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General introduction

1 General introduction

1.1 Background
1.1.1 Neurofeedback

eurofeedback (NF) is a variation of biofeedback that facilitates learned self-

regulation of an individual’s own brain activity, with the goal to produce

changes in brain function or behavior. Feedback on brain activity can be
provided through real-time functional magnetic resonance imaging (rt-fMRI) which
measures the blood-oxygenation level-dependent (BOLD) signal representing neural
activity. NF training enables subject to learn how to influence a target brain area that is
not normally under voluntary control, by usage of mental strategies that engage the
target brain area, such as mental imagery. Subjects get feedback of their brain activity
from the target area, which is presented in the form that is easily interpretable to inform
subjects about their performance. By viewing and appraising the feedback, an individual
can potentially learn to self-regulate their own brain activity. The learning process is
viewed as operant learning where an individual’s behavior is modified by its
consequences. In NF, this means adapting the mental strategies by trial-and-error based

on the antecedent feedback.

1.1.2 Motivations of study

The motivation of the current thesis stems from a preceding study in our lab on rt-fMRI
NF of the somatomotor cortex (SMC) (Auer and Frahm, 2011). The present work aims to
conceptionally extend previous findings by moving on to explore rt-fMRI NF in a
circumscribed cognitive brain area. The cognitive brain area of interest is the anterior
mid-cingulate cortex (aMCC), a division of the cingulate cortex that has a central role in
cognition — integrating cognitive, limbic and motor control (Shackman et al,, 2011). Rt-
fMRI NF studies on the cingulate cortex are scarce, because of the need to meet several
new challenges. The first difficulty arises from the technical and physiological nature of
the BOLD signal, which manifests in a feedback delay of ~10 seconds. This in turn,
brings about a psychological challenge to the conventional rt-fMRI paradigm;
specifically, the implicit temporal contiguity of the delayed feedback signal and the
higher cognitive load induced by simultaneously performing a mental strategy and
appraising the feedback. Secondly, rt-fMRI NF on the aMCC is also confronted with the

problem of self-regulating the selected brain area itself, both in terms of lack of clear
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mental strategies to voluntarily activate the aMCC, and possible confounds in regulating
a brain region that itself is involved in feedback appraisal. All of these challenges are
described in more detail in this thesis. The work presented here is the first extensive rt-

fMRI NF study of the aMCC.

1.1.3 Aims and scope of the thesis

In the experimental framework of a rt-fMRI NF study, the initial step is to define a target
region to be trained. Thus, the first goal of this thesis (Chapter 2) was to establish a
robust functional localization method to define the aMCC. One behavioral test, the
Continuous Performance Task (CPT) is employed; and two different fMRI analysis
methods are compared, i.e. the General Linear Model (GLM) and Independent

Component Analysis incorporating GLM (ICA-GLM).

The next step is to train the target region with NF, so that the second goal
(Chapter 3) was to examine the possibility of learned self-regulation of the aMCC
through extensive rt-fMRI training. For this purpose, a novel NF paradigm is introduced
that uncouples self-regulation and feedback appraisal to resolve the challenges involved
in rt-fMRI NF of the aMCC. This novel “Serial” paradigm is compared with the
conventional “Parallel” NF paradigm. In addition, control groups which do not undergo
NF training are included. This chapter also explores factors that promote learning in

self-regulation of the aMCC.

The final step is to test the behavioral effects of rt-fMRI NF training. This third goal
(Chapter 4) specifically asks if successful NF self-regulation of the aMCC leads to changes
in behavioral measures and/or brain activity. Two behavioral tests, the CPT and the
Flanker task, were employed before and after rt-fMRI NF training to measure such

changes.

1.2 Structure of thesis

This thesis is divided into five chapters. Chapter 1 is a general introduction to NF. Three
main chapters (Chapter 2, 3, and 4) contain the bulk of the experimental studies using
rt-fMRI NF. Each of these chapters has its own Introduction, Material and Methods,
Results and Discussion section. For a more specific and in-depth introduction, the reader
is kindly referred to the individual chapters. Chapter 5 offers a summary, which
collectively reviews the work in this thesis. Chapter 6 provides an outlook providing

additional thoughts about future prospects of rt-fMRI NF aMCC study.
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1.3 Functional MRI in neurofeedback: implementations and
applications

This part is presented as published in the peer-reviewed journal Malaysian Journal of
Medical Sciences. This manuscript describes methodological aspects of functional
magnetic resonance imaging (fMRI) and real-time fMRI (rt-fMRI), implementations of rt-
fMRI NF, a short overview of NF training in various brain regions, and possible
applications of NF as a supplementary therapy tool. Permission from the Malaysian
Journal of Medical Sciences has been obtained for the use of this publication as part of a

doctoral thesis.
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Abstract

Neurofeedback (NFB) allows subjects to learn how to volitionally influence the neuronal
activation in the brain by employing real-time neural activity as feedback. NFB has already been
performed with electroencephalography (EEG) since the 1970s. Functional MRI (fMRI), offering
a higher spatial resolution, has further increased the spatial specificity. In this paper, we briefly
outline the general principles behind NFB, the implementation of fMRI-NFB studies, the feasibility
of fMRI-NFB, and the application of NFB as a supplementary therapy tool.

Keywords: fMRI, learning, neurofeedback, self-regulation

Neurofeedback Using Functional
Magnetic Resonance Imaging

Neurofeedback (NFB) is a technique which
allows subjects to learn how to volitionally
influence the neuronal activation in the brain. The
principle behind NFB training in general is that
brain activity is self-modifiable through operant
conditioning where the subjects are provided with
feedback about ongoing neuronal activation with
the goal to regulate it, and a “reward” is given
should a certain level of activity be achieved. This
volitional control of defined aspects of the central
nervous system was successfully implemented
at first using electroencephalography (EEG),
whereby healthy subjects learn to control their
electrical brain activity. EEG-NFB has been
effectively applied to treat clinical conditions such
as attention deficit hyperactivity disorder (ADHD)
(1,2) and epilepsy (3,4).

The concept of ‘interactive experimental
paradigms’ was envisioned nearly two decades ago
with the advent of real-time functional magnetic
resonance imaging (rt-fMRI) (5). Rt-fMRI, which
allows for high spatial resolution (in the range of
millimetres) and imaging of activity across the
entire brain within a couple of seconds, all done
non-invasively without the need of surgery or
injection of contrast agents, has paved the way for

a new NFB paradigm. fMRI measures the blood
oxygenation level-dependent (BOLD) response,
i.e., signal differences due to local changes in
the concentration of deoxygenated haemoglobin
in the brain tissue, which depends on neuronal
metabolism and activity. Specifically, the BOLD
contrast isa result of magnetic field inhomogeneity
change brought about by varying levels of
deoxyhaemoglobin (dHb) in the intracellular
space of the red blood cells in blood vessels. dHb
distorts the magnetic field around the blood vessel,
enhancing the magnetic field inhomogeneity
and thus, lowering the BOLD signal. Yet neural
excitation increases the BOLD signal. This is
due to a regional increase in cerebral blood flow
(CBF) that exceeds the oxygen consumption
rate, which ultimately results in an oversupply of
oxygenated blood. Thus, the net effect is a drop
in dHb concentration, which leads to an increase
in the signal strength (as reviewed in (6,7)). The
maximal change of the BOLD signal in response
to neural activity is delayed by approximately 6
seconds. The relationship between the measured
fMRI signal and the underlying neural activity
has been thoroughly investigated, and there is
solid evidence for a strong correlation between

Malays J Med Sci. Oct-Dec 2013; 20(5): 5-15
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the BOLD signal and the local field potential as a
measure of the electrical brain activity (8).

Recent technical developments have made
it possible to analyse the data online as they are
collected (hence, the term “real-time fMRI”), so
that the resulting information is immediately
available and can thus be used to guide a person’s
attempt at self-regulation according to the
experimenter’s parameters (9). NFB provides
a new approach in neuroscience by studying
brain plasticity and functional reorganization
after continuous training of volitional control of
defined brain regions (10).

In this paper, we focus on general principles
behind NFB, and how it can be implemented using
fMRI. With evidence from our results as well as
from the literature, we demonstrate the feasibility
of fMRI-NFB. Finally, we highlight some possible
applications of NFB as a supplementary therapy
tool.

How neurafeedback can influence brain
Jfunctions

Self-regulation of neural activity

Numerous studies have proved that subjects
can learn how to influence their brain activity.
The growing interest is reflected in the increasing
rate of publications on rt-fMRI from ca. one
paper per year to about seven papers per year
following the first publications on fMRI-NFB in
2002/2003 (11). Over the course of several NFB
training sessions, subjects have successfully
come up with a strategy or optimised an already
existing one to elicit the desired level of activation.
The importance of feedback from the ongoing
activation as a predictor of success is undeniable
and can be elucidated by various controls used
in NFB experiments. The first control for the
specificity of the NFB training effect is the transfer
experiment, which is the comparison between pre-
and post-training measurements, during which
subjects try to regulate their own brain activity
while not provided feedback. This comparison
would tell us whether the subjects’ ability to
regulate their brain activity has improved. On a
higher level, behavioural tests may prove whether
the training effects generalise to produce any
behavioural changes. The transfer experiments
and the behavioural tests by themselves, only
prove that the investigation had an effect on
the targeted brain function (specificity in brain
function). On the next level, control subjects who
do not undergo NFB training can prove that the
effect occurred due to the NFB training and not
by chance (specificity in time). However, only
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subjects exposed to non-specific stimuli can prove
that the effect is very specific to the NFB setup and
not to non-specific elements of the training such
as physical rest, scanner noise, concentration on
the task, and observing a variable signal. These
non-specific elements can be controlled with no-
feedback training, sham feedback (feedback from
a different region) or yoke feedback (feedback
from another participant). Carefully designed
studies must include one or more controls. A
recent review by a group of prominent authors in
the field of fMRI-NFB highlighted the importance
of positive controls for future research (12), which
would allow comparisons of NFB results to other
means that efficiently achieve the desired effect.

The implications of learned self-regulation
of a brain area are two-fold. The first implication
of NFB would be to complement conventional
neuroimaging methods in making inferences
about brain function. Conventional neuroimaging
experiments measure brain activity as the
dependent variable which changes due to
sensory stimulation or performing a behavioural
task, while NFB allows investigating the effects
of changing the BOLD signal (independent
variable) on behaviour (dependent variable).
Therefore, while conventional neuroimaging
studies provide correlational information, fMRI-
NFB complements these methods by additionally
allowing researchers to investigate questions
of causality (12). The potential impact would be
substantial as corresponding capabilities are
currently limited to interventional techniques
such as transcranial magnetic stimulation,
deep brain stimulation, and focal lesions. The
second implication of the causal link between
brain activity and behaviour is the possibility to
modulate behaviour by influencing brain activity.
One may argue against the success of NFB by
saying that it merely trains the regulation of blood
flow instead of the neuronal activity, particularly
because biofeedback itself has been employed for
modulating blood pressure (13). The modulation
of the behaviour as a result of self-regulation
of the corresponding neural activity is a proof
against this argument.

Change in brain function and structure

In a study of London taxi drivers’ brains
structure, a correlation between the changes in
volume of the right posterior hippocampus — a
structure that stores spatial representations of
the environment — and the time spent as a taxi
driver has been reported, suggesting a plastic
change in healthy adult brains in response to
environmental demands (14). A follow-up study
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detected no correlation of de novo navigational
skills with brain structure; thus, providing further
evidence that the structural changes observed in
the taxi drivers were acquired and not merely due
to innately good navigation skills (15). Recently,
similar experience-dependent structural changes
have been demonstrated in white matter, as well:
a localised increase in fractional anisotropy, a
measure of microstructure, has been detected in
white matter underlying the intraparietal sulcus
— an area involved in visually guided movements
of the eye, hand, and visuo-motor coordinate
transformation — following training of a complex
visuo-motor skill (16). All these results provide
evidence that not only the function but also the
structure of our brain can be altered by regular
mental training even in adulthood.

These promising results allow us to
hypothesise that NFB, by its nature of subjecting
participants to self-regulation training for a
certain duration, may also induce structural brain
changes. So far, studies have focused mainly on
the feasibility of f/MRI-NFB in healthy subjects ora
clinical population, i.e. whether one can learn how
toinfluence their own brain activity. Changesin the
brain due to NFB training have been investigated
only recently. Modulation of the relevant
functional connectivity has been demonstrated
after NFB training of the anterior insula (17,18),
the left amygdala (19), auditory attention-related
brain areas (20) and the somatomotor cortex
(21,22). Modulation of functional connectivity
has also been demonstrated in our study where
four weeks of NFB training of the somatomotor
cortex (i.e. target brain area) induced an increase
in functional connectivity (23) between the target
brain area and the anterior mid-cingulate cortex
as a result of the increased cognitive control over
the target brain area. Structural connectivity
changes, however, proved to be ambiguous (24).

A Typical fMRI Neurofeedback
Experiment

Data acquisition in rt-fMRI

Recent advances have rendered real-time
analyses possible, so image reconstruction,
transfer, and analysis can be accomplished within
the time frame necessary for the acquisition of a
single volumetric dataset (repetition time: TR)
— typically within 2 seconds. Most scanners are
equipped with a BOLD echo-planar-imaging
(EPI) sequence enabling fMRI, but acquired
volumes are usually available only in one package
after finishing the whole measurement. Because

built-in solutions for fMRI analysis are usually
inadequate due to a lack of processing options,
access to the volumes by an auxiliary tool which
performs online fMRI analysis is also essential.
Most companies provide option for real-time
export of the acquired data which reconstructs
each volume one-by-one right after its acquisition
(i.e. online), therefore allowing parallel analysis
with the acquisition. At the time of writing, some
companies’ solutions (e.g. Philips’) work out-
of-the-box, while others (e.g. Siemens’) require
additional adjustments to ensure  maximal
temporal consistency (25).

Apart from the real-time access to the data, a
separate computer dedicated to real-time analysis
is also necessary. The computational burden of the
real-time analysis is higher than that of any other
NFB component, therefore this computer should
be powerful enough to perform all the necessary
processing. In other words, a computer with high
processing power would allow a higher number
of more complex processing steps. The results of
the analysis need to be presented to the subject
in parallel with the acquisition, which requires
a stimulus-generating computer presenting the
feedback to the subject through a beamer or LCD-
goggles in the case of a visual feedback, or through
headphones in the case of auditory feedback.
A connection between the scanner and the
stimulus-generating computer may be also useful
(but not essential) to compensate for the temporal
variability of the analysis and to synchronise
feedback presentation with the acquisition via a
trigger pulse from the scanner (Figure 1). Because
this variability is usually well below the TR that
is generally used, simply presenting the results of
the analysis as soon as they are available can be
also a viable solution.

Visual feedback is the most commonly used
feedback modality because vision is the most
dominant human sense, and visual feedback has
been shown to surpass auditory feedback (26).
The graphical representation of visual feedback
varies from a continuously updated graph (27),
smiling avatars (28) to fluctuating levels of a
thermometer (29) or fire (30). The subjects are
usually informed of the feedback presentation
delay, which depends on the image acquisition
and processing time, and the inherent delay of
the BOLD signal, which takes 6 seconds to peak.
This does not allow “immediate” feedback and
control of the NFB signal like EEG-NFB does,
thus leading to reduced contingency, which in
some cases could render the NFB training with
fMRI more difficult.
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Data analysis

There are a tremendous number of pre-
processing techniques (motion correction to
ensure spatial consistency in time; correction
of the distortion due to magnetic field
inhomogeneity; slice timing to ensure temporal
consistency across slices acquired at slightly
different time points; spatial normalisation
to ensure spatial consistency across subjects;
spatial filtering to improve signal-to-noise ratio
at the expense of effective spatial resolution) and
evaluation methods (univariate and multivariate;
model-based and model-free approaches) at
hand, and all of them are applicable in real time
as well. The main challenge is how to increase
speed while maintaining quality at the same
time. Motion correction is the most important
step, because it ensures the spatial consistency
over time. It is also the most time-consuming;
therefore, its optimisation usually means finding
the trade-off between time and quality (31,32).
Distortion correction and spatial filtering may
further improve the data quality (33).

The other essential step is to find the spatial
correspondence between the volumes and the
target region(s) of interest (ROI) selected for
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feedback. These ROIs can be selected on a
functional oranatomical basis, orbased on an atlas.
Using a functional localiser only requires a within-
subject (i.e. rigid-body) registration, which can be
easily combined with the motion correction: we
only have to specify the first scan of the functional
localiser measurement as a reference scan for the
motion correction. Using the anatomical scan of
the given subject or an atlas additionally requires
affine registration and involves spatial filtering.
The former is more computationally intensive,
while the latter decreases effective spatial
resolution. A more preferable approach could be
to map the ROI obtained from the anatomy or
an atlas to the functional volume of the actual
measurement (34), which is fast and preserves the
original functional data.

There are two main groups of evaluation
approaches to analyse fMRI data in real time.
The growing-window or incremental approach
(35) simply uses all available data; therefore, its
statistical power increases with more acquired
data. On the other hand, it rather provides
information about the mean activation over time.
The sliding-window or constant approach uses
only a temporal subset of data, thus keeping the
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Real-Time fMRI Analysis

Figure 1: Real-time fMRI neurofeedback setup. The real-time fMRI neurofeedback
system set up is a closed loop. The subject tries to self-regulate their
brain activity while getting feedback of their own brain activity from the
stimulus-generating computer through a beamer or LCD-goggles.
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statistical power fixed and reduced compared
with the maximum achievable with the growing-
window approach. The sliding-window approach
(36) reflects the current activation state better,
and the smaller the window’s width, the better
the temporal resolution. For both approaches, all
the statistical evaluation techniques developed
for conventional fMRI are available, such as
t tests (37), correlation analysis (38), (multiple)
regression (39), and independent component
analysis (40). The scan-to-scan approach can be
considered as a sliding-window approach with
a window width of one single scan; therefore
it provides maximum temporal resolution.
However, this approach suffers the most from the
signal fluctuations resulting from both technical
and physiological noise. The loss of temporal
information about the noise can be partially
compensated for in the spatial domain; namely
by accumulating even weak information available
in more voxels. The most straightforward and the
most widely employed approach is to average the
signal of a subset of voxels (ROI-based analysis).
In this case, a “background” ROI taken from a
non-involved area should also be used to correct
for the global changes during the measurement
due to changes in the general arousal state or in
the breathing rate. The introduction of “control”
phases during the measurement allows taking the
last several time points of the previous control
period as reference, thus correcting for the signal
drift:

NS, =(S./ Sprevious._contral = 1) x 100

where NS, and S; correspond to the normalised
and raw signal intensity at time point ¢,
respectively, while Sprevious conrar Tefers to the mean
signal intensity during the previous control
period. To increase the robustness and minimise
the sensitivity of the normalised signal to signal
fluctuations around zero, a double logistic-like
function (f) for calculating the feedback signal
(FS) with the following characteristics can be
implemented: a relatively flat centre between
-0.5 and 0.5 NS ensures that small changes in
NS will have limited effect on FS, while plateaus at
-2 NS and 2 NS control saturation (Figure 2).
These values may be adjusted for the actual
experiment:

FS =f(NS,)
A  more sophisticated approach for

combining signals from more voxels is employing
a pattern recognition technique, which offers

good sensitivity even if the signals in each voxel
of the ROI do not change identically (41). Its real-
time implementation has the ability to provide
feedback based on intuitive translations of “brain
state” rather than localised fluctuations (42).

Outline of a neurofeedback training

NFB training enables the self-regulation of
the activity of a defined brain region. In the case
of fMRI-NFB, a region or network of interest
may be selected from which the signal is then
acquired. The selection of an ROI can be done
structurally as well as functionally. In structural
localisation, ROIs are generally defined based
on macroanatomy, such as gyral anatomy. It
is best to define such ROIs for each individual
based on their own anatomy, since there can be
substantial inter-subject variability. In functional
localisation, a separate ‘localiser’ measurement is
used to identify voxels in a particular anatomical
region that show a particular response (e.g. voxels
in the fusiform gyrus that are more responsive to
faces than to other objects); these voxels are then
explored to examine their response to NFB (43).

Then subjects undergo several training
sessions in which they are instructed to come
up with their own mental strategy and optimise
it in order to enhance self-regulation of their
brain activity. The mental strategy is achieved
by mental imagery, where the subjects need to
imagine situations or feelings without overtly
experiencing them. Concurrently, subjects also
view feedback originating from their own brain
activity, which guides them towards selecting the
most efficient strategy. It is hoped that during
successful NFB training, the subjects’ ability to
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Figure 2: Double logistic-like function used to
calculate feedback signal (FS).
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influence their brain activity would gradually
increase, and training effects would be manifested
when subjects find a strategy that reliably elicits
the desired brain activation(s) even without the
help of feedback. Therefore, the ultimate test of
the NFB training effect is the transfer condition,
which is the comparison between pre- and post-
training measurements, during which subjects
try to regulate their own brain activity while not
provided feedback. This comparison would tell
us how much the subjects’ ability to regulate
their brain activity has improved. In addition,
behavioural tests may also be performed pre-
and post-NFB training to investigate whether
the training effects generalise to produce any
behavioural changes.

Neurofeedback Training in Various
Brain Regions

Ever since fMRI-NFB has been shown to be
feasible, it has paved the way for researchers to
experiment with fMRI-NFB training in various
areas of the brain. Researchers have trained
subjects to volitionally control specific cortical
and subcortical areas such as the primary motor
cortex (22), the supplementary motor area (SMA)
(27), the anterior cingulate cortex (ACC) (27,30),
the amygdala (19,44), and the insula (45). Here,
we attempt to briefly summarise major studies of
fMRI-NFB training in these areas.

Somatomotion: Training the somatomotor
cortex

The somatomotor cortex (SMC)isresponsible
for planning, control, and execution of voluntary
movements. The SMC is easily accessible and
produces a robust signal; moreover, it is a
“natural” target for a brain-computer interface,
an approach attempting to establish mind control
over machines such as computers, robots, and
prosthetics. Therefore, the SMC was one of the
first (46) and perhaps the most often targeted
areas when investigating the feasibility of fMRI-
NFB.

In a pioneering study, subjects were shown
to be able to increase their BOLD signal activity in
the hand area of the SMC more significantly than
the controls who did not receive valid feedback
(21). This also held true when two weeks of NFB
training included only daily self-practice (without
scanning) of motor-hand imagery established
during an initial fMRI-NFB session (22). This
group also showed that the NFB training resulted
in the recruitment of additional neural circuitries
implicated in motor skill learning such as the
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hippocampus and the limbo-thalamo-cortical
pathway.

In the SMC, the success of NFB training
possibly depends on the length and/or the
distribution of training. Recent studies have
shown that short training periods (1—4 runs
within one day) (47,48) could be inadequate to
achieve self-regulation of an ROI. Our own results
have shown that in an intensive 48-run NFB
training period that spanned four weeks, subjects
who underwent NFB training of the SMC showed
a distinct increase of the BOLD signal in the
SMC (49). In addition, successful NFB training
of the SMC not only resulted in enhanced fMRI
activation during transfer (i.e. without feedback)
but also during overt finger movements (23). The
latter also implies functional plasticity changes in
the SMCin an overt movement condition involving
activation of the trained neuronal substrate. We
could also prove that training efficiency (i.e. how
subjects were performing during the training) was
highly correlated to the overall training success
(pre- to post-training transfer), which helps us to
predict the effect of training on the fly (50).

Emotion: Training a single ROI and a whole
network

Emotions shape human beings’ interaction
with the world. Ever since the scientific community
developed interest in understanding the neural
basis of emotion and its relationship to cognitive
function and behaviour, fMRI has been used
as a tool to achieve this goal. As neuroimaging
technology advanced, neuroscientists began to
wonder if emotions can be self-regulated via NFB.
One of the early fMRI-NFB studies in the domain
of emotion was on the amygdala (51).

Since then, researchers have embarked on
investigating the feasibility of fMRI-NFB in the
emotional domain. Self-regulation has been
investigated in the subgenual ACC (sACC) — a
region involved in the generation of affective
states and implicated in psychopathology (52,53).
In that study, subjects had to come up with one
strategy for increasing positive mood (hence
decreasing the sACC activity) during the NFB
training. Subjects who had received feedback
were able to decrease their sACC activity, in
contrast to subjects who received sham feedback.
Similarly, self-regulation of the amygdala using
positive autobiographical memory retrieval was
successful in subjects who received feedback but
unsuccessful in the sham control group (19).

Training of areas involved in emotional
regulation could be beneficial for patients who
suffer from emotion impairment, which manifests
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in depression, bipolar disorder, and obsessive-
compulsive disorder, among others. The aim of
doing NFB training in these areas is to the reduce
emotional symptoms of a particular disorder.

NFB using fMRI can be applied to train
not only a single ROI but also a whole network.
Training the emotion network in the brain, which
includes the amygdala and the insula, has shown
that subjects were able to modulate the activity of
that network (29,44). Training also generalised
to a behavioural measure in which participants’
sensitivity to aversive pictures had increased
with learned regulation of the insula (29).
Consequently, promising results in this domain
have steered researchers towards using actual
patients in NFB studies.

Training the cognitive engine— Anterior Mid-
Cingulate Cortex

In addition to training the motor and limbic
cortical areas that directly control action and
emotion respectively, training the anterior mid-
cingulate cortex (aMCC), the cognitive engine
that drives both domains, has also been in the
focus since the beginning (54). The aMCC is
best described as a limbic premotor cortex with
regard to its functions in general (55). New data
gathered from meta-analysis suggest integration
of three domains in the cingulate cortex: negative
affect, pain, and cognitive control (56). This has
shown that all three of these domains activate a
common region within the aMCC. Since the aMCC
might implement a domain-general process (56),
we may hypothesise that self-regulation of the
aMCC activity could be beneficial to any of those
three domains. The feasibility of fMRI NFB in the
aMCC was shown first by Weiskopf et al. (54) and
later applied in the chronic pain domain (30).

Application of Neurofeedback as a
Supplementary Therapy Tool

Neuroimaging already contributes to the
treatment of mental disorders by providing
information about the pathophysiological sources
that may become the targets for physical (TMS,
deep brain stimulation) or NFB intervention (57).
NFB treatment can also be incorporated into
a comprehensive biopsychosocial intervention
package. However, we need to be aware that some
neuropsychiatric diseases are heterogeneous;
for example, depression may be brought about
by focal lesions in the brain but can also occur
as a result of a range of other mental disorders.
Nevertheless, if a causal link is shown between
mental illness and dysfunctional activity in

specific areas or networks in the brain, the ability
to self-regulate these areas may potentially have a
favourable effect on a patient’s mental health (57).

NFB using fMRI has recently been used to
treat Parkinson’s Disease (PD) (58). PD patients
who underwent NFB training learned how to
increase activity in the SMA using motor imagery
and subsequently improved their motor speed of
finger tapping, an overt movement. The transfer
also generalised to their clinical ratings of motor
symptoms, which improved after the NFB
training. PD patients who did not receive feedback
of their SMA activity did not gain control of SMA
activation and consequently showed no motor
improvement. This study has shown that self-
regulation of motor circuits in PD patients through
fMRI-NFB is achievable and may be clinically
beneficial. In a proof-of-concept study of NFB in
depression, depressed patients who underwent
NFB using a positive emotion strategy not only
learned to self-regulate emotion networks but
also reduced their clinical symptoms (59). These
studies are certainly promising, but randomised
clinical trials would be needed to assess the
clinical efficacy of NFB as supplementary therapy
tool for these psychiatric diseases.

The use of NFB in clinical applications as
a supplementary treatment is not limited to
psychiatric diseases but could also be applied
to lifestyle diseases such as obesity. The ability
to intervene directly in the brain by voluntary
regulation of eating-related regions could be
used as a tool to increase the control of such
brain regions and consequently influence eating-
related behaviour. Exploratory work has been
done recently where fMRI-NFB training of the
anterior insula — a brain region involved in
gustatory function — was investigated in lean and
obese men (60). The study found out that obese
men were able to upregulate the anterior insula
more significantly compared to lean men. This
may suggest that obese men are more sensitive
to gustatory learning; hence, future studies could
be aimed at trying to downregulate activity in
brain networks or areas involved in gustation and
reward processing.

In the domain of chronic pain, an influential
study has shown that healthy subjects were able
to learn to control activation in the rostral ACC
(rACC) — a region involved in pain perception
and regulation (30). When subjects increased
or decreased rACC activation, there was a
significant change in the subjects’ perception
of pain caused by an externally applied noxious
thermal stimulus. Moreover, pain perception was
correlated with the level of rACC activation. This
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study has revealed that voluntary control over
rACC activation mediated by fMRI-NFB leads to
control over pain perception. The brain system
that mediates pain perception is a highly relevant
target for NFB training in a clinical setting.
Chronic pain is an important clinical problem
and is treated mainly with drugs which target
neurons based on their selective expression of
drug receptors. However, a drug may act on other
receptors on other cells, which may bring about
unwanted side effects. NFB using fMRI could be a
promising supplementary, if not main, treatment,
as it has not produced any detectable side effects,
is less invasive, and most importantly, targets the
“source” of a disease anatomically.

Despite numerous studies confirming the
feasibility of fMRI-NFB and its clear advantages
over EEG-NFB in many aspects such as higher
spatial resolution, and better specificity, it is still
rather mainly a research tool, while EEG still
dominates in routine therapy due to its lower
cost and higher availability. The lower temporal
resolution of fMRI and the sluggish nature of the
BOLD signal strongly reduce the contingency
between the behavioural change (i.e. switching
between strategies) and the feedback signal;
therefore, NFB requires longer and probably more
conscious training with fMRI than with EEG,
which may also pose a limitation to the former
in clinical applications. On the other hand, fMRI
can be used to study brain areas hardly accessible
via EEG (e.g. basal ganglia, hippocampus), and its
indirect yet single measure (i.e. the BOLD signal)
provides a lower degree of freedom in parameter
selection (i.e. a more straightforward link to
the brain functions) than the more direct but
multiple measures (e.g. frequency bands, power,
amplitude) of EEG. The issue of multiplicity can be
well demonstrated by the abundance of EEG-NFB
protocols determining which measure(s) should
be trained and how (61,62). Moreover, despite the
longer history of EEG-NFB, the field has largely
proceeded without validation until recently
(63), methodologically satisfactory studies on its
efficacy were lacking (64), and treatment effect is
sometimes hard to distinguish from placebo effect
(65). On the other hand, fMRI-NFB emerged
from methodological research, and studies have
usually been performed with careful controls as
demonstrated in deCharms’ study (30). We believe
that these two techniques are complementary to
each other, and while EEG-NFB may benefit from
the more carefully controlled specificity of fMRI-
NFB, the latter may benefit from the vast clinical
experience of the former.
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Conclusion

In this review, we have outlined the
implementation of fMRI-NFB and highlighted
that NFB is a promising tool that has both
scientific and clinical applications. The feasibility
of NFB training has been demonstrated in several
domains of the brain, namely somatomotion,
emotion and cognitive control. Studies of NFB
on patient populations are starting to gain
momentum. Nevertheless, there are still many
open questions in various aspects of NFB and it
would certainly be interesting to follow closely the
developments of the field.
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Functional localization of aMCC

2 Functional localization of the anterior mid-cingulate

cortex for real-time fMRI neurofeedback

2.1 Introduction

Neurofeedback (NF) is a method to achieve self-regulation of brain states via
information about own ongoing brain activity which can be provided by means of rt-
fMRI (Weiskopf, 2012). Rt-fMRI NF enables subjects to gain control of their own brain
state when provided with real-time feedback from a target brain region or a network
(Ruiz et al., 2014). The first step in a rt-fMRI NF experimental framework is to define a
target region-of-interest (ROI). A target ROI can be defined from its anatomy if the brain
region’s anatomical landmarks are well-defined for example for the sensorimotor areas;
or functionally, on the basis of neural mechanism underlying the desired behavioral
change if the region has no well-defined anatomical landmarks, for example higher
cognitive areas (Sulzer et al,, 2013). The aMCC is intended to be used as the target ROI.
NF studies of the anterior cingulate cortex (ACC) have mostly employed a functional
localizer task in the domain that is to be probed in the main NF experiment, e.g. pain
localizer task to investigate NF of pain regulation in rostral ACC (deCharms et al., 2005),
or an emotional localizer task to study NF of emotion regulation in the subgenual ACC

(Hamilton et al,, 2011; Linden et al., 2012).

2.1.1 The many facets of the anterior mid-cingulate cortex
The aMCC is a region of the cingulate cortex where negative emotion, pain, cognitive
control, and intentional motor control are functionally and anatomically integrated

(Shackman et al., 2011; Hoffstaedter et al., 2013) (Figure 1). On the network level, the

Figure 1: The major subdividions of the
cingulate cortex.

Reprinted by permission from
Macmillan  Publishers Ltd: Nature
Reviews Neuroscience (Shackman et al.,
2011) copyright (2011).

aMCC is part of the salience network,

which monitors salient internal and
external events (Seeley et al,, 2007)

and triggers cognitive control signal (Menon and Uddin, 2010). The cognitive control
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domain of the aMCC includes neural processes such as sustained attention, response
inhibition and conflict resolution. One behavioral test most often used in the domain of
cognitive control is the Continuous Performance Task (CPT). The CPT is designed to
investigate sustained attention, response inhibition, and anticipation, and is generally
characterized by successive stream of rapid stimulus presentation with a designated
“target” stimulus or “target” pattern (Riccio et al., 2002) to which the subject has to

react with a motor response (e.g. button press).

2.1.2 Analyzing the aMCC

For the subsequent main NF study, the aMCC is to be targeted based on its function in
the domain of cognitive control, and the CPT, (through examining its anticipation phase)
have been chosen as a functional localizer task for the aMCC. To analyze the CPT fMRI
data, this study used the general linear model (GLM), a hypothesis-driven analysis
method; and independent components analysis (ICA), a data-driven method. The GLM is
an established method, widely used in analyzing fMRI data and requires a model about
the data. On the other hand, the essence of ICA is its ability to separate sources of neural
signal, structured noise, and random noise into separate spatiotemporal independent
components without requiring a priori assumptions (Beckmann and Smith, 2013).

Therefore, the model-free ICA can be used as a data-denoising step.

2.1.3 Aims

The aim of this study is to establish functional localization methods for the region of
cognitive control of the aMCC in individuals, with the further goal to use it in rt-fMRI NF
studies. Specifically in the current study, CPT with rt-fMRI was used, and two fMRI

analyses: the standard GLM, and ICA incorporating GLM, were compared.

16



Functional localization of aMCC

2.2 Materials and methods

2.2.1 Participants

Eleven healthy right-handed subjects (5 females) of average age 25.3 + 2.3 years old
participated in the study. Subjects gave their written informed consent before the study
and received EUR 10 per hour for their participation. The study was approved by the
local ethics committee of Georg-Elias-Miller-Institute for Psychology, at the University
of Gottingen. Subjects underwent two MRI sessions on different days: a pre-localizer
session consisting of a high-resolution anatomical MRI scan, and the main session
consisting of the functional localizer task. Data of one subject (male, 25) was not used in
the subsequent offline fMRI analysis due to inconsistent task performance during data

acquisition.

2.2.2 MRI parameters

All MR images were acquired on a 3T Tim Trio MRI scanner (Siemens Healthcare,
Erlangen, Germany) using a 32-channel head coil for signal reception. Structural whole-
brain T1-weighted MRI was obtained by an inversion-recovery 3D FLASH sequence (TR
= 2530 ms, TE = 3.26 ms, flip angle= 7 °, TI = 1100 ms) at 1.0 x 1.0 x 1.0 mm?3 isotropic
resolution. All BOLD fMRI measurements were obtained by a gradient-echo EPI
sequence (TR = 2 s, TE = 36 ms, flip angle = 70°, acquisition matrix = 96 x 96) at 2.0 x 2.0
x 4.0 mm3 resolution with 22 axial slices oriented along the AC-PC line, and
encompassing the cerebrum until the midbrain level. To reduce geometric distortions of
EPI scans, a field map scan was acquired (TR = 468 ms, TE 1 = 4.92 ms, TE 2 = 7.38 ms).
A single whole-brain EPI measurement with the same orientation and resolution as the
fMRI measurements was obtained (TR = 3250 ms, TE = 36 ms, flip angle = 70°, 36 slices)
to optimize registration of the partial-brain fMRI measurements to the structural whole
brain scan. Motion correction on fMRI data was performed in k-space (online software

of the manufacturer).

2.2.3 rt-fMRI

Online rt-fMRI monitoring was implemented via real-time data export from the MR
scanner computer to the rt-fMRI analysis computer (Dewiputri and Auer, 2013). Online
rt-fMRI analysis was performed in Turbo Brain Voyager (TBV) software (Brain
Innovation, Maastricht, Netherlands) which included data pre-processing (motion
correction, spatial smoothing using a Gaussian kernel of 8.0 mm FWHM) and

computation of statistical maps from GLM contrasts: cue > distractor. Head motion and
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inconsistent task performance were closely monitored during the measurement. If such
behavior was detected, the subject was asked to repeat the fMRI run after re-advising

them about head motion and the task.

2.2.4 Paradigm and task

The CPT O-X-H paradigm was implemented as the functional localizer task. Visual
stimuli were projected onto a screen inside the MRI scanner, and viewed by the subjects
through a mirror mounted on top of the head-coil. The visual stimuli were presented
using Presentation software (NeuroBehavioral Systems Inc, Berkeley, USA) and
consisted of the white letter O, X, or H shown on a black background (Figure 2). Each
letter was presented for 250 ms and the interstimulus interval was 5750 ms. There were
80 stimuli in one run. Prior to the onset of the first stimuli, a baseline of 8 seconds was
included. One run of the CPT paradigm lasted 8.13 minutes (244 fMRI volumes).
Throughout the whole run, occurance of a cue (0) has a 40% probability; while
occurance of the target (X) and the distractor (H) have a probability of 30% each. From
this 30% , two-thirds of the occurrence was either a cue-target (0-X) or a cue-distractor
(O-H) pair while one-third of the occurrence was an uncued X or H. Subjects were
instructed to press the response button with their right thumb only for a cued target (an
X that is preceded by an 0), and to refrain from pressing the button when a cued

distractor (an H preceded by an O) was presented.

Subjects were instructed to be as fast and as accurate as possible. Only correct
responses to targets which occured within 1000 ms of stimulus presentation were
counted. Feedback on the results was shown on the screen at the end of the run. Before

performing the task, a simulation of the CPT was shown to the subjects outside the

target
cue
distractor e
cue 5750 ms
250 ms I
BUTTON
250 ms
5750 ms PRESS

scanner to help them understand the task.

250 ms
5750 ms
250 ms

Figure 2: CPT paradigm. Subjects were instructed to only press the button if the target (X) is preceded
by the cue (0); i.e. cued target, but to refrain from it otherwise.
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2.2.5 Offline data analysis

2.2.5.1 Pre-processing
fMRI data processing was carried out within FEAT (FMRI Expert Analysis Tool) Version
5.98, part of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). Pre-statistics
processing included motion correction using MCFLIRT (Jenkinson et al, 2002);
fieldmap-based EPI unwarping using PRELUDE+FUGUE (Jenkinson, 2003); non-brain
removal using BET (Smith, 2002); spatial smoothing using a Gaussian kernel of FWHM 5
mm; grand-mean intensity normalization of the entire 4D dataset by a single
multiplicative factor; high-pass temporal filtering (Gaussian-weighted least-squares

straight line fitting, with sigma = 15 s).

2.2.5.2 GLM analysis
Model-based fMRI analysis was carried out using FEAT (FMRI Expert Analysis Tool)
Version 5.98, part of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). Time-
series statistical analysis was carried out using FILM with local autocorrelation
correction (Woolrich et al., 2001). The data was modeled in the GLM by two conditions:
4-6 seconds after cue (letter O) and 4-6 seconds after all distractors (letter H). The
contrast used to define aMCC in this analysis was cue > distractor. Z (Gaussianised T/F)
statistic images were thresholded using clusters determined by z > 3.1 and a corrected
cluster significance threshold of p = 0.05 (Worsley, 2001). FLIRT was used to register
fMRI image to high resolution structural and/or standard space images (Jenkinson 2001,
2002 (Jenkinson and Smith, 2001; Jenkinson et al., 2002)). Registration from high
resolution structural to standard space was then further refined using FNIRT nonlinear
registration (Andersson et al,, 2007). AMCC clusters were identified by visual inspection

of the activation map of the cue > distractor contrast.

2.2.5.3 ROl identification by ICA-GLM analysis
In addition to model-based GLM analysis, CPT fMRI data were analyzed with single-
session Probabilistic ICA (Beckmann and Smith, 2004) as implemented in MELODIC
(Multivariate Exploratory Linear Decomposition into Independent Components) Version
3.12, part of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). The following
analysis steps were performed as described in the standard FSL ICA output (Beckmann
and Smith, 2004): Pre-processing consisted of masking of non-brain voxels, voxel-wise
de-meaning of the data, normalisation of the voxel-wise variance. Pre-processed data

were whitened and projected into a n-dimensional subspace using probabilistic
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Principal Component Analysis where the n (average: 46 components) was estimated
using the Laplace approximation to the Bayesian evidence of the model order (Minka,
2000; Beckmann and Smith, 2004). The whitened observations were decomposed into
sets of vectors which describe signal variation across the temporal domain (time-
courses) and across the spatial domain (maps) by optimizing for non-Gaussian spatial
source distributions using a fixed-point iteration technique (Hyvarinen, 1999).
Estimated Component maps were divided by the standard deviation of the residual
noise and thresholded by fitting a mixture model to the histogram of intensity values

(Beckmann and Smith, 2004).

Additionally, as an option in MELODIC, the time course of each Independent
Component (IC) was entered into a GLM for post-hoc analysis of the cue > distractor
contrast. To help in the identification of a task-related component, IC maps whose p-
values are < 0.05 for the cue > distractor GLM contrast were classified as a potential
task-related IC. Exclusion of noise-related IC maps was performed by visual inspection
of the potential task-related IC, based on available guidelines (Kelly Jr et al.,, 2010). In
each subject the aMCC was identified individually from one IC map. If the aMCC was
present in more than one task-related IC maps, the IC map which showed activation of

aMCC as part of the salience network was chosen.

2.2.5.4 Individual definition of the aM(CC
The localization of the aMCC at the individual level was done on 34 additional subjects
recruited for the main rt-fMRI neurofeedback study targeting the aMCC. Please see

Section 3.2.1 for more details about the subjects.

The IC map containing the aMCC cluster was individually thresholded at the
highest threshold at which cluster of contiguous voxels within the later refined aMCC
area can be clearly defined (p = 0.05 - 0.30). Thresholded IC maps in the native space
were registered to the standard space using FLIRT (Jenkinson and Smith, 2001;
Jenkinson et al., 2002), to enable easier delineation of aMCC based on the standard space
atlas and to define the shape and extent of the aMCC clusters. The ROI was drawn
manually on the thresholded IC maps in the native space on axial slices, while taking the
standard space IC maps as guidance. The ROl was drawn within anatomical limits as
defined by Vogt and Shackman (Vogt, 2009; Shackman et al.,, 2011) who describe the
aMCC as the portion of the cingulate gyrus and the paracingulate gyrus superior to the

anterior mid-body of the corpus callosum.
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2.3 Results

2.3.1 Behavioral data

The reaction time for the CPT was 434.2 ms = 14.7 ms (mean + SEM) and the accuracy
was 99% * 0.25% (mean * SEM). This showed that subjects had an adequately high

behavioral performance in the CPT.

2.3.2 GLM fMRI analysis

The model-based GLM-analysis with FEAT detected a cluster aMCC activation of
reasonable size in both hemispheres in seven out of ten subjects after performing one
run of CPT. Optimal aMCC detection in CPT is shown in Figure 3A. Apart from the aMCC
cluster the following areas were also activated in the cue > distracter contrast: bilateral
insula, basal ganglia, SMA, thalamus, left motor cortex (Figure 5). Figure 3B-D shows
data from the three subjects in which the detection of aMCC was suboptimal. Lowering
the threshold to z > 2.0 enabled the detection of only minor aMCC activation cluster as in

Figure 3C; but not for the data in Figure 3D.

Figure 3: Single subject example results in GLM analysis
of CPT

A. aMCC (green circle) of reasonable cluster size

B. Results contaminated by noise

C. aMCC cluster size too small

D. No aMCC detected

z = axial slice

2.3.3 ICA-GLM fMRI analysis
The GLM-based analysis of the fMRI data was not able to detect aMCC in all 10 subjects.

Therefore, ICA-GLM was introduced as a denoising procedure. The analysis with ICA
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generated on average 46 IC maps (range: 36-63) in individuals. By performing a GLM on
the time courses of the ICs, one IC map showing an aMCC activation cluster spanning
both hemispheres was able to be detected in each of the 10 subjects (Figure 4). To allow
the comparison of the GLM and ICA-GLM results (which uses different thresholding
method), activation maps in Figure 2 and 3 are color-coded with a fixed range between z

=0.1-9.0.

Figure 4: Detection of aMCC (green circle) from IC maps in native low-resolution fMRI space. The labels A-D
correspond to the subjects labeled in Figure 2. z = axial slice

2.3.4 aMCC ROI definition

The CPT paradigm and ICA-GLM method were then applied to the subjects of the main
NF experiment (Section 3). The aMCC was able to be detected and defined in 30
subjects. However, aMCC was not optimally detected in four subjects who were
subsequently excluded from the NF study due to the following reasons: in one subject, it
was the combination of having a small cluster size and a relatively large
interhemispheric fissure dividing the aMCC, which could impede BOLD signal extraction
for the NF study; and in the other three, spurious BOLD activations in the CPT that was
first detected by the rt-fMRI online monitoring and later confirmed in the offline
analyses. The defined ROI in all individuals are shown in Figure 5. The coordinates of
the mean peak voxel and center of gravity of the aMCC cluster in MNI space (mm) are x =
8, y=26,z=30and x =1y = 23 z = 33 respectively. The size of the ROI defined
according to this method was 233 + 54 voxels (mean + SD). Similar to the GLM analysis,
aMCC activation was often found in task-related IC maps together with various degrees

of activations of bilateral insula, SMA, and basal ganglia.
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Figure 5: Overlap of the aMCC ROI of 30 subjects of the neurofeedback study in standard MNI space. Color
bar indicates number of subjects. z = axial slice, x=sagittal, y=coronal slice.

2.3.5 rt-fMRI monitoring

Besides the offline analysis of the fMRI data, rt-fMRI also allows to monitor the CPT run
online. An example of the online rt-fMRI monitoring of two CPT runs with rt-fMRI from
the same subject is shown in Figure 6. Some head motion is evident (Figure 6A) from
the erratic motion correction plot, and represented in the statistical map by positive
activations in the ventricles. After the subject was advised to keep still when repeating
the task, activations in the ventricles were no longer seen (Figure 6B). Figure 6B also
shows the expected brain activations for the cue > distractor contrast in the following
brain areas: aMCC, bilateral insula, supplementary motor area (SMA) and left motor
cortex. In the present study, this occurred in one subject whose dataset was excluded
from offline analysis. In the main NF study, three subjects were excluded due to spurious
BOLD activations in the CPT, which was first detected by the rt-fMRI online monitoring

and later confirmed by offline analysis.
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Figure 6: Monitoring the functional localizer scan by rt-fMRI in one subject. In this example, TBV interface
is used to monitor spurious activations, artifacts, and head motion. The fMRI run in A. has considerable
head motion compared to B.
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2.4 Discussion

The present work has established CPT as a suitable for functional localization of the
aMCC in the domain of cognitive control, and ICA-GLM as a suitable analysis method for
the same purpose. In addition, simultaneous monitoring of the functional localizer task

with rt-fMRI is recommended.

2.4.1 GLM and ICA-GLM analysis of the functional localizer task

The criteria of a suitable functional localizer task to detect aMCC would be that the task
should be able to activate the aMCC reliably in every individual. A suitable analysis
method for the functional localizer task should be one that is sensitive to detect aMCC as
a cluster of reasonable size in each individual with the least amount of noise. The
current work in this chapter presents the CPT as a functional localizer task, in

conjunction with single-subject ICA-GLM analysis, as a suitable method to localize aMCC.

Measuring neuronal activity in fMRI is challenging as the BOLD signal has
contributions from many sources including breathing, head motion and scanner
artifacts. Pre-processing the fMRI data helps eliminate such effects, however, residual
noise that has both spatial and temporal structures can still remain and can negatively
affect the signal-to-noise ratio, sensitivity and specificity of results obtained by BOLD
fMRI. This is where ICA functions a useful tool to denoise fMRI data (Beckmann, 2012).
The data of the current study shows that ICA increased the sensitivity to detect aMCC in

all ten subjects, compared to only seven in the model-based GLM analysis.

The increased sensitivity to detect brain activations comes at a cost of time. One
needs to do visual inspection of the IC maps to distinguish signal from noise. This could
mean that an inexperienced researcher would first need to learn how to do so but
fortunately there are published guidelines available (Kelly Jr et al.,, 2010). Automated
methods of classifying ICs have been developed, but from my later experience using
automated methods, I find that one still needs to visually inspect the results of those

automated classification.

The classic fMRI analysis using GLM is still a reliable method. If a suitable model
is specified, analyzing fMRI data with a GLM is usually able to produce statistical maps
that signify where the brain has activated in response to the stimulus. However, in cases
where the GLM does not work as expected, trying the ICA is recommended. For example,

when expected results are still unobtainable even after lowering the threshold of the
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statistical map, when noise still persist in the data after pre-processing, or when higher-
level GLM (which would boost sensitivity) is not performed for types of study where

single-subject analysis is required.

The ICA-GLM approach harnesses the strength of signal source separation in ICA
and the simplicity (and familiarity) of the GLM. Design matrix and contrasts normally
used in a GLM analysis can be used post-hoc in ICA to determine potentially task-related
IC maps. From my experience, specifying a model in post-hoc ICA helps in reducing the
number of ICs that need to be visually inspected in order to select the aMCC from
potentially task-related ICs. For the purpose of functional localization, one run of CPT
analyzed with the ICA-GLM method was enough to identify the aMCC in each individual.
The concept of combining hypothesis-driven and data-driven methods have also been

used in localization of language regions in patients with tumors (Caulo et al., 2010).

2.4.2 Activation of aMCC as part of a cognitive network

In the GLM analysis, aMCC cluster was often seen together in the same activation map
with SMA, bilateral insula, basal ganglia, and thalamus. One might argue about the
specificity of the CPT as a functional localizer for aMCC, however the functional localizer
task does need to isolate only the target region, it should just be sensitive enough to
detect activity, which spans an area of reasonable shape and size in the target region to
allow localization. Furthermore cognitive tasks rarely activate just a single region. In
ICA-GLM analysis, aMCC cluster was seen in task-related IC maps of the salience
network (aMCC, bilateral insula) and the somatomotor network (SMA, premotor,
somatomotor cortex). The ROI is best defined from the network whose function one

intends to probe in the main NF experiment.

2.4.3 Functional localizer task guided by rt-fMRI

Monitoring the functional localizer scan with rt-fMRI system confers many advantages.
It acts as a quality control procedure to screen subjects for the main experiment,
whereby subjects who show too much head movements, or spurious BOLD activations in
the localizer task can be excluded at the functional localizer stage before entering the
main experiment. The decision to exclude such subjects made during the functional
localizer rt-fMRI run would save the experimenter’s time whereby the experimenter can
already decide to recruit new subjects rather than having to wait for the results of the
offline analyses. Nevertheless, additionally, the whole GLM and ICA-GLM analyses were

performed to confirm the decision on the excluded subjects. Therefore, based on my
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experience, running the functional localizer scan in conjunction with rt-fMRI is an
essential step. Indeed, this step helped tremendously in selecting subjects who are less
likely to be problematic for the main rt-fMRI neurofeedback study. The activation maps
obtained from the more detailed offline fMRI analysis (Figure 3A) showed similar areas
being activated as in the online rt-fMRI analysis (Figure 6B). This tells us that the
results seen during the online rt-fMRI run (if all parameters are set correctly) of the
functional localizer task can give an impression about the results that would be obtained

in the offline analysis.

2.5 Conclusions

The present work in this chapter has shown that CPT is a suitable paradigm for
functional localization of the aMCC. The ICA-GLM analysis method increased sensitivity
to localize aMCC at the individual level. Rt-fMRI monitoring of the functional localizer

scan is helpful for quality control.
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3 Rt-fMRI cognitive neurofeedback training of the aMCC

3.1 Introduction

3.1.1 rt-fMRI neurofeedback

Neurofeedback (NF) is a variation of biofeedback that facilitates subjects to gain control
of an aspect of their own brain activity. These aspects range from up-and-down
regulation of a single brain area (Weiskopf et al, 2004; Caria et al, 2010),
interhemispheric differences of two homologous area (Robineau et al., 2014), to
connectivity between multiple brain regions (Koush et al., 2013). These aspects can be
measured by various modalities such as frequencies and slow cortical potentials (SCP)
in electroencephalography (EEG) (Niv, 2013); or BOLD activity in fMRI (Weiskopf, 2012;
Sulzer et al,, 2013), and more recently in fNIRS (Cutini and Brigadoi, 2014). In NF, the
modality of the feedback is mostly visual and can be a “thermometer display”, graph, or
virtual reality avatar. The task for the subjects is to search for a mental strategy to
achieve self-regulation of an aspect of their brain activity, usually mental imagery
related to the function of the area or network being targeted. Subjects then receive
concurrent feedback of their brain activity in near real-time. Through trial-and-error
and operant conditioning during the NF training period, they learn to prune their

strategy to reach the desired outcome.

NF is primarily conducted using EEG which has high temporal resolution but
poor spatial resolution. The advent of real-time functional magnetic resonance imaging
(rt-fMRI) (Cox, 1995), has encouraged growth in fMRI NF studies (Sulzer et al., 2013).
This owes to the advantages of fMRI, having higher spatial resolution and allowing sub-
cortical coverage, surpassing that of EEG. Methodological advances in fMRI have enabled
instantaneous access to experimental results by analyzing data as soon as they are
acquired — an essential requirement for rt-fMRI NF setup. Ever since then, various
brain areas have been targeted in rt-fMRI NF, ranging from the motor (DeCharms et al,,
2004; Yoo et al., 2008; Auer and Frahm, 2011; Berman et al., 2012; Johnson et al., 2012),
emotion (Caria et al., 2007; Caria et al., 2010; Hamilton et al., 2011; Zotev et al,, 2011;
Veit et al,, 2012; Ruiz et al,, 2013), to cognitive brain areas (Mathiak et al.,, 2010). The
majority rt-fMRI NF studies have been done at the level of a single region, and more
recently at the level of networks (Koush et al., 2013). In addition, various populations
have been used, ranging mostly from healthy normal subjects, to clinical populations

(deCharms et al., 2005; Subramanian et al., 2011; Linden et al., 2012; Ruiz et al., 2013).
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These developments are already far-reaching, however there are still many open

questions including those to address the fundamentals.

This study seeks to address open questions on rt-fMRI NF of a spatially
circumscribed cognitive brain area — the aMCC. The aMCC, is part of the cingulate
cortex, and has been categorized as a “limbic premotor cortex” with respect to its
functions in integrating emotion, pain, cognitive control, and intentional motor control
(Vogt, 2009; Shackman et al., 2011). The aMCC was chosen as a target region since the
author’s research group has had experience working on the cingulate cortex. The group
previously investigated involvement of the ACC in the cognitive processes of anticipation
and response conflict phases by using CPT and the Flanker task (Luetcke and Frahm,
2008; Luetcke et al., 2009). To address the open questions, this chapter first presents
general challenges of rt-fMRI NF, and specific challenges of rt-fMRI NF of the aMCC; then

proposes a novel NF paradigm as one possible solution to the challenges.

3.1.2 Challenges of rt-fMRI NF

3.1.2.1 Technical and physiological aspects of feedback latency
Most conventional rt-fMRI NF paradigms have been adapted from EEG NF paradigms.
EEG’s temporal resolution is in the order of milliseconds, which in the context of NF,
allows short trials with immediate feedback, thus enabling subjects to try numerous
strategies in one run. For example, in a EEG-NF study training of SCP, one trial lasts 8 s,
120 trials were performed in a training session, and the EEG sampling rate was 250 Hz
(Heinrich et al., 2004). On the other hand, fMRI has a relatively lower temporal
resolution in the order of seconds. Temporal resolution of fMRI is determined by the TR
(repetition time) which corresponds to the time to collect one brain volume consisting
of multiple slices. In rt-fMRI NF, by applying gradient-echo echo planar imaging (EPI)
sequences for imaging, TR is usually 2 s, which translates to a sampling rate of 0.5 Hz —
far lower than that of EEG. The frequency of updating the continuous feedback cannot be
faster than the TR. There is also time needed for processing the data, which takes
around 2 s. This means that, although the feedback in rt-fMRI NF can be presented

continuously, the feedback is less instantaneous than in EEG NF.

Another important factor that adds to the delay of the feedback is the intrinsic
physiological properties of the BOLD signal. The inherent temporal delay of
approximately 6 s, is because of the slow hemodynamic response to neuronal activation,

and determines the delay between the onset of mental strategy (onset of neural activity)
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and reinforcement (feedback) (Weiskopf, 2012). Adding this factor to the time needed
for acquisition and computation of the feedback signal, the “immediate” feedback
subject sees at any moment actually reflects the mental strategy that happened ~10 s

earlier.

The nature of fMRI technique demands NF paradigms to be adapted to suit its
temporal resolution. The average regulation block in rt-fMRI NF paradigm is a
continuous 20-50-second block, during which the subjects are instructed to try out one
strategy. Therefore, in rt-fMRI NF, there are fewer trials available in one run for subjects

to try various strategies to regulate their brain activity.

3.1.2.2 Psychological aspects
By virtue of its design, the conventional rt-fMRI NF paradigm consequently brings about
challenges on the psychological level in terms of implicit temporal contiguity and higher

cognitive load.

3.1.2.2.1 Temporal contiguity
Temporal contiguity — the time interval between the response and the reinforcement
— has been implicated as a factor that affects learning in NF (Sulzer et al,, 2013). In a
conventional rt-fMRI NF paradigm, subjects are normally instructed about the ~8-10 s
feedback delay, and in most studies, experimenters assume that subjects understand the
temporal contiguity of the NF paradigm. In reality, subjects need to estimate the
temporal contiguity of the feedback, and additionally need to associate the feedback
with mental strategies used several seconds earlier, which could be challenging.
Therefore, in a conventional NF paradigm, the temporal contiguity is implicit to the
subjects; and not knowing the exact structure of temporal contiguity may hinder

learning (Greville and Buehner, 2010).

3.1.2.2.2 Cognitive load
The conventional way of doing rt-fMRI NF is by trying to self-regulate the BOLD brain
activity using mental strategies, while simultaneously perceiving and appraising the
continuous feedback of BOLD-activation from the target brain area. In a conventional rt-
fMRI NF paradigm, subjects have to find a strategy to self-regulate brain activity from a
target ROI, pay visual attention to the feedback; and in parallel link the feedback to the
strategy done earlier, and appraise the feedback. In most studies, experimenters assume

that subjects are able to perform the task of self-regulation while associating the
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feedback with mental strategies that have been used several seconds earlier. This
method of presenting feedback in parallel with performing the main NF task exerts a

high cognitive load on the subjects, and may impair the outcome of rt-fMRI NF.

3.1.3 Challenges of rt-fMRI NF of the aMCC
In addition to the technical, physiological, and psychological challenges of the
conventional NF paradigm, self-regulation of the aMCC itself presents its own unique

challenges.

3.1.3.1 Mental strategies
The aMCC is a relatively complex brain area for which no specific mental strategies that
can voluntarily and reliably activate it has been prescribed. Finding a cognitive control
strategy to activate the aMCC is more difficult than finding a motor imagery strategy to
self-regulate the somatomotor areas. This difficulty has been acknowledged by Mathiak
and colleagues (Mathiak et al.,, 2010) who investigated a social NF paradigm that can
circumvent the need for specific cognitive control strategies for NF of the ACC. By using
social NF (in the form of smiling or frowning avatars) to increase motivation, the focus

shifts on enhancing the value of reinforcements instead of the search for strategies.

3.1.3.2 Regulating the cognitive control region
Another difficulty in aMCC self-regulation is that the very area is also implicated in
feedback-processing as part of its cognitive control function (Amiez et al., 2013). In the
Parallel paradigm, this would add another layer of confound to the BOLD signal
measured from the aMCC because it is hard to determine if the activity observed in the
aMCC is due to self-regulation or feedback processing. Therefore, regulating an area that
is part of the cognitive control machinery and that is involved in feedback processing is

at best, difficult.

3.1.4 Development of a novel rt-fMRI paradigm: the Serial paradigm
Collectively, the difficulties of self-regulating the functions of aMCC with rt-fMRI NF may
explain why rt-fMRI NF studies targeting the cingulate cortex including its various
subdivisions are scarce (Weiskopf et al, 2003; deCharms et al., 2005; Mathiak et al,,
2010; Hamilton et al., 2011; Grone et al.,, 2014) compared to those targeting the motor
cortex (DeCharms et al., 2004; Yoo et al., 2008; Auer and Frahm, 2011; Subramanian et
al, 2011; Berman et al,, 2012; Chiew et al.,, 2012; Johnson et al., 2012; Sitaram et al,,
2012; Zhang etal., 2014).
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Addressing the described challenges in rt-fMRI NF and self-regulating the aMCC
was the motivation behind developing a paradigm that would make self-regulation of a
cognitive area more attainable to the subjects. This study introduces a novel rt-fMRI NF
paradigm: the “Serial” paradigm which uncouples the self-regulation phase from the
feedback appraisal phase. In the Serial paradigm, feedback is presented only after, and
non-concurrent with the self-regulation phase. This reduces the processing of the
cognitive load from parallel to serial, and thus reduces the burden in performing the
main NF self-regulation task, unlike in the conventional “Parallel” paradigm. In addition,
the Serial paradigm has an explicit temporal contiguity structure. Most importantly, the
Serial paradigm, enables subjects to process self-regulation and feedback appraisal
separately, and thus reduces difficulties in regulating a region which is itself involved in
feedback appraisal. This study hypothesizes that the Serial paradigm would reduce
interference between self-regulation and feedback appraisal, and thus would help

achieve success in self-regulation of the aMCC.

One similar study that specifically examined delayed, non-concurrent feedback
presentation (Johnson et al., 2012) only came to the author‘s knowledge while finishing
the study. In that pilot study, the conventional continuous feedback presentation was
compared to an intermittent feedback presentation. Intermittent presentation of
feedback (about 20 s delay) was found to be more effective than continuous

presentation in a motor imagery task (Johnson et al.,, 2012).

3.1.5 Aims and goals

The goal of this exploratory study was to investigate the possibility of learned self-
regulation of a circumscribed brain area involved in cognitive control, the aMCC,
through extensive rt-fMRI NF training. To meet the challenges associated with rt-fMRI
NF of the aMCC, a novel Serial paradigm was introduced and compared to the
conventional Parallel paradigm. To study the neural correlates associated with the two
different paradigms, and with the learning processes in rt-fMRI NF; aMCC BOLD-activity
was monitored during NF training in the presence of feedback, and during the transfer
session (performed pre- and post-training), in the absence of feedback. This study also
aims to investigate brain activity beyond the aMCC, hence whole-brain activation during
the transfer session was investigated. This study also explores the neural correlates of
feedback appraisal. Questionnaires explored the applied mental strategies as well as the

perceived difficulty and performance in the two NF paradigms.
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3.2 Material and methods

3.2.1 Participants

Thirty healthy, non-smoking, right-handed subjects (12 males, mean age 27.4 + 2.6
years) participated in the study. All subjects provided written informed consent and
received compensation for their participation. The study was approved by the local
ethics committee of Georg-Ellias-Miiller-Institute for Psychology at University of
Gottingen, Germany. Twenty subjects were assigned to undergo NF training, and were
randomly, and equally assigned to the Parallel Training (PT) or the Serial Training (ST)
group. Ten age-matched subjects were assigned to the Control group which did not
undergo NF training, and were further equally assigned into Parallel Control group (PC)

or Serial Control group (SC).

3.2.2 Experimental procedure overview

Subjects underwent 10 MRI sessions: one initial, one pre-training, six NF trainings, one
post-training, and one final session (Figure 7A). The initial and the final session
consisted of a high-resolution anatomical MRI, diffusion-weighted MRI, and a resting-
state fMRI measurement. The initial session also was also performed to familiarize
subjects with the scanning environment. In the pre-training session, subjects first
underwent one fMRI run performing the CPT, one run performing a Flanker task and
one run performing the assigned NF paradigm without receiving feedback. Before
subjects entered the scanner they underwent a short demonstration of all tasks to

assure full understanding.

The following six NF training sessions were distributed on alternate days
(Monday, Wednesday, Friday) for two weeks. In each NF training session, subjects
underwent three runs performing the assigned NF training protocol and received
feedback. Two days after the last training session, subjects underwent a post-training
session with the same measurements as in the pre-training session, but in reverse order.
Control subjects underwent the initial, the pre-training, the post-training and the final
session. Pre- and post-training sessions were separated by a two-week period without

NF training.

3.2.3 MRI data acquisition
All MR images were acquired on a 3T Tim Trio MRI scanner (Siemens Healthcare,
Erlangen, Germany) using a 32-channel head coil for signal reception. Structural whole-

brain T1-weighted images were obtained by an inversion-recovery 3D FLASH sequence
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(TR = 2530 ms, TE = 3.26 ms, flip angle = 7°, TI = 1100 ms, 192 slices per slab) at 1.0 x
1.0 x 1.0 mm?3 isotropic resolution. All BOLD fMRI measurements were obtained by a
gradient-echo EPI sequence (TR = 2s, TE = 36 ms, flip angle = 70°, acquisition matrix =
96 x 96) at 2.0 x 2.0 x 4.0 mm3 resolution with 22 slices oriented along the AC-PC line,
encompassing the cerebrum until the mid-brain. Individual slice positions from the first
fMRI scanning session were saved and subsequently re-applied in all sessions to
minimize slice positioning differences between datasets. Motion correction on fMRI data
was performed in k-space (online software of the manufacturer). To optimize
registration of the partial-brain fMRI scan to the structural whole-brain MRI, a single
whole-brain EPI measurement (TR = 3250 ms, TE = 36 ms, flip angle = 70°, 36 slices)

was obtained in each subject at the same resolution as in the BOLD fMRI.

3.2.4 ROl selection
In the pre-training session, the aMCC was individually defined based on the fMRI
analysis of the CPT, as described in Section 2.2.

3.2.5 Neurofeedback training paradigms

The Parallel paradigm started with an initial baseline period of 50 s, followed by six
cycles of a 20 s “Think” phase alternating with a 30 s “Count” phase, and ended with a 20
s baseline period (Figure 7B). One Parallel paradigm run lasted 6.17 min (185 fMRI
images). The Serial paradigm, which uncouples the self-regulation phase and the
feedback appraisal phase, started with an initial baseline period of 40 s, followed by 8
cycles of 10 s “Think” phase, 10 s “Feedback Think”, 10 s “Count”, 10 s “Feedback Count”
and ended with a 10 s baseline period (Figure 7C). One Serial paradigm run also lasted

6.17 min (185 fMRI images).

Visual feedback in the form of a vertical fluctuating thermometer scale, which had
21 gradations of color from blue (low) to red (high), was presented on a projection
screen in the scanner bore. All stimuli were shown on a white background. The feedback
in the Parallel and Serial paradigm was updated every 2 s (once per TR). Subjects in the
PT group received continuous feedback and were informed about its intrinsic delay of 8-
10 seconds (hemodynamic delay plus image acquisition plus rt-fMRI processing time).
This information was not critical for the ST group since they received the feedback

during the “Feedback” phase after each “Think” or “Count” phase.
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All subjects in the NF training group were instructed to try to self-regulate the
BOLD-activation in the individual aMCC ROI. They were instructed to develop mental
strategies that result in an increase of the feedback signal, i.e. increase in the level of the
thermometer bar during the up-regulation “Think” phase. They were also instructed to
decrease the feedback signal, i.e. to decrease the level of the thermometer during the
down-regulation “Count” phase by either counting backwards or finding a mental
strategy with an equivalent effect. The ST group was additionally instructed to just

perceive the feedback during the “Feedback” phase.

Subjects were given suggestions about cognitive strategies that might help them
influence self-regulation of the aMCC. In line with Shackman’s proposal about aMCC
function (Shackman et al, 2011), the suggested strategies were in the domain of
cognitive control (e.g. making plans and decisions) and emotion (e.g. think about a
negative situation). Subjects were encouraged to try various strategies and to find what
works best for them in the NF training runs and were suggested to keep a strategy

constant within one phase.

A.

Transfer Transfer
Training
— . — U
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Initial Pre Week 1 Week 2 Post Final
baseline
t Think l Count l
50s 18 19s 1s 29s
C.

baseline

u Think ' Feedback l Count L Feedback l
@

40s 1s 9s 1s 9s 1s 9s 1s 9s

Figure 7: A. Structure of the overall neurofeedback sessions. B. Example stimuli of the
Parallel paradigm and the C. Serial paradigm

3.2.6 Real-time fMRI neurofeedback

A custom in-house rt-fMRI NF system for rt-fMRI analysis and feedback presentation
developed by Tibor Auer and Henry Luetcke in MATLAB (The MathWorks, Inc., USA)
was integrated in the MRI scanner computer system (Dewiputri and Auer, 2013). Real-

time data export from the MRI scanner via FTP allowed online fMRI analysis. Motion
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correction with SPM Realign algorithm (http://www.filion.ucl.ac.uk/spm/) was

performed as a pre-processing step.

The reference ROI was a large background region (a 22-slices brain volume as in
the BOLD fMRI measurements) and it was used to cancel out any global unspecific BOLD
changes e.g. general changes in blood flow, respiration etc. For both the aMCC target ROI
and the background reference ROI, a normalized BOLD signal was calculated for each
time point with reference to the average of 5 time points of the preceding “Feedback-
COUNT” phase in the Serial, and 10 time points of the preceding “COUNT” phase in the
Parallel paradigm respectively. The feedback signal (FS) given to the subjects was the
difference between the normalized BOLD signal of the aMCC and the background,

calculated as:

FS = BOLD,mcc (BOLD think = BOLD count) = BOLDig (BOLD think = BOLD count) %

The following descriptions were the steps taken to relate FS to the thermometer
scale. To minimize the sensitivity of the normalized BOLD to signal fluctuations around
zero, a double logistic-like function for calculating the FS with the following
characteristics was implemented: a range from 0 to 21 of the thermometer gradations
(corresponding to -2% to +2% signal change respectively), and a flat center between -

0.25% and +0.25% signal change.

3.2.7 Pre-Post measurements

All subjects performed the self-regulation task without feedback in the pre-training and
the post-training run, termed the “transfer” condition. An empty thermometer was
shown in place of the feedback. The transfer condition is to test how well the subjects

were able to self-regulate the aMCC in the absence of a feedback.

3.2.8 Questionnaires

Questionnaires were administered to the subjects outside the scanner before and after
each scanning session. Before each session, subjects rated their valence and arousal
using a 5-point visual scale, which was adapted from the Self-Assessment Manikin (SAM)
(Bradley and Lang, 1994). In addition, in the pre-training session, subjects also
answered a question about experience in meditation. After each session, subjects rated
the difficulty and perception of their own performance of the self-regulation phases;
their valence, arousal and dominance (adapted from the SAM); and described their

mental strategies during the self-regulation phases. Examples of the questionnaire can
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be found in the Appendix. Wilcoxon Signed Ranks Test was performed on the subjects

self-ratings using SPSS Version 21 (IBM, USA).

3.2.9 Offline fMRI data analyses

3.2.9.1 ROI analyses
The fMRI signal time-courses from the NF training runs and transfer runs were
extracted from the aMCC and the background region for offline ROI analysis using a

custom in-house NF toolbox implemented in MATLAB.

To describe changes in aMCC activity of self-regulation, GLM was performed on
the time courses extracted from individual ROIs, with the following regressors: “Think”
phase in the Parallel paradigm; or “Think” and “Count” phases in the Serial paradigm.
Parameter estimates (converted to Percent Signal Change) for the aMCC (PSCamcc) and

the background region (PSCyg) were computed. The GLM contrast was Think > Count.

In the Transfer condition, PSC of the BOLD response from the aMCC was analyzed
by applying a 3-way mixed ANOVA with factors: PARADIGM (Serial vs. Parallel), GRoupP

(Training vs. Control) and TIME (Post vs. Pre).

To assess individual transfer success and to subsequently classify successful
individuals as Learners, the difference in PSC between post- and pre- training was
averaged: the values from the Serial control group and Parallel control group served as
thresholds to define Learners in Serial training and Parallel training group respectively.
Learners were defined as individuals who had higher change in aMCC activity after NF-
training compared to the average control group. Association between learning status

and paradigm was tested using Fisher’s Exact Test.

Subsequent analyses explored the difference between Learners and Non-
Learners, independent of the Serial or Parallel training paradigm, i.e. the Learners from
the ST group and PT group were combined and compared with the Non-Learners across
both training paradigms. In the transfer condition, PSC of the BOLD response from the
aMCC was analyzed by applying a 2-way mixed ANOVA with factors: LEARNING STATUS
(Learner vs. Non-Learner), and TIME (Pre vs. Post). In the Training condition, PSC of the
BOLD response from the aMCC was analyzed by applying a 2-way mixed ANOVA with

factors: PARADIGM (Serial vs. Parallel), TIME (Training 1...Training 18).

On the level of the individual subjects, the PSC of the aMCC of each of the 18

training runs was normalized to the PSC of the pre-training measurement (PSCirain -
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PSCpre) and then thresholded using the average signal difference (PSCpost - PSCpre) of the
Serial or Parallel paradigm control group. Trainings with a higher increase than the
appropriate control group were defined as efficient training runs (ETR) and summed up
for each subject. ETR was compared between learning statuses using Student’s T-test.
The correlation between ETR and Post-Pre PSC group difference was determined using

Pearson’s correlation coefficient.

The uncoupling of the self-regulation phase from the feedback appraisal phase in
the Serial paradigm enables a separate analysis on the feedback appraisal phase. GLM
was performed on the time courses extracted from individual ROIs, with regressors
modelling “Feedback” and “Count” phases. The GLM contrast was Feedback > Count.
BOLD activity of aMCC during feedback appraisal was investigated throughout the
Training runs in Learners (n = 6) and in Non-Learners (n = 4) from the ST group. PSC of
the BOLD response from aMCC was analyzed using a 2-way repeated-measures within-
subject ANOVA with factors: TASK (Self-regulation vs. Feedback appraisal) and TIME
(Training 1...Training 18).

3.2.9.2 Whole-brain fMRI analyses
Additional to the ROI analyses, voxel-wise fMRI analysis of the whole volume covering

the cerebral cortex was performed using standard block design GLM in FSL

(www.fmrib.ox.ac.uk/fsl). Pre-processing steps involved motion correction using
MCFLIRT (Jenkinson et al., 2002); non-brain removal using BET (Smith, 2002); spatial
smoothing using a Gaussian kernel of FWHM 5 mm; grand-mean intensity normalization
of the entire 4D dataset by a single multiplicative factor; and high-pass temporal filtering
(Gaussian-weighted least-squares straight line fitting, with sigma = 15.0 s). Registration
using linear rigid body registration (FLIRT) with 6 degrees of freedom was performed to
register the partial fMRI volume to the whole-brain volume, and further refined using
boundary-based registration (BBR) to register whole brain volume to the anatomical
T1-weighted image (Jenkinson and Smith, 2001; Jenkinson et al., 2002). Registration
was then further refined using non-linear registration (FNIRT) on the anatomical T1-

weighted image to the standard MNI space (Andersson et al., 2007).

First-level GLM was performed on the fMRI data with the following regressors:
“Think” phase for self-regulation in the Parallel paradigm; “Think” and “Count” phases
for self-regulation in the Serial paradigm; “Feedback” and “Count” phases for feedback

appraisal in the Serial paradigm. In the higher-level analysis, mixed effects modeling in
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FSL (FLAME 1 + 2) was used. The higher level model is specified in the following two
sections (3.2.9.2.1 and 3.2.9.2.2). Z (Gaussianized T) statistic images were thresholded
using clusters using Z > 3.1 and a cluster significance threshold of p = 0.05 FWE
corrected for multiple comparisons. Brain regions that are activated are labeled

according to the Harvard-Oxford cortical and sub-cortical structural probabilistic atlas.

3.2.9.2.1 Self-regulation in Learners versus Non-Learners
The Learners from the ST group (n = 6) and PT group (n = 2) were combined. The four
non-learners from the ST group were re-grouped with randomly chosen four subjects
from the PT group as “Non-Learners”. Four subjects from the SC and PC group were
randomly selected and re-grouped as “Controls”. Therefore, the total number of subject
in each group was eight. For the Transfer condition, changes in brain activity in
Learners, Non-Learners and Control were investigated by 2-way mixed ANOVA on the
first level GLM contrast Think > Count with factors TIME (Pre vs. Post) and LEARNING

STATUS (Learner vs. Non-Learner, Learner vs. Control, and Non-Learner vs. Control).

3.2.9.2.2 Group analysis of feedback appraisal in Serial paradigm
Analysis on feedback appraisal was performed on subjects of the Serial paradigm, (ST
group, n= 10). Initial analysis on changes in feedback appraisal activity was done by a
paired t-test on the first level GLM contrast Feedback > Count, comparing between the
last training run (Training 18) and the first training run (Training 1). Subsequent post-
hoc analysis focused on exploring the brain activity during feedback appraisal in the first
and the last training run separately. For this, a one-sample t-test on the first level GLM

contrast Feedback > Count was performed on each run.

3.3 Results
3.3.1 aMCC ROI analysis

3.3.1.1 Transfer of self-regulation: group analysis
Success in learning to self-regulate the aMCC was based on the pre- to post-training
measurement difference in aMCC BOLD activity levels during self-regulation without
feedback (transfer condition) compared to the same measurements in the no-training
control groups.
Group performance (PSC) of the four groups in self-regulation in the Transfer

condition is shown in Figure 8. The 3-way ANOVA (PARADIGM, GROUP, TIME) revealed no
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significant main effects in GROUP or TIME, as well as no significant interactions between
these main factors. This reflects that there was no difference in the aMCC BOLD activity
either between the trained group and the untrained control group, or between the pre-
and the post-training transfer runs. The lack of significant interaction between PARADIGM
x GROUP x TIME shows that there was no significant difference in aMCC BOLD activation
from pre- to post-training neither between the trained and the untrained control group,
nor in the trained group between the Parallel and the Serial paradigm. On the group
level, there was no significantly larger increase from pre- to post-training transfer

condition in the trained group compared to the untrained control group.

However, there was a main effect of PARADIGM in which both Trained (ST) and
Controls (SC) of the Serial paradigm showed higher aMCC BOLD activity than the
Trained (PT) and Controls (PC) of the Parallel paradigm (Fi26 = 8.036, p = 0.009).
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Figure 8: Group performance in aMCC self-regulation in the transfer session (group
mean + SEM)

3.3.1.2 Transfer of self-regulation: individual analysis
Individual performances (PSC) in the pre- and post-training transfer run were
investigated (Figure 9) to gain insight into possible explanations for the lack of a
significant increase in group aMCC activity after the rt-fMRI NF training. These
performances reveal large individual difference in aMCC BOLD activity between the two

measurements and led to a categorization of the individual subjects into Learners and
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Non-Learners. Learners were defined as individuals with an above-threshold PSC
difference of the aMCC BOLD activity from the pre- to post-training transfer run. The
threshold value was calculated for each paradigm from the equivalent untrained control
group (see description in Section 3.2.9.1). Based on this categorization, more learners
were observed in the Serial Training group (6 out of 10) than in the Parallel Training
group (2 out of 10). However, this difference in number of Learners in the different

paradigms did not reach significance (Fisher’s Exact Test, p = 0.170).
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Figure 9: Individual performance in NF transfer session in subjects from A) Parallel Training
group B) Serial Training group. Threshold represents the average difference from the Pre- and
Post transfer measurements of the two untrained control groups: Parallel Control (red line),
Serial Control (green line). Subjects whose post-pre difference in PSC was higher than the
threshold were classified as learners (L) and are numbered.
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3.3.1.3 Transfer of self-regulation: group analysis of learning status

Subjects were re-grouped (Section 3.2.9.1) based on learning status independent of the
NF paradigm, and the group performance in self-regulation in the transfer condition is
shown in Figure 10. The 2-way ANOVA (LEARNING, TIME STATUS) showed a significant
main effect of TIME, (F1,18 = 7.98, p = 0.011), and a significant TIME x LEARNING STATUS
interaction (F1,18 = 15.83, p = 0.001), where the Learners showed significant increase in
aMCC BOLD activity after NF training (t7 = -2.802, p = 0.026), whilst the Non-Learners
showed a significant decrease (ti11 = 3.316, p = 0.0069) (Figure 10). Comparing the two
learning statuses at post-training session, the Learners showed significantly higher

aMCC activity than non-learners (tig =-3.54, p = 0.017).

Self-regulation of aMCC during Transfer
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Figure 10: Performance of Learners (n = 8) and Non-Learners (n = 12) in aMCC self-
regulation in the transfer session (group mean + SEM). Significant post-hoc t-tests are
marked with asterisk (¥*p < 0.05; **p < 0.01)

3.3.1.4 Training of self-regulation: group analysis of paradigms
Group performance (PSC) of the two trained groups in self-regulation in the Training
condition is shown in Figure 11. The 2-way ANOVA (TIME, PARADIGM) showed no
significant main effect of TIME, indicating no change of aMCC BOLD activity throughout
the training; but a highly significant main effect of PARADIGM (F1,18 = 9.237, p = 0.007)
where the Serial Training group showed higher aMCC BOLD activity throughout the NF
Training compared to the Parallel Training group. There was no significant interaction

between the two factors.
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Figure 11: Group performance of aMCC self-regulation Serial and Parallel Training group during
the two-week training sessions (group mean + SEM). ** p < 0.01 for the main effect PARADIGM

3.3.1.5 Training of self-regulation: individual analysis

Similarly as in the Transfer run, the aMCC BOLD activity over the course of NF training
was also investigated in individuals. Subjects did show large individual variability in the
temporal patters of changes in aMCC activity throughout the 18 NF training runs
(Figure 12). Even in Learners, there was no generalizable pattern of increase of aMCC
activity over time that could distinguish them from the Non-Learners. A test considering
the simplest temporal learning pattern, a linear increase in aMCC BOLD activity over the
time course of the training, showed that five out of eight Learners and five out of twelve
Non-Learners did show this linear increase in aMCC BOLD activity over time. No
significant association could be found between a linear increase and learning status
(Fisher’s Exact Test, p = 0.53).

Since no consistent temporal pattern of changes in aMCC BOLD activity across the
training could be observed, the absolute number of runs with increased aMCC BOLD
activity was considered. These efficient training runs (ETRs) showed larger change of
aMCC BOLD activity from the pre - to the post-training transfer run than observed in the
untrained controls (Section 3.2.9.1). Summing up the numbers of ETR in each subject
revealed that the Learners had an average of 13 ETRs (SEM = 2.3) out of 18 training
runs, compared to the Non-Learners having on average of 6 ETRs (SEM = 1.4). This
difference in the number of ETRs between Learners and Non-Learners was significant

(tis=-2.774,p =0.013).

45



rt-fMRI NF of aMCC

A.
Parallel paradigm Training
5] 6 6 6 6
13 2 6 0 5
4 4 4 4 4
g g g 8 )
= = = = c
® ® (5] o ©
52 52 52 52 52
w i w o w
5 5 5 5 5
2 0] ED 0 W ’7; 0 W f oi———— 'T; O&W
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
runs ns runs runs runs
6 6 3] 6 3]
18 L1 16 L2 5 5 8
4 4 4 4 4

% signal change
% signal change

% signal change
o

% signal change
o

% signal change
o

2 2 2 2 2

0 10 20 0 10 20 0 10 20 0 10 20 0 10 20

runs runs runs runs runs
B.
Serial paradigm Training

M8 3] 13 L4 ° L5| ’
g * g * g g * g *
5 5 5 5 5
5 2 5 2 S 2 5 2 5 2
™ ® K] o) @
5 5 5 /\‘V/\/ 5 5 j\M
w0 w 0 w0 w0 w0
s 5 ki 2 oM | 2

2 2 -2 2 2

0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
rns runs runs runs uns

’ i 5 T L7 7 L8
@O 4 @ 4 O 4 @ 4 @ 4
L=z o k=2 o k=21
= = = = =
o [} [ © o
S 2 5 2 S 2 S 2 = 2W
© ® = o w
o c c [ c i c [
b=y =] h=] i=J i=J
w0 © 0 “ 0 © 0 @ 0
& /\'MAA a® M 2 W\ = W =

2 2 2 2 2

0 10 20 0 20 0 0 20 0 0 20 0 10 20

runs

mns

runs

runs

mns

Figure 12: Individual performance in aMCC self-regulation during the training sessions in A) PT
group and B) ST group. The number of efficient training runs (ETR) is shown in the upper left
corner. Training efficiency was determined by the total number of training runs whose PSC
exceeds a threshold calculated from the respective control group. Learners, defined from NF
transfer condition (see text) are labelled “L” and are numbered.

3.3.1.6 Training of self-regulation: group analysis of learning status
Group performance (PSC) of the Learners and Non-Learners in self-regulation across the

training condition is shown in Figure 13. The 2-way ANOVA (LEARNING STATUS, TIME)
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revealed a significant main effect of LEARNING STATUS (F1,18 = 5.810, p = 0.027), where the
Learners, on average showed higher BOLD activity in the aMCC throughout NF training
compared to the Non-Learners. The main effect of TIME did not reach significance, as the
BOLD activity did not significantly increase throughout the time course of the training.
The interaction between TIME and LEARNING STATUS, (Fss, 952 = 1.97, p = 0.086) also did
not reach significance as would have been expected. The level of PSC within the Learners
rose early in the training above the PSC level of the Non-Learners, but only in the last six
training runs did a difference evolve. Post-hoc t-test revealed a significant difference in
aMCC activity between Learners and Non-Learners (tig = -3.050, p = 0.007) in the last

training run.
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Figure 13: Group performance of aMCC self-regulation in Learners and Non-
Learners during the two-week training sessions (group mean + SEM). (*p < 0.05
for main effect of LEARNING STATUS; ** p < 0.01 for post-hoc t-test for last
training run)

3.3.1.7 Correlation between transfer success and Efficient Training Runs
The relationship between efficiency in the training runs and success in transfer
condition can be seen in Figure 14. The correlation between the number of ETR and
transfer success was r = 0.60 for the Serial Paradigm, and r = 0.67 for the Parallel
paradigm. In general, higher number of ETR was associated with higher post-pre PSC
difference. However, there were subjects who had high number of ETR in the training

condition, but did not somehow show a large post-pre difference in BOLD aMCC activity
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in the transfer condition. Alternatively, there were subjects who had a moderate number

of ETR, yet succeeded in the transfer condition (for example, individual L6).

Post-Pre % Signal Change difference
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Figure 14: Relationship between number of efficient training runs (ETR) and individual training
success. Least-squares lines and correlation coefficients are shown. Learners are labeled
according to Figure 9. Dashed lines are thresholds calculated from the respective control groups.

3.3.1.8 Feedback appraisal: group analysis

The temporal uncoupling of self-regulation and feedback appraisal in the Serial

paradigm enables separate investigation into feedback appraisal. The 2-way ANOVA

(Task, TIME) showed a significant main effect of TASK (F19 = 16.93, p = 0.003), where

aMCC BOLD-activity was lower during feedback appraisal than during self-regulation

regardless of the course of NF training (Figure 15 A). There was no significant main

effect of TIME; indicating that regardless of self-regulation or feedback appraisal that was

being performed, there was no significant change in aMCC activity throughout NF

training. In addition, there was also no significant TAsK x TIME interaction, indicating that

the change in aMCC activity across time, when the subjects performed self-regulation

was not different from when they were appraising feedback.
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When the group of trained subjects was regrouped according to the learning status, 2-
way ANOVA (LEARNING STATUS, TIME) revealed a non-significant main effect of LEARNING
STATUS, indicating that feedback appraisal elicited comparable aMCC BOLD-activity in

Learners and Non-Learners (Figure 15 B,C).
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Figure 15: aMCC activity (mean + SEM) of self-regulation and feedback appraisal during NF
training in A) Serial Training group and further divided into B) Learners C) Non-Learners

3.3.2 Whole-brain analyses

3.3.2.1 Transfer of self-regulation: group analysis
Whole-brain group level analyses, comparing between Learners, Non-Learners and
Controls were performed to explore activations in brain regions other than, or in
addition to the trained ROI. Brain regions activated during aMCC self-regulation higher
in one group than in the other, in the post-training transfer compared to the pre-training

transfer are shown in Figure 16.
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Compared to the Controls, the Learners showed increased activity mainly in the
aMCC, thalamus, basal ganglia, SMA, and ventromedial prefrontal cortex (Figure 16 A,
Table 1A). The Non-Learners, compared to Controls, showed increased activity mainly
in the precuneus, the posterior cingulate cortex (PCC), and the inferior parietal lobule
(IPL) (Figure 16 B, Table 1B).

When comparing Learners and Non-Learners, increased activity in the aMCC,
thalamus, basal ganglia and SMA — similar brain areas as in the Learner > Control
comparison, could be seen. In addition to these areas, compared to the Non-Learners,
the Learners had also increased left inferior frontal gyrus and left insula (Figure 16 C,

Table 1 C).

A. Learner > Control

Figure 16: Brain regions significantly activated during the regulation blocks “THINK” vs. “COUNT”
after NF training, in A) Learners (post > pre) compared to Controls (post > pre), B) Non-Learners
(post > pre) compared to Controls (post > pre), C) Learners (post > pre) compared to Non-
Learners (post > pre). Images are thresholded at z > 2.3, a cluster significance threshold of p = 0.05
(FWE corrected)
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Table 1: Cluster maxima for self-regulation in NF training of the aMCC. Anatomical areas are
defined by Harvard-Oxford Cortical and Subcortical Maximum Probability Atlas.

Number of MNI coordinates Maximum z
voxels
X Y Z

A. Learner > Control
Frontal pole R " 142 8 56 12 6.07
Frontal pole L 101 -8 66 14 5.31
Paracingulate gyrus R 230 8 54 14 5.45
Paracingulate gyrus L 312 -4 48 -8 4.71
Cingulate gyrus, anterior R 294 2 2 38 5.12
Cingulate gyrus, anterior L 260 0 0 42 4.95
Supplementary Motor Area R 155 8 -2 48 3.64
Thalamus R 476 8 -20 18 4.98
Thalamus L 616 -12 -22 2 5.03
Caudate R 141 6 12 2 5.26
Caudate L 62 -18 18 4 3.20
Putamen R 176 24 8 6 3.64
Putamen L 73 -24 14 6 3.44
Pallidum R 50 16 -4 -2 3.45
Pallidum L 51 -16 -8 -4 3.60
Heschl’s gyrus R 53 42 -22 12 3.78
Heschl’s gyrus L 95 -42 -22 12 4.80
Planum temporal R 137 46 -32 16 4.54
Planum temporale L 180 -44 -40 10 5.35
Opercular Cortex, Parietal R 41 42 -20 16 3.83
Opercular Cortex, Parietal L 25 -42 -26 16 3.60
Opercular Cortex, Central R 24 44 -14 20 3.84
Opercular Cortex, Central L 63 -42 -22 14 4.16
B. Non-Learner > Control
Precuneus Cortex R 389 10 -60 52 4.52
Precuneus Cortex L 158 -22 54 16 3.68
Cingulate gyrus, posterior R 55 18 -52 36 3.29
Cingulate gyrus, posterior L 78 -4 -46 34 3.59
Lateral Occipital Cortex, superior R 15 12 -60 56 3.13
Lateral Occipital Cortex, superior L 47 -38 -68 28 4.05
Intracalcarine Cortex L 81 -28 -70 8 3.44
Supracalcarine Cortex R 11 28 -48 22 3.62
Supracalcarine Cortex L 18 -24 -62 20 3.00
Angular gyrus L' 35 -34 54 18 3.41
Angular gyrus R' 17 28 -52 32 3.53
C. Learner > Non-Learner
Cingulate gyrus, anterior R 495 12 6 36 4.53
Cingulate gyrus, anterior L 525 -2 -2 40 4.46
Paracingulate gyrus R 273 4 30 32 5.42
Paracingulate gyrus L 342 -10 34 32 3.97
Thalamus R 289 14 -6 6 5.18
Thalamus L 494 -8 -4 0 4.78
Inferior Frontal Gyrus pars 15 -20 30 4 5.28
triangularis L
Insula Cortex L 227 -28 14 14 4.86
Frontal Operculum Cortex L 63 -32 24 12 3.62
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Frontal Orbital Cortex L 153 -32 30 4 4.61
Precentral gyrus R 456 42 -12 64 4.56
Supplementary Motor Area R 251 12 2 54 4.55
Supplementary Motor Area L 115 -14 2 42 3.21
Superior Frontal Gyrus R 208 12 14 64 431
Superior Frontal Gyrus L 123 -16 8 66 3.95
Middle Frontal Gyrus R 137 54 20 30 4.08
Pallidum R 52 22 -4 2 3.64
Pallidum L 27 -20 -14 -2 3.32
Caudate R 167 14 18 12 4.12
Caudate L 22 -14 4 22 3.20
Putamen L 19 -24 14 6 3.40
Cingulate gyrus, posterior R 113 12 -20 40 3.62

) part of the ventromedial prefrontal cortex
! part of the inferior parietal lobule

3.3.2.2 Feedback appraisal: group analysis
Whole-brain analysis on changes in feedback appraisal activity within the ST group in
the last compared to the first training run showed no significant results, possibly
indicating similar pattern of brain activity during the two sessions. Subsequent analysis
focused on the two runs separately. Brain regions that are active during feedback
appraisal are shown in Figure 17. Both the last and the first training run showed similar
pattern of brain activation in the pregenual ACC (pgACC), precuneus, PCC, and IPL —
brain areas belonging to the Default Mode Network (DMN). The coordinates, size and

significance level (z-score) of activation clusters are available in Table 2.
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Default mode network
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Endogenously mediated/
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Figure 17: Brain regions significantly activated during the feedback appraisal blocks
“FEEDBACK” vs. “COUNT” during A) the first training run, and B) the last training run. Images
are thresholded at z > 2.3, a cluster significance threshold of p = 0.05 (FWE corrected). C) Brain
regions belonging to the DMN (adapted from Bressler & Menon, 2010). Reprinted from Trends
in Cognitive Sciences 14(6), copyright 2010, with permission from Elsevier.
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Table 2: Cluster maxima for feedback-appraisal in NF training of the aMCC. Anatomical areas are

defined by Harvard-Oxford Cortical and Subcortical Maximum Probability Atlas.

Number of MNI coordinates Maximum z
voxels
X Y Z

A. Training 1 (first training)

Precuneus Cortex R 555 2 -60 34 3.54
Precunues Cortex L 1152 -6 -46 42 4.04
Cingulate gyrus, posterior R 310 10 -40 40 3.59
Cingulate gyrus, posterior L 493 -4 -44 40 3.75
Cingulate gyrus, anterior R 475 8 36 16 3.80
Cingulate gyrus, anterior L 350 -4 42 16 3.66
Paracingulate gyrus, R 451 4 30 44 3.51
Paracingulate gyrus, L 467 -6 46 14 3.94
Superior frontal gyrus, R 640 6 32 50 4.18
Superior frontal gyrus, L 383 -2 56 26 3.75
Frontal Pole R 438 2 60 20 3.70
Frontal Pole L 192 -2 58 28 3.82
Lateral occipital cortex, superior R 647 30 -84 18 4.00
Lateral occipital cortex, superior L 460 -42 -86 12 3.65
Lateral occipital cortex, inferior R 465 32 -84 6 4.50
Lateral occipital cortex, inferior L 210 -44 -62 2 3.78
Angular gyrus R 350 56 -50 20 4.29
Angular gyrus L 550 -46 -60 20 3.82
Supramarginal gyrus, posterior R 164 52 -44 22 4.17
Supramarginal gyrus, posterior L 95 -40 -50 16 3.64
Thalamus R 434 22 -28 2 4.22
Thalamus L 304 -18 -28 4 4.17
Middle Frontal gyrus R 614 42 8 54 4.21
Insula Cortex L 192 -32 14 -16 4.09
Insula Cortex R 180 34 18 -10 3.74
B. Training 18 (last training)

Precuneus Cortex R 833 6 -66 28 3.67
Precuneus Cortex L 1048 -10 -60 24 3.82
Cingulate gyrus, posterior R 646 2 -20 30 4.32
Cingulate gyrus, posterior L 682 -12 -44 36 3.98
Cingulate gyrus, anterior R 390 6 30 28 4.30
Cingulate gyrus, anterior L 429 -10 34 18 3.83
Paracingulate gyrus, R 405 4 30 30 4.15
Paracingulate gyrus, L 806 -12 30 24 3.80
Superior parietal lobule R 851 36 -50 52 4.90
Frontal Pole L 612 -14 44 52 3.89
Lateral occipital cortex, superior R 1730 24 -58 46 4.85
Lateral occipital cortex, superior L 941 -34 -76 44 4.14
Angular gyrus R 289 38 -52 42 4.35
Angular gyrus L 328 -56 -54 24 3.22
Supramarginal gyrus, anterior R 255 62 -22 40 4.69
Supramarginal gyrus, posterior R 319 38 -46 42 4.28
Thalamus R 499 20 -26 -6 4.38
Thalamus L 408 -18 -32 4 4.06
Middle Frontal Gyrus R 620 54 30 28 4.10
Middle Frontal Gyrus L 555 -36 10 58 4.11
Insula Cortex L 168 -28 14 -14 3.37
Insula Cortex R 193 28 12 -12 3.24
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3.3.3 Self-reports: group analysis

Data presented in this section are from the questionnaires given to the subjects after
each pre-training, NF training and post-training sessions. The median values of the
ratings of the difficulty and performance of the up-regulation “Think”, and down-
regulation “Count” phases in the ST and PT group are illustrated in Figure 18. Wilcoxon
Signed Ranks Test test comparing the post- to the pre-training session revealed that, for
the ST group, difficulty of the up-regulation phase was rated as significantly less
“difficult” (Mdn = ’'Neither’, p = 0.008) (Figure 18 A), performance of up-regulation
phase was rated as significantly more successful (Mdn = "Successful’, p = 0.034) (Figure
18 B), but the difficulty of the down-regulation phase was rated as more difficult (Mdn =
'Neither’, p = 0.02) (Figure 18 C).

On the other hand, there were no significant differences in the how the PT group
ranked the difficulty of “Think” phase, difficulty of “Count” phase, performance of
“Think” phase and performance of “Count” phase in the post-training session compared
to the pre-training session. Analyses based on learning status in the post-training
session compared to the pre-training session, revealed that for the Non-Learners, the
only significant difference in rating was the difficulty of the up-regulation phase, which
was rated as significantly less difficult. For the Learners, there was no significant

difference in ratings of the four parameters.
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Figure 18: Median values of self-reported difficulty and performance rating in ST and PT
group.

Analysis on the ratings of valence and arousal in the post-training session
compared to the pre-training session revealed no significant differences in the ratings by
the PT group, the ST group, the Learners and the Non-Learners. Interestingly, for the
ratings of dominance, the ST group and the Learners rated feeling more dominant in the

post-training session (Mdn = 3.5, p = 0.014 and Mdn = 4.0, p = 0.025 respectively).

3.3.4 Use of mental strategies

The mental strategies used by the subjects in the up-regulation and down-regulation
phase were also documented. The mental strategies reported by subjects to up-regulate
their aMCC activity range from cognitive strategies: “ planning daily activities”, “spelling
long words”, “thinking of vocabulary in a foreign language”; positive emotions imagery:
“positive thoughts about my partner, my family”; negative emotions imagery: “arguments
with former partner”, visual mental imagery: “playing Tetris games”, “playing driving
computer games”. Most of the Learners (6 out of 8) had used cognitive imagery.
However, there are no differences in the type strategies used by the Learners and Non-

Learners in the up-regulation phase of NF training. For the down-regulation phase, most
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subjects reported having performed backward counting while trying to relax. A few

subjects had used breath control techniques to down-regulate their aMCC activity.

Five out of eight Learners had some exposure to meditation training, ranging
from one-off (“.took autogenic training course for 3 months”) to regular (“.been doing
Yoga since four years”). The Learners who had meditation training were the ones who
used breath control techniques to down-regulate their aMCC activity in the “Count”

phase.
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3.4 Discussion

To the best of the author’s knowledge, this is the first extensive NF study of the cingulate
cortex, which used 18 runs of NF training over the span of two weeks, compared two NF
paradigms, included untrained controls, examined the transfer condition, included
questionnaires and examined two behavioral tests, all in one study. Specifically, this
study explored rt-fMRI NF of the aMCC in healthy subjects by assigning two different
paradigms: the conventional Parallel paradigm, in which strategy search and feedback is
temporally coupled, compared to a novel Serial paradigm in which strategy search and
feedback are temporally uncoupled. This study found that the Serial paradigm is
promising in facilitating NF of the aMCC.

The ability to self-regulate the aMCC in the presence and absence of feedback is
higher in the ST than in the PT group. Most Learners originate from the ST group.
Learners indeed showed successful retention of the ability to self-regulate aMCC activity
in the absence of feedback and had more ETRs during the NF training than Non-
Learners. There is a correlation between transfer success and ETR. Compared to the
Controls or Non-Learners, Learners activated brain regions related to reward learning in
addition of the aMCC itself. There is no apparent difference in the use of mental
strategies between the Learners and Non-Learners. The ST group and the Learners
reported feeling more in control of the assigned NF paradigm than the PT group and the
Non-Learners. It appears that feedback appraisal elicited lower aMCC activity than self-
regulation and there was no apparent difference in aMCC activity in Learners and Non-

Learners. Feedback appraisal activated brain regions that are nodes of the DMN.

3.4.1 Neurofeedback learning

3.4.1.1 Training and transfer
One of the goals in a NF study is to demonstrate NF-induced learning. The definition of
NF-induced learning itself is diverse in the NF literature, and has been attempted on
multiple levels. In NF studies of the cingulate cortex, at the very basic level, learning has
been defined as successful regulation of the target ROI in the regulation blocks
compared to the control blocks in one NF session (Mathiak et al., 2010; Grone et al.,
2014). On the next level, learning can be seen as increased control of the target ROI over
multiple training runs (Weiskopf et al., 2003; deCharms et al., 2005). Another index of
learning is based on the transfer condition, i.e. the ability to retain self-regulation in the

absence of feedback (Mathiak et al, 2010; Hamilton et al.,, 2011). Out of these two
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studies, only one NF study (which used just one subject) showed success in self-
regulation in the absence of feedback. (Mathiak et al.,, 2010). On the next level in this
category, learning index can be defined based on comparison to an untrained control
group, which is not expected to show NF-induced learning. It is this criteria that was
have used in this study to define NF-induced learning. It is difficult to draw a parallel to
other NF studies of the cingulate cortex because those studies have used either small
number of subjects, included no transfer run, used relatively fewer training runs, or
excluded controls. Due to these differences, naturally the yardstick to define NF success
differs between studies. Nevertheless, the yardstick used in this study is the most

conservative in comparison to other studies.

In the current study, group analysis of the transfer condition comparing trained
and controls revealed that there was no NF-induced learning in the trained group. Group
analysis of the training condition also did not show significant increase over time in both
ST and PT group. These results were due to the high variability of the BOLD aMCC
activity within the group, attributed to the presence of Non-Learners amongst Learners

in one paradigm.

These results indicate that in general, self-regulation of the aMCC is challenging.
Unlike the sensorimotor cortex where motor imagery (e.g. imagine playing the piano)
can be used as a strategy there are no clear-cut strategies that can be prescribed that
voluntarily activate the ACC (Mathiak et al., 2010). Nevertheless, in this study, there is an
indication that the Serial paradigm could help facilitate performing NF, as it elicited
significantly higher BOLD aMCC changes in the ST group compared to the PT group in
the transfer and the training condition, which could be driven by a greater presence of

Learners in the ST group (6 out of 10) than in the PT group (2 out of 10).

3.4.1.1.1 Controls
There are various types of controls that can be used in a NF study, depending on the
objective of the study. With the exception of one study, (deCharms et al., 2005), most NF
studies of the cingulate cortex did not even include a control group. In this exploratory
study, an untrained control group was used to examine whether any learning effects
observed in the trained group are due to undergoing a 2-week NF training or have to be
ascribed to merely performing the same task twice. Both SC and PC groups in this study
did not show significant changes from the pre- to the post- measurements in the transfer

condition, consistent of what is expected of such a control group. Therefore, these
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controls were then used to establish a baseline against which performance of subjects in
the trained group during transfer and training could be compared directly. A limitation
with the controls is that, only 5 controls were included in each paradigm (due to

limitations in measurement time), half the sample size of the experimental group.

3.4.1.2 Performance-based categorization of subjects
Henceforth, to gain more insights into the neural correlates associated with successful
NF learning, subjects were re-grouped based on their performance, into Learners and
Non-Learners, independent of paradigm. The criteria to define Learners was based on
individual comparison to the untrained control group which is not expected to show NF
training-related changes in BOLD aMCC activity. A simple threshold comparison was
chosen instead of a statistically significant comparison because the latter was too
conservative for these exploratory data. Using this criterion, it has been revealed that
more Learners came from the ST group than the PT group, although statistical tests
failed to show significant association between paradigm and learning status, which is

most likely attributed to the small sample size in each category.

Compared to the Non-Learners, the Learners were successful in using the
feedback to self-regulate their aMCC activity, evident by the significant higher change in
BOLD aMCC activity over NF training runs compared to the Non-Learners. Learners
were also successful in retaining the skill to self-regulate the aMCC in the absence of the
feedback. These results were expected since the Learners were defined based on the
criteria of showing increased BOLD aMCC activity more than that of the control group in

the transfer condition.

3.4.1.2.1 Efficient training runs and successful transfer
A possible predictor for the outcome of this NF study of aMCC self-regulation is the
number of ETR, in which the data showed a significant difference between Learners and
Non-Learners. Learners showed double the number of ETR than Non-Learners, and
there is a moderate correlation between ETR and transfer success. Although it may be
tempting to associate higher number of ETR with higher PSC difference, in reality,
transfer success in each subject is variable. Some subjects acknowledged being
distracted by the feedback, and performed better without it, i.e. showing transfer
success with only some ETR. Conversely, some subjects seemed efficient in using the

feedback to self-regulate the aMCC but were not successful once the feedback was
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absent e.g. having 17 ETR but showed no transfer success. Nevertheless, the present
results suggest that Learners in general are able to use NF more efficiently to help their
attempt in self-regulation and could subsequently adapt that acquired ability to a
slightly different situation (in this case, performing self-regulation in the absence of

feedback).

3.4.1.3 Learning curves of NF training
In the NF literature, characteristics of a NF learning curve have been described as
positive exponential function (Birbaumer et al.,, 2013), inverted U-shape (Lee et al,,
2011), and a linear increase (Lawrence et al., 2014; Young et al.,, 2014). In general, it is

agreed that learning involves incremental changes over time.

Group analysis of the training condition revealed that neither the ST nor the PT
group showed a linear increase in the aMCC BOLD activity over time. Analysis on
individuals showed that there are some subjects who demonstrated a clear increase in
aMCC activity over time (e.g. individual L1 and L4 in Figure 12). However, not all
learners showed a linear increase of aMCC activity over 18 NF training runs. Therefore,
to describe learning in NF of the aMCC, ETR may be a better index than presence of a

linear learning curve.

3.4.1.4 Brain areas and networks involved in NF learning
To explore the neural correlates of NF learning, whole-brain fMRI analysis was
performed to investigate activations beyond the target ROI. The results show that
successful self-regulation of the aMCC brought about changes in brain regions
implicated in reward learning. In addition to increasing BOLD activation of the aMCC,
compared to the Controls or Non-Learners, the Learners had more activity in the basal
ganglia —a brain region related to learning and motivation; and in the thalamus — an
essential relay station of the cortico-basal ganglia circuit, integrating cortical inputs to

drive goal-directed behavior.

This finding supports the view that the basal ganglia play an important role in
NF-based learning which is often viewed as operant learning (Koralek et al., 2012;
Birbaumer et al., 2013). Specifically, the caudate nucleus and putamen, sub-regions of
the dorsal striatum of the basal ganglia, have a role in goal-directed operant learning
(Delgado et al., 2005; Liljeholm and O’Doherty, 2012). A recent study of NF training of

the nucleus accumbens (part of the ventral basal ganglia) using short phases of self-
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regulation (10 s), showed activation in caudate and putamen during NF training in

addition to the target ROI (Greer et al,, 2014).

Increased activation of the thalamus in the Learners is also in line with the role of
the thalamus as an essential hub of integration of networks that underlie the ability to
regulate behavior (Haber and Calzavara, 2009). In operant learning (also called
instrumental learning), individual’s behavior is modified by its consequences. In terms
of the present study, the Learners have learnt the skill to self-regulate their brain
activity by associating the reward (feedback from the aMCC) with their behavior
(strategies). Even when no feedback is presented in the transfer task, the acquired self-
regulation skill is maintained and can be applied. To do so, Learners must be flexible in
finding an appropriate response in an unfamiliar situation or breaking a habitual
response (e.g. accustomed to regulating with feedback during the NF training) when
contingencies change in familiar situation (e.g. regulating without the usual feedback in
the post-training session) (Gazzaniga et al.,, 2009). This requires continuous processing
of information from limbic, cognitive and motor circuits; and subsequent functional

integration of that information, which is mediated by the thalamus.

It should also be mentioned that the post-training transfer session was not even
done immediately after the last training, but on average after three days, therefore

suggesting that NF-learning effects can persist at least for a few days.

3.4.2 Serial versus Parallel paradigm

The Serial paradigm was developed to overcome the challenges of performing rt-fMRI
NF of the aMCC as layed out in the introduction. The idea of presenting the feedback only
after the regulation phase instead of concurrently, was based on the challenges of rt-
fMRI NF and the aim of training a brain area involved in cognition. Some insight came
from the paradigm used in a study on direct instrumental conditioning of the
sensorimotor cortex (Bray et al., 2007). Later during the course of the measurements, a
study that addressed similar issues to the present study emerged. Johnson et al. (2012)
did a pilot study of a similar “intermittent” vs. “continuous” rt-fMRI NFB study of the
premotor cortex and showed that intermittent, temporally separated presentation of
feedback (about 20 s delay) is more effective than continuous presentation in a motor

imagery task (Johnson et al., 2012).

The intermittent feedback presentation reduces the processing of the cognitive

load from parallel to serial. In serial processing, the self-regulation phase is uncoupled

62



rt-fMRI NF of aMCC

from the feedback appraisal phase. Therefore subjects can process these two phases
separately, and consequently, are less burdened in doing a NF task. A serial paradigm as

such reduces the interference between self-regulation and feedback appraisal.

3.4.2.1. Temporal contiguity of NF paradigms

Although the feedback in the Serial paradigm is considerably delayed and non-
concurrent with the self-regulation phase, six out of ten subjects were able to learn how
to control the delayed BOLD feedback signal of their aMCC activity. The findings in this
study on delayed feedback are in support of the NF study of motor imagery using ~20 s
of delayed feedback (Johnson et al., 2012), and a connectivity-based NF using ~60 s
delay (Koush et al,, 2013). In both studies, subjects managed to learn how to control
their brain activity represented by the delayed feedback signal that was not presented in

parallel with the task of self-regulation.

The issue of temporal contiguity in NF has just emerged in the recent years, thus
NF studies addressing the issue are scarce. However, insights on temporal contiguity
and learning can be drawn from the experimental psychology literature on causal
learning. Studies on delayed reinforcement have shown that the structure of a trial has
to be apparent to the subjects in order to facilitate learning (Greville et al., 2013). In
addition, temporal predictability — the consistency or regularity of the time interval
separating events, has been shown to facilitate causal learning (Greville & Buehner,
2010). In the context of the current study, one explanation on why the Serial paradigm
can facilitate NF learning, is that the feedback has an apparent onset and duration, and

its temporal predictability is higher than that of the Parallel paradigm.

It is not exactly known how the Learners in the PT group approach the NF task.
The conventional way of doing it is by self-regulating in parallel of appraising the
feedback. However, another possible strategy to deal with the Parallel paradigm is that
subjects could use a workaround strategy to lessen the interference between those two
phases by: self-regulating in the first half of each regulation blocks, and appraising the
feedback in the second half — similar to the uncoupling of the two phases in the Serial

paradigm. More research would be necessary to investigate this interesting question.

3.4.2.2. Cognitive load of NF paradigms
Feedback presented in parallel to executing the strategy can be distracting, and one

author has explicitly raised a concern about this (Robineau et al.,, 2014). In the Serial
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paradigm, subjects could be more focused in applying their mental strategy without
being distracted by the feedback unlike in the Parallel paradigm. In essence, subjects in
the PT group viewed a more complex feedback because they need to associate the
feedback with strategies that they have applied ~6-8 seconds earlier, while
simultaneously self-regulating the activity of the aMCC. If such temporal contiguity (as
discussed in the previous section) can be tolerated, the cognitive load is less so. One EEG
study has shown that increased cognitive load of the feedback signal, (through making
the feedback not directly interpretable), impairs learning efficiency in the medial-frontal

system due to reduced ability to process feedback (Krigolson et al., 2012).

Self-reports about difficulty and performance give a clue to the perception of
cognitive load of the NF paradigms. Significant changes in ratings towards the paradigm
being less difficult and the performance being more successful in the post-session were
only observed in the ST group and not the PT group, suggesting a more uniform view on
the demands of the Serial paradigm in each session. Some subjects in the PT group also
verbally remarked on the difficulty of parallel feedback although there was no a specific

question on this aspect in the administered self-report questionnaire.

3.4.3 Feedback appraisal

As a consequence of the design of the Serial paradigm, the feedback appraisal can be
investigated separately, in addition to the self-regulation phase. Feedback appraisal
elicited significantly lower BOLD activity within the aMCC compared to that of self-

regulation.

The potential conflict between BOLD activity attributed to self-regulation of the
aMCC, and attributed to feedback appraisal by the aMCC, was one of the fundamental
factors why the Serial paradigm was conceived. Results of this study may suggest that
activity of aMCC that is being trained is functionally specific, i.e. training self-regulation
activity of the aMCC does not appear to result in a concomitant increase of feedback
appraisal activity in the aMCC. Furthermore, comparable aMCC activity in Learners and
Non-Learners during feedback appraisal suggests that difference in performance might
not appear to be attributed to the activity of appraising feedback. This study also
showed that feedback appraisal-related BOLD activity in the aMCC is comparable to that
reported by Amiez and colleagues, which is in the range of 0.1-0.2% (Amiez et al., 2013).

Whole-brain fMRI analysis sheds more light onto the neural correlates of

feedback appraisal beyond the aMCC. There is no difference in brain activity elicited by
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feedback appraisal in the last training run compared to the first training run, due to
similar pattern of brain activations in the two runs. The brain areas activated during
feedback appraisal resemble the nodes of the DMN. DMN is a set of regions which are
more active at rest than during goal-directed task performance (Fox and Raichle, 2007).
Moreover, results of this present study are in concordance with the function of the DMN
in internal mentation, i.e. spontaneous introspective thoughts (Andrews-Hanna, 2012).
When viewing the feedback, subjects naturally would engage in self-referential,
introspective thoughts, i.e. wondering about their performance during the preceding
self-regulation phase and planning how to improve it in the next self-regulation phase.
Indeed this is what has been reported by some subjects in the post-session

questionnaire.

3.4.4 Self-reports

In addition to the objective measures of performance, self-report questionnaires can
provide valuable insights into the subjective experience, from the perspective of the
participants. This study did not use a cross-over design, therefore one subject only
experienced one paradigm, so only within-group comparison of the ratings of difficulty
and performance across two-time points (pre-training and post-training) could be done.
A suitable non-parametric statistical test to analyze repeated measures, between-group

comparison for ordinal data was not available.

The self-report questionnaires provide a hint that supports the hypothesis that the
Serial paradigm facilitates learning self-regulation. Ratings of dominance by the ST
group and in the Learners increased after undergoing the 2-week NF training, indicating
that they felt more in control of the NF task. For future experiments, more questions
may be incorporated, for example, asking the subjects if they managed to stay focused, at
which session approximately did they think they were able to gain control of their aMCC
activity, and how helpful was the feedback, e.g. rating it from “distracting” to “helpful”.

3.4.4.1 Mental strategies
Another interesting aspect of the self-report is the open-ended question on mental
strategies. There was no clear difference in the mental strategies reported by Learners
and Non-Learners. Similarly, a rt-fMRI NF study on visual cortex has shown that,
learners and non-learners did not differ in their reported strategies or their attentional
effort (Scharnowski et al., 2012). It could be the case that the questionnaires used in the

present study were not sensitive enough to distinguish subtle differences between the
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groups. Another reason is that it may be that the Learners just could not verbalize
specific mental strategies because the process of self-regulation might have become
automated, as observed in an EEG-NF study on spontaneous mental strategies (Kober et

al, 2013).

Although strategies were suggested, subjects were free to develop their own
strategies in their attempt to self-regulate the aMCC. For example, a few Learners had
used breath control techniques to lower the aMCC activity during the “COUNT” phase,
instead of using the author’s suggestion to count backwards. One NF study has shown
that explicit instructions on how to control one’s brain activity could even be
counterproductive to achieving the “focused but relaxed” mental state required for self-
regulation learning in NF (Kober et al., 2013). Such mental state appears similar to what
is trained in meditation. In fact, neurofeedback and meditation have been viewed as
methods to train mental states (Brandmeyer and Delorme, 2013). Furthermore, short-
term meditation training has been shown to improve self-regulation in cognition and
emotion (Tang et al., 2007). In this present study, half of the learners have had some
exposure to gaining attentional control or self-awareness through meditation or yoga. It
may be that those who had such exposure find it easier to achieve the mental state
required in self-regulation, hence performed better than the others. However, since this
study did not systematically investigate the experience level, type, or duration of their
meditation training (as these were beyond the scope of this current study), this notion

remains to be investigated further.

3.5 Conclusions

Learning to self-regulate aMCC activity through rt-fMRI NF is in general, difficult yet
possible. This study has shown that the Serial paradigm is promising in facilitating
learning in rt-fMRI neurofeedback through reducing the cognitive load of the NF task,
and having a clear temporal contiguity. The author also advocates the need to analyze
and present individual data for a more comprehensive understanding about individual
differences, and the factors driving NF success. This study has provided evidence that
learning to self-regulate the aMCC not only brought about changes in the activity of the
aMCC, but also engages other brain regions involved in reward learning. Learning self-
regulation most likely does not depend on the content of the mental strategies per se,

but rather the ability to achieve of a focused and attentive mental state. In addition, this
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study demonstrated that feedback appraisal can be characterized as a self-referential

activity due to the engagement of the DMN.
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4 Generalization of neurofeedback training to behavior

4.1 Introduction

4.1.1 Effects of neurofeedback learning on behavior

In a NF study, following training of self-regulation, one can test if the learned
regulation brings about specific behavioral effects. This phenomenon, also called
“generalization”, can be investigated through behavioral tests administered before
and after learning. Testing the behavioral effects of learned self-regulation is part of
the experimental framework of NF (Sulzer et al., 2013). In the rt-fMRI NF literature,
behavioral test can refer to either specific cognitive paradigms involving a
behavioral response or self-reports. The self-reports used in this study (Section
3.2.8) intended to probe the subject’s perception to the paradigm and difficulty of
task; and therefore were not a direct measure to test the effects of NF learning. This

chapter discusses behavioral paradigms as a test for the effects of NF learning.

Behavioral tests involving specific cognitive paradigms have been performed
while undergoing fMRI measurement (Mathiak et al, 2010), or in the scanner
without concurrent fMRI measurement (Chiew et al., 2012; Robineau et al., 2014).
Behavioral tests involving self-ratings have been administered either inside (Caria et
al., 2010) or outside the MRI scanner (deCharms et al., 2005; Ruiz et al., 2013). In
our present study, the subjects performed two cognitive paradigms, CPT and

Flanker task, while undergoing fMRI measurement.

The behavioral tests selected usually intend to test the effects in the domain
that has been trained in the NF training. The pioneering rt-fMRI NF study of the ACC
used the self-assessment manikins (SAM) (Bradley and Lang, 1994) to assess
affective states (specifically emotional valence and arousal) after each session and
separately after each block (Weiskopf et al., 2003). Similar ratings of valence and
arousal have also been used in one NF training of the rostral ACC but as an implicit
measure to judge prosody of pseudowords (Grone et al., 2014). In NF training of the
ACC in chronic pain patients, perception of pain has been used as an index of
generalization of NF learning (DeCharms et al,, 2004). In addition to the present
study, there is only one other NF study of the ACC which used a behavioral test
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specifically testing the cognitive control domain (Mathiak et al., 2010). This study

used the Simon task — a task of similar nature to the Flanker task.

4.1.2 CPT

The CPT is a group of cognitive paradigms for evaluating sustained attention (Riccio
et al.,, 2002). The principle concept of the CPT paradigm involve sustaining attention
to a fast stream of continuous stimuli presentation and responding to a specific
“target” stimulus presented in a specific pattern. Various properties of anticipation
can be indexed by different contrasts; for example, early and late anticipation
(Luetcke et al, 2009). Performance in the CPT is sensitive to brain damage or
dysfunction affecting the attention system and thus this task has been used heavily
in clinical populations. In the present study, besides employing CPT as a behavioral
task to test learning effects of NF, the same task has also been used as a functional

localizer task for the aMCC (Section 2).

4.1.3 Flanker task

The Flanker task is a cognitive paradigm for examining conflict resolution and
response inhibition (Nee et al,, 2007). In a standard Flanker task (also called Eriksen
Flanker task), subject responds as fast as possible to a target letter embedded in a
string of letters called “flankers” (Eriksen and Eriksen, 1974). In a congruent
condition, the target letter and the string of flankers signify the same response; and
conversely in the incongruent condition, they signify an alternative response. In the
incongruent condition relative to the congruent condition, it would be expected that

the reaction time increases, and accuracy decreases.

4.1.4 Aims
This study investigated possible effects of successful self-regulation of the aMCC to
the CPT and Flanker task at the level of behavioral measures (reaction time and

accuracy) and whole brain (BOLD activity changes).
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4.2 Materials and methods
4.2.1 Participants
The subjects in this study were the same set of subjects that participated in the NF

training study. Please refer to Section 3.2.1 for more details.

4.2.2 Experimental procedure overview

The CPT and Flanker behavioral tasks were implemented as part of the NF training
study described in Chapter 3 (Section 3.2.2) and were performed in the pre-
training and post-training session. In the pre-training session, subjects first
underwent one fMRI run performing the CPT and one run performing the Flanker
task prior to the pre-training NF run. Before subjects entered the scanner they
underwent a short demonstration of all tasks to assure full understanding. In the
post-training session, subjects performed one fMRI run of CPT and the Flanker task
after the post-training run. In both sessions, CPT was always performed prior to the

Flanker task to allow real-time fMRI monitoring with TBV software.

4.2.3 MRI data acquisition

All BOLD fMRI measurements were obtained by a gradient-echo EPI sequence (TR =
2's, TE = 36 ms, flip angle = 70°, acquisition matrix = 96 x 96) at 2.0 x 2.0 x 4.0 mm?3
resolution with 22 slices oriented along the AC-PC line, encompassing the cerebrum
until the mid-brain. Individual slice positions from the first fMRI scanning session
were saved and subsequently re-applied in all sessions to minimize slice positioning
differences between datasets. Motion correction on fMRI data was performed in k-

space (online software of the manufacturer).

4.2.4 Behavioral paradigms and task

For both CPT and Flanker task, visual stimuli were projected onto a screen inside the
MRI scanner bore, and viewed by the subjects through a mirror mounted on top of
the head coil. All stimuli were presented as white letters on a black background

(Figure 19).

4.2.4.1 CPT paradigm
The CPT O-X-H paradigm was implemented both as a functional localizer, and as a

behavioral test for the effects of NF learning. The details of the CPT paradigm are
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described in Section 2.2.4. Online rt-fMRI monitoring of the BOLD activity was

performed using TBV.

4.2.4.2 Flanker paradigm
The Flanker paradigm was presented using MATLAB Psychophysics Toolbox. Stimuli
were white capital letters: R, H, L, or F, shown on a black background. One event of
the stimulus is a string of five letters: four identical letters, “flankers” flanking one
non-identical “target” letter (Figure 19). The target letter was placed randomly in
the 2nd, 3rd, or 4th position in the string. Subjects were given one response box in
each hand and were instructed to press the left response button when the target
letter is “L” or “F”, or alternatively the right response button when the target letter is
“R” or “H”. The stimulus is congruent when the target codes for the same response as
the flankers, or alternatively, is incongruent when the target codes for the opposite

response as the flankers (Figure 19).

There were 80 events in one run (including a 12-s initial baseline): 60 stimuli,
and 20 randomly occurring null events which have no letter stimuli, and were added
into the paradigm in order to match the duration of the CPT paradigm. The duration
of one event of the stimulus was 500 ms and the interstimulus interval was jittered
randomly by an integer between 2 s and 10 s, with an average of 6 s. One Flanker
run lasted 8.13 minutes (244 volumes). Throughout the presentation of those 60
stimuli, occurrence of a congruent or an incongruent stimuli event has a 50%
probability each. Out of those, 50% probability coded for a left button press and
50% probability coded for a right button press.

congruent incongruent -

Figure 19: Example of the

| | Flanker stimuli. Subjects were
instructed to press the left

left LLFLL RRFRR button if the target letter is “L”

or “F”; or alternatively the right

| | button if the target letter is “R”
or “H”.

*hii RRRHR
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Subjects were instructed to be as fast and as accurate as possible. Feedback
on the results (average reaction time and accuracy) was shown on the screen at the
end of the run. In the pre-training session, before performing the task, a simulation
of the Flanker task was shown to the subjects outside the scanner to help them
understand the task. Online rt-fMRI monitoring of the BOLD was not performed with
rt-fMRI using TBV because unlike CPT that used pre-determined stimuli, the Flanker
stimuli for each subject were random and determined on the fly — thus
incompatible with TBV’s requirements. Nevertheless, subjects’ responses were

monitored real-time in MATLAB.

4.2.5 Behavioral analyses

Each subject’s log files from the behavioral tasks were processed offline in MATLAB
and SPSS. Reaction time and accuracy were analyzed individually for all subjects,
and subsequently group analysis were performed for Learners and Non-Learners
(criteria defined in Section 3.2.9.1), independent of the Serial or Parallel training
paradigm, i.e. the Learners from the ST group and PT group were combined and

compared with the Non-Learners across both training paradigms.

Reaction time for CPT and Flanker was determined from the onset of
stimulus to the time of the button press. Accuracy for CPT was defined as the
percentage of the sum of non-responses to non-target (out of 64) and correct
responses to target (out of 16). Overall accuracy for Flanker was determined by
percentage of correct responses to the stimuli (out of 60). Accuracy for congruent or
incongruent stimuli was the percentage of correct responses to congruent stimuli or

incongruent stimuli respectively.

Reaction time and accuracy in all subjects were analyzed using 3-way mixed
ANOVAs on the factors TIME (Post vs. Pre), GROUP (trained vs. control), and PARADIGM
(Serial vs. Parallel). In the group of trained subject, reaction time and accuracy of
Learners and Non-Learners were analyzed using 2-way mixed ANOVA on the factors

TIME (Post vs. Pre) and LEARNING STATUS (Learner vs. Non-Learner).

Additionally for the Flanker task, the reaction time and accuracy for
congruent and incongruent condition were also examined using a 3-way mixed
ANOVA with factors CONGRUENCY (Incongruent vs. Congruent), TIME (Post vs. Pre),

and LEARNING STATUS (Learner vs. Non-Learner).
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4.2.6 fMRI whole-brain analyses

For a description of general fMRI analysis methods, please refer to Section 2.2.5.1.

4.2.6.1 CPT
The fMRI data was modeled in the first-level GLM by two conditions: the period of 4-
6 s time interval following all cues (letter O) and 4-6 s interval following all
distractors (letter H) (Luetcke et al, 2009). The contrast was cue > distractor,
representing the cognitive process of anticipation. Brain activity associated with
anticipation in the CPT was investigated by 2-way mixed ANOVA on the first level
GLM contrast cue > distractor with factors TIME (Pre vs. Post) and LEARNING STATUS
(Learner vs. Non-Learner, Learner vs. Control, and Non-Learner vs. Control).
Additionally, post-hoc one-sample t-test was performed on the first level GLM

contrast cue > distractor separately for pre and post, in each learning status group.

4.2.6.2 Flanker task
The data was modeled in the first-level GLM by two conditions: incongruent and
congruent. The contrast was incongruent > congruent, representing the cognitive
process of conflict resolution. Brain activity associated with conflict resolution in
Flanker task was investigated by 2-way mixed ANOVA on the first level GLM
contrast incongruent > congruent with factors TIME (Pre vs. Post) and LEARNING

STATUS (Learner vs. Non-Learner, Learner vs. Control, and Non-Learner vs. Control).
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4.3 Results

4.3.1 Behavioral analyses

4.3.1.1 CPT reaction time
Reaction times of subjects of the trained and control group in the CPT are shown in
Figure 20. The 3-way ANOVA on the reaction time revealed a significant main effect
of TIME (F126 = 5.903, p = 0.022). There is a difference in the mean reaction time
across time, where the reaction time was lower at post-training (M = 474 * 20 ms
SEM) than at pre-training (M = 517 + 25 ms SEM). There is no main effect of neither
GROUP nor PARADIGM; therefore there is no difference between Trained (PT, ST) and
Control (PC, SC) groups, or between Serial (ST, SC) and Parallel paradigm (PT, PC). In

addition, there is no significant interaction between any of the factors.

Reaction times in Continuous Performance Task
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Figure 20: Reaction times of PT, PC, ST and SC groups in the CPT.

Reaction times of the Learners and Non-Learners in the CPT are shown in Figure 21.
The 2-way ANOVA on the reaction time also revealed a significant main effect of
TIME (F1,18 = 5.386, p = 0.032), with a slower reaction time at pre-training (M =512 +
24.6 ms, SEM) compared to post-training (M =471 + 27.6 ms SEM). However there is
no significant main effect of LEARNING STATUS. There is also no significant interaction

between the two factors.
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Figure 21: Reaction times of Learners and Non-Learners in the CPT

4.3.1.2 CPT accuracy
Accuracy values of the trained and control group in the CPT are shown in Figure 22.
The accuracy was generally very high (pre-training: M = 98.8 + 0.38% SEM; post-
training: M = 99.2 + 0.25% SEM). The 3-way ANOVA revealed no significant effects,

neither in TIME, PARADIGM or GROUP, nor any significant interactions.
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Figure 22: Accuracy of the PT, PC, ST and SC group in the CPT.

76



Generalization of NF

Accuracy values of the group of Learners and Non-Learners in the CPT are shown in
Figure 23. On average, the accuracy in CPT for both the Learners and Non-Learners
was high, (pre-training: M = 98.9 + 0.5% SEM; post-training: M = 99.1 + 0.4% SEM).
The 2-way ANOVA revealed no significant effects, neither in TIME or LEARNING STATUS,

nor in the interaction between the two factors.
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Figure 23: Accuracy of the learners and non-Learners group in the CPT.

4.3.1.3 Flanker task reaction time
Reaction time of the trained and control group in the Flanker task is shown in
Figure 24. The 3-way ANOVA showed that there is a significant main effect of TIME
(F1,26 = 7.616, p = 0.010), where mean reaction time at post-training (M = 1067 + 27
ms SEM) was lower than that at pre-training (M = 1137 * 37 ms SEM). Each of the
groups was faster in the post-training than in the pre-training. No additional main
effect of GROUP or PARADIGM, meaning that that there was no difference between
trained (PT, ST) and control (PC, SC) groups; or between Serial (ST, SC) and Parallel
paradigm (PT, PC). In addition, there was no significant interaction between any of

the factors.
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Reaction times in Flanker Task
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Figure 24: Reaction time of the PT, ST, PC, and SC groups in the Flanker task

Reaction time of the Learners and Non-Learners in the Flanker task is shown in
Figure 25. The 2-way ANOVA on reaction time showed a significant main effect of
LEARNING STATUS (F1,18 = 4.795, p = 0.042) where the Learners on average were faster
compared to the Non-Learners (Learners: M = 1012.2 + 34.29 ms SEM; Non-
Learners: M = 1159.9 + 36.79 ms SEM).
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Figure 25: Reaction time of Learners and Non-Learners in the Flanker task
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This study also asked if there were any differences between Learners and Non-
Learners reflected in conflict resolution the Flanker task before and after NF
training. For this, the additional factor of congruency in the 3-way ANOVA was
investigated, and a LEARNING STATUS x CONGRUENCY x TIME interaction was expected.
Figure 26 shows the effect of congruency of the Flanker stimuli on reaction times in
Flanker task. The 3-way ANOVA on reaction time showed a significant main effect of
CONGRUENCY (F1,18 = 19.07, p < 0.001). The incongruent condition, independent of
learning status and time, elicited slower reaction times. There was also a significant
main effect of LEARNING STATUS (F1,18 = 4.78, p = 0.042) in which Learners were
generally faster than Non-Learners, regardless of congruency condition. Additionally
the interaction between TIME x CONGRUENCY is significant, (F1,18 = 7.453, p = 0.014)
where regardless of learning status, the decrease in reaction time across sessions

was larger in the congruent condition than the incongruent condition.
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Figure 26: Reaction time in different conditions of congruency in Flanker task

4.3.1.4 Flanker task accuracy
Accuracy values of the trained and control groups in the Flanker task are shown in
Figure 27. On average the accuracy in all groups are high (M = 94.24 + 0.59 % SEM).
The 3-way ANOVA revealed no significant main effect of TIME, PARADIGM or GROUP.

Additionally there were also no significant interactions between any of those factors.
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Figure 27: Accuracy in PT, ST, PC, and SC groups in the Flanker task

Accuracy values of the groups of Learners and Non-Learners in the Flanker task are
shown in Figure 28. The 2-way ANOVA revealed no significant main effects of
LEARNING STATUS or TIME, and also no significant interaction between the two factors.

Both groups performed the Flanker task on the same accuracy level.
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Figure 28: Accuracy in Learners and Non-Learners in the Flanker task
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Congruency was also analyzed within the group of Learners and Non-Learners.
Figure 29 shows the congruency effect of the Flanker stimuli on accuracy in Flanker
task. The 3-way ANOVA showed a significant main effect of CONGRUENCY (Fi118 =
10.11, p = 0.005), where the congruent stimuli elicited higher accuracy than
incongruent stimuli, regardless of time and learning status. There was no significant

main effect of TIME or LEARNING STATUS; and no interaction between any of the

factors.
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Figure 29: Accuracy in different conditions of congruency in the Flanker task

4.3.2 fMRI whole-brain analyses
Whole-brain fMRI analysis was performed to look for changes on the neuronal level
in the behavioral transfer session, brought about by NF training of aMCC self-

regulation.

4.3.2.1 CPT
In the CPT, comparison between Serial and Parallel paradigms across times did not
show significant difference in brain activation. Therefore, similar to the NF analysis,
a comparison between the different learning statuses was performed. Initial
analyses showed no difference in brain activation across the transfer sessions (Pre

vs. Post) in the Learners vs. Control, Learner vs. Non-Learner, and Non-Learner vs.
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Control comparison. Subsequent analysis investigated each group at each time point
separately. Brain activations in Learners, Controls, and Non-Learners, during the
pre- as well as the post-training sessions are shown in Figure 30. Bilateral insula,
aMCC, SMA, and left SMC were activated in each of the groups, during both time
points. This explains the lack of difference in brain activation in the post-pre

comparison.

Learner Pre

Learner Post

Control Pre

Control Post

Non-Learner Pre

Non-Learner Post

Figure 30: Brain areas activated in Learners, Controls, and Non-Learners in CPT during pre- and
post- NF training. Activations in bilateral insula, basal ganglia, aMCC, SMA and left SMC can be
seen. Images are thresholded at z > 2.3, cluster significance threshold of p = 0.05 (FWE corrected).

4.3.2.2 Flanker task
A comparison of brain activation changes across the pre-post transfer sessions and
across the learning statuses and controls is shown in Figure 31 and Table 3.
Compared to the controls, the Learners showed increase of brain activation in the
right putamen and right pallidum from the pre- to post transfer session (Figure 31
A). There is no difference in brain activation from the pre- to post transfer session
between Non-Learners and Controls (Figure 31 B). Compared to the Non-Learners,
the Learners showed increased activity in the inferior frontal gyrus (IFG), putamen,
pallidum, thalamus, precentral gyrus, postcentral gyrus, and middle frontal gyrus

(Figure 31 C). Although increased activity was not seen in the aMCC in any of those
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three higher level comparisons, it was nevertheless more activated in the Learners

group at post-training compared to pre-training transfer session (results not

shown).

Learner > Control

Figure 31: Brain areas significantly activated during incongruent > congruent condition
across transfer sessions in A). Learners compared to Controls, B). Non-Learners
compared to Controls C). Learners compared to Non-Learners in the Flanker task. Images
are thresholded at z > 2.3, cluster significance threshold of p = 0.05 (FWE corrected).
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Probability Atlas.

Table 3: Cluster maxima for changes of brain activation in conflict resolution in the Flanker task
after NF training. Anatomical areas defined by Harvard-Oxford Cortical and Subcortical Maximum

Number of MNI coordinates Maximum z
voxels
X Y YA

Learner > Control
Putamen R 308 28 -2 -2 3.72
Pallidum R 15 24 -2 -2 2.95
Non-Learner > Control
Learner > Non-Learner
Inferior Frontal Gyrus pars 453 -50 32 6 4.60
triangularis L
Inferior Frontal Gyrus pars 228 52 26 22 4.17
triangularis R
Inferior Frontal Gyrus pars 475 56 18 22 4.05
opercularis R
Putamen L 412 -28 -18 6 4.53
Putamen R 428 30 -12 2 4.40
Thalamus L 163 -10 -14 2 3.32
Thalamus R 232 12 -26 2 3.74
Precentral gyrus L 527 -34 -14 46 3.69
Precentral gyrus R 143 52 8 4 3.66
Postcentral gyrus L 316 -46 -30 60 3.61
Middle Frontal gyrus L 305 -34 30 26 3.44
Middle Frontal gyrus R 49 50 26 22 3.74
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4.4 Discussion

This study investigated effects of NF self-regulation of the aMCC on two behavioral
tasks: the CPT and the Flanker task. For the CPT, the effects NF-related learning
were not observed in either the behavioral measures or the whole-brain fMRI
analysis of the post-pre changes. For the Flanker task, such effects could not be seen

in the behavioral measures, but were observed in the whole-brain fMRI analysis.

4.4.1 Generalization of NF training to the CPT

Subjects generally exhibited high performance in the CPT in reaction time and
accuracy. In measure of reaction time; all group regardless of trained or controls,
paradigm, or learning status, performed faster in post-training compared to pre-
training session. These results show that there is a practice effect in CPT. In measure
of accuracy, there is no significant difference between any of the compared groups
across time because all groups exhibited high accuracy (close to 100 %). Similarly, at
the whole-brain level, no significant NF-related differences have been observed in
the comparison between Learners, Non-Learners and Control groups. The brain
areas that are activated are consistent with the activation observed in the same task

that was also used as the functional localizer in this study (Section 2).

The high accuracy reached in the CPT in the pre-training measurements
indicates a ceiling effect for that population of subjects, and improvement in the
post-training measurements was not possible. CPT has been used mainly as a
behavioral test for the clinical population with problems in attention, for example
ADHD and schizophrenia patients (Riccio et al., 2002). In such populations, CPT is
more sensitive to detect deficits in certain aspects of cognitive processes between
patients and healthy control subjects. Furthermore, the CPT also has also been used
in the clinical population more extensively with EEG (rather than fMRI) to study
neuroelectric activities that can offer direct indication of the physiological
mechanisms of sustained attention. Therefore, CPT-fMRI in its current form is not a
suitable behavioral task to test generalization of rt-fMRI NF training of the aMCC in
healthy subjects.

4.4.2 Generalization of NF training to the Flanker task
This study did not observe NF-related changes to the behavioral measures in the

Flanker task. Subjects generally also exhibited high performance in the Flanker task
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in the overall reaction time and accuracy. However, the important cognitive
processes to be examined further are conflict resolution and response inhibition. In
the Flanker task, subjects need to resolve the conflict between the required response
coded by the target letter, and alternative response coded by the conflicting flankers.
In order to resolve this conflict, subjects need to inhibit a motor response (button
press) if the target letter conflicts with the response coded by the flankers in the
incongruent condition. In this task, one would expect a slower and less accurate
response in the incongruent condition compared to the congruent condition due to
the increase in cognitive processing to resolve the conflicting stimuli. In accordance
to this, results of this current study demonstrated a congruency effect on the
reaction time and accuracy. More importantly, it is expected to see increased ability
to resolve conflict in the Learners more than the Non-Learners at post-training
compared to pre-training i.e. an interaction between LEARNING STATUS x CONGRUENCY x
TIME. However, behavioral changes possibly related to successful self-regulation of
the aMCC were not seen in either the reaction time or the accuracy measures in the
Flanker task, as there was no significant 3-way interaction. Nevertheless, in the
reaction time measure, the Learners were generally faster in both congruent and

incongruent conditions compared to the Non-Learners.

On the whole-brain level, our results suggest possible generalization effects of
a successful NF training of the aMCC to the neural correlates of the Flanker task.
Prominent activation in the inferior frontal gyrus (IFG) and the basal ganglia in the
Flanker task is consistent with the role of IFG in response inhibition, and as part of
the fronto-basal ganglia inhibition network (Verbruggen and Logan, 2008). It may be
that the Learners showed better processing of these aspects. A behavioral task
similar to the Flanker task involving resolution of congruent and incongruent
conditions, called the Simon task (Peterson et al., 2002), has also been used to test
generalization of learned regulation of the ACC (Mathiak et al., 2010). The authors
however did not report behavioral measures nor increase in other brain areas apart
from the ACC. However, it should be noted that it was a pilot study using one subject

and a much shorter training duration.
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4.5 Conclusions

In conclusion, the Flanker task may be a better measure than CPT to investigate
effects of learned self-regulation of the aMCC in the domain of cognitive control, at
least on the whole-brain level. Effects of successful self-regulation of the aMCC may
have generalized to the fronto-basal ganglia network, implicated in response
inhibition — one of the cognitive processes involved in the Flanker task. This study
also questions the usefulness of the CPT in its present form as a behavioral task to

test learned regulation of the aMCC.
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5 Summary

This thesis deals with an extensive exploration of the use of rt-fMRI NF in cognition.
Specifically, the work presented here comprises the major steps in the development of a
suitable experimental framework for rt-fMRI NF in a cognitive brain region: defining a
target region, defining a strategy and protocol for training the target region by NF, and

testing the cognitive and behavioral effects of NF training.

5.1 Defining the aMCC

In the present study the aMCC was defined as a cognitive target region based on its
function. This choice avoids a possible anatomical selection, because the aMCC anatomy
exhibits considerable intersubject variability and because the main intention was to
train specifically its cognitive control function. In the study described in Chapter 2, the
location and definition of the aMCC in each individual subject was achieved by probing
the aMCC function through a behavioral test — the CPT. BOLD activation associated with
the cognitive process of anticipation, which is expected to arise in the aMCC, was
analyzed with two different methods, the classical GLM approach and the combination of
ICA with GLM. The GLM method resulted in optimal localization of the aMCC in 7 out of
10 subjects, while the ICA-GLM method localized the aMCC robustly in all 10 subjects.
The CPT with ICA-GLM analysis was then tested in an additional set of subjects, and it
showed again its ability to localize and define the aMCC in all subjects. An additional
focus in this chapter is the advantageous use of rt-fMRI to monitor the results of the
fMRI measurement online. The present results strongly encourage real-time monitoring

of the functional localizer scans for quality control reasons.

The results of Chapter 2 demonstrate that the CPT is a suitable cognitive paradigm
for functional localization of the aMCC, and that ICA-GLM is a suitable analysis method
for that purpose.

5.2 Neurofeedback training of the aMCC

Chapter 3 details the extensive rt-fMRI NF training on the aMCC, which had to meet
various challenges arising from the latency of the NF signal, the processing of the
feedback signal in parallel with the optimization of a self-regulation strategy, and the
possible interference of these two processes in the aMCC. To resolve the described
challenges, this work introduced a novel Serial NF paradigm, which temporally

uncouples self-regulation and feedback appraisal.
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Healthy subjects were trained to learn how to self-regulate their aMCC with
feedback information in 18 NF training runs in 6 sessions spread over two weeks.
Transfer runs without feedback information were performed before beginning and after
the end of training. Two separate groups of 10 subjects each underwent NF training: one
trained with the Serial paradigm, and the other with the conventional Parallel paradigm.
Two separate control groups only performed the two transfer runs. Overall success in
NF in trained subjects was defined as a larger increase of aMCC activity from the pre- to
post-training transfer runs without the feedback than observed for controls. Efficiency
during NF training was determined in a similar manner, defined as achieving a larger
increase in aMCC activity in the training runs. Subjects answered questionnaires about

the paradigm and their mental strategy.

Six out of 10 subjects in the Serial paradigm successfully learned self-regulation
of the aMCC compared to only two out of 10 for the Parallel paradigm. These individuals,
subsequently categorized as “Learners”, showed higher change in their aMCC activity
during the transfer task without feedback than subjects of the control group. Compared
to Non-Learners, Learners also showed more efficiency in using the feedback during NF
training. Whole-brain analysis of the transfer runs revealed that they also activated
brain regions related to reward processing apart from the aMCC itself. Questionnaire
analysis indicated that subjects of the Serial paradigm felt more in control of the NF task.
The newly introduced temporal separation of the feedback appraisal from the self-
regulation enables investigation of the brain activity associated with feedback appraisal.
Feedback appraisal appeared to elicit lower aMCC activity than self-regulation, and there
was no difference in aMCC activity between the Learners and Non-Learners. Feedback
appraisal could further be characterized as a self-referential activity that engages the
default mode network — a large-scale network of brain regions that constitutes an

integrated system for self-related cognitive processes such as internal mentation.

Taken together, the findings in Chapter 3 demonstrate that the Serial paradigm
emerges as a promising new tool in facilitating learning in rt-fMRI NF. In addition, it

allows for a separate investigation of the cognitive process of feedback appraisal.

5.3 Effect of neurofeedback training of the aMCC
Chapter 4 employed two behavioral tests, the CPT and Flanker task, as measures to

investigate the effects of successful self-regulation of the aMCC on the processes of
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anticipation and conflict resolution, respectively. The behavioral tests were

incorporated in the pre-training and post-training session.

On the behavioral level, the effects of successful training of the aMCC with rt-fMRI
NF did not appear to cause significant changes in behavioral measures, neither for the
CPT nor the Flanker task. On the whole brain level, fMRI did not reveal effects of
successful aMCC NF training in the CPT, which was in contrast to the positive results for
the Flanker task. In the latter case, learners demonstrated increased activation in the
inferior frontal gyrus and basal ganglia in the Flanker task after successful self-
regulation of the aMCC, suggesting increased involvement of the fronto-basal ganglia
network implicated in response inhibition — a process that is needed to resolve the

conflicting Flanker stimuli.

To conclude, on the whole-brain level, the findings in Chapter 4 showed a
possible effect of successful self-regulation of the aMCC on the cognitive process of

conflict resolution in the Flanker task.
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6 Outlook

6.1 Neurofeedback and cognitive networks

ognitive processes usually include coordinated activity of several brain

regions, thus it is always worthwhile to look beyond a single brain region.

Studies in rt-fMRI NF have recently made first advances to progress from
targeting circumscribed brain areas to implementing connectivity analysis either at the
level of training, e.g. regulating connectivity between multiple brain areas (Koush et al,,
2013) or at the level of transfer, e.g. testing the effect of successful self-regulation on
brain connectivity. While the former aspect is technically more challenging (the study
referenced above was a proof-of-concept study), the latter aspect has been more actively
explored recently. An rt-fMRI NF of the insula in schizophrenic patients showed
increased effective connectivity between the insula and brain areas involved in
emotional network like amygdala and medial pre-frontal cortex (Ruiz et al, 2013).
Another rt-fMRI NF study of the visual cortex showed increase effective connectivity
between the trained visual ROI and the superior parietal lobule contralateral to the
trained ROI (Scharnowski et al., 2014). An EEG-NF study of alpha rhythm self- regulation
has discovered functional connectivity changes in the salience network (SN) even after
one training session (Ros et al., 2013). These developments are important as they not
only contribute to the understanding of the basic principles of self-regulation of
circumscribed brain areas, but further explore their influence and role in various brain
networks. In addition, they are also promising in clinical neurosciences because more
effective and personalized therapy can be designed if the basic mechanisms of disorders

are better understood.

Applying the developments in connectivity to the data presented in this thesis
would be a worthwhile step forward. The focus would be on brain connectivity
examined within the NF training session or in the pre-post transfer session. Functional
connectivity analysis using Psychophysiological Interactions (PPI) within NF training
could reveal areas whose connectivity with the aMCC changes depending on whether or
not the subject is up-regulating. An interesting connectivity aspect to investigate further
is possible NF-induced changes in intrinsic connectivity networks (ICNs) — large-scale

network of interconnected brain regions observed in subjects during rest (Menon,
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2011). There are three distinct cognitive ICN: the salience network (SN) — a large-scale
brain network involved in detecting the most important external stimuli and internal
events; the central executive network (CEN) — a network involved in working memory,
attention and decision making in goal-directed behavior; and the default mode network
(DMN) — a network involved in self-referential processes. I speculate that successful
self-regulation of the aMCC could bring about connectivity changes particularly within
the SN. This is because aMCC, together with the anterior insula are nodes of the SN. This
aspect can be investigated using model-free connectivity analysis using group-ICA and
dual regression. Moreover, the SN has a role in switching between the CEN and the DMN
(Sridharan et al, 2008). It could mediate continuous switching between the self-
regulation phase, which is more goal-directed, and the feedback appraisal phase which
is more self-referential. Investigating these speculations would need model-based
connectivity analyses that probe into the directionality of networks like Granger

Causality or Dynamic Causal Modelling.

As for further experiments, in my opinion, it is most important to extend the
current NF experiment to the SMC, a non-cognitive brain area which is well-studied in
rt-fMRI NF. The Serial paradigm would be compared to the conventional Parallel
paradigm to see how much the former would help facilitating self-regulation of a non-
cognitive area. I speculate that the Serial paradigm would show more efficacy in rt-fMRI
NF on the SMC because the core concepts of the Serial paradigm in reducing the
cognitive load and explicit temporal contiguity would still hold; and in addition, mental
strategies (e.g. motor imagery) to voluntarily activate the SMC are easier to perform. At
the whole-brain level, it would be interesting to see if the involvement of the reward
system observed in learning self-regulation of the aMCC, and the DMN in feedback

appraisal, are general to NF of any brain area or only specific to NF of the aMCC.

Although the complexity in rt-fMRI NF experiments are growing, the fundamental
questions about learning self-regulation of a single, circumscribed brain region are still
relevant and worth exploring. It is my hope that understanding this small piece of the
puzzle contributes to the big picture of understanding brain function in basic

neuroscience.
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8 Abbreviations

4D
AC-PC
ACC
ADHD
aMCC
ANOVA
BBR
BET
BOLD
CEN
CPT
DMN
EEG
EPI
ETR
FEAT
FILM
FLAME
FLIRT
fMRI
FMRIB
fNIRS
FNIRT
FS

FSL
FTP
FUGUE
FWE
FWHM
GLM
ICA
ICN
IPL

IFG

M
MCFLIRT
MELODIC

Mdn.

MNI

NF

PCC
pgACC

PC
PRELUDE
PSC

PT

4-dimensional

anterior comissure - posterior comissure
anterior cingulate cortex

attention-deficit hyperactivity disorder
anterior mid-cingulate cortex

analysis of variance

boundary-based registration

brain extraction tool

blood oxygen level-dependent

central executive network

continuous performance task

default mode network
electroencephelography

echoplanar imaging

efficient training run

FMRIB's Expert Analysis Tool

FMRIB's Improved Linear Model

FMRIB's Local Analysis of Mixed Effects
fMRIB's Linear Image Registration Tool
functional magnetic resonance imaging
functional magnetic resonance imaging of the brain
functional near-infrared spectroscopy
FMRIB's Nonlinear Image Registration Tool
feedback signal

FMRIB software library

file transfer protocol

FMRIB's Utility for Geometrically Unwarping EPIs
family-wise error

full width at half maximum

general linear model

independent component analysis

intrinsic connectivity network

inferior parietal lobule

inferior frontal gyrus

mean

motion correction FLIRT

multivariate exploratory linear optimized decomposition into
independent components

median

Montreal Neurological Institute
neurofeedback

posterior cingulate cortex

pregenual ACC

Parallel control

Phase Region Expanding Labeller For Unwrapping Discrete Estimates
percent signal change

Parallel training
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ROI
rt-fMRI
SAM
SC

SCP

SD
SEM
sgACC
SMA
SMC
SN
SPM
SPSS
ST
TBV
T1

TE

TR
vmPFC
Vs.
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region-of-interest

real-time functional magnetic resonance imaging

self-assessement manikins
Serial control

slow cortical potentials
standard deviation

standard error of the mean
subgenual ACC

supplementary motor area
somatomotor cortex

salience network

Statistical Parametric Mapping
Statistical Package for the Social Sciences
Serial training

Turbo Brain Voyager
Longitudinal relaxation time
echo time

repetition time

ventromedial pre-frontal cortex
Versus



9 Appendix

9.1 Questionnaires

9.1.1 Example of a pre-session questionnaire

(handed out in the pre-training transfer sesion)

Volunteer number:

Dear participants,

Volunter initials:

Appendix

Date:

Thank you for your time and interest in taking part of this neurofeedback experiment.

Before you begin, we would like to know more about your mood for today.

Please mark with an X in the appropriate cartoon figure, one box per question:

1. Rate your current mood

:l

<« py ol E{ﬁj | >
Vervbad; 4 : LF‘L.:!J very good
2. Rate your current energy
level
———
. a1 iIsES
very dull, | D - B H'? @’% Very excited,
sluggish | \J_l_\_l‘,\ oo | li{hﬁ}%J stimulated
L L |

3. Do you have any experience in meditation or any practice to control breathing?
Please state the type of meditation, whether you practice it regularly, and how long

have you been practicing it.
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Thank you!
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9.1.2 Example of a post-session questionnaire for Serial paradigm
Volunteer number: Initials: Date:
Dear participants,

Thank you for your time and interest in taking part of this neurofeedback experiment.
Before you leave, we have just one more thing for you to do now. We would like to know
what was going through your mind during the experiment. There is no right or wrong

answer, just please answer as honestly as possible.
Data that you provide in this survey will be anonymous.

Please mark with an X / click (computer version) in the appropriate box, one box per

question:

4. How did you find

the task during the L] [ [] [] L]

think phase?
Very Difficult Neither Easy Very easy
difficult easy nor
difficult

5. What do you think

about your [ [] [] ] []

performance
during the think
phase?
Very unsuccessful Neither Successful Very
unsuccessful successful

6. How did you find

the task during the L] L] [] [] ]

count phase?

Very Difficult Neither Easy Very easy
difficult easy nor
difficult

7. What do you think

about your [ [] [] ] []

performance
during the count
phase?
Very unsuccessful Neither Successful Very
unsuccessful successful
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8. Did you somehow
fall asleep during [] [] [l
the training?

No Don’t Yes
know /
Not sure

9. How dominant (in control) did you feel during the neurofeedback training task?

| >
< \ ﬁ Very
very submissive dominant
and in
control
10. Rate your current
mood
| F >
| very good
very bad |
11. Rate your current energy
level
very dull, | ' H.? (Y-S Very
sluggish | N B | rj_{r/%ﬁl‘b excited,
- " ' stimulated

See next page..
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12. What was your mental strategy during the “think” phase of the neurofeedback
training?
Please describe as many as you can remember, and as detailed as possible.

13. Was something going through your mind during the “feedback” of think phase?

14. What was your mental strategy during the “count” phase of the neurofeedback
training?
Please describe if you did something other than counting.
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15. Was something going through your mind during the “feedback” of count phase

Thank you!
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9.1.3 Example of a post-session questionnaire for Parallel paradigm

Volunteer number: Initials: Date:
Dear participants,

Thank you for your time and interest in taking part of this neurofeedback experiment.
Before you leave, we have just one more thing for you to do now. We would like to know
what was going through your mind during the experiment. There is no right or wrong

answer, just please answer as honestly as possible.
Data that you provide in this survey will be anonymous.

Please mark with an X / click (computer version) in the appropriate box, one box per

question:

1. How did you find

the task during the L] [ [] [] L]

think phase?
Very Difficult Neither Easy Very easy
difficult easy nor
difficult

2. What do you think

about your [ [] [] ] []

performance
during the think
phase?
Very unsuccessful Neither Successful Very
unsuccessful successful

3. How did you find

the task during the L] L] [] [] ]

count phase?

Very Difficult Neither Easy Very easy
difficult easy nor
difficult

4. What do you think

about your [ [] [] ] []

performance
during the count
phase?
Very unsuccessful Neither Successful Very
unsuccessful successful
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5. Did you somehow
fall asleep during [] [] [l
the training?
No Don’t Yes
know /
Not sure

6. How dominant (in control) did you feel during the neurofeedback training task?

9
< ‘ ﬁ Very
very submissive \ dom.l nant
and in
control
7. Rate your current
mood
< >
very bad . very good
8. Rate your current energy
level
" ....._\\._‘ 9
N i DL@_‘ : | i ,_“;E_v H | Very
very dull, | - B HL ) L X / excited,
sluggish |L&\J_l_\_|‘,\ I ! %JJ | stimulated
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9. What was your mental strategy during the “think” phase of the neurofeedback
training?
Please describe as many as you can remember, and as detailed as possible.

10. What was your mental strategy during the “count” phase of the neurofeedback
training?
Please describe if you did something other than counting.

Thank you!
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9.2 Outputs of statistical tests from SPSS
9.2.1 Rt-fMRI cognitive neurofeedback training of the aMCC
9.2.1.1 3-way ANOVA for Transfer Condition (PARADIGM, TRAINING GROUP, TIME)

Within-Subjects i
Between-Subjects Factors

Factors
Measure: MEASURE_1 Value Label M
Dependent Faradigm 1.00 Serial 15
time Yariable 2.00 Farallel 15
1 MFE_pre Group 0 Contrals 10
2 MFB_post 1 Train 20

Tests of Within-Subjects Contrasts
Measure: MEASLUIRE_1

Type NIl Sum
Source time of Squares df Mean Square F Sig.
time Level 1 vs. Level 2 2429 1 2429 877 358
time * Paradigm Level 1 vs. Level 2 088 1 088 032 B0
time * Training Level 1 vs. Level 2 3280 1 3.280 1.184 287
t}g?n;nzarad'gm . Level1vs. Level 2 906 1 906 327 572
Error{time) Level 1 vs. Level 2 72.037 26 2.771

Tests of Between-Subjects Effects

Measure: MEASIURE_1
Transformed Yariable: Average

Type lll Sum
Source of Squares df Mean Sguare F 3ig.
Intercept 10.965 1 10.965 24840 000
Faradigm 3.548 1 3.548 3.036 009
Training 014 1 014 031 861
Paradigm * Training 60 1 A50 340 hEB5
Error 11.478 26 441
Estimated Marginal Means of MEASURE_1 Estimated Marginal Means of MEASURE_1
+ 0004 Paradigm . Training
g 8000 é /4_,/"
é 60004 § 5000+
é 40004 é
1 time ’ 1 time :
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9.2.1.2 2-way ANOVA for Transfer Condition (LEARNING STATUS, TIME)

Between-Subjects Factors

Within-Subjects
Factors

Measure: MEASURE_1

Value Lahel M Dependent
i Wariahle
Learner .00 MonLearner 12 | Hme
1 NFB_pre
1.00 Learner 8 2 NFB_post

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

Type lll Sum
Source time of Squaras df Mean Sguare F Sig.
time Level 2vs. Level 1 168.877 1 165877 7938 011
time* Leamer  Level 2vs. Level 1 31.660 1 31.660 15828 001
Error(time) Level 2vs. Level 1 36.003 18 2.000
Tests of Between-Subjects Effects

Measure: MEASURE_1
Transformed Variable: Average

Type Il Sum
Source of Squares df Mean Square F Sig.
Intercept 8,794 1 8.794 16.522 001
Learner 1.628 1 1.628 2874 107
Errar 10198 18 567

Appendix
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9.2.1.3 2-way ANOVA for Training Condition (PARADIGM, TIME)

Within-Subjects
Factors

Measure: MEASURE_1

Dependent
time Variahle
1 Tr
2 Tr2
3 Tr3
4 Trd
i Trs
G Tré
7 Ty
g Trg
9 Tra
10 Tr0
11 Tr1
i 12 T2
Between-Subjects Factors 13 |s
value Label | N IO Bl
FParadigm 1.00 Serial 10 18 T
17 ™7
2.00 Parallel 10 12 | 1ra
Tests of Within-Subjects Effects
Measure: MEASURE_1
Type lll Sum
Source of Sguares df Mean Square 5ig.
time Sphericity Assumed 7.259 17 427 G0 AT3
Greenhouse-Geisser 7.2549 4624 1.670 A0 ATa
Huynh-Feldt 7.258 6.764 1.073 A A06
Lower-bound 7.258 1.000 7.259 am 385
time *Paradigm  Sphericity Assumed 6.315 17 a7 7a4 T12
Greenhouse-Geisser 6.315 4624 1.366 7a4 Rl
Huynh-Feldt 6.315 6.764 834 784 598
Lower-bound 6.315 1.000 6.315 784 .388
Errortime) Sphericity Assumed 145,005 306 A74
Greenhouse-Geisser 145005 33.229 1.742
Huynh-Feldt 145005 | 121.753 1.191
Lower-bound 1450045 18.000 8.056
Tests of Between-Subjects Effects
Measure: MEASURE_1
Transformed Variahle:  Average
Type Il Sum
Source of Squares df Mean Square F Sig.
Intercept 6.364 1 G.364 17.713 .0m
Faradigm 3.3149 1 33148 9237 007
Errar G467 18 .3h4

112




9.2.1.4 2-way ANOVA for

Within-Subjects

Training

Condition

(LEARNING STATUS,

Factors
Measure: MEASURE_1
Dependent
time “ariable
1 Tr
2 Tr2
3 Tr3
4 Trd
5 Trs
3 Tr6
7 7
B Trs
=] Tra
10 Tr10
11 Tr11
12 ™2 Between-Suhjects Factors
13 Tr13
4 Tris Value Lakel M
15 Tr15
16 TrE Learner .00 MonLearner 12
17 7 ) )
18 8 1.00 Learnel
Tests of Within-Subjects Effects
Measure: MEASURE_1
Type Il Sum
Source of Squares df Mean Square F Sig.
time Sphericity Assumed 9.376 17 E5R2 1.237 234
Greenhouse-Geisser 9.376 5.291 1.772 1.237 287
Huynh-Feldt 89.376 8170 1.148 1.237 280
Lower-bound 9,376 1.000 9.376 1.237 281
time* Learner  Sphericity Assumed 14.835 17 8749 1.8971 013
Greenhouse-Geisser 14.935 5.291 2.823 1.971 086
Huynh-Feldt 14.835 8.170 1.828 1.971 053
Lower-bound 14.835 1.000 14,935 1.971 ATT
Erroritime) Sphericity Assumed 136.384 306 A48
Greenhouse-Geisser 136.384 95 245 1.432
Huynh-Feldt 136.384 | 147.058 8927
Lower-bound 136.384 18.000 7.577
Tests of Between-Subjects Effects
Measure: MEASURE_1
Transformed Variable: Average
Type Nl Sum
Source of Squares df Mean Square F Sig.
Intercept 7.733 1 T.7T33 18.814 .00
Learner 2.388 2.388 5810 027
Errar 7.3498 18 A1
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9.2.1.5 2-way ANOVA for Feedback appraisal (TASkK, TIME)

Within-Subjects Factors
Measure: MEASURE_1

Dependent
time  task Variable
1 1 ™
2 FB1
2 1 Tr2
2 FB2
3 1 Tra
2 FB3
4 1 Trd
2 FB4
5 1 TrS
2 FBS
5 1 Ti6 Tests of Within-Subjects Effects
2 FEG Measure: MEASLURE_1
7 1 7 Type Il Sum
2 FB7 Training  Source of Squares df Mean Square F Sig.
Train time Sphericity Assumed 4.2 17 .248 1.008 452
8 ! T8 Greenhouse-Geisser 4.221 5153 819 | 1.008 425
2 Fes Huynh-Feldt 4221 | 12878 a8 | 1008 448
8 1 Trg Lower-bound 4221 1.000 4221 1.008 342
2 FBS Error(time) Sphericity Assumed 37671 163 246
10 1 Tr10 Greenhouse-Geisser 37.671 46.381 12
2 FB10 Huynh-Feldt 37671 115.800 325
11 1 Tri1 Lower-bound 37671 9.000 4.186
2 FE11 task Sphericity Assumed 74,864 1 74.864 16.929 003
12 1 T2 Greenhouse-Geisser 74.864 1.000 74.864 16.929 .003
2 FB12 Huynh-Feldt 74864 1.000 74.864 16.929 003
13 1 T3 Lower-bound 74,864 1.000 74.864 16.929 .003
2 FB13 Erroritask) Sphericity Assumed 39.8M 9 4.422
14 1 ) Greenhouse-Geisser 359801 9.000 4422
2 Fot4 Huynh-Feldt 39.801 9.000 4.422
1 1 —rs Lower-bound 39801 9.000 4422
time * task Sphericity Assumed 4.328 17 .255 755 742
2 FB1S Greenhouse-Geisser 4.328 3633 1191 755 851
w1 Tre Huynh-Feldt 4328 | 6395 677 758 616
2 FB16 Lowerhound 4328 1.000 4328 755 408
17 1 7 Erroritime*task)  Sphericity Assumed 51.507 153 337
2 FB17 Greenhouse-Geisser 51.597 32,693 1.578
18 1 Tra Huynh-Feldt 51.5097 57.555 896
2 FB18 Lower-bound 51.587 9.000 5.733
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9.2.1.6 Cross-tabulation (PARADIGM, LEARNING STATUS)

Paradiom * Learner Crosstabulation

Learner
MonLearner | Learner Total
Paradigm  Serial Count 4 i 10
% within Paradigm 40.0% 60.0% 100.0%
Parallel  Count a 2 10
% within Paradigm 20.0% 20.0% 100.0%
Total Count 12 g 20
% within Paradigm 60.0% 40.0% 100.0%
Chi-Square Tests
Asymp. Sig. Exact Sig. (2- Exact Sig. (1-
Yalue df (2-sided) gided) gided)
Fearson Chi-Square 3.333° 1 068 A70 085
Continuity Correction® 1.875 1 A7
Likelihood Ratio 3452 1 063 A70 .0as
Fisher's Exact Test A70 085
M ofValid Cases 20

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 4.00.
b. Computed only for a 2x2 table

9.2.1.7 T-test (ETR in LEARNING STATUS)

Group Statistics

Std. Std. Error
learn status M Mean Deviation Mean
ETR non-learner 12 6.00 4.843 1.398
learner 8 13.00 0.459 2.283

Independent Samples Test

Levene's Test for Equality of

Variances

t-test for Equality of Means

95% Confidence Interval of
5ig. (2- Mean Std. Error the Difference
F Sig. T df failed) Difference Difference Lower Upper
ETR Equal variances 1.108 307 -2.774 18 013 -7.000 2.523 -12.301 -1.699
assumed
Equal variances not -2.614 12.145 022 -7.000 2.677 -12.826 -1.174
assumed
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9.2.1.8 Wilcoxon Signed Rank Test

9.2.1.8.1 Self-report on perception of difficulty and performance

Test Statistics®
Post Self- Post Self-

Post Self- perception of Post Self- perception of

perception of performance perception of performance

difficulty of during think difficulty during count

think phase phase - Pre "count' phase phase- Pre

(reversed) - Self- (reversed) - Self-

Pre Self- perception of Pre Self- perception of

perception of performance perception of performance

difficulty of during think difficulty during count

Neurofeedback paradigm think phase phase "count' phase phase
. -2.640° -2121° -2.333° -1.342°
Serial ) )
Asymp. Sig. (2-tailed) .008 .034 .020 180
Exact Sig. (2-tailed) .008 .070 031 375
Exact Sig. (1-tailed) .004 .035 .016 .188
Point Prohabhility .004 .031 016 156
-.264° -577° -816° -707°
Parallel

Asymp. Sig. (2-tailed) 792 564 414 480
Exact Sig. (2-tailed) .984 1.000 .688 750
Exact Sig. (1-tailed) 492 500 344 375
Point Probability 156 375 234 219
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a. Wilcoxon Signed Ranks Test
h. Based on positive ranks.
¢. Based on negative ranks.




9.2.1.8.2 Valence, arousal and dominance

Test Statistics®
Self-reported Self-reported Self-reported
dominance Moodialence arousal
during Post- during Post- during Post-
training - Self- | training - Self- | training - Self-
reported reported reported
dominance Moodivalence arousal
during Pre- during Pre- during Pre-
Neurofeedback paradigm training training training
b c d
Sarial Z -2.449 -1.000 .000
Asymp. Sig. (2-tailed) .014 N7 1.000
Exact Sig. (2-tailed) 031 625 1.000
Exact Sig. (1-tailed) .016 313 656
Point Probability .016 .250 313
Parallel 2 -378° -1.134° .000¢
Asymp. Sig. (2-tailed) .705 257 1.000
Exact Sig. (2-tailed) 1.000 .500 1.000
Exact Sig. (1-tailed) 500 .250 625
Point Probability .250 188 .250

a. Wilcoxon Signed Ranks Test
h. Based on negative ranks.
¢. Based on positive ranks.

d. The sum of negative ranks equals the sum of positive ranks.

Appendix

117



Appendix

9.2.2 Generalization of neurofeedback training to behavior

9.2.2.1 3-way ANOVA for CPT (PARADIGM, GROUP, TIME)

9.2.2.1.1 Reaction time

Within-Subjects

Factors

Measure: MEASURE_1 Between-Subjects Factors
Label I
Dependent — — Valge ahe

time Yariahle aradigm 1. Serial 15
1 2.00 | Parallel 15

CPT_nt_pre Training 1} Controls 10
2 CPT_rt_post 1 Train 20

Tests of Within-Subjects Contrasts
Measure: MEASIURE_1

Type Il Sum
Source time of Squares df Mean Square F Sig.
time Level 1 vs. Level 2 43309 067 1 43309.067 5.803 .022
time * Paradigm Level 1 vs. Level 2 BE40.000 1 B640.000 1178 288
time * Training Level 1 vs. Level 2 1306.667 1 1306.667 78 BT76
tT”:;?nTnZarad'gm i Level 1 vs. Level 2 1058.400 1 1058.400 144 707
Erroritime) Level 1 vs. Level 2 180757 600 26 7336.831

Tests of Between-Subjects Effects

Measure: MEASURE_1
Transformed Variable: Average

Type 1l Sum
Source of Squares df Mean Sguare F 3ig.
Intercept 6592209.067 1 | 6592209.067 | 438.785 .0oo
Paradigm 6869.400 1 6869.400 457 505
Training 601.667 1 601.667 .040 843
Paradigm * Training 1706.667 1 1706.667 114 739
Error 350618.600 26 156023.792
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9.2.2.1.2 Accuracy

Within-Subjects

Factors
Measure: MEASURE_1 Between-Subjects Factors
Dependent Value Lahel N

time Wariahle Paradigm  1.00 | Serial 15
1 CPT_accu_pr 200 | Parallel 15
9 gF’T_accu_po Training 0 Controls 10

st 1 Train 20

Tests of Within-Subjects Contrasts
Measure: MEASURE_1
Type Il Sum
Source time of Sguares df Mean Square F Sig.
time Level 2 vs. Level 1 31581 1 3151 A01 A32
time * Paradigm Level 2vs. Level 1 651 1 651 083 T76
time * Training Level 2 vs. Level 1 1.276 1 1.276 162 680
%l_l;r;nien‘i*nF;aradlgm * Level 2vs. Level 1 19.776 1 13776 1751 197
Error(time) Level 2 vs. Level 1 204,531 26 7.867
Tests of Between-Subjects Effects
Measure: MEASURE_1
Transformed Variahle: Average
Type Il Sum

Source of Squares df Mean Square F Sig.
Intercept 261442507 1 261442507 | 193136.662 000
Paradigm 1.882 1 1.882 1.390 249
Training 059 1 059 043 83T
Paradigm * Training .059 1 .059 .043 837
Errar 351495 28 1.354

9.2.2.2 2-way ANOVA for CPT (LEARNING STATUS, TIME)

9.2.2.2.1 Reaction time

Within-Subjects

Between-Subjects Factors

Factors
Measure: MEASURE_1 Walue Lahel I
Dependent
fims Variable Learner .00 MonLearner 12
1 CPT_nt_pre . .
2 CPT_rt_post 1.00 Learner
Tests of Within-Subjects Contrasts
Measure: MEASURE_1
Type Il Sum

Source time of Squares df Mean Square F Sig.
time Level 2 vs. Level 1 34612.033 1 34612.033 5.386 .03z
time*Learner  Level 2vs. Level 1 11252.033 1 11252.033 1.751 .202
Errar(time) Level 2 vs. Level1 115680167 18 G426.676

9.2.2.2.2 Accuracy

Within-Subjects Factors Between-Subjects Factors
Measure: MEASURE_1
time Dependent Variable Value Label N
T CPT_accu_pre Learner .00 MonLearner 12
2 CPT_accu_post 1.00 Learner g
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Tests of Within-Subjects Contrasts

Measure: MEASURE_1
Type Il Sum
Source time of Squares df Mean Square F Sig.
time Level 2vs. Level 1 5.208 1 5.208 635 436
time* Learner  Level 2vs. Level 1 833 1 B33 102 753
Error{time) Level 2vs. Level 1 147 6526 18 g.196
Tests of Between-Subjects Effects

Measure: MEASILRE_1
Transformed Variahle: Average

Type Il Sum
Source of Sguares df Mean Sguare F Sig.
Intercept 188020833 1 188020833 | 134499353 .aon
Learner .0&a2 1 .0a2 037 849
Error 25163 18 1.398

9.2.2.3 3-way ANOVA for Flanker (PARADIGM, GROUP, TIME)

9.2.2.3.1 Reaction time

Within-Subjects Factors

Measure: MEASURE_1
Dependent

time Variable

1 Flanker_rt_pre

2 Flanker_rt_post

Between-Subjects Factors

Value Label I
Paradigm  1.00 Serial 15
2.00 Parallel 15
Training 0 Controls 10
1 Train 20

Tests of Within-Subjects Contrasts
Measure: MEASURE_1

Type Il Sum

Source tima of Squares df Mean Square F Sig.
time Level 2 vs. Level 1 153824067 1 153824.067 7.616 010
time * Paradigm Level 2 vs. Level 1 326,667 1 326.6867 016 900
time * Training Level 2 vs. Level 1 9576.067 1 9576.067 474 487
tT'?;?mnPga'ad'gm LevelZvs. Levelt | 9p60q 07 1| 20800067 | 1.020 n
Error(time) Level 2 vs. Level 1 525108.200 26 20196.469

Tests of Between-Subjects Effects
Measure: MEASURE_1
Transformed Variahle: Average

Type Il Sum

Source of Squares df Mean Square F Sig
Intercept 3243261282 1| 32432612.82 | 1190255 000
Paradigm 13500.000 1 13500.000 495 488
Training 109.350 1 109.350 004 950
Paradigm * Training 20837.400 1 29837.400 1.085 308
Errar 708459.650 26 27248.448
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9.2.2.3.2

Within-Subjects Factors

Accuracy

Between-Subjects Factors

“alue Label I
Measure: MEASURE_I Paradigm  1.00 Serial 15
time DependentVariahle 2.00 | Parallel 15
1 Flanker_accu_pre Training a Contrals 10
2 Flanker_accu_post 1 Train 20

Tests of Within-Subjects Contrasts
Measure: MEASURE_1
Type Il Sum

Source time of Sguares df Mean Square F Sig.
time Level 2vs. Level 1 89.695 89.695 3167 087
time * Paradigm Level 2 vs. Level 1 86 186 .oov 836
time * Training Level 2vs. Level 1 47.384 47.384 1.673 .207
Ellrl"r;zian‘i'nF;aramgm * Level 2vs. Level 1 186 186 007 936
Error{time) Level 2vs. Level 1 736.369 26 28322

9.2.2.4 2-way ANOVA for Flanker (LEARNING STATUS, TIME)

9.2.2.4.1 Reaction time

Within-Subjects Factors

Measure: MEASURE_1
Dependent Between-Subjects Factors
time Variable Walue Label M
1 Flanker_rt_pre Learner .00 MonLearner 12
2 Flanker_rt_post 1.00 Learner
Tests of Within-Subjects Contrasts
Measure: MEASURE_1
Type Il Sum
Source time of Squares df Mean Sguare F Sig.
time Level 2vs. Level 1 42225008 1 42225.008 2.039 A70
time ™ Learner Level 2vs. Level 1 48005.208 45005.208 2,367 RS
Error{time) Level 2vs. Laevel 1 372684.792 18 20704.711
Tests of Between-Subjects Effects
Measure: MEASURE_1
Transformed Yariable: Average
Type lll Sum
Source of Squares df Mean Square F Sig.
Intercept 22645706.42 1 22645706.42 1037.097 .0oo
Learner 104695 6649 104695 669 4.7495 042
Error 393042031 18 21835668
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9.2.2.4.2 Accuracy

Within-Subjects Factors

Measure: MEASURE_1 Between-Subjects Factors

time Dependent Variable value Lakel M

1 Flanker_accu_pre Learner .00 MonLearner 12
2 Flanker_accu_post 1.00 Learner 8

Tests of Within-Subjects Contrasts
Measure: MEASLURE_1

Type Il Sum
Source time of Sguares df Mean Square F Sig.
time Level 2 vs. Level 1 7.525 1 7.525 238 630
time * Learner  Level 2vs. Level 1 7.505 1 7.505 238 B3
Erroritime) Level 2vs. Level 1 565.564 18 31.420

Tests of Between-Subjects Effects

Measure: MEASURE_1
Transformed Variable: Average

Type lll Sum
Source of Squares df Mean Square F Sig.
Intercept 170878.797 1 170878.797 | 112059.2596 .000
Learner 023 1 023 ooz 569
Errar 274.389 18 15244

9.2.2.5 3-way ANOVA for Flanker (CONGRUENCY, LEARNING STATUS, TIME)

9.2.2.5.1 Reaction time

Within-Subjects Factors

Measure: MEASURE_1 Between-Subjects Factors
TIME __ COMGRUENCE Dependent Variable
1 1 Flanker_rt_cong_pre Yalue Label [+
2 Flanker_rt_incong_pre Learner on MonLearner 12
2 1 Flanker_rt_cong_post
2 Flanker_rt_incong_post 1.00 Learner

Tests of Within-Subjects Contrasts
Measure: MEASURE_1

Type Il Sum

Source TIME COMGRIUENCE of Squares df Mean Square F Sig.
TIME Level 2vs. Level 1 41888.033 1 41888.033 2.024 A72
TIME * Learner Level 2 vs. Level 1 48884.033 1 48884.033 2.362 142
Errar(TIME) Level 2vs. Level 1 372491 667 18 20693.981

COMNGRUENCE Level 2vs. Level1 71053.333 1 71053.333 18.072 .0oo
COMGRUEMCE * Learner Level 2vs. Level 1 2133 1 2133 001 981
Errar{CONGRUENCE) Level 2vs. Level 1 G67061.167 18 3726620

TIME * CONGRUENCE Level Zvs. Level 1 Level 2vs. Level 1 71150.700 1 71150.700 7.453 014
TIME * COMGRUEMCE * Learner  Level 2vs. Level 1 Level 2 vs. Level 1 86.700 1 86.700 .00g 825
Error(TIME*CONGRIUENCE) Level 2vs. Level 1 Level 2vs. Level 1 171829.500 18 9545.083
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Tests of Between-Subjects Effect

5

Measure. MEASILURE_1
Transformed Variable: Average

Type I Sum
Source of Squares df Mean Square F Sig.
Intercept 2264744410 1 2264744410 | 1037.808 .0oo
Learner 104459.502 104459502 4787 042
Errar 382803.010 18 21822389

TIME x CONGRUENCY
congrusncy

Emﬁnnn—
é 104000+

Session

9.2.2.5.2 Accuracy

Within-Subjects Factors

Appendix

Measure: MEASURE_1
TIME _ CONGRUENCE Dependent Variakle Between-Subjects Factors
1 1 Flanker_accu_cong_pre
2 Flanker_accu_incong_pre Value Label N
2 1 Flanker_accu_cong_post Learner .00 MonLearner 12
2 Flanker_accu_incong_post 1.00 Learner 8
Tests of Within-Subjects Contrasts
Measure: MEASURE_1
Type lll Sum
Source TIME CONGRUENCE of Squares df Mean Square F Sig.
TIME Level 2vs. Level 1 7528 1 7.528 240 630
TIME * Learner Level 2vs. Level 1 7.518 1 7.518 239 B3
Error(TIME) Level 2 vs. Level 1 565.485 18 3416
CONGRUENCE Level 2vs. Level 1 204 637 1 204,637 10.109 .0os
COMNGRUEMCE * Learner Level 2vs. Level 1 33502 1 33502 1.655 215
Errar(CONGRUENCE) Level 2vs. Level 1 364361 18 20,242
TIME * COMGRUENCE Level 2vs. Lewvel 1 Level 2vs. Leval 1 373 1 373 006 940
TIME * COMGRUEMCE * Learner  Level 2vs. Level 1 Level 2vs. Level 1 18182 1 18.182 .288 588
Errar(TIME*CONGRUENCE) Level 2vs. Level 1 Level 2vs. Level 1 1135232 18 63.068
Tests of Between-Subjects Effects
Measure: MEASURE_1
Transformed VWariable: Average
Type ll Sum
Saurce of Squares df Mean Square F Sia.
Intercept 170883.136 1 170883.136 | 11205.824 .0oo
Learner .023 1 023 .00z 968
Error 274.491 18 15.249
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