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ABSTRACT 

Neuromyelitis optica (NMO) is a demyelinating autoimmune disease of the central 

nervous system (CNS), with serum anti-aquaporin4 (AQP4) antibodies (Ab) detected in the 

majority of patients. Binding of NMO-Ab to AQP4 results in complement- and cell-mediated 

astrocyte depletion. In addition, a severe impairment of the blood-brain barrier (BBB) is 

observed as evidenced by gadolinium-enhanced lesions on magnetic resonance imaging 

(MRI). To investigate the structural, molecular and cellular correlates of the BBB breakdown, 

we employed a focal model of NMO-like lesions in rats which is based on the intracerebral 

injection of a human recombinant NMO-Ab directed against AQP4, and human complement. 

Astrocytes and pericytes are considered crucial for maintenance and repair of the BBB. In 

NMO-like lesions, we demonstrated that a transient breakdown of the BBB coincided with 

the onset of astrocyte loss. However, the BBB integrity to vascular tracers was rapidly 

restored, even in the absence of astrocytes. No loss of pericytes from NMO-like lesions was 

observed indicating that pericytes might contribute to the rapid restoration of the BBB. 

Tight junctions (TJ) restrict the paracellular diffusion of solutes across the BBB. Therefore, 

we analyzed the TJ in NMO-like lesions and detected a transient loss of the TJ protein 

occludin, while the expression of claudin-3 and claudin-5 was not altered. However, no 

morphological alterations of the TJ were observed on the ultrastructural level, and the 

integrity of the BBB to vascular tracers was re-established in the absence of occludin. 

Inflammatory cells infiltrating the CNS were shown to contribute to BBB disruption. In 

early NMO-like lesions we demonstrated that polymorphonuclear cells (PMN) were the most 

abundant infiltrating leukocytes and that the number of PMN in the lesions correlated with 

the extent of vascular tracer extravasation. Depletion of PMN prevented not only the 

breakdown of the BBB, but interestingly also the loss of astrocytes. Furthermore, we could 

show that inhibition of the complement component C5a receptor (C5aR), which is important 

for PMN attraction and activation, reduced the area of astrocyte loss in NMO-like lesions. In 

addition, proteases released from PMN granules upon activation were implied in BBB 

disruption. We demonstrated that matrix metalloproteinase 9 (MMP9) decreased the 

electrical resistance of endothelial monolayers and that inhibition of the neutrophil elastase 

(NE), another PMN protease, reduced the loss of astrocytes and PMN infiltration in vivo.  

This study affirms the importance of PMN in the development of NMO-like lesions and is 

the first to show that infiltrating PMN mediate the breakdown of the BBB. These findings, 

together with the detection of PMN in early human NMO lesions, identify the PMN mediated 

breakdown of the BBB as a promising target for future therapeutic approaches.  
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1 INTRODUCTION 

1.1 Neuromyelitis optica 

Neuromyelitis optica (NMO) is an idiopathic demyelinating disease of the central nervous 

system (CNS). It is also known as Devic’s disease, named after the French neurologist Eugène 

Devic. Devic and his student Gault established the syndrome with the characteristics of 

acute myelitis and optic neuritis in 1894 (Devic, 1894; Gault, 1894). Whether NMO 

represents a variant of multiple sclerosis (MS) was discussed for a long time since NMO and 

MS both share the features of inflammatory demyelination, optic neuritis and myelitis. 

However, today NMO is recognized as a separate disease entity with specific clinical and 

pathological features. The discovery of a specific NMO-antibody (Ab) in 2004 by Lennon and 

coworkers contributed substantially to the understanding of the pathogenesis of NMO 

(Lennon et al., 2004; Lennon, 2005). 

1.1.1 Clinical presentation and disease course 

Characteristic features of NMO are severe attacks of optic neuritis and longitudinally 

extensive transverse myelitis. Frequently, attacks of optic neuritis and myelitis occur 

sequentially with separating periods spanning sometimes years or decades (Wingerchuk et 

al., 1999). Patients typically present with loss of vision, severe symmetric paraplegia, sensory 

disturbances and loss of bladder control (Wingerchuk et al., 2007). Cervical spinal cord 

lesions may extend into the brain stem, resulting in symptoms like vomiting, nausea and 

intractable hiccups (Almekhlafi et al., 2011; Misu et al., 2005; Wingerchuk et al., 1999). 

Although brain lesions were historically viewed as an exclusion criterion for the diagnosis of 

NMO (Wingerchuk et al., 1999), brain abnormalities detected by magnetic resonance 

imaging (MRI) are described in about 50 - 65% of NMO patients which are normally clinically 

silent. About 10% of the patients develop unique NMO brain lesions in the hypothalamus, 

corpus callosum, brainstem or periventricular (Bichuetti et al., 2008; Cabrera-Gomez et al., 

2007; Pittock et al., 2006). The revised criteria for NMO include acute myelitis and optic 

neuritis as absolute criteria. Furthermore, 2 of the following 3 criteria are required: 

longitudinally extensive myelitis with lesions spanning typically 3 or more contiguous 

vertebral segments, negative or MS atypical brain MRI and NMO-IgG seropositivity 

(Wingerchuk et al., 2007). 

A relapsing-remitting (RR) disease course is the most common form in NMO which affects 80 

– 90% of the patients. 10 – 20% of the patients develop a monophasic disease course 
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(Wingerchuk et al., 1999). The recovery after attacks is incomplete and results in the attack-

related development of permanent disabilities. Disabilities like blindness or paraplegia are 

often severe and accumulate rapidly (Wingerchuk et al., 1999; Wingerchuk et al., 2007). 

1.1.2 Epidemiology 

NMO more frequently affects females than males with a ratio of 9:1. The median age of 

onset is in the late thirties, however, NMO can also affect young children or older people 

(Asgari et al., 2011; Cabre et al., 2001; Cabrera-Gomez et al., 2009; Kuroiwa et al., 1975; 

Rivera et al., 2008). In one study, e.g., the reported age at disease onset ranged from 3-81 

years (Mealy et al., 2012). NMO is a rare disease, and population based studies suggest 

yearly incidence rates of 0.053 to 0.4 NMO cases per 100,000 persons and prevalence rates 

of 0.52 to 4.4 per 100,000 (Asgari et al., 2011; Cabre et al., 2001; Cabrera-Gomez et al., 

2009; Kuroiwa et al., 1975; Rivera et al., 2008). 

1.1.3 Pathogenesis 

NMO is a severe demyelinating autoimmune disease with the astrocyte as the main target. 

About 70% of the patients are seropositive for specific NMO-Ab directed against aquaporin4 

(AQP4), a water channel expressed on astrocytic endfeet (Jarius et al., 2011; Lennon et al., 

2005; Lennon et al., 2004; Mealy et al., 2012). Several observations in patients indicate a 

pathogenic role of NMO-Ab: complement and Ab depositions together with loss of AQP4 

immunoreactivity were observed in human NMO lesions (Hinson et al., 2007; Roemer et al., 

2007). Furthermore, NMO-Ab levels correlated with disease activity (Jarius et al., 2012a; Kim 

et al., 2012; Takahashi et al., 2007), and B-cell depletion and plasma exchange are beneficial 

for NMO patients (Bonnan et al., 2009; Cree et al., 2005; Watanabe et al., 2007). In addition, 

NMO-Ab were shown to be pathogenic in various in vitro and in vivo studies. NMO-Ab 

induced astrocyte death was demonstrated to be mediated by complement-dependent and 

cell-mediated cytotoxicity (CDC and ADCC) (Phuan et al., 2012; Ratelade et al., 2013; Vincent 

et al., 2008; Wrzos et al., 2014; Zhang and Verkman, 2013). Furthermore it was shown in vivo 

that passive transfer of NMO-Ab into rats with experimental autoimmune encephalomyelitis 

(EAE), an inflammatory disease commonly used as an experimental model for MS, results in 

NMO-like lesions in the recipient animals (Bennett et al., 2009; Bradl et al., 2009; Kinoshita 

et al., 2009; Wrzos et al., 2014). Similarly, development of NMO-like lesions was observed 

after intracerebral injection of NMO-Ab together with human complement in rats and mice 

(Ratelade et al., 2013; Saadoun et al., 2010; Wrzos et al., 2014). The resulting NMO-like 
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lesions were characterized by loss of astrocytes and oligodendrocytes, demyelination, 

immune cell infiltration and deposits of complement and immunoglobulin (Ig) G. 

With regard to disease effector mechanisms, CDC and ADCC were found to be relevant in 

experimental models. Furthermore, also in human NMO therapeutic approaches indicate an 

important role of CDC in the disease process. Using a C1-esterase inhibitor (Cinryze®) as add-

on therapy to prevent the activation of the complement cascade after the binding of the 

NMO-Ab to AQP4 in NMO lesions reduced neurologic damage, and improved outcomes 

were observed in a phase 1 open-label trial (Levy and Mealy, 2014). Another open-label trial 

used the monoclonal antibody eculizumab that is directed against the complement 

component C5 and thereby inhibits the effector pathway of the complement cascade. 

Treatment of RR NMO patients with eculizumab significantly reduced attack frequency and 

improved or stabilized the neurological disability measures (Pittock et al., 2013). 

1.1.4 Histopathology of human NMO lesions 

NMO lesions in the CNS are characterized by extensive demyelination and astrocyte loss 

which may affect both the grey and white matter. Furthermore, demyelination is associated 

with a pronounced reduction in the numbers of oligodendrocytes (Lucchinetti et al., 2002; 

Parratt and Prineas, 2010; Wrzos et al., 2014). Early NMO lesions present with relative 

axonal preservation (Figure 1 B), while in more advanced stages of lesion development 

axonal loss is observed (Lucchinetti et al., 2002; Parratt and Prineas, 2010). Unique for NMO 

lesions is the extensive loss of astrocytes (Hinson et al., 2007; Roemer et al., 2007). 

Interestingly, loss of AQP4 immunoreactivity exceeds the loss of glial fibrillary acidic proteins 

(GFAP) immunoreactivity, an intermediate filament protein used as marker for astrocytes, 

within NMO lesions (Figure 1 C vs. D; Parratt and Prineas, 2010). Furthermore, perivascular 

IgG and IgM deposits associated with immunoreactivity for the terminal complement 

membrane attack complex are observed in a characteristic rim and rosette pattern in active 

NMO lesions (Lucchinetti et al., 2002). Moreover, focal deposits of Ig and complement 

coincide with areas of AQP4 loss (Hinson et al., 2007; Roemer et al., 2007). Vascular Ig and 

fibrinogen deposits (Figure 1 E) also indicate a loss of blood-brain barrier (BBB) integrity in 

NMO lesions. In addition, blood vessels are thickened and hyalinized (Lucchinetti et al., 

2002; Mandler et al., 1993). The immune cell infiltrate in NMO lesions consists of 

monocytes, abundant numbers of macrophages, lymphocytes and polymorphonuclear cells 

(PMN), including neutrophils, basophils and eosinophils (Lucchinetti et al., 2002).  
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Figure 1: Early NMO lesions are characterized by loss of GFAP and AQP4 immunoreactivity, 
demyelination, relative axonal preservation and breakdown of the BBB 
Representative microphotographs of an early NMO lesion are depicted (autopsy tissue, patient 6). NMO lesions 
present with demyelination (A, myelin is stained in blue, dotted line indicates lesion border) with relative 
axonal preservation (B). Loss of astrocytes is apparent in GFAP (C, brown) and AQP4 (D, brown) 
immunohistochemistry with loss of AQP4 immunoreactivity exceeding the area of GFAP loss. Deposits of 
fibrinogen indicate loss of BBB integrity (E, brown). Asterisks indicate the same vessel in serial sections. Scale 
bar 200 µm, scale bar in inserts 50 µm 

1.1.5 The blood-brain barrier in NMO  

Although the NMO-Ab present in NMO patients was shown to be pathogenic in animal 

experiments, it is not known precisely which conditions result in its pathogenicity. In a case 

report one patient was described to have been seropositive for NMO-Ab more than 10 years 

before disease onset (Nishiyama et al., 2009). This is supported by observations in vivo 

where intravenous (i.v.) injection of NMO-Ab in rats did not result in lesion formation (Bradl 

et al., 2009) which indicates that an intact BBB prevents the passage of the NMO-Ab into the 

brain parenchyma. Attempts to deliver NMO-Ab to the CNS using juvenile rats in which the 

BBB was described to be leaky did also not result in lesion formation (Bradl et al., 2009). 

Similar results were obtained after mechanical brain injury in NMO-Ab seropositive mice 

(Bradl et al., 2009; Ratelade et al., 2011). This indicates that a second trigger beside the 
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impairment of the BBB may be required for the NMO-Ab to become fully pathogenic. Indeed 

it was demonstrated that the induction of non-specific inflammation and the disruption of 

the BBB by treatment with complete Freund’s adjuvant is sufficient to induce the 

development of NMO-like lesions in seropositive rats (Kinoshita et al., 2010). 

The BBB in NMO patients is severely impaired which is evidenced by the presence of 

multiple gadolinium enhancing lesions in the CNS on MRI (de Seze et al., 2002; Ito et al., 

2009; Kim et al., 2015; Wingerchuk et al., 1999). The disruption of the BBB is associated with 

edema and infiltration of inflammatory cells. Furthermore, it was demonstrated that the 

disease severity correlates with the extent of BBB permeability. Investigating the ratio of 

cerebrospinal fluid (CSF):serum albumin as a measure for BBB permeability Tomizawa and 

coworkers demonstrated that the breakdown of the BBB in NMO is more severe than in MS 

and correlates with expanded disability status scale (EDSS) scores during the acute phase of 

the disease (Tomizawa et al., 2012). 

Furthermore it was shown in vitro that incubation of brain endothelial cells (EC) with serum 

isolated from NMO-patients during the acute phase of the disease increases the 

transendothelial permeability and decreases the expression of the tight junction (TJ) protein 

claudin-5. This was significant compared to serum from MS patients or healthy controls 

(Shimizu et al., 2012; Tasaki et al., 2014). Furthermore, upregulation of cytokines 

(Chemokine (C-X-C motif) ligand (CXCL)10, Chemokine (C-C motif) ligand (CCL)2, CCL5, 

interleukin (IL)-6), the adhesion molecule VCAM-1, the matrix metalloproteinases (MMPs) -2 

and -9 and vascular endothelial growth factor (VEGF) by brain EC were observed after 

treatment with NMO patient serum (Shimizu et al., 2015; Shimizu et al., 2012; Tasaki et al., 

2014). However, how serum from NMO patients mediates these effects is so far not known. 

The authors proposed that humoral factors present in the blood during acute NMO disease 

phases might play a role, including autoantibodies directed against EC. In vitro work of a 

second group investigated the effect of the NMO-Ab on the permeability of endothelial 

monolayers in a co-culture model of the BBB consisting of astrocytes and EC. They 

demonstrated that astrocytes express AQP4 in a polarized pattern, concentrated on the 

astrocytic endfeet. Binding of NMO-Ab to AQP4 leads to a depolarized expression and 

internalization of AQP4 which in turn results in an increase in the permeability of the 

endothelial/astrocyte barrier (Vincent et al., 2008). In conclusion, the integrity of the BBB in 

NMO is severely impaired and the degree of BBB permeability correlates with the EDSS score 
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during the acute phase of the disease. However, how the permeability of the BBB is 

regulated during the disease course is not known. 

1.2 The BBB 

The phenomenon of the BBB was first noted by Paul Ehrlich. He observed that after 

peritoneal injection of hydrophilic dyes all peripheral organs were stained but not the CNS. 

He presumed that this difference in staining intensity was due to the different binding 

affinities of various tissues to different dyes (Ehrlich, 1885). The concept of the BBB as a 

highly selective permeability barrier was developed only later with the conclusion that 

“brain capillaries must hold back certain molecules” (Goldmann, 1913; Lewandowski, 1900). 

Subsequently, this observation was associated with the molecular correlates at the level of 

EC, the TJ which seal the intercellular gap between adjacent EC and prevent paracellular 

leakage of solutes (Reese and Karnovsky, 1967). In addition, the BBB controls movements of 

nutrients, electrolytes, neuroactive agents and neurotransmitters as well as potential 

neurotoxins from the blood into the brain, and furthermore mediates the efflux of waste 

products. Thereby the BBB forms a physical, metabolical and transport barrier that is crucial 

for the maintenance of the unique CNS environment which enables neuronal function 

(Abbott et al., 2010; Abbott et al., 2006; Wolburg et al., 2008). 

1.2.1 The BBB phenotype of brain endothelial cells 

Brain EC express a variety of transporters and specialized enzyme systems which results in 

the selective uptake of polar molecules from the blood into the brain. Solute carriers 

transport polar molecules and supply the brain with nutrients such as glucose (e.g. via 

glucose transporter 1), amino acids (e.g. via the L-system for large neutral amino acids or the 

glycine transporter), nucleosides, nucleotides, nucleobases (e.g. via the equilibrative 

nucleoside transporter 1), and organic ions (e.g. organic cation transporters) (Boado et al., 

1999; Borowsky et al., 1993; Gorboulev et al., 1997; Griffiths et al., 1997; Mueckler et al., 

1985). Solute carriers not only facilitate the transport of molecules into the brain, but also 

the transport of waste products back from the brain into the blood. Beside solute carriers, 

ATP-binding cassette (ABC) transporters play an important role for the BBB phenotype. They 

restrict the entry of lipophilic molecules into the brain and function as active efflux pumps to 

remove potentially neurotoxic compounds from the CNS. At the BBB, e.g. P-glycoproteins, 

multidrug resistance-associated proteins and breast cancer resistance proteins are 

expressed (Eisenblätter et al., 2003; Juliano and Ling, 1976; Potschka et al., 2003; Zhang et 
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al., 2000). A third transport pathway is the transcytosis of macromolecules which can be 

either receptor- or adsorption mediated (Drin et al., 2003; Pan et al., 2000; Pardridge et al., 

1990; Visser et al., 2004; Zlokovic et al., 1990). However, endocytotic vesicles in brain EC are 

less frequent than in the endothelium of other organs although they might increase during 

BBB inflammation (Claudio et al., 1989). 

The selectivity of the transport into the brain is maintained by the formation of a physical 

barrier restricting the paracellular diffusion of molecules. Brain EC develop tight 

interendothelial junctions, i.e. the TJ, which restrict the paracellular movement of even ions 

like Na+ and Cl-. The transendothelial resistance (TEER) is a measure of this ion flux 

restriction and reaches values of about 1800 Ω*cm² in the brain endothelium of adult rats 

while values in peripheral capillaries range only from 2-20 Ω*cm² (Butt et al., 1990). 

The ultrastructure of TJ at the endothelial junctions in the brain was first described in 1967 

using electron microscopy (EM) (Reese and Karnovsky, 1967). Today it is known that the TJ 

consist of transmembrane linker proteins and cytoplasmic proteins. Three families of 

transmembrane linker proteins are known: (i) claudins, (ii) TJ-associated MARVEL (MAL and 

related proteins for vesicle trafficking and membrane link) proteins, including occludin 

(Furuse et al., 1993), tricellulin (Ikenouchi et al., 2005) and marvelD3 (Steed et al., 2009) and 

(iii) immunoglobulin superfamily membrane proteins, including junctional adhesion 

molecules (JAM)-A, JAM-B and JAM-C (Aurrand-Lions et al., 2001) and ESAM (endothelial 

cell-selective adhesion molecule) (Nasdala et al., 2002). These transmembrane proteins 

interact via their cytoplasmic domains with intracellular proteins, such as zonula occludens 1 

(ZO1), ZO2 and ZO3, which connect the TJ to the actin cytoskeleton and form the backbone 

of the TJ plaque (Gumbiner et al., 1991; Stevenson et al., 1986). In addition numerous 

regulatory and signaling molecules are described to be located at the intracellular TJ plaque 

including small GTPases, ZO-1-associated nucleic acid-binding protein (ZONAB) or protein 

kinase C subtypes (PKCζ and PKCλ) (Balda et al., 2003; Citi et al., 2011; Gopalakrishnan et al., 

1998; Suzuki et al., 2002; Yamanaka et al., 2001). In addition, the cell-cell contacts in the 

junctional zone are stabilized by adherens junctions (AJ) (Schulze and Firth, 1993). 

1.2.1.1 Occludin 

Occludin was the first TJ-specific transmembrane protein to be discovered. It was described 

to be localized at the TJ in chicken (Furuse et al., 1993) and later also in mammals (Ando-

Akatsuka et al., 1996). Occludin has a molecular size of about 60-65 kDa and consists of four 

transmembrane helices, two extracellular loops, a short intracellular N-terminus and a long 
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coiled coil containing C-terminal tail. Its overexpression was shown to increase TEER values 

in vitro (Balda et al., 1996; McCarthy et al., 1996). However, in TJ deficient insect cells or 

mouse fibroblasts, occludin expression failed to induce de novo formation of intercellular TJ 

(Furuse et al., 1996; Furuse et al., 1998b). Furthermore, occludin deficient mice show an 

intact TJ morphology in intestinal epithelial cells, both by immunofluorescence and freeze 

fracture EM. No difference between wild type (wt) and occludin deficient mice regarding the 

electrophysiological barrier function of the intestinal epithelium was observed. However, 

occludin deficient mice display abnormalities in several tissues, like chronic gastritis, 

calcification of the brain and atrophy of the testis (Saitou et al., 2000). These data indicate 

that occludin is not the central TJ protein to seal the paracellular cleft. However, a regulatory 

and accessory function for occludin in TJ formation and physiology is assumed. It was shown 

that occludin is targeted by several kinases (Chen et al., 2002; Sakakibara et al., 1997; 

Tsukamoto and Nigam, 1999; Wong, 1997). For example VEGF-induced occludin 

phosphorylation was demonstrated to result in increased permeability (Harhaj et al., 2006) 

which was also correlated with occludin degradation in a model of retinopathy (Murakami et 

al., 2009). Another example is the Src mediated occludin phosphorylation after focal 

ischemia, also resulting in increased permeability (Kago et al., 2006; Takenaga et al., 2009). 

1.2.1.2 Claudins 

Claudins constitute the backbone of the TJ strands. To date 27 members of the claudin 

family have been identified (Mineta et al., 2011). Like occludin, claudins consist of four 

membrane spanning domains, two extracellular loops and cytosolic N- and C-terminal 

domains and have a molecular size of 20-27 kDa (Furuse et al., 1998a; Morita et al., 1999). 

Claudins are expressed in a tissue-specific manner. They do not only function in the sealing 

of the paracellular cleft but also form ion-selective pores with a specific pore size and charge 

selectivity in different tissues. One example is claudin-16 which forms selective pores for the 

reaborption of Mg2+ and Ca2+ ions in the kidney and is therefore selective for bivalent, but 

not monovalent cations (Simon et al., 1999). 

In the brain, claudin-5 was shown to be the key contributor to TJ formation and BBB 

integrity. In addition, claudin-3 and -12 are localized at the TJ of the BBB, however with 

significantly lower expression levels (Daneman et al., 2010a; Liebner et al., 2000b; Nitta, 

2003; Ohtsuki et al., 2008; Wolburg et al., 2003). The localization of claudin-1 at the BBB has 

been controversial as certain Ab show cross-reactivity with claudin-3 (Nitta, 2003; Wolburg 

et al., 2003). 
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Numerous studies have demonstrated claudin-5 to be important in the sealing of the BBB. 

Indeed, in vitro studies showed that exogenous expression of claudin-5 enhances barrier 

properties in rat brain EC (Ohtsuki et al., 2007) while the disruption of claudin-5 increases 

the paracellular permeability (Luissint et al., 2012). Using knockout mice, claudin-5 was 

shown to be crucial for the sealing of the BBB to small molecules of < 800 Da. Interestingly, 

TJ appeared normal on the ultrastructural level in claudin-5 deficient mice, indicating that 

other TJ proteins can partially compensate for the loss of claudin-5. Using 

immunohistochemistry claudin-12 and ZO1 were demonstrated to be located at the TJ. 

Claudin-5 deficient mice die within 10 h after birth although the cause of death is not known 

(Nitta, 2003). 

Claudin-3 was shown to be important for TJ formation at the level of the blood-CFS barrier. 

Its expression levels are higher in the choroid plexus than in brain capillaries (Kooij et al., 

2013; Kratzer et al., 2012). Claudin-3 deficient mice were reported to be viable and fertile 

and to have no apparent phenotype. However, enhanced blood-CSF permeability was 

detected using Evans blue as a tracer molecule, which indicates an important role for 

claudin-3 in the formation of the blood-CSF barrier. Additionally, when challenged, these 

mice displayed an earlier EAE disease onset and exacerbated disease course compared to wt 

mice (Kooij et al., 2013). 

1.2.2 Development and maintenance of the BBB 

The development and maintenance of the BBB is dependent on cellular and non-cellular 

components which were shown to interact with EC and form the so called neurovascular 

unit (NVU, Figure 2). The NVU comprises EC, astrocytes, pericytes (at the level of capillaries), 

vascular smooth muscle cells (at the level of arteries), the basal lamina, neurons and 

microglia (Abbott et al., 2006). Together these cells compose a dynamic structure that is able 

to respond to peripheral or central cues by the regulation of the permeability of the BBB and 

the expression of TJ and transporter molecules. During inflammation the NVU can also 

regulate the expression and presentation of adhesion molecules or chemokines on the 

endothelium. 
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Figure 2: Cellular and structural components of the neurovascular unit 
The BBB is composed of brain EC, a surrounding basal lamina, pericytes and astrocytic endfeet. These 
components are in close contact. Astrocytic and pericytic signaling where shown to be crucial for the 
development and maintenance of the BBB phenotype of brain EC. In addition, the broader term NVU includes 
other brain cells such as neurons and microglia which were also shown to directly or indirectly interact with EC. 

 

Furthermore, the interplay between the components of the NVU is essential for the 

development and maintenance of the BBB. The BBB develops during embryogenesis, and its 

characteristics are fully developed by birth. During embryonic development mesoderm 

derived angioblasts were shown to invade the head region where they form the perineural 

vascular plexus, a vascular network that covers the neural tube. Subsequently, vascular 

sprouts start to invade the neural tube originating from the perineural vascular plexus and 

thereby form the CNS vasculature (Bar, 1983; Feeney and Watterson, 1946; Strong, 1964). 

The induction of BBB defining properties in the vasculature is dependent on the cellular and 

molecular crosstalk between the sprouts and the neuroectoderm. This was demonstrated in 

early quail to chicken transplantation studies. When non-vascularized neural tissue from 

quail embryos was transplanted into the coelomic cavity of chick embryos, abdominal host 

vessels vascularized the grafted tissue and adopted a BBB phenotype. In contrast, brain 

vessels vascularizing transplanted mesodermal tissue did not develop BBB characteristics 

(Stewart and Wiley, 1981). 

CNS angiogenesis depends mainly on two signaling molecules: VEGF and Wnt both of which 

are produced by neural progenitor cells. In the brain VEGF is secreted by neural progenitor 

cells in the subventricular neuroectoderm resulting in the formation of a VEGF concentration 

gradient that guides sprouting vessels (Carmeliet et al., 1996; Raab et al., 2004). While VEGF 
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has a crucial role in the angiogenesis in all tissues, the Wnt/ß-catenin pathway is specific for 

the angiogenesis in the CNS. Mice deficient of the two Wnt ligands Wnt7a and Wnt7b die 

around embryonic day 12.5 and present severe hemorrhage and abnormal vessel 

morphology (Daneman et al., 2009; Stenman et al., 2008). In addition, the Wnt/ß-catenin 

pathway plays a role in BBB maturation, i.e. TJ formation as ß-catenin depletion in EC 

resulted in reduced expression of claudin-3 and -5. This observation was accompanied by an 

increased permeability to the tracer dye Evans blue (Liebner et al., 2008). Another factor 

implied in the maturation of the BBB is sonic hedgehog (Shh). Mouse embryos deficient in 

Shh show a decreased expression of TJ proteins such as occludin and claudin-5 despite 

having normal numbers of blood vessels. Moreover, selective depletion of the downstream 

signaling protein smoothened from EC results in lower TJ protein expression and vessel 

leakage of plasma proteins (Alvarez et al., 2011). Other signaling molecules suggested to play 

a role in the maturation and differentiation of the BBB are, e.g., transforming growth factor 

ß (TGF-ß), angiopoietin 1 (Ang-1), angiotensin II (AGT-II) and apolipoprotein E (ApoE) (Dohgu 

et al., 2005; Lee et al., 2003; Nishitsuji et al., 2011; Wosik et al., 2007b).  

Cellular and molecular crosstalk between EC and brain parenchymal cells is important for the 

development of the BBB. Also in the adult brain, the CNS microenvironment appears to be 

crucial for the maintenance of the BBB as indicated by numerous in vitro studies. Once brain 

EC are isolated they lose BBB properties, resulting, e.g., in transcriptional changes and 

increased permeability (Butt et al., 1990; Demeuse et al., 2002; Lyck et al., 2009; Maxwell et 

al., 1987). Co-culture of isolated brain EC with either astrocytes, pericytes or neurons or 

combinations of these cells was shown to partly rescue their BBB phenotype. An increase in 

TEER values, reduction of permeability, induction of tighter TJ and an enhanced expression 

and polarization of transporters was observed under co-culturing conditions (Berezowski et 

al., 2004; Demeuse et al., 2002; Maxwell et al., 1987; Nakagawa et al., 2009; Nakagawa et 

al., 2007; Perriere et al., 2007; Schiera et al., 2003). 

1.2.2.1 Pericytes 

Pericytes enwrap the abluminal side of capillaries, small arterioles and venules. They are in 

close proximity to EC, only separated by the basal lamina (King and Schwyn, 1970; Movat 

and Fernando, 1964; Murakami et al., 1979). Although pericytes form a rather 

heterogeneous cell population with no distinct, pericyte-specific marker, platelet-derived 

growth factor receptor ß (PDGFR-ß) was suggested as a cell specific molecule of brain 

pericytes (Armulik et al., 2010; Bell et al., 2010; Daneman et al., 2010b). Pericyte recruitment 
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takes place early during angiogenesis and is mediated by the release of the PDGFR-ß ligand 

PDGF-b by nascent sprouts which results in the attraction of PDGFR-ß expressing pericytes 

(Bjarnegård et al., 2004; Enge et al., 2002; Hellström et al., 1999). PDGF-b and PDGFR-ß 

deficient mice lack brain pericytes and are embryonically lethal (Lindahl et al., 1997). 

Moreover, these mice show an increased vascular permeability and altered junctional 

architecture (Daneman et al., 2010b; Hellström et al., 2001). Additionally a direct correlation 

between pericyte coverage of capillaries and BBB permeability to tracer molecules in 

neonatal mice was observed (Daneman et al., 2010b). This indicates a role of pericytes in the 

induction of a BBB phenotype in brain EC during embryogenesis. In addition, pericyte 

signaling has been implied in the maintenance of the BBB during adulthood. Using 

genetically modified mice with significantly decreased pericyte vessel coverage, an increase 

in BBB permeability (Armulik et al., 2010; Bell et al., 2010) and age dependent reduction of 

TJ protein expression (Bell et al., 2010) were shown. However, the molecular pathways by 

which pericytes participate in the maintenance of the BBB are still unknown. 

1.2.2.2 Astrocytes 

Astrocytes perform multiple functions in the brain including the uptake and recycling of 

neurotransmitters, the nutrition of neurons, the regulation of extracellular ion levels, the 

participation in immune reactions and the maintenance of the BBB. Astrocytic endfeet 

encircle the abluminal side of CNS vessels and have a close physical association with EC. 

Therefore, a possible regulatory function of astrocytes in the development and maintenance 

of the BBB has been assumed. Numerous mechanisms by which astrocytes might regulate 

the permeability of the BBB have been described. The release of src-suppressed C-kinase 

substrate (SSeCKS) by astrocytes was shown to increase during BBB maturation which 

resulted in an enhanced TJ protein expression and a decreased BBB permeability (Lee et al., 

2003). Furthermore, astrocytes secrete Shh which binds to hedgehog receptors on EC and 

thereby increases the expression of occludin and claudin-5 (Alvarez et al., 2011). Another 

mechanism that has been proposed for the regulation of the BBB is the release of ApoE by 

astrocytes. Indeed, adult ApoE deficient mice show an increase in albumin permeability at 

the BBB (Methia et al., 2001) which progresses with age (Hafezi-Moghadam et al., 2007). 

Furthermore, the renin-angiotensin hormone system has been implied in the regulation of 

BBB permeability. Angiotensinogen (AGT) is expressed and released by astrocytes and is 

subsequently converted to the active form AGT-II which binds to its type 1 receptor (AT1) on 

EC. Activation of AT1 induces phosphorylation of occludin which results in a reduction of the 
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BBB permeability in vitro. Conversely, AGT deficient mice show a loss of BBB integrity 

associated with disorganized occludin strands (Wosik et al., 2007b). 

Furthermore, activation of astrocytes during CNS inflammation was shown to alter their 

expression of secreted molecules, e.g., in MS or its animal model EAE. Here, the increase in 

factors released by astrocytes was shown to have both beneficial and detrimental effects on 

the integrity of the BBB and the infiltration of immune cells. Enhanced expression of Shh and 

retinoic acid resulted in protection of the BBB and endothelial immune quiescence (Alvarez 

et al., 2011; Argaw et al., 2009; Mizee et al., 2014). In contrast, enhanced expression of 

VEGF-A by astrocytes disrupted occludin and claudin-5 strands which was accompanied by 

an increased BBB permeability. Furthermore, inactivation of astrocytic VEGF-A expression 

reduced BBB breakdown, infiltration of immune cells and disease severity (Argaw et al., 

2012; Argaw et al., 2009). These experimental data were supported by the observation that 

Shh, retinoic acid and VEGF-A are upregulated in reactive astrocytes in MS lesions (Alvarez et 

al., 2011; Argaw et al., 2009; Mizee et al., 2014; Proescholdt et al., 2002). Contrarily, the 

expression of AGT was observed to be reduced in perivascular astrocytes of MS lesions 

which might be mediated by proinflammatory cytokines. As mentioned above, AGT appears 

to be important for BBB maintenance and therefore a reduction in AGT expression during 

inflammation was proposed to contribute to the dysfunction of the BBB in MS patients 

(Wosik et al., 2007b). 

1.2.3 The BBB during neuroinflammation 

During neuroinflammation two major changes are described at the BBB: (i) increases in BBB 

permeability to solutes associated with disruption of TJ and (ii) the activation of the 

endothelium contributing to recruitment and activation of immune cells. Under pathologic 

conditions immune cells such as lymphocytes, monocytes, macrophages and PMN (including 

neutrophils, eosinophils and basophils) may be recruited into the CNS. Disruption of the BBB 

integrity and subsequent increases in vascular permeability and leukocyte extravasation 

were described during CNS inflammation, e.g., in NMO, MS, cerebral malaria and stroke 

(Brown et al., 1999; Grossman et al., 1986; O'Riordan et al., 1996; Virapongse et al., 1986). In 

MS, the infiltration of leukocytes into the CNS is thought to be an early event and associated 

with increases in BBB permeability which may favor the recruitment of additional leukocytes 

and thereby trigger and amplify neuroinflammation.  
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The recruitment of leukocytes into the CNS is a multistep process and involves leukocyte 

rolling/tethering, arrest, firm adhesion and crawling at the endothelium and finally 

diapedesis into the parenchyma. The first step is mediated by a transient contact of 

leukocytes with the endothelium, the tethering and rolling phase. On the luminal side of the 

endothelium adhesion molecules of the selectin family (L-, E- and P-selectin) are expressed 

which are recognized by their respective ligands on leukocytes. Alternatively, 

tethering/rolling can be mediated by binding of the ligand vascular cell adhesion molecule 

(VCAM)-1 on EC to α4-integrins on leukocytes (Alon et al., 1995; Bernardes-Silva et al., 2001; 

Carvalho-Tavares et al., 2000). Subsequently, leukocytes slow down their velocity and may 

become activated by immobilized chemokines presented on the activated endothelium 

which are recognized by their G-protein coupled receptors. Intracellular signaling results in 

conformational changes of α4- and ß2-integrins on the leukocyte surface transforming from 

a low to a high affinity/avidity state (Chigaev et al., 2003; Piccio et al., 2002). Activated 

integrins in turn bind to their respective ligands on the endothelial surface, e.g. VCAM-1, 

intercellular adhesion molecule (ICAM)-1 or ICAM-2 mediating arrest, adhesion and finally 

para- or transcellular diapedesis (Berlin et al., 1995; Gorina et al., 2014; Stanimirovic et al., 

1997). Which factors favor which route of transmigration is still controversial. 

Transmigration into peripheral tissue may occur mainly via the paracellular route. However, 

when PMN encounter tight endothelial junctions like in the CNS or when ICAM-1 levels are 

high the transcellular route may be preferred (Abadier et al., 2015; Greenwood et al., 1994; 

Lossinsky et al., 1989; McMenamin et al., 1992; Raine et al., 1990; von Wedel-Parlow et al., 

2011; Wolburg et al., 2005; Yang et al., 2005). The transcellular route furthermore enables 

leukocytes to cross the endothelium without TJ disruption. Moreover, during diapedesis, a 

transmigratory cup or dome is formed by the EC surrounding the infiltrating leukocytes 

which also may minimize permeability during transmigration (Carman and Springer, 2004; 

Petri et al., 2011; Wolburg et al., 2005). 

However, under pathologic conditions the disruption of the BBB can be associated with loss 

of TJ proteins. This may be mediated, e.g., by the release of cytokines both from infiltrating 

leukocytes and perivascularly located cells such as astrocytes, pericytes or microglia. Indeed, 

leukocytes were demonstrated to release cytokines (e.g. tumor necrosis factor (TNF)-α, 

interferon (IFN)-γ, IL-6), enzymes (e.g. MMPs) and reactive oxygen species that may directly 

or indirectly facilitate BBB disruption. Receptors for TNF-α and INF-γ were both reported to 

be expressed on EC, and alterations of the cellular distribution of TJ and AJ proteins after 

treatment with TNF-α and INF-γ have been shown in the periphery (Blum et al., 1997; 



INTRODUCTION 

15 
 

Kallmann et al., 2002; Ozaki et al., 1999). A direct regulation of TJ by these cytokines at the 

BBB has been controversial. However, TNF-α and INF-γ were shown to increase the 

expression and secretion of chemokines and adhesion molecules by endothelial cells which 

may enhance leukocyte infiltration (Lombardi et al., 2009; Subileau et al., 2009; Wosik et al., 

2007a). In addition, MMPs released during inflammation may play a role in the disruption of 

the BBB. MMPs are a family of zinc-dependent endopeptidases whose major functions are 

tissue remodeling and degradation of extracellular matrix components. They are therefore 

important during development. In addition, MMPs were shown to be upregulated in various 

neurological disorders, including MS and NMO (Adair et al., 2004; Alexander et al., 2010; 

Bernal et al., 2009; Hosokawa et al., 2011; Lindberg et al., 2001; Liuzzi et al., 2000; Lorenzl et 

al., 2002). Furthermore, mice deficient in both MMP9 and MMP2 are resistant to EAE 

(Agrawal et al., 2006) while pharmacologic inhibition of MMPs results in an ameliorated EAE 

course (Gijbels et al., 1994; Hewson et al., 1995; Niimi et al., 2013). Especially MMP9 has 

been suggested to play a role in the extravasation of leukocytes into the parenchyma in 

various diseases, such as NMO, MS, stroke or traumatic brain injury (Castellanos et al., 2003; 

Horstmann et al., 2003; Montaner et al., 2003; Suehiro et al., 2004). In NMO and MS 

elevated MMP9 levels were measured in the CSF and serum of patients (Alexander et al., 

2010; Gijbels et al., 1992; Hosokawa et al., 2011; Mandler et al., 2001) as well as in the 

serum and CNS of animals with EAE (Clements et al., 1997; Kandagaddala et al., 2012; 

Kieseier et al., 1998; Nygårdas and Hinkkanen, 2002). Although the exact mechanism of BBB 

regulation by MMP9 is not known it may directly influence the permeability of the 

endothelium by the degradation of TJ proteins (Agrawal et al., 2006; Bojarski, 2004; Lischper 

et al., 2010; Liu et al., 2009; Reijerkerk et al., 2006; Yang et al., 2007). 

In addition, leukocytes may directly influence BBB permeability by adhesion mediated 

signaling. Here, ICAM-1 and ß2-integrin interaction was shown to result in intracellular 

calcium signaling, actin rearrangement, phosphorylation of AJ proteins, endothelial 

contraction and increased permeability in vitro (Durieu-Trautmann et al., 1994; Etienne-

Manneville et al., 2000; Gautam et al., 1998; Gautam et al., 2000; Turowski et al., 2008). 

Furthermore, deletion of the C-terminal ICAM-1 domain in ECs inhibited intracellular 

signaling and prevented leukocyte transmigration (Greenwood et al., 2003; Lyck et al., 2003). 
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1.3 Aim of this thesis 

The overall aim of this work was to characterize the breakdown of the BBB in a model of 

NMO in rats and to investigate the underlying mechanisms. Specifically, we were interested 

to examine whether there is (i) a relationship between BBB breakdown and astrocyte loss, 

(ii) a correlation between BBB breakdown and the disruption of TJ and (iii) a possible role of 

immune cells in the induction of BBB permeability. Therefore, this thesis intends to answer 

the following questions: 

(i) Does the depletion of astrocytes from NMO-like lesions coincide with BBB permeability? 

Astrocytes, which are the main targets of the humoral immune response in NMO, were 

shown to play a role in the maintenance of the BBB phenotype. To investigate whether 

the loss of astrocytes in focal NMO-like lesions correlates with the induction of BBB 

permeability, time course experiments were performed using serum molecules and 

exogenous tracers as markers for BBB breakdown. Furthermore, the presence of 

pericytes in NMO-like lesions was investigated. 

(ii) Is vascular leakage associated with a disruption of TJ? 

The disruption of TJ strands between adjacent EC was demonstrated to be associated 

with the loss of BBB integrity to solutes. To evaluate TJ in NMO-like lesions, TJ molecules 

were investigated on the mRNA and protein level. In addition, the ultrastructural TJ 

morphology was assessed. 

(iii) What is the role of leukocytes for BBB disruption and NMO lesion formation? 

Infiltrating leukocytes can regulate BBB permeability upon transmigration into the CNS 

and were shown to participate in the formation of NMO-like lesions by ADCC. Therefore, 

leukocyte infiltration into NMO-like lesions was investigated. PMN were depleted to 

investigate their contribution to astrocyte depletion and BBB disruption. Using small 

molecule inhibitors, the roles of the C5a receptor and neutrophil elastase for PMN 

recruitment and BBB disruption were assessed in vivo. Furthermore, the influence of 

proteases released by PMN on the permeability of endothelial monolayers was 

investigated in vitro. 
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2 MATERIALS AND METHODS  

2.1 Materials 

2.1.1 Reagents 

Table 1: Reagents 
Reagents Source of supply 

0.9% NaCl solution B. Braun, Germany 

Acetic acid Merck Millipore, Darmstadt, Germany 

Azure II, powder Merck Millipore, Darmstadt, Germany 

BD Calibrite™ BD Biosciences, Franklin Lakes, NJ, USA 

BD FACS Shutdown Solution BD Biosciences, Franklin Lakes, NJ, USA 

BD FACSClean™ BD Biosciences, Franklin Lakes, NJ, USA 

BD FACSFlow™ BD Biosciences, Franklin Lakes, NJ, USA 

BD Perm/Wash™ BD Biosciences, Franklin Lakes, NJ, USA  

Chemically defined lipid concentrate Life Technologies GmbH, Darmstadt, Germany 

Chloral hydrate Merck Millipore, Darmstadt, Germany 

Citric acid Merck Millipore, Darmstadt, Germany 

DAB (3,3'-Diaminobenzidine) Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

DAPI (4',6-diamidino-2-phenylindole) Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

DDSA (2-Dodecenylsuccinic acid 
anhydride)  

Serva Electrophoresis GmbH, Heidelberg, Germany 

DePeX VWR international, Darmstadt, Germany 

Di-sodium tetraborate decahydrate 
(Borax) 

Merck Millipore, Darmstadt, Germany 

DMEM (High Glucose (4.5g/l), w/ L-
Glutamine, sodium pyruvate) 

Gibco, Life Technologies GmbH, Darmstadt, Germany 

DMP-30 (2,4,6 
Tris(dimethylaminomethyl)phenol) 

Serva Electrophoresis GmbH, Heidelberg, Germany 

DMSO (dimethyl sulfoxide) Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

EBM-2 basal medium Lonza, Basel, Switzerland 

Eosin G Merck Millipore, Darmstadt, Germany 

Ethanol, absolute Merck Millipore, Darmstadt, Germany 

FCS (fetal calf serum) Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

Fluorescence mounting medium Dako Deutschland GmbH, Hamburg, Germany 

Forene® 100%(V/V) (Isoflurane; 1-chloro-
2,2,2-trifluoroethyldifluoromethylether) 

Abbott GmbH & Co. KG, Wiesbaden, Germany 

Formalin, 37% Merck Millipore, Darmstadt, Germany 
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Reagents Source of supply 

Giemsa’s Azur-Eosin-Methylene blue 
solution 

Merck Millipore, Darmstadt, Germany 

Glutaraldehyde, 25%, aqueous solution Merck Millipore, Darmstadt, Germany 

H2O2 (hydroxic peroxide), 30%  Merck Millipore, Darmstadt, Germany 

HCl (hydrochloric acid) Merck Millipore, Darmstadt, Germany 

HEPES (4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid)buffer, 1 M 

Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

Hydrocortisone Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

Hydrogen peroxide, 30% solution Merck Millipore, Darmstadt, Germany 

Isopropanol Merck Millipore, Darmstadt, Germany 

Ketamine, 10% Medistar®, Ascheberg, Germany 

L-Ascorbic Acid Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

Mayer’s hemalum Merck Millipore, Darmstadt, Germany 

Methylene blue Merck Millipore, Darmstadt, Germany 

Monastral blue (Copper (II) 
phthalocyaninetetrasulfonic acid 
tetrasodium salt) 

Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

NaOH (sodium hydroxide solution), 
1 M 

Merck Millipore, Darmstadt, Germany 

Nitric acid, 65% Merck Millipore, Darmstadt, Germany 

Osmium tetraoxide, powder Carl Roth GmbH + Co. KG, Karlsruhe, Germany 

Paraffin (Paraplast Plus®) Tyco Healthcare, Neustadt, Germany 

PBS (phosphate buffered saline), 10x Biochrom AG, Berlin, Germany 

PBS (phosphate buffered saline), sterile Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

Penicillin-streptomycin (10000 U/ml 
penicillin; 10 mg/ml streptomycin) 

Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

PFA (paraformaldehyde), powder Merck Millipore, Darmstadt, Germany 

PLL (Poly-L-Lysin) Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

PMX-53 Teva Pharmaceutical Industries Ltd, Petha Tikva, Israel 

Puromycin dihydrochloride from 
streptomyces alboniger 

Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

Renlam ® M-1 Serva Electrophoresis GmbH, Heidelberg, Germany 

Silver nitrate Carl Roth GmbH + Co. KG, Karlsruhe, Germany 

Sivelestat sodium salt R&D Systems GmbH, Wiesbaden-Nordstadt, Germany 

Sodium carboxymethyl cellulose Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

Sodium thiosulfate pentahydrate Sigma-Aldrich Chemie GmbH, Steinheim, Germany 
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Reagents Source of supply 

ß-mercaptoethanol Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

Tris (tris(hydroxymethyl)aminomethane) Carl Roth GmbH + Co. KG, Karlsruhe, Germany 

Triton® X-100 MP Biomedicals, LLC, Santa Ana, CA, USA 

Xylazine solution, 20 mg/ml Ecuphar, Oostcamp, Belgium 

Xylene Chemsolute, Th. Geyer GmbH & Co. KG, Renningen, 
Germany 

 

2.1.2 Solutions, buffers and cell culture media 

Table 2: Solutions 
Solution composition 
Chloral hydrate, 14% Distilled water 

14%          chloral hydrate 
 

Dextran, 20% solution (MW ≥450.000) 0.9% sterile NaCl solution 
20%         dextran 

FACS buffer PBS 
2%           BSA 
0.2%        sodium azide 
 

Glutaraldehyde, 3% solution 12 ml         25% glutaraldehyde  
88 ml         PBS 
 

Paraformaldehyde (PFA), 4% solution PBS 
4%            PFA  
Adjust to pH 7.4 
 

Synthetic resin 27 ml       Renlam M-1 
23 ml       DDSA 
1 ml         DMP-30 
 

 

Table 3: Cell culture buffer, media and coating materials 
Solution Composition 
0.01% PLL solution for surface coating (primary 
astrocytes) 

PBS, sterile 
0.01%                PLL 
Incubate over night at 37°C 
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Solution Composition 
Astrocyte culture medium DMEM 

10%  FCS 
100 U/ml penicillin 
0.1 mg/ml          streptomycin 
 

RBEC density centrifugation medium DMEM 
20%                    BSA 
 

RBEC digestion buffer DMEM 
100 U/ml penicillin 
0.1 mg/ml          streptomycin 
10 mM  HEPES 
1 U/ml  Dispase II 
10 U/ml DNase I 
0,1 U/ml Collagenase D 
 

RBEC dissection buffer DMEM 
100 U/ml penicillin 
0.1 mg/ml          streptomycin 
10 mM  HEPES 
 

RBEC experimental medium RBEC growth medium  
140 µM              hydrocortisone 
 

RBEC growth medium EBM-2 
5%  FCS 
1%                       chemically defined lipid 

concentrate 
100 U/ml penicillin 
0.1 mg/ml          streptomycin 
5 µg/ml  ascorbic acid 
10 mM  HEPES 
1 ng/ml  basic fibroblast growth factor 
 

RBEC selection medium RBEC growth medium 
4 µg/ml              puromycin dihydrochloride 
 

Surface coating for RBEC Distilled water, sterile 
50 µg/ml collagen IV 
50 µg/ml fibronectin 
Pipette thin layer into insert and air dry 
 

Abbreviations: RBEC: rat brain endothelial cells 
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Table 4: Solutions for histochemistry, immunohistochemistry and electron microscopy 
Solution Composition 
1% eosin 70%                  isopropyl alcohol 

1%                    eosin G 
Stir, filter 
Before use add 0,5% acetic acid 
 

1% HCl 1%                   HCl absolute 
70%                  ethanol 
 

10 mM citric acid buffer distilled water 
2,1 g/l               Citric acid 
Adjust to pH 6 
 

2% sodium thiosulfate solution for Bielschowsky 
silver impregnation 

distilled water 
20 g/l             sodium thiosulfate pentahydrate 
 

20% silver nitrate solution for Bielschowsky 
silver impregnation 

distilled water 
0,2 g/ml           silver nitrate 
 
 

3,3’-diaminobenzidine tetrachloride (DAB) 
working solution 

PBS 
0.5 mg/ml       DAB 
Add 20 µl 30% hydrogen peroxidase per 50 ml 
DAB solution before use 
 

Blocking buffer for immunohistochemistry PBS 
10%                  FCS 
 

Citric acid buffer, 10 mM 2.1 g             citric acid 
1 l                 distilled water 
NaOH, adjust to pH 6 
 

Developer stock solution for Bielschowsky silver 
impregnation 

100 ml            distilled water 
0.5 g               Citric acid 
20 ml              37% formalin 
2 drops           65% nitric acid 
 

Richardson’s stain 10 ml              1% Azure II 
5 ml                2% methylene blue 
5 ml                1% borax 
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2.1.3 Antibodies, enzymes and proteins 

Table 5: Primary antibodies for immunohistochemical staining 
Antigen Marker for Species/

clone 
P/C Antigen 

retrieval/ 
fixation 

Working 
dilution 

Source of supply 

AQP4 aquaporin4/ 
water channel, 
expressed in the 
brain on 
astrocytic endfeet 

rabbit P - 1:100 Merck Millipore, 
Darmstadt, 
Germany 

CD3 cluster of 
differentiation 3/ 
T-cell receptor 

rat/ 
CD3-12 

P microwave, 
citrate 
buffer 

1:200 AbD Serotec, 
Puchheim, 
Germany 

CD68 (ED1) cluster of 
differentiation 
68/ macrophages 
and activated 
microglia in rat 

mouse/
ED1 

P Proteinase 
K 

1:500 AbD Serotec, 
Puchheim, 
Germany 

CD68 
(KiM1P) 

cluster of 
differentiation 
68/ macrophages 
and activated 
microglia in 
humans 

mouse P microwave, 
citrate 
buffer 

1:5000 private 

Claudin-3 Transmembrane 
TJ-molecule 

rabbit C ethanol 1:100 Acris Antibodies, 
Inc., San Diego, 
CA,USA 

Claudin-5 Transmembrane 
TJ-molecule 

rabbit C ethanol 1:250 Acris Antibodies, 
Inc., San Diego, 
CA,USA 

Fibrinogen blood 
glycoprotein, 
used as marker 
for BBB 
breakdown 

rabbit P proteinase 
K 

1:300 Dako Deutschland 
GmbH, Hamburg, 
Germany 

FITC, HRP 
conjugated 

fluorescein 
isothiocyanate 

rabbit P microwave, 
citrate 
buffer 

1:50 Dako Deutschland 
GmbH, Hamburg, 
Germany 

GFAP glial fibrillary 
acidic protein, 
astrocytic 
intermediary 
filament 

mouse P + C microwave, 
citrate 
buffer 

1:300 Synaptic Systems 
GmbH, Göttingen, 
Germany 

GFAP glial fibrillary 
acidic protein, 
astrocytic 
intermediary 
filament 
 

rabbit P - 1:1000 Dako Deutschland 
GmbH, Hamburg, 
Germany 
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Antigen Marker for Species/
clone 

P/C Antigen 
retrieval/ 
fixation 

Working 
dilution 

Source of supply 

GFAP-Cy3 glial fibrillary 
acidic protein, 
astrocytic 
intermediary 
filament, used for 
LCM 

mouse/
G-A-5 

C - 1:80 Abcam, 
Cambridge, 
England 

LAMγ1 laminin B2 chain; 
component of 
basement 
membrane 

mouse/
2E8 

C ethanol 1:100 Merck Millipore, 
Darmstadt, 
Germany 

MMP9 matrix 
metalloproteinas
e 9; 

rabbit P microwave, 
citrate 
buffer 

1:50 Paesel + Lorei 
GmbH & Co., 
Duisburg, Germany 

MRP14 myeloid-related 
protein-14, 
neutrophils and 
monocytes 

mouse/
BM 
40263 

P Proteinase 
K 

1:500 Acris Antibodies, 
Inc., San Diego, 
CA,USA 

Occludin Transmembrane 
TJ-molecule 

rabbit C ethanol 1:50 Life Technologies 
GmbH, Darmstadt, 
Germany 

PDGFRß platelet-derived 
growth factor 
receptor on 
pericytes 

rabbit/ 
28E1 

C ethanol 1:50 Cell Signaling 
Technology, Inc. 
Danvers, MA, USA 

rat IgG, 
biotinylated 

rat IgG  rat P Proteinase 
K 

1:200 GE Healthcare 
Europe GmbH, 
Freiburg, Germany 

Texas Red Texas Red Rabbit P microwave, 
citrate 
buffer 

1:200 Life Technologies 
GmbH, Darmstadt, 
Germany 

vWF von Willebrand 
Factor; specific 
for EC 

rabbit C ethanol 1:70 Abcam, 
Cambridge, 
England 

Abbreviations: P = used on paraffin embedded tissue; C = used on cryopreserved tissue and/or for 
immunocytochemistry 

 

Table 6: Secondary antibodies for immunohistochemical staining 
Secondary antibody Working dilution Manufacturer 
anti-mouse IgG, biotinylated 1:200 GE Healthcare Europe GmbH, Freiburg, 

Germany 
anti-rabbit IgG, biotinylated 1:200 GE Healthcare Europe GmbH, Freiburg, 

Germany 
anti-rat IgG, biotinylated 1:200 GE Healthcare Europe GmbH, Freiburg, 

Germany 
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Secondary antibody Working dilution Manufacturer 
Cy™2-conjugated AffiPure goat Anti-
mouse (H+L) 

1:200 Jackson ImmunoResearch Laboratories, 
Inc., West Grove, PA, USA 

Cy™3-conjugated AffiPure goat Anti-
rabbit (H+L) 

1:200 Jackson ImmunoResearch Laboratories, 
Inc., West Grove, PA, USA 

 

Table 7: Monoclonal antibodies for flow cytometry 
Specificity Fluorochrome Clone Dilution Source of supply 
CD11b Alexa Fluor 647 Ox-42 1:100 AbD Serotec, Oxford, UK 
CD4 PE-Cy5 OX-35 1.100 BD Biosciences, Franklin Lakes, 

NJ, USA 
CD45RA PE OX-33 1:100 BioLegend, San Diego, CA, USA 
CD8a PerCP OX-8 1:100 BioLegend, San Diego, CA, USA 
granulocytes PE RP-1 1:100 BD Biosciences, Franklin Lakes, 

NJ, USA  
TCR α/ß Alexa Fluor 647 R73 1:100 BioLegend, San Diego, CA, USA  

Abbreviations: CD= cluster of differentiation; Cy5=cyanine 5; PE= phycoerythrin; PerCP= peridinin chlorophyll 
protein; TCR= T cell receptor  

 

Table 8: Recombinant human antibodies for induction of focal NMO lesions in vivo 
Specificity Clone Application Source of supply 
AQP4 rAb-53 Induction of focal 

NMO lesions  
J. Bennett, Department of Neurology and 
Ophthalmology, University of Colorado, 
Denver, USA 

Measles virus 
nucleocapsid 
protein 

rAb-2B4 Isotype control 
antibody 

J. Bennett, Department of Neurology and 
Ophthalmology, University of Colorado, 
Denver, USA 

 

Table 9: Sera for PMN-depletion in vivo 
Serum Application Source of supply 
anti-PMN antiserum 
(AIA51140)  

Depletion of PMN Accurate Chemical and Scientific 
Corporation, Westbury, NY, USA 

normal rabbit serum 
(AIS403) 

 Control serum Accurate Chemical and Scientific 
Corporation, Westbury, NY, USA 

 

Table 10: Proteins and enzymes 
Proteins/ enzymes Source of supply 
Albumin–fluorescein isothiocyanate conjugate Sigma-Aldrich Chemie GmbH, Steinheim, 

Germany 
BSA (bovine serum albumin) SERVA Electrophoresis GmbH, Heidelberg, 

Germany 
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Proteins/ enzymes Source of supply 
Cathepsin G from human leukocytes Sigma-Aldrich Chemie GmbH, Steinheim, 

Germany 
Collagen from human placenta Bornstein and 
Traub Type IV 

Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 

Collagenase D Roche Diagnostics Deutschland GmbH, 
Mannheim, Germany 

Complement sera human, lyophilized powder Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 

Dispase II (neutral protease, grade II) Roche Diagnostics Deutschland GmbH, 
Mannheim, Germany 

DNase I Roche Diagnostics Deutschland GmbH, 
Mannheim, Germany 

Elastase, human neutrophil Merck Millipore, Darmstadt, Germany 
ExtrAvidin®-Peroxidase Sigma-Aldrich Chemie GmbH, Steinheim, 

Germany 
Fibrinonectin from bovine plasma Sigma-Aldrich Chemie GmbH, Steinheim, 

Germany 
Fibroblast Growth Factor-Basic, human, 
recombinant expressed in E. coli 

Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 

MMP9, active, human, recombinant Merck Millipore, Darmstadt, Germany 
Proteinase K Sigma-Aldrich Chemie GmbH, Steinheim, 

Germany 
Texas Red® cadaverine Life Technologies GmbH, Darmstadt, Germany 
Trypsin-EDTA (0.25% and 0.05%) Gibco, Life Technologies GmbH, Darmstadt, 

Germany 
 

2.1.4 Applied kits 

Table 11: Applied kits 
Kit Source of supply 
CytoTox-ONE™ Homogeneous Membrane 
Integrity Assay 

Promega, Mannheim, Germany 

High-Capacity cDNA Reverse Transcription Kit 
with RNase Inhibitor 

Life Technologies GmbH, Darmstadt, Germany 

Naphthol AS-D Chloroacetate (Specific Esterase) 
Kit 

Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 

qPCR Core Kit Eurogentec Deutschland GmbH, Köln, Germany 
RNeasy Micro Kit Qiagen GmbH, Hilden, Germany 
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2.1.5 Primers for qPCR 

Table 12: TaqMan® qPCR primers  
Primer number RNA specificity Reference sequence Source of supply 
Rn00581751_s1 claudin-3 NM_031700.2 Technologies GmbH, Darmstadt, 

Germany 
Rn01753146_s1 claudin-5 NM_031701.2 Technologies GmbH, Darmstadt, 

Germany 
Rn01775763_g1 gapdh NM_017008.4 Technologies GmbH, Darmstadt, 

Germany 
Rn00580064_m1 occludin NM_031329.2 Technologies GmbH, Darmstadt, 

Germany 

2.1.6 Consumables 

Table 13: Consumables 
Consumable Source of supply 
Blaubrand® intraMARK micropipettes, 5 µl Brand GmbH, Wertheim, Germany 
Bottle top filter, 0.2 µm Sarstedt, Nuembrecht, Germany 
Cell culture dish, 60 x 15 mm Greiner bio-one, Kremsmuenster, Austria 
Cell culture flask, 75 cm² Greiner bio-one, Kremsmuenster, Austria 
Cell culture plate, flat bottom (12 well, 96 well) Greiner bio-one, Kremsmuenster, Austria 
Falcon 12 well permeable support companion 
plate 

Corning, Corning, NY, USA 

Falcon permeable support for 12 well plate with 
0.4 µm transparent PET membrane 

Corning, Corning, NY, USA 

MMI IsolationCaps, diffuse,  0.5 ml Molecular Machines & Industries GmbH, Eching, 
Germany 

MMI MembraneSlides, RNAse free Molecular Machines & Industries GmbH, Eching, 
Germany 

Needles BD Biosciences, Franklin Lakes, NJ, USA 
Syringes BD Biosciences, Franklin Lakes, NJ, USA 
Tubes (50 ml, 15 ml, 2 ml, 1.5 ml, 0.5 ml, 0.2 ml)  Sarstedt, Nuembrecht, Germany 
 

2.1.7 Technical devices 

Table 14: Technical devices 
Device Source of supply 
BD FACSCalibur™ BD Biosciences, Franklin Lakes, NJ, USA 
BX51 Olympus light microscope equipped with 
DP71 digital and XM10 monochrome camera  

Olympus, Hamburg, Germany 

Cellstar incubator Nunc GmbH & Co. KG, Wiesbaden, Germany 
Centrifuge 5415 R Eppendorf, Hamburg, Germany 
Centrifuge 5810 R Eppendorf, Hamburg, Germany 
Cryotome CM3050 Leica, Wetzlar, Germany 
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Device Source of supply 
EM10B electron microscope Carl Zeiss Microscopy GmbH, Oberkochen, 

Germany 
EVOM² Epithelial Voltohmmeter, STX2 electrode World Precision Instruments Germany GmbH, 

Berlin, Germany 
iCycler iQ™5 Bio-Rad Laboratories GmbH, München, Germany 
Leica Ultracut UCT Leica, Wetzlar, German 
Microtome Leica, Wetzlar, Germany 
Microwave Bosch, Gerling-Schillerhohe, Germany 
NanoDrop ND-1000 Peqlab, VWR International GmbH, Erlangen, 

Germany 
Stereotactic device Stoelting Co, Wood Dale, IL, USA 
T3 Thermocycler Biometra, Germany 
Tecan Safire plate reader Tecan Group Ltd., Männedorf, Switzerland 
TP 1020 (tissue processor) Leica, Wetzlar, Germany 
 

2.1.8 Software 

Table 15: Software 
Software Application Source of supply 
ImageJ 1.47d Measurements of lesion size 

and tracer extravasation 
National Institutes of Health, 
Bethesda, Maryland, USA 

GraphPad Prism 5.01 Statistical analysis 
Graphs 

GraphPad software Inc., La 
Jolla, CA, USA 

 

2.2 Human neuromyelitis optica (NMO) tissue 

Biopsy or autopsy central nervous system (CNS) tissue from seven anti-AQP4 seropositive 

NMO or NMO spectrum disorder patients was analyzed to investigate the type and extent 

immune cell infiltration. In 5/7 patients, brain or spinal cord biopsies were taken for 

diagnostic reasons to exclude lymphoma, astrocytoma or infection. Additionally, autopsy 

material from two patients was included in this study. Astrocyte-depleting and 

demyelinating lesions compatible with NMO or NMO spectrum disorder was confirmed by 

immunohistochemistry in these patients. Loss of AQP4 and GFAP positive cells was observed 

in macrophage-rich areas. Inflammatory areas also presented with demyelination and 

relative axonal preservation and were therefore consistent with early NMO lesions. Immune 

cell infiltration was investigated in HE (PMN infiltration), MRP14 (PMN/early monocytes), 

KiM1P (CD68, macrophages/activated microglia) and CD3 (T cells) immunohistochemistry. 

The studies on human tissue were approved by the local ethics committee (14/5/03). 
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Table 16: Clinical data of patients with anti-AQP4 seropositive NMO or NMO spectrum disorder 
Patient 
no. 

B/A Age/sex Disease duration 
(years) 

disease 
course 

CNS involvement lesions studied 

1 B 37/f 9 RR Brain, spinal 
cord, optic nerve 

Occipital brain lesion 

2 B 31/f 5 RR Brain, spinal 
cord, optic nerve 

Parietal brain lesion 

3 B 57/m 10 RR Brain, spinal cord Parietal brain lesion 

4 B 67/f < 1 ns Brain Parietal brain lesion 
5 B 45/f 2 RR Spinal cord spinal lesion 
6 A 77/f 24 RR Brain, spinal 

cord, optic nerve 
spinal lesion 

7 A 72/m 0.75 RR Brain, spinal cord spinal lesion 
Abbreviations: A = autopsy, B = biopsy, f = female, m = male, RR = relapsing remitting, ns = not specified 

2.3 Animals 

For in vivo experiments, adult female inbred 2-3 month old Lewis rats (180-245 g) were 

purchased from Charles River (Sulzfeld, Germany). 

For isolation of astrocytes and endothelial cells newborn Wistar rats were used on postnatal 

day 0 (P0) or P17, respectively. They were obtained from the in-house breeding facility. 

Animals were kept in cages with up to 5 animals each on a 12/12 h light/dark cycle at 

constant temperature and humidity with access to food and water ad libitum. Before each 

experiment, the animals were allowed to adapt to the new environment for 7 days. All 

animal experiments were conducted in accordance with the European Communities Council 

Directive of 24 November 1986 (86/EEC) and were approved by the Government of Lower 

Saxony, Germany (12/0964). 
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2.4 Methods 

2.4.1 Animal experiments 

2.4.1.1 Induction of focal NMO-like lesions in rats 
NMO-like lesions in rats were induced by intracortical injection of a human recombinant 

NMO-Ab, directed against AQP4, together with complement. The NMO-Ab was generated in 

the laboratory of Jeffrey Bennett (Department of Neurology and Ophthalmology, University 

of Colorado, Denver, USA). Briefly, cerebrospinal fluid (CSF) plasma cells were isolated from 

an NMO patient after a first clinical attack. The paired heavy- and light-chain sequences from 

a single plasma cell clone were reconstructed to create AQP4-specific recombinant human 

IgG1 monoclonal antibodies (Bennett et al., 2009). For the induction of focal NMO-like 

lesions the recombinant anti-AQP4 Ab 53 (rAB-53; from now on referred to as NMO-Ab) was 

used. A similarly produced non-CNS antigen specific recombinant human IgG1 antibody 

directed against measles virus nucleocapsid protein (rAb 2B4; designated in the following 

control-(ctrl-)Ab) served as a control. 

To induce focal NMO-like lesions, female Lewis rats were anesthetized by intraperitoneal 

(i.p.) injection of ketamine (60 mg/kg body weight) and xylazine (8 mg/kg body weight). 

After loss of consciousness and pedal reflexes, a rostro-caudal cut was performed to gain 

access to the skull. The head of the animal was fixed in a stereotactic device and a small hole 

was drilled through the skull, 1 mm caudally and 2 mm laterally to the bregma. When only a 

thin layer of bone was left, a small hole was made using a microdissection knife in order to 

avoid damage to the brain. Using a finely calibrated glass capillary, 1 µl antibody mixture was 

slowly injected into the cortex. This mixture contained 2.5 mg/ml Ab (either NMO-Ab or ctrl-

Ab), 15 U/ml human complement and the tracer dye Monastral Blue. After injection, the 

capillary was carefully removed and the skin was sutured. To provide analgesia 0.03 mg/kg 

buprenorphine (Temgesic©) was injected i.p. directly after surgery, which was repeated 

after 6 h and 12 h. 

2.4.1.2 Assessment of blood brain barrier (BBB) permeability 

In order to assess the integrity of the BBB, the extravasation of the endogenous marker 

molecules IgG and fibrinogen was investigated by immunohistochemical staining. 

Additionally, experiments applying exogenous tracers were performed. Therefore, two 

differently sized, lysine-fixable marker molecules were used: fluorescein isothiocyanate 

(FITC)-albumin (70 kDa) and Texas Red® cadaverine (690 Da). Rats were intravenously (i.v.) 
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injected either with 1 ml of a 10 mg/ml FITC-albumin solution (dissolved in saline) 40 min 

before perfusion, or 1 ml of a 5 mg/ml Texas Red cadaverine solution (dissolved first in 40 µl 

DMSO, and then filled up to 1 ml with saline solution) 50 min before perfusion. 

2.4.1.3 Depletion of polymorphonuclear cells (PMN) in rats 

For the depletion of blood PMN in rats rabbit anti-PMN antiserum (Accurate Chemical and 

Scientific Corporation) was used. Control rats received normal rabbit serum (Accurate 

Chemical and Scientific Corporation). To deplete PMN 1 ml/kg body weight anti-PMN 

antiserum or normal serum (filled to 2 ml with saline) was injected i.p. 18 h prior and directly 

after intracerebral injection of NMO- or ctrl-Ab. To verify the efficiency of PMN depletion, 

blood samples were taken twice from the animals: before PMN depletion and at 6 h after 

lesion induction when the animals were sacrificed. Blood smear samples were analyzed by 

Giemsa staining. Therefore, air dried blood smears were incubated in a 1:5 dilution of 

Giemsa’s azur-eosin-methylene blue solution for 40 min. Subsequently, the staining was 

differentiated in 1% HCl (in distilled water) and the smear was dehydrated and mounted. 

Differential cell counts were performed using light microscopy (400 x magnification). In each 

slide, 300 cells were counted and the percentage of PMN was calculated. 

In addition, the effect of the treatment with anti-PMN antiserum on PMN, B-cells, T-cells and 

monocytes/macrophages was investigated using flow cytometry. Flow cytometric analysis 

was performed by Michael Haberl (Department of Neuroimmunology, Institute for Multiple 

Sclerosis research, Göttingen). Blood samples were obtained by cardiac puncture once the 

animals were sacrificed, and diluted 1:1 with PBS. Subsequently, 0.75 volumes 20% dextran 

(≥ 450 kDa) were added to the blood/PBS mixture and incubated at room temperature (RT) 

for 30 min in order to allow for the aggregation of erythrocytes at the bottom of the tube. 

The leukocyte-rich plasma was then transferred to a new tube and centrifuged at 1200 rpm 

for 5 min. The supernatant was discarded, the pellet was washed with PBS and centrifuged 

again. Subsequently, the cell pellet was resuspended in FACS buffer. 100 µl of the cell 

suspension were used for each staining. Prior to granulocyte labeling, cells were fixed with 

2% PFA for 20 min, centrifuged, washed with FACS-buffer and centrifuged again. The cells 

were then permeabilized by resuspension of the cell pellet in 1x BD Perm/Wash™ buffer, 

incubated for 30 min on ice and washed twice with FACS-buffer. For staining of CD4 T cells, 

CD8 T cells, B cells and myeloid cells, no pretreatment was needed. Subsequently, Ab were 

diluted 1:100 in FACS buffer, added to the cells and incubated on ice in the dark for 30 min. 

The following Ab were used: granulocytes: RP-1; CD4 T cells: TCR α/ß and CD4; CD8 T cells: 
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TCR α/ß and CD8a; B cells: CD45RA; myeloid cells: CD11b. Cells were washed twice in FACS 

buffer and the cell pellet was resuspended in 100 µl FACS buffer. Finally, 50 µl of BD 

Calibrite™ beads (20x104 beads/ml) were added to the suspension and cells were counted 

until a minimum 1000 bead events were recorded using the BD FACSCalibur. 

2.4.1.4 Pharmacological inhibition of the complement component 5a receptor 
(C5aR) 

To inhibit C5aR mediated signaling, the small molecule C5aR antagonist PMX-53 was used. 

PMX-53 was dissolved in distilled water at a concentration of 10 mg/ml and then further 

diluted in normal sterile saline (0.9%) to a final concentration of 0.2 mg/ml. 

Animals were treated once i.v. with 1 mg/kg body weight PMX-53 or vehicle 3 h after focal 

intracerebral injection of NMO-Ab and human complement. 6 h after focal injection rats 

were perfused and brains were prepared for histological analysis. 

2.4.1.5 Pharmacological inhibition of neutrophil elastase 

For inhibition of the neutrophil elastase (NE), the competitive NE inhibitor Sivelestat sodium 

salt hydrate was used. Sivelestat was dissolved to a final concentration of 20 mg/ml in water. 

Rats were injected i.p. with 50 mg/kg body weight Sivelestat or vehicle 3 h after NMO-like 

lesion induction. Rats were perfused 6 h after intracerebral injection of NMO-Ab and human 

complement, and brains were processed for histological investigation. 

2.4.1.6 Perfusion of animals 

In order to preserve the tissue morphology for histological analyzes and to remove the blood 

from the vasculature, animals were perfused transcardially. Rats were anesthetized by i.p. 

injection of a lethal dose of 14% chloral hydrate. After the animal was deeply sedated and 

had lost the pedal and corneal reflexes, the thorax was opened. The perfusion was 

performed via the left heart ventricle.  

For histological evaluations, animals were perfused with PBS followed by 4% PFA. 

Subsequently, the brain, spleen and liver were collected in a falcon tube containing 4% PFA 

and were post-fixed for an additional 48 h at 4°C. The brain was then washed with PBS, 

dissected into 2-4 mm thick coronal sections close to the injection site marked with 

Monastral blue and washed again with water. Spleen and liver were processed in the same 

way and served as ctrl tissue in the same paraffin block. For paraffin embedding, the tissues 

were gradually dehydrated via alcohol, xylene and in the end embedded in paraffin using the 

automated tissue processor TP 1020 over night. 
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For RNA extraction and cryo-tissue preparation the perfusion was performed with sterile PBS 

only. After PBS perfusion the brain was removed, trimmed near the injection site and placed 

in a drop of Tissue-Tek® on a cork plate. Subsequently, the tissue was frozen in liquid 

nitrogen-cooled isopentan and stored at -80°C. 

2.4.2 Cell culture 

2.4.2.1 Isolation and purification of primary rat brain endothelial cells (RBEC) 
and measurement of the transendothelial resistance (TEER) 

Primary RBEC were isolated based on a modified protocol published by Joan Abbott and co-

workers in 2006 (Abbott et al., 2006). For the isolation, 17 days old Wistar rats were used. 

Rats were deeply anesthetized with isoflurane and decapitated. Brains were removed and 

directly transferred into dissection buffer in which they were stored on ice until further 

processing. All the following steps were performed under sterile conditions in a laminar flow 

hood. From each brain, the cerebellum, the olfactory bulbs and the optic nerves were 

removed, and both hemispheres were separated. One hemisphere was transferred to 

Whatman filter paper, the midbrain was removed, and the brain was folded open in order to 

remove the white matter (WM) and meninges. Subsequently the grey matter (GM) tissue 

was collected and transferred to a new Petri dish. The GM was cut into small pieces and 

transferred to a new tube containing dissection buffer and stored on ice. After centrifugation 

(800 x g, 4°C, 7 min) 7 ml of digestion solution containing Collagenase D, Dispase and DNase I 

was added to the pellet. The tissue was digested at 37°C for 30 min under constant agitation 

and then homogenized by pipetting. The suspension was centrifuged, the supernatant was 

aspirated and 20 ml of ice cold DMEM with 20% BSA was added. The pellet was thoroughly 

resuspended and centrifuged at 1000 x g for 20 min at 4°C. After centrifugation the upper 

phase contains myelin, oligodendrocytes, neurons and microglia, while microvessels can be 

found as a pellet at the bottom of the tube. The supernatant was discarded and the 

microvessels were washed once with dissection buffer and subsequently resuspended in 3 

ml digestion buffer. After an additional digestion time of 20 min at 37°C the cells were 

centrifuged. The pellet was resuspended in selection medium containing puromycin in order 

to remove contaminating non-P-glycoprotein-expressing cells (Perrière et al., 2005). RBEC 

were seeded in 12 well inserts (PET membrane, 0.4 µm pore size) precoated with collagenIV 

and fibronectin and placed in a CO2 incubator (5% CO2, 37 °C). 

After incubation for 3 d, selection medium was replaced with normal growth medium. The 

medium was replaced every other day and exchanged by experimental medium containing 
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hydrocortisone once the RBEC layer had reached 90% confluency. Cells were directly used 

for experiments when they reached TEER values of around 40 Ω*cm². 

TEER measurements are an important readout to assess the integrity of the RBEC 

monolayer. It represents the permeability of tight junctions (TJ) to sodium ions. High TEER 

values represent an impermeable monolayer. TEER was measured using the EVOM2 

resistance meter (World Precision Instruments) with STX-2 electrodes, where one electrode 

is placed in the apical and the other one in the basolateral compartment. The resistance 

measured was then expressed relative to the surface area of the insert (Ω*cm²). The TEER 

values of coated cell-free inserts (140-155 Ω*cm²) was subtracted from the values of the 

monolayers. 

To ensure that treatment with puromycin removed all contaminating cells from the RBEC 

culture, initial qPCR for AQP4 (astrocytes), CD11b (microglia), α-SMA and PDGFRß 

(pericytes), and immunocytochemistry for endothelial cell markers (vWF, occludin, claudin-3, 

claudin-5) was performed. qPCR and immunohistochemistry showed no contamination by 

other cells. 

2.4.2.2 Isolation and purification of primary rat astrocytes 
Primary rat astrocytes were isolated from newborn Wistar rats (P0-P1). Rats were 

decapitated, the brain was isolated and transferred into a Petri dish containing HBSS buffer 

(37°C). Subsequently, the meninges were removed with forceps to prevent meningeal 

fibroblasts to interfere with the glial cell growth. Brains were digested in 0.25% Trypsin-EDTA 

solution for 20 min at 37°C. Then the cells were washed once with HBSS. Subsequently, 

DMEM containing 10% FCS and 1% P/S was added to the tissue pellet and the tissue was 

dissociated by pipetting. Cells were seeded in PLL coated falcon flasks and grown for 10 to 14 

d in an incubator (5% CO2, 37°C) with medium changes every 2-3 d. When the mixed cell 

culture containing astrocytes, oligodendrocytes and microglia reached 100% confluency, the 

loosely sitting oligodendrocytes and microglia were removed by vigorous shaking of the 

flasks. The supernatant was discarded, while astrocytes stayed firmly attached to the plastic 

surface. Astrocytic cultures were used maximally for 3 weeks to avoid loss of primary 

phenotype. 

2.4.2.3 Co-culture of RBEC and astrocytes as in vitro model of the BBB 

In order to assess the indirect influence of astrocytes on RBEC, cells were co-cultured in a 12-

well transwell system. Astrocytes were plated in a 12-well cell culture plate (basolateral 



MATERIALS AND METHODS 

34 
 

compartment) containing astrocyte medium. At the same time, RBEC were seeded in inserts 

(apical compartment). When astrocytes reached 100% confluency, inserts with a confluent 

RBEC monolayer were transferred into the 12-well plate containing astrocytes. Astrocyte 

medium was replaced by RBEC experimental medium. TEER was measured daily for 7 d in 

triplicates. 

2.4.2.4 Incubation of RBEC monolayers with proteases and assessment of 
cytotoxicity 

To investigate the direct influence of neutrophil proteases on RBEC, NE (6 µg/ml), cathepsin 

G (0.4 U/ml) or active matrix metalloproteinase 9 (0.5 µg/ml) were added directly to the 

apical compartment of a transwell system containing RBEC. Experiments were performed in 

triplicates. TEER was measured before treatment and after 60 and 120 min. Subsequently, 

cells were fixed with 100% ethanol for immunocytochemical analysis. 

To exclude a cytotoxic effect of neutrophil proteases on RBEC the CytoTox-ONE™ 

Homogeneous Membrane Integrity Assay (Promega) was used according to the 

manufacturer’s instructions. It is based on the release of lactate dehydrogenase from dying 

cells with a leaky cell membrane. The lactate dehydrogenase-measurement was performed 

after 2 h of treatment with proteases using 100 µl of the supernatant from the apical 

compartment. Supernatant of lyzed RBEC served as positive control as described in the 

manufacturer’s protocol. 

2.4.2.5 Immunocytochemcial staining of RBEC 

To investigate TJ expression and localization in the isolated RBEC, cells were grown on 

coverslips. After reaching confluency, they were washed once with warm PBS, transferred 

into precooled 100% ethanol and fixed at -20°C for at least 30 min. Coverslips were washed 3 

times with PBS and incubated with blocking buffer (PBS with 10% horse serum and 1% BSA) 

for 20 min. Primary antibody diluted in blocking buffer was added to the coverslips for 1 h. 

RBEC were immunolabeled for the TJ molecules occludin (1:50), claudin-3 (1:100), claudin-5 

(1:300) and vWF (1:100) (Table 5). Cells were washed 3 times with PBS and subsequently 

incubated with a fluorescently labeled secondary antibody (Table 6) diluted in blocking 

buffer for 30 min. Cells were washed and the nuclei were stained using 4',6-diamidino-2-

phenylindole (DAPI, 1:10000 in PBS). After a last washing step coverslips were rinsed in 

distilled water and mounted on glass slides using fluorescence mounting medium. 
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2.4.3 Histology 

2.4.3.1 Cutting, deparaffinization and dehydration of histological paraffin-
embedded sections 

Paraffin blocks were cut into 1-2 µm thick sections using a sliding microtome, and were then 

mounted on glass slides. For identification of the injection sites, sections were checked for 

traces of Monastral blue in the tissue. 

Prior to the staining procedure, sections were gradually deparaffinized. Therefore, the 

paraffin was melted for at least 1 h at 56°C. Subsequently, the sections were first delipidized 

and then rehydrated by consecutive immersion in the following solutions: xylene (four times 

for 5 min), isoxylene (once for 2 min), 100 % isopropyl alcohol (twice for 3 min), and once in 

90 %, 70% and 50% isopropyl alcohol for 3 min each, and in the end washed with distilled 

water. 

After the staining, sections were again dehydrated in reverse order to the deparaffinization 

procedure and mounted in DePex medium. 

2.4.3.2 Histochemical stainings 

2.4.3.2.1 Hematoxylin and eosin staining (HE) 

For a general overview of the tissue with regard to inflammation and apoptosis HE staining 

was performed. The first component of the staining is hematoxylin, a basic dye which colors 

basophilic structures (particularly the DNA in the nucleus and the rough endoplasmic 

reticulum) with a blue-purple hue. The second component is the alcohol-based acidic eosin 

that stains eosinophilic structures like proteins bright pink. For staining, the sections were 

deparaffinized, washed and incubated in Mayer’s hemalum for 8 min. Then slides were 

washed with water, briefly differentiated in 1% HCl and blued for 10 min in running tap 

water. Subsequently, the slides were stained with 1% eosin for 6 min, washed with distilled 

water, dehydrated and mounted. 

2.4.3.2.2 Bielschowsky silver impregnation 

In order to ensure that the stereotactic injections into the brain were not destroying the 

surrounding tissue reflected by axonal destruction and tissue necrosis, Bielschowsky silver 

impregnation was used. It stains nerve fibers and pathological deposits black. Sections were 

deparaffinized and incubated in 20% silver nitrate (in distilled water) for 20 min and 

subsequently transferred into a cuvette with distilled water. Then 32% ammonium 

hydroxide was added dropwise into the 20% silver nitrate solution until the resulting 
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precipitations were cleared. Slides were returned into the cuvette containing silver nitrate 

and ammonium hydroxide and incubated in the dark for 15 min. Slides were then placed in 

50 ml distilled water containing three drops of ammonium hydroxide. Now 10 drops of 

developing solution were added to the silver nitrate and ammonium hydroxide solution and 

slides were briefly developed. When the desired staining intensity was reached, the reaction 

was stopped in distilled water. Slides were then incubated for 2 min in 2% sodium 

thiosulfate, rinsed, dehydrated and mounted. 

2.4.3.2.3 Chloroacetate esterase enzyme histochemistry (CAE) 

CAE stain (also called Leder stain) takes advantage of the enzymatic activity of “specific 

esterase”, an enzyme found in cells of the granulocyte lineage and was therefore used to 

detect neutrophils in the brain. In the naphthol AS-D chloroacetate kit (Sigma) that was 

used, naphthol AS-D chloroacetate is enzymatically hydrolyzed. Thereby a naphtol 

compound is liberated and couples with a diazonium compound, leading to the formation of 

bright pink deposits at sites of enzymatic activity. 

CAE staining was performed according to manufacturer’s instruction. Briefly, the slides were 

deparaffinized, rinsed in distilled water and preheated in PBS at 37°C for 1 h. Then the 

working solution was prepared, consisting of 2% sodium nitrite, 2% Fast Corinth salt, 10% 

TrizmalTM buffer and 2% naphtol AS-D chloroacetate. Slides were then incubated in the 

working solution at 37°C for 2 h and washed with distilled water. Subsequently they were 

briefly counterstained in Mayer’s hemalum, washed and mounted using Aquamount. 

2.4.3.3 Immunohistochemistry 

2.4.3.3.1 Antigen retrieval of paraffin embedded tissues 

Due to fixation of the tissues with PFA, antigens in the sections can be masked. This can 

prevent the primary Ab binding to the antigen. Therefore we used different methods to 

unmask the epitopes, which were determined separately for each antibody and are listed in 

Table 5. 

For heat-induced antigen retrieval 10mM citric acid, 1 mM Tris-EDTA or Tris-HCl solutions 

were used. The sections were heated in a microwave 5 times for 3 min, refilling first with 

water and then alternatingly with buffer and water after each cycle. After the solutions 

cooled down, buffers were replaced by water. 
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Alternatively, proteinase K-induced antigen retrieval was used. Here the slides were 

incubated at 60°C in a preheated proteinase K solution for 10 min and then washed with 

water. 

2.4.3.3.2 Cutting and fixation of frozen tissues 

Native, unfixed frozen tissues were cut into 5 µm thick sections using a cryostat and 

mounted on glass slides. They were then either stored at -80°C or further processed. To 

prevent detachment of the sections from the slides during the staining procedure, the 

sections were air-dried for at least 30 min at RT. 

Frozen tissues were fixed depending on the antibody, either for 10 min in 100% ethanol or 

30 min in 100% ether at RT (see Table 5). Subsequently sections were air-dried for 10 min, 

rehydrated for 10 min in PBS and immunostained. 

2.4.3.3.3 Immunostaining of tissues 

Immunostainings were performed in order to investigate astrocyte pathology (GFAP, AQP4), 

BBB breakdown (IgG, Fibrinogen, FITC, Texas Red), immune cell infiltration (ED1, CD3, Iba1, 

MRP14, KIM1P), blood vessel pathology (occludin, claudin-3, claudin-5, LAMγ1) or pericytes 

(PDGFRß).  

For immunohistochemical staining, the labeled streptavidin-biotin method was used. To 

block the endogenous peroxidase, pretreated frozen or paraffin embedded tissues were first 

incubated with 3% hydrogen peroxide in PBS and then washed 3 times in PBS. To block 

unspecific antibody binding, sections were treated with blocking buffer (PBS with 10% FCS) 

for 10 min. Next, the primary antibody, diluted in blocking buffer (Ab dilutions are given in 

Table 5) was added and incubated over night at 4°C. Afterwards, slides were rinsed 3 times 

with PBS. Then the corresponding biotinylated secondary antibody, diluted in blocking 

buffer, was applied to the slides for 1 h at RT (Table 6). Non-bound antibody was removed by 

washing 3 times with PBS. To amplify the signal 0.1% streptavidin horseradish peroxidase 

diluted in blocking buffer was added to the slides and incubated for 45 min at RT. After 

washing 3 times with PBS, slides were developed in a 3,3’ diaminobenzidine (DAB) solution, 

and the reaction was controlled under a microscope. The chromogen DAB acts here as a 

substrate of the peroxidase, which results in a dark brown staining. Subsequently, the slides 

were washed in distilled water and counterstained in Mayer’s hemalum for 30 s. Then they 

were washed with distilled water, differentiated in 1% HCl solution, blued in tap water for 

7 min, dehydrated and mounted as described above. 
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The indirect immunofluorescence method was used in order to stain different target 

antigens simultaneously, e.g. to evaluate the TJ of vessels within the lesions. Pretreated 

frozen tissues were washed 3 times with PBS, blocked with blocking buffer and incubated 

with the primary antibodies (Table 5) at 4°C over night. Subsequently slides were washed 3 

times in PBS and incubated with the corresponding fluorochrome-labeled secondary 

antibodies (Table 6) for 45 min at RT in the dark. After washing with PBS 3 times, nuclei were 

counterstained with DAPI (1:10000 in PBS) for 15 min at RT in the dark. Then the slides were 

washed again 3 times in PBS, rinsed once in distilled water and mounted using fluorescence 

mounting medium. 

2.4.3.4 Electron microscopy (EM) 
For assessment of the TJ morphology on the ultrastructural level, electron microscopy (EM) 

was performed. Therefore animals were perfused first with PBS and subsequently with 

4% PFA. Then the brain was removed and cut coronally at the injection site. For postfixation 

the area around the injection site was cut into three pieces (1 mm³) which were then 

transferred to 3% glutaraldehyde over night. The brain pieces were washed two times in PBS 

and incubated with 1% osmium tetroxide solution for 1 h at 4°C. Dehydration followed for 

10 min in 50% ethanol, and additional staining was performed with 0.5% uranyl acetate for 

1 h at 4 °C in the dark. The tissue was dehydrated in 70 % ethanol over night, for 10 min in 

80% and 96% ethanol and two times for 15 min in 100% ethanol. Next, for resin embedding, 

the tissue was incubated 2 times in propylene oxide for 20 min. Afterwards resin:propylene 

oxide ratios were adjusted to 1:1 and subsequently to 2:1 solution in which the tissue was 

incubated for 35 min each. Finally, the tissue was transferred into 100% resin for 1 h and 

embedded in moulds filled with araldite. 

Embedded tissues were cut in semi-thin sections of 360 – 400 nm. Sections were transferred 

to a glass slide and dried on a heating plate at 60 °C for 1 h. Semi-thin sections were stained 

with Richardson’s stain, which stains myelin in dark blue and cytoplasm in light blue, for 3 

min. Finally they were rinsed 3 times with distilled water air dried and mounted with Depex. 

According to the area of interest in the semi-thin section, the tissue blocks were trimmed 

and ultrathin sections of 70-72 nm were cut. These sections were collected on a grid, dried 

and stained with lead citrate for 10 min. 

All samples were evaluated using the electron microscope EM10B (Zeiss) and imaged. 
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2.4.4 Microdissection of lesions for mRNA expression analysis 

In order to evaluate mRNA expression of TJ genes in NMO-like lesions, laser capture 

microdissection (LCM) was performed. Therefore brain tissue of NMO- or ctrl-Ab injected 

animals was fixed in liquid nitrogen. Tissue was cut into 10 µm thick sections using a 

cryostat, mounted on polyethylene naphthalate membranes and stored at -80°C. 

In order to prevent mRNA degradation, a rapid staining protocol for astrocytes was 

established to identify the lesion outline. The tissue was first fixed in -20°C cold ethanol for 

2 min, washed briefly with PBS and then stained for 2 min with anti-GFAP-Cy3. Subsequently 

slides were washed with PBS and dipped into 100% ethanol for dehydration. LCM was then 

performed using the MMI CellCut Plus system microscope. In order to prevent RNA 

degradation LCM was performed for a maximum of 10 min. Only astrocyte depleted areas 

were extracted from NMO-Ab injected animals, while in ctrl-Ab injected animals the area 

around the injection site was isolated. The extracted tissue was directly transferred into RLT-

buffer (according to the manufacturer's instructions containing 1% ß-mercaptoethanol) and 

stored at -80°C until further processing. 

2.4.5 mRNA expression analysis 

RNA was isolated using the RNeasy Micro Kit (Qiagen) according to the manufacturer’s 

protocol for microdissected tissues. Subsequently, RNA was transcribed into cDNA using the 

High-Capacity RNA-to-cDNA™ Kit (Life Technologies) according to the manufacturer’s 

instructions. 

qPCR was performed using the qPCR core kit (Eurogentec) according to the manufacturer’s 

instructions. TaqMan Gene Expression Assays (Life Technologies) for claudin-3, -5 and 

occludin (TJ molecules) were used. The house keeping gene gapdh served as control. 

Duplicates of each probe were checked for pipetting errors which would result in high 

standard deviation (SD). Samples with a SD higher than 0.4 were excluded from further 

calculation. 

2.4.6 Morphometric analysis and data acquisition 

Astrocyte lesion size and extravasation of molecules into the parenchyma was measured 

using ImageJ. Therefore, images were taken at 40x magnification using the BX51 Olympus 

light microscope equipped with a DP71 digital camera. 
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For assessment of lesion size, areas of complete loss of AQP4 and GFAP immunoreactivity 

were measured. 

For extravasation of the endogenous tracer molecules IgG and fibrinogen and the exogenous 

tracer molecules FITC-albumin and Texas Red®-cadaverine the different channels 

(haematoxylin-DAB-3rd component) were separated using the ImageJ plugin DAB color 

deconvolution. In the brown channel (DAB) the intensity threshold for selection was set to 0-

150 and the resulting marked area was measured. For the IgG and fibrinogen time course 

the intensity threshold was adjusted to the staining intensity due to background differences 

in the different slides. 

To evaluate the percentage of blood vessels positive for TJ molecules, immunofluorescently 

labeled sections (NMO-Ab injected: claudin-3/claudin-5/occludin - LAMγ1 – GFAP; ctrl-Ab 

injected: claudin-3/claudin-5/occludin - LAMγ1) were imaged at 100x magnification using the 

BX51 Olympus light microscope equipped with a XM10 monochrome camera. The total 

number of LAMγ1-positive blood vessels was evaluated as well as the number of LAMγ1-

positive blood vessels which were immunopositive for occludin, claudin-3 or claudin-5 at the 

TJ. From this, the percentage of brain vessels with occludin, claudin-3 or claudin-5 localized 

at the TJ was calculated. 

To assess the number and density of immune cells infiltrating focal NMO-like lesions, 

immunohistochemistry for ED1 (monocytes/macrophages) and CD3 (T cells) was performed. 

In addition, CAE was used to label PMN. Cells were counted using a light microscope with an 

ocular morphometric grid. For assessment of infiltrates in animals, cells were counted in the 

whole lesion at 100x magnification. For human lesions the density of immune cells was 

evaluated by evaluating the total number of positive cells in 5 visual fields at 400x 

magnification. 

2.4.7 Statistical analysis 

Statistical analysis was carried out using the GraphPad Prism 5.01 software.  

For parametric data the independent t-test with Welch’s correction was used to compare 

two groups. To compare more than two groups, the Kruskal-Wallis test followed by Dunn’s 

multiple comparison test was performed. Pearson’s correlation coefficients were used to 

assess associations between area of FITC-albumin extravasation and number of infiltrated 

PMN. Statistical significance was defined as p < 0.05. All data are given as mean ± SD. 
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3 RESULTS 

3.1 Induction of neuromyelitis optica (NMO)-like lesions results in breakdown 
of the blood-brain barrier (BBB) 

3.1.1 Time course of astrocyte depletion after focal injection of NMO-antibody 
and human complement 

To investigate the pathogenesis of lesion formation in NMO, a focal model of NMO-like 

lesions in Lewis rats was established in our group (Wrzos et al., 2014). In this model NMO-

like lesions were induced by stereotactic injection of a recombinant human NMO-antibody 

(Ab) directed against aquaporin4 (AQP4) together with human complement into the motor 

cortex of Lewis rats (Bennett et al., 2009). As a control, stereotactic injection of a similarly 

produced non-CNS antigen specific control (ctrl)-Ab together with human complement was 

performed. To investigate the development of the astrocyte depleted lesion, a time course 

study was done. Therefore, the animals were sacrificed 3 h, 6 h, 24 h, 3 d and 7 d after lesion 

induction (Figure 3 A). Lesion development was investigated using immunohistochemistry 

for the astrocyte markers glial fibrillary acidic protein (GFAP) and AQP4. 

3 h after lesion induction no confluent loss of GFAP immunoreactivity was observed (Figure 3 

B). However, damaged GFAP positive cells with retracted cell processes were detected 

(Figure 3 B, insert). Confluent, well-demarcated areas of GFAP loss were observed 6 h after 

lesion induction (area of GFAP loss: 0.26 ± 0.15 mm², Figure 3 G) in contrast to ctrl-Ab 

injected animals at the same time point (*p<0.05). Subsequently, loss of GFAP 

immunoreactivity expanded until lesions developed the maximal extent between 24 h and 

3 d (area of GFAP loss: 24 h = 1.03 ± 0.89 mm² and 3 d = 1.11 ± 0.85 mm², *p<0.5, **p<0.01, 

***p<0.001, Figure 3 G). Loss of GFAP immunoreactivity in astrocyte depleted lesions was 

confirmed by loss of AQP4 immunoreactivity 24 h after lesion induction (Figure 3 C, D). No 

loss of GFAP- (Figure 3 E) and AQP4-positive cells (Figure 3 F) was observed in animals 

injected with ctrl-Ab and human complement after 24 h. 7 d after lesion induction 91.1 % of 

the formerly astrocyte-depleted area was repopulated by GFAP positive cells (area of GFAP 

loss at 7d: 0.09 ± 0.04 mm² compared to 24 h: 1.03 ± 0.89 mm², Figure 3 G). 
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Figure 3: Injection of NMO-Ab and human complement resulted in astrocyte loss 
Schematic illustration of the experimental setup for the assessment of astrocyte lesion development over time 
(A). 3 h after focal injection of NMO-Ab and human complement, GFAP positive astrocytes were still localized 
at the injection site (B). However, GFAP positive dying cells with retracted processes were observed (B, insert). 
24 h after injection large, well-demarcated areas with loss of GFAP- (C) and AQP4 immunoreactivity (D; serial 
sections of the same lesion) were detected. No loss of GFAP (E) and AQP4 (F) positive cells was observed in 
animals with focal injection of ctrl-Ab and human complement after 24 h. The time course study revealed the 
first loss of GFAP immunoreactivity 6 h after lesion induction. Astrocyte depleted lesions reached their maximal 
extent between 24 h and 3 d. 7 d after focal injection 91.1% of the formerly astrocyte depleted lesion were 
repopulated by GFAP positive cells. No astrocyte loss was observed after injection of ctrl-Ab together with 
human complement (number of evaluated lesions: NMO-Ab/ctrl-Ab; 3h: n=5/5; 6h: n=10/10; 24h: n=10/10; 3d: 
n=6/4; 7d: n=5/5, G). Data were analyzed using Kruskal-Wallis test followed by Dunn’s multiple comparison test 
and are shown as mean ± SD. *p<0.05, **p<0.01, ***p<0.001. B, E, F: Monastral blue marks the injection site. 
Dotted lines indicate area of astrocyte loss. Scale bar 100 µm 

3.1.2 Breakdown of the BBB is observed 6 h after lesion induction 

Astrocytes are in close proximity to brain endothelial cells (EC). In the adult brain astrocytic 

signaling is involved in maintaining BBB integrity (Abbott et al., 2006). To investigate 

whether astrocyte lesion development correlates with loss of BBB integrity, we investigated 

the permeability of the BBB to soluble blood-borne molecules by immunohistochemistry for 

immunoglobulin G (IgG) and fibrinogen. Both are plasma proteins with a size of 150 and 

340 kDa, respectively. Under physiological conditions the intact BBB is impermeable to IgG 
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and fibrinogen. However, under pathological conditions leakage of both proteins into the 

brain parenchyma may be observed. 

3 h after focal injection of NMO-Ab and human complement only little extravasation of IgG 

(area of extravasation: 0.05 ± 0.08 mm², Figure 4 A, D) and fibrinogen (area of extravasation: 

0.01 ± 0.01 mm², Figure 4 E, H) into the brain parenchyma was observed. However, 6 h after 

lesion induction a prominent area of the brain parenchyma immunostained positively for IgG 

(0.38 ± 0.34 mm², Figure 4 B, D) and fibrinogen (0.33 ± 0.38 mm² Figure 4 F, H). After 3 d the 

integrity of the BBB was restored, with some deposit-like immunopositive structures still 

present around the blood vessels (IgG: 0.26 ± 0.38 mm², Figure 4 C, G; fibrinogen: 0.11 ± 

0.09 mm², Figure 4 G, H). Measurement of the immunopositive area revealed a significant 

extravasation of both IgG (Figure 3 D ) and fibrinogen (Figure 4 H ) 6 h and 24 h after NMO-

lesion induction (*p<0.5). Some extravasation of both proteins was also observed in animals 

injected with ctrl-Ab together with human complement, indicating that injection of human 

complement alone may result in leakage of plasma proteins from the blood vessels. 

However, the area of extravasation in ctrl-Ab injected animals reached only 15.7% (6 h IgG), 

15.0% (24 h IgG), 21.5% (6 h fibrinogen) and 57.2% (24 h fibrinogen) of the extravasation 

measured in NMO-Ab injected animals at the same time points (Figure 4 D, H). 

 

Figure 4: Breakdown of the BBB was detected 6 h after focal injection as assessed by 
immunohistochemistry for IgG and fibrinogen 
3 h after focal injection of NMO-Ab and human complement the BBB was intact and revealed no signs of the 
blood-borne proteins IgG (A) and fibrinogen (E). 6 h later the brain parenchyma immunostained positively for 
IgG (B) and fibrinogen (F) around the injection site. 3 d after injection the BBB appeared intact with some 
immunopositive deposits of IgG and fibrinogen left around the blood vessels (C, D). Quantification of the area 
of IgG and fibrinogen extravasation showed an accumulation of IgG and fibrinogen in NMO-Ab injected animals 
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between 6 h and 3 d. Extravasation in ctrl-Ab injected animals was markedly less compared to NMO-Ab 
injected animals. Number of lesions evaluated in D: NMO-Ab/ctrl-Ab; 3h: n=5/5; 6h: n=8/7; 24h: n=8/7; 3d: 
n=6/5; 7d: n=2/1. Number of lesions evaluated in H: NMO-Ab/ctrl-Ab; 3h: n=5/5; 6h: n=9/8; 24h: n=9/7; 3d: 
n=6/5; 7d: n=2/1. Data were analyzed using Kruskal-Wallis test followed by Dunn’s multiple comparison test 
and are shown as mean ± SD. *p<0.05. Scale bar 500 µm 

3.1.3 Injection of tracer molecules indicates rapid restoration of the BBB 
within 24 h after lesion induction 

Although the extravasation of endogenous, blood-borne proteins may serve as an indicator 

for the opening of the BBB, extravasated proteins may be retained in the brain parenchyma 

after the BBB integrity is re-established. To further specify the time frame of BBB disruption, 

the BBB permeability was additionally assessed by intravenous (i.v.)-injection of exogenous 

tracer molecules before perfusion. Two lysine-fixable fluorescent tracer molecules were 

employed: fluorescein isothiocyanate (FITC)-albumin and Texas Red® cadaverine with 

molecular sizes of 70 kDa and 690 Da, respectively. Tracer molecules were injected 40 min 

(FITC-albumin) or 50 min (Texas Red® cadaverine) before perfusion. To analyze the 

permeability of the BBB, animals were stereotactically injected with NMO-Ab or ctrl-Ab and 

human complement. Subsequently, animals were sacrificed 3 h, 6 h, 24 h and 3 d (FITC-

albumin) or 6 h and 24 h (Texas Red® cadaverine) after lesion induction. The extravasation of 

the tracer molecules was assessed by immunohistochemistry against FITC-albumin and Texas 

Red® cadaverine. 

3 h after focal injection the BBB was impermeable to FITC-albumin (NMO-Ab: 0.00 ± 0.00 

mm², ctrl-Ab: 0.01 ± 0.02 mm², Figure 5 C) which confirms the observations made regarding 

the extravasation of the plasma proteins IgG and fibrinogen (Figure 4 D, H). After 6 h, 

however, a prominent extravasation of FITC-albumin (NMO-Ab: 1.03 ± 0.54 mm², ctrl-Ab: 

0.50 ± 0.30 mm², Figure 5 A, C) and Texas Red® cadaverine (NMO-Ab: 1.62 ± 0.83 mm², ctrl-

Ab: 0.84 ± 0.38 mm², Figure 5 D, F) from the vasculature into the brain parenchyma was 

observed. 24 h after lesion induction the BBB integrity was again restored as demonstrated 

by FITC-albumin (NMO-Ab: 0.00 ± 0.00 mm², ctrl-Ab: 0.00 ± 0.00 mm², Figure 5 B, C) and 

Texas Red® cadaverine antibody staining (NMO-Ab: 0.04 ± 0.07 mm², ctrl-Ab: 0.00 ± 0.00 

mm², Figure 5 E, F). This is contrary to the data we obtained from IgG and fibrinogen 

measurements and confirms that deposits of both proteins can still be detected after the 

integrity of the BBB is re-established. By using the vascular tracers FITC-albumin and Texas 

Red® cadaverine we could narrow down the time frame of increased BBB leakage to 

between 3 and 24 h after lesion induction. This also demonstrates that the BBB is closed to 

proteins with molecular sizes of ≥ 690 Da before astrocytes repopulate the lesion (Figure 3). 
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In addition, some extravasation of tracers was also observed 6 h after injection of ctrl-Ab and 

human complement, but represented only 48.8% (FITC-albumin) and 52.3% (Texas Red® 

cadaverine) of the extent of extravasation detected after injection of NMO-Ab (Figure 5 C, F). 

 

Figure 5: Restoration of the BBB within 24 h of focal intracerebral injection of NMO-Ab and human 
complement 
6 h after focal injection a prominent extravasation of FITC-albumin (A) and Texas Red® cadaverine (D) into the 
brain parenchyma was observed. No vascular leakage of either molecule was detected 24 h after stereotactic 
injection (B: FITC-albumin, E: Texas Red® cadaverine). Quantification of extravasation demonstrated that the 
BBB was permeable for FITC-albumin and Texas Red® cadaverine at 6 h. However, it was restored within 24 h 
after focal injection of Ab and human complement. Moreover, no extravasation of FITC-albumin was observed 
at 3 h and 3 d after lesion induction. At 6 h after stereotactic injection, some extravasation of both tracer 
molecules was also detected in animals injected with ctrl-Ab and human complement. However, the area of 
extravasation was substantially smaller in ctrl-Ab injected animals and covered around 50% of the area 
observed in NMO-Ab injected animals (FITC-albumin: 3 h: n=3, 6 h: n=8, 24 h: n= 9, 3d: n=4, C, Texas Red® 
cadaverine: n= 3, F). Kruskal-Wallis test followed by Dunn’s multiple comparison test *p<0.05, **p<0.01. 
Graphs are shown as mean ± SD. Scale bar 500 µm 

3.2 Co-culture of rat brain endothelial cells (RBEC) with astrocytes as an in-
vitro model of the BBB did not result in increased TEER values 

24 h after lesion induction the greatest extent of astrocyte loss was observed (Figure 3 G). 

However, no extravasation of i.v. injected exogenous tracer molecules was detected at that 

time point in vivo (Figure 5). Therefore, the direct influence of factors released by astrocytes 

on the transendothelial electrical resistance (TEER) of primary RBEC monolayers was 

investigated in vitro. TEER measurements are an important readout to assess the integrity of 

the RBEC monolayer. They represent the permeability of tight junctions (TJ) to sodium ions. 
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Therefore, the higher the resistance, the lower the permeability of the EC monolayer to 

sodium ions. 

17 d old Wistar rats were used for the isolation of primary RBEC. Isolated RBEC grew in a 

dense monolayer and had a spindle shaped morphology. Additionally, immunocytochemistry 

demonstrated the localization of the endothelial cell marker von Willebrand factor (vWF) in 

the Weibel-Palade bodies of RBEC (Figure 6 A). Furthermore, RBEC expressed the TJ 

molecules occludin, claudin-3 and -5 which were localized at the cell borders (Figure 6 A). 

The expression of TJ molecules implicates a preservation of the primary BBB phenotype. 

In order to investigate the influence of factors released by astrocytes on the TEER values of 

the RBEC monolayer, an indirect co-culture model was developed. A transwell system was 

used in which primary rat astrocytes were plated in the basolateral compartment and RBEC 

in the apical compartment (Figure 6B). Starting from day 3 after isolation TEER values were 

measured daily. The electrical resistance increased until day 6 after RBEC isolation. Starting 

from day 6 on, TEER values decreased. This was due to RBEC apoptosis and formation of 

holes in the monolayer as assessed by light microscopy. Co-culture of RBEC with astrocytes 

did not result in a significant change of electrical resistance compared to RBEC cultured 

alone at any time point investigated (Figure 6C). 

 

Figure 6: Co-culture of RBEC with astrocytes as an in vitro model of the BBB did not result in altered 
TEER values. 
Immunocytochemistry of endothelial marker molecules is depicted in A. Isolated primary RBEC stain positively 
for the endothelial cell marker vWF, which is stored in the Weibel-Palade bodies. Additionally they display the 
TJ molecules occludin, CLDN3 and CLDN5 located at the endothelial cell-cell contacts (A). Co-culture model of 
the BBB with primary rat astrocytes growing in the basolateral compartment, and RBEC plated in the apical 
compartment (B). TEER values of the RBEC in the inserts were measured daily after day 3. The first 
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measurement was performed from RBEC grown alone. Subsequently, inserts containing RBEC were transferred 
into wells with a confluent astrocyte monolayer (indicated by red arrow). However, co-culture of astrocytes did 
not affect TEER values of RBEC (pooled data of 3 independent experiments performed in triplicates, C). Data 
are shown as mean ± SD. Scale bar 40 µm. 

3.3 Platelet-derived growth factor receptor ß (PDGFRß) positive cells are in 
close proximity to brain vessels 6 h and 24 h after lesion induction 

It has been reported previously that pericytes play an important role for the development of 

the BBB and for its maintenance in the adult animal in vivo (Armulik et al., 2010; Bell et al., 

2010; Daneman et al., 2010b). They are - beside EC, the basal lamina and astrocytes - a 

further component of the BBB. Pericytes ensheath blood vessels and share a basement 

membrane with EC. CNS vessels have the highest density of pericyte coverage in the body 

(Shepro and Morel, 1993). In order to assess the presence of pericytes within astrocyte 

depleted lesions animals were stereotactically injected with NMO-Ab and human 

complement and sacrificed 6 h and 24 h later. Perilesional brain tissue was used as control. 

PDGFRß, a marker for pericytes, was used to investigate the presence of pericytes at the 

BBB. In addition, to visualize the blood vessels, the basal lamina was stained using an Ab 

against laminin γ1 (LAMγ1). Astrocyte depleted areas in NMO-Ab injected animals were 

visualized using anti-GFAP Ab. 

In perilesional tissue PDGFRß positive cells (green) line the brain vessels which are also 

surrounded by a LAMγ1 (red) positive basal lamina (Figure 7 A). After 6 h (Figure 7 B) and 

24 h (Figure 7 C) of NMO lesion induction, expression of PDGFRß on LAMγ1 positive vessels 

was not altered in astrocyte depleted areas compared to perilesional tissue. This indicates 

that pericytes were not markedly reduced by depletion of astrocytes in NMO-like lesions. 
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Figure 7: No loss of PDGFRß positive cells from the blood vessels in NMO-like lesions 6 h and 24 h 
after focal NMO-Ab injection 
PDGFRß positive cells (green) ensheath brain vessels marked by the basal lamina component LAMγ1 (red) in 
perilesional brain tissue (A). The staining pattern is not altered in astrocyte depleted lesions 6 h (B) and 24 h (C) 
after lesion induction. Scale bar 20 µm 

3.4 Characterization of tight junctions (TJ) in NMO-like lesions 

TJ are the major structure responsible for the low permeability of the BBB. They are located 

at the cell-cell contacts of adjacent EC and prevent the paracellular diffusion of blood-borne 

molecules into the CNS. Disruption of TJ morphology or loss of TJ proteins from the 

vasculature were implied in the loss of BBB integrity in neuroinflammatory diseases like 

multiple sclerosis (MS) or its model experimental autoimmune encephalomyelitis (EAE) 

(Argaw et al., 2009; Errede et al., 2012; Kirk et al., 2003; Plumb et al., 2002; Wolburg et al., 

2003). In focal NMO-like lesions a transient loss of the BBB integrity is observed. In order to 

investigate a correlation between a loss of TJ proteins and the breakdown of the BBB, the 

transmembrane TJ proteins occludin, claudin-3 and -5 were investigated on the 

immunohistochemical and mRNA levels. In addition, electron microscopy (EM) of blood 

vessels in lesions was performed. 
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3.4.1 Transient loss of occludin from TJ after lesion induction 

The transmembrane TJ proteins occludin, claudin-3 and -5 are highly expressed in the brain 

vasculature and disruption of their expression has been implied in the dysfunction of the 

BBB (Kirk et al., 2003; Liebner et al., 2000a; Plumb et al., 2002; Wolburg et al., 2003). In 

order to investigate whether the transient breakdown of the BBB observed during the 

development of focal NMO-like lesions correlates with a loss of TJ molecules from the brain 

vasculature, a time course study was performed. Animals were injected with NMO- or ctrl-

Ab together with human complement and sacrificed after 6 h, 10 h, 24 h, 3 d or 6 d. Since a 

certain loss of BBB integrity was also observed in animals injected with ctrl-Ab and human 

complement (Figure 4 and Figure 5) uninjected brain tissue from naïve rats was used as 

additional control. Immunofluorescent staining with Ab against occludin, claudin-3 and -5 

was used to investigate TJ proteins at the BBB. Double-labeling with the basal lamina 

component LAMγ1 was performed to visualize blood vessels. Immunohistochemistry for 

GFAP demarcated the astrocyte lesion border in NMO-Ab injected animals. The percentage 

of LAMγ1-positive blood vessels with vascular localization of the TJ proteins occludin, 

claudin-3 or -5 was determined for each animal. In NMO-Ab injected animals, blood vessels 

within areas of GFAP loss were evaluated, whereas in ctrl-Ab injected animals the 

corresponding area adjacent to the injection site, marked by Monastral blue, were assessed. 

In uninjected, naïve controls, sharply defined strands of occludin immunoreactivity (green) 

marking the paracellular cleft of adjacent EC within the LAMγ1-immunopositive basal 

membrane (red) were observed (Figure 8 A). Quantification of occludin positive vessels 

revealed occludin immunoreactivity in 93.3 ± 3.3% of the vessels in the brain of uninjected 

controls. However, loss of occludin immunoreactivity from TJ in LAMγ1 positive vessels was 

observed 10 h and 24 h after lesion induction (3.5 ± 2.2% (10 h) and 3.4 ± 3.4% (24 h) of 

vessels are immunopositive for occludin, Figure 8 A, D). 3 d after lesion induction a vascular 

localization of occludin within GFAP depleted areas was again observed in 68.5 ± 4.6% of the 

blood vessels (Figure 8 A, D), indicating occludin restoration at TJ. 6 d later, the localization 

of occludin at the TJ was restored and no difference in occludin immunoreactivity was 

detected compared to uninjected controls. Here, 94.6 ± 3.0% of the vessels stained 

positively for occludin which was similar to 93.3 ± 3.3% in naïve controls (Figure 8 D). A less 

pronounced reduction of occludin positive vessels was also observed in ctrl-Ab injected 

animals 10 h and 24 h after stereotactic injection (38.2 ± 15.2% and 31.9 ± 31.5% of vessels 

were positive for occludin at the respective time points) (Figure 8 D). 
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In contrast, no loss of claudin-3 and -5 immunoreactivity (green) from LAMγ1 positive 

vessels (red) was observed at any time point investigated (Figure 8 B, C, E, F). In both, 

uninjected controls and GFAP depleted lesions 10 h after lesion induction, sharply defined 

claudin-3 and -5 immunoreactivity marking the paracellular cleft of adjacent EC within the 

LAMγ1-immunopositive basal membrane was observed (Figure 8 B, C). Assessment of the 

percentage of claudin-3 and -5 positive vessels revealed no alterations of claudin-3 and -5 

immunoreactivity 6 h, 10 h, 24 h, 3 d or 6 d after lesion induction compared to ctrl-Ab 

injected animals and uninjected controls (Figure 8 E, F). Claudin-3 immunoreactivity was 

detected in 76.9 % ± 8.7 (24 h NMO-Ab) to 91.9 % ± 2.7 (3 d ctrl-Ab) of LAMγ1 positive 

vessels (Figure 8 E), and claudin-5 immunoreactivity was detected in 85.5 % ± 8.1 (10 h 

NMO-Ab) to 97.1 % ± 1.9 (6 d NMO-Ab) of LAMγ1 positive vessels (Figure 8 F). 

In summary, a transient loss of occludin starting from 6 h after lesion induction was 

observed. Localization of occludin at the TJ was partially recovered 3 d after lesion induction 

and back to control levels after 6 d. No loss of claudin-3 or -5 from the TJ was detected at 

any time point investigated. 
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Figure 8: Loss of occludin from the blood vessels was observed in focal NMO-like lesions 
Immunolabelling for occludin, claudin-3 and -5 (green) was performed to assess the localization of these TJ 
proteins in brain vessels (visualized with LAMγ1, a marker of the basal lamina, red) around the injection site. 
Immunoreactivity for occludin (A), claudin-3 (B) and -5 (C) was localized at the TJ between adjacent EC which 
formed sharply defined, continuous strands in uninjected, naïve controls. However, loss of occludin 
immunoreactivity was observed 10 h and 24 h after lesion induction in astrocyte depleted areas. Vascular 
occludin localization was recovered to 68.5 ± 4.6% within 3 d after focal injection of NMO-Ab and human 
complement (A). Quantification of occludin positive vessels confirms the transient loss of occludin 
immunoreactivity from the blood vessels in areas of GFAP loss. A less pronounced decrease of occludin-
immunopositive vessels was also observed in animals injected with ctrl-Ab together with human complement 
10 h and 24 h after focal injection (41-307 vessels/animal evaluated depending on astrocyte lesion size; ctrl 
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n=3, NMO-Ab/ctrl-Ab; 6h: n=4/0; 10h: n=3/3; 24h: n=3/2; 3d: n=3/3; 6d: n=3/3, D). In contrast, no loss of 
claudin-3 and -5 immunoreactivity was detected after lesion induction and sharply defined immunoreactivity 
for claudin-3 (B) and -5 (C) was observed at the TJ of LAMγ1 positive vessels at 10 h. Quantification of claudin-3 
positive vessels (45-218 vessels/animal evaluated; ctrl n=3, NMO-Ab/ctrl-Ab; 6h: n=4/0; 10h: n=2/3; 24h: 
n=3/2; 3d: n=2/2; 6d: n=3/3, E) and claudin-5 positive vessels (28-209 vessels/animal, ctrl n=3, NMO-Ab/ctrl-Ab; 
6h: n=4/0; 10h: n=3/3; 24h: n=3/2; 3d: n=3/2; 6d: n=3/3, F) confirms this observation. Kruskal-Wallis test 
followed by Dunn’s multiple comparison test *p<0.05. Data are shown as mean ± SD. Scale bar 50 µm. 
bv=blood vessels. 

3.4.2 No morphological alterations of TJ on the ultrastructural level 

A transient loss of occludin immunoreactivity from the TJ of LAMγ1 positive vessels was 

observed starting 6 h after lesion induction. Only about 3.5% of the blood vessels showed 

occludin immunoreactivity 10 h and 24 h after lesion induction. However, no loss of claudin-

3 and -5 immunoreactivity was detected (Figure 8). In order to investigate whether the 

selective loss of occludin immunoreactivity from the TJ of brain vessels results in 

morphological alterations on the ultrastructural level, i.e. separation of adjacent EC, EM was 

performed. Animals were stereotactically injected with NMO-Ab and human complement 

and sacrificed 6 h and 24 h after lesion induction. 

To ensure the presence of a fully developed astrocyte depleted lesion, the caudal part of the 

lesion was used for immunohistochemistry, while the rostral part was prepared for EM. 

GFAP-immunohistochemistry demonstrated the depletion of astrocytes. Using EM a close 

association between adjacent EC was observed in uninjected controls. No overt 

morphological TJ abnormalities or any separation of adjacent EC were detected 6 h and 24 h 

after lesion induction (Figure 9). 

 

Figure 9: Ultrastructure of TJ in cerebral blood vessels after lesion induction 
TJ were observed between adjacent EC in ultra-thin sections using EM. Injection of NMO-Ab and human 
complement did not result in overt morphological alterations of TJ complexes. Depicted images show 
representative TJ of brain blood vessels in uninjected controls and 6 h or 24 h after lesion induction. Arrows 
indicate endothelial cell-cell junctions. Scale bar 0.5 µm. 
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3.4.3 mRNA levels of occludin and claudin 5 are increased in NMO-like lesions 

In order to evaluate if changes in mRNA expression of TJ genes are induced during the 

development of NMO-like lesions a quantitative PCR study was performed. Animals were 

stereotactically injected with NMO- or ctrl-Ab together with human complement and 

perfused 10 h, 24 h, 3 d or 6 d after stereotactic injection. Uninjected brain tissue served as 

negative control. Subsequently, the tissue was cut into 10 µm thick sections using a cryostat, 

mounted on polyethylene naphthalate membranes and stained for GFAP using a rapid 

staining protocol to avoid RNA degradation. Brain areas with loss of astrocytes were isolated 

under the microscope from NMO-Ab injected animals using laser capture microdissection. In 

animals injected with ctrl-Ab and human complement the area around the injection site was 

dissected or the respective brain area in uninjected controls. Subsequently, TaqMan Gene 

Expression Assay for occludin, claudin-3 and -5 were performed. The house keeping gene 

gapdh served as control. CT values for expression of TJ genes were normalized to CT values of 

gapdh to calculate ∆CT values (CT TJ gene - CT gapdh). ∆∆CT values were calculated by 

subtraction of the ∆CT value of uninjected controls from ∆CT values obtained after lesion 

induction. 

10 h and 24 h after stereotactic injection of NMO- or ctrl-Ab together with human 

complement, mRNA expression of occludin and claudin-5 were increased compared to 

uninjected controls (∆∆CT values of NMO-/ctrl-Ab injected animals after 10 h: 

occludin=3.2/3.7, claudin-5=2.8/3.9; after 24 h: occludin=2.6/2.2, claudin-5=1.5/0.7). 3 d 

after stereotactic injection mRNA expression of occludin was similar to control levels while 

expression of claudin-5 was decreased (∆∆CT values of NMO-/ctrl-Ab injected animals: 

occludin=-0.3/ 0.2, claudin-5=-1.7/-1.0). After 6 d ∆∆CT values of -0.7/-0.4 (occludin) and -

0.1/-0.5 (claudin-5) were measured (Figure 10). No time dependent regulation of claudin-3 

mRNA expression was observed, however an increased mRNA expression was measured 

24 h after focal injection of NMO-Ab and human complement (∆∆CT = 2.6, Figure 10). In 

summary, occludin and claudin-5 mRNA expression was increased 10 h and 24 h after 

stereotactic injection. No difference in mRNA expression was observed between animals 

injected with NMO- or ctrl-Ab together with human complement at the time points 

investigated. 
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Figure 10: mRNA expression of occludin and claudin-5 were increased 10 h and 24 h after 
stereotactic injection 
Increased expression of occludin and claudin-5 mRNA was measured 10 h and 24 h after stereotactic injection 
of NMO- or ctrl-Ab compared to uninjected controls. After 3 d and 6 d mRNA expression of occludin and 
claudin-5 were decreased (claudin-5 after 3 d) or similar to uninjected controls. No time dependent regulation 
of claudin-3 was observed (number of animals measured at 10h/24h/3d/6d, occludin NMO: n=2/3/2/4, 
occludin ctrl: n=3/4/3/4, claudin-3 NMO: n=3/4/2/4, claudin-3-ctrl: n=4/3/3/4, claudin-5 NMO: n=2/3/2/4, 
claudin-5 ctrl: n=4/2/3/4). 

3.5 Infiltration of polymorphonuclear cells (PMN) correlates with FITC-
albumin extravasation 6 h after lesion induction 

The infiltration of immune cells into the brain parenchyma has been implied to mediate the 

breakdown of the BBB in diseases like NMO, multiple sclerosis or cerebral ischemia and their 

animal models (Bartholomaus et al., 2009; Carlson et al., 2008; Grossman et al., 1986; 

Morrissey et al., 1996; O'Riordan et al., 1996; Virapongse et al., 1986). Moreover, infiltration 

of immune cells into the brain has been described upon induction of focal NMO-like lesions 

24 h and 7 d after lesion induction (Wrzos et al., 2014). In order to investigate the sequence 

of infiltrating immune cells in NMO-like lesions, animals were stereotactically injected with 

NMO-Ab and human complement and subsequently sacrificed after 3 h, 6 h, 12h, 24 h, 3 d or 

7 d. To visualize immune cell subsets immunohistochemistry against ED1 (macrophages/ 

activated microglia) and CD3 (T cells) was performed. In addition, chloroacetate esterase 

enzyme histochemistry (CAE) was used to label PMN. 

To quantify infiltrating immune cell subsets, cells were enumerated using a light microscope 

with an ocular morphometric grid, and their density was calculated. 3 h after lesion 

induction no infiltration of immune cells was observed at the injection site (Figure 11 B). 

However, after 6 h infiltration of PMN with a density of 223 ± 101 PMN/mm² was detected 

which increased to 842 ± 71 after 12 h, and 801 ± 308 PMN/mm² after 24 h. Subsequently 

the PMN density again decreased to 314 ± 202 PMN/mm² 3 d after lesion induction. 7 d after 

focal injection only scattered PMN were detected (2 ± 2 PMN/mm² Figure 11 A, B). 



RESULTS 

55 
 

Investigating the numbers of ED1 positive macrophages/activated microglia, only scattered 

ED1 positive cells were observed 6 h after lesion induction (2 ± 2 ED1 positive cells/mm²) 

which subsequently increased until the density peaked 24 h after lesion induction with 

453 ± 72 ED1 positive cells/mm². Numbers of macrophages/activated microglia subsequently 

decreased to 204 ± 34 ED1 positive cells/mm2 (3 d) and to 72 ± 57 ED1 positive cells/mm² 

(7 d after lesion induction, Figure 11 A, B). T cell numbers during the course of NMO-like 

lesion development remained low with a maximal density of 18 ± 16 CD3 positive T 

cells/mm² 7 d after lesion induction (Figure 11 A, B). 

The density of PMN/mm² was significantly higher compared to ED1 positive cells (*p<0.05) 

and CD3 positive T cells (***p<0.05) 6 h after focal injection of NMO-Ab and human 

complement (Figure 11 C). Therefore, a possible relationship between PMN and BBB 

permeability 6 h after lesion induction was investigated. The total number of parenchymal 

PMN around the injection site was determined and correlated with the measured area of 

FITC-albumin extravasation in serial sections. The number of PMN in the lesion correlated 

with the area of FITC-albumin extravasation (*p=0.0291, Pearson r=0.6271) potentially 

suggesting a role of PMN in the regulation of BBB permeability during the initiation of NMO 

like lesions. 
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Figure 11: Strong infiltration of PMN correlated with extravasation of FITC-albumin 6 h after lesion 
induction 
Representative photographs depicting the infiltration of PMN (CAE, bright pink), macrophages/activated 
microglia (ED1, brown) and T cells (CD3, brown) 6 h, 24 h, 3 d and 7 d after lesion induction (A). Quantification 
of the infiltration of infiltrated immune cell subsets: no immune cell infiltration was observed in the brain 
parenchyma 3 h after lesion induction. 6 h after lesion induction infiltration of PMN was observed. PMN 
numbers increased with a maximal density between 12 h and 24 h after lesion induction and subsequently 
decreased. Infiltration of ED1 positive cells was observed starting at 6 h after lesion induction until they 
reached the highest density at 24 h after lesion induction. Subsequently the number of ED1 positive 
macrophages/activated microglia decreased. Only few CD3 positive T cells were detected (number of animals 
analyzed in CAE/ED1/CD3: 3 h n=4/4/4, 6 h: n=8/7/7, 12 h n= 2/2/2, 24 h n=7/6/7, 3 d: n=6/6/6, 7 d 6/6/5, B). 
PMN represented the highest density of all infiltrated immune cell subsets 6 h after lesion induction (n=8/7/7, 
C). The number of infiltrated PMN at this time point correlated with the area of FITC-albumin extravasation into 
the brain parenchyma (Pearson correlation for normally distributed samples *p=0.0291, Pearson r=0.6271, 
n=12, D). Monastral blue marks the injection site. Kruskal-Wallis test followed by Dunn’s multiple comparison 
test *p<0.05, ***p<0.001. Data are shown as mean ± SD. Scale bar 50 µm. 
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3.6 Effect of PMN depletion on lesion development 

3.6.1 Depletion of PMN prevents astrocyte depletion, breakdown of the BBB 
and occludin loss 6 h after lesion induction 

The number of PMN in the lesion correlated with the area of FITC-albumin extravasation 6 h 

after lesion induction. To investigate whether PMN infiltration contributes to the breakdown 

of the BBB, PMN depletion studies were performed. In order to deplete PMN from the 

blood, animals were treated with 1 ml/kg body weight anti-PMN antiserum (AIA51140; 

Accurate Chemical and Scientific Corporation), at 18 h prior and directly after stereotactic 

injection of NMO- or ctrl-Ab together with human complement. Control rats received normal 

serum (normal rabbit serum; AIS403, Accurate Chemical and Scientific Corporation). To 

investigate the BBB integrity, FITC-albumin was injected 40 min before perfusion. Animals 

were sacrificed 6 h after lesion induction (Figure 12 A). CAE enzyme histochemistry was 

performed to visualize PMN. Immunohistochemistry for (i) FITC-albumin, (ii) astrocytes 

(GFAP), (ii) TJ proteins (occludin, claudin-3 and -5) and the basal lamina (LAMγ1) were 

performed to investigate (i) BBB integrity, (ii) astrocyte depletion and (iii) loss of TJ proteins 

from the vasculature after PMN depletion. 

To verify the depletion of PMN blood samples were collected before treatment and 6 h after 

lesion induction. Blood smear samples were analyzed by Giemsa stain. The number of PMN 

was counted among at least 300 cells on each slide and the number of PMN/100 white blood 

cells (WBCs) was determined. In blood samples obtained before treatment, 9.5 ± 3.0 

PMN/100 WBCs were detected. After treatment with normal serum 14.7 ± 5.2 PMN/100 

WBCs were observed in the blood samples. Anti-PMN antiserum treated animals, displayed a 

decrease of PMN numbers by 94% to 0.9 ± 0.5 PMN/100 WBCs. PMN numbers in normal 

serum treated rats were significantly higher compared to PMN numbers after treatment 

with anti-PMN serum (***p<0.001). Depletion of PMN was also confirmed in the brain 

parenchyma using CAE enzyme histochemistry. In rats treated with normal, but not anti-

PMN antiserum, infiltrated PMN were detected at the injection site after intracerebral 

injection of NMO-Ab and human complement (normal serum: 328 ± 136 PMN/mm², anti-

PMN serum: 0 ± 0 PMN/mm², ***p<0.001, Figure 12 B, C). Some infiltration of PMN was also 

observed after stereotactic injection of ctrl-Ab and human complement in rats treated with 

non-immune serum (129 ± 78 PMN/mm²), reaching 39.3% of the PMN numbers observed in 

NMO-Ab injected animals (Figure 12 B, C). 



RESULTS 

58 
 

Furthermore the permeability of the BBB after cerebral injection of ctrl-Ab/NMO-Ab 

together with human complement was assessed in PMN depleted and non-depleted 

animals. In non-PMN-depleted animals, a prominent extravasation of the exogenous tracer 

molecule FITC-albumin into the brain parenchyma was observed 6 h after lesion induction. A 

substantially smaller area of FITC-albumin extravasation was also detected after stereotactic 

injection of ctrl-Ab and human complement (area of FITC-albumin extravasation in mm²: 

NMO-Ab=0.9 ± 0.5; ctrl-Ab=0.5 ± 0.3, 58.8% Figure 12 E). Depletion of PMN markedly 

reduced the extravasation of FITC-albumin in both NMO- and ctrl-Ab injected animals (area 

of FITC-albumin extravasation in mm²: NMO-Ab=0.06 ± 0.06; ctrl-Ab=0.05 ± 0.1), which was 

significant compared to non-PMN depleted NMO-Ab injected animals (**p<0.01, Figure 12 

D, E). 

In addition, depletion of astrocytes was assessed by GFAP immunohistochemistry. 6 h after 

focal injection of NMO-Ab and human complement, well demarcated GFAP depleted lesions 

were observed (area of GFAP-loss 0.6 ± 0.4 mm²), whereas in ctrl-Ab injected animals no 

astrocyte loss was detected (area of GFAP-loss 0.0 ± 0.0 mm², *p<0.05). Surprisingly, 

depletion of PMN in rats completely inhibited astrocyte lesion formation 6 h after focal 

injection of NMO-Ab and human complement (area of GFAP-loss 0.0 ± 0.0 mm², ***p<0.001, 

Figure 12 F, G). 

Furthermore, the effect of PMN depletion on the localization of occludin, claudin-3 and -5 at 

the TJ in LAMγ1 positive blood vessels was investigated 6 h after intracerebral injection of 

NMO-Ab and human complement. The percentage of occludin positive vessel in uninjected 

brain tissue was 93.9 ± 3.3%. A significant reduction to 30.6 ± 20.2% occludin positive vessels 

was observed 6 h after lesion induction (**p<0.01). However, this reduction was not 

observed in PMN depleted animals (87.1 ± 1.9 % occludin positive vessels). The numbers of 

claudin-3 and -5 positive vessels were not altered 6 h after NMO-Ab injection with and 

without PMN depletion compared to untreated controls. The percentages of LAMγ1 positive 

vessels with claudin-3 immunoreactivity were: uninjected brain tissue=90.4 ± 3.1%; NMO-

Ab=91.5 ± 0.5%; and NMO-Ab after PMN depletion=91.1 ± 2.6%. The percentages of LAMγ1 

positive vessels with claudin-5 immunoreactivity were: uninjected brain tissue=94.2 ± 2.9%; 

NMO-Ab=91.5 ± 3.5%; and NMO-Ab after PMN depletion=92.1 ± 2.7%. (Figure 12 H). 

These data indicate a crucial role for PMN in the development of NMO-like lesions, since 

depletion of PMN prevents breakdown of the BBB, loss of occludin from TJ and loss of 

astrocytes. In addition I showed in the presented thesis that focal injection of ctrl-Ab and 
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human complement alone resulted in the infiltration of PMN (Figure 12) a subsequent 

breakdown of the BBB (Figure 4, Figure 5 and Figure 12) and loss of occludin from the TJ 

(Figure 8), however substantially milder than in NMO-Ab injected rats. This emphasizes the 

importance of PMN in the regulation of BBB permeability. 
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Figure 12: Depletion of PMN inhibited astrocyte lesion formation, breakdown of the BBB and loss 
of occludin form the TJ 6 h after lesion induction 
Experimental setup to assess the influence of PMN in the development of focal NMO-like lesions is depicted in 
(A). Focal injection of NMO-Ab or ctrl-Ab together with human complement results in the infiltration of CAE 
positive PMN (pink). Animals treated with normal rabbit serum showed 2.5 times more infiltrated PMN at the 
NMO-Ab injected hemisphere than the ctrl-Ab injected hemisphere. Depletion of PMN from the blood is 
reflected by the absence of PMN infiltration in the cortex 6 h after focal injection of NMO- or ctrl-Ab together 
with human complement (B, quantification: C). Furthermore, depletion of PMN decreased the permeability of 
the BBB to FITC-albumin 6 h after focal injection of NMO- or ctrl-Ab together with human complement (D, 
quantification: E). Loss of GFAP immunoreactivity was observed 6 h after focal injection of NMO-Ab, but not 
ctrl-Ab together with human complement. Loss of GFAP positive cells was inhibited by treatment with anti-
PMN serum (F, quantification: G). C, E, G: n=6, pooled data of 2 independent experiments. Furthermore, the 
localization of occludin, claudin-3 and-5 at the TJ was investigated in PMN depleted and non-depleted animals 
6 h after NMO-Ab injection. Injection of NMO-Ab together with human complement resulted in selective loss of 
occludin immunoreactivity from the TJ in normal serum injected animals. PMN-depletion inhibited loss of 
occludin immunoreactivity from blood vessels and was not altered compared to uninjected control brain. No 
changes in the percentage of claudin-3 and -5 positive blood vessels were observed 6 h after lesion induction in 
PMN-depleted or non-depleted animals compared to uninjected control brain (ctrl n=3, 6 h NMO-Ab anti-PMN 
and ctrl: n=4, H). Kruskal-Wallis test followed by Dunn’s multiple comparison test *p<0.05, **p<0.01, 
***p<0.001. Data are shown as mean ± SD. F: Dotted lines indicate area of GFAP loss. Scale bars: 50 µm (B) and 
500 µm (D, F) 
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3.6.2 Treatment with anti-PMN antiserum decreases immune cell numbers in 
the blood 

In order to investigate if anti-PMN antiserum selectively depletes PMN without affecting the 

numbers of other immune cell subsets flow cytometry was performed. Rats were treated 

with either anti-PMN antiserum (AIA51140; Accurate Chemical and Scientific Corporation) or 

normal serum (normal rabbit serum; AIS403, Accurate Chemical and Scientific Corporation) 

as described above (section 3.6.1). Blood was collected 6 h after the second serum 

treatment and processed for flow cytometry by Michael Haberl (Department of 

Neuroimmunology, Institute for Multiple Sclerosis Research, Göttingen). FACS staining was 

performed for T cells (CD4 and CD8), myeloid cells (CD11b), B cells (CD45RA) and PMN (RP-

1). 

The numbers of PMN were strongly decreased in rats treated with anti-PMN antiserum and 

represented 0.8% of the PMN numbers detected in normal serum treated rats. However, a 

reduction of immune cells/ml to 5.5 - 8.1% of the cell numbers measured in normal serum 

treated rats was also observed in all leukocyte subsets investigated (Figure 13). In detail, 

PMN were reduced from 1.68 ± 1.1 x 106 cells/ml in normal serum treated animals to 0.01 ± 

0.01 x 106 cells/ml in anti-PMN antiserum treated animals. Furthermore, decreased numbers 

of T cell were detected: CD4 positive T cells were reduced to 6.5% and CD8 positive T cells to 

5.5% in anti-PMN antiserum treated animals (normal serum: 3.2 ± 1.5 x 105 CD4 + T cells/ml 

and 2.1 ± 0.2 x 105 CD8 + T cells/ml; anti-PMN: 0.21 x 105 ± 0.13 x 105 CD4 + T cells/ml and 

0.12 x 105 ± 0.03 x 105 CD8 + T cells/ml). B cell numbers were decreased from 1.10 ± 0.55 x 

105 B cells/ml in normal serum treated animals to 0.09 ± 0.08 x 105 B cells/ml in anti-PMN 

antiserum treated rats, which represents a reduction to 8.1%. In addition, CD11b positive 

myeloid cells decreased to 6.6% after anti-PMN antiserum treatment (normal serum: 7.03 ± 

2.99 x 104 CD11b positive cells/ml; anti-PMN antiserum: 0.47 ± 0.02 x 104 CD11b positive 

cells/ml). 
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Figure 13: Treatment of animals with anti-PMN antiserum resulted in a strong decrease of PMN 
numbers but also a non-selective reduction of leukocytes compared to normal serum treated 
animals 
Treatment of rats with anti-PMN antiserum strongly decreased the numbers of RP-1 positive PMN to 0.8% in 
relation to the PMN number detected after treatment with normal serum. However, the depletion of PMN with 
anti-PMN antiserum was not selective. In addition, reduced numbers of CD4 and CD8 positive T cells, CD45R 
positive B cells and CD11b positive myeloid cells were observed after anti-PMN antiserum treatment. n in each 
group=3 

3.7 Inhibition of complement component C5a receptor (C5aR) significantly 
reduces astrocyte lesion size 6 h after lesion induction 

The development of focal NMO-like lesions is complement-dependent. After injection of 

NMO-Ab and human complement, lesion development is triggered by the binding of the 

NMO-Ab to AQP4 on astrocytes and the subsequent activation of the complement cascade 

which results in the lysis of astrocytes (Wrzos et al., 2014). During the activation of the 

complement cascade, C5 convertase becomes activated and cleaves the inactive C5 into the 

active component C5b and the anaphylatoxin C5a. Its receptor C5aR is highly expressed on 

PMN. C5a acts as a potent PMN chemoattractant, but is also important for PMN activation. 

In order to inhibit C5aR mediated signaling the small molecule C5aR antagonist PMX-53 was 

used. Rats were focally injected with NMO-Ab together with human complement and were 

i.v. injected with 1 mg/kg body weight PMX-53 or vehicle 3 h later. Animals were sacrificed 

6 h after lesion induction (Figure 14 A). For assessment of BBB integrity FITC-albumin was i.v. 

injected 40 min before perfusion. Immunohistochemistry was used to investigate astrocyte 

lesion size (GFAP and AQP4) and BBB permeability (FITC-albumin and fibrinogen). 

Additionally, CAE enzyme histochemistry was performed to visualize PMN. 
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Focal injection of NMO-Ab and human complement results in the formation of astrocyte 

depleted lesions with sizes of 0.4 ± 0.2 mm² (AQP4) and 0.4 ± 0.1 mm² (GFAP) in vehicle 

treated animals. Systemic treatment with the C5aR antagonist PMX-53 significantly reduced 

the size of astrocyte depleted lesions (AQP4: 0.2 ± 0.2 mm², *p=0.0291 and GFAP: 0.2 ± 0.2 

mm², **p=0.0039, Figure 14 B). The infiltration of PMN into the brain parenchyma 6 h after 

lesion induction, however, was not significantly altered between vehicle and PMX-53 treated 

animals (vehicle: 538 ± 262 PMN/mm², PMX-53: 329 ± 231 PMN/mm², Figure 14 C). 

Furthermore, no difference in BBB permeability was observed. The area of FITC-albumin 

extravasation was 1.1 ± 0.6 mm² in vehicle and 1.0 ± 0.6 in PMX-53 treated animals (Figure 

14 D). Similar values were obtained for the area of fibrinogen extravasation (vehicle: 1.3 ± 

0.8 mm², PMX-53: 1.1 ± 0.6 mm², Figure 14 E). 

 

Figure 14: Decreased astrocyte loss after systemic treatment with the C5aR antagonist PMX-53 6 h 
after lesion induction 
Schematic illustration of the experimental setup to investigate the influence of the C5aR antagonist PMX-53 on 
the development of NMO-like lesions is depicted in (A). Treatment of rats with the C5aR antagonist PMX-53 
significantly decreased the areas with loss of GFAP and AQP4 immunoreactivity compared to vehicle treated 
animals (B). However, infiltration of PMN was not altered in PMX-53 compared to vehicle treated animals (C). 
Additionally, no effect of PMX-53 treatment on the preservation of BBB integrity was observed, which was 
assessed by the measurement of FITC-albumin (D) and fibrinogen extravasation (E). Vehicle treated animals 
n=8, PMX-53 treated animals n=10, pooled data of 2 independent experiments. Unpaired t-test with Welch’s 
correction, *p<0.05, **p<0.01, n.s. = not significant. Data are shown as mean ± SD. 
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3.8 Investigation of PMN granule proteases in the regulation of BBB 
permeability 

PMN interactions with the endothelium under inflammatory conditions can result in the 

dysfunction of the BBB and an increased permeability. Several secreted PMN products have 

been implied to increase the endothelial permeability, like the proteases cathepsin G, 

neutrophil elastase (NE) and matrix metalloproteinase 9 (MMP9) (Chen et al., 2009; 

Hermant et al., 2003; Suzuki et al., 1994). In order to assess the direct effect of these 

proteases on brain endothelial cells, in vitro experiments were performed. Furthermore, the 

localization of MMP9 in infiltrating PMN and the effect of NE inhibition were investigated in 

vivo. 

3.8.1 Treatment of RBEC with MMP9 decreases electrical resistance in vitro 

PMN granules contain proteases like cathepsin G, NE and MMP9 which are released upon 

PMN activation. In order to investigate a direct effect of these proteases on the TEER values 

of confluent RBEC monolayers, cathepsin G (0.06 U/ml), NE (6 µg/ml) or MMP9 (0.5 µg/ml) 

were added to the apical compartment of a transwell system containing RBEC (Figure 15 A). 

TEER was measured before treatment and after 60 min and 120 min. Untreated RBEC 

monolayers were used as controls. To exclude a direct cytotoxic effect of the proteases on 

RBEC, the lactate dehydrogenase (LDH) based CytoTox-ONE™ Homogeneous Membrane 

Integrity Assay was applied. To assess the localization of occludin and claudin-5 in RBEC after 

treatment with MMP9 immunocytochemistry was performed. 

Before treatment TEER values of 41 ± 2 Ω*cm² across RBEC monolayers were measured. 

Treatment of RBEC with neither cathepsin G nor NE decreased TEER. In detail, in cathepsin G 

treated cells TEER values of 37 Ω*cm² (60 min) and 36 Ω*cm² (120 min) were determined. 

Treatment with NE resulted in an electrical resistance of 39 Ω*cm² (60 min) and 35 Ω*cm² 

(120 min). Both did not differ to untreated controls (60 min: 38 Ω*cm² and 120 min: 38 

Ω*cm²). Compared to untreated controls, however, MMP9 treatment of RBEC strongly 

decreased TEER values at both time points (23.4 Ω*cm² (60 min) and 19.5 Ω*cm² (120 min), 

Figure 15 B). To assess a possible cytotoxic effect of cathepsin G, NE or MMP9 treatment on 

RBEC, the release of LDH by damaged cells as a biomarker for cellular cytotoxicity and 

cytolysis was measured after 120 min of treatment. Compared to untreated controls no 

increase in LDH levels/cytotoxicity was observed after treatment with cathepsin G, NE or 

MMP9, confirming that a non-cytotoxic protease concentration was used for the transwell 

experiments (Figure 15 C). To investigate if treatment of RBEC with MMP9 results in loss of 
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occludin or claudin-5 from the TJ at the endothelial cell contacts, immunocytochemistry was 

performed. In controls, occludin and claudin-5 immunocytochemistry was localized at the TJ 

between adjacent RBEC forming defined strands. No difference in staining pattern was 

observed after 120 min of incubation with MMP9 (Figure 15 D). 

 

Figure 15: Treatment of RBEC with MMP9, but not NE or cathepsin G, reduced TEER in vitro 
To investigate the effect of neutrophil proteases on BBB permeability, RBEC were incubated with cathepsin G, 
NE or MMP9 in vitro using a transwell system (A). Treatment of RBEC with MMP9 for 60 min and 120 min 
decreased TEER values while treatment with NE or cathepsin G did not alter TEER compared to untreated 
controls (B). To exclude a direct cytotoxic effect of MMP9, cathepsin G and NE on the RBEC, a LDH based assay 
for cytotoxicity was performed and the release of LDH by damaged cells as a biomarker for cellular cytotoxicity 
was measured. LDH release of the positive (pos) ctrl (RBEC treated with lysis buffer) was set to 100 % 
cytotoxicity. Compared to untreated (neg) ctrl no increase in LDH levels/cytotoxicity was detected in RBEC 
treated with MMP9 (0.5 µg/ml), cathepsin G (0.06 U/ml) or NE (6 µg/ml). (C). Immunocytochemistry for 
occludin and claudin-5 demonstrated localization of both TJ proteins between adjacent cells in untreated 
controls. No difference of occludin and claudin-5 immunoreactivity was observed after treatment with MMP9 
(D). Scale bar 50 µm 

3.8.2 MMP9 positive PMN are abundant in NMO-like lesions 6 h after lesion 
induction 

In order to investigate MMP9 expression in infiltrating PMN after lesion induction, a time 

course study was performed. Animals were focally injected with NMO-Ab and human 

complement and subsequently sacrificed 6 h, 12 h, 24 h and 3 d after lesion induction. 

Immunohistochemistry for MMP9 was performed. PMN were identified based on their 

multi-lobed nuclear morphology in Mayer’s hemalum counterstain. The total number of 

PMN was determined as well as the number of PMN with cellular MMP9 immunoreactivity 

to calculate the percentage of MMP9 positive PMN. 
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6 h after lesion induction, in 19.3 ± 10.9% of PMN MMP9 immunoreactivity was observed 

which was localized within the cells in a granular pattern (Figure 16 A, arrowheads; C). 

Subsequently, a reduction of PMN with intracellular MMP9 immunoreactivity was detected. 

12 h after lesion induction 10.4 ± 8.7% of PMN were MMP9 positive which was reduced 

further to 1.7 ± 1.4% 24 h after lesion induction (Figure 16 B, C). No MMP9 positive cells 

were observed 3 d after lesion induction (Figure 16 C). 

 

Figure 16: Intracellular MMP9 expression was detected in infiltrating PMN 6 h and 12 h after lesion 
induction 
Numerous vascular and extravasating PMN displayed granular intracellular staining for MMP9 6 h after lesion 
induction (arrowheads, A). Rare MMP9 positive PMN were detected 24 h after lesion induction (B). 
Quantification of MMP9 positive PMN in the lesions displayed a continuous decrease of MMP9 
immunoreactivity within PMN. No MMP9 positive cells were observed 3 d after lesion induction (6 h n= 4, 12 h 
n= 2, 24 h n = 4, 3 d n = 3, C). Data are shown as mean ± SD. Scale bar 20 µm 

3.8.3 Inhibition of NE reduces astrocyte lesion size and PMN infiltration 6 h 
after lesion induction 

NE did not show a direct effect on TEER values of RBEC in vitro (Figure 15). However, in vitro 

and in vivo data indicate that NE cleaves the intercellular adhesion molecule 1 (ICAM-1) and 

thereby may play a role in PMN extravasation in vivo (Champagne et al., 1998; Kaynar et al., 

2008). To investigate the role of NE in the development of focal NMO-like lesions, the 

competitive NE inhibitor Sivelestat was used. Rats were intraperitoneal (i.p.) injected with 

50 mg/kg body weight Sivelestat or vehicle 3 h after focal injection of NMO-Ab and human 

complement. Subsequently, animals were sacrificed 6 h after lesion induction (Figure 17 A). 

For evaluation of the BBB integrity FITC-albumin was injected i.v. 40 min before perfusion. 

Immunohistochemistry was used to investigate astrocyte loss (GFAP and AQP4) and FITC-

albumin extravasation. Furthermore, CAE enzyme histochemistry was performed to visualize 

PMN. 

In vehicle treated animals astrocyte depleted lesions developed 6 h after lesion induction 

(AQP4: 0.3 ± 0.2 mm², GFAP: 0.3 ± 0.2 mm²). Treatment with the NE inhibitor Sivelestat 

significantly reduced the area of astrocyte loss (AQP4: 0.1 ± 0.1 mm², *p=0.0184 and GFAP: 
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0.1 ± 0.1 mm², *p=0.0415, Figure 17 B). Furthermore, the density of infiltrated PMN in the 

brain parenchyma was significantly decreased in Sivelestat treated animals compared to 

vehicle treated controls (vehicle: 603 ± 376 PMN/mm², Sivelestat: 256 ± 154 PMN/mm², 

*p=0.0387, Figure 17 C). However, no difference in FITC-albumin extravasation was observed 

between vehicle and Sivelestat treated animals (vehicle: 1.0 ± 0.6 mm², Sivelestat: 0.9 ± 0.6 

mm², Figure 17 D). 

 

Figure 17: Inhibition of NE using Sivelestat resulted in a significant reduction of astrocyte lesion size 
and PMN infiltration 6 h after lesion induction 
Illustration of the experimental setup to assess the influence of NE inhibition using Sivelestat in vivo (A). 
Treatment of animals with 50 mg/kg Sivelestat resulted in a significant reduction in the size of astrocyte 
depleted lesion compared to vehicle treated animals measured in AQP4 and GFAP immunohistochemistry (B). 
In addition, treatment with Sivelestat significantly decreased infiltration of PMN (C). Compared to vehicle 
treated animals no alterations in BBB permeability were detected after treatment with Sivelestat (D). Unpaired 
t-test with Welch’s correction, *p<0.05, n.s. = not significant. B, C: n=8; D: n=6, pooled data of two independent 
experiments. Data are shown as mean ± SD. 

3.9 PMNs are a component of the inflammatory infiltrate in early human NMO 
lesions 

In focal NMO-like lesions PMN play a crucial role in the regulation of BBB permeability and 

lesion development. Therefore, the immune cell infiltrate of early human NMO lesions was 

investigated. Early active human NMO lesions were characterized by focal loss of AQP4 and 

GFAP immunoreactivity, focal loss of Luxol fast blue (LFB) positive myelin sheets and relative 

axonal preservation (as depicted in Figure 1). Five biopsies and two autopsies from anti-
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AQP4 seropositive patients with confirmed NMO or NMO spectrum disorder were assessed. 

To visualize immune cell subsets immunohistochemistry against MRP14 (recently invaded 

monocytes/macrophages and PMN), KIM1P (macrophages/activated microglia) and CD3 (T 

cells) was performed. Infiltrating PMN numbers were evaluated in hematoxylin and eosin 

(HE) staining based on their multi-lobed nuclear morphology. 

A density of 132 ± 89 PMN/mm² (Figure 18 A, E, F (red dots)) and 465 ± 291 MRP14 positive 

cells/mm² (Figure 18 B, F (red dots)) was detected in biopsy tissue. These numbers were 

lower in autopsy tissue with a density of 2 ± 2 PMN/mm² (Figure 18 F (black dots)) and 45 ± 

63 MRP14 positive cells/mm² (Figure 18 F (black dots)). This difference might be due to the 

disease phase the tissue was collected. Although we investigated autopsy material with 

active, inflammatory NMO lesions, it is likely that these lesions reflect a more advanced 

(subacute) stage of NMO-lesion development, also considering the fact that most diagnostic 

biopsies are taken during acute disease phases. Furthermore, CD3 positive infiltrated T cells 

(95 ± 97 cells/mm², Figure 18 D, F) and abundant numbers of KiM1P positive 

macrophages/activated microglia (1195 ± 241 cells/mm², Figure 18 C, F) were observed in 

both autopsies and biopsies. 
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Figure 18: In the inflammatory infiltrate of early human NMO lesions PMN, monocytes, 
macrophages/activated microglia and T cells were observed 
Inflammatory infiltrates were observed in early active NMO lesions. These infiltrates were characterized by 
PMN (HE staining, A and higher magnification: E. Infiltrated PMN are indicated by arrows. The asterisk marks 
the lumen of a blood vessel from which PMN extravasate). In addition, PMN and early infiltrating monocytes 
were visualized by MRP14 immunohistochemistry (B). Furthermore, early human NMO lesions were 
characterized by abundant KiM1P positive macrophages/activated microglia (C) and CD3 positive T cells 
(arrows, D). Quantification of immune cells is depicted in (F). F: red: biopsies (n=5); black: autopsies (n=2). Cell 
numbers were evaluated using the following staining methods: PMN: HE; early monocytes/PMN: MRP14; 
macrophages/activated microglia: KiM1P; T cells: CD3. Scale bars A-D: 50 µm; E: 20µm 
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4 DISCUSSION 

Neuromyelitis optica (NMO) is a demyelinating disease in which astrocytes are the major 

target. Indeed, about 70% of NMO patients were found to be seropositive for antibodies 

(Ab) against aquaporin4 (AQP4) (Jarius et al., 2012b; Lennon et al., 2005; Lennon et al., 2004; 

Mealy et al., 2012; Waters et al., 2012) a water channel which is highly expressed on 

astrocytic endfeet in the central nervous system. Binding of this antibody to AQP4 on the 

astrocyte surface results in extensive complement and cell mediated astrocyte depletion 

during the acute phase of NMO lesion development. Astrocytes form, together with 

endothelial cells, pericytes and the basal lamina, the blood-brain barrier (BBB). Indeed, NMO 

patients manifest with a severe BBB disruption, as evidenced by multiple gadolinium 

enhanced lesions on magnetic resonance imaging (MRI) (de Seze et al., 2002; Ito et al., 2009; 

Kim et al., 2015; Wingerchuk et al., 1999). Furthermore, it was demonstrated that the extent 

of BBB permeability (measured by cerebrospinal fluid (CSF)/serum albumin ratios) correlated 

with the clinical disability (Tomizawa et al., 2012). Since the close interaction between 

different components of the BBB is necessary for maintaining its integrity, we hypothesized 

that the loss of astrocytes from the BBB in NMO lesions contributes to the severe BBB 

dysregulation that is observed in NMO patients. Therefore, the aims of this project were to 

characterize the breakdown of the BBB in an animal model of NMO in detail and to 

investigate its underlying mechanisms. In particular we were interested to examine whether 

there is (i) a correlation between BBB breakdown and astrocyte loss, (ii) a correlation 

between BBB breakdown and the disruption of tight junctions (TJ) at the BBB and (iii) a 

possible function of immune cells in the induction of BBB permeability. 

In the present study we showed, that (i) onset of the development of astrocyte depleted 

lesions correlated with the time point of BBB breakdown in vivo. However, the BBB integrity 

was restored before astrocytes repopulated the lesion as observed using vascular tracers. 

Additionally co-culture of rat brain endothelial cells (RBEC) with astrocytes did not increase 

transendothelial electrical resistance (TEER) in vitro. No loss of pericytes from astrocyte 

depleted lesions was observed. 

Furthermore, this work demonstrated that (ii) the TJ molecule occludin is selectively lost 

from the TJ in astrocyte depleted lesions but also reappears before astrocytes repopulate. 

Surprisingly, the BBB integrity to vascular tracer molecules was re-established before 

occludin immunoreactivity was again localized at the TJ. However, claudin-3 and -5 

localization at the TJ was not affected at any time point investigated. Moreover, no 
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morphological alterations of the TJ at endothelial contacts were detected on ultrastructural 

level using electron microscopy (EM). An increased mRNA expression of the TJ molecules 

occludin and claudin-5 was measured 10 h and 24 h after lesion induction. 

Additionally, the present work aimed to investigate the role of immune cells in the 

development of focal NMO-like lesions (iii). 6 h after lesion induction polymorphonuclear 

cells (PMN) were the most abundant infiltrating immune cell subset and the number of PMN 

in the lesions correlated with the area of fluorescein isothiocyanate (FITC)-albumin 

extravasation. Depletion of PMN abrogated lesion development and prevented breakdown 

of the BBB. Furthermore, inhibition of the complement component C5a receptor (C5aR), 

which is important for PMN attraction and activation, reduced the area of astrocyte loss. 

Finally, it was demonstrated that proteases released from PMN granules upon activation 

were involved in the regulation of BBB permeability and astrocyte lesion formation. Matrix 

metalloproteinase 9 (MMP9) was shown to decrease TEER values of RBEC in vitro and was 

detected in infiltrating PMN 6 h and 12 h after lesion induction in vivo. Furthermore, 

inhibition of neutrophil elastase (NE) reduced astrocyte lesion size and PMN infiltration in 

vivo. 

In summary we could show that PMN play a crucial role in the development of NMO-like 

lesions and mediate the breakdown of the BBB. The disruption of the BBB allows 

complement components to gain access to the brain parenchyma and results in the 

recruitment of additional immune cells. Both factors contribute to astrocyte loss in NMO-like 

lesions. 

4.1 Rapid restoration of the BBB in the focal NMO model, independent of loss of 
astrocytes and occludin 

To investigate the BBB in NMO, we utilized a focal NMO model in Lewis rats which is based 

on injection of a recombinant human NMO-Ab, directed against AQP4, together with human 

complement into the motorcortex. Intracerebral injection results in NMO-like lesions which 

are characterized by complement mediated astrocyte lysis followed by a rapid loss of 

oligodendrocytes and a delayed demyelination (Wrzos et al., 2014). Additionally, immune 

cell infiltration was observed, consisting mainly of PMN and macrophages. Astrocyte, 

oligodendrocyte and myelin loss, as well as PMN infiltration and abundant numbers of 

macrophages in the lesions are characteristics of early human NMO lesions (Cloys and 

Netsky, 1970; Lucchinetti et al., 2002; Misu et al., 2007; Roemer et al., 2007), see also Figure 
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1 and Figure 18. Therefore, focal NMO-like lesions resemble early human NMO lesions in 

many aspects, especially since the NMO-Ab utilized is derived from a plasma cell of an NMO 

patient (Bennett et al., 2009). Furthermore, the usage of a recombinant human NMO-Ab for 

lesion induction - in contrast to patient sera - ensures the induction of reproducible NMO-

like lesions which present a valuable tool to study astrocyte lesion development, also with 

regard to the regulation of the BBB permeability in the absence of astrocytes. 

The BBB restricts the movements of serum molecules from the blood into the brain and 

thereby maintains the unique central nervous system (CNS) environment which enables 

neuronal function. It is well established that “typical” BBB properties of endothelial cells 

(EC), such as the development of tight interendothelial junctions or the polarized expression 

of transporter systems, depend on cellular and structural components of the CNS. This 

includes astrocytes, pericytes and the basal lamina, and in the broader term of the 

neurovascular unit (NVU) additionally microglia and neurons (Abbott et al., 2006). The 

restriction of the transendothelial flux of sodium ions across the endothelium is a feature of 

the BBB that is mainly dependent of the development of tight interendothelial junctions, and 

can be determined by the measurement of the electrical resistance. TEER values of about 

1800 Ω*cm² were measured in situ in the rat CNS, representing a tight barrier (Butt et al., 

1990). However, once isolated, the TEER values decrease to 50-150 Ω*cm² in monolayers of 

rat brain EC (e.g. de Vries et al., 1996; Demeuse et al., 2002; Perriere et al., 2007). Co-culture 

of brain endothelial monolayers with astrocytes and/or pericytes was shown to increase the 

TEER values, to reduce permeability and to result in an enhanced expression of TJ proteins 

(Demeuse et al., 2002; Nakagawa et al., 2009; Nakagawa et al., 2007; Perriere et al., 2007). 

In order to identify a possible temporal relationship between astrocyte loss and the 

disruption of the BBB in focal NMO-like lesions a detailed time course study was performed. 

We detected dying glial fibrillary acidic protein (GFAP) positive astrocytes 3 h after focal 

injection of NMO-Ab and human complement. 6 h after lesion induction well-demarcated 

areas of GFAP loss were observed (Figure 3). Subsequently, loss of GFAP immunoreactivity 

expanded until lesions developed the maximal extent between 24 h and 3 d. Loss of 

astrocytes was also confirmed by immunohistochemistry against the astrocytic markers 

AQP4 (Figure 3), S100 calcium-binding protein ß (S100ß) and excitatory amino-acid 

transporter 2 (EAAT2) (Wrzos et al., 2014). One week after lesion induction 91.1% of the 

formerly astrocytes depleted area was repopulated by GFAP positive astrocytes (Figure 3). 

No loss of GFAP positive astrocytes was observed in animals with focal injection of a CNS 
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unspecific control (ctrl)-Ab and human complement (Figure 3). Additionally, previous work of 

our group shows that intracerebral injection of NMO-Ab together with heat-inactivated 

human serum does not induce astrocyte loss (Wrzos et al., 2014). Concurrent with the 

development of well-demarcated astrocyte depleted lesions, a transient disruption of the 

BBB to the endogenous serum proteins immunoglobulin G (IgG) (150 kDa) and fibrinogen 

(340 kDa, Figure 4) and the vascular tracer molecules (FITC)-albumin (70 kDa) and Texas 

Red® cadaverine (0.69 kDa, Figure 5) was detected 6 h after lesion induction. Surprisingly, 

24 h after lesion induction the BBB integrity was restored as observed for the vascular 

tracers FITC-albumin and Texas Red® cadaverine although the highest extent of astrocyte 

loss was measured at that time point (Figure 1 and Figure 5). 

Although an improvement of the BBB phenotype of isolated brain EC has been described 

when co-cultured with astrocytes, only few studies are published that directly investigate 

the loss of astrocytes and its effect on the BBB integrity in the adult brain in vivo. Early 

transplantation studies suggest that astrocyte presence alone does not induce a BBB 

phenotype in vessels. When fetal CNS tissue was transplanted into cerebral ventricles and 

subsequently was penetrated by choroidal vessels, these vessels were permeable for tracer 

molecules although ensheated by astrocytes (Krum and Rosenstein, 1989; Rosenstein, 1987). 

To the contrary, it was shown that transplantation of cultured astrocytes but not fibroblasts 

into the anterior eye chamber of rats resulted in protein impermeable vessels which 

vascularized the graft originating from the iris (Janzer and Raff, 1987). However, the iris 

microvasculature is characterized by an ocular-brain barrier and subsequent studies showed 

the astrocyte graft to be poorly vascularized in contrast to the fibroblast graft in which 

additionally a significant inflammatory response was observed (Holash et al., 1993). Later, 

using 3-chloropropanediol in rats to selectively deplete astrocytes in a toxic model, it was 

demonstrated that astrocyte loss precedes the breakdown of the BBB to FITC-labeled 

dextran. However, similar to the results obtained in our experiments, the integrity of the 

BBB to tracer molecules > 10 kDa was restored in the absence of astrocytes (Willis et al., 

2004). This restoration of the BBB integrity was later attributed to the continued expression 

of adherens junction (AJ) molecules, a remodeling of the extracellular matrix and an 

infiltration of macrophages (Willis et al., 2013). In another toxic model using the glial toxin 

N-aminonicotinamine, Krum and colleague investigated the effect of astrocyte depletion on 

the endothelial BBB phenotype in a series of studies. They demonstrated that depletion of 

astrocytes in the brain did not result in a breakdown of the BBB to horseradish peroxidase or 

serum albumin in neonatal rats (Krum and Rosenstein, 1993). In adult animals, injection of 
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N-aminonicotinamine did not result in astrocyte death in the brain but in the spinal cord. 

Here, extravasation of horseradish peroxidase was observed from some, but not all 

astrocyte depleted vessels (Krum, 1994). In addition the expression of some microvascular 

markers (e.g. the glucose transporter 1 (Glut1)) stayed intact in the absence of astrocytes 

(Krum, 1994, 1996). In a genetic approach using mice expressing the herpes simplex virus 

thymidine kinase (HSV-TK) under the GFAP promoter, it was shown that ganciclovir 

mediated depletion of reactive, GFAP expressing astrocytes after a forebrain stab injury 

resulted in a prolonged opening of the BBB. In addition an increase and prolonged duration 

of leukocyte infiltration (including PMN, macrophages, monocytes and lymphocytes) was 

observed. However, it was not investigated whether the depletion of astrocytes or the 

increase in inflammatory cell infiltration were causing the prolonged disruption of BBB 

integrity (Bush et al., 1999). 

Therefore, the direct effect of the loss of astrocytes on the maintenance of the BBB in the 

adult brain is not yet completely understood. In addition it was shown that astrocytic 

activation, e.g. during neuroinflammation, can lead to the release of signaling molecules by 

astrocytes which modulate BBB permeability and the expression of cell adhesion molecules 

on the endothelial surface. This was demonstrated e.g. for the release of sonic hedgehog 

(Shh) (Alvarez et al., 2011), vascular endothelial growth factor A (VEGF-A) (Argaw et al., 

2009) and retinoic acid (Mizee et al., 2014). Our observation that astrocyte loss outlasts the 

loss of BBB integrity might be partially explained by the fact that in focal NMO-like lesions 

only a transient loss of astrocytes in a relatively small (about 1 mm² in diameter) and 

restricted area of the CNS is observed. To further investigate the influence of factors 

released by primary astrocytes on TEER values of RBEC, we established an in vitro model of 

the BBB in which both cell types were co-cultured in separate compartments of a transwell 

system. However, co-culture of RBEC with astrocytes did not result in an increase of 

electrical resistance compared to RBEC cultured alone (Figure 6 C). Further experiments are 

planned in which the effect of astrocytes on the permeability of RBEC monolayers will be 

investigated using soluble tracer molecules in this experimental setup. In addition, to further 

dissect the effect of astrocyte loss on the integrity of the BBB additional studies are planned 

using conditional transgenic mouse models where focal loss of astrocytes can be induced 

e.g. by using GFAP Cre-inducible diphtheria toxin receptor (iDTR) mice. 

Beside astrocytes, pericytes are important for the maintenance of endothelial BBB 

characteristics. As mentioned above, co-culture with pericytes enhances BBB properties of 
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brain EC in vitro. Recent in vivo experiments underline the importance of pericytes in the 

establishment and maintenance of the BBB (Armulik et al., 2010; Bell et al., 2010; Daneman 

et al., 2010b). Using transgenic mice with significantly decreased vessel coverage by 

pericytes, an increase in BBB permeability (Armulik et al., 2010; Bell et al., 2010) and age 

dependent reduction of TJ protein expression (Bell et al., 2010) were observed in adult 

animals. Using the pericyte marker platelet-derived growth factor receptor ß (PDGFRß) we 

demonstrated that PDGFRß immunopositive cells line brain vessels in perilesional brain 

tissue (Figure 7 A). This localization was not altered within astrocyte depleted areas 6 h and 

24 h after lesion induction (Figure 7 B, C). This indicates that pericytes are not lost after 

lesion induction and therefore pericyte – EC crosstalk might contribute to the rapid 

restoration of the BBB integrity to soluble molecules after the PMN mediated BBB disruption 

in the absence of astrocytes. 

An important structure which regulates the paracellular diffusion of soluble molecules into 

the brain parenchyma are TJ strands which are located between adjacent brain EC and seal 

the paracellular cleft. Although the TJ structure itself was already described in 1967 using EM 

(Reese and Karnovsky, 1967), the first TJ transmembrane linker protein occludin was only 

discovered in 1993 (Furuse et al., 1993). Besides occludin, another family of transmembrane 

linker proteins has been described: the claudins which are the main structural TJ 

components and consist to date of 27 members (Mineta et al., 2011). Claudin-1, -3, -5 and -

12 have been described to be located at the TJ within the brain (Liebner et al., 2000b; Nitta, 

2003; Wolburg et al., 2003). A disruption of the TJ morphology or loss of TJ proteins from the 

vasculature has been implicated in the breakdown of the BBB, e.g. in MS or glioblastoma 

(Kirk et al., 2003; Liebner et al., 2000a; Plumb et al., 2002; Wolburg et al., 2003). Indeed, we 

observed a transient and selective loss of occludin immunoreactivity from the TJ in NMO-like 

lesions which started 6 h after lesion induction simultaneous with the observation of the 

breakdown of the BBB. At that time point occludin immunoreactivity was detected in 31% of 

the vessels which decreased further to 3.5% after 10 h and 24 h compared to 93% occludin 

positive vessels in control brain tissue. Subsequently occludin expression again increased 

and 6 d after lesion induction no alterations in occludin expression were observed compared 

to uninjected controls (Figure 8). However, although occludin immunoreactivity at the TJ was 

significantly reduced 24 h after lesion induction the integrity of the BBB was already restored 

to molecules > 690 Da (Figure 5). 
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Although occludin, claudin-3 and claudin-5 were suggested to regulate BBB permeability in 

the CNS, claudin-5 is the only transmembrane molecule that was shown to be crucial for the 

development of a tight BBB. Also, it was shown to be expressed at significantly higher levels 

than claudin-1, -3 or -12 in brain EC (Daneman et al., 2010a; Ohtsuki et al., 2007; Ohtsuki et 

al., 2008). Claudin-5 deficient mice die within 10 h after birth and show a size selective 

permeability to tracer molecules smaller than 800 Da (Nitta, 2003). No BBB specific 

phenotype was detected in occludin or claudin-3 deficient mice (Kooij et al., 2013; Saitou et 

al., 2000), although the latter showed an impaired brain-CSF-barrier. In addition claudins, 

but not occludin were shown to induce de novo TJ formation in mouse fibroblasts in 

transfection studies (Furuse et al., 1998b). Furthermore, overexpression of occludin in 

Madin-Darby canine kidney II (MDCK II) cells, an epithelial cell line, did not result in a 

reduced permeability to uncharged molecules although higher TEER values were measured 

(Van Itallie et al., 2010). However, occludin was suggested to have a regulatory function on 

TJ tightness. In vitro studies showed that occludin transduces cytokine signaling of tumor 

necrosis factor (TNF)-α and interferon (INF)-γ (Van Itallie et al., 2010) and that occludin 

proteolysis or vascular endothelial growth factor (VEGF) signaling could increase 

permeability of cell monolayers (Murakami et al., 2009; Wachtel et al., 1999). The 

experimental data available indicate that the members of the claudin family have key 

functions in the sealing of the paracellular cleft and the induction of the BBB phenotype. 

Therefore, in addition to occludin, we also investigated the expression of claudin-3 and -5 in 

NMO-like lesions. Indeed, no loss of claudin-3 and -5 immunoreactivity from the TJ was 

detected at any time point investigated (Figure 8). This indicates that lack of occludin might 

be compensated for by an intact localization of claudin-3 and -5 at the TJ strands between 

adjacent EC. This is supported by our observation on the ultrastructural level where we did 

not observe overt morphological TJ abnormalities or the separation of adjacent EC 6 h and 

24 h after lesion induction (Figure 9). Furthermore, a rapid increase in mRNA expression of 

occludin and claudin-5 10 h and 24 h after lesion induction might contribute to the re-

establishment of the BBB integrity to soluble tracers (Figure 10). 

4.2 PMN play a crucial role in the breakdown of the BBB in focal NMO like 
lesions 

In neuroinflammatory diseases like NMO or multiple sclerosis (MS) the development of CNS 

lesions is accompanied by the infiltration of immune cells and inflammation mediated 

increases in BBB permeability (Grossman et al., 1986; Lucchinetti et al., 2000; Lucchinetti et 
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al., 2002; O'Riordan et al., 1996). To assess whether the immune cell infiltration coincides 

with the disruption of the BBB in NMO-like lesions a time course experiment was performed. 

We detected only few CD3 positive T cells in focal NMO-like lesions starting not until 12 h 

after lesion induction. Furthermore, it was shown in a model of focal NMO-like lesions in 

mice that depletion of T cells does not reduce inflammation, myelin breakdown, or loss of 

AQP4 immunoreactivity (Saadoun et al., 2011) indicating, in line with our data, that T cells 

are not required for the development of NMO-like lesions. Contrary to the scarce infiltration 

of T cells, the infiltration of abundant numbers of PMN, macrophages and monocytes was 

observed. 6 h after lesion induction PMN were the most abundant leukocyte cell type 

observed at the injection site, and their numbers were significantly higher than these of ED1 

positive monocytes/macrophages (Figure 11). Indeed, PMN were shown to be the first cells 

to infiltrate various tissues in other models of infection or tissue damage, e.g. in models of 

peritonitis, colitis (Ajuebor et al., 1999; Cailhier et al., 2005; Yamamoto et al., 2008) or 

ischemia (Barone et al., 1991; Garcia et al., 1994; Matsuo et al., 1994). In our model of NMO-

like lesions the activation of the complement cascade after focal injection of NMO-Ab and 

human complement results in the release of the anaphylatoxin C5a and thus might 

contribute to the rapid recruitment of immune cells into the brain parenchyma. In addition, 

infection or tissue damage result in the release of pathogen- and damage-associated 

molecular pattern molecules (PAMPs and DAMPs), such as lipopolysaccharide (LPS) and 

nuclear or cytoplasmic components released from necrotic cells. PAMPs and DAMPs are 

sensed by resident macrophages and dendritic cells which results in their activation. It was 

shown that there is an early interaction between resident macrophages and PMN in 

response to DAMPs which might represent nuclear and cytoplasmic components released by 

necrotic astrocytes in NMO-like lesions. Activated resident macrophages in turn release pro-

inflammatory cytokines (for example interleukine 8 (IL-8) or TNF-α) and chemokines (e.g. 

chemokine (C-X-C motif) ligand 1 (CXCL1), CXCL2 or CXCL5) which attract PMN from the 

blood into the tissue (Ajuebor et al., 1999; Cailhier et al., 2005; Tian et al., 2007; Yamamoto 

et al., 2008; Yamasaki et al., 2008; Yanai et al., 2009). PMN, in turn, recruit more PMN and 

classical monocytes with the release of diverse granule contents (Chertov et al., 1997; 

Soehnlein et al., 2008) and thereby promote the immune response. 

Indeed, PMN were implied to play a role in the development of human and experimental 

NMO lesions. Infiltration of PMN into the CNS was described in human NMO lesions 

(Lucchinetti et al., 2002) and was present in all NMO biopsies investigated in the present 

study (Figure 18). In addition, PMN were described in the CSF of NMO patients (Wingerchuk 
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et al., 1999). Using ex vivo spinal cord slice cultures it was demonstrated that neutrophils 

exacerbate lesion formation in the presence of a sublytic concentration of NMO-Ab in 

combination with human complement. This exacerbation was associated with the release of 

the PMN protease NE (Zhang et al., 2011). Later, PMN were implicated to participate in Ab-

dependent cell-mediated cytotoxicity (ADCC) against AQP4 expressing astrocytes. Using in 

vitro cell culture and ex vivo spinal cord slice cultures it was shown that eosinophils induced 

cell death of AQP4 positive cells when added to the cultures in combination with 

recombinant NMO-Ab. When eosinophils were added together with a recombinant NMO-Ab 

lacking the ADCC effector function, the loss of AQP4 positive cells was significantly reduced 

(Zhang and Verkman, 2013). The contribution of ADCC mediated astrocyte loss to lesion 

formation was confirmed in vivo in focal NMO-like lesions and after intravenous (i.v.) 

injection of NMO-Ab in myelin basic protein (MBP)-preimmunized rats using the same ADCC 

deficient recombinant NMO-Ab in rats (Wrzos et al., 2014). Furthermore it was suggested 

that astrocyte targeted ADCC is mediated by the low affinity IgG receptor FcγRIII which is 

expressed on PMN and macrophages. Indeed, focal injection of NMO-Ab and human 

complement resulted in significantly smaller lesions in FcγRIII deficient mice compared to wt 

mice. Likewise, systemic treatment with an anti-FcγRII/III Ab resulted in diminished lesion 

development, but also in reduced neutrophil blood counts which might contribute together 

to the reduced pathology that was observed in these mice (Ratelade et al., 2013). In 

addition, we demonstrated that PMN are crucial for the development of NMO-like lesions. 

The development of astrocyte depleted lesions was only observed in control animals, but 

not in animals lacking PMN after treatment with anti-PMN antiserum 6 h after lesion 

induction (Figure 12). This is in line with results published by Saadoun and coworkers. They 

demonstrated that neutropenia induced in mice by injection of rat anti-neutrophil IgG (1A8) 

resulted in a reduction of astrocyte loss and demyelination. In contrast, induction of 

neutrophilia by injection of granulocyte colony stimulating factor significantly exacerbated 

lesion development (Saadoun et al., 2012). 

Thus, our findings that PMN are crucial for development of NMO-like lesions are in line with 

published data in different NMO models. Moreover, we demonstrated that PMN play a 

central role in the regulation of BBB permeability during their infiltration into the brain 

parenchyma 6 h after lesion induction. A strong correlation between the numbers of 

PMN/lesion site and the extent of FITC-albumin extravasation was detected at this time 

point (Figure 11 D). Consequently, depletion of PMN by injection of anti-PMN antiserum 

prevented - beside the loss of astrocytes - the breakdown of the BBB and the loss of occludin 
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from the TJ (Figure 12). In addition, we could show that focal injection of a CNS-unspecific 

ctrl-Ab together with human complement also results in the infiltration of, although smaller 

numbers of PMN (Figure 12), coinciding with some leakage of tracer molecules into the 

parenchyma (Figure 4, Figure 5 and Figure 12) and loss of occludin from few TJ (Figure 8). 

This emphasizes the importance of PMN in the induction of BBB permeability upon 

infiltration into the CNS even in the absence of a CNS-specific adaptive immune response. It 

suggests that in our model, a minimal activation of the complement cascade may result in a 

local inflammatory response which in turn leads to the recruitment of PMN into the brain. 

This, however, is substantially amplified by specific Ab-binding after focal injection of NMO-

Ab. 

A loss of BBB integrity induced by PMN transmigration is in line with observations in other 

models of CNS inflammation e.g. in stroke, trauma or experimental autoimmune 

encephalomyelitis (EAE) (Carlson et al., 2008; Neumann et al., 2015; Schnell et al., 1999). 

Using 2-photon imaging it was shown that extravasation of PMN into the CNS is associated 

with a local BBB disruption and infarct formation in an in vivo stroke model (Neumann et al., 

2015). Also trauma-induced lesions in the CNS were associated with leukocyte infiltration 

and increased BBB permeability (Schnell et al., 1999). Furthermore, injection of IL-ß into the 

brain of juvenile rats or chronic expression of IL-1 in the brain resulted in recruitment of 

PMN and a subsequent breakdown of the BBB (Bolton et al., 1998; Ferrari et al., 2004). 

Blockage or deletion of CXCR2, which is important for PMN chemoattraction to the site of 

inflammation, as well as depletion of PMN, resulted in an abrogation of EAE and 

preservation of the BBB integrity. In this study supplementation of wild type (wt) PMN into 

CXCR2 deficient mice was sufficient to restore EAE susceptibility and BBB breakdown 

(Carlson et al., 2008). However, also contrary data is published. It was shown that direct 

injection of activated PMN into the striatum of mice did not affect BBB integrity (Joice et al., 

2009). Additionally, it was demonstrated in vivo and in vitro that transcellular migration of 

PMN by itself does not necessarily result in the induction of increased permeability (von 

Wedel-Parlow et al., 2011; Wolburg et al., 2005). These and other studies also demonstrated 

that in the brain, leukocyte transmigration occurs predominantly by the transcellular 

pathway and that the TJ appeared unaltered in their ultrastructural morphology after 

transmigration (Lossinsky et al., 1989; Raine et al., 1990; von Wedel-Parlow et al., 2011; 

Wolburg et al., 2005). This is in line with our observations in focal NMO-like lesions using 

EM. An ultrastructural TJ morphology similar to that detected in brain vessels of uninjected 

control brain was observed in focal NMO-like lesion 6 h and 24 h after lesion induction 
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(Figure 9). One possibility to explain the increased permeability despite morphologically 

intact TJ is the published observation that horseradish peroxidase leaks into the brain 

alongside transmigrating inflammatory cells in vivo (Claudio et al., 1990; Lossinsky et al., 

1989) and in vitro (Wong et al., 2007). 

In this study we demonstrated that PMN are the first cells to infiltrate the brain parenchyma, 

that the breakdown of the BBB correlated with PMN extravasation and that depletion of 

PMN from the blood prevented the loss of BBB integrity 6 h after lesion induction. However, 

high numbers of PMN were observed at the injection site 24 h after lesion induction with a 

simultaneous restoration of the BBB integrity to vascular tracers > 690 Da (Figure 5). The 

maximal number of PMN in the lesion was reached between 12 h and 24 h after lesion 

induction with similar numbers of PMN detected around the injection site at both time 

points. This indicates that infiltration of PMN into the brain parenchyma is completed before 

24 h after lesion induction. Once the infiltration of PMN stops, the BBB might be able to 

restore its integrity to soluble molecules. Indeed it was shown in vitro that TNF-α mediated 

PMN transmigration through a brain EC monolayer resulted in induction of permeability to 

horseradish peroxidase at the transmigration site accompanied by decreased TEER values. 

However, at the end of the migration period, the EC layer resumed their continuity and 

integrity to horseradish peroxidase (Wong et al., 2007). In addition, as discussed later in 

more detail, MMP9 released by PMN might play a role in the breakdown of the BBB. We 

demonstrated that 20% of the PMN were immunopositive for MMP9 6 h after lesion 

induction. However, in only 2% of the PMN cellular MMP9 immunoreactivity was detected 

24 h after lesion induction (Figure 16). PMN release their granule contents early after 

activation and infiltration. Therefore, infiltrated PMN might represent a lesser activated 

state at 24 h compared to 6 h after lesion induction. Additionally, it has been shown that 

apoptotic PMN also play a role in the resolution of inflammation. Apoptotic PMN are cleared 

by macrophages. Upon PMN phagocytosis macrophages produce elevated levels of the anti-

inflammatory cytokine IL-10 while the production of the proinflammatory cytokines IL-23 

and IL-12 decreases (Filardy et al., 2010; Stark et al., 2005). Thereby, macrophages assume a 

phenotype that promotes tissue repair. In addition, the resolution of inflammation requires 

the removal of proinflammatory mediators. It has been shown that apoptotic PMN express 

increased levels of CCR5 which can act as a scavenger receptor for the inflammatory 

chemokines CCL3 and CCL5 (Ariel et al., 2006). Additionally, PMN might express decoy 

receptors like the chemokine receptor D6 or IL-1R2 that bind inflammatory cc-chemokines 

and IL-1, respectively (Bourke et al., 2003; McKimmie et al., 2008). 
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However, not only PMN, but also T cells or monocytes were shown to contribute to the 

disruption of the BBB in other inflammatory models such as EAE (Bartholomaus et al., 2009; 

Morrissey et al., 1996; Seeldrayers et al., 1993) or after intracerebral injection of chemokine 

(C-C motif) ligand 2 (Ccl2), an important chemoattracting molecule for 

monocytes/macrophages (Stamatovic et al., 2005). As mentioned above, a role of T cells can 

be excluded in our model. However, a possible role of monocytes in NMO-lesion 

development and in the dysregulation of the BBB cannot be completely ruled out in the 

study presented here. In addition to PMN (201 ± 79 cells/mm²), few (2 ± 2) ED1 (≙CD68) 

positive cells/mm², a marker of monocytes/macrophages, were observed in the brain 

parenchyma 6 h after lesion induction. Although we demonstrated that depletion of PMN 

prevented NMO-like lesion formation, the anti-PMN antiserum used here to deplete PMN 

also resulted in the reduction of peripheral blood cells like monocytes and lymphocytes as 

investigated by flow cytometry (Figure 13). This is in contrast to a previous study which 

showed the treatment of Fischer F344 inbred rats with anti-PMN antiserum to result, beside 

PMN depletion, only in a slight decrease of lymphocytes. The numbers of monocytes in the 

blood were not investigated (Snipes et al., 1995). Therefore, a possible contribution of 

monocytes to lesion development requires further investigation. On the one hand an anti-rat 

neutrophil specific Ab (RP-3) has been described, which we plan to utilize to further specify 

the role of neutrophils in NMO-like lesion development (Sekiya et al., 1989). On the other 

hand we plan to specifically address the role of monocytes in lesion development by using C-

C chemokine receptor type 2 (Ccr2) deficient mice and Ccr2 inhibitors. Ccr2 is expressed on 

inflammatory monocytes and macrophages and is the receptor for Ccl2. It is crucial for 

monocyte chemotaxis and therefore also for the recruitment of monocytes into the inflamed 

tissue (Kurihara et al., 1997; Kuziel et al., 1997). Additionally, Ccr2 positive cells have been 

implied in the disruption of the BBB (Stamatovic et al., 2005). For this purpose NMO-like 

lesions in mice are currently established in our laboratory. 

4.3 PMN attracting molecules and released granule contents modulate NMO-
like lesion development and BBB permeability 

The development of focal NMO-like lesions was shown to be complement-dependent. After 

injection of NMO-Ab and human complement, lesion development is triggered by the 

binding of the NMO-Ab to AQP4 on astrocytes and the subsequent activation of the 

complement cascade which results in astrocyte lysis (Wrzos et al., 2014). Furthermore, 

activated complement deposits were described both in experimental and human NMO 
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lesions (Bennett et al., 2009; Lucchinetti et al., 2002) and antibodies defective in 

complement-dependent cytotoxicity (CDC) diminish the formation of NMO-like lesions 

(Ratelade et al., 2013; Tradtrantip et al., 2012; Wrzos et al., 2014). After activation of the 

complement cascade, C5 convertase becomes activated and cleaves the inactive C5 into the 

active component C5b and the anaphylatoxin C5a. Inhibition of this step by using the 

monoclonal antibody eculizumab, directed against C5, inhibits the effector pathway of the 

complement cascade, and significantly reduced attack frequency and improved or stabilized 

the neurological disability measures in NMO patients (Pittock et al., 2013). Further 

downstream, activation of the complement cascade results in the formation of the final 

membrane attack complex resulting in astrocyte lysis. Furthermore, the anaphylatoxin C5a is 

released. Two receptors of C5a are known: the C5a receptor-like 2 (C5L2) and the seven 

transmembrane-containing G protein-coupled receptor C5aR. C5a was shown to be a potent 

peptide mediator of inflammation with C5aR being widely expressed on different cell types. 

In the CNS C5aR is, e.g., expressed by astrocytes, microglia, oligodendrocytes and EC 

(Gasque et al., 1995; Lacy et al., 1995; Laudes et al., 2002; Nataf et al., 2001) and can induce, 

e.g., the expression of adhesion molecules on the endothelial surface (Albrecht et al., 2004). 

Moreover, C5aR is expressed on different immune cells, and C5a acts as an important 

chemoattractant for PMN, macrophages and monocytes (Chenoweth et al., 1982; 

Chenoweth and Hugli, 1978).  

Therefore, we addressed the question whether the development of NMO-like lesions can be 

attenuated by systemic treatment of animals with the small molecule C5aR antagonist PMX-

53 (Finch et al., 1999; Wong et al., 1998), which has been shown to be effective e.g. in the 

treatment of rheumatoid arthritis in rats (Woodruff et al., 2002). Indeed, application of the 

C5a-antagonist 3 h after lesion induction significantly decreased the development of 

astrocyte depletion lesions after 6 h. However, neither the number of infiltrated PMN nor 

the BBB permeability in the lesions was significantly altered after treatment with PMX-53 

(Figure 14). These apparently conflicting data might be explained by the complex functions 

C5aR signaling triggers in PMN. Additionally to the function of C5a as a chemoattractant, 

binding of C5a to C5aR is also implied in the full activation of PMN which is assumed to be a 

two-step process. The first step, also called priming, is mediated by pro-inflammatory 

cytokines such as TNF-α or IL-1 or by the contact with the activated endothelium (Fuortes et 

al., 1993; Lloyds et al., 1995; Nathan et al., 1989; Yagisawa et al., 1995). Full activation can 

be triggered upon exposure to PAMPs, growth factors or chemoattractants like C5a. Binding 

of C5a to the C5aR on PMN mediates enhanced expression of adhesion molecules, 
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chemotaxis, release of granule enzymes, oxidative burst, phagocytosis and delayed 

apoptosis (Becker et al., 1985; Foreman et al., 1994; Goldstein et al., 1975; Kernen et al., 

1991; Mollnes et al., 2002; Perianayagam et al., 2004; Snyderman and Pike, 1984). 

During lesion initiation the complement mediated lysis of astrocytes may result in the 

development of an inflammatory milieu which results in the activation of the endothelium, 

in which also C5a has been implied. Endothelial cells were also shown to express C5aR and 

activation of C5aR signaling pathways were demonstrated to result in the expression of 

cytokines, chemokines and adhesion molecules on the endothelial surface (Albrecht et al., 

2004). Therefore, the contact of PMN to the activated endothelium at the injection side may 

lead to the priming of PMN and transmigration. This sequence of events is supported by 

observations made by Vincent and coworkers. They demonstrated that NMO-IgG binding to 

astrocytes and subsequent CDC mediated astrocyte lysis resulted in the attraction of PMN 

through an EC monolayer in vitro (Vincent et al., 2008). However, once the BBB is overcome 

PMN of animals treated with C5aR antagonist might fail to become fully activated (Becker et 

al., 1985; Foreman et al., 1994; Goldstein et al., 1975; Kernen et al., 1991; Mollnes et al., 

2002; Perianayagam et al., 2004; Snyderman and Pike, 1984). This might result in reduced 

release of granule contents, reduced phagocytosis and reduced participation in ADCC which 

might result in the reduced loss of astrocyte observed after treatment with the C5aR 

antagonist although the BBB permeability and the number of infiltrated PMN are not 

significantly altered. However, additional in vitro experiments are planned to further 

investigate this hypothesis. The effect of C5a incubation in the absence and presence of 

activated endothelial cells on the activation of PMN will be determined and subsequently 

their ability to lyse astrocytes in an ADCC depended manner together with NMO-Ab will be 

measured. In addition, the effect of C5aR antagonist treatment will be investigated in this 

system. 

To address the question how PMN mediate the breakdown of the BBB, we focused on 

proteases released from PMN granules upon activation, which have been reported to 

contribute to the induction of BBB permeability. During the granulopoiesis in the bone 

marrow PMN granules are formed successively. Four types of granules are known: primary 

(azurophilic), secondary (specific), tertiary (gelatinase) and secretory granules. Granules 

contain different sets of proteases, receptors, adhesion molecules and antibacterial 

proteins. The degree of PMN activation is important for the release of specific granule 

subtypes. In a first step secretory granules are released (Borregaard et al., 1990), containing 
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primarily receptors and adhesion molecules (e.g. the ß2-integrin MAC-1, CD14 and 

complement receptor 1). Upon fusion of the secretory vesicle membrane with the cell 

membrane these molecules are expressed on the cell surface and enhance firm adhesion to 

the endothelium and the chemotaxis-directed migration (Borregaard et al., 1990; Detmers et 

al., 1995; Miller et al., 1987; Sengeløv et al., 1994). Subsequently, tertiary and secondary 

granules are released. They contain e.g. the proteases MMP9 and collagenase which 

degrade the basement membrane and extracellular matrix and thereby facilitate PMN egress 

and migration (Dewald et al., 1982; Kjeldsen et al., 1993; Murphy et al., 1980). Primary 

granules are mobilized at the end and thereby release proteins that are thought to 

participate in bactericidal activity and contain, e.g. myeloperoxidase, NE and cathepsin G 

(Cramer et al., 1985; Malemud and Janoff, 1975; Ohlsson and Odsson, 1974). 

MMP9, cathepsin G and NE are PMN proteases that are implied in disruption of the BBB 

(Chen et al., 2009; Hermant et al., 2003; Suzuki et al., 1994). Therefore, we investigated the 

effect of these proteases on the electrical resistance of RBEC in vitro. No alterations in TEER 

values were observed after incubation of RBEC monolayers with either cathepsin G or NE. 

However, treatment of RBEC with MMP9 resulted in a reduction of TEER values by 49.8% 

compared to untreated controls (Figure 15 B). This observation was not due to RBEC death, 

which in turn would result in the disruption of the RBEC monolayer and thereby decrease 

TEER values (Figure 15 C). A possible role of MMP9 released from PMN in the breakdown of 

the BBB has been discussed in the literature. Especially in models of stroke and traumatic 

brain injury, MMP9 may play a crucial role in the disruption of the BBB. Elevated MMP9 

levels are observed in stroke patients and correlate with poor neurologic outcome 

(Castellanos et al., 2003; Horstmann et al., 2003; Montaner et al., 2003). In autopsy tissue, 

MMP9 was mainly detected around vessels and associated with neutrophil infiltration 

(Rosell et al., 2008; Rosell et al., 2006). In experimental models of focal ischemia elevated 

MMP9 levels were demonstrated, which were associated with loss of BBB integrity, 

hemorrhage and neuronal death (Romanic et al., 1998). In MMP9 deficient mice or upon 

pharmacologic MMP inhibition subsequent to induction of focal cerebral ischemia smaller 

lesions and protection of the BBB integrity were described (Asahi et al., 2000; Asahi et al., 

2001; Cui et al., 2012; Gu et al., 2005; Jiang et al., 2001; Koistinaho et al., 2005; Romanic et 

al., 1998; Rosenberg et al., 1998). Comparable findings were observed after traumatic brain 

injury in humans and experimental models (Hadass et al., 2013; Muradashvili et al., 2015; 

Suehiro et al., 2004). 
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In addition, MMP9 has been implied to play a role in MS. Elevated MMP9 levels were 

measured in the CSF of MS patients (Gijbels et al., 1992; Hosokawa et al., 2011; Mandler et 

al., 2001) and in the serum and CNS tissue during EAE (Clements et al., 1997; Kandagaddala 

et al., 2012; Kieseier et al., 1998; Nygårdas and Hinkkanen, 2002). Furthermore, young, 3-4 

week-old MMP9 deficient mice were shown to be less susceptible to EAE compared to age-

matched wt mice. In adult mice, however, no difference in the development and course of 

EAE was observed (Dubois et al., 1999). However, mice deficient in both MMP9 and MMP2 

are resistant to EAE (Agrawal et al., 2006), and also pharmacologic inhibition of MMPs 

ameliorated EAE (Gijbels et al., 1994; Hewson et al., 1995; Niimi et al., 2013). 

Limited data regarding the role of MMP9 in NMO is available. Like in MS the MMP9 CSF 

levels in NMO patients were shown to be elevated. Whether MMP9 levels in the CSF of NMO 

patients differ from those of MS patients is controversial: while one group reported 

significantly higher MMP9 levels in the CSF of NMO patients (Mandler et al., 2001), another 

group did not detect any differences (Hosokawa et al., 2011). However the latter showed 

that serum MMP9 concentrations were significantly higher in NMO than in MS patients and 

correlated with expanded disability status scale scores (EDSS) and BBB disruption, as 

measured by CSF:serum albumin ratios (Hosokawa et al., 2011). Utilizing our model of focal 

NMO-like lesions we could show that 20% of the infiltrating PMN at the injection site were 

immunopositive for MMP9 6 h after lesion induction. At subsequent time points the 

percentage of MMP9 positive PMN decreased. Only 2% of PMN were immunopositive for 

MMP9 24 h after lesion induction, and no MMP9 reactivity was detected on day 3 after 

lesion induction (Figure 16), indicating an early release of MMP9 by PMN. Since treatment of 

RBEC with MMP9 induced a reduction of TEER values in vitro and MMP9 positive PMN were 

only found in early lesions in vivo, MMP9 released by PMN may be an important mediator of 

BBB disruption in NMO-like lesions. However, to investigate the functional effects of MMP9 

on BBB integrity and lesion development in focal NMO-like lesions, further experiments are 

necessary. Studies are planned to assess the effect of pharmacologic inhibition of MMPs by 

using the specific MMP2/MMP9 inhibitor SB-3CT. In addition, we will investigate the 

development of NMO-like lesions and the breakdown of BBB in MMP9 deficient mice. 

However, the mechanism by which MMP9 regulates the BBB permeability is still unknown. 

One proposed mechanism is the cleavage of the TJ molecule occludin by MMP9 (Bojarski, 

2004; Lischper et al., 2010; Liu et al., 2009; Reijerkerk et al., 2006; Yang et al., 2007). Indeed, 

a transient loss of occludin immunoreactivity from the TJ of brain vessels was observed after 
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lesion induction. After 6 h, loss of occludin immunoreactivity from about 70% of the vessels 

coincided with infiltration of PMN into the lesions (Figure 8). However, direct incubation of 

RBEC for 2 h with active MMP9 did not result in loss of occludin immunoreactivity from the 

cell-cell contacts although a decrease in TEER values was observed (Figure 15 B, D). To 

further investigate a possible fragmentation of occludin after MMP9 treatment western blot 

analyses will be performed. 

As mentioned before NE did not show a direct effect on TEER values of RBEC in vitro (Figure 

15). However, published data suggests that NE released by PMN might play a role in the 

breakdown of the BBB and in the development of NMO-like lesion in vivo (Saadoun et al., 

2012). To investigate the role of NE in the development of focal NMO-like lesions, the 

competitive NE inhibitor Sivelestat was used. Sivelestat was developed to inhibit human NE, 

but is also effective in other species like rat, rabbit and mouse (Kawabata et al., 1991). 

Indeed, systemic treatment of rats with Sivelestat 3 h after lesion induction resulted in 

significantly smaller astrocyte depleted lesions compared to vehicle treated controls after 

6 h (Figure 17). These results are in line with published data. Zhang and colleagues have 

shown in an ex vivo NMO-model, that incubation of spinal cord slice cultures with 

neutrophils and an insufficient concentration of complement and NMO-Ab resulted in 

exacerbated lesion formation which was significantly reduced after treatment with 

Sivelestat. Conversely, supplementation of NE potentiated lesion development in the 

absence of neutrophils (Zhang et al., 2011). In vivo it was demonstrated in mice that 

intracerebral injection of NMO-Ab and human complement together with Sivelestat and a 

cathepsin G inhibitor reduced lesion size. Similar results were obtained after systemic 

treatment with Sivelestat. In addition, significantly fewer extravasated neutrophils were 

observed within the lesion. (Saadoun et al., 2012). 

Fewer extravasating PMN were also observed in the brain parenchyma in our model after 

treatment with Sivelestat. Surprisingly, this did not result in a decreased permeability of the 

BBB to the vascular tracer FITC-albumin compared to vehicle treated animals (Figure 17). 

Whether NE directly increases the permeability of the BBB is conflicting in the literature. In 

vitro, incubation of EC with activated neutrophils or purified NE was shown to increase 

permeability (Hermant et al., 2003). Furthermore, NE mediated increase of endothelial 

permeability is prevented by Sivelestat (Ikegame et al., 2010; Suzuki et al., 1994). In contrast, 

removal of NE from the secreted supernatant of PMN by immunoabsorption did not result in 

different TEER values compared to NE-containing supernatant (Gautam et al., 1998; Gautam 
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et al., 2000). In vivo, in a rat model of spinal cord injury and in a mouse model of focal 

ischemia, treatment with Sivelestat significantly reduced neurological deficits, neutrophil 

accumulation and BBB disruption (Ikegame et al., 2010; Tonai et al., 2001). However, using 

NE knockout mice it was demonstrated that deficiency of NE exacerbated pathology after 

ventilator-induced lung injury. This was surprising since NE deficient mice showed also lower 

numbers of neutrophils in the alveolar spaces. One possible explanation suggested by the 

authors is the finding that the intercellular adhesion molecule 1 (ICAM-1) is a substrate of NE 

(Champagne et al., 1998; Kaynar et al., 2008). By cleavage of ICAM-1 PMN adhesion to the 

endothelium is terminated and PMN can transmigrate into the tissue. However, in the 

absence of NE the interaction of PMN with the endothelium might be prolonged which leads 

to an increased permeability (Kaynar et al., 2008). This finding gives a possible explanation 

for the discrepancy we observed after treatment with Sivelestat in focal NMO-like lesions 

which resulted in smaller astrocyte depleted lesions and less infiltrating PMN, but no 

difference in BBB permeability (Figure 17). Upon focal injection of NMO-Ab and human 

complement the endothelium becomes activated which may be associated with an 

increased expression of ICAM-1 on the luminal side of the vasculature. This in turn leads to 

ICAM-1 mediated adherence of PMN to the endothelium, which may be prolonged in 

animals treated with Sivelestat, resulting also in reduced numbers of transmigrated cells. 

This explanation is supported by observations made by Saadoun and colleagues. They 

observed that treatment with Sivelestat did not inhibit binding of neutrophils to the 

endothelium, but their extravasation into the brain parenchyma (Saadoun et al., 2012). 

Prolonged contact of activated PMN with endothelial cells was shown to result in cell injury 

(Kaynar et al., 2008) and might therefore induce increases in BBB permeability at the sites of 

PMN adherence resulting in similar tracer extravasation in Sivelestat and vehicle treated 

animals. 
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5 SUMMARY AND CONCLUSIONS 

Neuromyelitis optica (NMO) is a demyelinating autoimmune disease of the central nervous 

system. Astrocytes were shown to be the major target in this disease, and autoantibodies 

against aquaporin4 (AQP4) are detected in about 70% of NMO patients. The binding of 

NMO-antibodies (Ab) to AQP4, a water channel which is highly expressed on astrocytic 

endfeet, results in complement- and cell-mediated depletion of astrocytes in acute lesions. 

The breakdown of the blood-brain barrier (BBB) is an early and prominent event in NMO as 

evidenced by gadolinium enhanced magnetic resonance imaging (MRI), but the structural 

and molecular correlates of the BBB disruption are not yet well understood. We addressed 

this question in a focal NMO model in the rat, which is based on the intracerebral injection 

of a human recombinant NMO-Ab directed against AQP4 together with human complement. 

These lesions mimic key features of early human NMO lesions, including loss of astrocytes 

and oligodendrocytes, demyelination and infiltration of immune cells. 

The development, maintenance and repair of the BBB were shown to be dependent on 

pericytes and astrocytes that closely interact with endothelial cells (EC). Therefore we 

hypothesized that the NMO-Ab mediated depletion of astrocytes in NMO-like lesions might 

contribute to the disruption of the BBB. To investigate this hypothesis, time course 

experiments were performed, which demonstrated that the onset of astrocyte lesion 

development coincided with the breakdown of the BBB 6 h after lesion induction. However, 

the integrity of the BBB to vascular tracers with molecular sizes of > 690 Da was restored 

already after 24 h, at least 2 d before astrocytes repopulated the lesion. Moreover, in a 

transwell co-culture model of the BBB we did not detect alterations in the transendothelial 

resistance of EC monolayers when cultured with or without astrocytes. No loss of pericytes 

from astrocyte depleted lesions was observed. Thus, pericytes might contribute to the 

restoration of the BBB in the absence of astrocytes. 

Furthermore, a detailed analysis of the tight junctions (TJ), which restrict the paracellular 

diffusion of solutes across the BBB, was performed. To investigate if the loss of BBB integrity 

is associated with TJ disruption the expression of occludin, claudin-3 and -5 at the TJ was 

assessed. A transient loss of occludin was detected in NMO-like lesions starting 6 h after 

lesion induction. The expression of claudin-3 and -5 was not altered. Interestingly, the BBB 

integrity to vascular tracer molecules was re-established in the absence of occludin 24 h 

after lesion induction. Moreover, no morphological alterations of the TJ structure were 

observed on the ultrastructural level. Claudin-5, but not occludin or claudin-3, was shown to 
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be crucial for sealing the paracellular cleft which may in part explain these observations. A 

rapid increase of occludin and claudin-5 mRNA expression was found 10 h and 24 h after 

lesion induction which might contribute to the re-establishment of the BBB integrity to 

solutes. 

In models of neuroinflammation it has been demonstrated that infiltrating immune cells 

contribute to the induction of BBB permeability. We found that 6 h after lesion induction 

polymorphonuclear cells (PMN) were the most abundant infiltrating leukocytes. At that time 

point, the number of PMN in the lesions correlated with the extent of FITC-albumin 

extravasation. Consequently, systemic depletion of PMN prevented breakdown of the BBB 

and loss of occludin from the TJ. Interestingly, also astrocyte lesion formation was 

completely abrogated. Since PMN appear to be crucial for astrocyte lesion development we 

hypothesized that the complement component C5a receptor (C5aR), which is important for 

PMN attraction and activation, may be important for lesion development. Indeed, systemic 

treatment of rats with the C5aR antagonist PMX-53 reduced the area of astrocyte loss in 

NMO-like lesions. Additionally, it has been shown that proteases released from PMN 

granules upon activation were involved in the regulation of BBB permeability. We could 

demonstrate that treatment of rat brain EC monolayers with the protease MMP9 decreased 

their electrical resistance in vitro. Also, we detected MMP9 in early infiltrating PMN in focal 

NMO-like lesions after 6 h and 12 h. Furthermore, systemic inhibition of the neutrophil 

elastase using Sivelestat reduced the area of astrocyte loss and the numbers of infiltrating 

PMN in vivo. Ultimately, we showed that infiltrating PMN are a component of the 

inflammatory infiltrate in early human NMO lesions. 

To conclude, this thesis shows a crucial involvement of PMN in the development of NMO-

like lesions. Our data indicate that infiltrating PMN mediate the breakdown of the BBB 6 h 

after lesion induction. This increase in permeability allows complement factors and immune 

cells to gain access to the CNS and to contribute to complement- and cell-mediated 

depletion of astrocytes. These findings together with the detection of PMN in early human 

NMO lesions identify infiltrating PMN and the concomitant breakdown of the BBB as 

promising targets for future therapeutic approaches. 
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