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Abstract 

The detection of tumors in an early phase of tumor development is an important 

achievement to improve the overall prognosis of the patient. Besides accurate 

information of tumor load and spread, the retrieval of the expression of biomarkers on 

the tumor cell surface at the earliest time point is a prerequisite for a successful 

targeted therapeutic approach. In order to acquire information on expression of tumor 

associated proteins in vivo, functional imaging with specific probes targeting tumor 

biomarkers such as human voltage-gated potassium channel Kv10.1 or epidermal 

growth factor receptor 1 (EGFR) is a promising approach. In this study, 10 novel anti-

Kv10.1 nanobodies were generated by phage display and characterized in vitro, in 

order to be able to visualize tumor lesions in vivo in future by applying multi-pinhole 

SPECT targeting Kv10.1. Molecular characterization of the binding properties of the 

anti-Kv10.1 nanobodies using ELISA, immunoprecipitation, Western blotting, flow 

cytometry and surface plasmon resonance identified two promising clones, C4 and D9, 

specifically detecting Kv10.1 transfected HEK cells and the fusion protein H1X.  

Since the SPECT system was not used for imaging of small animals before, the system 

and the imaging procedure was first set up and validated by using the clinically 

approved full IgG1 antibody 99mTc-Cetuximab as well as nanobody 99mTc-D10, both 

targeting EGFR in human MDA-MB-231 and MDA-MB-468 mammary carcinoma as well 

as in A431 epidermoid tumor bearing mice. 

The anti-EGFR nanobody 99mTc-D10 was efficiently labeled with [99mTc(CO)3(OH2)3]+ 

yielding a specific activity of 183 MBq/nmol ± 35 and a radiochemical purity of 

97.7% ± 1.2 whereas the Hynic-derivatized antibody 99mTc-Cetuximab yielded a specific 

activity of 1700 MBq/nmol ± 105 and a purity of 97.3% ± 0.4. 

In vivo, MDA-MB-468 and MDA-MB-231 mammary tumors were visualized by SPECT 

applying 98 pmol of the anti-EGFR antibody 99mTc-Cetuximab with tumor uptakes of 

5.49% ID/cm3 ± 2.2 and 2.13% ID/cm3 ± 0.37, respectively, 24 h post i.v. injection. Mice 

bearing MDA-MB-468 tumors that received the isotype control 99mTc-IgG1 antibody 

(98 pmol) showed a significant uptake of 2.1% ID/cm3 ± 0.1 to the tumor after 24 h 
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post i.v. injection proving a high unspecific tumor uptake of the antibody. 

Biodistribution analysis of mice receiving 99mTc-Cetuximab revealed high tumor 

uptakes of 14.6% ID/g ± 6.89 and 6.19% ID/g ± 2.71 for MDA-MB-468 and MDA-MB-

231 tumors, respectively, compared to a remaining activity in the blood of approx. 

5.5% ID/g in both cohorts resulting in tumor-to-blood ratios of 3.1 and 1.2, 

respectively. Since 99mTc-Cetuximab is cleared via hepatic excretion from the body, a 

high liver uptake of approx. 20% ID/g was determined. 

Visualization of very small EGFR positive epidermoid A431 and mammary MDA-MB-

468 tumors with nanobody 99mTc-D10 by SPECT imaging already 45 min post i.v. 

administration resulted in tumor uptakes of 1.0% ID/cm3 ± 0.6 and 0.6% ID/cm3 ± 0.2, 

respectively, with excellent in vivo contrast and ex vivo tumor to blood and tissue 

ratios due to the fast blood clearance with a serum half-life of 4.9 min. The use of 

control nanobody 99mTc-F5 showed no significant tumor uptake. No accumulation of 

99mTc-D10 was observed in MDA-MB-231 tumors characterized by a very low EGFR 

expression. Biodistribution analysis of 99mTc-D10 revealed A431 and MDA-MB-468 

tumor uptakes of 2.3% ID/g ± 0. 7 and 1.3% ID/g ± 0.3, respectively, compared to a 

remaining activity in the blood of approx. 0.2% ID/g. This resulted in tumor-to-blood 

ratios of 12.1 and 5.4 for A431 and MDA-MB-468 tumors, respectively. Since the 

nanobody 99mTc-D10 is cleared via renal excretion from the body, high uptake was 

determined in the kidneys and the urine (214 ± 30%ID/g and 69 ± 31%ID/g, 

respectively). 

The here presented specific and high contrast in vivo visualization of small human 

tumors overexpressing EGFR by preclinical multi-pinhole SPECT already 45 min after 

administration of anti-EGFR nanobody 99mTc-D10 provides the basis for a possible 

future in vivo use of anti-Kv10.1 nanobodies for tumor visualization by SPECT. 
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1 Introduction 

Cancers account for more than 8.2 million death cases and about 12 million new cases 

in 2012 being the leading cause of morbidity and mortality worldwide. Among women, 

breast cancer has the highest mortality with more than 500,000 death cases in 2012 

[1]. According to the World Health Organization (WHO), the only way to reduce cancer 

mortality is an early detection and treatment of new cases [1]. Especially for breast 

cancer, clinical breast exams, ultrasound and mammography are provided as screening 

methods. If abnormalities were detected during the screening procedure that might 

indicate a hematological malignancy, biopsies are taken and histological analysis 

assesses morphological changes in tissue and expression of specific tumor markers. 

Once a tumor lesion was diagnosed, the stage of the disease has to be determined to 

plan a suitable treatment regimen involving surgical resection and chemotherapy. A 

widely used method for tumor staging is the application of 18F-fluordeoxyglucose (FDG) 

with a combined positron emission tomography (PET) and computed tomography (CT) 

scan [2, 3]. FDG is a glucose analog with a radioactive fluorine-18 substituted hydroxyl 

group at the 2' position in the glucose molecule. It is taken up by glucose transporters 

to the cells and phosphorylated by hexokinase to FDG-6-phosphate, that cannot be 

further metabolized. The reverse reaction in the cells to FDG is very slow, except in the 

cells of the liver, thus trapping and enriching radioactivity particularly in cells with a 

high metabolic rate such as tumor cells [2, 4]. However, a high glucose uptake also 

present in the brain, at inflammatory sites or in brown fat tissue among many others, 

can lead to false positive signals [2]. Furthermore, the metabolic rate of a tumor is an 

important factor for tumor staging but reveals no information on the tumor markers 

expressed on the surface. Besides accurate information of tumor load and spread, the 

retrieval of the expression of biomarkers on the tumor cell surface at the earliest time 

point is a prerequisite for a successful targeted therapeutic approach. In order to 

acquire information on expression of tumor associated proteins in vivo, functional 

imaging with specific probes, labeled with a radionuclide, can be performed non-

invasively by positron emission tomography (PET) or single photon emission computed 

tomography (SPECT) with high sensitivity. Targeting biomarkers such as human 

epidermal growth factor receptor 1 (EGFR) or 2 (HER2) that are highly overexpressed 
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on tumor cells is a recently applied strategy [5-10]. However, new targets are in need 

for reliable tumor detection. Recently, ion channels have been discussed as promising 

targets not only for therapy but also for in vivo imaging approaches in oncology [11, 

12]. 

1.1 The voltage-gated potassium channel Kv10.1 

The voltage-gated potassium channel Kv10.1 or Ether à go-go voltage-gated channel 

(Eag1) is a transmembrane protein consisting of six membrane-spanning domains, 

three cytosolic loops, a pore region and complex intracellular N- and C-termini (Figure 

1A) [13]. The functional potassium channel consists of four α-subunits that assemble 

the pore of the channel (Figure 1B). 

 

 

Figure 1: Schematic structure of voltage-gated potassium channels 

(A) A lateral view of monomers of a voltage-gated potassium channel (Kv) and (B) a top view of a Kv 

channel showing the two transmembrane domains of each of the four α-subunits and their 

corresponding pore-forming loops. Image was adapted from [11]. 

Kv10.1 is predominantly expressed in the brain of humans and rodents, mainly in the 

olfactory bulb, cerebral cortex, hippocampus, hypothalamus and cerebellum, however 

the impact for the cells is still unknown [14-17]. Interestingly, no Kv10.1 expression 

was detected in normal healthy tissue, but was reported for more than a decade, to be 

expressed on various human tumor entities [13, 18-20]. More than 70% out of more 
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than thousand investigated tumor samples of different origins were proven Kv10.1 

positive, including sarcoma and lymphoma, as well as breast, lung and colon cancer 

[13, 20]. In osteosarcoma, the ectopic expression of Kv10.1 is regulated by p38 

MAPK/p53 pathway that is triggered by EGFR [21]. Altered expression of p53 interferes 

with the transcription factor E2F1, that increases Kv10.1 expression and decreases the 

expression of Kv10.1 suppressor micro RNA mir-34a, resulting in aberrant Kv10.1 

expression [22]. The overexpression of Kv10.1 affects proliferation, vascularization and 

migration of tumor cells through functional interactions with proliferation-related 

proteins such as the upregulation of hypoxia-inducible factor (HIF-1) leading to an 

increased secretion of vascular endothelia growth factor (VEGF), thus promoting 

vascularization [23]. The binding of cortactin (CTTN) and focal adhesion kinase (FAK) to 

the C-terminal domain of Kv10.1 stabilizes the potassium channel in the membrane 

and effects adhesion and migration of the tumor cell [24]. These effects are also 

affected by an altered cell cycle influenced by interaction of Kv10.1 with Rabaptin-5 

(Rab5) or through calcium signaling [25, 26]. The expression of Kv10.1 correlates with a 

poor prognosis in various tumor entities like colon, ovarian and head and neck cancer, 

as well as fibrosarcoma and acute myeloid leukemia [20, 27-30]. 

A blockade of Kv10.1 with astemizole and imipramine decreased tumor cell 

proliferation in vitro and in vivo and hold potential as treatment regimen for Kv10.1 

positive tumors [20, 31, 32]. Unfortunately, astemizole and imipramine block Kv11.1 

(Eag1-related, HERG) as well and can cause the longQT syndrome, a severe cardiac 

dysfunction, that led to a withdrawal from the market [12]. Up to now, no selective 

Kv10.1 blocker exists that could be used for a successful therapy of Kv10.1 positive 

tumors. 
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1.2 Epidermal growth factor receptor (EGFR) 

The receptor tyrosine kinase EGFR is a transmembrane receptor, that consists of an 

extracellular, a single transmembrane and an intracellular kinase domain (Figure 2). 

EGFR is expressed in most epithelial, mesenchymal and neuronal mammalian cells and 

mediates proliferation and differentiation via various canonical pathways e.g. MAPK 

(p38), Akt and JNK [33-35]. Binding of a ligand like epidermal growth factor (EGF) or 

transforming growth factor-α (TGFα) to the ligand-binding cleft in the extracellular 

domain induces dimerization of two EGFR monomers and activation of the receptor 

[36]. The activation involves autophosphorylation of several tyrosine residues in the 

intracellular C-terminal domain and stimulates the intrinsic tyrosine kinase activity 

which triggers downstream activation and signaling by several other proteins [36, 37].  

Due to mutations in many tumors of diverse origin like lung, colon, breast, liver or 

brain, EGFR is aberrantly expressed or permanently activated, promoting proliferation, 

survival, migration and angiogenesis leading to uncontrolled growth of tumor cells [38, 

39]. The identification of EGFR as an oncogene fostered the development of EGFR 

targeting antitumor drugs. Two classes of substances are on the market for the 

treatment of EGFR, tyrosine-kinase inhibitors (TKI) and monoclonal antibodies (mAb). 

TKIs are so-called small molecule drugs with a molecular weight below 500 g/mol (Da), 

that bind to the adenosine triphosphate (ATP) binding site on the intracellular C-

terminal domain of the EGFR. They prevent the phosphorylation and thereby the 

activation of the EGFR itself and of downstream signaling pathways [40]. First 

generation TKIs like Gefitinib, Erlotinib and Lapatinib bind reversibly to the ATP binding 

site resulting in limited therapeutic outcome as first line treatment [41-43]. A recently 

approved TKI, Afatinib, binds irreversibly to a thiol group of a cysteine and belongs to 

the so-called second generation TKIs [41, 44]. However, the benefit of these drugs to 

the clinical outcome has not been fully evaluated yet [39].  
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Figure 2: Schematic structure of a EGFR molecule in the cellular membrane 

The EGFR consists of an extracellular, a single transmembrane and an intracellular kinase domain. The 

ligand-binding cleft in the extracellular domain interacts with a number of ligands, including EGF and 

TGFα. In presence of a ligand, dimers form through interactions between the dimerization loop (dashed 

circle) on each monomer. Dimerization results in the activation of the kinase domain and the initiation 

of intracellular signaling pathways. Therapeutic antibodies and tyrosine kinase inhibitors (blue boxes) 

are directed against the ligand-binding cleft in the extracellular domain and to the intracellular kinase 

domain, respectively. Bold-written drugs have been FDA-approved. Image was adapted from [39]. 

Compared to TKIs, mAbs like Cetuximab or Panitumumab are huge molecules with a 

molecular weight of approx. 150 kDa, that bind to the ligand-binding cleft on the 

extracellular domain and prevent the ligands from binding and impede dimerization 

[45]. Binding of a mAb to EGFR results in a slow internalization by endocytosis of the 

EGFR-mAb complex to the cell. Following ubiquitination, the internalized vesicle is 

targeted to the lysosome for lysosomal degradation. Consequently, less EGFR 

molecules on the cellular surface result in decreased activation of downstream 
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signaling [39]. The successful use of mAbs for chemotherapy accompanied with the 

knowledge of the biodistribution and binding characteristics fostered the assessment 

of mAbs as carrier molecules for cytotoxic payload or radioactive isotopes. Within the 

last decade, mAbs in general and Cetuximab in particular, labeled with fluorescent 

dyes or radioisotopes, were frequently used as probes for non-invasive imaging to 

detect tumors and to monitor treatment response.  

1.3 Nanobodies as imaging probes 

Targeting of tumor associated antigens for diagnostic approaches allows the 

assessment of the expression of tumor markers in vivo and is, due to intratumoral 

heterogeneity, important for clinicians to decide on the best treatment. A requirement 

for probes to be used for tumor imaging is their fast and specific accumulation in the 

tumor and as little as possible uptake in healthy tissue, thus generating a high contrast 

within the tumor shortly after probe administration. In order to achieve a fast removal 

from the blood pool the ideal imaging probe should be as small as possible [46]. Unlike 

conventional antibodies, nanobodies, also called single domain antibodies, derived 

from camelid heavy chain antibodies meet all these requirements with a molecular 

weight of only 15 kDa and dimensions of 2.5 x 4 nm [47] (Figure 3). Due to their small 

size nanobodies are removed quickly from the blood by renal clearance with half-lives 

in serum of less than 10 min [7, 8]. Small-sized proteins are also known to extravasate 

more easily and show a better tissue penetration compared to larger molecules like 

full antibodies with a molecular weight of 150 kDa [47]. Due to the lack of the Fc part 

of an intact immunoglobulin G (IgG), nanobodies are not suspected to interfere with 

the immune system [48, 49]. Furthermore, nanobodies are produced in E.coli, that is 

considered to be an economic, fast and straightforward expression system with high 

yields. Nanobodies can easily be modified with various tags e.g. hexahistidine (6xHis), 

myc or a free cysteine that allow a site-specific labeling for biomedical imaging [50].  

Nanobodies have been raised against various tumor markers like EGFR, Her2, 

carcinoembryonic antigen (CEA), as well as prostate specific membrane antigen 

(PSMA) and have been applied for preclinical in vivo tumor imaging with different 

radionuclides for PET and SPECT [7, 9, 51-53]. Recent developments were directed 



1 Introduction 7 

 

towards a therapeutic use of nanobodies either as monomers or conjugates of 

different nanobodies [54, 55]. Today, bi- and trivalent as well as bi- and trispecific 

nanobodies are subjects of various clinical trials for cardiovascular, respiratory, 

hematological and autoimmune diseases [55]. 

 

Figure 3: Schematic drawing of a heavy chain antibody and a nanobody 

A llama heavy-chain antibody (HcAb) and a representation of a nanobody or single domain antibody 

(sdAb or VhH), the smallest functional llama antibody fragment are shown. The nanobody is engineered 

with a C-terminal 6xHis tag and a free cysteine (Cys). HcAb and nanobody have a molecular weight of 

75 kDa and 15 kDa, respectively. Image was adapted from [56]. 

 

1.4 Radiolabeling of biomolecules with technetium-99m 

The radionuclide technetium-99m (99mTc, m = metastable) is considered to be the 

workhorse of nuclear medicine and is applied in more than 80% of all SPECT imaging 

examinations, due to its ideal nuclear properties and easy and efficient production in a 

99Mo/99mTc-generator [57-59]. The energy of 140 keV of the emitted gamma radiation 

is sufficient to penetrate human tissue and allows an external detection of the photons 

by SPECT scanners [60]. 99mTc is the daughter nuclide of 99Mo and remains in an 

excited transition or metastable state for 6.01 h before it decays to ground state 99Tc 

and finally to the stable 99Ru (Figure 4)[60, 61]. The relatively long half-life is suitable 

for labeling of proteins like anti- or nanobodies, their application, accumulation to the 

target tissue and subsequently their detection by in vivo SPECT scans.  
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Figure 4: Decay scheme of 
99

Mo to 
99

Ru 
99

Mo is generated by neutron activation of 
98

Mo (n,γ reaction) in a high neutron flux reactor. 
99

Mo is 

the mother nuclide of 
99m

Tc with a half-life of 66 h and decays to 
99m

Tc by beta (β
-
) decay with a 

probability of 87%. 
99m

Tc remains in an excited transition or metastable state and decays to ground 

state 
99

Tc by isomeric transition and emission of gamma radiation (140 keV) with a half-life of 6.01 h. 

Ground state 
99

Tc decays finally stable 
99

Ru by β
-
 decay with a half-life of 2.1 x 10

5
 years. 

The eluate from the generator, sodium pertechnetate (Na99mTcO4), cannot be used 

directly for the labeling of proteins because it is chemically inert and does not form 

stable complexes. The generator-derived 99mTc has an oxidation state of +VII and 

exhibits diverse redox chemistry with various oxidation states ranging from -I to +VII. 

Therefore, the radiolabeling of antibodies requires a previous modification with 6-

hydrazinonicotinamide (HyNic) [60-63]. 

99mTc-HyNic core 

For the binding to the hydrazine group of HyNic 99mTc has to be reduced to oxidation 

state +II by the use of stannous chloride for example (Figure 5). The condensation 

reaction forms a chemically robust metal-organohydrazine. HyNic occupies only one or 

two coordination sites of 99mTc and therefore requires the use of a coligand like tricine, 

ethylenediamine-N,N'-diacetic acid (EDDA) or glucoheptonate to complete a square 

pyramidal or octahedral complex [64-66].  
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Figure 5: Molecular structure of a HyNic-modified biomolecule (R) 

 

High labeling efficiencies can be achieved using the 99mTc-HyNic core and 

pharmacokinetic or hydrophilic modifications can be influenced by the choice of the 

coligand. The use of tricine as coligand results in the best incorporation and in the 

highest in vivo stability of the complex [67, 68]. However, the identity of the 99mTc-

species remains unknown and therefore restricted to the use of 99mTc-HyNic in clinical 

applications [64, 66-68] (Figure 6). 

 

Figure 6: Monodentate and bidentate binding of HyNic to 
99m

Tc 

(A) Monodentate and (B) bidentate binding mode of HyNic to 99mTc. R = biomolecule, L = ligand, 

tricine. Image was adapted from [67]. 

[99mTc(CO)3]+ core 

The discovery of the 99mTc tricarbonyl [99mTc(CO)3(OH2)3]+ core allowed the preparation 

of stable organometallic complexes in aqueous solutions, which is favorable for the 

labeling of biomolecules [69-71] (Figure 7). The complex is formed by reduction of the 

eluted pertechnetate with sodium borohydride under a carbon monoxide (CO) 

atmosphere, that is provided by hydrolysis of sodium boranocarbonate (Na2(H3BCO2)). 

The use of this reaction became quite popular due to the supply of a convenient kit 
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formulation (Isolink, Mallinckrodt), that was discontinued in 2011. One of the 

inventors, R. Schibli from Paul-Scherrer-Institute (Villingen, Switzerland) took over the 

production and supplies now the "CRS Kit for tricarbonyl". 

NH

N
+

Tc

CO

OC

OC

NH

Cl

 

Figure 7: Complex formation of 
99m

Tc with histidine 

For the labeling of biomolecules, the three labile water molecules are easily 

substituted with S, O or N atoms of various chelating ligands. The amino acid histidine 

has ideal characteristics for an easy and stable complexation of the tricarbonyl core. 

Thus, a 6xHis tag as provided on nanobodies enables high labeling efficiencies and 

therefore the in vivo application and detection by SPECT [64, 66, 69-72]. 

1.5 Three dimensional nuclear imaging modalities PET and 

SPECT 

PET and SPECT are two cross-sectional imaging modalities in the field of nuclear 

medicine and were developed in the 1960s and 1970s [73]. Both modalities belong to 

the area of functional imaging since molecular interactions can be visualized after 

application of a tracer labeled with a radionuclide. A tracer can be a protein, small 

molecules or even an unconjugated radionuclide that accumulates in malignant tissues 

after intravenous (i.v.) injection. The superior sensitivity of PET and SPECT allows a 

detection of these radionuclides in concentrations of 10-6 to 10-9 M compared to  

10-3 M of contrast agents afforded for CT or MRI examinations [61, 62, 66]. The 

application of radioactive tracers to the body as well as the exposure to ionizing 

radiation should always be carefully considered to the expected outcome of the 

examination. However, due to the very small amounts of radioactivity, the acquired 
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effective dose is approx. 7 mSv in a standard FDG-PET scan with an activity of 

300 MBq, that corresponds to the dose acquired with one chest CT [2]. Except from 

being tomographic modalities, PET and SPECT require different radionuclides and have 

distinct differences in the detection thereof.  

PET 

PET is the most widely applied modality in nuclear medicine for human use, since it 

provides a higher sensitivity compared to SPECT [74]. PET requires the application of 

proton rich positron (β+) emitters like 11C, 18F, 64Cu, 68Ga or 89Zr that decay by a subtype 

of beta decay, in which the proton inside the nucleus of a radionuclide is converted to 

a neutron while releasing a positron and a neutrino [74, 75]. The positron travels 1 to 

2 mm in matter until it is annihilated by an electron (β+), resulting in two 511 keV 

photons emitted in opposing directions. PET scanners consist of an array of detectors 

that register the counts by coincidence on opposing detector elements (Figure 8). A 

detector element contains an array of scintillation crystals that convert the incident 

photon to an electric signal that is summed up and reconstructed by a three 

dimensional ordered subset expectation maximization (OSEM) algorithm [76, 77]. 

State of the art systems for clinical and preclinical use provide a volume resolution of 

95 mm3 to 0.5 mm3, respectively, but cannot overcome the uncertainty of the traveling 

path of the positron [78, 79].  
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Figure 8: Principle of PET 

PET scanners consist of an array of detectors that register 511 keV photons (γ-quantum) from 

annihilation of a positron (β
+
) and an electron (β

-
) by coincidence on opposing detector elements 

containing bismuth germanate (BGO) crystals. Image was adapted without modification from [80]. 

SPECT 

In contrast to PET, SPECT detects photons of gamma emitting radionuclides that make 

SPECT very versatile in sense of applicable radionuclides, since gamma radiation, i.e. 

high energetic photons, is released to a certain amount with each decay. The higher 

the percentage of gamma emission of the decay, the more suitable is the use for 

SPECT. Typical SPECT tracers are 99mTc, 111In, 123I, 133Xe or 201Tl. As already mentioned, 

99mTc is ideal for the application in SPECT, since it decays to 99mTc by 100% (Figure 

4)[64]. The SPECT system is based on the principle of scintigraphy, detecting emitted 

gamma radiation by gamma cameras [81]. The gamma camera or in particular the 

detector contains scintillation crystals similar to PET. In SPECT, one or more of the 

gamma cameras are rotated around the patient and detect emitted radiation from 

different directions in space. Spatial resolution is achieved by the use of a collimator 

[82]. These are thick sheets of lead with thousands of adjacent holes, ensuring only to 

detect photons that were emitted perpendicular to the detector (if a parallel hole 

collimator is used). Out of the acquisitions from different angles and the use of a 

collimator, the origin of the incident photon can be determined by reconstruction with 

a three dimensional OSEM algorithm. The major drawback of the collimators are the 

attenuation of more than 99% of incident photons, however impressively proving the 
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sensitivity of this modality. The only opportunity to overcome this issue is to increase 

the applied activity to the patient. Up to 1110 MBq of 99mTc-sestamibi are applied to 

patients undergoing a one day cardiac rest/stress examination acquiring an effective 

dose of 11 mSv [83, 84].  

 

Figure 9: Parallel hole and pinhole collimators 

Comparison of parallel hole and pinhole collimators. Image resolution can be degraded by the use of 

parallel hole collimators due to intrinsic camera blurring that is circumvented by the magnification 

resulting from the use of pinhole collimators. Image was adapted without modification from [82]. 

For the imaging of small animals like rodents, collimators based on the pinhole camera 

and intercept theorem were developed. The use of multi-pinhole collimators causes a 

magnification of the image on the detector and results in a higher resolution that is 

needed for preclinical imaging of small rodents [82, 85]. The collimators have a 

multitude of pinholes that project a multitude of images on the detector decreasing 

the loss of sensitivity by the multitude of pinholes. A dedicated reconstruction 

algorithm based on the OSEM algorithm is used for reconstruction of the images. 

Latest developments in small animal SPECT imaging provide a spatial resolution of 

0.25 mm [86]. 
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1.6 The orthotopic tumor mouse model 

The development of novel imaging probes at preclinical stage for tumor visualization 

requires suitable animal models for a proper in vivo characterization in terms of tumor 

uptake and biodistribution. Since the imaging probes were intended for a later possible 

use in humans and the diagnosis of human diseases, xenograft mouse models have to 

be established, i.e. the implantation of human tumor cells or biopsies in 

immunodeficient mice [87]. The use of immunodeficient mice is mandatory to prevent 

repelling of human tumor cells by the host immune system. Several types of 

immunodeficient mice like athymic nude mice, severe combined immune deficient 

(SCID) mice or non-obese diabetic (NOD)-SCID mice can be used for the establishment 

of tumor xenograft models [87]. Athymic nude mice carry a deletion of the FOXN1-

gene, which is crucial for the development of the thymus and hair growth [88]. Since 

the maturation of thymocytes to T-lymphocytes (T-cells) takes place in the thymus, a 

lack thereof is connected with a lack of mature T-cells, however the number of B-cells 

remains unaffected [89]. Thus, athymic nude mice do not produce antibodies, have an 

impaired cell-mediated immune response, do not eliminate virulent or malignant cells 

and do not repel foreign tissue [89]. This makes athymic nude mice to an ideal host for 

human tumor cells. Since xenografted tumors for the development of solid tumors 

should ideally mimic the interaction of tumor cells with the stroma and extracellular 

matrix. The implantation of tumor cells in the organ of their origin, so-called orthotopic 

implantation, leads to a tumor growth and metastatic pattern comparable to the 

course of the disease in human organs [90-93].  
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1.7 Aim of this study 

The aim of this work was the generation and characterization of novel nanobodies 

targeting the ion channel Kv10.1 as novel probes for in vivo tumor visualization in 

combination with multi-pinhole SPECT to enable the specific and non-invasive 

detection of tumor lesions early after probe administration. For this anti-Kv10.1 

nanobodies had to be identified by phage display and characterized in vitro for 

specificity and binding properties. Since the SPECT system was not used for imaging of 

small animals before, the system and the imaging procedure including radiolabeling 

had to be validated using the clinically approved full IgG1 antibody Cetuximab targeting 

EGFR in tumor bearing mice. The suitability of tumor visualization with novel anti-EGFR 

nanobodies had to be assessed to generate an imaging approach with small-sized 

nanobodies for a successful in vivo application of anti-Kv10.1 nanobodies in future.  
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2 Material and Methods 

2.1 Material 

Table 1: Equipment 

Instrument Manufacturer 

Analytical balance Sartorius, Göttingen, Germany 

Axiovert 200 Zeiss, Jena, Germany 

Biacore 2000 GE Healthcare (Biacore), Uppsala, Sweden 

ChemiDoc XRS system Bio-Rad, München, Germany 

Cooling centrifuge 5403 and 5804 Eppendorf, Hamburg, Germany 

Counting chamber for cells (Neubauer) Hecht Assistent, Sondheim v. d. Rhön, 
Germany 

Dose calibrator Biodex, Shirley, NY, US 

Electrophoresis chamber system Xcell 
SureLock Mini-Cell 

LifeTechnologies (Invitrogen), Darmstadt, 
Germany 

Eppendorf Research pipettes Eppendorf, Hamburg, Germany 

FACSaria BD Bioscience, Heidelberg, Germany 

Fladbed scanner with transparency unit 
(Perfection V800) 

Epson, Meerbusch, Germany 

In vivo small animal CT QuantumFX Perkin Elmer, Waltham, MA, USA 

Incubator Heraeus Instruments, Hanau, Germany 

Incubator for Bacteria innova 4340 Eppendorf (New Brunswick Scientific), 
Hamburg, Germany 

Laboratory balance Sartorius, Göttingen, Germany 

Magnetic stirrer IKAmag RET IKA Werke, Staufen, Germany 

Mini Trans-Blot Cell Bio-Rad, München, Germany 

Multi pinhole collimators HiSPECT SciVis, Göttingen, Germany 

pH meter Mettler-Toledo, Giessen, Germany 

PicoFuge Agilent (Stratagene), Lake Forest, CA, US 

PipetBoy acu Integra Bioscience, Biebertal, Germany 

Pipetman Classic Pipettes Gilson, Villiers le Bel, France 

Powerpack P25 Biometra, Göttingen, Germany 

SPECT gamma camera Prism XP3000 Philips (former Picker), Eindhoven, 
Netherlands 

Spectrometer Ultrospec 1100 pro GE Healthcare (Amersham), Uppsala, 
Sweden 

Tabletop centrifuge 5424 Eppendorf, Hamburg, Germany 

Thermoblock TB1 Biometra, Göttingen, Germany 

Thermomixer Compact 5350 Eppendorf, Hamburg, Germany 

Tissue processor TP1020 Leica, Wetzlar, Germany 

Vortex Genie 2 Bender & Hobein, Zurich, Switzerland 

Wallac Victor2 Multilabel counter 1420 Perkin Elmer, Waltham, MA, USA 
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Wallac Wizard 3'' 1480 automatic gamma 
counter 

Perkin Elmer, Waltham, MA, USA 

Water Purification System arium 611 Sartorius, Göttingen, Germany 

Table 2: Chemicals 

Chemicals Manufacturer 

ABTS-Solution Roche, Mannheim, Germany 

Acetic acid Merck, Darmstadt, Germany 

Agar LifeTechnologies (Gibco), Darmstadt, 
Germany 

Agarose LifeTechnologies (Gibco), Darmstadt, 
Germany 

Ammonium sulfate ((NH4)2SO4) Sigma Aldrich, Schnelldorf, Germany 

Ampicillin Roche, Mannheim, Germany 

Benzonase Merck Millipore (Novagen), Darmstadt, 
Germany 

Bovine serum albumine (BSA) Sigma Aldrich, Schnelldorf, Germany 

Calcium chloride (CaCl2) Sigma Aldrich, Schnelldorf, Germany 

Casein Sigma Aldrich, Schnelldorf, Germany 

Coomassie Brilliant Blue G250 Bio-Rad, München, Germany 

Cytoseal60 Thermo Scientific, Darmstadt, Germany 

Dimethylformamide (DMF), anhydrous SoluLink, San Diego, CA, US 

Dimethylsulfoxide (DMSO) Sigma Aldrich, Schnelldorf, Germany 

Disodium phosphate (Na2HPO4) Sigma Aldrich, Schnelldorf, Germany 

Dithiothretiol (DTT) Sigma Aldrich, Schnelldorf, Germany 

Ethanol abs. Merck, Darmstadt, Germany 

Glucose Merck, Darmstadt, Germany 

Glycerol Merck, Darmstadt, Germany 

Glycine Merck, Darmstadt, Germany 

Imidazole Sigma Aldrich, Schnelldorf, Germany 

Isopropanol Merck, Darmstadt, Germany 

Isopropyl β-D-1-thiogalactopyranoside 
(IPTG) 

Roche, Mannheim, Germany 

Kanamycin Roche, Mannheim, Germany 

Luria broth (LB) LifeTechnologies (Gibco), Darmstadt, 
Germany 

Lysozyme Roche, Mannheim, Germany 

Manganese chloride (MnCl2) Sigma Aldrich, Schnelldorf, Germany 

Methanol Merck, Darmstadt, Germany 

MOPS Sigma Aldrich, Schnelldorf, Germany 

Natrium chloride (NaCl) Sigma Aldrich, Schnelldorf, Germany 

Natriumdihydrogen phosphate (NaH2PO4) Merck, Darmstadt, Germany 

Nuclear fast red Dako, Glostrup, Denmark 

Ortho-phosphoric acid Merck, Darmstadt, Germany 

PEG8000 Sigma Aldrich, Schnelldorf, Germany 
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Peptone Life Technologies (Gibco), Darmstadt, 
Germany 

Potassium acetate (CH3CO2K) Sigma Aldrich, Schnelldorf, Germany 

Potassium chloride (KCl) Merck, Darmstadt, Germany 

Potassium phosphate (KH2PO4) Sigma Aldrich, Schnelldorf, Germany 

Rubidium chloride (RbCl) Sigma Aldrich, Schnelldorf, Germany 

Silver nitrate (AgNO3) Merck, Darmstadt, Germany 

Skim milk powder Bio-Rad, München, Germany 

Sodium acetate (CH3COONa) Sigma Aldrich, Schnelldorf, Germany 

Sodium carbonate (Na2CO3) Sigma Aldrich, Schnelldorf, Germany 

Sodium dodecyl sulfate (SDS) Sigma Aldrich, Schnelldorf, Germany 

Sodium thiosulfate (Na2S2O3) Sigma Aldrich, Schnelldorf, Germany 

Succinimidyl 6-hydraziniumnicotinate 
hydrochloride (HyNic) 

Solulink, San Diego, CA, US 

TALON Super Flow GE Healthcare, Freiburg, Germany 

Technetium-99m pertechnetate (99mTc-
NaTcO4) 

UMG, Dept. Nulcear Medicine, Germany 

Tin chloride (SnCl2) Sigma Aldrich, Schnelldorf, Germany 

Tris-Base Sigma Aldrich, Schnelldorf, Germany 

Tris-HCl Merck, Darmstadt, Germany 

Trypan blue solution Sigma Aldrich, Schnelldorf, Germany 

Tryptone LifeTechnologies (Gibco), Darmstadt, 
Germany 

Tween 20 Merck, Darmstadt, Germany 

Ultravist 370 Bayer, Leverkusen, Germany 

Xylene Sigma Aldrich, Schnelldorf, Germany 

Yeast extract LifeTechnologies (Gibco), Darmstadt, 
Germany 

Table 3: Antibodies 

Antibody Application Manufacturer 

anti-Actin mouse mAb 
#MAB1501 

WB NEB (Cell Signaling), 
Frankfurt a.M., Germany 

anti-c-myc mouse mAb #sc-
40, clone 9E10 

FC, IP, WB Santa Cruz, Heidelberg, 
Germany 

anti-EGFR humanized anti-
human mAb Cetuximab 

FC, in vivo Merck, Darmstadt, Germany 

anti-EGFR nanobody D10 FC, in vivo in house 

anti-EGFR rabbit mAb #2232 WB NEB (Cell Signaling), 
Frankfurt a.M., Germany 

anti-EGFR rabbit mAb #MA5-
16359, clone SP9 

IHC Thermo Scientific, 
Darmstadt, Germany 

anti-His mouse mAb # ELISA, FC, WB Merck Millipore (Novagen), 
Darmstadt, Germany 

anti-Kv10.1 mouse mAb 33 IP in house 

anti-Kv10.1 nanobody C4 IP, IHC, SPR, ELISA in house 
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anti-Kv10.1 nanobody D9 IP, IHC, SPR, ELISA in house 

anti-Kv10.1 rabbit pAb 9391 WB in house 

goat anti-mouse mAb - HRP 
#NA931VS 

ELISA, WB GE Healthcare (Amersham), 
Freiburg, Germany 

goat anti-mouse mAb - PE FC Santa Cruz, Heidelberg, 
Germany 

goat anti-rabbit mAb - HRP 
#NA934VS 

ELISA, WB GE Healthcare (Amersham), 
Freiburg, Germany 

Histofine Simple Stain Max 
PO-R (anti-rabbit-HRP) 

IHC Nichirei Biosciences, Tsukiji, 
Japan 

human IgG1 isotype #009-
000-003 

FC, in vivo Dianova (Jackson 
Immunolabs), Hamburg, 
Germany 

irrelevant control nanobody 
F5 

FC, in vivo in house 

Protein G - AlexaFluor 488 
#P11065 

FC LifeTechnologies, Darmstadt, 
Germany 

Table 4: Cell lines 

Cell line Description DSMZ No Medium 

A431 human epidermoid carcinoma ACC 91 90% DMEM, 10% FCS 

HEK293 human embryonic kidney ACC 635 90% DMEM, 10% FCS 

MDA-MB-231 human breast carcinoma ACC 732 90% DMEM, 10% FCS 

MDA-MB-468 human breast carcinoma ACC 738 90% DMEM, 10% FCS 

Transfected cell 
line 

Containing plasmid   

HEK293 pcDNA3-Kv10.1-venus  90% DMEM, 10% FCS 

HEK293 pcDNA3-Ø-venus (empty plasmid)  90% DMEM, 10% FCS 

HEK293 pTracer-Kv10.1  90% DMEM, 10% FCS 

HEK293 pTracer- Ø (empty plasmid)  90% DMEM, 10% FCS 

Table 5: Cell culture components 

Cell culture components Manufacturer 

DMEM high glucose (4.5 g/l) with GlutaMAX Life Technologies (Invitrogen), Darmstadt, 
Germany 

Fetal calf serum (FCS) GE Healthcare (PAA), Cölbe, Germany 

EDTA (5 mM) Merck Millipore (Biochrom), Darmstadt, 
Germany 

OptiMEM Life Technologies (Invitrogen), Darmstadt, 
Germany 

PBS (1x) without Ca2+ and Mg2+ Life Technologies (Invitrogen), Darmstadt, 
Germany 

Trypsin 0.05% / EDTA (0.02%) Merck Millipore (Biochrom), Darmstadt, 
Germany 
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Table 6: E. coli strains and phages 

E. coli strain Genotype 

BL21DE E. coli B, F-, dcm, ompT, hsdS(rB- mB-), galλ 

TG1TR K-12 supE thi-1 Δ(lac-proAB) Δ(mcrB-hsdSM)5, (rK
-
mK

-
) 

Phages  

KM13 Helper Phage NEB, Frankfurt a.M, Germany 

M13KO7 Helper Phage NEB, Frankfurt a.M, Germany 

  

Table 7: Bacterial growth media 

Growth media Composition 

2YT 1.6% (w/v) tryptone, 1% (w/v) yeast extract, 0.5% (w/v) 
NaCl, pH 7.0 

2YT-agar 1.5% (w/v) agar in 2YT medium 

LB 1% (w/v) peptone, 0.5% (w/v) yeast extract, 1% (w/v) NaCl, 
pH 7.0 

LB-agar 1.5% (w/v) agar in LB medium 

Table 8: Commercial buffers 

Buffer Catalog number Manufacturer 

Antibody diluent solution S202230-2 Dako, Glostrup, Denmark 

Antigen-retrieval buffer S170084-2 Dako, Glostrup, Denmark 

HBS-EP BR100188 GE Healthcare (Biacore), Uppsala, 
Sweden 

ImmPACT DAB Peroxidase 
substrate  

SK4105 Vector Laboratories, Peterborough, UK 

Peroxidase blocking solution S202386-2 Dako, Glostrup, Denmark 

RIPA Buffer R0278 Sigma Aldrich, Schnelldorf, Germany 

Seablock 37527 Thermo Scientific, Darmstadt, 
Germany 
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Table 9: Commercial kits 

Kit Application Manufacturer 

BCA Protein Assay Kit Determination of protein 
concentration 

Thermo Scientific, 
Darmstadt, Germany 

Bug Buster Protein 
Extraction Reagent 

Protein Extraction from 
bacteria 

Merck Millipore (Novagen), 
San Diego, CA, US 

CRS Kit for tricarbonyl Tricarbonyl labeling Paul Scherrer Institut, 
Villingen, Switzerland 

ECL Kit Developing of WB Merck Millipore, Darmstadt, 
Germany 

NucleoSpin Plasmid Kit Plasmid Isolation Macherey Nagel, Düren, 
Germany 

Table 10: Buffer compositions 

Buffer Composition 

Colloidal Coomassie Staining (stock) 0.1% (w/v) Coomassie Brilliant Blue G250, 
2% (w/v) ortho-phosphoric acid, 10% (w/v) 
(NH4)2SO4 

Colloidal Coomassie Staining (working 
solution) 

80% (v/v) Coomassie stock solution, 20% 
(v/v) methanol 

Conjugation Buffer 100 mM Na2HPO4, 150 mM NaCl, pH 6.0 

Detection buffer solution 100 mM Tris-Base, 100 mM NaCl, 5 mM 
MgCl2, pH 8.8 

EP 50 mM CH3COONa, 0.1 M NaCl, 250 mM 
Imidazole pH 7.8 

Modification Buffer 100 mM Na2HPO4, 150 mM NaCl, pH 7.4 

Phosphate-buffered saline (PBS) (10x) 1.4 M NaCl, 25 mM KCl, 20 mM KH2PO4, 
100 mM Na2HPO4, pH 7.4 

RF1 100 mM RbCl, 50 mM MnCl2, 30 mM 
potassium acetate, 10 mM CaCl2, 15% (w/v) 
glycerin, pH 5.8 

RF2 100 mM MOPS, 10 mM RbCl, 75 mM CaCl2, 
15% (w/v) glycerin, pH 6.8 

Tris-buffered saline (TBS) (10x) 1.4 M NaCl, 500 mM Tris-HCl, pH 7.5 

WP1 50 mM CH3COONa, 1 M NaCl, pH 7.8 

WP2 50 mM CH3COONa, 0.1 M NaCl, pH 7.8 

Table 11: Consumables 

Consumables Manufacturer 

96 well plates Sarstedt, Nümbrecht, Germany 

96 well plates, deep wells Sarstedt, Nümbrecht, Germany 

96 well plates, round bottom Sarstedt, Nümbrecht, Germany 

Amicon Ultracel Spin Filters 3 K and 10 K 
MWCO 

Merck Millipore, Cork, Ireland 

CM5 Chip for Biacore 2000 GE Healthcare (Biacore), Uppsala, Sweden 



2 Material and Methods 22 

 

Counting tubes for biodistribution analysis VWR, Hannover, Germany 

Cuvettes for photometry Sarstedt, Nümbrecht, Germany 

Dynabeads M-450 Epoxy Life Technologies, Darmstadt, Germany 

Eppendorf LoBind tubes Eppendorf, Hamburg, Germany 

Eppendorf SafeLock tubes Eppendorf, Hamburg, Germany 

FACS tubes Falcon 5 ml polystyrene round 
bottom 

Corning, New York, NY, US 

Falcon centrifugation tubes 15 and 50 ml Corning, New York, NY, US 

Filtered pipette tips (Art Tips) Thermo Scientific, Darmstadt, Germany 

Hollow needles (25 G - 12 G) BD Bioscience, Heidelberg, Germany 

Hybond Nitrocellulose Membrane GE Healthcare (Amersham), Freiburg, 
Germany 

Insulin syringe (30 G) B.Braun, Melsungen, Germany 

ITLC SG Strips Glas microfiber 
chromatography paper impregnated with 
silica gel 

Agilent, Lake Forest, CA, US 

Maxisorp plates (96 well) Thermo Scientific (Nunc), Darmstadt, 
Germany 

Novex Bis-Tris (4 - 12%) and Tris-Acetate (3 - 
8%) gels 

Life Technologies (Invitrogen), Darmstadt, 
Germany 

Pipette tips Sarstedt, Nümbrecht, Germany 

Protein G magnetic beads NEB, Frankfurt a.M., Germany 

Serological pipettes Sarstedt, Nümbrecht, Germany 

Surgical sutures (4/0, absorbable) B.Braun, Melsungen, Germany 

Syringe filters 0.2 µm, Polyethersulfone (PES) 
membrane 

Sartorius, Göttingen, Germany 

Syringes (0.5 - 10 ml) BD Bioscience, Heidelberg, Germany 

Tissue embedding cassettes (Rotilabo) Roth, Karlsruhe, Germany 

Vaccum filter units Thermo Scientific, Darmstadt, Germany 

Whatman filter paper Bio-Rad, München, Germany 

Table 12: Anesthetics 

Anesthetic Manufacturer 

Isoflurane Abbvie, Ludwigshafen, Gemany 

Ketamine Medistar, Ascheberg, Germany 

Rompun (Xylariem) Ecuphar, Greifswald, Germany 

Table 13: Software 

Software Manufacturer 

BIAevaluation v. 4.1.1 GE Healthcare (Biacore), Uppsala, Sweden 

Excel 2007 Microsoft, Redmond, WA, USA 

FlowJo v. 7.6.5 for Windows TreeStar Inc., Ashland, OR, USA 

GraphPad Prism v. 6.01 for Windows GraphPad Software, La Jolla, CA, USA 

Scry v.5.0 Kuchl & Sautter GbR, Bad Teinach, Germany 
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2.1.1 Vector constructs 

For transfection in eukaryotic cells pTracer-Kv10.1 and pTracer-Ø (empty plasmid) as 

well as pcDNA3-Kv10.1-venus and pcDNA3-Ø-venus (empty plasmid; Life Technologies, 

Darmstadt, Germany) were used. Nanobodies were presented on a pHEN vector. 

2.1.2 Animals 

Female and male athymic nude mice (NMRI-Foxn1nu/nu) were initially obtained from 

Charles River (Sulzfeld, Germany) and bred in the Central Animal Facility, University 

Medical Center Göttingen. 

2.1.3 Antigen H1X 

The antigen H1X is a 24 kDa human Kv10.1 fusion protein consisting of thioredoxin 

(TRX), a 6xHis tag, a part of the Threonine-Serine-Glutamate-Lysine-Poredomain (AA 

374 - 452), a linker and a part of the C-terminal assembly domain (CAD, AA 872 - 932).  

Amino acid sequence of H1X: 

MSDKIIHLTDDSFDTDVLKADGAILVDFWAEWCGPCKMIAPILDEIADEYQGKLTVAKLNIDQNPG

TAPKYGIRGIPTLLLFKNGEVAATKVGALSKGQLKEFLDANLAGSGSGHMHHHHHHSSGLVPRGS

GMKETAAAKFERQHMDSPDLGTDDDDKAMGDYEIFDEDTKTIPTTAGCPTSDGHWPPYQFNGS

GSRKWEGGPSKNSVYISSLDFTMTSLTSV 

2.1.4 Standards 

For determination of molecular weights the broad range color prestained protein 

standard (#7711 and 7712, NEB, Frankfurt a.M., Germany) was used.  
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2.2 Methods 

2.2.1 Phage display 

The term "phage display" describes an iterative process to select and enrich single 

antibodies out of trillions (1013) of clones with help of bacteriophages. Phages can 

infect bacteria, replicate and express the protein coded on dedicated vectors of the 

host. The advantage of phages is that they express the intact protein on their surface 

and enable binding to protein of interest. One round of phage display consisted of the 

production of phages, selection on the target protein, infection of bacteria with the 

selected phages and production of the selected nanobodies with subsequent screening 

or another round of phage display starting with infection of the bacteria with phages. 

Phages are extremely volatile, thus the work with phages required special safety 

precautions such as special laboratories with dedicated fume hoods for phage work, 

use of filtered tips and decontamination of all contaminated material in bleach for at 

least 24 h. 

Preparation of phages 

50 ml 2YT medium supplemented with ampicillin (100 µg/ml) were inoculated with 

25 µl of the antibody library or the output culture after each round of selection. The 

optical density at 600 nm (OD600) of the culture was 0.1 at the time of inoculation. The 

culture was incubated (37°C, 250 rpm) until OD600 > 0.4 and < 0.6. The OD600 must not 

exceed 0.6 because the culture had to remain in the exponential growth phase. The 

bacteria form pili during the exponential growth phase, which were needed by the 

phages for infection the bacteria. An OD600 of 1 represents 5 x 108 bacteria per ml.  

The culture was infected with an 20x excess of KM13 helper phage and incubated 

without shaking (30 min, 37°C). The culture was spun down (15 min, 4000 rpm, RT) and 

the pellet was resuspended in 250 ml 2YT medium supplemented with ampicillin 

(100 µg/ml) and kanamycin (50 µg/ml) and incubated overnight (30°C, 250 rpm). The 

following day, the culture was split and transferred in five 50 ml centrifugation tubes 

and spun down (20 min, 4000 rpm, 4°C). The supernatants were split in 25 ml fractions 

and transferred in clean 50 ml centrifugation tubes. Phages were precipitated by 
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addition of 5 ml (1/5 of the volume) 20% PEG8000, NaCl 2.5 mM to each fraction and 

subsequent incubation on ice (1 h). The precipitated phages were spun down (15 min, 

4000 rpm, 4°C), the supernatant was discarded and two pellets were pooled in 1 ml 

PBS, transferred in 1.5 ml Eppendorf tubes and spun (2 min, 14000 rpm, 4°C) to 

remove remaining bacteria. The supernatant was transferred in clean 1.5 ml Eppendorf 

tubes and the phages were precipitated again by addition of 200 µl (1/5 of the volume) 

20% PEG8000, NaCl 2.5 mM to each tube. Following incubation on ice (30 min) and 

centrifugation (5 min, 14000 rpm, 4°C), the pellet was resuspended in 1 ml PBS 

supplemented with 15% glycerol and stored at -80°C. 

Selection on immobilized protein H1X with previous depletion on TRX 

The process of selection is the actual step of phage display. The phages express the 

nanobody on the so-called head of the phage, which allows the binding, i.e. a selection 

on a protein of interest. A previous depletion step can lower the number of phages 

used for the actual selection and reduces unspecific binding, i.e. not on the target, thus 

resulting in more positive hits in subsequent screening. 

The selection process should ideally be started in the morning with inoculation of a 

20 ml culture E. coli TG1TR in 2YT minimal medium and with incubation for 

approximately 6 to 8 h (37°C, 250 rpm) until an OD600 between 0.4 and 0.6. 

One 1 ml aliquot of the frozen phages was thawed on ice and supplemented with 

200 µl 20% PEG8000, 2.5 mM NaCl to precipitate the phages (30 min, ice) and remove 

the cryo-preservative glycerol. The phages were spun (5 min, 14000 rpm, 4°C) and the 

pellet was resuspended in 1 ml bovine serum albumin (BSA) (2% in PBS) and incubated 

in an overhead rotator (1 h, 4°C) for blocking. The immobilized TRX and H1X on 

magnetic beads (M450 Epoxy beads) were blocked in BSA (2%) as well. For depletion 

on TRX the blocking solution was removed from the beads and the resuspended 

phages were incubated with the immobilized proteins (2 h, overhead, 4°C). A 5 µl 

aliquot was recovered before incubation on TRX for later determination of the 

selection efficiency and referred as "input". After incubation, the depleted phages, i.e. 

the supernatant of the TRX slurry, were incubated (2 h, overhead, 4°C) on immobilized 

H1X for selection. For elution of the bound phages, the beads were washed 9x with 

1 ml PBS Tween (0.1%) and twice with 1 ml PBS. Phages were eluted by incubation 
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with 500 µl trypsin (1 mg/ml) (30 min, overhead, RT), 500 µl PBS were added and the 

supernatant was kept and referred as "output". An aliquot of 5 µl was stored for 

subsequent determination of the selection efficiency. The remaining 995 µl output 

were diluted with 4 ml 2YT medium and used for infection of 5 ml of the E. coli TG1TR 

culture (0.4 < OD600 < 0.6) inoculated in the morning with subsequent incubation 

without agitation (30 min, 37°C). The infected bacteria were spun (10 min, 4000 rpm, 

RT) and the pellet was resuspended in 3 ml 2YT medium. 500 µl of the infected 

bacterial culture were plated out on square plates with 2YT-Agar supplemented with 

ampicillin (100 µg/ml) and glucose (2%) and incubated overnight at 30°C. The bacteria 

were harvested with 2x 3 ml 2YT medium containing ampicillin (100 µg) and glucose 

(2%). The bacterial suspension was spun (10 min, 4000 rpm, 4°C) and the pellet was 

resuspended in the same volume 2YT medium containing ampicillin and glucose as the 

pellet resulted an OD600 of approx. 100. Glycerol was added to a final concentration of 

15% (v/v) and aliquots of 1 ml were stored at -80°C and used for the next round of 

phage display. 

Determination of selection efficiency 

For determination of the selection efficiency, the 5 µl input and output aliquots were 

diluted (1:100) in 2YT medium and titrated in 10x dilution steps until 10-10 and 10-7 for 

input and output, respectively. The diluted phages were used for infection of the same 

volume of the previously inoculated E. coli TG1TR culture (0.4 < OD600 < 0.6). The 

bacteria were incubated without agitation (30 min, 37°C) for infection. 100 µl of the 

infected bacteria were plated out on 2YT-Agar supplemented with ampicillin 

(100 µg/ml) and glucose (2%) and incubated overnight at 37°C. The following day, the 

colonies were counted to determine the selection efficiency.  

Conservation of the selected clones 

Two 96 deep well plates were prepared with 450 µl 2YT medium containing ampicillin 

(100 µg/ml) and glucose (2%) per well. 186 colonies of the output cultures (3 sterile 

controls) were picked and incubated overnight (37°C, 250 rpm). The next day, 150 µl of 

the bacteria cultures were transferred to round bottom 96 well plates and 30 µl 

glycerol (80%) were administered per well as cryo-conservative before storing the 

plates at -80°C. 
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2.2.2 Screening 

For screening of the selected clones, the nanobodies had to be expressed first. 

Therefore, two 96 deep well plates were prepared with 435 µl 2YT medium containing 

ampicillin (100 µg/ml) and glucose (2%) per well and were incubated with 15 µl of the 

fresh or cryoculture. The plates were incubated 1.5 (fresh culture) or 2.5 h 

(cryoculture) (37°C, 250 rpm). At OD600 = 0.5, 50 µl Isopropyl β-D-1-

thiogalactopyranoside (IPTG) (10x, diluted in 2YT medium) were added to each well to 

induce the nanobody expression. The plates were incubated overnight (30°C, 250 rpm) 

and spun (10 min, 4000 rpm, 4°C) the next morning. The supernatants were used for 

screening by the enzyme linked immunosorbent assay (ELISA).  

2.2.3 ELISA 

The ELISA is a colorimetric assay that was used to reveal nanobodies bound to their 

target protein. The assay was performed on Maxisorp Plates, so the proteins of 

interest, such as H1X and TRX as negative control (10 µg/ml, 50 µl/well), were 

immobilized by absorption on the plastic (overnight, 250 rpm, room temperature (RT)). 

For blocking, each well was incubated with 200 µl BSA (2%) (1 h, 250 rpm, RT). For 

screening, 100 µl of the supernatant were incubated (1 h, 250 rpm, RT) and 

subsequently washed with 3x 200 µl PBS with Tween (0.1%) (PBST) and 3x 200 µl PBS. 

Binding of the nanobodies was revealed by consecutive incubation with an anti-His and 

an anti-mouse mAb coupled with a horseradish peroxidase (HRP) (each 5 µg/ml in BSA 

(2%); 1 h, 250 rpm, RT) with three PBST and PBS washing steps, each performed 

between the different incubation steps. The binding was visualized by addition of 

100 µl 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) per well resulting 

in a blue staining that was measured at 405 nm in a multiwell counter (Wallac Victor2 

Multilabel counter 1420). 

2.2.4 Production of chemically competent E. coli BL21(DE) cells 

Competent E. coli cells were produced by modification of the cell wall, which mediates 

DNA uptake. A 3 ml starter culture (Luria broth (LB) medium) was inoculated with a 
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single bacterial colony from a LB plate grown with colonies of chemically competent E. 

coli BL21(DE3) cells and incubated overnight (37°C, 250 rpm). 100 ml LB medium were 

inoculated with the starter culture (OD600 = 0.1) and incubated until OD600 = 0.6 (37°C, 

250 rpm). Subsequently, the bacterial culture was cooled on ice and spun (15 min, 

1500 rpm, 4°C). The pellet was resuspended in 34 ml RF1 buffer, incubated (10 min, 

ice) and centrifuged (30 min, 1500x g, 4°C). The pellet was resuspended in 2 ml RF2 

buffer and aliquots of 100 μl were snap frozen in liquid nitrogen and stored at -80°C. 

2.2.5 Plasmid isolation 

The NucleoSpin Plasmid Kit was used for plasmid mini preparations. A single E. coli 

colony was inoculated in 3 ml 2YT medium containing ampicillin (100 µg/ml) and 

incubated overnight (37°C, 250 rpm). The culture was spun down (5 min, 5000 rpm) 

and the pellet was treated according to the manufacturer’s protocol. DNA was eluted 

with 50 μl of sterile H2O. 

2.2.6 Transformation 

Chemically competent bacteria are able to take up plasmids following a heat shock at 

42°C. An aliquot of competent E. coli cells was thawed on ice and incubated with 10 ng 

plasmid DNA. Following incubation (45 min, ice), a heat shock (90 sec, 42°C) was 

performed. After incubation on ice (2 min) the volume was adjusted to 500 μl with LB 

medium (399 µl) and incubated again (2 h, 37°C). Finally, 50 µl of the freshly 

transformed bacteria were plated out on LB agar plates containing ampicillin 

(100 µg/ml) and grown overnight at 37°C. 

2.2.7 Protein expression and purification 

A single colony of freshly transformed E. coli BL21(DE3) was grown in a 3 ml starter 

culture 2YT medium containing ampicillin (100 µg/ml) (o/n, 37°C, 250 rpm). 100 ml 2YT 

antibiotic containing medium were inoculated with the starter culture (OD600 = 0.1) 

and incubated until an OD600 of 0.6 (37°C, 250 rpm) was reached. Protein expression 

was induced by addition of IPTG (final concentration 100 µM). Following overnight 
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incubation (30°C, 250 rpm), the culture was spun (15 min, 4000 rpm, 4°C) and the 

bacterial pellet was frozen at -20°C. Nanobodies were harvested by lysis of the bacteria 

with 5 ml BugBugster extraction reagent supplemented with 10 µl lysozyme 

(10 mg/ml) and 5 µl benzonase (250 U/µl) and incubated on an overhead shaker 

(30 min, RT). The solution was spun (20 min, 4000 rpm, 4°C) and the supernatant was 

incubated on 500 µl of a Cobalt-Resin (Talon SuperFlow; 30 min, overhead, RT). The 

slurry was washed twice with 5 ml buffer WP1 and twice with 5 ml WP2 by 

centrifugation (2 min, 700 x g, 4°C) and eluted with 5 ml EP-buffer (15 min, overhead, 

RT). The slurry was spun down (2 min, 700 x g, 4°C) and the supernatant was 

transferred on a spin filter to remove the imidazole from the elution buffer and 

exchange the buffer to PBS. The protein in PBS was transferred in LoBind Eppendorf 

tubes, aliquoted and stored at -20°C. 

2.2.8 Cell culture 

Thawing cells 

Thawing of frozen cells was performed as fast as possible to avoid the toxic side effects 

of dimethyl sulfoxide (DMSO) in the freezing medium. The cryo-tube was placed in the 

water bath at 37°C until a little piece of ice clot was still visible in the cryotube. The cell 

suspension was transferred to 10 ml cool Dulbecco's modified eagle medium (DMEM) 

containing fetal calf serum (FCS; 10%). Following centrifugation (2 min, 1200 rpm, RT) 

the supernatant was discarded and pellet resuspended in prewarmed fresh DMEM 

containing 10% FCS and transferred to a 25 cm2 cell culture flask. Cells were allowed to 

attach overnight (37°C, 5% CO2, 95% humidity) and medium was changed the next day. 

Maintaining a cell culture 

Human mammary carcinoma cell lines MDA-MB-231 and MDA-MB-468, human 

epidermoid carcinoma cell line A431 and human embryonic kidney cell line HEK239 

were cultured in high glucose (4.5 g/l) DMEM with Glutamax supplemented with FCS 

(10%). All cells were grown in monolayer at 37°C, 5% CO2 in a humidified atmosphere 

and detached with 0.05% trypsin/EDTA at a subconfluent stage. 
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Cryo-storage of cells 

Cell lines were frozen in liquid nitrogen for long-time storage. Cells were detached with 

0.05% trypsin/EDTA, spun down (2 min, 1200 rpm, RT), resuspended in freezing 

medium and frozen as 1 ml aliquots of 1 x 106
 cells in cryo-tubes. They were 

immediately stored at -20°C for 2 h and relocated to -80°C overnight before the next 

day, storing them in liquid nitrogen. 

Transfection of eukaryotic cells 

For transfection, 6.5 x 105 HEK293 cells were seeded per well on a 6-well plate and 

allowed to attach overnight. 3 µg plasmid DNA were diluted in 150 µl OptiMEM and 

added to 150 µl Lipofectamine 2000. After incubation (5 min, RT), 250 µl of the DNA-

lipid complex were dispersed on the cells. Protein expression was investigated after 48 

to 72 h by flow cytometry or Western blotting. 

2.2.9 Western blot 

Cells were seeded on 6 cm petri dishes and allowed to grow to a subconfluent stage, 

washed with cold PBS and lysed with radioimmunoprecipitation assay (RIPA) buffer 

and scraped of the petri dish. Cell lysates were transferred to 1.5 ml Eppendorf tubes, 

kept on ice for 10 min and spun (10 min, 14000 rpm, 4°C). 25 µg of the supernatant 

(total lysate) were separated by SDS-PAGE either on a 3 - 8% or a 4 - 12% gel and 

blotted on a nitrocellulose membrane (2 h, 50 V). The membrane was blocked with 

casein (0.1%) in TBS. Primary antibodies were diluted in casein (0.1%) in TBS and 

incubated on the membrane overnight at 4°C with gentle agitation. The membrane 

was washed 3x with TBS containing Tween20 (0.05%) for 10 min and incubated with 

either the secondary anti-mouse or secondary anti-rabbit antibody conjugated to a 

horseradish peroxidase (HRP). Secondary antibodies were diluted 1:10000 in 0.1% 

casein in TBS and incubated for 1 h at RT with gentle agitation. The membrane was 

washed again and proteins were detected by brief incubation with the enhanced 

chemiluminescence (ECL) detection kit and by acquisition on a ChemiDoc XRS system. 
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2.2.10 Immunoprecipitation 

For immunoprecipitaion (IP), 100 µg of cell lysates were diluted with 500 µl PBS and 

incubated with 10 - 50 µg antibodies (overnight, overhead, 4°C). For IP with 

nanobodies, a "capture antibody", anti-c-myc was used to detect the nanobody. 15 µg 

of anti-c-myc antibody were bound to 75 µl protein G magnetic beads and incubated 

overnight. IP with full IgG antibodies did not require a capture antibody, since full IgGs 

bind to protein G. The beads were washed 3x with PBS, incubated with the lysate 

antibody solution (1 h, overhead, 4°C) and washed 3x with PBS again. Bound proteins 

were eluted with 10 µl 1x lithium dodecyl sulfate (LDS) sample buffer (10 min, 70°C) 

and analyzed by Western blotting. 

2.2.11 Silver stain 

Silver staining is a method to visualize proteins and was performed on proteins that 

were separated on SDS-PAGE gels. Proteins in SDS gels were fixed by incubation in 

(40% (v/v) ethanol, 10% (v/v) acetic acid) for at least 1 h followed by two washing steps 

in 30% ethanol for 20 min and one washing step in deionized water for 20 min. Gels 

were sanitized in 0.012% (w/v) sodium thiosulfate (Na2S2O3) for 1 min, subsequently 

rinsed with deionized water (3x, 20 sec) and impregnated for 20 min with 0.2% (w/v) 

silver nitrate (AgNO3) and 0.05% (v/v) paraformaldehyde (PFA) solution (37%), that 

corresponds to a final concentration of 0.02%. Gels were rinsed with deionized water 

(3x, 20 sec) and developed for 2 - 10 min in a 3% (w/v) sodium carbonate (Na2CO3) and 

0.05% (w/v) formaldehyde solution (37%) under visual inspection. The developmental 

reaction was terminated by rinsing the gels in deionized water (20 sec) and incubation 

in 5% (v/v) acetic acid for 10 min. Finally, the gels were washed 3 times for 10 min in 

deionized water and scanned on a flatbed scanner (Perfection V800). 

2.2.12 Coomassie stain 

Colloidal coomassie staining is a procedure to visualize proteins in a gel. Proteins in 

SDS gels were fixed with 40% (v/v) ethanol and 10% (v/v) acetic acid for at least 60 min 

and washed twice in deionized water for 10 min. Gels were stained overnight in the 
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colloidal Coomassie staining solution and washed with 1% (v/v) acetic acid until all 

Coomassie particles were removed and the background appeared clear. Finally, the 

gels were scanned on a flatbed scanner (Perfection V800). 

2.2.13 Flow cytometry 

Binding capacities of antibodies and nanobodies were assessed by flow cytometry. 

Cells were detached by brief incubation with trypsin/EDTA, washed and counted. 1x106 

cells were blocked in BSA (2%; w/v) in PBS and incubated with 100 µl nanobody or 

antibody diluted in BSA (2%; 10 µg/ml) for 30 min on ice. The nanobodies were 

detected by consecutive incubation with an anti-myc antibody (4 µg/ml; BSA 2%) 

(clone 9E10) and goat-anti-mouse coupled to R-Phycoerythrin (PE; 4 µg/ml; BSA 2%), 

each for 30 min on ice. Primary antibodies were detected by incubation with Protein G 

coupled to AlexaFluor-488 (4 µg/ml; 2% BSA) for 30 min. Fluorescence intensities were 

measured by flow cytometry on a FACSAria cell sorter with FACSDiva software. Data 

were analyzed using FlowJo software (v. 7.6.5). 

2.2.14 Surface plasmon resonance 

The affinity and the association and dissociation constants of the anti-Kv10.1 

nanobodies to H1X were determined by surface plasmon resonance (SPR) in a 

Biacore2000 machine. In a first step, the ligand H1X was labeled on a CM5 chip 

according to manufacturer's guide at pH 4.5 on flow cell 2. Nanobodies were diluted in 

buffer HBS-EP to concentrations ranging from 3.1 nM to 400 nM and injected on the 

flow cell for 2 min with a flow rate of 30 µl per min. Binding or rather association 

(2 min) of the nanobodies and dissociation (4 min) was recorded for flow cell 1 and 2 

followed by two regeneration cycles with glycine (10 mM, pH 2.5) to remove remaining 

nanobodies from the surface of the CM5 chip. The BIAevaluation software (v. 4.1.1) 

was used for analysis. Sensograms of flow cell 1 (background) were subtracted from 

flow cell 2, normalized and fitted to a 1:1 Langmuir model for determination of affinity, 

association and dissociation constants. 
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2.2.15 Immunohistochemistry 

Dissected tumors or organs were fixed in a 4% PFA / PBS solution (>24 h, RT) and 

transferred to tissue embedding cassettes. The tissues were dehydrated in an ethanol 

series (Table 14) in a benchtop tissue processor (TP1020) and embedded in paraffin. 

Table 14: Dehydration scheme for IHC 

Time Solvent 

3 x 60 min 75% ethanol 

2 x 90 min 96% ethanol 

3 x 75 min 100% ethanol 

2 x 120 min 100% xylol 

 

Paraffin tissue sections (2 or 5 µm thick) were deparaffinized twice in xylene for 20 min 

each, rehydrated in an ethanol series (100%, 95%, 70%, 50%, 30%) for 5 min each and 

washed twice in TBS for 5 min. Antigen retrieval was performed by incubation in 

Antigen-retrieval buffer at 90°C in a steamer for 10 min. Slides were allowed to cool 

down to RT in the buffer for 20 min and washed for 5 min in TBS. The endogenous 

peroxidase was inhibited by incubation in peroxidase blocking solution for 10 min and 

subsequent washing (2x 5 min) in TBS. Non-specific binding sites were blocked by 

incubation in Seablock buffer (containing steelhead salmon serum) in TBS for 20 min at 

RT. For detection of human EGFR, the primary anti-human EGFR antibody (clone SP9) 

was diluted 1:400 in antibody diluent and incubated on the slides overnight at 4°C. The 

slides were washed twice in TBS for 5 min before one drop of Histofine Simple Stain 

Max PO, containing an anti-rabbit-HRP antibody, was added at RT for 1 h. Slides were 

washed with TBS for 5 min and antibodies were detected by incubation with ImmPACT 

3,3'-Diaminobenzidine (DAB) Peroxidase substrate for 30 min. Slides were washed 

again for 5 min in TBS, counterstained with Hematoxylin for 20 sec and washed twice 

with deionized water for 2 min. 

Following counterstaining the sections were dehydrated in the ethanol series in 

reversed order (30%, 50%, 70%, 90%, 100%) for 5 min each and cleared in xylene twice 

for 5 min. The sections were mounted with Cytoseal60 and dried overnight at 4°C. 
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2.2.16 Radiolabeling of antibodies 

For radiolabeling of the full IgG1 antibodies, the free ε-amino groups were modified 

with 6-hydrazinonicotinamide (HyNic). 10 nmol antibody were incubated with an 

30 molar excess of succinimidyl 6-hydraziniumnicotinate hydrochlorate (SHNH)  for 2 h 

at ambient temperature in modification buffer. 20 µl of the antibody-HYNIC conjugate 

(2 mg/ml) in conjugation buffer were incubated with 500 µl 99mTc pertechnetate (1000-

2000 MBq), tin chloride (SnCl2; 5 µl; 1mg/ml) and tricine (50 µl; 100 mg/ml) as coligand 

for 20 min at ambient temperature. The radiolabeled antibodies were purified from 

unbound activity on Amicon Ultra centrifugal filters. The radiochemical yield and purity 

of the radiolabeling procedures were determined by instant thin layer chromatography 

(ITLC) on silica gel (ITLC-SG) strips and 1% HCl in methanol as mobile phase. 

2.2.17 Radiolabeling of nanobodies 

The nanobodies were labeled with technetium-99m tricarbonyl ([99mTc(CO)3]+) species 

via their C-terminal hexahistidine tags (6xHis). The CRS Kit (Paul Scherrer Institut) was 

used to produce the [99mTc(CO)3]+ intermediate out of 2400 - 4000 MBq of 99mTc 

pertechnetate in 1 ml saline. After boiling for 20 min at 100°C, 500 µl of [99mTc(CO)3]+ 

were neutralized with 1 M HCl to pH 7.5 and incubated with 50 µg nanobody (1 mg/ml) 

for 90 min at 56°C. The radiolabeled nanobodies were purified from unbound activity 

on Amicon Ultra centrifugal filters. The radiochemical yield and purity were 

determined as described above. 

2.2.18 Serum stability studies 

Nanobodies 99mTc-D10 and 99mTc-F5 and IgG1 99mTc-Cetuximab were labeled with 99mTc 

as described above. 2 - 3 µg of the radiolabeled proteins were mixed with mouse 

serum and incubated at 37°C. Samples were taken at 0, 30, 60, 120 and 240 min and 

analyzed by thin layer chromatography using ITLC-SG strips and 1% HCl in methanol as 

mobile phase. 
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2.2.19 Tumor mouse models 

All animal experiments were carried out according to the German animal welfare law 

and were approved by local authorities (33.9-42502-04-12/0701). Cells in exponential 

growth phase (before reaching a subconfluent stage) that were intended for 

implantation were rinsed with PBS, detached with EDTA (5 mM) and collected with 

10 ml warm culture medium. The cell suspension was spun (2 min, 1200, rpm, RT) and 

the pellet was washed twice and resuspended in PBS. Cells were counted in a counting 

chamber using trypan blue. 

Cells of the human epidermoid carcinoma cell line A431 (1.5 x 106 in 100 µl PBS) were 

injected with an insulin syringe (30 G) subcutaneously in the right flank of 8 - 12 weeks 

old male athymic nude mice under control of 2% isoflurane. Cells of the human 

mammary carcinoma cell lines MDA-MB-231 (1 x 106 in 20 µl PBS) and MDA-MB-468 (2 

x 106 in 20 µl PBS) were implanted orthotopically in the fat pad of the right abdominal 

mammary gland of 8 - 12 weeks old female athymic nude mice under the control of a 

general Ketamine/Rompun anesthesia (intraperitoneal (i.p.) injection; Ketamine 10% 

(90 µg/g body weight) and Rompun 2% (7.5%/g body weight). A small incision was 

made approximately 1 cm underneath the right abdominal mammary gland. The fad 

pad was pulled out carefully and the cells were injected in a volume of 20 µl PBS with 

an insulin syringe (30G). The incision was closed by 2 -3 surgical stitches with surgical 

sutures (4/0). Mice were kept on a heating plate at 37°C and monitored until recovery 

from anesthesia. After recovery, the mice were placed in their cages and put back on 

the housing racks. Mice were housed in individually ventilated cages in the central 

animal facility of the University Medical Center Göttingen. Food and water were given 

ad libitum. Tumor growth and health conditions were monitored twice a week by 

palpation and visual inspection, respectively. 

2.2.20 In vivo CT 

Most tumor volumes were determined in vivo by contrast-enhanced computed 

tomography (CT) scans under inhalation anesthesia (1% isoflurane). 100 µl Ultravist370 

were injected i.v. and two 360° scans were carried out on a low-dose in vivo small 

animal CT (Quantum FX) with the following parameter: 90 kV, 200 µA and a field of 
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view of 40 (2 min total scan time; 1 min post injection) and 73 mm (17 sec total scan 

time; 5 min post injection). Image reconstruction was performed using a standard 

filtered backprojection algorithm implemented in the vendors software resulting in 

data sets with a voxel size of either ~80 x 80 x 80 µm3 or 140 x 140 x 140 µm3. 

2.2.21 In vivo SPECT imaging 

SPECT was performed on a triple-head clinical gamma camera equipped with multi-

pinhole collimators with 6 pinholes and a field of view of 50 x 60mm (HiSPECT) on 

tumor bearing mice under 1% isoflurane anesthesia. SPECT scans of mice that received 

radiolabeled nanobodies were performed 45 min post i.v. injection of 99mTc-F5 and 

99mTc-D10 in the tail vein. SPECT scans of mice, that received radiolabeled 99mTc-

Cetuximab, were started 45 min and/or 24 h post i.v. injection. Images were acquired 

over 360° in 10 projections of 300 sec each into 256 x 256 matrices, resulting in a total 

scan time of 50.6 min. SPECT scans with the anti-EGFR nanobody 99mTc-D10 and the 

control nanobody 99mTc-F5 were performed in the same animals using identical scan 

protocols. 99mTc-D10 was injected i.v. at least 72 h after administration of the control 

nanobody 99mTc-F5. In analogy to the nanobodies SPECT scans with the anti-EGFR 

antibody 99mTc-Cetuximab and the isotype 99mTc-IgG1 were performed in the same 

animals using identical scan protocols as well. 99mTc-Cetuximab was injected i.v. at 

least 48 h after administration of the isotype 99mTc-IgG1 

Image reconstruction was performed using an ordered-subset expectation 

maximization algorithm implemented in the HiSPECT software (SciVis) resulting in data 

sets with a voxel size of 600 x 600 x 600 µm3. Since CT and SPECT scans were 

performed on separate systems on different days, each mouse was imaged in the same 

animal holders, which included 6 holes each filled with 99mTc-pertechnetate (<30 kBq) 

that were used for manual alignment. 

2.2.22 Ex vivo biodistribution analysis 

Following SPECT scans, mice were sacrificed by cervical dislocation under isoflurane 

anesthesia. Different organs and the tumor were dissected, blotted dry, weighed and 
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transferred to counting tubes. Remaining activities in organs and tumors were 

measured in a gamma counter (Wallac Wizard 3'' 1480 automatic gamma counter), 

decay corrected and expressed as percent injected dose per gram (% ID/g). The total 

injected dose of each mouse was determined by measuring the activity in the syringes 

before and after injection. The tumors were stored in a PFA (4%; v/v)) / PBS solution 

after measurement of the remaining activity and kept for subsequent IHC in the 

Department of Nuclear Medicine (University Medical Center Göttingen) until 

radioactivity was cooled-down. 

2.2.23 Blood clearance 

The blood clearance and serum half-life of radiolabeled imaging probes were 

investigated in non-tumor bearing mice at various time points (1, 5, 10, 20, 40, 60, 90, 

120, 240, 1200, 1440 and 1560 min) post i.v. probe injection by retrobulbar blood 

withdrawal. Approx. 2 - 3 drops of blood were sampled, weighed  and measured in a 

gamma counter (Wallac Wizard 3'' 1480 automatic gamma counter), decay corrected 

and expressed as percent injected dose per gram (% ID/g). Serum half-life and plateau 

were determined by non-linear regression applying a of a one phase exponential decay 

fitting. 

2.2.24 Image data anaylsis 

Reconstructed CT and SPECT data sets were displayed, quantified and analyzed for 

tumor volume as well as for tumor and unspecific tissue uptake of radiolabeled probes 

using Scry v. 5.0. SPECT data were decay corrected and normalized. All tumor volumes 

were segmented from contrast enhanced CT and SPECT images by a region growing 

algorithm. For reference a region with the same size like the tumor containing tissue 

only was segmented on the contra lateral side and was used for determination of 

unspecific tissue uptake and finally for determination of in vivo tumor to tissue ratio. 

Tumor and tissue uptake were expressed as percentage of injected dose per cubic 

centimeter (% ID/cm3). 
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2.2.25 Statistical analyis 

Statistical analysis was performed using GraphPad Prism v. 6.01 for Windows. Paired or 

unpaired two-tailed t-Tests (indicated in the analysis) were used to determine the 

significant difference between the groups in ex vivo and in vivo comparison. Unless 

otherwise stated all values were calculated as mean ± standard deviation (SD).  
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3 Results 

3.1 Generation of anti-Kv10.1 nanobodies 

To enable specific tumor visualization with anti-Kv10.1 nanobodies using in vivo SPECT 

imaging, anti-Kv10.1 nanobodies had to be generated first. Therefore, a llama was 

immunized twice with the antigen H1X, a fusion protein consisting of thioredoxin and 

two parts of the E3 loop of Kv10.11. The resulting antibody library with a diversity of 

1.3 x 107 clones was used for selection and screening of the anti-Kv10.1 nanobodies 

and the lead candidates were characterized for specific binding to the ion channel 

Kv10.1. 

3.1.1 Selection of ten anti-Kv10.1 nanobodies 

Phage display 

The selection of anti-Kv10.1 nanobodies was performed by phage display. In order to 

generate an initial phage library, the antigen library was infected with the helper 

phage KM13. Depending on the selection strategy of each round, phages were 

depleted on immobilized TRX and incubated with different concentrations of 

immobilized H1X before washing thoroughly to remove unbound phages (Table 15). To 

determine the selection efficiency, the number of colony formation units (CFU) of 

E. coli infected with an aliquot of the phages was determined before (input) and after 

selection (output) (Table 15). In total, 9 rounds of selection were performed yielding a 

reduction of approximately three orders of magnitude per selection round resulting in 

an enrichment of binding phages in each selection. 

  

                                                                 
1
 Immunization and establishment of the antibody library was performed from the lab staff of Daniel 

Baty and Patrick Chames at INSERM, Marseille, France. 
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Table 15: Parameters of nanobody selection 

Round of 
Selection 

Phages of 
selection 

Target 
selection 

Input (CFU) Output (CFU) 

1 Phage library 20 µM H1X 6.0 x 1011 3.0 x 108 
2 1 20 µM H1X 2.0 x 1010 3.5 x 108 
3 2 depletion on 

20 µM TRX; 
20 µM H1X 

4.0 x 1012 4.0 x 108 

4 3 depletion on 
20 µM TRX; 
20 µM H1X 

6.0 x 1012 3.0 x 109 

5 1+2 100 nM H1X 3.4 x 1012 1.4 x 1010 
6 Phage library depletion on 

1.8 µM TRX; 
1.1 µM H1X 

7.0 x 1011 7.0 x 107 

7 6 depletion on 
1.8 µM TRX; 
1.1 µM H1X 

1.0 x 1013 1.0 x 1011 

8 7 depletion on 
1.8 µM TRX; 
1.1 µM H1X 

9.0 x 1012 2.0 x 1011 

9 8 depletion on 
1.8 µM TRX; 
5.5 nM H1X 

6.0 x 1011 3.0 x 108 

 

Screening 

For screening, 186 clones per selection were picked from the output plates and 

induced for nanobody production by addition of IPTG. The resulting nanobodies were 

screened on the recombinant proteins H1X as a positive and TRX as a negative control 

by ELISA yielding more than 30 hits in total. Ten clones showing the highest signals 

were chosen as lead candidates and produced in higher quantity in 100 ml cultures for 

further investigation. The produced anti-Kv10.1 nanobodies were isolated, blotted on 

a nitrocellulose membrane and detected with an anti-His antibody (Figure 10). 

Nanobodies were expressed mainly as monomers with a molecular weight ranging 

from 14 - 17 kDa. Little portions of each nanobody were expressed as multimers (faint 

bands) characterized by multiple molecular weights of the monomers. 
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Figure 10: Western blot of anti-Kv10.1 lead candidates 

Purity and size of selected anti-Kv10.1 nanobodies lead candidates were validated by Western blot. 

Nanobodies were expressed in E. coli TG1TR. Three µg of the purified nanobodies were separated by 

SDS-PAGE. The blotted proteins were revealed with a HRP conjugated anti-His antibody. The nanobodies 

were expressed mainly as monomers with a molecular weight ranging from 14 - 17 kDa (arrow). To a 

minor extend, each nanobody was expressed as di-, tri or tetramer shown as faint bands with multiple 

molecular weights above 28 kDa of the monomers. Notably, nanobodies C4 and D9 had a lower 

molecular weight compared to all other nanobodies. 

Sequencing 

E. coli clones bearing the DNA of the lead candidate nanobodies were sent to GATC 

Biotech (Konstanz, Germany) for sequencing. The DNA sequence was translated into 

amino acid code and transferred to the international immunogenetics information 

system (IMGT) file format. Sequencing identified 9 unique nanobodies separated in 

two families with pronounced differences in complementary determining regions 

(CDR) 2 and 3. Nanobodies C4 and D9 shared a short CDR 3 and are characterized by a 

lower molecular weight compared to all other tested clones (Table 16). The framework 

(FR) regions were conserved throughout both families.  
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Table 16: Identification of nine unique anti-Kv10.1 nanobodies by sequencing 

 

           /           FR1           /    CDR1    /        FR2      /   CDR2   /                   FR3                 /        CDR3            /    FR4   / 

           1        10        20        30         40        50         60         70        80        90        100        110                  120    

     IMMUN 12345678901234567890123456 789012345678 90123456789012345 6789012345 678901234567890123456789012345678901234 5678901...........234567 89012345678 

     REF   QVQLVQSGG.GLVQPGGSLRLSCAAS GFTF....STYW MHWVRQAPGKGLEWVSY VYSG..DGSS NYADSVK.GRFTGSRDNSKKILYLQMDSLKPEDTALYYC TRGTSS.............WEYDY WGQGTQVTVSSAAAEQKLISEEDLNGAAHHHHHHGS 

 

A12      WPRCKLQESGG GLVQAGGSLRLSCTAA GRTF    SSYI LAWFRQAPGEERKFVAG ITG   NGET GYSNSVK GRFTISRDNAKNTVLLQMNNLKPEDTAVYYC AAHSRSTYY      YRGPDLYDY WGQGTQVTVSSAAAEQKLISEEDLNGAAHHHHHHGS 

C04     MCPRLLLVQSGG GLVQAGGSLRLSCAAS GRTF    SNYA MYWFRQTPGKDREFVAS ISYS  GTFT DYAGSVK GRFTISRDNAKNTLYLQMNSLRPEDTAVYYC SLD                  RHY WGPGTQVTVSSAAAEQKLISEEDLNGAAHHHHHHGS 

D09      MAQVQLVQSGG GLVQAGGSLRLSCAAS GRTF    SNYA MYWFRQTPGKDREFVAS ISYS  GTFT DYAGSVK GRFTISRDNAKNRLYLQMNSLKPEDTAVYYC SLD                  RLY WGQGTQVTVSSAAAEQKLISEEDLNGAAHHHHHHGS 

E12      MAEVQLVESGG GLVQAGGSLRLSCTAS GRTF    SSYI FAWFRQAPGEERKFVAG ITG   NGGT GYSNSVK GRFTISRDNAKNTVLLQMNNLKPDDTAVYYC AAHSRSSYY      YRGPDLYDY WGQGTQVTVSSAAAEQKLISEEDLNGAAHHHHHHGS 

F05      MAQVQLVQSGG GLVQAGGSLRLSCAAS GRTF    ENYI MAWFRQAPGEERKFVAA ITG   NGGT GYADSVK GRFTISRDNAKNTVLLQMNSLKPEDTAVYYC AAHSRSSYY      YKGPDLYDY WGQGTQVTVSSAAAEQKLISEEDLNGAAHHHHHHGS 

F06      MAQVQLVQSGG GLVQAGGSLRLSCTAS GRTF    GSYI LAWFRQTPGEERKFVAG ITG   NGGT GYSDSVK GRFTISRDNAKNTVLLQMNNLKPEDTAVYYC AAHSRSSYY      YKGPDLYDY WGQGTQVTVSSAAAEQKLISEEDLNGAAHHHHHHGS 

G01     WPKVQLVEVWGR IGAKRGGSLRLSCTAA GRTF    SSYI LAWFRQAPGEERKFVAG ITG   NGET GYSNSVK GRFTISRDNAKNTVLLQMNNLKPEDTAVYYC AAHSRSIYY      YRGPDLYDY WGQGTQVTVSSAAAEQKLISEEDLNGAAHHHHHHGS 

G04      MAQVQLVQSGG GLVQAGGSRRLSCTAS GRTF    SSYI LGWFRQAPGEERKFVAA ITG   NGGT GYADSVK GRFTISRDNAKNTVLLQMNSLKPEDTAVYYC AAHSRSSYY      YRGPDLYDY WGQGTQVTVSSAAAEQKLISEEDLNGAAHHHHHHGS 

G10      MAEVQLVESGG GLVQPGGSLRLSCTAA GRTF    STYI LAWFRQAPGEERKFVAG ITG   NGET GYSNSVK GRFTIARDNAKNTVFLQMNNLKPEDTAVYYC AAHSRSTYY      YKGPDLYDY WGQGTQVTVSSAAAEQKLISEEDLNGAAHHHHHHGS 

 

Protein sequences of nine anti-Kv10.1 nanobodies are shown in the IGMT file format. Nine unique clones were identified belonging to two different families with pronounced 

differences in CDR 2 and 3. Anti-Kv10.1 nanobodies C4 and D9 (boxed) show distinct differences compared to all other anti-Kv10.1 nanobodies. The framework (FR) regions are 

conserved throughout both families. Nanobody specific conserved lysines (red K) in the frameworks matched mainly the general reference structure (REF). The nanobody 

specific KGLEW pattern (light blue) in FR2 is not conserved throughout the anti-Kv10.1 nanobodies (blue). 
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Determination of the equilibrium binding constant Kd 

In order to estimate the binding quality of eight anti-Kv10.1 nanobodies (A9, A12, C4, 

D9, F5, F6, G1, G4), an ELISA plate was coated with H1X and incubated with decreasing 

nanobody concentrations ranging from 30 µM to 0.5 nM (Figure 11A). By applying 

nonlinear regression with a one-site total binding model the equlibrium binding 

constant Kd was determined, i.e. the concentration needed to achieve half-maximum 

binding at equilibrium. Figure 11B depicts the fitting of the applied model and revealed 

Kd values ranging between 10 and 942 nM. Interestingly, nanobodies C4 and D9, 

having a different CDR compared to all other nanobodies, had the best Kd of 86 nM 

and 10 nM, respectively compared to Kd values up to 942 nM of G4 that lies one order 

of magnitude higher. 

 

Figure 11: Binding capacities of anti-Kv10.1 nanobodies 

The equilibrium binding constants Kd of anti-Kv10.1 nanobodies were determined by ELISA. (A) 

Different anti-Kv10.1 nanobodies were titrated from 30 µM to 0.5 nM and incubated on immobilized 

H1X on ELISA plates. (B) A nonlinear regression analysis with a one-site total binding model was applied 

to determine Kd values that ranged between 10 and 942 nM. Interestingly, nanobodies C4 and D9 had 

the lowest and best Kd values compared to all other anti-Kv10.1 nanobodies tested. 
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Determination of the affinity KD by surface plasmon resonance analysis 

Since nanobodies C4 and D9 showed the best Kd values, they were further analyzed by 

in-source-decay (ICD) MS for determination of their actual molecular weights2. 

Molecular weights of 15117 Da and 15167 Da were identified for nanobodies C4 and 

D9, respectively.  

The nanobodies were further analyzed for their affinity (KD), association (ka) and their 

dissociation (kd) constants by SPR. In contrast to the Kd value, which represents the 

binding only in equilibrium, the affinity KD is the ratio of dissociation to association and 

depicts the actual binding. Therefore, nanobodies D9 and C4 were diluted to 

concentrations ranging from 3.12 nM to 200 nM and 25 nM to 400 nM, respectively. 

Sensograms were recorded for binding of the nanobodies on immobilized H1X (Figure 

12). Affinities of 1.7 µM and 77 nM for C4 and D9, respectively, were determined by 

using a 1:1 Langmuir model (Table 17) resulting in comparable Kd values as previously 

determined for D9 (Figure 11A). Interestingly, C4 is characterized by a slower 

association and dissociation constant compared to D9. 

 
Figure 12: Sensograms of anti-Kv10.1 nanobodies C4 and D9 

Affinity (KD), association (ka) and dissociation (kd) constants were determined for anti-Kv10.1 

nanobodies C4 and D9 by SPR. Nanobodies were diluted to concentrations ranging from 3.12 nM (light 

blue) to 200 nM (gray line) and from 25 nM (purple and red line) to 400 nM (blue line) for D9 and C4, 

respectively. Sensograms were recorded for binding of nanobodies D9 and C4 on immobilized H1X. 

Affinities of 1.7 µM and 77 nM for C4 and D9, respectively were determined by applying a 1:1 Langmuir 

model. 

 
  

                                                                 
2
 ICD MS was performed by Thomas Liepold and PD. Dr. Olaf Jahn. 
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Table 17: Affinity constants of nanobodies C4 and D9 

 ka (1/Ms) kd (1/s) KD (M) 

C4 561 9.99 x 10-4 1.78 x 10-6 

D9 3.83 x 104 2.98 x 10-3 7.78 x 10-8 

 
 

3.1.2 The anti-Kv10.1 nanobodies detect Kv10.1 

 Specific detection of fusion protein H1X by ELISA and Western blot 

The specificities towards Kv10.1 of each of the expressed anti-Kv10.1 nanobody lead 

candidates were assessed by ELISA on immobilized recombinant proteins H1X and TRX. 

The capacity of all produced anti-Kv10.1 nanobodies to bind the fusion protein H1X but 

not to the negative control TRX proved the specificity of all nanobodies towards Kv10.1 

(Figure 13). Staining with the substrate ABTS showed the different amounts of 

converted substrate. Since the same protein concentrations of H1X (10 µg/ml) and 

anti-Kv10.1 nanobodies (10 µg/ml) were used, a more intense staining as obtained 

with nanobodies C4 and D9 suggests a higher affinity towards H1X compared to all 

other tested nanobodies that only yielded a light blue staining. 

 

 
Figure 13: ELISA of anti-Kv10.1 nanobody lead candidates 

The specificities towards Kv10.1 of each of the expressed anti-Kv10.1 nanobodies were validated by 

ELISA. All investigated nanobodies detected the fusion protein H1X but not the negative control TRX. 

Nanobodies were revealed by consecutive incubation with anti-myc and anti-mouse-HRP antibodies. 

Negative controls (neg) consisted of immobilized H1X or TRX without incubation of a nanobody. The 

loading control (His) proved an even coating of the wells with H1X and TRX and was revealed with the 

anti-His-HRP antibody. 
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Western blot experiments were carried out in order to evaluate the ability of Kv10.1 

nanobodies (A12, C4, D9 and G1) to bind Kv10.1 in different conformations, using the 

purified recombinant fusion protein H1X and pCDNA-3-Kv10.1-venus transfected HEK 

cell lysates as well as TRX and pCDNA-3-Ø-venus transfected HEK cell lysates as 

negative controls (Figure 14). All tested anti-Kv10.1 nanobodies detected H1X with a 

molecular weight of approximately 25 kDa on the membrane but not TRX (approx. 

20 kDa). Kv10.1 could not be detected in HEK transfected cell lysates at approx. 

110 kDa with any of the tested anti-Kv10.1 nanobodies and anti-Kv10.1 antibody 9391 

suggesting a poor transfection efficiency and low Kv10.1 expression in these cells (data 

not shown). 

 

 

Figure 14: Specific detection of blotted H1X by nanobody C4 

Representative Western blot of the detection of Kv10.1 by 

anti-Kv10.1 nanobody C4. Whole cell lysates of pcDNA3-

Kv10.1-venus and pcDNA3-Ø-venus transfected HEK cells 

(30 µg) as well as recombinant protein H1X and TRX (5 µg) 

were transferred on a nitrocellulose membrane. Incubation 

with anti-Kv10.1 nanobody C4 and detection with 

consecutive incubation of anti-myc and anti-mouse HRP 

antibodies revealed a specific protein band of approx. 28 kDa 

of H1X (indicated by arrow) but not of TRX (approx. 20 kDa). 

A detection of Kv10.1 by nanobody C4 in pcDNA3-Kv10.1-

venus transfected HEK cell lysates was not possible. 
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 Detection of the ion channel Kv10.1 by immunoprecipitation 

The anti-Kv10.1 nanobodies are able to detect the fusion protein H1X as shown in 

various experiments (Figure 13 and Figure 14). However, the intention of generating a 

novel anti-Kv10.1 nanobody was the feasibility to detect the potassium channel Kv10.1 

in cells as tumor associated protein for tumor monitoring. As a next step, the ability of 

binding of anti-Kv10.1 nanobodies to the native Kv10.1 potassium channel was 

assessed by immunoprecipitation (IP). Thus, the anti-Kv10.1 nanobodies were 

immobilized on magnetic beads and incubated with pTracer-Kv10.1 transfected HEK 

cell lysates (Figure 15). For control, pTracer-Ø transfected HEK cells were used. For 

reference, in house produced and validated mouse monoclonal anti-Kv10.1 antibody 

33 was applied for IP. Following separation by SDS-PAGE and Western blotting, the 

precipitated Kv10.1 was detected by incubation with the rabbit polyclonal anti-Kv10.1 

antibody 9391. IP using either nanobody C4 or D9 resulted in a clear band at approx. 

110 kDa in the pTracer-Kv10.1 transfected HEK lysate but not in the negative control 

pTracer-Ø transfected HEK lysate with both nanobodies (Figure 15). Reference anti-

Kv10.1 antibody 33 showed bands of the same size as obtained with the nanobodies 

C4 (Figure 15) and D9 (data not shown) assuming a successful enrichment of Kv10.1. 

Compared to anti-Kv10.1 nanobodies C4 and D9, nanobody A12 was not capable to 

precipitate Kv10.1. For illustration of the overall transfection efficiency, the cell lysates 

of pTracer-Kv10.1 and pTracer-Ø transfected HEK cells as well as the lysates of wild 

type (wt) HEK cells were loaded on the same gel and were detected with the polyclonal 

Kv10.1 antibody 9391. Only a faint band at the same size as with antibody 33 and 

nanobody C4 could be identified in the pTracer-Kv10.1 but not in the pTracer-Ø 

transfected HEK cell lysate or in wt lysates showing again a low transfection efficiency 

of Kv10.1-transfected HEK cells. 
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Figure 15: Detection of Kv10.1 by immunoprecipitation 

Representative Western blot of immunoprecipitated Kv10.1 is shown. Anti-Kv10.1 nanobodies A12 and 

C4 as well as monoclonal anti-Kv10.1 antibody 33 were incubated with either pTracer-Kv10.1 (+) or 

pTracer-Ø (-) transfected HEK cell lysates. Nanobodies were captured with an immobilized anti-myc 

antibody. Blotted precipitates were detected with polyclonal anti-Kv10.1 antibody 9391 resulting in 

clear bands at approx. 110 kDa (indicated by arrow) in the pTracer-Kv10.1 transfected cell lysates but 

not in the pTracer-Ø lysates with nanobody C4 and antibody 33 as well as in the whole cell lysates 

(lysate). No band of 110 kDa could be detected with nanobody A12 or observed in wt HEK lysates. 

Enrichment of Kv10.1 for MALDI analysis 

Since a successful detection and enrichment of Kv10.1 was shown by IP for the 

nanobodies C4 and D9, the immunoprecipitates were further analyzed by matrix 

assisted laser desorption/ionization (MALDI) time of flight (TOF) mass spectrometry 

(MS)3. A prerequisite for MS is a visible band in a Coomassie stained gel of the putative 

precipitated Kv10.1. To achieve this, the experimental approach had to be scaled up. 

As a first attempt, gels with the separated precipitate of nanobody D9 were silver 

stained because of the higher sensitivity of this assay compared to Coomassie stain. 

Using 1 mg of pTracer-Kv10.1 and pTracer-Ø transfected HEK whole cell lysate as well 

as wt HEK lysate an enrichment of a protein with a molecular weight of approximately 

110 kDa could be achieved by precipitation with 7.5 µg / 0.5 nmol nanobody D9, 

                                                                 
3
 Mass spectrometry was performed by Thomas Liepold and PD Dr. Olaf Jahn. 
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representing most likely Kv10.1 (Figure 16). This distinct band was not visible in the IP 

of the pTracer-Ø transfected HEK cell lysate or wt cell lysate.  

For MS analysis, the silver staining approach was adapted to the Coomassie staining 

approach because the silver ions and the fixative in the staining procedure interfere 

with the ionization during MS. Figure 17 shows the Coomassie stained gel after 

precipitation of putative Kv10.1 with nanobody D9. The bands in the range between 

100 and 135 kDa within the lane loaded with D9 precipitated pTracer-Kv10.1 

transfected HEK cell lysates appeared a bit more intense compared to the HEK wild 

type cell lysates. Two spots out of each of the four bands were picked and loaded on a 

MALDI target for MS analysis. The detection of the precipitated Kv10.1 was performed 

by peptide mass fingerprinting, a MS technique using MALDI-TOF. This technique 

required four major steps. First, the protein was cleaved by tryptic digestion and 

loaded on a MALDI target. In a second step, the immobilized protein became ablated 

and desorbed by the laser and ionized by the hot plume of the ablated gases. The ions 

were accelerated in an electrical field and analyzed by the time of flight mass 

spectrometer in the third step. Finally, the masses of the detected ions were checked 

against a protein database. This validation failed because the amount of detected ions 

was not sufficient to generate a hit on the database. The next approach has to be 

scaled up to enrich more Kv10.1, the protein of interest. Analysis of the ionized 

fragments resulted in no hit assuming that the amount of ionized fragments was too 

low for MALDI analysis.  
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Figure 16: Silver stained enrichment of Kv10.1 by the use of 

nanobody D9 

Anti-Kv10.1 nanobody D9 was incubated with either pTracer-

Kv10.1 or pTracer-Ø transfected HEK cell lysates or HEK-WT 

cell lysate. Nanobody D9 was captured with an immobilized 

anti-myc antibody. Precipitates were separated by SDS-PAGE 

and silver stained resulting in a clear band at approx. 110 kDa 

(indicated by arrow) in the pTracer-Kv10.1 transfected lysate 

but not in the pTracer-Ø transfected lysate or in HEK-WT cell 

lysate. 

 

 

Figure 17: Coomassie stain of precipitated Kv10.1 

Anti-Kv10.1 nanobody D9 was incubated with pTracer-Kv10.1 

or pTracer-Ø transfected HEK cell lysates. Nanobody D9 was 

captured with an immobilized anti-myc antibody. 

Immunoprecipitates were separated by SDS-PAGE and 

analyzed by Coomassie staining. A quartet of faint bands were 

observed in the range between 100 and 135 kDa (indicated by 

bracket and arrow) in the pTracer-Kv10.1 transfected HEK cell 

lysate (left) compared to three faint bands in the HEK-WT 

lysate (right). 
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Detection of the native Kv10.1 ion channel by flow cytometry 

Flow cytometry experiments were performed to validate the detection of the native 

potassium channel Kv10.1 expressed on the surface on cells with anti-Kv10.1 

nanobodies C4 and D9. As negative control, pTracer-Ø transfected HEK cells were used. 

The pTracer plasmid expresses a cycle 3 green fluorescent protein (GFP) under control 

of a cytomegalovirus (CMV) promotor and Kv10.1 as protein of interest under control 

of a Simian vacuolating virus 40 (SV40) promotor. Thus, flow cytometry data can be 

gated retrospectively using the acquired GFP fluorescence, however the expression of 

GFP indicates the successful transfection but not the expression of the protein. 

Nanobodies C4 and D9 were revealed with a consecutive incubation with anti-myc and 

anti-mouse PE antibodies. At least 20,000 cells were counted for each experiment and 

debris was excluded. The mean fluorescence intensities (MFI) of all cells were assessed 

(Figure 18A and B). Only a minimal increase of approximately 30 and 100 MFI for 

nanobody D9 and C4, respectively, compared to baseline (second and third antibody 

only) could be determined. An increase in the range of orders of magnitude would 

indicate a high expression of Kv10.1. Assuming a poor expression of a functional 

Kv10.1 potassium channel on the surface of the pTracer-Kv10.1 transfected HEK cells, 

flow cytometry data were gated by wtGFP signals. Among the initially at least 20,000 

gated cells only 4 - 30 cells per sample were positive for GFP and PE i.e. nanobody 

derived signal (Figure 18C and D). The MFI of the nanobodies doubled compared to 

baseline, but this result is statistically irrelevant due to the low number of cells (Figure 

18E and F), indicating a poor transfection efficiency. Therefore, it remains unclear if 

the nanobodies C4 and D9 detect the native ion channel Kv10.1 on cells. The 

experiment has to be repeated with better Kv10.1-transfected cells and more suitable 

reporter systems like the use of plasmids containing an internal ribosomal entry site 

entry site (IRES). 
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Figure 18: Flow cytometry of Kv10.1 transfected cells with nanobodies C4 and D9 

Anti-Kv10.1 nanobodies C4 and D9 were incubated with (A) pTracer-Kv10.1 or (B) pTracer-Ø transfected 

HEK cells. Nanobodies were revealed by consecutive incubation with an anti-myc and an anti-mouse PE 

antibody. Compared to baseline (black line), i.e. incubation with second and third antibody only, a 

minimal increase of approximately 100 MFI could be determined for C4 in (A) pTracer-Kv10.1 

transfected cells, but not in the (B) empty vector control. Due to the absence of pronounced signals 

after incubation with C4 and D9, the recorded cells were gated retrospectively for GFP since the pTracer 

plasmid expressed a cycle 3 GFP as reporter gene. The relation between GFP and PE fluorescence was 

displayed as scatter plot for (C) pTracer-Kv10.1 transfected HEK cells at (baseline) and (D) incubated with 

C4. Among initially 20,000 gated cells, only 4 to 30 were positive for GFP and PE. The MFI of the 

nanobodies in (E) pTracer-Kv10.1 transfected HEK cells doubled compared to baseline and (F) pTracer-Ø 

transfected HEK cells, however this result is statistically irrelevant due to the low number of cells. 
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The anti-Kv10.1 nanobodies were generated for the detection of Kv10.1 expressing 

tumors by in vivo SPECT. So far, the anti-Kv10.1 nanobodies C4 and D9 were identified 

as most promising clones out of 10 lead candidates. Nanobodies C4 and D9 were 

proven to specifically detect the native Kv10.1 on cells by IP. However, MALDI-TOF 

analysis to identify Kv10.1 still remains to be done. Furthermore, affinities of 1.7 µM 

and 77 nM towards the fusion protein H1X were determined for nanobodies C4 and 

D9, respectively. For in vivo tumor visualization, a specific binding of the nanobodies 

C4 and D9 to the native ion channel on the surface of cells and/or in tissue slices 

remains to be elucidated.  

Prior to in vivo application of anti-Kv10.1 nanobodies, the SPECT system had to be 

setup first. For validation of the SPECT system and for the development of the imaging 

procedure, involving radiolabeling, time of injection and time of the scan, duration of 

the scan, etc. well established tumor mouse models expressing EGFR were used. To 

achieve this, the clinically approved anti-EGFR antibody Cetuximab was applied first for 

tumor visualization as proof of principle followed by tumor visualization using an anti-

EGFR nanobody. 

3.2 Establishment of the SPECT infrastructure 

The work and transportation of radioactive substances is strictly regulated in Germany 

and rigorously controlled by local authorities. Hence all steps of the planned work 

were approved (Tgb.-Nr.: Ra 22/12-Gs/Wi) by local authorities prior start. Since no 

infrastructure for radiation protected mouse housing was on-site, a normal room was 

adapted and a self-made lead-shielded scantainer for mouse housing was installed.  

The multi pinhole SPECT system was not used with technetium-99m before and had to 

be calibrated for the use of this radionuclide. For a quantification of the acquired 

images, the detected photons on the detector had to be related to the actual counts of 

the sample. Calibration factors of 8.8 x 10-4 and 8.3 x 10-4 were determined for 

apertures 3 and 5, respectively.  

The detectors of the clinical SPECT were tested every day for contamination and once 

a week for homogeneity. To assess the image quality and resolution of the multi-
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pinhole collimators and the reconstruction algorithm implemented in the HiSPECT 

software, scans with a Jaszczak phantom were carried out. The Jaszczak phantom 

contains rods with diameters of 1 to 2 mm and was filled with 2 ml (approx. 6 GBq) 

99mTc-pertechnetate and scanned with standard settings (360° in 10 projections, 

300 sec acquisition per frame, 50.6 min total scan time) in SPECT using both apertures 

3 and 5 with a FOV of 33 x 35 mm and 50 x 60 mm, respectively. Figure 19 depicts the 

scan of the Jaszczak phantom with aperture 3 and 5 showing the different resolutions 

of the collimators. Single dots with a size of 1.2 mm and 2.0 mm in diameter were 

discriminated with aperture 3 and 5, respectively. 

 

 
Figure 19: Jaszczak-Phantom scans using different collimators 

The resolution of the multi pinhole SPECT system was determined by scans with a Jaszczak phantom. 

The phantom was filled with 2 ml (approx. 6 GBq) 
99m

Tc-NaTcO4 and scanned with standard settings 

(360° in 10 projections, 300 sec acquisition per frame, 50.6 min total scan time) in SPECT using both 

apertures 3 and 5 with a FOV of 33 x 35 mm and 50 x 60 mm, respectively. Single dots with a size of 

1.2 mm and 2.0 mm in diameter were discriminated with aperture 3 and 5, respectively. 
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3.3 Validation of EGFR expressing tumor models for SPECT 

imaging 

Antibodies and nanobodies targeting the tumor marker EGFR, which is expressed on 

the surface of a variety of tumor cells, were used for setup of the SPECT system, for 

validation of the radiolabeling procedure and for proof of principal of tumor 

visualization of EGFR expressing tumors. Three well characterized cell lines with 

different published EGFR densities of 1.33 x 105 EGF receptors/cell and 1.28 x 106 EGF 

receptors/cells for the human mammary carcinoma cell lines MDA-MB-231 and MDA-

MB-468 [94], respectively, and 2 x 106 EGF receptors/cell for the human epidermoid 

cancer cell line A431 [95] were used for tumor xenograft mouse models.  

Validation of EGFR expression by Western blotting 

First, protein expression of EGFR was investigated in human tumor cells by Western 

blotting analysis (Figure 20). A low EGFR expression level for MDA-MB-231 and high 

EGFR expression levels for MDA-MB-468 and A431 cells were determined.  

 

Figure 20: Validation of EGFR expression by Western 

blotting 

Western blot analysis of EGFR expression levels of cell 

lysates of human mammary carcinoma MDA-MB-231 and 

MDA-MB-468 cells as well as of human epidermoid 

carcinoma A431 cells are shown. High levels of EGFR (band 

at approx. 170 kDa) expression were found in MDA-MB-

468 and A431 cells compared to low EGFR expression in 

MDA-MB-231 cells. Actin (band at approx. 40 kDa) was 

used as loading control to monitor differences in the 

amount of loaded protein. 

Detection of the native EGFR by flow cytometry 

EGFR expression on the surface of the used cell lines was validated by flow cytometry 

using the clinically approved anti-EGFR antibody Cetuximab. This experiment was 

performed to validate the accessible EGFR expressed on tumor cells and to assess the 

suitability of Cetuximab as imaging probe. Therefore, the human tumor cells were 

incubated with Cetuximab (blue line) and revealed with Protein G coupled to 

AlexaFluor 488 (Figure 21). Unspecific binding was ruled out by incubation of the 

human tumor cells with a human IgG1 isotype antibody (gray line) that remained at 
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baseline levels (black line) (Figure 21A-C). The ratios of the obtained Cetuximab MFI 

and baseline MFI (Figure 21D) confirmed low EGFR expression for MDA-MB-231 and 

high expression for MDA-MB-468 and A431 cells. The ability to bind EGFR on the 

surface of the cells indicates Cetuximab as a possibly useful imaging probe for in vivo 

SPECT targeting EGFR.  

 

Figure 21: Validation of EGFR expression by flow cytometry 

The expression of EGFR was assessed for human mammary carcinoma cells (A) MDA-MB-231 and (B) 

MDA-MB-468 as well as (C) epidermoid carcinoma cells A431 with Cetuximab (blue line) and compared 

to the IgG1 isotype control (grey line) as well as baseline (black line) by flow cytometry. High EGFR 

expression levels were proven for MDA-MB-468 and A431 and a low EGFR expression level for MDA-

MB-231 cells. All antibodies were revealed by incubation with Protein G coupled to AlexaFluor 488. MFI 

of isotype antibody matched the baseline MFI values (i.e. incubation with Protein G-AF488 only), ruling 

out any unspecific binding to the tumor cells. (D) EGFR expression was displayed as ratio of Cetuximab 

MFI to baseline MFI values. 2 x 10
4
 cells per sample were recorded and the MFIs were displayed as 

histograms. 
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Validation of EGFR expression on tumor tissue slices of xenografts by IHC 

Following the determination of EGFR expression levels in vitro, the EGFR expression 

was assessed ex vivo on tumor tissue slices by IHC. Mammary carcinoma cells were 

injected orthotopically in the fat pad of the right abdominal mammary gland whereas 

the epidermoid tumor cell line was implanted subcutaneously on the right flank. The 

tumors were allowed to grow for 4 to 8 weeks to a diameter of 3 to 5 mm before they 

were dissected and analyzed by IHC for EGFR expression4. In accordance to the 

previously acquired in vitro data on cells, staining of tumor tissue with a mouse 

monoclonal anti-EGFR antibody clone SP9 revealed a minor, light brownish stain for a 

low EGFR expression in MDA-MB-231 and a positive, intense brownish stain for a high 

EGFR expression in both, MDA-MB-468 and A431 tumors (Figure 22). Interestingly, in 

MDA-MB-231 and MDA-MB-468 tumors, EGFR expression was found to be high on the 

border between tumor and surrounding tissue and to be distinctly decreased with 

distance to the border to the inner side of the tumor. MDA-MB-231 tumors had a very 

narrow border of EGFR expressing cells surrounding necrotic tissue whereas A431 

tumors were highly EGFR positive throughout the entire tumor.  

  

                                                                 
4
 EGFR staining on tumor tissue sections was performed by Bettina Jeep and Sabine Wolfgramm. 
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Figure 22: Validation of EGFR expression levels in tumors by IHC 

Paraffin tissue sections (2 µm) of orthotopic MDA-MB-231 (tumor volume: 200 mm
3
) and MDA-MB-468 

(45 mm
3
) as well as subcutaneous A431 (28 mm

3
) tumors were analyzed by IHC for EGFR expression. 

Staining of tumor tissue with a mouse monoclonal anti-EGFR antibody clone SP9 revealed minor staining 

of tumor cells for a low EGFR expression in MDA-MB-231 (left) and a positive, intense brown stain for a 

high EGFR expression in MDA-MB-468 (middle) and A431 tumors (right). In MDA-MB-231 and MDA-MB-

468 tumors, EGFR expression was high on the border between tumor and surrounding tissue and 

distinctly decreased with distance to the border to the inner side of the tumor. MDA-MB-231 tumors 

were characterized by a very narrow border of EGFR expressing cells surrounding  necrotic tissue. A431 

tumors were highly EGFR positive throughout the entire tumor. EGFR was stained with DAB and nuclei 

were counterstained with hematoxylin. Brightfield microscopy was performed with 10x magnification. 

The scale bar represents 100 µm. 

The expression of EGFR on MDA-MB-231, MDA-MB-468 and A431 cell lines as well as 

on the tumors was determined by Western blotting, flow cytometry and IHC. In all 

experiments, high EGFR levels were determined for MDA-MB-468 and A431 cells in 

contrast to low EGFR expression levels observed in MDA-MB-231 cells. Especially the 

verification of the specific binding of Cetuximab to EGFR on tumor cells indicates that 

targeting of EGFR in combination with Cetuximab might be a suitable approach for in 

vivo tumor visualization by SPECT. 

3.4 Radiolabeling 

Derivatization of full IgGs with HyNic 

Full IgG antibodies such as Cetuximab and the human IgG1 isotype control were 

modified with the bifunctional chelator HyNic to enable radiolabeling with reduced 

99mTc(II). Since HyNic was conjugated to the terminal ε-amino groups of lysines, the 

impact of the modification on the binding properties of Cetuximab to EGFR was 

determined by flow cytometry. MDA-MB-468 tumor cells were incubated with 
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Cetuximab and Cetuximab-HyNic concentrated from 10 nM to 3.12 pM, detected by 

incubation with Protein G-AF488 and subsequent measurement by flow cytometry. For 

analysis, the measured MFIs were fitted to a one side total binding model. Equilibrium 

binding constants Kd of 417 pM and 442 pM were determined for Cetuximab and 

Cetuximab-HyNic, respectively. Interestingly, lower MFIs were detected after 

incubation of the modified Cetuximab-HyNic at a saturation level at 2.5 nM indicating 

either fewer antibodies bound to the EGFR on the cell surface, or fewer molecules 

Protein G bound to the conjugated Cetuximab-HyNic compared to the unlabeled 

Cetuximab. The latter is more likely since the modification with HyNic might interfere 

with the binding of Protein G and Kd remained unaltered after modification. 

 
Figure 23: Modification of Cetuximab did not alter the Kd 

Equilibrium binding constants Kd of (A) Cetuximab and of (B) Cetuximab-HyNic were determined in a 

titration assay on MDA-MB-468 cells by flow cytometry. For analysis, the measured MFIs were (C) fitted 

to a one side total binding model. Equilibrium binding constants Kd of 417 pM and 442 pM were 

determined for Cetuximab and Cetuximab-HyNic, respectively. MDA-MB-468 tumor cells were 

incubated with Cetuximab and Cetuximab-HyNic in concentrations from 10 nM to 3.12 pM. Antibodies 

were revealed by subsequent incubation with Protein G-AF488. Lower MFIs were detected after 

incubation of the modified Cetuximab-HyNic at a saturation level of 2.5 nM. 2 x 10
4
 cells per sample 

were recorded and MFIs are displayed as histograms. For reasons of clarity, only concentrations from 

baseline (i.e. incubation ProteinG-AF488 only) to 1 nM are displayed. 
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Radiolabeling of HyNic-modified antibodies 

Labeling of HyNic modified antibodies, Cetuximab and isotype control, with 99mTc-

sodium pertechnetate (99mTc-NaTcO4) and tricine as coligand resulted in a specific 

activity of 1700 MBq/nmol ± 105 (N = 25) with a yield of 44.1 ± 10.1% and a purity of 

97.3% for 99mTc-Cetuximab (Table 18).  

Radiolabeling of anti-EGFR nanobodies via 6xHis-tag 

The anti-EGFR D10 and the irrelevant control nanobody F5 were labeled site-

specifically with [99mTc(CO)3]+ via the 6xHis tags of the nanobodies. A specific activity of 

183 MBq/nmol ± 35 and 182 MBq/nmol ± 51 and a radiochemical yield of 48.8% ± 7.0 

and 58.2% ± 6.7 were obtained for the anti-EGFR nanobody 99mTc-D10 (N = 12) and for 

the control nanobody 99mTc-F5 (N = 10), respectively. After purification, radiochemical 

purities, i.e. the amount of protein-bound activity, of 97.7% ± 1.2 (99mTc-D10) and 

98.2% ± 1.1 (99mTc-F5) were determined by ITLC (Table 18).  

Stability of each radiolabeled antibody 99mTc-Cetuximab and nanobodies 99mTc-D10 and 

99mTc-F5 was tested by instant thin layer chromatography (ITLC) after incubation in 

mouse serum at 37°C for different durations. More than 90% and 95% of the activity 

remained bound to the nanobodies and to the full IgG antibody after 4 h incubation, 

respectively. 

Table 18: Parameters of radiolabeling 

 nanobody (99mTc-D10) IgG1 antibody (99mTc-Cetuximab) 

Labeling method [99mTc(CO)3]
+ on 6xHis tag 

modification with HyNic / tricine as 
coligand 

Site-specific Yes No 

Specific activity 183 ± 35 MBq/nmol 1700 ± 105 MBq/nmol 

Radiochemical yield 48.8% ± 7.0 44.1% ± 10.1 

Radiochemical purity 97.7% ± 1.2 97.3% ± 0.4 

 

Binding properties of the unlabeled Cetuximab to EGFR were analyzed on A431 tumor 

cells expressing high EGFR levels using flow cytometry and were compared to the 

radiolabeled 99mTc-Cetuximab after decay of the radioactivity. Figure 24 depicts a slight 
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decrease of the MFIs of Cetuximab-HyNic (green line) and 99mTc-Cetuximab (red line) 

compared to results obtained by Cetuximab alone (blue line). All derivatives show a 

distinct increase in MFI in the range of two orders of magnitude compared to baseline 

(Protein G-AF488 only, black line) proving the binding of Cetuximab to EGFR expressed 

on A431 cells. The slight decrease observed for the MFIs of the modified Cetuximab 

derivatives can be explained by the modification of the Fc portion of the antibody with 

HyNic, that might hamper the binding of Protein G to the Fc portion. 

 

 
Figure 24: Radiolabeled Cetuximab binds to EGFR 

Binding capacities of Cetuximab (blue line), Cetuximab-HyNic (green line) and radiolabeled 
99m

Tc-

Cetuximab (red line) to EGFR expressed on human mammary carcinoma cells MDA-MB-468 were 

investigated by flow cytometry and compared to the human IgG1 isotype control (grey line). All 

antibodies were revealed by incubation with Protein G coupled to AlexaFluor 488. No pronounced 

alteration of the binding properties to EGFR were caused by the radiolabeling procedure. However, a 

slight decrease of both, MFIs of modified Cetuximab compared to unmodified Cetuximab was detected 

and might be due to an impaired binding of Protein G to the Fc portion of the modified antibody. MFIs 

of IgG1 isotype matched the MFI values of baseline (i.e. incubation with Protein G-AF488 only), ruling 

out any unspecific binding of Cetuximab to the tumor cells. 2x10
4
 cells per sample were recorded and 

the MFIs are displayed as histograms. 

Detection of EGFR with anti-EGFR nanobody D10 by flow cytometry 

In analogy to the analysis of the full IgG1 Cetuximab, binding properties of the 

unlabeled nanobodies D10 and F5 to endogenously expressed EGFR on A431, MDA-

MB-231 and MDA-MB-468 tumor cells were compared to results of the radiolabeled 

nanobodies 99mTc-D10 and 99mTc-F5 using flow cytometry after decay of the 

radioactivity. In all three cell lines no differences in the MFIs between the radiolabeled 

99mTc-D10 and 99mTc-F5 (red line) and unlabeled (blue line) nanobodies D10 and F5 
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were measured. This demonstrates that the radiolabeling procedure caused no 

alteration of the binding properties of the nanobody to EGFR (Figure 25). As expected, 

irrelevant nanobodies F5 and 99mTc-F5 were negative on all cell lines (light blue and red 

lines) ruling out an unspecific binding of nanobodies to the investigated tumor cells. 

The MFI of the anti-EGFR nanobody D10 correlated well with the receptor density on 

the cell surface of A431 and MDA-MB-468 cells, both characterized by a high level of 

EGFR expression (Figure 25B+C). No detectable EGFR expression could be detected on 

MDA-MB-231 cells (Figure 25A) representing the detection limit for the anti-EGFR 

nanobody D10 since no increase of the MFI compared to baseline could be detected 

under these conditions.  

 

Figure 25: Assessment of binding capacities of radiolabeled nanobodies 

Binding capacities of anti-EGFR nanobody D10 (blue line) and radiolabeled 
99m

Tc-D10 (red line) to EGFR 

expressed on (A) mammary carcinoma cells MDA-MB-231 and (B) MDA-MB-468 as well as (C) 

epidermoid carcinoma cells A431 were investigated by flow cytometry and compared to the results 

obtained by the irrelevant control nanobody F5 (light blue line) and by the radiolabeled 
99m

Tc-F5 (light 

red line). All nanobodies were revealed by consecutive incubation with an anti-myc antibody and goat-

anti-mouse antibody coupled to PE. No alteration of the binding properties to EGFR caused by the 

radiolabeling procedure were observed. MFIs of control nanobody F5 matched the MFI values of 

background and negative control (i.e. incubation with anti-myc antibody and goat-anti-mouse-PE only), 

ruling out any unspecific binding to the tumor cells. 5x10
4
 cells per sample were recorded and the MFIs 

are displayed as histogram. 

3.5 SPECT scans  

3.5.1 Initial SPECT scans 

Labeling of nanobodies and antibodies with generator-based 99mTc-sodium 

pertechnetate (oxidation state +VII) always involves a reduction to remove oxygen 

atoms and permit the establishment of covalent bonds between the nitrogen atoms of 
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the modified antibody or the histidine of the nanobodies with the Tc-core. The 

reduction with tin chloride to generate Tc (oxidation state +II) suitable for the labeling 

of HyNic-modified antibodies can lead to the formation of colloids. However, the 

addition of tricine as a coligand prevents the formation of colloids and stabilizes the 

Tc-atom on the nitrogen of the HyNic chelator. In order to rule out unspecific signals 

from unbound activity or aggregates during the labeling process, initial SPECT scans 

with all chemicals used for the radiolabeling, such as 99mTc-NaTcO4, Tc-colloids and tin 

(Sn)-reduced Tc with tricine as coligand, were carried out in healthy non-tumor bearing 

nude mice. Approximately 100 MBq of the respective tracer were injected i.v. and 

SPECT scans were performed at different time points from 5 min to 24 h post injection 

(Figure 26). After the last scan at 24 h post injection the mice were sacrificed and the 

remaining activity in the organs was measured in a gamma counter.  

Shortly, 5 min after administration of 99mTc-NaTcO4 an uptake in the thyroid and the 

stomach could be observed. In the course of investigation, activity was detected in the 

bladder after 25 min and in the intestine with increasing signals from 90 min to 6 h. 

After 24 h activities could be detected in the stomach and intestine (Figure 26). Ex vivo 

biodistribution analysis revealed that the activity determined in the intestine was 

derived from the chymen. Since the food was not supposed to be radioactive, the 

empty stomach and the stomach content were analyzed separately, detecting high 

activities in both, empty stomach and stomach content. This suggested an uptake in 

the stomach by the sodium/iodine symporter of 99mTc-NaTcO4 and a subsequent 

passage in the lumen and intestine (Figure 27). A similar distribution pattern, uptake 

via the stomach, was observed after the injection of tin reduced 99mTc-NaTcO4 with 

tricine as coligand that was produced analog to the labeling procedure of the HyNic-

modified antibodies. A very different distribution pattern was achieved by the use of 

Tc-colloids prior to the addition of the coligand tricine that prevents the formation of 

Tc-colloids. The administration of Tc-colloids resulted in a high uptake in the liver and 

spleen of 45.2% ID/g ± 6.7 and 21% ID/g ± 1.4, respectively after 24 h post injection 

determined by ex vivo biodistribution analysis. After 24 h all tracers were completely 

removed from the blood pool resulting in remaining activities in the blood ranging 

from 0.01% ID/g to 0.05% ID/g (Figure 27). 
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Figure 26: In vivo SPECT scans of 
99m

Tc tracers 

Initial SPECT scans after injection of different chemicals used for the radiolabeling, 
99m

Tc-NaTcO4 (left), 

tin (Sn)-reduced Tc with tricine as coligand (middle) and Tc colloids (right) were carried out in healthy 

non-tumor bearing nude mice. Approximately 100 MBq of the respective tracer were injected i.v. and 

SPECT scans were performed 24 h post injection. After application of 
99m

Tc-NaTcO4 and Sn reduced Tc 

with tricine as coligand activities in the stomach and intestine could be detected, whereas the 

application of Tc colloids resulted in pronounced liver and spleen signals. Since data are presented as 3D 

maximum intensity projection, the signals in the different images are not comparable. 

 

 

Figure 27: Ex vivo biodistribution analysis of 
99m

Tc-tracers 

The uptakes of the intermediates for Cetuximab labeling, 
99m

Tc-NaTcO4 , tin reduced 
99m

Tc-technetium 

with coligand tricine and 
99m

Tc colloids to the organs were assessed by ex vivo biodistribution analysis 

24 h post i.v. injection to non-tumor bearing nude mice. For 
99m

Tc-NaTcO4 (N = 3, left) high uptakes in 

the stomach (4.1% ID/g ± 0.9) and in the stomach content (2.6% ID/g ± 0.5) was observed. Except for 

liver (0.4% ID/g ± 0.1) and intestine with chyme (0.1% ID/g ± 0.1) the uptake of 
99m

Tc-NaTcO4 to all other 

tissues was below 0.1% ID/g. After injection of tin reduced 
99m

Tc-technetium with coligand tricine in a 

mouse (middle) uptakes below 0.6% ID/g to all organs were determined. Application of 
99m

Tc colloids 

(N = 3, right) resulted in a high uptake in the liver and spleen of 45.2% ID/g ± 6.7 and 21% ID/g ± 1.4, 

respectively after 24 h post injection. After 24 h all tracers were completely removed from the blood 

pool resulting in determined activities of the blood with values ranging from 0.01% ID/g to 0.05% ID/g. 

Data are shown as mean ± SD in % ID/g. 
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3.5.2 Tumor visualization with 99mTc-Cetuximab 

Blood clearance of 99mTc-Cetuximab 

Since the labeling of Cetuximab with reduced 99mTc-pertechnetate was successful, 

99mTc-Cetuximab was used for the visualization of primary MDA-MB-231 and MDA-MB-

468 mammary carcinomas that developed after orthotopic cell implantation. Before 

using the 99mTc-Cetuximab in SPECT, the clearance from blood pool was determined in 

a non-tumor bearing mouse to estimate the best time point for SPECT scans, i.e. when 

the remaining activity in the blood reached its plateau (Figure 28). A serum half-life of 

180 min with a plateau of 6.1% ID/g ± 0.89 were identified for 99mTc-Cetuximab 

allowing imaging from approx. 16 h post injection. For organizational matters SPECT 

scans were performed with 99mTc-Cetuximab approx. 24 h post injection. 

 
Figure 28: Blood clearance of 

99m
Tc-Cetuximab 

The blood clearance and half-life in blood were determined in a non-tumor bearing mouse for IgG1 
99m

Tc-Cetuximab (half-life 180 min, N=1) by non-linear regression applying a of a one phase exponential 

decay fitting. A remaining activity of 6.1% ID/g ± 0.89 was determined as plateau for 
99m

Tc-Cetuximab. 
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Validation of the specific in vivo tumor visualization with 99mTc-Cetuximab 

The specificity of the binding of 99mTc-Cetuximab to EGFR in vivo was validated by use 

of an 99mTc-isotype antibody. 15 µg (98 pmol, 103 MBq ± 14) of the radiolabeled 99mTc-

isotype antibody were injected i.v. in MDA-MB-468 tumor bearing mice (N = 3) and in 

vivo SPECT scans were performed 24 h post injection. The next day, the same mice 

received 15 µg (98 pmol, 95 MBq ± 5) of the radiolabeled 99mTc-Cetuximab i.v. and 

underwent in vivo SPECT scans 24 h post injection (Figure 29A). A significant tumor 

uptake of 99mTc-Cetuximab of 6.4% ID/cm3 ± 2.0 (p < 0.05) was determined compared 

to unspecific tissue uptake (area on the contra lateral side, consisting presumably of 

muscle, fat and bone) of 0.6% ID/cm3 ± 0.2 (Figure 29B). The 99mTc-isotype antibody 

revealed a significant tumor uptake of 2.1% ID/cm3 ± 0.1 (p < 0.005) compared to 

unspecific tissue uptake of 0.75% ID/cm3 ± 0.05. Nevertheless, the tumor uptake of 

99mTc-Cetuximab was significantly higher compared to the 99mTc-isotype (p < 0.05) 

concluding a specific uptake of 99mTc-Cetuximab to MDA-MB-468 tumors. Values for 

unspecific uptake of 99mTc-IgG1 and 99mTc-Cetuximab in tissues did not differ 

significantly. 
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Figure 29: Uptake of 
99m

Tc-Cetuximab to MDA-MB-468 tumors was specific 

In vivo validation of specific binding of 
99m

Tc-Cetuximab to EGFR by SPECT. MDA-MB-468 tumor bearing 

mice (N = 3) received (A) 15 µg (98 pmol, 103 MBq ± 14) of the radiolabeled 
99m

Tc-isotype antibody and 

(B) 15 µg (98 pmol, 95 MBq ± 5) of the radiolabeled 
99m

Tc-Cetuximab i.v. on consecutive days. In vivo 

SPECT scans were performed 24 h post each injection. A significant tumor uptake of 
99m

Tc-Cetuximab of 

6.4% ID/cm
3
 ± 2.0 was determined compared to unspecific tissue uptake (area on the contra lateral 

side, consisting presumably of muscle, fat and bone) of 0.6% ID/cm
3
 ± 0.2. The 

99m
Tc-isotype antibody 

revealed a significant tumor uptake of 2.1% ID/cm
3
 ± 0.1 compared to an unspecific tissue uptake of 

0.75% ID/cm
3
 ± 0.05. The tumor uptake of 

99m
Tc-Cetuximab was significantly higher compared to the 

99m
Tc-isotype concluding a specific uptake of 

99m
Tc-Cetuximab to MDA-MB-468 tumors. Unspecific 

tissue uptakes of both radiolabeled antibodies did not differ significantly. 360° SPECT scans were 

performed in 10 frames with an acquisition of 180 sec per frame; total scan time were 30 min. Tumor 

derived signals were segmented and compared to an area of the same volume of the contra lateral 

side. Data are shown as mean ± SD in % ID/cm
3
. Tumor and tissue uptakes were compared applying a 

ratio paired t test. *: p < 0.05; **: p < 0.005. Bar represents 10 mm. 
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Visualization of tumors by in vivo SPECT and biodistribution analysis 

applying 99mTc-Cetuximab 

After demonstrating specific tumor visualization of of high EGFR expressing MDA-MB-

468 tumors by the use of 99mTc-Cetuximab in combination with in vivo SPECT, the 

approach was adapted to the low EGFR expressing MDA-MB-231 tumors. A dose 

finding study figured out 10 µg (65 pmol) as best concentration for tumor visualization 

applying multi-pinhole SPECT. In this study in vivo SPECT scans and ex vivo 

biodistribution analysis was performed on different cohorts. 

Mice bearing the high and low EGFR expressing MDA-MB-468 and MDA-MB-231 

tumors, respectively received each 65 pmol (10 µg; 87 MBq ± 12) 99mTc-Cetuximab i.v. 

For biodistribution analysis two MDA-MB-468 tumor bearing mice received 65 pmol 

(10 µg; 82 MBq ± 4) 99mTc-IgG1 isotype for biodistribution analysis. In vivo SPECT scans 

(tumor volumes: 115.2 mm3 ± 73.8; N = 10) or ex vivo biodistribution analysis (tumor 

weights: 32 mg ± 20; N = 7) of MDA-MB-468 tumor bearing mice were performed 

24 post probe injection. In vivo SPECT scans revealed a high tumor uptake of 99mTc-

Cetuximab with values of 5.5% ID/cm3 ± 2.2 compared to an unspecific tissue uptake 

(area of the contra lateral side) of 0.7% ID/cm3 ± 0.2 resulting in a tumor to tissue ratio 

of 7.8 ± 3.2 (Table 19). Besides the distinct tumor derived signal a high accumulation in 

the liver could be detected assuming hepatic excretion of 99mTc-Cetuximab. 

Furthermore, unspecific accumulation in the armpits of the forelegs suggest unspecific 

uptake in the lymph nodes, especially within the axial or brachial lymph nodes.  

A high tumor uptake of 99mTc-Cetuximab of 14.6% ID/g ± 6.9 was determined ex vivo 

for MDA-MB-468 tumors compared to a remaining activity of 5.5% ID/g ± 1.9 in the 

blood and an muscle uptake of 0.5% ID/g ± 0.1 resulting in tumor to blood and tumor 

to muscle ratios of 3.1 ± 2.5 and 30.7 ± 18.3, respectively (Figure 31 and Table 20). 

Application of the 99mTc-IgG1 isotype resulted in a low MDA-MB-468 tumor uptake of 

1.1% ID/g ± 0.2 determined by ex vivo biodistribution analysis. Unspecific uptake to the 

muscle and remaining activity in the blood were comparable to 99mTc-Cetuximab 

(Figure 31 and Table 19). 
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Table 19: In vivo determined tumor and tissue uptake of 
99m

Tc-Cetuximab 

Tumor model N 
Volume 

mm3 
Tumor uptake 

% ID/cm3 
Tissue uptake 

% ID/cm3 
Tumor to 

tissue ratio 

MDA-MB-468 10 115.2 ± 73.8 5.49 ± 2.20 0.74 ± 0.25 7.8 ± 3.2 

MDA-MB-231 5 1247 ± 1199 2.13 ± 0.37 0.56 ± 0.25 4.3 ± 1.8 

In vivo tumor and tissue uptakes were determined 24 h post 
99m

Tc-Cetuximab intravenous injection in 

tumor bearing mice by in vivo SPECT scans. Volumes of tumor derived signals were displayed in mm
3
. 

Tissue uptake was determined by segmentation of a region with the same size as the tumor containing 

tissue only on the contra lateral side and used for determination of the in vivo tumor to tissue ratios. 

Data are shown as mean ± standard deviation in % ID/cm
3
. 
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Figure 30: Tumor uptake of 
99m

Tc-Cetuximab was dependent on EGFR expression 

Mice bearing the high and low EGFR expressing MDA-MB-468 (N = 10) and MDA-MB-231 (N = 5) 

tumors, respectively received 65 pmol (10 µg; 87 MBq ± 12) 
99m

Tc-Cetuximab i.v. (A) In vivo SPECT scans 

were performed 24 post injection and revealed a significant tumor uptake of 
99m

Tc-Cetuximab of 

5.5% ID/cm
3
 ± 2.2 and 2.1% ID/cm

3
 ± 0.4 to MDA-MB-468 and MDA-MB-231 tumors compared to tissue 

uptakes (area of the contra lateral side) of 0.7% ID/cm
3
 ± 0.2 (MDA-MB-468) and 0.6% ID/cm

3
 ± 0.2 

(MDA-MB-231). Furthermore, the uptake to MDA-MB-468 tumors was significantly higher than to 

MDA-MB-231 tumors but unspecific tissue uptakes of 
99m

Tc-Cetuximab did not differ significantly. A 

high accumulation in the liver could be detected, assuming hepatic excretion of 
99m

Tc-Cetuximab. Also, 

accumulation in the armpits of the forelegs was detected suggesting unspecific uptake of 
99m

Tc-

Cetuximab to the lymph nodes. 360° SPECT scans were performed in 10 frames with an acquisition of 

180 sec per frame; total scan time were 30 min. Tumor derived signals were segmented and compared 

to an area of the same volume of the contra lateral side. Data are presented as mean ± SD in % ID/cm
3
. 

Tumor and tissue uptakes were compared applying a ratio paired t test. An unpaired two-tailed t test 

was used for comparison between MDA-MB-468 and MDA-MB-231. **: p < 0.05; ****: p < 0.0001. 
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Mice bearing low EGFR expressing MDA-MB-231 tumors underwent in vivo SPECT 

scans (tumor volumes: 1247 mm3 ± 1199; N = 5) or ex vivo biodistribution analysis 

(tumor weights: 164 mg ± 200; N = 8) 24 h post injection. Compared to high EGFR 

expressing MDA-MB-468 tumors, in vivo SPECT scans revealed a relatively low tumor 

uptake of 99mTc-Cetuximab to MDA-MB-231 tumors of 2.1% ID/cm3 ± 0.4 compared to 

an unspecific tissue uptake (area of the contra lateral side) of 0.6% ID/cm3 ± 0.2 

resulting in an in vivo tumor to tissue ratio of 4.4 ± 1.8 (Figure 30 and Table 19). 

Noteworthy, the MDA-MB-231 tumors were approx. 10 fold larger compared to MDA-

MB-468 tumors. Similar to the results obtained in MDA-MB-468 tumor bearing mice, a 

high accumulation in the liver and unspecific accumulations in the armpits of the 

forelegs were detected.  

A tumor uptake of 99mTc-Cetuximab of 6.2% ID/g ± 2.7 was determined ex vivo for 

MDA-MB-231 tumors compared to a remaining activity of 5.2% ID/g ± 1.3 in the blood 

and an muscle uptake of 0.5% ID/g ± 0.1 resulting in tumor to blood and tumor to 

muscle ratios of 1.2 ± 0.4 and 11.2 ± 4.4, respectively (Figure 31 and Table 20). 

 
Figure 31: Ex vivo biodistribution analysis of 

99m
Tc-Cetuximab in tumor bearing mice 

Ex vivo biodistribution was carried out 24 h post i.v. injection of 65 pmol (10 µg) in MDA-MB-468 (N = 7) 

or MDA-MB-231 (N = 8) tumor bearing mice. The 
99m

Tc-Isotype IgG was administered to MDA-MB-468 

tumor bearing mice (N = 2). The tumor uptake of 
99m

Tc-Cetuximab was dependent on the EGFR 

expression level with values of 14.6% ID/g ± 6.9 for the high EGFR expressing MDA-MB-468 and 

6.2% ID/g ± 2.7 for the low EGFR expressing MDA-MB-231 tumor. Administration of the isotype control 

IgG resulted in an low uptake of 1.1% ID/g ± 0.3 in a MDA-MB-468 tumor. Both antibodies had an 

equally high remaining activity in the blood (5.5% ID/g ± 1.9) and were removed from the body via 

hepatic excretion (liver uptake: 16.8% ID/g ± 4.3). Data are presented as mean ± SD in % ID/g.  
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Table 20: Ex vivo determined tumor and tissue uptake of 
99m

Tc-Cetuximab 

    Uptake  Ratio 

Tumor model Antibody N 
Tumor weight 

mg 
Tumor 
% ID/g 

Blood 
% ID/g 

Muscle 
% ID/g 

 
Tumor to blood Tumor to tissue 

MDA-MB-468 99mTc-Cetuximab 7 32 ± 20 14.60 ± 6.89 5.54 ± 1.90 0.50 ± 0.12  3.1 ± 2.5 30.7 ± 18.3 

MDA-MB-231 99mTc-Cetuximab 8 164 ± 200 6.19 ± 2.71 5.20 ± 1.28 0.54 ± 0.08  1.2 ± 0.4 11.2 ± 4.4 

MDA-MB-468 99mTc-IgG1 Isotype 2 22 ± 7 1.14 ± 0.22 4.99 ± 0.41 0.32 ± 0.06  0.2 ± 0.03 3.4 ± 0.04 

Ex vivo tumor and tissue uptakes were determined after dissection 25 h post 
99m

Tc-Cetuximab i.v. injection. Muscle was used for calculating ex vivo tissue uptake. Ex vivo 

uptakes are expressed as mean ± SD in % ID/g. 
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3.5.3 Tumor visualization with anti EGFR nanobody 99mTc-D10 

Similar to the experiments with 99mTc-Cetuximab the orthotopic MDA-MB-468 and 

MDA-MB-231 human mammary carcinoma mouse models were used to assess the 

efficacy of anti-EGFR nanobody 99mTc-D10 to detect mammary tumors with a different 

EGFR expression level. First, the blood clearance was determined in non-tumor bearing 

mice with a serum half-life of 4.9 min with a plateau of 0.26% ID/g ± 0.24 was 

determined for 99mTc-D10 allowing imaging from approximately 45 min post injection 

(Figure 32). 

 

Figure 32: Blood clearance of 
99m

Tc-D10 

The blood clearance and half-life in blood were determined in non-tumor bearing mice for anti-EGFR 

nanobody 
99m

Tc-D10 (half-life of 4.9 min; N=2) by non-linear regression applying a of a one phase 

exponential decay fitting. A remaining activity of 0.26% ID/g ± 0.24 was determined as plateau for the 

nanobody 
99m

Tc-D10. 

Mice bearing high EGFR expressing MDA-MB-468 (Figure 20 and Figure 21) tumors 

with a mean volume of 56.5 mm3 ± 21.2 (N=5; range 35.1 - 89.4 mm3) were used for in 

vivo tumor detection with anti-EGFR nanobody 99mTc-D10 by SPECT. All MDA-MB-468 

tumors were detected reliably by in vivo SPECT scans 45 min after administration of 17 

pmol anti-EGFR nanobody 99mTc-D10 with a tumor to tissue (area of the contra lateral 

side) ratio of 42.8 ± 27.0 (Figure 33D). Ex vivo analyses of biodistribution in MDA-MB-

468 tumor bearing mice revealed a tumor uptake of 1.3% ID/g ± 0.27 (Figure 33B) with 

a tumor to blood ratio of 5.4 ± 1.4 and a tumor to tissue ratio of 12.5 ± 7.3 (Figure 33C, 
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Table 21). An uptake of 192.5% ID/g ± 30.9 and 3.4% ID/g ± 1.4 of 99mTc-D10 to the 

kidneys and the liver, respectively was determined ex vivo (Figure 33B). MDA-MB-231 

tumors with a very low expression of EGFR showed no detectable uptake of the anti-

EGFR nanobody 99mTc-D10 (Figure 34). Neither in vivo SPECT nor ex vivo biodistribution 

analyses demonstrate an uptake of 99mTc-D10 in MDA-MB-231 tumors with a mean 

volume of 124 mm3 ± 102 (N=5; range 21.1 - 247.5 mm3) (Figure 33A and C). The lack 

of 99mTc-D10 to accumulate within the tumor indicated no unspecific binding or tumor 

uptake of the probe.  

 

Figure 33: Tumor uptake of 
99m

Tc-D10 was dependent on EGFR expression 

MDA-MB-231 and MDA-MB-468 tumor bearing mice received 17 pmol (2.3 MBq) anti-EGFR nanobody 
99m

Tc-D10 and 17 pmol of irrelevant nanobody 
99m

Tc-F5 (2.4 MBq) intravenously. Ex vivo biodistribution 

analysis 100 min post injection of anti-EGFR nanobody 
99m

Tc-D10 are shown in (A) MDA-MB-231 (N = 5) 

and (B) MDA-MB-468 (N=5) tumor bearing mice. (C) Ex vivo tumor to blood ratios and tumor to tissue 

(muscle) ratios of nanobody 
99m

Tc-D10 are presented. (D) In vivo SPECT scans were performed in MDA-

MB-468 tumor bearing mice 45 min post injection of either nanobody 
99m

Tc-D10 or control nanobody 
99m

Tc-F5. The tumor volume was segmented and compared to an equally sized contra lateral region. *P 

< 0.05, unpaired two-tailed t-Test, for in vivo tumor to tissue ratio nanobody 
99m

Tc-D10 vs. control 

nanobody 
99m

Tc-F5. 
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Figure 34: Tumor visualization of mammary MDA-MB-468 and MDA-MB-231 tumors 

Representative SPECT and CT images of mice are shown that bear an orthotopic MDA-MB-468 tumor 

(volume 64 mm
3
) or a MDA-MB-231 tumor (volume 129 mm

3
) and received 17 pmol (2.4 - 3.1 MBq) 

anti-EGFR nanobody 
99m

Tc-D10 by i.v. administration. SPECT was performed 45 min post injection. 

Contrast-enhanced CT using Ultravist370 (left panel) and SPECT scans (right panel) were performed on 

different modalities and images were aligned by hand according to 
99m

Tc-pertechnetate landmarks 

(middle panel). Tumors are indicated by white arrows. A high tumor accumulation with a low 

background was achieved with anti-EGFR nanobody 
99m

Tc-D10 in the MDA-MB-468 tumor model (upper 

panel). No accumulation of nanobody 
99m

Tc-D10 was detectable in the MDA-MB-231 tumor model with 

a very low EGFR expression (lower panel). 
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Table 21: Tumor and tissue uptake of 
99m

Tc-D10 and 
99m

Tc-Cetuximab 

      Tumor uptake  Tissue uptake  Ratios 

Tumor model Antibody N 
Tumor size  

mm3 

Tumor 
weight 

mg 

 
ex vivo 
% ID/g 

in vivo 
% ID/cm3 

 
ex vivo 
% ID/g 

in vivo 
% ID/cm3 

 Tumor to 
blood 
ex vivo 

Tumor to 
tissue 
ex vivo 

Tumor to 
tissue 
in vivo 

A431 
99mTc-

Cetuximab 
5 

40.0 ± 
38.9 

50 ± 
34 

 
6.5 ± 2.0 2.1 ± 0.8 

 
0.43 ± 0.1 0.5 ± 0.2 

 
0.9 ± 0.3 15.2 ± 4.1 8.4 ± 7.2 

A431 99mTc-D10 6 
26.6 ± 
16.7 

43 ± 
30 

 
2.3 ± 0.7 1.0 ± 0.6 

 
0.14 ± 0.1 0.03 ± 0.01 

 
12.1 ± 3.5 25.6 ± 18.8 36.2 ± 20.9 

MDA-MB-468 99mTc-D10 5 
56.5 ± 
21.2 

94 ± 
51 

 
1.3 ± 0.3 0.6 ± 0.2 

 
0.15 ± 0.1 0.02 ± 0.02 

 
5.4 ± 1.4 12.5 ± 7.3 42.8 ± 27.1 

MDA-MB-231 99mTc-D10 5 
124.0 ± 
102.3 

251 ± 
205 

 
0.25 ± 0.1 n.a. 

 
0.06 ± 0.02 0.02 ± 0.01 

 
1.1 ± 0.5 n.a. n.a. 

In vivo tumor and tissue uptakes were determined 45 min post 
99m

Tc-D10 and 24 h post 
99m

Tc-Cetuximab i.v. injection in tumor bearing mice by in vivo SPECT scans. Ex vivo 

tumor and tissue uptakes were determined after dissection following in vivo SPECT, approx. 100 min post 
99m

Tc-D10 and 25 h post 
99m

Tc-Cetuximab injection. Tumor sizes were 

determined by contrast enhanced CT scans. Muscle tissue was used for calculating ex vivo tissue uptake. For in vivo SPECT scans, a region of the same size as the tumor 

containing tissue only was segmented on the contra lateral side that was used for determination of the in vivo tumor to tissue ratios. In vivo and ex vivo uptakes were 

expressed as percentage of injected dose per cubic centimeter (% ID/cm
3
) and gram (% ID/g), respectively. Data are shown as mean ± standard deviation. n.a. = not applicable. 
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3.5.4 Visualization of very small tumor lesions 

Mice bearing human A431 epidermoid subcutaneous tumor xenografts of small size 

with a mean tumor volume of 26 mm3 (N = 6; range 7 - 54 mm3, Table 21) received the 

anti-EGFR nanobody 99mTc-D10 that accumulated in the tumor and generated a high 

tumor to tissue (muscle) contrast. In vivo SPECT revealed a high contrast within the 

tumor with tumor to tissue (area of the contra lateral side) ratios of 36.2 ± 20.9 in 5 

out of 6 animals (Figure 35D and Figure 36). Besides tumor derived signals, the kidneys 

and the liver were clearly visible by SPECT imaging. The specific tumor uptake was 

validated in SPECT scans in the same mice prior to 99mTc-D10 administration by 

applying the control nanobody F5 that showed in all mice no tumor uptake (Figure 35D 

and Figure 36). Following in vivo SPECT imaging, the uptake of anti-EGFR nanobody 

99mTc-D10 in A431 tumors was confirmed by ex vivo biodistribution analyses in all 6 

animals with a tumor uptake of 2.27% ID/g ± 0.68 (Figure 35A) resulting in a tumor to 

blood ratio of 12.1 ± 3.5 and a tumor to tissue (muscle) ratio of 25.6 ± 18.8 (Figure 35C 

and Table 21). Kidneys and liver had uptakes of 160.7% ID/g ± 17.9 and 2.1% ID/g ± 0.3, 

respectively. This results in tumor to kidney and tumor to liver ratios of 0.014 ± 0.004 

and 1.1 ± 0.4, respectively, demonstrating that the nanobody 99mTc-D10 was excreted 

via the kidney (Table 21). The absent signals in the SPECT scans in one tumor bearing 

animal out of six can be explained by the very small tumor volume of 7 mm3 and the 

limited resolution of the used multi-pinhole collimators being above 2 mm, which do 

not resolve those small structures.  

The efficacy of in vivo tumor detection with anti-EGFR nanobody 99mTc-D10 was 

compared to the IgG1 99mTc-Cetuximab that was used to visualize A431 tumor lesions 

with comparable mean tumor volumes of 40 mm3 (N = 5; range 7 - 90 mm3) 45 min 

post injection. In vivo SPECT scans with 99mTc-Cetuximab showed no uptake of 99mTc-

Cetuximab in the small tumor lesions at the early time point. However, in a second 

scan 24 h post injection, a tumor uptake in 3 out of 5 animals could be detected with a 

tumor to tissue ratio of 8.4 ± 7.2, much less compared to results obtained with the 

nanobody 99mTc-D10 (36.2 ± 20.9) (Figure 35D). This discrepancy can be explained by a 

slow blood clearance and a serum half-life of approximately 180 min of 99mTc-
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Cetuximab compared to the short serum half-life of 99mTc-D10 being less than 5 min. 

As with 99mTc-D10, the absent signals in SPECT scans in A431 tumors of two out of five 

mice receiving 99mTc-Cetuximab, might be explained by the very small volumes of these 

tumors, ranging from 7 to 12 mm3 with a diameter of 2 mm being below the resolution 

of the SPECT system.  

Ex vivo biodistribution analysis revealed a tumor uptake of 6.5% ID/g ± 2.0 (Figure 35B) 

for 99mTc-Cetuximab resulting in a tumor to blood ratio of only 0.9 ± 0.3 and a tumor to 

tissue ratio of 15.2 ± 4.1 (Figure 35C). This is only one tenth of the tumor to blood ratio 

and half of the tumor to tissue ratio obtained with the anti-EGFR nanobody 99mTc-D10. 

 
Figure 35: Uptake of anti-EGFR nanobody 

99m
Tc-D10 in A431 tumors 

A431 tumor bearing mice received either 17 pmol (2.6 - 5.1 MBq) radiolabeled anti-EGFR nanobody 
99m

Tc-D10 (N = 6) or 9 pmol (9.4 - 15.6 MBq) 
99m

Tc-Cetuximab (N = 5) intravenously. Ex vivo 

biodistribution (A) 100 min post injection of anti-EGFR nanobody 
99m

Tc-D10 and (B) 25 h post injection of 
99m

Tc-Cetuximab are shown. (C) Ex vivo tumor to blood ratios and tumor to tissue (muscle) ratios after 

nanobody 
99m

Tc-D10 application (100 min post injection) compared to 
99m

Tc-Cetuximab (25 h post 

injection) are presented. (D) In vivo SPECT scans were performed 45 min post nanobody 
99m

Tc-D10 and 

irrelevant nanobody 
99m

Tc-F5 injection and 24 h post 
99m

Tc-Cetuximab injection. The area of the tumor 

was segmented and compared to an equally sized contra lateral region. Ratios were calculated as ratio 

of tumor uptake and tissue uptake. Due to the resolution of 2 mm of the SPECT system, one tumor of 

the cohort receiving 
99m

Tc-D10 and two tumors of the cohort receiving 
99m

Tc-Cetuximab could not be 

detected in vivo. *P < 0.05, unpaired two-tailed t-Test, for in vivo tumor to tissue ratio: nanobody 
99m

Tc-

D10 vs. irrelevant nanobody 
99m

Tc-F5 and nanobody 
99m

Tc-D10 vs. 
99m

Tc-Cetuximab. ***P < 0.001, 

unpaired two-tailed t-Test, for ex vivo tumor to blood ratio: nanobody 
99m

Tc-D10 vs. 
99m

Tc-Cetuximab. 
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Figure 36: In vivo tumor visualization of small human A431 tumors with 
99m

Tc-D10 

Representative SPECT images are shown of A431 tumor bearing mice that received 17 pmol (3.3 MBq; 

tumor volume 22 mm
3
) radiolabeled anti-EGFR nanobody 

99m
Tc-D10 or 9 pmol (10.5 MBq; tumor volume 

16 mm
3
) 

99m
Tc-Cetuximab i.v. SPECT imaging was performed 45 min post 

99m
Tc-D10 and 24 h post 

99m
Tc-

Cetuximab administration. Contrast-enhanced CT  (left panel) and SPECT scans (right panel) were 

performed on different modalities and images were aligned by hand according to 
99m

Tc-pertechnetate 

landmarks (<30 kBq) (middle panel). Tumors are indicated by white arrows. Note, that a high tumor 

accumulation with a low background was achieved with anti-EGFR nanobody 
99m

Tc-D10. 
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4 Discussion 

The detection of tumors in an early phase of tumor development is an important 

achievement to improve the overall prognosis of the patient. Besides accurate 

information of tumor load and spread, the retrieval of the expression of biomarkers on 

the tumor cell surface at the earliest time point is a prerequisite for a successful 

targeted therapeutic approach. In this study, functional SPECT imaging with the anti-

EGFR nanobody 99mTc-D10 and the anti-EGFR antibody 99mTc-Cetuximab targeting the 

human tumor biomarker EGFR were shown to be promising approaches in the 

preclinical setting in order to acquire information on tumor localization as well as 

expression of tumor associated proteins in vivo. The generation and characterization of 

novel anti-Kv10.1 nanobodies targeting the human voltage-gated potassium channel 

Kv10.1 was a first step in the development of an in vivo anti-Kv10.1 based specific 

tumor detection by applying multi-pinhole SPECT. 

4.1 Generation of specific anti-Kv10.1 nanobodies C4 and D9 

In this study, two anti-Kv10.1 nanobodies, C4 and D9, were identified as promising 

candidates for the detection of Kv10.1 in vivo and proven to specifically detect Kv10.1 

in transfected HEK cells and the recombinant fusion protein in different in vitro assays 

like ELISA, IP and Western blotting. The ability of nanobodies C4 and D9 to specifically 

bind to the potassium channel Kv10.1 was proven by IP in Kv10.1 and empty plasmid 

transfected HEK cells and validated by the detection of the precipitate with a different 

anti-Kv10.1 antibody, 9391. The here determined affinities of the nanobodies C4 and 

D9 to H1X in the nanomolar range are comparable to many other published 

nanobodies targeting less challenging epitopes like receptors on the cellular surface 

[50, 96-98]. An interpretation of the results obtained by flow cytometry on intact cells 

to detect the native potassium channel Kv10.1 by the nanobodies C4 and D9 was not 

possible yet with Kv10.1 transfected HEK cells due to a low transfection efficiency. This 

experiment has to be repeated on cells with an improved transfection efficiency and a 

more suitable reporter system.  
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The generation of selective and specific antibodies against ion channels for diagnosis 

and treatment of hematological malignancies is a very important yet challenging task. 

Unlike conventional targets used for antibody-based tumor detection like receptors on 

the cellular surface, ion channels usually cannot be purified for immunization, because 

membrane proteins require a lipid environment to maintain their native structure [99, 

100]. Further immunization techniques like the injection of whole cells or parts of cell 

membranes expressing high amounts of the antigen of interest do not apply for ion 

channels due to the low expression level on the cell surface [97, 99]. Therefore, linear 

peptides like the recombinant fusion protein H1X are generally used for immunization 

to overcome this issue. Many antibodies were raised against linear epitopes of ion 

channels mapping a short sequence of the channel of interest [13, 20, 101]. Since 

research is directed towards the identification of novel therapeutic antibodies 

targeting ion channels, the peptide sequences represent a part of the E3 loop in 

voltage-gated potassium channels, i.e. the third extracellular domain which contains 

the pore region. However, only very few antibodies are capable to bind to the native 

channel [100]. A concept to avoid the immunization with a linear epitope is the use of 

virus-like particles to capture and concentrate structurally intact membrane proteins 

within lipoparticles direct from the cell surface without mechanical disruption or 

detergents [99]. 

The use of nanobodies targeting ion channels might evade the problem with the 

immunization with a linear epitope because of the small size and close proximity of the 

CDRs. Recently, a nanobody targeting the potassium channel Kv1.3 was presented by 

Ablynx, the leading nanobody company [102]. The use of nanobodies, like the anti-

Kv10.1 nanobodies C4 and D9, for the targeting of ion channels is straightforward, 

since nanobodies, due to their small size of only 2.5 x 4 nm, can bind sterical 

demanding epitopes like pore regions that remain inaccessible for antibodies [50, 98]. 

A further advantage of nanobodies is the possibility of easy modification strategies by 

molecular cloning and subsequent expression in bacterial cultures. Compared to cell 

cultures which are needed for the expression of antibodies, the costs of nanobody 

expression in E. coli are reduced to a mere fraction. 
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4.2 Is Kv10.1 a suitable target for molecular imaging? 

The specific detection and visualization of a tumor requires the generation of sufficient 

contrast to distinguish between tumor and surrounding healthy tissue. The suitability 

of a newly developed imaging probe for tumor visualization can be initially assessed in 

vitro by flow cytometry. Assessing the binding capacities of the nanobody intended for 

in vivo use on the tumor cells that will be used for tumor cell implantation in mice, as 

was performed for the targeting of EGFR, allows an estimation of the suitability of the 

nanobody for imaging. In the case of EGFR, A431 and MDA-MB-468 cells with a 

receptor density of more than 1 x 106 EGFR per cell were reliably detected with D10 

and 99mTc-D10 [94, 95]. No binding, i.e. no increase of the MFI compared to baseline, 

could be detected after incubation of D10 with MDA-MB-231 cells, that were reported 

to express approx. 2 x 105 EGFR per cell [94]. No such information is available for the 

number Kv10.1 ion channels expressed in the membrane of tumor cells. So far, the 

expression of Kv10.1 was assessed by quantitative Real-time polymerase chain 

reaction (qRT-PCR) and quantified in pTracer-Kv10.1 transfected Chinese hamster 

ovary (CHO) cells, sarcoma tumor cell lines as well as control transfected CHO cells as 

negative control. For the transfected CHO cells, 39,000 copies (mRNA of KCHN1) per 

1000 cells were published, i.e. on average 39 copies per cell compared 0.3 copies per 

1000 cells in the negative control [20]. For sarcoma tumor cells, that were described as 

clearly positive, 140 copies per 1000 cells were reported [20]. However, the 

transcription of a gene does not have to necessarily correlate with the amount of 

expressed protein or the functional Kv10.1 potassium channel on the cell surface.  

A solution to overcome a relatively weak target protein expression is to increase the 

affinity by generation of a biparatopic nanobody [103]. In contrast to bivalent IgG 

antibodies that consist of two antigen-binding sites, a nanobody as monomer can only 

bind to a single paratope. Usually, antibodies have a higher affinity compared to 

nanobodies, because the bivalency generates avidity, i.e. the accumulated strength of 

multiple affinities or functional affinity [89, 104]. Therefore, the generation of a 

bivalent nanobody that binds two paratopes in the pore of a tetrameric ion channel 

appears very promising. Due to the fact, that the pore is assembled out of four Kv10.1 

subunits, a dimer, trimer or tetramer of C4 or D9 could be generated.  
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The suitability of Kv10.1 as imaging target depends further on the protein expression 

within the tumor. The work with the anti-EGFR nanobody and antibody on EGFR 

expressing tumors revealed intratumoral heterogeneity as a challenge for in vivo 

imaging. In recent years, Kv10.1 was associated with tumor development and 

described as potential tumor biomarker with robust expression [11-13, 20, 26, 29, 105-

108]. A real advantage of using a probe targeting Kv10.1 is the absent expression of 

Kv10.1 in healthy tissue, that could result in a perfect tumor to tissue contrast, 

assuming no Kv10.1 potassium channels are present on the cells of healthy tissue and 

available anti-Kv10.1 nanobodies with high affinity towards the ion channel. 

For now, the question if Kv10.1 is a suitable imaging target remains unanswered. On 

the one hand the low expression of the potassium channel on the surface of cells will 

be challenging for a successful in vivo tumor detection. On the other hand the absent 

Kv10.1 expression in the surrounding tissue could provide an optimal contrast. 

However, applying an engineered nanobody with a high affinity towards Kv10.1, a 

tumor visualization by targeting Kv10.1 could be conceivable. 

4.3 Nanobodies as versatile tools in biology and medicine 

Nanobodies in general and more particularly the anti-Kv10.1 nanobodies C4 and D9 

can also be used as versatile tools for various applications in molecular biology and 

histology like conventional antibodies as well. However, the straightforward 

production in E. coli and an easy modification on gene level allow an efficient and 

economic production. For the anti-Kv10.1 nanobodies C4 and D9, it is planned to 

establish a toolkit for fluorescence microscopy, flow cytometry and IHC within the next 

months. Therefore, the nanobodies will be engineered with a free C-terminal cysteine 

that allows site-specific labeling of the thiol function, allowing the labeling of 

maleimide-conjugated fluorescent dyes and enzymes such as AP or HRP. The benefit of 

the use of the nanobodies as a platform will be the efficient production in a large scale, 

straightforward purification via IMAC and less time for repeated quality controls.  



4 Discussion 84 

 

A further potential of nanobodies was recently shown by the development of novel 

diagnostic markers for the detection of EGFR, Her2 and carcinoembryonic antigen on 

tumor biopsies using nanobodies conjugated to quantum dots [56, 109]. 

Finally, nanobodies hold great promise for therapy of various diseases. In 2014, a 

clinical trial was granted by the European Medial Agency for the treatment of human 

respiratory syncytial virus with a nebulized trivalent nanobody (EMEA-001553-PIP01-

13). In oncology, nanobodies are investigated for the treatment of solid cancers as 

bispecific molecules, that bind to a target on a tumor and simultaneously engaging 

components of the immune system, or as carriers for cytotoxic drugs to reduce side 

effects [50, 110, 111]. The anti-Kv10.1 nanobodies C4 and D9 have to be evaluated for 

a possible therapeutic effect. The binding in the pore of Kv10.1 might lead to a 

selective blockade of the potassium channel, making a therapeutic application 

conceivable. 

4.4 Nanobodies and antibodies as tools for molecular imaging 

The application of antibodies and nanobodies in vivo for the detection and 

visualization of tumors applying in vivo SPECT was assessed on well characterized EGFR 

expressing tumor models with the recently described anti-EGFR nanobody 99mTc-D10 

as well as the anti-EGFR antibody 99mTc-Cetuximab to establish a SPECT imaging 

infrastructure in order to be able to adapt the gained knowledge to the application of 

anti-Kv10.1 nanobodies [96].  

4.4.1 Tumor visualization with 99mTc-Cetuximab by SPECT 

Applying the radiolabeled full IgG1 anti-EGFR antibody 99mTc-Cetuximab for the 

visualization of human MDA-MB-231 and MDA-MB-468 mammary carcinomas with 

different EGFR expression levels, tumor uptakes of 2.1% ID/cm3 ± 0.4 and 5.5% ID/cm3 

± 2.2 compared to tissue uptakes of 0.6% ID/cm3 ± 0.2 and 0.7% ID/cm3 ± 0.2 were 

determined 24 h post i.v. injection by in vivo SPECT, respectively. Thus, the in vivo 

determined tumor to tissue ratio was 7.8 ± 3.2 for MDA-MB-468 and 4.4 ± 1.8 for 

MDA-MB-231. The relations in the tumor and tissue uptakes of 99mTc-Cetuximab to the 
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two different mammary tumors were confirmed by ex vivo biodistribution analyses. 

Uptakes of 14.6% ID/g ± 6.9 and 6.2% ID/g ± 2.7 of 99mTc-Cetuximab to MDA-MB-468 

and MDA-MB-231 tumors were determined, respectively, compared to tissue (muscle) 

uptakes of 0.5% ID/g ± 0.1 for both tumor bearing cohorts. Such high tumor uptakes of 

99mTc-Cetuximab as observed with MDA-MB-468 tumors match published data 

showing values of 15 - 20% ID/g in tumor tissue for the same and A431 tumor models 

with a comparable EGFR expression level [112, 113]. Unspecific binding of 99mTc-

Cetuximab was assessed by use of an 99mTc-IgG1 isotype control antibody. A significant 

uptake of 99mTc-isotype to MDA-MB-468 tumors with values of 2.1% ID/cm3 ± 0.1 in 

comparison to a tissue uptake of 0.75% ID/cm3 ± 0.05 was determined by in vivo SPECT 

scans. In vivo SPECT scans with 99mTc-Cetuximab in the same animals on consecutive 

days showed a significantly higher tumor uptake of 99mTc-Cetuximab (6.4% ID/cm3 ± 

2.0). These results prove the specific uptake of 99mTc-Cetuximab to MDA-MB-468 

tumors. The unspecific tumor uptake of 99mTc-IgG1 was unfortunately not assessed on 

MDA-MB-231 tumor bearing mice, thus prohibiting a direct comparison. However, the 

in vivo tumor uptake of 99mTc-Cetuximab to MDA-MB-231 tumors with values of 

2.1% ID/cm3 ± 0.4 might not be considered as specific, compared to the 99mTc-isotype 

uptake of 2.1% ID/cm3 ± 0.1 to MDA-MB-468 tumors. The relatively high tumor uptake 

of the 99mTc-isotype is remarkable because no binding to MDA-MB-468 cells, i. e. no 

increase of the MFI compared to baseline, was observed by flow cytometry with the 

isotype antibody. An explanation for the uptake of the isotype antibody in the tumor 

tissue might be the enhanced permeation and retention (EPR) effect of larger 

macromolecules such as polymers or proteins [114-117]. EPR is a form of passive drug 

targeting due to the molecular weight of the molecule. This phenomenon occurs on 

the basis of different physiological properties of tumor tissue compared to normal 

tissue, since tumors perform angiogenesis which is connected with extensive 

vascularization to provide sufficient supply of nutrients and oxygen to the tumor [116]. 

The endothelial cells of these newly formed blood vessels are highly fenestrated 

compared to most other capillaries, thus allowing an easier diffusion of 

macromolecules from the blood pool to the tumor compared to healthy tissue [116, 

117]. Additionally, an impaired lymphatic system of the tumors compared to healthy 

tissue prevents retention of the diffused macromolecules leading to an enrichment in 
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the tumor [116]. Macromolecules with a molecular weight above 20 kDa are prone to 

the EPR effect and the probability of this effect increases with increasing mass [115, 

117]. Thus, the EPR effect applies most likely for full IgG antibodies with a molecular 

weight of approximately 150 kDa and is diametric to a specific tumor targeting with full 

antibodies. An unspecific accumulation of the imaging probe hampers the use for a 

specific visualization and targeting, albeit this effect might be desirable for the 

treatment of tumor lesions. 

Another challenge for the visualization of tumors with radiolabeled antibodies is the 

observation of a relatively high background activity after 24 h as shown in this study 

with uptakes of approx. 0.6% ID/g and 6% ID/g to muscle and blood, respectively and 

organ uptakes between 1 and 5% ID/g. This relatively high background seen with 99mTc-

Cetuximab has two disadvantages. The majority of the antibody is distributed 

throughout the body which reduces the contrast for in vivo imaging. Another issue is 

the generation of high signals in vivo in lymph nodes, especially in the axillary and 

superficial nodes as observed with 99mTc-Cetuxiumab and 99mTc-IgG1 as well as with 

radiolabeled BSA. Own preliminary results show that parts of the injected BSA were 

cleared via the kidneys and via the liver accompanied with distinct signals in the 

axiallary and superficial lymph nodes 24 h post i.v. injection (data not shown). This can 

be explained by the drainage of unbound proteins in the interstitial fluid (the lymph) 

via lymph capillaries and vessels ending in lymph nodes which are finally emptied in 

the subclavian veins [118-120]. This unspecific accumulation of imaging probes in 

lymph nodes can be misleading if the detection of metastases, which often accumulate 

in axillary lymph nodes, is desired [120-122]. 

In this study, a serum half-life of approx. 3 h was determined for 99mTc-Cetuximab. The 

long circulation of the antibody in the blood pool, can be explained by the relatively 

large size of the IgG1 99mTc-Cetuximab, 152 kDa, and its removal from the body via 

hepatic excretion, manifested by a high liver uptake of approx. 20% ID/g , and the 

recycling process of antibodies afforded by the neonatal Fc receptor (FcRn) that is 

expressed in the cells of the liver and gut as well as in adult endothelia cells [89]. The 

FcRn binds the Fc portion of IgGs and become internalized by endocytosis. The acidic 

endosomes release the internalized IgG at the cell surface to the basic milieu of the 

blood and thereby prevent the IgG from lysosomal degradation [123, 124]. This long 



4 Discussion 87 

 

serum long half-life is detrimental for a tracer for tumor detection because it prevents 

a diagnostic tumor visualization shortly after injection of the radiolabeled probe. In this 

study, in vivo SPECT scans were started 24 h post i.v. 99mTc-Cetuximab injection. Since 

all molecules in this study were labeled with the isotope technetium-99m with a half-

life of 6.01 h, high amounts of radioactivity had to be injected to retain sufficient 

activity to the time of imaging after 4 half-lives. This issue can of course be 

circumvented by the use of other radionuclides with longer half-lives such as indium-

111 with a half-life of 2.8 days. Another drawback of a full IgG as diagnostic tracer for 

tumor visualization is the overall aim to achieve an application in man. Therefore, such 

a long lag time between injection and imaging appears not very convenient. Different 

concepts such as 'Pretargeting', involving a separate injection of an unlabeled cold 

antibody that is detected by a radiolabeled hapten are under clinical investigation 

[125-129].  

4.4.2 Application of anti-EGFR nanobody 99mTc-D10 

The application of the small-sized anti-EGFR nanobody 99mTc-D10 with a molecular 

weight of 15.5 kDa, proved that 99mTc-D10 is suitable to detect small tumor lesions 

expressing EGFR with high specificity and high contrast shortly after administration. 

These features are mandatory for tracers to enable tumor detection at earliest time 

points to improve the overall prognosis for the patient. The anti-EGFR nanobody 99mTc-

D10 showed a tumor uptake even in very small A431 and MDA-MB-468 tumor lesions 

of up to 7 mm3 with an uptake of 2.18% ID/g already 100 min post injection as 

determined by ex vivo biodistribution analysis. In vivo SPECT imaging failed to detect 

very small lesions with a diameter below 2.5 mm corresponding to a volume of less 

than 15 mm3 since the multi-pinhole SPECT system used here only provides a 

resolution of above 2 mm illustrating the limitation of the imaging hardware. The fast 

blood clearance with a half-life in blood of only 4.9 min and a very low plateau of 

0.26% ID/g ± 0.24 of the remaining activity in the blood pool allowed an early 

detection of EGFR expressing already after 45 min tumor lesions in vivo with an 

excellent contrast with a tumor to tissue ratio of up to 60.  
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Nanobodies are subject of investigation for several years and many studies were 

published targeting EGFR or HER2 overexpressing tumors with diameters of 

approximately 0.5-1 cm [7, 53] or volumes of above 100 mm3 with tumor weights far 

beyond 100 mg [7, 8, 53, 130]. These nanobodies have comparable affinities in the 

nanomolar range for their target receptors and were cleared within minutes to hours 

from the blood pool. The overall A431 tumor uptake values determined here in these 

study were 2-3 fold higher in vivo and ex vivo than the published ones obtained with 

the anti-EGFR nanobodies [7, 8, 53]. However, the reported blood activity (ex vivo) and 

tissue uptake (in vivo) were also higher, resulting in a comparable high contrast for the 

anti-EGFR nanobody 99mTc-D10 in vivo and high tumor to blood ratios ex vivo [7, 8, 53]. 

In contrast, in this study the EGFR on very small tumor lesions with weights below 

100 mg was targeted by 99mTc-D10. It is known that most tumors originate as small 

avascular structures and have to establish their own tumor derived blood vessels to 

grow beyond a few millimeters [131, 132]. Thus, tumors of small size might not to have 

high amounts of vasculature with fenestrated blood vessels that allow a quick 

extravasation of the nanobody and thereby a higher accumulation of probes within the 

tumor as observed in larger tumors [112, 113, 131-135]. A reason for the higher tumor 

uptake of previously published results using nanobodies  might be the larger diameter 

(0.5 - 1 cm) or volume (100 - 600 mm3) of tumors used in these studies, leading to 

better vascularization of the tumor with more fenestrated blood vessels [7, 8]. Others 

have shown that A431 tumors with a volume of at least 100 mm3 contain many small 

and mostly immature blood vessels that were homogenously distributed throughout 

the tumor [136]. Otherwise, an inverse relationship between tumor uptake and tumor 

weight was reported for EGFR targeting in A431 tumors with different anti-EGFR 

nanobodies [7]. The tendency of decreasing tumor uptake of nanobodies with 

increasing tumor weight was observed in tumors with weights ranging from 120 mg up 

to around 800 mg. This effect can be explained on one hand by intratumoral 

heterogeneity, i.e. that different tumor cells of a tumor show distinct morphological 

and phenotypic profiles, including gene expression, metabolism and cellular 

morphology [137-139]. On the other hand the diameter of the blood vessels becomes 

narrower from the periphery to the center and might reduce the amount of nanobody 

reaching the center [136]. A third explanation might be the formation of necrotic 
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tissue in the center that might prohibit binding of the nanobody. In contrast, in this 

study an increasing tumor uptake of nanobody 99mTc-D10 with increasing tumor 

volumes was observed, since small tumor lesions that might lack a tumor derived 

vasculature with fenestrated blood vessels were chosen for visualization [131, 132]. 

However, the observations made in this study and published data highlight the 

challenges in targeting and visualization of such small tumors.  

This issue was further manifested by targeting of EGFR with 99mTc-Cetuximab in our 

setting resulting in a relatively low overall A431 tumor uptake of 6.5% ID/g compared 

to tumor uptakes of up to 20% ID/g observed by others [112, 113]. The full IgG1 99mTc-

Cetuximab led to a significantly lower tumor to blood ratio compared to nanobody 

99mTc-D10, despite a more than 10 fold higher affinity towards EGFR (0.5 nM) [140]. 

Similarly, the ex vivo tumor to blood ratio was significantly impaired (P < 0.01) for 

99mTc-Cetuximab after 25 h compared to 99mTc-D10 after 100 min.  

The anti-EGFR nanobody 99mTc-D10 was found to be predominantly removed by renal 

excretion as typical for small proteins with a molecular weight of 15 kDa [7, 8, 10, 141], 

a value under the 60 kDa threshold of glomerular filtration in the kidneys [142-144]. A 

high kidney uptake of approx. 150% ID/g of 99mTc-D10 was observed and has previously 

been reported for many other nanobodies [7, 8, 47, 53, 130, 145-147]. The renal 

uptake is mediated by the Low Density Lipoprotein receptor-related protein 2 (LRP2 or 

megalin) in the proximal tubular cells [53]. Megalin is known to recover proteins from 

the urine by interaction on cationic domains via endocytosis or transcytosis to prevent 

proteinuria, i.e. the presence of an excess of serum proteins in the urine [148, 149]. 

This unspecific accumulation might be problematic for imaging tumor lesions in close 

proximity to the kidneys and for the use of the nanobody as carrier for therapeutic 

applications such as the conjugation of beta emitters to nanobodies for 

radioimmunotherapy since the kidneys are very radiosensitive organs [150]. A 

possibility to reduce this renal uptake is the coinjection of cationic or polycationic 

amino acids or succinylated gelatine (gelofusine) [53, 142-144]. Recently, it was 

reported that the removal of the C-terminal 6xHis tag from an anti-PSMA nanobody 

also markedly reduced its renal uptake and could be combined with gelofusine and 

lysine to decrease the renal uptake below 4% ID/g at 3 h post injection [151]. A 

recently developed approach is the modification of a purified protein by a Sortase A 
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mediated exchange of the 6xHis tag to a chelator of choice [152-154]. This 

transpepdidase reaction requires a cleavage site (LPETG motif) for Sortase A in the 

nanobody, that can be easily introduced in the vector, upstream of the 6xHis tag and 

of the functionalized oligoglycine. Sortase A cleaves an amide bond in the cleavage 

motif that can be attacked by a primary amine of the oligoglycine [153]. This method 

would allow the immobilized metal affinity chromatography (IMAC) purification via the 

6xHis tag of the nanobody and a subsequent functionalization for radiolabeling. 

However, in this study, the 6xHis tag of the nanobodies was used for radiolabeling. In 

the case of technetium-99m labeling, a polylysine peptide conjugated with HyNic could 

be introduced with the oligoglycine, allowing a site specific labeling of the nanobody. 

High tumor to tissue ratios were obtained in vivo and ex vivo for 99mTc-D10 which is 

needed to define the tumor from the surrounding tissue. The variations of the ex vivo 

and in vivo tumor to tissue ratios were quite large compared to the data of ex vivo 

biodistribution analysis. The uptake of 99mTc-D10 in the muscle of A431 tumor bearing 

mice was very low with 0.14% ID/g ± 0.1, however, in regard to the low uptake values a 

distinct variance was observed ranging from 0.05% ID/g to 0.29% ID/g. This variance 

was highlighted after calculation of the ratio causing the variations in the ex vivo and in 

vivo tumor to tissue ratios. For 99mTc-Cetuximab, this effect was less pronounced, since 

the muscle uptake was 3-fold higher and varied less with 0.43% ID/g ± 0.08 compared 

to 99mTc-D10. Less variation of the uptake of 99mTc-Cetuximab in the muscle might be 

explained by the late time point of the in vivo SPECT scan at 24 h post 99mTc-Cetuximab 

injection and subsequent biodistribution. The variation of the ratios did not interfere 

with image interpretation and analysis since sufficient contrast between tumor and 

muscle was provided. A poor contrast would be achieved close to organs with an 

unspecific uptake similar or higher than the tumor uptake, making tumor visualization 

difficult to impossible.  

4.5 Summary and Conclusion 

In this project, a panel of ten individual anti-Kv10.1 nanobodies was generated by 

phage display and subsequent screening on the fusion protein H1X. Molecular 
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characterization of the binding properties revealed two clones, C4 and D9, detecting 

specifically Kv10.1 transfected HEK cells and the fusion protein H1X. 

For a later in vivo tumor visualization applying the anti-Kv10.1 nanobodies C4 and D9, a 

clinical SPECT system was set up and the infrastructure for the handling and housing of 

radioactive animals was established. This allowed the in vivo tumor visualization on 

EGFR expressing tumors with the clinically applied anti-EGFR antibody 99mTc-Cetuximab 

and demonstrated as proof of principle the successful application of multi-pinhole 

SPECT. Tumors expressing high levels of EGFR and a volume above 100 mm3 were 

reliably detected by in vivo SPECT, whereas tumors with a relatively low EGFR 

expression showed a tumor uptake of 99mTc-Cetuximab similar to the unspecific 

accumulation of the 99mTc-isotype antibody. 

The anti-EGFR nanobody D10 was used in vivo for the first time. It could be shown that 

99mTc-D10 represents a versatile tool for the specific detection of small EGFR 

overexpressing tumor lesions and the assessment of EGFR expression in tumors by in 

vivo SPECT. The identification of tumors at the earliest stage with 99mTc-D10 allowed 

the acquisition of high contrast images with a high tumor to background background 

ratio shortly after probe administration, i.e. allowing imaging at the same day. 

Therefore, 99mTc-D10 might be suitable in a clinical setting as non-invasive diagnostic 

tracer to not only detect small tumors but also to obtain information on the expression 

level of EGFR in heterogenic tumors at the time of diagnosis and during disease 

progression. 
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5 Outlook 

The anti-Kv10.1 nanobodies C4 and D9, that were generated in the course of this 

project, show very promising binding characteristics to this challenging target, but 

specific detection of the native ion channel remains to be validated. The successful 

application as in vivo tracers will depend on the tumor entity and the number of 

expressed potassium channels on the tumor cells as well as affinity of an engineered 

anti-Kv10.1 nanobody to its target protein. The application of the nanobodies as 

unmodified monomers might not lead to a successful tumor detection. However, 

genetically engineered bi- or trivalent nanobodies could facilitate this task.  

The impact of the anti-Kv10.1 nanobodies on the potassium channel was not 

investigated yet. A possible impaired signaling due to the binding anti-Kv10.1 

nanobodies C4 or D9 could refer to a therapeutic effect and an establishment of a 

specific Kv10.1 targeted therapy in future.  

With the generation of the anti-Kv10.1 nanobodies C4 and D9, a versatile toolkit 

consisting of the two nanobodies with different fluorophores and enzymes for the 

detection of Kv10.1 are soon available for the integration in various laboratory 

methods like flow cytometry, immunofluorescence microscopy, histology, ELISA or 

Western blotting.  

The anti-EGFR nanobody D10, which was applied in an in vivo SPECT approach for the 

first time, allowed a tumor visualization of small tumors with a high contrast shortly 

after administration. However, the high kidney uptake caused by the 6xHis tag remains 

problematic for further in vivo studies. Therefore, the nanobody needs to be 

reengineered and the use of different chelators might help to reduce the kidney 

uptake to continue the translation of D10 to larger tumor animal models. 
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