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Motivation and Purpose

Turbulence is one of the oldest and trickiest unsolved problems in our understanding
of the universe. The addition of magnetic fields increases its complexity exorbitantly.
There are numerous astrophysical examples where the turbulent dynamics of magne-
tised plasma is critical, from the largest to the smallest scales: it may hold the key to
explaining the amplification of the magnification fields on galactic and super-galactic
scales through small-scale dynamos, the coronal heating through turbulent reconnec-
tion, the self-regulation of star formation rate through turbulent support, et cetera.
Due to the large degree of non-linearity of turbulence, numerical simulations are a
preferred tool to address many of these problems. In the astrophysical context, direct
numerical simulations of compressible magnetohydrodynamic turbulence, the simplest
theory which contains all the basic physical ingredients, are often computationally in-
tractable due to the prohibitively large dynamical range between the dissipative and
integral scales. The finite numerical resources impose a grid with finite resolution below
which no self-consistent information is computable. In order to incorporate the effects
of the sub-grid scale dynamics, one needs to provide a physically justified model.

The purpose of this thesis is to develop a self-consistent model which is faithful to
the sub-grid scale dynamics of compressible magnetohydrodynamic turbulence. This is
performed by means of a priori analysis of pre-existing data. The data has sufficient
resolution for a well delineated power-law scaling, i.e. turbulent, range in the energy
spectrum. An attempt is made to identify and investigate critical properties of the sub-
grid scale dynamics in the simulations of developed statistically homogeneous, isotropic
and stationary compressible magnetohydrodynamic turbulence. The proposed model
is developed based on a deconvolution approach. It is validated a priori against the
data and alternative models currently in circulation based on a set of dynamical and
geometrical, frame-independent diagnostic fields.
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Notation

— differentiation operator, e.g. f, = 0;f =

* — convolution operator

D o Q . - . . .
D= 5 T U V — Lagrangian derivative

azz

[J — placeholder for generic expression

O — closure expression for [

D filtered version of [

0 - mass-weighted (Favre) filtered version of [J, equivalent to ”D

O* — deviatoric (traceless) part of O, equivalent to O — Tr(D)I (only for 2°d rank
tensors)

p — mass density

u — velocity field

B — magnetic field

P — thermal pressure

A - ﬁlter scale (in physical space)

Sij = (8 u; + 0ju;) — kinetic rate-of-strain

M;; = 5 (8;B; + 9;B;) — magnetic rate-of-strain
Qi = % (8 u; — 0, ul) vorticity tensor
Jij = 5 (0;B; — @-Bi) — current tensor

V X u — vorticity vector

Q=
w = VO - enstrophy
J =V x B - current vector

0 — Kronecker delta (symmetric isotropic tensor)

¢ — Levi-Civita symbol (anti-symmetric isotropic pseudo-tensor, 3 dimensions)
G — filter kernel

I — the identity (tensor)

7" — kinetic SGS stress tensor

7® — magnetic SGS stress tensor

T = 7% — 7" — total SGS stress tensor

E =0 (EY) - total filtered O energy

E" = G x ($pu?) — total filtered kinetic energy

B =G (%BQ) — total filtered magnetic energy
Et = %ﬁﬁQ — resolved kinetic energy

Eb = %EQ — resolved magnetic energy



EY. =F" — B = iTr (") — kinetic SGS energy

sgs res
Eb, = E - Eb, = 1Tr (") — magnetic SGS energy

Eij = (uiBj — ujBi) — (ﬂigj — ﬂjﬁi) — SGS electromotive force, tensor form

€ =ux B —1x B - SGS electromotive force, vector form

€ — SGS energy dissipation

Y5 — cross-scale transfer term, cascade term

75 — non-local (diffusion-like) cross-scale transfer term, transport term
F5 — total cross-scale transfer term, total flux term

Cq - closure coefficient



1 Introduction

1.1 Fluid dynamics and MHD

Understanding magnetised turbulent flows is an outstanding task for fluid dynamicists
with applications from engineering to geophysics and astrophysics. Astrophysical plas-
mas, due to their typically low densities, tend to have small viscosity and hence exhibit
strongly turbulent characteristics. Furthermore, as observations show, the universe has
been fully ionized since redshift of z < 5 [27, 32-35, 49] and permeated by magnetic
fields. While these magnetic fields are not always dynamically important, they feature
as a probable ingredient in a multitude of outstanding astrophysical conundrums. At
the largest scales, for example, the small-scale turbulent dynamo is a possible explana-
tion for the amplification of the intracluster magnetic fields to the observed values of
the order of uG [19, 53|. At galactic scales, turbulent dynamos have been invoked to
explain the presence of large-scale galactic magnetic fields [91|. Magnetohydrodynamic
(MHD) turbulence also plays a significant role in the different phases of the ISM and
may help explain the self-regulation of star formation as well as the fragmentation of
pre-stellar cores. In stellar astrophysics MHD turbulence plays an important role in
the convection zone and the photosphere of stars [7], in accretion and protoplanetary
discs, for ejecta, e.g. jets, stellar outflows, etc. [11]. More locally — in solar physics,
magnetised plasma determines the dynamics of the solar tachocline, the solar wind
and the solar corona [12, 17, 58, 70, 116]. In the terrestrial environment examples can
be found in different zones of the magnetosphere, for instance the geomagnetic tail
[13, 39, 47, 94, 115].

The parameter space which these phenomena occupy cannot be fully investigated in
terrestrial experiments. The intrinsic non-linearity and large number of physical effects
which they entail limits their analytical treatment as well. Numerical simulations
have provided much insight into their dynamics due to completeness and flexibility of
the provided datasets. However, the large dynamical range of scales coupled with non-
linear and compressibility effects render realistic astrophysical simulations prohibitively
expensive in terms of computing resources. One method to reduce the computational
cost is to simulate a limited range of scales, while the remaining, unresolved (i.e. not
directly simulated) scales are modelled. This works focuses on one of the methods to
do this — large eddy simulations (LES). After a brief introduction to MHD and LES,
we derive a new model for the unresolved scales involved in LES in chapter 2. Other
existing models available in literature are also described there. We then examine the
properties of these unresolved scales as revealed by a set of high-resolution numerical
simulations spanning a considerable range in parameter space in chapter 3. Chapter 4
is dedicated to a comparison of the performance of the different models. Finally in
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chapter 5 we summarise the main results and provide a brief outlook.

1.1.1 Magnetohydrodynamic equations

The simplest approximation of describing both fluid motion and magnetic fields is
magnetohydrodynamics (MHD), see e.g [84]. It is constructed by combining fluid dy-
namics (Navier-Stokes) and electromagnetism (Maxwell) under the approximation of a
strongly collisional system with the following equations of motion:

dp
- . = 1.1
LV (pu) =0, (1)
dpu B®B B?
W%—V-(pu@u— T )+V<P+8—W)—v-0, (1.2)
B
%—t—Vx(uxB):nV2B (1.3)

The viscous dissipation tensor is defined as o = 2vS*, with §* — the deviatoric (trace-
less) part of the kinetic rate-of-strain tensor § =  (ju; + 0;u;). The dynamic viscosity
coefficient v captures the strength of microphysical processes which dissipate kinetic
energy into heat. Its counterpart in the induction equation is the Ohmic dissipation co-
efficient . We can non-dimensionalize the system by introducing characteristic length,
speed and density Vy, L and py. Applying the transformation

z— /L, p—p/po, u—u/Vy, B—=B/By, P— P/(poVy) (1.4)

with By = Vy\/4mpy, we obtain the non-dimensional form of the equations of motion:

dp
it . = 1.
V(o) =0 (15)
Jpu B? 1 .
W—FV'(pu@u—B@B)—FV(P—F?)—QV'(QS), (1.6)
OB 1,
E—VX(HXB)—R—mVB. (17)

This gives the explicit definition of the kinetic Reynolds numbers as Re = poVoL /v
and similarly the magnetic Reynolds number — Rm = VjL /5. The Reynolds numbers
control the strength of the non-linear terms relative to the dissipation terms. Large
Reynolds numbers (usually above 10%) are associated with turbulent flows. Addition-
ally, we have the Alfvén speed — given by va = B/\/4mp, which gives the Alfvénic Mach
number M, = u/va. The latter signifies the strength of the magnetic field relative to
the flow. Note that with our chosen system of units the initial Alfvénic Mach number
is set to M,y = 1. Similarly, we define the sonic Mach number to be Mg = u/c, for
sound speed c,.

The plasma beta parameter is an important MHD dimensionless quantity which gives
a measure of the relative strength/dynamical importance of the velocity and magnetic
field. It represents the ratio of thermal to magnetic pressures and can be expressed in
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terms of Mach numbers as 3, = 2M,,> / M,2. This parameter determines the importance
of the "M” in MHD. The larger the parameter, the closer to the hydrodynamic limit
we get.

To complete the set of equations we write down the expressions for the evolution of the
kinetic energy K" = %,ou2 and the magnetic energy EP = %B2

0 1

—FE" - (uE" ‘B VP =—u-V- (25" 1.

BT +V-(uE")+u-BxJ+u-V ReuV(S), (1.8)
0 1
—FE"-B- B)=_—BV’B. 1.
T V x (u x B) R \Y (1.9)

Combining them we obtain the total energy equation
E
%—t+v (uE" +2uE® - BH) = (1.10)

—u-VP + éu-V-(QS*)—FRLmB-VzB.

The right-hand side expresses dissipation into internal energy and can be closed via an
equation of state. For the purposes of this analysis we limit ourselves to the simplest
case of an isothermal equation of state P o p.

A new quantity enters the evolution equation, namely the the cross-helicity H = u- B.
It plays a crucial role in energy transport and conversion between kinetic and magnetic
type. It describes the amount of (topological) twisting/linking between velocity and
magnetic structures. Its evolution equation is a conservative one

0 B B 1 1
—H+V-(uH—-—E")=-—-VP+—B-V-(28*) + —u- V’B. (1.11
ot * (u p ) p * Re (257) + Rm (1.11)
In other words, this is another ideal MHD invariant along with the energy and the
magnetic helicity (the latter will not be discussed in this work).

1.1.2 Scale-separation: RANS, ILES, LES

The analytical treatment of MHD turbulence is limited due to the strong non-linearities
of the equations of motion. A numerical treatment, on the other hand, needs to resolve
a huge dynamical range — from the microphysical scales where dissipation dominates
the flow to the integral scales where the energy injection usually takes place. In 3
dimensions the computational cost scales with the 3'¢ power of the largest of {Re, Rm}
(from Kolmogorov theory, the extent of the dynamical range in incompressible hydro-
dynamics (HD) scales with Re3* per dimension: 3 spatial + 1 temporal dimensions
[66, p. 200], |25, p. 424] ). As an example [76], for the convection layer of our Sun,
the Reynolds number has a value of Re > 10'. The most powerful high performing
computers (HPC) today can perform at the level of pFLOPS (10% floating point op-
erations per second). The computation of only one dynamical time requires then more
than the current age of the universe...
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In other environments the Reynolds numbers can reach even larger orders of magni-
tude (e.g. giant molecular clouds, intra-cluster medium). In addition astrophysical
phenomena often occupy other extreme regions of parameter space with sonic and
Alfvénic Mach numbers (ISM, outflows, novae) of order 10, large magnetic Prandtl
numbers! (stellar dynamos), etc. [70, 75]. Clearly some simplifications are required.

A promising way to proceed is to solve directly only the evolution of the large scales
and to model the effect of the small-scales. This can only be feasible if there is some
form of universality on the small scales so that a unifying model can be developed for
more than one application at a time.

There are several approaches to reduce the computational cost and complexity. We
will be concerned with large eddy simulations, but will mention the alternatives for
completeness. They can be ordered by their level of simplification.

Reynolds averaged simulations (RANS) reduce the resolved degrees of freedom most
drastically. There only the mean fields are computed, while all the fluctuations are
subject to modelling. While they provide a significant reduction in computational
cost, they are very sensitive to the particulars of the SGS model. Effectively they solve
an extremely low effective Reynolds number approximation?.

A more expensive approach consists of the implicit LES (ILES). Here the assumption is
that the numerical dissipation, which is inherent in any simulation, has the same effect
as that of the SGS dynamics. This has the advantage that the SGS model is inherently
stable and robust, by virtue of the properties of the numerical scheme. Additionally,
it is computationally cheap, since it doesn’t involve any additional computations. One
disadvantage is that hydrodynamic ILES can suffer from a so-called bottleneck effect
— a pile-up of energy at the end of the dissipation range [28, 79]. Additionally, by
construction the SGS models are strictly dissipative, i.e. carrying energy only from
large to small scales. However, it has been recorded (e.g. [79]) that there can be a
non-negligible component of energy travelling in the opposite direction, which can be
of the order of 10-20 % for hydrodynamic simulations and even dominant in MHD, e.g.
in turbulent dynamo simulations with small initial magnetic field.

The LES approach consists of explicitly accounting for the effects of finite resolution
in the evolution equations. While being more computationally expensive than ILES
it provides a higher degree of control over the SGS dynamics and the flexibility to
account for up-scale energy transfer. However it presents the closure problem - the
need to develop an explicit model to describe these effects. This approach has already
had great success in the fields of fluid dynamics and its engineering and astrophysical
applications [51, 77, 79, 80|. However, only a few models have been developed in the
context of compressible MHD (see chapter 2).

To illustrate the difference between RANS and LES we present fig. 1.1. It shows a
turbulent field, its large scale, or 'resolved’ component and the remaining fluctuations.
In the RANS approach the field in fig. 1.1a needs to be modelled. In the LES approach
we would have to model instead the field in fig. 1.1c. As can be seen, the latter is

!The magnetic Prandtl number is given by the ratio of microscopic viscosity and magnetic diffusivity
as P, = v/n=Rm/Re.

2This effect comes from the fact that in low Recgective sSimulations any fluctuations are quickly diffused
away.
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(a) full (b) ’resolved’ (c) fluctuations

Figure 1.1: Decomposition of a turbulent field (a) into its large scale 'resolved’ (b) and
small-scale — fluctuating (c) components. The illustration is of a slice of the z-component of
the velocity field in units of the sound speed from a simulation of homogeneous and isotropic
developed MHD turbulence.

in general much more homogeneous than the former and might exhibit some form of
universality across different flows.

1.2 Introduction to LES formalism

1.2.1 Filtering operator

Let us then proceed with a brief overview of the LES formalism in its application to
compressible MHD. For a comprehensive review of the formalism see e.g. [43, 74, 76|
The effect of finite resolution in the MHD equations can be described by a low-pass
filtering operator. In order to be useful for our purposes (i.e. application to partial dif-
ferential equations) the filter kernel should satisfy a set of properties. It should preserve
constants, commute with addition and with partial spatial and temporal derivatives.
In other words the filtering operation is a convolution. This ensures that the LES
equations are not drastically changed by the filtering operation. It can also describe
any allowed discretization operator used in numerical simulations. We shall adopt the
notation

fx,t)=Gxf= Gx—&t—t,A ) f(€t)ded
D, T

for a field f, filtered with filter kernel G with spatial and temporal scales A and 7y, over
a time interval 7 and spatial domain D. The kernel G is normalised by the preservation
of constants condition ¢ = ¢, Ve € R to ||G||; = 1.

Additionally, the filter kernel should have the symmetries of the MHD equations them-
selves, i.e. Galilean transformations, scaling, etc. This ensures the co-ordinate frame
independence of the LES equations and results. Furthermore, in view of their ap-
plications to numerical simulations, time-independent filters are usually used. This
simplifies the above expression to
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f(xnf)=/DG<|x—s|,A>f(s,t>d3£

Now, the fluid equations are non-linear, thus we need to define the commutator between
filtering and multiplication. For two fields, f and g, it is denoted by the second-order
central moment C (f, g) = fg— fg. Figures 1.2a and 1.2b demonstrate the importance
of modelling C for a pair of real MHD fields.

It is noteworthy that, depending on the kernel, filtering doesn’t need to be a Reynolds
operator. Consider a field f and its decomposition into filtered and unresolved compo-
nents: f = f + f’. Then this statement is equivalent to f # f or f’ # 0. This implies
that the central moment doesn’t contain information only about the small-scales but

the large scales as well. To put it explicitly, fg = fg+ f¢'+ f'g+ f'¢’. So an alternative
expression for C (z,y) is

Cle.y) = (T9—T9) + (T9 + T3) + g (1.12)

The three bracketed terms are known from left to right as the Leonard, cross and
Reynolds terms. The Leonard term contains aliasing errors. The cross terms is respon-
sible for the interaction of terms across the filter scale. The Reynolds terms deals with
the self-interaction of the small scales and its effect on the large scales. Figures 1.2¢—
1.2e show that each of the three components can be dominant in some region of the
flow.

If the filtering is a Reynolds operator, i.e. idempotent, the second order moment
reduces to products of filtered terms and filtered residuals, without mixed terms, i.e.
fg = fg—f'¢g’. The idempotency in physical space is satisfied only by the trivial kernel
G = 1. In spectral space, it leads to a combination of Dirac delta and Heaviside step
functions over non-intersecting domains [74]. This has a direct link with RANS and the
wealth of results developed there and from statistical theory (e.g. [72, 109, 113, 114])
could be used directly in this context. Note that Reynolds operators reduce the number
of degrees of freedom of the field due to its compact support in spectral space. On the
other hand non-idempotent filters preserve the entire information of the filtered field,
and thus can theoretically be inverted. This will lead to the main result of this work,
first however we conclude this section with two additional desirable properties for the
filtering operator.

If the filter kernel is positive, i.e. G > 0, Vz, the filtering operation is signature-
preserving. This implies that if a quantity h = fg is a positive semi-definite, then
its SGS counterpart hgs = fg — fg will also be a positive semi-definite. This will be
useful in the interpretation and treatment of energy and pressure-like quantities at the
sub-grid scales.

Finally, in certain large eddy simulations a hypothesis of scale-similarity is invoked.
This requires the data to be explicitly filtered at run time. From computational stand-
point it is then expedient if not necessary (depending on the boundary conditions) that
the kernel is local, i.e has compact support, in physical or spectral space (depending
on the type of numerical scheme under consideration).
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arbitrary units

(c) Leonard - E — fg (d) cross - E + f'g (e) Reynolds - f’g/

Figure 1.2: Illustration of the difference between the different terms involved in a scale
decomposition of a turbulent field h = fg.

1.2.2 Filter selection and choice

Most LES are approximated by one of a set of canonical filters: box, Gaussian, or
sharp cut-off filters. The box filter constitutes a moving average over an interval with
linear dimension A. In Fourier space its kernel is represented by G' = sinc (ke|x — &J),
where k. = 7/2A is the cut-off wave number associated with the filtering scale A.
It is especially suited for grid-based simulations, especially finite volume ones. On
the other hand, the sharp cut-off filter in Fourier space is a Heaviside step function
O (k.). It is particularly suited for spectral codes, for which it was developed, however
problems are encountered when dealing with complex geometries and boundary condi-
tions just as in the underlying spectral codes. Finally, the Gaussian filter is given by
G = exp (—A2k?/(47)) in Fourier space, where v is the normalisation parameter. For
more details on the properties of these filters see [43]. A summary is given in tab. 1.1.
It is important to note that they all have the necessary properties to maintain the sym-
metries of the MHD equations and thus lead to the same additional terms when applied
to the MHD equations. The box and Gaussian filters are positive. The box filter is
non-local in spectral space, leading to energy transfers outside the cascade paradigm?.
The sharp filter is a Reynolds operator. This can simplify the modelling of the SGS
terms tremendously. For example, it reduces or completely alleviates the need for struc-

3Briefly, the cascade paradigm stipulates that the transfer of energy takes place primarily between
neighbouring Fourier modes. Thus the energy ’cascades’ from the large injection scales to the
small dissipation scales by passing through all the intermediate scales. This is the basis of the
Kolmogorov theory.
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Table 1.1: Properties of filter kernel

Property '\ Filter Gaussian | Box | Sharp
Galilean transformation | yes yes | yes
Derivative commutation | yes yes | yes
Positive yes yes | no
Reynolds operator no no | yes
Local in physical space | no yes | no
Local in spectral space | no no | yes

tural modelling which deals primarily with the cross-terms (will be discussed below).
However, as already discussed astrophysical application fair better with non-spectral
codes, for example due to coupling with gravity /Poisson equation or to compressibility
effects. Furthermore, the sharp filter is non-local in physical space and thus difficult
to implement in self-similarity models. It is also not positive, so SGS energy- and
pressure-like terms can take negative values, which hinders their interpretation and
may induce artificial instabilities.

The Gaussian filter is somewhat intermediate between the box and sharp filters. It
can be made to approximate either by adjusting the normalisation parameter v. It is
non-local in both physical and spectral space, however there are also computationally
friendly approximations which render it local in physical space. Furthermore, because
it is infinitely differentiable everywhere it facilitates analytical derivation and model
building. This is why it will be used for the purposed of this study. We set the
normalisation factor to v = 6, so that the second order moment matches that of the
box filter.

1.3 Magnetohydrodynamic equations for LES

We proceed to apply the filtering formalism described above to the MHD equations
(egs. (1.5)—(1.7)). As we are interested in high Reynolds numbers applications we shall
neglect the contributions of the dissipation terms in the primary equations and only
consider them in the energy and cross-helicity equations for completeness.

The continuity equation is non-linear in the velocity and density, but we can use a
trick to circumvent this complication — introduce mass-weighed filtering, i.e. f =
pf/p. It was first introduced by [36] in order to retain the structure of the continuity
equation and reduce the number of new, unknown terms in the filtered equations. With
this in mind, convolving the MHD equations with the Gaussian kernel under periodic

10
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boundary conditions yields

dp
1.1
5 TV () =0, (1.13)
-2
ag:Jrv (pﬁ@ﬁ—ﬁ@ﬁ)+v(?+%>: -V, (1.14)
%—?—Vx(ﬁxﬁ):Vx& (1.15)

Here, 7 is the filtered density, B the filtered magnetic field, P the filtered thermal
pressure and u the mass-weighted filtered velocity. Two major new terms enter the set
of equations: the SGS stress tensor 7 and the electromotive force (EMF)* €. Their
analytical expressions are given by

£E=uUxB-ixB, (1.16)
— p (uit; — Wity) — (BiB; — Bi By) + § (B7 = B”) 3.

These terms are not expressed in terms of resolved fields and thus render the system
of equations unclosed. We could write down their evolution equations. However, they
involve third-order moments (see e.g. sections 3.4 and 3.5), which are also unknown and
so on to build an infinite hierarchy. This is usually referred to as the closure problem.
One truncates the hierarchy usually at the level of 7 and € by providing expressions
in terms of known variables, i.e. closures.

The SGS stress is naturally decomposed into its kinetic (the SGS Navier-Stokes term)
and magnetic (the SGS Lorentz term) components. We define

Ty = plwyy — ), (1.17)

7 = (BB, - Bi B)) - % (B7-B") s, (1.18)

v

Their isotropic parts have the form of SGS kinetic and magnetic energies, i.e. the
difference between the energy on the filter scale and the energy contained only in the
resolved fields.

1 1 _
Esugs = éTIEk = §ﬁ <u2 U2) (119)
1 /—
=1 =3 <32 - BQ> (1.20)

However, in order to be interpreted as energies they need to be positive definite, which
is only guaranteed for a positive filter (as discussed in the previous section). This
is one of the major reasons to disfavour the sharp spectral filter. We reiterate that
these energies are associated not only with the small-scale fluctuations but also with
cross-scale interactions and large-scale aliasing corrections.

4As a technical aside, the electromotive force € is a pseudo-vector and thus can be re-written as an
anti-symmetric tensor of the form &; = €1 (€),. The inverse identity reads (£), = %eijk&j.

11



1 Introduction

The total SGS stress can be finally be decomposed as

___ux bx* u b
Tis = Ty — Tij + 2E'sgs + Esgs'

(1.21)

We shall refer to the total isotropic term as the SGS pressure Py = 2E% + ED_ since
it enters the momentum equation in the same way as the thermal pressure P and has
a SGS origin.

Next we consider how filtering affects the energy and cross-helicity. Since the proper
treatment of dissipation is crucial here, we re-introduce the dissipative terms in a
summary form (denoted by €). Since they dominate on scales below our filter scale, we
shall keep them primarily for book keeping and leave a detailed study of their influence
on LES for future investigation.

There are three forms of the energy and cross-helicity for which we can write evolution
equations in the context of LES. First, there are the quantities at the filter scale. They

are obtained by directly filtering the corresponding MHD equation

0

EE“+V~ (WEY) +u-BxJ+u- VP =€, (1.22)
%Eb —B-V x (uxB) =€ (1.23)

d— —___ B B
—H |\ uH - —=FEv) + — - VP =€l 1.24
ot Y (u p >+pv = (1.24)

Note that the quantities under the divergence and filtering operators are products of
three primary fields. This illustrates the closure problem - the evolution of second order
quantities contains unclosed terms of third order. Combining eq. (1.22) with eq. (1.23)
we obtain the compact expression for the total energy at the filter scale E

E .
%7+V' (uEu+2uEb—BH> L u- VP =l (1.25)

Clearly, this is an ideal MHD invariant (allowing for the evolution of the internal
energy through the thermal pressure P). The terms € encode the total dissipation

into microscopic degrees of freedom.
In LES we only have access to resolved quantities, namely

1 1—
EY = —7@, E° = B, Feo= E% + E®

res 2 res 2 res res?

He=1-B.

Their evolution equations are obtained from primary LES equations by a scalar product
with the appropriate resolved field (e.g. the resolved kinetic energy E_ is obtained

res

12



1.3 Magnetohydrodynamic equations for LES

from the inner product of eq. (1.14) with @). The full equations are given by
0

aEr“estV-(ﬁEfes)JrﬁEquLﬁ-VF:—a-(V-T)+efleS, (1.26)
%E;—EwhqﬁthJ?VX£+£S (1.27)

Eres ~ ~ S - — — _
0 + V- (QBL, +20E,, —BH,) +0-VP=B-VxE—u-(V-7)+ €,

ot
(1.28)

B B _
%Hres+v'(ﬁerS_?E;s>+ VP=u-Vx&—-=-(V-7)+e€y.
D

(1.29)

B
Vi

Here even in the ideal case the conservative form is lost due the SGS terms on the right
hand side. They incorporate the transfer across the filter scale. The €{® terms, on
the other hand, are responsible for the direct dissipation from resolved to microscopic
scales. Within the cascade paradigm the (spectrally) local transfers associated with
the SGS terms are preferred and thus the e-terms are sub-dominant. This is one reason
why they can often be neglected in LES. Note that there are no new unclosed terms
coming from these equations, i.e. closing the primary equations automatically closes
these ones as well. In other words, the effect of the unresolved scales on the resolved
energies and cross-helicity is entirely contained within the SGS stress and EMF.
What we lack in an LES simulation is the difference between the total and resolved
quantities, namely the SGS energies and cross-helicity. They balance the extra source
terms in the resolved equations to maintain the total invariance. We have already
defined the SGS energies from the traces of the kinetic and magnetic SGS stress. The
SGS cross-helicity has the analogous form Hy,, = u - B—u-B. Their evolution equations
are obtained simply by subtracting the resolved egs. (1.26)—(1.29) from the equations
for the total terms — egs. (1.22)—(1.25). The result is

0
o Pt T T3 + T =0 (V- 7) + €, (1.30)
0 _
aEsbgs +Fy=—B-VXE+e, (1.31)
9] _
o Bows + 5" F =i (V- 7) = BV X € + e, (1.32)
9 ch ch,ther ~ E ch
aHsgs+]-“3 + F :—u-Vx8+%-(V-7‘)+esgs (1.33)

Here we introduce the flux terms JF%', which contain third-rank unclosed terms of
the form fgh — fgh (or its Favre variation) and the thermal pressure flux terms®
Fther - whose closure depends on the adopted equation of state. We shall discuss
their detailed form, structure and function in chapter 3. For now we just point out

5Sometimes known as dilatation terms in the energy equation
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1 Introduction

that since they don’t enter the equations of the resolved terms they don’t directly
participate in the transfer across the filter scale or affect directly the resolved primary
fields. The right hand side of the equations is the focus of most models. The dissipation
terms €% contain the final part of the cascade from the unresolved continuum to the
microscopic, kinetic scales. Since they contain the least amount of energy/cross-helicity
their closure is usually neglected in favour of the familiar second order SGS terms 7
and &, eventhough theoretically, the e-terms should determine the slope of the entire
spectrum and the cascade speed and efficiency.

1.4 Validation methods

Before we proceed with the description of the closures for the unknown SGS terms,
let us consider the criteria by which to gauge the success of our modelling attempts.
There are two main approaches to this problem — a priori and a posteriori (as coined
in [65]). In both case one has to choose a set of diagnostic parameters for testing.

In the a posteriori method one implements an SGS model directly in an LES simulation
and compares the results to reliable data (higher resolution DNS, experimental data,
etc.). Usually sensitive parameter statistics are chosen for a posteriori validation, e.g.
V(') [85], energy spectra, time evolution of plasma parameters statistics (like Re, M,
etc.).

In a priori tests, we take data from a high resolution simulation®, filter it explicitly
with a test filter and obtain exact expressions for the sub-test-filter terms. These
expressions can then be compared with the respective SGS models based on super-
test-filter fields. To be precise, in this case there are two levels of smoothing: the
grid scale of the original simulation A, and the scale of the test filter A;. Thus the
sub-test-filter quantities only refer to the scale range between A; and A,. However, as
long as A, < A, and the smallest scales are energetically suppressed, this distinction
can be ignored ([79]). Thus we shall refer to the the sub-test-filter terms as simply
unresolved or SGS terms. Furthermore, for statistically stationary, homogeneous and
isotropic turbulence, the closure coefficients” are independent of the filter scale (within
the inertial range due to the equilibrium of energy transfer in the inertial range) so the
coefficients derived at scale A; are valid for A, as well (|77]). The main challenge here
is the comparison between the 'true’ SGS terms and their respective models. Usually
a set of diagnostic parameters is chosen, which preferably reduce the dimensionality
of the SGS terms and thus avoid dependence on the co-ordinates, i.e. the frame of
reference. To this effect the SGS terms are contracted with various tensors based on
different motivations — statistical, dynamical, geometrical, etc.

In this work we take the a priori approach and focus on energetic and geometrical
diagnostics. In the following section we shall describe the details of the data which will

6 Trivially, the simulation should be run without an SGS model implementation. Furthermore, high
resolution here means that a scale-independent, power-law range in the energy power spectrum
can be clearly identified.

"We shall see in the following chapter that most models come with a set of free coefficients which
may need to be determined externally.
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1.5 Introduction of sample data

be analysed.

1.5 Introduction of sample data

Since experimental data is not available for the parameter space we are concerned
with, we have to rely on numerical simulations. To reduce systematic errors from code
structure we use data obtained by two astrophysical MHD codes: FLASHV4 [41] and
ENZO [92].

We begin with a few words about the codes themselves. Both ENzZO and FLASHvV4
are finite-volume grid-based codes solving the equations of motion (mass, momentum,
energy, magnetic field) in integral form, thus preserving the constants of motion to
machine precision. ENZO solves the ideal MHD equations by a second order accurate
Godunov extension — MUSCL-Hancock scheme [100], with second-order Runge-Kutta
time integration. We use two of the available Riemann solvers: a Harten-Lax-van Leer
(HLL) Riemann — two-wave, three-state solver and HLLD — five-wave solver (HLL
with multiple discontinuities [92]). FLASHV4 has similar accuracy to ENZO, but
uses the positive-definite HLL3R Riemann solver and can handle explicit viscosity
and resistivity. Both codes employ divergence cleaning [26] to maintain the solenoidal
condition for the magnetic field V- B = 0.

1.5.1 Analysed parameter space

We will analyse simulations of driven MHD turbulence on a periodic cubic grid of length
L with linear resolution of 512. The driving is stochastic, statistically homogeneous
and isotropic (similar to [38, 78]). It is implemented only in the momentum equation
via a random Ornstein-Uhlenbeck process at small wave numbers. In spectral space it
has a parabolic profile between 1 < |k|L/27 < 3 with a peak at k|L/27m = 2. It evolves
with time and space. Its auto-correlation time 7' is associated with the turnover of
the largest energy-containing eddies. Thus it is the chosen time unit for the rest of
this work. Table 1.2 contains the key plasma parameters and simulation details for the
dataset under consideration.

We use a combination of solenoidal and compressive forcing, as measured by the com-

%. In the majority of the runs the components have equal
weight(i.e. ¢ = 0.5), however for a subset we increase the compressive component to
¢ =0.9([37,79]). These choices result in the combination of solenoidal and compressive
velocity modes described by fig. 1.3. Here, in addition to { we show the mass-weighted
distribution of solenoidal versus compressive modes, as it may better capture the effect
of compressibility through density variations.

The forcing amplitude effectively determines the saturated sonic Mach number — fig. 1.4.
To maintain frame independence we show its root-mean-square (RMS) value. We
explore a range of RMS Mach numbers from the subsonic to the highly supersonic
regime. We see that the Mach number values are saturated and statistically stationary
for T' > 2. Thus we shall focus the bulk of the analysis on that part of the simulations
and refer to it as well-developed or statistically stationary turbulent regime. The initial

pressive ratio ( =
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1 Introduction

Compressive Ratio Mass-weighted Compressive Ratio

S personic = fransonic = s bsonic

Figure 1.3: The time evolution of the compressive ratio for the velocity field, given by the
spatial average of ( in the left panel and the spatial average of the mass-weighted version of
¢ in the right panel for each simulation from table 1.2. The colours represent the RMS sonic
Mach number regimes: blue for subsonic, green for transonic and red for supersonic.

phases could be investigated with regards to small-scale dynamo processes, however
they are also strongly dependent on the particulars of the initial conditions and the
forcing. Hence interpretations drawn from them are not as robust with respect to
different flow configurations, e.g. different initial or boundary conditions.

The initial conditions are: constant mass density, zero velocity and uniform magnetic
field along the z-axis. The strength of the initial magnetic field is given by the initial
plasma beta parameter 3, .

The FLASHV4 simulations use a polytropic equation of state with adiabatic index
v = 1 which renders the simulations exactly isothermal. In ENZzO this option is not
available, so we use the approximation of an ideal gas law with adiabatic index v =
1.001. This allows us to neglect the heating and cooling effects in these runs as well.
For astrophysical plasma applications this is a significant simplification. However, this
work aims simply to gauge the performance of the closures under consideration. Further
tests in more realistic simulations can be performed for models which satisfy the criteria
of this study.

The clearest indication of the presence and strength of turbulence in the simulations is
given by the Reynolds numbers. In the computational context the effective Reynolds
numbers can be defined [40, 66] on the grid scale as Re = 2L? <\Q|2>/<V2> and
Rm = 22 <|J2|> / <B2>. For the considered simulations they are of the order of 10°
(see fig. 1.5) which is far from the astrophysical regime, but is sufficient to sustain
turbulence. This represents the strength of the fluctuations on the grid scale. The
respective viscosity /resistivity could be calculated from the definition of the Reynolds
numbers. However, this would invoke the assumption of constant viscosity /diffusivity
with respect to space, which is not satisfied on the grid scale.
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1.5 Introduction of sample data

s super- Alfvénic s trans-Alfvenic s sub-Alfvénic

25 T . NL‘ . T . i i N'[n.

mEmmm SUpersonic mmm  fransonic s sbsonic

Figure 1.4: The time evolution of the root-mean-square (RMS) sonic (left panel) and Alfvénic
(right panel) Mach numbers for each simulation from table 1.2. In the left panel the colours
distinguish the RMS sonic Mach number regimes: blue for subsonic, green for transonic and
red for supersonic. In the right panel the colours distinguish the RMS Alfvénic Mach number
regimes: purple for super-Alfvénic, ochre for trans-Alfvénic and blue for sub-Alfvénic.

mEmmm  SUpEersonic = fransonic = sybsonic

Figure 1.5: The time evolution of the effective Reynolds numbers on the grid scale (of 5123)
(Re in left panel, Rm in right panel) for each simulation from table 1.2. The colours represent

the RMS sonic Mach number regimes: blue for subsonic, green for transonic and red for
supersonic.
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Table 1.2: Parameters of the a priori simulations

Sim. # | Driving My | Bp0 | Eqn. of State | (Ms) | (M) | Re | Rm Code Solver | Compressive ratio
1 0.2 450 | e= —E— | 021 | 135 | — | - ENzO | HLLD 0.5
2 0.5 2 | e= L= |05 | 125 — | - ENzO | HLLD 0.5
3 0.5 8 | e=—L— | 055092 — | - ENzO | HLLD 0.5
4 1 8 | e=—L— | 107|123 — | ENzZO | HLLD 0.5
5 1 2 | e= L | 115094 | - ENzo | HLLD 0.5
6 2 5) P=p 1.79 | 1.38 | 3780 | 3780 | FLASHv4 | HLL3R 0.5
Ta 2 5 | e= —£— | 242 | 150 | — | - ENZO HLL 0.5
7b 2 5 | e——L— | 233|144 - | - ENzo | HLLD 0.5
8 2.9 25 | e— £ | 235 | 344 | — | - ENzO | HLL 0.9
9 2.9 25 | e—= L | 235|134 — | - ENZO HLL 0.9
10 29  [025| e=—L— | 240 | 056 | — | - ENzO | HLL 0.9
11 4 1 P=p 3.77 | 1.18 | 3780 | 3780 | FLASHv4 | HLL3R 0.5
12 10 0.2 P=p 9.14 | 1.01 | 3780 | 3780 | FLASHv4 | HLL3R 0.5
13 20 0.05 P=p 19.43 | 0.97 | 3780 | 3780 | FLASHv4 | HLL3R 0.5

The expressions (Mg) and (M,) refer to averages over the simulation domain and time period in which a statistically stationary state is

reached.
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1.5 Introduction of sample data
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Figure 1.6: Spectra of the velocity, mass-weighted velocity and magnetic field for each simu-
lation from table 1.2. The lines represent the median spectra with respect to the time period
2 < T <5 and the encompassing shaded regions represent the extent of the time variation.
The colours represent the RMS sonic Mach number regimes: blue for subsonic, green for
transonic and red for supersonic.

1.5.2 Choice of filter scale

In order to proceed with a prior: analysis of the data, we need to choose a scale at
which to apply the explicit filter, in other words to fix the parameter A. In general
for smooth filters, like the Gaussian, the interpretation of such a scale is somewhat
arbitrary, but loosely it is a scale beyond which the power of the modes is strongly
attenuated. Its position carries physical implications. If it is placed well within the
dissipation range, that implies that the turbulence cascade is well resolved and the
modelling needs to be done solely for dissipation and not turbulence effects. Conversely,
retaining only low resolution, i.e. placing the filter scale in the integral range, means
that we are approaching the RANS regime, where only the mean flow is solved for and
all perturbations are modelled. In this case some of the integral dynamics have to be
incorporated in the SGS model - i.e. the model becomes dependent on the specifics of
the initial and boundary conditions and the forcing, so it is not universal and has to be
adapted for every new simulation conditions. Additionally, since the whole inertial and
dissipation range has to be modelled one needs an already complete turbulent theory,
which is unfortunately not available.

In fig. 1.6, we consider the spectra of the velocity u, mass-weighted velocity /pu and
the magnetic field B for all simulations. We consider the mass-weighted velocity as
a more appropriate representative of the cascade-bearing properties for compressible
turbulence. As we can see from the figures the power-law range extends over a bit more
than a decade and thus the simulations are sufficiently well resolved to be suitable for a
priori analysis. As an aside, the u-based spectra are close to the classical Kolmogorov
(incompressible) —5/3 and Burgers (compressible) —2 scaling of hydrodynamic turbu-
lence; we get shallower profiles with the stronger driving. The mass-weighted velocity
spectra all exhibit significantly shallower slopes.
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Ideally the cut-off scale should be placed well within the inertial range far away from
numerical effects at both large and small scales. The features and even existence of
a classical inertial range in MHD has been questioned (e.g. [2, 3, 8, 42]). However,
for brevity, we shall use this term to refer to the scales which exhibit an approximate
power-law in the energy spectrum as this is a signature of the self-similarity property
of the classical turbulent fluctuations.

The most widely used criterion for the placement of filter scale is the middle of the
inertial range [45] — this guarantees that there is turbulent dynamics on both sides of
the filter. This allows a scale-similarity hypothesis to be invoked for model coefficient
estimation. A lower bound for the filter scale is given by [85]. They maintain that the
filter should be placed at a place where the truncation error is small. The main point
being that at the Nyquist scale ky, the numerical simulation incurs a truncation error
of order unity, so placing the filter too close to ky, strongly contaminates the a priori
results. They use a safety factor of 2/3ky,,.

We employ several filter scales A = 8,16, 32. The bulk of the analysis, will be focused
on results obtained from filter scale A = 16 which corresponds to wavenumber k = 16.
This falls well within the inertial part of the spectrum as can be seen in fig. 1.6. The
other two filter scales lie at the outskirts of the inertial range where the influence from
forcing or dissipation effects begins to become significant. Comparing the results at
different filter scales will shed light on the applicability of the various models to limited
resolution scenarios. First however, we need to introduce these model.
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2 Sub-grid scale models

Despite the staggering range of SGS models available for incompressible hydrodynam-
ics, only a comparative few have been transferred to the compressible regime and even
fewer are extended to magnetised plasmas (compressible or otherwise). This chapter
presents some of the SGS models available for the SGS stress and electromotive force.
They can be separated into two groups: functional and structural. The differentiation
is mostly heuristic and is rooted in the philosophy of the modelling approach. Func-
tional models focus on a key effect that the SGS terms have on the resolved scales, e.g.
energy transfer, and attempt to reproduce it disregarding the structure (geometric, dy-
namic, statistical, etc.) of the SGS terms themselves. Structural models, on the other
hand, develop from a set of key properties of the SGS terms, e.g. the orientation of the
proper axes of the SGS stress tensor, the probability distribution function, et cetera.
In that sense a detailed knowledge of the properties of the SGS terms is required in
order to develop such closures. The idea is that the effect which the SGS dynamics has
on the resolved scale would naturally develop from these properties.

Alternatively, this dichotomy can be viewed from the perspective of the deconvolution
problem. As we already discussed the finite resolution effects present in the shape of
a convolution operator. In principle we could simply try to invert that operator to
obtain the full fluid description/solution — this is the deconvolution approach to LES.
However, we don’t have the entire information in the simulated fields, there is a cut-off
at the Nyquist frequency. Thus the deconvolution problem over the entire spectral
domain of validity of fluid dynamics is ill-posed. It can be however be separated [43]
in soft and hard deconvolution problems.

The hard deconvolution problem is to recover the information below the Nyquist fre-
quency of a simulation and include its effects on the resolved scales — this is the ill-posed
part. No information about that is contained within the simulation — it has to come
from the model itself, e.g. via mimicking microscopic processes, regularization, etc.
[43]. This falls within the domain of functional models. Usually a universality hypoth-
esis is involved: at sufficiently small scales the turbulence is homogeneous and isotropic
enough that the particulars of the integral scales are unimportant, e.g the geometry
(anisotropy) of the large-scale flow. Sometimes they might involve direct models for
e.g. V-7 and V x & as this is how the SGS terms enter the resolved equations motion.
The associated soft deconvolution problem deals with the domain of scales represented
on the grid but not resolved, e.g. contaminated by strong truncation errors, aliasing,
etc. Here, in principle the information is available, but garbled beyond recognition. The
soft deconvolution problem is to decode it. Structural models are most suitable to tackle
this. The main assumption is that the dominant error comes from the commutator of
the filtering operator with multiplication, i.e. from the misrepresentation of the non-
linear terms on the grid.

21



2 Sub-grid scale models

Yet another way to look at this is that the hard deconvolution problem deals with the
finite resolution effects for a single field, while the soft deconvolution problem deals
with the information lost in the commutator of the finite resolution operator with
multiplication.

We make this more concrete in the following. We begin with the derivation and de-
velopment of a new structural model for compressible MHD. Then we proceed with a
short review of other available models (one structural and several functional), popular
in the literature. We finish with a few words on stability, coefficient determination and
the possibility of model mixing.

2.1 Non-linear model

Like most of LES the presented model originates from incompressible hydrodynamics.
It has links to the gradient diffusion model (pioneered by [22, 54]) but it is build on a
different foundation. The original gradient diffusion models are constructed by Taylor
expansion of an SGS term with respect to the turbulent fluctuation or the entire (un-
filtered) fields, (e.g. u’ or u for 7). Since these quantities contain rapidly fluctuating
components at the filter scale their Taylor expansion is fundamentally questionable. In
contrast, the proposed model is based on the expansion of the filtering kernel itself.
In the following we present a derivation of the model, followed by related arguments
which lead to the same or similar models. We conclude with variations of the model
based on regularization arguments.

2.1.1 Yeo-Bedford series expansion

The model is an application of the Yeo-Bedford (YB) series expansions [103, 104]. The
expansion was originally developed for hydrodynamic applications and was recently
(only once to our knowledge) applied to the EMF in incompressible MHD by [6, 31].
More recently the procedure has been used to model the transport of a passive scalar
[5]-

The method begins by constructing the gradient expansion of the filtering operator and
its complement (i.e. the corresponding high-pass filter). For the classical filters this
can be done by moving to Fourier space!. Since the filtering operator is a convolution,
in Fourier space it simply transforms into a multiplication, i.e.

G+ f=0af
The quantity G is known as the filter’s transfer function. Trivially, 1/ G is the transfer

function of the high-pass complement filter G~!. Performing a Taylor expansion in
Fourier space and transforming back to physical space gives the required result. For

Lf(k) = 75 f()exp(—ik - x)d®x.
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2.1 Non-linear model

example for the Gaussian filter we have

A~ A22 OO(_UnAan oolAzzn

n=0

1 A%, =1 (A% N\" L o= (=D A _\"

n=

Note that with this choice of normalization of the Gaussian filter this expansion up to
second order is also valid for the box filter. Now we have for a generic field f:

. o] AQ n
f:G*f:;%<ﬂv2> 1, (2.3)

_ & (=1 /A2 n_
f:Gl*f:ZO(nll) (ﬂw) 7. (2.4)

Applying eq. (2.3) to a term of the form h = fg gives a series in terms of (fg). Applying
eq. (2.4) to f and g in each term of this series gives an expansion of h in terms of f
and g. Finally, collecting terms by filter scale (or equivalently by differential order),
and letting a = A?/(24) gives the result

. _ 1
fo=fg+2af 9, + 5

1 _
21 a (2@)3 I kim9 gim + O (a4v8) . (2.5)

3!
Note that the coefficients in the expansion are related to moments of the transfer func-
tion. This relationship is based on the orthogonality of the sine and cosine functions in
the Fourier expansion and thus holds for a general filter kernel. In particular the second
coefficient 2a is given by the second moment of the transfer function. Furthermore, [14]
have derived a closed form expression for the coefficients in eq. (2.5) for a symmetric
filter with infinitely differentiable transfer function. It is given as the Taylor coefficients
in the expansion generating function F(f,g) = G(—i(f + g))/(G(—if)G(—ig)). It is
clear that for a symmetric filter only the even coefficients are non-zero (since it has
a real transfer function). This imposes a symmetry with respect to the differentiated
co-ordinate/index, which can be used to easily derive higher order terms in the series —
namely each co-ordinate appears exactly twice and each field is differentiated at most
once with respect to a co-ordinate.

Naturally the expansion can be extended to an SGS term of any order, specifically 7"
which in the compressible case contains three fields.

(2a)2 T,klﬁ,kl +

fgh = fgh+2a (T,kg,lﬁ + T,kgﬁ,k + Tg,kﬁ,k) + (2.6)
1 _ _ _ _ _ _ _ _ _ _ _
B (2a)° (f wiGpih + f jGhw + G gahga + 2F 3G b + 2f 1 b + 2 149 xha) +
+0 (a*V°) ,

To first order this technique leads to the following results for the primary SGS terms
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2 Sub-grid scale models

puiuj — ﬁﬂzﬂj = 2aﬁﬂi,kﬂj7k + 2aﬁ7k (ﬂi,kaj + ﬂiﬂj,k) s (27)
(u x B —1u x E)z = QCLEijkﬂjJEkJ. (29)

As can be seen the expansion is in terms of the simply filtered fields and no account
is taken of the Favre filter. This is problematic in compressible finite volume codes
which evolve the momentum instead of the velocity field. Indeed, the Favre-filtering
operator in spectral space involves a convolution with the full (unresolved) density field
which renders the procedure (specifically the high-pass filter inversion) considerably
more involved. For simulations which evolve the velocity field, however this is a valid
alternative, as has been shown for compressible HD in e.g. [10].

Before we deal with the issue of compressibility however, a note on convergence is re-
quired. The method rests on infinite series expansion and interchanging the order of
summation /limiting operations. (e.g. when converting forward and backward through
Fourier space). This is justified only if the series in question are absolutely convergent.
In [71] a set of conditions is derived for the forward expansion eq. (2.3) to hold. They
find that symmetry of the kernel and non-negativity of its transfer function are suffi-
cient conditions for convergence. Additionally, they present a qualitative criterion that
convergence rate decreases as the dissipative strength of the filter increases. Since the
backward expansion eq. (2.4) differs from the forward one only in an alternating sign
both results hold for it as well. Additionally, since the final closures employ expansion
in terms of filtered fields, only the filtered fields need to satisfy a smoothness criterion
— namely to be n-times differentiable for the 2n-order closure. For the second order
closure this is ensured by the filtering itself.

2.1.2 Compressible extension via recurrence relation

We address the compressibility issue raised above by looking for an expression for u
as a function of u. This can be substituted in e.g. eq. (2.7) to obtain a Favre-friendly
version?.

Here we employ a recurrence technique. By definition the Favre-weighted velocity is
given by u = up/p. It can be expanded as the series

U = Ty + 20y 1 g + 20° (Y + Yry) Tigr + O (a) (2.10)

where we define for brevity y = Inp. If eq. (2.10) represents an absolutely convergent
series, it can be rearranged to

U = U — 20y Uik — 207 (Y + YY) Uiwr — O (ag) : (2.11)

This can then be substituted into itself. The first recursion gives

U; = u; — 20y Ui + 24> <2y7k (y,lﬂil),k — (yvkl + y,kyJ) ﬁ@kl) -0 (a3) . (2.12)

2In this approach care should be taken with the definition of the EMF - whether it is given in terms
of Wwor u.
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2.1 Non-linear model

Substituting eq. (2.11) again gives
U o= U — 20yt — 207 (Y — Yeye) Gip — 2y kY mtig) — O (a®) . (2.13)
Now, the definition of 7" can be restated as

= pu - P (2.14)

) —

Using the incompressible YB formulation on each of the terms to second order, this
can be rearranged into
Ty = 2Pk + (2.15)
20°P (Wi pj pr + 295 (Wi gaWsg + Wi gUj ) —
2y 1YW ki1 + 2 (Y + Yrl) Ui ki)
+0 (a3) :

Substituting eq. (2.13) and simplifying we obtain
Til; = 2aﬁﬂi7kﬂj7k + 2a2ﬁ (fbinﬂde — Qy,klaz',kaj,o + O (CLS) . (216)

Alternatively, the same expression can be reached by substituting the recurrence rela-
tion eq. (2.11) directly into eq. (2.7).

We see that up to first order the compressibility effects are taken into account by the
mass-weighted filtering itself. The density derivatives appear as second order correc-
tions. This is due to the symmetry of the stress tensor (7,; = 7;;). Crucially, it is the
logarithm of the density and not the density itself that plays the central role in the
Favre-corrections. This implies that even for relatively strong density gradients the
trivial map O — O may be a sufficient approximation. This approximation has been
tested with encouraging results in [48].

Applying the same method to the EMF, we obtain the following expression

E = 2aeijk (QNLNEICJ — y,laj,lgk) + (2.17)
20* €5k { @ 1m Brotm — 2 (Yum i1 + Y 050m) Bryt
(291 imjm + (Ypys — Yp) Gjpt) B} + O (@) .

Here, due to the asymmetry between @ and B the Favre corrections appear already
at first order in the filter scale. In addition, the second order corrections are more
extensive than in the case of 7.

Equations (2.16) and (2.17) are the main result of this section. They form the core of
the newly proposed SGS model for compressible MHD, along with eq. (2.8), which is
formally insensitive to compressibility effects.
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2 Sub-grid scale models

2.1.3 Link with ancestor and sibling models

It should be noted that in hydrodynamics expressions similar to eq. (2.5) have been
reached by alternative methods

The earliest closures for LES based on a Taylor series expansion is the tensor-diffusivity
model and can be dated back to [22, 54|. They perform Taylor expansions sepa-
rately on the Leonard, cross and Reynolds SGS terms of incompressible HD. Crucially
they expand the turbulent fluctuations, which are not smoothly varying over a fil-
ter scale. This is why the approach had been called 'mathematically indefensible’ in
[56]. An alternative derivation and compressible extension is derived in [98]. They
obtain eq. (2.3) by Taylor expansion of the full field variable under the filtering op-
erator. The series is then truncated to second order to obtain p = p + O(A?) and
= u+ O(A?). Compressibility is incorporated by inserting the additional expansion
7= (p+0(A2)) " = p! + O(A?) into the definition of the Favre-filtered velocity.
These expressions are inverted and substituted in eq. (2.3) applied to 7. The result
is identical to eq. (2.16) up to second order. However, the basis is still the Taylor
expansion of fields which are not necessarily smooth over a filter length. They propose
to put the model on more solid footing by applying it to the scale similarity closure
(will be detailed in section 2.2.1). In that case the expansion will be in terms of filtered
quantities only. The consequence is that the residual term, still of second order, takes a
different form and now represents additionally the error induced by the scale-similarity
model. We are not aware of applications of this procedure to MHD.

An alternative derivation is provided by the approximate deconvolution method. It is
again based on the truncation of an infinite series depicting the inverse of the filtering
operator. Originally designed for image processing [95], this method has been applied to
LES by [85] for a wide variety of flows [85-90]. Considering a filter G, an approximation
of its inverse G~! is formally given by

G'=Q=) (1-G)", (2.18)

n=0

with I, the identity operator. The sum does not necessarily converge as N — oc.
However, the error can be optimised by taking a fixed N. It is claimed that N = 3
gives 'good results’ for compressible HD and going beyond N = 5 is unnecessary [43].
The results of this approach applied to a Gaussian filter with N = 2 are equivalent
with the direct Taylor series expansion above up to second order (O(A*)) [43]. The
different motivation/derivation path is again revealed at higher orders.

2.1.4 Model renormalization/regularization

Here we describe several model variations, based on regularization and a posterior:
arguments. They have been summarised at the end of the section in tab. 2.1

Firstly, the shape of the filter kernel associated with an actual LES does not correspond
either to a Gaussian or to a box kernel. It is a combination of the filtering induced
by multiple source, e.g. the grid spacing, the discretization of the time and space
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2.1 Non-linear model

differential operators, flux limiting, et cetera. Recall that the coefficient a is related to
the second moment of the filter kernel. Thus in the absence of the exact LES kernel for
a particular numerical scheme, or alternatively to provide a general starting point for a
generic code, we insert a free coefficient Cy in the model. The value of this coefficient
and its variation encode the error induced both by the functional form of the model
and the assumed analytic kernel. To test the effect of the compressibility terms we shall
further allow for two independent coefficients for the two components of the EMF.
Secondly, it has been widely recognised in hydrodynamics (e.g. |9, 22, 29, 43, 74]) that
structural models suffer from insufficient SGS dissipation. This can be understood in
two complementary ways. On the one hand, the truncation of the series expansion is
equivalent to omitting information about the very small (grid) scales where dissipation
ultimately takes place within the cascade hypothesis. On the other hand, consider
the limitations imposed by the Nyquist frequency. Fields resolved on a given grid can
carry information only up to the corresponding wave number. Thus any closure based
on inverting the filtering/resolution operator cannot reproduce information for larger
wave numbers. Recall that this is the so-called hard deconvolution problem [43|, which
cannot be properly addressed in a prior: tests. In both cases the omitted scales are
expected to be strongly dominated by dissipation effects.

Additionally, structural models can become unstable, e.g. [45]. The issue is that
since the low-pass filter suppresses the small scales, its inverse respectively enhances
them. Since the smallest scales give rise to the largest gradients, they may dominate a
gradient-based model. In numerical simulations the small (near-grid) scales suffer from
the worst round-off errors. The combination of the two effects can lead to artificial
instabilities®. For a quantification of the effect see e.g. [98].

The model strength can be locally calibrated by renormalizing egs. (2.8) and (2.16)
by the kinetic and magnetic SGS energies respectively. This form of renormalization
has been applied in compressible hydrodynamics, e.g. by |77, 102], with great success.
Since the turbulent energies constitute the traces of 7% and 7" already, it makes sense
to use for the model only the deviatoric parts of egs. (2.8) and (2.16). In that case,
expressions for the SGS energies need to be additionally provided. Several choices
for this will be discussed in section 2.3. Depending on the form of these expressions
it maybe advantageous to use the full renormalized model as well. The EMF is not
renormalized in this manner at this stage. However, a suitable field could be (a function
of) the turbulent cross-helicity.

3Even though this is somewhat remedied by the truncation of the series, it is not fully resolved.
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2 Sub-grid scale models

Proposed Model variations

basic 2Capi; 1, i
split 2C1ap (i 05 x)" + 3Cu2aDlm 1 Tim 055
. ’17/1;7 U i, 1
renormalized 2Cua by, (um':u]m ’fl - 35U> + Eige
b
basic 2CyvaB; 1. Bjk
split 2Cw1a (BiyBjr) + 2Ch2aBm B di
renormalized 20, aEP BirBin _ 15 + EP
b 585 \ Byn,1Bm,i 37U sgs
¢
basic QCgCLEijk (ﬂjJEkJ — y,laj,lgk)
Spht QCglaeijkﬂjJEM — Qngaeijkyvlﬂjlek

Table 2.1: Proposed model variations for the SGS terms: the basic 1-coefficient compressible

closure, the split 2-coefficient version and the renormalized SGS stress

2.2 Alternative models

2.2.1 Scale-similarity model

The main established structural model for MHD is the scale-similarity model. It orig-
inates in incompressible hydrodynamics [9] where it is based on the properties of the
inertial range. Namely, assuming that the energy transfer across scales is self-similar
in the inertial range and that the resolution limit falls within that range, the smallest
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2.2 Alternative models

resolved scales should have the same structure as the largest unresolved scales. The
argument is finished by assuming that the largest unresolved scales dominate the total
unresolved flow (which is reasonable, e.g. for the energy spectrum). For fields f and ¢
this can be expressed via the approximations

f/ 327_?7
f'g.

Recall that f’ denotes the turbulent fluctuations of a field f, i.e. f' = f — f. Thus
the first equation posits that the filtered fluctuations are representative of the total
fluctuations. Similarly, the second equations approximates the interaction between
fluctuations and filtered fields by the interaction between the corresponding filtered
quantities. Combining the two equations leads to a model for the quadratic central
moment

Q

S
Q
l

C(f.9)=fg— f3. (2.19)

A key issue here is the meaning of the second filtering operation. Originally, in «a
priori tests it is taken to be simply a repetition of the original filter*. This has been
developed and investigated by [55] and applied to compressible MHD turbulence in
[16, 18]. However, drawing upon the original model assumptions and in view of a
posteriori applications, it has been suggested [15] to use a test filter for the second
filtering operation. It typically has the same kernel as the original filter (achieved in
LES by e.g applying a coarser grid) and double the filter scale, i.e. 2A. This is the
interpretation of the double filtering which will be used here. The model reads®

T’L'l; = p (f?l\&/] - 515])
w5 = (B:B;-B.B) (2.20)

It has been recorded that in hydrodynamics |9, 55] and MHD [16] the scale-similarity
model under-predicts the SGS energy dissipation rate and can even be numerically
unstable. This can be easily understood analytically. The model essentially handles
the SGS Leonard while neglecting the cross and Reynolds term. Since, it only contains
the top end of the unresolved scales it represents little of the crucial dynamics of the
interface between the turbulent and dissipation scales, the range which controls the
ultimate energy dissipation. To combat this mixed models, linear combinations with
other strictly dissipative models, have been proposed e.g. |9, 55].

4Note that this is meaningful only for filters which are not Reynolds operators.
5Note that the model can be incorporated into the approximate deconvolution family of 2.18 with
N =0 [43, p. 99].
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2 Sub-grid scale models

2.2.2 Eddy-dissipation and dynamo models

An alternative approach to modelling (and the original idea in LES) is given by the
so-called functional method. Here we begin with an idea of the physical effects of the
SGS scales on the resolved flow and then try to incorporate that effect into the LES
equations. The correlation between the model and SGS terms is immaterial as long
as the effect on the large scales is reproduced. In [55] a set of necessary conditions
has been derived (for HD) under which a model displays the correct LES statistics
irrespective of its internal structure. There is large body of work in incompressible
(e.g. [74]) and compressible (e.g. [43, 76]) HD. More recently incompressible (e.g.
[4, 61, 62, 106, 109, 117]) and compressible (e.g. [18, 59]) MHD closures have also been
investigated. Here we present a choice of recently used functional models (based on
[1, 16, 18, 59, 61, 109|) for comparison with the structural ones above.

Eddy-viscosity

The eddy-viscosity assumption originates in hydrodynamics and is concerned with ar-
guably the most important effect of turbulence on the resolved scales — the energy
cascade. We recall that the transfer of energy between resolved and unresolved scales
(B ¢ Ey) (barring diffusion) in HD is given by € = —Tijgij. This implies that the
dissipative properties of the hydrodynamic SGS stress 7 are encoded in its components
aligned with the eigenvectors of S (more precisely, since S is symmetric its eigenvectors
form and orthogonal basis, thus the dissipation is given by the diagonal components of

7 in that basis). The simplest model for 7 then would be

T = —2regsS, (2.21)

for some scalar field v4. In other words a homogeneous and isotropic scaling of the
effect of S). Note that this is also the form of the microphysical viscous stress for a
Newtonian fluid, po = —2prS*. Thus, the model claims that the only effect of unre-
solved turbulence is to locally (since v can be spatially varying) boost the microscopic
viscosity, i.e. decrease the effective Reynolds number. The scalar field vy, is the tur-
bulent or eddy-viscosity. It can incorporate flow characteristics like, for example, the
turbulence intensity. This class of models, accordingly named eddy-viscosity models
(EV) is probably classically the most widely used one. It has had big success in HD
and engineering applications.

The addition of magnetic fields can be incorporated into this paradigm as well. The
SGS stress is redefined to include 7°. This doesn’t change the structure of the resolved
kinetic energy dissipation term (still 7-S). Thus the MHD SGS stress closure retains the
form of eq. (2.21) but it may have modified form of vss. The resolved electromotive
force now also enters through the magnetic energy dissipation via the term & - J.
The same logic leads to the eddy-resistivity closure (ER) with eddy- (or turbulent, or
anomalous) resistivity 7,

E = 1. (2.22)
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2.2 Alternative models

Dimensionally, or using Prandtl’s mixing length theory [52, 68, 69|, v and 7, can
be expressed by a length scale (presumably the SGS length scale A) and a time scale
(e.g some dissipation rate €), for example v ~ A%/3¢l/3,

A plethora of models comes out of the way in which the dissipation rates are chosen
and approximated. The simplest model is to take them spatially constant:

Vegs = CLA™Y3 e = DA™Y, (2.23)

If we continue the EV/ER reasoning and link v, and 7, to the dissipation rates of
the (resolved) kinetic and magnetic energies respectively, this is revealed as the MHD
generalization of the Kolmogorov model [101]|. Physically, the reasoning for the constant
dissipation rates is that the spatial variation is negligible, if the non-linear interaction
between SGS kinetic and magnetic energy is much smaller than their dissipation rates,
as argued by [1]. Note, that here the coefficients C; and D; are not unitless.

Alternatively, continuing with the dimensional /mixing length approach, the dissipation
rate of a quantity f can be given by e; ~ f/t; ~ fuvy/l; for some characteristic time
scale tf, length scale [ and velocity scale v¢. For example for the SGS kinetic energy

this can be simplified to egu  ~ (Esugs)g/2 A3 This approach is tied to the cascade
property of turbulence, i.e. the existence of inertial range in the spectrum of f implies
transfer which is primarily local in spectral space. So we shall refer to it as the cascade
approximation.

We still need to choose characteristic quantities and we can again use the EV/ER
heuristics to select the SGS kinetic and magnetic energies as calibrators for the local

strength of the transfer. This leads to the expressions
Ny T (2.24)

Tlsgs = DlA E;Dgs'

Notice that both of these models egs. (2.23) and (2.24) are strictly dissipative (the
eddy viscosity and resistivity are positive definite) - we shall come back to this in
section 2.3.4. However, the existence of an inverse cascade (backscatter) of energy
(and cross-helicity and magnetic helicity) has been well documented (e.g. since [67] and
more recently in [63]). Even in HD it can comprise about 10 — 20% of the total energy
transfer [79]. This can be one of the reasons why these models have been found to be too
dissipative [1]. To incorporate the backscatter [61] propose a model for incompressible
MHD based on the cross-helicity dissipation. Similarly to the energy case they link eddy
viscosity with the kinetic contribution and the eddy resistivity with the magnetic one,
so that the respective dissipation rates are expressed as €3 ~ Sijﬂij and )~ J-Q
This leads to

A,
ij
Nsgs = D1 A%sgn(J - Q)\/ J Q.

They argue that this is a better gauge of the turbulent velocity and magnetic fields
since it captures robustly the transfer between kinetic and magnetic energy. Only 7g

(2.25)
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2 Sub-grid scale models

EV /ER Models T = 2y S £ = —Nggsd

Constant Vegs = C1AY/3 Negs = D1AY3

Energy Vsgs = C’lA sgs/p Tsgs = Dy \/ SgS/p

Cross-helicity | vggs = C1 A2 V4 /[S* - M| | nggs = DA 5V Asgn(TQ) /|7 - Q

Cross-helicity?2 Vggs = C1AZp YA /[Hyge| | Nogs = DA% V4591 (Hygs) /| Hegs|

Table 2.2: Turbulent/eddy viscosity /resistivity models.

is allowed to change sign but they postulate that this is sufficient due to the strong
exchange of resolved kinetic and magnetic energy and the existence of dominant inverse
magnetic helicity cascade. In this model there is no direct kinetic energy backscatter
rather resolved kinetic energy is replenished by the small scales via the channel £

res

EY, < Eb < E}, < EY,. The model has been applied directly to a compresmble
environment in [16, 18] by the map Vsgs — Plsgs, Tsgs — Msgs- Since in this case the

coefficients become dimensional, we recast it to

Ves = CIAD Y4 /IS, M,

Nsgs = DA2 Sgn( )\/ |J Q’

We also consider an alternative using the dissipation rate of the true SGS cross-helicity
Hys. The motivation for this will be clarified in section 2.3.2. Assuming a characteristic
SGS cross-helicity time-scale ¢, ~ Ap"/*|Hyys| 1/ we have

(2.26)

25gn (Hggs) Vsgs = Nsgs = C’lA,ﬁ’l/‘lsgn( Hygs) \/ | Hsgs|- (2.27)

The sign is chosen for consistency with the original model.
We summarise the EV/ER models in tab. 2.2 and label them for future reference.

Two Scale Direct Interaction Approximation (TSDIA) models

An alternative to the eddy-viscosity paradigm is provided in [110, 111|. It originates
as a mean field model and has been recently applied as such to the study of magnetic
reconnection [50, 108]. Since it uses ensemble averages instead of LES filtering operators
it is strictly valid only for the Reynolds part of the SGS terms (or sharp filters). The
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2.2 Alternative models

compressible HD work [110] suggests that the cross-term should be modelled using a
scale-similarity model while the Leonard term is calculated directly from a given filter
kernel. In the incompressible MHD treatment [106, 111] the closure of these terms is
left unexplored.

The model uses the two-scale direct interaction approximation (TSDIA) [109], [106,
App. A| to derive the SGS terms. The main assumption is that of isotropic and
homogeneous turbulent fluctuations for the primary fields. The idea behind TSDIA
[112] is to define a scale separation between slowly and quickly varying flow fields.
The fast fields are expanded in spectral space and corresponding Green’s functions are
computed. At this point the homogeneity and isotropy of the basic fields is used and
the direct interaction approximation permits the calculation of the SGS terms

™ = 21, S¥, (2.28)
™ = oM,
E =aB - AT + 9.

We shall call v, eddy-diffusivity in analogy to v,. For a succinct derivation of the model
see [106, Appendix A|. The model predicts a relationship between the closures for the
SGS stress and the EMF, namely 5 = 5/7v, and v = 5/71,,. The transport coefficients
are related as follows: a — to the residual helicity [112]; 8 — to the total SGS energy; v
— the SGS cross-helicity. The EMF closure can be closely linked with dynamo theory,
so we shall refer to the models based on eq. (2.28) as dynamo models. The a term
is responsible for the usual a-dynamo effect [60, 72| and the backscatter or reverse
cascade of magnetic energy. It is present only in the case of a broken symmetry of the
flow, e.g. between the velocity and magnetic fields. The 3 term represents turbulent
resistivity and is related to the strength of turbulence. It is the counterpart of the
n-term in eq. (2.22). Finally, the 7 term is related to the cross-helicity and depends
on the presence of large-scale vorticity (for more information consult [106]). The exact
expressions for a, (8, and 7 are computationally intractable, however they suggest
that the transport coefficients can be expressed via their respective quantity and some
turbulence time-scale, e.g. [ o tEss/p. If the characteristic time-scale ¢ is chosen
everywhere to be that of the SGS energy dissipation rate ¢t = Egs/e ~ A/\/Ess/p,
where we have used the cascade approximation, we obtain the model

H H,
a=CoA——2— 3 =CsA\/Fus/p, 7=C,A—=2_ (2.29)
Eegs/D Eess/D

Note that in the context of this work we are satisfied by substituting a true expression
for the residual helicity and the cross-helicity since no simple models are available for
them. In practice (LES) this would correspond to solving the respective evolution
equation, e.g. [105, 106, 112]. This is not really practical but falls outside the scope of
this investigation.

A simpler, albeit not necessarily self-consistent, version of the model can be obtained by
considering eq. (2.28). If at this point we introduce the dimensional /Prandtl’s mixing

33



2 Sub-grid scale models

TSDIA Models | % = —-2y,58* | ™ =-2y,M | £=aB - BJ+-Q

. — Hsgs _
Yokoi Uy = CBA V ESgS/IO Vb = C'YA NI o= Cald 2V g;/ﬁ,
525/7Vua 7:5/71/1)

Constant v, = C1AY3 w, = CyAY3 B = Dy AY3,

Miki Vy = CQA Esugs/ﬁ vy = CgA Eb

sgs

a=0C \/ Esugs/pa
B=5/Tuw 7 = 5/

Table 2.3: TSDIA models.

length arguments, the Kolmogorov assumptions lead to

vy = C1AY3, (2.30)
v, = O A3,

This model is similar to eq. (2.23), but for an additional degree of freedom. Namely,
the separation between 7% and 7" allows the local effective Reynolds number to vary
independently based on the large scale deformations of the velocity and magnetic fields.
The strength of this effect is regulated by the ratio |Cy/C}|. A similar argument can
be made for the EMF, but we restrict ourselves to the constant anomalous resistivity
model in which C, = C, =0 and 3 = D;AY/3.

If instead of constant dissipation rates we choose the kinetic and magnetic energy
dissipation rates for v, and 1, respectively, we obtain the model discussed in [59].
There the relationship between SGS stress and EMF closures is preserved, and « is
also closed through the SGS kinetic energy. The full model takes the form

a=0 E;‘Jgs/ﬁa B =0CA Eggs/ﬁv 7= C3A E;Jgs (2'31)
vy = 7/50, v, = T/5v

As before, we summarise the TSDIA-based models in tab. 2.3 and label them for future
reference.

2.3 Sub-grid scale energy and cross-helicity models

As we have noted, the SGS kinetic and magnetic energies enter the traces of the SGS
kinetic and magnetic stress respectively and thus enter directly the momentum equation
via the SGS pressure gradient V Py, = V (QE;gS + E;’gs). The structural models we have
presented so far self-consistently prescribe the traces of the SGS stress for the whole

parameter space.
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2.3 Sub-grid scale energy and cross-helicity models

The functional models, on the other hand, historically originate from incompressible
equations. Since in the incompressible regime they ignore completely the SGS energy®,
alternative approaches for dealing with these terms have been devised. They take one
of three forms: implicit, dynamical, geometrical. They have been carried over to the
compressible case as well, since they allow for modelling of other important scalars,
like the cross-helicity, which enters some of the models explicitly. We describe them in
what follows and summarise the results at the end of this section in tab. 2.4.

2.3.1 Implicit models

The first approach to closing the SGS pressure P is computationally and method-
ologically least demanding. It consists of absorbing it into the thermal pressure and
treating the result within the numerical scheme, i.e. by solving for a modified pres-
sure. This has to be consistently handled in the equation of state and (internal) energy
equations.

Alternatively, the SGS pressure can be completely ignored. A reason for this comes from
the resolved energy equation. The SGS pressure enters via the term Py, V- (1) (ignoring
diffusion). Since this term vanishes in the incompressible regime, the SGS pressure
doesn’t contribute to the energy cascade and it is justified to neglect it within the
EV/ER (functional) paradigm. This approach has been justified for weak /subsonic HD
turbulence [30] but clearly looses ground as the SGS Mach number (the Mach number
at the largest sub-grid scales) increases and the SGS pressure begins to dominate over
the thermal one. In fact, in HD, [30] show that the Reynolds part of £y, i.e half the

trace of the Reynolds part of 7, is given by #EL, = 3y M2 P6;;, with sub-grid Mach

number Mg, = \/ Rpu / (ﬁny ) So for turbulent Mach number?, (which usually is

sgs
somewhat higher than the SGS one), above ~ 0.6 the SGS pressure is dominant and

this treatment is invalid. Nevertheless, this is a widely used hypothesis in HD and has
been extended to the full Y [23, 73, 97].

sgs

The cross-helicity only enters directly via the energy equation and thus it is not handled
within this approach. However, most of the models above require explicit expressions
for the SGS energy and cross-helicity. This leads to the next approach.

6Ty (M) = V- (B) = 0 and in the incompressible regime Tr (5) =V-(a)=0

"This is the typical Mach number in the turbulent inertial range of scales.
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2 Sub-grid scale models

2.3.2 Evolution equations and Smagorinsky approximation

The second approach involves the evolution equations for the necessary SGS quantities.
We repeat them in symbolic form:

aESugS u o u

ot - fsgs TS+ €sgs) (232)
OEP _

sgs b b

ot Fogs =€+ g,
aI—Isgs ch E ch

at = ‘Fsgs - (T V) (%) - 8 Q —+ ESgS7

where € represents the dissipation into microscopic degrees of freedom and fSDgS is

sgs
a corresponding transport term. Note that the transport terms are a re-summation

of the ones found in eqgs. (1.32) and (1.33) in which we have included diffusion terms
based on the SGS stress and EMF. This will be discussed in more detail in section 3.4.
As mentioned in section 1.3 the equations require additional closures. For MHD up to
four additional evolution equations have been introduced e.g. [105, 107, 109, 112]. The
most accurate and computationally most challenging approach would be to close the
equations and evolve them explicitly. However, the addition of the new equations can
undermine the computational gains from the LES modelling, especially considering the
extra computational weight of the additional closures. Nevertheless this approach has
been implemented in HD e.g. [77, 79] with some success. We are not aware of MHD
LES simulations where it has been fully implemented, however it has been applied for
selected equations in e.g. [50, 59]. To represent this approach in our testing we take the
best-case scenario, in which the evolution equations produce accurate SGS quantities
with the same error as the rest of the simulation. Thus, we substitute the true SGS
terms in the deviatoric models wherever it is necessary.

Instead of solving the full evolution equations numerically, approximations can be made
to try and solve them analytically. For example by reduction to algebraic equations with
no unclosed terms. Most popular (e.g. [81, 106, 111]) is the Smagorinsky approximation
of local balance of production and dissipation, i.e.

€ =

-
e = £.

Y

=
— Oy

1]
0
1]

o = (1-V) (%)4—5()

This amounts to assuming a statistically stationary state of homogeneous turbulence.
Homogeneity here is meant in the sense that the transport terms average out to zero
over the volume corresponding to a filter scale. Note that this is already required by
the majority of the considered functional models so it doesn’t add to the burden of
approximations.
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2.3 Sub-grid scale energy and cross-helicity models

Using the cascade approximation for the dissipation rates, ¢/ oc fv;/A gives an implicit
algebraic equation for the SGS energies and cross-helicity in terms of the deviatoric SGS
terms:

u A Ox __% ~
Esgs X K;gs <Sij7—ij + (Psgs)v : 11> ) (233)
A —
Ep, £-J
N !

sgs

Hys A ((TV)(E)+SQ)
UHsgs p

To proceed we can use the eddy-viscosity approximation

u Vsgs _ 1 a
VB,

EP AT 3P

sgs X | |
VEb

sgs

~ B - -
Sgi (Hsgs) |]——,sgs|:‘)/2 X Aﬁ1/4 (Qﬁysgssi*j -V <%> + 77J ’ Q) )

with the L? matrix norm given by ||Al|s = \/24;;4;;.
Now we can add the mixing length approximation for the viscosity /resistivity from the
EV/ER model eq. (2.24) and assume separate turbulent time-scales ® to obtain the
MHD extension of the Smagorinsky model from [81, 93]

EY o< A%p|[S||2, EP. o< A%[J)2. (2.35)

sgs sgs

Henceforth, we shall refer to these expressions as the Smagorinsky energies. Alterna-
tively, if we substitute ng, = Ap/*sgn (Hyg) |Hsg5]1/ > — 2sgn (Hsgs) Vsgs 1n the cross-
helicity equation we provide the motivation for the model described in eq. (2.27), and
an expression for the cross-helicity”. If instead we use the TSDIA model eq. (2.29)
we need to solve a high-degree polynomial. After neglecting the a and 7 terms in
the magnetic energy equation and the 14, term in the kinetic SGS energy equation, for
simplicity, we obtain

B o C1A%D||S| 2 + CoA?|T |2 (2.36)

Note that this is valid only for the total SGS energy and cannot be trivially separated
into magnetic and kinetic components because we have already assumed in eq. (2.29)
a uniform turbulent time scale for both the kinetic and magnetic component. Fur-
thermore, since we have neglected the v and v}, terms we cannot derive a non-trivial
expression for the SGS cross-helicity consistent with eq. (2.36).

_\1/2 _\1/2 _
Snalnely7 UE;‘gS = (E;ng/p) / ’ UEg’gS = (Es]‘.:)gs/p) / ’ UHSgS = ‘HSgS|1/2p1/4
9 We note in passing that eq. (2.26) gives another, rather Keplerian expression for the cross-helicity
591 (Hgs) | Hygs|*? oc OLA2IS; M, P12 + CoA?|T - /2.
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2 Sub-grid scale models

2.3.3 Realizability condition

Another approach for deriving the SGS energies comes from the structure of the SGS
stress itself [99]. A necessary and sufficient condition that the kinetic and magnetic
components of the SGS stress tensor, 7% and 7°, are semi-positive definite (or realizable
as coined by Vreman) is that the filtering kernel is homogeneous and non-negative in
physical space (e.g. Gaussian or box, but not sharp filter). In that case the traces
B and E;’gs are guaranteed to be non-negative in any reference frame and as such
can be justifiably interpreted as energies. Additionally, this way they can be used
unambiguously in all of the above models where they appear under a radical. Moreover,
they can’t cause artificial negative pressure through the Py term. A further property

of realizable tensors is that

> (futii— f2) =0, (2.37)

i#]

This can be rearranged to derive a lower bound for the trace, (fu)® > 311 £*]13. This
lower bound can be used as a stabilisation criterion for the deviatoric model in LES
(e.g. for structural models like the scale-similarity and our newly proposed one).

In [97] the inequality is used instead to introduce an incompressible HD model for the
SGS kinetic energy. Here we give the compressible version and apply it to the SGS
magnetic energy as well

3
B V3|

sgs 9 ||2’ Eb

sgs

“fnfb*m. (2.38)
This connects the model coefficients of the isotropic and deviatoric parts of 7% and
7P*. Since realizability only holds for 7" and 7" separately, it cannot be applied directly
to obtain an expression for the total SGS energy from models for 7, like the EV/ER
models. Applying it to the general TSDIA model eq. (2.28) on the other hand, leads
to

Es ~ vapl|S¥ |2 Ely ~ ] [M . (2.39)

We shall refer to these as realizable energies. Note that in order to be self-consistent we
must take into account only the deviatoric part of eq. (2.28). We can now substitute
these energies into eq. (2.29). If we assume that the kinetic and magnetic energy share
the same coefficient of proportionality the [ term scales as

M 2
\/||S*|I2 M (2.40)

Using eq. (2.39) instead in eq. (2.31) closes that model completely.
Finally, recall that in section 2.1.4 we noted the possibility to renormalise the new
model for 7 with SGS energies in order to improve its stability and/or accuracy. The

38



2.3 Sub-grid scale energy and cross-helicity models

Energy models Bl E;Dgs
Smagorinsky C1pA%|S|? CyA2|T|?
Realizable C1pA2|S* 2 CoN2| M |?
Ca =5 =2 =2 =2
Scale-similarity Cip (u2 —u ) Cy <B - B )
Deconvolution %C’IAQQNMJ xp <|S|2 + QZ> l—lngAZEiJEM o <|M|2 + jZ)

Table 2.4: Energy models.

realizable and Smagorinsky energies provide two additional ways to do that. Note that
applying either approximation to the proposed non-linear model for 7% and 7°* leads
to energies which are of one order in A higher than the corresponding deviatoric model
and thus should be neglected. To circumvent this, we use directly the Smagorinsky
and realizable energies.

2.3.4 Dissipation/backscatter properties of selected models

As it was discussed, the proposed models may suffer from incorrect amount of energy
dissipation. To qualify this we proceed with a brief analytical analysis of the dissipation
properties of the presented models. Recall the argument behind eddy-viscosity models
connecting the kinetic energy dissipation rate with the resolved rate-of-strain S, namely
€ogs = T -S. Consider, a co-ordinate system which diagonalizes S, say Rs. In this frame
of reference only the diagonal part of 7 gives a non-zero contribution to the dissipation
of energy. Let the eigenvalues of S be A 31 = Mgy = Agg. In general, we can decompose

the SGS stress tensor into a term which shares an eigenbasis with S and a residual.

In Rz these are simply the diagonal and off-diagonal components 7 = r5¢i8en 4 rSperp,
S 5 _ .

Clearly then 7;;"""S,; = 0, while

TiiSy = TONS = gy Ty + AgaTon + AgaTas (2.41)
For the general eddy-viscosity model 7" = — 1S eq. (2.41) becomes

iy = Viurb ()\?S Lt )%2 + )%3). This once more clearly demonstrates the dissipative

nature of the eddy-viscosity model, since the bracket is always non-negative, this model
is independent of the local anisotropy of the flow and can only dissipate energy from
all types of SGS flows.
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2 Sub-grid scale models

In contrast our model has the shape ™ = f (5’ + Q) (5’ + Q) (with a non-negative

scalar modulator field f). Performing the same computation for the SS term we obtain
€ss=—f (/\%1 + AL+ /\%3). This time the strength is enhanced (cubic versus square

powers), however the signature is not definite. For instance, a negative eigenvalue
leads to a backscatter effect. This identifies one of the sources of backscatter in the
model, net stretching along an eigenvector of S. The vorticity Q€ term has a similar
behaviour, but with the opposite sign

can = f <)‘.§1<:u’?~22 + tgs) + Asa gy + Hag) + Asz (g, + M%ﬁ) 7

where (uq;, Hae, Hg3) are the components of the resolved vorticity in Rg. Here, the
main conclusion is that strain along the vorticity axes doesn’t influence the energy flux
either way. Additionally, compression in the plane of the vortex results in backscatter,
while stretching in the same plane enhances the dissipation. Putting both together

Y e (- 3?) 202

1=1,2,3

where @ = V2 is the resolved enstrophy. So, our model with f > 0 predicts dissipation
(€3 > 0) from compressive directions (without loss of generality Ag, < 0) when A% >

“?}2 + ,uég, i.e. when the compression in that direction is stronger than the vorticity
in the orthogonal plane and conversely from stretching directions (Ag; > 0) when
the orthogonal vorticity is stronger. From the point of view of a vortex, a strong
compression or weak stretching in the plane of the vortex enhances the dissipation and
conversely a weak compression or strong stretching leads to a backscatter. Putting this
into an alternative form

=—f > N+ ( —Tr(S)) (2.43)

1=1,2,3

reveals a different view point. Compression always leads to dissipation, stretching a
vortex in its plane leads to backscatter, perpendicular to it has no effect.

The same analysis can be repeated for 7° = f (M + J) (M + J) + 2E> 1. This leads
to

= _f Z )\Sz (/’LJ@ ) + )\Sz (M + ;E;)gs) ) (244>

1=1,2,3

where Mf = Zj ﬂfj The current term .J.J has the same shape as the vorticity
term above, while the magnetic shear along with the magnetic energy give always non-
negative contributions. So, magnetic shear and SGS magnetic energy always enhance
the flow action (dissipation form compression, backscatter from stretching) because
the last bracket is always non-negative. On the other hand, large-scale currents lead to
backscatter when flowing perpendicular to compression regions and dissipation when
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2.4 Final remarks

perpendicular to stretching/dilatation regions. Again, currents flowing along the com-
pression /dissipation direction have no effect on the SGS energy.

Finally, looking at the magnetic energy dissipation €€ = —& - J, the topology is sim-
pler, due to the anti-symmetry of the current tensor J. Clearly, there is backscatter
when the electromotive force is aligned with the large-scale currents and dissipation
happens in cases of anti-alignment. For the classical anomalous resistivity closure,
£ = J, the switch between turbulent dynamo and anomalous resistivity regimes hap-
pens via the sign of 5. In the case of the 'incompressible’ term of the proposed model
E=f Eijkaj,lgk,ly we get somewhat more complicated behaviour, based on the relative

alignment of the eigenvectors of resolved deformation tensors
Eil X €ij<§jlmkljz + jT . S . j — QT . m . j - jQTI"(S)

Each of the terms can contribute to either regime, depending on the local alignment
of eigenvectors, as for the SGS stress. The last term is reminiscent of the anomalous
resistivity closures above, however it is modulated here by the level of compression of
the resolved flow, as opposed to energetic effects. In fact, based on this decomposition
we remark on a link between the proposed model and the TSDIA family — decomposing
the resolved velocity and magnetic field Jacobians into symmetric and anti-symmetric
components and substituting it into the proposed model for € produces a four-term
expression with similar structure to the TSDIA version. There is a key difference
however: the proposed model has tensor-valued modulators instead of the scalar-based
a, B, 7.

What is left is to compare the models with the behaviour of SGS turbulence directly —
is this correlation between enhanced/suppressed SGS energy dissipation and the SGS
tensor on the one hand, and the large scale Jacobians on the other hand, observed or
not?

2.4 Final remarks

Before we conclude this discussion we need to clarify a few points.

Firstly, as has been shown, most closures come with a set of coefficients which need to
be determined externally. They indicate the strength of the effect that the closure is
supposed to model. These coefficients can be determined in several ways.

In LES simulations often a dynamic procedure is used based on Germano’s identity [44].
This involves a scale-similarity hypothesis according to which the coefficients should
be independent of the filter scale. A second, test filter is introduced. Computing
the SGS terms on the test filter scale and using the scale-similarity hypothesis one
can obtain closed form expressions for the coefficients only in terms of quantities of
the filter (resolved) scale. This has the added flexibility to be computable locally or
globally, so spatial variations in the coefficients can be included, if desired. It should
be noted that this procedure is quite often very computationally expensive, especially
for non-spectral codes with large test filter scale.

For the purposes of this work the particular values of the coefficients are not critical,
rather the assumption that they are constant is. In other words, the closures ought to
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2 Sub-grid scale models

include all the required functional dependence explicitly and the influence of the filter
scale should already be incorporated. Additionally, we shall investigate how the coeffi-
cients change with time and plasma parameters. So we compute them by maximising
the correlation between closure and real term. This has the added benefit that if the
coefficients turn out to be independent of plasma parameters and temporal evolution
they can directly inserted into LES simulations, greatly reducing the computational
cost.

Secondly, we discuss the possibility to combine models in order to benefit from their
different strong points. It has been found |1, 18| that the functional type of models
lead to too much dissipation (even if backscatter is allowed as in eq. (2.25)) and tend to
have poor local correlations with the SGS terms. On the other hand, structural models
like the scale-similarity and deconvolution ones maintain good local correlations but
can become unstable in regions of strong gradients and in general under-predict the
energy dissipation rate. Thus it has been suggested e.g. [9, 14, 43, 77, 83| to combine
the two types of models to hopefully benefit from both good points and diminish the
bad ones. This has been applied with remarkable success [51, 77, 79] to compressible
HD in the context of astrophysical turbulence. Since the energy dissipation rate cannot
be investigated in too much detail with a prior:i testing, we restrict ourselves to only a
few sample mixed models, which hopefully will illustrate the general trend. Namely we
additionally will test two linear combinations between the proposed non-linear model
and the model described by eq. (2.31). The first combination uses the true SGS energies,
the second — the realizable energies, i.e. eq. (2.39). We use the renormalized version
of the proposed model to gauge whether the renormalization itself provides sufficient
stabilisation.

Note that in hydrodynamics combining the renormalized form of the non-linear model
with and the EV one is necessary in order to initialize the turbulence cascade. In MHD
turbulence this can happen spontaneously via the magnetic channel as well, so the
combination is not strictly required from an a priori point of view.

Lastly, a comment on smoothness. It has been pointed out that shocks are a strong
source of turbulence. However since shocks are inherently a particle and not a fluid
phenomenon, SGS fluid models usually deal with them poorly. Almost all models we
have described deal with derivatives of the resolved fields. Clearly, they become inap-
plicable in regions where these derivatives cease to exist. One trivial solution we see
is to deal with shocks in analogous way to DNS. Namely, apply the filtering operation
to the derivation of the Rankine-Hugenoit conditions (or their compressible MHD ex-
tension) rather than the fluid equations themselves. This should also be applicable to
reconnection regions, where the magnetic field can formally experience a discontinuity.
In practice, due to the discretization of the differential operator a discontinuity-capturing
scheme must be employed which identifies the non-smooth regions. The usual ones em-
ployed in DNS will probably need to be modified due to the effects induced by the SGS
model, but we leave this as future a posteriori work.

To summarise, we presented a new structural model for compressible MHD based on
series expansion of the filter transfer function. This was followed by an overview of
the main types of alternative closures. We followed their derivations and identified
the main assumptions and approximations made. We finished with a discussion of
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SGS energy and cross-helicity closures. In the next chapter we perform a model-free
analysis of the data presented in section 1.5 in regard to the model assumptions and
in anticipation of the direct model validation in chapter 4.
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3 Analysis of the compressible
MHD LES equations and
hypothesis testing

3.1 Analysis of the primary equations

Here we shall discuss some properties of the MHD LES equations relevant to SGS
modelling. We begin with an analysis of the effect of the SGS terms in the primary
LES equations. This will give insight into the validity of the various hypotheses on
which the models from the previous sections are based, e.g. homogeneity and isotropy,
local balance, scale-similarity, et cetera. We continue with a topological analysis of the
SGS stress. This provides more detailed information about the topological properties
that an SGS closure better satisfy. Finally we discuss the role of the SGS terms in the
resolved and SGS energy and cross-helicity equations, specifically with respect to the
local equilibrium hypothesis and the cascade paradigm.

The SGS terms are obtained by filtering the raw data at filter scale £ = 16, A =
16, which is well within the inertial range as discussed in section 1.5.2. This should
minimize the contamination from forcing and numerical errors from the the integral
and dissipation ranges respectively, leaving the turbulent dynamics to dominate.

For ease of reading we give a short explanation of the types of plots which will be
encountered in this chapter. For each considered term, say 7, we can compute the
distribution of some quantity f(7) over the simulation domain at each given time.
Because we are working with discrete data, we compute a histogram of the relative
number of cells (or data points). This is illustrated in fig. 3.1a. To summarise the
dependence of f on time and plasma parameters with minimum loss of information we
proceed in one of two directions depending of whether f is associated with a norm (i.e.
some sort of magnitude) or an angle.

In the former case we note the position of the median and the characteristic width of
the distribution as measured by the interquartile, i.e. the region between the 25% and
75% percentiles. We then plot those as a function of time resulting in fig. 3.1b. For
bimodal distributions we perform this for each branch of the distributions separately.
For the quantities we consider the two branches are clearly separated as a positive and
a negative one. To gauge the relationship to plasma parameters we compress the time
evolution of each simulation into a thin bar. The darker regions in the bar correspond
to the extent of time variation of the median and the edges of the interquartile. These
constructs are ordered for each simulation by a relevant parameter, e.g. the RMS sonic
Mach number. The final result is shown in fig. 3.1c.
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3 Analysis of the compressible MHD LES equations and hypothesis testing

Note that we try to order the simulations by the parameter which appears to demon-
strate the most consistent trend, whenever such a trend is evident. While we attempt to
draw physical inferences from the ordering parameter we make no claims to causation,
only relation. The number of simulations compared to the number of degrees of free-
dom in parameter space is insufficient for more definitive conclusions. We note trends

related to B0, (M™), (Ma),), (Bp) = (2(Ma™)* / (MS™™)), (M), + (Ma),,,) and
\/ (M™)? 4+ (M,"™)? ). In this a time average over the statistically stationary pe-

riod is denoted with angular brackets (), while the spatial mean and root mean square
(RMS) over the simulation domain are given by (), and ()

we don’t use the local plasma beta parameter, but an estimate based on (M,
<Msrms>.

rms

respectively. Note that
rms> and

Simulation 1
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Figure 3.1: Illustration of combining single-time magnitude histograms. a) Histogram of a
quantity f over the simulation domain at one time snapshot, with median and interquartile;
b) Evolution of the distribution of f with time (in units of eddy turnover time). The median
is depicted by dashed line, the shaded region is the variation of the interquartile, the solid
and dotted horizontal lines show the extent of variation of the median and the interquartile
respectively. ¢) Summary of the statistics of f for different plasma parameters. Each vertical
bar represents one simulation. The darker boxes depict the time variation of the median
(central box) and the interquartile (outer boxes). The simulations are ordered by a plasma
parameter, here (Mg"™) (shown on the lower axis). The top axis shows the simulation number
for reference.

For angular diagnostics we begin again with the distribution of a quantity over the
simulation domain for one particular snapshot. We choose the quantity to be the
cosine of the angle between two vectors. The treatment here is simpler since the range
of the distribution is fixed to [—1,1]. This means that we can use fixed and regularly
spaced bins (with bin width of ~ 1/180). We can also easily convert the histogram
to a probability density function, which is in principle independent of the binning.
An example is given in fig. 3.2a. In contrast to the magnitude plots, there is little
variation of the angular distributions throughout the statistically stationary period
and also across simulations. In fig. 3.2b we show one such angular distributions for all
available data. To gain a measure of the characteristic distribution we highlight the
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3.2 Induction equation and the EMF

median value within each bin for all data. The final result is presented in fig. 3.2c.
This shows that the relative orientation of SGS and resolved vectors can be a robust
criterion for the goodness of fit of a model, specifically for the turbulence anisotropy.
Since the analysed data represents homogeneous and isotropic turbulence, no strong
preferential alignment is expected for the SGS terms. Thus there is little geometrical
structure to be matched and purely isotropic models might do just as well as ones with
the correct anisotropy.

150" 120° 90° 60" 300 150° 1200 90" 60" 300 150" 1200 90" 60" 300
ST T T T T ASPrr———T——T—T—— T T 0T —— T
40pf i1 35fi
35r| 3.0}
30| L
wooelf w 23
O, O 2004
a orp ool
154 e\
Lo} Lo
R T 051 i 0.51:

S I N N S N N ool — polii i { Lo
-10 -05 00 05 10 -10 -05 00 05 10 -10 -05 00 05 10
cos(<) cos(<) cos(<)
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Figure 3.2: Illustration of combining single-time angular histograms into summary plots. a)
Distribution of the cosine of the angle between two vectors x and y over the simulation domain
at a fixed time. b) The distribution from the previous panel plotted for all simulations and
at all times within the statistically stationary period. ¢) The distribution from the previous
panel with the median in each bin shown in the solid line and the entire range of variation
shown by the shaded region.

In a sense the angular and magnitude plots provide mutually orthogonal views on the
data. That is to say that the shaded region in a magnitude plot represents variation
within the simulation domain and the time and simulations are represented along the
abscissa while in an angular plot these are reversed: the shaded region represents
variation with respect to time and simulation, while the abscissa gives the variation
with the simulation domain. With this we are ready to proceed to the analysis of the

SGS terms.

3.2 Induction equation and the EMF

For simplicity, we begin the analysis with the induction equation since it contains only
two vectorial terms — V x € and V x (ﬁ X E). In fig. 3.3 we compare the relative sizes
of the EMF |€] and its resolved counterpart |Gt x B as well as their contributions to
the induction equation, i.e. |V x £| and [V x (@ x B)|. Locally the EMF is about
5% — 20% of its resolved counterpart with a median around 15%, while its effect in
the induction equations is somewhat stronger — ~ 10% — 80% with a median around
40%. 1In other words, the SGS term is sub-dominant but far from negligible to the
induction dynamics. We note that the statistics of |€|/|tt x B| separates the data into
two groups with respect to (M,) which are differentiated both in the median value

47



3 Analysis of the compressible MHD LES equations and hypothesis testing

and the overall distribution (the whole bar is shifted to higher values at higher (M,)).
The differentiated counterpart |V x £|/|V x (1 x B)] instead decreases with the time-
averaged (f,). The time variation is relatively small, as expected for a statistically
stationary period.
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Figure 3.3: Comparison of the relative size of a) the EMF to its resolved counterpart | x B|,
b) their contributions to the induction equation: |V x €| and |V x (@ x B)|.

Next we consider the geometrical distribution of the two pairs of terms. Figure 3.4a
shows that in the developed turbulence regime the distribution of the angles is almost
uniform. There is a slight preference for collinearity for the EMF. In the induction
equation however, this is reduced and the terms act preferentially in opposite directions.
Figure 3.4b shows the same terms in the initial stages of the simulations where the
turbulent magnetic field is increasing to saturation level (presumably by some sort
of turbulent dynamo mechanism). While we cannot make conclusive statements due
to the influence of initial conditions we note that qualitatively the medians follow
the same trends. The variations are of course much greater. Furthermore, there are
times/snapshots with significant tendency towards alignment between V x € and V x
(u x B).

Les us expand this examination to other resolved vector fields in addition to @1 x B. As
we saw in the previous chapter the EMF is usually modelled as a combination of resolved
vector fields, each modulated by a scalar function. To begin with there are the vector
fields on which the ER and TSDIA models eq. (2.28) are built, namely {B, J, Q}. If |£]
is the key parameter in LES we expect that the EMF closure matches to some extent its
statistical distribution. Since this is sensitive to the statistics of the scalar pre-factors
and requires the examination of specific model, it is deferred to the next chapter. Here
instead, we prefer to take a more general approach. We investigate which resolved
vectors are preferentially aligned with &€ (respectively V x £). We expand the TSDIA
set to include the simplest resolved vector fields accessible in an MHD simulation®:

LAt this stage we ignore the fact that the £ is a pseudo-vector - this symmetry requirement can be
accommodated by a suitable choice of scalar or pseudo-scalar modulating field.

48



3.2 Induction equation and the EMF
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Figure 3.4: Comparison of the geometry of the EMF and its resolved counterpart 1 x B
and their contributions to the induction equation for a) the developed turbulence regime
t € [2,5]T, b) the initial stages of growth of the turbulent magnetic field ¢ € [0, 2]7.

{1, B, 7. Q, uxB,IxQ, uxJ, axQ BxJ, BxQ,Vx(ixB)}. The TSDIA
fields along with the ones which exhibit the strongest sensitivity to the directionality of
& are plotted in fig. 3.5a. From the shallowness of the distributions (a randomly aligned
field would exhibit a constant distribution at 0.5) it is clear that no simple resolved
vector field has the appropriate geometrical configuration. This implies that none of the
one-term eddy-resistivity closures based on eq. (2.22) can capture the orientation of the
EMF. This is not too surprising since they were never designed to achieve this. However,
it is a first indication that they may suffer in circumstances where the EMF orientation
and hence anisotropy plays a significant role. This conclusion can be extended to any
one-term model aligned with any of the resolved vectors listed above.

The TSDIA models provide the next logical step by introducing a linear combination
of vector fields. Whether this solves the alignment problem again depends also on the
details of the scalar modulators. Interestingly though, the resolved magnetic field B
has a weak preference to orthogonality with the EMF. Therefore, it can serve primarily
as an error-cancelling contribution of the orthogonal components of the other vector
fields with little intrinsic effect to the EMF itself. Furthermore, we note that the
resolved current and vorticity are largely insensitive to the orientation of the EMF. In
fact much better alignment is exhibited by the quadratic terms B x J, B x Q and J x €.
The latter even doesn’t have the strong £+ symmetry shown by the rest. This would
place it as a structurally preferred candidate in comparison with the resolved current,
for instance. As we are considering functional models however, it is more pertinent
to examine the alignment of the vectors with V x €. The ones exhibiting the highest
sensitivity to the orientation of V x € are shown in fig. 3.5b. Note that only the resolved

49



3 Analysis of the compressible MHD LES equations and hypothesis testing

— 8B — o — Bxq — T — Vx@@xB)
— J — BxJ I xQ — Q — B
150° 120° 90’ 60° 300 150° 120° 90° 60° 300
35F0 0 0 B 3ol oo b
3.0 I 2500 0 ]
25k | . . . . . . . ol
LL > L. 20} : |
D 2.0} A . D t
Q 1.5—é | D_ 1.5} 7
1.0_. ; y s 10_ N
0.5F T e 0.5 1 . 1
0.0 = - I | . == 0.0 | B | . I . | Lo |
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
cos 4(&, ) cos «4(V x&, )
(a) (b)

Figure 3.5: Geometrical alignment with closure-candidate vector fields for a) £ and b) V x &

counterpart of the EMF appears in both panels of fig. 3.5 and no other quadratic vector
does. In general, we note that alignment is not preserved through differentiation. As
an example the resolved current J = V x B is now insensitive to V x €. This implies
that the amount of information about the SGS scales contained in the resolved vectors
is purely local and does not extend to the range of our differentiation stencil (5-point
per dimension). The curls of the TSDIA vectors are not included in this investigation,
apart from J («<- B). The reason is that the higher order derivative terms would expand
the possible set of vector combinations to an unreasonable number. So it is possible
that the alignment issue is resolved in the induction equation by the contributions of
V x J and V x €. We shall see that this will not help much with the contribution to
the energy and cross-helicity cascade, on which the TSDIA models are founded. But
first we take a look at the SGS stress and the momentum equation.

3.3 Momentum equation and the SGS stress

For brevity let us denote the resolved counterpart of the SGS stress with 6, thus for
instance the resolved kinetic stress is 0;; = pu;u;. Then the total momentum flux, or
total force, acting at a point can be written as F™™ = V - (§ 4 7) + VP and the LES
momentum equation takes the form

opu
il mom _ ()
0 + F
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3.3 Momentum equation and the SGS stress

Now consider the relevance of the SGS force with respect to F™°™. Figure 3.6a shows
the resolved (V - 6), sub-grid scale (V - 7) and thermal (VP) forces normalised by
| F™O™ | ean, 1-€. the total momentum flux averaged spatially over the simulation do-
main. In the plot a term’s absolute variation throughout the simulation domain is
represented by the length of the coloured bar. Thus we see that the variation of all the
terms increases with increasing (M™*) — a manifestation of the more varied dynamics
which makes modelling the supersonic regime so much more difficult?. At the same
time, the characteristic value of the SGS and thermal forces, as determined by their
median, decreases with the sonic Mach number. As expected the thermal pressure is
negligible for highly supersonic simulations. The SGS forces however remain relevant
throughout the whole parameter range. Figure 3.6b shows the same forces normalised
by the local value of |F™™|. We see that locally the resolved forces are the dominant
contribution for (M;™*) 2> 2 with the SGS and thermal forces providing the necessary
counterbalance. For smaller sonic Mach numbers ( (M™*) ~ 1) the total force is pro-
duced primarily by the cancellation between V - # and VP (since the medians of both
of these terms exceed unity while the V - 7 distribution remains below 1). Importantly,
the relative SGS contribution increases with decreasing sonic Mach and in the subsonic
regime can locally exceed the total force. This implies that in the subsonic regime the
net force is the result of the combination of three comparable terms. We confirm this
by examining the alignment of the SGS forces with the resolved and thermal ones in
fig. 3.7. While the distributions are relatively flat, as expected for homogeneous and
isotropic turbulence, the resolved forces are preferentially anti-aligned with the SGS
ones. The thermal force exhibits an interesting change of behaviour with the RMS sonic
Mach number. In the subsonic regime the SGS force is insensitive to the direction of
the thermal pressure force. However, in the trans- and super sonic regime, when the
thermal force becomes less important there is a tendency of alignment.

Next let us examine the constituents of the resolved and SGS forces. Figure 3.8a shows
that the isotropic parts dominate over the deviatoric ones rather robustly. Recall
that simulations 8-10 have a predominantly compressive forcing while in the rest of the
simulations the compressive and solenoidal modes have equal strength. This distinction
does not seem to affect the SGS scales, i.e. there has been sufficient mode mixing by
the time the energy has cascaded to the filter scale. This demonstrates in a new way
that the details of the forcing do not influence the SGS results and reinforces the
choice of filter scale. We also note that the deviatoric components have much more
compact distributions than the isotropic ones independent of the compressibility of the
flow. Figure 3.8b shows that the orientation of the SGS force however is much better
approximated by the deviatoric components V - 7*. The isotropic component is quite
insensitive to the direction of the deviatoric and total SGS force. This combination of
size-versus-angle features supports the energy-based re-normalisation approach to the
proposed non-linear closures from section 2.1.4. Since, these models represent 7 and
not V - 7 this assertion is contingent on the effect that the divergence operator has on
the modelling operator.

2Since a flatter distribution is more likely to be comprised of a larger number of single-phenomenon
components of comparable importance.
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3.3 Momentum equation and the SGS stress
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Figure 3.8: Comparison of the size (a) and orientation (b) of the deviatoric and isotropic
parts of the SGS force. The size of the components is normalised locally to the total SGS
force |V - 7|.

We can decompose the SGS force further into kinetic and magnetic terms. They are
approximately of the same order both in their isotropic and deviatoric components in-
dependent of the global Mach number values, (figs. 3.9a and 3.9b). Therefore neglecting
one of the two components would not be justified, at least in the range (8,) € [0.01, 20].
They also have differently shaped distributions. The kinetic terms have flatter distri-
butions and predominantly positive skewness. Comparing their geometrical orientation
(fig. 3.9¢), the SGS kinetic and magnetic pressure forces are somewhat aligned while
the deviatoric forces are insensitive to each other’s orientation. Therefore it will be
difficult for one term/one coefficient closures of 7%, like the EV models eq. (2.21), to
account for the orientation of the kinetic and magnetic deviatoric SGS forces simulta-
neously. However, this would be easier for the SGS energy gradients. Thus we expect
the EV models to perform well if the SGS orientation and hence anisotropy is not very
significant to the modelling and to perform poorly otherwise.

3.3.1 Tensor analysis of the SGS stress

So far the discussion was restricted to the SGS forces. The underlying structure how-
ever stems from the SGS stress itself. As the SGS stress plays an important part
also in the energy and cross-helicity equations, we investigate it directly. We focus on
quadratic isometry invariants of 7 and its constituents because they summarise dynam-
ical properties in a frame-independent fashion. As a measure of the magnitude of a
second rank tensor we shall use the L, norm given by ||A|| = \/A;;Aji. We repeat the
magnitude comparisons above for the Ly norm of the SGS stress. The results are shown
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Figure 3.9: Comparison between the kinetic and magnetic components of the SGS force.
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3.3 Momentum equation and the SGS stress

in fig. 3.10. The resolved and SGS stresses scale with (M™*). We note a break in the
trend which corresponds to an additional dependence on (3,). The SGS stress is of the
order of 10% to 20% of the resolved one and follows its dependence on the sonic Mach
number. The deviatoric part of ||7|| exhibits similar dependence. The SGS pressure is
largely independent of the plasma parameters apart from the very low Mach number
runs. The deviatoric part of the SGS stress dominates over the SGS pressure for the
sonic extremes — sub- and super sonic runs and is still characteristically larger in the
trans-sonic runs. It clearly drives the ’size’ of the total stress. There doesn’t seem to
be much difference between the kinetic and magnetic parts of 7*. Based on this alone,
it is tempting to model both parts of the SGS stress with the same term. Comparing
back to the behaviour of the SGS force fig. 3.9 however, reaffirms the conclusion that
the size of the SGS stress, specifically 7%, is a poor characteristic of its function in the
momentum equation.

We continue with an investigation of the three primary geometric invariants of the
SGS stress. The SGS stress and its components are symmetric second-rank tensors. A
general second-rank symmetric tensor A has the following characteristic equation

NM+PN+QA+R=0 (3.1)

with eigenvalues A\. The quantities

P = —TI'(A) = —/\1 — /\2 — )\37 (32)
1

Q = B ((TI(A))Q - Tl"(A2)) = MA2 + XAz + A1 Mg,

R = —Det(A) = —/\1/\2>\37

are the three primary quadratic invariants of A. Note that the Ly norm can be expressed
as ||A|]] = /Tr(ATA) = P? — 2Q. The discriminant of the characteristic equation
eq. (3.1) is given by

D = P2QQ* — 4Q® — 4P*R — 27TR? + 18PQR (3.3)

We can analyse how the topology of A depends on its geometric invariants (e.g. [46]).
For the application of the theory to turbulent hydrodynamics see |20, 21, 64, 82]. Here
we provide the basic concepts.

The sign of the discriminant separates the phase space into three regions. In the context
of fluid dynamics they have the following topologies:

1. D < 0: 1 real and 2 complex-conjugate eigenvalues — vortex topology
2. D =0: 1 or 2 distinct real eigenvalues — axial or isotropic topology

3. D > 0: 3 real distinct eigenvalues — fully 3-dimensional shear
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Figure 3.11: Behaviour of the non-dimensionalized discriminant of the a) SGS and resolved
stress and b) kinetic and magnetic SGS deviatoric stress for different simulations. The size
of the components is normalised locally to a respective mean pressure. The mean is taken
spatially, separately for each snapshot over the simulation domain.

Since all the individual stress terms in the momentum equations are symmetric tensors
they always have three real (not necessarily distinct) eigenvalues, in other words they
are constrained to have D > 0. This establishes the general picture of turbulence evo-
lution via shearing and dilatation of eddies. We plot the discriminants of 8, 7, 7" and
bin fig. 3.11. Although the discriminant value does not distinguish between axisym-
metric and isotropic topologies, the smaller it is, the more degenerate the eigenvalues
are. In order to gauge the dynamical importance of the degeneracy effect, we rescale
the discriminants with the spatially averaged dynamical pressure (resolved or SGS, as
appropriate), i.e. the mean isotropic deformation. For the kinetic and magnetic com-
ponents the role of pressure is taken by the respective SGS energy. Overall, we see
that the SGS and resolved normalised discriminants are quite small, which is expected
for the case of isotropic turbulence. The resolved stress exhibits larger anisotropy than
the SGS one. Since the forcing takes place at resolved scales this confirms that the
isotropy is a property of the intrinsic flow dynamics and not the forcing. The discrimi-
nants of the total deviatoric stresses #* and 7* (not shown) exhibit the same qualitative
behaviour. This is expected since they differ from 6 and 7 only by an isotropic com-
ponent. Therefore we can simplify the discussion by considering only the deviatoric
terms.
Individually the kinetic and magnetic deviatoric SGS components exhibit much higher
degree of anisotropy than the total SGS stress. Therefore there must be a coherence be-
tween 7% and 7°* which leads to a high degree of cancellation between their anisotropic
effects. Note that this is stronger for lower sonic Mach numbers (simulations 1-10) than
for higher ones.
Combining the signs of the discriminant and the determinant we can identify four
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3 Analysis of the compressible MHD LES equations and hypothesis testing

regions with different topologies. Since we deal with a positive discriminant, only
two of them are accessible. For negative determinant, R > 0, we have either sheet
topology, Ay > Ay > 0 > A3, i.e expansion along two eigenvectors and compression
along the third, or a stable node 0 > Ay > Ay > A3, i.e. total compression. If the
determinant is positive R < 0, we have either tube topology, A\; > 0 > Ay > A3 —
expansion along one eigenvector and compression along the other two, or an unstable
node A\ > Ay > A3 = 0, i.e. total expansion. This is summarized in table 3.1. The
remaining freedom is prescribed by a third invariant, e.g. the trace. Since the traceless
components of the stresses carry, trivially, the same anisotropy information about the
discriminant as the total stress, the discussion is confined to the traceless tensors. Then
the discriminant simplifies to D* = —4Q? — 27R? and the phase space simplifies to the
tube or sheet topologies.

D >0 P#0 P=0

R <0 tube or unstable node tube
)\1>0>:/\2>:)\30r)\12)\22)\320 )\1>0>)\2>)\3

R>0 sheet or stable node sheet
)\1>:)\2>O>)\30r0>)\12)\22)\3 )\1>)\2>O>)\3

Table 3.1: Topology regions of a second rank symmetric tensor with trace P, determinant
—R and discriminant D.

To analyse the topology of the data (following [24]) we consider the joint histogram
of @ versus R. The curve D = 0 provides an upper boundary for the data and the
determinant distinguishes the different regions. In fig. 3.12 we show a sample snapshot
for 7% 7°* 7% and #*. We see that there is preferentially tube structure in both the
kinetic and magnetic components of 7*, but when combined they can produce sheet and
tube topology with comparable frequency. Intuitively, this can occur in the simplest
case when the kinetic eigenvector associated with the positive eigenvalue is aligned with
a magnetic eigenvector associated with a smaller (in magnitude) negative eigenvalue
and vice versa. In that case these two eigenvectors will span the topological sheet of
total SGS stress, while the remaining kinetic and magnetic eigenvectors are orthogonal
to it (and work to compress it). The total resolved stress favours both topologies with
similar strength, however the shape of the distribution is qualitatively different from
the total SGS one. Clearly, the determinant is a key characteristic that distinguishes
between the kinetic, magnetic and total SGS scales, but also perhaps between SGS and
resolved one.

Collecting the points with tube and sheet topologies from each snapshot and sum-
marising the results for all simulations we reach fig. 3.13. The behaviour of 7%* and 7>*
observed in fig. 3.12 appears quite robust and may be used as a diagnostic criterion for
SGS closures. In approximately 90% of the cells in the simulation domain these tensors
induce tube topology, with two negative and one positive eigenvalue. The remaining
~ 10% exhibit sheet topology with two positive and one negative eigenvalue. The total
deviatoric SGS stress shows more variation with time and plasma parameters. For low
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time interval between 27" and 5T

sonic Mach numbers the dominant contribution comes from the sheet topology. In the
trans and super-sonic regime this decreases to approximate equipartition between the
two topologies. No strong trend is observed for 6*, neither is there an obvious rela-
tion between the distributions of 7* and 6*. One possible explanation can be that the
topology of the resolved stress is more strongly influenced by the stochastic nature of
the forcing, which dominates the dynamics of the super-filter scales. Note that this
influence is not trivially related to the compressive-to-solenoidal ratio — in simulations
8,9 and 10 this ratio is 0.9, while in all other simulations it is 0.5. Alternatively, the
resolved stress topology may depend more strongly on the mean plasma parameters
that the SGS stress one.

More data is necessary to make a conclusive statement and to determine whether this
behaviour extends to other initial and boundary conditions and to decaying turbulence.
It should be noted that in hydrodynamics the behaviour of the resolved flow follows
strongly and robustly the D ~ 0 regions, known as Vieilliefosse tails [96], and is similar
to the distribution of 7*. However, in contrast to the data examined here, there the
vortical regions D < 0 are well represented as well.
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3 Analysis of the compressible MHD LES equations and hypothesis testing

3.3.2 SGS pressure

We conclude the discussion of the SGS stress with an investigation of its isotropic part,
the SGS pressure. Mainly we focus on the approximation from section 2.3.1 to neglect
(or close implicitly) the turbulence pressure in favour of the thermal one?.

Let us denote the resolved dynamic pressure as P, = 2E%, + E_. Then the total
MHD pressure is given by Piot = Pres + Pags +P. Figure 3.14 shows the distributuion of
the local and global contributions of the pressure components to the total pressure as
well as the local ratio Piy/Pres. We observe the same scaling with sonic Mach number
in the local and global plots. The SGS pressure maintains a steady contribution of
the order of 10% P, except in the most incompressible simulation, while P, and P
exhibit strong scaling with (M;™). Figure 3.14b demonstrates that the SGS pressure
dominates over the thermal one when the RMS sonic Mach number exceeds ~ 10 and
remains dynamically important down to at least (M™°) ~ 1.9. Interestingly, there
seems to be a dependence on (M;™") of the relative importance of the SGS to resolved
pressure. With increasing sonic Mach number in the supersonic regime a larger part of
the dynamic pressure is resolved.

Consider the impact of the pressure on the momentum equation, as shown in fig. 3.15.
The SGS pressure force |V Py decreases slightly with increasing (M™*) similarly to
|V -7]|. It is about 10 times more important than the SGS pressure itself. Just as in the
induction equation, this is unsurprising since stronger gradients at smaller scales are
expected. However, the SGS pressure force is of the order and can exceed the size of the
local and the average total momentum flux itself. Comparing the local contributions
with respect to the total pressure force, we see that the resolved pressure gradient
dominates, especially at the high Mach numbers. The SGS pressure gradient, however,
is in all simulations at least of the same size as the thermal pressure gradient.

Considering the anisotropy of the SGS pressure force, we already established a weak
alignment between the SGS kinetic and magnetic components in fig. 3.9c. Figure 3.16a
shows the alignment of these components with their resolved counterparts. There
appears to be moderate collinearity with significant variation over time and plasma
parameters. The alignment with the thermal pressure gradient is somewhat better,
fig. 3.16b, but also suffers from large variations.

To summarise, the SGS pressure in its own right, as well as its contribution to the
momentum equation clearly has at least as strong an impact on the dynamics as the
thermal pressure and should be modelled with care. Combining the two terms would
be ill-advised considering their variable alignment. Additionally, due to their different
physical origins they would give rise to radically different equations of state, have dif-
ferent statistical distributions and evolutionary time-scales. We conclude that at least
in isothermal homogeneous and isotropic MHD turbulence the SGS pressure should
not be ignored or modelled implicitly, neither within the numerical scheme nor as an
augmentation of the thermal pressure.

3Considering the nearly isothermal conditions of our simulations for the remainder of this chapter
we have simply used P = ¢2p, with sound speed ¢, = 1.
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Figure 3.16: Alignment between a) the SGS and resolved parts of the kinetic and magnetic
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3.4 Energy equations

As shown in chapter 2 the SGS energy plays a central role in most of the described
SGS closures. Furthermore, the resolved energy is the main characteristic of the flow,
to which we have direct access in LES. In this section we examine their evolution
equations and comment on the model-building hypotheses used previously. Specifically,
we shall examine the assumption of local balance, which leads to the expressions of the
Smagorinsky energies.

First, let us identify the key points of the energy dynamics gleaned from eqgs. (1.22),
(1.23), (1.25)—(1.28) and (1.30)—(1.32). The resolved kinetic energy decays through the
flux term Fy' = - (V- 7) into SGS energy. Similarly, the resolved magnetic energy
decays via F? = —B -V x €. Note that these are the only SGS terms in the resolved
equations. For consistency with the SGS energy equations and to denote the order of
the SGS terms they contain, they are denoted the subscript 2. We can separate the
terms into transport (or diffusion) 7 and cascade ¥ components. We obtain

Fi=Tr4¥8=V.-(a-7)—7-8S, (3.4)
—£.

Fo=Ty +55=V-(Bx§&) J.

The total transfer between SGS and resolved energy is simply the sum of the kinetic
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3 Analysis of the compressible MHD LES equations and hypothesis testing

and magnetic contributions. We denote

F5h = Fy 4+ F2, (3.6)
T=T"+T"=V-(a-7+BxE),
Y=yt = 7. S-E-T.

With these the definitions the resolved energy equations take the form

%) — _
5i s + V- (WEL) +0xB-J+0-VP+ T = —Xh+q, (3.9)

) _ _ _
aEfestV-(Bx(ﬁxB))—ﬁxB-J+7’2b = -Sb4e (3.10)

aEres ~ ~ E5) ~ o)
p + V- (aEL +20E,, — BH,) +u-VP+T," = —X+e0.  (3.11)

In this form it is clear that the transfer between resolved kinetic and magnetic energies
happens through the term @ x B - J. We have also used the identity for the Poynting
flux B x (u x B) = 2uE® — BH to demonstrate one of the roles of cross-helicity H
in the energy dynamics — it counteracts the diffusion of magnetic energy*. This adds
motivation to the study of the SGS cross-helicity equation in the following section.
Completing the set of energies, the SGS energy equations are given by

0
B+ F P TS (312)
0
o Pt T 75 = To’ =55 + € (3.13)
0
aEsgs + —an + Fen,ther _ 7-2en :Egn + 6:;18' (314)

F5 denotes third order SGS terms. We give their explicit form along with the contri-
bution from the thermal pressure term:

Fy o= T4, (3.15)

738 = V- (uE"—uEyL), (3.16)

¥ = u-BxJ—u-BxJ, (3.17)

JT_'en,ther —_ F(P)_ﬁv(ﬁ)’ (318)
Fy=T3+3% = B-Vx(uxB)-B-Vx (uxB), (3.19)
TP = V-(Bx(uxB)—Ex(ﬁxE)>, (3.20)

¥ = —(uxB-J-uxB-J), (3.21)
‘/—_;}n:t];en _ 7;u_|_7;’b, (3.22)
¥ o= 0. (3.23)

4The other role is the kinetic to magnetic energy transfer, incorporated in @ x B - J.
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3.4 Energy equations

Since we don’t have direct access to the energy dissipation rates from our data, we omit
them from the discussion. This also prohibits the investigation of the internal energy
equation directly. Consequently, and for simplicity, we treat the thermal pressure flux
Femther a5 a whole without separating it into a transport and cascade components. We
shall further adopt the notation for the total flux, transport and cascade terms:

Fu = f2u _ F3u _ ‘/—;en,ther’
JFen — J,—_-;;n . J,—_-;;n . J,—_-en,ther)
T =7 -7 and ¥* =3 — %5 for X € {u, b, en}.

It should be noted that the separation into diffusion and cascade terms is not unique.
It is done in the form of egs. (3.4) and (3.5) to allow the treatment of the kinetic and
magnetic parts of the SGS stress in an analogous manner. This is motivated by the
appearance of both 7% and 7P under a divergence operator in the momentum equation.
Furthermore, in this form there is an apparent symmetry between the terms XY and
Y2 - they both contain derivatives of resolved fields and second order SGS terms. As
we saw from the momentum and induction equations, modelling the SGS terms and
their derivatives are two quite different problems. Thus, because we are concerned with
models for the SGS terms themselves and not their derivatives, we adhere to this form
of the separation.

For completeness we demonstrate an alternative formulation. It can be obtained analyt-
ically by decomposing the evolution equation for the total filtered energy into kinetic
and magnetic components. Allowing for the symmetry of the vector triple product,
there is a correspondence between the quantities

+u-BxJ

—

- (V-7m")=-u-Bx

and

E-J=uxB-J—uxB-J.

o

With this in mind we can recast the total SGS energy equation in the form

0
_Ess
o et
V- uE—Tu«ﬁ—ﬁEr“es+Bx(uxB)—ExE—Ex(ﬁxﬁ))—i—
™S+ uxB-J+u-BxJ)=cn

ﬁ-(V-Tb): cascade

In this form the term V- (Tb .S ) is simply reinterpreted as part of the magnetic energy

cascade, in other words the entire term u - (V . Tb), denoted by the under-brace in the
equation above, is considered a cascade term. There is no explicit transport (diffusion)
of SGS kinetic energy by the magnetic agents.
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3 Analysis of the compressible MHD LES equations and hypothesis testing

Compare this to our formulation, to which we arrived synthetically by combining the
SGS kinetic and magnetic energy equations,

0
— FE.
ot g

res

Vi[uE—7"-u-uEL+ " u +Bx(uxB)-Bx&-Bx (axB) |+
——

transport
3 T _ _en
TS+ E€-J =€
cascade

In this form the cross-scale cross-type transport is performed by V - (Tb . ﬁ), while the
magnetic energy cascade is contained within &€ - J.

This dichotomy of forms is a signature of SGS filtering. Just as the SGS energy contains
all the unresolved information pertaining to small scale and cross-scale interactions, the
SGS energy flux cannot be uniquely decomposed into cascade and transport terms. This
is also valid for the SGS transfer between the kinetic and magnetic budget. All we can
assure is that the SGS stress transports energy between the resolved kinetic budget and
the total SGS budget. Analogously, the EMF transports energy between the resolved
magnetic budget and the total SGS one. This arbitrariness of decomposition makes
the a priori testing of closures a delicate business. For instance, consider the local
equilibrium hypothesis, which equates the local rates of SGS energy production and
dissipation. Depending on the form of the term ¥, one obtains different answers for the
SGS energy closure. The issue is compounded, if the hypothesis is invoked separately
for the kinetic and magnetic energies. This delicacy motivates the wide selection of
diagnostic parameters for the functional tests performed in chapter 4.

3.4.1 Term comparison

In a manner similar to the primary equations let us analyse the relative importance of
the various terms which enter the energy equations in light of the assumptions made
in chapter 2. We start by examining the total SGS energy flux, shown in fig. 3.17. To
gauge the global dynamics we take the time and space average of F°" for each simulation
over the statistically stationary period. We report without showing that the variations
with time are small in comparison with the average value — the standard deviation is
of the order of 10% of the mean. Figure 3.17a shows that globally there is a forward
cascade of energy from the resolved scales (since globally the transport terms average
out), which becomes stronger with increasing Mach numbers. The presence of global
forward cascade is not surprising since we are dealing with forced turbulence. Energy is
constantly being supplied at the large scales and after all the transients have died out it
can only decay down to smaller scales. Clearly, the rate of decay is guided by the driving
amplitude. We show the trend with the RMS sonic Mach number. Locally, however,
there is significant amount of backscatter, or inverse cascade. Figure 3.17b shows that
the local distribution of F" is bimodal. The positive values correspond to SGS energy
increase, i.e. direct cascade. The negative value correspond to decrease in the SGS
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3.4 Energy equations

energy, i.e. inverse cascade. It is evident that the local inverse cascade is about half as
strong as the direct cascade. There seems to be a relationship with a quantity to which

we shall refer with "total RMS Mach number’= <\/ (Mrms)2 (Mgm8)2>, where again

the RMS is taken with respect to space. When this quantity is small the distributions
are rather symmetric and the global cascade is the result of cancellations across their
bulk. As the total RMS Mach number increases the asymmetry between the tails of the
forward and inverse cascade grows. It is the tail of the forward cascade that determines
the global cascade rate in this case.
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Figure 3.17: a)Total energy flux ((F°"),,,) averaged over space and the statistically stationary
time period ¢t € [2T,57]. The simulations are ordered by the RMS sonic Mach number.
b) Local distribution of the total SGS energy flux normalised to the global average. The
simulations are ordered by the 'total RMS Mach number’.

Let us consider next the components of F**. Recall (section 2.3) that the Smagorinsky
energy closures are derived from a local equilibrium hypothesis for the total SGS energy.
The hypothesis implies that the left-hand side of eq. (3.14) is negligible. We test this
by comparing the contributions from Fewther 7en and o0, To gauge their global effect
and variation we normalise them to the average total flux (F*). Figure 3.18a confirms
that as the total RMS Mach number grows the contribution from the thermal pressure
become s negligible. In other words in supersonic and/or super-Alfvénic turbulence
the overall effect, both diffusive and dissipative, of the thermal (dilatational) exchange
between SGS and internal energy is negligible. As the RMS Mach numbers decrease the
impact of the thermal pressure increases quite symmetrically in the direct and inverse
transfer branches. It becomes stronger in the negative branch than the corresponding
negative branch of 3. In the direct transfer branch however, the cascade term remains
more prominent mainly by virtue of its flatter distribution. Thus, as intuition suggests,
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3 Analysis of the compressible MHD LES equations and hypothesis testing

from the global point of view it is justifiable to neglect the thermal effect on the cross-
scale energy exchange for high Mach numbers but not for low ones.

The transport term 7°" is also symmetric around 0. The periodic boundary conditions
trivially demand that the overall weight of the positive and negative branches cancel
out. It is noteworthy, however, that the shape of the bulk of the distributions is also
symmetric (compare the locations of the medians within the interquartile). This is
a signature of the homogeneity and isotropy of the SGS energy transport — overall it
does not create spatial concentrations or deficiencies of resolved or SGS energy. In
the end, it is the cascade term X" which determines the shape of the two branches of
the F°" distribution. Note the correspondence between the forward/backward cascade
asymmetry in the distributions of 3" in fig. 3.18a and F*°" in fig. 3.17b.

The contributions of the three terms with respect to the local total SGS energy flux
are shown in fig. 3.18b. The figure demonstrates that the dependence of Fe™** on the
plasma parameters is an intrinsic phenomenon, since it is retained here as well. On the
other hand the behaviour of the cascade and transport terms is quite different. The
width and median of their distributions seems to be quite insensitive to the variation
of the plasma parameters. The distribution of 7°" shows that the diffusion of SGS
energy away from a location is likely to take place in quite large packets (more than 3
times the local flux), while influx happens in smaller packets of typically the size of the
local flux but seldom bigger than twice that size. Note that the simulations are ordered
by the 'total average Mach number’ = ((Ms)_ + (M,),,). As this quantity increases
the diffusion of large energy packets become less likely — the distributions become a
little more concentrated. It would be interesting to extend the range of simulations
to higher Mach numbers. The current results cannot distinguish between reaching an
asymptotic state, perhaps at equipartition, or complete reversal. Only in the latter
case the SGS energy flux (i.e. the turbulent cascade) may be actually supported by
the cascade terms. If the total Mach number is indeed the physical parameter driving
this trend, the most computationally favourable conditions for this extension would be
with magnetic Prandtl number of unity.

The cascade terms show even less dependence on plasma parameters than the transport
ones. This might be a signature of a 'universal’ mechanism at play, however based on
this data we can only claim it is a signature of developed homogeneous and isotropic
isothermal turbulence.

To complete the comparison between transport and cascade terms we consider directly
the ratio X" /T*". Figure 3.18c shows that locally the cascade is typically half as
strong as the transport term. Moreover, they are equally likely to have the same effect
as to counteract each other (the distributions are symmetric with respect to 0). While
certainly there are regions in space where the cascade term dominates, they occupy
typically about 25 % of the simulation volume. The figure also confirms that as the
sonic and Alfvénic Mach numbers increase, the regions with local cascade dominance
become somewhat more likely. It further suggests that while the flattening of the
distribution may continue the median does not shift significantly. In other words most
frequently in the simulation domain the cascade term is sub-dominant.

To summarize, within the investigated parameter range the turbulent transfer of energy
across the filter scale is actually a Lagrangian property brought about by transport
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3.4 Energy equations

terms®. We can picture the action of these terms as re-arranging flow elements like

pieces in a jigsaw puzzle, creating and destroying large scale patterns (e.g. flows) but
not really deforming the individual pieces. The cascade terms on the other hand are
Eulerian in nature. They are responsible for the deformation of individual elements
but not their transport. They create and destroy large-scale patterns by bringing
the local flow in and out of coherence with its environment. In this sense, for the
parameter regime under investigation, MHD turbulence is largely Lagrangian in nature.
This suggests that the modelling of the SGS terms needs to be focused on large scale
structure and geometry rather than local deformation. In that sense we expect that
the functional models might have difficulties in this parameter range, since they are
centred around the local cascade paradigm.

Next, we consider the possibility that at least parts of the local equilibrium hypothesis
holds. We can separate the SGS energy flux by the order of the SGS terms. If the
third order term F5" can be eliminated from consideration or absorbed into the model
of the second order term, the closure problem would be greatly alleviated. Moreover,
as we saw in section 2.3.1 closing the SGS energy can be done by solving its evolution
equation explicitly and obtaining accurate local values. This of course would be cheaper
and simpler, if the closures of F5" are derived from the ones of F5", or better yet, if
these terms are negligible. From fig. 3.19 we see however, that locally both terms are of
the same characteristic size and their distributions have similar widths. Interestingly
the distributions are much flatter in the simulations with lower (f,). The third order
term tends to have larger characteristic value and broader distribution on the inverse
cascade branch than the second order terms. The positive energy flux on the other
hand is on average equally distributed between the second and third order terms. Thus
omitting even just F5" from an equilibrium hypothesis is not justifiable. With that we
conclude that the local equilibrium hypothesis fails entirely for the total SGS energy
equation.

We can still separate the evolution equations for the kinetic and magnetic SGS energies
and examine them individually. In fig. 3.20 we show the local importance of the second
order cascade term Y5 with respect to the remainder F7 — X5 = 77 — F&J. We notice
behaviour analogous to the total SGS energy. 3, is characteristically half as strong as
the remainder both when it acts with and against 7 —%,. We conclude that the local
equilibrium hypothesis also fails separately for the kinetic and magnetic SGS energies.

5We can not exclude the possibility that the key parameter in this transition is different from the
total Mach number and therefore a different behaviour might be accessible for these Mach numbers
as well.

69



3 Analysis of the compressible MHD LES equations and hypothesis testing

|- Fode pmmoye gm0

| ot e -

4.3 521 4106 97b11 8 1213 ;31254106 9701181213
3 2t
2+
AW R
< |‘I|| ||‘,| “.' | ||‘ T S 0
(0] PR S U | o pont |- bt LT - I R Y T TT N T T T T TR T Sl S i
= iy b ST S ||||||
5 |
2L i -2l
-3l . -3}
- 1'132 1'179 2'I03 2"15 2'I29 2"76 3'l22 3“53 3"57 4"72 7'65 10{2320133 —4 1.‘46 l.l56 1.175 2AI09 2.‘30 2:96 3}17 3A‘69 3."77 4.‘94 54‘80 1011519140
(Vo2 +omm)? ) (M), + (M, ),0)
(a) (b)
L3 1254106 9701181213
1.5}
1.0} I
. osf
0.0l
~
5 —0.5| ]
N _10) ]
—-1.5} i
-2.0} ]
- 1.116 1.‘56 1.175 2.‘09 2.‘30 2.‘96 3.‘17 3.‘69 3.‘77 4.‘94 5.‘80 10‘.1519.‘40
(M) + (M, ) )
(c)

Figure 3.18: Comparison of the total transport, source and thermal terms from the total
SGS energy equation. a) Global normalisation to the average SGS energy flux. b) Local
normalisation to the SGS energy flux. c¢) Local ratio of cascade to transport term.

3.5 Cross-helicity equation

We proceed with the analysis of the cross-helicity equation in an analogous fashion.
The resolved and SGS equations take the form

8 B B
res + V ( res ~ jEII.;S> + V * (ﬁ X g + I T> - (324)
ot p p
_|_
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to the total energy flux.
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Figure 3.20: Investigation of the local equilibrium approximation for the kinetic and magnetic
SGS energies.
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We label the terms as follows:

. B
Shond = _£.Q-(r-V) > (3.26)
ch ad E
B (3.28)
Fehther B. VP — E VP (3.29)
p P
_ B B
75Ch = V. <UH - 1~1I{res) -V (;Eu - %E;les) (330)
fé}h _ JT_'Ch,ther + 7gch (33]_)

Again X denotes the local cascade from resolved to subgrig scale, T = T — T<h
denotes diffusion and F& = X - T is total SGS cross-helicity flux®.

We go through the same steps as we did for the SGS energy in order to establish
the importance of the transport versus cascade terms and the third versus second
order terms. Figure 3.21a shows the dependence of the average cross-helicity flux
on plasma parameters. We see that hypersonic driving produces larger cross-helicity
flux, specifically from the SGS to the resolved scales. The local distribution of the
flux, fig. 3.21b, reveals very strong variations in time, comparable to the variations
in space. This implies that these distributions are contaminated by large transients.
We follow their origin to the effect of large density gradients. Note that, unlike in
the energy equations, here the compressibility effects enter through the inverse of the
resolved density p~!, allowing for local singularities. Thus strong shocks can strongly
disturb the quiescent dynamics. They force us to forego the analysis of the absolute
distributions of the flux constituents, as they also are contaminated by the same noise.
Thus we will only show the local normalisation to Fe.

Figure 3.22b demonstrates the the local statistics is not affected by the transients (no
big time variations are evident). This implies that the transient behaviour follows the
same local SGS dynamics as the stationary/quiescent phase.

Interestingly, the distribution of the transport term is no longer symmetric with respect
to 0. This means that the cross-helicity grows to large scales more frequently through
large local jumps, while the decay happens at smaller steps. The cascade mechanism
is approximately symmetric and much weaker. Figure 3.22b shows that locally the
cascade is sub-dominant for almost all simulations in most of the simulation domain
with characteristic ratio of approximately 1/3.

Finally, we consider the separation between second and third order terms in fig. 3.23.
Note that we have included the pressure term F"*™ within the third order terms’.
The strong transients are revealed once more. This suggests that they are driven by

6Here, there is the same freedom in the separation between the diffusion and cascade terms as for
the SGS energies.

7 Depending on the equation of state, it is at least of third order. Therefore it might be more accurate
to think of F§" as a ’higher order’ term.
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Figure 3.21: a) For each simulation the SGS cross-helicity flux is averaged over the simulation
domain, (F). We take the mean of the result over the saturated time period ¢ € [2T, 5T).
The simulations are ordered by the driving sonic Mach number. b) Local distribution of the
SGS cross-helicity flux normalised to the global average. The darker bar represents the time
variation of the median, the lighter bar — the maximum extent of the interquartile over the
time period, i.e. the minimum of the first quartile and the maximum of the last quartile.
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Figure 3.22: Comparison of the total transport and source terms in all simulations: a) the
distributions relative to the local SGS cross-helicity flux, b) the direct ratio of X1/ Feh,

the thermal pressure, which in isothermal conditions translates to logarithmic density
gradients, i.e. strong shocks. Therefore the F5t, specifically 7,2, is more sensitive to
the local transient events, while X5 follows the quiescent dynamics. For this reason
we shall use both as diagnostic variables for functional tests of the SGS closures.
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4 Model Validation

In the last chapter we noted some of the properties of the SGS terms in the LES
evolution equations. Considering the wide variety of physical effects they represent,
an SGS model has to conform with well more than just one of them in order to be
considered successful and robust. In this chapter we compare the behaviour of the
various models described in chapter 2 with regards to these properties.

The comparisons are performed on the sub-parts of the SGS terms, i.e. for the compo-
nents of the SGS stress tensor we consider separately the isotropic parts El,, E>  and
Py and the deviatoric parts 7%, 7°* and 7*. Comparing models of individual terms
circumvents the possibility of error cancellation between them. Thus the performance
of individual closures can be clearly established. It should be noted however that this
also means that the corresponding model for the combined term, e.g. 7, might perform
better than the constituent closures. Considering the total isotropic and deviatoric
contributions gauges some of the extent of this improvement. However, it should be
noted that if such improvement takes place, the reason for it would lie outside the
model assumptions and motivation. Hence it may not be reliable or robust in different
regions of the parameter space.

In order to obtain robust results comparing frame independent quantities, i.e (pseudo)
scalars, is preferable. Due to the predominantly functional nature of existing models we
focus on functional tests. Since the SGS energies are already scalar fields, we compute
for them direct correlations between model and data. However, for non-scalar fields we
cannot employ such a method. Instead, we measure the models’ ability to capture the
SGS energy and cross-helicity flux across the filter scale. In other words, we measure
the contributions of the SGS terms to the LES energy and cross-helicity equations?.
Because of the presence of derivatives in these contributions, they provide a physical
non-local measure of the goodness-of-fit of the models. In the last chapter, sections 3.4
and 3.5, we showed the arbitrariness of the decomposition of the flux into cascade and
transport components. It motivates the investigation of 4 distinct diagnostic flux fields.
The total transport energy and cross-helicity terms 5" =@+ (V-7) + B -V x € and
Fst = (B/p) - (V-7)+1u-V x & capture the total contribution of the second-rank
SGS terms to the evolution equations and thus present a robust picture of the overall
goodness-of-fit of the models. They can be interpreted as representing the local transfer
between scales from an Eulerian point of view. Conversely, the corresponding cascade
parts 25" = 7-S+E-J and Y =7.V (E/ﬁ) + & -Q, may be interpreted as the part of
the local transfer as seen from a Lagrangian point of view. The latter remains however
not uniquely (or rigorously) defined. Its significance is related to the Smagorinsky

1 As the second rank SGS terms appear with opposite signs in the resolved and SGS equations, it is
immaterial which equation is chosen.
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4 Model Validation

approximation of local balance on which the EV/ER/ED models are largely based.
In the available data the cascade part does not play a dominant role, however we
cannot exclude such a possibility for different flow configurations, e.g. decaying or
non-homogeneous, anisotropic turbulence.

Additionally, since the cascade terms involve the pure SGS terms while the total flux
terms involve their derivatives, the comparison between the two will reveal the extent
of the commutation error between the various modelling strategies and differentiation.
Recall that although the direct filtering operation commutes with differentiation, Favre
filtering does not. There is a commutation error which for a general derivative of a
velocity field component is given by

N WP P —UPP
Uij — Uij = —2

p

(4.1)

We shall refer to this term as the commutator between Favre filtering and differen-
tiation. How well this term is captured by the various models can be seen in the
comparison between cascade and full flux-term fits.

With all this in mind we proceed by examining the correlations between data and
model of the contributions of the different SGS terms to all four diagnostic fields.
Since the cross-scale transfer determines fundamentally the strength of the SGS effect
on the resolved scales we use fits to the diagnostic fields in order to determine values
of the free coefficients in the various models. The best fit is sought in the least-square
sense via the Levenberg-Marquardt algorithm (see e.g. [57]) independently for each
diagnostic field and simulation snapshot. The coefficient values will not have a strong
impact on the following analysis, especially for single coefficient models, as we focus on
the performance of the functional form of the models. Therefore, as this work is aimed
at an a posteriori application of the models, we limit ourselves to observations of the
coefficients’ overall variation within the dataset, i.e with respect to time, simulation
and diagnostic variable. This we take as a measure of the robustness and completeness
of the functional form of the respective model.

We follow up the functional comparison with a structural examination which sheds
some light on the reasons for the models’ performance. At the vector level, i.e. for the
SGS forces, we have noted that there is little variation of the absolute orientation with
respect to time and simulations. Since this makes the geometrical distribution of the
SGS forces a robust feature of SGS turbulence, we measure the corresponding alignment
angle between data and model. The accompanying scalar diagnostic is the size of the
error vector between the data and model. Together they completely determine the
geometry of the modelling error. The corresponding measure for tensor quantities are
the quadratic invariants. We therefore compute the distribution of the model among
the 4 topological regions described in section 3.3.1. and compare it to the data. As we
saw this is also a robust feature of the deviatoric SGS stress.

This chapter is organised as follows. We begin by examining the closures of the SGS

energies. We then proceed to investigate the closures of the SGS stress and finally
finish with the EMF.
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Figure 4.1: Correlation between data and model of the SGS kinetic, magnetic and total
energies. The models are labelled as in table 2.4. The total variation over all simulations
within the statistically stationary period is given by the whiskers (dotted lines), the box
represents the interquartile, the horizontal bar inside it — the median and the star designates
the mean.

4.1 Sub-grid scale energy models

The models of the kinetic and magnetic SGS energies we consider are listed in table 2.4.
We additionally construct the respective models for the total SGS energy as a linear
combination with two freely varying coefficients. To summarize the correlations be-
tween model and data for all snapshots, we use a modified box-and-whisker plot. The
box represents the interquartile, the whiskers cover the entire range of variation. To
give a sense of the shape of the distribution we further mark the mean and the median
correlation for each model. The results are presented in fig. 4.1.

Overall all models give a reasonable approximation to the SGS energies. The scale-
similarity (SS) models perform most poorly and have the largest variation across the
dataset. Since they are based on assumptions completely unrelated to the SGS energy,
it is actually remarkable, that the average correlation is above 0.7 for all energy species.
The realizable and Smagorinsky models for the kinetic and magnetic SGS energies
perform almost identically. So much so that for the total energy fit we only use one
of the two options, namely the realizable one. The new model outperforms them
consistently by a small margin. Thus, we conclude that any of the three can be used
as a local and instantaneous approximation to the SGS energies.

To extend this statement in time and space (in order to allow the use of the closures
under differentiation for instance), we consider in fig. 4.2 the contribution of the SGS
energies to the four diagnostic flux terms X$°, Y$h Fsm and F5P. Since they enter
through the trace of the SGS stress, we replace the model of the total SGS energy
with a model of the total SGS pressure Py (i.e. Tr(7)). This corresponds simply to
a rescaling of the kinetic energy contribution by a factor of 2, which does not affect
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Figure 4.2: Correlation between data and model of the contributions of the isotropic terms
to the four diagnostic fields ¥§* (red), X§" (blue), Fs* (green) and FS" (magenta). The
models are grouped by types: kinetic energy, magnetic energy and pressure and labelled as in
table 2.4.

the correlations’ behaviour. Thus the performance of the SGS pressure models can be
used to evaluate the corresponding total energy models. Since the SGS pressure carries
the total isotropic contribution of the SGS stress, it measures the overall quality of
the respective isotropic models. The individual kinetic and magnetic energy fits, on
the other hand, demonstrate how the quality of the direct fit is propagated through
the evolution equations?. We see that it is maintained for the cascade contributions,
especially for the 35" fit. However, there is a trend which will be evident in the models
of the rest of the SGS terms as well — the correlations with the total flux terms are
significantly lower than the ones with the cascade counterpart. This is unsurprising
for the Smagorinsky energies (and the very similar realizable ones), after all they are
built to follow specifically the energy cascade term and carry no information about the
SGS derivatives or the cross-helicity terms. However, it is not entirely expected in the
structural models. It indicates that these closures don’t capture well a very important
process — diffusion, specifically its commutator with Favre filtering.

In the case of the new models, if we propagate the commutator between Favre filtering
and differentiation through the Yeo-Bedford expansion, it yields contributions of order®
O(a) in the models of the SGS forces (including V x £). Since this is their leading
order, these contributions have a strong impact on the total flux fits, but can not be
detected in a pure cascade comparison. Recalling that the SGS terms enter all LES
equations under a differential operator, this is an important extension which needs to

2 This is because the flux terms carry information about the effect of the SGS energies on the SGS
energies’ evolution.
3Recall that a = A%/12 is related to the second moment of the filter kernel.
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4.1 Sub-grid scale energy models

be included in a posteriori applications. From the a prior: validation presented here we
can anticipate the effect that such an extension will have by comparing the total flux
and cascade correlations. In the case of the SGS kinetic energy gradient the extension
is given by

O.EL — 9, E"

sgs sgs

Recall that y = In p designates the natural logarithm of the resolved density. Here and
in the following we indicate the modelling operation with".

Let us compare the performance of the individual models. We note that the scale-
similarity closures again have the lowest correlations and lead to the largest variation
across the dataset. They perform especially poorly with respect to the cross-helicity.
The fit to the SGS pressure is somewhat better than the ones to the individual energies.
This can be attributed to the extra degree of freedom of the two-coefficient fit. If we
consider the different simulations individually (not shown), the correlations to the
cascade terms decrease slowly but consistently with increasing M for the Eg  and P
models, but remain constant for the Esbgs models. With respect to the total flux terms
this trend is enhanced for the supersonic runs. In the sub- and trans-sonic ones however
there is a slight improvement of the correlation with increasing sonic Mach number.
This implies that the scale-similarity model is best suited for trans-sonic simulations
with moderate plasma beta (3, (see table 1.2).

The Smagorinsky, realizable and new models perform similarly to each other with
respect to the cascade terms. The correlation does not seem to depend strongly on
the plasma parameters since the variations are quite small and unordered with a few
notable exceptions. The kinetic energy fit to F5" of the Smagorinsky model improves
consistently in the subsonic regime. The kinetic energy and SGS pressure fits to Fst
of the realizable model show the same behaviour. The kinetic energy correlations of
the new model decrease slowly with increasing Mg. Its magnetic energy correlations
however increase, especially for the supersonic runs. As a result, the total pressure
correlations show much smaller variability. It should be noted that the bulk of the
variation in F35" seems to stem from a few snapshots in the trans-sonic simulations.
Overall, it is clear that the new model is better equipped to deal with the total flux
terms.

It is interesting, albeit not immediately evident, that for the Smagorinsky, realizable
and new models the performance of the SGS pressure is similar to the one of the kinetic
SGS energy in the cascade terms but resembles more closely the performance of the
magnetic SGS energy in the total flux terms. We have checked that this behaviour is
not related to the value of the coefficients. With the exception of the scale-similarity
models they all vary by a factor of order unity and the bulk of variation is again due
to isolated snapshots in the trans-sonic runs.

We repeated this analysis for a test-filter scale of k£ = 8 and k = 32, which fall closer to
the forcing and dissipation edges of the inertial range, with the same qualitative results
(not shown). The overall range of variation is unchanged, at k& = 32 the bulk of the
correlations tend to increase, which is unsurprising since there is very little remaining
unresolved information. At k = 8 the reverse is observed.
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Based on this analysis we discard the scale-similarity models and retain the rest as
viable closures for the SGS energies and pressure. The latter can be used directly in
LES and the former — as approximations within the models of the other SGS terms
which require the SGS energy.

4.2 Deviatoric SGS kinetic stress: 7"

Let us now consider the performance of the models of 7%*. We identify 4 families of
models of the deviatoric kinetic SGS stress — TSDIA/EV (tables 2.2 and 2.3), scale-
similarity (SS), new (table 2.1) and mixed. The TSDIA/EV models are characterised by
the form 7' ~ voS*. They are labelled by the characteristic variable which determines
the eddy-viscosity vy, i.e. constant, cross-helicity or energy. We include here the two
cross-helicity models from table 2.2 although they were introduced as models for the
full traceless SGS stress 7*. They have the same tensorial structure as the TSDIA
models, so we simply consider them as ad hoc expressions for the eddy-viscosity. The
energy-based eddy-viscosity comes in three forms: using the true SGS kinetic energy
EY,, its realizable closure o ||S*||* and Smagorinsky closure o ||S|[%. Similarly, the
new model comes in its basic form as well as renormalized by the SGS kinetic energy
or one of its closures. Finally, the mixed models consist simply of a linear combination
of the new and the energy-based eddy-viscosity model, whereby both are renormalized
either by the true or by the realizable SGS kinetic energy. Note that therefore the
mixed models have two freely fitted coefficients. This additional degree of freedom
incurs an extra cost, in an a posteriori implementation for instance. To compensate
for that the mixed models should perform significantly better than the single coefficient
models.

Figure 4.3 shows an overview of all the models’ performance with respect to the four
diagnostic fields. As for the SGS energies, the correlations to the full flux terms are
consistently worse than the ones to the cascade terms. Thus the 7" models also do
not capture well the commutation of differentiation with Favre filtering. Considering
the individual model families we observe the following.

The correlations for the TSDIA/EV models vary significantly between simulations.
Unsurprisingly the diagnostic field reaching the highest correlations for these models
is 25", However it also exhibits some of the poorest correlations. Crucially, the overall
behaviour seems to be quite insensitive to the shape that the eddy-viscosity takes.
The fits to the total energy and cross-helicity flux is the poorest for the majority of
snapshots.

In comparison the scale-similarity model has approximately the same maximum corre-
lation for ¥§", however the minimum is much higher, making this a preferable solution
to the TSDIA/EV models. While the scale-similarity model captures moderately well
the dynamics of the 7% contribution to the energy cascade it struggles significantly
with rest of the diagnostics, especially the non-local transport. This indicates that
the model represents poorly SGS diffusion processes. Interestingly, the correlations to
the energy diagnostics are consistently better than the ones to the cross-helicity ones.
This suggests that additionally the model is neglecting an important part of the SGS
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Figure 4.3: Correlation between data and model of the contributions of the term 7"* to the
four diagnostic fields ¥§* (red), X" (blue), F5" (green) and F5P (magenta). The models are
grouped by families (TSDIA/EV, SS, new and mixed) and labelled within the family by the
respective distinguishing modulator.

dynamics related to the kinetic-magnetic interaction.

The newly proposed model exhibits the best correlations with tightest distributions.
Importantly, the re-normalisation has a detrimental effect. Although the mean and me-
dian correlations to the cascade fields are maintained, the variation is increased. There
is a suggestion of the same separation between energy and cross-helicity performance
as in the SS model, especially in the Ej  form. We note that this form of the model
significantly increases the spread in the correlation and improves the overall fit only for
some snapshots. It maintains or slightly improves the average and median correlations,
but overall the total flux is represented more poorly. Remarkably, renormalizing with
an energy closure seems to give better smaller variations than using the true energy.
Thus, if such a step is required a posteriori for stability or other computational reasons,
either of the two energy closures would be a preferable choice.

The renormalized forms also show poorer correlations for the total flux diagnostics.
Therefore, the renormalization cannot be used as a substitute for the commutator
between Favre filtering and differentiation for this closure. Nevertheless renormalizing
with the approximate energies mitigates some of the deterioration of the Eg  model.
This suggests that the Smagorinsky and realizable energies are somewhat more closely
related with the commutator than the true energy. Analytically, the commutator for

the total kinetic SGS stress is given by

(4.3)

~ /\u — ~ ~ ~ ~
Ay — O0iTy; = 2ap (Ugiijy + Ujiig) Y ir-

The form for deviatoric part can be extracted trivially. From this we see that a part of
the commutator is related to the resolved rate-of-strain, e.g. consider S;, = 0.5(a;; +
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).

The mixed models do not improve the overall behaviour of the corresponding new
model significantly. This is explained simply by the fact that during the fitting the
corresponding EV coefficient is driven to negligence rendering the mixed models effec-
tively equivalent to the corresponding new ones. Thus we omit these mixed models
from subsequent consideration.

Examining the values of the coefficients of the non-mixed models in fig. 4.4 we observe
that for the TSDIA/EV models they range over more than an order of magnitude
for ¥§". In other words the best correlation comes at the price of non-constant (with
respect to time and plasma parameters) model coefficient. Therefore we confirm that
in compressible MHD, as in hydrodynamics, a dynamic re-calculation of the coefficient
is necessary for the TSDIA /EV closures of 7% to reach their peak efficiency.

The scale similarity model suffers from the same problem with regards to the cross-
helicity fitting, while the coefficients in the energy fits vary only by a factor of order
unity. However, the mean coefficients differ substantially between the energy and cross-
helicity fits. Thus in applications, there will be a significant trade-off between modelling
one quantity or the other.

The new models exhibit the most stable coefficients, which also vary by a factor of
order unity throughout all snapshots and all fitted fields. Remarkably, the basic model
has a coefficient ~ 1. This implies that the modelling errors are orthogonal to the
model. In other words, the effects captured by the model are captured fully, at their
fundamental amplitude. This, together with small range of variation across the dataset,
explains why the re-normalised versions of the model perform more poorly. Note that
the coefficients of the ||S|| and ||S*|| forms are systematically larger than the coefficient
of the basic form. This effectively compensates for the fact that the renormalization
factor is always less than unity

ISP < VAl = I3+ V- (@) 1+ I = 8717 + (V- ) + |8,

(where the resolved vorticity tensor is given by (NZij = O.56ijk(f~2) k). Analogously from
the coeflicient of the Ey  renormalization of the model we infer that the SGS kinetic
energy is of the order of the Lo-norm of the basic model. Thus, at least for the saturated
regime, we don’t expect the basic model to severely over-predict the amount of SGS
energy and to lead globally to spurious instabilities.

Note that the three model families have different intrinsic normalisation so the absolute
values of their coefficients should not be compared directly.

Next, we select a representative from each of the model families to analyse in further
detail. From the TSDIA/EV group we take the energy-based eddy viscosity since it
reaches the highest total-flux correlations. Specifically we choose the Eg . model as it
is closest to the original EV model assumptions. From the new models we take the
basic form for analogous reasons. The scale similarity model is also considered and, as
discussed above, the mixed models are not.

Figure 4.5 shows a different view of the contributions of the data and the selected models
with respect to the diagnostics fields. In particular, we plot similarly to chapter 3 a

82



4.2 Deviatoric SGS kinetic stress: T%*

Tu* I * Mean —— Median — - Range O Interquartile 2;“ E‘Z’h f‘é" fgh I
ol ' TSDIA/EV ' ' S5 ' " New L]
£ 10° " P L L T tﬁ? i?ﬁ
S [Emas B S B
g 107} ﬁ '*-'T. =
T 102 ﬁaﬁﬁ ﬁB B8 - a| |
3 107} ﬁﬁ "‘B”Haﬁﬁa
= F _._ ]
103 ;‘ o
10_4- 1 1 L l ‘»I 1 %I L 1 q,l %l
S s A g¢ X X g o g N e\
SR

Figure 4.4: Summary of coefficient values obtained by fitting the contributions of 7"* to
the four diagnostic fields X" (red), £§" (blue), F5" (green) and F5' (magenta) for the new
models. The symbols are the same as in fig. 4.3.

summary of the flux distribution over space and time. For each diagnostic field and
for each simulation we show the median, the interquartile and the total range of the
7% flux distribution in the simulation domain. Since the distributions are bimodal
the median and interquartile are taken separately with respect to the positive and
negative branches. In this plot positive values correspond to a forward cascade, i.e.
energy transfer from large to small scales. The results are not normalised, as this is not
necessary for the comparison between data and models. Note that this provides a global
counterpart to the local correlation view in fig. 4.3. On the one hand two distributions
over the simulation domain can present similar features while locally there is little
correlation between the quantities they represent. Since the reverse does not hold,
this presents a weaker constraint than the local correlation. On the other hand, the
distribution contains statistical information about the strength and characteristics of
the up- and down-scale transfers which is absent in the local correlation plot. Thus
the two plots provide complimentary views on the flux diagnostics. Let us proceed by
examining the distributions of the 7% closures for each of the models and diagnostic

fields.

Considering fig. 4.3 as expected the strength of the flux increases with the strength
of the driving for each diagnostic field for the data and for all models. Surprisingly,
there is much better correspondence between all models and the data for the supersonic
simulations than the sub- and trans-sonic ones.

Considering the individual models, clearly the main reason for the poor correlations of
the TSDIA/EV Ef  model is the lack of inverse cascade. As we showed in section 2.3.4,
the TSDIA /EV models can only follow one part of the energy cascade ¥§* at a time.
For the examined dataset the fitting procedure prefers a positive coefficient, since the
data has stronger forward cascade. Thus the model follows only the positive branch of
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Figure 4.5: Summary of the flux distribution for the models of 7%*
— sub- and trans-sonic simulations, right column — super-sonic simulations. Each row shows
the contributions to one of the four diagnostic fields.
the time variation of the median of each of the two branches of the distribution (positive —
down-scale transfer, negative — up-scale transfer). The empty black rectangle surrounding it
shows the maximum (temporal) extent of the respective interquartile. The coloured bar shows
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Figure 4.6: Geometry of the error vector of V - (7%) for the TSDIA/EV Eg, (blue), the
SS (purple) and the basic new (red) models. Left panel: alignment angles between data
and model. The shaded area represents the variation across the entire dataset. The line
represents the respective median. Right panel: size of the error vector normalised by the size
of the data vector with coefficients fitted to each of the diagnostic fields. The black rectangle
represents the variation across the entire dataset of the median of the distribution from each
snapshot. The coloured rectangle represents the maximum extent across the entire dataset of
the respective interquartile.

the transfer. Additionally, for sub-sonic simulations the TSDIA /EV model distribution
predicts cascade which is weaker than the data by an order of magnitude. With the
exception of these two features, the ranges and the bulk* of the distributions of all
models are relatively close to each other and to the data. Examining the remaining
diagnostic fields, we note an overall correspondence between the local correlation on
the one hand and how closely the bulks of the model distributions follow the bulk of
the data on the other. For example, for the F5® diagnostic the SS model presents lower
correlations than the TSDIA/EV model. Accordingly for most of the simulations the
bulk of SS distribution is further away from the data than the TSDIA/EV distribution
is. The situation is reversed for the 735" diagnostic. Note, however that this is much less
precise than the local correlation measure. Comparing the basic and SS models, the
difference in their distributions is much smaller than the difference in their correlations.

We continue with a structural investigation of the models. Specifically we consider the
geometry of the error between data and models at the vector level. This is given by
the size of the error vector relative to the data

V- — VT
|V - x| ’

4more specifically the maximum temporal extent of the interquartile
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and the error angle given by
(v . Tu*) . (v . ?u*)

cos(V -,V .- 7%) = IV - o[V - 7]

Figure 4.6 shows these quantities summarized across all diagnostic fields and over the
entire dataset. We begin with a consideration of the error angle. As in the previous
chapter, the variation over time and plasma parameter is practically negligible. Since
we are considering one-coefficient models, the angle is in fact between V - 7%* and a
set of large-scale vector fields. As we noted in the previous chapter, this is a robust
structural feature of the examined dataset. More importantly, it is not affected by the
different fitting criteria, since they only change the coefficient and hence the size of the
model vector, but not its direction. Therefore all diagnostic fits are degenerate for this
plot. Moreover, the results for the TSDIA/EV Eg. model apply to the whole family,
since the different models there differ only in their magnitude.

Figure 4.6a shows one of the key structural features of the new model — it can capture
the orientation of V - 7% with very good accuracy. The error angle distribution peaks
at 0° with 56.8% of the dataset within 30° of the data. It should be noted that this
accuracy may be improved further pending the commutator correction discussed above.
Even in comparison to this form the other two models are insensitive to the orientation
of the data — the TSDIA/EV model has 9.4% and the SS model has 22% of the dataset
within 30° of the data.

Next consider the relative size of the error-vector. Intuitively, it is one of the first
quantities on which structural comparisons can be based. However, its interpretation
need to be handled with care as it is a compound quantity which carries information
about the relative size of the model as well as its orientation. For instance, a model
vector with the correct size which is anti-parallel to the data vector would produce an
error vector with the same size as a correctly oriented model which is three time too
large. A priori it is not established which of the scenarios is more favourable in an a
posteriori LES application, or even if there is a unique answer to that question. This
issue is exacerbated by the fact that the error vector size depends on the value of the
model coefficients and thus changes across the fits to the different diagnostic fields.
Nevertheless, consider fig. 4.6b. It shows an aggregate from the entire dataset of the
relative error vector size for each model with coefficients fitted to each of the diagnostic
fields. The primary observation here is that all models produce error vectors of size
comparable to the data independent of the diagnostic field. Both the TSDIA/EV and
the SS models produce error vectors with relative size of order unity or larger, while
the new model has a median which ranges between 0.5 and 0.8. For the TSDIA/EV
and the SS models both the variations and the median are smaller for the cross-helicity
diagnostics compared to the energy ones. This dichotomy is not present for the new
model which is also relatively stable across diagnostic fields. A comparison of these
observations with fig. 4.4 indicates that the relative error vector size is not sensitive
to the local dynamic correlation between data and model evaluated via the diagnostic
fields. Combining this result with the ones drawn from fig. 4.6a, we conclude that
for 7% the most dynamically relevant feature of the deviatoric kinetic SGS stress at
the vector level is its orientation, while its amplitude has a secondary role. Before
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Figure 4.7: The Q — R portrait of 7%* for the data and selected models of a sample snapshot
from simulation 9 with Mg g4, = 2.9 and p0 = 2.5. The values are not normalised. The
contours indicate the percentage of the cells with respect to the whole simulation domain.
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Figure 4.8: Summary of the distribution between the tube and sheet topologies for 7% for
all simulations. Error bars represent variations within the time interval between 27" and 57

we examine whether this statement holds for the other SGS terms, we conclude the
comparison of the deviatoric kinetic models with a direct tensor comparison.

At the tensor level we established the Q-R portrait of 7* as a robust feature of the SGS
dynamics. Note that it is also not affected by coefficient values for single coefficient
models. Figure 4.7 shows a representative snapshot (from simulation 9 with M; 4, = 2.9
and f,0 = 2.5) of this portrait for the data and the different models. Although all
models have qualitatively the same distribution, the main difference between them is
the range of values that both the () and the R parameters can take. The new model is
the only one which reaches with non-negligible frequency the same orders of magnitude
(Q ~ —10%, R ~ —10%) in the dominant topological region as the data. This suggests
that a key property for a 7% model is the ability to reach the far () — R tails of the
turbulent distribution.

From a global perspective, we consider the data’s and models’ distribution between
the two topological regions (tube and sheet). Figure 4.8 summarizes the results for
the different simulations. The data and all models show approximately constant ratio
(with respect to time) between sheet and tube topologies for all simulations. As we
noted in section 3.3.1 the tube topology dominates in the data. The new models mimics
this behaviour and to a lesser extent so does the scale-similarity model. However, in
the TSDIA/EV model the ratio is significantly reduced. This is consistent with the
dynamic flux correlations established in the beginning of this section. Thus it supports
empirically the link between the eigenvalues of 7"* and the diagnostic flux terms, which
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Figure 4.9: Correlation between data and model of the contributions of the term 7°* to the
four diagnostic fields ¥§* (red), 25" (blue), F§" (green) and F§" (magenta). The models are
grouped by families (TSDIA/ED, SS, new and mixed) and labelled within the family by the
characteristic modulator.

we tentatively established in section 2.3.4. The further analysis required to fully explore
this connection is left as part of future investigations. However already at this point we
can conclude that the tensor invariants are strongly connected to the SGS dynamics of
T,

4.3 Deviatoric magnetic SGS stress: 7"

As for the kinetic stress, the closures of 7°* are also separated into 4 families - TS-
DIA/ED, SS, new and mixed. The TSDIA/ED closures are characterised by the form
™ ~ M and are labelled by the characteristic field which determines the eddy-
diffusivity. The new models are the basic and the renormalized ones, where the renor-
malization is done via the real magnetic SGS energy or one of its closures. Finally,
the mixed closures are two-coefficient linear combinations of the new and TSDIA/ED
closures scaled by the true or the Smagorinsky SGS magnetic energy. The performance
of all the models with regards to the four diagnostic fields is presented in fig. 4.9.

The first striking observation is that the TSDIA/ED closures are extremely unfit to
represent the data. There are isolated cases where the correlation coefficient even
changes sign. The eddy-diffusivity based on cross-helicity seems to exhibit the best
performance with correlation to " reaching 0.4 in isolated snapshots. However these
are exceptional cases. The total flux diagnostics show basically no correlation with
the data. Based on this diagnostic alone this family of models should be disregarded
altogether.

For the rest of the models, with the exception of the new basic one, features familiar
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4.3 Deviatoric magnetic SGS stress: T°*

from the 7% investigation are evident. The energy correlations are in general larger
than the cross-helicity ones and cascade terms are more accurately represented than
total flux terms. For the scale-similarity model the correlations are actually higher
and their variation smaller than the corresponding 7" results. The mean and median
correlations are also higher for the new basic model. The reason for the synchronized
improvement in both models can be attributed to the fact that the 7°* modelling
process is not affected by the Favre filtering-differentiation commutator issue. The
still strong gradation of correlation from cascade to full flux and from energy to cross-
helicity diagnostics of the scale-similarity model suggests that also for 7°* it misses a
significant component of the SGS Lorentz/magnetic dynamics related to diffusion and
the kinetic-magnetic interaction.

The basic form of the new model has the highest core correlations. The smaller de-
terioration in the total flux fits with respect to the cascade ones indicates that the
same deterioration in the basic kinetic model is indeed due to the Favre filtering-
differentiation commutator. In comparison to their kinetic counterparts, the 35" fits
of all new model forms provide a little better correlations with much smaller core vari-
ations (as measured by the length of the interquartile). On the other hand, with the
exception of the Efgs form, the other diagnostic fields exhibit much larger overall vari-
ation (as measured by the length of the whiskers). The notably poor performance in
the Ft fits is produced by a few snapshots in the trans-sonic simulations.

For the total flux diagnostics the deterioration introduced by the renormalization (with
any of the magnetic energies) is stronger than it is in the kinetic case. This implies
that here the renormalization introduces an error larger than the combined commutator
plus renormalization error from the kinetic case. For the basic and the Efgs models the
correlations increase with My for all diagnostics. The other two models are insensitive
to the sonic Mach number, however there is a trend of F$! correlations decreasing with
decreasing (3, in the trans-sonic regime.

Regarding the mixed models, there is again no qualitative difference from the respective
new models. The reason is the same as in the kinetic case. The coefficients of the eddy-
diffusivity component is about two orders of magnitude smaller than the coefficients
of the new closure component. Considering the correlations of the TSDIA /ED models
this is not surprising.

The coefficients of the SS and new models are shown in fig. 4.10. The overall variation
is comparable to the one in the kinetic case, but the core variation is much smaller.
We see that typically the SS coefficients for the energy diagnostics are significantly
different (larger) from the ones for the cross-helicity diagnostics. Therefore here, as in
the kinetic case, a choice has to be made as to which effects to prioritize in a posteriori
implementation.

The larger coefficients of the ||M||? and |J|> new model forms as compared to the basic
one can be explained by an argument analogous to the one in the kinetic case. Further-
more, observe that the renormalization factors of the two models are the complements
of each other (i.e. |[M]]?>+ |J|? = [|[VB||?). Therefore, since the resolved current is
much larger than the resolved magnetic rate-of-strain (not shown), we see that the
|J|? coefficient is much closer to the basic one and also significantly smaller than the

|M]|? ones. The E;Dgs coeflicients differ from the basic ones again by a small factor.
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Figure 4.10: Summary of coefficient values obtained by fitting the contributions of the term
7% to the four diagnostic fields 3" (ved), 2§ (blue), F5* (green) and F§" (magenta). The
models and statistical features are as in fig. 4.9.

This suggests that the basic magnetic model also has an L, norm comparable to the
SGS magnetic energy. Therefore it should not drive globally any spurious instabilities
just as in the kinetic case. The coefficients of the basic new model have very small
variations in comparison to the other models. This makes it very attractive from the
point of view of a posteriori applications. A comparison with the basic kinetic model
coefficient variation, considering that the magnetic stress does not include Favre filter-
ing, suggests that the slightly larger variability in the kinetic coefficient value is in part
due to the compressibility effects.

Let us proceed with a more detailed view into a selection models. From the TSDIA /ED
family we consider the form based on the true SGS cross-helicity, since it shows some of
the better correlations within its group. From the new models we take the basic form.
Thus we can consider a direct comparison between the kinetic and magnetic case. Once
more we consider the scale similarity model and disregard the mixed models.

Figure 4.11 is the magnetic analogue of fig. 4.5 and is qualitatively similar to it. Even
though the TSDIA /ED model can in principle represent both branches of the cross-
scale transfer, it significantly under-predicts its amplitude for all diagnostic fields. Like
in kinetic case, the subsonic and trans-sonic simulations present the biggest challenge.
Additionally here, the simulations with largely compressive forcing (sim. 8, 9, and
10) induce high variability and even complete model failure for some snapshots, as
indicated by median of the F5*, ¥:$" and F5* contributions.

The cores of the distributions of the new basic and the scale-similarity models are
very similar and close to the data. However, the total extent of the basic model
distribution is always larger than the SS distribution. This places it closer to the
data everywhere with the exception of the X" diagnostic for some of the supersonic
simulations. Considering that only for the 5 diagnostic the SS correlation is similarly
sometimes larger than the basic model one’s, it is tempting to establish a tentative link
between the local flux correlation and the tails of the flux distribution. However, after
a re-examination of the tails of the TSDIA/ED model’s distribution, such a link has
to be discarded as an artefact. Specifically, for high enough agreement between model
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Figure 4.11: Summary of the flux distribution for the models of 7°* and the data: left column
— sub- and trans-sonic simulations, right column — super-sonic simulations. Each row shows
the contributions to one of the four diagnostic fields. The solid black rectangle represents
the time variation of the median of each of the two branches of the distribution (positive —
down-scale transfer, negative — up-scale transfer). The empty black rectangle surrounding it
shows the maximum (temporal) extent of the respective interquartile. The coloured bar shows
the maximum (temporal) extent of the entire distribution.
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Figure 4.12: Geometry of the error vector of V - (Tb*) for the TSDIA/ED Hggs/+/ Esgs/P
(blue), the SS (purple) and the basic new (red) models. Left panel: alignment angles between
data and model. The shaded area represents the variation across the entire dataset. The line
represents the respective median. Right panel: size of the error vector normalised by the size
of the data vector with coefficients fitted to each of the diagnostic fields. The black rectangle
represents the variation across the entire dataset of the median of the distribution from each
snapshot. The coloured rectangle represents the maximum extent across the entire dataset of
the respective interquartile.

and data both the local correlation and global flux distribution results coincide. As the
agreement decreases, the coincidence also decreases in a fashion which depends on the
particulars of the model and data distributions and varies greatly across the different
snapshots.

Thus as in the kinetic case, we see that a comparison of the flux distributions can
differentiate between models with qualitatively different performance and sheds light
on the reasons for a models behaviour. However, it is less sensitive than the local
correlation coefficient.

Let us continue with the structural comparison of the models. The error vector geom-
etry is presented in fig. 4.12. A comparison of the error angles demonstrates that the
new model has the best alignment with the data. For it 64% of the modelled points
lie within 30° of the data vector. This number for the TSDIA/ED model is 4% and
for the SS model — 31%. This re-enforces the connection between the error angle and
the flux correlations, which we established in the previous section. Additionally, note
that the alignment here is stronger than it was for the model of 7"*. This suggests that
adding the Favre filtering-differentiation commutator to the 7** model should improve
its alignment with the data.

The relative sizes of the error vectors also confirms the conclusions drawn in the previous
section. In particular, the relative error vector size enjoys a highly non-linear non-
monotonic relationship with the flux correlations. Note that the model with lowest flux
correlations exhibits here the tightest distributions, which are centred around unity. In
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Figure 4.13: The Q-R portrait of 7P* for the data and selected models of a sample snapshot
from simulation 9 with Mg g4, = 2.9 and Sp0 = 2.5. The values are not normalised. The
contours indicate the percentage of the cells with respect to the whole simulation domain.

; —
Data Basic ube e ss Ho/\Enlp

1.2 3 4 5 6 708 9 1011 12 13 1 2 3 4 5 6708 9 1011 1213 1.2 3 4 5 6 708 9 1011 12 13 1.2 3 4 5 6 708 9 1011 12 13

# cells[%]

0 0 0 0
0.230.56 0.61 118 1.27 198 2,54 2,35 2.59 2.64 4.1510.080.26 0.230.56 0.61 118 127 198 2,54 255 2.59 2.64 1.1510.060.26 0.23 0,56 0.61 118 1.27 1.98 2.54 2,55 2.59 2.64 4.1510.080.26 0.230.56 0.61 118 1.27 198 2,34 2,55 2.39 2.64 4.1510.080.26
(Mrmsy (M (M) (Mrmsy

Figure 4.14: Summary of the distribution between the tube and sheet topologies for 7°* for
all simulations. Error bars represent variations within the time interval between 27 and 57

general, we observe that higher flux correlations correspond to broader distributions
of the relative error-vector size and low correlations correspond to tight distributions
centred around unity. The new model also follows this trend. Moreover its distribution
is also shifted largely below the unity line. Additionally, its correlations for §" are
higher than for F35", while the respective relative error vector size is also greater.

At the tensor level, we see (in fig. 4.13) a picture similar to the kinetic case. The data
is dominated by tube topology and the models with better flux correlations reach the
extreme () and R values with higher frequency. The distribution of the data and models
between the topological regions for all simulations is presented in fig. 4.14. All models
show self-consistent behaviour across all simulations. At this level the signature of the
TSDIA/ED model’s poor performance is a significant over-estimation of the regions
with sheet topology. The scale similarity and new models represent the data faithfully.
However, note that the new model slightly over-estimates the tube contribution for the
low Mach number simulations, while the scale similarity model is closer to the data.
This indicates that the topological division, just as the flux distribution, agrees with
the flux correlation for models with qualitatively different performance. However, it is
less sensitive to small quantitative changes of the model.
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4.4 Deviatoric total SGS stress: 7

We finish the discussion of the deviatoric stress models with the closures for 7 =
7% — 7P* This demonstrates the effect of combining kinetic and magnetic closures. Do
the individual modelling errors enhance or reduce one another?

We compare four model families. The TSDIA and the EV approaches lead to closures
with different tensor form. The EV closures have the form 7* ~ z/sgsg. The TSDIA
closures are 2-coefficient combinations of the form 7* = C’lyuﬁg * + Cyvpy M. The scale
similarity and the new model versions comprise of similar linear combinations of their
respective kinetic and magnetic components. Based on the arguments from the kinetic
and magnetic stress tensors we omit the sets of mixed models. The flux correlations for
all models are presented in fig. 4.15.

Within each family the various model flavours induce little change in the overall per-
formance. Comparing the TSDIA and EV closures, we see that despite the added
flexibility of two independent terms, the TSDIA closures do not perform significantly
better. This is due to the poor correlations of the magnetic closures which we noted in
the previous section. Consequently, the magnetic coefficients of the TSDIA models are
two orders of magnitude smaller than their kinetic counterparts (not shown). Even so,
the TSDIA correlations are consistently higher than for the kinetic stress alone. As this
cannot be attributed to the magnetic closure, it suggests that the kinetic component
of the TSDIA models are actually better at describing the total deviatoric stress than
the kinetic one. In other words these models should be merged into the EV family in
this context.

The correlations of the scale similarity model to the diagnostic fields are a combination
of the features of the kinetic and magnetic components. The length of the interquartile
lies between the corresponding kinetic and magnetic ones. The hierarchy between
energy and cross-helicity and cascade and total flux correlations is also preserved. The
overall correlation is improved with respect to the individual kinetic and magnetic ones.
However, the amount of improvement is small and can be attributed to a fine tuning of
the two free coefficients. Note that the energy fits benefit from this more than the cross-
helicity ones. We conclude that the scale similarity model performs self-consistently
with respect to the combination 7% = 7% — 7P*

Similarly for the new model family, a combination of kinetic and magnetic features is
observed. Since the magnetic component is not manifestly dominant it cannot mask
the missing Favre filtering-differentiation commutator term in the total flux fits and we
note the reduced correlations in all model forms. The true energy form has the largest
correlations for the 3" diagnostic, but lags behind in the total flux diagnostics. It also
leads to too much variation in the correlations and thus is removed from consideration.
The Smagorinsky and realizable energy are viable alternatives for renormalization.
However the basic model remains a better candidate with larger and tighter correlations
for all diagnostic fields

For the detailed comparison we select three models: the true-energy-based TSDIA
model labelled as “EL; EP, the scale similarity model and the new basic model.
Formally they have the same number of degrees of freedom which allows for a direct
comparison. Furthermore, as we noted the TSDIA models can faithfully represent also
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Figure 4.15: Correlation between data and model of the contributions of the term 7* to
the four diagnostic fields X§" (red), ¥" (blue), F5* (green) and F5" (magenta). The models
are grouped by families (EV,TSDIA, SS, and new) and labelled within the family by the
characteristic modulator(s). For two coefficient models the two characteristic modulators are
separated by a semicolon.

the EV family.

We show the flux distributions of the four diagnostic fields for the data and the models
in fig. 4.16 for completeness. However, the distributions present no surprises. The
TSDIA model performs poorly in the inverse cascade branch of the X§" distribution
due to the suppression of the magnetic term and the inability of the kinetic one to
represent two branches simultaneously. For the energy diagnostics in the sub- and
trans-sonic simulations the TSDIA model is significantly closer to the data than in the
respective kinetic comparison. This reaffirms its place within the EV family. The scale
similarity and new models are again relatively close to the data both in the bulks and
tails of their distributions.

We proceed with the structural comparison in fig. 4.17. The error angle is now affected
by the values of the model coefficients, specifically their ratio regulates the relative
importance of the orientations of the kinetic and magnetic components. In practice
this effect is rather weak and we can afford to combine the error angles obtained
from the four diagnostic fits in a single plot, fig. 4.17a. The orientation of all models
relative to the data is consistent with the orientation of their kinetic and magnetic
components. In the case of the TSDIA model the kinetic and magnetic error angles
combine favourably producing a smaller error angle than in either of the kinetic or
magnetic cases. However, the alignment is still very weak — 11.7% of the dataset is
contained within 30° of the data vector. For the scale similarity and new models this
effect is altogether absent and the error angles lie between the respective kinetic and
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Figure 4.16: Summary of the flux distribution for the models of 7* and the data: left column
— sub- and trans-sonic simulations, right column — super-sonic simulations. Each row shows
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Figure 4.17: Geometry of the error vector of V - (7*) for the TSDIA Eg; E;’gs (blue), the
SS (purple) and the basic new (red) models. Left panel: alignment angles between data and
model with coefficients fitted from each of the diagnostic fields. The shaded area represents the
variation across the entire dataset and all four diagnostic fits. The line represents the respec-
tive median. Right panel: size of the error vector normalised by the size of the data vector
with coefficients fitted to each of the diagnostic fields. The black rectangle represents the
variation across the entire dataset of the median of the distribution from each snapshot. The
coloured rectangle represents the maximum extent across the entire dataset of the respective

interquartile.

magnetic ones. In particular, for the SS model 24.6%, and for the new model 61.7% of
the dataset lies within 30° of the data vector. It is expected that with the addition of
the missing commutator term in the kinetic component the alignment may be raised
to the levels of the magnetic case.

Similarly to all other considered quantities, the features of the relative error-vector size
distributions are an agglomerate of the features of the kinetic and magnetic components
(see fig. 4.17b). The new and scale-similarity models produce broader distributions with
larger median with the energy and cross-helicity fits. The TSDIA model in contrast
displays tighter distributions centred around unity for the total-flux terms and broader
distributions skewed to larger values for the cascade terms. Concentrating on the new
model alone, notably although the largest correlation is obtained for 35", this diagnostic
field also produces the largest relative error vector.

We conclude the discussion by considering the tensor level comparison. Recall that in
contrast to the kinetic and magnetic ones, the Q-R portrait of the total deviatoric SGS
stress shows significant representation of both sheet and tube topologies. Figure 4.18
shows that all models can exhibit the same qualitative behaviour. However, as before
the TSDIA and the SS models fail to reach the extreme values of () and R that the data
requires. Globally, the data is split approximately equally between the tube and sheet
topologies with a tendency for sheet topology domination in the sub- and trans-sonic
regimes. Figure 4.19 shows that TSDIA model overestimates the proportion of tube
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Figure 4.18: The Q-R portrait of 7* for the data and selected models of a sample snapshot
from simulation 9 with Mg g4, = 2.9 and 3,0 = 2.5. The values are not normalised. The
contours indicate the percentage of the cells with respect to the whole simulation domain.
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Figure 4.19: Summary of the distribution between the tube and sheet topologies for 7* for
all simulations. Error bars represent variations within the time interval between 27" and 57'.

topologies and is somewhat less sensitive to the plasma parameters of the simulation
than the data. The SS model is perhaps too sensitive as it shows much larger variations
in time and with plasma parameters than the data. The new model follows the data’s
behaviour in time, however it underestimates the portion of tube topology in the largest
sonic Mach number simulations by several per cent.

4.5 Electromotive force: &€

Finally, let us consider the EMF models. Five families of models can be identified —
ER, TSDIA, SS, new and mixed. The pure eddy-resistivity (ER) models (table 2.2)
have the form & nsgsj. The dynamo-based TSDIA models are listed in table 2.3.
As a simple case we examine an energy-based purely resistive option (o = v = 0,
B  (Eys/p)"/?). This has the same vector form as an ER model, however the eddy-
resistivity here scales with the total SGS energy, instead of the magnetic SGS energy.
This model shows most clearly the effect of the Smagorinsky and realizable energy
closures on the EMF. Additionally, we compare the two full TSDIA models, using the
true values for the SGS energy, residual-helicity and cross-helicity. This should gauge
what is meant to be their optimal performance®. The scale-similarity model has its

5 However, considering the difference between the different energy-based renormalization variants in
the new SGS stress models, this expectation is not necessarily justified.
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Figure 4.20: Correlation between data and model of the contributions of the term £ to the
four diagnostic fields $§" (red), 2$" (blue), F§" (green) and F§" (magenta). The models are
grouped by families (ER,TSDIA, SS, new and mixed) and labelled within the family by the
characteristic modulator(s).

usual form. For the new model we consider three variants. The basic and split forms
are described in table 2.1. Recall that they are simply a one- (basic) and two-coefficient
(split) forms of the same model. As a reference we also fit just the incompressible term.
The final set of mixed models consists of linear combinations of the true-energy-based
purely resistive TSDIA model combined with the incompressible and basic forms of the
new model. The correlations of all models are shown in fig. 4.20.

As in the case of the SGS stress, the best correlations for all models are with respect
to the 35" diagnostic field. The difference here is that the cross-helicity cascade term
ISP does not necessarily have better correlations than the total flux terms.

Among the ER models we first note that the cross-helicity variants have negligible
correlations with the data. Remarkably, the constant eddy-resistivity performs on the
same level or better than the forms based on the SGS magnetic energy and the resolved
current®. This could be explained by the homogeneous and isotropic conditions, thanks
to which the true SGS resistivity likely does not have large spatial variance. Overall,
however, all models in this family have poor correlations which rarely exceeds 0.5.
The TSDIA models do not perform significantly better. The one-coefficient, energy-
based models yield similar results to the E;Ogs and J forms of the ER models. Their
primary advantage against the ER model is that they have somewhat improved cor-
relations for the total flux terms. Notably, the three-coefficient models provide little
improvement, hardly justifying the additional cost their implementation incurs. The
reason for this is clarified by comparing the coefficients of the different terms. We

6i.e. the Smagorinsky magnetic energy closure
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observe (not shown) that the o and 7 the coefficients are not only much smaller than
the [ coefficient, but also change their sign freely from one snapshot to the next. What
is more, their mean and median values also change sign depending on the diagnostic
field. This renders the Miki and Yokoi models effectively single coefficient models and
explains their relation to the simple resistive model.

Nevertheless, note that in both families, reasonably high correlations can be reached
in isolated snapshots, although the bulk of the correlations is quite poor. Examining
the correlation spread across the different simulations, we note that in both families
(excluding the cross-helicity based ER variants) there is a strong dependence between
the correlations for the total flux diagnostics and the plasma parameters. In particular,
the peak correlations are reached in the high Alfvénic Mach number simulations. This
demonstrates the importance of testing models against a sufficiently large dataset — to
ensure sufficient sampling of the parameter space.

The scale similarity model exhibits similar features to the ones of the SGS stress models.
Note however that for most of the snapshots the total flux energy and cross-helicity
fits yield similar correlations. Therefore, in contrast to the 7-models, here one can
reach the best accuracy of the model for both quantities with a single coefficient. With
average correlations under 0.5 for the total flux terms however, this model is a moderate
improvement over the functional models.

All new model variants also show better performance than the functional models. In
the pure incompressible form however there are large variations. For the full flux
terms the mean correlations decrease to ~ 0.6. A comparison to the basic form, which
includes the compressibility term, clarifies a part of the reason. The mean correlation is
improved, especially for the 5" field. The variations are also reduced significantly. We
still however observe that the cascade terms yield significantly better correlations than
the total flux ones. This is because the Favre-filtering — differentiation commutator is
still missing. For the EMF it is given by

(V x & -V x g) = 2a€ijk6klmal,p§my,jp- (44)
K2

Note that it has form similar to the compressible extension: —2aV X (eklmahpgmy’p)

and the opposite sign. In fact they combine to give

(V X 8)1 = 2aeijkeklm ((ﬂ,le>J — (al,me)j y,p) .

Thus we expect that some of the commutation error can be compensated for by adjust-
ing independently the coefficient of the compressible extension. In fact the difference
between the correlations of the basic and the split models is not very significant and
could also be accounted for only by the additional degree-of-freedom of the latter. The
total flux terms are also not significantly improved for the split model.

Consider, however, the coefficients of the basic and split models. As it can be seen in
fig. 4.21, the overall coefficient of the basic model varies between 0.4 and 1.6. The two
coefficients of the split model have similar ranges. However, the bulk of the variation
is carried by the compressibility extension. Its median coefficient for the full flux fits
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Figure 4.21: Summary of coefficient values obtained by fitting the contributions of the EMF
to the four diagnostic fields 2§ (red), B! (blue), F5" (green) and F5" (magenta) for the new
models. The first panel shows the coefficient of the basic, 1-coefficient model. The second set
of panels shows the coefficients of the incompressible (1) and compressible (2) terms in the
split model. The statistical features are as in fig. 4.20.

is ~ 0.6 and closer to unity for the cascade fits. This is explained by the partial
capturing of the commutator effect. Accounting for this, the absolute variations in the
coefficients are quite small. The two coefficients of the split model are sufficiently close
to each other and to the coefficient of the basic model. Therefore, we maintain that
these results validate the amplitude of the EMF model and precipitate any need for
renormalization.

Finally, the mixed models behave in just the same manner as they did for the SGS
kinetic and magnetic stress. The coefficient of the eddy-resistivity component is reduced
to negligence by the fit and the models are rendered equivalent to the corresponding
new model variants.

We continue with the more detailed comparison of a selection of models. We consider
the constant eddy resistivity model, the Yokoi model, the scale-similarity and the basic
new model as they exhibit the highest correlations in their respective families.
Beginning with the flux distributions, fig. 4.22, just as in the case of the kinetic SGS
stress, the ER model cannot and the TSDIA model struggles to represent the inverse
energy cascade, i.e. the dynamo action, especially for the cascade diagnostics. The
transfer from large to small scales on the other hand is represented generally well by
all models for most simulations. Surprisingly, here the functional models also seem
to perform better in the supersonic regime. The scale similarity and new models
exhibit similar behaviour with respect to the sonic Mach number. However, they follow
closely the core of the data distribution in both positive and negative branches for all
diagnostic fields. The overall range of the data is more poorly represented, with all
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models consistently falling short in most simulations.

Structurally, since the EMF is a (pseudo-)vector itself no tensor analysis is necessary.
Instead, at the vector level, we can examine two relevant error vectors — the ones related
to €& and V x €. As the values of the model coefficients affect the error-angle as well
as the error-vector size for multi-coefficient models, we take them from the cascade fits
for the &€ error vector and from the total full flux fits for the V x £ error vector. For
consistency we do the same for the one-coefficient models. This maintains the same
sample space across all models.

The results for the error angles are shown in fig. 4.23. The £ alignment is much
better than the V x € one. We note that the new model demonstrates the strongest
alignment with 68.6% of the dataset contained within 30° of the £. This number
reduces to 56.8% for V x €. Naturally, the reduction is a consequence of the missing
commutator effect and affects all models. For the scale-similarity model the effect is
quite strong — 42.4% for the £ error angle and 22.1% for the V x £ error angle. In
other words the scale-similarity model shows a non-negligible alignment to the pure
EMF vector. This suggests that similar level of alignment holds for the eigenvectors of
the SS models of the SGS stress as well but is obscured in the error-angles of SGS force
due to the missing differentiation commutator. The TSDIA model is largely insensitive
to the orientation of the EMF. This is expected since the TSDIA model is effectively
oriented along the resolved current and, cf. section 3.2, the resolved current and the
EMF are not mutually aligned.

The relative error-vector size are again of order unity as seen in fig. 4.24. There is
no robust differentiation between the £ and V x & fits across all models. On the one
hand, the TSDIA and ER models exhibit larger variation for V x £ than &, while
the SS model shows the reverse. On the other, the ER and new models have similar
median values and variations in both cases. Combining these observations with the
flux correlation we conclude, that also in the case of the EMF the error angle is the
key dynamical quantity linked to the cross-scale transfer, while the amplitude of the
model vector plays a secondary role.

4.6 Summary

We finish this chapter by summarizing the results we have obtained for all SGS terms.
The presented analysis leads to the conclusion that the diffusion effects exhibited by
the F5* and Fs" fields can change the view on the models’ performance significantly
and should be considered in any comprehensive model test. Moreover, even in the case
of homogeneous and isotropic turbulence, as represented by the examined dataset, the
local orientation of the SGS terms plays a key role in their dynamic effect. Therefore
detailed geometrical diagnostics are necessary also when performing functional tests. In
light of this we used the following quantities to gauge the different models’ performance
against the data and each other.

1. Direct correlation to the data.

2. Overall flux correlations for each of the diagnostic fields %%, X5h Fs® and Fgb.
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Figure 4.22: Summary of the flux distribution for the models of € and the data: left column
— sub- and trans-sonic simulations, right column — super-sonic simulations. Each row shows
the contributions to one of the four diagnostic fields. The solid black rectangle represents
the time variation of the median of each of the two branches of the distribution (positive —
down-scale transfer, negative — up-scale transfer). The empty black rectangle surrounding it
shows the maximum (temporal) extent of the respective interquartile. The coloured bar shows
the maximum (temporal) extent of the entire distribution.
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(right panel).

[ Const B Dynamo [ SS [ New| |I:I Const B Dynamo [ SS [ New
10 10"
&y
>< —_—
@ > (%
|‘& 100 'lH DIH . X 10k IIH HIH .
w w (> H B
X —_—
10" en h 10° h n
b b3 75 T
(a) (b)
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coefficients fitted from cascade diagnostics (left panel), V x &, with coefficients fitted from
total flux diagnostics (right panel).
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3. Spatial flux distributions for each of the diagnostic fields.
4. Error vector geometry — error angle and relative error vector size.
5. Quadratic tensor invariants and distribution across topological regions.

They present complimentary views on the models’ performance. The direct correla-
tion is precise but of limited use for the SGS tensor and vector terms. It provides
an instantaneous and local view. The SGS flux correlations are the most sensitive
diagnostic and are able to separate the different models most clearly. However, they
carry no information on the cause for a particular model’s performance. The remaining
vector and tensor diagnostic are global (in a spatial sense) and thus less sensitive to
quantitative differences between the models. The error angle and topological region
distribution correspond well with the flux correlations and thus explain these results.
While this connection merits deeper investigation, it is clearly based on the fact that
flux correlations are related to the eigenvalues and eigenvectors of the SGS terms just
as the error-angle and topological region distributions are. The relative size of the error
vector and the flux distributions on the other hand, have a non-trivial non-monotonic
relationship to the flux correlations. Thus they order the models’ performance differ-
ently in some cases. Due to the difficulties in interpretation of this order however, we
follow the model order given by the local flux correlations. In both cases however, the
new model outperforms its alternatives by a significant margin.

Renormalizing the SGS stress is not beneficial a priori. The amplitude of the basic
models correlates well with the local turbulence strength as measured by the respective
SGS energy. Additionally, for the majority of snapshots the flux distributions of the
basic models are contained within the boundaries of the data distributions. This suggest
that the model should not cause spurious numerical instabilities. If renormalization
is required a posteriori, then using a Smagorinsky or a realizable energy closure is
preferable to using the true SGS energy.

For all models the closures of the differentiated SGS terms (except the 7" ones) are
missing an important component due to the Favre-filtering — differentiation commu-
tator. For the new model it is explicitly calculated and it turns out to be of leading
order, O(a). The comparison to diagnostics unaffected by this error suggests that the
inclusion of this term would improve the model’s performance. However, additional
a priori testing is required to validate this. In any case, since all evolution equations
involve differentiation of the SGS terms, the inclusion of some commutator correction
is essential to a posterior: application.

The scale-similarity models seem to neglect a major ingredient in addition to this
commutator term, since its performance with respect to the cross-helicity diagnostics
is consistently worse than with respect to the energy ones.

The TSDIA and EV/ED/ER models show unsatisfactory performance with respect to
the local flux correlations due to their geometrical structure. Their global performance
varies significantly across diagnostic terms and within the dataset.
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5 Conclusions and Outlook

Turbulent flows are ubiquitous in nature and especially so on astrophysical scales, where
microscopic viscosity is often negligible. Examples can be found on all scales — from
the intra-cluster medium, through galactic molecular clouds, all the way to stellar and
planetary atmospheres. Compressibility effects are often a major dynamical component
which shapes the evolution of these systems. Moreover, many of these phenomena are
strongly influenced by the presence of external or self-generated magnetic fields. Thus
the simplest theory which can be used to describe them in any degree of completeness
is compressible magnetohydrodynamics.

Numerical simulations form an essential part of turbulent MHD research. However, the
extreme parameter regimes found in astrophysics and the finite computational resources
often prohibit the direct simulation of all dynamically relevant scales. Only a sub-range
of scales can be simulated self-consistently, while the remaining scales are included
via an explicit or implicit model. In the LES approach such a model is attained by
describing the finite resolution effects with a low-pass filtering operator. This operator
is applied to the MHD equations and the terms associated with the finite resolution
effects are identified. Due to the origins of this approach in grid-based simulations,
they are dubbed sub-grid scale terms. The momentum and induction equations give
rise to a SGS stress and an EMF terms, respectively.

In this work we presented a new model for these terms based on a gradient expansion
of the filtering operator developed by [103] for hydrodynamic applications. Specifi-
cally, we extended the approach to include SGS terms derived from a mass-weighted
filtering operator, the latter being quite common in compressible MHD applications.
For comparison, we provided an overview of the main alternative models which are
currently in circulation. They can be divided into several families according to their
basic assumptions. The scale similarity model is based on the idea that the structure of
the unresolved turbulent scales is similar to the one of the resolved ones. Alternatively,
in the eddy-viscosity /diffusivity /resistivity family the turbulent effects on the resolved
scales are seen merely as a spatially-dependent modulation of the respective micro-
physical processes. Closely related is the TSDIA model which is inspired by analytical
work based on statistical averaging of the evolution equations.

The comparison of the different models was performed in an a priori fashion. This
consists of the explicit filtering of highly resolved simulation data and comparing the
accurate SGS terms produced by that operation with the model predictions based only
on the large-scale 'resolved’ part of the data. We used a set of simulations from two
different finite-volume grid-based codes, ENZO and FLASHV4, in order to reduce the
systematic code-dependent bias. The simulated flow is that of statistically stationary
homogeneous and isotropic, approximately isothermal turbulence under the effect of
large-scale stochastic forcing, which acts only on the momentum equation. The initial
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plasma beta parameter range is ,¢ € [0.05,450]. In the stationary regime, which
spans approximately 3 eddy-turnover times, the RMS Mach number range is [0.2, 20]
and the corresponding Alfvénic Mach numer range is [0.5,3.4]. The effective kinetic
and magnetic Reynolds numbers are of the order of 103.

The first task we pursued was to establish properties of the SGS terms, which come from
the momentum, induction, energy and cross-helicity equations. They are detailed in
chapter 3. There we emphasized several key points with respect to the hypothesis used
for model building. Firstly, we found that the local balance hypothesis used to derive
the Smagorinsky energies is not supported by the data. On the contrary, the dominant
part of both energy and cross-helicity transfer across the filter scale is due to transport
terms. The SGS transfer between the kinetic and magnetic budgets is the dominant
part in the evolution of the respective SGS energies. Secondly, the electromotive force
cannot be faithfully modelled by a simple resolved vector, as suggested in both EV
and TSDIA models, due to their poor mutual alignment. Thirdly, the SGS pressure
which is often ignored or treated implicitly needs to be given full consideration, as
it contributes a significant part to the momentum flux budget throughout the whole
range of parameters including the subsonic regime. Throughout the examined dataset
the amplitude of the SGS stress is driven by the SGS pressure, while the deviatoric
component dictates its orientation. Additionally, we found that the spatial distribution
of the SGS kinetic and magnetic stress terms between tube and sheet topologies is a
very robust signature of the turbulent flow.

The second task was the direct comparison of the models with data and among them-
selves. We selected a range of structural and functional, local and global diagnostics in
order to provide a comprehensive view of the models’ performance. Functionally, we
considered the contribution of the SGS stress and the EMF to the energy and cross-
helicity transfer across the filter scale. Structurally, for scalar quantities we computed
the correlation between data and model; for vector quantities we analysed the error an-
gle and error vector; for tensor quantities we analysed the distributions of the quadratic
invariants and the distribution between sheet and tube topologies. The main result of
this work is that the proposed model outperformed all alternatives in all conducted
comparisons. We attributed this to a better local adherence to the geometrical struc-
ture of the SGS terms. The main disadvantage of the eddy-viscosity models is that
they only accommodate one direction of energy transfer — from large to small scales.
Furthermore, the functional models in general are designed to model, what turned out
to be in the examined data set, a sub-dominant part of the energy transfer. Thus their
overall performance with respect alternative diagnostics suffered. The scale-similarity
model performed similarly to the proposed model with regards to structural diagnostics,
however functionally it neglects the cross-helicity dynamics and thus struggled to rep-
resent as faithfully the energy and cross-helicity total flux terms. It must be remarked
however that all models suffered from a commutation error between the mass-weighted
filtering operator and differentiation which affected their performance with respect to
the total flux terms. Overall, the a priori analysis identified the proposed models as
the preferred candidate for further investigation and applications.

The next steps of model verification include an expansion of the paramater space
to include non-isotropic flows, decaying turbulence, self-gravity and thermal effects.
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Additionally, the influence of the filter kernel shape needs to be investigated along with
the filter scale. The latter requires higher resolution data with sufficiently broad inertial
range to accommodate several sufficiently distinct values for the filter scale. From the
analytical point view, the relationship between the error vector and the flux correlations
needs to be clarified in order to better understand the reasons for the performance of the
different models, i.e. to what extent the different diagnostics support and/or explain
one another. Additionally, the effects of the Favre-filter — differentiation commutator
need to be verified.

In parallel, a posteriori analysis can already be performed on the proposed model. The
results can then be compared to a corresponding DNS or experimental dataset. The
current results provide strong motivation to begin the testing with static constant coef-
ficients. The a posteriori analysis will require the selection of a new set of diagnostics,
but it will also explore a new facet of the model. For instance, a posteriori tests provide
a direct access to temporally non-local model features. Ultimately, our goal is to use
the model in realistic simulations directed at addressing some of the outstanding as-
trophysical problems of the day. Hopefully, this will make a small step in the direction
of understanding the dynamics of compressible MHD turbulence in astrophysics.
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