Phosphodiesterases as Crucial Regulators of Cardiomyocyte cAMP in Health and Disease

Doctoral Thesis

In partial fulfillment of the requirements for the degree “Doctor rerum naturalium (Dr. rer. nat.)” in the Molecular Medicine Study Program at the Georg-August University Göttingen

Submitted by

Ruwan K. Perera

born in Düsseldorf

Göttingen, 2014
Thesis Committee Members:

1. Thesis Committee Member / Supervisor
Dr. Viacheslav O. Nikolaev
Molecular Imaging of the Heart, Research Group
Heart Research Center Göttingen, University of Göttingen

2. Thesis Committee Member
Prof. Dr. Blanche Schwappach
Department of Biochemistry I
University Medical Center, University of Göttingen

3. Thesis Committee Member
Prof. Dr. Stefan Luther
Biomedical Physics, Research Group
Max Planck Institute for Dynamics and Self-Organization

Date of Disputation: September 9, 2014
AFFIDAVIT

Here I declare that my doctoral thesis entitled

“Phosphodiesterases as Crucial Regulators of Cardiomyocyte cAMP in Health and Disease”

has been written independently with no other sources and aids than quoted.

Ruwan K. Perera

Göttingen, July 2014
List of Publications

Peer Review Publications and Submitted Manuscripts

Conference Abstracts

Contents

Abstract 1

Figure List 2

Abbreviations 3

1. **Introduction** 5
 1.1 *The Role of cAMP in the Heart* 5
 1.2 *FRET-based Methods to Measure cAMP in living cells* 6
 1.3 *Key Factors for cAMP Compartmentation* 8
 1.3.2 Subtype-specific β-AR localization 9
 1.3.3 cAMP-hydrolyzing Phosphodiesterases 10
 1.4 *Pathophysiology of Chronic Heart Disease* 12
 1.5 *Changes in cAMP Compartmentation in Diseased Cardiomyocytes* 13
 Redistribution of β-AR subtypes 14
 Altered PDE expressions and activities 15
 1.6 *Autonomous Nervous Control of Heart Function* 15
 1.7 *Effects and Clinical Use of Atropine* 16
 Redundancy in atropine and PDE4 inhibitor effects 17

2. **Aims** 18
 - Local β-Adrenergic Signaling at the Sarcolemma of Adult Mouse Cardiomyocytes 18
 - Atropine Modulates Phosphodiesterase Activity in the Heart 18

3. **Materials and Methods** 19
 3.1 *Materials* 19
 3.1.1 Stable cell lines 19
 3.1.2 Plasmids 19
 3.1.3 Bacteria strains 19
 3.1.4 Animals 19
 3.1.5 Oligonucleotides 19
 3.1.6 Chemicals 19
 3.1.7 Cell culture 22
 3.1.8 Enzymes and Kits 22
 3.1.9 Primary Antibodies 23
 3.1.10 Secondary Antibodies 23
 3.1.11 Technical devices and software for fluorescence microscopy 23
 3.1.12 Technical devices and software for cardiomyocyte contractility 24
 3.1.13 Other technical devices and software 24
 3.1.14 Other Materials 25
 3.1.15 Buffers and solutions 26
 3.2 *Methods* 31
 3.2.1 Cloning and transgenic mouse generation 31
 3.2.2 Cell culture and transfection 33
 3.2.3 Adult cardiomyocyte isolation 34
 3.2.5 Single-cell contractility measurements 35
 3.2.6 Heart rate measurements 35
 3.2.7 Transverse aortic constriction (TAC) 36
 3.2.8 Histology, morphometric analysis and echocardiography 36
 3.2.9 Confocal microscopy 37
 3.2.10 Radioligand binding 38
 3.2.11 Phosphodiesterase activity assay 38
 3.2.12 Immunoblot assay 38
 3.2.13 Statistical analysis 39

4. **Results** 40
 4.1 Local β-Adrenergic Signaling at the Sarcolemma of Adult Mouse Cardiomyocytes 40
4.1.1 N-terminal fusion of Epac1-camps to an acylation substrate sequence promotes plasma membrane targeted expression 40

4.1.2 Heart-specific expression of pmEpac1 leads to localization at the sarcolemma of adult mouse cardiomyocytes (with T-tubular enrichment) 41

4.1.3 Heart-specific expression of pmEpac1 does not affect normal cardiac function 42

4.1.4 pmEpac1, compared to Epac1-camps, can particularly well resolve the \(\beta_2 \)-AR/cAMP signals 43

4.1.5 FRET imaging reveals altered subtype-specific \(\beta \)-AR cAMP responses in diseased cardiomyocytes 45

4.1.6 cGMP-regulated PDEs redistribute between \(\beta_1 \)-AR and \(\beta_2 \)-AR-associated microdomains in hypertrophy 46

4.1.7 PDE2 redistribution causes a shifting in ANP/cGMP-stimulatory effects from local (\(\beta_2 \)-AR) to global (\(\beta_1 \)-AR) cAMP, contractility and heart rates 47

4.2 Atropine Modulates Phosphodiesterase Activity in the Heart 51

4.2.1 Atropine augments cAMP signaling in adult cardiomyocytes independently of muscarinic receptors 51

4.2.2 Atropine potently inhibits PDE4 52

4.2.3 Atropine cell entry is facilitated by unselective organic cation transporters 53

4.2.4 Atropine augments cardiac function in adult mice 53

4.2.5 Atropine stimulatory effects on myocardial function are conserved in human 54

5 Discussion 55

5.1 Local \(\beta \)-Adrenergic Signaling at the Sarcolemma of Adult Mouse Cardiomyocytes 55

5.1.1 pmEpac1 expressed in mice enables detailed analysis of subtype-specific \(\beta \)-AR-associated cAMP compartments, especially at \(\beta_2 \)-AR 55

5.1.2 The FVB/N mouse strain shows certain resistance to experimentally induced cardiac disease 56

5.1.3 ANP stimulates heart function at the onset of heart failure 56

5.1.4 In early cardiac disease, local PDE redistribution precedes global molecular changes yet with functional effects on global \(\beta \)-AR signaling 57

5.1.5 Functional ANP responses in early cardiac disease are mediated by cGMP 58

5.1.6 PDE redistribution causes a turnaround of cGMP/cAMP crosstalk and mediates ANP stimulatory effects on contractility 59

5.2 Atropine Modulates Phosphodiesterase Activity in the Heart 60

5.2.1 Atropine modulates cardiomyocyte cAMP independently of muscarinic receptors 60

5.2.2 cAMP effects are mediated via atropine-dependent PDE inhibition 60

5.2.3 Organic cation transporters facilitate cellular atropine uptake 61

5.2.4 Atropine-mediated PDE4 inhibition may trigger arrhythmias 62

6 Conclusions 64

6.1 PDE2 is important for myocardial adaptation to long-term stress 64

6.2 PDE4 firstly processes normal short-termed cAMP increases in adult myocardium 64

7 References 66
Abstract

Cyclic nucleotides are ubiquitous second messengers, which regulate cellular functions by acting in discrete subcellular microdomains. Cardiac phosphodiesterases (PDEs) are indispensable for β-adrenoceptor signaling regulation by restricting and maintaining distinct cAMP microdomains. In the mammalian myocardium, at least five PDE families (PDE1, 2, 3, 4, 8) contribute to cAMP breakdown, each with unique binding affinities and regulatory properties. Moreover, different PDE families and isoforms localize to distinct functional cAMP microdomains, making them promising targets to modulate cell function. However, the use of selective PDE inhibitors to treat heart failure is problematic due to a high risk of tachyarrhythmias and sudden cardiac death. Furthermore, progressive heart failure is accompanied by severely altered PDE expression patterns. Despite considerable insights into cardiac cAMP handling in general, exact mechanisms of cAMP regulation by PDEs inside functionally relevant microdomains are still poorly understood.

This work firstly describes compartmentalized functions of cardiac cAMP and uncovers that atrial natriuretic peptide can augment catecholamine-stimulated contractility in order to increase heart function in early cardiac hypertrophy. Real-time cAMP analysis of distinct β1- and β2-adrenoceptor-associated sarcolemmal cAMP microdomains using a novel targeted Förster resonance energy transfer (FRET)-based biosensor, pmEpac1, reveals that this effect is brought about by spatial redistribution of cGMP-sensitive phosphodiesterases 2 and 3 between β-adrenoceptor subtype-specific cAMP microdomains. While whole-cell PDE protein levels and activities are still unaffected at this early disease stage, differential subcellular PDE localization leads to altered cGMP/cAMP-crosstalk, which shifts the balance between β1- and β2-adrenoreceptor-mediated effects on cardiac function. These findings point towards a novel functionally relevant adaptation mechanism, which occurs early during disease and might compensate for a loss of heart function by redistribution of cGMP-regulated PDEs between distinct membrane microdomains, thereby modulating the functionally relevant ANP-cGMP / β-adrenoceptor-cAMP crosstalk at the sarcolemma of adult cardiomyocytes.

Secondly, a previously unappreciated PDE4 inhibitory side effect of atropine, a clinically relevant muscarinic receptor blocker, was uncovered in this work. This mechanism can, at least in part, explain incidences of tachycardia, which are frequently observed upon atropine administration and have been attributed solely to the antagonism at cardiac muscarinic M2-receptors. However, in isolated mouse cardiomyocytes expressing the FRET-based cAMP biosensor Epac1-camps, even upon G1-protein inactivation with pertussis toxin or in M2-receptor knockout cells, atropine increases isoproterenol pre-stimulated cAMP levels, similar to the effects of PDE inhibitors. Furthermore, in intact wild type and M2-receptor deficient hearts, it leads to increased beating frequency. Detailed analysis of atropine-mediated changes in cAMP handling using FRET approaches and in vitro assays show that atropine indeed inhibits PDE4 activity. Therefore, inhibition of PDE4 by atropine may be responsible at least for some of its multiple side effects.
Figure List

Figure 1. Principles of FRET

Figure 2. Schematic of cAMP compartments in the healthy cardiomyocyte

Figure 3. Schematic of cAMP/cGMP crosstalk, mediated by PDE2 and PDE3

Figure 4. Schematic of progressive chronic cardiac disease

Figure 5. Schematic of disease-related alterations in cAMP compartmentation

Figure 6. Sympathetic and parasympathetic effects on heart function

Figure 7. Schematic of Langendorff-heart rate measurements

Figure 8. Novel pmEpac1 construct and transgenic mouse generation

Figure 9. Phenotypic characterization of the pmEpac1 transgenic mouse

Figure 10. pmEpac1 is particularly sensitive to the local β_2-AR-cAMP signals

Figure 11. The β_2-AR cAMP microdomain is under predominant control of PDE3

Figure 12. Echocardiographic parameters of TAC compared to sham operated mice

Figure 13. Sensor localization and β_1/β_2-AR ratios in TAC vs sham cardiomyocytes

Figure 14. Stronger β_1- and smaller β_2-AR-cAMP signals in hypertrophied cardiomyocytes

Figure 15. PDE2 and PDE3 redistribute between β_1- and β_2-AR-associated cAMP microdomains in cardiac hypertrophy

Figure 16. Expression and activities of the cAMP-hydrolyzing phosphodiesterases (PDEs) in TAC and sham cardiomyocytes

Figure 17. Confocal microscopy analysis of PDE2 and PDE3 localization

Figure 18. Altered cGMP dependent regulation of membrane β_2-AR-cAMP levels in cardiac hypertrophy

Figure 19. Switch from PDE3 to PDE2 neutralizes the positive ANP effect on β_2-AR-stimulated cardiomyocyte contractility in hypertrophied cells

Figure 20. Functional responses to ANP in healthy and hypertrophied cardiomyocytes

Figure 21. Atropine stimulates cellular cAMP levels measured in adult mouse cardiomyocytes transgenically expressing the Epac1-camps sensor

Figure 22. Atropine increases cAMP, independently of muscarinic receptor blockade but via PDE inhibition

Figure 23. Atropine inhibits PDE4 activity

Figure 24. Atropine stimulates cardiac function in mouse and human

Figure 25. Schematic representation of the proposed molecular switch mechanism occurring in early hypertroph
Abbreviations

5′-AMP adenosine-5′-monophosphate
8-Br-cAMP-AM 8-Bromoadenosine-3′,5′-cyclicmonophosphate, acetoxymethyl ester
ACH acetylcholine
AC adenylyl cyclase
AKAP A kinase anchoring protein
ANP atrial natriuretic peptide
Atropine
AWThd anterior wall thickness in diastole
bpm beats per minute
β-AR beta-adrenoceptor
β1-AR beta-1-adrenoceptor
β2-AR beta-2-adrenoceptor
βArr beta-arrestin
BAY BAY 60-7550
BNP B-type natriuretic peptide
b.p. base pairs
BSA albumin bovine serum
BW body weight
Ca2+ calcium
CaMKII Ca2+/Calmodulin-dependent Kinase II
cAMP 3′,5′-cyclic adenosine monophosphate
CFP cyan fluorescent protein
cGMP 3′,5′-cyclic guanosine monophosphate
CGP CGP-20-712A
Cilo cilostamide
CNBD cyclic nucleotide-binding domain
CNGC cyclic nucleotide gated channel
COPD chronic obstructive pulmonary disease
dNTPs deoxyribonucleotide triphosphates
EC excitation-contraction
ECG electrocardiogram
EF ejection fraction
Epac exchange protein directly activated by cAMP
FAS fractional area shortening
FRET Förster resonance energy transfer
FS fractional shortening
Gαi alpha subunit of inhibitory G-proteins
GAPDH glyceraldehyde 3-phosphate dehydrogenase
Gαs alpha subunit of stimulatory G-proteins
Gβγ β-γ subunit of GPCRs
GFP green fluorescent protein
GPCR G-protein coupled receptors
HCN2 hyperpolarization-activated cyclic nucleotide-gated channel 2
HW heart weight
ICI ICI 118,551
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO</td>
<td>isoproterenol / isoprenaline</td>
</tr>
<tr>
<td>IBMX</td>
<td>3-Isobutyl-1-methylxanthine</td>
</tr>
<tr>
<td>LTCC</td>
<td>L-type calcium channel</td>
</tr>
<tr>
<td>LVEDD</td>
<td>left ventricular end diastolic diameter</td>
</tr>
<tr>
<td>LVESD</td>
<td>left ventricular end systolic diameter</td>
</tr>
<tr>
<td>mACHR</td>
<td>muscarinic acetylcholine receptor</td>
</tr>
<tr>
<td>o.n.</td>
<td>over night</td>
</tr>
<tr>
<td>PDE</td>
<td>phosphodiesterase</td>
</tr>
<tr>
<td>PKA</td>
<td>protein kinase A</td>
</tr>
<tr>
<td>PI3Kγ</td>
<td>phosphoinositol-3 kinase gamma</td>
</tr>
<tr>
<td>PLN</td>
<td>phospholamban</td>
</tr>
<tr>
<td>P₁</td>
<td>monophosphate</td>
</tr>
<tr>
<td>pPLN</td>
<td>phospho-phospholamban</td>
</tr>
<tr>
<td>PP₁</td>
<td>pyrophosphate</td>
</tr>
<tr>
<td>pTnI</td>
<td>phospho-troponin I</td>
</tr>
<tr>
<td>Rolipram</td>
<td>rolipram</td>
</tr>
<tr>
<td>RyR2</td>
<td>ryanodine receptor 2</td>
</tr>
<tr>
<td>Ser</td>
<td>serine</td>
</tr>
<tr>
<td>SERCA2a</td>
<td>sarcoplasmic/endoplasmic reticulum Ca²⁺ ATPase 2a</td>
</tr>
<tr>
<td>SR</td>
<td>Sarcoplasmic reticulum</td>
</tr>
<tr>
<td>TnI</td>
<td>troponin I</td>
</tr>
<tr>
<td>YFP</td>
<td>yellow fluorescent protein</td>
</tr>
</tbody>
</table>
Introduction

1.1 The Role of cAMP in the Heart

The second messenger 3',5'-cyclic adenosine monophosphate (cAMP) is a key signaling molecule important for a plethora of physiological functions. In general, cAMP signaling pathways start with the activation of G-protein-coupled receptors (GPCRs) associated to either stimulatory or inhibitory G-proteins (G_s, G_i), which in turn modulate the activity of the cAMP-synthesizing enzymes adenylyl cyclases. However, diverse effects attributed to cAMP strongly depend on the particular cell type with differential expression of various GPCR subsets and downstream targets of cAMP, leading to highly versatile, sometimes even opposing functional outcomes. For example, elevated cAMP leads to increased heart muscle contraction, at the same time decreased smooth muscle cell contractility. Other important processes regulated by cAMP include metabolism and gene expression, insulin secretion, vascular tone immune reactions and memory formation.

In the mammalian heart, cAMP primarily controls beating frequency, force of contraction and relaxation, referred to as chronotropic, inotropic and lusitropic effects, respectively. This is achieved through the β-adrenergic signaling pathway, which starts with catecholamine-induced activation of G_s-coupled β-adrenergic receptors (β-ARs) and results in cAMP-dependent protein kinase (PKA)-mediated phosphorylation of functional components of the excitation-contraction (EC) coupling system in cardiomyocytes. Calcium-handling proteins such as voltage-gated L-type calcium channels (LTCCs), calcium release units formed by ryanodine receptor 2 (RyR2), the negative regulator of the sarcoplasmic/endoplasmic reticular calcium ATPase (SERCA), phospholamban (PLN) and contractile proteins such as troponin I (TnI) have been shown to be functionally modulated through PKA-dependent phosphorylation. This regulation is important for the beneficial effects of catecholamines on cardiac contractility during the classical ‘fight-or-flight’ response. However, chronic β-adrenergic stimulation affects the heart in a more detrimental way, i.e. causing down-regulation of β_1-AR expression, cardiomyocyte apoptosis, hypertrophy and loss of pump function, leading to decompensated heart failure. In sharp contrast to β_1-AR-driven effects, selective stimulation or transgenic overexpression of β_2-ARs, does not lead to cardiomyocyte apoptosis, cardiac hypertrophy and failure. Instead, β_2-ARs might protect against these abnormalities unless the receptor is overexpressed at extremely high levels (>300-fold) or a chronic heart failure phenotype is established. Other receptors coupled to cAMP are represented by prostaglandin and glucagon receptors. Despite triggering intracellular cAMP increase their activation does not stimulate contractility, probably due to their association with cAMP pools which are spatially separated from those that elicit a positive inotropic response. Apart from PKA, another important effector of cAMP is expressed in cardiomyocytes, which is called exchange protein directly activated by cAMP (Epac). It acts as a guanine nucleotide exchange factor for some small G-proteins such as Rap1 and mediates many PKA-independent effects of cAMP in various tissues. In the heart, Epac1 is the predominant isoform expressed and shows relatively minor effects on cardiac function at the basal state. Instead, Epac seems to be one of the key factors downstream of chronic β_1-AR stimulation and cAMP, which promote the...
development of cardiac hypertrophy24,25. It is supposed to do so via the activation of pro-hypertrophic genes and calcium/calmodulin-dependent protein kinase type II (CaMKII). The role of Epac-mediated pathways was further addressed in a recent study, in which transgenic mice with myocardial expression of the PKA inhibitory peptide no longer showed β-AR-agonist-induced hypertrophy, SR calcium overload and CaMKII activation but were rather protected against Epac/Rap1/ERK-mediated cardiomyocyte apoptosis26. Interestingly, one report demonstrated that stimulated β\textsubscript{1}-AR but not β\textsubscript{2}-AR can activate CaMKII via the recruitment of β-arrestin, which serves as a scaffold for both, CaMKII and Epac1 in cardiomyocytes27. This β-arrestin-dependent mechanism explains the link between β\textsubscript{1}-AR- and CaMKII-dependent phosphorylation of PLN as well as CaMKII-dependent induction of pro-hypertrophic fetal gene expression and apoptotic pathways by β\textsubscript{1}-AR. Especially when considering the disease-associated upregulation of CaMKII activity, its synergistic action on promiscuous substrates such as LTCC, RyR2 and PLN may not only stimulate PKA-mediated contractility but also the incidence of arrhythmias28.

1.2 FRET-based Methods to Measure cAMP in living cells

Cyclic AMP content in any given cell type or tissue can be traditionally measured by standard antibody-based techniques such as radioimmunoassays and enzyme-linked immunoassays29,30. These methods allow quantification of total cAMP content (free cytosolic cAMP plus cAMP bound to various proteins) after lysis or mechanical disruption of thousands of cells or of the tissue. However, such methods have no spatial resolution and do not allow measurements of physiologically relevant free cAMP concentrations in intact living cells or in various subcellular locations within one cell. To overcome these difficulties, several live cell imaging techniques have been developed over the past two decades, which shed light into subcellular cAMP signaling in a more native context31,32.

The majority of these findings relies on cAMP biosensors, which monitor intracellular dynamics of this second messenger based on Förster resonance energy transfer (FRET). In 1948, the German physicist Theodor Förster first described how two fluorescent molecules exchange energy in a nonradiative way33. The underlying physical principles are demonstrated in the Jablonski-Diagram (Figure 1A) according to which photon absorption by a donor fluorophore promotes it from its singlet ground state, S_0 to a higher excitation level, S_1. In order to return to its ground state the excited donor releases lower-energy photons (fluorescence), which can be absorbed by an adjacent acceptor fluorophore within the a distance of 10 nm, known as the Förster radius. The acceptor is thereby lifted to its S_1 level and subsequently emits energy in form of fluorescence to return the S_0. A FRET pair consists of two fluorophores with incompletely separated absorption-emission spectra. The limited overlap in donor-emission and acceptor-absorption spectra is the basis on which FRET can occur between these two fluorophores.
About two decades ago, Adams et al. created the first FRET-based cAMP probe, called FlCRhR. This pioneer-sensor consisted of a PKA holoenzyme with two fluorescent dyes chemically fused to the R- and C-subunits, and needed to be microinjected into living cells to monitor PKA dissociation upon elevation of intracellular cAMP and its re-association when cAMP is decreased. Since then, a series of more compact and ‘easy-to-use’ genetically encoded FRET biosensors has been generated, which are easily introduced into cells by transfection of the DNA construct to monitor cAMP with high resolution in space and time. To achieve effective FRET pairs, such biosensors consist of green fluorescent protein (GFP) mutants, flanking a single cyclic nucleotide-binding domain (CNBD) (Figure 1B). In cardiomyocytes, transient expression of such biosensors is commonly achieved via transfection of neonatal cardiomyocytes or adenoviral gene transfer in adult cardiomyocytes. Adult rat ventricular myocytes are preferred for latter approach due to their relatively high stability in cell culture. However, significantly less stable mouse and human cardiomyocytes can be also successfully transduced with such adenoviruses. Expression of a functional FRET biosensor via adenovirus in adult myocytes requires at least 40–48 hours during which dedifferentiation and remodeling of normal cell physiology are likely to occur. To address this problem and to enable cAMP measurements in freshly isolated cells, transgenic mice were generated expressing biosensors in adult heart muscle. In these mice, unimolecular sensors based on a single cAMP-binding site (from Epac1 or from hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) called Epac1-camps or HCN2-camps, respectively) sandwiched between a pair of fluorescent proteins could be expressed without any physiological abnormalities. An additional advantage of such models is that they can be easily combined with various genetic and experimental heart disease models. So far, the sensors expressed in such transgenic mice were not targeted to any subcellular microdomain and were solely capable of monitoring changes in free cytosolic cAMP levels. Recently, various targeted versions of Epac1-camps have been cloned, which can measure cAMP in various subcellular compartments or microdomains; however, they have mostly been used in transfected or transduced neonatal cardiomyocytes.
1.3 Key Factors for cAMP Compartmentation

The theory of cAMP compartmentation emerged about three decades ago from the observation that cAMP and PKA activities are differentially stimulated in ‘membrane’ and ‘cytosolic’ rabbit cardiomyocyte fractions by β-adrenergic and prostaglandin receptor agonists. The β-adrenergic agonist isoproterenol stimulated cAMP in both fractions, while prostaglandin increased cAMP exclusively in the cytosolic fraction, which is not coupled to positive inotropic response. A later study combined whole-cell patch-clamp recordings of LTCC currents (hence indirectly reporting cAMP/PKA activity – at least at the membrane) in long frog ventricular myocytes, with simultaneous local application of β-AR agonists through a double-barreled micropipette to either half of the cell. Comparing the change in current upon close and distant agonist application revealed that cAMP activated by β2-AR expressed in these cells is not diffusing over long distances inside the cell unless the cAMP-hydrolyzing enzymes phosphodiesterases (PDEs) are inhibited, which was in contrast to the global adenylyl cyclase stimulation by forskolin, associated with more diffuse signals. Though indirectly, this finding further indicated the presence of discrete subcellular pools cAMP associated with various types of stimulation. To date, cAMP compartmentation has developed from an elegant hypothesis into a well-appreciated paradigm. Key regulators for cAMP compartmentation in the myocardium include scaffolding proteins that recruit macromolecular PKA-signaling complexes, differential subtype-specific β-AR localization to particular membrane structures and especially PDEs as enzymes responsible for localized cAMP degradation hence shaping subcellular cAMP gradients. Exemplar cardiac cAMP microdomains are summarized in Figure 2.

1.3.1 Scaffolding Proteins

A-kinase anchoring proteins (AKAPs)

One important factor in regulating compartmentalized cAMP signaling is represented by scaffolding proteins such as those belonging to the AKAP family, which recruit PKA to its effector proteins. Furthermore, PDEs, other kinases, protein phosphatases (PPs) or even different GPCRs bind to certain AKAPs to form functionally relevant signaling complexes. To date, a considerable number of cardiac AKAPs has been described (mAKAP, AKAP15/18, AKAP79/150, D-AKAP1/2, AKAP95, AKAP220, AKAP-Lbc, gravin, ezrin, yotiao). Some of these AKAPs and their role in heart function were studied in detail.

As such, mAKAP anchors PKA and PDE4D3 to the RyR2 complex, close to the sites of interaction with protein phosphatases PP1/PP2 and FKBP12.6 (calstabin), thereby forming a signaling unit to regulate the calcium
release from sarcoplasmic reticulum (SR)\(^{60,61}\). AKAP15/18 facilitates PKA-dependent phosphorylation of PLN, the negative regulator of SERCA2a. AKAP79 (AKAP150 or AKAP6) mediates PKA-dependent phosphorylation of the cardiac LTCC and is critically involved in increased calcium influx in response to \(\beta\)-AR stimulation. A functional complex comprised of AKAP79, PKA, adenylyl cyclase type 5/6 and LTCC has been described in caveolin-3-rich membrane compartments of cardiomyocytes\(^{62}\). AKAP15/18\(_{\alpha}\), another AKAP associated with cardiac LTCC modulates \(\beta\)AR effects on calcium transients and contractility, acting in concert with AKAP79\(^{56,63}\). In addition to AKAPs, other proteins can also serve as scaffolds for cAMP/PKA signaling units.

\(\beta\)-arrestins

\(\beta\)-arrestins (\(\beta\)Arrs) comprise another important group of scaffolding proteins. \(\beta\)Arr 1 and 2 are two highly homologous isoforms, which are expressed in the myocardium. Initially, their function in cardiomyocytes was thought to be limited to termination and desensitization mechanisms of \(\beta\)-AR signaling\(^{64-66}\). However, considerable evidence has been presented that \(\beta\)Arrs can contribute to the molecular make-up of submembrane and \(\beta\)-AR-associated cAMP microdomains, especially through the recruitment of PDE4s\(^{67-69}\). Pioneering studies by Baillie et al.\(^{68}\) and Perry et al.\(^{69}\) established that \(\beta\)Arrs bind PDE4D isoforms to promote the PKA-mediated switch from stimulatory to inhibitory G-protein coupling (G\(_{s}\)-to-G\(_{i}\)) of \(\beta\)-ARs. An elegant biochemical study by Richter et al. later on demonstrated that \(\beta\)\(_{1}\)- and \(\beta\)\(_{2}\)-AR are dynamically associated with different PDE4D isoforms. In particular, \(\beta\)\(_{2}\)-AR forms a complex with PDE4D8, which dissociates upon receptor activation, whereas \(\beta\)\(_{1}\)-AR recruits \(\beta\)Arr and PDE4D5 upon stimulation\(^{70}\). This leads to different subcellular cAMP gradients, underpinning cAMP compartmentation and different functional effects induced by these two receptor isoforms.

Phosphoinositide 3-kinase gamma (PI3K\(_{\gamma}\))

Very recently, PI3K\(_{\gamma}\) was added to the list of scaffolding proteins that are actively involved in cAMP compartmentation. As such, PI3K\(_{\gamma}\) has been shown to recruit PKA regulatory subunits type II (RII-subunits), PDE3 and PDE4 and form distinct functional signaling complexes at the membrane of cardiomyocytes. Importantly, this function of PI3K\(_{\gamma}\) is independent of its catalytic activity but crucial for establishing regulatory feedback loops via PDE3s and 4s and protecting the heart from catecholamine-induced ventricular arrhythmias\(^{71}\).

1.3.2 Subtype-specific \(\beta\)-AR localization

Marked differences between \(\beta\)\(_{1}\)- and \(\beta\)\(_{2}\)-ARs in terms of their physiological and pathophysiological responses suggest that these receptors might trigger different downstream signaling pathways or affect different cAMP microdomains and associated functional responses. \(\beta\)\(_{2}\)-AR has been shown to switch from G\(_{s}\) to G\(_{i}\) upon prolonged agonist application in order to decrease the magnitude of the cAMP signal, which can explain why \(\beta\)\(_{1}\)-AR activation does not lead to phosphorylation of cytosolic substrates such as PLN or contractile proteins\(^{72-74}\). Instead, G\(_{i}\)-coupling has been shown to mediate cardioprotective effects of this receptor subtype by
activation of Akt (protein kinase B) and PI3 kinases75,76. Using a FRET-based approach with adult mouse cardiomyocytes transgenically expressing the HCN2-camps biosensor in heart muscle, it was established that local and selective stimulation of β_1-AR results in diffusive far-reaching cAMP signals, while β_2-AR cAMP signals are highly locally confined even upon Gi-protein inactivation37, suggesting differences in cAMP compartmentalization between the two β-AR subtypes. However, the precise localization of both receptor subtypes in cardiomyocytes was unclear at that time, because the available antibodies could not reliably detect endogenously expressed amounts of the receptors in electron microscopy or immunofluorescence studies. The non-optical imaging technique, scanning ion conductance microscopy (SICM), allows non-contact imaging of living cell membrane with nanometer resolution77. Using a combined SICM/FRET approach together with local ligand application, it could be later on established that β_1- and β_2-ARs are differentially distributed on the sarcolemma of adult cardiomyocytes. Especially β_2-ARs showed to be exclusively localized in the transverse tubules that are crucial for LTCC function and EC coupling78.

1.3.3 cAMP-hydrolyzing Phosphodiesterases

cAMP-hydrolyzing PDEs play a central role in cAMP compartmentalization by shaping, separating and modulating distinct subcellular cAMP microdomains. The PDE superfamily of enzymes is represented by 11 families with over 60 individual isoforms. In mammalian myocardium, five PDE families (PDE1, 2, 3, 4 and 8) hydrolyze cAMP79-83. PDE1, 2 and 3, are dual-specific PDEs that can hydrolyze both cAMP and cGMP, whereas PDE4 and 8 are specific for cAMP. Their high versatility in substrate specificities, regulatory properties as well as their systemic and isoform-specific subcellular distributions make PDEs an attractive target for pharmacotherapy. However, a lack of isoform-selective inhibitors has largely prevented a general breakthrough in clinical exploitation of PDE-dependent mechanisms.

PDE1

PDE1 is also referred to as the “Ca^{2+}/calmodulin-stimulated PDE”. In vitro studies have shown that enzyme activity can be increased up to 10-fold by calcium/calmodulin binding84. This way, PDE1 is believed to establish a crosstalk between calcium and cyclic nucleotide signaling85. Three PDE1 isoforms, i.e. 1A, 1B, 1C are expressed in cardiomyocytes. All show dual specificity and hydrolyze both cAMP and cGMP. However, PDE1A and B prefer cGMP over cAMP as a substrate, whereas PDE1C binds both cyclic nucleotides with equal affinities86-90. Much less is known about the subcellular distribution of PDE1s and their contribution to cAMP compartmentation in cardiomyocytes. These questions should be further investigated in the light of the possible cardioprotective role of PDE1, supported by the fact that the PDE1 inhibitor IC86340 is able to protect the heart from pressure overload-induced hypertrophy88. However, the lack of truly selective inhibitors has so far hampered thorough functional investigations of myocardial PDE1 dependent functions and its role in modulating the cAMP dynamics.
PDE2
The second cardiac dual-specific PDE family is represented by PDE2. Members of this family are assembled as homodimers, each monomer bearing a pair of tandem regulatory GAF domains (GAF = cGMP-specific phosphodiesterases, adenyl cyclases and FlhA) on their N-terminus. Binding of cGMP to one of these domains (GAF-B) stimulates the activity of catalytic domains by an allosteric mechanism. Therefore, PDE2 is also referred to as the "cGMP-stimulated PDE" (Figure 3). Mammalian cardiomyocytes express several PDE2A isoforms (2A1, 2A2 and 2A3), which are associated with both, cytosolic compartment and sarcolemmal membrane. Two studies performed either using a FRET biosensor in neonatal or cyclic nucleotide gated channel (CNGC) recordings in adult rat myocytes have shown an association of PDE2 activity with the subsarcolemmal microdomain. The first study described a negative feedback mechanism involving the β3AR and endothelial nitrite monoxide synthetase (eNOS)/ soluble guanylyl cyclase (sGC)/ 3',5'-cyclic guanosine monophosphate (cGMP) signaling pathway, which leads to PDE2 activation, thereby counteracting an increase in cAMP and positive inotropic response after β-adrenergic stimulation. The second study found that cGMP pools produced by both particulate guanylyl cyclase and soluble guanylyl cyclase are controlled by PDE2.

PDE3
Two PDE3 isoforms PDE3A and PDE3B have been described in cardiomyocytes, whereby PDE3A is considered as the predominant isoform in mammalian hearts. The PDE3 family represents the third group of dual-specific PDEs. Furthermore, similar to PDE2, its activity can be modulated by cGMP. However, in contrast to PDE2, which is stimulated by cGMP, this second messenger inhibits PDE3 activity. Therefore, PDE3 is also known as the "cGMP-inhibited PDE". PDE3 is considered the second most important cAMP-degrading enzyme in rodent cardiomyocytes and the predominant cAMP-PDE in human cardiomyocytes. In 2004, Patrucco and co-workers showed that PDE3B co-precipitates with PI3Kγ. They postulated a complex of PI3Kγ and PDE3B, which regulates local cAMP pools at the sarcolemma and, at the same time, controls PLN phosphorylation, thereby participating in cAMP/PKA-mediated signaling. Recently, the same group identified PDE3A in the PI3Kγ-associated cAMP compartment.

PDE4
Type 4 PDEs are cAMP-specific. In mammalian systems, four genes (pde4a-d) encode about 20 isoforms. Each isoform contains a unique N-terminal region, which is responsible for subcellular localization, and PDE4A, PDE4B and PDE4D were shown to be expressed in rodent and the human hearts. In the past few years, the hypothesis of different PDE4 isoforms each playing a unique role in cardiomyocyte cAMP compartmentalization has gained increasing interest. To date, several studies are available that report PDE4 subtypes and isoforms to be critical for the fine-tuning of different cAMP microdomains. For example, PDE4B associates with the LTCC
complex at the sarcolemma of adult mouse cardiomyocytes and represent the major isoform responsible for the regulation of PKA-mediated phosphorylation of this channel upon \(\beta \)-adrenergic stimulation\(^{101}\). PDE4D3 is part of the RyR2 signaling complex\(^{43}\), whereas PDE4D5 and PDE4D8 were reported to form signaling complexes with either \(\beta_1 \)- or \(\beta_2 \)-ARs in a ligand-dependent manner\(^{70}\). A still not identified PDE4D isoform has been shown to co-immunoprecipitate with the SERCA2a signaling complex in mouse hearts. This PDE is responsible for the regulation of PLN phosphorylation and hence SERCA2a activity under basal conditions\(^{102,103}\). PDE4A and PDE4B but no D-isoforms were also found in the PI3K\(\gamma\)-cAMP compartment\(^{71}\).

PDE8

Phosphodiesterase 8 is another cAMP-specific PDE in mammalian myocardium. Two genes encode the PDE8A and B isoforms, of which PDE8A is expressed in human and mouse hearts\(^{104}\). Its most profound property is its insensitivity to the unselective PDE inhibitor 3-Isobutyl-1-methylxanthin (IBMX). Regarding cAMP compartmentalization in cardiomyocytes, PDE8 has long been neglected. In a recent study, it was demonstrated that cardiomyocytes isolated from PDE8A knockout mice show increased \(\beta \)-adrenergic-stimulated calcium transients, LTCC currents and calcium spark frequencies\(^{105}\). This indicates the involvement of PDE8A in the calcium homoeostasis. The authors also report a ‘leaky’ RyR2 phenotype, which is suggested to be the result of a compensatory increase in SR calcium re-uptake. Recently, it was shown that, similar to PDE4, this PDE can also be phosphorylated by PKA, which leads to an increase in its hydrolyzing activity\(^{106}\). This may represent an important negative feedback loop regulating cAMP dynamics in subcellular microdomains of cardiomyocytes. Further efforts are necessary to study the exact role of PDE8A for cAMP compartmentation.

1.4 Pathophysiology of Chronic Heart Disease

Chronic heart disease is often triggered by catecholamine-induced augmentation of cardiac output, which occurs as a result of increased afterload due to hypertension or aortic valve disease. In order to compensate the increased demand of oxygen, the secretion of natriuretic peptides, especially that of the atrial and B-type kind (ANP, BNP) is increased to achieve enhanced blood flow by cGMP-dependent vasodilatation mechanisms. However, chronic pressure overload ultimately causes exhaustion of this adaptive response, during which the heart undergoes different stages of progressive morphological and functional remodeling. These range from compensated hypertrophy to decompensated states of late- and end-stage heart failure (Figure 4)\(^{107}\).
During **compensated hypertrophy**, the heart muscle responds to the enhanced demand on cardiac contractility by a gain in left-ventricular size, achieved through increased wall thickness. Single cardiomyocytes incorporate additional sarcomeres, leading to increased cellular diameters. At this state, cardiac performance is largely preserved. In contrast, **decompensation** is morphologically characterized by progressive dilatation of the left ventricle due to myocyte apoptosis, which may be accompanied by increased fibrosis. Together, all these factors account for a dramatic drop in cardiac function. A molecular hallmark of heart failure is the desensitization of β-AR and ANP receptor signaling cascades. Dramatic reduction of β1-AR density in failing myocytes\(^{108,109}\) and desensitization of the ANP receptor NPR-A due to its dephosphorylation in cardiac hypertrophy\(^{110,111}\) have been consistently documented. These molecular changes result in the reduction of catecholamine-stimulated cardiomyocyte force and ANP-mediated cGMP generation in late-stage cardiac disease, while disease-initiating alterations are still poorly defined. Despite the essential role of the second messenger pathways for normal heart function, little to nothing is known about alterations in microdomain-specific cAMP or cGMP signaling and about cGMP/cAMP cross-talk in diseased cardiomyocytes, especially not at disease onset, which is potentially relevant for therapeutic prevention strategies.

1.5 Changes in cAMP Compartmentation in Diseased Cardiomyocytes

Cardiac disease has been associated with changes in compartmentalized cAMP signaling. Today there is considerable evidence that remodeled subcellular signaling pathways promote or potentially cause chronic heart failure. Known alterations in compartmentalized cAMP signaling are illustrated in Figure 5.

Remodeling of AKAP-associated signaling complexes

Early studies by the group of Meredith Bond revealed that in human failing cardiomyocytes, the proper association of the PKA with AKAPs is dramatically decreased\(^{112}\). This was explained by the decrease in the basal RII (regulatory PKA subunit II) autophosphorylation, which normally increases PKA affinity for AKAPs. Disrupted interaction between AKAPs and PKA might result in the reduced phosphorylation of other PKA targets, including those associated with cardiomyocyte EC coupling. Disruption of the mAKAP/RyR2 signaling complex responsible for calcium release from SR has also been shown to cause severe...
impairment of heart function in experimental mouse models, which resemble human disorders such as age-related cardiomyopathy, exercise-induced arrhythmias and sudden cardiac death. In a series of elegant studies, the group of Andrew Marks could show that failing hearts display a destabilization of the RyR2 complex caused by the pronounced dissociation of FKBP12.6 (calstabin) from the signaling complex due to hyperphosphorylation of RyR261,113-115. The same group later reported that deletion of FKBP12.6 leads to a cardiac phenotype similar to that of failing hearts with delayed afterdepolarizations, favoring severe arrhythmias and sudden cardiac death caused by spontaneous diastolic calcium release from the 'leaky' RyR2115. It was further demonstrated that the hyperphosphorylation of RyR2 by the local pools of PKA is involved in these processes due to depletion of PDE4D from the complex that occurs in failing cardiomyocytes under chronic \(\beta\)-adrenergic stimulation43. This phenotype could be recapitulated in PDE4D knockout mice, and such effects might be also linked to the adverse effects of the selective PDE4 inhibitors116 that have been reported to promote arrhythmia in human heart muscle44. Recently, Beca et al.102 showed that under basal conditions (which is in contrast to the \(\beta\)-adrenergic stimulation used in the studies mentioned above), PDE4 is not involved in the regulation of PKA-mediated RyR2 phosphorylation, but in this state, it rather maintains proper calcium handling via the SERCA2a–PLN complex. In addition to PKA, the increased activity of CaMKII can lead to hyperphosphorylation and leakiness of the RyR2117,118. A recent study by Kashimura et al. demonstrated that in a genetic mouse model of catecholaminergic polymorphic ventricular tachycardia, RyR2 leak after \(\beta\)-adrenergic stimulation does not result from a lowered threshold for calcium waves but rather from increased SR calcium content119. Therefore, it can be anticipated that for the leak mechanism to be effective, the SR calcium content must be maintained, a technical point frequently missed in studies that argue against the RyR2 hyperphosphorylation hypothesis.

** Redistribution of \(\beta\)-AR subtypes**

Nikolaev et al. combined FRET with scanning ion conductance microscopy (SICM/FRET) to analyze sarcolemmal distributions of \(\beta_1\)- and \(\beta_2\)-ARs in failing rat cardiomyocytes78. Here, widespread membrane \(\beta_1\)-AR localization was basically unchanged, while \(\beta_2\)-AR redistributed from the T-tubules onto the de-tubulated outer membrane areas. Interestingly, following the receptor redistribution, its subcellular cAMP gradients were also remodeled so that they were no longer confined but diffused throughout the entire cytosol, similar to the \(\beta_2\)-AR cAMP signals. These diffuse signals have been associated with increased PLN phosphorylation and arrhythmias, which occur in heart failure. They might be a result of the loss of receptor coupling to local PKA and PDE4 pools found in the T-tubules of healthy cardiomyocytes. In addition, proper localization of PKA was also shown to be disrupted, leading to a loss of the negative PKA-PDE4 feedback regulatory loop capable of restricting \(\beta_2\)-AR cAMP signals to the T-tubular compartment. Future work should more precisely analyze the composition and remodeling of such macromolecular complexes in heart failure. Probably, the regulation of \(\beta_2\)-AR cAMP is likely to be more complex than previously anticipated, because a recent study suggests that \(\beta_2\)-AR signaling is also dependent on PI3K\(\gamma\)-mediated scaffolding, which is apparently important to protect the heart from arrhythmias71. Interestingly, the findings of this study suggest that PI3K\(\gamma\) interaction with PDE4 might regulate \(\beta_2\)-AR cAMP signaling in the cytosol, whereas a PI3K\(\gamma\)/PDE3 complex shapes those signals at the membrane.
Introduction

More insights into the architecture of this cAMP compartment are definitely needed to fully understand the nature of β₂-AR cAMP signaling in healthy and failing myocytes.

Altered PDE expressions and activities
Cardiac hypertrophy has been associated with changes in PDE activity patterns. In 2009, Abi-Gerges et al. established that expressions and activities of PDE3A and PDE4s are dramatically reduced in cardiomyocytes isolated from rats that underwent transverse aortic constriction to induce cardiac hypertrophy. By electrophysiological CNG channel-based measurements of subsarcolemmal cAMP, they showed that upon β-adrenergic stimulation, cAMP signals are significantly reduced in hypertrophied cardiomyocytes, which might be due to the above-mentioned receptor desensitization. However, the responses to PDE3 and PDE4 inhibitors were also shown to be markedly reduced in this compartment. Analyses of subtype-specific PDE expressions and activities revealed that the expression levels and activities of PDE3A and PDE4A, PDE4B but not PDE4D were reduced in hypertrophied cardiomyocytes. It was proposed that this decrease in cAMP-hydrolyzing PDE activity could be a potential short-term adaptation mechanism to counterbalance the reduction in cAMP production by desensitized βARs. In addition to PDE3 and PDE4 downregulation, some PDE amounts might conversely increase during disease progression. As such, PDE2 has recently been identified to be upregulated in heart failure models of rodents and dogs but importantly also in end-stage heart failure patients, thereby possibly contributing β-AR desensitization. However, little is known about how local PDE pools, associated with AKAPs and other subcellular signaling complexes are affected in heart disease. The work by Lehnart et al. (2005) vividly demonstrated that despite unchanged global PDE4D expression and activity in failing cardiomyocytes, the reduction in local PDE4D content inside the mAKAP/RyR2 signaling complex leads to PKA-mediated hyperphosphorylation of RyR2 in failing myocytes making them more susceptible to arrhythmias. Nevertheless, more direct investigations of cAMP dynamics in various subcellular compartments are needed to fully understand the molecular mechanism of cardiac disease.

1.6 Autonomous Nervous Control of Heart Function
The autonomous nervous system regulates functions of various organs via the sympathetic and parasympathetic neurotransmitters norepinephrine and acetylcholine, which once released from nerve terminals, activate adrenergic and muscarinic G-protein coupled receptors on the membranes of target cells. In the heart, sympathetic innervation augments contractile force and beat frequency by β-AR-mediated increases in intracellular levels of cAMP. Conversely, parasympathetic control via the Vagus nerve is achieved through acetylcholine-mediated activation of type 2 muscarinic acetylcholine receptors (M₂) and leads to a decrease of cellular cAMP, resulting in lowered heart rate and less pronounced decrease in force of contraction (Figure 6).
1.7 Effects and Clinical Use of Atropine

Atropine is a plant secondary metabolite, tropane alkaloid extracted from the deadly nightshade (*Atropa belladonna*) and other species of the *Solanaceae* family. It is a potent competitive antagonist for muscarinic acetylcholine receptors (mAChRs) with an affinity (dissociation constant, K_D) of approximately $1 \text{nM}^{121,122}$. In mammalian organisms, five different sub-types of mAChRs, M_1-M_5^{123} are expressed, of which the M_1, M_3 and M_5 receptor subtypes are coupled to G_q, whereas M_2 and M_4 are G_i-coupled. As an unselective mAChR antagonist, atropine has been widely used for multiple purposes over the centuries. Presumably, the Egyptians already used *Solanaceae* plant extracts to alleviate respiratory complaints124. The Greeks and Romans knew about its poisonous potential and in medieval times, its effect to dilate the pupils was utilized by court ladies to achieve a brighter glance, hence its name *Belladonna*.125 Its pharmacological properties are known since the early 20th century122. But as early as in the 1830s, L-atropine was first purified from plant extracts, which enabled further understanding of its effects as a potent modulator of the autonomic nervous system, eventually leading to the discovery of the neurotransmitter acetylcholine.125

Today, atropine and atropine-derived anticholinergics are used for multiple indications, such as to prevent hyper-salivation during anesthesia or as antidotes for organophosphate poisoning. They are used for pupil dilation during eye examinations or as bronchodilators for the therapeutic treatment of asthma and chronic obstructive pulmonary disease (COPD)$^{126-128}$. In the heart, atropine blocks the inhibitory effect of acetylcholine on heart rate and contractility, and is used to reduce susceptibility to bradycardia and atrioventricular block or during stress echocardiography129. Furthermore, atropine is still a first-line drug for acute bradycardia treatment130. However, because of its broad range activity spectrum, atropine also shows multiple side effects such as blurred vision and dizziness, cottonmouth, nausea and emesis, urine retention and even severe arrhythmias. Moreover, lower doses of atropine (<0.5 mg) are known to trigger paradoxical bradycardia, whereas higher doses tend to elicit tachycardia131,132. It is subject of debate whether this is due to differential effects on the
central and the terminal parasympathetic nervous system133,134. Atropine-induced tachyarrhythmia has been attributed exclusively to the antagonism at cardiac G_i-coupled M_2-receptors and inhibition of parasympathetic events. However, exact molecular mechanisms behind these inadvertent phenomena remain elusive.

Redundancy in atropine and PDE4 inhibitor effects

Interestingly, a number of aforementioned atropine effects show similarities to those of PDE inhibitors, especially PDE4 inhibitors135-137 used e.g. for treatment of airway diseases such as asthma and COPD138-140 or bladder function disorders141,142.

Conversely, PDE4 inhibitors are also associated with a plethora of adverse effects that are partly reminiscent of atropine-related side effects such as emesis or nausea, but importantly also tachycardia116,135,136. Furthermore, certain PDE4 isoforms have been shown to prevent catecholamine-induced arrhythmias43,44,71,101,143.
2 Aims

Local β-Adrenergic Signaling at the Sarcolemma of Adult Mouse Cardiomyocytes

Several publications have shed light onto molecular changes in the β-AR signaling cascade that accompany the failing heart phenotype, such as β-AR desensitization and downregulation12, β-AR redistribution78 or changes in the activity of certain PDEs120,144. So far, however relatively little is known about alterations in β-AR signaling pathways that occur at the onset of cardiac disease, i.e. in early compensated cardiac hypertrophy, where subtle changes would first affect subcellular compartments, rather than the whole cell.

The purpose of this project was to establish a new transgenic mouse line expressing a localized FRET-based cAMP biosensor, which would allow analysis of local cAMP dynamics exclusively at the sarcolemma of freshly isolated adult cardiomyocytes. Using this mouse as a tool, investigations of subtype-specific β-AR-mediated cAMP signals, their regulation by PDEs and role in chronic cardiac disease were performed.

Atropine Modulates Phosphodiesterase Activity in the Heart

Atropine is an unspecific anticholinergic drug that inhibits all five mammalian muscarinic acetylcholine receptor subtypes. As such, atropine is linked to multiple side effects. Its pro-arrhythmic potential has long been acknowledged but not completely understood.

Importantly, a considerable number of atropine-associated side effects show similarities to effects evoked by PDE4 inhibition. The aim of this project was to analyze the molecular mechanisms by which atropine can affect cardiac function independently of the parasympathetic nervous system and M\textsubscript{2} receptors. In particular, the effects of atropine on PDE4 activity to promote tachycardia were investigated.
3 Materials and Methods

3.1 Materials

<table>
<thead>
<tr>
<th>Description</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stable cell lines</td>
<td></td>
</tr>
<tr>
<td>HEK293A</td>
<td>Invitrogen, #R705-07</td>
</tr>
<tr>
<td>Transparent centered</td>
<td></td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
</tr>
<tr>
<td>pcDNA3.0</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>β-MHC-HCN2</td>
<td>see Nikolaev et al., 2006</td>
</tr>
<tr>
<td>Bacteria strains</td>
<td></td>
</tr>
<tr>
<td>One Shot® TOP10 chemically competent E. coli</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>One Shot® OmniMax2T1</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Animals</td>
<td></td>
</tr>
<tr>
<td>FVB/NRj animals</td>
<td></td>
</tr>
<tr>
<td>FVB/NRj animals were obtained from Janvier Labs (Saint Berthevin, France) and used for pronuclear injection with the pmEpac1 construct by the Max-Planck-Institute of Experimental Medicine. All animal experiments were performed in accordance with institutional and governmental guidelines.</td>
<td></td>
</tr>
</tbody>
</table>

3.1.5 Oligonucleotides

Oligonucleotides were purchased from MWG Biotech GmbH, Ebersberg

MHCseq_for	5’-TGACAGACAGATCCCTCCTAT-3’
YFPrev	5’-CATGGCGGACTTGAAGAAGT-3’
pmYFPKpnI_for	5’-AAAGGTACCATGGGATGTATAAGCAAC-3’
YFPecoRlrev	5’-AAAGAATTCCCTGTACACCTCAGG-3’
PDE1ABamHiFor	5’-AAAGGTACCATGGGTCTCTTGCGGTCTACTGATACGGAC-3’
PDE1AAXholstoprev	5’-AAACTCGAGCTATGGGCTGTGTAAGCA-3’

3.1.6 Chemicals

AG 1-X8 Resin	Biorad, # 140-1441
Albumin Fration V	Applichem, # A1391.0100
Ammonium Persulfate	Sigma, # A3678
Ampicillin	Roth, # K029.1
Ampuwa® water	Fresenius Kabi Deutschland GmbH
BAY 60-7550	Santa Cruz, # sc-205219
BES buffer grade	Applichem, A1062
β-Mercaptethanol	Sigma, # M3148
Bromphenol Blue Sodium salt	Applichem, # A1120
8-Bromoadenosine-3’, 5’-cyclic monophosphate, acetoxymethyl ester	Biolog, # B028
Materials & Methods

<table>
<thead>
<tr>
<th>Description</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,3-Butanedione monoxime</td>
<td>Sigma, # B0753</td>
</tr>
<tr>
<td>Calcium chloride dihydrat</td>
<td>Merck, # 17257</td>
</tr>
<tr>
<td>cAMP</td>
<td>Sigma, # A9501</td>
</tr>
<tr>
<td>cAMP [5',8-³H]</td>
<td>Hartmann Analytic GmbH, # 1790</td>
</tr>
<tr>
<td>Cesium chloride</td>
<td>Sigma, # C3032</td>
</tr>
<tr>
<td>CGP-20712A methanesulfonate salt</td>
<td>Sigma, # C231</td>
</tr>
<tr>
<td>Cilostamide</td>
<td>Sigma, # C7971</td>
</tr>
<tr>
<td>Crotalus atrox snake venom</td>
<td>Sigma, # V7000</td>
</tr>
<tr>
<td>di-8-ANEPPS</td>
<td>Molecular Probes®, # F1221</td>
</tr>
<tr>
<td>Dimethyl sulfoxide HYBRI-MAX*</td>
<td>Sigma, # D2650</td>
</tr>
<tr>
<td>DirectPCR-Tail</td>
<td>Perlab, # 31-102-T</td>
</tr>
<tr>
<td>D(+) Sucrose</td>
<td>Roth, # 4621.2</td>
</tr>
<tr>
<td>dNTPs</td>
<td>Promega, # U1240</td>
</tr>
<tr>
<td>EDTA</td>
<td>Roth, # 8040.3</td>
</tr>
<tr>
<td>EGTA</td>
<td>Sigma, # E4378</td>
</tr>
<tr>
<td>Ethanol Rotipuran >99,8 %</td>
<td>Roth, # 9065.1</td>
</tr>
<tr>
<td>Ethidium bromide - Solution 1 %</td>
<td>Applichem, # A1152</td>
</tr>
<tr>
<td>Forskolin</td>
<td>Sigma, # F6886</td>
</tr>
<tr>
<td>Fura2-AM</td>
<td>Invitrogen, # F-1201</td>
</tr>
<tr>
<td>Glucose</td>
<td>Sigma, # G7021</td>
</tr>
<tr>
<td>Glycerol</td>
<td>Sigma, # G8773</td>
</tr>
<tr>
<td>Glycine</td>
<td>Roth, # 3908.3</td>
</tr>
<tr>
<td>Hematoxylin</td>
<td>Fluka # 51260</td>
</tr>
<tr>
<td>HEPES</td>
<td>Sigma, # H4034</td>
</tr>
<tr>
<td>Hydrochloride acid 37 %</td>
<td>Sigma, # 84422</td>
</tr>
<tr>
<td>¹²⁵I-cyanopindolol</td>
<td>Perkin Elmer, Inc. # NEX189100UC</td>
</tr>
<tr>
<td>ICI-118.551 hydrochloride</td>
<td>Sigma, # 1127</td>
</tr>
<tr>
<td>Iron(III) chloride hexahydrate</td>
<td>Roth, # P742.1</td>
</tr>
<tr>
<td>3-Isobutyl-1-methylxanthin</td>
<td>Applichem, # A0695</td>
</tr>
<tr>
<td>Isoproterenol hydrochloride</td>
<td>Sigma, # I6504</td>
</tr>
<tr>
<td>Laminin</td>
<td>Sigma, # L2020</td>
</tr>
<tr>
<td>LB- Agar powder Miller</td>
<td>Applichem, # A0927</td>
</tr>
<tr>
<td>LB- Medium powder Miller</td>
<td>Applichem, # A0954</td>
</tr>
<tr>
<td>Lipofectamine® 2000 Reagent</td>
<td>Invitrogen, #11668-019</td>
</tr>
<tr>
<td>Loading buffer DNA IV (for Agarose gels)</td>
<td>Applichem, # A3481</td>
</tr>
<tr>
<td>Magnesium chloride hexahydrate</td>
<td>Applichem, # A1036</td>
</tr>
<tr>
<td>Magnesium sulfate heptahydrate</td>
<td>Sigma, # M2773</td>
</tr>
<tr>
<td>MDL-12,330A hydrochloride</td>
<td>Sigma, # M182</td>
</tr>
<tr>
<td>Methanol</td>
<td>Roth, # HN41.2</td>
</tr>
<tr>
<td>Description</td>
<td>Company</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>8-methoxymethyl-3-isobutyl-1-methylxanthine</td>
<td>Sigma, # M2547</td>
</tr>
<tr>
<td>Milk powder</td>
<td>Roth, # T145.1</td>
</tr>
<tr>
<td>N,N,N',N'-Tetramethylethlenediamine</td>
<td>Sigma, # T9281</td>
</tr>
<tr>
<td>PeqGOLD Universal Agarose</td>
<td>Peqlab, # 35-1020</td>
</tr>
<tr>
<td>Ponceau S</td>
<td>Roche, # 04906837001</td>
</tr>
<tr>
<td>Potassium bicarbonate</td>
<td>Sigma, # P7682</td>
</tr>
<tr>
<td>Potassium chloride</td>
<td>Sigma, # P5405</td>
</tr>
<tr>
<td>Potassium dihydrogen phosphate</td>
<td>Merck, # 4873</td>
</tr>
<tr>
<td>RNAse free water</td>
<td>Ambion, # AM9937</td>
</tr>
<tr>
<td>Phenol red sodium salt</td>
<td>Sigma, # P5530</td>
</tr>
<tr>
<td>Protease Inhibitor Cocktail</td>
<td>Roche, # 11872580001</td>
</tr>
<tr>
<td>Protein Marker V</td>
<td>Peqlab, # R27-2211</td>
</tr>
<tr>
<td>Quick-Load® 100bp DNA ladder</td>
<td>Biolabs, # NO467S</td>
</tr>
<tr>
<td>Quick load® 1 kb DNA ladder</td>
<td>Biolabs, # NO468S</td>
</tr>
<tr>
<td>Rolipram</td>
<td>Sigma, # R6520</td>
</tr>
<tr>
<td>Roticlear®</td>
<td>Roth, # A538.5</td>
</tr>
<tr>
<td>Roti-Histofix® 4%</td>
<td>Roth, # P087.5</td>
</tr>
<tr>
<td>Rotiphereose® Gel 30</td>
<td>Roth, # 3029.1</td>
</tr>
<tr>
<td>Sodium azide</td>
<td>Sigma, # S2002</td>
</tr>
<tr>
<td>Sodium bicarbonate</td>
<td>Sigma, # S5761</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>Sigma, # S5886</td>
</tr>
<tr>
<td>Sodium dodecyl sulfate solution 20%</td>
<td>Fluka, # 05030</td>
</tr>
<tr>
<td>Sodium hydroxide</td>
<td>Roth, # 6771.3</td>
</tr>
<tr>
<td>Sodium phosphate dibasic</td>
<td>Sigma, # 255793</td>
</tr>
<tr>
<td>Sodium phosphate dibasic dihydrate</td>
<td>Sigma, # 71643</td>
</tr>
<tr>
<td>Sucrose</td>
<td>Sigma, # S0389</td>
</tr>
<tr>
<td>TAE-buffer (50x)</td>
<td>Applichem, # A1691</td>
</tr>
<tr>
<td>Target Retrieval Solution, Citrate pH=6 (10x)</td>
<td>Dako, # S2369</td>
</tr>
<tr>
<td>Taurine</td>
<td>Sigma, # T8691</td>
</tr>
<tr>
<td>TRIS</td>
<td>Roth, # 4855.3</td>
</tr>
<tr>
<td>Triton-X® 100</td>
<td>Applichem, # A1287.0025</td>
</tr>
<tr>
<td>Tween-20*</td>
<td>Sigma, # P1379</td>
</tr>
<tr>
<td>Vectashield® Mounting Medium</td>
<td>Vector Laboratories, # H-1000</td>
</tr>
<tr>
<td>Lectin from Triticum vulgaris (wheat)</td>
<td>Sigma, # L5266</td>
</tr>
</tbody>
</table>
3.1.7 Cell culture

Description
- Antibiotic-Antimycotic, 100x
- DMEM, 4.5 % glucose
- FCS
- Glutamine
- Iscove Basal Medium
- OPTI-MEM®
- PBS Phosphate Buffered Saline (Dulbecco)
- Penicillin/Streptomycin
- Plaque GP Agarose
- Trypsin/EDTA solution

Company
- Gibco, # 15240062
- Biochrom, # FO445
- Biochrom, # S0615
- Biochrom, # K0283
- Biochrom, # FG 0465
- Gibco, # 11058
- Biochrom, # L1825
- Biozym, # 850110
- Biochrom, # L2143

3.1.8 Enzymes and Kits

- BamHI
- EcoRI
- KpnI
- XbaI
- Xhol
- GoTaq DNA Polymerase, 500U
- KpnI
- Liberase DH
- NotI
- PacI
- Pfu DNA Polymerase
- Pierce BCA Protein Assay Kit
- Plasmid Midi Kit
- Plasmid Mini Kit
- Proteinase K
- QIAquick Gel Extraction Kit
- QIAquick PCR purification Kit
- Qproteome Cell compartment Kit
- Sodiumacetate solution 3M
- Super Signal West Pico Chemiluminescent Substrate
- SYBR® Green Super Mix for iQ™
- T4 DNA Ligase
- Trypsin 2.5 %
- XbaI
- Xhol

Company
- New England Biolabs, # R0136
- New England Biolabs, # R0101
- New England Biolabs, # R0142
- New England Biolabs, # R0145
- New England Biolabs, # R0146
- Promega, # M3175
- New England Biolabs, # R3142
- Roche, # 05401054001
- New England Biolabs, # R3189
- New England Biolabs, # R0547
- Promega, # M774B
- Thermo Scientific, # 23227
- Qiagen, # 12945
- Qiagen, # 12125
- Qiagen, # 28704
- Qiagen, # 28104
- Qiagen, # 37502
- Applichem, # A3830-0500
- Applichem, # 28704
- Applichem, # 28104
- Applichem, # 37502
- Thermo Scientific, # 34080
- Quanta Biosciences, # 95053
- NEB, # M0202S
- Gibco #15090
- New England Biolabs, # R0145
- New England Biolabs, # R0146
3.1.9 Primary Antibodies

<table>
<thead>
<tr>
<th>Description</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti-α-actinin</td>
<td>Sigma, # A7811</td>
</tr>
<tr>
<td>anti-β-arrestin 2</td>
<td>Santa Cruz, # sc-13140</td>
</tr>
<tr>
<td>anti-Calsequestrin</td>
<td>Thermo Scientific, # PA1-913</td>
</tr>
<tr>
<td>anti-GAPDH</td>
<td>HyTest Ltd, # 5G4</td>
</tr>
<tr>
<td>anti-PDE2A</td>
<td>Fabgeninx, # 101AP</td>
</tr>
<tr>
<td>anti-PDE2A</td>
<td>Santa Cruz, # sc-17228</td>
</tr>
<tr>
<td>anti-PDE3A</td>
<td>Santa Cruz, # sc-11834</td>
</tr>
<tr>
<td>anti-PDE4D8</td>
<td>home made (Marco Conti)</td>
</tr>
<tr>
<td>anti-PDE8A</td>
<td>home made (George Baillie)</td>
</tr>
<tr>
<td>anti-pPLN (Phospho Serine 16)</td>
<td>Badrilla, # A010-12</td>
</tr>
<tr>
<td>anti-pTnI (Phospho Serine 23/24)</td>
<td>Cell Signaling, # 4004</td>
</tr>
</tbody>
</table>

3.1.10 Secondary Antibodies

<table>
<thead>
<tr>
<th>Antibodies</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexa Fluor® 488 Goat Anti-Mouse IgG</td>
<td>Invitrogen, # A11055</td>
</tr>
<tr>
<td>Alexa Fluor® 633 Goat Anti-Rabbit IgG</td>
<td>Invitrogen, # A21070</td>
</tr>
<tr>
<td>Immun-Star™ Goat Anti-Mouse (GAM)-HRP Conjugate</td>
<td>Biorad, # 170-5047</td>
</tr>
<tr>
<td>Immun-Star™ Goat Anti-Rabbit (GAR)-HRP Conjugate</td>
<td>Biorad, # 170-5046</td>
</tr>
</tbody>
</table>

3.1.11 Technical devices and software for fluorescence microscopy

<table>
<thead>
<tr>
<th>Devices and Software</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arduino I/O board</td>
<td>Sparkfun Electronics</td>
</tr>
<tr>
<td>Attofluor® cell chamber</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>AxioObserver A1 epifluorescence microscope</td>
<td>Carl Zeiss MicroImaging</td>
</tr>
<tr>
<td>AxioCam ICC1</td>
<td>Carl Zeiss MicroImaging</td>
</tr>
<tr>
<td>Axiovert 200 microscope</td>
<td>Carl Zeiss MicroImaging</td>
</tr>
<tr>
<td>Axio Vision software</td>
<td>Carl Zeiss MicroImaging</td>
</tr>
<tr>
<td>CFP/YFP filter set</td>
<td>Chroma Technology</td>
</tr>
<tr>
<td>CoolLED 440 nm</td>
<td>CoolLED</td>
</tr>
<tr>
<td>CoolSNAP-HQ CCD-camera</td>
<td>Visitron Systems</td>
</tr>
<tr>
<td>DualView filter slider</td>
<td>Photometrics</td>
</tr>
<tr>
<td>DV2 DualView (505dcxr filter)</td>
<td>Photometrics</td>
</tr>
<tr>
<td>ImageJ Software</td>
<td>National Institutes of Health</td>
</tr>
<tr>
<td>Inverted fluorescent microscope</td>
<td>Nikon</td>
</tr>
<tr>
<td>710 NLO microscope</td>
<td>Carl Zeiss MicroImaging</td>
</tr>
<tr>
<td>Microsoft Office Picture Manager</td>
<td>Microsoft Corporation</td>
</tr>
<tr>
<td>Oil immersion 63x objective</td>
<td>Carl Zeiss MicroImaging</td>
</tr>
<tr>
<td>ORCA-03G camera</td>
<td>Hamamatsu Photonics</td>
</tr>
<tr>
<td>Polychrome V light source</td>
<td>TILLPhotonics</td>
</tr>
<tr>
<td>Stemi 2000-C microscope binocular</td>
<td>Carl Zeiss MicroImaging</td>
</tr>
</tbody>
</table>
Description

<table>
<thead>
<tr>
<th>Description</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEN 2010 Software</td>
<td>Carl Zeiss MicroImaging</td>
</tr>
</tbody>
</table>

3.1.12 Technical devices and software for cardiomyocyte contractility measurements

- Fluorescence System Interface: IonOptix
- IonWizard- Core and Analysis: IonOptix
- MyoCam-S: IonOptix
- MyoPacer Cell Stimulator: IonOptix
- Sarcomere Length Acquisition Module: IonOptix

3.1.13 Other technical devices and software

- Alphalimage® software: ProteinSimple
- Binocular macroscope: Olympus
- Biotek Reader (for BCA assay): BIOTEK Instruments
- Chart5™ Software: ADInstruments
- Centrifuges: Thermo Scientific
- iCycler: Biorad
- MicroBeta²: Perkin Elmer, Inc.
- MicroBeta² Windows Workstation: Perkin Elmer, Inc.
- Microtom Leica RM 2165: Leica
- Mini-PROTEAN® Electrophoresis System: Biorad
- MS-400 MicroScan Transducer: Linear Array Technology
- MS-Excel™: Microsoft®
- MS-PowerPoint™: Microsoft®
- MS-Word™: Microsoft®
- MultiImage Light Cabinet: Alpha Innotech Corporation
- Mupid-One Gel Electrophoresis Unit: ADVANCE Co., Ltd.
- NanoDrop 2000: Thermo Scientific
- Origin 8.5G Software: OriginLab® Corporation
- pH meter: Inolab
- Powerpac HC: Biorad
- Thermocycler: Sensoquest
- ThermoMix compact: Eppendorf
- Tracheal tube: Hugo Sachs Electronic
- Ultracentrifuge L-70: Beckman
- Ultra-Turrax MicraD-1: Art-Labortechnik
- Vevo 2100: VisualSonics (Toronto, Canada)
- Ventilator Minivent: Hugo Sachs Electronic
Description
X-Ray Film processor SRX 101A

3.1.14 Other Materials
Elca®med
Eppendorf tubes
Ethilon suture 9-0
Falcon tubes
Fiber pads for Western blot
Filter Unit 0.2 RC Spartan 13 0.2 µm (DNA filtration)
Forene®
21-gauge needle
26-gauge needle
Gauze
Round Glass Cover Slides, ø 24 mm
Microscope Slides
Medical X-Ray Film
Prolene suture 6-0
Protran Nitrocellulose Transfer Membrane
Quickseal Centrifuge Tubes (virus centrifugation)
Scintillation Liquid Lumasafe Plus
Serological pipettes
Slide-A-Lyzer Dialysis Cassettes, 10K MWCO
Spacer Plates for Western blot
Steriflips
Short Plates for Western blot
Temgesic®
U-40 Insulin 30Gx1/2
U-40 Insulin Omnifix Solo
Water bath
6 Well Plates
6-0 polyviolene suture
96 Well Plates
96 Well Plates for MicroBeta²

Company
Konica
Asid Bonz GmbH
Eppendorf
Ethicon
BD Falcon
Bio Rad, #1703933
Whatman, # 10463040
Abbott
BD Microlane
BD Microlane
Th Geyer, # 9.068291
Thermo Scientific, #004710781
Thermo Scientific, # J1800AMNZ
Fujifilm, # 4014403
Ethicon
Whatman, # 4018650
Beckmann, # 342413
Lumac LSC, # 3097
Sarstedt
Thermo Scientific, # 66383 0.5ml
Bio Rad, #1653311
Millipore, # SCGP00525
Bio Rad, #1653308
Essex Pharma GmbH
Braun, # 40012525
Braun, # 9161309v
Julabo
Starlab, # CC7682-7506
Harvard Apparatus
Nunc, # 167008
Perkin Elmer, Inc. #1450-401
3.1.15 Buffers and solutions

All buffers were prepared in deionized H₂O, if not indicated otherwise

<table>
<thead>
<tr>
<th>Description</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasmid dialysis</td>
<td></td>
</tr>
<tr>
<td>TE Buffer</td>
<td>Tris, 1 M, pH 7.4</td>
</tr>
<tr>
<td></td>
<td>5 ml</td>
</tr>
<tr>
<td></td>
<td>EDTA, 0.5 M, pH 8</td>
</tr>
<tr>
<td></td>
<td>0.2 ml</td>
</tr>
<tr>
<td></td>
<td>Ampuwa®</td>
</tr>
<tr>
<td></td>
<td>1000 ml</td>
</tr>
<tr>
<td>E.coli transformation</td>
<td></td>
</tr>
<tr>
<td>5x KCM buffer</td>
<td>CaCl₂</td>
</tr>
<tr>
<td></td>
<td>150 mM</td>
</tr>
<tr>
<td></td>
<td>MgCl₂</td>
</tr>
<tr>
<td></td>
<td>250 mM</td>
</tr>
<tr>
<td></td>
<td>KCl</td>
</tr>
<tr>
<td></td>
<td>500 mM</td>
</tr>
<tr>
<td>LB medium</td>
<td>LB medium powder</td>
</tr>
<tr>
<td></td>
<td>25 g/l</td>
</tr>
<tr>
<td></td>
<td>dH₂O ad 1000 ml</td>
</tr>
<tr>
<td></td>
<td>Autoclave, cool down to 50°C</td>
</tr>
<tr>
<td></td>
<td>add Ampicillin</td>
</tr>
<tr>
<td></td>
<td>100 µg/ml</td>
</tr>
<tr>
<td>LB plates</td>
<td>LB agar powder</td>
</tr>
<tr>
<td></td>
<td>40 g/l</td>
</tr>
<tr>
<td></td>
<td>dH₂O ad 1000 ml</td>
</tr>
<tr>
<td></td>
<td>Autoclave, cool down to 50°C</td>
</tr>
<tr>
<td></td>
<td>add Ampicillin</td>
</tr>
<tr>
<td></td>
<td>100 µg/ml</td>
</tr>
<tr>
<td>HEK293A Cell Transfection</td>
<td></td>
</tr>
<tr>
<td>2x BBS</td>
<td>Na₂HPO₄</td>
</tr>
<tr>
<td></td>
<td>1.5 mM</td>
</tr>
<tr>
<td></td>
<td>BES</td>
</tr>
<tr>
<td></td>
<td>50 mM</td>
</tr>
<tr>
<td></td>
<td>NaCl</td>
</tr>
<tr>
<td></td>
<td>280 mM</td>
</tr>
<tr>
<td></td>
<td>pH</td>
</tr>
<tr>
<td></td>
<td>6.95</td>
</tr>
<tr>
<td></td>
<td>CaCl₂</td>
</tr>
<tr>
<td></td>
<td>2.5 M</td>
</tr>
</tbody>
</table>
Description

Cardiomyocyte Isolation

<table>
<thead>
<tr>
<th>Stock Buffer 10x</th>
<th>NaCl</th>
<th>1.13 M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KCl</td>
<td>47 mM</td>
</tr>
<tr>
<td></td>
<td>KH$_2$PO$_4$</td>
<td>6 mM</td>
</tr>
<tr>
<td></td>
<td>Na$_2$HPO$_4$2H$_2$O</td>
<td>6 mM</td>
</tr>
<tr>
<td></td>
<td>MgSO$_4$7H$_2$O</td>
<td>12 mM</td>
</tr>
<tr>
<td></td>
<td>Phenol red</td>
<td>0.32 mM</td>
</tr>
<tr>
<td></td>
<td>NaHCO$_3$</td>
<td>120 mM</td>
</tr>
<tr>
<td></td>
<td>KHCO$_3$</td>
<td>100 mM</td>
</tr>
<tr>
<td></td>
<td>HEPES</td>
<td>100 mM</td>
</tr>
<tr>
<td></td>
<td>Taurine</td>
<td>300 mM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Perfusion Buffer 1x</th>
<th>Stock Buffer 10x</th>
<th>10 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>steriele filtrate</td>
<td>BDM solution</td>
<td>2 ml</td>
</tr>
<tr>
<td></td>
<td>Glucose</td>
<td>100 mg</td>
</tr>
<tr>
<td></td>
<td>dH$_2$O</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BDM Solution</th>
<th>BDM</th>
<th>500 mM</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSA Solution</td>
<td>BSA</td>
<td>10 % (w/v)</td>
</tr>
<tr>
<td>CaCl$_2$ Solution 100mM</td>
<td>CaCl$_2$</td>
<td>100 mM</td>
</tr>
<tr>
<td>CaCl$_2$ Solution 10 mM</td>
<td>CaCl$_2$</td>
<td>10 mM</td>
</tr>
<tr>
<td>Liberase DH Solution</td>
<td>Liberase DH</td>
<td>50 mg</td>
</tr>
<tr>
<td></td>
<td>dH$_2$O (injection grade)</td>
<td>12 ml</td>
</tr>
</tbody>
</table>

Digestion Buffer	Perfusion Buffer 1x	26 ml
----------------------------	CaCl$_2$ solution, 100 mM	3.75 µl
	Trypsin 2.5 %	200 µl
	Liberase DH Solution	300 µl

Stopping Buffer 1	Perfusion Buffer 1x	2.25 ml
----------------------------	BSA Solution	250 µl
	CaCl$_2$ Solution 100 mM	1.25 µl

<p>| Stopping Buffer 2 | Perfusion Buffer 1x | 9.5 ml |
|----------------------------| BSA Solution | 500 µl |
| | CaCl$_2$ Solution 100 mM | 3.75 µl|</p>
<table>
<thead>
<tr>
<th>Description</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyrodes</td>
<td></td>
</tr>
<tr>
<td>FRET tyrode</td>
<td>NaCl 144 mM</td>
</tr>
<tr>
<td></td>
<td>KCl 5.4 mM</td>
</tr>
<tr>
<td></td>
<td>MgCl$_2$ 1 mM</td>
</tr>
<tr>
<td></td>
<td>CaCl$_2$ 1 mM</td>
</tr>
<tr>
<td></td>
<td>HEPES 10 mM</td>
</tr>
<tr>
<td></td>
<td>pH 7.3</td>
</tr>
<tr>
<td>ION Optix tyrode</td>
<td>NaCl 149 mM</td>
</tr>
<tr>
<td></td>
<td>KCl 1 mM</td>
</tr>
<tr>
<td></td>
<td>MgCl$_2$ 1 mM</td>
</tr>
<tr>
<td></td>
<td>HEPES 5 mM</td>
</tr>
<tr>
<td></td>
<td>Glucose 10 mM</td>
</tr>
<tr>
<td></td>
<td>CaCl$_2$ 1 mM</td>
</tr>
<tr>
<td></td>
<td>pH 7.54</td>
</tr>
<tr>
<td>Langendorff tyrode</td>
<td>NaCl 118 mM</td>
</tr>
<tr>
<td>(Krebs-Henseleit buffer)</td>
<td>KCl 4.7 mM</td>
</tr>
<tr>
<td></td>
<td>KH$_2$PO$_4$ 1.2 mM</td>
</tr>
<tr>
<td></td>
<td>MgSO$_4$ 1.25 mM</td>
</tr>
<tr>
<td></td>
<td>NaHCO$_3$ 24 mM</td>
</tr>
<tr>
<td></td>
<td>CaCl$_2$ 1.25 mM</td>
</tr>
<tr>
<td></td>
<td>glucose 11 mM</td>
</tr>
<tr>
<td>Immunoblot Solutions</td>
<td></td>
</tr>
<tr>
<td>Homogenization Buffer</td>
<td>HEPES 10 mM</td>
</tr>
<tr>
<td></td>
<td>Succrose 300 mM</td>
</tr>
<tr>
<td></td>
<td>NaCl 150 mM</td>
</tr>
<tr>
<td></td>
<td>EGTA 1 mM</td>
</tr>
<tr>
<td></td>
<td>CaCl$_2$ 2 mM</td>
</tr>
<tr>
<td></td>
<td>Triton X 100 10 %</td>
</tr>
<tr>
<td></td>
<td>pH 7.4</td>
</tr>
<tr>
<td></td>
<td>10 ml + PhosStop and Protease Inhibitor Cocktail, 1 tablet each</td>
</tr>
<tr>
<td>SDS Stop 3x</td>
<td>Tris 200 mM</td>
</tr>
<tr>
<td></td>
<td>SDS 6 % (v/v)</td>
</tr>
<tr>
<td></td>
<td>Glycerol 15 % (v/v)</td>
</tr>
<tr>
<td></td>
<td>Bromphenol Blue</td>
</tr>
<tr>
<td></td>
<td>β-Mercaptoethanol 10 % (v/v)</td>
</tr>
<tr>
<td></td>
<td>pH 6.7</td>
</tr>
<tr>
<td>Description</td>
<td>Composition</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>4x Tris/SDS pH 6.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tris</td>
</tr>
<tr>
<td></td>
<td>SDS</td>
</tr>
<tr>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>4x Tris/SDS pH 8.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tris</td>
</tr>
<tr>
<td></td>
<td>SDS</td>
</tr>
<tr>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>APS solution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APS</td>
</tr>
<tr>
<td>10x SDS Running Buffer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tris</td>
</tr>
<tr>
<td></td>
<td>Glycine</td>
</tr>
<tr>
<td></td>
<td>SDS</td>
</tr>
<tr>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Stock Transfer Buffer 10x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tris</td>
</tr>
<tr>
<td></td>
<td>Glycine</td>
</tr>
<tr>
<td>Transfer Buffer 1x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stock Transfer Buffer 10x</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
</tr>
<tr>
<td>Ponceau S Solution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ponceau S</td>
</tr>
<tr>
<td></td>
<td>in 10% acetic acid</td>
</tr>
<tr>
<td>Stock TBS Buffer 10x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tris</td>
</tr>
<tr>
<td></td>
<td>NaCl</td>
</tr>
<tr>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>TBS-Tween</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stock TBS Buffer 10x</td>
</tr>
<tr>
<td></td>
<td>Tween 20</td>
</tr>
<tr>
<td>Stacking Gel (3.8 ml; 2Gels)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acrylamide</td>
</tr>
<tr>
<td></td>
<td>4x Tris/SDS pH 6.8</td>
</tr>
<tr>
<td></td>
<td>dH₂O</td>
</tr>
<tr>
<td></td>
<td>10% APS</td>
</tr>
<tr>
<td></td>
<td>TEMED</td>
</tr>
<tr>
<td>Separating Gel 10 % (12 ml; 2 Gels)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acrylamide</td>
</tr>
<tr>
<td></td>
<td>4x Tris/SDS pH 8.8</td>
</tr>
<tr>
<td></td>
<td>dH₂O</td>
</tr>
<tr>
<td></td>
<td>10 % APS</td>
</tr>
<tr>
<td></td>
<td>TEMED</td>
</tr>
</tbody>
</table>
Materials & Methods

Description

Separating Gel 15 %
(12 ml; 2 Gels)

Composition

- Acrylamide: 6 ml
- 4x Tris/SDS pH 8.8: 3 ml
- dH₂O: 3 ml
- 10 % APS: 48 µl
- TEMED: 18 µL

PDE Activity Assay

Wash Buffer

- Tris: 40 mM
- pH: 8.0 (HCl)

Homogenation Buffer

- Wash Buffer: 10 ml
- MgCl₂: 10 mM
- PhosStop: 1 tablet
- Protease Inhibitor Cocktail: 1 tablet

cAMP Stock Solution

- cAMP: 1 mM

BSA Stock Solution

- BSA: 10 % (w/v)

[^3]H]cAMP Stock Solution

-[^3]H]cAMP: 1mCi/ml

Ready-To-Use Reaction Buffer

- MgCl₂: 10 mM
- β-Mercaptoethanol: 10 mM
- cAMP: 2 µM
- BSA: 1.5 % (w/v)
-[^3]H]cAMP: 2.5 µl/ml in Wash Buffer

Stop Solution

- EDTA: 15 mM
- pH: 8.0 (NaOH) in Wash Buffer

Venom

- Snake Venom: 1mg/ml

Immunostaining

Blocking buffer

- FCS: 10 % (v/v)
- Triton-X® 100: 0.1 % (v/v) in PBS
3.2 Methods

3.2.1 Cloning and transgenic mouse generation

A. pmEpac1 cloning:
For generation of pmEpac1, the Epac1-CNBD (cyclic nucleotide-binding domain) sequence was excised out of the Epac1-camps plasmid36 (pcDNA3.0) using EcoRI and XbaI. Same restriction sites were used to remove the Epac2-CNBD sequence from the pmEpac2 construct145. The Epac1-CNBD sequence was then ligated into the cut open pmEpac2-construct to achieve pmEpac1.

B. αMHC subcloning
1. pmYFP was excised out of the new pmEpac1 construct with KpnI and EcoRI and subsequently PCR amplified using pmYPFKpnIfor and pmYPFKpnIrev primers to achieve KpnI and EcoRI restriction sites at the same time increasing expression efficiency due to a loss of 11 b.p. upstream of pmYFP start codon. PCR products were digested with KpnI and EcoRI to achieve “sticky ends”
2. Epac1-CFP was cut out of the pmEpac1 construct by EcoRI and XhoI.
3. αMHC-HCN2 vector containing simian virus polyadenylation signal (SV40)37 was cut with KpnI and XhoI to remove the HCN2 sensor construct.

pmYFP (KpnI/EcoRI), Epac1-CFP (EcoRI/XhoI) and αMHC vector (KpnI/XhoI) were then triple-ligated to achieve the αMHC-pmEpac1 construct.

C. pcDNA3.0 transcloning
For expression control in HEK293 cells, pmEpac1 was excised out of the αMHC vector using KpnI and XhoI and pasted into pcDNA3.0 vector using identical restriction sites.

D. Epac1-camps-PDE1A cloning
To generate Epac1-camps-PDE1A, the mouse PDE1A sequence was fused in frame to the C-terminus of Epac1-camps via BamHI restriction site and a helical linker MPLVDFFC.

Epac1-PDE4A1166 construct served as vector:
1. PDE4A1 was excised with BamHI und XhoI.
2. Murine PDE1A Sequence was PCR amplified using PDE1ABamHIfor and PDE1AXholstoprev primers to achieve BamHI and XhoI restriction sites.
3. Thus amplified PDE1A sequence was then ligated into cut open Epac1-camps-PDE4A1 vector.

Cloning PCR reaction mix:
10x Pfu reaction buffer 10 µl
10 mM desoxyribonucleotide triphosphates mix (dNTPs) 2 µl
forward primer 2.5 µl 10 pmol/µl (final conc. 25 µM)
reverse primer 2.5 µl 10 pmol/µl (final conc. 25 µM)
template cDNA 100–300 ng
Pfu polymerase 1 µl
ddH\textsubscript{2}O ad 100 µL
Materials & Methods

Cloning-PCR reaction protocol:

- 94°C 5 min
- 94°C 30 sec
- 55°C 30 sec (30x)
- 72°C 1 min
- 72°C 7 min

Digestion protocol:

Standard digestion was carried out overnight at 37°C:

- 7 µg plasmid DNA (or 49.5 µl of the Qiaquick purified PCR product)
- 2.5 µl Restriction Enzyme 1
- 2.5 µl Restriction Enzyme 2
- 5 µl 10 x Buffer 4
- 0.5 µl 100x BSA
- ddH$_2$O ad 50 µl

Ligation protocol

Ligation of the digested fragments and vector was performed in a reaction using T4 ligase over night (o.n.) at 14°C:

- αMHC vector (KpnI/Xhol-Fragment) 1 µl (25 ng)
- pmYFP (EcoRI/KpnI-Fragment) 4.5 µl (125 ng)
- Epac-CFP (EcoRI/Xhol-Fragment) 7 µl (125 ng)
- T4 Ligase buffer 10x 1.5 µl
- T4 Ligase 1 µl

For plasmid amplification, E. coli TOP10 (competence 1x109 cfu/µg DNA) were transformed with ligation mix, using the following reaction mix:

- E.coli TOP10 100 µl
- Ligation Mix 15 µl
- H$_2$O 65 µl
- 5x KCM Buffer 20 µl

For microinjections, the pmEpac1 construct was linearized using SpeI for overnight digestion at 37°C:

- 50 µg DNA
- 10 µl SpeI
- 20 µl Buffer 4
- 2 µl 100x BSA
- H$_2$O ad 200 µl
The linearized construct was purified on a 1% Agarose gel, extracted using the Qiaquick Gel extraction Kit and eluted with 100 µl of sterile TE buffer.

After filtration of the linearized and purified αMHC-pmEpac1 construct through a 2 µm filter under sterile conditions, the DNA was transferred into a sterile dialysis chamber (Slide-A-Lyzer). Dialysis was performed in 500 ml TE buffer which was exchanged every 4 hours (overall 2 l TE buffer). The dialysis chamber was unloaded under sterile conditions and DNA concentration was measured using a Nanodrop device. A concentration of 1-5 ng/µl was considered sufficient for pronuclear microinjection.

The pronuclear microinjection of FVB/N mice with the αMHC-pmEpac1 construct was performed as previously described. Microinjections were carried out by Dr. Ursula Fünschilling and co-workers (Transgenic Core Facility of the Max-Planck Institute for Experimental Medicine, Göttingen, Germany).

The resultant founder mice and their heterozygous offspring were genotyped by a standard PCR resulting in a ~365 bp fragment on a gel. In brief, tail biopsies were digested overnight in 200 µl DirectPCR-Tail supplemented with 500 µg/ml Proteinase K at 55°C and 1000 rpm in a ThermoMixer. The reaction was terminated by boiling at 85°C for 45 min. After cooling down, tail lysates were directly used as a template for PCR amplification performed.

Genotyping-PCR reaction mix:

<table>
<thead>
<tr>
<th>Volume</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 µl</td>
<td>Tail lysate</td>
</tr>
<tr>
<td>14.7 µl</td>
<td>H₂O</td>
</tr>
<tr>
<td>4.0 µl</td>
<td>5x GoTaq buffer</td>
</tr>
<tr>
<td>0.5 µl</td>
<td>dNTPs 10 mM</td>
</tr>
<tr>
<td>0.05 µl</td>
<td>MHCseqf ord primer, 100 pmol/µl</td>
</tr>
<tr>
<td>0.05 µl</td>
<td>YFPnewrev primer, 100 pmol/µl</td>
</tr>
<tr>
<td>0.2 µl</td>
<td>GoTaq Polymerase</td>
</tr>
</tbody>
</table>

Genotyping-PCR reaction protocol:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>94°C</td>
<td>4 min</td>
</tr>
<tr>
<td>94°C</td>
<td>30 sec</td>
</tr>
<tr>
<td>62°C</td>
<td>30 sec</td>
</tr>
<tr>
<td>72°C</td>
<td>50 sec</td>
</tr>
<tr>
<td>72°C</td>
<td>7 min</td>
</tr>
</tbody>
</table>

3.2.2 Cell culture and transfection

Day 0: HEK293A cells were cultured at 37°C and 5% CO₂ in DMEM medium supplemented with 4.5 g/l glucose, 10% FCS, 2 mM L-glutamine, 100 U/ml penicillin and 100 µg/ml streptomycin. For transfection with plasmid DNA, cells were plated onto 24 mm glass coverslips in 6-well plates.

Day 1: At about 60-70% confluence, cells were transfected using the...
Materials & Methods

Calcium-Phosphate method:

- H$_2$O
- 2.5 M CaCl$_2$
- Plasmid DNA (1 µg/µl)
- 2x BBS

After 10 min of incubation at RT, 166 µl of the reaction mix were added dropwise to each well.

To yield higher transfection efficiencies, e.g. for protein overexpression analyzes, cells were grown to 60-70% confluence in 15-cm cell culture dishes and transfected using the

Lipofection method:

1. Lipofectamine 2000® reagent: Opti-Mem® Medium 455 µl
 - Lipofectamine 2000® 45 µl
2. DNA reagent: Opti-Mem® Medium 490 µl
 - DNA (1µl/µg) 10 µl

Lipofectamine 2000® and DNA reagents were mixed 1:1 and incubated at room temperature. After 20 minutes the reaction mix was dropwise pipetted onto the cells.

Day 2: 24-30 hours post transfection cells were e.g. subjected to FRET measurements.

3.2.3 Adult cardiomyocyte isolation

Mice were sacrificed by cervical dislocation. Hearts were rapidly explanted. In a petri dish with ice-cold PBS the aorta was mounted onto a blunted cannula (24-26-gauge) and subjected to retrograde perfusion (Langendorff perfusion). A constant flow rate of 3.5 ml was assessed using a peristaltic pump. The heart was perfused with Perfusion Buffer 1x for 3 minutes, followed by 8 minutes perfusion with Digestion Buffer.

Thereafter, the heart was removed from the perfusion apparatus and the ventricles were briefly cut into pieces. Digestion was slowed down by adding Stopping Buffer 1 to the crude suspension, followed by homogenation with a 1ml-syringe without needle to detach single cardiomyocytes from the extra cellular matrix. The cell suspension was briefly filtered using gauze with a mesh diameter of 200 µm and left to settle for 10-15 minutes.

Sedimented cardiomyocytes were then transferred into Stopping Buffer 2 and further subjected to re-calcification. Cellular calcium was increased in five steps to achieve a final concentration of 1mM, letting cells accommodate for 4 minutes, after each step.

Re-calcification protocol:

1. 50 µl CaCl$_2$ Solution 10 mM => 62 µM
2. 50 µl CaCl$_2$ Solution 10 mM => 112 µM
3. 100 µl CaCl$_2$ Solution 10 mM => 212 µM
4. 30 µl CaCl$_2$ Solution 100 mM => 500 µM
5. 50 µl CaCl$_2$ Solution 100 mM => 1000 µM
After recalcification, cardiomyocytes were either seeded onto laminated coverslides for functional studies, or subjected to e.g. in vitro stimulation prior to immunoblot analysis. For immunoblot analysis cells were isolated as described, however re-calcification was carried out in BSA-free Stopping Buffer 2 to minimize excessive signal background due to unspecific antibody cross reactions with BSA. After re-calcification cells were quickly spun down (2,000 rpm for 2 minutes) and flash-frozen. For further sample preparation see 4.12 Immunoblot assay.

3.2.4 FRET-based cAMP measurements in living cells

Freshly isolated cardiomyocytes were plated onto laminin-coated round glass cover slides. For FRET measurements, cover slides with adherent cells were mounted in an Attofluor microscopy chamber and maintained in FRET buffer. FRET recordings were performed using a homemade FRET microscopy system. The donor fluorophore (CFP) was excited with a 440 nm blue-light beam at five-second intervals using a CoolLED single-wavelength light emitting diode. Simultaneously, the FRET emission was separated into CFP and YFP signals using a DualView beam splitter. Split emission signals were detected via a charge-coupled device (CCD) camera. Image acquisition was synchronized to the five-second light pulse intervals. After a stable baseline was reached, cells were challenged with different compounds e.g. ISO or PDE inhibitors diluted in the FRET buffer to stimulate cellular cAMP responses. FRET recordings on HEK293A cells were performed in a similar way one-day post transfection. Offline data analysis was carried out using Microsoft Excel and Origin 8.5G software. Raw values of YFP and CFP emissions were fed into following equation:

\[\text{FRET ratio} = \frac{\text{YFP} - 0.63 \times \text{CFP}}{\text{CFP}} \]

to correct for CFP bleedthrough into the YFP channel. 0.63 is the bleedthrough factor, which was assessed for the particular FRET microscopy setup used, prior to FRET measurements. Changes in the FRET ratio were plotted against time in seconds to display the measured FRET traces, representing the time course of cellular/subcellular cAMP dynamics.

3.2.5 Single-cell contractility measurements

Freshly isolated cardiomyocytes were plated onto laminin-coated glass coverslides, mounted onto custom made measuring chambers. Contractile responses were evaluated by the optical sarcomere length measurement method (IonOptix) at 1 Hz pacing frequency using field stimulation of 20-40 V as previously described. Similar to FRET recordings, cells were sequentially challenged with various compounds by pipetting, i.e. ISO and selective/unselective PDE inhibitors to stimulate contractility. Contractility recordings were offline analyzed using ION Wizard™ and Origin 8.5G software.

3.2.6 Heart rate measurements

Mice were sacrificed by cervical dislocation. Hearts were rapidly explanted and subjected to Langendorff perfusion (see 3.2.3 Adult cardiomyocyte isolation) with the Krebs-Henseleit tyrode, oxygenated with 95% O₂ and 5% CO₂ at 37.5 °C with a constant flow rate of 3.5 ml/min. Hearts were placed in an organ bath with 37.5°C temperate Krebs-Henseleit tyrode and heart beats were detected using a custom made electrode. Heart rates...
were amplified and online processed with Chart5™ Software. The perfusion setup consisted of a closed flow circuit (Figure 7). The tubing was insulated with double-walled glass pipes. The inner spaces of all pipes and containers (i.e. buffer container and organ bath) were filled with heating water and connected to a thermostated circulating water bath. The heating bath was set to 42°C to maintain a temperature of 37.5°C of the perfusate and at the organ bath. Stimulatory compounds were introduced sequentially. I.e. hearts were perfused for 3-5 minutes to reach stable heart rates and then stimulated with 10 nM ISO for 3-5 min. After reaching the plateau phase, 10 nM of atropine were additionally washed in for another 5 min. Electrocardiograms (ECGs) were offline analyzed using Chart5™ and Origin 8.5G software.

3.2.7 Transverse aortic constriction (TAC)
9-13 week aged female mice were randomized into sham or TAC group. Mice were anesthetized using 1.5 - 2% isoflurane in 100 % oxygen. A suprasternal incision was made, and the aortic arch was visualized using a binocular macroscope. TAC occurred by spacer defined (26-gauge) constriction using a 6-0 polyviolene suture between the first and second trunk of the aortic arch. For sham, the aorta was exposed but not constricted. Doppler velocity was measured by a 20 MHz probe to quantify the pressure gradient across the TAC region or after sham procedure by transthoracic echocardiography. Mice were sacrificed 8 weeks after surgery for Langendorff heart rate recordings or ventricular cardiomyocyte isolation and subsequent single-cell measurements or biochemical assays. TAC surgeries and pressure gradient measurements were carried out by Dipl. Biol. Julia Steinbrecher (Department of Cardiology and Pulmonology, University Medical Centre Göttingen).

3.2.8 Histology, morphometric analysis and echocardiography

Histology
For histology and morphometric analysis, hearts were perfused with ice-cold PBS to remove blood and fixed in 4% Roti Histofix at 4°C overnight. The fixed hearts were paraffin embedded, and 5 μm heart cross sections were generated at a Microtome (Leica RM 2165). For the following applications, paraffin cross-sections were de-waxed in xylol (20 min twice) and rehydrated with 6 subsequent decreasing ethanol series (100 % - 25 %, 5 min each step) and with deionized dH₂O.

Hematoxylin-eosin staining
Hematoxylin-eosin (HE) staining of heart cross-sections was performed in the pathology department of the University Medical Center Göttingen using a standard HE staining protocol. In brief, cell nuclei were stained
Materials & Methods

thrice with hematoxylin (2 min each), and after 2 min washing the cytosol was stained twice using eosin (2 min each). After rehydration and mounting, heart cross-sections were analyzed using a Stemi 2000-C microscope binocular with associated AxioCam ICc1 and Axio Vision Software.

Wheat Germ Agglutinin staining

For cardiomyocyte dimension analysis, transverse heart sections were incubated with Wheat Germ Agglutinin (WGA, 75 µg/mL) for 30 min in the dark, washed thrice for 5 min with PBS, mounted and analyzed by microscopy. Images were analyzed with ImageJ software. The cell diameter was measured in 100 cells from 5 sections per heart.

Echocardiography

Prior to echocardiography, mouse weights were assessed. Echocardiography and analysis were performed in a double-blinded fashion by Kirsten Koschel, Sabrina Wollborn, Beate Knocke, Roland Blume and Marcel Zoremba (Department of Cardiology and Pulmonology, University Medical Centre Göttingen) as previously described151,152. Briefly, cardiac parameters, i.e. septum thickness, left ventricular enddiastolic diameter (LVEDD), left ventricular endsystolic diameter (LVESD), enddiastolic volume (EDV), endsystolic volume (ESV), heart frequency and heart weight were used to calculate functional values such as ejection fraction (EF) and fractional shortening (FS).

EF: blood volume the heart ejects per contraction (Calculations according to Simpson et al., 1993152).

\[EF = \frac{x}{100} \]

FS: pump function and shortening of the left ventricle during contraction.

\[FS = \frac{\text{}}{} \]

3.2.9 Confocal microscopy

Confocal microscopy was performed using Zeiss LSM 710 NLO microscope equipped with a Plan-Apochromat x63/1.40 oil-immersion objective.

Live staining: For live cell imaging, freshly isolated adult cardiomyocytes plated on class coverslides were incubated with the lipophilic fluorescent probe di-8-ANEPPS (50 µM, Molecular Probes®) for 10-15 minutes at room temperature in FRET buffer and subsequently subjected to confocal microscopy. Prior to microscopy, cells were washed once with FRET buffer at room temperature. Images were acquired for CFP/YFP (405 nm diode laser excitation), di-8-ANEPPS (488 nm argon ion laser excitation) and analyzed using ZEN 2010 software.

Immunostaining: For co-localization experiments, cells were fixed for 20 min with ice-cold ethanol at -20°C, washed and co-stained with mouse monoclonal anti-α-actinin antibody (Sigma) and either goat polyclonal anti-PDE2A (sc-17228, Santa Cruz) or goat polyclonal anti-PDE3A (sc-11834, Santa Cruz) antibodies, followed by the secondary anti-mouse Alexa 633 Fluor® and anti-goat Alexa 488 Fluor® antibodies (A-21063 and A-11055, respectively, Life Technologies). Images were taken and automatically analyzed using the ZEN 2010 software to calculate the Pearson’s coefficient which shows the degree of co-localization. See below for antibody dilutions:

<table>
<thead>
<tr>
<th>Antibody (source)</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-α-actinin (mouse)</td>
<td>1: 300</td>
</tr>
<tr>
<td>Anti-PDE2A (goat)</td>
<td>1: 100</td>
</tr>
</tbody>
</table>

37
3.2.10 Radioligand binding
Radioligand binding studies were performed by Christian Dees (Institute of Pharmacology and Toxicology, University Würzburg), as previously described\textsuperscript{\ref{143}}. Briefly, isolated cardiomyocyte cell membranes were incubated in the assay buffer containing 5 mM Tris, pH 7.4 for 1 h at 30°C with 60-100 pM 125I-cyanopindolol and increasing concentrations of ICI118551. Thereafter, samples were filtered through GF/F glass fiber filters (Millipore, Schwalbach, Germany), washed twice, and the filter-bound radioactivity was quantified using a scintillation counter.

3.2.11 Phosphodiesterase activity assay
Freshly isolated cardiomyocytes were prepared for \textit{in vitro} measurement of cAMP-PDE hydrolyzing activity following the two-step method by Thompson and Appleman\textsuperscript{\ref{144,145}}. Isolated cardiomyocytes were left to sediment in Stop buffer I (see \textsection 3.2.3 Adult cardiomyocyte isolation), washed once with PDE-Assay Wash Buffer and sonicated in 500 µL of ice-cold PDE-Assay Homogenization Buffer. Protein concentrations were quantified using BCA Protein Assay. 30 µg of total protein were set to a total volume of 200 µl PDE-Assay Homogenation Buffer containing selective PDE inhibitors. Contributions of individual PDE families were calculated from the effects of 100 nM BAY (PDE2), 10 µM cilostamide (PDE3), 10 µM rolipram (PDE4), and 100 µM IBMX (unselective inhibitor).

\textbf{Step I: cAMP -> 5'-AMP:}
For cAMP breakdown, each sample was incubated with 200 µL PDE-Assay Ready-To-Use Reaction Buffer containing 1 µM cAMP and 2nM 3H-cAMP (1:500 ratio) as a substrate, for 10 minutes at 33°C. Reaction was terminated by adding 200 µL Stop solution and boiling for 1 minute at 95°C.

\textbf{Step II: 5'-AMP -> P\textsubscript{i} + adenosine:}
Heat inactivated samples were incubated with 50 µg of 5'-nucleotidase-containing snake venom (\textit{Crotalus atrox}) for 20 minutes at 33°C to hydrolyze 5'-AMP. The samples were loaded onto self-made columns containing 50 mg AG1-X8 resin for anion exchange chromatography to bind non-hydrolyzed 3H-cAMP, thereby separating it from cleaved 3H-adenosine. Quantification of cleaved 3H-adenosine was performed by scintillation counting (MicroBeta7) in a 96 well format. Data were collected with the MicroBeta7 Windows Workstation.

3.2.12 Immunoblot assay
For samples preparation, freshly isolated cardiomyocytes were shock frozen and homogenized using a 1ml-syringe with needle. Proteins were quantified using BCA Protein Assay. Samples were generally boiled at 70°C for 10 minutes or at 95°C for 5 minutes, respectively, if not indicated differently.

10-50 µg of total protein per lane were subjected to 10 or 15 % SDS-PAGE modified from Laemmli (1979)\textsuperscript{\ref{146}} followed by immunoblot analysis according to Towbin et al. (1979)\textsuperscript{\ref{147}}. Primary antibodies used, were prepared in TBS-Tween with 1, 3 or 5 % of either low fat milk or BSA, as depicted below. If not indicated differently, incubation proceeded at 4°C o.n.
Materials & Methods

<table>
<thead>
<tr>
<th>Antibody (source)</th>
<th>Blocking reagent / dilution</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-beta-Arrestin 2 (goat)</td>
<td>5 % milk / 1:1000</td>
<td>-</td>
</tr>
<tr>
<td>Anti-Calsequestrin (rabbit)</td>
<td>3 % BSA / 1: 5000</td>
<td>-</td>
</tr>
<tr>
<td>Anti-GAPDH (mouse)</td>
<td>5 % milk / 1:80000</td>
<td>4°C, 1 hour</td>
</tr>
<tr>
<td>Anti-PDE2A (rabbit)</td>
<td>3 % BSA / 1:750</td>
<td>-</td>
</tr>
<tr>
<td>Anti-PDE4D8 (rabbit)</td>
<td>5 % BSA / 1:2000</td>
<td>Blocked in 5 % milk</td>
</tr>
<tr>
<td>Anti-PDE8 (rabbit)</td>
<td>3 % BSA / 1:1000</td>
<td>-</td>
</tr>
<tr>
<td>Anti-pPLN (Phospho-Ser16) (rabbit)</td>
<td>5 % milk / 1:5000</td>
<td>-</td>
</tr>
<tr>
<td>Anti-pTnI (Phospho-Ser23/24) (rabbit)</td>
<td>5 % BSA / 1:1000</td>
<td>-</td>
</tr>
</tbody>
</table>

Secondary antibodies (Immun-Star™ Goat Anti-Mouse or Anti-Rabbit (GAM)-HRP Conjugate) were diluted 1:5000 in the same blocking reagent as used for primary antibody incubation.

Blots were scanned and analyzed densitometrically by ImageJ software for uncalibrated optical density.

3.2.13 Statistical analysis

Normal distribution was tested by the Kolmogorov-Smirnov test. Differences between experimental groups were analyzed using Origin 8.5G software and one-way ANOVA (for normally distributed values) or Mann-Whitney (for nonparametric datasets) tests at the significance level of 0.05, followed by Bonferroni’s post-hoc test. Data are presented as means ± SE from the indicated number of independent experiments (animals and cells) per condition.
4 Results

4.1 Local β-Adrenergic Signaling at the Sarcolemma of Adult Mouse Cardiomyocytes

4.1.1 N-terminal fusion of Epac1-camps to an acylation substrate sequence promotes plasma membrane targeted expression

In 2002, Zacharias et al. demonstrated that expression of GFP-mutants in MDCK cells could be restricted to plasma membrane lipid rafts by fusing it to a 10 amino acid long SH4 domain of Lyn kinase containing a myristoylation/palmitoylation motif, MyrPalm (see Methods, subsection 3.2.1, Cloning and transgenic mouse generation). Importantly, MyrPalm-YFP variants well co-localized with caveolin-CFP producing FRET. Utilizing...
this strategy, Wachten et al. later generated a MyrPalm-fused version of the Epac2-camps, thereby engineering the first membrane-targeted version of the cAMP FRET biosensor, pmEpac2 (pm = PalmMyr ⊠ plasma membrane). pmEpac1 was generated accordingly, using the pmEpac2 vector as a template and replacing the Epac2- by the Epac1-CNBD sequence. Transient co-expression of pmEpac1 with RFP-tagged cav3 in HEK293 cells confirmed their good co-localization at the plasma membrane (Figure 8A, B).

4.1.2 Heart-specific expression of pmEpac1 leads to localization at the sarcolemma of adult mouse cardiomyocytes (with T-tubular enrichment)

To drive transgene expression in a tissue-specific manner (in the myocardium), pmEpac1 was cloned into a construct containing the α-myosin heavy chain (αMHC) promoter. For transgenic mouse generation, the linearized construct was purified, dialyzed and subjected to pronuclear injections into one-cell mouse embryos (Figure 8C).

Three injection rounds resulted in eight pmEpac1 positive heterozygous founder animals. However, only in the offspring from founder #113, over 95% of all isolated adult cardiomyocytes showed pmEpac1 expression, as determined by fluorescence microscopy. Therefore, the colony #113 was selected to generate a new pmEpac1 transgenic mouse line. Live stains of freshly isolated adult ventricular cardiomyocytes from line #113 with the unspecific lipophilic membrane dye di-8-ANEPPS and subsequent confocal imaging showed good co-localization of pmEpac1 with the sarcolemma, with local enrichment in T-tubular structures (Figure 8E, upper panel). Immunostaining of pmEpac1 cardiomyocytes with cav3-specific antibodies further indicated a preferable expression in caveolar structures (Figure 8E, lower panel). Importantly, stimulation of isolated cardiomyocytes with saturating concentrations of the beta-adrenergic agonist isoproterenol (ISO) together with the unspecific PDE inhibitor 3-isobutyl-1-methylxanthin (IBMX) led to a clear change in FRET with good signal-to-noise ratio (Figure 8F).
Results

4.1.3 Heart-specific expression of pmEpac1 does not affect normal cardiac function

To establish whether cardiac-specific pmEpac1-expression per se would affect normal heart function, pmEpac1 mice were compared to their wild type littermates in terms of heart and cardiomyocyte size, histology and in vivo cardiac contractility. For morphometric analysis, hearts explanted from mice aged three and six month, respectively were weighted and put into relation to either whole body weight or tibia length (Figure 9A). Further, cross-sections of transgenic and wild type hearts were subjected to hematoxylin and eosin staining to assess overall tissue morphology (Figure 9B). Last, diameter of isolated adult cardiomyocytes from pmEpac1-transgenic and wild type mice were determined after wheat-germ-agglutinin staining (Figure 9C). None of these parameters showed any difference between the transgenic mice and their wild type littermates, suggesting no alteration in heart morphology by transgene expression. To further investigate heart morphology and in vivo function, pmEpac1 transgenic mice and wild type littermates were subjected to echocardiography at the age of six months. Measured and calculated parameters included septum and diastolic posterior wall thickness (PWTd) as well as left-ventricular inner diameters in systole and diastole (LVIDs, LVIDd). In addition, functional parameters such as fractional shortening, fractional area shortening and ejection fraction (FS, FAS, EF) were also compared (Figure 9D,E). Changes in any of the above-mentioned parameters would indicate the presence of a pathological heart-phenotype. Importantly, none of these parameters were significantly changed in pmEpac1 versus wild type animals.

Figure 10. pmEpac1 is particularly sensitive to the local β2-AR-cAMP signals. Representative single-cell FRET recordings with the cytosolic (Epac1-camps) and the membrane (pmEpac1) sensors. (A) Selective stimulation of β2-AR with 100 nM of ISO plus 50 nM of the β2-AR antagonist ICI118554 (ICl) leads to comparable cAMP signals from both sensors. Maximal stimulation was evoked by 10 μM forskolin plus 100 μM IBMX. (B) Selective β1-AR stimulation with 100 nM ISO plus 100 nM of the β1-AR blocker CGP20712A (CGP) induces a ~2-fold stronger response in the membrane microdomain. (C) Quantification of the FRET responses to ISO alone (stimulation of both β1- and β2-ARs) and those shown in A and B, means ± SE, n = 10-12 cells isolated from 2 hearts per condition. * - significant difference at p<0.05, n.s. - not significant. The differences between ISO and β1-AR responses are not significant. (D) Comparison of sensitivities between the two sensors using the previously established protocol. 13 Cells were pretreated with 100 μM MDL-12330A for 10 min to inhibit the basal adenylyl cyclase activity and titrated with increasing concentrations of the cell-permeable cAMP analogue 8-Brc-2'-cAMP-AM. EC50 values were 3.0 ± 1.1 and 9.1 ± 1.1 μM for Epac1-camps and pmEpac1, respectively (means ± SE, n = 5-6 each). Similar to previously developed membrane-targeted version of the cAMP biosensor Epac2-camps, pmEpac1 shows 3-times lower affinity to cAMP than its parental cytosolic construct Epac1-camps. Epac1-camps myocytes were isolated from the previously developed transgenic mice.
Results

4.1.4 pmEpac1, compared to Epac1-camps, can particularly well resolve the β2-AR/cAMP signals

To analyze how sarcolemmal cAMP microdomains might differ from cytosolic cAMP pools in their real-time dynamics, FRET data obtained from pmEpac1 expressing cardiomyocytes were compared side-by-side with those of the previously described cytosolic otherwise identical version of the same biosensor, Epac1-camps. Concentration-response experiments with 8-Bromo-2'-O-methyladenosine-3',5'-cyclic monophosphate (8-Br-2'-O-Me-cAMP-AM), a membrane-permeable and non-PDE-hydrolyzable cAMP analog, revealed that targeted pmEpac1 showed slightly lower affinities to cAMP (Figure 10D). However, the membrane targeted sensor could more than two-fold better resolve local β2-AR/cAMP signals (Figure 10B, C), which have previously been shown to be stringently compartmentalized close to T-tubular membranes. In contrast, ISO and β1-selective responses were not
significantly different when measured either in cardiomyocytes from pmEpac1 (sarcolemma) or from Epac1-camps (cytosol) transgenic mice, indicating that β₁-adrenergic stimulation is indeed coupled to a cAMP pool with far-reaching signal properties as previously described\(^1\) (Figure 10A, C). For calculations of β-AR CAMP signal proportions, β₁- and β₂-specific cAMP signals were set into relation to the maximal signal, achieved by addition of 10µM forskolin and 100µM IBMX.

To evaluate how receptor-subtype specific cAMP signals are controlled by PDEs in the cytosol vs. sarcolemmal receptor-associated cAMP microdomains, individual PDE profiles were measured in Epac1-camps1- and pmEpac1 expressing cardiomyocytes using selective PDE inhibitors applied after ISO stimulation with and without the β₁-AR-selective inhibitor CGP20712A. PDE-dependent regulation of the functionally relevant β₁-AR cAMP pool essentially showed the same hierarchical pattern of PDE4>>PDE3>PDE2 (Figure 11B), measured either in the cytosol (Epac1-camps) or at the sarcolemma (pmEpac1), further suggesting that the β₁-AR cAMP signals measured with pmEpac1-expressing cardiomyocytes were of the far-reaching nature. β₂-AR CAMP regulation, however, was much more different when monitored by the two differentially localized FRET probes, i.e. Epac1-camps and pmEpac1. Whereas a regulatory hierarchy of PDE4=PDE3>PDE2 was established when PDE contributions on β₂-AR cAMP were measured in Epac1-camps-expressing cardiomyocytes (cytosolic probe), in
pmEpac1-cardiomyocytes, PDE3 could be identified as the predominant regulator of the membrane-associated \(\beta_2 \)-AR cAMP pool which can be expressed by the PDE regulation pattern PDE3>PDE4>PDE2 (Figure 11D).

4.1.5 FRET imaging reveals altered subtype-specific \(\beta \)-AR cAMP responses in diseased cardiomyocytes

In order to study local cAMP dynamics in early cardiac disease, TAC was performed in pmEpac1 mice to induce cardiac hypertrophy. 8 weeks post TAC, pmEpac1 mice showed substantially increased heart size and ventricular wall thickness with yet only a modest decline in cardiac output, indicative of a relatively mild, functionally still compensated phenotype of pathological hypertrophy, which was, however, accompanied by a two-fold increase of plasma ANP levels (Figure 12A-E). Importantly, in this relatively early pathological state, the localization of the FRET sensor in cardiomyocyte striation-associated T-tubular membranes and surface sarcolemma was virtually unchanged (Figure 13A, B). First, \(\beta_1 \) and \(\beta_2 \)-AR specific responses were compared in cells isolated from TAC vs. sham-operated mice using analogous FRET protocols as shown in Figure 16. PDE2 and PDE3 redistribute between \(\beta_1 \) and \(\beta_2 \)-AR-associated cAMP microdomains in cardiac hypertrophy (A and B) Representative traces showing clofamide (Cilo, 10 \(\mu \)M) and BAY50-7650 (BAY, 100 nM) effects in TAC and sham pmEpac1 cardiomyocytes after global ISO stimulation. (C) Quantifications of the PDE2 inhibitor signals (as % of the maximal response evoked by the unselective inhibitor IBMX) obtained after ISO stimulation in TAC and sham cardiomyocytes. (D) After selective \(\beta_1 \)-AR (ISO+COP) pre-stimulation, PDE3 inhibitor effects are dramatically reduced while PDE2 inhibitor responses are markedly increased (E) in hypertrophied cells. (F) Quantifications of the PDE inhibitor signals after \(\beta_2 \)-AR selective stimulation. Shown are means ± SE, \(n = 12-22 \) cells isolated from 3-4 hearts per condition. * - significant differences at \(p < 0.05 \).
Results

10A, B. Unexpectedly, much stronger ISO responses were detected in TAC compared to sham cardiomyocytes, which were apparently caused by stronger β1-AR-selective cAMP signals (Figure 14A, B). Of note, ISO and β1-AR-cAMP responses were indistinguishable, again suggesting that global ISO responses are predominantly mediated by β1-AR. Therefore, ISO was used in all subsequent experiments to stimulate this global β1-AR-associated pool of cAMP. In sharp contrast, β2-AR/cAMP responses were significantly reduced in diseased cells (Figure 14C, D). These changes of β-AR/cAMP signals were not due to altered β-AR densities (164 ± 16 vs. 128 ± 17 fmol/mg membrane protein in sham vs. TAC cells, not significant, p=0.1, n=3) or β1/β2-AR ratio, as confirmed by radioligand binding studies (Figure 13C, performed by Christian Dees, University of Würzburg, Germany, Pharmacology Department). Therefore, the hypothesis arise that shifted β1/β2-AR signal balance might be caused by changes in local, β-AR-associated PDE activities.

4.1.6 cGMP-regulated PDEs redistribute between β1-AR and β2-AR-associated microdomains in hypertrophy

When FRET-based PDE profiles on subtype-specific β-AR cAMP signals (for experimental settings, see Figure 11) were assayed in TAC vs. sham pmEpac1 cardiomyocytes, β1-AR cAMP surprisingly was found to be mostly unaltered, with only decreased contributions of minor PDE2 (Figure 15A-C). The PDE subset regulating β2-AR cAMP, however, turned out to be more severely changed. In fact, the pre-dominant PDE3 regulation observed under normal conditions was displaced by PDE2 in disease (Figure 15D-G). Importantly, these highly localized changes in PDE inhibitor responses, measured by FRET, were neither manifested in changed whole cell PDE activities, nor in altered expression levels of functionally relevant PDE isoforms (Figure 16A-C). Previously, βArr
Results

has been established not only as a crucial negative regulator of the β-adrenergic signaling but, importantly, also as a scaffold which recruits in particular PDE4D isoforms to the stimulated β2-AR. However, βArr2 protein levels remained stable in mildly hypertrophied cardiomyocytes (Figure 16C, right panel), similar to PDEs. To prove the hypothesis of PDE redistribution, physical changes of PDE2 and 3 localizations were analyzed by co-immunostainings with α-actinin.

Therefore, isolated adult wild type cardiomyocytes were stained with PDE family-specific antibodies to analyze the degree of their co-localization with α-actinin. Interestingly, in TAC cardiomyocytes, the subcellular PDE2 and 3 distributions were visibly altered, also reflected by a decreased Pearson's coefficient, which shows the degree of co-localization (Figure 17A, B).

4.1.7 PDE2 redistribution causes a shifting in ANP/cGMP-stimulatory effects from local (β2-AR) to global (β1-AR) cAMP, contractility and heart rates

Since cellular PDE protein levels were unaffected, the dramatic changes, especially of the PDE-dependent regulation of the β2-AR/cAMP responses likely to arouse from subcellular redistribution of PDE2 and PDE3. Of note, these

Figure 17. Confocal microscopy analysis of PDE2 and PDE3 localization. Sham and TAC myocytes were immunostained with the α-actinin and PDE2A (A) or PDE3A (B) family-specific antibodies. High degree of co-localization quantified by Pearson's coefficient is significantly reduced in hypertrophic cells. Data are means ± SE from 4 sham and 5 TAC mice each with at least 30 to 50 cells analyzed per condition. ** - highly significant differences at p<0.01.

Figure 18. Altered cGMP dependent regulation of membrane β2-AR-cAMP levels in cardiac hypertrophy. (A) Addition of atrial natriuretic peptide (ANP, 100 nM) after selective β2-AR stimulation (ISO+CGP) leads to further significant increase in cAMP. Pretreatment of cells with 10 μM cilostamide (Clo) prevents the effect of ANP, suggesting a PDE3-dependent effect. (B) Quantification of the ANP responses shown in % ISO+CGP. Data are means ± SE, n = 7-8 cells isolated from 2 hearts each. (C) The effect of ANP is abolished in dispersed myocytes but can be restored after preincubation with the PDE2 inhibitor DAVY60-7550 (DAY, 100 nM). (D) Quantification of the ANP effect in TAC and sham cells as % of maximal PDE3 inhibition with cilostamide. Data are means ± SE, n = 9-11 cells isolated from 3 hearts per condition. * - significant differences at p<0.05.
Results

two PDE families are oppositely regulated by cGMP. Whereas allosteric binding of cGMP stimulates PDE2 activity, it inhibits PDE3 cAMP-hydrolysis by substrate competition (see Introduction, subsection 1.5). Hence, since β2-AR cAMP appeared to be at all times under the control of cGMP-regulated PDEs, the effects of cellular cGMP on β2-AR cAMP were next studied. 2006 Castro et al.92 reported the existence of two distinct cGMP pools in adult rat cardiomyocytes, each being stimulated by different ligands, e.g. natriuretic peptides such as ANP for the (sub-)sarcolemmal, but nitric oxide for the cytosolic cGMP pool. Therefore, in adult cardiomyocytes from untreated mice, it was first tested whether ANP would exert any effect on β2-AR stimulated cAMP signals, considering that PDE3 (the cGMP-inhibited PDE) was the primary regulator in this cAMP microdomain, under normal conditions. Indeed, β2-AR-triggered FRET signals could be further enhanced by the addition of ANP (Figure 18A). Importantly, this ANP effect was abrogated when cells were pre-treated with the PDE3-selective inhibitor cilostamide, strongly suggesting that the ANP/cGMP-mediated inhibitory effect is PDE3 dependent (Figure 18A, B). However, when similar protocols were applied onto TAC-cardiomyocytes, the ANP effect was markedly reduced (even without cilostamide pretreatment) (Figure 18C, D).
Considering that in early disease, PDE2 displaces PDE3 as the predominant regulator of \(\beta_2 \)-AR cAMP, as shown by the FRET-based \(\beta_2 \)-AR PDE profile (see Figure 15F, G), cells were next pretreated with the PDE2-selective inhibitor, BAY 60-7550, which unmasked the ANP-mediated \(\beta_2 \)-AR cAMP increase, suggesting increased PDE2 activity in this microdomain of diseased cells (Figure 18C, D). To clarify, to what extent the overall modest changes in regulation of fairly small \(\beta_2 \)-AR cAMP signals could possibly translate into functional response, the same pharmacological protocols as described in Figures 11 and 15 were applied during single-cell contractility.
measurements after β₂-AR-selective stimulation (Figure 19A-D). Importantly, contributions of PDE2 and PDE3 as well as the ANP-effect on β₂-AR cAMP in normal und diseased cardiomyocytes, directly translated into sarcomere shortening of single wild type cardiomyocytes (Figure 19E). Next, it was studied whether PDE redistribution may affect the physiologically more significant general contractile response stimulated by ISO for the global β₁-AR-dependent pool of cAMP. Strikingly, ANP showed completely opposite effects after global β₁-AR stimulation. Whereas ANP applied alone or after submaximal ISO stimulation did not exert any contractile response in healthy cells, it triggered a significant positive inotropic response in diseased cardiomyocytes (Figure 20A-C). Similar to β-AR/cAMP, also NPR-A/cGMP signaling has been shown to be downregulated in heart failure159. Besides NPR-A, ANP does also bind to the clearance receptor NPR-C. This receptor subtype not only eliminates ANP from the cell surface via internalization but, when bound to ANP, can also exert Gα₁i-mediated AC inhibition and Gβγ-dependent Ca2+ extrusion via membrane-bound transient receptor potential channels (TRPCs)160. To clarify whether the functional ANP effects on β₁- and β₂-AR signaling might be mediated by NPR-C pathways, cANP\textsubscript{4-23} was used to selectively activate NPR-C161, but did not lead to such contractility effects, seen after ANP application. Conversely, application of the cell-permeable cGMP analogue cGMP-AM mimicked the ANP-mediated contractile responses, confirming that these functional responses were mediated by cGMP (Figure 20D). FRET experiments performed using the same stimulation protocols in TAC and sham pmEpac1 cardiomyocytes validated, that the differential effects of ANP on cardiomyocyte contractility were indeed caused by the same ANP effects on global cAMP (Figure 20E, F). Finally, the stimulatory effect of ANP...
after ISO in diseased myocytes was also detected in heart rate measurements using intact perfused Langendorff hearts (Figure 20G), more closely reflecting the in vivo situation.

4.2 Atropine Modulates Phosphodiesterase Activity in the Heart

4.2.1 Atropine augments cAMP signaling in adult cardiomyocytes independently of muscarinic receptors

Atropine effects on cAMP dynamics were analyzed via FRET measurements in cardiomyocytes isolated from mice transgenically expressing Epac1-camps. In these cells, stimulation with ISO classically leads to a substantial increase of intracellular cAMP, which can be partially (to ~50%) reversed by ACh, as this was previously also described in adult guinea pig cardiomyocytes infected with Epac2-camps adenovirus. As expected, application of atropine after ACh fully blocked its effect. (Figure 21A). Unexpectedly, when applied after ISO and in the absence of ACh, atropine substantially potentiated the β-AR-induced cAMP response, which was also the case when cells were prestimulated with the general adenyl cyclase activator forskolin (Figure 21B, D, E). However, when applied alone, atropine, even at very high concentrations, did not affect the FRET ratio (Figure 21C, E). Of all five known muscarinic receptor subtypes, cardiomyocytes predominantly, if not exclusively express the M₂-receptor which is coupled to inhibitory G-proteins. However, treatment with PTX completely abolished the effect of ACh but strikingly did not affect the atropine-mediated increase in cardiomyocyte cAMP after ISO stimulation, suggesting its receptor-independent nature (Figure 22A-C). To further support this hypothesis, isolated cardiomyocytes from the M₂-receptor knockout mice were infected with Epac1-camps adenovirus. Even in these cells, the cAMP response to atropine could be clearly detected.
(Fig22D, E). Analyzing the concentration-response dependency of this novel atropine effect in cardiomyocytes revealed biphasic kinetics with a saturation at ~10 nM (Figure 22F).

4.2.2 Atropine potently inhibits PDE4

The stimulatory effect of atropine on cAMP levels was reminiscent of the PDE inhibitor effects. For example, the PDE4 inhibitor rolipram similarly increased ISO-stimulated cardiomyocyte cAMP, however, with a higher efficacy. Previously, it has been shown that atropine potentiates PDE1 and PDE4 inhibitor effects in tracheal smooth muscle, even though the mechanism of this phenomenon was unclear. Hence it was tested whether atropine could directly inhibit PDEs. Cardiomyocytes express at least five families of these enzymes, PDE1-5 and 8, which either selectively degrade cAMP (PDE4, PDE8), or both, cAMP and cGMP (PDE1, 2 and 3). PDE inhibitory potential of atropine was directly investigated using a classical in vitro activity assay. In heart lysates, atropine could clearly inhibit cAMP-hydrolysis in a concentration-dependent fashion, starting at low nanomolar concentrations (Figure 22G).

Using chimera sensors, comprising Epac1-camps fused to an active PDE1, PDE3, PDE4 or PDE5 isoform, atropine inhibitory potential on single PDE families was further analyzed. Atropine showed strong FRET responses at PDE4, while the activities of PDE1, PDE3 and PDE5 were not significantly affected, even at very high atropine concentrations (Figure 23A, B). The intracellular PDE4 inhibition responses by atropine reached their steady state within several minutes but the concentrations-response dependency in HEK293A cells was
clearly biphasic (Figure 23F, black trace). Importantly, atropine also inhibited recombinant PDE4D3 activities in vitro, though with a much lower efficacy than the PDE4 selective inhibitor rolipram (Figure 23C).

4.2.3 Atropine cell entry is facilitated by unselective organic cation transporters
At physiological conditions, atropine can cross cell membranes, at least to some extent, by free diffusion. However, this way of transport is limited. In addition, organic cation transporters (OCTs) highly expressed in the heart and less abundantly found in HEK293 cells, can facilitate active cellular atropine uptake. In line with this notion, the unselective OCT blocker MPP+ completely abolished the effect of atropine on cAMP levels in Epac1-camps cardiomyocytes (Figure 23D, E). Conversely, stable expression of OCT3 in HEK293 cells led to larger atropine responses causing a leftward shift of atropine concentration dependency (Figure 23F), suggesting that atropine can be actively imported into the cell where it inhibits PDE activity.

4.2.4 Atropine augments cardiac function in adult mice
Next, atropine effects on heart rates in explanted perfused mouse hearts (Langendorff preparation), which lack any nervous innervation were analyzed. ISO increased the basal heart rate by ~20%, while atropine applied on top of ISO significantly augmented its response, which is indicative of the positive chronotropic effect of atropine after β-adrenergic stimulation. This effect was preserved in M2-receptor knockout mouse hearts, further corroborating its receptor-independent nature (Figure 24A). cAMP increase in cardiomyocytes should lead not only to an increase in heart rate but also to an increase in beating force. Sarcomere shortening measurements in isolated ventricular cardiomyocytes showed that atropine also significantly enhanced the positive inotropic effect of ISO (Figure 24B, C).
4.2.5 Atropine stimulatory effects on myocardial function are conserved in human.
To link these novel findings from small animal models to the situation in human myocardium, force of contraction in heart muscle trabeculae isolated from human right atria was measured. While atropine alone or after sole ISO prestimulation did not affect the force of contraction, application of atropine to trabeculae pretreated with ISO and the PDE3 inhibitor cilostamide substantially increased contractility which was further augmented by rolipram (Figure 24D, E). Force measurements on human trabeculae were performed by Dr. Thomas Fischer, MD and Jonas Herting (University Medical Center Göttingen, Department of Cardiology).
5 Discussion

5.1 Local β-Adrenergic Signaling at the Sarcolemma of Adult Mouse Cardiomyocytes

This study describes the successful generation of a transgenic mouse model with heart-specific expression of the highly localized FRET-based cAMP sensor, pmEpac1. This sensor enables direct monitoring of cAMP dynamics exclusively in sarcolemmal microdomains. pmEpac1 was designed to associate predominantly with caveolar membrane structures to attain its high expression at the T-tubules (see Figure 8) with the aim to particularly well resolve and analyze the highly compartmentalized β₂-AR-cAMP signals.

5.1.1 pmEpac1 expressed in mice enables detailed analysis of subtype-specific β-AR-associated cAMP compartments, especially at β₂-AR

Indeed, β₂-AR-stimulated cAMP signal amplitudes in adult cardiomyocytes show to be two-fold larger when measured with pmEpac1 compared to the maternal cytosolic sensor, Epac1-camps (see Figure 10B,C). Considering a slight loss in sensor sensitivity of pmEpac1, when compared with Epac1-camps (see Figure 10D), the actual cAMP signals in this microdomain must be considered even greater. Likewise, this further marginalizes the possibility of pmEpac1 acting as a sarcolemmal cAMP sink, which could interfere with normal cardiac cAMP homeostasis. However, pmEpac1 mice do not develop any heart-specific or other phenotype (see Figure 9) per se, which makes this possibility rather unlikely.

Hence, the improved cAMP resolution of pmE1 enables real time analysis of subtype-specific β-AR-cAMP with high temporal and spatial resolution. Importantly, β₂-AR signals show virtually similar amplitudes and PDE-dependent regulation when measured either at the sarcolemma (pmEpac1) or in the cytosol (Epac1-camps) of adult cardiomyocytes (see Figures 10A,C, 11B). This likely reflects the far-reaching effects that have been attributed to β₁-AR signaling37. Interestingly, the presented data suggest that β₂-AR-cAMP signals are predominantly controlled by PDE3 (see Figure 11D), which has not been appreciated so far, most likely due to insufficient precision and spatial resolution of the experimental tools, used37,168. For example, one previous study with olfactory cyclic nucleotide gated (CNG) channels ectopically expressed in adult rat cardiomyocytes as reporters for subsarcolemmal cAMP showed that different membrane receptors evoke distinct submembrane cAMP signals due to their regulation by different PDE subsets169. However, the exact localization of these sensors is not thoroughly established, although it was demonstrated that CNG channels are predominantly associated with non-caveolar membrane microdomains170, whereas β₂-ARs are almost exclusively localized in caveolin-rich membrane compartments171-173. Hence, when measured with either cytosolic FRET probes37 (see also Figure 11D) or with CNG-channels169 both, PDE3 and PDE4 show equal contributions to the control of β₂-AR-cAMP signals. Probably, due to insufficient proximity of the respective sensor to β₂-AR, its relative responses remained very small in both studies, preventing a more thorough analysis of such highly localized functionally important signals. In contrast to these previous observations, local
Discussion

β_2-AR-cAMP signals measured with pmEpac1 reveal predominant control of PDE3, which is well in line with the strong augmenting effect of the selective PDE3 inhibitors, such as cilostamide on β_2-AR stimulated cardiomyocyte contractility (see Figures 11D, 15F, 19A, E). So far, cardiac cAMP regulation, especially of β_2-ARs was primarily attributed to the actions of different PDE4 isoforms. In this regard, the pmEpac1 mouse has already proven to be a valuable new tool for investigations of cardiac cAMP signaling, especially regarding the highly localized β_2-AR-cAMP dynamics.

5.1.2 The FVB/N mouse strain shows certain resistance to experimentally induced cardiac disease

Transgenic expression of pmEpac1 in mice further allows combining pmEpac1 mice with experimental and genetic heart disease models.

For the present study, to investigate pathological changes in β-AR/cAMP signal compartmentation, transverse aortic constriction (TAC) was chosen to experimentally induce heart failure. Interestingly, regardless of a pronounced pressure gradient of 80 mmHg, eight weeks post TAC surgery pmEpac1 mice developed a very mild cardiac disease phenotype. As such, a yet pronounced gain in heart weight and wall thicknesses was accompanied by only mild reduction in contractile function, indicative of an early disease state, i.e. compensated hypertrophy (see Figure 12A-D). Since pmEpac1 transgenic mice do not show any developmental abnormalities per se (see Figure 9), the observed mild cardiac phenotype is most likely reasoned by the genetic background of those animals. This assumption is further corroborated by the fact, that wild type littermates of the heterozygous pmEpac1 transgenic mice, used for biochemical assays and functional studies (i.e. Langendorff ECGs and single cell contractility measurements) develop the same mild cardiac phenotype described above.

Several studies have reported that FVB/N mice indeed exhibit a certain resistance against different experimental disease models, such as parasite infection or type 2 diabetes. Especially considering that FVB/N mice can even withstand the development of acquired systemic diseases such as type 2 diabetes, it can be presumed that the development of congestive heart failure is similarly slowed down. Therefore, the FVB/N mouse strain proves to be well suited to investigate especially early cardiac disease pathology.

5.1.3 ANP stimulates heart function at the onset of heart failure

However, in this early state of compensated hypertrophy, plasma ANP levels are already increased by two-fold. Considering ANP as a trigger of cardiomyocyte cGMP, changed cyclic nucleotide contents in diseased cardiomyocytes are very likely. Indeed, FRET measurements in pmEpac1 expressing TAC cardiomyocytes reveal ANP-stimulatory effects on global β-AR-cAMP signals (see Figure 20E, F). Importantly, this unexpected ANP effect on β-AR signaling in diseased cardiomyocytes readily translates into an augmentation of contractile function. Previously, ANP was reported to not affect catecholamine (ISO)-stimulated contractility in healthy cardiomyocytes, which is well in line with the unchanged sarcomere shortening in sham cardiomyocytes observed in the present study (see Figure 20A, C). In TAC cells, however, ANP shows robust contractile responses after β-AR stimulation (see Figure 20B, C). Furthermore, ISO-stimulated heart rates can be further increased by ANP only in hypertrophied hearts, indicating that this ANP effect, initially uncovered in single
isolated cardiomyocytes, is indeed applicable to the in vivo situation (Figure 20G). Hence, the novel localized FRET biosensor pmEpac1 transgenically expressed in adult mouse cardiomyocytes can truly report functionally relevant cAMP dynamics linked to myocardial function.

5.1.4 In early cardiac disease, local PDE redistribution precedes global molecular changes yet with functional effects on global β-AR signaling

Considering that FRET measurements reveal augmented β-AR responses as a result of a shifted balance in β1-AR: β2-AR signal ratio (i.e. increased β1-AR-cAMP and decreased β2-AR-cAMP), on first sight, these data seem to contradict the extensively investigated paradigm of β-AR and ANP receptor desensitization occurring in advanced chronic cardiac diseases such as heart failure. However, it should be pointed out that the early pathology events addressed in the present study, are likely to display an adaptational process rather than the well described detrimental effects caused by excessively prolonged β-AR signaling. In support for this notion, sensor: sarcolemma integrity and β-AR densities are virtually unchanged in TAC myocytes (see Figure 13). How can this adaptive response be explained mechanistically?

One key finding is that during early heart disease, locally detected PDE2 and PDE3 selective inhibitor effects (reflecting local PDE2/3 contributions) dramatically change, whereas whole-cell PDE amounts and activities remain stable (see Figures 15D-G, 16).

In order to explain this intriguing observation, it was hypothesized that changed local PDE inhibitor responses, especially at the β2-AR, may possibly arise from a subcellular redistribution of PDE2 and 3 between the β1-AR and β2-AR-associated membrane microdomains. This scenario would eventually lead to a switching of cGMP/cAMP cross-talk from a formerly ANP-mediated cAMP increase (via PDE3) to an ANP-mediated cAMP decrease (via PDE2) at the β2-AR (see Figures 18, 25A).
Physical proof of principle for this redistribution theory was approached by co-immunostaining of either PDE2 or PDE3 with the Z-discs (α-actinin) of adult cardiomyocytes (see Figure 17); both PDEs showing decreased localization patterns with respect to α-actinin in early disease. However, more clear-cut evidence, i.e. co-localization of PDE2 and PDE3 with β₁ and β₂-ARs, currently remains technically difficult to accomplish. To bypass the lack of reliable subtype-specific β-AR antibodies, alternatively recombinant FLAG*-tagged β-ARs could be transiently expressed in normal and phenylephrine-treated neonatal cardiomyocytes to subsequently co-stain these with PDE2- and PDE3-specific antibodies. However this approach is highly artificial and it can be questioned whether functional cAMP microdomains are composed same in neonatal and adult cardiomyocytes.

Hence, in order to further corroborate the here claimed hypothesis of PDE-redistribution, one must rely mostly on indirect approaches. For instance, PDE2 and 3 could possibly be co-localized with particularly caveolin-3 enriched cell fractions. Here, shifted PDE2/3 expression patterns within subcellular fractions could serve as a further indication for PDE redistribution. However, the resolution of such an approach is clearly limited by the fact that both major β-AR subtypes reside in caveolar membrane compartments.

Nevertheless, regarding the functional relevance, it could be established that β₂-AR cAMP signaling well responds to ANP/cGMP stimulation in healthy cells (PDE3) as well as in early disease (PDE2) (see Figure 18). In untreated cells, ANP augments the β₂-stimulated cAMP levels. Importantly, this effect can be abolished by pre-incubating the cells with the PDE3-selective inhibitor cilostamide, confirming that the ANP-mediated effect on β₂-AR-cAMP is indeed caused by ANP/cGMP-dependent PDE3 inhibition (see Figure 18A, B). However, similar stimulation protocols in TAC cardiomyocytes reveal a dramatic reduction in the ANP-mediated β₂-AR-cAMP effect. In support of the PDE redistribution hypothesis, pre-incubation of diseased myocytes with the PDE2-selective inhibitor BAY 60-7550 partially unmasks the stimulatory effect of ANP on β₂-AR-cAMP levels (see Figure 18C, D). This finding well contradicts possible NPR-A desensitization at this early stage of disease. Conversely, it further suggests that PDE3 is not fully displaced from the β₂-AR cAMP microdomain but its effect being covered by increased local PDE2 activity in disease, especially under conditions of elevated cellular cGMP levels.

5.1.5 Functional ANP responses in early cardiac disease are mediated by cGMP

Functionally, this observation correlates with the diminished ANP effect on selectively β₂-AR-stimulated cardiomyocyte contractility (see Figure 19). Most strikingly, not only does this lead to a change in physiologically less relevant β₂-AR-specific contractile effects, but importantly also to inverted ANP-effects on global contractile force after β-AR stimulation in hypertrophied myocytes (see Figure 20B and C). This effect is apparently caused by a shift in β₁/β₂-AR signal balance towards β₁-AR signaling in hypertrophied cells, despite unchanged β-AR densities. The elevated β-AR/ANP contractile response at this stage of disease is likely to be caused by the reorganization of microdomain-specific PDE activity patterns that cause the turnaround in cGMP/cAMP crosstalk. Unlike pronounced β₁-AR-cAMP and ANP/cGMP signal desensitization described for advanced heart failure, the present model of early cardiac hypertrophy provides insights into molecular changes, which take place during the onset of chronic cardiac disease. Although these changes appear rather neutral with regard to whole cell PDE activities, yet it could be shown that even slight changes in local PDE contributions can cause drastic changes in compartmentalized signaling patterns. These changes do directly
translate into opposite contractile effects of the same ligand such as ANP, which is present at higher levels in systemic circulation during hypertrophy (see Figures 12E, 20A-C and 25B). ANP has previously been reported to also act through the clearance receptor NPR-C that primarily removes bound ANP from the cell surface, but also exerts AC inhibitory properties via G\(_i\)-uncoupling. Furthermore, G\(_i\) of NPR-Cs has been shown to activate transient receptor potential channels (TRPCs), in a phospholipase C-dependent manner\(^{160,161}\). So, in order to prove that the functional ANP effects are indeed triggered by NPR-A/cGMP, a cell-permeable cGMP analogue, cGMP-AM was used in analogous contractility experiments. Importantly, cGMP-AM induces contractile effects, highly similar to that evoked by ANP (see Figure 20D). Furthermore, a selective NPR-C agonist, cANP\(_{4-23}\), was used to analyze possible involvement of the clearance receptor. However, cANP\(_{4-23}\) did not exert any contractile responses as seen upon ANP application, making involvement of NPR-C in this mechanism unlikely.

5.1.6 PDE redistribution causes a turnaround of cGMP/cAMP crosstalk and mediates ANP stimulatory effects on contractility

Based on the current findings PDE2, which was thought to represent a minor fraction of total PDE activity under normal conditions, might serve as an important therapeutically interesting reservoir, which regulates and orchestrates β-AR/cAMP and ANP/cGMP signaling. When redistributed from the β\(_1\)- to the β\(_2\)-AR-associated compartment in early disease, this PDE facilitates the shift in β\(_1\)/β\(_2\)-AR signal balance. Such shifting leads to a turnaround of the ANP/cGMP-mediated control over β-AR-stimulated cAMP and contractility. The combined stimulatory effects by elevated ANP and catecholamines in cardiac hypertrophy can thereby further increase heart function. As mentioned above, concerning the pathophysiology, it is highly possible that this effect might represent a compensatory mechanism to meet the enhanced demand on cardiac output under pressure overload (Figure 25B). Strikingly, during early compensated cardiac hypertrophy, the β\(_2\)-AR, which generally plays a minor role in the catecholaminergic contractile response, seems to act as an important signaling module which can be regulated by either PDE2 or PDE3 to exert opposite effects on global β-AR-mediated cell function. Therefore, the previously postulated additive effects of both β-AR subtypes on myocardial force at healthy state (contractile response ~ β\(_1\)-AR-cAMP + β\(_2\)-AR-cAMP) might, in early heart disease transform into a relation of reciprocal interdependence (contractile response ~ β\(_1\)-AR-cAMP / β\(_2\)-AR-cAMP). Given that PDE3 generally dominates cAMP hydrolysis in human myocardium and that cardiac PDE2 amounts increase in late staged heart failure patients\(^{110}\), such cGMP/cAMP crosstalk can be expected to have even more profound meaning for the human heart.

In summary, the presented data are indicative for a new cell adaptation mechanism, which involves subcellular redistribution of cGMP-sensitive PDEs. Such alterations well precede the abundantly documented more severe cellular changes which occur later during the decompensated cardiac phenotype and overt heart failure associated with changes of whole-cell PDE activities and the desensitization of the β\(_1\)-AR-cAMP and ANP/cGMP signaling cascades. In future, these findings might become clinically relevant in terms of novel therapeutic strategies acting on defined subcellular microdomains to prevent PDE redistribution and its detrimental effects. Since the PDE2/3-dependent cGMP/cAMP cross-talk is functionally important not only in cardiomyocytes but
also in many other cell types such as neurons, endothelial cells, platelets and adrenal cells, this principle of cell function regulation can be expected to play an ubiquitous role in a wide variety of cells and disease conditions.

5.2 Atropine Modulates Phosphodiesterase Activity in the Heart

Atropine is widely used clinically as a non-selective antagonist of the muscarinic receptors to treat organophosphate intoxication as well as multiple other diseases such as acute bradycardia, heart block and chronic obstructive pulmonary disease. It binds all five muscarinic receptor subtypes with high affinity and prevents the ACh-mediated effects in target cells. In the heart, atropine abolishes the inhibitory effect of ACh on heart rate and contractility, often leading to tachycardia. These effects have been attributed exclusively to the antagonism at cardiac muscarinic M2-receptors and inhibition of parasympathetic events.

5.2.1 Atropine modulates cardiomyocyte cAMP independently of muscarinic receptors

Atropine proves well to neutralize ACh-mediated reduction of ISO-induced cAMP (see Figure 21A). However, it increases cellular cAMP even without prior activation of muscarinic receptors, an effect that was observed only upon pre-stimulation with either ISO or forskolin (see Figure 21B, C, D, E). Previous studies have shown that M2 receptors exert constitutive activity and, moreover, that G_{i3}βγ subunits potentially stimulate AC subtypes. Importantly, atropine-driven augmentation of cAMP is preserved even upon pertussis toxin (PTX) treatment (see Figure 22A-C), which prevents G_{i3}uncoupling by ADP-ribosylation, further indicating that this novel atropine effect is independent of M2 receptor actions. Final proof is provided by analyzing cAMP dynamics in M2-KO cells and hearts, which behave virtually identical to those in either wild type or Epac1-camps transgenic mice. Therefore, it is very unlikely that the novel atropine effect on cardiomyocyte cAMP is linked to its properties as an inverse antagonist at muscarinic receptors.

5.2.2 cAMP effects are mediated via atropine-dependent PDE inhibition

However, exploring other directions, cardiomyocyte cAMP levels do increase with increasing atropine concentrations. The concentration-response dependency of this atropine effect in cardiomyocytes follows biphasic kinetics with a saturation at ~10 nM (see Figure 22F), which is in the therapeutically relevant concentration range of this drug. The stimulatory effect of atropine on cAMP levels observed here is consistent with the data from frog and rat ventricular myocytes where atropine stimulated L-type calcium channel currents when applied after ISO, presumably via a G-protein-dependent mechanism. This and the observation that atropine only enhances pre-stimulated cAMP is reminiscent of the feedback actions of PDE4. In particular, of the long PDE4 isoforms the activities of which are stimulated upon PKA-dependent phosphorylation. Using a classical biochemical assay, analysis of potential atropine effects on PDE activities in wild type cardiomyocyte lysates reveals a significant inhibition in a concentration-dependent manner.
Herget et al. previously established FRET biosensors, which can measure cAMP or cGMP in the vicinity of various PDEs, thereby directly reporting PDE inhibitor potential of various compounds in intact cells\(^{146}\). These sensors are comprised of a catalytically active PDE fused to Epac1-camps or to the cGMP sensor cGES-DE2\(^{188}\) and respond to PDE inhibitors by a change of FRET. In addition to these previously described sensors for PDE3, 4 and 5, a new sensor construct was developed to measure PDE1 inhibition. Such chimeric sensors with Epac1-camps fused to PDE1A, PDE3A or PDE4A1 transiently expressed in HEK293A cells revealed pronounced atropine inhibitor effects exclusively on PDE4, with the concentration-response dependency being clearly biphasic (see Figure 23A, B, F). Possible modulation of PDE5-dependent cellular cGMP pathways can be neglected since the cGMP-specific chimera cGES-DE2-PDE5A did not respond to atropine application.

Since this FRET approach pointed towards PDE4 as the intracellular target of atropine, its inhibitory potential was quantitated in vitro with recombinant PDE4D3, the pre-dominant PDE4 isoform expressed in mammalian myocardium. Importantly, the biphasic character of concentration-response dependence is also preserved here, although with a much lower overall efficacy than the selective well-established inhibitor rolipram (see Figure 23C). This might indicate an unusual mechanism of action on PDE4, different from the classical inhibitors but sufficient to decrease the hydrolysis of cAMP and increase its intracellular levels in a functionally relevant range. In 1996, Jacobitz et al. established that PDE4s are present in two different conformations, with one showing higher susceptibility to rolipram-based inhibition than the other (high/low affinity rolipram binding states)\(^{189}\). Such findings leave room for speculations, such as that atropine could specifically bind to only one of those two PDE4 conformations, e.g. preferentially to the low affinity rolipram binding state. However, more efforts are required to fully understand the mechanisms behind atropine-dependent PDE4 inhibition.

Previously, PDE8A, a second cAMP-specific PDE in myocardial tissue which is insensitive to the unselective PDE inhibitor IBMX, has been reported to contribute to EC coupling regulation\(^{105}\). However, to date, a lack of appropriate PDE8 inhibitors has prevented further investigations of PDE8-mediated regulation of dynamic cAMP changes in cardiomyocytes. Hence, atropine inhibitory effects on PDE8 cannot be fully ruled out at that point. Conversely, PDE2, which likewise has not directly been addressed in this study, is rather unlikely to be side-targeted by atropine. Firstly, PDE2 is the minor contributor to cardiomyocyte cAMP-PDE activity due to relatively low expression levels. Secondly, atropine-mediated PDE inhibition, assessed in cardiomyocyte lysates (see Figure 22E) clearly exceeded PDE2 activity, which was determined with the PDE2-specific inhibitor BAY 60-7550.

5.2.3 Organic cation transporters facilitate cellular atropine uptake

Another critical issue to address was how atropine actually enters the cell. Under physiological pH, the membrane is permeable to atropine to a certain extent\(^{165,166}\). In addition, organic cation transporters can facilitate active atropine uptake into cells. Incubating adult Epac1-camps cardiomyocytes with the unselective OCT blocker MPP+ abolished atropine-mediated FRET responses (see Figure 23D, E). Thus, it can be assumed that atropine is actively transported into the cells by OCTs. Especially OCT3 is expressed in the heart\(^{190}\) but is
barely detectable in HEK cells, which could explain why the FRET kinetics assessed by Epac1-camps (cardiomyocytes) and by Epac1-camps-PDE4A1 (HEK293 cells) are remarkably different. The left-shifted concentration dependencies of atropine FRET responses obtained from HEK293 cells stably overexpressing OCT3 is indicative of an accelerated cellular atropine uptake upon enhanced OCT expression (see Figure 23F).

5.2.4 Atropine-mediated PDE4 inhibition may trigger arrhythmias
Which functional implications does atropine-mediated PDE4 inhibition have on the heart? It is well accepted that atropine induces tachycardia as a frequent and prominent side effect \textit{in vivo}, which has been mainly attributed to a decreased parasympathetic stimulation. Atropine clearly potentiates ISO-simulated heart rates in perfused Langendorff hearts. An experimental advantage of this approach in contrast to \textit{in vivo} ECG measurements is the exclusion of any nervous tone. Therefore, concerns such as that atropine-driven positive chronotropy as a result from the blockade of a basal vagal tone can be excluded. Likewise, basal activity of M$_2$ receptor on which atropine might act as an inverse agonist is not relevant, since atropine-mediated augmentation of heart rates is preserved even in M$_2$-KO mice (see Figure 24A). If atropine truly increased cAMP via PDE4 inhibition, this should be also manifested in an enhanced contractile force. Importantly, measurements of sarcomere shortening in isolated adult ventricular cardiomyocytes show that atropine also significantly augments the positive inotropic effect of ISO (see Figure 24 B, C).

Unlike in rodent hearts, PDE4 is not the predominant contributor to cAMP hydrolysis in human myocardium. In human atria for instance, PDE4 accounts for only \sim15% of the cAMP-specific PDE activity, whereas PDE3 represents the major PDE family. Nevertheless, PDE4 plays an important protective role against atrial arrhythmias, and its effects on cAMP levels can be unmasked by PDE3 inhibition. When measuring contractile forces of trabeculae isolated from human right atria, atropine alone or after sole ISO prestimulation does not affect the force of contraction, but trabeculae pretreated with ISO and cilostamide (PDE3-selective inhibitor) substantially increase contractility upon atropine addition, which can be further augmented by rolipram (PDE4-selective inhibitor) (see Figure 24 D, E). This confirms that the stimulatory effect of atropine is also relevant for the human heart and results from PDE4 inhibition. Interestingly, during these experiments, it was noticed that the trabeculae often became arrhythmic after atropine administration.

In summary, it is now evident that atropine, a clinically relevant drug, does not modulate myocardial cAMP solely by preventing Vagus-mediated effects on the heart via muscarinic receptor inhibition. It can furthermore exert PDE4 inhibitor properties. This new mechanism accounts for sustained cAMP signals, especially in situations of missing negative regulation via the parasympathetic nerve drive. Therefore, it can be assumed that this novel effect might play a crucial role in mediating various side effects of atropine, especially arrhythmogenesis. PDE4 inhibition by atropine promotes an increase in intracellular cAMP, heart contractility and contributes to tachycardia. This might be especially important under adrenergic stress which occurs either due to increased endogenous catecholamine levels in heart failure or during diagnostic procedures such as the dobutamine atropine stress echocardiography. One must expect that the effect of atropine inhibiting PDE4 in various other tissues can also account for the pharmacological actions of this drug.
Addressing the hypotension-bradycardia paradox occurring during vasovagal syncope, characterized by a sudden drop in blood pressure and concurrent reflexive fall in heart rate, atropine has been reported to counteract bradycardia but not hypotension. Atropine can be assumed to exert similar effects on both cardiac and vascular PDE4s, though with very diverse functional outcomes. While atropine increases function of the stressed heart by PDE4 inhibition and subsequent cAMP elevation, that same mechanism in vascular smooth muscle can rather stabilize the peripheral vascular resistance or even favor vasodilatation.193,194
6 Conclusions

6.1 PDE2 is important for myocardial adaptation to long-term stress

Phosphodiesterases are indispensable enzymes in any cell type that reacts to external stimuli via cyclic nucleotide signaling pathways. Especially myocardial tissue possesses a plethora of different cAMP-hydrolyzing PDEs, suggesting that these enzymes do not solely contribute to cAMP signal termination, but do also modulate cyclic nucleotide signals at the subcellular level. But what are the exact roles of these PDE families? The current work exemplifies how cGMP-regulated PDEs such as PDE2 and 3 can act as potential cyclic nucleotide crosstalk hubs. Moreover, by replacing a cGMP-inhibited (PDE3) by the cGMP-stimulated PDE (PDE2) inside the β2-AR microdomain, the cell can readily shift cAMP microdomains inside single cardiomyocytes in order to adapt to changed environmental conditions (e.g. increased demand on cardiac function in hypertrophy). These observations indicate that cGMP-sensitive PDEs, especially PDE2, which is normally only a minor contributor to myocardial cAMP handling, can serve as an adaptation module used by cardiomyocyte to meet increased demand on functional output. Following this assumption, the cell might respond to long-term stress conditioning by differential expression of PDE2 and 3, thereby causing generally altered cyclic nucleotide signaling (cross-talk) patterns, thus changing cellular perception and physiology. Indications for this phenomenon have also been provided by the recent findings of Mehel et al., which show that PDE2 is upregulated in the failing, heart of rodents and dogs but also in congestive heart failure patients. In contrast, the here presented findings about subcellular PDE2 redistribution despite unchanged cellular PDE2 amounts, occur during an early phase of disease progression. As such, this rather dynamic adaptive molecular response might be readily reversible when early diagnosed. Therefore, preventing PDE2/3 redistribution leading to ANP-stimulatory cardiac responses, could be interesting with regard to clinical intervention, perhaps even to disease prevention strategies.

6.2 PDE4 firstly processes normal short-termed cAMP increases in adult myocardium

In contrast to the findings about cGMP-regulated PDEs 2 and 3, PDE4 has previously been shown to regulate normal cAMP handling in order to prevent arrhythmogenesis, especially in mice, but importantly even in human. Especially the long PDE4 isoforms possess PKA-dependent phosphorylation motifs for feed-forward regulation. Furthermore, at least for the murine model, different PDE4 families, partly even single PDE4 isoforms have been identified in several functionally crucial cAMP microdomains, especially at EC coupling hubs. Such stress-induced negative cAMP regulation represents a perhaps simpler mechanism of enzyme activity modulation, compared to the flexible ANP/cGMP-mediated regulation of PDE2 and PDE3. Therefore, PDE4s, which at least in rodent cardiac tissue contribute the largest fraction of cAMP-PDE activity, are well suited to process and sequester prestimulated cAMP levels during normal beat-to-beat events. As such they are likely being especially important in regulating increased cAMP during short-termed stress, i.e. the fight or flight response. The here presented findings about atropine-mediated PDE4 inhibition well fit into this
Conclusions

context and suggest that this previously unappreciated action of atropine is likely to promote tachyarrhythmias as the most prominent side effect of this drug. Reasoned by this and other frequent side effects, such as nausea or emesis, atropine has been withdrawn from most systemic clinical applications. However, it is still used during organophosphate poisoning or intensive cardiac care. In light of the new findings, even in emergency scenarios, it should be reconsidered to replace atropine by muscarinic receptor antagonists without PDE inhibitor potential in order to avoid unwanted side effects.
References

71. Patterson, A.J.
72. Kuschel, M.
73. Ghigo, A.
74. Xiao, R.P.
Beta-adrenergic signaling in the heart: dual coupling of the beta2-adrenergic receptor to

75. Bernstein, D.

76. Patterson, A.J., et al. Protecting the myocardium: a role for the beta2 adrenergic receptor in the heart.

77. Perino, A., Ghigo, A., Scott, J.D. & Hirsch, E.
Anchoring proteins as regulators of signaling pathways.
Circulation research 111, 482-492 (2012).

78. Dobbs, K., et al.
Protecting the myocardium: a role for the beta2 adrenergic receptor in the heart.

79. Jurevicius, J. & Fischmeister, R.
cAMP compartmentation is responsible for a local activation of cardiac
Ca2+ channels by beta-adrenergic agonists.

Compartmentation of cAMP signalling in cardiomyocytes in health and disease.

81. Diviani, D., Dodge-Kafka, K.L., Li, J. & Kapiloff, M.S.
A-kinase anchoring proteins: scaffolding proteins in the heart.

82. Ungerer, M.

83. Lefkowitz, R.J. & Shenoy, S.K.
Transduction of receptor signals by beta-arrestins.

Sympathetic stimulation of adult cardiomyocytes requires association of AKAP5
with a subpopulation of L-type calcium channels.
Circulation research 107, 747-756 (2010).

85. Hulme, J.T., Lin, T.W., Westenbroek, R.E., Scheuer, T. & Catterall, W.A.
Beta-adrenergic regulation
requires direct anchoring of PKA to cardiac CaV1.2 channels via a leucine zipper interaction with A
kinese-anchoring protein 15.

86. Marx, S.O., et al.
PKA phosphorylation dissociates FKBP12.6 from the calcium release channel
(ryanodine receptor): defective regulation in failing hearts.

Sympathetic stimulation of adult cardiomyocytes requires association of AKAP5
with a subpopulation of L-type calcium channels.
Circulation research 107, 747-756 (2010).

88. Luttrell, L.M. & Lefkowitz, R.J.
The role of beta-arrestins in the termination and transduction of G-
protein-coupled receptor signals.

89. Ungerer, M., et al.
Expression of beta-arrestins and beta-adrenergic receptor kinases in the failing human heart.
Circulation research 74, 206-213 (1994).

90. Baillie, G.S. & Houlsay, M.D.
Arrestin times for compartmentalised cAMP signalling and phosphodiesterase-4 enzymes.

beta-Arrestin-mediated PDE4 cAMP phosphodiesterase recruitment regulates beta-
adrenoceptor switching from Gs to Gi.

Targeting of cyclic AMP degradation to beta 2-adrenergic receptors by beta-arrestins.

93. Richter, W., et al.
Signaling from beta1- and beta2-adrenergic receptors is defined by differential
interactions with PDE4.
The EMBO journal 27, 384-393 (2008).

Phosphoinositide 3-kinase gamma protects against catecholamine-induced ventricular
arrhythmia through protein kinase A-mediated regulation of distinct phosphodiesterases.
Circulation research 126, 2073-2083 (2012).

beta2-adrenergic cAMP signaling is uncoupled from phosphorylation of cytoplasmic
proteins in canine heart.

96. Liu, Q.H., et al.
Membrane depolarization causes a direct activation of G protein-coupled receptors
leading to local Ca2+ release in smooth muscle.

97. Xiao, R.P.
Beta-adrenergic signaling in the heart: dual coupling of the beta2-adrenergic receptor to
G(s) and G(i) proteins.

Differentiation cardioprotective/cardiotoxic effects mediated by beta-adrenergic
receptor subtypes.

Protecting the myocardium: a role for the beta2 adrenergic receptor in the heart.

Acknowledgements

The presented PhD thesis was performed at the Heart Research Center Göttingen, in the research work group “Molecular imaging of the heart” under supervision of Dr. Viacheslav O. Nikolaev. I address my sincere gratitude to the members of my thesis committee, Prof. Dr. Blanche Schwappach, Prof. Dr. Stefan Luther, Prof. Dr. Dörthe Katschinski and Prof. Dr. Ali-El-Armouche for their challenging and encouraging feedback and vivid discussions throughout all committee meetings, with the intention of putting up the best strategies possible to conquer the topics of this thesis.

In this regard I likewise thank Prof. Dr. Stephan Lehnart, whose thorough review of especially the first part, “Local β-Adrenergic Signaling at the Sarcolemma of Adult Mouse Cardiomyocytes” markedly increased its quality.

Next, I would like to address special thanks to several people, who contributed with their specialized skills, which for me to learn would have exceeded the scope of this thesis:
Dipl. Biol. Julia H. Steinbrecher and Dr. Daniela Hübscher for mouse surgeries,
Dr. Ursula Fünfschilling and co-workers for transgenic mouse generation,
Kirsten Koschel, Sabrina Wollborn, Beate Knocke, Roland Blume and Marcel Zoremba for echocardiography and analysis,
Dr. Thomas Fischer and Jonas Herting for human trabeculae force measurements,
Christian Dees for radio-ligand binding assays.
Further, I thank Dr. Mei-Ling Chang Liao and Dr. Jan-Hendrik Streich for their technical advice on the IonOptix and Langendorff setups, respectively.

Much appreciation shall be addressed to my fellow co-workers, explicitly to mention Karina Zimmermann for her excellent and thoughtful assistance.
I am especially grateful to Dr. Viacheslav Nikolaev for his excellent counsel and guidance throughout the deployment of this PhD thesis. Especially his open-mindedness regarding the exploration of new avenues gave great distinction.

At the end I express my sincere gratitude to my parents for their support with good advice when needed and always open ears to my concerns, at all times.
Julia, thank you for you sheer infinite patients with me, always reassuring me when I am in serious doubt. It is you who reads me best.
Conference contributions

Oral Presentations:

Perera R.K., Steinbrecher J.H., Hübscher D., Lehnart S.E., Nikolaev V.O.
Microdomain switch of PDE2 and 3 modulates cGMP-mediated control on β-adrenergic cAMP signaling in early cardiac disease
Cyclic Nucleotide Phosphodiesterases Gordon Research Conference, 2014

Perera R.K., Nikolaev V.O.
FRET measurements of local cAMP signaling in the sarcolemmal / T-tubular compartment of cardiomyocytes
Heart Failure Congress 2013

Posters:

Perera R.K., Steinbrecher J.H., Hübscher D., Lehnart S.E., Nikolaev V.O.
ANP potentiates catecholaminergic stress in early cardiac disease
Frontiers in Cardiovascular Biology Conference, July 2014

Perera R.K., Steinbrecher J.H., Hübscher D., Lehnart S.E., Nikolaev V.O.
Microdomain switch of PDE2 and 3 modulates cGMP-mediated control on β-adrenergic cAMP signaling in early cardiac disease
Cyclic Nucleotide Phosphodiesterases Gordon Research Conference, 2014

Perera R.K., Steinbrecher J.H., Lehnart S.E., Nikolaev V.O.
β1- and β2-AR signals show reciprocal interdependence which is severely altered by ANP/cGMP in compensated hypertrophy
Heart Failure Association Winter Meeting 2014

Perera R.K., Nikolaev V.O.
Cardiac remodeling involves redistribution of cGMP-sensitive PDEs between β1- and β2-adrenergic receptor-associated microdomains and leads to altered cAMP signaling patterns
German Cardiac Society Fall Meeting 2013

Perera R.K., Nikolaev V.O.
Roles of phosphodiesterases 2 and 3 at the T-tubules of adult mouse cardiomyocytes
American Heart Association Basic Science Conference 2013

Perera R.K., Nikolaev V.O.
FRET measurements of local cAMP signaling in the sarcolemmal / T-tubular compartment of cardiomyocytes
Heart Failure Congress 2013

Perera R.K., Nikolaev V.O.
Local cAMP signaling at the sarcolemma and the T-tubules of adult mouse cardiomyocytes
Heart Failure Association Winter Meeting 2013

Perera R.K., Nikolaev V.O.
Atropine increases cardiomyocyte cAMP and contractility by allosteric inhibition of PDE 1 and 4
Cyclic Nucleotide Phosphodiesterases Gordon Research Conference 2012
Perera R.K., Nikolaev V.O.

Local cAMP signaling at the T-Tubules of adult cardiomyocytes
Dutch-German Joint Meeting of the Molecular Cardiology Groups 2011

Awards:

Young Investigator Award, Heart Failure Association Winter Meeting 2014

First Contact Initiative Grant 2013 Award of the European Society of Cardiology

Hans-Jürgen-Brettschneider Basic Science Award, German Cardiac Society Fall Meeting 2013