
Perceptual Segmentation of Visual Streams by
Tracking of Objects and Parts

Dissertation

zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades
”Doctor rerum naturalium”

der Georg-August-Universität Göttingen

im Promotionsprogramm
der Georg-August University School of Science (GAUSS)

vorgelegt von
Jérémie Papon aus Summit, NJ, USA

Göttingen, 2014

Perceptual Segmentation of Visual Streams by
Tracking of Objects and Parts

Dissertation

in order to obtain the doctoral degree in Mathematics and Natural Sciences
”Doctor rerum naturalium”

of the Georg-August-Universität Göttingen

in the Doctoral program of
the Georg-August University School of Science (GAUSS)

submitted by
Jérémie Papon of Summit, NJ, USA

Georg-August-Universität Göttingen
Göttingen, Germany

October 2014

Referentin/Referent: Prof. Dr. Florentin Wörgötter
Koreferentin/Koreferent: Prof. Dr. Justus Piater
Tag der mündlichen Prüfung: 17.10.2014

The canonical version of this document is the electronic copy maintained in the Github
repository by the author. At this time, it is maintained at:

https://github.com/jpapon/papon_thesis/thesis.pdf

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0
International License. The full terms of the license can be viewed online at:

http://creativecommons.org/licenses/by-nc/4.0/

Much of the code created as a result of the research in this thesis is freely available under a
BSD license as part of the Point Cloud Library:

http://www.pointclouds.org/

The code for the Oculus Vision System (see Appendix A) created as part of this thesis is
freely available under GPLv3:

https://launchpad.net/oculus

For other usage, contact jpapon@gmail.com.

© 2014 - Jérémie Papon
All rights reserved.

https://github.com/jpapon/papon_thesis/thesis.pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://www.pointclouds.org/
https://launchpad.net/oculus
jpapon@gmail.com

Perceptual Segmentation of Visual Streams by
Tracking of Objects and Parts

Abstract

The ability to parse visual streams into semanticallymeaningful entities is an es-

sential element of intelligent systems. This process - known as segmentation - is

a necessary precursor to high-level behavior which uses vision, such as identification of ob-

jects, scene understanding, and task planning. Tracking these segmented entities over time

further enriches this knowledge by extending it to the action domain. This work proposes to

establish a closed loop between Video Object Segmentation (VOS) and Multi-Target Tracking

(MTT) to parse streaming visual data. We demonstrate the strengths of this approach, and

show how such a framework can be used to distill basic semantic understanding of complex

actions in real-time, without the need for a-priori object knowledge. Importantly, this frame-

work is highly robust to occlusions, fast movements, and deforming objects.

This thesis has four key contributions, each of which lead towards fast and robust video

segmentation through tracking. First, we present Video Segmentation by Relaxation of Tracked

Masks (VSRTM), which serves as a proof of concept, demonstrating the feasibility ofDynamic

Semantic Segment Tracking (DSST) in 2D video. This method serves as a demonstration of

the viability of a feedback loop between VOS andMTT.This is accomplished using a sequen-

tial Bayesian technique to generate predictions which are used to seed a segmentation kernel,

the results of which are used to update tracked models.

The second contribution consists of a 3D voxel clustering technique, Voxel Cloud Con-

nectivity Segmentation (VCCS), which makes use of a novel adjacency octree structure to

efficiently cluster 3D point cloud data, and provide a graph lattice for the otherwise unstruc-

tured points. These clusters of voxels, or supervoxels, and their adjacency graph are used to

maintain a world model which serves as an internal buffer for observations for trackers. Im-

portantly, this world model uses ray-tracing to ensure that it does not delete occluded voxels

as new frames of data arrive.

iii

The third contribution is a novel spatially stratified sampling technique for evaluating the

likelihood function in particle filters. In particular, we show that in the case where the mea-

surement function uses spatial correspondence, we can greatly reduce computational cost by

exploiting spatial structure to avoid redundant computations. We present results which quan-

titatively show that the technique permits equivalent, and in some cases, greater accuracy, as

a reference point cloud particle filter at significantly faster run-times. We also compare to a

GPU implementation, and show that we can exceed their performance on the CPU. In addi-

tion, wepresent results on amulti-target tracking application, demonstrating that the increases

in efficiency permit online 6DoF multi-target tracking on standard hardware.

Our final contribution is Predictive Association of Supervoxels (PAS), which implements a

closed loopbetween segmentation and tracking byminimizing a global energy functionwhich

scores supervoxel associations. The energy function is efficiently computed using the adja-

cency octree, with candidate associations provided by the 3D correspondence based particle

filters. The association found determines a fully segmented point cloud, and is used to update

the tracker models (as in VSRTM).This allows for the segmentation of temporally consistent

supervoxels, avoiding the need to pre-define object models for segmentation.

Each of these contributions has been implemented in live systems and run in an online

streaming manner. We have performed quantitative evaluation on existing benchmarks to

demonstrate state-of-the-art tracking and segmentation performance. In the 2Dcase, we com-

pare against an existing tracking benchmark, and show that we can match their tracking per-

formance, while in the 3D case we use a benchmark to show that we can outperform a GPU

implementation. Finally, we give qualitative results in a robotic teaching application, and show

that the system is able to parse real data and to distill semantic understanding from video.

iv

Contents

1 Introduction 1

1.1 Problem Definition and Motivation . 2

1.1.1 The Image Segmentation Problem 2

1.1.2 The Tracking Problem . 3

1.1.3 Video Object Segmentation - Segmentation In Sequential Frames . 5

1.2 State of the Art . 6

1.2.1 Segmentation and Superpixels . 6

1.2.2 Multi-Target Visual Tracking . 6

1.2.3 Video Object Segmentation . 7

1.3 Outline and Contributions . 8

2 Video Segmentation by Relaxation of Tracked Masks 11

2.1 Overview of the Algorithm . 12

2.2 Tracking Object Masks . 13

2.2.1 Sequential Bayesian Estimation 14

Dynamic Model . 14

Measurement Model . 15

2.2.2 Parallel Particle Filters . 15

2.2.3 Particle Birth, Repopulation, & Decay. 16

2.3 Extracting a Dense Image Labeling . 17

2.3.1 Object Pixel Likelihood Maps. 17

2.3.2 Label Association Likelihood Map. 17

2.4 Occlusion Handling. 18

2.5 Segmentation using Superparamagnetic Clustering 18

2.6 Experimental Results . 20

2.7 Discussion . 21

3 Patch-based Perceptual World Model 25

v

3.1 Pre-processing of Point Cloud Data . 26
3.1.1 Voxelization . 26
3.1.2 Octree Adjacency Graph . 26

3.2 Geometrically Constrained Supervoxels 27
3.2.1 Spatial Cluster Seeding . 28
3.2.2 Cluster Features and Distance . 29
3.2.3 Flow Constrained Region Growing 30

3.3 Sequential Update of Perceptual Model 31
3.4 Depth Dependent Voxel Grid . 33
3.5 Locally Convex Connected Patches . 34
3.6 Experimental Results . 37

3.6.1 Datasets . 37
Object Segmentation Database (OSD) 37
NYU Indoor Dataset (NYU) . 37
Returning to the Projected Plane 38

3.6.2 Supervoxels . 40
Object Boundary Adherence . 40
Time Performance . 41

3.6.3 Locally Convex Connected Patches 42
3.7 Discussion . 43

4 Model-Based Point Cloud Tracking 45

4.1 Particle Filters in 3D . 46
4.1.1 Model Representation . 46
4.1.2 Dynamic Model . 47
4.1.3 Measurement Model . 48

4.2 Stratified Correspondence Sampling . 50
4.3 Experimental Results . 51

4.3.1 Results on Synthetic Sequences 52
4.3.2 Results on Real Sequences . 57

4.4 Discussion . 59

5 Tracking Based Point Cloud Video Segmentation 61

5.1 Tracked Model Representation . 62
5.2 Bank of Parallel Particle Filters . 63
5.3 Association by Joint Label Optimization 63
5.4 Alignment and Update of Models . 65
5.5 Experimental Results . 66

vi

5.5.1 Imitation of Trajectories for Robot Manipulation 66
5.5.2 Semantic Summaries of Actions 68

5.6 Discussion . 68

6 Conclusions 71

6.1 Summary of Contributions . 71
6.2 Shortcomings of VOS Benchmarks . 73
6.3 Limitations and Direction of Future Work 73

References 81

Appendices 83

A The Oculus Vision System 85

A.1 Motivation . 85
A.2 System Architecture . 86

A.2.1 Execution Flow . 86
A.2.2 Plugin Development and Interaction 87
A.2.3 Visualization . 89

A.3 Memory Architecture . 89
A.3.1 Global Buffer . 89
A.3.2 GPU Memory Handling . 91

A.4 Demonstration System . 92
A.4.1 Image Acquisition . 92
A.4.2 Disparity and Optical Flow . 93
A.4.3 Segmentation and Tracking . 93
A.4.4 Semantic Graphs . 94

A.5 Results and Discussion . 95
A.6 Conclusion . 96

B Sequential Bayesian Estimation 97

B.1 Particle Filters . 98
B.1.1 Resampling . 98

vii

List of Figures

1 Introduction
1.1.1 Example of Segmentation and Ground Truth 3
1.1.2 Technical Difficulties of Segmentation . 4
1.1.3 Hidden Markov Model . 4
1.1.4 Example of Visual Tracking . 5
1.1.5 Example of Video Object Segmentation 6

2 VideoSegmentationbyRelaxationofTrackedMasks
2.1.1 Overview of Algorithm . 13
2.5.1 Relaxation Convergence . 19
2.6.1 Tracked output from lemming sequence 22
2.6.2 Results of Cranfield Sequence . 23

3 Patch-basedPerceptualWorldModel
3.1.1 Example of Voxelization . 26
3.1.2 Octree Voxelization . 27
3.1.3 Adjacency in a 3d Grid . 27
3.2.1 Seeding Parameters . 29
3.2.2 Seeding Size . 29
3.2.3 Voxel Search Order . 31
3.3.1 Voxel Visibility . 32
3.3.2 Voxel Permanence . 33
3.4.1 Depth Adaptive Transform . 34
3.5.1 Flow Diagram of LCCP . 36
3.6.1 NYU Dataset Examples . 38
3.6.2 2D Hole Filling . 39
3.6.3 Superpixel Comparison . 39
3.6.4 Boundary Recall & Undersegmentation Error 40
3.6.5 Segmentation Speed . 41
3.6.6 OSD Dataset Examples . 42

viii

4 Model-BasedPointCloudTracking
4.1.1 Example of data from “Tide” sequence. 46
4.2.1 Stratified Correspondence Matching . 50
4.2.2 Tracking on the artificial “Kinect Box” sequence. 51
4.3.1 Tracking on the artificial “Tide” sequence. 53
4.3.2 Tracked vs Ground Truth - Kinect Box . 54
4.3.3 Results on the Kinect Box artificial sequence. 54
4.3.4 Tracked vs Ground Truth - Milk . 55
4.3.5 Results on the Milk artificial sequence. 55
4.3.6 Tracked vs Ground Truth - Orange Juice 56
4.3.7 Results on the Orange Juice artificial sequence. 56
4.3.8 Tracked vs Ground Truth - Tide . 57
4.3.9 Results on the Tide artificial sequence. 57
4.3.10Human demonstration of assembly of the Cranfield Scenario. 58
4.3.11Snapshots from Virtual Reality Benchmark Run 59

5 TrackingBasedPointCloudVideoSegmentation
5.1.1 Algorithm Overview . 62
5.1.2 The Aperture Problem . 63
5.3.1 Supervoxel Association . 64
5.5.1 Cranfield Tracking Results . 66
5.5.2 Trajectory Imitation . 67
5.5.3 Cranfield Key Frames . 68

A TheOculusVisionSystem
A.2.1 Overview of the system architecture . 88
A.3.1 Comparison of Buffering Schemes . 90
A.3.2 Feedback using a Global Buffer . 91
A.3.3 Streaming and Concurrent Kernels . 92
A.4.1 Timing results for demonstration system 94
A.5.1 Performance Effect of Visualization . 96

ix

List of Tables

2.6.1 PROST dataset benchmark results . 20

3.6.1 Segmentation Results on OSD Dataset . 42
3.6.2 Comparison of NYU Dataset Results . 43

x

List of Acronyms

AI Artificial Intelligence.

DDVG Depth Dependent Voxel Grid.

DSST Dynamic Semantic Segment Tracking.

ECC Extended Convexity Criterion.

LCCP Locally Convex Connected Patches.

MHVS Multiple hypothesis video segmentation.

MSVS Mean-shift video segmentation.

MTT Multi-Target Tracking.

MTVT Multi-target visual tracking.

PAS Predictive Association of Supervoxels.

PCL Point Cloud Library.

PDF Probability Distribution Function.

PVA Propagation, validation, and aggregation.

SBF Sequential Bayesian Filtering.

VCCS Voxel Cloud Connectivity Segmentation.

VOS Video Object Segmentation.

VSRTM Video Segmentation by Relaxation of Tracked Masks.

xi

List of Related Publications

Papon, J.; Wörgötter, F., “Spatially Stratified Correspondence Sampling for Real-Time
Point Cloud Tracking,” Applications of Computer Vision (WACV), 2015 IEEE Inter-
national Conference on, Jan. 2015.

Papon, J.; Kulvicius, T.; Aksoy, E.;Wörgötter, F., “PointCloudVideoObject Segmentation
using a Persistent Supervoxel World-Model,” Intelligent Robots and Systems (IROS),
2013 IEEE/RSJ International Conference on, Nov. 2013.

Papon, J.; Abramov, A.; Schoeler, M.; Wörgötter, F., “Voxel Cloud Connectivity Segmen-
tation -Supervoxels forPointClouds,”ComputerVisionandPatternRecognition (CVPR)
2013, June 2013.

Papon, J.; Abramov, A.; Wörgötter, F., “Occlusion Handling in Video Segmentation via
Predictive Feedback,”EuropeanConference onComputerVision (ECCV) 2012. Work-
shops andDemonstrations, LectureNotes inComputerScienceVolume7585, 2012,
pp 233-242.

Papon, J.; Abramov, A.; Aksoy, E.; Wörgötter, F., “A modular system architecture for on-
lineparallel visionpipelines,”Applications ofComputerVision (WACV)2012, pp.361-
368, Jan. 2012.

Stein, S.; Schoeler, M.; Papon, J.; Wörgötter, F., “Object Partitioning using Local Convex-
ity,” Computer Vision and Pattern Recognition (CVPR) 2014, June 2014.

Stein, S.; Wörgötter, F.; Schoeler, M.; Papon, J.; Kulvicius, T., “Convexity Based Ob-
ject Partitioning For Robot Applications,” Robotics and Automation (ICRA), 2014
IEEE/RSJ International Conference on, June 2014.

Schlette, C.; Buch, A.; Aksoy, E.; Steil, T.; Papon, J.; Savarimuthu, T.R.; Wörgötter, F.;
Krüger, N.; Roßmann, J., “A new benchmark for pose estimation with ground truth

xiii

http://www.dpi.physik.uni-goettingen.de/cns/modules/BibtexModule/uploads/PDF/paponkulviciusaksoy2013.pdf
http://www.dpi.physik.uni-goettingen.de/cns/modules/BibtexModule/uploads/PDF/paponkulviciusaksoy2013.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Papon_Voxel_Cloud_Connectivity_2013_CVPR_paper.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Papon_Voxel_Cloud_Connectivity_2013_CVPR_paper.pdf
http://www.dpi.physik.uni-goettingen.de/cns/modules/BibtexModule/uploads/PDF/paponabramovwoergoetter2012.pdf
http://www.dpi.physik.uni-goettingen.de/cns/modules/BibtexModule/uploads/PDF/paponabramovwoergoetter2012.pdf
http://www.dpi.physik.uni-goettingen.de/cns/modules/BibtexModule/uploads/PDF/paponabramovaksoy2012.pdf
http://www.dpi.physik.uni-goettingen.de/cns/modules/BibtexModule/uploads/PDF/paponabramovaksoy2012.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Stein_Object_Partitioning_using_2014_CVPR_paper.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Stein_Object_Partitioning_using_2014_CVPR_paper.pdf
http://www.dpi.physik.uni-goettingen.de/cns/modules/BibtexModule/uploads/PDF/steinwoergoetterschoeler2014.pdf
http://www.dpi.physik.uni-goettingen.de/cns/modules/BibtexModule/uploads/PDF/steinwoergoetterschoeler2014.pdf
http://link.springer.com/article/10.1007/s11740-014-0552-0
http://link.springer.com/article/10.1007/s11740-014-0552-0

from virtual reality,” Production Engineering, May 2014.

Aein, M.J.; Aksoy, E.; Tamosuinaite, M.; Papon, J.; Ude, A.; Wörgötter, F., “Toward a li-
brary of manipulation actions based on semantic object-action relations,” Intelligent
Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, Nov. 2013.

Abramov, A.; Pauwels, K.;Papon, J.;Wörgötter, F.; Dellen, B., “Depth-supported real-time
video segmentationwith theKinect,”Applications ofComputerVision (WACV)2012,
Jan. 2012.

The research leading to this thesis was supported with funding from the European Com-
munity’s Seventh Framework Programme FP7/2007-2013 (Specific Programme Coopera-
tion, Theme 3, Information and Communication Technologies) under grant agreement no.
270273, Xperience and grant agreement no. 269959, IntellAct.

xiv

http://link.springer.com/article/10.1007/s11740-014-0552-0
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6697011&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6697011&tag=1
http://dx.doi.org/10.1109/WACV.2012.6163000
http://dx.doi.org/10.1109/WACV.2012.6163000

“Le seul véritable voyage, ce ne serait pas d’aller vers de
nouveaux paysages, mais d’avoir d’autres yeux, de voir
l’univers avec les yeux d’un autre, de cent autres, de voir
les cent univers que chacun d’eux voit, que chacun d’eux
est.”

The only true voyage, would not be a journey towards new
landscapes, but to possess new eyes, to see the universe
through the eyes of another, of a hundred others, to behold
the hundred universes that each of them sees, that each of
them is.

Marcel Proust

Acknowledgments

I would never have made it through to the end of this thesis without the support of my
friends, family, and colleagues. I’d like to thank my supervisors Prof. Dr. Florentin Wörgöt-
ter and Prof. Dr. Dieter Hogrefe for their guidance, aid, and many fruitful discussions which
helped bring about this work. Special thanks go out to our close-knit (talkative) vision group:
Dr. Eren Erdal Aksoy, Simon Reich, Simon Stein, and Markus Schöler. I’d also like to thank
our robot-men Dr. Tomas Kulvicius and Mohamad Javad Aein for all their hard work making
it work (usually) in the real-world. I also would like to thank all of my friends and colleagues
up at the University of Southern Denmark, as well as all the IntellAct partners with whom I
had the good fortune of passing somuch time inOdense. A heart-felt thanks to all of themem-

bers of Florentin’s group, which has becomemy extended family in Germany. It’s been a plea-
sure working and living with all of you: Mohamad Javad Aein, Dr. Alejandro Agostini, Mar-
tin Biehl, Jan-Matthias Braun, Sakyasingha Dasgupta, Michael Fauth, Dennis Goldschmidt,
Dr. Yinyun Li, Timo Nachstedt, Dr. Poramate Manoonpong, Dr. Minija Tamosiunaite, Dr.
Christian Tetzlaff, and Xiaofeng Xiong. An especially big thanks to Ursula Hahn-Wörgötter
for putting up with me and being such a big help in figuring out Germany. Last (but far from

least) I want to thankmy family. I could have never made it here without the unwavering sup-
port of my father, Jean-Marc, and my mother, Marian. I thank them especially for hosting me
every Summer in Veyssou and on the boat - time away from work that proved invaluable. I
know at times I was a handful to deal with (perhaps a few handfuls), and your constant love
and support were instrumental in seeing me through. Of course I would also like to thank my
loving sister Camille, who, even half a world away, hasn’t forgotten her little brother.

xv

Thank you all, so very, very much!

Jérémie Papon
Göttingen, 2014.

xvi

We are so familiar with seeing, that it takes a leap of imag-
ination to realize that there are problems to be solved. But
consider it. We are given tiny distorted upside-down images
in the eyes, and we see separate solid objects in surrounding
space. From the patterns of stimulation on the retina we per-
ceive the world of objects and this is nothing short of a mira-
cle.

Richard L. Gregory, Eye and Brain, 1966.

1
Introduction

Thehuman visual cortex is able to process a bewilderingly large amount of datawith
ease. From messy signals emitted by the 100 million rods and cones in a typical
retina, it can assemble an ordered world containing structure, meaningful parts,

and distinct objects [45]. Furthermore, it possesses an understanding of coherent motion,
allowing it to keep track of and intuitively predict object trajectories. These two abilities, the
segmentation of the world into objects, and the tracking of objects to maintain their identi-
ties, serve as key components in the bootstrapping of higher level knowledge. Indeed, it has
been shown that our earliest andmost fundamental understanding of the world is topological
in nature, dealing with concepts that can be described through segmentation and tracking -
proximity, order, separation and enclosure[66].

In fact, these concepts are so fundamental tohumanunderstandingof theworld thatwefind
it profoundly difficult to precisely definewhat an object actually is. Yet in spite of the difficulty
in formalizing the concept, we can divide complex moving scenes into distinct objects, even
hierarchies of parts, with little effort. In this work we argue that the concepts of tracking and
segmentation are inexorably linked; that visual tracking plays an essential role in creating the
objects we observe, and that the organization of observations into structured objects is critical
for robust tracking. Wepropose thatwithout the ability to trackmotions in a coherentway, the
notion of distinct objects is, ultimately, a meaningless one. Furthermore, we suggest that this
link between tracking and object segmentation is one of the key elements that enable learning
from visual input, and through this, the bootstrapping of cognition itself.

1

1.1 ProblemDefinition andMotivation

As with humans, in order for intelligent agents to be truly autonomous, they must be able to
learn the principles of visual understanding from their own unsupervised observations. At its
most basic level, an agent must be able to parse observations, to break them down into mean-
ingful entities upon which higher level knowledge can be built. In other words, segmentation
of observations is a precursor to high-level behaviors, such as identification of objects, scene
understanding, and task planning. Tracking segmented entities over time is an integral parts
of this, as it further enriches this knowledge by extending it to the action domain. Combin-
ing these two tasks - segmentation and tracking - would allow fully unsupervised parsing of
streaming visual data. This has the potential to greatly increase the flexibility of autonomous
robotic systems by allowing them to learn from observations without the constraints of pre-
defined object and domain knowledge.

In this work, we propose to develop an unconstrained video segmentation algorithm that
is able to track low level patches. This permits the segmentation of objects and their parts
naturally, without the need to define what an object actually is. Rather than train classifiers
to recognize pre-defined objects, we can have an agent observe or interact with a scene and
learn the concept of an object throughmovement and interactions between observed patches.
This Chapter introduces the general concepts that will be expounded upon throughout the
work by first discussing the three underlying tasks; Image Segmentation, Multi-Target Track-
ing (MTT), and VideoObject Segmentation (VOS).With each of these tasks, we will discuss
what exactly our goals are, and what challenges are faced in achieving them. Next, we survey
the state of the art in each of these fields, highlighting themethods and important papers upon
which we base this work. Finally, we outline each of the Chapters of this work, and enumerate
the specific contributions of our research.

1.1.1 The Image Segmentation Problem

Image segmentation aims to divide the set of pixels in an image into a number of distinct sub-
sets, where each subset represents some semantically meaningful entity (e.g., an object - see
Figure 1.1.1). This is a (infamously) deceptively tricky business, primarily because it is some-
thing that humans are able to do intuitively. This ease with which humans can segment visual
scenes is highly deceptive; Marvin Minsky, one of the pioneers of Artificial Intelligence (AI),
famously assigned one of his students “computer vision” as a summer undergraduate project
in 1966. Nearly half a century later, despite the extensive effort to solve it, image segmentation,
the first step on the long road to complete “computer vision”, remains an unsolved problem.
In fact, this phenomenon - of tasks that are simple for humans being incredibly demanding
computationally - even has its own name;Moravec’s Paradox. As stated by Pinker [67]:

“The main lesson of thirty-five years of AI research is that the hard problems are

2

Figure 1.1.1: Example of Segmentation and one interpretation of Ground Truth. From left to
right we have an image, a segmentation from a computer vision algorithm, and a human-annotated
ground truth labeling. Here labels are represented by different colors, a convention we shall use
throughout the rest of this work.

easy and the easy problems are hard. The mental abilities of a four-year-old that
we take for granted – recognizing a face, lifting a pencil, walking across a room,
answering a question – in fact solve some of the hardest engineering problems
ever conceived. (p. 190)”

The reason for this “hardness” of an “easy” problem like image segmentation is two-fold:
firstly, there are many technical and computationally-demanding challenges associated with
properly dividing an image into separate objects. Among these, shadows, occlusions, reflec-
tions, imaging noise and so forth can all greatly affect the results of image segmentation. Con-
sider, for instance, a partial occlusion as in Figure 1.1.2. A human can easily identify that the
parts on either side of the occluding object belong to same object. This is accomplished using
what we shall refer to as high-level knowledge throughout this work - in this case, knowledge
of the complete nature of an object.

This leads us to the second challenge in image segmentation, which is that, generally speak-
ing, there is no “correct” solution to the problem. A perfect labeling for one applicationmight
be useless in another. This is even more of a problem when we are discussing segmentation
separate from any application, as is the case with standard image segmentation benchmarks
(which are use to quantify algorithm performance). These benchmarks use ground-truth im-
age labels (manually created by humans) to score the output of different algorithms. Unfortu-
nately, the correctness of different labellings is highly subjective, and hand-drawn labels from
people can differ radically.

1.1.2 The Tracking Problem

Tracking entities over time is a critical element in a wide variety of computer vision applica-
tions such as visual surveillance, action recognition, and robotic imitation learning. Inmost of
these, visual tracking serves as the precursor to further high-level inference, as without it, one
is unable to correctly interpret time-variant systems. One can formalize the tracking problem

3

Figure 1.1.2: Technical Difficulties of Segmentation. Here we see some of the myriad of techni-
cal difficulties present in color-based segmentation, such as transparent objects (the water bottle),
partial occlusions (the toaster), objects with strong color differences (the little monster), and simi-
larities in color (the bottle cap to the table).

Figure 1.1.3: TheHiddenMarkov Model is a classical way to represent the track of an object over
time. The object states x(0 . . . t) (shown here in blue) are hidden variables which influence obser-
vations y(0 . . . t) through conditional dependencies (shown as arrows). An important property of
the Markov Model is that state at time t is dependent only on state at time t − 1.

as estimation of the time-varying hidden state (e.g., position, velocity) of an object x(t) us-
ing noisy observations y(t). For simplicity, one generally assumes the state evolution to be a
Markov Process (see Figure 1.1.3), that is, a stochastic process which is conditionally indepen-
dent of the rest of its history given its previous state.

Multi-target visual tracking (MTVT) extends these concepts to multiple targets, adding
additional complexity due to the need to both estimate the number of tracked targets as well
as associate observations with appropriate targets. This is the primary challenge of MTVT -
the data association problem - deciding which tracked target a particular observation belongs
to. Confounding this is the additional null possibility, where an observation belongs to none
of the tracked targets. Some additional difficulties present in MTVT are related to those of
image segmentation, simply extended into the temporal domain. In particular, interacting and
occluded targets are especially challenging.

4

Figure 1.1.4: Example of Visual Tracking - from [61]. This shows outputs from various trackers in
a standard video tracking benchmark [76]. The output of each tracker is shown as a colored rect-
angle. Some of the difficulties of tracking can be seen- in particular complex backgrounds, motion
blur, partial occlusions (second frame from left) and even full occlusions (right-most frame).

1.1.3 Video Object Segmentation - Segmentation In Sequential Frames

VOSattempts to cluster pixels of video frames into segmentswhich are both spatially and tem-
porally coherent. While related toMTVT,VOS goes a step beyond localizing tracked objects,
in that itmakes an association decision for each observed pixel; in addition to estimating over-
all state, it must re-estimate spatial extent every frame. Additionally, VOS has the additional
consideration that target appearancemodels are unknown a-priori, and are subject to arbitrary
changes over time.

The standard interpretation of VOS is that of adding an additional dimension to image seg-
mentation; that is, one stacks all the image frames on top of each other, and performs a “vol-
umetric” segmentation. In this work we shall use a different interpretation for VOS; that of
tracking multiple time-evolving and interacting objects projected onto the image plane of our
sensor. While the standard interpretation has the advantage of allowing the straightforward
extension of 2D segmentation techniques, it suffers greatly from its inability to handle occlu-
sions in a meaningful way. This is easily observed when one considers that occlusions will
result in “disconnection” within the 3D stack, violating the core assumption that segments of
interest form contiguous volumes. In contrast, tracking techniques are able to handle occlu-
sions gracefully.

One interesting aspect of video segmentation is that it has the potential to bemore accurate
than single image segmentation, as it can take advantage of the temporal coherence of objects
to infer information about the objects in a scene. Unfortunately, the addition of the temporal
domain brings along new challenges as well; for instance that pixels which should be grouped
across time may not be continuously visible, as in the case of partial or full occlusions. Addi-
tionally, the addeddimension increases the computational complexity of the problem,making
accurate segmentation a costly procedure. Temporal information also increases the exposure
of the algorithm to noise, as each image frame is a separate noisy measurement. This adds a
large amount of uncertainty to the problem, sincemeasured values (i.e., of color) for an object
can show significant variation over time.

5

Figure 1.1.5: Example of Video Object Segmentation - from [3]. This shows the goal of VOS - to
extract a dense labeling (labels here are shown as distinct colors) for every frame, maintaining tem-
poral consistency of objects. For many applications it is of vital importance to make the labeling
consistent from frame to frame, that is, to maintain object identities.

1.2 State of the Art

1.2.1 Segmentation and Superpixels

Segmentation of scenes into objects remains one of the most challenging topics of computer
visiondespite decadesof research. Toaddress this, recentmethodsoftenusehierarchieswhich
create a rank order that build bottom-up from small localized superpixels to large-scale regions
[7, 11, 71]. As an alternative, researchers have also pursued strictly top-down approaches.
Such methods began with coarse segmentations using multiscale sliding window detectors
[87], later progressing to finer grained segmentations and detections based on object parts
[18, 31]. These two avenues of research led naturally to methods which combine bottom-up
hierarchy building with top-down object- and part-detectors [12, 37, 79]. While these ap-
proaches have yielded quite good results even on complex, varied data sets, they have lost
much of the generality of learning-free approaches. In general the most powerful methods to-
date use trained classifiers for segmentation [37, 79]. This means they cannot be applied to
arbitrary unknown scenes without being retrained, requiring the acquisition of a new data-set
tailored to each test environment and a-priori models specialized to this testing data.

1.2.2 Multi-Target Visual Tracking

MTVT is a well-established field, which goes back over thirty years [32]. In this work we use
Sequential Bayesian Estimation to track targets, in particular a Monte Carlo method known
as Particle Filtering. This approach was first introduced to the vision community by Isard and
Blake [44] and has been the subject of much subsequent research extending it [40, 86, 88].

There are two standard approaches that havebeenused to extend theParticle Filter tomulti-
ple targets. Thefirst represents all targets jointly in a singleparticle filter by assigning individual
particles to particular labels [85]. This means that, for a given total number of particles, there

6

will be fewer for each individual target - resulting in reduced accuracy. The second approach is
to add additional dimensions to the state space for each additional target [77]. Unfortunately,
this approach quickly increases the dimensionality of the state space, which also results in a
need for a very high number of particles for the filter to remain accurate.

In both of the above approaches, the computational complexity increases exponentially as
targets are added (for constant level of accuracy). As a consequence of this, it is beneficial to
use a separate particle filter for each target. Oneway of doing this is to add factors to the obser-
vation and/or processmodels of the filters which explicitlymodel occlusions and interactions
between targets [46, 52]. Alternatively, one can use a discrete processing step to resolve the
association of target detections [48].

A different approach which has generated much interest is to use the output of detectors
as the basis for tracking. Known as tracking-by-detection, these methods typically use simple
particle filters to maintain tracks [20, 24], and shift the focus of the problem onto the data
association step, wherein detections are assigned to targets. While there are several classical
approaches for solving this association problem from Sonar and Radar research [33, 70], a
greedy approach is typically sufficient given a good association scoring function [20, 90].

1.2.3 Video Object Segmentation

There are many existing VOS methods, which can be classified based on three parameters;
whether they are on- or off-line, whether they are dense or sparse, and whether or not they
are supervised. We can reduce the comparison-space of related work by comparing only with
algorithms which have the same three parameters as this work - on-line processing (the al-
gorithm may only use past data), dense segmentation (every pixel is assigned to a spatio-
temporal cluster), andunsupervisedoperation. Four state-of-the-art segmentation algorithms
meet these requirements: Mean-shift video segmentation (MSVS) [64], Multiple hypothesis
video segmentation (MHVS) from superpixel flows [83], Propagation, validation, and aggre-
gation (PVA) of a preceding graph [55], and Matching images under unstable segmentations
[39]. Of these methods, none are able to handle full occlusions; in fact only MHVS consid-
ers occlusions, and it is only able to handle partial occlusions for a few frames, and does not
consider full occlusions. Even state of the art off-line methods such as that of Brendel and
Todorovic [21] only handle partial occlusions, claiming that “complete occlusions ... require
higher-level reasoning”.

In [58] Papadakis and Bugeau use a dynamical model to guide successive segmentations,
along with an energy functionminimized using graph cuts to solve the label association prob-
lem. They formally model visible and occluded regions of tracked objects, tracking them as
distinct parts. While they do consider occlusions, they do not maintain a world model, and
as such their methodology must fail under complete occlusions. Additionally, they formally
model visible and occluded parts of the tracked objects, and so themethod does not scale well
with an increasing number of objects, and thus is better suited to extracting the silhouettes of

7

a few objects than performing a full segmentation. Other methods, such as [1], are severely
limited in that they require pre- computed models which are calibrated to a ground plane in
order to resolve occlusions. Recent work in MTVT [57] successfully tracks multiple objects
using a segmentation and association approach and adaptive 3D appearance models, but is
limited by the need to align model point clouds to the observed data every frame, as well as
the need for a ground plane. This precludes it from handling occlusions, as once a target is no
longer observed, its track must be terminated.

1.3 Outline andContributions

This work is organized as follows: First, in Chapter 2 we present a hybrid VOS / MTT tech-
nique for 2Ddata. Wedescribe the segmentation algorithmused, howwe track segments, how
we combine tracked results into a video segmentation and finally present results on a track-
ing benchmark. In Chapter 3 we present the concept of a persistent 3D voxel world model.
We begin by briefly introducing some core concepts of acquisition and representation of 3D
point cloud data, then present VCCS, a method for extracting a graph of 3D voxel patches
from point cloud data. We then discuss how to add point clouds sequentially to the model
in a way that allows voxels to persist through occlusions. Finally, we present quantitative and
qualitative results of VCCS and Locally Convex Connected Patches (LCCP), a segmentation
methodwhich uses VCCS. InChapter 4we describe amethod for using particle filters to track
multiple rigid objects in point cloud video data and present results of tracking performance
on both real and artificial data. Additionally, we present a stratified sampling approach which
greatly reduces the computational complexity of tracking. InChapter 5we combine themeth-
ods described in prior Chapters into a system which can produce full video segmentation of
point cloud videos. We show that the system is highly robust to occlusions and noisy data, and
present results on the application of semantic understanding and imitation of human actions.
Finally, in Chapter 6 we discuss the findings and experimental results of this work, possible
future work, and conclude.

Each of theChapters in this thesis contain novel contributions to the field, briefly described
below.

• Chapter2 contains a 2Dsegmentation through relaxation techniquepublished in [61].
This work demonstrated the concept of extracting video segmentation from tracks, and
the idea of connecting segmentation and tracking in a closed feedback loop.

• Chapter 3 contains the Supervoxel clustering method VCCS, as well as the scheme
for maintaining voxels in an octree through occlusions published in [62]. Supervoxels
serve as the basis for much ongoing work, as they provide a graph structure for other-
wise unordered pointcloud data.

• Chapter 4 accelerates 3D correspondence particle filter tracking through a stratified

8

samplingof themodel-spacepublished in [59]. This techniquegreatly reduces the com-
putational complexity of pointcloud tracking by taking advantage of the spatial struc-
ture of points.

• Chapter 5 has the techniques used to generate full segmentations based upon the re-
sults from multiple independent trackers [63].

• AppendixA presents theOculus Vision System [60], an open-source computer vision
system created over the course of the research for this thesis.

Additionally, the methods presented in this work have all been published as open-source
and are publicly available, either as part of Oculus¹ or the Point Cloud Library (PCL)².

¹https://launchpad.net/oculus/

²http://www.pointclouds.org/

9

https://launchpad.net/oculus/
http://www.pointclouds.org/

The outcome of any serious research can only be to make two
questions grow where only one grew before.

Thorstein Veblen

2
Video Segmentation by Relaxation of Tracked

Masks

In the beginning, 3D data, especially video data, was not readily available. As such, re-
searchers were forced to make due with strictly 2D video, which is inherently ambigu-
ous in many situations. In particular, partial and full occlusions are particularly vexing

problems in 2D video - not least because understanding of 2D video is so easy for humans,
yet so difficult to interpret algorithmically. Indeed, knowledge of object permanence, that is,
the understanding of how to correctly interpret occlusions, is something that humans acquire
very early on in their lives [45], but has yet to be successfully implemented in a fully auto-
mated VOS system. Even after decades of research, state-of-the-art methods still have trouble
correctly resolving partial occlusions, and typically fail completely after even the briefest of
complete occlusions.

In this Chapter, we shall present our attempts towards resolving the object permanence
problem with 2D data, as well as advance color-based VOS in general. In particular, we seek
to overcome two of the main drawbacks of the color-based video segmentation method de-
veloped by Abramov et al. [2] (and indeed, of color-based VOS in general). The first of these
is the correct tracking of objects through partial and full occlusions, which we proposed to
solve using a layering of deformable object masks that are allowed to interact and compete for
“ownership” of pixels. The second is to allow for object identities to be maintained through
sudden and/or fastmovements - something that was not possible due to the core assumptions

11

of the algorithm. To correct for this, we tracked themaskswith a set of particle filters, a class of
Bayesian predictive filters which are well known for their ability to handle difficult trajectories
[40, 86, 88].

Theunderlyingprinciple guiding theproposedalgorithm is tousepredictions fromBayesian
filtering to inform segmentation of higher-level temporal object correspondences. It is well
known that sequential Bayesian estimation methods perform well in difficult tracking scenar-
ios [30], and, under the Markov assumption, are computationally less demanding than video
segmentation techniques such asMHVS [83], which consider many prior frames. Particle fil-
tering is one suchmethodwhich has been shown to approximate the optimal tracking solution
well, even in complex multi-target scenarios with strong nonlinearities [40, 86, 88].

2.1 Overview of the Algorithm

Before proceeding to discuss elements in detail, we shall first give a brief overview of the algo-
rithm (depicted in Figure 2.1.1). We begin by performing an initial segmentation (using any
method) on the first frame Ft0 to generate an initial set of labels St0 . An initial set of particles
is generated for each label, and color histogram features are computed for each particle (as in
[69]). Thus each object k at initial time t0 is specified by a set of Nk particles Xk,1:Nk

t0 , each of
which contains a representation of the object, specified by a pixel existencemapM, a reference
color histogram q̂, a position shift vector pt0 , and a velocity vector vt0 .

The particles are then propagated in time independently, shifting their existence maps to
new regions of the image. These shiftedmaps are used to generate measured color histograms
from the next frame, which are evaluated to determine similarity to the object’s reference his-
togram. The set of particles for each object is then combined to create an overall object pixel
likelihoodmap. The pixel likelihoodmaps for all objects are then further combined with each
other to create a label association likelihood map. In this likelihood map, each pixel is a Prob-
ability Distribution Function (PDF) specifying the probability that the original image pixel
was generated from an observation of a particular object.

The label association likelihood map is then sampled using a per-pixel selection procedure
(as described in Section 2.3.2) to generate a candidate label image, S̃t0+1. This candidate image
is used as the initialization for theMetropolis-Hastings algorithmwith annealing of Abramov
et al. [2], which updates the labels iteratively until an equilibrium segmented state is reached.
The segmentation result, St0+1 is subsequently used to update the set of particles via three
mechanisms; birth, decay, and repopulation. Birth is used for new labels in the segmenta-
tion output, and consists of initializing a new set of particles. Decay occurs when a label is
not found in the segmentation output, and consists of killing a number of the particles of the
missing label. The most commonly occurring mechanism, repopulation, occurs for all previ-
ously existing object labels which are found. Repopulation rejuvenates the set of particles for

12

Initial
Segmentation

Initialize set of
particles for each label

Propagate particles

Weight particles

Generate pixel
likelihood maps

Pixel label
association
likelihood map

Sample

Candidate label image

Segmented frame

Repopulation
Birth, Decay (when needed)

Resample

Output

Figure 2.1.1: Flow of algorithm for one time step, shown for three labels (k1, k2, and k3). For a
description, see Section 2.1.

an object by replacing a number of particles in the set with new particles based on the relaxed
segmentation result.

2.2 TrackingObjectMasks

We shall now describe each of the parts of the algorithm given above in further detail, begin-
ning with a description of howwe track object masks using particle filters. First we will briefly
review the basic principles of sequential Bayesian estimation and particle filtering, and then
show how they can be used to predict pixel-level label associations in order to seed a segmen-
tation algorithm.

13

2.2.1 Sequential Bayesian Estimation

Sequential Bayesian estimation uses a state space representation, in which a state vector xt de-
scribes the hidden state of a dynamic system. Bayesian estimation attempts to determine the
posterior distribution of the state given all prior observations z, i.e., p(xt|z1:t). This is accom-
plished using a two step recursion which first generates a hypothesis of the current state con-
ditioned on the previous state and then performs a Bayes update using the new observation.
These steps are known as the prediction and filtering steps, respectively.

The prediction step estimates the current distribution given all prior observations, or

p(xt|z1:t−1) =

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1. (2.1)

This prediction requires the specification of a stochastic dynamic model

xt = ft(xt−1, vt), (2.2)

where vt is the process noise, which characterizes the state transition density p(xt|xt−1). The
dynamicmodel takes advantage of knowledge of the system to generate reliable predictions of
how the state evolves.

The filtering step uses Bayes rule to update the predicted density by conditioning it on the
new observation zt:

p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)

p(zt|z1:t−1)
. (2.3)

This requires the specification of an observation, or measurement, model

zt = ht(xt,wt), (2.4)

wherewt is themeasurementnoise,whichcharacterizes theobservationdensityp(zt|xt). Once
the filtered, or posterior distribution is determined, an estimate of the state can bemade using
a variety of techniques (e.g., maximum a-posteriori, mean-shift).

Dynamic Model

In our method, the state of a particle consists of four elements; the pixel existence map M, a
reference color histogram q̂, a position shift vector p, and a velocity vector vt. Of these, only
the position shift and velocity evolve over time, so we adopt the state vector

xt = [pxvxpyvy]T, (2.5)

where (px, py) denotes the accumulated shift of the pixel existence map in the image plane,
and (vx, vy) the map velocity in the image plane. Motion is modeled using a constant velocity

14

model in discrete time with uniform sampling period T, giving the dynamic model

xt = Axt−1 + vt, (2.6)

where

A =

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 (2.7)

and noise vt is assumed to be zero mean Gaussian with fixed covariance.

Measurement Model

In ourmethodmeasurements are taken by calculating a color histogram, qt for the region lying
within the shifted pixel existence mapM. That is, for particle n of object k,

qk,nt = hist(Ft ∩Mk,n
t). (2.8)

Color histograms are three dimensional, with 8 bins for each of the color components hue, sat-
uration, and value. As in [69], a Gaussian density is used for the observation density p(zt|xt),
that is

p(zt|xt) =
1√
2πσ

exp−Δ(q̂, qt)2

2σ2
, (2.9)

where Δ(q̂, qt) is the Bhattacharyya distance (as proposed in [29]) between the reference his-
togram q̂ for the particle and themeasured histogram qt for time t. TheBhattacharyya distance
is a standard measure of similarity between discrete probability distributions, and is defined
as

Δ(q̂, qt) =
√

1 −
∑√

q̂qt. (2.10)

2.2.2 Parallel Particle Filters

Except in special cases (e.g., Kalman Filter), closed-form solutions to Equations (2.1) and
(2.3) are not available. Particle Filters are a Monte-Carlo method designed to approximate
the posterior distribution with a weighted set of random samples. There are many excellent
descriptions of the mechanics of particle filtering available (such as [30]), so we shall avoid
presenting them here, and proceed directly to presenting the details of our algorithm.

The predictive portion of the method uses multiple Sequential Importance Resampling
(SIR) filters in parallel to track multiple targets (labels) simultaneously. At this stage in the
algorithm targets are assumed independent and interaction between labels is therefore not
considered (interaction is accounted for later, as described in Section 2.3). Particles are first
propagated using the constant velocity dynamics model, and their predicted existence maps

15

M̃k,n are used to generate ameasured histogram, qt. Particles are weighted based on (2.9), and
then normalized as a set for each label k. Systematic resampling is used to prevent particle
degeneracy, due to its speed and good empirical performance [30].

The resulting distributions from the weighting procedure are used to generate object pixel
likelihood maps for each label,M̂k

t+1, which are then combined into the label association like-
lihood map L̂t, as described in Section 2.3. A realization of this likelihood map can then be
relaxed to produce a final segmented output, St.

2.2.3 Particle Birth, Repopulation, & Decay.

One key improvement of the proposed algorithm over prior particle filtering methods is its
use of the segmentation result St to update the particle sets. This allows the creation of new
targets, adaptation to changing target appearance, and gradual elimination of targets which are
no longer observed. This is accomplished via three mechanisms, which we term, respectively,
birth, repopulation, and decay.

Birth occurs when a label which has not existed previously is found in the segmentation
output St, or more formally {k /∈ S1:t−1, k ∈ St}. It consists of generating a set of particles
Xk for the new label using St to initialize an existence map Mk

t and {Ft ∩ Mk
t} to calculate a

reference color histogram q̂kt .
Repopulation is a key component of the algorithm, as it allows the pixel likelihoodmap for

an object, M̂k, to adapt over time to the changing appearance of the object. Every iteration,
all previously existing object labels which are found in St are repopulated by replacing some
particles in the setwithparticles generated fromSt andFt. Particles are chosen for replacement
using stratified sampling, at a rate specified by parameter λr. The repopulation mechanism
graduallymodifies the object ”model” through the addition of particleswhich have an updated
existence map and color histogram (coming from the segmentation result). We use the term
model here loosely, since there is in actuality no explicit model for any of the objects - merely
a pixel likelihood map generated at each time step from the objects constituent particles and
the current image frame.

Stratified replacement and relatively low repopulation rates are used to help keep the in-
fluence of erroneous hypotheses to a minimum, but as with any adaptive method, they can
occasionally lead the tracker astray. Replacement of particles, rather than updating of a cen-
tral model, helps to reduce this problem, since a few erroneous particles will generally not
completely derail the algorithm. Nevertheless, future work could investigate strategies that
allow pruning of unlikely hypotheses without negatively affecting occlusion handling.

Decay occurs when a label is not found in the segmentation output, k /∈ St. Particles are
selected from k using random sampling, at a rate determined by the decay rate λd, and are
pruned; they are no longer considered when filtering k. This reduces the number of active
particles for the label in the next iteration, Nk

t+1, by approximately λdNk
t . If the number of

active particles for a label falls below a certain threshold, Nmin, then the set of particles for

16

the label is deleted, and the object is no longer tracked. If a label which was being decayed is
observed again, i.e., {k /∈ St−1, k ∈ St}, then the label is revived by replacing particles which
had been killed with new particles, which are initialized as in the repopulation step.

2.3 Extracting aDense Image Labeling

Themiddle portion of Figure 2.1.1 depicts how the candidate label image, S̃t, is generated. The
candidate label image is a summary of the accumulated knowledge of the particle filters; it is a
prediction ofwhat the segmented scene should look like. That is to say, it is a pixel-wise realiza-
tion of the label association likelihood map L̂t, which is constructed by combining the object
pixel likelihood maps (which approximate the posteriors of the particle sets). S̃t is the seed
of the segmentation kernel, which uses pixel values from Ft to perform the relaxation process
and generate a dense label image. In this section wewill describe the process of generating the
object pixel and label association likelihood maps, and then explain how the predictive loop
allows occlusion handling without explicit object relationships or depth modeling.

2.3.1 Object Pixel Likelihood Maps.

The object pixel likelihood map for a particular object k is the weighted sum of the pixel exis-
tence maps of all of its labels,

M̂k
t =

Nk∑
n=1

wk,n
t Mk,n. (2.11)

Because the weights have been normalized, the pixel values in M̂k
t will be in the range [0, 1].

Highpixel valueswill occur in regionswhicharepresent in theexistencemapsofhighlyweighted
particles, or alternatively, are present in many particles with average weight.

2.3.2 Label Association Likelihood Map.

The label association likelihoodmap L̂t is a combinationof all the object pixel likelihoodmaps,
such that each pixel contains a discrete probability distribution giving the likelihood of the
pixel belonging to a certain label. Additionally, a likelihood, p0, for the pixel belonging to no
label is inserted to allow pixels where no label has high likelihood to remain unlabeled in S̃t.
More formally,

L̂t =
K∪

n=1

M̂n
t + p0. (2.12)

Each pixel of L̂t is then normalized, such that the sum of the discrete probabilities sums to
one. The candidate label image can then be generated by taking a realization of L̂t to select
pixel label values. Examples of the result of this process, S̃t, can be seen in Figures 2.1.1 and
2.6.1.

17

2.4 OcclusionHandling.

Occlusion relationships are handled naturally, since foreground objects will tend to have a
strong peak in their weight distribution, corresponding to those particles which align prop-
erly with Ft. Objects they occlude will have a flat particle weight distribution, since there will
exist no shifted existence map which contains a color distribution which matches the refer-
ence histogram. This is due to the fact that the occluding objects and objects surrounding the
occluded object have color distributionswhich differ from the occluded object. Let us assume
foreground object j is contained by occluded object k, that is

Mj,n
t ⊂ Mk,n

t . (2.13)

We also assume that the number of particles is sufficiently large such that

∃Mj,n
t ∈ Mj

t : hist(Ft ∩Mj,n
t) ≈ q̂j,n. (2.14)

If hist(Ft∩Mk,n) ̸= hist(Ft∩Mj,n), that is, the objects have different color distributions, then
from (2.13) and (2.14), it follows that ¹

∄Mk,n
t ∈ Mk

t : hist(Ft ∩Mk,n
t) ≈ q̂k,n (2.15)

and therefore that

min1:Nj{Δ(q̂j,n, hist(Ft ∩Mj,n
t))} <

min1:Nk{Δ(ˆqk,n, hist(Ft ∩Mk,n
t))} (2.16)

and thus
max1:Nj{w

j,n
t } > max1:Nk{w

k,n
t }. (2.17)

This means that in the label association likelihood map L̂t, the occluding object will have a
higher likelihood then the occluded. The candidate label image, S̃t will therefore tend to favor
occluding object labels, which will dominate the occluded object label during the segmenta-
tion relaxation process.

2.5 Segmentation using Superparamagnetic Clustering

To adjust the candidate label image S̃t to the current frame Ft, we use a real-time image seg-
mentation algorithm based on superparamagnetic clustering of data [17]. The method of su-
perparamagnetic clustering represents an input image being segmented by a Pottsmodel, with

¹This also assumes that the areas surrounding the occluded object also have different color distributions.

18

E
ne

rg
y

Iterations

Candidate Label Image

10 Iterations
Relaxation

Segmented Output

Input Image

4.0

2.0

0

-2.0

-4.0

-6.0

-8.0

-10.0

-12.0

-14.0

x 10
4

0 5 10 15 20

Figure 2.5.1: The relaxation process causes the energy of the label image to converge after few iter-
ations (outcome after 10 iterations shown here). This results in efficient calculation of an accurate
and temporally coherent segmentation.

pixel color vectors arranged on the sites of a two-dimensional (2D) lattice, where each pixel is
featured by an additional variable, called a spin. This allows the segmentation problem to be
formulated as aminimization problemwhich seeks to find the equilibrium states of the energy
function in the superparamagnetic phase. In this equilibrium state regions of aligned spins co-
exist and correspond to a natural partition of the image data [17]. Since every found segment
carries a spin variable which is unique within the whole image, the terms spin and label are
equivalent here. The equilibrium states are found by the use of the highly parallel Metropolis
algorithm with a simulated annealing, called relaxation process, implemented on a Graphics
Processing Unit (GPU) [2]. In this work, the relaxation process adjusts the predicted candi-
date label image to the current frame.

Superparamagnetic clustering of data was chosen due to its flexibility in allowing the use
of any initialization state; there are no particular requirements to the initial states of spin vari-
ables. The closer the initial states are to the equilibrium, the less time the Metropolis algo-
rithm needs to converge. This property makes it possible to achieve temporal coherency in
the segmentation of temporally adjacent frames by using the sparse label configuration taken
from the candidate label image for the spin initialization of the current frame. A final (dense)
segmentation result is obtained within a small number of Metropolis updates. Conventional
segmentation methods do not generally have this property and cannot turn a sparse segmen-
tation prediction into dense final segments which preserve temporal coherence. Moreover,
since the method can directly use sparse predictions as the seed of the segmentation kernel,
we can avoid the costly and error-proneblock-matching procedure required to find label corre-
spondences in other work, such as in Brendel andTodorovic [21] orHedau et al. [39]. Figure
2.5.1 illustrates the relaxation process, and the convergence after a small number of iterations.

19

Table 2.6.1: PROST dataset benchmark results. The top table gives average pixel error (lower is
better), and the bottom table gives PASCAL based scores (higher is better). Our scores are listed
under “HybridPF”. We compare favorably in three of the sequences, and fail on the “box” sequence
due to our unsupervised initialization of objects to track.

Sequence PROST MIL Frag ORF HybridPF
Lemming 25.1 14.9 82.8 166.3 19.8
Box 13.0 104.6 57.4 145.4 114.1
Liquor 21.5 165.1 30.7 67.3 25.5
Board 39.0 51.2 90.1 154.5 30.9

Lemming 70.5 83.6 54.9 17.2 73.9
Box 90.6 24.5 61.4 28.3 7.5
Liquor 85.4 20.6 79.9 53.6 54.2
Board 75.0 67.9 67.9 10.0 71.4

2.6 Experimental Results

In order to evaluate performance, we compare our method to the state of the art on several
challenging video tracking benchmark sequences which are available online². It should be
noted that, as opposed to the other tracking algorithms, we do not pre-select a region to track,
and track fully deforming object masks (rather than a rectangle). Additionally, we employ no
learned or a-priori specified models, use 50 particles per label, and only have two parameters;
the repopulation and decay rates λr and λd, which were both held constant at 0.05 throughout
testing. Results are compared to the PROST [76], MilTrack [14], FragTrack [6], and ORF
[75] tracking algorithms. Further details concerning the parameters used for the above algo-
rithms in the benchmarking can be found in [76].

We shall not evaluate the visual quality of segmentation results here for a couple of reasons.
First, detailed evaluation of the visual quality of super-paramagnetic clustering has been pre-
sented in [2] in great detail. The visual quality of the segmentation results obtained from this
work do not differ significantly from these results, with the exception of labels having conti-
nuity through occlusions. Secondly, it is directly acknowledged in other VOS work that the
methods fail under partial [55, 64] or full [21, 83] occlusions. As such, comparing perfor-
mance to other VOS methods is somewhat unreasonable. Rather, the better comparison is to
the state of the art in tracking methods, which attempt to handle full and partial occlusions.

In order to compare with the other methods, we needed to output a tracking rectangle for
each frame. To do this, once the sequence was segmented, we found the segment which cor-
responded to the object to track in the first frame, and then took the bounding-box which
contained it in each frame as the tracking rectangle. This bounding-box was then compared

²http://www.GPU4Vision.org

20

to ground-truth using two measures; Euclidean distance and the PASCAL-challenge based
score proposed in [76]. The latter compares the area of intersection of the ground truth and
tracked box with the union of the same. When this is greater than 0.5, the object is considered
successfully tracked. Table 2.6.1 gives our results, as well as the results for the other methods.

Testing showed that, when certain assumptions hold, our algorithm performs on par with,
and in some cases outperforms, state of the art tracking algorithms. This is the case for the
liquor, lemming, and board sequences. In the lemming sequence, frames of which are shown in
Figure 2.6.1, our algorithm outperforms the other methods in cases of occlusion, especially
when the tracked object is fully occluded. While other methods offer false positives and er-
roneous tracks, our method decays the label for the object and avoids proposing incorrect
tracking solutions. In the liquor sequence, our algorithm adapts to the changing appearance
(size, shape, and color) of the tracked bottle, allowing it to maintain performance on par with
the other algorithms, in spite of the difficulties of segmenting transparent objects. In the board
sequence, our method successfully adapts to the rapidly changing appearance of the tracked
board as it rotates, allowing it tomaintain an accurate track andoutperform theothermethods.

In addition to showing the strengths of ourmethod, a weakness was also highlighted by the
benchmark sequences. The box sequence demonstrated the limitations of using unsupervised
color-based segmentation to initialize the objects to track. In the sequence, the object to track
contains strong color differences, which are segmented into different initial regions. As the
object moves around, the particles for these regions are attracted to other objects it passes
over which have similar color.

2.7 Discussion

In this chapter we presented a newmethod for performing on-line, dense, unsupervised video
segmentation which uses tracking as the basis for segmentation. We have given results which
show that themethod is able to resolve occlusion relations between objects without explicitly
modeling them, and can maintain consistent labels for objects, even when they leave and re-
enter the field of view. Additionally, we have shown that themethod is able to adapt to rapidly
changing appearanceof trackedobjects, producing consistent segmentationsover lengthyvideo
sequences. AGPUversionof the algorithmhasbeendeveloped that can achievenear real-time
levels 10 fps at 640x480 resolution on an i7 standard desktop. The algorithm has significant
advantages over other VOS methods, in particular when it comes to occlusion handling and
speed.

Unfortunately, we found that there were significant instabilities in the algorithm that com-
pounded over time. While these instabilities did not show up in the short sequences used to
benchmark, if the algorithm was run for several minutes, it would tend to decay into a state
where one or two large segments dominate the others. The other tracking algorithms did not

21

A

time

Figure 2.6.1: Output frames from the lemming sequence, in which a target is completely occluded
(for∼ 20 frames, second column) and changes significantly in appearance. The object which is
tracked for comparison to other algorithms is highlighted with a green box. Ft-Original frames
frommovie. St-The output of the segmentation algorithm. S̃t-The candidate label image con-
structed by taking a random draw from L̂t, the label association likelihood map. M̂k

t -The overall
object pixel likelihood map for the lemming label, created by combining the set of particles for the
label. Intensity represents the sum of the normalized weights of the set of particles.

suffer from this, as they only tracked single targets. We address this problem of instability in
subsequent work by reinitializing the segments periodically and finding a solution to the data-
association problem.

Another disadvantage of the method is its vulnerability to situations where objects have
similar color distributions. This is an inherent flaw of standard (i.e. color-based) video track-
ing and segmentation systems - they are unable to use 3D shape to resolve ambiguities. As
there are many situations where color is not a useful feature for resolving objects, one must
reason about real-world geometry in order to reliably track and segment objects. While it is
theoretically possible to infer 3D geometry without depth information, the inference tends
be noisy and error-prone, even for the human visual cortex (consider how easy it is to fool
one’s depth-reasoning with one eye closed). As such, we decided to progress from standard
video to RGB-D sensors which provide measured depth information for each pixel, allowing
us to incorporate 3D geometry directly into ourmeasurement function and segmentation fea-
tures. In subsequentChapters we shall investigate how to take advantage of depth information

22

Frame
No.

0

16

37

230

725

801

873

arm widget

Figure 2.6.2: Results of segmentation on Cranfield Benchmark Sequence. Green masks show
observed pixels, while red masks show occluded pixels which are believed to belong to the object.

while remaining efficient, and how to handle point cloud data which lacks the rigid lattice of
image data. With this in mind, in the next Chapter we establish a graph-based framework for
efficiently representing streaming unstructured point cloud data.

23

Theworld is a construct of our sensations, perceptions, mem-
ories. It is convenient to regard it as existing objectively on its
own. But it certainly does not become manifest by its mere
existence.

Erwin Schödinger

3
Patch-based PerceptualWorldModel

The widespread availability of cheap 3D sensors has had a profound impact on
the world of computer vision. Where before researchers needed to find heuristic
tricks or complex algorithms with which to infer an artificial three dimensional

interpretation froma twodimensional image, the new sensors allowdirect observation (albeit,
noisily) of 3Ddata. This has allowed direct progression to high-level concepts and rules which
the human mind uses when first learning to understand the real world. This is a completely
different approach than trying to mimic the behavior of the mind when it is adapting those
rules (learned from a life-time of 3D stereo data) in order to interpret some new 2D image.
In other words, working within the 3D representation directly allows us to side-step the prob-
lem of needing to imitate the complex machinery[68] the mind uses to construct an internal
representation of the world.

In this chapter we shall present our work in creating such a full 3D artificial world model
which can be used for efficient higher level semantic understanding of both single frames and
video. Whilewedonot claim that themodel proposed in thisChapter bears direct similarity to
the one used internally in the visual cortex, we have found its use generally advantageous over
the 2D projective representation. Indeed, we suggest that the concept of “empty space” which
is encoded implicitly in our sparse voxel model is an extremely useful and important notion.
Moreover, the model is able to succinctly and unambiguously express spatial relationships as
a 2D model cannot.

25

Figure 3.1.1: Illustration of Voxelization. On the left we have a point cloud of the “Stanford
Bunny”. This cloud is inserted into the voxel grid shown on the right, where all points falling within
on grid unit, or voxel, are combined. From http://www.pointclouds.org/

3.1 Pre-processing of Point CloudData

Our model begins with point clouds, relying on the general framework set up in the Point
Cloud Library ¹, which we have both made use-of and contributed-to as part of this work.
Point clouds are a useful way of representing the data obtained from RGB-D sensors, where
pixel coordinates and depth value from the RGB-D pair are transformed into an (x, y, z) point
in continuous real-world space, with the RGB information for the pixel attached to this point.
Before continuing, we shall briefly introduce two important pre-processing steps which are
used throughout the rest of thiswork. Thefirst downsamples the continuouspoint cloud space
onto a discrete grid, while the second pre-computes an adjacency graph for this grid.

3.1.1 Voxelization

The resolution of a standard RGB-D camera such as the Kinect is 640x480 pixels, yielding
about 300,000 points per frame. While for static image segmentation this might be an accept-
able amount of data, for video segmentation it is simply too much data to process directly in
reasonable run times (on standard hardware). Because of this, a common pre-processing step
is to down-sample point clouds using a voxel-grid filter, a process known as voxelization.

3.1.2 Octree Adjacency Graph

In order to increase computational efficiency, we have developed an adjacency octree which
maintains neighbor information within the octree leaves (i.e., the voxels). Adjacency is a key
element of many methods, especially region growing algorithms, as it ensures that labels do

¹http://www.pointclouds.org/

26

http://www.pointclouds.org/
http://www.pointclouds.org/

Figure 3.1.2: Use of an octree for voxelization. The points are grouped into voxels by recursively
subdividing the bounding box into its eight constituent octants. This recursion terminates when
the box size has edge length equal to the voxel leaf size Rvoxel.

Figure 3.1.3: Adjacency in a 3d voxel grid. The 6-, 18-, and 26-neighborhoods share a face, edge,
and vertex, respectively.

not cross object boundaries which are disconnected in space. There are three definitions of
adjacency in a voxelized3Dspace; 6-,18-, or 26-adjacent. These share a face, faces or edges, and
faces, edges, or vertices, respectively. In this workwe use 26-adjacency exclusively, as the other
lesser adjacencies might miss connections when surfaces are placed in certain configurations
relative to the camera plane.

Throughout the rest of this work, we shall deal exclusively with voxels, rather than points,
and shall always use our adjacency octree. As voxelization is a necessary pre-processing step
for all of the algorithms we shall subsequently discuss, it can be assumed that adjacency in-
formation is always available in constant time. This is especially important for the clustering
algorithm we introduce next.

3.2 Geometrically Constrained Supervoxels

In this Section we present Voxel Cloud Connectivity Segmentation (VCCS), a new method
for generating superpixels and supervoxels from 3D point cloud data. The supervoxels pro-
duced by VCCS adhere to object boundaries better than state-of-the-art methods while re-
maining efficient enough to use in online applications. VCCS uses a variant of k-means clus-

27

tering for generating its labeling of points, with two important constraints:
1. The seeding of supervoxel clusters is done by partitioning 3D space, rather than the pro-

jected image plane. This ensures that supervoxels are evenly distributed according to the ge-
ometry of the scene.

2. The iterative clustering algorithm enforces strict spatial connectivity of occupied voxels
when considering points for clusters. This means that supervoxels strictly cannot flow across
boundaries which are disjoint in 3D space, even though they are connected in the projected
plane.

First, in 3.2.1 we shall describe how supervoxel seeds are generated and filtered, in 3.2.2 the
features and distance measure used for clustering, and finally in 3.2.3 how the iterative clus-
tering algorithm enforces spatial connectivity. Unless otherwise noted, all processing is being
performed in the 3D voxelized space constructed from one or more RGB+D cameras (or any
other source of point-cloud data). Furthermore, because we work exclusively in a voxel-cloud
space (rather than the continuous point-cloud space), we shall adopt the following notation
to refer to voxel at index iwithin voxel-cloud V of voxel resolution r:

Vr(i) = F1..n, (3.1)

where F specifies a feature vector which contains n point features (e.g. color, location, nor-
mals).

3.2.1 Spatial Cluster Seeding

The algorithm begins by selecting a number of seed points which will be used to initialize the
supervoxels. In order to do this, we first divide the space into a voxelized grid with a chosen
resolution Rseed, which is significantly higher than Rvoxel. The effect of increasing the seed res-
olution Rseed can be seen in Figure 3.2.2. Initial candidates for seeding are chosen by selecting
the voxel in the cloud nearest to the center of each occupied seeding voxel.

Once we have candidates for seeding, wemust filter out seeds caused by noise in the depth
image. This means that we must remove seeds which are points isolated in space (which are
likely due tonoise), while leaving thosewhich exist on surfaces. Todo this, we establish a small
search radius Rsearch around each seed, and delete seeds which do not have at least as many
voxels as would be occupied by a planar surface intersecting with half of the search volume
(this is shown by the green plane in Figure 3.2.1). Once filtered, we shift the remaining seeds
to the connected voxel within the search volume which has the smallest gradient in the search
volume. Gradient is computed as

G(i) =
∑
k∈Vadj

∥ V(i)− V(k) ∥ CIELab

Nadj
; (3.2)

we use sum of distances in CIELAB space from neighboring voxels, requiring us to normal-

28

Rseed

Seed Voxels

Rsearch

Rvoxel

Minimum
Occupied Voxels

Figure 3.2.1: Seeding parameters and filtering criteria. Rseed determines the distance between
supervoxels, while Rvoxel determines the resolution to which the cloud is quantized. Rsearch is used
to determine if there are a sufficient number of occupied voxels to necessitate a seed.

0.06m 0.10m 0.15m
Rseed

Figure 3.2.2: Image segmented using VCCS with seed resolutions of 0.1, 0.15 and 0.2 meters.

ize the gradient measure by number of connected adjacent voxels Nadj. Figure 3.2.1 gives an
overview of the different distances and parameters involved in seeding.

Once the seed voxels have been selected, we initialize the supervoxel feature vector by find-
ing the center (in feature space) of the seed voxel and connected neighbors within 2 voxels.

3.2.2 Cluster Features and Distance

VCCS supervoxels are clusters in a 39 dimensional space, given as

F = [x, y, z, L, a, b, FPFH1..33], (3.3)

29

where x, y, z are spatial coordinates, L, a, b are color in CIELab space, and FPFH1..33 are the
33 elements of Fast Point Feature Histograms (FPFH), a local geometrical feature proposed
by Rusu et al. [74]. FPFH are pose-invariant features which describe the local surface model
properties of points using combinations of their k nearest neighbors. They are an extension of
theolderPoint FeatureHistogramsoptimized for speed, andhave a computational complexity
ofO(n · k).

In order to calculate distances in this space, wemust first normalize the spatial component,
as distances, and thus their relative importance, will vary depending on the seed resolution
Rseed. Similar to thework of Achanta et al., [5]we have limited the search space for each cluster
so that it ends at the neighboring cluster centers. Thismeans that we can normalize our spatial
distance Ds using the maximally distant point considered for clustering, which will lie at a
distance of

√
3Rseed. Color distanceDc, is the euclidean distance inCIELab space, normalized

by a constant m. Distance in FPFH space, Df, is calculated using the Histogram Intersection
Kernel [15]. This leads us to a equation for normalized distanceD:

D =

√
λD2

c

m2 +
μD2

s

3R2
seed

+ εD2
HiK, (3.4)

where λ, μ, and ε control the influence of color, spatial distance, and geometric similarity, re-
spectively, in the clustering. In practice we keep the spatial distance constant relative to the
other two so that supervoxels occupy a relatively spherical space, but this is not strictly neces-
sary. For the experiments in this paper we have color weighted equally with geometric simi-
larity.

3.2.3 Flow Constrained Region Growing

Assigning voxels to supervoxels is done iteratively, using a local k-means clustering related to
[5, 89], with the significant difference that we consider connectivity and flow when assigning
pixels to a cluster. The general process is as follows: beginning at the voxel nearest the cluster
center, we flow outward to adjacent voxels and compute the distance from each of these to
the supervoxel center using Equation 3.4. If the distance is the smallest this voxel has seen, its
label is set, and using the adjacency graph, we add its neighbors which are further from the
center to our search queue for this label. We then proceed to the next supervoxel, so that each
level outwards from the center is considered at the same time for all supervoxels. We proceed
iteratively outwards until we have reached the edge of the search volume for each supervoxel
(or have no more neighbors to check).

This amounts to a breadth-first search of the adjacency graph, where we check the same
level for all supervoxels before we proceed down the graphs in depth. Importantly, we avoid
edges to adjacent voxels which we have already checked this iteration. The search concludes
for a supervoxel when we have reached all the leaf nodes of its adjacency graph or none of the

30

Search
Order

Seed Voxels

1

2

3 4 5 6

7

8

9

1

2

3

4 5 67 8

9

a b c d

e f

g h

i

j

k

a

b

c

d

e f g h i j k l

m

n op q

l

m no p q

θ

λ

λ

θ

Voxel Layout

Figure 3.2.3: Search order for the flow constrained clustering algorithm (shown in 2D for clarity).
Dotted edges in the adjacency graph are not searched, as the nodes have already been added to the
search queue.

nodes searched in the current level were set to its label. This search procedure, illustrated in
Figure 3.2.3, has two important advantages over existing methods:

1. Supervoxel labels cannot cross over object boundaries that are not actually touching in
3D space, since we only consider adjacent voxels, and

2. Supervoxel labels will tend to be continuous in 3D space, since labels flow outward from
the center of each supervoxel, expanding in space at the same rate.

Once the search of all supervoxel adjacency graphs has concluded, we update the centers
of each supervoxel cluster by taking the mean of all its constituents. This is done iteratively;
either until the cluster centers stabilize, or for a fixed number of iterations. For this work we
found that the supervoxels were stable within a few iterations, and so have simply used five
iterations for all presented results.

3.3 Sequential Update of PerceptualModel

As an additional consideration, we have developed a scheme for adding new point clouds se-
quentially (as from a video stream) into an existing supervoxel octree. This is accomplished
through a process which classifies voxels in the tree based on their behavior. As a first step,
we insert points from the new point cloud into the octree, and initialize new leaves for voxels
whichdid not exist previously. This results in anoctreewhere leaves fall into three possible cat-
egories (illustrated in Figure 3.3.1; they are either new, observed, or unobserved in the most
recent observation. Handling of new leaves is straightforward; we simply calculate adjacency
relations to existing leaves and flag them as unlabeled.

To determine whether a leaf which existed previously has changed, we test the distance
between the centroid of the points falling within its voxel (from the new frame) and its pre-
vious centroid. This is done in the same feature space used for growing the supervoxels, that
is, we test whether the normal, color, and spatial location have varied more than a threshold
value. This threshold is set to a relatively low constant value so that it favors false-positives
(finding change when there was none), as they do not impact the tracking performance of the
algorithm, but only have a slight effect on its run-time. If a leaf is found to have changed, we

31

New Voxels

Occluded Voxels
Not Observed

Visible Voxels

Existing Voxels
Observed

Unchanged

Changed

Clear Line of Sight
Occluded Line of Sight

Figure 3.3.1: Categorization of voxels based on new frame of data. Voxels fall into three cate-
gories, they are either new, observed or not observed in the frame. Furthermore, observed voxels
can either have changed or remained the same, while voxels not observed in the frame are either
occluded or no longer exist (in which case they should be deleted).

remove its previous labeling. We also perform a global check to see if more than half of a su-
pervoxels support has changed; if so, we completely remove the supervoxels label from all of
its constituent voxels.

Finally, we must consider how to handle leaves which were not observed in the inserted
point cloud. Rather than simply prune them, we first check if it was possible to observe them
from the viewpoint of the sensor which generated the input cloud. This occlusion check can
be accomplished efficiently using the octree by determining if any voxels exist between un-
observed leaves and the sensor viewpoint. If a clear line of sight exists from the leaf to the
camera, it can safely be deleted. Conversely, if the path is obstructed, we ”freeze” the leaf,
meaning that it will remain constant until it is either observed or passes the line of sight test
in a future frame (in which case, it can be safely deleted). This occlusion testing means that
tracking of occluded objects is trivial, as occluded voxels remain in the observations which are
used for tracking. This procedure results in what we term “voxel-permanence”, as it results in
voxels persisting through occlusions as seen in Figure 3.3.2.

Once the octree voxels have been updated, we then proceed to update the supervoxels as
before. That is, first we generate new seeds in regions of large unlabeled voxels, and then con-
duct the iterative region growing. This results in new supervoxels in regions which are new or
changing, while leaving supervoxels in static and occluded regions unchanged. This reduces
the tracking and segmentation problem to finding the best joint association of these new su-
pervoxels with those from the prior time-step.

32

t

t

A

B

C
Figure 3.3.2: Example of successful tracking of an object through complete occlusion using the
sequentially updated world model and the concept of voxel permanence. Row A shows the original
image frames - the bolt becomes occluded by the faceplate and cannot be seen by the sensor. Row
B shows tracking failure using the raw 3D data - black “holes” behind the arm and faceplate are
due to occlusion. Row C shows our model and tracked output - “holes” are nowmostly filled in
allowing tracking to succeed.

3.4 DepthDependent Voxel Grid

So far we have described the main algorithm for generating supervoxels. Next we will intro-
duce a depth transform which improves supervoxels by addressing the shortcomings of the
adjacency octree upon which VCCS depends. As with any system which uses projective ge-
ometry, observations from a single RGB-D camera have a significant drawback - the level of
detail decreases with increasing distance from the camera. In our case, this manifests as de-
creasing point density. In addition, the levels of both quantization and noise grow quadrati-
cally with distance [47, 80]. The combined effect of quantization and change in point density
with depth results in inevitable failure of adjacency computation. At a certain distance (de-
pendent on the voxel sizeRvoxel), the sparsity of observedpoints results in “holes” in the octree,
and a break-down of adjacency. This has obvious negative consequences for flow-constrained
algorithms such as VCCS which rely on spatial connectivity for clustering.

We compensate for the loss of point density and quantization with increasing depth z by
transforming thepoints into a skewed spaceusing the transformationT : (x, y, z) → (x′, y′, z′)
with

x′ = x/z, y′ = y/z, z′ = log(z) (3.5)

Thedivisionof the x and y coordinates by z reverses the perspective transformation, equalizing
the point density in the x-y-plane. Transforming the z coordinate helps to deal with the effects

33

Merge
Error

Adjacency Failure

Adjacency

Small Voxels Large Voxels DDVG

Figure 3.4.1: Two example point clouds (A,B, left) showing the need for the Depth Dependent
Voxel Grid (DDVG). For better visibility outlines have been drawn around the boxes in A. Using
Small Voxels objects close to the camera can be segmented, but adjacency breaks down as the depth
increases and the point density decreases. Using Large Voxels corrects the adjacency graph in the
background, but leads to objects being merged in the foreground due to the coarse resolution.
Using DDVG, the scale of the voxels gradually increases with distance from the camera – adapting
to the increased noise level and lower point density – consequently adjacency is maintained and
the segmentation of scenes with large depth variance is possible using fixed parameters.

of depth quantization by compressing points as depth increases. It is easy to show that the
transformation has the following property:

∂x′

∂x
=

∂y′

∂y
=

∂z′

∂z
=

1
z

(3.6)

Because the derivatives are equal, the local coordinate frame is stretched equally along all axes
by the transformations. The important thing about this property is, that small cubic voxels are
still cubic after the transformation. This leaves the geometry of space basically untouched in
the foreground (if the voxel size is chosen sufficiently small), while distant voxels are strongly
transformed to fill the “empty” space, compensating for reduced point density.

Rather than transforming the clouds back and forth, we instead transform the bins of the
octree itself, creating an octree where bin volume (and thus, voxel size) effectively increases
with distance from the camera viewpoint. Doing this directly within the octree allows us to
determine adjacency as before (neighboringbins), even thoughdistancebetweenneighboring
voxels increaseswith distance from the camera. Figure 3.4.1 illustrates the advantageous effect
of this transformation on segmentation.

3.5 Locally Convex Connected Patches

Asanexampleof anapplicationof supervoxels and the adjacencyoctree,we shall brieflypresent
a segmentationmethodwhich breaks a supervoxel adjacency graph intomeaningful segments
by classifyingwhether anedge e = (⃗pi, p⃗j)between two supervoxels is convexor concave. This

34

classification is based on anExtended Convexity Criterion (ECC), which considers adjacent su-
pervoxels with centroids at the positions x⃗1, x⃗2 and normals n⃗1, n⃗2. Whether the connection
between these is convex or concave can be inferred from the relation of the surface normals to
the vector joining their centroids - an overview of the this algorithm is given in Figure 3.5.1.

The angle of the normals to the vector d⃗ = x⃗1 − x⃗2 joining the centroids can be calculated
using the identity for the dot product a⃗ · b⃗ = |⃗a| · |⃗b| · cos(α) with α = ∡(⃗a, b⃗). For convex
connections, α1 is smaller than α2. This can be expressed as:

α1 < α2 ⇒ cos(α1)− cos(α2) > 0 ⇔ n⃗1 · d̂− n⃗2 · d̂ > 0,

where d̂ = x⃗1−x⃗2
||x⃗1−x⃗2|| . Similarly, for a concave connection we get:

α1 > α2 ⇔ n⃗1 · d̂− n⃗2 · d̂ < 0.

Note that these operations are commutative, thus the choice of which patch is x⃗1, does not
change the result. Also the criterion is still valid if the x⃗i are displaced, as long as they stay
within the surface.

To compensate for noise in the RGB-D data, a bias is introduced to treat concave connec-
tions with very similar normals, that is

β = ∡(⃗n1, n⃗2) = |α1 − α2| = cos−1(n⃗1 · n⃗2) < βThresh ,

as convex, since those usually represent flat surfaces. Depending on the value of the concavity
tolerance threshold βThresh, concave surfaces with low curvature are seen as convex and thus
merged in the segmentation. This behavior may be desired to ignore small concavities. We
set:

CCb(⃗pi, p⃗j) :=

{
true (n⃗1 − n⃗2) · d̂ > 0 ∨ (β < βThresh)

false otherwise.
(3.7)

where the variable CCb defines the basic convexity criterion. However, local errors in the
feature estimation caused by noise in the data can propagate very easily, potentially leading
to errors in the resulting segmentation. This also makes the recognition of small concavities
harder, as subtle features aremore sensitive to noise. To improve on thiswe also include neigh-
borhood information in the classification of edges: For a convex edge e = (⃗pi, p⃗j), we require
that there exists a common neighbor p⃗c of p⃗i and p⃗j that has a convex connection to both.

Thus we define extended convexity CCe:

CCe(⃗pi, p⃗j) = CCb(⃗pi, p⃗j) ∧ CCb(⃗pi, p⃗c)

∧CCb(⃗pj, p⃗c)
(3.8)

35

Figure 3.5.1: Flow diagram of the segmentation algorithm. A) RGB images corresponding to the
point clouds of the scene. The red lines show two isolated concavities. The blue box shows an area
with a surface singularity. B) Supervoxel adjacency graph. C)Model depicting the classified graph.
Black lines denote convex connections, red lines concave ones and turquois lines singular connec-
tions (those, where two patches are connected only in a single point). D) Segmentation result;
object labels are shown by different colors. E) Final result after noise filtering. The right column
illustrates the supervoxel patches and the convexity and sanity criteria used for edge classification.

36

With extended convexity, more evidence is necessary for a connection to be labeled as con-
vex.

As in VCCS, clusters are found in LCCP using a region growing process: First, an arbitrary
seed supervoxel is chosen and labeled. This label is then propagated over the graph with a
depth search that is only allowed to grow over convex edges. Once no new supervoxel can
be assigned to the segment, we choose a new seed supervoxel that has not been labeled and
propagate thenew label as before, repeating theprocess until all supervoxels havebeen labeled.
Note that all of the criteria inLCCPare commutative, so the output of the region growingdoes
not depend on the choice of the seeds.

3.6 Experimental Results

3.6.1 Datasets

In the following sections we present quantitative results for VCCS and LCCP. We compare
both to state-of-the-art methods on the NYU Indoor Dataset[79] and Object Segmentation
Database[72]. Before giving results, we shall first describe the datasets as well as the proce-
dure for scoring results using 2D ground-truth.

Object Segmentation Database (OSD)

TheObject Segmentation Database (OSD-v0.2) was proposed by Richtsfeld et al.[72] in 2012.
It consists of 111 cluttered scenes of objects on a table, taken with close proximity to the pic-
tured objects. The scenes contain multiple objects, which have mostly box-like or cylindrical
shape, with partial and full occlusions and heavy clutter in 2D as well as 3D. Importantly, most
objects in the data set are simple, that is, consist of only a single part. This makes the ground-
truth data relatively non-ambiguous.

NYU Indoor Dataset (NYU)

TheNYU Indoor Dataset² (NYUv2) from Silberman et al.[79] is a large and complex dataset,
consisting of 1449 cluttered indoor scenes. The data consists of pairs of aligned RGB and
depth images, along with human annotated densely labeled ground truth. The images were
captured in diverse indoor scenes, and present many difficulties for segmentation algorithms
such as varied illumination and many small similarly colored objects. Examples of typical
scenes are shown in Figure 3.6.3. One main difficulty presented by the dataset is that the dis-
tance to objects from the camera is quite large in the dataset. This results in significant depth
quantization artifacts as well as few data points for many objects. Additionally, depth is often

²http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html

37

http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html

Figure 3.6.1: Example results for scenes from the NYU dataset using unsmoothed depth. Black
areas indicate missing depth. Top row: rgb images. Mid. row: segmentation result. Bottom row:
ground truth. Parameters A-C: Rvoxel = 0.0075, Rseed = 0.03 and βThresh = 8◦. Parameters D-E:
Rvoxel = 0.01, Rseed = 0.04 and βThresh = 10◦ (identical to quantitative results, see Tab. 3.6.2).

missing for extensive portions of many of the images, due to limitations of the Kinect sensor
(e.g. reflective, transparent surfaces - windows are especially problematic). Silberman et al.
attempt to correct for these errors using a hole filling algorithm (smoothdepth), which esti-
mates depth for missing areas based on the scheme from Levin et al.[53].

Returning to the Projected Plane

RGB+D sensors produce what is known as an organized point cloud- a cloud where every
point corresponds to a pixel in the original RGB and depth images. When such a cloud is vox-
elized, it necessarily loses this correspondence, and becomes an unstructured cloud which no
longer has any direct relationship back to the 2Dprojected plane. As such, in order to compare
results with existing 2Dmethodswewere forced to devise a scheme to apply supervoxel labels
to the original image.

To do this, we take every point in the original organized cloud and search for the nearest
voxel in the voxelized representation. Unfortunately, since there are blank areas in the origi-
nal depth image due to such factors as reflective surfaces, noise, and limited sensor range, this
leaves us with some blank areas in the output labeled images. To overcome this, we fill in
any large unlabeled areas using the SLIC algorithm. This is not a significant drawback, as the
purpose of the algorithm is to form supervoxels in 3D space, not superpixels in the projected
plane, and this hole-filling is only needed for comparison purposes. Additionally, the hole fill-
ing actually makes our results worse, since it does not consider depth, and therefore tends to
bleed over some object boundaries that were correctlymaintained in the supervoxel represen-
tation. An example of what the resulting segments look like before and after this procedure

38

Figure 3.6.2: Example of hole-filling for images after returning from voxel-cloud to the projected
image plane. Depth data, shown in the top left, has holes in it, shown as dark blue areas (here, due
to the lamp interfering with the Kinect). The resulting supervoxels do not cover these holes as
shown in the bottom left, since the cloud has no points in them. To generate a complete 2D seg-
mentation, we fill these holes in using the SLIC algorithm, resulting in a complete segmentation,
seen in the top right. The bottom right shows human annotated ground truth for the scene.

Figure 3.6.3: Examples of under-segmentation output. From left to right- ground truth annota-
tion, SLIC, GCb10, DASP, and VCCS. Each is shown with two different superpixel densities.

39

500 1000 1500 2000

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of segments

B
ou
nd
ar
y
re
ca
ll

DASP

SLIC

VCCS

GCb10

500 1000 1500 2000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of segments

U
nd
er
−s
eg
m
en
ta
tio
n
er
ro
r

DASP
SLIC

VCCS

GCb10

Figure 3.6.4: Boundary recall and under-segmentation error for SLIC, GCb10, DASP, and VCCS.

are shown in Figure 3.6.2.

3.6.2 Supervoxels

In order to evaluate the quality of supervoxels generated by VCCS, we performed a quan-
titative comparison with three state-of-the-art superpixel methods using publicly available
source code. We selected the two 2D techniques with the highest published performance
from a recent review [5]: a graph based method, GCb10 [84]³, and a gradient ascent local
clustering method, SLIC [5]⁴. Additionally, we selected another method which uses depth
images, DASP[89]⁵. Examples of over-segmentations produced by the methods are given in
Figure 3.6.3.

Object Boundary Adherence

The most important property for superpixels is the ability to adhere to, and not cross, object
boundaries. To measure this quantitatively, we have used two standard metrics for boundary
adherence- boundary recall and under-segmentation error[54, 84]. Boundary recallmeasures
what fraction of the ground truth edges fall within at least two pixels of a superpixel boundary.
High boundary recall indicates that the superpixels properly follow the edges of objects in the
ground truth labeling. The results for boundary recall are given in Figure 3.6.4. As can be
seen, VCCS and SLIC have the best boundary recall performance, giving similar results as the
number of superpixels in the segmentation varies.

Under-segmentation error measures the amount of leakage across object boundaries. For
a ground truth segmentation with regions g1, ..., gM, and the set of superpixels from an over-

³http://www.csd.uwo.ca/~olga/Projects/superpixels.html

⁴http://ivrg.epfl.ch/supplementary_material/RK_SLICSuperpixels/index.html

⁵https://github.com/Danvil/dasp

40

http://www.csd.uwo.ca/~olga/Projects/superpixels.html
http://ivrg.epfl.ch/supplementary_material/RK_SLICSuperpixels/index.html
https://github.com/Danvil/dasp

0

2000

4000

6000

8000

10000

12000

Image Size

T
im

e
(m

s)

DASP
SLIC
GCb10

0 0.5 1 1.5 2 2.5

x 10
5

0

500

1000

1500

2000

2500

Number of voxe ls

T
im

e
(m

s)

VCCS

640x480

96
0x

72
0

12
80

x9
60

16
00

x1
20

0

19
20

x1
44

0

25
60

x1
92

0

Figure 3.6.5: Speed of segmentation for increasing image size and number of voxels. Use of
GCb10 rapidly becomes unfeasible for larger image sizes, and so we do not adjust the axes to show
its run-time. The variation seen in VCCS run-time is due to dependence on other factors, such as
Rseed and overall amount of connectivity in the adjacency graphs.

segmentation, s1, ...sK, under-segmentation error is defined as

Euseg =
1
N

 M∑
i=1

∑
sj|sj∩gi

|sj|

− N

 , (3.9)

where sj | sj ∩ gi is the set of superpixels required to cover a ground truth label gi, and N is
the number of labeled ground truth pixels. A lower value means that less superpixels violated
ground truth borders by crossing over them. Figure 3.6.4 compares the four algorithms, giv-
ing under-segmentation error for increasing superpixel counts. VCCS outperforms existing
methods for all superpixel densities.

Time Performance

As superpixels are used as a preprocessing step to reduce the complexity of segmentation,
they should be computationally efficient so that they do not negatively impact overall perfor-
mance. To quantify segmentation speed, we measured the time required for the methods on
images of increasing size (for the 2D methods) and increasing number of voxels (for VCCS).
All measurements were recorded on an Intel Core i7 3.2Ghz processor, and are shown in Fig-
ure 3.6.5. VCCS shows performance competitive with SLIC and DASP (the two fastest su-
perpixel methods in the literature) for voxel clouds of sizes which are typical for Kinect data
at Rvoxel = 0.008m (20-40k voxels). It should be noted that only VCCS takes advantage of
multi-threading (for octree, kd-tree, and FPFH computation), as there are no publicly avail-
able multi-threaded implementations of the other algorithms.

41

Figure 3.6.6: Example results for the OSD dataset. Points beyond a distance of 2m were cropped
for visualization. Parameters: Rvoxel = 0.005, Rseed = 0.02, βThresh = 10◦.

3.6.3 Locally Convex Connected Patches

Wecompare segments foundusingLCCPagainst ground truthusing three standardmeasures:
Weighted Overlap (WOv), which is a summary measure proposed by Silberman et al. [79], as
well as false negative (fn) and false positive (fp) scores from [82] and over- (Fos) and under-
segmentation (Fus) from [72].

Method Learned WOv fp fn Fos Fus
Features Mean Mean SD Mean SD Mean Mean

LCCP NO LEARNING 88.7% 4.8% 2.6% 8.3% 8.7% 7.4% 4.7%
Richtsfeld [72] RGB-D,Texture,Geometry - - - - - 4.5% 7.9%
Ückermann [82] NO LEARNING - 1.9% 3.3% 7.8% 7.3% - -

Table 3.6.1: Comparison of different segmentation methods on the OSD dataset using weighted
overlapWOv (the higher, the better), false positives fp, false negatives fn, as well as over- and
under-segmentation Fos and Fus (the lower, the better). LCCP results were produced with
voxel resolution Rvoxel = 0.005, seed resolution Rseed = 0.02 and concavity tolerance angle
βTresh = 10◦.

The qualitative examples from the OSD dataset (Figure 3.6.6) show that LCCP performs
very well in the segmentation of cluttered scenes. The object separation can be intuitively
understood: all objects present in the scenes are separated by concave boundaries, i.e. a line
connecting neighboring surfaces of two different objects always travels through “air”. This is
also true for the boundary between an object and the supporting surface. As a consequence,
objects that have a convex shape are correctly captured as one segment and separated from the
other objects. Hollow objects (bowls, cups etc.) can be observed to show multiple segments
inside, because the orientation of surface normals changes strongly on these concave surfaces.

42

Method Learned Features Depth Data WOv

LCCP NO LEARNING depth 53.6%
NO LEARNING smoothdepth 53.8%

LCCP + ext. convexity NO LEARNING smoothdepth 57.6%

Silberman et al.[79]

RGB - 50.3%
Depth both 53.7%
RGB-D both 60.1%

RGB-D + Support + Structure classes both 61.1%

Gupta et al.[37] gPb-ucm Gradients (from [11]) - 55.0%
gPb-ucm + Depth + Concavity Gradients both 62.0%

Table 3.6.2: Comparison of different segmentation methods on the NYU dataset using weighted
overlapWOv. LCCP results were produced with voxel size Rvoxel = 0.01, seed size Rseed = 0.04
and concavity tolerance angle βTresh = 10◦.

The quantitative results (Table 3.6.1) demonstrate that the approach is able to compete with
state-of-the-art methods in the task of segmenting cluttered scenes with ’single-part’ objects.

Example scenes inFigure 3.6.1 show that theLCCPalsoworkswell on the real-world scenes
from the NYU dataset. The quantitative results (Table 3.6.2)⁶ show that our algorithm is able
to produce good results on the challenging dataset. Despite being much simpler and without
requiring learning on human annotated ground-truth, we compete with the approach from
[79] when only depth information is used. Additionally, we still achieve 93% of their score
when comparing against the more complex feature spaces used in conjunction with learning-
based algorithms. We should emphasize that our competitors do not aim for object parts but
rather for “whole object” detections, specifically, those whole objects learned from this partic-
ular annotated ground truth. Conversely, ourmethod establishes a general rule for object-ness
that does not depend on this particular dataset, nor on the whims of a particular human anno-
tator.

3.7 Discussion

In this Chapter we have presented several new concepts- the octree adjacency graph, super-
voxels, a segmentationmethodwhich uses supervoxels, as well as a way to sequentially update
an octree with new frames of data. Additionally, we have presented quantitative and qualita-
tive results which demonstrate the usefulness of these techniques on real-world datasets. In
particular, LCCP has demonstrated the usefulness of a patch-based adjacency-graph interpre-
tation of 3D Point Cloud data. The results we achieved stem from two core properties: the
ability of supervoxels to efficiently encode local regions, and the usefulness of a 3D adjacency-
graph in resolving situations which are ambiguous in a 2D representation. Additionally, the

⁶Updated results for [79] are available at http://cs.nyu.edu/~silberman/datasets/nyu_
depth_v2.html.

43

http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html

depth-dependent octree world model is able to compactly represent 3D data with included
adjacency information that gracefully adjusts level-of-detail as distance increases from the sen-
sor. Finally, the sequential update process we described allows a basic “object permanence”
to be directly encoded without the need for higher-level objects. While this does have the ad-
vantage of giving “voxel-permanency”, it does suffer from an inability to deal with the case of
“moving-while-occluded”, a situation which cannot be resolved at the low-level used here.

In the next Chapter, we will use the octree model we have developed here as observations
for particle filter tracking. We will demonstrate its effectiveness as the basis for correspon-
dence association, and show how its preservation of voxels through occlusions allows us to
track objects in a real-world application. Additionally, we shall use the supervoxels we pre-
sented here as the basis for dividing trackedmodels into strata, and show how this can be used
to vastly improve the run-time performance of a tracker.

44

Optical Illusion is optical truth! ... In them is evidenced the
living interaction of our inner nature with outer nature.

JohannWolfgang von Goethe

4
Model-Based Point CloudTracking

Now that we have established a reduced, stable worldmodel in which voxels
persist through occlusions, the next step is to adapt the general framework of
Sequential BayesianFiltering (SBF) to trackmodelswithin this 3Dvoxelworld.

For an introduction to the general framework of SBF, we refer the reader to Appendix B). In
this Chapter we begin by presenting the basic framework of particle filter tracking in 3D point
clouds, and show how point correspondences can be used to evaluate the particle filtering
likelihood function.

While the correspondence approach is feasible for tracking single targets, it suffers from the
same flaw as other approaches when extended to multiple targets [46, 48, 52] - it significantly
increases the computational resources required. This increase is due to the need for more
particles - due to assignment of particles to individual targets, a larger state space, or indepen-
dent filters for each target. While there has been work addressing this problem by offloading
processing to aGPU [26], in this workwe take a different approach, and search for fundamen-
tal changes to the point cloud correspondence particle filter which can reduce computational
complexity without affecting accuracy.

This Chapter is organized as follows: First, in Section 4.1 we present a framework for par-
ticle filter tracking in point clouds using point correspondences. In Section 4.2 we present
the primary contribution of this Chapter; the use of a supervoxel-based stratified sampling
approach to greatly reduce the computational complexity of point cloud correspondence par-
ticle filtering. Finally, in Section 4.3 we will show that the approach allows performance (on a

45

standard CPU) exceeding that which can be obtained on a recent GPU implementation [26].
Furthermore, we shall present extensive quantitative experiments demonstrating the benefits
of this approach, as well as show qualitative results from a real-world application.

4.1 Particle Filters in 3D

The underlying mechanics of 3D point cloud correspondence particle filtering remain the
same as in Chapter 2, and so we shall not discuss them extensively here; for a detailed in-
troduction to the topic, we again refer the reader to [30] or [88]. Rather, we shall only discuss
the aspects that differentiate it - the models and how they are scored and propagated. The
models here consist of point clouds, and the measurement function relies on point to point
correspondence for scoring, rather than a global per-detection metric (such as a histogram
distance, used in the 2D trackers of in Chapter 2). The dynamicmodel uses real-world 3D co-
ordinates which also include orientation, rather than 2D pixel coordinates in the image plane.
The primary novelty of the approach we present here lies in how we score individual particle
predictions using the measurement model.

4.1.1 Model Representation

One of the main limitations of the 2D projected mask model discussed in Chapter 2 is that
the masks of objects are not invariant to pose changes - in general, rotation of an object will
change the shape of itsmask anddistribution of its color histogram. Aswenowhave the ability
to observe the full 3D shape of an object, we choose to represent objects as clusters of points
which correspond to the exterior of the object. A visual representation of such amodel is given
in Figure 4.1.1.

Figure 4.1.1: Example of data from “Tide” sequence. The left frame shows an example of the raw
input cloud. Sampling effects from the synthetic RGB-D camera are visible in the quantization of
points, especially on the edges of objects. The middle frame shows the voxelized model represen-
tation we use, while the right frame shows an example of supervoxel strata used for sampling with
Rseed = 0.07m.

46

Points for objects are stored in a model-centered reference frame (which we shall denote
with superscript m), with each point containing an XYZ position, an RGB color for the point,
as well as a surface normal vector. That is, each point p of the model k consists of a nine-
dimensional vector:

pmk = [xm, ym, zm,R,G,B, nx, ny, nz], (4.1)

and a model for an objectOk consists of a vector of nk such points pm:

Om
k = [pm0 ...p

m
nk]. (4.2)

It is important to note that the points of an object model given above are model-relative -
they must be transformed into the world coordinates in order to evaluate their fit to observa-
tions. This will be discussed further in the next Section.

4.1.2 Dynamic Model

In the 2D tracker presented previously, the time-dependent state vector of a particle consisted
of a position shift vector pt = [px, py] and a velocity vector vt = [vx, vy]. The natural exten-
sion of this to 3D is to simply add a third pz and vz element to each. Of course we should
note that the x andy dimensions here in our 3D representation are distinct from those in 2D,
which represented pixel coordinates in the image plane. Here our positional coordinates rep-
resent real-world distances from a fixed origin (typically the camera “pin-hole” position). It
is also important to note that coordinates in our 3D representation are originally in a con-
tinuous space - though we discretize them using the octree model discussed in the previous
Chapter. For clarity, we shall simply denote coordinates in the world reference frame with no
superscript.

While this straightforward extension gives us a reasonable 3D equivalent to our 2D tracked
masks, we now have full 3D models, and so it makes sense to use a state vector which takes
advantage of it. As such, we further extend the state vector for position and velocity to allow
for rotations of themodel around the object reference frame x-axis (roll - γ), y-axis (pitch - β),
and z-axis (yaw - α). This yields a position state vector for particle j at time t of

xjt = [dx, dy, dz, γ, β, α]. (4.3)

Each object model is tracking using a set of N such particles. We shall now generally omit
the object variable k in our notation for clarity. Even though we omit the k, the reader should
assume that the following equations are for individual object models, and that we have a set of
N independent particles for each object. Additionally, we have velocity state vector

vt = [vx, vy, vz, vγ, vβ, vα], (4.4)

47

which is not tracked individually per particle, but rather as a whole for the model.

As before, motion is modeled using a constant velocity model in discrete time with a vari-
able sampling period T, giving the dynamic model

xt = xt−1 + Tvt−1 + ω, (4.5)

with noise vector ω assumed to be zero mean Gaussian with fixed covariance. Particle veloci-
ties are updated after weighting of individual particles using the measurement model, and are
a weighted average of the change in position

vt =
1
TN

N∑
j=1

wj(x
j
t − xjt−1), (4.6)

where wj is the normalized weight for particle j.

Tracking independent velocities for each particle doubles the dimensionality of the state-
space, requiring a proportional increase in the number of particles. While the use of indepen-
dent velocity states potentially helps in complicated tracking scenarios, in our experiments
we were unable to observe any tangible benefit. Moreover, in order to avoid instability in the
tracking results we needed to double the number of particles for a given noise level, doubling
the processing time required. As such, we have chosen to use the above “group-velocity”, and
leave it to future work to investigate the possibility of independent velocity states.

4.1.3 Measurement Model

As points for the model are given in a model-centered frame of reference, we must transform
them to the world frame them using a 3D affine transformation quaternion:

Bj =

cos α cos β cos α sin β sin γ − sin α cos γ cos α sin β cos γ + sin α sin γ dx
sin α cos β sin α sin β sin γ + cos α cos γ sin α sin β cos γ − cos α sin γ dy
− sin β cos β sin γ cos β cos γ dz

0 0 0 1

(4.7)

which we use to transform the extended position vector for each point in the model:

pm = [xm, ym, zm, 1], (4.8)

48

yielding positions in the world frame for each of our ηmodel points for a particular particle j:
pj1
pj2
...
pjη

[x1, y1, z1, 1]T

[x2, y2, z2, 1]T
...

[xη, yη, zη, 1]T

 =

Bj 0 . . . 0
0 Bj . . . 0
...

...
0 0 . . . Bj

[xm1 , ym1 , zm1 , 1]T

[xm2 , ym2 , zm2 , 1]T
...

[xmη , ymη , zmη , 1]T

 . (4.9)

Once we have our transformed points, we then must establish correspondences between
each particle’s model points and a world point. This is done so that we may score how well a
particular particlematches the currentworldmodel observation. That is, for each transformed
point pj1...η, we select corresponding point p∗ in the observation which has minimal spatial
distance. To find these correspondences, we first compute aKD-tree in the spatial dimensions
for the world model points. This allows us to efficiently search for the nearest point to each
transformed point. We create this tree for the worldmodel rather than the transformedmodel
(even though the former has more points) as there is only one world, but many particles and
models. Computing it for themodels would require aKD-tree for each particle in eachmodel.
Additionally, computing it for the world allows us to take advantage of sampling strategies
(discussed in the next Section) which significantly reduce our run-time complexity.

Once we have selected (with replacement) an observed point correspondence for each
model point, we must calculate an un-normalized weight w̃j corresponding to the similarity
of the transformed points to the world observation. This is accomplished by summing the
individual correspondence scores computed using weighted distance in world-, color-, and
normal-space:

w̃j =

η∑
1

1

1 + μ∥pjxyz−p∗xyz∥
Rvoxel

+
λDc(p

j
RGB,p

∗
RGB)

m + ε∥pjnxnynz − p∗nxnynz∥
, (4.10)

where we follow the convention given in Section3.2.2. That is, μ, λ, and ε are weighting con-
stants, Dc is euclidean distance in HSV space, and m is a normalizing constant. We do not
normalize normals, as they are already unit vectors. In our experiments we typically set the
weighting factors to μ = 1, λ = 2, ε = 1, as this balances the scoring between color and ge-
ometric shape, and found experimentally that it produced consistently good tracking results.
The calculated particle weights w̃j are then normalized, and a final state estimate can be com-
puted by taking the weighted average of all particles

xt =
N∑
j=1

wjx
j
t, (4.11)

and the group-velocity can be computed using Equation 4.6.

49

Figure 4.2.1: Themodel is divided into strata (shown as separate colors), and a random point
is selected from each stratum for correspondence matching. The colored circles overlaid on the
observed point cloud show the search radius used for finding correspondences.

4.2 Stratified Correspondence Sampling

While the trackingmethodology discussed above works, in practice its run time performance
is very poor, even for single objects. Moreover, speed of tracking is highly dependent on the
size of object models as well as voxel resolution used. To address this, we propose a sampling
scheme which selects a limited number of points from the model to transform and test. By
doing this, we achieve linear asymptotic time complexity for the particle filter with respect to
the number of particles - there is no dependence on the number of points in the models or
the voxel resolution used. The only step which is dependent on the number of input points is
the KD-tree construction, but this is only done once for the world model independent of the
number of trackers, and must be done as a pre-processing step anyway for normal computa-
tion.

The proposed sampling scheme is as follows. We select a spatial sampling resolution Rseed

based on the number of desired sample points per particle Ns. We then divide the model
into strata, where each stratum is a supervoxel using the VCCS method described previously
[62]. Supervoxels are a voxel-based surface patch representation that use connectivity, colors,
and normals so that their edges conform well to object part boundaries. The strata are evenly
divided over the spatial structure of the model, as seen in Figure 4.1.1. Additionally, using
supervoxels as the strata ensures that we sample the important features of the models - for
example in the model of Figure 4.1.1, we have a stratum for the brand logo, as well as ones for
the concavities of the handle.

For each particle, we randomly select a point from each stratum using uniform sampling,

50

Figure 4.2.2: Tracking on the artificial “Kinect Box” sequence. The top row shows tracked output
overlaid on input data, while the bottom row shows the supervoxel strata that are used for sam-
pling.

and then transform and score it as described in the previous Section. As an additional step, we
also select Ns

4 points uniformly from the entire model. Using strata reduces the noise which
occurs when sampling from the whole model exclusively, while sampling randomly from the
entire distribution improves occlusion performance.

While sampling will tend to produce noisier tracking results for low Ns, it also greatly re-
duces the computational complexity, as we only need to transform and test a small subset
of the model points. This allows one to greatly increase the number of particles for a given
frame-rate. Importantly, each particle is testing a separate random subset of model points.
This results in the product ofNs, the number of sample points per particle, andN, the number
of particles, reaching a critical level where coverage becomes sufficient that error is equivalent
to sampling all points. In the results presented below, we shall demonstrate that this critical
level can be used to significantly decrease run time for a given level of error. That is, we shall
show that the number of points that must be tested overall, for a given level of error, is lower
when stratified sampling is used. This means that we can significantly increase accuracy for a
given frame-rate, reducing run-time complexity to the point that we can track 6 DoF pose for
multiple objects in real-time.

4.3 Experimental Results

In this Section we first present results on a set of synthetic videos to quantify the effect of the
stratified sampling, and compare results to a state of the art GPU particle filter [26]. We then
present qualitative results on real videos in a robotic learning application, where we trackmul-
tiple interacting targetswith significant occlusions. In both synthetic and real cases, input con-
sists of RGB-D sequences. Trackers were initialized using an external pose - in the synthetic
case, from ground truth, and in the real case, using a pose estimation algorithm [22]. Object
modelswere generatedby registeringmultiple viewsof the objects using the sameRGB-Dsen-

51

sor employed for tracking. All experiments were performed on a standard desktop computer
(Intel i7 3.2Ghz), using all four available cores.

4.3.1 Results on Synthetic Sequences

In our first experiment, we demonstrate the effectiveness of our stratified sampling strategy
using four synthetic tracking videos from [26]. These RGB-D sequences are set in a virtual
kitchen (seeFigure 4.2.2) and each contain a single item to track as the cameramoves. Ground
truth trajectories of the cameras are given in Figures 4.3.2-4.3.8; one can observe that the tra-
jectories are complex, consisting of large variations in position, orientation, and velocity.

To evaluate our approach, we compute root mean square (RMS) error in both translation
and orientation, averaged over 25 test runs for each sequence. Computation times are mea-
sured in ms per frame, and are also averaged across all frames of the 25 test runs. In order to
compare with [26], we have combined their RMS error results for each dimension (x, y, z,
roll, pitch, yaw) into two measurements - displacement and rotation. Rotation is calculated
using the unit quaternion distance metric [49], which is equivalent to the angular distance
on the unit sphere. This combination reduces the amount of data to compare without loss,
as the choice of orientation of the dimensions is arbitrary and without import. Example dis-
placement and rotation ground truths for the “Kinect Box” sequence can be found in Figure
4.3.2.

Timing results are given in Figures 4.3.3 -4.3.9, showing results for the four sequences, with
each plot scanning across number of particles and number of sample points. Results for all
four sequences are similar. One can observe that, for a given level of sampling, the RMS er-
ror decreases for both displacement and rotation as the number of particles increases. More
importantly, it is also apparent that, for a given level of error, run-time per frame can be mini-
mized by reducing the number of samples used and increasing the number of particles. Addi-
tionally, one can observe that RMS error appears to be asymptotic, with lower sampling levels
approaching the asymptote at lower run-times.

We should also note that the minimum error asymptote observed is likely a consequence
of the sampling resolution of the synthetic Kinect camera. For example, in the “Kinect Box”
sequence, average distance to neighboring points (8-neighborhood) on the tracked box sur-
face is 3.3 mm. This corresponds almost exactly to our observed error asymptote. This can be
observed in all four sequences - our minimal error corresponds closely to the average point to
point resolution of the observations on the model.

52

t

Figure 4.3.1: Tracking on the artificial “Tide” sequence. The left column shows tracked output
overlaid on input data, while the right column shows the supervoxel strata that are used for sam-
pling.

53

0 200 400 600 800 1000
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
Displacement of Kinect Box (Tracked vs Ground Truth)

Frame Number

D
is

p
la

ce
m

en
t

(m
)

Tracked

Ground Truth

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5
Rotation of Kinect Box (Tracked vs Ground Truth)

Frame Number

A
n
g

u
la

r
D

is
ta

n
ce

 (
ra

d
)

Tracked

Ground Truth

Figure 4.3.2: Displacement and rotation ground truth, with an example tracked result from a sin-
gle run atNsamples = 100 andNparticles = 1000 (a frame rate of 20 fps).

10
1

10
2

4

6

8

10

12

14
x 10

−3 RMS Displacement Error of Kinect Box

Time per frame (ms)

D
is

p
la

ce
m

en
t

E
rr

o
r

(m
)

Samples = 30

Samples = 50

Samples = 100

Samples = 200

Samples = 300

Samples = 400

Samples = 1000

Samples = 2000

GPU PF

50 Particles

100 Particles

200 Particles

500 Particles

1000 Particles

2000 Particles

3000 Particles

10
1

10
2

0.01

0.02

0.03

0.04

0.05

Rotational Error of Kinect Box

Time per frame (ms)

R
M

S
 G

eo
d
es

ic
 D

is
ta

n
ce

Samples = 30

Samples = 50

Samples = 100

Samples = 200

Samples = 300

Samples = 400

Samples = 1000

Samples = 2000

GPU PF

50 Particles

100 Particles

200 Particles

500 Particles

1000 Particles

2000 Particles

3000 Particles

Figure 4.3.3: Results on the Kinect Box artificial sequence. Each colored curve represents a cer-
tain number of samples, and gives mean RMS error averaged over 25 trial runs for increasing num-
bers of particles.

Our performance compares favorably to the results of Choi and Christensen [26] - for a
given level of error, we achieve per-frame run times that are between half and a tenth of their
published results. Additionally, we consistently reach the error asymptote at considerably

54

0 200 400 600 800 1000
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Displacement of Milk (Tracked vs Ground Truth)

Frame Number

D
is

p
la

ce
m

en
t

(m
)

Tracked

Ground Truth

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

Angle of Milk (Tracked vs Ground Truth)

Frame Number

A
n

g
u

la
r

D
is

ta
n

ce
 (

ra
d

)

Tracked

Ground Truth

Figure 4.3.4: Displacement and rotation ground truth, with an example tracked result from a sin-
gle run atNsamples = 100 andNparticles = 1000 (a frame rate of 20 fps).

10
1

10
2

2

3

4

5

6

7

x 10
−3 RMS Displacement Error of Milk

Time per frame (ms)

D
is

p
la

ce
m

en
t

E
rr

o
r

(m
)

Samples = 30

Samples = 50

Samples = 100

Samples = 200

Samples = 300

Samples = 400

Samples = 1000

Samples = 2000

GPU PF

50 Particles

100 Particles

200 Particles

500 Particles

1000 Particles

2000 Particles

3000 Particles

10
1

10
2

0.01

0.02

0.03

0.04

0.05

Rotational Error of Milk

Time per frame (ms)

R
M

S
 G

eo
d
es

ic
 D

is
ta

n
ce

Samples = 30

Samples = 50

Samples = 100

Samples = 200

Samples = 300

Samples = 400

Samples = 1000

Samples = 2000

GPU PF

50 Particles

100 Particles

200 Particles

500 Particles

1000 Particles

2000 Particles

3000 Particles

Figure 4.3.5: Results on the Milk artificial sequence. Each colored curve represents a certain num-
ber of samples, and gives mean RMS error averaged over 25 trial runs for increasing numbers of
particles.

lower run times. We should also note that the highest sampling level shown corresponds to
a complete sampling of the model, and can be thought of as equivalent to the baseline PCL
implementation, although we have made some modifications to the resampling and dynamic

55

0 200 400 600 800 1000
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Displacement of Orange Juice (Tracked vs Ground Truth)

Frame Number

D
is

p
la

ce
m

en
t

fr
o
m

 O
ri

g
in

 (
m

)

Tracked

Ground Truth

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5
Rotation of Orange Juice (Tracked vs Ground Truth)

Frame Number

A
n
g

u
la

r
D

is
ta

n
ce

 (
ra

d
)

Tracked

Ground Truth

Figure 4.3.6: Displacement and rotation ground truth, with an example tracked result from a sin-
gle run atNsamples = 100 andNparticles = 1000 (a frame rate of 20 fps).

10
1

10
2

2

2.5

3

3.5

4

4.5

5

5.5

6

x 10
−3 RMS Displacement Error of Orange Juice

Time per frame (ms)

D
is

p
la

ce
m

en
t

E
rr

o
r

(m
)

Samples = 30

Samples = 50

Samples = 100

Samples = 200

Samples = 300

Samples = 400

Samples = 1000

Samples = 2000

GPU PF

50 Particles

100 Particles

200 Particles

500 Particles

1000 Particles

2000 Particles

3000 Particles

10
1

10
2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Rotational Error of Orange Juice

Time per frame (ms)

R
M

S
 G

eo
d
es

ic
 D

is
ta

n
ce

Samples = 30

Samples = 50

Samples = 100

Samples = 200

Samples = 300

Samples = 400

Samples = 1000

Samples = 2000

GPU PF

50 Particles

100 Particles

200 Particles

500 Particles

1000 Particles

2000 Particles

3000 Particles

Figure 4.3.7: Results on the Orange Juice artificial sequence. Each colored curve represents a
certain number of samples, and gives mean RMS error averaged over 25 trial runs for increasing
numbers of particles.

model which improve results. As can be seen, we are at least an order of magnitude faster than
this base implementation.

56

0 200 400 600 800 1000

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
Displacement of Tide (Tracked vs Ground Truth)

Frame Number

D
is

p
la

ce
m

en
t

fr
o
m

 O
ri

g
in

 (
m

)

Tracked

Ground Truth

0 200 400 600 800 1000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Rotation of Tide (Tracked vs Ground Truth)

Frame Number

A
n
g

u
la

r
D

is
ta

n
ce

 (
ra

d
)

Tracked

Ground Truth

Figure 4.3.8: Displacement and rotation ground truth, with an example tracked result from a sin-
gle run atNsamples = 100 andNparticles = 1000 (a frame rate of 20 fps).

10
1

10
2

2

3

4

5

6

7

8

x 10
−3 RMS Displacement Error of Tide

Time per frame (ms)

D
is

p
la

ce
m

en
t

E
rr

o
r

(m
)

Samples = 30

Samples = 50

Samples = 100

Samples = 200

Samples = 300

Samples = 400

Samples = 1000

Samples = 2000

GPU PF

50 Particles

100 Particles

200 Particles

500 Particles

1000 Particles

2000 Particles

3000 Particles

10
1

10
2

0.005

0.01

0.015

0.02

0.025

0.03
Rotational Error of Tide

Time per frame (ms)

R
M

S
 G

eo
d
es

ic
 D

is
ta

n
ce

Samples = 30

Samples = 50

Samples = 100

Samples = 200

Samples = 300

Samples = 400

Samples = 1000

Samples = 2000

GPU PF

50 Particles

100 Particles

200 Particles

500 Particles

1000 Particles

2000 Particles

3000 Particles

Figure 4.3.9: Results on the Tide artificial sequence. Each colored curve represents a certain num-
ber of samples, and gives mean RMS error averaged over 25 trial runs for increasing numbers of
particles.

4.3.2 Results on Real Sequences

One application of our tracker is to provide semantic understanding and imitation of assembly
tasks. This can be accomplished by tracking all interacting parts of an assembly as a human

57

demonstrates, and then using the trajectories and poses in order to train a robot to replicate
the construction. Additionally, the tracked output can be used as an input for the robot during
construction in order to verify that it has successfully completed each step of the task.

Figure 4.3.10: Human demonstration of assembly of the Cranfield Scenario. Tracking runs live for
all objects at once at sufficient frame rates to track the whole task.

As a demonstration of this, we shall once again use the well established “Cranfield” bench-
mark set [28], consisting of eight pieces which can be assembled in a number of different or-
ders. Inour experiments,models consist of voxelizedpoint cloudsderived fromhigh-resolution
models of the pieces, and initial poses for tracking are found using a combined object recogni-
tion and pose estimation algorithm [22]. Each object is tracked using an independent particle
filter, withNsamples set to 50, andNparticles set to 1000.

Recordings were made on the MARVIN platform at the University of Southern Denmark,
anduse 2KinectRGB-Dcameras ¹. The recordingswere performedbydifferent people, where
the people were following assembly instructions presented by the planning system of the In-
tellAct project. A description of the planner is beyond the scope of this work (we refer the
reader to [73]), but for our purposes we just need to know that the order of assembly varies
from sequence to sequence.

Figure 4.3.10 shows a montage of screenshots captured as a human demonstrates assem-
bly of the benchmark. As can be seen, all pieces are successfully tracked from start to finish,
with each tracker outputting smooth trajectories that can be used for training a robot using
Dynamic Motion Primitives (DMP) [51]. In Figure 4.3.11 we show tracks from multiple dif-
ferent human demonstrations - one can observe the different strategies that people employ in
assembling the benchmark. The tracks in the lower right corner of the Figure are from a robot

¹It is well-known that multiple Kinect sensors sharing a common field of view will cause IR interference,
resulting in poor depth reconstructions. A known solution, which the platform incorporates, is the use of
vibratingmotorsmounted on the Kinect sensors [23]. Thismethod has been shown to effectively blur out the
noisy contributions of external sensors, while maintaining a high depth reconstruction quality.

58

reproducing the assembly after being trained on the human demonstrations [73].

Figure 4.3.11: Tracking results from six different recordings of the Cranfield Scenario. The tracks
in the bottom right corner are from the robot constructing the object, while the other five are from
five different human demonstrators. In the overhead views, starting poses are shown (in slightly
darker colors) for the objects.

4.4 Discussion

In this Chapter we have presented a novel spatially stratified sampling approach which greatly
reduces the computational complexity of 3D Point Cloud correspondence particle filters. We
evaluated the tracker using synthetic sequences for which precise ground truth exists, as well
as real sequences of a human demonstration application. To demonstrate the effect of strati-
fied sampling on performance, we conducted a sweep over the parameter space of number of
particles and samples. This sweep showed the clear effectiveness of the proposed method in
matching and even out-performing a GPU implementation.

59

The approach we have presented here allows us to effectively track rigid objects in 3D voxel
space. While it is very efficient at doing this tracking, it remains just that, a tracker, the result
of which is an object state. Moreover, it is unable to handle deforming objects, and as of yet
we have not shown how to handle objects entering or leaving the scene. That is to say, we have
yet to show how we can use this tracking system to produce a full video segmentation.

As such, now that we have now established our ability to track multiple objects in real-time
within point cloud data, we can proceed to VOS. In the next Chapter, we will combine the
3D correspondence-based tracker with the supervoxel world-model presented previously to
generate a full segmentation of point cloud video that is robust to occlusion and maintains
object identities throughout extended sequences. Todo this, we shall borrow some ideas from
our 2D tracker presented inChapter 2, and introduce a new global energy function that allows
us to assign newly observed supervoxels to tracked targets.

60

Encoded in the large, highly evolved sensory and motor por-
tions of the humanbrain is a billion years of experience about
the nature of the world and how to survive in it. The delib-
erate process we call reasoning is, I believe, the thinnest ve-
neer of human thought, effective only because it is supported
by this much older and much more powerful, though usually
unconscious, sensorimotor knowledge. We are all prodigious
olympians in perceptual and motor areas, so good that we
make the difficult look easy.

Hans Moravec

5
Tracking Based Point Cloud Video

Segmentation

Thus far, we have presented a 2Dparticle-filter basedVOSmethod, developed
a 3D point-cloud based world-model, and shown how it is possible to efficiently
track within this world using correspondence- based particle filters. Our final

task is to bridge the gap between the tracked model states (which are the final output from
the previous Chapter) and the supervoxels presented in the preceding one. That is to say, we
wish to use our tracked results to link supervoxels from frame to frame; essentially, to solve
the association problem at the lowest level possible thereby achieving temporally consistent
supervoxels.

Themotivation formaking temporal connections at the supervoxel level (rather than at the
significantly easier object level) is to avoid the need tomake strict decisions about objects and
their boundaries. Wewish to avoid these decisions, aswhat one defines as an “object” is largely
dependent on context, as it is really a property of the observer, rather than the observed. By
tracking supervoxels we can avoid the problem completely. Instead, we make “fuzzy” associ-
ations, where instead of a binary association decision, we instead maintain probabilities that
supervoxels “belong” to different tracked entities. An overview of the proposed method is
shown in Figure 5.1.1; as can be seen, we use many of the components presented previously,
with themain addition being an association stepwhich assigns supervoxels to tracked objects.

61

Sequential
Octree
Update

Voxel Cloud
Connectivity
Segmentation

Persistent
World-Model

Particle
Filters

Label Voting
& Joint

Association
Tracked
Models

Object/Part
States

RGB-D
Input

Locally Convex
Connected
Patches

Supervoxels

Temporally
Consistent
Supervoxels

Figure 5.1.1: Overview of the algorithm for extracting temporally consistent supervoxels. The per-
sistent world model, VCCS, LCCP, and particle filters function as presented in previous Chapters.
The key addition is the label voting and joint association scheme which uses tracked states to asso-
ciate supervoxels from frame to frame. The output of this is then fed back to the trackers to update
their models.

5.1 TrackedModel Representation

The first issue that must be addressed is the “level” at which targets should be tracked - the
object or the supervoxel level (we shall not consider tracking at the voxel level since it is com-
putationally infeasible with current hardware). As our goal is to associate supervoxels across
time, we would like to track supervoxels directly. Unfortunately, this is generally not feasible
due to the “aperture problem” seen in neural visual fields [56]. The aperture problem deals
with the fact that local motion can only be estimated perpendicular to a contour that extends
beyond its field of view [78]. In other words, determining direction of motion in a local re-
gion (without considering global features) is generally not possible - as illustrated in Figure
5.1.2. This means that in order to estimate motion of supervoxels, we must extend the field
of view considered significantly beyond the size of the supervoxel itself; in fact, our aperture
must contain the borders of the moving object in question, otherwise pairwise association of
supervoxels is generally indeterminate.

Thud we must track higher level groupings - groupings that extend at least to a contour
whichprovides a referenceboundary for disambiguatingmotion. Anaturalwayof doing this is
to use the LCCP segmentation presented inChapter 3, as it will expand regions up to concave
boundaries. Using concave connections as references is surprisingly powerful, as it generally

62

Figure 5.1.2: The “Aperture Problem” -Three patterns moving in three different directions all
produce the same perceived stimulus when viewed through a small aperture. In order to correctly
resolve direction of motion a wider field of view is needed. Adapted from [45].

will differentiate objects, as well as parts of objects which can move independently (consider
the case of joints in the human body). As such, we adopt a simple scheme for grouping su-
pervoxels into trackedmodels; we perform LCCP segmentation on the first frame, and assign
each observed segment to an independent tracker.

5.2 Bank of Parallel Particle Filters

Trackingof the segmentedobjectsorparts is accomplishedusing abankof the correspondence-
based particle filters from the previousChapter. We select ameasurementmodel based on the
voxels and supervoxels producedusing the persistentworld-model schemediscussed inChap-
ter 3. The model measures distance in a feature space of spatial distance, normals, and color.
Weights of predicted states xjt = [dx, dy, dz, γ, β, α] are measured as in the previous Chapter
by associating transformedmodel voxels to the observed voxels nearest in space. Particles are
then weighted by measuring total distance in feature space, just as in Equation 4.10.

5.3 Association by Joint LabelOptimization

Sinceour goal is extract full segmentations, rather than just object states, wemust actively asso-
ciate observed supervoxels (and therefore, voxels)with tracked results. This canbe considered
as an additional step beyond the tracking of the previous Chapter, which used observations to
test how well a particle prediction matched reality. We can begin by considering the trivial
case of tracking a single object. In this case we can extract a segmentation by establishing a
small search radius Rassoc around each tracked model result point (giving us an “association
volume” around each point). If we simply assign each observed voxel falling within this vol-

63

Rseed

Observed Supervoxels

Predicted Supervoxels Obj. k1
Predicted Supervoxels Obj. k2
Association of Supervoxel

Supervoxel Adjacency Graph

Figure 5.3.1: Association of observed supervoxels with predicted model supervoxels using
smoothing term which considers neighbor labels.

ume to the tracked model, we can easily achieve a rough segmentation. Furthermore, we can
determine which supervoxels belong to the object (and which belong to the unlabeled set)
using a majority-voting scheme. This gives us a “foreground segmentation” method, which
segments out the tracked object as foreground.

Extending this to multiple objects, observe that the difficulty now lies in resolving associa-
tions of voxels which lie within the association volume of two or more tracked results. Fortu-
nately, most voxels will only fall within the volume of a single object’s tracked model, leaving
us with only having to resolve associations along interacting object boundaries. As such, we
begin by composing a list of all supervoxels which are under competition, that is, have voxels
falling within the association volumes of more than one label. We can then count the number
of voxels associated to each object, and normalize to give us an a-priori categorical distribu-
tion P(L(p) = k|V) which maps labeling of supervoxels p ∈ P to objects k ∈ K given voxel
associations V.

Now that we have priors for object labelings, we adopt a Monte Carlo approach, similar to
[43], to sample from the set of possible label associations and determine a global association
which best aligns tracked object predictions to observed supervoxels. To generate realizations
(sets of label assignments), we use a weighted sampling strategy which considers the priors,
as well as a distance term. This gives us a likelihood of assigning object label k to supervoxel p
given distance from the object centroid Ck and the voxel associations:

L(L(p) = k|Ck,V). (5.1)

To compute a score for each realization, we use the global energy function given in (5.2).

64

Each global label associationA consists of a set of associations {a1 . . . an}which assign object
labelsk to the set of observed supervoxels{p1 . . . pn}. Thefirst summation term,

∑
p ∥p∗k − p∥,

measures error in feature space between the observed supervoxel and the supervoxel of the
stratum in its associated object p∗k .

EA =

∑
p

∥p∗k − p∥+ λ
∑

(p,p′)∈N

δ(L(p) ̸= L(p′))

∏
a∈A

Δk (5.2)

The second summation is a smoothing term which considers the adjacency graph of ob-
served supervoxels. For every observed supervoxel, we compare its assigned labeling L(p) to
the label of all supervoxels p′ which lie within its adjacency neighborhoodN . We adopt the
Potts model as in [19], where δ()̇ is 1 if the specified condition holds, and 0 otherwise, and λ
is a weighting coefficient which controls the importance given to spatial smoothness of labels.

Finally, the multiplicative term
∏

a∈A Δk controls for the expansion or contraction of ob-
jects through the number of observed voxels associated with them. Δk penalizes for changes
in volume by increasing the energy for deviations from unity in the ratio of observed voxels
assigned to an object N̂k with the number in the object model itself N̂k, that is

Δk =

{
N̂k/Nk if N̂k ≥ Nk

2 − N̂k/Nk if N̂k < Nk .
(5.3)

Oncewehave arrived at a stableminimumenergy score, we extract the resulting association
of observed supervoxels to predicted results, and use them to update the tracked models.

5.4 Alignment andUpdate ofModels

The joint energyminimization results in a global associationAwhich assigns observed super-
voxels to tracked objects. In order to use this to update the object models, we must align it to
the internal representation stored by the particle filter. We begin at the inverse of the predicted
state, and then use an iterative closest point [25] procedure to refine the transform such that
the set of observed supervoxels best aligns with the model. We then update the model with
the new observations by inserting the new supervoxels into the model.

As a final step, we use the refined transform to update the states of the particles. To do this,
we shift each particle xi towards the refined state x̂, weighting the importance given to the
refined state by a constant factor ε

x′i∈L = (1 − ε)xi + εx̂ . (5.4)

For this work, we found that an ε of 0.5 effectively removes noise (jitter) introduced by
the replacement of the tracked model. Additionally, we correct the internal motion model
({vx, vy, vz}) of the particle filters to correspond to the new updated state.

65

5.5 Experimental Results

As a demonstration of the method, in this Section we provide results from two successful ap-
plications. Both applications use the Cranfield scenario [27] presented in the previous Chap-
ter. Figure 5.5.1 shows the results of tracking and segmentation on one assembly of the bench-
mark. It can be seen that the algorithm is able to successfully extract full segmentation of the
video, as seen by the tracks and the segmented pieces.

Figure 5.5.1: Result of tracking and segmentation on Cranfield scenario from different views.
Here the tracks are shown as dots of the color of the tracked label for each timestep. Initial loca-
tions of the pegs are shown in the middle bottom frame as semi-transparent masks. Calculated
orientation is shown for the red peg with a set of axes every second time-step; these axes show pose
in a frame relative to the start.

5.5.1 Imitation of Trajectories for Robot Manipulation

The standard way of teaching robots to perform human-like actions is imitation learning, also
called programming by demonstration [13, 16]. There are several ways to demonstrate move-
ments: 1) recordingmovements in joint-space (joint angles) or target-space (Cartesian space)
by ways of a motion capture device (requires putting markers on human body), 2) using ki-
naesthetic guidance (guiding a robot’s movements by a human hand), or 3) via teleoperation
(controlling a robot via joystick). The only way to obtain motion trajectories from human
observation in a ”non-invasive” procedure is by using stereo vision [38], however, usually it
is model based. The tracking algorithm we have presented here can be used as an alternative
method to obtain motion trajectories (in Cartesian space) in a model-free way.

To demonstrate this, we applied our tracking algorithm to obtain human motion trajecto-

66

Figure 5.5.2: Kuka LWR arm imitating trajectory and pose learned from tracked human demon-
stration.

ries in Cartesian space including orientation of manipulated object (in total six DoFs). We
tested it using a recording of the Cranfield scenario where, first, we let a human demonstrate
the action and then reproduced it using aKUKALightWeightRobot (LWR)arm[50]. Specif-
ically, here we imitate a human putting the separator block on the pegs. To generate trajecto-
ries for the robot fromhuman demonstrations, we used amodified version ofDynamicMove-
ment Primitives [41, 42] (DMP) and learning method as described in [51]. We used Carte-
sian impedance control and, thus, generated six DMPs (three for motion of the end-effector
in Cartesian space and three for orientation of the hand) based on trajectories obtained from
the tracking algorithm. Here we used 100 equally spaced kernels with width σ = 0.05 for
each dimension (for more details please refer to [51]). As demonstrated in Figure 5.5.2 and
the supplementary video, trajectories obtained by the proposed tracking algorithm are suffi-
ciently accurate to allow reproduction of the human motion. We should emphasize that the
key advantage here over the tracking from the previous Chapter is that we can track and seg-
ment out the human arm - something not possible with a rigid-model approach.

67

5.5.2 Semantic Summaries of Actions

A fundamental task for intelligent autonomous robots is the problem of encoding long chain
manipulations in a generic way, for use in tasks such as learning and recognition. As a demon-
stration of the usefulness of the proposed tracking framework, we use a recently introduced
novel Semantic Event Chain (SEC) approach [9] which converts each segmented scene to a
graph: nodes represent segment (i.e. object) centers and edges indicate whether two objects
touch each other or not. By using an exact graphmatching technique the SEC framework dis-
cretizes the entire graph sequence into decisive main graphs. A new main graph is identified
whenever a new node or edge is formed or an existing edge or node is deleted. Thus, each
main graph represents a “key frame” in the manipulation sequence. Figure 5.5.3 shows a few
detected sample key frames from the long Cranfield action. While the complete action has
in total 1453 frames, the SEC representation reduces it to just 12 key frames, each of which
represents a topological change in the scene.

Keyframe 1 Keyframe 3 Keyframe 18 Keyframe 35

Figure 5.5.3: A few example key frames extracted from the long Cranfield action. Numbered
nodes represent interacting objects, while edges show touching relations between objects. Each
keyframe represents a topological change in the scene - here we show 4 of the 12 keyframes.

5.6 Discussion

In thisChapterwe presented amethodwhich extracts full scene segmentation from themodel
tracker we presented in the previous Chapter. The method uses a global energy functional
to enforce smoothness and temporal continuity on the segmentations. Additionally, we feed

68

segmentation results back into the tracked models, updating them so that they can deform
and/or accumulate different view points. This allows us to extract a full video segmentation
from our tracked states.

There aremany advantages to themethod presented in this Chapter over themodel tracker
- it can track deforming objects, there is no need to know object models a-priori, tracked ob-
jects can be easily re-initialized using LCCP segmentation, there is no need to compute initial
poses, and finally, we can extract action semantics without needing to know what objects are
present. As this approach is completely free of trained models or strict object boundaries, it
opens up many avenues of future research. In particular, of especial interest is that it allows
bootstrapping of learning - we can attempt to build systems which learn to understand scenes
purely from observation, without any human input or teaching.

69

Art thou not, fatal vision, sensible
To feeling as to sight? Or art thou but
A dagger of the mind, a false creation
Proceeding from the heat-oppressed brain?

William Shakespeare

6
Conclusions

Throughout this work, we have had one goal in mind; to develop video seg-
mentationwhich has the continuity of trackingmethods. The primary reason for
doing this was to ensure the temporal consistency of segments through extended

video clips of, in particular, indoor manipulation tasks. Difficulties presented in such videos
include partial and full occlusions, sudden and fast displacements of objects, different objects
with similar or identical appearance, and objects which cannot be segmented based on color.
Additionally, proper understanding of manipulations require a high degree of precision, par-
ticularly when it comes to the relative pose of parts when they are interacting (e.g. putting a
bolt in a hole).

Our intended application for the segmentation of such videos was the general bootstrap-
ping of assembly task understanding. If one can correctly track objects and their parts through
a taskwithout a-priori knowledge, it should be possible to use this to learnwithout the need of
an external oracle. Not only this, but if one is able to correctly track full 6 DoF pose through-
out a human-demonstrated assembly task, it is possible to learn trajectories that a robot can
use to imitate effective motion paths.

6.1 Summary of Contributions

Webegan in chapter 2bypresenting a2DVOSmethod thatmadeuseofourproposedmethod-
ology; to use tracking as the basis for video segmentation. In particular, we showed how parti-
cle filters, a class of Sequential BayesianMonteCarlomethods, can be used to predict what the

71

next frame’s segmentation should look like. These proposed segment masks were then com-
bined using a weighted sampling strategy and then refined to fit observed image data using a
relaxation process.

Next, in chapter 3 we introduced RGB-D sensors, how they can be used to produce 3D
point cloud data, and how this data can be organized using an octree structure. We then pre-
sented a specialized type of octree - the adjacency octree - which we developed to allow quick
and efficient traversal between neighboring voxels within the tree. We subsequently showed
how the adjacency octree can be used to efficiently further sub-divide voxel data into local-
ized patches, called supervoxels, using our Voxel Cloud Connectivity Segmentation (VCCS).
The utility of supervoxels was then demonstrated by showing their effectiveness in segment-
ing static scenes using a local convexity criterion (LCCP). The effectiveness of VCCS and
LCCP were then demonstrated by showing their favorable results on a large state-of-the-art
benchmark as compared to other state-of-the-art methods. Finally, we conclude the chapter
by presenting how an adjacency octree containing supervoxels can be sequentially updated
with new frames of data without deleting potentially occluded voxels.

We then extended the particle filter framework in chapter 4 to 3D point clouds by formaliz-
ing the notion of a voxel-basedmeasurement and dynamicmodel. While this straightforward
implementation worked, we showed how it could achieve much faster (real-time on standard
hardware) run times and accuracy by stratified sampling of correspondences. This improve-
mentwas thenquantifiedusing a benchmarkof artificial sequences, and then shown tooutper-
form even a GPU based method. As a final demonstration of the effectiveness of the tracker,
we presented results on recordings of humans constructing the Cranfield benchmark. This
showed how the tracker can be used to distill semantic understanding from a video sequence.

Finally, in chapter 5 we tackled the problem of extracting full segmentations from tracked
results. To do this, we first showed how the 3D particle filter presented previously could be
extended to work on supervoxels. Then we showed how the adjacency graph of supervoxels
couldbeused alongwith a global energyminimization to resolve interactionsbetween trackers
and produce a full segmentation consistent with the tracked poses. As a final demonstration
of the presented methodology, we give results on several recordings of manipulation actions.

Another important contribution was the development of the open-source Oculus vision
system discussed in Appendix A. This system served as the platform on which much research
has been done over the past several years and was a key tool in publications by several other
researchers. Finally, we would like to note that most of the algorithms discussed in this work
have been released as open-source to the vision community as part of the Point Cloud Library
¹. We consider both of these important contributions, as the open sharing of code is vital to
the advancement of the discipline of Computer Science.

¹http://www.pointclouds.org/

72

http://www.pointclouds.org/

6.2 Shortcomings of VOS Benchmarks

Evaluation of segmentation algorithms is a notoriously vexing problem due to the inherent
ambiguity of what constitutes a “correct” segmentation. As such, in our work we have deter-
mined that we should avoidmaking concrete decisions on segmenting objects in single works,
and instead chose to limit ourself to the lower, supervoxel level. While this is not an entirely
satisfactory solution, we felt that there is simply not enough information in a single frame to
extract meaningful segmentations accurately. Indeed, one cannot really tell the granularity
with which a scene should be segmented into distinct objects until they see some action.

Benchmarking of 3D point cloud segmentation is a young topic - in fact, the first extensive
benchmark, theNYU Indoor Dataset, was not published until 2012 [79]. As such, it has many
complications (that didnot exist in 2D)whichhave yet tobe resolved, such as that it is difficult,
if not impossible, to make a 2D ground truth annotation correctly line up with the 3D point
cloud representation. Even more to the point, there are still no 3D VOS benchmarks. In fact,
even though the field is decades old, one must look to 2013 to find a 2D VOS benchmark
[34]. There are many reasons for this lack of a proper benchmark, but the primary one is
that is simply extremely time consuming to annotate ground-truth for even very short video
sequences. Furthermore, labeling a single ground truth is even more difficult for video than
single images, for instance, what happens when one takes a cap off of a bottle; should it be
given a new label? If so, should it have had a separate label the entire time, or only once it is
separated? What happens when objects become occluded and then reappear; should they be
given new identities or maintain their old ones? If they keep their old ones, how long should
we allow an object to be occluded for before we “forget” it?

Due to all of these concerns, we have made the decision to only show qualitative results of
segmentation per-pixel accuracy, while still quantifying the tracker performance. This allowed
us to prove that our tracking schemewas both faster andmore accurate than existingmethods,
without needing to haggle over inscrutable questions such as “what constitutes an object?”,
and “does this pixel belong to object a or object b?”.

6.3 Limitations andDirection of FutureWork

The main limitation of the 2D tracking framework presented in chapter 2 is that it can only
“guess” at correct behavior when an object is occluded. Indeed, this is a general problem of
trying to infer behavior in a 3Dworld from observations in a 2D projected plane. It is because
of these ambiguities and an inability to resolve them in a comprehensive and satisfyingmanner
that we proceeded to tracking in 3D using RGB+D observations.

While our persistent voxel world model is very effective at maintaining the existence of
stationary objects through occlusions, it does not handle objects which move while they are
occluded. Solving this problemat the low-level of voxels is anunresolvedproblem, theoutlook

73

of which is fairly bleak. Our attempts at solving the problem lead us to believe that higher
level object knowledge is necessary to account for occludedmotion. With this in mind we are
investigating a way of associating occluded objects with their occluder so that theymove with
them. Another limitation which we are currently addressing is that our persistent voxel world
model does not account for camera motion. There is some existing work on real-time camera
pose estimation, and we are hoping to incorporate such a method into our system in the near
future.

As with any VOS method, our final result has a few important limitations. One of these
is the need to set a rate at which to allow models to change. In many cases, objects are rigid,
and do not change; allowing them to change only adds instability to the segmented output.
Conversely, some objects are deformable, or not entirely visible in the scene, and will need to
change to be correctly segmented.

Future work should focus on extending how patch-based VOS is extracted from the track-
ers. While we have shown that using tracking as the basis for video segmentation is a viable
concept, there remains some work to be done in terms of reliability of the tracked patches.
In particular, one promising avenue to pursue is using a global Conditional Random Field to
help give better solutions to the joint association of supervoxels to trackers.

Finally, while it was beyond the scope of this work, the clear next step is to take the tracked
patches and use them to bootstrap learning from visual data. That is, now that we have es-
tablished that it is possible, in principle, to track local patches without the need for a-priori
object knowledge, we can begin to learn objects from unconstrained video. Possible places to
begin such research would be to attach relevant metadata to videos to use for semi-supervised
learning, or to combine different sensingmodalities. For instance, one could combine speech
commands and a video showing an execution of the action into a single data structure. One
could then use tracked patches to discover objects related to the action, and by observing sim-
ilarities over multiple instances of similar actions, correlate video observations with speech -
allowing discovery of what objects correspond to what vocal commands, or how ordering of
spoken commands corresponds to observed actions.

We propose that this is how the field shall advance, how true artificial cognitive agents can
be created; by allowing unsupervised learning on video data. With this in mind, we have at-
tempted to reduce video data from an incomprehensiblemess of discrete, disconnected pixels
into a graph of temporally continuous patches. Importantly, we have avoidedmaking “object”
decisions - something we believe must be determined through observations, and cannot be
encoded in rules on a set of features. By tracking patches, we have created a representation of
video which both structures and reduces the raw sensory input enough that it can be used for
learning while remaining flexible to unknown objects. Our methods, and the representation
they produce, give local structure as well as temporal continuity at the lowest-level of visual
perception - establishing the structure on which one can build high-level understanding.

74

Bibliography

[1] V. Ablavsky, A.Thangali, and S. Sclaroff. Layered graphicalmodels for tracking partially-
occluded objects. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2008.

[2] A. Abramov, K. Pauwels, J. Papon, F.Worgotter, and B. Dellen. Real-time segmentation
of stereo videos on a portable system with a mobile gpu. Circuits and Systems for Video
Technology, IEEE Transactions on, Sept 2012.

[3] A. Abramov, K. Pauwels, J. Papon, F. Worgotter, and B. Dellen. Depth-supported real-
time video segmentation with the kinect. In Applications of Computer Vision (WACV),
2012 IEEEWorkshop on, Jan 2012.

[4] Alexey Abramov, Eren Erdal Aksoy, Johannes Dörr, Florentin Wörgötter, Karl Pauwels,
and Babette Dellen. 3d semantic representation of actions from efficient stereo-image-
sequence segmentation on gpus. In International Symposium 3DData Processing, Visual-
ization and Transmission, 2010.

[5] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk. Slic superpixels
compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Machine
Intell., 34(11):2274 –2282, nov. 2012. ISSN 0162-8828. doi: 10.1109/TPAMI.2012.
120.

[6] A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-based tracking using the inte-
gral histogram. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2006.

[7] N. Ahuja and S. Todorovic. Connected segmentation tree; a joint representation of re-
gion layout and hierarchy. In CVPR, pages 1–8, 2008.

[8] E. E. Aksoy, A. Abramov, F. Wörgötter, and B. Dellen. Categorizing object-action rela-
tions from semantic scene graphs. In ICRA, pages 398–405, may 2010.

[9] E. E. Aksoy, A. Abramov, J. Dörr, K. Ning, B. Dellen, and F. Wörgötter. Learning the
semantics of object-action relations by observation. The International Journal of Robotics
Research, 30(10):1229–1249, 2011.

[10] E. E. Aksoy, A. Abramov, J. Dörr, K. Ning, B. Dellen, and F. Wörgötter. Learning the
semantics of object-action relations by observation. The International Journal of Robotics
Research, 30(10):1229–1249, 2011.

[11] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical
image segmentation. IEEE Trans. PAMI, 33(5):898–916, 2011.

75

[12] P. Arbelaez, B. Hariharan, Chunhui Gu, S. Gupta, L. Bourdev, and J. Malik. Semantic
segmentation using regions and parts. In CVPR, pages 3378–3385, 2012.

[13] B. Argall, S. Chernova, M.M. Veloso, and B. Browning. A survey of robot learning from
demonstration. Robots and Auton. Sys., 57(5):469–483, 2009.

[14] B. Babenko,Ming-Hsuan Yang, and S. Belongie. Visual tracking with onlinemultiple in-
stance learning. In IEEEConference onComputer Vision and Pattern Recognition (CVPR),
2009.

[15] A. Barla, F. Odone, and A. Verri. Histogram intersection kernel for image classification.
In Image Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference on, pages
III – 513–16 vol.2, sept. 2003. doi: 10.1109/ICIP.2003.1247294.

[16] A.Billard, S.Calinon, R.Dillmann, andS. Schaal. Survey: Robot Programming byDemon-
stration. MIT Press, 2008.

[17] M. Blatt, S. Wiseman, and E. Domany. Superparamagnetic clustering of data. Physical
Review Letters, 76(18):3251–3254, 1996.

[18] L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3D human pose
annotations. In ICCV, pages 1365–1372, 2009.

[19] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph
cuts. IEEE Trans. Pattern Anal. Machine Intell., 23(11):1222–1239, Nov 2001. ISSN
0162-8828. doi: 10.1109/34.969114.

[20] M.D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. Van Gool. Online mul-
tiperson tracking-by-detection from a single, uncalibrated camera. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 33(9):1820–1833, Sept 2011.

[21] W. Brendel and S. Todorovic. Video object segmentation by tracking regions. In IEEE
International Conference on Computer Vision (ICCV), 2009.

[22] AndersGlent Buch, YangYang,NorbertKrüger, andHenrikGordonPetersen. In search
of inliers: 3d correspondence by local and global voting. InComputer Vision and Pattern
Recognition (CVPR), 2014 IEEE Conference on, June 2014.

[23] D Alex Butler, Shahram Izadi, Otmar Hilliges, David Molyneaux, Steve Hodges, and
David Kim. Shake’n’sense: reducing interference for overlapping structured light depth
cameras. In Proceedings of the 2012 ACMannual conference onHuman Factors in Comput-
ing Systems, pages 1933–1936. ACM, 2012.

[24] Yizheng Cai, Nando Freitas, and JamesJ. Little. Robust visual tracking for multiple tar-
gets. In Aleš Leonardis, Horst Bischof, and Axel Pinz, editors,Computer Vision – ECCV
2006, volume 3954 of Lecture Notes in Computer Science, pages 107–118. Springer Berlin
Heidelberg, 2006. doi: 10.1007/11744085_9.

[25] DmitryChetverikov, Dmitry Stepanov, and Pavel Krsek. Robust euclidean alignment of
3dpoint sets: the trimmed iterative closest point algorithm. Image andVisionComputing,
23(3):299 – 309, 2005. ISSN 0262-8856. doi: 10.1016/j.imavis.2004.05.007.

76

[26] ChanghyunChoi andH.I.Christensen. Rgb-dobject tracking: Aparticle filter approach
ongpu. In IntelligentRobots andSystems (IROS), 2013 IEEE/RSJ InternationalConference
on, Nov 2013. doi: 10.1109/IROS.2013.6696485.

[27] K Collins, AJ Palmer, and K Rathmill. The development of a european benchmark
for the comparison of assembly robot programming systems. In Proceedings of the 1st
Robotics Europe Conference, Brussels, pages 27–28, 1984.

[28] K. Collins, A. J. Palmer, and K. Rathmill. The development of a European benchmark
for the comparison of assembly robot programming systems. In Robot technology and
applications (Robotics Europe Conference), pages 187–199, 1985.

[29] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking of non-rigid objects using
mean shift. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2000.

[30] Arnaud Doucet, Nando De Freitas, and Neil Gordon, editors. Sequential Monte Carlo
methods in practice. 2001.

[31] P.F. Felzenszwalb, R.B. Girshick, D. McAllester, and D. Ramanan. Object detection
with discriminatively trained part-basedmodels. IEEETrans. PAMI, 32(9):1627–1645,
2010.

[32] T.E. Fortmann, Y. Bar-Shalom, and M. Scheffe. Multi-target tracking using joint prob-
abilistic data association. In Decision and Control including the Symposium on Adaptive
Processes, 1980 19th IEEE Conference on, volume 19, pages 807–812, Dec 1980.

[33] Thomas E. Fortmann, Y. Bar-Shalom, andM. Scheffe. Sonar tracking of multiple targets
using joint probabilistic data association. Oceanic Engineering, IEEE Journal of, 8(3):
173–184, Jul 1983.

[34] Fabio Galasso, Naveen Shankar Nagaraja, Tatiana Jiménez Cárdenas,Thomas Brox, and
Bernt Schiele. A unified video segmentation benchmark: Annotation, metrics and anal-
ysis. In Computer Vision (ICCV), 2013 IEEE International Conference on, 2013.

[35] T. Gautama and M. Van Hulle. A phase-based approach to the estimation of the optical
flowfieldusing spatial filtering. IEEETransactions onNeuralNetworks, pages 1127–1136,
2002.

[36] N.J. Gordon, D.J. Salmond, and A F M Smith. Novel approach to nonlinear/non-
gaussian bayesian state estimation. Radar and Signal Processing, IEE Proceedings F, 140
(2):107–113, Apr 1993. ISSN 0956-375X.

[37] SaurabhGupta, Pablo Arbelaez, and JitendraMalik. Perceptual organization and recog-
nition of indoor scenes from RGB-D images. In CVPR, pages 564–571, 2013.

[38] F.Hecht, P. Azad, T.Asfour, andR.Dillmann. Markerless humanmotion trackingwith a
flexible model and appearance learning. InRobotics and Automation (ICRA), 2009 IEEE
International Conference on, 2009.

[39] V. Hedau, H. Arora, and N. Ahuja. Matching images under unstable segmentations. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), june 2008.

77

[40] C. Hue, J.-P. Le Cadre, and P. Perez. Tracking multiple objects with particle filtering.
IEEE Transactions on Aerospace and Electronic Systems, 38(3):791 – 812, jul 2002.

[41] A. Ijspeert, J. Nakanishi, P Pastor, H. Hoffmann, and S. Schaal. Dynamical movement
primitives: learning attractor models formotor behaviors. Neural Comput., (25):328–
373, 2013.

[42] J. A. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitationwith nonlinear dynamical
systems in humanoid robots. In Robotics and Automation (ICRA), 2002 IEEE Interna-
tional Conference on, pages 1398–1403, 2002.

[43] Hossam Isack and Yuri Boykov. Energy-based geometric multi-model fitting. In-
ternational Journal of Computer Vision, 97:123–147, 2012. ISSN 0920-5691. doi:
10.1007/s11263-011-0474-7.

[44] Michael Isard and Andrew Blake. Condensation—conditional density propagation for
visual tracking. International Journal of Computer Vision, 29(1):5–28, 1998.

[45] Eric R Kandel, James H Schwartz, Thomas M Jessell, et al. Principles of neural science,
volume 4. McGraw-Hill New York, 2000.

[46] Zia Khan, T. Balch, and F. Dellaert. Mcmc-based particle filtering for tracking a variable
number of interacting targets. Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 27(11):1805–1819, Nov 2005.

[47] Kourosh Khoshelham and Sander Oude Elberink. Accuracy and resolution of kinect
depth data for indoor mapping applications. Sensors, 12(2):1437–1454, 2012. ISSN
1424-8220. doi: 10.3390/s120201437.

[48] SeongyongKoo,Dongheui Lee, andDong-SooKwon. Multiple object tracking using an
rgb-d camera by hierarchical spatiotemporal data association. In Intelligent Robots and
Systems (IROS), 2013 IEEE/RSJ International Conference on, Nov 2013. doi: 10.1109/
IROS.2013.6696489.

[49] J.J. Kuffner. Effective sampling and distance metrics for 3d rigid body path planning.
In Robotics and Automation (ICRA) 2004. IEEE International Conference on, April 2004.
doi: 10.1109/ROBOT.2004.1308895.

[50] Kuka Robot Systems. URL http://www.kuka-robotics.com.

[51] T. Kulvicius, K. J. Ning, M. Tamosiunaite, and F. Wörgötter. Joining movement se-
quences: Modified dynamicmovement primitives for robotics applications exemplified
on handwriting. IEEE Trans. Robot., 28(1):145–157, 2012.

[52] O. Lanz. Approximate bayesian multibody tracking. Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on, 28(9):1436–1449, Sept 2006.

[53] Anat Levin, Dani Lischinski, and Yair Weiss. Colorization using optimization. ACM
Trans. Graph., 23(3):689–694, 2004. ISSN 0730-0301. doi: 10.1145/1015706.
1015780.

[54] A. Levinshtein, A. Stere, K.N. Kutulakos, D.J. Fleet, S.J. Dickinson, and K. Siddiqi. Tur-
bopixels: Fast superpixels using geometric flows. IEEE Trans. Pattern Anal. Machine In-
tell., 31(12):2290 –2297, dec. 2009. ISSN 0162-8828. doi: 10.1109/TPAMI.2009.96.

78

http://www.kuka-robotics.com

[55] Siying Liu, Guo Dong, Chye Hwang Yan, and Sim Heng Ong. Video segmentation:
Propagation, validation and aggregation of a preceding graph. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2008.

[56] D. Marr and S. Ullman. Directional selectivity and its use in early visual processing.
Proceedings of the Royal Society of London. Series B. Biological Sciences, 211(1183):151–
180, 1981. doi: 10.1098/rspb.1981.0001.

[57] DennisMitzel and Bastian Leibe. Takingmobile multi-object tracking to the next level:
People, unknown objects, and carried items. In Computer Vision – ECCV 2012, volume
7576 of Lecture Notes in Computer Science, pages 566–579. Springer Berlin Heidelberg,
2012. ISBN 978-3-642-33714-7.

[58] N. Papadakis and A. Bugeau. Tracking with occlusions via graph cuts. IEEE Trans.
Pattern Anal. Machine Intell., 33(1):144 –157, Jan. 2011.

[59] Jeremie Papon and Florentin Wörgötter. Spatially stratified correspondence sampling
for real-time point cloud tracking. In Applications of Computer Vision (WACV), 2015
IEEE Conference on (SUBMITTED), jan. 2015.

[60] Jeremie Papon, Alexey Abramov, Eren Aksoy, and Florentin Wörgötter. A modular sys-
tem architecture for online parallel vision pipelines. In Applications of Computer Vision
(WACV), 2012 IEEEWorkshop on, jan. 2012.

[61] Jeremie Papon, Alexey Abramov, and FlorentinWörgötter. Occlusion handling in video
segmentation via predictive feedback. InComputer Vision – ECCV 2012.Workshops and
Demonstrations. 2012.

[62] Jeremie Papon, Alexey Abramov, Markus Schoeler, and Florentin Wörgötter. Voxel
cloud connectivity segmentation - supervoxels for point clouds. InComputer Vision and
Pattern Recognition (CVPR), 2013 IEEE Conference on, june 2013.

[63] Jeremie Papon, Tomas Kulvicius, Eren Erdal Aksoy, and Florentin Wörgötter. Point
cloud video object segmentation using a persistent supervoxel world-model. In Intelli-
gent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, 2013.

[64] Sylvain Paris. Edge-preserving smoothing and mean-shift segmentation of video
streams. In David Forsyth, Philip Torr, and Andrew Zisserman, editors, European Con-
ference on Computer Vision (ECCV), volume 5303 of Lecture Notes in Computer Science,
pages 460–473. Springer Berlin / Heidelberg, 2008.

[65] Karl Pauwels, Norbert Krüger, Markus Lappe, Florentin Wörgötter, and Marc M.
Van Hulle. A cortical architecture on parallel hardware for motion processing in real
time. Journal of Vision, 10(10), 2010. doi: 10.1167/10.10.18.

[66] J. Piaget and B. Inhelder. The child’s conception of space. W.W. Norton, New York, 1967.

[67] S Pinker. The Language Instinct. Harper Perennial Modern Classics, New York, 1994.

[68] Steven Pinker and Stephen M Kosslyn. The representation and manipulation of three-
dimensional space in mental images. Journal of Mental Imagery, 2(1):69–84, 1978.

79

[69] P. Pérez, C. Hue, J. Vermaak, and M. Gangnet. Color-based probabilistic tracking. In
Anders Heyden, Gunnar Sparr, Mads Nielsen, and Peter Johansen, editors, European
Conference on Computer Vision (ECCV), volume 2350 of Lecture Notes in Computer Sci-
ence, pages 661–675. Springer Berlin / Heidelberg, 2002.

[70] D.B. Reid. An algorithm for tracking multiple targets. Automatic Control, IEEE Transac-
tions on, 24(6):843–854, Dec 1979.

[71] Xiaofeng Ren and J. Malik. Learning a classification model for segmentation. In ICCV,
pages 10–17 vol.1, 2003.

[72] Andreas Richtsfeld, Thomas Morwald, Johann Prankl, Michael Zillich, and Markus
Vincze. Segmentation of unknown objects in indoor environments. In IROS, pages
4791–4796, 2012. ISBN 978-1-4673-1737-5.

[73] Jürgen Rossmann, Nils Wantia, Eren Erdal Aksoy, Simon Haller, and Justus Piater. Ac-
tive learning ofmanipulation sequences. InRobotics andAutomation (ICRA)2014. IEEE
International Conference on, 2014.

[74] R.B. Rusu, N. Blodow, and M. Beetz. Fast point feature histograms (fpfh) for 3d regis-
tration. In Robotics and Automation, 2009. ICRA ’09. IEEE International Conference on,
pages 3212–3217, May 2009.

[75] A. Saffari, C. Leistner, J. Santner, M. Godec, andH. Bischof. On-line random forests. In
IEEE International Conference on Computer Vision Workshops (ICCVWorkshops), 2009.

[76] J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof. Prost: Parallel robust online
simple tracking. In IEEEConference onComputer Vision andPatternRecognition (CVPR),
2010.

[77] D. Schulz, W. Burgard, D. Fox, and A.B. Cremers. Tracking multiple moving targets
with a mobile robot using particle filters and statistical data association. In Robotics and
Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, volume 2,
pages 1665–1670 vol.2, 2001.

[78] ShinsukeShimojo,GeraldHSilverman, andKenNakayama. Occlusion and the solution
to the aperture problem for motion. Vision research, 29(5):619–626, 1989.

[79] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmenta-
tion and support inference from RGBD images. In ECCV, pages 746–760, 2012.

[80] Jan Smisek, Michal Jancosek, and Tomás Pajdla. 3D with kinect. In ICCV Workshops,
pages 1154–1160, 2011. ISBN 978-1-4673-0062-9.

[81] Miquel F. Sumsi. Theory andAlgorithms on theMedianGraph. Application toGraph-based
Classification and Clustering. PhD thesis, Universitat Autonoma de Barcelona, 2008.

[82] André Ückermann, Robert Haschke, and Helge Ritter. Real-time 3D segmentation of
cluttered scenes for robot grasping. InHumanoids, 2012.

80

[83] Amelio Vazquez-Reina, Shai Avidan, Hanspeter Pfister, and Eric Miller. Multiple hy-
pothesis video segmentation from superpixel flows. In Kostas Daniilidis, Petros Mara-
gos, and Nikos Paragios, editors, European Conference on Computer Vision (ECCV), vol-
ume 6315 of Lecture Notes in Computer Science, pages 268–281. Springer Berlin / Hei-
delberg, 2010.

[84] OlgaVeksler, Yuri Boykov, and PariaMehrani. Superpixels and supervoxels in an energy
optimization framework. In Proceedings of the 11th European conference on Computer
vision: Part V, ECCV 10, pages 211–224, Berlin, Heidelberg, 2010. Springer-Verlag.

[85] J. Vermaak, Arnaud Doucet, and P. Perez. Maintaining multimodality through mixture
tracking. In Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on,
pages 1110–1116 vol.2, Oct 2003.

[86] J. Vermaak, S.J. Godsill, and P. Perez. Monte carlo filtering for multi target tracking and
data association. IEEE Transactions on Aerospace and Electronic Systems, 41(1):309 –
332, jan. 2005.

[87] Paul Viola and MichaelJ. Jones. Robust real-time face detection. IJCV, 57(2):137–154,
2004. ISSN 0920-5691.

[88] B.-N. Vo, S. Singh, and A. Doucet. Sequential monte carlo methods for multitarget fil-
teringwith randomfinite sets. IEEETransactions on Aerospace and Electronic Systems,, 41
(4):1224 – 1245, oct. 2005.

[89] D. Weikersdorfer, D. Gossow, and M. Beetz. Depth-adaptive superpixels. In Pattern
Recognition (ICPR), 2012 21st International Conference on, pages 2087–2090, 2012.

[90] Bo Wu and Ram Nevatia. Detection and tracking of multiple, partially occluded hu-
mans by bayesian combination of edgelet based part detectors. International Journal of
Computer Vision, 75(2):247–266, 2007. ISSN 0920-5691.

81

Appendices

83

A
TheOculus Vision System

A.1 Motivation

There is great interest in development of complex vision systems for robotic vision applica-
tions. Such research has strict requirements; these systems must operate in real-time, using
input from multiple sources, and typically consist of multiple algorithms which work in con-
cert to produce useful output withminimal delay. Consequently, the architecturewhich binds
algorithms and input sources together has become an increasingly important factor. In this
Appendix we shall present a vision architecture we developed over the course of the thesis
workwhich usesmodular plugins, a novel buffering scheme, andGPUmemory optimizations
to allow real-time performance of an online vision system, even with complex pipelines and
algorithms developed by independent researchers.

A primary concern when developing such complex vision systems lies in how to properly
integrate algorithms developed by different researchers, often frommultiple institutions. Typ-
ically, computer vision researchers develop solutions tailor-made for their particular problem,
without concern over the difficulties involved in integrating their particular algorithm into a
large system. To ease this integration process, we provided a plugin interface. The plugin sys-
tem allows independently developed algorithms to communicate with the architecture’s cen-
tral memory management system, interact with the GUI, define their own unique data types,
and integrate into systems with plugins developed by other researchers.

Another motivation for developing a vision architecture is the desire to enable the use of
complex algorithmic layouts in an online system. In particular, interest in creating loops that

85

allow high level algorithms (i.e. which come late in the pipeline) to feedback and improve the
output of low level vision methods. Traditional online vision pipeline architectures cannot
accommodate such loops in an adequate way, as at any given moment each portion of the
pipeline is processing data from different instants in time.

Existent vision system architectures also do not support the use of GPUs in a fully inte-
grated way, leading to inefficient use of the device and communication with device memory.
The presented method incorporates specially designed GPU data-containers to ensure opti-
mal PCI-bus use through a pre-caching scheme and concurrentmemory transfers. In addition
to these, extensibility is ensured throughan interfacewhich allowsuser-defineddata-container
handling, allowingplugindevelopers to explicitly definehow thememorymanager shares data
between the host and device. In this Appendix we will present an overview of our system, de-
scribe a typical systemconfigurationused for robotics, and thengive performancefigures from
a demonstration setup.

A.2 System Architecture

Our vision system is a plugin shell which provides an easy-to-use API for interacting with the
GUI,memorymanagement system, andvisualization components. Inorder to ensure expand-
ability, such a system must provide straightforward communication and interaction between
plugins created independently, while employing strong-typing checks to ensure only valid plu-
gins may be inter-connected. In addition, it must ensure that plugins have the flexibility to
define their own methods for visualization. Finally, the system must ensure that each plugin
is self-contained, and executes within its own thread (or threads). This is especially impor-
tant for fast execution on modern processors, where the number of cores can match, or even
exceed, the number of plugins one is running.

In the next subsections, we shall describe how our architecture accomplishes these goals
while requiring as little computational and communication overhead as possible. Small over-
head is especially important in the case of real time video processing, where relatively large
images must be processed at fast frame rates.

A.2.1 Execution Flow

At its core, the architecture provides a shell which consists of aGUI for loading plugins and vi-
sualizingdata, a system for storingpluginoutput tofile, and abuffering/memory-management
system for handling data. This functionality is contained in theMainThread andMemoryMan-
ager Thread shown in Figure A.2.1. Users build their system by adding plugins, configuring
their options via the GUI, and then connecting the plugins to each-other. The user can also
save/load a fully configured system as an XML file. Once a vision system has been built, the
user can control execution using the frame rate module, which controls the firing rate of the
system clock.

86

As the whole system runs asynchronously in independent threads, the clock trigger acts as
the initial starting point for each frame. This means that any source plugins, such as a stereo
camera rig or a video file reader plugin, must connect to the frame rate module. As a trigger
arrives at each plugin, a triggering signal is sent to the memory manager, telling it to gener-
ate aDataContainer for the plugin’s output. The plugin is then triggered, causing it to execute
its processing functionality and generate output, which it stores in the location assigned to it
by the memory manager. The plugin then generates another triggering signal, which is con-
nected to both the memory manager and whatever ensuing plugins use the output as their
input. When a plugin has multiple inputs, it will loop inside its execution thread, waiting un-
til all inputs for a frame have arrived before executing. This is accomplished by each thread
having its own input queue map; it is important to note though, that these queues contain no
actual data (and thus minimal overhead), and merely serve as a message passing system. The
signaling and triggering system employs the open-sourceQt signal & slot architecture. In par-
ticular, the system makes use of Qt’s ability to queue signals for execution as they arrive at a
thread.

A.2.2 Plugin Development and Interaction

The functionality of the system is provided primarily via plugins. A plugin consists of a shared
library which is loaded dynamically at run-time. The system is based on the low-level Qt plu-
gin API, which facilitates development and ensures compatibility across different platforms.
Plugins inherit from a pure abstract interface class which defines a protocol for communicat-
ing with the core application. This permits plugins to define input and output types and pass
messages to/from the GUI and memory manager.

Developers are required to implement a processData function, which receives input and
writes to an outputDataContainer. Thedeveloper can optionally create any number ofGUI el-
ements (e.g. sliders, buttons) using the interface functions. Plugins specify how many inputs
they require, and give the possible types for these inputs. Communication between plugins
is accomplished through a standardized data container interface. The core architecture con-
tains commonly used data container implementations, such as StereoImageContainer. Plugins
may define their own specialized data containers which are loaded at runtime with the plugin.
For example, the Segmentation plugin has its own container type SegmentationData, which
contains a list of labeled segments, metadata about the segments, and labeled images. The
standardized data container interface allows for any plugin to refer to a new container class
without actual knowledge of the container itself other then the string identifiers of its mem-
bers (e.g. ”Segment Labels”). Correct handling of access to these members is accomplished
through dynamic dispatch using the virtual lookup table. This ensures that a plugin written
by one researcher can be easily used as input to another’s, as long as they know the proper
identifiers and underlying formatting of the data.

87

Figure A.2.1: Overview of the system architecture and demonstration system output for four
frames. The colums show output from the different components; from left to right, Kinect image
and depth (in mm), optical flow, and graphs overlaid on segmentation plugin output. This type of
output can be seen live in any number of visualization windows within the GUI.

88

A.2.3 Visualization

During the development and use of a vision system, it is of utmost importance to be able to
visualize what is occurring at every stage of the system pipeline. As such, our system allows
users to create any number of visualization windows which can select any plugin to display
(andwhich part of the plugin’s output to display, e.g. left or right image). If a developer creates
their own data container for a plugin, they can define a special visualization callback function
as part of this container. The system will automatically detect this callback when the plugin is
loaded, and use it for visualizing the plugin’s output. Developers can specifymultiplemethods
for visualizing the plugin; the GUI for visualization will allow selection of which to display.

Visualization windows read directly from the global buffer, and as such have a small mem-
ory overhead. Additionally, visualization runs in the GUI thread, rather than in any of the
plugin threads. If a plugin slows down the system, visualization (and the GUI) will remain
responsive, allowing the user to troubleshoot. This also means that visualization that requires
computation, such as labeling an imagewith text or vector graphics, will have anegligible effect
on the actual frame throughput of the system. If visualization lags behind the system output,
frames are automatically skipped on an interval that allows visualization tomaintain synchro-
nization with the rest of the system. This is of particular importance in an online system, such
as our real-time robotic application, where visualization lagging behind processing can cause
confusion or even errors.

A.3 Memory Architecture

The memory management system has been designed to allow distributed development and
computing, complex system pipelines incorporating feedback loops, and efficient use of the
GPU as a computational resource. The following subsections will describe how these design
goals havebeenachievedby illustratingourGlobalBufferdesignandexplaininghow itmanages
GPU memory.

A.3.1 Global Buffer

Our global buffer concept was designed to overcome the limitations of standard online vision
pipelines. In a standard online pipeline a local buffering scheme is used; each algorithm has
an input buffer, where data accumulates while it is waiting to be processed. Such a setup is
adequate as long as the pipeline remains unidirectional, but complications arise in using feed-
back loops. Figure A.3.1 compares a standard pipeline with our global buffer; unlike a typical
buffering scheme, our global buffer maintains and manages all memory in a central location
(and separate thread). The global buffer is responsible for dynamic allocation of all data con-
tainers, maintaining reference counts, and determining when a frame can expire. Since the
global buffer is responsible for maintaining memory, plugins use a message passing system to

89

Figure A.3.1: A typical buffering scheme (top) and our buffer (bottom).

communicate. Plugins pass messages to each other to notify completion of a new frame, or to
trigger a feedback mechanism. They also use the message passing system to request that the
global buffer allocate a new data container for their output. When a developer creates a new
type of data container, they use a simple interface to pass the global buffer a function pointer
for creating an instance of their new data container type.

In order to fully understand the limitations of a standard buffering system, consider, for
instance, the system shown at the top of Figure A.3.2. If the feedback mechanism is triggered
for framen, pluginBmust return to framen in order tomodifyhow itwasprocessed. This is not
possible in the standard local buffer scheme, as that datawasdiscarded after itwasused as input
to B. One possible solution is to maintain another local buffer for each plugin which contains
data which has already been processed, but this quickly adds several degrees of complexity. In
particular, garbage collection becomes very difficult, and management of these buffers when
feedback does occur becomes unnecessarily convoluted.

Theglobal buffer solves this bymaintaining data in amore structuredway. When a feedback
mechanism is triggered for frame n the triggering plugin (D) sends amessage toB, causing it to
stop processingwhat it has scheduled, and revert to frame n. As frame n is still easily accessible
in theglobal buffer,B can simply senda request for thepointer(s) to the inputdata container(s)
it requires. The global buffer is guaranteed to still have the data for frame n, because D never
produced an output for frame n, so the global buffer has not marked frame n as complete.
Once B finishes processing frame n with its new feedback information, it will overwrite its
old output for frame n (shown in orange) and then simply continue on as it would normally,

90

Figure A.3.2: Feedback using a global buffer

processing frame n+1. The feedback corrected data will propagate down the pipeline, and any
datawhich is no longer valid (shown in red)will simply beoverwritten. Infinite feedback loops
are avoided by a preventing feedback from occurring more than once per plugin per frame.

A.3.2 GPU Memory Handling

While utilizing the massively-parallel GPU as a coprocessor has become increasingly com-
mon, how to integrate it effectively into an open vision architecture remains an open question.
Particularly vexing is how to integrate it seamlessly into the memory system of such an archi-
tecture, as the GPU has separate physical memory, which is entirely distinct in both location
and structure from that used by the CPU. Data streaming through the system must be trans-
ferred to the GPU for modules which use it, and then transferred back out for visualization
and used by modules later in the pipeline.

A naive implementation of this architecture would simply serialize the operations; when a
module needs to use the GPU, it copies data to device memory, executes a kernel, and then
copies the output back out to hostmemory. While this is still relatively efficient, it fails to fully
take advantage of the pipelined streaming architecture, since the memory transfer bandwidth
is idle while the kernel is executing. The architecture uses the streaming CUDAAPI to utilize
this spare bandwidth, allowing it to perform concurrent asynchronous memory transfer and
kernel execution.

As shown in Figure A.3.3, we utilize a pre-caching technique, whereby data for frame n+1
is transferred during the execution of frame n. When the kernel execution time is significantly
longer than the transfer time (B), memory transfer is completely hidden, even with unidirec-
tional memory. When kernel execution time is comparable to memory transfer time, only

91

Figure A.3.3: Streaming; Concurrent kernel execution

some of the transfer can be hidden (C), unless the hardware supports concurrent data trans-
fers¹ (D).

A.4 Demonstration System

This section presents a real-time demonstration system, consisting of six plugins. The demon-
stration system calculates dense disparity using a standard stereo camera setup (rather than
Kinect data) in order to show the flexibility of the architecture as well as highlight the speedup
achieved via multithreading. Switching from Kinect input to a stereo camera setup is simply
a matter of changing connections in the GUI. The pipeline described consists of plugins for
reading and rectifying stereo data, calculating optical flow[65], computing disparity[65], seg-
mentation and tracking[4], dense disparity estimation, and semantic graph and event chain
generation[8, 10]. This type of a system configuration is used to recognize and learn object
manipulation actions in a robotics context.

A.4.1 Image Acquisition

Video is acquired using a Firewire stereo camera rig. Triggering for image acquisition can be
controlled using either an external hardware trigger or the architecture’s software clock. Rec-
tification is performed on the GPU (there is a separate plugin for calibration using a standard
chessboard). Time from triggering to output of a rectified pair of stereo images is around10ms
at 1024x768.

¹Concurrent data transfers are supported under the Fermi architecture. Currently the Fermi Quadro and
Tesla series cards have two Direct memory access (DMA) engines, allowing them to perform host-to-device
and device-to-host operations simultaneously. The consumer Fermi cards (GTX 4xx, 5xx) only have a single
DMA engine, so concurrent transfers are disabled on them.

92

A.4.2 Disparity and Optical Flow

Optical flow is computed using the GPU implementation [65] of a phase-based algorithm
[35]. The algorithm tracks the temporal evolution of equi-phase contours by taking advantage
of phase constancy. Differentiation of the equi-phase contours with respect to time yields spa-
tial and temporal phase gradients. Optical flow is then computed by integrating the temporal
phase across orientation. Estimates are refined by traversing a Gabor pyramid from coarser to
fine levels. The plugin uses the five most recent frames to compute optical flow in the case of
online video, but can also use ”future” frames when working with recorded movies (this can
slightly improve the quality of output flow).

Sparse disparity maps are computed on the GPU using a technique similar to optical flow
[65]. Rather than use temporal phase gradients, the disparity algorithm relies on phase dif-
ferences between stereo-pair rectified images. As with the optical flow algorithm, results are
computed using a coarse to fine pyramid scheme.

A.4.3 Segmentation and Tracking

The segmentation and segment tracking plugin has two roles; first, it partitions the image into
labeled regions, as seen in the right-most column of Figure A.2.1, and second, it determines
correspondences between frames to maintain consistent labeling. The segmentation algo-
rithm is based on the work of Blatt et al. [17], which applies the Potts model in such a way
that superparamagnetic phase regions of aligned spins correspond to a natural partition of the
image data. Initial spins are assigned to pixels randomly, and then a Metropolis-Hastings al-
gorithm with annealing [4] is used to iteratively update the spins until an equilibrium state is
reached.

The Metropolis algorithm is implemented on the GPU[4], permitting real-time perfor-
mance. The algorithm itself lends itself to efficient implementation on a GPU, as interactions
are only computed locally (8 connected nearest-neighbors). Coupling interactions between
pixels are determined using average color vector difference (in the HSV space) of nearest-
neighbors. Additionally, when depth data is available, the algorithm prevents interactions be-
tween pixels if there is a significant difference in their depth values. This prevents coupling
across regions which have similar color but discontinuous depth.

In addition to segmentation, the plugin maintains consistent labels for objects from frame
to frame. This is accomplished by transferring spins between frames using output from an
optical-flow plugin [4]. As such, only the first frame is actually initialized at random; subse-
quent frames are initialized using a forward-propagated version of the previous frame’s equi-
librium spins. This has two advantages; the number of iterations needed to reach equilibrium
is greatly reduced since the spin distribution already approximates the final state, and the al-
gorithm naturally tracks objects since spins (and thus labels) are maintained over time.

93

Single Core

M
u
lt

i
C

o
re

Core 0

Core 1

Core 2

Core 3

0 10 20 30 40 50 60 70 80

Core 4

90 100 110 120 130 140 150 160 170 180 190

time (ms)
0

0

0

0

0

00000

1

1

1

1

1

2

2

2

2

2

3

3

3

11111

Frame Lag- 90ms Max Framerate 1/90ms (~11.1 fps)

Frame Lag- 92ms Max Framerate
1/48ms (~20.83 fps)

Stereo Capture
& Rectification

Optical Flow

Stereo Disparity

Segmentation
& Tracking

Graph &
Event Chain

Figure A.4.1: Timing results for demonstration system; plugins are color coded and contain frame
numbers. When run in single thread mode, short GPU operations such as optical flow are sig-
nificantly faster due to reduced overhead; this results in slightly lower (2ms) frame lag. The true
benefit of multi-threaded mode is the higher maximum frame-rate that can be achieved.

A.4.4 Semantic Graphs

The semantic graphs plugin constructs a symbolic 3D description of the scene from the seg-
mentation results and disparity maps. Segments are used to construct undirected and un-
weighted graphs (seen in the right-most column of Figure A.2.1; nodes are labeled with num-
bers and red lines are graph edges). Each segment is given a node and edges represent their
three dimensional touching relations. Graphs can change by continuous distortions (length-
ening or shortening of edges) or, more importantly, through discontinuous changes (nodes
or edges can appear or disappear). Such a discontinuous change represents a natural breaking
point: All graphs before are topologically identical and so are those after the breaking point.
Hence, we can apply an exact graph-matchingmethod [81] at each breaking point and extract
the corresponding topological main graphs. The sequence of these main graphs thus repre-
sents all structural changes (manipulation primitives) in the scene.

This typeof graph representation is then encodedby a semantic event chain (SEC),which is
a sequence-table; rows and columnsofwhich represent possible spatial relations between each
segment pair and manipulation primitive. This final output can be used to classify manipula-
tions and categorizemanipulated objects for use in a robotics or human-computer interaction
(HCI) setting[8, 10]. The primary advantage of this method is that actions can be analyzed
withoutmodels or a-priori representation; the dynamics of an action can be acquired without
needing to know the identities of the objects involved.

94

A.5 Results andDiscussion

Testing was performed to compare single threaded with multi-threaded operation mode and
to detect the impact of visualization onprocessing speed. Testingwas performedon an Intel i7
(3.33Ghz, 8 execution threads) system with an NVIDIA GTX 295 GPU. The demonstration
setup depicted at the top of Figure A.4.1 was used for all tests. To determine if visualization
had a negative impact, the tests were run with and without a visualization windows for each
component, showing live views of their outputs. Timing measurements for plugins are the
mean execution time per frame of a 1000 frame (640x480) stereo video sequence (frames of
which are shown in Figure A.2.1), averaged over 10 runs. The code for the single and multi-
threaded versions is identical with the exception of themovement of plugin objects to separate
threads.

Wemeasure performance by analyzing two key attributes of a pipelined vision real-time vi-
sion system. First, in terms of frame lag, that is time from frame acquisition to final output,
multi-threaded mode is slightly slower than single-threaded. As shown in Figure A.4.1, this
is due to relatively fast plugins which use the GPU (disparity and optical flow in this case).
This can be attributed to the static overhead cost incurred by switching between threads while
using the CUDA run-time API. The switching is relatively expensive for short GPU opera-
tions as it forces the CUDAdriver to create and destroy GPU contexts²This could be avoided
by the addition of an additional GPU; in our demonstration system the driver is forced to
change contexts as there are three threads (flow, disparity, segmentation) attempting to use
two GPUs. Additionally, the architecture will soon be brought to the newest CUDA release,
which allows context sharing between threads. It should also be noted that at higher resolu-
tions multi-threaded mode overtakes single-threaded, as the overhead cost of context switch-
ing is outweighed by the gain from computing optical flow and disparity in parallel.

The second measure of performance, throughput, or maximum frame rate, shows a signifi-
cant speedup inmulti-threadedmode, almost doubling from 11.1 (stereo)fps to 20.83. While
significant, the speedup is not equal to the number of execution threads used by the demon-
stration setup (six; one for each plugin and one for the GUI & memory manager). This less-
than-optimal gain can be attributed to the fact that the demonstration system had one com-
ponent, segmentation & tracking, which was significantly slower then the rest. As seen in
Figure A.4.1, the entire system throughput is limited by the rate at which the segmentation
plugin produces output.

As seen in FigureA.5.1, the addition of visualization components has a small impact on per-
formance. This delay was most noticeable for the shorter components, disparity and optical
flow, but never exceeded 2ms. Fortunately, this additional time does not affect throughput in
multi-threaded mode, as it is hidden by the length of the longest component. The times with

²GPU contexts are analogous to CPU processes, and each have their own distinct address space. Each
thread may only have one context active at a time, and contexts may not share threads.

95

Figure A.5.1: Visualization has a slight impact on performance, but the effect is negligible in
multi-threaded mode where the slight increases in processing time are hidden in the length of the
longest component (in this case, segmentation).

visualization were used for Figure A.4.1; clearly shortening the time of any component other
than segmentation will have a negligible effect on performance. While the increase does not
affect throughput, it has a slight effect on frame lag. Frame lag is less important than through-
put for our research, but it should be noted that in certain cases, such as when quick reactions
are required, frame lag may be an important performance measure.

A.6 Conclusion

Building a self-contained, efficient, and complete vision system acts as a significant barrier to
entry for those wishing to develop and test new vision algorithms. We have presented a mod-
ular plugin environment, designed specifically for expandability and parallel architectures,
which facilitates rapid distributed development of vision pipelines. Our plugin system allows
simple collaboration between organizations, allowing developers to share algorithms easily,
and without forcing them to share code. The architecture permits streaming use of the GPU
as a coprocessor, efficient visualization of algorithm outputs, and the ability to use complex
pipelines involving feedbackmechanisms. The system architecture has been released released
under an open-source GPL license³.

³https://launchpad.net/oculus

96

https://launchpad.net/oculus

B
Sequential Bayesian Estimation

Sequential Bayesian estimation refers to a class of approaches for estimating a varying un-
knownprobabilitydensity function froma time seriesofnoisyobservations. These approaches
use a state space representation, in which a state vector xt describes the hidden state of a dy-
namic system. The goal is to estimate the posterior distribution of the state given all prior
observations z, i.e., p(xt|z1:t). This is accomplished using a two step recursion which first gen-
erates a hypothesis of the current state conditioned on the previous state and then performs a
Bayes update using the new observation. These steps are known as the prediction and filtering
steps, respectively.

The prediction step estimates the current distribution given all prior observations, or

p(xt|z1:t−1) =

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1. (B.1)

This requires the specification of a stochastic dynamicmodel to characterize the state transition
density p(xt|xt−1):

xt = ft(xt−1, vt), (B.2)

where vt is the process noise. The dynamicmodel takes advantage of knowledge of the system
to generate reliable predictions of how the state evolves independent of observations.

The filtering step uses Bayes rule to update the predicted density by conditioning it on the
new observation zt:

p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)

p(zt|z1:t−1)
. (B.3)

97

This requires the specification of ameasurement model to characterize the observation density
p(zt|xt):

zt = ht(xt,wt), (B.4)

where wt is the measurement noise. The marginal likelihood p(zt|z1:t−1) is constant relative
to the state, and is generally ignored in practice and replaced with a simple normalizing factor.

Once the filtered, or posterior distribution is determined, an estimate of the state can be
made using a variety of techniques (e.g., MAP, mean-shift).

B.1 Particle Filters

Unfortunately, except for in special cases (such as the linear Gaussian case with the Kalman
filter) determining an exact solution for the posterior distribution is not feasible. As such, Par-
ticle Filter techniques were developed to approximate the posterior distribution. They use se-
quentialMonte Carlo to directly implement the Bayesian recursion equations on a set of sam-
ples. The most common Particle Filter algorithm is Sequential Importance Sampling (SIS)
recursively updates a set ofN samples (particles) from the previous time step {xjt−1,w

j
t−1} in

a two-step procedure:

1. Predict: Apply the dynamicmodel to find an estimate of the new state for each particle,
x̃1..Nt . That is, draw samples from the state transition prior distribution p(xt|xt−1).

2. Update: Evaluate the weight for each particle using the observation density: w̃j
t =

p(zt|x̃t) and then normalize.

The set of weighted particles {xjt,w
j
t} then approximates the posterior distribution, and an

overall state estimate can be found using any appropriate method.

B.1.1 Resampling

An important issue with SIS is that for any finite number of particles the weights will tend to
degenerate to the trivial set where all particles have weight zero except for one. This results in
the observations having no effect on the particle trajectories, meaning the filter amounts to a
random walk using the dynamic model. To avoid this problem, a resampling step was added
[36]which generates a newparticle set by sampling from the existing particle set. The simplest
way of doing this is to simply sample from themultinomial distribution of the particle weights
and then set all particle weights to 1/N. While thismultinomial resampling can be effective if
employed judiciously, it can also lead to other problems, namely an increasing variance of the
posterior distribution. To overcome this a variety of low-variance resampling techniques have
been developed; we refer the reader to [30] for a description of different approaches.

98

Department of Computational Neuroscience
Georg-August-Universität

Dries Physikalisches Institut
Friedrich-Hund-Platz

 Göingen

Phone: +
jpapon@gmail.com

http://www.jeremiepapon.com/

Experience Georg-August-Universität Göingen

–Present. Research Assistant - Department of Computational Neuroscience.
Developed D segmentation and tracking algorithms for streaming point-cloud data (mul-

tithreaded and on GPU).
Implemented a full ROS setup for monitoring and controlling a robot in assembly tasks as

part of the IntellAct Project. System Demo: hp://youtu.be/kBrlvUDg.
Worked extensively with and regularly contributed to the Point Cloud Library.
Created Oculus, a real-time parallel vision system with GUI.
esis: Perceptual Segmentation of Visual Streams by Tracking of Objects and Parts

Optimal Synthesis, Inc.
-. Research Engineer - Digital Signal Processing.

Developed image processing algorithms for recognition of poor quality hand-wrien Urdu
documents using Sphinx-.

Created a GPU (CUDA) particle filter for trajectory reconstruction and smoothing of air-
cra flight data.

Stanford University
–. Research Assistant - Stanford Very Low Frequency (VLF) Group.

Studied plasma-wave interactions in the Earth’s ionosphere and radiation belts.
Data-mined ten years of VLF data from Siple Station, Antarctica.
Developed theory for generation of free-running electromagnetic triggered emissions in

the upper magnetosphere.

Education Georg-August-Universität Göingen

-Present. Expected Graduation October, (Ph.D Computer Science).

Stanford University

. M.S., Electrical Engineering.

United States Naval Academy

. B.S., Electrical Engineering. (with Distinction.)

Publications Peer-Reviewed Conference

Papon, J.; Wörgöer, F., “Spatially Stratified Correspondence Sampling for Real-Time
Point Cloud Tracking,” Applications of Computer Vision (WACV), IEEE In-
ternational Conference on, Jan. .

http://www.dpi.physik.uni-goettingen.de/cns/
mailto:jpapon@gmail.com
http://www.jeremiepapon.com/
http://youtu.be/3kBr2lvUD1g

Papon, J.; Kulvicius, T.; Aksoy, E.; Wörgöer, F., “Point Cloud Video Object Seg-
mentation using a Persistent Supervoxel World-Model,” Intelligent Robots and
Systems (IROS), IEEE/RSJ International Conference on, Nov. .

Papon, J.; Abramov, A.; Schoeler, M.; Wörgöer, F., “Voxel Cloud Connectivity Seg-
mentation - Supervoxels for Point Clouds,” Computer Vision and Paern Recog-
nition (CVPR) , June .

Papon, J.; Abramov, A.; Wörgöer, F., “Occlusion Handling in Video Segmentation
via Predictive Feedback,” European Conference on Computer Vision (ECCV) .
Workshops and Demonstrations, Lecture Notes in Computer Science Volume
, , pp -.

Papon, J.; Abramov, A.; Aksoy, E.; Wörgöer, F., “A modular system architecture for
online parallel vision pipelines,” Applications of Computer Vision (WACV) ,
pp.-, Jan. .

Stein, S.; Schoeler, M.; Papon, J.; Wörgöer, F., “Object Partitioning using Local Con-
vexity,” Computer Vision and Paern Recognition (CVPR) , June .

Stein, S.; Wörgöer, F.; Schoeler, M.; Papon, J.; Kulvicius, T., “Convexity Based Ob-
ject Partitioning For Robot Applications,” Robotics and Automation (ICRA),
IEEE/RSJ International Conference on, June .

Schoeler, M.; Stein, S.; Papon, J.; Abramov, A.; Wörgöer, F., “Fast self-supervised on-
line training for object recognition specifically for robotic applications,” Inter-
national Conference on Computer Vision eory and Applications (VISAPP) ,
March .

Journal articles

Schlee, C.; Buch, A.; Aksoy, E.; Steil, T.; Papon, J.; Savarimuthu, T.R.; Wörgöer, F.;
Krüger, N.; Roßmann, J., “A new benchmark for pose estimation with ground
truth from virtual reality,” Production Engineering, May .

Abramov, A.; Pauwels, K.; Papon, J.; Wörgöer, F.; Dellen, B., “Real-Time Segmenta-
tion of Stereo Videos on a Portable System With a Mobile GPU,” IEEE Transac-
tions on Circuits and Systems for Video Technology, Sept. .

Grants and

Awards

. Selected for CVPR Doctoral Consortium.
-Present. Graduate Fellowship, Georg-August-Universität Göingen.
-. Graduate Fellowship, Stanford University.
. Winner, Harry E. Ward Trident Scholar Prize, United States Naval Academy.
. Winner, Captain Boyd R. Alexander Prize in Electrical Engineering, United

States Naval Academy.
. Admiral Frank Bowman Scholar, United States Naval Academy.

Open Source

Projects

http://www.dpi.physik.uni-goettingen.de/cns/modules/BibtexModule/uploads/PDF/paponkulviciusaksoy2013.pdf
http://www.dpi.physik.uni-goettingen.de/cns/modules/BibtexModule/uploads/PDF/paponkulviciusaksoy2013.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Papon_Voxel_Cloud_Connectivity_2013_CVPR_paper.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Papon_Voxel_Cloud_Connectivity_2013_CVPR_paper.pdf
http://www.dpi.physik.uni-goettingen.de/cns/modules/BibtexModule/uploads/PDF/paponabramovwoergoetter2012.pdf
http://www.dpi.physik.uni-goettingen.de/cns/modules/BibtexModule/uploads/PDF/paponabramovwoergoetter2012.pdf
http://www.dpi.physik.uni-goettingen.de/cns/modules/BibtexModule/uploads/PDF/paponabramovaksoy2012.pdf
http://www.dpi.physik.uni-goettingen.de/cns/modules/BibtexModule/uploads/PDF/paponabramovaksoy2012.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Stein_Object_Partitioning_using_2014_CVPR_paper.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Stein_Object_Partitioning_using_2014_CVPR_paper.pdf
http://www.dpi.physik.uni-goettingen.de/cns/modules/BibtexModule/uploads/PDF/steinwoergoetterschoeler2014.pdf
http://www.dpi.physik.uni-goettingen.de/cns/modules/BibtexModule/uploads/PDF/steinwoergoetterschoeler2014.pdf
http://www.dpi.physik.uni-goettingen.de/cns/modules/BibtexModule/uploads/PDF/schoelersteinpapon2014.pdf
http://www.dpi.physik.uni-goettingen.de/cns/modules/BibtexModule/uploads/PDF/schoelersteinpapon2014.pdf
http://link.springer.com/article/10.1007/s11740-014-0552-0
http://link.springer.com/article/10.1007/s11740-014-0552-0
http://dx.doi.org/10.1109/TCSVT.2012.2199389
http://dx.doi.org/10.1109/TCSVT.2012.2199389

. Google Summer of Code Mentor, Point Cloud Library.
-Present. Contributor, Point Cloud Library.
. Google Summer of Code Participant, Point Cloud Library.
-. Creator, Oculus Vision System.

http://pointclouds.org/
http://pointclouds.org/
http://pointclouds.org/
https://launchpad.net/oculus

	Introduction
	Problem Definition and Motivation
	The Image Segmentation Problem
	The Tracking Problem
	Video Object Segmentation - Segmentation In Sequential Frames

	State of the Art
	Segmentation and Superpixels
	Multi-Target Visual Tracking
	Video Object Segmentation

	Outline and Contributions

	Video Segmentation by Relaxation of Tracked Masks
	Overview of the Algorithm
	Tracking Object Masks
	Sequential Bayesian Estimation
	Dynamic Model
	Measurement Model

	Parallel Particle Filters
	Particle Birth, Repopulation, & Decay.

	Extracting a Dense Image Labeling
	Object Pixel Likelihood Maps.
	Label Association Likelihood Map.

	Occlusion Handling.
	Segmentation using Superparamagnetic Clustering
	Experimental Results
	Discussion

	Patch-based Perceptual World Model
	Pre-processing of Point Cloud Data
	Voxelization
	Octree Adjacency Graph

	Geometrically Constrained Supervoxels
	Spatial Cluster Seeding
	Cluster Features and Distance
	Flow Constrained Region Growing

	Sequential Update of Perceptual Model
	Depth Dependent Voxel Grid
	Locally Convex Connected Patches
	Experimental Results
	Datasets
	Object Segmentation Database (OSD)
	NYU Indoor Dataset (NYU)
	Returning to the Projected Plane

	Supervoxels
	Object Boundary Adherence
	Time Performance

	Locally Convex Connected Patches

	Discussion

	Model-Based Point Cloud Tracking
	Particle Filters in 3D
	Model Representation
	Dynamic Model
	Measurement Model

	Stratified Correspondence Sampling
	Experimental Results
	Results on Synthetic Sequences
	Results on Real Sequences

	Discussion

	Tracking Based Point Cloud Video Segmentation
	Tracked Model Representation
	Bank of Parallel Particle Filters
	Association by Joint Label Optimization
	Alignment and Update of Models
	Experimental Results
	Imitation of Trajectories for Robot Manipulation
	Semantic Summaries of Actions

	Discussion

	Conclusions
	Summary of Contributions
	Shortcomings of VOS Benchmarks
	Limitations and Direction of Future Work

	References
	Appendices
	The Oculus Vision System
	Motivation
	System Architecture
	Execution Flow
	Plugin Development and Interaction
	Visualization

	Memory Architecture
	Global Buffer
	GPU Memory Handling

	Demonstration System
	Image Acquisition
	Disparity and Optical Flow
	Segmentation and Tracking
	Semantic Graphs

	Results and Discussion
	Conclusion

	Sequential Bayesian Estimation
	Particle Filters
	Resampling

