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1 Summary 

Macroautophagy is a conserved catabolic pathway for the removal and recycling of 

cytosolic components, damaged or surplus organelles, protein aggregates or 

intracellular pathogens to maintain cellular homeostasis. It is characterized by the 

formation of a double-membrane-layered vesicle, called autophagosome, that engulfs 

intracellular material. In yeast, autophagosome formation is initiated at the pre-

autophagosomal structure (PAS). Here, a double-membrane structure, the phagophore, 

elongates and closes to form the autophagosome. Finally, the outer membrane of the 

autophagosome fuses with the vacuole releasing the inner membrane together with the 

cargo in the vacuolar lumen for degradation. 

Atg8 is a key component for autophagosome biogenesis and selective cargo recruitment 

to the phagophore. In this study, a series of GFP-Atg8 variants, including mutants that 

are unable to bind Atg8-interacting motifs (AIMs), were used as baits for co-

immunoprecipitation (CoIPs) and following mass spectrometry analysis to find novel 

Atg8 interaction partners. This allowed rapid validation of the numerous proteins 

identified in mass spectrometry. 

This approach identified Atg26 as an AIM-dependent interaction partner of Atg8. Atg26 

is a sterol glucosyltransferase with a PH and GRAM domain. So far, the function of Atg26 

in S. cerevisiae was unknown. In this study, using bioinformatics, a C-terminal Atg8-

interacting motif (AIM) was predicted in Atg26. Interestingly, this motif was necessary 

for recruitment of Atg26 to the phagophore and its autophagic degradation, which are 

common features of known AIM-containing proteins. 

To uncover the function of Atg26 in S. cerevisiae, CoIPs with GFP-Atg26 as bait were 

done. Here, the major coat protein Gag of the S. cerevisiae virus L-A was identified as an 

Atg26 interaction partner. L-A is a dsRNA virus of the Totiviridea family. It has a single 

4.6 kb dsRNA genome with two overlapping ORFs, where ORF1 encodes the major coat 

protein Gag and ORF2 is a RNA-dependent RNA polymerase (Pol) that is expressed as a 

180 kDa Gag-Pol fusion protein. L-A virus-like particles (VLP) are made up of 120 Gag 

subunits (from which about 2 are Gag-Pol fusion proteins), containing genomic dsRNA 

inside. 

In this study, using truncated versions of Atg26 as baits for CoIPs and pull down assays 

the Gag binding domain of Atg26 was narrowed down to the PH domain and an 

undefined following region of Atg26. Atg26 recruitment to the phagophore by its C-
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terminal AIM and its interaction with L-A Gag suggested an involvement of Atg26 in 

selective autophagic degradation of the L-A virus. Here, GFP-tagged L-A Gag, showing 

comparable features as endogenous L-A Gag in binding studies and microscopic 

analyses, was established as a tool to measure autophagic removal of L-A Gag. During 

starvation, GFP-tagged Gag was degraded by autophagy, while deletion of ATG26 caused 

a 50% reduction of the autophagic rate. Thus, this study showed for the first time that L-

A Gag is degraded by autophagy and attributes a direct role in this process to Atg26. 

Indeed, the selective adapter Atg11 and the PROPPINs Atg21 and Hsv2, which are 

typical regulators of selective autophagy, are also involved in processing of GFP-Gag. 

These observations indicate that L-A Gag is degraded by selective autophagy. 

Taken together, this study suggests that Atg26 might recruit L-A Gag or complete L-A 

VLPs to the phagophore for degradation by selective autophagy. 
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2 Introduction  

 

2.1 Prelude 

Autophagy is an evolutionary conserved degradative pathway for maintenance of 

cellular homeostasis and adaption to environmental changes or other forms of stress. 

For large-scale degradation of intracellular material, the cell evolved different transport 

mechanisms for macromolecules and organelles from the cytosol to the lytic 

compartment (either the lysosome in higher eukaryotes or the vacuole in fungi and 

plants) over limiting membranes.  

Macroautophagy (hereafter: autophagy) is a highly organized membrane-trafficking 

pathway for en masse degradation of intracellular macromolecules and organelles 

(Figure 2.1A). Morphologically, this process starts with the formation of the phagophore, 

a cup-shaped double membrane structure, that expands to engulf cytosolic components. 

Upon closure, a double-membrane-layered vesicle, the so-called autophagosome, is 

formed. Finally, the outer membrane of an autophagosome fuses with the lytic 

compartment (lysosome or vacuole) leading to degradation of the inner 

autophagosomal membrane together with the cargo (Reggiori and Klionsky, 2013).  

Micorautophagy describes an autophagic mechanism, where the lysosomal/vacuole 

membrane invaginates directly with the engulfed cargo and bud into the lumen for 

degradation (Figure 2.1B) (Li et al., 2012).  

In mammalian cells, a third, non-vesicular way of autophagy exists that mediates direct 

protein translocation across the lysosome-limiting membrane for degradation (Figure 

2.1C). This molecule-by-molecule mechanism is termed chaperone-mediated autophagy 

(CMA) and recruits KFERQ-motif-containing substrates via the cytosolic chaperone 

Hsc70. After the substrate protein is unfolded, it is translocated across the lysosomal 

membrane by the integral protein LAMP2A and the intralysosomal chaperone hsc70 (ly-

hsc70) that acts as molecular ratchet (Cuervo and Wong, 2014; Dice, 1990). 

Investigation of autophagy provides knowledge for basic subcellular mechanisms such 

as the rearrangement of membranes. Furthermore, there are many examples that show 

associations of autophagic malfunctions and diseases. Therefore, autophagy can be used 

as a diagnostic marker and is in focus as a potential therapeutic target (Schneider et al., 

2014). 
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Historically, autophagy was discovered in the early sixties by the work of Ashford and 

Porter (1962), which demonstrated that glucagon treatment leads to accumulation of 

cytosolic components and organelles in the lysosome (Ashford and Porter, 1962). 

Further studies in mammalian systems revealed that autophagy is a response to nutrient 

withdrawal (Deter et al., 1967; Mortimore and Pösö, 1987; Seglen et al., 1991). In the 

nineties of the last century, it was shown that autophagy also exists in S. cerevisiae and, 

in this context, the first autophagy-related genes (ATGs) were found by genetic 

screening (Harding et al., 1995; Klionsky et al., 1992; Matsuura et al., 1997; Takeshige et 

al., 1992; Thumm et al., 1994; Tsukada and Ohsumi, 1993). Discovery of orthologs in 

other organisms showed that this process is conserved in eukaryotes. Thus, the 

knowledge of one model system is transferable to other eukaryotes. In yeast, 38 ATG 

genes had been identified, which are directly associated with autophagy. 

 

Figure 2.1 Different mechanisms of autophagy (modified from (Lynch-Day and Klionsky, 2010)) 
(A) Macroautophagy starts with the formation of the phagophore, a double-membrane structure that 
engulfs cytosolic material. The completed autophagosome fuses with the vacuole/lysosome and after lysis 
of the inner membrane the cargo enters the lumen for degradation. 
(B) During microautophagy, the cargo is directly invaginated by the vacuolar/lysosomal membrane. The 
invaginated membrane together with the engulfed cargo pinches-off into the vacuolar lumen for 
degradation. 
(C) Chaperone-mediated autophagy directly translocates KFERQ-containing proteins across the lysosomal 
membrane. 
 
 

 

 

 

A

B

C
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2.2 Saccharomyces cerevisiae as model organism 

Saccharomyces cerevisiae is a useful tool to study intracellular processes. Elementary 

biochemical pathways are highly conserved among eukaryotes. The gene homology 

between yeast and humans is about 60%. Therefore, knowledge derived from studies in 

yeast is transferable to other eukaryotes and can even be used to investigate human 

diseases (Gavin et al., 2002; Hartwell, 2004; Mager and Winderickx, 2005; Miller-

Fleming et al., 2008).  

Yeast was the first eukaryote, whose genome was completely sequenced: The genome of 

a haploid cell has about 12.000 kb, distributed on 16 chromosomes, with more than 

6.000 open reading frames (Goffeau et al., 1996). The parallel development of many 

tools for precise genetic manipulation based on homologous recombination, the ease of 

transformation and the available online databases further make yeast a favoured model 

system (Goffeau et al., 1996; Janke et al., 2004; Knop et al., 1999; Longtine et al., 1998). 

 

Figure 2.2 S. cerevisiae as model organism 
(A) Morphology of S. cerevisiae (EM). Top: During starvation, wt cells accumulate cytosolic material 
(arrowhead) in the vacuole by autophagy. Bottom: ATG mutants are defective in autophagic transport of 
cytosolic material to the vacuole. Therefore, the vacuole is empty in these strains (modified from (Tallóczy 
et al., 2002)).  
(B) Life cycle of S. cerevisiae. (1) The haploid mating types Mata and Matα bud by mitotic division. (2) 
Haploids generate diploid cells by mating. (3) Sporulation leads to formation of 4-8 (haploid) spores 
within a single mother cell. 
 
 

Morphologically, this unicellular eukaryote has a round to oval shape with 5-10 µm in 

diameter (Figure 2.2A). Budding yeast has a rapid growth rate with a doubling-time of 

approximately 90 min in nutrient-rich medium. The life cycle consists of three stages 

(Figure 2.2 B): (1) The haploid mating types, Mata and Matα, bud by mitotic division. (2) 

Haploids are able to generate diploid cells by mating. (3) Nutritional stress treatment 
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(such as growth on acetate) of diploids causes sporulation, characterized by meiotic 

division and formation of 4-8 (haploid) spores within a single mother cell (Neiman, 

2005).   

 

2.3 The autophagic core machinery and the membrane   

        sources for autophagosome formation in yeast 

Currently, more than 35 ATG genes were identified that function in any kind of 

autophagy. Among them, approximately 18 proteins are elementary for all kinds of 

autophagy and are therefore classified as the autophagic core machinery. These group of 

core proteins can be divided in further functional subgroups: i) the Atg1 complex; ii) the 

phosphatidylinositol 3-kinase complex, iii) Atg9 vesicle associated complexes and iv) the 

two ubiquitin-like conjugation systems. The following chapters will provide an insight 

into how autophagy is induced (chapter 2.3.1), where autophagosomes are formed and 

which membrane origins are used (chapter 2.3.2), how the core machinery proteins are 

organized (chapter 2.3.3-2.3.6) and, finally, how autophagosomes are delivered to the 

vacuole for degradation of their cargos (chapter 2.3.7).  

 

2.3.1 Induction of unselective macroautophagy  

In yeast, starvation is the central inducer of autophagy. Different autophagy-inducing 

mechanisms exit in parallel to sense the kind of nutrient limitation and induce optimal 

adaption.  

The protein kinase  (target of rapamycin) Tor1 and Tor2 together with Kog1, Lst8 and 

Tco89 form the Tor kinase 1 complex (TORC1) that response to the cellular nitrogen 

level and negatively regulates autophagy. Under nutrient-rich conditions, TORC1 is 

activated and hyperphosphorylates Atg1 and Atg13 and thereby inhibits autophagy 

(Abeliovich et al., 2000; Fujioka et al., 2014; Scott et al., 2000). Rapamycin inhibits Tor 

and can even be used for pharmacological induction of autophagy (Loewith and Hall, 

2011; Noda and Ohsumi, 1998). 

The kinase PKA is a further phosphoregulator of Atg1 and Atg13. A high level of glucose 

leads to production of the second messenger cAMP, which liberates PKA from its 

regulatory subunit Bcy1. Consequently, PKA is activated and phosphorylates Atg13 and 

Atg1 (Budovskaya et al., 2004; Yorimitsu et al., 2007). Detailed analyses of Atg13 
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phosphoregulation showed that PKA phosphorylates Atg13 on different sites than Tor, 

but also with an autophagy-inhibiting effect (Stephan et al., 2009). 

The general control of nutrients(/nonderepressible)(GCN) pathway senses the amount  

of cellular amino acids and regulates autophagy on transcriptional level. A key 

component of this signalling network is the eIF2α kinase Gcn2, which is stimulated by 

unconjugated tRNA (Dever et al., 1992). As a result, the downstream transcription factor 

Gcn4 is increased translated and activates transcription of ATG genes (Ecker et al., 2010; 

Tallóczy et al., 2002). 

 

2.3.2 The preautophagosomal structure (PAS) and the    

           membrane origins of autophagosomes 

In fluorescence microscopy, the PAS (preautophagosomal structure or also known as 

phagophore assembly site) is a punctate structure next to the vacuole. Since the majority 

of Atg proteins at least transiently locate to the PAS, this compartment is understood as 

the nucleation site for autophagosome formation (Suzuki et al., 2001; Suzuki et al., 

2007). The exact protein and membrane composition of the PAS and thus its definition 

as subcellular compartment remains enigmatic.  

From the PAS as the nucleation site, the phagophore (also called isolation membrane) 

needs to be elongated by addition of membrane sources to form an autophagosome.  

Studies on mammalian cells in the early nineties suggested that the ER is involve in 

autophagosome formation (Dunn, 1990a; Dunn, 1990b). Recent studies in yeast seemed 

to support this observation by showing that the ER exit sites (ERES), which are 

subdomains of the ER for COPII vesicle formation, are associated with the PAS. It was 

published that ERES trigger fusion of COPII vesicles with the phagophore and thus 

phagohore elongation (Graef et al., 2013; Suzuki et al., 2013). Furthermore, it was 

recently demonstrated for mammalian cells that the reticulum–Golgi intermediate 

compartment (ERGIC), an ER site closely related to ERES, is a membrane source for 

autophagy (Ge et al., 2013). Similar to yeast, ERGIC-generated COPII-vesicles might 

mediate the membrane transfer from the ER to the expanding phagophore (Ge et al., 

2013). 

Nonetheless, there exists evidence for further membrane sources: For example Atg9, the 

only integral membrane protein of the core machinery, is delivered from the trans-Golgi 

and endosomes to the phagophore (Ohashi and Munro, 2010; Wang et al., 2012; 
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Yamamoto et al., 2012). The origin of autophagosomal membranes is still discussed, but, 

all facts considered, membranes from various compartments seems to be involved, 

including the ER, the Golgi apparatus, endosomes, mitochondria and the plasma 

membrane (der Vaart et al., 2010; Ge et al., 2014; Hamasaki et al., 2013; Mari et al., 

2010; Taylor et al., 2012; Yen et al., 2010; Young et al., 2006). 

 

Figure 2.3 Membrane sources for autophagosome formation (modified from (Ge et al., 2014)) 

                                         

 

2.3.3 The Atg1 complex 

Formation of the Atg1 complex is one of the most upstream events upon autophagy 

induction. It consists of the serine/threonine kinase Atg1, the regulatory subunit Atg13, 

and the constitutive ternary complex Atg17-Atg31-Atg29 (Figure 2.4 and 2.5A) (Cheong 

et al., 2008; Kabeya et al., 2005; Kamada et al., 2000; Matsuura et al., 1997; Straub et al., 

1997). Under nutrient-rich condition, TORC1 or other kinases directly phosphorylate 

Atg1 and Atg13 for inhibition of autophagy induction (chapter 2.3.1) (Abeliovich et al., 

2000; Scott et al., 2000; Wang et al., 2001; Wilson and Roach, 2002). Directly after 

autophagy induction, Atg13 becomes partially dephosphorylated. Previous studies 

proposed that dephoshorylation of Atg13 leads to interaction with Atg1 and thus 

nucleation of the Atg1 complex (Fujioka et al., 2014; Kamada et al., 2000). However, 

Kraft et al (2012) published that Atg1 and Atg13 interact constitutively with each other. 

This conflicting results would agree with studies in mammalian cells, where ULK1, the 

mammalian homolog of Atg1, is always assembled with mammalian ATG13 (Hosokawa 

et al., 2009; Kraft et al., 2012). The early autophagy targeting (EAT) domain of Atg1 
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mediates interaction with Atg13 (Cheong et al., 2008; Yeh et al., 2011). In vitro 

experiments showed that this domain is also able to selectively bind highly curved 

vesicles of 20-30 nm in diameter, which is approximately the size of Atg9 vesicles, 

suggesting an in involvement in vesicle tethering in early steps of autophagy (see also 

chapter 2.3.5) (Figure 2.5D) (Chan et al., 2009; Ragusa et al., 2012). 

Besides its complex formation with Atg1, Atg13 also directly interacts with Atg17, a 

scaffold protein with a crescent-shaped structure (Fujioka et al., 2014; Ragusa et al., 

2012). Atg17 is able to dimerise and forms a constitutive ternary complex with Atg31-

Atg29 (Kabeya et al., 2009).  Thus, taken together, the overall Atg1 complex is thought as 

a dimer of Atg1–Atg13–Atg17–Atg31–Atg29, forming a S-shaped architecture  (Figure 

2.4 and 2.5A) (Chew et al., 2013; Ragusa et al., 2012). Upon starvation, the Atg17-Atg31-

Atg29 module of the Atg1 complex is required for kinase activity of Atg1 and serves as a 

scaffold for recruitment of further Atg proteins and membrane sources, such as Atg9 

vesicles (chapter 2.3.5) (Figure 2.4B, 2.5D) (Mao et al., 2013a; Stanley et al., 2014).  

 

Figure 2.4 The Atg17-Atg31-Atg29 complex (modified from (Hurley and Schulman, 2014)) 
(A) The S-shaped architecture of dimeric Atg17. 
(B) Model for the dimeric Atg17-Atg31-Atg29 complex bound to two 20 nm vesicles. 

 

During selective autophagic pathways, Atg17 is functionally replaced by Atg11 that, 

under these certain conditions, acts as scaffold for assembling the PAS and further has a 

adaptor function by linking receptor-cargo complexes to the autophagic machinery 

(Cheong et al., 2008; Okamoto et al., 2009; Suzuki et al., 2007).   

Recently, it was shown that Atg9 and Atg2 are putative substrates of Atg1. Detailed 

analyses of the Atg1-dependent Atg9 phosphorylation suggested that this process is 

important for initial steps of autophagosome formation (Papinski et al., 2014). 

A B
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Furthermore, it is proposed that Atg1 phosphorylates the selective receptors Atg19 and 

Atg32. However, in both cases, the function of Atg1-dependent phosphoregulation 

remained unclear (Kondo-Okamoto et al., 2012; Pfaffenwimmer et al., 2014). 

 

2.3.4 The phosphatidylinositol (PtdIns) 3-kinase complex 

Phosphatidylinositol 3-phosphate (PI3P) synthesis is essential for autophagy. In yeast, 

Vps34 is the only class III PtdIns 3-kinase and forms two complexes, named PtdIns 3-

kinase complex I and II (Schu et al., 1993). The former complex is essential for 

autophagy, whereas the latter plays a role in protein sorting to the vacuole (Kihara et al., 

2001). PtdIns 3-kinase complex I is made up of Vps34, Vps15, Vps30/Atg6, Atg14 and 

Atg38 (Figure 2.5 B) (Araki et al., 2013). In complex II, Atg14 is replaced by Vps38, 

making this complex non-relevant for autophagy (Kihara et al., 2001). The presence of 

Atg14 (I) or Vps38 (II) determines the localisation of the complexes and thus where 

PtdIns3-kinase activity occurs: at the PAS or at endosomes, respectively (Obara et al., 

2006). PAS recruitment of the PtdIns3-kinase complex I is mediated by the HORMA 

domain of Atg13, a component of the Atg1 complex (Figure 2.5 D) (Jao et al., 2013).  

Production of PI3P at the PAS is necessary to recruit proteins that function in 

autophagosome formation such as the PI3P-binding protein Atg18 (chapter 2.3.5) (Krick 

et al., 2006).  

 

2.3.5 Atg9 vesicles and associated complexes 

 Atg9 is the only multi-spanning integral membrane protein of the core machinery 

necessary for autophagosome biogenesis (Lang et al., 2000; Noda et al., 2000). Atg9-

containing vesicles cycle between peripheral sites and the PAS. These Atg9 vesicles are 

generated at the Golgi-endosomal pathway, which involves the Rab GTPase Sec2, the 

guanine-nucleotide-exchange factors Sec4 and Sec7, the ADP- ribosylation factors (Arfs) 

1/2   and the Golgi–localized PtdIns 4-kinase Pik1 (der Vaart et al., 2010; Geng et al., 

2010; Ohashi and Munro, 2010; Wang et al., 2012). Further components, necessary for 

efficient delivery of Atg9 to the PAS, are the peripheral membrane protein Atg23 and the 

integral membrane protein Atg27 (Backues et al., 2014; Tucker et al., 2003; Yen et al., 

2007). However, the anterograde transport to the PAS is still conflicting: Mari et al 

(2010) showed that Atg9 locates in cytosolic clusters of vesicles and tubules adjacent to 



Introduction 

 11 

mitochondria, called Atg9 reservoir. Formation of these tubulovesicular structures 

might depend on membrane fusion events mediated by the SNARES Sso1/2, Sec9 and 

Tlg2 (Mari et al., 2010; Nair et al., 2011). In contrast, Yamamoto and co-workers (2012) 

showed that the majority of Atg9 locates on highly mobile cytoplasmic vesicles, each 

with about 27 copies of Atg9 (Yamamoto et al., 2012).  

It has been proposed that upon induction of autophagy a part of the Atg9 vesicles moves 

close to the vacuole to initiate nucleation of the phagophore. At the PAS, dimeric Atg17 

acts as scaffold for the Atg1 complex and in addition binds directly to Atg9. Atg1 itself 

might bind the Atg9 vesicles via its EAT domain. Thereby, the Atg1 complex is thought to 

cluster and tether the Atg9 vesicles for priming membrane fusion events at the PAS (see 

chapter 2.3.3) (Figure 2.5D) (Ragusa et al., 2012; Sekito et al., 2009; Stanley et al., 2014). 

Further findings support that Atg9 vesicles might mediate early steps of phagophore 

formation: The Rab protein Ypt1 and its multimeric GEF, termed transport protein 

particle (TRAPP) III complex, are involved in autophagy (Lynch-Day et al., 2010; 

Meiling-Wesse et al., 2005). It was demonstrated that TRAPP III colocalize with Atg9 

vesicles and that Trs85, a TRAPPIII component, directly interacts with Atg9 (Figure 2.5 C 

and D) (Kakuta et al., 2012; Lipatova et al., 2012). Ypt1 is a further factor that recruits 

Atg1 to the PAS by direct interaction (Wang et al., 2013a). Together, these observations 

suggest an involvement of the Rab Ypt1 and its GEF TRAPPIII in homotypic membrane 

fusions of Atg9 vesicles or fusion with other membrane sources such as COPII vesicles. 

These early membrane fusion events might trigger phagophore formation and 

elongation (Figure 2.5 C and D) (Graef et al., 2013; Tan et al., 2013; Wang et al., 2014).  

For the retrograde transport of Atg9 (from the PAS back to the peripheral sites), the 

Atg1-Atg13 module of the Atg1 complex and the Atg2-Atg18 complex are necessary 

(Reggiori et al., 2004). Atg18 is an autophagic core protein with a seven-bladed ß-

propeller structure, classified to the protein family of PROPPINs (β-propellers that bind 

polyphosphoinositides) (Krick et al., 2012; Michell et al., 2006). Atg21 and Hsv2 are 

Atg18 homologs and involved in selective kinds of autophagy (Barth et al., 2002; Krick et 

al., 2008b). PAS localisation of Atg18 and its autophagic function depends on interaction 

with PI3P and thus the activity of the PtdIns3-kinase complex I. Atg18 and Atg2 interact 

PI3P-independently with each other. Complex formation is necessary for their PAS 

localisation and, consequently, their autophagic function (Obara et al., 2008; Rieter et al., 

2013). 
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Figure 2.5 Current model of early stages of phagophore formation (modified from (Ge et al., 2014)) 
(A) The Atg1 complex (pink). Upon autophagy, Atg1 and Atg13 become dephosphorylated and bind the S-
shaped, dimeric Atg17-Atg29-Atg31 complex. 
(B) The PtdIns3-kinase complex I (green) consists of Vps34, Vps15, Vps30/Atg6, Atg14 and Atg38 (not 
shown). It is recruited to the PAS by the HORMA domain of Atg13. 
(C) Atg9 vesicles, Ypt1, TRAPPIII and COPII vesicles are involved in initial events of phagophore 
formation. 
(D) Hypothetic interplay of all components. The Atg1 complex, Ypt1 and the TRAPPIII complex might 
regulate homotypic fusion of Atg9 vesicles or fusion with COPII vesicles. 

 

2.3.6 Two ubiquitin-like conjugation systems 

The two ubiquitin-like (UBL) proteins Atg8 and Atg12 are the substrates of two 

networking ubiquitin-like (UBL) conjugation systems, which are both part of the 

autophagic core machinery (Ichimura et al., 2000; Mizushima et al., 1998a). 

Initially, Atg8 is expressed with an arginine at the very C-terminal position (Atg8FGR), 

which is removed by the cysteine protease Atg4 before the Atg8 conjugation cascade 

begins (Figure 2.6A). Consequently, a glycine becomes the very C-terminal residue of 

Atg8 (Atg8FG) and is a prerequisite for interaction with enzymes of the UBL conjugation 

system (Kirisako et al., 2000). In contrast to Atg8, Atg12 is not processed before 

conjugation. 

At the beginning of the two networking UBL conjugation systems, the E1-like protein 

Atg7 activates Atg8 and Atg12 in an ATP-consuming reaction, resulting in an Atg7∼UBL 

intermediate formed by a thioester bond between the catalytic cysteine of Atg7 and the 

carboxy terminus of Atg8FG or Atg12 (Figure 2.6B) (Mizushima et al., 1998a; Mizushima 

et al., 1998b; Noda et al., 2011). The C-terminal domain of Atg7 mediates activation of 

the UBL protein (Atg8 or Atg12) and is necessary for homodimerisation, whereas the N-

terminal region recruits the E2-like enzymes Atg3  (for Atg8) or Atg10 (for Atg12). Thus, 
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the full E1 complex is a dimer of Atg3-Atg7∼Atg8 or Atg10-Atg7∼Atg12 (Hong et al., 

2011; Komatsu et al., 2001). In this configuration, the activated UBL is transferred to its 

corresponding E2-like enzyme in trans (Figure 2.6C) (Klionsky and Schulman, 2014; 

Noda et al., 2011; Taherbhoy et al., 2011).  

Conjugation of Atg12 is a prerequisite for efficient Atg8 lipidation, therefore, this 

process will be described first: Once transferred to the E2-like Atg10, the activated 

carboxy terminus of Atg12 forms a thioester bond with the active site cysteine of Atg10 

(Figure 2.6C) (Hong et al., 2012; Shintani et al., 1999). Finally, in an E3-independent 

mechanism, Atg10 interacts directly with Atg5 and initiates formation of a covalent 

bond between the C-terminus of Atg12 and an internal lysine of Atg5 (Figure 2.6D) 

(Shintani et al., 1999; Yamaguchi et al., 2012).  Notably, Atg5 is a further UBL protein of 

the autophagic core machinery consisting of two UBL domains linked by a helix-rich 

domain (Matsushita et al., 2007). In addition to the interaction with Atg12, Atg5 forms a 

(non-covalent) complex with the autophagic core protein Atg16 (Mizushima et al., 

1999). The coiled-coiled domain of Atg16 mediates its homodimerisation that leads to 

formation of a large dimeric Atg12-Atg5/Atg16 complex (Figure 2.6E) (Fujioka et al., 

2010; Kuma et al., 2002). This complex has an E3-like function in the Atg8 conjugation 

system (Figure 2.6F).  

Once activated, Atg8 is transferred from Atg7 (E1) to Atg3 (E2) to form the Atg3∼Atg8 

intermediate, the membrane associated Atg12-Atg5/Atg16 complex acts as platform to 

bring activated Atg8 close to its substrate phosphatidylethanolamine (PE) (Figure 2.6F) 

(Hanada et al., 2007). It was published that direct binding of the Atg12-Atg5 conjugate to 

Atg3∼Atg8 causes a conformational change in the active center of Atg3 and thereby 

stimulates its conjugase activity (Sakoh-Nakatogawa et al., 2013). Atg8 lipidation is not 

completely abolished in the absence of this E3-like complex. Therefore, this complex 

only facilitates the PE-conjugation process (Suzuki et al., 2001).  

Initial membrane binding of the Atg5-Atg12/Atg16 complex remains still elusive: There 

are hints that membrane recruitment of the Atg12-Atg5/Atg16 complex might be 

mediated by Atg5, containing a putative membrane-binding domain (Romanov et al., 

2012). For mammalians, it was recently demonstrated that the PROPPIN WIPI2b, an 

Atg18 ortholog (chapter 2.3.5), directly interacts with ATG16L and thereby PI3P-

dependently regulates conjugation of the Atg8 ortholog LC3 (Dooley et al., 2014). In 

agreement with this model, it was shown in yeast that Atg5 and Atg16 are PI3P-
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dependently recruited to the PAS (Suzuki et al., 2007). 

In vitro studies with giant unilamellar vesicles (GUVs) suggested a further function of the 

Atg12-Atg5/Atg16 complex: After conjugation to PE, lipidated Atg8 in turn forms a 

complex with Atg12 on the convex outer membrane of the emerging phagophore to 

stabilize the membrane association of the Atg12-Atg5/Atg16 complex. In this context, 

Atg16 is thought to act as a crosslinker to organize a continuous meshwork of Atg12-

Atg5/Atg8-PE complexes on the emerging autophagosome, resulting in a membrane 

coat (Kaufmann and Wollert, 2014; Kaufmann et al., 2014). Atg8-PE also locates on the 

concave inner site of the phagophore, where it ats as a scaffold to recruit autophagic 

cargos or might fulfill further functions (chapter 2.4). 

Figure 2.6 Two UBL conjugation systems (modified from (Nakatogawa et al., 2009)) 
(A) The cysteine protease Atg4 cleaves-off the C-terminal arginine of Atg8. (B) Atg8 and Atg12 are 
activated by Atg7 (E1-like protein). (C) Atg8 is then transferred to the E2-like protein Atg3, whereas 
Atg12 forms a complex with the E2-like protein Atg10 and (D) becomes covalently linked to Atg5. (E) This 
conjugate is a component of the large dimeric Atg12-Atg5/Atg16 complex that executes an E3-like 
function: (F) It stimulates the transfer of Atg8 from Atg3 to PE.  (G) Atg4 acts as a deconjugating enzyme to 
release Atg8 from PE on the outer membrane. 

 

During later stages of autophagy, the cysteine protease Atg4 acts as a deconjugating 

enzyme to release Atg8 from PE on the outer membrane of the emerging 

autophagosome for reuse of these Atg8 molecules that had exerted their functions 

(Figure 2.6G) (Kirisako et al., 2000). Another proposed role of Atg4 is deconjugation of 

randomly generated, non-functional Atg8–PE on autophagy-independent membranes 
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(Nair et al., 2012; Nakatogawa et al., 2012a; Yu et al., 2012). Those Atg8-PE conjugates 

on the inner surface of the emerging autophagosome are not cleaved off and therefore 

degraded together with the cargos.  

 

2.3.7 Autophagosome closure and delivery to the vacuole 

Late stages of autophagy include the completion of the phagophore elongation and its 

closure, resulting in a double membrane vesicle. This completed autophagosome is 

delivered to the vacuole.  

One important factor for these last steps is the PI3P-specific phosphatase Ymr1. 

Hydrolyses of PI3P by this phosphatase is necessary for disassembly of Atg proteins 

from the completed autophagosome, allowing its fusion with the vacuole (Cebollero et 

al., 2012a). Atg4-dependent deconjugation of Atg8 from the mature autophagosome is 

also critical for efficient autophagy (Nair et al., 2012; Nakatogawa et al., 2012a). 

Autophagosome docking and fusion with the vacuole is organized by the vacuolar Rab 

GTPase Ypt7, its GEF complex Ccz1-Mon1, the SNARE proteins Vam3, Vam7, Vti1 and 

Ykt6, together with the class C Vps/HOPS complex (Darsow et al., 1997; Ishihara et al., 

2001; Meiling-Wesse et al., 2002; Nair et al., 2011; Rieder and Emr, 1997; Wang et al., 

2002). The outer membrane of the autophagosome fuses with the vacuolar membrane, 

whereas the inner membrane vesicle containing the cargo enters the vacuolar lumen. 

This intraluminal single membrane vesicle is termed autophagic body. Depending on the 

activity of Atg15, a putative vacuolar lipase, and proteinase A (Pep4), the membranes of 

autophagic bodies are lysed, allowing vacuolar proteases to degrade the autophagic 

cargos (Epple et al., 2003; Epple et al., 2001; Huang et al., 2000; Takeshige et al., 1992; 

Teter et al., 2001). Recycling of resulting metabolites to the cytosol is mediated by the 

amino acid effluxer Atg22 and further vacuolar permeases (Yang et al., 2006). 

 

2.4 Detailed view on Atg8 and its interaction partners 

Atg8 has a N-terminal helical region and a C-terminal UBL domain (Figure 2.7C). Yeast 

cells contain a single gene encoding for Atg8, while mammals have eight homologs of 

Atg8 that are divided in the two subgroups MAP1LC3  (in short: LC3) and GABARAP 

based on their sequence homology. It is proposed that the members of the MAP1LC3 

group, including LC3A (2 variants), LC3B and LC3C, are involved in early steps of 

autophagosome formation, whereas GABARAP, GABARAPL1, GABARAPL2 and 
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GABARAPL3 were shown to have functions in later stages (Weidberg et al., 2010). 

Besides its role in autophagosome formation (chapter 2.3.6), lipidated Atg8 also acts as 

a platform to recruit selective cargos to the phagophore membrane. Especially this 

function has become focus of interest during the last few years. In yeast, the Cvt pathway 

(chapter 2.5.1), mitophagy (autophagy of mitochondria, chapter 2.5.2) and pexophagy 

(autophagy of peroxisomes, chapter 2.5.3) are all receptor-mediated selective pathways. 

Selective receptors physically link their cargos to lipidated Atg8 and the selective 

adapter Atg11 on the concave inner membrane of the phagophore. Selective receptors 

contain one or more Atg8-interacting motifs (AIMs), also called WXXL-motifs or LC3-

interacting regions (LIRs), that bind the UBL domain of Atg8. Mapping and structural 

analyses of AIMs was first done for the mammalian sequestosome-1-like receptor p62 

and the yeast Cvt pathway receptor Atg19 (Ichimura et al., 2008; Noda et al., 2008; 

Pankiv et al., 2007). Soon after, many further AIM/LIR-containing proteins were 

identified (Figure 2.7A). The consensus sequence of canonical AIMs is W0/F0/Y0-X+1-X+2-

L+3/I+3/V+3, indicating that an aromatic amino acid at position 0 and a hydrophobic 

amino acid at position +3 are strictly required (Birgisdottir et al., 2013). Acidic residues 

and phosphorylation sites often accumulate closely to AIMs, because negatively charged 

residues increase the affinity to Atg8 (Figure 2.7B) (Alemu et al., 2012; Birgisdottir et al., 

2013; Farré et al., 2013; Noda et al., 2008; Noda et al., 2010). Nonetheless, there also 

exist cryptic AIM variants. Recently, the Cvt receptor Atg19 was shown to have 

functional cryptic AIMs in addition to the conventional very C-terminal AIM (see chapter 

2.5.1) (Noda et al., 2008; Sawa-Makarska et al., 2014).  

In yeast, four selective receptors are known, including the Cvt pathway receptors Atg19 

and Atg34, the mitophagy receptor Atg32 and the pexophagy receptor Atg36 (in Pichia 

pastoris pPAtg30) (Farré et al., 2013; Farré et al., 2008; Kanki et al., 2009; Okamoto et al., 

2009; Shintani et al., 2002; Watanabe et al., 2010).   

In mammals, typical examples for AIM-containing selective receptors are the 

sequestosome-1-like receptors (SLRs) p62, NBR1, optineurin and NDP52/CALCOCO2. 

p62 and NBR1 are involved in aggrephagy and pexophagy (Deosaran et al., 2013; Kirkin 

et al., 2009a). Xenophagy (autophagy of intracellular microbes) is also mediated by p62, 

but in this case together with NDP52 and optineurin (Thurston et al., 2009; Wild et al., 

2011). 
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Figure 2.7 AIM-containing Atg8 interactors 
(A) Sequence alignment of 26 published AIMs (black=hydrophobic; red=acidic; blue=basic; green= 
hydroxyl group)(modified from (Alemu et al., 2012)). 
(B) Sequence logo of the sequences in (A). The total height of the stack shows the sequence conservation 
at the respective position. The height of the letter within the stack indicates the relative frequency of the 
amino acid (modified from (Alemu et al., 2012)) 
(C) Structure of Atg8. The W-site/HP1 (red) binds the aromatic residue on position 0, whereas the L-
site/HP2 mediates interaction with the hydrophobic residue on position +3 of AIMs (Noda et al., 2010). 
(D) Atg8 (surface model) in complex with the AIM of Atg32 (S-1W0Q+1A+2L+3; stick model). The colours of 
the surface indicate the electrostatic potential (blue=positive; red=negative) (Kondo-Okamoto et al., 
2012). 

 

However, many AIMs were identified in autophagic core proteins that have no receptor 

function.  It was shown for the E2-like protein Atg3 to interact with Atg8 via an AIM. 

This interaction might liberate Atg8 from its complex with Atg19, leading to PE-

conjugation during the Cvt pathway (Yamaguchi et al., 2010). The AIM in mammalian 

ATG4B has a regulatory function that promotes its Atg8-deconjugation activity (Satoo et 

al., 2009). Furthermore, it was published in two independent studies that the 

serine/threonine kinase Atg1 AIM-dependently interacts with Atg8. This interaction 

seems to be relevant for the Cvt pathway (chapter 2.5.1) and late stages of 

autophagosome biogenesis, but the exact function remains elusive (Kraft et al., 2012; 
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Nakatogawa et al., 2012b). In mammals, the AIM in ULK1/2, the ortholog of yeast Atg1, 

has a preference for the mammalian Atg8-subfamily GABARAP that might stabilize the 

ULK complex on the phagophore (Alemu et al., 2012). Recently, Kaufmann et al (2014) 

showed a direct interaction between Atg8 and Atg12 based on a non-canonical, non-

contiguous AIM, where Phe185 and Ile111 of Atg12 three-dimensionally form the 

critical distance analogous to the aromatic residue on position 0 and the hydrophobic 

residue on position +3 of canonical AIMs. It is thought that the Atg8-Atg12 interaction 

might stabilize the proposed Atg12-Atg5/Atg16 membrane coat (chapter 2.3.6) 

(Kaufmann et al., 2014). 

Regarding the structure, Atg8 and its orthologs have a N-terminal helical arm (1-24) and 

a C-terminal UBL domain (25-117). The UBL domain forms two hydrophobic pockets for 

AIM binding. One hydrophobic pocket, named W-site or HP1, is located at the interface 

between the second ß-sheet (ß2) and the second alpha-helix (α2). The other 

hydrophobic pocket, called L-site or HP2, is formed between the second ß-sheet (ß2) 

and the third alpha helix (α3) of Atg8. The W-site binds the aromatic residue on position 

0, whereas the L-site mediates interaction with the hydrophobic residue on position +3 

of AIMs (Figure 2.7C and D) (Klionsky and Schulman, 2014; Noda et al., 2010). Besides 

these hydrophobic interactions, there also exist many examples for electrostatic 

attractions to increase the affinity: It was published that the acidic residues on the 

relative positions +1 and +2 of the very C-terminal AIM of Atg19 (A-3L-2T-1W0E+1E+2L+3) 

interact with the basic residues R67 and R28 of the UBL domain of Atg8 (Noda et al., 

2008). But it was also shown that neutral, polar residues, such as the glutamine on 

relative position +1 of the Atg32 AIM (S-3G-2S-1W0Q+1A+2L+3), are involved in electrostatic 

interaction (Figure 2.7D) (Kondo-Okamoto et al., 2012). In mammals, the basic residues 

R10 and R11 of the N-terminal arm of LC3B bind the acidic residues on the relative 

position -2 and -1 of the p62 AIM (D-3D-2D-1W0T+1H+2L+3), or the phosphorylated serine 

on the relative position -1 of the optineurin AIM (E-3D-2Sp-1F0V+1E+2I+3) (Ichimura et al., 

2008; Noda et al., 2010; Wild et al., 2011). Yeast Atg8 has no basic residues on these 

positions. Thus, K46 and K48 or (positively charged) amino acids on other sites might 

fulfill this function (Noda et al., 2010). 

The non-UBL N-terminal region is necessary for efficient autophagy (Nakatogawa et al., 

2007). A conformational polymorphism of this region was detected by NMR 

spectroscopy analysis. It has been proposed that this feature might be important for 
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Atg8 oligomerisation (Schwarten et al., 2010). Furthermore, interaction studies revealed 

that the FK motif (F5K6), a highly conserved sequence in this region, mediates complex 

formation with the Cdc48 adaptor Shp1 (Krick et al., 2010). This interaction plays a role 

during autophagosome biogenesis (Krick et al., 2011).  

 

2.5 Selective autophagy 

Originally, autophagy was defined as a non-selective, bulk degradation pathway initiated 

by starvation. However, especially in the last decade, genetic screens investigating yeast 

mutants that only affect specific degradation of organelles, but not non-selective, bulk 

autophagy, increased the evidence of selective autophagic pathways. 

 

2.5.1 The Cvt pathway as a role model for selective autophagy 

The cytoplasm to vacuole targeting (Cvt) pathway was the first discovered selective 

autophagic mechanism and is thus also the best-characterized (Baba et al., 1997; 

Harding et al., 1995). However, the Cvt pathway is a constitutive and biosynthetic 

process that selectively targets resident hydrolases to the vacuole. It is categorized as 

selective autophagy, because it requires the autophagic core machinery and is 

mechanistically equivalent to the other receptor-mediated selective pathways such as 

mitophagy (chapter 2.5.2) or pexophagy (chapter 2.5.3). 

Cvt vesicles are formed in the cytosol to delivery their cargos, including the resident 

enzymes aminopeptidase 1 (Ape1), α-mannosidase (Ams1) and aspartyl 

aminopeptidase (Ape4), to the vacuole, where they fulfill their functions (Hutchins and 

Klionsky, 2001; Klionsky et al., 1992; Yuga et al., 2011). Morphologically, a Cvt vesicle is 

about 150 nm in diameter and, therefore, much smaller than an autophagosome with a 

size range of about 300-900 nm (Baba et al., 1997).  

The precursor of aminopeptidase 1 (prApe1) is a key component for the assembly of the 

Cvt complex. First, prApe1 self-assembles to dodecameric complexes (Figure 2.8A). 

Then, this dodecamers generate the complete Ape1 complex (Figure 2.8B). Moreover, 

oligomers of Ape4 and Ams1 dock on the prApe1 complex by interaction with the Cvt 

receptor Atg19 to complete the cargo composition of the Cvt complex (Figure 2.8C). It 

was shown that Atg19 first interacts with the cargos, subsequently, with Atg11 and 

finally with Atg8 for Cvt complex recruitment to the phagophore (Figure 2.8D and E) 
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(Scott et al., 2001; Shintani et al., 2002; Uetz et al., 2000; Yorimitsu and Klionsky, 2005). 

Atg34, a secondary Cvt receptor and homolog of Atg19, has similar properties as Atg19 

regarding its interaction with Ams1, Atg11 and Atg8, but only substitutes Atg19 as an 

Ams1 receptor during starvation (Suzuki et al., 2010). 

Detailed interaction studies showed that the coiled-coiled domain of Atg19 (amino acid 

153-191) binds the propeptide of prApe1 and thereby associates with the Cvt complex 

(Shintani et al., 2002). More C-terminally in Atg19, a region mediates interaction with 

Ams1. Complex formation with Atg11 and Atg8 depends on sequences of the C-terminal 

region of Atg19 (Shintani et al., 2002). Recent studies showed that the essential kinase 

Hrr25 phosphorylates Atg19 in the Atg11-binding site and that this post-translational 

modification promotes interaction with Atg11, suggesting a phosphoregulation of the 

Cvt pathway (Pfaffenwimmer et al., 2014; Tanaka et al., 2014; Yorimitsu and Klionsky, 

2005). Interaction with Atg8 is mediated by the very C-terminal canonical AIM and 

recently discovered cryptic AIMs (Sawa-Makarska et al., 2014; Shintani et al., 2002). 

Sawa-Makarska et al. (2014) demonstrated that these multiple Atg8 interaction sites in 

Atg19 are activated due to the interaction with the propeptide of Ape1. Further 

experiments in this study using giant unilamellar vesicles (GUVs) as in vitro model 

system suggested that the multiple AIMs in Atg19 help to tightly wrap the Atg8-positive 

isolation membrane around the cargo for exclusion of non-specific material (Sawa-

Makarska et al., 2014). 

 

Figure 2.8 The Cvt pathway (modified from (Klionsky and Schulman, 2014)) 
(A) prApe1 self-assembles to dodecameric complexes. (B) Subsequently, dodecameric complexes 
aggregate to the Ape1 complex. (C) Oligomers of Ape4 and Ams1 interact with the Cvt receptor Atg19 and, 
thereby, dock on the prApe1 complex to complete the cargo composition of the Cvt complex.  
(D and E) Atg19 links the cargos to Atg11 and Atg8 for Cvt complex recruitment to the phagophore. 

 

Another important component of the Cvt pathway is Atg21, which is a homolog of Atg18 

and, consequently, belongs to the PROPPIN family (chaper 2.3.5) (Dove et al., 2009; 

Krick et al., 2006; Nair et al., 2010; Stromhaug et al., 2004). Atg21 is essential for the Cvt 

pathway and necessary for efficient starvation-induced autophagy (Meiling-Wesse et al., 

A B C D E
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2004). It was shown that Atg21 recruits Atg5 and Atg8 to the PAS and that lipidation of 

Atg8 is reduced in the absence of Atg21 (Meiling-Wesse et al., 2004; Stromhaug et al., 

2004). 

Cvt vesicles are formed and targeted to the vacuole by the same mechanisms as 

described for unselective, bulk autophagy (chapter 2.3.7) (Lynch-Day and Klionsky, 

2010). In the vacuole, the N-terminal propeptide of Ape1 is cleaved off to activate its 

hydrolytic activity (Klionsky et al., 1992). 

 

2.5.2 Mitophagy 

The autophagic transport of surplus or dysfunctional mitochondria to the vacuole is 

named mitophagy. During respiration, mitochondria produce reactive oxygen species 

(ROS) as byproducts. Excess of ROS is hazardous for mitochondria since they cause 

damage in these organelles. Mitophagy might act as a cellular reaction to oxidative 

stress for elimination of dysfunctional mitochondria to maintain the cellular 

homeostasis (Liu et al., 2014; Okamoto, 2014).  

The mitogen-activated protein (MAP) kinases Slt2 and Hog1 as components of two 

distinct MAPK cascades are mitophagy-inducing regulators, but it remained unclear 

whether they have direct substrates in the mitophagy-organising machinery (Mao et al., 

2011).  

Regarding the membrane origin of mitophagosomes, recent studies indicate that the ER-

mitochondria encounter structure (ERMES), a site that connects ER and mitochondria, is 

necessary for mitophagy, but not for unselective macroautophagy (Bockler and 

Westermann, 2014). For mammalian cells, Hamasaki et al. (2013) recently published 

that ERMES might be the origin of autophagosome biogenesis in general (Hamasaki et 

al., 2013). 

Upon oxidative stress, expression of the mitophagy receptor Atg32 is highly induced 

(Okamoto et al., 2009). As for the Cvt receptor Atg19, the molecular function of Atg32 

can be best described by focusing on the domain structure and its interaction partners: 

The N-terminal domain is cytosolic, whereas the C-terminal end is exposed to the 

intermembrane space (IMS) of mitochondria; an outer-membrane(OM)-spanning helical 

domain connects both domains and thus anchors Atg32 to mitochondria (Okamoto et al., 

2009). The cytosolic domain contains a module for recruiting Atg8 and Atg11 via an AIM 

or an Atg11-binding consensus sequence, respectively (Farré et al., 2013; Kondo-
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Okamoto et al., 2012). Similar to Atg19, Atg32 becomes phosphorylated in the Atg11 

binding site to increase the affinity for Atg11. The housekeeping kinase casein kinase 

(CK) 2 seems to be responsible for this phosphorylation and is essential for mitophagy 

(Aoki et al., 2011; Kanki et al., 2013). 

Complex formation of Atg32 and Atg11 links mitochondria to the autophagic machinery. 

Additionally, Atg11 recruits the dynamin-related GTPase Dnm1 and further components 

of the mitochondrial fission machinery. In this context, it was hypothesized that the 

fission machinery generates small mitochondria fragments for its degradation by 

mitophagy (Mao et al., 2013b). 

It was published for the C-terminal IMS domain of Atg32 that this region is proteolytic 

processed by the mitochondrial i-AAA protease Yme1. Interaction studies suggested that 

this post-translational modification acts as a further enhancer for Atg11 binding and 

thus positively regulates mitophagy (Wang et al., 2013b). However, the function of Yme1 

is still under debate: in another study, a slightly increased level of mitophagy was 

demonstrated by deletion of YME1 (Welter et al., 2013). 

 

2.5.3 Pexophagy and Atg26  

2.5.3.1 Pexophagy in different yeast species 

The main metabolic functions of peroxisomes are (catalytic) ß-oxidation of long-chain 

fatty acids and H2O2 detoxification by conversion into oxygen and water. Peroxisomes 

are highly dynamic organelles. Their abundance can be rapidly altered in response to 

environmental changes. One mechanism to drastically reduce surplus peroxisomes is 

pexophagy. For S. cerevisiae, it was shown that growth on medium containing oleic acid 

as the sole carbon source causes proliferation of peroxisomes. When shifted to nitrogen 

starvation medium with glucose as carbon source, such a high number of peroxisomes is 

no longer economical and thus pexophagy is induced (Hutchins et al., 1999).  

In this selective autophagy pathway, Atg36 functions as selective receptor analogous to 

Atg19 or Atg32 (Motley et al., 2012). Atg36 becomes anchored to peroxisomes by Pex3, 

a peroxisomal membrane protein (PMP) necessary for peroxisome biogenesis (Ma et al., 

2011). As other receptors, Atg36 interacts with Atg8 and Atg11 for cargo linkage to the 

phagophore and to the autophagic machinery (Farré et al., 2013; Motley et al., 2012). 

Most of the knowledge concerning pexophagy derives from investigation in the 

methylotrophic yeasts Pichia pastoris, Yarrowia lipolytica and Hansenula polymorpha. In 
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these organisms, methanolic media induce high enzymatic activity of the peroxisomal 

alcohol oxidase that utilize methanol as carbon source. Thus, shift to other carbon 

sources needs broad alteration in metabolism. The regulation of pexophagy in these 

fungi is more complex, depending on the carbon source, the ATP level and the specific 

organism (Ano et al., 2005). For example, if P. pastoris is transferred from methanol to 

glucose, micropexophagy is initiated to degrade large peroxisomes, whereas growth on 

ethanol induces degradation of peroxisomes by macropexophagy (Figure 2.8) (Tuttle 

and Dunn, 1995). Interestingly, micropexophagy seems to combine mechanisms of 

micro- and macroautophagy (Figure 2.8B): Analogous to microautophagy, clusters of 

peroxisomes were engulfed by a vacuolar protrusion, named vacuolar sequestering 

membrane (VSM), that often septates during this process. In parallel, the 

micropexophagic apparatus (MIPA) is initiated at the PAS and forms a cup-shaped 

double-membrane along the removed peroxisomes equivalent to the macroautophagic 

isolation membrane. Thereby, MIPA links the tips of the VSM (Farré et al., 2009; 

Mukaiyama et al., 2004; Oku et al., 2003). 

In P. pastoris, the functional homolog to ScAtg36 is Ppatg30, which correspondingly 

interacts Pex3 and additionally with Pex14, a further peroxisomal membrane protein. As 

receptor, Atg30 binds PpAtg8 and PpAtg11. Furthermore, an interaction with the 

scaffold PpAtg17 was published (Farré et al., 2008; Farré et al., 2013).  

 

Figure 2.9 Pexophagy in Pichia pastoris (modified from (Manjithaya et al., 2010)) 
(A) Macropexophagy. Pexophagosomes are formed around peroxisomes. 
(B) Micropexophagy. Clusters of peroxisomes are engulfed by the vacuolar sequestering membrane 
(VSM). MIPA links the tips of the VSM by formimg a cup-shaped double-membrane along the removed 
peroxisomes. 
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2.5.3.2 Atg26 

Atg26 (Ugt51/PAZ4/PDG3) is described as an autophagy-related protein, because of its 

involvement in pexophagy in the methylotrophic yeast Pichia pastoris (Pp) (Mukaiyama 

et al., 2002; Oku et al., 2003). In this model organism, PpAtg26 is essential for 

degradation of large methanol-induced peroxisomes by micropexophagy. It is only 

partially involved in macropexophagic removal of medium-sized, oleate-induced 

peroxisomes and dispensable for pexophagy of small peroxisomes (Nazarko et al., 

2009).  

Atg26 is a large, 136 kDa protein containing a C-terminal sterol glucoside (SG) 

transferase (UDP-glucose:sterol  β-D-glucosyltransferase, short: UGT) domain. UGT 

domains catalyse the transfer of activated sugar molecules to sterols. Glycosylation 

increases the water solubility of otherwise lipophilic membrane sterols. Investigation of 

the enzymatic activity in different species revealed that the substrate specificity is 

relatively constricted concerning UDP-activated sugar, which is predominantly UDP-

glucose, whereas the acceptor sterols are divers (Chaturvedi et al., 2011; Warnecke et 

al., 1999). In general, the direct effectors of SG are unknown and the physiological 

function of SGs or UGTs, respectively, are divers. In many cases, production of SG is a 

stress response (Chaturvedi et al., 2011).  

However, in the case of Atg26 from P. pastoris, it was published that, during 

micropexophagy, production of SG by PpAtg26 facilitates elongation of the large double 

membrane structures of the MIPA (see chapter 2.5.3). In this context, it has been 

proposed that glucose residues of SGs protrudes into the soluble phase of the membrane 

and act as scaffolds for further elongation reaction (Mukaiyama et al., 2004; Nazarko et 

al., 2007a; Yamashita et al., 2006).  

PpAtg26 locates PI4P-dependently to the MIPA during micropexophagy (Figure 2.9B), 

but also to the isolation membrane of pexophagosomes during macropexophagy of 

medium-sized peroxisomes (Figure 2.9A). The lipid PI4P is generated at the PAS by the 

PI4P kinase Pik4 (Yamashita et al., 2006; Yamashita et al., 2007). The GRAM 

(glucosyltransferase, Rab-like GTPase activators, and myo- tubularins) domain of 

PpAtg26 mediates direct interaction with PI4P and, thereby, MIPA/PAS recruitment of 

Atg26 (Oku et al., 2003; Yamashita et al., 2006). Sequence analyses also predicted a PH 

domain in the N-terminal region of Atg26. PH domains were shown to recognize PIPs 

(Lemmon, 2008). However, the putative affinity to specific lipids, the target membrane 
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and the concrete physiological function of the PH domain in (Pp)Atg26 have to be 

elucidated (Nazarko et al., 2007b; Oku et al., 2003; Stasyk et al., 2003; Yu et al., 2004). 

A further species that implicates Atg26 in pexophagy is the plant pathogenic fungus 

Colletotrichum orbiculare. Remarkable, degradation of peroxisomes in the fungal 

infection structure is necessary for host invasion. It was further shown that CoAtg26 

enhances pexophagy in this structure and, consequently, acts as an important factor for 

the pathogenicity of this fungus (Asakura et al., 2009). 

In addition to the function in pexophagy and pexophagy-dependent host invasion, Atg26 

was shown to be necessary for efficient Ape1 maturation in P. pastoris  (Farré et al., 

2007; Nazarko et al., 2007a).   

In S. cerevisiae, no function of Atg26 in autophagy or in other cellular processes has been 

shown. But, its involvement in unselective macroautophagy, the Cvt pathway, 

pexophagy, mitophagy and PMN has been excluded in previous studies (Cao and 

Klionsky, 2007; Krick et al., 2008b; Okamoto et al., 2009). 

 

2.5.4 Further selective pathways in yeast 

Nucleophagy, ribophagy, ER-phagy, lipophagy and autophagy of retrotransposon virus-

like particles are further selective autophagic pathways in S. cerevisiae. 

During nucleophagy, small parts of the nucleus are invaginated by the vacuolar 

membrane. This process is also called piecemeal microautophagy of the nucleus (PMN) 

and involves the autophagic core machinery (Krick et al., 2008b; Roberts et al., 2003). 

Morphological studies showed that PMN occurs on nucleus-vacuole junctions (NVJs), 

where non-essential parts of the nucleus pinch-off into the vacuole lumen. NVJ 

formation needs the interaction between the outer nuclear membrane protein Nvj1 and 

the Armadillo-repeat protein Vac8, a multifunctional scaffold myristylated to the 

vacuolar membrane (Pan and Goldfarb, 1998; Pan et al., 2000). 

Ribophagy is a selective autophagic mechanism to eliminate excess of ribosomes during 

nutrient depletion. The selectivity of this pathway was demonstrated by the 

involvement of ubiquitin ligase Rsp5 and the ubiquitin protease Ubp3/Bre5, which are 

both not required for unselective, bulk macroautophagy (Kraft et al., 2008). Whether 

ubiquitylation of ribosomes is necessary for this process or whether selective receptors 

are involved in cargo recognition remains unclear.  

The early secretory pathway starts with the passage through the endoplasmic reticulum 
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(ER) where integral or secretory proteins are folded and modified. Excess of unfolded 

proteins leads to ER stress that stimulates the unfolded protein response (UPS) for 

thorough remodelling of the ER (Bernales et al., 2006b). For supporting UPS, damaged 

ER becomes enclosed by an autophagosome-like structur, a process termed ER-

phagy/reticulophagy (Bernales et al., 2006a; Yorimitsu et al., 2006). Notably, 

autophagic proteins are essential for survival under ER stress condition, but not 

vacuolar proteases. Thus, only sequestration of damaged ER seems to be the central 

function of this selective pathway (Bernales et al., 2006a). Upon nitrogen starvation, ER 

is also transported to the vacuole by macroautophagy with a higher abundance than 

cytosolic material, indicating a selective mechanism for enhanced ER uptake (Hamasaki 

et al., 2005). To further support selectivity, it was shown for ER-stress- and starvation-

induced ER-phagy that Atg11, Atg19, Atg20 and the actin cytoskeleton are involved. 

These factors are all indicators for selective autophagy (Bernales et al., 2006a; Hamasaki 

et al., 2005; Lipatova et al., 2013; Mazon et al., 2007). 

Lipophagy describes an autophagic pathway that selectively transports lipid storage 

organelles, called lipid droplets, to the vacuole for their degradation. Fatty acids are 

stored as triacylglycerols (TAGs). Under nutrient-rich conditions or excess of fatty acids, 

TAGs together with sterol esters and further components are bundled in lipid droplets 

(LDs) (Walther and Farese, 2012). Recently, van Zutphen et al. (2014) discovered in 

yeast that lipid droplet can be degraded by selective microautophagy during nitrogen 

starvation (van Zutphen et al., 2014). This process involves the autophagic core 

machinery and especially the putative vacuolar lipase Atg15 that might be necessary for 

degradation of invaginated LDs. Equivalent to further microautophagic pathways, Vac8 

was shown to be essential for lipophagy (Oku et al., 2006; Roberts et al., 2003; van 

Zutphen et al., 2014). 

A further selective pathway described in yeast is autophagy of virus-like particles 

(VLP) of the retrotransposon Ty1. Retrotransposons are transposable DNA elements 

that are transcribed as RNA intermediates. Ty1 is the most abundant retrotransposon in 

yeast. Its RNA encodes the coat proteins p49Gag and the fusion protein p199Gag-Pol, 

including the coat protein Gag and a reverse-transcriptase as C-terminal part. The Ty1 

virus-like particle functions as a protecting cage for reverse transcription of Ty1 mRNA 

back to cDNA. Finally, the Ty1 cDNA can insert at a further site of the host DNA and 

thereby generates mutations (Beauregard et al., 2008). Recently, Suzuki et al. (2011) 
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showed that Ty1 VLPs are degraded during starvation by selective autophagy in an 

Atg19-dependent mechanism (Suzuki et al., 2011). In addition, Atg11 and Ape1 are 

required for this kind of selective autophagy. It was further demonstrated via IEM and 

fluorescence microscopy that in wild type cells Ty1 VLPs surround the Ape1 complex, 

whereas absence of Atg19 causes clustering of VPLs beyond the Ape1 complex. These 

observations altogether suggest a model, where Atg19 facilitates recruitment of Ty1 VLP 

clusters to the Cvt complex for their autophagic degradation and, thus, down-regulates 

Ty1 transposition (Suzuki et al., 2011). 

 

2.6 Saccharomyces cerevisiae virus L-A  

The S. cerevisiae virus L-A is a dsRNA virus of the Totiviridea family. It has a single 4.6 kb 

genomic segment with two overlapping ORFs. ORF1 encodes the 76 kDa major capsid 

protein Gag that is necessary for encapsidation. ORF2 is a RNA-dependent RNA 

polymerase (Pol) that is expressed as a 180 kDa Gag-Pol fusion protein caused by a -1 

ribosomal frameshift (Figure 2.10) (Dinman et al., 1991). The 39-nm icosahedral 

architecture of the L-A virus-like particle (VLP) is made up of about 120 Gag subunits 

(from which about 2 are Gag-Pol fusion proteins) and functions as a specialized, 

protecting compartment for replication and transcription of the dsRNA located inside 

the VLP (Naitow et al., 2002; Wickner et al., 2013). As shown for other dsRNA viruses, 

the L-A VLP has a T=1 structure, which is a lattice of 60 asymmetric dimers of Gag as one 

unit (Figure 2.11A) (Castón et al., 1997; Luque et al., 2010; Naitow et al., 2002). 

 

Figure 2.10 L-A (+) strand, encoded 
proteins and cis signals with secondary 
structures (from (Rodríguez-Cousiño et 
al., 2013) 
The (+) transcript encodes two overlapping 
ORFs. ORF1 encodes the major coat protein 
Gag. ORF2 encodes Pol that is expressed as a 
Gag-Pol fusion protein caused by a -1 
ribosomal frameshift (frameshifting region).  
Gag-Pol binds the encapsidation signal to 
incorporate (+) transcripts in L-A VLPs. 
Replication is initiated by the 3´replication 
signal. 
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Single-stranded (+) transcripts are synthesized inside the coat, using the dsRNA genome 

as template, and then extruded from the virus particle for translation and/or formation 

of new VLPs (Figure 2.11C). For efficient translation and the stability of single stranded 

(+) RNA, the virus uses a cap-snatching mechanism, where the m7Gp moiety of the host 

mRNA is transferred to the diphosphorylated 5’end of the viral transcript by the 

enzymatic activity of Gag. This mechanism occurs outside the particle, where Gag 

exposes a trench-like structure as active site. In this trench, the m7Gp moiety of the host 

mRNA becomes covalently attached to His154, forming a m7Gp-Gag intermediate, and is 

then transferred to the virus (+) RNA (Figure 2.11B and C) (Blanc et al., 1992; Fujimura 

and Esteban, 2013; Fujimura and Esteban, 2011).  

During this post-transcriptional phase, the 5´exonuclease activity of Xrn1/SKI1/KEM1, 

specific for uncapped RNA, acts as defence against L-A transcripts (Figure 2.11C). 

Increased L-A proliferation was shown when XRN1 is deleted. Vice versa, 

overexpression of Xrn1 can be used to eliminate L-A (Esteban et al., 2008; Masison et al., 

1995). These virus-specific phenotypes obviously indicated that the cap-snatching 

mechanism is not 100% efficient. Further proteins with anti-viral activity are Ski2, 3, 6, 

7 and 8 that inhibit translation of non-polyA mRNA such as the L-A (+) transcripts 

(Benard et al., 1998; Benard et al., 1999; Masison et al., 1995). Also in the context of 

translation, some 60S ribosomal subunit associated proteins were shown to promote 

the virus copy number (Edskes et al., 1998; Ohtake et al., 1995). 

After translation of the virus transcripts, the products Gag and Gag-Pol act as building 

blocks for L-A VLPs. At this step of the replication cycle, again some of the host genes are 

involved: MAK3, MAK10 and MAK31 encode a N-acetyltransferase complex that 

acetylates the first methionine of Gag and thereby promotes Gag stability and virus 

assembly (Tercero and Wickner, 1992; Tercero et al., 1993).  

For formation of new virus-like particles, the Gag-Pol fusion protein recognizes an 

encapsidation signal of the viral (+) transcript, located 400 nt from the 3´end forming a 

stem-loop (Figure 2.10). Addition of Gag as building blocks results in formation of the 

viral coat, containing a single (+) transcript (Fujimura et al., 1992a; Ribas et al., 1994).  

However, Gag is also sufficient for coat formation without Gag-Pol (Fujimura et al., 

1992b; Powilleit et al., 2007). Gag-Pol synthesizes a new (-) transcript to generate a 

novel dsRNA genome inside the emerging virus particle, completing the replication cycle 

(Figure 2.11C).  
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Figure 2.11 S. cerevisiae virus L-A 
(A) Structure of the whole L-A capsid (VLP). Lines indicate the icosahedral architecture, formed by 120 
Gag subunits, where about two are Gag-Pol fusion proteins. Molecules marked in blue or red indicate two 
different structural forms of Gag that build a T=1 lattice of 60 asymmetric dimers of Gag (from (Tang et al., 
2005)). 
(B) Structure of the major coat protein Gag. The enzymatic trench is outside the VLP, whereas the N-
terminus and C-terminus (extended as Gag-Pol) are exposed inside the VLP (modified from (Naitow et al., 
2002)). 
(C and D) Replication cycle of the L-A virus and satellite/killer viruses (modified from (Wickner, 1992)). 

 

Like other fungal viruses, the L-A virus has no extracellular mechanism of infection. 

Therefore, vertical cytoplasmic transmission from mother to daughter cells and 

horizontal transmission during mating are the ways of infection. It is important to 

mention that L-A can act as a helper virus for satellite viruses that encode the pro-

peptides of killer toxins (prepro-toxin) (Figure 2.11D). The processed peptide is 

secreted by infected host strains and kills non-infected strains. The satellite viruses use 

the multifunctional building blocks Gag and Gag-Pol of L-A for their own replication 

(Figure 2.11D). Therefore, yeast strains carrying a killer virus and L-A, as necessary 

helper virus, have a selective advantage over non-infected strains (Schmitt and Breinig, 

2006; Wickner et al., 2013). 

 



Introduction 

 30 

2.7 Aim of the thesis 

Atg8 is a key component of the autophagic machinery, necessary for autophagosome 

biogenesis. Furthermore, Atg8 mediates cargo recognition during selective autophagy 

(Klionsky and Schulman, 2014). Therefore, Atg8 is an ideal bait for proteomic 

approaches to find new proteins that are involved in autophagy or related processes. A 

central goal of this study was to establish a CoIP protocol with Atg8 as bait to capture 

new Atg8 binding partners for their identification in following MS analysis. 

 

By MS analysis of this study, Atg26 was identified as an Atg8 interaction partner, 

indicating that Atg26 might be involved in autophagic processes in S. cerevisiae. It was 

shown that Atg26 is involved in mirco- and macropexophagy in P. pastoris (Oku et al., 

2003; Yamashita et al., 2006), whereas its function in S. cerevisiae was unknown so far 

(Cao and Klionsky, 2007; Krick et al., 2008b; Okamoto et al., 2009).  Therefore, a further 

aim of this study was the analysis of the autophagic function of Atg26 in S. cerevisiae. 
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3 Materials and Methods 

3.1 Materials 

3.1.1 Yeast strains 

Table 3.1 Yeast strains 

S. cerevisiae strains Genotype Reference 

WCG4 WCG4a MAT α his 2-11,15 leu 2-3,112 ura 3 AG Thumm  

(University Göttingen) 

ape1∆ WCG4a MAT α his 2-11,15 leu 2-3,112 ura 3 

 ape1∆::kan 

AG Thumm  

(University Göttingen) 

atg1∆ WCG4a MAT α his 2-11,15 leu 2-3,112 ura 3 

 atg1∆::KAN 

AG Thumm  

(University Göttingen) 

atg1∆ pep4 WCG4a MAT α his 2-11,15 leu 2-3,112 ura 3  

atg1∆::KAN pep4∆::HIS3 

AG Thumm  

(University Göttingen) 

atg8∆ WCG4a MAT α his 2-11,15 leu 2-3,112 ura 3 

 atg8∆::KAN 

AG Thumm  

(University Göttingen) 

atg11∆ WCG4a MAT α his 2-11,15 leu 2-3,112 ura 3 

 atg11∆::HISMX6 

AG Thumm  

(University Göttingen) 

atg18∆ WCG4a MAT α his 2-11,15 leu 2-3,112 ura 3  

Atg18∆::KAN 

AG Thumm  

(University Göttingen) 

atg19∆ WCG4a MAT α his 2-11,15 leu 2-3,112 ura 3 

 atg19∆::KAN 

AG Thumm  

(University Göttingen) 

atg19∆ atg34∆ WCG4a MAT α his 2-11,15 leu 2-3,112 ura 3 

 atg19∆::KAN 

This study 

atg21∆ WCG4a MAT α his 2-11,15 leu 2-3,112 ura 3 

 atg21∆::KAN 

AG Thumm  

(University Göttingen) 

atg26∆ WCG4a MAT α his 2-11,15 leu 2-3,112 ura 3 

 atg26Δ::NatNT2 

AG Thumm  

(University Göttingen) 

atg32∆ WCG4a MAT α his 2-11,15 leu 2-3,112 ura 3 

 atg32Δ::NatNT3 

AG Thumm  

(University Göttingen) 

atg34∆ WCG4a MAT α his 2-11,15 leu 2-3,112 ura 3 

 atg34Δ::NatNT4 

This study 

 

atg36∆ WCG4a MAT α his 2-11,15 leu 2-3,112 ura 3 

 atg36Δ::NatNT5 

This study 

 

hsv2∆ WCG4a MAT α his 2-11,15 leu 2-3,112 ura 3 

 ygr223c∆::kanMX6 

AG Thumm  

(University Göttingen) 

hsv2∆ atg26∆ WCG4a MAT α his 2-11,15 leu 2-3,112 ura 3 

 ygr223c∆::kanMX6 atg26Δ::NatNT7  

AG Thumm 

(University Göttingen) 
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pep4∆ WCG4a MAT α his 2-11,15 leu 2-3,112 ura 3 

pep4∆::His 

AG Thumm  

(University Göttingen) 

xrn1∆ WCG4a MAT α his 2-11,15 leu 2-3,112 ura 3 

 xrn1Δ::NatNT7 

This study 

Sey 6210 Sey 6210 MAT a ura 3-52 leu 2-3,112 his 3-∆200  

lys 2-801 trp1-∆901 suc 2-∆9 mel GAL 

 G. F. von Mollard 
(UniversityBielefeld) 

BY4741 ATTC201388 Mat a ura 3 leu 2 his 3  Euroscarf 

Atg26-GFP ATTC201388 Mat a ura 3 leu 2 his 3 

 ATG26-GFP::HIS3MX6 

Invitrogen 

Atg26-GFP  xrn1∆ ATTC201388 Mat a ura 3 leu 2 his 3  

ATG26-GFP::HIS3MX6 xrn1∆::NatNT2 

Invitrogen/ 

This study 

Cop1-GFP ATTC201388 Mat a ura 3 leu 2 his 3 

 COP1-GFP::HIS3MX6 

Invitrogen 

Ede1-GFP ATTC201388 Mat a ura 3 leu 2 his 3 

 EDE1-GFP::HIS3MX6 

Invitrogen 

Enp1-GFP ATTC201388 Mat a ura 3 leu 2 his 3  

ENP1-GFP::HIS3MX6 

Invitrogen 

Gyp1-GFP ATTC201388 Mat a ura 3 leu 2 his 3  

GYP1-GFP::HIS3MX6 

Invitrogen 

Hsp42-GFP ATTC201388 Mat a ura 3 leu 2 his 3  

HSP42-GFP::HIS3MX6 

Invitrogen 

Rio2-GFP ATTC201388 Mat a ura 3 leu 2 his 3 

 RIO2-GFP::HIS3MX6 

Invitrogen 

Rrp12-GFP ATTC201388 Mat a ura 3 leu 2 his 3 

 RRP12-GFP::HIS3MX6 

Invitrogen 

Rsp7-GFP ATTC201388 Mat a ura 3 leu 2 his 3  

RSP7-GFP::HIS3MX6 

Invitrogen 

Sap185-GFP ATTC201388 Mat a ura 3 leu 2 his 3 

 SAP185-GFP::HIS3MX6 

Invitrogen 

Sfb3-GFP ATTC201388 Mat a ura 3 leu 2 his 3 

 SFB3-GFP::HIS3MX6 

Invitrogen 

Sec21-GFP ATTC201388 Mat a ura 3 leu 2 his 3 

 SEC21-GFP::HIS3MX6 

Invitrogen 

Sec23-GFP ATTC201388 Mat a ura 3 leu 2 his 3  

SEC23-GFP::HIS3MX6 

Invitrogen 

Sec26-GFP ATTC201388 Mat a ura 3 leu 2 his 3 

 SEC26-GFP::HIS3MX6 

Invitrogen 

Sec27-GFP ATTC201388 Mat a ura 3 leu 2 his 3 

 SEC27-GFP::HIS3MX6 

Invitrogen 
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3.1.2 E. coli strains 

Table 3.2 E. coli strains used in this study 

E. coli strain Genotype Reference 

DH5α F´(Φ 80 (∆lacZ) M15) ∆ (lacZYA-argF) U169 recA1 endA1 

hsdR17 rK-mK + supE44 thi-1 gyrA relA 

(Hanahan, 1983) 

BL21 (DE3) pLysS F`dcm ompT hsdSB (rB-, mB-) gal λ (DE3); pLysS (CamR) Stratagene 

 

3.1.3 Plasmids 

Table 3.3 Plasmids used in this study 

Name/Insert Genotype Reference 

Atg21-TAP pRS425 2µ LEU2 Atg21-TAP AG Thumm 

Atg26 1-1194-Cub pRS313 CEN6 HIS3 MET25 Atg26 1-1194-Cub-RURA3 this study 

Atg26 1-186-Cub pRS313 CEN6 HIS3 MET25 Atg26 1-186-Cub-RURA3 this study 

Atg26 1-337-Cub pRS313 CEN6 HIS3 MET25 Atg26 1-337-Cub-RURA3 this study 

Atg26 1-569-Cub pRS313 CEN6 HIS3 MET25 Atg26 1-569-Cub-RURA3 this study 

Atg26 187-337-Cub pRS313 CEN6 HIS3 MET25 Atg26 187-337-Cub-RURA3 this study 

Atg26 338-1198-Cub pRS313 CEN6 HIS3 MET25 Atg26 338-1198-Cub-RURA3 this study 

Atg26-Cub pRS313 CEN6 HIS3 MET25 Atg26 -Cub-RURA3 AG Thumm 

GFP pYES2 2µ URA3 GFP this study 

GFP-Atg26 pUG34 CEN6 HIS3 GFP-Atg26 this study 

GFP-Atg26 pUG36  CEN6 URA3 GFP-Atg26 this study 

GFP-Atg26 1-1194 pUG34 CEN6 HIS3 GFP-Atg26 1-1194 this study 

GFP-Atg26 1-186 pUG34 CEN6 HIS3 GFP-Atg26 1-186 this study 

GFP-Atg26 1-337 pUG34 CEN6 HIS3 GFP-Atg26 1-337 this study 

GFP-Atg26 1-569 pUG34 CEN6 HIS3 GFP-Atg26 1-569 this study 

GFP-Atg26 1-636 pUG34 CEN6 HIS3 GFP-Atg26 1-636 this study 

GFP-Atg26 1-744 pUG34 CEN6 HIS3 GFP-Atg26 1-744 this study 

GFP-Atg26 187-337 pUG34 CEN6 HIS3 GFP-Atg26 187-337 this study 

GFP-Atg26 187-374 pUG34 CEN6 HIS3 GFP-Atg26 187-374 this study 

GFP-Atg26 187-1198 pUG34 CEN6 HIS3 GFP-Atg26 187-1198 this study 

GFP-Atg26 187-569 pUG34 CEN6 HIS3 GFP-Atg26 187-569 this study 

GFP-Atg26 338-1198 pUG34 CEN6 HIS3 GFP-Atg26 338-1198 this study 

GFP-Atg26 338-744 pUG34 CEN6 HIS3 GFP-Atg26 338-744 this study 

GFP-Atg26 570-1198 pUG34 CEN6 HIS3 GFP-Atg26 570-1198 this study 

GFP-Atg26 I1198A pUG34 CEN6 HIS3 GFP-Atg26 I1198A this study 

GFP-Atg8  pYES2 2µ URA3 GFP-Atg8  AG Thumm 

GFP-Atg8  S3AT4A pYES2 2µ URA3 GFP-Atg8 S3AT4A this study 

GFP-Atg8 F5GK6G pYES2 2µ URA3 GFP-Atg8 F5GK6G this study 



Materials and Methods 

 34 

GFP-Atg8 L50A pYES2 2µ URA3 GFP-Atg8 L50A AG Thumm 

GFP-Atg8 Y49A pYES2 2µ URA3 GFP-Atg8 Y49A AG Thumm 

GFP-LA Gag (WCG4) pUG34  CEN6 HIS3 GFP-LA Gag this study 

GFP-LA Gag (WCG4) pUG36 CEN6 URA3  GFP-LA Gag this study 

GFP-LA GagPol (WCG4) pUG36  CEN6 URA3 GFP-LA GagPol this study 

GST-Atg26 pGEX 4T3 GST-Atg26 this study 

GST-Atg26 187-569 pGEX 4T3 GST Atg26 187-569 this study 

His-LA Gag  pPROEX htb - His-LA Gag this study 

LA Gag-Cub  pRS313 CEN6 HIS3 MET25 LA Gag-Cub-RURA3 this study 

Nub-LA Gag  pRS314 CEN6 TRP1 CUP1 Nub-LA Gag this study 

LA Gag-GFP pUG35  CEN6 URA3 LA Gag-GFP this study 

mCherry pUG34 CEN6 HIS3 mCherry this study 

mCherry-Atg11 pUG36 CEN6 URA3 mCherry Atg11 this study 

mCherry-Atg19 pUG34 CEN6 HIS3 mCherry-Atg19 this study 

mCherry-Atg26 pUG34 CEN6 HIS3 mCherry-Atg26 this study 

mCherry-Atg26 1-1194 pUG34 CEN6 HIS3 mCherry-Atg26 1-1194 this study 

mCherry-Atg26 I1198A pUG34 CEN6 HIS3 mCherry-Atg26 I1198A this study 

mCherry-Atg8 pUG36 CEN6 URA3 mCherry-Atg8 this study 

mCherry-LA Gag  pUG36 CEN6 URA3 mCherry LA Gag this study 

Pgk1-GFP pRS316 CEN6 URA3 Pgk1-GFP AG Thumm 

 

3.1.4 Oligonucleotides 

Table 3.4.1 Oligonucleotides for cloning and sequencing used in this study 

Name Sequence 

Atg11forBamHI tcaggatccATGGCAGACGCTGATGAATATAG 

Atg11revXhoI TAGctcgagTCAAACTCCCTGGTATGAAACC 

Atg11Seq1 GTAGACAATGGTATGACTTCAAAATGG 

Atg11Seq2  CTGATTTCAAACGTCTAAACGAATATCAC 

Atg11Seq3 GGTTAACTAATGAAGAACAATCGCATAG 

Atg11Seq4  GGGGAATATCACTCAATTATATGACAATAAG 

Atg26 Seq2 Fwd CAACTTCGGCTGTGCCTTC 

Atg26 Seq2 Rev GAAGGCACAGCCGAAGTTG 

Atg26_Cub_SalI_rev ATTCCTACTTgtcgacCCAATCATCGTCCACCCTTCATC 

Atg26_Cub_StuI_fwd AGTAGCAATaggcctATGCCCATCACTCAAATCATATC 

Atg26_L2_Cub_ StuI _for AGTAGCAATaggcctATGGCTCAGAATTCTGAAAACAATTCGATAAG 

Atg26_Seq1_fwd CAATGTGGCTAAGTTGAGAC 

Atg26_Seq3_fwd GAGGTACCGTTAATGATTG 

Atg26_Seq3_rev CAATCATTAACGGTACCTC 
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Atg26_Seq4_fwd GTTCGATTGTAGTCTCTAATG 

Atg26_Seq4_rev CATTAGAGACTACAATCGAAC 

Atg26delAIM_Cub_SalI_rev ATTCCTACTTgtcgacCCCCCTTCATCCGTTGTTTC 

Atg26forBamHI tcaggatccATGCCCATCACTCAAATCATATCAGCG 

Atg26L2.1forBam tcaggatccATGGCTCAGAATTCTGAAAACAATTCGATAAG 

Atg26MAP1_Cub_SalI_rev ATTCCTACTTgtcgacCCCACATTGTCTTTTGACAGTTTTTCCC 

Atg26MAP2_Cub_SalI_rev ATTCCTACTTgtcgacCCTGCGAACTGCTCCTTTTTCAAAG 

Atg26MAP3_Cub_SalI_rev ATTCCTACTTgtcgacCCGTTAGCAGAAACCTCTTCTGTTTC 

Atg26PH_Cub_ StuI _for AGTAGCAATaggcctATGGCTAAGTTGAGACAGCGG 

Atg26PHforBam tcaggatccATGGCTAAGTTGAGACAGCGG 

Atg26revXho TAGctcgagTTAAATCATCGTCCACCCTTCATCC 

Atg26woWTMIrevXhoI TAGctcgagttaCCCTTCATCCGTTGTTTCAGC 

Atg26WTMarevXhoI TAGctcgagTTAagcCATCGTCCACCCTTCATCC 

Atg8 seq 0f GGAGGCCGGTTATTTTCGG 

Atg8 seq 1f GAAGGCGGAGTCGGAGAG 

Atg8 seq 1r CTCTCCGACTCCGCCTTC 

Atg8 seq 2f GGACGGGTTTTTGTATGTCAC 

Atg8 seq 2r GTGACATACAAAAACCCGTCC 

Cherry seq for Ggcgcctacaacgtcaacatc 

Cntrlxrn1rev Ctattaaagtaacctcgaatatacttcg 

gag_revXho TAGctcgagTTACTCTACTAAAACATTGTCCGC 

GagCubforStuI   tcaaggcctATGCTAAGATTTGTTACTAAAAACTCTCAAG 

GagCubrevSal1  taggtcgacCCCTCTACTAAAACATTGTCCGC 

gagpol_forBam tcaggatccATGCTAAGATTTGTTACTAAAAACTCTC 

gagpol_revXho TAGctcgagTTACAGTATGACCTGTAATGCC 

GagrevSalnonstop TAGgtcgacCTCTACTAAAACATTGTCCGC 

GFP rev GGTAAAAGGACAGGGCCATC 

GFP seq for Ggttctgttcaattagctgac 

GFPAtg8for tcaaagcttATGAAGTCTACATTTAAGTCTG 

GFPAtg8rev TAGCTCGAGCTACCTGCCAAATGTATTTTCTCC 

Map1Atg26revXh TAGctcgagttaCACATTGTCTTTTGACAGTTTTTCCCTAG 

Map2.2Atg26revXh TAGctcgagttaAGCTCTTAATCTCAATGTTAAAGCTTTGTTG 

Map2Atg26revXh TAGctcgagttaTGCGAACTGCTCCTTTTTCAAAG 

Map3Atg26revXh TAGctcgagttaGTTAGCAGAAACCTCTTCTGTTTC 

Map4Atg26revXh TAGctcgagttaTTCTTTATAGCATGTCTCCACATCAAC 

Map5Atg26revXh TAGctcgagttaTAATCCAAACTTATAACTCTTGTTTGGTTTTATG 

Met 25 seq for Gcgtctgttagaaaggaag 

MET25-Cherry for Tgtgtagttctagaatggtgagcaagggcgaggag 

MET25-Cherry rev TgtgtagttctagaCTTGTACAGCTCGTCCATGCC 
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Nui_Gag_for_BamH tcaGGATCCCTGGGTCTGGGCTAAGATTTGTTACTAAAAACTC 

Nui-Atg26_BamHI_fwd AGTAGCAATggatccctgggtctgggCCCATCACTCAAATCATATCAG 

Nui-Atg26_SalI_rev ATTCCTACTTgtcgacGCTCCTTGTACGCCTTTATAC 

Nui-Gag_cyterm_rev_SalI tagGTCGACACTCACTATAGGGCGAATTGGGTAC 

pGEX-4T3_fwd GATCATGTAACCCATCC 

pGEX-4T3_rev GCCACCTGACGTCTAAG 

preCntrlxrn1for AGGACGATTCGTGTACTATAAGG 

Seqgag1 CCAACTAGCTGATAAGTTCGC 

Seqgag2 GCTGCTAACAAGTATCTCCG 

Seqgagpol1 CGTCTTCGTTTGCATACAAATCG 

Seqgagpol2 GGCTATATTCGTGTGTGCGC 

Seqgagpol3 TGCGCGAGCACAGCCG 

SeqrevAtg26WTMI TGCAGCGTACGaatcatcgtcca 

 

Table 3.4.2 Oligonucleotides for gene deletion and chromosomal tagging used in this study 

Name Sequence 

ATG26 KO S1 CAGAAGTTCAGTTGCACTTTATGCTTTGGTGAAAATCCGTATAACTTAAAAGAATG

CGTACGCTGCAGGTCGAC 

ATG26 KO S2 ctattaatgattagatgttacgcttttttataaaagtgagagtgatactcggtTTAATCGATGAATTCGAGCTCG 

Atg26 S3  gcaaccaaactgacacctgctgaaacaacggatgaagggtggacgatgattCGTACGCTGCAGGTCGAC 

Atg26delwtmi S3                                                                                                gaaaatgtagatgcaaccaaactgacacctgctgaaacaacggatgaagggCGTACGCTGCAGGTCGAC 

Atg36 Ko S1 TGTATTCAGGGCTTAAAATACTAAAATTTGGTGGTCAGTACAGCTCATTAATGCGT

ACGCTGCAGGTCGAC 

Atg36 S2 AACTGATGGTGTTCGGACAACGTTTTAGAATGAGGGTATCTAACTTTCTTCTAATCG

ATGAATTCGAGCTCG 

S1 Atg34  GAAACTAGTTCCTATAGGTTGAGTGTCTATCAAAAATTTACGGAGACGCGATGCGT

ACGCTGCAGGTCGAC 

S1kan_xrn1d AAAAATCAACACTTGTAACAACAGCAGCAACAAATATATATCAGTACGGTATGCAG

CTGAAGCTTCGTACGC 

S1nat_xrn1d AAAAATCAACACTTGTAACAACAGCAGCAACAAATATATATCAGTACGGTATGCGT

ACGCTGCAGGTCGAC 

S2 Atg34  AGTTAAATAAGTACTATAGCCAAAGAAACTGGAAGAATATAAAAAAGCATTTAATC

GATGAATTCGAGCTCG 

S2kan_xrn1d GATATACTATTAAAGTAACCTCGAATATACTTCGTTTTTAGTCGTATGTTCTAGCAT

AGGCCACTAGTGGATCTG 

S2nat_xrn1d GATATACTATTAAAGTAACCTCGAATATACTTCGTTTTTAGTCGTATGTTCTAATCG

ATGAATTCGAGCTCG 
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3.1.5 Antibodies 

Table 3.5 Antibodies used in this study 

Antibody Dilution (in TBST containing 

1% skim milk powder (w/v)) 

Source 

anti-mouse-HRPO-conjugate 1 : 10.000 Dianova, Hamburg 

anti-rabbit-HRPO-conjugate 1 : 5.000 Medac, Hamburg 

anti-rat-HRPO-conjugate 1 : 10.000 Jackson ImmunoResearch, UK 

rabbit-anti-ApeI 1 : 1.000 Eurogentech, Belgium 

mouse-anti-GFP 1 : 1.000 Roche, Mannheim 

rabbit-anti-FAS 1 : 1.000 E. Schweitzer 

mouse-anti-PGK 1 : 10.000 Molecular Probes, Leiden, NL 

rat-anti-Red 1 : 1.000 Chromotek, München 

mouse-anti-HA 1 : 10.000 Santa Cruz Bio-technology, Heidelberg  

rabbit-anti-COP1 1 : 5.000  Gift from Hans Dieter Schmitt 

rabbit-anti-LA Gag 1 : 10.000  AG Thumm 

rabbit-anti-GST 1 : 10.000  AG Thumm 

 

3.1.6 Commercial available kits 

Table 3.6: Commercial available Kits used in this study 

Name of the Kit Source 

First Strand cDNA Synthesis Kit  Thermo Scientific 

ECL Western Blotting Detection Reagents Amersham Biosciences 

QIAquick Gel Extraction Kit Qiagen, Hilden 

QIAquick PCR Purification Kit Qiagen, Hilden 

Wizard Plus SV Miniprep Kit Promega, Mannheim 

 

3.1.7 Chemicals, supplements, enzymes and  

           protein purification systems  

Table 3.7: Chemicals, supplements, enzymes and protein purification systems used in this study 

Name Source 

Bacto Agar Becton Dickinson, Heidelberg 

Bacto Peptone Becton Dickinson, Heidelberg 

Bacto Tryptone Becton Dickinson, Heidelberg 

Bacto Yeast Extract Becton Dickonson, Heidelberg 

Benzonase Sigma, Deisenhofen 

clon NAT (nourseotricine) Werner BioAgents, Jena 

CompleteTM protease inhibitor (EDTA-free) Roche, Mannheim 
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Deoxyadenosin-triphosphate (dATP) NEB, Frankfurt 

Deoxycytidin-triphosphate (dCTP) NEB, Frankfurt 

Deoxyguanosin-triphosphate (dGTP) NEB, Frankfurt 

Deoxythymidin-triphosphate (dTTP) NEB, Frankfurt 

Difco Yeast nitrogen base w/o amino acids and ammonium Becton Dickinson, Heidelberg 

Difco Yeast nitrogen base w/o amino acids Becton Dickinson, Heidelberg 

DNA polymerase (FideliTaq) USB, Santa Clara, USA 

DNA polymerase (Klenow) NEB, Frankfurt 

DNA polymerase (KOD) Novagen, Darmstadt 

DNA polymerase (Taq) NEB, Frankfurt 

DNA polymerase (Vent) NEB, Frankfurt 

DNA-marker (1kb DNA-ladder) NEB, Frankfurt 

GFP-TRAP Chromotek, München 

Glass beads Schütt, Göttingen 

Glutathione Sepharose 4B  GE Healthcare, München  

Herring-sperm-DNA Promega, Madison, USA 

Precision Plus Protein All Blue Standards Biorad, Munich 

Protease inhibitor cocktail (bacteria) Sigma, Deisenhofen 

Restriction enzymes NEB, Frankfurt 

RFP-TRAP Chromotek, München 

RNAse A Applichem, Darmstadt 

Skim milk powder Granovita, Lüneburg 

Supplements for yeast media Becton Dickinson, Heidelberg 

T4-Ligase NEB, Frankfurt 

Zymolyase T100 Seikagaku, Japan 

 

3.1.8 Equipment 

Table 3.8 Equipment used in this study 

Name  Source 

Agarose gel equipment Bio-Rad Laboratories GmbH, München 

Autoclave Adolf Wolf, SANOclav, Bad Überkingen-Hausen 

Autoclave DX200 Systec, Wettenberg 

Bench BDK Luft- und Reinraumtechnik GmbH, Sonnenbühl 

Blot Shaker GFL 3019 GFL, Burgwedel 

Centrifuge 5404R  Eppendorf, Hamburg 

Centrifuge 5415D Eppendorf, Hamburg 

Centrifuge 5415R Eppendorf, Hamburg 

Centrifuge 5804 Eppendorf, Hamburg 

Chemical balance Sartorius, Göttingen 

Cuvettes for electroporation; 2mm peqlab, Erlangen 

Cuvettes no. 67.742 Sarstedt, Nümbrecht 
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Electroporator 2510 Eppendorf; Hamburg 

Freezer (-20°C) Liebherr, Bulle, CH 

Freezer (-80°C) Heareus, Hanau 

Glassbeads Schütt, Göttingen 

Hood BDK Luft- und Reinraumtechnik GmbH, Sonnenbrühl 

Incubator (37°C) Heraeus, Hanau 

Incubator 4200 Innova, USA 

Incubator Thermomixer comfort Eppendorf, Hamburg 

Labshaker for diverse culture sizes A. Kühner, Birsfelden, Schweiz 

LAS 3000 Intelligent Dark Box Fuji/Raytest, Benelux 

Magnetic stirrer MR 3001 Heidolph, Kelheim 

Microscope cover slips Menzel-Gläser, Braunschweig 

Microscope DeltaVision, Olympus IX71 Applied Precision, USA 

Microscope slides (76x26mm) Menzel-Gläser, Braunschweig 

Microwave R-939 Sharp, Hamburg 

Multivortex IKA vibray VXR basic IKA, Staufen 

OmniTrays Nunc SIGMA-ALDRICH, St. Louis, USA 

Over head shaker Roto-Shake Genie Scientific Industries Inc, USA 

PCR Mastercycler gradient Eppendorf, Hamburg 

pH meter pH537 WTW, Weilheim 

Photometer Eppendorf, Hamburg 

Pipette tips, petri dishes, … Sarstedt, Nümbrecht / Eppendorf, Hamburg 

Pipettes Eppendorf, Hamburg 

PowerPac Basic Power Supply Bio-Rad Laboratories GmbH, München 

PowerPac HC Power Supply Bio-Rad Laboratories GmbH, München 

PVDF membrane Hybond-P Amersham; GE healthcare, Freiburg 

Refrigerator (4°C) Bosch, Stuttgart / Liebherr, Bulle, CH 

Rotor JA 10 Beckmann, Krefeld 

Rotor JA 20 Beckmann, Krefeld 

Rotor TLA-100.3 Beckmann, Krefeld 

SDS-PAGE equipment BioRAD Mini Protean cell Bio-Rad Laboratories GmbH, München 

Sterile filter Whatman, GE healthcare, München 

SuperoseTM 6 10/300 GL column Amersham Pharmacia Biotech, Schweden 

Thermomixer Comfort Eppendorf, Hamburg 

Transilluminator TI 1 Whatman Biometra, Göttingen 

Ultracentrifuge Beckman, Krefeld 

vacuum pump Vacuubrand, Wertheim 

Water bath SWB25 Thermo Electron, Karlsruhe 

Western Blot equipment Trans Blot Cell Bio-Rad Laboratories GmbH, München  
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3.1.9 Media 

The media used in this study were prepared with deionized water (ddH2O). The 

respective pH was adjusted using NaOH or HCl. All media were autoclaved at 121°C for 

20 min for sterilization. Percent values of this chapter indicate weight per volume (w/v). 

Preparation of solid media to generate plates was done by adding 2% of preheated, 

sterile agar to the respective medium. 

 

Table 3.9.1 Yeast media used in this study 

Name Supplements 

YPD medium, pH 5.5 1% Bacto Yeast Extract, 2% Bacto Pepton, 2% D-glucose 

CM medium, pH 5.6* 0.67% Yeast Nitrogen Base w/o amino acids, 2% D-glucose and 

dropout-mix: 0.0117% of each of L-alanine, L-methionine, Larginine, 

L-phenylalanine, L-asparagine, L-proline, L-aspartic acid, L-serine, 

L-cysteine, L-threonine, L-glutamine, L-tyrosine, L-glutamic acid, L-

valine, L-glycine, myo-inositol, L-isoleucine and p-aminobenzoic 

acid 

CM medium  

w/o methionine, pH 5.6* 

see CM-medium, pH 5.6: Dropout-mix w/o methionine 

 SD(-N) medium 0.67% Yeast Nitrogen Base w/o amino acids and w/o ammonium 

sulfate, 2% D-glucose 

MV medium* 0.67% Yeast Nitrogen Base w/o amino acids, 2% D-glucose 

*Following supplements were added depending on selection of genetic markers: 0.4 mM L-tryptophan, 

0.3 mM adenine, 1 mM L-lysine, 0.2 mM uracil, 0.3 mM L-histidine and/or 1.7 mM L-leucine 

 

Table 3.9.2 E. coli media used in this study 

Name Supplements 

LB-medium, pH 7.5 1% Bacto Trypton, 0.5% Bacto Yeast extract, 0.5% sodium chloride 

For plasmid selection: 75 µg/ml ampicillin, 50 µg/ml kanamycin, 

and/or 25 µg/ml chloramphenicol  

 SOC-medium, pH 7.5 2% Bacto Trypton, 0.5% Bacto Yeast extract, 0.4% D-glucose 

10 mM sodium chloride, 10 mM magnesium sulfate 

10 mM magnesium chloride, 2.5 mM potassium chloride 
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3.2 Methods 

 

3.2.1 Cultivation of E. coli 

For molecular biological methods, the E. coli strains XL1 blue and DH5α were used. 

Recombinant expression of proteins was performed in BL21 (DE3) pLysS E. coli cells.  

LB medium is the standard growth medium of liquid E. coli culture. For plasmid 

selection, the relevant antibiotics were supplemented.  In most cases (plasmid isolation, 

preparation of competents cells, transformation), cells were shaken at 37°C and 220 

rpm. Quantification of liquid cultures was performed by measuring the cell density at 

OD600. E. coli can be stored in LB medium or on LB agar plates at 4°C for 3–5 weeks. For 

long-time storage, cryo-stocks were prepared with 700 µl of an over night liquid culture 

supplemented with 700 µl of 60% glycerol. Cryo-stocks were stored at -80°C. E. colis 

were grown on LB agar plates supplemented with the appropriate antibiotics for 

selection of positive clones after transformation (see chapter 3.2.3). 

 

3.2.2 Cultivation of yeast 

YPD medium supplemented with 2% glucose was used as nutrient rich-medium. For 

selection of genetic markers, liquid yeast cultures were inoculated in the synthetic 

selection medium CM supplemented with the relevant components and lacking the 

supplements for selection of positive clones. Liquid yeast cultures were typically grown 

at 30°C with 220 rpm if not indicated otherwise. The cell density was measured at OD600. 

In most cases, a preculture was inoculated to achieve the desired cell density of the main 

culture for the experiment. For this, the preculture was diluted depending on the growth 

rate of the respective strain. Yeast can be stored in medium or on agar plates at 4°C for 6 

weeks. For long-time storage, cryo-stocks were prepared with 700 µl of an over night 

liquid culture supplemented with 700 µl of 30% glycerol. 
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3.2.3 Molecular biological methods  

 

3.2.3.1 Determination of DNA concentration 

DNA concentrations were measured using the UV spectrophotometer (GE Healthcare). 

 

3.2.3.2 Restriction of DNA 

Restriction enzymes are standard tools to analyse DNA and to generate defined DNA 

fragments for cloning (chapter 3.2.3.5). Standard protocols were used according to the 

manufacturer’s instructions (NEB). For an analytic digestion, 0.5–1.0 µg DNA was used. 

The reaction was incubated for 1–2 h at the optimal enzyme temperature and analysed 

by DNA electrophoresis (chapter 3.2.3.3).  

 

3.2.3.3 DNA electrophoresis 

DNA electrophoresis is a typical molecular biological technic to analyse and determine 

the size of DNA fragments. Before electrophoresis, DNA sample buffer (1 M Tris/HCl pH 

8.0, 50% (v/v) glycerol, 0.1% (w/v) bromphenolblue) was mixed with the DNA. The 

DNA sample was separated in a 1% agarose gel (w/v) in TAE (40 mM Tris/acetate pH 

8.1, 2 mM EDTA, 0.114% acetic acid) supplemented with 1 µg/ml ethidiumbromide for 

visualization under UV light. The Standard Tri Dye 1 kb (NEB) was used as DNA ladder to 

predict the size of the separated fragments.  

 

3.2.3.4 Polymerase chain reaction 

Polymerase chain reaction is used to amplify DNA fragments determined by (two) 

flanking oligonucleotides (primers). For cloning, DNA fragments were amplified by PCR 

using KOD Hot Start DNA Polymerase (Novagen). For genetic analysis of chromosomally 

tagged or knockout strains, PCR was performed with Taq DNA polymerase (NEB). Yeast 

chromosomal DNA or plasmid DNA was used as template in a 50 µl scale PCR. Standard 

PCRs were done according to the recommendations of the manufacturer. The respective 

program of the thermocycler was adapted to the size of the product (elongation time) 

and the annealing temperature of the primers. 
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3.2.3.5 Molecular cloning 

DNA fragments (inserts) with flanking restrictions sites were generated by performing 

PCR with primers containing respective restriction sites. The PCR product was checked 

by DNA electrophoresis (chapter 3.2.3.3) and purified by using the Gel Extraction Kit 

from Qiagen. Then, the PCR product and the target plasmid (5–10 µg) were digested 

with the corresponding restriction enzymes in a 50 µl reaction following the 

manufacturers advice from NEB. At the optimal enzyme temperature, the reaction was 

incubated for 2-4 hours. To avoid religation in the following ligation reaction, 1 µl of CIP 

was added to the reaction of the vector. Next, the products were again purified with the 

Gel Extraction Kit from Qiagen (using the protocol for purification of PCR products). The 

concentrations of the eluted fragments were determined (chapter 3.2.3.1) to calculate 

the optimal molar ratio of insert and vector (5:1) for the ligation reaction:  

 

𝑚𝑎𝑠𝑠𝑖𝑛𝑠𝑒𝑟𝑡 = 5 ×  𝑚𝑎𝑠𝑠𝑣𝑒𝑐𝑡𝑜𝑟  ×  
𝑙𝑒𝑛𝑔ℎ𝑖𝑛𝑠𝑒𝑟𝑡

𝑙𝑒𝑛𝑔ℎ𝑣𝑒𝑐𝑡𝑜𝑟
 

 

Ligation was done in a 20 µl scale with 50-100 ng of vector DNA and the respective 

amount of insert DNA. The reaction was performed by using T4‐DNA‐ligase according to 

the recommendations of the manufacturer (NEB). For selection and amplification of the 

vectors with the insert of interest, chemically competent E. colis (XL1 blue) (chapter 

3.2.3.7) were transformed with the complete volume of the ligation reaction. 

 

3.2.3.6 Generation of cDNA for molecular cloning  

For cloning of the cDNA of the L-A virus RNA in vectors, the 4.6 kb dsRNA genomic 

segment was separated by DNA electrophoresis, purified and used as a template for 

generation of cDNA. The cDNA was then used for standard PCR. 

In detail:  20 µl of the 50 µl bound fraction of the GFP-Atg26-Trap (chapter 3.2.7.4) was 

removed, and mixed with 10 µl ddH2O and 5 µl DNA sample buffer (1 M Tris/HCl pH 8.0, 

50% (v/v) glycerol, 0.1% (w/v) bromphenolblue). Co-precipitated dsRNA was 

separated from mRNA and rRNA by DNA electrophoresis (chapter 3.2.3.3) and purified 

by using the Gel Extraction Kit from Qiagen. For elution, 30 µl of ddH2O was used. 

cDNA was generated by using the First Strand cDNA Synthesis Kit (Thermo Scientific) 

following the manufacturer advice. 10 µl of the RNA sample was mixed with 2.5 µM of 
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each primer (gagpol_forBam and gag_revXho, table 3.4.1). The reaction was filled up to 

11 μl with ddH2O. The sample was incubated at 65°C for 5 min. On ice, 4 µl 5 x reaction 

buffer, 1 µl RiboLock RNase Inhibitor, 2 µl dNTP Mix (10 mM each) and 2 µl M-MuLV 

Reverse Transcriptase was supplemented. Then, the sample was incubated at 37°C for 1 

hour. Finally, the reaction was terminated at 70°C for 5 min. The cDNA sample was used 

for molecular cloning as described in chapter 3.2.3.5. 

 

3.2.3.7 Preparation of chemically competent E. coli (XL1 blue) 

XL1 blue cells were used to generate chemically competent E. coli. For this, a 400 ml 

culture of OD600∼0.6 (growing in LB medium) was harvested by centrifugation (3000 g, 

10 min, 4°C). The pellet was resuspended in 150 ml buffer I (30 mM potassium acetate 

pH 5.8, 100 mM rubidium chloride, 10 mM calcium chloride, 50 mM manganese(II) 

chloride, 15% glycerol) and incubated for 15 min on ice. After a centrifugation step 

(3000 g, 10 min, 4°C), the cell sediment was resuspended in 15 ml buffer II (10 mM 

MOPS pH 6.8, 10 mM rubidiumchloride, 75 mM calcium chloride, 15% glycerin). 

Aliquots of 100 µl were stored at -80°C.  

 

3.2.3.8 Preparation of electrocompetent E. coli (BL21/pLysS) 

For preparation of electrocompetent BL21/pLysS cells, a 1 l culture of OD600∼0.5 

(growth medium: LB with 25 μg/ml chloramphenicol) was cooled on ice for 10 min and 

sedimented by centrifugation (3000 g, 10 min, 4°C). The cells were washed twice with 

ice-cold ddH2O and once with ice-cold 10% (v/v) glycerine. After the last centrifugation, 

the cell sediment was resuspended in 2 ml ice-cold 10% (v/v) glycerin. Aliquots of 50 µl 

were stored at -80°C. 

 

3.2.3.9 Transformation of plasmid DNA in chemically competent E. coli 

For E. coli transformation with ligated vectors, 30-50 µl of chemically competent XL1 

blue cells were thawed on ice and the complete ligation reaction (chapter 3.2.3.5) was 

added. After 30 min of incubation on ice, the cells were heat-shocked at 42°C for 90 sec. 

Then, the sample was cooled-down on ice for 2 min. For recovery, the cells were 

resuspended in 1 ml SOC medium and shaken for 40 min at 37°C. Finally, the cells were 

sedimented and plated on LB agar containing the respective antibiotics for plasmid 

selection. The plates were incubated over night at 37°C. On the next day, clones were 
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picked and prepared for plasmid isolation (chapter 3.2.3.12), tested for correct insertion 

by analytic restriction enzym digestion and sequencing (chapter 3.2.3.2 and 3.2.3.13) 

 

3.2.3.10 Transformation of plasmid DNA in electrocompetent E. coli 

Electrocompetent cells (BL21/pLYS) were thawed on ice. Then, 50–100 ng of plasmid 

DNA was added to the cells and transferred to a pre-chilled electroporation tube. The 

electroporation was performed at 2500 Volt using Electroporator 2510 (Eppendorf).  

Then, the cells were transferred to 1 ml SOC medium and incubated at 37°C for 40 min 

under shaking. The cells were harvested and plated on LB agar with the appropriate 

antibiotics.  

 

3.2.3.11 Site-directed mutagenesis of plasmids 

Site-directed mutagenesis of plasmids was made by using the QuickChange site-directed 

mutagenesis kit (Agilent). To introduce desired point mutations in a sequence, two 

complementary primers with the exchanged nucleotides were designed and applied for 

the protocol according to the manufacturer’s instructions. Introduced point mutations 

were confirmed by sequencing (chapter 3.2.3.13). 

 

3.2.3.12 Purification of plasmids from E. coli 

For small-scale plasmid purification, the Wizard Plus SV Minipreps DNA Purification 

System (Promega) was used according to the recommendations of the manufacturer. 

 

3.2.3.13 Sequencing of DNA 

All cloned constructs containing inserts generated by PCR were verified by sequencing. 

Sequencing was done by GATC Biotech (Konstanz). For the sequencing reactions, the 

samples (plasmid DNA and the relevant primers) were prepared according to the 

manufacturer’s instructions. 

 

3.2.3.14 Plasmid constructs  

Table 3.10 lists all plasmids that were generated in this study. Furthermore, it contains 

all necessary information about the construction of the plasmids.  

Examples: For construction of pYES2 GFP-Atg8 F5GK6G, Atg8 F5GK6G (insert) was 
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amplified with GFPAtg8for and GFPAtg8rev (primer: table 3.4.1) using pRS316-GFP-

Atg8 F5GK6G as PCR template. The DNA fragment was digested with HindIII and XhoI 

(restriction enzymes) and cloned in pYES2 (vector backbone). 

For construction of pUG34-Atg26, pUG34-mCherry-Atg26 was digested with BamHI and 

XhoI to generate the insert Atg26. Then, Atg26 was cloned in pUG34 (vector backbone). 

For construction of Atg26_1-186-Cub, Atg26 1-186 was amplified with 

Atg26_Cub_StuI_fwd and Atg26MAP1_Cub_SalI_rev (primer), where pUG34-Atg26 was 

used as PCR template. The PCR product was digested with StuI (blunt cutter) and SalI. 

The targed vector pRS313-Met25-Ste14-Cub-RURA was digested with ClaI and treated 

with the DNA-polymerase Klenow to generate a blunt site. Subsequently, it was digested 

with SalI. Then, the DNA fragment Atg26 1-186 was cloned in pRS313-Met25-Ste14-Cub-

RURA by ligation of two blunt sites (StuI/Cla(blunt)) and SalI sites. 

 

Table 3.10 Plasmids constructs cloned in this study 

Title of the plasmid Vector 

backbone 

Insert PCR template or 

insert  origin 

Oligonucleotides 

(Primer) 

Restriction 

enzymes 

pYES2 GFP-Atg8 

F5GK6G 

pYES2 GFP-Atg8 

F5GK6G 

PCR: pRS316-GFP-Atg8 

F5GK6G  

GFPAtg8for/GFP-

Atg8rev 

HindIII/ 

XhoI 

pYES2 GFP-Atg8 

S3AT4A 

pYES2  GFP-Atg8  

S3AT4A 

PCR: pRS316-GFP-Atg8 

S3AT4A  

GFPAtg8for/GFP-

Atg8rev 

HindIII/ 

XhoI 

pYES2-GFP pYES2 GFP  GFPAtg8for/GFP rev HindIII/ 

XhoI 

pUG34 mCherry pUG34 Met25-

mCherry 

cloned from pUG36-

mCherry 

- SacI/ 

SpeI 

pUG34 mCherry-Atg19 pUG34 mCherry Atg19 cloned from pUG36-

CVT19 

- BamHI/ 

XhoI 

pUG36 mCherry-Atg8 pUG36 mCherry Atg8 pRS 316-GFP-Atg8 Atg8 wt BamHI/GFP-

Atg8rev 

BamHI/ 

XhoI 

pUG34 mCherry-Atg26 pUG34 mCherry Atg26 PCR template: genomic 

DNA 

Atg26forBamHI/Atg26

revXho 

BamHI/ 

XhoI 

pUG34 mCherry-Atg26 

1-1194 

pUG34 mCherry Atg26 1-

1194 

PCR template:  pUG34 

mCherry-Atg26  

Atg26forBamHI/Atg26

woWTMIrevXhoI 

BamHI/ 

XhoI 

pUG34 mCherry-Atg26 

I1198A 

pUG34 mCherry Atg26 

I1198A 

PCR template:  pUG34 

mCherry-Atg26 

Atg26forBamHI/Atg26

WTMarevXhoI 

BamHI/ 

XhoI 

pUG34 Atg26 pUG34 Atg26 cloned from pUG34 

mCherry-Atg26 

- BamHI/ 

XhoI 

pUG34 Atg26 1-1194 pUG34 Atg26 1-

1194 

cloned from pUG34 

mCherry-Atg26 1-1194 

- BamHI/ 

XhoI 

pUG34 Atg26 I1198A pUG34 Atg26 

I1198A 

cloned from pUG34 

mCherry-Atg26 I1198A 

- BamHI/ 

XhoI 

pUG34 Atg26 1-186 pUG34 Atg26 1-189 PCR:  pUG34 -Atg26 Atg26forBamHI/Map1

Atg26revXh 

BamHI/ 

XhoI 

pUG34 Atg26 1-337 pUG34 Atg26 1-337 PCR:  pUG34 -Atg26 Atg26forBamHI/Map2 BamHI/ 
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Atg26revXh XhoI 

pUG34 Atg26 1-569 pUG34 Atg26 1-569 PCR:  pUG34 -Atg26 Atg26forBamHI/Map3

Atg26revXh 

BamHI/ 

XhoI 

pUG34 Atg26 1-635 pUG34 Atg26 1-635 PCR:  pUG34 -Atg26 Atg26forBamHI/Map4

Atg26revXh 

BamHI/ 

XhoI 

pUG34 Atg26 1-744 pUG34 Atg26 1-744 PCR:  pUG34 -Atg26 Atg26forBamHI/Map5

Atg26revXh 

BamHI/ 

XhoI 

pUG34 Atg26 187-337 pUG34 Atg26 187 - 

337 

PCR:  pUG34 -Atg26 Atg26PHforBam/Map2

Atg26revXh 

BamHI/ 

XhoI 

pUG34 Atg26 187-374 pUG34 Atg26 187- 

374 

PCR:  pUG34 -Atg26 Atg26PHforBam/Map2.

2Atg26revXh 

BamHI/ 

XhoI 

pUG34 Atg26 338-744 pUG34 Atg26 338-

744 

PCR:  pUG34 -Atg26 Atg26L2.1forBam/Map

5Atg26revXh 

BamHI/ 

XhoI 

pUG34 Atg26 338-

1198 

pUG34 Atg26 338-

1198 

PCR:  pUG34 -Atg26 Atg26L2.1forBam/Atg2

6revXho 

BamHI/ 

XhoI 

pUG34 Atg26 187-

1198 

pUG34 Atg26 187-

1198 

PCR:  pUG34 -Atg26 Atg26forBamHI/Atg26

revXho 

BamHI/ 

XhoI 

pUG34 Atg26 187-569 pUG34 Atg26 187-

569 

PCR:  pUG34 -Atg26 Atg26forBamHI/Map3

Atg26revXh 

BamHI/ 

XhoI 

pUG34 Atg26 570-

1198 

pUG34 Atg26 570-

1198 

PCR:  pUG34 -Atg26 Atg26forBamHI/Atg26

revXho 

BamHI/ 

XhoI 

pUG36 mCherry LA 

Gag 

pUG36 mCherry LA Gag 

(WCG4) 

PCR template: LA cDNA gagpol_forBam/gag_rev

Xho 

BamHI/ 

XhoI 

pUG34  LA Gag pUG34 LA Gag 

(WCG4) 

PCR template: LA cDNA gagpol_forBam/gag_rev

Xho 

BamHI/ 

XhoI 

pUG36  LA Gag pUG36 LA Gag 

(WCG4) 

PCR template: LA cDNA gagpol_forBam/gag_rev

Xho 

BamHI/ 

XhoI 

pUG36  LA GagPol pUG36 LA GagPol 

(WCG4) 

PCR template: LA cDNA gagpol_forBam/gagpol_

revXho 

BamHI/ 

XhoI 

pUG35 LA Gag pUG35 LA Gag 

(WCG4) 

PCR template: pUG36 

mCherry LA Gag 

- BamHI/ 

SalI 

pUG36 Atg26 pUG36 mCherry Atg26 cloned from pUG34-

Atg26  

- BamHI/ 

XhoI 

pUG36 mCherry Atg11 pUG36 mCherry Atg11 PCR template: genomic 

DNA 

Atg11forBamHI/Atg11

revXhoI 

BamHI/ 

XhoI 

Atg26_1-186 - Cub pRS313-Met25-

Ste14-Cub-RURA 

Atg26 1-186 PCR:  pUG34 -Atg26 Atg26_Cub_StuI_fwd/At

g26MAP1_Cub_SalI_rev  

Stu/ClaI(Blu

nt)/SalI 

Atg26_1-337 - Cub pRS313-Met25-

Ste14-Cub-RURA 

Atg26 1-337 PCR:  pUG34 -Atg26 Atg26_Cub_StuI_fwd/At

g26MAP2_Cub_SalI_rev  

Stu/ClaI(Blu

nt)/SalI 

Atg26_1-569 - Cub pRS313-Met25-

Ste14-Cub-RURA 

Atg26 1-569 PCR:  pUG34 -Atg26 Atg26_Cub_StuI_fwd/At

g26MAP3_Cub_SalI_rev  

Stu/ClaI(Blu

nt)/SalI 

Atg26_338-1198  - Cub pRS313-Met25-

Ste14-Cub-RURA 

Atg26 338-

1189 

PCR:  pUG34 -Atg26 Atg26_L2_Cub_ StuI 

_for/Atg26_Cub_SalI_rev  

Stu/ClaI(Blu

nt)/SalI 

Atg26_1-1194 - Cub pRS313-Met25-

Ste14-Cub-RURA 

Atg26 1-

1194 

PCR:  pUG34 -Atg26 Atg26_Cub_StuI_fwd/At

g26delAIM_Cub_SalI_rev 

Stu/ClaI(Blu

nt)/SalI 

Atg26_187-337 -Cub pRS313-Met25-

Ste14-Cub-RURA 

Atg26 187 - 

337 

PCR:  pUG34 -Atg26 Atg26PH_Cub_StuI_fw/

Atg26MAP1_Cub_SalI_rev 

Stu/ClaI(Blu

nt)/SalI 

Gag-Cub pRS313-Met25-

Ste14-Cub-RURA 

LA Gag 

(WCG4) 

PCR:  pUG36  LA Gag GagCubforStuI/GagCub

revSal1    

Stu/ClaI(Blu

nt)/SalI 
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Nui-Gag pRS313-CUP1 LA Gag 

(WCG4) 

PCR:  pUG36  LA Gag Nui_Gag_for_BamH/Nui

-Gag_cyterm_rev_SalI 

BamHI/ 

SalI 

pGEX 4T3 Atg26 pGEX 4T3 Atg26 cloned from pUG34-

Atg26  

- BamHI/ 

XhoI 

pGEX 4T3 Atg26 pGEX 4T4 Atg26 187-

569 

cloned from pUG34 

Atg26 187-569 

- BamHI/ 

XhoI 

pPROEX htb - LA Gag pPROEX htb LA Gag 

(WCG4) 

cloned from pUG36 LA 

Gag  

- BamHI/ 

XhoI 

 

3.2.3.15 Isolation of chromosomal DNA from yeast cells  

In order to isolate genomic DNA from yeast, 2 ml of an over night culture was 

sedimented by centrifugation and washed with ddH2O (13.000 rpm, 1 min). The cell 

pellet was resuspended in 200 µl breaking buffer (10 mM Tris/HCl pH 8.0, 100 mM 

NaCl, 1 mM EDTA, 1% SDS, 2% Triton X-100) and supplemented with 200 μl 

phenol:chloroform:isomyl (25:24:1) and ∼200 µl glass beads. The cells were vortexed 

for 1 min and then cooled-down on ice for 1 min. These two steps were repeated four 

times. After supplying 200 µl ddH2O, the sample was sedimented by centrifugation 

(13.000 g, 10 min, 4°C) to generate an upper phase containing the chromosomal DNA. 

The upper phase was transferred to a new reaction tube and 1 ml of ice-cold ethanol 

(stored at -20°C) was added. The sample was mixed and precipitated by incubation at -

20°C for 10 min. Then, the sample was again centrifugated (13.000 g, 10 min, 4°C) and 

the resulting supernatant removed. The pellet was resuspended in 400 µl ddH2O and 

supplemented with 3 µl RNase A (10 mg/ml). After 5 min of incubation at 37°C for RNA 

digestion, 1 ml ice-cold ethanol with 10 µl 5 M ammonium acetate was added and 

incubated for 15 min at -20°C. Then, the DNA was again sedimented by centrifugation 

(13.000 g, 10 min, 4°C). The supernatant was removed and the dried pellet resuspended 

in 30 µl ddH2O. 

 

3.2.3.16 Yeast cell transformation 

A 50 ml liquid culture of OD600∼0.5 was harvested by centrifugation (2000 rpm, 5 min, 

RT). The cells were washed two times with ddH2O and once with LiOAc-Sorb (100 mM 

lithium acetate, 10 mM Tris/acetate pH 8.0, 1 mM EDTA, 1 M sorbitol). After the last 

washing step, the supernatant was removed and the sedimented cells were resuspended 

in 100-500 µl LiOAc-Sorb and incubated at 30°C for 15 min. Then, 50-100 µl of the cells 

was added to a cocktail of 5 µl herring sperm DNA (10 mg/ml), 3-10 µl of DNA and 300 

µl PEG in Li-TE (100 mM lithium acetate, 10 mM Tris/acetate pH 8.0, 1 mM EDTA, 40% 
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(v/v) PEG 3350). Subsequently, the sample was incubated at 30°C for 30 min and then 

heat-shocked at 42°C for 15 min.  Afterwards, the cells were sedimented (2000 rpm, 5 

min, RT) and resuspended in 2 ml YPD for recovery. Finally, the cells were sedimented 

again and plated on YPD agar containing the respective antibiotics for selection of 

genetic markers. After 2-3 days of incubation at 30°C, colonies were picked and used for 

further studies. 

 

3.2.3.17 “Quick and Dirty” variant of yeast cell transformation 

For transformation with plasmid DNA, a short variant of yeast cell transformation was 

used: Yeast cells were directly picked from agar plates and resuspended in 5 µl herring 

sperm DNA (10 mg/ml), 3-10 µl of plasmid DNA and 300 µl PEG in Li-TE (100 mM 

lithium acetate, 10 mM Tris/acetate pH 8.0, 1 mM EDTA, 40% (v/v) PEG 3350). After 30 

min of incubation at 30°C and a heat shock at 42°C for 15 min, the cells were harvested 

by centrifugation (2000 rpm, 5 min, RT), resupended in 200 µl ddH2O and plated on CM 

agar. The plates were incubated for 2-3 days at 30°C. 

 

3.2.3.18 Deletion and chromosomal tagging of genes by homologous   

                 recombination 

In this study, the methods of deletion and chromosomal tagging of genes were based on 

the protocol of Janke et al. (2004). PCR-amplified cassettes were transformed in yeast 

(chapter 3.2.3.16) and integrated by homologous recombination at the chromosomal 

locus of interest resulting in deletion or tagging of the desired gene (Janke et al., 2004).  

 

3.2.4 Split‐ubiquitin assay 

Yeast cells were transformed with the Cub and Nub vectors. Each vector contained the 

gene of interest that was expressed as a fusion protein with either the N-terminal or the 

C-terminal half (plus R-Ura3) of ubiquitin. A yeast preculture was set to OD600∼1.0. This 

cell density was used for a series of 10-fold dilutions up to 10000. From these dilutions, 

4 µl was dropped on three different solid plates: The first plate was used to test the 

general growth of the cells independent of the expression or interaction of the two 

tested proteins (CM w/o Trp and His). The second plate contained the selective medium 

CM (w/o Trp and His), 250 μM methionine and 100 μM CuSO4 to induce expression. 

Furthermore, 1 mg/ml FOA was added for positive selection of interaction partners. The 
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third plate consists of the selection medium MV lacking uracil (MV w/o Trp, His and 

Ura) for negative selection of interaction.  

 

3.2.5 Microscopy 

Intracellular expressed fluorescent proteins are detectable by (in vivo) fluorescence 

microscopy. The expression of a fusion protein, containing a protein of interest and a 

fluorescent protein as tag, is used to visualize the intracellular localization. In this study, 

two fluorescent proteins GFP and mCherry were used. For in vivo fluorescence 

microscopy, 5 µl of a yeast culture was transferred to a glass slide and fixed with a cover 

slip. Fluorescence microscopy was performed with a DeltaVision Deconvolution 

microscope (Olympus IX71, Applied Precision) by using the 100 x objective and the filter 

sets for live cell imaging (table 3.11). A stack of at least 18 pictures with focal planes 

0.20 μm apart was captured by the equipped CoolSNAP HQ camera and deconvoluted 

using the software SoftWoRx (Applied Precision). Analysis and processing of the 

pictures were performed by using Fiji or SoftWoRx. 

 

Table 3.11 Filter sets for live cell imaging 

Filter set Excitation wavelength (nm) Emission wavelength (nm) 

GFP 475/28 525/50 

mCherry 575/25 632/60 

Pol ‐50/28  ‐50/0 

 

3.2.6 Induction and monitoring of autophagy 

Nitrogen-free medium (SD-N) was used to induce autophagy in yeast cells. As the GFP 

moiety of GFP-tagged proteins is stable in the vacuole, accumulation of free GFP in this 

compartment shows the autophagic processing of such proteins. In this study, detection 

of free GFP was done by immunoblotting (chapter 3.2.7.5/6) or by fluorescence 

microscopy (chapter 3.2.5). 5 ml yeast culture of OD600∼3 was sedimented by 

centrifugation (2000 rpm, 5 min, RT). The cells were washed once with SD-N and set to 

OD600∼10 in SD-N. Then, samples (1-4 OD600) were taken at different time points (t= 0, 

2, 4, 6 h) for alkaline lysis (chapter 3.2.7.1.1) and immunoblot analysis (chapter 

3.2.7.5/6). The detected signals were quantified using AIDA software. For fluorescence 

microscopy of starved cells, samples were analysed as described in chapter 3.2.5. 
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3.2.7 Biochemical methods 

 

3.2.7.1 Cell lyses  

3.2.7.1.1 Alkaline lysis of yeast cells 

Cells (1-4 OD600) were harvested by centrifugation (7.000 rpm, 5 min, RT). The 

supernatant was removed and the pellet resuspended in ice-cold ddH2O. Subsequently, 

150 µl lysis solution (1.85 M NaOH, 7.5% β-mercaptoethanol) was added and mixed. 

After 10 min of incubation on ice, 150 µl of 50% (w/v) TCA was supplemented. The 

probe was mixed and incubated on ice for at least 10 min. After centrifugation (13.000 g, 

10 min, 4°C), the supernatant was removed. The pellet was washed twice with ice-cold 

acetone (stored at -20°C). After the last centrifugation step, the supernatant was 

removed and the pellet was air dried at 37°C. Finally, the pellet was dissolved in 100 µl 2 

x laemmli buffer (116 mM Tris/HCl pH 6.8, 12% (w/v) glycerol, 3.42% (w/v) SDS, 

0.004% bromphenolblue, 2% β-mercaptoethanol). 

 

3.2.7.1.2 Osmotic lysis of spheroplasts 

250 OD600 of cells were harvested (2000 rpm, 5min, 4°C) and washed with 13 ml ice-cold 

10 mM NaN3. After removing the supernatant, the cell sediment was resuspended in 2.5 

ml SP buffer (50 mM potassium phosphate buffer pH 7.5, 10 mM NaN3, 1.4 M sorbitol, 40 

mM ßMe). 100 µl of zymolase 100T (0.75 mg solved in 100 µl SP buffer and 15 min 

preincubated at 30°C) was added and the reaction was incubated in a water bath at 30°C 

(40 rpm) for 30 min. The spheroplasts were sedimented (1000 g, 10 min, 4°C) and 

washed with a glass stick in 2.5 ml SP buffer. For this, ice-cold SP buffer was added in 0.5 

ml steps (5 x 0.5 = 2.5ml) to avoid re-aggregation of the spheroplasts. After 

centrifugation (2000 g, 10 min, 4°C), the spheroplasts were lysed hypotonically with a 

small potter homogenizer (size: 2 ml) in lysis buffer (1 x PBS pH 7.4, 5 mM MgCl2, 0.2 M 

sorbitol, protease inhibitors, 1 x Complete (w/o EDTA) (Roche), 1 mM PMSF). For this, 

the spheroplast pellet was carefully resuspended in 250 µl of ice-cold lysis buffer and 

transferred to a cold potter homogenizer. Then, the spheroplasts were treated with 2 x 

15 “beats” of the potter (the potter homogenizer with the cell lysate was cooled down on 

ice for 1 min after the first 15 beats). 250 µl ice-cold lysis buffer was added to the cell 

lysate (in the potter) and transferred to an eppendorf cup (on ice). After this step, the 

volume of cell lysate was about 750 µl. 1% Triton (37.5 µl of 20% Triton stock in 750 µl 
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cell lysate) was added and the sample was inverted 10 times. After sedimentation of the 

cell debris (2700 g, 5 min, 4°C), the supernatant (∼500 µl) was used for further studies. 

 

3.2.7.2 GST-Atg8 and GST-Atg26 187-569 pull downs 

3.2.7.2.1 Expression of GST-Atg8 and GST-Atg26 187-569 

For expression of GST-Atg8 or GST-Atg26 187-569, Bl21/pLys E. coli were transformed 

with the respective plasmids (pGEX 4T3-GST-Atg8 or pGEX 4T3–GST-Atg26 187-569) 

(chapter 3.2.3.17). Liquid pre-culture were inoculated and incubated over night at 37°C 

under shaking. On the next day, the culture was diluted to OD600∼0.2 and shaken (220 

rpm) for 90 min at 37°C. To induce expression, 0.2 mM IPTG was added. Furthermore, 

1mM PMSF was supplied to avoid degradation. Protein expression was performed for 4-

5 hours at 30°C under shaking (220 rpm). Then, the cells were sedimented by 

centrifugation (5000 rpm, 5 min, RT), washed with 1 x PBS and frozen with liquid 

nitrogen. The pellets were stored at -80°C. 

 

3.2.7.2.2 Purification of GST-Atg8 and GST-Atg26 187-569 

The cell pellet was resuspended in 5 ml ice-cold lysis buffer (1 x PBS pH 7.4, 2 mM 

MgCl2, protease inhibitors (Sigma)) supplemented with 1 μl benzonase. Next, 1 % Triton 

X-100 was added and the sample was carefully inverted 5 times. After this, the sample 

was centrifuged (10.000 rpm (JA20 rotor), 10 min, 4°C). For analysis of the input 

fraction by SDS-PAGE, 15 µl of the resulting supernatant was removed and diluted with 

15 μl 4 x laemmli buffer (232 mM Tris/HCl pH 6.8, 24% (w/v) glycerol, 6.84% (w/v) 

SDS, 0.008% bromphenolblue, 4% β-mercaptoethanol). The supernatant was incubated 

with 100 µl 50% slurry of 1 x PBS-equilibrated Glutathione SepharoseTM 4B (GE 

healthcare) for 40 min at 4°C under shaking. After sedimentation of the GST-Atg8/GST-

Atg26 187-569 coupled glutathione sepharose beads (500 g, 5min, 4°C), the supernatant 

was removed. The pellet was washed 3 times with 500 µl ice-cold 1 x PBS. After this, the 

supernatant was removed and the GST-Atg8 or GST-Atg26 187-569 coupled glutathione 

sepharose was used for pull down assays.  
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3.2.7.2.3 GST-Atg8 and Atg26 187-569 pull down assays 

40-100 OD600 of yeast cells were centrifuged (2000 rpm, 5 min, 4°C). The pellet was 

washed with 5 ml ice cold 1 x PBS (2000 rpm, 5min, 4°C). Next, the cells were 

resuspended in 1 ml ice-cold lyses puffer (1 x PBS pH 7.4, 5 mM MgCl2, 0.2 M sorbitol, 

0.5 % Triton, protease inhibitors, 1 x Complete (w/o EDTA) (Roche), 1 mM PMSF) and 

transferred to an eppendorf cup. 200 µl of glass beads were added. For cell lysis, the 

sample was harshly mixed for 20 min at 4°C. After sedimentation of the glass beads 

(5000 rpm, 5 min at 4°C), the supernatant was used for GST-Atg8 or GST-Atg26 187-569 

pull down assays. For analysis of the input fraction by immunoblotting, 25 µl of 

supernatant was removed and diluted with 25 μl 4 x laemmli. GST-Atg8-or GST-Atg26 

187-569-coupled glutathione sepharose beads were incubated with the supernatant of 

crude yeast cell extract for 2–4 hours under constant inverting (Roto-shake Genie, 

mixing action: roll). Incubation with GST-coupled beads was used as negative control. 

After incubation, the glutathione sepharose was washed 3 times with 1 ml ice-cold lyses 

buffer (500 g, 5min, 4°C). For elution of the bound fraction, the sepharose beads were 

resuspended in 50 µl 2 x laemmli buffer and boiled 10 minutes at 95°C. The beads were 

sedimented (500 g, 5 min, 4°C) and the supernatant was used for SDS-PAGE and 

immunoblot analysis. 

 

3.2.7.3 Co-purification of GST-Gag and His-Atg26 187-569 

3.2.7.3.1 Expression of GST-Gag and His-Atg26 187-569 

GST-Gag and His-Atg26 187-569 were expressed as described for GST-Atg8 and GST-

Atg26 187-569 in chapter 3.2.7.2.1 with the modification that protein expression was 

performed over night at 16°C. 

 

3.2.7.3.2 Co-purification of GST-Gag and His-Atg26 187-569 

The pellet of His-Atg26 187-569 expressing cells was resuspended in 10 ml ice-cold lysis 

buffer (1 x PBS pH 7.4, 2 mM MgCl2, protease inhibitors (Sigma)) supplemented with 1 

μl benzonase. 5 ml of the resulting cell lysate was then used for resuspension and lysis of 

pellets from GST-Gag or GST (negative control) expressing cell. Next, 1% Triton X-100 

was added and the samples were carefully inverted 5 times. After this, the samples were 

centrifuged at 2700 rpm for 10 min at 4°C.  For analysis of the input fraction by SDS-

PAGE (chapter 3.2.7.5), 15 µl of the resulting supernatant was removed and diluted with 
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15 μl 4 x laemmli buffer (232 mM Tris/HCl pH 6.8, 24% (w/v) glycerol, 6.84% (w/v) 

SDS, 0.008% bromphenolblue, 4% β-mercaptoethanol). The supernatants were 

incubated with 70 µl 50% slurry of 1 x PBS-equilibrated glutathione sepharoseTM 4B 

(GE healthcare) for 1 h at 4°C under shaking. After sedimentation of the GST-Gag or GST 

coupled glutathione sepharose beads (500 g, 5min, 4°C), the supernatant was removed. 

The pellet was washed 3 times with 1000 µl ice-cold lysis buffer. For elution of the 

bound fraction, the sepharose beads were resuspended in 50 µl 2 x laemmli buffer and 

boiled for 10 minutes at 95°C. The beads were sedimented (500 g, 5min, 4°C) and the 

supernatant was used for immunoblot analysis. 

 

3.2.7.4 GFP- and RFP-TRAP 

The GFP(/RFP)-TRAP protocol of this study was used for purification of 

GFP(/mCherry)-tagged proteins together with associated protein complexes from cell 

extracts. Before incubation of cell lysates with the GFP(/RFP)-TRAP_A beads, the beads 

were equilibrated. For this 10-12 µl of the bead slurry was resuspended in 500 µl wash 

buffer (1 x PBS pH 7.4, 5 mM MgCl2, 0.2 M sorbitol, 0.5% Triton, protease inhibitors, 1 x 

Complete (w/o EDTA) (Roche), 1 mM PMSF), inverted ten times and sedimented (2000 

g, 2 min, 4°C). The supernatant was removed. 250 OD of cells expressing the GFP(/RFP) 

tagged proteins of interest were osmotic lysed as described in chapter 3.2.7.1.2. For 

analysis of the input fraction by SDS-PAGE and immunoblotting (chapter 3.2.7.5/6), 25 

µl of the resulting cell lysate (∼500 µl) was removed and diluted with 25 μl 4 x laemmli. 

The cell lysate was added to the equilibrated GFP(/RFP)-TRAP®_A beads and incubated 

for 2-3 h at 4°C under constant inverting (Roto-shake Genie, mixing action: roll). After 

incubation, the sample was centrifuged (2000 g, 2 min, 4°C). For immunoblot analysis of 

the non-bound fraction, 25 μl of the supernatant was diluted with 25 μl 4 x laemmli 

buffer. The beads were washed three times with 1 ml ice-cold wash buffer (2000 g, 2 

min, 4°C). For elution of the bound fraction, the beads were resupended in 50 µl 2 x 

laemmli buffer and boiled 10 minutes at 95°C. Beads were collected by centrifugation at 

2000 g for 2 min at 4°C. The supernatant (bound fraction) and the input fraction were 

analysed by SDS-PAGE and immunoblotting (chapter 3.2.7.5/6).  
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3.2.7.5 SDS-Polyacrylamid-Gel-Electrophoresis (PAGE) 

Discontinuous SDS-PAGE is a biochemical method to separate proteins according to 

their electrophoretic mobility, which negatively correlates with the molecular weight 

(Lämmli, 1970). SDS-PAGE was performed in a Mini-Protean III electrophoresis 

chamber from Biorad according to the recommendations of the manufacturer. The SDS-

polyacrylamid-gels were produced as described in table 3.12. 

 

Table 3.12 Composition of one SDS Polyacrylamid gel for a Mini-Protean III electrophoresis 
                        chamber from Biorad 
Components 10 % Separating Gel 5 % Collecting Gel 

ddH2O 1.9 ml 3.0 ml 

1.5 M Tris, pH 8.8 1.25 ml - 

0.5 M Tris PH 6.8 - 1.25 ml 

Protogel 1.8 ml 1.8 ml 

10% (w/v) SDS 50 μl 50 μl 

10% (w/v) APS 50 μl 50 μl 

TEMED 2.5 μl 5 μl 

 

A gel chamber was filled with SDS running buffer (200 mM glycerol, 25 mM Tris, 0.1% 

SDS). The protein marker Precision Plus Protein All Blue Standard (Bio‐Rad) was used to 

estimate the molecular weight of the separated proteins. For SDS-PAGE, samples were 

dissolved in laemmli. Typically, 10–15 µl of a protein sample was loaded per lane. The 

electrophoresis was performed at 80-150 V. When bromphenolblue of the laemmli 

buffer reached the end of the gel, the run was stopped. The gel was used for 

immunoblotting (chapter 3.2.7.6) or Coomassie staining (chapter 3.2.7.7). 

 

3.2.7.6 Immunoblotting 

Immunoblotting is used to detect proteins separated by SDS-PAGE and in following 

steps transferred onto a PVDF membrane. For transferring the proteins separated by 

SDS-PAGE onto a membrane, the PA gel and 6 Whatman papers (6 x 9 cm) were soaked 

in blotting buffer (192 mM glycin, 25 mM Tris, 20% methanol) and the PVDF membrane 

(6 x 9 cm) in 20% methanol. The components were arranged in a semi-dry blotting 

chamber as shown in Figure 3.1. 
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                                               Figure 3.1. Arrangement in a semi-dry blotting chamber 

 

Blotting was performed at 75 mA (per gel) for 90 min. After protein transfer, the 

membrane was incubated in TBST blocking buffer (20 mM Tris/HCl pH 7.6, 137 mM 

NaCl, 0.1% (w/v) Tween20, 10% (w/v) skim milk powder) for at least 30 min at room 

temperature or over night at 4°C. After blocking, the membrane was washed with TBST 

(20 mM Tris/HCl pH 7.6, 137 mM NaCl, 0.1% (w/v) Tween20) for 5 min. This step was 

repeated 3 times. Next, the membrane was incubated with the first antibody, diluted in 

TBST with 1% skim milk powder (dilution of the used antibodies in table 3.5) over night 

at 4°C. After this, the membrane was washed 3 times with TBST (3 x 5 min). The 

membrane was incubated with HRP-coupled secondary antibodies for 1 hour at room 

temperature. After incubation, the membrane was washed 3 times with TBST (3 x 5 

min). For immunodetection, the ECLTM system (USB) and LAS-3000 (Fujifilm) was used 

following the manufacturer advice. The detected signals were quantified by using AIDA 

software. 

 

3.2.7.7 Coomassie brilliant blue (CBB) staining 

CBB staining is a biochemical standard method to visualize proteins separated by SDS-

PAGE. The CBB staining method described here is based on a protocol of Wang et al. 

(Pink et al., 2010; Wang et al., 2007, personal communication). After SDS-PAGE (chapter 

3.2.7.5), the gel was fixed with fixation buffer 1 (10% (v/v) phosporic acid, 10% (v/v) 

methanol, 40% ethanol) for 1 h. Then, the gel was incubated in fixation buffer 2 (1% 

(v/v) phosphoric acid, 10% (v/v) ammonium sulphate) for 2 hours. After fixation, the 

gel was treated with staining buffer (10% phosphoric acid, 45% ethanol, 0.125% CBB G-

250) over night. On the next day, the gel was incubated in destaining buffer (5% (v/v) 
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phosporic acid, 40% ethanol) for 1 h and finally in water for 24 h. 

 

3.2.7.8 MS analysis 

CBB-stained protein bands of SDS-polyacrylamid gels were removed and in-gel digest 

was done using trypsin. The gel sections were washed with 25mM NH4HCO3/water, 25 

mM NH4HCO3/50% acetonitrile and 100% acetonitrile. Then, disulfides were reduced 

with 10 mM dithiothreitol, 25 mM NH4HCO3/water for 1 h at 56°C. After washing of the 

gel piece as described above and performing carbamidomethylation using 25 mM 

iodoacetoamide in 25 mM NH4HCO3/water, the in-gel digest was carried out using 120 

ng trypsin at 37°C over night. Peptide extraction was done with 0.1% trifluoroacetic acid 

(TFA). Next, peptides were separated by reverse-phase chromatography (EASY-nLC; 

Bruker Daltonics) using a C18 column (PepMap 100 C18 nano-column; Dionex) and a 

9.5%–90% acetonitrile gradient (in 0.1% TFA) for 80 min. The matrix used for MALDI 

was α-cyano-4 hydroxycinnamic acid (HCCA) (4.5% satured HCCA in 90% acetonitrile, 

0.1% TFA and 1mM NH4H4PO4). It was mixed with the eluate of the reverse-phase 

chromatography and spotted automatically on a target (Proteineer fc II; Bruker 

Daltonics). MALDI-TOF/TOF analysis was carried out using an ultraflextreme setup 

(Bruker Daltonics), which recorded MS as well as post-source decay MS/MS. Different 

software packages were used for data analysis and interpretation (WARP-LC, 

AutoXecute, Flex-Analysis and Biotools; Bruker Daltonics). The data were searched 

against NCBI peptide database (http://ncbi.nlm.nih.gov/BLAST/) using an in-house 

Mascot server. Sample preparation and analysis with MALDI-TOF/TOF were performed 

by Olaf Bernhard and Dr. Bernhard Schmidt (Institute of Cellular Biochemistry, 

University of Göttingen). 
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4 Results 

 

4.1 Optimization of GFP-Atg8-TRAP for quantitative MS analysis 

A fundamental goal of this study was the establishment of a CoIP protocol with Atg8 as 

bait to identify new Atg8 interaction partners in following MS analysis. For optimization 

of the CoIPs, different factors were tested (Table 4.1): the tag of Atg8 and thus the CoIP 

system, different deletion strains to stabilize complexes of interest, marker proteins to 

evaluate the quality of the CoIPs, and cellular growth conditions. Furthermore, cell lyses 

and buffer conditions were optimized.  

Plasmid encoded GFP-tagged Atg8 was fully functional and therefore GFP-TRAP was 

used as CoIP system (Amar et al., 2006; Schmidthals et al., 2010) 

(www.chromotek.com). Co-purification of known direct interaction partners of Atg8, 

like the Cvt pathway receptor Atg19 (Shintani et al., 2002) and the PROPPIN Atg21 

(Juris et al, unpublished), were tested as quality controls using plasmid expressed 

mCherry-Atg19 and Atg21-TAP (Table 4.1). Furthermore, isolation of the whole Cvt 

cargo complex (Ape1) was tested to verify the stability of GFP-Atg8 complexes during 

CoIP (Ho et al., 2009). Co-expression of mCherry-Atg19 should also force the 

accumulation of Cvt pathway associated proteins. The non-Cvt pathway proteins Fas1 

and Fas2 were used as further marker proteins. The binding properties and the 

biological context of the interaction between Atg8 and Fas1/2 are still unclear.  

The experiments for GFP-TRAP optimization showed that osmotic lyses of spheroplasts 

with PBS–based buffer (1 x PBS pH 7.4, 5 mM MgCl2, 0.2 M sorbitol, protease inhibitors, 

1 x Complete (w/o EDTA) (Roche), 1 mM PMSF) gave the best results (Table 4.1). This 

buffer condition was applied in all following GFP-TRAP experiments of this thesis 

(chapter 3.2.7.1.2). To accumulate early Atg8 complexes at the PAS, an atg1∆/pep4∆ 

strain was used. Deletion of ATG1 disrupts autophagic transport of GFP-Atg8 and 

thereby its vacuolar degradation (Straub et al., 1997). The additional lack of vacuolar 

proteinase A (Pep4) further minimizes protein degradation during CoIP  (Takeshige et 

al., 1992). To saturate the GFP-TRAP beads, the expression level of GFP-Atg8 was 

increased by using an inducible GAL promoter (pYES2-GFP-Atg8). Overexpression 

should also force the oligomerisation and, thus, the active conformation of bead-bound 

GFP-Atg8 (Nakatogawa et al., 2007; Schwarten et al., 2010)(see Table 4.1). 



Results 

 59 

 

Table 4.1 Tested conditions for optimization of GFP-Atg8-TRAP 

Deletion 
strains 

Plasmid Expression (promoter/tag) Cellular Lyses Incubation 

Atg8 Atg21 Atg19 condition method buffer time detergent 

atg1/4∆ ATG8/GFP ATG21/TAP - starvation glassbeads TRIS 1h 0.5% NP40 

atg4/8∆ ATG8/GFP ATG21/TAP - starvation 
glassbeads/ 

NP40 
TRIS 1h 0.5% NP40 

atg4/8∆ ATG8/GFP ATG21/TAP - starvation glasseads TRIS 1h 0.5% NP40 

atg4/8∆ ATG8/GFP ATG21/TAP - starvation 
spheroplast 

Douncer 
MOPS 1h - 

atg4/8∆ ATG8/GFP ATG21/TAP - starvation 
spheroplast 

Douncer 
MOPS 1h 1% Triton 

atg4/8∆ ATG8/GFP ATG21/TAP - starvation 
spheroplast 

Douncer 
PBS 1h 1% Triton 

atg8∆ GAL/GFP ATG21/TAP - growth 
spheroplast 

Douncer 
PBS 1h 1% Triton 

atg1∆ GAL/GFP ATG21/TAP - growth 
spheroplast 

Douncer 
PBS 1h 1% Triton 

atg1∆ GAL/GFP ATG21/TAP - growth 
spheroplast 

Douncer 
PBS 1h 1% Triton 

atg1∆/ 
pep4∆ 

GAL/GFP ATG21/TAP - growth 
spheroplast 

Douncer 
PBS 1h 1% Triton 

atg1∆/ 
pep4∆ 

GAL/GFP ATG21/TAP 
MET25/ 
mCherry 

growth 
spheroplast 
homogenizer 

PBS 2h 1% Triton 

 

For interpretation of the planned MS analysis (chapter 4.2), it was important to exclude 

false-positive interaction partners. Thus, different (GFP-)Atg8 mutants were used for the 

GFP-TRAP to validate specific interactions and to determine the Atg8 binding surfaces.  

Atg8 wild type (wt) and two Atg8 mutants of the UBL domain, including a W-site 

mutation  (GFP-Atg8 L50A) and a L-site mutation (GFP-Atg8 Y49A), were integrated in 

the GFP-Atg8-TRAP optimization. These two sites mediate interaction with Atg8- 

interacting motifs (AIM) (Noda et al., 2008; Noda et al., 2010) and thus might give hints 

for AIM-dependent interactions. Furthermore, two Atg8 mutants of the N-terminal arm 

were tested: Mutations of the non-conserved S3T4 sequence (GFP-Atg8 S3AT4A) and 

mutations of the highly conserved FK-motif (GFP-Atg8 F5GK6G). It was shown for the 

FK motif that it mediates complex formation with the Cdc48 adaptor Shp1 (Krick et al., 

2010). GFP-Atg8 S3AT4A was used as further positive control (Figure 4.1A).  

In the optimized GFP-TRAP analyses, growing atg1∆/pep4∆ cells (OD600∼3) expressing 

mCherry-Atg19 and Atg21-TAP together with the variants of GFP-Atg8 were used. To 

induce high expression of GFP-Atg8 (GAL promoter) and mCherry-Atg19 (MET25 

promoter), cells were grown over night in CM medium with 2 % galactose as carbon 

source and without methionine. Spheroplasts were osmotically lysed (chapter 3.2.7.1.2) 
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and cell lysates (input) incubated with GFP-TRAP beads to couple GFP-Atg8 together 

with associated complexes. After washing, GFP-Atg8 and putative interaction partners 

were eluted by 2 x lämmli (bound fraction)(chapter 3.2.7.4). The input fraction and the 

bound fraction (GFP-Atg8-TRAP) were analysed by immunoblotting (Figure 4.1B). The 

optimized GFP-TRAP was repeated in 8 independent experiments. The respective 

immunoblots were quantified and normalized to the amount of bound GFP-Atg8. 

Furthermore, interactions with GFP-Atg8 wt were set to 100% (Figure 4.1C). 

Consistently with previous results of my lab (Juris et al, unpublished), the GFP-Atg8-

TRAP showed that Atg8 interacts with Atg21. Highly reduced interactions were 

detectable when the W-site (L50A: 29%) or the FK-motif (F5GK6G: 45%) was mutated 

(Figure 4.1B and C). As expected, the mutations of the non-conserved ST sequence 

(S3AT4A) had no influence on the interaction between Atg21 and Atg8 (Figure 4.1B and 

C). The AIM-containing receptor protein Atg19 needed both AIM-binding sites for 

interaction as already published (Noda et al., 2008). Consistently, the Cvt pathway cargo 

prApeI that is linked to Atg8 by Atg19 had a comparable interaction pattern: a more 

than 85% reduced level of interaction with Atg8 L50A or Atg8 Y49A. Modifications in 

the N-terminal domain of Atg8 had fewer effects on the interaction with Atg19/pApe1 

(Figure 4.1B and C). In contrast to the other tested marker proteins, complex formation 

between Fas1/Fas2 and Atg8 did not depended on the W-site (L50), but on the L-site 

(Y49) and the FK-motif (Figure 4.1B and C).   

Under the same growth conditions as described above, subcellular localisation of 

mCherry-Atg19 and the different GFP-Atg8 variants were monitored by fluorescence 

microscopy (Figure 4.1D, left). In agreement with previous reports (Shintani et al., 

2002), an early block of the Cvt pathway (atg1∆pep4∆) led to strong accumulation of 

(mCherry-)Atg19 and (GFP-)Atg8 at the PAS. It was also confirmed by this analysis that 

GFP-Atg8 Y49A and L50A showed extremely smaller PAS dot-like structure or even no 

PAS localisation (Amar et al., 2006; Nakatogawa et al., 2007). To quantify colocalisation 

of mCherry-Atg19 and the different GFP-Atg8 variants, Pearson`s correlation coefficients 

(R2) between the GFP and the mCherry signals were calculated using SoftwoRx software 

(Applied Precision) (Figure 4.1D, right). Consistently with the GFP-Atg8-TRAP, 

quantifications indicated that mutations of the AIM-binding sites (L50A or Y49A) had 

drastic negative effects on the colocalistion of Atg8 and Atg19 (Figure 4.1D).  
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Figure 4.1 Optimization of immunoprecipitation using GFP-TRAP 
(A) Cartoon representation of Atg8 with the indicated residues that were mutated for the GFP-TRAP: GFP-
Atg8 L50A (red), Y49A (green), F5G/K6G (orange) and S3A/T4A (yellow). 
(B, C) GFP-Atg8 TRAP. atg1∆/pep4∆ cells expressing GFP-Atg8 variants together with mCherry-Atg19 and 
Atg21-TAP were grown to OD600∼3, osmotically lysed and subjected to GFP-TRAP. Input and bound 
fractions (GFP-Atg8-TRAP) were analysed by immunoblots and quantified (C). Data of 8 independent 
experiments were quantified and normalised to the bait. Interactions with GFP-Atg8 wt were set to 100%.  
(D) atg1∆/pep4∆ cells expressing GFP-Atg8 variants together with mCherry-Atg19 and Atg21-TAP were 
grown to OD600∼3 and analysed by fluorescence microscopy. Colocalistion was quantified by calculating 
the Pearson`s correlation coefficients (R2) of GFP- and mCherry signals. Error bars indicate ±SEM (C and 
D).  
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In further studies, the bound fractions of the established GFP-Atg8-TRAP were analysed 

by colloidal Coomassie (CBB) staining of SDS-PAGE to estimate the overall amount and 

the diversity of the co-purified interaction partners (Figure 4.2A): As expected, the 

negative control (empty vector) had the minimum of stained bands. The other samples 

showed the expected GFP-Atg8 bands at about 37 kDa and various additional bands with 

individual band patterns in each lane, supporting the extensive immunoblot analysis of 

the different marker proteins (Figure 4.1B and C).  Taken together, the robustness of the 

optimized GFP-Atg8-TRAP seemed promising for quantitative MS analysis to find new 

Atg8 interaction partner. 

 

Figure 4.2 CBB staining of SDS-PAGE as further quality control for the GFP-Atg8-TRAP 
(A) Protein extracts of atg1∆/pep4∆ cells expressing GFP-Atg8 variants together with mCherry-Atg19 and 
Atg21-TAP were incubated with GFP-TRAP beads. Co-purified proteins were subjected to SDS-PAGE 
followed by CBB staining. 
(B) For identification of putative, novel Atg8 interaction partners, the GFP-Atg8 samples were analysed by 
quantitative, label-free mass spectrometry in collaboration with the Department of Bioanalytics of Prof. 
Albert Sickmann (Leibniz-Institut für Analytische Wissenschaften, ISAS eV, D-44227 Dortmund, 
Germany). The samples were analysed by LC-MS/MS. Quantification was performed using the software 
Progenesis QI, Nonlinear Dynamics. 

 

In collaboration with the Department of Bioanalytics of Prof. Albert Sickmann, the GFP-

TRAP samples were analysed in a quantitative, label-free MS protocol done by Yvonne 

Pasing (Leibniz-Institut für Analytische Wissenschaften, ISAS eV, D-44227 Dortmund, 

Germany). The label-free workflow included liquid chromatography with tandem mass 
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spectrometry (LC-MS/MS), peptide/protein quantification (Progenesis QI, Nonlinear 

Dynamics) and protein identification (summarized in Figure 4.2B). Data mining and 

validation of the newly identified, putative Atg8 interaction partners were an aspect of 

this thesis and is described in chapter 4.2 and 4.3. 

 

4.2 Data mining of the quantitative MS analysis 

On the basis of the label-free quantitative MS analysis of the different Atg8 mutants, 

newly identified proteins were sorted by their individual interaction patterns. The 

relative protein abundances of the different samples were illustrated in a colour code 

(heat map) from white (0-fold) to orange (1-fold=wt level) to red (2-fold and more) (see 

legend on the bottom of Figure 4.3E).  

A total of about 430 proteins were identified (Figure 4.3D). Around 340 candidates non-

specifically bind Atg8 under the chosen buffer conditions, indicated by interactions with 

almost all Atg8 mutants (examples in Figure 4.3E). Further categorization of 

approximately 90 putative specific Atg8 binders was done with a detailed view on the 

AIM-binding sites: if there was a more than 10% (0.9-fold) reduced level compared to 

wt (1) or wt (2), the mutated site (L50A, Y49A) was classified as a putative interaction 

surface. Since mutations of the N-terminal region (F5GK6G; S3AT4A) showed an 

abnormally increased level of interaction in most cases, they were not considered in this 

first round of sorting.  

About 50 interactors needed both AIM-binding sites of Atg8 for interaction (Figure 4.3A 

and D). This group of putative AIM-containing/-dependent Atg8 binders was supported 

by the unbiased selection of already known AIM-containing/-dependent proteins: Atg3 

and especially the Cvt pathway proteins Atg19, Atg34 and Ape1 (Ichimura et al., 2000; 

Shintani et al., 2002; Suzuki et al., 2010; Yamaguchi et al., 2010). But there were also 

some unclear candidates that were sorted in alternative groups (marked with an 

asterisk in Figure 4.3B and C): For example, the COPI complex proteins Cop1, Sec21, 

Sec27, Sec26 and Sec28 showed a hardly decreased interaction when the L-site was 

mutated (Y49A). An obviously lower interaction was detectable in GFP-Atg8 L50A 

samples. Consequently, the COPI vesicle proteins were also grouped in “L50A” (Figure 

4.3.C). Together with these proteins, the L50A-group contained 20 candidates.  
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Figure 4.3 Heatmaps of selected putative Atg8 interactors identified by quantitative mass 
spectrometry (Dept. of Bioanalytics of Prof. Albert Sickmann) 
The normalized protein abundances of sample wt (1) were set to 1(-fold). The colour code (heat map) 
shows a spectrum from white (0-fold) to orange (1-fold = wt (1) level) to red (2-fold and more). 
Interaction surfaces of Atg8 were grouped as follows: (A) both AIM-bindings sites, (B) the L-site (and the 
FK motif), (C) the W-site or (E) examples for unspecific interactors. Numbers in brackets indicate the 
peptide count and the peptides used for quantification. Asterisks mark putative binding partners that are 
sorted in two groups. Proteins written in bold were not identified in the negative control (empty vector, 
not quantified). (D) Summary of the protein sorting. 
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Figure 4.3B shows 34 candidates that needed only the L-site (Y49) of the AIM binding 

site for interaction. Interestingly, a highly decreased interaction was also detected for 

many of these Atg8 binders if the FK-motif was mutated (F5GK6G). Fas1 and 2 were 

typical exemplars of this category (Figure 4.3B).  

In summary, from 430 identified proteins, 90 were sorted as putative, specific Atg8 

interactors. As a supporting fact, this selection also included already known, published 

Atg8 binders. 

 

4.3 Validation of the quantitative MS analysis 

Validation of the quantitative MS analysis was performed by GST-Atg8 pull downs (PD) 

(modified from (Krick et al., 2010), chapter 3.2.7.2). Lysates from cells that 

chromosomally express GFP-tagged potential Atg8 interacters (Invitrogen) (Huh et al., 

2003) were used as inputs (Figure 4.4A-D, immunoblots on the top). With this modus 

operandi, putative interaction partners of GST-Atg8 were easily detectable by using a 

GFP antibody for immunoblotting. Another option was labelling of the PD fractions with 

protein specific antibodies (against Ape1, Pgk1, Ret2 and Sec28) or the detection of 

tagged proteins expressed on plasmid (mCherry-Atg26). For the GST-Atg8 PDs, 

recombinant expressed GST-Atg8 was coupled to glutathione sepharose beads. Then, the 

GST-Atg8 beads were incubated with crude cell extract (input 2.5%), washed and eluted 

with 2 x laemmli (bound). Glutathione beads coupled with recombinantly expressed GST 

alone were used as negative control. The quality of the PDs was checked with antibodies 

against the positive control Ape1 and the negative control Pgk1 that should bind neither 

GST-Atg8 nor GST alone (Figure 4.4B). All in all, 17 of 25 tested putative novel Atg8 

interaction partners were confirmed by this method (Figure 4.4A, C and D).  
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Figure 4.4 Validation of the quantitative MS analysis 
Interesting candidates of the quantitative MS were analysed by GST-Atg8 PDs (top) or mCherry-Atg8-
TRAP (bottom) (A, B, C and D). For the GST-Atg8 PD, crude cell extracts from cells chromosomally 
expressing the protein of interest were incubated with GST-Atg8- or GST-coupled beads. For the mCherry-
Atg8-TRAP, cells expressing mCherry-Atg8 or mCherry alone together with chromosomally GFP-tagged 
proteins of interest were grown to OD600∼3, osmotically lysed and subjected to RFP-TRAP beads. Input 
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and bound fractions were analysed by immunoblotting.  
(D) Functional grouping of newly identified Atg8 interaction partners and validation by GST-Atg8 PD 
assay (white mark), GFP-Atg8-TRAP (green mark) and mCherry-Atg8-TRAP (red mark). Functional 
protein association network of all specific interaction partners was created by www.string-db.org.   

 

An alternative method was the mCherry-Atg8-TRAP (Figure 4.4A-D, immunoblots on the 

bottom)(chapter 3.2.7.1.2 and 3.2.7.4). Therefore, growing cells (OD600∼3) 

chromosomally expressing the GFP-tagged proteins of interest together with mCherry-

Atg8 or mCherry alone were osmotically lysed. Then, the lysate (input) was incubated 

with RFP (mCherry) antibody-coupled beads (RFP-TRAP, Chromotek). After extended 

washing, the co-purified proteins were eluted with 2 x laemmli (bound).  One immense 

drawback of this method was the tendency of many tested proteins to unspecifically 

bind the control beads (mCherry alone) in a relative high level such as Rps7b-GFP 

(Figure 4.4A).  Besides, mCherry-Atg8 showed a higher stability than mCherry alone that 

further increased the difficulties of interpretation. 

To visualize a functional protein association network of the selected 90 proteins 

(chapter 4.2.), the biological database STRING (string-db.org.) was used (Figure 4.4E). 

The output of STRING reflects the confidence score of published experimental data for 

interactions, co-expression, co-reference in paper abstracts (pubmed), the similar 

genetic context in different species and so on (Szklarczyk et al., 2010).  In this overview 

based on STRING, novel putative Atg8 interactors were grouped concerning their 

cellular function as follows: autophagic proteins (Atg3, Atg4, Atg7, Atg19, Ape1, Atg34), 

COPI vesicle proteins (Cop1, Sec21, Sec27,…), COPII proteins (Sec23, Sfb3), 

(nucleolar/nuclear) rRNA processing proteins (Rrp12, Pno1, Rio2, ...), chaperones (Hsp42, 

Ssa1,…) and proteins that are involved in fatty acid biosynthesis (Fas1, Fas2,..) (Figure 4.4E). 

However, many identified proteins could not be grouped, because there was no functional link 

or the function was still unclear.   
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Figure 4.5 Detailed comparison of immunoblotting and quantitative MS of GFP-Atg8-TRAPs 
GFP-Atg8-TRAP bound fractions were quantified and normalized to respective GFP-Atg8 variants (baits) 
for comparing immunoblots (black bars) and the protein abundance measured by qMS (orange bars) 
(Dept. of Bioanalytics of Prof. Albert Sickmann). 
(A) Comparison of the GFP-Atg8 variants (baits). These data were used for normalization by calculating 
the ratio of putative interactors and respective GFP-Atg8 variants (𝑠𝑖𝑔𝑛𝑎𝑙𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑜𝑟 𝑠𝑖𝑔𝑛𝑎𝑙𝐺𝐹𝑃−𝐴𝑡𝑔8 𝑣𝑎𝑟⁄ ) (B, 

D, F). Interactions with GFP-Atg8 wt (mean of wt (1) and (2)) were set to 100%. 
Crude cells extracts from (B) atg1/pep4∆ cells expressing GFP-Atg8 variants together with mCherry-
Atg19 and Atg21-TAP, (C and D) cells expressing GFP-Atg8 variants, or (E and F) atg26∆ cells expressing 
GFP-Atg8 variants together with mCherry-Atg26 were incubated with GFP-TRAP beads and analysed in 
n=8 (B), n=3 (D) or n=2 (F) independent experiments. Samples were immunoblotted and quantified. Error 
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bars indicate ±SEM. 

 

More detailed experimental validation was performed by comparing quantitative MS 

data and the immunoblot quantifications (Figure 4.5). As mentioned above, the GFP-

Atg8 F5GK6G and GFP-Atg8 S3AT4A samples seemed to have a higher abundance for the 

identified proteins. This result was modified by the observation that also the bait levels 

were increased in these samples (Figure 4.5A). Therefore, the abundances of the 

identified proteins were normalized to the respective abundance of Atg8. Then, the 

normalized abundances of the wt samples (mean of wt (1) and wt (2)) were set at 100% 

and the other samples adapted. The immunoblots were quantified as described in 

chapter 4.1 (Figure 4.1C).   

Comparison of both protein detection methods clearly suggests that the quantitative MS 

data of the marker proteins (Atg19, Ape1, Fas1 and Fas2) were in good agreement with 

the immunoblot analysis (Figure 4.5B). Therefore, this quantitative MS analysis seemed 

promising for further predictions of newly identified Atg8 binding partners and the 

surfaces that mediate these interactions.  

To proof these results, some newly identified Atg8 binders already validated by GST-

Atg8 PD or mCherry-Atg8-TRAP (Figure 4.4) were tested using the standard GFP-Atg8-

TRAP protocol and quantified as described above (Figure 4.5C and D). In this context, 

the COPI vesicle coatomer proteins Cop1, Sec21, Sec27, Sec26, Ret2 and Sec28 were 

analysed (Figure 4.5C and D). Lysates from growing wild type cells (OD600∼3) 

expressing GFP-Atg8 variants or GFP alone were used. In immunoblot analyses, COPI 

vesicle proteins were detected with a polyclonal antibody against the whole complex. 

Since Sec21, Sec27 and Sec26 have nearly the same molecular weight, it was not 

possible to discriminate between these proteins. However, MS data and immunoblot 

analysis both showed consistently that complex formation between Atg8 and COPI 

proteins strongly depends on the W-site and the FK-motif of Atg8 (Figure 4.5C lanes 9 

and 10).  

Another interesting candidate was Atg26, since its function in S. cerevisiae was still 

unknown (Cao and Klionsky, 2007)(Figure 4.5D and E). Methodically, the standard GFP-

Atg8-TRAP protocol was performed with atg26∆ cells expressing the different variants 

of GFP-Atg8 or GFP alone together with mCherry-Atg26. Again, immunoblot analysis and 

normalised quantitative MS data had a high similarity: Both methods indicated that the 

AIM-binding sites of Atg8 (Figure 4.5E lane 8 and 9) mediate interaction with (Cherry-) 
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Atg26, suggesting that Atg26 is an AIM-containing protein or somehow indirectly binds 

Atg8 in an AIM-dependent manner. 

For further validation of the Atg8-Atg26 interaction, the split-ubiquitin assay was 

performed (Figure 4.6A). The split-ubiquitin assay detects protein interactions in living 

yeast cells (chapter 3.2.4) (Müller and Johnsson, 2008). For these in vivo studies, 

SEY6210 cells were transformed with the plasmids CUP1-Nub-Atg8 (bait) or pRS314 

(negative control) in combination with Cub-Atg26 (prey). Nub constructs contain the N-

terminal half of ubiquitin, followed by the protein of interest (in this case Atg8), whereas 

the Cub plasmids start with the protein of interest (here Atg26), followed by the C-

terminal part of ubiquitin and the reporter protein R-Ura3. Protein interaction 

reassembles ubiquitin and in further steps causes degradation of R-Ura3. Due to this, R-

Ura3 cannot convert supplemented 5-fluoroorotic acid (5-FOA) into the toxic compound 

5-fluorouracil. This means, a high growth rate on 5-FOA plates indicates interaction 

between the bait and prey. Since R-Ura3 is able to synthesize uracil, slowed growth on 

medium without uracil also indicates protein interaction.  As positive control, the known 

binding partners Ste14 and Ubc6 were used. Absence of the prey (-), which means 

transformation with the empty vector pRS314, was used as negative control. Expression 

of the fusion constructs was induced by 100 µM CuSO4 (Nub constructs) and 250 µM 

methionine (Cub constructs). Cells were diluted in 10-fold steps and spotted on CM (-

Trp/-His)(growth control), CM +FOA (-Trp/-His) (growth implies protein interaction) 

and MV -Ura (-Trp/-His) (decreased growth implies protein interaction). The result of 

the FOA plate confirmed the Atg8-Atg26 interaction, indicated by the high growth rate of 

cells expressing Nub-Atg8 and Cub-Atg26. The growth test on the –Ura plate also 

implied interaction for these constructs, but the negative control showed nearly the 

same extremely slowed growth rate.  

Figure 4.6 Validation of Atg8-Atg26 interaction by the split-ubiquitin assay  
Split-ubiquitin assay. The N-terminal part of ubiquitin (Nub) is fused to the bait and its C-terminal part 
(Cub) to the prey. Protein interaction restores ubiquitin and leads to degradation of destabilised R-Ura3 
variant. Bait/prey interaction is recorded by increased growth on 5-FOA-containing medium or by 
decreased growth rate on medium lacking uracil. 
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In the following analyses, a direct AIM-dependent interaction between Atg8 and Atg26 

was confirmed and the AIM of Atg26 was exactly mapped (chapter 4.4 and 4.5). These 

observations strongly supported these initial GFP-Atg8-TRAP experiments and the 

followed quantitative MS analysis described here in the first three chapters (chapter 4.1, 

4.2 and 4.3). 
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4.4 Atg26 physically interacts with Atg8 via a very C-terminal    

       Atg8 interacting motif (AIM) 

Atg26 is a sterol glucosyltransferase (UDPGT domain) with two putative 

phosphoinositide-binding domains (PH and GRAM domain) (Yamashita et al., 2006). In 

P. pastoris, Atg26 is essential for degradation of very large methanol-induced 

peroxisomes, whereas the function of Atg26 was still enigmatic in S. cerevisiae, as no 

involvement of Atg26 in any type of autophagy was detected so far (Cao and Klionsky, 

2007; Nazarko et al., 2007a; Nazarko et al., 2009).  

The results from chapter 4.3 (Figure 4.5.E, D) showed that Atg26 had similar interaction 

pattern as already known AIM-dependent Atg8 binding partners, suggesting that Atg26 

itself may contain an AIM. To test this hypothesis, the protein sequence of Atg26 was 

carefully analysed in silico for potential AIMs (Figure 4.7).  For this, AIM criteria were 

established based on published AIMs or sequence analysis (Figure 4.7A) (Alemu et al., 

2012).  The AIM consensus sequence is W0/F0/Y0-X+1-X+2-L+3/I+3/V+3 meaning that 

aromatic residues on position 0 and hydrophobic residues on position +3 are required 

for binding Atg8 (Figure 4.6A, grey background). All in all, fifteen sequences in Atg26 

were found that fulfill these essential criteria (Figure 4.6B). Further important sequence 

properties were avoidance of basic residues (Figure 4.7A; blue letters, -1 unit on 

position X-4, X-3, X4, and X5; -2 units on position X-2, X-1 X1, X2) and the accumulation of 

acidic residues (Figure 4.6A; red letters, +1 unit on position X-4, X-3, X4, and X5; +2 units 

on position X-2, X-1) in this region. Only four putative AIMs showed all these 

characteristics (Figure 4.7B, STELYFPVLT, AIDDFMFVFM, EADVYCILNK and 

TDEGWTMI). These four hypothetical AIMs were further analysed by fungi sequence 

alignment and illustrated by sequence logos (WebLogo 3.3) (Figure 4.7C).  The resulting 

sequence logos indicated that only the very C-terminal putative AIM (ScAtg26 1191-

1198) had a conserved sequence, especially at the essential positions 0 (W0) and +3 (L3) 

(Figure 4.7 C and D).  
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Figure 4.7 Putative Atg8 interaction motifs (AIMs) in Atg26 
(A) Sequence criteria for putative AIMs based on published AIMs and sequence analyses. The canonical 
W/Y/F and L/I/V residues on position 0 and +3 are requirements for AIMs (grey). Blue letters indicate 
basic residues that are avoided in these regions (-1 unit for R/K/H on position X-4, X-3, X4, and X5; -2 units 
for R/K/H on position X-2, X-1 X1, X2). Red letters illustrate acidic residues that accumulate in AIMs (+1 unit 
for E/D on position X-4, X-3, X4, and X5; +2 units on position X-2, X-1).  
(B) Searching for putative AIMs in Atg26. The x-axis schematically shows the positions of the putative 
AIMs and the respective predicted domain (PFAM database). The sum of AIM units from respective 
putative AIMs selected by the sequence criteria of (A) is indicated by the y-axis.   
(C) Atg26 sequence logos of most prominent putative AIMs based on 16 fungal species were created by 
WebLogo 3.3. The total height of the stack shows the sequence conservation at the respective position. 
The height of the letter within the stack indicates the relative frequency of the amino acid.  
(D) Sequence alignment of the very C-terminal AIM of Atg26 was created with Jalview 2.8 using the 
MAFFT algorithm. 
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To analyse if this very C-terminal sequence mediates complex formation with Atg8 or if 

other regions are involved, various truncated or mutated versions of Atg26 were cloned 

in mCherry and GFP vectors and tested by different methods (Figure 4.8). Atg26 

fragments were created based on the predicted and published domain structure (Pfam, 

(Yamashita et al., 2006)). For detailed investigation of the C-terminal putative AIM, the 

versions Atg26 I1198A and Atg26 1-1194 (∆WTMI) were cloned (Figure 4.8A). 

Atg8 binding sites within Atg26 were mapped by GFP-TRAP with the different GFP-

tagged Atg26 variants as baits (chapter 3.2.7.4). Stationary atg26∆ cells expressing the 

different GFP-Atg26 fragments together with mCherry-Atg8 were analysed (Figure 

4.8B). Although some truncated versions of GFP-Atg26 (Fig4.8B lane 3-5 and 11-13) 

were less stable and therefore barely comparable to wild type (GFP-Atg26 wt), co-

purification of mCherry-Atg8 in the bound fraction of GFP-Atg26 wt and its absence in 

GFP-Atg26 1-1194 (∆WTMI) (Figure 4.8B, compare lane 15 and 16) clearly indicated 

that the predicted C-terminal AIM is necessary for Atg26-Atg8 interaction.   

These findings were confirmed by a (standard) GST-Atg8 pull down assay (chapter 

3.2.7.2). For this method, lysates from atg26∆ cells expressing mCherry-Atg26 or 

mCherry-Atg26 1-1194 (∆WTMI) were used as inputs for incubation with GST-Atg8– or 

GST-coupled sepharose beads. GST-Atg8 showed a clear interaction with mCherry-

Atg26 wt (as already shown in Figure 4.4) and almost no complex formation with 

mCherry-Atg26 1-1194 (∆WTMI) (Figure 4.8C). 

A GFP-Atg8-TRAP with lysate from atg26∆ cells expressing GFP-Atg8 or GFP in 

combination with mCherry-Atg26 wt, I1198A or 1-1194 (∆WTMI) could further validate 

this AIM (Figure 4.8D). The fusion protein mCherry-Atg26 I1198A containing an 

isoleucine to alanine mutation of position +3 in the tested AIM was an additional control. 

In agreement with the GFP-Atg26-TRAP and GST-Atg8 PD, it was possible to monitor a 

step-by-step decreased Atg26-Atg8 interaction, depending on the degree of 

modifications in the AIM (Figure 4.8D lane 7 to 9).   
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Figure 4.8 Atg26 has a very C-terminal AIM 
(A) Scheme of the Atg26 domain composition and respective truncated versions. 
(B) GFP-TRAP with truncated versions of GFP-Atg26. Protein extracts from atg26∆ cells expressing 
variants of GFP-Atg26 or GFP together with mCherry-Atg8 were subjected to GFP-TRAP and analysed by 
immunoblotting. Arrowheads indicate GFP-Atg26 fragments with the expected molecular weight. 
(C) GST-Atg8 PD. Crude cell extracts from cells expressing mCherry-Atg26 wt or ∆WTMI were incubated 
with GST-Atg8- or GST-coupled beads. Input and bound fractions were analysed by immunoblotting. 
(D) GFP-Atg8-TRAP. Crude cells extracts from atg26∆ cells expressing GFP-Atg8 or GFP alone together 
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with mCherry-Atg26 wt, I1198A or ∆WTMI were incubated with GFP-TRAP beads. Input and bound 
fractions were analysed by immunoblotting. 
(E) GFP-Atg8-TRAP. ATG26 ∆WTMI-HA or ATG26 ∆WTMI-HA cells expressing GFP-Atg8 from its 
endogenous promoter or the empty vector were starved for 4 h in SD-N containing 1 mM PMSF, then, 
osmotically lysed and used for GFP-TRAP. Input and bound fractions (GFP-Atg8-TRAP) were analysed by 
immunoblotting. 
(F) Split-ubiquitin assay. The N-terminal part of ubiquitin (Nub) is fused to the bait and its C-terminal part 
(Cub) to the prey. Protein interaction restores ubiquitin and leads to degradation of a destabilised R-Ura3 
variant. Bait/prey interaction is detected by the growth on 5-FOA-containing medium. 

 

A further GFP-Atg8-TRAP was performed with ATG26- and ATG26 ∆WTMI-HA cells 

ectopically expressing GFP-Atg8 under endogenous promoter. This experiment was 

done to find out whether GFP-Atg8 from endogenous promoter is able to co-isolate 

endogenous Atg26-HA. Before lyses and incubation with GFP-TRAP beads, cells were 

starved for 4 h in SD-N containing 1 mM PMSF to inhibit the vacuolar protease (Prb1). 

Detection of a GFP-Atg8/Atg26-HA interaction was difficult, because of the weak signal. 

Nonetheless, this interaction was specific, since Atg26 ∆WTMI-HA was not co-isolated 

(Figure 4.8E). 

A further method to investigate protein-protein interaction was the split-ubiquitin assay 

(Figure 4.8F)(chapter 3.2.4). This method reports bait-prey interaction by increased cell 

growth rate on 5-FOA-containing medium (Müller and Johnsson, 2008). For these 

interaction studies, SEY6210 cells were transformed with CUP1-Nub-Atg8 or pRS314 

(negative control) in combination with Cub-Atg26 or Cub-Atg26 1-1194 (∆WTMI). 

Expression of the fusion constructs was induced by 100 µM CuSO4 (Nub constructs) and 

250 µM methionine (Cub constructs). Cells were diluted in 10-fold steps and spotted on 

CM (-Trp/-His)(growth control) and CM +FOA (-Trp/-His) (growth implies protein 

interaction). Co-expression of Nub-Atg8 and Atg26-Cub resulted in growth on FOA 

plates, comparable to the positive control Ste14-Cub/Nub-Ubc6, whereas, in agreement 

with the results above, co-expression of Nub-Atg8 and Atg26 1-1194-Cub caused a 

decreased growth rate, again confirming that the very C-terminal AIM of Atg26 mediates 

complex formation with Atg8 (Figure 4.8F).   

In conclusion, the hypothetical C-terminal AIM of Atg26 was validated in 5 different 

interaction studies that consistently showed the requirement of this sequence for 

complex formation of Atg8 and Atg26. 
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4.5 Atg26 functionally interacts with Atg8 during autophagy 

During autophagy, intracellular material is transported to the vacuole for degradation to 

maintain the cellular homeostasis (Figure 4.9A).  By treating cells with vacuolar 

protease (PrB1) inhibitor PMSF during starvation, autophagic bodies accumulate in the 

vacuole (Takeshige et al., 1992). After 4 h of nutrient depletion, GFP-Atg26 also 

accumulates in autophagic bodies of PMSF-treated atg26∆ cells ectopically expressing 

GFP-Atg26 and mCherry-Atg8 (positive control), as shown by fluorescence microscopy 

(Figure 4.9B).  

The GFP moiety of GFP-tagged proteins is proteolysis-resistant in the vacuole. 

Therefore, it is possible to measure the autophagic transport of such fusion proteins by 

detecting accumulation of free GFP in the vacuole (Figure 4.9A) (Klionsky et al., 2007). 

This method is called vacuolar degradation assay and was used to quantify the 

autophagic rate of Atg26 and the influence of its C-terminal AIM. Growing atg26∆ cells 

(OD600∼2) ectopically expressing GFP-Atg26 variants were shifted to starvation medium 

(SD-N) to a final concentration of OD600∼10. At the indicated time points (t= 0, 2 and 4 

h), samples were taken for alkaline lysis (chapter 3.2.7.1.1). Samples were analysed by 

immunoblots (Figure 4.9C). Quantification was done by calculating the ratio of free GFP 

and cytosolic GFP-Atg26. The time point of 4 h of GFP-Atg26 wt was set to 100% (Figure 

4.9E). During starvation, atg26∆ cells clearly accumulate free GFP, resulting from 

degradation of GFP-Atg26 wt. In contrast, deletion of the autophagy-essential gene ATG1 

blocked this accumulation, suggesting that GFP-Atg26 wt is transported to the vacuole 

by autophagy. Moreover, it was possible to demonstrate that the C-terminal AIM of 

Atg26 significantly influences its delivery to the vacuole: GFP-Atg26 I1198A and ∆WTMI 

showed a more than 60% reduced autophagic rate compared to GFP-Atg26 wt (Figure 

4.9E). This observation gave a hint that Atg26 is a selective cargo/target of autophagy. 
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Figure 4.9 Atg26 is AIM-dependently transported to the vacuole upon autophagy induction  
(A) Scheme of the vacuolar degradation assay (autophagy of GFP-tagged proteins) and the Cvt pathway. 
(B) PMSF treatment during starvation. Growing atg26∆ cells expressing GFP-Atg26 and mCherry-Atg8 
were shifted to starvation medium (SD-N) containing 1 mM PMSF for 3 h. The localization of GFP and 
mCherry were visualized by fluorescence microscopy. Scale bar: 5 µm. 
(C and E) Vacuolar degradation assay. Growing atg26∆ or atg1∆ cells expressing GFP-Atg26 wt, I1198A or 
∆WTMI were shifted to SD-N. Samples were taken at the indicated time points. Samples were analysed by 
immunoblots and quantified by calculating the ratio of free GFP and cytosolic GFP-Atg26. 
(D and F) Ape1 maturation at late-log phase in atg26∆ or atg1∆ cells overexpressing GFP-Atg26 variants. 
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Ape1 delivery to the vacuole and maturation was estimated by calculating the ratio of mApe1 and prApe1 
(n=3). Error bars indicate ±SEM.  

 

The vacuolar enzyme Ape1 is selectively delivered to the vacuole by the Cvt pathway. In 

the vacuole, precursor of Ape1 (prApe1) is processed to mature Ape1 (mApe1) 

detectable by a molecular weight shift in immunoblot analysis (Figure 4.9A) (Klionsky et 

al., 2007). In this context, the physiological relevance of the C-terminal AIM was further 

supported by showing that overexpression of GFP-Atg26 wt reduced Ape1 maturation 

(Figure 4.9D). To induce high expression of GFP-Atg26 (MET25 promoter), cells were 

grown over night in CM medium lacking methionine. Samples were taken at a density of 

OD600∼5 for alkaline lysis and immunoblot analysis. Overexpression of GFP-Atg26 wt 

caused a clear inhibition of the Cvt pathway, indicated by a higher amount of prApe1 

compared to mApe1, while overexpression of GFP alone showed more mApe1, as 

expected at late-log phase. Notably, this effect of GFP-Atg26 was strongly reduced when 

the C-terminal AIM was mutated (I1198A) or deleted (1-1194) (Figure 4.9D and F).  

Taken together, the experiments of this chapter further validate the AIM-based physical 

interaction between Atg8 and Atg26 (chapter 4.4). Additionally, these data 

demonstrated that the AIM is required for autophagic degradation of GFP-Atg26. 

Besides, it was shown that overexpression of GFP-Atg26 inhibits the Cvt pathway. 
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4.6 PAS recruitment of Atg26 depends on Atg8 and Atg1  

The preautophagosomal structure (PAS) is located close to the vacuole and initiates 

autophagosome formation. Most of the Atg proteins are at least transiently located 

there. Thus, the PAS is understood as the initiation site for autophagosome and Cvt 

vesicle formation (Suzuki et al., 2007). To further investigate whether Atg26 has an 

autophagic function in S. cerevisiae, the subcellular localisation of GFP-Atg26 was 

monitored by fluorescence microscopy. Therefore, atg26∆, atg1∆ and wt cells 

expressing a low level of GFP-Atg26 (MET25 promoter) together with mCherry-Atg8 

(MET25 promoter) as PAS marker were grown in standard CM medium (0.8 mM 

methionine) over night and then shifted to starvation medium (SD-N) to a final cell 

density of OD600∼10. After 2 to 3 hours of starvation, cells were analysed by 

fluorescence microscopy. Images were deconvoluted by SoftWoRx (Applied precision). 

For quantitative analysis, the percentage of GFP-Atg26 dots that were colocalized with 

mCherry-Atg8 dots was calculated (Figure 4.10B). As further quantitative method, the 

Pearson`s correlation coefficients (R2) between the GFP and the mCherry signals from 

cells with mCherry-Atg8 dots were calculated (Figure 4.10C) 

GFP-Atg26 wt showed a diffuse cytosolic distribution with an additional accumulation at 

the PAS, visualized by colocalisation with the PAS marker mCherry-Atg8 (Figure 4.10A). 

In contrast, GFP-Atg26 1-1194 and I1198A had faint and rarely PAS signals. GFP-Atg26 

wt showed a relative high colocalisation with mCherry-Atg8 at about 70%. The 

relatively rare colocalisation rate of GFP-Atg26 I1198A or 1-1194 with mCherry-Atg8 

(>30%) indicated that interaction with Atg8 is required for PAS localisation of Atg26. As 

a supporting fact, the measured Pearson`s correlation coefficient for GFP-Atg26 wt and 

mCherry-Atg8 dots was about 0.2, whereas the AIM mutants were under 0.05 (Figure 

4.10C). 

The serine/threonine kinase Atg1 was another factor that influenced PAS recruitment of 

Atg26. Microscopy of atg1∆ cells showed a diffuse cytosolic distribution of GFP-Atg26 

that hardly concentrated at the PAS (Figure 4.10A). These observations were supported 

by both quantification methods (Figure 4.10B and C). To exclude an influence of the 

endogenous Atg26 on GFP-Atg26 localisation in atg1∆ cells, wt cells expressing GFP-

Atg26 wt were examined. As expected, these cells showed no obvious differences to 

atg26∆ cells. 
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Figure 4.10 Atg26 locates AIM-dependently to the PAS 
(A) wt, atg26∆ or atg1∆ strains ectopically expressing GFP-Atg26 wt, I1198A or ∆WTMI together with 
mCherry–Atg8 were grown to mid-log phase, then shifted to starvation medium for 2–4 hours and 
analysed by fluorescence microscopy. Scale bar: 5 µm.  
(B) Graphs show the percentage of GFP-Atg26 dots that were colocalized with mCherry-Atg8 dots.  
(C) Quantification of microscopic data by calculating the Pearson`s correlation coefficient (GFP and 
mCherry signals) in cells with a mCherry-Atg8 PAS dot. Diffuse cytosolic or vacuolar signals were 
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determined as thresholds. Error bars indicate ±SEM. 

 

These microscopic data further support the hypothesis that Atg26 is an autophagy-

related protein that acts in cooperation with Atg8 and, possibly, Atg1 during autophagy. 
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4.7 Identification of the major coat protein of the L-A virus as   

       a new Atg26 interaction partner 

Saccharomyces cerevisiae virus L-A is a dsRNA virus of the Totiviridae family. It has a 

single 4.6 kb genomic segment with two overlapping ORFs. ORF1 encodes the 76 kDa 

major capsid protein Gag that is necessary for encapsidation. ORF2 is a RNA-dependent 

RNA polymerase (Pol) that is expressed as a 180 kDa Gag-Pol fusion protein formed by a 

-1 ribosomal frameshift (Fujimura and Wickner, 1988). The icosahedral virus 

architecture is made up of 120 Gag subunits with 2 Gag-Pol fusion proteins and genomic 

dsRNA in the inside (Naitow et al., 2002; Tang et al., 2005; Wickner et al., 2013). 

This chapter describes the co-isolation of L-A Gag via GFP-Atg26-TRAP and its 

identification as a new Atg26 interaction partner by mass spectrometry analysis. These 

findings need a short introduction: Most experiments of this thesis were done with our 

laboratory yeast strain WCG4a (Mata ura3 his3-11,15 leu2-3,112) that is infected by the 

L-A virus. L-A infection of WCG4a was first shown by the experiments of this chapter. All 

WCG4a deletions strains of our lab derived from this strain and thus should contain L-A 

virus particles, because the way of infection is from mother to daughter cells (or during 

mating). However, some deletion strains spontaneously lost the virus such as ∆l-a/atg1∆ 

(“∆l-a” indicates absence of L-A virus).  Of course, absence of the L-A virus in ∆l-a/atg1∆ 

strain was also first discovered by the GFP-Atg26-TRAP and the respective MS analysis 

in this chapter. Parallel analysis of an infected strain (atg26∆) and a strain lacking L-A 

(∆l-a/atg1∆) enormously helped to identify L-A Gag as an Atg26 interaction partner. The 

following part describes the methodology and the results in detail. 

For a standard GFP-Atg26-TRAP protocol, atg26∆ cells expressing GFP-Atg26 wt, 

I1198A, ∆WTMI or GFP alone together with mCherry-Atg8 (MET25 promoter) were 

grown to late-log phase (OD600∼5) and osmotically lysed. Then, cell extracts were 

incubated with GFP-TRAP beads. In parallel, crude cell extracts from ∆l-a/atg1∆ cells 

expressing GFP-Atg26 wt or GFP alone together with mCherry-Atg8 were analysed by 

GFP-TRAP. This ∆l-a/atg1∆ strain was initially used to check whether disruption of 

autophagy by deletion of ATG1 influences interaction with mCherry-Atg8 and whether it 

displays differences in CBB staining of SDS-PAGE.  
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Figure 4.11 Identification of L-A Gag as a new Atg26 interaction partner 
Crude cell extracts from atg26∆ or ∆l-a/atg1∆ strains (WCG4a) expressing GFP-Atg26 variants or GFP 
alone together with mCherry-Atg8 were subjected to GFP-TRAP. Input and bound fractions were analysed 
as follows: 
(A) CBB staining of SDS-PAGE of the GFP-TRAP bound fractions. By MS analysis (Olaf Bernhard, Bernhard 
Schmidt), the 76 kDa band was identified as the major coat protein of the S. cerevisiae virus L-A. 
(B) Agarose gel electrophoresis and EtBr staining of the GFP-TRAP bound fractions. The 4.6 kb band was 
reverse-transcribed to cDNA by RT-PCR, cloned and identified as the genomic segment of the L-A virus.  
(C) Immunoblotting of the GFP-TRAP input and bound fractions. GFP-Atg26/Gag interaction was 
monitored and validated by immunoblotting with anti-Gag antibody.  
(D) Summary of all three methods that confirm the Atg26/Gag interaction. 

 

Gel purification of the ~4.6 kb band 
           

First Strand cDNA Synthesis RT-PCR, 

High fidelity PCR 

and cloning 

 

Sequencing 
 

4.6 kb LA(gag-pol) cDNA clone 
 with some differences to published 

sequences:   

 
6 missense mutations 

15 silent mutations 

L-A virus capsid 
 (with L-A dsRNA genome inside) 

 

Tang et al, 2005 

    MS analyses of the ~76 kDa band (red arrows)

         (Olaf Bernhard, Dr.Bernhard Schmidt) 

D
L-A Gag Antibody (C) SDS-PAGE CBB staining (A) Agarose/Etbr Staining  (B) 

GFP 

250 

150 

100 

75 
 
 
 

50 
 

 

37 

 

 

25 

       atg26

G
F
P

-A
tg

2
6
 w

t 
G

F
P

-A
tg

2
6
 

W
T
M

I 
G

F
P

-A
tg

2
6
 w

t 
G

F
P

 

G
F
P

-A
tg

2
6
 I
11

9
8
A

 
G

F
P

 

GFP-Atg26  

(wt + mutants) ~76 kDA band 

GFP-Atg26-TRAP  A

B

C

G
F
P

-A
tg

2
6
 w

t 
G

F
P

-A
tg

2
6
 

W
T
M

I 
G

F
P

-A
tg

2
6
 w

t 

G
F
P

 

G
F
P

-A
tg

2
6
 I
11

9
8
A

 

G
F
P

 

  atg26           atg26

     GFP-Atg26-TRAP  Input (5%) 

mCherry-Atg8 

GFP-Atg26 var 

G
F
P

-A
tg

2
6
 w

t 
G

F
P

-A
tg

2
6
 

W
T
M

I 

G
F
P

-A
tg

2
6
 w

t 

G
F
P

 

G
F
P

-A
tg

2
6
 I
11

9
8
A

 

G
F
P

 

LA-Gag 

GFP 
(shorter exposed) 

LA virus Gag  (76 kDa) 

Protein Score: 2060 

 
10 kb 
  8 kb 
  6 kb 
  5 kb 
  4 kb 
 

  3 kb 

 

  2 kb 

 

Marker: 

~4.6 kb band 

       atg26   

G
F
P

-A
tg

2
6
 w

t 
G

F
P

-A
tg

2
6
 

W
T
M

I 
G

F
P

-A
tg

2
6
 w

t 
G

F
P

 

G
F
P

-A
tg

2
6
 I
11

9
8
A

 
G

F
P

 

GFP-Atg26-TRAP  



Results 

 85 

Analyses of the bound fractions by CBB staining of SDS-PAGE showed a distinct band 

between 75 and 100 kDa in atg26∆ cells but not in ∆l-a/atg1∆ cells (Figure 4.11A, red 

arrows). At that time point, it was absolutely unclear that the strain-dependent 

differences were based on virus infection (atg26∆) or virus loss (∆l-a/atg1∆), 

respectively. The absence of this distinct band in ∆l-a/atg1∆ cells excluded the 

possibility that it was a degradation product of the over 150 kDa GFP-Atg26 variants. 

Therefore, these observations gave clear hints that this band might derive from a 

specific interactor. Another interesting point was the relative high amount of this band 

comparable to the baits GFP-Atg26 wt, I1198A or 1-1194 (∆WTMI), suggesting strong 

affinity or complex formation with a high molecular weight complex of homo-multimers. 

Furthermore, interaction with all GFP-Atg26 variants indicated an Atg8-independent 

interaction. 

In collaboration with the lab of Bernhard Schmidt, this distinct ∼76 kDa band was 

analysed by mass spectrometry (chapter 3.2.7.8). With a protein score of 2060, this 

band was identified as the major coat protein Gag of the S. cerevisiae virus L-A (Figure 

4.11D). Remarkably, co-purification of a ∼4.6 kb RNA fragment by GFP-Atg26-TRAP was 

detectable using electrophoresis of 1% agarose and ethidiumbromid (EtBr) staining 

(Figure 4.11B).  In further experiments, this putative L-A dsRNA segment was gel-

purified, reverse-transcribed in cDNA by RT-PCR and cloned in the vectors pGEX-4T3, 

pUG34, pUG35, pUG36 and pUG36-mCherry (Figure 4.11D; chapter 3.2.3.6). By 

sequencing of  three independent cDNA clones, the ∼4.6 kb segments were identified as 

the coding sequences for ORF1 (GAG) and ORF2 (POL) of the L-A virus. The viral dsRNA 

sequence of our laboratory strain WCG4a showed a few differences to published L-A 

sequences: there were 15 silent and 6 missense “mutations” (Gag: Ile328Val, Lys383Arg, 

Gly542Ser and Asn633Ser; Pol: Lys720Arg, Val754Ala). This methodology on RNA level 

additionally confirmed L-A infection of our laboratory strain WCG4a and, of course, that 

Atg26 interacts with Gag or even with completely formed virus-like particles (VLPs).  An 

additional ∼2 kb fragment was co-isolated by the GFP-Atg26-TRAP (Figure 4.11B), but 

not further analysed. It was proposed that this fragment corresponds to genomic dsRNA 

of killer viruses that use L-A virus particles for their own replication (Schmitt and 

Breinig, 2006). Otherwise, it might be single-stranded L-A RNA ((+) transcript). 

An antibody against L-A Gag was further used to validate complex formation between 

Atg26 and L-A Gag (multimers) (Figure 4.11C). Immunoblot analysis were in agreement 
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with CBB staining and EtBr staining (Figure 4.11A and B). The input fraction showed 

that the tested ∆l-a/atg1∆ strain was not infected by the L-A virus. This observation 

raised the question whether deletion of ATG1 inhibits virus infection or formation in S. 

cerevisiae. Later experiments showed that further atg1∆ strains created independently 

from ∆l-a/atg1∆ were infected by L-A, suggesting spontaneous lost of the virus in ∆l-

a/atg1∆. Thus, deletion of ATG1 has no obvious virus-specific phenotype. Besides, it was 

discovered that further deletions strains of our laboratory yeast collection were not 

infected, supporting the hypothesis of spontaneous loss during the knock out procedure.  

Immunoblotting also demonstrated an interaction between GFP-Atg26 wt and mCherry-

Atg8 independently from L-A or Atg1, respectively, shown by the bound fraction of 

mCherry-Atg8 in ∆l-a/atg1∆ cells (Figure 4.11C). In this context, it should be mentioned 

that the virus is no prerequisite for the PAS localisation (not shown) and autophagic 

degradation of GFP-Atg26 (Figure 4.20D), as both were unchanged without virus. 

 

To find out whether endogenous Atg26 is able to co-isolate detectable quantities of 

endogenous Gag and how this interaction might be influenced in further strains, wt and 

xrn1∆ cells of a BY4741 background (MATa his3∆1 leu2∆0 met15∆0 ura3∆0) 

chromosomally expressing GFP-tagged or untagged Atg26 were grown to late stationary 

phase, lysed and subjected to GFP-TRAP. Deletion of XRN1, encoding a exoribonuclease 

with anti-viral activity, leads to an excess of L-A virus particles (Esteban et al., 2008). 

Therefore, xrn1∆ cells were used to check how expression of Atg26 and its interaction 

with Gag is influenced. These GFP-TRAP experiments were analysed by immunoblotting 

and EtBr staining of agarose gels (Figure 4.12A and B).  

 
 
Figure 4.12 Validation of Atg26/L-A interaction at endogenous expression level  
Crude cell extracts from ATG26-GFP, ATG26-GFP/xrn1∆, wild type or xrn1∆ cells of the BY4741 
background were subjected to GFP-TRAP. Input and bound fractions were analysed as follows: 
(A) Immunoblot analysis and 
(B) EtBr staining of agarose gels. 
 
 

w
t 

x
rn

1
 

w
t 

x
rn

1
 

w
t 

x
rn

1
 

w
t 

x
rn

1
 

end. Gag 

chr. Atg26-GFP 

BY4741   

Pgk1 

Atg26-GFP-TRAP  Input (2,5%) 

ATG26 

-GFP 
control 

ATG26 

-GFP 
control 

A B

dsRNA 
(exp. time>0.04s) 

 

dsRNA 
(exp. time=0.04s) 

w
t 

x
rn

1
 

w
t 

x
rn

1
 

w
t 

x
rn

1
 

w
t 

x
rn

1
 

BY4741   

Atg26-GFP-TRAP  Input (2,5%) 

ATG26 

-GFP 
control 

ATG26 

-GFP 
control 

    
  5  
  4  
  3  

  2 
  kb  

 



Results 

 87 

Although Atg26-GFP as bait was hardly detectable in the input fractions, its co-

immunoprecipitation and co-purification of Gag were demonstrated by immunoblotting 

of the bound fractions (Figure 4.12A). As expected, xrn1∆ cells had a higher amount of L-

A virus particles and thus more Gag was co-isolated (Figure 4.12A). Moreover, these 

data indicated that Atg26 seemed not to be up-regulated if L-A is increased. EtBr 

staining of agarose gels indicated that co-purification of detectable amounts of dsRNA 

was only possible by using the xrn1∆ strain expressing Atg26-GFP 

In conclusion, L-A Gag was identified as a new Atg26 interaction partner by MS analysis. 

These findings were validated by immunoblot analysis using an anti-Gag antibody and 

cDNA sequencing of co-purified L-A dsRNA.  
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4.8 Mapping of the Gag binding domains in Atg26 

In the previous chapter (4.7), the major coat protein of the L-A virus was identified as an 

Atg26 binder. To map the region in Atg26 necessary for Gag binding, various truncated 

versions of Atg26 were analysed via GFP-TRAP (Figure 4.13). Based on domain 

prediction (www.sanger.ac.uk/Software/Pfam) and previous reports (Asakura et al., 

2009; Yamashita et al., 2006), Atg26 fragments were cloned in a GFP vector containing a 

MET25 promoter for inducible expression (pUG34) (Figure 4.13D). Different variants of 

GFP-Atg26 or GFP alone were expressed in atg26∆ cells (WCG4a), immunoprecipitated 

and analysed by immunoblotting (Figure 4.13A and further examples in C) and CBB 

staining of SDS-PAGE (Figure 4.13B).  Cells expressing GFP-Atg26 1-636 lost 

spontaneously the virus during transformation procedure (indicated by “∆l-a”) and thus 

were used as negative control (Figure 4.13A, lane 5 and 15, B). Immunoblots using anti-

GFP or anti-Gag antibodies were quantified without including their degradation 

products (Figure 4.13E and F).  

Almost all truncated version of GFP-Atg26, except Atg26 1-1194, were less stable than 

the full-length version (summarized in Figure 4.13E). Especially the fragments 187-337 

(PH domain) and 187-374 (extended PH domain, not shown) were hardly detectable 

(Figure 4.13C lane 11, E). Nonetheless, the expression levels of the other fragments were 

adequate to map Gag binding. 

The interaction studies clearly demonstrated that region 187-569 of Atg26 is most 

important for Atg26-Gag complex formation (summarized in Figures 4.13D-F). This 

region contains a PH domain (187-337) and an undefined region (338-569). Each region 

was able to bind Gag on its own, as shown by the fragments GFP-Atg26 1-337 and 338-

1198 (Figure 4.13 A lanes 13 and 18). However, only in combination, a high level of 

interaction was detectable, indicated by the constructs GFP-Atg26 1-569 and 187-569 

(Figure 4.13A lanes 17 and 16; C, lanes 3, 12 and 18). The undefined N-terminal region 

(1-186) and the C-terminal half (570-1198), including the GRAM domain, the 

glucosyltransferase domain (UDPGT) and the AIM, seemed to be only slightly involved in 

Gag binding (Figure 4.13A, lanes 12 and 19; C lanes 2, 9 and 20). 
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Figure 4.13 The PH domain (187-337) and an undefined region (338-569) of Atg26 bind L-A Gag  
GFP-TRAP with truncated versions of GFP-Atg26. Protein extracts from atg26∆ cells expressing variants of 
GFP-Atg26 or GFP were subjected to GFP-TRAP and analysed by: 
(A and C) immunoblotting  (arrowheads indicate GFP-Atg26 fragments used for quantification) 
(B) CBB staining of SDS-PAGE 
(D-F) Summary: Schematic of the Atg26 domains and respective quantifications of the immunoblots. 
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For further interaction studies, pull down assays using purified recombinant (E. coli-) 

expressed Atg26 have been established. Bl21 cells were transformed with pGEX-4T3–

GST-Atg26 (not shown), pGEX-4T3–GST-Atg26 187-569 or pGEX-4T3 GST (control). The 

about 150 kDa, full-length GST-Atg26 construct was not expressible in E. coli (not 

shown). Using pGEX-4T3–GST-Atg26 187-569, it was possible to express and purify 

suitable amounts of recombinant protein (Figure 4.14.1A, Bound) for pull down assays 

(Figure 4.14.1A, Pull down). Protein extracts from atg26∆ cells (WCG4a) were used for 

incubation with GST-Atg26 187-569 or GST-coupled beads. The samples were analysed 

by CBB staining of SDS-PAGE  (Figure 4.14.1A), immunoblotting (Figure 4.14.1B) and 

EtBr staining of agarose gels (Figure 4.14.1C). Detection of Gag or viral dsRNA via 

immunoblotting or EtBr staining of agarose gels again confirmed that the region 187-

569 mediates interaction with L-A virus-like particles (VLPs). In addition, this GST-

tagged Atg26 fragment seemed to fold properly in the used prokaryotic expression 

system. 

Figure 4.14.1 Recombinant expressed GST-Atg26 187-569 binds L-A virus-like particles 
Cell extracts from E. coli (Bl21, pLys) expressing GST-Atg26 187-569 (1) or GST alone (2) were incubated 
with glutathione sepharose beads (Glut. beads). After GST coupling, cell lysate from atg26∆ cells were 
incubated with respective beads. GST purifications and pull down assays were analysed by: 
(A) CBB staining of SDS-PAGE, (B) immunoblotting and (C) EtBr staining of agarose gels.  
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Additionally, the bound fraction of GST-Atg26 187-569 was analysed by MS in 

collaboration with Olaf Bernhard und Dr. Bernhard Schmidt. Samples (CBB-stained 

bands of interest) for MS analysis were chosen after detailed comparison between the 

CBB-stained SDS-PAGE bound fractions. Here, the GST-Atg26 187-569 sample clearly 

showed additional bands compared to the GST sample (Figure 4.14.2A). Together with 

the detected co-isolation of L-A Gag via immunblotting (Figure 4.14.2B), these results 

showed the success of the pull down assay. To avoid MS analysis of degradation 

products, only distinct bands with higher molecular weight than GST-Atg26 187-569 

(>75 kDa) were considered. Thus, a virus-related Atg26 (187-569) proteome with 

putative interactors over 75 kDa was the expected outcome of the MS analysis (chapter 

3.2.7.8). Identified peptides were evaluated regarding their score: proteins with a score 

over 50 were listed in a table (Figure 4.14.2B). The only exception and in parallel a 

negative example was Msp1 identified in band 1 (>250 kDa): With a score of 39, this 

mitochondrial protein had the highest score in this band. Together with the molecular 

weight of only 40.3 kDa, Msp1 was an unlikely interaction partner of Atg26 187-569. For 

the same reasons, Kin3 could be classified as an unsure candidate, indicated by a score 

of 58 and molecular weight of 51.2 kDa (band 2, >150 kDa). In most cases, the scores of 

the other listed candidates were at least about 100 and the calculated molecular weights 

were in correlation with those estimated via SDS-PAGE analysis (Figure 4.14.2B).  

To get an impression of the cellular function and the interrelationships of the identified 

proteins, the STRING database was used to create functional protein association 

networks based on available experimental evidence (Figure 4.14.2C). Since STRING had 

no available data for the L-A virus proteins Gag and RdRP (Gag-Pol), these proteins were 

not considered.  

Obviously, many rRNA processing proteins were co-isolated especially the Mak21-Noc2-

Rrp5 complex and Kre33. Remarkably, the 5̕-3̕ exonuclease Xrn1, a down-regulator of L-

A, was identified by MS.  Xrn1 and Mak21 were the only candidates with a published L-A 

virus phenotype (Edskes et al., 1998; Esteban et al., 2008; Masison et al., 1995). STRING 

sorted Gcn2 in a group of proteins that are involved in translation. However, it should 

also be mentioned that this kinase is a key regulator of amino acid starvation-induced 

autophagy (Ecker et al., 2010; Tallóczy et al., 2002). Another identified kinase involved 

in autophagy-inducing cascades is Ksp1, which acts in the TORC1 pathway (Huber et al., 

2009; Umekawa and Klionsky, 2012). 
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Figure 4.14.2 MS analysis of the GST-Atg26 187-569 pull down assay  
(A) CBB-stained SDS-PAGE, labelled bands were analysed by MS 
(B) Identified proteins. The colour code illustrates the confidential score from white (<100), to dark blue 
(<1000) to magenta (>1000). Information about the proteins were from STRING (www.string-db.org) and 
SGD (www.yeastgenome.org). 
(C) Functional grouping of MS-identified Atg26 (187-569) interaction partners by STRING (www.string-
db.org).  L-A Gag and L-A RdRP (Gag-Pol) were not considered, since they are no host proteins. 
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The experiments shown above clearly demonstrated an interaction between Atg26 

(187-569) and L-A VLPs. However, it is still an open question whether Atg26 directly 

interacts with Gag or whether further factor are involved in complex formation. A 

simplified, direct pull down assay with E. coli-expressed pGEX-4T3-GST-Gag and pROEX 

His-Atg26 187-569 was used to answer this question (Figure 4.15A and B). Therefore, 

both constructs were separately expressed in BL21 cells. The samples were mixed 

during cell lysis (Lysate). As control, pGEX-4T3-GST- and pROEX-His-Atg26-187-569-

expressing E. coli were mixed during lysis to experimentally exclude unspecific 

interaction with GST-coupled beads. After sedimentation of the cell debris (2700 g 

pellet), the supernatant was incubated with glutathione beads. Then, the beads were 

washed and the bound proteins eluted with 2 x laemmli.  

Comparison of the supernatant and pellet fractions of GST-Gag revealed that the 

majority of GST-Gag was sedimented, suggesting an accumulation in inclusion bodies 

during expression in E. coli (Figure 4.15A and B, Supernatant, Pellet). Nonetheless, using 

the supernatant, it was possible to couple detectable amounts of GST-Gag on glutathione 

beads (Figure 4.15A and B, Co-purification). As shown by immunoblotting, small 

amounts of His-Atg26 187-569 were co-purified by GST-Gag, but not by GST alone, 

giving a first hint for a direct interaction (Figure 4.15B). 

The split-ubiquitin assay was a further method to prove a direct interaction (Figure 

4.15C). This in vivo method is based on the ability of the N- and the C-terminal halves of 

ubiquitin (Nub and Cub) to reassembly when they are brought into close proximity by 

bait-prey interaction (chapter 3.2.4) (Müller and Johnsson, 2008). As a readout, the 

stability and thereby the activity of the split-ubiquitin reporter protein R-Ura3 is 

analysed. Bait-prey interaction reduces cell growth on uracil-free medium (-Ura) and 

increases growth on medium containing 5-fluoroorotic acid (+FOA). SEY6210 cells were 

transformed with CUP1-Nub-Gag or pRS314 (negative control), in combination with 

Cub-Atg26 (fl), Cub-Atg26 1-569 or Cub-Atg26 570-1198. Expression of the fusion 

constructs was induced by 100 µM CuSO4 (Nub constructs) and 250 µM methionine (Cub 

constructs). Cells were diluted in 10-fold steps and spotted on agar plates containing CM 

(-Trp/-His)(growth control), CM +FOA (-Trp/-His) (growth implies protein interaction) 

or MV –Ura (-Trp/-His) (no growth implies protein interaction).  
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Figure 4.15 Investigation of a putative direct Atg26-Gag interaction via pull down and split-
ubiquitin assay 
(A and B) Cell extracts from E. coli (Bl21, pLysS) expressing GST-Gag (1) or GST (2) were mixed with 
lysate from cells expressing His-Atg26 187-569 and incubated with glutathione sepharose beads (Glut. 
beads). Co-purification was monitored by (A) CBB-staining of SDS-PAGE and (B) immunoblotting. The 
asterisk indicates unspecific signals of the marker lane. 
(C) Split-ubiquitin assay. The N-terminal part of ubiquitin (Nub) is fused to the bait and its C-terminal part 
(Cub) to the prey. Protein interaction restores ubiquitin and leads to degradation of a destabilised R-Ura3 
variant. Bait/prey interaction is detected by increased growth on 5-FOA-containing medium or by 
decreased growth rate on medium lacking uracil. 
 

On the CM +FOA plate, cells expressing Nub-Gag in combination with the Atg26 

constructs had no higher growth rate than the negative controls (-), suggesting no 

interaction. Inconsistently with these results, expression of Nub-Gag together with Cub-

Atg26 or Cub-Atg26 1-569 led to decreased growth on –Ura plates, which would indicate 

an interaction between Atg26 and Gag. Furthermore, these results would be inline with 

all mapping studies above where especially the region 187-569 of Atg26 was shown to 

mediate Gag binding but not Atg26 570-1198. However, the split-ubiquitin assay did not 

coherently validate an (direct) interaction between Atg26 and Gag (Figure 4.15C). 
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4.9 GFP- and mCherry-tagged L-A Gag bind Atg26, but inhibit   

        the endogenous virus  

To validate the interaction between Atg26 and L-A Gag in more detail and to investigate 

the function of this interaction, cDNA clones of GAG and GAGPOL RNA were cloned in 

GFP and mCherry vectors with inducible MET25 promoters (pUG34, pUG35, pUG36 and 

pUG36-mCherry). A mCherry-tagged L-A Gag construct was tested using the established 

GFP-Atg26-TRAP protocol and analysed by immunoblotting (Figure 4.16A), CBB staining 

of SDS-PAGE and EtBr staining of agarose gels (Figure 4.16B). For this, atg26∆ cells 

expressing GFP-Atg26 wt, I1198A, 1-1194 (∆WTMI) or GFP alone together with 

mCherry-Gag were grown to late-log phase, osmotically lysed and used for the GFP-

TRAP (Figure 4.16A lanes 8-11). As further control, GFP-Atg26 wt was overexpressed 

without the mCherry-Gag construct (Figure 4.16A, lane 5 and 12). To check whether 

interaction with mCherry-Gag is influenced by the absence of endogenous L-A Gag, GFP-

Atg26 wt or GFP alone in combination with mCherry-Gag were expressed in ∆l-a/atg1∆ 

cells (“∆l-a” indicates loss of L-A virus) for its analysis via GFP-TRAP (Figure 4.16A, lanes 

13 and 14).  

On the one hand, immunoblot analysis clearly showed an interaction of GFP-Atg26 and 

mCherry-Gag, suggesting that the mCherry tag had no effect on Atg26 binding (Figure 

4.16A lane 8-10 and 13). On the other hand, the results demonstrated that expression of 

mCherry-Gag or the presence of mCHERRY-GAG RNA interfere with the endogenous L-A 

virus of our laboratory strain (WCG4a). Co-isolation of detectable amounts of 

endogenous Gag was only possible in the absence of the mCherry-Gag construct (Figure 

4.16A lane 12). Comparison of the ∆l-a/atg1∆ and atg26∆ strains showed no differences 

in complex formation between GFP-Atg26 and mCherry-Gag, implying that interaction of 

GFP-Atg26 and mCherry-Gag occurs independent of endogenous Gag. CBB staining of 

SDS-PAGE and EtBr staining of agarose gels supported the observation that expression 

of mCherry-Gag inhibited endogenous L-A (Figure 4.16B). 
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Figure 4.16 Atg26 binds tagged versions of Gag  
(A, B) GFP-Atg26-TRAP. Extracts from atg26∆ or ∆l-a/atg1∆ cells expressing GFP-Atg26 variants or GFP 
together with mCherry-Gag or mCherry alone were incubated with GFP-TRAP beads. Input and bound 
fractions were analysed by (A) immunoblotting, (B: top) CBB staining of SDS-PAGE and (B: bottom) EtBr 
staining of agarose gels. “∆l-a” indicates loss of L-A virus. 
(C, D) mCherry-Atg26-TRAP. Extracts from atg26∆ or ∆l-a/atg1∆ cells expressing mCherry-Atg26 or 
mCherry alone together with GFP-Gag, GFP-GagPol or GFP alone were incubated with RFP-TRAP beads. 
Input and bound fractions were analysed by (C) immunoblotting, (D: top) CBB staining of SDS-PAGE and 
(D: bottom) EtBr staining of agarose gels. “∆l-a” indicates loss of L-A virus. 
 
 

N-terminally GFP-tagged versions of Gag and GagPol were analysed by mCherry-Atg26-

TRAP (Figure 4.16C and D). The construct GFP-GagPol included the second overlapping 

ORF (POL), encoding a RNA-dependent RNA polymerase. In previous studies, it was 

shown for the endogenous virus that a random -1 ribosomal frameshift in GAGPOL 

causes a 1:60 ratio of Gag-Pol to Gag expression (chapter 2.6) (Dinman et al., 1991; Valle 

et al., 1993). However, a band of the triple fusion protein GFP-Gag-Pol with a putative 
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molecular weight over 200 kDa was generally not detectable by immunoblotting or CBB 

staining of SDS-PAGE. It can be speculated that the expected 60-fold lower expression of 

GFP-Gag-Pol compared to GFP-Gag was too weak for detection.  

Furthermore, it was tested in this mCherry-Atg26-TRAP whether the absence of the 

endogenous L-A influences the interaction between mCherry-Atg26 and GFP-Gag by 

using the virus-lacking strain ∆l-a/atg1∆ (Figure 4.16C lane 2 and 8). mCherry-Atg26 

was also expressed without GFP-tagged Gag constructs to detect the interaction 

between mCherry-Atg26 and endogenous Gag (Figure 4.16C lanes 4 and 10; D). Cells co-

expressing mCherry alone together with GFP-GagPol or GFP-Gag were used as negative 

controls (Figure 4.16C, lanes 5, 6 and 11, 12). All constructs were overexpressed by full 

induction of the MET25 promoter (growth without methionine).  

Remarkably, GFP-Gag from both constructs, GFP-Gag or GFP-GagPol, was co-purified in 

comparable amounts to endogenous Gag by this mCherry-Atg26-TRAP (Figure 4.16C 

lanes 7, 8, 9 and 10). Expression of GFP-tagged Gag also inhibited endogenous virus 

activity: In the presence of GFP-Gag, there was no endogenous Gag in the input or bound 

fraction detectable (Figure 4.16C lanes 1,2,3 and 7,8,9; D). Immunoblot analysis with 

Gag antibody also detected weak bands at about 76 kDA (molecular weight of 

endogenous Gag) in the presence of GFP-Gag (Figure 4.16C lanes 7 and 9). However, 

these signals were most likely degradation products of GFP-Gag, because this band was 

also detectable in the absence of the L-A virus (∆l-a/atg1∆)(Figure 4.16.C lane 8).  In 

agreement with the GFP-Atg26-TRAP (Figure 4.16A and B), absence of the endogenous 

L-A virus did not influence interaction between mCherry-Atg26 and GFP-tagged Gag 

(Figure 4.16C, compare lanes 7 and 8).  

Examinations of the bound fractions by CBB staining of SDS-PAGE and EtBr staining of 

agarose gels were consistent with the immunoblot analysis (Figure 4.16D): the presence 

of GFP-tagged Gag versions interfered with co-isolation of detectable amounts of L-A 

dsRNA.  

 

To further test whether GFP- or mCherry-tagged Gag have similar properties as 

endogenous Gag, a GFP-TRAP was perform using GFP-Gag as bait (Fig 4.17A and B). For 

this experiment, extracts from ATG26-HA cells (chromosomally HA-tagged) ectopically 

expressing GFP-Gag or GFP alone together with mCherry-Gag or mCherry were 

incubated with GFP-TRAP beads.  
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Co-isolation of chromosomally expressed Atg26-HA further confirmed an interaction 

between Gag and Atg26 (Fig 4.17A). Moreover, the bait GFP-Gag was able to bind 

mCherry-Gag, suggesting that both tagged versions of Gag are able to form homo-

oligomers comparable to endogenous Gag.  The GFP moiety is theoretically orientated to 

the inside of a GFP-Gag virus particle and thus not accessible for GFP-TRAP beads. 

Thereby, this experiment indirectly showed that formation of whole virus particles 

using tagged Gag was doubtful. However, it is possible that GFP-Gag virus particles were 

formed in the cell but destabilized during the CoIP. In this case, the virus particles would 

open and allow interaction with GFP-TRAP beads.  

For microscopic analyses of these constructs, ATG26-HA cells ectopically expressing 

GFP-Gag and mCherry-Gag were used (Figure 4.17C). In many cells, the signals of both 

constructs were highly mobile dots. Therefore, these investigations were problematic. 

The switch between the GFP- and the mCherry channel and the exposure times (0.3 sec) 

made it impossible to detect potential colocalization of the two signals (Figure 4.17C, 

cell 1). However, there were also cells with less mobile or fixed dots. In these cells, a 

clear colocalisation of GFP-Gag and mCherry-Gag was detectable (Figure 4.17C, cell 2), 

suggesting self-assembly of tagged Gag. 

In time-lapse microscopy with 0.44 sec episodes, the mobility of tagged Gag was 

validated by using GFP-Gag(Pol) and a C-terminally tagged version of Gag. Most signals 

were mobile during the time periods (Figure 4.17D and E, left).  Only a few dots had a 

relatively constant localisation, illustrated on the right site as white blocks created by 

the Fiji plugin  “Integral Blocks PMCC” (Figure 4.17D and E, right). By comparing both 

fusion proteins, it seemed that Gag-GFP forms larger dots than GFP-Gag(Pol). 

Furthermore, in this microscopic analyses, the size or signal intensity of the dots seemed 

to negatively correlate with the mobility. 

 

The results of this chapter indicated that the tested tagged versions of Gag have similar 

properties as endogenous Gag regarding the expression level, the stability, the affinity to 

Atg26 and the ability to self-assemble. However, it was also shown that tagged Gag 

and/or its transcripts inhibited the endogenous L-A virus. 
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Figure 4.17 GFP-Gag binds Atg26-HA and mCherry-Gag 
(A and B) GFP-Gag-TRAP. GFP-TRAP beads were incubated with lysates from ATG26-HA cells expressing 
GFP-Gag or GFP alone together with mCherry-Gag or mCherry alone. Co-isolated proteins were monitored 
by (A) immunoblotting and (B) CBB staining of SDS-PAGE. 
(C) ATG26-HA strains ectopically expressing GFP-Gag and mCherry-Gag were analysed by fluorescence 
microscopy. Cell 1 was chosen as an example for highly mobile GFP-Gag and mCherry-Gag dots, whereas 
cell 2 demonstrates fixed dots that colocalize. Scale bar: 5 µm. 
(D and E) Time-lapse microscopy of cells expressing GFP-GagPol or Gag-GFP (left). GFP dots with constant 
localisation were illustrated by using the Fiji plugin “optic flow/integral block pmcc” (right).  White blocks 
show GFP dots with constant localisation in the chosen z-axis. All other GFP signals were mobile. 
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4.10 Autophagy of GFP-tagged Gag depends on Atg26  

Results of this thesis showed that Atg26 is transported to the vacuole by autophagy and 

that it locates at the PAS, both in an Atg8-dependent manner (chapter 4.4 to 4.6). In 

further studies, L-A Gag was identified as an interaction partner of Atg26 (chapter 4.7 

and 4.8). Altogether, these observations raised the question if Atg26 might be involved 

in autophagic degradation of virus particles, a heretofore unknown mechanism in yeast. 

One possibility to monitor autophagy is the vacuolar degradation assay that measures 

vacuolar processing of GFP-tagged marker proteins (Figure 4.9A). To analyse whether 

virophagy exits in yeast and whether Atg26 is involved in this process, GFP-tagged 

versions of L-A Gag were analysed by the vacuolar degradation assay. For experimental 

exclusion that Atg26 is involved in unselective, bulk autophagy, Pgk1-GFP was used as 

marker for this pathway (Welter et al., 2010). 

Wild type or atg26∆ cells expressing Pgk1-GFP or GFP-tagged versions of Gag, were 

grown to OD600∼3 and then shifted to starvation medium (SD-N). At the time points 0, 2, 

4 and 6 hours, ∼3 OD600 were taken for alkaline lysis. For this study, three different 

constructs with pUG36 as backbone were analysed: (1) GFP-Gag (Figure 4.18B and C), 

(2) Gag-GFP (Figure 4.18D and E) and (3) GFP-GagPol (Figure 4.18F and G). In these 

experiments, the expression levels of the Gag constructs were varied by regulating the 

MET25 promoter with methionine (high expression: 0.0 mM methionine; low 

expression: 0.8 mM methionine). Immunoblots were quantified by calculating the ratio 

of free GFP and GFP-tagged Gag (or Pgk1) (𝑠𝑖𝑔𝑛𝑎𝑙𝑓𝑟𝑒𝑒 𝐺𝐹𝑃 𝑠𝑖𝑔𝑛𝑎𝑙𝐺𝐹𝑃−𝑡𝑎𝑔𝑔𝑒𝑑 𝐺𝑎𝑔⁄ ) (Figure 

4.18, right). As the signals in wt cells were most stable after 4 h of starvation, these 

values were set to 100%.  

As similar shown in previous studies (Cao and Klionsky, 2007), autophagy of Pgk1-GFP 

did not differ in wt and atg26∆ cells, indicating no involvement of Atg26 in unselective 

macroautophagy (Figure 4.18A). 
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Figure 4.18 GFP-tagged Gag is transported to the vacuole upon autophagy induction  
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Figure 4.18 (continued) 
Vacuolar degradation assay. Wild type or atg26∆ cells expressing GFP-tagged Gag under control of the 
MET25 promoter were grown in CM medium with 0.8 mM (low expression) or without methionine (high 
expression) to an OD600∼3, then shifted to SD-N. Samples were taken at the indicated time points. Samples 
were analysed by immunoblots and quantified by calculating the ratio of free GFP and cytosolic GFP-
tagged Gag (or Pgk1). Error bars indicate ±SEM. 
(A) Autophagy of Pgk1-GFP (endogenous promoter)  
(B) Autophagy of GFP-Gag (GFP-Gag construct) under low expression level 
(C) Autophagy of GFP-Gag (GFP-Gag construct) under high expression level 
(D) Autophagy of Gag-GFP under low expression level 
(E) Autophagy of Gag-GFP under high expression level 
(F) Autophagy of GFP-Gag (GFP-GagPol construct) under low expression level 
(G) Autophagy of GFP-Gag (GFP-GagPol construct) under high expression level 
 

Dissecting the GFP-Gag construct under both expression conditions, autophagy of GFP-

Gag showed a maximum after 4 to 6 hours of starvation in wt cells (Figure 4.18B and C).  

In atg26∆ cells, autophagy of low expressed GFP-Gag was clearly reduced. These cells 

showed only 40–50 % autophagic activity (Figure 4.18B). Autophagy of overexpressed 

GFP-Gag was only slightly reduced in atg26∆ cells (Figure 4.18C).  

Gag-GFP showed comparable behaviour as GFP-Gag: a maximum of free GFP after 4–6 

hours and relatively unstable measurements after 6 hours of starvation. Deletion of 

ATG26 caused a 50% reduction of Gag-GFP autophagy (Figure 4.18.D and E). 

Remarkably, the ratio of free GFP to Gag-GFP during starvation was much smaller 

compared to the other constructs. Thus, it seemed that C-terminally tagged Gag is more 

stable or autophagy-resistant than the N-terminally GFP-tagged Gag versions. 
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In wt cells, low expression of the GFP-GagPol construct resulted in a peak of autophagy 

after 4 to 6 hours (Figure 4.18F), whereas a high expression level of this construct 

caused a clear maximum after 6 hours of starvation (Figure 4.18G). Deletion of ATG26 

negatively affected autophagy of GFP-Gag under low and high expression level as 

indicated by a 50–60% reduction of autophagic activity. As already mentioned in 

chapter 4.9, the GFP-Gag-Pol triple fusion protein was not detectable by 

immunoblotting. However, it seemed to influence the behaviour of GFP-Gag and its 

autophagic degradation. 

In summary, the results of this chapter demonstrated Atg26-dependent autophagic 

degradation of GFP-tagged Gag upon starvation. For the first time, these data presented 

an autophagic phenotype of Atg26 in S. cerevisiae. Since autophagy of the highly 

expressed GFP-GagPol construct was constantly detectable over the longest period, this 

construct was used for further studies. 

 

4.11 Genetic dissection of GFP-Gag autophagy 

Analysis of the GFP-GagPol construct demonstrated that its product GFP-Gag was 

degraded in the vacuole under starvation and that deletion of ATG26 obviously 

repressed this process (chapter 4.10). 

The genetic analysis of autophagic GFP-Gag degradation was extended to discover 

further genes that might be involved in this process. Therefore, deletion strains of 

interest transformed with pUG36-GFP-GagPol were grown to OD600∼3 in CM medium 

without methionine to induce high expression of GFP-Gag (and, hypothetically, GFP-Gag-

Pol). Then, cells were shifted to SD-N medium and analysed by the vacuolar degradation 

assay, as already described in chapter 4.10.  

The selective autophagy adaptor Atg11 was one interesting candidate to clarify if GFP-

Gag might be processed by selective autophagy. atg11∆ cells showed no free GFP 

suggesting a selective autophagic mechanism for GFP-Gag degradation (Figure 4.19A 

and D). 
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Figure 4.19 Genetic dissection of GFP-Gag autophagy 
(A–C) Vacuolar degradation assay. Different strains expressing GFP-GagPol under control of the MET25 
promoter were grown in CM medium without methionine (high expression) to an OD600∼3, and then 
shifted to SD-N. Samples were taken at the indicated time points and analysed by immunoblotting. 
(D) Quantification of GFP-Gag autophagy. Immunoblots were quantified by calculating the ratio of free 
GFP and cytosolic GFP-tagged Gag.  Error bars indicate ±SEM. 
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To find out whether GFP-Gag is delivered to the vacuole by canonical autophagy, some 

autophagy-related proteins of the core machinery were tested: The serine/threonine 

kinase Atg1, the PROPPIN Atg18 and the ubiquitin-like protein Atg8 were in focus. 

Furthermore, the vacuolar protease Pep4 necessary for degradation of autophagic 

bodies in the vacuole was investigated. The strains atg1∆, atg18∆, atg8∆ and pep4∆ 

showed no vacuolar processing of GFP-Gag, indicating a transport of GFP-Gag to the 

vacuole by canonical autophagy (Figure 4.19A and D).  

In further investigations, the Atg18 homologs Atg21 and Hsv2 of the PROPPIN family 

were analysed (Figure 4.19B and D).  Atg21 is required for the Cvt pathway, PMN and 

efficient starvation induced autophagy, whereas Hsv2 is only necessary for efficient 

PMN (Barth et al., 2002; Krick et al., 2008a; Welter et al., 2010). Deletion of ATG21 

caused a more than 70% reduction of GFP-Gag autophagy. In hsv2∆ cells, autophagic 

degradation of GFP-Gag was about 40% decreased. Additional deletion of ATG26 in this 

strain (hsv2∆/atg26∆) resulted in 50-60% reduction, comparable to the single deletion 

of ATG26. 

The involvement of the Atg26, Atg11, Atg21 and Hsv2 in autophagy of GFP-tagged 

Gag(Pol) suggests that this mechanism is not starvation-induced bulk, unselective 

autophagy, but rather a selective autophagic pathway (Figure 4.19A, B and D). In yeast, 

selective autophagy receptors have in common that they physically link their cargos to 

the selective adapter Atg11 and Atg8. Deletion of such autophagic receptors leads to 

drastic decreased autophagic transport to the vacuole of respective cargos or complete 

interruption of selective autophagy (Farré et al., 2013; Motley et al., 2012; Okamoto et 

al., 2009; Shintani et al., 2002; Suzuki et al., 2010). These receptors (Cvt pathway: Atg19 

and Atg34; mitophagy: Atg32; pexophagy: Atg36) were analysed to test whether they 

influence autophagic degradation of GFP-Gag. Investigations of atg19∆, atg34∆, 

atg19/34∆, atg32∆ or atg36∆ cells have shown that these selective receptors are not 

required for autophagic degradation of GFP-Gag (Figure 4.19C and D). 
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Figure 4.20 Known receptors for selective autophagy are not involved in the Atg26-Gag interaction 
and autophagy of GFP-Atg26 
(A) GFP-Atg26-TRAP. Extracts from atg26∆, atg19∆/atg34∆, atg32∆ or atg36∆ cells expressing GFP-Atg26 
or GFP alone were incubated with GFP-TRAP beads. Input and bound fractions were analysed by 
immunoblotting. 
(B) Vacuolar degradation assay. Growing atg26∆, atg19∆/atg34∆, atg32 or atg36∆ cells expressing GFP-
Atg26 wt were shifted to SD-N. Samples were taken at the indicated time points and analysed by 
immunoblotting. 
(C) GFP-Atg26-TRAP. Extracts from atg26∆ cells expressing GFP-Atg26, GFP-Atg26 ∆WTMI or GFP alone 
together with mCherry-Atg11 were used for GFP-TRAP. Input and bound fractions were analysed by 
immunoblot analysis. 
(D) Vacuolar degradation assay. Growing wt cells, infected or non-infected (∆l-a) by the L-A virus, and 
xrn1∆ cells expressing GFP-Atg26 wt were shifted to SD-N. Samples were taken at the indicated time 
points and analysed by immunoblotting. 
 

To further exclude that these selective receptors have a role in (GFP-)Gag degradation or 

somehow influence the physical Atg26/Gag interaction, an established GFP-TRAP with 

the respective deletion strains was performed using GFP-Atg26 as bait (Figure 4.20A). 
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interaction studies clearly demonstrate that the selective receptors did not effect the 

Atg26-Gag interaction. By using the vacuolar degradation assay to analyse GFP-Atg26 

degradation in these strains, it was additionally shown that these selective receptors 

have no influence on autophagic processing of GFP-Atg26 (Figure 4.20B).  

In a further GFP-Atg26-TRAP experiment, it was tested whether Atg26 interacts with the 

selective adapter Atg11. For this, protein extracts from cells expressing GFP-Atg26, GFP-

Atg26 ∆WTMI or GFP in combination with mCherry-Atg11 were incubated with GFP-

TRAP beads (Figure 4.20C). By this method, a weak Atg26-Atg11 interaction was 

detectable. Furthermore, it seemed that the AIM of Atg26 influences the interaction.  

By performing the vacuolar degradation assay with wt cells infected or non-infected (∆l-

a) by the L-A virus and xrn1∆ cells expressing GFP-Atg26 wt, it was tested whether the 

L-A virus influences autophagic degradation of GFP-Atg26 (Figure 4.20D). Immunoblot 

analysis showed that absence (wt ∆l-a) or excess (xrn1∆) of the L-A virus did not or 

hardly correlate with autophagic degradation of GFP-Atg26 (Figure 4.20D). 

In chapter 4.6, it was experimentally validated that Atg26 is AIM-dependently 

transported the vacuole during starvation; data of chapter 4.10 and this chapter 

revealed a role of Atg26 in autophagy of GFP-Gag (chapter 4.9, 4.10). These observations 

raised the question whether the very C-terminal AIM of Atg26 is also relevant for GFP-

Gag transport to the vacuole. Two chromosomally HA-tagged ATG26 strains, including 

ATG26-HA and ATG26 ∆WTMI-HA, were generated (Figure 4.21A) and analysed by 

performing the vacuolar degradation assay with the GFP-GagPol construct (as described 

above) to answer this question (Figure 4.21B and C). 

Performing the vacuolar degradation assay, a wild type level of GFP-Gag degradation was 

detectable in ATG26-HA strains, indicating that the C-terminal HA tag has no influence 

on the structure or function of Atg26. Only the measurement after 6 hours showed a 12 

% decrease in GFP-Gag degradation (Figure 4.21B and C). An about 30% reduction of 

GFP-Gag autophagy was measureable for ATG26 ∆WTMI-HA cells suggesting that the 

very C-terminal AIM of Atg26 and thus its interaction with Atg8 enhances the efficiency 

of GFP-Gag autophagy (Figure 4.21B and C). Furthermore, these observations and the 

fact that Atg26 and Gag interact with each other (chapter 4.7 and 4.8) gave first hints 

that these two proteins are co-transported to the vacuole by autophagy. 
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Figure 4.21 The C-terminal AIM of Atg26 is necessary for efficient autophagy of GFP-Gag(Pol) 
(A) Scheme of the analysed strains: wt, ATG26-HA, ATG26 ∆WTMI-HA and atg26∆ 
(B) Vacuolar degradation assay. Wild type, ATG26-HA, ATG26 ∆WTMI-HA or atg26∆ cells expressing GFP-
GagPol under control of the MET25 promoter were grown in CM medium without methionine (high 
expression) to an OD600∼3, then shifted to SD-N. Samples were taken at the indicated time points and 
analysed by immunoblotting. 
(C) Quantification of autophagy of GFP-Gag. Immunoblots were quantified by calculating the ratio of free 
GFP and cytosolic GFP-tagged Gag (n≥8).  Error bars indicate ±SEM. 
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5 Discussion 
 
Autophagy is an evolutionary conserved degradative pathway for the removal and 

recycling of cytosolic components and organelles to maintain the cellular homeostasis. 

This intracellular process is characterized by the formation of a double-membrane-

layered vesicle, called autophagosome. In yeast, autophagy is initiated at the PAS with 

the formation of a double-membrane structure, the phagophore, which elongates to 

engulf cytoplasmic components. Autophagosome formation is completed by closure of 

the phagophore. Finally, the outer membrane of the autophagosome fuses with the 

vacuole leading to degradation of the inner membrane together with the cargo (Feng et 

al., 2013; Reggiori and Klionsky, 2013).  

Initially, autophagy was defined as a non-selective, bulk degradation pathway in 

response to starvation. However, the knowledge about autophagic regulators 

enormously increased in the last decade. Now, there exists clear evidence that removal 

of dysfunctional organelles, clearance of protein aggregates, and elimination of 

intracellular pathogens, are highly selective autophagic processes that involve cargo 

recognition by the autophagic machinery (Kraft et al., 2010; Liu et al., 2014; Okamoto, 

2014). In yeast, selective pathways were shown to mediate turnover of damaged 

mitochondria and removal of surplus peroxisomes (Kanki and Klionsky, 2010; Motley et 

al., 2012; Okamoto, 2014; Okamoto et al., 2009). Furthermore, it was shown that the ER, 

ribosomes, lipid droplets and non-essential parts of the nucleus are selective cargos of 

autophagy (Bernales et al., 2006a; Kraft et al., 2008; Krick et al., 2008b; van Zutphen et 

al., 2014). The Cvt pathway is a biosynthetic process that selectively targets resident 

hydrolases to the vacuole. However, this process is also categorized as selective 

autophagy, because it requires the autophagic machinery and is mechanistically 

equivalent to the other selective pathways (Lynch-Day and Klionsky, 2010; Reggiori and 

Klionsky, 2013). Recently, it was demonstrated that components of the Cvt pathway are 

also involved in selective autophagy of Ty1 retrotransposon VLPs to down-regulate 

transposition that causes chromosomal mutation (Suzuki et al., 2011).  

In this study, it was discovered that also the major coat protein Gag of the S. cerevisiae 

virus L-A might be degraded by selective autophagy, indicated by the involvement of 

Atg11 and the two PROPPINs Atg21 and Hsv2, which are typical regulators of selective 

autophagy. Furthermore, it was shown that Atg26, whose function was unclear so far, 

interacts with L-A Gag and is a further mediator of L-A Gag autophagy. 
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5.1 Searching for new Atg8 interaction partners 

Atg8 is a key component for autophagosome biogenesis and mediates cargo recognition 

during selective autophagy. These two central roles make Atg8 to an ideal bait for 

screens and proteomic approaches to find new proteins that are involved in autophagy 

or related processes. For example, the mammalian autophagy receptors NBR1, Nix and 

optineurin were identified as ATG8 (LC3/GABARAP) binders by using ScAtg8, LC3B and 

GABARAPL2 as baits for yeast two-hybrid screens (Kirkin et al., 2009b; Novak et al., 

2010; Wild et al., 2011). TBC-domain containing Rab GAPs, which function as regulatory 

factors in autophagy, were also found to interact with mATG8 orthologs by yeast two-

hybrid screens (Popovic et al., 2012). MS analyses investigating the 6 human ATG8 

homologs as baits for CoIPs identified a further huge number of ATG8 interaction 

partners (Behrends et al., 2010). A further method to find new ATG8 binders was phage 

display by screening a randomized peptide library with GABARAP as affinity ligand. 

Calreticulin was predicted as a GABARAP binder by this approach and validated in 

further experiments (Mohrlüder et al., 2007). In a recent study based on a microscopic 

screen analysing the effect of siRNA knockdown on autophagy-related location of GFP-

LC3B, TRIM5α was identified as an Atg8 binder and shown in further experiments to act 

as selective receptor for degradation of viral capsids (Mandell et al., 2014). However, the 

screening methods only predicted putative Atg8 binders, but did not further 

characterize the interaction site. In consequence, further experiments were required to 

test whether the interaction occurs AIM-dependently or differently.  

In this study, GFP-tagged Atg8 wt and two AIM-binding site mutants, including a W-site 

(L50A) and a L-site mutation (Y49A), were used as affinity ligands in a GFP-TRAP and 

following MS analysis (Figure 4.1, 4.2, 4.3 and 4.5). In parallel, the relevance of the N-

terminal FK-motif was analysed using GFP-Atg8 F5GK6G as bait for GFP-TRAP 

experiments and following proteomic analysis. GFP-Atg8 S3AT4A as bait, containing 

substitutions of non-conserved amino acids in the N-terminal region, was used as a 

further control (Figure 4.1, 4.2, 4.3 and 4.5). The following quantitative MS analysis of 

the different Atg8 baits was established to get information about the specificity and, 

thus, the confidence of putative Atg8 interactors. Furthermore, this proteomic approach 

should reflect whether putative binding partners interact via an AIM or differently.  

The known Atg8 binders Atg19, Ape1 and Fas1/2 were used as marker proteins to test 

the quality of the established GFP-Atg8-TRAP by immunoblotting (Figure 4.1B and C). 
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Atg19, Ape1, Fas1 and Fas2 were identified with high peptide count (Figure 4.3A and B) 

and showed the expected binding pattern (Figure 4.5B). These results supported the 

quality of the MS approach of this study. However, Atg21 was not detected by MS, 

although it was already identified as a putative Atg8 binder in previous studies (Juris et 

al., unpublished) and was clearly detectable by immunoblot analysis in previous GFP-

Atg8-TRAP experiments (Figure 4.1B and C). Therefore, it seems possible that Atg21 

was incompatible with the preparation of the samples for MS analysis. Further proven 

interaction partners of Atg8 that have not been identified by MS of this study were the 

mitophagy receptor Atg32 and the Cdc48 adapter Shp1, which were shown in previous 

reports to directly interact with Atg8 (Krick et al., 2010; Okamoto et al., 2009). 

Regarding that Atg32 and Shp1 were not analysed by immunoblotting in previous GFP-

TRAP experiments, it cannot be excluded that the chosen buffer conditions were not 

optimal to capture these proteins. 

However, the quality of the MS analysis was further supported by identification of the 

known Atg8 binders Atg3 and Atg34 with the expected AIM-dependent interaction 

pattern (Suzuki et al., 2010; Yamaguchi et al., 2010). Atg4 and Atg7, which are direct 

interactors of Atg8 and necessary for its conjugation to PE (Nakatogawa, 2013), were 

also specifically detected by MS analysis.  

Furthermore, 17 of 25 newly identified Atg8 interactors were experimentally validated 

(Figure 4.4). In following binding studies, the COPI proteins and especially Atg26 

showed the same binding pattern predicted by this MS analysis (Figure 4.5).  

Taken together, the approach of this study allowed rapid validation of the numerous 

proteins identified by MS.  

 

5.2 Newly identified Atg8 interaction partner 

90 of about 430 proteins identified by MS were predicted as putatively specific Atg8 

interactors (Figure 4.3). The web resource STRING was used to categorize the putative 

interactors by their cellular function (Figure 4.4) (Szklarczyk et al., 2010). Major 

functional groups are autophagy, COPI and COPII vesicles, protein folding (chaperones) 

and rRNA processing. However, many proteins could not be grouped, since they are not 

involved in similar cellular processes or have no obvious functional similarities (Figure 

4.4E).  

The majority of identified Atgs (Atg3, Atg4, Atg7, Atg19 and Atg34) were shown in 
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previous reports to directly interact with Atg8 (Wild et al., 2013), as discussed above. 

Therefore, the functional link between Atg8 and autophagy was used as internal 

controls of the CoIPs (GFP-Atg8-TRAP) and MS analysis.  

In MS analysis and further binding studies, the whole COPI coatomer complex was 

identified to form a complex with Atg8. All components of the COPI complex interact in a 

W-site- and FK-motif-dependent manner. Therefore, it can be speculated that Atg8 binds 

only a single component of the whole complex directly by the W-site and the FK-motif 

and thereby co-isolates also the remaining subunits of the COPI complex (Figure 4.5C 

and D). However, based on the analysis of this study, it is not possible to estimate which 

of the component(s) might be the direct Atg8 binder(s). Interestingly, the interaction of 

Atg8 and the COPI complex depends on the W-site and FK-motif, similar to the binding 

pattern of the PROPPIN Atg21 that directly interaction with Atg8 via its ß-propeller 

(compare Figure 4.1B, C and 4.5C, D)(Juris et al., unpublished). Structural analyses of 

previous studies showed that the COPI components Cop1 and Sec27 have a ß-propeller 

domain (Jackson, 2014). Therefore, it can be speculated that these two proteins might 

be directly involved in Atg8 binding also via their ß-propeller domains. 

The COPI complex is necessary for retrograde transport of vesicles within the Golgi 

stack or from the cis-Golgi to the ER (Jackson, 2014). Less is known about a direct 

interrelationship of COPI vesicles and Atg8 or autophagy. For yeast, vander Vaart et al. 

(2010) tested the involvement of the COPI components Ret2 and Ret3 in autophagic 

GFP-Atg8 processing by using thermosensitive strains. However, no effect on 

macroautophagy was measured comparing permissive and restrictive temperature (der 

Vaart et al., 2010). For mammalian cells, it was demonstrated that siRNA depletion of 

COPI causes defects in early endosome function and thereby blocks autophagic flux 

(Razi et al., 2009; Tooze and Razi, 2009). In yeast, a subcomplex of COPI (COPIb) was 

shown to participate in endosomal sorting to the vacuole, but an involvement in 

autophagy was not tested (Gabriely et al., 2007). In a proteomic approach, Graef et al. 

(2013) revealed a physical interaction between Atg8 and COPI proteins, but without 

further analysis of this interaction (Graef et al., 2013). 

COPII vesicles mediate the ER-Golgi transport and are initiated and formed by the major 

coatomer components Sar1, the Sec23/Sec24 subcomplex and the Sec13/Sec31 

subcomplex (Jensen and Schekman, 2010). Especially recent studies showed that COPII 

vesicles are membrane sources for expansion of the phagophore in yeast and mammals 
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(Ge et al., 2013; Graef et al., 2013; Schroder et al., 2008; Suzuki et al., 2013; Tan et al., 

2013). In the MS analyses of this study, Sec23, the GAP of Sar1 GTPase, and Sfb3, a 

further subcomponent of Sec23/Sec24 complex, were identified as putative AIM-

dependent Atg8 binders (Figure 4.3A). Unfortunately, experimental validation of a 

putative Sec23/Atg8 interaction was not possible, since the chromosomal GFP-tagged 

Sec23, used for binding studies, seemed to be not functional, indicated by highly 

decreased growth rate (not shown). In agreement, the Sec23-GFP was generally not 

detectable by immunoblotting (not shown). Nonetheless, previous studies based on MS 

analysis also gave a hint that Atg8 might directly interact with Sec23 (Graef et al., 2013). 

Furthermore, Tan et al. (2013) revealed that Sec23 recruits COPII vesicles as membrane 

sources to the PAS via an direct interaction with the TRAPPIII complex. Therefore, Sec23 

seems to be directly involved in autophagy (Tan et al., 2013). In this study, a weak 

interaction between Atg8 and Sfb3 was detectable via pull down experiments (Figure 

4.4D). Since Sfb3 and Sec23 are physically linked, it is possible that these two proteins 

were co-isolated as a complex via GFP-Atg8. 

The chaperones Ssa1, Ssa2 and Hsp42 were identified as further putative Atg8 

interactors. In the context of autophagy, Ssa1 and Ssa2 were shown to interact with 

prApe1. This interaction is not necessary for self-assembly of prApe1, but rather for 

efficiency of the Cvt pathway (Satyanarayana et al., 2000; Silles et al., 2000). A further 

chaperone identified in this study was Hsp42. During protein folding stress, this 

chaperone locates at peripheral protein aggregates and is necessary for formation of 

these compartments. But, an involvement of autophagic proteins in formation or 

clearance of these sites is yet unknown (Specht et al., 2011). 

MS analyses also identified a large group of rRNA processing proteins. In this group, the 

majority of proteins interact L-site- and FK-motif-dependently with Atg8. Therefore, 

similar to the COPI proteins, it can be hypothesized that Atg8 directly binds only single 

components of large complexes involved in rRNA processing. None of these rRNA 

proteins were shown in previous studies to be involved in autophagy. But, it can be 

speculated that some of these ribosome-associated proteins might have a function in 

ribophagy. However, ubiquitin protease Ubp3 and its cofactor Bre5, which are involved 

in ribophagy (Kraft and Peter, 2008; Kraft et al., 2009), were not identified by MS 

analysis of this study. A functional involvement of Atg8 in rRNA processing seems very 

unlikely, but needs further analysis. 
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All these putative Atg8 interaction partner would need further functional investigation 

to determine a relevance for autophagy or an involvement of Atg8 in respective cellular 

mechanisms. 

 

5.3 Atg26 is an AIM-containing protein  

Atg26 is involved in mirco-and macropexophagy in P. pastoris, whereas its function in S. 

cerevisiae was unknown so far. In previous studies, it has been excluded that Atg26 is 

involved in unselective macroautophagy, the Cvt pathway, pexophagy, mitophagy and 

PMN (Cao and Klionsky, 2007; Krick et al., 2008b; Okamoto et al., 2009). 

In the MS analysis of this study, Atg26 was identified as an Atg8 interaction partner. 

Furthermore, MS analysis and following interaction studies demonstrated that both 

AIM-binding sites of Atg8 are necessary for this interaction, suggesting that Atg26 might 

contain an AIM or is linked to Atg8 via an AIM-containing protein (Figure 4.3A, Figure 

4.5E and F). Validation by the split-ubiquitin assay gave a first hint for a direct 

interaction of Atg8 and Atg26 (Figure 4.6). Direct pull down assays for a further 

validation could not be established in this study, because it was not possible to 

recombinantly express the full-length 135-kDa-protein.  

Alternatively, based on the hint that Atg26 might be an AIM-containing protein, a search 

for putative AIMs in the protein sequence of Atg26 was started. Previous reports 

indicated that aromatic residues on position 0 and hydrophobic residues on position +3 

are prerequisites for AIMs.  Secondary characteristics are the accumulation of acidic 

residues and avoidance of basic residues in the surrounding sequences (Alemu et al., 

2012; Birgisdottir et al., 2013; Noda et al., 2010). On the basis of these common 

simplified features, putative AIMs were predicted and motif conservation was analysed 

by sequence alignment. By this method, a sequence in the very C-terminal  region (Atg26 

1191-1198) was predicted as the most likely AIM (Figure 4.7). 

Sequence conservation was also considered in previous studies for prediction and 

validation of AIMs. For example, the AIM of Nix, a mammalian selective receptor for 

mitophagy, was predicted by sequence alignment of already known AIMs with various 

Nix orthologs. By this method, a single AIM with a high similarity to the AIM of Atg19 

was found and validated by further experiments (Novak et al., 2010). Bioinformatics 

were also used for calculating the AIM in Atg1/ULK1 (Kraft et al., 2012). In this case, the 

AIM sequence was shown to be highly conserved from yeast to human and 
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experimentally validated in three independent studies (Alemu et al., 2012; Kraft et al., 

2012; Nakatogawa et al., 2012b). By sequence alignment of Atg19 and the human cargo 

receptor p62, Sawa-Makarska et al. (2014) found sequence homology of C-terminal 

regions surrounding the Atg11 binding site in Atg19 and the p62 AIM.  Thereby, the 

cryptic AIMs of Atg19 were identified (Sawa-Makarska et al., 2014). Motif conservation 

was also tested to search for AIMs and Atg11-binding sites in the pexophagy receptors 

Atg36 and PpAtg30, and the mitophagy receptor Atg32 (Farré et al., 2013; Kondo-

Okamoto et al., 2012).  These receptor proteins were shown to have a common modules 

of these two motifs, where the respective AIM is in close proximity and upstream of the 

Atg11-binding site (Farré et al., 2013).  

Kalvari et al (2014) developed the web resource iLir for prediction of AIMs (Kalvari et 

al., 2014). The algorithm of the software predicts putative AIMs (called xLIRs) based on 

the sequences of all known AIMs. iLIR was publicly available soon after the C-terminal 

AIM of Atg26 was experimentally validated in this study. Therefore, this prediction tool 

was not used for searching putative AIMs in Atg26. However, iLIR further validated the 

C-terminal AIM in Atg26, because this sequence motif was the only predicted xLIR in 

Atg26.  

In this study, the predicted C-terminal AIM of Atg26 was validated by five different 

interaction studies, including a GFP-Atg26-TRAP, a GST-Atg8 PD, two variants of a GFP-

Atg8-TRAP and a split ubiquitin assay (Figure 4.8B to F). In addition, the requirement 

for the W-site and the L-site in Atg8 for the interaction with Atg26 further confirm that 

the Atg8/Atg26 interaction is directly mediated by the AIM of Atg26 (chapter 4.2 and 

4.3).  

Recently, Atg19 was shown to have further motifs, so called cryptic AIMs, that mediate 

interaction with Atg8, in addition to the canonical AIM (Sawa-Makarska et al., 2014). 

Based on the experiments of this study, it is not possible to exclude that Atg26 might 

have further regions that bind Atg8. A weak interaction between Atg8 and Atg26 lacking 

the C-terminal AIM was still detectable by a GST-Atg8 pull down assay (Figure 4.8C). 

Furthermore, binding studies via the split-ubiquitin assay gave a hint that there might 

be still a weak interaction also when the AIM is deleted: Cells expressing Cub-Atg26 1-

1194 and Nub-Atg8 still were able to grow on FOA plates, which indicates interaction 

(Figure 4.8F). However, putative additional Atg8 binding sites or cryptic AIMs would 

have an extremely lower affinity to Atg8 than the C-terminal AIM, since all other binding 
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studies detected no interaction when this sequence was deleted (Figure 4.8B,D and F).  

It was shown for all published AIM-containing proteins that deletion or mutation of their 

AIMs lead to autophagic phenotypes. In this study, the physiological role of the AIM in 

Atg26 was demonstrated by showing its requirement for targeting Atg26 to the PAS, 

since deletion of the AIM caused drastic reduction in PAS localistion  (see Figure 4.10). 

In contrast, recent studies revealed that the autophagic core protein Atg1 is recruited to 

the PAS independently of its AIM. Furthermore, the Atg1 kinase activity and the physical 

interaction with Atg13 were not influenced when the AIM was mutated. Thereby, 

interaction with Atg8 is not necessary for early autophagic function of Atg1 (Kraft et al., 

2012; Nakatogawa et al., 2012b). Similar, the Cvt receptors Atg19 and Atg34 are Atg8-

independently recruited to the PAS (Shintani et al., 2002; Suzuki et al., 2010).  

In this study, it was demonstrated that Atg26 is AIM-dependently transported to the 

vacuole by autophagy, shown by a decreased autophagic processing of GFP-Atg26 

lacking the AIM (Figure 4.9C and E). These observations suggested that Atg8 recruits 

Atg26 to the forming phagophore during autophagy, as it was similarly shown in 

previous studies for selective receptors or Atg1 (Kraft et al., 2012; Nakatogawa et al., 

2012b; Shintani and Klionsky, 2004; Suzuki et al., 2010). Previous reports suggested 

that the majority of AIM-containing proteins become involved in selective autophagy via 

their AIMs. Regarding the selective receptors, Atg19 and Atg34 recruitment to the 

phagophore by Atg8 is necessary to transport the Cvt cargos to the vacuole (Noda et al., 

2010; Sawa-Makarska et al., 2014; Suzuki et al., 2010). Similar, mitophagy or pexophagy 

is reduced if the AIM in Atg32 or Atg36 is mutated (Farré et al., 2013; Kondo-Okamoto et 

al., 2012; Okamoto et al., 2009). The autophagic core protein Atg1 is also associated with 

the phagophore by its AIM (Kraft et al., 2012; Nakatogawa et al., 2012b). However, the 

function of Atg1 in this context is still conflicting, since it is not clear whether mutation 

of the AIM only influences the Cvt pathway or also unselective, bulk macroautophagy 

(Kraft et al., 2012; Nakatogawa et al., 2012b). It has been proposed that the AIM-

dependent recruitment of Atg1 to the phagophore might facilitate autophagosome 

formation. Alternatively, autophagic degradation of Atg1 might be a way for down-

regulation of the activated Atg1 complex (Kraft et al., 2012). The AIM in Atg3 might be 

necessary to liberate Atg8 from its interaction with Atg19 to allow PE conjugation of 

Atg8 during the Cvt pathway (Yamaguchi et al., 2010). The non-canonical AIM of Atg12 

seems to be the only AIM that is not specifically involved in selective autophagy, since it 
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mediates association of the Atg12-Atg5/Atg16 complex with the convex outer 

membrane of the phagophore during autophagosome biogenesis (Kaufmann et al., 

2014). However, the functional analyses of the AIM in Atg26 compared with those of 

other AIMs suggested that Atg26 might act in selective autophagy. In line with this, it 

was also demonstrated that Atg26 is involved in autophagy of the (GFP-tagged) major 

coat protein Gag of the L-A virus and that this mechanism depends on the AIM of Atg26 

(Figure 4.18B–G; 4.21). The proposed function of Atg26 in this autophagic mechanism 

will be discussed later (chapter 5.7.3). 

In this study, it was shown that overexpression of GFP-Atg26 leads to reduction of Ape1 

maturation, while overexpression of GFP-Atg26 with mutated or deleted AIM has only 

slight effects on Ape1 maturation, indicating an AIM-dependent inhibition of the Cvt 

pathway (Figure 4.9D and F). It can be proposed that non-physiological high amounts of 

GFP-Atg26 counteract with other AIM-containing proteins. Therefore, overexpression of 

GFP-Atg26 wt might compete with the Cvt receptor Atg19 for Atg8 binding and thereby 

inhibits the Cvt pathway. It can be also speculated that excess of Atg26 interferes with 

the interactions of Atg8 and Atg3 or Atg1, which both were shown to be AIM-

dependently involved in the Cvt pathway (Kraft et al., 2012; Yamaguchi et al., 2010). 

Kaufmann et al. (2014) demonstrated by in vitro experiments that the AIM-containing 

mitophagy receptor Atg32 competes with the interaction between Atg8 and the non-

canonical AIM of Atg12 and thereby causes disassembly of the Atg12-Atg5/Atg16 

membrane scaffold (Kaufmann et al., 2014). Therefore, overexpression of GFP-Atg26 

might also reduce the Atg8/Atg12 interaction and thereby inhibit autophagosome or Cvt 

vesicle biogenesis. In this study, the GFP-Atg26 overexpression effect was analysed only 

for the Cvt pathway. It would be interesting to test in further experiments whether other 

autophagic pathways are influenced by overexpression of GFP-Atg26. 

 

Sequence alignment of Atg26 orthologs clearly indicate sequence conservation of the 

very C-terminal AIM (Figure 4.7D) (Asakura et al., 2009; Warnecke et al., 1999). In 

Pichia pastoris, PpAtg26 is necessary for extension of the PAS into the MIPA, a cup-

shaped, Atg8-positive membrane related to the isolation membrane (Yamashita et al., 

2006). Oku et al. (2003) reported for PpAtg26 that deletion of the C-terminal region 

766-1211, including the catalytic domain for synthesis of sterol glycosides and the 

predicted C-terminal AIM, has no effect on PAS or MIPA localisation (Oku et al., 2003). In 
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another study, it was shown that the phosphoinositide binding domain of Atg26, 

comprising the PH and the GRAM domain, mediates PAS and MIPA localisation due to 

the interaction with PI4P (Yamashita et al., 2006). Therefore, in contrast to ScAtg26, it 

can be speculated that the predicted C-terminal AIM in PpAg26 might not be necessary 

for recruitment to Atg8-positive membranes. However, this hypothesis has to be further 

investigated in this model organism. 

CoAtg26 of the plant pathogenic fungus Colletotrichum orbiculare (C. langenaria) also 

contains a conserved C-terminal AIM (Figure 4.7D). Asakura et al. (2009) published that 

CoAtg26 is involved in pexophagy in this model organism. Furthermore, it was 

demonstrated that pexophagy correlates with the pathogenicity of this fungus. 

Therefore, Atg26 has also a function in host invasion (Asakura et al., 2009; Yoshimoto et 

al., 2010). It was shown that production of sterol glycosides by the catalytic domain is 

necessary for these two functions. However, this phenotype was demonstrated by 

deletion of the C-terminal region (864-1475), including the catalytic domain and the 

predicted C-terminal AIM. Consequently, it cannot be excluded that the detected 

phenotype is also caused by the AIM deletion in CoAtg26. However, first, the predicted 

C-terminal AIM has to be validated in binding studies for this organism. In following 

investigation, it would be interesting to analyse whether the predicted AIM is involved 

in pexophagy and the pathogenicity. 

 

5.4 Identification of L-A Gag as an Atg26 interaction partner 

The virus L-A is a dsRNA totivirus that is frequently found in laboratory strains of S. 

cerevisiae. As shown for other totiviruses, the way of infection is cytoplasmatic 

transmission from mother to daughter cell or during mating. L-A has a 4.6 kb genome 

that contains two overlapping genes, GAG and POL. The first gene encodes for the major 

coat protein Gag and, with a frequency of 1% to 2%, a -1 ribosomal frameshift event 

occurs to produce the Gag-Pol fusion protein. Pol is a RNA-dependent RNA polymerase 

necessary for replication of the virus (Dinman et al., 1991; Icho and Wickner, 1989; 

Wickner et al., 2013). 

In this study, the major coat protein Gag of the L-A virus was identified as an Atg26 

interaction partner by MS analysis (chapter 4.7). The high amount of L-A Gag and viral 

dsRNA in the bound fraction of the GFP-Atg26-TRAP gave clear hints that Atg26 might 

interact with multimers of Gag or even complete virus-like particles (Figure 4.11A and 
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B). These findings also showed for the first time that our laboratory strain WCG4a is 

infected by the virus. The viral dsRNA, co-purified by the GFP-Atg26-TRAP, was reverse-

transcribed in cDNA, cloned and sequenced to get further evidence that Gag identified 

by MS is from the L-A virus and not from other S. cerevisiae totiviruses such as L-BC or L-

A-lus (Figure 4.11D).  

Sequence analysis of this study showed only a few differences to published L-A 

sequences (Icho and Wickner, 1989): 6 missense mutations in the GAG region cause 

conserved substitutions of amino acids in the protein sequence (Gag: Ile328Val, 

Lys383Arg, Gly542Ser and Asn633Ser; Pol: Lys720Arg, Val754Ala). The amino acid 

substitution Gly542Ser is located near the functional important trench-like active site, 

where the cap-snatching mechanism occurs (Figure 5.1) (Fujimura and Esteban, 2011; 

Tang et al., 2005). The residues Tyr150, Asp152, Tyr452, Tyr538 were shown to be 

essential for attachment of the host RNA to His154 (Fujimura and Esteban, 2011; Tang 

et al., 2005). However, nothing is known about an involvement of Gly542 in this process. 

Therefore, it is very likely that the Gly542Ser substitution causes no functional 

differences to the cap-snatching mechanism described for L-A Gag in previous studies 

(Fujimura and Esteban, 2011). 

 

Figure 5.1 Cartoon representation of L-A Gag (modified from (Tang et al., 2005))  
Amino acids that are substituted in L-A Gag (WCG4a) identified in this study are marked in red. 
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The amino acid substitutions in the RdRP (Pol) of L-A WCG4a (Lys720Arg, Val754Ala) 

are located in the region that mediates interaction with the single-stranded (+) 

transcript for encapsidation. Nevertheless, also in this case, it seems very unlikely that 

these two conserved mutations lead to a different mechanism of encapsidation shown 

for (Gag-)Pol in previous studies (Fujimura and Esteban, 2000; Ribas et al., 1994). 

Furthermore, sequence alignment of L-A Gag with further closely related Gag proteins of 

S. cerevisiae totiviruses (L-BC and L-A-lus) indicate that the identified virus of our 

laboratory strain WCG4a has a nearly identical sequence to the published L-A Gag and 

not to other S. cerevisiae totiviruses (Figure S1). Therefore, the S. cerevisiae totivirus 

identified in this study can be taxonomically classified as L-A virus.  

In addition to the missense mutation, 15 silent mutations were observed by cDNA 

sequencing. Regarding that the respective virus RNA contains the -1 ribosomal 

frameshift site, the packaging signal for ssRNA/Pol interaction and the replication site 

(Figure 2.10) (Icho and Wickner, 1989; Wickner et al., 2013), it was checked whether 

the mutations are in this critical regions. However, none of these silent mutations are 

located in the -1 ribosomal frameshift site or in the packaging signal for ssRNA/Pol. The 

replication site, which is in the extreme 3´-terminal region, was not sequenced in this 

study. Taken together, despite some sequence differences, the L-A variant identified in 

WCG4a should have the same properties as L-A analysed in previous studies. Therefore, 

further basic features of L-A from WCG4a identified in this study were not analysed. 

 

S. cerevisiae strains carrying the L-A virus are often also infected by smaller about 2 kb 

dsRNAs called M satellites or killer viruses, including M1, M2 and M28 (Schmitt and 

Breinig, 2006; Wickner et al., 2013). Replication of M satellites depends on the presence 

of the L-A virus in the same cell, since M satellites uses L-A Gag and Gag-Pol for their 

own separate encapsidation and replication cycle (Fujimura et al., 1990). Therefore, L-A 

is also called helper virus. M satellites encode the killer toxins (K1, K2 or K28) that are 

post-translationally processed and secreted from infected cells (killer cells). The killer 

toxins K1 and K2 are pore-forming proteins that disrupt membrane function of non-

infected, sensitive cells and thereby kills them, whereas K28 enters the cell by 

endocytosis and retrograde transport to block DNA synthesis in the nucleus in non-

infected, sensitive cells (Schmitt and Reiter, 2008). M-satellite-infected cells are 

resistant to respective killer toxins and, therefore, have a selective advantage over non-
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infected cells (Rodríguez-Cousiño et al., 2013; Schmitt and Breinig, 2006; Schmitt and 

Reiter, 2008).  

In this study, a further about 2 kb fragment was co-isolated from WCG4a cell lysates 

using GFP-Atg26-TRAP experiments (Figure 4.11B) or GST-Atg26 (187-569) pull downs 

(Figure 4.14.1C). Since the dsRNA genomes of killer viruses have a size of about 2 kb, it 

can be speculated that WCG4a is also infected by a killer virus. However, it is also 

possible that ssRNA of the L-A virus was co-isolated, since L-A (+) transcripts run faster 

in agarose gels (Esteban et al., 2008). Gel-purification of the co-isolated 2 kb fragments 

and following RNase A treatment would be a option in further studies to distinguish 

dsRNA and ssRNA, since dsRNA is RNase A resistant (Edskes et al., 1998). As a further 

control, treatment with RNase III, which specifically degrades dsRNA (Castón et al., 

1997), could be tested. Performing killer toxin assays that detect the killer phenotype of 

killer-virus-infected strains would be a further method to clarify whether WCG4a is a 

killer strain.  

Using cell lysate from the strain BY4741 for GFP-Atg26-TRAP experiments, co-isolation 

of L-A dsRNA was detectable, but not a 2 kb fragment (Figure 4.12B). This observation 

would be in agreement with previous reports, which showed that this laboratory strain 

is infected by L-A, but not by killer viruses (Rodríguez-Cousiño et al., 2013).  

 

5.5 The PH domain (187-337) and an undefined region  

        (338-569) mediate Gag binding of Atg26 

Investigation of this study showed that the PH domain (187-337) and an undefined 

region (338-569) of Atg26 mediate the interaction with L-A Gag. It was demonstrated 

that both domains bind Gag independently of each other and combination of both 

regions (187-569) led to a additive affinity to L-A Gag (summarized in Figure 4.13F). 

However, it was not possible to get clear evidence for a direct interaction, since the 

results of the split-ubiquitin assay were inconsistent and the interaction shown by a 

direct pull down assay was weak (Figure 4.15). It is possible that the chosen protein 

tags, the puffer conditions or the conditions for recombinant protein expression are not 

optimal for validation of the Gag-Atg26 interaction via direct pull down assay. Therefore, 

these parameters have to be tested in further studies. 

PH domains are well known for their ability to specifically interact with 

phosphoinositides for membrane targeting (Lemmon, 2008). However, Yu et al. (2004) 
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demonstrated by analyses of 33 yeast PH domains that only one third of these domains 

has this property (Yu et al., 2004). The PH domain of Atg26 was categorized as a 

unspecific phosphoinositide binder, since it had very weak affinities to 

phosphoinositides and this domain alone was not capable of membrane targeting (Yu et 

al., 2004). 

Two independent phosphoinositide-binding motifs are known for PH domains that both 

are in the ß1/ß2 loop between the first two ß-strands of the overall 7-stranded ß-

sandwich structure. The first binding site contains the motif KXn(K/R)XR, whereas the 

second binding site shares a (K/R)X(Y/W) motif (Anand et al., 2012). However, 

sequence analyses revealed that the PH domain of S. cerevisiae Atg26 and orthologs 

contain none of these two phosphoinositide-binding motifs (Figure 5.2) (Lemmon, 

2004). Consequenly, it can be speculated that the PH domain of Atg26 is not capable of 

membrane targeting. Nonetheless, this issue has to be tested in further studies by 

analysing membrane association.  

 

Figure 5.2 Sequence alignments of Atg26 homologs with regions of known phosphoinositide-
binding motifs in PH domains (K/R=blue; Y/W=grey; arrowheads show sequence motif) 
 

Based on the experiments of this study, it can be hypothesised that Atg26 (187-569) 

interacts with Gag independently of any membrane association, since all GFP-Atg26-

TRAPs were performed with the soluble phase of Triton-100-treated cell lysates 

(chapter 4.7 and 4.8).  

In previous reports, the ability of membrane targeting was tested for the PH domain of 

Atg26 homologs 

KXn(K/R)XR motif 

(K/R)X(Y/W) motif 
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PpAtg26 in Pichia pastoris (Oku et al., 2003; Yamashita et al., 2006). It was shown by 

membrane association experiments that PpAtg26 sedimented in the detergent (Triton-

100)-resistant fraction (100.000 g pellet, P100). In addition, it was demonstrated that 

this detergent-insolubility depends on its PH domain and not on the other domains (Oku 

et al., 2003). This observations led the authors to the conclusion that the PH domain 

mediates interaction with detergent-insoluble lipid rafts (Oku et al., 2003; Yamashita et 

al., 2006). However, it is possible that also the PH domain of PpAtg26 mediates 

interaction with high-molecular weight complexes that reside in the detergent-resistant 

P100 fraction. There is no knowledge available about viruses in P. pastoris. Therefore, it 

would be highly speculative that the PH domain of PpAtg26 might be involved in VLP 

binding also in this model organism. In this study, no subcellular fractionation analyses 

for ScAtg26 and L-A Gag were performed. Nonetheless, previous studies detected the L-

A VLPs in the P100 fraction (Fujimura and Esteban, 2000; Fujimura et al., 1992a). 

Therefore, it can be speculated that also ScAtg26 co-fractionates PH-domain-

dependently with L-A VLPs.  

In this study, the region 187-337 in ScAtg26 was chosen for analysis of the PH domain in 

interaction studies. However, it has to be considered that SMART predicts a truncated 

GRAM domain for the first 40-50 amino acids of this region (187 to about 235) 

(smart.embl-heidelberg.de). It is unclear whether this short fragment is necessary for 

the Atg26-Gag interaction or capable of membrane binding. Therefore, it would be 

interesting to analyse in further binding studies whether the PH domain without this 

short N-terminal region still interacts with Gag.   

 

5.6 Identification of virus-related Atg26 interaction partners 

The PH domain (187-337) and an undefined region of Atg26 (338-569) were shown to 

mediate the interaction with L-A Gag (Figure 4.13 and 4.14). In a pull down approach, 

recombinantly expressed GST-Atg26 187-569 was used as bait to identify further 

components that associate with the Atg26/Gag complex. Co-purification of high amounts 

of L-A virus-like particles by GST-Atg26 187-569 was shown by immunoblotting and 

EtBr staining of agarose gels and further validated that Atg26 (187-569) interacts with 

the L-A virus (Figure 4.14.1). Many additional bands were detectable by CBB staining of 

the bound fraction using GST-Atg26 (187-569) as bait. Only distinct bands with a higher 

molecular weight than GST-Atg26 were chosen for MS analysis to avoid detection of 
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degradation products of the bait (Figure 4.14.2). 

Interestingly, the 5´ exonulease Xrn1/Kem1, specific for uncapped RNA, was identified 

by MS analysis as putative component of the Atg26/Gag complex. Previous reports have 

shown that deletion of XRN1 leads to increase of the L-A virus level, whereas 

overexpression can be used to eliminate the virus (Esteban et al., 2008). It was proposed 

that the viral cap-snachting mechanism, which transfers the cap from host RNA to the 

viral RNA, is not completely efficient and, thus, uncapped viral (+) transcripts become 

rapidly degraded by Xrn1 (Kenna et al., 1993; Masison et al., 1995; Wickner et al., 2013). 

Based on the MS analysis of this study, it can be hypothesised that Xrn1 directly 

associates with L-A VLPs to down-regulate uncapped viral (+) transcript before the viral 

cap-snatching mechanism occurs. A L-A virus-independent interaction between Xrn1 

and Atg26 seems unlikely. However, further binding studies are necessary to validate 

Xrn1 as an interaction partner and to analyse how Xrn1 is associated with the 

Atg26/Gag complex. 

A further interesting candidate identified by MS analysis was the eIF2α kinase Gcn2 

that regulates translation and induces autophagy in response to amino acid starvation 

(Carroll et al., 2014). Amino acid depletion causes accumulation of uncharged transfer 

RNAs that activate the Gcn2 kinase activity by interaction. Activated Gcn2 regulates the 

downstream cascade of the general control of nutrients (GCN) pathway (Abeliovich, 

2014; Dever et al., 1992). In this pathway, activated Gcn2 phosphorylates eukaryotic 

initiation factor 2α (eIF2α) that leads to translation of the transcription factor Gcn4. This 

transcription factor activates genes required for amino acid biosynthesis and autophagy 

(Ecker et al., 2010). Interestingly, it was demonstrated for mammalian cells that GCN2 

also becomes activated by virus infection and, thereby, is an important factor in antiviral 

stress response (Berlanga et al., 2006; del Pino et al., 2012). Furthermore, it was shown 

by in vitro studies that viral RNA increases the GCN2 kinase activity, suggesting that 

GCN2 senses RNA viruses to induce host defence (Berlanga et al., 2006; del Pino et al., 

2012; He et al., 2014). Regarding the MS analysis in this study, it can be speculatied that 

Gcn2 might also be involved in antiviral response in yeast cells. However, preliminary 

binding studies are necessary to validate Gcn2 as a putative component of the 

Atg26/Gag complex. 
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5.7 Atg26 is involved in selective autophagy of L-A Gag 

Recently, Suzuki et al (2011) published that the VLPs of the retrotransposon Ty1 are 

degraded by selective autophagy to down-regulate transposition. In this pathway, the 

Cvt receptor Atg19 binds Ty1 VLPs and recruits them to the Ape1 complex for 

autophagic degradation (Suzuki et al., 2011). 

 

5.7.1 GFP-tagged Gag as a tool to measure autophagy of the L-A virus 

5.7.1.1 Analysis of GFP- and mCherry-tagged Gag in binding studies  

In this study, it was show that Atg26 interacts with VLPs of the L-A virus (chapter 4.7 

and 4.8). In addition, Atg26 was shown to bind Atg8 via its canonical C-terminal AIM and 

that this sequence is functional involved in PAS localisation of Atg26 and its autophagic 

transport to the vacuole (chapter 4.4-4.6). This link between the L-A virus and 

autophagy raised the question whether L-A VLPs are also degraded by autophagy, such 

as Ty1 VLPs, and how Atg26 might be involved in this process. Therefore, a method had 

to be established to further characterize the Atg26/Gag interaction and to measure 

autophagy of the L-A virus. In this study, GAG and GAGPOL cDNA was generated and 

cloned in GFP and mCherry vectors.  

Binding studies using GFP- and RFP-TRAP revealed that tagged Gag or GagPol still 

interact with Atg26, similar to endogenous L-A Gag (Figure 4.16). However, no 

endogenous Gag or dsRNA was detectable when tagged Gag was expressed in the cell. 

This observation is in line with previous studies, demonstrating that even expression of 

untagged virus cDNA is capable of endogenous virus exclusion (Valle et al., 1993). 

However, the reason for this interference of the endogenous virus propagation 

remained unclear.  

Structure analyses revealed that the N-and the C-terminal domains are exposed inside 

the viral coat (Naitow et al., 2002; Tang et al., 2005). Therefore, it can be speculated that 

the GFP-or mCherry tagged Gag constructs used in the present study cause sterical 

hindrance during encapsidation of endogenous viral (+) transcripts and thereby block 

the replication cycle. It was initially hypothesized that expression of the GFP-GagPol 

construct, which expresses GFP-Gag and GFP-GagPol, overcomes the block of the 

endogenous virus, since the Pol fusion part should also be able to bind and incorporate 

the (+) transcript. However, expression of this construct also blocks the propagation of 

the endogenous virus (Figure 4.16C and D). 

http://www.ncbi.nlm.nih.gov/pubmed?term=Suzuki%20K%5BAuthor%5D&cauthor=true&cauthor_uid=21839922
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Previous studies showed that the N-terminus of Gag is acetylated by the N-

acetyltransferase complex, including Mak3, Mak10 and Mak31 encoded by the host 

genome. Mak3 recognises the four N-terminal amino acids of Gag and catalyses 

acetylation of the start methionine. It was shown that deletion of MAK3 avoids Gag 

assembly and that unpackaged Gag is highly unstable (Tercero and Wickner, 1992; 

Tercero et al., 1993). In the present study, complex formation of mCherry-Gag and GFP-

Gag was analysed in GFP-TRAP experiments to test self-assembly of tagged Gag. 

Although both fusion proteins should not be able to become acetylated by Mak3, 

however, using GFP-Gag as a bait, it was possible to co-isolate mCherry-Gag (Figure 

4.17A). Thus, it can be concluded that N-terminal tagged Gag is able to self-assemble and 

is stable. But, it remains unclear whether these constructs form complete (120-meric) 

VLPs.  

C-terminally GFP-tagged Gag that ought to become acetylated was not analysed by 

binding studies, but also blocks propagation of the endogenous virus (not shown). 

However, previous studies demonstrated that a C-terminally GFP-tagged Gag forms 

stable VLPs in yeast (Powilleit et al., 2007). Nonetheless, further binding studies are 

required to test whether the Gag-GFP construct used here is able to self-assemble in the 

cell. Using the Gag-GFP construct as bait for co-isolation of mCherry-Gag in GFP-TRAP 

experiments would be a method to analyse this issue. Furthermore, comparing all 

tagged versions of Gag used in the present study with endogenous Gag in gel filtration 

experiments would be helpful to get clear evidence that these constructs are able to 

form complete VLPs. 

 

5.7.1.2 Fluorescence microscopic analysis of GFP and mCherry-tagged Gag  

It was shown by IEM of immunogold-labbeld Gag that VLPs are located in the cytosol 

and that the L-A replication cycle also occurs there (Dihanich et al., 1989; Wickner et al., 

2013). Less is known about the detailed cytosolic localisation of L-A, since there are no 

detailed fluorescence microscopy analyses or more recent IEM studies of L-A VLPs 

available. However, Nolan et al. (2006) generated a GFP-tagged Gag-Pol construct, 

where GFP was inserted into an external loop of Gag. Since L-A VPLs diffuse through 

fusion pores during mating and have a defined size of about 40 nm, the authors used the 

Gag-Pol-GFP constructs to analyse the expansion of fusion pores (Nolan et al., 2006). 

Fluorescence microscopy showed a diffuse cytosolic signal and dot-like structures, 
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where about half of the dots were mobile (Nolan et al., 2006). However, the cytosolic 

localisation of this construct and the ability to form complete VLPs was not further 

characterized (Nolan et al., 2006). In the present study, fluorescence microscopic 

analyses also revealed that expression of the GFP-Gag(Pol) and mCherry-Gag constructs 

leads to formation of highly mobile and fixed cytosolic dots in the cell (Figure 4.17 C and 

D).  Unfortunately, the required exposure time in combination with the needed switch 

between the channels was too long for detection of colocalisation of mobile GFP-Gag and 

mCherry dots. Formaldehyde-fixation of respective cells would be a possibility to 

determine the exact colocalisation rate of mCherry-Gag and GFP-Gag in further studies. 

However, less mobile or fixed dots showed a clear colocalisation of GFP-Gag and 

mCherry-Gag (Figure 4.17C). Dot formation of GFP-tagged Gag(Pol) and colocalistion 

with mCherry-Gag might be a further hint that the analysed tagged Gag constructs are 

able to self-assemble. As mentioned before, it remains unclear and has to be investigated 

in further experiments whether the N-terminally tagged Gag constructs form complete 

VLPs. Based on the microscopic analyses in this study, it is also possible to exclude that 

mCherry- and GFP-Gag aggregate as misfolded proteins in deposition sites, since the 

majority of the dots were highly mobile (Figure 4.17C and D).  

Fluorescence microscopy of cells expressing the C-terminally GFP-tagged Gag construct 

showed larger dots that were often less mobile (Figure 4.17E). Previous reports showed 

that VLPs of the Ty1 retroelement form cluster in distinct cytosolic foci that might be 

necessary for VLP assembly (Checkley et al., 2013; Checkley et al., 2010). Therefore, it 

can be speculated that Gag-GFP is capable of self-assembly and might form enlarged VLP 

clusters at distinct loci. However, it can also be hypothesised that L-A Gag-GFP 

accumulates into deposition sites for misfolded proteins. In further investigations, using 

fluorescence marker for subcellular compartments would be an option to determine the 

localisation of these enlarged dots formed by Gag-GFP.  

Taken together, the GFP-tagged L-A Gag versions analysed in this study bind Atg26 and 

are able to self-assemble, shown by binding studies and fluorescence microscopy. But, it 

seems that these constructs are not able to incorporate viral (+) transcripts during 

encapsidation and might thereby block proliferation of the endogenous L-A virus. 

Nonetheless, these data indicate that the GFP-tagged Gag constructs have similar 

features as endogenous Gag. 
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5.7.1.3 Detection of autophagic processing of GFP-tagged Gag(Pol)  

Using the vacuolar degradation assay, the GFP-tagged constructs were tested as putative 

tools to measure autophagic processing of L-A Gag during nitrogen starvation. Under 

different expression levels, all tested constructs showed that GFP-tagged Gag is 

transported to the vacuole by autophagy leading to its processing and accumulation of 

free GFP (Figure 4.18). However, as discussed above (chapter 5.7.1.1 and 5.7.1.2), it is 

not clear whether complete VLPs, formed by GFP-tagged Gag, are degraded by this 

mechanism.  

Furthermore, it was shown that Atg26, whose function was unknown so far, is involved 

in autophagic degradation of GFP-tagged Gag, indicated by a 50% reduction of GFP-Gag 

processing in atg26∆ cells. This observation gave a hint that GFP-tagged Gag is degraded 

by a selective mechanism. 

 

5.7.2 Selective autophagy of L-A Gag 

Proteins of the autophagic core machinery are necessary for unselective, bulk autophagy 

and selective autophagy. Recognition of specific cargos and its recruitment to the 

phagophore are additional features of selective autophagic pathways. Therefore, further 

proteins are necessary. For example, the Cvt pathway needs the selective receptor 

Atg19, the selective adaptor Atg11, the PROPPIN Atg21 and further components in 

addition to the autophagic core machinery (Lynch-Day and Klionsky, 2010; Nair et al., 

2010; Shintani et al., 2002; Yorimitsu and Klionsky, 2005). Mitophagy and pexophagy 

are further receptor-mediated selective pathways that also need the adapter Atg11, the 

specific receptors, Atg32 or Atg36 (PpAtg30), and further components (Kanki et al., 

2009; Motley et al., 2012; Okamoto et al., 2009). For ribophagy, it is unknown whether a 

selective receptor is involved (Kraft and Peter, 2008; Kraft et al., 2008). However, this 

process is defined as a selective pathway, since ribosomes are faster degraded by 

autophagy than other cytosolic components. Furthermore, the ubiquitin ligase Rsp5 and 

the ubiquitin protease Ubp3/Bre5, which are not required for bulk autophagy, were 

shown to be involved in this process (Kraft and Peter, 2008; Kraft et al., 2008). The two 

kinds of ER-phagy, induced by ER-stress or starvation, are further selective pathways. 

The involvement of Atg11, Atg19, Atg20 and the actin cytoskeleton indicates that ER-

phagy is an selective pathway (Bernales et al., 2006a; Cebollero et al., 2012b; Hamasaki 

et al., 2005; Lipatova et al., 2013; Mazon et al., 2007). Microautophagic pathways in 
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yeast, such as PMN and lipophagy in S. cerevisiae, or micropexophagy in Pichia pastoris, 

also involve the autophagic core proteins. Furthermore, these pathways require the 

vacuolar membrane protein Vac8 and further regulators that are not involved in bulk 

macroautophagy (Krick et al., 2008b; Oku et al., 2006; van Zutphen et al., 2014). 

In the present study, it was shown that the autophagic core proteins Atg1, Atg8 and 

Atg18 are involved in degradation of GFP-Gag(Pol) (Figure 4.19A), indicating an 

canonical autophagic mechanism. The requirement of proteinase A (Pep4) indicates that 

degradation of GFP-Gag(Pol) occurs in the vacuole, further supporting that this process 

is mediated by canonical autophagy. The involvement of the proteins Atg26, Atg11, 

Atg21 and Hsv2, which are not essential for unselective autophagy (Cheong et al., 2008; 

Kim et al., 2001; Krick et al., 2008a; Meiling-Wesse et al., 2004; Stromhaug et al., 2004), 

indicate a selective autophagic mechanism (Figure 4.19A, B and D). Furthermore, it was 

experimentally excluded in this study that known receptor-mediated selective pathways 

are involved in degradation of GFP-Gag(Pol) by showing that the Cvt receptors, Atg19 

and Atg34 (Shintani et al., 2002; Suzuki et al., 2010), the mitophagy receptor Atg32 

(Kanki et al., 2009; Okamoto et al., 2009)  and the pexophagy receptor Atg36 (Motley et 

al., 2012) do not mediate this process (Figure 4.19C and D). Suzuki et al. (2010) revealed 

that Ag19 also mediates autophagy of VLPs of the Ty1 retroelement during starvation 

(Suzuki et al., 2011). Regarding that the L-A virus has similar features as Ty1 

retroelements, it was initially proposed that Atg19 might also mediate degradation of L-

A Gag. However, in this study, it was clearly shown that L-A Gag is degraded by a 

different autophagic mechanism than Ty1 Gag.  

Based on the genetic dissection in this study, it cannot be excluded that GFP-Gag is 

degraded by microautophagy (Figure 4.19). The PROPPINs Atg21 and Hsv2 were shown 

to be involved in the microautophagic pathway PMN. Deletion of ATG21 caused a severe 

reduction of PMN and deletion of HSV2 caused a milder phenotype (Krick et al., 2008a). 

Both proteins are involved in autophagy of GFP-Gag to the same extent (Figure 4.19B). 

In P. pastoris, PpAtg26 mediates MIPA formation during micropexophagy (Oku et al., 

2003; Yamashita et al., 2007). Therefore, ScAtg26 might have also a microautophagy-

related function in S. cerevisiae. However, so far, no MIPA-like structure was observed in 

S. cerevisiae. Moreover, fluorescence microscopy of GFP-Atg26 showed no comparable 

structure (Figure 4.10). Nonetheless, further analyses are necessary to get clear 

evidence whether macro- or microautophagy mediates degradation of GFP-Gag. 
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Regarding that Vac8 is a proposed adaptor for microautophagy, it would be an option to 

test whether Vac8 also mediates autophagic processing of GFP-Gag(Pol). Furthermore, 

IEM would be a possibility to morphologically distinguish macroautophagy and 

microautophagy of (immunogold-labelled) L-A VLPs.  

 

Interestingly, previous studies showed that the occurrence of killer viruses (the L-A 

virus in combination with M satellites) in S. cerevisiae and other yeast species might be 

linked to the lack of RNA interference (RNAi) mechanisms in these species (Drinnenberg 

et al., 2011). During evolution, S. cerevisiae had lost the RNA interference (RNAi) 

pathway (Nicolás et al., 2013). The RNAi pathway involves the ribonuclease III Dicer 

that digests dsRNA into small interfering (si)RNAs. Argonaute, a further endonuclease of 

RNAi, recognises the small RNA and carries it to the specific transcript to cleave it. RNAi 

is involved in post-transcriptional repression of endogenous genes and heterochromatin 

formation. Furthermore, it is a defence mechanism against transposable elements and 

viruses (Billmyre et al., 2013; Nicolás et al., 2013). The RNAi pathway is highly 

conserved among eukaryotes with the exception of S. cerevisiae and other budding yeast 

species known to have dsRNA killer viruses. Loss of RNAi in S. cerevisiae is explainable 

by the incompatibility of RNAi and dsRNA viruses, including helper viruses and killer 

viruses. Therefore, the selective advantage caused by the killer phenotype seemed to be 

evolutionary more important than RNAi as defence mechanism against invasive nucleic 

acids (Drinnenberg et al., 2011; Drinnenberg et al., 2009). However, loss of RNAi must 

be compensated by alternative mechanisms to regulate retrotransposons and viruses. 

Recently, Suzuki et al. (2011) showed that transposition of the Ty1 retroelement during 

starvation is regulated by a selective, Atg19-dependent autophagic mechanism (Suzuki 

et al., 2011). In the present study, it was demonstrated for the first time that L-A Gag is 

degraded by autophagy under nutrient depletion. This would be a further regulatory 

mechanism against the virus, in addition to the antiviral activity of Xrn1 and other 

proteins.  This autophagic mechanism might not have the function to eliminate the L-A 

virus, since this would also remove the beneficial killer system, but rather could be used 

to generate further amino acid resources by degradation of these large 120-meric L-A 

VLPs under starvation. 
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5.7.3 Proposed function of Atg26  

In the present study, an involvement of Atg26 in autophagy was confirmed by showing 

five features typical for autophagic proteins: First, Atg26 interacts with Atg8 via an AIM 

(chapter 4.4), equivalent to selective receptors and the core proteins Atg1, Atg3 and 

Atg12 (Farré et al., 2013; Kaufmann et al., 2014; Kraft et al., 2012; Nakatogawa et al., 

2012b; Noda et al., 2008; Pfaffenwimmer et al., 2014; Suzuki et al., 2010; Yamaguchi et 

al., 2010). Second, Atg26 locates at the PAS (chapter 4.6), where most of the Atgs at least 

transiently locate (Feng et al., 2013; Suzuki et al., 2007). Third, Atg26 is AIM-

dependently transported to the vacuole by autophagy (chapter 4.5), as shown for most 

of the selective receptors and Atg1 (Kraft et al., 2012; Shintani et al., 2002; Suzuki et al., 

2010). Fourth, overexpression of Atg26 leads to a decrease in Ape1 maturation in an 

AIM-dependent manner. This suggests an inhibitory effect on the Cvt pathway by 

competing with other Atg8 binders (chapter 4.5). Fifth, Atg26 is involved in selective 

autophagy of GFP-tagged L-A Gag (chapter 4.10 and 4.10).  

In further experiments of this study, it was demonstrated that Atg26 interacts with L-A 

Gag via its PH domain and a further region (chapter 4.7 and 4.8). Furthermore, binding 

studies showed that known selective receptors are not involved in the Atg26/Gag 

interaction (Figure 4.20A). The fact that Atg26 is involved in selective autophagy of Gag 

and, in addition, physically linked to this cargo leads to the hypotheses that Atg26 might 

act as a selective receptor in this autophagic process. Regarding all known selective 

receptors in yeast, Atg26 and the Cvt receptors Atg19 and Atg34 seem to have the most 

features in common, since these receptor proteins are physically linked to a cytosolic 

cargo. Furthermore, all cargos, including prApe1, Ams1, Ty1 Gag (cargos of Atg19 

and/or Atg34) and L-A Gag (interactor of Atg26) self-assemble to homo-multimeric 

complexes (Brookman et al., 1995; Hutchins and Klionsky, 2001; Kim et al., 1997; Tang 

et al., 2005; Watanabe et al., 2009). However, it is still unclear whether Atg26 directly 

interacts with L-A Gag or further components are involved. It can also be speculated that 

post-translational modifications regulate this interaction. For example, previous reports 

showed that ubiquitylation and deubiquitylation may play a role in ribophagy (Cebollero 

et al., 2012b; Kraft et al., 2008). In fact, especially in mammalian cells, ubiquitylation of 

cargos is often necessary for their recognition by the selective receptors (Stolz et al., 

2014). Interestingly, it was shown for xenophagy in mammals that ubiquitylated 

Salmonella enterica, as bacterial cargo, is recognized by the selective receptors p62, 
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optineurin and NDP52 (Stolz et al., 2014; Thurston et al., 2009; Wild et al., 2011), 

whereas virus capsids (HIV-1, Sindbis Virus) might be ubiquitin-independently 

recognized by TRIM5α and p62 (Mandell et al., 2014; Orvedahl et al., 2010; Sumpter and 

Levine, 2011). However, it remains unclear whether ubiquitylation plays a role for 

complex formation of Atg26 and L-A. Therefore, further experiments are necessary to 

answer whether ubiquitylation or other post-translational modifications are involved in 

complex formation of Atg26 and L-A Gag, and its relevance for autophagy of L-A Gag.  

Interestingly, MS analysis of this study (Figure 4.14.2) showed that the serine/threonine 

kinase Gcn2 was co-isolated using GST-Atg26 (187-569) as a bait in a pull down assay. It 

can be speculated that the kinase activity of Gcn2 regulates the Atg26-Gag interaction or 

autophagic degradation of the virus. However, as mentioned before, Gcn2 has to be 

validated preliminary as an Atg26 or L-A Gag interactor in further binding studies.  

The two regions in Atg26, including the PH domain (187-337) and an undefined region 

(338-569), were shown to bind L-A Gag independent of each other. Therefore, it can also 

be speculated that Atg26 is able to link L-A VLPs leading to clustering before its 

autophagic transport to the vacuole. Comparing wt and atg26∆ cells expressing GFP-

tagged Gag by fluorescence microscopy would be an option to analyse whether the 

presence of Atg26 leads to clustering of GFP-tagged Gag (VLPs) in the cell. Gel filtration 

experiments, comparing endogenous L-A Gag of wt and atg26∆ cells, would be a further 

method to test whether Atg26 is capable of linking L-A VLPs, leading to a molecular 

weight shift. 

Atg26 further shares with the selective receptors Atg19 and Atg34 that they all have a 

canonical AIM at the C-terminal region (chapter 4.4) (Noda et al., 2008; Suzuki et al., 

2010), whereas the AIMs in the organellophagy receptors Atg32, Atg36 and PpAtg30 are 

at other positions (Farré et al., 2013; Okamoto et al., 2009). However, the presence of an 

AIM in Atg26 does not confirm its function as an selective receptor, since there are many 

example in yeast (Atg1, Atg3 and Atg12) and especially in mammals that AIM-containing 

proteins often have other functions (Birgisdottir et al., 2013; Kraft et al., 2012; 

Yamaguchi et al., 2010). But, the experiments of the present study also suggest that 

Atg26 might be involved in recruitment of L-A Gag to the phagophore, since deletion of 

the C-terminal AIM in Atg26 decreases autophagy of GFP-Gag(Pol) (Figure 4.21). This 

would be in agreement with the function of AIMs in other selective receptors, since 

deletion or mutation of their AIMs also causes a reduction of the respective selective 
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autophagic pathways (Farré et al., 2013; Kondo-Okamoto et al., 2012; Noda et al., 2008; 

Suzuki et al., 2010). 

In this study, it was shown that Atg26 interacts with the adaptor for selective autophagy 

Atg11 (Figure 4.20C), further supporting a putative receptor function of Atg26, since all 

known receptors are Atg11 binders (Farré et al., 2013; Okamoto et al., 2009; Shintani et 

al., 2002; Suzuki et al., 2010). However, it remains unclear whether the detected 

Atg26/Atg11 interaction is direct, which is also a common feature of all known selective 

receptors. Therefore, further binding studies, such as direct pull down assays, are 

necessary to get clear evidence for a direct interaction. It could also be speculated that 

Atg26 has similar Atg11-binding sequences as known selective receptors (Farré et al., 

2013; Kondo-Okamoto et al., 2012; Pfaffenwimmer et al., 2014). As shown for the AIM in 

Atg26 in this study (chapter 4.4), by using bioinformatics, it might be possible to predict 

a putative sequence motif. Further binding studies then are necessary to map and 

validate this sequence.  

Experiments in this study demonstrated that, also in the absence of L-A Gag, GFP-Atg26 

locates at the PAS (not shown) and is transported to the vacuole by autophagy (Figure 

4.20D). Therefore, it is possible that the autophagic function of Atg26 does not only 

depend on the interaction with the L-A virus or its presents in general. In previous 

reports, the selective receptor Atg34 was shown to be delivered to the vacuole also in 

the absence of its cargo Ams1 (Suzuki et al., 2010). In this context, the authors 

speculated that Atg34 might be a receptor for further unknown cargos (Suzuki et al., 

2010). Therefore, based on the speculation that Atg26 might have a receptor function, it 

can be further proposed that there might exist further so far unknown cargos that are 

recruited to the phagophore (or other Atg8-positive membranes) by Atg26. Regarding 

that Atg26 is a large protein and thereby might have many binding partner, it could be 

possible that Atg26 link further proteins/cargos to the autophagic machinery. Further 

detailed MS analysis using Atg26 as bait for pull down assays or CoIPs would be an 

option to identify further interactors. 

Considering that deletion of ATG26 does not cause complete block of L-A Gag autophagy, 

there might exist further proteins that recruit L-A Gag to the phagophore. Since 

autophagy of Gag was induced by starvation in this study, it might be also possible that a 

portion of GFP-Gag becomes randomly degraded by unselective, bulk autophagy. It can 

be further hypothesized that the kind of autophagy for L-A Gag degradation depends on 
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the (self-)assembly state of  (GFP-)Gag (monomeric, oligomeric, or complete VLPs). In 

this context, it would be interesting to analyse whether GFP-Gag mutants that are unable 

to self-assemble become degraded by unselective, bulk autophagy or by Atg26-

dependent selective autophagy. 

In this study, an AIM was mapped at the C-terminus of Atg26 and the region 187-569, 

including a PH domain and an undefined region, was determined to mediate interaction 

with L-A Gag (chapter 4.4 and 4.8). However, the function of the catalytic domain of 

Atg26 (UDPGT) remains an open question. It would be very interesting to determine 

whether production of sterol glycosides plays a role in autophagy of Gag. Therefore, a 

glycosyltransferase-dead mutant of Atg26 has to be generated and analysed in further 

studies.  

Furthermore, it remains unclear whether the PH and/or the GRAM domain mediate 

phosphoinositide-dependent membrane association and how putative membrane 

association may be involved in autophagy of L-A Gag. Subcellular fractionation or 

microscopic analyses of truncated versions of Atg26 could be used to investigate these 

issues. 

 

5.8 Conclusion 

In this study, it was shown that Atg26 interacts with the autophagic core protein Atg8 

and the major coat protein Gag of the L-A virus. Moreover, Atg26 is Atg8-dependently 

recruited to the phagophore and involved in L-A Gag processing by autophagy. 

It can be proposed that Atg26 has the function to recruit L-A Gag or complete L-A VLPs 

to the phagophore for their selective autophagic degradation. 
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6 Appendix 

 
 
Figure S1 Sequence alignments of L-A Gag (WCG4a) identified in this study (red, bottom) with 
published sequences of L-A, L-A-lus and L-BC. 
Amino acids that are substituted in L-A Gag (WCG4a) identified in this study are marked in red. Conserved 
amino acids are shown in blue. 
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