes 

in confocal mode and an avalanche photodiode in STED mode. Laser intensities were adjusted to 

obtain the best signal-to-noise ratios for each experiment; the images are displayed with 

individual scaling, except for cases to be directly compared (such as in Figure 3-4C and Figure 

3-10).  

 

The resolution was ~40-50 nm when measuring Atto647N (displayed in red in overlay images, 

except neuronal stainings). For 2-color STED, measurements with Chromeo494 (displayed in green 

in overlay images) were performed at a resolution of ~80 nm. 

2.17 STED-FCS Measurements and Data Analysis 

STED-FCS measurements and analyses were performed in collaboration with by Alf Honigmann. 

The STED-FCS setup and the data analyses method used for the experiments have been previously 

described (Eggeling et al., 2009; Honigmann et al., 2013a). Briefly, the measurements were made 

at random locations on the upper cell membrane of cultured cells for 10 seconds. The STED power 

applied in the back aperture of the objective was 50 mW (780 nm), resulting in an observation 

spot with a diameter of 80 nm (FWHM). The excitation power was 8 µW for the Chol-PEG-KK114 

measurements and 2 µW for the WGA-Star635 measurements. For the 2-color experiments with 

WGA-Alexa488 and Chol-PEG-KK114 the excitation power for the 488 nm laser was 0.1 µW, to 

reduce bleaching during the 10-second measurements.  

 

To find out if diffusion of the WGA-Star635 and Chol-PEG-KK114 was faster or slower at sites 

where WGA was enriched (protein clouds) two different types of analyses were performed. From 

every FCS measurement the lateral diffusion coefficient of the probe (WGA-Star635 or Chol-PEG-

KK114) and the average intensity of WGA (WGA-635 or WGA-Alexa488) were obtained. First, 

Pearson’s correlation coefficient (PCC) was calculated from the distribution of the WGA intensities 

and that of the respective lateral diffusion coefficients. The values of the PCC can range from 1 to 
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-1 meaning a strong positive correlation (diffusion is faster in protein clouds) or a strong negative 

correlation (diffusion is slower inside the protein clouds) respectively. When PCC = 0 there is no 

correlation between WGA intensity and diffusion coefficient. For example, PCC= -0.5 ± 0.07 was 

reached for WGA, which indicates that diffusion inside the clusters tends to be slower. Second, 

the diffusion coefficients were classified according to the intensity of WGA. The WGA brightness 

was normalized (0-1) and the diffusion coefficients of the spots with the 40% highest WGA 

intensities (seen as “diffusion in protein clusters/clouds”) and 40% lowest intensity (“diffusion out 

of protein clusters/clouds”) were separated (Figure 2-3). From these two classes the average 

diffusion coefficient and standard deviation were calculated to estimate if the diffusion was 

significantly different. This analysis showed that diffusion of glycosylated proteins and lipids inside 

the clusters was slower than outside. Note that FCS is sensitive only to the mobile fraction of 

molecules. Therefore this analysis is a lower estimate and it omits all molecules that are very slow 

(Dlat < 0.01) or non-moving.  

 

The same type of analysis was performed with the fluorescent cholesterol analogue Chol-PEG-

KK114. For this the protein clouds were stained with green fluorescent WGA (WGA-Alexa488) and 

the diffusion of the red fluorescent cholesterol was measured simultaneously. While the 

distribution of Chol-PEG-KK114 itself in the plasma membrane was rather homogenous, the STED-

FCS analysis revealed again a negative correlation between the diffusion coefficient of the 

cholesterol analogue and the distribution of WGA (PCC = -0.4 ± 0.07). Accordingly, the diffusion of 

Chol-PEG-KK114 was significantly slower inside of the protein clouds (1.3-fold). As expected the 

mean diffusion coefficient of the cholesterol analogue was 10 times faster than the mobility of 

WGA-bound proteins and lipids.  

 

Figure 2-3 In and out of WGA cluster classification.  
In cluster was defined as all diffusion coefficients that were measured at positions with a WGA intensity of 
>60% (the 40% highest intensity fraction), out of cluster was defined accordingly as the 40% lowest intensity 
fraction. The analyses were performed by Alf Honigmann. 



 66 

2.18 Sample Preparation and Imaging for SIMS and COIN 

2.18.1 Preparation of Hippocampal Neurons for Imaging of Organellar Turnover 

Primary cultures of hippocampal neurons were prepared (by Christina Schäfer) from newborn rats, 

plated onto astrocytic monolayers as described before (Willig et al., 2006) and used after 10 days 

in vitro. The cultures were incubated in Neurobasal-A medium (GIBCO) with 2% B27 Supplement 

(GIBCO), 1% GlutaMAX Supplement (GIBCO) and 60 units/ml Penicillin-Streptomycin (Lonza) in the 

presence of 2.2 mM 15N-leucine for 3 days. The cells were fixed for 45 minutes at RT with 4% PFA, 

and quenched for 25 minutes with 100 mM NH4Cl, then permeabilized with 0.1% Triton-X100 in 

PBS containing 1.5% BSA.  

 

The cells were incubated for 1 h with the given dilutions of the following primary antibodies in 

0.1% Triton-X100 in PBS containing 1.5% BSA.  

 

For axonal staining: 

- mouse monoclonal anti-TOMM20 (1:100, Sigma, WH0009804M1),  

- guinea pig synaptophysin 1 (1:500, Synaptic Systems, 101004) and 

- rabbit polyclonal anti-bassoon (1:400, Synaptic Systems, 141002) 

 

For neuronal cell body staining: 

- mouse monoclonal anti-TGN38 (1:100, BD Biosciences, 610898), 

- guinea pig synaptophysin 1 (1:500, Synaptic Systems, 101004) and  

- rabbit polyclonal anti-calnexin (1:100, Abcam, 22595).  

 

After several washes, primary antibodies were detected by incubating the cells for 1 h with 1:100 

dilutions of the following secondary antibodies in 0.1% Triton-X100 in PBS containing 1.5% BSA: 

- goat anti-mouse Cy2 (1:100, Dianova, 115-225-146),  

- donkey anti-guinea pig Cy3 (1:100, Dianova, 706-165-148) and  

- Atto647N-labeled goat anti-rabbit (1:100, Rockland, 611-156-122S).  

 

Then cells were washed with PBS and a post-fixation step was performed with 4% PFA and 0.2% 

glutaraldehyde in PBS for 30 minutes at RT, followed by quenching with 100 mM NH4Cl in PBS for 

15 minutes. 
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2.18.1.1 Preparation of COS-7 cells for imaging of membrane patterning 

The membranes of COS-7 cells were labeled with a fixable membrane dye by 5-minute incubation 

on ice in Ringer buffer. The cells were washed with ice-cold Ringer buffer and were fixed with 4% 

PFA and 0.2% glutaraldehyde in PBS for 15 minutes on ice and 30 minutes at RT, followed by 

quenching with 100 mM NH4Cl in PBS for 25 minutes and LR White embedding. 

2.18.1.2 LR White Embedding 

Both neuronal and COS-7 samples were embedded in LR White resin (London Resin Company). 

First, partial serial dehydration was performed with ethanol: 30% ethanol for 5 minutes, 3 times 

50% ethanol for 5 minutes each, and incubation with 1:1 mixture of 50% ethanol and LR White 

(London Resin Company Ltd) for 30 minutes. This was followed by the incubation of coverslips 

with LR White in ethanol-free conditions for 1 h. The cells were then embedded at 4°C with LR 

White and accelerator mixture (London Resin Company), and incubated for 15 minutes. 

Afterwards they were incubated for 90 minutes at 60°C, and cooled down to RT. For neuronal 

cultures, 200-nm sections were cut from the resulting blocks using an EM UC6 ultramicrotome 

from Leica Microsystems. For membrane imaging, 100-nm sections were cut. The sections were 

deposited on silicon wafers as described in (Zhang et al., 2012). 

2.18.2 COIN imaging of Neurons 

First, fluorescence images were acquired with a Leica TCS SP5 STED confocal microscope as 

described above. Cy2, Cy3 and Atto647N channels were acquired using the Argon laser at a 

wavelength of 488 nm and the Helium-Neon lasers at 594 nm and 633 nm, respectively, in 

confocal mode. This was followed by STED imaging of Atto647N with the a pulsed diode laser at 

635 nm; depletion was achieved by means of a Spectra-Physics Mai Tai tunable laser at 750 nm, 

with an output power of 1.6 W. Images of 2048 x 2048 pixels were taken at 3x zoom at a final 

pixel size of 25.2 nm with 1000 Hz scanning. After imaging, the area around the imaged cell was 

marked by burning the resin material with the Mai Tai laser described above. 

 

Then same areas were identified in brightfield on a NanoSIMS 50 L setup (Cameca). For SIMS 

imaging, a 133Cs+ primary ion beam at 16 keV energy was used to sputter and partly ionize atoms 

belonging to the sample. These ions were then mass separated and detected by using a double 

focalization mass spectrometer equipped with 7 miniature electron multipliers (Hamamatsu). The 
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mass resolving power was adjusted to suppress interferences at all masses (allowing the optimal 

separation of 12C15N- from interfering ions like 13C14N-). Primary ion beam current was 0.5 to 1 pA, 

scanning parameters were 512x512 pixels (12.88x12.88 µm) with a dwell time of 500 µs per pixel. 

SIMS imaging was performed in collaboration with Angela Vogts (Leibniz-Institute for Baltic Sea 

Research). 

2.18.3 COIN imaging of Cell Surfaces 

Cell surface areas in the sections were identified by confocal imaging of the membrane dye using 

a 633 nm laser for excitation. The imaged areas then were marked as for neurons and identified in 

the SIMS setup. Only the regions fluorescently identified to be membranes were imaged by SIMS. 

Images of 512x512 pixels were scanned (12.88x12.88 µm in size). The dwell time was 250 µs per 

pixel. 12-40 images were obtained for each area and were aligned and summed afterwards to 

generate the resulting images.  

2.19 Image Analysis 

All analyses were performed with the help of Matlab software (Mathworks), using self-written 

routines (mostly developed by Silvio Rizzoli).  

 

Cloud size quantification (Figure 3-3D): Protein clouds were identified as the areas whose 

intensity was above the background intensity (selected on empty coverslip areas). For accurate 

identification, images were first filtered using median and averaging filtering. An automatic 

threshold (empirically devised) was applied to determine the areas with intensities above 

background and to generate masks for each individual cloud. Size identification was performed 

automatically by fitting Lorentzian curves to the mask areas and determining the full-width-at-

half-maximum (FWHM). For non-circular structures, the largest diameter was taken as the size 

value. The cloud area quantification for Figure 3-12 was performed similarly, although numbers 

are expressed in terms of areas, rather than diameters. 

 

Line scans for 2-color STED images: Line scans (1.23 µm in length, 3 pixels in width) were 

performed manually on the protein clouds and were subsequently averaged. The line scans were 

centered on the midpoints of protein clouds. All curves were normalized to the baseline signal, 

obtained from the average line scans (the region flanking the peaks). Typically 30-50 line scans 
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were obtained from one membrane sheet. For analysis all line scans from several membrane 

sheets were pooled together. 

 

Quantification of membrane area occupied by clouds (Figure 3-11): For a simple indication of 

protein clustering on the plasma membrane, the space occupied by the protein clouds was 

calculated and expressed as percentage of the total membrane area. This measurement, termed 

“area occupied by clouds” in the figures, is insensitive to changes in the structure of protein 

clouds, but reports accurately any changes in the relative proportions of clouds and protein-poor 

areas. The values were obtained by selecting rectangular regions of interest and measuring the 

fraction of the pixels whose fluorescence intensity was clearly above the background staining 

intensity (within more than two standard deviations from the mean background intensity; the 

background was selected on empty coverslip areas adjacent to the membrane sheets). All values 

are presented in the figures as percentage of the relevant controls (which were incubated with 

buffer alone under the same conditions). To find protein-poor area (in Figure 3-14), the same 

analysis was performed and the area of the membrane sheets that was within the range of 

background staining was calculated. 

 

Intensity in the area between clouds (Figure 3-10): The protein clouds and the areas outside of 

protein clouds were determined as described above for cloud size quantification. Protein intensity 

in each category was then automatically detected for all regions of interest within one image, and 

region values were averaged to obtain representative data. 

 

Protein clustering in organelles (Figure 3-15): Line scans were drawn manually along the 

membranes of the organelles, and the coefficient of variation of the intensity along the line scan 

(standard deviation divided by the mean) was calculated. This value is a direct indication of 

protein clustering, since it reports the magnitude of the differences between the peak signals 

(clusters) and the baseline. For display, fluorescence images were deconvolved with Huygens 

Essential software (Scientific Volume Imaging), using the inbuilt routines (applying classical 

maximum likelihood estimation algorithm) designed specifically for STED images. 

 

Cloud centerness (Figure 3-24): Cloud center preference was determined as follows, from the 

average line scans drawn over immunostained protein clouds. The ratio between the intensity of 

the immunostained protein and the intensity of the protein cloud was determined at two points: 

1) the cloud center (Protein intensitycenter/Cloud intensitycenter), and 2) the half-width point of the 
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cloud, representing the edge (Protein intensityedge/Cloud intensityedge). Cloud center preference 

was then obtained by dividing the first ratio (from the center) by the second one (from the edge).  

 

Circular model clouds (Figure 4-1): The line scans for general and specific protein stainings were 

used to generate circular, idealized protein domains, as follows. Matrices were generated for 

each protein of interest, composed of 61 line scans that were randomly selected from all the line 

scans obtained for that particular protein. 360 such matrices, each containing a different set of 

line scans, were generated. Each matrix was rotated by an angle between 1° and 360°. The sum of 

all rotated matrices forms the image of a circular protein distribution.  

 

For COIN imaging of neurons: the fluorescence images were rotated and aligned to the SIMS 

images. A background subtraction was performed for the 15N/14N ratio images, for display 

purposes. All line scans (horizontal) and spot size measurements were performed using custom-

written routines in MATLAB. Several lines were averaged to increase the signal-to-noise ratio (3 

lines for Figure 3-25; 5 lines for Figure 3-27 and Figure 3-28). Fluorescence images were 

deconvolved with the aid of Huygens Essential software (applying classical maximum likelihood 

estimation algorithm) using the inbuilt routines designed specifically for confocal and STED 

images. 

2.20 Statistics 

All data are presented as mean ± SEM, unless otherwise noted. For statistical testing student’s t-

test (unpaired) was applied using SigmaPlot (Mathworks) and p-values were obtained. 

Significance is denoted as non-significant (ns), when P > 0.05; as *, when P < 0.05; as **, when P < 

0.01 and as ***, when P < 0.001. 
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3 RESULTS 

3.1 Metabolic Labeling of Cells  

To visualize the general organization of membrane proteins one needs to label a representative 

fraction of all proteins indiscriminately and to detect them with sufficient sensitivity and 

resolution. I relied on the metabolic incorporation of a modified amino acid, L-Azidohomoalanine 

(AHA), which replaces endogenous methionine in all newly produced proteins (Dieterich et al., 

2007). Rat neuroendocrine cells (PC12) were grown with AHA for 72 hours, which is long enough 

for more than 3 complete cell-cycles (Yen et al., 2008), so that a substantial population of proteins 

can incorporate it. The incubation was done in medium lacking natural methionine and with 

serum depleted of amino acids through dialysis. The profile of AHA incorporated proteins in cell 

lysates in comparison to labeling of proteins by coomassie orange is displayed in Figure 3-1. It is 

expected that the representation of the two populations will be slightly different as coomassie 

orange detects the SDS bound to the proteins, whereas AHA is incorporated only at the 

methionine sites, however, protein bands of various sizes can be seen with AHA labeling.  

Figure 3-1 Protein labeling profile of cell lysates. 
PC12 cells, grown with AHA for 3 days, were lysed and their proteins were extracted. Click reaction was 
performed in the tube with Atto647N-alkyne. Then the samples were loaded to a 10% SDS-PAGE gel. For in-
gel labeling of all proteins, coomassie orange was applied to the gel.  
 
 

This rather long incubation with AHA and dialyzed serum causes a slight decrease in the growth 

rate. To check the possible negative effects on cellular metabolism, I have checked the trafficking 

parameters by performing uptake assays. Varying the incubation time and the molecule for 
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uptake, trafficking to early and late endocytic compartments was checked. The labeling of AHA-

inucbated cells was compared to control cells after incubations with fluorescent transferrin, 

cholera toxin B, dextran, and Lysotracker. In each case the distribution and labeling levels were 

similar qualitatively and quantitatively (Figure 3-2A).  

 

In a second assay the differentiation ability of the AHA-incorporated cells was assessed. In this 

case, neuronal differentiation of PC12 cells was induced by neuronal growth factor (NGF), which 

stimulates elongation of axon-like protrusions. The lengths of such protrusions were compared to 

the cells grown under normal conditions with NGF and similar values were obtained (Figure 3-2B).  

 

Additionally, metabolically labeled cells were able to express and correctly target both 

endogeneous and exogeneous proteins from plasmids (results for immunostainings for more than 

20 different proteins, including soluble and membrane proteins, can be seen in the following 

sections). These results show that metabolically labeled cells maintained normal parameters with 

regard to organelle and protein distribution, membrane trafficking, and retained their ability to 

differentiate to a neuronal-like phenotype upon induction with NGF. 

 

 

Figure 3-2 Assaying the overall fitness of metabolically labeled PC12 cells. 
A. PC12 cells were grown for 3 days under normal conditions or with AHA. Uptake assays were performed 
by incubating the cells with 100 µg/ml Dextran-Alexa488 for 5 minutes, 100 nM Lysotracker-DN99 for 30 
minutes, 10 µg/ml cholera-toxin B-Alexa594 for 20 minutes and 50 µg/ml transferrin-Alexa488 for 5 
minutes at 37°C. Then the cells were washed and either directly fixed (with 4% PFA for 20 minutes on ice 
and 25 minutes at RT) or in the case of transferrin let to recycle for 60 minutes. B. Normal or AHA-treated 
cells were incubated with 100 ng/µl NGF for 3 days (in parallel to AHA incubation). After fixation, a 
fluorescently-labeled lipid (R18) was applied to see the morphology of cells and images of long axon-like 
protrusions was taken. The protrusion length was analyzed as indicative of the neuronal differentiation.  
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3.2 The Protein Clouds 

To be able to investigate the distribution of the proteins associated with the plasma membrane in 

isolation, without interference from the rest of the cell, I have used a sonication procedure that 

isolates the substrate-attached membranes, resulting in plasma membrane sheets as detailed in 

Section 1.4.1 (Avery et al., 2000; Lang et al., 2001). These membranes were fixed and the AHA 

moieties were coupled to fluorescent molecules by click-chemistry (Dieterich et al., 2007; 2010). 

This procedure, depicted in Figure 3-3A, ensures that the large-scale fluorescent modification of 

proteins does not interfere with their normal behavior and function, because it is applied only 

after membrane fixation.  

 

To reach the optical resolution necessary for the investigation of the nanoscale organization of 

the membrane we relied on super-resolution stimulated emission depletion (STED) microscopy 

(Hell and Wichmann, 1994; Willig et al., 2006), which reduces the focal area to ~40-50 nm in the 

X-Y plane. STED imaging revealed that the protein distribution was not homogeneous; protein 

clusters aggregated in high-abundance domains that were loosely interconnected (Figure 3-3B). 

These domains occupied about 50-60% of the membrane surface, and contained the large 

majority of membrane proteins (81 ± 13%, mean ± SEM, 4 independent experiments; compare 

with the conventional microscopy view in Figure 3-3C). I chose the term “protein clouds” for the 

high-abundance protein domains. The rest of the membrane was organized as a protein-poor 

labyrinth that surrounded the clouds (Figure 3-3B).  The majority of the protein clouds were ~80-

200 nm in diameter (Figure 3-3D). On average, the peak intensity of the clouds was approximately 

3-fold higher than that of the neighboring protein-poor areas (3 ± 0.25, mean ± SEM, 4 

independent experiments). 
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Figure 3-3 Proteins in the membrane are organized into protein clouds.  
A. The general principle of the experiments: the amino acid L-azidohomoalanine (AHA) is metabolically 
incorporated into cells for 72 hours before sonication and plasma membrane sheet generation. The sheets 
are then fixed and AHA moieties are coupled to alkyne-functionalized variants of fluorescent dyes such as 
Atto647N or Chromeo494 through click reaction. B. Protein organization in PC12 membrane sheets 
investigated by STED microscopy. The image on the right shows a high-zoom view of the area marked with 
the white square. C. The lipid labeling (using R18) and the confocal image of the membrane in panel B. R18 
labeling was performed as the last step before embedding, to check for the lipid integrity of the membrane 
sheets. The very bright spots are very likely the vesicles still attached to the membrane; therefore such 
areas are avoided while analyzing the images. D. The graph indicates a size histogram of protein clouds 
(mean ± SEM, from 5 independent experiments). 

 

To check whether the cloud distribution was induced artifactually by coupling the proteins to the 

fluorescent dye after PFA fixation, I have repeated the labeling after a harsher fixation step with 

4% PFA and 0.2% glutaraldehyde, which was shown to give the minimal residual protein 

movement after fixation (Tanaka et al., 2010). As shown in Figure 3-4A, the distribution was 

similar. An additional control was to check the effect of sonication. For that the cells were first 

fixed with 4% PFA and 0.2% glutaraldehyde and then sonicated, which should reflect the cellular 

status before sonication (Figure 3-4B). Alternatively, fixation was avoided completely and the click 

reaction was done on native sheets (Figure 3-4C). The reaction was also demonstrated to 

specifically label proteins by the massive loss of fluorescence upon trypsinization (Figure 3-4C). 

These controls show that the cloud pattern was not induced by the particular preparation 

procedure. 

 

An additional concern was that the pattern could have been induced by the attachment of the 

membrane to the glass surface. We therefore investigated the top membranes of whole cells, by 

embedding them in a plastic resin and cutting ultrathin sections (~10 nm thick). We imaged the 

upper membrane of cells in such sections, and observed the same pattern: high-abundance 
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protein domains separated by narrow protein-poor areas (Figure 3-4D). Finally, similar patterns 

were observed in membrane sheets from unrelated cells, such as primate fibroblasts, COS-7 

(displayed later in Figure 3-16). 

 
Figure 3-4 Protein clouds under different sample preparation conditions. 
A. Representative STED images of a PC12 sheet click-labeled after fixation with 4% PFA and 0.2% 
glutaraldehyde for 45 minutes at RT. The right panel shows a high-zoom view of the area marked with the 
white square. B. Alternatively, the cells were fixed with 4% PFA and 0.2% glutaraldehyde for 45 min at RT, 
and quenched with NH4Cl for 25 minutes. Only then sonication was applied to obtain sheets. C. STED 
images of click-labeled, unfixed PC12 membrane sheets treated with 1 mg/ml trypsin or with 1 mg/ml 
trypsin and 2 mg/ml trypsin inhibitor (shown in upper or lower panels, respectively). Images were taken just 
before the addition of trypsin or trypsin + inhibitor (0 minutes), and at 15 and 35 minutes after the addition. 
Images of different membranes are shown to avoid photobleaching. Image intensity is scaled identically for 
all frames. D. Protein organization in membranes of whole cells that were fixed and coupled to Atto647N 
through the click reaction, before being embedded in a plastic resin and cut into ultrathin sections (10 nm). 
The STED image was processed using a median filter, to reduce noise.  

 

In order to make sure that the cloud pattern is not arising from the fluorescent labeling and 

imaging related artifacts, I wanted to apply a label-free detection technique. For that I have 

turned to a mass-spectrometry based method for isotopic imaging, secondary isotope mass 

spectrometry (SIMS). This method has been recently used in important studies for detection of 

lipids with stable isotopes in cellular membranes (Frisz et al., 2013a; 2013b) and proteins in 

specialized cells (Zhang et al., 2012) based on morphology. However, since we wanted to focus 

only on proteins in the membrane, we needed the light microscopy to find the flat membrane 

areas to be imaged in SIMS. A correlation method for light microscopy and SIMS was not 

technically established, therefore I have developed a scheme for correlated optical isotopic 

nanoscopy (COIN). The development and application of COIN are described as a technical note in 

Section 3.10. Here, only the relevant results, SIMS imaging of proteins in the membranes, are 

presented. 

 

SIMS identifies isotopes instead of fluorescent molecules and thus allows the label-free 

characterization of membrane patterning. Since proteins contain the majority of nitrogen atoms 

in the membrane, I have analyzed the nitrogen signal (14N) as an indication of protein patterning. 
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The 14N distribution, measured on the upper membrane of cells after plastic embedding and thin 

sectioning, was heterogeneous, composed of high-density domains on a lower background 

(Figure 3-5). This distribution was compatible with the protein clouds determined by STED 

microscopy, notwithstanding the differences in sensitivity and resolution between the two 

techniques (STED has a 40-50 nm lateral resolution and ~500 nm axial resolution; the lateral 

resolution of the SIMS images we obtained was ~100 nm, with axial resolution of 7-10 nm). 

 

 
Figure 3-5 Label-free imaging of proteins by SIMS 
SIMS imaging was performed on the surface membranes of COS-7 cells, to detect the distribution of 

14
N in 

the membranes. Three example SIMS images are shown. 
14

N reports mainly protein distribution in this 
experiment, since proteins contain most of the membrane nitrogen (also the signal contribution from lipids 
is partially lowered further by potential extraction of lipids during the dehydration and plastic embedding 
required for SIMS). Cells were fixed, embedded in LR White, cut into ultrathin sections (100 nm) and 
adsorbed onto silicon wafers, and imaged with a SIMS instrument. Scale bars are 500 nm. A line scan (5 
pixel width) is presented, performed over the white dashed line, to depict the heterogeneity of the signal. 
SIMS imaging was performed in collaboration with Angela Vogts (Leibniz-Institute for Baltic Sea Research). 

 

 

The controls presented so far shows that the protein cloud organization can be reproduced under 

different preparation conditions. For the ease of handling we have used the condition described 

in Figure 3-3A-B as a general strategy for the future experiments, that is cells were first sonicated, 

then fixed with 4% PFA (occasionally with the addition of glutaraldehyde where indicated) and 

next click reaction was performed. This condition minimizes the leftover cytoplasmic material, 

provides good antigenicity for antibodies, avoids application of a copper-catalyzed reaction on 

native sheets and evades long-term incubation of native sheets under artificial conditions.  

 

The last point here is important because if the native sheets are incubated too long without 

fixation, protein aggregation was observed to occur probably due to loss of some molecules in 

time, as was also reported previously (Frick et al., 2007). In Figure 3-4B, where click reaction was 

applied on unfixed sheets (which means an incubation time of ~45 minutes before the start of 

trypsinization, it is possible to see larger protein-poor areas in the control conditions, potentially 

because of this partial aggregation and loss of peripheral proteins over time. Therefore in cases 
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where it was necessary to apply a treatment to membrane sheets before fixation (as for Section 

3.8), the incubation durations were minimized and always kept below 20 minutes. 

3.3 Labeling Proteins of Different Ages 

Next, I have proceeded to investigate the composition of the protein clouds, using PC12 

membrane sheets as a model. The sizes of most of the protein clouds are larger than a typical 

membrane protein cluster dominated by one single type of protein. This suggests that they might 

be multi-protein aggregates. I first tested whether proteins of different ages accumulate to the 

same clouds, by incubating the cells with two different amino acid analogues, AHA and 

homopropargylglycine (HPG), for different amounts of time. AHA was incorporated into the cells 

for 72 h, and thus labeled most of the cellular proteins. At the end of the AHA incubation the cells 

were starved for methionine for 1 h and then pulsed briefly with HPG (3 h). This ensures that HPG, 

unlike AHA, is incorporated only into the proteins that were most recently synthesized. These 

analogues were coupled to two different fluorescent dyes through sequential click reactions. This 

was followed by imaging of the two fluorophores using two-color STED microscopy (Figure 3-6A) 

and overlaying averaged line scans obtained from the spots for each channel (Figure 3-6B, see 

Section 2.19 for details of the data analyses). Both amino acids localized to the same clouds 

(Figure 3-6A), although the new, recently synthesized proteins (revealed by HPG) did not enrich to 

the same extent in the cloud centers. This suggests that not only proteins of different ages localize 

to the same protein clouds, but also that the cloud centers might have a lower turnover. This 

could be related to a lower penetrance of proteins into the dense cloud centers, which would lead 

to a lower exchange.  

 

Here one should note that the fold enrichment of the proteins over the baseline is an 

underestimate, since the baseline region obtained by this measurement (lateral to the peak) 

includes signal from a considerable proportion of large protein clouds, whose cloud areas 

overlapped with the baseline bordering the more frequent small clouds (see size distribution in 

Figure 3-3D). There is also a resolution difference between the two STED channels, for red 

channel it is ~40-50 nm and for green ~80 nm. Therefore the underestimation is higher for the 

lower resolution green channel. When the general protein staining was imaged in the red channel 

as in Figure 3-3B, the peak brightness is 3-fold over the baseline, which is considered to be closer 

to reality (compared to the ~2-fold protein enrichment obtained with the green channel for 

example in Figure 3-6A).  
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Figure 3-6 Two-color STED imaging of proteins of different ages. 
A. Cells were subject to incubation with AHA for 72 h (old proteins, green), followed by HPG incubation for 
3 h (new proteins, red). The relative distributions of the different labels were analyzed by performing line 
scans centered on the green AHA spots, as depicted in panel B. Note the co-localization of old and new 
proteins in the same spots (clouds). The graph indicates averaged line scans, normalized to the baseline, 
from 856 protein clouds (mean ± SEM). B. The scheme indicates the general analysis procedure for 2-color 
STED images. Line scans were performed through protein clouds, and the signals corresponding to the red 
channel (various subsets of proteins) and green channel (protein cloud labeling) were obtained and 
averaged. If proteins in red channel are found predominantly at the edges of clouds, the average red line 
scan has two peaks. If they are randomly distributed along the clouds the average red line scan mimics that 
of general protein staining (green). If there is a preference for the center, the red curve is expected to be 
tighter than the green curve. 

3.4 Subsets of Proteins in the Clouds 

A similar sequential click-based procedure was performed to test the localization of proteins with 

different modifications, such as different lipid anchored proteins (palmitoyl, farnesyl, myristoyl, 

geranylgeranyl), or glycosylated proteins (N-acetylglucosamine, N-acetylgalactosamine, N-

acetylmannosamine, fucose). I took advantage of the fact that click-able analogues for all of these 

protein modifiers are commercially available. This allows the investigation of the localization 

tendencies for proteins modified with different modifiers versus the localization of all other 

proteins, revealed as above by incorporation of amino acid analogues and two-color STED 

microscopy (Figure 3-7A-B). I have also investigated the distribution of a model 

glycophosphatidylinositol (GPI) anchored protein. For that, I have expressed the acyl carrier 

protein (ACP) with a GPI anchor signal sequence, and labeled it by coupling to Atto647N through 

the ACP-synthase reaction, Figure 3-7C). As indicated in Figure 3-7, each of the modified subsets 

of proteins overlapped well with the clouds. Occasionally distributions were not identical with 

those of general proteins. For example, the palmitoylated proteins were located especially in the 

cloud centers, forming a tighter distribution than general proteins (lateral spread 30% smaller; 4 

independent experiments), while farnesylated proteins showed a broader distribution (Figure 

3-7A). 
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Figure 3-7 Different classes of proteins localize to the protein clouds.  
A-B. Representative two-color STED microscopy images of membrane sheets click-labeled for several 
protein modifications (red) and for general protein clouds (green) sequentially. The graphs in the lower 
panels indicate averaged line scans, normalized to the baseline, n= 3-4 independent experiments (mean ± 
SEM) with a total of 629-1336 analyzed protein clouds. In parallel to metabolic labeling with methionine 
analogues, PC12 cells were also given clickable analogues of different lipid anchor modifiers, farnesyl, 
geranylgeranyl, palmitoyl and myristoyl (A) or glycosyl moieties, N-acetylmannosamine, galactosamine, 
glucosamine, and fucose (B) to label different classes of modified proteins. C. For GPI-anchor, a different 
procedure was used. A GPI-anchor for acyl carrier protein tagging was expressed in COS-7 cells and was 
coupled to Atto647N-CoA (red) through an ACP-synthase reaction before sonication of the cells and click 
labeling of protein clouds (green). Graph shows the average line scans, normalized to the baseline, from 
600 protein clouds (mean ± SEM). 

3.5 The Effects of Protein Clouds on Lipid Tendencies  

To investigate how lipids are organized with respect to the protein clouds, I have introduced 

fluorophore-coupled analogues for cholesterol, phosphatidylethanolamine (PE) and 

sphingomyelin (SM) into the membrane sheets of PC12 cells. The fluorescent lipid analogues are 

described in detail in Section 2.10.6 and Figure 2-2. In comparison to the distributions of proteins, 

the organization of lipids seemed to be almost independent of the clouds (Figure 3-8A). 

Cholesterol analogue was partially excluded from the cloud centers, while PE analogue, which is 

expected to be representative of glycerophospholipids in general, was virtually unaffected. The 

two chemically different SM analogues gave different distributions (discussed further in Section 

4.3.3). In contrast, phosphotidylinositol-4,5-biphosphate (PIP2), detected by immunostaining (van 

den Bogaart et al., 2011), was found to be enriched mostly at the edges of protein clouds (Figure 

3-8B).  
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Figure 3-8 Lipid tendencies along the clouds.  
A. Representative two-color STED microscopy images of PC12 membrane sheets click-labeled for general 
protein clouds (green) and were let to incorporate fluorescent lipid analogs, cholesterol-PEG-KK114 and PE-
Atto647N, SM-Atto647N and SM-PEG-KK114. The graphs in the lower panels indicate averaged line scans, 
normalized to the baseline, n= 3 independent experiments (mean ± SEM), with a total of 1370-1675 
analyzed protein clouds. B. For probing PIP2, PC12 membrane sheets were immunostained with a primary 
PIP2 antibody, prior to fixation and click reaction, and detected by fluorophore-coupled secondary antibody 
(red). The graph shows averaged PIP2 line scan, normalized to the baseline, from 285 protein clouds (mean 
± SEM). 

3.6  The Influence of Protein Clouds on Diffusion  

After characterization of the clouds relative to subsets of proteins and lipids, I have moved on to 

determine whether evidence for the membrane patterning observed after click-chemistry could 

be reproduced in living, non-modified whole cells. By exploiting the fact that N-acetylglucosamine 

and N-acetylmanosamine moieties gave a very similar profile to that of protein clouds, I have 

used a lectin, wheat germ agglutinin (WGA), that binds to N-acetylglucosamine and sialic acid 

residues on cellular membranes (Chazotte, 2011). WGA was coupled to the far-red fluorophore 

Star635 for STED imaging. Expectedly, WGA-Star635 labeling yielded a similar correlation with 

protein clouds in membrane sheets (Figure 3-9A). Therefore WGA was used as a marker for the 

protein clouds in living cells. To minimize endocytosis, the incubation time with WGA was kept as 

short as possible (~ 60 s). Flat regions of the upper cell membrane were imaged immediately after 

staining, using relatively flat cells such as COS-7 (Figure 3-9). STED images of the live-cell WGA 

staining showed a heterogeneous distribution of the marker (Figure 3-9B), in a pattern 

comparable to the protein clouds observed with click chemistry, and which appeared to be 

relatively stable over the imaging time. 

 

To determine the behavior of proteins and lipids in relation to the protein domains identified by 

WGA, it was necessary to measure the diffusion in areas where the WGA is found in high 
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abundance (indicative of protein clouds) versus the low abundance areas. For that, fluorescence 

correlation spectroscopy in combination with STED (STED-FCS) was employed (in collaboration 

with Alf Honigmann, MPI-BPC). FCS can determine lateral diffusion coefficients by analyzing the 

fluorescence intensity fluctuations caused by molecules diffusing randomly in and out of the 

excitation spot. In conventional FCS the size of the observation spot is limited by diffraction, 

which prevents the direct discrimination of heterogeneous dynamics occurring on scales below 

200 nm. However, by combining FCS with STED microscopy the observation spot can be 

decreased far below the diffraction barrier (Eggeling et al., 2009), thus improving the precision of 

the measurement. 

 

For protein diffusion WGA-Star635 mobility was measured with respect to WGA-Star635 signal 

intensity (example image in Figure 3-9B). For lipid diffusion, the mobility of fluorescently labeled 

cholesterol analogue Chol-PEG-KK114 was measured with respect to the protein clouds probed by 

WGA-Alexa488 (example images in Figure 3-9C).  The FCS observation spot was placed on 100 

random positions on the plasma membrane of cells, and 10 s correlation measurements were 

performed (Figure 3-9D). For each of these measurements two parameters were obtained: the 

average lateral diffusion coefficient and the average intensity of the WGA staining at the 

respective positions (see Section 2.17 for more details about the measurements and the analyses). 

First, the cells were incubated with WGA-Star635 and its mobility was measured by STED-FCS in 

relation to the intensity of the WGA-Star635 spots (Figure 3-9E). In independent experiments, the 

cells were incubated with WGA-Alexa488 (as a probe for protein clouds) and with Chol-PEG-KK114, 

and the mobility of the cholesterol analogue was measured in relation to the WGA-Alexa488 

staining at the different positions (Figure 3-9F). The diffusion coefficients of both WGA and the 

fluorescent cholesterol analogue were inversely correlated with the intensity of WGA staining, 

suggesting that both molecules diffuse more slowly within the protein clouds.  
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Figure 3-9 Mobilities of the cholesterol analogue and WGA are slower in the protein clouds.  
A. Representative two-color STED microscopy images of COS-7 membrane sheets labeled with WGA-
Star635 (red) and for general protein clouds (green). COS-7 cells were incubated with WGA-Star635, were 
washed, fixed with 4% PFA, and click-labeled using Chromeo494 (green). The graph shows the averaged line 
scan, normalized to the baseline, from 410 protein clouds (mean ± SEM). B-F. The mobility of WGA and of 
fluorescent cholesterol analogue (Chol-PEG-KK114) in the plasma membrane of live COS-7 cells was 
determined using STED-FCS. B. STED image of red fluorescent WGA-Star635 in living COS-7 cells. C. Two-
color staining of the plasma membrane of live COS-7 cells with Chol-PEG-KK114 (red, STED image) and 
WGA-Alexa488 (green, confocal image). D. Representative fluorescence correlation curves obtained from 
WGA-Star635 and Chol-PEG-KK114 at different positions on the upper membrane of live cells. E. Scatter 
plot of lateral diffusion coefficients of WGA-Star635, against the local normalized intensity in the 
membrane (100 data points, 5 independent samples). The diffusion coefficients are correlated with the 
normalized brightness. The red line shows a linear fit of the data, as a guide for the eye. F. Same as for 
panel E, for fluorescent cholesterol (Chol-PEG-KK114). The protein clouds were stained with WGA-Alexa488. 
The insets in E and F show the average diffusion coefficient in and out of the WGA clusters, indicating that 
diffusion was significantly slower inside the clusters both for WGA itself and also cholesterol. For the in and 
out of cluster (cloud) classification see Section 2.17 and Figure 2-3. ***, P < 0.001, t-tests. The STED-FCS 
measurements and analyses were performed by Alf Honigmann. 
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These results indicate that the diffusion of glycosylated proteins and lipids targeted by WGA is 

restricted inside the protein clouds, most probably by specific protein interactions and indirectly 

by molecular crowding. Interestingly, cholesterol diffusion was also decreased in the protein 

clouds, albeit to a lesser extent than for WGA. This may, in principle, be a result of specific 

interactions between cholesterol and proteins in the clouds. However, because the cholesterol 

analogue was slightly excluded from the center of the protein clouds in the membrane sheets 

(Figure 3-8A), the decrease in diffusion can be attributed to a passive effect induced by molecular 

crowding: the protein to lipid ratio is higher in the clouds, allowing less space for lipids and 

cholesterol to diffuse freely. Here, one should note that, although WGA was instrumental in 

labeling different groups of proteins in a manner technically compatible with live cell STED-FCS 

measurements, it is not the ideal probe due to its polyvalency in ligand binding (Monsigny et al., 

2000). Therefore, it would be beneficial to reproduce these STED-FCS measurements with a 

monovalent probe to make sure that a potential clustering due to WGA does not affect the results. 

3.7 The Effect of Increasing the Amount of Protein at the Membrane 

It was shown in Figure 3-6 that proteins of different ages are co-localized in the same clouds. I 

wanted to know what happens when more proteins are targeted to the membrane. Could the 

clouds accommodate more proteins? To answer this question two abundant proteins of PC12 

cells, SNAP25 (Figure 3-10A) and syntaxin 1 (Figure 3-10B), were overexpressed and sheets were 

obtained as in Figure 3-3. The overexpression did not affect the overall membrane pattern, but it 

was observed that the relative intensity of the low-abundance areas was slightly but significantly 

higher in the overexpression cases (Figure 3-10C). This suggests that some of the overexpressed 

proteins spilled over into these areas – possibly due to the clouds only being able to 

accommodate a certain density of proteins. This experiment also confirms that the sensitivity of 

our labeling and detection methods yields a high enough contrast to detect subtle variations 

arising from altered levels or distributions of specific proteins. 
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Figure 3-10 Effects of protein overexpression on the general protein organization. 
A-B. Fluorescently tagged versions of SNAP25 (A) and syntaxin 1 (B) were overexpressed in PC12 cells. The 
left column displays the fluorescent protein (FP) signal (confocal images). The protein distribution is shown 
on the right (STED images). Image intensities are scaled identically. High: membranes expressing high levels 
of FP-SNAP25 or syntaxin 1-FP, respectively. Low: membranes expressing low levels of the exogeneous 
proteins. C. The graph quantifies the increase in fluorescent intensity in the area between clouds as 
percentage of the non-overexpressing control membranes. The graph indicates mean ± SEM; n = 18-37 
sheets per condition, P = 0.021 (*, P <0.05) for SNAP25 and P = 0.0047 for syntaxin 1 (**, P  < 0.01), t-tests. 

3.8 The Factors That Are Involved in Cloud Organization 

3.8.1 The Stability of the Clouds under Different Conditions 

The observations presented so far suggest that protein clouds are stable and relatively long-lived 

formations, as they appear to persist over time scales from seconds (Figure 3-9) to hours (Figure 

3-6), which can fit a certain density of proteins (Figure 3-10). To test their stability further and to 

dissect the factors involved in their organization, membrane sheets were subject to many harsh 

treatments proposed to influence the patterning of many subgroups of membrane proteins: 

strong increases or decreases in ionic strength, abrupt changes in Ca2+ concentration (addition of 

1 mM Ca2+ or more physiological changes induced by ionomycin application; Figure 3-11A-B), 

reduction of protein crowding by knocking down abundant membrane proteins (syntaxin 1 and 

SNAP25; Figure 3-11B), or microtubule dispersion (Figure 3-11C). All of these treatments were 

unable to affect the overall area occupied by the protein clouds, indicating that they could not 

alter the forces grouping proteins within the clouds. This parameter also remained constant after 

one-hour treatments with actin-depolymerizing drugs such as latrunculin A or cytochalasin D, or 

after removing sphingomyelin by applying the enzyme sphingomyelinase (SPMase, Figure 3-11C). 

The same observation applied to several other lipid-hydrolyzing enzymes, the phospholipases A2, 

C and D (Figure 3-11D). For each condition, the area quantification values were always normalized 

to their respective controls that were treated the same in way in terms of drug vehicle (DMSO or 

buffer), and incubation time and temperature after sonication.  
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Figure 3-11 Protein cloud organization persists after many harsh treatments. 
STED imaging of protein clouds in PC12 sheets subjected to different treatments either applied on sheets 
before fixation (A-B), or onto live cells before generation of sheets (C). A. Membrane sheets were either 
incubated in sonication buffer (leftmost image) as control or treated with high-salt buffer (0.5 mM KCl), low 
ionic strength buffer (320 mM sucrose, 5 mM HEPES-KOH) or 1 mM Ca

2+
 for 20 minutes at 37°C. B. Lipid 

composition of the membranes was manipulated by applying 1-2 units/mL phospholipases (PL) A2, C, D and 
phosphatidylinositol (PI)-specific PLC (not shown) or 20 units/mL sphingomyelinase (SPMase) diluted in 
sonication buffer, for 15 min. C. For treatments on full cells, controls were prepared by chemically fixing the 
membrane sheets directly after sonication. For ionic perturbation, cells were treated for 5 min with 1 µM of 
ionomycin in HEPES-buffered medium containing 5 mM Ca

2+
, with or without 10 mM EGTA. In independent 

experiments, the abundant membrane proteins syntaxin 1 or SNAP25 were knocked down by siRNAs. To 
manipulate the cytoskeletal elements, cells were treated for 1 h with 0.1 % DMSO (as solvent control, not 
shown), 10 µM nocodazole, colchicine, or cytochalasin D, or 1 µM latrunculin A. D. For all the conditions, 
the area occupied by the clouds was quantified and expressed as % of the respective control for each 
condition (see Section 2.19 for details). n=3-5 independent experiments, means ± SEM for all treatments, 
except for the knockdown (KD) conditions, where means ± range of values from 2 independent experiments 
are shown. P > 0.05 for all conditions, t-tests.  
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After these harsh treatments, although the overall area covered by protein clouds was not 

strongly affected, several of them had a visible effect; the clouds looked larger and more distant 

from each other. The cloud size was quantified to understand the extent of this effect as shown in 

Figure 3-12. 

 

Figure 3-12 Disruption of actin results in larger clouds. 
The graph indicates the cloud sizes (as fold increase over the control conditions) for the different 
treatments investigated (mean ± SEM, from 3-5 independent experiments for all conditions except SNAP25 
and syntaxin 1 KD, for which the range of values is shown from 2 independent experiments. The strongest 
phenotype was obtained upon reducing ionic strength, as membrane clouds appeared to coalesce, although 
the general membrane coverage was unaffected. 

3.8.2 Actin 

The conditions that created larger clouds were low ionic strength buffer, latrunculin A, 

cytochalasin D and SPMase. Latrunculin A and cytochalasin D point to an actin-related phenotype. 

After treatment with these actin-depolymerizing drugs, although the membrane still had 

substantial actin coverage (Figure 3-13A,C), actin filaments were substantially lost (Figure 3-13B). 

Interestingly, low ionic strength buffer and SPMase also had an effect on the actin cytoskeleton, 

not only the filaments but also the general actin staining on the membrane was substantially lost 

under these conditions (Figure 3-13C). Here one should note that the effect of SPMase is 

expected to be a combination of the direct sphingomyelin removal action and indirect side-action 

(Zeidan et al., 2008) that causes massive actin loss. It can also be seen that in terms of formation 

of larger clouds losing the filaments is more effective than losing the general actin staining (Figure 

3-13B-C), suggesting that different populations of actin molecules might be serving for different 

purposes in organization.  
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Figure 3-13 Quantification of the actin disruption 
A. After 1 h treatment with 1 µM latrunculin A, there was still a substantial level of actin staining on the 
membrane, as revealed by immunostaining of the click-labeled PC12 sheets for actin and imaging with 2-
color STED. B. After latrunculin A or cytochalasin D treatments, majority of the fibrils were lost in 
comparison to the control condition (mean±SEM, 3 independent experiments) C. The graph shows total 
actin fluorescence (obtained from confocal images) for different treatments as percentage of the respective 
control (mean ± range of values, 2 independent experiments). The incubations were performed as 
described for Figure 3-11. 

 

These observations suggest that the membrane-associated actin cytoskeleton is important for 

maintaining the protein clouds apart from each other or for limiting their size. However, actin 

does not appear to be essential for the existence of cloud-like formations.  

3.8.3 Cholesterol 

A much stronger effect on the membrane pattern was observed when cholesterol was depleted 

from membrane sheets. Surprisingly, the entire cloud organization was eliminated by the removal 

of cholesterol via methyl-β-cyclodextrin (MBCD) (Figure 3-14). The simplest interpretation of this 

phenomenon is that proteins diffused out of the clouds, resulting in a much more homogeneous 

distribution. Small fluorescent puncta (<60 nm) were still occasionally visible, suggesting that 

some protein clusters survive this treatment. These are probably stabilized by cholesterol-

independent interactions, such as specific protein-protein binding or still hold in place by residual 

levels of cholesterol. The effects of MBCD were mimicked by cholesterol oxidase (COase) and by a 

chemically different β-cyclodextrin, but not by the structurally related α-cyclodextrin (Figure 

3-14B), which is unable to extract cholesterol (Ohtani et al., 1989; Zidovetzki, 2007). Importantly, 

cholesterol replenishment after MBCD treatment (Zidovetzki, 2007) recovered the membrane 

patterning (Figure 3-14), suggesting that the cholesterol influence is very strong. Actin was still 

present after cholesterol depletion (membrane coverage of 108.3 ± 10.7% of the control), 

indicating that the cholesterol depletion effects are not directly connected to actin. 
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Figure 3-14 Cholesterol controls the cloud formation 
A. The panels show STED images of membrane sheets treated with sonication buffer (15 minutes at 37 °C, 
left), with MBCD (5 mM, 5 minutes followed by incubation in sonication buffer for 10 minutes at 37 °C, 
middle), and with MBCD (5 M, 5 minutes) followed by MBCD-cholesterol (to replete cholesterol, 5 mM, 10 
minutes, at 37 °C, right). B. The effect was quantified by finding the area of the protein-poor regions as 
convenient measure for the loss of protein clouds. This protein-poor fraction is predicted to be 0 upon the 
complete dispersion of proteins from the clouds. All values were expressed as % of control (buffer 
incubation alone). The bars show the following treatments: MBCD treatment as in the middle panel above, 
0.2 units/ml COase for 15 minutes at 37 °C, 25 mM alpha or beta-hydroxypropyl-CD for 5 minutes at 37 °C, 
cholesterol replenishment as in the left panel above. n = 3-7 independent experiments (*, P < 0.05; **, P < 
0.01; t-tests). Note the loss of protein-free areas upon cholesterol depletion, and their re-formation (along 
with protein clouds) upon cholesterol repletion.  
 

 

I have also verified the importance of cholesterol in other cellular membranes. I obtained 

different organelles from AHA-treated PC12 cells, fixed them and subjected them to click 

reactions. Just as in the plasma membrane sheets, proteins were clustered in the membranes of 

early endosomes, and cholesterol depletion caused their dispersion (Figure 3-15A, C). On the 

contrary, mitochondrial membranes, which contain 40-fold lower levels of cholesterol than the 

plasma membrane (Daum, 1985), were dominated by a homogeneous protein distribution. 

Loading them with cholesterol induced the formation of clusters (Figure 3-15B, C). This suggests 

that cholesterol is a major membrane-organizing molecule, able to act even in membranes where 

it is not normally present at high levels. 
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Figure 3-15 Effect of cholesterol on clouds can be reproduced on organellar membranes 
A. STED images of a normal (control) early endosome and of an early endosome treated with 45 mM MBCD 
for 30 minutes at 37°C. B. STED images of a control mitochondrion and of a mitochondrion after cholesterol 
addition (from 5 mM cholesterol-MBCD complexes for 30 minutes at 37°C). In both panels A and B, the 
organelles were obtained from AHA-treated PC12 cells and treated in vitro. The images are processed by 
deconvolution for display purposes. C. The graph shows the quantification of the clustering of membrane 
proteins in endosomes and mitochondria; the coefficient of variation was measured along the membrane 
as an indication of the level of clustering. n > 110 organelles per condition, from multiple independent 
experiments (***, P < 0.001, t-tests). 

 

The effects of cholesterol depletion and repletion as well as the effects of ionic conditions were 

also reproduced in COS-7 membrane sheets (Figure 3-16). Again, relatively minor effects were 

seen with most ionic treatments, but larger clouds were observed under low ionic strength 

condition (actin phenotype) and cloud organization was lost under cholesterol depletion. 

Cholesterol repletion recovered the protein clouds. 
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Figure 3-16 Similar phenotypes observed in COS-7 cells. 
The panels show STED images of membrane sheets from COS-7 cells treated as in Figure 3-11. Briefly, the 
sheets were treated with buffer only (15 minutes), MBCD (5 mM, 5 minutes), with MBCD followed by 
MBCD-cholesterol (to replete cholesterol, 5 mM, 10 minutes), with high-salt buffer (KCl, 0.5 mM, 20 
minutes), with low ionic-strength buffer (320 mM sucrose, 5 mM HEPES-KOH, 20 minutes) or with high Ca

2+
 

(1 mM, 20 minutes). Note that the phenotypes are similar to those observed in PC12 sheets.  

 

The effects of cholesterol depletion were also verified in living cells, by pre-treating the cells with 

COase (Eggeling et al., 2009), before STED-FCS measurements (performed as in Figure 3-9). WGA 

staining after the treatment still showed a heterogeneous distribution, but with reduced contrast 

between bright and dark regions. While in control cells both WGA and the fluorescent cholesterol 

analogue were diffusing more slowly within the protein clouds (Figure 3-9), this difference was no 

longer observed after COase treatment (Figure 3-17A-B). Diffusion coefficients were higher in 

COase-treated cells, for both WGA and cholesterol (1.7 and 1.3-fold, respectively), and were 

similar inside or outside the protein clouds (Figure 3-17A-B). This is also underlined by calculating 

the Pearson’s correlation coefficient between the WGA cloud intensity and the diffusion 

coefficient (Figure 3-17C). While in control cells a strong negative correlation is seen, caused by 

the decreased diffusion within protein clouds, this effect is much less evident after COase 

treatment.  

 

Just as for membrane sheets, these results indicate that the integrity of protein clouds depends 

on cholesterol in living cells. Reducing cholesterol levels leads to a dispersion of proteins in the 

membrane, causing higher diffusion rates. The fact that the domains did not completely disperse 

after COase treatment is most likely due to residual cholesterol levels in the plasma membrane of 

living cells. Depletion in living cells is not as efficient as in the sheets, since only the cholesterol 

molecules on the outer leaflet can be attacked and the cells can adapt by targeting more 

cholesterol to the membrane.  
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Figure 3-17 STED-FCS measurements on living cells treated with COase.  
A. Scatter plot of diffusion coefficients of WGA-Star635, displayed against the local normalized intensity in 
the membrane (presented as in Figure 3-9. B. Same as A, for fluorescent cholesterol (Chol-PEG-KK114). 
Cholesterol reduction increased the mobility of both WGA and fluorescent cholesterol (compare with Figure 
3-9; increases of 1.7 fold and 1.3 fold, for WGA and cholesterol, respectively). The insets in panels A and B 
show that diffusion inside and outside of the WGA clusters was not significantly different after cholesterol 
reduction. C. The correlation between diffusion and the brightness of protein clouds was strongly reduced 
(Pearson correlation coefficient, PCC, values of approximately -0.2, as opposed to approximately -0.5 in 
controls. The graph indicates mean ± standard deviation from a bootstrap analysis. The measurements and 
analyses were performed by Alf Honigmann. 

3.9 Distributions of Specific Proteins within the Clouds 

To investigate the relevance of the protein clouds for specific proteins, I probed several integral 

and peripheral proteins (listed in Table 3-1) at the membrane by immunostaining membrane 

sheets, in addition to the click labeling of protein clouds. The proteins included transmembrane, 

lipid-anchored and peripheral membrane proteins, as well as cytoskeletal proteins. Different 

functional protein classes were targeted, including proteins involved in neurotransmitter release 

(exocytosis), constitutive secretion, membrane recycling and cytoskeletal modifications (Table 

3-1). The STED images indicate that all these proteins co-localize with the clouds to a good extent 

but are enriched in different positions relative to cloud centers (Figure 3-18). Most proteins were 

only present in some subsets of the clouds, indicating that not all clouds are the same, as one 

would expect. 
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Table 3-1 Summary of all specific proteins investigated. 

Protein name 
Membrane 
association 

Post-
translational 

anchor 
Localization 

General 
function 

Enrich
-ment 

in 
clouds 

Center-
ness 

Actin Cytoskeletal  
Cytoplasm / 
cell cortex 

Cytoskeletal 
element 

1.77 0.49 

APP 
Bitopic 
Integral 

Palmitoylation 
(2 sites, rarely 

happens) 
(Bhattacharyy
a et al., 2013) 

Endomembra
ne system 

Cell surface 
receptor of 

neurons 
4.31 1.51 

BACE 
Bitopic 
Integral 

Palmitoylation 
(4 sites) 

(Vetrivel et al., 
2009) 

Endomembra
ne system 

Proteolytic 
processing of 
the amyloid 
precursor 

protein (APP) 

4.00 0.69 

Bassoon Peripheral 
N-terminal 

myristoylation 

Cytoplasm / 
transport 

vesicles / cell 
membrane 

Organization of 
the cytomatrix 
at the active 

zone 

2.35 0.51 

α-N-catenin Peripheral  
Cell 

membrane / 
cytoplasm 

Linker between 
cadherin 
adhesion 

receptors and 
the 

cytoskeleton, to 
regulate cell-cell 

adhesion 

6.65 1.77 

Caveolin 1 
Monotopic 
integral 

Palmitoylation 
(3 sites) 

Cell 
membrane 

Caveolae 
formation 

3.24 1.08 

Clathrin heavy 
chain 

Peripheral  
Cytoplasm / 

vesicles / cell 
membrane 

Major coat 
component of 

coated pits and 
vesicles 

10.77 1.48 

Cortactin Cytoskeletal  
Cytoplasm / 
cell cortex 

Cytoskeletal 
element 

8.00 1.29 

Dynamin 1,2,3 Peripheral  
Cytoplasm /  
vesicles/ cell 
membrane 

Vesicular 
trafficking, 

fission 
2.36 0.58 

ERM Peripheral  
Cell 

membrane/ 
cell cortex 

Connection of 
cytoskeletal 

elements (actin) 
to the plasma 

membrane 

2.14 0.53 

Flotillin 2 Peripheral 

N-terminal 
myristoylation 

and 
Palmitoylation 

(3 sites) 
 (Neumann-
Giesen et al., 

2004) 

Cell 
membrane / 
endosomes 

Scaffolding 
protein within 

caveolar 
membranes 

2.01 0.93 
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Munc18-1 Peripheral  
Cell 

membrane / 
cytoplasm 

Regulation of 
synaptic vesicle 

docking and 
fusion 

2.31 0.82 

Nicotinic 
acetylcholine 
receptors 
(probed by α-
bungarotoxin) 

Polytopic 
Integral 
(four-pass) 

 
Cell 

membrane 

Neurotransmitt
er receptor (as a 

5-protein 
complex) 

4.30 0.86 

NSF Peripheral  Cytoplasm 
SNARE-complex 

disassembly, 
chaperone 

3.79 1.38 

α-SNAP Peripheral  Cytoplasm 
SNARE-complex 

disassembly 
4.50 1.22 

SNAP23 
Monotopic 
integral 

Palmitoylation 
(5 sites) 

Cell 
membrane 

SNARE (fusion) 
molecule; part 

of the 
constitutive 

secretion 
machinery 

2.52 0.88 

SNAP25 
Monotopic 
integral 

Palmitoylation 
(4 sites) 

Cell 
membrane 

SNARE (fusion) 
molecule; part 

of the 
neurotransmitte

r release 
machinery 

3.46 0.64 

Synaptophysin 

Polytopic 
Integral 
(four-pass) 

 
Secretory 
vesicles 

Structural 
component of 

synaptic vesicles 
and dense-core 

vesicles 

1.41 0.63 

Syntaxin 1 
Bitopic 
Integral 

 
Cell 

membrane 

SNARE (fusion) 
molecule; part 

of the 
neurotransmitte

r release 
machinery 

1.87 0.61 

Syntaxin 4 
Bitopic 
Integral 

 
Plasma 

membrane 

SNARE (fusion) 
molecule; part 

of the 
constitutive 

secretion 
machinery 

3.10 1.11 

Syntaxin 13 
Bitopic 
Integral 

 
Endomembra

ne system 

SNARE (fusion) 
molecule; part 

of the 
endosomal 

fusion 
machinery 

4.30 1.29 

TfnR 
Bitopic 
Integral 

Palmitoylation 
(2 sites) 

Cell 
membrane / 
endosomes 

Receptor for 
transferrin; 

cellular uptake 
of iron 

6.88 0.50 

α-Tubulin Cytoskeletal  Cytoplasm 
Cytoskeletal 

element 
(microtubules) 

8.77 1.62 
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The proteins are described according to the protein database Uniprot, www.uniprot.org, and to references 
therein. The membrane association is classified as follows: 
Monotopic integral proteins: permanently attached to the membrane from only one side. 
Bitopic integral proteins: have segments at both sides of the lipid bilayer and permanently attached to it via 
one transmembrane domain. 
Polytopic integral proteins: span the lipid bilayer more than once and permanently attached to it via several 
transmembrane domains. 
Peripheral proteins: temporarily associated with the lipid bilayer through interactions with lipids or 
membrane proteins. 
Cytoskeletal proteins: soluble elements of cortical cytoskeleton. 

 

 

To determine the location of the proteins within the clouds, line scans centered on the protein 

clouds were drawn (Figure 3-18B). The line scans confirmed the localization of all the tested 

proteins within clouds, and also suggested that many proteins enriched in particular areas: some 

were present mostly at the center of protein clouds, others preferred their edges, while some 

were randomly distributed within the clouds (Figure 3-18B). In order to have a quantitative 

comparison of these visible differences in distribution, two parameters were used: fold 

enrichment of the protein within the cloud and the centerness. 

 

Centerness, which describes the preference of the cloud centers, was determined as follows from 

the average line scans drawn over immunostained protein clouds. I determined the ratio between 

the intensity of the immunostained protein and the intensity of the protein cloud at two points in 

the distribution:  

1)  The cloud center (Protein intensitycenter/Cloud intensitycenter). 

2) The half-width point of the cloud, representing the edge (Protein intensityedge/Cloud 

intensityedge).  

 

Cloud center preference was then obtained by dividing the first ratio (measured at the center) by 

the second one (measured at the edge). This parameter is equal to 1 for proteins that are 

randomly distributed within clouds, is higher than 1 for proteins that are enriched in the cloud 

centers, and is lower than 1 for proteins that prefer the edges of clouds. The values obtained are 

listed in Table 3-1. 

 

For distributions that have one peak (unimodal), categorization was based on their full-width-at-

half-maximum. If the line scan showing the distribution of the protein is tighter than that of the 

protein clouds, the protein has a tendency to be localized at a more central position within the 

cloud and hence categorized in the “Center preference” group. Proteins having a similar 
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distribution to the protein clouds were described as “No preference”, since they do not show a 

tendency for a particular region (Figure 3-18B).  

 

Alternatively, for distributions with 2 peaks (bimodal) categories were separated according to the 

ratio between the peaks and the central point. If the central point reached above the 60% of the 

peak value, the protein was described to show “moderate edge preference”. If the central point 

was even lower than the 60% cut-off, the proteins had a higher tendency to be localized at the 

cloud peripheries and are grouped in the “edge preference” category (Figure 3-18B). 

 

 

Figure 3-18 Distributions of several specific proteins in the protein clouds. 
A. Specific proteins were fluorescently labeled through immunostaining (red) on AHA-containing PC12 
plasma membranes (green). The STED images indicate that all these proteins co-localize with the clouds to a 
good extent but are enriched in different positions relative to cloud centers. B. Analyses of the relative 
distributions of specific proteins. Unimodal protein distributions were categorized based on their full-width-
at-half-maximum: proteins having a tighter distribution than the protein clouds were placed in a “Center 
preference” category, while those that had similar distributions to the protein clouds were described as “No 
preference” (no preferred distribution within the clouds). The bimodal protein distributions were 
categorized according to the ratio between the peaks and the central point. Those where the central point 
represented more than 60% of the peak value were described as having a “Moderate edge preference”, 
while those where the central point was below this value were described as having an “Edge preference”. 
The graphs indicate averaged line scans, from 300-900 protein clouds (mean ± SEM). The two-color 
drawings at the bottom represent the general distribution profiles for each category (clouds in green, 
specific proteins in red). 

 

Actin was one of the proteins found farthest from the centers of protein clouds. It appeared to 

surround them in a ring placed at a distance of ~150 nm from the centers (Figure 3-18B), where it 

was joined by ERM (ezrin-radixin-moesin) proteins. ERM are functional partners for actin, serving 

as links between actin and the plasma membrane (Tsukita and Yonemura, 1997), and thus 
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participating in the organization of the so-called “membrane skeleton” (Kusumi and Sako, 1996; 

Ritchie et al., 2003). This distribution, seemingly forming a barrier (or border) at the edges of 

protein clouds, is in line with the effects of actin disruption on protein cloud structure (Figure 

3-12).  

 

When the borders are lost by actin disruption, clouds can coalesce to form bigger domains (Figure 

3-12). To determine whether the overall nature of the clouds remained the same after their 

coalescence, I have investigated the localization of one of the proteins that preferred the cloud 

edges, the transferrin receptor (TfnR), in membrane sheets treated with low ionic strength buffers 

which was shown to reduce the actin coverage of the membrane drastically (Figure 3-13) and 

increase the size of the protein clouds about 3-fold (Figure 3-12). However, TfnR was still found 

preferentially on the edges of clouds (Figure 3-19). This suggests again that although actin borders 

the protein clouds, it is not involved in their organization as strongly as cholesterol. 

 

 

Figure 3-19 Actin disruption does not change the TfnR localization within clouds 
STED images and corresponding averaged line scans obtained by immunostaining PC12 membrane sheets 
for the transferrin receptor (TfnR) after a 20-minute incubation with sonication buffer (control) or with low 
ionic strength buffer, which causes the formation of bigger clouds. Note that TfnR is still enriched at the 
edges. n = 493 protein clouds (mean ± SEM). 

 

 

To test whether the distributions I observed were reproducible in other cell types, I performed 

some of the antibody stainings on COS-7 cells. I observed similar distributions (Figure 3-20), 

although the enrichment factors were seen to be varying between these different cells.  
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Figure 3-20 Distributions of specific proteins in COS-7 membranes  
Specific proteins were fluorescently labeled via immunostaining (red) of PFA-fixed COS-7 plasma 
membranes (protein clouds - green). The graphs indicate averaged line scans obtained from 385-550 
protein clouds (mean ± SEM).  

 

 

Since antibodies are known to have the potential of creating small clusters, when possible 

proteins were also detected on membrane sheets with smaller, monovalent probes. The 

distribution of syntaxin 1 obtained with antibodies was reproduced using fluorophore-coupled 

Fab fragments (Figure 3-22). Likewise, an RNA-aptamer reproduced the distribution of TfnR 

obtained with antibodies in native and fixed sheets (Figure 3-22). In addition, nicotinic 

acetylcholine receptors were probed with fluorescently labeled α-bungarotoxin.  

 

 

Figure 3-21 Distributions of proteins by monovalent probes 
Similar line scans obtained for PC12 membranes by using directly labeled probes such as Atto647N-
conjugated α-bungarotoxin (to probe nicotinic acetylcholine receptors), anti-syntaxin 1 Fab fragment and 
TfnR aptamer, instead of full antibodies. TfnR aptamer was applied on living cells prior to sonication and 
imaged either for fixed membranes or unfixed native membranes. n = 275-600 protein clouds (mean ± SEM).  

 

 

Finally, similar distributions were obtained by immunostaining whole cells (rather than membrane 

sheets) for proteins that could be targeted by extracellular fluorescent probes, which detected 

the surface-exposed epitopes of the respective proteins (Figure 3-22). 
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Figure 3-22 Analysis of surface staining of proteins on whole PC12 cells.  
Atto647N-conjugated α-bungarotoxin was applied onto live PC12 cells; alternatively, antibodies targeting 
surface epitopes of synaptophysin, synaptogtotagmin, and TfnR were applied to PC12 cells after they were 
fixed with PFA and glutaraldehyde. Afterwards the cells were labeled by click chemistry and were 
embedded in plastic resin, as described for Figure 3-4D. 2-color STED imaging was performed on ultrathin 
sections. The graphs indicate averaged line scans, from 180-240 protein clouds (mean ± SEM). 

3.9.1 The Effect of Depalmitoylation by DTT 

When a common property for the proteins falling in the same category is sought, one noteworthy 

observation is the previously reported DRM-association of some of the proteins falling in the 

center preference and no preference categories, such as caveolin, flotillin (Rajendran et al., 2007; 

Solomon et al., 2002) and SNAP23 (Salaun et al., 2005a). Following the same pattern, proteins 

with lower DRM-association such as SNAP25, Syntaxin 1 (Lang et al., 2001; Lang, 2007) and TfnR 

(Mañes et al., 1999) have tendencies toward the cloud edges (Figure 3-18). The general behaviors 

of the proteins with lipid anchors were also fitting this observation; palmitoylated proteins which 

show high DRM-association (Melkonian et al., 1999) had a center preference, whereas the 

farnesylated proteins known not to be included in DRMs had an edge preference (Figure 3-7A). 

Although general tendencies indicated a more central localization for raft-like proteins and more 

peripheral distribution for the non-raft-like proteins, this is hard to establish a wide-ranging rule 

based on this. Also, general tendencies might not always reflect the distribution of specific 

proteins. For example, although palmitoylated proteins generally occupied cloud centers (Figure 

3-7A), one member of this class, SNAP25, had a moderate preference for cloud edges (Figure 

3-18).  

 

An interesting insight was gained by overexpression of a truncated version of SNAP25. This 

mutant lacks the SNARE domains and is essentially equivalent to the palmitoylated linker domain 

of SNAP25 fused to GFP (which maintains the overall size of the protein similar to the non-

truncated version). Although the endogeneous SNAP25 was detected to show moderate edge 

preference in PC12 sheets (for comparison the averaged line scan for SNAP25 from Figure 3-18 is 

replotted in Figure 3-23A), the truncated linker domain overexpressed in COS-7 cells (this cell line 
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was preferred due to higher expression efficiency and the lack of endogeneous SNAP25 

expression), caused the loss of this tendency (Figure 3-23B). Interestingly, when the membranes 

were subject to DTT which causes loss of palmitoyl groups (Levental et al., 2010b), the truncated 

protein was found to be slightly more dispersed suggesting that heavy palmitoylation could be 

one factor that drives tighter distribution. These results indicate that interactions that are specific 

to the SNAP25 SNARE domains contribute to its location and palmitoylation might also have a 

minor role in its distribution, but the localization is governed by neither of them alone.  

 

A noteworthy comparison is between SNAP25 and SNAP23. Although SNAP25 and SNAP23 are 

structurally very similar, SNAP23 has one more palmitoylation site and was also shown to be more 

engaged to DRMs (Salaun et al., 2005a; 2005b). In the membrane sheet experiments with PC12 

cells, endogeneous SNAP23 was found randomly distributed within the clouds unlike SNAP25, 

which had a moderate edge preference (for comparison the averaged line scan for SNAP23 from 

Figure 3-18 replotted in Figure 3-23C). DTT treatment was also applied to SNAP23, but the effect 

was minor, if any, suggesting that a complex array of interactions govern the distribution of each 

protein (Figure 3-23D). In conclusion, distribution within the clouds appeared to be strongly 

influenced by characteristics specific to each protein.  
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Figure	
  3-­‐23	
  Effects	
  of	
  depalmitoylation	
  by	
  DTT.	
  
A.	
  Averaged	
  line	
  scans	
  obtained	
  from	
  PC12	
  membrane	
  sheets	
  immunostained	
  for	
  SNAP25	
  (red).	
  The	
  profile	
  
of	
  clouds	
  is	
  shown	
  in	
  green.	
  n	
  =	
  466	
  protein	
  clouds	
  (mean	
  ±	
  SEM).	
  B.	
  The	
  graph	
  shows	
  the	
  overexpression	
  of	
  
a	
   truncated	
   version	
   of	
   SNAP25,	
   lacking	
   the	
   SNARE	
   domains	
   and	
   coupled	
   to	
   GFP	
   (thus	
   consisting	
   of	
   GFP	
  
coupled	
   to	
   the	
   palmitoylated	
   linker	
   domain	
   of	
   SNAP25)	
   in	
  membrane	
   sheets	
   obtained	
   from	
   COS-­‐7	
   cells	
  
treated	
  with	
  20	
  mM	
  DTT	
  (blue)	
  or	
  with	
  ethanol	
  vehicle	
  (control,	
  red)	
  for	
  1	
  h	
  prior	
  to	
  sonication.	
  The	
  protein	
  
was	
  detected	
  by	
  immunostaining	
  of	
  click-­‐labeled	
  fixed	
  sheets	
  for	
  GFP.	
  n	
  =	
  930-­‐1000	
  protein	
  clouds	
  pooled	
  
from	
   2	
   independent	
   experiments	
   (mean	
   ±	
   SEM).	
   Note	
   the	
   difference	
   from	
   the	
   endogenous	
   SNAP25	
  
distribution	
  (Figure	
  3-­‐18).	
  C.	
  Same	
  as	
  panel	
  A,	
  but	
  for	
  SNAP23	
  immunostained	
  sheets.	
  n=	
  502	
  protein	
  clouds	
  
(mean	
   ±	
   SEM).	
   D.	
   Same	
   as	
   panel	
   B	
   but	
   shows	
   the	
   distribution	
   of	
   endogeneous	
   SNAP23	
   detected	
   by	
  
immunostaining	
  of	
  membrane	
  sheets	
  from	
  DTT	
  treated	
  or	
  control	
  PC12	
  cells.	
  n	
  =	
  840-­‐1195	
  protein	
  clouds	
  
pooled	
  from	
  2	
  independent	
  experiments	
  (mean	
  ±	
  SEM).	
  

3.9.2 Functional	
  Interactions	
  

To	
  obtain	
  a	
  more	
  quantitative	
  view	
  of	
  the	
  different	
  protein	
  distributions,	
  a	
  scatter	
  plot	
  comparing	
  

the	
  preferences	
  of	
  proteins	
  for	
  the	
  cloud	
  centers	
  or	
  their	
  edges	
  (“centerness”,	
  see	
  above)	
  versus	
  

the	
   level	
   of	
   enrichment	
   in	
   the	
   clouds	
   was	
   generated	
   (Figure	
   3-­‐24).	
   In	
   this	
   plot,	
   a	
   number	
   of	
  

functional	
   groups	
   can	
   be	
   seen.	
   A	
   cohort	
   involved	
   in	
   the	
   fusion	
   of	
   neurotransmitter-­‐containing	
  

vesicles	
   to	
   the	
  plasma	
  membrane	
   (Ca2+-­‐regulated	
  exocytosis)	
   localized	
   to	
   cloud	
  edges	
   (SNAP25,	
  

syntaxin	
   1,	
   bassoon,	
   synaptophysin,	
   their	
   co-­‐factor	
   lipid	
   PIP2;	
   indicated	
   by	
   the	
   blue	
   contour	
   in	
  

Figure	
   3-­‐24.	
   This	
   is	
   in	
   contrast	
   to	
   two	
   proteins	
   involved	
   in	
   the	
   fusion	
   of	
   vesicles	
   from	
   the	
  

constitutive	
   secretion	
  pathway	
   to	
   the	
  membrane,	
   SNAP23	
   and	
   syntaxin	
   4.	
   These	
  proteins	
  were	
  

more	
  randomly	
  distributed,	
  despite	
  their	
  remarkable	
  structural	
  similarity	
  to	
  SNAP25	
  and	
  syntaxin	
  

1.	
   The	
  endosomal	
  proteins	
  APP	
  and	
   syntaxin	
  13	
  both	
  preferred	
   cloud	
   centers	
   (purple	
   contour).	
  

Further	
   examples	
   of	
   proteins	
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that follow membrane fusion by disassembling SNARE complexes; green contour), and actin and 

its functional partners from the ERM complex (orange contour). 

 

Figure 3-24 Comparison of distributions of specific proteins.  
The scatter plot shows the fold enrichment of proteins within clouds, against their domain center 
preference (the values are listed in Table 3-1). Groups of functionally related proteins are indicated by the 
colored contours. 

 

These observations suggest that functional interactions might have a strong influence on the 

distribution of proteins within the clouds and proteins that function together may reach similar 

regions. This would induce the formation of areas that are highly enriched for those particular 

protein cohorts, to the point of excluding other components, a situation that may be important 

for the function of these assemblies. 

3.10 A Technical Note: Development of COIN 

3.10.1 Secondary Isotope Mass Spectrometry 

As described in Section 3.2, a label-free detection technique, SIMS, was applied to visualize the 

protein clouds in absence of fluorescent labels. This mass spectrometry-based method is an 

isotopic imaging technique that is recently gaining popularity especially to study turnover of 

molecules (Frisz et al., 2013b; Lechene et al., 2006; Senyo et al., 2013; Steinhauser et al., 2012; 

Zhang et al., 2012). The marker molecules for SIMS contain stable isotopes such as 15N and 13C, 

which are metabolically incorporated into the cells. The samples are then imaged using as a probe, 
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the primary beam of ions such as Cs+ (Castaing and Slodzian, 1962). This beam is scanned on the 

surface of the cellular material to be investigated, causing the sputter of secondary particles, 

atoms or atomic clusters. A proportion of the secondary particles is ionized and can then be 

identified by mass-spectrometry (Figure 3-25A). Since the secondary ions are released only from 

the area hit by the Cs+ beam, the lateral resolution of the measurement is only dependent on the 

size of the beam and reaches ~30 nm with modern SIMS instruments such as the Cameca 

NanoSIMS 50L (Senyo et al., 2013). The z-axis resolution is dependent on the mean depth to 

which the ion beam penetrates into the sample, and is typically ~10 nm. Thus, SIMS/MIMS has 

good spatial resolution and can be used to investigate different cellular structures. Nevertheless, 

the technique is limited by the fact that with bulk isotopic labeling specific structures cannot be 

identified at high precision. Some structures, such as nuclei, may be identified by their 

morphology, but this is not the case for most small organelles. To evade this limitation, one would 

need to combine SIMS with a method that identifies specific organelles, such as fluorescence 

microscopy.  

 

 

Figure 3-25 SIMS imaging. 
A. The primary Cs

+
 beam irradiates the sample, causing sputtering of secondary particles from the sample 

surface. These partly ionized particles (only a subset of which are depicted in the figure) are then identified 
by mass spectrometry. B. An example SIMS image of 

12
C

14
N

-
 particles from a neuronal cell body section. The 

graph shows a line scan (red) along the spot indicated by the white arrowhead. The black curve represents a 
Lorentzian fit to the line scan with a full width at half maximum (FWHM) of 76 nm. Applying the 84%-16% 
rule (Lechene et al., 2006), instead of FWHM fitting, gives similar resolution values. 

 

I was also faced with the same problem: to be able to apply SIMS for studies of membrane 

patterning, I needed to know where the membrane regions are in our samples. I have first tackled 

this problem by combining SIMS imaging with fluorescence imaging, which resulted in 

development of a new correlative scheme. To address the disparity between the spatial 

resolution of SIMS and that of conventional microscopy, super-resolution STED microscopy was 

used. The resulting approach, termed correlated optical and isotopic nanoscopy (COIN), allows 
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the analysis of the turnover of a variety of cellular structures like organelles and membranes, and 

can be easily applied to different biological systems. 

3.10.2 Correlation of STED Microscopy with Isotopic Imaging 

To correlate STED and SIMS, the biological specimen should be prepared in a form that can be 

imaged in both setups. The specimen must be stable enough not to suffer any changes between 

the acquisition of the two images, and it must not be damaged by either of the techniques. As the 

high vacuum conditions required for SIMS prohibit the use of live cellular specimens, it was 

necessary to fix and embed the samples in a resin that is suitable for multiple microscopy 

applications. Although SIMS experiments have previously relied on Epon, a resin originally 

developed for EM (Lechene et al., 2006), it cannot be used in correlative imaging due to its high 

autofluorescence. Therefore instead of Epon, LR White resin, which is a polyhydroxy-aromatic 

acrylic resin with low autofluorescence (Watanabe et al., 2011), was used.  

 

For trials of correlative imaging, cultured hippocampal neurons (Willig et al., 2006) were treated 

with 15N-labeled leucine for three days. The leucine was incorporated into all the newly produced 

neuronal proteins, and thus served as a marker for the turnover of neuronal structures. On the 

fourth day the cells were fixed and immunostained for several organelle markers, including the ER, 

the Golgi apparatus, mitochondria and synaptic vesicles. The cells were then embedded in LR 

White resin according to a protocol optimized for the best fluorescence and morphology 

preservation (presented in detail in Section 2.18.1.2). 200-nm sections were cut using an 

ultramicrotome and were deposited on silicon wafers (Zhang et al., 2012) as shown in Figure 

3-26A, using procedures that have been standardized for electron microscopy (Denker et al., 

2009). The use of ultrathin sections, as opposed to whole cells grown on the wafers, has the 

advantage of increasing the resolution of fluorescence imaging along the vertical axis (otherwise 

the vertical axis resolution of the typical STED microscope is comparable to that of confocal 

instruments, about 500-600 nm). 

 

First, the samples were imaged optically using STED microscopy (Figure 3-26B, see Figure 1-5 for 

details of STED microscopy). As the silicon wafers do not allow the transmission of light, the 

wafers were placed upside-down on the objective stage, with the sections facing the lens, bathed 

in immersion oil. This procedure did not harm the samples and allowed efficient excitation and 

fluorescence depletion. As the exact location of the area imaged by STED needs to be known 

when the sample is transferred to the SIMS instrument, one needs to create several location 
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markers on the specimen. This was achieved by scanning the regions surrounding the imaged area 

with the multiphoton beam of the Mai Tai laser at maximum energy. The laser induced rapid (30-

60 seconds) deformation of the LR White resin, selectively in the regions scanned (Figure 3-26C). 

Markings of different shapes and sizes can be created around the different areas imaged with 

STED, allowing easy recognition in the SIMS instrument. 

 

 

Figure 3-26 Sample preparation for correlative imaging. 
A. The cells were embedded in LR White and 200-nm sections are cut with an ultramicrotome. The sections 
(blue rectangles; one indicated by the red arrow) are placed onto a silicon wafer (gray square). B. The 
chosen cell area is imaged in the confocal or STED mode (only the STED image is shown here). C. Afterwards 
the multiphoton laser used for STED depletion (a Spectra-Physics Mai Tai tunable laser) is applied at 
maximum intensity, at 750 nm, onto the zone surrounding the imaged area, resulting in the heat-
dependent deformation of the LR White resin. The deformed areas of section can be seen as black markings 
in a reflection image obtained from the bottom surface of the silicon wafer. The markings can later be 
recognized using a brightfield camera in the SIMS setup, enabling the identification of the area that needs 
to be imaged. 

 

The samples were then mounted into a SIMS instrument (NanoSIMS 50L, Cameca). A Cs+ beam 

raster was scanned over the sample surface (Figure 3-25A), applying a sufficient dose of primary 

ions to reach the steady-state of secondary ion formation. These ions were then mass separated 

and detected by using a double focalization mass spectrometer. Nitrogen was detected in the 

form of CN- ions (12C14N- and 12C15N- were detected separately, labeled as 14N and 15N for 

simplicity). Also the ratio between 15N and 14N was calculated at each location producing the 

15N/14N ratio images. As in images obtained in the past in comparable experiments (Senyo et al., 

2013; Steinhauser et al., 2012; Zhang et al., 2012), the ratio, and therefore the relative 
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incorporation of 15N, is variable in different regions of the cell (close to ~3-8% of all nitrogen 

atoms, on average, compared to the terrestrial ratio of 0.366%).  

 

For a comparison, several organelles of the synapse were targeted (Figure 3-27). The synapse 

contains neurotransmitter-filled synaptic vesicles, which release their contents by fusing to the 

plasma membrane at specific sites termed active zones. Synaptic vesicles were identified by 

immunostaining for synaptophysin 1, one of their most important components. Active zones were 

detected by staining one of their major proteins, bassoon (Südhof, 2004). Mitochondria, which 

deliver the energy necessary for synaptic transmission, were identified by staining for the 

mitochondrial transport protein TOMM20. Figure 3-27A shows a section through a neuronal 

branch (axon) in which a synapse, characterized by the co-localization of all three types of 

organelles (vesicles, active zone, mitochondria), is indicated by white arrowheads. The rest of the 

cytosol is populated by numerous transport vesicles containing synaptophysin 1 or bassoon, and 

by several other mitochondria. The turnover of the synapse appears to have been stronger than 

of the neighboring axon, since the synapse contains higher levels of 15N-leucine than the 

surrounding axonal space (Figure 3-27B-C). The regions of high 15N/14N ratio correlate well with 

the vesicles and with the bassoon signal (Pearson’s correlation coefficients of 0.74 and 0.81, 

respectively), but correlate only poorly with the mitochondria (Pearson’s correlation coefficient of 

0.46; Figure 3-27D). This suggests that newly produced vesicles and/or active zone components 

(such as bassoon) have been transported to this synapse.  

 

Since only a limited number of channels are available for STED imaging, STED imaging was 

performed only for bassoon, and confocal imaging was used for TOMM20 and synaptophysin 1. 

Confocal imaging allowed the identification of organelles in the general synaptic area, and even 

allowed separating the mitochondria from the synaptic vesicle cluster (Südhof, 2004). This is 

possible since both mitochondria and the vesicle cluster are larger than the diffraction limit. 

However, the advantage of STED imaging is evident when groups of bassoon molecules, which are 

much smaller than the diffraction limit, are investigated (Figure 3-27E). The synaptic area 

contained several groups of bassoon molecules, four of which presented much higher 

incorporation of 15N-leucine than the others. This level of detail is invisible with conventional 

microscopy (Figure 3-27F). 
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Next, organelles in the neuronal cell body were investigated (Figure 3-28A). In this case 

immunostainings were performed for trans-Golgi marker TGN38 and for synaptophysin 1, a 

marker of synaptic vesicle precursors (both confocal imaging), as well as for the ER marker 

calnexin (STED imaging). The nucleus, which can be easily identified by its morphology, had the 

lowest incorporation of 15N-leucine of all identifiable organelles, suggesting that it has the slowest 

protein turnover (Figure 3-28B-C). In contrast, the trans-Golgi network (TGN38 bar) contained 

high levels of newly-produced proteins, as did the synaptic vesicle precursors (synaptophysin 1 

bar); note that synaptic vesicle precursors overlapped partially with both the Golgi and the ER. 

Interestingly, the ER (calnexin bar) contained a much lower proportion of new proteins than the 

trans-Golgi, suggesting that newly-produced proteins leave the ER rapidly, but linger substantially 

longer in the Golgi apparatus. This is also visible in the line scans in Figure 3-28D, where the Golgi 

staining (TGN38) correlates best with the 15N/14N ratio (Pearson’s correlation coefficient of 0.78). 

 

While these measurements seem appropriate for large organelles such as the nucleus and the 

Golgi apparatus, confocal imaging is no longer sufficient for the diffuse, high-density calnexin 

staining. For example, the 15N/14N ratio seems to correlate to some extent with the ER staining in 

the confocal image (calnexin, Figure 3-28E), but the use of STED reveals that the two signals are 

independent of each other (with even a mild negative correlation detected, Figure 3-28E). This 

suggests, again, that correlation with super-resolution microscopy is necessary for the 

investigation of small or densely packed organelles. 
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Figure 3-28 Correlative STED and SIMS imaging in neuronal cell bodies.  
A. Light microscopy images of a neuronal cell body section. The neuron was immunostained for the Golgi 
marker TGN38 (green, confocal), for the synaptic vesicle marker synaptophysin 1 (red, confocal; 
synaptophysin 1 identifies vesicle precursors in the cell body), and for the ER marker calnexin (blue, 
confocal). Right panel shows the STED image for the calnexin labeling. All images were processed by LD. B. 
SIMS images for 

14
N, 

15
N and 

15
N/

14
N ratio, respectively. Note the low 

15
N

 
/

14
N ratio in the nucleus (which is 

identified by its characteristic morphology, upper left area) and the presence of several cytosolic regions 
with higher ratios. C. The graph shows the 

15
N/

14
N ratio for the different organelles. The values for the 

nucleus are significantly lower than those for all the other organelles (**, P < 0.01, t-test).  Additionally, the 
ratio is significantly higher in the Golgi apparatus (TGN38) than in the ER (calnexin) (*, P < 0.05, t-test). The 
graphs represent mean + s.e.m, from 26, 57, 9, and 41 regions for the four bars, respectively. D. Line scans 
were drawn through the region indicated by the arrowheads in A and B.  E. Pearson’s correlation 
coefficients were calculated from the line scans in D, to quantify the correlation between calnexin and the 
15

N/
14

N ratio, using the STED or confocal images of calnexin. The values were normalized to the maximum 
expected correlation. SIMS imaging was performed in collaboration with Angela Vogts (Leibniz-Institute for 
Baltic Sea Research). 

 

 

Overall, these experiments indicate that correlated optical and isotopic nanoscopy (COIN) is a 

feasible approach. Each of the two combined technologies provides a piece of information that is 

unavailable for the other: SIMS yields the material turnover (as indicated by the 15N/14N ratio), 

while STED microscopy reveals the identities and the spatial distribution of organelles or organelle 

components. Thus COIN allows a highly precise description of label incorporation at specific sites, 

enabling turnover experiments for specific structures. These results also validate reliable use of 
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these techniques for membrane patterning. Proteins can be detected in a label-free manner by 

SIMS at the membrane areas identified by fluorescent imaging of an independent membrane 

marker, in correlative fashion. 

 

Apart from membrane patterning studies, COIN has a large field of potential applications, as it is 

now feasible to investigate the metabolism and organization of any cellular organelle. Finally, a 

further potential use of this procedure is the generation of triple-correlation images, since the 

samples prepared for COIN can also be investigated with scanning electron microscopy 

(Watanabe et al., 2011) thus allowing a combination of super-resolution fluorescence microscopy, 

electron microscopy and SIMS on the same sample. 
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4 DISCUSSION 

4.1 The General Model: Protein Clouds as a Membrane Organizing 

Principle 

In this study, I have investigated the nanoscale organization of plasma membrane proteins using 

metabolic labeling and super-resolution fluorescence microscopy. By using plasma membrane 

sheets, I have observed that the membrane proteins are organized into domains with high-

protein abundance, which I have termed protein clouds (Figure 3-3). The cloud pattern was 

apparent both in PC12 and COS-7 membrane sheets under different fixation protocols and in 

ultrathin sections from whole cells (Figure 3-4). Label-free visualization of proteins by SIMS based 

on N14 signal also showed cloud-like heterogeneities, albeit at a lower resolution (Figure 3-5).  

 

The protein clouds were resilient to a variety of treatments including changes in ionic composition 

and strength, decrease in protein density, disruption of cytoskeletal elements, and hydrolysis of 

phospholipids and sphingomyelin (Figure 3-11). Manipulations that resulted in actin disruption did 

not abolish the clouds, but led to formation of larger domains, suggesting that actin is important 

in preventing coalescence of the clouds. In line with this size-limiting role, actin was also found to 

surround the clouds. The most striking alteration was seen in conditions that reduce the 

membrane cholesterol. Depletion of cholesterol almost completely eliminated the protein clouds, 

in reversible fashion (Figure 3-14). This effect was also reproducible for organellar membranes 

(Figure 3-15). Early endosomes, which have similar levels of cholesterol, also contained protein 

domains that dispersed upon cholesterol depletion. In contrast, mitochondria, which have very 

low amount of cholesterol, seemed to have a rather homogeneous outline. But after introduction 

of cholesterol, domains were formed. These results suggest that cholesterol is the major factor 

for the cloud patterning and its action is rather unspecific and indirect. At this point, it is not clear 

whether cholesterol is concentrated in the clouds; however, the cholesterol analogue I tested 

(Chol-PEG-KK114) did not show a specific enrichment (Figure 3-8). STED-FCS experiments in living 

cells showed that inside the protein domains both the cholesterol analogue and proteins were 

slowed down, suggesting that the molecular crowding in the clouds affects the free diffusion 

(Figure 3-9). 

 

Generally speaking, the clouds had a high enrichment of proteins containing ~81% of the labeled 

membrane proteins with a surface occupancy of 50-60% (Section 3.2 and Figure 3-3). Proteins of 
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different ages were found to occupy the same clouds, suggesting stability over time (Figure 3-6). 

Subsets of proteins with different modifications, as well as individual protein species, were found 

to be all enriched within the clouds but at varying levels and preferring different locations, such as 

the edges or centers of the clouds (Figure 3-7 and Figure 3-18). Interestingly, some functional 

partners were observed to show similar profiles (Figure 3-24). 

 

Based on the distribution measurements presented in Figure 3-18, a circular model was 

generated (Figure 4-1). This model provides a graphic view of the clouds: the general protein 

assembly is bordered by actin, and excludes cholesterol to some extent (according to the results 

with the cholesterol analogue). Different examples of specific proteins are shown, occupying 

particular zones within the circular cloud, at different distances from the center.  

 

 

Figure 4-1 Circular model of the protein clouds. 
Model protein clouds, organized in circular fashion. The images depict the distributions of clouds (green in 
the overlay), actin (red) and cholesterol (blue). The clouds are drawn to scale, using information from the 
line scans in Figure 3-8 and Figure 3-18. Several additional examples of protein distributions are shown in 
the lower row of panels. The contrast of the images is obtained from the line scans: proteins with a higher 
enrichment within clouds will appear as brighter spots over a darker background. Elements that are more 
homogeneously distributed (cholesterol) show less variation in these images. 
 

 

In essence, our data suggest that the plasma membrane assumes a patterned organization, which 

is realized via enrichment of membrane proteins in heterogeneous domains, “the protein clouds”. 

The clouds are maintained by the influence of both cholesterol and actin. The latter appears to 

mainly keep the clouds in place, while at the same time it restricts their size by prohibiting their 
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coalescence, in line with the picket fence model of actin-membrane interactions (Ritchie et al., 

2003). Cholesterol, on the other hand, acts as a general organizer and seems to be responsible for 

protein accumulation into clouds. The clouds can collectively create a protein scaffold that allows 

facilitation of specific and functional interactions. In other words, clouds can act as a basic, low-

hierarchy principle of membrane patterning, underlying the distributions of specific proteins.  

4.1.1 The Determinants of the Clouds 

A fundamental question in the membrane organization field is about the main driving force 

behind general patterning. Is it lipid-driven as suggested in the concept of lipid rafts or rather 

protein-driven as expected in cytoskeleton-based models such as picket-fence, actin-flows or 

protein islands (Gowrishankar et al., 2012; Kusumi et al., 2011; Lillemeier et al., 2006; Lingwood 

and Simons, 2010)? The results I have presented favor a model of cholesterol-driven first level 

organization of proteins, giving rise to the protein clouds. How cholesterol achieves this is not 

completely clear.  

 

Two general scenarios are possible: first, specific interactions of cholesterol with certain lipids and 

proteins might drive segregation of the interaction partners into the observed protein clouds. 

Second, high levels of cholesterol may change the membrane properties favoring clustering of 

proteins together and their separation from the rest of the membrane. The first scenario, 

partitioning of proteins into membrane domains enriched in cholesterol and sphingolipids like in 

the case of membrane rafts (Lingwood and Simons, 2010; Pike, 2006), is not by itself sufficient to 

explain the formation of the protein clouds, due to a number of reasons: 1) The protein clouds do 

not appear to be enriched in the cholesterol analogue we tested (which is even slightly excluded, 

Figure 3-8). This is in agreement with recent isotopic imaging results that indicated homogenous 

distribution of cholesterol in the plasma membrane (Frisz et al., 2013a). 2) Depletion of 

sphingomyelin does not result in cloud dispersion. 3) Several proteins known to be ‘non-raft’ 

proteins (TfnR, syntaxin 1, SNAP25) are enriched in the clouds. 4) Raft domains are typically 

thought to affect only a specific subset of proteins and not the majority of the membrane proteins. 

Therefore, although membrane rafts might be involved in higher levels of protein organization, 

the clouds per se are not identical to rafts. 

 

The second scenario, in which membrane proteins are indirectly driven into clusters by the effects 

of cholesterol on the lipid bilayer, could at least account for the very general impact of cholesterol 

on protein distribution we observed here. It is also the only explanation that covers the effect of 
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cholesterol addition to membranes that lack native cholesterol (mitochondria), which induces 

protein clustering similar to the plasma membrane (Figure 3-15). This is in line with studies on 

membrane peptides in artificial systems, which showed that physiological levels of cholesterol 

significantly increase membrane thickness and at the same time stiffen lipid acyl chains, thus 

constraining conformational freedom at the segregation of proteins into protein-rich domains 

where protein-protein contacts are increased (de Almeida et al., 2004; de Meyer et al., 2010; 

Kaiser et al., 2011; Murray and Tamm, 2011). Also, the lipid shell concept suggests a similar effect 

from the perspective of proteins inducing local lipid disturbances (Kusumi et al., 2011; Marsh and 

Páli, 2004; Poveda et al., 2008). As a result, it seems that the driving force is a combined effect of 

presence of proteins and cholesterol in the bilayer together at high densities.  

 

Higher levels of organization is expected to be driven by more specific protein-protein and 

protein-lipid interactions, as indicated by the finer organization within the clouds and differential 

enrichment of proteins, as well as actin-dependent effects. Based on previous studies, 

electrostatic interactions (Zilly et al., 2011) and potential lipid domains (Frisz et al., 2013b; Fujita 

et al., 2007; 2009; Simons and Sampaio, 2011) are also predicted to contribute to the organization.  

4.2 Implications of the Protein Clouds 

4.2.1 Implications Regarding the Membrane Organization 

The protein clouds appear to be the molecular basis for the lateral organization of specific 

proteins. As noted in Section 1.6, for many proteins, clusters are arranged in a defined pattern, 

rather than being scattered randomly (Figure 1-6). The data that I present provides a mechanism 

for this observation: protein clouds segregate the membrane in irregular protein-rich patches, 

bordered by protein-poor areas. Specific membrane proteins will organize according to this model, 

resulting in a non-random, ordered pattern. Moreover, as indicated in Figure 3-18, specific 

proteins will be confined to particular locations within the protein clouds. 

 

A main advantage of enriching proteins in the clouds can be providing spatiotemporal regulation 

to signaling events, dynamic functions such as exo-/endocytosis and enzymatic reactions. 

Interestingly, a recent simulation about the effect of confined membrane domains on enzymatic 

reaction mechanisms put forward that confinement of proteins causes a change in the temporal 

pattern of reactions. Instead of low yield constant reactions that would happen in a uniform 
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membrane, reaction bursts can be created through confinement (Kalay et al., 2012). When it is 

considered that most of the reactions taking place in the membrane are reversible (like 

phosphorylation/dephosphorylation, unbiquitination/deubiquitination, activation/deactivation), 

the importance of promoting bursts rather than a constant level of low-yield reactions becomes 

easier to appreciate. So cloud enrichment of proteins can help creating bursts that allow the cell 

to rapidly initiate robust signaling cascades before the triggering reactions are reversed by 

competing enzymes. 

 

In addition to this general enrichment, further organization of specific proteins within the clouds 

has other implications. The fact that proteins from the same structural class (for example the 

SNARE fusion proteins SNAP23 and SNAP25, or syntaxin 1, syntaxin 4 and syntaxin 13) can have 

different distributions suggests that interactions particular to each protein, rather than broad 

structural effects, determine the localization of a protein within the cloud. The result that several 

proteins with functional relevance prefer the same areas supports this idea (Figure 3-24). For 

example, bassoon, Munc18, syntaxin 1 and SNAP25 co-localize at the edges of protein clouds. 

Their involvement in fusion with synaptic-like microvesicles or dense-core vesicles loaded with 

neurotransmitter molecules (Bonanomi et al., 2006) requires that they occupy areas where fusion 

can take place rapidly and efficiently to allow the speedy incorporation of the incoming vesicle 

into the plasma membrane. It is probably difficult for this event to take place in the protein-dense 

cloud areas. Thus the co-enrichment of these exocytotic proteins close to the cloud periphery can 

fit with the possibility of utilizing these areas for vesicle fusion. In contrast, SNAP23 and syntaxin 4 

are involved in constitutive secretion, which takes much longer than neurotransmitter exocytosis. 

Constitutive secretion may not require the pre-assembly of the fusion machinery on cloud edges. 

SNAP23 and syntaxin 4 could therefore be randomly distributed, only to be recruited to the 

secretory vesicle after its docking to the membrane. Localization can also be easily understood in 

functional terms for synaptophysin, a component of synaptic vesicles and microvesicles 

(Bonanomi et al., 2006; Takamori et al., 2006), that is also enriched at the cloud edges. This places 

it in an ideal position to be retrieved from the plasma membrane (endocytosis), separated from 

many other membrane proteins. According to this view, it might be contradictory that proteins of 

the endocytotic machinery, such as clathrin and caveolin appear not to show strong edge 

preference. However, it is probable that clathrin and caveolin in the membrane are found mostly 

in coated pits that are uniformly covered with these molecules. These structures likely form 

specialized protein clouds, with a defined function (endocytosis). 
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On a different note, the functional compartmentalization might not be limited to protein-dense 

clouds, but also extend to protein-poor regions. The protein-poor labyrinth surrounding the 

protein clouds can potentially function like a corridor where proteins escaping the clouds can 

diffuse faster and move more effectively. These more “flexible” regions may also be used for 

processes that involve substantial membrane rearrangements, such as endocytosis and exocytosis 

(as discussed above), since the membrane here may be more easily modified than the protein-

dense areas. Supporting this statement, previous studies which reported presence of dark 

osmium-stained patches by EM and raised domains by AFM in mast cells identified budding sites 

like coated pits at the periphery of these structures which are thought to be rich in proteins 

(Frankel et al., 2006; Wilson et al., 2004). 

4.2.2 Experimental Implications 

Since this study mainly deals with very general aspects of membrane organization, some of the 

results point to broad implications regarding general experimental strategies.  

 

One experimental implication of the cloud organization is that it is not possible to reach a 

conclusion of functional partnering for proteins solely on the basis of (diffraction-limited) co-

localization of two proteins. Being found in the same cloud might not necessarily mean that 

proteins function together, especially because there seems to be a second level of organization 

within the clouds. However, when it is considered that most clouds are rather small with a 

median diameter of ˜80 nm, it is possible that this sub-cloud organization is not revealed by 

conventional light microscopy.  

 

A related case can be made for the overexpression of proteins for localization studies. I have 

observed that proteins are spilled into the protein-poor regions when they cannot be fit into the 

clouds due to protein overexpression (Figure 3-10). This result shows that overexpression in 

general might cause significant alterations of the nanoscale distribution of proteins and can lead 

to inaccurate conclusions. 

 

Another implication regards the evaluation and interpretation of results related to cholesterol-

dependent clustering of specific proteins. When a protein is predominantly found in DRMs or 

when its distribution is sensitive to cholesterol depletion, a common tendency is to expect a 

direct interaction of the protein with cholesterol or their co-partitioning in Lo lipid rafts. As have 

also been criticized in the past, drawing a direct link might not always be accurate (Kenworthy, 
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2008; Simons and Sampaio, 2011). Indeed, the reversible loss of protein clouds in the plasma 

membrane and their cholesterol-driven formation even in membranes that normally do not have 

much cholesterol (as for mitochondria), points to a very general organizing role of the cholesterol. 

These results indicate that cholesterol can influence the clustering of a broad range of proteins in 

an unspecific and indirect manner. This broad effect I propose is in accordance with a previous 

study where diffusion of raft and non-raft markers were systematically measured by FRAP in living 

cells. Cholesterol depletion with MBCD was found to decrease the diffusion for both raft and 

nonraft markers (Kenworthy et al., 2004). What is interesting is that, besides physical extraction 

of cholesterol, its chemical modification via COase also had a similar cloud dispersion effect, 

although to a lower extent (Figure 3-14). Enzymatic oxidation of cholesterol yields 4-choleren-3-

one. It seems that this small modification is enough to reduce the cloud forming ability of 

cholesterol. Therefore, in addition to specific interactions, it would be helpful to consider these 

more general effects of cholesterol in organizing proteins while evaluating the results of 

cholesterol depletion experiments. 

4.2.3 General Biological Implications 

4.2.3.1 Cholesterol in Health and Disease 

A wide range of health conditions including aging and neurodegenerative diseases are found to be 

associated with changes in the level or asymmetry of cholesterol in the plasma membrane (Di 

Paolo and Kim, 2011; Simons et al., 2001). Changes in cholesterol metabolism or transport might 

have diverse consequences (Orth and Bellosta, 2012). One specific case, in the context of 

Alzheimer’s disease, can be APP processing. Normally 90% of APP is processed by α-secretase 

which directs the non-plaque forming pathway, whereas 10% is cleaved by BACE leading to Aβ 

formation in what is known as the amyloidogenic pathway (Marlow et al., 2003). The differential 

enrichment profiles I have observed for APP (center preference) and BACE (moderate edge 

preference) are in line with their low interaction on average (Figure 3-18). This interaction is 

largely accepted to occur in lipid rafts, since cholesterol depletion was observed to decrease the 

Aβ production (Canevari and Clark, 2007; Simons et al., 2001), although there are other studies 

reporting that raft-localization is not obligatory for the APP cleavage (Vetrivel et al., 2009). In any 

case, there seems to be a direct link between membrane cholesterol levels and Aβ generation (Di 

Paolo and Kim, 2011). In addition to the lipid-raft dependent regulation and many other links 

between lipids and APP processing (Di Paolo and Kim, 2011), the general arrangement of these 
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proteins in the clouds with respect to each other might be important for part of the susceptibility 

to changes in cholesterol level. 

 

In general, when the very broad and unspecific effect of cholesterol on protein clouds is 

considered, the consequences of alterations in membrane cholesterol level might not be only 

limited to specific cholesterol interactions or disruption of lipid rafts (Ehehalt et al., 2003); but at 

least some effects can also be attributed to this general organizer role of cholesterol. Taking this 

into account can open way for new ideas for investigation of molecular mechanisms for some of 

these diseases. 

4.2.3.2 Membrane Domains in Yeast and Bacteria 

The very basic effect I observe for cholesterol suggests that similar effects can be seen with other 

sterols in different organisms. For yeast cells, which mainly contain ergosterol, a wide range of 

proteins were found to be in different domains, which were largely altered in sterol mutants 

(Spira et al., 2012). However, in yeast membranes there might be various other factors such as 

the presence of a cell wall, different actin dynamics and slower protein diffusion that makes a 

direct comparison of the membrane organization difficult (Spira et al., 2012). A previously 

observed feature of the yeast membrane is the large stable protein complexes called eisosomes 

(Walther et al., 2006).  These intriguing structures seem to be formed by self-assembly of highly-

abundant proteic components into protein scaffolds, which can bind specific phospholipids 

(Karotki et al., 2011). Unlike the more heterogeneous protein domains and patches, these furrow-

shaped protein complexes seem to be more specific to the yeast membrane and are subject to a 

quite different organization than the protein clouds. 

 

Prokaryotes present an interesting comparison, since they do not have sterols or sphingolipids in 

the membrane. The well-known examples of prokaryotic membrane domains are those involved 

in photosynthesis and bioenergetics like chromatophores, chlorosomes, or the purple membrane 

of halophilic archea formed by crystalline patches of bacteriorhodopsin (Boekema et al., 2013). In 

comparison to the clouds these domains are quite different that they create fairly specialized sites, 

made up of very few protein species.  In comparison to the clouds, these domains are without 

doubt quite different in nature. However, in bacterial membranes indications of lipid 

microdomains and DRMs were also observed. One example is the cardiolipin-rich domains 

detected at the poles of the cells and the minicells that bud from the poles (Mileykovskaya and 

Dowhan, 2009). Furthermore, flotillin 1-like proteins were discovered to be widely expressed and 
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distributed in a punctate pattern in sporulating bacteria. Such domains are distinct from 

cardiolipin-rich domains and can confer detergent-resistance. Squaelene-derived polyisoprenoids 

were found to be important lipidic factors for these so-called bacterial lipid rafts (López and Kolter, 

2010). Interestingly, there are also some exceptional bacterial species such as Borrelia, which 

contain cholesterol and its derivatives like cholesterol glycolipids (LaRocca et al., 2010). These 

species were also shown to bear DRMs containing some of the outer membrane proteins, which 

showed susceptibility to sterol depletion (LaRocca et al., 2013). 

 

In contrast, proteins in the mitochondrial membranes, which are poor in cholesterol, were shown 

not to be sensitive to cholesterol depletion and are also not found in DRMs (Zheng et al., 2008). 

Likewise, in our labeling conditions general protein domains in the mitochondrial membrane (at 

least in the outer membrane, which is more accessible to the click labeling) were not as evident as 

those in the plasma membrane or early endosomes (Figure 3-15). Therefore, it is possible that 

functional membrane domains in mitochondria are much smaller than the plasma membrane 

clouds. They might be more on the order of specialized protein complexes, dependent on specific 

protein-protein, protein-lipid interactions or electrostatic forces. Interestingly, cardiolipin, was 

found to be indispensible for long-range row-like assembly of ATP synthase complexes in cristae 

membranes and functioning of the respiratory chain (Acehan et al., 2011; Dudkina et al., 2010). In 

conclusion, these results suggest that alternative mechanisms of membrane specialization might 

be acting in membranes of different composition and finding conserved rules might not be very 

straightforward. 

4.3 Experimental Rationale and Limitations  

4.3.1 Metabolic Labeling 

To address the general protein distribution, I have exploited metabolic labeling, which targets all 

proteins indiscriminately. For that I have relied on incorporation of alkyne or azide containing 

methionine analogues, AHA or HPG, in the absence of normal methionine. A similar type of 

metabolic labeling with AHA has been applied before for shorter incubation times to study 

protein turnover (Dieterich et al., 2007). This previous study established that AHA incorporation is 

not toxic to cells and the specificity and extent of click labeling with AHA incorporation is 

comparable to labeling with radioactive amino acids. They could not find any evidence that AHA 

incorporation alters global protein synthesis or degradation rates. Moreover, AHA-labeled 
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histones were localized to proper subcellular locations (Dieterich et al., 2006). In my experimental 

conditions, I have also confirmed the overall performance of cells through assays of membrane 

trafficking and differentiation (Figure 3-2). Additionally, AHA-treated cells were able to target 

their proteins to different membranes (plasma membrane, endosomes and mitochondria) as 

shown by immunostainings, and were also able to express and sort exogenous proteins in high 

levels (Figure 3-10). These suggest that incorporation of the methionine analogue does not 

disturb the sorting and subcellular localization of proteins. Furthermore, I have employed 

analogues of two different chemistries to account for possible difficulties created in the protein 

structure due to incorporation, but I have not observed a major difference in the labeling pattern 

for the two analogues (Figure 3-6). 

 

For metabolic labeling, methionine is a good target; it is an essential amino acid and in human 

proteome and most proteins contain at least four methionine residues (Dieterich et al., 2006). 

The fact that methionine constitutes on average only 2.2% of the amino acids in a protein (rat and 

human genomes) in comparison to 10% for an abundant amino acid like leucine (Tekaia and 

Yeramian, 2006; Tekaia et al., 2002) is also considered an advantage, since over representation of 

single proteins labeled at many sites become less likely. Also, to ensure that all proteins 

incorporate at least one AHA, the incorporation was continued for 72 hours, which is roughly 

equal to 2 times the median proteome half-life determined for human (HELA cells, 35.5 hours) 

and mouse cell lines (C2C12 cells, 43.18 hours) by stable isotope labeling (Cambridge et al., 2011). 

 

Yet on a quantitative level, I cannot neglect the possibility that not all proteins might be equally 

represented by AHA incorporation and by click labeling. Nevertheless, our labeling should be 

representative of the global membrane proteins for a qualitative assessment of distribution. This 

is demonstrated in different ways. If the proteins collected from AHA-treated cells are subject to 

PAGE, many bands can be click labeled (Figure 3-1). Also, combination of click labeling with 

immunostaining against various proteins (Figure 3-18, Figure 3-20) or double labeling of general 

proteins and modified subsets of proteins (Figure 3-7) gave a good overlap suggesting that many 

different proteins are found in the AHA-labeled structures.  

 

 For the AHA incorporation to be efficient, cells are grown with dialyzed serum. A recent study 

showed that yeast in stationary growth phase produce stable micrometer-scale lipid and protein 

domains as a result of a stress-induced pathway (Toulmay and Prinz, 2013). However, I do not 

expect that the protein clouds are such stress-induced structures. First, no similar stress-induced 

large-scale segregation phenotype has been described in mammalian cells. Second, even with 
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dialyzed medium the medium composition of cells should have plenty of essential nutrients for 

normal functioning. Third after three days of AHA incubation in dialyzed serum, cells can perform 

membrane trafficking at normal levels and can undergo differentiation suggesting that they are 

not experiencing extensive starvation-related stress. 

4.3.2 Click Reactions and Fluorophores 

Copper-catalyzed click labeling I have employed is a highly efficient and specific cycloaddition 

reaction. As obvious, a reaction that would avoid copper would be more desirable. However, in 

preliminary experiments I have observed that the copper-free click reaction, which required 

structurally more complex strained cyclooctyne functionality, was not as efficient nor as specific 

as the copper(I)-catalyzed reaction. Therefore, although it is less compatible with live labeling, 

copper-catalyzed click reaction was preferred. To prevent an adverse effect of copper on protein 

distribution, click reaction was always performed after fixation (except some control conditions 

like in Figure 3-4). 

 

An advantage of the click labeling is that it works 1:1 and does not create crosslinking of targets. 

However, one cannot neglect a potential affinity between fluorophores, which can induce 

clustering. To avoid that fluorophore coupling was performed after fixation. Also, click reactions 

were performed using azide or alkyne modifications with two chemically different dyes, Atto647N 

and Chromeo494. The general cloud pattern was not different for the two dyes. Furthermore, 

SIMS imaging was performed to image the clouds without introduction of any label (Figure 3-5). 

Although isotopic imaging displayed a heterogeneous signal, as the resolution of the technique is 

lower in comparison to STED and the 14N signal is more much more dense and widespread, the 

clouds were not as clearly visible as in fluorescence.  

 

An apparent problem is that not all possible that the fluorophore will not be able to reach and 

react with all the AHA sites, depending on the position. For example, it is quite likely that residues 

in the hydrophobic segments transversing the bilayer are not all that accessible for the click 

reaction. This could lead to fewer targets to be imaged than possible. However, this is a problem 

for all possible methods of secondary labeling and currently there is no alternative method to 

avoid it. Unfortunately, a primary labeling method, where all proteins will be fluorescently labeled 

right away is not feasible for indiscriminate labeling. This is also another reason that SIMS imaging 

without additional labeling or tagging was necessary. 
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Yet another issue with fluorophores is their photophysical interactions with each other. When 

clustered at high densities, some fluorophores tend to undergo self-quenching, giving decreased 

emission.  For the fluorophores I have used in cloud labeling, Atto647N and Chromeo494, the 

quenching characteristics are not known, therefore it is not possible to predict the effect of self-

quenching phenomenon to our brightness-dependent estimations of proteins enrichment in 

clouds. Due to this, the calculated enrichment values are potentially underestimated and should 

be taken as indications rather than absolute quantifications. 

4.3.3 Fluorescent Lipid Analogues 

There is always an inherent problem with fluorescent imaging of lipids, as addition of a 

fluorophore could alter the properties and interactions of the lipid in question. Therefore the 

results obtained are heavily dependent on the type of modification to the lipid. Here, I have used 

analogues with different modifications, acyl chain or headgroup labeling with Atto647N or 

addition of KK114 to the headgroup through a PEG linker. In many cases, headgroup labeling 

preserves the properties of lipids better than acyl chain labeling (Sezgin et al., 2012b). The lipids 

with Atto647N headgroup labeling have been previously used in STED-FCS measurements in living 

cells. It was found that SM-Atto647N is trapped in small areas with diameter <20 nm, whereas PE-

Atto647N was diffusing freely (Eggeling et al., 2009). Cholesterol depletion was found to reduce 

the trapping of SM-Atto647N, while it did have an effect on the free diffusion of PE-Atto647N 

(Eggeling et al., 2009; Mueller et al., 2011). Employing the same chemistries gave me the chance 

to compare their nanoscale diffusion behavior in living cells to the cloud distribution in membrane 

sheets. SM-Atto647N was found to be slightly enriched in the cloud centers while PE-Atto647N 

did not show enrichment in the clouds (Figure 3-8). The cloud dispersion I see after cholesterol 

depletion (Figure 3-14) is also in accordance with the loss of trapping observed in previous STED-

FCS studies (Eggeling et al., 2009; Mueller et al., 2011). Accordingly, it seems like there is a 

correlation between the cloud enrichment and trapping. This was further tested by using another 

PEGylated analogue, SM-PEG-KK114. This molecule also does not display trapping (personal 

communication, Alf Honigmann) and interestingly it was not enriched in the clouds either. 

 

Although this correlation between trapping and cloud enrichment is noteworthy, the mechanism 

behind it is not completely understood. The trapping is expected to occur due to presence of 

short-lived and cholesterol-assisted molecular complexes (Mueller et al., 2011). Also the 

relevance of the observed trapping behavior to the native lipids is not clear, since different 

analogues yield different phase preferences. SM-Atto647N and PE-Atto647N strongly prefer the Ld 
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phase in GUVs and GPMVs (Sezgin et al., 2012b and personal communication, Alf Honigmann). 

The addition of a PEG linker, which keeps the fluorophore away from the bilayer, and use of a less 

hydrophobic KK114 dye makes SM-PEG-KK114 more Ld preferring (personal communication, Alf 

Honigmann), whereas Chol-PEG-KK114 does not have a significant preference for either phase 

(Figure 2-2).  Strikingly, neither the trapping behavior nor the cloud enrichment indicates a 

correlation with the respective Lo/Ld partitioning of the lipid analogues in GUVs or GPMVs (Sezgin 

et al., 2012b). Both the partitioning and the trapping behavior of lipid analogs seems to be 

determined by a complex combination of a multitude of factors, such as the polarity, size and 

charge of the label, the label position and headgroup size of the lipid and its interactions with 

proteins (Sezgin et al., 2012b). Thus, the physicochemical basis for trapping in living cells is yet to 

be identified, but potentially there could be a link between trapping of lipid analogues and their 

slight enrichment at the cloud centers.  

 

Interestingly, I have observed that the cholesterol analogue, Chol-PEG-KK114, was not enriched in 

the clouds, and was actually slightly excluded from the cloud centers (Figure 3-8A). The initial 

characterization of Chol-PEG-KK114 in GUVs showed promising results with an equal preference 

for Lo and Ld phases (Figure 2-2). Yet, like any other cholesterol analogue, it is possible that Chol-

PEG-KK114 might not behave identical to native cholesterol in cellular membranes. Therefore the 

contribution of the linker and dye to this exclusion behavior is at the moment not very clear. 

Nevertheless, it is likely that cholesterol, is not specifically enriched in the clouds and assumes a 

more homogeneous distribution, in line with recent isotopic imaging results (Frisz et al., 2013a). 

Collectively, the profiles of lipid analogs indicate that unlike many different proteins none of the 

major lipid species (PC, SM and cholesterol) has a tendency to be substantially enriched in the 

clouds (Figure 3-8A). 

4.3.4 Imaging 

It is apparent that conventional light microscopy would not yield enough resolution for this kind 

of a study, which aims to distinguish small domains in a densely labeled sample. For imaging the 

distribution of proteins I have employed STED microscopy. There are also other high-resolution 

alternatives, which can potentially give even better resolution, such as localization microscopy 

techniques. However, these techniques require heavy post-processing and can introduce imaging 

artifacts for analysis of clusters. Localization microscopy methods depend on stochastic switching 

of fluorophores and stochasticity can introduce potential artifacts like under-sampling or over-

sampling of the fluorophores (Annibale et al., 2011). Especially over-sampling is an important 
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problem in studies of clustering. Reversible cycling of the fluorophores between activated and 

dark states can cause a fluorophore to be counted more than once. In this case over-counting 

leads to images with artifactual self-clustering (Veatch et al., 2012). 

 

Since the clouds are expected to be rather densely labeled, it is also possible that stochastically 

collected signal will not correspond to individual emitters decreasing the apparent resolution of 

these techniques. Also the differences in the molecular orientation of the fluorophore (which 

could be quite various for co-labeling of a broad range of targets like in here) can adversely affect 

the accuracy of centroid calculation for localization again reducing the resolution  (Engelhardt et 

al., 2011). Similarly, fluorophore switching might be highly affected by the density of molecules 

surrounding the probe in the microdomain. Therefore, although localization microscopy can 

theoretically offer better resolution, for the particular labeling situation here, STED microscopy 

was considered more reliable. The ease of imaging, availability of the fluorophores and direct 

access to the instrument were other factors that made STED more preferable.  

 

There is, however, one type of artifact that STED can create. Since the emission is detected by 

point scanning of the sample, it is in theory possible that the partial bleaching introduced while 

scanning can cause a domain-like appearance in the image. Practically, this is not expected to 

influence our results since the same areas can be imaged repeatedly without visible changes in 

the resulting pattern. 

4.3.5 Probing Specific Protein Species 

For any clustering study, it is important to be aware of the possible artifacts created by the probes. 

When possible, it is of course desirable to use monovalent probes to avoid probe-induced 

clustering.  However, these probes might not be available for all targets. Unfortunately, for most 

proteins I had to rely on antibodies. The antibodies were applied onto sheets after a 45-minute 

PFA fixation step and the click reaction. Although a mixture of PFA and glutaraldehyde is shown to 

restrict the mobility better than PFA itself, it is not always possible to use this condition due to 

loss of antigenicity. To keep the conditions same between different proteins, distributions were 

mainly investigated in PFA-fixed samples. But as controls some of the stainings were also 

reproduced in whole cells PFA and glutaraldehyde fixed with PFA and glutaraldehyde. Additionally, 

small monovalent probes, such as directly labeled Fab fragments (syntaxin 1), RNA aptamers 

(TfnR) or α-bungarotoxin (acetylcholine receptor) were used to confirm the distributions.  
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4.3.6 Limitations Related to Membrane Sheets 

I hypothesize here that a cholesterol-controlled, actin-anchored protein cloud distribution is a 

fundamental characteristic of the plasma membrane. However, this model is largely derived from 

membrane sheets, although most of the key results were also verified in whole cells, both fixed 

and living. The membrane sheets are representative of non-artificial plasma membranes, but may 

not be identical to the membranes of living cells.  

 

Without doubt, the dynamics of the living cell in the absence of the equilibrium state for many 

components may deviate the direct application of our model to living cells (Mouritsen, 2011). For 

example, plasma membrane heterogeneity was modeled based on lateral diffusion and 

membrane trafficking. The model predicted that persistent and dynamic protein patches would 

be formed and maintained by barriers to lateral diffusion and vesicle traffic (Gheber and Edidin, 

1999). In membrane sheets, the exchange of material with the rest of the cell is blocked upon 

sonication, which may lead to the stabilization of protein and lipid domains that were more 

transient, and therefore less evident, in living cells.  Another important problem with the 

equilibrium state is the potential changes in the transbilayer distributions of fast flip-flopping 

lipids like cholesterol. It is hard to estimate how the bilayer distributions of lipids change in the 

membrane sheets compared to the living cells. 

 

A recent model also proposed a major role for active flows of actin to regulate dynamic of 

clustering behavior of the proteins (Gowrishankar et al., 2012). Using fixed membrane sheets it is 

of course not possible to reflect the dynamic regulation of the protein domains. Immunostaining 

of the sheets against cytoskeletal elements like actin displays the presence of cytoskeleton 

attached to the membrane. However, due to the sonication procedure, it is expected that there 

might be a partial loss of the cortical cytoskeleton.  

 

Several lines of evidence argue that these difficulties are unlikely to have perturbed our results in 

too strong a fashion. First, protein clouds similar to those from membrane sheets were observed 

on the plasma membranes of non-sonicated, normal cells (Figure 3-4 and Figure 3-5). Second, 

membrane structures resembling the protein clouds, and influencing protein and lipid diffusion in 

the manner expected from protein clouds, were noted in living cells (Figure 3-9 and Figure 3-17). 

Third, although the membrane sheets lack some of the mechanisms taking place in living cells 

(such as the continual enzymatic modification of lipids), they still show the typical characteristics 

of plasma membranes, including unchanged diffusion (Sieber et al., 2007) and may represent an 



 125 

equilibrium state that is uncoupled from the cellular dynamics. Finally, the membrane sheets, 

unlike many other model membranes, maintain the complex composition of cellular membranes, 

while they are much easier to manipulate than whole cells. The ease of manipulation is actually 

important to assay and compare the contribution of different factors, because the perturbations 

that I apply cannot be compensated as would be in living cells. This enables more effective 

perturbations and to seize the more inherent properties of the plasma membrane. On a different 

note, all of the limitations listed are also present in other alternative systems such as GPMVs or 

plasma membrane spheres. 

 

Undeniably, the mechanisms patterning membranes in living cells are considerably more complex. 

For example, the clouds would be constantly modified by their interactions with various cellular 

components of the living cell. In that regard, my results present a snapshot view of the expectedly 

rather dynamic protein organization in the membrane 

4.3.7 Limitations Related to Treatments 

To dissect the effect of different factors, I have applied several treatments to the cells 

(cytoskeleton disruption, ionomycin) or to the sheets (different ionic conditions, phospholipases, 

sphingomyelinase, cholesterol depletion). Expectedly, these treatments might have side effects 

on other components of the membrane. For example, peripheral membrane proteins typically 

associate with membranes through electrostatic interactions (Singer, 1974). These proteins can 

be extracted from membranes under conditions of high or low ionic strength. Similarly, 

treatments on lipids can cause loss of proteins in direct relation to these lipids. Nevertheless, 

these side effects were not as strong to alter the general patterning behavior. 

 

The global cholesterol effect shown here suggests that cholesterol depletion would have effects 

on proteins that are not in direct interaction with cholesterol. This has been indeed the case for 

many proteins (Harder et al., 1998; Murray and Tamm, 2009). However, there are previous 

studies that imply some of these results may be due to side effects of CD rather than a 

cholesterol-dependent outcome, because these effects were not reproduced under some cases of 

metabolic cholesterol depletion (Shvartsman et al., 2006). Part of these differences were 

attributed to potential influences of CDs on metabolic and signaling pathways (Kenworthy, 2008; 

Shvartsman et al., 2006). Although it is quite possible that there are associated side effects, it 

should also be expected that the outcome of an acute treatment like with MBCD might not be the 

same as a long-term metabolic depletion. Also it should be kept in mind that on whole cells MBCD 
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action is limited to the outer leaflet of the plasma membrane whereas the metabolic reduction of 

cholesterol has overall consequences on the cell. Nevertheless, I think our results can be claimed 

to be largely cholesterol-related based on a few reasons. Firstly, since the treatments were done 

on sheets rather than whole cells, there is little risk of inducing side effects through signaling 

reactions or metabolic changes. Secondly, we can reproduce the same effect with two different β-

CDs and with COase and not with α-cyclodextrin that cannot extract cholesterol (Ohtani et al., 

1989; Zidovetzki, 2007). More importantly, replenishing cholesterol was able to reverse the MBCD 

phenotype, so these controls suggest that the results are not governed by an unrelated side effect 

of MBCD but are really dependent on cholesterol depletion.  

 

Another issue is regarding the actin. Cholesterol depletion in cells is known to cause a decrease in 

plasma membrane levels of PIP2 which is involved in regulation of cytoskeleton (Kwik et al., 2003). 

Using membrane sheets instead of cells should in principle avoid this kind of signaling-dependent 

side effects of cholesterol depletion. Nonetheless, an inherent problem with the membrane 

sheets is the possible partial loss of the cortical cytoskeleton during the sonication. Due to this 

problem, I cannot neglect the possibility that loss of some of the actin cytoskeleton might leave 

the membrane sheet more open to the action of cholesterol depletion. It might be that in living 

cells having a tighter cytoskeleton barrier reduces the extent of the cloud dispersion by 

cholesterol depletion. However, in living cell depletion experiments PIP2-dependent indirect loss 

of cytoskeleton comes into play (Kwik et al., 2003), negating the advantage.  

4.3.8 Conceptual Caveats 

From a conceptual point of view, it is important to note that our line scans assume a circular 2D 

geometry for simplicity. However, most clouds have quite complex shapes and are not strictly 

circular. This of course introduces a bias to all of the line scan based distribution calculations. 

Nevertheless, it should be noted that the profiles presented are all obtained by averaging of the 

many domains in many membrane sheets and should not be taken as absolute localizations. 

Instead, they aim to show general tendencies of different proteins and subsets of proteins. On 

single protein level, it is highly likely that clouds of different properties exist. The distribution for 

specific proteins within particular clouds can be different than other clouds or could be 

temporally regulated depending on the conditions of the cell. Our model just presents a snapshot 

of the averaged tendencies. Therefore for example seeing TfnR at the edges should not mean that 

in every cloud, TfnR would be found at the edge. There are actually many clouds that do not have 

TfnR signal at all. Also TfnR that is already taken into a coated pit at the verge of endocytosis can 
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expectedly have a different distribution than the molecule just carried back to the membrane. 

The same principle is valid for all the molecules. It is entirely possible that there are clouds with 

only a subset of proteins, for example caveolae-like assemblies. Likewise, clouds or regions of 

clouds) that have higher cholesterol enrichment might be richer in cholesterol or sphingomyelin-

preferring proteins creating rafts. Actually keeping proteins in different regions of the same cloud 

or in separate nearby clouds and reorganizing the clouds to bring the interacting partners 

together in response to a signal can be a means to mediate signaling cascades ready to fire 

efficiently but also well-controlled and temporally regulated. This possibility has already been 

explored for T-cell antigen receptor (TCR) complexes and linker for activation of T cells (Lat) in the 

case of protein islands (Lillemeier et al., 2010). These two proteins were found to localize in 

different protein domains (islands) at the resting state but were co-localized in the same domain 

after antigen recognition.  

 

Another point is that the general consequences of treatments such as changes in ionic conditions, 

actin disruption or cholesterol depletion can be different than their effects on single proteins. 

Depending on their specific interactions, proteins might be more or less susceptible to certain 

treatments than average. For example, proteins that prefer to be close to cholesterol might be 

more sensitive to small decreases in cholesterol levels, whereas a substantial depletion might be 

necessary for others. It is likely that even under the depletion conditions presented in Figure 3-14 

there are still some small persisting clusters.  

 

In these assays I have tackled the membrane organization largely from a protein-based 

perspective. However, in parallel to proteins, domains of different lipids can also be present in the 

membrane and might be important for the cloud pattern. We were able to address the lipid 

organization only through incorporation of fluorescent lipid analogues that might not reflect the 

native situation in the cells. Yet, identification of the lipid domains in native state is technically 

very challenging and poses an unresolved issue in the field.  

4.4 Compatibility of Protein Clouds with Previous Models 

Though it might include some conceptual differences, the protein cloud hypothesis agrees to 

some extent with main principles of several prominent membrane-structuring models, including 

the separation of protein domains by actin fences (Kusumi and Sako, 1996; Ritchie et al., 2003),  

membrane rafts (Lingwood and Simons, 2010; Simons and Ikonen, 1997) or protein islands 

(Lillemeier et al., 2006). 
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4.4.1 Membrane Skeleton and Diffusion Measurements 

Immunostaining of sheets against actin revealed that actin does border the clouds in agreement 

with the actin fence hypothesis and previous actin imaging results (Frankel et al., 2006; Morone et 

al., 2006; Ritchie et al., 2003). Our antibody-based imaging conditions does not always allow 

capturing continuous actin filaments, as antibodies are just sampling the targets, giving a more 

spotty appearance (Opazo et al., 2012), nevertheless the overall continuity of the larger filaments 

can be clearly seen (Figure 3-13). 

 

The STED-FCS measurements in living cells demonstrated that the diffusion is ~2-fold slower in 

the clouds for proteins and also slightly slowed down for lipids (Figure 3-9). These results are in 

well accordance with previous single-particle tracking experiments (Dietrich et al., 2002; Fujiwara 

et al., 2002). I have shown that actin disruption of actin causes coalescence of clouds together in 

the sheets (Figure 3-12). Also, in experiments with fibroblasts cells, ~2 times bigger compartments 

have been demonstrated in accordance with our the results (Dietrich et al., 2002; Fujiwara et al., 

2002; Gudheti et al., 2013). 

 

An important characteristic of membrane patterning has been the “hop diffusion” behavior 

proposed for both proteins and lipids: the diffusion appears to be confined within membrane 

compartments bordered transmembrane pickets and actin fences, but occasionally “hop” from 

one compartment to another (Ritchie et al., 2003). At least for proteins this diffusion behavior 

could also partly result from the confinement of proteins into the cholesterol-induced protein 

clouds. The hopping would occur from one cloud to another with faster diffusion in the protein-

poor regions between the clouds. 

 

In summary our results do not contradict with majority of the actin-based data and proposed 

models. However, we have not observed the membrane skeleton to be the main or only organizer 

of membrane domains (Kusumi et al., 2011). Actin does not seem to stabilize the clouds as 

majorly as cholesterol, since its disruption does not lead to dispersion of the clouds (Figure 3-11). 

From a functional point of view, it is not surprising that actin has a less prominent role than 

cholesterol: actin is more easily modulated in response to cellular needs (via a plethora of actin-

modifying pathways), and is thus a dynamic membrane organizer which may not be used to 

maintain protein clouds in the long term. 
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When the more dynamic models of cortical actin-dependent organization is considered (Goswami 

et al., 2008; Gowrishankar et al., 2012), our results cannot be considered contradictory or 

confirming, as we did not have the experimental conditions to concentrate on the dynamic 

measurements. Yet, from a theoretical point of view, the clouds can be the media where the 

actions of static actin meshwork and the dynamic filaments meet. The clouds could act as sites 

where the active proteins influencing the dynamic actin filaments are gathered, and these can in 

turn organize the more passive proteins within the clouds (Gowrishankar et al., 2012). 

4.4.2 Membrane Rafts  

One of the most important limitations is that we do not know the lipid side of the cloud 

organization. Our lipid information is limited to the fluorescent lipid analogues and the 

contribution of lipid domains or phases to the cloud organization is not specifically assayed by our 

methods. Different fluorescent analogues of with varying Lo preferences were applied to the 

membrane sheets yielded largely homogeneous stainings with no apparent large-scale phase 

separation. The only difference was in the small-scale enrichment or exclusion of these lipids at 

the cloud centers, which at this point did not produce a conclusive correlation with their 

partitioning properties (Figure 3-8, see also Section 4.3.3). Therefore it is hard to comment on the 

Lo/Ld distribution of the clouds. Nonetheless, distribution of specific proteins within the clouds can 

provide some insights. 

 

Raft-preferring proteins, such as the bulk of the palmitoylated and myristoylated proteins 

(Levental et al., 2010b; Melkonian et al., 1999) appear to occupy cloud centers (Figure 3-7), while 

the non-raft preferring proteins like the bulk of farnesylated proteins (Melkonian et al., 1999) or 

TfnR (Mañes et al., 1999) and several proteins known not to be enriched in DRMs, like syntaxin 1 

and SNAP25  (Lang et al., 2001; Lang, 2007) share an area at the cloud edges (Figure 3-18). This 

suggests that some cloud centers may form membrane rafts – or that they may be the underlining 

structure upon which raft-like or non-raft-like domains are built.  

 

The effect of palmitoylation for increased center preference has been indicated also by the 

depalmitoylation experiments (Figure 3-23). Two structurally very similar proteins, SNAP25 and 

SNAP23 were found to have different positioning in the clouds (Figure 3-18). One difference 

between them is the extent of palmitoylation, SNAP23 has an extra cysteine, which was shown to 

be important for its higher DRM association (Salaun et al., 2005b). Although application of DTT to 

the cells to induce removal of palmitoyl moieties (Levental et al., 2010b) caused a some loss of 
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SNAP23 and SNAP25, a substantial amount of these lipid-anchored proteins were still attached to 

the membrane (Figure 3-23B,D). This can either be due to a partial depalmitoylation or to the 

association of proteins with the membrane even at the absence of lipid anchors, as have been 

shown for deacylated SNAP25 previously (Gonzalo and Linder, 1998). In any case, loss of 

palmitoyls caused a slightly broader distribution of the proteins with respect to the clouds. This is 

also fitting with the role of palmitoylation driving proteins to rafts (Levental et al., 2010b; 2010a). 

 

Generally, detergent resistance of the raft lipids thought to be arising from the tight order of 

cholesterol and sphingomyelin in the Lo phase (Ahmed et al., 1997; London and Brown, 2000). 

When the complexity of the membrane and the high abundance of the proteins are considered, 

one can imagine high protein densities partially protecting the lipids from detergent extraction as 

well. With this perspective, the cloud centers might provide such a protection to the lipids, 

contributing detergent-resistance. Although it is quite speculative, this can be one explanation for 

a possible link between the clouds and the DRMs, in the sense that at least some of the DRMs 

originate from cloud centers.  This explanation could also justify the broad spectrum of unrelated 

proteins found in DRMs (Foster et al., 2003) and the absence of mitochondrial proteins (which do 

not seem to be gathered in clouds) in DRMs (Zheng et al., 2008)as well as creation of DRMs by 

flotillin-like proteins in bacterial membrane without cholesterol (López and Kolter, 2010). 

 

When it comes to functional, dynamic membrane rafts in living cells (Pike, 2006), small raft 

domains might form at various positions within the clouds, possibly through short-lived, transient 

changes in the local concentration of cholesterol and sphingomyelin, which would be induced by 

interactions with specific proteins. The strict dependence of clouds upon cholesterol also explains 

a puzzling observation related to the raft model, namely the disruptive effects of cholesterol 

depletion on the distribution of proteins that have only a minor dependence on detergent-

resistant membranes and rafts, such as syntaxin 1, SNAP25 (Lang et al., 2001; Lang, 2007)  or TfnR 

(Harder et al., 1998; Mañes et al., 1999; Quincke, 1888; 1893). Although their clustering is mostly 

produced through raft and Lo-independent interactions their distribution will still be affected by 

the disturbance caused to the overall membrane cloud pattern by cholesterol removal. Taken 

together, our results indicate that cholesterol has an additional fundamental function besides the 

specific interactions with proteins and certain lipids, namely organizing the majority of proteins 

into protein-dense clouds.  
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4.4.3 Specific Protein Clusters 

Many cases of specialized protein domains are known. Some examples are syntaxin 1 clusters 

formed by self-assembly (Sieber et al., 2007) or specific interactions with PIP2 (van den Bogaart et 

al., 2011), cholesterol-mediated caveolae (Rothberg et al., 1990), clusters of lipid-anchored Ras 

proteins, clathrin-coated pits, calcium-dependent clustering of exocytotic proteins (Zilly et al., 

2011) or signaling microdomains of T-cells under activation conditions (Douglass and Vale, 2005). 

The protein cloud model is in agreement with the formation of such specialized domains within 

the clouds via (homo or hetero) protein-protein or protein-lipid interactions. Through enrichment 

of individual proteins together in the clouds, the basic pattern is created for these more specific 

and functional interactions to take place. This also provides an explanation for the differential 

enrichment preferences of different proteins within the clouds and the size and shape 

heterogeneity of the clouds. Depending on the strength of protein-protein interactions, the 

affinity of a protein species for particular clouds might be variable and also regulated through 

signaling cascades or post-translational modifications.  

 

When clusters of individual protein species are considered to be components of the clouds, they 

are expected to reflect the general cloud behavior up to some extent and that is very often the 

case. For example, small clusters of fluorescently-labeled GPI anchored proteins, which cannot be 

distinguished with confocal microscopy, were detected in living cells by measurements of 

fluorescence anisotropy (Goswami et al., 2008). Or cell surface cadherin was probed by molecular 

recognition imaging by AFM (Müller et al., 2009). Interestingly, the anisotropy pattern or the 

molecular recognition map seen in the flat parts of the membrane is visually very similar to our 

cloud pattern. Also a decrease in anisotropy was detected after cholesterol depletion (Goswami 

et al., 2008), suggesting decreased clustering.  Another example is the distribution of 

hemagglutinin (HA) molecules in living fibroblasts imaged by high-resolution FPALM (Hess et al., 

2007). HA was found to form irregular clusters with a wide range of size and shapes and displayed 

constrained motion, avoiding some areas and mapping out regions with elongated shapes and 

irregular boundaries. In a follow-up study actin cytoskeleton was found to be important for 

cluster size and the number of molecules per cluster (Gudheti et al., 2013). The dependence of HA 

clustering on cholesterol has also been shown before (Eisenberg et al., 2006; Scolari et al., 2009). 

On a different note, two lipid-anchored signaling proteins K-Ras and H-Ras was shown to have 

restricted mobility in FRAP experiments (Niv et al., 2002). However, increasing their expression 

level caused higher mobility suggesting that the domains they localize to are saturable sites, 
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which can only accommodate a certain amount of protein. These results are in accordance with 

the spill-over effect of overexpression shown in Figure 3-10. 

 

To assess the contribution of different factors to the general cloud organization, we have also 

applied commonly utilized perturbation methods like cholesterol depletion, sphingomyelinase 

treatment or actin-disrupting drugs. In a recent study similar perturbations were recently applied 

on living COS-7 cells expressing GPI-anchored photoactivatable GFP (PAGFP-GPI), followed by 

fixation of cells and high-resolution PALM imaging (Sengupta et al., 2011). Using pair-correlation 

analysis to overcome the potential artifacts of single molecule localization in cluster identification, 

parameters such as cluster size, density and number of proteins per cluster were calculated. The 

clusters investigated in this study are <60 nm assemblies of 2-3 proteins. They are apparently not 

identical to the clouds we see. However, these small clusters could well be part of the clouds 

together with clusters of other single proteins. The analysis showed that 60% of the PAGFP-GPI 

clusters were lost with cholesterol depletion, whereas cholesterol addition resulted in more 

clusters. Sphingomyelinase and cytochalasin B treatments caused loss of small clusters and led to 

larger domains (Sengupta et al., 2011). The interesting outcome is that the major consequences 

of the perturbations on these small PAGFP-GPI clusters under different sample and imaging 

conditions overlap quite well with our results for general protein labeling. 

4.4.4 General Multi-Protein Domains 

The observation of clouds is not the first time that multi-protein domains are detected in the 

plasma membrane. Although studies that target general pools of proteins, rather than one 

specific species, are rare, such protein enrichments have been observed under diverse 

experimental conditions with different samples.  

 

Stable protein-rich domains surrounded by protein-poor regions in living fibroblasts have been 

first shown in 1987 (Yechiel and Edidin, 1987), by applying FRAP with different beam sizes. The 

underlying cause was suggested to be lipid domains stabilized by interactions with proteins. In 

another study the lateral diffusion coefficients of GFP-tagged proteins of different topologies 

(bitopic, polytopic, GPI-anchored and palmitoylated proteins) were measured by more modern 

methods of FRAP in COS-7 cells (Frick et al., 2007). The observed slow diffusion of proteins in cell 

membrane was mediated by protein density, and not by cortical cytoskeleton. TIRF-based 

fluorescent tracking of GFP-tagged signaling proteins Lat and Lck also identified trapping of these 
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proteins in protein domains defined by presence of CD2 receptor, in an protein-protein 

interaction dependent manner (Douglass and Vale, 2005). 

 

In EM experiments performed on membrane sheets from mast cells and T-cells, dark osmium-

labeled patches, which contained a large amount of proteins including signaling factors or raft and 

non-raft markers, were detected (Lillemeier et al., 2006; Wilson et al., 2004). By AFM topography 

imaging these protein-rich patches on membranes were identified as raised domains of irregular 

shapes (Frankel et al., 2006). They were cholesterol-sensitive and were surrounded and linked by 

the cytoskeleton. Although there are some technical difficulties (EM processing of membrane 

sheets which might result in extraction of some of the lipids or improper fixation conditions which 

could create artificial crosslinking) in these previous experiments, in principle, the domains or 

islands identified might share the same origin with the clouds or might be derivations of them 

under different experimental conditions and cell types.  

 

Recently, a systematic high-resolution imaging study of GFP coupled membrane proteins in living 

yeast cells reported that all of the >40 proteins investigated were distributed non-homogeneously, 

forming various patterns of patches and continuous networks (Spira et al., 2012). Interestingly, 

actin disruption had minor effects and depletion of sphingolipids or PIP2 affected only a subset of 

proteins, while modifications to sterol composition influenced the distribution of all the proteins. 

The compatibility of our results with these observations suggests an extension of the identified 

yeast domains to mammalian cell membranes.  

 

I think that although there could be some condition-dependent alterations, the protein clouds can 

be principally similar to previously observed protein-rich domains. It is likely that these domains 

are derivatives of the clouds in other cell types; some of these domains can be in a functionally 

specialized state or aggregated due to preparation conditions. Cloud model, in a way, presents a 

united framework for these separate observations.  
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5 SUMMARY AND CONCLUSIONS 

In this work, I studied the distribution of a representative population of all membrane proteins by 

high-resolution microscopy. I observed that the proteins in the plasma membrane-derived sheets 

are concentrated in heterogeneous multi-protein domains. Labyrinth-like protein-poor regions 

frame these high protein abundance domains, forming a mosaic. The protein clouds occupied 

about slightly more than half of the membrane surface, and contained 81% of the membrane 

proteins (Section 3.2 and Figure 3-3). The formation and maintenance of clouds is largely 

controlled by cholesterol in an unspecific manner. Actin cytoskeleton seems to have a 

complementary role. It surrounds the clouds and prevents their coalescence, limiting their size. It 

could also be providing a dynamic aspect to the clouds. In living cells, STED-FCS experiments 

demonstrated that both the diffusion of proteins and lipids seem to be slowed down in the clouds 

suggesting that the molecular crowding in the clouds affects the free diffusion through or within 

them.  

 

If I extend these results to the general organization of the membrane, the protein clouds appear 

to represent a basic, low hierarchy principle of patterning. For a visual impression, Figure 5-1 

illustrates a simplified view of the cloud organization model in the plasma membrane. The clouds 

concentrate proteins together, creating platforms upon which more specific and functional 

interactions can act. The differential localizations of specific protein species and the functional 

involvement of proteins preferring similar sub-cloud regions indicate formation of functional 

domains within the clouds. Specific protein-protein and protein-lipid interactions are expected to 

be contributing to this higher level or organization within the clouds. Chemical modifications of 

the proteins (like palmitoylation or farnesylation) or their interactions with lipid microdomains 

might also be important for preference of certain sites; however, further investigations are 

necessary to have a better understanding of these interactions. 
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Figure 5-1 Protein clouds as a membrane organizing principle. 
The graphics display the representation of the cloud organization in the plasma membrane. Different 
protein groups are shown in shades of blue and green, and actin is in red. The lipid bilayer is simplified 
without depiction of different lipid species. The image on the right corner is a crop from a 2-color STED 
image with click labeling of clouds (green) and immunostaining against actin (red). 

 

As discussed above, many general mechanisms of protein localization have been proposed in the 

past. Although there might be some discrepancies in the details and immediate outcomes, our 

model is not directly contradicting any of them in general. Instead, the cloud model is, in a way, 

unifying the major strengths of the previous models, and presenting the backbone for the main 

effectors of these models, such as actin fences, rafts, density of proteins, electrostatic interactions 

and specific protein-protein and protein-lipid interactions to act on. A hierarchical perspective of 

membrane organization has been suggested before (Kusumi et al., 2011). Formation of 

membrane skeleton confined compartments was accepted as the first level, followed by 

formation of lipid rafts, and small, transient assemblies of protein complexes. With the cloud 

model, a more basic and lower-hierarchy step is added to this organization pyramid. Presence of 

clouds, as a basic organization principle also clarifies the previously not explained observations, 

such as effects of cholesterol depletion on non-raft markers and only partial losses in the 

organization after cytoskeleton disruption. Furthermore by putting the membrane proteins at the 

center of the membrane organization, the cloud model also brings an alternative explanation for 

the transbilayer coupling of membrane organization. This has been a controversial aspect of many 

membrane models where main effectors are supposedly found on one side of the membrane, like 
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sphingolipid and cholesterol-rich rafts on the outer leaflet or membrane skeleton associated with 

the inner leaflet (Devaux and Morris, 2004). 

 

In addition to this new proposal for the general membrane organization, this study presents some 

important technical implications for future work. The general strategy I have developed here can 

be used in the future to assay the average distributions of specific proteins. This behavior can be 

complementary to the standard colocalization experiments. Also, I have shown that simple 

colocalization information obtained by conventional imaging methods might not always indicate 

functional partnering since a range of proteins might be sharing similar clouds and diffraction-

limited resolution might not be yield enough spatial resolution to distinguish sub-cloud 

localizations.  

 

A minor result that raises serious concerns about protein overexpression experiments is that the 

high expression levels of exogenous proteins might cause large-scale redistribution of proteins in 

the membrane. Furthermore, future studies evaluating the contribution of cholesterol for specific 

cases through cholesterol depletion methods should ideally take the more general effect of 

cholesterol into account while interpreting the results.  

 

A major technical contribution is the development of the COIN scheme. The combination of 

fluorescence labeling/high-resolution imaging with isotopic labeling/mass spectrometry imaging 

will open several new lines of research. The possible applications of COIN can vary from 

investigations of material turnover for specific organelles to tag-free imaging of cellular 

components in different subcellular compartments.  
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6 OUTLOOK 

From a technical point of view it would be ideal to perform follow-up experiments with improved 

preservation conditions. One way to get more reliable snapshots of the plasma membrane would 

be to reproduce the experiment by coupling sonication to high-pressure freezing and 

cryosubstitution (Tokuyasu, 1973; van Donselaar et al., 2007) followed by click labeling. However, 

these methodology might be technically very challenging and could also be prone to other 

artifacts like partial extraction of lipids (Möbius et al., 2002). An alternative line would be to get a 

dynamic view by doing more elaborate experiments in living cells. For this it would be necessary 

to establish the copper-free click reaction in living cells. I have already tried this strategy but could 

not get reliable results under the low efficiency and specificity of the labeling with currently 

available chemical moieties.  However, new chemistries are developed at a high pace, so it might 

be possible to collect more direct information about the cloud organization in living cells.  

 

For whole cell imaging, it is also necessary to use a more complex 3D high-resolution technique 

like a combination of TIRF and SIM or iso-STED, which is a 3D implementation of the STED 

technique. Additionally, stainings for specific proteins can be improved by more comprehensive 

use of smaller, monovalent probes such as directly-labeled nanobodies rather than antibody 

complexes. These tools now are being developed in our group. It would also be ideal to reproduce 

the STED-FCS results with monovalent probes. 

 

In order to obtain information about the dynamics of single protein and lipid species, the diffusion 

of different groups of lipids and proteins can be systematically analyzed by complementary STED-

FCS and SPT measurements. From another perspective, a more comprehensive COIN imaging can 

be performed for the surfaces of whole cells, and protein clouds and different lipids can be 

visualized together by incorporation of native lipids and amino acids containing stable isotopes. 

The technical challenge here is to reach high enough resolution while keeping signal-to-noise ratio 

at a reasonable level.  

 

To add a more solid lipid angle to the model and to understand the role of membrane 

order/fluidity, emerging imaging modalities such as fluorescence lifetime imaging with 

environment-sensitive dyes might be performed in parallel with the imaging of clouds.  
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