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IV    Abstract 

 

Excitation-secretion coupling at nerve cell synapses is a sub-millisecond process that 

entails the transduction of an electrical stimulus into synaptic vesicle fusion. Before fusion, 

synaptic vesicles are physically docked to the presynaptic active zone membrane and 

functionally primed to become fusion competent. In response to an increase in 

intracellular calcium concentration after the arrival of an action potential, primed vesicles 

fuse with the plasma membrane and release their neurotransmitter content into the 

synaptic cleft. Recent studies combining cryo-fixation methods and three-dimensional 

electron microscopy analysis proposed that synaptic vesicle docking and priming steps 

may not reflect independent mechanisms, but rather describe the same molecular process 

namely full or partial soluble N-ethylmalemide-sensitive factor attachment protein receptor 

(SNARE) complex formation initiated by members from the UNC-13/Munc13 protein 

family. However, other studies have challenged the notion of SNARE complex assembly 

prior to the calcium triggering step in the release process.  

In the present study, a combination of organotypic hippocampal slice culture, high-

pressure freezing, freeze substitution and electron tomography was used to reinvestigate 

the role of key synaptic proteins in synaptic vesicle docking in glutamatergic hippocampal 

spine synapses. This method enables the analysis of synaptic parameters in an in-situ-like 

setting using lethal mouse mutants that do not survive birth. Loss or reduction of 

components of the molecular priming machinery, namely Munc13 or CAPS proteins, and 

of the individual neuronal SNARE proteins Synaptobrevin-2, Syntaxin-1 and 

synaptosome-associated protein of 25 kDa (SNAP25) caused severe defects in synaptic 

vesicle membrane-attachment in this experimental setting. Moreover, loss of the calcium 

(Ca2+)-sensor Synaptotagmin-1, causes a decrease in vesicle numbers in presynaptic 

terminals in comparison to control synapses and a reduction in membrane-proximal 

(loosely tethered) and docked vesicles. However, the reduction in the number of 

membrane-attached synaptic vesicles was milder than it was observed in the absence of 

the vesicular SNARE ptrotein Synaptobrevin-2, indicating that Synaptotagmin-1 might 

have a regulatory (e.g. tethering or clamping) but not essential role in synaptic vesicle 

docking in neurons. Complexin-deficient synapses exhibited no changes in the number of 

membrane-attached synaptic vesicles, a finding that supports a facilitatory rather than 

inhibitory role of Complexins prior to synaptic vesicle fusion. These findings indicate that 

synaptic vesicle membrane-attachment, synaptic vesicle priming and (partial) SNARE 

complex assembly are respective morphological, functional and molecular manifestations 

of the same process. 





                                                                                                            1. Introduction 

 1 

1. Introduction 

1.1.  Synaptic transmission 

 

The brain is a highly complex network composed of billions of neurons that communicate 

with each other in a regulated manner in order to control a variety of processes including 

motor control, sensory information processing, as well as learning and memory functions. 

Along a neuron, information is conveyed as electrical signals, however neurons form 

highly specialized contacts at chemical synapses that mediate information transduction 

and processing between a presynaptic and a postsynaptic compartment.  

 

An electrical signal (action potential) that arrives at the presynaptic terminal is converted 

into a chemical response by the release of messenger molecules (neurotransmitters) at 

the active zone, a process often referred to as excitation-secretion coupling (reviewed in 

Wojcik & Brose 2007). This process is very fast and works with high fidelity and 

endurance, which requires local recycling of the neurotransmitter and the molecular 

release machinery in the presynaptic terminal (reviewed in Jahn and Fasshauer, 2012; 

Südhof, 1995, 2004). Neurotransmitter molecules are stored in small, spherical, lipid-

bound organelles called synaptic vesicles. Synaptic vesicles bud off from recycling 

organelles, termed endosomes, and neurotransmitter molecules are filled into the vesicles 

by neurotransmitter transporters using the energy of a proton gradient across the vesicle 

membrane. Neurotransmitter-containing synaptic vesicles are transported to the active 

zone, a highly specialized region at the presynaptic plasma membrane, where 

neurotransmitter release takes place. At the active zone, synaptic vesicles attach to the 

plasma membrane in a process called “docking” and become fusion-competent in a 

functional “priming” process (reviewed in Wojcik & Brose 2007). The common view is that 

only a subset of the docked synaptic vesicles becomes primed, thus forming a readily-

releasable pool (RRP) of vesicles which can be released in response to the arrival of an 

action potential.  

 

The arrival of the electrical signal at the presynaptic terminal causes a change in the 

electrical potential across the plasma membrane which initiates the rapid opening of 

voltage-gated Ca2+-channels clustered at the active zone membrane. As a consequence, 

Ca2+ ions flow into the presynaptic terminal and cause a local increase in the Ca2+-

concentration. This increase in intracellular Ca2+ levels can be sensed by the molecular 

release machinery and functions as the signal to trigger fusion of synaptic vesicles with 

the plasma membrane in a process called exocytosis. The exocytosis of vesicles is 

thought to comprise multiple intermediate states (reviewed in Kasai et al., 2012): (i) 
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membrane-attached vesicles hemifuse with the plasma membrane as the outer leaflet of 

the vesicular phospholipid bilayer merges with the inner leaflet of the membrane bilayer, 

(ii) a small fusion pore connecting the vesicular lumen with the extracellular space is 

formed as distal leaflets of the lipid bilayers intermingle, and (iii) the fusion pore expands 

and the vesicle collapses into the plasma membrane. As a result, the neurotransmitter 

content of fusing synaptic vesicles is released from the presynaptic terminal. 

 

The released neurotransmitter molecules diffuse through the extracellular space between 

the pre- and postsynaptic compartment, referred to as the synaptic cleft, until they reach 

the postsynaptic membrane. Upon binding to specific receptors, neurotransmitters 

activate, inhibit or modulate the activity of the postsynaptic cell. To guarantee the constant 

availability of synaptic vesicles, especially during high synaptic activity, not only 

neurotransmitter and molecular components of the presynapse, but also the synaptic 

vesicle membranes need to be recycled. The retrieval of vesicles from the plasma 

membrane is achieved by endocytosis (Heuser and Reese, 1973; reviewed in Südhof, 

1995, 2004). Different pathways of endocytosis have been proposed, with the most widely 

accepted one being clathrin-mediated endocytosis (Dittman and Ryan, 2009; Heuser and 

Reese, 1973; Hua et al., 2011a). In this process, synaptic vesicle proteins incorporated 

into the plasma membrane during vesicle fusion are recognized by specific adaptor 

proteins, which in turn recruit a local scaffold of clathrin molecules. Clathrin molecules 

induce inward curvature of the membrane (pits) which, with the concerted action of 

dynamin proteins, can be pinched off to form a new vesicular organelle. Alternative routes 

for endocytosis described include a direct coupling of exo- and endocytosis called kiss-

and-run, whereby synaptic vesicles return to the cytoplasm following neurotransmitter 

release without fully collapsing into the plasma membrane, and a process called bulk-

membrane retrieval, where large portions of membrane are internalized during high 

synaptic activity. However, these processes are less well studied and often controversially 

discussed (Aravanis et al., 2003; Cheung et al., 2010; Gandhi and Stevens, 2003; 

Granseth et al., 2006, 2009; Watanabe et al., 2013; Wenzel et al., 2012; Zhang et al., 

2009). 

 

Action-potential evoked synaptic vesicle fusion at synapses is a very fast, endurable and 

tightly-regulated process that is controlled by a wide range of proteins to secure high-

speed and reliability even during sustained activity. The active zone is characterized by a 

unique composition of cytoskeletal elements, voltage gated Ca2+-channel clusters and 

proteins that regulate synaptic vesicle fusion and therefore secure temporal and spatial 

accuracy in the release process (reviewed in Südhof 2012). 
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Figure 1.1. The synaptic vesicle cycle at excitatory synapses 

Synaptic vesicles are locally recycled in presynaptic terminals. Synaptic vesicles are filled with the 
neurotransmitter (here e.g. glutamate) (1) and translocated to the active zone. There, synaptic 
vesicles become physically attached to the plasma membrane (2) and undergo a Ca

2+
-regulated 

priming process to acquire fusion-competence (3). In response to the arrival of an action potential 
and an increase in Ca

2+
-concentration, primed synaptic vesicles can fuse with the plasma 

membrane (4) and release their neurotransmitter content into the synaptic cleft. Neurotransmitter 
molecules diffuse through the synaptic cleft to mediate receptor ion channel opening and allow ion 
influx generating an excitatory postsynaptic current (EPSC) (5). Synaptic vesicle membranes are 
recycled in a process called endocytosis (6). The best-described pathway is clathrin-mediated 
recycling, in which clathrin-coated vesicles bud off from the membrane, become uncoated and fuse 
with early endosomes (7). Kiss-and-run exocytosis and bulk membrane retrieval are possible 
alternative, clathrin-independent recycling routes. Schematic provided by Dr. B. Cooper; based on 
(Jahn and Fasshauer, 2012) 

 

1.2.   Synaptic vesicle docking and priming 

 

Studying neurotransmitter release from neurons requires well-defined settings, which 

enable the assessment of physiological and morphological parameters and an easy way 

to monitor, stimulate or pharmacological manipulate the release process. The vast 

majority of studies characterizing the physiological function of proteins in synaptic 

transmission have therefore been performed in neuronal culture systems, in which the 

experimental conditions can be precisely controlled and the electrophysiological 

properties of neurons can be measured by using the patch-clamp technique (Neher and 

Sakmann 1976). However, morphological or ultrastructural features of synaptic terminals 

require the use of a high-resolution microscopy approach, called electron microscopy 
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(EM) to be able to resolve presynaptic vesicles and cytoplasmic structures in the 

nanometer range (Verhage and Sørensen 2008). 

 

A special culture method is a low density culture of neurons plated on astrocytic feeder 

islands that will result in neurons that form synapses onto themselves (autapses) in the 

absence of neighboring cells (Bekkers, 1991; Burgalossi et al., 2012; Pyott and 

Rosenmund, 2002). In this experimental system, application of hypertonic sucrose 

solution has been shown in electrophysiological experiments to deplete the pool of fusion-

competent, primed synaptic vesicles (RRP) in an as yet unknown manner (Rosenmund 

and Stevens, 1996; Stevens and Tsujimoto, 1995). In these early studies, calculations of 

the measured postsynaptic electrical responses after application of hyperosmotic solution 

indicated that a depletion of the entirety of synaptic vesicles in a neuron would result in a 

much greater response than measured and that therefore possibly only a subset of 

synaptic vesicles would be released in such an experiment. It was suggested that this 

pool of synaptic vesicles would very likely be already close, or in contact with, the active 

zone membrane to ensure fast fusion after the arrival of the action potential. Using 

aldehyde-based chemical fixation methods for electron microscopic analysis of synaptic 

ultrastructure, C. Stevens and colleagues were able to confirm a tight correlation between 

the number of membrane-attached or docked synaptic vesicles and the active zone area. 

Moreover, the number of docked vesicles was found to correlate approximately with the 

calculated quantal size of the measured RRP after hypertonic sucrose solution application 

in autaptic neurons (Murthy and Stevens, 1999; Rosenmund and Stevens, 1996; 

Schikorski and Stevens, 1997).  

 

A “docked” pool of synaptic vesicles therefore describes synaptic vesicles that are in 

direct contact with the active zone membrane at synaptic release sites, as seen in 

electron micrographs. However, synaptic vesicle “priming” is a term that arose from the 

hypothesis that a multistep-molecular mechanism preceding Ca2+-triggered release would 

be much too slow to allow synaptic vesicle release at high frequency for long durations 

(reviewed in Südhof 1995). It was shown that during high-frequency stimulation for 15 

minutes, the number of synaptic vesicles observed in contact with the presynaptic release 

sites in electron micrographs from lamprey reticulospinal axon synapses did not decrease, 

whereas electrophysiologically, synaptic release slows down much earlier (reviewed in 

Südhof, 1995; Wickelgren et al., 1985). Moreover, animals that were lacking presynaptic 

proteins exhibited massive physiological defects in basic neurotransmitter release 

characteristics accompanied by an almost completely depleted RRP of primed vesicles, 

but displayed normal numbers of membrane-attached synaptic vesicles in electron 
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micrographs (Aravamudan et al., 1999; Augustin et al., 1999a; Richmond et al., 1999; 

Varoqueaux et al., 2002). These findings indicated that instead of the synaptic vesicle 

docking step, a subsequent Ca2+-dependent molecular priming step that renders the 

synaptic vesicles fusion-competent might be rate-limiting (reviewed in Südhof 1995).  

 

Conventional sample preparation techniques for EM employing aldehyde-based chemical 

fixation are subject to certain experimental constraints: (i) the speed of sample fixation is 

limited by the diffusion of chemical fixatives through the tissue (requiring minutes to 

hours), and (ii) artefacts introduced by dehydration steps at room-temperature alter the 

spatial relationships and ultracellular integrity of cellular organelles (e.g. shrinkage). 

Recent improvements in sample preparation techniques employing rapid cryo-fixation 

methods resulted in superior ultrastructural preservation coupled with a dramatically 

improved temporal resolution (milliseconds), therefore enabling a more reliable analysis of 

membrane-attached vesicles in presynaptic protein null mutants (See 1.4. Ultrastructural 

analysis of synaptic vesicle docking). Studies using these methods indicated that synaptic 

vesicle docking and priming might not be independent processes. 
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Figure 1.2. Schematic representations of domain structures of key presynaptic proteins 

The domain structures of the SNARE (soluble N-ethylmalemide-sensitive factor attachment protein 
receptor) proteins SNAP25 (A), Syntaxin-1A (B) and Synaptobrevin-2 (C), the priming proteins 
Munc13-1 (D) and CAPS-1 (E), the Ca

2+
-sensor Synaptotagmin-1 (F), and Complexins (G). The 

number of amino acids (aa) are indicated for each protein. C1 domain in Munc13-1 (light green), C2 
domains in Munc13-1, CAPS-1 and Synaptotagmin-1 (dark green), CBD in Munc13-1 (Calmodulin-
binding domain, orange), Habc domain of Syntaxin-1 (three α-helices, yellow), MHD in Munc13-1 
and CAPS-1 (Munc homology domain, dark red) N-pep of Syntaxin-1 (amino-terminal peptide, light 
grey), PH domain (Pleckstrin homology, violet), SNARE motifs in SNAP25, Syntaxin-1, 
Synaptobrevin-2 (red; Q = central glutamine residue; R = central arginine residue),TMR 
(transmembrane region, dark grey). The domain structures are not drawn to scale. Schematic 
provided by Dr. Ben Cooper; based on (Kasai et al. 2012). 

 

1.3.   Molecular mechanisms underlying docking, priming and fusion 

 

1.3.1.   SNAREs and Munc18-1 

 

Hundreds of proteins have been described to participate in the tight regulation of the 

different steps of synaptic vesicle release. The key players in membrane-fusion reactions, 

however, are SNARE proteins that form the exocytotic core complex for membrane fusion 

(reviewed in Jahn and Fasshauer, 2012; Jahn and Scheller, 2006). The family of the 

(SNARE) proteins is characterized by a stretch of 60-70 amino acids referred to as the 

SNARE motif, which is highly conserved and undergoes regulated assembly to form 

stable ternary SNARE-complexes (Fasshauer et al., 1998; Kloepper et al., 2007, 2008). 

The family of synaptic SNARE molecules include the synaptic vesicle protein 

Synaptobrevin-2 (vesicular, v-SNARE) and the two plasma-membrane residing molecules 

Syntaxin-1 and SNAP25 (target-membrane, t-SNAREs). In the course of the fusion 

reaction, the three molecules form a parallel four-α-helical bundle by interaction of their 

respective SNARE motifs (Poirier et al., 1998; Sutton et al., 1998).  

 

Within the assembled SNARE complex, the side chains of the individual α-helices form 

hydrophobic interactions between each other, with the only exception being a central 

amino acid layer that consists of four interacting charged amino residues, one arginine (R) 

contributed by Synaptobrevin-2 (R-SNARE), one glutamine (Qa) from Syntaxin-1 and two 

glutamines (Qb, Qc) from SNAP25 (Q-SNAREs), which contributes two SNARE motifs 

(Fasshauer et al., 1998). Despite the highly conserved nature of SNARE motifs, the three 

neuronal SNAREs vary in their domain structure. Synaptobrevin-2 and Syntaxin-1 are 

anchored to the vesicle or plasma membrane by a single carboxy (C) -terminal 

transmembrane region (TMR) that is connected to the SNARE motif by a short linker. 

SNAP25, however, varies from this structure as its two SNARE motifs are connected by a 
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short, hydrophobic linker that contains palmitoylated cysteines, a post-translational protein 

modification, which allows plasma membrane-anchoring without a TMR (reviewed in 

Hong, 2005). Whereas, Synaptobrevin-2 and SNAP25 lack any additional domains, 

Syntaxin-1 contains a short amino (N)-terminal peptide and an additional N-terminal 

domain, which forms a three α-helical bundle (Habc domain) that is linked to, and folds 

onto, the SNARE motif of Syntaxin-1 and renders the molecule in a “closed”-conformation, 

most-likely by the interaction with Munc18-1 (Dulubova et al., 1999; Fernandez et al., 

1998). 

 

The most widely accepted model for SNARE complex zippering is that it starts at the N-

terminus of the SNARE motifs by interaction of the v-SNARE Synaptobrevin-2 with the t-

SNAREs Syntaxin-1 and SNAP25 in a trans conformation and progresses towards the C-

terminal membrane-anchors (reviewed in Kasai et al., 2012; Pobbati et al., 2006; Stein et 

al., 2009). This process will pull the synaptic vesicle and the plasma membrane closer 

together. Full zippering of the ternary SNARE complex has been shown to release a high 

amount of energy, which can possibly be conducted through the linkers to the TMR, 

inducing destabilization of the membrane and fusion of the bilayers (Li et al., 2007; Stein 

et al., 2009). After the membrane-fusion reaction, the assembled SNARE complex resides 

in the plasma membrane in a low energy cis conformation, which is subsequently 

disassembled by the AAA-ATPase NSF (N-ethylmaleimide sensitive factor) together with 

its SNAP (soluble NSF attachment proteins) adaptor molecules (Burgalossi et al., 2010; 

reviewed in Jahn and Scheller, 2006). In vitro studies that used reconstituted SNARE 

complex formation assays, proposed a model, according to which the two t-SNAREs 

Syntaxin-1 and SNAP25 form a highly reactive intermediate acceptor complex on the 

membrane (Fasshauer and Margittai, 2004; Pobbati et al., 2006). This complex might be 

stabilized in vivo by regulatory proteins prior to Synaptobrevin-2 engagement. 

 

Null mutant mice of the neuronal SNAREs Synaptobrevin-2 and SNAP25 die prior to birth 

(Schoch et al., 2001; Washbourne et al., 2002). Neurons lacking the v-SNARE 

Synaptobrevin-2 exhibit an 85% decrease in spontaneous synaptic vesicle fusion events, 

which is reflected by a reduced frequency of spontaneous miniature excitatory 

postsynaptic currents (mEPSC) and a 90% reduction in the size of the RRP of primed 

synaptic vesicles measured after hypertonic sucrose application (Schoch et al. 2001). 

However, action potential evoked, Ca2+-dependent release, measured in the size of the 

evoked excitatory postsynaptic current (EPSC) recorded after stimulation, is almost 

completely abolished (Schoch et al. 2001). Moreover, Synaptobrevin-2 KO mice exhibit a 

significant increase in the vesicle diameter, which was interpreted as a possible 
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endocytosis defect, although neurons showed no additional changes in synaptic 

morphology or in the number of docked synaptic vesicles in electron micrographs (Deák et 

al., 2004). Low-density cultures of neurons lacking SNAP25 exhibit neurodegeneration 

accompanied by cell death and synapse loss. However, high-density cultures were shown 

to prolong neuronal survival over three weeks’ time (Bronk et al., 2007; Washbourne et 

al., 2002). SNAP25 KO neurons are characterized by a strong reduction in the mEPSC 

frequency accompanied by a slight decrease in the mEPSC amplitude. Evoked, Ca2+-

dependent neurotransmitter release measured by field stimulation revealed that ~70% of 

the measured neurons failed to respond after stimulation and the remaining cells only 

exhibited an EPSC that was dramatically decreased in amplitude. The size of the RRP 

measured by hypertonic sucrose application was reduced to 12% of the control value. 

However no alterations in synaptic morphology or in the number of docked synaptic 

vesicles could be detected in EM analyses (Bronk et al., 2007).  

 

A mouse mutant deficient for both Syntaxin-1A and B isoforms has only recently become 

available, but mutant neurons of these mice degenerate and do not survive the first few 

days of culture (Rosenmund and Südhof, unpublished data). Proteolytic cleavage of 

Syntaxin-1 after viral expression of Botulinium neurotoxin serotype C (BoNT/C) in cultured 

neurons revealed a robust reduction in the mEPSC frequency and in the evoked EPSC 

response, with no change in the number of membrane-attached synaptic vesicles (de Wit 

et al., 2006). A recent study introduced a knock-in mouse line for Syntaxin-1B, in which 

the protein is fused to a yellow fluorescent protein (YFP) in the Syntaxin-1A KO 

background, and which exhibits a significant reduction in Syntaxin-1 levels in neurons 

(Arancillo et al., 2013; Gerber et al., 2008). The reduction of Syntaxin-1 protein levels 

causes embryonic lethality and severe physiological phenotypes with a reduction of the 

RRP size by 65% and of the EPSC size by 80% with respect to control levels in 

hippocampal autaptic neurons. Moreover, these electrophysiological alterations are 

accompanied by changes in the synaptic vesicle distribution (Arancillo et al. 2013). Of 

note, the reduction of Syntaxin-1 levels also caused a 25% reduction in the expression 

levels of Munc18-1, a neuronal protein of the Sec1/Munc18 (SM) family of trafficking 

molecules and the homologue of C. elgans UNC-18 (Arancillo et al. 2013). Munc18-1 KO 

mice die at birth and exhibit a complete loss of synaptic neurotransmission, and mutant 

neurons degenerate within days in culture (Heeroma et al., 2004; Verhage, 2000). 

Moreover, Munc18-1 KO neurons exhibit a 70% reduction of Syntaxin-1 levels, indicating 

that Munc18-1 has a role in stabilizing the t-SNARE Syntaxin-1.  
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The fact that mouse mutants lacking individual SNARE proteins exhibit massive 

physiological impairments in neurotransmission and a great decrease in the size of the 

RRP of primed vesicles measured by hypertonic sucrose solution, led to the hypothesis 

that the formation of the SNARE complex might indeed be the molecular process 

underlying synaptic vesicle priming (Arancillo et al., 2013; Schoch et al., 2001). In vitro, it 

has been shown that SNARE complex formation alone seems to be sufficient to mediate 

membrane fusion and that the fusion efficiency can further be enhanced by Munc18-1, 

indicating that most likely additional regulatory proteins are crucial for the speed of Ca2+-

evoked membrane fusion in vivo (reviewed in Rizo and Südhof, 2012; Shen et al., 2007; 

Weber et al., 1998). The role of the individual SNARE molecules in synaptic vesicle 

docking in neurons has not yet been assessed using improved cryo-preservation methods 

for EM. The outcome of such experiments could help to clarify the role of the SNARE 

complex prior to synaptic vesicle fusion. 

 

1.3.2.   Munc13s 

 

Munc13s are major components of the molecular priming machinery. They are large 

(~200 kDa) proteins that represent the mammalian homologues of C. elegans UNC-13 

proteins, which were first identified in a genetic screen for mutants with defects in synaptic 

transmission (Brenner, 1974). In C. elegans, two UNC-13 isoforms are expressed from 

the unc13 gene, termed UNC-13L (long, previously: LR) and UNC-13S (short, previously: 

MR), which have highly conserved C-termini, but differ in their N-terminal domain structure 

(Hu et al., 2013; Kohn et al., 2000). Mammals express at least five different Munc13 

isoforms, Munc13-1, bMunc13-2, ubMunc13-2, Munc13-3, Munc13-4 and brain-specific 

angiogenesis inhibitor-associated protein 3 (Baiap-3), all characterized by a highly 

conserved C-terminus (Koch et al., 2000). Munc13-1 is widely expressed throughout the 

central nervous system and is the most dominant isoform present in most synapses. 

Munc13-2 mRNA expression can be found especially throughout the cortex, hippocampus 

and cerebellum, whereas Munc13-3 is primarily expressed in the cerebellum (Augustin et 

al., 1999b, 2001). Munc13-1, bMunc13-2 and Munc13-3 are brain specific isoforms, 

whereas ubMunc13-2 is more ubiquitously expressed in a great variety of tissues 

(Augustin et al., 1999b). Munc13-4 is mainly expressed in peripheral tissues and can be 

detected in the lung, the spleen and testes as well as in cells of the immune system, 

where it functions in regulated exocytosis of granules in cytotoxic T lymphocytes. 

Mutations of the human Munc13-4 gene are linked to the familial immune disease 

hemophagocytic lymphohistiocytosis subtype 3 (Dudenhöffer-Pfeifer et al., 2013; 

Feldmann et al., 2003; Koch et al., 2000). The brain-specific molecule Baiap-3 is highly 
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expressed in the amygdala, the hypothalamus and the periaqueductal gray matter and 

has been associated with fear and anxiety pathways (Koch et al., 2000; Wojcik et al., 

2013).  

 

Characteristic of all members of the UNC-13/Munc13 protein family is the highly 

conserved C-terminal region which contains two Munc13 homology domains (MHD) 

connected by a linker (Koch et al., 2000). This region, referred to as the  MUN domain, 

has been shown to weakly interact with the N-terminus of Syntaxin-1 (Betz et al., 1997; 

Ma et al., 2011, 2013). It has been shown that the MUN domain is sufficient for the basic 

priming function of Munc13s since it can at least partially rescue the Munc13-deficient 

phenotype in neurons and chromaffin cells (Basu et al., 2005; Stevens et al., 2005). The 

binding of Munc18-1 to the N-terminus of Syntaxin-1 renders Syntaxin-1 in a closed 

conformation, which led to the hypothesis that the priming function performed by Munc13s 

is based on their ability to interact with Syntaxin-1. Munc13s could therefore induce a 

switch from the closed to an open Syntaxin-1 conformation, which would enable and/or 

accelerate SNARE complex nucleation (Ma et al., 2011, 2013; Sassa et al., 1999).  

The C-terminus of Munc13 proteins possesses a single C2 (C2C) domain, the function of 

which remains unknown (Brose et al., 1995; Shin et al., 2010). Further towards the N-

terminus, the MUN domain is preceded by accessory domains that execute important 

regulatory roles for Munc13 function. Adjacent to the MUN domain, Munc13s contain a 

second C2 domain (C2B) which is the only C2 domain of UNC-13/Munc13 proteins to bind 

phospholipids in a Ca2+-dependent manner, with a preference for phosphoinositides like 

phosphatidylinositol phosphate (PIP) and phosphatidylinositol 4,5-bisphosphat (PIP2) 

(Shin et al., 2010). The C2B domain is preceded by a C1 domain that is homologous to the 

diaglycerol (DAG)/phorbolester-binding domain of protein kinase C. Point mutations that 

disable the binding of DAG to Munc13-1 cause perinatal lethality in mice and a significant 

decrease in the RRP without changes in the EPSC amplitude, resulting in an increase in 

the vesicular release probability (Pvr) in autaptic neuron cultures (Ahmed et al., 1992; 

Aravamudan et al., 1999; Lackner, 1999; Maruyama and Brenner, 1991; Rhee et al., 

2002). Preceeding the C1 domain, members of the UNC-13/Munc13 proteins contain a 

Calmodulin-binding region, which is functionally highly conserved and mediates Ca2+-

dependent Calmodulin-binding to UNC-13/Munc13 proteins (Aravamudan et al., 1999; Hu 

et al., 2013; Junge et al., 2004; Lipstein et al., 2012, 2013; Rodríguez-Castañeda et al., 

2010). Mice which express a Munc13-1 variant that has lost its ability to bind Ca2+-

Calmodulin, are viable, develop normally and show no major changes in basic synaptic 

transmission characteristics. However, these mice exhibited a deficit in synaptic vesicle 

priming during high activity at the calyx of Held synapse, a highly specialized 
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glutamatergic synapse in the auditory pathway that is an established model to study 

plasticity characteristics (Lipstein et al., 2013).  

In contrast to the highly conserved C-termini of UNC-13/Munc13 proteins, the N-terminal 

domain structures vary significantly between isoforms. The only exceptions are UNC-13L 

in C.elegans and Munc13-1 and ubMunc13-2 in mammals, which exhibit homologous N-

terminal sequences. These isoforms contain a third C2 domain (C2A), which does not bind 

phospholipids in a Ca2+-dependent manner like the C2B domain, but mediates binding to 

the Rab3a-interacting molecule (RIM), a cytoskeletal component of the presynaptic active 

zone that has been shown to have a role in localizing Ca2+-channels to the active zone 

and in docking and priming synaptic vesicles in their vicinity (Andrews-Zwilling et al., 

2006; Betz et al., 2001; Fernández-Busnadiego et al., 2013; Han et al., 2011; Kaeser et 

al., 2011, 2012). 

Mice lacking Munc13-1 die perinatally and electrophysiological recordings from 

glutamatergic hippocampal autaptic neurons in culture revealed a severe decrease in the 

RRP size measured by hyperosmotic sucrose solution, in the spontaneous release of 

synaptic vesicles and in Ca2+-dependent evoked release (Augustin et al., 1999a). 

Augustin et al., observed no changes in the number of synaptic vesicles and in the 

number of docked vesicles in electron micrographs after chemical fixation (Augustin et al., 

1999a). Mice deficient of both Munc13-1 and Munc13-2 isoforms die prenatally and exhibit 

a complete shutdown of excitatory and inhibitory neurotransmission in hippocampal 

neuron cultures with no apparent changes in synapse density, synapse morphology, 

synaptic vesicle density and the number of membrane-attached synaptic vesicles in 

electron micrographs after chemical fixation (Varoqueaux et al., 2002).  

Taken together, it is evident that members of the Munc13 family are essential proteins in 

neurotransmission since null mutants cause a complete loss of spontaneous and evoked 

synaptic transmission. The fact that application of hypertonic sucrose solution fails to 

trigger vesicle release in these mutants implies a complete absence of readily-releasable 

fusion-competent vesicles, despite normal numbers of morphologically docked synaptic 

vesicles in electron micrographs from chemically fixed samples. These findings 

established Munc13s as proteins important for mediating a molecular priming step 

downstream of synaptic vesicle docking. However, synapses lacking UNC-13 in C. 

elegans and Munc13-1 and -2 in mice were recently shown to exhibit an almost complete 

loss in the number of docked synaptic vesicles, analyzed using improved cryo-fixation 

methods combined with electron tomography, a method permitting three-dimensional 

reconstruction of synaptic organelles with nanometer resolution (See: 1.5.3 Transmission 

electron microscopy and electron tomography) (Gracheva et al., 2006; Siksou et al., 2009; 
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Weimer et al., 2006). These findings indicated that Munc13s, major molecules in synaptic 

vesicle priming, also have a role in synaptic vesicle membrane-attachment and that the 

concept of subsequent docking and priming steps prior to synaptic vesicle fusion has to 

be revised.  

 

1.3.3.   Ca2+-dependent activator protein for secretion (CAPS) 

 

The Ca2+-dependent activator protein for secretion (CAPS) family consists of two ~145 

kDa proteins, which were originally identified as essential cytosolic factors for regulated 

Ca2+-dependent release in PC12 cells (Walent et al., 1992). CAPS proteins are highly 

conserved across species and have structural homology to members of the Munc13 

family (Koch et al., 2000). Whereas C. elegans and Drosophila only express one CAPS 

isoform (UNC-31 & dCAPS), it has been shown that mammals express two isoforms, 

CAPS-1 and -2 (Jockusch et al., 2007; Speidel et al., 2003). CAPS proteins contain a 

single Munc13 homology domain, which includes a Syntaxin-1-binding region (Betz et al., 

1997; Khodthong et al., 2011; Koch et al., 2000). Moreover, the domain structure of CAPS 

proteins contains an N-terminal dynactin-binding region, followed by a C2 domain that can 

bind phospholipids in a Ca2+-dependent manner, indicating a role of CAPS in Ca2+-

dependent membrane interactions (Grishanin et al., 2002; Sadakata et al., 2007a). The C2 

domain is followed by a pleckstrin homology (PH) domain, a structural motif that can 

associate with acidic phospholipids of the plasma membrane and that can bind to PIP2 

(Grishanin et al., 2002). A C-terminal stretch of acidic amino acids mediates binding of 

CAPS to LDCVs and seems crucial for normal CAPS function in PC12 cell secretory 

vesicle release in addition to the required Ca2+-dependent PIP2 binding to the PH domain 

(Grishanin et al., 2002, 2004). For many years, most studies had indicated a specific role 

of CAPS in LDCV priming and release in neuroendocrine tissues (Elhamdani et al., 1999; 

Grishanin et al., 2002, 2004; Liu et al., 2008, 2010; Rupnik et al., 2000; Speidel et al., 

2003, 2005, 2008; Tandon et al., 1998; Wassenberg and Martin, 2002).  

 

Western blot analysis and immunotainings for CAPS-1 reveals the presence of CAPS-1 in 

neuroendocrine tissues, for example in chromaffin cells of the adrenal medulla, in 

glucagon-containing α-cells of the pancreas, and in endocrine cells of the anterior pituitary 

(Sadakata et al., 2007b; Walent et al., 1992; Wassenberg and Martin, 2002). However, 

CAPS-1 is also strongly expressed in the brain, especially in the hippocampus and in the 

cerebellar granule cell layer, where its immunolabelling pattern co-localizes with the 

synaptic vesicle marker Synaptophysin, indicating a synaptic localization of the protein 
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(Speidel et al., 2003; Walent et al., 1992; Wassenberg and Martin, 2002). CAPS-2 

expression appears to be distinct from CAPS-1 and displays a strong level of co-

localization with neutrophin-3 and brain-derived neurotrophic factor (BDNF), both factors 

important for neurodevelopmental processes in cerebellum (Sadakata et al., 2006, 2007c; 

Speidel et al., 2003). The widespread presence of CAPS in synaptic terminals in almost 

all brain regions, including terminals which do not contain many LDCVs, raised the 

question as to whether or not CAPS proteins have a role in synaptic vesicle release 

(Jockusch et al., 2007).  

 

In Drosophila neuromuscular junction synapses, the loss of CAPS causes a severe 

reduction in LDCV release reflected by an accumulation of LDCVs in the terminals, but 

showed additional defects in the release of synaptic vesicles, with a reduction of the 

excitatory responses by 50% and a morphological accumulation of synaptic vesicles 

(Renden et al., 2001). However, the defects in glutamatergic synaptic vesicle release 

could not be rescued by genetically targeted expression of rat CAPS at the neuromuscular 

junction, leading to the interpretation that CAPS might influence fast synaptic transmission 

indirectly by preventing the delivery of components of the synaptic vesicle release 

machinery by LDCVs (Renden et al., 2001). Mice lacking both CAPS isoforms do not 

survive birth, whereas mice lacking only CAPS-2 are phenotypically indistinguishable at 

birth from wild-type mice (Jockusch et al., 2007; Speidel et al., 2003). Hippocampal 

autaptic neurons cultures from CAPS-1/2 double knock-out (DKO) mice display a complex 

phenotype. In 38% of all neurons, no evoked or spontaneous release could be detected, 

with a non-measurable RRP after hypertonic sucrose application (Jockusch et al., 2007). 

The remaining 62% of the cells exhibited a 68% decrease in the EPSC amplitude after 

stimulation and an 85% reduction in the size of the RRP. Synapse morphology and 

density as well as the number of total and docked synaptic vesicles in glutamatergic 

synapses were unchanged in electron micrographs of chemically fixed samples (Jockusch 

et al., 2007).  

 

The current model poses that CAPS may prime synaptic vesicles by regulating SNARE 

complex assembly, since CAPS stimulates formation of trans-SNARE complexes from 

Syntaxin-1/SNAP25 acceptor and Synaptobrevin-2 donor in liposomes fusion assays 

(Daily et al., 2010; James et al., 2008, 2009, 2010; Khodthong et al., 2011). However, the 

role of CAPS proteins in synaptic vesicle priming is still heavily debated as many groups 

claim that the observed physiological deficits in neurotransmission in CAPS-1/2 DKO mice 

are rather an indirect consequence of deficits in synaptic LDCV secretion (reviewed in 

Rizo and Südhof, 2012; Stevens and Rettig, 2009; Südhof, 2012). Until now, the function 
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of CAPS proteins in synaptic vesicle docking has not been assessed using improved cryo-

preservation methods for EM in any experimental setting.   

 

1.3.4.   Synaptotagmin-1 

 

The fusion of docked and primed vesicles in response to action potential-evoked 

elevations in presynaptic Ca2+ concentrations occurs within milliseconds. The neuronal 

vesicular protein Synaptotagmin-1 has been proposed to be the Ca2+-sensor to trigger 

evoked release in neurons (Brose et al., 1992; Fernández-Chacón et al., 2001; Geppert et 

al., 1994).  

 

Synaptotagmin-1 is a 65 kDa vesicular protein comprising one N-terminal TMR, which 

serves as a vesicular anchor, and two C2 domains, C2A and C2B, which are connected by 

a flexible linker and able to bind three and two Ca2+ ions, respectively (Fernandez et al., 

2001; Fernández-Chacón et al., 2001; Shao et al., 1998; Ubach et al., 1998). The C2 

domains can bind anionic phospholipids (e.g. PIP2) in both a Ca2+-independent manner, 

through a stretch of polybasic amino acids, and in a Ca2+-dependent manner at the Ca2+-

binding pocket (Araç et al., 2006; van den Bogaart et al., 2011; Li et al., 2006; 

Radhakrishnan et al., 2009). Moreover, Synaptotagmin-1 has been shown to interact with 

t-SNAREs and the SNARE complex (Choi et al., 2010; Kim et al., 2012; Lai et al., 2011; 

Rickman et al., 2004; Zhou et al., 2013). However, whether this interaction has 

physiological relevance for the Ca2+-triggering step in neurons in vivo remains unclear 

since Synaptotagmin-1 binding appeared to be weak and transient through electrostatic 

interactions, and may actually be indirect through Syntaxin-1-bound PIP2 (Choi et al., 

2010; Honigmann et al., 2013). 

 

Early studies showed that Synaptotagmin-1 KO mice die perinatally and that neurons 

lacking Synaptotagmin-1 exhibit a severe reduction in the fast component of the Ca2+-

evoked EPSC. No changes were observed in the mEPSC frequency or in the size of the 

RRP after hypertonic sucrose application, a means of triggering release of primed vesicles 

in a Ca2+-independent manner (Geppert et al., 1994). Since then, many physiological 

functions have been proposed for Synaptotagmin-1 in addition to its ability to trigger Ca2+-

dependent synchronous neurotransmitter release. However, different organisms or culture 

systems often revealed conflicting results. Synaptotagmin-1 was proposed to have a role 

in inhibiting release by acting as a fusion clamp that can be relieved in a Ca2+-dependent 

manner during SNARE-mediated fusion, reflected by an increase in the mini-frequency of 

inhibitory and excitatory PSCs in dissociated neuron cultures and hippocampal slice 
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cultures from Synaptotagmin-1 KO mice (Kerr et al., 2008; Liu et al., 2009; Xu et al., 

2009). Moreover, in neurons of C.elegans, Drosophila and mice, as well as in chromaffin 

cells, Synaptotagmin-1 deletion results in a reduction in the number of membrane-

attached synaptic vesicles and LDCVs, respectively, indicating a role of Synaptotagmins 

in a docking process prior to Ca2+-triggering (Jorgensen et al., 1995; Liu et al., 2009; Reist 

et al., 1998; de Wit et al., 2009; Yu et al., 2013). In addition, a reduction in total synaptic 

vesicle numbers was observed in Synaptotagmin-1 KO synapses, possibly related to a 

role of Synaptotagmin-1 in vesicle recycling (Jorgensen et al., 1995; Kononenko et al., 

2013; Maritzen et al., 2010; Reist et al., 1998). In contrast to these morphological findings, 

cultured mammalian hippocampal neurons lacking Synaptotagmin-1 exhibit no, or only 

very little changes in the size of the RRP measured after application of hypertonic sucrose 

solution or during Ca2+-uncaging experiments (Burgalossi et al., 2012; Geppert et al., 

1994; Liu et al., 2009; Xu et al., 2009). These results indicate that Synaptotagmin-1 most 

likely does not play an essential role in the physiological synaptic vesicle priming step, but 

rather support a model according to which Synaptotagmin-1 has, if any, a regulatory 

function in synaptic vesicle priming, in addition to its function as a  Ca2+-sensor.  

 

In summary, the mechanism by which Synaptotagmin-1 triggers Ca2+-evoked 

neurotransmitter release and the processes in which it participates prior to Ca2+-triggering 

(e.g. inhibitory fusion clamp for spontaneous release or membrane-attachment) remains 

unclear and a point of controversy (reviewed in Chapman, 2008; Jahn and Fasshauer, 

2012; Rizo et al., 2006). The observed morphological docking phenotypes in 

Synaptotagmin-1 null mutant cells and results from recent in vitro studies indicate that the 

interaction of Synaptotagmin-1 with the plasma membrane and/or t-SNARE acceptor 

complexes might indeed be the molecular correlate of synaptic vesicle priming. This 

model challenges the idea of a (partially) assembled SNARE complex prior to fusion and 

would rather place SNARE complex zippering downstream of priming to result in 

immediate membrane fusion.  

 

1.3.5.   Complexins 

 

Another protein family called Complexins has been shown to function in the Ca2+-

triggering step of evoked neurotransmitter release in neurons (reviewed in Brose, 2008). 

In mammals, the Complexin family consists of four members (Complexin-1 to -4), each of 

around 20 kDa, with Complexin-1 and -2 being predominantly expressed in the brain and 

Complexin-3 and -4 being strongly expressed in the retina (Reim et al., 2001, 2005, 2009; 

Xue et al., 2008). Complexin-3 is also expressed to a lower extent in the brain (Xue et al., 
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2008). Complexins are small molecules (~20 kDa) that can bind with a central α-helix in 

an antiparallel orientation to the at least partially assembled SNARE complex in a groove 

between the SNARE motifs of Synaptobrevin-2 and Syntaxin-1 (Chen et al., 2002). By this 

mode of action, murine Complexin isoforms have previously been shown to facilitate fast 

neurotransmitter release in a post-priming step ('super-priming') since the EPSC 

amplitude and the vesicular release probability was drastically reduced with no 

concomitant changes in the RRP size or in the number of docked vesicles in mouse 

hippocampal neurons (Reim et al., 2001; Xue et al., 2007, 2008). According to this model, 

Complexins might stabilize partially assembled SNARE complexes in the primed state 

prior to fusion, thus enabling rapid zippering after Ca2+-triggering. However, structure-

function analyses of murine and Drosophila Complexin isoforms revealed that distinct 

domains might execute different but conserved functions, with the central and an 

accessory α-helix coordinating inhibitory effects of the fast, synchronous release and an 

unstructured N-terminal sequence facilitating Ca2+-evoked release (Cho et al., 2010; Xue 

et al., 2007, 2009, 2010). Recent studies described a drastic decrease in the RRP size 

and a massive increase in the mEPSC frequency after lentiviral knock-down of 

Complexins in mammalian neuron mass culture systems, which was not observed in 

similar knock-down experiments for Synaptotagmin-1, indicating a priming role for 

Complexins upstream of Synaptotagmin-1 function and an additional role as a fusion 

clamp for asynchronous and spontaneous release in concert with Synaptotagmin-1 (Cao 

et al., 2013; Kaeser-Woo et al., 2012; Tang et al., 2006; Yang et al., 2010). According to 

this model, Complexins would inhibit full SNARE complex zippering and therefore prevent 

synaptic vesicle fusion prior to Ca2+-triggering, suggesting a dominantly inhibitory role for 

Complexins. This model is supported by data obtained from C. elegans Complexin null 

mutants, which revealed a severe reduction in evoked release and in the number of 

docked vesicles, most likely due to an increase in spontaneous fusion events caused by 

an absence of inhibitory Complexin-mediated clamping-functions (Hobson et al., 2011). In 

Drosophila Complexin mutants, Complexin seems to regulate synchronous and 

asynchronous release with no changes in the number of membrane-attached synaptic 

vesicles at the neuromuscular junction synapse, thereby supporting the model of 

Complexins being inhibitors of spontaneous release and facilitators of evoked release, 

most likely by stabilizing partially assembled SNARE complexes and preventing 

premature synaptic vesicle fusion by preventing Synaptotagmin-1 / SNARE complex 

interactions (Jorquera et al., 2012).  

 

In summary, the functional role of Complexins in mammalian neurons is still heavily 

debated. Most of the recent discussion has focused primarily on: (1) understanding the 
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physiological relevance of a multiple role for Complexins in synaptic vesicle priming as 

well as in facilitating and inhibiting neurotransmitter release, and (2) resolving the 

molecular interactions of Complexins with the SNARE complex and with the Ca2+-sensor 

Synaptotagmin-1 (reviewed in Brose, 2008; Jahn and Fasshauer, 2012; Neher, 2010; 

Sørensen, 2009; Südhof and Rothman, 2009).  

 

1.4.   Ultrastructural analysis of synaptic vesicle docking 

 

Transmission electron microscopy is the key method in studying synaptic morphology and 

the only method permitting the distances between synaptic vesicles and the active zone 

membrane to be measured accurately. EM enables the analysis of synaptic ultrastructure 

in the nanometer range, and due to the fact that plastic-embedded EM samples can be 

cut to sections as thin as 20 nm, it has the highest z-resolution of any cellular microscopy 

techniques to date.  

 

1.4.1.   Classical aldehyde-based fixation methods for electron microscopy 

 

Classically, EM studies have employed aldehyde-based (e.g. paraformaldehyde and 

glutaraldehyde) chemical fixation methods of the tissue followed by heavy metal 

membrane contrasting, dehydration and embedding in a plastic resin that allows ultrathin 

(20 – 100 nm) sectioning (Hayat, 200; Sabatini et al., 1963). Aldehydes crosslink networks 

of proteins, thus preserving much of the ultrastructure of biological samples. In addition, 

the cell membranes are stained by heavy metals, such as osmium tetroxide (OsO4), 

uranyl acetate or lead citrate, which readily react with phospholipids in lipid bilayers, 

resulting in an electron-dense precipitate on cell membranes for excellent contrast for EM 

(Hayat 2000). However, these traditional methods cause several problems when studying 

synaptic ultrastructure and in particular synaptic vesicle docking at the active zone. First, 

fixative diffusion into the tissue is a rather slow process (minutes to hours), which results 

in gradual rather than rapid fixation of the sample (Smith and Reese, 1980). Moreover, 

aldehydes have been shown to even trigger synaptic vesicle release during the fixation 

process, which makes reliable quantification of membrane-attached synaptic vesicles 

rather difficult (Smith and Reese, 1980). Second, the crosslinking process by aldehydes 

and heavy-metal stains result in dense protein networks composed of cytoskeletal 

components as it has been described for the presynaptic active zone (“dense projections”, 

“presynaptic vesicular grid”), which appear as electron-dense, aggregated structures that 
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may not provide a realistic picture of synaptic ultrastructure (Gray, 1963; Landis et al., 

1988; Pfenninger et al., 1969, 1972; Südhof, 2012).  

 

Third, the biggest problem for studying synaptic vesicle docking is the necessity for 

samples to be dehydrated prior to embedding in plastic, which cannot polymerize 

efficiently in the presence of water (Hayat 2000) This process, whereby sample tissue 

water is substituted by organic solvents (e.g. ethanol, propylene oxide), is typically 

performed at room temperature and introduces sample shrinkage and deformation of 

membranes that make the exact analysis of synaptic vesicle distances rather ambiguous 

(Möbius et al., 2010; Murk et al., 2003; Rostaing et al., 2006; reviewed in Verhage and 

Sørensen, 2008). To take these fixation artifacts into account, many studies defined all 

vesicles within a certain distance of the active zone membrane (e.g. a vesicle diameter of 

30-40 nm) as docked. This definition enables the analysis of vesicle docking despite 

severe membrane deformations, but it clearly overestimates the number of membrane-

attached synaptic vesicles and cannot distinguish between loose tethering and actual 

membrane attachment. 

 

1.4.2.   Cryo-fixation methods for electron microscopy 

 

In recent years, it has become obvious that rapid cryo-immobilization methods for EM 

possess several advantages in comparison to classical chemical fixation methods, and 

cryo-fixation has become the method of choice to study synaptic ultrastructure and 

dynamic cellular processes such as synaptic vesicle docking (Dubochet, 1995; 

Fernández-Busnadiego et al., 2010a, 2011, 2013; Frotscher et al., 2007; Heuser et al., 

1979; Landis et al., 1988; Rostaing et al., 2006; Siksou et al., 2007, 2009; Zuber et al., 

2005). Cryo-fixation methods exploit the ability of rapid freezing to prevent destructive ice-

crystal formation and promote the formation of vitreous (amorphous) ice. Samples thinner 

than 500 nm (e.g. monolayer neuron cultures, purified synaptosomes) can be frozen 

easily by a method called plunge freezing (Fernández-Busnadiego et al., 2011). Thicker 

samples (e.g. organotypic slice cultures, acute slices) require a method called high-

pressure freezing (reviewed in Dubochet 1995). In this process, the sample is frozen 

under high pressure (~ 2100 bar) at low temperatures within milliseconds, resulting in 

vitrified samples that exhibit minimal perturbation of ultrastructure (Dubochet 2009). High-

pressure freezing can rapidly (< 10 ms) immobilize physiologically active synapses in 

cultured organotypic hippocampal slices from lethal KO mutants, providing snapshots of 

dynamic cellular processes, such as exo- and endocytosis of synaptic vesicles, to be 

captured with high temporal resolution (Fernández-Busnadiego et al., 2010; Frotscher et 
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al., 2007; Siksou et al., 2009; Zuber et al., 2005). In contrast to the room temperature 

dehydration steps typically employed in classical EM sample preparation protocols, high-

pressure frozen samples are substituted at low temperatures to minimize sample 

shrinkage in a process called freeze substitution. During this process, cellular components 

are fixed and contrasted at subzero temperatures to minimize perturbation of 

ultrastructure prior to plastic embedding (Giddings, 2003; Jiménez et al., 2009; McDonald, 

2007). Limitations of this method are that only relatively small samples are suitable for 

high-pressure freezing and that suboptimal cryo-fixation can result in artefacts (sometimes 

subtle) resulting from ice-crystal formation, such as deformed or ruptured membranes, 

that require careful evaluation of the ultrastructural preservation quality (Möbius et al., 

2010). Moreover, the high-pressure applied during the freezing process requires the use 

of an external cryoprotectant / filler in order to prevent air in the freezing chamber and to 

improve ultrastructural sample preservation (McDonald, 2007). Commonly used 

cryoprotectants include dextran or sucrose solutions, which may increase the osmolarity 

of the sample environment to over 600 mOsm and may stimulate vesicular release from 

synaptic terminals (Dubochet, 1995; Fernández-Busnadiego et al., 2010; Südhof, 2012; 

Zuber et al., 2005).  

 

As a consequence of these technical improvements, the optimized ultrastructural 

preservation for electron microscopy revealed a more accurate view of synaptic 

morphology in a near-native state. Reduced sample shrinkage, and therefore improved 

membrane preservation, enables the use of more stringent docking definitions, and 

usually exclusively vesicles in physical contact with the active zone membrane are 

considered docked (reviewed in Verhage & Sørensen 2008). However, in 2D electron 

micrographs, vesicles will only appear in direct contact with the plasma membrane if their 

midline is contained within the volume of the ultrathin section, which will lead to an 

underestimation of the number of membrane-attached vesicles using this criterion. 

Moreover, curvature of the active zone membrane can obscure small gaps between 

synaptic vesicles and the plasma membrane, leading to the false-positive identification of 

non-attached vesicles. To circumvent this problem, electron tomography (ET), a method 

permitting three-dimensional reconstruction of synaptic organelles with nanometer 

resolution, can be applied.  

 

1.4.3.   Transmission electron microscopy and electron tomography 

 

Transmission electron microscopy is a method in which a high voltage electron beam is 

transmitted through a semi-transparent, thin-sectioned specimen sample. The electrons 
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are emitted by an electron gun, in which electrons originate from a cathode and are 

accelerated by high voltage (~80-300 kV) to provide enough energy to penetrate the 

specimen. The electron beam that passes the specimen conveys information about its 

structure and the image is magnified by a magnetic lens system within the microscope 

and finally detected by a charge-coupled device (CCD) camera. Cellular electron 

tomography is a technique, which employs a rotatable sample holder in order to allow 

acquisition of an image series at different tilt angles over a large angular range (~-60° to 

+60°, in 1-2° increments). These two-dimensional projection images can be aligned (a 

process typically facilitated by application of surface fiducial markers), and then be used to 

reconstruct a three-dimensional volume, e.g. by applying a weighted backprojection 

algorithm (Koster et al., 1997). Due to technical limitations, the specimen cannot be tilted 

up to 90° in one direction as the path length of electrons traversing the specimen 

increases dramatically at high angles which leads to increased electron scattering and 

induces noise and thus results in limitations in the sample thickness for imaging. In recent 

years (cryo)-electron tomographic techniques have revolutionized the field of 

neuroscience as they enable the capture of detailed synaptic structural and functional 

information like cytoskeletal arrangements, vesicle populations, exo-and endocytotic 

events, and most importantly provided the most reliable and reproducible tool to study 

synaptic vesicle docking to the active zone release sites (Fernández-Busnadiego et al., 

2010, 2011, 2013; Liu et al., 2009; Siksou et al., 2007, 2009, 2011). 

 

1.5.   Aim of the study 

 

The aim of the first part of the present study was to address the following questions:  

(1) Do morphological synaptic vesicle docking and functional synaptic vesicle priming 

represent independent, subsequent steps prior to synaptic neurotransmitter release or are 

they indeed correlates of the same molecular process? 

(2) Does synaptic vesicle docking require trans-SNARE interactions or is it rather 

mediated by Synaptotagmin-1 t-SNARE/plasma membrane binding.  

 

The first question was primarily motivated by the fact that synapses lacking Munc13 

priming proteins are completely devoid of fusion-competent as well as membrane-

attached synaptic vesicles in cryo-preserved samples for EM (Siksou et al., 2009). My fist 

aim was to set up a similar methodological approach combining the organotypic 

hippocampal slice culture system with high-pressure freezing fixation and freeze 

substitution for electron tomographic analysis. These methods would allow me to analyze 

synaptic parameters in an in-situ-like setting using lethal presynaptic mouse mutants that 
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do not survive birth, and to apply high-resolution three-dimensional EM analysis to assess 

synaptic vesicle docking at glutamatergic, excitatory spine synapses of the hippocampus. 

 

First, I studied members of the CAPS family, which have a crucial role in synaptic vesicle 

priming, but conventional chemical fixation methods for EM have not yet been able to 

reveal a deficit in synaptic vesicle membrane-attachment (Jockusch et al., 2007). I 

therefore planned to reassess the function of CAPS proteins in synaptic vesicle docking in 

my experimental setting.  

 

Second, Munc13s and CAPS proteins are thought to initiate or regulate (partial) SNARE 

complex formation during vesicle priming. Therefore, my next aim was to elucidate the 

functions of the individual SNARE proteins Synaptobrevin-2, Syntaxin-1 and SNAP25 in 

synaptic vesicle docking. The outcome of these experiments would yield important 

information on the role of the SNARE complex in the synaptic vesicle docking/priming 

step. Moreover, it would help to answer the question whether stable trans-interactions 

between the v-SNARE Synaptobrevin-2 and the t-SNAREs Syntaxin-1 and SNAP25 

would indeed be possible prior to Ca2+-triggering in vivo.  

 

Third, I wanted to elucidate the function of the Ca2+-sensor Synyaptotagmin-1 in synaptic 

vesicle docking in my experimental system. Synaptotagmin-1 has recently been proposed 

as the vesicular molecular partner in the secretory vesicle membrane-attachment step (Liu 

et al., 2009; de Wit et al., 2009). If indeed the interaction of Synaptotagmin-1 with the t-

SNARE acceptor complex and/or the plasma membrane were the process underlying 

synaptic vesicle docking, Synaptobrevin-2 engagement and SNARE-complex formation 

would occur only downstream of synaptic vesicle docking during Ca2+-triggering and 

fusion. In this context I planned to reinvestigate the role of Complexins in synaptic vesicle 

docking in my experimental system. Complexin KO mice have been shown to exhibit a 

drastic decrease in evoked Ca2+-dependent release, with no changes in the size of the 

RRP or increase in the rate of spontaneous release. Other studies propose a role of 

Complexins in inhibiting full SNARE complex formation in concert with Synaptotagmin-1 

prior to Ca2+-triggering and in synaptic vesicle priming.  

 

The aim of the second part of the present study was to generate a Munc13-1 conditional 

KO mouse line. As mentioned above, genetic deletion of all Munc13 isoforms leads to 

complete shutdown of synaptic transmission in the majority of neuron types, with no effect 

on neuronal survival or major changes in neuron development and morphology in 

cultures. Loss of Munc13-1, the dominant isoform in most cell types, causes perinatal 
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lethality, so that analysis of the function of Munc13-1 in neuronal networks in vivo has not 

yet been possible. A conditional Munc13-1 KO mouse line will help to understand the 

function of Munc13-1 in physiological networks, at different time-points of brain 

development and in brain regions that have been proven difficult to study in culture 

systems (e.g. Calyx of Held synapse). 
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2. Material and Methods 
 

 

2.1. Animals 

 

All experiments performed on mice were conducted in compliance with the guidelines for 

the welfare of experimental animals issued by the Federal Government of Germany 

(Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit 

Permission 33.9.42502-04/103/08) and the Max Planck Society. The mouse lines used in 

this study and a reference to the original publication are listed below. Munc13, CAPS and 

Complexin knock-out (KO) mouse lines were originally generated in the host laboratory of 

Prof. Nils Brose. A Munc13-1 conditional knockout mouse line was generated within this 

study and is not listed below. 

2.1.1. Mouse lines 

 

Munc13-1 KO (Augustin et al., 1999a) 

Munc13-2 KO (Varoqueaux et al., 2002) 

CAPS-1 KO (Speidel et al., 2005) 

CAPS-2 KO (Jockusch et al., 2007) 

Complexin-1 KO (Reim et al., 2001) 

Complexin-2 KO (Reim et al., 2001) 

Complexin-3 KO (Xue et al., 2008) 

Synaptotagmin-1 KO (Geppert et al., 1994), bought from “The Jackson Laboratory“ 

Synaptobrevin-2 KO (Schoch et al., 2001), bought from “The Jackson Laboratory“ 

SNAP25 KO (Washbourne et al., 2002), kindly provided by Dr. M. Loos and Dr. I. Herfort 

Syntaxin-1A KO (Gerber et al., 2008), kindly provided by Prof. C. Rosenmund 

Syntaxin-1B
YFP 

(Arancillo et al., 2013), kindly provided by Prof. T. Südhof and Prof. C. Rosenmund 

 

2.2. Molecular Biology 

 

2.2.1. Materials 

 

2.2.1.1. Chemicals and Reagents 

Product Company Cat. No. 

1 kb DNA ladder, 0.05 µg/µl Fermentas SM0311 

10× RedTaq® PCR Reaction Buffer Sigma-Aldrich B5926 

100 bp DNA ladder, 0.05 µg/µl Fermentas SM0322 



                                                                                             2. Material and Methods 

 24 

Product Company Cat. No. 

10x Cloned Pfu DNA Polymerase Buffer Stratagene 200532 

10x rAPid Alkaline Phosphatase Buffer Roche 04 898 133 001 

1kb DNA ladder Invitrogen 15615-016 

1kb DNA ladder 0.1 µg/µl Gibco / Invitrogen 15615-016 

5-Bromo-4-chloro-3-indolyl- beta-D-galactopyranoside 
(X-Gal) 

Biomol 0.2249 

5x Ligation Buffer Invitrogen 46300-018 

Ammonium Acetate (NH4Ac) Merck 1.011.161.000 

Ampicillin Sigma-Aldrich   

BD Bacto™ Agar BD Diagnostic Systems 214010 

Bromophenol Blue Merck 8122 

BSA (digest) New England Bio Labs B90015 

Chloramphenicol Calbiochem  220551 

Chloroform Merck 1.024.451.000 

Cloned Pfu Polymerase Stratagene 600153-81 

dNTP Set Bioline BIO-39025 

Ethylenediaminetetraacetic Acid Trisodium Salt (EDTA) Sigma E1644 

Ethanol Sigma-Aldrich 32205 

Etidium Bromide Carl Roth 2218.2 

Gel Red BIOTIUM  730-2958 

Glycerol Merck 1.040.940.500 

Hydrochloric Acid (HCL) Merck 1.003.172.500 

Isopropanol Merck 1.096.342.500 

Isopropyl β-D-1-thiogalactopyranoside (IPTG) Carl Roth 2316.4 

Kanamycin Sigma-Aldrich   

L-(+)-arabinose Sigma-Aldrich A3256 

Luria Broth Sigma-Aldrich L3522 

Lysozym  Sigma-Aldrich L6876 

MidRange PFG Marker I New England Bio Labs N3551S 

NEB buffers New England Bio Labs   

P1 buffer Quiagen 19051 

P2 buffer  Quiagen 19052 

P3 buffer  Quiagen 19053 

Phenol Carl Roth 382 

Plastikwaren Greiner, Falcon, Costar und 
Brandt 

  

Potassium chloride (KCl) Merck 1.049.361.000 

rAPid Alkaline Phosphatase Roche 04 898 133 001 

REDTaq® DNA Polymerase  Sigma-Aldrich D4309 

Restriction Enzymes New England Bio Labs   

Rnase A Roche 10109169001/11
3 

Sodium Acetate (NaAc) Merck 1.062.680.250 

Sodium Chloride (NaCl) Merck 1.076.511.000 

Tris-Base Sigma-Aldrich T1503 
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Product Company Cat. No. 

T4 DNA ligase Invitrogen 15224-017 

Triton-X-100 Roche 10 789 704 001 

UltraPure™ Agarose Invitrogen 16500500 

Lysozym  Sigma-Aldrich L6876 

MidRange PFG Marker I New England Bio Labs N3551S 

   

2.2.1.2. Equipment 

 

Product Company 

BIO-RAD electroporator BIO-RAD 

BioScience Ultrospec3100pro Amersham 

Gene Amp PCR system Applied Biosystems 

Peltier Thermal Cycler 255 MJR Research 

Chef-DR II Pulsed Field Electrophoresis System Bio-RAD 

 

2.2.1.3. Media and buffer 

 
Ampicillin Stock 20 mg/ml 

Kanamycin Stock 10 mg/ml 

Chloramphenicol Stock 25 mg/ml in ethanol 

LB-Medium (25 g Luria Broth in 1 L ddH2O) 

LB Agar plates (15 g Bacto-Agar in 1 L LB Medium  

6x Loading Buffer (10 ml 1M Tris-HCl pH 7.5, 300 mg Bromphenolblau, 600 ml 87% Glycerol, 120 
ml 0.5 M EDTA; add H20 to 1000 ml) 

STET buffer (100 mM NaCl, 10 mM Tris/HCl (pH 8.0), 1 mM EDTA, 5% Triton X-100) 

TE buffer (10 mM Tris/HCl (pH 7.4), 1 mM EDTA) 

1xTBE buffer was used (89 mM Tris, 8 mM boric acid, 0.2 mM Na2-EDTA) 

1xTAE buffer (40 mM Tris, 20 mM acetic acid, and 1 mM EDTA) 

P1 buffer (50 mM TrisCl (pH 8.0), 10 mM EDTA, 100 µg/ml RNase A) 

P2 buffer (200 mM NaOH, 1% SDS (w/v)) 

P3 buffer (3.0 M potassium acetate (pH 5.5) 

Lysozyme solution (10 mg/ml in STET buffer) 

 

2.2.1.4. Vector plasmids  

 

Product Company/Institution 

pBluescript II SK +/- Stratagene, Heidelberg 

PL253 Biological Resources Branch, DCTD 

NCI-Frederick Cancer Research and 

Development Center 
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Product Company/Institution 

PL452 

Biological Resources Branch, DCTD 

NCI-Frederick Cancer Research and 

Development Center 

PL451 

Biological Resources Branch, DCTD  

NCI-Frederick Cancer Research and 

Development Center 

pCR®2.1-TOPO® vector Invitrogen 

bMQ 441 l13 (pBACe3.6) The Welcome Trust Sanger Institute 

pFUGW Salk Inst., Dr. Inder M. Verma 

pFUGW-iCre 
Provided by Prof. Dr. Richard L. Huganir (Lois et 

al., 2002) 

PACK Provided by Prof. Dr. Pavel Osten 

ENV Provided by Prof. Dr. Pavel Osten 

The pFUGWiCre vector with an insertion of IRES-iCre downstream of EGFP in the 

pFUGW vector (Lois et al., 2002) was a kind gift from Dr. R. Huganir (Baltimore, MD, 

USA). 

 

2.2.1.5. Bacterial Strains 

 

Product Company 

E. coli competent XL1-Blue cells Stratagene, Heidelberg 

E.coli competent Electro10-Blue Stratagene, Heidelberg 

EL350 

Biological Resources Branch, DCTD 

NCI-Frederick Cancer Research and 

Development Center 

SW106 

Biological Resources Branch, DCTD 

NCI-Frederick Cancer Research and 

Development Center 

 

2.2.1.6.  Kits 

 

Product Company Cat. No. 

EndoFree Plasmid Maxi Kit  Quiagen 12362 

Nexttec 
nexttec™ Biotechnologie 

GmbH 
10.924 

PureLink™ HiPure Plasmid Filter Midiprep Kit Invitrogen K2100-14 

PureLink™ PCR Purification Kit Invitrogen K3100-02 

PureLink™ Quick Plasmid Miniprep Kit Invitrogen K2100-11 

QIAquick Gel Extraction Kit  Quiagen 28706 

QIAquick PCR Purification Kit  Quiagen 28106 

TOPO TA Cloning® Kit Invitrogen K4510-20 
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2.2.1.7. Oligonucleotides  

 

All oligonucleotides used in this study were synthesized in the DNA Core Facility of the 

Max-Planck Institute of Experimental Medicine. Oligonucleotide sequences are listed 

below with their Lab ID number. Restriction sites used for molecular cloning are indicated. 

The primers 27121 – 27124 were used for the genotyping of the Munc13-1 CKO mouse 

line and will be abbreviated in the following to #1 - #4.  

 

Primer ID Sequence 
Restr. 

Site 

8431 5'-AGAGCCAAAGCCAACTG-3'  

8432 5'-GACGTCCAACTTCACCTGT-3'  

19929 5'-GAGGTACCCGCATACAGCTGGCTCCTTCATCA-3' KpnI 

19930 5'-CCGAATTCAAGCTTGTCTCCCCATCCACCAACCACTT-3' 
EcoRI, 

HindIII 

19931 5'-GGGGATCCAATTGGTAGGTGGACAGACAGATG-3' BamHI 

19932 5'-AAGCGGCCGCTCCCTCACGTCATGGCTTGGTAGA-3' NotI 

19965 5'-TCCTCGAGGTGACGGACGTGCAGAACAATGGTG-3' XhoI 

19966 5'-CAGAATTCATGTAGCCAAGGATGGTCCTGTGCTCCAGATC-3' EcoRI 

19967 5'-GGGGATCCACTGGGTGGGAAACCATCGGGCTACAA-3' BamHI 

19968 5'-GACCGCGGGAAACACTGGGCAGAGGCACACG-3' SacII 

21137 5'-GAGTGCGGCCGCTGATGTCAAGTGTTCAGAATCGATG-3' NotI 

21138 5'-GAAAAAGCTTCCAAAAATAAATAATAAATAAATAACAACAAACTA-3' HindIII 

21139 5'-TGCAAAAAGCTTCAACTGTCATGTGGGTGATGGAAATC-3' HindIII 

21140 5'-CAGGGGGATCCTGAGAAGTGGGGTATGATGGT-3' BamHI 

21141 5'-TGCTGAGGTGATGTGGAGCCTATT-3'  

21142 5'-AGGTCTTGGTGACATCAGGACTTA-3'  

24607 5'-GCTGGGGATGCGGTGGGCTCTA-3'  

24608 5'-TGTGCGTAGTAGGCGTTGATGTTG-3'  

24609 5'-CCATCCGGCTTCACATCAGT-3'  

24610 5'-AGGCCTACCCGCTTCCATTG-3'  

25153 5'-CATCGCATTGTCTGAGTAGGTGTC-3'  

25154 5'-GGGTTTAGGGAGTTTGTTTTTAGA-3'  

25155 5'-GTGTGGCTAAGGACGAGTGT-3'  

27121 (#1) 5'-CTCTATGGCTTCTGAGGCGGAAA-3'  

27122 (#2) 5'-AGTTTTCATCTTGTAGCCCGAT-3'  

27123 (#3) 5'-CAACTGGCCAAGAACTAGAGGA-3'  

27124 (#4) 5'-GCACGGAATGTTGAATGGTCTT -3'  
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2.2.2. Methods 

 

2.2.2.1. Generation of electrocompetent E. coli cells 

 

A single colony was picked and transferred to 5 ml LB to grow for 16-18 h with shaking. 

Three ml of the culture was transferred to 60 ml of LB (1:20 dilution) and incubated to 

reach an optical density measured at 600 nm wavelength (OD600) of 0.5 - 0.6. Cells were 

immediately put into ice slush and shaken for 5 min for a fast temperature drop and then 

placed on ice for additional 10 min. Cells were collected at 3,500 rpm at 0°C for 10 min 

and washed three times with ice-cold water. Cells were resuspended in 400 μl sterile ice-

cold water and 50 μl aliquots were prepared in precooled Eppendorf tubes and stored on 

ice. For long-term storage of cells, cells were washed and resuspended with 15% glycerol 

in water. Aliquots were immediately frozen in liquid nitrogen and stored at -80°C.  

 

2.2.2.2. Inducing Recombineering Enzymes 

 

EL350 or SW106 cells grew in 5 ml LB at 32 °C for 16-18 h with shaking. 3 ml of the 

culture was transferred to 60 ml of LB (1:20 dilution) and incubated to reach an OD600 of 

0.5 - 0.6. 50 ml of the cells were split into two new flasks and shaken in a 42°C water bath 

for 15 min. The cells were immediately put into ice slush and shaken for 5 min and then 

placed on ice for additional 10 min. Cells were then prepared for deoxyribonucleic acid 

(DNA) plasmid electroporation. 

 

2.2.2.3. Excision of the Neo cassette by arabinose induced Cre expression  

 

EL350 or SW106 cells were grown in 5 ml LB at 32°C for 16-18 h with shaking. The 5 ml 

culture was then added to 250 ml LB to grow at 32°C to reach an OD600 of 0.4. A 10% 

solution of L-(+)-arabinose in ddH2O was added to reach a final concentration of 0.1% and 

cells were shaken for another hour. Cells were then prepared for DNA plasmid 

electroporation. 
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2.2.2.4. Transformation of bacterial strains  

 

Electroporation of bacterial artificial chromosome (BAC) or plasmid DNA into bacterial 

strains was performed using a BIO-RAD electroporator at 1.8 kV, 25 μF with pulse 

controller set at 200 Ω. For conventional and pCR®2.1-TOPO® ligation reactions, 1 - 2 μl 

of the sample was electroporated per 50 μl electrocompetent cells. For freshly purified 

BAC DNA, 1 μl (≈ 4 μg) was electroporated. Then, 1 ml LB was added to each cuvette, 

cells were transferred to Eppendorf or 14 ml Falcon tubes and incubated at 37°C for 1 h. 

Cells were then spread in different concentrations on LB agar plates containing 

appropriate antibiotics for selection. For plasmid retransformations, typically only 1 ng 

DNA was electroporated. Cells were not recovered, but 20 μl was plated immediately onto 

LB agar plates containing appropriate antibiotics for selection. 

 

2.2.2.5. Glycerol stocks 

 

750 μl from an overnight culture of transformed E. coli was mixed with 750 μl 30% glycerol 

in LB in a cryo-tube, incubated for 3 min at room temperature and stored at -80°C. To 

plate cells from a glycerol stock, the tube was transported to the bench on dry ice and 

cells were spread and isolated with a sterile inoculating loop. 

 

2.2.2.6. BAC DNA preparation 

 

E. coli cells with BACs were grown in 5 ml of LB containing chloramphenicol for 16-18 h. 

Cells were collected at 3500 rpm for 15 min and resuspended in 250 μl buffer P1. Cells 

were lysed in 250 μl buffer P2 for 5 min at room temperature and the sample neutralized 

by buffer P3. Tubes were spun for 4 min at 11,000 rpm. The supernatant was transferred 

to a new tube and spun again for 4 min at 11,000 rpm. The supernatant was transferred to 

a new tube and BAC DNA was precipitated for 10 min at room temperature by adding 750 

μl isopropanol. The DNA pellet was collected at 15,000 rpm for 10 min, washed once with 

1 ml 70 % ethanol, dried for 3 min at room temperature and finally resuspended in 50 μl 

TE buffer. 
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2.2.2.7. Plasmid DNA preparation 

 

To purify plasmid DNA from bacterial cultures for sequencing, the PureLink™ Quick 

Plasmid Miniprep Kit was used. In order to purify high yields of plasmid DNA from 

bacterial cultures, the PureLink™ HiPure Plasmid Filter Midiprep Kit was used. To optain 

high yields of pure, endotoxin-free plasmid DNA for ES cell electroporation and 

HEK293FT cell transfection, the EndoFree Plasmid Maxi Kit was used. For detailed 

protocols for these Kits, please refer to the product manuals. 

 

2.2.2.8. Agarose gel electrophoresis and Pulsed field gel electrophoresis 

 

Agarose gel electrophoresis is a technique, which allows separating DNA based on its 

size in an electric field. The distance between DNA bands of different sizes depends on 

the percent agarose in the gel. Usually 0.7 – 1.5% agarose gels were used and the gels 

run at a constant voltage of 80-120 V. Samples were loaded in 1x loading buffer. For 

plasmid DNA, 1 x TBE buffer was used, whereas genomic DNA required 1 x TAE buffer. 

To visualize DNA in the gel, ethidium bromide, a DNA intercalator, was added in a 

concentration of 0.5 μg/ml to the agarose gel. Alternatively, to visualize DNA fragments for 

genotyping purposes, GelRed, a nucleic acid stain, was added the agarose gel in a 

1:200,000 dilution. Both substances, ethidium bromide and GelRed, fluoresce under 

ultraviolet light. DNA fragment sizes were estimated by different ladder mixes run in 

parallel (100 bp DNA ladder (Fermentas), 1 kb DNA ladder (Fermentas, Invitrogen)). 

 

Pulsed field gel electrophoresis was used for the separation of large DNA molecules (i.e. 

BAC DNA fragments) by applying an electric field that periodically changes direction. In 

order to analyze the BAC clones by restriction enzyme digest, DNA samples were 

separated by for 24 h on a 1% agarose gel in 0,5 x TBE buffer at 6 V/cm. The interval 

length was changing from an initial 1 sec to a final 25 sec in order to separate all 

fragments. The MidRange PFG Marker I (New England Bio Labs) ladder was run in 

parallel in order to estimate the DNA fragment sizes. 
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2.2.2.9. Agarose gel extraction of DNA fragments 

 

DNA fragments were purified with the QIAquick Gel Extraction Kit. For a detailed protocol 

for this Kit, please refer to the product manual. 

 

2.2.2.10. Phenol/Chloroform Extraction for large ( ≥ 10 kb) DNA fragments 

 

The linearized Munc 13-1 cko targeting vector was extracted by Phenol/Chloroform 

extraction. In a first step Phenol/Chloroform (1:1) was added to the digestion mix and 

vortexed for 1 min. Samples were centrifuged at 15,000 x g for 15 min and the upper 

phases were transferred into fresh tube. This procedure was repeated three times. After 

the last step, 300 μl chloroform was added to the upper phases, vortexed again for 1 min 

and the samples were centrifuged at 15,000 x g for 15 min. All following steps were 

performed in a cell culture hood. The upper phases were transferred into sterile Eppendorf 

tubes. To precipitate the DNA, 2.5 μl 3M NaAc (pH 5.2) and 500 μl 100% ethanol were 

added and the samples stored at -20°C overnight. The next day, samples were 

centrifuged at 15,000 x g for 15 min, washed three times with 70 % ethanol, pooled, air-

dried and resuspended in 200 μl sterile-filtered 0.1xTE. 

 

2.2.2.11. Polymerase Chain Reaction 

 

The polymerase chain reaction (PCR) is a method to amplify specific DNA sequences in 

order to obtain a large number of copies. The main steps of the reaction are a 

denaturation step, in which the double-stranded DNA template melts into its single strand, 

an annealing step, in which short oligonucleotides (primers) can anneal to the DNA 

strands, and an elongation step, in which the DNA polymerase synthesizes a new DNA 

strand complementary to the DNA template. The duration and the temperature of the 

individual steps depend highly on the DNA polymerase used as well as on the melting 

temperatures of the individual primer pairs used. To check the PCR results, 1 μl of each 

sample was loaded onto an agarose gel.  

PCR amplifications in order to produce PCR products used for subsequent cloning 

reactions were done using the Cloned Pfu Polymerase with a proof reading function and 

were performed in the following reaction mix using a Gene Amp PCR system 2400 with 

varying annealing temperatures (X): 
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PCR Mix PCR Settings 

1 μl – BAC DNA (10ng) 

2,5 μl – primer 1 (12,5 pM) 

2,5 μl – primer 2 (12,5 pM) 

5 μl – 10x Pfu buffer 

4 μl – dNTPs 

1 μl – Pfu Polymerase 

34 μl – ddH2O 

95°C – 1 min 

30 cycles of: 

95°C – 45 sec 

X°C – 45 sec 

72°C – 60 sec 

followed by: 

72°C – 10 min 

 

PCR products were purified either with PureLink™ PCR Purification Kit or the QIAquick 

PCR Purification Kit. For detailed protocols for these Kits, please refer to the product 

manuals. 

PCR amplifications for quick genotyping PCRs or PCR screens were performed using a 

Red Taq DNA Polymerase in following reaction mix using a Peltier Thermal Cycler 255 

with varying annealing temperatures (X): 

 

PCR Mix PCR Settings 

1 μl – bacterial culture / DNA 

0.1 μl – primer 1 (0.5 pM) 

0.1 μl – primer 2 (0.5 pM) 

2 μl – 10x Red Taq Buffer 

1 μl – dNTPs 

1 μl – Red Taq Polymerase 

15,8 μl – ddH2O 

94°C – 3 min 

30 cycles of: 

94°C – 30 sec 

X°C – 30 sec 

72°C – 60 sec 

followed by: 

72°C – 7 min 

 

2.2.2.12.  Dephosphorylation of 5’DNA ends: 

 

The 5’ ends of vector DNA were dephosphorylated by incubating 1 μl (1U) rAPid alkaline 

phosphatase and 2 μl 10x rAPid alkaline phosphatase buffer with 17 μl DNA for 10 min at 

37°C and subsequent inactivation of the enzyme for 2 min at 75°C. 

 

2.2.2.13. DNA Ligation and subcloning in TOPO pCR vectors 

 

The ligation reaction mix was prepared in a 1:3 ratio of dephosphorylated vector DNA to 

insert DNA and in a total volume of 14 μl. 4 μl of 5x ligation Buffer and 2 μl of T4 DNA 

ligase were added and incubated overnight in a cold water bath. 1 μl of the ligation mix 

was electroporated into Electro10 Blue or XL1-Blue cells and spread onto LB agar plates 
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containing appropriate antibiotics for selection. TOPO TA Cloning® requires Taq 

polymerase amplified PCR products. Taq polymerase has a terminal transferase activity 

that adds a deoxyadenosine to the 3’ end of a PCR fragment. The TOPO TA Cloning® Kit 

provides a linearized pCR®2.1-TOPO® vector, which has a 3’ deoxythymidine overhang 

that allows efficient ligation of PCR product and vector, and has the cloning site in the lacZ 

gene, which encodes for the ß-galactosidase for selection. For a detailed protocol for this 

Kit, please refer to the product manual. Briefly, 1-2 µl of the TOPO reaction was 

electroporated in Electro10 Blue cells and spread onto LB agar plates containing 

ampicillin, IPTG and X-Gal for selection. 

 

2.2.2.14. Dirty Mini Prep and test digest. (Holmes and Quigley, 1981) 

 

In order to test plasmids from a large number of transformed bacterial clones by restriction 

enzyme test digests, cells from 2 ml overnight bacterial culture were harvested at 15,000 x 

g for 1 min. The pellet was then resuspended in 300 μl STET buffer. 25 μl of lysozyme 

solution was added, samples were denatured on a 100°C heat block and immediately 

centrifuged at 15,000 x g for 10 min. The pellet was removed with a toothpick and the 

DNA was precipitated by adding 100 μl 7.5 M NH4Ac and 400 μl isopropanol. The 

samples were mixed and centrifuged at 15,000 x g for 30 min at room temperature. The 

supernatant was discarded and the dried DNA pellet resuspended in 50 μl TE buffer. 5 μl 

of the sample was digested in 50 μl volume with 10 units of appropriate restriction 

enzymes and in the presence of 0.1 μg RNase A. 

 

2.2.2.15. PCR Screens 

 

PCR screen is a fast way to screen a large number of colonies. For that, a colony was 

picked and inoculated into 50 μl LB medium per well of a 96-well plate. The full plate was 

placed for 3 h at 37°C and then 1 μl bacterial culture was added into a new 96-well plate, 

containing the PCR mix. Primer pairs were designed with one primer lying in the vector 

backbone and the reverse primer in the insert sequence for the 5’ and the 3’ cloning site. 

Clones that give rise to bands of an expected size for both PCR reactions were inoculated 

into 5 ml LB to grow overnight and process furtherr 
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2.2.2.16. Cloning strategies for constructs generated and used in this study 

 

2.2.2.16.1  BAC DNA retrieval vector PL253 

 

For generating the BAC DNA retrieval vector PL253, the 5’ and 3’ GAP repair mini arms 

were first amplified by PCR A (primer 21137/21138, Annealing 63°C, 445 bp) and PCR B 

(primer 21139/21140, 63°C, 578 bp), respectively. PCR fragment A was digested with 20 

units of NotI and HindIII and fragment B with HindIII and BamHI in 50 μl final volume for 2 

h. 3 μg of the PL253 vector was digested with 30 units of NotI and BamHI in 100 μl final 

volume for 3 h and separated on a 0.7% TAE agarose gel. 5’ ends of the vector DNA were 

dephosphorylated and the final retrieval vector was generated by ligating 2 μl of PL253, 6 

μl fragment A, and 6 μl fragment B. 1 μl of the ligation mix was electroporated into E10 

cells and Ampr colonies selected. 

 

2.2.2.16.2.  loxP-PGK-EM7-NeobpA-loxP vector PL452 

 

For cloning the 5’ and 3’ GAP repair mini arms amplified by PCR C (primers 19929/19930, 

Annealing 63°C, 450 bp) and PCR D (primers 19931/19932, Annealing 63°C, 405 bp) into 

PL452, the PCR samples were first cloned into the pCR®2.1-TOPO® vector. Fragment C 

was cut out of the vector with 20 units KpnI and EcoRI and fragment D with BamHI and 

NotI. 6 μg of the vector PL452 was each digested with EcoRI and BamHI to obtain a 1.89 

kb large fragment containing the loxP-PGK-EM7-NeobpA-loxP cassette and with KpnI and 

NotI to obtain a 2.93 kb vector backbone fragment. Vector fragments were separated on a 

0.8% agarose TAE gel, extracted and dephosphorylated. The final C-loxP-PGK-EM7-

NeobpA-loxP-D targeting vector PL452 was generated by ligating 2 μl of loxP-PGK-EM7-

NeobpA-loxP cassette, 2 μl vector backbone, 5 μl fragment C and 5 μl fragment D. 1 μl of 

the ligation mix was electroporated into Electro10 Blue cells and Ampr colonies selected. 

Ampr colonies were screened by PCR analysis (primer pairs 24607/24608 and 

24609/24610, Annealing 65°C). 

 

2.2.2.16.3.  FRT-PGK-EM7-NeobpA-FRT-loxP vector PL451 

 

For cloning the 5’ and 3’ GAP repair mini arms amplified by PCR E (primers 19965/19966, 

Annealing 63°C, 417 bp) and PCR F (primers 19967/19968, Annealing 63°C, 437 bp) into 

PL451, the PCR samples were first cloned into the pCR®2.1-TOPO® vector. Fragment E 
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was cut out of the vector with 20 units XhoI and EcoRI and fragment F with BamHI and 

SacII. 6 μg of the vector PL451 was digested each with EcoRI and BamHI to obtain a 1.89 

kb large fragment containing the FRT-PGK-EM7-NeobpA-FRT-loxP cassette and with 

XhoI and SacII to obtain a 2.94 kb large vector backbone fragment. Vector fragments 

were separated on a 0.8% agarose TAE gel, extracted and dephosphorylated. The final E-

FRT-PGK-EM7-NeobpA-FRT-loxP-F targeting vector PL451 was generated by ligating 2 

μl of FRT-PGK-EM7-NeobpA-FRT-loxP cassette, 2 μl vector backbone, 5 μl fragment E 

and 5 μl fragment F. 1 μl of the ligation mix was electroporated Electro10 Blue cells and 

Ampr colonies selected. Ampr colonies were screened by PCR analysis (primer pairs 

25153/25154 and 25155/24610, Annealing 54°C). 

 

2.2.2.16.4.  Generation of a 3’ hybridization probe for Southern Blot Analysis 

 

The PCR product for the 3’ probe (primer 21141/21142, Annealing 60°C, 291 bp) was 

cloned into the pCR®2.1-TOPO® vector and cut out of the vector by EcoRI digestion prior 

Southern Blot hybridization in order to obtain a 291 bp large fragment. 

 

2.2.2.16.5.  Generation of a 5’ hybridization probe for Southern Blot Analysis 

 

The PCR product for the 5’ probe (primer 8431/8432, Annealing 50°C, 598 bp) was cloned 

into the pBluescript psKII vector and cut out of the vector by PstI digestion prior Southern 

Blot hybridization in order to obtain a 536 bp large fragment. 

 

2.2.2.16.6. Generation of a Neo hybridization probe for Southern Blot Analysis 

 

The Neo probe was obtained by PstI and XbaI digestion of the vector PL451, containing 

the FRT-loxP-PGK-EM7-NeobpA-FRT-loxP cassette in a 630 bp large fragment. 
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2.3. Cell Cultures 

 

2.3.1. Embryonic Stem Cell Work 

 

2.3.1.1. Materials 

 

2.3.1.1.1.  Chemicals and Reagents  

 

Product Company Cat. No. 

Amersham Hybond™-N+ GE Healthcare RPN303B 

Amersham Rapid-hyb™ Buffer  GE Healthcare RPN1635 

Bio-Spin 30 Colums BioRad 732-6202 

Cell Culture dishes 
Greiner, Costar, Falcon, 
Nunc 

  

Cymeven (Ganciclovir-Natrium) Roche Pharma AG   

dCTP, [α-
32

P]- 3000Ci/mmol 10mCi/ml Perkin Elmer NEG513H250UC 

Dimethyl sulfoxide, Cell Culture Tested Sigma-Aldrich D-2650 

Dulbecco's PBS (w/o Ca
2+

 & Mg
2+

) PAA  H15-002 

ESGRO-LIF Chemicon ESG1107 

Fetal Bovine Serum (FBS) HyClone SH30070.03 

Gelatin from porcine skin Sigma-Aldrich G-1890-100 

Geneticin (G418-Sulfat) Gibco 11811-023 

Hydrochloric Acid (HCL) Merck 1.003.172.500 

Knockout D-MEM Gibco 10829-018 

Kodak BioMax MS Film Kodak 1435726 

L-Glutamin (100 x) Gibco 25030-024 

MEM non-essential amino acids (100 x) Gibco 11140-035 

Mineral oil Sigma-Aldrich M-8410-500 

Mitomycin C Sigma-Aldrich M-0503-2MG 

N-Lauroylsarcosine sodium salt Sigma-Aldrich L-5777 

Penicillin/Streptomycin (100x) Gibco 15140-122 

Prime-It II Random Primer Labeling Kit Agilent Technologies 300385 

Proteinase K (20mg/ml) Qiagen 19133 

Sodium Chloride (NaCl) Merck 1.076.511.000 

Sodium Hydroxid (NaOH) Merck 1.064.980.500 

Spermidine Sigma-Aldrich 82501 

Trypsin-EDTA (0.05%) Gibco 25300-054 

Trypsin-EDTA (0.25%) Gibco 25200-056 

β-Mercaptoethanol "cell culture tested" Sigma-Aldrich M-7522-100 
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2.3.1.1.2. Equipment 

 

Product Company 

BIO-RAD Gene Pulser BIO-RAD 

Fluo-Link Biometra 

 

2.3.1.1.3.  Media and buffer 

 

ES cell and MEF medium (500 ml Knockout D-MEM, 95 ml FBS, 6 ml MEM, 6 ml diluted ß-
mercaptoethanol, 3 ml Penicillin/Streptomycin, 65 μl ESGRO-LIF) 

2x Freezing Medium (20% DMSO, 20% FBS, 60% Knockout D-MEM) 

100x G418 (360 mg active ingredient in 20 ml PBS) 

1000x Ganciclovir (2mM; 510 mg in 1 L PBS) 

Lysis Buffer (10 mM Tris, pH 7.5, 10 mM EDTA, pH 8.0, 10 mM NaCl, 0.5% N-Lauroylsarcosine 
sodium salt, 1 mg/ml PROTEINASE K 

2xSSC (300 mM sodium chloride, 30 mM sodium citrate) 

 

 

2.3.1.2. Methods 

2.3.1.2.1.  Mouse embryonic fibroblast culture 

 
Mouse embryonic fibroblasts (MEFs) were stored in liquid nitrogen in 500 μl aliquots. Cells 

were quickly thawed in a 37°C water bath, transferred to a 15 ml tube, and mixed with 10 

ml medium. Cells were centrifuged for 7 min at 900 rpm, resuspended in medium and 

plated on a gelantine-coated T75 tissue culture flask. P4 – P6 aliquots were split in ratios 

of 1:3, later passages were split (1:2) every 2 – 3 days. For passaging cells, the confluent 

culture was washed once with PBS. Enough trypsin-EDTA (0.05%) was added to cover 

the surface (3.5 ml for a T75 flask). Cells were incubated for 5 min at 37°C, an equal 

volume of medium was added and the cells were triturated. The MEFs were then 

transferred to the new tissue flasks. To inactivate MEFs, cells were incubated in 10 μg/ml 

mitomycin C for 2.5 h at 37°C and then washed three times with PBS. Trypsin-EDTA 

(0.05%) was added and the cells were triturated and finally plated on gelatinized plates. 

The number of feeder plates was calculated according to area. 1 T175 (175 cm2) plate 

was used to make 4 10 cm2 plates, 5-6 96-well plates or 3-4 6-well plates. MEFs from a 

T175 plate were frozen in two 500 μl aliquots in 1 x Freezing medium. The vials were 

placed into a freezing container and transferred to a -80°C freezer in order to obtain a 

slow freezing rate around 1°C per minute. After 24 h, cells were transferred into liquid 

nitrogen for storage. 
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2.3.1.2.2.  Embryonic stem cell culture 

 

Embryonic stem (ES) cells were stored and thawed as described for MEFs and plated 

onto 6 cm2 feeder plates. The ES cell medium was changed 1-2 times per day and 3-4 h 

before passaging. For passaging cells from confluent plates, the medium was aspirated 

off and the cells were washed once with PBS. Enough trypsin-EDTA (0.25%) was added 

to cover surface (500 μl for a 6 cm2 plate). Cells were incubated for 15 min at 37°C, an 

equal volume of ES cell medium was added and the cells were carefully triturated with a 

pasteur pipette. Cells were usually split (1:6) onto fresh feeder plates. ES cells were 

frozen in 1x Freezing medium at a density of 3.0 x 107 cells / ml, making a total of 9 x 106 

cells per 300 μl aliquot. The vials were placed into a freezing container and transferred to 

a -80°C freezer in order to obtain a slow freezing rate around 1°C per minute. After 24 h, 

cells were transferred into liquid nitrogen for storage. 

 

2.3.1.2.3.  ES cell electroporation 

 

The ES cells were passaged (1:2) 24 h before electroporation and the medium was 

changed 3 h prior harvesting. The cells were trypsinized as described earlier and 

resuspended in media. The cells were centrifuged for for 7 min at 900 rpm and 

resuspended in 10 ml PBS. The total number of cells was determined by counting 20 μl of 

a 1:10 dilution.  Cells were pelleted again and resuspended in PBS at a density of 11 x 

106 cells/ml. 900 μl aliquots of cells were prepared and (25 - 50 μg) linearized vector DNA 

was added. Electroporation into ES cells was performed using a BIO-RAD Gene Pulser at 

2.3 kV and 500 μF. The cuvette was left at room temperature for 5 min and cells were 

then plated onto 10 cm2 feeder plates. Cells were selected against G418 (positive 

selection) from 24 h post-electroporation onwards and selected against Ganciclovir 

between 3-5 days post-electroporation (negative selection). 

 

2.3.1.2.4.  Picking ES cell colonies 

 

ES cell colonies for later analysis by Southern Blot were picked 11 – 12 days after 

electroporation. 25 μl trypsin-EDTA (0.25%) was added into each well of a 96-well round-

bottom plate and kept on ice. ES cell medium was aspirated from the plate and 

substituted by PBS. Colonies were picked by sucking the colony into a 10 μl pipette tip 

and was transferred into the trypsin (1 colony per well). After completing a 96-well plate, 

the cells were incubated for 15 min at 37°C. 35 μl ES cell medium was added per well, the 
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cells were triturated and transferred to a flat-bottom feeder plate and cultured in 150 μl 

medium per well. Cells were split 1:1 after a few days to obtain a higher cell density. 

Finally, cells were split (1:3) onto two feeder plates for freezing and onto one gelantine-

coated plate for subsequent Southern Blot analysis.  

 

2.3.1.2.5.  Freezing 96-well plates 

 

To freeze 96-well plates, cells were trypsinized in 50 μl trypsin-EDTA (0.25%) for 15 min 

at 37°C. 50 μl 2 x Freezing Medium was added to each well and the cells were triturated. 

100 μl sterile filtered mineral oil was added to each well, the plate was sealed with 

parafilm and placed into a small polystyrene box and transferred to a -80°C freezer. 

 

2.3.1.2.6.  Isolating ES cell DNA on 96-well Plates 

 

ES cell clones cultured on gelantine-coated 96-well plates were washed twice with PBS 

and then lysed in 50 μl Lysis Buffer. Plates were kept for 6 - 8 h at 60°C in a humified 

chamber. Then, 100 μl of 75 mM NaCl in cold 100% ethanol was added to each well and 

the DNA was precipitated for 30 min at room temperature. The plates were briefly 

centrifuged, then washed three times with 70% ethanol and air-dried for 30 min. ES cell 

DNA was digested overnight at 37°C in 30 μl volume containing 1 mM spermidine, 100 

μg/ml BSA and 20 μl units of enzyme in 1x restriction buffer. 4 μl of loading buffer was 

added the next day to each well and samples were loaded onto a 0.8% TAE agarose gel 

and run for 5 h at 60 V.  

 

2.3.1.2.7.  Southern Blot (Southern, 1975) 

 

Southern blot analysis is a method for the detection of specific genomic DNA sequences.  

First, DNA samples are transferred of electrophoresis-separated DNA fragments to a filter 

membrane and the subsequent labeling of a specific fragment by e.g. a hybridization 

probe.  

In order to transfer the DNA samples from the 0.8% TAE agarose gel, the gel was washed 

in 0.25 M HCl for 10 min to depurinate the DNA for a better transfer.  The gel was then 

washed in 0.4 M NaOH to denaturate the DNA and to produce sDNA single strands. The 
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DNA was then capillary transferred overnight from the gel in 0.4 M NaOH blotting solution 

onto a positively charged nylon membrane. A glass plate was placed above two plastic 

containers filled with blotting solution. A long sheet of Whatman paper was soaked in 

blotting solution and placed on the plate, each end reaching the blotting solution in the 

plastic containers. Then the gel was then placed on the Whatman paper and the nylon 

membrane placed on top of the gel, followed by three sheets of wet Whatman paper. A 

large pile of tissue was added and a weight was positioned on top of the construction. The 

next day, the membrane was neutralized in 2xSSC, air-dried and the DNA was covalently 

cross-linked by exposure to ultraviolet irradiation (1.0 J/cm2; Fluo-Link).  

The hybridization of the probes was performed with the Prime It Random Primer Labeling 

Kit. For detailed protocol refer to the product manual. Briefly, 25 ng probe DNA was mixed 

with random oligonucleotide primers, [32P]dCTP labeling buffer, 50 μCi labeled nucleotide 

([32P]dCTP) and 5 units of Exo(-) Klenow polymerase in 50 μl volume. Reaction mix was 

incubated at 37°C for 30 min and purified over a Bio-Spin 30 SSC columns. The probe 

was then denatured for 5 min on a 100°C heat block and placed immediately onto ice. The 

membrane was pre-incubated in a glass bottle at 65°C with Rapid-hyb buffer for at least 

15 min and then the probe was added at a final concentration of 2 ng/ml. The membrane 

was hybridized for 2 h at 65°C and then washed once with 2xSSC, 0.1% SDS for 20 min 

at room temperature and twice with 1xSSC, 0.1% SDS and twice with 0.5xSSC, 0.1% 

SDS at 65°C. The washed membrane was wrapped in cling film and autoradiographed at -

80°C overnight. 
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2.3.2.   Mouse hippocampal Neuron Culture 

 

2.3.2.1.  Materials 

 

2.3.2.1.1  Chemicals and Reagents  

 

Product Company Cat. No. 

Albumin from bovine serum (BSA) Sigma A4503 

B-27® Serum-Free Supplement (50X) Gibco 17504-044 

Calcium chloride dihydrate  Sigma C3881 

Dulbecco's Modified Eagle Medium (DMEM) Gibco 41966-029 

EDTA Sigma E1644 

Fetal Bovine Serum (FBS) PAA A15-104 

Glutamax (200mM) Gibco 35050038 

Hank's Balanced Salt Solution , no Ca
2+

, no Mg
2+

 

(HBSS) 
Gibco 14170-088 

L-Cysteine  Sigma C7352 

Millex Syringe Filter Units, 0.22 µm Gibco SLGP033RS 

Neurobasal®-A Medium (1X), Liquid  Gibco 10888-022 

Papain Worthington Biochemical LS003126 

Penicillin/Streptomycin (100x) Gibco 15140-122 

Poly-L-lysine  Sigma P4707 

Trypsin inhibitor from chicken egg white  Sigma T9253 

 

2.3.2.1.2.  Media and Solutions 

 

Papain Solution  (0.2 mg/ml cysteine, 1 mM CaCl2, 0.5 mM EDTA in DMEM and 25 units Papain 
per ml; the Papain Solution was bubbled with carbogen (95% oxygen, 5% carbon dioxide) for 20 
min and sterile filtered (0.2 µm) prior use) 

Stop Solution (2.5 mg / ml BSA, 2.5 mg/ml trypsin inhibitor, 10% FBS in D’MEM) 

Complete Neurobasal Medium (500 ml Neurobasal-A, 5 ml GlutaMAX I, 10 ml B27-supplement, 1 
ml Penicillin/Streptomycin) 

 

2.3.2.2.  Methods 

2.3.2.2.1.  Treatment of coverslips for mouse hippocampal neuron cultures 

 

Glas coverslips (32 mm) were washed first in 1 M HCl overnight, then multiple times with 

ddH2O and finally with 70% Ethanol. Coverslips were then transferred into the wells of a 6-

well cell culture plate and UV-sterilized for 1 hour. Glass coverslips were coated in a 1:12 
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dilution of Poly-L-Lysine in PBS overnight at 37°C. The coverslips were then washed twice 

with PBS and incubated with the Complete Neurobasal Medium until further use. 

 

2.3.2.2.2.  Primary mouse hippocampal neuron culture 

 

Neonatal P0 mouse pups were decapitated and the brains were placed into HBSS. The 

hippocampi were removed, transferred into 500 µl of pre-warmed Papain solution and 

incubated at 37°C with gentle agitation for one hour. Then, the supernatant was removed 

and 500 µl of pre-warmed Stop Solution was added to the hippocampal tissue and kept at 

37°C for an additional 15 minutes. Then, the supernatant was removed and the tissue was 

washed once with 500 µl Complete Neurobasal Medium. Then the tissue was triturated 

gently for 15 times in 200 µl of Complete Neurobasal Medium and the tube was kept at 

room temperature for 2 minutes and then the supernatant was transferred into a fresh 

tube containing 800 µl of pre-warmed Complete Neurobasal Medium. A second trituration 

step was perforemd to increase the number of cells for high-density cultures, if necessary. 

Cells were counted on a Naubauer Counting Chamber and approximately 100,000 to 

200,000 cells were plated per well of a six-well plate for continental cultures. The neurons 

were infected on DIV1 by adding the virus directly into the culture medium. The medium 

was changed 15-24 hours after infection to prevent neurotoxicity of the virus. The 

expression level of green fluorescent protein (GFP) was used in order to determine the 

viral titer. 

For autaptic neuron cultures, approximately 4,000 neurons were plated per well of a six-

well plate that contained small astrocyte feeder islands on glass coverslips, a method that 

results in the isolation of individual neurons (Bekkers, 1991). The preparation of the 

astrocyte microislands was performed by Ines Beulshausen and Sabine Bolte as 

published (Burgalossi et al., 2012). Electrophysiological experiments on autpaptic cultures 

in order to assess physiological consequences of Cre-mediated deletion of Munc13-1 in 

neurons were performed by Dr. Riikka Liisa Uronen.  
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2.3.3.   HEK 293FT cell culture 

 

2.3.3.1.  Materials 

 

2.3.3.1.1.  Chemicals and Reagents  

 

Product Company Cat. No. 

Amicon Ultra-15 Centrifugal Filter Unit Millipore UFC901024 

Butyric acid Sigma 303410 

DMEM, High Glucose, GlutaMAX™, Pyruvate  Gibco 31966-021 

Dulbecco's PBS (w/o Ca
2+

 & Mg
2+

) PAA  H15-002 

Fetal Bovine Serum (FBS) PAA A15-104 

Geneticin, G 418 Sulfate, Cell Culture Tested Calbiochem 345810 

HEK293FT cell line Invitrogen R700-07 

HEPES, 1M Buffer Solution Gibco 15630-080 

Lipofectamine® 2000 Transfection Reagent Invitrogen 11668-500 

Millex-HA Syringe Filter Units, 0.45 µm  Millipore SLHA033SB 

Neurobasal®-A Medium (1X), Liquid  Gibco 10888-022 

Opti-MEM® I Reduced Serum Medium Gibco 31985-047 

Penicillin/Streptomycin (100x) Gibco 15140-122 

Poly-L-lysine  Sigma P4707 

Trypsin-EDTA (0.05%) Gibco 25300-054 

 
 

2.3.3.1.2.  Media and buffer 

 

HEK293FT Medium (500 ml DMEM containing GlutaMAX, 50 ml FBS, 5 ml Pen/Strep) 

 

2.3.3.2. Methods  

2.3.3.2.1.  HEK293FT culture 

 

The human embryonic (HEK) 293FT cell line was used for the production of lentiviral 

particals. HEK293FT cells express the SV40 large T antigen under the human 

cytomegalovirus (CMV) promotor to facilitate lentiviral production together with the 

neomycin resistance gene from the pCMVSPORT6Tag.neo plasmid (Invitrogen). 

HEK293FT cell cultures were therefore kept in cell culture dishes in HEK293FT Medium 

containing 500 µg/ml Geneticin for selection at 37°C and 5% CO2.  
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2.3.3.2.2.  Thawing of HEK293FT cells 

 

A vial of frozen HEK293FT cells was quickly thawed and transferred into a 15 ml Falcon 

tube containing HEK293FT Medium. Cells were spun down for 5 min at 1.500 rpm and 

resuspended in HEK293FT medium and plated onto cell culture dishes. After 24 hours, 

the medium was replaced by fresh medium containing 500µg/ml Geneticin.  

 

2.3.3.2.3.  Passaging of HEK293FT cells 

 

For passaging cells, the confluent culture plate was washed once with PBS. Enough 

trypsin-EDTA (0.05%) was added to cover the surface (2 ml on a 10 cm2 dish). Cells were 

incubated briefly at room temperature, then an equal volume of medium was added and 

the cells were triturated and plated onto cell culture dishes and cultured in the presence of 

500 µg/ml Geneticin. 

 

2.3.3.2.4.  Production of lenti-viral particles in HEK293FT cells 

 

In order to produce viral particles, HEK293FT cells were split in a 1:2 ratio 24 hours prior 

transfection onto PLL-coated 15 cm2 cell culture plates. Semiconfluent HEK293FT cell 

cultures were co-transfected with the vector plasmids (pFUGW or pFUGW-iCre) together 

with a plasmid (PACK) encoding for proteins that form the viral core structure (GAG – 

group antigens) and for the reverse transcriptase and integrase (POL), as well as with a 

plasmid (ENV) encoding for the vesicular stomatitis virus glycoprotein (VSV-G) forming 

the viral envelope. For a 15 cm2 cell culture dish, 60 µl Lipofectamine2000 was added to 2 

ml of OPTI-MEM and kept at room temperature for 5 min. The transfection mix was 

prepared by adding 40 µg vector plasmid, 16 µg PACK plasmid and 16 µg ENV plasmid to 

2 ml OPTI-MEM. Then, the Lipofectamine2000 in OPTI-MEM was added to the 

transfection mix and kept at room temperature in the dark for 60 min. The HEK293FT cell 

Medium was replaced by 11 ml OPTI-MEM with 10% FCS and the Transfection Mix was 

added to the cells. 20 hours after transfection, the medium was replaced by DMEM 

containing 2% FBS and 10 mM sodium butylate. 48 hours after transfection, the viral 

particles were harvested. The supernatant of the cell culture plates was filtered through 

0.45 µm pores and concentrated using an Amicon filter system by centrifugation with 

4,300 rpm at 4°C for 10 min. The concentrated virus was then washed twice with cool 
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Neurobasal-A medium. Finally, small aliquots of virus particles inNeurobasal-A medium 

and in the presence of 100 mM HEPES were frozen in liquid nitrogen and stored at -80°C. 

 

2.3.4.   Organotypic Slice Culture 

 

2.3.4.1. Materials 

 

2.3.4.1.1.  Chemicals and Reagents  

 

Product Company Cat. No. 

5-Fluoro-2′-deoxyuridine Sigma F0503 

BME (Basal Medium Eagle without Glutamin) Gibco 41010026 

Cytosine β-D-arabinofuranoside hydrochloride (Ara-C) Sigma C6645 

Glucose x H2O Fluka 49159 

Glutamax (200mM) Gibco 35050038 

Hank's Balanced Salt Solution , no Ca
2+

, no Mg
2+

 

(HBSS) 
Gibco 14170-088 

Heat-inactivated horse serum (HS) Gibco 26050-088 

Kynurenic Acid Tocris 223 

Millex Syringe Filter Units, 0.22 µm Gibco SLGP033RS 

Millicell Cell Culture Inserts  Millipore PICM03050 

Millipore confetti Millipore FHLC04700 

Minimum Essential Medium (MEM) Gibco 11700-077 

razor blades Gillette   

Uridine Sigma U3750 

 

2.3.4.1.2.  Equipment 

 

 

2.3.4.1.3.  Media and buffer 

 

2xMEM (9.39g / 500ml ddH20) 

Culture Medium (22.44ml ddH20, 25 ml 2xMEM, 25 ml BME, 1 ml Glutamax, 1.56ml Glucose 40%, 
25 ml HS ) 

Cutting solution (pH 7.4; 97 ml HBSS, 2.5 ml Glucose 20%, 1 ml 100mM Kynurenic Acid) 

Inhibitor Mix (50 ml Culture Medium, 5µl of Ara-C, 5µl Uridine, 5µl 5-Fluoro-2′-deoxyuridine) 

 

Product Company 

McIllwain tissue chopper The Mickle Engineering Company Ltd, UK 
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2.3.1.3. Methods 

 

2.3.1.3.1. Preparation of organotypic hippocampal slice cultures 

 

The protocol for the preparation of organotypic hippocampal slice cultures was based on 

the “interface method” introduced by Stoppini and colleagues in 1991 (Kerr et al., 2008; 

Stoppini et al., 1991). Control and knockout mice were taken from the same mouse colony 

and from the same litters. For E18 preparations, the mothers were anesthetized, 

decapitated and the pups taken out by cesarean section. E18-P0 pups were then 

decapitated and the brains were placed into Cutting Solution. The hippocampi, still 

attached to the entorhinal cortex, were removed and transferred with a sterile Pasteur 

pipette onto the Tissue Culture Stage under a preparation hood. Excess liquid was 

removed with sterile autoclaved tissues. Slices of 300 μm thickness were cut with a 

McIllwain tissue chopper perpendicular to the longitudinal axis of the hippocampus. Then 

the stage was flooded with Cutting Solution and the slices were transferred in liquid with a 

plastic Pasteur pipette into a plastic dish. Only undamaged slices were then placed onto 

small membrane pieces (confetti) on top of the microporous cell culture membrane. 

Usually, maximally four hippocampal slices were cultured on each cell culture insert. 

Slices were maintained with culture medium. The medium was first changed 24h after 

preparation and then 2-3 times per week. Between 3-5 days in-vitro (DIV) 100 μM 

cytosine arabinoside, 100 μM uridine and 100 μM 5-fluorodeoxyuridine were added for 

24h to the culture. The slices were maintained at 37°C and in 5% CO2 for 2-4 weeks. 

High-pressure-freezing fixation for electron tomography was performed between 4 and 5 

weeks in vitro. The animals were genotyped by using tail DNA and subsequent PCR 

analysis. In addition, for most of the experiments, the rest of the brain was frozen in liquid 

nitrogen and kept for Western-Blot analysis of the genotype if necessary. 
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2.4.   Biochemistry 

 

2.4.1.  Materials 

 

2.4.1.1. Chemicals and reagents 

 

Product Company Cat. No. 

Acrylamide/N,N'-Methylene-bis-Acrylamide (37.5:1) 

(AMBA) 
National Diagnostics EC-890 

Amersham HyperfilmTM ECL GE Healthcare 28906837 

Ammonium persulfate (APS) Sigma-Aldrich A-6761 

Aprotinin Roth A162.3 

Bio-Rad Protein Assay Dye Reagent  BIO-RAD 500-0006  

Bromophenol Blue Pierce 20730 

Cell scraper Nunc 179693 

Dithiothreitol (DTT) Boehringer Ingelheim 708992 

ECL Reagent (Kit) Amersham, GE-Healthcare 
RPN2106V1 

and -2 

Ethylenediaminetetraacetic Acid Trisodium Salt (EDTA) Merck  1.084.180.250 

Glacial acetic acid Merck 1.000.632.511 

Glycine Sigma-Aldrich 33226 

Goat Serum Gibcro, Invitrogen 16210-072 

IGEPAL Sigma-Aldrich I3021 

Instant Milk Powder Granovita GmbH   

Leupeptin Pepta Nova 4041 

MemCodeTM Reversible Protein Stain Kit Thermo Scientific 24580 

Methanol J.T. Baker 8402 

N,N,N',N'-Tetramethyl-ethylenediamine (TEMED) Serva 35925 

N-2-Hydroxyethylpiperazine- N'-2-ethane sulfonic acid 

(HEPES) 
Biomol 5288 

PageRulerTM Prestained Protein ladder Fermentas SM0671 

Phenylmethylsulfonylfluorid Sigma-Aldrich P7626 

Ponceau-S Sigma-Aldrich 81460 

Protran BA83 Nitrocellulose Blotting Membrane, 0.2 µm, 

82 mm 
GE Healthcare 10401396 

Sodium dodecylsulfate (SDS) GEBRU 1012 

Sucrose Merck  1.076.511.000 

Tris-Base Sigma-Aldrich T1503 

Tween 20 Sigma-Aldrich P7949 
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2.4.1.2. Equipment 

 

Product Company 

Bio-Rad mini gel electrophoresis system (protean II) Bio Rad 

BioScience Ultrospec3100pro Amersham 

Blotting system, TE22 Mighty Snall tank transfer Hoefer 

POTTER'S Homogenizer B.Braun 

 

2.4.1.3. Media and buffer 

 

Homogenization Buffer: (320mM sucrose, 5mM HEPES (pH7.4), 1mM EDTA, 0.1µM Aprotinin, 
50µM Leupeptin, 0.2mM PMSF) 

Lysis Buffer: (320mM Sucrose, 10mM Tris-HCl (pH 7.5), 5mM HEPES (pH7.4), 150mM NaCl, 1mM 
EDTA, 1mM EGTA, 0.1% IGEPAL, 0.2µM Aprotinin, 20µM Leupeptin, 1mM PMSF) 

3x SDS-sample buffer: (10% SDS, 140mM Tris-HCL (pH 6.8), 3mM EDTA, 30% Sucrose, 100mM 
DTT, 0.1 % bromophenolblue,150 mM DTT) 

Upper stacking gel (5 % AMBA, 125 mM Tris-HCL (pH 6.8), 0.1% SDS, 0.05% APS, 0.005% 
TEMED) 

Lower resolving gel (7-15% AMBA, 325 mM Tris-HCL (pH 8.8), 0.1% SDS, 0.05% APS, 0.005% 
TEMED) 

Running buffer(25mM Tris-HCl, 250 mM Glycine, 0.1% SDS, pH 8.8) 

Transfer Buffer:(25mM Tris-Base, 190 mM Glycine, 20 % Methanol) 

TBS:(10mM Tris-HCl, 150 mM NaCl, pH 7.5) 

Blocking buffer:(5% milk powder, 5% Goat Serum, 9.1/ Tween 20 in TBS) 

Washing Buffer(0.1% Tween 20 in TBS) 

Ponceau Red:(0.1% Ponceau, 5% glacial acetic acid in ddH20) 

 

2.4.1.4. Antibodies 

 

Product / concentration Company / Reference Cat. No. 

anti-Munc13-1 (affinity purified rabbit polyclonal, N-

terminal #40); 1:1000 

(Varoqueaux et al. 2005; 

Cooper et al. 2012) 
  

anti-Munc13-1 (affinity purified rabbit polyclonal, C-

terminal #N395); 1:250 
(Betz et al., 1997)  

anti-ß-Tubulin (mouse monoclonal) 1:5000 Sigma TUB 2.1 

anti-Synaptophysin (purified mouse monoclonal) 

1:10000 
Synaptic Systems 101 011 

 

Secondary goat anti-mouse and anti-rabbit affinity purified antibodies conjugated to horse 

radish peroxidase (HRP) (Bio Rad) were used in this study at a concentration of 1:10000.  
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2.4.2.  Methods 

 

2.4.2.1. Mouse Brain Homogenate 

 

P0 mice were killed by decapitation and the brains were removed and each transferred 

into 1 ml ice-cold Homogenization buffer. The brain tissue was homogenized at 900 rpm 

with a glas/Teflon homogenizer at 4°C and collected for Western Blot analysis. 

 

2.4.2.2. Cell Culture Homogenization 

 

To check for changes in protein levels of lentiviral infected continental mouse 

hippocampal neuron cultures, neurons were washed twice with PBS and then incubated 

for 10min on ice in Lysis buffer. Samples were transferred to Eppendorf cups, centrifuged 

at 900x gmax for 10 minutes and the supernatant was collected and used for Western Blot 

analysis. 

 

2.4.2.3. Preparation of Proteins Samples for SDS Electrophoresis 

 

The protein concentration was determined using the Bradford Assay, measuring the 

absorbance of the sample at 595 nm wavelength with a BioScience Ultrospec3100pro 

spectrophotometer (Bradford, 1976). For a detailed protocol refer to the “Bio-Rad Protein 

Assay” manual. For all the biochemical experiments, samples were standardized to the 

same concentration in Homogenization- or Lysis buffer. The protein samples were then 

dissolved in SDS sample buffer to a 1x final concentration and boiled at 95°C for 5 

minutes.  

 

2.4.2.4. SDS-PAGE (Laemmli 1970) and Western Blotting (Towbin 1979;  

  Burnette 1981) 

 

In order to separate proteins based on their molecular seize, sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) was performed under denaturing 

conditions. SDS as an anionic detergent linearizes proteins and adds a negative charge to 

them (Schägger, 2006). Negatively charged proteins will migrate in an electric field 
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through a porous gel towards the anode. Briefly, samples in SDS sample buffer were 

loaded onto a two-layer Tris-glycine gel (stacking- and resolving gel) in a Bio-Rad mini gel 

electrophoresis system filled with running buffer and ran with 20 mA in the stacking- and 

with 30mA in the resolving gel until the dye ran out of the gel.  

The Western Blot technique was used to transfer the separated protein samples after 

SDS-PAGE onto a nitrocellulose membrane. Proteins were elecrophoretically transferred 

from the acrylamide gel onto a nitrocellulose membrane for 600 milliampere-hours (mAh) 

in transfer buffer in a tank blotting system.  

The blotting efficiency was monitored by subsequent reversible Ponceau-staining or by 

using the MemCodeTM Reversible Protein Stain Kit if low protein concentrations had 

been loaded. The nitrocellulose membrane was then washed once with TBS and then 

incubated in the blocking buffer for 30 min at room temperature with gentle agitation. The 

blot was then incubated with a primary antibody that was designed to specifically detect 

an epitope in the protein of interest for either 1 hour at room temperature or overnight at 

4°C. The membrane was then washed multiple times with the washing buffer before the 

blot was incubated with a secondary antibody conjugated to HRP. The membrane was 

washed again multiple times and immune-reactive protein bands were then visualized with 

an enhanced chemi-luminescence (ECL) detection system. In this reaction, the HRP 

catalyzes the oxidation of luminol in the presence of the oxidizing agent hydrogen 

peroxide, which results in the emission of light with a 428 nm wavelength. The signal can 

then be detected and visualized on Amersham Hyperfilm films.  

 

2.5.  Immunostaining procedures 

 

2.5.1.  Materials 

 

2.5.1.1. Chemicals and reagents 

 

Product Company Cat. No. 

Albumin from bovine serum (BSA) Sigma A4503 

Aqua Poly Mount Polysciences 18606 

Disodium phosphate (Na2HPO4) Sigma S9763 

Fish Skin Gelatin  Sigma G7041 

Goat Serum Gibcro, Invitrogen 16210-072 

Monopotassium phosphate (KH2PO4) Merck 1.048.731.000 
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Product Company Cat. No. 

Paraformaldehyde (PFA) Serva 3.1628.02 

Potassium chloride (KCl) Merck 1.049.361.000 

Sodium Chloride (NaCl) Merck 1.076.511.000 

Triton-X-100 Roche 10 789 704 001 

 

2.5.1.2. Equipment 

 

Product Company 

LAS AF Software Leica 

TCS SP5 Confocal Microscope Leica 

 

2.5.1.3. Media and Solutions 

 

Incubation Solution 1: 10% goat serum, 0.3% Triton-X 100, 0.1% fish skin gelatin in PBS 

Incubation Solution 2: 1% goat serum, 0.1% Triton-X-100 in PBS 

Blocking Solution: 20% BSA; 0.1% Triton-X-100 in PBS 

Permeabilization Solution: 1% Triton-X-100 in PBS 

1x PBS: 137 mM NaCl, 2.7 mM KCl; 10 mM Na2HPO4; 1.8 mM KH2PO4  

 

2.5.1.4.  Antibodies 

 

Product / concentration Company / Reference Cat. No. 

SNAP23 (rabbit polyclonal antiserum) 1:2000 Synaptic Systems 111 202 

SNAP25 (purified mouse monoclonal, 71.1) 1:600 Synaptic Systems 111 011 

VGLUT1 (guinea pig polyclonal antiserum)  

1:1000 – 1:2000 
Synaptic Systems 135 304 

Synaptobrevin-1 (rabbit polyclonal antiserum) 1:400 Synaptic Systems 104 002 

Synaptobrevin-2 (purified mouse monoclonal, 69.1) 

1:200 
Synaptic Systems 104 211 

MAP2 (chicken polyclonal antiserum) 1:1000 Novus Biologicals NB300-213 

Munc13-1 (affinity purified rabbit polyclonal) 1:1000 Synaptic Systems 126 103 

 

Secondary antibodies were coupled to Alexa 488, 555, 633 fluophores (Invitrogen) and 

were used in a concentration of 1:1300. 
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2.5.2.  Methods 

 

2.5.2.1. Immunocytochemistry on autaptic hippocampal neurons 

 

Hippocampal autaptic neuron cultures were fixed for 20 min in 4% PFA in PBS. After three 

5 minutes washing steps, coverslips were incubated for one hour in incubation solution 

without antibodies to block non-specific binding sites. Then, coverslips were incubated for 

two hours at room temperature with the primary antibodies diluted in incubation solution 1, 

washed three times with PBS and afterwards incubated in secondary antibodies diluted in 

incubation solution for one hour at room temperature. After additional three washes in 

PBS, coverslips were mounted on object slides and stored at 4°C prior imaging. 

 

2.5.2.2. Immunohistochemistry on hippocampal organotypic slices 

 

Immunohistochemistry, imaging and image processing of hippocampal organotypic 

organotypic slices was performed by Dr. Benjamin Cooper. Hippocampal organotypic 

slices were fixed in 4% paraformaldehyde in PBS overnight at 4°C. Slices were then 

washed three times in PBS and then carefully separated from the small membrane 

confetti with a thin brush. Subsequently, slices were incubated in permeabilization solution 

to allow better antibody penetration overnight at 4°C. Slices were then transferred into 

blocking solution and incubated for one hour at room temperature. Subsequently, slices 

were incubated in diluted primary antibodies in incubation solution 2 for 48 hours at 4°C 

under gentle agitation. Then, the slices were washed several times in PBS prior 

secondary antibody incubation diluted in incubation solution 2 for two hours at room 

temperature. Coverslips were mounted on slides using Aqua Poly/Mount (Polysciences, 

Inc.) mounting medium. 

 

2.5.2.3. Imaging 

 

Confocal laser scanning micrographs of organotypic hippocampal slices and autaptic 

hippocampal cultures were acquired with a Leica TCS-SP5 confocal microscope equipped 

with a tuneable White Light Laser (WLL) excitation source and hybrid GaAsP Detectors 

(HyD). High-magnification single-plane micrographs (1024x1024; pixel spacing x,y = 50.6 

nm) of randomly selected sites of synaptic neuropil were imaged in sequential scanning 
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mode with an HCX PL APO 100x/1.44NA oil objective and a pinhole setting of 0.38 AU. 

Acquired images were exported from LAS AF (Leica) acquisition software as TIF files for 

quantitative analysis. 

 

2.5.2.4. Image processing and analysis 

 

Confocal images were subjected to spatial deconvolution by use of two ImageJ (National 

Institutes of Health; Bethesda, MD) plugins: point spread functions (PSF) were generated 

using Diffraction PSF 3D plugin and iterative deconvolution was performed with the 

Richardson-Lucy algorithm (DeconvolutionLab plugin; Biomedical Imaging Group, EPFL; 

Lausanne, Switzerland). 

The Colocalization plugin of ImageJ was used to detect and graphically represent sites of 

colocalization between Synaptobrevin-1 or SNAP23 and vesicular glutamate transporter 1 

(VGLUT1). The plugin overlays 8-bit images from green (Synaptobrevin-1) and red 

(VGLUT1) channels and displays colocalized points in white (display value = 255). Two 

signals were considered colocalized if their respective channel intensities exceeded an 

arbitrary threshold (set to 40 for both channels) and the ratio of pixel intensities for both 

channels exceeded 50%. Identical parameters were used for the analysis of control and 

mutant slices. The Analyse Particles feature of ImageJ was used to count and to measure 

the area of punctate labelling and sites of colocalization. To quantify and compare the 

degree to which Synaptobrevin-1 is spatially associated with glutamatergic presynapses in 

control and mutant slices the relative proportion of VGLUT1-positive presynapses 

exhibiting colocalization with Synaptorevin-1 was calculated by dividing the number of 

individual colocalized sites by the total number of VGLUT1 puncta. These approaches are 

potentially vulnerable to the following sources of inaccuracy: (i) the ImageJ analyse 

particles feature occasionally failed to recognize VGLUT1 puncta or sites of colocalization 

in close proximity to one another as independent signals and (ii) this type of analysis is 

insensitive to multiple sites of colocalization within a single VGLUT1 puncta. However, 

both genotypes were subject to the same experimental bias and analysed under identical 

conditions. 

Statistical analyses were performed with GraphPad Prism (Version 6.00; GraphPad, 

LaJolla,CA). Normally distributed data sets were compared by unpaired Student t-tests. 

Images (27 images each from control and Synaptobrevin-2 KOs; 18 images each from 

control and SNAP25 KOs) from two animals per genotype were included in the analysis. 
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2.6.   Electron Microscopy Techniques 

 

2.6.1. Materials 

 

2.6.1.1. Chemicals and Reagents  

Product Company Cat. No. 

2-Dodecenylsuccinic acid anhydride (DDSA) Serva 20755 

Acetone, glass distilled Electron Microscopy Sciences 10015 

Bovine Serum Albumin Sigma - Aldrich A-3350 

Chloroform EMSURE 1.024.451.000 

copper 100 mesh grids Plano G2410C 

DMP-30 Plano R1065 

Gelatin capsules Electron Microscopy Sciences 70100, Size 00 

Glycid ether 100 Serva 21045 

Gridboxes Plano B801003080 

Hexadecane Fluka 52276 

KOH MERCK UN1813 

Lead(II)nitrate MERCK 1.073.980.100 

Methylnadic anhydride (MNA) Serva 29452 

Osmium tetroxide (OsO4) EMS 19119 

Protein A 10 nm gold Utrecht   

Sample holder half cylinder Leica 16770135 

Sample holder middle plate Leica 16770136 

Sodium Citrate Dihydrate Calbiochem 567446 

Specimen carriers Type A, 3 mm Ø Leica 16770141 

Specimen carriers Type B, 3 mm Ø Leica 16770142 

Tannic Acid Sigma-Aldrich 403040 

Uranyl acetate SPI-CHEM 2624 

Vinylec E (Formvar®) Resin Plano / TED Pella, inc.  21201 / 19223 

 

 

2.6.1.2. Equipment  

Product Company 

JEM-2100 200kV JEOL 

Leica EM AFS2 Leica 

Leica EM HPM100 Leica 

Leica Ultracut UCT ultramicrotome Leica 

Leica-EM TRIM m. Stereo 2 Leica 

Orius SC1000 CCD camera  GATAN 

Sharp:eye CCD camera Tröndle, TRS 

Ultra 45° diamond knife Diatome 

Zeiss LEO 912-Omega 80kV Zeiss 
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2.6.1.3. Media and buffer  

 

1% Formvar: (Vinylec E Resin) in chloroform 

0.3% lead citrate (aqueous)  

1% uranyl acetate (aqueous)  

0.1% Tannic acid in acetone 

2% OsO4 in acetone 

EPON Mixture: (21.4 g Glycidether, 14.4 g DDSA, 11.3 g MNA, 0.84 ml DMP-30) 

 

2.6.2. Methods 

 

2.6.2.1. High-Pressure-Freezing   

 

Hippocampal slices were transferred with forceps by handling the small membrane 

confetti into a small petri dish of Culture Medium. Excess membrane was trimmed at the 

sides with a scalpel. The slice was dipped into external cryoprotectant (20% bovine serum 

albumin in Culture Medium) and carefully loaded into the central cavity of the high-

pressure freezing sample carriers (2 mm Ø, 0.1 mm height) with the membrane side 

facing upwards. Carriers were placed in the sample cartridge of the EM HPM100 (Leica, 

Vienna, Austria) High-Pressure Freezing device. The lid was dipped in 1-hexadecene and 

placed on top the sample carrier, in order to facilitate the removal of the lid after freezing. 

The sample carrier was then inserted into the high-pressure chamber for rapid 

cryofixation. Finally, the frozen sample in the specimen carriers was automatically 

released into the liquid nitrogen dewar and the specimen carriers were then transferred 

with pre-cooled forceps into cryotubes and stored in liquid nitrogen until further 

processing.  

 

2.6.2.2. Freeze Substitution and EPON embedding 

 

The high pressure frozen samples were freeze-substituted in the Leica EM AFS-2 unit 

(AFS: automated freeze substitution, Vienna, Austria) at low temperatures (-90°C) 

according to the following protocol ('Paris protocol') modified from S. Marty (Rostaing et 

al., 2006; Siksou et al., 2007): 100 h in 0.1% tannic acid in dehydrated acetone at -90°C; 

four washing steps within 2 h in acetone at -90°C; 7 h fixing and contrasting in 2% osmium 

tetroxide (OsO4) during a temperature ramp from -90°C to 4°C within 40 h (14 h with 

5°C/h increments from -90 to -20°C, 16 h at -20°C, 2.4 h with 10°C/h increments to 4°C); 
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three washing steps in acetone at 4°C for 4 h; Infiltration with EPON resin was performed 

at room temperature in several steps: acetone/EPON 1:1 for 3 h, overnight incubation in 

90% EPON in acetone at RT, 36 h incubation in pure EPON at RT. Finally, specimen 

carriers containing infiltrated samples were placed sample-side-up on Parafilm®-covered 

glass slides. EPON-filled gelatin capsules were inverted on the specimen carriers and 

polymerized for 24 h at 60°C. 

 

2.6.2.3. Sectioning and contrasting 

 

Ultrathin sections (60 nm) were cut with a diamond knife (Ultra 45°, Diatome) on a Leica 

Ultracut UCT ultramicrotome (Leica, Vienna, Austria). Sections were collected onto a 

Formvar-filmed, carbon-coated, copper mesh grid. Ultrathin sections were treated 30 min 

with 1% UA in ddH2O, washed three times by dipping the grids seven times in ddH2O, 

treated 2 min with 0.3% lead citrate, washed again and dried with filter paper. For electron 

tomography, 200 nm thick sections were collected onto Formvar-filmed, carbon-coated 

copper mesh grids. To introduce fiducial markers for tomographic reconstruction, a 1:3 

dilution of Protein A (ProtA) conjugated to 10 nm gold particles (Utrecht, The Netherlands) 

in ddH20 was applied to both sides of the grid for 1 min each. The grids were washed 

briefly in ddH20 and dried with filter paper. 

 

2.6.2.4. Imaging 

 

For two-dimensional ultrastructural analyses of synaptic morphology, electron 

micrographs from ultrathin sections were acquired with a transmission electron 

microscope (Zeiss LEO 912-Omega) operating at 80 kV. Micrographs (2048 x 2048 

pixels) of synaptic profiles were acquired with a sharp:eye CCD camera (Tröndle, TRS) at 

12,500 fold magnification and  a pixel spacing of 0.95 nm. 

For the three-dimensional electron tomographic analysis of synaptic vesicle 

docking/priming, fiducially-coated 200 nm-thick sections were imaged in a JEM-2100 

transmission electron microscope (JEOL) operating at 200 kV. The SerialEM software 

enabled automated tilt series acquisition by using predictions for specimen positions 

during the tilt series based on the positions at previous tilts (Mastronarde, 2005). Single-

axis tilt series were recorded from −60 to +60° with 1° increment binned by the factor two 

at 30,000 fold magnifications with an Orius SC1000 camera (Gatan). The target defocus 
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during image acquisition was set to -0.2-0.4 µm. The individual images in the tilt series 

before tomogram reconstruction had 1336 x 1336 pixels with an individual pixel spacing of 

0.52 nm. 

 

2.6.2.5. IMOD Software package 

 

All tomographic volumes were reconstructed from their respective tilt series with the IMOD 

package (Kremer et al., 1996; Mastronarde, 1997). Windows version required installation 

of a Unix-like environment called Cygwin. All IMOD programs use the MRC image file 

format (*.mrc) and for an in-depth introduction and a tutorial to the IMOD software, the 

webpage of the Boulder laboratory for 3-D electron microscopy 

(http://bio3d.colorado.edu/) can be consulted. Tomogram generation was performed with 

the graphical user interface eTomo of the IMOD software package in a multi-step process. 

Afterwards, the *.mrc file extension was renamed in *.st to be recognized as single stack 

by eTomo. Second, in the pre-processing step, camera artefacts, like random x-rays 

causing extremely dark or bright pixels were removed by replacing them with 

neighbouring average values (program Ccderaser). In the following steps, the image stack 

was coarse aligned by using the programs Tiltxcorr, Xftoxg and Newstack. Then, a fiducial 

model was created computationally, based on the position of gold particles that were 

applied to both sides of the grid before image acquisition. These were then tracked 

through all projections by running the program Beadtrack. In the fine alignment step, the 

program Tiltalign was used to solve for displacements between the different tilted views to 

reduce the residual error mean. In a next step, three small sample tomograms (top, 

middle and bottom of the volume) were created to calculate the minimal volume of the 

final tomogram by defining the angle around the x- and y-axes and the z-position of the 

section after drawing boundary lines at the end of biological material in the sample 

tomograms. Then, in a final alignment step by running the program Tomopitch, a full-

aligned stack was produced using linear interpolation. During reconstruction, the 

projections were binned three times, resulting in a final isotropic voxel size of 1.55 nm. 

Finally, the actual tomogram was computed (program Tilt) using a back projection 

algorithm and was trimmed and adjusted to the right contrast in a post-processing 

procedure.  
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2.6.2.6. Two-dimensional (2D) ultrastructural analysis of synaptic morphology 

 

Two-dimensional electron micrographs taken at 12,500 fold magnification were analyzed 

manually with the iTEM software version 5.1 (Olympus Soft Imaging Solutions GmbH). 

The different parameters measured are depicted in Fig. 2.1 and comprised of the synaptic 

vesicle number, the presynaptic terminal area, the number of synaptic vesicles normalized 

to the terminal area (terminal density, Fig. 2.1 A), the synaptic vesicle cluster area, and 

the number of synaptic vesicles normalized to the cluster area (cluster density, Fig. 2.1. 

B). Moreover, the length of the PSD (Fig. 2.1 C), the number of recycling endosomes per 

presynaptic terminal (Fig. 2.1 D, open arrows) and the number of LDCVs (Fig. 2.1 D, 

white arrows) were quantified. Synaptic vesicle terminal density and cluster density are 

specified as number of synaptic vesicles per 0.01 µm2 area. The PSD length is displayed 

in nanometers (nm).  
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Figure 2.1. Two-dimensional ultrastructural analysis of synaptic morphology 

Ultrastructural analysis of presynaptic parameters in electron micrographs from ultrathin sections. 
The number of synaptic vesicles (white crosses, A, B) within a presynaptic profile was normalized 
to the terminal area (blue, A) for the terminal density and to the cluster area (red, B) for the cluster 
density. The length of the postsynaptic density (white dotted line, C) was measured and the 
number of large dense core vesicles (LDCVs, white arrows, D) and endosomes (open arrows, D) 
was quantified. Scale Bar in D: 200 nm. 

 

2.6.2.7. Three-dimensional (3D) electron tomographic (ET) analysis of 

synaptic vesicle docking 

 

Synaptic vesicle docking analyses were performed on tomographic volumes reconstructed 

with an isotropic voxel size of 1.55 nm. Tomographic volumes were exported as TIFF 

image stacks (program tif2mrc) into ImageJ for quantitative analysis. The smallest vesicle 

distances from the outer leaflet of the synaptic vesicle membrane to the inner leaflet of the 

active zone membrane were measured using the straight line tool of the ImageJ software. 

Only synaptic vesicles observed to be in physical contact with the presynaptic membrane 

at their midline were considered docked (0-2 nm distance). Synaptic vesicles that were 

close to the active zone membrane, but not in physical contact were categorized together 

with the membrane-attached synaptic vesicles in a second 0-4 nm bin. Moreover, 

membrane proximal synaptic vesicles (0-40 nm distance) and all vesicles within 100 nm of 

the active zone were quantified. The active zone area was calculated by measuring the 

active zone length on each consecutive slice using the freehand line tool in ImageJ. The 

obtained values were added and then multiplied by the factor of 1.55 nm (isotropic voxel 

size; z-dimension) to obtain the final active zone area per tomogram. The final results for 

the quantifications are displayed as the number of vesicles in the respective bin (0-2 nm; 

0-4 nm; 0-40 nm and 0-100 nm) normalized to 0.01 µm2 active zone area. The mean 

synaptic vesicle diameter (d, nm) was calculated from the area (A) of the vesicle 

measured at its midline to the outer leaflet of the synaptic vesicle membrane using the 

elliptical selection tool in ImageJ (d=2√ (A/π)). As the sample sections were exposed to 

high electron doses during the image series acquisition, sample shrinkage in the z-

dimension was commonly observed, resulting in deformed, compressed synaptic vesicles 

shapes. The mean synaptic vesicle volume (V) was therefore extrapolated from the mean 

area measured at the midline of the synaptic vesicle and the presented values therefore 

include the vesicular phospholipid bilayer (V= π d3/6).  

For the images in this study, seven consecutive virtual tomographic slices were 

projected onto each other to be able to display a 10.88 nm thick sub-volume, using the 

Slicer tool of the 3dmod software of the IMOD software package. To illustrate the spatial 
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arrangements of synaptic vesicles with respect to the active zone, ultrastructural features 

of presynaptic profiles observed in tomographic reconstructions were manually 

segmented using the 3dmod software of the IMOD software package. The active zone 

membrane was reconstructed by drawing a contour on each consecutive section of the 

tomogram. Synaptic vesicle, endosomal and LDCV membranes were not segmented by 

tracing the vesicle outlines, but rather represented schematically as individual closed 

contours that were placed around the center of the vesicles.  
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2.7.  Statistical Analysis 

 

Statistical analysis was performed using Prism (version 5.0) software. To test sample 

distributions for their normality, the Kolmogorov-Smirnov test was used.  

For the two-dimensional ultrastructural analysis of synaptic morphology the 

following parameters were obtained (for details refer to 2.6.2.6. Two-dimensional 

ultrastructural analysis of synaptic morphology): number of vesicles per synaptic profile, 

the synaptic vesicle terminal density, the synaptic vesicle cluster density, the average 

PSD length (nm), the number of endosomes and the number of LDCVs per synaptic 

profile. Most of the data sets from the two-dimensional analysis deviated from being 

normally distributed and therefore for all these parameters the nonparametric Mann–

Whitney U test was used. Data presented in the text as mean and standard error of the 

mean (SEM): (mean ± SEM), N=number of animals, n=number of synaptic profiles. 

For the three-dimensional electron tomographic analyses the following parameters 

were measured (for details refer to 2.6.2.7. Three-dimensional electron tomographic 

analysis of synaptic vesicle docking): number of synaptic vesicles within 100 nm of the 

active zone normalized to 0.01 µm2 active zone area, number of synaptic vesicles within 

100 nm of the active zone normalized to 0.01 µm2 active zone area, number of synaptic 

vesicles within 100 nm of the active zone normalized to 0.01 µm2 active zone area, 

number of synaptic vesicles within 100 nm of the active zone normalized to 0.01 µm2 

active zone area, mean outer synaptic vesicle diameter and mean synaptic vesicle 

volume. Most of these data sets were normally distributed and were therefore compared 

by using a parametric unpaired student’s t-test. For genotypes exhibiting dramatic 

reductions in the number of docked vesicles, which resulted in non-Gaussian distributions, 

the non-parametric Mann-Whitney U test was used. Data presented in the text: (mean ± 

SEM), N=number of animals, n=number of tomograms. 

The data obtained from electrophysiological experiments in order to access the 

physiological consequences of Cre-mediated Munc13-1 deletion in neurons, the following 

parameters were compared between the two groups: EPSC amplitude (nA), RRP size 

(nC) measured during hypertonic sucrose solution application and Pvr (%). For all three 

parameters, the non-parametric Mann-Whitney U test was used. In the control group 

(pFUG-GFP infected), one cell was excluded from the analysis since the measured RRP 

size was 8fold higher than the calculated mean of the data set. Data presented in the text: 

(mean ± SEM), N=number of cultures, n=cells. 
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3. Results 

3.1. Analysis of the morphological correlate of synaptic vesicle priming 

3.1.1. Ultrastructural organization of mouse hippocampal organotypic slice 

cultures 

 

The experimental approach used in the present study yielded excellent ultrastructural 

preservation of high-pressure frozen and freeze-substituted hippocampal organotypic 

slices. To effectively freeze slices without subjecting them to hyperosmotic shock, different 

external cryoprotectants were tested for their ability to inhibit ice-crystal formation (data 

not shown). Freezing of the samples in cell culture medium resulted in sub-optimal 

freezing quality. The best freezing quality throughout the whole sample was obtained with 

a previously published combination of 20% dextran and 5% sucrose in culture medium, 

however the osmolarity of this solution measured ~600 mOsm, which was in our opinion 

too high to guarantee physiological conditions during freezing (Fernández-Busnadiego et 

al., 2010b; Zuber et al., 2005). A solution of 20% BSA in culture medium was ultimately 

selected for the study, since it yielded excellent preservation of synaptic ultrastructure in 

large areas while exposing the sample to only a minor increase in osmolarity (to ~340 

mOsm).  

After cryo-immobilization, well conserved samples were characterized by a densely 

packed neuropil of neuronal processes with smooth plasma membranes exhibiting parallel 

bilayers and small, round and symmetrically shaped synaptic vesicles (Fig. 3.1). 

Excitatory (asymmetric, Gray's Type I), glutamatergic spine synapses were identified by 

their prominent postsynaptic density (PSD) in the postsynaptic spine head and by an 

accumulation of synaptic vesicles in close proximity to the active zone of the presynaptic 

terminal (Fig. 3.1 A, B). Spine synapses lacked mitochondria and microtubules in their 

postsynaptic compartments. Some spine heads contained tubular organelles bearing 

morphological characteristics consistent with those described for the spine apparatus. The 

spine apparatus is thought to function in postsynaptic Ca2+-buffering by serving as an 

intracellular Ca2+-storage, and to participate in postsynaptic plasticity processes (Fig. 3.1 

B) (reviewed in Segal et al. 2010). Occasionally, we observed astrocytic processes in the 

vicinity of a synaptic cleft, which could be identified by the presence of small electron-

dense glycogen particles (Fig. 3.1 A). Astrocytes are known to provide trophic support to 

neurons and have been implicated in glutamate recycling at synapses, both being 

important functions in synaptic maintenance.  
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Figure 3.1. Ultrastructural organization of mouse hippocampal organotypic slice cultures. 

Electron microscopy (EM) samples prepared by high-pressure freezing fixation and freeze 
substitution exhibit excellent ultrastructural preservation of neuropil in organotypic hippocampal 
slices (A-F). Glutamatergic, excitatory synapses (Gray's Type I; asterisks in A) exhibit a prominent 
postsynaptic density (PSD) and an accumulation of synaptic vesicles at the presynaptic active 
zone. Glutamatergic spine synapses are characterized by a small postsynaptic compartment 
lacking mitochondria (B, C; enlarged from panel A). Dendritic spines occasionally contain a spine 
apparatus ("SA" in C). Astrocyte processes contacting synapses can be identified by their glycogen 
particle content (“A” in A and B). Inhibitory synapses (Gray's Type II) preferentially contact the cell 
somata and dendritic shafts and can be identified by an absence of a prominent postsynaptic 
density (asterisks in D). In comparison to small synaptic vesicles, large dense core vesicles 
(LDCVs) are characterized by a larger size and an electron-dense appearance (white arrows in D). 
Well-preserved samples exhibit unswollen mitochondria with regular cristae (M in D and F). Rapid 
cryo-fixation for EM can capture pre- and postsynaptic clathrin-mediated endocytic events (white 
arrowheads; E, F). Scale Bar in A: 1 µm; B, C, E, F: 500 nm; D: 2 µm. 
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Synapses contacting dendritic shafts or neuronal cell bodies often displayed a weaker 

postsynaptic density (symmetric, Gray's Type II) and were most likely of an inhibitory type 

(Fig. 3.1 D). A consequence of maintaining a near-native state of ultrastructural 

preservation in high-pressure frozen samples is that classical criteria for discriminating 

synaptic subtypes in conventionally prepared EM samples are less evident. Indeed, 

differences in vesicular shape and size, induced by the differential tonicity of excitatory 

and inhibitory vesicular populations upon chemical fixation, are no longer apparent in 

rapidly frozen material (Gaugler et al., 2012; Gray, 1959; Kaeser et al., 2009; Megías et 

al., 2001; Siksou et al., 2013). Rapid high-pressure freezing fixation of unstimulated 

organotypic slices could capture dynamic cellular events like pre-synaptic clathrin-

dependent endocytosis as well as postsynaptic receptor endo- or exocytosis at the PSD 

(Fig. 3.1 E, F). The preservation of cytoskeletal components by the applied freeze 

substitution protocol in slices frozen under physiological conditions was indicated by the 

presence of clathrin molecules coating endocytic intermediates. Slices exhibiting artifacts 

from suboptimal freezing conditions (e.g. nuclear chromatin reticulation resulting from ice 

crystal formation, pressure induced membrane disruption) were excluded from my 

analysis.  

 

3.1.2. Synaptic vesicle interactions with the active zone membrane 

 

In this study, I use the terms “active zone” or “release sites” to describe the presynaptic 

plasma membrane in direct apposition to the PSD. Due to the fact that I did not image full 

synaptic terminals, but rather synaptic sub-volumes with a focus on the active zone 

region, I use the term “synaptic profiles”, which refers to the sub-volume of the presynaptic 

terminal sampled in a respective tomogram. The definitions for “tethers”, describing 

filaments from synaptic vesicles to the active zone, and “connectors”, referring to filaments 

between synaptic vesicles, were taken from cryo-electron tomographic studies by R. 

Fernández-Busnadiego and colleagues (Fernández-Busnadiego et al., 2010, 2013). The 

number of tethers and connectors in tomographic reconstructions was not quantified in the 

course of the present study. Morphologically docked (or simply “docked”) synaptic 

vesicles describe vesicles in direct membrane to membrane contact at the active zone 

(Fig.3.2 A1, A2). Such vesicles would fall into the 0-2 nm distance from the active zone, 

since the maximum resolution achievable in the analysed tomographic reconstructions 

was limited by an isotropic voxel size of ~1.6 nm. The term “membrane-attachment” is 

used as a synonym for the term “docking” in this study. The term “closely tethered 
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synaptic vesicles” describes all vesicles within 0-4 nm of the active zone, including those 

that were membrane-attached and those that were potentially linked by multiple short 

filaments to the release site (Fig. 3.2 B1, B2, tethers indicated by white arrow heads). 

Multiple short tethers (<5 nm length) seen in cryo-electron tomograms were previously 

described as likely corresponding to assembled SNARE complexes (Fernández-

Busnadiego et al., 2010). Occasionally, potential synaptic vesicle hemifusion events were 

detected at active and periactive zone sites (Fig. 3.2 A2). These vesicles were included in 

the category of membrane-attached synaptic vesicles (0-2 nm) in my analysis. Very rarely, 

I was able to see an open fusion pore during synaptic vesicle fusion (Fig. 3.2. C1) or 

observe full collapse fusion events (Fig. 3.2. C2). These vesicles were excluded from the 

analysis. Occasionally, I observed inward membrane curvatures at periactive zonal sites 

that were considered to be early endocytotic events (Fig. 3.2 D1, D2).  

The term “membrane-proximal synaptic vesicles” was used to describe synaptic vesicles 

within 40 nm of the active zone membrane. These vesicles would have been included in 

the pool of membrane-attached synaptic vesicles in studies that considered all vesicles 

within a diameter distance (e.g. 40 nm) as “docked” (discussed in: Verhage & Sørensen 

2008). Moreover, recent studies showed that synaptic vesicles within 45 nm of the active 

zone can still connect to the plasma membrane via single long tethers (Fernández-

Busnadiego et al., 2010, 2013; Siksou et al., 2009, 2011).  

 

Figure 3.2. Direct interactions of synaptic vesicles with the active zone membrane 

A Direct membrane-attachment of synaptic vesicles (SVs) with the active zone membrane (0-2 
nm). A1 No visible gap between the inner phospholipid layer of the active zone plasma membrane 
and the outer vesicular phospholipid layer. A2 Occasional inward curvature of the active zone 
membranes towards the membrane-attached SV displaying potential early hemifusion events 
(asterisk). B (B1+B2) Synaptic vesicles are not in direct contact, but closely tethered to the 
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membrane (0-4 nm) by multiple, short filaments (white arrowheads). C Synaptic vesicle fusion 
events. C1 A synaptic vesicle is in a fused state displaying a prominent open fusion pore (asterisk). 
C2 Full collapse fusion event at the active zone membrane. D (D1+D2) Presynaptic endocytotic 
events at the periactive zone. Scale bar in D2: 50 nm. 

 

3.1.3. Docking Analysis of presynaptic mutants 

 

3.1.3.1. The role of the synaptic vesicle priming factors Munc13-1 and 

Munc13-2 in synaptic vesicle docking 

 

Munc13 proteins are key regulators of synaptic vesicle release, as evidenced by the 

complete loss of evoked and spontaneous neurotransmitter release in the absence of 

Munc13 priming factors. Munc13s reside in the dense protein network at the presynaptic 

active zone. Their mode of action is believed to involve the opening of the t-SNARE 

Syntaxin-1 by displacing Munc18-1, allowing t-SNARE acceptor complex formation (Ma et 

al., 2011). A previous study has shown that KO of Munc13 proteins results in a massive 

decrease in the number of “docked” or “membrane-attached” synaptic vesicles in neurons 

(Siksou et al., 2009). Therefore I decided to start with the reanalysis of synaptic vesicle 

docking in Munc13-1/2 DKO neurons in order to validate my experimental system 

(Augustin et al., 1999a; Varoqueaux et al., 2002). Homozygous Munc13-2 KO neurons 

are phenotypically indistinguishable from wild-type neurons (Varoqueaux et al., 2002). In 

this study, I therefore compared four Munc13-1/2 DKO animals (N=4) with four littermate 

control animals (N=4) from two cultures. The control animals were either wild-type or 

heterozygous for the Munc13-1 KO allele in a homozygous Munc13-2 KO background, or 

heterozygous for Munc13-1 and Munc13-2 KO alleles.  

 

3.1.3.1.1. 2D-EM analysis of synaptic morphology in Munc13-1/2 DKO neurons 

 

In a first experiment, ultrastructural parameters of Munc13-1/2 DKO synapses were 

analyzed in electron micrographs from 60 nm ultrathin EPON sections after high-pressure 

freezing fixation, freeze-substitution and EPON embedding in order to rule out any major 

changes of presynaptic morphology that could influence the results obtained from a high-

resolution electron tomographic analysis (Fig. 3.3). I did not observe any major 

morphological changes between control and Munc13-1/2 DKO synaptic profiles, although 

a potential increase in the size of synaptic vesicles was apparent in Munc13-1/2 DKO 
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terminals (Fig. 3.3 A, B). I found that the total number of synaptic vesicles per synaptic 

profiles in Munc13-1/2 DKO synapses was unchanged in comparison to control synaptic 

profiles (control: 61.44 ± 3.195, n=106; Munc13-1/2 DKO: 70.53 ± 4.203, n=103 / 

P=0.2565, n.s.; Fig. 3.3 C). Moreover, I did not detect any significant changes in the 

number of synaptic vesicles normalized to the presynaptic terminal size (synaptic vesicles 

per 0.01 µm² terminal area or synaptic vesicle terminal density) (control: 1.633 ± 0.059, 

n=106; Munc13-1/2 DKO: 1.489 ± 0.057, n=103 / P=0.0558, n.s.) nor in the measured 

length of the PSD (control: 371.1 ± 11.95, n=106; Munc13-1/2 DKO: 393.7 ± 12.97, n=103 

/ P =0.1895, n.s.; Fig.3.3 D, F). However, I did observe a small decrease in the number of 

synaptic vesicles normalized to the size of the synaptic vesicle cluster (synaptic vesicles 

per 0.01 µm² cluster area or synaptic vesicle cluster density) (control: 3.149 ± 0.056, 

n=106; Munc13-1/2 DKO: 2.883 ± 0.055, n=103 / P=0.0018, **; Fig. 3.3 E). I also noticed 

an increase in the number of vesicular structures with a larger diameter than synaptic 

vesicles, possibly representing components of the endocytotic recycling pathway in the 

presynaptic terminal (control: 1.000 ± 0.127, n=106; Munc13-1/2 DKO: 1.650 ± 0.198, 

n=103 / P =0.0462, *; Fig. 3.3 G). A recent study indicated a role of proteins from the 

Munc13 family in LDCV release in neurons, without detecting any changes in the number 

of LDCVs in presynaptic terminals from Munc13-1/2 DKO and control neurons (van de 

Bospoort et al., 2012). I could confirm these results in our experimental setting as I failed 

to observe a difference in the number of LDCVs per synaptic profile (control: 0.236 ± 

0.056, n=106; Munc13-1/2 DKO: 0.233 ± 0.054, n=103 / P=0.8375, n.s.; Fig. 3.3 H).  

 

3.1.3.1.2.  3D-ET analysis of synaptic vesicle docking in Munc13-1/2 DKO 

neurons 

 

I then moved on to analyze synaptic vesicle docking in presynaptic terminals from electron 

tomographic reconstructions of 200 nm-thick semithin sections through glutamatergic, 

spine synapses of control and Munc13-1/2 DKO samples (Fig. 3.4 A-F). For the three-

dimensional analysis of electron tomograms, I compared samples from three Munc13-1/2 

DKO animals (N=3) with samples from two littermate controls (N=2). Control animals were 

either wild-type for the Munc13-1 KO allele in a homozygous Munc13-2 KO background, 

or heterozygous for both Munc13-1 and Munc13-2 KO alleles. In agreement with previous 

publications, I detected an almost complete loss of membrane-attached vesicles (0-2 nm) 
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Figure 3.3. Two-dimensional ultrastructural analysis of synaptic morphology in Munc13-1/2 
DKO neurons 

Electron micrographs of control (A) and Munc13-1/2 DKO (B) synaptic profiles acquired from 60 
nm-thick ultrathin sections. Mean number of synaptic vesicles (SVs) per synaptic profile (C). Mean 
number of SVs normalized to synaptic terminal area (SV terminal density; D). Mean number of SVs 
normalized to SV cluster area (SV cluster density; E). Mean postsynaptic density (PSD) length (F) 
Mean number of endosomes per synaptic profile (G). Mean number of large dense-core vesicles 
(LDCVs) per synaptic profile (H). C-H: Control: N=4, n=106; Munc13-1/2 DKO: N=4, n=103 (Mean 
+ SEM), P<0.001: ***; P<0.01: **; P<0.05: *. Scale bar: B, 500 nm. 

 
normalized to 0.01 µm² active zone area in Munc13-1/2 DKO in comparison to control 

synaptic profiles (control: 0.979 ± 0.134, n=16; Munc13-1/2 DKO: 0.042 ± 0.004, n=15 / 

P<0.001, ***; Fig. 3.4 I), which was still statistically significant after including vesicles that 

are closely tethered (0-4 nm) normalized to 0.01 µm² active zone area (control: 1.651 ± 

0.201, n=16; Munc13-1/2 DKO: 0.145 ± 0.089, n=15 / P<0.001, ***; Fig. 3.4 J). 14 out of 

15 synaptic profiles (93%) harbored no membrane-attached (0-2 nm) vesicles, and 12 

synaptic profiles (80%) lacked docked and closely tethered vesicles (0-4 nm). The number 

of membrane-attached (0-2 nm) and closely tethered (0-4 nm) synaptic vesicles was 

reduced to 4% and 11% of control profiles, respectively. However, the number of vesicles 

that were close to the active zone (within 40 nm) normalized to 0.01 µm² active zone area 

was unchanged (control: 2.487 ± 0.188, n=16; Munc13-1/2 DKO: 2.113 ± 0.179, n=15 / 

P=0.1626, n.s.; Fig. 3.4 H). Consistent with this finding, the synaptic vesicles in Munc13-

1/2 DKO synapses seem to accumulate at a close distance to the active zone membrane, 

with a peak in the vesicle distribution around 8-10 nm (Fig. 3.4 M). Those membrane-
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proximal, but not docked vesicles, were often linked to the presynaptic plasma membrane 

by thin, long filaments similar to previous findings (Siksou et al., 2009). I also detected a 

decrease in the number of vesicles within 100 nm distance from the active zone 

membrane, normalized to 0.01 µm² active zone area (control: 6.547 ± 0.395, n=16; 

Munc13-1/2 DKO: 5.023 ± 0.384, n=15 / P=0.0099, **; Fig. 3.4 G). A likely explanation for 

this is a dramatic increase in the mean outer synaptic vesicle diameter, first observed in 

two-dimensional electron micrographs from Munc13-1/2 DKO synapses, and 

subsequently confirmed by three-dimensional electron tomographic analysis (control: 

46.25 ± 0.485, n=16; Munc13-1/2 DKO: 50.15 ± 0.715, n=15; P<0.001, ***; Fig. 3.4 K, N). 

This increase in the outer vesicle diameter in Munc13-1/2 DKO presynaptic terminals 

leads to a corresponding 28% increase in the synaptic vesicle volume (control: 52473 ± 

1656, n=16; Munc13-1/2 DKO: 67158 ± 2853, n=15; P<0.001, ***; Fig. 3.4 L). The 

increased number of larger vesicular structures, possibly components of the endocytotic 

recycling pathway or precursors of vesicular biosynthesis, in the presynaptic terminals in 

Munc13-1/2 DKO synaptic profiles raises the possibility that synaptic trafficking or vesicle 

recycling is disrupted in the absence of Munc13 proteins.  

In summary, the ultrastructural findings presented here are in agreement with previously 

published data, showing an almost complete loss of membrane-associated synaptic 

vesicles in synapses lacking synaptic vesicle priming molecules of the Munc13 family 

(Siksou et al., 2009). Moreover, the inability of synaptic vesicles to dock to the presynaptic 

active zone membrane strongly supports the hypothesis that the terms morphological 

synaptic vesicle “docking” and physiological synaptic vesicle “priming” may describe the 

same molecular process.  

 

3.1.3.2. The role of the synaptic vesicle priming factors CAPS-1 and CAPS-2 

in synaptic vesicle docking 

 

Next, I decided to focus on CAPS-1/2 proteins, which are thought to regulate synaptic 

vesicle priming in concert with Munc13s. Autaptic hippocampal cultures from CAPS1/2 

DKO neurons revealed a complex physiological phenotype: similar to Munc13-1/2 DKO 

neurons, 39% of all CAPS-1/2 DKO neurons lack any presynaptic activity and are 

deficient of fusion-competent vesicles (Jockusch et al., 2007). However, in the remaining 

61% cells, synaptic responses are not completely abolished, but EPSC sizes and the RRP 

probed by sucrose application are reduced by 68% and 85%, respectively (Jockusch et 

al., 2007). 
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Figure 3.4. Three-dimensional electron tomographic analysis of synaptic vesicle docking in 
Munc13-1/2 DKO neurons 

Tomographically reconstructed subvolumes of control (A) and Munc13-1/2 DKO (B) synapses from 
200 nm-thick sections. Three-dimensional models of tomographically reconstructed control (C) and 
Munc13-1/2 DKO (D) synaptic profiles. Ultrastructural features reconstructed in the models include 
the active zone plasma membrane (white), synaptic vesicles (membrane-attached, green; non-
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attached, grey), and large dense core vesicles (LDCVs; beige). Orthogonal views of control (E) and 
Munc13-1/2 DKO (F) tomographic models displaying the spatial arrangement of membrane-
attached synaptic vesicles within the reconstructed active zone area. Mean number of SVs within 
100 nm of the AZ normalized to AZ area (G). Mean number of SVs within 40 nm of the AZ 
normalized to AZ area (H). Mean number of membrane-attached SVs (within 0-2 nm of the AZ) 
normalized to AZ area (I). Mean number of membrane-attached and closely-tethered SVs (within 0-
4 nm of the AZ) normalized to AZ area (J). Mean outer SV diameter (K). Mean SV volume 
including the membrane bilayer (L). Spatial distribution of SVs within a 100 nm distance of the AZ 
membrane (M). Distribution of synaptic vesicle diameters of vesicles within 100 nm of the AZ (N). 
G-L: Control: N=2, n=16; Munc13-1/2 DKO: N=3, n=15 (Mean + SEM), P<0.001: ***; P<0.01: **; 
P<0.05: *. M, N: (511 SVs in control and 402 SVs in Munc13-1/2 DKO synaptic profiles). Scale 
bar: B, 100 nm. 

 

As previously shown, homozygous CAPS-2 KO neurons are phenotypically 

indistinguishable from wild-type neurons (Jockusch et al., 2007). For the two-dimensional 

analysis of electron micrographs from ultrathin sections, four CAPS-1/2 DKO animals 

(N=4) were compared with three littermate control animals (N=3) from three cultures. The 

control animals were either wild-type or heterozygous for the CAPS-1 KO allele in a 

homozygous CAPS-2 KO background.  

 

3.1.3.2.1.  2D-EM analysis of synaptic morphology in CAPS-1/2 DKO neurons 

 

Morphologically, no major differences in the gross synaptic ultrastructure of neurons 

lacking both CAPS isoforms were observed in electron micrographs from ultrathin (60 nm) 

sections (Fig. 3.5 A, B). The total number of synaptic vesicles per synaptic profile did not 

differ in CAPS-1/2 deficient neurons in comparison to control samples (control: 63.15 ± 

3.641, n=109; CAPS-1/2 DKO: 60.74 ± 2.907, n=115 / P=0.9228, n.s.; Fig. 3.5 C). 

Moreover, the synaptic vesicle terminal density was not significantly altered (control: 1.454 

± 0.059, n=109; CAPS-1/2 DKO: 1.535 ± 0.057, n=115 / P=0.2858, n.s.; Fig. 3.5 D), with 

only a slight decrease in the synaptic vesicle cluster density (control: 3.436 ± 0.061, 

n=109; CAPS-1/2 DKO: 3.285 ± 0.056, n=115 / P=0.0308, *; Fig 3.5 E) and no changes in 

the mean PSD length (control: 330.5 ± 11.06, n=109; CAPS-1/2 DKO: 315.2 ± 8.849, 

n=115 / P=0.5539, n.s.; Fig. 3.5 F). In contrast to synapses lacking Munc13s, I did not 

observe an increase in the number of recycling endosomes per synaptic profile in neurons 

deficient for CAPS-1 and -2 in comparison to control neurons (control: 1.248 ± 0.170, 

n=109; CAPS-1/2 DKO: 1.270 ± 0.142, n=115 / P=0.5173, n.s.; Fig.3.5 G). Also, no 

change in the number of LDCVs in synapses lacking all CAPS isoforms was detected in 

my experimental setting (control: 0.147 ± 0.043, n=109; CAPS-1/2 DKO: 0.191 ± 0.046, 

n=115 / P=0.4204, n.s.; Fig. 3.5 H), confirming previous findings (Jockusch et al., 2007).  
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3.1.3.2.2.  3D-ET analysis of synaptic vesicle docking in CAPS-1/2 DKO neurons 

 

In the electron tomographic three-dimensional analysis, I analyzed samples from three 

CAPS-1/2 DKO (N=3) and three control animals (N=3) (Fig. 3.6 A-F). I noticed that CAPS-

1/2 DKO synaptic profiles analyzed by electron tomography exhibited a drastic reduction 

in the number of membrane-associated vesicles (0-2 nm) in comparison to control 

synaptic profiles (control: 1.202 ± 0.143, n=22; CAPS-1/2 DKO: 0.083 ± 0.026, n=19 / 

P<0.001, ***; Fig. 3.6 I), and also a strong decrease in the number of closely tethered (0-4 

nm) synaptic vesicles (control: 1.598 ± 0.158, n=22; CAPS-1/2 DKO: 0.180 ± 0.063, n=19 

/ P<0.001, ***; Fig. 3.6 J). However, the number of vesicles within 40 nm of the 

presynaptic plasma membrane (control: 2.660 ± 0.196, n=22; CAPS-1/2 DKO: 2.393 ± 

0.191, n=19 / P=0.3400, n.s.; Fig. 3.6 H) and the number of vesicles within 100 nm of the 

presynaptic release sites were unaltered (control: 7.121 ± 0.413, n=22; CAPS-1/2 DKO: 

6.015 ± 0.391, n=19 / P=0.0614, n.s.; Fig. 3.6 G). In contrast to synapses lacking 

Munc13s, synaptic vesicles in synapses lacking both CAPS isoforms appeared to be 

randomly distributed within the first 100 nm from the active zone membrane, rather than 

accumulating at an 8-10 nm distance (Fig. 3.6 M). Moreover, neither the mean outer 

synaptic vesicle diameter (control: 45.19 ± 0.560, n=22; CAPS-1/2 DKO: 45.54 ± 0.649, 

n=19 / P=0.6434, n.s.; Fig. 3.6 K, N) nor the mean outer synaptic vesicle volume were 

significantly different from controls (control: 49181 ± 1896, n=22; CAPS-1/2 DKO: 50355 ± 

2022, n=19 / P=0.6743, n.s.; Fig. 3.6 L) for CAPS-1/2 DKO neurons. 

In my analysis, 63% of all sampled CAPS-1/2 DKO synaptic profiles (12 out of 19 

tomograms) were completely devoid of membrane-attached vesicles (0-2 nm) and 58% of 

all CAPS-1/2 DKO synaptic profiles (11 out of 19 tomograms) also lacked vesicles closely 

tethered to the active zone membrane (0-4 nm). In comparison to control synaptic profiles, 

the number of membrane-attached (0-2 nm) and closely tethered (0-4 nm) synaptic 

vesicles in CAPS-1/2 DKO neurons was reduced to 7% and 12%, respectively. 

Tomograms from CAPS-1/2 DKO synapses that still harbored membrane-attached 

synaptic vesicles, docking (0-2 nm) and close tethering (0-4 nm) was reduced to 19% and 

28% compared to controls, respectively.  
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Figure 3.5. Two-dimensional ultrastructural analysis of synaptic morphology in CAPS-1/2 
DKO neurons 

Electron micrographs of control (A) and CAPS-1/2 DKO (B) synaptic profiles acquired from 60 nm-
thick ultrathin sections. Mean number of synaptic vesicles (SVs) per synaptic profile (C). Mean 
number of SVs normalized to synaptic terminal area (SV terminal density; D). Mean number of SVs 
normalized to SV cluster area (SV cluster density; E). Mean postsynaptic density (PSD) length (F) 
Mean number of endosomes per synaptic profile (G). Mean number of large dense-core vesicles 
(LDCVs) per synaptic profile (H). C-H: Control: N=3, n=109; CAPS-1/2 DKO: N=4, n=115 (Mean + 
SEM), P<0. 001: ***; P<0.01: **; P<0.05: *. Scale bar: B, 500 nm. 

 

These ultrastructural findings indicate that CAPS proteins perform not only to produce 

functionally prime synaptic vesicles, but, similar to Munc13s, have an important role in 

docking synaptic vesicles to the presynaptic active zone membrane. I interpret these 

findings as further support for the hypothesis that the RRP of functionally primed vesicles 

is comprised of membrane-attached synaptic vesicles capable of securing fast synaptic 

release (Murthy et al., 2001; Schikorski and Stevens, 2001). This pool of readily-

releasable and docked vesicles has been shown here to be either completely depleted or 

strongly diminished in neurons lacking proteins from the Munc13 or CAPS family.  
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Figure 3.6. Three-dimensional electron tomographic analysis of synaptic vesicle docking in 
CAPS-1/2 DKO neurons 

Tomographically reconstructed subvolumes of control (A) and CAPS-1/2 DKO (B) synapses from 
200 nm-thick sections. Three-dimensional models of tomographically reconstructed control (C) and 
CAPS-1/2 DKO (D) synaptic profiles. Ultrastructural features reconstructed in the models include 
the active zone plasma membrane (white) and synaptic vesicles (membrane-attached, green; non-
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attached, grey). Orthogonal views of control (E) and CAPS-1/2 DKO (F) tomographic models 
displaying the spatial arrangement of membrane-attached synaptic vesicles within the 
reconstructed active zone area. Mean number of SVs within 100 nm of the AZ normalized to AZ 
area (G). Mean number of SVs within 40 nm of the AZ normalized to AZ area (H). Mean number of 
membrane-attached SVs (within 0-2 nm of the AZ) normalized to AZ area (I). Mean number of 
membrane-attached and closely-tethered SVs (within 0-4 nm of the AZ) normalized to AZ area (J). 
Mean outer SV diameter (K). Mean SV volume including the membrane bilayer (L). Spatial 
distribution of SVs within a 100 nm distance of the AZ membrane (M). Distribution of synaptic 
vesicle diameters of vesicles within 100 nm of the AZ (N). G-L: Control: N=3, n=22; CAPS-1/2 
DKO: N=3, n=19 (Mean + SEM), P<0.001: ***; P<0.01: **; P<0.05: *. M, N: (716 SVs in control and 
560 SVs in CAPS-1/2 DKO synaptic profiles). Scale bar: B,100 nm. 

 

3.1.3.3. The role of the t-SNARE SNAP25 in synaptic vesicle docking 

 

Since Munc13s are believed to open Syntaxin-1 to enable t-SNARE acceptor complex 

formation with SNAP25, and CAPS proteins have been shown to facilitate SNARE 

complex formation in vitro, I decided to reinvestigate the role of SNARE proteins SNAP25, 

Syntaxin-1 and Synaptobrevin-2 in synaptic vesicle docking in my experimental setting 

(Daily et al., 2010; James et al., 2009, 2010; Ma et al., 2011). In order to understand the 

function of SNARE proteins in the synaptic vesicle membrane-attachment process, I first 

decided to analyze mouse mutants that show no or decreased expression of the neuronal 

t-SNAREs SNAP25 and Syntaxin-1. Both t-SNARE molecules have been implicated in 

secretory vesicle docking in non-neuronal systems (de Wit et al., 2006, 2009; Wu et al., 

2012).  

SNAP25 mice (Washbourne et al., 2002) were received from Maarten Loos (Amsterdam) 

and Ina Herfort (Göttingen). Neurons from SNAP25 mutant mice were described to slowly 

degenerate in dissociated neurons cultures beyond DIV 7. However, previous studies 

showed that high-density cultures can prolong neuronal survival of SNAP25 KO neurons 

(Bronk et al., 2007; Washbourne et al., 2002). In my hippocampal organotypic slice culture 

system, slices from SNAP25 KO animals were considerably thinner than control slices, 

however, immunhistochemistry revealed an increased density and a larger mean area of 

VGLUT1-immunoreactive puncta (See section 3.1.3.3.3). Previous physiological analysis 

of autaptic neurons lacking SNAP25 revealed an 88% reduction in the RRP size in KO 

neurons in comparison to control neurons (Bronk et al., 2007).  
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3.1.3.3.1.  2D-EM analysis of synaptic morphology in SNAP25 KO neurons 

 

As wild-type and mice heterozygous for SNAP25 were phenotypically indistinguishable at 

birth, SNAP25 heterozygous mice were used as controls for this study (Delgado-Martínez 

et al., 2007). For the analysis of two-dimensional electron micrographs from synaptic 

profiles of ultrathin sections, organotypic slices from six SNAP25 KO mice (N=6) were 

compared with slices from six littermate mice (N=6) heterozygous for the SNAP25 allele in 

three cultures. The gross synaptic morphology was unaltered between control and 

SNAP25 KO samples, but similar to Munc13-1/2 DKO synapses, the presence of larger 

vesicle sizes in SNAP25 KO synapses was apparent (Fig. 3.7 A, B). The total number of 

synaptic vesicles per synaptic profile did not significantly differ between KO and control 

cultures (control: 68.73 ± 3.790, n=82; SNAP25 KO: 63.74 ± 3.276, n=101 / P=0.4061, 

n.s.; Fig. 3.7 C), and no change in the PSD length was observed (control: 374.1 ± 15.62, 

n=82; SNAP25 KO: 351.6 ± 11.31, n=101 / P=0.3844, n.s.; Fig. 3.7 F). However, both the 

synaptic vesicle terminal density (control: 1.688 ± 0.074, n=82; SNAP25 KO: 1.446 ± 

0.051, n=101 / P=0.0245, *; Fig. 3.7 D) and the synaptic vesicle cluster density (control: 

4.712 ± 0.084, n=82; SNAP25 KO: 3.785 ± 0.053, n=101 / P<0.001, ***; Fig 3.7 E) were 

significantly reduced. Moreover, a dramatic increase in the number of large, vesicular, 

possibly endosomal structures, in SNAP-25 KO synaptic profiles was detected (control: 

1.415 ± 0.247, n=82; SNAP25 KO: 4.168 ± 0.456, n=101 / P<0.001, ***; Fig. 3.7 G). This 

finding supports the hypothesis that SNAP25 may play additional roles in vesicle recycling 

or trafficking pathway (Aikawa et al., 2006; Peng et al., 2013). In addition, I observed a 

slight, though statistically insignificant increase in the number of LDCVs per synaptic 

profile in synapses lacking SNAP25 (control: 0.183 ± 0.046, n=82; SNAP25 KO: 0.317 ± 

0.064, n=101 / P=0.2601, n.s.; Fig. 3.7 H). 

 

3.1.3.3.2.  3D-ET analysis of synaptic vesicle docking in SNAP25 KO neurons 

 

For the electron tomographic analysis, organotypic slices from five SNAP25 KO mice 

(N=5) were compared with slices from five littermate mice (N=5) heterozygous for the 

SNAP25 allele in three cultures (Fig. 3.8 A-F). Tomographic analysis revealed a strong 

reduction in membrane-attached synaptic vesicles (0-2 nm) in SNAP25 KO synaptic 

profiles compared to controls (control: 1.125 ± 0.130, n=24; SNAP25 KO: 0.241 ± 0.062, 

n=25 / P<0.001, ***; Fig. 3.8 I) as well as synaptic vesicles closely tethered (0-4 nm) to the 

presynaptic release site (control: 1.462 ± 0.179, n=24; SNAP25 KO: 0.508 ± 0.101, n=25 / 
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P<0.001, ***; Fig. 3.8 J). In contrast to this strong reduction in the number of membrane-

associated synaptic vesicles, the number of membrane proximal synaptic vesicles (0-40 

nm) was unaltered (control: 2.779 ± 0.219, n=24; SNAP25 KO: 2.749 ± 0.132, n=25 / 

P=0.9047, n.s.; Fig. 3.8 H).  

 

Figure 3.7. Two-dimensional ultrastructural analysis of synaptic morphology in SNAP25 KO 
neurons 

Electron micrographs of control (A) and SNAP25 KO (B) synaptic profiles acquired from 60 nm-
thick ultrathin sections. Mean number of synaptic vesicles (SVs) per synaptic profile (C). Mean 
number of SVs normalized to synaptic terminal area (SV terminal density; D). Mean number of SVs 
normalized to SV cluster area (SV cluster density; E). Mean postsynaptic density (PSD) length (F) 
Mean number of endosomes per synaptic profile (G). Mean number of large dense-core vesicles 
(LDCVs) per synaptic profile (H). C-H: Control: N=6, n=82; SNAP25 KO: N=6, n=101 (Mean + 
SEM), P<0.001: ***; P<0.01: **; P<0.05: *. Scale bar: B, 500 nm. 

 
The number of vesicles within 100 nm distance from the active zone was only slightly 

reduced (control: 6.766 ± 0.396, n=24; SNAP25 KO: 5.682 ± 0.236, n=25 / P=0.0216, *; 

Fig. 3.8 G). In this analysis, 13 out of 25 tomograms from SNAP25 KO synapses (52%) 

were completely devoid of membrane-attached vesicles (0-2 nm), with 7 out of 25 

tomograms (28%) lacking both physically docked and closely tethered synaptic vesicles 

(0-4 nm). In the absence of SNAP25, the numbers of membrane-attached and closely 

tethered vesicles were reduced to 21% and 35% of controls, respectively. Moreover, in 

tomograms from SNAP25 KO synapses that still harbored membrane-attached synaptic 

vesicles, docking (0-2 nm) and close tethering (0-4 nm) was reduced to 41% and 64% of 

controls, respectively.  
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Figure 3.8. Three-dimensional electron tomographic analysis of synaptic vesicle docking in 
SNAP25 KO neurons 

Tomographically reconstructed subvolumes of control (A) and SNAP25 KO (B) synapses from 200 
nm-thick sections. Three-dimensional models of tomographically reconstructed control (C) and 
SNAP25 KO (D) synaptic profiles. Ultrastructural features reconstructed in the models include the 
active zone plasma membrane (white), synaptic vesicles (membrane-attached, green; non-
attached, grey) and endosomes (light blue). Orthogonal views of control (E) and SNAP25 KO (F) 
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tomographic models displaying the spatial arrangement of membrane-attached synaptic vesicles 
within the reconstructed active zone area. Mean number of SVs within 100 nm of the AZ 
normalized to AZ area (G). Mean number of SVs within 40 nm of the AZ normalized to AZ area (H). 
Mean number of membrane-attached SVs (within 0-2 nm of the AZ) normalized to AZ area (I). 
Mean number of membrane-attached and closely-tethered SVs (within 0-4 nm of the AZ) 
normalized to AZ area (J). Mean outer SV diameter (K). Mean SV volume including the membrane 
bilayer (L). Spatial distribution of SVs within a 100 nm distance of the AZ membrane (M). 
Distribution of synaptic vesicle diameters of vesicles within 100 nm of the AZ (N).  G-L: Control: 
N=5, n=24; SNAP25 KO: N=5, n=25 (Mean + SEM), P<0.001: ***; P<0.01: **; P<0.05: *. M, N: (850 
SVs in control and 732 SVs in SNAP25 KO synaptic profiles).Scale bar: B,100 nm. 

 

 

Similar to synapses lacking Munc13s, terminals that were devoid of the neuronal t-SNARE 

SNAP25 showed a prominent accumulation of synaptic vesicles at a distance of 4-8 nm 

from the active zone membrane (Fig. 3.8 M). These membrane-proximal, but not 

physically docked, vesicles were often linked to the presynaptic plasma membrane by 

thin, long filaments, but were not connected to the membrane by multiple short tethers at 

this distance. Moreover, I observed an enormous increase in the mean outer vesicle 

diameter in SNAP25 KO synapses (control: 46.12 ± 0.482, n=24; SNAP25 KO: 52.53 ± 

0.486, n=25 / P<0.001, ***; Fig. 3.8 K, N), resulting in 48 % increase in the mean vesicular 

volume (control: 52132 ± 1682, n=24; SNAP25 KO: 76926 ± 2191, n=25 / P<0.001, ***; 

Fig. 3.8 L), supporting the idea that SNAP25 might have an additional role in presynaptic 

membrane recycling (Peng et al. 2013; Xu et al. 2013). 

 

In our heterozygous control animals from two different cultures we observed two synapses 

that do not harbor many docked vesicles, but show small, omega-shaped membrane 

invaginations, active zone regions with concave curvature described as full-collapse 

fusion events (Fernández-Busnadiego et al., 2010), and large endocytotic structures 

connected to the plasma membrane in the perimeter of the active zone (data not shown). 

These structures are most likely features of synapses that had been captured in or shortly 

after the process of neurotransmitter release. I occasionally observe these structures in 

other genotypes, albeit with a significantly lower frequency. Since control synapses 

lacking these ultrastructural correlates of high synaptic activity displayed normal numbers 

of docked vesicles, we decided to continue our analysis with the heterozygous control 

group. A previous analysis of the neurological Coloboma mouse (Cm/+), which lacks one 

copy of the SNAP25 gene, revealed an epileptic phenotype caused by synaptic 

hyperexcitability due to altered voltage-gated calcium channel modulation (Corradini et al., 

2012; Zhang et al., 2004). Mice heterozygous for SNAP25 may therefore exhibit increased 

slice activity leading to the detection or more dynamic fusion and endocytotic events.  

  



                                                                                                                   3. Results 

  

 

 

80 

3.1.3.3.3.  SNAP23 does not compensate for the loss of SNAP25  

 

In the present study, organotypic hippocampal slices from SNAP25 KO mice underwent 

considerable thinning during the first weeks in culture, consistent with the reported 

degeneration of SNAP25 KO neurons in low density culture (Bronk et al., 2007; 

Washbourne et al., 2002). To assess the impact of this on local excitatory networks, we 

decided to evaluate the spatial density of glutamatergic synapses in our preparation. 

Moreover, we were interested to see whether SNAP23, another well-characterized SNAP 

isoform could potentially compensate for the loss of SNAP25 in the surviving neurons. 

Overexpression of SNAP23 in SNAP25 KO neurons has been shown to rescue the 

reduction in RRP sizes, but not the almost complete loss of evoked responses (Delgado-

Martínez et al., 2007) 

Immunohistochemistry studies and the imaging analysis were performed by Dr. Benjamin 

Cooper, Department of Molecular Neurobiology of the Max-Planck Institute of 

Experimental Medicine, Göttingen, Germany. Organotypic slices from two wild-type and 

two SNAP25 KO animals were fixed after 4-5 weeks in culture and processed for 

immunohistochemistry by using antibodies against SNAP23, SNAP25 and VGLUT1. 

VGLUT1, the vesicular glutamate transporter, resides in the synaptic vesicle membrane in 

glutamatergic synapses and therefore serves as an appropriate marker for excitatory 

spine synapses, the synaptic subtype used for ultrastructural analyses in this study. 

SNAP25 immunoreactivity in wild-type slices was localized along the neuronal processes 

and at synapses, but was absent in SNAP25 KO slices (data not shown). Punctate 

SNAP23 labeling was distributed throughout the slices in both, wild-type and KO 

conditions (Fig. S1 A, D). Although absent from excitatory presynapses, SNAP23 was 

often observed in close apposition to VGLUT1 signals, indicating a potential postsynaptic 

localization of the protein in wild-type and SNAP25 KO synapses (Fig. S1 B, C, E ,F). The 

density of SNAP23 signals in SNAP25 KO slices normalized to control samples (control: 

1.000 ± 0.060, n=18; SNAP25 KO: 1.363 ± 0.105, n=18 / P=0.005, **; Fig. S1 G) and the 

density of VGLUT1 positive puncta in SNAP25 KO samples normalized to control cultures 

is increased (control: 1 ± 0.055, n=18; SNAP25 KO: 1.718 ± 0.045, n=18 / P<0.001, ***; 

Fig. S1 H). Moreover, a significant increase in the sizes of VGLUT1 puncta was detected 

in SNAP25 KO slices (control: 1 ± 0.036, n=18; SNAP25 KO: 1.792 ± 0.056, n=18 / 

P<0.001, ***; Fig. S1 I).  

In summary, mature SNAP25 KO organotypic hippocampal slices exhibit a high density of 

excitatory synapses despite the cell loss in the first week of culturing. Moreover, the 
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number of VGLUT1 positive puncta increases in SNAP25 KO slices likely indicating a 

compensatory effect. The increase of the size of VGLUT1-positive puncta could reflect 

either the increased synaptic vesicle sizes observed in electron tomograms or retention of 

VGLUT1 in the presynaptic membrane as a consequence of disrupted endocytosis. Since 

the methods used to quantify the number and area of puncta are sensitive to signal 

intensities, it is possible that a compensatory increase in VGLUT1 expression in SNAP25 

deficient neurons brings a greater number of VGLUT1 synapses above the intensity 

threshold for inclusion in the analysis, thereby explaining the observed increase in 

VGLUT1 density. Considering the lack of colocalization with VGLUT, it is however unlikely 

that SNAP23 can compensate for the loss of SNAP25 in surviving neurons. 

 

3.1.3.4. The role of the t-SNARE Syntaxin-1 in synaptic vesicle docking 

 

Since Munc13s are thought to regulate SNARE complex formation by open Syntaxin-1 to 

trigger SNARE nucleation, we were interested in the role of the second t-SNARE 

Syntaxin-1 in synaptic vesicle docking. First, we wanted to analyze a double mutant 

mouse line deficient for Syntaxin-1A and -B, which recently became available in the 

laboratory of Prof. Christian Rosenmund, Berlin. Unfortunately, these mice displayed a 

strong neurodegenerative phenotype, comparably severe to that described for Munc18-1 

KO neurons in culture (Verhage et al., 2000). As I failed to rescue or significantly prolong 

survival of the slices by employing the organotypic slice culture system, we selected a 

Syntaxin-1B Knock-in mouse line, which expresses Syntaxin-1B fused to YFP in the 

Syntaxin-1A KO background (Syntaxin-1A KO/ -BYFP) for further analyses (Arancillo et al., 

2013; Gerber et al., 2008). This mouse line permits the study of neurons with reduced 

Syntaxin-1 levels under hypomorphic conditions, but prevents the cultured cell death 

characteristic of the full KO. No significant alterations in basic physiological characteristics 

were detected in Syntaxin-1A-/-, Syntaxin-1B+/+ and Syntaxin-1A-/-, Syntaxin-1Byfp/+ autapic 

neuron cultures, indicating that one functional allele of Syntaxin-1B is enough for normal 

synaptic function (Arancillo et al., 2013). For this study, I therefore pooled control data 

from two Syntaxin-1A-/-, Syntaxin-1B+/+ and four Syntaxin-1A-/-, Syntaxin-1Byfp/+ mice and 

compared them with data from six Syntaxin-1A KO/ -BYFP mice from two independent 

cultures.  
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Figure 3.9. Two-dimensional ultrastructural analysis of synaptic morphology in Syntaxin-1A 
KO/ -B

YFP
 neurons 

Electron micrographs of control (A) and Syntaxin-1A KO/ -B
YFP

 (B) synaptic profiles acquired from 
60 nm-thick ultrathin sections. Mean number of synaptic vesicles (SVs) per synaptic profile (C). 
Mean number of SVs normalized to synaptic terminal area (SV terminal density; D). Mean number 
of SVs normalized to SV cluster area (SV cluster density; E). Mean postsynaptic density (PSD) 
length (F) Mean number of endosomes per synaptic profile (G). Mean number of large dense-core 
vesicles (LDCVs) per synaptic profile (H). C-H: Control: N=6, n=129; Syntaxin-1A KO/ -B

YFP
: N=6, 

n=106 (Mean + SEM), P<0.001: ***; P<0.01: **; P<0.05: *. Scale bar: B, 500 nm. 

 

3.1.3.4.1.  2D-EM analysis of synaptic morphology in Syntaxin-1A KO/ -BYFP 

neurons 

 

Reduction of Syntaxin-1 levels in the Syntaxin-1A KO/ -BYFP mouse line did not affect 

gross synaptic morphology, which was comparable to that of controls in electron 

micrographs from ultrathin sections (Fig. 3.9 A, B). The number of synaptic vesicles per 

synaptic profile was unchanged between Syntaxin-1A KO/ -BYFP and control samples 

(control: 76.25 ± 3.179, n=129; Syntaxin-1A KO/ -BYFP: 71.79 ± 3.575, n=106 / P=0.2609, 

n.s.; Fig. 3.9 C). No significant changes were observed in either the PSD length (control: 

349.8 ± 8.515, n=129; Syntaxin-1A KO/ -BYFP: 342.0 ± 11.65, n=106 / P=0.2569, n.s.; Fig. 

3.9 F) or the synaptic vesicle terminal density (control: 2.006 ± 0.058, n=129; Syntaxin-1A 

KO/ -BYFP: 1.852 ± 0.065, n=106 / P=0.1072, n.s.; Fig. 3.9 D) between the two groups. 

However, I detected a significant decrease in the synaptic vesicle cluster density (control: 
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5.378 ± 0.056, n=129; Syntaxin-1A KO/ -BYFP: 5.168 ± 0.055, n=106 / P=0.0070, **; Fig. 

3.9 E). Similar to Munc13-1/2 DKO and SNAP25 KO synapses, synapses with reduced 

levels of Syntaxin-1 showed a tendency towards an increased number of endosomal 

structures per presynaptic profile (control: 1.264 ± 0.160, n=129; Syntaxin-1A KO/ -BYFP: 

2.009 ± 0.253, n=106 / P=0.0315, *; Fig. 3.9 G). In addition, I detected a slight, though not 

statistically significant, increase in the number of LDCVs per synaptic profile in synapses 

expressing reduced levels of Syntaxin-1 (control: 0.233 ± 0.042, n=129; Syntaxin-1A KO/ -

BYFP: 0.453 ± 0.106, n=106 / P=0.1893, n.s.; Fig. 3.9 H). 

 

3.1.3.4.2.  3D-ET analysis of synaptic vesicle docking in Syntaxin-1A KO/ -BYFP 

neurons 

 

By electron tomographic analysis, it was first tested whether differences in the number of 

docked vesicles were detectable between Syntaxin-1A-/-, Syntaxin-1B+/+ and Syntaxin-1A-/-

, Syntaxin-1Byfp/+ mice (graphs not shown). Confirming the physiological findings, I was not 

able to detect significant changes in the number of active zone membrane-attached 

vesicles (0-2 nm) in Syntaxin-1A-/-, Syntaxin-1B+/+ synaptic profiles in comparison to 

Syntaxin-1A-/-, Syntaxin-1Byfp/+ synaptic profiles (Syntaxin-1A-/-, Syntaxin-1B+/+: 1.028 ± 

0.224, N=2, n=6; Syntaxin-1A-/-, Syntaxin-1Byfp/+: 1.003 ± 0.182, N=3, n=15 / P=0.9381, 

n.s.). I obtained a similar result, when including those synaptic vesicles that were closely 

tethered to the presynaptic release site (0-4 nm; Syntaxin-1A-/-, Syntaxin-1B+/+: 1.703 ± 

0.319, n=6; Syntaxin-1A-/-, Syntaxin-1Byfp/+: 1.338 ± 0.215, n=15 / P=0.3667, n.s.). I 

therefore decided to pool the data obtained from both genotypes into one control group. 

Electron tomographic analysis was performed on organoypic slices from four Syntaxin-1A 

KO/ -BYFP mice (N=4) and compared with slices from five control mice (N=5) (Fig. 3.10 A-

F). Syntaxin-1A KO/ -BYFP presynaptic terminals exhibited a reduction in the number of 

membrane-attached (0-2 nm; control: 1.010 ± 0.142, n=21; Syntaxin-1A KO/ -BYFP: 0.623 

± 0.110, n=23 / P=0.0356, *; Fig. 3.10 I) and closely tethered vesicles (0-4 nm; control: 

1.442 ± 0.178, n=21; Syntaxin-1A KO/ -BYFP: 0.937 ± 0.129, n=21 / P=0.0249, *; Fig. 3.10 

J).  



                                                                                                                   3. Results 

  

 

 

84 

  

Figure 3.10. Three-dimensional electron tomographic analysis of synaptic vesicle docking in 
Syntaxin-1A KO/ -B

YFP
 neurons 

Tomographically reconstructed subvolumes of control (A) and Syntaxin-1A KO/ -B
YFP

 (B) synapses 
from 200 nm-thick sections. Three-dimensional models of tomographically reconstructed control 
(C) and Syntaxin-1A KO/ -B

YFP
 (D) synaptic profiles. Ultrastructural features reconstructed in the 

models include the active zone plasma membrane (white), synaptic vesicles (membrane-attached, 
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green; non-attached, grey) and endosomes (light blue). Orthogonal views of control (E) and 
Syntaxin-1A KO/ -B

YFP
 (F) tomographic models displaying the spatial arrangement of membrane-

attached synaptic vesicles within the reconstructed active zone area. Mean number of SVs within 
100 nm of the AZ normalized to AZ area (G). Mean number of SVs within 40 nm of the AZ 
normalized to AZ area (H). Mean number of membrane-attached SVs (within 0-2 nm of the AZ) 
normalized to AZ area (I). Mean number of membrane-attached and closely-tethered SVs (within 0-
4 nm of the AZ) normalized to AZ area (J). Mean outer SV diameter (K). Mean SV volume 
including the membrane bilayer (L). Spatial distribution of SVs within a 100 nm distance of the AZ 
membrane (M). Distribution of synaptic vesicle diameters of vesicles within 100 nm of the AZ (N). 
G-L: Control: N=5, n=21; Syntaxin-1A KO/ -B

YFP
: N=4, n=23 (Mean + SEM), P<0.001: ***; P<0.01: 

**; P<0.05: *. M, N: (748 SVs in control and 818 SVs in Syntaxin-1A KO/ -B
YFP

 synaptic profiles). 
Scale bar: B, 100 nm. 

 

The number of membrane proximal synaptic vesicles (0-40 nm; control: 2.978 ± 0.1712, 

n=21; Syntaxin-1A KO/ -BYFP: 2.693 ± 0.197, n=23 / P=0.284, n.s.; Fig. 3.10 H) and the 

number of vesicles within 100 nm distance from the active zone (control: 7.107 ± 0.312, 

n=21; Syntaxin-1A KO/ -BYFP: 6.996 ± 0.273, n=23 / P=0.7896, n.s.; Fig. 3.10 G) were 

unaltered. In comparison to control samples, Syntaxin-1A KO/ -BYFP neurons showed a 

reduction in the number of membrane-attached and closely tethered vesicles to 62% and 

65%, respectively. Looking at the distribution of synaptic vesicles within 100 nm of the 

active zone, one can recognize the reduction in the number of membrane-attached 

vesicles in the first 0-2 nm bin, however the general distribution of vesicles appears to be 

unaltered (Fig.3.10 M). Moreover, no differences in the mean outer vesicle diameter 

(control: 44.60 ± 0.385, n=21; Syntaxin-1A KO/ -BYFP: 45.31 ± 0.539, n=23 / P=0.2975, 

n.s.; Fig. 3.10 K, N) or in the mean vesicle volume were detected between the two groups 

(control: 46932 ± 1193, n=21; Syntaxin-1A KO/ -BYFP: 49567 ± 1802, n=23 / P=0.2388, 

n.s.; Fig. 3.10 L). 

 

3.1.3.5.  The role of the v-SNARE Synaptobevin-2 in synaptic vesicle docking 

 

Next, we decided to analyze the role of the v-SNARE Synaptobrevin-2 in synaptic vesicle 

docking in my experimental setting. Previous studies showed a 90% reduction of the 

sucrose-evoked RRP size in Synaptobrevin-2 KO neurons, but no change in the number 

of docked vesicles in electron micrographs (Deák et al., 2004; Schoch et al., 2001). 

However, a recent morphological study in PC12 cells expressing BoNT/D cleaving 

Synaptobrevin-1/2 indicated a role for the neuronal v-SNARE in large-dense core vesicle 

docking to the plasma membrane (Wu et al., 2012). These results are in contrast to 

previous findings that propose Synaptotagmin-1 as the molecular partner on vesicle 

membranes for LDCV docking, placing full SNARE-complex assembly downstream of 

docking (de Wit et al., 2009).  
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3.1.3.5.1.  2D-EM analysis of synaptic morphology in Synaptobrevin-2 KO 

neurons 

 

For the two-dimensional analysis, seven Synaptobrevin-2 KO animals (N=7) were 

compared with six littermate control animals (N=6), that were either wild-type or 

heterozygous for the Synaptobrevin-2 allele, from three cultures. Synaptobrevin-2 KO 

mice (Schoch et al., 2001) were purchased from ‘The Jackson Laboratory’. The gross 

presynaptic morphology seemed to be unperturbed in Synaptobrevin-2 KO synaptic 

profiles analyzed in electron micrographs of ultrathin sections (Fig. 3.11 A, B). Neither the 

total number of synaptic vesicles per synaptic profile (control: 67.54 ± 2.951, n=155; 

Synaptobrevin-2 KO: 70.15 ± 2.654, n=162 / P=0.4100, n.s.; Fig. 3.11 C), nor the synaptic 

vesicle terminal density were different between the two groups (control: 1.733 ± 0.050, 

n=155; Synaptobrevin-2 KO: 1.652 ± 0.043, n=162 / P=0.2223, n.s.; Fig. 3.11 D). 

Surprisingly, I observed an increase in PSD length in Synaptobrevin-2 KO synapses 

(control: 386.2 ± 10.08, n=155; Synaptobrevin-2 KO: 426.9 ± 8.674, n=162 / P<0.001, ***; 

Fig. 3.11 F), which could only partially be explained by the observation that presynaptic 

terminals were slightly larger in Synaptobrevin-2 KO synapses (control: 398140 ± 13958, 

n=155; Synaptobrevin-2 KO: 431227 ± 13022, n=162 / P=0.0570, n.s.; graph not shown). 

Moreover, a strong reduction in the synaptic vesicle cluster density for Synaptobrevin-2 

KO synapses was observed (control: 4.525 ± 0.055, n=155; Synaptobrevin-2 KO: 4.065 ± 

0.050, n=162; P<0.001, ***; Fig. 3.11 E), correlating with an increase in the number of 

larger, vesicular endosomal structures in presynaptic terminals of Synaptobrevin-2 KO 

synapses (control: 1.297 ± 0.172, n=155; Synaptobrevin-2 KO: 4.648 ± 0.380, n=162; 

P<0.001, ***; Fig. 3.11 G). Additionally, I observed a dramatic increase in the number of 

LDCVs per synaptic profile in synapses lacking Synaptobrevin-2 (control: 0.290 ± 0.057, 

n=155; Synaptobrevin-2 KO: 0.661 ± 0.080, n=162; P<0.001, ***; Fig. 3.11 H). 

 

3.1.3.5.2.  3D-ET analysis of synaptic vesicle docking in Synaptobrevin-2 KO 

neurons 

 

Samples from four Synaptobrevin-2 KO mice (N=4) and four control mice (N=4), from two 

independent cultures, were compared by electron tomographic analyisis (Fig. 3.12). This 

analysis revealed a strong reduction in the number of membrane-attached vesicles (0-2 

nm; control: 1.080 ± 0.136, n=25; Synaptobrevin-2 KO: 0.355 ± 0.099, n=24; P<0.001, ***; 

Fig. 3.13 C) and closely tethered vesicles (0-4 nm; control: 1.46 ± 0.161, n=25; 

Synaptobrevin-2 KO: 0.629 ± 0.123, n=24 / P<0.001, ***; Fig. 3.13 D) in Synaptobrevin-2 
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KO synapses compared to controls. The number of membrane-proximal vesicles (0-40 

nm; control: 2.600 ± 0.173, n=25; Synaptobrevin-2 KO: 2.672 ± 0.105, n=24 / P=0.7286, 

n.s.) (Fig. 3.13 B) as well as the number of vesicles within 100 nm distance of the active 

zone was unaltered (control: 6.451 ± 0.338, n=25; Synaptobrevin-2 KO: 5.909 ± 0.197, 

n=24 / P=0.1772, n.s.; Fig. 3.13 A). Synapses lacking Synaptobrevin-2 thus showed 

reductions in the number of membrane-attached and closely tethered vesicles to 33% and 

43% of controls, respectively. Similar to synapses that were completely devoid of 

Munc13s and SNAP25, terminals lacking the neuronal v-SNARE Synaptobrevin-2 

exhibited a prominent accumulation of synaptic vesicles at a close distance to the 

presynaptic active zone membrane, with a peak frequency occurring at around 4-6 nm 

from the active zone (Fig. 3.13 G). Moreover, synaptic vesicles in Synaptobrevin-2 KO 

presynaptic terminals exhibited increased mean outer synaptic vesicle diameters (control: 

45.81 ± 0.450, n=25; Synaptobrevin-2 KO: 49.07 ± 0.411, n=24 / P<0.001, ***; Fig. 3.13 E, 

H) with a corresponding increase in the mean synaptic vesicle volume (control: 51115 ± 

1549, n=25; Synaptobrevin-2 KO: 62908 ± 1599, n=24 / P<0.0001, ***; Fig 3.13 F). These 

data indicate an increase in the mean vesicle diameter by 7% with a corresponding 25% 

increase in vesicle volume.  
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Figure 3.11. Two-dimensional ultrastructural analysis of synaptic morphology in 
Synaptobrevin-2 KO neurons 

Electron micrographs of control (A) and Synaptobrevin-2 KO synaptic profiles (B) acquired from 60 
nm-thick ultrathin sections. Mean number of synaptic vesicles (SVs) per synaptic profile (C). Mean 
number of SVs normalized to synaptic terminal area (SV terminal density; D). Mean number of SVs 
normalized to SV cluster area (SV cluster density; E). Mean postsynaptic density (PSD) length (F) 
Mean number of endosomes per synaptic profile (G). Mean number of large dense-core vesicles 
(LDCVs) per synaptic profile (H). C-H: Control: N=6, n=155; Synaptobrevin-2 KO: N=7, n=162 
(Mean + SEM), P<0.001: ***; P<0.01: **; P<0.05: *. Scale bar: B, 500 nm. 

 

However, when comparing the individual docking profiles from Synaptobrevin-2 KO 

tomograms, I noticed that 8 out of 24 KO synapses (33%) had similar number of 

membrane-attached vesicles (0-2 nm) as control synapses, whereas the remaining 16 

synapses (67%) had few or no docked vesicles (Fig. 3.13 I). I termed the synaptic profiles 

with normal synaptic vesicle docking KOPlus (Fig. 3.13 C, F, I), and the synapses that are 

almost completely devoid of docked synaptic vesicles KOMinus (Fig. 3.13 B, E, H). 

 

Figure 3.12. Three-dimensional electron tomographic analysis of synaptic vesicle docking in 
Synaptobrevin-2 KO neurons 

Tomographically reconstructed subvolumes of control (A), Synaptobrevin KO
Minus

 (B) and 
Synaptobrevin KO

Plus
 (C) synapses from 200 nm-thick sections. Three-dimensional models of 

tomographically reconstructed control (D) Synaptobrevin KO
Minus

 (E) and Synaptobrevin KO
Plus

 (F) 
synaptic profiles. Ultrastructural features reconstructed in the models include the active zone 
plasma membrane (white), synaptic vesicles (membrane-attached, green; non-attached, grey) and 
endosomes (light blue). Orthogonal views of control (G) Synaptobrevin KO

Minus
 (H) and 

Synaptobrevin KO
Plus

 (I) tomographic models displaying the spatial arrangement of membrane-
attached synaptic vesicles within the reconstructed active zone area. Scale bar: B, 100 nm. 
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The number of membrane-attached synaptic vesicles (0-2 nm) was unchanged between 

control and KOPlus synaptic profiles (control: 1.080 ± 0.136, n=25; Synaptobrevin-2 KOPlus: 

0.968 ± 0.123, n=8 / P=0.6576, n.s.; Fig. 3.13 J). However, the number of docked synaptic 

vesicles (0-2 nm) was dramatically reduced when comparing control with KOMinus synaptic 

profiles (control: 1.080 ± 0.136, n=25; Synaptobrevin-2 KOMinus: 0.049 ± 0.022, n=16 / 

P<0.001, ***) and KOPlus with KOMinus synaptic profiles (KOPlus: 0.968 ± 0.123, n=8; 

Synaptobrevin-2 KOMinus: 0.049 ± 0.022, n=16 / P<0.001, ***; Fig. 3.13 J). In comparison 

to control and KOPlus samples, KOMinus synaptic profiles exhibited a reduction in the 

number of membrane-attached vesicles to 5%.  

To rule out the possibility that an increase in vesicle diameter could cause the reduced 

ability of synaptic vesicles to become attached to the presynaptic active zone membrane, I 

compared the mean outer synaptic vesicle diameter between control and  KOPlus (control: 

45.81 ± 0.45, n=25; Synaptobrevin-2 KOPlus: 48.65 ± 0.54, n=8 / P=0.0023, **) as well as 

between control and KOMinus synaptic profiles (control: 45.81 ± 0.4503, n=25; 

Synaptobrevin-2 KOMinus: 49.28 ± 0.558, n=16 / P=<0.001, ***). I detected a significant 

increase in the vesicle diameter for Synaptobrevin-KO synapses in both cases, though 

with a slightly stronger phenotype for KOMinus synaptic profiles (Fig. 3.13 K). The mean 

outer synaptic vesicle diameters of KOPlus and KOMinus synaptic profiles were not 

statistically different (Synaptobrevin-2 KOPlus: 48.65 ± 0.540, n=8; Synaptobrevin-2 

KOMinus: 49.28 ± 0.558, n=16; P=0.4822, n.s.; Fig. 3.13 K, N). I observed the same 

tendencies for the mean synaptic vesicle volume, which was significantly increased in 

KOPlus synaptic profiles compared to controls (control: 51115 ± 1549, n=25; 

Synaptobrevin-2 KOPlus: 61097 ± 2125, n=8 / P=0.0023, **) and in KOMinus synaptic profiles 

compared to controls (control: 51115 ± 1549, n=25; Synaptobrevin-2 KOMinus: 63814 ± 

2160, n=16 / P<0.001, ***; Fig. 3.13 L). The vesicle volume measured in KOPlus and 

KOMinus synaptic profiles was not statistically different (Synaptobrevin-2 KOPlus: 61097 ± 

2125, n=8; Synaptobrevin-2 KOMinus: 63814 ± 2160, n=16 / P=0.4554, n.s.; Fig. 3.13 L). 

When comparing the synaptic vesicle distribution within 100 nm distance of the active 

zone, KOMinus synaptic profiles have almost no membrane-attached vesicles (0-2 nm), 

whereas both, the KOPlus and KOMinus groups, have a strong accumulation of membrane-

proximal vesicles. These synaptic vesicles accumulate in a close distance to the 

presynaptic active zone membrane, with a peak frequency at around 4-6 nm distance 

from the active zone (Fig. 3.13 M). I therefore exclude the possibility that an increase in 

synaptic vesicle size is responsible for the observed reduction in membrane-attached 

vesicles in Synaptobrevin-2 KO synapses. 
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Figure 3.13. Quantitative analysis of synaptic vesicle docking in Synaptobrevin-2 KO 
neurons 

Mean number of SVs within 100 nm of the AZ normalized to AZ area (A). Mean number of SVs 
within 40 nm of the AZ normalized to AZ area (B). Mean number of membrane-attached SVs 
(within 0-2 nm of the AZ) normalized to AZ area (C). Mean number of membrane-attached and 
closely-tethered SVs (within 0-4 nm of the AZ) normalized to AZ area (D). Mean outer SV diameter 
(F). Mean SV volume including the membrane bilayer (E). Spatial distribution of SVs within a 100 
nm distance of the AZ membrane (G). Distribution of synaptic vesicle diameters of vesicles within 
100 nm of the AZ (H). Scatterplot showing number of membrane-attached SVs (0-2 nm) 
normalized to AZ area in individual tomograms from control and Synaptobrevin-2 KO synaptic 
profiles (I). Mean number of membrane-attached SVs (within 0-2 nm of the AZ) normalized to AZ 
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area comparing control, Synaptobrevin-2 KO
Plus 

and Synaptobrevin-2 KO
Minus 

synaptic profiles (J). 
Mean outer SV diameter from control, Synaptobrevin-2 KO

Plus 
and Synaptobrevin-2 KO

Minus 

synaptic profiles (K). Mean SV volume including the membrane bilayer from control, 
Synaptobrevin-2 KO

Plus 
and Synaptobrevin-2 KO

Minus 
synaptic profiles (L). Spatial distribution of 

SVs within a 100 nm distance of the AZ membrane comparing Synaptobrevin-2 KO
Plus 

and 
Synaptobrevin-2 KO

Minus 
synaptic profiles (M). Distribution of synaptic vesicle diameters of vesicles 

within 100 nm of the AZ comparing Synaptobrevin-2 KO
Plus 

and Synaptobrevin-2 KO
Minus 

synaptic 
profiles (N).  

A-F: Control: N=4, n=25; Synaptobrevin-2 KO: N=4, n=24 (Mean + SEM), P<0.001: ***; P<0.01: **; 
P<0.05: *. G, H: (890 SVs in control and 753 SVs in Synaptobrevin-2 KO synaptic profiles). J-L: 
Control: N=4, n=25; Synaptobrevin-2 KO

Plus
: N=4, n=8; Synaptobrevin-2 KO

Minus
: N=4, n=16 (Mean 

+ SEM), P<0.001: ***; P<0.01: **; P<0.05: *. M, N: (251 SVs in Synaptobrevin-2 KO
Plus

 and 502 
SVs in Synaptobrevin-2 KO

Minus
 synaptic profiles). Scale bar: B, 100 nm. 

J-L: Control: N=4, n=25; Synaptobrevin-2 KO
Plus

: N=4, n=8; Synaptobrevin-2 KO
Minus

: N=4, n=16 
(Mean + SEM), P<0.001: ***; P<0.01: **; P<0.05: *. G, H: (251 SVs in Synaptobrevin-2 KO

Plus
 and 

502 SVs in Synaptobrevin-2 KO
Minus

 synaptic profiles). 

 

3.1.3.5.3.  Synaptobrevin-1 can compensate for the loss of Synaptobrevin-2 in 

synapses 

 

In order to explain the presence of membrane-attached synaptic vesicles in a subset of 

Synaptobrevin-2 KO synapses (KOPlus), we scrutinized the localization pattern of 

immunolabeled Synaptobrevin-1 to reveal any potential compensatory changes in 

organotypic slices lacking Synaptobrevin-2. In an earlier study, Synaptobrevin-1 was not 

detected by Western blot analysis of P0 Synaptobrevin-2 KO mouse brain (Schoch et al., 

2001). However, in situ hybridization data indicate that expression of Synaptobrevin-1 in 

the hippocampus starts in vivo at around P14 (Allen Developing Mouse Brain Atlas). 

Immunohistochemistry experiments and the imaging analysis were performed by Dr. 

Benjamin Cooper, Department of Molecular Neurobiology of the Max-Planck Institute of 

Experimental Medicine, Göttingen, Germany. Organotypic slices from two wild-type and 

two Synaptobrevin-2 KO animals were fixed after 4-5 weeks in culture, processed for 

immunohistochemistry and labeled by using isoform-specific antibodies against 

Synaptobrevin-2, Synaptobrevin-1 and VGLUT1. Wild-type organotypic slices exhibited a 

specific punctate labeling of Synaptobrevin-2, which highly co-localized with VGLUT1, but 

was not detectable in Synaptobrevin-2 KO cultures (data not shown). In wild-type slices, 

Synaptobrevin-1 labeling revealed the presence of large immunoreactive puncta in 

organotypic slices (Fig. S2 A). However, only a subset (~8%) of VGLUT1 positive puncta 

colocalized with the Synaptobrevin-1 signal (Fig. S2 B, C). These findings indicate that in 

control slices, Synaptobrevin-1 is predominantly localized to nonglutamatergic synapses. 

Synaptobrevin-2 KO organotypic slices exhibited an increase in the number of 

Synaptobrevin-1 positive puncta, contributed by an increase in the frequency of low 
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intensity Synaptobrevin-1 immunoreactive structures (control: 1 ± 0.03910, n=27; 

Synaptobrevin-2 KO: 2.738 ± 0.229, n=27 / P<0.001,***; Fig. S2 D, G). In comparison to 

control slices, the relative number of VGLUT1 positive puncta was slightly increased in 

Synaptobrevin-2 KO cultures (control: 1 ± 0.0286, n=27; Synaptobrevin-2 KO: 1.195 ± 

0.030, n=27 / P<0.001,***; Fig. S2 H). Similar to SNAP25 KO organotypic slices, cultures 

devoid of Synaptobrevin-2 exhibited a significant increase in the size of VGLUT1 

immunoreactive puncta (control: 1 ± 0.030, n=27; Synaptobrevin-2 KO: 1.577 ± 0.068, 

n=27 / P<0.001,***; Fig. I). Interestingly, we found an increase in the degree of co-

localization for VGLUT1 and Synaptobrevin-1 in Synaptobrevin-2 KO slices (Fig. S2 E, F). 

In Synaptobrevin-2 KO slices, 36% of VGLUT1 positive puncta were immunoreactive for 

Synaptobrevin-1, indicating that Synaptobrevin-1 expression is upregulated in 

glutamatergic synapses in the absence of Synaptobrevin-2 (control: 7.739 ± 1.459, n=27; 

Synaptobrevin-2 KO: 36.39 ± 2.046, n=27 / P<0.001,***; Fig. S2 J).  

In summary, mature organotypic hippocampal slices deficient of Synaptobrevin-2 exhibit a 

compensatory increase in the number of Synaptobrevin-1 positive glutamatergic, 

excitatory synapses, potentially explaining the observation that 33% of all sampled 

synaptic profiles in the electron tomographic analysis of synaptic vesicle docking still had 

membrane-attached synaptic vesicles. However, whether or not Synaptobrevin-1 can 

rescue the physiological deficits seen in Synaptobrevin-2 deficient neurons has not yet 

been assessed to my knowledge.  

 

3.1.3.6. The role of the vesicular Ca2+-sensor Synaptotagmin-1 in synaptic 

vesicle docking 

 

Next, I studied the function of Synaptotagmin-1 in synaptic vesicle docking. 

Synaptotagmin-1, the exocytotic Ca2+-sensor, has also been implicated in secretory and 

synaptic vesicle docking, and in the regulation of total synaptic vesicle numbers, which are 

reduced in Synaptotagmin-1 KO animals (Jorgensen et al., 1995; Liu et al., 2009; de Wit 

et al., 2009). In-vitro data from liposome fusion assays indicated a role for Synaptotagmin-

1 as a distance-regulator for synaptic vesicle fusion, keeping plasma membrane and 

vesicle membrane apart to prevent SNARE-complex formation and fusion prior to Ca2+-

influx. Ca2+-binding to the C2 domains of Synaptotagmin-1 would then trigger SNARE-

nucleation and membrane fusion in a post-docking step (van den Bogaart et al., 2011). In 

vivo, the role of Synaptotagmin-1 in synaptic vesicle docking in neurons remains a point of 

heavy discussion, a confounding factor being the variety of model systems, fixation 
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protocols (chemical vs. cryo-fixation), data acquisition methods (two-dimensional versus 

three-dimensional EM analyses), and above all, differences in “docking” definitions used 

to study membrane-attachment by EM (discussed in: Verhage and Sørensen 2008).  

 

3.1.3.6.1.  2D-EM analysis of synaptic morphology in Synaptotagmin-1 KO 

neurons 

 

For the two-dimensional analysis of basic ultrastructural features in the absence of 

Synaptotagmin-1, samples from four Synaptotagmin-1 KO animals (N=4) were compared 

with samples from five control animals (N=5), that were either wildtype or heterozygous for 

the Synaptotagmin-1 KO allele. No major morphological changes between control and 

Synaptotagmin-1 KO synaptic profiles were observed in electron micrographs (Fig. 3.14 

A, B). First, no changes in the overall number of synaptic vesicles per synaptic profile 

were detected between genotypes (control: 52.8 ± 2.573, n = 114; Synaptotagmin-1 KO: 

50.3 ± 2.608, n = 97 / P = 0.4952, n.s.; Fig. 3.14 C). However, when I normalized the 

number of synaptic vesicles to the area of the synaptic terminal I could unmask a small 

but significant reduction in the terminal vesicle density in Synaptotagmin-1 KO synapses 

(control: 1.595 ± 0.05415, n = 114; Synaptotagmin-1 KO: 1.363 ± 0.055, n = 97 / P = 

0.0045, **; Fig. 3.14 D), which was also detected as a reduction of the synaptic vesicle 

cluster density (control: 3.946 ± 0.063, n = 114; Synaptotagmin-1 KO: 3.658 ± 0.062, n = 

97 / P = 0.0034, **; Fig. 3.14 E). No differences in the PSD length (control: 333.4 ± 10.03, 

n = 114; Synaptotagmin-1 KO: 345.0 ± 11.67, n = 97 / P = 0.3661, n.s.; Fig. 3.14 F) in the 

number of endosomes per synaptic profile (control: 0.211 ± 0.046, n = 114; 

Synaptotagmin-1 KO: 0.175 ± 0.046, n = 97 / P = 0.046; Fig. 3.14 G), or in the number of 

LDCVs per synaptic profile were detected (control: 0.211 ± 0.046, n = 114; 

Synaptotagmin-1 KO: 0.175 ± 0.046, n = 97 / P = 0.5481, n.s.; Fig. 3.14 H). 

 

3.1.3.6.2.  3D-ET analysis of synaptic vesicle docking in Synaptotagmin-1 KO 

neurons 

 

For the three-dimensional electron tomographic analysis of synaptic vesicle docking in the 

absence of Synaptotagmin-1, samples from three Synaptotagmin-1 KO animals (N=3) 

were compared with samples from four control animals (N= 4), that were either wildtype or 

heterozygous for the Synaptotagmin-1 KO allele (Fig. 3.15 A-F). Synaptotagmin-1 KO 

profiles exhibited reductions in the number of membrane-attached synaptic vesicles (0-2 
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nm; control: 1.494 ± 0.203, n = 23; Synaptotagmin-1 KO: 0.906 ± 0.156, n = 20 / P = 

0.0302, *; Fig. 3.15 I) and in the number of closely tethered synaptic vesicles (0-4 nm; 

control: 2.062 ± 0.185, n = 23; Synaptotagmin-1 KO: 1.433 ± 0.217, n = 20 / P = 0.0319, *; 

Fig. 3.15 J). In contrast to all previously analyzed mouse mutants, I detected a significant 

decrease in the number of membrane-proximal synaptic vesicles (0-40 nm) in synapses 

lacking Synaptotagmin-1 in comparison to control synaptic profiles (control: 3.630 ± 0.243, 

n = 23; Synaptotagmin-1 KO: 2.802 ± 0.289, n = 20 / P = 0.0329, *; Fig. 3.15 H), whereas 

the number of vesicles within 100 nm distance of the active zone was only slightly, but not 

significantly, reduced (control: 8.997 ± 0.644, n = 23; Synaptotagmin-1 KO: 7.628 ± 0.500, 

n = 20 / P = 0.1080, n.s.; Fig. 3.15 G). Moreover, the synaptic vesicle distribution within 

100 nm distance of the active zone revealed a reduction in the number of membrane-

attached synaptic vesicles, but did not show an accumulation of vesicles close to the 

active zone membrane as was observed for the KOs of the t-SNARE SNAP25 and of 

Munc13s (Fig. 3.15 M).  

 
 
Figure 3.14. Two-dimensional ultrastructural analysis of synaptic morphology in 
Synaptotagmin-1 KO neurons 

Electron micrographs of control (A) and Synaptotagmin-1 KO (B) synaptic profiles acquired from 60 
nm-thick ultrathin sections. Mean number of synaptic vesicles (SVs) per synaptic profile (C). Mean 
number of SVs normalized to synaptic terminal area (SV terminal density; D). Mean number of SVs 
normalized to SV cluster area (SV cluster density; E). Mean postsynaptic density (PSD) length (F). 
Mean number of endosomes per synaptic profile (G). Mean number of large dense-core vesicles 
(LDCVs) per synaptic profile (H). C-H: Control: N=5, n=114; Synaptotagmin-1 KO: N=4, n=97 
(Mean + SEM), P<0.001: ***; P<0.01: **; P<0.05: *. Scale bar: B, 500 nm. 
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Figure 3.15. Three-dimensional electron tomographic analysis of synaptic vesicle docking in 
Synaptotagmin-1 KO neurons 

Tomographically reconstructed subvolumes of control (A) and Synaptotagmin-1 KO (B) synapses 
from 200 nm-thick sections. Three-dimensional models of tomographically reconstructed control 
(C) and Synaptotagmin-1 KO (D) synaptic profiles. Ultrastructural features reconstructed in the 
models include the active zone plasma membrane (white), synaptic vesicles (membrane-attached, 
green; non-attached, grey), large dense core vesicles (LDCVs, beige) and endosomes (light blue). 
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Orthogonal views of control (E) and Synaptotagmin-1 KO (F) tomographic models displaying the 
spatial arrangement of membrane-attached synaptic vesicles within the reconstructed active zone 
area. Mean number of SVs within 100 nm of the AZ normalized to AZ area (G). Mean number of 
SVs within 40 nm of the AZ normalized to AZ area (H). Mean number of membrane-attached SVs 
(within 0-2 nm of the AZ) normalized to AZ area (I). Mean number of membrane-attached and 
closely-tethered SVs (within 0-4 nm of the AZ) normalized to AZ area (J). Mean outer SV diameter 
(K). Mean SV volume including the membrane bilayer (L). Spatial distribution of SVs within a 100 
nm distance of the AZ membrane (M). Distribution of synaptic vesicle diameters of vesicles within 
100 nm of the AZ (N). G-L: Control: N=4, n=23; Synaptotagmin-1 KO: N=3, n=20 (Mean + SEM), 
P<0.001: ***; P<0.01: **; P<0.05: *. M, N: (807 SVs in control and 650 SVs in Synaptotagmin-1 KO 
synaptic profiles). Scale bar: B, 100 nm. 
 

 

In comparison to control synaptic profiles, synapses devoid of Synaptotagmin-1 exhibited 

reductions in the number of membrane-attached and closely tethered vesicles to 61% and 

70% of controls, respectively. The number of membrane-proximal vesicles within 40 nm of 

the active zone is reduced to 77% compared to control synaptic profiles. However, taking 

the reduced density of membrane proximal synaptic vesicles into consideration, the 

number of membrane-attached (0-2 nm) and closely tethered (0-4 nm) vesicles 

normalized to the total number of vesicles within 40 nm of the active zone show 

reductions to only 74% and 83% of controls, respectively. In addition to these findings, I 

did not observe any changes in the mean outer vesicle diameter (control: 46.81 ± 0.548, n 

= 23; Synaptotagmin-1 KO: 45.41 ± 0.582, n = 20 / P = 0.0873, n.s.; Fig. 3.15 K, N) or in 

the mean vesicle volume between the two groups (control: 54578 ± 2011, n = 23; 

Synaptotagmin-1 KO: 49958 ± 1941, n = 20 / P = 0.1086, n.s.; Fig. 3.15 L). 

 

In summary, Synaptotagmin-1 KO neurons exhibit a decrease in the number of 

membrane-attached synaptic vesicles, which points towards a regulatory function of 

Synaptotagmin-1 in synaptic vesicle docking. 

 

3.1.3.7. The role of Complexins in synaptic vesicle docking 

 

Finally, I included a Complexin-1/2/3 triple KO (TKO) mouse line into my analysis (Xue et 

al., 2008). Complexins are a family of proteins, which can bind with a central α-helix to the 

assembled SNARE-complex. By this action, murine Complexin isoforms were previously 

shown to facilitate fast neurotransmitter release in a post-priming step ('super-priming'), 

since the EPSC amplitude and the vesicular release probability is drastically reduced in 

hippocampal neurons from Complexin-1/2/3 triple KO mice with no changes in the RRP 

size or in the number of docked vesicles (Reim et al., 2001; Xue et al., 2007, 2008). 

However, a recent study describes a drastic decrease in the RRP size after lentiviral 
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knock-down of Complexin, proposing a priming role for Complexin upstream of 

Synaptotagmin-1 function and an additional role as a fusion clamp for asynchronous and 

spontaneous release in concert with Synaptotagmin-1 (Yang et al., 2010). Moreover, C. 

elegans Complexin mutants show a severe reduction in the number of docked vesicles, 

most likely due to an increase in spontaneous fusion events caused by the absence of 

Complexin-mediated inhibitory clamping-functions (Hobson et al., 2011).  

 

3.1.3.7.1.  2D-EM analysis of synaptic morphology in Complexin-1/2/3 TKO 

neurons 

 

Samples from three Complexin TKO animals (Complexin-1-/-, Complexin-2-/-,  

Complexin-3-/-) were compared with three control animals with the following genotypes 

(Complexin-1+/+, Complexin-2-/-, Complexin-3-/-), (Complexin-1+/-, Complexin-2-/-, 

Complexin-3-/-), (Complexin-1+/-, Complexin-2-/-, Complexin-3+/-). In the two-dimensional 

analysis of electron micrographs, no statistically significant differences were detected in 

any of the parameters measured (Fig. 3.16 A, B). The total number of synaptic vesicles 

per synaptic profile (control: 68.75 ± 2.635, n = 222; Complexin-1/2/3 TKO: 67.66 ± 3.241, 

n = 155 / P = 0.4543, n.s.; Fig. 3.16 C), the synaptic vesicle terminal density (control: 

1.539 ± 0.037, n = 222; Complexin-1/2/3 TKO: 1.581 ± 0.043, n = 155 / P=0.4448, n.s.; 

Fig. 3.16 D) and the synaptic vesicle cluster density were unchanged between the two 

groups (control: 3.883 ± 0.038, n = 222; Complexin-1/2/3 TKO: 3.991 ± 0.050, n = 155 / P 

= 0.2399, n.s.; Fig. 3.16 E). Moreover, the PSD length (control: 361.3 ± 8.92, n = 222; 

Complexin-1/2/3 TKO: 378.2 ± 12.22, n = 155 / P = 0.3383, n.s.; Fig. 3.16 F), the number 

of endosomes per synaptic profile (control: 1.063 ± 0.108, n = 222; Complexin-1/2/3 TKO: 

1.103 ± 0.121, n = 155 / P = 0.7002, n.s.; Fig. 3.16 G) and the number of LDCVs per 

presynaptic profile did not differ between Complexin-1/2/3 TKO and control neurons 

(control: 0.176 ± 0.031, n = 222; Complexin-1/2/3 TKO: 0.219 ± 0.047, n = 155 / P = 

0.6946, n.s.; Fig. 3.16 H).  
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Figure 3.16. Two-dimensional ultrastructural analysis of synaptic morphology in Complexin-
1/2/3 TKO neurons 

Electron micrographs of control (A) and Complexin-1/2/3 TKO (B) synaptic profiles acquired from 
60 nm-thick ultrathin sections. Mean number of synaptic vesicles (SVs) per synaptic profile (C). 
Mean number of SVs normalized to synaptic terminal area (SV terminal density; D). Mean number 
of SVs normalized to SV cluster area (SV cluster density; E). Mean postsynaptic density (PSD) 
length (F) Mean number of endosomes per synaptic profile (G). Mean number of large dense-core 
vesicles (LDCVs) per synaptic profile (H). C-H: Control: N=3, n=222; Complexin-1/2/3 TKO: N=3, 
n=155 (Mean + SEM), P<0.001: ***; P<0.01: **; P<0.05: *. Scale bar: B, 500 nm. *. Imaging and 

analysis were performed by S. Krinner. 

 

3.1.3.7.2.  3D-ET analysis of synaptic vesicle docking in Complexin-1/2/3 TKO 

neurons 

 

Next, I analyzed synaptic vesicle docking in presynaptic terminals from electron 

tomographic reconstructions of 200 nm semithin sections in glutamatergic, excitatory 

spine synapses of control (N=3) and Complexin-1/2/3 TKO samples (N=3) (Fig. 3.17 A-F). 

In three-dimensional electron tomograms, no significant changes were detected in the 

number of active zone membrane-attached synaptic vesicles (0-2 nm; control: 0.871 ± 

0.147, n = 19; Complexin-1/2/3 TKO: 1.116 ± 0.145, n = 25 / P = 0.248, n.s.; Fig. 3.17 I) or 

in the number of closely-tethered synaptic vesicles (0-4 nm; control: 1.219 ± 0.168, n = 19; 

Complexin-1/2/3 TKO: 1.602 ± 0.159, n = 25 / P = 0.1586, n.s.; Fig. 3.17 J). However, 

there was a tendency towards a slightly higher number of membrane-attached vesicles in 

Complexin-1/2/3 TKO synapses. The number of membrane proximal vesicles within 40 
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nm distance of the active zone did not differ between the two groups (control: 2.386 ± 

0.180, n = 19; Complexin-1/2/3 TKO: 2.728 ± 0.140, n = 25 / P = 0.135, n.s.; Fig. 3.17 H), 

although a slight increase in the number of vesicles within 100 nm of the active zone in 

Complexin-1/2/3 synaptic profiles was observed (control: 6.005 ± 0.319, n = 19; 

Complexin-1/2/3 TKO: 6.861 ± 0.247, n = 25 / P = 0.0371, *; Fig. 3.17 G). The synaptic 

vesicle distribution within 100 nm distance from the presynaptic active zone membrane 

revealed no major differences between control and Complexin-1/2/3 KO synaptic profiles, 

with the largest percentage of vesicles being membrane-attached in both groups (Fig. 

3.17 M). Neither the mean outer synaptic vesicle diameter (control: 44.71 ± 0.621, n = 19; 

Complexin-1/2/3 TKO: 44.11 ± 0.407, n = 25 / P = 0.409, n.s.; Fig. 3.17 K, N) nor the 

mean synaptic vesicle volume were altered in synapses lacking all Complexin isoforms 

(control: 47600 ± 2017, n = 19; Complexin-1/2/3 TKO: 45536 ± 1198, n = 25 / P = 0.3596, 

n.s.; Fig. 3.17 L).  

In summary, I could not detect any statistically significant differences in either the number 

of synaptic vesicles in presynaptic terminals or in the number of membrane-attached 

synaptic vesicles in Complexin-1/2/3 TKO synapses. These findings correlate well with 

electrophysiological data for neurons lacking all three Complexin isoforms, which showed 

no changes in the size of RRP measured after the application of hyperosmolaric sucrose 

solution (Reim et al., 2001; Xue et al., 2007, 2008). It was possible to reveal a slight 

increase in the membrane-proximal vesicles in Complexin-1/2/3 TKO neurons. One 

possible explanation could be that neurons devoid of all Complexin isoforms have an 

impaired ability to release synaptic vesicles in response to action potential stimuli, leading 

to an accumulation of synaptic vesicles close to the active zone membrane. However, my 

data does not support the hypothesis of a clamping function for Complexins in mouse 

neurons, since in such a scenario I would have expected to see rather a slight decrease in 

the number of docked vesicles at the membrane, as had been shown in C. elegans 

Complexin mutants (Hobson et al., 2011). Taken together, the results of the present study 

support the hypothesis that Complexins are facilitators of synaptic vesicle release, which 

act on the assembled SNARE-complex after synaptic vesicle docking/priming. 
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Figure 3.17. Three-dimensional electron tomographic analysis of synaptic vesicle docking in 
Complexin-1/2/3 TKO neurons 

Tomographically reconstructed subvolumes of control (A) and Complexin-1/2/3 TKO (B) synapses 

from 200 nm-thick sections.Three-dimensional models of tomographically reconstructed control (C) 

and Complexin-1/2/3 TKO (D) synaptic profiles. Ultrastructural features reconstructed in the models 

include the active zone plasma membrane (white), synaptic vesicles (membrane-attached, green; 
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non-attached, grey) and endosomes (light blue). E, F Orthogonal views of control (E) and 

Complexin-1/2/3 TKO (F) tomographic models displaying the spatial arrangement of membrane-

attached synaptic vesicles within the reconstructed active zone area. Mean number of SVs within 

100 nm of the AZ normalized to AZ area (G). Mean number of SVs within 40 nm of the AZ 

normalized to AZ area (H). Mean number of membrane-attached SVs (within 0-2 nm of the AZ) 

normalized to AZ area (I). Mean number of membrane-attached and closely-tethered SVs (within 0-

4 nm of the AZ) normalized to AZ area (J). Mean outer SV diameter (K). Mean SV volume 

including the membrane bilayer (L). Spatial distribution of SVs within a 100 nm distance of the AZ 

membrane (M). Distribution of synaptic vesicle diameters of vesicles within 100 nm of the AZ (N).  

G-L: Control: N=3, n=19; Complexin-1/2/3 TKO: N=3, n=25 (Mean + SEM), P<0.001: ***; P<0.01: 

**; P<0.05: *. M, N: (617 SVs in control and 953 SVs in Complexin-1/2/3 TKO synaptic profiles). 

Scale bar: B, 100 nm. 

 
 

3.1.3.8.  The impact of the synaptic vesicle size on membrane-attachment 

 

To exclude the possibility that the severe docking deficits and the accumulation of 

membrane proximal synaptic vesicles observed in Munc13-1/2 DKO, SNAP25 KO and 

Synaptobrevin-2 KO synapses were an indirect consequence of the measured increases 

in synaptic vesicle size, I decided to reanalyze the size of exclusively membrane-attached 

(0-2 nm) and closely-tethered (0-4 nm) synaptic vesicles in these genotypes (Fig. 3.18).  

When all synaptic vesicles within 100 nm of the active zone were included in the analysis, 

Munc13-1/2 DKO synapses exhibited an 8% increase in the synaptic vesicle diameter 

(control: 46.25 ± 0.485, n=16; Munc13-1/2 DKO: 50.15 ± 0.715, n=15; P<0.001, ***; Fig. 

3.4 K) causing a 28% increase in the synaptic vesicle volume. In Munc13-1/2 DKO 

synapses, membrane-attached (0-2 nm; control: 46.14 ± 0.453, n=76; Munc13-1/2 DKO: 

54.97 ± 3.15, n=3; P=0.0106, *; Fig. 3.18 A) and closely-tethered (0-4 nm; control: 46.10 ± 

0.366, n=129; Munc13-1/2 DKO: 50.59 ± 1.510, n=10; P=0.0014, **; Fig. 3.18 B) synaptic 

vesicles exhibited similarly increased synaptic vesicle sizes. Analysis of synaptic vesicles 

within 100 nm of the active zone revealed a 14% increase in the mean outer vesicle 

diameter for SNAP25 KO synapses (control: 46.12 ± 0.482, n=24; SNAP25 KO: 52.53 ± 

0.586, n=25 / P<0.001, ***; Fig. 3.8 K). With a focus on membrane-attached (0-2 nm; 

control: 44.86 ± 0.336, n=149; SNAP25 KO: 51.83 ± 0.586, n=32 / P<0.001, ***) (Fig. 3.18 

C) and closely-tethered (0-4 nm; control: 45.03 ± 0.279, n=24; SNAP25 KO: 52.08 ± 

0.665, n=25 / P<0.001, ***) (Fig. 3.18 D) synaptic vesicles in SNAP25 KO synaptic 

profiles, a similar increase in the mean outer synaptic vesicle diameter was observed. 

Moreover, Synaptobrevin-2 synapses exhibited a 7% increase in the synaptic vesicle 

diameter measured for all vesicles within 100 nm of the active zone (control: 45.81 ± 

0.450, n=25; Synaptobrevin-2 KO: 49.07 ± 0.411, n=24 / P<0.001, ***; Fig. 3.13 E). 

Membrane-attached (0-2 nm; control: 45.17 ± 0.353, n=149; Synaptobrevin-2 KO: 48.03 ± 
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0.659, n=45 / P<0.001, ***; Fig. 3.18 E) and closely-tethered (0-4 nm; control: 45.23 ± 

0.301, n=209; Synaptobrevin-2 KO: 47.91 ± 0.522, n=79 / P<0.001, ***; Fig. 3.18 F) 

showed comparable increases in synaptic vesicle diameter. 

In summary, in all analyzed groups, synaptic vesicle membrane-attachment was still 

possible when vesicles exhibited an enlarged volume. These findings indicate that the 

increased synaptic vesicle size is unlikely to be responsible for the severe docking-deficits 

observed in Munc13-1/2 DKO, SNAP25 KO and Synaptobrevin-2 KO neurons. 

 

Figure 3.18. Enlarged vesicle diameters do not impair synaptic vesicle docking 

A, B Mean outer SV diameter for membrane attached synaptic vesicles (0-2 nm; A) and vesicles 
within 0-4 nm (B) in Control and Munc13-1/2 DKO electron tomograms. Mean outer SV diameter 
for membrane attached synaptic vesicles (0-2 nm; C) and vesicles within 0-4 nm (D) in Control and 
SNAP25 KO electron tomograms. Mean outer SV diameter for membrane attached synaptic 
vesicles (0-2 nm; E) and vesicles within 0-4 nm (F) in Control and Synaptobrevin-2 KO electron 
tomograms. n=number of membrane-attached vesicles (Mean + SEM), P< 0.001: ***, P<0.01: **; 

P<0.05: *. 

 

3.1.3.9. SNARE mutants accumulate LDCVs in presynaptic terminals 

 

All mouse mutants analyzed in the course of this study have also been shown to function 

in the release of LDCVs from mouse chromaffin cells of the adrenal medulla (Ashery et 

al., 2000; Borisovska et al., 2005; Cai et al., 2008; Liu et al., 2008; Speidel et al., 2005; de 

Wit et al., 2006, 2009). Especially SNAP25, Syntaxin-1 and Synaptotagmin-1 have been 

implicated in LDCV docking in chromaffin cells, whereas the loss of CAPS in Drosophila 

has been shown to cause an accumulation of LDCVs at the neuromuscular junction 

(Renden et al., 2001; de Wit et al., 2006, 2009). We therefore decided to quantify the 

number of LDCVs in presynaptic terminals, which is inherently very low.  
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Figure 3.19. SNARE mutants accumulate LDCVs in presynaptic terminals  

Mean number of large dense core vesicles (LDCVs) within 200 nm of the AZ per synaptic profile in 
Synaptobrevin-2 KO (A), SNAP25 KO (D), Syntaxin-1A KO / 1B

YFP 
(G), Munc13-1/2 DKO (J), 

CAPS-1/2 DKO (K), Synaptotagmin-1 KO (L) and Complexin-1/2/3 TKO (M) tomograms in 
comparison to their respective control groups. In Synaptobrevin-2 KO (B, C), SNAP25 KO (E, F) 
and Synatxin-1A 1B

YFP
 (H, I) synaptic profiles, LDCVs (asterisk) have the tendency to accumulate 

within 40 nm, but not to dock to the active zone. n= number of tomograms (Mean + SEM), 
P<0.001: ***, P<0.01: **; P<0.05: *. Scale Bar in I: 100 nm. 

 

As previously mentioned, in two-dimensional electron microscopic analyses, I observed a 

slight, though not statistically significant, increase in the number of LDCVs per synaptic 
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terminal in SNAP25 KO synaptic profiles (See 3.1.3.3.1; Fig. 3.7 H). The number of 

LDCVs doubled in Syntaxin-1A/ -BYFP synaptic profiles (See 3.1.3.4.1; Fig. 3.9 H) and the 

most dramatic increase in the number of LDCVs was observed in synaptic profiles from 

Synaptobrevin-2 KO slices (See 3.1.3.5.1; Fig. 3.11 H). 

These increases in LDCV density in the presynaptic terminals of SNARE mouse mutants 

were confirmed by three-dimensional analysis of synaptic profiles by electron tomography 

(Fig.3.19). Since I did not image full synaptic terminals but rather focused on the active 

zone area, I limited the analysis to a 200 nm distance from the active zone. In synaptic 

profiles of Synaptobrevin-2 KO organotypic slices, the number of LDCVs within 200 nm 

was increased ~ 19-fold in comparison to control tomograms (control: 0.040 ± 0.040, 

n=25; Synaptobrevin-2 KO: 0.792 ± 0.233, n=24 / P<0.001, ***; Fig. 3.19 A). Two 

Synaptobrevin-2 KO tomograms exhibited LDCVs within 40 nm of the active zone (Fig. 

3.19 B, C). These vesicles were in close proximity to the plasma-membrane, but not 

docked. In SNAP25 KO synaptic profiles, the number of LDCVs within 200 nm of the 

active zone membrane increased 3.5-fold (control: 0.125 ± 0.069, n=24; SNAP25 KO: 

0.440 ± 0.142, n=25 / P=0.0858, n.s.; Fig. 3.19 D). In four SNAP25 KO synaptic profiles, 

LDCVs were detected within 40 nm of the active zone, but were not in contact with the 

plasma membrane (Fig. 3.19 E, F). Synaptic profiles from Syntaxin-1A/ -BYFP neurons 

revealed a ~ 3.6-fold increase in the number of LDCVs within 200 nm of the active zone 

(control: 0.143 ± 0.078, n=21; Syntaxin-1A/ -BYFP: 0.522 ± 0.139, n=23 / P=0.0314, *; Fig. 

3.19 G). Three Syntaxin-1A/ -BYFP synaptic profiles contained LDCVs within 40 nm of the 

active zone that were not membrane-attached (Fig. 3.19 H, I). No LDCVs were detected 

within 40 nm of the active zone membrane in control groups for the SNARE mutants. 

In Munc13-1/2 DKO (control: 0.188 ± 0.136, n=16; Munc13-1/2 DKO: 0.267 ± 0.153, n=15 

/ P=0.7012, n.s.; Fig. 3.19 D), CAPS-1/2 DKO (control: 0.273 ± 0.117, n=22; CAPS-1/2 

DKO: 0.053 ± 0.053, n=19 / P=0.1126, n.s.; Fig 3.19 E), Synaptotagmin-1 KO (control: 

0.174 ± 0.081, n=23; Synaptotagmin-1 KO: 0.250 ± 0.123, n=20 / P=0.5993, n.s.) and 

Complexin-1/2/3 TKO (control: 0.211 ± 0.096, n=19; Complexin-1/2/3 TKO: 0.040 ± 0.040, 

n=25 / P=0.0808, n.s.) the number of LDCVs within 200 nm of the active zone remained 

unchanged between controls and mutant synaptic profiles. However, despite the absence 

of LDCV accumulation within profiles of Synaptotagmin-1 KO synapses, three of the 

acquired tomograms contained LDCVs within 40 nm of the active zone that were close to, 

but not in physical contact with the plasma membrane (examples not shown). In Munc13-

1/2 DKO, CAPS-1/2 DKO and Complexin-1/2/3 TKO synaptic profiles, no LDCVs were 

found within 40 nm of the active zone. However, in the Complexin-1/2/3, CAPS-1/2 and 

Synaptotagmin-1 control groups, one synaptic profile each contained a single LDCV within 
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40 nm of the active zone, but LDCV docking at the active zone membrane was never 

observed.  

 

3.2.  Generation and characterization of a Munc13-1 conditional knock-out 

(CKO) mouse line 

 

The Munc13 family of priming proteins is essential for synaptic transmission. Munc13-1 is 

the most abundant isoform in the central nervous system and the loss of Munc13-1 

courses perinatal lethality and severe deficits in glutamatergic transmission (Augustin et 

al., 1999a). Munc13-2- and Munc13-3-deficient mice are viable and fertile and neurons 

function normally under basal conditions, indicating a dominant role for Munc13-1 in 

mammalian synapses. Over the last years an important role of Munc13s in regulating 

synaptic plasticity became evident (Breustedt et al., 2010; Chen et al., 2013; Lipstein et 

al., 2013; Yang and Calakos, 2011; Zhao et al., 2012a, 2012b). However, due to the lethal 

phenotype, a detailed study of the function of Munc13-1 in the mature, developed brain 

and therefore in a physiological network, has not yet been possible. I therefore set out to 

generate a conditional Munc13-1 mouse line, where Munc13-1 expression can be shut 

down at different developmental time-points or in specific subsets of neurons. 

 

3.2.1.   Generation of a CKO targeting vector  

 

The aim was to generate a mouse in which exon 21 in the Munc13-1 gene is flanked by 

two loxP sites, so that upon site-specific Cre-recombinase activity in the neurons exon 21 

will be deleted. This, in turn, is predicted to result in a frame shift in the gene transcription 

product, and therefore to a loss of the Munc13-1 protein.  

For the generation of a conditional knockout (CKO) targeting vector, I chose 

recombination-mediated genetic engineering (recombineering), a method based on 

homologous recombination via gap repair in E.coli bacterial cells. This method utilizes the 

specialized E.coli strains E350 and SW106 (Lee et al., 2001; Liu et al., 2003; Warming et 

al., 2005), derived from DH10B BAC DNA host cells and modified to express enzymes 

required for gap repair (Exo, Beta, and Gam) in a temperature-dependent manner from a 

defective prophage λ (Lee et al., 2001). In addition to the heat-controlled expression of 

Exo, Beta, and Gam, E350 and SW106 cells encode the adenoviral P1 bacteriophage 
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cyclization recombination (Cre)-recombinase under an L-arabinose-inducible promoter. 

E350 and SW106 strains only differed by an additional galK-based selection system 

integrated into SW106, which I did not employ in this study (Warming et al., 2005). The 

expression of these enzymes enables recombination of DNA fragments between vectors 

carrying homologous sequences.  
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Figure 3.20. Generation of a Munc13-1 conditional knock-out targeting vector 

Schematic representation of the cloning strategy for a Munc13-1 conditional knock-out (cko) 
targeting vector. Exons are labeled as grey boxes, introns as white boxes and exon 21 as a red 
box. White triangles indicate loxP sites, black triangles indicate FRT sites. 1. BAC DNA retrieval 
via gap repair: Two homology arms (A+B) were amplified by PCR and subcloned into the PL253 
retrieval vector. The vector was linearized by HindIII digest. A 9.7 kb fragment of the Munc13-1 
gene containing exon 21 was retrieved from the SV129 embryonic stem (ES) cell derived bacterial 
artificial chromosome (BAC) plasmid bMQ411l13 via homologous recombination into the PL253 
retrieval vector. 2. Targeting of the first loxP site: The two homology arms (C+D) were amplified 
by PCR and subcloned into the PL452 vector plasmid to flank a floxed neomycin resistance gene 
(Neo) cassette. The floxed Neo cassette with the two homology arms was excised by KpnI and 
NotI digestion, together with ScaI to cut the plasmid backbone in the Amp gene. The floxed Neo 
cassette was inserted upstream of exon 21 via homologous recombination and excised after L-
arabinose-induced Cre-recombinase expression, resulting in a single loxP site with a diagnostic 
HindIII restriction site. 3. Targeting of the second loxP site: The two homology arms (E+F) were 
amplified by PCR and subcloned into the PL451 vector plasmid to flank a Neo cassette flanked by 
FRT sites and a downstream loxP site. The FRT site flanked Neo cassette with the two homology 
arms was excised by XhoI and SacII digest, together with ScaI to cut the plasmid backbone in the 
Amp gene, and inserted downstream of exon 21 via homologous recombination. The Neo cassette, 
HSV-TK cassette, and FRT and loxP sites are not drawn to scale. Neo, neomycin resistance gene; 
HSV-TK, herpes simplex virus thymidine kinase; Amp, Ampicilin. Based on (Liu et al., 2003) 

 

Using recombineering, I retrieved a 9.7 kb Munc13-1 gene fragment containing exons 13-

26. This fragment was retrieved from a BAC, namely the 129SV ES cell derived BAC 

clone bMQ 441l13 containing the full Munc13-1 genomic sequence. bMQ 441l13 is part of 

a 129SV ES cell DNA BAC library and contains a pBACe3.6 vector backbone with a 

chloramphenicol resistance gene for selection (Adams et al., 2005; Frengen et al., 1999). 

The fragment was retrieved into a plasmid containing a MC1 promotor controlled herpes 

simplex virus thymidine kinase cassette (MC1TK). I subsequently introduced loxP sites 

and a neomycin resistance (Neo) cassette for positive selection in embryonic stem (ES) 

cells (Liu et al. 2003). The individual recombineering steps for the generation of the 

targeting vector are presented schematically in Fig. 3.20, and the strategy for the 

generation of the Munc13-1 CKO mouse line is illustrated in Fig.3.21 A.  

 

3.2.1.1.  Retrieving of BAC DNA fragment into the PL253 vector 

 

In the first step, a 9.7 kb fragment containing the targeted exon 21 and the flanking long- 

and short arm for homologous recombination in ES cells was retrieved via recombineering 

from the BAC into the pBluescript-based targeting vector backbone PL253, containing a 

modified MC1TK cassette (Liu et al. 2003) (Fig. 3.20). First, the BAC clone bMQ 441l13 

DNA was amplified and a restriction analysis was performed to confirm the identity of the 

clone. 4 μg freshly prepared BAC was electroporated into electrocompetent EL350 cells 
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and the bacteria were plated on LB agar plates containing chloramphenicol to select for 

the presence of the BAC plasmid. Colonies were chosen and BAC DNA was purified. 10 

μl of purified BAC DNA before and after transformation was digested overnight at 37°C 

with 20 units of the restriction enzymes SalI, NruI and ClaI in 50 μl volumes each. The 

respective restriction patterns were compared after pulsed field gel electrophoresis on an 

agarose gel. The expected band pattern for all restriction enzymes was found in all clones 

tested, with the exception of NruI, which did not cut at one predicted restriction site (data 

not shown). This finding indicated small differences between the C57BL/6J reference 

sequence and the SV129 ES cell DNA. Indeed, during the generation of the Munc13-1 

CKO targeting vector, some minor differences to the C57BL/6J reference sequence were 

observed after sequencing. However, these differences in the nucleotide sequence did not 

alter the identity of the encoded amino acids and were therefore considered to reflect 

genomic polymorphisms between strains.  

In the next step, short homology arms (labeled A and B; Fig 3.20.1) were amplified from 

the BAC clone using PCR and subcloned into PL253, resulting in the plasmid PL253-AB 

(see 2.2.2.16.1.). These short homology arms define the borders of the desired sequence 

to be retrieved from the BAC clone. For the retrieval of the 9.7 kb BAC fragment into the 

PL253 retrieval vector, 600 ng of the PL253-AB DNA was linearized by 20 units HindIII for 

2 h. Next, 170 ng DNA was electroporated into electrocompetent EL350 cells that contain 

the bMQ 441l13 BAC and in which the expression of the gap repair enzymes was 

induced. Ampr colonies (i.e. colonies transformed with PL253-AB) were screened by PCR 

for the integration of the 9.7 kb Munc13-1 genomic sequence into the PL253-AB retrieval 

vector. In three independent experiments, 120 colonies were screened but gave rise to 

only one positive clone. To select against plasmid multimers, which can occur in 

pBluescript-based vectors by rolling circle replication during the gap repair process, 1 ng 

of the gap-repaired plasmid was retransformed into Electro10 Blue cells and Ampr 

colonies were selected and tested for the presence of the targeted plasmid.  

 

3.2.1.2.  Targeting of the first loxP site upstream of Munc13-1 exon 21 

 

In order to introduce one loxP site upstream exon 21 of the Munc13-1 gene, a Neo 

cassette flanked by two loxP sites was first introduced into the Munc13-1 genomic 

sequence via site-specific recombineering (Fig. 3.20.2). In a subsequent step, the Neo 

cassette was excised by Cre-mediated recombination after L-arabinose induced Cre-

recombinase expression in SW106 E.coli cells. The Neo resistance gene that was used 
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(from the PL452 vector) is flanked by two loxP sites and is regulated by two promotors: 

the phosphoglycerate kinase I (PGK) promotor, which permits the expression of the Neo 

resistance gene in eukaryotic cells, and the EM7 promotor, which enables prokaryotic cell 

expression. Moreover, the Neo cassette is followed by a bovine growth hormone 

polyadenylation site (bpA), a termination signal for protein expression in eukaryotic cells.  

Short homology arms (Labeled C and D; Fig. 3.20.2) were PCR amplified from the BAC 

DNA and subcloned into PL452 (See 2.2.2.16.2.). The Neo cassette flanked by the two 

short homology arms was cut out of the resulting PL452 vector by digestion with 20 units 

of KpnI and NotI as well as ScaI (to cut the plasmid backbone in the ampicilin resistance 

gene). 100 ng of the C-loxP-PGK-EM7-NeobpA-loxP-D fragment were electroporated 

together with 10 ng of the PL253 vector containing the 9.7 kb Munc13-1 genomic insert 

into electrocompetent and induced SW106 cells and Ampr (PL253 vector) and Kanr (Neo 

cassette) colonies were selected. Five independent experiments were performed, in total 

~450 clones were screened, however only the last attempt gave rise to 11 positive 

colonies. Positive colonies contained a mix of gap-repaired and non-gap-repaired 

plasmids. Therefore, 1 ng of the gap-repaired plasmid was retransformed into XL1-Blue 

cells and colonies resistant to Ampr and Kanr were selected. 1 ng of the retrieval vector 

containing the loxP-PGK-EM7-NeobpA-loxP cassette was then electroporated into 

electrocompetent SW106 cells after arabinose-induced Cre-expression. Cre activity 

resulted in the removal of the Neo cassette by Cre-mediated recombination between the 

two loxP sites in all selected Ampr colonies, leaving only one loxP site upstream of 

Munc13-1 exon 21.  

 

3.2.1.3.  Targeting of the second loxP downstream of Munc13-1 exon 21 

 

In order to introduce the second loxP site and a Neo cassette for positive selection in ES 

cells, a Neo cassette, flanked by two flippase (FLP) recombinase target (FRT) sequences 

and followed by a single loxP site was integrated downstream of Munc13-1 exon 21 by 

site-specific recombination in E.coli cells. Generation and subcloning of short homology 

arms amplified from the BAC DNA (termed E and F: Fig. 3.20.3) into PL451 is described 

in 2.2.2.16.3. The expression of the Neo resistance gene is controlled by a PGK and an 

EM7 promotor together with a bpA site. The Neo cassette, flanked by the two short 

homology arms, was cut out of the E-FRT-PGK-EM7-NeobpA-FRT-loxP-F containing 

vector PL451 by subsequent digestion with 20 units of XhoI and SacII as well as ScaI to 

cut the plasmid backbone in the ampicilin resistance gene. 40 ng of the E-FRT-PGK-EM7-
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NeobpA-FRT-loxP-F fragment were electroporated together with 10 ng of the PL253 

retrieval vector from the previous step into electrocompetent and induced cells. Ampr 

(PL253 vector) and Kanr (Neo cassette) colonies were selected. 32 colonies were 

screened and four positive clones were obtained, which contained a mixture of gap-

repaired and non-gap-repaired plasmids. 1 ng of the plasmid DNA was retransformed into 

XL1-Blue cells and Ampr and Kanr colonies were selected. Positive clones contained a 

single FRT-PGK-EM7-NeobpA-FRT-loxP cassette downstream of the Munc13-1 exon 21 

in addition to the one loxP site upstream of exon 21 (Fig. 3.23.3 and 3.24 A). 

 

3.2.2.   Generation of recombinant ES cells and mice 

 

In order to prepare the Munc13-1 CKO targeting vector for ES cell electroporation, the 

plasmid was purified with the EndoFree Plasmid Maxi Kit (Qiagen). A total of 450 μg DNA 

was liniarized in nine tubes, each one containing 50 μg DNA and 100 units NotI in a 

volume of 300 μl and in the presence of 1x BSA for 5 hours at 37°C. To check the 

digestion efficiency, 1 μl of each tube was loaded onto a gel. The NotI linearized CKO-

targeting vector was then electroporated into SV129/Ola ES cells and the transformed 

clones were selected for their G418 and ganciclovir resistance. G418, also called 

geneticin, is an antibiotic used for positive selection in eukaryotic cells expressing the Neo 

cassette. Ganiclovir is an anti-viral drug that becomes toxic upon phosphorylation by HSV-

TK and is therefore used for negative selection to prevent ES cell clones that had random 

insertion of the targeting vector backbone from growing. Out of 192 clones analyzed by 

Southern blot after HindIII digest and probed with a P32-labelled probe that is located 

upstream of the sequence used in the targeting vector (5’ probe; Fig. 3.24A), 29 positive 

clones were identified. Because of an introduced HindIII site along with the 1st loxP site, 

which was located upstream of exon 21, homologous recombinants carrying the CKO 

allele generated a 9.8 kb (wt) band and a 8.4 kb (mutant) band after probing with the 5’ 

probe (Fig. 3.21 B). From these colonies, 12 clones were subsequently tested after MfeI 

digestion by hybridization with a P32-labelled probe located downstream of the sequence 

used in the targeting vector (3’ probe), and with a P32-labelled probe targeting the Neo 

cassette sequence (Neo probe). In ES cells that carry the cko allele in the desired 

location, a 7.9 kb (WT) band and a 9.7 kb (mutant) band can be detected after probing 

with the 3’ probe as the length of the FRT-PGK-EM7-NeobpA-FRT-loxP cassette had 

been added (Fig. 3.21 B), and a single 9.6 kb band can be detected after probing with the 

Neo probe. No additional signal was detected in the Southern blot probed for Neo, which 



                                                                                                                   3. Results 

  

 

 

111 

indicated that these clones exhibited no random integration of the targeting vector into the 

genome. All 12 clones were tested positive for 5’, 3’ and a Neo probe (data not shown). 

The Munc13-1 allele containing the Neo cassette was termed Munc13-1 Neo. 

The ES cell clones A4, B7 and H6 were chosen for blastocyst injection. Blastocyst 

injection was conducted by Monica Schindler in the Transgenic Animal Facility of the Max-

Planck-Institute of Experimental Medicine, Göttingen, Germany. The blastocysts for the 

procedure were derived from C57BL/6N and C57BL/6 albino mice and planted into 

hormone-treated pseudo-pregnant C57BL/6 females. ES cells originating from the 

SV129/Ola line carry the agouti allele, which adds a yellow shimmer to mouse fur and 

leads to a brownish hair color in C57BL/6 and to a cream-colored appearance of C57BL/6 

albino chimeras. A high percentage of brown or cream colored fur corresponded to a high 

degree of chimerism. From ES cell clone H6, seven male chimeras were identified by 

brown coat patches (2x10%, 1x15%, 2x30%, 1x60%, 1x70%; presented as estimated 

percentage of the coat surface), Of which two males were germline competent (60% and 

70%). From ES clone B7 two male chimeras (1x30% and 1x40%) were obtained with one 

being germline competent (40%). The chimeric offsprings were crossed with FLPeR 

(“flipper”) mice, that express the FLP-recombinase, which enables, via site-specific FLP-

recombination, the excision of the Neo cassette at the FRT sites flanking the Neo 

cassette, leaving a single FRT site and one loxP site (Farley et al., 2000). As the FLPeR 

allele was crossed into the C57BL/6N genetic background, which encodes for black fur 

color, germ-line transmission of the Munc13-1 Flp allele in the SV129/Ola background 

would only produce brown-colored offspring, independent of the origin of the blastocysts 

(C57BL/6N or C57BL/6 albino). The two chimeric animals from ES cell clone H6 produced 

altogether eight brown-colored pups, the one chimeric animal from ES cell clone B7 

produced five brown-colored pups. As the excision of the Neo cassette was detected only 

in a subset of cells after one crossing with the flipper mice, the animals were crossed with 

C57BL/6J mice and offspring exhibiting germ-line transmission of the Cre-recombined 

allele were selected. The Munc13-1 allele after Flp-mediated excision of Neo cassette 

was termed Munc13-1 Flp and was characterized by a single loxP site upstream and a 

FRT and loxP site downstream of exon 21 in the Munc13-1 gene locus. Offspring 

homozygous for the Munc13-1 Flp allele was viable and fertile. For all following 

experiments, I only worked with offspring generated from the ES cell clone H6.  
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Figure 3.21. Generation and characterization of Munc13-1 conditional knock-out mice 

A Schematic representation of the Munc13-1 wild-type gene (Munc13-1 WT), the targeting vector, 
the mutated gene after homologous recombination (Munc13-1 Neo), the mutated gene after 
flippase (FLP)-mediated excision of the neomycin (Neo) resistance cassette (Munc13-1 Flp), and 
the mutated gene after adenoviral cyclization recombination (Cre)-mediated recombination 
(Munc13-1 Cre). The targeted exon 21 is indicated in red, remaining exons are labeled grey. White 
triangles indicate loxP sites, black triangles indicate FRT sites. The 5’ and 3’ probes, represented 
by black horizontal bars, were used for Southern blot analysis. HindIII and MfeI restriction sites 
employed for diagnostic digestion for Southern blot analysis are indicated. TK: herpes simplex virus 
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thymidine kinase gene B 5’ probe Southern blot hybridization after HindIII-digestion of embryonic 
stem (ES) cell clone DNA produced a 9.8 kb (wt) band and an 8.4 kb (Neo) band. 3’ probe 
Southern blot hybridization after MfeI-digestion of ES cell clone DNA produced a 7.9 kb (wt) band 
and a 9.7 kb (Neo) band. C Schematic representation of the genotyping strategy for the Munc13-1 
WT, Munc13-1 Neo, Munc13-1 Flp and Munc13-1 Cre allele. The positions of the diagnostic 
polymerase chain reaction (PCR) fragments are indicated in green together with their expected 
sizes in base pairs (bp). The primers (#1-#4) used for the respective PCR reactions are not drawn 
to scale. D Western blot analysis of Munc13-1 levels (~ 200 kDa, black arrowheads) as well as ß-
Tubulin and Synaptophysin loading control levels in cell homogenates from a Munc13-1 Flp 
hippocampal neuron mass culture that was either not infected (lane 1) or infected on DIV 2 with 
pFUGW-GFP- (lane 2) or pFUGW-iCre- (lane 3) containing lentiviral particles. Absence of Munc13-
1 in pFUGW-iCre infected neurons was confirmed with an antibody directed against the N-terminal 
part of Munc13-1 (#40) (upper left panel) (Varoqueaux et al. 2005; Cooper et al. 2012) and with an 
antibody against the C-terminal part of Munc13-1 (#N395AP) (right panel) (Betz et al., 1997). E 
Genotyping results for the indicated genotypes obtained from PCR amplification of either mouse 
tail DNA (Munc13-1 wt/wt, Munc13-1 wt/flflp, Munc13-1 flflp/flflp), ES cell clone DNA (Munc13-1 
wt/flNeo) or DNA lysates from pFUGW-iCre infected neuron cultures (Munc13-1 flflp/flflp – pFUGW-
iCre). 

 

3.2.3.   Genotyping Strategy 

 

The primers used in the genotyping PCR reaction and the predicted PCR DNA products 

for the individual stages of the generation of the mouse line are depicted in Fig.3.21 C. 

Genotyping of mouse DNA prepared from tail tissue was used at all breeding stages and 

prior to all experiments to confirm the genotype. The respective DNA fragment patterns 

were visualized on an agarose gel, as presented in Fig. 3.21 E. Before the FLP-mediated 

recombination of the Neo cassette, the genotyping reaction contained three primers (#1, 

#2, #3). Under the given PCR conditions (see materials and methods), the wild-type 

Munc13-1 allele was identified by a 149 bp long PCR fragment (amplified from the primer 

pair #2 and #3). The Munc13-1 Neo allele was detected by the presence of a 196 bp long 

PCR product between primers #1 and #2, as primer #1 anneals within the Neo cassette. 

Excision of the Neo cassette by Flp-mediated recombination (Munc13-1 Flp allele) 

produced a 253 bp long PCR product using the primers #2 and #3. At this stage, we 

occasionally observed an additional PCR product of approximately 230 bp (data not 

shown). The band only appeared when a PCR mix containing all primers was used, and 

not when a single primer pair was used, and was therefore considered to be non-specific. 

Primers #2 and #3 were used from that point on for routine genotyping of the mouse line. 

In order to produce a full Munc13-1 KO allele, the Cre/loxP system was employed 

(Kaartinen and Nagy, 2001). Site-specific Cre-recombinase mediated recombination 

would lead to the deletion of exon 21 of Munc13-1 and therefore induce a predicted 

frame-shift mutation, which would result in a complete Munc13-1 KO allele, termed 

Munc13-1 Cre. The Munc13-1 Cre allele was predicted to produce a 209 bp long PCR 
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product with the primers #2 and #4. To examine whether a full deletion can occur in 

neurons carrying the Munc13-1 Flp allele, I infected hippocampal neurons in vitro from 

Munc13-1 Flp mice with a lentivirus that carries the cre cassette (pFUGW-iCre; see 

section 3.2.4 for more details). DNA extracts from these cells were collected and analyzed 

with the genotyping PCR (Fig. 3.21 E lane 5). Indeed, a single band of roughly 209 bp 

was observed, indicating efficient Cre-recombination. To show that Cre-mediated 

recombination is possible also in vivo, we started to cross the Munc13-1 Flp allele into the 

EIIa-Cre mouse line that expresses the Cre-recombinase protein controlled by the 

adenoviral EIIa promotor in cells from all body tissues (Lakso et al., 1996). The expression 

from the EIIa promotor starts at early embryonic stages that thereby results in early 

excision of the Neo cassette, which is expected to produce the Munc13-1 Cre allele in all 

neurons. At this point we were able to obtain mice that were heterozygous for the 

Munc13-1 Cre allele and I can therefore confirm Cre-mediated deletion of Munc13-1 exon 

21 in vivo (data not shown). In a PCR amplification using the primers #2 and #4, the wild-

type Munc13-1 allele and the not Cre-recombined Munc13-1 Flp allele were expected to 

additionally produce 746 bp and 953 bp long fragments, respectively (bands not shown in 

Fig. 3.21 E.). These PCR products were of no diagnostic use to us. 

 

3.2.4.   Characterization of the Munc13-1 CKO mouse line 

 

In order to analyze Munc13-1 protein expression after Cre-mediated deletion of exon 21, I 

employed lentiviral expression of the Cre-recombinase protein from the pFUGW-iCre 

vector plasmid in cultured hippocampal neurons from Munc13-1 Flp mice. Dissociated 

neuron cultures were infected at DIV 2 with lentiviral particles containing either the empty 

pFUGW plasmid that expresses GFP only (pFUGW-GFP) or the pFUGW-iCre plasmid 

that expresses Cre-recombinase protein and GFP. Western blot analysis was performed 

on homogenates produced at DIV 21 to detect the Munc13-1 protein levels. I tested for 

the presence of the full length Munc13-1 protein by using an antibody directed against a 

C-terminal epitope of Munc13-1 (#N395AP) (Fig. 3.21 D right panel) (Betz et al., 1997). In 

addition, I used an antibody directed against an N-terminal epitope of Munc13-1 (#40), 

which specifically detects Munc13-1 without detectable cross-reactivity with other Munc13 

isoforms (Cooper et al., 2012; Varoqueaux et al., 2005). The results revealed a complete 

loss of the Munc13-1 protein in the homogenates infected with pFUGW-iCre compared 

with the non-infected or pFUGW-GFP infected cell homogenates (Fig. 3.21 D). I was not 

able to detect Munc13-1 full length protein as well as any residual N-terminal fragment in 
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cell homogenates from pFUGW-iCre infected neurons (Fig. 3.21 D left panel). Therefore, 

Cre-mediated deletion of Munc13-1 results in non-detectable Munc13-1 protein levels by 

Western blot analysis in vitro.   

In order to assess physiological consequences of Cre-mediated Munc13-1 deletion in 

neurons, autaptic hippocampal neuron cultures from Munc13-1 Flp mice were infected 

with pFUGW-GFP or pFUGW-iCre lentivirus on DIV 2 and tested for their basic 

electrophysiological properties at different time points (Fig. 3.22 A-E). Electrophysiological 

experiments and analysis was performed by Dr. Riikka Liisa Uronen, Department of 

Molecular Neurobiology, Max-Planck Institute of Experimental Medicine, Göttingen, 

Germany. Already on DIV 10, a strong reduction in the measured excitatory postsynaptic 

current amplitude (EPSC, nA) and in the size of the readily-releasable pool (RRP, nC) 

were measured for cells infected with pFUGW-iCre (data not shown). Therefore data from 

recordings conducted on following days (DIV 12-16) from one culture were pooled for the 

analysis. The EPSC amplitude was dramatically reduced in cells infected with pFUGW-

iCre in comparison to pFUGW-GFP infected neurons (pFUGW-GFP: 3.141 ± 0.5676, 

n=32; pFUGW-iCre: 0.7037 ± 0.1136, n=41 / P<0.0001, ***) (Fig. 3.22 A, D). Moreover the 

measured RRP size (nC) was greatly diminished in pFUGW-iCre infected cells (pFUGW-

GFP: 376.0 ± 75.91, n=17; pFUGW-iCre: 75.41 ± 11.31, n=18 / P=0.0003, ***; Fig. 3.22 B, 

E), with no significant differences in the calculated vesicular release probability (Pvr, %) 

(pFUGW-GFP: 7.361 ± 0.9006, n=17; pFUGW-iCre: 8.672 ± 1.387, n=18 / P=0.7791, n.s.; 

Fig. 3.22 C).  

Immuncocytochemical experiments of cultured neurons confirmed the biochemical and 

electrophysiological findings mentioned above. Immunofluorescent labelings of autaptic 

cells with primary antibodies directed against Munc13-1 protein infected with pFUGW-

GFP or pFUGW-iCre lentivirus and fixed on DIV 21 were performed. Neurons infected 

with pFUGW-GFP revealed close association of immunoreactivity for the active zone 

protein Munc13-1 (red) with immunoreactivity for the vesicular glutamate transporter 

VGLUT1 (green) along MAP-2 positive neuronal processes (grey) (Fig.3.22 F). Autaptic 

neurons infected with pFUGW-iCre were still able to form synapses, represented by the 

strong synaptic vesicle immunolabeling of VGLUT1. However Munc13-1 immunoreactivity 

was almost completely absent (Fig.3.22 G). Some background labeling was observed 

using the Munc13-1 primary antibody in both experimental conditions, most likely 

originating from the surrounding wild-type astrocyte cell layer since astrocyte cultures 

have been proposed to express Munc13-1 (Mungenast, 2011). 
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Figure 3.22. Electrophysiological and morphological characterization of pFUGW-iCre 
infected Munc13-1 Flp hippocampal autaptic neurons 

Physiological characteristics of autaptic excitatory hippocampal neurons infected at DIV 2 with 
either pFUGW-GFP or pFUGW-iCre lentivirus and whole-cell voltage clamped at DIV 12-16. A The 
Mean amplitude of the excitatory postsynaptic current (EPSC) resulting from an evoked action 
potential. B Mean size of the readily-releasable pool (RRP) after application of 0.5 M hypertonic 
sucrose solution for 5 seconds. C Mean vesicular release probability (Pvr), as calculated by the 
ratio of charge evoked during a single action potential and that evoked during the sucrose 
application. D Example traces of evoked EPSC responses for neurons infected with pFUGW-GFP 
(black) or pFUGW-iCre (red). E Example traces for RRP release after stimulation with 0.5 M 
sucrose in neurons infected with pFUGW-GFP (black) or pFUGW-iCre (red). F,G Immunolablling of 
Munc13-1 (red), MAP-2 (grey) and VGLUT1 (green) in pFUGW-GFP infected autaptic neurons (F, 
left panel) and in pFUGW-iCre infected autaptic neurons (G, left panel). Upper right panel: MAP-2 
and VGLUT1 overlay, lower right panel: Munc13-1 immunolabelling. A-C: n=number of cells from 
one culture (Mean + SEM), P<0.001: ***. Scale bar: G, 10 µm. Electrophysiological recordings 

were performed by Dr. R. L. Uronen. 
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4. Discussion 

4.1.  Methodological aspects in studying synaptic vesicle docking 

4.1.1. The organotypic slice culture system for studying lethal mouse 

mutants 

 

All mouse mutants that were investigated in the course of this study die either pre- or 

perinatally. Despite this, multiple options were available to prepare brain samples for 

ultrastructural analysis by high-pressure freezing fixation and freeze substitution. The 

advantages gained by high-pressure freezing and freeze substitution, in terms of superior 

sample preservation compared to chemical fixation, are however offset by the need to 

work with small sample volumes, since freezing quality deteriorates with increasing 

sample size, introducing artifacts and perturbing cellular ultrastructure. The first option 

was to prepare acute slices of brain tissue as used for electrophysiological experiments, 

however this method is experimentally challenging for E18 – P0 mouse brains and the 

mechanical disruption of the slice surface introduced during sectioning bears the risk of 

inducing local excitotoxicity and stimulation of neuronal release in an unphysiological 

manner. However, surface areas of high-pressure frozen tissue are usually preferentially 

selected for ultrastructural studies, since they undergo extremely rapid cooling in proximity 

to external cryo-protectant during the freezing process and as a consequence, they 

typically exhibit improved ultrastructual preservation compared to the slice center. The 

second reason arguing against the acute slice preparation method was the fact that 

synaptic density in cortical regions, including the hippocampus, is very low at birth, which 

would have restricted the analysis to synapses in immature developmental stages and 

made a large-scale ultrastructural analysis of synaptic morphology more challenging.  

I therefore decided to employ the hippocampal organotypic slice culture system for my 

purpose. Organotypic slice cultures from brain tissues, cultivated on small membrane 

inserts with the so-called interface method, provide established culture settings with a 

comparable rate of neuronal development and synaptogenesis to that of the intact tissue 

(reviewed in Gähwiler, 1997; De Simoni et al., 2003; Stoppini et al., 1991). Analysis of 

presynaptic protein KO mouse mutants has been successfully conducted by combining 

hippocampal organotypic slice culture preparations with electrophysiological experiments 

as well as ultrastructural analyses after cryo-fixation methods for electron microscopy 

(Kerr et al., 2008; Siksou et al., 2009; Zhao et al., 2012a). The main advantages of this 

culture system for our purpose were the fact that slice cultures could recover from cutting 
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damage, permitting neurons and synapses to grow and develop in an in-situ-like 

environment. Moreover, slices thinned-out during four weeks in culture and became a 

perfect size to fit in a sample carrier for high-pressure freezing fixation. In comparison to 

dissociated neuron cultures, tissue slices are kept in a more physiological environment, 

which has been shown to extend the survival period of cultured neurons from mice 

carrying neurodegenerative mutations (Broeke et al., 2010; Heeroma et al., 2004). 

Hippocampal organotypic slices from mouse control and presynaptic protein mutants were 

therefore cultured for 4-5 weeks to guarantee a high synaptic density and to enable 

synapse maturation, also for mutant tissues that might suffer potential delays in neuronal 

development caused by the reduction or blockage of synaptic transmission, as has been 

reported for Munc13-1/2 DKO neurons (Broeke et al., 2010).  

Using the combination of hippocampal organotypic slice cultures, high pressure freezing 

and freeze substitution, it became possible to obtain well-frozen samples with minimally 

perturbed ultrastructure. In control synapses from all genotypes, the vast majority of the 

vesicles within 40 nm of the active zone were indeed membrane-attached, indicating 

physiological, unstimulated conditions during the freezing process. Potential fusion 

intermediates, such as synaptic vesicles in hemifused or fully-collapsed states, were 

however only occasionally observed. Initially, freezing the samples in the presence of 

tetrodotoxin was considered to obtain an even more accurate approximation of the 

number of docked vesicles in non-stimulated neurons. Tetrodotoxin prevents action 

potential propagation along the neurons by blocking voltage-gated sodium channels. 

However, the homeostatic effects on neurons during and after pharmacological blockage 

of presynaptic transmission are not yet fully understood, and since our aim was to 

approach near physiological conditions during sample preparation, we decided against 

this option. 

In summary, I showed that the hippocampal organotypic slice culture technique applied to 

lethal mouse mutants is a suitable experimental approach for cryo-fixation and 

ultrastructural EM analysis of synaptic parameters in a dense neuronal network. 

 

4.1.2. Studying synaptic vesicle docking using cryo-fixation methods for EM 

 

In recent years it has become evident that conventional chemical fixation methods for EM 

introduce serious problems that confound the study of synaptic vesicle docking at the 

active zone membrane, largely due to artifactual changes induced in cytoskeletal 
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arrangements by the cross-linking of proteins and the dehydration of the sample 

(reviewed in Verhage & Sørensen 2008) (See 1.4 Ultrastructural analysis of synaptic 

vesicle docking). Since then, many studies have aimed to prove that cryo-fixation methods 

offer a more realistic view of presynaptic ultrastructure and enable a more reliable 

analysis of synaptic vesicle membrane interactions at active zone release sites. The 

application of high-pressure freezing fixation and freeze substitution prior to plastic 

embedding and three-dimensional electron tomography revealed that synaptic vesicle 

membranes of docked synaptic vesicles are in direct contact with the active zone plasma 

membrane (Siksou et al., 2009). 

Despite the improvements in synaptic ultrastructural preservation resulting from high-

pressure freezing, the imaging of samples at room temperature requires a cryo-

substitution step in which sample water is slowly exchanged for an organic solvent at low 

temperatures and the sample is preserved by fixatives. In the present study, a 

combination of tannic acid and OsO4 was used, which fixes samples during the freeze 

substitution process and deposits a heavy metal precipitate on phospholipid bilayers, 

thereby enhancing membrane contrast for imaging (Giddings, 2003; Jiménez et al., 2009). 

The disadvantages of this dehydration and staining procedures include the potential 

destruction of cytoskeletal elements and the fact that imaging relies on the presence of 

the heavy metal membrane stain that might obscure small structures and thus limits the 

resolution during imaging. 

Alternatively, cryo-preserved samples can be imaged at low temperatures by cryo-

electron tomography, avoiding sample dehydration and staining. One disadvantage of this 

method is, however, that only plunge-frozen samples thinner than 500 nm can be imaged 

directly (e.g. synaptosomes), whereas thicker, high-pressure frozen specimens (e.g. 

organotypic slice cultures) require cryo-sectioning, which introduces severe compression 

artifacts. Moreover, unfixed samples are very beam-sensitive and imaging therefore 

requires a very low electron dose and a high defocus to obtain phase contrast of proteins 

and membranes. However, studies employing cryo-electron tomography after freezing of 

purified synaptosome preparations and organotypic slice cultures indicated that the vast 

majority of synaptic vesicles might not be in direct membrane to membrane contact with 

the active zone, but that the closest vesicles are rather linked to the plasma membrane by 

multiple short filaments, or tethers (Fernández-Busnadiego et al., 2010). These tethered 

vesicles are connected by an average of two or more short filaments to the membrane, a 

number that correlates nicely with the calculated number of SNARE complexes needed to 

overcome the energy barrier for fusion of synaptic vesicles in vivo (Fernández-

Busnadiego et al., 2010; Mohrmann and Sørensen, 2012). Moreover, these short tethers 
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disappeared after the treatment of synaptotosomes with tetanus toxin, a molecule that 

cleaves free Synaptobrevin-2, supporting the idea that multiple partially, or fully 

assembled, SNARE complexes link synaptic vesicles to the membrane (Fernández-

Busnadiego et al., 2010). According to this criterion, vesicles in direct membrane contact 

would be classified as fusion intermediates. In the present study, I occasionally observed 

short filamentous structures between vesicles and active zone membranes, but the 

majority of the vesicles appeared to be in direct membrane contact. It is very likely that 

this discrepancy between our electron tomography approach on plastic sections and the 

cryo-electron tomography data is caused by the layer of precipitated stain on the 

phospholipid bilayers in my method. I was unable to quantify the number of short tethers 

in this study. Moreover, I termed vesicles that were in physical contact with the plasma 

membrane "membrane-attached" or "docked" synaptic vesicles, although in reality these 

vesicles might indeed be "tethered" by short tethers to the membrane. 

Another possibility that may account for the lack of membrane-attached synaptic vesicles 

in the cryo-electron tomography study in comparison to my findings might be the 

differences in sample preparation prior to and during the cryo-fixation process. For cryo-

EM, rat synaptosomes were purified in a series of centrifugation steps prior to plunge-

freezing and results were compared with tomograms obtained from high-pressure frozen 

and cryo-sectioned organotypic slice cultures (Fernández-Busnadiego et al., 2010). In my 

preparations, I used 20% BSA dissolved into the culture medium for freezing. I found that 

the addition of BSA enabled excellent ultrastructural preservation over large areas without 

exposing the sample to a dramatic increase in osmolarity. In the study by Fernandez-

Busnadiego and colleagues (2010), organotypic slices were frozen in the presence of 

20% dextran and 5% sucrose after five minutes incubation at room temperature. This 

composition of cryoprotectant for freezing causes an increase of osmolarity to ~600 

mOsm, which could trigger the fusion of primed vesicles and thus could easily reduce the 

number of readily-releasable vesicles in synapses and account for the almost complete 

lack of membrane-attached vesicles. Moreover, the physiological consequences of 

centrifugation during synaptosome preparation, and any potential impact this may have on 

the size of the RRP, is difficult to assess. 

A recent study presented a fusion assay in which large liposomes containing stabilized 

Syntaxin-1/SNAP25 (1:1) complexes and liposomes containing full-length Synaptobrevin-

2, or a deletion mutant (∆84) that prevents interactions at the last hydrophobic layer (+8) 

of the four helical SNARE bundle preceding the C-terminal linker, enabled the capturing of 

different SNARE-dependent docking and fusion intermediates by cryo-electron 

microscopy (Hernandez et al., 2012). In this study Hernandez and colleagues showed that 
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in the presence of ∆84 Synaptobrevin-2, liposomes can dock to each other. In this 

conformation the bilayers were described to be tightly held together 'without a resolvable 

space between the membranes' but fusion of liposomes was prohibited. This docked state 

was further described to require partial SNARE complex assembly. These findings 

indicate that in vitro, cryo-electron microscopy techniques can capture physical 

membrane-attachment at a stage in which SNARE complexes are partially engaged. 

However, in vivo partial SNARE complex zippering might be arrested further towards the 

N-terminus by regulatory proteins, potentially explaining the observed gap and the short 

filamentous connections between synaptic vesicle and plasma membranes observed by 

Fernandez-Busnadiego and colleagues (Fernández-Busnadiego et al., 2010). 

In summary, the possibility that electron tomography on plastic sections as employed in 

the present study approaches the limits of resolution when studying synaptic vesicle 

membrane-attachment cannot be excluded. Vesicles distanced less than 5 nm from the 

active zone membrane were therefore separated into two groups: (1) 0-2 nm and (2) 0-4 

nm. The 0-2 nm group contained all vesicles that appeared to be in direct membrane 

contact ("docked"). The 0-4 nm group included vesicles that were close enough for trans-

SNARE interactions to occur (van den Bogaart et al., 2011; Li et al., 2007). The term 

"tethering" is used here primarily to describe membrane-proximal vesicles within 40 nm of 

the active zone that can interact with the membrane by long filaments. This synaptic 

vesicle tethering process has been shown to remain unaffected in Munc13-1/2 DKO 

synapses despite the loss of docked synaptic vesicles, a finding that we were able to 

confirm in the present study (Siksou et al., 2009). 

 

4.2.   A common pool of docked and primed synaptic vesicles? 

 

Early EM studies that investigated the relationship between synaptic vesicle docking and 

priming were performed on chemically fixed wild-type neuron samples and compared the 

number of docked synaptic vesicles in electron micrographs with the number of released 

synaptic vesicles calculated from the measured postsynaptic response after hypertonic 

sucrose application (Murthy and Stevens, 1999; Rosenmund and Stevens, 1996; 

Schikorski and Stevens, 1997; Stevens and Tsujimoto, 1995). In these early studies, the 

number of membrane-attached synaptic vesicles correlated well with the number of 

fusion-competent synaptic vesicles in the sucrose pool. An alternative method to measure 

the RRP size of synaptic terminals is to apply a 20 Hz action potential stimulation protocol 

to successively release fusion-competent vesicles (Rosenmund and Stevens, 1996). 
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Combining this protocol with subsequent FM1-43 membrane dye uptake, chemical fixation 

and photoconversion of the dye for electron microscopy, has again revealed a tight 

correlation between the numbers of retrieved and stained synaptic vesicles after pool 

depletion and the number of active zone membrane-attached synaptic vesicles. These 

findings support the hypothesis that the pool of physiological primed or fusion competent 

synaptic vesicles is comprised of morphological docked synaptic vesicles (Murthy and 

Stevens, 1999; Murthy et al., 1997, 2001; Schikorski and Stevens, 2001). Moreover, by 

coupling optical stimulation of neurotransmitter release in C. elegans neuromuscular 

junction synapses with rapid high-pressure freezing and electron microscopic imaging of 

plastic sections, it has been shown that the number of membrane-attached synaptic 

vesicles decreases after a stimulus, leading to the conclusion that morphologically docked 

vesicles are the first to fuse in response to an action potential (Watanabe et al., 2013). 

In the present study, I demonstrated that in tomograms from all control groups analyzed, 

the vast majority of the vesicles within 40 nm of the active zone appeared to be in direct 

physical contact with the active zone membrane. This finding is very important, because it 

provides an explanation why in wild-type synapses the numbers of morphologically 

docked and functionally primed synaptic vesicles correlate well, irrespective of which 

fixation method or docking definition (direct attachment versus 40 nm bin) is applied.  

 

4.3.  The role of the priming proteins Munc13/CAPS in synaptic vesicle 

docking  

 

4.3.1.   Munc13s 

 

First, the role of Munc13s in synaptic vesicle docking was reinvestigated in my 

experimental system. Munc13-1/2 DKO neurons were shown to exhibit a complete loss of 

physiologically primed synaptic vesicles as probed by application of hypertonic sucrose 

solution (Varoqueaux et al., 2002). In the present study, I found that synapses lacking 

both Munc13-1 and -2 are almost completely devoid of membrane-attached synaptic 

vesicles. Only one out of 15 tomograms harbored a total of three docked synaptic 

vesicles. Moreover, twelve synaptic profiles (80%) lacked both docked and closely 

tethered vesicles (0-4 nm). In comparison to control synaptic profiles, the numbers of 

membrane-attached (0-2 nm) and closely tethered (0-4 nm) synaptic vesicles were 

reduced to 4% and 11%, respectively. These findings are in line with previously published 
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analyses of synaptic vesicle docking in C. elegans and mouse neurons in the absence of 

UNC-13/Munc13s (Gracheva et al., 2006, 2010; Siksou et al., 2009; Weimer et al., 2006). 

The remaining membrane-attached vesicles seen in the single tomogram may have been 

primed by an alternative priming mechanism. Munc13-independent priming has been 

reported in the mouse neuromuscular junction and in retina photoreceptor ribbon 

synapses, where synaptic vesicle priming and neurotransmitter release occurs even in the 

absence of Munc13 proteins (Cooper et al., 2012; Schmitz et al., 2001; Varoqueaux et al., 

2005). However, no obvious morphological differences, indicative of a non-glutamatergic 

synapse, were observed in comparison to the remaining tomograms. Another explanation 

for the remaining docking could be the presence of an alternative Munc13 isoform in the 

imaged synapse. Munc13-3 mRNA has been detected by in situ hybridization in the 

mouse hippocampus. However the presence of Munc13-3 proteins in the hippocampus 

could not be demonstrated by Western blot analysis (Augustin et al., 1999b). 

Recently, a study employing cryo-electron tomography on purified synaptosomes of 

RIM1 KO mice, a well-established component of the active zone cytoskeleton and an 

interaction partner of Munc13-1 and ubMunc13-2, reported that RIM1 might have a 

critical role in synaptic vesicle docking (Fernández-Busnadiego et al., 2013). As 

mentioned above, docked synaptic vesicles appeared to be in close proximity (<5 nm) to 

the plasma membrane in cryo-electron tomograms and to exhibit multiple short tethers in 

this configuration (Fernández-Busnadiego et al., 2010). In RIM1 KO mice, five out of 

nine tomograms exhibited a vesicle number comparable to wild-type levels within 45 nm 

of the active zone membrane (KO-aligned) whereas the remaining synapses showed a 

decrease in the number of these membrane-proximal vesicles (KO-altered). Moreover, the 

number of synaptic vesicles within 5 nm of the plasma membrane was dramatically 

reduced, and KO-altered synaptic vesicles completely lacked multiple short tethers in the 

docked state. In addition to its roles in localizing Ca2+-channels to the active zone and in 

docking and priming synaptic vesicles in the vicinity of Ca2+-channels, Rim1 has been 

implicated in the trafficking of Munc13s to synaptic targets (Andrews-Zwilling et al., 2006; 

Betz et al., 2001; Han et al., 2011; Kaeser et al., 2011, 2012). Of note, RIM1α KO mice 

exhibit a 60% reduction of combined Munc13 protein levels, whereas the genetic ablation 

of multiple RIM isoforms (Rim1, Rim1, RIM2, RIM2 and RIM2) causes a reduction 

of Munc13 levels by 67% (Andrews-Zwilling et al., 2006; Deng et al., 2011; Kaeser et al., 

2011; Schoch et al., 2002). 

Consistent with these findings, Munc13 levels are also reduced in synaptosomes purified 

from RIM1 KO mice and quantitative analysis of immunofluorescence revealed a 

significant decrease in the frequency of colocalization between Munc13 and the active 
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zone protein Bassoon (Fernández-Busnadiego et al., 2013). The described defects in 

vesicle priming and docking observed in RIM KO animals are therefore most likely 

attributable to reduced levels of Munc13s at the active zone. However, as it has been 

published previously, and has been demonstrated in the present study, loss of UNC-

13/Munc13 proteins causes an accumulation of synaptic vesicles close (8-10 nm), but not 

docked, to the active zone, explaining why the number of vesicles within 40 nm of the 

active zone membrane remains unchanged in Munc13-1/2 DKO synapses and a docking 

deficit could not have been detected in electron microscopic analyses using conventional 

chemical fixation (Gracheva et al., 2010; Siksou et al., 2009). The absence of a prominent 

membrane-proximal vesicle accumulation in 44% of RIM1 synaptosomes may indicate 

an additional, Munc13 independent role for RIM proteins in tethering vesicles close to 

release sites in a process upstream of docking/priming (Fernández-Busnadiego et al., 

2013). 

The molecular mechanism by which Munc13s dock/prime synaptic vesicles is not yet fully 

understood. The C-terminally located MUN domain present in all Munc13 isoforms 

includes two MHD domains and is considered essential for Munc13 priming activity (Basu 

et al., 2005; Stevens et al., 2005). The MUN domain mediates Munc13 binding to 

Syntaxin-1 and Munc13s could therefore induce a switch from the closed to an open 

Syntaxin-1 conformation, which would enable and/or accelerate SNARE complex 

nucleation (Betz et al., 1997; Ma et al., 2011, 2013; Sassa et al., 1999). Although the 

interaction between Munc13 and Syntaxin-1 is weak in comparison to the tight binding 

between Munc18-1 and Syntaxin-1, it can accelerate the transformation from Syntaxin-

1/Munc18-1 complexes to fully assembled SNARE complexes in in-vitro assays (Ma et al., 

2011, 2013; Sassa et al., 1999). The expression of a constitutively open form of UNC-64, 

the C. elegans homologue of Syntaxin-1, in the UNC-64/UNC-13 DKO background can 

rescue the massive deficits in neurotransmission and synaptic vesicle docking in cryo-

preserved samples observed in UNC-13 null mutants (Hammarlund et al., 2007; 

Richmond et al., 2001). Crossing the Munc13-1 KO mouse line with a knock-in mouse line 

that expresses the constitutively open form of Syntaxin-1, however, failed to rescue the 

perinatal lethality of Munc13-1 KO mice (Gerber et al., 2008). In C. elegans, loss of UNC-

18 or UNC-64 (Syntaxin-1) was described to result in a loss of docked and membrane-

proximal, or "tethered", synaptic vesicles in cryo-preserved samples, whereas UNC-

13/Munc13-deficient animals were still able to accumulate synaptic vesicles close to the 

release sites, but not to dock these at the membrane as confirmed in the present study 

(Gracheva et al., 2010). These findings indicate that Syntaxin-1/Munc18 interactions may 

tether vesicles close to the membrane, with Munc13s having a downstream role in 
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synaptic vesicle docking, possibly by opening Syntaxin-1 for SNARE complex formation 

(Gracheva et al., 2010). However, due to the severe neurodegenerative phenotype of 

Munc18-1 KO mice, I could not perform a docking analysis of Munc18-1 KO synapses in 

my experimental setting. 

 

4.3.2.   CAPS 

 

Next, the role of CAPS proteins in synaptic vesicle docking was investigated by our high 

resolution three-dimensional EM approach. The ultrastructural analysis of synaptic vesicle 

docking revealed that 62% of the sampled synaptic profiles (12 out of 19 tomograms) 

were completely devoid of membrane-attached synaptic vesicles (0-2 nm). Moreover, 

58% of all CAPS-1/2 DKO synaptic profiles (11 out of 19 tomograms) also lacked vesicles 

closely tethered to the active zone membrane (0-4 nm). Electrophysiological analyses of 

autaptic neurons lacking both mammalian CAPS isoforms revealed that 38% of neurons 

measured were completely devoid of primed synaptic vesicles as determined by 

hypertonic sucrose application, whereas in the remaining 64% of the cells, the size of the 

RRP was decreased by 85% in comparison to controls (Jockusch et al., 2007). Due to the 

fact that only subvolumes of presynaptic terminals were tomographically reconstructed, it 

is likely that the number of neurons/synapses capable of priming synaptic vesicles is 

underestimated in the present study. In comparison to control synapses, in tomograms 

from CAPS-1/2 DKO synapses that still harbored membrane-attached synaptic vesicles, 

the number of docked (0-2 nm) and closely tethered (0-4 nm) vesicles was reduced by 

81% and 72%, respectively. The 81% reduction in morphological synaptic vesicle docking 

for CAPS DKO synaptic profiles correlates closely with the observed 85% reduction in the 

RRP size measured by hypertonic sucrose application in release-active autaptic neurons 

(Jockusch et al., 2007). These findings support the hypothesis that functional priming and 

morphological docking are correlates of the same molecular process. No significant 

changes in the basic synaptic morphology of CAPS-deficient neurons were observed, 

therefore an indirect effect of impaired LDCV release, is unlikely to account for the defect 

in synaptic vesicle release. In this context, my data also failed to reveal an accumulation 

of LDCVs in the presynaptic terminals of neurons lacking CAPS proteins, in contrast to 

what has been described for Drosophila neuromuscular junction synapses lacking CAPS 

(Renden et al., 2001). Renden et al., observed that, in addition to the defects observed in 

LDCV secretion, the release of glutamatergic synaptic vesicles at the neuromuscular 

junction was greatly impaired. Since the observed effects on synaptic vesicle release in 

CAPS mutants could be rescued by transgenic expression of rat CAPS in all neurons, but 
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not in single motoneurons, the authors speculated that the presynaptic transmission deficit 

was an indirect consequence of the altered release of LDCV cargo (i.e. neuromodulators). 

One possibility to assess whether the observed defects in synaptic vesicle 

docking/priming are indeed indirect would be to analyze CAPS-1/2 DKO neurons in a 

micro-network cell culture system, in which neurons are spread in a slightly higher density 

as compared to the classical autaptic neuron culture, thus allowing two isolated neurons 

to form a combination of autaptic and interneural synapses on an astrocyte island (Liu et 

al., 2013). Similar to the single motoneuron-rescue experiments in Drosophila larvae by 

Renden et al., co-culturing of CAPS-1/2 DKO and wild-type neurons followed by paired 

recordings of autaptic and heterosynaptic responses after stimulation of the CAPS DKO 

cell could give an insight about possible pre- and postsynaptic effects caused by, for 

example, altered LDCV release from neighboring cells. 

Release from mammalian autaptic neurons with no, or dramatically reduced, RRP sizes 

was rescued by viral expression of CAPS-1 or high-frequency stimulation (Jockusch et al., 

2007). Moreover, Ca2+-uncaging in silent CAPS-1/2 DKO neurons revealed that CAPS 

deficient cells were able to release, albeit with a significant delay in comparison to control 

cells (Burgalossi et al., 2010). The latter finding indicates that an increase in intracellular 

Ca2+ can rescue synaptic transmission in CAPS1-/2 DKO neurons, indicating that the 

basic release machinery for synaptic vesicle release is functionally intact. Therefore CAPS 

may have an important function in vesicle priming at low Ca2+-concentrations, and 

elevations in residual intracellular Ca2+ resulting from high-frequency stimulation may 

overcome the CAPS1-/2 DKO phenotype via activation of for example Munc13 proteins, 

which possess multiple Ca2+-sensitive domains (C2B domain, Ca2+-Calmodulin binding 

site) (Jockusch et al., 2007). In contrast to Munc13-1/2 DKO synapses, synaptic vesicles 

in CAPS-deficient terminals did not accumulate at a distance of 8-10 nm from the active 

zone membrane, but rather appeared to be randomly distributed within 40 nm from the 

active zone membrane. In chemically fixed CAPS-deficient cells, a slight, but not 

statistically significant, decrease in the number of docked vesicles was reported, a 

phenotype attributable to the absence of a membrane-proximal synaptic vesicle 

accumulation (Jockusch et al., 2007). The defect in synaptic vesicle docking in the 

absence of members of the CAPS family could indeed explain the delay in the response 

after Ca2+-uncaging, which likely reflects Ca2+-dependent priming and fusion of newly 

primed vesicles (Burgalossi et al., 2010). 

In addition to the effects of high Ca2+-concentrations on release in CAPS-1/2 DKO cells, 

neurons that exhibited no or dramatically reduced evoked release were found to be 

rescued by treatment with PDBu, a phorbol ester capable of activating Munc13 proteins 
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and other proteins via their C1 domain. However, the exact nature of the relationship 

between Munc13 and CAPS proteins in synaptic vesicle priming has yet to be assessed 

experimentally as so far cross-rescue experiments overexpressing Munc13s in CAPS-

deficient cells, and vice versa, failed to rectify the deficit in synaptic vesicle release 

(Jockusch et al., 2007).  

The molecular mechanism underlying CAPS-dependent synaptic vesicle priming is not 

fully understood. CAPS stimulates formation of trans-SNARE complexes from Syntaxin-

1/SNAP25 acceptor and Synaptobrevin-2 donor liposomes in in vitro fusion assays 

(James et al., 2008, 2009, 2010). In these studies, acceleration of trans-SNARE complex 

formation was highly PIP2-dependent and required binding to Syntaxin-1. Recently it was 

shown that CAPS can bind the t-SNAREs SNAP25 and Syntaxin-1 with high affinity in the 

SNARE motif, but that it can interact with Synaptobrevin-2 only weakly at the N-terminus, 

which has been interpreted as a potential role of CAPS to promote N- to C-terminal 

SNARE complex zippering (Daily et al., 2010). The region that promotes SNARE-complex 

assembly corresponds to the MHD domain, which has been proposed to mediate the 

conformational switch from closed to open Syntaxin-1 (Khodthong et al., 2011). Recent 

evidence indicates that CAPS-1 preferentially binds the open form of Syntaxin-1 by 

targeting the full length of the cytoplasmic domain of Syntaxin-1, whereas Munc13-1 

interacts with the first 80 amino acid residues of Syntaxin-1, therefore binding the closed 

conformation of Syntaxin-1 (Parsaud et al., 2013). The authors argue that Munc13-1 

possibly opens Syntaxin-1, which becomes then stabilized by CAPS prior to SNARE 

nucleation, which is in line with previous publications proposing a sequential mode of 

action for Munc13s and CAPS proteins in secretory vesicle priming (Jockusch et al., 2007; 

Liu et al., 2010; Parsaud et al., 2013). LDCV release from mouse chromaffin cells lacking 

CAPS proteins is heavily impaired, however only minor changes in the number of docked 

vesicles had been observed for CAPS-1 KO cells and no differences to control cells for 

CAPS-1/2 DKO cells (Liu et al., 2010a; Speidel et al., 2005). Also overexpression of 

Munc13-1 in chromaffin cells did not change the number of morphologically docked 

LDCVs, but led to an increase in the measured RRP size (Ashery et al., 2000). 

Overexpression of a constitutive open form of Syntaxin-1 in CAPS-1/2 DKO chromaffin 

cells can rescue the reduced electrophysiologically assessed readily-releasable LDCV 

pool size (Liu et al., 2010). In C. elegans, open Syntaxin can rescue the LDCV docking 

deficits observed in UNC-31 (CAPS) and the synaptic vesicle docking and priming deficit 

described for UNC-13 KO worms (Hammarlund et al., 2007, 2008; Richmond et al., 2001). 

All these findings indicate that CAPS proteins have a role in secretory vesicle priming and 

that they are very likely to act in the same molecular pathway as Munc13s. 
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In summary, the findings of the present study demonstrate that the observed defects in 

synaptic vesicle priming upon loss of the Munc13 and CAPS proteins correlate nicely with 

an inability to dock synaptic vesicles to the active zone membrane. Therefore functional 

synaptic vesicle priming and morphological synaptic vesicle membrane-attachment may 

indeed describe the same mechanism rendering synaptic vesicles fusion competent. In 

the following, I will therefore use the terms docking and priming interchangeably for 

describing the final membrane-attachment process that renders synaptic vesicles fusion-

competent (docking/priming).  

 

Figure 4.1. The synaptic vesicle cycle at excitatory synapses 

Synaptic vesicles are locally recycled in presynaptic terminals. Synaptic vesicles are filled with the 
neurotransmitter (here e.g. glutamate) (1) and translocated to the active zone. There, synaptic 
vesicles become potentially tethered to the plasma membrane (2) and undergo a Ca

2+
-regulated 

docking/priming process to acquire fusion-competence (3). In response to the arrival of an action 
potential and an increase in Ca

2+
-concentration, docked/primed synaptic vesicles can fuse with the 

plasma membrane (4) and release their neurotransmitter content into the synaptic cleft. 
Neurotransmitter molecules diffuse through the synaptic cleft to mediate receptor ion channel 
opening and allow ion influx generating an excitatory postsynaptic current (EPSC) (5). Synaptic 
vesicle membranes are recycled in a process called endocytosis (6). The best-described pathway 
is clathrin-mediated recycling, in which clathrin-coated vesicles bud off from the membrane, 
become uncoated and fuse with early endosomes (7). Kiss-and-run exocytosis and bulk membrane 
retrieval are possible alternative, clathrin-independent recycling routes. Schematic provided by Dr. 
B. Cooper; adapted from (Jahn and Fasshauer, 2012). 
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4.4.  A role for all three neuronal SNAREs in synaptic vesicle docking and 

priming 

 

As discussed above, priming by Munc13s and CAPS proteins most likely involves 

interactions with Syntaxin-1 and/or the SNARE complex. Therefore, the individual 

SNAREs and/or trans-interactions between the v-SNARE Synaptobrevin-2 and the t-

SNAREs Syntaxin-1 and SNAP25 have long been predicted to function in synaptic vesicle 

priming or docking (Pevsner et al., 1994). 

Early studies using genetic knock-out strategies or proteolytic cleavage of SNARE 

proteins in neurons from different species including C. elegans, Drosophila, and mice 

revealed severe reductions in measured RRP sizes, but the number of membrane-docked 

synaptic vesicles was unchanged (Broadie et al., 1995; Deák et al., 2004; Gerber et al., 

2008; Hunt et al., 1994; de Wit et al., 2006). Since early studies on KO animals for UNC-

13/Munc13 priming proteins failed to reveal changes in the number of membrane-attached 

synaptic vesicles in neurons in chemically fixed EM samples, it was assumed that 

synaptic vesicle membrane-attachment might be a prerequisite for vesicle priming and 

fusion, but that docking alone is most likely not sufficient to render a vesicle fusion-

competent (Richmond et al., 1999; Varoqueaux et al., 2002). Based on this model, 

priming and SNARE complex nucleation were believed to occur in a post-docking step 

and most likely required the opening of UNC-64/Syntaxin-1 by members of the UNC-

13/Munc13 family (Richmond et al., 2001). Whether partial or full SNARE complex 

formation could indeed be the molecular basis of synaptic vesicle priming and whether a 

semi-zippered SNARE complex could be stabilized sufficiently prior to fusion in such a 

scenario has been often controversially discussed (reviewed in Jahn & Fasshauer 2012; 

Rizo & Südhof 2012). In the present study, I aimed to analyze the effects of genetic 

deletion of the neuronal SNARE proteins Syntaxin-1, SNAP25 and Synaptobrevin-2 on 

synaptic vesicle docking for the first time in the same experimental setting. It has been 

shown that the individual t- and v-SNARE molecules on opposing membrane bilayers start 

interacting with their SNARE motifs at a distance of 8 nm and SNARE zippering arrests at 

a distance of around 2-4 nm, with 2 nm being the thickness of the fully assembled SNARE 

bundle (Li et al., 2007; Poirier et al., 1998; Sutton et al., 1998). Förster resonance energy 

transfer (FRET) signal caused by SNARE complex assembly of t- and v-SNAREs during 

liposome fusion has been calculated to start at a distance smaller than 5 nm between 

membranes (van den Bogaart et al., 2011). With the combination of cryo-fixation, freeze-

substitution and electron tomography used in the present study, I was confident that it 

would be possible to resolve membrane distances smaller than 5 nm (See 4.1.2.). Indeed, 
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in my high-resolution electron microscopy analysis of cryo-preserved samples, I found that 

all three neuronal SNARE proteins are involved in the synaptic vesicle docking process, 

since in the absence or upon reduced expression of the individual SNARE proteins, 

synaptic vesicles were greatly impaired in their ability to physically contact the active zone 

plasma membrane in excitatory synapses. Moreover, an accumulation of vesicles close to 

the plasma membrane, but not in direct contact with the active zone was detected in 

Synaptpbrevin-2 and SNAP25 KO neurons. These findings support the idea that synaptic 

vesicle docking/priming is mediated by Munc13 and CAPS proteins and involves (partial) 

SNARE complex assembly. 

 

4.5.   Loss of individual SNARE proteins can be partially compensated 

 

In the present study, I observed docking deficits for neurons lacking the individual SNARE 

proteins. The greatest reduction in synaptic vesicle membrane-attachment was observed 

for SNAP25 KO neurons. 13 out of 25 tomograms from SNAP25 KO synapses (52%) 

were completely devoid of membrane-attached vesicles (0-2 nm) with 7 out of 25 

tomograms (28%) lacking both, physically docked and closely tethered synaptic vesicles 

(0-4 nm). Synapses lacking SNAP25 showed a reduction in the numbers of membrane-

attached and closely tethered vesicles to 21% and 35% of controls, respectively. In low 

density cultures from SNAP25 KO neurons, cells degenerated during culturing, but 

survival was prolonged by plating cells at high densities. In such a continental culture 

setting, it has been described that 20-30% of SNAP25 KO neurons did not exhibit action 

potential- evoked release. In the remaining cells only very small EPSC amplitudes could 

be measured and spontaneous release and the RRP size probed by hypertonic sucrose 

solution was found to be reduced to 14% and 10% of controls, respectively (Bronk et al., 

2007).  

The fact that the pool of readily releasable fusion-competent and docked vesicles as 

described here are not completely absent, but rather reduced, raises the possibility that 

alternative SNARE proteins compensate for the loss of SNAP25 (Bronk et al., 2007). One 

such candidate SNARE molecule is SNAP23, a neuronally expressed SNAP25 

homologue capable of rescuing sucrose-evoked, but not synchronous action potential-

evoked, release in cultured hippocampal neurons (Delgado-Martínez et al., 2007). 

Recently, SNAP23 has been described to reside specifically in postsynaptic terminals, 

where it has a functional role in N-methyl-D-aspartate (NMDA) receptor exocytosis (Suh et 

al., 2010). Consistent with the findings of Suh et al., no specific co-localization was 
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detected between the glutamatergic vesicle marker VGLUT1 and SNAP23, which 

appeared rather in apposition to excitatory terminals in organotypic hippocampal slices. 

Based on its localization, it is unlikely that SNAP23 can compensate for SNAP25 and 

account for the remaining docked vesicles observed in SNAP25 KO synapses. Other 

possible candidates and SNAP25 homologues that are expressed in the brain are 

SNAP29 and SNAP47 (Holt et al., 2006; Steegmaier, 1998). SNAP29 lacks the 

membrane anchor present in SNAP25 and SNAP23, but is present on multiple 

membranes and can bind to a broad range of Syntaxins, including Syntaxin-1A 

(Steegmaier, 1998). SNAP29 has, however, been proposed to function as an inhibitor of 

synaptic transmission (Pan et al., 2005). SNAP47 also lacks a membrane anchor, but is 

enriched on intracellular membranes and can form SNARE complexes with 

Synaptobrevin-2 and Syntaxin-1 to mediate proteoliposome fusion in vitro (Holt et al., 

2006). More recently, SNAP-47 has been described to function in postsynaptic AMPA (α-

Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor exocytosis during long-

term potentiation (Jurado et al., 2013). It would be interesting to investigate whether 

changes in the expression level or localization of these alternative SNAP25 homologues 

might explain the residual synaptic vesicle docking and neurotransmitter release in 

SNAP25 deficient cells. 

In comparison to controls, Syntaxin-1A / Syntaxin-1BYFP neurons exhibited a reduction in 

the numbers of membrane-attached (0-2 nm) and closely tethered (0-4 nm) vesicles by 

38% and 35%, respectively. Previous electrophysiological analyses in hippocampal 

autaptic neurons of these mutant had revealed a 65% reduction of the RRP size and an 

80% reduction of EPSC size compared to controls (Arancillo et al., 2013). In comparison 

to the severe electrophysiological deficits in terms of the number of primed synaptic 

vesicles, I only detected milder effects on the number of membrane-attached synaptic 

vesicles. This discrepancy can most likely be attributed to the differences in the culture 

system, since organotypic slices were cultured for up to five weeks in a dense neuronal 

network, which is considerably longer than is possible with autaptic cell cultures. It is likely 

that during this extended culture period, compensatory, likely activity-dependent effects 

result in stabilization of the remaining Syntaxin-1BYFP molecules, potentially via cell 

homeostatic mechanisms functioning to protect Syntaxin-1BYFP from degradation. A recent 

study suggested that expression of Syntaxin-2, -3 and -4, which are BoNT/C resistant, can 

rescue neuronal cell death induced by proteolytic cleavage of Syntaxin-1 (Peng et al., 

2013). However, attempts to culture Syntaxin-1A/B DKO neurons in an organotypic slice 

culture system failed in my hands and neurons from this genotype died within the first 
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couple of days, indicating that most likely no other Syntaxin isoform can compensate for 

the loss of Syntaxin-1 in neurons in culture. 

The analysis of synaptic vesicle docking in Synaptobrevin-2 KO neurons revealed 

reductions in the numbers of membrane-attached (0-2) and closely tethered (0-4 nm) 

vesicles by 33% and 43%, respectively, compared to control samples. In a mass culture 

system, all Synaptobrevin-2 KO neurons were described to be able to release. However, 

evoked and spontaneous release were strongly impaired and the RRP size measured 

after hypertonic sucrose application was reduced to 10% of control levels (Schoch et al., 

2001). Here, it was noticed that 33% of Synaptobrevin-2 KO synapses seemed to be less 

affected by the loss of the v-SNARE, since they exhibited comparable numbers of 

membrane-attached synaptic vesicles as control synapses, whereas the numbers of 

membrane-attached and closely-tethered vesicles in the remaining KO synapses were 

reduced by 95%. By immunohistochemical stainings, I demonstrated that Synaptobrevin-

1, another Synaptobrevin isoform expressed in the brain (Takamori et al., 2006), has been 

upregulated in glutamatergic synapses in comparison to control slices. In a previous 

study, Synaptobrevin-1 was not detected by Western blot analysis in P0 Synaptobrevin-2 

KO mouse brain homogenates (Schoch et al., 2001). However, in situ hybridization 

experiments mapping the developmental pattern of Synaptobrevin-1 expression in the 

hippocampus have demonstrated that this Synaptobrevin isoform is first expressed at 

around P14 (Allen Developing Mouse Brain Atlas). In the present study, a striking 

increase in the number of glutamatergic synapses that exhibited Synaptobrevin-1 

immunoreactivity from 8% in control to 36% in Synaptobrevin-2 KO organotypicic slices 

was demonstrated. This finding was compelling, since control samples expressed 

Synaptobrevin-1 preferentially at non-glutamatergic synapses, with the majority of 

Synaptobrevin-1 puncta not colocalizing with VGLUT1. The presence of Synaptobrevin-1 

in 36% of all glutamatergic synapses correlated well with the observation that 33% of the 

analyzed tomograms exhibited normal synaptic vesicle docking. It can therefore be 

postulated that loss of Synaptobrevin-2 is at least partially compensated for by an 

upregulation of Synaptobrevin-1. The question as to whether Synaptobrevin-1 can rescue 

the physiological deficits observed in Synaptobrevin-2 KO neurons has not previously 

been addressed to my knowledge. However, it was not possible to detect Synaptobrevin-1 

in all glutamatergic terminals, explaining the presence of Synaptobrevin-2 KO synapses 

that harbored only very low numbers of docked synaptic vesicles. It cannot be excluded 

that additional Synaptobrevin homologues may also compensate for the loss of 

Synaptobrevin-2. A promising candidate is VAMP7, a tetanus toxin-insensitive 

Synaptobrevin-2 homologue that has been shown to reside in presynaptic terminals in the 
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brain, e.g. in the hippocampal mossy fiber synapses, and has been implicated in 

asynchronous synaptic vesicle release (Hua et al., 2011b; Muzerelle et al., 2003; 

Scheuber et al., 2006).  

In conclusion, the presence of a small pool of docked synaptic vesicles in the absence of 

the major synaptic SNARE molecules could be attributed to a compensatory effect by 

other SNARE isoforms or homologues. Above all, the majority of SNAP25 KO neurons 

have been shown to degenerate in culture, indicating that survival of the remaining 

neurons depends on an alternative SNARE isoform. Indeed, such a compensatory effect 

appears to operate in Synaptobrevin-2 deficient samples, in which an upregulation of 

Synaptobrevin-1 can rescue normal vesicle docking in a subset of glutamatergic 

synapses.  

 

4.6.  Increased vesicle sizes do not cause the deficiency in synaptic 

vesicle membrane-attachment 

 

In the present study, a significant increase in synaptic vesicle size was detected in 

Munc13-1/2, SNAP25 and Synaptobrevin-2 KO synapses, genotypes that also exhibited 

severe deficits in synaptic vesicle membrane-attachment. To address the possibility that 

synaptic vesicle docking at the active zone is inhibited as a consequence of increased 

vesicle size, the vesicle diameters of membrane-attached synaptic vesicles in KO 

genotypes were measured and compared to those in respective controls. Thereby it could 

be confirmed that synaptic vesicles of a larger diameter were still able to reach the active 

zone membrane in all three mentioned genotypes. Moreover, analysis of synaptic vesicle 

sizes in Synaptobrevin-2 KOPlus (normal docking) and KOMinus synapses (reduced docking) 

revealed that both groups exhibited significant increases in synaptic vesicle volumes. 

Since previous work has shown that short-term treatment of rat synaptosomes with 

tetanus toxin results in smaller synaptic vesicle sizes, the observed increases in vesicle 

size observed in the present study are likely a consequence of altered membrane-

trafficking caused by the permanent block of release (Fernández-Busnadiego et al., 

2010). Docking intermediates formed by large liposomes in in vitro assays have been 

found to be more stable than those of smaller liposomes (Hernandez et al., 2012). If the 

increased synaptic vesicle size displayed by Munc13-1/2 DKO, SNAP25 KO and 

Synaptobrevin-2 KO mutants had a negative impact on the fusogenicity of synaptic 

vesicles, an accumulation, rather than depletion, of docked/primed vesicles at the active 

zone membrane would be expected, in direct contrast to the results of the present study. 
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4.7.   Can trans-SNARE complexes be stabilized in vivo? 

 

Based on my data, it can be concluded that the neuronal SNARE proteins play an integral 

role in synaptic vesicle docking/priming in neurons. The findings presented in this study 

are important in the context of the ongoing discussion whether stable completely or 

partially assembled trans-SNARE complexes exist prior to vesicle fusion (reviewed in 

Jahn and Fasshauer 2012; Rizo and Südhof 2012). 

Central to this discussion is the problem that trans-SNARE complexes seem to be difficult 

to capture and to stabilize in vitro. Studies that used reconstituted SNARE complex 

formation assays led to a model according to which the two t-SNAREs Syntaxin-1 and 

SNAP25 form a highly reactive intermediate acceptor complex on the membrane prior to 

Synaptobrevin-2 engagement and full SNARE complex assembly (Fasshauer and 

Margittai, 2004; Pobbati et al., 2006). This t-SNARE acceptor complex has to be stabilized 

in vitro to prevent it from forming a dead-end complex, which results from the interaction 

of two SNARE motifs from two Syntaxin-1 molecules and two SNARE motifs from one 

SNAP25 molecule. Rendering a stable Syntaxin-1/SNAP25 (1:1) complex in vitro can be 

achieved after the addition of a Synaptobrevin-2 peptide that is comprised of the C-

terminal part of the SNARE motif, but lacks its N-terminus (N) (Hernandez et al., 2012). 

There is, however, evidence from liposome and single vesicle fusion assays that indicates 

that different SNARE-mediated docking and fusion intermediates can be distinguished 

and that trans-SNARE complexes may be stabilized prior to membrane fusion (Bowen et 

al., 2004; Cypionka et al., 2009; Kyoung et al., 2011).  

A more physiological approach to demonstrate experimentally the relationship between 

the physiological priming step and molecular SNARE interactions was undertaken by 

Sørensen and colleagues (Sørensen et al., 2006; Walter et al., 2010; Weber et al., 2010; 

Wiederhold et al., 2010). In these studies, mutations were introduced at different positions 

within the SNARE motifs of SNAP25 and Synaptobrevin-2 and the physiological effects 

were tested by overexpression of the respective constructs in chromaffin cells and/or 

neurons from respective null mutants. The authors consistently demonstrated that 

prevention of C-terminal SNARE zippering, by mutation of amino acid residues in the last 

hydrophobic C-terminal layers of the SNARE motif, decreases the ability of membranes to 

fuse both in vitro and in vivo. Abolishing N-terminal SNARE interactions, however, 

diminished the secretory vesicle priming efficiency in chromaffin cells with only minor 

effects in neurons. In this model, N-terminal interactions of the SNAREs define the primed 

synaptic vesicle state, whereas full C-terminal SNARE zippering is required for triggering 
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membrane fusion. These findings imply that stable partially N-terminal assembled SNARE 

complexes might indeed underlie the primed synaptic vesicle state. A recent study using 

the Synaptobrevin-2 C-terminal residue deletion mutant 84 in a liposome fusion assay 

demonstrated that liposome docking, defined by direct bilayer-bilayer contact, was 

unaffected in cryo-electron micrographs, whereas fusion was greatly abolished in vitro 

(Hernandez et al., 2012). The fact that N-terminal SNARE interactions allow vesicle 

priming (Sørensen et al., 2006; Walter et al., 2010; Weber et al., 2010; Wiederhold et al., 

2010) and docking (Hernandez et al., 2012) supports the hypothesis that partial SNARE 

assembly underlies the docked vesicle state.  

Taken together, there is evidence to support the hypothesis that stable neuronal trans-

SNARE complexes exist at an intermediate step prior to vesicle fusion. Consistent with 

this view, my data demonstrate a loss of membrane-attached synaptic vesicles within 0-4 

nm of the active zone membrane in SNARE-deficient neurons. The finding that 

interruption of SNARE zippering at the level of the last hydrophobic layers preceding the 

linker to the TMRs arrests vesicles in a primed/docked state, but prevents membrane 

fusion, appears to strengthen the validity of this model. It is therefore very likely that 

(partial) SNARE complex assembly is the molecular mechanism underlying synaptic 

vesicle docking and priming. 

 

4.8.  Can partially assembled trans-SNARE complexes be stabilized by 

Synaptotagmin-1 or Complexins? 

 

In the present study, it was demonstrated that Munc13 and CAPS proteins prime synaptic 

vesicles by enabling them to dock to the plasma membrane in a SNARE-dependent 

manner. In this docked/primed and fusion-competent synaptic vesicle state, neuronal 

SNARE proteins possibly form (partially) assembled SNARE complexes in order to secure 

fast C-terminal SNARE motif zippering in the presence of Ca2+ to trigger membrane 

fusion. In vitro, stabilization of the Syntaxin-1/SNAP25 (1:1) acceptor complex can be 

achieved by the presence of the Synaptobrevin-2 N, which will bind to the C-terminal 

SNARE motives of SNAP25 and Syntaxin-1, but leaves a free N-terminal binding site for 

full length Synaptobrevin-2 (Hernandez et al., 2012). Upon full-length Synaptobrevin-2 

engagement, zippering of the SNARE complex has been shown to slow down during the 

replacement of the first N-terminal layers of Synaptobrevin-2 N, but then rapidly resume 

towards the C-terminus (Hernandez et al., 2012). Whether, and if so, how partially 

assembled SNARE complexes are stabilized in vivo remains unclear.  
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Prime candidates for performing such a role are Synaptotagmin-1 and Complexins, based 

on their ability to interact with the SNARE complex. Complexins can bind via a central α-

helix to the assembled SNARE complex in a groove formed by the SNARE motifs of 

Syntaxin-1 and Synaptobrevin-2 (Chen et al., 2002). Previous analyses from Complexin-

1/2 DKO and Complexin-1/2/3 TKO mice revealed a reduction in evoked release, but no 

corresponding changes in RRP size, thus resulting in a decreased vesicular release 

probability (Reim et al., 2001; Xue et al., 2007, 2008).  

Moreover, genetic deletion of the major mouse Complexin isoforms had no impact on the 

mEPSC frequency in these studies. Based on these findings, it has been proposed that 

binding of Complexins to the SNARE complex might facilitate synaptic vesicle release 

(reviewed in Brose 2008). In the present study, Complexin-1/2/3 TKO neurons exhibited 

no significant changes in the number of membrane-attached synaptic vesicles in 

comparison to controls, correlating well to the unaltered RRP sizes measured 

electrophysiologically (Reim et al., 2001; Xue et al., 2007, 2008). However, recent studies 

described a decrease in the RRP and EPSC size and a massive increase in the mEPSC 

frequency after lentiviral knock-down of Complexins in mammalian mass neuron culture 

systems, prompting the authors to propose that Complexins function to clamp synaptic 

vesicles in a primed state prior to fusion, potentially by stabilizing SNARE complexes (Cao 

et al., 2013; Kaeser-Woo et al., 2012; Tang et al., 2006; Yang et al., 2010). This model is 

supported by data obtained from C. elegans Complexin null mutants, which revealed a 

severe reduction in evoked release and in the number of docked vesicles, a phenotype 

most likely explained by an increase in spontaneous fusion events in the absence of 

inhibitory clamping-functions (Hobson et al., 2011). The discrepancy between knock-down 

and the full knockout approaches can be explained by the introduction of a compensatory 

mechanism, that arises in response to long-term loss of Complexins, and ultimately 

reduces vesicular release probability in order to compensate for the absence of a fusion-

clamp and to provide a stable pool size. Alternatively, the knock-down approach could 

introduce false effects by inducing off-target effects of the RNAi, or a transient 

upregulation, or stabilization, of other molecular components of the release machinery to 

compensate for the decrease in neurotransmission caused by the loss of Complexins, 

thus explaining the increased mEPSC frequency. Moreover it has been shown that the 

increase in mEPSC frequency is highly Ca2+-dependent, allowing the possibility that 

differences between the knock-down and knockout approach might be related to 

differences in Ca2+-concentrations used between studies (Neher, 2010; Yang et al., 2010). 

It is becoming increasingly evident that different functional domains of Complexins could 

mediate a subtle interplay between facilitory and inhibitory effects on release (Cho et al., 
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2010; Li et al., 2011; Xue et al., 2007, 2009, 2010). However, my data clearly support a 

facilitatory role for Complexins in neurotransmitter release, since an inhibitory clamping 

function would potentially result in a decrease in the number of membrane-attached 

synaptic vesicles as observed in C. elegans (Hobson et al., 2011).  

Synaptotagmin-1 has also been proposed to function in clamping synaptic vesicles, either 

alone, or in concert with Complexins, in addition to its role as Ca2+-sensor for release. In 

mass, micronetwork or organotypic slice cultures, Synaptotagmin-1 KO neurons exhibit an 

increase in the mEPSC and mIPSC frequency (Kerr et al., 2008; Liu et al., 2009; Xu et al., 

2009). However, in autaptic neurons, such an increase has not yet been detected 

(Geppert et al., 1994; Liu et al., 2009). In various experimental settings, the genetic 

deletion of Synaptotagmins results in small, but rarely significant, decreases in the RRP 

size as measured by application of hypertonic sucrose solution or by Ca2+-uncaging 

(Burgalossi et al., 2010; Geppert et al., 1994; Jorgensen et al., 1995; Liu et al., 2009; 

Tang et al., 2006; Xu et al., 2009). In the present study, a decrease in the number of 

membrane-attached synaptic vesicles was detected in Synaptotagmin-1 KO synapses, 

indicating a reduction in the RRP of fusion-competent synaptic vesicles. A decrease in the 

number of membrane-proximal (0-40 nm) synaptic vesicles was detected whereas the 

general distribution of synaptic vesicles in the terminal appeared unchanged. Based on 

these findings, it cannot be excluded that Synaptotagmins may play a regulatory role in 

clamping synaptic vesicles prior to release, since an increase in spontaneous release 

would likely be observed as a decrease in the number of docked/functionally primed 

synaptic vesicles at any given point in time as it has been described for C.elegans 

Complexin null mutants (Hobson et al., 2011). However, the molecular mechanism 

underlying such a clamping function has yet to be solved. 

 

4.9. A regulatory, but not essential role of Synaptotagmin-1 in synaptic 

vesicle docking/ priming 

 

The precise molecular function of Synaptotagmin-1 prior to, or during, Ca2+-triggering has 

not yet been fully understood. However, two different models have recently been 

proposed (reviewed in Jahn and Fasshauer, 2012; Vennekate et al., 2012). Firstly, 

Synaptotagmin-1 could modulate synaptic vesicle priming prior to Ca2+-evoked fusion by 

stabilizing partially assembled SNARE complexes, thereby acting as a fusion clamp by 

preventing full SNARE complex assembly (See 4.8.). According to this model, 

Synaptotagmin-1 would respond to increases in intracellular Ca2+-concentrations by 
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triggering C-terminal zippering of the SNARE complex by either (1) displacing Complexins 

from the partially assembled SNARE complex, (2) unclamping the SNARE complex, or (3) 

binding to the plasma membrane in trans, thereby destabilizing the bilayer and potentially 

inducing positive membrane curvature to help to overcome the energy barrier for fusion 

(Hui et al., 2009; Martens et al., 2007; Radhakrishnan et al., 2009). This model, which 

assumes at least partial SNARE complex assembly in the docked/primed synaptic vesicle 

state prior to synaptic vesicle fusion, is supported by the findings presented in this study. 

Since all three components of the neuronal SNARE complex are required for efficient 

synaptic vesicle docking/priming, it can be concluded that trans-SNARE interactions prior 

to vesicle fusion are likely to form the molecular basis of synaptic vesicle docking. In the 

present study, it is demonstrated that in Synaptotagmin-1 KO neurons, synaptic vesicle 

docking in glutamatergic synapses is only slightly reduced. Moreover, the general 

distribution of synaptic vesicles is unaffected by the loss of Synaptotamin-1 KO and the 

vast majority of the vesicles within 40 nm of the active zone still reside in physical contact 

with the plasma membrane. However, the observed decrease in the number of membrane 

proximal vesicle numbers appears compatible with Synaptotagmin-1 performing a 

clamping function. Taken together, these findings indicate that Synaptotagmin-1, though 

not essential for synaptic vesicle docking/priming in neurons, might perform a regulatory 

function in this process. 

A second alternative model has recently been proposed according to which 

Synaptotagmin-1 performs an essential role in tethering/docking synaptic vesicles to the 

plasma membrane prior SNARE complex assembly (van den Bogaart et al., 2011; Jahn 

and Fasshauer, 2012; Vennekate et al., 2012). Ca2+-triggering by Synaptotagmin-1 would 

then result in Ca2+-dependent penetration of Synaptotagmin-1 into the plasma membrane, 

which would decrease the distance between the vesicle and plasma membrane bilayers, 

and would thereby bring t- and v-SNAREs into interactive range for SNARE complex 

formation. The docked/primed state of a synaptic vesicle would be defined by Ca2+-

independent Synaptotagmin-1 interactions with t-SNARE acceptor complexes and/or with 

PIP2 at the plasma membrane. Experimental support for this model comes mainly from in 

vitro studies. In the presence of Ca2+, a cytoplasmic stretch of Synaptotagmin-1 containing 

both C2 domains (C2A and C2B) can cluster liposomes at a distance of 3-5 nm measured 

after cryo-electron microscopy, which would correspond roughly to the calculated size of a 

single Ca2+-bound C2 domain oriented perpendicularly between the two membranes (e.g. 

vesicle and plasma membrane) (Araç et al., 2006; Seven et al., 2013). Recently, it was 

shown that Ca2+-unbound Synaptotagmin-1 could tether vesicles in a ~5-28 nm distance 

from the active zone membrane and in response to elevated Ca2+ levels reduce the 
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vesicle distance to below 5 nm by Ca2+-dependent PIP2 interactions, triggering SNARE 

nucleation and subsequent membrane fusion (van den Bogaart et al., 2011). 

Studies assessing the role of Synaptotagmin-1 in secretory vesicle docking aimed at 

providing evidence for this alternative model in a more physiological environment often 

produced rather controversial results. In Drosophila and C. elegans neuromuscular 

junction synapses, the absence of Synaptotagmin-1 results in a dramatic reduction in the 

total number of synaptic vesicles and in fewer docked vesicles per terminal, whereas no 

effects on vesicle numbers or the RRP size were originally observed in mouse presynaptic 

terminals (Geppert et al., 1994; Jorgensen et al., 1995; Reist et al., 1998). Other studies, 

however, have reported that lack of Synaptotagmin-1 in C.elegans, Drosophila and mouse 

neurons causes a decrease in total presynaptic vesicle numbers in addition to a docking 

deficit, most likely as a result of impaired vesicle recycling (Liu et al., 2009; Reist et al., 

1998; Yu et al., 2013). In the present study, a slight decrease in the synaptic vesicle 

terminal and cluster density in synapses was observed, a potential result of altered 

membrane recycling in the absence of Synaptotagmin-1. However, in mammalian 

hippocampal culture systems lacking Synaptotagmin-1, hypertonic sucrose solution 

application or Ca2-uncaging experiments revealed little, or no, change in the measured 

size of the RRP, therefore questioning an essential role of Synaptotagmin-1 in the 

synaptic vesicle priming step (Burgalossi et al., 2010; Geppert et al., 1994; Jorgensen et 

al., 1995; Liu et al., 2009; Xu et al., 2009). One recent study indicated a decrease in the 

RRP size in Synaptotagmin-1 KO dissociated hippocampal neuron cultures, which was 

accompanied by a decrease in the number of synaptic vesicles in presynaptic terminals 

and in the number of morphologically docked vesicles after high-pressure freezing, freeze-

substitution and electron tomographic analysis (Liu et al., 2009). 

Another study has proposed that Synaptotagmin-1 might indeed function in LDCV docking 

in mouse chromaffin cells (de Wit et al., 2009). Previous work by de Wit and colleagues 

indicated that a reduction of Syntaxin-1 protein levels by proteolytic cleavage with BoNT/C 

coupled with a complete genetic KO of the Syntaxin-1 binding partner and key regulator of 

secretory vesicle release, Munc18-1, results in a robust LDCV docking-defect in 

chemically fixed chromaffin cells with corresponding reductions in the RRP size (Gulyás-

Kovács et al., 2007; Toonen et al., 2006; Voets et al., 2001; de Wit et al., 2006, 2009). 

Based on these findings, de Wit and colleagues tried to solve the molecular pathway 

underlying LDCV docking in chromaffin cells by performing cross-rescue experiments in 

mouse mutants, ultimately proposing a molecular scenario for secretory vesicle docking 

that argues against a role of the fully assembled SNARE complex in LDCV docking (de 

Wit et al., 2009). In this study, de Wit and colleagues observed, in addition to the docking 
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defects upon Syntaxin-1 and Munc18-1 pertubation, a deficiency in LDCV docking in 

mutants lacking the second t-SNARE SNAP25, for which docking deficits were not 

previously reported, or the Ca2+-sensor Synaptotagmin-1 (Sørensen et al., 2003; de Wit et 

al., 2009). The conclusion of the authors was that SNAP25/Syntaxin-1 acceptor 

complexes on the plasma membrane act in concert with Synaptotagmin-1 on the vesicle 

surface to promote LDCV docking. Since Synaptobrevin-2 KO chromaffin cells failed to 

reveal a decrease in the number of docked LDCVs in previous studies, de Wit and 

colleagues proposed that SNARE complex formation occurs downstream of LDCV 

membrane-attachment (Borisovska et al., 2005; Gerber et al., 2008; de Wit et al., 2009). 

However, in contrast to neuronal synapses, which possess spatially and molecularly 

defined active zones, LDCV secretion from chromaffin cells is not restricted to specialized 

release sites, but rather occurs over the entire plasma membrane. As shown by de Wit 

and colleagues, loss of Munc18-1, Syntaxin-1, SNAP25 and Synaptotagmin-1 resulted in 

a loss of membrane-attached LDCVs as analyzed in two-dimensional electron 

micrographs after chemical and high-pressure freezing fixation (de Wit et al., 2009). 

However, in this study LDCVs did not only fail to dock to the plasma-membrane, but KO 

chromaffin cells exhibited also a change in the cumulative vesicle distribution within the 

first 100 nm of the plasma membrane, raising the possibility that the docking deficit might 

rather be a result of an inability of LDCVs to be transported and tethered to the plasma 

membrane. Moreover, a recent study using high-pressure freezing fixation for electron 

microscopic analysis of LDCV docking in PC12 cells revealed that proteolytic cleavage of 

Synaptobrevin-2 results in a decrease of membrane-attached LDCVs, with no major 

changes in the total number of vesicles close to the plasma membrane (Wu et al., 2012), 

whereas in contrast, genetic deletion of Synaptobrevin-2 in chromaffin cells has been 

previously shown to result in a significant increase in the number of LDCVs per chromaffin 

cell profile in electron micrographs and even in a slight, but not significant increase in the 

number of docked LDCVs (Gerber et al., 2008). 

It is very likely that the discrepancy between the data for LDCV docking in chromaffin cells 

and synaptic vesicle docking presented here arises from differences in sample 

preparation and in docking definitions applied between studies. To date, none of the 

studies analyzing LDCV docking in chromaffin cells have employed electron tomography 

to resolve fine differences in membrane distances between LDCVs and the plasma 

membrane, but rather focused on gross changes in the vesicle distribution throughout the 

cell. Following our model and taking in vitro data into account, it is possible that in 

chromaffin cells Synaptotagmin-1 has an important role in tethering LDCVs close to the 

plasma membrane (e.g. 5-28 nm) in a Ca2+-independent manner, e.g. by interactions with 
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the t-SNARE acceptor complex or PIP2 in a process upstream of LDCV membrane-

attachment and SNARE-complex formation (van den Bogaart et al., 2011; de Wit et al., 

2009). This would explain the decrease in membrane-proximal LDCVs seen in SNAP25, 

Syntaxin-1 and Synaptotagmin-1 KO chromaffin cells and could also explain why the loss 

of Synaptotagmin-1 introduces a significant decrease in the number of membrane 

proximal (0-40 nm) synaptic vesicles in our experimental setting. In a second step, 

downstream of LDCV tethering, LDCVs might then become physically docked/primed to 

the plasma membrane as a result of SNARE complex formation. Due to the technical 

limitations imposed by chemical fixation and conventional two-dimensional electron 

microscopy, past studies investigating LDCV docking in chromaffin cells have been 

unable to resolve small (<5 nm) distances between vesicle and plasma membranes. This 

would explain why genetic deletion of CAPS and Synaptobrevin-2 in chromaffin cells 

introduces major physiological deficits in the RRP size, when so far no major reductions in 

the number of docked LDCVs have been described (Borisovska et al., 2005; Gerber et al., 

2008; Liu et al., 2008, 2010; Speidel et al., 2005). This argument is supported by the fact 

that proteolytic cleavage of the individual SNAREs in PC12 cells results in a docking 

deficit of LDCVs close to the membrane, with no changes in the LDCV distribution further 

away from the membrane analyzed after high-pressure freezing fixation (Wu et al. 2012). 

In the present study, an accumulation of LDCVs in presynaptic terminals of 

Synaptobrevin-2 KO synapses was detected, which was even more dramatic than that 

observed for SNAP25 and Syntaxin-1 deficient neurons. In these genotypes, LDCVs were 

able to come in close proximity to the plasma membrane (<40 nm), a phenomenon that 

was hardly ever observed in control synapses, but vesicles were never in physical plasma 

membrane contact. 

In summary, I propose that the following processes occur sequentially prior to vesicle 

fusion: (1) Ca2-independent interactions between Synaptotagmin-1 and the t-SNAREs 

SNAP25 and Syntaxin-1, possibly in a PIP2 dependent manner, tether secretory vesicles 

close to the plasma membrane (5-28 nm). This interaction, although potentially crucial for 

LDCV release in chromaffin cells, may be less critical in neuronal synapses due to the 

dense active zone protein network, which might be able to employ alternative 

mechanisms to tether vesicles close to the plasma membrane. Moreover, CAPS proteins 

might be involved in the first tethering step since KO mice lack a prominent accumulation 

of tethered vesicles close to the plasma membrane. (2) In this membrane-proximal state 

of vesicles, members of the Munc13 and/or CAPS protein family can prime synaptic 

vesicles for fusion by initiating or accelerating SNARE complex assembly. The 

interactions between t- and v-SNAREs in trans requires vesicles to be within 5 nm of the 
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plasma membrane, therefore physiologically primed vesicles appear as membrane-

attached or docked. At this stage, Synaptotagmin-1 interactions with the SNARE complex 

might have a role in clamping vesicles in a release-competent state prior to fusion and 

Complexins might stabilize partially-assembled SNARE-complexes to secure a fast 

response after the arrival of an action potential. (3) Ca2-triggering would then be mediated 

by Synaptotgamin-1, which could act by destabilizing the membranes, by inducing 

membrane curvature to trigger fusion or by displacing another fusion clamp to initiate and 

synchronize full zippering of multiple SNARE complexes.  

Essentially, the data presented in this study support a model according to which synaptic 

vesicles require trans-SNARE interactions for membrane-attachment. Synaptotagmin-1 

might have an upstream regulatory or tethering function in this process. This model does 

not differ by much from the mechanism proposed by Mohrmann and Sorensen (2012), 

according to which Synaptotagmin-1/t-SNARE interactions "dock" synaptic vesicles to the 

plasma membrane and Munc13s can then "prime" vesicles to initiate SNARE complex 

formation. As it was demonstrated here, priming by Munc13s and CAPS proteins results 

in final membrane-attachment (<5 nm), which was termed "docking" and whose detection 

requires cryo-fixation and high-resolution three-dimensional electron microscopy 

techniques. Loss of Munc13s, SNAP25 and Synaptobrevin-2 causes a severe 

accumulation of vesicles close to the plasma membrane, possibly "tethered" to the 

release site by interactions with the active zone cytoskeleton in proximity of the membrane 

(5-10 nm). The initiation of this tethering could be performed by Synaptotagmin-1, since 

Ca2+-unbound Synaptotagmin-1 has been shown to tether liposomes within this range (i.e. 

5-28 nm) (van den Bogaart et al., 2011). 
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Figure 4.1. Molecular mechanisms of synaptic vesicle docking/priming 

A sequential model of synaptic vesicle membrane interactions at the active zone. In wild-type 
synapses, RIM proteins might initiate tethering of synaptic vesicles close to the plasma membrane 
(Fernández-Busnadiego et al., 2013). CAPS and/or Synaptotagmin-1 (dark green) could mediate 
this synaptic vesicle tethering step via Ca

2
-independent, PIP2-dependent interactions with the 

plasma membrane (grey circle) and/or the t-SNARE acceptor complex (not shown). Munc13 and 
CAPS initiate docking/priming of synaptic vesicles in a final membrane-attachment process. The 
synaptic vesicle docking/ priming step depends on the individual neuronal SNARE proteins 
Synaptobrevin-2 (blue), Syntaxin-1 (light green), SNAP25 (red) and possibly requires at least 
partial SNARE complex formation. Synatptotagmins and Complexins might stabilize partially-
arrested SNARE complexes prior to fusion. Model is not drawn to scale. Molecule schematics are 
taken from Jahn and Fasshauer 2012. 

 

4.10. Enlarged synaptic vesicles in Synaptobrevin-1, SNAP25 and Munc13 

 KO synapses 

 

Throughout the study, I noticed a significant increase in the vesicle diameter in synapses 

lacking either Munc13 proteins, or the SNARE proteins Synaptobrevin-2 or SNAP25. This 

increase in the vesicle size assessed by three-dimensional analysis of electron 

tomograms was accompanied by an accumulation of large vacuolar endosomal structures 

in two-dimensional electron micrographs in the aforementioned genotypes. Moreover, 

synapses from Syntaxin-1A / Syntaxin-1BYFP samples exhibited more endosomes per 

synaptic profile, despite normal synaptic vesicle sizes. The latter discrepancy is likely due 

to the fact that I was not investigating a full Syntaxin-1A/B DKO, but was rather studying a 

reduction in Syntaxin-1 levels in hypomorphic conditions. In SNAP25 and Synaptobrevin-2 
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KO slices, I detected an increase in the size of VGLUT1 positive puncta, which might be 

associated to the respective increase in the measured synaptic vesicle volumes for these 

genotypes. The increase in vesicle size is unlikely to result from an increase in vesicular 

neurotransmitter content, since the mEPSC amplitudes were unchanged, or even slightly 

decreased, in Synaptobrevin-2 and SNAP25 KO mice, respectively (Bronk et al., 2007; 

Schoch et al., 2001). However, recent data implicating SNARE proteins in postsynaptic 

receptor trafficking/exocytosis emphasize the need for caution when estimating vesicular 

quantal sizes by analysis of mEPSCs in SNARE-deletion mutants (Jurado et al., 2013). 

Indeed, it is likely that the observed increases in vesicle size are correlated to altered 

presynaptic membrane recycling in the absence of synaptic vesicle fusion. This coupling 

of exo-and endocytotic processes is thought to be largely Ca2+ and SNARE protein 

dependent (Deák et al., 2004; Hosoi et al., 2009; Koo et al., 2011; Peng et al., 2013; Wu 

et al., 2009; Xu et al., 2013). Early studies proposed that Synaptobrevin-2 could be 

involved in a fast endocytosis process in hippocampal synapses, since genetic deletion of 

Synaptobrevin-2 causes an increase in synaptic vesicle sizes (Deák et al., 2004). The 

observed defects in endocytosis are most likely caused by an inability of Synaptobrevin-2 

to interact normally with its endocytic adaptors AP180 and clathrin assembly lymphoid 

myeloid leukemia (CALM). AP180 KO mice exhibited retention of Synaptobrevin-2, but not 

VGLUT1, in the plasma membranes and an increase in synaptic vesicle sizes comparable 

with that observed in Synaptobrevin-2 KO synapses in the present study (Koo et al., 

2011).  

SNAP25 and Syntaxin-1 were shown to interact with intersectin and dynamin, 

respectively, both molecules involved in synaptic membrane recycling (Galas et al., 2000; 

Okamoto et al., 1999). A recent study proposed a mechanism according to which the 

observed cell death after genetic deletion or proteolytic cleavage of Syntaxin-1 and 

SNAP25 is most likely caused by a defect in t-SNARE dependent membrane recycling 

processes rather than by the defects observed in exocytosis (Peng et al., 2013). 

Interestingly, a SNAP25 knock-in mouse line carrying a mutation that abolishes protein 

kinase C-dependent phosphorylation of SNAP25 (SNAP25S187A) results in a reduction of 

presynaptic SNAP25 levels accompanied by a significant increase in the size of 

glutamatergic terminals in the striatum as assessed by VGLUT1 immunolabeling and 

electron microscopy (Nakata et al., 2012). Moreover, these mice commonly exhibited 

seizures and neurons with the knock-in mutation presented an accumulation of α-

Synuclein in presynaptic terminals, a feature associated with a range of 

neurodegenerative diseases (α-Synucleinopathies), including Parkinson's disease. 

Interestingly, these α-Synuclein accumulations seem to reside at the periactive zone, a 
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canonical site of endocytosis, indicating a relationship between altered endocytosis and 

SNAP25 expression levels in the synapse (Nakata et al. 2012). Taken together, the data 

presented here support the hypothesis that SNAP25 plays a role in presynaptic 

membrane recycling. 

In the Calyx of Held synapse, a large, highly specialized synapse in the auditory pathway, 

exo- and endocytosis can be monitored by membrane capacitance measurements made 

at the presynaptic terminals (reviewed in Schneggenburger and Forsythe 2006). During 

high synaptic activity, e.g. upon by high-frequency stimulation, the pool of fusion-

competent vesicles has to be constantly refilled while action potential-triggered fusion 

remains ongoing. The rate of this constant refilling of the RRP has been shown to be 

diminished when endocytosis is pharmacologically blocked or when the SNARE proteins 

Synaptobrevin, SNAP25 and Syntaxin were proteolytically cleaved (Hosoi et al., 2009; Xu 

et al., 2013). One interpretation of these findings was that the rate of RRP refilling is most 

likely not limited by the number of presynaptic vesicles present, but rather by the speed by 

which key players of the molecular release machinery (i.e. SNAREs, Synaptotagmins, and 

vesicular neurotransmitter transporter) can be cleared from active zone release sites 

and/or recycled into release-competent synaptic vesicles (Hosoi et al., 2009). 

The 28% increase in vesicle volume observed in Munc13-1/2 DKO samples is more 

difficult to explain, since so far no defects in endocytosis have been observed in these 

mice (Varoqueaux et al., 2002). Synapses lacking all Munc13 isoforms are completely 

silent, therefore exo-endocytosis coupling cannot be measured by capacitance 

measurements or by stimulation of FM dye uptake into vesicles. One possible explanation 

for the observed increase in synaptic vesicle volume could be that a constant block of 

neurotransmitter release prevents important vesicular proteins (i.e. Synaptotagmin-1, 

Synaptobrevin-2) needed for endocytosis from ever reaching the plasma membrane, a 

hypothesis which would be difficult to test experimentally in Munc13-1/2 DKO mice that 

die at birth and whose neurons are completely silent (Diril et al., 2006; Koo et al., 2011; 

Varoqueaux et al., 2002). However, it has been proposed that in hippocampal and Calyx 

of Held synapses, an increase in Ca2+-concentrations not only triggers release, but also 

endocytosis of a "readily-retrievable pool" of vesicles (Hua et al., 2011a; Wu et al., 2009). 

In the Calyx of Held, the Ca2+-dependence of endocytosis has been linked to Calmodulin, 

a Ca2+-dependent regulator of Munc13s (Wu et al., 2009). Indeed, Calmodulin inhibitors 

induce a defect in RRP refilling, which may be attributable to a slower rate of endocytosis 

(Sakaba and Neher, 2001; Wu et al., 2009). Interestingly, a recently published mouse line 

expressing a Ca2+-Calmodulin insensitive Munc13-1 variant exhibited a comparable 

decrease in the rate of synaptic vesicle replenishment into the RRP during high activity in 
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the Calyx of Held, indicating that Munc13-1 might be the major target in Ca2+-Calmodulin 

dependent presynaptic plasticity processes (Lipstein et al., 2013).  

The results of the present study support the possibility that Munc13s function in both 

synaptic vesicle priming and in coupling exo- and endocytosis at the active zone. Ca2+-

Calmodulin/Munc13 interactions during high synaptic activity might then potentiate the 

rate of pool refilling by boosting fast endocytosis and therefore fast release machinery and 

membrane recycling during release. Indeed, Munc13s may be interesting candidates for 

such a function due to their central position at the active zone and their interactions with 

RIM proteins, which link Munc13s and vesicles in close proximity of Ca2+-channels (Han et 

al., 2011; Kaeser et al., 2011). Moreover, it has recently been shown that synaptosomes 

lacking RIM1α, a major Munc13-1 and ubMunc13-2 binding partner at the active zone, 

exhibited a 26% increase in synaptic vesicle volumes, which closely correlates with the 

28% increase observed in Munc13-1/2 DKO synaptic profiles in the present study 

(Fernández-Busnadiego et al., 2013). RIM1α KO mice are viable, despite exhibiting 

defects in synaptic vesicle priming/docking, and a 60% decrease in Munc13 levels 

(Andrews-Zwilling et al., 2006; Deng et al., 2011; Han et al., 2011; Schoch et al., 2002). 

These findings indicate that the interaction between Munc13s, RIM proteins and 

potentially Ca2+- channels at the active zone might have a direct role in mediating exo- 

and endocytosis coupling. 

 

4.11.   A Munc13-1 conditional KO mouse line 

 

The aim of the second part of the present study was to generate a Munc13-1 conditional 

KO mouse line. Munc13-1 conventional KO mice exhibit severe impairments in synaptic 

transmission in glutamatergic synapses, causing death of the animals at birth (Augustin et 

al., 1999a). Within the last years it became evident that Munc13s are not only essential for 

priming synaptic vesicles under basal conditions, but also serve as important modulators 

of synaptic vesicle release through a wide range of molecular interactions with second 

messengers (Ca2+, DAG) in the presynaptic terminal (Lipstein et al., 2013; Rhee et al., 

2002). Moreover, it has been shown that Munc13s play a crucial role in presynaptic short- 

and long-term plasticity processes in a variety of excitatory neuron types (e.g. Calyx of 

Held, hippocampal mossy fiber synapse) (Breustedt et al., 2010; Chen et al., 2013; 

Lipstein et al., 2013; Yang and Calakos, 2011; Zhao et al., 2012a, 2012b). The majority of 

these studies revealed a dominant role of Munc13-1 in the investigated neuron types, a 

problem that required elaborated approaches to study the role of Munc13-1 in 
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physiological networks, e.g. in organotypic slice culture systems or by viral overexpression 

of dominant-negative Munc13-1 constructs in vivo (Chen et al., 2013; Yang and Calakos, 

2011; Zhao et al., 2012a, 2012b). With the help of a Munc13-1 CKO mouse line, it will not 

only be possible to assess the consequences of Munc13-1 loss in vivo, but also to study 

the functions of Munc13-2 and -3 in the absence of Munc13-1. Mice carrying a genetic 

deletion for Munc13-2, -3 or for both of these isoforms are viable and fertile indicating that 

Munc13-1 can compensate for their loss and to a large extent maintain adequate synaptic 

transmission in the affected synapses (Augustin et al., 2001; Chen et al., 2013; 

Varoqueaux et al., 2002).  

In the present study, I was able to generate Munc13-1 CKO mice and demonstrate that 

homozygously floxed animals from that line are viable and fertile. Moreover, viral 

expression of the Cre-recombinase protein in dissociated neurons successfully induces 

Cre-mediated deletion of exon 21 in the Munc13-1 gene, tested by PCR. In addition, 

Western blot analysis demonstrated the absence of Munc13-1 protein in Cre-recombinase 

expressing cultures, and of truncation products capable of exerting dominant-negative 

effects. Preliminary electrophysiological experiments in Cre-recombinase expressing 

autaptic cultures revealed significant reductions in EPSC amplitudes and RRP sizes in 

response to hypertonic sucrose solution by ~80%. To test whether Cre-mediated excision 

can take place in vivo, I started to cross the floxed Munc13-1 allele into a mouse line 

expressing Cre-recombinase under the adenoviral Ella promotor, which is expected to 

excise exon 21 of Munc13-1 in all neurons at an early developmental time-point (Lakso et 

al., 1996). Genotyping of the first offspring from these breeding pairs by PCR revealed the 

presence of heterozygous mice, carrying one Munc13-1 WT and one Munc13-1 Cre allele. 

Litters from double heterozygous breeding pairs are expected to contain mice which will 

carry two Munc13-1 Cre alleles and that will hopefully phenotypically resemble full 

Munc13-1 KO mice (Augustin et al., 1999a). Additionally, the floxed Munc13-1 allele will 

be crossed into a Munc13-2/3 DKO genetic background. This mouse line can be used to 

completely shut down synaptic transmission in a subset of neurons or at different 

developmental time-points, depending on the choice of promoter controlling Cre-

recombinase expression in specific mouse lines (Kaartinen and Nagy, 2001). Moreover, in 

these genetic backgrounds viral overexpression of Munc13 constructs carrying mutations 

in crucial regulatory domains (e.g. C2B, C1) in vivo can help to understand their respective 

functions in plasticity processes in defined, mature neuronal networks that have been 

difficult to study in culture (e.g. Calyx of Held).  
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5.    Summary 

 

In the present study, a combination of organotypic slice culture, cryo-fixation and three-

dimensional electron tomographic microscopy was employed to analyse synaptic vesicle 

docking in the absence of key proteins mediating neurotransmitter release. In this 

experimental setting, loss of priming proteins from the Munc13 and CAPS family caused 

an almost complete absence of docked synaptic vesicles. In both cases, reductions in the 

number of membrane-attached synaptic vesicles correlated well with previously observed 

physiological deficits in synaptic vesicle priming.  

These findings indicate that morphological synaptic vesicle docking and functional priming 

are correlates of the same molecular process. Genetic deletion, or reduced expression, of 

the individual SNARE proteins Synaptobrevin-2, SNAP25 and Syntaxin-1 resulted in a 

decreased number of membrane-attached synaptic vesicles, indicating that (partial) 

SNARE complex assembly underlies the molecular mechanism of synaptic vesicle 

docking and priming. Moreover, my data indicate that upregulation of Synaptobrevin-1 

may partially compensate for the loss of Synaptobrevin-2 function in docking/priming in a 

subset of glutamatergic synapses. This finding supports the hypothesis that residual 

release observed in neurons after genetic deletion of SNARE proteins is mediated by 

alternative SNARE homologues. Genetic deletion of Munc13s results in an almost 

complete depletion of release-competent (docked/primed) synaptic vesicles, consistent 

with the view that Munc13s initiate synaptic vesicle docking/priming, possibly via their 

interaction with the t-SNARE Syntaxin-1. However, the precise stage at which SNARE-

complex assembly is arrested in Munc13-deficient synapses could not be identified in this 

study. 

Loss of the Ca2+-sensor Synaptotagmin-1 caused a decrease in total and membrane-

attached synaptic vesicles. However, the reductions were not as dramatic as it would 

have been expected for a molecule that was formerly proposed to be the vesicular partner 

in vesicle docking. Based on our findings, Synaptotagmin-1 might have a role (1) in 

tethering synaptic vesicles to the plasma membrane prior to final membrane-attachment 

or (2) in clamping synaptic vesicles in a fusion-competent state until the arrival of the 

Ca2+-signal for triggering fusion. Genetic deletion of Complexin caused no significant 

changes in the number of docked synaptic vesicles, a result that provides support for a 

facilitatory, rather than inhibitory, role of Complexins prior to synaptic vesicle fusion.  

Synapses lacking Munc13 priming proteins, or the SNARE proteins Synaptobrevin-2 or 

SNAP25, exhibited increased synaptic vesicle sizes, indicating that the key components of 
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the synaptic release machinery might also play an important role in presynaptic 

membrane or protein recycling. 

In a second project, I generated a conditional Munc13-1 knock-out mouse line, which will 

be used to study the role of Munc13-1 in defined neuronal networks in vivo. Moreover, it 

will allow the function of other Munc13 isoforms (bMunc13-2, ubMunc13-2 and Munc13-3) 

to be studied in synapses which are otherwise dominated by Munc13-1. In this study, I 

demonstrate that homozygously floxed mice are viable and fertile and that after lentiviral 

Cre-recombinase expression in dissociated hippocampal neuron cultures, Munc13-1 

protein levels are undetectable by Western blot analysis. Cre-recombinase expressing 

autaptic neurons exhibit a massive reduction in the EPSC and RRP sizes as described for 

the conventional Munc13-1 knock-out mouse line (Augustin et al., 1999a). 
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6.    Supplementary Figures 

 

Figure S1 Light microcopic analysis of SNAP23 and VGLUT1 immunoreactivity in SNAP25 KO 
organotypic hippocampal slices 
 
Confocal laser scanning micrographs reveal a punctate pattern of SNAP23 immunoreactivity in neuropil 
from organotypic hippocampal slices (A; white framed region enlarged in B, C). SNAP23 
immunolabelling (shown with the 'fire' LUT to illustrate relative signal intensities) are not localized to 
VGLUT1-immunoreactive presynapses (white outlines; B). Merged SNAP23 (green) and VGLUT1 (red) 
channels (C).  Data as in panels A-C, but from SNAP25 KO organotypic hippocampal slices (D-F). 
Normalized spatial density of punctate SNAP23 signals (G). Normalized spatial density of VGLUT1 
immunoreactivity (H). Normalized mean area of VGLUT1 signals (I). G-I: Control (gray) and SNAP25 
KO (red): N=2, n=18; (Mean + SEM), P<0.001: ***; P<0.01: **; P<0.05: *. Scale bar: A,D, 10 µm; . C,F, 
2 µm. 
Imaging and Image analysis was performed by Dr. B. Cooper. 
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Figure S2 Light microcopic analysis of Syb-1 and VGLUT1 immunoreactivity in Syb-2 KO 
organotypic hippocampal slices 
 
Confocal laser scanning micrographs of Syb-1 immunoreactivity in neuropil from organotypic 
hippocampal slices (A; white framed region enlarged in B, C). Syb-1 signals (shown with the 'fire' LUT 
to reveal relative signal intensities) are occasionally localized to VGLUT1-immunoreactive presynapses 
(white outlines; B). Merged Syb-1 (green) and VGLUT1 (red) channels (C).  Data as in panels A-C, but 
from Synaptobrevin-2 (Syb-2) KO organotypic hippocampal slices (D-F). Normalized spatial density of 
Syb-1 signals (G). Normalized spatial density of VGLUT1 immunoreactivity (H). Normalized mean area 
of VGLUT1 signals (I). The proportion of glutamatergic terminals in which Syb-1 is detected (J). G-J: 
Control (gray) and Syb-2 KO (blue): N=2, n=27; (Mean + SEM), P<0.001: ***; P<0.01: **; P<0.05: *. 
Scale bar: A,D, 10 µm; . C,F, 2 µm. 
Imaging and Image analysis was performed by Dr. B. Cooper. 
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