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It is for such inquiries that the modern naturalist collects his materials; it is for this that 
he still wants to add to the apparently boundless treasures of our national museums, and 
will never rest satisfied as long as the native country, the geographical distribution, and 
the amount of variation of any living thing remains imperfectly known. 

Alfred Russel Wallace 
Journal of the Royal Geographical Society, 1863 
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Summary 

Detailed information on species distributions is crucial to answering central questions in 

ecology, evolutionary biology and biogeography and for effectively allocating conservation 

resources among regions. Huge numbers of species occurrence records, the basic data 

underlying our knowledge of species distributions, have been mobilized via international data-

sharing networks, most notably that of the Global Biodiversity Information Facility (GBIF). 

While these networks have greatly increased accessibility of information, severe knowledge 

gaps remain, a situation termed the ‘Wallacean shortfall’. Moreover, the available information 

is rife with uncertainties, gaps and biases caused by site-specific factors like accessibility or 

species-specific factors like detectability. If we are to effectively prioritize future data 

collection and mobilization, we must understand the gaps, biases and uncertainties in current 

distribution information and what causes them. So far, patterns and drivers of the different 

information limitations have never been analyzed in detail at the global scale. In this thesis, I 

provide the first global analyses of limitations in digital accessible occurrence information for 

land plant and terrestrial vertebrates. 

I retrieved >300 million occurrence records for land plants and three vertebrate groups 

(amphibians, bird and mammals) from GBIF, and integrated these with taxonomic databases 

and independent range map and checklist information. I then used these datasets to analyze 

different types of limitations in occurrence information for different taxonomic groups and 

spatial scales. In chapter 1, I analyzed taxonomic, geographical and temporal data coverage 

and uncertainty for land plants. I measured taxonomic, geographical and temporal variation in 

these aspects of occurrence information and quantified their relationships using pairwise 

correlations and principal component analysis. In chapter 2, I used terrestrial vertebrates to 

analyze two aspects of occurrence information at the level of geographical assemblages: i) 

record density and ii) inventory completeness. I used multi-model inference to compare 

effects of twelve potential socio-economic drivers across the three vertebrate groups and 

across four spatial grains. In chapter 3, I focused on terrestrial mammals to analyze three 

aspects of occurrence information at the species level: i) record count per species, ii) how 

these records cover individual species’ ranges, and iii) the level of geographical bias in their 

representation of different parts of their ranges. I used multi-model inference and variation 

partitioning to test effects of different species attributes, size and shape of their ranges, and 

socio-economic factors at the global scale and for individual zoogeographical regions.  
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In my thesis, I found severe biases in all examined aspects of occurrence information. Record 

counts varied by several orders of magnitude across species and regions. Different coverage 

and uncertainty measures showed clear taxonomic, geographical and temporal patterns. For 

instance, taxonomic coverage peaked in Western industrialized countries, but also in several 

tropical regions. In contrast, information was either antiquated or entirely lacking for many 

Asian and African regions. As taxonomic, geographical and temporal coverage are all 

numerically constrained by the number of records, these metrics showed moderate to strong 

positive correlations. Metrics of data uncertainty generally showed low pairwise correlations 

with one another and with coverage metrics. 

In Chapter 2, I found that only four of my twelve hypothesized drivers of assemblage-level 

record density and inventory completeness received strong support across vertebrate taxa and 

spatial grains. These were endemism richness, proximity of grid cells to record-contributing 

institutions, political participation in GBIF, and locally available research funding. Other 

factors often assumed to strongly constrain information, like transportation infrastructure or 

size and funding of Western data-contributing institutions, received surprisingly little support. 

In Chapter 3, I found that the four key socio-economic factors identified in Chapter 2 also had 

a strong influence on occurrence information at the species-level, but their relative importance 

differed depending on the geographical focus of the analysis. Interspecific variation in 

occurrence information was also strongly determined by range size and shape. This supports 

our hypothesis that while large ranges are bound to overlap with more sampling locations, 

large, irregular-shaped ranges constrain the detail with which a given number of records can 

cover a range. Against expectation, species attributes related to detection or collection 

probabilities had little impact on species-level differences in occurrence information.  

The results of my thesis have important implications for the improvement and effective use of 

mobilized occurrence information. First, my results prove that digital accessible occurrence 

information is severely limited, particularly for regions and species of conservation concern. 

Second, success in refining distribution knowledge for these species will depend on 

distribution modeling techniques that can deal with low record numbers, data biases and data 

uncertainties. One promising way to account for biases is explicitly incorporating bias-causing 

factors into models, and my results can help identify meaningful predictor variables. Third, 

my results create an empirical baseline for monitoring progress in improving the state of 

global species occurrence data. Finally, my identification of the main factors limiting 

occurrence information, and the distinction between different information aspects, will help in 

identifying activities that will remedy data limitations most effectively. I suggest that key 

activities include supporting mobilization efforts in institutions near data scarce regions, 

fostering cooperation of large emerging economies with data-sharing networks, conducting 
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novel surveys for Central Africa and Southern Asia as local data are often outdated, and 

generally increasing the focus of collection and mobilization activities on Asia and on range-

restricted species. 
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Zusammenfassung 

Detaillierte Informationen über die Verbreitungsareale von Arten sind essentiell für die 

Beantwortung zentraler Fragen der Ökologie, Evolutionsbiologie und Biogeographie. Solche 

Informationen sind auch notwendig, um Naturschutzressourcen kostenwirksam zwischen 

verschiedenen Regionen und Maßnahmen zu verteilen. Unser Wissen über Artverbreitungen 

beruht vor allem auf Punktdaten, die das Vorkommen einer bestimmten Art an einem 

bestimmten Ort zu einem bestimmten Zeitpunkt belegen (nachstehend „Records“). Riesige 

Mengen solcher Records wurden über internationale Data-Sharing-Netzwerke mobilisiert, 

allen voran durch die Global Biodiversity Information Facility (GBIF). Auch wenn diese 

Netzwerke die Zugänglichkeit zu solchen Informationen enorm verbessert haben, ist unser 

Wissen über globale Artverbreitungen immer noch äußerst lückenhaft und von grober 

räumlicher Auflösung – der sogenannte Wallace’sche Wissensrückstand. Vorhandene 

Informationen enthalten zudem zahlreiche Unsicherheiten, Fehler und Daten-‘Biases’. Diese 

könnten durch Ort-spezifische Faktoren wie Zugänglichkeit oder durch artspezifische 

Faktoren, wie Entdeckungswahrscheinlichkeit, verursacht werden. Zukünftiges Sammeln und 

Mobilisieren von Informationen sollte so gestaltet werden, dass der erreichte Nutzen der 

Records für Forschung und Naturschutz maximiert wird. Hierfür ist ein tiefgehendes 

Verständnis der Lücken, Unsicherheiten und Biases in den Informationen sowie der sie 

verursachenden Faktoren notwendig. Bisher wurden diese Mängel in globalen 

Artverbreitungsinformationen niemals quantitativ untersucht. Mit meiner Dissertation liefere 

ich die ersten globalen Analysen zu Mängeln von digital verfügbaren 

Verbreitungsinformationen für terrestrische Wirbeltiere und Landpflanzen. 

Ich habe >300 Millionen Records für Landpflanzen und drei Gruppen terrestrischer 

Wirbeltiere (Amphibien, Säugetiere, Vögel) über GBIF abgerufen. Diese Informationen habe 

ich mit taxonomischen Datenbanken sowie unabhängigen Verbreitungskarten und Checklisten 

verbunden. Auf Grundlage der erstellten Datensätze habe ich unterschiedliche Formen von 

Informations-Mängeln für verschiedene taxonomische Gruppen und auf mehreren räumlichen 

Maßstäben untersucht. In Kapitel I habe Daten-Abdeckung sowie Daten-Unsicherheiten in 

Informationen zu Pflanzenvorkommen jeweils in Bezug auf Taxonomie, Raum und Zeit 

quantifiziert. Für diese insgesamt 6 Maße habe in anschließend Variation in den drei 

Dimensionen (Taxonomie, Raum, Zeit) gemessen. Zudem habe ich mithilfe von paarweisen 

Spearman-Rang-Korrelationen und Hauptkomponentenanalysen die Zusammenhänge 
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zwischen diesen verschiedenen Formen von Informationsmängeln analysiert. In Kapitel II 

habe ich anhand von terrestrischen Wirbeltieren zwei spezielle Aspekte von Datenabdeckung 

zwischen geographischen Regionen verglichen: i) die Datendichte und ii) die Vollständigkeit 

der abgedeckten Arten. Durch Multi-Modell-Analysen habe ich die Effekte von zwölf 

potentiellen sozioökonomischen Einflussfaktoren auf Informationsmängel verglichen, und 

zwar einzeln für jede der drei Wirbeltiergruppen auf jeder von vier verschiedenen räumlichen 

Auflösungen. In Kapitel III habe ich anhand von Säugetieren drei Aspekte von 

Datenabdeckung zwischen einzelnen Arten verglichen: i) die Anzahl von Records pro Art, ii) 

die räumliche Abdeckung der Verbreitungsareale durch Records, und iii) den räumlichen Bias 

in der Abdeckung verschiedener Teile der Verbreitungsareale. Durch Multi-Modell-Analysen 

und Variations-Partitionierung habe ich die Effekte von verschiedenen Artmerkmalen, Größe 

und Form der Verbreitungsareale sowie von sozioökonomischen Faktoren untersucht. Diese 

Analysen habe ich auf globalem Maßstab sowie einzeln für sechs zoogeographische Gebiete 

durchgeführt. 

In meiner Dissertation habe ich in allen untersuchten Aspekten von 

Artverbreitungsinformationen starke Biases gefunden. Die Anzahl von Records variierte um 

mehrere Größenordnungen zwischen Arten und zwischen geographischen Gebieten. 

Verschiedene Maße von Datenabdeckung und Datenunsicherheiten zeigten klare 

taxonomische, geographische und zeitliche Muster. Ich fand beispielsweise Höchstwerte von 

taxonomischer Abdeckung in industrialisierten westlichen Ländern, aber auch in einigen 

tropischen Gebieten wie Mexiko. Im Gegensatz dazu gab es in weiten Teilen Afrikas und 

Asiens entweder gar keine oder nur sehr veraltete Informationen. Da taxonomische, räumliche 

und zeitliche Abdeckung jeweils durch die Anzahl der Records numerisch eingeschränkt sind, 

fand ich zwischen diesen Maßen gemäßigte bis starke positive Korrelationen. Maße von 

Datenunsicherheiten hingegen korrelierten kaum untereinander oder mit 

Datenabdeckungsmaßen. 

In Kapitel II habe ich den Einfluss von zwölf potentiellen sozioökonomischen 

Einflussfaktoren auf Datendichte und Datenvollständigkeit von geographischen 

Artgemeinschaften untersucht. Nur vier hatten einen durchweg für alle untersuchten 

Wirbeltiergruppen und räumlichen Auflösungen starken Einfluss. Dies waren der 

Endemitenreichtum, die räumliche Nähe zu Daten-beisteuernden Institutionen, politische 

Mitgliedschaft im GBIF-Netzwerk, sowie lokal verfügbare Forschungsgelder. Andere 

Faktoren, von denen man oft annimmt, dass sie eine große Rolle spielen würden, hatten einen 

erstaunlich geringen Einfluss, wie z.B. Verkehrsinfrastruktur oder Größe und 

Finanzausstattungen westlicher Daten-beisteuernder Institutionen. Meine Analysen in Kapitel 

III ergaben, dass die vier in Kapitel II identifizierten sozioökonomischen Schlüsselfaktoren 
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ebenfalls einen starken Einfluss auf Artverbreitungsinformationen auf der Ebene von 

einzelnen Arten hatten. Jedoch unterschied sich ihre relative Wichtigkeit deutlich zwischen 

geographischen Gebieten. Zwischenartliche Unterschiede in Verbreitungsinformationen 

waren zudem sehr stark durch Größe und Form der Verbreitungsareale beeinflusst. Dies 

unterstützt meine Hypothese, dass diese geometrischen Faktoren die Wahrscheinlichkeit 

beeinflussen, dass sich Verbreitungsgebiete bestimmter Arten mit Untersuchungsgebieten von 

Feldforschern überschneiden, was wiederum Aufswirkungen auf die Wahrscheinlichkeiten 

hat, mit denen diese Arten besammelt werden. Entgegen unserer Annahmen hatten 

Artmerkmale wie etwa Nachtaktivität, die das Entdecken oder Sammeln bestimmter Arten 

wahrscheinlich machen sollten, kaum einen Einfluss auf zwischenartliche Unterschiede in 

Verbreitungsinformationen. 

Die Ergebnisse meiner Dissertation lassen wichtige Schlussfolgerungen darüber zu, wie 

mobilisierte Artverbreitungsinformationen effizient genutzt und verbessert werden können. 

Erstens belegen meine Ergebnisse schwerwiegende Mängel in digital verfügbaren 

Artverbreitungsinformationen, insbesondere für Gebiete und Arten von besonderer 

Wichtigkeit für den Naturschutz. Zweitens zeigen sie, dass für die allermeisten Arten feiner 

aufgelöste Informationen nur durch Artverbreitungsmodelle erreicht werden können, die mit 

geringen Datenmengen auskommen, die starke Datenunsicherheiten und Biases innehaben. 

Eine vielversprechende Methode, um in solchen Modellen mit Biases umzugeben, ist das 

explizite Einbeziehen der Bias-verursachenden Faktoren in die Modelle, und meine 

Ergebnisse bieten hilfreiche Anhaltspunkte für die Auswahl relevanter Faktoren. Drittens 

schaffen meine Ergebnisse eine empirische Grundlage zur Überwachung von Fortschritten in 

der Verbesserung weltweiter Artverbreitungsinformationen. Schließlich schafft mein 

Identifizieren der global wichtigsten Informations-limitierenden Faktoren sowie das 

Unterscheiden verschiedener Informationsaspekte eine Grundlage dafür, um Aktivitäten zu 

identifizieren, die Datenmängel effektiv beheben können. Als wichtigste Aktivitäten empfehle 

ich unter anderem i) das Unterstützen von Bemühungen zur Datenmobilisierung in 

Institutionen, die in geographischer Nähe zu datenarmen Gebieten liegen, ii) das Fördern von 

Kooperation zwischen großen Schwellenländern und Data-Sharing-Netzwerken, iii) die 

Durchführung von neuen Biodiversitäts-Surveys im zentralen Afrika und südlichen Asien, um 

weitgehend veraltete Informationen zu aktualisieren, und iv) das Verschieben des Fokus von 

Datensammel- und Datenmobilisierungsbemühungen auf Asien sowie Arten mit begrenzten 

Verbreitungsarealen. 
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Research background 

Information on species distributions  

The distribution of species in space is central to ecology (Brown et al., 1996), evolutionary 

biology (Holt, 2003) and biogeography (Lomolino, 2004). Some of the most influential 

theories in those disciplines (Darwin & Wallace, 1858; Grinnell, 1917; MacArthur & Wilson, 

1967) were directly inspired by observations that some species are present in some areas and 

absent in others. Species’ distributions also influence their vulnerabilities to anthropogenic 

pressures (Fritz et al., 2009; Hof et al., 2011) and underlie schemes for effectively distributing 

conservation resources among regions (Margules & Pressey, 2000; Brooks et al., 2006).  

The diverse research and conservation applications that concern species distributions require 

solid information about where and when species occur. Many questions require distribution 

datasets of broad coverage yet high detail. For instance, datasets covering many species over 

large spatial extents at fine spatial grains would enable the study of the imprint of fine-scale 

processes like species interactions on larger-scale biodiversity patterns (Beck et al., 2012). 

Such datasets are also necessary for informing conservation prioritization at scales that match 

land-use changes and management options (Boitani et al., 2011). Similarly, high temporal 

coverage of distribution datasets is needed to study species responses to environmental change 

(Boakes et al., 2010), and to inform policy-relevant indices of biodiversity change (Butchart et 

al., 2010). Improving baseline information on species distributions is closely linked to 

international targets in the framework of the United Nations Convention on Biological 

Diversity (Pereira et al., 2013) and plays a central role in current discussions in the 

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 

2015). 

Information on species distributions can be derived from different data types, each with 

different strengths and weaknesses (Jetz et al., 2012a). The most abundant data are point 

occurrence records, derived from specimens in natural history collections, field surveys, 

vegetation plots, amateur observations, and other sources. Global natural history collections 

alone contain an estimated 1 to 3 billion specimens (Vollmar et al., 2010), most of which are 

associated with data on where they were collected. Such records represent the primary 

information on the taxonomic, geographical and temporal dimensions of species distributions, 

as they provide direct evidence that particular species occurred at particular locations at 

particular points in time (Soberón & Peterson, 2004). Most other information types are 
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ultimately derived from such occurrence records. For instance, range maps delimit the 

maximum extent over which species can be expected to occur, and are usually created by 

experts by drawing polygons around recorded occurrences while incorporating their 

knowledge of the species’ preferred environmental conditions (Graham & Hijmans, 2006). 

Regional checklists attempt to list all species of a given taxon that occur within a particular 

region, and are also usually created by consulting primary records of species occurrences. For 

some species, distribution atlases have been carefully compiled, showing truly occupied and 

unoccupied areas at relatively fine spatial grains (Robertson et al., 2010). For most species, 

however, occurrence records are the only type of distribution information available (Jetz et al., 

2012a), and researchers have to rely on modeling techniques to estimate fine-scale occupancy. 

The technique most commonly used is correlative species distribution modeling, where a 

species’ presence is extrapolated beyond the immediate areas where it was recorded based on 

statistical relationships between occurrences and environmental variables (Guisan & Thuiller, 

2005). However, these models are very sensitive to different data limitations (Phillips et al., 

2009; Feeley & Silman, 2011a). 

 

Limitations in distribution information  

Even when combining all available information, global knowledge of species distributions 

remains extremely limited, a situation termed the ‘Wallacean shortfall’ (Lomolino, 2004). 

Notwithstanding the obvious absence of information for species that are yet to be described 

(the ‘Linnean shortfall’), the majority of species known to science are only known from their 

type locality, and few species have detailed distribution data across their entire ranges. 

Occurrence records provide no information on the presence or absence of species beyond the 

surveyed areas (Rocchini et al., 2011), while range maps and checklists provide no fine-

grained information on occupancy within the respective region. The much-needed large-

extent, fine-grain atlas datasets exist only for few taxa and regions (Robertson et al., 2010). 

Furthermore, existing information is often scattered across multiple sources (and thus, 

difficult to compile; (Jetz et al., 2012a)) and prone to many uncertainties arising from 

ambiguous scientific names (Jansen & Dengler, 2010), imprecisely geo-referenced sampling 

locations (Rocchini et al., 2011) and old age of many records (Ladle & Hortal, 2013). Finally, 

most occurrence records were collected opportunistically, often with the prime aim of 

maximizing taxonomic diversity in collections in order to support taxonomic, rather than 

biogeographical or ecological studies (Pyke & Ehrlich, 2010; ter Steege et al., 2011). This 

created a series of biases (Nelson et al., 1990; Boakes et al., 2010) that hamper many 

important applications, including species distribution modeling (Phillips et al., 2009), 
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macroecological analyses (Yang et al., 2013) and conservation prioritization (Boitani et al., 

2011). 

Improving species distribution information has traditionally mainly involved field surveys and 

data collection, along with taxonomic and curatorial work in museums and herbaria. In recent 

decades, applications of species occurrence data have been transformed by the new field of 

biodiversity informatics (Soberón & Peterson, 2004). Key developments included adoption of 

information technology to manage and analyze data, large-scale digitization of natural history 

collections and the development of data standards and technological tools, e.g. for the 

automated capture of collections data (Graham et al., 2004). A quantum leap in the 

accessibility of distribution information was the creation of distributed online data-sharing 

networks, most notably that of the Global Biodiversity Information Facility (GBIF; 

www.gbif.org). These networks allow data providers like museums, government agencies and 

amateur naturalist communities to publish their occurrence records online, and allow data 

users to access records from multiple providers with a single query. GBIF-facilitated records 

represent by far the largest share of species occurrence information that is both digital and 

easily accessible in a standard format (hereafter referred to as digital accessible information 

(DAI); originally referred to as DAK in (Sousa-Baena et al., 2014a)). GBIF also plays a key 

role in disseminating skills, software, tools, and best practices for biodiversity data 

mobilization. Other approaches concentrate more on drawing best-possible inference on 

species distributions from accessible data sources. The Map of Life project, for example, is 

developing tools for integrating different types of distribution information (Jetz et al., 2012a). 

Such tools are made possible by Bayesian modeling approaches, which can integrate different 

information types (Keil et al., 2013; Manceur & Kühn, 2014) and incorporate information on 

factors causing bias (Dorazio, 2014), addressing many of the biases and uncertainties that 

limit classical species distribution modeling (Phillips et al., 2009).  

Despite these encouraging developments, the scale of the Wallacean shortfall means that 

distribution information will likely remain insufficient for answering many biodiversity 

research and conservation questions for the foreseeable future. Therefore, it is important to 

prioritize future data collection and mobilization efforts (Hobern et al., 2013; Sousa-Baena et 

al., 2014a). If we are to effectively prioritize activities, we must understand the gaps, biases 

and uncertainties in current occurrence information and what causes them. 
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Previous research on limitations in point occurrence information 

Patterns of limitations in occurrence information have been mainly investigated with respect 

to geographical data bias. One of the most commonly-quoted data limitations is a broad-scale 

data gap in tropical countries (Prance, 1977; Collen et al., 2008). Studies have also found 

finer-scale geographical bias in the completeness with which occurrence records cover the 

species in different geographical units (Soberón et al., 2007; Ballesteros-Mejia et al., 2013; 

Yang et al., 2013). Fewer authors have considered biases towards certain species (Schmidt-

Lebuhn et al., 2013) or time periods (Boakes et al., 2010). Large-scale patterns in data 

uncertainties have rarely been studied (Yesson et al., 2007), although their sources and 

potential impacts received some attention (Feeley & Silman, 2010; Rocchini et al., 2011).  

Limitations in distribution information are most commonly attributed to geographically biased 

field surveys. These may be driven by regional differences in accessibility (Freitag et al., 

1998; Dennis & Thomas, 2000), safety concerns (Brito et al., 2013), lack of funding (Ahrends 

et al., 2011) or preferential interest in endemism-rich, mountainous or protected areas (Soria-

Auza & Kessler, 2008; Yang et al., 2014). However, regional gaps in DAI do not necessarily 

reflect a lack of field work, as often assumed; they can also be caused by biased financial or 

institutional resources for digitization (Vollmar et al., 2010), or poor scientific (Amano & 

Sutherland, 2013) or political (Yesson et al., 2007) cooperation constraining international 

dissemination of information. Similarly, biases may reflect not only site-specific socio-

economic constraints, but possibly also species-specific factors like lower detectability of 

nocturnal (Burton, 2012) and arboreal species (Chutipong et al., 2014) or deliberate 

withholding of occurrence information for threatened species (Whitlock et al., 2010). Finally, 

the geometry of distributional ranges may affect the likelihood that the study region of a given 

researcher intersects with a given range, which in turn affects the likelihood that this particular 

species is recorded. Understanding which factors limit occurrence information can help 

prioritize activities for improving information, and account for these known biases in 

ecological models by explicitly incorporating them as variables (Dorazio, 2014; Fithian et al., 

2014). 

Despite the urgent need to address limitations in occurrence information, they have never been 

quantified in detail at the global scale. Previous studies of patterns and drivers of occurrence 

information were limited in geographical (Ballesteros-Mejia et al., 2013; Yang et al., 2014) or 

taxonomic (Yesson et al., 2007) scope, by the limited number of tested hypotheses, or by 

simplistic treatment of distribution information (Amano & Sutherland, 2013). No study has 

tested the generality of the various information-limiting factors globally across different 

taxonomic and spatial scales.  
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The main goals of my dissertation were to  

a) provide the first global, detailed analyses of limitations in mobilized occurrence 

information for a large section of biodiversity,  

b) better understand global taxonomic, geographical and temporal variation and biases in 

different aspects of occurrence information,  

c) better understand global drivers of this variation across different taxonomic groups 

and spatial scales, and to  

d) create an empirical baseline for prioritizing data collection and mobilization efforts, 

for monitoring these activities, and for effectively accounting for data limitations in 

ecological models. 

Study outline 

In chapter 1, I focus on land plants, a hyper-diverse group of organisms, to analyze two main 

aspects of occurrence information, and how they are spread in the three basic dimensions that 

characterize species distributions – taxonomy, space and time (Fig. I.2.1). The first, mostly 

quantitative, aspect of occurrence information is i) the coverage of the three dimensions with 

information. The second, more qualitative, aspect is ii) uncertainty regarding the interpretation 

of information. I study how these different aspects of occurrence information are related to 

each other, and identify biases in the three dimensions. 

In chapter 2, I focus on terrestrial vertebrates to analyze two aspects of occurrence 

information at the level of geographical assemblages, i) record density and ii) inventory 

completeness (Fig. I.2.1). I test the roles of twelve socio-economic drivers of global variation 

in these information aspects for different vertebrate groups and at different spatial grains. 

In chapter 3, I focus on terrestrial mammals to study species-level variation in three aspects of 

distribution information: i) record count per species, ii) how these records cover individual 

species’ ranges, and iii) the level of geographical bias in how records represent different parts 

of the ranges (Fig. I.2.1). I tested how species attributes, the size and shape of species ranges, 

and socio-economic factors drive species-level variation in these information aspects, globally 

and for individual zoogeographical regions. 
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Figure I.2.1. Framework for analyzing limitations in occurrence information. Species distributions are 
characterized by three main dimensions: taxonomy, space and time. Occurrence records provide direct evidence 
that particular species (sp1, sp2, …) occurred at particular locations (xy1, xy2, …) at particular points in time (t1, t2, 
…). Planes of cells illustrate spread of information between pairs of dimensions, occurrence information from 
anywhere along the third dimension is vertically projected onto the plane. Integrating across cells in one dimension 
summarizes information per unit of the other dimension (e.g. bottom right: highest geographical coverage at time t5 
because four out of six xy locations covered). In chapter 1, I study two main aspects of occurrence information that 
determine applicability in research and conservation: i) coverage of the three dimensions with information (grey 
cells), and ii) uncertainty regarding the interpretation of information (shade of grey cells). Uncertainty may consist 
of different components (see inset box for examples). Both coverage and uncertainty may vary in each of the three 
dimensions, potentially leading to biases (see curly brackets for examples; e.g. center left: temporal coverage 
taxonomically biased because species of taxon4,5,6 have systematically higher coverage, compared to taxon1,2,3). In 
chapter 2 and 3, I focus on specific aspects of coverage. In chapter 2, I compare record density and inventory 
completeness across geographical assemblages; in chapter 3, I compare record count, range coverage and within-
range geographical bias across species. 



 

 

 

 

 

 

 

Part II 

 

Research chapters 

 

  



 

  

 

  



 

 

Chapter 1 

Multidimensional biases, gaps and uncertainties in global plant 

occurrence information 

Carsten Meyer, Patrick Weigelt and Holger Kreft 

Updated version re-submitted to Ecology Letters (after invitation for re-submission). Preprint 

archived in PeerJ PrePrints 3:e1635. DOI: 10.7287/peerj.preprints.1218v2. 

  



 

 

  



1. Multidimensional Limitations in Occurrence Information 

 

29 

Abstract 

Aim: Detailed information on species distributions is fundamental to ecology, evolution and 

conservation. Most distribution information is ultimately based on point occurrence records, 

millions of which have been mobilized via international data-sharing networks. However, 

biases, gaps and uncertainties hamper broader application. We provide the first global, 

systematic assessment of taxonomic, geographical and temporal variation in coverage and 

uncertainty of mobilized occurrence information for all land plants. We assess implications 

for research, conservation and monitoring possibilities. 

Location: Global. 

Methods: We integrated 120 million occurrence records available via the Global Biodiversity 

Information Facility (GBIF) with comprehensive taxonomic databases, checklists for selected 

plant families and the IUCN Red List of Threatened Species. We calculated different metrics 

to quantify how mobilized occurrence information covers the taxonomic, geographical and 

temporal dimensions, and the uncertainty of information with regard to these dimensions. We 

then assessed taxonomic, spatial and temporal variation in these different aspects of 

occurrence information, and used pairwise Spearman rank correlations and principal 

component analysis to investigate relationships between them. 

Results: We documented extensive data gaps and uncertainties. For instance, only 5.4% of 

110 km x 110 km grid cells had ≥ 80% of species covered, only 28% of species were 

represented by ≥ 10 unique sampling locations and mobilized information was severely 

outdated over vast regions. Data limitations varied in all three dimensions, leading to specific 

combinations of biases. Information metrics were largely uncorrelated in space; different data 

limitations were predominant in different regions. Filtering could reduce data uncertainties, 

but caused substantial trade-offs for coverage and additional biases.  

Main conclusions: Multidimensional limitations in occurrence information hamper prospects 

of establishing plants as a model group for global research, and for achieving international 

conservation targets. Either goal would require both scaling up and prioritizing efforts to 

collect and mobilize information. Available information should be used effectively, by 

explicitly accounting for biases and uncertainties. 
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Introduction 

Land plants (Embryophyta, hereafter ‘plants’) are a hyperdiverse group of organisms and the 

principal providers of habitat structure and biochemical energy in most terrestrial ecosystems. 

Geographical distributions of plant species thus determine the spatio-temporal setting for 

evolutionary and ecological processes (Wright & Samways, 1998; Kissling et al., 2008), and 

of the ecosystem functions and services upon which most other species, including humans, 

rely (Isbell et al., 2011; Gamfeldt et al., 2013). Detailed information on plant distributions is 

necessary for mapping and explaining basic plant diversity patterns (Kreft & Jetz, 2007; 

Morueta-Holme et al., 2013) and for effectively allocating resources to their conservation 

(Ferrier, 2002). Improving such information is intrinsically linked to international targets in 

the framework of the Convention on Biological Diversity’s Global Strategy for Plant 

Conservation (GSPC; www.cbd.int/gspc/targets.shtml). To date however, detailed distribution 

datasets typically required in research and conservation only exist for few plant groups and 

geographical regions (Lomolino, 2004). 

Most available datasets on plant distributions, including checklists and range maps, are 

ultimately based on point occurrence records. Such records represent the primary information 

on the three basic dimensions that characterize species distributions – taxonomy, space and 

time – as they provide direct evidence that particular plant species occurred at particular 

locations at particular points in time (Soberón & Peterson, 2004). Vast quantities of such 

records, from digitized herbarium specimen labels, field observations, literature, and other 

sources have been mobilized via international data-sharing networks, most notably that of the 

Global Biodiversity Information Facility (GBIF; Edwards, 2000). Unlike un-mobilized 

datasets or expert knowledge, GBIF-facilitated records represent by far the largest share of 

plant occurrence information that is both digital and easily accessible in a standard format 

(hereafter referred to as digital accessible information (DAI); originally referred to as DAK 

by Sousa-Baena et al., (2014a)). Potential uses are manifold, spanning research on diversity 

patterns, range dynamics, plant invasions, or phenological changes (Lavoie, 2013), as well as 

threat assessments, monitoring (Brummitt et al., 2015) and conservation planning (Ferrier, 

2002). However, broader application is hampered by severe gaps and biases in each of the 

three basic dimensions (Nelson et al., 1990; Boakes et al., 2010; Schmidt-Lebuhn et al., 

2013). 

Apart from mere quantity of mobilized records, at least two further aspects of occurrence 

information directly influence applicability in research and conservation (Fig. II.1.1). One 

aspect closely connected to quantity is i) the ‘coverage’ of the three dimensions with 

information. For instance, taxonomic coverage of assemblages determines how reliably 
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biodiversity can be compared across sites in conservation prioritization (Funk et al., 1999), 

high geographical coverage of species’ ranges with records may facilitate species distribution 

modeling (Feeley & Silman, 2011a), and high temporal coverage is essential for monitoring 

species’ responses to environmental change (Brummitt et al., 2015). A second, more 

qualitative aspect of occurrence information is ii) ‘uncertainty’ regarding the interpretation of 

information on the three dimensions. For instance, ambiguous scientific names entail 

uncertainty regarding taxonomic identities (Jansen & Dengler, 2010), imprecisely geo-

referenced sampling locations regarding the environmental context in which species were 

found (Rocchini et al., 2011), early sampling dates regarding their continued presence near 

those locations (Boitani et al., 2011). 

 

 

Figure II.1.1. Framework for analyzing limitations in occurrence information. Species distributions are 
characterized by three main dimensions: taxonomy, space and time. Occurrence records provide direct evidence 
that particular species (sp1, sp2, …) occurred at particular locations (xy1, xy2, …) at particular points in time (t1, t2, 
…). Planes of cells illustrate spread of information between pairs of dimensions, occurrence information from 
anywhere along the third dimension is vertically projected onto the plane. At least two aspects of occurrence 
information determine applicability in research and conservation: i) coverage of the three dimensions with 
information (grey cells), and ii) uncertainty regarding the interpretation of information (shade of grey cells). 
Uncertainty may consist of different components (see inset box for examples). Integrating across cells in one 
dimension summarizes information per unit of the other dimension (e.g. bottom right: highest geographical 
coverage at time t5 because four out of six xy locations covered). Both coverage and uncertainty may vary in each 
of the three dimensions, potentially leading to biases (see curly brackets for examples; e.g. center left: temporal 
coverage taxonomically biased because species of taxon4,5,6 have systematically higher coverage, compared to 
taxon1,2,3). 
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Both coverage and uncertainty may be biased in the taxonomic, geographical and temporal 

dimension (Fig. II.1.1), potentially leading to biased ecological inferences and inefficient 

conservation. For instance, taxonomic coverage of plant assemblages may be geographically 

biased to certain regions (Yang et al., 2013; Sousa-Baena et al., 2014a), and geographical 

uncertainty may be greater in records from earlier time periods (Murphey et al., 2004). 

Understanding magnitude and biases in different aspects of occurrence information with 

regard to the three dimensions is necessary for evaluating the potential for research and 

conservation applications, and for prioritizing and monitoring activities to improve 

information. Identifying botanical information gaps has long been of scientific interest (Jäger, 

1976; Prance, 1977; Kier et al., 2005), while most recent analyses emphasized effects on 

specific applications (Feeley & Silman, 2011a; Yang et al., 2013; Sousa-Baena et al., 2014b). 

Despite the need to comprehensively evaluate global DAI, a quantitative assessment for the 

World’s plants has never been attempted. 

Here, we provide such an assessment for all land plants, by integrating 120 million occurrence 

records facilitated via GBIF with comprehensive taxonomic databases, distribution checklists 

for selected plant families, and the global red list (see Methods). We analyze taxonomic, 

geographical and temporal variation in information coverage and uncertainty, and their 

relationships with one another. We further assess implications of global coverage and 

uncertainty patterns for research, conservation and monitoring possibilities, with particular 

emphasis on GSPC targets. Our work provides the first quantitative global overview of 

strengths and weaknesses in DAI for a hyperdiverse taxonomic group, and a baseline for more 

effective information usage and mobilization. 

Methods 

Point occurrence information 

We downloaded all data for land plants available via GBIF in Jan 2014 (c. 120 M). GBIF-

facilitated records represent by far the largest source of digital accessible information, and a 

substantial part of the digitized portion of the c. 350 M records that exist in the World’s 

herbaria (New York Botanical Garden, 2014). Gaps in global coverage in these data may 

represent genuinely under-sampled regions or regions whose digital information is not yet 

integrated into international data-sharing networks, such as Brazil or China (see Sousa-Baena 

et al. (2014a) and Yang et al. (2013) for regional bias assessments). We cleaned, 
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taxonomically standardized and validated verbatim scientific names, using comprehensive 

taxonomic information provided via The Plant List (TPL, 2014) and iPlant’s Taxonomic 

Name Resolution Service (TNRS, 2014). We applied basic taxonomic and geographical 

filtering (see below) and excluded duplicated combinations of accepted species, sampling 

location and year-month combination (see Fig. V.1.S1 for an overview of our workflow, see 

Supplementary Information (SI) V.1.1 for details). These steps led to a reduction of 

119,058,280 raw records with 2,206,831 verbatim name strings to 55,930,12 unique records 

for 229,218 accepted species from 3,947,969 sampling locations and 3,172 year-month 

combinations (SI V.1.1). 

Coverage 

We used a suite of simple metrics to estimate the extent to which available records cover the 

taxonomic, geographical and temporal dimensions (Fig. II.1.1). We estimated taxonomic 

coverage of grid cells as the ratio between recorded vascular plant richness and an 

environment-richness model for that group (Kreft & Jetz, 2007). Spatial patterns of taxonomic 

coverage may be affected by non-native species’ records, However, independent information 

on species’ native ranges to geographically validate records (e.g. chapter 2) does not exist for 

most plants. In a side analysis, we validated 16.8M records for 105,031 (34% of all) species of 

seed plants against checklists for ‘botanical countries’ (level-3 regions of Biodiversity Data 

Standards, formerly International Working Group on Taxonomic Databases – TDWG; 

www.tdwg.org/standards/109/), derived from the World Checklist of Selected Plant Families 

(WCSP, 2013) and compared the ratio between recorded and checklist-based richness among 

‘botanical countries’. To estimate geographical coverage of species’ ranges and grid cells, 

respectively, we used the quantity of unique sampling locations per species and per land area 

in grid cells. To measure temporal coverage of species and cells, we calculated the negative 

mean minimum Euclidean distance (in years) of all months between 1750 and 2010 to the 

sampling dates of their respective temporally closest record. This metric has large negative 

values if that time span contains large temporal gaps with no records. We analyzed temporal 

patterns of taxonomic and geographical coverage by comparing percentages of species and 

grid cells covered within 5-year periods, and cumulatively up to those periods.  

  



II. Research chapters 

34 

Uncertainty 

To investigate uncertainty regarding the interpretation of information (Fig. II.1.1), we created 

three potential uncertainty filters (‘basic’, ‘moderate’, ‘strict’) that a user of GBIF-facilitated 

data might consider. We defined three taxonomic uncertainty filters based on criteria and 

decisions taken during taxonomic validation (see SI V.1.1):  

- TaxStrict: Recorded name matches a name treated by TPL as an accepted species with 

high expert confidence (three ‘stars’; www.theplantlist.org/about), with no more than 

5% orthographic distance (see SI V.1.1), either directly or through an unambiguous 

synonym (i.e., one that only links to one accepted name); 

- TaxModerate: Recorded name matches a name treated by TPL as an accepted species 

with high or medium expert confidence (two or three ‘stars’) with no more than 15% 

orthographic distance, either directly or through an unambiguous or ambiguous 

synonym;  

- TaxBasic: Recorded name matches a name treated by TPL or TNRS as an accepted 

name (no criteria for expert confidence in TPL) with no more than 25% orthographic 

distance, either directly or through an unambiguous or ambiguous synonym. This 

basic filter was always applied before other analyses. 

We defined three geographical uncertainty filters, based on x, y coordinates and indicated 

country: 

- GeoStrict: Coordinates reported with an precision of at least 1/1000 of a degree 

(~100m at the equator) and falling within the indicated country;  

- GeoModerate: Records reported with an precision of at least 1/100 of a degree and 

falling within the indicated country;  

- GeoBasic: Records reported with a precision of at least 1/10 of a degree and falling 

within the indicated country. This filter was always applied before other analyses.  

We defined three temporal uncertainty filters:  

- TempStrict: Records reportedly collected after 1990;  

- TempModerate: Records reportedly collected after 1970;  

- TempBasic: Records reportedly collected after 1950.  

If not otherwise stated we hereafter refer to a dataset to which basic taxonomic and 

geographical filters, but no temporal filter, were applied. The necessity for a specific filter 

depends on the research question at hand. Some analyses might make good use of data that 
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was excluded by our basic filtering, such as higher-level taxonomic information, or locations 

geo-referenced to full degrees.  

We investigated patterns in taxonomic and geographical uncertainty by comparing across 

species and grid cells the percentages of records that would be additionally excluded when 

applying moderate or strict taxonomic and geographical uncertainty filters, respectively, 

compared to the basic filter. We investigated patterns in temporal uncertainty by comparing 

percentages of species additionally excluded by moderate or strict temporal uncertainty filters. 

Similarly, we investigated patterns in combined uncertainty by comparing percentages of 

additionally lost species if all three filters were applied. 

Analyses of variation in occurrence information 

To quantify and visualize taxonomic, geographical and temporal variation in coverage and 

uncertainty of information, we compared the respective metrics among major plant groups 

(bryophytes, pteridophytes, gymnosperms and angiosperms), geographical units (110km grid 

cells and TDWG level-3 ‘botanical countries’), and 5-year periods. 

We investigated relationships between geographical patterns of nine different information 

metrics, including the three dimensions of coverage and uncertainty and combined uncertainty 

(see above; uncertainty measured as information loss under moderate filtering). We also 

included two further aspects of limitations in occurrence information: the number of vascular 

plant species that were not recorded but expected to occur in an area based on the 

environment-richness model (Kreft & Jetz, 2007), and the time (in years) since the last record 

was recorded. We analyzed their relationships with pairwise Spearman rank. We used 

principal component analysis (PCA) to reduce co-linear metrics to orthogonal principal 

components. Grid cells were located in the multidimensional PCA-space according to their 

scores in the different information metrics. We assigned red, green and blue components of 

the RGB color space to the grid cells according to their positions in the three-dimensional 

space formed by the first three PCA (Weigelt et al., 2013). We then mapped these colored 

grid cells on a world map to visualize which regions are predominantly characterized by the 

different aspects and dimensions of occurrence information. 

We assessed the potential for selected research and conservation applications that depend on 

distribution information, by counting species that would meet minimum data requirements of 

different distribution estimation methods (e.g., 10 locations for simple extent-of-occurrence 

polygons (Rivers et al., 2011), 25 to 200 for species distribution modeling (Feeley & Silman, 

2011a), if all three basic, moderate or strict uncertainty filters were applied.  

All analyses were carried out in R version 3.x (R Core Team, 2014). 
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Results and Discussion 

The high number of globally mobilized plant records (119 M; Fig. V.1.S1A) greatly 

overestimates the actual available information on species occurrences. Basic validation and 

filtering steps (see Methods) excluded 38.2 M records, including 27.9 M in the sea (Fig. 

V.1.S1C) and 12.5 M with non-validatable verbatim name strings (Fig. V.1.S1G, SI V.1.1). 

Removing duplicated species-location-month combinations excluded a further 25 M, leaving 

56 M records for analyses (47% of all). Record numbers varied by five orders of magnitude 

across species, and by six orders of magnitude across 110 km grid cells (Fig. V.1.S1B). For 

instance, a single cell in the Netherlands had 2.8 M records, whereas 21.2% of all cells lacked 

any records. In the following we provide a detailed assessment of information coverage and 

uncertainty in the taxonomic, geographical and temporal dimension. 

 

Coverage of the different dimensions 

Taxonomic coverage  

Globally, 229,218 plant species (65.4% of all) were represented with ≥ 1 record that passed 

basic filtering (see Methods). Taxonomic coverage was itself taxonomically biased, with only 

28.3% of bryophytes but 82.9% of pteridophyte species represented (Fig. II.1.2A).  

Recorded species richness of grid cells was mainly a function of record number (rS=0.94, 

PDut=0; Fig. V.1.S1B/F/K), demonstrating that perceived centers of plant diversity may simply 

reflect better documentation (Nelson et al., 1990). Accordingly, taxonomic coverage of plant 

assemblages was extremely heterogeneous in space (Fig. II.1.2B). Only 5.4% of cells had a 

ratio between recorded and modeled species richness >0.8 and could thus be considered 

taxonomically well-covered, notably in Europe, parts of Australia, North America, South 

Africa, Ecuador, Costa Rica, and scattered parts in the rest of the World (Fig. II.1.2B). 

Conversely, 78.6% of the world was severely under-inventoried with ratios below 0.25 (Fig. 

II.1.2B). Large numbers of ‘missing’ species, i.e. that portion of modeled richness that was 

not confirmed by records, were typical for Eastern Amazonia and Borneo (Fig. V.1.S2A). 

Surprisingly, we did not find significant differences in coverage between tropical and non-

tropical (Collen et al., 2008; PDut=0.37), nor between neo- and palaeotropical grid cells 

(Prance, 1977; PDut= 0.64). The overall low taxonomic coverage over vast extents seriously 

impairs estimations of plant diversity and site-based plant conservation prioritization (GSPC 

target 5). 
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Taxonomic coverage scores exceeded 1 in 3.6% of cells (Fig. II.1.2B). Scores >1 may stem 

from an underestimation of richness by the environment-richness model, records of non-native 

species, or inaccurate information on sampling locations. For instance, the score of 6.6 around 

Stockholm was mainly due to undated records for non-European species provided by the 

Bergius Herbarium, possibly from collections assembled in the 19th century by the East India 

Company. Such factors could influence recorded/modeled richness ratios anywhere in the 

world, therefore taxonomic coverage cannot directly be interpreted as completeness of native 

plant inventories. Anyone using mobilized records to study native biodiversity should 

carefully consider these potential sources of error. 

A more robust measure of taxonomic coverage can be attained for ‘botanical countries’ and 

105,031 species of native spermatophytes (seed plants), based on records that were 

geographically validated against WCSP checklists (Fig. V.1.S3A). However, these coarser 

patterns only moderately correlated with mean grid-level coverage (rP=0.68, PDut=0), and 

underestimated local data gaps in regions where coverage was achieved by combining 

scattered species records over vast areas, such as in Argentina or the Democratic Republic of 

the Congo (Fig. II.1.2B, Fig. V.1.S3A). Due to their higher spatial resolution, grid-level 

metrics therefore better indicate global data gaps, and provide an important first step in 

identifying priority regions for improving botanical baseline information (GSCP target 3). 

We found that 10.1% (1.7 M) of records for WCSP-listed species were collected outside the 

species’ indicated native ranges, but even these records could play an important role for 

progress towards GSPC targets. 45% of these were collected immediately adjacent to 

indicated native ranges, and potentially represent valid additions to those regions’ native 

floras, notably in the Neotropics (Fig. V.1.S3B), which highlights the importance of 

occurrence records for target 1, the completion of an online flora of all plants (Paton, 2013). 

The 55% collected well beyond native ranges (Fig. V.1.S3C) could support target 10 by 

facilitating study and effective management of plant invasions (Broennimann & Guisan, 

2008). 

Geographical coverage  

If a species has been recorded at sufficient sampling locations, available records may be used 

to estimate its extent of occurrence (Gaston & Fuller, 2009) or to model occurrences at finer 

scales (Feeley & Silman, 2011a). However, mobilized records for a given species were 

typically collected from only 7 unique sampling locations (median; Fig. II.1.2D), making 

meaningful estimations unlikely in most cases. 

Estimates of geographical coverage of regions may aid in pinpointing under-collected areas 

where new species might be found (Bebber et al., 2010), and in controlling for uneven survey 
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effort in biodiversity analyses (Schulman et al., 2007; Lobo, 2008). As expected, 

geographical coverage was generally high in traditionally well-studied North America, 

Western Europe and Australia, with peaks in Australia and Scandinavia (Fig. II.1.2E). Outside 

those regions, high geographical coverage often appeared associated with specific botanical 

interest and major research and data mobilization programs. For instance, Madagascar is 

renowned among botanists for its exceptional plant diversity (>11,000 species, 82% endemic, 

(Callmander, 2011)). The Missouri Botanical Garden has long focused on Madagascar (Raven 

& Axelrod, 1974), was one of the first institutions to engage in data mobilization (Crosby & 

Magill, 1988), and now contributes 66% of Madagascan records. 

Temporal variation in coverage  

Globally, percentages of covered species and grid cells mostly increased through time, apart 

from dips during the World Wars (Fig. II.1.2C/F). Geographical coverage leveled off since 

the 1970s and taxonomic coverage since the 1980s, while cumulative coverage continued to 

increase, but at shallower slopes (Fig. II.1.3E-F). The most recent drops in coverage since the 

mid-1990s likely reflect time lags between field collection and mobilization of records, but 

may also in part be due to decreasing survey effort (Lavoie, 2013).  

While covered species and areas mostly increased globally, there was strong spatio-temporal 

variation in certain regions. Going from the 1950s/60s via the 1970s/80s to the 1990s/2000s, 

sampling activity decreased in the Afrotropics and Middle East, while it increased in the 

Neotropics and circum-Tibetan mountain ranges (Fig. V.1.S4C-E). Accordingly, regional 

percentages of covered species also changed over recent decades. In many part of the world, 

taxonomic coverage during a given time period was always well below cumulative coverage 

(Fig. V.1.S4I-L), demonstrating that regionally high coverage is often reached only by 

aggregating information over long time periods. This in turn suggests that most species are not 

continuously covered with records.  

Temporal coverage  

Continuous temporal coverage of species and regions is important to reveal and monitor 

changes in status and distribution of biodiversity (Boakes et al., 2010) and to provide 

historical baselines for evaluating present-day observations (Willis et al., 2007). Temporal 

coverage since 1750 was extremely low for most species, with a given point in time typically 

decades away from the nearest record (median: 77.3 years; Fig. II.1.2G). Temporal coverage 

of grid cells was very high across non-eastern Europe while large temporally well-covered 

areas also spanned North America, Central America, the Caribbean, the northern Andes, 

south-eastern Brazil, South Africa, Madagascar, the Kashmir region, south-western Australia, 
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and New Zealand (Fig. II.1.2H). In contrast, most of the Amazon and Asia showed extremely 

poor temporal coverage. 

For many applied questions in global change research and monitoring, temporal coverage 

specifically of recent decades may be more relevant, and coverage since 1950 was indeed 

higher (Fig. V.1.S2B-C). Worryingly however, several tropical and high arctic regions 

thought to undergo rapid environmental change were characterized both by poor temporal 

coverage and aging records, notably in Canada, central Africa and Asia (Fig. V.1.S2C-D). For 

instance, in grid cells in the Democratic Republic of the Congo, the last record was typically 

collected 28 years ago (median, measured from 2010). 

 

Uncertainty regarding the interpretation of information  

Compared to coverage–related aspects of species occurrence information (Yang et al., 2013; 

Sousa-Baena et al., 2014a; Meyer et al., 2015), patterns in more qualitative aspects like 

information uncertainty have received little attention. 

Taxonomic uncertainty  

Globally Taxonomic uncertainty regarding interpretations of scientific names can arise from 

missing clarity on whether names are accepted or synonyms, from ambiguous synonyms 

linked to several accepted names, or from orthographic variations and spelling mistakes 

(Jansen & Dengler, 2010; see SI V.1.1). We found that applying our moderate filter to reduce 

taxonomic uncertainty would mean losing 8.4% of records globally (see Methods). If 

however, a very strict taxonomic filter was applied, most information would be lost (66.5% of 

records; 62.7% of species). Pteridophytes would disproportionately lose records under 

moderate filtering, compared to other groups (Fig. II.1.3I). All non-spermatophyte records 

would be excluded by our strict taxonomic filter (Fig. II.1.3I), because The Plant List only 

assigns highest confidence levels to names sourced from taxonomically comprehensive and 

peer-reviewed databases, which do not exist for these groups 

(www.theplantlist.org/1.1/about). Depending on the rigor of taxonomic filtering, geographical 

peaks in lost information appeared either in insular South-East Asia (moderate filter, Fig. 

II.1.3A) or in the North American Midwest and the Caribbean (strict filter, Fig. II.1.3B). 

Contrasting these strong taxonomic and geographical patterns, taxonomic uncertainty varied 

very little through time, with usually around 10% and 70% of records in a given 5-year period 

falling above our moderate and strict taxonomic uncertainty threshold, respectively (Fig. 

II.1.3J). 
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Geographical uncertainty  

Imprecisely geo-referenced sampling locations lead to uncertainty regarding the geographical 

and environmental context of species’ occurrences. This uncertainty hampers applications 

built on linking occurrences with high-resolution environmental data, such as species 

distribution modeling (Feeley & Silman, 2010; Rocchini et al., 2011). Applying our basic 

geographical filter already lead to a 38% loss in accepted species from the raw dataset (from 

367,703 to 229,218), confirming a strong trade-off between geographical quality and 

taxonomic coverage of occurrence information (Feeley & Silman, 2010). Compared to our 

pre-filtered dataset, further applying moderate and strict geographical filters would lead to an 

additional reduction of, respectively, 5.5% and 25.3% in species, and 1.9% and 13.9% in 

records.  

These relatively low percentages of globally excluded records were mainly due to high 

numbers of precisely geo-referenced records in North-Western Europe (Fig. V.1.S1J). 

However, such global statistics of data uncertainty can tremendously underestimate local 

uncertainty, as demonstrated by substantially higher mean percentages of excluded records 

across grid cells (moderate filter: 22.3% (sd: 26.0); strict filter: 58.6% (sd: 35.7); Fig. II.1.3C- 

D). Large areas of relatively low geographical uncertainty were in Europe, the western United 

States, Southern Africa, Japan, New Zealand and parts of Australia (Fig. II.1.3C-D). Records 

not fulfilling the strictest geographical uncertainty criteria were typical for the tropics, but 

also for remote non-tropical regions, including Alaska, temperate Asia, and Western Australia 

(Fig. II.1.3D). Imprecise geo-referencing in those regions may be related to a lack of high-

quality maps and more sparsely distributed settlements, which often serve as geographical 

reference points, particularly in older records. Geographical uncertainty may also be created 

at the time of data mobilization. For instance, in Australia, differences in geographical 

uncertainty closely mirrored administrative boundaries, reflecting different mobilization 

policies of Australian state departments, which contributed 53.8% of Australian records (Fig. 

II.1.3C). At the time of downloading our records (Jan 2014), certain Australian datasets were 

mobilized into the GBIF network via intermediaries that generalized location coordinates. 

Mobilization pathways have since changed and generalizations are now restricted to lists of 

sensitive species (e.g. those threatened by illegal collecting), therefore, geographical 

uncertainty in Australia will appear lower in future assessments (N. Klazenga, pers. comm.). 

Geographical uncertainty of records appeared similar across major plant groups (Fig. II.1.3I), 

but there were several notable changes through time. Older sampling locations were not 

generally reported with lower precision (Murphey et al., 2004), although such patterns could 

be observed in several regions, like Spain or south-eastern Australia (Fig. V.1.S4M-Q). 
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Instead, there were two major periods during which global geographical uncertainty 

increased, in both cases likely reflecting increased explorations of tropical and remote regions, 

one between 1860 and 1910, coinciding with the second wave of European colonial 

expansion, and one between 1940 and 1965 (Fig. II.1.3J; Fig. V.1.S4B-C; Fig. II.1.3C-D). The 

steady decrease in geographical uncertainty since 1965 may reflect increasing availability of 

high-quality maps, and later of geo-referencing technology. 

Temporal uncertainty 

Early-collected records inherit vital information about past biota. However, they also lead to 

greater temporal uncertainty regarding species’ continued presences near sampling locations, 

as distributions may change in response to environmental change (Thuiller et al., 2008) and 

biological processes (Schurr et al., 2012). Therefore, many applications like conservation 

planning or SDMs that link occurrences with recent habitat data usually require recent 

occurrence information (Boitani et al., 2011).  

86.3% of globally represented species had at least one record collected after 1970 and 72.4% 

even had records collected after 1990. Using these dates as filters for excluding records would 

cause an average loss of, respectively, 32.0 and 61.8% of species in a given grid cell (Fig. 

II.1.3E-F). Regions were most species had records collected after 1990 include continuously 

well-sampled north-western Europe, but also areas where most species were only recorded 

during recent surveys, such as Benin, the circum-Tibetan mountain ranges, or Indochina (Fig. 

II.1.3F, Fig. V.1.S4E). In contrast, much of arctic Canada, central Africa, Iraq, eastern India, 

Myanmar and Java were characterized by generally outdated information, as most recorded 

species did not even have records collected after 1970 (Fig. II.1.3E). Local reasons for spatio-

temporal changes in sampling activity may include shifting funding priorities (Ahrends et al., 

2011), arising security concerns (Brito et al., 2013), or lowered botanical appeal of 

environmentally degraded regions (Boakes et al., 2010). Whatever the reasons, it is important 

to detect and account for such spatio-temporal biases and uncertainties. Mean percentages of 

excluded species also varied three-fold across major plant groups (5.4%-15.10%; moderate 

filter; Fig. II.1.3I), showcasing potential taxonomic biases introduced by temporal filters. 

Combined uncertainty 

Combining filters to minimize uncertainty in all three dimensions lead to substantial trade-offs 

for coverage (compare Feeley & Silman (2010); Boitani et al. ( 2011)). 78.9% of all species in 

our dataset had no record that passed all strict filters; 52.2% had no record passing all 

moderate filters. Uncertainty was even more apparent in geographical patterns: North-western 

Europe was the only larger regions where typically ≥ 80% of species in a grid cell had at least 
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one record that passed moderate combined filters (Fig. II.1.3G). No region retained much of 

available information under strict combined filtering; even regions where 20% of species 

would withstand such filters were confined to parts of Europe, Benin, Indochina, and central 

and south-eastern Australia (Fig. II.1.3H).  

Given such pervasive levels of data uncertainty, it is very likely that species identities and 

their environmental associations are frequently misinterpreted. Furthermore, our documented 

patterns of uncertainty demonstrate that the likelihood of such misinterpretations is biased to 

particular taxonomic groups, geographical regions, and time periods. Overall, these issues 

seriously hamper opportunities for ecological inference, and need to be carefully accounted 

for whenever records of variable or unknown quality are used in biodiversity analyses 

(Rocchini et al., 2011). 

 

Relationships between different aspects of occurrence information 

Pairwise Spearman rank correlations across 9 variables of occurrence information mostly 

yielded weak to moderate associations (Fig. V.1.S5). Different coverage aspects correlated 

moderately to strongly (rS: 0.63 to 0.86), which was expected as coverage of any dimension is 

numerically constrained by the number of available records (correlations with record number: 

0.65 to 0.92; compare Yang et al. (2013)). Taxonomic and geographical coverage also 

moderately correlated with time since the last recording activities (rS: -0.67 to -0.70). In 

contrast, most uncertainty aspects showed no or only weak correlations, the only moderately 

strong correlation being that between temporal and combined uncertainty (rS: 0.75). Most 

metrics showed no strong correlations with quantities of mobilized raw records (Fig. V.1.S5), 

suggesting that such simpler indicators cannot reliably inform about different aspects of 

occurrence information. 

To reduce complexity, we included the 9 variables in a PCA (Fig. II.1.4A-C) and mapped 

PCA site scores on a world map to identify regions that are predominantly characterized by 

specific aspects of occurrence information (Fig. II.1.4D). The first three axes of the PCA 

accounted for 69.8% of the variance. The most important axis (38%) mainly separated regions 

of high taxonomic and geographical coverage, e.g. in Europe (rS: 0.86/0.85; Fig. II.1.4A-

B/D), from regions where a long time has passed since the last recording activities, e.g. in 

Central Africa and South Asia (rS: -0.85; Fig. II.1.4A-B/D). The second axis (20% of 

variance) mainly correlated with combined and temporal uncertainty (rS: 0.74/0.75; Fig. 

II.1.4A/C/D), highlighting e.g. arctic Canada. For instance, combined uncertainty was 

characteristic for much of Asia, such as the Altai or the mountain ranges between Eastern 
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Tibet and Sichuan (Fig. II.1.4D). Geographical and taxonomic uncertainty varied mainly 

along the third axis (11.8% of variance; rS: 0.69/0.47; Fig. II.1.4B-C), characterizing e.g. 

Borneo. Some metrics were poorly correlated with all three major PCA axes (e.g. for number 

of missing species rS: -0.34 to 0.31 for first three axes; rS: 0.7 for fourth axis). 

 

 

The above patterns and analyses highlight the differences, rather than the similarities, between 

geographical patterns of different aspects and dimensions of occurrence information. Different 

 

 

Figure II.1.4. Principal component analyses of 9 metrics of plant occurrence information. PCA for 8,567 110 km 
x 110 km grid cells with ≥ 1 validated record. A-C) Biplots of the first three PCA axes (numbers in parentheses 
indicate percentages of variance accounted for by each axis); points represent grid cells. Colors refer to a red–
green–blue (RGB) color space (cubes in legend and E) projected onto the 3D PCA space E) following (Weigelt et 
al., 2013). Each grid cell consistently has the same color across A-E. In A-C, Points are plotted in decreasing 
order of the respective component not shown to give an impression of three-dimensionality. TaxCov: taxonomic 
coverage, calculated as the ratio between recorded richness and richness modeled by (Kreft & Jetz, 2007); 
GeoCov: geographical coverage, estimated as the number of sampling locations per 104 km² land area; 
TempCov: temporal coverage since 1750, estimated as the mean minimum Euclidean distance between all 
possible months between 1750 and 2010 to their respective closests month with records; TaxUnc: percentage of 
records lost under moderate taxonomic filtering; GeoUnc: percentage of records lost under moderate geographical 
filtering; TempUnc: percentage of species lost under moderate temporal filtering; AllUnc: percentage of species 
lost with all three moderate filters applied (see Methods for information on filters). MissSpp: number of species 
that are not recorded but expected based on the environment-richness; SinceLast: Time (in years) since the last 
mobilized record was recorded. All correlations based on z-transformed variables. D) Global map of ordination 
site scores; similar colors denote regions whose occurrence information is mainly characterized by similar 
information aspects. Cube in D shows PCA results in a 3D space. 
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limitations predominate in different regions. This multidimensionality of limitations in 

occurrence information should be considered in research and conservation applications, as 

well as in future assessments of data limitations. How combinations of different data 

limitations bias ecological analyses, and how these biases can be effectively controlled for, 

remains largely un-investigated.  

 

Opportunities for using DAI in plant research, conservation and monitoring 

Despite the showcased limitations in DAI, there is an urgent need to apply this information in 

plant research and conservation. For instance, distribution estimates play a vital role in 

advancing conservation assessments (GSPC target 2), developing management plans for 

threatened species (GSPC target 7), and monitoring changes in species’ statuses (Brummitt et 

al., 2015). As we show below, the potential for such applications largely depends on the 

ability of methods to deal with low record numbers and high data uncertainty.  

If distribution estimates could be derived from 10 sampling locations (Rivers et al., 2011) and 

methods were robust to relatively high data uncertainty, DAI might facilitate preliminary 

assessments for 85,787 non-red-listed or ‘Data-Deficient’ species globally (24.5% of all 

plants; Fig. II.1.5). This represents a potential seven-fold increase compared to the IUCN Red 

List (as of Aug 2014). However, this number would drop to 1,921 for uncertainty-sensitive 

methods requiring ≥ 200 locations. Similarly, depending on methods’ data requirements, 

estimates might be feasible for 0.1 to 15.7% of ‘Threatened’ plants, and for 0.1 to 6.6% of all 

plants during three 20-year periods since 1950. Furthermore, the potential for such 

applications is geographical highly biased (Fig. II.1.5). For instance, based on DAI, 

distributional changes since 1950 might be documented for 386 to 3,682 plant species in 

Europe, but only 0 to 26 in the Pacific region (Fig. II.1.5). 

Most distribution modeling methods are highly sensitive to both number and quality of 

records (Guisan et al., 2007). Restricting analyses to highest-quality data is often 

recommended (Feeley & Silman, 2010), but cutoffs are always arbitrary, and strict filters wipe 

out most available information (Fig. II.1.4H). Moreover, depending on strictness of filters, 

they introduce different biases to already-biased datasets (Fig. II.1.4). More effective usage of 

available information would be to explicitly incorporate biases and uncertainties into analyses. 

Methods for doing so are increasingly available (e.g. McInerny & Purves (2011); Dorazio 

(2014)) and further developing such methods holds great potential for advancing global plant 

research and conservation.  
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Taxonomic standardization and basic geographical plausibility checks, as carried out in this 

study, are essential when using mobilized occurrence records. However, such measures 

obviously cannot ensure that information is in fact accurate, given likely taxonomic 

misidentifications and geo-referencing errors. Sampled taxonomic re-assessments of original 

material and sampled ground-truthing of occurrences could provide vital information on 

typical rates of such errors for different taxa, regions and data sources, which could 

additionally be accounted for in analyses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II.1.5. Global trade-offs between plant occurrence information coverage and uncertainty. Graphs show the 
number of species for which their distribution could be estimated with different hypothetical methods, in 
dependence of those methods’ minimum requirements (10 to 200 unique sampling locations; Rivers et al. (2011); 
Feeley & Silman (2011a)) and abilities to cope with different levels of data uncertainty. A) Northern America, B) 
Southern America, C) Pacific, D) Europe, E) Africa, F) Temperate Asia, G) Tropical Asia, H) Australasia. Blue 
colors denote species that are either un-assessed or ‘Data Deficient’ on the International Union for the 
Conservation of Nature’s Red List. Violet colors denote species with Red List categories ‘Vulnerable’, 
’Endangered’ or ’Critically Endangered’. Green colors denote species for which the indicated number of sampling 
locations exists in each of three 20-year time periods since 1950. Different color shadings denote basic, moderate 
or strict filtering of datasets (combined taxonomic, geographical and temporal filters). World regions are level-1 
regions of Biodiversity Information Standards (TDWG, formerly International Working Group on Taxonomic 
Databases). 
 

After decades of intensive data mobilization, options for using plants as a model group for 

global research and conservation are still severely compromised by different data limitations. 

Even under our most optimistic scenario regarding methods’ data requirements and robustness 

to uncertainty, distribution estimations based on DAI were unfeasible for three quarters of all 

plants. The multidimensional data limitations also highlight flaws in the accuracy of datasets 

that are derived from primary biodiversity records, including checklists, range maps and many 

atlas data. This is exemplified by the many WSCP-listed species recorded in regions adjacent 
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to their supposedly correct native ranges. Severe data gaps will likely persist for decades to 

come, as evident in slow progress towards regional floras (Paton, 2013). Meeting GSPC 

targets on plant conservation seems unlikely without substantial increases in funds and 

personnel allocated to data collection and mobilization. Given limited resources, efforts to 

improve occurrence information should be globally coordinated and prioritized (Meyer et al., 

2015). 

 

Towards more effective improvement of DAI 

One way of efficiently improving DAI could be reducing the level of information duplication 

(Fig. V.1.S6A). For instance, 0.22 M validated records in south-western Mexico yielded 0.19 

M unique records (ratio 0.8), whereas substantially more (0.50 M) validated records in Peru 

yielded only 0.16 M (ratio 0.3). While these duplicated species-location-month-combinations 

may benefit certain research applications, such localized, dense sampling entails trade-offs for 

global coverage (Meyer et al., 2015). Broad coverage is the main strength of occurrence 

records (Boakes et al., 2010; Jetz et al., 2012a), compared to more localized, dense recording 

schemes (e.g. Scholes et al. (2008); Dengler et al. (2011)). This strength should be fostered by 

prioritizing poorly-covered regions and species in future record collection and mobilization 

efforts.  

Our analyses provide an important first step towards such prioritizations. Detailed distinctions 

between issues of coverage and uncertainty in taxonomic, geographical and temporal 

information allow narrowing down key improvements necessary for different regions and 

taxa. For instance, peaks in taxonomic uncertainty for South-East Asian and pteridophyte 

floras could be overcome by targeted taxonomic revisions and better integration of available 

taxonomic resources into The Plant List. New surveys are urgently required for Central 

Africa, Mozambique, and tropical Asia, as available information is largely outdated. More 

generally, Asian and bryophyte floras are woefully under-represented. Efforts to digitize 

respective collections and integrate digital datasets into international data-sharing networks 

should be a top priority. Such preliminary global priorities could be focused further by 

accounting for environmental dissimilarity to well-sampled areas (Sousa-Baena et al., 2014a) 

or by focusing on species and areas of conservation concern (Pyke & Ehrlich, 2010). 

Identifying relevant collections through metadata digitization (Berendsohn & Seltmann, 2010) 

and identifying information-limiting socioeconomic factors (Meyer et al., 2015) can help 

prioritize specific activities likely to have a large impact on improving global DAI. 
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As we demonstrated, limitations in occurrence information are multidimensional and different 

information aspects are not strongly correlated. This raises the question of how to effectively 

monitor progress in data mobilization, and more broadly, progress towards international 

targets on improving and sharing conservation-relevant knowledge (e.g. Aichi target 19, 

GSPC target 3). Straightforward, simple indicators like global or per-country quantities of 

mobilized raw data (e.g. Tittensor et al. (2014)) cannot inform about data uncertainties or 

fine-scale biases in coverage. To monitor improvements of DAI, rather than mere increases in 

volume, we recommend developing and routinely evaluating a set of indicators that inform 

about different information aspects and dimensions at relevant scales. 

 

Conclusions 

Severe multidimensional gaps, biases and uncertainties are prevalent in global DAI on plant 

occurrences. These limitations hamper prospects of establishing plants as a model group for 

global biodiversity research, and achieving international targets on plant conservation. Either 

goal would require both substantially scaling up and prioritizing efforts to collect and 

mobilize additional occurrence information. Success of such efforts should be monitored 

using meaningful indicators. Furthermore, available information should be used effectively by 

explicitly accounting for biases and uncertainties in ecological analyses.  
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Abstract 

Severe gaps and biases in digital accessible information (DAI) of species distributions hamper 

prospects of safeguarding biodiversity and ecosystem services and reliably addressing central 

questions in ecology and evolution. Accordingly, governments have agreed on improving and 

sharing biodiversity knowledge by 2020 (United Nations Convention on Biological 

Diversity’s Aichi target 19). To achieve this target, gaps in DAI must be identified, and 

actions prioritized to address their root causes. We take terrestrial vertebrates, an iconic and 

comparatively well-studied group, as a model and present the first globally comprehensive 

assessment of patterns and drivers of gaps in DAI, based on an integration of 157 million 

validated point records with 21,170 expert-based distribution maps. We demonstrate that 

outside a few well-sampled regions, DAI provides a very limited and spatially highly biased 

inventory of actual biodiversity. Coarser spatial grains result in more complete inventories, 

but provide insufficient detail for conservation and resource management. Surprisingly, large 

emerging economies are particularly under-represented in global DAI, even more so than 

species-rich, developing countries in the tropics. Multi-model inference reveals that 

completeness is mainly limited by distance to researchers, locally available research funding, 

and political participation in data-sharing networks, rather than transportation infrastructure, 

or size and funding of Western data contributors as often assumed. Our study provides an 

empirical baseline to advance strategies of enhancing the global information basis of 

biodiversity. In particular, our results highlight the need for targeted data integration from 

non-Western data holders and intensified cooperation to more effectively address societal 

biodiversity information needs. 

Introduction 

The parties to the Convention on Biological Diversity (CBD) have agreed on 20 targets to 

improve the state of biodiversity by 2020 (cbd.int/sp/targets/). Aichi target 19 specifically 

mandates the development of an advanced and shared biodiversity knowledge base. The 

distribution of species in space is a central aspect of biodiversity knowledge that can enable 

the effective management of biodiversity and associated ecosystem services in a rapidly 

changing world (Whittaker et al., 2005; Butchart et al., 2010; Boitani et al., 2011; Pereira et 

al., 2012; Guisan et al., 2013). Species distributions are critical for informing actions towards 



II. Research chapters 

54 

multiple Aichi targets, associated environmental indicators (Pereira et al., 2013), and the 

recently launched assessment work of the Intergovernmental science-policy Platform on 

Biodiversity and Ecosystem Services, IPBES (Inouye, 2014). 

International efforts to mobilize and aggregate distribution data, most notably the Global 

Biodiversity Information Facility (GBIF), have facilitated access to large quantities of digital 

species occurrence records from a variety of data sources, especially museum specimens and 

field observations (Edwards, 2000; Graham et al., 2004). Such records provide vital, fine-

scale information about where and when species occur and are widely used in ecology, 

evolution and conservation research. In contrast to expert knowledge and un-digitized 

datasets, which are effectively inaccessible, such mobilized records form the bulk of de facto 

‘digital accessible information’ (DAI, originally referred to as DAK in Sousa-Baena et al. 

(2014a)). While in a recent study (Tittensor et al., 2014) the authors saw evidence for progress 

towards Aichi target 19 in increasing volumes of GBIF-facilitated DAI, they had to 

acknowledge the critical caveat of unclear “taxonomic coverage (e.g. number of species), 

record completeness or geographic biases”.  

Severe gaps and biases usually exist in DAI (Boakes et al., 2010; Feeley & Silman, 2011b; 

Jetz et al., 2012a; Sousa-Baena et al., 2014a), and require careful consideration in ecological 

modelling (Guisan & Thuiller, 2005; Phillips et al., 2009; Yang et al., 2013) and conservation 

research (Boitani et al., 2011). Data limitations may arise from a multitude of socio-economic 

and geographic factors, including inadequate financial and institutional resources (Vollmar et 

al., 2010; Ahrends et al., 2011; Amano & Sutherland, 2013), poor international scientific 

cooperation (Amano & Sutherland, 2013), lack of access or regional safety concerns (Freitag 

et al., 1998; Moerman & Estabrook, 2006; Amano & Sutherland, 2013; Ballesteros-Mejia et 

al., 2013), or a focus on regions with certain appeal like endemism-, species-rich or protected 

areas (Freitag et al., 1998; Boakes et al., 2010; Yang et al., 2014). The amount of data 

required to completely inventory species assemblages is a function of their richness and the 

spatial grain (Soberón et al., 2007; Feeley & Silman, 2011b; Jetz et al., 2012a). To be relevant 

for conservation applications, distribution datasets must inform about species occurrences at 

fine spatial grains (Smith et al., 2009), either directly or by facilitating derived, fine-grain data 

products (Jetz et al., 2012a; Guisan et al., 2013). Such fine-grain data products are integral to 

conservation research, but can also directly influence conservation decision-making. For 

instance, in Madagascar, occurrence records have facilitated the identification of ‘priority 

areas’ (Kremen et al., 2008) where following a legal decree, no mining and forestry activities 

can be permitted (Arrêté Interministériel n18633/2008/MEFT/MEM, renewed in 2014; further 

examples in Guisan et al. (2013)).  
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Identifying information gaps and factors limiting the dissemination of biodiversity 

information are recognized as priorities both at the political (Conference of the Parties to the 

Convention on Biological Diversity, 2010) and scientific (IPBES, 2015) levels of the CBD. 

To date, magnitude and exact location of gaps in global DAI as well as the relative importance 

of underlying causes remain unclear, hampering prioritization of future data mobilization 

efforts (Hobern et al., 2013) and thus cost-effective progress towards Aichi target 19. 

International efforts to mobilize biodiversity records remain un-assessed for their success and 

effectiveness in addressing targets to improve and share biodiversity knowledge. 

Here, we perform this assessment for 21,170 species of birds, mammals, and amphibians and 

c. 157 million geographically and taxonomically validated point records that were provided to 

GBIF by 160 data publishers, including small institutions with a distinct taxonomic and 

geographic focus as well as large internationally active research museums and citizen science 

programs (see Supplementary Information: Table V.2.S7 and Methods). We determine the 

factors currently limiting biodiversity inventory completeness in global DAI and identify 

priority regions and activities to advance it. 

Results and Discussion 

At a grain size of 110 km grid cells, the density of terrestrial vertebrate records varies by five 

orders of magnitude (Fig. II.2.1 A), peaking in parts of Europe, North and Central America, 

and Australia. Conversely, 48% of Asian, 35% of African and 21% of South American cells 

have no records mobilized into DAI. At this spatial grain, the finest ensuring sufficient 

accuracy of species expert-range maps (Hurlbert & Jetz, 2007; Hawkins et al., 2008), species 

richness derived from point records shows little concordance with expected richness (Fig. 

II.2.1 B, C). While spatial patterns between the two data sources show at least weak 

associations (rs=0.28-0.39, see Table V.2.S1 a), only 4.2% of all 12,029 cells reach ≥ 80% 

completeness (Fig. II.2.1 D).  

Completeness, defined as percentage of expected richness documented with point records, is 

moderately to strongly predicted by record density (binomial GLM, d²=0.59-0.90, Fig. V.2.S1, 

Table V.2.S1 b; see SI V.2 Methods for details). Whereas high record density results in high 

levels of completeness in much of the Nearctic and Australasia, this is less the case for the 

more species-rich Neo-, and Afrotropics (Fig. II.2.1 A-B, D-E, Fig. V.2.S1 D). The Eastern 

Palaearctic and Indomalayan realms are characterized by particularly low levels of 

completeness. Average completeness also varies greatly among the World’s major biomes and 

biomes within biogeographical realms (Fig. II.2.1 E, Table V.2.S2 a-c). Specifically, tropical 
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Figure II.2.1. Global unevenness and gaps in the 
digital accessible information on distributions of 
21,170 species of terrestrial vertebrates (birds, 
mammals, amphibians). A) Density of point 
records, B) species richness from point records, 
C) species richness from expert-opinion, D) 
inventory completeness (percentage of expected 
richness documented by records). Grey areas do 
not have any mobilized records. E) Mean 
inventory completeness in biome-realm-
combinations. Size of black circles is proportional 
to mean inventory completeness and grey areas 
show standard deviations. All assessed over a 110 
km equal area grid. 

and subtropical forests, grasslands and savannas, but also boreal forests and tundra biomes 

remain vastly under-inventoried. Surprisingly, we cannot confirm a pronounced “tropical data 

gap” (Collen et al., 2008; PDut=0.27; tropics versus non-tropics). Instead, a severe gap 

emerges across most of Asia (including temperate regions), non-Southern Africa, and Brazil 

(PDut<0.01; when comparing mean completeness in these areas to all others). 

 

 

 

 

 

 

 

 

 

While these strong geographic differences in completeness are broadly repeated among the 

three vertebrate groups (Fig. II.2.2 A), completeness patterns among the three taxa only show 

moderately strong positive associations (rs=0.65–0.74 depending on taxon and grain, all 

PDut<0.001). This suggests that the completeness pattern of a single-taxon is a poor predictor 

for un-assessed taxa and highlights the need to identify taxon-specific information gaps (Vale 

& Jenkins, 2012). As expected from substantially fewer records for mammals and amphibians 

compared to birds (~3M and ~1M, compared to ~150M, see SI V.2 Methods), their overall 
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level of completeness is significantly lower (Tukey-test, PDut<0.001 for all spatial grains, 

when comparing mammal / amphibian completeness with bird completeness). 

 

 

 

 

 

 

 

 

 

 

Figure II.2.2. Spatial variation in point record-based inventory completeness for three vertebrate taxa at different 
spatial grains. A) Inventory completeness at the 110 km and 880 km grain (for 220 km and 440 km grain, see Fig. 
V.2.S1.). B) Minimum grain size to reach 80% inventory completeness, mapped at 110 km. Grey grid cells in A) 
show areas within the taxon’s global range without mobilized records, in B) areas that do not reach 80% 
completeness at 880 km. 
 

Completeness levels of ≥ 80% over large extents, even at a relatively coarse grain of 110 km, 

are only achieved in birds and only in North America, Europe, and Australia (Fig. II.2.2 A). 

Coarsening grains even further to 440 or 880 km substantially increases completeness in all 

groups (Kruskal-Wallis-test, all P<0.001, Fig. II.2.2 A-B, Fig. V.2.S2), but necessarily leads 

to inferior opportunities for inference and application. Such coarse grains are not adequate for 

most questions in ecology (Beck et al., 2012) and, with land-use and conservation actions 

typically set at the kilometer scale or finer, are unsuited for effective resource management. 

Most species distribution models (SDM) connecting records with fine-grained environmental 

data for extrapolation (Guisan & Thuiller, 2005) are unable to provide a general remedy here, 

due to their known sensitivity to environmental bias (Menke et al., 2009; Feeley & Silman, 

2011b). This pervasive lack of DAI over vast extents (e.g., only <20% completeness at 880 

km grain over much of Asia, Fig. II.2.2 A) demonstrates that for many regions with large 

conservation opportunities (Venter et al., 2014) there are not sufficient mobilized occurrence 

data to facilitate even the most sophisticated modeling approaches. Global numbers of 

sampling locations for the majority of species are far below the 50-100 typically 
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recommmended (Wisz et al., 2008; Boitani et al., 2011; Feeley & Silman, 2011a) as minimum 

SDM requirements (54.9% of all bird species have <50 records, median=37; mammals: 

79.2%, median=6; amphibians: 91.3%, median=2; compare Cayuela et al. (2009); Feeley & 

Silman (2011a)). 

  

Figure II.2.3. Determinants of inventory completeness in digital accessible information. Effects were tested in 
multiple generalized linear regression models with a binomial distribution and a logit link (GLM β and GLM % 
SS). All possible model subsets were ranked based on AIC scores and subsets with ΔAIC < 10 re-run as spatial 
models to account for spatial autocorrelation in model residuals. Bubble size represents the relative strength of 
predictor-response relationships. Vertebrate groups are represented by different colors, with shading denoting the 
direction of the relationship. We show the relative importance of predictors using two different metrics: i) the 
standardized coefficients of the reduced spatial multiple regression models with the lowest AIC score (blank cells 
indicate variables that were not included in these models) (GLM β), and ii) the percentage each predictor has in the 
total sum of squares (GLM % SS) of a type III ANOVA. For results of bivariate models and similar tests on record 
density, see Fig. V.2.S3. For details on hypotheses, methods, and results, see SI Materials and Methods, Fig. 
V.2.S3-4, Tables V.2.S3-5). 
 
 
Such glaring data gaps highlight the need to identify and, where possible, address the root 

causes of low inventory completeness. Understanding of the key driving factors of bias is 

important to prioritize activities in data mobilization. Further, drivers of bias can be explicitly 

incorporated into biodiversity models (Dorazio, 2014; Fithian et al., 2014; Manceur & Kühn, 

2014). Gaps in DAI may result from the way data are collected in the field, digitized in 

museums, or mobilized and aggregated as digital species records into global biodiversity data-

sharing networks. To this end, we tested twelve hypotheses falling into five broad categories: 

appeal, accessibility, security, international scientific integration, and financial and 

institutional resources (details in Fig. II.2.3 and SI V.2 Methods). Most hypotheses receive at 

least some support in our multi-model inference framework, highlighting the complex 
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interplay of geographic and socio-economic factors as drivers of inventory completeness (Fig. 

II.2.3; for record density and bivariate model results see Fig. V.2.S3-4; detailed results in 

Tables V.2.S3-5). Depending on taxon and grain, minimum adequate models of inventory 

completeness explain 60-78% of the deviance (Table V.2.S3) and the relative importance of 

factors varies more strongly among taxonomic groups than among grain sizes (depending on 

the predictor, percentages of sums of squares explained in an ANOVA are 16.5-72.5% higher 

for factor “taxon” compared to factor “spatial grain”). 

A strong role for data collection has been attributed to region or species “appeal”, e.g., 

researchers’ preference for reserves, mountains or other areas of high total, rare and range-

restricted species richness (Freitag et al., 1998; Soria-Auza & Kessler, 2008; Yang et al., 

2014). We find this supported in birds and mammals by strong positive effects on inventory 

completeness of endemism richness, and weaker effects of protected area coverage. 

Surprisingly, we find relatively low importance of on-ground accessibility from cities and 

proximity to airports (Fig. II.2.3), which have previously been suggested to strongly constrain 

field collections (Freitag et al., 1998; Ballesteros-Mejia et al., 2013). In contrast, spatial 

distance to data-contributing institutions (Table V.2.S7) consistently emerges as a key 

predictor of inventory completeness and record density (Fig. II.2.3, Fig. V.2.S3). This 

highlights the imprint that long-term logistics of maintaining field sampling and specimen 

transport leave on global biodiversity information (compare Moerman & Estabrook (2006); 

Yang et al. (2014)). Insecure conditions may discourage field sampling (Amano & 

Sutherland, 2013; Brito et al., 2013), but we find little evidence that security aspects are 

important in limiting completeness or record density (Fig. II.2.3; Fig. V.2.S3, SI V.2 Methods: 

1.B). We expected our index of integration into scientific activities, i.e., country’s H-index in 

ecology multiplied by level of international collaboration, to be strongly correlated with 

inventory completeness, as it should reflect the routine of making research results public 

(Collen et al., 2008; Amano & Sutherland, 2013) However, it is neither important for 

explaining completeness nor record density (Fig. II.2.3; Fig. V.2.S3). Conversely, GBIF 

participation emerges as a consistently strong factor determining completeness in DAI. 

Supporting previous suggestions (King, 2002; Ahrends et al., 2011), national research funding 

(gross expenditure on research and development) is strongly positively correlated with 

completeness (Fig. II.2.3). Surprisingly, however, research funding of countries where data-

publishing institutions are situated does not affect inventory completeness in the regions of 

their sampling activity (Supplementary Information: Methods). Finally, publisher size, 

estimated from contributed data volume, only weakly predicts inventory completeness for 

mammals and amphibians, but it has much stronger effects for birds, where the largest data 

contributors are not museums but aggregators of citizen-science observation data (Table 

V.2.S7), pointing to the potential of alternative, non-institution-based ways of producing DAI 
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for certain taxa (see discussions in Hochachka et al., (2012); Jetz et al., (2012a); Beck et al., 

(2013)). 

Most of the strongest limiting factors of completeness affect digitization and mobilization of 

existing data rather than the actual collection of new records in the field. While adequate 

national research funding is vital for producing DAI on local biodiversity, our results suggest 

that funding for university research usually leading to peer-reviewed publications is not 

improving our ability to close information gaps as greatly as direct support for data 

mobilization programs (Fig. II.2.3: ‘Scientific activities’ vs. ‘GBIF participation’). A likely 

reason is that current data-archiving policies (Whitlock, 2011) and academic reward systems 

(Enke et al., 2012) do not favor data-sharing activities. They further suggest that the largest or 

best-funded museums alone are unable to guarantee high inventory completeness in distant 

regions, unless their efforts are backed by supportive local conditions, such as locally 

available research funding, mobilization efforts in local research institutions and national 

commitment to data-sharing. The most effective strategy for closing gaps in DAI may 

therefore lie in supporting mobilization efforts in institutions nearby identified data gaps and 

supporting participation in international data-sharing programs. Funds and specialized 

personnel for data mobilization in developed, often low-diversity countries may be better 

applied to support efforts in countries that lag behind due to lack of expertise or cyber-

infrastructure (Ariño et al., 2011), e.g., through direct partnerships or capacity building 

assistance.  

The need to mobilize more data to increase completeness is obvious: 69-95% of the deviance 

in completeness explained by our minimum adequate models can also be explained by 

differences in record density (Table V.2.S4 a). However, we find that there is much room for 

improving the effectiveness of such mobilization. Theoretically, it would take 3.7M evenly 

sampled records to represent each known species of the three vertebrate groups once in every 

110 km cell overlapping its range, and thus achieve 100% inventory completeness globally at 

that spatial grain. Currently, about forty-two times that many (157M) validated records 

represent only 21.6 % (0.8M) of these unique species-grid cell combinations, demonstrating a 

huge level of informational redundancy concentrated in a few places (Fig. II.2.4). Such 

intensive but localized sampling and data mobilization may benefit local conservation efforts 

as well as many purely scientific endeavors, but surely trades off against global-scale data 

needs, such that gaps in DAI are particularly severe in regions where higher-resolution 

datasets are most needed to support cost-effective progress towards multiple Aichi targets 

(Pereira et al., 2010; Venter et al., 2014). Strategic mobilization of data sources that likely 

contain many missing species-grid cell combinations could prove effective in quickly closing 

gaps and reducing geographical bias in global DAI. This in turn would facilitate robust, fine-
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grain distribution data products from SDMs or downscaling models (Keil et al., 2013) for a 

greater and geographically more representative sample of species than previously possible 

(Boitani et al., 2011) and could immediately support various Aichi targets (Pereira et al., 

2013). Examples include land-use planning to minimize biodiversity loss (target 7), creating 

species lists for protected areas and improving global reserve networks (target 11), 

safeguarding threatened species (target 12) and mapping and securing associated ecosystem 

services (target 14). Targeting sufficiently recent data sources would furthermore create strong 

synergies with keeping conservation assessments up-to-date (Rondinini et al., 2014). As a 

concrete example of potential conservation impacts, GBIF-facilitated records were recently 

used in the legal listing of five species of sawfish (Pristidae) under the US Endangered 

Species Act(Department of Commerce. National Oceanic and Atmospheric Administration, 

2014). Increased access to occurrence information alone cannot ensure sound application nor 

conservation outcomes, but it can facilitate sound, data-driven decision-making (Guisan et al., 

2013), which in many parts of the world is currently impossible. We therefore argue that data 

mobilization efforts should be coordinated and strive to maximize return-on-investment for 

global conservation applicability. 

 

 Figure II.2.4. Redundancy of information in 157M 
globally mobilized point records that constitute ‘digital 
accessible information’ of species distributions. The 
histogram shows the frequency of different degrees of 
information duplication (duplicated species-grid cell 
combinations) at the 110 km grain. Theoretically, and 
under ideal sampling, representing each of 3.7M 
species-grid cell combinations by one record would 
achieve 100% inventory completeness at that spatial 
grain. 

 

Immediate opportunities for addressing gaps in DAI are most apparent at the national level: 

We find that even after controlling for all investigated factors (which explain 92.1–97.2% of 

cross-national variation), country identity still explains a significant portion of inventory 

completeness (2.4–7.1% of D²; Table V.2.S4 b), pointing to an important role of country-

specific political, legal, historical, linguistic or cultural factors (Supplementary Information: 

Methods 1.D). If countries were equally committed to providing access to their biodiversity 

information, as agreed upon by CBD signatories, completeness should be mainly limited by 

available financial resources. However, there is only a moderate relationship between country-

level completeness and per capita gross domestic product (r²=0.34, P<0.001; Fig. II.2.5 A, B) 

or total conservation spending (Waldron et al., 2013; r²=0.16, P<0.001). Notably, several 

large emerging economies including Brazil, China, India, Indonesia, Russia, or Turkey lag 



II. Research chapters 

62 

behind (Fig. II.2.5 B, C, Table V.2.S6), which is worrying given increasing pressure on their 

biodiversity from rising global and domestic consumption (Naidoo & Adamowicz, 2001; 

Lenzen et al., 2012). Success in building an adequate information basis for global biodiversity 

conservation and thus globally informed policies for environmental sustainability will depend 

on their support, and may be determined by political rather than economic factors. For 

example, despite the large mobilization needs due to its megadiverse biota, Mexico has a 

leading role in biodiversity informatics due to early political support for establishment of a 

national biodiversity program (CONABIO, 2012). Data-rich institutions in economically 

powerful countries like Brazil, China and Russia (Boakes et al., 2010; Feeley & Silman, 

2011b; Yang et al., 2014), which together account for 31% of missing species-grid cell 

combinations (Fig. II.2.5 C, Table V.2.S6), seem particularly well-poised to contribute 

significantly to globally accessible species distribution information.  

 

 

Figure II.2.5. Gaps in digital accessible 
information of biodiversity distributions at 
the country level. A) Country-level 
inventory completeness, measured as the 
percentage of the total unique species-grid 
cell combinations in each country that are 
covered by GBIF records. B) Country-level 
inventory completeness in relation to per 
capita gross domestic product (in purchase 
power parity dollars, PPP); r2=0.34, 
P<0.001. Font size of country ISO codes is 
proportional to the total number of unique 
species-grid cell combinations that need to 
be recorded in each country to reach 100% 
inventory completeness at the 110 km grain. 
Font color is for geographical reference 
(compare inset map). Countries mentioned 
in the main text: BRA – Brazil, CHN – 
China, IDN – Indonesia, IND – India, MEX 
– Mexico, RUS – Russia, TUR – Turkey. C) 
Share that each country has in the unique 
species-grid cell combinations that are 
missing globally from a complete inventory 
at the 110 km grain. 

 

As countries like Brazil recently announced intentions to improve and unlock their data store 

and existing national programs (e.g., speciesLink; http://splink.cria.org.br/) will be integrated 

into global DAI, information gaps and priorities may rapidly shift. More than current 

snapshots, tools for ongoing re-evaluation are therefore needed. The Map of Life project (Jetz 

et al., 2012a) now provides such a tool (see http://patterns.mol.org/completeness) which may 
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help researchers to assess or account for data bias (Rocchini et al., 2011) and to monitor 

progress in data mobilization (Tittensor et al., 2014).  

This global cross-taxon assessment represents a first in a number of steps required for more 

effective understanding and confrontation of information gaps on biodiversity distributions. 

While terrestrial vertebrates represent only c. 1.6% of described species (Costello et al., 

2013), addressing the factors that emerged as important across vertebrate taxa may hold the 

greatest promise for closing gaps for biodiversity in general. Vitally, and confirmed by the 

strong taxon-dependence of our results, assessments of distribution information need to be 

extended to more species-rich groups such as fishes, plants and invertebrates (see e.g. 

(Soberón et al., 2007; Ballesteros-Mejia et al., 2013; Sousa-Baena et al., 2014a) for regional 

assessments)). Comparing ratios between mobilized record volumes and described species 

numbers suggests that gaps in DAI may be one to three orders of magnitude more severe in 

those groups (average records per species: tetrapods (31,032 spp.): 6,909; fishes (31,658 spp.): 

347; vascular plants (283,701 spp.): 317; invertebrates (1.38M spp.): 31; numbers of geo-

referenced records from GBIF website, June 2014, species numbers from Costello et al. 

(2013)).  

The number of Aichi targets connected to species distributions indicates that they are a 

particularly essential biodiversity variable (Pereira et al., 2013). In fact, accurate species 

distribution information is a prerequisite for more nuanced conservation strategies targeting 

critical or declining populations, or associated ecosystem services. However, such datasets 

require equally systematic assessments and prioritizations in order to effectively proceed 

towards Aichi target 19 (Supplementary Information: Methods 1.D).  

Rapid biodiversity loss, limited funding, and potential trade-offs with direct conservation 

investments (Grantham et al., 2008) require priorities for future collection and mobilization of 

biodiversity records into DAI. Our assessment highlights potential ways for making 

institution-based data mobilization more effective, but also the limitations of such efforts. 

Point records from museum specimens provide vital information but only represent one of a 

variety of data sources (Jetz et al., 2012a) and their targeted mobilization should be 

complemented by other ways to address biodiversity information needs. Thorough 

biodiversity assessments led by trained field biologists will continue to play an important role 

in the creation of information about as yet un-surveyed, biodiverse areas, while novel 

biodiversity informatics infrastructure can facilitate more rapid integration of expert 

knowledge into DAI (Jetz et al., 2012a). Citizen science projects are rapidly growing and 

poised to provide increasingly valuable records for certain taxa at comparatively low cost 

(Hochachka et al., 2012). Improved reward systems (Enke et al., 2012) as well as new data 

publishing mechanisms and journal requirements (Whitlock, 2011) can incentivize individual 
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data-holders to share biodiversity records. Novel SDM techniques (Dorazio, 2014; Fithian et 

al., 2014; Manceur & Kühn, 2014) and downscaling approaches (Keil et al., 2013) hold 

promise to overcome many of the typical data limitations. Further integration of available 

information and assessments of gaps, along with continued evaluation of effectiveness of DAI 

for conservation needs, are as vital as increased commitment to biodiversity data-sharing by 

political stakeholders, institutions, and individual scientists. With time running out to meet 

CBD targets on biodiversity knowledge, more effective data use and mobilization and a 

cultural shift about data-sharing are urgently needed. 

Methods 

Species distribution data 

We overlaid expert-based extent-of-occurrence range maps for terrestrial birds (excluding 

pelagic feeders; N = 9,712), terrestrial mammals (N = 5,270), and amphibians (N = 6,188) 

with four nested equal-area grids (grain sizes: 110, 220, 440, 880 km) to infer coarse-

resolution species richness patterns. As a representation of international efforts to collect, 

digitize, and share biodiversity records, we compiled a database of nearly 200M records for 

the three groups, aggregated by the Global Biodiversity Information Facility (GBIF). We 

focus on GBIF given that it is by far the largest such effort in geographic and taxonomic 

scope(Edwards, 2000; Graham et al., 2004) and has an intergovernmental mandate to openly 

make accessible data from a worldwide base of data publishers. Data from GBIF represent the 

greatest body of existing DAI on species occurrences, based on centuries’ worth of museum 

specimens, citizen science observations, surveys, literature and other sources. GBIF also has a 

vital role in sharing skills, software, tools, and best practices for biodiversity data use and 

mobilization. Thus, GBIF-facilitated DAI is currently the best available indicator of “shared 

biodiversity knowledge, science base and technologies” as referred to by Aichi target 19 

(Tittensor et al., 2014). To link GBIF-facilitated records with range maps, extensive 

taxonomic standardization was necessary (our approach as well as various filtering and 

validation steps are explained in the SI V.2 Methods). We defined inventory completeness as 

the percentage of expert-opinion species richness documented by mobilized records. We note 

that other DAI sources play vital and often complementary roles in progressing towards Aichi 

targets (Supplementary Information: Methods 1.D). Yet, other datasets may not be shared but 

nevertheless influence regional research and conservation. Thus results here should not be 

interpreted as definite maps of knowledge gaps, but the analyses of drivers are likely 

indicative of factors limiting biodiversity information in other data sources. 
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Geographic and socio-economic drivers of gaps in DAI 

We analyzed relationships of twelve geographic and socio-economic factors with record 

density and inventory completeness. We used three variables to describe the appeal of areas to 

attract collectors: i) Endemism richness (Kier & Barthlott, 2001), i.e., the sum of inverse 

range sizes of all species present in a grid cell, was calculated from the number of 110 km 

cells. ii) To model effects of mountains on record collection, we calculated the topographic 

range in each cell based on a digital elevation model. iii) We modeled the effects of protected 

areas using proportions of land area in grid cells that fall within protected areas of 

International Union for Conservation of Nature categories I-IV. We investigated three aspects 

of accessibility: i) To test for effects of on-ground accessibility, we used a dataset on the time 

needed to travel to cities with a population >50,000 (Nelson, 2008). ii) To model effects of the 

proximity to airports, we created an index based on the locations of >9,300 airports and 

airfields (Partow, 2003). iii) ‘Proximity to institutions’ was expressed as weighted geographic 

proximity of a grid cell to those data publishers that contributed records for the area 

surrounding the cell. Index values are high if the majority of records are contributed by 

geographically close data publishers. We modeled effects of secure conditions using the 

Global Peace Index (Institute for Economics and Peace, 2012), which aggregates information 

on political stability, armed conflicts and levels of public safety. We investigated two aspects 

of international scientific integration: i) To quantify integration into ‘scientific activities’, we 

extracted the H-index for every country based on peer-reviewed papers published in the field 

‘Ecology, Evolution, Behavior and Systematics’ from Elsevier’s Scopus database (covering 

the years 1996-2011), and multiplied it with the proportion of papers resulting from 

international collaborations (see Supplementary Information: Methods). ii) We tested for 

effects of political cooperation with data-sharing networks using the proportion of the land 

area within each grid cell that falls within GBIF-participating countries. We used three 

measures of financial and institutional resources: We estimated financial resources that are 

potentially available for biodiversity research from per capita gross domestic expenditure on 

research and development i) within grid cell-overlaying countries (‘National research 

funding’) as well as ii) in countries where the publishers of records for a particular cell are 

situated (‘Research funding of institutions’). iii) We used record volumes contributed to GBIF 

by different data publishers to estimate institution size. Details on calculation and 

transformation of predictor variables, along with detailed information on the respective 

hypotheses and the limitations of our data sources are in SI V.2 Methods. 
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Statistical methods 

We investigated effects of predictor variables on inventory completeness separately for 

amphibians, birds and mammals at each of the four spatial grains with simple and multiple 

regressions. Specifically, we used non-spatial and spatial generalized linear models with a 

binomial distribution, where completeness enters as a composite variable (‘species covered by 

records’, ‘species not covered but presumed present’) and where differences in species 

richness are automatically accounted for. Spatial models account for residual spatial 

autocorrelation by including a ‘residuals autocovariate’ build from residuals of the non-spatial 

model and an optimized spatial neighborhood structure (Crase et al., 2012). Because of long 

computation times for spatial models, we ran all possible non-spatial models, and re-ran those 

model subsets that would likely be among the minimum adequate spatial models (with ΔAIC 

<10 to the lowest AIC score) as spatial models. We assessed model fits of minimum adequate 

spatial models as the % deviance explained (D²; Table V.2.S3). We investigated interactions 

among variables as well as non-linear effects, but - although many were significant - 

accounting for them did not greatly alter model fit or parameter estimates of main effects in 

preliminary analyses. To maintain as much simplicity as possible given twelve predictor 

variables and twelve separate sets of models (3 taxa x 4 spatial grains), we decided to focus on 

the main effects. We used standardized coefficients (β) of minimum adequate spatial models 

(with the lowest AIC scores) to measure the relative importance of predictor variables. As an 

alternative measure, we used percentages of the sums of squares attributable to each factor, 

based on ANOVAs with a response variable consisting of the AIC scores of all possible 

models and predictor variables coding the presence/absence of each predictor in the respective 

model. For further details and references see SI V.2 Methods. 
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Abstract 

Despite the central role of species distributions in ecology and conservation, occurrence 

information remains geographically and taxonomically incomplete and biased. Numerous 

socio-economic and ecological drivers of uneven record collection and mobilization have 

been suggested, but the generality of their effects remains untested. We develop scale-

independent metrics of range coverage and geographical record bias and apply them to 2.8M 

point-occurrence records of 3,625 mammal species to test 13 putative constraints on data 

availability. We find that data limitations can be linked to species attributes related to 

detection and collection probabilities, such as body size, diurnality, or description date. 

However, species attributes are much weaker predictors of the amount and range coverage of 

available records than range size and shape, and the geography of socio-economic conditions. 

Our results highlight the need to prioritize range-restricted species and to address the key 

socio-economic drivers of data bias in ecological modeling and data mobilization efforts. 

Introduction 

Detailed information on species distributions is fundamental to basic and applied ecology 

(Whittaker et al., 2005; Boitani et al., 2011). Expert range maps have become a key basis for 

many large-scale analyses, but they incur high errors of commission toward finer spatial 

scales and their accuracy varies with species-level ecological and range attributes (Jetz et al., 

2008). Moreover, range maps exist only for few groups of organisms. This makes point 

occurrence records a critical resource for developing distribution datasets for more taxonomic 

groups and at relevant spatial scales (Jetz et al., 2012a). Large amounts of digital occurrence 

records from field observations, museum specimens and other sources have been mobilized 

via international data-sharing networks, most notably that of the Global Biodiversity 

Information Facility (GBIF; Edwards, 2000). While such records represent vital fine-scale 

information on spatial and temporal occurrences of species, severe gaps and biases hamper 

broader application (Rocchini et al., 2011). These data limitations have been mostly studied 

with a focus on geographical assemblages (Soria-Auza & Kessler, 2008; Meyer et al., 2015), 

whereas differences among species received less attention (Cayuela et al., 2009). 

Bias towards species with certain (bio-)geographical, phylogenetic or ecological attributes can 

lead to biased ecological inference (Garamszegi & Møller, 2011) and inefficient conservation 
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(Gonzalez-Suarez et al., 2012). For instance, in comparative studies, species-level bias 

violates the statistical assumptions that missing species occur at random across the entire 

range of relevant dimensions and that data quality (i.e., occurrence information) is constant 

across observations (Garamszegi & Møller, 2011). A better understanding of species-level 

variation in occurrence information is crucial for effectively closing information gaps and for 

developing robust ecological models that can differentiate between true absences of species 

and missing information (Iknayan et al., 2013; Dorazio, 2014). While the reliability of range 

maps in relation to range size and species’ ecology has been assessed (Jetz et al., 2008), 

patterns and drivers of species-level variation in point occurrence information remain largely 

un-investigated. 

Species-level variation and bias in point occurrence information arise from at least three 

different characteristics of available occurrence records: i)  record count per species, the most 

commonly studied and perhaps most intuitive metric (Cayuela et al., 2009; Burton, 2012), ii) 

range coverage, i.e. the degree to which records document a species throughout its entire 

range, and iii) geographical bias, i.e. the non-randomness in records’ representation of 

different range parts. Depending on the research question at hand, bias in these three aspects 

of occurrence information can have different ramifications. For instance, species distribution 

models do not necessarily require high range coverage as long as a minimum number of 

environmentally unbiased records is available (Varela et al., 2014). In contrast, protected area 

gap analyses require high coverage of species ranges, whereas geographical bias is less 

important.  

Many possible drivers of species-level variation in occurrence records have been suggested. 

An often-cited, but rarely tested cause for species-level variation may be that species attributes 

affect detection and collection probabilities. For instance, more records might be available for 

species that are easily detected due to higher abundances (Dorazio, 2007), or because they 

possess specific traits that make them more conspicuous, such as terrestrial foraging behavior 

or diurnal activity (Iknayan et al., 2013). Further, more records might have accumulated for 

early-described species as well as for species that attract more scientific or public interest, or 

for which records are logistically, legally or ethically easier to collect and share (Amori & 

Gippoliti, 2000; Whitlock et al., 2010).  

Besides species attributes, geographical factors could constrain occurrence information. First, 

range geometry, i.e. the size and shape of a range, might affect the likelihood that a given 

range part is close or distant to a given record. Second, socio-economic factors, such as area 

appeal, proximity to research institutions, cooperation with data-sharing networks, and 

financial resources may limit occurrence information by affecting the likelihood that records 

from within a given range are collected, digitized and shared (Meyer et al., 2015). While all 
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above-mentioned factors might drive species-level variation in record count and range 

coverage, within-range geographical bias of records should be driven by range size and 

within-range variation in socio-economic factors (see Box II.3.1).  

Here, we provide the first analysis of global patterns and drivers of species-level variation in 

point occurrence information. We integrated c. 2.8 M geographically and taxonomically 

validated records mobilized via GBIF for 3,625 terrestrial mammal species (c. 72% of all 

extant species) with their expert-opinion range maps. To this end, we developed scale-

independent metrics for range coverage and geographical bias. We first explored 

relationships among the three different aspects of occurrence information – record count, 

range coverage and geographical bias – while accounting for range geometry. We expected 

range coverage to increase with record count and to decrease with geographical bias, range 

size and range shape irregularity. We then tested three major classes of hypotheses about 

constraints on record count and range coverage, namely species attributes, range geometry, 

and socio-economic factors (represented by 13 variables; Box II.3.1). Additionally, we tested 

whether range size and within-range variations in socio-economic factors drive geographical 

bias. We assessed the relative importance of variables at the global scale and additionally at 

the scale of zoogeographical realms. Our work provides the first global assessment of species-

level variation in different aspects of mammalian occurrence information, and the first 

comparison of the relative effects of species-specific, geometric and socioeconomic factors.  

Methods 

Measuring occurrence information 

We overlaid 4,524,585 point occurrence records mobilized via GBIF (retrieved Oct 2012) 

with extent-of-occurrence range maps of 5,057 species of terrestrial mammals (IUCN, 2010). 

Occurrence records provide direct evidence that a particular species occurred at a particular 

geographical point at a specific point in time. In contrast, range maps delimit the geographical 

distribution of known and assumed species occurrences, based on expert interpretation of 

different distribution data types (Jetz et al., 2012a). Range maps overestimate distributions at 

fine scales, but typically provide a less biased view of distributions than occurrence records 

and can serve as geographical reference of likely distributions at coarse scales. We matched 

taxonomies between records and range maps and used range map overlays to validate records 

geographically (see Supporting Information (SI) V.3.1.1). The final, rigorously cleaned dataset 

contained 2,849,058 records for 3,625 species. 
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Box II.3.1 Putative drivers of species-level variation in occurrence information 

Species-level variation in occurrence information (record count, range coverage, geographical bias) may be driven by 
species attributes, range geometry and socio-economic factors. For each of these groups of hypotheses, we first 
provide a brief rationale for including individual factors and then summarize their hypothesized effects. 
 
Species attributes: 

Certain species attributes may drive record count and range coverage because they positively affect species’ 
detectability, popularity or sampling logistics.  
i) Diurnality: Predominantly diurnal species are more likely to be detected (Burton, 2012). 
ii) Body size: Despite the often-cited conspicuousness and appeal of large-bodied species (Knight, 2008; Brooke et 
al., 2014), their lower abundances (Robinson & Redford, 1986), and greater sensitivity to disturbance (Blumstein, 
2006) lead to lower detectability. Furthermore, larger specimens are logistically more difficult to transport and store. 
iii) Foraging stratum: Terrestrial species are more easily detected than arboreal species with standard sampling 
techniques (Chutipong et al., 2014).  
iv) Dietary level: Higher dietary levels (i.e., specialization on high-energy but low-abundance resources) are 
associated with lower abundances (Robinson & Redford, 1986) and larger home ranges (Tucker et al., 2014), resulting 
in lower detectability. 
v) Years since description: Early-described species have had more time to accumulate records. 
vi) Public interest: It is more appealing and easier to attract funding for sampling and data mobilization of species for 
which there is great public interest due to commercial, medicinal, aesthetic, psychological or cultural reasons (Knight, 
2008; Perry, 2010; Tyler et al., 2012).  
vii) Threat status: Despite higher interest for threatened species (Tyler et al., 2012), their often lower abundances and 
smaller ranges lead to lower detectability (Dorazio, 2007) and their threat status prohibits specimen collection. 
Records of threatened species are less often shared to prevent exposing exact occurrences to the public (Whitlock et 
al., 2010).  
We hypothesized record count and range coverage to be positively affected by diurnality, time since description and 
public interest, and negatively by body size, foraging stratum, dietary level, and threat status. We did not expect these 
factors to influence within-range geographical bias.  
 
Range geometry: 

Under geographically non-random sampling, range geometry is expected to affect the likelihood of ranges intersecting 
records.  
viii) Range Size: We expected clusters of sampling locations interspersed with areas of lower record availability. 
Unless records are perfectly clumped, large ranges are bound to intersect with more clusters of sampling locations. 
Under this scenario, species with larger ranges are more likely to have higher record counts and, when controlling for 
record count, lower geographical bias in the representation of different range parts. Conversely, larger range sizes are 
increasingly less likely to achieve high range coverage.  
ix) Range shape irregularity: The same natural constraints that cause non-uniform dispersal and elongated ranges, like 
rivers, coast lines and mountain ranges (Pigot et al., 2010), have historically determined human transportation routes 
(Rodrigue et al., 2006). Hence, record counts should be higher for elongated ranges, because researchers’ study areas 
and species’ ranges are more likely to intersect Range coverage, however, should be lower for more elongated or 
fragmented ranges, as random points in such ranges would be increasingly less likely to be close to a given record.  
We hypothesized that both range size and range shape irregularity positively affect record count, and negatively affect 
range coverage. We further hypothesize that when controlling for record count, geographical bias is negatively 
correlated with range size.  
 

Socio-economic factors: 

We considered four socio-economic factors that are particularly important for mammalian assemblage-level 
occurrence information (Meyer et al., 2015).  
x) Area appeal: Biologists prefer to work in areas with many rare or range-restricted species (Soria-Auza & Kessler, 
2008). 
xi) Proximity to research institutions: Species close to researchers’ home institutions are more likely to be well-
sampled, due to easier logistics of carrying out multiple field surveys at different sites. Areas remote from research 
institutions are visited more occasionally, making it likely that rare species evade detection (Dennis & Thomas, 2000). 
xii) GBIF participation: Participation in international data-sharing networks enhances data mobilization (Yesson et al., 
2007) .  
xiii) Financial resources: Financial resources for data collection and mobilization, associated with research or 
conservation programs, limit record availability for species in a given country (Soberón & Peterson, 2004). 
We hypothesized record count and range coverage to be positively influenced by favorable socio-economic 
conditions averaged within ranges, and geographical bias to be positively related to within-range variation in these 
factors. 
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In addition to simple record count, we then used these two data types to develop two response 

metrics for occurrence information: ‘range coverage’ and ‘geographical bias’. Range 

coverage describes the detail with which a species’ range is documented by available records. 

Geographical bias, in contrast, describes the level of non-randomness with which records 

represent different range parts. Both metrics are based on the great-circle distance (in km) of 

every one of 1000 random points placed across the range map to its geographically closest 

occurrence record (i.e., the record ‘covering’ that range part). Parts of ranges with random 

points close to their nearest records can be considered ‘well-covered’ (Fig. II.3.1, Fig. 

V.3.S1).  

Range coverage. Range coverage is the negative mean minimum distance (MMD) between 

1000 random points and n available records, such that less negative values corresponded to 

higher range coverage: 

Range coverage = – MMD = – 1

1000
∑ 𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑅𝑃𝑖1000

𝑖=1 , 

where MinDistRPi is the minimum distance of the i-th random point to its nearest record (Fig. 

II.3.1 for examples; Fig. V.3.S1). 

Geographical bias. To quantify geographical bias in records’ representation of different 

range parts, we related the MMD to a null model of the potential MMD under random 

sampling. We randomly placed n (number of actually available records) ‘pseudo records’ 

across the range 1000 times, and calculated MMD each time. Geographical bias is then the 

standardized effect size, calculated as the difference between observed MMD and null model 

mean divided by the null model standard deviation:  

Geographical bias = MMD𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑−mean (MMD𝑁𝑢𝑙𝑙𝑀𝑜𝑑𝑒𝑙)

sd (MMD𝑁𝑢𝑙𝑙𝑀𝑜𝑑𝑒𝑙)
. 

Higher geographical bias scores result if sampling locations are highly clumped and 

concentrated in one range part, as well as from high levels of information duplication, e.g. 

large record counts from exactly the same sampling locations (Fig. II.3.1, Fig. V.3.S1).  The 

large number of random points ensures that even large ranges are appropriately represented 

and that commission errors due to range map inaccuracies do not greatly affect range 

coverage and geographical bias metrics. 

Predictors of occurrence information 

We focus here on predictors of record count and range coverage but provide further details in 

the SI on models of geographical bias (SI V.3.1.4), as well as on models of whether species 

have any mobilized records (SI V.3.1.3). We tested three major classes of hypotheses related 
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to species attributes, range geometry, and socio-economic factors, which were represented by 

13 variables as potential drivers of record count and range coverage (Box II.3.1; see SI 

V.3.1.7 for information on omitted variables):  

Species attributes: i) We estimated diurnality by assigning the activity period of each species 

on an ordinal scale based on data in Wilman et al. (2014): 1=nocturnal only; 2=nocturnal and 

crepuscular; 3=crepuscular only (active only around dusk/dawn); 4=nocturnal, crepuscular 

and diurnal; 5=crepuscular and diurnal; 6=diurnal only. Data on ii) adult body mass (in g) and 

iii) dietary level was also taken from Wilman et al. (2014). For the latter, we first grouped ten 

diet categories into an ordinal scale: 1=low-nutrition/high-abundance plant matter (e.g. leaves, 

wood); 2=high-nutrition/low-abundance plant matter (e.g. fruits, seeds, nectar); 3=animal 

matter (e.g. vertebrates, invertebrates and carrion). We then calculated weighted averages of 

dietary level scores, such that an omnivore with a diet composed of 25% leaves, 25% fruit and 

50% invertebrates was assigned a score of 2.25. We assigned categorical data from Wilman et 

al. (2014) on iv) main foraging stratum on an ordinal scale: 1=terrestrial (including bats that 

forage close to the water surface); 2=scansorial (climbing); 3=arboreal; 4=aerial. We 

calculated v) time since description (in years until 2014) from dates in species author 

information (IUCN, 2010). vi) public interest for species was estimated based on the 

prominence of species names in internet activity, represented by numbers of Google hits for 

verbatim scientific names (as of November 2013). As an estimate of vii) threat status, we 

assigned threat categories from the International Union for the Conservation of Nature’s Red 

List (IUCN, 2010) on an ordinal scale: 1=LC, 2=NT, 3=VU, 4=EN, 5=CR, 6=EW. 

Range geometry: To model effects of viii) range size, we used the area of the original expert 

range map polygons (in km²). Because existing methods to quantify range shape are either 

grain-size dependent or only focus on specific shape aspects (usually elongation; compare 

Pigot et al. (2010)), we developed a new metric of ix) range shape irregularity: the ratio of the 

mean distance between 1000 random points within the range to the mean distance between 

1000 random points within a circle of the same area (see Fig. II.3.1 for examples). Ratios 

increase from 1 (perfect circle) as shapes become more elongated or fragmented. 

Socio-economic factors: To estimate x) area appeal to researchers, we calculated the mean 

mammalian endemism richness score across range map-overlapping 110-km grid cells. 

Endemism richness is the sum of inverse range sizes of all species present in a cell (Kier & 

Barthlott, 2001). To calculate the xi) proximity of a species’ range to research institutions, we 

first identified institutions that could have potentially contributed records for that species 

because they have performed surveys in range-overlapping countries (inferred from sampling 

locations of all their contributed mammal records). Proximity to institutions was then the 

mean inverse great circle distance of 100 random points placed across that species’ range to 
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those institutions, weighted by the institutions’ relative contribution to all mammal records in 

range-overlapping countries:  

108
* ∑ (

RelProp𝑖

D𝑖
𝑛
𝑖=0 ), 

where RelPropi is the relative contribution of the i-th publisher to records from the range-

overlapping countries and Di its distance (in km) to the random point. We calculated xii) GBIF 

participation of range-overlapping countries as the proportion of a species’ range that falls 

within GBIF-participating countries (as of 2012). We estimated xiii) locally available 

financial resources from conservation funding data (Waldron et al., 2013). Large, species-rich 

countries require more resources to attain high coverage for all species (Meyer et al., 2015). 

We therefore first divided country-level conservation funds by the country’s total area of 

mammal ranges to calculate a country’s available resources per species range size to-be-

covered (in million USD/10,000 km² range size). For each species, we then calculated the 

mean available resources across all range-overlapping countries, weighted by relative overlap.  

Statistical modeling 

First, we modeled effects of record count, geographical bias, and range geometry (size and 

shape) on range coverage. Then, we used species attributes, range geometry and socio-

economic factors to model record count and range coverage. Finally, we modeled effects of 

range size and within-range variation in socio-economic factors on geographical bias. We 

modeled record count using generalized linear models (GLM) with a quasi-Poisson 

distribution to account for over-dispersion (O’Hara & Kotze, 2010). We modeled range 

coverage and geographical bias with ordinary least squares models (OLS). 

Preliminary tests for taxonomic bias yielded strong effects of species’ order memberships on 

record count, range coverage and geographical bias (also weaker effects of family 

memberships; memberships following IUCN (2010); see SI V.3.1.2, Table V.3.S2 A). We 

therefore included ‘mammal order’ as a covariate in all models. We inspected model residuals 

for normality and autocorrelation, using global Moran’s I for spatial autocorrelation (Dormann 

et al., 2007), and a phylogenetic adaptation of Moran’s I for phylogenetic autocorrelation 

(Abouheif, 1999) based on the phylogeny in Fritz et al. (2009). These tests revealed that 

further accounting for phylogenetic or spatial non-independence was not necessary (Fig. 

V.3.S3, for details see SI V.3.1.6). We used multi-model inference (Burnham & Anderson., 

2002) to assess model support and relative importance of predictor variables by running all 

possible model subsets and performing model selection based on Akaike’s Information 

Criterion (AIC) for OLS and quasi-AIC for GLM. After assessing the relative support of all 

predictor variables, we calculated fractions of total explained variation in record count and 
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range coverage attributable uniquely and jointly to the three major hypotheses using variation 

partitioning  based on the respective minimum adequate models (Peres-Neto et al., 2006). 

We log10-transformed and z-transformed continuous predictor and response variables to 

improve linearity and to obtain standardized coefficients. We used negative log10-transformed 

MMDs to model range coverage, such that variables causing high range coverage yield 

positive effects. We limited collinearity by only including variables with generalized variance 

inflation factors ≤10 (Dormann et al., 2013; Table V.3.S4-5). We modeled record count, 

range coverage and geographical bias at the global scale and separately for each of six 

zoogeographical realms (Olson et al., 2001). We assigned species to realm-scale models if 

their ranges overlapped the realm by >70%. 

All analyses were performed in R 2.15.2–3.1.2 (R Core Team, 2014). 
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Results 

Patterns in occurrence information 

3,625 or 72% of the 5,057 mammal species considered had at least one validated record (see 

Fig. V.3.S2, SI V.3.1.3 for models of whether species have any records). Among these, record 

count varied by five, range coverage and geographical bias by four orders of magnitude, 

respectively (Fig. II.3.2 A-C, Table V.3.S1). Globally, the mean record count per species was 

563 (SD=3,073, median=13, Table V.3.S1). Range coverage averaged -205.5 km across 

species (SD=375.5, median=-199). 

For all three aspects of occurrence information, we observed significant variation between 

higher taxonomic levels (Table V.3.S1, ANOVA results in Table V.3.S2 A). Among the more 

speciose mammal orders, primates stood out for below-average record counts, and carnivores 

for below-average range coverage scores. High record counts and range coverage scores 

characterized Australasian marsupials (Fig. II.3.2 D-E), which also had above-average 

geographical bias scores (Fig. II.3.2 F, Table V.3.S1). Phylogenetic and spatial 

autocorrelation analyses attributed this taxonomic bias in occurrence information mainly to a 

better representation of species living in certain regions, rather than to a strong phylogenetic 

component (SI V.3.1.6, Fig. V.3.S3). 

 

 

 

 

 

 

 

Figure II.3.1. Range geometry and occurrence information for eight selected mammal species. Pale colours denote 
extent-of-occurrence range maps (IUCN, 2010), brightly colored dots indicate locations of GBIF-facilitated 
occurrence records. Examples show global variation in record count, range coverage by those records, and 
geographical bias in how records represent different range parts. Comparing Puma concolor with Sciurus vulgaris 
demonstrates how substantially fewer records can cover a larger and more irregularly-shaped range better, if less 
geographically biased. The negative geographical bias score for Capra pyrenaica indicates more even coverage 
than under random sampling. The New Caledonian bat Nyctophilus nebulosus is highly range-restricted; therefore 
six records suffice for extremely high coverage. In contrast, random points within the range of Bos gaurus are on 
average 1,035 km from the closest one of just four mobilized records. See Materials and Methods for further 
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Accordingly, occurrence information differed more strongly among geographical realms (Fig. 

II.3.2 G-I) than among mammal orders (Fig. II.3.2 D-F, Table V.3.S1, and ANOVA results: SI 

V.3.1.2, Table V.3.S2 B). The Nearctic, northern Neotropical, western and northern 

Palaearctic and Australasian realms had mostly species with above-average record counts, 

whereas Madagascar and the south-eastern Palaearctic and Indomalayan realms had mostly 

below-average species (Fig. II.3.2G). High record counts often coincided with high 

geographical bias and range coverage scores. However, high record counts did not coincide 

with high range coverage in the Palaearctic realm, where records were extremely biased 

towards Europe and therefore covered most species’ ranges only poorly (Fig. II.3.2 G-I). 

Species without GBIF records had highest concentrations in Southern China and South-East 

Asia (Fig. V.3.S2). 

 

 

 

 

 

 

 

 

 

 

 

Figure II.3.2. Species-level variation in record count, range coverage and geographical bias for 3,625 mammal 
species. Shwon are frequencies of scores of A) record count, B) range coverage and C) geographical bias across 
global mammal species, median scores for each mammal order (D-F) and for each 110 km x 110 km grid cell (G-
I). Phylograms in D-F based on Fritz et al. (2009). Colored areas of mammal orders have widths proportional to 
their species number. Labels in D) highlight the six most speciose orders. Silhouettes are for visual orientation, 
those for Afrotheria and Marsupialia shown in E-F because of limited space. Occurrence information metrics are 
calculated across the entire range of a species. Consequently, values for a particular grid cell in G-I show what 
occurrence information is available for the species occurring there, not for the specific region. Color scales are 
calibrated on grid-cell percentiles and identical in A/D/G, B/E/H, and C/F/I. Most species have few records (mostly 
cooler colors in D), yet most species also have relatively small ranges which often have higher range coverage 
scores (warmer colors in E).  

explanations.  
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Range coverage was strongly positively correlated with record count, negatively with 

geographical bias and furthermore strongly constrained by range geometry (Fig. II.3.3, Table 

V.3.S3). These effects appeared general across global and realm-scale models (Fig. II.3.3) and 

together accounted for 73-89% of inter-specific variation in range coverage (Table V.3.S3). 

Furthermore, record count was strongly positively correlated with geographical bias (rS=0.62, 

P<0.001). 

 

Figure II.3.3. Effects of record count, geographical bias and range geometry on range coverage. Partial residuals 
show effects of A) record count, B) geographical bias, C) range size and D) range shape irregularity on range 
coverage while controlling for all other variables in the global model. Partial residuals refer to the relationship at 
the global scale. Partial fits of global and realm-scale models are indicated by different colors. All variables were 
log10-transformed and z-transformed (see Table V.3.S3 for details). 
 

Predictors of occurrence information 

Record count and range coverage were well-predicted by a combination of species attributes, 

range geometry and socio-economic factors, which explained 44-86% of the variation 

depending on geographical focus (Fig. II.3.4). All 13 predictor variables showed at least weak 

effects in some of the models (Fig. II.3.4, Table V.3.S4). Numbers of variables retained in 

minimum adequate models varied between 5 (record count and range coverage in the 

Palaearctic model) and 12 (range coverage in the global model). Also, the variation in 

species-level geographical bias explained by range size and within-range variation in socio-

economic factors varied substantially with geographical focus (Fig. II.3.5, Table V.3.S5, SI 

V.3.1.4) and most variation in geographical bias could be explained by the models in 

zoogeographical realms with large numbers of mobilized records (partial R²adj: Nearctic: 0.24, 

Palaearctic: 0.24, Australasian: 0.44). 

Species attributes overall showed only weak effects on record count and range coverage (Fig. 

II.3.4, Tables V.3.S3). Body mass and time since description showed relatively consistent 

negative and positive effects, respectively, across global and realm-level models. Positive 

effects of public interest emerged as relatively important based on sums of QAIC/AIC 
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Figure II.3.4. Results from global and 
regional models of record count and 
range coverage for 3,625 mammal 
species. Effects on record count were 
tested in multiple generalized linear 
regression models with a quasi-Poisson 
distribution, those on range coverage in 
multiple ordinary least squares models. 
All possible model subsets were ranked 
based on QAIC/AIC scores; results are 
shown for the minimum adequate 
model. Arrow and bubble color denotes 
direction of expected and observed 
predictor-response relationships, 
respectively. Bubble size represents 
relative importance of variables, 
assessed by two different metrics: i) 
standardized coefficients of the 
minimum adequate models (GLM β 
and OLS β), and ii) sums of QAIC/AIC 
weights (∑QAICw and ∑AICw) across 
all model subsets. Partial adjusted 
deviance explained (D²) and partial 
adjusted variance explained (R²) have 
effects of the covariate ‘mammal order’ 
removed (Peres-Neto et al., 2006). For 
details on hypotheses, methods, and 
results, see Box II.3.1, Supporting 
Information, Table V.3.S4. 

weights. Threat status, diurnality, dietary level and foraging stratum showed inconsistent 

effects. Strong effects for these factors only emerged in the Afrotropical, Australasian, 

Neotropical, and global and Neotropical models, respectively (Fig. II.3.4). 

 

 

 

Range geometry showed very strong effects on occurrence information. Range size 

consistently emerged as an important factor, with strong positive effects on record count and 

negative effects on range coverage (Fig. II.3.4) and geographical bias in the global and 

Neotropical models (Fig. II.3.5). Range size alone explained 7-38% of the variation in record 

counts, and 26-64% in range coverage (inferred from simple regressions). Range shape 

irregularity was an important constraint of range coverage, but only had minor positive effects 

on record count in the global and Australasian models (Fig. II.3.4, Table V.3.S4). 



3. Drivers of Species Variation in Occurrence Information 

81 

Figure II.3.5. Results from global and regional models 
of geographic bias for 3,625 mammal species.  Effects 
were tested in multiple ordinary least squares models. 
All possible model subsets were ranked based on AIC 
scores; results are shown for the minimum adequate 
model (with AIC=0). Two metrics (cv and rP) of 
within-range geographical variation were used (details 
in SI 1.4). Arrows, and bubble colors and sizes are as 
in Fig. 4; relative importance of predictors assessed by 
two metrics: i) standardized coefficients of minimum 
adequate models (OLS β), and ii) sums of AIC weights 
(∑AICw) across all model subsets. Because 
geographical bias is highly correlated with record 
count, effects were tested with log10-transformed 
record count and mammal order included as fixed 
covariates. Partial adjusted variance explained (R²) has 
effects of covariates ‘mammal order’ and ‘record 
count’ removed (Peres-Neto et al., 2006).  

Socio-economic factors showed strong positive effects, particularly for range coverage, both 

from sums of QAIC/AIC weights and standardized coefficients (Fig. II.3.4). However, the 

strength of effects differed substantially between global and realm-scale models; and some 

noteworthy discrepancies emerged between effects on record count and range coverage. For 

instance, in the Nearctic and Palaearctic realms, GBIF participation greatly limited range 

coverage but not record count. Some significant negative effects emerged: for record count 

those of area appeal and financial resources in the Australasian and those of proximity to 

institutions in the Palaearctic, and for range coverage those of GBIF participation in the 

Afrotropical model. Relatively strong positive effects on geographical bias emerged for 

within-range variation in proximity to institutions in the Palaearctic and Australasian, GBIF 

participation in the Palaearctic, and available financial resources in the Neotropics (Fig. 

II.3.5).  

Variation partitioning confirmed that more variation in record count and range coverage was 

uniquely explained by geometry and socio-economic factors than by species attributes (except 

for record count in the Neotropical model, Fig. V.3.S4). The bulk of modeled variation in 

record count and range coverage potentially explained by species attributes was also 

explained by either range geometry or both range geometry and socio-economic factors (Fig. 

V.3.S4 B). 
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Discussion 

Our analyses revealed strong species-level bias in globally mobilized mammal occurrence 

information, with record counts, range coverage and geographical bias scores differing 

among species by four to five orders of magnitude. A substantial proportion of mammal 

species (28%) had no GBIF records, and large parts of most mammal ranges were several 

hundred kilometers away from the closest record that provides direct evidence of occurrence, 

demonstrating considerable uncertainty regarding fine-scale distributions.  

Global species-level bias appears to be largely a consequence of geographical data bias to 

North America, Australia and Western Europe (Meyer et al., 2015). As expected, range 

coverage was primarily a function of record count relative to range size (Fig. II.3.3). 

However, even very high record counts only yield low range coverage scores if those records 

are geographically biased towards one range part, as is the case in many widespread 

Palaearctic species. Unsurprisingly, given the geographically aggregated and highly 

duplicated fashion in which occurrence information is collected and mobilized (Meyer et al., 

2015), record count itself was strongly positively correlated with geographical bias, and 

regions and mammal orders with well-sampled species often coincide with high geographical 

bias scores.  

 

Species attributes 

Multiple regression and variation partitioning analyses revealed a surprisingly minor role of 

species attributes in shaping occurrence information, although all variables that captured 

species attributes received limited support from multi-model inference. The most important 

species attribute was body mass, with relatively consistent negative effects on record count 

and range coverage. The poorer representation of large-bodied species, including primates 

and carnivores, might contradict such species’ prominence in the scientific literature (Brooke 

et al., 2014), trait datasets (Gonzalez-Suarez et al., 2012) and monitoring data (Burton, 2012). 

A plausible explanation is that logistic difficulties in collecting and storing large specimens do 

not apply to less invasive field research. This points to a great potential for mobilizing 

occurrence information for underrepresented species from datasets and literature that were 

originally generated for other purposes (Jetz et al., 2012a).  

An alternative reason for negative effects of body mass might be that small-bodied mammals 

have higher abundances which lead to higher detectability. Surprisingly, however, this 

abundance hypothesis is otherwise not supported: dietary levels, an indicator of abundances 
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particularly when controlling for body size and habitat (Robinson & Redford, 1986), 

consistently showed weak effects (see also SI V.3.1.5). Using population density as a more 

direct measure of abundance for a subset of species also failed to support that hypothesis: 

there was only a weak positive relationship with record count and no effect on range 

coverage (see SI V.3.1.5). Traits associated with conspicuousness also failed to support the 

detectability hypothesis (Iknayan et al., 2013) as both diurnality and foraging stratum showed 

only weak effects, contrasting results from regional studies (Burton, 2012; Chutipong et al., 

2014).  

More consistent support accrued for the hypotheses that more records have accumulated for 

early-described species, and that species of public interest are more likely to have mobilized 

records (Tyler et al., 2012). Against our expectation, we did not find a clear effect of current 

threat status. Scientific interest in threatened species (Tyler et al., 2012) might be counter-

balanced by legal or ethical impediments to specimen collection and data sharing (Whitlock et 

al., 2010). While we cannot rule out a stronger role of species attributes at smaller scales, they 

are clearly not a major driver of species-level variation in range-wide mammal occurrence 

information.  

 

Range geometry 

In contrast to species attributes, range geometry had very strong effects on occurrence 

information. Range size was the single most important predictor, with a strong positive effect 

on record count and a strong negative effect on range coverage. At the global and Neotropical 

scale, range size was also an important predictor of geographical bias. Range shape 

irregularity was another important constraint to range coverage. These results support the 

notion that while large ranges are bound to overlap with more sampling locations (compare 

Garamszegi & Møller (2012)), large, irregular-shaped ranges constrain the detail with which a 

given number of records can cover a range. A few well-placed records can provide a high 

degree of range coverage for small-ranged species that is hardly attainable for large-ranged 

species. However, with a mean range coverage of -102km (median=-55km), even the lower 

range-size quartile of species did not provide the spatial detail needed for most conservation 

applications (typically sub-25km, Boitani et al. (2011)). Furthermore, occurrence records that 

could potentially be used in models to refine information were disproportionately scarcer for 

species in the lower range-size quartile (mean record count=23, median=0) compared to all 

species (mean record count=563, median=13). Most small ranges appeared better-covered not 

because of a detailed representation with records, but simply because any record within the 

range was automatically closer to any part within the range. 
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Socio-economic factors 

Most key socio-economic drivers of assemblage-level occurrence information (Meyer et al., 

2015) also drive species-level information, reinforcing the need to address these factors to 

create an effective global data basis of species distributions. Mean endemism richness, used as 

a proxy for area appeal, had the most consistent effect (Soria-Auza & Kessler, 2008). In 

conjunction with clear positive effects of range size on record count, this demonstrates that 

despite increased collecting activity in endemism-rich areas, sampling to date has not resulted 

in better representation of range-restricted species in those regions. Consistent with previous 

suggestions, proximity to institutions (Dennis & Thomas, 2000), GBIF participation (Yesson 

et al., 2007) and locally available financial resources (Soberón & Peterson, 2004) strongly 

limit species-level occurrence information, but we found that the importance of these factors 

differed substantially among realms. 

Such realm-specific model differences demonstrate that different factors influence occurrence 

information in different regional contexts. For instance, the negative effect of area appeal on 

record count in Australasia was contrary to our expectation but has a plausible explanation: 

data collection and mobilization in endemism-rich northern Australasian countries (e.g. 

Solomon Islands, Papua New Guinea, East Timor) is in its infancy, whereas Australia has 

mobilized large numbers of records for most mammals, including those living in 

comparatively endemism-poor regions (Meyer et al., 2015). As another example, most 

Palaearctic species have ranges that cover both non-GBIF-participating Asian countries and 

extremely data-rich Western or Northern European countries, causing strong effects of GBIF 

participation on range coverage and geographical bias but not on record count. Similarly, 

geographical bias in the Palaearctic realm is mainly driven by strong variation in the 

proximity of different parts of species’ ranges to data-contributing institutions (Fig. II.3.5). 

These results show that considering the spatial extent and geographical focus of analyses is 

crucial for understanding bias in occurrence information. 

 

Implications and conclusions 

Our results have three major implications. First, species without records are not randomly 

distributed across orders and regions, nor is quality of available occurrence information 

constant across species. Without careful consideration of these biases, ecological models that 
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compare across species and include occurrence information violate statistical assumptions, 

potentially causing biased inference (Garamszegi & Møller, 2011). 

Second, information gaps are particularly severe for range-restricted mammals, where detailed 

information would be urgently needed to confront future extinction risk (Fritz et al., 2009; 

Boitani et al., 2011). Data collectors, curators and observation programs should focus on 

further mobilizing data on  range-restricted and threatened species to meet future conservation 

data needs (Cayuela et al., 2009; Hermoso et al., 2013).  

Third, conventional species distribution modeling cannot provide a general remedy, due to 

high spatial pseudo-replication of records combined with poor spatial coverage. Even the 37% 

of represented mammals that have between 50 and 200 records, an often-cited range of 

minimum model requirements (Boitani et al., 2011), typically have much fewer unique 

sampling locations (median=17), and a relatively low range coverage (median=-207 km). 

Modern hierarchical models can overcome many of these problems by explicitly incorporating 

models of site-specific survey effort or species-specific detectability (Iknayan et al., 2013; 

Dorazio, 2014). As biases in mobilized occurrence information are mainly driven by 

geographical rather than species-specific factors, controlling for these biases by incorporating 

their site-specific socio-economic drivers may offer the most promising avenue for improving 

models.  

Global point records on mammal distributions are rife with large-scale geographical and 

taxonomic gaps and biases, hampering species distribution modeling, conservation 

prioritization and other basic and applied research. All the while, expert range map 

information remains limited in spatial scale at which it can supplement (Jetz et al., 2012a). To 

improve the data basis for such applications, the key socio-economic impediments to data 

availability need to be addressed, e.g. by prioritizing data mobilization in institutions near data 

gaps and fostering cooperation with data-sharing networks (see discussion in Meyer et al. 

(2015)). Researchers who collect or mobilize new occurrence information should consider 

possible synergies with global data priorities, e.g. through focusing on threatened, range-

restricted or otherwise understudied species. Information metrics such as those developed for 

this study should be incorporated into online tools to allow researchers and funding agencies 

identify priority species for improving information. In the meantime, ecological models that 

account for present data limitations by explicitly incorporating the socio-economic drivers of 

data collection and mobilization could be a way of drawing improved inferences from 

accessible occurrence information.  
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Introduction 

Detailed information on the species distributions is crucial for answering central questions in 

ecology (Brown et al., 1996), evolutionary biology (Holt, 2003) and biogeography (Lomolino, 

2004). Such information is also necessary for the effective allocation of conservation 

resources (Ferrier, 2002; Venter et al., 2014). In particular, many questions require 

distribution information over broad spatial extents and at fine spatial grains, for instance, to 

inform conservation prioritization at scales that match land-use changes and management 

options (Boitani et al., 2011). Similarly, high temporal coverage of distribution datasets is 

required to study species’ responses to environmental change (Boakes et al., 2010), and to 

inform policy-relevant indices of biodiversity change (Butchart et al., 2010). Such detail must 

come directly from field data (Robertson et al., 2010), or from species distribution modeling 

(Guisan & Thuiller, 2005) or downscaling approaches (Keil et al., 2013). 

Huge numbers of occurrence records from preserved specimens, field observations, literature, 

and other sources have been mobilized via international data-sharing networks, most notably 

that of the Global Biodiversity Information Facility (GBIF; Edwards (2000)). Such records 

provide the primary information on the taxonomic, geographical and temporal dimensions of 

species distributions, as they provide direct evidence that particular species occurred at 

particular locations at particular points in time (Soberón & Peterson, 2004). GBIF-facilitated 

records represent by far the largest share of species occurrence information that is both digital 

and easily accessible in a standard format (hereafter referred to as digital accessible 

information (DAI); originally referred to as DAK in Sousa-Baena et al. (2014a)). 

Notwithstanding the increasing accessibility of occurrence information, global knowledge of 

species distributions remains extremely limited, a situation termed the ‘Wallacean shortfall’ 

(Lomolino, 2004). Most taxa and regions lack large-extent, fine-grain datasets, and existing 

information is often scattered across multiple sources (Jetz et al., 2012a). Moreover, even 

available information is prone to many uncertainties arising from ambiguous scientific names 

(Jansen & Dengler, 2010), imprecisely geo-referenced sampling locations (Rocchini et al., 

2011) and old age of many record (Ladle & Hortal, 2013). Finally, because most occurrence 

records were collected opportunistically (Pyke & Ehrlich, 2010; ter Steege et al., 2011), they 

inherit taxonomic, geographical and temporal biases (Nelson et al., 1990; Dennis & Thomas, 

2000). These biases hamper many important applications, including species distribution 

modeling (Guisan & Thuiller, 2005), macroecological analyses (Yang et al., 2013) and 

conservation prioritization (Boitani et al., 2011). 
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Geographical biases may be driven by biased field work, due to regional differences in 

accessibility (Freitag et al., 1998; Dennis & Thomas, 2000), safety concerns (Brito et al., 

2013), lack of funding (Ahrends et al., 2011) or preferential interest in endemism-rich, 

mountainous or protected areas (Soria-Auza & Kessler, 2008; Yang et al., 2014). However, 

biases in DAI may also be caused by biased provision of existing information, due to regional 

differences in financial or institutional resources for digitization (Vollmar et al., 2010), or 

poor scientific (Amano & Sutherland, 2013) or political (Yesson et al., 2007) cooperation that 

inhibits mobilization into data-sharing networks. Biases towards certain species might reflect 

such site-specific socio-economic factors, but also species-specific factors like lower 

detectability of nocturnal (Burton, 2012) and arboreal species (Chutipong et al., 2014) or 

deliberate withholding of occurrence records for threatened species (Whitlock et al., 2010). 

Finally, the geometry of distributional ranges may affect the likelihood that the study region 

of a given researcher intersects with a given range, which in turn affects the likelihood that 

this particular species is recorded.  

The need for better baseline information on species distributions has been frequently 

emphasized (Boitani et al., 2011; Beck et al., 2012). Improving such information is closely 

linked to international targets in the framework of the United Nations Convention on 

Biological Diversity (Pereira et al., 2013) and plays a central role in current discussions in the 

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services 

(IPBES, 2015). However, limited funding and the scale of the Wallacean shortfall make it 

important to prioritize future data collection and mobilization efforts (Hobern et al., 2013; 

Sousa-Baena et al., 2014a). Effectively improving species distribution information requires a 

thorough understanding of global patterns in data limitations, and of the underlying causes. 

Understanding which factors cause biases can help account these key factors in ecological 

models by explicitly incorporating them as variables (Dorazio, 2014; Fithian et al., 2014). 

Previous studies of patterns and drivers of distribution information were limited in 

geographical (Ballesteros-Mejia et al., 2013; Yang et al., 2014) or taxonomic (Yesson et al., 

2007) scope, by the limited number of tested hypotheses, or by simplistic treatment of 

distribution information (Amano & Sutherland, 2013). No study has tested the generality of 

the various information-limiting factors globally across different taxonomic and spatial scales. 

The main goals of my PhD thesis therefore were to 

a) provide the first global, detailed analyses of limitations in mobilized occurrence 

information for a large section of biodiversity, 

b) better understand global taxonomic, geographical and temporal variation in different 

aspects of occurrence information, 
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c) better understand global drivers of this variation across different taxonomic groups 

and spatial scales, and to 

d) create an empirical baseline for prioritizing data collection and mobilization efforts, 

for monitoring these activities, and for effectively accounting for data limitations in 

ecological models. 

Methods  

In chapter 1, I focused on land plants. I retrieved c. 120M records via GBIF in Jan 2014, 

standardized taxonomic information against comprehensive taxonomic databases and carried 

out plausibility checks of the indicated sampling locations. I used the resulting vetted dataset 

to calculate metrics describing two main aspects of occurrence information, each with regard 

to the three basic dimensions that characterize species distributions – taxonomy, space and 

time (Fig. I.2.1). The first set of metrics quantified aspects of coverage of each dimension 

with information and the second set of metrics quantified uncertainty regarding the 

interpretation of information. I measured taxonomic, geographical and temporal variation in 

these information aspects and quantified their relationships using pairwise correlations and 

principal component analysis. 

In chapter 2 (Meyer et al., 2015), I focused on terrestrial vertebrates to analyze two aspects of 

occurrence information at the level of geographical assemblages (Fig. I.2.1). I retrieved c. 

183M records via GBIF in Oct 2012 (1.7M for amphibians, 177M for terrestrial birds, 4.7M 

for terrestrial mammals). I standardized species names and used expert range maps to validate 

records geographically (details in chapters 2-3). I calculated two measures of coverage, i) the 

density of records and ii) inventory completeness, calculated as the percentage of expert-

opinion species richness (inferred from range maps) that is documented by records. I tested 

twelve hypotheses on the socio-economic drivers of global variation in these information 

aspects, separately for each vertebrate group at each of four spatial grain sizes. I used multi-

model inference to quantify the relative importance of predictor variables. 

In chapter 3, I used the same records for terrestrial mammals and combined them with range 

maps to analyze aspects of occurrence information at the species level (Fig. I.2.1). These 

aspects were i) record count per species, ii) how these records cover individual species’ 

ranges, and iii) the level of geographical bias in their representation of different range parts. I 

calculated the range coverage and geographical bias metrics by relating the positions of 

records to those of randomly placed points across the range maps. I used multi-model 
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inference and variation partitioning to test how different species attributes, size and shape of 

their ranges, and socio-economic factors drive species-level variation in these information 

aspects globally and for individual zoogeographical regions. 

Results and Discussion 

To my knowledge, this thesis represents the first global analyses of different aspects of 

occurrence information (e.g. coverage, uncertainty) in the taxonomic, geographical and 

temporal dimensions (Fig. I.2.1), and is the first to systematically compare across different 

spatial scales and taxonomic groups. As expected, I found extensive gaps and biases. In all 

taxonomic groups, record numbers varied across geographical assemblages and individual 

species by several orders of magnitude (chapters 1-3). Large proportions of records were 

identified as having high data uncertainty (chapter 1; compare Feeley & Silman (2010)), and 

many records fell outside of species’ presumed native ranges (chapters 1-3). I found clear 

taxonomic bias. For instance, record counts per species tended to be higher in gymnosperms 

than in other plants (chapter 1), in birds than in other vertebrates (chapter 2), and in Australian 

marsupials than in other mammals (chapter 3). Patterns of data limitations differed depending 

on the aspect of occurrence information in focus. For instance, pteridophytes were 

taxonomically better-covered in DAI compared to other plant groups, but pteridophyte records 

also showed the most severe levels of taxonomic uncertainty (chapter 1). DAI was also 

geographically biased. For instance, peaks in the coverage of species assemblages emerged in 

‘Western’ industrialized countries, but also in several tropical regions including Central 

America and parts of the Andes (chapters I-II). In contrast, broad regions were without any 

mobilized occurrence records, particularly in Asia and non-Southern Africa. Surprisingly, 

there was no pronounced ‘tropical data gap’ (Collen et al., 2008), neither in plants nor in 

vertebrates, as several temperate and arctic regions also emerged as extremely data scarce. I 

also found strong temporal variation in occurrence information (compare Boakes et al., 

(2010)). Several areas, notably in parts of Africa and Asia, had peaks in coverage before the 

1970s and little recording activity since (chapter 1).  

Coarsening grain sizes leads to higher coverage of species assemblages (Soberón et al., 2007), 

but also to lower opportunities for inference (chapter 2) and an underestimation of local data 

gaps (chapter 1). The grain size where a given percentage of an assemblage is covered directly 

relates to the coverage of individual species’ ranges. For instance, the few scattered vertebrate 

records available for much of Asia can only cover few species in any one grid cell (chapter 2), 

and only provide limited range coverage for the species that occur in the region (chapter 3). 
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Thus, different coverage aspects are naturally constrained by record quantity (chapters 1-3; 

compare Yang et al., (2013)) and accordingly, show at least moderate positive pairwise 

associations (chapter 1). However, the generally positive relationship between data quantity 

and coverage aspects is disturbed by aggregation, duplication and biases in those records 

(chapters 1-3). In contrast, different aspects of data uncertainty generally showed poor 

correlations with one another as well as with coverage aspects (chapter 1). 

I also provide the most comprehensive analyses of underlying causes of bias in occurrence 

information to date. Of twelve potential socio-economic drivers of assemblage-level record 

density and inventory completeness, only four received strong support across taxa and grain 

sizes (chapter 2). Endemism richness (Kier & Barthlott, 2001) generally had a strong effect, 

supporting the hypothesis that researchers preferentially survey regions where they can hope 

to find range-restricted species (Soria-Auza & Kessler, 2008). An effect of accessibility was 

mainly evident in strong positive effects of proximity of grid cells to record-contributing 

institutions (Moerman & Estabrook, 2006), while transportation infrastructure (Freitag et al., 

1998; Ballesteros-Mejia et al., 2013) played a surprisingly minor role. Political participation 

in GBIF (Yesson et al., 2007) was much more important than a region’s integration into 

scientific activities that may lead to peer-reviewed publications. Finally, locally available 

research funding (Vollmar et al., 2010; Ahrends et al., 2011) limited distribution information 

much more than size or funding of the Western institutions that contributed the majority of 

mobilized records. These four key socio-economic variables were also important for 

determining species-level variation in different aspects of DAI (chapter 3), but their relative 

importance differed substantially depending on the geographical focus of the analysis (global 

vs. realm-wide). This demonstrates that regional contexts determine which socio-economic 

factors are important causes of biases in occurrence information (compare Yang et al. (2014)). 

Interspecific variation in occurrence information was additionally strongly determined by 

range size and shape. This supports our hypothesis that while large ranges are bound to 

overlap with more sampling locations, large, irregular-shaped ranges constrain the detail with 

which a given number of records can cover a range. Against expectations, species attributes 

related to detection or collection probabilities received little support as predictors of species-

level variation in occurrence information.  

Together, the results of my research have several important implications for the effective 

improvement of DAI and its effective use in ecological research, conservation and species 

distribution modeling. After more than a decade of intensive mobilization, DAI is still 

characterized by severe biases, gaps and uncertainties. Unless carefully accounted for, these 

limitations seriously impair research and conservation applications. The magnitude of data 

limitations shows that relying only on highest-quality records (Soberón & Peterson, 2004; 
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Feeley & Silman, 2010) or data-intensive modeling techniques (Feeley & Silman, 2011a) is 

unrealistic for many species and regions of particular conservation concern (chapters I-III). 

Further improving the ability of distribution modeling techniques to draw useful inference 

from low record numbers and to account for data bias and uncertainty (e.g. McInerny & 

Purves (2011)) should be a top priority. One promising way to account for biases is explicitly 

incorporating bias-causing factors into models (Dorazio, 2014; Fithian et al., 2014), and my 

results can help identify meaningful predictor variables. In such models, accounting for site-

specific socio-economic data collection and mobilization constraints appears more promising 

for addressing these biases than focusing on species-specific detectability. 

My identification of main factors limiting occurrence information, and the distinction between 

different information aspects, will help identify priority activities to remedy data limitations 

most effectively. Priorities include supporting mobilization efforts in institutions near 

identified data gaps and fostering cooperation of large emerging economies with data-sharing 

networks (chapters 2-3), updating largely outdated information for non-Southern Africa and 

Southern Asia by carrying out novel surveys (chapter 1), as well as generally increasing the 

focus on Asia (chapters 1-2) and on range-restricted species (chapter 3). My results also 

provide a baseline for monitoring progress in data mobilization, and more generally in efforts 

towards international targets for improving biodiversity knowledge (e.g. Aichi target 19, 

cbd.int/sp/targets). They show that simple indicators like the number of GBIF-facilitated 

records (Tittensor et al., 2014) cannot reliably show changes in coverage of species and areas, 

and even less so changes in data uncertainties. We therefore recommend that DAI should be 

monitored by a range of indicators that represent different aspects of occurrence information 

at grains relevant for biodiversity research and management.  

In short, my thesis demonstrates tremendous taxonomic, geographical and temporal biases, 

gaps and uncertainties in digital accessible information on species occurrences. It constitutes 

the most comprehensive research on global patterns and drivers of these limitations to date, 

providing an empirical baseline for effectively using, improving, and monitoring the global 

information basis on species distributions. 
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SI V.1.1. Treatment of taxonomic information.  

The basis for our taxonomic treatment was the comprehensive taxonomic information 

provided via The Plant List (TPL, 2014) and iPlant’s Taxonomic Name Resolution Service 

(TNRS, 2014). In cases of conflicting information, we always gave TPL precedence. 

The raw dataset as downloaded via GBIF contained 119,058,280 raw records (Fig. V.1.S1A). 

We first cleaned verbatim scientific names strings (Fig. V.1.S1B), by excluding name strings 

that would not be reliably linkable to accepted species names. For instance, we excluded cases 

where no species was identified (e.g. ‘sp. nov.’ or ‘Sorbus sp.’, ‘ined.’, etc.) or where it was 

implied that the species identification was doubtful (e.g. ‘cf.’, ’aff.’, ‘à confirmer’, ‘Sorbus 

?arnoldiana’, ‘Oxyanthus sp. possibly unilocular’, etc.). We further excluded cases where a 

hybrid or a cultivated form was indicated (e.g. ‘x’, ‘<->’, ‘hybr.’, ‘hort.’, ‘cult.’, ‘var. 

"Ballerina"’, etc.). We corrected wrong capitalizations of letters, and removed random 

punctuations and signs. These steps reduced 2,206,831 verbatim name strings to 1,552,901 

interpretable names, including accepted species and subspecies names, synonyms, and 

spelling variants with or without author information.  

We then performed the taxonomic standardization and validation. We first compared genus 

names against genus names listed in The Plant List (TPL, 2014) or iPlant’s Taxonomic Name 

Resolution Service (TNRS, 2014). We corrected misspelled genus names where we were 

confident regarding the true genus (doubtful cases were excluded). We then compared each 

name string to all possible scientific names listed under that genus in TPL. For each resulting 

pair of verbatim name and TPL-listed scientific name, we calculated the orthographic distance 

between species epithets and between the entire name strings (e.g. including author 
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information), using an approximate string matching algorithm. This algorithm counts the total 

number of changes that have to be applied to one string in order to match another, and related 

that number to the entire length of the string. We then linked verbatim names via the best-

matching TPL-listed name to the respective accepted species. For names that could not be 

matched to TPL-listed names or were not resolved to accepted species, we repeated these 

steps using taxonomic information from TNRS. We excluded all verbatim names that did not 

match names treated by TPL or TNRS as accepted names with no more than 25% 

orthographic distance, either directly or through a synonym. Overall, cleaning and validation 

led to an exclusion of 242,043 verbatim names strings (Fig. V.1.S1E); All remaining 

1,964,788 verbatim name strings (89%) converged to 367,703 accepted species. These were 

further reduced to 229,218 accepted species (Fig. V.1.S1I) by applying our basic geographical 

filter (see Methods).  
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Figure V.1.S1. Workflow from raw mobilized data to usable occurrence records. Maps show spread of occurrence 
information for land plants, as mobilized via the Global Biodiversity Information Facility (GBIF), across 110 km x 
110 km grid cells. We retrieved (A) 119,058,280 raw data via GBIF, including (B) 2,206,831 verbatim name 
strings and (C) 4,314,752 verbatim coordinate combinations. Data cleaning, taxonomic standardization and 
taxonomic and geographical validation led to the exclusion of (D) 12,538,809 raw data, including (E) 242,043 
unvalidatable name strings and (F) 252,550 invalid or imprecise coordinate combinations. Remaining validated 
records were reduced to unique records, which led to the exclusion of (G) 24,899,514 duplicated species-location-
year-month-combinations and left (H) 55,929,317 unique validated records including (I) 229,218 accepted species. 
Depending on research question, further filtering might be necessary, such applying our strict taxonomic, 
geographical and temporal filters (see Methods), which would leave (J) 9,295,847 strictly filtered records. For 
details, see Methods and SI V.1.1. 
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Figure V.1.S2. Additional taxonomic and temporal aspects of occurrence information mentioned in chapter 2. A) 
Geographical variation across 110 x 110 km grid cells in that portion of modeled vascular plant richness (Kreft & 
Jetz, 2007) that was missing from mobilized occurrence information. B) Frequency distribution across land plant 
species in scores of temporal coverage since 1950, calculated as the mean minimum Euclidean distance between all 
possible months between 1950 and 2010 to their respective closest months with records. C) Geographical variation 
in temporal coverage since 1950. D) Geographical variation in the time (in years) since the last mobilized record 
has been collected. 
 
 
 
 

 
 
 

Figure V.1.S3. Taxonomic coverage and of native and non-native species for selected families of seed plants. 
Species records for a subset of the global seed plant flora (105,031 species, c. 34% of all) were geographically 
validated against ‘botanical country’ checklists from the World Checklist of Selected Plant Families (WCSP, 
2013)). A) Taxonomic coverage of native seed plant species of selected families, based on geographically validated 
records. B-C) Number of species represented by occurrence records outside their known native ranges: B) Species 
recorded immediately adjacent to their native ranges; C) Species recorded far off their native ranges. Botanical 
countries are level-3 regions of the Biodiversity Information Standards (TDWG, formerly International Working 
Group on Taxonomic Databases). Color scales are the same in B-C. 
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Figure V.1.S4. Spatio-temporal patterns in digital accessible occurrence information. Maps show geographical 
patterns of three exemplary aspects of vascular plant occurrence information across five time periods between 1750 
and 2010 in, and for the entire time span. (A-F) Record number; (G-L)  Taxonomic coverage for vascular plants 
(recorded richness (GBIF) / modeled richness (Kreft & Jetz, 2007)); values >1 mean larger recorded than modeled 
richness; note that mobilized records include non-native species whereas the model predicts native species 
richness; (M-R) Percentages of records excluded by moderate geographical uncertainty filtering (see Methods). 
Color scales are the same in (A-F), (G-L), (M-R). 
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Figure V.1.S5. Relationships between 9 aspects of occurrence information and the number of raw data. Pairwise 
Spearman-rank correlations between geographical patterns of different occurrence information metrics at the level 
of 110 x 110 km grid cells. TaxCov: taxonomic coverage, calculated as the ratio between recorded richness and 
richness modeled by (Kreft & Jetz, 2007); GeoCov: geographical coverage, estimated as the number of sampling 
locations per 104 km² land area; TempCov: temporal coverage since 1750, estimated as the mean minimum 
Euclidean distance between all possible months between 1750 and 2010 to their respective closests month with 
records; TaxUnc: percentage of records lost under moderate taxonomic filtering; GeoUnc: percentage of records 
lost under moderate geographical filtering; TempUnc: percentage of species lost under moderate temporal 
filtering; AllUnc: percentage of species lost with all three moderate filters applied (see Methods for information on 
filters). MissSpp: number of species that are not recorded but expected based on the environment-richness; 
SinceLast: Time (in years) since the last mobilized record was recorded. NRaw: number of raw data mobilized via 
GBIF, included to test whether this simple surrogate is a good indicator of different occurrence information 
metrics. All correlations based on z-transformed variables. 
 

 
 
Figure V.1.S6. Different aspects of effectiveness of mobilized occurrence information. (A) Ratio between numbers 
of unique validated records and overall validated records (including duplicated species-location-month 
combinations); Cooler colors denote areas where duplicates make up a high percentages of all validated occurrence 
information. (B) Ratio between numbers of unique validated records and mobilized raw records (including invalid 
and duplicated records); Cooler colors denote areas where large percentages of all mobilized records were excluded 
as invalid records or duplicates. (C) Ratio between numbers of accepted species and verbatim scientific name 
strings (including invalid names and synonyms); cooler colors denote areas where many verbatim name string 
relative to number of species are in use, and more effort is thus necessary for interpreting those name strings.
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Methods 

 

1.A. Species distribution data 

Range Data 

We considered all species of terrestrial birds (excluding pelagic feeders, N = 9,712; BirdLife 

International (2011), terrestrial mammals (excluding cetaceans, pinnipeds and sirenians; N = 

5,270; IUCN (2010), and amphibians (N = 6,188; (Frost, 2012). We projected expert based 

extent-of-occurrence range maps for these 21,170 species (IUCN, 2010; Jetz et al., 2012b) 

into an equal area projection and overlaid them with four nested equal-area grids with grain 

sizes of c. 110 km, 220 km, 440 km, and 880 km, respectively, at the equator. These range 

maps were originally drawn by species experts based on a variety of data sources, including 

point records, local inventories, and atlas and literature data. We considered a grid cell as 

occupied by a species, if any portion of its range map overlapped with it, and chose 110 km as 

the finest resolution to minimize false presences (Hurlbert & Jetz, 2007; Hawkins et al., 2008; 

Hortal, 2008). We excluded 110 km grid cells that did not have at least 30% land area unless 

they included oceanic islands, in order to minimize effects of area and imprecise range maps 

while keeping most range-restricted species in the analyses. We further excluded grid cells of 

which the majority of the land area overlapped with mangrove biomes. This led to the 

exclusion of 51 narrow endemics near coast lines (not included in the above species count). 

We overlaid the gridded range maps to define expert-opinion species richness. 
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Point occurrence records 

We focused on records aggregated by the Global Biodiversity Information Facility (GBIF) as 

a representation of international efforts to mobilize biodiversity data into ‘digital accessible 

information’ (DAI; originally referred to as DAK in Sousa-Baena et al. (2014a)). GBIF is by 

far the largest such effort in geographic and taxonomic scope (Edwards, 2000; Graham et al., 

2004) and GBIF-facilitated data have been used to assess progress towards Aichi target 19 

(Tittensor et al., 2014) We received 192,637,611 geo-referenced records for birds, mammals 

and amphibians from GBIF in October 2012, of which we extracted 192,463,144 records with 

potentially sensible geographic coordinates (Longitude: -180° – +180°, Latitude: -90° – +90°) 

reported with a precision of at least one tenth of a degree. We excluded 8,861,041 records that 

did not have either a binomial or trinomial scientific name, 278,107 records for which the 

‘basis of record’ field did not indicate ‘preserved specimen’, ‘observation’, or ‘unknown’ 

(most of which are observation records), and 9,865 records that were reportedly collected 

before the year 1850, leaving 183,488,598 records. We validated these taxonomically and 

geographically (see below), which left 157,086,248 records for further analyses. 

 

Taxonomic and geographic validation of records 

We then matched the taxonomies of records and range maps. To maximize the amount 

of records that would pass taxonomic standardization, we combined information on 

accepted names and synonyms from seven existing taxonomic databases (see below). 

We accepted species delimitations following BirdLife International (2011) for birds, 

IUCN (2010) for mammals, and Frost (2012) for amphibians. To each accepted 

species name, we linked further scientific names fully or partly included in the 

respective species concept from the above and four further databases (Wilson & 

Reeder, 2005; IUCN, 2010; ITIS, 2012; Lepage, 2012), including synonyms, 

subspecies, and common typographical variants. Via this “synonym table”, we linked 

records to the accepted species. We excluded records likely referring to domesticated 

forms. We inferred the taxonomic identities of records with ambiguous scientific 

names (such as pro parte synonyms) from spatial overlays with the range maps of all 

accepted species to which the name could potentially refer. In further analyses, we 

only used records of which the species identity could be unambiguously determined 

because they fell inside the gridded range maps (at 110 km grain) of only one 

accepted species. This led to the exclusion of 13.9 to 29.0% “false” or unclear records 

(see table below). By validating localities of records against expert-opinion range 
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Results of the geographic and taxonomic validation of records: Of the geo-referenced specimen and observation 

data with a binomial or trinomial scientific names that passed initial filtering (see ‘N records’), between 99.6 and 99.8% 

could be linked to our taxonomic database (see ‘Linkable to DB’). Between 9.5 and 24.6% of records are stored under a 

name that is not an accepted species name according to our three “master” taxonomies, e.g., a synonym or subspecies 

name, and thus required taxonomic name standardization (see ‘Not accepted name’). 6.5 to 37.9% of records had 

ambiguous names, i.e., accepted names or synonyms that could refer to more than one accepted species, and thus 

required combined taxonomic and geographic inference to determine the most parsimonious species identity (see 

‘Ambiguous name’). 71.0 to 86.1% of records remained after taxonomic and geographic validation, i.e., the record 

could be confidently assigned to one accepted species, and was also collected within the presumed current distribution 

of that species (see ‘Validated records’). 

 

maps, we ensure that records are biologically plausible and do not refer to zoo or 

invasive animals outside of their native ranges. We note that this approach may lead to 

the exclusion of “good” records collected outside of range maps if the maps are 

inaccurate. While coordinate transposition of geographically false records and “fuzzy 

matching” of names would have decreased the number of excluded records marginally 

(Yesson et al., 2007; Otegui, 2012) this would also have increased the uncertainty 

associated with the validity of records (Yesson et al., 2007).  

The table below shows results of the geographic and taxonomic validation of records.  

Taxonomic group N records 
Linkable 

to DB Not accepted name Ambiguous name Validated records 

 

Birds 

 

 

177,067,882 

(100%) 

 

176,698,744 

(99.8%) 

 

16,830,672 

(9.5%) 

 

26,210,816 

(14.8%) 

 

152,429,094 

(86.1%) 

 

Mammals 

 

 

4,725,561 

(100.0%) 

 

4,708,363 

(99.6%) 

 

625,540 

(13.2%) 

 

308,662 

(6.5%) 

 

3,355,082 

(71.0%) 

 

Amphibians 

 

 

1,695,155 

(100.0%) 

 

1,689,766 

(99.7%) 

 

416,666 

(24.6%) 

 

642,943 

(37.9%) 

 

1,302,072 

(76.8%) 

 

Total 

 

183,488,598 

(100%) 

183,096,873 

(99.8%) 

17,872,878  

(9.7%) 

27,162,421 

(14.8%) 

157,086,248 

(85.6%) 

 

 

Record density and inventory completeness 

We overlaid the validated records with the same grids as the range maps. For each grid cell, 

we then calculated record density as the number of records per 10,000 km² land area and 

inventory completeness as the percentage of expert-opinion species richness documented by 

records.  
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1.B. Geographic and socio-economic variables explaining inventory completeness 

We analyzed the relationships of twelve different geographic and socio-economic factors with 

record density and inventory completeness. These represent a wide range of existing 

hypotheses that can be categorized into five broader categories: 1) appeal, 2) accessibility, 3) 

security, 4) international scientific integration, and 5) financial and institutional resources (for 

details see maps and discussion of variables below). We limited collinearity among predictor 

variables by only including variables with Pearson’s correlation coefficients ≤0.7 (Dormann et 

al., 2013). 

Most data were available at spatial grains ≤0.25° and aggregated as arithmetic means for the 

grid cells. We created a few variables from country-level data sets, namely security, national 

research funding, integration into scientific activities, and GBIF participation (see below). We 

assumed that the effects of these factors on biodiversity sampling and data mobilization 

efforts would be similar throughout a given country, and thus used the same value for each 

grid cell within the country. For grid cells overlaying several countries, we calculated the 

arithmetic mean of the respective country values weighted by the proportion of land area that 

falls within each country. We based the definition of country boundaries and the calculation of 

land area on the polygons of the GADM database (www.gadm.org/version1). We assigned 

disputed areas to the country currently having de facto administrative control.  

The figure on the opposite page shows predictor variables mapped at the 110 km grain. 

 

Endemism richness 

Areas with specific biodiversity features are naturally interesting to ecologists and several 

authors have suggested that collectors frequent areas where they can expect to find many or 

rare species (Dennis & Thomas, 2000; Kier et al., 2005; Küper et al., 2006; Lobo et al., 2006; 

Soria-Auza & Kessler, 2008; Boakes et al., 2010). To test whether there is global support for 

this “diversity tracking” hypothesis (Lobo et al., 2006), we used endemism richness (Kier & 

Barthlott, 2001), as it combines aspects of both species richness and species’ range-sizes 

within an assemblage. Endemism richness is calculated as the sum of the inverse global range 

sizes of all species present in a grid cell. We estimated the range of each species as the sum of 

110 km grid cells overlaying the respective range map polygon (IUCN, 2010; Jetz et al., 

2012a). We assumed a taxonomic focus of most collectors to at least class-level and therefore 

used avian, mammalian, and amphibian endemism richness, respectively, to predict inventory 

completeness of the three vertebrate classes. Note that a focus on rare species during sampling 

(Guralnick & Van Cleve, 2005; ter Steege et al., 2011) or a possible emphasis on type 

http://www.gadm.org/version1
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specimens during digitization could also lead to range-restricted species being 

disproportionately represented in mobilized data and thus to data being biased towards high 

endemism areas. 

 

Mountains 

Mountains could also draw a special attention of collectors because of their scenic beauty or 

their elevational habitat gradients and, accordingly, high species turnover and the presence of 

“mountain specialists” (Parnell et al., 2003; Lobo et al., 2006; Sánchez-Fernández et al., 

2008; Soria-Auza & Kessler, 2008; Yang et al., 2014). Conversely, it has been reported that 

mountains are relatively neglected by collecting efforts in some areas due to their poor 

accessibility (Funk et al., 1999; Funk & Richardson, 2002). To test for effects of mountains 

on inventory completeness and record density, we calculated the topographic range within 

each grid cell as the difference between the minimum and maximum altitude, based on data 

from the GTOPO-30 digital elevation model (US Geological Survey, 1996). 

 

Protected areas 

Protected areas could attract collectors because they may promise “pristine” habitats in 

otherwise altered landscapes or represent strongholds of rare or sought-after species (Freitag 

et al., 1998; Parnell et al., 2003; Reddy & Dávalos, 2003; Sánchez-Fernández et al., 2008; 

Boakes et al., 2010; Martin et al., 2012; Ballesteros-Mejia et al., 2013; Yang et al., 2014). If 

developed for ecotourism or management, they may also provide the most straightforward 

access points to ecosystems (Ballesteros-Mejia et al., 2013). To model the effect of protected 

areas, we calculated the proportion of the land area in each grid cell covered by protected 

areas of International Union for Conservation of Nature categories I to IV (IUCN and UNEP, 

2009). Preliminary analyses demonstrated that using an alternative predictor variable based on 

all (IUCN and UNEP, 2009) protected areas (thus including more protected areas, e.g. from 

China) did not alter our conclusions. 

 

On-ground accessibility 

Some of the most frequently tested hypotheses regarding sampling bias revolve around the on-

ground accessibility of areas to researchers, especially via roads (e.g., the “highway effect” 

(Soberón et al., 2000) or “road-map effect” (Crisp et al., 2001)). Because the time needed to 
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access an area on the ground has to be traded off against time spent sampling, collectors often 

choose to sample close to human population centers (Osborne & Tigar, 1992; Freitag et al., 

1998; Funk et al., 1999; Parnell et al., 2003; Reddy & Dávalos, 2003; Diniz-Filho et al., 2005; 

Kier et al., 2005; Küper et al., 2006; Lobo et al., 2006; Schulman et al., 2007; Boakes et al., 

2010) or on-ground transportation routes like roads, railways, navigable rivers and coasts lines 

(Freitag et al., 1998; Gioia & Pigott, 1998; Funk et al., 1999; Soberón et al., 2000; Hijmans et 

al., 2000; Crisp et al., 2001; Reddy & Dávalos, 2003; Kadmon et al., 2004; Küper et al., 

2006; Lobo et al., 2006; Schulman et al., 2007; Newbold, 2010; Ballesteros-Mejia et al., 

2013). These effects have been documented mainly at local to regional spatial scales. While 

most studies found negative relationships between distance to urban areas and transportation 

routes, (Yang et al., 2014) have found that in China, the opposite is true at the county scale, 

i.e. sampling intensity and inventory completeness are negatively correlated with both road 

and human population density. To test whether on-ground accessibility influences data 

availability at the global scale, we used the ‘Travel time to major cities’ dataset (Nelson, 

2008), which provides estimates of the time needed to travel to cities with a population 

>50,000, and which combines data on urban areas, roads, railroads, navigable rivers, shipping 

lanes, habitat types, etc. We calculated mean values for every grid cell, and reversed 

arithmetic signs, so that higher numbers in our index corresponded to greater accessibility.  

 

Proximity to airports 

Since ecologists often have to travel long distances to their study areas, it is possible that 

regions more accessible by air travel have been better sampled and therefore have higher 

record density and inventory completeness (Funk et al., 1999; Ballesteros-Mejia et al., 2013). 

To estimate the accessibility of areas by air travel, we used data on the locations of 

>9,300 airports and airfields (Partow, 2003). Areas close to several airports should be more 

accessible to researchers, and we therefore calculated the mean distance of every grid cell 

centroid to the five closest airports. Again, we reversed arithmetic signs to create an index 

where large values correspond to close proximity to airports. 

 

Proximity to research institutions 

If sampling is mainly carried out by staff of specimen-housing institutions, then time and 

money constraints could lead collectors to focus on areas nearby their homes or home 

institutions, and correspondingly, to administrative areas with research institutions being more 

thoroughly sampled (Freitag et al., 1998; Funk et al., 1999; Dennis & Thomas, 2000; 
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Moerman & Estabrook, 2006; Pautasso & McKinney, 2007; Sánchez-Fernández et al., 2008; 

Ahrends et al., 2011; Yang et al., 2014). This effect has been mostly documented for plants 

(hence, the “botanist effect”; Moerman & Estabrook, 2006), but it can be hypothesized for any 

group of organisms.  

At the global scale, different aspects complicate testing this hypothesis: First, specimen-

housing institutions often have a strong geographical and taxonomic focus. So not all 

institutions in close proximity to a given grid cell should be considered as potential samplers 

of its biodiversity. For instance, an institution specializing in bird migrations is unlikely to 

collect amphibians in a nearby wetland. We therefore created an index based on the distances 

to those institutions that currently focus or have focused on sampling the respective vertebrate 

class in the broader geographic region surrounding a grid cell. For a given focal grid cell and 

vertebrate class, we identified data publishers (i.e., institutions) that contributed records from 

within 750 km of the grid cell centroid. We geo-located these publishers (to at least 50 km 

accuracy) and calculated their distance (in km) to the grid cell centroid. When simply 

calculating the mean distance to those publishers weighted by their relative contribution, we 

found that the many large European and North American institutions had an overarching 

effect on the index, and all grid cells in the southern hemisphere emerged as remote, even if 

situated in close proximity to “southern” institutions. We therefore calculated the proximity of 

grid cells to the relevant publishers as the weighted mean of inverse distances or “proximities” 

(in km; multiplied by 108 for easier scaling): 

108 ∗ ∑(
RelContrib𝑖

D𝑖
)

𝑛

𝑖=0

 

where RelContribi is the relative contribution of the i-th publisher to the records from the area 

and Di the distance (in km). This index has high values when the majority of data within an 

area are provided by publishers in close proximity. In preliminary analyses we also calculated 

the weighted mean of log10-transformed and square root-transformed distances, which yielded 

very similar results, so we used the best performing index based on AIC. 

Our approach differs from that of Amano & Sutherland (Amano & Sutherland, 2013), who 

tested for the effect of the distance to data aggregators (e.g., the GBIF headquarters in 

Copenhagen, Denmark) rather than data publishers, and found only a negligible effect for 

GBIF-enabled data. However, while the big biodiversity data aggregators like GBIF, VertNet, 

SpeciesLink or eBird provide the infrastructure for linking biodiversity data, they are 

themselves not responsible for the amount or informational content of the data (this lies with 

distributed data providers). We therefore excluded data for which the indicated publisher itself 

is an international data aggregator from the calculation of our index.  
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Secure conditions 

Human hazards associated with armed conflicts, territorial disputes, low levels of public 

safety or political instability can discourage scientific activities (Bonfoh et al., 2011; Brito et 

al., 2013) and have been reported or hypothesized to have adverse effects on biodiversity data 

collection and data administration activities, such that more data are available for areas 

characterized by secure conditions (Funk & Richardson, 2002; Küper et al., 2006; Collen et 

al., 2008; Hortal et al., 2008; Boakes et al., 2010; Amano & Sutherland, 2013; Otegui et al., 

2013). To test this hypothesis, we used the Global Peace Index (GPI; Institute for Economics 

and Peace, 2012), which is probably the most inclusive existing index describing the overall 

state of security within a country (Amano & Sutherland, 2013). We note that this index has 

several drawbacks. First, it is aggregated at the country level, while real levels of security can 

vary within countries. It is unclear at which spatial scales security levels would deter 

collecting efforts (i.e., depending on their risk tolerance and detail of available information, 

foreign collectors could avoid particular low-security parts of a country or entire geo-political 

regions). As a further drawback, even though we calculated the mean GPI score across several 

years, the index is only available for the time period between 2008 and 2012 and may not 

reflect real or perceived security levels in the 1950s through 1980s where many of the 

specimen records have been collected. In preliminary analyses, we found that an index of the 

frequency of armed conflicts from 1946 to 2008, created from more fine-scale data (Tollefsen 

et al., 2012) was consistently a very poor predictor of record density and inventory 

completeness for all taxa and spatial grains (results not shown). A third potential drawback is 

that the GPI is not only based on factors affecting the level of personal safety within a 

country, but also on the level of militarization, which may be unimportant to collectors. 

However, potential alternative country-level measures of perceived personal safety that we 

tested in preliminary analyses (‘political stability and absence of violence’ (The World Bank, 

2012), ‘control of corruption’ (The World Bank, 2012), physician density (World Health 

Organization, 2012)) were highly collinear with the GPI, so we restricted our main analyses to 

this measure. Because high GPI values stand for low levels of security, we reversed arithmetic 

signs of GPI values with after log10-transformation to create an index of secure conditions, and 

accordingly hypothesized a positive relationship with both record density and inventory 

completeness. 

 

Scientific activities 

Low levels of record density and inventory completeness in specific countries may also be due 

to a lack of scientific capacity or expertise (Collen et al., 2008; Boakes et al., 2010), or be the 
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result of a delayed start and poor international integration into the communication of 

ecological science due to linguistic reasons (Amano & Sutherland, 2013). Conversely, 

countries whose researchers actively engage in the communication of science through peer-

reviewed publication and are internationally well-integrated through collaborations may also 

mobilize and share more data via international networks like GBIF. To estimate this 

integration of a country into international scientific communication and collaborations (or 

“globalization of science”; Amano & Sutherland (2013)), we used data on peer-reviewed 

primary literature from the SCImago Journal & Country Rank, which assembles 

publication ranks based on Elsevier’s Scopus database (SCImago, 2007). We extracted 

the H-index for every country based on peer-reviewed papers published between 1996 and 

2011 in the field ‘Ecology, Evolution, Behavior and Systematics’, and multiplied it with 

the proportion of papers resulting from international collaborations, i.e., with authors’ home 

institutions situated in at least two countries.  

 

GBIF participation 

Although GBIF represents by far the largest international effort facilitating access to point 

records, many data holders currently do not share their data or only make them accessible via 

smaller, mostly national networks. Not sharing available biodiversity data internationally due 

to, e.g., political, economic, or legal reasons has been identified as a key factor limiting 

scientific progress (U.S. National Committee for CODATA, 1997), and the availability of 

readily accessible biodiversity data from many parts of the world (Yesson et al., 2007; 

Thomas, 2009). One of the main strategic goals of GBIF for the coming years therefore is 

winning the support and cooperation of as yet non-participating countries (GBIF, 2011). To 

test whether cooperation of countries with GBIF is important in limiting biodiversity 

information from their territories, we used the proportion of the land area within each grid cell 

that is covered by a GBIF-participating country (as of April 2013, information from GBIF 

website).  

 

National research funding 

Locally available financial resources have been shown to be an important factor limiting 

scientific activities in developing countries (May, 1997; King, 2002) and are thus a frequently 

hypothesized reason for low availability of biodiversity data (Soberón & Peterson, 2004; 

Collen et al., 2008; Newbold, 2010; Ahrends et al., 2011; Martin et al., 2012; Amano & 

Sutherland, 2013). To estimate the financial resources that are potentially available for 
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biodiversity research, we gathered information on the per capita gross domestic expenditure 

(in purchase power parity dollars) on research and development (GERD; Palmer (2011); 

UNESCO Institute for Statistics (UIS), 2012). Most other studies have used measures of 

economic activity such as per capita GDP. Although biodiversity-related funding only makes 

up a tiny fraction of GERD, research and development spending is generally more closely tied 

to scientific activities and scientific output than GDP-based measures (May, 1997), and we 

believe it to be a better proxy for resources that are available for biodiversity studies. We 

assumed that research grants are mostly available from national funding institutions, and that 

every grid cell within a country has a similar likelihood of obtaining money for biodiversity 

data collection and mobilization. We therefore assigned the same GERD value to every grid 

cell within a country. We restricted our models to those grid cells with at least 70% of their 

land area covered by countries with available GERD data, which led to the exclusion of some 

grid cells, particularly in Africa and Asia (see maps of included grid cells and predictor 

variables above). Preliminary analyses in which we replaced GERD by per capita GDP (CIA, 

2013) as an estimate of research funding and thus included more grid cells showed that it was 

indeed a poorer predictor of both record density and inventory completeness, but otherwise 

did not alter our conclusions.  

 

Research funding of institutions 

Data collection within a particular area as well as their mobilization is often carried out by 

staff of foreign research institutions. Therefore research funding available in the countries of 

those institutions that actually contribute data from that area may be a more plausible limiting 

factor for DAI than locally available funding. A survey on the challenges involved in 

specimen digitization among the natural history community (Vollmar et al., 2010) found 

funding to institutions (or related institutional aspects such as technical infrastructure or 

number and expertise of staff) to be the main factor limiting specimen digitization and 

biodiversity data mobilization (see also Collen et al. (2008)). To test whether this factor limits 

record density and inventory completeness globally, we created an index based on GERD data 

in data publisher countries (see above, GERD data available for all 31 countries with data 

publishers that have contributed records used in this study). We linked to every data publisher 

the GERD value (in purchase power parity dollars) of the country where it is located. For each 

grid cell, we then calculated the mean GERD of data publishers, weighted by their relative 

contribution to the records from the respective grid cell: 

∑(RelContrib𝑖 ∗ GERD𝑖)

𝑛

𝑖=0
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where RelContribi is the relative contribution of the i-th publisher to the records from the grid 

cell and GERDi the GERD in the country where the i-th publisher is located. We acknowledge 

that research institutions within a given country may differ in their ability to attract funding, 

and chances of securing funding for data mobilization may depend more on the existence of 

specific funding programs (such as the National Science Foundation's ‘Advancing 

Digitization of Biodiversity Collections’ initiative) than on among-country differences in 

GERD. 

 

Publisher size 

By definition, larger research institutions have larger quantities of data. Additionally, they 

often have more resources available for sampling and curatorial activities as well as more and 

highly specialized staff, combining a greater variety of research foci and taxonomic expertise 

than smaller institutions (Poliseli & Christoffersen, 2012). Some large North American and 

European institutions are also reported to have more important collections from Africa, Asia 

and South America than smaller local institutions because they were involved in extensive 

biodiversity inventory programs in those regions (Lavoie, 2013). Accordingly, data provided 

by these institutions should include specimens of more and rarer species (Longino et al., 2002; 

Guralnick & Van Cleve, 2005; Boakes et al., 2010; Lavoie, 2013), leading to higher levels of 

inventory completeness in regions where they are or have been active. On the other hand, 

Chauvel et al. (2006) also highlight the value of specific information added only by smaller 

institutions. Yesson et al. (2007) suggested that a focus on large institutions would most 

efficiently fill gaps in global, digital accessible information, and a focus on the largest North 

American and European collections is part of GBIF’s strategic plan for 2012-2016 (GBIF, 

2011). To test whether the size of contributing institutions is limiting record density and 

inventory completeness in their focal areas, we created an index based on the mean size of 

institutions that are active within a particular grid cell, weighted by their relative 

contributions: 

∑(RelContrib𝑖 ∗ V𝑖)

𝑛

𝑖=0

 

where RelContribi is the relative contribution of the i-th publisher to the records from the grid 

cell and Vi the total data volume that the i-th publisher contributed to GBIF (as of Oct 2012). 

We acknowledge that different institutions have advanced to different degrees in terms of 

mobilizing their data into DAI (Ariño, 2010), which could potentially bias our estimation of 

publisher size. However, no reliable information of the size of all institutions that contribute 
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data to GBIF is currently available (compare Ariño (2010)). Record counts of data publishers 

are summarized in Table V.2.S7. 

 

1.C. Statistical methods 

We compared the mean completeness among regions using max-t tests (Herberich et al., 

2010), and P-values were adjusted to geographically effective degrees of freedom following 

Dutilleul (Dutilleul, 1993). 

We investigated the effects of the predictor variables on record density and inventory 

completeness with simple and multiple regression analyses and built regression models 

separately for amphibians, birds and mammals at each of four spatial grains (110 km, 220 km, 

440 km, 880 km). Because some explanatory variables were calculated using information 

from the records (e.g., ‘Proximity to institutions’), we only included grid cells with at least 

one record (see figure below).  

 

 

 

 

 

 

 

 

 

 

 

 
 
Grid cells selected for models of point record density and inventory completeness. Dark red cells were considered 
in models, grey cells were not considered although the taxonomic group is present because they either had no 
records or no data for all predictor variables was available. At the bottom part of each map the number of grid cells 
in the respective models (N) is shown. 



V. Appendix 

128 

 

Before entering the models, record density as well as all predictor variables were log10 (x + k)-

transformed, with a variable-specific constant k added to each value x, so that the smallest 

value before log10-transformation equaled 1 (Belmaker & Jetz, 2011). Predictor variables with 

values bound between 0 and 1 (‘Protected areas’, ‘GBIF participation’) were arcsine-square 

root-transformed before log10-transformation. To account for bias due to area-effects, we 

included the log10-transformed land area within each grid cell as a covariate in all multiple 

regression models (highly significant in all cases). 

We modeled effects on record density with non-spatial linear models (ordinary least squares) 

as well as “spatial” simultaneous autoregressive models (SAR) of the error type, which 

account for spatial autocorrelation (SAC) in the residuals (Kissling & Carl, 2008), using 

functions from the R package spdep. We used non-spatial and spatial GLMs with a binomial 

distribution and a logit link to model effects on inventory completeness, which entered the 

model as a composite variable: cbind(‘species covered by GBIF’, ‘species not covered but 

presumed present’) in R terminology. The spatial GLMs were formed by first running a given 

non-spatial model, and then calculating the ‘residuals autocovariate’ (RAC) using the spdep-

function autocov_dist, based on a specific neighborhood structure (a list of neighborhood cells 

to each grid cell) and the residuals of the non-spatial model. The RAC was then entered in the 

model as a covariate and accounted for SAC in the model residuals (Crase et al., 2012), 

similar to an error-type SAR. We used the global Moran’s I test to determine the degree of 

SAC (Belmaker & Jetz, 2011). Significant SAC in model residuals often persisted in the 

spatial models but was reduced by about one order of magnitude compared to non-spatial 

models (see Moran’s I values in Table V.2.S3). 

To represent simple associations of predictor and response variables, we ran single-predictor 

models (non-spatial and not including log-transformed land area as a covariate) and report the 

coefficient of determination and deviance explained, respectively, for OLS and GLMs (Fig. 

V.2.S3, Tables V.2.S3-5). We assessed model fit of the minimum adequate models (MAMs) 

as the % deviance explained (D²) in the case of RAC models (spatial binomial GLMs; Table 

V.2.S3 b) and as Pseudo-R² in the case of SAR models (Table V.2.S3 b). To test for potential 

country effects that would remain after controlling for the main 12 predictor variables, we 

added countries as an additional factor to the spatial MAMs and assessed the increase in 

model fit (Table V.2.S4). 

Long computation times due to the large amount of predictor variables and high numbers of 

grid cells made it unfeasible to run all possible spatial models. For both inventory 

completeness and sampling effort, we instead first ran all possible non-spatial multiple-
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regression models. We then identified all model subsets that would likely be among the 

minimum adequate spatial models (with a ΔAIC <10 to the MAM) and only re-ran those 

models as spatial models. 

Both SAR and RAC models require defining a neighborhood structure that defines the 

distance over which SAC occurs in model residuals. For each grain, we identified the range of 

distances that would define a neighborhood structure with a median of 8 (~ one cell row) to 24 

(~ two cell rows) neighbor cells around focal cells. We then re-ran all candidate model subsets 

as spatial models for each of five different neighborhood structures based on five distances 

within that range: for the 110 km grain 200, 250, 300, 350, and 400 km, for the 220 km grain 

400, 500, 600, 700, and 800 km, for the 440 km grain 800, 1,000, 1,200, 1,400, and 1,600 km, 

and for the 880 km grain 1,600, 2,100, 2,600, 3,100, and 3,600 km. 

We also investigated interactions and non-linear effects, and although many were significant, 

accounting for them did not greatly alter model fit or parameter estimates of the main effects 

in preliminary analyses. To maintain as much simplicity as possible with twelve predictor 

variables, we therefore decided to focus on the main effects.  

 

Relative importance of predictor variables 

For each taxon and grain, we identified the minimum adequate spatial models based on AIC 

scores. We report the standardized coefficient (β) of the most strongly supported spatial MAM 

(i.e., with lowest AIC score) in Fig. II.2.3 and Fig. V.2.S3, and where applicable, the range of 

the standardized coefficient among all potential spatial MAMs (with ΔAIC <2 to the lowest 

AIC score) in Tables V.2.S3-5. Where the model with the lowest AIC score did not include a 

factor, we report the standardized coefficient of the “second-best” model (if among the 

potential MAMs, Tables V.2.S16-S23). If none of the potential MAMs had a particular factor, 

it was left blank in Figures II.1.3 and V.1.S3. 

As an alternative measure of relative importance, and considering all possible subsets of the 

full non-spatial model as experimental units, we carried out ANOVAs with a response 

variable consisting of the AIC scores of all possible models and predictor variables formed as 

dummy-variables coding for every factor whether or not it is in the respective model. The 

percentage of the total Sums of Squares (% SS) attributable to each factor corresponds to their 

relative importance (compare Dormann et al. (2008); Diniz-Filho et al. (2009)). 
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1.D. Limitations of this study 

Biodiversity data sources 

With GBIF and the many integrated data sources (see Table V.2.S7) we cover by far the 

largest share of global digital accessible information on biodiversity. However, several global 

and regional data mobilization initiatives provide access to digital data, but do not currently 

make their data accessible via GBIF. Further, several regions have digital or non-digital data 

that are not shared. We fully acknowledge many data collation programs play important roles 

in facilitating biodiversity analyses and progress towards Aichi target 19. Several initiatives 

address data types that inform about other aspects of critical relevance for conservation, such 

as species’ abundances (NERC Centre for Population Biology - Imperial College, 2010), 
ranging behaviour (Wikelski & Kays, 2015), or conservation status (IUCN, 2010). 

 

Explanatory variables 

A general shortcoming of our study is that we had to rely on fairly recent socio-economic 

datasets. We investigated time series of collected data volumes per 5-year period which 

showed that the majority of records (i.e., including both observation and specimen records) 

have been collected in recent decades, but specimens in particular were often collected several 

decades ago (median recording year for amphibians: 1979; for mammals: 1989; for birds: 

2007). We implicitly assumed that among-region differences in factors relating to field 

sampling, like on-ground accessibility, protected areas, and levels of research funding, have 

on average been similar at the times when data were collected. As digitization and sharing of 

these records happened mostly within the last decade, record age does not affect our 

conclusions regarding the main factors currently limiting DAI. However, spatiotemporal 

changes in sampling activities in relation to historical factors (e.g. roads, reserves) is a needed 

area of further study.  

With the factors included in this study, we attempted to cover a wide range of existing 

hypotheses on the drivers of data bias and inventory completeness in global DAI. However, 

we note that original collection, digitization, mobilization, and sharing of data may be 

influenced by further contemporary and historical socio-economic factors, such as political 

systems and agendas, levels of bureaucracy and international cooperation, policies of funding 

agencies, and legal aspects (U.S. National Committee for CODATA, 1997; Küper et al., 2006; 

Vollmar et al., 2010; Schäfer et al., 2011), information technological capacity (Ariño et al., 

2011), lingua franca (Schulman et al., 2007; Amano & Sutherland, 2013), colonial history 

(Figueiredo & Smith, 2010; Ballesteros-Mejia et al., 2013; Lavoie, 2013), traditions of natural 
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history institutions and personal preferences of collectors and curators (Pyke & Ehrlich, 

2010), as well as attitudes of countries and data owners towards data-sharing (Enke et al., 

2012; van Panhuis et al., 2014). Most of these effects are difficult to quantify, and existing 

country-level datasets are often highly collinear. Some of these effects, however, may become 

visible in the form of country effects, not least because data mobilization to GBIF is organized 

via national nodes. However, many countries have experienced extreme political transitions as 

well as changes in their sovereign territory over the course of time when data have been 

collected, and effects of modern country identities on record density and inventory 

completeness may be difficult to interpret for many parts of the world. We therefore decided 

not to perform hierarchical mixed effects models with countries as a random factor, but 

instead only assess the increase in model fit if a ‘country’ factor was added to the minimum 

adequate multi-predictor models. 
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Supplementary Figures 

 
 
 

 

Figure V.2.S1. Relationships between record density and inventory completeness in global ‘digital accessible 
information’ for three vertebrate groups at the 110 km grain. A) Record density, B) Inventory Completeness, C) 
Scatter plots of relation between inventory completeness and record density with deviance explained (d²) based non 
non-zero grid cells, D) Spatial arrangement of residuals of a binomial generalized linear model (logit link) 
explaining inventory completeness with record density. Red values indicate higher, blue values lower inventory 
completeness than expected from record density. 
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Figure V.2.S2. Spatial variation in record-based inventory completeness for three vertebrate taxa at four spatial 
grains. Grey grid cells show areas within the global range of the taxonomic group with no mobilized records. 
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Figure V.2.S3. Determinants of point record density and inventory completeness. Effects were tested in simple and 
multiple regression models. All model subsets were ranked based on AIC scores and subsets with ΔAIC <10 re-run 
as spatial models, by accounting for spatial autocorrelation in model residuals. For record density, we used 
ordinary least squares models and simultaneous autoregressive models (SAR β and OLS % SS). For inventory 
completeness, we used spatial and non-spatial generalized linear models with a binomial distribution and a logit 
link (GLM β and GLM % SS). Bubble size represents the strength of predictor-response relationships. Vertebrate 
groups are represented by color, with shading denoting the direction of the relationship. We show predictor 
strength for record density using three different metrics: i) the coefficient of determination in simple regressions 
(r²), ii) the standardized coefficients of the reduced subset of the spatial multi-predictor model with the lowest AIC 
score (blank cells indicate variables that were not included in these models) (SAR β), and iii) the percentage each 
predictor has in the total Sums of Squares (OLS % SS) of a type III ANOVA. For the latter we used AIC values of 
all possible model subsets as the response variable and dummy-variables coding whether or not a predictor is in the 
respective model as explanatory variables. We show predictor strength for inventory completeness using three 
different metrics analogous to those for record density: i) the deviance explained in simple generalized linear 
regression models (d²), ii) the standardized coefficients of the reduced spatial multiple generalized linear regression 
models with the lowest AIC score (GLM β), and iii) the percentage each predictor has in the total Sums of Squares 
(GLM % SS) of a type III ANOVA. 
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Supporting tables 

Table V.2.S1. Global correlations between a) record density and inventory completeness (based on grid cells with 
at least one record) and b) species richness evident in mobilized occurrence point records (SRrecords) and expected 
true species richness based on expert-opinion range maps (SRexpert). For each taxonomic group and spatial grain 
(km), the median record density (N records/104 km²), the median inventory completeness, the Spearman’s rank 
coefficient (rs), and the number of grid cells (N cells) are shown. Asterisks behind rs represent P-values corrected 
for spatial autocorrelation(Dutilleul, 1993). 
 

a) correlations between record density and inventory completeness 

 
Grain (km) 

median 
record 

density 

median 
inventory 

completeness rS N cells 

      Birds 110 8.61 0.03 0.91*** 7,378 

 
220 48.11 0.22 0.89*** 2,863 

 
440 115.87 0.47 0.85*** 1,007 

 
880 304.46 0.65 0.78*** 350 

      Mammals 110 0.81 0.01 0.82*** 5,885 

 
220 5.66 0.08 0.84*** 2,447 

 
440 14.76 0.24 0.87*** 888 

 
880 33.39 0.43 0.84*** 300 

      Amphibians 110 0.00 0.00 0.57*** 4,346 

 
220 1.83 0.16 0.57*** 1,863 

 
440 4.13 0.36 0.56*** 699 

 
880 13.81 0.50 0.60*** 251 

      
b) correlations between GBIF richness and expert richness 

 
 

Grain (km) 
median 
SRrecords 

median 
SRexpert rS N cells 

     
 

Birds 110 4 193 0.35** 11,757 

 
220 34 205 0.58*** 3,575 

 
440 83.5 228.5 0.79*** 1,136 

 
880 157 274.5 0.91*** 372 

      Mammals 110 1 52 0.28* 11,522 

 
220 5 57 0.49*** 3,415 

 
440 16 69 0.69*** 1,037 

 
880 39 92 0.83*** 323 

      Amphibians 110 0 10 0.39*** 10,002 

 
220 2 12 0.61*** 2,973 

 
440 5 16 0.81*** 919 

  880 14 29 0.91*** 280 
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Table V.2.S2. Variation in 110 km inventory completeness (%) for all three vertebrate groups combined (N = 
21,170 species) among a) biomes, b) realms, c) biome-realm-combinations (following Olson et al. (2001)), and d) 
countries. Within biomes, realms are ordered from highest to lowest median completeness. Within broad 
geographical regions, countries are ordered from highest to lowest median completeness. Grouping of countries 
into geographical regions is for orientation only and does not reflect any view of the authors. Some countries are 
missing because they did not overlay the majority of the land area of any grid cell. Country codes (ISO 
3166 standard) are the same as in Fig. II.2.5. 
 

a) Variation among biomes 

     
Biome     N cells Min Max Mean SD Median 

Tropical & Subtropical Moist Broadleaf Forests 2,214 0.0 100.0 14.1 20.2 3.2 
Tropical & Subtropical Dry Broadleaf Forests 374 0.0 96.7 22.7 23.8 14.6 
Tropical & Subtropical Coniferous Forests 62 0.4 80.9 46.7 21.8 51.2 
Flooded Grasslands & Savannas 75 0.0 86.9 13.1 20.3 1.5 
Tropical & Subtropical Grasslands, Savannas & Shrublands 1,637 0.0 100.0 14.4 23.5 1.7 
Deserts & Xeric Shrublands 2,369 0.0 96.3 17.8 27.5 0.7 
Mediterranean Forests, Woodlands & Scrub 325 0.0 96.1 47.6 31.0 52.2 
Temperate Broadleaf & Mixed Forests 1,129 0.0 96.1 38.7 34.6 32.3 
Temperate Conifer Forests 320 0.0 88.6 45.2 31.7 58.6 
Montane Grasslands & Shrublands 410 0.0 72.1 11.8 19.8 1.5 
Temperate Grasslands, Savannas & Shrublands 830 0.0 100.0 29.9 32.0 11.3 
Boreal Forests/Taiga 1,317 0.0 94.1 15.9 25.5 0.5 
Tundra 

  
775 0.0 100.0 20.5 26.3 3.9 

         
b) Variation among realms 

     
Realm     N cells Min Max Mean SD Median 

Nearctic 

  

1,727 0.0 94.1 49.9 25.6 58.8 
Neotropics 

 
1,715 0.0 86.9 19.8 23.2 8.9 

Afrotropics 

 
1,817 0.0 100.0 10.6 18.1 1.6 

Palearctic 

 
4,539 0.0 96.1 10.0 22.2 0.0 

Indomalay 

 
890 0.0 80.0 9.6 14.4 2.1 

Australasia 

 
985 0.0 96.3 53.1 29.3 62.3 

Oceania 

  
178 0.0 100.0 22.8 31.0 0.0 

         
c) Variation among biome-realm combinations 

   
Biome Realm   N cells Min Max Mean SD Median 

Tropical &  Australasia 261 0.0 92.9 16.7 20.5 5.3 
Subtropical Moist  Neotropics 799 0.0 86.5 16.8 22.3 4.6 
Broadleaf Forests Afrotropics 311 0.0 79.5 11.7 16.8 3.7 

 
Palearctic 44 0.0 19.6 4.0 4.7 2.8 

 
Indomalay 645 0.0 80.0 10.2 15.2 2.2 

 
Oceania 

 
154 0.0 100.0 19.6 29.3 0.0 

Tropical &  Nearctic 

 
3 45.7 67.3 54.5 11.4 50.5 

Subtropical Dry  Oceania 

 
19 0.0 96.7 43.0 32.3 47.4 

Broadleaf Forests Neotropics 175 0.0 83.6 32.6 24.3 31.5 

 
Australasia 32 0.0 30.2 12.2 9.3 13.6 

 
Afrotropics 23 0.0 69.9 19.4 23.5 7.4 

 
Indomalay 122 0.0 51.0 8.1 11.8 2.0 

Tropical &  Neotropics 32 6.6 80.9 55.3 20.2 60.0 
Subtropical  Nearctic 

 
22 16.8 74.4 44.2 16.7 43.2 

Coniferous Forests Indomalay 8 0.4 40.0 19.3 16.3 20.4 
Flooded Grasslands  Neotropics 23 0.0 86.9 29.1 26.0 26.3 
& Savannas Indomalay 2 0.8 24.4 12.6 16.7 12.6 

 
Palearctic 19 0.0 36.7 5.2 10.4 0.7 

 
Afrotropics 31 0.0 45.1 6.1 12.6 0.5 

Tropical &  Nearctic 

 
8 67.9 86.4 74.2 5.6 73.0 

Subtropical  Australasia 192 2.1 92.3 64.9 13.8 65.3 
Grasslands,  Indomalay 1 36.6 36.6 36.6 - 36.6 
Savannas &  Oceania 

 
5 0.0 100.0 43.3 46.5 33.3 

Shrublands Neotropics 275 0.0 65.3 9.2 13.8 2.3 

 
Afrotropics 1,156 0.0 72.5 6.7 13.5 0.8 

Deserts & Xeric  Australasia 297 20.3 96.3 65.9 14.6 67.6 
Shrublands Nearctic 

 
198 3.7 87.3 59.8 16.9 64.4 

 
Afrotropics 214 0.0 72.2 19.8 22.5 9.2 

 
Neotropics 125 0.0 84.3 20.7 25.1 8.1 
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Variation among biome-realm combinations (continued) 

Biome Realm   N cells Min Max Mean SD Median 

 

Indomalay 90 0.0 43.9 5.6 10.1 0.7 

 
Palearctic 1,445 0.0 71.4 2.4 7.7 0.0 

Mediterranean  Australasia 67 50.9 93.0 78.6 10.3 81.7 
Forests,Woodlands  Nearctic 

 
17 7.7 88.1 71.4 20.6 78.9 

& Scrub Afrotropics 8 57.5 78.7 69.8 6.2 71.2 

 
Neotropics 15 0.0 81.3 51.3 21.8 54.7 

 
Palearctic 218 0.0 96.1 35.1 28.7 27.2 

Temperate Broadleaf  Australasia 73 0.0 94.4 79.1 16.5 82.4 
& Mixed Forests Nearctic 

 
236 9.4 87.5 70.3 9.7 71.5 

 
Neotropics 43 0.0 79.5 42.2 25.9 47.5 

 
Indomalay 13 0.0 40.8 17.0 16.6 9.1 

 
Palearctic 764 0.0 96.1 25.2 32.0 6.9 

Temperate Conifer  Nearctic 

 
192 3.9 85.8 66.5 14.8 70.9 

Forests Palearctic 127 0.0 88.6 13.5 22.1 1.9 

 
Indomalay 1 0.2 0.2 0.2 - 0.2 

Temperate  Australasia 49 48.4 90.4 76.8 10.3 79.1 
Grasslands,  Nearctic 

 
249 12.7 87.9 67.1 11.0 68.9 

Savannas &  Afrotropics 5 0.0 100.0 45.9 49.7 15.5 
Shrublands Neotropics 144 0.0 75.2 18.2 18.1 10.6 

 
Palearctic 383 0.0 44.3 4.0 8.3 0.4 

Montane Grasslands  Australasia 6 66.2 72.1 68.7 2.0 68.5 
& Shrublands Afrotropics 66 0.0 70.1 34.4 27.9 32.7 

 
Neotropics 62 0.0 63.8 22.7 16.6 21.2 

 
Palearctic 276 0.0 39.7 2.7 5.6 0.3 

Boreal Forests/Taiga Nearctic 

 
438 0.0 94.1 30.4 23.6 26.3 

 
Palearctic 879 0.0 91.6 8.6 23.3 0.0 

Tundra Australasia 8 0.0 64.3 37.4 21.0 41.7 

 
Nearctic 

 
364 0.0 89.1 32.8 23.4 31.8 

 
Palearctic 384 0.0 94.4 8.1 22.1 0.0 

         
d) Variation among countries 

     GeoRegion Country Code N cells Min Max Mean SD Median 

South America Ecuador ECU 30 0.0 84.3 52.6 22.3 58.6 

 
Falkland Islands (Islas Malvinas) FLK 11 0.0 59.6 35.7 20.3 41.8 

 
Chile CHL 76 0.0 81.3 36.9 25.5 39.0 

 
Peru PER 108 0.0 78.3 29.6 20.3 31.2 

 
Bolivia BOL 86 0.0 64.4 23.3 16.6 22.2 

 
Suriname SUR 11 0.0 50.1 17.7 15.2 20.6 

 
Guyana GUY 20 0.3 65.3 20.1 16.7 18.6 

 
French Guiana GUF 6 0.0 29.0 15.1 11.8 18.3 

 
Paraguay PRY 31 0.5 67.3 19.5 16.1 17.9 

 
Uruguay URY 16 0.6 51.3 20.2 16.7 16.0 

 
Colombia COL 98 0.0 68.4 19.0 19.2 13.4 

 
Venezuela VEN 80 0.0 64.6 17.7 17.8 10.9 

 
Brazil BRA 704 0.0 54.1 5.0 9.9 0.5 

Central 
America/Caribbean British Virgin Islands VGB 1 79.9 79.9 79.9 - 79.9 

 
Puerto Rico PRI 6 30.8 82.4 70.2 19.7 77.4 

 
Costa Rica CRI 6 35.7 86.5 69.9 19.2 76.2 

 
Belize BLZ 2 75.3 76.9 76.1 1.1 76.1 

 
El Salvador SLV 2 67.7 75.5 71.6 5.5 71.6 

 
Virgin Islands VIR 1 70.0 70.0 70.0 - 70.0 

 
Dominican Republic DOM 6 64.0 73.2 67.7 3.6 66.4 

 
Dominica DMA 1 64.9 64.9 64.9 - 64.9 

 
Guatemala GTM 10 34.5 78.2 62.1 12.2 64.6 

 
Jamaica JAM 5 53.9 73.3 62.3 7.3 61.8 

 
St. Vincent and the Grenadines VCT 1 60.6 60.6 60.6 - 60.6 

 
Cayman Islands CYM 3 47.2 84.3 64.0 18.8 60.5 

 
Netherlands Antilles ANT 1 57.3 57.3 57.3 - 57.3 

 
St. Lucia LCA 1 56.1 56.1 56.1 - 56.1 

 
Antigua and Barbuda ATG 1 55.7 55.7 55.7 - 55.7 

 
Grenada GRD 1 55.0 55.0 55.0 - 55.0 

 
Mexico MEX 182 0.0 87.3 52.4 19.5 54.8 

 
Panama PAN 11 10.2 76.5 45.8 23.3 53.8 

 
Barbados BRB 1 53.7 53.7 53.7 - 53.7 

 
Haiti HTI 3 36.5 58.3 47.5 10.9 47.8 

 
Martinique MTQ 2 42.9 49.7 46.3 4.8 46.3 

 
Honduras HND 12 0.0 61.2 42.9 17.9 46.0 
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Variation among countries (continued) 

GeoRegion Country Code N cells Min Max Mean SD Median 

 

Trinidad and Tobago TTO 2 34.1 57.6 45.8 16.7 45.8 

 
St. Kitts and Nevis KNA 1 43.9 43.9 43.9 - 43.9 

 
Montserrat MSR 1 41.0 41.0 41.0 - 41.0 

 
Nicaragua NIC 13 0.0 63.6 37.5 21.5 42.7 

 
Cuba CUB 16 1.1 61.2 36.8 15.9 40.4 

 
Guadeloupe GLP 2 0.0 78.3 39.1 55.3 39.1 

 
Bahamas, The BHS 22 0.0 80.9 33.9 26.5 33.4 

 
Anguilla AIA 1 24.5 24.5 24.5 - 24.5 

 
Turks and Caicos Islands TCA 4 0.0 39.7 17.6 20.2 15.3 

Northern America United States USA 848 0.0 100.0 64.4 18.9 69.8 

 
Bermuda BMU 1 45.5 45.5 45.5 - 45.5 

 
Canada CAN 827 0.0 85.6 35.5 24.7 35.0 

North/West Europe Ireland IRL 9 87.3 96.1 92.9 2.8 93.5 

 
Denmark DNK 7 81.5 90.8 85.3 3.3 84.6 

 
Sweden SWE 41 73.5 90.2 84.0 3.8 84.4 

 
Finland FIN 30 74.2 91.6 84.1 4.4 84.2 

 
United Kingdom GBR 33 16.7 94.2 83.6 14.5 88.1 

 
Norway NOR 28 65.1 90.0 83.3 5.3 84.0 

 
Belgium BEL 2 82.5 85.1 83.8 1.8 83.8 

 
France FRA 49 66.4 89.1 79.9 5.2 81.3 

 
Spain ESP 61 0.0 96.1 71.0 19.6 75.4 

 
Germany DEU 29 41.1 81.5 68.8 10.4 71.1 

 
Switzerland CHE 4 49.7 76.2 67.0 11.8 71.0 

 
Iceland ISL 11 51.4 80.3 68.3 8.9 69.4 

 
Netherlands NLD 3 62.3 81.8 70.4 10.1 67.3 

 
Austria AUT 5 16.1 68.1 56.9 22.8 67.0 

 
Portugal PRT 17 0.0 72.2 49.5 21.6 55.6 

 
Malta MLT 1 26.2 26.2 26.2 - 26.2 

 
Italy ITA 35 0.0 51.1 24.9 14.2 22.9 

 
Svalbard SJM 29 0.0 94.4 27.4 29.1 17.6 

 
Greenland GRL 13 0.0 65.5 17.8 21.3 9.5 

 
Faroe Islands FRO 4 0.0 36.8 12.7 16.8 7.0 

 
Jan Mayen SJM 3 0.0 11.1 3.7 6.4 0.0 

East/South-East Europe  Estonia EST 5 9.7 85.9 64.5 31.3 75.4 

 
Slovakia SVK 4 62.4 68.5 65.4 2.5 65.4 

 
Poland POL 27 16.0 85.7 55.1 19.7 60.9 

 
Hungary HUN 7 11.4 63.3 42.8 21.3 49.8 

 
Cyprus CYP 1 45.3 45.3 45.3 - 45.3 

 
Czech Republic CZE 8 19.5 71.7 44.3 21.8 39.6 

 
Latvia LVA 7 2.3 48.3 26.1 15.0 31.7 

 
Greece GRC 14 12.0 47.3 30.0 12.0 31.2 

 
Bosnia and Herzegovina BIH 13 0.5 36.2 18.9 13.9 24.6 

 
Croatia HRV 3 12.4 21.2 17.8 4.7 19.9 

 
Macedonia MKD 2 13.4 23.9 18.7 7.4 18.7 

 
Montenegro MNE 1 18.0 18.0 18.0 - 18.0 

 
Slovenia SVN 2 14.6 19.7 17.2 3.6 17.2 

 
Bulgaria BGR 9 0.0 36.6 18.7 13.2 16.4 

 
Lithuania LTU 5 6.5 32.7 17.1 10.6 13.6 

 
Moldova MDA 2 9.5 14.9 12.2 3.8 12.2 

 
Albania ALB 4 2.3 40.3 16.6 16.7 11.8 

 
Romania ROU 20 0.3 45.8 13.7 13.5 10.8 

 
Ukraine UKR 49 0.3 65.3 6.6 11.9 1.2 

 
Byelarus BLR 20 0.0 22.8 2.2 5.2 0.4 

Australia/Oceania Wake Island UMI 1 100.0 100.0 100.0 - 100.0 

 
Norfolk Island NFK 1 92.9 92.9 92.9 - 92.9 

 
Nauru NRU 1 80.0 80.0 80.0 - 80.0 

 
Australia AUS 660 2.1 96.3 69.4 14.6 70.9 

 
Western Samoa WSM 2 36.1 94.1 65.1 41.0 65.1 

 
New Zealand NZL 40 0.0 88.1 54.9 24.9 65.0 

 
Guam GUM 1 47.4 47.4 47.4 - 47.4 

 
Northern Mariana Islands MNP 7 0.0 94.4 42.3 32.9 33.3 

 
Papua New Guinea PNG 82 0.0 61.6 21.1 18.3 20.1 

 
Solomon Islands SLB 29 0.0 73.7 22.8 21.9 18.0 

 
Niue NIU 1 15.4 15.4 15.4 - 15.4 

 
New Caledonia NCL 18 0.0 78.7 20.6 27.3 4.0 

 
Cook Islands COK 14 0.0 88.9 21.0 32.0 0.0 

 
French Polynesia PYF 30 0.0 44.0 9.0 13.8 0.0 

 
Kiribati KIR 29 0.0 66.7 6.0 15.8 0.0 

 
Micronesia, Federated States of FSM 38 0.0 100.0 18.0 34.3 0.0 
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Variation among countries (continued) 

GeoRegion Country Code N cells Min Max Mean SD Median 

 

Pitcairn Islands PCN 2 0.0 0.0 0.0 0.0 0.0 

 
Tokelau TKL 3 0.0 0.0 0.0 0.0 0.0 

 
Tonga TON 11 0.0 55.6 11.0 21.5 0.0 

 
Tuvalu TUV 4 0.0 0.0 0.0 0.0 0.0 

 
US Minor Outlying Islands UM 4 0.0 0.0 0.0 - 0.0 

 
Wallis and Futuna WLF 3 0.0 0.0 0.0 0.0 0.0 

Tropical Asia Cocos (Keeling) Islands CCK 1 50.0 50.0 50.0 - 50.0 

 
Bhutan BTN 3 35.5 38.8 37.3 1.7 37.6 

 
Sri Lanka LKA 7 3.0 50.4 32.5 17.8 37.6 

 
British Indian Ocean Territory IO 6 0.0 40.0 18.3 15.7 22.5 

 
Philippines PHL 72 0.0 62.5 20.4 19.0 17.7 

 
Malaysia MYS 37 0.0 55.3 20.8 16.4 17.3 

 
Cambodia KHM 17 0.0 33.0 12.1 9.1 13.6 

 
Nepal NPL 10 0.2 39.0 16.2 16.1 13.3 

 
Thailand THA 44 0.0 49.0 15.7 15.7 10.3 

 
Vietnam VNM 28 0.0 40.6 10.0 10.7 6.3 

 
Lao People's Democratic Republic LAO 17 0.0 31.6 8.5 9.0 4.5 

 
India IND 276 0.0 60.8 8.1 12.3 1.9 

 
Myanmar MMR 61 0.0 29.6 4.2 5.7 1.7 

 
Indonesia IDN 316 0.0 50.3 6.2 10.0 1.3 

 
Bangladesh BGD 12 0.0 39.7 7.0 13.3 0.8 

 
Pakistan PAK 69 0.0 43.9 2.8 7.0 0.3 

 
Maldives MDV 15 0.0 44.4 7.7 16.3 0.0 

 
Spratly Islands PG 4 0.0 0.0 0.0 0.0 0.0 

Temperate Asia Korea, Republic of KOR 13 16.7 71.3 46.1 17.3 46.4 

 
Taiwan TWN 8 0.0 79.2 42.3 36.9 53.3 

 
Japan JPN 78 0.0 70.3 22.7 19.5 16.2 

 

Korea, Democratic People's Republic 
of PRK 11 0.0 64.1 8.1 18.7 1.9 

 
Kyrgyzstan KGZ 12 0.0 3.4 1.3 1.0 1.2 

 
Tajikistan TJK 12 0.0 3.1 1.1 1.0 1.0 

 
Mongolia MNG 124 0.0 31.8 4.5 7.3 0.7 

 
China CHN 774 0.0 44.2 2.8 6.1 0.2 

 
Kazakhstan KAZ 224 0.0 44.3 3.0 8.6 0.0 

 
Russia RUS 1,456 0.0 81.1 2.0 7.1 0.0 

 
Turkmenistan TKM 38 0.0 4.8 0.6 1.2 0.0 

 
Uzbekistan UZB 37 0.0 14.9 0.9 2.6 0.0 

Greater Middle East Israel ISR 3 71.4 80.7 76.8 4.9 78.5 

 
United Arab Emirates ARE 7 18.1 72.2 61.4 19.2 68.3 

 
Qatar QAT 1 40.2 40.2 40.2 - 40.2 

 
Kuwait KWT 1 36.3 36.3 36.3 - 36.3 

 
Morocco MAR 34 4.5 48.4 23.7 13.4 25.5 

 
Tunisia TUN 17 1.5 39.9 17.1 12.5 15.7 

 
Jordan JOR 8 0.0 71.1 26.5 31.9 9.9 

 
Turkey TUR 67 0.0 54.9 11.9 12.9 7.2 

 
Armenia ARM 2 2.0 12.0 7.0 7.1 7.0 

 
Georgia GEO 8 1.8 12.6 6.5 3.6 6.0 

 
Syrian Arab Republic SYR 17 0.0 30.5 7.3 9.2 5.3 

 
Egypt EGY 81 0.0 71.0 10.9 14.9 5.0 

 
Oman OMN 27 0.0 52.4 9.5 14.0 3.8 

 
Iran, Islamic Republic of IRN 137 0.0 27.3 3.5 5.1 1.5 

 
Afghanistan AFG 51 0.0 18.3 3.1 4.3 0.9 

 
Azerbaijan AZE 7 0.0 4.6 1.2 1.6 0.9 

 
Iraq IRQ 35 0.0 30.4 4.3 8.2 0.9 

 
Algeria DZA 194 0.0 25.0 1.8 3.8 0.0 

 
Libya LBY 133 0.0 9.1 0.5 1.6 0.0 

 
Saudi Arabia SAU 163 0.0 60.4 1.3 5.7 0.0 

 
Yemen YEM 38 0.0 8.2 0.9 2.0 0.0 

 
Western Sahara ESH 25 0.0 24.6 1.4 4.9 0.0 

Sub-Saharan Africa St. Helena SHN 4 0.0 100.0 62.5 47.9 75.0 

 
Swaziland SWZ 1 64.5 64.5 64.5 - 64.5 

 
South Africa ZAF 104 2.1 100.0 56.7 16.7 61.5 

 
Sao Tome and Principe STP 2 44.4 60.9 52.7 11.6 52.7 

 
Reunion REU 1 52.2 52.2 52.2 - 52.2 

 
Lesotho LSO 3 49.4 54.8 51.6 2.8 50.6 

 
Rwanda RWA 2 38.1 52.9 45.5 10.5 45.5 

 
Mauritius MUS 2 16.7 73.1 44.9 39.9 44.9 

 
Cape Verde CPV 8 0.0 65.7 30.8 26.8 31.5 

 
Burundi BDI 3 5.0 50.0 28.2 22.6 29.6 
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Variation among countries (continued) 

GeoRegion Country Code N cells Min Max Mean SD Median 

 

Malawi MWI 11 0.9 34.6 20.5 12.6 26.9 

 
Uganda UGA 19 3.2 60.9 24.9 17.6 20.2 

 
Zimbabwe ZWE 32 0.5 55.0 19.3 15.6 15.7 

 
Comoros COM 2 11.5 19.6 15.6 5.8 15.6 

 
Namibia NAM 66 0.0 63.1 20.2 16.4 15.6 

 
Botswana BWA 46 0.0 61.6 20.8 18.1 13.8 

 
Liberia LBR 8 0.7 47.5 20.1 17.0 13.7 

 
Equatorial Guinea GNQ 4 2.2 37.5 16.7 15.5 13.6 

 
Ghana GHA 21 0.8 40.7 15.0 13.4 12.0 

 
Madagascar MDG 54 0.0 69.9 17.2 18.9 11.0 

 
Senegal SEN 18 0.2 50.6 14.9 14.6 10.1 

 
Sierra Leone SLE 6 4.9 30.4 13.5 10.2 9.5 

 
Kenya KEN 48 0.0 69.6 19.4 21.3 9.1 

 
Benin BEN 11 2.1 18.3 7.8 5.1 6.1 

 
Tanzania, United Republic of TZA 76 0.0 54.5 12.6 15.5 5.9 

 
Guinea-Bissau GNB 2 0.5 9.9 5.2 6.6 5.2 

 
Ivory Coast CIV 27 0.0 36.7 5.8 7.1 4.9 

 
Gabon GAB 21 0.0 29.0 7.2 8.6 4.7 

 
Togo TGO 5 0.8 9.8 4.8 3.4 4.7 

 
Burkina Faso BFA 22 0.0 13.7 4.9 4.5 3.6 

 
Cameroon CMR 41 0.0 38.5 9.1 11.0 3.3 

 
Mayotte MYT 1 2.3 2.3 2.3 - 2.3 

 
Zambia ZMB 57 0.0 49.2 9.2 13.4 1.8 

 
Congo, Democratic Republic of COD 194 0.0 67.7 6.7 11.6 1.7 

 
Mozambique MOZ 67 0.0 70.1 5.6 12.9 1.7 

 
Guinea GIN 22 0.0 44.4 8.1 13.6 0.9 

 
Congo, Republic of COG 27 0.0 21.9 2.5 5.0 0.8 

 
Ethiopia ETH 93 0.0 36.9 4.1 7.8 0.8 

 
Angola AGO 101 0.0 60.7 3.3 7.7 0.7 

 
Eritrea ERI 9 0.0 19.2 3.8 7.2 0.3 

 
Nigeria NGA 72 0.0 26.0 1.7 4.5 0.3 

 
Central African Republic CAF 51 0.0 22.7 0.6 3.2 0.0 

 
Chad TCD 103 0.0 11.2 0.5 1.8 0.0 

 
Djibouti DJI 3 0.0 0.3 0.1 0.1 0.0 

 
Mali MLI 101 0.0 6.7 0.4 0.9 0.0 

 
Mauritania MRT 81 0.0 7.6 0.5 1.1 0.0 

 
Niger NER 98 0.0 10.7 0.7 1.9 0.0 

 
Seychelles SYC 11 0.0 79.5 11.9 24.2 0.0 

 
Somalia SOM 57 0.0 15.6 1.3 3.0 0.0 

 
Sudan SDN 204 0.0 37.4 1.3 3.9 0.0 

                  
 
 
 

  



V. Appendix 

142 

Table V.2.S3. Model fits and spatial autocorrelation for a) inventory completeness (RAC models) and b) record 
density (SAR models). Values are given for the model subset with the lowest AIC score. In a) model fit is 
expressed by the deviance explained (D²). The degree of spatial autocorrelation (global Moran’s I) in model 
residuals is compared between the minimum adequate spatial model subset (see ‘Moran’s Isp’) and the 
corresponding non-spatial model (see ‘Moran’s Insp’). Asterisks denote significant spatial autocorrelation (.: P<0.1; 
*: P<0.05; **: P<0.01; ***: P<0.001). In b) model fit is expressed by pseudo-R² values, calculated as the squared 
Pearson correlation coefficient between fitted and observed values (Kissling & Carl, 2008). Fitted values of SAR 
models can be partitioned additively into trend (non-spatial smooth) and signal (spatial smooth). We calculated 
both a pseudo-R² for the fitted values including the spatial component (‘R²sp’), and a pseudo-R² for the trend 
excluding the spatial component, which represents the part of the variation explained by the predictors (in the 
context of SAR models hereafter ‘R²nsp’). R² values of potential minimum adequate models (subsets with ΔAIC < 
2) never differed by more than 0.004. The degree of spatial autocorrelation (global Moran’s I) in model residuals is 
compared between the minimum adequate spatial model (see ‘Moran’s Isp’) and the corresponding non-spatial 
(OLS) model (see ‘Moran’s Insp’). Asterisks denote significant spatial autocorrelation (.: P<0.1; *: P<0.05; **: 
P<0.01; ***: P<0.001). 
 

a) Inventory completeness. 
      

Taxon Grain (km)   D² Moran's Insp Moran's Isp 

      Birds 110 

 
0.78 0.067*** 0.007*** 

 
220 

 
0.76 0.057*** 0.003*** 

 
440 

 
0.77 0.040*** -0.003 

 
880 

 
0.74 0.012 -0.012 

      Mammals 110 

 
0.70 0.081*** 0.006*** 

 
220 

 
0.75 0.079*** 0.006*** 

 
440 

 
0.77 0.061*** -0.003 

 
880 

 
0.73 0.030*** -0.006 

      Amphibians 110 

 
0.57 0.062*** 0.008*** 

 
220 

 
0.64 0.066*** 0.008*** 

 
440 

 
0.60 0.064*** 0.001 

 
880 

 
0.60 0.059*** -0.005 

b) Record density. 

    Taxon Grain (km) R²sp R²nsp Moran's Insp Moran's Isp 

      Birds 110 0.82 0.62 0.086*** 0.006*** 

 
220 0.83 0.70 0.069*** 0.006*** 

 
440 0.85 0.78 0.047*** 0.007** 

 
880 0.86 0.82 0.025*** 0.005 

      Mammals 110 0.66 0.41 0.068*** 0.005*** 

 
220 0.76 0.53 0.070*** 0.007*** 

 
440 0.80 0.59 0.060*** 0.004. 

 
880 0.76 0.71 0.030*** 0.006 

      Amphibians 110 0.58 0.38 0.063*** 0.006*** 

 
220 0.69 0.53 0.062*** 0.005*** 

 
440 0.77 0.59 0.060*** 0.002 

 
880 0.83 0.70 0.046*** -0.000 
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Table V.2.S4. Influence of adding a) country identity of grid cells as a factor and b) record density to the minimum 
adequate model of inventory completeness. D²MAM is the deviance explained by the minimum adequate model. In 
a): D²MAM+Country is the deviance explained when adding a country factor to the minimum adequate model. D²Country 
is the deviance explained by a model containing only country membership as factor. The percentage of cross-
country variation that is already captured by the minimum adequate model (% of cross-country variation already in 
D²MAM) was calculated as: 100 / D²Country*(D²Country - (D²MAM+Country - D²MAM)). %D² added by Country is the additional 
deviance explained by adding a country factor to the minimum adequate model (as percent of total D²); in b): 
D²MAM+RD is the deviance explained when adding log10-transformed record density to the minimum adequate 
model. D²RD is the deviance explained by a model containing only log10-transformed record density as an 
explanatory variable. The percentage of the deviance explained by the MAM that is also attributable to differences 
in record density (% of D²MAM in ΔRD) was calculated as: 100 / D²MAM* (D²MAM - (D²RD - D²MAM+RD)). %D² added by 

RD is the additional deviance explained by adding record density to the minimum adequate model (as percent of 
total D²MAM+RD). 
 

a) Adding country identity to MAM.         

Taxon Grain (km) D²MAM D²MAM+Country D²Country 

% of cross-
country 

variation 
already in D²MAM 

% of D² added by 

Country 

irds 110 0.78 0.80 0.68 97.2 2.4 
Mammals 110 0.70 0.73 0.64 94.7 4.6 
Amphibians 110 0.57 0.62 0.55 92.1 7.1 

       b) Adding record density to MAM. 
    

Taxon Grain (km) D²MAM D²MAM+RD D²RD 
% of D²MAM in 

ΔRD 
% of D² added by 

RD 

Birds 110 0.78 0.94 0.90 94.2 5.8 

 
220 0.76 0.94 0.89 94.3 5.7 

 
440 0.77 0.92 0.88 95.2 4.8 

 
880 0.74 0.86 0.82 95.2 4.8 

Mammals 110 0.70 0.88 0.76 83.7 16.3 

 
220 0.75 0.89 0.79 86.9 13.1 

 
440 0.77 0.89 0.81 89.0 11.0 

 
880 0.73 0.87 0.79 89.8 10.2 

Amphibians 110 0.57 0.76 0.59 69.1 30.9 

 
220 0.64 0.79 0.64 76.8 23.2 

 
440 0.60 0.80 0.63 72.3 27.7 

 
880 0.60 0.76 0.57 68.0 32.0 
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Table V.2.S5. The effects of socioeconomic and geographic factors on a) – d) inventory completeness and e) – h) 
data density. The twelve predictor variables were endemism richness (EndRich), protected area coverage 
(ProtAreas), mountains (Mountains), on-ground accessibility (GroundAcc), proximity to airports (ProxAirp), 
proximity to data-contributing institutions (ProxInst), secure conditions (Security), participation with GBIF 
(GBIFpartic), scientific activities (ScientActiv), nationally available research funding (FundLocal), research 
funding in countries with contributing institutions (FundInst), and size of contributing institutions (PublSize). 
Three comparative measures were used: for inventory completeness (a – d): 1) the deviance explained from simple 
regressions (d²), 2) standardized regression coefficients from the reduced spatial generalized linear model with the 
lowest AIC score (GLM β; a range of coefficients is given if several model subsets have ΔAIC < 2 to the “best” 
model), and 3) the percentage each predictor has in the total Sums of Squares of an ANOVA, where the AIC values 
of all possible non-spatial models enter as the response variable and dummy-variables coding whether or not a 
predictor is in the respective model as explanatory variables (% SS); for inventory completeness (e – h): 1) the 
coefficient of determination from simple ordinary least squares regressions (r²), 2) standardized regression 
coefficients from the reduced simultaneous autoregressive model with the lowest AIC score (SAR β), and 3) the 
percentage each predictor has in the total Sums of Squares of an ANOVA, where the AIC values of all possible 
non-spatial models enter as the response variable and dummy-variables coding whether or not a predictor is in the 
respective model as explanatory variables (% SS) the. Asterisks denote significant spatial autocorrelation (.: P<0.1; 
*: P<0.05; **: P<0.01; ***: P<0.001). 
 
a) Inventory completeness at 110 km.         

Taxonomic group Predictor d² GLM β (range) z-value 
% 

SS 

      Birds EndRich 0.01*** 0.32*** 127.21 0.01 

 
ProtAreas 0.03*** 0.19*** 80.96 0.01 

 
Mountains 0.00*** -0.03*** -11.83 0.00 

 
GroundAcc 0.03*** 0.23*** 72.45 0.00 

 
ProxAirp 0.16*** 0.18*** 57.32 0.03 

 
ProxInst 0.29*** 0.35*** 121.61 0.15 

 
Security 0.12*** 0.08*** 27.93 0.01 

 
GBIFpartic 0.27*** 0.38*** 134.25 0.13 

 
ScientActiv 0.39*** 0.27*** 56.93 0.22 

 
FundLocal 0.34*** 0.61*** 126.60 0.21 

 
FundInst 0.01*** -0.13*** -59.17 0.00 

 
PublSize 0.18*** 0.53*** 173.70 0.22 

      Mammals EndRich 0.00 0.25*** 47.92 0.01 

 
ProtAreas 0.02*** 0.13*** 26.50 0.00 

 
Mountains 0.01*** 0.07*** 14.28 0.00 

 
GroundAcc 0.05*** 0.02* 2.25 0.00 

 
ProxAirp 0.12*** 0.07*** 10.51 0.00 

 
ProxInst 0.40*** 0.61*** 87.06 0.72 

 
 Security 0.07*** -0.04*** -6.34 0.00 

 
GBIFpartic 0.25*** 0.26*** 38.41 0.10 

 
ScientActiv 0.27*** -0.01 -0.80 0.06 

 
FundLocal 0.24*** 0.30*** 29.94 0.08 

 
FundInst 0.02*** -0.06*** -12.24 0.01 

 
PublSize 0.02*** 0.15*** 25.34 0.01 

      Amphibians EndRich 0.00*** 0.08*** 10.93 0.00 

 
ProtAreas 0.01*** 0.12*** 14.35 0.01 

 
Mountains 0.01*** 0.13*** 15.32 0.04 

 
GroundAcc 0.06*** 0.12*** 11.71 0.01 

 
ProxAirp 0.11*** 0.05*** 5.11 0.02 

 
ProxInst 0.25*** 0.30*** 29.13 0.56 

 
Security 0.07*** -0.16*** -16.03 0.03 

 
GBIFpartic 0.19*** 0.24*** 28.50 0.26 

 
ScientActiv 0.16*** -0.02 

 
0.04 

 
FundLocal 0.13*** 0.17*** (0.17 - 0.18) 14.26 0.03 

 
FundInst 0.01*** -0.07*** -8.40 0.01 

 
PublSize 0.00*** 0.02 1.63 0.00 

      
      b) Inventory completeess at 220 km. 

    
Taxonomic group Predictor d² GLM β (range) z-value 

% 
SS 

      Birds EndRich 0.00*** 0.32*** 76.97 0.01 

 
ProtAreas 0.04*** 0.20*** 50.28 0.01 

 
Mountains 0.01*** 0.06*** 16.83 0.00 

 
GroundAcc 0.02*** 0.10*** 21.44 0.00 

 
ProxAirp 0.21*** 0.30*** 59.08 0.07 

 
ProxInst 0.30*** 0.42*** 95.26 0.25 



2. Supplementary information - Chapter 2 

145 

Inventory completeess at 220 km (continued) 

Taxonomic group Predictor d² GLM β (range) z-value 
% 

SS 

 

Security 0.15*** -0.16*** -31.89 0.02 

 
GBIFpartic 0.29*** 0.38*** 89.00 0.16 

 
ScientActiv 0.32*** 0.10*** 13.75 0.11 

 
FundLocal 0.23*** 0.56*** 84.87 0.11 

 
FundInst 0.02*** -0.15*** -43.89 0.01 

 
PublSize 0.19*** 0.53*** 108.44 0.24 

      Mammals EndRich 0.01*** 0.38*** 45.10 0.02 

 
ProtAreas 0.02*** 0.12*** 16.44 0.00 

 
Mountains 0.02*** 0.03*** 4.03 0.00 

 
GroundAcc 0.04*** -0.01 -1.05 0.00 

 
ProxAirp 0.16*** 0.16*** 16.52 0.02 

 
ProxInst 0.41*** 0.61*** 61.87 0.65 

 
Security 0.07*** -0.03*** -3.41 0.00 

 
GBIFpartic 0.31*** 0.33*** 34.11 0.20 

 
ScientActiv 0.26*** -0.01 -0.71 0.05 

 
FundLocal 0.18*** 0.32*** 24.10 0.04 

 
FundInst 0.03*** -0.06*** -8.16 0.01 

 
PublSize 0.02*** 0.17*** 17.41 0.01 

      Amphibians EndRich 0.00. 0.12*** 11.04 0.00 

 
ProtAreas 0.00*** 0.10*** 8.10 0.00 

 
Mountains 0.03*** 0.11*** 8.77 0.03 

 
GroundAcc 0.09*** 0.12*** 8.79 0.04 

 
ProxAirp 0.18*** 0.14*** 9.36 0.08 

 
ProxInst 0.26*** 0.24*** 15.90 0.34 

 
Security 0.06*** -0.12*** -8.01 0.01 

 
GBIFpartic 0.24*** 0.24*** 16.93 0.41 

 
ScientActiv 0.19*** 0.09*** 3.58 0.07 

 
FundLocal 0.12*** 0.18*** 8.22 0.03 

 
FundInst 0.02*** -0.13*** -9.76 0.00 

 
PublSize 0.01*** 0.04* 2.44 0.00 

      c) Inventory completeness at 440 km. 
    

Taxonomic group Predictor d² GLM β (range) z-value 
% 

SS 

      Birds EndRich 0.03*** 0.41*** 53.94 0.04 

 
ProtAreas 0.08*** 0.27*** (0.27 - 0.28) 36.99 0.06 

 
Mountains 0.01*** 0.05*** 9.14 0.00 

 
GroundAcc 0.02*** -0.02* -2.53 0.00 

 
ProxAirp 0.23*** 0.29*** (0.28 - 0.29) 32.86 0.11 

 
ProxInst 0.30*** 0.34*** 46.12 0.31 

 
Security 0.17*** -0.12*** -14.12 0.02 

 
GBIFpartic 0.28*** 0.36*** 52.56 0.20 

 
ScientActiv 0.21*** -0.09*** -9.68 0.03 

 
FundLocal 0.15*** 0.65*** 63.13 0.10 

 
FundInst 0.05*** -0.20*** -31.61 0.02 

 
PublSize 0.16*** 0.45*** 53.53 0.11 

      Mammals EndRich 0.02*** 0.45*** 30.81 0.04 

 
ProtAreas 0.05*** 0.22*** 16.70 0.04 

 
Mountains 0.02*** 0.08*** 7.28 0.01 

 
GroundAcc 0.03*** -0.03* -2.10 0.00 

 
ProxAirp 0.17*** 0.13*** 8.87 0.03 

 
ProxInst 0.37*** 0.49*** 32.15 0.47 

 
Security 0.07*** 0.00 0.24 0.00 

 
GBIFpartic 0.33*** 0.40*** 28.94 0.34 

 
ScientActiv 0.17*** -0.11*** -6.08 0.02 

 
FundLocal 0.10*** 0.43*** 22.43 0.03 

 
FundInst 0.10*** -0.15*** -11.96 0.03 

 
PublSize 0.00*** 0.07*** 5.01 0.00 

      Amphibians EndRich 0.00 0.14*** 8.48 0.00 

 
ProtAreas 0.00. 0.09*** 4.75 0.00 

 
Mountains 0.02*** 0.08*** 4.38 0.01 

 
GroundAcc 0.07*** 0.17*** 9.15 0.05 

 
ProxAirp 0.14*** 0.17*** 8.27 0.08 

 
ProxInst 0.24*** 0.12*** 5.98 0.25 

 
Security 0.05*** -0.18*** -8.22 0.02 

 
GBIFpartic 0.20*** 0.27*** 14.35 0.46 

 
ScientActiv 0.14*** 0.01 0.42 0.04 

 
FundLocal 0.12*** 0.30*** 11.11 0.09 

 
FundInst 0.04*** -0.15*** (-0.16 - .0.15) -8.89 0.01 

 
PublSize 0.01*** 0.01 

 
0.00 
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      d) Inventory completeness at 880 km. 
    

Taxonomic group Predictor d² GLM β (range) z-value 
% 

SS 

      Birds EndRich 0.07*** 0.41*** 31.67 0.08 

 
ProtAreas 0.08*** 0.21*** 14.05 0.03 

 
Mountains 0.02*** -0.04*** -3.67 0.00 

 
GroundAcc 0.02*** -0.03* -2.23 0.00 

 
ProxAirp 0.19*** 0.32*** 25.56 0.11 

 
ProxInst 0.28*** 0.33*** (0.33 - 0.34) 24.05 0.34 

 
Security 0.20*** -0.12*** -8.07 0.02 

 
GBIFpartic 0.30*** 0.38*** 32.61 0.23 

 
ScientActiv 0.18*** 

  
0.02 

 
FundLocal 0.10*** 0.49*** (0.48 - 0.49) 33.06 0.09 

 
FundInst 0.05*** -0.03* -2.40 0.01 

 
PublSize 0.13*** 0.29*** (0.28 - 0.29) 19.48 0.06 

      Mammals EndRich 0.04*** 0.29*** 12.57 0.04 

 
ProtAreas 0.07*** 0.29*** 12.27 0.06 

 
Mountains 0.03*** 0.12*** 5.90 0.01 

 
GroundAcc 0.02*** 0.06** 2.77 0.00 

 
ProxAirp 0.12*** 0.18*** 9.86 0.03 

 
ProxInst 0.39*** 0.36*** 17.67 0.42 

 
Security 0.11*** -0.07** -2.96 0.00 

 
GBIFpartic 0.36*** 0.38*** 19.30 0.32 

 
ScientActiv 0.21*** 

  
0.03 

 
FundLocal 0.09*** 0.31*** 13.23 0.05 

 
FundInst 0.11*** 

  
0.03 

 
PublSize 0.01*** -0.02 -0.83 0.00 

      Amphibians EndRich 0.00 
  

0.00 

 
ProtAreas 0.02*** -0.11*** -3.80 0.00 

 
Mountains 0.00** 0.01 

 
0.00 

 
GroundAcc 0.07*** 0.23*** 8.86 0.09 

 
ProxAirp 0.11*** 0.26*** 12.07 0.13 

 
ProxInst 0.17*** 0.24*** 9.84 0.31 

 
Security 0.09*** -0.44*** -14.46 0.09 

 
GBIFpartic 0.13*** 0.32*** 12.66 0.23 

 
ScientActiv 0.19*** 

  
0.08 

 
FundLocal 0.13*** 

  
0.06 

 
FundInst 0.00 

  
0.00 

 
PublSize 0.00 0.27*** (0.26 - 0.27) 8.76 0.00 

      e) Record density at 110 km.  
    

    r² SAR β (range) z-value 
% 

SS 

      Birds EndRich 0.01*** 0.28*** 14.66 0.07 

 
ProtAreas 0.04*** 0.06*** 7.47 0.00 

 
Mountains 0.00 0.03* 2.15 0.00 

 
GroundAcc 0.06*** 0.16*** 10.35 0.05 

 
ProxAirp 0.23*** 0.15*** 11.81 0.00 

 
ProxInst 0.28*** 0.11*** (0.11 - 0.12) 5.11 0.04 

 
Security 0.09*** -0.04. -1.93 0.00 

 
GBIFpartic 0.29*** 0.21*** (0.21 - 0.22) 8.65 0.14 

 
ScientActiv 0.33*** -0.05 (-0.06 - -0.05) -1.55 0.20 

 
FundLocal 0.25*** 0.38*** (0.38 - 0.39) 10.73 0.24 

 
FundInst 0.01*** -0.03** -3.05 0.01 

 
PublSize 0.21*** 0.17*** 22.82 0.24 

      Mammals EndRich 0.03*** 0.30*** 17.79 0.19 

 
ProtAreas 0.03*** 0.04*** 4.13 0.01 

 
Mountains 0.01*** 0.08*** 4.78 0.01 

 
GroundAcc 0.03*** 0.09*** 4.38 0.01 

 
ProxAirp 0.12*** 0.10*** 5.29 0.01 

 
ProxInst 0.24*** 0.29*** 8.72 0.22 

 
Security 0.03*** 0.06* 2.29 0.00 

 
GBIFpartic 0.18*** 0.20*** 6.66 0.18 

 
ScientActiv 0.17*** -0.05 -1.06 0.19 

 
FundLocal 0.09*** 0.24*** 4.99 0.06 

 
FundInst 0.02*** -0.04** -3.00 0.03 

 
PublSize 0.04*** 0.11*** 11.10 0.09 

      Amphibians EndRich 0.08*** 0.34*** 18.07 0.55 

 
ProtAreas 0.02*** 0.07*** 5.12 0.00 

 
Mountains 0.00*** 0.05** (0.05 - 0.06) 2.62 0.00 

 
GroundAcc 0.08*** 0.11*** 4.78 0.02 
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Record density at 110 km (continued) 

    r² SAR β (range) z-value 
% 

SS 

 

ProxAirp 0.14*** 0.11*** 5.33 0.03 

 
ProxInst 0.14*** 0.33*** (0.32 - 0.33) 9.99 0.26 

 
Security 0.01*** 

  
0.00 

 
GBIFpartic 0.05*** 0.03 (0.03 - 0.04) 1.0 0.01 

 
ScientActiv 0.07*** 0.12*** (0.09 - 0.12) 3.18 0.06 

 
FundLocal 0.03*** 0.05 0.86 0.02 

 
FundInst 0.00. 

-0.09*** (-0.10 - -
0.09) -5.53 0.00 

 
PublSize 0.04*** 0.14*** 9.26 0.06 

      f) Record density at 220 km. 
    

Taxonomic group Predictor r² SAR β (range) z-value 
% 

SS 

      Birds EndRich 0.02*** 0.33*** (0.33 - 0.35) 10.83 0.09 

 
ProtAreas 0.06*** 0.07*** 5.62 0.00 

 
Mountains 0.00 0.03* 1.97 0.00 

 
GroundAcc 0.06*** 0.13*** 5.41 0.02 

 
ProxAirp 0.29*** 0.13*** 7.26 0.03 

 
ProxInst 0.34*** 0.17*** 6.34 0.02 

 
Security 0.16*** -0.07* -2.51 0.00 

 
GBIFpartic 0.38*** 0.22*** 7.37 0.24 

 
ScientActiv 0.36*** -0.04 -1.07 0.20 

 
FundLocal 0.25*** 0.34*** 8.24 0.25 

 
FundInst 0.04*** -0.06*** -3.90 0.03 

 
PublSize 0.18*** 0.13*** 10.88 0.19 

      Mammals EndRich 0.07*** 0.40*** (0.40 - 0.42) 14.81 0.35 

 
ProtAreas 0.05*** 0.06*** 3.80 0.01 

 
Mountains 0.01*** 0.04. 1.82 0.00 

 
GroundAcc 0.05*** 0.08** 2.82 0.00 

 
ProxAirp 0.16*** 0.07** 3.02 0.01 

 
ProxInst 0.29*** 0.31*** (0.30 - 0.31) 8.24 0.17 

 
Security 0.05*** 0.04 1.13 0.00 

 
GBIFpartic 0.24*** 0.21*** 5.45 0.20 

 
ScientActiv 0.19*** -0.00 -0.05 0.16 

 
FundLocal 0.07*** 0.24*** 4.65 0.04 

 
FundInst 0.04*** -0.05** -3.09 0.05 

 
PublSize 0.02*** 0.12*** 9.04 0.03 

      Amphibians EndRich 0.14*** 0.41*** (0.41 - 0.42) 15.94 0.59 

 
ProtAreas 0.01*** 0.07*** (0.06 - 0.07) 3.45 0.00 

 
Mountains 0.01** -0.01 -0.24 0.00 

 
GroundAcc 0.09*** 0.11*** (0.11 - 0.12) 3.54 0.01 

 
ProxAirp 0.20*** 0.10*** 4.03 0.08 

 
ProxInst 0.22*** 0.34*** (0.33 - 0.35) 9.03 0.23 

 
Security 0.02*** 0.00 

 
0.00 

 
GBIFpartic 0.11*** 0.07. 1.65 0.02 

 
ScientActiv 0.13*** 0.16*** (0.12 - 0.20) 3.61 0.04 

 
FundLocal 0.05*** 0.07 1.25 0.01 

 
FundInst 0.00 -0.11*** -4.62 0.00 

 
PublSize 0.04*** 0.14*** (0.13 - 0.14) 6.18 0.02 

      g) Record density at 440 km. 
    

Taxonomic group Predictor r² SAR β (range) z-value 
% 

SS 

      Birds EndRich 0.04*** 0.37*** (0.37 - 0.38) 8.65 0.13 

 
ProtAreas 0.09*** 0.10*** (0.09 - 0.10) 4.49 0.01 

 
Mountains 0.00 -0.00 

 
0.00 

 
GroundAcc 0.08*** 0.09* (0.07 - 0.09) 2.48 0.00 

 
ProxAirp 0.30*** 0.10*** (0.10 - 0.11) 3.61 0.01 

 
ProxInst 0.37*** 0.15*** (0.13 - 0.15) 4.39 0.26 

 
Security 0.22*** -0.04 (-0.06 - -0.04) -1.24 0.00 

 
GBIFpartic 0.45*** 0.26*** (0.24 - 0.27) 7.64 0.26 

 
ScientActiv 0.34*** -0.02 -0.34 0.08 

 
FundLocal 0.23*** 0.43*** (0.40 - 0.44) 10.36 0.20 

 
FundInst 0.06*** 

-0.08** (-0.09 - -
0.08) -2.66 0.01 

 
PublSize 0.13*** 0.09*** (0.08 - 0.09) 4.34 0.03 

      Mammals EndRich 0.11*** 0.47***(0.47 - 0.48) 10.43 0.37 

 
ProtAreas 0.09*** 0.06* (0.06 - 0.07) 2.51 0.04 

 
Mountains 0.01** 0.01 - 0.00 

 
GroundAcc 0.06*** 0.04 (0.04 - 0.06) 0.95 0.00 

 
ProxAirp 0.17*** 0.05 (0.04 - 0.05) 1.58 0.00 
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Record density at 440 km (continued) 

Taxonomic group Predictor r² SAR β (range) z-value 
% 

SS 

 

ProxInst 0.30*** 0.25*** (0.24 - 0.25) 5.44 0.24 

 
Security 0.06*** 0.04 (0.03 - 0.04) 0.92 0.00 

 
GBIFpartic 0.30*** 0.29*** 4.34 0.21 

 
ScientActiv 0.16*** 0.04 (0.04 - 0.05) 0.64 0.04 

 
FundLocal 0.04*** 0.23*** (0.21 - 0.24) 4.03 0.02 

 
FundInst 0.11*** -0.13*** -4.79 0.08 

 
PublSize 0.00 0.09*** 3.99 0.00 

      Amphibians EndRich 0.15*** 0.45*** (0.45 - 0.46) 11.96 0.55 

 
ProtAreas 0.01* 0.03 1.08 0.00 

 
Mountains 0.00 -0.03 -0.84 0.00 

 
GroundAcc 0.12*** 0.13** (0.13 - 0.14) 3.08 0.01 

 
ProxAirp 0.16*** 0.06* (0.06 - 0.07) 2.06 0.01 

 
ProxInst 0.27*** 0.22*** (0.21 - 0.22) 4.99 0.37 

 
Security 0.07*** -0.03 -0.74 0.00 

 
GBIFpartic 0.16*** 0.05 0.98 0.01 

 
ScientActiv 0.17*** 0.16** (0.13 - 0.16) 2.72 0.03 

 
FundLocal 0.08*** 0.21*** 3.35 0.03 

 
FundInst 0.00 

-0.10*** (-0.11 - -
0.10) -3.26 0.00 

 
PublSize 0.03*** 0.07* (0.07 - 0.08) 2.47 0.00 

      h) Record density at 880 km. 
    

Taxonomic group Predictor r² SAR β (range) z-value 
% 

SS 

      Birds EndRich 0.02. 0.31*** (0.30 - 0.33) 5.37 0.11 

 
ProtAreas 0.08*** 0.15*** (0.15 - 0.16) 4.01 0.01 

 
Mountains 0.00 0.03 (0.02 - 0.03) 0.93 0.00 

 
GroundAcc 0.09*** 0.11* (0.10 - 0.12) 2.38 0.02 

 
ProxAirp 0.17*** 0.11** (0.11 - 0.12) 2.92 0.01 

 
ProxInst 0.42*** 0.25*** (0.24 - 0.26) 5.83 0.33 

 
Security 0.28*** -0.08. (-0.09 - -0.07) -1.67 0.02 

 
GBIFpartic 0.49*** 0.20*** (0.20 - 0.28) 3.63 0.25 

 
ScientActiv 0.38*** 0.10. (0.10 - 0.11) 1.82 0.09 

 
FundLocal 0.20*** 0.31*** (0.31 - 0.39) 4.68 0.17 

 
FundInst 0.06*** -0.02 

 
0.01 

 
PublSize 0.09*** -0.06 (-0.06 - -0.04) -1.44 0.01 

      Mammals EndRich 0.07*** 0.28*** (0.26 - 0.28) 3.89 0.33 

 
ProtAreas 0.09*** 0.19*** (0.17 - 0.19) 3.91 0.03 

 
Mountains 0.04** 0.13** (0.12 - 0.13) 2.82 0.02 

 
GroundAcc 0.10*** 0.17** (0.13 - 0.18) 2.78 0.04 

 
ProxAirp 0.11*** 0.07 (0.06 - 0.07) 1.34 0.00 

 
ProxInst 0.34*** 0.20** (0.19 - 0.20) 2.94 0.19 

 
Security 0.11*** 0.11. (0.11 - 0.11) 1.84 0.00 

 
GBIFpartic 0.38*** 0.22** (0.16 - 0.22) 2.93 0.16 

 
ScientActiv 0.24*** 0.18* (0.18 - 0.19) 2.41 0.11 

 
FundLocal 0.04** 0.17* (0.12 - 0.17) 2.15 0.03 

 
FundInst 0.16*** 

-0.14** (-0.15 - -
0.14) -2.74 0.10 

 
PublSize 0.008 0.005 

 
0.00 

      Amphibians EndRich 0.20*** 0.34*** (0.32 - 0.37) 5.60 0.70 

 
ProtAreas 0.00 -0.05 (-0.05 - -0.03) -1.05 0.00 

 
Mountains 0.00 0.03 0.65 0.00 

 
GroundAcc 0.14*** 0.24*** (0.23 - 0.27) 4.36 0.03 

 
ProxAirp 0.10*** 0.06 (0.06 - 0.07) 1.52 0.01 

 
ProxInst 0.30*** 0.24*** (0.20 - 0.27) 4.62 0.06 

 
Security 0.16*** 

-0.16*** (-0.20 - -
0.15) -3.22 0.01 

 
GBIFpartic 0.19*** 0.06 (0.06 - 0.12) 0.88 0.01 

 
ScientActiv 0.23*** 0.15* 2.17 0.09 

 
FundLocal 0.07*** 0.15. (0.15 - 0.22) 1.90 0.08 

 
FundInst 0.04** -0.01 

 
0.00 

 
PublSize 0.03* 0.07. (0.07 - 0.09) 1.77 0.00 
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Table V.2.S6. Top 50 countries based on number of species-grid cell combinations that are missing from country-
wide completeness of 100% at the 110 km grain (‘Non-inventoried species spp-cell’). Countries are ordered from 
highest to lowest percentage of non-inventoried species presences (‘% of non-inventoried spp-cell).  
 

Country 

Non-
inventoried 

spp-cell  

% of non-
inventoried 

spp-cell 

Brazil 451,427 15.4 
Russia 260,523 8.9 
China 201,422 6.9 
India 106,128 3.6 
Indonesia 103,898 3.6 
Congo, Democratic Republic of 98,291 3.4 
Canada 74,129 2.5 
Sudan 61,617 2.1 
Colombia 61,122 2.1 
USA 58,822 2.0 
Peru 57,550 2.0 
Argentina 51,619 1.8 
Venezuela 50,096 1.7 
Angola 47,694 1.6 
Kazakhstan 45,568 1.6 
Ethiopia 43,609 1.5 
Tanzania 43,367 1.5 
Bolivia 42,583 1.5 
Australia 40,854 1.4 
Myanmar 38,141 1.3 
Nigeria 37,055 1.3 
Zambia 34,246 1.2 
Mozambique 34,066 1.2 
Mexico 32,127 1.1 
Iran, Islamic Republic of 27,411 0.9 
Mali 24,308 0.8 
Central African Republic 24,096 0.8 
Kenya 23,930 0.8 
Mongolia 23,835 0.8 
Chad 23,608 0.8 
Thailand 23,422 0.8 
Cameroon 23,281 0.8 
South Africa 19,359 0.7 
Papua New Guinea 18,648 0.6 
Malaysia 18,515 0.6 
Niger 17,865 0.6 
Namibia 17,842 0.6 
Pakistan 17,135 0.6 
Philippines 16,439 0.6 
Zimbabwe 16,418 0.6 
Turkey 16,375 0.6 
Algeria 16,365 0.6 
Vietnam 16,066 0.5 
Somalia 15,873 0.5 
Côte d'Ivoire 15,016 0.5 
Botswana 14,617 0.5 
Saudi Arabia 14,505 0.5 
Congo, Republic of 13,677 0.5 
Guyana 13,499 0.5 
Paraguay  13,415 0.5 
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Table V.2.S7. Summary of a) bird, b) mammal, c) amphibian records contributed to GBIF by different data 
publishers and used in this study. Data publishers are ordered by decreasing number of contributed data. In the 
parentheses are percentages of overall data that passed geographic and taxonomic validation and were used in 
further analyses. Note that we applied a land area threshold of 30% at the 110 km grain, which resulted in the 
exclusion of some “good” data collected on or near the sea. We also excluded non-breeding ranges. Therefore 
percentages of excluded records do not necessarily allow conclusions on the quality of data provided by a 
particular publisher. 
 
a) Publishers of bird records 

Data publisher Country 
Records total / 

valid (% of total) 
Unknown total / 

valid (% of total) 
Observations total / 

valid (% of total) 
Specimens total / 
valid (% of total) 

Avian Knowledge Network USA 
95,339,821 

84,339,776 (88.5%) - 
95,339,821 

84,339,776 (88.5%) - 

ArtDatabanken Sweden 
21,040,602 

17,322,128 (82.3%) - 
21,040,602 

17,322,128 (82.3%) - 

Birds Australia Australia 
10,969,497 

9,803,262 (89.4%) 
10,969,497 

9,803,262 (89.4%) - - 

BirdLife Finland Finland 
7,535,045 

5,577,806 (74.0%) 
55,638 

35,060 (63.0%) 
7,479,407 

5,542,746 (74.1%) - 

South African National Biodiversity 
Institute South Africa 

6,792,022 
6,120,569 (90.1%) - 

6,792,022 
6,120,569 (90.1%) - 

UK National Biodiversity Network 
 UK 

5,606,751 
5,058,976 (90.2%) 

5,606,751 
5,058,976 (90.2%) - - 

Danish Biodiversity Information Facility Denmark 
4,544,665 

3,595,795 (79.1%) 
25,333 

17,626 (69.6%) 
4,509,884 

3,570,857 (79.2%) 
9,448 

7,312 (77.4%) 

GBIF-Sweden Sweden 
4,237,991 

3,968,443 (93.6%) - 
4,237,809 

3,968,304 (93.6%) 
182 

139 (76.4%) 

The Norwegian Biodiversity 
Information Centre (NBIC) Norway 

3,827,892 
3,134,943 (81.9%) - 

3,827,892 
3,134,943 (81.9%) - 

NSW Dpt. of Environment, Climate 
Change, and Water Australia 

2,601,841 
2,109,362 (81.1%) - 

2,601,841 
2,109,362 (81.1%) - 

Eremaea Australia 
1,207,943 

1,068,708 (88.5%) 
164,041 

146,662 (89.4%) 
1,043,902 

922,046 (88.3%) - 

Canberra Ornithologists Group Australia 
1,159,524 

965,904 (83.3%) - 
1,159,524 

965,904 (83.3%) - 

Service du Patrimoine naturel,Musée 
national d'Histoire naturelle, Paris France 

960,908 
909,673 (94.7%) - 

960,908 
909,673 (94.7%) - 

University of Gdańsk, Bird Migration 
Research Station Poland 

667,168 
601,202 (90.1%) - 

667,168 
601,202 (90.1%) - 

National Biodiversity Data Centre Ireland 
647,220 

358,159 (55.3%) - - 
647,220 

358,159 (55.3%) 

Ocean Biogeographic Information 
System OBIS 

622,491 
228,500 (36.7%) 

976 
186 (19.1%) 

621,515 
228,314 (36.7%) - 

Dpt. of Natural Resources, 
Environment (Northern Territory) Australia 

616,706 
560,637 (90.9%) - 

616,706 
560,637 (90.9%) - 

Dpt. of Environment and Natural 
Resources (South Australia) Australia 

586,633 
527,342 (89.9%) 

489 
481 (98.4%) 

585,597 
526,360 (89.9%) 

547 
501 (91.6%) 

Biologiezentrum Linz Oberösterreich Austria 
548,292 

496,931 (90.6%) 
548,292 

496,931 (90.6%) - - 

Finnish Museum of Natural History Finland 
513,504 

340,535 (66.3%) - 
513,504 

340,535 (66.3%) - 
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Table V.2.S7 (continued) 

Data publisher Country 
Records total / 

valid (% of total) 
Unknown total / 

valid (% of total) 
Observations total / 

valid (% of total) 
Specimens total / 
valid (% of total) 

GBIF-Spain Spain 
431,841 

412,275 (95.5%) - 
429,746 

410,541 (95.5%) 
2,095 

1,734 (82.8%) 

Australian Antarctic Data Centre Australia 
400,449 

108 (0.0%) 
365,283 
5 (0.0%) 

35,166 
103 (0.3%) - 

Bird Studies Canada Canada 
310,618 

292,455 (94.2%) - 
310,618 

292,455 (94.2%) - 

Arctos USA 
249,240 

218,950 (87.8%) - - 
249,240 

218,950 (87.8%) 

Yale University Peabody Museum USA 
196,614 

169,340 (86.1%) - - 
196,614 

169,340 (86.1%) 

University of Michigan Museum of 
Zoology USA 

173,337 
147,644 (85.2%) - - 

173,337 
147,644 (85.2%) 

KBIF Data Repository 
Korea, 
Republic of 

152,187 
92,416 (60.7%) 

149,984 
91,626 (61.1%) - 

2,203 
790 (35.9%) 

Royal Ontario Museum Canada 
150,080 

120,399 (80.2%) - - 
150,080 

120,399 (80.2%) 

Israel Nature and Parks Authority 
Israel / EU - 
BioCASE 

134,076 
101,540 (75.7%) - 

134,076 
101,540 (75.7%) - 

Field Museum USA 
122,457 

107,377 (87.7%) - - 
122,457 

107,377 (87.7%) 

Canadian Biodiversity Information 
Facility Canada 

120,384 
97,427 (80.9%) 

120,384 
97,427 (80.9%) - - 

Museum of Comparative Zoology, 
Harvard University USA 

115,101 
96,997 (84.3%) - - 

115,101 
96,997 (84.3%) 

Australian Museum Australia 
107,389 

86,946 (81.0%) - - 
107,389 

86,946 (81.0%) 

Scientific Committee on Antarctic 
Research - Marine Biodiversity 
Information Network (SCAR-MarBIN) International 

104,527 
8 (0.0%) 

427 
8 (1.9%) 

104,100 
0 (0.0%) - 

Canadian Museum of Nature Canada 
88,218 

73,846 (83.7%) - - 
88,218 

73,846 (83.7%) 

Comisión nacional para el 
conocimiento y uso de la biodiversidad 
(CONABIO) Mexico 

83,925 
71,716 (85.5%) 

65,111 
55,757 (85.6%) 

18,814 
15,959 (84.8%) - 

University of Washington Burke 
Museum USA 

72,535 
53,763 (74.1%) - - 

72,535 
53,763 (74.1%) 

BeBIF Provider Belgium 
70,010 

63,116 (90.2%) 
41,033 

35,940 (87.6%) 
28,977 

27,176 (93.8%) - 

TELDAP Chinese Taipei 
67,664 

63,208 (93.4%) - 
67,664 

63,208 (93.4%) - 

California Academy of Sciences USA 
63,523 

54,871 (86.4%) - - 
63,523 

54,871 (86.4%) 

Western Foundation of Vertebrate 
Zoology USA 

60,798 
53,468 (87.9%) - - 

60,798 
53,468 (87.9%) 

CSIRO Australia 
60,192 

52,126 (86.6%) 
12 

0 (0.0%) - 
60,180 

52,114 (86.6%) 

Dpt. of Environment and Resource 
Management (Queensland) Australia 

58,653 
31,921 (%) - 

58,287 
31,611 (54.2%) 

366 
310 (84.7%) 
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Table V.2.S7 (continued) 

Data publisher Country 
Records total / 

valid (% of total) 
Unknown total / 

valid (% of total) 
Observations total / 

valid (% of total) 
Specimens total / 
valid (% of total) 

Taiwan Biodiversity Information 
Facility (TaiBIF) Chinese Taipei 

57,172 
31,806 (55.6%) - 

57,172 
31,806 (55.6%) - 

EMAN Provider Canada 
48,889 

3,147 (6.4%) 
48,889 

3,147 (6.4%) - - 

Natural History Museum, University of 
Oslo Norway 

48,659 
16,262 (33.4%) - - 

48,659 
16,262 (33.4%) 

Museum Victoria Australia 
45,922 

36,033 (78.5%) - - 
45,922 

36,033 (78.5%) 

Institute of Nature Conservation, 
Polish Academy of Sciences Poland 

45,373 
44,633 (98.4%) - 

45,373 
44,633 (98.4%) - 

British Antarctic Survey UK 
45,008 

6 (0.0%) 
30 

1 (3.3%) 
44,978 

5 (0.0%) - 

GEO-Tag der Artenvielfalt Germany 
41,313 

38,022 (92.0%) - 
41,291 

38,007 (92.0%) 
22 

15 (68.2%) 

Delaware Museum of Natural History USA 
39,111 

35,247 (90.1%) - - 
39,111 

35,247 (90.1%) 

South Australian Museum Australia 
36,888 

30,382 (82.4%) 
36,888 

30,382 (82.4%) - - 

San Diego Natural History Museum USA 
35,664 

30,532 (67.5%) - - 
35,664 

30,532 (67.5%) 

University of Kansas Biodiversity 
Institute USA 

35,334 
23,868 (67.5%) - - 

35,334 
23,868 (67.5) 

Natural History Museum of Los 
Angeles County USA 

33,933 
28,805 (84.9%) - - 

33,933 
28,805 (84.9%) 

UCLA-Dickey Collection  USA 
32,931 

29,428 (89.4%) 
1 

1 (100.0%) - 
32,930 

29,427 (89.4%) 

Royal Belgian Institute of Natural 
Sciences Belgium 

30,121 
24,272 (80.6%) - - 

30,121 
24,272 (80.6%) 

Borror Laboratory of Bioacoustics USA 
29,983 

27,778 (92.6%) - 
29,983 

27,778 (92.6%) - 

Western Australian Museum Australia 
29,417 

22,222 (75.5%) - - 
29,417 

22,222 (75.5%) 

Administración de Parques 
Nacionales, Argentina Argentina 

27,466 
21,656 (78.8%) - 

27,466 
21,656 (78.8%) - 

American Museum of Natural History USA 
27,008 

22,643 (83.8%) - - 
27,008 

22,643 (83.8%) 

Biodiversitäts-Monitoring Schweiz - 
BDMCH Switzerland 

26,721 
26,480 (99.1%) - 

26,721 
26,480 (99.1%) - 

Cornell University Museum of 
Vertebrates USA 

24,338 
20,500 (84.2%) - - 

24,338 
20,500 (84.2%) 

UNIBIO, IBUNAM Mexico 
22,090 

19,614 (88.8%) 
22,090 

19,614 (88.8%) - - 

James R. Slater Museum of Natural 
History USA 

20,978 
18,094 (86.3%) - - 

20,978 
18,094 (86.3%) 

Santa Barbara Museum of Natural 
History USA 

19,178 
16,311 (85.1%) - - 

19,178 
16,311 (85.1%) 
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Table V.2.S7 (continued) 

Data publisher Country 
Records total / 

valid (% of total) 
Unknown total / 

valid (% of total) 
Observations total / 

valid (% of total) 
Specimens total / 
valid (% of total) 

Instituto de Investigación de Recursos 
Biológicos Alexander von Humboldt Colombia 

18,291 
16,086 (87.9%) 

17,047 
14,845 (87.1%) 

1,244 
1,241 (99.8%) - 

Facultad de Ciencias, UNAM Mexico 
16,642 

15,234 (91.5%) 
16,642 

15,234 (91.5%) - - 

Conservation International USA 
15,678 

14,433 (92.1%) - 
15,678 

14,433 (92.1%) - 

Musée national d'histoire naturelle 
Luxembourg Luxembourg 

14,630 
13,362 (91.3%) - 

14,630 
13,362 (91.3%) - 

Instituto de Ciencias Naturales Colombia 
12,993 

12,150 (93.5%) - - 
12,993 

12,150 (93.5%) 

National Museum of Natural History USA 
12,824 

7,005 (54.6%) 
2 

0 (0.0%) - 
12,822 

7,005 (54.6%) 

Museum fürNaturkunde Berlin Germany 
10,804 

9,971 (92.3%) - 
10,779 

9,946 (92.3%) 
25 

25 (100.0%) 

Centre d'estudis de la neu i de la 
muntanya d'Andorra (CENMA), Institut 
d'Estudis Andorrans Andorra 

10,120 
9,876 (97.6%) - 

10,120 
9,876 (97.6%) - 

University of Nebraska State Museum USA 
9,581 

8,310 (86.7%) - - 
9,581 

8,310 (86.7%) 

Jagiellonian University, Institute of 
Environmental Sciences Poland 

8,460 
7,898 (93.4%) - 

8,460 
7,898 (93.4%) - 

Upper Silesian Museum, Bytom Poland 
8,403 

5,241 (62.4%) - 
8,403 

5,241 (62.4%) - 

Museo Argentino de Ciencias 
Naturales Argentina 

8,145 
6,997 (85.9%) - - 

8,145 
6,997 (85.9%) 

New Brunswick Museum Canada 
7,911 

6,324 (79.9%) 
7,911 

6,324 (79.9%) - - 

Bernice Pauahi Bishop Museum USA 
7,741 

5,330 (68.9%) - - 
7,741 

5,330 (68.9%) 

Corantioquia Colombia 
7,057 

6,238 (88.4%) - 
7,057 

6,238 (88.4%) - 

inatura – Erlebnis Naturschau 
Dornbirn Austria 

6,319 
6,098 (96.5%) 

6,319 
6,098 (96.5%) - - 

National Museum of Nature and 
Science, Japan Japan 

5,956 
4,543 (76.3%) - - 

5,956 
4,543 (76.3%) 

Ireland? Ireland? 
5,913 

5,078 (85.9%) - - 
5,913 

5,078 (85.9%) 

Queen Victoria Museum and Art 
Gallery Australia 

5,585 
4,143 (74.2%) 

5,585 
4,143 (74.2%) - - 

iNaturalist,org USA 
5,325 

4,684 (88.0%) - 
5,325 

4,684 (88.0%) - 

Netherlands Biodiversity Information 
Facility (NLBIF) Netherlands 

4,779 
806 (16.9%) - - 

4,779 
806 (16.9%) 

Isagen Colombia 
4,135 

3,895 (94.2%) 
11 

11 (100.0%) 
4,124 

3,884 (94.2%) - 

Haus der Natur Salzburg Austria 
3,752 

3,749 (99.9%) 
3,752 

3,749 (99.9%) - - 
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Table V.2.S7 (continued) 

Data publisher Country 
Records total / 

valid (% of total) 
Unknown total / 

valid (% of total) 
Observations total / 

valid (% of total) 
Specimens total / 
valid (% of total) 

National Science Museum of Korea 
Korea, 
Republic of 

3,715 
2,589 (69.7%) 

2,660 
1,909 (71.8%) - 

1,055 
680 (64.5%) 

Tasmanian Museum and Art Gallery Australia 
3,355 

2,044 (60.9%) 
1 

1 (100.0%) 
28 

16 (57.1%) 
3,326 

2,027 (60.9%) 

Senckenberg Germany 
3,116 

2,618 (84.0%) - - 
3,116 

2,618 (84.0%) 

University of Colorado Museum of 
Natural History USA 

3,068 
2,515 (82.0%) - - 

3,068 
2,515 (82.0%) 

Mokpo Museum of Natural History 
Korea, 
Republic of 

2,630 
1,525 (58.0%) 

2,605 
1,514 (58.1%) - 

25 
11 (44.0%) 

Illinois State University USA 
2,457 

2,006 (81.6%) - - 
2,457 

2,006 (81.6%) 

Tall Timbers Research Station and 
Land Conservancy USA 

2,407 
2,071 (86.0%) 

2,407 
2,071 (86.0%) - - 

Natural History Museum, University of 
Tartu Estonia 

1,794 
1,784 (99.4%) - - 

1,794 
1,784 (99.4%) 

Citizen Science - ALA Website Australia 
1,543 

1,458 (94.5%) 
1,543 

1,458 (94.5%) - - 

Cincinnati Museum Center USA 
1,009 

920 (91.2%) 
1,009 

920 (91.2%) - - 

Wildlife Institute of India India 
752 

606 (80.6%) 
752 

606 (80.6%) - - 

PANGAEA - Publishing Network for 
Geoscientific and Environmental Data Germany 

673 
240 (35.7%) - 

673 
240 (35.7%) - 

National Chemical Laboratory (via 
OBIS) International 

647 
285 (44.0%) 

647 
285 (44.0%) - - 

European Molecular Biology 
Laboratory Australia Australia 

631 
549 (87.0%) 

631 
549 (87.0%) - - 

University of Alberta Museums Canada 
476 

331 (69.5%) - - 
476 

331 (69.5%) 

Ohio State University Insect Collection USA 
469 

456 (97.2%) - - 
469 

456 (97.2%) 

Wildlife Conservation Society - 
Madagascar Program (WCS - Mad) Madagascar 

469 
460 (98.1%) - 

469 
460 (98.1%) - 

Field Study Group of the Dutch 
Mammal Society Netherlands 

445 
321 (72.1%) - 

445 
321 (72.1%) - 

Museé national d'Histoire naturelle France 
209 

164 (78.5%) - - 
209 

164 (78.5%) 

New Mexico Biodiversity Collections 
Consortium USA 

199 
177 (88.9%) - - 

199 
177 (88.9%) 

SysTax Germany 
199 

140 (70.4%) 
199 

140 (70.4%) - - 

Wildlife Sightings Canada 
189 

177 (93.7%) - 
189 

177 (93.7%) - 

Queensland Museum Australia 
183 

177 (96.7%) - - 
183 

177 (96.7%) 
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Table V.2.S7 (continued) 

Data publisher Country 
Records total / 

valid (% of total) 
Unknown total / 

valid (% of total) 
Observations total / 

valid (% of total) 
Specimens total / 
valid (% of total) 

Botanic Garden and Botanical 
Museum Berlin-Dahlem Germany 

163 
108 (66.3%) - 

115 
82 (71.3%) 

48 
26 (54.2%) 

Jagiellonian University, Institute of 
Zoology Poland 

137 
70 (51.1%) - 

137 
70 (51.1%) - 

University of Navarra, Museum of 
Zoology Spain 

105 
85 (81.0%) - - 

105 
85 (81.0%) 

Gyeryonsan Natural History Museum 
Korea, 
Republic of 

53 
23 (43.4%) - - 

53 
23 (43.4%) 

University of Helsinki, Dpt. of Applied 
Biology Finland 

45 
41 (91.1%) - 

45 
41 (91.1%) - 

Michigan State University Museum USA 
9 

9 (100.0%) - - 
9 

9 (100.0%) 

Nicolaus Copernicus University of 
Toruń Poland 

6 
6 (100.0%) - 

6 
6 (100.0%) - 

Humboldt State University USA 
5 

5 (100.0%) - - 
5 

5 (100.0%) 

Mammal Research Institute, Polish 
Academy of Sciences Poland 

4 
4 (100.0%) 

44 
4 (100.0%) - - 

Sam Noble Oklahoma Museum of 
Natural History USA 

2 
0 (0%) 

2 
0 (0%) - - 

Jyvaskyla University Museum Finland 
1 

1 (100.0%) - - 
1 

1 (100.0%) 

University of Silesia, Herbarium KTU Poland 
1 

1 (100.0%) - - 
1 

1 (100.0%) 
 
 
 

 
b) Publishers of mammal records 

 

Data publisher Country 
Records total / 

valid (% of total) 
Unknown total / 

valid (% of total) 
Observations total / 

valid (% of total) 
Specimens total / 
valid (% of total) 

UK National Biodiversity Network UK 
521,021 

396,214 (76.0%) 
521,021 

396,214 (76.0%) - - 

Arctos USA 
455,737 

401,284 (88.1%) - - 
455,737 

401,284 (88.1%) 

NSW Dpt. of Environment, Climate 
Change, and Water Australia 

375,532 
306,596 (81.6%) - 

375,532 
306,596 (81.6%) - 

Service du Patrimoine naturel, 
Musée national d'Histoire naturelle, 
Paris France 

334,434 
258,876 (77.4%) - 

334,434 
258,876 (77.4%) - 

Australian Antarctic Data Centre Australia 
289,554 

0 (0%) 
119,930 

0 (0%) 
169,624 

0 (0%) - 

Ocean Biogeographic Information 
System (via OBIS) International 

262,463 
2082( 0.8%) 

3,874 
1( 0.0%) 

258,219 
2081( 0.8%) 

370 
0 (0%) 

University of Kansas Biodiversity 
Institute USA 

159,667 
144,186 (90.3%) - - 

159,667 
144,186 (90.3%) 
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Table V.2.S7 (continued) 

Data publisher Country 
Records total / 

valid (% of total) 
Unknown total / 

valid (% of total) 
Observations total / 

valid (% of total) 
Specimens total / 
valid (% of total) 

Field Museum USA 
156,235 

132,015 (84.5%) - - 
156,235 

132,015 (84.5%) 

Comisión nacional para el 
conocimiento y uso de la 
biodiversidad Mexico 

153,422 
130,345 (85.0%) 

147,755 
125,501 (84.9%) 

5,667 
4,844 (85.5%) - 

South Australia, Department of 
Environment and Natural Resources Australia 

125,906 
92,962 (73.8%) 

31 
20 (64.5%) 

120,168 
88,613 (73.7%) 

5,707 
4,329 (75.9%) 

GBIF-Spain Spain 
103,041 

87,740 (85.2%) - 
99,615 

85,978 (86.3%) 
3,426 

1,762 (51.4%) 

National Museum of Natural History USA 
98,159 

82,376 (83.9%) - 
8 

0 (0%) 
98,151 

82,376 (83.9%) 

Mammal Research Institute, Polish 
Academy of Sciences Poland 

86,239 
82,915 (96.1%) 

753 
747 (99.2%) - 

85,486 
82,168 (96.1%) 

Natural History Museum of Los 
Angeles County USA 

79,770 
68,834 (86.3%) - - 

79,770 
68,834 (86.3%) 

National Biodiversity Data Centre Ireland 
73,067 

62,727 (85.8%) - - 
73,067 

62,727 (85.8%) 

Australian Museum Australia 
71,124 

54,736 (77.0%) - - 
71,124 

54,736 (77.0%) 

BeBIF Provider Belgium 
69,848 

62,665 (89.7%) - 
5,763 

4,764 (82.7%) 
64,085 

57,901 (90.4%) 

University of Navarra, Museum of 
Zoology Spain 

60,888 
55,009 (90.3%) - 

1,878 
1,858 (98.9%) 

59,010 
53,151 (90.1%) 

Dpt. of Natural Resources, 
Environment, The Arts and Sport, 
Northern Territory of Australia Australia 

56,085 
33,864 (60.4%) - 

56,085 
33,864 (60.4%) - 

University of Washington Burke 
Museum USA 

53,415 
37,178 (69.6%) - - 

53,415 
37,178 (69.6%) 

James R. Slater Museum of Natural 
History USA 

49,585 
45,673 (92.1%) - - 

49,585 
45,673 (92.1%) 

Western Australian Museum Australia 
44,644 

35,351 (79.2%) - - 
44,644 

35,351 (79.2%) 

Scientific Committee on Antarctic 
Research - Marine Biodiversity 
Information Network (SCAR-MarBIN) International 

41,863 
0 (0%) 

41,739 
0 (0%) 

124 
0 (0%) - 

Sam Noble Oklahoma Museum of 
Natural History USA 

36,269 
25,681 (70.8%) 

36,269 
25,681 (70.8%) - - 

Royal Belgian Institute of Natural 
Sciences Belgium 

32,736 
29,287 (89.5%) - - 

32,736 
29,287 (89.5%) 

CSIRO Australia 
31,727 

25,205 (79.4%) 
4,503 

3,521 (78.2%) - 
27,224 

21,684 (79.7%) 

Israel Nature and Parks Authority 
Israel / EU - 
BioCASE 

30,754 
25,909 (84.2%) - 

30,754 
25,909 (84.2%) - 

UNIBIO, IBUNAM Mexico 
30,197 

25,149 (83.3%) 
30,197 

25,149 (83.3%) - - 

Museum Victoria Australia 
28,568 

22,947 (80.3%) - - 
28,568 

22,947 (80.3%) 

Louisiana State University Museum 
of Natural Science USA 

27,866 
23,784 (85.4%) - - 

27,866 
23,784 (85.4%) 
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Table V.2.S7 (continued) 

Data publisher Country 
Records total / 

valid (% of total) 
Unknown total / 

valid (% of total) 
Observations total / 

valid (% of total) 
Specimens total / 
valid (% of total) 

Michigan State University Museum USA 
27,768 

24,803 (89.3%) - - 
27,768 

24,803 (89.3%) 

ArtDatabanken Sweden 
27,674 

22,403 (81.0%) - 
27,674 

22,403 (81.0%) - 

South Australian Museum Australia 
23,997 

15,298 (63.7%) 
23,456 

15,062 (64.2%) 
134 

23 (17.2%) 
407 

213 (52.3%) 

California Academy of Sciences USA 
23,411 

18,965 (81.0%) - - 
23,411 

18,965 (81.0%) 

Danish Biodiversity Information 
Facility Denmark 

21,549 
10,863 (50.4%) - 

21,469 
10,797 (50.3%) 

80 
66 (82.5%) 

Administración de Parques 
Nacionales, Argentina Argentina 

19,136 
13,891 (72.6%) 

117 
96 (82.1%) 

12,739 
8,035 (63.1%) 

6,280 
5,760 (91.7%) 

Natural History Museum, University 
of Oslo Norway 

18,499 
9,345 (50.5%) 

362 
16( 4.4%) 

1 
0 (0%) 

18,136 
9,329 (51.4%) 

The Norwegian Biodiversity 
Information Centre (NBIC) Norway 

18,314 
15,914 (86.9%) - 

18,314 
15,914 (86.9%) - 

British Antarctic Survey UK 
17,341 
0 (0%) 

15 
0 (0%) 

17,326 
0 (0%) - 

UCLA-Dickey Collection (UCLA-
Dickey) USA 

16,553 
14,106 (85.2%) - - 

16,553 
14,106 (85.2%) 

Museo Argentino de Ciencias 
Naturales Argentina 

14,514 
10,265 (70.7%) - - 

14,514 
10,265 (70.7%) 

Finnish Museum of Natural History Finland 
14,469 

8,874 (61.3%) - 
14,469 

8,874 (61.3%) - 

New York State Museum (NYSM) USA 
13,388 

12,667 (94.6%) - - 
13,388 

12,667 (94.6%) 

Yale University Peabody Museum USA 
11,881 

9,565 (80.5%) - - 
11,881 

9,565 (80.5%) 

Musée national d'histoire naturelle 
Luxembourg Luxembourg 

11,754 
11,033 (93.9%) - 

11,754 
11,033 (93.9%) - 

New Mexico Biodiversity Collections 
Consortium USA 

11,679 
10,752 (92.1%) - - 

11,679 
10,752 (92.1%) 

Santa Barbara Museum of Natural 
History USA 

9,633 
7,773 (80.7%) - - 

9,633 
7,773 (80.7%) 

PANGAEA - Publishing Network for 
Geoscientific and Environmental 
Data Germany 

7,884 
3,526 (44.7%) - 

7,884 
3,526 (44.7%) - 

American Museum of Natural History USA 
7,704 

6,603 (85.7%) - - 
7,704 

6,603 (85.7%) 

University of Colorado Museum of 
Natural History USA 

7,598 
7,087 (93.3%) - - 

7,598 
7,087 (93.3%) 

University of Warsaw, Dpt. of 
Ecology Poland 

6,834 
6,673 (97.6%) 

489 
352 (72.0%) 

6,345 
6,321 (99.6%) - 

inatura – Erlebnis Naturschau 
Dornbirn Austria 

6,068 
6,061 (99.9%) 

6068 
6061 (99.9%) - - 

Museum of Comparative Zoology, 
Harvard University USA 

5,200 
3,855 (74.1%) - - 

5,200 
3,855 (74.1%) 
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Table V.2.S7 (continued) 

Data publisher Country 
Records total / 

valid (% of total) 
Unknown total / 

valid (% of total) 
Observations total / 

valid (% of total) 
Specimens total / 
valid (% of total) 

Instituto de Ciencias Naturales Colombia 
4,985 

4,500 (90.3%) - - 
4,985 

4,500 (90.3%) 

Queen Victoria Museum and Art 
Gallery Australia 

4,693 
4,087 (87.1%) 

4693 
4087 (87.1%) - - 

Texas Cooperative Wildlife 
Collection USA 

4,586 
4,326 (94.3%) - - 

4,586 
4,326 (94.3%) 

Centre d'estudis de la neu i de la 
muntanya d'Andorra (CENMA), 
Institut d'Estudis Andorrans Andorra 

4,410 
4,323 (98.0%) - 

4,410 
4,323 (98.0%) - 

TELDAP 
Chinese 
Taipei 

3,643 
3,405 (93.5%) - 

3,641 
3,403 (93.5%) 

2 
2 (100.0%) 

New Mexico Museum of Natural 
History and Science USA 

3,270 
170( 5.2%) - - 

3,270 
170( 5.2%) 

Cornell University Museum of 
Vertebrates USA 

2,983 
2,733 (91.6%) - - 

2,983 
2,733 (91.6%) 

Conservation International USA 
2,734 

2,345 (85.8%) - 
2,734 

2,345 (85.8%) - 

Tasmanian Museum and Art Gallery Australia 
2,710 

1,273 (47.0%) - 
67 

51 (76.1%) 
2,643 

1,222 (46.2%) 

Bernice Pauahi Bishop Museum USA 
2,512 

1,457 (58.0%) - - 
2,512 

1,457 (58.0%) 

Avian Knowledge Network USA 
2,438 

470 (19.3%) - 
2,438 

470 (19.3%) - 

Field Study Group of the Dutch 
Mammal Society Netherlands 

2,167 
2,010 (92.8%) - 

2,167 
2,010 (92.8%) - 

GEO-Tag der Artenvielfalt Germany 
1,987 

1,776 (89.4%) - 
1,987 

1,776 (89.4%) - 

GBIF-Sweden Sweden 
1,961 

898 (45.8%) - 
451 

78 (17.3%) 
1,510 

820 (54.3%) 

Instituto de Investigación de 
Recursos Biológicos Alexander von 
Humboldt Colombia 

1,910 
1,820 (95.3%) 

897 
807 (90.0%) 

1,013 
1013 (100.0%) - 

Corantioquia Colombia 
1,735 

1,168 (67.3%) - 
1,735 

1,168 (67.3%) - 

Dutch Mammal Society Netherlands 
1,626 

0 (0%) - 
1,626 

0 (0%) - 

EMAN Provider Canada 
1,414 

14( 1.0%) 
1,414 

14( 1.0%) - - 

Museum für Naturkunde Berlin Germany 
1,404 

652 (46.4%) - 
1,378 

628 (45.6%) 
26 

24 (92.3%) 

Institute of Research for 
Development France 

1,321 
0 (0%) - 

1,321 
0 (0%) - 

United States Geological Survey USA 
1,136 

3( 0.3%) - 
1,124 

3( 0.3%) 
12 

0 (0%) 

Institute of Nature Conservation, 
Polish Academy of Sciences Poland 

1,113 
825 (74.1%) - 

1,113 
825 (74.1%) - 

Borror Laboratory of Bioacoustics USA 
1,041 

426 (40.9%) - 
1,041 

426 (40.9%) - 
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Table V.2.S7 (continued) 

Data publisher Country 
Records total / 

valid (% of total) 
Unknown total / 

valid (% of total) 
Observations total / 

valid (% of total) 
Specimens total / 
valid (% of total) 

University of Michigan Museum of 
Zoology USA 

1,034 
1,009 (97.6%) - - 

1,034 
1,009 (97.6%) 

Isagen Colombia 
1,031 

722 (70.0%) 
10 

6 (60.0%) 
1,021 

716 (70.1%) - 

iNaturalist.org USA 
1,018 

833 (81.8%) - 
1,018 

833 (81.8%) - 

 
Natural History Museum, University 
of Tartu Estonia 

996 
914 (91.8%) - - 

996 
914 (91.8%) 

Association for Nature WOLF Poland 
987 

878 (89.0%) - 
987 

878 (89.0%) - 

Illinois State University USA 
827 

735 (88.9%) - - 
827 

735 (88.9%) 

University of Alberta Museums Canada 
822 

551 (67.0%) - - 
822 

551 (67.0%) 

KBIF Data Repository 
Korea, 
Republic of 

806 
622 (77.2%) 

746 
602 (80.7%) - 

60 
20 (33.3%) 

National Museum of Nature and 
Science, Japan Japan 

309 
278 (90.0%) - - 

309 
278 (90.0%) 

Ohio State University Insect 
Collection USA 

253 
195 (77.1%) - - 

253 
195 (77.1%) 

European Forest Institute Finland 
226 

220 (97.3%) 
226 

220 (97.3%) - - 

Wildlife Conservation Society - 
Madagascar Program (WCS - Mad) Madagascar 

189 
173 (91.5%) - 

189 
173 (91.5%) - 

University of Minnesota Bell Museum 
of Natural History USA 

172 
172 (100.0%) - - 

172 
172 (100.0%) 

Citizen Science - ALA Website Australia 
168 

143 (85.1%) 
168 

143 (85.1%) - - 

Queensland Museum Australia 
136 

121 (89.0%) - - 
136 

121 (89.0%) 

National Chemical Laboratory (via 
OBIS) International 

127 
33 (26.0%) 

127 
33 (26.0%) - - 

Haus der Natur Salzburg Austria 
108 

108 (100.0%) 
108 

108 (100.0%) - - 

Geocollections of Estonia Estonia 
67 

3( 4.5%) 
67 

3( 4.5%) - - 

Botanic Garden and Botanical 
Museum Berlin-Dahlem Germany 

46 
37 (80.4%) - 

17 
14 (82.4%) 

29 
23 (79.3%) 

University of Helsinki, Dpt. of Applied 
Biology Finland 

39 
35 (89.7%) - 

39 
35 (89.7%) - 

Netherlands Biodiversity Information 
Facility (NLBIF) Netherlands 

34 
3( 8.8%) - - 

34 
3( 8.8%) 

National Science Museum of Korea 
Korea, 
Republic of 

31 
20 (64.5%) - - 

31 
20 (64.5%) 

Jagiellonian University, Institute of 
Zoology Poland 

30 
17 (56.7%) - 

30 
17 (56.7%) - 
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Table V.2.S7 (continued) 

Data publisher Country 
Records total / 

valid (% of total) 
Unknown total / 

valid (% of total) 
Observations total / 

valid (% of total) 
Specimens total / 
valid (% of total) 

Staatliche Naturwissenschaftliche 
Sammlungen Bayerns Germany 

27 
26 (96.3%) - - 

27 
26 (96.3%) 

Wildlife Sightings Canada 
25 

12 (48.0%) - 
25 

12 (48.0%) - 

European Molecular Biology 
Laboratory Australia Australia 

22 
11 (50.0%) 

22 
11 (50.0%) - - 

Senckenberg Germany 
20 

2 (10.0%) - - 
20 

2 (10.0%) 

University of Nebraska State 
Museum USA 

11 
7 (63.6%) - - 

11 
7 (63.6%) 

Biologiezentrum Linz Oberösterreich Austria 
7 

1 (14.3%) 
7 

1 (14.3%) - - 

University of Silesia, Laboratory of 
Botanical Documentation - 
Herbarium KTU Poland 

6 
6 (100.0%) - - 

6 
6 (100.0%) 

Museum of Texas Tech University 
(TTU) USA 

5 
5 (100.0%) - - 

5 
5 (100.0%) 

Upper Silesian Museum, Bytom Poland 
4 

3 (75.0%) - - 
4 

3 (75.0%) 

South African National Biodiversity 
Institute South Africa 

4 
1 (25.0%) - - 

4 
1 (25.0%) 

University of Texas at El Paso USA 
2 

1 (50.0%) - - 
2 

1 (50.0%) 

IHAR Poland 
1 

0 (0%) - 
1 

0 (0%) - 

Nicolaus Copernicus University of 
Toruń Poland 

1 
0 (0%) - 

1 
0 (0%) - 

University of Gdańsk, Bird Migration 
Research Station Poland 

1 
0 (0%) - 

1 
0 (0%) - 

University of Gdańsk, Dpt. of Plant 
Taxonomy and Nature Conservation Poland 

1 
0 (0%) - - 

1 
0 (0%) 

Royal Ontario Museum Canada 
1 

1 (100.0%) - - 
1 

1 (100.0%) 
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Table V.2.S7 (continued) 

Data publisher Country 
Records total / 

valid (% of total) 
Unknown total / 

valid (% of total) 
Observations total / 

valid (% of total) 
Specimens total / 
valid (% of total) 

 
 
c) Publishers of amphibian records 

Data publisher Country 
Records total / 

valid (% of total) 
Unknown total / 

valid (% of total) 
Observations total / 

valid (% of total) 
Specimens total / 

valid (% of total) 

National Museum of Natural 
History USA 

233,924 
198,468 (84.8%) 

2 
2 (100.0%) - 

233,922 
198,466 (84.8%) 

Arctos USA 
136,381 

120,466 (88.3%) - - 
136,381 

120,466 (88.3%) 

Museum of Comparative Zoology, 
Harvard University USA 

98,370 
77,722 (79.0%) - - 

98,370 
77,722 (79.0%) 

UK National Biodiversity Network UK 
96,559 

94,502 (97.9%) 
96,559 

94,502 (97.9%) - - 

California Academy of Sciences USA 
89,345 

73,794 (82.6%) - - 
89,345 

73,794 (82.6%) 

Australian Museum Australia 
85,814 

71,155 (82.9%) - - 
85,814 

71,155 (82.9%) 

NSW Dpt. of Environment, Climate 
Change, and Water Australia 

72,921 
61,468 (84.3%) - 

72,921 
61,468 (84.3%) - 

Chengdu Institute of Biology, 
Chinese Academy of Science 

Chinese 
Taipei 

58,164 
48,396 (83.2%) - - 

58,164 
48,396 (83.2%) 

Natural History Museum of Los 
Angeles County USA 

43,768 
37,214 (85.0%) - - 

43,768 
37,214 (85.0%) 

GBIF-Spain Spain 
38,174 

35,623 (93.3%) - 
28,393 

27,058 (95.3%) 
9,781 

8,565 (87.6%) 

Museum Victoria Australia 
34,845 

31,303 (89.8%) - - 
34,845 

31,303 (89.8%) 

Comisión nacional para el 
conocimiento y uso de la 
biodiversidad Mexico 

28,282 
20,774 (73.5%) 

24,616 
17,712 (72.0%) 

3,666 
3,062 (83.5%) - 

South Australia, Department of 
Environment and Natural 
Resources Australia 

25,147 
23,611 (93.9%) - 

24,340 
22,945 (94.3%) 

807 
666 (82.5%) 

Musée d'histoire naturelle de la 
Ville de Genève - MHNG Switzerland 

24,894 
22,218 (89.3%) - - 

24,894 
22,218 (89.3%) 

Bird Studies Canada Canada 
24,856 

18,852 (75.8%) - 
24,856 

18,852 (75.8%) - 

Western Australian Museum Australia 
23,294 

20,508 (88.0%) - - 
23,294 

20,508 (88.0%) 

Royal Ontario Museum Canada 
23,182 

19,307 (83.3%) - - 
23,182 

19,307 (83.3%) 

ArtDatabanken Sweden 
18,660 

16,196 (86.8%) - 
18,660 

16,196 (86.8%) - 

University of Kansas Biodiversity 
Institute USA 

18,2533 
24,438 (13.4%) 

18,2533 
24,438 (13.4%) - - 

Canadian Museum of Nature Canada 
17,371 

12,232 (70.4%) - - 
17,371 

12,232 (70.4%) 

Service du Patrimoine naturel, 
Musée national d'Histoire 
naturelle, Paris France 

16,352 
14,665 (89.7%) - 

16,352 
14,665 (89.7%) - 
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Table V.2.S7 (continued) 

Data publisher Country 
Records total / 

valid (% of total) 
Unknown total / 

valid (% of total) 
Observations total / 

valid (% of total) 
Specimens total / 
valid (% of total) 

Instituto de Ciencias Naturales Colombia 
14,626 

12,749 (87.2%) - - 
14,626 

12,749 (87.2%) 

Yale University Peabody Museum USA 
13,682 

12,082 (88.3%) - - 
13,682 

12,082 (88.3%) 

Museo Argentino de Ciencias 
Naturales Argentina 

13,055 
10,249 (78.5%) - - 

13,055 
10,249 (78.5%) 

South Australian Museum Australia 
13,031 

11,000 (84.4%) 
13,031 

11,000 (84.4%) - - 

New Mexico Biodiversity 
Collections Consortium USA 

12,049 
10,257 (85.1%) - - 

12,049 
10,257 (85.1%) 

Museum of Southwestern Biology, 
Division of Amphibians and 
Reptiles USA 

11,255 
9,579 (85.1%) 

11,255 
9,579 (85.1%) - - 

Dpt. of Natural Resources, 
Environment, The Arts and Sport, 
Northern Territory of Australia Australia 

10,808 
9,334 (86.4%) - 

10,808 
9,334 (86.4%) - 

San Diego Natural History 
Museum USA 

10,617 
8,354 (78.7%) - - 

10,617 
8,354 (78.7%) 

CSIRO Australia 
9,190 

7,579 (82.5%) 
6,290 

4,950 (78.7%) - 
2,900 

2,629 (90.7%) 

Cornell University Museum of 
Vertebrates USA 

9,078 
7,915 (87.2%) - - 

9,078 
7,915 (87.2%) 

Alabama Museum of Natural 
History USA 

8,931 
7,325 (82.0%) 

8,931 
7,325 (82.0%) - - 

South African National Biodiversity 
Institute South Africa 

7,107 
6,491 (91.3%) - - 

7,107 
6,491 (91.3%) 

Musée national d'histoire naturelle 
Luxembourg Luxembourg 

6,997 
5,320 (76.0%) - 

6,997 
5,320 (76.0%) - 

Bernice Pauahi Bishop Museum USA 
6,853 

5,251 (76.6%) - - 
6,853 

5,251 (76.6%) 

EMAN Provider Canada 
6,639 

5,090 (76.7%) 
6,639 

5,090 (76.7%) - - 

TELDAP 
Chinese 
Taipei 

6,596 
6,379 (96.7%) - 

6,596 
6,379 (96.7%) - 

Royal Belgian Institute of Natural 
Sciences Belgium 

6,560 
4,961 (75.6%) - - 

6,560 
4,961 (75.6%) 

Danish Biodiversity Information 
Facility Denmark 

6,274 
4,968 (79.2%) 

498 
498 (100.0%) 

3,422 
2,643 (77.2%) 

2,354 
1,827 (77.6%) 

Natural History Museum, 
University of Oslo Norway 

6,221 
5,065 (81.4%) - 

5,253 
4,615 (87.9%) 

968 
450 (46.5%) 

Sternberg Museum of Natural 
History USA 

5,110 
3,447 (67.5%) - - 

5,110 
3,447 (67.5%) 

Zoological Institute, Russian 
Academy of Sciences, St. 
Petersburg (via the Society for the 
Management of Electronic 
Biodiversity Data) Russia 

4,534 
3,285 (72.5%) 

4,534 
3,285 (72.5%) - - 

National Biodiversity Data Centre Ireland 
4,033 

4,032 (100.0%) - - 
4,033 

4,032 (100.0%) 
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Table V.2.S7 (continued) 

Data publisher Country 
Records total / 

valid (% of total) 
Unknown total / 

valid (% of total) 
Observations total / 

valid (% of total) 
Specimens total / 
valid (% of total) 

James R. Slater Museum of 
Natural History USA 

3,843 
3,303 (85.9%) - - 

3,843 
3,303 (85.9%) 

UNIBIO, IBUNAM Mexico 
3,490 

257( 7.4%) 
418 

257 (61.5%) - 
3,072 

0 (0%) 

Institute of Nature Conservation, 
Polish Academy of Sciences Poland 

3,185 
2,377 (74.6%) - 

3,185 
2,377 (74.6%) - 

Cincinnati Museum Center USA 
3,005 

2,607 (86.8%) 
3,005 

2,607 (86.8%) - - 

KBIF Data Repository 
Korea, 

Republic of 
3,396 

3,074 (90.5%) 
3,396 

3,074 (90.5%) - - 

University of Alberta Museums Canada 
2,679 

2,413 (90.1%) - - 
2,679 

2413 (90.1%) 

Finnish Museum of Natural History Finland 
2,514 

791 (31.5%) - 
2,514 

791 (31.5%) - 

Raffles Museum of Biodiversity 
Research 

BioNET-
ASEANET 

2,439 
2,089 (85.6%) - - 

2,439 
2089 (85.6%) 

University of Colorado Museum of 
Natural History USA 

2,118 
1,661 (78.4%) - - 

2,118 
1,661 (78.4%) 

Administración de Parques 
Nacionales, Argentina Argentina 

2,010 
1,699 (84.5%) - 

99 
41 (41.4%) 

 
1,911 

1,658 (86.8%) 

University of Warsaw, Dpt. of 
Ecology Poland 

1,945 
3( 0.2%) - 

1,945 
3 (0.2%) - 

The Norwegian Biodiversity 
Information Centre (NBIC) Norway 

1,872 
1,622 (86.6%) - 

1,872 
1,622 (86.6%) - 

Sam Noble Oklahoma Museum of 
Natural History USA 

1,770 
706 (39.9%) 

1,770 
706 (39.9%) - - 

United States Geological Survey USA 
1,752 

172( 9.8%) - 
1,067 

93 (8.7%) 
685 

79 (11.5%) 

Haus der Natur Salzburg Austria 
1,741 

818 (47.0%) 
1,741 

818 (47.0%) - - 

Białowieża National Park Poland 
1,723 

679 (39.4%) - 
1,723 

679 (39.4%) - 

Conservation International USA 
1,460 

1,159 (79.4%) - 
1,460 

1,159 (79.4%) - 

Royal Museum for Central Africa, 
Belgium Belgium 

1,413 
1,036 (73.3%) - - 

1,413 
1,036 (73.3%) 

University of Nevada, Reno USA 
1,257 

742 (59.0%) - - 
1,257 

742 (59.0%) 

Redpath Museum, McGill 
University Canada 

1,113 
919 (82.6%) - - 

1,113 
919 (82.6%) 

GEO-Tag der Artenvielfalt Germany 
1,113 

742 (66.7%) 
2 

0 (0%) 
1,111 

742 (66.8%) - 

Staatliches Museum für 
Naturkunde Stuttgart Germany 

1,107 
758 (68.5%) - - 

1,107 
758 (68.5%) 

Queensland Museum Australia 
871 

852 (97.8%) - - 
871 

852 (97.8%) 
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Table V.2.S7 (continued) 

Data publisher Country 
Records total / 

valid (% of total) 
Unknown total / 

valid (% of total) 
Observations total / 

valid (% of total) 
Specimens total / 
valid (% of total) 

Santa Barbara Museum of Natural 
History USA 

744 
619 (83.2%) - - 

744 
619 (83.2%) 

Borror Laboratory of Bioacoustics USA 
721 

326 (45.2%) - 
721 

326 (45.2%) - 

Queen Victoria Museum and Art 
Gallery Australia 

716 
708 (98.9%) 

716 
708 (98.9%) - - 

Senckenberg Germany 
615 

552 (89.8%) - - 
615 

552 (89.8%) 

Isagen Colombia 
611 

557 (91.2%) - 
611 

557 (91.2%) - 

iNaturalist.org USA 
565 

479 (84.8%) - 
565 

479 (84.8%) - 

University of Navarra, Museum of 
Zoology Spain 

525 
466 (88.8%) - 

25 
23 (92.0%) 

500 
443 (88.6%) 

Israel Nature and Parks Authority 
Israel / EU - 

BioCASE 
485 

338 (69.7%) - 
485 

338 (69.7%) - 

Instituto de Investigación de 
Recursos Biológicos Alexander 
von Humboldt Colombia 

400 
338 (84.5%) - 

400 
338 (84.5%) - 

Netherlands Biodiversity 
Information Facility (NLBIF) Netherlands 

373 
220 (59.0%) 

6 
6 (100.0%) 

367 
214 (58.3%) - 

GBIF-Sweden Sweden 
326 

230 (70.6%) - 
104 

84 (80.8%) 
222 

146 (65.8%) 

Museum für Naturkunde Berlin Germany 
283 

188 (66.4%) - 
283 

188 (66.4%) - 

Avian Knowledge Network USA 
281 

257 (91.5%) - 
281 

257 (91.5%) - 

National Museum of Nature and 
Science, Japan Japan 

238 
189 (79.4%) - - 

238 
189 (79.4%) 

Milwaukee Public Museum USA 
215 

102 (47.4%) - - 
215 

102 (47.4%) 

Tasmanian Museum and Art 
Gallery Australia 

200 
192 (96.0%) - 

4 
3 (75.0%) 

196 
189 (96.4%) 

Corantioquia Colombia 
141 

91 (64.5%) - 
141 

91 (64.5%) - 

Wildlife Conservation Society - 
Madagascar Program Madagascar 

139 
120 (86.3%) - 

139 
 

120 (86.3%) - 

Field Study Group of the Dutch 
Mammal Society Netherlands 

135 
114 (84.4%) - 

135 
114 (84.4%) - 

American Museum of Natural 
History USA 

110 
0 (0%) - - 

110 
0 (0%) 

Centre d'estudis de la neu i de la 
muntanya d'Andorra (CENMA), 
Institut d'Estudis Andorrans 

Andorra 
 

106 
72 (67.9%) - 

106 
72 (67.9%) - 

Citizen Science - ALA Website 
 

Australia 
 

63 
42 (66.7%) 

63 
42 (66.7%) 

- 
 

- 
 

inatura – Erlebnis Naturschau 
Dornbirn 

Austria 
 

55 
42 (76.4%) 

55 
42 (76.4%) 

- 
 

- 
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Table V.2.S7 (continued) 

Data publisher Country 
Records total / 

valid (% of total) 
Unknown total / 

valid (% of total) 
Observations total / 

valid (% of total) 
Specimens total / 
valid (% of total) 

University of Minnesota Bell 
Museum of Natural History 

USA 
 

43 
43 (100.0%) 

- 
 

- 
 

43 
43 (100.0%) 

Wildlife Sightings 
 

Canada 
 

30 
29 (96.7%) 

- 
 

30 
29 (96.7%) 

- 
 

Zoologisches Forschungsinstitut 
und Museum Alexander Koenig 

Germany 
 

2 
0 (0%) 

- 
 

- 
 

2 
0 (0%) 

Botanic Garden and Botanical 
Museum Berlin-Dahlem 

Germany 
 

2 
1 (50.0%) 

- 
 

2 
1 (50.0%) 

- 
 

European Molecular Biology 
Laboratory Australia 

Australia 
 

17 
17 (100.0%) 

17 
17 (100.0%) 

- 
 

- 
 

SysTax Germany 
167 

150 (89.8%) 
167 

150 (89.8%) 
- 
 

- 
 

 
Michigan State University Museum 

USA 
 

16 
16 (100.0%) 

- 
 

- 
 

16 
16 (100.0%) 

National Chemical Laboratory (via 
OBIS) 

International 
 

10 
2 (20.0%) 

10 
2 (20.0%) 

- 
 

- 
 

Geocollections of Estonia 
 

Estonia 
 

1 
0 (0%) 

1 
0 (0%) 

- 
 

- 
 

Carnegie Museums 
 

USA 
 

1 
1 (100.0%) 

- 
 

- 
 

1 
1 (100.0%) 
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Supplementary information - Chapter 3 

Global drivers of species-level variation in mobilized occurrence 

information 

Carsten Meyer, Walter Jetz, Robert P. Guralnick and Holger Kreft 

 

 

 

Supplementary Text 

SI V.3.1.1 Mammal distribution data  

We focused on records aggregated via the Global Biodiversity Information Facility (GBIF) as 

a representation of international efforts to mobilize biodiversity data and as GBIF is by far the 

largest such effort in geographical and taxonomic scope (Edwards, 2000; Graham et al., 

2004). We received 5,376,737 geo-referenced mammal records from GBIF in October 2012, 

of which we extracted 5,140,771 records with potentially sensible geographical coordinates 

(Longitude: -180° – +180°, Latitude: -90° – +90°) reported with a precision of at least 0.1 

degree. We excluded 564,978 records that did not have either a binomial or trinomial 

scientific name, a further 50,369 records for which the ‘basis of record’ field did not indicate 

‘preserved specimen’, ‘observation’, or ‘unknown’ (most of which are observation records), 

and 839 records that were reportedly collected before the year 1850, leaving 4,524,585 

records. We validated these taxonomically and geographically (see below), which left 

2,849,075 records for further analyses. 

We used extent-of-occurrence range map polygons (IUCN, 2010) to delimit the current native 

ranges of the World’s terrestrial mammals (excluding cetaceans, pinnipeds and sirenians; 

N=5,270). These range maps were originally drawn by species experts based on a variety of 

data sources, including occurrence records as well as inventory, survey, atlas and literature 

data, and represent the most complete and consistent data set available for mammal 

distributions globally. Species delimitations adopted by the IUCN for their range map and Red 

List data (IUCN, 2010) partly differ from the taxonomy (Wilson & Reeder, 2005) underlying 
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most trait and phylogenetic datasets. To link the two distribution data sets, we always adopted 

the more inclusive species concept, i.e., we merged range maps of species that are lumped by 

the taxonomy of Wilson & Reeder (2005), and averaged trait values and reduced nodes of the 

phylogenetic tree for species lumped by the IUCN. We excluded 3 terrestrial species with 

largely marine ranges (polar bear and two otter species). This resulted in a total of 5,057 

accepted terrestrial mammal species. We focused our analyses on the 3,625 species with at 

least one validated record. 

Species concepts followed by collectors and curators of records mobilized via aggregative 

data networks like GBIF are usually unknown. To account for this uncertainty, we combined 

all scientific names (including synonyms, subspecies and spelling variants) fully or partly 

included in our accepted species concepts from three existing taxonomic databases (Wilson & 

Reeder, 2005; IUCN, 2010; ITIS, 2012; compare Meyer et al., (2015)). We used the resulting 

‘synonym table’ to link GBIF records to our accepted species. We excluded records likely 

referring to domesticated forms. We inferred the taxonomic identities of GBIF records with 

ambiguous scientific names (such as pro parte synonyms) from spatial overlays with the 

range maps of ‘candidate species’, i.e., those accepted species to which the name could 

potentially refer. To validate records geographically and exclude ambiguous records, we 

reduced our dataset to those records that fell within a 50-km buffer around the range map of 

only one of its candidate species. We note that this approach may lead to the exclusion of 

‘good’ occurrence records collected outside of range maps if the maps do not encompass the 

full extent of occurrence of the species or if ranges have contracted since the collection of 

records.  

 

SI V.3.1.2 Testing for taxonomic bias and relative taxonomic and geographical species-level 

biases 

We performed nested type III-ANOVAs to test whether occurrence information is biased 

towards species in certain mammal orders or families (Garamszegi & Møller, 2012; Table 

V.3.S2 A). We performed type III-ANOVAs to test for relative effects of zoogeographical 

realm and order memberships (Table V.3.S2 B). 

 

SI V.3.1.3 Modeling whether or not species have any records mobilized via GBIF 

We used similar nested ANOVAs to test whether missing species (i.e., species without any 

mobilized records remaining after validation) are randomly distributed across the mammal 
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taxonomy (Table V.3.S2 A), and whether they are more clearly distributed among 

zoogeographical realms than among mammal orders (Table V.3.S2 B). We found significant 

higher-taxonomic and realm-specific bias, i.e., missing species are not randomly distributed 

among orders or geographical assemblages (Table V.3.S2 B). We used generalized linear 

models (GLM) with a quasi-binomial distribution to model whether species have any records 

mobilized via GBIF, using the same 13 predictor variables as in the record count and 

coverage models (Table V.3.S6). We expected the same relationships as with record count. 

The directions of significant relationships are all in line with our hypotheses, but most 

hypotheses on species attributes found no or only limited support. There is a comparatively 

weak negative effect of foraging stratum, suggesting that flying or arboreal mammals are 

more likely to have no mobilized records. Years since description and public interest are 

relatively weak positive predictors. Similar to our results for record count and range 

coverage, we found species’ having any mobilized records to be best predicted by range 

geometry and socio-economic factors: range size, area appeal, proximity to institutions and 

financial resources (Table V.3.S6).  

 

SI V.3.1.4 Modeling socio-economic drivers of geographical bias 

While it is difficult to hypothesize links between geographical bias and species attributes, 

geographical bias should be high if the geography of socio-economic conditions causes high 

record counts in some and comparably low record counts in other parts of the range. Rather 

than the range-wide means, we thus used two measures of within-range variation in socio-

economic conditions to model geographical bias (Table V.3.S5, Fig. II.3.5). The rationale is 

that strong geographical variation in socio-economic factors within ranges should lead to high 

levels of data aggregation and geographical bias of sampling locations to those range parts 

where conditions are more favorable of record collection and mobilization. We sampled the 

four socio-economic factors at 100 random points within each range. We used the coefficient 

of variation (cv) among these local measurements as a measure of within-range variation in 

socio-economic conditions. Additionally, we calculated the Pearson’s correlation coefficient 

between two distance matrices, one containing the Euclidean distances in socio-economic 

factors between all pairs of measurements at random points and the other containing the 

geographical great-circle distances (in km) between random points. This measure has high 

scores if high values of socio-economic factors are concentrated in one extreme of the range 

and low values in the other extreme. We did not log10-transform these measures, as resulting 

effects would be difficult to interpret. 
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SI V.3.1.5 Additional tests for effects of abundance-related traits 

For a given body size, abundance in mammals is negatively correlated with dietary level 

(Robinson & Redford, 1986). However, this relationship may only show if additionally 

accounting for habitat (Robinson & Redford, 1986), therefore we tested whether coefficients 

of dietary level in the global minimum adequate models of record count and range coverage 

would decrease (i.e., show stronger negative effects) when additionally including habitat, 

calculated as percentage overlap of ranges with different biomes (Olson et al., 2001). Dietary 

level is not retained in the original MAM of record count, but when including habitat as a 

fixed covariate in all candidate model subsets, it is retained in the MAM with a standardized 

coefficient of -0.31 (P=0.016). The standardized coefficient of dietary level in the model of 

range coverage decreased from -0.028 (P=0.08) to to -0.035 (P= 0.03). Thus, the hypothesis 

that dietary level affects occurrence information through its indirect effect on species 

abundances is not rejected, but nevertheless finds only limited support since the standardized 

coefficients are still smaller compared to those of range geometry and socio-economic factors 

(which remained similar to the original model (Table V.3.S4).  

In another side analysis, we tested for effects of a more direct measure of abundance by 

including population density in global models of record number and range coverage for 844 

species with available data (Jones et al., 2009), along with the 13 original predictor variables. 

Population density showed a significant but weak positive effect (βGLM=0.38, P=0.007) on 

record number. Thus the hypothesis that population density affects record counts is not 

rejected, but it too finds only limited support from the low relative importance compared to 

most other variables (dietary level: βGLM=0.29, P=0.03*; foraging stratum: βGLM=-0.55, 

P=0.0005, public interest: βGLM=0.67, P<<0.001, range size: βGLM=3.78, P<<0.001, range 

shape irregularity: βGLM=0.56, P<0.001, area appeal: βGLM=0.63, P=0.004, proximity to 

institutions: βGLM=1.96, P<<0.001, GBIF participation: βGLM=-0.98, P<<0.001, financial 

resources: βGLM=1.00, P<<0.001). Population density was not retained in the minimum 

adequate model of range coverage. 

 

SI V.3.1.6 Testing for spatial and phylogenetic autocorrelation 

We tested for spatial autocorrelation in model residuals, using Moran’s I. Because distances 

between ranges based on range centroids do not account for differences in range size, shape 

and overlap, we used a distance matrix that for each pair of species contained the mean 

distance between 100 random points of each range. Residual spatial autocorrelation was in 
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part significant, but generally low (up to 0.2). We tested for residual phylogenetic 

autocorrelation with Abouheif’s adaptation of Moran’s I, based on the phylogenetic tree of 

(Fritz et al., 2009)). Residual phylogenetic autocorrelation was consistently non-significant or 

very low (Fig. V.3.S3). 

 

SI V.3.1.7 Limitations of this study 

To our knowledge, this is the most comprehensive assessment of drivers of species-level 

occurrence information to date, and the first to investigate the relative contribution of species 

attributes, range geometry, and socio-economic factors. We tested these three major groups of 

hypotheses using a large set of species- and site-specific factors, but acknowledge that, 

survey-specific factors like sampling method, observer experience, or seasonal changes in 

species abundances might also play a role (Iknayan et al., 2013). To limit the number of 

hypotheses, we only included the four socioeconomic variables that were consistently 

important (across different spatial grain sizes) for predicting global record density and 

inventory completeness in mammals at the assemblage level (out of twelve tested socio-

economic hypotheses (Meyer et al., 2015)). However, given the strong effects of the 

geographical focus of the analysis in this study, we cannot rule out that globally unimportant 

socio-economic factors might be important for influencing regional occurrence information, 

which would have to be investigated further. 

While data on further detectability-related traits like e.g. coloration, fossoriality or vagility 

were not available, consistently weak effects of the tested attributes lead us to conclude that 

detectability does not greatly impact global mammal occurrence information. The large 

proportion of variation in range coverage explained jointly by range geometry and socio-

economic factors demonstrates that disentangling their separate influences remains difficult. 

However, our results clearly demonstrate a dominance of geographical over species-specific 

factors as drivers of species-level bias in occurrence information. 
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Supplementary Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure V.3.S1. Visualization of calculation of range coverage and geographical bias in mobilized occurrence 
records. 
 
 

 
Figure V.3.S2. Global variation in number of species without any GBIF-facilitated records. Shaded areas at branch 
tips denote mammal orders, with widths proportional to the number of species. Labels within shaded orders in A) 
highlight the six most speciose orders. Silhouettes are for visual orientation. B) – the same represented as median 
per 110x110 km grid cell. 
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Figure V.3.S3. Correlograms of regression models of record count, range coverage and geographical bias. We 
tested for spatial autocorrelation using spatial Moran’s I across different spatial distance classes (in km), and for 
phylogenetic autocorrelation using Abouheif’s Moran’s I (Abouheif, 1999) across phylogenetic distance classes (in 
Myr). Blue dots mark Moran’s I values of the response variables, orange dots mark Moran’s I values of model 
residuals. Solid dots denote significant, circles denote non-significant values. Note that strong autocorrelation only 
poses a problem in model residuals, not in response variables. 
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Figure V.3.S4. Results of variation partitioning. A) deviance partitioning of record count; B) variance partitioning 
of range coverage. Circles represent the three groups of hypotheses: upper left circle: geometry; upper right: socio-
economics; lower: species attributes. Shown are the fractions of the total variation explained uniquely by one or 
jointly by two or all hypothesis groups. The factor ‘Order’ was included as a covariate in all models, and accounts 
for some of the explained variation. Accordingly, values can be compared among hypothesis groups but do not add 
up to the total explained variation. 
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Supplementary Tables 

Table V.3.S1. Variation in a) record count, b) range coverage and c) geographical bias across zoogeographical 
realms and mammal orders. 
 

a) Record count             

       Geographical 
focus N species Min Max Mean SD Median 
Global 5,057 0 72,900 563.4 3,072.8 1 
Nearctic 568 0 72,900 1,765.8 4,592.5 660 
Neotropical 1,563 0 11,943 197.6 794.7 16 
Afrotropical 1321 0 16,038 126.0 661.2 8 
Palaearctic 840 0 55,910 1246.4 5,524.8 4 
Indomalayan 943 0 2,149 43.2 137.0 4 
Australasian 852 0 52,441 1292 4,924.1 24 

       Order N species Min Max Mean SD Median 
Afrosoricida 51 0 95 11.1 19.3 1 
Artiodactyla 225 0 30,756 281.8 2,203.7 9 
Carnivora 239 0 52,225 904.9 5,028.6 22 
Chiroptera 1,083 0 48,586 653.0 2,923.8 22 
Cingulata 21 0 856 54.6 184.5 6 
Dasyuromorphia 69 0 24,734 1,213.3 3,534.0 62 
Dermoptera 2 30 81 55.5 36.1 56 
Didelphimorphia 84 0 2,965 112.2 370.8 5.5 
Diprotodontia 135 0 52,441 2,710.4 7,952.7 42 
Erinaceomorpha 24 0 25,531 1,105 5,203.3 8 
Hyracoidea 4 47 224 126.8 79.0 118 
Lagomorpha 91 0 6,978 389.3 1,100.5 7 
Macroscelidea 15 0 278 119.9 102.8 132 
Microbiotheria 1 149 149 149 - 149 
Monotremata 5 0 28,965 7,604.6 12,562.9 21 
Notoryctemorphia 2 0 277 138.5 195.9 139 
Paucituberculata 6 2 174 66.3 72.6 30.5 
Peramelemorphia 18 0 6917 918.8 1,949.8 63 
Perissodactyla 16 0 2,828 191.1 703.7 2.5 
Pholidota 8 3 84 19.1 27.1 8 
Pilosa 10 0 212 93.4 84.4 86 
Primates 354 0 329 16.8 41.9 1 
Proboscidea 2 5 81 43 53.7 43 
Rodentia 2161 0 72,900 506.8 2,796.1 17 
Scandentia 19 1 465 87.7 118.0 31 
Soricomorpha 411 0 32,117 425.3 2,509.3 4 
Tubulidentata 1 27 27 27 - 27 

      b) Range coverage 
     

       Geographical 
focus N species Min Max Mean SD Median 
Global 3625 -1.0 -5,278.7 -313.7 378.1 -199.4 
Nearctic 505 -2.0 -1,465.9 -102.7 141.7 -56.8 
Neotropical 1166 -2.3 -2,727.6 -260.2 289.1 -177.4 
Afrotropical 931 -6.8 -4,550.3 -374.5 383.4 -282.9 
Palaearctic 545 -4.3 -5,278.7 -540.2 522.3 -419.3 
Indomalayan 600 -2.1 -4,156.4 -412.7 453.1 -307.2 
Australasian 628 -1.0 -1,612.4 -157.1 191.1 -107.2 

       Order N species Min Max Mean SD Median 
Afrosoricida 51 -66.2 -759.0 -229.1 146.5 -172.1 
Artiodactyla 225 -8.9 -2,313.7 -453.1 357.3 -397.3 
Carnivora 239 -2.0 -2734.3 -603.4 534.3 -418.0 
Chiroptera 1083 -1.0 -4,550.3 -452.6 485.1 -335.3 
Cingulata 21 -161.0 -1,046.9 -432.4 249.7 -339.1 
Dasyuromorphia 69 -8.7 -999.2 -187.0 205.0 -122.2 
Dermoptera 2 -59.7 -443.2 -251.4 271.1 -251.4 
Didelphimorphia 84 -6.4 -1,529.1 -315.2 285.8 -240.2 
Diprotodontia 135 -4.4 -666.9 -106.7 108.9 -78 
Erinaceomorpha 24 -38.7 -1,536.8 -471.4 383.5 -367.4 
Hyracoidea 4 -316.1 -626.2 -466.3 127.6 -461.4 
Lagomorpha 91 -2.5 -1,422.2 -303.7 307.4 -234.1 
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Range coverage (continued) 

       Geographical 
focus N species Min Max Mean SD Median 
Macroscelidea 15 -62.2 -363.7 -166.3 83.9 -166.5 
Microbiotheria 1 -38.5 -38.5 -38.5 - -38.5 
Monotremata 5 -117.4 -169.7 -150.6 22.8 -157.6 
Notoryctemorphia 2 -99.6 -99.6 -99.6 - -99.6 
Paucituberculata 6 -7.7 -299.0 -95.5 103.4 -69.0 
Peramelemorphia 18 -6.2 -1,137.1 -244.4 342.5 -124.5 
Perissodactyla 16 -121.8 -5,278.7 -923.9 1,466.9 -449.5 
Pholidota 8 -85.3 -938.7 -590.3 324.8 -598.1 
Pilosa 10 -108.6 -596.9 -379.0 165.3 -370.9 
Primates 354 -26.8 -989.9 -279.1 189.0 -240.0 
Proboscidea 2 -370.4 -837.4 -603.9 330.2 -603.9 
Rodentia 2161 -1.3 -2,154.9 -216.4 251.6 -128.2 
Scandentia 19 -12.2 -813.0 -209.2 196.5 -176.0 
Soricomorpha 411 -2.3 -3,256.0 -308.9 411.2 -152.7 
Tubulidentata 1 -676.3 -676.3 -676.3 - -676.3 

      b) Geographical bias 
     

       Geographical 
focus N species Min Max Mean SD Median 
Global 3625 -6.9 7,254.6 116.1 380.0 16 
Nearctic 505 -6.8 1,123.3 135 154.9 102.9 
Neotropical 1166 -5.7 3,536.3 70.2 193.5 15.0 
Afrotropical 931 -6.9 1,249.5 50.2 120.6 10.2 
Palaearctic 545 -5.9 7,254.6 316.2 850.5 12.7 
Indomalayan 600 -6.0 905.9 31.8 76.8 8.1 
Australasian 628 -5.7 4,894.1 212.9 525.4 26.9 

       Order N species Min Max Mean SD Median 
Afrosoricida 51 -2.8 142.7 14.8 30.0 1.7 
Artiodactyla 225 -4.5 2,230.6 81.0 317.5 9.7 
Carnivora 239 -6.8 5,678.1 121.2 488.8 9.7 
Chiroptera 1083 -6.0 7,254.6 157.5 472.0 24.6 
Cingulata 21 -1.1 153.8 17.2 37.6 6.1 
Dasyuromorphia 69 -4.6 3,512.1 265.5 682.5 25.8 
Dermoptera 2 9.8 25.8 17.8 11.3 17.8 
Didelphimorphia 84 -4.3 364.6 31.0 62.7 6.2 
Diprotodontia 135 -4.4 4,894.1 268.2 675.0 27.7 
Erinaceomorpha 24 -2.7 1,220.8 103.9 302.3 14.4 
Hyracoidea 4 -3.4 26.0 10.5 15.3 9.6 
Lagomorpha 91 -4.4 2,436.4 101.2 346.6 18.6 
Macroscelidea 15 -3.8 123.9 32.5 45.0 7.8 
Microbiotheria 1 -3.7 -3.7 -3.7 - -3.7 
Monotremata 5 11.5 1,345.2 632.8 720.1 587.3 
Notoryctemorphia 2 -4.0 -4.0 -4.0 - -4.0 
Paucituberculata 6 7.6 141.7 57.8 52.5 46.2 
Peramelemorphia 18 -2.9 766.5 224.2 318.5 28.6 
Perissodactyla 16 -2.1 680.6 70.3 202.7 4.7 
Pholidota 8 -3.3 29.8 5.6 11.2 0.8 
Pilosa 10 -5.1 87.6 31.2 33.5 17.3 
Primates 354 -4.8 472.7 15.3 41.0 4.8 
Proboscidea 2 0.8 14.4 7.6 9.6 7.6 
Rodentia 2161 -6.9 5,253.4 103.8 302.1 22.5 
Scandentia 19 -2.4 152.6 45.5 46.6 27.2 
Soricomorpha 411 -4.6 3,276.3 100.3 362.8 7.5 
Tubulidentata 1 5.8 5.8 5.8 - 5.8 
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Table V.3.S2. Taxonomic bias as well as relative geographical and taxonomic biases for different aspects of 
occurrence information. A) Results of nested type III-ANOVAs for higher-taxonomic bias of record count, range 
coverage, within-range geographical bias and species’ presence of any mobilized records towards mammal orders 
and families. B) results of type III-ANOVAs for relative bias of record count, range coverage, within-range 
geographical bias and species’ presence of any mobilized records towards zoogeographical realms and mammal 
orders.   
 

 Factor F %SS 

A) higher-taxonomic bias 
  

Record count Order 5.03*** 2.4 

 
Order:Family 3.84*** 7.4 

 
Residuals 

 
90.2 

Range coverage Order 21.30*** 12.4 

 
Order:Family 3.19*** 7.4 

 
Residuals 

 
80.2 

Geographical bias Order 3.07*** 2.1 

 
Order:Family 1.92*** 5.2 

 
Residuals 

 
92.8 

Mobilization of any 
records Order 6.01*** 3.0 

 
Order:Family 2.73*** 5.6 

 
Residuals 

 
91.4 

B) realm bias vs. order bias 
  

Record count Order 3.31*** 1.7 

 
Realm 30.99*** 3.1 

 
Realm*Order 1.38. 1 

 
Residuals 

 
94.3 

Range coverage Order 19.98*** 10.7 

 
Realm 101.44*** 10.5 

 
Realm*Order 8.84*** 6.6 

 
Residuals 

 
72.2 

Geographical bias Order 1.83** 1.3 

 
Realm 35.84*** 4.7 

 
Realm*Order 2.32*** 2.2 

 
Residuals 

 
91.8 

Mobilization of any 
records Order 6.62*** 3.3 

 
Realm 46.45*** 4.4 

 
Realm*Order 2.37*** 1.7 

 

 
Residuals 

 

 
90.7 
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Table V.3.S3. The effects of record count, geographical bias, range size and range shape irregularity on range 
coverage at different spatial extents (global and realm-scale). Shown are the standardized regression coefficients 
(OLS β). Asterisks denote significant spatial effects (.: P<0.1; *: P<0.05; **: P<0.01; ***: P<0.001). All variables 
were log10-transformed and standardized. 

Range coverage 
    

    Geographical focus Predictor β se t 

    Global Record count 0.80*** 0.01 77.79 

    N=3,353 Geographical bias  -0.31*** 0.01 -32.60 

    R²= 0.86 Range Size -0.80*** 0.01 -134.23 

 
Range shape irregularity -0.29*** 0.01 -40.12 

     
    Nearctic Record count 0.87*** 0.03 27.78 

    N=347 Geographical bias -0.22*** 0.03 -8.21 

    R²=0.89 Range Size -1.06*** 0.02 -45.98 

 
Range shape irregularity -0.20*** 0.04 -5.64 

     
    Neotropical Record count 0.72*** 0.02 36.90 

    N=925 Geographical bias -0.28*** 0.02 -15.54 

    R²=0.87 Range Size -0.97*** 0.01 -75.81 

 
Range shape irregularity -0.21*** 0.02 -13.26 

     
    Afrotropical Record count 0.72*** 0.02 32.43 

    N=737 Geographical bias -0.30*** 0.02 -13.70 

    R²=0.81 Range Size -0.98*** 0.02 -56.14 

 
Range shape irregularity -0.28*** 0.01 -19.12 

     
    Palaearctic Record count 0.67*** 0.03 22.78 

    N=361 Geographical bias -0.30*** 0.02 -12.30 

    R²=0.81 Range Size -1.08*** 0.03 -36.02 

 
Range shape irregularity -0.34*** 0.03 -12.55 

     
    Indomalayan Record count 0.71*** 0.03 23.40 

    N=408 Geographical bias -0.27*** 0.03 -7.81 

    R²=0.89 Range Size -1.05*** 0.02 -56.20 

 
Range shape irregularity -0.39*** 0.02 -22.95 

     
    Australasian Record count 0.80*** 0.03 23.25 

    N=444 Geographical bias -0.30*** 0.03 -11.37 

    R²=0.73 Range Size -1.03*** 0.03 -32.38 

 
Range shape irregularity -0.25*** 0.02 -15.80 
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Table V.3.S4. Effects of species traits, range geometry, and socio-economic factors on A) – G) record count and 
H) – N) range coverage at different spatial extents (global and realm-scale). The 14 predictor variables were 
Diurnality, Body size, Foraging stratum, Dietary level, Time since description, Threat status, Public interest, Threat 
status, Range size, Range shape irregularity, Endemism richness, Proximity to institutions, GBIF participation, 
Financial resources. Two comparative measures were used: for record count (A – G): 1) standardized regression 
coefficients from the reduced spatial generalized linear model with the lowest QAIC score (GLM β), and 2) the 
sum of QAIC weights across all possible model subsets (∑QAICw; Burnham & Anderson., 2002); for range 
coverage (H – N): 1) standardized regression coefficients from the reduced ordinary least squares model with the 
lowest AIC score (OLS β), and 2) the sum of AIC weights across all possible model subsets (∑AICw). GVIF/VIF 
are generalized variance inflation factors. Asterisks denote significant spatial effects (.: P<0.1; *: P<0.05; **: 
P<0.01; ***: P<0.001). Partial adjusted deviance explained (D²) and partial adjusted variance explained (R²) refer 
to the variation that is explained by the predictor variables, with effects of the covariate ‘Order’ partialled out 
(Peres-Neto et al., 2006). 
 
 
A) Record count           

           
Geographical 
focus Predictor GLM β se t ΔQAICw GVIF 

           Global Body mass -0.40*** 0.09 -4.30 1 4.6 
    N=3,353 Foraging stratum -0.19* 0.09 -2.05 0.70 3.4 
    D²=0.62 Years since description 0.47*** 0.13 3.68 1 1.9 

 
Public interest 0.61*** 0.06 10.54 1 2.2 

 
Range size 3.77*** 0.18 21.30 1 4.1 

 
Range shape irregularity 0.55*** 0.10 5.82 1 1.5 

 
Area appeal 0.40*** 0.12 3.52 0.99 2.5 

 

Proximity to research 
institutions 2.12*** 0.10 21.83 1 2.5 

 
Financial resources 0.59*** 0.09 6.96 1 3.3 

       
           Nearctic Body mass -1.24*** 0.23 -5.46 1 3.1 
    N=347 Foraging stratum -0.55* 0.26 -2.12 0.86 2.7 
    D²=0.69 Dietary level 0.47** 0.18 2.59 0.96 2.5 

 
Public interest 0.70*** 0.12 5.92 1 1.8 

 
Range size 4.24*** 0.36 11.86 1 4.8 

 
Range shape irregularity 0.58  0.43 1.33 0.47 1.7 

 
Area appeal 3.03*** 0.34 9.02 1 3.1 

 

Proximity to research 
institutions -1.36** 0.48 -2.82 0.99 1.7 

 
GBIF participation 3.14. 1.83 1.72 0.71 1.4 

 
Financial resources 1.05** 0.37 2.82 0.99 1.2 

       
           Neotropical Diurnality -0.27. 0.16 -1.71 0.61 1.6 
    N=925 Body mass -1.88*** 0.22 -8.37 1 3.9 
    D²=0.60 Foraging stratum -0.48*** 0.15 -3.31 0.99 2.7 

 
Dietary level -0.67*** 0.16 -4.17 1 2.4 

 
Years since description 1.75*** 0.24 7.28 1 1.9 

 
Public interest 1.09*** 0.13 8.14 1 1.8 

 
Threat status 0.47* 0.23 2.00 0.69 1.9 

 
Range size 3.51*** 0.32 11.06 1 5.9 

 
Area appeal 1.36*** 0.25 5.44 1 3.4 

 

Proximity to research 
institutions 0.67*** 0.19 3.42 0.99 2.8 

 
GBIF participation 1.07*** 0.24 4.54 1 2.4 

 
Financial resources 1.08*** 0.22 4.96 1 2.0 

       
           Afrotropical Body mass -1.16** 0.38 -3.07 0.99 2.8 
    N=737 Foraging stratum -0.49  0.36 -1.36 0.49 3.6 
    D²=0.45 Dietary level 0.53. 0.29 1.82 0.67 2.1 

 
Years since description 0.73  0.46 1.59 0.53 2.2 

 
Public interest 0.35  0.22 1.61 0.61 1.5 

 
Range size 4.92*** 0.71 6.88 1 4.8 

 
Area appeal 2.15*** 0.55 3.92 1 2.9 

 
GBIF participation -0.80  0.49 -1.64 0.6 1.9 
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Record count (continued) 
    
Geographical 
focus Predictor GLM β se t ΔQAICw GVIF 

           Palaearctic Diurnality 1.36** 0.49 2.76 0.69 2.8 
    N=361 Public interest 0.71. 0.37 1.94 0.43 3.8 
    D²=0.78 Range size 6.38*** 1.78 3.59 0.99 7.7 

 

Proximity to research 
institutions 2.57* 1.13 2.29 0.66 7.1 

 
Financial resources 1.49* 0.59 2.54 0.56 2.6 

       
           Indomalayan Dietary level -0.73* 0.29 -2.50 0.82 4.0 
    N=408 Threat status -0.48  0.3 -1.57 0.59 1.4 
    D²=0.47 Range size 5.38*** 0.61 8.86 1 10.0 

 
Area appeal 3.91*** 0.56 7.04 1 5.0 

 

Proximity to research 
institutions 1.41. 0.81 1.76 0.63 1.5 

 
GBIF participation 0.63** 0.22 2.90 0.97 1.2 

 
Financial resources 2.44*** 0.32 7.69 1 2.8 

       
           Australasian Diurnality -1.63*** 0.39 -4.18 1 2.2 
    N=444 Body mass 0.89*** 0.17 5.15 1 9.3 
    D²=0.86 Foraging stratum 0.47* 0.19 2.42 0.85 7.3 

 
Threat status -0.54* 0.23 -2.39 0.88 1.5 

 
Years since description 0.45** 0.15 3.06 0.98 1.6 

 
Public interest 0.43** 0.14 3.15 0.98 3.0 

 
Range size 3.55*** 0.35 10.18 1 4.6 

 
Range shape irregularity 0.57*** 0.15 3.73 1 2.3 

 
Area appeal -2.07*** 0.36 -5.74 1 4.1 

 

Proximity to research 
institutions 3.77*** 0.23 16.09 1 3.5 

 
GBIF participation -0.89  0.54 -1.65 0.61 4.3 

 
Financial resources -1.89* 0.79 -2.40 0.91 6.3 

       
       B) Range coverage 

     
       Geographical 
focus Predictor OLS β se t ΔAICw GVIF 

           Global Diurnality 0.02. 0.01 1.72 0.59 1.5 
    N=3,353 Body mass -0.05** 0.02 -2.65 0.81 4.9 
    R²=0.71 Foraging stratum -0.07*** 0.02 -4.03 1 3.6 

       
 

Dietary level -0.03. 0.02 -1.74 0.57 3.4 

 
Years since description 0.06*** 0.01 4.64 1 1.7 

 
Public interest 0.04*** 0.01 3.73 1 1.7 

 
Range size -0.62*** 0.02 -38.60 1 2.0 

 
Range shape irregularity -0.26*** 0.01 -24.04 1 1.2 

 
Area appeal 0.17*** 0.01 13.48 1 2.0 

 

Proximity to research 
institutions 0.22*** 0.01 19.62 1 1.5 

 
GBIF participation 0.06*** 0.01 5.56 1 1.6 

 
Financial resources 0.18*** 0.01 15.61 1 1.8 

           Nearctic Body mass -0.16*** 0.05 -3.39 0.95 4.4 
    N=347 Years since description 0.20*** 0.04 4.71 1 1.8 
    R²=0.73 Public interest 0.09** 0.03 2.80 0.96 2.0 

 
Threat status 0.07. 0.04 1.86 0.70 2.0 

 
Range size -0.44*** 0.05 -8.38 1 4.5 

 
Area appeal 0.59*** 0.05 11.08 1 2.5 

 

Proximity to research 
institutions 0.09  0.07 1.41 0.55 1.4 

 
GBIF participation 0.72* 0.34 2.11 0.81 1.2 

 
Financial resources 0.36*** 0.04 8.67 1 1.3 

           Neotropical Diurnality 0.04. 0.02 1.83 0.68 1.7 
    N=925 Body mass -0.15*** 0.04 -4.08 1 4.4 
    R²=0.75 Foraging stratum -0.06* 0.03 -2.09 0.80 3.3 

 
Dietary level -0.09*** 0.03 -3.44 0.99 2.3 

 
Years since description 0.07*** 0.02 3.94 1 1.5 

 
Public interest 0.12*** 0.02 5.12 1 1.8 

 
Range size -0.56*** 0.03 -21.21 1 4.5 
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Range coverage (continued) 

      Geographical 
focus Predictor OLS β se t ΔAICw GVIF 

 
Range shape irregularity -0.22*** 0.02 -9.65 1 1.3 

 
Area appeal 0.19*** 0.02 7.98 1 2.1 

 

Proximity to research 
institutions 0.07** 0.02 2.79 0.95 1.7 

 
GBIF participation 0.09*** 0.02 4.39 1 1.5 

 
Financial resources 0.20*** 0.03 7.14 1 1.6 

           Afrotropical Diurnality 0.06** 0.02 2.83 0.94 1.6 
    N=737 Body mass -0.09* 0.04 -2.21 0.84 8.5 
    R²=0.59 Years since description 0.11*** 0.03 4.03 1 2.1 

 
Threat status 0.12*** 0.03 4.09 1 2.3 

 
Range size -0.51*** 0.04 -11.61 1 5.3 

 
Range shape irregularity -0.26*** 0.02 -11.04 1 1.4 

 
Area appeal 0.17*** 0.03 5.45 1 3.1 

 

Proximity to research 
institutions 0.20* 0.09 2.36 0.87 2.1 

 
GBIF participation -0.11*** 0.03 -3.44 0.99 1.9 

 
Financial resources 0.16*** 0.04 4.16 1 2.5 

           Palaearctic Range size -0.66*** 0.05 -14.08 1 3.6 
    N=361 Range shape irregularity -0.28*** 0.04 -6.90 1 1.5 
    R²=0.65 Area appeal 0.21*** 0.06 3.34 0.98 1.9 

 

Proximity to research 
institutions 0.09* 0.04 2.48 0.81 3.7 

 
GBIF participation 0.37*** 0.05 7.28 1 3.1 

           Indomalayan Body mass 0.08. 0.05 1.68 0.47 6.4 
    N=408 Years since description 0.06. 0.04 1.73 0.69 1.8 
    R²=0.44 Threat status -0.05. 0.03 -1.76 0.62 2.1 

 
Range size -0.60*** 0.05 -11.53 1 4.9 

 
Range shape irregularity -0.37*** 0.03 -13.40 1 1.5 

 
Area appeal 0.32*** 0.04 7.15 1 2.7 

 
Financial resources 0.28*** 0.04 7.29 1 1.6 

           Australasian Dietary level -0.07** 0.03 -2.61 0.85 3.9 
    N=444 Range size -0.65*** 0.03 -19.13 1 2.9 
    R²=0.59 Range shape irregularity -0.23*** 0.02 -12.06 1 1.3 

 
Area appeal 0.08** 0.03 2.63 0.76 3.0 

 

Proximity to research 
institutions 0.56*** 0.04 15.06 1 3.3 

 
GBIF participation -0.06* 0.03 -2.01 0.59 2.0 
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Table V.3.S5. The effects of range size and within-range gradients in socio-economic factors on within-range 
geographical bias in mobilized records. We modeled effects of within-range variation in socio-economic factors 
using two metrics per socio-economic factor: 1) the coefficient of variation (cv) and 2) the correlation coefficient 
between a euclidean socio-economic distance matrix and a geographical distance matrix (rP; see SI V.3.1.4 for 
explanation). The 9 predictor variables were range size, CV endemism richness, rP endemism richness, CV 
proximity to institutions, rP proximity to institutions, CV GBIF participation, rP GBIF participation, CV locally 
available research funding, and rP locally available research funding. Two comparative measures were used: 1) 
standardized regression coefficients from the reduced ordinary least squares model with the lowest AIC score (OLS 
β), and 2) the sum of AIC weights across all possible model subsets (∑AICw). GVIF are generalized variance 
inflation factors. Asterisks denote significant spatial effects (.: P<0.1; *: P<0.05; **: P<0.01; ***: P<0.001). 
Partial adjusted variance explained (R²) refers to the variation that is explained by the predictor variables, with 
effects of the covariates ‘Order’ and ‘Record count’ removed (Peres-Neto et al., 2006).  
 
Geographical bias             

       Geographical focus Predictor OLS β se t ΔAICw GVIF 

       Global Range size -0.13*** 0.02 -5.72 1 3.3 
    N=3,353 Endemism richness (cv) 0.05**  0.02 2.91 0.97 2.2 
    R²=0.15 Proximity to research institutions (rP) 0.04* 0.02 2.45 0.88 1.9 

 
Proximity to research institutions (cv) 0.09*** 0.02 5.67 1 1.7 

 
GBIF participation (rP) 0.05*** 0.01 3.58 0.99 1.6 

 
Financial resources (rP) -0.05*** 0.01 -3.36 0.99 1.5 

 
Financial resources (cv) 0.04* 0.02 2.40 0.87 1.8 

           Nearctic Endemism richness (rP) -0.1** 0.04 -2.62 0.85 1.1 
    N=347 Endemism richness (cv) 0.12*** 0.03 3.53 0.98 2.3 
    R²=0.24 Proximity to research institutions (rP) 0.09* 0.04 2.06 0.53 2.0 

 
Financial resources (cv) -0.15* 0.07 -2.1 0.61 2.0 

           Neotropical Range size -0.13*** 0.03 -4.06 0.99 4.4 
    N=925 Proximity to research institutions (cv) -0.1*** 0.03 -3.53 0.99 1.8 
    R²=0.08 Financial resources (cv) 0.1* 0.05 2.04 0.75 2.0 

           Afrotropical Range size -0.06  0.04 -1.49 0.60 3.9 
    N=737 Proximity to research institutions (cv) -0.07  0.05 -1.63 0.74 1.8 
    R²=0.05 GBIF participation (rP) 0.04  0.02 1.6 0.49 1.6 

 
Financial resources (cv) -0.07* 0.03 -2.18 0.77 1.6 

           Palaearctic Proximity to research institutions (cv) 0.13*** 0.03 3.71 0.99 2.5 
    N=361 GBIF participation (rP) 0.18** 0.06 2.96 0.92 1.5 
    R²=0.24 Financial resources (cv) -0.07. 0.04 -1.79 0.62 2.4 

           Indomalayan Endemism richness (rP) 0.09*** 0.02 3.77 0.99 1.5 
    N=408 Endemism richness (cv) -0.04. 0.03 -1.68 0.48 2.6 
    R²=0.00 

      
           Australasian Proximity to research institutions (rP) 0.16** 0.06 2.73 0.93 2.1 
    N=444 Proximity to research institutions (cv) 0.65*** 0.12 5.18 1 2.7 
    R²=0.44 GBIF participation (rP) -0.06  0.04 -1.58 0.58 4.6 

 
GBIF participation (cv) -0.15* 0.07 -2.24 0.85 1.6 
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Table V.3.S6. Effects of species attributes, range geometry, and socio-economic factors on whether or not species 
have any mobilized records. Effects were tested in multiple generalize linear models with a quasi-binomial 
distribution and a logit link. All possible model subsets were ranked based on QAIC scores, results are shown for 
the minimum adequate model (with the lowest QAIC score). Two comparative measures were used: 1) 
standardized regression coefficients from the reduced spatial generalized linear model with the lowest QAIC score 
(GLM β), and 2) the sum of QAIC weights across all possible model subsets (∑QAICw; Burnham & Anderson, 
2002). GVIF are generalized variance inflation factors. Asterisks denote significant spatial effects (.: P<0.1; *: 
P<0.05; **: P<0.01; ***: P<0.001). Partial adjusted deviance explained (D²) refer to the variation that is explained 
by the predictor variables, with effects of the covariate ‘Order’ removed (Peres-Neto et al., 2006). 
 
Has records 

Predictor GLM β se t 

 
∑QAICw 

 
GVIF 

N= 4,934 
Foraging stratum -0.59*** 0.15 -3.94 

 
1 

 
3.5 

D²=0.30 
Years since description 0.55*** 0.09 6.31 

 
1 

 
1.7 

 
Public interest 0.68*** 0.11 6.20 

 
1 

 
1.8 

 
Range size 3.09*** 0.13 22.97 

 
1 

 
3.2 

 
Range shape irregularity 0.41*** 0.08 5.28 

 
1 

 
1.2 

 
Area appeal 0.93*** 0.10 9.30 

 
1 

 
2.0 

 
Proximity to institutions 1.24*** 0.10 12.09 

 
1 

 
1.6 

 
GBIF participation 0.17* 0.08 2.06 

 
0.71 

 
1.6 

  
Financial resources 1.06*** 0.10 

 
10.50 

 
1 

 
1.7 
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