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General Introduction 

 

1.1. Soil bacterial community structure and activity 

 

Soil is a naturally occurring, structured, heterogeneous, and discontinuous system 

(Stotzky, 1997). The soil habitat is defined as the totality of living organisms inhabiting 

soil, which includes plants, animals, and microorganisms (Voroney, 2007). Soil harbors an 

enormous biomass of prokaryotic cells (Torsvik et al., 2002), with an estimate of 1010 cells 

per gram soil (Portillo et al., 2013; Sikorski, 2015). Dominant phyla such as 

Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, and Firmicutes were 

previously described in many DNA-based studies investigating the soil habitat (Janssen, 

2006; Will et al., 2010; Lauber et al., 2013; Pfeiffer et al., 2013; Rampelotto et al., 2013). 

In these studies, they accounted for up to 92% of all analyzed bacterial sequences and thus 

represent ubiquitous phylogenetic groups of the soil microbiome.  

Less than 1% of microbial species are considered to grow under laboratory conditions 

(Torsvik et al., 2002). Therefore, the bacterial structure, ecology and their functioning in 

soil are of great interest. Next-generation sequencing (NGS) technologies (Mardis, 2008) 

are a promising approach to understand bacterial community composition and diversity. 

Pyrosequencing-based analysis of partial 16S rRNA genes has been successfully employed 

to gain insights into the microbial structure of various habitats such as water (e.g. 

Kirchman et al., 2010; Wemheuer et al., 2014), extreme habitats (e.g. Simon et al., 2009; 

Schneider et al., 2013; Röske et al., 2014), and soil (e.g. Uroz et al., 2010; Will et al., 

2010; Nacke et al., 2011; Rampelotto et al., 2013).  

Nonetheless, only a few studies investigated the active soil bacterial community using 

RNA-based approaches in combination with NGS (but see Urich et al., 2008; Baldrian et 

al., 2012; Pfeiffer et al., 2013). Baldrian et al. (2012) investigated the active microbial 

community in forest soils and found a stronger dominance of several phyla (e.g. 

Acidobacteria and Firmicutes) in the RNA dataset compared to the DNA-derived dataset. 

Taking into account that DNA-based approaches detect also dead cells, extracellular DNA, 

and dormant microorganisms (Lennon and Jones, 2011) RNA-based approaches provide a 

better overview of what is metabolic active at a given time. Thus, application of RNA-

based studies results in deeper insights into the prokaryotic community response to 

changing of environmental conditions. 
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1.2. Interaction of soil rhizosphere bacteria and plant species 

 

The rhizosphere is the soil part, which is most affected by the roots of growing plants 

(Pinton et al., 2007). It is considered to be a narrow zone of soil where root exudates 

stimulate or inhibit microbial populations and their activities. Rhizospheric soil includes a 

high density of prokaryotic cells, with estimates up to 1011 cells per gram soil (Torsvik et 

al., 1990; Sikorski, 2015). The bacterial community composition in the rhizosphere depend 

mainly on soil type and plant species (Berg and Smalla, 2009; Lundberg et al., 2012). The 

bacterial composition seems to be similar of the enclosing bulk soil (Bulgarelli et al., 2012; 

Lundberg et al., 2012) with Proteobacteria as the most abundant phylum (Hawkes et al., 

2007). Bulgarelli et al. (2012) investigating the bacterial community in the rhizosphere of 

Arabidopsis plants by 454-pyrosequencing approaches and found that the core community 

of rhizospheric bacteria was recruited from the surrounding soil, which were able to 

colonize the plant-root surface.  

Many members of the rhizospheric bacterial community have been reported to improve 

plant growth and health, e.g. by disease suppression (Sturz and Nowak, 2000; Bastida et 

al., 2009; Mendes et al., 2011; Koeberl et al., 2013). Mendes et al. (2011) indentified key 

bacterial taxonomic groups such as Proteobacteria, especially Gammaproteobacteria, 

Firmicutes, and Actinobacteria which are associated with disease suppression. A multitude 

of compounds are released into the rhizosphere of soil-grown plants, most of which are 

organic compounds (e.g. sugars, amino acids, organic acids, or fatty acids) and plant 

constituents derived from photosynthesis and other processes, which in turn stimulate and 

define the rhizospheric soil bacterial community and diversity (Rovira, 1969; Lynch and 

Whipps, 1991; Singh and Mukerji, 2006).  

 

1.3. Factors influencing the bacterial community 

 

Bacterial community structure, function, and diversity are influenced by various factors; 

e.g., abiotic soil properties such as pH, C/N ratio, and water availability (Lauber et al., 

2009; Nacke et al., 2011; Tripathi et al., 2012; Landesman et al., 2014). Analyzing the 

drivers changing the bacterial community structure and diversity, including evenness and 

richness, is very versatile and complex (Figure 1). The link between abiotic factors and 

bacterial communities are subject of several studies. Landesman et al. (2014) collected 700 

soil samples across multiple spatial scales, tree species and forests in the eastern United 
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States. The authors generated 469,209 high quality partial 16S rRNA gene sequences with 

high-throughput sequencing and measured those soil properties thought to influence the 

bacterial community composition. They found that 81.7% of the explained deviance in 

overall bacterial composition was attributed to soil properties, especially soil pH. Tripathi 

et al. (2012) generated 74,802 16S rRNA gene sequences of 28 tropical soil samples and 

found that bacterial community composition and diversity was strongly correlated with soil 

properties such as pH, total carbon, and C/N ratio. They concluded that soil pH is the best 

predictor of bacterial community composition and diversity across various land use types, 

with the highest diversity close to neutral pH values.  

Additionally to soil properties, land use type, management regimes, and plant species have 

an direct or indirect impact on soil bacterial community composition and diversity (e.g. 

Thoms et al., 2010; Fierer et al., 2012; Jorquera et al., 2013; Lauber et al., 2013; Pfeiffer et 

al., 2013; Rampelotto et al., 2013; Dean et al., 2014; Thomson et al., 2015). Rampelotto et 

al. (2013) investigated changes in diversity, abundance, and structure of bacterial 

communities under different land use systems. They observed a relevant impact on 

bacterial groups and differences in the abundance of bacterial phyla in soils with land use 

as the main driver. Pfeiffer et al. (2013) investigated the effect of different tree species on 

soil bacterial composition and diversity in a mesocosm experiment. They found that tree 

species such as beech and ash influenced bacterial community composition and diversity 

in different ways.  

In addition to the impact of tree species, fertilizer application drives bacterial community 

composition and diversity. In a recent study by Jorquera et al. (2013), the relationship 

between nitrogen (N) and phosphorus (P) fertilization on bacterial community composition 

in rhizospheric soils of two Chilean Andisol pastures was investigated. They found that N 

fertilization without P amendment significantly affected the soil bacterial community, 

whereas the application of P and N did not significantly altered the bacterial community 

composition.  

Moreover, the versatile effect of season and sampling time on the structure of soil and 

plant-associated bacterial communities is another subject of ongoing research (Smalla et 

al., 2001; Cruz-Martinez et al., 2009; Shade et al., 2013). Changes are caused by various 

factors including temporal differences in plant growth and substrate availability (Kennedy 

et al., 2005; Kuffner et al., 2012; Silva et al., 2012; McHugh and Schwartz, 2015) or by 

changes in soil environmental conditions (Barnard et al., 2015; Schostag et al., 2015). 

Cruz-Martinez et al. (2009) found only little differences in soil bacterial community 
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composition in a manipulated rainfall experiment over 5 years. Extreme weather 

conditions affected the microbial community, but repeated sampling over seasons and 

years revealed that these changes were short-term effects. Furthermore, Kuffner et al. 

(2012) analyzed 12 forest soil samples and generated 17,308 16S rRNA gene sequences 

per sample. They found that diversity indices did not differ between summer and winter, 

and seasonal shifts were coherent among related phylogenetic groups. In contrast, Rasche 

et al. (2011) monitored the seasonal impact on total bacterial community composition 

every two month over a 2-years period, employing T-RFLP analysis. The authors observed 

that seasonality had the greatest impact on the total bacterial community as well as on four 

selected taxa (Alpha- and Betaproteobacteria, Acidobacteria, and Verrucomicrobia).  

There is a great variety of factors influencing the soil bacterial community composition 

and diversity. In addition, the interaction between soil microbial communities, plant 

species, and abiotic factors is very complex and still not fully understood. Thus, this field 

of investigation is heterogeneous and intensive research is necessary to understand the 

ecological role of soil bacterial communities. 
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Figure 1. Interactions between microbial diversity, plant diversity, herbivores, and abiotic 
factors. Depicted is the rhizosphere (soil-root interface) where bacteria can colonize and 
play important roles. 
 

1.4. The Poplar Diversity Experiment 

 

The Poplar Diversity Experiment (PopDiv) was established within the framework of the 

Göttingen cluster of excellence “Functional Biodiversity Research”. The general goal was 

to investigate inter- and intraspecific diversity of different poplar demes with respect to 

ecosystem functioning and biodiversity. The experiment was established in October 2008 

on a former historically documented permanent grassland (Thurengia, 1910). The study 

site is located in the Solling mountains (51°44´56´´ N, 9°32´28´´ E), approximately 60km 

west of Göttingen (Lower Saxony, Germany). The moderately nutrient poor and acidic soil 

type is a Haplic Cambisol with a loamy silt texture (Hoeft et al., 2014). During the study 

period, mean annual temperature and annual precipitation were 6.6°C and 732mm in 2010 

and 8.91°C and 724mm in 2011, respectively (Keuter et al., 2013).  
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A fully randomized plot design of 20 blocks each with six plots containing each 25 poplar 

trees was applied by Kleemann (2010) (Figure 2). The trees were planted in four different 

diversity levels, including monocultures, a mixture of two poplar tree demes, a mixture of 

four, and a mixture of eight poplar tree demes. To avoid edge effects, each block was 

surrounded by a row of additional poplar trees. The plant material used (seeds or small 

plants) derived from Austria, Germany (three poplar demes), Poland, Sweden, 

Switzerland, and the USA. Seven of the Populus tremula demes originating from Europe 

and one closely related deme P. tremuloides from North America. These two poplars are 

considered as sister species (Cervera et al., 2005; Pakull et al., 2009) or as conspecific 

subspecies (Stettler et al., 1996), depending on the criteria of relatedness applied. The 

genus Populus was chosen due to its wide range of positive attributes such as rapid 

growth, high tolerance to different climatic conditions, minor requirements to soil 

fertilities, and because of its fully sequenced genome (Tuskan et al., 2006). In this study, 

the influence of two different poplar demes (Geismar2 and Geismar8), soil properties, and 

season on the total and active bacterial community composition and diversity was 

investigated. 

Figure 2. Simplified plot design of the poplar diversity experiment. Eight poplar demes 
were planted in different diversity levels. Depicted were level 1: Monocultures (green), 
level 2: a mixture of two poplar demes (red), level 3: a mixture of four poplar demes 
(blue), and level 4: a mixture of eight poplar demes (yellow) in every plot. 
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1.5. The GrassMan Experiment 

 

The Grassland Management Experiment (GrassMan) was also established in June 2008 

within the Göttingen cluster of excellence “Functional Biodiversity Research”. The 

experimental area is located in the Solling mountains, Lower Saxony, Germany (51°44´ N, 

9°32´´E, 490m a.s.l.). This area has been traditionally used as a pasture for hay-making or 

grazing. The three-factorial design of this experiment included two mowing frequencies 

(once per year in July vs. three times per year in May, July, and September) and two 

fertilizer treatments (no fertilizer vs. NPK fertilizer application) (Figure 3). The N fertilizer 

was applied as calcium ammonium nitrate N27 in two equal doses (180kg N ha-1 yr-1) in 

April and end of May. Additionally, 30kg P ha-1 yr-1 and 105kg K ha-1 yr-1 as Thomaskali® 

(8% P2O5, 15% K2O, and 20% CaO) were applied at the end of May. The mowing and 

fertilization regimes started in 2009. A third parameter manipulated was the sward 

composition. This was achieved by selective herbicide application targeting either dicots 

(monocot-reduced) or monocots (dicot-reduced). Species-rich plots were left untreated and 

used as control. Each treatment (12 different combinations) was replicated six times, 

resulting in 72 plots of 15 x 15m size arranged in a Latin rectangle. The soil of the 

experimental area is a stony Haplic Cambisol, developed on sediments of loess on the 

middle bunter formation (Keuter et al., 2013). During the study period, mean annual 

temperature and annual precipitation were 6.6°C and 732mm in 2010 and 8.91°C and 

724mm in 2011, respectively (Keuter et al., 2013). 

In this study, the influence of season, fertilization, and soil properties on the total and 

active soil bacterial community composition and diversity was investigated. Furthermore, 

the impact of management regimes and herbivory on the total rhizospheric bacterial 

community composition was examined.  
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Figure 3: Simplified three-factorial plot design of the GrassMan study site. Depicted were 
72 plots with twelve different treatments replicated each six times (Wemheuer, 2013).  
 
 

1.6. Aim of this study 

 

The aim of this study was to characterize the total and metabolic active soil bacterial 

community and diversity under different management regimes for a better understanding 

of the ecological role of soil bacterial communities. Thus, the impact of fertilizer 

application, poplar demes, season, and soil properties on total and active bacterial 

community composition and diversity were analyzed. Additionally, effects of different 

management regimes such as mowing frequencies and sward composition on plant-

associated bacteria in the plant rhizosphere in permanent grasslands were investigated.  

Chapter II examined the versatile impact of fertilization and sampling time on the total and 

active bacterial community composition in German grassland soil. In Chapter III 

differences of active and total bacterial community structure between two genetic different 

poplar demes were analyzed. Additionally, the effect of seasonality was studied. For both 

chapters (II and III) 216 soil samples were collected over two years (2010 and 2011) in 

April, July, and September. DNA and RNA were co-isolated and the RNA reversed 

transcribed to cDNA. Parts of the 16S rRNA gene and gene transcript were further 
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amplified and via 454-pyrosequencing technique analyzed. The focus of this research was 

to evaluate the influence of sampling time, poplar demes, soil properties, and fertilization 

on the total and active soil bacterial community composition.  

In Chapter IV the mixed effects of management regimes and above-ground herbivory on 

bacterial community composition in the rhizosphere of permanent grassland was analyzed. 

In more detail, a lysimeter experiment was conducted on the GrassMan experimental site. 

After two weeks of herbivory exposure (snails and grasshopper), samples were taken in 

summer 2011 and analyzed by 454-pyrosequencing technique and DGGE. Additionally to 

the influence of herbivory on the rhizospheric bacterial community composition, samples 

were analyzed with respect to different mowing frequency and fertilizer application. 
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Abstract 

 

Soil bacteria play a major role in driving and regulation of ecosystem processes. The 

identification of factors shaping the diversity and structure of soil bacterial communities is 

crucial for understanding bacterial-mediated processes such as nutrient transformation and 

cycling. As most studies targeted only the entire soil bacterial community, the response of 

active bacterial communities to environmental changes is still poorly understood. The 

objective of this study was to investigate the effect of fertilizer application and sampling 

time on structure and diversity of the active (RNA level) and the entire (DNA level) 

bacterial communities in a grassland soil. Analysis of more than 2.3 million 16S rRNA 

transcripts and gene sequences derived from amplicon-based sequencing of 16S rRNA 

genes revealed that fertilization and sampling time significantly altered the diversity and 

composition of total and active bacterial communities. Although the composition of both 

the entire and the active bacterial community was correlated with environmental factors 

such as pH or C/N ratio, the active community showed a higher sensitivity to 

environmental changes than the entire community. Functional analyses were performed 

based on the prediction of functional content from 16S rRNA genes and gene transcripts. 

Genes encoding the uptake of nitrate/nitrite, nitrification, and denitrification were more 

abundant and significantly up-regulated in fertilized plots compared to non-fertilized plots. 

This study provided insights into changes in dynamics and functions of soil bacterial 

communities as response to season and fertilizer application. 
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Introduction 

 

Soil bacteria play important roles in ecosystem functioning and processes such as 

biogeochemical cycles and nutrient transformation [1-3]. Moreover, they have a severe 

impact on plant productivity (reviewed in [1, 4]). Thus, the identification of key factors 

shaping the diversity and structure of soil bacterial communities is crucial for 

understanding how these communities support the stability of ecosystem processes [5-7]. It 

is well-known that different soil properties influence bacterial communities in grassland 

soils [8-10]. It has been shown that bacterial community structure in German grassland 

soils was largely driven by soil pH [11]. This is consistent with the results of Lauber et al. 

[10], who showed that the overall bacterial community composition in 88 soils from across 

South and North America correlated with differences in soil pH.  

Previous studies showed that the structure of bacterial communities in grassland soils is 

altered by sampling time and season [12-15]. The bacterial community structure in an 

upland grassland soil analyzed by automated ribosomal intergenic spacer analysis 

(ARISA) was influenced by season [15]. This result was supported by a study of Habekost 

et al. [12], who observed distinct seasonal variations in microbial community structure of a 

temperate grassland soil. The authors suggest that these changes are driven by the 

availability and quality of organic resources. The analysis of soil microbial communities 

across different land-use types revealed that temporal shifts in community composition 

were often correlated with temperature conditions and soil moisture, which directly or 

indirectly regulate the structure of soil bacterial communities [16]. 

Recently, the influence of different management regimes on bacterial community 

composition and diversity in grassland soils has been frequently addressed [11, 16-18]. 

Fierer et al. (2012) investigated soil microbial communities across nitrogen gradients by 

amplicon-based analysis. N amendment did not affect the soil bacterial diversity but 

significantly altered the community composition. Nacke et al. [11] investigated German 

grassland soils under different management regimes. They observed the highest diversity 

of soil bacteria in fertilized intensely managed grasslands. However, the majority of these 

studies used DNA-based approaches. Thus, they focused on the total bacterial community, 

which also contains dead cells, extracellular DNA, and dormant microorganisms [19]. 

Correspondingly, still little is known about the active (rRNA-based) bacterial communities 

in grassland soils and their responses to changing environmental conditions. 
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The aim of this study was to investigate the influence of fertilizer application and sampling 

time on the bacterial community in a grassland soil. Therefore, soil samples were taken in 

April, July, and September over two consecutive years (2010 and 2011). We applied large-

scale amplicon-based analysis of the V2-V3 region of the 16S rRNA genes and gene 

transcripts to assess the diversity and structure of entire (DNA) and active (RNA) bacterial 

communities. We hypothesized that the entire and active community are differently 

influenced by fertilizer application (hypothesis I). We further hypothesized that the 

community diversity remained consistent throughout the year, whereas the structure is 

shaped by season (hypothesis II). Moreover, we used this unique dataset to perform 

functional predictions with Tax4Fun and examined soil microbial functions and metabolic 

capabilities of the entire and the active bacterial communities. We hypothesized that 

fertilization changes the community structure and this is accompanied by changes in 

bacterial functions (hypothesis III).  
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Material and Methods 

 

Study site 

 

This study was carried out within the GrassMan experiment, an interdisciplinary project 

investigating the relationships between land-use intensity, biodiversity and ecosystems 

functions. This experiment was established on former moderately species-rich, semi-

natural grassland in June 2008 [20]. The experimental area was located in the Solling 

Uplands, Lower Saxony, Germany (51°44´ N, 9°32´´E, 490 m a.s.l.). The sampling area is 

a field site belonging to the institution (Georg-August-University) of the researchers 

conducting this study. Therefore, no special permit was required for soil sampling. As soil 

bacterial communities were sampled, endangered species were not affected by the study. 

The three-factorial design of GrassMan experiment included three levels of sward 

compositions (species-rich, monocot-reduced, and dicot-reduced), two mowing 

frequencies (once or three times per year), and two fertilizer treatments. Fertilizer 

treatments included NPK fertilizer application (nitrogen 180 kg ha-1 yr1, phosphorus 30 kg 

ha-1 yr-1, and potassium 100 kg ha-1 yr-1) and as reference without fertilizer application. 

Each treatment was set up with 6 replicates in a full factorial design (72 plots; 15 m × 15 

m each) arranged in a Latin rectangle. The experimental setup is further described by 

Petersen et al. [20]. The soil of the experimental area is a stony Haplic Cambisol, 

developed on sediments of loess on the middle bunter formation [21]. During the study 

period, mean annual temperature and annual precipitation were 6.6°C and 732 mm in 2010 

and 8.91°C and 724 mm in 2011, respectively (S1 Table). 

 

Sampling and soil characterization 

 

Soil samples were collected from three fertilized (fe) and three non-fertilized (nf), species-

rich plots mown once a year. Three soil cores (8 cm in diameter, depth 20 cm) per plot 

were taken and then pooled. To analyze the effect of sampling time, samples were 

collected in spring (April; Apr), summer (July; Jul), and autumn (September; Sep) 2010 

(10) and 2011 (11). Soil samples were shock- frozen in liquid nitrogen and stored at -80°C 

until analysis. For determination of soil properties, subsamples from the pooled soil 

samples were dried at 60°C for seven days and sieved to < 2mm. Soil organic carbon (C) 

and total nitrogen (N) concentrations were determined from dried soil with a CN elemental 
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analyzer (Elemental Analyzer EA 1108, Carlo Erba Instruments, Rodano, Italy). The 

gravimetric soil water content (%) was calculated from oven-dried subsamples. Soil pH 

values were measured from a soil water suspension ratio of 1:2 (water contains 0.1 M 

KCl). 

 

Extraction of nucleic acids from soil and reverse transcription 

 

Total environmental RNA and DNA were co-extracted from 0.5 g soil per sample 

employing the RNA PowerSoil total RNA isolation kit and the RNA PowerSoil DNA 

elution accessory kit, respectively, as recommended by the manufacturer (MoBio 

Laboratories, Carlsbad, CA, USA). For RNA purification, residual DNA was removed 

with the TURBO DNA-free™ kit (Ambion Applied Biosystems, Darmstadt, Germany) 

from the extracted RNA. The absence of DNA was confirmed by PCR as described by 

Wemheuer et al. [22]. The DNA-free RNA was purified and concentrated using the 

RNeasy MinElute cleanup kit (Qiagen GmbH, Hilden, Germany). Isolated DNA was 

purified with the PowerClean DNA cleanup kit (MoBio Laboratories). DNA and RNA 

concentrations were determined using a NanoDrop ND-1000 spectrophotometer (Peqlab 

Biotechnologie GmbH, Erlangen, Germany). Approximately 500 ng of purified RNA was 

converted to cDNA using the SuperScriptTM III reverse transcriptase and the reverse 

primer V3rev [23] of the subsequent PCR reaction, as recommended by the supplier 

(Invitrogen, Karlsruhe, Germany).  

 

Amplification of 16S rRNA gene regions and sequencing 

 

The V2-V3 region of the 16S rRNA gene was amplified by PCR. The PCR reaction 

mixture (25 µl) contained 5-fold Phusion GC buffer, 200 µM of each of the four 

deoxynucleoside triphosphates, 5% DMSO, 0.4 µM of each primer, 0.5 U of Phusion Hot 

Start HF DNA polymerase (Fisher Scientific GmbH, Schwerte, Germany), and 25 ng of 

isolated DNA or cDNA as template. The V2-V3 region was amplified with the following 

set of primers modified by Schmalenberger [23] containing the Roche 454-pyrosequencing 

adaptors, key sequences and one unique MID (underlined) per sample: V2for 5’-

CGTATCGCCTCCCTCGCGCCATCAG- (dN)10- AGTGGCGGACGGGTGAGTAA- 3’ 

and V3rev 5’-CTATGCGCCTTGCCAGCCCGCTCAG-(dN)10-CGTATTACCGCGGCT 

http://www.mobio.com/soil-rna-isolation/rna-powersoil-dna-elution-accessory-kit.html
http://www.mobio.com/soil-rna-isolation/rna-powersoil-dna-elution-accessory-kit.html
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GCTGG-3’. The following cycling conditions were used for the amplification of cDNA: 

initial denaturation at 98°C for 5 min and 25 cycles of denaturation at 98°C for 10 s, 

annealing at 72°C for 10 s and extension at 72°C for 10 s, followed by a final extension at 

72°C for 5 min. For DNA amplification, the following cycling scheme was used: initial 

denaturation at 98°C for 5 min and 25 cycles of denaturation at 98°C for 45 s, annealing at 

72°C for 30 s and extension at 72°C for 30 s, followed by a final extension at 72°C for 10 

min. PCR reactions were performed in triplicate for each sample. The resulting PCR 

products were pooled in equal amounts and purified using the peqGold gel extraction kit 

(Peqlab Biotechnologie GmbH, Erlangen, Germany). Obtained PCR products were 

quantified using the Quant-iT dsDNA HS assay kit and a Qubit fluorometer (Invitrogen 

GmbH) as recommended by the manufacturer. The Göttingen Genomics Laboratory 

determined the sequences of the partial 16S rRNA genes employing the Roche GS-FLX 

454 pyrosequencer with Titanium chemistry as recommended by the manufacturer (Roche, 

Mannheim, Germany). 

  

Processing of 16S rRNA sequence data 

 

Pyrosequencing-derived 16S rRNA gene (DNA) and transcript (RNA) datasets were 

processed and analyzed using the QIIME software package version 1.6 [24]. Sequences 

shorter than 200 bp, low quality sequences, and sequences with homopolymers (> 8 bp) 

were removed from the datasets. Pyrosequencing noise was removed using Acacia 1.52 

[25]. Primer sequence residues were truncated using cutadapt version 1.0 [26]. Chimeric 

sequences were detected and eliminated using UCHIME 7.0.190 in de novo and in 

reference mode with the Silva SSURef 119 NR database as reference database [27, 28]. 

All remaining sequences were subsequently clustered in operational taxonomic units 

(OTUs) at 3 and 20% genetic distance using the QIIME pick_otus.py script and uclust 

[27]. OTUs represented by only a single sequence in the entire dataset (singletons) were 

removed (see [29]). Taxonomic assignment was performed via BLAST alignment against 

the most recent SILVA database (SSURef NR 119) [28]. Rarefaction curves, alpha 

diversity indices (Chao1, Shannon, Simpson, and Michaelis-Menten-Fit), and beta 

diversity (Principle Component analyses) were determined using QIIME according to 

Wemheuer et al. [30]. Functional predictions for each sample were performed in R 

(version 3.2.0; R Development Core Team 2015 [http://www.R-project.org/]) using 

Tax4Fun [31]. 



Chapter II 
 

24 
 

Statistical analysis 

 

T-test for normal distributed data or the Mann-Whitney-test for not normal distributed data 

were performed using SigmaPlot version 11.0 (Systat Software GmbH, Erkrath, 

Germany). To compare taxonomic groups with soil properties, Spearman’s rank 

correlation coefficient was determined in SigmaPlot version 11.0. All other statistical 

analyses were conducted employing R version 3.2 [32]. Effects of fertilizer application on 

environmental parameters and bacterial community were tested as described by Wemheuer 

et al [30]. Changes in community structure and significant differences between samples 

and treatments were examined employing the metaMDS and RDA as well as envfit 

functions within the vegan package [33] as described by Wietz et al. [34]. Total and active 

bacterial communities were analyzed separately as DNA and RNA were extracted from the 

same soil samples and thus represent spatial pseudo-replicates. The results of the statistical 

tests were regarded as significant at P values ≤ 0.05. 

 

Sequence data deposition 

 

Sequence data were deposited in the Sequence Read Archive (SRA) of the National Center 

for Biotechnology Information (NCBI) under the accession number SRP041803. 

 

Results and Discussion 

 

Soil properties 

 

In this study, the influence of season and fertilizer application on bacterial communities 

was assessed. Therefore, soil samples from fertilizer and non-fertilizer treatments were 

collected in April, July, and September over two constitutive years (2010 and 2011). 

Several soil properties from the sampling area including total N or C content, C/N ratio, 

water content, and pH were determined (Table 1). Water content varied between 12.6 and 

34.0% with the highest content in September 2011 and the lowest content in July 2010. In 

2010, water content was twofold higher in April and September than in July due to higher 

temperatures and dryer conditions during summer time in this year (S1 Table). The soil pH 

values ranged from 4.6 to 4.9. Statistical analysis revealed no significant differences of pH 

values between fertilized and non-fertilized plots. The carbon/nitrogen (C/N) ratio explains 
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the ability to use carbon and nitrogen in soil for microbial processes including the 

decomposition of soil organic matter [35]. As consequence, it is an indicator of soil 

microbial activity [36]. The C/N ratios were relatively constant among the sampling plots 

during the sampling period (2010 and 2011). They varied between 11.1 and 15.2, which is 

typically for field conditions with a soil texture of loamy silt that was determined for the 

study site by Keuter et al. [21].  

 

Table 1:  Soil parameter determination in fertilized and non-fertilized samples. 
Sample/ 
plot 

Season Plot 
Treatment 

pH-value 
(+KCl) ± SD 

Water content 
± SD (%) 

C/N 

fe1.apr10 spring 2010 fertilized 4.9±0.2 27.8±2.3 14.2 
fe2.apr10 spring 2010 fertilized 4.8±0.1 27.6±1.9 12.3 
fe3.apr10 spring 2010 fertilized 4.2±0.4 28.9±1.4 13.3 
fe1.jul10 summer2010 fertilized 5.4±0.6 16.3±4.7 13.5 
fe2.jul10 summer 2010 fertilized 4.6±0.2 13.1±1.2 12.0 
fe3.jul10 summer 2010 fertilized 4.3±0.2 13.4±1.0 12.3 
fe1.sep10 autumn 2010 fertilized 4.6±0.9 24.9±0.7 14.5 
fe2.sep10 autumn 2010 fertilized 4.5±0.0 23.9±1.9 13.6 
fe3.sep10 autumn 2010 fertilized 4.6±0.2 24.9±0.7 13.0 
nf1.apr10 spring 2010 non-fertilized 4.8±0.1 28.4±1.5 13.3 
nf2.apr10 spring 2010 non-fertilized 4.8±0.2 28.2±0.6 15.2 
nf3.apr10 spring 2010 non-fertilized 4.6±0.1 28.1±0.8 14.6 
nf1.jul10 summer2010 non-fertilized 4.9±0.2 12.6±1.1 11.8 
nf2.jul10 summer 2010 non-fertilized 4.5±0.1 13.6±0.5 11.1 
nf3.jul10 summer 2010 non-fertilized 4.9±0.2 13.6±3.4 11.9 
nf1.sep10 autumn 2010 non-fertilized 4.7±0.2 24.4±0.8 13.1 
nf2.sep10 autumn 2010 non-fertilized 4.8±0.3 25.1±2.6 13.8 
nf3.sep10 autumn 2010 non-fertilized 4.5±0.1 23.9±1.8 13.1 
fe1.apr11 spring 2011 fertilized 6.2±1.2 25.2±1.1 13.3 
fe2.apr11 spring 2011 fertilized 4.6±0.1 25.6±1.4 12.7 
fe3.apr11 spring 2011 fertilized 4.7±0.1 24.6±1.1 13.7 
fe1.jul11 summer2011 fertilized 4.8±0.0 26.5±0.1 13.8 
fe2.jul11 summer 2011 fertilized 4.9±0.0 25.5±0.3 11.7 
fe3.jul11 summer 2011 fertilized 4.5±0.0 24.9±0.4 13.4 
fe1.sep11 autumn 2011 fertilized 6.1±1.2 33.0±1.1 14.5 
fe2.sep11 autumn 2011 fertilized 4.4±0.0 33.8±1.6 12.5 
fe3.sep11 autumn 2011 fertilized 4.5±0.1 33.2±0.7 12.9 
nf1.apr11 spring 2011 non-fertilized 4.7±0.2 23.8±0.7 14.1 
nf2.apr11 spring 2011 non-fertilized 4.5±0.2 24.7±0.4 13.3 
nf3.apr11 spring 2011 non-fertilized 4.3±0.1 25.0±1.1 13.9 
nf1.jul11 summer2011 non-fertilized 4.7±0.0 24.5±0.6 12.6 
nf2.jul11 summer 2011 non-fertilized 4.7±0.0 23.8±0.8 13.4 
nf3.jul11 summer 2011 non-fertilized 4.6±0.0 25.5±0.4 14.7 
nf1.sep11 autumn 2011 non-fertilized 4.9±0.2 31.9±1.2 12.7 
nf2.sep11 autumn 2011 non-fertilized 4.8±0.1 34.0±0.8 11.7 
nf3.sep11 autumn 2011 non-fertilized 4.6±0.2 32.7±2.1 14.7 
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General characteristics of the 16S rRNA datasets 

 

To analyze and compare active and total bacterial community structure and diversity DNA 

and RNA were isolated from a total of 72 soil samples. Subsequently, bacterial community 

composition and diversity were assessed by amplicon-based analyses of the V2-V3 region 

of the 16S rRNA gene and the corresponding transcript. After quality filtering, denoising, 

and removal of potential chimeras and non-bacterial sequences, 2,386,234 high-quality 

sequences with an average read length of 359 bp were used for analyses (S2 Table). All 

sequences could be classified below phylum level. The number of sequences per sample 

ranged from 11,804 to 72,754 (DNA level) and from 17,919 to 72,380 (RNA level). To 

perform analysis at equal surveying effort 11,800 sequences per sample were randomly 

selected and subsequently clustered into operational taxonomic units (OTUs) at 3 and 20% 

genetic distance (S1 and S2 Figs.).  

 

Diversity of active and entire bacterial community  

 

Diversity and richness indices were determined for the entire (DNA level) and the active 

(RNA level) bacterial community in fertilizer and non-fertilizer treatments. Calculated 

rarefaction curves reached saturation at 20% genetic distance (phylum level), indicating 

that the surveying effort covered almost the full taxonomic diversity at DNA and RNA 

level (S1 Fig.). Comparison of rarefaction analyses with the number of OTUs determined 

by Chao1 richness estimator at 20% genetic divergence indicated that 69 to 79% of the 

estimated taxonomic richness was covered by the surveying effort at DNA and RNA level 

(S3 and S4 Tables). At 3% genetic distance, the richness estimator indicated coverage of 

34 to 44% (S5 and S6 Tables). Furthermore, the maximal number of OTUs was 

determined by using non-linear regression based on Michaelis-Menten-Fit metrics at 20 

and 3% genetic distance at DNA and RNA level. Coverage of 80 to 87% and 40 to 54% 

were determined at 20 and 3% genetic distance, respectively (S3 to S6 Tables).  

Additionally, we evaluated Shannon (H´) and Simpson indices at 20 and 3% genetic 

distance (S3 to S6 Tables), as these indices provide a higher accuracy and robustness than 

Chao1 values due to their insensitivity for presence of rare species and a stronger valuation 

of non-rare species [37]. The Shannon index varied from 2.03 to 4.2 and 4.69 to 7.19, 

while Simpson indices varied from 0.66 to 0.97 and 0.88 to 0.94 at 20 and 3% genetic 

distance, respectively. Similar Shannon indices for total bacterial communities in soils 



Chapter II 
 

27 
 

were predicted by Nacke et al. (2011), who determined Shannon indices up to 5.92 in 

grassland soil samples at DNA level. According to Roesch et al. [38], nonparametric 

diversity estimators such as Chao1 overestimate the number of species below genus level 

(5% genetic distance), whereas rarefaction analyses underestimate the number of species. 

Taking this into account, a substantial part of the bacterial diversity within the individual 

soil samples was assessed by the surveying effort.  

 

Composition of active and entire bacterial communities 

 

Obtained sequences were assigned to 41 bacterial phyla, 150 classes, and 374 families 

(Fig. 1). Five dominant phyla (> 1% abundance) were present in each soil sample and 

accounted for more than 96% of all bacterial sequences analyzed in this study. Rare phyla 

are shown in S3 Fig. Proteobacteria were predominant across all samples (DNA 31.2%, 

RNA 45.3%). The active bacterial community was dominated by Alphaproteobacteria 

(37.2%) and Firmicutes (36.0%) whereas the total bacterial community was dominated by 

Firmicutes (27.4%), Alphaproteobacteria (15.9%), Chloroflexi (17%), Acidobacteria 

(13.3%), and Gammaproteobacteria (7.7%). These results were in agreement with 

previous studies on bacterial community composition in grassland soils [11, 16, 39]. As 

most previous researchers used only DNA as template, studies investigating the active 

bacterial community in addition to the total community in grassland soils are rare. 
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Figure 1: Relative abundances of bacterial phyla (> 1%) derived from the analyzed soil 
samples. Phyla accounting < 1% of all sequences are summarized in the group “other”. Fertilized 
(fe) and non-fertilized (nf) samples are shown. Samples were taken in April (Apr), July (Jul), and 
September (Sep) in 2010 (10) and 2011 (11). The entire (D) and active (R) bacterial communities 
were analyzed.   

We found significant differences between the number of OTUs derived from 16S rRNA 

genes and 16S rRNA transcripts (Fig. 2). At 20% and 3% genetic distance, the number of 

OTUs at DNA level (358 and 3,159 OTUs, respectively) was significantly higher (p 

<0.001) compared to RNA level (292 and 2,674 OTUs, respectively). In conclusion, the 

active community was less diverse than the entire community. This is consistent with the 

results of Baldrian et al. [40], who investigated the active and the total bacterial 

community in forest soils. They found a stronger dominance of fewer phyla in the RNA 

dataset compared to the DNA-derived dataset. Moreover, they encountered 1,500 (DNA 

level) and 1,200 OTUs (RNA level) at 3% genetic distance. This is in accordance with a 

study on prokaryotic communities in dryland soils [41]. In this study, the differences 

between soil samples were much higher in total rather than in active communities. 
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Figure 2: Boxplot diagram of the number of observed taxonomic units in the entire and 
active bacterial community. A. estimated OTUs at 20 % genetic distance and B. estimated OTUs 
at 3 % genetic distance. Depicted were estimated OUTs of the entire (D) and active (R) bacterial 
community.  

 
Analysis of bacterial community composition revealed that 11,038 OTUs were shared 

between the entire and active bacterial community in fertilizer and non-fertilizer 

treatments. This core community comprised approximately 90% of all analyzed sequences 

(Fig. 3). More than 21,632 OTUs were unique (present at DNA or RNA level or in 

fertilized or non-fertilized plots). These OTUs represented only 1% of all analyzed 

sequences. 

The most abundant OTU in the active and entire bacterial community belonged to the 

genus Bacillus (phylum Firmicutes), which comprised 15.3% (RNA level) and 12.5% 

(DNA level) of all analyzed sequences. Members of Bacillus are known as spore-forming 

bacteria, which are well adapted to heat, UV radiation, and oxidizing agents [42]. Bacillus 

strains are most common in grassland soils and well adapted to this environment [43]. 

Members of the Bacillus genus improve plant health due to their ability to produce 

substances that suppress pests and pathogens [44]. At RNA level, the second most 

abundant OTU (12.5%) was classified as member of the Acetobacteraceae 

(Proteobacteria). This family is recognized by their ability to oxidize ethanol to acidic 

acid in acidic and neutral media [45]. As members of this family can use a wide range of 

substrates such as glucose, ethanol, lactate or glycerol as energy source, they are important 

microorganisms in food industry such as the vinegar production [46]. Furthermore, 
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members of this family exhibit optimal growth conditions at low pH values [47] as 

observed in our study.  

 
Figure 3: Venn diagram of all analyzed OTUs in fertilized and non-fertilized soils at entire 
and active bacterial community level. Depicted were OTUs estimated at entire community level 
(fertilized soil), active community level (fertilized soil), entire community level (non-fertilized 
soil), and active community level (non-fertilized soil) and all other possible interfaces. 

 

Correlation between abundant bacterial groups and soil properties in fertilized and 

non-fertilized soils 

 

We used Spearman’s rank correlation coefficients to analyze the relationship between soil 

properties and relative abundances of the most abundant phyla, proteobacterial classes, and 

orders (Tables 2-5). We tested all phylogenetic groups with more than 1% abundance in 

the complete dataset. At phylum level, several phyla and proteobacterial classes correlated 

with environmental parameters (Tables 2 and 3). In the fertilized plots, the active part of 

the Chloroflexi correlated significant positively with pH and C/N. In addition, Firmicutes 

showed a significant negative correlation with C/N, whereas a significant positive 
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correlation existed between Alphaproteobacteria and the C/N ratio. The 

Deltaproteobacteria correlated significantly positively with pH and C/N in active and 

entire communities (Fig. 4).  

 
Figure 4: Spearman´s rank correlations between relative abundances of the class 
Deltaproteobacteria derived from DNA and RNA dataset with pH and C/N ratio in the 
fertilizer treatment. A regression line was included and P values are shown for the 
active (RNA) and entire (DNA) Deltaproteobacteria. 
 

In the non-fertilized plots, the Gammaproteobacteria correlated significant negatively with 

the water content at entire community level, while Deltaproteobacteria correlated 

significantly positively with pH at active community level. These results indicate that the 

active bacterial community is more sensitive to soil parameters than the entire community. 

Moreover, the bacterial community is stronger influenced by soil properties in fertilized 

compared to non-fertilized soils.  
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Table 2. Spearman´s Rank correlations of the abundance of the most abundant 
phyla, proteobacterial classes and soil properties in fertilized soils. Relative 
abundances derived from the active (RNA) and entire (DNA) bacterial community were 
separately analyzed. Bold numbers indicate P values < 0.05. 
Group Correlation 

pH Water content C/N 
DNA RNA DNA RNA DNA RNA 

Acidobacteria 0.302 0.347 -0.188 -0.155 0.170 0.375 
Actinobacteria 0.139 0.394 -0.373 -0.413 0.258 0.418 
Chloroflexi 0.085 0.480 0.123 -0.131 -0.148 0.489 
Firmicutes -0.299 -0.333 0.298 0.149 -0.260 -0.621 
Alphaproteobacteria -0.363 0.013 -0.226 0.023 -0.086 0.481 
Betaproteobacteria 0.244 0.246 -0.319 -0.079 0.326 0.407 
Gammaproteobacteria -0.001 0.149 0.004 0.045 0.137 0.125 
Deltaproteobacteria 0.604 0.611 0.039 0.010 0.604 0.528 
 
Table 3. Spearman´s Rank correlations of the abundance of the most abundant phyla, 
proteobacterial classes and soil properties in non-fertilized soils. Relative abundances 
derived from the active (RNA) and entire (DNA) bacterial community were 
separately analyzed. Bold numbers indicate P values < 0.05. 
Group Correlation 

pH Water content C/N 
DNA RNA DNA RNA DNA RNA 

Acidobacteria -0.323 -0.176 0.102 0.110 0.238 0.388 
Actinobacteria -0.096 -0.043 -0.158 -0.110 -0.033 0.121 
Chloroflexi -0.437 0.076 -0.309 -0.238 -0.309 0.377 
Firmicutes 0.020 -0.298 0.156 0.323 0.003 -0.322 
Alphaproteobacteria -0.187 0.083 0.088 -0.282 0.166 0.304 
Betaproteobacteria 0.347 0.390 -0.247 -0.117 -0.205 0.095 
Gammaproteobacteria 0.344 0.373 -0.515 0.273 -0.047 -0.009 
Deltaproteobacteria 0.279 0.544 0.102 0.158 -0.437 -0.002 

 

At order level, the most abundant orders of the active bacterial community in the fertilizer-

treated soils were strongly correlated with soil properties (Tables 4 and 5). Active 

community members of the order Acidobacteriales (subgroup 1) were significant 

negatively correlated with pH. This is consistent with the results of a DNA-based study 

[48]. Myxococcales (Deltaproteobacteria) were significant positively correlated with pH 

and C/N (Fig. 5). This is in line with a study of myxobacterial communities in different 

soils by Zhou et al. [49]. The authors observed a strong correlation between pH and the 

relative abundance of Myxobacteria. This group plays a key role in the carbon turnover in 

soils [50]. 
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Table 4. Spearman´s Rank correlations of the abundance of the most abundant orders and 
soil properties in fertilized soils. Relative abundances derived from the active (RNA) 
and entire (DNA) bacterial community were separately analyzed. Bold numbers 
indicate P values < 0.05. 
Group Correlation 

pH Water content C/N 
DNA RNA DNA RNA DNA RNA 

Acidobacteriales -0.342 -0.568 0.177 0.151 -0.09 -0.291 
Subgroup 3 -0.004 0.206 0.034 -0.201 -0.141 0.374 
Subgroup 7 0.278 0.618 -0.053 -0.163 0.013 0.410 
Frankiales 0.039 0.290 -0.313 -0.418 0.051 0.487 
S085_uncultured bacterium 0.361 0.286 -0.305 0.040 0.330 0.644 
Ktedonobacterales -0.316 0.321 0.219 -0.332 -0.391 0.624 
AG30-KF-AS9 -0.358 -0.444 0.104 -0.136 -0.457 -0.424 
JG37_AG-4_uncultered bacterium 0.222 0.087 0.125 0.236 -0.061 0.100 
D4-96_unculutred bacterium 0.523 0.539 -0.258 -0.260 0.319 0.453 
Bacillales -0.285 -0.339 0.305 0.171 -0.332 -0.645 
Clostridiales -0.197 -0.227 -0.158 -0.255 0.302 -0.036 
Myxococcales 0.591 0.536 0.052 0.012 0.623 0.494 
Burkholderiales 0.129 0.173 -0.132 0.056 0.479 0.217 
Caulobacterales -0.221 -0.336 -0.201 -0.034 0.116 0.259 
Rhizobiales 0.377 0.041 -0.180 -0.336 0.349 0.186 
Rhodospirillales -0.457 0.061 -0.146 0.035 -0.277 0.500 
Xanthomonadales 0.120 0.147 -0.177 -0.033 -0.085 0.130 

 
Table 5. Spearman´s Rank correlations of the abundance of the most abundant orders and 
soil properties in non-fertilized soils. Relative abundances derived from the active 
(RNA) and entire (DNA) bacterial community were separately analyzed. Bold 
number: P < 0.05. 
Group Correlation 

pH Water content C/N 
DNA RNA DNA RNA DNA RNA 

Acidobacteriales -0.469 -0.347 0.075 0.0114 0.171 0.378 
Subgroup 3 -0.380 -0.189 0.077 -0.075 0.159 0.308 
Subgroup 7 0.131 0.067 -0.009 -0.209 0.236 0.084 
Frankiales -0.193 -0.244 0.146 -0.307 0.008 0.086 
S085_uncultured bacterium 0.345 0.388 -0.410 0.0568 -0.503 -0.137 
Ktedonobacterales -0.231 -0.004 0.009 -0.366 -0.009 0.194 
AG30-KF-AS9 -0.253 -0.193 -0.006 -0.197 -0.248 0.024 
JG37_AG-4_uncultered bacterium -0.002 -0.285 -0.383 -0.110 -0.180 0.491 
D4-96_unculutred bacterium 0.023 0.534 -0.284 -0.309 -0.453 -0.110 
Bacillales -0.045 -0.399 0.214 0.187 0.023 -0.349 
Clostridiales 0.685 0.480 0.012 0.391 -0.130 -0.01 
Myxococcales 0.253 0.558 0.133 0.162 -0.443 -0.013 
Burkholderiales 0.227 0.093 -0.172 0.100 -0.042 0.164 
Caulobacterales 0.095 0.115 -0.226 0.216 -0.117 0.448 
Rhizobiales -0.182 -0.135 0.168 0.096 0.217 0.374 
Rhodospirillales -0.215 0.064 0.100 -1.430 0.093 0.170 
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Xanthomonadales 0.275 0.375 -0.104 0.057 -0.129 -0.144 

Figure 5: Spearman´s rank correlations between relative abundances of the order 
Myxococcales derived from DNA and RNA dataset with pH and C/N ratio in fertilizer 
soils. A regression line was included and P values are shown for the active (RNA) and 
entire (DNA) Myxococcales. 

Fertilizer application changed the bacterial community composition 

To analyze the influence of fertilizer amendment on the bacterial community structure, we 

collected and analyzed samples from non-fertilized and fertilized plots over two 

consecutive years. We observed a higher number of Actinobacteria, Betaproteobacteria, 

and Gammaproteobacteria in the fertilized soils whereas Acidobacteria, Chloroflexi, 

Firmicutes, Alphaproteobacteria, and Deltaproteobacteria were more abundant in the non-

fertilized plots (Fig. 6). 
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Figure 6: Relative abundances of bacterial phyla, proteobacterial classes, and 
Xanthomonadales derived from the fertilizer (red) and non-fertilizer (green) treatment. 
Depicted were phyla with more than 1% abundance. All other rare phyla were 
summarized in the group “other”. 

Especially, members of Xanthomonadales (Gammaproteobacteria) were significantly 

more dominant in the fertilized plots at entire and active community level. The order 

Xanthomonadales includes many members, which are able to use ammonium salts as 

nitrogen sources. These organisms could also be beneficial for plant growth by increasing 

sulfur availability via oxidation and phosphate via solubilization [51]. This is consistent 

with previous studies investigating the impact of nitrogen fertilization on soil bacterial 

communities. Gammaproteobacteria increased with rising N inputs [52-54] or with long-

term fertilization [55].  

At entire bacterial community level, we found higher numbers of OTUs at 3% and 20% 

genetic distance in fertilized soils (3,265 and 363 OTUs, respectively) than in non-

fertilized plots (3,053 and 352 OTUs, respectively). These results were in accordance with 

previous studies [11, 56, 57]. Nacke et al. [11] found similar OTU values at 3% genetic 

distance in fertilized and non-fertilized grasslands. In contrast to this, we observed higher 

numbers of OTUs at the active bacterial community level in non-fertilized plots at 3 and 

20% genetic distance.  The active bacterial community showed an opposite behavior in 
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non-fertilized plots  with 5 and 3% more OTUs at 3% and 20% genetic distance, 

respectiviely.  

Until now, very little is known on RNA-based analysis of the active bacterial community 

composition in soils by using next-generation-sequencing-technologies [40, 58]. Baldrian 

et al. [40] described differences between the active and total bacterial community in forest 

soils and Pfeiffer et al. [58] investigated the active and total bacterial community in a soil 

mesocosm experiment using beech and ash with and without litter overlay. Our study 

showed that fertilizer amendment impacts the active bacterial community. This yielded a 

diversity loss and resulted in a higher activity of fewer groups, which can use N 

compounds in respiratory processes. On the other hand, it is of great importance for 

maintaining nutrient cycles to stabilze soil pH of fertilized soils [59]  In our study, 

fertilizer application was combined with phosphorus, potassium oxide and calcium oxide 

(lime), which lead to stable soil pH values. In contrast, Kennedy et al. [60] investigated in 

a microcosm experiment the impact of lime and nitrogen amendment on bacterial 

community structure. They observed that a combined amendment of lime and nitrogen 

increased microbial activity whereas nitrogen amendment alone lead to a significant 

decrease of microbial activity compared to non-treated soils.  However, it is difficult to 

compare our data with the results of recent studies due to the fact that the number of 

analyzed sequences impacts the estimated number of OTUs [61]. In most of these studies, 

fewer sequences and other regions of the 16S rRNA gene have been analyzed [17, 56, 62] 

and different methods were used [60].  

  

Sampling time influence the soil bacterial communities in different ways 

 

To analyze the effect of sampling time on soil bacterial community structure, soil samples 

were collected in spring (April), summer (July), and autumn (September) over two 

consecutive years (2010 and 2011). Acidobacteria, Actinobacteria, Firmicutes, and 

Betaproteobacteria showed significant different abundances with respect to sampling 

times (Fig. 7). 
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Figure 7: Boxplot diagram showing relative abundances of main phyla and 
proteobacterial classes over sampling time. 1; April 2010, 2; July 2010, 3; September 
2010, 4; April 2011, 5; July 2011, and 6; September 2011. Asterisks indicate significant 
differences between sampling times in the active (RNA) and entire (DNA) bacterial phyla 
and proteobacterial classes.  
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Firmicutes showed only significant differences at entire bacterial community level, while 

Betaproteobacteria showed significant differences at active and entire community level. 

For Actinobacteria and Acidobacteria, a seasonal effect was determined at active 

community level but not at entire community level. Chloroflexi, Alphaproteobacteria, 

Gammaproteobacteria and Deltaproteobacteria were not affected by sampling time, 

which indicates that these groups are more recalcitrant to environmental changes. 

Moreover, we observed significant differences of OTU numbers at 20% and 3% genetic 

distance within the different sampling times at active bacterial community level but not at 

entire bacterial community level (Fig. 8). Especially at active community level, the 

summer samples in 2010 were significant different from the summer samples in 2011 at 

20% and 3% genetic distance. An explanation for is that the bacterial community is altered 

as response to seasonal changes of temperature, water availability, and plant growth 

activity. This is in line with the results of other studies. A rainfall manipulating experiment 

showed little differences in soil bacterial community composition in grasslands after 5 

years of manipulation [63]. Nevertheless, changes in microbial abundance and 

composition in response to extreme weather conditions were recorded. Interestingly, 

repeated sampling across seasons and years showed that these changes were only short-

lived. Smit et al. [64] analyzed samples of an agricultural soil taken in all seasons and 

determined the bacterial community composition by cultivation and denaturing gradient 

gel electrophoresis (DGGE). The authors showed that the bacterial community in summer 

(July) differs from that in other seasons. They concluded that a stable microbial 

community existed, although parameters such as humidity and nutrient supply shape the 

bacterial communities. Our study showed minor differences of the entire bacterial 

community diversity and structure between the sampling times, but significant differences 

of the active bacterial community. We concluded that the response of changing 

environmental conditions were more pronounced and earlier visible at active than at entire 

bacterial community level.  
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Figure 8: Boxplot diagram of the number of taxonomic units (OTUs) at 20% and 3% 
genetic distance over sampling time at DNA and RNA level. 1; April 2010, 2; July 
2010, 3; September 2010, 4; April 2011, 5; July 2011, and 6; September 2011. 
 
 

Functional Analysis  

 

We used Tax4Fun analyses to predict metabolism pathways from 16S rRNA marker genes 

and gene transcripts [31]. Redundancy analysis (RDA) of the complete functional profile 

showed no significant difference between the soil communities in fertilized and non-

fertilized plots but between entire and active bacterial communities (Fig. 9). Analysis 

revealed that 1,421 genes significantly increased at DNA level. Fifty-four % of these were 

significantly more abundant in the fertilized plots and 46% in non-fertilized plots. At RNA 

level, approximately 74% of the analyzed genes were significantly more abundant in the 

fertilized plots compared to non-fertilized plots (26%). Especially, higher abundances of 

genes encoding subunits for nitrate reductases (narIJ) and nitrite reductase (nirB) were 

observed in fertilized plots at active bacterial community level. Furthermore, genes 

facilitating the first step of the nitrification reaction (amoABC) were more abundant in 

fertilized soils. In summary, fertilizer application increased nitrate/nitrite uptake, 

denitrification, and nitrification steps in the bacterial community composition. Thus, 
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fertilizer application enhanced most of the nitrogen-related metabolism except nitrogen 

fixation pathways. 

 

 
Figure 9: Redundancy analysis (RDA) of the functional bacterial community profiles 
derived from fertilizer and non-fertilizer treatments (A), and from the entire (DNA) 
and active (RNA) bacterial communities (B).  
 

Conclusion 

 

Due to the importance of soil bacterial communities for ecosystem functioning, it is of 

crucial importance to analyze the main drivers of these communities. In this study, the 

active and total bacterial communities in fertilized and non-fertilized grassland soils were 

investigated over two constitutive years. According to our hypothesis I, we showed that 

fertilizer application altered the structure and the diversity of the total and active bacterial 

community. This alteration was stronger at active bacterial community level, and leads to a 

diversity loss and a shift to taxonomic groups, which are able to use N compounds for 

respiratory processes. In accordance with our hypotheses I and III fertilizer amendment 

increased phylogenetic groups performing nitrate/nitrite uptake, denitrification and 

nitrification steps, with higher abundances of these genes in the active bacterial 

community. In contrast to hypothesis II, we could show that sampling year impacts 

bacterial diversity, but only at active bacterial community level. Sampling time affected 

only a few phyla and orders and changes of environmental conditions were earlier 

detectable in the active bacterial community. We suggest that there is a stable core 

community, which is able to adapt to environmental changes. Correlation analyses of soil 

properties and the relative abundances of bacterial phyla and orders suggest that soil pH 
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and C/N ratio were good predictors for bacterial community composition and diversity. 

The analysis showed stronger correlations of the active bacterial community in fertilized 

than in non-fertilized soils. The observed changes in dynamics and functions of bacterial 

soil communities as response to season and fertilizer application could contribute to a 

better understanding of ecosystem services provided by soil bacteria. 
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2.2. Supplemental information 

Table S1: climatic conditions during sample periods in 2010 and 2011 
month Mean temperature [°C] mean precipitation [mm] 
 2010 2011 2010 2011 
January -4.72 0.15 n.d. 19.4 
February -2.62 0.05 n.d. 35.5 
March 1.93 4.42 53.13 6 
April 7.78 11.26 14.84 41.75 
May 8.45 12.71 113.39 23.25 
June 15.65 15.17 26.45 60.5 
July 19.87 14.48 47.27 110.85 
August 15.36 16.62 181.70 125.25 
September 11.42 14.75 102.12 54.75 
October 7.65 9.24 37.835 69.5 
November 3.24 5.52 155.135 15.25 
December -4.81 2.51 n.d. 162 
Bold: sample time in 2010 and 2011 

Table S2: Number of 16S rRNA gene sequences derived from the analyzed GrassMan soil 
samples 
Sample/plot Season Year Plot 

Treatment 
Type No. of sequences ≥ 

200 bp 
fe.1.apr10.D April 2010 fertilized DNA 33037 
fe.2.apr10.D April 2010 fertilized DNA 51918 
fe.3.apr10.D April 2010 fertilized DNA 63036 
fe.1.jul10.D July 2010 fertilized DNA 42250 
fe.2.jul10.D July 2010 fertilized DNA 23727 
fe.3.jul10.D July 2010 fertilized DNA 20785 
fe.1.sep10.D September 2010 fertilized DNA 68334 
fe.2.sep10.D September 2010 fertilized DNA 32079 
fe.3.sep10.D September 2010 fertilized DNA 22040 
fe.1.apr11.D April 2011 fertilized DNA 11804 
fe.2.apr11.D April 2011 fertilized DNA 26113 
fe.3.apr11.D April 2011 fertilized DNA 26294 
fe.1.jul11.D July 2011 fertilized DNA 24935 
fe.2.jul11.D July 2011 fertilized DNA 29163 
fe.3.jul11.D July 2011 fertilized DNA 27321 
fe.1.sep11.D September 2011 fertilized DNA 16582 
fe.2.sep11.D September 2011 fertilized DNA 25557 
fe.3.sep11.D September 2011 fertilized DNA 23785 
fe.1.apr10.R April 2010 fertilized RNA 23464 
fe.2.apr10.R April 2010 fertilized RNA 39332 
fe.3.apr10.R April 2010 fertilized RNA 47063 
fe.1.jul10.R July 2010 fertilized RNA 30060 
fe.2.jul10.R July 2010 fertilized RNA 38149 
fe.3.jul10.R July 2010 fertilized RNA 34804 
fe.1.sep10.R September 2010 fertilized RNA 28644 
fe.2.sep10.R September 2010 fertilized RNA 47588 
fe.3.sep10.R September 2010 fertilized RNA 33842 
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Sample/plot Season Year Plot 
Treatment 

Type No. of sequences ≥ 
200 bp 

fe.1.apr11.R April 2011 fertilized RNA 28592 
fe.2.apr11.R April 2011 fertilized RNA 21720 
fe.3.apr11.R April 2011 fertilized RNA 34974 
fe.1.jul11.R July 2011 fertilized RNA 28413 
fe.2.jul11.R July 2011 fertilized RNA 19965 
fe.3.jul11.R July 2011 fertilized RNA 32437 
fe.1.sep11.R September 2011 fertilized RNA 29549 
fe.2.sep11.R September 2011 fertilized RNA 26764 
fe.3.sep11.R September 2011 fertilized RNA 41785 
 
Table S3: Chao1, michaelis-menten-fit (MMF), number of OTUs, Shannon-, Simpson-
indices, and the coverage of chao1 and MMF in % at 3% genetic distance calculated for 
fertilized soil samples 
 
Sample  

Obs. 
OTUs MMF 

coverage 
MMF % Chao1 

coverage 
Chao1 % 

Shannon 
corr. Simpson 

fe.1.apr10.D 3,533.50 7,443.72 47 8,352.01 42 6.83 0.99 
fe.1.apr10.R 3,362.60 8,377.43 40 9,350.91 36 6.16 0.98 
fe.1.apr11.D 3,661.00 8,273.90 44 9,543.51 38 6.75 0.99 
fe.1.apr11.R 2,485.30 5,171.73 48 6,180.17 40 5.60 0.96 
fe.1.jul10.D 3,549.90 7,135.18 50 8,192.97 43 7.01 0.99 
fe.1.jul10.R 3,502.20 8,610.54 41 9,708.60 36 6.06 0.96 
fe.1.jul11.D 3,397.00 7,386.63 46 8,243.70 41 6.60 0.99 
fe.1.jul11.R 2,215.90 4,924.85 45 5,882.24 38 5.05 0.94 
fe.1.sep10.D 3,730.40 8,137.87 46 9,269.85 40 6.93 0.99 
fe.1.sep10.R 3,348.20 8,030.63 42 9,260.66 36 6.16 0.97 
fe.1.sep11.D 4,017.70 8,818.65 46 9,885.08 41 7.19 1.00 
fe.1.sep11.R 2,485.50 5,220.93 48 6,490.45 38 5.65 0.96 
fe.2.apr10.D 2,433.40 5,075.13 48 6,357.31 38 5.67 0.97 
fe.2.apr10.R 2,216.40 5,056.07 44 6,021.05 37 4.69 0.88 
fe.2.apr11.D 3,024.10 7,005.35 43 8,325.98 36 5.97 0.97 
fe.2.apr11.R 2,350.60 5,361.83 44 6,195.84 38 5.13 0.94 
fe.2.jul10.D 3,314.70 6,785.17 49 8,416.30 39 6.87 1.00 
fe.2.jul10.R 2,856.80 6,488.34 44 7,889.27 36 5.83 0.97 
fe.2.jul11.D 2,932.20 6,764.50 43 7,989.55 37 5.78 0.95 
fe.2.jul11.R 2,301.20 5,243.51 44 6,093.79 38 4.88 0.91 
fe.2.sep10.D 3,300.90 7,005.74 47 8,543.74 39 6.71 0.99 
fe.2.sep10.R 2,887.00 6,745.33 43 7,970.75 36 5.77 0.97 
fe.2.sep11.D 3,025.10 6,804.79 44 7,999.27 38 6.06 0.97 
fe.2.sep11.R 2,280.10 5,177.16 44 6,214.42 37 4.91 0.92 
fe.3.apr10.D 2,410.80 4,875.85 49 6,174.85 39 5.73 0.97 
fe.3.apr10.R 2,407.90 5,357.96 45 6,448.21 37 5.20 0.94 
fe.3.apr11.D 3,327.00 8,053.37 41 9,271.08 36 5.93 0.94 
fe.3.apr11.R 2,471.30 5,688.88 43 6,828.62 36 5.37 0.96 
fe.3.jul10.D 3,161.90 6,534.74 48 8,005.74 39 6.57 0.99 
fe.3.jul10.R 2,435.10 5,778.43 42 6,872.45 35 5.11 0.94 
fe.3.jul11.D 3,249.70 7,683.24 42 8,773.27 37 5.96 0.95 
fe.3.jul11.R 2,301.70 5,289.29 44 6,249.79 37 5.07 0.94 
fe.3.sep10.D 3,439.70 7,595.30 45 8,608.86 40 6.71 0.99 
fe.3.sep10.R 2,644.50 6,357.24 42 7,579.46 35 5.43 0.96 
fe.3.sep11.D 3,254.90 7,617.83 43 8,901.00 37 6.01 0.95 
fe.3.sep11.R 2,376.60 5,520.48 43 6,495.67 37 5.21 0.95 
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Table S3 continued: Chao1, michaelis-menten-fit (MMF), observed OTUs, Shannon-, 
Simpson-indices, and the coverage of chao1 and MMF in % at 3% genetic distance 
calculated for non-fertilized soil samples 
 
Sample  

Obs. 
OTUs MMF 

coverage 
MMF % Chao1 

coverage 
Chao1 % 

Shannon 
corr. Simpson 

nf.1.apr10.D 2,880.50 6,374.64 45 7,631.01 38 5.98 0.97 
nf.1.apr10.R 2,435.70 5,128.78 47 6,267.89 39 5.54 0.96 
nf.1.apr11.D 3,600.00 8,344.67 43 9,629.26 37 6.59 0.98 
nf.1.apr11.R 2,419.70 5,353.16 45 6,388.14 38 5.42 0.96 
nf.1.jul10.D 2,938.80 6,409.38 46 7,744.69 38 6.08 0.98 
nf.1.jul10.R 3,259.20 7,750.36 42 8,626.49 38 6.18 0.98 
nf.1.jul11.D 3,376.30 7,529.48 45 8,930.88 38 6.51 0.98 
nf.1.jul11.R 2,394.10 5,908.84 41 6,950.88 34 4.90 0.92 
nf.1.sep10.D 3,032.90 6,858.83 44 8,108.52 37 5.93 0.96 
nf.1.sep10.R 3,112.20 7,287.10 43 8,723.44 36 6.03 0.97 
nf.1.sep11.D 3,239.90 7,151.90 45 8,733.32 37 6.39 0.98 
nf.1.sep11.R 2,401.40 5,400.19 44 6,368.17 38 5.28 0.95 
nf.2.apr10.D 2,950.20 6,044.58 49 7,178.80 41 6.43 0.99 
nf.2.apr10.R 2,731.70 5,895.18 46 7,040.79 39 5.90 0.97 
nf.2.apr11.D 3,402.70 8,023.85 42 9,263.07 37 6.33 0.97 
nf.2.apr11.R 2,643.30 6,209.03 43 7,535.76 35 5.46 0.96 
nf.2.jul10.D 2,521.40 4,686.95 54 5,794.76 44 6.33 0.99 
nf.2.jul10.R 2,413.70 5,337.76 45 6,506.61 37 5.38 0.96 
nf.2.jul11.D 3,006.40 6,854.37 44 8,309.71 36 6.10 0.97 
nf.2.jul11.R 2,256.50 5,149.60 44 6,264.86 36 5.10 0.95 
nf.2.sep10.D 2,636.20 4,989.75 53 6,535.58 40 6.24 0.98 
nf.2.sep10.R 3,167.20 7,413.04 43 8,623.58 37 6.08 0.97 
nf.2.sep11.D 3,078.60 6,902.05 45 8,050.91 38 6.11 0.97 
nf.2.sep11.R 2,325.70 5,727.57 41 6,665.32 35 4.83 0.92 
nf.3.apr10.D 3,891.40 8,703.98 45 0,062.35 39 7.01 0.99 
nf.3.apr10.R 2,952.20 6,921.75 43 8,134.66 36 5.84 0.97 
nf.3.apr11.D 3,023.90 7,490.27 40 8,839.03 34 5.69 0.95 
nf.3.apr11.R 2,823.80 6,707.73 42 7,384.02 38 5.59 0.96 
nf.3.jul10.D 2,506.20 4,947.26 51 6,186.17 41 5.92 0.98 
nf.3.jul10.R 3,306.70 8,004.72 41 8,706.97 38 6.08 0.97 
nf.3.jul11.D 3,272.80 7,811.78 42 8,807.20 37 6.22 0.98 
nf.3.jul11.R 2,817.20 6,887.81 41 7,675.72 37 5.50 0.95 
nf.3.sep10.D 2,630.50 5,442.65 48 6,742.54 39 6.07 0.99 
nf.3.sep10.R 3,162.80 7,590.92 42 8,698.21 36 5.91 0.96 
nf.3.sep11.D 2,956.30 6,610.75 45 7,512.26 39 6.03 0.98 
nf.3.sep11.R 2,722.00 5,999.56 45 6,976.53 39 5.72 0.97 
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Table S4: Chao1, michaelis-menten-fit (MMF), number of OTUs, Shannon-, Simpson-
indices, and the coverage of chao1 and MMF in % at 20% genetic distance calculated for 
fertilized soil samples 
 
Sample  

Obs. 
OTUs MMF 

coverage 
MMF % Chao1 

coverage 
Chao1 % 

Shannon 
corr. Simpson 

fe.1.apr10.D 329.90 393.10 84 437.507 75 3.43 0.911 
fe.1.apr10.R 319.80 382.31 84 430.709 74 2.94 0.84 
fe.1.apr11.D 345.10 408.86 84 444.849 78 3.39 0.889 
fe.1.apr11.R 283.30 341.05 83 386.429 73 2.76 0.825 
fe.1.jul10.D 380.70 438.87 87 483.727 79 4.04 0.958 
fe.1.jul10.R 305.90 361.79 85 413.385 74 2.85 0.827 
fe.1.jul11.D 361.90 430.12 84 473.574 76 3.36 0.867 
fe.1.jul11.R 288.20 350.55 82 381.538 76 2.65 0.804 
fe.1.sep10.D 360.70 414.97 87 452.882 80 3.91 0.953 
fe.1.sep10.R 268.40 324.02 83 358.117 75 2.72 0.821 
fe.1.sep11.D 346.90 412.49 84 447.326 78 3.25 0.845 
fe.1.sep11.R 273.50 330.65 83 371.841 74 2.56 0.789 
fe.2.apr10.D 344.00 406.41 85 458.145 75 3.49 0.911 
fe.2.apr10.R 256.60 329.38 78 360.876 71 2.03 0.659 
fe.2.apr11.D 346.10 410.10 84 448.556 77 3.28 0.871 
fe.2.apr11.R 274.90 334.73 82 366.959 75 2.48 0.762 
fe.2.jul10.D 390.90 454.21 86 513.136 76 3.93 0.951 
fe.2.jul10.R 292.50 349.67 84 384.654 76 2.68 0.794 
fe.2.jul11.D 335.80 390.81 86 421.219 80 3.45 0.899 
fe.2.jul11.R 257.50 309.40 83 360.998 71 2.51 0.779 
fe.2.sep10.D 416.40 480.95 87 542.397 77 4.20 0.965 
fe.2.sep10.R 314.40 370.67 85 403.574 78 2.97 0.84 
fe.2.sep11.D 397.60 457.80 87 510.454 78 3.99 0.954 
fe.2.sep11.R 314.60 379.36 83 414.781 76 2.82 0.808 
fe.3.apr10.D 381.40 451.12 85 504.026 76 3.41 0.866 
fe.3.apr10.R 287.80 353.93 81 390.033 74 2.48 0.761 
fe.3.apr11.D 354.90 418.62 85 457.392 78 3.37 0.874 
fe.3.apr11.R 294.60 342.84 86 382.745 77 2.93 0.837 
fe.3.jul10.D 408.60 473.83 86 542.977 75 4.09 0.961 
fe.3.jul10.R 330.10 394.74 84 438.216 75 2.99 0.841 
fe.3.jul11.D 308.60 365.04 85 404.501 76 3.05 0.832 
fe.3.jul11.R 228.70 283.85 81 321.617 71 2.16 0.732 
fe.3.sep10.D 391.50 449.44 87 494.759 79 3.99 0.95 
fe.3.sep10.R 313.10 376.32 83 410.953 76 2.94 0.846 
fe.3.sep11.D 332.30 389.26 85 445.925 75 3.35 0.88 
fe.3.sep11.R 268.00 323.90 83 359.501 75 2.53 0.79 
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Table S4 continued: Chao1, michaelis-menten-fit (MMF), number of OTUs, Shannon-, 
Simpson-indices, and the coverage of chao1 and MMF in % at 20% genetic distance 
calculated for non-fertilized soil samples 
 
Sample  

Obs. 
OTUs MMF 

coverage 
MMF % Chao1 

coverage 
Chao1 % 

Shannon 
corr. Simpson 

nf.1.apr10.D 360.00 422.16 85 477.4 75 3.49 0.902 
nf.1.apr10.R 305.70 368.37 83 415.49 74 2.83 0.83 
nf.1.apr11.D 368.20 430.12 86 482.098 76 3.25 0.823 
nf.1.apr11.R 305.50 364.59 84 406.166 75 3.01 0.855 
nf.1.jul10.D 331.60 392.58 84 437.343 76 3.48 0.916 
nf.1.jul10.R 289.50 346.89 83 395.266 73 2.70 0.81 
nf.1.jul11.D 355.70 414.37 86 458.683 78 3.63 0.918 
nf.1.jul11.R 263.50 316.36 83 363.799 72 2.49 0.758 
nf.1.sep10.D 348.00 411.87 84 474.055 73 3.57 0.921 
nf.1.sep10.R 315.60 379.17 83 414.391 76 2.93 0.842 
nf.1.sep11.D 381.60 444.95 86 486.216 78 3.77 0.933 
nf.1.sep11.R 320.60 373.80 86 438.322 73 3.29 0.889 
nf.2.apr10.D 375.80 447.55 84 488.227 77 3.53 0.903 
nf.2.apr10.R 295.90 355.86 83 389.304 76 2.79 0.829 
nf.2.apr11.D 341.50 396.03 86 442.91 77 3.51 0.917 
nf.2.apr11.R 292.70 351.37 83 421.47 69 2.67 0.806 
nf.2.jul10.D 339.10 401.16 85 464.493 73 3.56 0.931 
nf.2.jul10.R 275.50 337.29 82 367.932 75 2.50 0.765 
nf.2.jul11.D 342.90 399.02 86 438.666 78 3.52 0.915 
nf.2.jul11.R 299.50 362.24 83 405.644 74 2.54 0.777 
nf.2.sep10.D 340.40 407.87 83 439.648 77 3.39 0.891 
nf.2.sep10.R 320.20 386.88 83 429.841 74 2.87 0.827 
nf.2.sep11.D 341.50 404.73 84 448.923 76 3.26 0.875 
nf.2.sep11.R 268.90 334.93 80 368.097 73 2.40 0.765 
nf.3.apr10.D 384.20 451.95 85 492.195 78 3.79 0.943 
nf.3.apr10.R 277.10 335.78 83 365.574 76 2.62 0.802 
nf.3.apr11.D 361.60 422.34 86 468.792 77 3.52 0.899 
nf.3.apr11.R 302.10 366.67 82 408.509 74 2.58 0.782 
nf.3.jul10.D 346.80 413.84 84 467.899 74 3.64 0.941 
nf.3.jul10.R 324.10 389.60 83 419.702 77 2.99 0.85 
nf.3.jul11.D 332.50 391.18 85 454.457 73 3.29 0.874 
nf.3.jul11.R 271.80 335.95 81 379.09 72 2.41 0.756 
nf.3.sep10.D 340.80 406.60 84 455.856 75 3.66 0.945 
nf.3.sep10.R 329.10 395.05 83 430.621 76 2.88 0.804 
nf.3.sep11.D 352.20 414.40 85 447.24 79 3.50 0.904 
nf.3.sep11.R 283.90 339.19 84 383.635 74 2.67 0.809 
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Figure S1: Rarefaction curves at 20% genetic distance calculated for the entire bacterial 
community in fertilized plots (fe_DNA:20%), active bacterial community in fertilized 
plots (fe_RNA:20%), entire bacterial community in non-fertilized plots (nf_DNA:20%), 
and active bacterial community in non-fertilized plots (nf_RNA:20%). 

 
 
 



 Chapter II 
 

53 
 

 
Figure S2: Rarefaction curves at 3% genetic distance calculated for the entire bacterial 
community in fertilized plots (fe_DNA:3%), active bacterial community in fertilized plots 
(fe_RNA:3%), entire bacterial community in non-fertilized plots (nf_DNA:3%), and active 
bacterial community in non-fertilized plots (nf_RNA:3%). 
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Figure S3: Relative abundances of rare phyla (< 1% abundance) derived from the 
analyzed soil samples. Fertilized (fe) and non-fertilized (nf) samples are shown in this 
figure. Samples were taken in April (Apr), July (Jul), and September (Sep) in 2010 (10) 
and 2011 (11) and the total (D) and active (R) bacterial communities were analyzed. 
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Abstract 

 

Despite the ecological and environmental importance of Populus, little is known about 

effects of aspen demes on soil bacterial communities. In this study, the active and total 

bacterial communities of two Populus tremula demes (Geismar 2 and 8) were examined by 

amplicon-based pyrosequencing. Analysis of 2.3 million high quality 16S rRNA sequences 

exhibit a significant influence of aspen demes on diversity and composition of the active 

communities. Firmicutes was significant more abundant in the active Geismar 8 samples, 

while the Chloroflexi, and Deltaproteobacteria were significant more abundant in the 

active Geismar 2 sample. Correlation analysis with relative abundances and soil properties 

revealed at phylum as well as at order level more significant interactions in Geismar 8 

compared to Geismar 2. Analysis of functional composition revealed that 36 and 941 

genes were found with higher abundances in either aspen deme Geismar 2 or Geismar 8 at 

DNA and RNA level, respectively. At DNA level, 97% of all significant genes were higher 

abundant in Geismar 2, while at RNA level 75% of all significant genes were predominant 

in Geismar 8. We tried to link environmental parameters to observed active and total 

bacterial community structures by fitting multinomial regression modes via neural 

networks. Obtained results suggest that the total bacterial community is mainly driven by 

long-term effects such as environmental conditions, whereas the active bacterial 

community was influenced by the two aspen demes.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 Chapter III 
 

58 
 

Introduction 

 

The genus Populus (poplars, aspens and cottonwoods) consists of approximately 30 

species (Taylor, 2002). Trembling aspen including the European species Populus tremula 

L. (European Common Aspen) are among the most widespread tree species in temperate 

forest and circumpolar boreal regions (Hultén and Fries, 1988). They are widely used in 

fiber, wood, and energy production due to their fast growth, the relatively low nutrient 

demand and the high tolerance to different climatic conditions such as drought (Bradshaw 

et al., 2000; Taylor, 2002; Dickmann and Kuzovkina, 2008). In addition, members of the 

genus Populus play an important role for the phytoremediation of contaminated soils (El-

Gendy et al., 2009; Hur et al., 2011; Mukherjee et al., 2015). Thus, this genus is of high 

economic and ecological importance.  

Several poplar species served as model tree systems in ecological and genetic studies due 

to many reasons such as their vegetative propagation and the small genome size (Bradshaw 

et al., 2000; Taylor, 2002). Recently, the complete genome sequence of Populus 

trichocarpa genotype “Nisqually-1” was published (Tuskan et al., 2006). In the last years, 

poplars have been intensively studied in a wide range of research areas. This includes plant 

physiology traits (e.g. Kleemann et al., 2011; Hajek et al., 2013; Müller et al., 2013) or 

interactions of poplar trees with other organisms such as arthropods (Zhang et al., 2015) or 

soil microbial communities (Gamalero et al., 2012; Baum et al., 2013).  

Bacteria are the most abundant and diverse group of microorganisms in soil ecosystems 

and mediate nearly all biogeochemical cycles (Whitman et al., 1998; Torsvik et al., 2002; 

Fierer et al., 2007). Recent studies showed that tree species and tree identity are major 

drivers of composition and diversity of bacterial communities in forest soils (Nacke et al., 

2011; Sun et al., 2014; Scheibe et al., 2015; Urbanova et al., 2015). The diversity of 

bacterial communities in different peat forest soils analyzed by pyrosequencing of 16S 

rRNA genes was influenced by the tree species (Sun et al., 2014). Fang et al. (2013) 

showed that microbial activity in the rhizosphere of poplar, alder, and willow growing in 

different tree species mixtures was significantly affected by the trees. In another study with 

different poplar clones, both presence and size of these clones affected the soil bacterial 

community structure (Gamalero et al., 2012).  

However, only little is known about the interaction of poplar trees with soil bacterial 

community structure and functions. Most previous studies used DNA as template, thereby 

focusing on the total bacterial community (Gamalero et al., 2012; Baum et al., 2013; 
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Winder et al., 2013). The abundance of rRNA is a widely used indicator for the potential 

activity in microbial communities (Blazewicz et al., 2013). Previous studies found 

differences between DNA- and RNA-derived bacterial populations in soils (Baldrian et al., 

2012; Barnard et al., 2015; Felsmann et al., 2015). For example, the analysis of bacterial 

communities in a Picea abies forest revealed a higher abundance of Actinobacteria in the 

active compared to the total community (Baldrian et al., 2012). This is in line with the 

results of Felsmann et al. (2015). Here, the comparison of active and total soil bacterial 

community structure in forest ecosystems revealed a higher abundance of Actinobacteria 

in the active than in the total community, whereas Acidobacteria were less abundant. 

Barnard et al. (2015) found a significant effect of environmental changes in the active, but 

not in the total bacterial community. Therefore, it is of great importance to analyze driving 

forces and ecological functions of both the metabolic active and the total bacterial 

community in soil ecosystems. 

So far, the effect of two different aspen demes on both the active (RNA level) and the total 

(DNA level) bacterial community was not investigated. The aim of this study was to 

demonstrate how two P. tremula demes influence the soil bacterial community and which 

functions are affected in this community. The term deme was first described by Gilmour 

and Gregor (1939) as “any assemblage of taxonomically closely related individuals”. 

These demes are not necessarily equivalent to a specific taxonomic category such as 

species or variety (Gilmour and Heslop-Harrison, 1955). The study was performed within 

the Poplar Diversity Experiment (PopDiv) in Germany (Zhang et al., 2015). Sampling was 

performed in April, July, and September in 2010 and 2011 to include possible sampling 

time effects. Composition and diversity of total and active bacterial communities were 

assessed by pyrotag sequencing of 16S rRNA genes and transcripts, respectively. We 

hypothesized that the two aspen demes will have a deme-specific impact on the soil 

bacterial community structure and diversity. In addition, we expected that different drivers 

shape the active and the total bacterial communities. We employed Tax4Fun (Aßhauer et 

al., 2015) to predict functional profiles and link bacterial community structure with 

ecosystem functioning. We hypothesized that functional profiles of the two aspen demes 

would be similar because they are closely genetically related. 
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Material and Methods 

 

Study site description and soil sampling 

 

The study was conducted within the Poplar Diversity Experiment (PopDiv). This 

multidisciplinary experiment investigated the role of intraspecific diversity in aspen for 

selected ecosystem functions. Seven European aspen demes (P. tremula) and one from 

North America (P. tremuloides) were planted in plots representing either a single deme or 

combinations of two, four, and eight demes. A detailed description of the study site and the 

experimental design is given in Zhang et al. (2015). The experiment was established on a 

former historically documented permanent grassland (Thurengia, 1910) in 2008. The 

experimental area was located in the Solling uplands in Lower Saxony, Germany 

(51°44´56´´N, 9°32´28´´E). The predominant soil was a non-fertilized and nutrient poor 

Haplic Cambisol of sandy-loamy texture on Triassic sandstone (Middle Bunter) (Keuter et 

al., 2013). A previous study showed that the soil is homogenous across the site (Hajek et 

al., 2013). During the study period, mean annual temperature and annual precipitation 

were 6.6°C and 732 mm in 2010, and 8.91°C and 724 mm in 2011, respectively (Table 1). 

 
Table 1: climatic conditions during sample periods in 2010 and 2011 
Month Mean temperature [°C] mean precipitation [mm] 
 2010 2011 2010 2011 
January -4.72 0.15 n.d. 19.4 
February -2.62 0.05 n.d. 35.5 
March 1.93 4.42 53.13 6 
April 7.78 11.26 14.84 41.75 
May 8.45 12.71 113.39 23.25 
June 15.65 15.17 26.45 60.5 
July 19.87 14.48 47.27 110.85 
August 15.36 16.62 181.70 125.25 
September 11.42 14.75 102.12 54.75 
October 7.65 9.24 37.835 69.5 
November 3.24 5.52 155.135 15.25 
December -4.81 2.51 n.d. 162 
Bold: sampling time in 2010 and 2011; n.d, not detected  

 

The two aspen demes Geismar 2 (G2) and Geismar 8 (G8) originated from Göttingen, 

Germany (51°31´N, 9°5´E). They did not differ in several plant characteristics such as root 

collar diameter or plant height (Hajek et al., 2014). Soil samples were collected from six 

mono-culture plots (three of each aspen deme). Around each tree, three soil cores (8 cm in 
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diameter, depth 20 cm) were taken and then pooled. Possible effects of environmental 

variability were minimized as all trees were grown at the same site. To analyze the effect 

of sampling time and year, samples were collected in spring (April), summer (July), and 

autumn (September) 2010 and 2011. Soil samples were shock- frozen in liquid nitrogen 

and stored at -80°C until analysis. 

 

Soil properties 

 

For determination of soil properties, subsamples from the pooled soil samples were dried 

at 60°C for seven days and sieved to < 2mm. Soil organic carbon (C) and total nitrogen 

(N) concentrations were determined from dried soil with a CN elemental analyzer 

(Elemental Analyzer EA 1108, Carlo Erba Instruments, Rodano, Italy). The gravimetric 

soil water content (%) was calculated from oven-dried subsamples. Soil pH values were 

measured from soil:water with 0.1 M KCl suspension (ratio of 1:2).  

 

Extraction of nucleic acids and reverse transcription 

 

Total environmental RNA and DNA were co-extracted from 0.5 g soil employing the RNA 

PowerSoil Total RNA Isolation Kit and the RNA PowerSoil DNA Elution Accessory Kit, 

respectively, as recommended by the manufacturer (MoBio Laboratories, Carlsbad, CA, 

USA).  For RNA purification, residual DNA was removed with the TURBO DNA-free™ 

Kit (Ambion Applied Biosystems, Darmstadt, Germany) from the extracted RNA and its 

absence was confirmed by PCR as described by Wemheuer et al. (2012). The DNA-free 

RNA was purified and concentrated using the RNeasy MinElute Cleanup Kit (Qiagen 

GmbH, Hilden, Germany). Isolated DNA was purified with the PowerClean DNA Cleanup 

Kit (MoBio Laboratories). RNA and DNA concentrations were determined using a 

NanoDrop ND-1000 spectrophotometer (Peqlab Biotechnologie GmbH, Erlangen, 

Germany). Approximately 500 ng of purified RNA was converted to cDNA using the 

SuperScriptTM III reverse transcriptase and the reverse primer V3rev of the subsequent 

PCR reaction, as recommended by the supplier (Invitrogen, Karlsruhe, Germany).  

 

 

 

 

http://www.mobio.com/soil-rna-isolation/rna-powersoil-dna-elution-accessory-kit.html
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Amplification and sequencing of 16S rRNA gene regions 

 

To analyze bacterial community structures, the V2-V3 region of the 16S rRNA gene and 

their corresponding transcripts were amplified by PCR using three independent reactions 

per sample. The reaction mixture (25 µl) contained 5 µl of 5-fold Phusion GC buffer, 

200 µM of each of the four deoxynucleoside triphosphates, 5% DMSO, 0.4 µM of each 

primer, 0.5 U of Phusion Hot Start High Fidelity DNA polymerase (Fisher Scientific 

GmbH, Schwerte, Germany), and approximately 25 ng of DNA or cDNA as template. 

Negative controls were performed by using the reaction mixture without template. The V2-

V3 region was amplified with the following set of primers modified by Schmalenberger 

(2001) containing the Roche 454 pyrosequencing adaptors, key sequences and one unique 

MID (underlined) per sample: V2for 5’-CGTATCGCCTCCCTCGCGCCATCAG-(dN)10-

AGTGGCGGACGGGTGAGTAA-3’ and V3rev 5’-CTATGCGCCTTGCCAGCCCGCT 

CAG-(dN)10-CGTATTACCGCGGCTGCTGG-3’. For cDNA amplification, the following 

cycling scheme was used: initial denaturation at 98°C for 5 min and 25 cycles of 

denaturation at 98°C for 10 s and annealing/extension at 72°C for 10 s, followed by a final 

extension at 72°C for 5 min. Cycling conditions for the amplification of DNA were 98°C 

for 5 min; 25 cycles of 98°C for 45 s, 72°C for 30 s, 72°C for 30 s, followed by a final 

extension at 72°C for 10 min. The resulting PCR products of the three independent 

reactions were pooled in equal amounts and purified using the peqGold gel extraction kit 

(Peqlab Biotechnologie GmbH, Erlangen, Germany). Obtained PCR products were 

quantified using the Quant-iT dsDNA HS assay kit and a Qubit fluorometer (Invitrogen 

GmbH) as recommended by the manufacturer. The Göttingen Genomics Laboratory 

determined the sequences of the partial 16S rRNA genes employing the Roche GS-FLX 

454 pyrosequencer with Titanium chemistry as recommended by the manufacturer (Roche, 

Mannheim, Germany).  

 

Processing of 16S rRNA sequence data 

 

Pyrosequencing derived datasets were processed and analyzed using the QIIME software 

package version 1.6 (Caporaso et al., 2010). Sequences shorter than 200 bp, low quality 

sequences, and sequences with homopolymers (> 8 bp) were removed from the datasets. 

Pyrosequencing noise was removed using Acacia 1.52 (Bragg et al., 2012). Primer 

sequence residues were truncated using cutadapt version 1.0 (Martin, 2011). Chimeric 
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sequences were detected and eliminated using UCHIME 7.0.190 in de novo and in 

reference mode with the Silva SSURef 119 NR database as reference database (Edgar, 

2010; Quast et al., 2013). All remaining sequences were subsequently clustered in 

operational taxonomic units (OTUs) at 3 and 20% genetic distance using the QIIME 

pick_otus.py script and uclust (Edgar, 2010). OTUs represented by only single sequence in 

the entire dataset (singletons) were removed (see (Schneider et al., 2013a). Taxonomic 

assignment was performed via BLAST alignment against the most recent SILVA database 

(SSURef NR 119) (Quast et al., 2013). Rarefaction curves, alpha diversity indices (Chao1, 

Shannon, Simpson, and Michaelis-Menten-Fit), and beta diversity (Principle Component 

analyses) were determined using QIIME according to Wemheuer et al. (2013). Functional 

predictions for each sample were performed in R (version 3.2.0; R Development Core 

Team 2015 [http://www.R-project.org/]) using Tax4Fun (Aßhauer et al., 2015). 

 

Statistical analysis 

 

T-test for normal distributed data or the Mann-Whitney-test for not normal distributed data 

and Spearman’s rank correlation coefficients were performed in SigmaPlot version 11.0 

(Systat Software GmbH, Erkrath, Germany). All other statistical analyses were conducted 

employing the R version 3.2 (Team, 2011).Changes in community structure and significant 

differences between samples and treatments were examined employing the metaMDS and 

RDA as well as envfit functions within the vegan package (Oksanen et al., 2013) as 

described by Wietz et al. (2015). Total and active bacterial communities were analyzed 

separately as DNA and RNA were extracted from the same samples and thus represent 

spatial pseudoreplicates. Effects of the aspen demes on environmental parameters were 

tested as described by Wemheuer et al (2014). The results of the statistical tests were 

regarded as significant at P-values ≤ 0.05. 

 

Sequence data deposition 

 

Sequence data was deposited in the Sequence Read Archive (SRA) of the National Center 

for Biotechnology Information (NCBI) under the accession number SRA162385. 
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Results  

 

Soil properties  

 

In this study, the composition of bacterial communities present in soil samples derived 

from growing sites of two aspen demes was assessed. Soil samples were collected from 

three aspen of deme G2 and G8, respectively. Several soil properties including total N or C 

content, C/N ratio, water content, and pH were determined (Table 2). 

 

Table 2: Soil properties determined at the study sites (poplar demes Geismar2 and 
Geismar8) 
Sample Season Aspen 

deme 
pH 
(+KCL) ± 
SD 

Water 
content ± 
SD (%) 

% C % N C/N 

G2.1.apr10.D/R spring 2010 Geismar2 4.39±0.12 27.7±0.4 3.90 0.27 14.31 
G2.2.apr10.D/R spring 2010 Geismar2 4.90±0.23 27.5±0.2 3.47 0.27 12.95 
G2.3.apr10.D/R spring 2010 Geismar2 4.62±0.15 24.9±1.1 3.22 0.23 13.84 
G2.1.jul10.D/R summer 2010 Geismar2 5.63±0.12 12.9±1.0 4.22 0.32 13.32 
G2.2.jul10.D/R summer 2010 Geismar2 5.73±0.27 14.9±0.1 3.96 0.30 13.17 
G2.3.jul10.D/R summer 2010 Geismar2 5.58±0.34 11.5±1.4 4.23 0.31 13.74 
G2.1.sep10.D/R autumn 2010 Geismar2 4.43±0.08 25.6±1.2 4.29 0.36 12.04 
G2.2.sep10.D/R autumn 2010 Geismar2 4.96±0.27 26.2±2.1 3.89 0.32 12.23 
G2.3.sep10.D/R autumn 2010 Geismar2 5.02±0.21 24.3±1.8 4.29 0.35 12.41 
G8.1.apr10.D/R spring 2010 Geismar8 4.94±0.12 26.0±1.4 3.79 0.26 14.59 
G8.2.apr10.D/R spring 2010 Geismar8 4.45±0.15 22.8±0.7 3.35 0.22 15.27 
G8.3.apr10.D/R spring 2010 Geismar8 4.28±0.59 25.3±4.2 3.33 0.20 16.59 
G8.1.jul10.D/R summer 2010 Geismar8 5.54±0.03 13.4±2.0 4.23 0.31 13.54 
G8.2.jul10.D/R summer 2010 Geismar8 5.19±0.02 11.4±2.0 4.04 0.31 13.06 
G8.3.jul10.D/R summer 2010 Geismar8 5.65±0.03 12.8±1.3 3.59 0.25 14.48 
G8.1.sep10.D/R autumn 2010 Geismar8 5.20±0.10 25.3±1.0 4.45 0.32 14.11 
G8.2.sep10.D/R autumn 2010 Geismar8 4.64±0.11 21.5±1.4 3.91 0.29 13.57 
G8.3.sep10.D/R autumn 2010 Geismar8 4.58±0.52 25.9±0.7 4.32 0.33 13.09 
G2.1.apr11.D/R spring 2011 Geismar2 4.58±0.12 24.9±1.0 3.90 0.29 13.33 
G2.2.apr11.D/R spring 2011 Geismar2 4.59±0.15 23.6±0.9 3.10 0.26 11.84 
G2.3.apr11.D/R spring 2011 Geismar2 5.41±0.59 23.0±0.9 4.71 0.34 14.02 
G2.1.jul11.D/R summer 2011 Geismar2 4.72±0.03 24.1±0.3 3.79 0.29 12.99 
G2.2.jul11.D/R summer 2011 Geismar2 4.30±0.02 23.9±0.7 3.56 0.28 12.78 
G2.3.jul11.D/R summer 2011 Geismar2 4.57±0.03 26.9±0.9 4.53 0.32 14.27 
G2.1.sep11.D/R autumn 2011 Geismar2 4.49±0.10 34.6±1.2 3.93 0.31 12.52 
G2.2.sep11.D/R autumn 2011 Geismar2 4.56±0.11 33.6±1.1 3.44 0.28 12.21 
G2.3.sep11.D/R autumn 2011 Geismar2 5.26±0.52 33.4±1.6 4.47 0.33 13.35 
G8.1.apr11.D/R spring 2011 Geismar8 5.25±0.32 23.8±0.5 3.23 0.24 13.43 
G8.2.apr11.D/R spring 2011 Geismar8 4.31±0.02 20.9±1.7 2.90 0.22 12.94 
G8.3.apr11.D/R spring 2011 Geismar8 4.37±0.07 24.6±0.7 4.05 0.24 16.62 
G8.1.jul11.D/R summer 2011 Geismar8 4.53±0.02 25.6±0.4 3.90 0.28 14.11 
G8.2.jul11.D/R summer 2011 Geismar8 4.26±0.05 21.0±1.8 3.70 0.26 14.40 
G8.3.jul11.D/R summer 2011 Geismar8 4.49±0.05 22.8±0.4 4.57 0.28 16.42 
G8.1.sep11.D/R autumn 2011 Geismar8 5.26±0.29 33.4±1.0 3.84 0.27 14.41 
G8.2.sep11.D/R autumn 2011 Geismar8 4.28±0.04 31.1±1.6 3.69 0.28 13.28 
G8.3.sep11.D/R autumn 2011 Geismar8 4.35±0.06 34.3±1.3 4.52 0.30 14.91 
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The pH values ranged from 4.26 to 5.73 with the highest pH in July 2010 and the lowest 

pH in July 2011. Water content varied between 11.4% and 34.6%, with the lowest water 

content in July 2010 and the highest in September 2011. Total N content varied between 

0.20 and 0.36%. C content showed high variability ranging from 2.90 to 4.71%. The C/N 

ratios varied between 12 and 16.8 in the analyzed soil samples, with the lowest C/N ratio 

in April 2010 and with the highest in April 2011.  

 

Bacterial community diversity and richness  

 

Composition and diversity of total and active soil bacterial communities were assessed by 

pyrotag sequencing of 16S rRNA genes and the transcripts, respectively. After quality 

filtering, denoising, and removal of potential chimeras and non-bacterial sequences, 

2,370,236 high quality sequences with an average read length of 362 bp were used for 

analyzing bacterial community structures and diversity. The number of sequences per 

sample ranged from 12,139 to 68,325 (DNA level) and from 18,658 to 54,205 (RNA level) 

(Table S1). All sequences were classified below phylum level.  

Calculated rarefaction curves at 3% (species level) and 20% genetic distance (phylum 

level) revealed that the majority of the bacterial community was covered by the surveying 

effort (Figures S1 and S2, respectively). This is supported by the calculated coverage 

values (Table S2 and S3). Shannon indices varied between 2.15 and 4.08 (20% genetic 

distance) and between 3.33 and 6.80 (3% genetic distance). 

 

 

Heterogeneity in composition and diversity of total and active bacterial communities  

 

Obtained sequences were assigned to 41 phyla and candidate division. Five dominant 

phyla (> 1% abundance) were present in each soil sample and accounted for 96% of all 

bacterial sequences at RNA and DNA level (Figure 1). Proteobacteria were predominant 

across all samples (DNA 33%, RNA 44%). Sequences assigned to this phylum mainly 

belonged to the Alphaproteobacteria (DNA 16%, RNA 37%). Firmicutes were the second 

most abundant bacterial phylum in total and active bacterial communities (DNA 27%, 

RNA 37%). Other abundant phyla in the bacterial community were Chloroflexi (DNA 

16%, RNA 9%) and Acidobacteria (DNA 13%, RNA 4%). Rare phyla were shown in 

figure S3. 
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Figure 1: Relative abundances of the most abundant bacterial phyla (> 1%) and 
proteobacterial classes derived from the analyzed soil samples. Phyla accounting < 1% of 
all sequences are summarized in the group “other”. Aspen deme Geismar2 (G2) and aspen 
deme Geismar8 (G8) samples are shown in this figure. Samples were taken in April (Apr), 
July (Jul), and September (Sep) in 2010 (10) and 2011 (11) and the entire (D) and active 
(R) bacterial community were analyzed.   
 

At 3% genetic distance, all sequences analyzed in this study were affiliated to a total of 

60,412 OTUs. The estimated number of OTUs per sample indicated that the bacterial 

richness was higher in the total bacterial community (3,214±322 OTUs) than in the active 

community level (2,660±226 OTUs). The core community represented by OTUs found in 

the soil community of both aspen demes at DNA and RNA level consisted of 11,601 

OTUs (Figure 2). The most abundant OTU in the total and active bacterial community 

(13.4% and 17.3%, respectively) was Bacillus sp. IDA1527, a member of the phylum 

Firmicutes. The second most abundant OTU (11.7%) in the active community belonged to 

the family Acetobacteraceae (Alphaproteobacteria). 
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Figure 2: Venn-diagram of all analyzed OTUs showed the core community found in the 
fertilized, non-fertilized treatment, as well as in the entire (DNA), and active (RNA) 
bacterial community. Depicted were OTUs estimated at Geismar 2 DNA, Geismar 2 RNA, 
Geismar 8 DNA, and Geismar 8 RNA level and all other possible interfaces. 
 
 

Correlation of environmental properties and relative abundances differs between 

both aspen demes 

 

Spearman´s correlation was used to analyze the relationship between soil parameters and 

the relative abundances of the most abundant phyla, proteobacterial classes, and orders 

(Tables 3-6). All taxonomic groups with more than 1% abundance were included in the 

analysis. In aspen deme Geismar 2 plots the active part of Chloroflexi correlated 

significantly negatively with C/N and Betaproteobacteria correlated significantly 

positively with pH. Firmicutes (total bacterial community) correlated significantly 

negatively with pH and significantly positively with the water content. At order level only 

2 of the 14 tested orders correlated significantly with pH in the Geismar 2 plots.  
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In the aspen deme Geismar 8 plots all bacterial phyla and proteobacterial classes (parts of 

the active or total bacterial community) correlated significantly positively or negatively 

with either pH or water content (Table 4).  

 

Table 3. Spearman´s Rank correlations of the abundance of the most abundant phyla, 
proteobacterial classes and soil properties of the aspen deme Geismar 2 treatment. 
Relative abundances derived from the active (RNA) and total (DNA) bacterial community 
were separately analyzed. 
Group Correlation coefficient 

pH Water content C/N 
DNA RNA DNA RNA DNA RNA 

Acidobacteria -0.174 -0.042 0.032 -0.189 0.103 0.141 
Actinobacteria -0.102 0.362 0.007 -0.213 0.267 -0.025 
Chloroflexi -0.049 0.018 -0.268 -0.372 -0.086 -0.476 
Firmicutes -0.472 -0.313 0.550 0.245 0.463 0.078 
Alphaproteobacteria 0.110 0.03 -0.082 0.267 -0.401 0.42 
Betaproteobacteria 0.455 0.47 -0.114 -0.116 -0.061 -0.339 
Gammaproteobacteria 0.461 0.236 -0.249 0.125 -0.441 -0.055 
Deltaproteobacteria 0.249 0.375 -0.042 -0.101 0.069 0.039 

Bold number: P < 0.05 
 

Table 4. Spearman Rank correlations of the abundance of the most abundant phyla, 
proteobacterial classes and soil properties of the aspen deme Geismar 8 treatment. 
Relative abundances derived from the active (RNA) and total (DNA) bacterial community 
were separately analyzed 
Group Correlation coefficient 

pH Water content C/N 
DNA RNA DNA RNA DNA RNA 

Acidobacteria 0.04 0.119 -0.380 -0.535 -0.125 -0.430 
Actinobacteria 0.24 0.779 0.057 -0.155 0.361 -0.349 
Chloroflexi 0.121 0.104 0.043 -0.585 -0.273 -0.365 
Firmicutes -0.478 0.133 0.136 0.335 0.350 -0.205 
Alphaproteobacteria -0.430 -0.552 -0.138 -0.135 -0.260 0.395 
Betaproteobacteria 0.822 0.769 -0.057 0.202 -0.365 -0.365 
Gammaproteobacteria 0.550 0.546 -0.08 0.226 -0.304 0.241 
Deltaproteobacteria 0.641 0.507 -0.084 0.177 -0.409 -0.196 
Bold number: P < 0.05 
 

Additionally, 9 of the 14 tested orders correlated significantly positively or negatively with 

pH and water content. Especially, the orders Myxococcales, Rhodospirillales, and JG30-

KF-AS9 correlated significantly at both, RNA and DNA level with pH (Table 6). None of 

these phyla, proteobacterial classes, and orders correlated significantly with C/N content in 

Geismar 8 plots. 
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 Table 5. Spearman Rank correlations of the abundance of the most abundant orders and 
soil properties of the aspen deme Geismar 2 treatment. Relative abundances derived from 
the active (RNA) and entire (DNA) bacterial community were separately analyzed. 

 Bold number: P < 0.05 
 

Table 6. Spearman Rank correlations of the abundance of the most abundant orders and 
soil properties of the aspen deme Geismar 8 treatment. Relative abundances derived from 
the active (RNA) and entire (DNA) bacterial community were separately analyzed. 

 Bold number: P < 0.05 
 
 

 

Group  Correlation  
coefficient 

    

 pH  Water content C/N  
 DNA RNA DNA RNA DNA RNA 
Xanthomonadales 0.193 -0.016 -0.158 0.141 -0.055 -0.133 
Enterobacteriales 0.490 0.327 -0.089 -0.001 0.189 -0.022 
Myxococcales 0.243 0.387 -0.003 -0.081 -0.03 -0.135 
Caulobacterales 0.187 0.488 -0.165 0.026 0.053 0.170 
Rhizobiales -0.193 0.257 0.016 -0.285 0.018 -0.110 
Rhodospirillales 0.024 -0.053 -0.127 0.288 0.315 0.385 
Bacillales -0.449 -0.329 0.562 0.249 0.032 0.141 
Clostridiales -0.038 0.055 0.083 0.098 -0.331 -0.315 
JG30-KF-AS9 -0.401 -0.282 0.258 -0.087 -0.152 -0.232 
Ktedonobacterales -0.181 -0.392 -0.051 -0.109 -0.044 -0.220 
Frankiales -0.346 0.212 -0.062 -0.324 -0.119 -0.404 
Acidobacteriales -0.185 -0.018 -0.007 -0.261 0.230 -0.220 
Subgroup 3 -0.391 -0.247 0.181 -0.173 0.020 -0.053 
Subgroup 7 0.230 0.319 0.017 -0.170 0.010 -0.247 

Group  Correlation  
coefficient 

    

 pH  Water content C/N  
 DNA RNA DNA RNA DNA RNA 
Xanthomonadales 0.728 0.355 0.021 0.490 -0.083 -0.278 
Enterobacteriales 0.405 0.606 -0.053 0.208 -0.032 -0.044 
Myxococcales 0.595 0.480 -0.025 0.171 -0.098 -0.360 
Caulobacterales 0.589 0.075 -0.064 0.311 0.001 0.194 
Rhizobiales -0.178 -0.127 -0.120 0.301 0.166 -0.029 
Rhodospirillales -0.675 -0.601 0.067 -0.142 0.022 0.128 
Bacillales -0.466 0.149 0.136 0.321 0.055 0.161 
Clostridiales -0.107 0.136 0.114 0.212 -0.110 -0.100 
JG30-KF-AS9 -0.497 -0.518 0.150 -0.267 -0.217 0.159 
Ktedonobacterales -0.276 -0.013 -0.108 -0.363 0.051 -0.066 
Frankiales -0.163 0.469 0.133 -0.068 0.386 -0.320 
Acidobacteriales -0.226 -0.367 -0.281 -0.261 0.244 0.038 
Subgroup 3 -0.258 -0.061 -0.350 -0.527 0.211 -0.106 
Subgroup 7 0.321 0.626 0.116 -0.156 -0.017 -0.247 
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Variation in bacterial community structure as response to aspen demes  

 

The comparison of mean Shannon indices from aspen deme Geismar2 (G2) and aspen 

deme Geismar8 (G8) samples revealed a significantly higher diversity in the active (RNA) 

soil bacterial community of G2 compared to G8 at 97% and 80% genetic similarity (P = 

0.018 and P = 0.005, respectively), whereas no differences were recorded in the total 

bacterial community (Figure 3). 

 
Figure 3: Boxplot diagram showing the Shannon indices of the total (DNA) and active 
(RNA) bacterial community derived from aspen deme Geismar2 (G2) and deme Geismar8 
(G8) at 97% and 80% genetic similarity. Asterisks indicating significant differences 
between the two aspen demes; * P < 0.05; ** P<0.005; *** P<0.001 
 

Differences in soil bacterial community structure of the two aspen demes were assessed by 

ordination analysis (Figure 4). Calculated ordination plots either based on Bray-Curtis or 

weighted UniFrac dissimilarity revealed no significant differences of the total bacterial 

community structure in two aspen demes. However, a significant impact on community 

composition was observed at active bacterial community level (Bray-Curtis, P = 0.039; 
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weighted UniFrac, P = 0.01). Especially, we observed significant higher abundances of the 

active part of Chloroflexi and Deltaproteobacteria in the aspen deme Geismar2, while 

active members of Firmicutes were significant more abundant in the Geismar8 plots 

(Table S4). 

 

 
Figure 4: Calculated Bray-Curtis (BC) and weighted UniFrac dissimilarity (WU) at DNA 
and RNA level derived from the aspen deme Geismar2 (G2) and deme Geismar8 (G8). 
 

Impact of aspen demes on functional profiles of the soil bacterial communities  

 

Functional and metabolic pathways profiles were predicted from 16S rRNA data to 

investigate putative changes between the soil bacterial communities of G2 and G8. An 

initial RDA analysis of the complete functional profile of all analyzed samples showed 

significantly differences between the total and potentially active bacterial community 

(Figure 5B). Significant differences between the two aspen demes in the complete dataset 

were not recorded (Figure 5A). Additionally, redundancy analysis of DNA-derived or 
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RNA-derived datasets revealed also no significant different between both aspen demes 

(Figure 5C and 5D). 

However, statistical analysis of single KEGG orthologs showed that only 36 genes had a 

significantly higher abundance in either aspen deme G2 or G8 in the DNA-based samples, 

whereas the abundances of 941 genes were significantly higher abundant in one of the two 

demes at RNA level.  

 
Figure 5: Redundancy Analysis (RDA) of the functional profile derived from A. complete 
dataset of aspen deme Geismar2 (G2) and deme Geismar8 (G8) B. total (DNA) and active 
(RNA) bacterial community C. only the total bacterial community and D. only the active 
bacterial community of both demes. 
 

Sampling time effect differs between active and total bacterial community 

 

To analyze the impact of sampling time and year on bacterial diversity and community 

composition in both aspen demes plots, sampling was performed in spring, summer and 

beginning of autumn in 2010 and 2011.  
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Bacterial diversity analyzing estimated OTUs at 3% and 20% genetic distance revealed no 

significant differences in the active and total bacterial community in both aspen demes. 

The Shannon index at 20% genetic distance indicated significant differences between the 

summer as well as autumn of 2010 and 2011, respectively (Figure 6). 

 

 
 

Figure 6: Boxplot depicting the Shannon index of diversity at 20% genetic 
distance of the total bacterial community over complete sampling period. 1; April 
2010, 2; July 2010, 3; September 2010, 4; April 2011, 5; July 2011, and 6; 
September 2011. Asterisks indicating significant differences between sampling 
times in the total (DNA) bacterial community. 

 
Significant differences in the community composition between the sampling years 2010 

and 2011 were only detectable in the total bacterial community, but not in the active 

(Table S4). Analyzing all six sampling times, significant differences were observed in the 

active and total bacterial community composition. The phylum Chloroflexi showed 

significant differences at DNA and RNA level. While Proteobacteria and the class 

Gammaproteobacteria differs significantly at DNA level, Actinobacteria, Firmicutes, the 

class Betaproteobacteria, and the category “other Proteobacteria” differs significantly at 

RNA level. 
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Discussion 

 
Active and total bacterial communities displayed different structure and diversity 

 

The analysis of the active and the total bacterial community revealed a higher bacterial 

richness in the total community than in the active community. The number of OTUs at 

DNA level was higher than that at RNA level. This is consistent with a study of soil 

bacterial communities in a P. abies forest (Baldrian et al., 2012). The authors observed that 

the active bacterial community in forest soils was less evenly distributed and less diverse 

compared to the entire community. The higher number of generated OTUs at DNA level is 

that total bacterial community includes not only active cells but also dead cells, dormant 

cells, or extracellular DNA (Lennon and Jones, 2011). 

Proteobacteria (mainly Alphaproteobacteria), Firmicutes, Chloroflexi, and Acidobacteria 

were abundant across all samples investigated. This is mostly in agreement with previous 

studies of bacterial communities in forest soils (Nacke et al., 2011; Baldrian et al., 2012; 

Sun et al., 2014). Nacke et al. (2011) analyzed the total bacterial community structure 

along different management types in forest and grassland soils and found that 

Proteobacteria dominated the German forest soils. The active bacterial community of 

forest soils was dominated by Proteobacteria, Actinobacteria, Acidobacteria, and 

Planctomycetes (Felsmann et al., 2015). Interestingly, we observed higher abundances of 

Firmicutes in soil samples compared to that mentioned in the other studies. This can be 

explained by the long history of the experimental site as grassland. It has been reported 

that Firmicutes exhibit higher abundance in grassland soils than in forest soils (Nacke et 

al., 2011; Kuramae et al., 2012; Khdhiri et al., 2015). 

The majority of OTUs were observed in total and active community. This indicates that the 

most abundant OTUs in the total bacterial community contained active members. The most 

abundant OTU of the total and active bacterial community (13.4 and 17.3%) of all 

sequences belonged to the genus Bacillus, which is a member of the Firmicutes. Bacilli are 

spore-forming bacteria, which are common in soil. Moreover, they are well adapted to 

heat, UV radiation, and oxidizing agents (Popham et al., 1995). In the active community, 

the second most abundant OTU (11.7%) belonged to the family Acetobacteraceae 

(Alphaproteobacteria). Member of this family are able to oxidize ethanol to acidic acid. In 
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addition, these organisms can use a wide range of substrates as energy source such as 

glucose, ethanol, lactate, or glycerol. Nitrogen-fixing members of the Acetobacteraceae 

were first isolated from roots and stems of sugarcane in Brazil (Cavalcante and 

Dobereiner, 1988) and can grow at low pH values as described for the soil pH values in 

this study.  

 

Environmental properties shape the bacterial communities 

 

Spearman´s rank correlation was used to analyze the relationship between soil properties 

and the relative abundances of the most abundant phyla, proteobacterial classes, and 

orders. All phyla, proteobacterial classes, and most of the orders correlated significantly 

with pH and water content at DNA and RNA level in aspen deme Geismar8.  

For example, the Frankiales were negatively and positively correlated with pH at DNA 

and RNA level, respectively. Members of this order are very diverse with respect to their 

growth conditions (Lu and Zhang, 2012). Within the Frankiales, the family 

Acidothermaceae was more abundant at DNA level, whereas at RNA level 

Acidothermaceae and Nakamurellaceae were predominant. Acidothermaceae comprise 

fast-growing, thermophilic, acidophilic, and obligate aerobic organisms (Mohagheghi et 

al., 1986), whereas Nakamurellaceae include slow-growing, mesophilic, neutrophilic, and 

aerobic organisms (Yoshimi et al., 1996). In this study, we observed significantly more 

Acidothermaceae at total community level (mean abundance 1.2%) compared to active 

community level (mean abundance 0.6%) in the Geismar8 treatment.  

Moreover, the order Myxococcales correlated significantly positively with pH in the active 

and total bacterial community in the aspen deme Geismar8. This order is described as very 

homogeneous group due to their high potential of secondary metabolite production (Gerth 

et al., 2003) and their ability of fruiting body-formation (Kaiser, 2008). Within the 

Myxococcales, the Haliangiaceae were the most abundant family. This is accordance with 

a study by Zhou et al. (2014) who observed a strong correlation with pH for Myxobacteria. 

Additionally, Myxobacteria were found in various soils in Russia (Chirak et al., 2012) 

which indicates that this group is more ubiquitous in soil than expected. 

Interestingly, a correlation of the analyzed orders with the C/N content was not recorded. 
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Diversity, structure, and function of soil bacterial communities were influenced by 

aspen demes 

 

A significant higher diversity in soil samples of aspen deme Geismar2 (G2) compared to 

aspen deme Geismar8 (G8) was recorded in the active but not in the total bacterial 

community. The same result was found for community composition as calculated 

ordination plots revealed no significant differences between the two aspen demes in the 

total bacterial community structure, but in the in the active bacterial community structure. 

Previous studies showed a strong effect of tree species on total bacterial community 

structure and diversity in forest soils (Nacke et al., 2011; Sun et al., 2014; Urbanova et al., 

2015). However, most previous studies used only DNA as template. So far, the response of 

the active community on tree species is almost unknown.  

Statistical analysis of the predicted functional profiles showed that several KEGG 

orthologs had significantly higher abundances in either aspen deme G2 or G8 at RNA but 

not at DNA level, indicating that the influence of different aspen demes is earlier 

detectable at metabolic active bacterial community. 

 

Sampling time effect is earlier detectable in the active bacterial community 

 

We found more sampling time effects in the active bacterial community composition 

compared to the total bacterial community, but the year effect was only visible at total 

bacterial community composition and their diversity.  A study by Kuffner et al. (2012) 

observed in a warming experiment, established in a 130-years-old mountain forest, that 

seasonal community dynamics were subtle compared to the dynamics of soil respiration. 

Despite a pronounced respiration response to soil warming, they did not detect warming 

effects on community structure or composition. De Angelis et al. (2015) studied changes 

of soil bacterial community as response to soil warming in a long term forest ecological 

research site, where soil was warmed 5◦C above ambient temperatures for 5, 8, and 20 

years. They detected only a significant change on bacterial structure after 20 years of 

warming. Here, we could show, that sampling time is influencing the bacterial community 

and that this effect is earlier detectable in the active bacterial community. Also Maaløe and 

Kjeldgaard (1966) observed in shift experiments that ribosome synthesis was immediately 

affected by changing environmental conditions.  
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Until now, only few studies using large-scale sequencing of amplicons targeted the 

seasonal changes of total bacterial community composition in forest soils (Kuffner et al., 

2012; Etto et al., 2014; Vasconcellos et al., 2014). Other studies using molecular 

fingerprint techniques (Prevost-Boure et al., 2011; Rasche et al., 2011) investigated the 

effect of seasonal changes on the total bacterial community, but not on the active bacterial 

community. Thus, it is difficult to compare the results by using different approaches. 

Consequently, it is possible that a stable microbial community existed, but biotic and 

abiotic factors might have an impact on shaping the bacterial community composition 

(Smit et al., 2001). 

 

Conclusions 

 

With the results of this study we want to get a comprehensive view about how aspen 

demes alter the bacterial community in soil. In this study, we evaluated a large bacterial 

16S rRNA-based dataset from soil to understand the interaction between aspen demes and 

soil bacterial communities. Therefore, we analyzed both total and active bacterial 

community in soil of two aspen demes and performed functional predictions. In general, 

structure and diversity of the soil bacterial communities differed considerably between 

DNA-based and RNA-based assessed total and active bacterial communities, respectively. 

Because the composition of the active but not the total bacterial community was 

significantly different between the two aspen demes, the active bacterial community 

displayed a higher environmental sensitivity than the total community. Our results 

indicated that total and active bacterial communities are differently shaped by 

environmental factors. Furthermore, based on differential responses observed at DNA and 

RNA level, all studies targeting only the total bacterial community might overstate their 

results or oversee environmental impacts only visible at RNA level. Thus, further studies 

are needed to explain how the active bacterial community responds to biotic and abiotic 

parameters.  
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3.2. Supplemental information 

 

Table S1. Number of 16S rRNA gene sequences derived from the analyzed poplar deme 
Geismar 2 soil samples 
Sample/plot Season Year Aspen deme Type No. of sequences 

 ≥ 200 bp 
G2.1.apr10.D April 2010 Geismar 2 DNA 46616 
G2.2.apr10.D April 2010 Geismar 2 DNA 28664 
G2.3.apr10.D April 2010 Geismar 2 DNA 35983 
G2.1.jul10.D July 2010 Geismar 2 DNA 36462 
G2.2.jul10.D July 2010 Geismar 2 DNA 44937 
G2.3.jul10.D July 2010 Geismar 2 DNA 37626 
G2.1.sep10.D September 2010 Geismar 2 DNA 35573 
G2.2.sep10.D September 2010 Geismar 2 DNA 30202 
G2.3.sep10.D September 2010 Geismar 2 DNA 45526 
G2.1.apr11.D April 2011 Geismar 2 DNA 21717 
G2.2.apr11.D April 2011 Geismar 2 DNA 16975 
G2.3.apr11.D April 2011 Geismar 2 DNA 28913 
G2.1.jul11.D July 2011 Geismar 2 DNA 18852 
G2.2.jul11.D July 2011 Geismar 2 DNA 12139 
G2.3.jul11.D July 2011 Geismar 2 DNA 29383 
G2.1.sep11.D September 2011 Geismar 2 DNA 27976 
G2.2.sep11.D September 2011 Geismar 2 DNA 20161 
G2.3.sep11.D September 2011 Geismar 2 DNA 26043 
G2.1.apr10.R April 2010 Geismar 2 RNA 43334 
G2.2.apr10.R April 2010 Geismar 2 RNA 32480 
G2.3.apr10.R April 2010 Geismar 2 RNA 26697 
G2.1.jul10.R July 2010 Geismar 2 RNA 20796 
G2.2.jul10.R July 2010 Geismar 2 RNA 18658 
G2.3.jul10.R July 2010 Geismar 2 RNA 27489 
G2.1.sep10.R September 2010 Geismar 2 RNA 24791 
G2.2.sep10.R September 2010 Geismar 2 RNA 26448 
G2.3.sep10.R September 2010 Geismar 2 RNA 41105 
G2.1.apr11.R April 2011 Geismar 2 RNA 32451 
G2.2.apr11.R April 2011 Geismar 2 RNA 31862 
G2.3.apr11.R April 2011 Geismar 2 RNA 27410 
G2.1.jul11.R July 2011 Geismar 2 RNA 54205 
G2.2.jul11.R July 2011 Geismar 2 RNA 33732 
G2.3.jul11.R July 2011 Geismar 2 RNA 24928 
G2.1.sep11.R September 2011 Geismar 2 RNA 25187 
G2.2.sep11.R September 2011 Geismar 2 RNA 30416 
G2.3.sep11.R September 2011 Geismar 2 RNA 34331 
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Table S1 continued. Number of 16S rRNA gene sequences derived from the analyzed 
poplar deme Geismar 2 soil samples 
Sample/plot Season Year Aspen deme Type No. of sequences 

 ≥ 200 bp 
G8.1.apr10.D April 2010 Geismar 8 Type 40801 
G8.2.apr10.D April 2010 Geismar 8 DNA 30388 
G8.3.apr10.D April 2010 Geismar 8 DNA 41546 
G8.1.jul10.D July 2010 Geismar 8 DNA 43922 
G8.2.jul10.D July 2010 Geismar 8 DNA 36427 
G8.3.jul10.D July 2010 Geismar 8 DNA 68325 
G8.1.sep10.D September 2010 Geismar 8 DNA 29083 
G8.2.sep10.D September 2010 Geismar 8 DNA 23792 
G8.3.sep10.D September 2010 Geismar 8 DNA 56665 
G8.1.apr11.D April 2011 Geismar 8 DNA 23596 
G8.2.apr11.D April 2011 Geismar 8 DNA 37098 
G8.3.apr11.D April 2011 Geismar 8 DNA 24702 
G8.1.jul11.D July 2011 Geismar 8 DNA 23260 
G8.2.jul11.D July 2011 Geismar 8 DNA 24382 
G8.3.jul11.D July 2011 Geismar 8 DNA 25956 
G8.1.sep11.D September 2011 Geismar 8 DNA 26563 
G8.2.sep11.D September 2011 Geismar 8 DNA 30680 
G8.3.sep11.D September 2011 Geismar 8 DNA 24831 
G8.1.apr10.R April 2010 Geismar 8 DNA 56159 
G8.2.apr10.R April 2010 Geismar 8 RNA 46137 
G8.3.apr10.R April 2010 Geismar 8 RNA 36574 
G8.1.jul10.R July 2010 Geismar 8 RNA 45785 
G8.2.jul10.R July 2010 Geismar 8 RNA 44140 
G8.3.jul10.R July 2010 Geismar 8 RNA 37333 
G8.1.sep10.R September 2010 Geismar 8 RNA 38890 
G8.2.sep10.R September 2010 Geismar 8 RNA 34146 
G8.3.sep10.R September 2010 Geismar 8 RNA 20350 
G8.1.apr11.R April 2011 Geismar 8 RNA 48232 
G8.2.apr11.R April 2011 Geismar 8 RNA 26086 
G8.3.apr11.R April 2011 Geismar 8 RNA 35078 
G8.1.jul11.R July 2011 Geismar 8 RNA 30660 
G8.2.jul11.R July 2011 Geismar 8 RNA 25582 
G8.3.jul11.R July 2011 Geismar 8 RNA 47698 
G8.1.sep11.R September 2011 Geismar 8 RNA 31236 
G8.2.sep11.R September 2011 Geismar 8 RNA 25834 
G8.3.sep11.R September 2011 Geismar 8 RNA 28231 
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Table S2. Chao1, michaelis-menten-fit (MMF), observed OTUs, Shannon-, Simpson-
indices, and the coverage of chao1 and MMF in % at 3% genetic distance calculated for 
poplar deme Geismar2 
 
Sample  

Obs. 
OTUs MMF 

coverage 
MMF % Chao1 

coverage 
Chao1 % 

Shannon 
corr. Simpson 

G2.1.apr10.D 2,878 6,287 46 7,621 38 5.25 0.98 
G2.2.apr10.D 3,188 6,525 49 7,937 40 5.569 0.99 
G2.3.apr10.D 2,945 6,163 48 7,772 38 5.305 0.98 
G2.1.jul10.D 2,941 6,408 46 7,491 39 5.312 0.98 
G2.2.jul10.D 3,265 6,559 50 7,752 42 5.254 0.99 
G2.3.jul10.D 2,774 5,955 47 7,405 37 5.884 0.98 
G2.1.sep10.D 3,112 7,023 44 8,530 36 5.569 0.98 
G2.2.sep10.D 3,309 7,231 46 8,570 39 5.646 0.98 
G2.3.sep10.D 2,942 6,381 46 7,943 37 5.366 0.98 
G2.1.apr11.D 3,267 7,571 43 8,842 37 5.366 0.97 
G2.2.apr11.D 3,707 8,934 41 9,961 37 4.344 0.98 
G2.3.apr11.D 3,498 8,056 43 9,573 37 4.521 0.97 
G2.1.jul11.D 3,013 7,465 40 8,651 35 5.019 0.93 
G2.2.jul11.D 3,864 8,982 43 10,694 36 4.549 0.99 
G2.3.jul11.D 3,277 7,503 44 8,689 38 4.523 0.96 
G2.1.sep11.D 2,773 6,323 44 7,581 37 5.267 0.95 
G2.2.sep11.D 3,947 9,838 40 10,629 37 4.706 0.97 
G2.3.sep11.D 3,323 7,808 43 9,239 36 4.927 0.97 
G2.1.apr10.R 2,959 7,109 42 8,217 36 3.467 0.96 
G2.2.apr10.R 2,898 6,259 46 7,250 40 3.398 0.97 
G2.3.apr10.R 2,228 4,948 45 5,897 38 3.75 0.94 
G2.1.jul10.R 2,840 6,344 45 7,277 39 3.628 0.97 
G2.2.jul10.R 2,785 6,155 45 7,246 38 4.071 0.97 
G2.3.jul10.R 2,537 5,810 44 7,049 36 3.99 0.96 
G2.1.sep10.R 2,269 4,807 47 5,765 39 3.9 0.96 
G2.2.sep10.R 2,803 6,470 43 7,496 37 3.681 0.96 
G2.3.sep10.R 2,825 6,413 44 7,562 37 3.995 0.96 
G2.1.apr11.R 2,380 5,635 42 6,648 36 3.902 0.93 
G2.2.apr11.R 2,977 6,711 44 7,921 38 3.582 0.97 
G2.3.apr11.R 3,043 7,127 43 7,958 38 3.418 0.96 
G2.1.jul11.R 2,198 5,205 42 6,247 35 3.838 0.90 
G2.2.jul11.R 2,804 6,122 46 7,371 38 3.328 0.98 
G2.3.jul11.R 2,548 6,093 42 7,196 35 3.481 0.94 
G2.1.sep11.R 2,580 5,941 43 7,139 36 3.811 0.95 
G2.2.sep11.R 3,143 7,344 43 8,201 38 3.561 0.96 
G2.3.sep11.R 2,756 6,163 45 7,166 38 3.336 0.95 
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Table S2 continued. Chao1, michaelis-menten-fit (MMF), observed OTUs, Shannon-, 
Simpson-indices, and the coverage of chao1 and MMF in % at 3% genetic distance 
calculated for poplar deme Geismar8 (G8) 
 
Sample  

Obs. 
OTUs MMF 

coverage 
MMF % Chao1 

coverage 
Chao1 % 

Shannon 
corr. Simpson 

G8.1.apr10.D 2,857 6,119 47 7,311 39 6.09 0.98 
G8.2.apr10.D 3,505 7,804 45 9,352 37 6.62 0.99 
G8.3.apr10.D 2,777 5,718 49 6,883 40 6.07 0.98 
G8.1.jul10.D 3,082 6,537 47 7,914 39 6.26 0.98 
G8.2.jul10.D 2,816 6,022 47 7,528 37 6.15 0.99 
G8.3.jul10.D 3,536 7,462 47 8,947 40 6.80 0.99 
G8.1.sep10.D 3,737 8,499 44 9,815 38 6.72 0.99 
G8.2.sep10.D 3,380 7,155 47 8,726 39 6.66 0.99 
G8.3.sep10.D 2,949 6,215 47 7,478 39 6.20 0.99 
G8.1.apr11.D 3,560 8,215 43 9,290 38 6.42 0.98 
G8.2.apr11.D 2,808 6,594 43 7,912 35 5.55 0.94 
G8.3.apr11.D 3,173 7,668 41 9,003 35 5.90 0.95 
G8.1.jul11.D 3,464 8,199 42 9,693 36 6.21 0.96 
G8.2.jul11.D 2,964 6,891 43 8,199 36 5.77 0.96 
G8.3.jul11.D 3,246 8,001 41 9,104 36 5.83 0.95 
G8.1.sep11.D 3,437 7,910 43 9,257 37 6.36 0.98 
G8.2.sep11.D 3,096 7,113 44 8,482 36 5.90 0.95 
G8.3.sep11.D 3,305 7,689 43 8,901 37 6.12 0.96 
G8.1.apr10.R 2,395 5,446 44 6,769 35 5.10 0.93 
G8.2.apr10.R 2,386 5,599 43 6,842 35 5.03 0.94 
G8.3.apr10.R 2,576 5,868 44 6,885 37 5.39 0.96 
G8.1.jul10.R 2,612 6,295 41 7,436 35 5.10 0.92 
G8.2.jul10.R 2,710 6,379 42 7,682 35 5.48 0.96 
G8.3.jul10.R 2,783 6,518 43 7,740 36 5.56 0.96 
G8.1.sep10.R 2,794 6,580 42 7,999 35 5.48 0.94 
G8.2.sep10.R 2,649 6,209 43 7,108 37 5.33 0.95 
G8.3.sep10.R 2,950 7,017 42 8,419 35 5.85 0.98 
G8.1.apr11.R 2,699 6,291 43 7,396 36 5.33 0.94 
G8.2.apr11.R 2,537 5,936 43 6,987 36 5.16 0.95 
G8.3.apr11.R 2,499 5,888 42 6,779 37 5.10 0.94 
G8.1.jul11.R 2,597 6,199 42 7,456 35 5.20 0.94 
G8.2.jul11.R 2,619 6,423 41 7,244 36 5.07 0.93 
G8.3.jul11.R 2,514 5,879 43 6,948 36 5.12 0.94 
G8.1.sep11.R 2,592 6,310 41 7,422 35 5.18 0.94 
G8.2.sep11.R 2,603 6,359 41 7,431 35 4.92 0.91 
G8.3.sep11.R 2,550 6,227 41 7,201 35 4.96 0.92 
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Table S3. Chao1, michaelis-menten-fit (MMF), observed OTUs, Shannon-, Simpson-
indices, and the coverage of chao1 and MMF in % at 20% genetic distance calculated for 
poplar deme Geismar2 (G2) 
 
Sample  

Obs. 
OTUs MMF 

coverage 
MMF % Chao1 

coverage 
Chao1 % 

Shannon 
corr. 

G2.1.apr10.D 343.2 403.338 85 442.799 78 3.34 
G2.2.apr10.D 388.1 455.005 85 492.688 79 3.93 
G2.3.apr10.D 355.6 423.764 84 467.157 76 3.59 
G2.1.jul10.D 342.4 401.409 85 462.037 74 3.56 
G2.2.jul10.D 379.3 442.641 86 500.611 76 3.99 
G2.3.jul10.D 335.6 398.085 84 438.867 76 3.61 
G2.1.sep10.D 350.1 409.949 85 470.636 74 3.49 
G2.2.sep10.D 370.9 440.854 84 503.955 74 3.65 
G2.3.sep10.D 357.8 424.53 84 467.492 77 3.54 
G2.1.apr11.D 336.6 387.532 87 443.886 76 3.43 
G2.2.apr11.D 382.4 442.004 87 469.952 81 3.70 
G2.3.apr11.D 385.5 450.396 86 519.319 74 3.62 
G2.1.jul11.D 343.1 411.387 83 465.013 74 2.86 
G2.2.jul11.D 377 437.164 86 466.267 81 3.77 
G2.3.jul11.D 352.7 409.85 86 457.995 77 3.42 
G2.1.sep11.D 303.9 356.452 85 393.488 77 3.06 
G2.2.sep11.D 399 463.01 86 503.178 79 3.58 
G2.3.sep11.D 358.7 422.503 85 461.705 78 3.40 
G2.1.apr10.R 288.2 356.649 81 401.215 72 2.55 
G2.2.apr10.R 323.7 386.813 84 440.235 74 3.00 
G2.3.apr10.R 262.9 317.073 83 363.774 72 2.51 
G2.1.jul10.R 314 367.585 85 386.164 81 3.09 
G2.2.jul10.R 300.6 351.122 86 419.617 72 3.03 
G2.3.jul10.R 289 341.977 85 396.938 73 2.73 
G2.1.sep10.R 258.8 310.146 83 363.348 71 2.60 
G2.2.sep10.R 307.3 359.195 86 394.04 78 2.93 
G2.3.sep10.R 309 367.778 84 430.793 72 2.95 
G2.1.apr11.R 285.3 347.401 82 373.95 76 2.40 
G2.2.apr11.R 322 375.065 86 412.38 78 3.11 
G2.3.apr11.R 320.6 376.013 85 419.065 77 2.98 
G2.1.jul11.R 268.2 330.141 81 389.559 69 2.15 
G2.2.jul11.R 293 336.794 87 384.761 76 3.22 
G2.3.jul11.R 282 340.07 83 379.269 74 2.58 
G2.1.sep11.R 282.8 341.395 83 372.172 76 2.65 
G2.2.sep11.R 332.6 391.912 85 435.637 76 3.03 
G2.3.sep11.R 279.3 331.817 84 365.548 76 2.65 
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Table S3 continued. Chao1, michaelis-menten-fit (MMF), observed OTUs, Shannon-, 
Simpson-indices, and the coverage of chao1 and MMF in % at 20% genetic distance 
calculated for poplar deme Geismar8 (G8) 
 
Sample  

Obs. 
OTUs MMF 

coverage 
MMF % Chao1 

coverage 
Chao1 % 

Shannon 
corr. 

G8.1.apr10.D 362.8 434.409 84 490.669 74 3.64 
G8.2.apr10.D 389.3 454.717 86 484.435 80 3.86 
G8.3.apr10.D 322.6 374.543 86 438.807 74 3.68 
G8.1.jul10.D 375 444.569 84 503.693 74 3.68 
G8.2.jul10.D 339 396.177 86 449.418 75 3.64 
G8.3.jul10.D 388.7 450.829 86 518.158 75 4.08 
G8.1.sep10.D 394.4 457.731 86 518.651 76 3.86 
G8.2.sep10.D 372.8 430.987 86 485.19 77 3.91 
G8.3.sep10.D 341.7 399.497 86 454.682 75 3.72 
G8.1.apr11.D 387.3 448.29 86 490.603 79 3.72 
G8.2.apr11.D 305.2 362.055 84 406.177 75 3.01 
G8.3.apr11.D 329.4 388.922 85 423.48 78 3.13 
G8.1.jul11.D 376.2 441.695 85 499.066 75 3.48 
G8.2.jul11.D 332 391.748 85 423.264 78 3.15 
G8.3.jul11.D 332.3 388.387 86 418.132 79 3.14 
G8.1.sep11.D 373.9 439.097 85 475.302 79 3.65 
G8.2.sep11.D 354.6 419.262 85 457.3 78 3.26 
G8.3.sep11.D 363.8 425.598 85 473.76 77 3.42 
G8.1.apr10.R 290.5 354.818 82 399.506 73 2.40 
G8.2.apr10.R 271 336.734 80 366.998 74 2.36 
G8.3.apr10.R 266.4 321.033 83 370.854 72 2.60 
G8.1.jul10.R 284.6 335.366 85 376.212 76 2.51 
G8.2.jul10.R 290 349.008 83 399.945 73 2.82 
G8.3.jul10.R 281.9 335.294 84 373.459 75 2.77 
G8.1.sep10.R 312.4 375.661 83 412.562 76 2.70 
G8.2.sep10.R 272.3 329.577 83 361.23 75 2.55 
G8.3.sep10.R 296.3 359.654 82 382.983 77 2.77 
G8.1.apr11.R 316.7 379.687 83 429.127 74 2.70 
G8.2.apr11.R 271.9 334.201 81 354.232 77 2.48 
G8.3.apr11.R 258.1 309.932 83 337.191 77 2.37 
G8.1.jul11.R 310.4 373.034 83 403.517 77 2.66 
G8.2.jul11.R 266.6 327.763 81 351.614 76 2.31 
G8.3.jul11.R 269.7 326.248 83 359.553 75 2.41 
G8.1.sep11.R 295.5 355.796 83 409.363 72 2.64 
G8.2.sep11.R 282.5 339.279 83 376.5 75 2.47 
G8.3.sep11.R 269.2 321.31 84 364.812 74 2.31 
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Table S4: Welch two sample test of main phyla and proteobacterial classes with year, 
aspen deme, and nucleic acid type (DNA and RNA). The complete dataset (RNA+DNA), 
the total (DNA), and active bacterial community have been tested. 

 

 

 

 

Phyla/ proteobacterial 
classes 

Year             
(2010 and 2011) 

Aspen deme  
(G8 and G2) 

Nucleic acid type 
(DNA and RNA) 

Complete dataset 
(DNA+RNA) 

 
P-value 

Acidobacteria 0.567 0.8222 < 2.2e-16 
Actinobacteria 0.2584 0.5202 1.407e-07 
Chloroflexi 0.02913 0.2335 3.848e-09 
Firmicutes 0.001183 0.1478 0.0001225 
Alphaproteobacteria 0.8678 0.7267 < 2.2e-16 
Betaproteobacteria 0.05733 0.4641 1.545e-10 
Deltaproteobacteria 0.7292 0.07488 0.03607 
Gammaproteobacteria 0.001933 0.9081 1.223e-08 
Other Proteobacteria 0.1464 0.3277 3.165e-08 
Proteobacteria 0.04635 0.403 5.765e-10 
Total bacterial community 
(DNA) 

   

Acidobacteria 0.2496 0.3655  
Actinobacteria 0.0272 0.6912  
Chloroflexi 0.01052 0.8533  
Firmicutes 1.738e-08 0.986  
Alphaproteobacteria 0.08278 0.2469  
Betaproteobacteria 0.01641 0.4415  
Deltaproteobacteria 0.8449 0.8992  
Gammaproteobacteria 1.388e-07 0.7305  
Other Proteobacteria 0.2016 0.8127  
Proteobacteria 1.178e-08 0.7238  
Active bacterial community 
(RNA) 

   

Acidobacteria 0.7926 0.3595  
Actinobacteria 0.5785 0.06854  
Chloroflexi 0.2258 0.02293  
Firmicutes 0.6965 0.00407  
Alphaproteobacteria 0.283 0.6611  
Betaproteobacteria 0.1582 0.3333  
Deltaproteobacteria 0.7705 0.03957  
Gammaproteobacteria 0.1729 0.5588  
Other Proteobacteria 0.1864 0.009263  
Proteobacteria 0.1763 0.2111  
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Figure S1: Rarefaction curves at 20% genetic distance calculated for poplar deme 
Geismar2 DNA (G2_DNA:20%), Geismar2 RNA (G2_RNA:20%), Geismar8 DNA 
(G8_DNA:20%), and Geismar8 RNA (G8_RNA:20%) 
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Figure S2: Rarefaction curves at 3% genetic distance calculated for poplar deme 
Geismar2 DNA (G2_DNA:20%), Geismar2 RNA (G2_RNA:20%), Geismar8 DNA 
(G8_DNA:20%), and Geismar8 RNA (G8_RNA:20%) 
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Figure S3: Relative abundances of the rare bacterial phyla (< 1% abundance) derived 
from the analyzed soil samples. Poplar deme Geismar2 (G2) and poplar deme Geismar8 
(G8) samples are shown in this figure. Samples were taken in April (Apr), July (Jul), and 
September (Sep) in 2010 (10) and 2011 (11) and the total (D) and active (R) bacterial 
community were analyzed.   
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4.1. Mixed effects of management regimes and herbivory on bacterial community 
composition in the rhizosphere of permanent grassland 
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Abstract  

 

The plant rhizosphere is regarded as a dynamic environment in which several parameters 

influence the diversity, activity, and composition of bacterial communities. Despite their 

importance for soil and plant health, the response of these communities to different 

grassland management regimes and to above-ground herbivory is still poorly understood. 

This study aimed at assessing and exploiting the bacterial diversity in the plant rhizosphere 

with regard to sward composition, different fertilization and mowing regimes, as well as 

above-ground herbivory. For this purpose, a lysimeter experiment was conducted on a 

semi-natural, moderately species-rich grassland site. Following a two-week exposure to 

herbivory, soil samples were taken from the plant rhizosphere. Community structures were 

assessed by DGGE as well as large-scale pyrosequencing-based analysis of 16S rRNA 

gene sequences. More than 450,000 sequences were used to assess diversity and 

composition of bacterial communities. We recorded significant differences in bacterial 

diversity and richness with respect to the investigated parameters. Further analysis 

revealed that not only the parameters solely but also the combinations influenced the 

abundances of several bacterial taxa. Such combined effects led to either an enhanced, 

reduced, or, in rare cases, opposite bacterial response. These unique combinations of 

parameters studied and the high phylogenetic resolution provides exceptional insights into 

the diversity and ecology of bacterial communities in the plant rhizosphere. Moreover, the 

results of this study enable us to better validate the impact of different management 

regimes and herbivory on these communities and to predict potential ecological 

implications.  
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Introduction 

 

The plant rhizosphere, defined as the soil layer surrounding the plant roots (Sørensen et al., 

1997), is a complex and dynamic environment. Microbial communities colonizing these 

habitats play a major role for plant growth and health (Berg and Smalla, 2009; Compant et 

al., 2010) as well as for functioning of fundamental processes such as nutrient cycling 

(Berg and Smalla, 2009; Marschner et al., 2004) or denitrification processes (Pastorelli et 

al., 2011). Rhizospheric bacteria may form close mutualistic relationships with plants, 

which are important for the structure and dynamics of plant communities in almost all 

terrestrial ecosystems (van der Heijden et al., 2008a). Moreover, they may promote higher 

resistance to plant pathogens and parasites such as nematodes or insects (Kloepper et al., 

1992; Lugtenberg and Kamilova, 2009; Ramamoorthy et al., 2001) and help plants to 

tolerate abiotic stress including salt, drought or nutrient deficiency (Dimkpa et al., 2009; 

Yang et al., 2009).  

The development of culture-independent molecular approaches has significantly enhanced 

our understanding of bacterial communities in different environments such as rhizosphere 

bacteria in grassland soils (Nunan et al., 2005; Singh et al., 2007). One of the most 

frequently used techniques to explore bacterial communities in soil or rhizosphere is 

denaturing gradient gel electrophoresis (DGGE) (Costa et al., 2006; Duineveld et al., 2001; 

Nunan et al., 2005; Smalla et al., 2001; Yang and Crowley, 2000). Recently, high-

throughput pyrosequencing of 16S rRNA gene fragments has been applied for in-depth 

analysis of these communities (Acosta-Martinez et al., 2008; Gottel et al., 2011; Nacke et 

al., 2011).  

The diversity, activity, and structure of bacterial communities in the rhizosphere are 

shaped by several parameters. Soil type or plant species are regarded as the most dominant 

factors (Berg and Smalla, 2009; Duineveld et al., 2001; Garbeva et al., 2008; Gottel et al., 

2011; Grayston et al., 1998; Kowalchuk et al., 2002). Additional important factors shaping 

bacterial communities in the rhizosphere are plant root exudates(Garbeva et al., 2008; 

Haichar et al., 2008), the soil pH (Marschner et al., 2004), and fertilizer application (Doi et 

al., 2011; Marschner et al., 2004). A few recent studies have also examined the influence 

of land use and management regime on rhizosphere bacterial communities (Costa et al., 

2006; Garbeva et al., 2008).  

In addition to the parameters mentioned above, below-ground herbivory also affects 

bacterial communities in the rhizosphere (Dematheis et al., 2012; Denton et al., 1999; Poll 
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et al., 2007; Treonis et al., 2005). For example, soil dwelling pests such as the western 

corn rootworm larvae (Diabrotica virgifera virgifera) or the leather jacket larvae (Tipula 

paludosa) have been shown to change the rhizosphere bacterial community composition 

by feeding on the roots (Dematheis et al., 2012; Treonis et al., 2005). The authors suggest 

that these changes are linked to shifts in root exudates patterns. However, studies 

investigating the influence of above-ground herbivory on bacterial communities in the 

rhizosphere are still missing.  

In this study, we investigated the bacterial community composition in the rhizosphere with 

regard to sward composition (monocot-reduced, dicot-reduced, and species-rich as 

control), different grassland management regimes (with vs. without fertilization; mown 

once vs. thrice per year), and above-ground herbivory.  

More specifically, we wanted to evaluate the impact of these four parameters on 

rhizospheric bacterial communities separately and in combination. Therefore, a lysimeter 

experiment was established on a semi-natural, moderately species-rich grassland site near 

Silberborn (Solling; Germany). Soil samples were collected from the lysimeters after two-

weeks herbivory and further investigated employing different metagenomic approaches. 

To gain insights into the bacterial community composition, total DNA was extracted from 

the samples and subjected to 16S rRNA gene analyses. The community composition was 

either studied by DGGE analysis or pyrosequencing-based sequencing of 16S rRNA 

genes.  

To our knowledge, this is the first study using two metagenomic approaches to analyze the 

impact of (1) sward composition, (2) fertilization, (3) different mowing frequencies, (4) 

above-ground herbivory on the bacterial community in the rhizosphere in one single field 

experiment on a permanent semi-natural grassland site. 

 

Materials and methods  

 

Study site  

 

The full-factorial design of this study included two mowing frequencies (once per year in 

July vs. thrice per year in May, July, and September, respectively) and two fertilization 

treatments (no vs. NPK fertilization). The N fertilizer was applied as calcium ammonium 

nitrate N27 in two equal doses (180 kg N ha-1 yr-1) in April and end of May. In addition, 30 
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kg P ha-1 yr-1 plus 105 kg K ha-1 yr-1 as Thomaskali® (8% P2O5, 15% K2O, 20% CaO) were 

applied at the end of May. All plots were cut to a height of 7 cm with a Haldrup® 

harvester. The third factor established in this experiment was a manipulation of the sward 

composition (monocot-reduced, dicot-reduced, species-rich), established by selective 

herbicide applications to decrease either dicots (Starane® and Duplosan KV; active 

ingredients: Mecoprop-P® and Fluroxypyr/ Triclopyr; 3 l ha-1 each) or monocots (Select 

240 EC® by Stähler Int., Stade, Germany; active ingredients: Clethodim; 0.5 l ha-1). One 

third of the plots were maintained as species-rich controls. The application of herbicides 

took place on 31st of July 2008 resulting in significant changes in species richness and in 

functional group abundances(Petersen et al., 2012). Each treatment was replicated six 

times, resulting in 72 plots of 15 x 15 m size arranged in a Latin rectangle (for further 

details see Petersen et al. 2012).  

Additionally, a lysimeter experiment was established with two lysimeters per plot in 

August and September 2010. The lysimeters consisted of a transparent plexiglass tube 

(diameter 14.4 cm, length 30 cm), which contained the original and intact soil core. The 

tubes were installed without damaging the vegetation and the soil core; they were slowly 

pushed downwards into the soil by applying hydraulic pressure. Drainage water was 

collected in a PE bottle that was placed underneath all lysimeters. One lysimeter per plot 

was used as herbivory lysimeter; the other one was left as control lysimeter. Four adult 

female grasshoppers  

(Chorthippus spec.) and two Roman snails (Helix pomatia L.) per herbivory lysimeter and 

plot were applied. Cages for the herbivores were built of gauze of 1.5 mm mash size and 

were fixed on the top of the lysimeter. The experiments were started in August 2011, and 

were run for two weeks.  

 

Sample collection, pH measurement, and DNA extraction  

 

After two-weeks herbivory, soil samples were taken in autumn 2011. For this purpose, the 

lysimeter core was harvested, the above-ground vegetation was removed, and the top 5 cm 

of the soil core were homogenized. Coarse roots and stones (>5 mm) were subsequently 

removed. Soil samples were immediately cooled down (below 4°C), transported to the 

laboratory and kept frozen at -80°C until further use.  

To measure the soil pH, 2 g of soil per lysimeter were mixed with 5 ml 1 M KCl. The pH 

was determined after 12 h incubation time (Supplemental Tab. S1). As soil pH can 
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influence the bacterial community structures in rhizosphere (Marschner et al., 2004) and 

measured pH values were inhomogeneous over the research area, we initially tested for 

correlation between pH and the four studied parameters (sward composition, fertilization, 

mowing frequency, and above-ground herbivory). No significant correlation was found.  

Environmental DNA was extracted employing the MoBio PowerSoil DNA isolation kit 

(MoBio Laboratories, Carlsbad, CA, USA) according to the manufacturer’s instructions. 

The lysimeter samples of at least three plots (DGGE 4, pyrosequencing 3 samples) per 

treatment were used for DNA extraction and further analysis. The samples were analyzed 

by DGGE as well as large-scale pyrosequencing-based analysis of 16S rRNA gene 

sequences. 

 

Amplification of the 16S rRNA genes for DGGE analysis  

 

PCR amplification targeting the V6-V8 region of the 16S rRNA gene was performed with 

the primers F968-GC (5'-AACGCGAAGAACCTTAC-3') and R1401 (5'-CGG 

TGTGTACAAGACCC-3') (Nübel et al., 1996, Zoetendal et al., 2002). In order to prevent 

complete denaturation of the fragment, a GC-rich sequence (5'-CGCCCGCCGCGCCCCG 

CGCCCGTCCCGCCGCCCCCGCCCG-3') was attached at the 5'-end of the primer F968-

GC (Muyzer et al., 1993). 

The PCR reaction mixture (25 μl) for amplification of the target gene contained 2.5 μl of 

10-fold Mg-free Taq polymerase buffer (Fermentas, St. Leon-Rot, Germany), 200 μM of 

each of the four deoxynucleoside triphosphates, 1.75 mM MgCl2, 0.4 μM of each primer, 

5% DMSO, 1 U of Taq DNA polymerase (Fermentas), and approximately 25 ng of the 

DNA sample as template. Negative controls were performed by using the reaction mixture 

without template. Three independent PCR reactions were performed and obtained PCR 

products were pooled in equal amounts. The following thermal cycling scheme was used: 

initial denaturation at 94°C for 5 min, 11 cycles of: 1 min at 94°C, 1 min at 60°C (minus 

1°C per cycle) and 2 min at 72°C, followed by 17 cycles of: 1 min at 94°C, 1 min at 53°C 

and 2 min at 72°C. The final extension was carried out at 72°C for 10 min. The resulting 

PCR products were checked for appropriate size by agarose gel electrophoresis.  
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Denaturing Gradient Gel Electrophoresis (DGGE)  

 

The DGGE analyses of the bacterial communities were performed by using a PhorU2 

apparatus (Ingeny, Goes, the Netherlands) with a double gradient. The first gradient ranged 

from 55 to 68% denaturant with an additional gradient of 6.2 to 9% acrylamide. This 

enhances the bands’ sharpness and resolution (Cremonesi et al., 1997). The denaturant 

(100%) contained 7M urea and 40% formamide. Approximately 100ng of the pooled PCR 

product were loaded on the gel. For each treatment, at least three independent DGGE were 

performed. The run was performed in Tris-acetate-EDTA buffer (40mM Tris, 20mM 

NaAcetate, 1mM Na2EDTA, pH 7.4) at 60°C. After electrophoresis for 16h at 100V, the 

gels were stained for 45min with SYBRGold (Invitrogen, Carlsbad, USA). The stained 

DGGE gels were immediately photographed on a UV trans-illumination table.  

 

DGGE data analysis and statistical testing  

 

Analysis of DGGE profiles was performed using the software package GELCOMPAR II, 

version 5.1 (Applied Math, Ghent, Belgium). Cluster analyses (UPGMA) based on 

Pearson correlation were performed to evaluate the percentage of similarity shared among 

the samples from the different treatments. 

 

Community analysis using pyrosequencing  

 

To analyze the bacterial diversity, the V3-V5 region of the bacterial 16S rRNA was 

amplified by PCR. The PCR reaction (25μl) contained 5 μl of 5-fold Phusion GC buffer 

(Finnzymes, Vantaa, Finland), 200μM of each of the four desoxynucleoside triphosphates, 

1.5mM MgCl2, 4μM of each primer (see below), 2.5% DMSO, 1U of Phusion High 

Fidelity Hot Start DNA polymerase (Finnzymes), and approximately 25 ng of extracted 

DNA. The following thermal cycling scheme was used: initial denaturation at 98°C for 5 

min, 25 cycles of denaturation at 98°C for 45s, annealing at 68°C for 45s, followed by 

extension at 72°C for 30s. The final extension was carried out at 72°C for 5min. Negative 

controls were performed by using the reaction mixture without template.  

The V3-V5 region was amplified with the following set of primers according to Muyzer et 

al. (1995) containing the Roche 454-pyrosequencing adaptors, keys, and one unique MID 

per sample (underlined): V3for (341f) 5′- CCATCTCATCCCTGCGTGTCTCCGACT 



Chapter IV 
 

103 
 

CAG-(dN)10-CCTACGGGAGGCAG CAG-3′ and V5rev (907r) 5′- CCTATCCCCTGT 

GTGCCTTGGCAGTCTCAG-CCGTCAATTCCTTTRAGTTT-3′. The resulting PCR 

products were checked for appropriate size and purified employing the peqGOLD Gel 

Extraction Kit (Peqlab) as recommended by the manufacturer.  

Quantification of the PCR products was performed using the Quant-iTdsDNAHS assay kit 

and a Qubit fluorometer (Invitrogen) as recommended by the manufacturer. Three 

independent PCR reactions were performed per sample and the obtained PCR products 

were pooled in equal amounts. The Göttingen Genomics Laboratory determined the 

sequences of the 16S rRNA by using a Roche GS-FLX+ 454 pyrosequencer with Titanium 

chemistry (Roche, Mannheim, Germany).  

Generated 16S rRNA datasets were processed and analyzed according to Wemheuer et al. 

(2014). In summary: after raw data extraction, pyrosequencing reads shorter than 250bp, 

with an average quality value below 25, or possessing long homopolymer stretches (> 8bp) 

were removed. Afterwards, the sequences were denoised. Chimeric sequences were 

subsequently removed using UCHIME (Edgar et al., 2011) and the most recent 

Greengenes CoreSet (DeSantis et al., 2006) as reference dataset. Processed sequences of 

all samples were joined, sorted by decreasing length, and clustered employing the 

UCLUST algorithm (Edgar, 2010) implemented in the QIIME software package.  

Sequences were clustered in operational taxonomic units (OTUs) at 1%, 3%, and 20% 

genetic dissimilarity. Phylogenetic composition was determined using the QIIME 

assign_taxonmy.py script. A BLAST alignment against the Silva SSURef 111 NR 

database (Pruesse et al., 2007) was thereby performed. Sequences were classified with 

respect to the silva taxonomy of their best hit. Rarefaction curves, Shannon indices, ACE 

indices, and Chao1 indices were calculated employing QIIME. In addition, the maximal 

number of OTUs (nmax) was estimated for each sample using the Michaelis-Menten-fit 

alpha diversity metrics included in the QIIME software package. To compare bacterial 

community structures across all samples based on phylogenetic or count-based distance 

metrics, Principal Coordinate Analyses (PCoA) were generated using QIIME. A 

phylogenetic tree was calculated prior to PCoA generation. For this purpose, sequences 

were aligned using the PyNAST algorithm implemented in the QIIME software package. 

The phylogenetic tree and the respective OTU table were subsequently used to calculate 

PCoAs.  
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Statistical analyses  

 

Statistical analyses were performed employing R (RDevelopmentCoreTeam, 2012; 

Version 2.15.0). To validate the impact of the different management regimes and 

herbivory on the measured soil pH as well as on the diversity indices, an Analysis of 

Variance (ANOVA) was performed. The effects of the different treatments on relative 

abundances of predominant bacterial groups were tested by Dirichelet regression in R 

using the DirichletReg package. Either the most abundant bacterial phyla and 

proteobacterial classes or the abundant (> 0.1%) OTUs at 3% genetic divergence were 

used for in this analysis. 

 

Results  

 

General analyses of the pyrosequencing-derived dataset  

 

To fully assess the bacterial community structures, we applied amplicon-based 

pyrosequencing. A total of 468,538 high-quality bacterial 16S rRNA gene sequences with 

an average read length of 504bp were used for the community analyses. The number of 

sequences per sample ranged from 2,291 to 12,795. All sequences could be classified below 

phylum level. Rarefaction curves, richness, and alpha diversity indices were calculated at 1, 3, 

20% genetic distance using 2,280 randomly selected sequences per sample. At 20% genetic 

divergence, most rarefaction curves reached saturation, indicating that the surveying effort 

covered almost the full extent of taxonomic diversity at this genetic distance (Supplemental 

Fig. S3C). The calculated coverage varied between 71.81 and 87.63% (Supplemental Tab. S2). 

At 3 and 1% genetic distance, the rarefaction curves were not saturated (Supplemental Fig. 3A 

and B). The calculated coverage was between 30.40 and 72.59% (3% genetic distance) and 

between 25.50 and 71.74% (1% genetic distance) (Supplemental Tab. S2). For all samples, the 

Shannon index of diversity (H’) was determined (Supplemental Tab. S2). The Shannon index 

ranged from 2.65 to 3.51, from 4.94 to 6.1, and from 5.29 to 6.34 at a genetic distance of 20, 3, 

and 1%, respectively.  
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Characterization of bacterial community structure in the rhizosphere  

 

Sequences were mainly affiliated to 7 phyla and 4 proteobacterial classes (Fig. 1 and 2, 

and Supplemental Tab. S3). The dominant phyla and proteobacterial classes across all 

samples were Acidobacteria, Alphaproteobacteria, Actinobacteria, Betaproteobacteria, 

Bacteroidetes, Deltaproteobacteria, Gammaproteobacteria, Firmicutes, 

Gemmatimonadetes, and Chloroflexi, representing 24.63, 21.77, 16.16, 7.27, 6.18, 5.59, 

4.72, 3.59, 2.98, and 2.97%, respectively. These phylogenetic groups were present in all 

samples. The three dominant phyla Proteobacteria, Acidobacteria, and Actinobacteria 

represented approximately 84% of all classified sequences. Other bacterial phyla were less 

abundant (<1% of all classified sequences) (Fig. 2, Supplemental Tab. S4). The members 

of these rare phyla included, i.e., Chlorobi, Nitrospirae, Fibrobacteres, Verrucomicrobia, 

Cyanobacteria, Spirochaetes, Planctomyces, Fusobacteria, and Deinococcus-Thermus. 
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Fig. 1. Relative abundances of different predominant bacterial phyla and proteobacterial classes as revealed by pyrosequencing-based analysis of generated 
16S rRNA gene amplicons. Abundances are mean values of the three replications per treatment. Only phyla and proteobacterial classes with more than 1% 
mean abundance are shown. 
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Fig. 2. Relative abundances of rare bacterial phyla as revealed by pyrosequencing-based analysis of generated 16S rRNA gene amplicons. Abundances are 
mean values of the three replications per treatment. Bacterial phyla with less than 1% mean abundance are shown. 
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In this study, 44,452 OTUs at 3% genetic divergence were detected in all samples. We 

identified 148 abundant bacterial OTUs at 3% genetic divergence (>0.1% of all classified 

sequences) (relative abundances of the 25 most abundant OTUs are shown in 

Supplemental Tab. S5).  

Together, these OTUs contributed for approximately 54.78% of the total bacterial 

community. The most abundant phylotype at a genetic distance of 3% across all samples 

was a Bradyrhizobium, belonging to the order Rhizobiales, representing 4.8% of all 

sequences. The second and third most abundant phylotypes at the same genetic distance 

were an uncultured Acidobacterium (unknown order) and the bacterium Ellin6561 (order 

Rhizobiales), representing 1.95 or 1.90% of the sequences, respectively.  

In addition, sequences were related to several uncultured bacteria of the Bacillaceae 

(unknown order), Nitrosomonadaceae (order Nitrosomonadales), Rhodospirillaceae (order 

Rhodospirales), as well as an uncultured Acidobacteria bacterium (order Incertae Sedis, 

and Catellatospora sp., belonging to the order Micromonosporales. The 25 most abundant 

phylotypes and their taxonomic affiliations are shown in Tab. 3.  

 

Sward composition-dependent bacterial communities  

 

To investigate the impact of sward composition on bacterial richness, rarefaction curves 

and alpha diversity indices were calculated with regard to the three sward types. The 

rarefaction analysis revealed a significant decrease in bacterial richness at 20, 3 and, 1% 

genetic distance in the herbicide-treated plots compared to the species-rich control plots 

(Fig. 3). 
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Fig. 3. Rarefaction curves at 1%, 3%, and 20% genetic distance with respect to sward diversity. 
Curves were calculated with QIIME (Caporaso et al., 2010). 
 

The lowest richness was recorded on the dicot-reduced plots at all three genetic distance 

levels (Tab. 1). The observed number of OTUs varied between 143.8±9.8 (control plots), 

126.5±17.8 (dicot-reduced plots) and between 135.4±8.2 (monocot-reduced plots). The 

lower diversity in herbicide-treated plots was supported by the calculated alpha diversity 

indices. The Shannon index showed higher values at control plots (3.28 ±0.15) compared 

to dicot-reduced plots (3.14 ±0.19) and monocot-reduced plots (3.18 ±0.14) at genetic 

distances of 20%. The same results were obtained for genetic distances at 3 and 1%. The 

observed number of OTUs as well as the diversity indices at all three genetic distance 

levels were significantly (p value < 0.05) reduced in herbicide-treated plots. As a 

consequence, the decrease of plant species diversity also led to a reduction of bacterial 

diversity in the rhizosphere. 
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Tab. 1: Impact of sward diversity, fertilization, different mowing frequencies, and above-ground herbivory on bacterial richness at 99%, 97%, 
and 80% genetic similarity. Alpha diversity indices were calculated with QIIME (Caporaso et al., 2010). 
Sward type  Observed number of OTUs  Maximal number of OTUs  ACE  Chao1  Shannon (H’)  
 80% 97%  99%  80%  97%  99%  80%  97%  99%  80%  97%  99%  80%  97%  99%  
Control  143.8± 

9.8  
779.6± 
97.2  

883.4± 
114.4  

188.2 ± 
12.2  

1747.7 ± 
515.3  

2146.0 
± 761.7  

223.8 ± 
16.0  

2985 ± 
1042  

3980 ± 
2005  

221.6 ± 
19.6  

3159 ± 
806.2  

5044 ± 
2030  

3.28 ± 
0.15  

5.77 ± 
0.15  

6.00 ± 
0.15  

Dicot-reduced  126.5± 
17.8  

650.9± 
111.3  

743.8± 
133.3  

164.7 ± 
26.5  

1179.0 ± 
402.9  

1404.6 
± 524.7  

211.8 ± 
10.8  

2457 ± 
897.1  

2998 ± 
1667  

211.2 ± 
13.9  

2762 ± 
830.2  

4031 ± 
2137  

3.14 ± 
0.19  

5.63 ± 
0.21  

5.87 ± 
0.22  

Monocot-reduced  135.4± 
8.2  

726.7± 
76.5  

821.0± 
90.9  

177.7 ± 
11.1  

1493.7 ± 
384.6  

1765.2 
± 581.0  

203.4 ± 
31.2  

1641 ± 
795.4  

1880 ± 
1045  

197.6 ± 
29.8  

1812 ± 
852.8  

2256 ± 
1359  

3.18 ± 
0.14  

5.70 ± 
0.15  

5.95 ± 
0.15  

Fertilization  80%  97%  99%  80%  97%  99%  80%  97%  99%  80%  97%  99%  80%  97%  99%  
Control  135.6 ± 

15.8  
708.7 ± 
108.1  

799.6 ± 
133.7  

176.8 ± 
22.9  

1420.9 ± 
443.8  

1693.8 
± 624.1  

214 ± 
25  

2243 ± 
946  

2740 ± 
1546  

211 ± 
26  

2491 ± 
932  

3522 ± 
1948  

3.23 ± 
0.16  

5.69 ± 
0.15  

5.91 ± 
0.17  

Fertilized  134.9 ± 
13.1  

729.5 ± 
110.2  

832.5 ± 
119.0  

176.9 ± 
17.6  

1525.9 ± 
538.2  

1850.0 
± 759.5  

212 ± 
20  

2479 ± 
1171  

3165 ± 
2063  

209 ± 
23  

2665 ± 
1064  

4032 ± 
2398  

3.17 ± 
0.17  

5.71 ± 
0.21  

5.97 ± 
0.19  

Mowing 
frequency  

80%  97%  99%  80%  97%  99%  80%  97%  99%  80%  97%  99%  80%  97%  99%  

One  131.9 ± 
13.6  

697.0 ± 
94.5  

790.2 ± 
119.3  

172.0 ± 
19.9  

1364.1 ± 
389.5  

1626.7 
± 540.0  

208 ± 
21  

2143 ± 
905  

2614 ± 
1446  

205 ± 
21.8  

2354 ± 
889  

3440 ± 
1990  

3.18 ± 
0.15  

5.69 ± 
0.14  

5.91 ± 
0.17  

Thrice  138.6 ± 
14.6  

741.2 ± 
118.9  

841.9 ± 
130.4  

181.7 ± 
19.8  

1582.8 ± 
562.6  

1917.1 
± 803.1  

218 ± 
23  

2579 ± 
1175  

3291 ± 
2102  

216 ± 
25.1  

2802 ± 
1061  

4113 ± 
2343  

3.22 ± 
0.19  

5.71 ± 
0.21  

5.97 ± 
0.20  

Herbivory  80%  97%  99%  80%  97%  99%  80%  97%  99%  80%  97%  99%  80%  97%  99%  
Control  135.3 ± 

12.2  
719.7 ± 
93.9  

814.9 ± 
110.7  

177.4 ± 
17.6  

1458.7 ± 
417.5  

1728.9 
± 567.9  

215.1 ± 
19.1  

2331.8 
± 988.4  

2842.4 
± 
1586.4  

212.4 ± 
21.5  

2557.9 
± 966.1  

3733.9 
± 
2194.8  

3.20 ± 
0.14  

5.71 ± 
0.14  

5.95 ± 
0.15  

Herbivory  135.1 ± 
16.4  

718.5 ± 
123.4  

817.2 ± 
142.5  

176.3 ± 
22.9  

1488.2 ± 
563.4  

1815.0 
± 807.7  

210.8 ± 
25.8  

2390.2 
± 
1146.9  

3062.6 
± 
2048.0  

207.8 ± 
26.4  

2598.0 
± 
1040.3  

3819.7 
± 
2203.4  

3.20 ± 
0.20  

5.69 ± 
0.22  

5.93 ± 
0.21  
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The PCoA analysis revealed that species-rich control plots shared a more similar 

community structure followed by monocot-reduced plots. Dicot-reduced plots exhibited a 

more dissimilar community structure when compared to the other sward types (Fig. 4). 

 

 
Fig. 4: Impact of sward composition on bacterial community structures in the rhizosphere at 99% 
(A), 97% (B), and 80% (C) genetic similarity. PCoA plots were calculated with QIIME (Caporaso 
et al., 2010). Circles are drawn to highlight differences between the different sward types. 
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Bacterial community composition is affected by fertilization and different mowing 

frequencies  

 

Bacterial community composition in regard to different management regimes was initially 

assessed by DGGE analysis of partial 16S rRNA gene sequences. DGGE of species-rich 

plots revealed complex patterns with approximately 20 bands for each treatment (Fig. 5). 

The same results were obtained for monocot-reduced plots (Supplemental Fig. S2), while 

DGGE of dicot-reduced plots revealed complex patterns with more than 30 bands 

(Supplemental Fig. S3).  

Cluster analysis of DGGE was performed with regard to different grassland management 

regimes (with vs. without NPK fertilization; mowing once vs. thrice per year), and above-

ground herbivory for the three different sward compositions. UPGMA dendrograms of 

bacterial communities in the plant rhizosphere showed that the different management 

regimes and herbivory influenced the composition of bacterial communities. For example, 

cluster analysis of the DGGE patterns of the rhizosphere bacterial community of species-

rich plots revealed a strong impact of fertilizer application on community composition 

(Fig. 6A).  

The effect of mowing frequency was influenced by the fertilization regime. Samples 

derived from unfertilized plots exhibited distinct cluster formation for the two mowing 

frequencies, indicating a more similar community composition in the once and thrice 

mown plots, respectively. However, some samples collected from the fertilized plots 

mown thrice as well as from the fertilized plots mown once grouped also in distinct 

clusters. In contrast to these findings, the above-ground herbivory did not strongly impact 

the bacterial community in the rhizosphere, although some samples exhibited distinct 

clusters. Similar results were observed for the bacterial community composition in the 

plant rhizosphere in samples collected from dicot-reduced (Fig. 6B) as well as from 

monocot-reduced plots (Fig. 6C).  

To gain a more detailed picture about the changes of bacterial community in the 

rhizosphere in response to management regimes and above-ground herbivory, we analyzed 

the samples with next generation sequencing. 
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Fig. 5. DGGE profile of species-rich plots showing the influence of different fertilization and mowing regimes as well as above-ground 
herbivory on bacterial communities in the rhizosphere. Soil samples were taken in summer 2011. Independent replicates are indicated with 
numbers from 1 to 4. Treatment A: 1 x mowing/ year, no NPK; treatment B: 3 x mowing/ year, no NPK; treatment C: 1 x mowing/ year, 
NPK; treatment D: 3 x mowing/ year, NPK. M: GeneRuler 1 kb DNA Ladder (Fermentas, St. Leon-Rot, Germany). 
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Fig. 6. UPGMA dendrogram generated by cluster analysis of DGGE fingerprints on the influence of different management regimes and 
above-ground herbivory on the bacterial community in the rhizosphere for (A) species-rich plots, (B) dicot-reduced plots, and (C) monocot-
reduced plots. Soil samples were taken in summer 2011. The dendrogram was constructed using the Pearson correlation coefficient. The scale 
shows similarity values. 
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To investigate the impact of fertilization application and mowing frequencies on bacterial 

richness, rarefaction curves and alpha diversity indices were calculated with regard to 

these regimes. The rarefaction analysis revealed an increase in bacterial richness at 97% 

and 99% genetic similarity in the fertilized plots compared to the control plots (Fig. 7A). 

Despite the recorded change, this increase in richness was not supported by the calculated 

alpha diversity indices (Tab. 1). The observed number of OTUs as well as the diversity 

indices at all three genetic distance levels did not significantly (p value < 0.05) differ in the 

fertilized and unfertilized plots. As a consequence, the fertilizer application did not 

significantly affect the bacterial richness in the rhizosphere.  

A comparison of rarefaction curves with regard to the two mowing frequencies revealed a 

higher bacterial richness at all three genetic distance levels in the plot mown three times 

compared to the plots mown only once (Fig. 7B). The observed number of OTUs at all 

three genetic distance levels were significantly (p value < 0.05) higher in the plots mown 

three times (138.6±14.6, 741.2±118.9, 841.9±130.4 compared to 131.9±13.6, 697.0±94.5, 

790.2±119.3 in once mown plots at a genetic distance of 20, 3, and 1%, respectively). The 

same was recorded for the maximal number of OTUs. Thus, an increasing number of 

mowing events led to an increase of bacterial richness in the rhizosphere.  

This higher richness was supported by the calculated alpha diversity indices (Tab. 1). ACE 

and Chao1 indices were significantly higher at 97% and 80% genetic similarity only. In 

contrast to this, no differences was recorded for the calculated Shannon indices 

(3.18±0.15, 5.69±0.14, 5.91±0.17 in thrice mown plots compared to 3.22±0.19, 5.71±0.21, 

5.97±0.20 in once mown plots at a genetic distance of 20, 3, and 1%, respectively). 
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Fig. 7. Rarefaction curves at 1%, 3%, and 20% genetic distance with respect to fertilizer application (A) and mowing frequencies (B). Curves were 
calculated with QIIME (Caporaso et al., 2010). 
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We further validated the impact of fertilization as well as mowing frequency on bacterial 

community structures by Principal Coordinate Analysis (PCoA).Whereas no difference in 

the generated PCoA plots was found at 80% genetic similarity, plots exhibited a clear 

separation between fertilized and control plots at 97% and 99% genetic similarity 

indicating a strong influence of fertilizer application on bacterial community structures 

(Fig. 8). As calculated plots did not show separation or cluster formation of differently 

treated plots, mowing frequencies (Fig. 9) did not impact bacterial community structure. 

 
Fig. 8. Impact of fertilization on bacterial community structures at 99% (A), 97% (B), and 
80% (C) genetic similarity. PCoA plots were calculated with QIIME (Caporaso et al., 
2010). 
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Fig. 9. Impact of mowing frequencies on bacterial community structures at 99% (A), 97% 
(B), and 80% (C) genetic similarity. PCoA plots were calculated with QIIME (Caporaso et 
al., 2010).  
 
 

Changes in bacterial community composition with regard to herbivory  

 

A comparison of rarefaction curves and alpha diversity indices with regard to the 

herbivory treatments did not reveal any differences between control and herbivory plots 

(Fig. 10). The observed number of OTUs as well as the diversity indices at all three 

genetic distance levels did not significantly (p value < 0.05) differ in the control and 

herbivory plots (Tab. 1). 
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Fig. 10. Rarefaction curves at 1%, 3%, and 20% genetic distance with respect to herbivory. 
Curves were calculated with QIIME (Caporaso et al., 2010). 
 

We further validated the impact of the above-ground herbivory on bacterial community 

structures by Principal Coordinate Analysis (PCoA) (Fig. 11). No differences in the 

generated PCoA plots were found at the three genetic distances. Thus, herbivory had no 

impact on the bacterial community structure. 
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Fig. 11. Impact of above-ground herbivory on bacterial community structures at 99% (A), 
97% (B), and 80% (C) genetic similarity. PCoA plots were calculated with QIIME 
(Caporaso et al., 2010). 
 

Sward diversity, management regimes, and above-ground herbivory alter the bacterial 

community in the rhizosphere  

We analyzed the effect of management regimes, sward composition, and above-ground 

herbivory on the relative abundance of predominant bacterial groups and species by 

statistical modeling using Dirichlet regression. The sward composition had a significant 

influence (p value < 0.05) on the Firmicutes and the Gammaproteobacteria (Tab. 2).
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Tab. 2: Effect of different fertilization regimes, mowing frequencies, herbicide application, above-ground herbivory, and the combination of 
these treatments on bacterial phyla and proteobacterial classes. 

 
*** p-value < 0.001; ** p-value < 0.01; * p-value < 0.05; . p-value < 0.1 
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The abundance of Firmicutes was significantly enhanced on all herbicide-treated plots 

(Fig. 12A), while the Gammaproteobacteria did only respond to the herbicide application 

targeting dicots (Tab. 2). In combination with the other investigated parameters, sward 

composition affected almost all bacterial phyla and proteobacterial classes such as the 

Nitrospirae. This phylum was significantly influenced by fertilization on the monocot-

reduced plots (Tab. 2).  

We further analyzed the impact of sward composition on the relative abundance of 

predominant bacterial phylotypes (Supplemental Tab. S5). The results for the top 25 OTUs 

(3% genetic distances) are shown in Tab. 3. The abundance of several of the analyzed 

OTUs was affected by at least one parameter. Sward composition, fertilizer application 

and mowing frequency had the highest impact on bacterial abundance. Many bacterial 

phylotypes were influenced by herbicide treatment against dicots and/or monocots. 

Whereas the bacterium Ellin6561 (order Rhizobiales) and some uncultured bacteria of the 

orders Acidobacteriales, Rhodospirillales, and Rhizobiales were significantly affected by 

herbicide application against dicots, some uncultured bacterium of the Bacillaceae 

(unknown order) and of the order Frankiales, as well as an uncultured Acidobacterium 

(unknown order) were influenced by herbicide application against monocots. 

 
Fig. 12. Effect of sward composition on the abundance of Firmicutes (A) and of mowing 
frequency in combination with herbivory on the abundance of Actinobacteria (B). 
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Tab. 3: Effect of different fertilization regimes, mowing frequencies, herbicide application, above-ground herbivory, and the combination of 
these treatments on the 25 most abundant bacterial OTUs (3% genetic divergence). 

 
*** p-value < 0.001; ** p-value < 0.01; * p-value < 0.05; . p-value < 0.1 
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In combination with the other investigated parameters, sward composition had a 

significant effect on almost all bacterial phylotypes of the top 25 OTUs. These impacts 

were stronger for the more abundant phylotypes than for rare phylotypes (Tab. 3, 

Supplemental Tab. S5). This is also true for fertilization, mowing frequency, and above-

ground herbivory separately or in combination with each other (Supplemental Tab. S5).  

The majority of the abundant bacterial phyla and proteobacterial classes was significantly 

affected by fertilizer application and different mowing frequencies (Tab. 2). Acidobacteria 

were significantly less abundant on fertilized plots (Fig. 13A). The opposite was recorded 

for Actinobacteria (Fig. 13B). When analyzing the effect of the parameters fertilization or 

mowing separately or in combination, we found synergistic effects. The abundance of the 

phylum Bacteroidetes was significantly affected to a higher extend by fertilization and 

mowing frequency as by fertilization or mowing separately (Fig. 13C). On the other hand, 

the relative abundance of this phylum was reduced by fertilization on plots mown once, 

but it increased by fertilization on plots mown thrice. The same effect was recorded for 

Chloroflexi (data not shown). Moreover, the abundance of Verrucomicrobia was 

significantly affected by fertilization and mowing but not by fertilization or mowing only 

(Tab. 2).  

In addition, fertilization as well as mowing frequency and the combination of both 

treatments had a significant impact on most phylotypes of the top 25 OTUs (Tab. 3). The 

most abundant phylotype was affiliated to Bradyrhizobium. The abundance of this OTU 

was reduced by fertilization (Fig. 14A), but only significantly on plots mown thrice per 

year (Fig. 14B). In addition, the abundance was decreased by fertilization on monocot-

reduced plots (Fig. 14C).  

We did not find direct correlations between above-ground herbivory and the abundance of 

predominant bacterial groups. However, significant changes in combination with other 

treatments were detectable (Tab. 3). For example, the abundance of Actinobacteria was 

significantly reduced by herbivory, but only on plots mown three times per year (Fig. 

12B). As only few OTUs reacted towards herbivory, its influence on community structure 

must be considered to be weaker as originally expected. 
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Fig. 13. Effect of fertilization on the Acidobacteria (A) and Actinobacteria (B) as well as the effect of fertilization and mowing regimes on 
Bacteroidetes (C). 
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Fig. 14. Effect of fertilization (A), fertilization and mowing (B), and sward composition and fertilization (C) on the abundance of an OTU 
affiliated to Bradyrhizobium sp. 
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Discussion  

 

Characterization of bacterial community structure in the rhizosphere  

 

To gain insights into the bacterial community structures in the rhizosphere in the grassland 

system, we applied 454 pyrosequencing. The seven predominant bacterial phyla and the 4 

proteobacterial classes observed in this study agreed with other studies (Gardner et al., 

2011; Nacke et al., 2011). In this study, 44,452 OTUs at 3% genetic divergence were 

detected in all samples (Supplemental Tab. S5). Some of them are known as typical soil or 

rhizosphere bacteria such as Bradyrhizobium (order Rhizobiales), Bacillus (order 

Bacillales) or Rhizomicrobium (order Rhizobiales). These findings are consistent with the 

results of Duineveld et al. (2001).The authors investigated the bacterial community in the 

rhizosphere of chrysanthemum and found that most species were closely related to those of 

previously described soil bacteria such as Pseudomonas, Acetobacter, Bacillus, and 

Arthrobacter.  

The bacterial genera Rhizobium and Bradyrhizobium are the most important dinitrogen 

fixers; they form symbiotic associations with specific legumes and some nonlegumes 

(Beauchamp et al., 1997). Furthermore, there are huge numbers of free-living nitrogen-

fixing diazotrophs such as Bacillus. Nitrogen-fixing bacteria can promote plant growth and 

can reduce susceptibility to diseases caused by plant pathogenic bacteria, fungi, viruses 

and nematodes (Kloepper et al., 2004). Therefore, they are known as Plant Growth-

Promoting Rhizobacteria (PGPR) (Kloepper et al., 1999).  

 

Influence of sward composition on the bacterial community structure in the 

rhizosphere  

 

In the present study, the bacterial richness (number of OTUs) was negatively affected by 

herbicide application against dicots and monocots. In species-rich plots, higher numbers of 

OTUs were detected (Tab. 1). This is consistent with a study from El Fantroussi et al. 

(1999). The authors showed that different phenylurea herbicides significantly decreased 

the number of cultivable heterotrophic bacteria in soil. In addition, Benizri and Amiaud 

(2005) found that the diversity of soil bacteria in fertilized grasslands increased 

significantly with increasing plant diversity. The application of herbicides against dicots 

and/or monocots had a significant impact on many phylotypes and on 
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Gammaproteobacteria and Firmicutes (Tab. 3, Supplemental Tab. S5). Many bacterial 

phylotypes were influenced by herbicide treatment against monocots and/or dicots (Tab. 

1). Whereas some bacteria were significantly affected by herbicide application against 

dicots, other bacteria were influenced by herbicide application against monocots.  

However, the sole effect of sward composition was weaker compared with the effect of 

sward composition in combination with mowing frequency and/or fertilization (Figs. 12A, 

14C). These observations support the results of previous studies which showed that the 

selective effect of a certain plant species on the bacterial community in the soil or in the 

rhizosphere of grasslands varies with soil fertility or soil type (Bardgett et al., 1999a; 

Harrison and Bardgett, 2010; Innes et al., 2004). According to Marschner et al. (2004), the 

bacterial community structure in the rhizosphere was influenced by a complex interaction 

between plant factors such as genotype and by different soil factors including the soil type.  

The herbicide application against both dicots and monocots resulted in significant changes 

in plant species richness and in functional group abundances in the GrassMan 

experimental field (Petersen et al., 2012). Plant species have been previously reported to 

affect specific bacterial groups in the rhizosphere (Costa et al., 2006; Garbeva et al., 2008; 

Grayston et al., 1998; Singh et al., 2007). Kowalchuk et al. (2002) found a clear plant-

induced influence on bacterial community structure in the rhizosphere of non-agricultural 

plant species. The authors assumed that the rhizosphere selects for specific soil-borne 

microbial populations, resulting in a lower diversity of rhizosphere bacterial communities. 

In contrast to the previously reported studies, Singh et al. (2007) showed that the 

rhizosphere bacterial community composition from different plant species in grassland 

soils was mainly determined by soil type. The authors conclude that the influence of plant 

species is only weak and that there is no evidence for the selection of bacteria by plants in 

the rhizosphere. 

 

Fertilization and mowing shape the bacterial community composition in the 

rhizosphere  

 

We investigated the impact of different grassland management regimes on bacterial 

community composition in the rhizosphere by 454 pyrosequencing and by DGGE. Both 

methods showed that mowing frequency as well as fertilization had a strong influence on 

the bacterial community composition. When analyzing the effect of the parameters 



Chapter IV 
 

129 
 

fertilization or mowing in combination, we found synergistic effects (Figs. 13C and 14B, 

Supplemental Fig. S2).  

Pyrosequencing-based analyses of 16S rRNA genes revealed no significant effects of 

fertilization on bacterial richness in the rhizosphere (Tab. 1), but significant effects on 

community composition (Tab. 2, Figs. 13 and 14). These findings are in line with a study 

of Fierer et al. (2011) who observed no significant effects of N fertilization on soil 

bacterial diversity, but significant effects on community composition. Beauregard et al. 

(2010) found that fertilizer application led to shifts in the composition of bacterial 

communities without affecting their richness. In a study of soil microbial community 

composition and land use history in cultivated and grassland ecosystems, fertilizer and 

herbicide application were associated with a distinctive microbial community composition 

(Steenwerth et al., 2002). In contrast to this, long-term fertilization regimes resulted in 

changes of soil bacterial community structure and diversity in northern China (Ge et al., 

2008).  

In our study, fertilizer application had a significant impact on several bacterial phyla in the 

rhizosphere, for instance Chloroflexi, Bacteroidetes, Acidobacteria, Actinobacteria, and 

Proteobacteria (Tab. 2). The abundance of Acidobacteria was significantly lower in 

fertilized plots. This finding corresponds to Kielak et al. (2009) who showed that this 

phylum appeared significantly lower in nutrient rich rhizosphere than in the surrounding 

bulk soil. In another study, the Acidobacteria were negative correlated with the nitrogen 

input level (Fierer et al., 2012). This group is often considered to be oligotrophic (Kielak et 

al., 2009).  

Interestingly, high proportions of OTUs belonging to the Bacteroidetes were more 

abundant in fertilized plots which were mown thrice a year compared to the unfertilized 

plots (Fig. 13B). In addition, Actinobacteria were positive correlated with the fertilization. 

These results are in line with a study of Fierer et al. (2012). The authors showed that 

copiotrophic taxa including members of the Bacteroidetes, Proteobacteria, and 

Actinobacteria typically increased in relative abundance in the high N plots.  

Furthermore, the relative abundance of Chloroflexi was lower in plots with high levels of 

nitrogen input. This finding is in line with our study. The abundance of Chloroflexi 

decreased by fertilizer application, but only on plots mown once a year (data not shown). 

As mentioned before, the phylum Nitrospirae was significantly influenced by fertilization 

on the monocot-reduced plots (Tab. 2). Members of this phylum belong to the nitrite-

oxidizing bacterial group. In our study, an uncultured bacterium affiliated to the 
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Nitrosomonadaceae was influenced by mowing frequency and fertilization (data not 

shown). This is of ecological importance because the genus Nitrosomonas is a key player 

in the N cycling of soil (Acosta-Martinez et al., 2008).  

In addition, fertilization as well as mowing frequency had a significant impact on most 

phylotypes of the top 25 OTUs (Tab. 3). The combination of both treatments led to 

interesting results. The abundance of Bradyrhizobium was reduced by fertilization (Fig. 

14A). However, this effect was only significant on plots mown thrice per year (Fig. 14B). 

In addition, the abundance was decreased by fertilization on monocot-reduced plots (Fig. 

14C). As mentioned before, the bacterial genera Bradyrhizobium belongs to the most 

important dinitrogen fixers. In soils with high level of N, nodule formation is decreased 

(Beauchamp et al., 1997) which might be explained the lower abundance of nitrogen-

fixing bacteria in the rhizosphere. Furthermore, the relative abundances of soil microbial 

taxa associated with specific components of the soil N cycle such as nitrifiers often 

changes when soils are fertilized with N (Fierer et al., 2012).  

Effects of mowing on N fluxes and N retention in grasslands have been reported 

previously (Maron and Jeffries, 2001). Grazing and mowing can also affect the size and 

composition of key microbial functional groups driving N dynamics (Patra et al., 2006). 

According to Denef et al. (2009) mowing intensity did not affect the relative abundance or 

activity of microbial communities in the rhizosphere of temperate grassland. This result is 

not consistent with the results of our study in which different mowing frequencies strongly 

influenced the bacteria in the rhizosphere. The reason for these differences could be that 

different methodologies were used which strongly varied in phylogentic resolution.   

 

Impact of above-ground herbivory on rhizosphere bacterial community structures  

 

Whereas herbivory did not seem to affect the bacterial richness, although slight changes in 

the relative abundances of members of the Rhizobiales, Frankiales, and Acidimicrobiales 

were recorded. These findings are in line with the results of Techau et al. (2004) who 

showed that above-ground herbivory had no influence on the number of rhizosphere 

bacteria in pea plants.  

In the present study, there was a significant interaction of the herbivory effect with 

fertilization and mowing (Tabs. 2 and 3). In combination with these regimes, above-

ground herbivory had a significant influence on most abundant phyla such as 

Actinobacteria, Bacteroidetes, Acidobacteria, Proteobacteria, Chloroflexi, and Firmicutes. 
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In addition, the abundance of the Actinobacteria was significantly reduced by herbivory, 

but only on plots mown three times per year (Fig. 12B).  

It is well-known that below-ground herbivory influences bacterial communities in the 

rhizosphere (Dematheis et al., 2012; Denton et al., 1999; Poll et al., 2007; Treonis et al., 

2005). Denton et al. (1998) showed that low amounts of root herbivory (below the damage 

threshold) positively influence the rhizosphere microbial community in a grassland soil. 

According to Holland et al. (1995), above-ground herbivory stimulate soil bacteria at least 

at moderate levels of herbivory in no-tillage fields. Furthermore, grazing induces changes 

in the size and in the structure of bacterial communities in the soil (Northup et al., 1999; 

Patra et al., 2005). Northup et al. (1999) showed that grazing pressure had a stronger effect 

on microbial biomass than other soil or vegetative characteristics. The long-term removal 

of sheep grazing resulted in significant reductions in microbial biomass and activity in the 

surface soil while the abundance of active soil bacteria were unaffected by the removal of 

sheep grazing (Bardgett et al., 1997).  

So far, previous studies often used either cultivation-dependent approaches (Dawson et al., 

2004; Grayston et al., 2001), microbial respiration measurements (Bardgett et al., 1997; 

Bardgett et al., 1999a; Holland, 1995) or cultivation-independent approaches such as 

DGGE (Dematheis et al., 2012; Patra et al., 2005) to study the effect of herbivory or 

grazing on the bacteria in the soil or in the rhizosphere. To our knowledge, above-ground 

herbivory and its influence on the bacteria in the rhizosphere have never been investigated 

by 454 pyrosequencing below phylum level.  

 

Ecological significance  

 

The effects on bacterial diversity of the studied parameters have been addressed frequently 

in many studies over the past years. For example, it was shown that fertilizer application 

influenced certain bacterial groups being involved in important nutrient cycles, e.g., the 

soil nitrogen cycle. Therefore, herbicide and fertilizer application as well as different 

mowing frequencies and above-ground herbivory are of ecological and economic 

importance as soil fertility is strongly affected. However, most previous studies 

investigated the effect of just a single biotic or abiotic factor.  

The analysis conducted in this study aimed at evaluating the combined impact of different 

management regimes and above-ground herbivory on bacterial community structures in 

the rhizosphere. Although we were able to confirm the results of former studies, we also 
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recorded discrepancies as not only a single factor but also different combinations of the 

studied factors influenced the abundances of several bacterial taxa in the soil.  

Consequently, we have to restrict the results of former studies and their interpretation as 

mixed effects led to either an enhanced, reduced, or, in rare cases, opposite bacterial 

response. One prominent ecological example is the effect of fertilization on soil nitrogen 

fixation. We were able to demonstrate that fertilization does lead to a reduction of bacterial 

taxa capable of nitrogen fixation. However, this effect was only significant in combination 

with higher mowing frequencies. Therefore, fertilization does affect nitrogen fixation but 

only under certain circumstances.  

Based on the high recorded number of mixed effects of management regimes and 

herbivory, versatile changes in the bacterial community composition and, correspondingly, 

versatile ecological outcomes can occur. 
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4.2.  Supplemental information 

Tab. S1: pH values of grassland soils subjected to different fertilization and mowing 
regimes as well as above-ground herbivory at soil depths of 1-5 cm. 

Treatment Sward composition 
 

Mowing Fertilization Herbivory pH 
KCl 

SE n 

1 species-rich once no control 4.60 0.36 6 
 species-rich once no herbivory 4.63 0.19 6 

2 species-rich once NPK control 4.87 0.29 6 
 species-rich once NPK herbivory 4.63 0.28 6 

3 species-rich thrice no control 4.63 0.17 5 
 species-rich thrice no herbivory 4.57 0.10 6 

4 species-rich thrice NPK control 4.77 0.18 6 
 species-rich thrice NPK herbivory 4.75 0.27 6 

5 dicot-reduced once no control 4.54 0.25 6 

 dicot-reduced once no herbivory 4.65 0.40 5 

6 dicot-reduced once NPK control 4.59 0.20 6 
 dicot-reduced once NPK herbivory 4.58 0.10 6 

7 dicot-reduced thrice no control 4.80 0.41 5 
 dicot-reduced thrice no herbivory 4.62 0.22 6 

8 dicot-reduced thrice NPK control 4.56 0.23 6 
 dicot-reduced thrice NPK herbivory 4.47 0.21 6 

9 monocot-reduced once no control 4.50 0.20 4 

 monocot-reduced once no herbivory 4.59 0.19 5 

10 monocot-reduced once NPK control 4.60 0.16 6 
 monocot-reduced once NPK herbivory 4.63 0.11 6 

11 monocot-reduced thrice no control 4.42 0.19 6 
 monocot-reduced thrice no herbivory 4.50 0.21 6 

12 monocot-reduced thrice NPK control 4.63 0.20 6 
 monocot-reduced thrice NPK herbivory 4.76 0.28 6 
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Tab. S2: Observed Operational Taxonomic Units (OTUs) and alpha diversity indices at 1%, 3%, and 20% genetic distance. Number of observed clusters, 
ACE indices, Shannon indices, Chao1 indices, and the maximal OTU number (michaelis_menten_fit index) were calculated with QIIME 
[63]. Coverage was determined based on observed clusters and the maximal OTU number. To compare community structures, 2,280 randomly 
selected sequences from each sample were used for the calculations. 

 
Sample  Observed OTUs  Max. OTU n um ber  Coverage (%)   ACE   Chao1   Shannon  

 80% 97%  99% 80% 97%  99% 80% 97% 99% 80% 97% 99% 80% 97% 99% 80% 97% 99% 
Lys02L 124.40 613.20  708.10 168.58 1001.99 1208.45 73.79 61.20 58.60 200.63 1364.01 1525.41 195.51 1604.65 1880.80 2.99 5.63 5.86 
Lys02R 137.10 707.90  812.10 184.55 1419.44 1683.01 74.29 49.87 48.25 221.31 2230.31 2553.97 220.51 2531.96 3518.24 3.09 5.63 5.88 
Lys04L 117.00 588.40  615.20 152.30 878.42 920.01 76.82 66.98 66.87 217.03 973.71 986.25 201.04 1108.66 1137.23 3.17 5.71 5.79 
Lys04R 102.50 470.70  516.40 128.17 662.04 741.54 79.97 71.10 69.64 162.52 784.23 897.99 154.21 938.67 1196.40 2.96 5.34 5.48 
Lys06L 137.20 714.50  773.20 182.57 1301.03 1422.44 75.15 54.92 54.36 222.91 1720.44 1809.08 218.79 1933.13 2128.75 3.13 5.75 5.89 
Lys06R 152.80 888.40 1010.40 195.54 2196.83 2721.60 78.14 40.44 37.13 236.11 3946.04 5273.56 254.00 4064.21 6879.47 3.42 5.96 6.20 
Lys07L 131.90 751.30  863.60 175.67 1307.26 1576.65 75.08 57.47 54.77 225.19 1539.07 1722.25 210.18 1639.08 1836.72 3.18 5.96 6.20 
Lys07R 127.00 689.40  784.30 166.51 1267.56 1502.44 76.27 54.39 52.20 195.70 1736.50 2026.33 188.50 2018.92 2571.20 3.02 5.62 5.88 
Lys08L 169.40 967.90 1081.50 224.07 2510.03 3120.77 75.60 38.56 34.65 272.53 4289.96 5557.27 264.58 4414.91 6756.57 3.45 6.10 6.27 
Lys08R 135.90 675.20  760.70 178.50 1228.68 1381.90 76.13 54.95 55.05 215.70 1690.94 1815.09 213.74 1890.07 2214.62 3.26 5.68 5.93 
Lys09L 137.50 679.30  754.50 182.86 1220.89 1389.77 75.20 55.64 54.29 216.25 1798.06 1954.09 211.41 2143.97 2344.01 3.20 5.71 5.90 
Lys09R 133.60 684.90  761.30 181.44 1290.96 1413.66 73.64 53.05 53.85 209.39 1790.39 1878.50 205.21 2116.47 2353.94 3.04 5.61 5.88 
Lys10L 149.20 755.60  834.00 194.84 1511.56 1729.33 76.58 49.99 48.23 222.03 2450.08 2697.58 221.45 2866.43 3511.94 3.40 5.82 5.98 
Lys10R 139.20 704.60  775.30 184.14 1376.68 1531.70 75.59 51.18 50.62 227.23 2376.65 2622.32 242.36 2849.38 3870.21 3.21 5.69 5.88 
Lys11L 124.00 635.40  701.60 169.72 1148.32 1256.79 73.06 55.33 55.82 205.66 1741.26 1753.94 195.38 1966.87 2121.43 2.88 5.50 5.73 
Lys11R 133.20 713.80  812.30 173.16 1539.47 1844.10 76.92 46.37 44.05 217.33 2854.44 3470.23 221.85 3396.18 5561.57 3.16 5.58 5.82 
Lys12L 150.50 818.10  924.30 194.55 1813.60 2286.28 77.36 45.11 40.43 234.17 3111.08 4177.66 230.48 3192.01 5302.55 3.40 5.86 6.04 
Lys12R 122.90 610.10  675.80 163.87 1078.12 1198.98 75.00 56.59 56.36 213.29 1612.31 1659.61 213.66 1942.62 2113.82 2.97 5.46 5.65 
Lys14L 138.60 705.00  779.30 181.58 1257.44 1417.55 76.33 56.07 54.98 206.06 1781.28 2037.97 211.69 2178.10 2736.29 3.24 5.82 6.02 
Lys14R 134.60 786.50  898.60 171.70 1742.72 2191.38 78.39 45.13 41.01 206.91 3195.23 4555.72 214.06 3460.09 6024.78 3.31 5.82 6.03 
Lys20L 134.90 675.60  794.20 177.55 1293.59 1685.77 75.98 52.23 47.11 207.92 2052.92 2879.40 204.58 2162.22 3823.17 3.13 5.61 5.82 
Lys20R 152.40 815.40  917.40 203.73 1835.56 2195.07 74.81 44.42 41.79 253.06 3370.62 3999.23 251.56 3706.62 5322.22 3.24 5.84 6.04 
Lys22L 158.50 1044.80 1186.30 205.73 3436.94 4706.66 77.04 30.40 25.20 240.38 5872.04 10226.30 240.26 4992.06 8827.88 3.48 6.09 6.34 
Lys22R 163.00 866.00  947.30 216.33 2030.21 2453.99 75.35 42.66 38.60 264.53 3771.14 4993.91 275.45 3903.51 6051.90 3.51 5.97 6.09 
Lys23L 110.50 490.90  506.20 133.87 676.31 705.56 82.54 72.59 71.74 176.83 746.41 800.34 171.59 906.67 998.79 3.24 5.52 5.55 
Lys23R 92.80 531.50  546.50 105.90 741.98 767.93 87.63 71.63 71.17 128.47 780.93 800.94 128.36 908.19 925.09 3.22 5.67 5.70 
Lys27L 132.40 719.20  815.90 174.47 1412.66 1642.76 75.89 50.91 49.67 216.75 2277.72 2642.58 221.07 2790.22 3763.79 3.18 5.73 5.97 
Lys27R 135.30 709.90  817.00 174.05 1375.95 1632.01 77.74 51.59 50.06 196.09 2245.04 2494.40 188.35 2766.23 3490.92 3.29 5.73 6.00 
Lys28L 153.00 887.60 1017.10 199.62 2169.49 2754.93 76.65 40.91 36.92 231.84 3788.49 5404.44 223.67 4048.60 7715.37 3.40 5.95 6.23 
Lys28R 131.00 755.60  858.00 168.16 1344.81 1544.56 77.90 56.19 55.55 205.04 1657.87 1752.96 196.17 1795.84 2009.55 3.28 5.96 6.25 
Lys29L 126.20 629.20  720.00 169.70 1130.64 1303.95 74.37 55.65 55.22 210.40 1698.94 1735.93 206.11 1923.23 2106.96 2.98 5.50 5.75 
Lys29R 128.40 639.90  724.70 178.79 1120.06 1306.53 71.81 57.13 55.47 221.85 1528.13 1734.60 212.56 1718.57 2087.78 2.93 5.58 5.79 
Lys30L 142.20 688.10  768.20 192.62 1249.57 1416.22 73.82 55.07 54.24 242.86 1817.90 1909.38 230.97 2103.55 2279.68 3.20 5.67 5.88 
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Tab. S2: continued. 
Sample  Observed OTUs   Max. OTU number  Coverage (%)   ACE   Chao1   Shannon  

 80% 97%  99% 80%  97%  99% 80% 97% 99% 80% 97% 99% 80% 97% 99% 80% 97% 99% 
Lys30R 159.90 822.30  957.50 211.67 1868.18 2380.07 75.54 44.02 40.23 247.76 2934.14 3649.31 247.42 3179.95 4523.74 3.48 5.80 6.07 
Lys31L 133.70 662.90  755.60 175.30 1211.72 1441.56 76.27 54.71 52.42 210.89 1646.03 1861.35 218.73 1866.55 2207.82 3.22 5.53 5.74 
Lys31R 132.70 648.90  764.20 171.16 1205.28 1483.60 77.53 53.84 51.51 207.86 1923.17 2111.38 203.92 2206.34 2692.24 3.15 5.50 5.79 
Lys33L 101.40 457.30  553.50 133.58 748.86 933.45 75.91 61.07 59.30 152.87 1211.14 1444.46 151.82 1352.07 1852.43 2.65 4.94 5.29 
Lys33R 120.10 617.90  712.40 157.86 1100.85 1288.07 76.08 56.13 55.31 181.78 1570.99 1716.97 176.89 1733.68 2053.00 2.94 5.47 5.76 
Lys36L 121.40 587.60  655.60 168.20 1025.58 1128.25 72.18 57.29 58.11 206.25 1563.93 1589.38 200.20 1808.04 1996.19 2.88 5.41 5.63 
Lys36R 135.80 699.90  786.60 183.16 1388.37 1535.81 74.14 50.41 51.22 217.95 2130.46 2269.74 217.68 2526.99 3225.60 2.99 5.59 5.86 
Lys37L 135.00 756.80  839.30 175.67 1478.60 1670.54 76.85 51.18 50.24 198.00 2370.97 2616.99 197.81 3006.85 3754.14 3.15 5.84 6.08 
Lys37R 126.10 724.30  854.10 163.10 1733.00 2165.42 77.32 41.79 39.44 200.23 3385.80 4839.11 199.01 3146.18 6147.46 3.04 5.49 5.86 
Lys38L 126.90 663.00  743.00 165.25 1125.51 1286.48 76.79 58.91 57.75 213.20 1501.90 1584.54 216.94 1655.79 1789.88 3.20 5.75 5.96 
Lys38R 139.00 721.70  802.00 184.79 1309.40 1474.78 75.22 55.12 54.38 211.09 1863.92 1938.11 201.15 2127.29 2312.06 3.25 5.84 6.07 
Lys40L 125.10 712.00  833.60 156.18 1502.08 1823.71 80.10 47.40 45.71 185.73 2676.19 3399.58 188.27 2700.32 5013.58 3.18 5.63 5.95 
Lys40R 127.60 723.30  831.80 164.26 1488.83 1778.35 77.68 48.58 46.77 199.59 2489.79 2989.29 201.00 2974.71 4460.57 3.15 5.68 5.94 
Lys41L 125.40 615.90  703.80 159.45 1002.48 1185.80 78.65 61.44 59.35 205.52 1246.04 1402.96 201.36 1356.61 1530.74 3.24 5.63 5.86 
Lys41R 156.60 813.80  925.70 202.90 1807.92 2166.17 77.18 45.01 42.73 240.51 3089.32 3659.52 236.19 3607.25 4952.03 3.51 5.85 6.10 
Lys43L 115.70 628.70  717.80 150.10 1089.98 1234.26 77.08 57.68 58.16 193.00 1430.94 1492.82 191.49 1540.46 1695.69 3.02 5.56 5.86 
Lys43R 118.00 658.20  793.30 153.20 1193.55 1524.10 77.02 55.15 52.05 186.36 1617.69 1832.38 182.10 1712.27 2019.81 3.05 5.59 5.91 
Lys44L 140.90 709.00  798.90 190.02 1395.81 1609.61 74.15 50.79 49.63 240.00 2218.70 2405.03 233.06 2723.59 3292.70 3.22 5.67 5.88 
Lys44R 136.80 784.90  921.00 170.16 1902.55 2645.66 80.39 41.26 34.81 204.75 3272.74 5810.00 199.75 3008.28 5959.91 3.42 5.62 5.87 
Lys47L 134.40 690.50  792.50 174.07 1408.84 1679.25 77.21 49.01 47.19 198.52 2296.38 2663.35 197.20 2696.86 3651.99 3.14 5.54 5.80 
Lys47R 122.20 655.40  793.70 154.22 1064.94 1361.81 79.24 61.54 58.28 204.11 1206.90 1420.85 202.18 1274.13 1493.25 3.27 5.77 6.13 
Lys48L 149.90 921.60 1085.00 187.62 2496.16 3473.12 79.90 36.92 31.24 219.16 4450.74 7679.82 211.54 4037.66 8800.12 3.48 5.94 6.24 
Lys48R 147.00 750.50  844.20 191.83 1523.18 1793.60 76.63 49.27 47.07 222.68 2558.71 3014.31 215.48 2977.90 4259.41 3.39 5.77 5.97 
Lys55L 148.70 814.50  942.10 192.05 1761.81 2218.63 77.43 46.23 42.46 238.54 2975.24 3895.65 224.93 3372.36 5482.30 3.37 5.88 6.14 
Lys55R 140.40 741.30  838.10 186.10 1760.34 2084.64 75.44 42.11 40.20 206.06 3492.35 4646.39 202.29 3289.92 6285.88 3.13 5.58 5.82 
Lys56L 135.70 637.30  750.90 177.98 1052.85 1271.97 76.25 60.53 59.03 211.47 1328.26 1455.68 202.84 1438.20 1641.13 3.20 5.68 6.02 
Lys56R 110.10 562.30  697.70 137.60 859.05 1119.90 80.02 65.46 62.30 174.74 1004.28 1197.72 173.05 1091.27 1320.93 3.10 5.51 5.93 
Lys62L 141.90 782.70  876.00 184.88 1826.56 2066.45 76.75 42.85 42.39 227.65 3248.01 3849.42 237.84 3886.90 5951.37 3.26 5.69 5.96 
Lys62R 140.90 774.70  871.60 185.74 1658.70 1912.94 75.86 46.71 45.56 215.88 2873.92 3211.71 208.47 3440.93 4916.07 3.16 5.77 6.02 
Lys64L 125.70 667.20  787.60 167.86 1145.97 1426.57 74.88 58.22 55.21 213.54 1368.42 1582.89 205.35 1340.94 1571.61 3.04 5.73 6.00 
Lys64R 126.10 672.00  778.60 166.15 1179.30 1395.59 75.90 56.98 55.79 202.40 1486.07 1614.79 191.90 1602.96 1731.96 3.12 5.69 5.98 
Lys67L 149.60 873.40  992.00 189.61 2244.28 2736.72 78.90 38.92 36.25 212.07 4207.05 5790.60 205.10 3836.27 8024.21 3.39 5.87 6.12 
Lys67R 150.40 808.50  927.80 192.67 1722.22 2139.62 78.06 46.95 43.36 216.99 2812.65 3704.16 211.75 3374.15 5217.90 3.47 5.89 6.13 
Lys68L 152.70 961.00 1096.60 200.33 2885.49 3977.67 76.22 33.30 27.57 230.58 5538.82 9245.21 234.93 5112.44 10786.18 3.41 5.95 6.16 
Lys68R 136.80 714.80  801.60 179.15 1406.60 1545.16 76.36 50.82 51.88 210.06 2322.89 2309.22 200.34 3011.73 3235.55 3.20 5.71 6.00 
Lys70L 140.00 706.50  776.60 185.02 1346.22 1496.11 75.67 52.48 51.91 226.09 2112.45 2286.81 215.77 2612.04 3119.94 3.22 5.72 5.93 
Lys70R 146.60 814.10  924.50 193.73 1889.15 2183.08 75.67 43.09 42.35 225.60 3336.21 3884.92 222.32 3623.32 5935.47 3.22 5.82 6.10 
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Tab. S2: continued. 
Sample  Observed OTUs   Max. OTU number  Coverage (%)   ACE   Chao1   Shannon  

 80% 97%  99% 80%  97%  99% 80% 97% 99% 80% 97% 99% 80% 97% 99% 80% 97% 99% 
Lys71L 147.80 761.40 821.50 197.19 1502.13 1657.54 74.95 50.69 49.56 221.85 2440.77 2625.47 223.65 3046.96 3523.22 3.18 5.84 5.97 
Lys71R 152.30 842.00 948.00 198.32 2204.90 2629.08 76.80 38.19 36.06 229.33 4194.41 5540.61 238.22 4332.39 8038.56 3.29 5.70 5.99 
 
 
Tab. S3: Relative abundances of abundant bacterial phyla and proteobacterial classes with respect to the different treatments (Supplemental Tab. S1) 

and the above-ground herbivory (c=control, h=herbivory). 
 
 

Treatment 
 
 

1 
  

 
3 

  
 

2 
  

 
4 

  
 

6 
  

 
7 

  
 

5 
  

 
8 

  
 

9 
  

 
11 

  
 

10 
  

 
12 

 Mean 
value 
(%) 

Phyla c h c h c h c h c h c h c h c h c h c h c h c h  

Acidobacteria 0.26 0.24 0.27 0.3 0.24 0.21 0.22 0.24 0.27 0.26 0.25 0.22 0.22 0.22 0.22 0.35 0.23 0.22 0.22 0.24 0.21 0.25 0.24 0.3 24.63 
Actinobacteria 0.15 0.15 0.17 0.13 0.16 0.18 0.19 0.16 0.13 0.13 0.15 0.15 0.2 0.18 0.17 0.13 0.16 0.15 0.21 0.19 0.17 0.15 0.17 0.15 16.16 
Bacteroidetes 0.06 0.08 0.05 0.05 0.05 0.07 0.06 0.07 0.07 0.08 0.07 0.07 0.05 0.05 0.07 0.04 0.06 0.08 0.05 0.04 0.07 0.06 0.05 0.07 6.18 
Chloroflexi 0.03 0.03 0.03 0.02 0.02 0.03 0.04 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 2.97 
Firmicutes 0.04 0.03 0.03 0.03 0.02 0.02 0.03 0.02 0.05 0.03 0.03 0.06 0.06 0.04 0.06 0.04 0.06 0.03 0.05 0.04 0.04 0.02 0.03 0.02 3.59 
Gemmatimonadetes 0.03 0.03 0.03 0.03 0.04 0.04 0.03 0.04 0.02 0.02 0.02 0.02 0.03 0.03 0.02 0.03 0.03 0.02 0.02 0.02 0.04 0.04 0.03 0.03 2.98 
Alphaproteobacteria 0.21 0.22 0.21 0.21 0.25 0.23 0.21 0.22 0.19 0.22 0.2 0.2 0.22 0.26 0.22 0.22 0.21 0.21 0.25 0.24 0.24 0.21 0.21 0.19 21.77 
Betaproteobacteria 0.08 0.08 0.08 0.08 0.07 0.08 0.09 0.08 0.07 0.07 0.08 0.08 0.05 0.05 0.04 0.05 0.08 0.1 0.06 0.07 0.06 0.08 0.08 0.08 7.27 
Gammaproteobacteria 0.03 0.04 0.04 0.04 0.06 0.05 0.04 0.05 0.05 0.04 0.04 0.03 0.04 0.05 0.06 0.04 0.04 0.05 0.04 0.03 0.06 0.06 0.06 0.05 4.72 
Deltaproteobacteria 0.06 0.06 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.07 0.05 0.05 0.05 0.05 0.06 0.07 0.05 0.05 0.05 0.06 0.06 0.05 5.59 
other bacteria 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.06 0.06 0.03 0.04 0.05 0.04 0.04 0.04 0.04 0.03 0.03 0.04 0.04 0.03 4.13 
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Tab. S4: Relative abundances of rare bacterial phyla with respect to the different treatments (Supplemental Tab. S1) and the above-ground 
herbivory (c=control, h=herbivory). 

 
 
 

Treatment 
 
 

1 
  

 
3 

  
 

2 
  

 
4 

  
 

6 
  

 
7 

  
 

5 
  

 
8 

  
 

9 
  

 
11 

  
 

10 
  

 
12 

 Mean 
value 
(%) 

Phyla c h c h c h c h c h c h c h c h c h c h c h c h  
 

Armatimonadetes 
1E- 
04 

3E- 
04 

5E- 
05 

 
0 

6E- 
05 

3E- 
04 

3E- 
04 

3E- 
04 

1E- 
04 

5E- 
05 

3E- 
04 

4E- 
04 

9.2E- 
05 

2E- 
04 

3E- 
04 

2E- 
04 

8E- 
05 

2E- 
04 

9E- 
05 

1E- 
04 

 
0 

4E- 
04 

2E- 
04 

1E- 
04 

 
0.018 

 
BD1-5 

6E- 
05 

4E- 
04 

 
0 

6E- 
05 

6E- 
05 

8E- 
05 

2E- 
04 

6E- 
05 

1E- 
04 

 
0 

1E- 
04 

 
0 

7E- 
05 

5E- 
05 

1E- 
04 

 
0 

4E- 
05 

3E- 
05 

4E- 
05 

1E- 
04 

 
0 

 
0 

2E- 
04 

 
0 

 
0.008 

 
BHI80-139 

2E- 
04 

3E- 
04 

2E- 
04 

4E- 
04 

 
0 

6E- 
05 

2E- 
04 

7E- 
05 

3E- 
05 

1E- 
04 

1E- 
04 

5E- 
04 

 
0 

7E- 
05 

 
0 

9E- 
05 

2E- 
04 

2E- 
04 

2E- 
04 

 
0 

 
0 

 
0 

 
0 

4E- 
05 

 
0.012 

Candidate division 
BRC1 

1E- 
04 

2E- 
04 

 
0 

6E- 
05 

1E- 
04 

1E- 
04 

3E- 
04 

 
0 

5E- 
05 

 
0 

4E- 
05 

1E- 
04 

0.000 
14 

4E- 
05 

7E- 
05 

 
0 

4E- 
04 

 
0 

1E- 
04 

 
0 

7E- 
05 

7E- 
05 

 
0 

1E- 
04 

 
0.009 

Candidate division 
OD1 

5E- 
04 

3E- 
04 

1E- 
04 

3E- 
04 

7E- 
04 

5E- 
04 

1E- 
04 

3E- 
04 

6E- 
04 

5E- 
04 

5E- 
04 

3E- 
04 

0.000 
47 

4E- 
04 

6E- 
04 

7E- 
04 

3E- 
04 

2E- 
04 

2E- 
04 

1E- 
04 

1E- 
04 

4E- 
04 

4E- 
04 

4E- 
05 

 
0.036 

Candidate division 
OP11 

5E- 
04 

7E- 
05 

1E- 
04 

 
0 

2E- 
04 

2E- 
04 

5E- 
04 

4E- 
04 

8E- 
04 

5E- 
04 

6E- 
04 

4E- 
04 

0.000 
3 

6E- 
04 

 
0.002 

7E- 
04 

4E- 
05 

2E- 
04 

2E- 
04 

 
0 

3E- 
04 

1E- 
04 

2E- 
04 

7E- 
05 

 
0.038 

Candidate division 
OP3 

2E- 
04 

2E- 
04 

5E- 
05 

1E- 
04 

5E- 
05 

1E- 
04 

 
0 

 
0 

1E- 
04 

1E- 
04 

2E- 
04 

3E- 
04 

6.5E- 
05 

9E- 
05 

2E- 
04 

2E- 
04 

8E- 
05 

1E- 
04 

9E- 
05 

6E- 
05 

 
0 

 
0 

1E- 
04 

1E- 
04 

 
0.011 

Candidate division 
TM7 

4E- 
04 

4E- 
04 

1E- 
04 

6E- 
05 

6E- 
04 

3E- 
04 

 
0.001 

5E- 
04 

3E- 
04 

7E- 
04 

4E- 
04 

4E- 
04 

0.000 
26 

6E- 
04 

7E- 
04 

4E- 
04 

5E- 
04 

7E- 
04 

3E- 
04 

9E- 
05 

3E- 
04 

7E- 
04 

5E- 
04 

2E- 
04 

 
0.044 

Candidate division 
WS3 

 
0.003 

 
0.005 

 
0.01 

 
0.007 

 
0.001 

 
0.003 

 
0.005 

 
0.005 

 
0.004 

 
0.007 

 
0.005 

 
0.01 

0.004 
8 

 
0.002 

 
0.001 

 
0.001 

 
0.006 

 
0.005 

 
0.003 

 
0.003 

 
0.002 

9E- 
04 

 
0.002 

 
0.002 

 
0.408 

Candidate division 
WS6 

 
0 

 
0 

 
0 

 
0 

6E- 
05 

 
0 

 
0 

 
0 

 
0 

3E- 
05 

8E- 
05 

1E- 
04 

3.8E- 
05 

 
0 

2E- 
04 

3E- 
04 

 
0 

3E- 
05 

 
0 

 
0 

 
0 

6E- 
05 

 
0 

4E- 
05 

 
0.004 

 
Chlamydiae 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

5E- 
05 

 
0 

 
0 

 
0 

1E- 
04 

 
0 

 
0 

4E- 
05 

2E- 
04 

7E- 
05 

8E- 
05 

 
0 

2E- 
04 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0.003 

 
Chlorobi 

 
0.002 

 
0.002 

 
0.001 

9E- 
04 

 
0.002 

 
0.002 

 
0.001 

 
0.001 

 
0.003 

 
0.002 

 
0.002 

 
0.002 

0.001 
67 

 
0.002 

 
0.002 

 
0.003 

 
0.002 

 
0.001 

 
0.002 

 
0.001 

 
0.002 

 
0.002 

 
0.001 

 
0.002 

 
0.185 

Cyanobacteria 0.004 0.004 0.002 0.005 0.006 0.005 0.005 0.005 0.004 0.005 0.005 0.004 0.003 0.004 0.006 0.008 0.003 0.003 0.003 0.004 0.004 0.005 0.005 0.005 0.446 
 

Deferribacteres 
 

0 
 

0 
 

0 
 

0 
 

0 
 

0 
 

0 
 

0 
 

0 
6E- 
05 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

7E- 
05 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0.001 

Deinococcus- 
Thermus 

 
0 

 
0 

 
0 

 
0 

 
0 

6E- 
05 

 
0 

 
0 

 
0 

3E- 
05 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

6E- 
05 

 
0 

 
0 

 
0 

 
0.001 

 
Elusimicrobia 

 
0.005 

 
0.005 

 
0.004 

 
0.006 

 
0.005 

 
0.005 

 
0.003 

 
0.004 

 
0.006 

 
0.006 

 
0.007 

 
0.004 

0.004 
34 

 
0.005 

 
0.006 

 
0.004 

 
0.004 

 
0.006 

 
0.003 

 
0.004 

 
0.003 

 
0.007 

 
0.006 

 
0.003 

 
0.476 

 
  Fibrobacteres   

 
0.002   

 
0.002   

 
0.002   

 
0.001   

 
0.003   

 
0.003   

 
0.001   

 
0.003   

 
0.003   

 
0.003   

 
0.002   

 
0.002   

0.001 
89   

 
0.002   

 
0.002   

 
0.001   

9E- 
04   

 
0.003   

8E- 
04   

 
0.001   

 
0.003   

 
0.003   

 
0.002   

 
0.002   

 
0.211   
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Tab. S4: continued 

 
 

Treatment 
 
 

1 
  

 
3 

  
 

2 
  

 
4 

  
 

6 
  

 
7 

  
 

5 
  

 
8 

  
 

9 
  

 
11 

  
 

10 
  

 
12 

 Mean 
value 
(%) 

 
Fusobacteria 

 
0 

 
0 

5E- 
05 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0.000 

 
Kazan-3B-28 

 
0 

 
0 

5E- 
05 

 
0 

1E- 
04 

 
0 

4E- 
04 

 
0 

 
0 

 
0 

 
0 

 
0 

3E- 
05 

 
0 

 
0 

4E- 
05 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0.002 

 
MVP-21 

6E- 
05 

 
0 

 
0 

 
0 

 
0 

4E- 
05 

 
0 

1E- 
04 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

1E- 
04 

 
0 

5E- 
05 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

4E- 
05 

 
0.002 

 
NPL-UPA2 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

1E- 
04 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0.001 

 
Nitrospirae 

 
0.005 

 
0.005 

 
0.005 

 
0.006 

 
0.004 

 
0.003 

 
0.007 

 
0.003 

 
0.005 

 
0.005 

 
0.005 

 
0.008 

0.003 
96 

 
0.003 

 
0.002 

 
0.005 

 
0.008 

 
0.005 

 
0.004 

 
0.003 

 
0.004 

 
0.002 

 
0.003 

 
0.003 

 
0.454 

 
Planctomycetes 

 
0.01 

 
0.008 

 
0.007 

 
0.004 

 
0.004 

 
0.007 

 
0.007 

 
0.002 

 
0.004 

 
0.005 

 
0.011 

 
0.013 

0.004 
69 

 
0.004 

 
0.01 

 
0.006 

 
0.006 

 
0.005 

 
0.01 

 
0.006 

 
0.002 

 
0.006 

 
0.004 

 
0.003 

 
0.622 

 
SM2F11 

8E- 
04 

 
0.002 
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Tab. S5: Relative abundances and taxonomic affiliations of the 25 most abundant OTUs with respect to the different treatments (Supplemental Tab. 
S1) and the above-ground herbivory (c=control, h=herbivory). 

 

OTU ID taxonomic affiliation Rel. abundance 
(%) 

15254 Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Bradyrhizobiaceae;Bradyrhizobium;Bradyrhizobium sp. 4.80 
3020 Bacteria;Acidobacteria;Acidobacteria;Candidatus Solibacter;uncultured Acidobacteria bacterium 1.95 
15334 Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Xanthobacteraceae;uncultured;bacterium Ellin6561 1.90 
430 Bacteria;Acidobacteria;Acidobacteria;Acidobacteriales;Acidobacteriaceae;Candidatus Koribacter;uncultured bacterium 1.75 

31887 Bacteria;Firmicutes;Bacilli;4-15;uncultured Bacillaceae bacterium 1.34 
10498 Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;alphaI cluster;uncultured bacterium 1.13 
33544 Bacteria;Acidobacteria;Acidobacteria;DA052;uncultured bacterium 1.07 
30880 Bacteria;Acidobacteria;Acidobacteria;Order Incertae Sedis;Family Incertae Sedis;Bryobacter;uncultured Acidobacteria 

 
1.05 

26950 Bacteria;Acidobacteria;Acidobacteria;Acidobacteriales;Acidobacteriaceae;uncultured;uncultured bacterium 1.03 
15204 Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Family Incertae Sedis;Rhizomicrobium;uncultured bacterium 0.97 
35896 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Comamonadaceae;uncultured;uncultured bacterium 0.91 
1434 Bacteria;Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Chitinophagaceae;uncultured;uncultured bacterium 0.91 
43557 Bacteria;Acidobacteria;Acidobacteria;Acidobacteriales;Acidobacteriaceae;uncultured;uncultured bacterium 0.88 
10655 Bacteria;Bacteroidetes;Cytophagia;Cytophagales;Cytophagaceae;Flexibacter;uncultured bacterium 0.84 
42418 Bacteria;Actinobacteria;Actinobacteria;Frankiales;Acidothermaceae;Acidothermus;uncultured bacterium 0.79 
10041 Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Beijerinckiaceae;uncultured;uncultured proteobacterium 0.79 
23893 Bacteria;Proteobacteria;Alphaproteobacteria;Rhodospirillales;Acetobacteraceae;uncultured;uncultured bacterium 0.74 
24136 Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Xanthobacteraceae;uncultured;uncultured bacterium 0.72 
17761 Bacteria;Acidobacteria;Acidobacteria;Acidobacteriales;Acidobacteriaceae;uncultured;uncultured bacterium 0.68 
10097 Bacteria;Acidobacteria;Acidobacteria;Candidatus Solibacter;uncultured Acidobacteria bacterium 0.67 
1655 Bacteria;Proteobacteria;Alphaproteobacteria;Rhodospirillales;DA111;uncultured bacterium 0.63 
30883 Bacteria;Proteobacteria;Betaproteobacteria;Nitrosomonadales;Nitrosomonadaceae;uncultured;uncultured beta 

 
0.61 

41226 Bacteria;Proteobacteria;Alphaproteobacteria;Rhodospirillales;DA111;uncultured bacterium 0.61 
22924 Bacteria;Proteobacteria;Alphaproteobacteria;Rhodospirillales;JG37-AG-20;uncultured Rhodospirillaceae bacterium 0.60 
38931 Bacteria;Acidobacteria;Acidobacteria;Candidatus Solibacter;uncultured Acidobacteria bacterium 0.58 
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Fig.S1.  16S-DGGE profile of dicot-reduced plots showing the influence of different fertilization and mowing regimes as well as above-ground herbivory 
on bacterial communities in the rhizosphere. Soil samples were taken in summer 2011. Independent replicates are indicated with numbers 
from 1 to 4. Treatment A: 1 x mowing/ year, no NPK; treatment B: 3 x mowing/ year, no NPK; treatment C: 1 x mowing/ year, NPK; 
treatment D: 3 x mowing/ year, NPK. M: GeneRuler 1 kb DNA Ladder (Fermentas, St. Leon-Rot, Germany). 
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Fig.S2. 16S-DGGE profile of dicot-reduced plots showing the influence of different fertilization and mowing regimes as well as above-ground 
herbivory on bacterial communities in the rhizosphere. For further details see Fig. S1. 
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Fig. S3. Rarefaction Curves at 1% (A), 3% (B), and 20% (C) genetic distance for 
all 72 samples analyzed by pyrosequencing. Curves were calculated in QIIME 
(Caporaso et al., 2010). 
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General discussion 

 

Soil is considered to be the most complex environment with respect to microbial species 

richness and community size (Torsvik et al., 2002; Daniel, 2005; Tringe et al., 2005). 

Despite their importance for biogeochemical cycling of nitrogen, phosphorous, and carbon, 

the ecology and functions of bacterial communities in soil ecosystems are not fully 

understood. The development of culture-independent molecular approaches has greatly 

advanced the understanding of soil bacterial community structure and diversity. However, 

most previous studies used DNA-based techniques, which are not able to distinguish 

between active and inactive community members. 

In this thesis, the influence of fertilizer application and season on total and active bacterial 

communities in a grassland soil (Chapter II) was investigated. In addition, active and total 

bacterial communities in soil samples from two genetically distinct aspen demes (Chapter 

III) were analyzed. In total, 216 soil samples were collected over two years (2010 and 

2011) in April, July, and September. Environmental DNA and RNA were co-isolated and 

analyzed by pyrotag-based sequencing. The impacts of fertilizer application, aspen demes, 

sampling time, and soil properties on bacterial community composition, diversity, and 

abundance were analyzed by statistical analyses. Furthermore, functional analyses of the 

active and total bacterial community were performed using Tax4Fun.  

In addition to soil as habitat for bacteria, plant-associated bacteria in the rhizosphere of 

permanent grasslands were investigated with culture-independent approaches (Chapter 

IV). The impact of fertilizer application, mowing frequency, sward composition, and 

herbivory exposure on bacterial structure in the rhizosphere was analyzed.  

 

5.1. Bacterial community composition in soil 

 

The majority of studies presented in this thesis focused on investigating bacterial 

communities and their functions in soils. In the studies from Chapter II and III, more than 

4,75 million partial 16S rRNA gene and gene transcript sequences were analyzed. The 

dominant phyla in the bacterial community of a grassland soil were Proteobacteria (DNA 

31.1%, RNA 45.7%), Firmicutes (DNA 27.4%, RNA 35.7%), Chloroflexi (DNA 17%, 

RNA 9.1%), Acidobacteria (DNA 13.3%, RNA 3.4%), and Actinobacteria (DNA 6%, 

RNA 3.4%) (Figure 1A and B). The five phyla accounted for up to 96% of all analyzed 
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sequences. Similar results were obtained in soil communities of two aspen demes. Here, 

the dominant phyla were Proteobacteria (DNA 32.4%, RNA 44.2%), Firmicutes (DNA 

27.2%, RNA 36.5%), Chloroflexi (DNA 16%, RNA 9.1%), Acidobacteria (DNA 13.3%, 

RNA 3.5%), and Actinobacteria (DNA 6.1%, RNA 3.8%) (Figure 1A and B).  

Figure 1. Most abundant phyla and proteobacterial classes of the total (A) and the 
active (B) bacterial community identified from soil samples of aspen deme 
Geismar 2 (G2) and aspen deme Geismar 8 (G8) as well as from fertilized (fe) and 
non-fertilized (nf) grassland soil samples. 

These findings were generally in accordance with previous studies of bacterial 

communities in forest and grassland soils (e.g. Will et al., 2010; Nacke et al., 2011; 

Baldrian et al., 2012; Pan et al., 2014). Janssen (2006) identified the dominant bacterial 
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phyla from 31 libraries of 16S rRNA and 16S rRNA genes in different soils, e.g. grassland 

and forest soils. In this study, Proteobacteria, Acidobacteria, Actinobacteria, 

Verrucomicrobia, Bacteroidetes, Chloroflexi, Planctomycetes, and Firmicutes were the 

dominant phyla in the libraries and accounted for 92% of all analyzed bacterial sequences. 

Nacke et al. (2011) found that Proteobacteria were the most abundant bacterial phylum in 

forest (45%) and grassland soils (35%). Will et al. (2010) observed similar high 

abundances of Proteobacteria in grassland soils (42%). This is in line with the results of 

Uroz et al. (2010) who analyzed the bacterial diversity in the rhizosphere and in the bulk 

soil of an oak forest. They found the highest abundance of Proteobacteria with up to 38% 

in the bulk soil and 41% in the rhizosphere soil. Thus, Proteobacteria is one of most 

dominant and ubiquitous taxonomic groups in soils. Members of this phylum play a key 

role as plant growth-promoting bacteria (Mendes et al., 2011, Brown et al., 2012), e.g. 

Burkholderiales (Estrada-De los Santos et al., 2001, Suarez-Moreno, 2012).  

The second most abundant phylum was Firmicutes (DNA 27.3% and RNA 36.1%). This 

result is in contrast to other studies (e.g. Janssen, 2006; Will et al., 2010; Nacke et al., 

2011; Rampelotto et al., 2013). Firmicutes form a large group of Gram-positive bacteria 

and are divided into three main classes, Bacilli, Erysipelotrichi, and Clostridia (Ludwig et 

al., 2009). In this study, sequences affiliated to the Firmicutes were mostly assigned to the 

genus Bacillus. Members of the Bacillus are aerobic bacteria with the ability to form UV-

resistant endospores that also endure drought and oxidizing agents (Popham et al., 1995). 

Members of the genus Bacillus are common in soil, well accommodated to this habitat, 

and known as beneficial for plant growth and health (Berg, 2009). The high number of 

Firmicutes in this study may result from the former land-use history of the study site, 

which was for hay-making or for grazing.  

In this thesis, the phylum Chloroflexi represents 16.5% of all analyzed sequences in the 

total and 9.1% in the active bacterial community. Janssen (2006) found that the abundance 

of this phylum varied between 0 % and 16% in the entire soil bacterial community. We 

found several subphyla of Chloroflexi with Ktedonobacteria as most abundant class 

(5.39% of all analyzed 16S rRNA gene and gene transcript sequences). Davis et al. (2005 

and 2011) isolated some members of the Chloroflexi subphyla such as Ktedonobacteria 

and Thermomicrobia from paddock soil by inoculation experiments. They characterized 

these groups as slow-growing and mini-colony-forming bacteria. Yamada et al. (2005) 

investigated the community of Chloroflexi subphylum I in mesophilic and thermophilic 

sludge granules. They isolated and analyzed 3 strains belonging to this subphylum and 
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suggested that Chloroflexi might contribute to the degradation of carbohydrates and other 

cellular components such as amino acids. Thus, this observation may give us a hint about 

the role of Chloroflexi in soil.  

Another abundant phylum in the total community was Acidobacteria. Members of this 

phylum form a highly abundant and diverse group (Quaiser et al., 2003) and their 

abundance is often linked to soil pH (Lauber et al., 2009) and an oligotrophic lifestyle 

(Fierer et al., 2007; Naether et al., 2012). Oligotrophic bacteria show a high substrate 

affinity and low growth rate but are well adapted to poor soil conditions. As consequence, 

they have an advantage compared to bacteria with a copiotrophic lifestyle. Copiotrophic 

bacteria such as Betaproteobacteria exhibit high growth rates at high-nutrient conditions 

(Naether et al., 2012). In this thesis, Acidobacteria represents 13.3% and 3.5% of all 

analyzed sequences at DNA and RNA level, respectively. Correlation studies with soil 

parameters such as pH, C/N, and water content had shown that the abundance of this 

phylum is significantly correlated with pH. In a study by Jones et al. (2009), the relative 

abundance of Acidobacteria within 87 different soil samples varied from 2.4 to 78.5%. 

The abundance of this phylum correlated strongly with pH, with higher abundances at low 

pH values. Within the Acidobacteria, the distinct subclasses correlated differently with pH. 

While the acidobacterial subclasses 1, 2, 3, 12, 13, and 15 decreased, the acidobacterial 

subclasses 4, 6, 7, 10, 11, 16, 17, 18, 22, and 25 increased with rising pH. The abundance 

of the active members of subgroup 1 correlated significantly negatively with pH, while 

that of subgroup 7 is significantly positively correlated with pH. 

The phylum Actinobacteria (DNA 6% and RNA 3.6%) forms a large group of mainly 

Gram-positive bacteria. Actinobacteria are divided into six classes and are characterized as 

an extremely diverse group with high GC-content (Stackebrandt and Schumann, 2006; Lu 

and Zhang, 2012). In a study by Lauber et al. (2009), the relative abundances of 

Actinobacteria varied between 5 and 24% with an average of 13%. They found 

approximately 7% abundance of Actinobacteria within a pH range of 4 to 6 and this is in 

line with the result from our study of  the total soil bacterial community. 
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5.2. Active and total bacterial communities differs with respect to their diversity 
and abundance 

To study the metabolic active soil bacterial community, RNA was isolated from 216 soil 

samples, transcribed into cDNA and alpha- and beta diversity analyses were performed 

(Chapter II and III).  

The total bacterial community is dominated by Proteobacteria (32%), Firmicutes (27%), 

Chloroflexi (17%), Acidobacteria (13%), and Actinobacteria (6%) (Figure 1A), whereas 

the active bacterial community is predominated by the two phyla Proteobacteria (45%) 

and Firmicutes (36%) (Figure 1B). This is in accordance with a study of Baldrian et al. 

(2012). They observed that the active bacterial community in forest soils was less evenly 

distributed and less diverse compared to the corresponding total bacterial community. 

Generally, both phyla Proteobacteria and Firmicutes have more 16S rRNA gene copy 

numbers and a higher degree of overestimation by amplifying the variable regions between 

the V1-V3 16S rRNA gene region (Sun et al., 2013, Větrovský and Baldrian, 2013). This 

could also result in high abundances of these phyla in the active as well as in the total 

bacterial community. Additionally, estimated numbers of OTUs differ significantly 

between DNA and RNA level at 20% and 3% genetic distance, indicating a higher 

diversity in the total bacterial community compared to the active bacterial community 

(Figure 2). This result could be underlined by several studies (Baldrian et al., 2012; 

Schneider et al., 2015; Stibal et al., 2015). Stibal et al. (2015) found a significant higher 

diversity in the total bacterial community compared to the active bacterial community 

from margin sites of an ice sheet in Greenland. Additionally, they identified significant 

differences between the active and total community composition as mentioned in this 

thesis. Thus, DNA-based approaches, which include also dead cells, extracellular DNA, 

and dormant microorganisms (Lennon and Jones, 2011) may lead to a higher diversity of 

the total bacterial community compared to the active bacterial community.  

However, approximately 91% of all analyzed 16S rRNA gene and gene transcript 

sequences were shared between the active and the total bacterial community. This suggests 

that the core community consisted of also metabolic active members. This is in line with a 

comprehensive stable isotope study of DNA and RNA with H2
18O (Rettedal and Brözel, 

2015). Here, total and active members of the same type of nucleic acid exhibited similar 



Chapter V 

155 

community structures. The authors suggested that the most abundant OTUs in the total 

nucleic acid extracts contained active members.  

Figure 2: Rarefaction curves at 20% (A) and 3% (B) genetic distance derived 
from the total (DNA) and active (RNA) bacterial community. Depicted were 
rarefaction curves from the GrassMan (GM) and PopDiv (PD) experimental 
site.  

Direct RNA extraction from soil and analysis allow the exploration of the metabolic 

activity of bacteria as the abundance of rRNA per cell nearly correlates with bacterial 

growth activity (Molin and Givskov, 1999). Although this technique has some drawbacks 

such as varying ribosome content per cell and remaining RNA reserves in dormant cells 

(Sukenik et al., 2012; Blazewicz et al., 2013), RNA-based approaches represent a useful 
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tool for analyzing the metabolic active bacterial community in soil. As we observed 

differences between total and active bacterial community composition, a combined 

analysis is the best way to investigate main drivers of bacterial communities in soils and 

other ecosystems. 

5.3. Total and active bacterial communities and functions in a grassland soil are 
influenced by fertilizer application and environmental conditions 

The results of Chapter II demonstrate that fertilizer application altered the total as well the 

active bacterial community in different ways. While the diversity of the total bacterial 

community is higher in the fertilized soils, the diversity in the active bacterial community 

as response to fertilization was reduced. The DNA-based results were in accordance with 

previous studies (Nacke et al., 2011; Shange et al., 2012; Poulsen et al., 2013). For 

example, Nacke et al. (2011) found similar OTU values at 3% genetic distance in fertilized 

and non-fertilized grassland soil bacterial communities. Fertilizer application influenced 

not only the diversity, but also the composition of the bacterial community (Shange et al., 

2012; Udikovic-Kolic et al., 2014). In previous studies, it could be shown that 

Gammaproteobacteria increased with rising N inputs (Ramirez et al., 2010; Broszat et al., 

2014) or with long-term fertilization (Campbell et al., 2010). However, very little is known 

so far about responses of the active bacterial community to fertilizer application as most 

previous studies used DNA as template (Campbell et al., 2010; Broszat et al., 2014). 

Especially, the active members of the class Gammaproteobacteria were significantly more 

abundant in the fertilizer-treated plots than in all other analyzed treatments.  For example, 

we observed a higher activity of fewer groups such as Xanthomonadales which can use N 

compounds as energy sources. This is in line with previous studies (Patra et al., 2006; 

Ramirez et al., 2010; Fierer et al., 2012; Rampelotto et al., 2013).  

Spearman rank correlation analysis revealed that several taxonomic groups correlated 

significantly with environmental parameters. This is in accordance with previous studies 

(Fierer et al., 2007; Jones et al., 2009; Lauber et al., 2009; Rousk et al., 2010; Tripathi et 

al., 2012; Zhou et al., 2014). Lauber et al. (2009) found strong positive correlations for 

Acidobacteria (r = 0.72), Alphaproteobacteria (r = 0.70), and Actinobacteria (r = 0.63) 

with pH and Rousk et al. (2010) observed that the relative abundance of Acidobacteriales 
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decreased with increasing soil pH, while the relative abundance of Acidobacteria 

subgroups 5, 6 and 7 increased with soil pH. 

We found that also the active members of the orders Acidobacteriales and Myxococcales 

significantly correlated with pH and C/N, respectively (Jones et al., 2009; Zhou et al., 

2014). This is in line with a study of myxobacterial communities in different soils by Zhou 

et al. (2014). The authors observed a strong correlation between pH and the relative 

abundance of Myxobacteria. This group plays a key role in the carbon turnover in soils 

(Lueders et al., 2006). Jones et al. (2009) found that Acidobacteria strongly correlated with 

pH and that subgroups of this phylum correlated positively or negatively with pH.  

Additionally, functional predictions were performed using Tax4Fun (Aßhauer et al., 2015). 

Tax4Fun is an open-source R package that links the functional potential of microbial 

communities based on 16S rRNA genes and gene transcript sequences (Aßhauer et al., 

2015). Higher abundances of genes encoding for subunits for nitrate reductases (narIJ) and 

nitrite reductase (nirB) were observed at active bacterial community level in fertilizer-

treated plots. Furthermore, genes facilitating the first step of the nitrification reaction 

(amoABC) were more abundant in the fertilized soils. Especially, we could show that the 

active bacterial community response is more sensitive to soil parameter and fertilizer 

application than that of the total bacterial community.   

This thesis gave first insights in the active bacterial community composition in different 

managed soils, indicating that it is of great importance to analyze both, the active and total 

bacterial structure to understand the mutual influence of management regimes and 

bacterial dynamics in soils.  

5.4. Diversity of the active bacterial community are altered by two aspen demes 

In Chapter III, the effect of two aspen demes (Geismar2 and Geismar8) on the diversity of 

active and total soil bacterial community was investigated. Most previous studies showed 

an effect of tree species diversity and tree identity on total bacterial community structure 

and diversity in forest soils (Nacke et al., 2011; Oh et al., 2012; Sun et al., 2014). In this 

study, only the diversity of the active bacterial community was influenced and the total 

bacterial community in soils of the two aspen demes did not differ. For example, 

comparison of mean Shannon indices from aspen deme Geismar2 and deme Geismar8 

revealed a significantly higher diversity in the active soil bacterial community of Geismar2 
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compared to Geismar8 at 3% and 20% genetic distance (P = 0.018 and P = 0.005, 

respectively), whereas no differences were recorded in the total bacterial community. To 

underline this result, Pfeiffer et al. (2013), investigated the influence of beech and ash on 

the active bacterial community composition and diversity and found that beech and ash as 

tree species impacts the soil bacterial diversity. Urbanova et al. (2015) observed that the 

effect of tree species on the total microbial-community composition was alone not 

significant, but was partly mediated by soil pH. Thus, it is of great importance, to analyze 

both, the active and total bacterial community composition and their diversity to 

understand soil microbial interaction with tree identity as well as tree diversity.  

5.5. Influence of sampling time on total and active bacterial communities in soils 

We showed that sampling time impacts the bacterial diversity and structure in bulk soil 

(see Chapter II and III), including the diversity of the active bacterial community in 

grassland soil (Chapter II). Estimated numbers of operational taxonomic units (OTUs) in 

summer samples in 2010 differed significantly from those of the summer samples in 2011 

at 20% and 3% genetic distance due to higher temperature and drier soil conditions during 

summer 2010 compared to summer 2011. A possible explanation is that the bacterial 

community is altered as response to seasonal changes of temperature, water availability, 

and plant growth activity (Jonasson et al., 1999; Cruz-Martinez et al., 2009; Liu et al., 

2009; Angel et al., 2010; Castro et al., 2010; DeAngelis et al., 2015). A rainfall 

manipulating experiment showed little differences in soil bacterial community composition 

in grasslands after 5 years of manipulation (Cruz-Martinez et al., 2009). Changes in 

microbial abundance and composition were detected in response to extreme weather 

conditions, but sampling repeatly across seasons and years showed that these changes were 

only short-lived. Furthermore, Angel et al. (2010) investigated the diversity of soil bacteria 

along a steep precipitation gradient ranging from the Negev Desert in the south of Israel 

(<100 mm annual rain) to the Mediterranean forests in the north (>900 mm annual rain). 

The difference in community compositions was not statistically significant within sites, but 

it differed profoundly by ecosystem type. They explained these differences by the 

precipitation gradient combined with the vegetation cover. 

Sampling time had a minor effect on the total bacterial community composition in the 

aspen demes. This is in line with a study by Kuffner et al. (2012). They observed in a 
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warming experiment, established in a 130-years-old mountain forest, that seasonal 

community dynamics were slight compared to the dynamics of soil respiration. Despite a 

pronounced respiration response to soil warming, they did not detect warming effects on 

community structure or composition. De Angelis et al (2015) studied changes of soil 

bacterial community as response to soil warming in a long-term forest ecological research 

site in which soil was warmed 5°C above ambient temperatures for 5, 8, and 20 years. 

They detected only a significant change in bacterial community structure after 20 years of 

warming. 

In this thesis, the effect of sampling time was earlier detectable at active bacterial 

community level than at total bacterial community level. This is in line with a study by 

Maaløe and Kjeldgaard (1966). They showed in shift experiments that ribosome synthesis 

was immediately affected by changing environmental conditions. 

5.6. The total bacterial community in the rhizosphere is influenced by 
management regimes as well as plant species composition 

In Chapter IV it was shown that mowing frequency in combination with fertilizer 

application significantly altered the bacterial community composition in the rhizosphere, 

but fertilization alone did not significantly influence bacterial richness (Maron and Jeffries, 

2001; Patra et al., 2006; Fierer et al., 2012). Fierer et al. (2012) analyzed the structure and 

functional characteristics of soil microbial communities from replicated plots in two long-

term N fertilization experiments by pyrosequencing 16S rRNA gene sequences and found 

no significant effects of N fertilization on bacterial diversity, but significant effects on 

community composition. The effect of mowing influenced the rhizospheric bacterial 

community, which is in accordance with Patra et al. (2006), who showed that grazing and 

mowing can affect the size and composition of key microbial functional groups driving N 

dynamics. On the other hand Denef et al. (2009) did not detect an effect of mowing 

frequency on rhizospheric soil bacterial community composition. This contrast might be 

due to different approaches used such as phospholipid fatty acid (PLFA) analysis (Denef et 

al., 2009) and restriction fragment length polymorphism (RFLP) in combination with 

denaturing gradient gel electrophoresis (DGGE) analysis (Patra et al., 2006) in these 

studies which lead to different results. Additionally, the study sites represent different land 
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use histories and soil types, which impact the bacterial community and richness in 

rhizospheric soils in one way or another (Singh et al., 2007; Garbeva et al., 2008). 

The impact of sward composition was investigated, resulting in a reduction of bacterial 

richness in plots with either monocotyledonous or dicotyledonous grass plants compared 

to control plots without grass species reduction. Additionally, the bacterial composition in 

the rhizosphere was influenced. It is well known that plant diversity influences bacterial 

community composition in soil (Grayston et al., 1998; Stephan et al., 2000; Zak et al., 

2003; Costa et al., 2006; Garbeva et al., 2008; Mitchell et al., 2010). Stephan et al. (2000) 

showed that the catabolic activity and catabolic diversity of cultivable soil bacteria 

increased with plant species number and number of plant functional groups in 

experimental grassland ecosystems. Mitchell et al. (2010) investigated if vegetation 

composition or soil chemistry best predict the soil microbial community. They found that 

above-ground vegetation composition may be a better predictor of the soil microbial 

community than one-off measurements of soil properties.  

However, the sward composition had a weaker influence on the bacterial richness 

compared to the effect of sward composition in combination with mowing frequency 

and/or fertilizer applications. Thus, the combination of various factors influenced the 

bacterial community composition and diversity in the rhizosphere differently. 

5.7. Concluding remarks 

The majority of studies presented in this thesis investigated the diversity and dynamics of 

bacterial communities in bulk and rhizospheric soil using different culture-independent 

approaches. Although being intensively studied over the past years, our knowledge on 

ecology and functions of these communities is still limited. Understanding how bacterial 

communities in soil and rhizosphere are structured and how they react towards different 

factors such as fertilizer application is of crucial interest due to their important role for 

plant growth and ecosystem functioning.  

We showed further that fertilizer application affected both total and active bacterial 

communities in a grassland soil. However, the active bacterial community showed a 

stronger response to fertilizer application and sampling time. This was confirmed by the 

analysis of soils from two aspen demes. While the active bacterial community was 

influenced by aspen demes, the total bacterial community did not differ. The results of this 
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thesis highlighted the importance of a combined metagenomic and metatranscriptomic 

approach for in-depth analysis of soil bacterial communities and their functions.  

The total bacterial community composition in the rhizosphere was significantly affected by 

different management regimes. Moreover, the combination of mowing frequency with 

fertilizer application, and sward composition had significant effects on the community 

composition. As several bacteria in the rhizosphere promote plant growth and health, the 

understanding of community dynamics and functions is of fundamental importance. 
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Summary 

Bacteria are key players in nutrient cycles and energy transduction in soil. Although soil 

bacterial communities have been studied for several decades, our knowledge on their 

structure, dynamics ecosystem function is still limited. The aim of this thesis was to 

contribute to the understanding of these communities. 

In the first two studies, the impact of fertilizer treatment, two distinct aspen demes, soil 

properties (pH, water content, and C/N ratio), and sampling time on the total (DNA level) 

and the metabolic active (RNA level) bacterial community was analyzed. Thus, soil 

samples were collected in April, July, and September over two consecutive years. 

Community compositions were further assessed by pyrotag sequencing of 16S rRNA 

amplicons generated from environmental DNA and RNA, respectively. Additionally, 

functional analyses were performed based on the prediction of functional traits from 

taxonomic community composition. 

In the first study, all factors investigated influenced the bacterial community composition 

and diversity. Fertilizer application leaded to a diversity loss in the active bacterial 

community at phylum as well as at species level. Relative abundances of active bacterial 

community members showed a shift to bacterial groups such as Xanthomonadales, which 

are specialized to use nitrogen compounds as energy source. In addition, genes encoding 

for the uptake of nitrate/nitrite, nitrification, and denitrification steps were significantly 

more abundant in fertilized plots at active bacterial community level. 

In the second study, an influence of two different aspen demes Geismar2 and Geismar8 on 

soil bacterial community and diversity was observed at the active community level. The 

comparison of mean Shannon indices revealed a significantly higher diversity in the active 

soil bacterial community of aspen deme Geismar2 compared to Geismar8 at 3% and 20% 

genetic distance. Moreover, several of the main abundant phyla and proteobacterial classes 

were either more abundant in aspen deme Geismar2 or Geismar8, respectively.  

The effect of sampling time on bacterial community was more pronounced at active 

bacterial community level, indicating that the metabolic active community members 

responded earlier to environmental changes. This result was supported by correlation 

analyses of relative abundances and soil properties. Additionally, we observed more 

significant positive and negative correlations of soil properties at many taxonomic levels 
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(at phylum, proteobacterial class, and order level) in the active bacterial community than in 

the total bacterial community. As a consequence, seasonal change has to be regarded in 

further studies as it might alter the effects of different grassland management regimes or 

aspen demes on soil bacterial communities. 

In the third study, the effect of management regimes, mowing frequency, sward 

composition, and above-ground herbivory on the bacterial community composition in the 

rhizosphere was investigated. For this purpose, a lysimeter experiment was established in 

autumn 2010. Following a two-week exposure to herbivory by grasshoppers and snails, 

soil samples were collected from the lysimeters in summer 2011. DNA was extracted from 

the collected samples and subjected to 16S rRNA gene analysis. Community structure and 

bacterial diversity were assessed either by DGGE analysis or pyrosequencing of 16S 

rRNA gene amplicons. Sward composition and lower mowing frequencies decreased the 

bacterial richness in the rhizosphere. Despite that differences in bacterial richness between 

fertilized and non-fertilized plots were not recorded, the bacterial community composition 

responded to different management regimes. For example, Acidobacteria were 

significantly more abundant in non-fertilized plots, whereas Actinobacteria were 

significantly more abundant in fertilized plots.  

In conclusion, bacterial communities in soil and in the rhizosphere are affected by different 

factors such as fertilizer application. Evaluating the main drivers of bacterial communities 

may results in a better understanding of the complex interactions between plants and 

bacterial communities. Furthermore, the results of this study will help to predict the impact 

of different factors onto bacterial communities in rhizosphere and soil and related effects 

on soil ecosystems. 
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