
GABA and glycine co-transmission in the developing 

mouse respiratory network 

 

 

 

Dissertation 

for the award of the degree 

“Doctor of Philosophy (Ph.D)”  

Division of Mathematics and Natural Sciences 

of the Georg-August-University, Göttingen 

 

within the Sensory Motor Neuroscience doctoral program 

of the Georg-August University School of Science (GAUSS) 

 

Submitted by 

 

Md Jamilur Rahman 

from Sitamarhi, Bihar, India 

 

 

 

 

 

Göttingen, January 2014



 

2 
 

 

Thesis Committee 

Prof. Dr. Swen Hülsmann (Supervisor)  
Dept. of Neurophysiology and Cellular Biophysics,  
Center for Physiology and Pathophysiology, University of Göttingen, Göttingen 
 
Prof. Dr. Ralf Heinrich,  
Dept. Cellular Neurobiology,  
Schwann-Schleiden Research Centre, University of Göttingen, Göttingen 
 
Dr. Jeong Seop Rhee,  
Max Planck Institute for Experimental Medicine, Göttingen 
 

 

Members of the Examination Board 

Referee: Prof. Dr. Swen Hülsmann 
 
2nd Referee: Prof. Dr. Ralf Heinrich 
 

Further members of the Examination Board 

Prof. Dr. Nils Brose, 
Max Planck Institute for Experimental Medicine, Göttingen 
 
Prof. Dr. Michael Müller, 
Center for Physiology and Pathophysiology  
Institute for Neuro- and Sensory Physiology, University of Göttingen, Göttingen 
 
Prof. Dr. Thomas Dresbach, 
Dept. of Anatomy and Embryology, 
Center for Anatomy, University of Göttingen, Göttingen 

Dr. Jeong Seop Rhee,  
Max Planck Institute for Experimental Medicine, Göttingen 
 
 

Date of oral examination: 02nd April 2014 



 
Declaration of originality 

3 
 

 

 

 

Declaration of originality 
 
 
 
I hereby declare to the best of my knowledge and belief that my thesis entitled “GABA and 

glycine co-transmission in the developing mouse respiratory network” has been written 

independently with no other sources and aids except those acknowledged in the thesis. This 

thesis has not been submitted for a degree or diploma to any university or other institution. 

 

 

 

Md Jamilur Rahman 
 
Göttingen, January 2014  

 



Table of contents 

4 
 

Table of contents 
 

Table of contents .............................................................................................................. 4 

List of figures .................................................................................................................... 6 

List of tables ..................................................................................................................... 7 

List of abbreviations ......................................................................................................... 8 

1. Introduction ............................................................................................................. 10 

1.1 Breathing in mammals .................................................................................................... 10 

1.2 Structure and function of respiratory neuronal network .............................................. 11 

1.3 Inhibitory transmission ................................................................................................... 17 

1.4 Role of inhibitory transmission in respiratory network ................................................. 23 

1.5 Aim of this study ............................................................................................................. 25 

2. Materials and methods ............................................................................................ 26 

2.1 Mouse lines ..................................................................................................................... 29 

2.2 Slice preparations ........................................................................................................... 30 

2.3 Electrophysiology ............................................................................................................ 31 

2.4 Dye filling ........................................................................................................................ 34 

2.5 Immunohistochemistry................................................................................................... 35 

2.6 Single cell reverse transcription polymerase chain reaction ......................................... 37 

2.7 Data analysis ................................................................................................................... 38 

3. Results ..................................................................................................................... 42 

3.1 GABA and glycine co-transmission in the pre-Bötzinger complex ................................. 42 

3.1.1 Glycinergic neurons receive mixed-mIPSCs ............................................................. 42 

3.1.2 Rhythmic glycinergic neurons receive mixed-mIPSCs ............................................. 44 

3.1.3 Glycinergic neurons co-express GABAergic and glycinergic neuronal markers ...... 46 

3.2 Conditional knockout of the vesicular inhibitory amino acid transporter ..................... 48 



Table of contents 

5 
 

3.2.1 Conditional VIAAT KO embryos show lethal phenotype ......................................... 48 

3.3.2 Respiratory rhythmic activities are present in the cVIAAT KO preBötC .................. 51 

3.2.3 VIAAT expression is reduced in medulla but not in hypothalamus ......................... 53 

3.2.4 Passive and active properties of hypoglossal motor neurons ................................. 57 

3.2.5 Hypoglossal motoneurons in cVIAAT KO embryos lack inhibitory transmission ..... 59 

3.2.6 Glycinergic currents are reduced in cVIAAT KO hypoglossal motoneurons ............ 61 

3.2.7 Diaphragms of conditional VIAAT KO embryos are underdeveloped ..................... 63 

3.3 Characterization of glycinergic neurons in the pre-Bötzinger complex ......................... 64 

3.3.1 Rhythmic glycinergic neurons are primarily inspiratory .......................................... 64 

3.3.2 Rhythmic glycinergic neurons receive excitatory and inhibitory inputs ................. 66 

3.3.3 Glycinergic neurons show pacemaker properties ................................................... 68 

3.3.4 Synaptic coupling between glycinergic neurons ..................................................... 70 

3.3.5 Morphology of glycinergic neurons ......................................................................... 71 

4. Discussion ................................................................................................................ 73 

4.1 Role of co-transmission in the respiratory network ....................................................... 73 

4.2 Loss of inhibition affects function of hypoglossal motoneurons ................................... 75 

4.3 Developmental variability in co-transmission of GABA and glycine .............................. 77 

4.4 Loss of GABAergic transmission causes omphalocele .................................................... 79 

4.5 Glycinergic neurons are integrated in the pre-Bötzinger complex ................................ 80 

5. Summary and Conclusion ......................................................................................... 82 

6. References ............................................................................................................... 83 

7. List of publications ................................................................................................... 99 

8. Acknowledgements ................................................................................................. 100 



List of figures 

6 
 

List of figures 
 

Figure 1.1 Parasaggital section of adult rodent brainstem. ..................................................... 12 

Figure 1.2 Dual Oscillator model. ............................................................................................. 15 

Figure 1.3 Schematic repersentation of GABA abd glycine co-transmission. .......................... 22 

Figure 2.1 Recording from Rhythmic glycinergic neurons. ...................................................... 33 

Figure 3.1 Glycinergic neurons in the preBötC receive mixed-mIPSCs. ................................... 43 

Figure 3.2 Rhythmic glycinergic neurons in the preBötC receive mixed-mIPSCs. ................... 45 

Figure 3.3 Glycinergic neurons show heterogeneous inhibitory molecular markers. ............. 47 

Figure 3.4 cVIAAT KO embryos showed lethal phenotype. ..................................................... 49 

Figure 3.5 cVIAAT embryos were hyperglycemic. .................................................................... 50 

Figure 3.6 Respiratory rhythmic activity in the cVIAAT-KO slices and their control. ............... 52 

Figure 3.7 VIAAT expression was dramatically reduced in cVIAAT KO hypoglossal nucleus. .. 54 

Figure 3.8 VIAAT expression in the cVIAAT KO preBötC was reduced. .................................... 55 

Figure 3.9 VIAAT expression in cVIAAT KO hypothalamus was not reduced. .......................... 56 

Figure 3.10 Passive properties of hypoglossal motoneurons. ................................................. 57 

Figure 3.11 cVIAAT KO hypoglossal motoneurons and their controls produced APs. ............. 58 

Figure 3.12 cVIAAT hypoglossal motoneurons lacked inhibitory transmission. ...................... 60 

Figure 3.13 Glycinergic postsynaptic currents are reduced in hypoglossal motoneurons. ..... 62 

Figure 3.14 Whole-mounts neurofilament immunostaining on hemi-diaphragm. ................. 63 

Figure 3.15 Glycinergic neurons receive the respiratory rhythmic inputs. ............................. 65 

Figure 3.16 Glycinergic neurons received excitatory and inhibitory rhythmic inputs. ............ 67 

Figure 3.17 Glycinergic neurons show pacemaker properties. ............................................... 69 

Figure 3.18 Paired recording from two glycinergic neurons in the preBötC. .......................... 70 

Figure 3.19 Processes of glycinergic neurons in the preBötC. ................................................. 72 



List of tables 

7 
 

List of tables 
 

Table 1 Chemicals and reagents ............................................................................................... 26 

Table 2 Reagents used in singel cell reverse transcription PCR ............................................... 27 

Table 3 List of drugs.................................................................................................................. 27 

Table 4 List of primers .............................................................................................................. 28 



List of abbreviations 

8 
 

List of abbreviations 
 

ACSF Artificial cerebrospinal fluid  

AP Action potential 

AP5  DL-2-amino-5-phosphonopentanoate 

Bic Bicuculline 

BötC  Bötzinger complex 

cDNA Complementary deoxyribonucleic acid  

CNQX  6-cyano-7-nitroquinoxaline-2,3-dione  

CNS  Central nervous system 

Ctrl  Control 

cVIAAT KO Conditional VIAAT knockout 

DRC Dorsal respiratory column 

EGFP  Enhanced green fluorescent protein  

eIPSCs  Evoked inhibitory postsynaptic currents 

GABA γ-aminobutyric acid  

GABAAR  GABAA receptor 

GAD65  Glutamate decarboxylase 65 

GAD67  Glutamate decarboxylase 67 

GAT1  GABA transporter 1 

GlyR  Glycine receptor 

GlyT1  Glycine transporter 1 

GlyT2  Glycine transporter 2 

GlyT2-cre Glycine transporter 2 cre-recombinase 

In situ Being in original position or unmoved 

In utero In the uterus 

In vitro In an artificial environment outside the living organism 

In vivo In the living organism 

IPSCs  Inhibitory postsynaptic currents 

KCC2 Potassium chloride cotransporter 

KO  Knockout 



List of abbreviations 

9 
 

mIPSCs Miniature inhibitory postsynaptic currents 

mixed-mIPSCs Mixed miniature inhibitory postsynaptic currents 

mM Millimolar 

MNs  Motoneurons  

NKCC  Na+- K+-2Cl- cotransporter 

NKCC1 Sodium potassium chloride cotransporter 

NTS Nucleus of the tractus solitarius 

P  Postnatal day  

PCR  Polymerase chain reaction  

preBötC  Pre-Bötzinger complex 

pFRG Para facial respiratory group 

Rin  Input resistance 

PRG Pontine respiratory group 

RT-PCR  Reverse transcriptase polymerase chain reaction 

sIPSCs  Spontaneous inhibitory postsynaptic currents 

sc-RT-PCR  Single cell reverse transcriptase polymerase chain reaction 

Stry Strychnine 

SVs  Synaptic vesicles  

TTX Tetrodotoxin 

VGAT  Vesicular GABA transporter 

VIAAT  Vesicular inhibitory amino acid transporter 

VRC Ventral respiratory column 

ΣEPF  Sum of exponential product function 



Introduction 

10 
 

1. Introduction 
 

1.1 Breathing in mammals 

Breathing is a vital behavior, which starts at birth and continues till death. Respiration is 

required to maintain, a physiological level of O2 and CO2, pH in the blood and to control body 

thermoregulation. Before birth, these parameters are controlled through the placenta of the 

mother but immediately after birth, the respiratory circuitry in brainstem and lungs of the 

newborn take over this responsibility. If a neonate manages this critical moment 

successfully, he/she can survive, while those who fail die. This means that the respiratory 

neurons, muscle, and organs responsible for respiration, have to be functional before they 

are needed for survival. Furthermore, breathing has to be robust, yet flexible, as it gets 

modulated in varying physiological situations that require changes of breathing during 

physical exercise and sleeping to accurately meet the physiological demand. The respiratory 

rhythm changes during behaviors such as speech, chewing or swallowing (Feldman & Del 

Negro, 2006). Respiratory-like movements already appear in utero shortly after the onset of 

fetal movements in mice at E14.5 (Viemari et al., 2003) and in humans at 10-12 weeks of 

gestation (de Vries et al., 1982). 

Normal breathing is achieved with a precise tuning of the respiratory rhythm generator 

(RRG) and coordinated activity of respiratory muscles including those of the upper 

respiratory tract. Principally, a breathing cycle starts with inspiration, followed by post-

inspiration (PI) and ends with expiration. Inspiration is generated in brainstem and 

coordinated by simultaneous contraction of diaphragm and external intercostal muscles. The 

movement of diaphragm reduces the thoracic pressure that forces air to enter the lungs, and 

thereby allows gaseous exchange (O2 and CO2). Expiration is a passive process which is 

achieved through same respiratory tract by recoiling of diaphragm and lungs. However, in 

forced expiration, internal intercostal muscles and abdominal muscles are also involved 

(Feldman et al., 2003; Feldman & Del Negro, 2006). The neuronal network, which controls 

inspiratory and expiratory motor output, together known as the central pattern generator 

(CPG). The CPG is located in the medulla oblongata and pons. 
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Respiration can be disturbed with deletion of a single gene, for an example, potassium-

chloride cotransporter (KCC2) (Hubner et al., 2001), γ-aminobutyric acid (GABA) synthesizing 

enzyme (GAD67) (Asada et al., 1997), glycine transporter 1 (GlyT1) (Gomeza et al., 2003a), 

vesicular GABA transporter (VGAT/VIAAT) (Fujii et al., 2007; Saito et al., 2010), Pbx3 (Rhee et 

al., 2004), or Na-K-ATPase (Ikeda et al., 2004). Respiration is also partially or completely 

ceased in several diseases and syndromes like Rett syndrome (Amir et al., 1999), congenital 

central hypoventilation syndrome (CCHS) (Chen & Keens, 2004; Gozal, 2004; Rhee et al., 

2004), sudden infant death syndrome (SIDS) (Weese-Mayer et al., 2003; Garcia et al., 2013), 

amyloid lateral sclerosis (ALS) (Goulon & Goulon-Goeau, 1989), Parkinson’s disease 

(MacIntosh, 1977), and multiple systems atrophy (MSA) (McDonald, 1974).  

 

1.2 Structure and function of respiratory neuronal network 

The respiratory network is bilaterally arranged in a rostro–caudal direction from pons to 

medulla (Smith et al., 2007; Koizumi et al., 2008; Smith et al., 2013). Respiratory neurons 

across pons and medulla are categorized broadly, but not limited, to three groups: pontine 

respiratory group (PRG), ventral respiratory column (VRC) and dorsal respiratory column 

(DRC) located in medulla (Fig. 1.1b). Respiratory neurons interact within these regions to 

produce the final output pattern which is transmitted through premotor networks to cranial 

and spinal motoneurons (Rybak et al., 2007; Alheid & McCrimmon, 2008; Smith et al., 2013). 

The most important parts of the RRG are present in the VRC that is located ventrolaterally in 

the medulla, particularly ventral to the nucleus ambiguus (Amb), and extend from the caudal 

end of the facial nucleus (FN) to the rostral end of cervical spinal cord. 

pre-Bötzinger complex  

In the VRC, the pre-Bötzinger complex (preBötC) is located just caudal to the BötC (see 

below) and is accepted to be the kernel for respiratory rhythm generation. For the first time, 

the preBötC was identified in ventrolateral medulla (VLM) by micro sectioning of neonatal 

rat brainstem while recording the cranial and spinal motor output (Smith et al., 1991). 

Subsequently, the preBötC was identified in cat (Schwarzacher et al., 1995) and mice 

(Ramirez et al., 1996) as the site for the RRG. Later, it was also shown in vivo that the 

preBötC is responsible for breathing (Ramirez et al., 1998). 
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Figure 1.1 Parasaggital section of adult rodent brainstem. 
Parasagittal section of adult rodent brainstem shows different components of respiratory CPG network. 
Three transection cuts (dotted lines) are used during experimental preparation to study different 
phases of respiratory rhythm. (B) A sketch describes major respiratory nuclei in a parasagittal section 
through one side of rodent brainstem. Abbreviations area here: 5(or V)-trigeminal nucleus; 7(or VII)-
facial nucleus; 7n-facial nerve; XII-hypoglossal nucleus; BötC-Bötzinger Complex; cVRG-caudal ventral 
respiratory group; DRC-dorsal respiratory column; KF-Kölliker Fuse nucleus; LPB-lateral parabrachial 
nucleus; LRt: lateral reticular nucleus; MPB-medial parabrachial nucleus; NA-nucleus ambiguus; NAd- 
nucleus ambiguous dorsal division; NTS-nucleus of the tractus solitarius; PB-parabrachial nuclei; Pn-
pontine nuclei; preBötC-pre-Bötzinger complex; PRG-pontine respiratory group; RTN-retrotrapezoid 
nucleus; rVRG-rostral ventral respiratory group; scp-superior cerebellar peduncle; SO-superior olive. 
Figure 1.1A is adapted from Rybak et al, 2007 and figure 1.1B is adapted from Smith et al, 2013 with 
respective author’s and Elsevier permission. 



Introduction 

13 
 

The preBötC contains glutamatergic, GABAergic and glycinergic neurons (Kuwana et al., 

2006; Wallen-Mackenzie et al., 2006a; Winter et al., 2009). A subgroup of glutamatergic 

neurons in the preBötC, which expresses neurokinin 1 receptor (NK1R) (Gray et al., 1999) 

and the peptide somatostatin (SST) (Stornetta et al., 2003), is responsible for the respiratory 

rhythm generation. These NK1R and SST expressing and other glutamatergic neurons, in the 

VLM are derived from a developing brain homeobox 1 (DBX1) expressing progenitor cells 

(Gray et al., 2010). The loss of DBX1 removes all glutamatergic cells from VLM including the 

preBötC which are responsible for RRG both in vivo and in vitro (Gray et al., 2010). The exact 

anatomical location and functions of the preBötC became more evident from subsequent 

publications which showed that neurons in the preBötC are responsible for RRG, by 

lesion/ablation studies (Gray et al., 1999; Gray et al., 2001; Tan et al., 2008), anatomical 

studies (Guyenet & Wang, 2001; Wang et al., 2001; Tan et al., 2010), developmental studies 

(Champagnat et al., 2009; Bouvier et al., 2010; Gray et al., 2010), and optogenetics studies 

(Pagliardini et al., 2011).  

 

Parafacial respiratory group  

A second group of neurons, ventrolateral to the facial nucleus and close to the ventral 

surface, is referred as the parafacial respiratory group (pFRG). In the neonatal pFRG, neurons 

are rhythmically active and their rhythmic activity is well synchronized and precede 500 ms 

from phrenic nerve activity in en-bloc preparation and they are also called as pre-inspiratory 

(PI) neurons (Onimaru & Homma, 2003). The rhythmic activity and location of the pFRG is 

also confirmed by another publication which showed the pFRG rhythmic activity in 

embryonic rodent en-bloc and rhythmic slices preparations (Thoby-Brisson et al., 2005). The 

silencing of the pFRG (by knocking out a hindbrain transcription factor Egr2) causes an 

abnormal respiratory rhythm (Thoby-Brisson et al., 2009). The intrinsic rhythmic frequency 

of the pFRG is slower compared to rhythmic frequency recorded from either hypoglossal or 

phrenic rootlet (Thoby-Brisson et al., 2005). In the adult animals, the pFRG has been 

suggested to be involved in expiration (Janczewski & Feldman, 2006a) and forced expiration 

(Feldman & Del Negro, 2006).  The rhythmic activity in the pFRG starts earlier (E14.5) than 

the rhythmic activity in the preBötC (E15.5) and therefore it is also hypothesized that the 

pFRG initially entrain and then couple with the preBötC to produce normal respiratory 
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rhythmic activity (Thoby-Brisson et al., 2009). This leads to a new concept of two oscillators 

(the pFRG and the preBötC), thus to the dual organization of the RRG (Fortin & Thoby-

Brisson, 2009; Thoby-Brisson et al., 2009). The concept of two oscillators in the neonatal 

rodent is supported by computational modeling and experiments by several groups 

(Onimaru et al., 1990; Onimaru & Homma, 2003; Janczewski & Feldman, 2006a; b; Wittmeier 

et al., 2008; Lal et al., 2011). 

 

Bötzinger complex 

The Bötzinger complex (BötC), the most rostral part of the VRC, was shown in the cat as a 

group of expiratory neurons located ventral to the rostral portion of the nucleus ambiguus 

(Amb) (Ezure et al., 1988). Among expiratory neurons, the BötC also contains post-

inspiratory neurons (Smith et al., 2007), which inhibit inspiratory neurons in other parts of 

the respiratory circuitry (Ezure et al., 2003a). The BötC expiratory-augmenting neurons 

project to the spinal cord reaching very close to phrenic motoneurons (Tian et al., 1998). A 

subgroup of the BötC neurons sends axons rostral to the facial nucleus and also appear to 

target the pons (Ezure et al., 2003b). Functionally, the BötC is involved in changing the phase 

between inspiration and expiration. 
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Figure 1.2 Dual Oscillator model. 
Neuronal group 1 (the pFRG) provides excitatory synaptic inputs to neuronal group 2 (the preBötC) 
which then provides excitatory synaptic inputs to a group of inhibitory neurons. These inhibitory 
neurons provide inhibitory inputs to neuronal group 1. 

 

Ventral Respiratory Group 

Caudal to the preBötC, the ventral respiratory group (VRG) continues to the rostral end of 

spinal cord. Anatomically, the VRG is further divided into two parts, rostral VRG (rVRG) and 

caudal VRG (cVRG). The rVRG is located caudal to the preBötC and it consists of 

premotoneurons connected to inspiratory motoneurons in spinal cord (Alheid & 

McCrimmon, 2008). It receives excitatory inputs from the preBötC and inhibitory inputs from 

the BötC. The cVRG, which is located caudal to the rVRG, contains bulbospinal 

premotoneurons which innervate the expiratory motoneurons the in spinal cord. The rVRG 

controls the inspiratory pattern whereas the cVRG controls the expiratory respiratory 

pattern. 
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Nucleus of the tractus solitarius 

The respiratory neurons in the nucleus of the tractus solitarius (NTS) receive feedback inputs 

from afferent fibres originating in lower and upper respiratory track related to chemo and 

mechanical senses (Paton et al., 1994; Boscan et al., 2002). These feedbacks are critical in 

integrating breathing with other physiological behaviours like emotion and sleeping.  

Hypoglossal nucleus  

The hypoglossal motoneurons (HMn) are located below the fourth ventricle and innervate 

tongue muscles, which are involved in maintaining the patency of tongue during respiration, 

speech, swallowing, and mastication (Mu & Sanders, 2010). The patency of pharyngeal 

lumen is maintained by four main muscles, of which, tongue muscles are innervated by HMn 

while the hyoid muscles are innervated by neurons located ventral to HMn and soft palate 

muscles are innervated by neurons located dorsolateral to HMn and Amb (Sokoloff & 

Deacon, 1992). The respiratory neurons in hypoglossal nucleus receive direct inputs from the 

preBötC and is often recorded to monitor the respiratory activity in rhythmic slice 

preparation (Tan et al., 2010). HMn receive both GABAergic and glycinergic inhibitory 

terminals (Aldes et al., 1988); of which, GABAergic inhibitory signals come mainly from the 

nucleus of Roller, which is located ventral to HMn (van Brederode et al., 2011). It has also 

been shown that hypoglossal motoneurons receive simultaneous GABA and glycine inputs 

which is likely due to co-release of GABA and glycine (O'Brien & Berger, 1999). A disturbance 

in the HMs is thought to be involved in the pathogenesis of obstructive sleep apnea (Horner, 

2007). 

Pontine nuclei 

The pontine respiratory group (PRG) is located in the rostral dorsolateral side of the pons. 

The respiratory neurons in the PRG are present mainly in parabrachial (PB) nuclei and 

Kölliker–Fuse (KF), which regulate the inspiratory–expiratory phase transition (Dutschmann 

& Herbert, 2006). The lateral PB influences an inspiratory facilitation while the medial PB 

and the KF facilitate largely an expiratory response as shown by chemical and electrical 

experiments (Lara et al., 1994; Spyer, 2009). The KF receives and sends signals to the NTS 

and to the BötC (Smith et al., 2013).  
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1.3 Inhibitory transmission  

The balance between excitatory and inhibitory transmission needs to be maintained for a 

normal physiological state, otherwise it could result into pathophysiological and neuro-

degeneration diseases. In addition to maintaining the homeostasis, both GABA and glycine 

have many critical roles in the cell signaling of the CNS and non-neuronal tissues (den 

Eynden et al., 2009; Chalphin & Saha, 2010). They also play a role in the development and 

differentiation of the CNS (Chalphin & Saha, 2010; Tatetsu et al., 2012). Therefore, the 

disturbance in GABA transmission is ascribed to many neurological diseases including 

epilepsy (Freichel et al., 2006) and general anxiety disorder (Kosel et al., 2004). The 

importance of inhibitory transmission in respiratory rhythm patterning is described in 

section 1.4. 

Synthesis of inhibitory transmitters in the presynaptic terminal 

GABA is synthesized from glutamate either in the cell body or presynaptic terminal, with the 

help of glutamic acid decarboxylase (GAD), which exists in two main isoform; GAD67 and 

GAD65 (Lernmark, 1996; Bosma et al., 1999) and two smaller isoform; GAD25 and GAD44 

(Szabo et al., 1994). Glycine is synthesized in the body from serine by serine 

hydroxymethyltransferase (SHMT) (Hernandes & Troncone, 2009). 

Packaging of inhibitory transmitters into synaptic vesicle 

The neurotransmitters are packaged into a small clear vesicle (SCV), commonly called as 

“synaptic vesicle” (SV), before they are docked to the cell membrane of presynaptic nerve 

terminal. The vesicular GABA transporter (VGAT) was shown to fill GABA into synaptic 

vesicles (McIntire et al., 1997). In the same year, the co-localization of VGAT with GAD67 and 

with GlyT2 (a glycine neuronal transporter) were shown which lead to a hypothesis that the 

VGAT could fill both GABA and glycine in SVs, therefore, the VGAT was named vesicular 

inhibitory amino acid transporter (VIAAT) (Sagne et al., 1997). Subsequently many groups 

confirmed that VIAAT fills both GABA and glycine into SVs (Chaudhry et al., 1998; Dumoulin 

et al., 1999; Chessler et al., 2002; Supplisson & Roux, 2002; Ebihara et al., 2003; 

Gammelsaeter et al., 2004). 
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Action of inhibitory transmitters on postsynaptic receptors  

After arrival of an action potential (AP) at a presynaptic terminal, inhibitory transmitters are 

released into a synaptic cleft and exert their action through GABAergic receptors (GABAR) 

and/or glycinergic receptors (GlyR) which are expressed on the cell membrane of a 

postsynaptic neuron. The GABAR are classified into different classes (GABAAR, GABABR, and 

GABACR); among them, GABAAR and GABACR are ionotropic while GABABR is metabotropic. 

GABAAR forms pentameric chloride channels using different combination of its subunits (α, 

β, γ); the most common combination is 2 α-subunits, 2 β-subunits, and 1 γ-subunit (Farrar et 

al., 1999; Cherubini & Conti, 2001)Although different types and subunits of GABAAR provide 

higher flexibility in GABA mediated inhibition, but β3-subunit inactivation makes the 

receptor non-functional (Culiat et al., 1995). Inhibitory transmission in brainstem, spinal 

cord, and retina is mainly mediated through GlyR (Sato et al., 1991). GlyR is also a 

pentameric chloride channel forms by a different combination of its subunits (α1-4 and β); 

the most common in adult CNS is 3α:2β (Langosch et al., 1988). The expression and 

combination of its subunits depends on age and tissues of an animal (Lynch, 2004). While 

homomeric GlyR are reported only at embryonic stage, heteromeric GlyR are expressed in 

embryonic as well as postnatal stages. GlyR are reported to be highly concentrated in the 

grey matter and the hypoglossal nucleus (Graham et al., 1967; Hernandes & Troncone, 

2009). 

Recycling of inhibitory neurotransmitters by membrane transporters 

GABA is regulated at synapses through different GABA transporters (GAT), which consist of 

four types GAT1, GAT2, GAT3, and betaine-GABA transporter1 (Borden et al., 1995). Among 

them, GAT1 is commonly expressed by neurons and most abundantly present in the CNS 

(Borden et al., 1995). Glycine is regulated at synapse through either glycine transporter 1 

(GlyT1) or glycine transporter 2 (GlyT2) or both. The GlyT1 has three splice variants (GlyT1a, 

GlyT1b, GlyT1c) while GlyT2 has none (Borowsky et al., 1993; Jursky & Nelson, 1996). In the 

respiratory network, GlyT1 is primarily expressed on astroglial cells (Szoke et al., 2006), 

which regulates the extracellular concentration of glycine at synapses (Gomeza et al., 

2003a). GlyT2 is expressed on neurons (Zafra et al., 1995; Jursky & Nelson, 1996; Gomeza et 

al., 2003b) and is responsible for maintaining the glycine concentration in the presynaptic 

terminal (Gomeza et al., 2003b; Latal et al., 2010).  
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Inhibitory transmission switch from excitatory to inhibitory during development 

GABA and glycine were discovered as inhibitory transmitters in the beginning, but now it is 

known that they can be both excitatory in immature neurons and inhibitory in mature 

neurons (Cherubini et al., 1991; Flint et al., 1998; Ben-Ari, 2001). The depolarizing action of 

GABA and glycine in immature oligodendrocytes progenitor cells causes intracellular calcium 

influx (Belachew et al., 2000), that may be necessary for the development and maturation of 

various synapses including inhibitory synapses (Kneussel & Betz, 2000; Aguayo et al., 2004). 

In rodent, GABA and glycine are already inhibitory around E19 (Ren & Greer, 2006) and 

many reports confirm the inhibitory action of GABA and glycine at P0 (Feng et al., 1998; 

Hubner et al., 2001; Gomeza et al., 2003a; Gomeza et al., 2003b).  

In general the switch from depolarizing to hyperpolarizing actions of GABA or glycine 

depends on the intracellular chloride concentration in a neuron. GABA and glycine cause 

depolarization in immature neurons which have high chloride concentration (Ben-Ari, 2001; 

Gaiarsa et al., 2002) and hyperpolarization in mature neurons which have low chloride 

concentration. The intracellular chloride concentration depends on the expression of 

different K+/Cl- co-transporters (KCCs). The high intracellular chloride concentration is due to 

higher expression of sodium-potassium-chloride cotransporter 1 (NKCC1) whereas low 

chloride concentration is due to higher expression of potassium-chloride cotransporter 2 

(KCC2) (Plotkin et al., 1997; Rivera et al., 1999; Ben-Ari, 2002). The chloride concentration 

can also be regulated by the endogenous modulator brain-derived neurotrophic factor 

(BDNF) by down regulation of KCC2 (Rivera et al., 2002). A second developmental change 

concerns the composition of postsynaptic receptors. During development, subunit 

composition of GlyR is changed from α2 in prenatal to α1 in adult while β remains 

unchanged (Legendre, 2001; Lynch, 2004; 2009). Furthermore, a GlyR is expressed as both 

homomeric and heteromeric channels in immature neurons, whereas it is expressed only as 

heteromeric channel in mature neurons (Hoch et al., 1989; Aguayo et al., 2004). 

Interestingly, the cluster size of the GlyR increases during same developmental change too. 

Similar changes also occur in composition of GABAAR (Fritschy et al., 1994; Liu & Wong-Riley, 

2004). 
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Glycinergic transmission increases during development 

Although both GABAergic and glycinergic transmissions are present in the whole CNS, 

GABAergic transmission is dominated in the forebrain whereas glycinergic transmission is 

dominated in the hindbrain (Berger, 2011). The relative contribution of GABA and glycine 

inhibitory transmission changes during development (Singer & Berger, 2000). In spinal 

motoneurons, the glycine-mediated component is increased several folds in neonate 

compared to their embryonic stage (Gao & Ziskind-Conhaim, 1995), while mixed-mIPSCs 

resulting from simultaneous activation of GABAAR and GlyR remain the same (Gao et al., 

2001). This developmental change may be due to an increase in the cluster-size and affinity 

of GlyR with glycine as shown in rat spinal cord and brainstem (Aguayo et al., 2004). During 

development, a decrease in GABA mediated component and an increase in glycine mediated 

component are also shown in lateral superior Olive (LSO) of gerbil and rat by 

electrophysiology and immunohistochemical experiments respectively (Kotak et al., 1998; 

Nabekura et al., 2004).  

 

Cotransmission  

Chemical transmission as the mode of communication between neurons was reported for 

the first time by Sir Henry Dale (Dale, 1914). Then, neurons were classified based on their 

neurotransmitter release and also how they act on the postsynaptic cell. Until 1950, it was 

assumed that neurons in peripheral nervous system communicate through either 

acetylcholine or epinephrine or nor-epinephrine only and that their actions can be either 

excitatory or inhibitory depending on the postsynaptic side (Dale, 1935). The principle “one 

neuron-one transmitter”, was construed by Prof. Eccles in 1957 based on Dale’s original 

article “A neuron is a metabolic unit and operates at all its synapses by the same chemical 

transmission mechanisms” (Dale, 1935). However, in 1960s Eccles’s principle of “one 

neuron-one transmitter” disproved after the publication where adrenergic neurons of the 

rat pineal gland were positive for 5-hydroxytryptamine (5-HT) (Owman, 1964). This was the 

first description of two transmitters in the same nerve terminal. Furthermore, the direct 

evidence for coexistence of two neurotransmitters (acetylcholine and noradrenalin) was 

shown in the sympathetic nerve terminal by co-culturing sympathetic neurons with cardiac 
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myocytes (Patterson & Chun, 1974; Furshpan et al., 1976). The first example of a co-release 

was reported in the electric organ of Torpedo where it was shown that ATP is co-released 

with ACh (Whittaker et al., 1972). Subsequently, other groups also reported the co-release 

of peptides such as Substance P, Somatostatin, Bradykinin and Endorphin with ACh 

(Burnstok, 1972; Agranoff 1975) as reported by (Burnstock, 1976). 

 

Cotransmission of GABA and glycine 

The co-localization of GABA and glycine in a single presynaptic nerve terminal was shown by 

Immunohistochemistry in a subset of retinal neurons of tiger salamander (Yazulla & Yang, 

1988). This finding was further supported by another study which showed the presence of 

both GABA and glycine in the same synaptic vesicle of a nerve terminal isolated from rat 

medulla via immunogold labeling (Burger et al., 1991). Supporting  the possibility of co-

transmission, another group showed that the majority of cultured rat spinal neurons are 

activated by both GABA and glycine meaning that the same neuron express both GABAAR 

and GlyR (Smith et al., 1989). The co-localization of GABA and glycine in the presynaptic 

terminal and the co-expression of GABAAR and GlyR on the postsynaptic side at the same 

synapse is shown in an adult rat spinal cord (Todd et al., 1996) which is another clear 

indication that co-transmission of GABA and glycine can happen in spinal cord.  
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Figure 1.3 Schematic repersentation of GABA abd glycine co-transmission. 
GABA is synthesized from glutamate with the help of GAD67 and transported through GAT and 
glycine is transported through GlyT2 in the presynaptic terminal. Both GABA and glycine are filled 
into SV with the help of VIAAT. GABA and glycine filled SV fuses to presynaptic membrane upon 
arrival of AP and then release its content into synaptic cleft to act on postsynaptic GABAAR and GlyR. 
 

 

Finally, the co-release of GABA and glycine is shown by paired electrophysiological recording 

at the central synapse between interneuron and motoneuron in rat spinal cord slices (Jonas 

et al., 1998). Another group showed that markers for both GABA and glycine co-localize at 

presynaptic and their receptors on postsynaptic side at the same synapses in the primary 

culture as well as in spinal cord slices by immunohistochemistry (Dumoulin et al., 1999). The 

co-release was further shown in other brain regions including neonatal rat hypoglossal 

motoneurons (O'Brien & Berger, 1999), rat cerebellum (Dumoulin et al., 2001), rat abducens 

motoneurons (Russier et al., 2002), rat midbrain, pons and cerebellum (Tanaka & Ezure, 

2004). It has been postulated that co-release of GABA and glycine controls precisely a highly 

complex behavior such as auditory processing (Awatramani et al., 2005; Lu et al., 2008; 

Singer, 2008). These publications suggest that co-release is a general phenomenon rather 

than an exception.  
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1.4 Role of inhibitory transmission in respiratory network 

Inhibitory transmission in respiratory network has been studied for last couple of decades, 

which highlight its role on respiratory rhythmic activity through wide range of experiments. 

These studies are broadly classified into two sections; pharmacological and genetics. 

Pharmacological studies 

The inhibitory transmission is important for all coordinated motor outputs including 

respiration. In neonate brainstem-spinal cord preparation, blocking of GABAAR and GlyR by 

bicuculline (Bic) and strychnine (Stry) as well as low chloride concentration in the bath, 

reduce the phasic inhibition and increase the firing frequency of pre-inspiratory neurons 

during inspiration (Onimaru et al., 1990). However, the blockade of GABAR and GlyR do not 

stop pre-inspiratory rhythm generation in RVLM, which suggest that synaptic inhibition is not 

required for respiratory rhythm generation but for its modulation and patterning (Onimaru 

et al., 1990).  

In adult rat brainstem-spinal cord preparation, both agonists and antagonists of GABAAR and 

GlyR were applied through arterially perfusion to monitor their effect on the motor output 

of two important respiratory nerves, phrenic and hypoglossal. The agonists (GABA, glycine 

and muscimol) reduce, while antagonists (picrotoxin, bicuculline, strychnine and phaclofen) 

increase both frequency and amplitude of inspiratory bursts (Hayashi & Lipski, 1992). These 

results were further corroborated by another study which showed the blockade of GlyR by 

strychnine also increases the frequency of rhythmic bursts recorded from hypoglossal 

rootlet in rhythmic slice made from neonatal and adult mice (Ramirez et al., 1996). 

Subsequently, another study showed that reciprocal inhibition of expiratory neurons in the 

preBötC was primarily mediated by glycinergic transmission and also confirmed that 

strychnine and bicuculline increase the frequency (even induce seizure) of hypoglossal 

rootlet bursts in neonate rat medullary slice (Shao & Feldman, 1997). The role of inhibitory 

transmission in respiration was also shown in the working heart-brainstem preparation 

(most close to in vivo), where the 3-phase respiratory rhythm (inspiration, post inspiration, 

and expiration) after systemic application of strychnine changes to 2-phase respiratory 

rhythm (inspiration and expiration) by merging of postinspiratory phase into inspiratory 

phase with increase in rhythmic frequency (Busselberg et al., 2001). The systemic application 
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of strychnine would have blocked all glycinergic transmission in the network of working-

heart-brainstem preparation which may have resulted complete absence of the 

postinspiratory phase. Indeed that was the case, because selective blocking (through viral 

delivery of allatostatin receptor under GlyT2-promoter and subsequent application of 

allatostatin) of glycinergic neurons in the BötC, only decreases but does not eliminate the 

postinspiratory component (Abdala AP, 2010). In contrast, the bilateral microinjection of 

bicuculline and strychnine in the BötC strongly reduces the respiratory activity even causes 

apnea, whereas bicuculline injection in the preBötC causes a small decrease in respiratory 

frequency and increase with strychnine in anesthetized, vagotomized, paralyzed and 

artificially ventilated rabbits (Bongianni et al., 2010). Contradicting above findings, a recent 

study suggests that the rhythmic activity does not change after blocking the inhibitory 

transmission except the lung’s inflation induced inhibitory reflex (Breuer-Hering) is 

suppressed (Janczewski et al., 2013).  

Genetic studies 

GABA is mainly synthesized by either GAD65 or GAD67 enzymes. Knocking out (KO) of 

GAD65 in mice does not change respiration, locomotion, and GABA level in CNS, but the 

GAD65 KO mice become susceptible to seizures (Asada et al., 1996). However, the GAD67 KO 

mice have severe phenotype including disturbance in respiratory pattern, cleft palate, and 

the mice die during “first morning after birth” (Asada et al., 1997; Condie et al., 1997; 

Kuwana et al., 2003; Tsunekawa et al., 2005; Fujii et al., 2007; Oh et al., 2010). In addition, 

GAD67 KO mice also show a decrease in respiratory and increase in non-respiratory muscles 

(Fogarty et al., 2013a). Considering the function of VIAAT (the only known vesicular 

transporter for GABA and glycine), one would expect that its removal would affect 

phenotype severely. Exactly this is shown in the VIAAT KO mouse embryos that do not 

breathe (Saito et al., 2010), do not show any phrenic activity (Fujii et al., 2007), do not have 

any inhibitory transmission (Saito et al., 2010), and show other features like insensitivity to 

tail pinch, kyphotic (hunched posture), omphalocele and cleft palate (Wojcik et al., 2006; 

Fujii et al., 2007; Saito et al., 2010). The VIAAT KO also shows reduced surface expression of 

GABAAR and GlyR (Wojcik et al., 2006). Similar to GAD67 KO embryos, VIAAT KO embryos 

have reduced respiratory and gained non-respiratory muscles (Fogarty et al., 2013b).  
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The GABAAR and the GlyR mediated inhibitory transmissions are essential for development 

and maturation of motoneurons (Aguayo et al., 2004). The clustering of the GABAAR and the 

GlyR into postsynaptic membrane requires the scaffolding protein gephyrin (Sassoe-

Pognetto et al., 1995; Feng et al., 1998). Thus, gephyrin KO mice have increased 

spontaneous hypoglossal motoneurons activity in vitro, reduced respiratory motoneurons 

survival, and decreased phrenic innervations to diaphragm (Banks et al., 2005). Similar 

reduced respiratory motoneuron survival, and decreased phrenic innervations to diaphragm 

are observed in GAD67 KO embryos (Fogarty et al., 2013a). The non-neuronal tissues also 

require the GABAergic transmission for their normal development and this was 

experimentally shown by inducing a mutation in the β-3 unit of GABAAR that results in the 

cleft palate (Culiat et al., 1995). Pharmacological blockade and genetic deletion of GAT1 

result in neuronal excitability as shown by brain slice studies (Jensen et al., 2003; Semyanov 

et al., 2003). Similarly, GlyT1 KO mice show suppressed respiratory activity leading to death 

on the first postnatal day even though the CNS anatomy is normal (Gomeza et al., 2003a). 

The GlyT2 KO mice show hyperekplexia, spasticity, tremor and finally death in the second 

postnatal week (Gomeza et al., 2003b; Latal et al., 2010). 

 

1.5 Aim of this study 

To analyze the role of co-transmission in the respiratory network, co-transmission has been 

quantified based on the decay kinetics of mIPSCs and co-expression of inhibitory neuronal 

markers (GlyT2, GAD67, GAD65, and GAT1) in the preBötC glycinergic neurons by Patch-

clamp recordings and single cell reverse transcription polymerase chain reactions (sc-RT-

PCR) using GlyT2-EGFP neonatal mice. Furthermore, the role of co-transmission was 

attempted to study in conditional VIAAT KO (cVIAAT KO) mouse embryos where VIAAT was 

removed by cre-recombinase action from neurons which express GlyT2 promoter. Since 

glycinergic neurons in the preBötC receive mixed-mIPSCs and co-express inhibitory neuronal 

markers, they were further characterized using Patch-clamp and dye filling experiments. 

 



Materials and methods 

26 
 

2. Materials and methods 
 

Table 1 Chemicals and reagents 

Reagents/Chemicals Company/supplier 

Sodium Chloride (NaCl) Merck Millipore GmbH 

Potassium Chloride (KCl) Merck Millipore GmbH 

Sodium dihydrogen phosphate (NaH2PO4) Merck Millipore GmbH 

Clacium chloride (CaCl2) Sigma-Aldrich AG GmbH 

Magnesium Chloride (MgCl2) Merck Millipore GmbH 

Glucose Merck Millipore GmbH 

Sodium bi-carbonate (NaHCO3) Sigma-Aldrich AG GmbH 

N-2-Hydroxyethylpiperazine- N'-2-ethane sulfonic acid (HEPES) Biomol GmbH 

Adenosine-tri-phosphate (ATP) Sigma-Aldrich AG GmbH 

Ethylene-glycol- tetraacetic-acid (EGTA) Sigma-Aldrich AG GmbH 

D-gluconic acid Sigma-Aldrich AG GmbH 

Cesium Chloride (CsCl) Sigma-Aldrich AG GmbH 

Tetraethylammonium  chloride (TEACl) Sigma-Aldrich AG GmbH 

Triton X-100 Sigma-Aldrich AG GmbH 

Sodium azide Sigma-Aldrich AG GmbH 

Paraformaldehyde (PFA) Sigma-Aldrich AG GmbH 

Isofluorane Abbott Deutschland GmbH  

Methanol Merck Millipore GmbH 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich AG GmbH 

Tween 20 Sigma-Aldrich AG GmbH 

Bovine Serum Albumin (BSA) SERVA Electrophoresis GmbH 

Benzyl benzoate Sigma-Aldrich AG GmbH 

Benzyl alcohol Sigma-Aldrich AG GmbH 

Sucrose Carl Roth GmbH 
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Table 2 Reagents used in singel cell reverse transcription PCR 

Reagents/Chemicals Working 

Concentration 

Company/supplier 

Reverse transcriptase buffer 1 µl Invitrogen, Germany 

Random hexamer primers 5 µM Thermo Scientific, Germany 

Dithiothreitol 10 mM Invitrogen, Germany 

RANaseOUT 1 U Invitrogen, Germany 

Reverse transcriptase Superscript III 100 U Invitrogen, Germany  

Deoxyribonucleosidetriphosphate (dNTP) 100 µM Thermo Scientific, Germany 

RedTaq Polymerase 2.5 U Sigma-Aldrich AG GmbH 

 

Table 3 List of drugs 

Name of Drugs Stock 
Solvent 

Working 
Concentration 

(in ACSF) 

Company 

6-cyano-7-nitroquinoxaline-2,3-dione 
(CNQX) 

DMSO 20 µM Tocris (R&D Systems GmbH) 

DL-2-amino-5-phosphonopentanoate 
(DL-AP5) 

NaOH 100 µM Tocris (R&D Systems GmbH) 

Bicuculline (Bic) Water 20 µM Sigma-Aldrich AG GmbH 

Strychnine (Stry) Water 3 µM Sigma-Aldrich AG GmbH 

Tetradotoxin (TTX) Acitic acid 0.5 µM Tocris (R&D Systems GmbH) 

Zolpidem DMSO 0.5 µM Sigma-Aldrich AG GmbH 

Sucrose ACSF 300 mM Carl Roth GmbH 

γ-amino butyric acid (GABA) Ringer sol 10 mM Sigma-Aldrich AG GmbH 

Glycine(Gly) Water 1 mM Sigma-Aldrich AG GmbH 

 

  



Materials and methods 

28 
 

 

Table 4 List of primers 

Transcript Primer for first PCR Primer for second PCR 

GAD1 s: GTGGATGCTGCTTGGGGT s: GTGGGATTTGAAAACCAGATCAA 

 as: GAAGAAGTTGACCTTGTCCC (583) as: TTTTCTCGTCGCTCAGGGC (189) 

GAD2  s: GTGGATGCTGCTTGGGGT s: TACTGGGTTTGAGGCACACATT 

 as: GAAGAAGTTGACCTTGTCCC (583) as: GCGGCTCATTCTCTCTTCAT (184) 

GAT1 s: GTATTTCTGCATCTGGAAGG s: TATCATCCTGTTCTTCCGTGGA 

 as: GAAGCCCAAGATGGAGAAGA (354) as: AGGAGTTGATGCAGCAAACGAT (238) 

GlyT2  s: GCAAAGTCAACATTGAGAATGTG s: CATCTTTTTTCTGATGCTTCTCAC 

 as:AGATACATTTTTATCACGAACATAATC 
(625) 

as:TCATCATCTCGATGTCTTCACAGA 
(311) 

β-Actin s: GATATCGCTGCGCTGGTCGTC s: CGTGGGCCGCCCTAGGCACCA 

 as: CATGGCTGGGGTGTTGAAGGTC (387) as: CTTAGGGTTCAGGGGGG (238) 

 

  



Materials and methods 

29 
 

2.1 Mouse lines  

Mice handlings and experiments have been carried out according to the guidelines of the 

“European Parliament and the Council of 22 September 2010” on the protection of animals 

used for scientific purposes and in accordance with the German Animals Protection Act 

(Tierschutzgesetz; TierSchG §4 Abs. 3). The details of animal handling were communicated to 

the animal welfare official of University Medical Center, Göttingen (Institutional Act number 

– T11/27). The mice used for experiments were bred and grown either in the animal facility 

of Institute of Physiology and Pathophysiology, University Medical Center or Max Planck 

Institute for Experimental Medicine in Göttingen.  

GlyT2-EGFP mice  

GlyT2-EGFP (Tg(Slc6a5-EGFP)1Uze) mice that express enhanced green fluorescent Protein 

(EGFP) under control of neuronal glycine transporter 2 (GlyT2) promoter, were used for  

identification of glycinergic neurons (Zeilhofer et al., 2010). Electrophysiological experiments 

and sc-RT-PCR were carried out on slices from neonates (P0-P10) of this mouse line. 

Conditional VIAAT knockout mice 

To study the effect of VIAAT removal from glycinergic neurons on overall co-release of GABA 

and glycine, a conditional VIAAT KO (cVIAAT KO) mouse line was generated by crossing 

homozygous or heterozygous floxed VIAAT female (contributed by Dr. Sonja Wojcik, MPI-

EM, Göttingen, unpublished) with BAC-transgenic GlyT2-Cre positive male that were 

heterozygous for floxed VIAAT allele (Tg(Slc6a5-icre)121Veul) (Ishihara et al., 2010). Since 

pubs did not survive after birth, a timed mating was carried out to get embryos of particular 

age (E18.5) for experiments. The detection day of vaginal plug was numbered as E0.5. 

Offspring with GlyT2-cre and homozygous VIAAT floxed alleles were considered cVIAAT KO, 

while GlyT2-cre and heterozygous VIAAT floxed allele were considered as heterozygous and 

remaining embryos were considered as control (Ctrl). Embryos (N=369) were genotyped to 

check the distribution of floxed alleles and GlyT2-cre (control-220, heterozygous-83, and KO-

66).  

  



Materials and methods 

30 
 

2.2 Slice preparations 

Two kinds of slices containing the preBötC nuclei were cut. Thin slices (250-300 µm) 

contained only a part of the preBötC whereas the rhythmic slice (650 µm) contained all or 

most of the preBötC. The rhythmic slice was required to identify respiratory glycinergic 

neurons that receive synaptic inputs in-phase with mass activity in the preBötC. 

Thin medullary slices 

Neonatal GLYT2-EGFP mice were deeply anesthetized under a fume hood using diethyl-ether 

and decapitated. The brain was removed from the skull and cooled in ice-cold and carbogen 

saturated artificial cerebrospinal fluid (ACSF) (in mM; 118 NaCl, 3 KCl, 1.5 CaCl2, 1 MgCl2, 1 

NaH2PO4, 25 NaHCO3, and 30 D-glucose). The osmolarity of ACSF was ~ 310 mOsm/l and the 

pH was adjusted to 7.4 with 1 M NaOH. Brainstem was separated from forebrain and 

midbrain in carbogen saturated ACSF. An agar block was cut at 20° angle and glued on a 

specimen plate. The brainstem was glued on the agar block on its dorsal side so ventral 

surface of the brainstem was accessible to carbogen saturated ACSF during slicing. The 

specimen plate with glued brainstem was transferred Microtome (VT1200S, Leica, 

Bensheim) and coronal slices of different thickness were cut in rostral-caudal direction until 

hypoglossal and principle nucleus of inferior olive were identified. Since the preBötC starts at 

this level (Ramirez et al., 1996), 2-3 slices (250-300 µm each) were cut from each brainstem 

and kept in a custom made chamber containing carbogenated ACSF at room temperature 

until used for experiments. For embryonic slices, pregnant mice bearing embryos were 

anesthetized using isofluorane (Abbott Deutschland GmbH & Co. Wiesbaden, Germany) and 

killed by cervical dislocation. Uterus was opened after making abdominal cesarean section 

(CS) and embryos were taken out, cleaned, stimulated by gentle touch on naval remnant and 

tail pinching to start breathing and placed in warmed area (~30 °C). The embryos, one after 

another, were anesthetized under ice, decapitated and whole brain was quickly removed 

from skull. The remaining procedure was the same as of neonatal mice. 
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Rhythmic medullary slice 

The procedure of cutting rhythmic slices was same as thin slices except after reaching the 

level of principle nucleus of inferior olive, instead of 2-3 slices, one thick slice (650 µm) was 

cut that could produce spontaneous rhythmic bursts in 8mM K+ containing ACSF, mimicking 

respiratory activity (Smith et al., 1991; Ramirez et al., 1996). This was necessary to identify 

respiratory rhythmic glycinergic neurons; therefore only one slice per neonate or embryo 

was made. 

 

2.3 Electrophysiology  

Electrophysiological recordings were made using a Multiclamp 700B amplifier in 

combination with DigiData (1440) interface and pClamp10 software, (Molecular Devices, 

Sunnyvale, CA, USA). The electrophysiological recorded signals were filtered at 2-3 kHz and 

passed through hum-bug eliminator (Quest Scientific, North Vancouver, Canada) to remove 

50 Hz hum. The signals were digitized at 10 kHz before they were saved for analysis.  

Whole-cell recording 

The slice was placed in the recording chamber (volume-2ml) which was continuously 

superfused with bath solution (carbogenated ACSF) at 4ml/min. The preBötC was identified 

under epiflourescent microscope under 5X objective. Slices from GLYT2-EGFP mice were 

illuminated with a 470 nm emitting photodiode (Rapp OptoElectronic GmbH, Hamburg, 

Germany) or a monochromator (excitation 467 nm; Polychrome II, TILL Photonics, Gräfelling 

Germany) fibre-coupled with the upright microscope (Axioscope FS, Zeiss, Oberkochen, 

Germany) to identify glycinergic neurons. The microscope was equipped with a dichroic 

mirror 505 nm and a band pass emission-filter 545/50 nm. The fluorescence-signals were 

captured using a CCD-camera (Sensicam, PCO, Kehlheim, Germany), controlled by software 

(Imaging Workbench 6; Indec BioSystems, Santa Clara, USA). To optimise cell visualisation, 

epifluorescence illumination was combined with transmitted infrared light illumination using 

a 'gradient contrast' (Dodt & Zieglgansberger, 1990) and a CCD camera (Vx45 Optronics; 

Goleta, CA) to display on a TV monitor.  
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Patch electrodes were made from borosilicate glass capillaries (OD-1.5mm, ID-0.86mm) 

(Biomedical Instruments, Zöllnitz, Germany) using horizontal pipette-puller (Zeitz, Munich, 

Germany). The Patched electrodes were filled with either intracellular solution 1 (in mM; 

110 CsCl, 1.0 CaCl2, 2 MgCl2, 4 Na2ATP, 10 EGTA, 10 HEPES, 30 TEACl, and 5 QX-314) to 

record mIPSCs, or intracellular solution 2 (in mM; 140 KCl, 1 CaCl2, 2 MgCl2, 4 Na2ATP, 10 

HEPES, 10 EGTA) to record sIPSCs and eIPSCs, AP and for paired recording, or intracellular 

solution 3 (in mM; 140 K-gluconic acid, 1 CaCl2, 2 MgCl2, 4 Na2ATP, 10 EGTA and 10 HEPES) to 

characterize the glycinergic neurons. The intracellular solution 3 allowed to differentiate 

between excitatory and inhibitory inputs at holding potential of -50 mV (Winter et al., 2009). 

All intracellular solutions were adjusted for pH-7.2 with KOH. Micropipette microloader 

(Eppendorf AG, 5242-956-003; Y2333450) was used to fill intracellular solution into patch 

electrodes.  

The patch electrode filled with an intracellular solution displayed 4-6 MΩ resistance after 

placing into the bath solution. Positive pressure (10-20 mmHg) was applied from back side of 

the patch electrode while brought into bath solution using a micromanipulator -“electrode 

control system SM5” (Luigs & Neumann). The positive pressure remains applied throughout 

the movement of the patch electrode to prevent any debris from clogging the electrode tip 

until the electrode was reached on the membrane of the identified neuron. The movement 

of electrode was stopped when an indentation on the cell membrane appeared. The positive 

pressure was released to form a GΩ seal between the electrode tip and the neuronal 

membrane. After few minutes of GΩ seal formation, a brief suction (negative pressure) was 

applied to break the membrane leading to whole-cell configuration. After recording the 

passive properties like membrane capacitance (Cm) and input resistance (Rin) of neurons in 

voltage-clamp and resting membrane potential (RP) in current-clamp at zero holding current, 

gap-free and step-pulse protocols were applied either in voltage-clamp and/or current-

clamp to record membrane currents and membrane potentials respectively.  

mIPSCs were recorded in bath solution containing excitatory transmission blockers (CNQX 

and AP5) and AP blocker (TTX) whereas spontaneous inhibitory postsynaptic currents 

(sIPSCs) and evoked inhibitory postsynaptic currents (eIPSCs) were recorded only in the 

presence of CNQX and AP5. Zolpidem (a selective agonist for benzodiazepine site of GABAAR) 

was used to increase the decay time constant of GABAergic mIPSCs (Perrais & Ropert, 1999) 
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which had larger decay time than glycinergic mIPSCs. Pure GABAergic mIPSCs and eIPSCs 

were recorded in the presence of strychnine in the bath solution, while pure glycinergic 

mIPSCs and eIPSCs were recorded in the presence of bicuculline in the bath solution. 

Additionally, glycine for glycinergic eIPSCs and GABA for GABAergic eIPSCs were applied 

through another patch electrode using a pressure ejection system (NPI-electronic, Tamm, 

Germany) that was controlled by pClamp software. The application electrode was placed at a 

distance of 20-30 µm from the recording cell. 

 

Field potential recording 

Field potential recording in the preBötC was made to check the presence of respiratory 

rhythm in the slice. For this, an electrode (<1MΩ) was filled with ACSF and placed on the 

surface of the preBötC to record neuronal mass activity. The mass activity was amplified with 

a custom-built alternating current-amplifier (5000–10000 times), band-pass-filtered (0.25-

1.5 kHz), rectified, and integrated (Paynter filter; time constant, 40–70 ms), digitized (10 

kHz), using the pClamp and stored on hard disc. 

 

 

 

Figure 2.1 Recording from Rhythmic glycinergic neurons. 
(A) Drawing shows isolated mouse brain and three lines show the position of coronal brainstem slice. 
(B) Simultaneous recording through field potential electrode and patch electrode in the preBötC 
containing coronal brainstem slice. (C) Typical membrane potential trace (upper trace) from a 
rhythmic glycinergic neuron, which shows the rhythmic bursts in-phase with neuronal population 
bursts (lower trace) in the preBötC. Figure A was adapted from Scott R. B. et al. 1998 and Figure B 
was adapted from Tryba A. K. et al. 2004.  
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Identification of rhythmic neurons in the preBötC 

Two electrodes were used; one for field potential recording to detect the inspiratory rhythm 

in the preBötC and another to patch a glycinergic neuron. Once the inspiratory rhythm was 

detected in the preBötC (Fig. 2.1A, lower trace), another electrode was used to patch and 

make a whole-cell configuration on a glycinergic neurons. The glycinergic neuron was held in 

voltage-clamp to observe its membrane currents. If a patched glycinergic neuron received 

rhythmic inputs during the respiratory rhythm (Fig. 2.1A, upper trace), the neuron was 

considered to be a respiratory neuron. 

Paired recordings 

To study the synaptic strength between glycinergic neurons in the preBötC, paired-

recordings between two glycinergic neurons were made. After making whole cell, cell 1 was 

voltage-clamped to observe any change in membrane current due to generation of 

spontaneous action potentials in cell 2 (Fig. 3.18A). Further, to check the opposite synaptic 

connection between the same pair, the cell 2 was voltage-clamped to observe any change in 

membrane current due to generation of spontaneous action potentials in cell 1  (Fig. 3.18B). 

Additionally, the cell 2 was stimulated (in current-clamp) with step-pulse direct current (DC) 

(110 pA for 500 ms) to induce AP (Fig. 3.18C-lower trace) while the cell 1 was held in voltage-

clamp to observe a corresponding change in IPSCs (Fig. 3.18C-upper trace). Further, to check 

the opposite synaptic connections between these neurons, the cell 1 was stimulated (in 

current-clamp) with step-pulse DC (110 pA for 500 ms) to induce AP (Fig. 3.18D-upper trace) 

while cell 2 was held in voltage-clamp to observe changes in IPSCs (Fig. 3.18D-lower trace).  

 

2.4 Dye filling  

To study the projections of axon and dendrites, different fluorescent dyes were filled 

through the patch electrodes. Stock solutions of different dyes (Alexa 568, 9.2mM and Alexa 

647, 8.33mM) were made in distilled water, aliquoted and kept at -20 until use. The stocks 

were diluted in intracellular solution (in mM; 140 KCl, 1.0 CaCl2, 2 MgCl2, 4 Na2ATP, 10 EGTA 

and 10 HEPES), vortexed for 3 min, sonicated for 5min, to make final working concentrations 

(0.25mM for Alexa568 and 0.4mM for Alexa 647). The electrode was back-filled with the 

working dye solution. The diluted dye solution was not used beyond 2 days. The process of 
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patching and making whole-cell configuration for dye filling was the same as described 

earlier except the applied positive pressure from the back side of electrode was less (5-10 

mmHg) while approaching the identified cell to minimize the background staining. The cell 

soma was normally filled in 10-15 minutes but required 15-25 minutes in cell having weak 

seal between pipette and its membrane. After filling of the cells, the pipette was carefully 

removed and the slice was fixed in 4% PFA overnight. The slice was rinsed in PBS (4x5 min), 

dried, and mounted on Superfrost Plus microscopic slides (Thermo Fischer Scientific GmbH) 

using Fluorescent Mounting Medium (Dako Industries, Carpinteria, CA). The slices were 

scanned under LSM 510 to find the filled cells and their projections. The images were 

processed in Imaris for three dimensional structures and analysis. 

 

2.5 Immunohistochemistry  

Two different type of immunohistochemistry were carried out; (1) free floating and (2) 

whole-mount. Free floating immunohistochemistry were performed on thin sections of 

hindbrain and midbrain whereas whole-mounts immunohistochemistry were performed on 

complete diaphragms. 

Free floating slices 

Brains from cVIAAT KO embryos and their controls were isolated as described in section 2.2 

and fixed in PFA (4%) for 3 days. The whole brain was rinsed in PBS (in mM; 137 NaCl, 3 KCl, 

6.5 Na2HPO4, and 1.5 KH2PO4) and the brainstem was isolated. The brainstem then 

embedded in agar, and transversely sectioned (rostral to caudal) into 40 µm slices with a 

vibratome (VT1200S; Leica, Bensheim, Germany). The slices were washed (4 x 5 min) with 

PBS to remove excess PFA. These slices were then incubated with blocking buffer (10% 

normal donkey serum, 5% sucrose, 0.4% Triton X-100, 0.2% Na-azide in 1x PBS) for 1 hr at 

room temperature. The blocking buffer was replaced with staining buffer (2% normal donkey 

serum, 5% sucrose, 0.4% Triton X-100, 0.2% Na-azide in 1x PBS) containing primary 

antibodies Rabbit anti-VIAAT (1:800; Cat no. 131-003; Synaptic System, Germany) and 

incubated at 4°C for 72 hrs. The staining buffer was removed and the slices were washed 

with 1x PBS (4 x 5 minutes). The washing buffer was replaced with staining buffer containing 

secondary antibodies Cy3-Donkey-Anti-rabbit-IgG (1:1000; Cat. No. AP182C; Merck 



Materials and methods 

36 
 

Millipore, USA) for 2 hrs at room temperature in dark to avoid bleaching of fluorescent dye. 

Again the slices were washed in 1x PBS (4 x 5 minutes) to remove the excess of secondary 

antibodies. All steps were carried out on shaker (120 rpm). After the last washing, the slices 

were transferred on Superfrost Plus microscopic slides (Thermo Fischer Scientific GmbH) and 

allowed to dry for minimum 30 minutes in dark. Finally the slices were mounted under cover 

slip using Fluorescent Mounting Medium (Dako Industries, Carpinteria, CA). Corners of the 

cover slip and glass slide were sealed with Nail polish (Young Brilliant Nails, Rival De Loop, 

Berlin, Germany) to prevent entering of air bubble inside the cover slip and allowed them to 

dry. The sealed glass slides were kept at 4°C until imaging. Minimum two slices from each 

control embryos were stained for negative controls (Neg Ctrl) where primary antibodies 

were not used. 

Whole mount diaphragm 

To study the effect of cVIAAT KO on phrenic innervations in diaphragm, the embryos were 

isolated, anesthetized, decapitated, and eviscerated. The diaphragms were carefully isolated 

from the eviscerated embryos, washed with PBS and then fixed in 4% PFA for 30 min. Again, 

the diaphragm was washed overnight in PBS, bleached in Dent’s solution (80% Methanol and 

20% DMSO) for 8 hrs and then rehydrated overnight in PBST (PBS, pH 7.2; 0.1% Tween-20). 

After this, the diaphragm was incubated in staining solution (PBS pH 7.2; 1% bovine serum 

albumin; 1% Triton X‑100) containing primary antibodies (1:200; 4H6, Developmental 

studies, Hybridoma Bank) against Neurofilament (NF) for 3 days and then washed with PBST 

overnight. Following this, the sample was incubated with secondary antibodies Alexa-488 

Donkey anti-mouse (1:2000; Life Technologies GmbH) for another 3 days and cleaned in 

PBST and rehydrated in graded series of methanol solution up to 100%. The sample was 

washed again in a clearing solution (66% Benzyl benzoate; 34% Benzyl alcohol) for proper 

visualization and then mounted on glass slide under glass cover slip and kept at 4 ˚C until 

imaging. All steps were carried out at 4 ˚C unless it is stated. The staining was performed by 

Dr. Chor Hoon Poh - a collaborator from ENI, Göttingen as described in her PhD thesis (Poh, 

2013). 
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2.6 Single cell reverse transcription polymerase chain reaction  

Prior to start single cell reverse transcription polymerase chain reaction (sc-RT-PCR), hand 

gloves were used to prevent any RNAase contamination that might degrade mRNA. 

Additionally, the patching electrodes were backed at 300 °C to make RNAase free. 

Glycinergic neurons were identified, patched with same pipette solution as of mIPSCs 

recording, and made into a whole-cell configuration as described in the section 2.3. Cytosol 

of glycinergic neuron was gradually aspirated into patch electrode (1 and 2 in Fig. 3.3A) using 

a syringe (10 ml). The suction was done very carefully to prevent any extracellular debris or 

processes of other cell from entering into the suction electrode. The cytosol was ejected 

from electrode into a PCR tube (200 µL) containing master-mix (Table 2: Buffer, DTT, dNTPs, 

Random hexamer primer, RNAase OUT) by breaking the tip of the electrode and mixed. 0.5 

µl reverse transcriptase (Superscript) was immediately added into each PCR tube and further 

mixed. Following this, the PCR tube was heated at 50 °C for an hour to reverse transcribe the 

mRNA into corresponding cDNA. Finally, the PCR tubes were ice cooled for 5-10 minutes and 

stored at -80 °C till used for PCR. Samples for negative control by “mock-aspiration” (an 

aspiration where patching electrode did not aspirate the cytosol but remaining procedure 

was same) and positive control using 10 pg of homogenized brain tissue from brainstem 

were used.  

The cDNA was amplified through two steps multiplex nested PCR for different inhibitory 

neuronal markers (GAD67, GAD65, GAT1 and GlyT2) and β-actin (as a positive control) 

(Rahman et al., 2013). In the first-step, cDNA was amplified in the same PCR tube containing 

cDNA with 1.1 mM of MgCl2, primers (0.13 µM of all primers but 0.1 µM of β-actin primers, 

see Table 4 for primer sequence), 200 µM of each dNTP, 10% dimethylsulfoxide, and 2.5 U of 

RedTaq Polymerase (Sigma, Deisenhofen, Germany) in a final volume of 50 µl using a 

protocol (3 min at 94 °C, followed by 40 cycles, each with 30 s at 94 °C, 30 s at 49 °C, and 1 

min at 72 °C). The final elongation was performed for 10 min at 72 °C. In a second-step, 

amplified transcripts from first-step were further amplified using more specific primers (see 

Table 4) for each inhibitory neuronal marker in separate tubes using the same protocol. 3 µl 

from the first PCR product was added to a new tube containing a reaction mixture which is 

consist of 1.1 mM MgCl2, primers (0.25 µM each; see Table 4 for primer sequence), 200 µM 

of each dNTP, 10% dimethylsulfoxide, and 2.5 U of RedTaq Polymerase, in a final volume of 
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50 µl. The final amplified products were separated and visualized on Gel-electrophoresis 

(Fig. 3.3B). Positive and negative controls were used to check the experimental success 

(Rahman et al., 2013). 

 

2.7 Data analysis 

Electrophysiology 

Electrophysiological data were stored on hard disc of recording PC and then transferred to 

another PC for analysis. Electrophysiological data were analyzed using Clampfit 10 

(Molecular Devices, LLC, Sunnyvale, CA, USA), Igor Pro 6 (WaveMetrics, Inc. Lake Oswego, 

OR, USA), and MiniAnalysis (Synaptosoft, Chapel Hill, NC). RP and Cm were read and noted 

immediately after making a whole-cell configuration from the Axon software window. Rin 

was calculated from the change in membrane current with hyperpolarizing step-pulse 

voltage applied (-10 mV) before each experiment. All postsynaptic currents (sIPSCs, eIPSCs) 

and APs (frequencies) were analyzed using Clampfit 10.3. mIPSCs were detected with 

MiniAnlaysis software, visually inspected, and analyzed for amplitude and frequencies. The 

frequency was calculated as the inverse of interval between two consecutive mIPSCs. 

However, for decay time constant, only those mIPSCs were analyzed which were clearly 

separated from each other, therefore, doubled-peak mIPSCs were not considered for 

analysis of decay time-constant.  
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Measurement of contribution of GABA and glycine current to individual mixed mIPSCs 

To determine the contribution of the currents resulting from the activation of glycine or 

GABA receptors in an individual mixed-mIPSC, individual mIPSC traces were fitted using a 

piecewise defined exponential product function (EPF). 
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The parameters for the template mIPSCs, Igly and IGABA were derived from averaged pure 

GABAergic and glycinergic mIPSCs that were recorded from glycinergic neurons (Rahman et 

al., 2013). Agly and AGABA of function 1 (EPF) were used to judge if a mIPSC was a mixed or 

not. The contribution of glycinergic and GABAergic currents in an individual mIPSC was 

calculated as described above. mIPSCs were classified as pure glycinergic or GABAergic 

events if the contribution of the other component did not exceed a threshold value. The 

mixed-mIPSCs showed different amplitudes and decay kinetics, which were difficult to 

visually analyze and quantify. Therefore, methods were optimized on simulated traces 

(Matlab® simulations made by Dr. Tobias Latal) containing a known number of mixed-

mIPSCs, pure GABAergic mIPSCs and pure glycinergic mIPSCs (Rahman et al 2013). Based on 

simulated data, a mIPSC was assumed as mono-transmitter event if (Agly/(AGABA+Agly))< 20% 

or (AGABA/(AGABA+Agly)) < 20% (EPF 20%) (Rahman et al., 2013). The threshold for the 

decision was also alternatively set to 30 % (EPF 30%). 

  



Materials and methods 

40 
 

Single cell reverse transcription polymerase chain reaction 

Electrophoresis gel containing bands of inhibitory markers, following multiplex nested PCR, 

was transferred to the GelDoc for visualization and imaging. The images were manually 

analyzed for a band of each inhibitory neuronal marker, positive and negative control. 

Presence or absence of band for each inhibitory marker and controls were noted down in an 

Excel spread sheet (Microsoft Office Excel 2007; Microsoft Deutschland, Unterschleißheim, 

Germany) and analyzed for their summarized result.  

VIAAT quantification 

Images were acquired from all immunohistochemically labeled slices, using Laser Scanning 

Microscope (LSM 510/Axiovert 100 M, Zeiss, Jena, Germany) while parameters (objective, 

laser intensity, Pinhole, offset, gains) remained same for both cVIAAT KO and their control 

tissues. Higher magnification (20x) objective was used for better resolution. Since the 

acquired images were large (607 µm x 607 µm), a region of interest (ROI) was selected from 

interested areas like hypoglossal nucleus (173 µm x 181 µm), the preBötC (100 µm x 100 

µm), and hypothalamus (237 µm x 237 µm) for quantification. The size of the ROI was same 

for both cVIAAT KO and their control slices. The images from Neg Ctrl were opened in ImageJ 

1.37a (NIH, USA), histograms were plotted, and mean of maximum intensities was 

calculated. The cVIAAT KO and their controls images were opened, threshold was set to the 

mean maximum intensity of negative control staining. Puncta were automatically counted 

using “analyze particle” option of ImageJ software. The particles on borders were also 

counted. The summarized results were exported to an Excel spread sheet and analyzed for 

area fraction. The staining was quantified as the percentage pixel area fraction (stained pixel 

area/ ROI pixel area). 

Diaphragm Analysis 

Complete stained cVIAAT KO diaphragms and their controls were imaged by LSM 510 (Carl 

Zeiss, Göttingen, Germany) using tile-scanning function. The images were opened in 

Axiovision software (AxioVs40) and the diameters were measured using length option while 

area was measured using outline option of Axiovision from both cVIAAT KO diaphragm and 

their controls. Diameter and area were averaged in an Excel spread sheet. 
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Statistical analysis 

All summarized results are written as mean ± SEM (Standard Error of Mean). Difference in 

the mean values is compared with two-tailed student’s t-Test (Two Samples Assuming 

equal/unequal Variances) in Excel spread sheet unless it is specified. The statistical 

significance is represented in bar graphs with asterisk sign (like * if p <0.05; ** if p <0.01; *** 

if p <0.001). Bar graphs were made from mean ± SEM and transferred into CorelDRAW (Corel 

GmbH, Munich, Germany) for final alignment of panels. 



Results 

42 
 

3. Results 
 

3.1 GABA and glycine co-transmission in the pre-Bötzinger complex  

Co-transmission of two neurotransmitters are found in different brain regions and 

hypothesized to be involved in different physiological processes. In the preBötC, glycinergic 

neurons receive mixed inhibitory synaptic inputs (Winter et al., 2009). Therefore, co-

transmission of GABA and glycine to glycinergic neurons in the preBötC of GlyT2-EGFP mice 

has been studied using electrophysiology and sc-RT-PCR. 

 

3.1.1 Glycinergic neurons receive mixed-mIPSCs 

Glycinergic neurons are involved in respiratory rhythm (Winter et al., 2009) and show 

pacemaker properties (Morgado-Valle et al., 2010). GABAergic and glycinergic IPSCs or 

mIPSCs are different in their decay kinetics, which becomes more prominent with Zolpidem 

(Perrais & Ropert, 1999; Latal et al., 2010). Here, co-transmission of GABA and glycine was 

studied based on the decay kinetics of mIPSCs, which were recorded from glycinergic 

neurons in the preBötC, as previously shown in different brain regions (Jonas et al., 1998; 

Dumoulin et al., 2001; Russier et al., 2002; Nabekura et al., 2004; Awatramani et al., 2005; 

Dufour et al., 2010). mIPSCs were recorded from a glycinergic neuron after application of 

blockers against excitatory transmission and AP (Fig. 3.1B). The recorded trace contained 

three different types of mIPSCs that could be discerned based on their decay kinetics as 

shown in the enlarged boxes: (1) fast decaying mIPSCs, due to activation of glycinergic 

receptors only (Fig. 3.1b1), (2) mixed-mIPSCs (have both fast and slow decay component), 

due to activation of both glycinergic and GABAergic receptors (Fig. 3.1b2), and (3) slow 

decaying mIPSCs, due to activation of GABAergic receptors only (Fig. 3.1b3). The presence of 

mixed-mIPSCs confirms that co-release and co-transmission of GABA and glycine to 

glycinergic neurons is prevalent in the preBötC of GLYT2-EGFP neonatal mice.  
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The averaged mixed-mIPSCs to the glycinergic neurons in the preBötC was calculated 32.8 ± 

8.3 % by the ΣEPF (30%) method and 49.0 ± 12.9 % by the ΣEPF (20%) method (Fig. 3.1D) on 

control traces. When mixed-mIPSCs were quantified on traces which were subsequently 

recorded in the presence of bicuculline (Fig. 3.1C), indeed, the averaged mixed-mIPSCs was 

significantly reduced to 0.90 ± 1.00 % by the ΣEPF (30%) and 2.20 ± 2.50 % by the ΣEPF (20%) 

(Fig. 3.1D). One would have not expected any mixed-mIPSC under this condition, therefore, 

the leftover mixed-mIPSCs were considered as false positive. Finally, the averaged mixed-

mIPSCs were calculated as the difference between the control and bicuculline conditions 

which were 31.9 ± 7.3 % by the ΣEPF (30%) and 46.8 ± 10.4 % by the ΣEPF (20%) (Fig. 3.1D).  

 

 

Figure 3.1 Glycinergic neurons in the preBötC receive mixed-mIPSCs. 
(A) A representative trace recorded from a glycinergic neuron which receives both EPSCs and IPSCs. 
(B) A representative trace recorded from the same neuron in the presence of CNQX and DL-AP5, TTX, 
and Zolpidem shows receiving of mIPSCs. The enlarged mIPSCs clearly looked three types, fast (b1), 
mixed (b2), and slow (b3). (C) A representative trace recorded from the same cell in the presence of 
blockers mentioned above and bicuculline, which showed only fast mIPSCs (c1). (D) The summarized 
results of mixed-mIPSCs quantified by two “ΣEPF” methods in control (black bar), Bic (gray bar) 
conditions and difference (red bar) between these two conditions. 
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3.1.2 Rhythmic glycinergic neurons receive mixed-mIPSCs  

It has been speculated that GABA and glycine co-release is involved in precise regulation of 

postsynaptic conductance (Jonas et al., 1998). To study the co-release and co-transmission 

of GABA and glycine to rhythmic glycinergic neurons in the preBötC, the rhythmic glycinergic 

neurons were identified (Fig. 3.2A) and mIPSCs were recorded (Fig. 3.2B). For rhythmic 

glycinergic neurons, the averaged mixed-mIPSCs were calculated 21.5 ± 9.8 % by ΣEPF (30%) 

and 39.9 ± 14.8 % by ΣEPF (20%) (Fig. 3.2D). Again, mixed-mIPSCs were further analyzed on 

traces which were subsequently recorded in the presence of bicuculline (Fig. 3.2C). Here, the 

averaged false positive mixed-mIPSCs were 0.5 ± 1.2 % by ΣEPF (30%) and 3.8 ± 5.1 % by 

ΣEPF (20%) (Fig. 3.2D). Therefore, the averaged mixed-mIPSCs to the rhythmic glycinergic 

neurons were calculated as the difference between the control and bicuculline conditions 

which were 21 ± 8.6 % by the ΣEPF (30%) and 36.1 ± 9.7 % by the ΣEPF (20%) (Fig. 3.2D). 
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Figure 3.2 Rhythmic glycinergic neurons in the preBötC receive mixed-mIPSCs. 
(A) A representative trace recorded from a glycinergic neuron that receives synaptic inputs during 
respiratory rhythms (upper trace), which confirms that the glycinergic neuron was rhythmic. The 
trace below recorded from the preBötC shows the integrated mass activities of all neurons. (B) A 
representative trace recorded from the same glycinergic neuron in the presence of CNQX and DL-
AP5, TTX, and Zolpidem (control), which showed three different types of mixed-mIPSCs; mixed (b1), 
fast (b2), and slow (b3)). (C) A representative trace recorded from the neuron in the presence of 
blockers mentioned above and bicuculline. The trace had mostly fast mIPSCs (Fig. c1, same scale bar 
as b1-b3). (D) The summarized results of mixed-mIPSCs which were quantified by two “ΣEPF” 
methods in control (black bar), Bic (gray bar) conditions and difference (red bar) between these two 
conditions.  
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3.1.3 Glycinergic neurons co-express GABAergic and glycinergic neuronal markers  

To use another method for quantification of GABA and glycine co-release in the preBötC, the 

expression of inhibitory neuronal markers (GAD65, GAD67, GlyT2, and GAT1) in glycinergic 

neurons were analyzed by single cell reverse transcription polymerase chain reaction (sc-RT-

PCR). The sc-RT-PCR data from glycinergic neurons showed a heterogeneous expression 

pattern of inhibitory neuronal markers. Based on this data, glycinergic neurons were 

classified into six groups (Fig. 3.3B). The group 1 cells expressed GAD and GlyT2, group 2 cells 

expressed GlyT2 alone, group 3 cells expressed GAD1, GAD2, GAT1, and GlyT2, group 4 cells 

expressed GAD1 and GAT1, group 5 cells expressed GAD2 and GAT1, and the group 6 cells 

expressed β-actin only. The cells from group 1 and group 3 were combined because they 

expressed both glycine neuronal marker (GlyT2) and at least one GABAergic neuronal marker 

(GAD65, GAD67, or GAT1) which together represented 46% of glycinergic neurons. Likewise, 

the cells from group 4 and group 5 were combined because they expressed only GABA 

neuronal markers which together represented 18% of glycinergic neurons cells. The group 2 

expressed only GlyT2 marker and represents 2% of glycinergic neurons. 34% of glycinergic 

neurons expressed -actin only. Based on summarized results (Fig. 3.3C), 46% of glycinergic 

neurons co-expressed both glycinergic and GABAergic neuronal markers, which means that 

they were definitely capable of filling both GABA and glycine neurotransmitters in the SV and 

thereby they could co-release too. Furthermore, 18% glycinergic neurons which expressed 

only GABAergic markers may also co-release both GABA and glycine. Therefore, in principle, 

even higher number of glycinergic neurons (64%) could release both glycine and GABA. 
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Figure 3.3 Glycinergic neurons show heterogeneous inhibitory molecular markers. 
(A) Pictures 1 and 2 from a representative glycinergic neuron show how aspiration was done using a 
patch electrode. Picture 1 shows the attached-mode of patch electrode while picture 2 shows cytosol 
aspiration by patch electrode. Scale bar: 20 µm (B) Multiplex RT-PCR was preformed to identify the 
mRNA expression of different inhibitory neuronal markers in glycinergic neurons. Heterogeneous 
expression of inhibitory molecular markers from 6 different cells is shown. (C) The glycinergic 
neurons (group 1 to group 6) were assigned into four main groups, based on the expression of 
inhibitory neuronal markers, are shown. The numbers inside bars represent the neurons analyzed. 
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3.2 Conditional knockout of the vesicular inhibitory amino acid transporter  

The vesicular inhibitory amino acid transporter (VIAAT) is the only vesicular transporter 

responsible for filling of both GABA and glycine in synaptic vesicle, therefore, it is expressed 

by both glycinergic and GABAergic neurons (McIntire et al., 1997; Sagne et al., 1997; 

Chaudhry et al., 1998). As shown before, glycinergic neurons in the preBötC receive mixed 

synaptic inputs from neurons which could be either GABAergic or glycinergic or both 

(Rahman et al., 2013). The sc-RT-PCR results showed that 64% glycinergic neurons in the 

preBötC express markers for GABAergic neurons (Rahman et al., 2013). These results have 

strongly supported the involvement of glycinergic neurons in co-transmission of GABA and 

glycine in the preBötC. To delineate the detailed role of glycinergic neurons in co-

transmission in the respiratory network, a cVIAAT KO mouse line was generated and studied. 

 

3.2.1 Conditional VIAAT KO embryos show lethal phenotype 

All VIAAT KO embryos do not breathe and have omphalocele, cleft palate, and die after birth 

(Wojcik et al., 2006; Fujii et al., 2007; Saito et al., 2010). The cVIAAT KO pubs did not survive 

in any litter; therefore, the cVIAAT KO embryos were studied. The cVIAAT KO embryos 

showed striking anatomical features like omphalocele (N= 54/54; arrow in Fig. 3.4A), 

kyphotic (N= 54/54), cleft-palate (N= 23/23; arrow in Fig. 3.4C), immobility (N= 54/54), and 

irresponsiveness to tail pinch (N= 54/54), while their controls were normal. Whole body 

plethysmography of cVIAAT KO embryos showed complete loss of breathing (Fig. 3.4B; 

N=9/9), while their controls breathed normally (0.8 ± 0.9 Hz; Fig. 3.4B). Since the cVIAAT KO 

embryos did not breathe, they turned cyanotic while their controls usually remained pink. To 

check the possibility of initial breathing between CS and plethysmography measurement, 

their lungs were tested for buoyancy in PBS. While the control lungs (N= 7/7) were floated, 

the cVIAAT KO lungs sank in PBS (N= 9/9; Fig. 3.4D), which further confirmed the complete 

absence of breathing in cVIAAT KO embryos. The cVIAAT KO embryos were smaller 

compared to their controls, so their weights were measured. The averaged weight of cVIAAT 

KO embryos (1.17 ± 0.02 g; N=28) was significantly lower compared to their controls (1.27 ± 

0.02 g; N=94; Fig. 3.4E). 
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Figure 3.4 cVIAAT KO embryos showed lethal phenotype. 
(A) The cVIAAT KO embryos were smaller, kyphotic, and showed omphalocele (see arrow) while their 
controls (right) were normal. (B) The representative plethysmography trace recorded from a cVIAAT 
KO embryo did not show any breathing activity while their controls showed normal breathing (red). 
(C) The palate of cVIAAT KO embryos were not closed (cleft palate, see arrow); whereas it was closed 
in control embryos. (D) The cVIAAT KO lungs sank while their control lungs floated in PBS. (E) The 
averaged weight of cVIAAT KO embryos and their controls are shown. Numbers inside bars represent 
number of embryos weighted for analysis. 
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Conditional VIAAT KO embryos are hyperglycemic 

The cre-recombinase (GlyT2-cre) used for selective removal of VIAAT from glycinergic 

neurons in cVIAAT KO embryos was driven by GlyT2 promoter, which is also expressed in the 

pancreas (Gammelsaeter et al., 2004). Interestingly, VIAAT is also expressed on vesicle like 

structure present in both α- and β-cells of the pancreas (Gammelsaeter et al., 2004). 

Furthermore, GABA signaling in the pancreas is involved in insulin secretion, which controls 

plasma glucose level (Taneera et al., 2012). To check a possible role of GlyT2-cre in the 

pancreas and thereby on glucose level, the plasma glucose level of the cVIAAT KO embryos 

and their controls was measured. The mean plasma glucose level of cVIAAT KO embryos 

(5.00 ± 0.35 mM; N=12) was significantly higher than the mean plasma glucose level of their 

controls (1.83 ± 0.14 mM; N= 51; Fig. 3.5A). Mothers of these embryos had also high plasma 

glucose levels (6.70 ± 0.57 mM; N=10) as already previously shown (Mogami et al., 2010).  

 

 

 

Figure 3.5 cVIAAT embryos were hyperglycemic. 
The average plasma glucose level of cVIAAT KO embryos was significantly higher compared to their 
controls. Numbers inside bar represents number of embryos used for analysis. 
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3.3.2 Respiratory rhythmic activities are present in the cVIAAT KO preBötC 

To study the respiratory network function, the field potential recordings were made in the 

preBötC of cVIAAT KO rhythmic slices and their controls. The network activity in the cVIAAT 

KO preBötC (N=4/6) and their controls (N=6/6) were present though it was irregular as 

reported in newborn mice (Gomeza et al., 2003a). Since, chloride mediated  synaptic 

transmission is inhibitory at birth and blockers of inhibitory transmission changes respiratory 

pattern, strychnine and bicuculline were applied to the cVIAAT KO rhythmic slices and their 

controls to observe the change in the respiratory network activity (Onimaru et al., 1990; 

Gomeza et al., 2003a). The preBötC network activity was increased in control slices (Fig. 

3.6A) while it remained unchanged in cVIAAT KO ones (Fig. 3.6B).  
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Figure 3.6 Respiratory rhythmic activity in the cVIAAT-KO slices and their control. 
(A) A representative field potential recording from the control preBötC in ACSF (upper trace) and in 
ACSF + 20 µM Bic + 10 µM Stry (lower trace) are shown. (B) A representative field potential recording 
from the cVIAAT KO preBötC in ACSF (upper trace) and in ACSF + 20 µM Bic + 10 µM Stry (lower 
trace) are shown. (C) The relative burst amplitudes from cVIAAT KO and their controls in both 
conditions are summarized. (D) The averaged burst frequencies from cVIAAT KO and their controls in 
both conditions are summarized. These traces were recorded by Dr. Christian Schnell, CNMPB. 
 
 

 

The amplitudes of spontaneous rhythmic bursts recorded in ACSF from both cVIAAT KO 

preBötC as well as their controls were set as the base line for each genotype separately for 

relative amplitude calculation. The averaged relative amplitude of spontaneous rhythmic 

bursts in the presence of Bic and Stry was slightly higher control preBötC (2.03 ± 0.25; N=5) 

compared to their cVIAAT KO (1.19 ± 0.13; N=6; Fig. 3.6C). The averaged frequencies of 

spontaneous rhythmic bursts in control preBötC was increased (0.18 ± 0.05 Hz to 0.27 ± 0.02 

Hz; N=5) while it remained unchanged in the cVIAAT KO (0.07 ± 0.04 Hz vs 0.09 ± 0.04 Hz; 

N=6) with Bic and Stry application in bath solution. 
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3.2.3 VIAAT expression is reduced in medulla but not in hypothalamus 

 

VIAAT staining in medulla 

Glycinergic neurons, which express GlyT2 promoter, are abundantly present in brainstem 

and spinal cord (Zafra et al., 1995).The preBötC generates respiratory rhythm while 

hypoglossal motoneurons help in respiratory rhythm by tongue movement during 

deglutition and vocalization; both are located in the hindbrain (Lowe, 1980). The preBötC 

and hypoglossal nucleus are required for maintain normal respiratory rhythm. Hypoglossal 

nucleus expresses highest GlyR density compare to any area in CNS,  therefore, it is 

considered as a good model to study inhibitory inputs (White et al., 1990; Singer & Berger, 

2000; Hernandes & Troncone, 2009). In this study, the hypoglossal nucleus was identified, 

based on its previously shown anatomical location and through Choline Acetyl Transferase 

(ChAT) staining in slices from cVIAAT KO embryos and their controls (Fig. 3.7A) (Hulsmann et 

al., 2000). The VIAAT staining was prominent in control slices (Fig. 3.7B and 3.7C) while 

drastically reduced in cVIAAT KO slices (Fig. 3.7D). The histogram was plotted from cVIAAT 

KO and their controls that showed a clear difference in stained pixel intensity distribution 

(Fig. 3.7E). The average stained pixel area of the control hypoglossal (81.48 ± 2.00 %; N=6 

embryos) was significantly higher compared to the average stained pixel areas of the cVIAAT 

KO hypoglossal (4.35 ± 1.10 %; N=6 embryos; Fig. 3.7F). 
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Figure 3.7 VIAAT expression was dramatically reduced in cVIAAT KO hypoglossal nucleus. 
(A) Hypoglossal nucleus (XII cranial nerve) of control (Ctrl) embryos was identified via ChAT staining, 
scale bar: 300 µm. (B) The control hypoglossal nucleus is prominently stained with VIAAT antibodies, 
scale bar: 100 µm. (C) A control hypoglossal ROI showed strong VIAAT staining. (D) In contrast, a 
cVIAAT KO hypoglossal ROI showed a very weak VIAAT staining. In Fig. C-D, scale bar: 30 µm. (E) 
Histogram of negative control, cVIAAT KO, and control ROI showed difference in the distribution of 
VIAAT stained pixel intensity. (F) The averaged stained pixel area (%) in cVIAAT KO hypoglossal nucleus 
was significantly reduced compared to their controls. 
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Similar to hypoglossal nucleus, VIAAT staining was stronger in the control preBötC (Fig. 3.8A) 

compared to cVIAAT KO sample (Fig. 3.8B). The histogram showed a clear difference in the 

pixel intensity distribution between cVIAAT KO preBötC and their control (Fig. 3.8C). The 

average stained pixel area in control preBötC (75.72 ± 2.19 %; N=3 embryos) was 

significantly higher compared to the cVIAAT KO preBötC (6.63 ± 0.83 %; N=3 embryos; Fig. 

3.8D;). 

 

 

 

 

Figure 3.8 VIAAT expression in the cVIAAT KO preBötC was reduced. 
(A) A representative control preBötC ROI showed prominent staining with VIAAT antibodies. (B) A 
representative cVIAAT KO preBötC ROI showed highly reduced VIAAT staining.  The scale bar is same 
for A and B: 20 µm (C) Histogram of control and cVIAAT KO preBötC showed a clear difference in 
VIAAT stained pixel intensity. (D) The average stained pixel area (%) in cVIAAT KO preBötC was 
significantly reduced compared to their controls (N= 3 embryos each). 
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VIAAT staining in hypothalamus 

Synaptic inhibition is primarily mediated by GABAergic transmission in hypothalamus which 

lacks glycinergic marker GlyT2 (Decavel & Van den Pol, 1990; Zafra et al., 1995). Since VIAAT 

fills both GABA and glycine into SV and VIAAT was removed from those neurons which 

expressed GlyT2 promoter in cVIAAT KO embryos, the VIAAT expression should not be 

reduced in hypothalamus (Sagne et al., 1997). To test this, quantification of VIAAT staining 

were made in cVIAAT KO hypothalamus and their controls. As expected, VIAAT staining did 

not change between control preBötC (Fig. 3.9 A) and cVIAAT KO hypothalamus (Fig. 3.9B). 

The histogram also did not show any difference in pixel intensity distribution between 

cVIAAT KO and control preBötC (Fig. 3.9C). The average stained pixel area in control 

hypothalamus (83.47 ± 0.85 %; N= 4 embryos) was similar to the average stained pixel area 

in the cVIAAT KO hypothalamus (82.41 ± 1.10 %; N= 4 embryos; Fig. 3.9D).  

 

 

 

Figure 3.9 VIAAT expression in cVIAAT KO hypothalamus was not reduced. 
(A) A representative stained control hypothalamus ROI showed prominent staining with VIAAT 
antibodies (B) A representative stained cVIAAT KO hypothalamus ROI also showed similar VIAAT 
staining. Scale bar is same in A and B: 20µm. (C) Histogram of control and cVIAAT KO hypothalamus 
ROI showed complete overlap in stained pixel intensity distribution (D) The average stained pixel 
area (%) in cVIAAT KO hypothalamus was similar to their controls. (N= 4 embryos each). 
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3.2.4 Passive and active properties of hypoglossal motor neurons 

 

Passive properties 

The passive properties (Rin and Cm) of hypoglossal motoneurons from both cVIAAT KO and 

their controls embryos were measured to compare if these properties were changed in 

cVIAAT KO embryos. The average Rin of cVIAAT KO hypoglossal motoneurons (0.42 ± 0.11 

GΩ; N=31) did not change (p-values = 0.5) compared to their controls (0.34 ± 0.05 GΩ; N=38) 

(Fig. 3.10A). The average Cm of cVIAAT KO hypoglossal motoneurons (44.55 ± 3.22 pF; N=21) 

was significantly reduced compared to their control (54.87 ± 3.37 pF; N=28; Fig. 3.10B). The 

RP depends on different ionic concentration including chloride ions across the cell 

membrane. The cVIAAT KO mice showed disturbed inhibitory transmission, which is 

mediated through chloride ions, that might have affected the RP of hypoglossal 

motoneurons. To test this hypothesis, the RP of cVIAAT KO hypoglossal motoneurons and 

their controls were measured. The average RP of cVIAAT KO hypoglossal motoneurons (-

57.57 ± 1.98 mV; N=35) was significantly depolarized compared to their control hypoglossal 

motoneurons (-64.34 ± 1.28 mV; N=41; Fig. 3.10C). 

 

 

Figure 3.10 Passive properties of hypoglossal motoneurons. 
(A) The average Rin of cVIAAT KO hypoglossal motoneurons and their control were the same. (B) 
The average Cm of cVIAAT KO hypoglossal motoneurons was significantly reduced compared to 
their controls. (C) The average RP of cVIAAT KO hypoglossal motoneurons was significantly 
depolarized compared to their controls. Numbers inside the bar are analyzed neurons. 
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Active properties  

Although cVIAAT KO embryos did not survive after birth, their hypoglossal motoneurons 

were appeared as healthy as control hypoglossal motoneurons. To confirm this, both cVIAAT 

KO hypoglossal motoneurons and their controls were depolarized with DC injections. All 

cVIAAT KO hypoglossal motoneurons as well as their controls showed APs with step-pulses 

DC injection. The firing pattern of APs in both cVIAAT KO and control hypoglossal 

motoneurons were similar (Fig. 3.11A). The average APs frequency in cVIAAT hypoglossal 

motoneurons did not differ from their control with 40 pA (17 ± 1.85 Hz vs 15.84 ± 1.42 Hz), 

60 pA (19.40 ± 2.27 Hz vs 19 ± 1.57 Hz), and 80 pA (22.40 ± 2.40 Hz vs 20.37 ± 1.72 Hz) step-

pulse DC injection (Fig. 3.11B). 

 

 

Figure 3.11 cVIAAT KO hypoglossal motoneurons and their controls produced APs. 
(A) Representative membrane potential traces recorded from a cVIAAT KO hypoglossal motoneuron 
and its control showed similar APs pattern with DC injections (below Step-pulse protocol). (B) The 
average frequencies of cVIAAT KO hypoglossal motoneurons did not change compared to their control 
with 40 pA, 60 pA and 80 pA biased DC injection. The numbers above the average values represent the 
neurons from control and KO embryos studied respectively. 
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3.2.5 Hypoglossal motoneurons in cVIAAT KO embryos lack inhibitory transmission 

IPSCs in spinal cord of constitutional VIAAT KO embryos are either absent or highly reduced 

(Wojcik et al., 2006; Saito et al., 2010). The VIAAT expression was significantly reduced in 

hypoglossal nucleus and the preBötC of cVIAAT KO embryos as shown in 

immunohistochemical staining. Therefore, to check a possible change in the inhibitory 

transmission, sIPSCs were also recorded from cVIAAT KO hypoglossal motoneurons and their 

controls. cVIAAT KO hypoglossal motoneurons did not receive any sIPSC (Fig. 3.12A, lower 

trace), while, control hypoglossal motoneurons received sIPSCs (Fig. 3.12A, upper trace) with 

or without sucrose application (300 mM, 10s) (Rosenmund & Stevens, 1996). The difference 

between the average amplitude of sIPSCs before (70.05 ± 16.42 pA; N=13) and after (75.80 ± 

10.10 pA; N=13; Fig. 3.12B) sucrose application remained non-significant (p-values = 0.76) in 

control hypoglossal motoneurons. Similarly the difference between the average frequencies 

of sIPSCs before (4.28 ± 1.73 Hz; N=13) and after (4.66 ± 1.39 Hz; N=13; Fig. 3.12C) sucrose 

application also remained non-significant (p-values = 0.80) in control hypoglossal 

motoneurons. The sIPSC in cVIAAT KO hypoglossal motoneurons did not increase with 

sucrose application.  
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Figure 3.12 cVIAAT hypoglossal motoneurons lacked inhibitory transmission. 
(A) A representative sIPSCs trace (upper) was recorded from a control hypoglossal motoneuron in the 
presence of CNQX, DL-AP5, Zolpidem. The grey line indicates the time point when sucrose was 
applied in the bath for 10 s. The trace below is the representative sIPSCs trace recorded from cVIAAT 
KO hypoglossal motoneuron showed complete loss of sIPSCs except 1-2 detected only after sucrose 
application (box in lower trace). (B) The averaged sIPSCs amplitude before (black) and after (red) 
sucrose application, from control and cVIAAT KO hypoglossal motoneurons, are significantly different 
between genotypes but not with sucrose application. (C) Similarly, the averaged sIPSCs frequencies 
before (black) and after (red) sucrose application from control and cVIAAT KO hypoglossal 
motoneurons are significantly different between genotypes but not with sucrose application. 
Number inside and above the bars in KO and their control represents the neurons studied. 

  



Results 

61 
 

3.2.6 Glycinergic currents are reduced in cVIAAT KO hypoglossal motoneurons 

Glycine transmission is required for clustering of functional glycine receptors on post-

synaptic side in-vitro (Kirsch & Betz, 1998; Levi et al., 1998) and in vivo (Yamanaka et al., 

2013). Since inhibitory transmission was almost absent in cVIAAT KO hypoglossal 

motoneurons, eIPSCs were recorded from cVIAAT KO hypoglossal motoneurons and their 

controls to check the presence of functional postsynaptic glycinergic and GABAergic 

receptors. The average amplitude of glycinergic eIPSC in cVIAAT hypoglossal motoneurons 

(3.61 ± 0.64 nA) was significantly reduced compared to their controls (5.28 ± 0.39 nA; Fig. 

3.13B). However, the average amplitude of GABAergic eIPSC in cVIAAT hypoglossal 

motoneurons (3.17 ± 1.15 nA) did not change compared to their controls (2.55 ± 0.97 nA; 

Fig. 3.13D). 
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Figure 3.13 Glycinergic postsynaptic currents are reduced in hypoglossal motoneurons. 
(A) An averaged representative glycinergic eIPSC of four consecutive glycine applications from a 
control (left) and cVIAAT KO hypoglossal motoneuron (right) are shown. The arrow indicates 1 mM 
glycine application to both, the control and the cVIAAT KO recordings. (B) The averaged amplitude of 
glycinergic eIPSCs in cVIAAT KO hypoglossal motoneurons was significantly lower compared to their 
controls. (C) An averaged representative GABAergic eIPSC of four consecutive GABA applications 
from a control (left) and cVIAAT KO hypoglossal motoneuron (right) are shown. Arrow indicates 10 
mM GABA applications to both, the control and the cVIAAT KO recordings. (D) The averaged 
GABAergic eIPSCs in cVIAAT hypoglossal motoneurons was similar compared to their controls. 
Number inside the bars represents the neurons studied.  
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3.2.7 Diaphragms of conditional VIAAT KO embryos are underdeveloped 

Inhibitory transmission was reduced in the cVIAAT KO hypoglossal motoneurons similar to 

spinal motoneurons of constitutional VIAAT KO embryos (Saito et al., 2010). In the VIAAT KO 

embryos, diaphragms have reduced phrenic nerve innervations compare to their controls, 

and they also do not breathe like the cVIAAT KO embryos (Fogarty et al., 2013b). Therefore, 

diaphragms of cVIAAT KO embryos and their controls were studied to check if there was any 

anatomical difference between genotypes. The cVIAAT KO diaphragm was smaller and 

wrinkled compared to their controls (Fig. 3.14A-B). The average diameter of the cVIAAT KO 

hemi-diaphragms (1.76 ± 0.17 mm) was significantly smaller compared to its control hemi-

diaphragms (2.06 ± 0.16 mm; Fig. 3.14C). The average surface area of the cVIAAT KO hemi-

diaphragms (6.57 ± 0.41 mm2) was significantly smaller compared to its control hemi-

diaphragms (11.77 ± 0.52 mm2; Fig. 3.14D). 

 

 

 

 

Figure 3.14 Whole-mounts neurofilament immunostaining on hemi-diaphragm. 
(A) A representative control hemi-diaphragm innervated by phrenic main trunk (arrow) and its 
branches is shown. (B) A representative cVIAAT KO hemi-diaphragm innervated by distorted phrenic 
main trunk (arrow) and its branches is shown. (C) The averaged diameter of cVIAAT KO hemi-
diaphragm and their controls are shown. (D) The averaged surface area of cVIAAT KO hemi-
diaphragm and their controls are shown. Numbers inside bars are number of embryos studied. 
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3.3 Characterization of glycinergic neurons in the pre-Bötzinger complex 

The characterization of any neuronal populations including inhibitory neurons is a important 

step toward understanding the neuronal network and overall structure and functions of 

brain regions (Shino et al., 2011). Since glycinergic neurons in the preBötC are involved in 

respiratory pattern modulation (Winter et al., 2010); they were characterized by whole-cell 

Patch-clamp and dye filling experiments to understand their larger role in respiratory 

network. 

 

3.3.1 Rhythmic glycinergic neurons are primarily inspiratory 

To gather further information about glycinergic and potentially dual transmitting neurons in 

the preBötC, fluorescently labeled preBötC glycinergic neurons from the GlyT2-EGFP mice 

were characterized. 31 % (N=28/91) glycinergic neurons were identified as respiratory 

glycinergic neurons that received the rhythmic inputs during respiratory bursts (Fig. 3.15A, 

upper trace). These glycinergic neurons also received rhythmic inputs in current-clamp (Fig. 

3.15B). However, many glycinergic neurons 69% (N=63/91) did not receive any rhythmic 

input, neither in voltage-clamp (Fig. 3.15C) nor in current-clamp (Fig. 3.15D) and were 

classified as non-rhythmic glycinergic neurons (Fig. 3.15E). 
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Figure 3.15 Glycinergic neurons receive the respiratory rhythmic inputs. 
(A) A representative trace recorded from a glycinergic neuron that received synaptic inputs between 
respiratory rhythms and more synaptic inputs during respiratory rhythmic (upper trace) is shown. 
The below trace recorded in the preBötC showed an integrated mass activities of all neurons. (B) A 
representative membrane potential trace recorded from the same glycinergic neuron (as shown in 
Fig. A) received synaptic inputs between respiratory rhythms and additional excitatory inputs during 
respiratory rhythm led to burst, is shown. (C) A representative trace recorded from a non-rhythmic 
glycinergic neuron that receives spontaneous but not rhythmic synaptic inputs (upper trace) is 
shown. The trace below recorded from the preBötC showed integrated mass activities of all neurons. 
(D) A representative membrane potential trace recorded from the same glycinergic neuron (as 
shown in Fig. C), also shows that it does not receive any additional synaptic input during respiratory 
rhythm. (E) Summarized results from recorded glycinergic neurons are shown. Numbers inside bar 
represent the number of neurons.  
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3.3.2 Rhythmic glycinergic neurons receive excitatory and inhibitory inputs 

Rhythmic glycinergic neurons in the preBötC receive both excitatory and inhibitory inputs 

during inspiratory rhythms; however, these inputs have not been characterized in details 

(Winter et al., 2009). The low chloride pipette solution (intracellular solution 3) allows to 

differentiate between excitatory and inhibitory inputs (Winter et al., 2009). Using the same 

pipette solution (Ecl= -87 mV), glycinergic neurons were patched and recorded at -70 mV 

and -50 mV. The inhibitory currents were outward at both potentials, however, they were 

not visible at -70 mV due to low driving force (Fig. 3.16A), but became clearly visible at -50 

mV (Fig. 3.16A1) while excitatory currents remained inward at both potentials. In current-

clamp, these glycinergic neurons showed weak depolarization leading to rhythmic APs (box 

in Fig. 3.16B). In contrast, some rhythmic glycinergic neurons when held at -50 mV, showed 

only excitatory rhythmic inputs (Fig. 3.16C1; expansion of 3.16C). In current-clamp, these 

glycinergic neurons showed strong depolarization leading to strong rhythmic burst (box in 

Fig. 3.16D). Based on these results, 36% (N=5/14) rhythmic glycinergic neurons received 

both excitatory and inhibitory rhythmic inputs whereas 64% (N=9/14) received only 

excitatory rhythmic inputs (Fig. 3.16E). 
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Figure 3.16 Glycinergic neurons received excitatory and inhibitory rhythmic inputs. 
(A) A representative membrane current trace recorded from a glycinergic neuron at different holding 
potentials (-70 mV and -50 mV) is shown. Low chloride intracellular solution (Ecl = -87mV) was used 
to differentiate between excitatory and inhibitory inputs. This glycinergic neuron received both 
excitatory (inward) and inhibitory (outward) inputs during rhythmic bursts (see Figure A1). Middle 
trace recorded from the preBötC showed the mass activity from all neurons. The trace below shows 
neuron holding potential. (B) A representative membrane potential trace recorded from the same 
neuron is shown. Receiving of excitatory rhythmic inputs led to APs; the inset show the enlarged 
view of proceeding AP. Bottom trace recorded from the preBötC showed the mass activity from all 
neurons. (C) A representative membrane current trace recorded from another glycinergic neuron at 
same holding potentials (-50 mV) is shown. Receives only excitatory (inward) inputs during 
respiratory rhythm (see inset C1, scale bar same as A1). (D) A representative membrane potential 
trace recorded from the same neuron (as Fig C) showed receiving of strong excitatory rhythmic 
inputs leading to burst; the inset shows the enlarged view of preceding AP (same scale bar same as 
inset B). (E) Summarized results from recorded glycinergic neurons area shown. Asterisks indicates 
APs driven current in figure A and C. 
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3.3.3 Glycinergic neurons show pacemaker properties 

Glutamatergic neurons are considered as main pacemaker cells in the preBötC. However 

recent findings suggest, glycinergic neurons in the preBötC bear pacemaker properties 

(Morgado-Valle et al., 2010). Ectopic burst, voltage sags (Vsags), and rebound APs are also 

considered as properties of a pacemakers neuron. Therefore, it was tested whether 

glycinergic neurons in the preBötC also generate ectopic bursts. Indeed, glycinergic neurons 

were capable of generating ectopic bursts in addition to rhythmic bursts (62.5%; N= 15/24; 

Fig. 3.17A). While many glycinergic neurons produced only rhythmic burst (29.17%; N=7/24), 

some glycinergic neurons produced ectopic burst without any rhythmic preBötC burst 

(8.33%; N= 2/24; Fig. 3.17B). 
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Figure 3.17 Glycinergic neurons show pacemaker properties. 
(A) A representative membrane potential trace recorded from a glycinergic neuron shows ectopic 
burst (grey arrows) and rhythmic bursts (black arrows). The bottom trace recorded from the preBötC 
shows the integrated mass activity of all neurons. (B) A representative membrane potential trace 
recorded from another glycinergic neuron shows ectopic burst (grey arrows) but does not show 
rhythmic burst. (C) A representative membrane potential trace recorded from a glycinergic neuron in 
response to step-pulse DC (from -320 pA to 180 pA with 50 pA step, 500 ms) shows Vsag (see arrow) 
and rebound APs (see arrow head). (D) The summarized results from recorded glycinergic neurons 
are shown. The numbers inside the bar represent recorded cells. Scale bars on y-axis are same in Fig. 
A-C. 
 

 

Type 2 inspiratory neurons in the preBötC have been shown to have Vsags (due to IH current) 

upon hyperpolarization and rebound APs (due to reactivation of sodium current) upon 

returning to the resting membrane potential (Rekling et al., 1996). It was checked whether a 

glycinergic neuron in the preBötC also had these properties. In fact, the glycinergic neuron 

showed Vsags with hyperpolarizing current (arrow in Fig. 3.17C) and rebound AP (arrow head 

in Fig. 3.17C) after returning to the base line, with an applied step-pulse DC (from -320 pA to 

180 pA with 50 pA step for 500 ms). The majority of glycinergic neurons exhibited Vsags 

(97.70%; N=85/87) and rebound APs (94.25%; N=82/87; Fig. 3.17D). 
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3.3.4 Synaptic coupling between glycinergic neurons  

To study the synaptic strength between glycinergic neurons in the preBötC, paired 

recordings were performed. Glycinergic neurons (both cell 1 and cell 2 in Fig. 3.18 A-B) 

received spontaneous synaptic inputs, however, that did not correspond to the activity (AP) 

in the other glycinergic neuron of the pair (Fig. 3.18 A-B). Additionally, the synaptic couplings 

between glycinergic neurons were checked with depolarizing DC stimulation (Fig. 3.18 C-D), 

which also could not show synaptic coupling. The paired-recordings (16 from 6 mice) 

between nearby glycinergic neurons in the preBötC did not reveal any uni- or bi-directional 

synaptic coupling. 

 

 

 

Figure 3.18 Paired recording from two glycinergic neurons in the preBötC. 
(A) A representative paired recording trace recorded from two glycinergic neurons, where cell 1 (in 
voltage-clamp) is receiving sIPSCs and cell 2 (in current-clamp) shows spontaneous APs. However, 
there was no correlation between their activities. (B) The same neuronal pair when held in opposite 
clamping, means, then cell 1 was in current-clamp and cell 2 in voltage-clamp, still there was no 
correlation between them. (C) Another representative paired recording from another glycinergic 
neurons is shown, where cell 2 (in current-clamp) was stimulated with step-pulse DC (110 pA for 500 
ms) to observe correlated sIPSCs in cell 1 which was held in voltage-clamp. APs in cell2 do not induce 
corresponding sIPSCs in cell 1. (D) The same neurons when place in opposite-clamping and cell 1 was 
stimulated with the same step-pulse DC, that also does not elicit any corresponding sIPSC in cell 2. 
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3.3.5 Morphology of glycinergic neurons 

Glycinergic neurons in the preBötC have been studied via electrophysiology (Morgado-Valle 

et al., 2010; Rahman et al., 2013) and calcium sensitive dye (Winter et al., 2009). However, 

their detailed morphological characterization via dye filling has not been done. Here, 

glycinergic neurons were identified by EGFP expression in GlyT2-EGFP mice and filled with 

different dye (Alexa 568 and Alexa 647) to study their processes (axons and dendrites). In a 

preliminary set of experiments, glycinergic neurons (N=55) in the preBötC were filled with 

Alexa 568. Dendritic projections of these glycinergic neurons were distributed proximally to 

the soma while the axon was difficult to be distinguished (Fig. 3.19 A-B). Their soma were 

either pyramidal or spindle shape. Additionally, pairs of glycinergic neurons (N=14) were 

filled with two different dyes (Alexa 568 and Alexa 647) to identify projections of their 

processes. Dendritic projections of these glycinergic neurons spread proximal to the soma 

(Fig. 3.19 C-D) whereas a process (presumably axon) was projected far away (>400 µm) from 

soma to ipsilateral dorsal side (arrow in Fig. 3.19D).  
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Figure 3.19 Processes of glycinergic neurons in the preBötC. 
(A) A representative pyramidal glycinergic neuron filled with alexa 568 is shown. (B) A representative 
maximum intensity projection image shows two filled glycinergic neurons (red; arrow head and 
arrow point to soma). The soma of one filled glycinergic neuron (see arrow) came out along with the 
patch pipette. All green neurons are glycinergic neurons. (C) Representative spindle shape glycinergic 
neurons; one filled with Alexa 568 (green) and other Alexa 647 (red) are shown. (D) A representative 
maximum intensity projection image shows soma of two filled glycinergic neurons (arrow heads) and 
their axonal projections (arrows). Scale bars: 100 µm (A and C), 66 µm (B), 80 µm (D). 
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4. Discussion 
 

4.1 Role of co-transmission in the respiratory network 

In this thesis, co-transmission of GABA and glycine in the preBötC has been studied using 

electrophysiology, sc-RT-PCR and a cVIAAT KO mouse model. The results of this study show 

for the first time that GABA and glycine are co-transmitted in the pre-Bötzinger complex. 

Decay time constants and amplitudes of mIPSCs were analyzed to estimate the percentage 

of mixed-mIPSCs resulting from co-release of GABA and glycine compared to overall 

inhibitory transmissions (Rahman et al., 2013). Using the optimized method the “ΣEPF”, 

mixed-mIPSCs were observed up to 46.8% and 36.1% in glycinergic neurons and rhythmic 

glycinergic neurons respectively. These results fall within the range of previously reported 

studies in other brain regions (Jonas et al., 1998; Nabekura et al., 2004; Awatramani et al., 

2005). The sc-RT-PCR data has also shown higher number (64%) of glycinergic neurons in the 

preBötC that co-express both glycinergic and GABAergic neuronal markers, which also 

support the co-transmission in the preBötC. Similarly, GABAergic neurons in the preBötC also 

co-express markers for both GABAergic and glycinergic neurons in GAD67-GFP neonate mice 

(Koizumi et al., 2013). The drastically reduced VIAAT expression in the preBötC and 

hypoglossal nucleus of the cVIAAT KO embryos strongly suggest that GlyT2-cre was 

expressed thereby eliminated VIAAT from most of inhibitory neurons (>90%) during 

embryonic stage. Further, absence of sIPSCs in cVIAAT KO hypoglossal motoneurons 

additionally confirms wide expression of GlyT2-cre through embryonic brainstem 

development. These findings together underpin that the co-transmission is present in the 

preBötC and support previous findings of co-transmission in other brainstem regions. 

The inhibitory transmission in the VRC including the preBötC is involved in shaping and 

patterning of the respiratory rhythm (Hayashi & Lipski, 1992; Busselberg et al., 2001). 

Further, GABA and glycine co-transmission mediated inhibition in the NTS is postulated to 

play a role in the fast neuronal inhibition during respiratory reflexes (Dufour et al., 2010). 

Additionally, GABA and glycine mediated inhibitory transmission is hypothesized in 

synchronization of hypoglossal nerve output (Sebe et al., 2006). Based on above findings, it 

can be hypothesized that the inhibitory co-transmission in the preBötC could be involved in 
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synchronization of inspiratory and expiratory activity. The co-release mediated inhibition is 

faster compared to single transmitter mediated inhibition which can be accomplished due to 

two reasons. (1) Mixed transmission compared to pure GABA transmission can steeply 

increase the membrane conductance with faster activation of GlyR (Russier et al., 2002); (2) 

GABA co-release with glycine may act as co-agonist on GlyR and thereby shorten inhibition 

time by decreasing the decay time constant as shown in the auditory network (Lu et al., 

2008). GABA and glycine co-release and thereby co-transmission in the preBötC may be an 

optimal mode of inhibition to achieve fast synchronized inhibition as reported in other 

regions (Russier et al., 2002; Dufour et al., 2010). 

Lack of breathing and loss of phrenic nerve activity in VIAAT KO embryos are already 

reported, which lack inhibitory transmission in spinal motoneurons (Fujii et al., 2007; Saito et 

al., 2010). Even a selective elimination of GABAergic transmission causes the loss of phrenic 

nerve output (Fujii et al., 2007). In consistence with these studies, the cVIAAT KO embryos 

did not breathe and their hypoglossal motoneurons did not receive any inhibitory input as 

well. In addition, VIAAT expression was also dramatically reduced in hypoglossal nucleus and 

in the preBötC and most likely other brainstem regions of the cVIAAT KO as GlyT2 is reported 

to be expressed in hindbrain and spinal cord (Zafra et al., 1995). Taken together, these 

results strongly suggest that VIAAT was removed from both glycinergic and GABAergic 

terminals in the area of hypoglossal nucleus and the preBötC. Since the VIAAT removal was 

dependent on GlyT2-cre expression, it looks like that GlyT2 was expressed is all inhibitory 

neurons. Therefore it can be concluded that GlyT2 is an early marker of all inhibitory 

neurons in the brainstem during embryonic stage. 

Despite absence of sIPSCs in hypoglossal motoneurons of cVIAAT KO embryos and dramatic 

reduction of VIAAT staining in this region as well as in the preBötC, spontaneous bursting 

activities in the preBötC were present in rhythmic slices. Additionally, the cVIAAT KO 

embryos did not breathe. These results fall in line with previous publication which showed 

that rhythmic phrenic nerve output is absent in the brainstem-spinal cord preparation made 

from VIAAT KO embryos even though neurons in the pFRG (another respiratory rhythm 

generator) are capable of firing AP (Fujii et al., 2007). Therefore, these findings together 

ratify the observations that inhibitory transmission is not obligatory for the generation of 

rhythmic activity in the preBötC (Shao & Feldman, 1997) and the network of excitatory 
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pacemaker neurons is sufficient for respiratory rhythm generation (Wallen-Mackenzie et al., 

2006b). Rhythmic bursting activity in the preBötC is increased with bicuculline and 

strychnine application as reported in the neonate RVLM (Onimaru et al., 1990), which 

indicates that GABA and glycine indeed are inhibitory during this age (E18.5) as suggested 

before (Feng et al., 1998; Greer & Funk, 2005). Interestingly, it is known that inhibitory 

transmission is required for coupling of two oscillators - the pFRG and the preBötC to 

produce normal respiratory rhythm (Thoby-Brisson et al., 2009; Lal et al., 2011). Since 

inhibitory transmission was absent in cVIAAT KO as well as VIAAT KO embryos, the most 

likely reason for respiratory failure and subsequent death of these embryos was lack of 

coupling between the pFRG and the preBötC. However, it remains to be studied whether co-

transmission of GABA and glycine or GABAergic or glycinergic transmission alone is sufficient 

for this coupling. 

 

4.2 Loss of inhibition affects function of hypoglossal motoneurons 

Hypoglossal motoneurons are involved in regulation of breathing by control of tongue 

muscles. Synchronized hypoglossal output, which is in-phase with phrenic nerve activity, 

depends on intact inhibitory transmission in the neonate rodents (Sebe et al., 2006). The 

cVIAAT KO hypoglossal motoneurons did not receive any sIPSC, which is similar to the 

previous study that shows complete loss of sIPSCs in VIAAT KO spinal motoneurons (Saito et 

al., 2010). Similarly, sIPSCs are completely absent in >80% VIAAT KO cultured spinal 

motoneurons (Wojcik et al., 2006). Furthermore, any non-physiological reduction in GABA 

and/or glycine transmission reduces the number of hypoglossal as well as phrenic 

motoneurons as shown in VIAAT KO, GAD67 KO and gephyrin KO embryos (Banks et al., 

2005; Fogarty et al., 2013a; Fogarty et al., 2013b). These findings together reflect that GABA 

and glycine transmission are important for the development of motoneurons including 

hypoglossal motoneurons.  

Amplitudes of glycinergic eIPSCs in cVIAAT KO hypoglossal motoneurons were reduced while 

GABAergic remained unchanged. This fits with a previous study that shows that amplitude as 

well frequencies of glycinergic mIPSCs were drastically reduced in VIAAT KO spinal 

motoneurons (Wojcik et al., 2006). The reduced glycinergic eIPSCs must be due to the 
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reduction of functional glycine receptors on cVIAAT KO as well as VIAAT KO hypoglossal 

motoneurons as glycine transmission is required for glycine receptors clustering which is 

shown by in vitro (Kirsch & Betz, 1998; Levi et al., 1998) and in vivo experiments (Yamanaka 

et al., 2013). The bath application of sucrose, which increases the release probability of 

neurotransmitters (Rosenmund & Stevens, 1996), has produced barely 1-2 sIPSCs in cVIAAT 

KO hypoglossal motoneurons. These 1-2 sIPSCs looked similar to a GABAergic IPSCs based on 

a decay kinetic (τdecay~65 ms) as shown in the preBötC of GlyT2-EGFP mice (Rahman et al., 

2013). Further, their GABAergic nature could also be speculated because VIAAT was 

supposedly removed from all glycinergic neurons but not from all inhibitory neurons as ~5% 

VIAAT expression was still present in the hypoglossal nucleus. Additionally, these rare sIPSCs 

would be GABAergic as the leftover sIPSCs in VIAAT KO spinal motoneurons were also 

GABAergic (Wojcik et al., 2006). 

The membrane capacitance (Cm) of cVIAAT KO hypoglossal motoneurons was significantly 

lower compared to their control. In general, the Cm depends on the neuronal surface area 

including dendritic and axonic branches. The somatic areas of hypoglossal motoneurons do 

not change due to disturbance in inhibitory transmission, while any change in their axonic 

and dendritic branches is unknown (Banks et al., 2005; Fogarty et al., 2013a; Fogarty et al., 

2013b). However, it is shown in spinal motoneurons that axotomy reduces the Cm, therefore, 

the lower Cm of cVIAAT KO hypoglossal motoneurons could be due to their reduced axonic 

and dendritic branches (Yamuy et al., 1992). The reduced axon may be the most likely 

reason for low Cm because the decrease in phrenic nerve branching on diaphragm has been 

already observed in VIAAT, GAD67, and gephyrin KO embryos (Banks et al., 2005; Fogarty et 

al., 2013a). The input resistance (Rin) of cVIAAT KO hypoglossal motoneurons and their 

controls were comparable and are similar to the Rin of embryonic phrenic motoneurons 

(Martin-Caraballo & Greer, 1999).  

  



Discussion 

77 
 

4.3 Developmental variability in co-transmission of GABA and glycine  

In the cVIAAT KO embryos, hypoglossal motoneurons did not receive any GABAergic or 

glycinergic sIPSC which means GlyT2-cre was expressed and thereby removed VIAAT from all 

glycinergic and GABAergic neurons projecting to hypoglossal nucleus. The wide expression of 

GlyT2 in GABAergic neurons in addition to glycinergic neurons indicates that higher numbers 

(>90%) of inhibitory neurons could be capable of filling and thereby co-releasing both GABA 

and glycine during embryonic stage. During first and second postnatal weeks of 

development, around 64% glycinergic (Rahman et al., 2013) and 45% GABAergic (Koizumi et 

al., 2013) neurons co-express both GABAergic and glycinergic neuronal markers. Further, 

mixed-mIPSCs were up to 46.8% in the preBötC glycinergic neurons, which is similar to rat 

spinal cord (Jonas et al., 1998) but lower than rat LSO (Nabekura et al., 2004). The higher 

mixed-mIPSCs in LSO may be due to the difference in the method as amplitudes instead of 

decay time constants of GABA and glycine component of mIPSCs are considered for mixed-

mIPSCs estimation. However, studies in adult mice do not show co-expression of GABAergic 

and glycinergic neuronal markers except in a subpopulation of GABAergic precursor cells in 

the cerebellum (Zeilhofer et al., 2005; Simat et al., 2007a; Simat et al., 2007b). Interestingly, 

mixed-IPSCs are also reduced in medial nucleus of the trapezoid body (MNTB) of adult rat 

(Awatramani et al., 2005). Taken together, these results strongly suggest that co-release and 

thereby co-transmission contribution is higher in embryonic stage compared to neonate and 

adult stage. 

Discrepancy between electrophysiology and single cell reverse transcription polymerase 

chain reaction 

Sc-RT-PCR analysis showed higher number of glycinergic neurons (64%), which are capable of 

co-releasing both GABA and glycine, compared to mixed-mIPSCs (46.8%) detected in 

glycinergic neurons by electrophysiology. This discrepancy could be due to either different 

expression or activation of postsynaptic receptors or synthesis and co-release of 

neurotransmitters in the presynaptic terminals. At postsynaptic side, the co-transmission 

depends on the subunits expression of GABAAR and GlyR with respect to location, 

composition, and stoichiometry. Further, the distribution of inhibitory receptors varies from 

synapse to synapse (Dugue et al., 2005), therefore, it is unlikely that all mixed synapses in 

this study had homogenous expression of both GABAAR and GlyR. A non-homogenous 
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expression of GABAAR and GlyR would also reduce the detection of many co-release events, 

even with equal content of GABA and glycine. Interestingly, an equal amount of GABA and 

glycine at mixed synapses may activate more GlyR and less GABAAR because a GlyR needs 

only one glycine molecule whereas a GABAAR needs two GABA molecules to be activated 

(Twyman & Macdonald, 1991; Burkat et al., 2001). These conditions might have interfered 

with proper detection of mixed-mIPSCs; therefore, the actual % of mixed-mIPSCs in the 

preBötC might be even more than being calculated. 

On the presynaptic side, the content of GABA and glycine would be different in SVs due to 

heterogeneous expression of their synthesizing enzymes and transporters (GAD67, GAD65, 

GAT1, and GlyT2) in glycinergic neurons as the transmitter content in a SV strongly depends 

on their cytosolic concentration (Aubrey et al., 2007; Apostolides & Trussell, 2013; Ishibashi 

et al., 2013). If the contribution of one of the component either GABA or glycine was below 

30% in a mIPSC, this mIPSC would not have been detected as the mixed-mIPSCs (Rahman et 

al., 2013). The co-expression of GABA and glycine neuronal markers in glycinergic neurons 

do not eliminate the possibility of pure GABA or pure glycine SVs in their terminals as 

reported in some NTS neurons (Dufour et al., 2010).  

Sc-RT-PCR revealed that 18% of glycinergic neurons express at least one GABAergic marker 

(GAD67, GAD65, or GAT1) but not GlyT2. This condition might have arisen due to two 

reasons. The first reason might be low level of GlyT2 mRNA which was not possible to be 

detected by the reverse transcription polymerase chain reaction as shown in rostral 

ventrolateral medulla of neonatal rat (Comer et al., 1999) and in another brainstem region  

known as prepositus hypoglossi nucleus which is responsible for horizontal gaze holding 

(Shino et al., 2008).  
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Conditional VIAAT KO is restricted to caudal brain regions 

Since GlyT2 promoter is restricted to brainstem and spinal cord during embryonic 

development (Zafra et al., 1995; Jursky & Nelson, 1996) and its activity already starts around 

E11 (Adams et al., 1995), cre-mediated recombination at E18.5 was expected to occur in 

hindbrain only. Indeed, the reduced VIAAT expression was seen in hypoglossal nucleus and 

the preBötC but not in hypothalamus of cVIAAT KO embryos.  

 

4.4 Loss of GABAergic transmission causes omphalocele  

An omphalocele has been reported due to a loss of inhibitory transmission in VIAAT KO 

mouse models (Wojcik et al., 2006; Fujii et al., 2007; Oh et al., 2010; Saito et al., 2010). 

Likewise, this phenotype is also seen in KCC2 KO mouse model where inhibitory transmission 

is completely absent (Hubner et al., 2001). Therefore, the appearance of an omphalocele in 

all cVIAAT KO embryos and absence of sIPSC in cVIAAT KO hypoglossal motoneuron confirm 

the loss of both glycinergic and GABAergic transmissions cVIAAT KO embryos. This must have 

happened due to GlyT2-cre expression in all glycinergic and most of GABAergic neurons as a 

disturbance in GABAergic transmission alone causes the omphalocele only in 43% embryos 

(Saito et al., 2010) while a disturbance in glycinergic transmission  does not cause the 

omphalocele at all (Feng et al., 1998; Gomeza et al., 2003b). The ubiquitous GlyT2-cre 

expression was more evident from highly reduced VIAAT expression and complete loss of 

sIPSCs in hypoglossal nucleus and neurons respectively. Additionally, cVIAAT KO embryos 

were kyphotic (Fig. 3.4A) that might have exerted additional pressure on intraabdominal 

muscles resulting into failure of abdominal wall closure as hypothesized in VIAAT KO 

embryos model (Saito et al., 2010).  

Cleft palate is another non-neuronal defect, found in cVIAAT KO and other VIAAT KO (Wojcik 

et al., 2006; Fujii et al., 2007; Oh et al., 2010; Saito et al., 2010) and GAD67 KO mouse 

models (Asada et al., 1997; Condie et al., 1997; Kuwana et al., 2003; Tsunekawa et al., 2005; 

Fujii et al., 2007; Oh et al., 2010). In contrast, GAD65 KO mice (Asada et al., 1996) do not 

show cleft palate because sufficient GABA is synthesized from GAD67. These embryonic 

mouse models suggest that GABAergic transmission is obligatory for closure of the palate. 

The presence of cleft palate in cVIAAT KO embryos further emphasize that GlyT2-cre 
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removed VIAAT from most inhibitory projections to hypoglossal nucleus, the preBötC and 

most likely from other hindbrain regions as well. Glycine is not required for palate closure 

because neither gephyrin KO nor GlyT2 KO mouse model exhibits cleft-palate (Feng et al., 

1998; Gomeza et al., 2003b). Finally, these mouse models strongly demonstrate that GABA, 

but not glycine, is required for closure of palate. In fact GABA application in organotypic 

palate cultures, which are made from embryonic mice, rescue palate closure (Oh et al., 

2010).  

 

4.5 Glycinergic neurons are integrated in the pre-Bötzinger complex 

Characterization of glycinergic neurons in the preBötC supports previous studies which have 

shown that glycinergic neurons receive respiratory inputs (Winter et al., 2009; Morgado-

Valle et al., 2010). Glycinergic neurons in the preBötC received both excitatory and inhibitory 

inputs during inspiratory rhythmic bursts which further support the previous finding of our 

lab (Winter et al., 2009). These finding together substantiate the idea of mutual inhibition 

between the preBötC and the BötC which is proposed as the core-mechanism for respiratory 

rhythm generation in adult rodents (Abdala et al., 2009; Lindsey et al., 2012; Smith et al., 

2013). Previous studies found that glycinergic neurons in the preBötC show pacemaker 

properties (Morgado-Valle et al., 2010) or express molecular markers for pacemaker 

properties (Del Negro et al., 2002a; Del Negro et al., 2002b; Biel et al., 2009; Ramirez et al., 

2011), but they were not quantified. Some of these properties, like Vsag and rebound APs 

were quantified in glycinergic neurons of the preBötC which turned out to be a very 

common among of these neurons.  

Synaptic coupling between glycinergic neurons was not detected by paired 

electrophysiological recordings in the preBötC of neonatal mice. This is in line with  

previously study which reported less than 10% of preBötC neurons of the neonatal mice 

show synaptic coupling (Rekling et al., 2000). These results together suggest, overall low 

synaptic coupling among preBötC neurons which were recorded in brain slices made from 

neonatal mice. The low synaptic coupling is not very surprising, as the paired recordings 

were made during first postnatal week (p1-p4) when chemical synapses between neurons 

are still in the process of development while electric coupling is prevalent (Bou-Flores & 
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Berger, 2001; Kiehn & Tresch, 2002; Connors & Long, 2004). The glycinergic neurons 

recorded for synaptic coupling, were present in the same coronal plane and very close to 

each other; however, the dye filling experiments of glycinergic neurons showed the axonic 

projections far away from their soma while dendritic projections in the proximity of their 

soma. Since axon leaves the proximity of soma and project ipsilateral towards the dorsal side 

as shown in neonatal rat (Koizumi et al., 2013), this may be another reason for low synaptic 

coupling between glycinergic neurons in the preBötC. The low synaptic coupling also could 

be due to axonic and dentritic projections of inhibitory neurons in rostro-caudal direction 

which is necessary for core microcircuitry between BötC and preBötC (Abdala et al., 2009).  
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5. Summary and Conclusion 
 

Inhibitory neurons in the pre-Bötzinger complex - a kernel for respiratory rhythm generation, 

are involved in the respiratory rhythm modulation. The co-transmission of GABA and glycine 

has been reported in different brain regions but not in the preBötC. The current study 

showed that GABA and glycine co-transmission is present in the neonatal mouse pre-

Bötzinger complex. The co-transmission mediated inhibition was estimated up to 46.8% in 

the preBötC glycinergic neurons by the optimized “EPF” method based on decay kinetics of 

inhibitory postsynaptic currents. The co-transmission in the preBötC was further 

corroborated by single cell RT-PCR that showed 64% glycinergic neurons co-express 

GABAergic neuronal markers. The drastically reduced VIAAT expression in the preBötC and 

hypoglossal nucleus of the conditional VIAAT KO embryos strongly suggest that glycinergic 

neuronal marker (GlyT2) is co-expressed in most of GABAergic neurons in embryonic 

brainstem. The complete absence of sIPSCs in embryonic hypoglossal motoneurons further 

confirms wide expression of cre-recombinase among inhibitory neurons in a brainstem 

region which innervates hypoglossal nucleus. These results strongly suggest that GABA and 

glycine co-transmission could be ubiquitously present in the embryonic respiratory network 

and its distribution and relevance decreases during development.  

The cVIAAT KO embryos died due to respiratory failure resulting from complete loss of 

inhibitory transmission which is required for coupling between the preBötC and the pFRG to 

produce a normal respiratory rhythm. A disturbance in either glycine transmission or 

GABAergic transmission alone does not deteriorate the respiratory network immediately 

because the co-transmission of GABA and glycine provides a mechanism of compensation 

for loss of single inhibitory transmitter as gephyrin KO, GlyT2 KO and GAD67 mouse models 

survive longer than cVIAAT and VIAAT KO embryos. The cVIAAT KO embryos without any 

exception showed very common striking features like omphalocele, cleft palate and kyphotic 

posture which must be due to the loss of all inhibition but not with either GABAergic or 

glycinergic inhibition alone.  
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