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Nomenclature

Most symbols used in the work can be found in this nomenclature. We sort the symbols
by the chapters in which they appear, global symbols can appear in all chapters.

Global symbols
(r, θ, ϕ) spherical coordinates

ξ displacement vector

δZ for any variable Z a preceding δ denotes it is a Lagrangian pertur-
bation quantity

u velocity vector

x̂, ŷ, ẑ unit vectors in x,y,z direction

Φ gravitational and possibly centrifugal potential

Φt tidal potential

ρ density

G gravitational constant

L stellar luminosity

p pressure

Z ′ for any variable Z a prime denotes it is an Eulerian perturbation
quantity, this prime will generally be omitted

Z0 for any variable Z, subscript zero denotes it is a background quan-
tity

Symbols used in Chap. 2



6 Nomenclature

(x̄1, x̄2, ϕ̄) ellipsoidal coordinates according to Bryan (1889)

< n > mean value of the spatial degree for a positive growth rate of the
elliptical instability for small Ω

β exponent for the background density profile

ε ellipticity of the ellipsoid

ι adiabatic index

ν kinematic viscosity

Ω Ω = Ωp/ΩF

ω frequency of the inertial mode in the frame rotating with Ωp

Ωb(t) angular velocity of the tidal bulge in the frame that rotates with
the spin of the central object

ωe frequency of the elliptical instability

ΩF angular velocity of the spin of the central body in the frame rotat-
ing with Ωp

Ωp orbital angular velocity of the perturbing body in the inertial frame

Ωspin angular velocity of the spin of the central body in the inertial frame

Φself the potential terms created by the central body itself (gravitational
and centrifugal)

ψ ψ = p′

ρ0
+ Φ′

σfs growth rate of the elliptical instability with free slip boundary
conditions

σinv inviscid growth rate of the elliptical instability

σns growth rate of the elliptical instability with no slip boundary con-
ditions

σud maximal inviscid growth rate of the elliptical instability in an un-
bounded domain

ε̃ strain rate

$l the amplitude of libration

ζ ζ = −q/2
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a, b, c ellipsoidal semi major axes

cs speed of sound

Ek Ekman number

f f = ωe + iσinv

h1 constant in the volume damping term to calculate σns and σfs

h2 constant in the boundary damping term to calculate σns

k azimuthal wavenumber of the inertial mode

m a number corresponding to the frequency of the inertial mode

n spatial degree of the inertial mode

nmin minimal spatial degree necessary for a positive growth rate of the
elliptical instability for large Ω

Np polytropic index

q frequency of the inertial mode in the frame rotating with Ωp + ΩF

Symbols used in Chap. 3
R̄ universal gas constant

η dynamic viscosity

γ parameter defined as γ = Ea/(R̄T 2
i )

µ shear modulus

θ Frank-Kamenetskii parameter θ = γ(Ti − Ts)

ac, α, ς constants depending on the chosenNu(Ra) relation, see Eq. (3.51)

B dimensionless melt fraction coefficient

b grain size

dc thickness of the convecting layer

e eccentricity of the orbit

Ea activation energy for subsolidus mantle creep

F heat flux

g gravitational acceleration



8 Nomenclature

H rate of internal heat generation (in W/m3)

k2 tidal love number

KE bulk modulus

Nu Nusselt number

P orbital period

Q tidal quality factor, definition see Sect. 3.1.5

Q′ modified tidal quality factor, definition see Sect. 3.1.5

Rc radius of the core of the object

Rp radius of the object

Ra Rayleigh number

Ti interior temperature

Ts surface temperature
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The investigation of tidal friction has been a subject of research for many years (e.g.
Darwin 1879). This study aims to serve as a further building block in the understanding
of tidal friction, which causes the circularization and synchronization of stars, planets,
and moons on their orbit around their tidal partner. A famous example of this is the
Earth-Moon system. The Moon’s rotational velocity around its own axis is synchronized
with its orbital rotational velocity; one therefore says that the Moon is tidally locked.
As a consequence, one face of the Moon cannot be seen from the Earth. However, due
to the Moon’s libration, caused by the ellipticity of the orbit, we can see at least 59%
of the Moon’s surface from the Earth (Chu et al., 2012). Unlike the Moon’s spin, that
of Earth is not synchronized with its orbital angular velocity; it spins faster than the
Moon rotates around the Earth, resulting in a slow drifting away of the Moon from the
Earth and a decreasing rotation rate of Earth’s spin (see, e.g., Murray and Dermott
1999). This is different from many other systems in which the satellite is tidally locked
and the host object spins slower than the satellite1 rotates around it, which leads to a
decrease in the semi-major axis. A famous example is the hot-Jupiter planet WASP-
18b: “Under the assumption that the tidal-dissipation parameter Q 2 of the host star is
of the order of 106, as measured for Solar System bodies and binary stars and as often
applied to extrasolar planets, WASP-18b will be spiraling inwards on a timescale less than
a thousandth that of the lifetime of its host star.“ (Hellier et al., 2009). This citation
illustrates the previously conventional practice of simply applying a dissipation factor of
105-106 to a star. This stellar Q′ value coincides with studies of binary star systems
(Meibom and Mathieu, 2005), but there is disagreement on whether this is the correct
way to parameterize tidal dissipation. In an exoplanet population study, Penev et al.
(2012) find that the stellar Q′ is greater than 107 at the 99 percent confidence level. They
then argue that this disagreement between the Q′s arises from the tidal frequency being
much higher than the stellar rotation in the case of an exoplanet inspiral. Conversely, in a
binary star system the tidal frequency is generally close to the rotation of the star, due to
a faster synchronization (see also Penev and Sasselov 2011). Thus, damping due to inertial
modes can occur in the latter case, whereas in the former case turbulent dissipation by
the static tide - which is less efficient - is probably the dominant dissipation mechanism.
Inertial modes in a star can get resonantly excited by the tidal perturbation if the spin
period of the star is less than twice the orbital period of its satellite, because the absolute
value of the frequency of an inertial mode in a spinning object is always less then twice the
spin frequency (see, e.g., Greenspan 1968). The results of Penev et al. (2012) highlight the
importance of knowing the energy dissipating mechanism. A review of the different tidal
dissipation mechanisms for binary stars can be found, e.g., in Rieutord (2003). A newer

1In this study a satellite can be a moon that orbits a planet as well as a planet that orbits a star.
2What Hellier et al. (2009) call Q here is equivalent to our Q′; they use the definition as in Jackson et al.
(2008) for Q. In the following we call it therefore Q′. For our definition of Q and Q′ see Sect. 3.1.5.
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potential mechanism is the elliptical instability, which is investigated in the first part of
this study, Chap. 2.

Similar to the proceeding for the Q′ value of a star is the proceeding for the Q′ value
of planets. For a terrestrial planet, one often calculates with a modified tidal dissipation
factor Q′ of 100, which is on the order of the Earth’s Q′ value (Murray and Dermott,
1999). In Chap. 3 we will take a closer look at whether this proceeding is appropriate for
rocky planets under strong tidal forcing.

Figure 1.1.: Jupiter and Io photographed by the Voyager 2 probe on 9 July 1979. Courtesy: NASA

Figure 1.1 illustrates the common significance of the various investigations in this study.
Jupiter is a gas giant in which elliptical instability may play a role in the tidal dissipation
process, and Io is a Jovian moon under strong tidal forcing.

This thesis

In the first part of this study, Chap. 2, we investigate the elliptical instability. We
calculate the growth rates of the elliptical instability under the influence of compressibility
in a slightly elliptical deformed sphere. To do so, we solve the linearized Euler equations;
the viscosity is included heuristically. The use of a power law for the radial dependence
of the density and the anelastic approximation makes it possible to use semi-analytical
methods to solve the equations. The influence of the orbital frequency of the perturber is
considered. Exemplarily we apply the results to decide if elliptical instability is possible in
the Earth perturbed by the Moon, Jupiter perturbed by Io and in the binary star system
V636 Centauri. This chapter is based on the work by Clausen and Tilgner (2014).
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In Chap. 3 we present calculations of the tidal dissipation in rocky planets under strong
tidal forcing. We estimate tidal dissipation by an equilibrium between heat transport and
heat production due to tides, as done by, e.g., Moore (2003). The influence of convection
as opposed to melt migration as a possible heat transport mechanism is investigated, as
well as dissipation in a homogeneous mantel as opposed to dissipation occurring mainly
in the asthenosphere. We use Jupiter’s moon Io and the exoplanet Corot-7b as objects of
study. This chapter is based on the work by Clausen and Tilgner (2015).

In Chap. 4 we solve the inviscid equations for inertial modes in shear flow, numerically for
a profile with a velocity jump and analytically for a similar profile that has a continuous
change of velocity instead of a jump. Our expectation is that with an appropriate steepness
of the gradient in the continuous case, the flow profiles will approximately agree. We
compare the resulting profiles to determine whether our expectation is fulfilled.

Relation between this thesis and the published articles

The work for the two publications (Clausen and Tilgner, 2014, 2015) on which this thesis
is based was carried out by the author of this thesis. The wordings in the publications
were partly written together with his supervisor. Large parts of this work were taken from
the two publications (Clausen and Tilgner, 2014, 2015). Therefore, the major differences
between the publications and this thesis must be pointed out.

Chapter 2 corresponds to Clausen and Tilgner (2014), although Section 2.1.2 is not from
Clausen and Tilgner (2014). In Sect. 2.3.1, a new scaling for the turbulent viscosity in
rotating convection according to Barker et al. (2014) is considered, which was published
after the publication date of our article.

Chapter 3 corresponds to Clausen and Tilgner (2015). Section 3.1.1 includes the refor-
mulation of the tidal potential, which simplifies the following derivation of the governing
equations for spheroidal oscillations; neither the reformulation nor the derivation is from
Clausen and Tilgner (2015). Furthermore, in this thesis in Sect. 3.1.1 the justification
is given why it is appropriate to neglect the compressibility and the inertial term in the
equations governing spheroidal oscillations.



2 Elliptical instability of
compressible flow in ellipsoids
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The elliptical instability was discovered in the mid-1970s (for a review, see Kerswell 2002).
Elliptical instability is the name for an instability that arises in elliptical flows, because
of a resonance between two inertial modes of the underlying rotating flow with the strain
field. An elliptical flow is the superposition of a pure rotation and a stagnation point flow
with stretching in the −45◦ direction. It can therefore be written as

U =


0 −1− ε̃ 0

1− ε̃ 0 0
0 0 0



x

y

z

 = ẑ× x +D · x, (2.1)

where the vorticity is 2ẑ everywhere and ε̃ is the strain rate, ε̃ < 1 for elliptical flow, and
D is the strain matrix. Waleffe (1990) found that a simple solid body rotation u = 1

2ω×x
is an exact solution to the perturbed nonlinear Navier Stokes equation with the above
background flow, with exponentially growing eigenmodes, due to vortex stretching. This
simple vortex stretching mechanism is also the reason for the growing of the elliptical
instability, under the prerequisite that certain resonance conditions are fulfilled. A tidally
perturbed fluid body is elliptical deformed such that each fluid particle follows an elliptical
streamline as long as the objects spin differs from it’s orbital angular velocity with respect
to the perturbing body. Therefore in not synchronized objects the elliptical instability
can appear, but also for a synchronized object which is not circularized the elliptical
instability is possible, it is then librational driven. Both forms of the elliptical instability
will be considered in this study.

Worth mentioning is a study by Barker and Lithwick (2013a), they investigated the impor-
tance of the elliptical instability for tidal dissipation by three-dimensional hydrodynamic
simulations. These were performed in a box with periodic boundary conditions. The base
flow was chosen such that this box resembles a small patch in a tidally deformed fluid
planet or star. They studied the nonlinear evolution of the elliptical instability and found
that only for large ellipticities a state of sustained wave driving is present. But for the
astrophysical relevant ellipticities strong columnar vortices form and this results in a sig-
nificantly weaker dissipation compared to the case of sustained wave driving. Magnetic
fields (Barker and Lithwick, 2014) or a strong stratification (Guimbard et al., 2010) can
prevent the forming of these vortices. But also with sustained wave driving the inferred
tidal dissipation accompanied by the elliptical instability is only enough to explain circu-
larization and synchronization for binary stars and hot Jupiters with short periods (Barker
and Lithwick, 2014); therefore, they conclude there might be an yet undetermined mech-
anism to explain circularization for wide orbital separations. They neglect the effects of a
realistic geometry and the presence of turbulent convection.

The elliptical instability has been studied in different geometries, in an unbounded do-
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main (Bayly 1986; Landman and Saffman 1987; Waleffe 1990; Miyazaki and Fukumoto
1992; Miyazaki 1993; Miyazaki et al. 1995), elliptically deformed cylinder (Gledzer et al.,
1975; Malkus, 1989; Eloy et al., 2003), deformed spheroid (Gledzer and Ponomarev, 1977;
Kerswell, 1994; Cébron et al., 2010a), and spherical shells (Aldridge et al., 1997; Seyed-
Mahmoud et al., 2000; Cébron et al., 2012). For the slightly elliptical deformed sphere,
the geometry chosen in this study, also studies exist (Lacaze et al., 2004; Le Bars et al.,
2010). The elliptical instability is influenced by stratification (Miyazaki and Fukumoto
1992; Miyazaki 1993; Guimbard et al. 2010), magnetic fields (Kerswell, 1994; Lacaze et al.,
2006; Herreman et al., 2009), rotation of the elliptical perturbation (Craik, 1989; Gledzer
and Ponomarev, 1992; Miyazaki, 1993; Miyazaki et al., 1995; Seyed-Mahmoud et al., 2000;
Le Bars et al., 2010), and viscosity (Landman and Saffman, 1987; Kerswell, 1994; Lacaze
et al., 2004; Le Bars et al., 2010). In this thesis rotation of the elliptical perturbation
and viscosity are considered and additionally, contrary to all just mentioned studies here
compressibility of the flow is taken into account. Nearly all other publications neglect this
influence, an exception is the work by Cébron et al. (2013). They numerically simulated
one particular set of parameters. Contrary to them, in this study, simplifying approxima-
tions were made such that it was possible to use semi-analytical methods. These enables
us to obtain a broad overview of the stability characteristics instead of simulating one par-
ticular set of parameters as done by Cébron et al. (2013). They considered the nonlinear
term in their calculation and therefore were able to calculate the amplitude of the insta-
bility at saturation, this work only focuses on the growth rate of the elliptical instability
and for simplification the equations were linearized.

2.1. Theoretical background

2.1.1. Mathematical formulation of the model

We consider the equatorial tide raised on a central body by a tidal perturber. The frame in
which the tidal perturber is at rest is the frame of reference. We use a Cartesian coordinate
system x, y, z, with its origin at the center of the central body, its z-axis directed along
the rotation axis of the reference system, and the x-axis is pointing towards the tidal
perturber. This reference frame rotates at rate Ωp = Ωpẑ (hats denote unit vectors)
relative to inertial space. In this frame, the central body rotates about the z−axis with
angular velocity 1

2( ba+ a
b )ΩF within an ellipsoid with semi-major axes a, b, c and the surface

(
x

a

)2
+
(
y

b

)2
+
(
z

c

)2
= 1, (2.2)
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so that the motion of the central body within the chosen frame of reference is given by
the velocity field u0:

u0 = ΩF

(
−a
b
yx̂ + b

a
xŷ
)
. (2.3)

In order to determine the stability of this flow, we start from the full Euler equations:

∂tu + (u · ∇)u + 2Ωp × u = −1
ρ
∇p+∇Φself +∇Φt, (2.4)

∂tρ+∇ · (ρu) = 0, (2.5)

u stands for the velocity, ρ the density, p the pressure, and Φself for the potential terms cre-
ated by the central body itself (gravitational and centrifugal), whereas Φt is the perturbing
tidal potential.

We assume u0 to be a stationary solution of the above equations for suitable density
profiles and potentials ρ0 and Φ0:

(u0 · ∇)u0 + 2Ωp × u0 = − 1
ρ0
∇p0 +∇Φ0 +∇Φt, (2.6)

∇ · (ρ0u0) = 0. (2.7)

In order to end with a tractable problem, we have to choose a density profile such that the
eigenmode calculation below leads to a separable equation. This is achieved by setting

ρ0 = ρ̃0

(
1−

(
x

a

)2
−
(
y

b

)2
−
(
z

c

)2
)β

, (2.8)

for arbitrary prefactors ρ̃0 and exponents β (Wu, 2005a).

The question arises which β one should use for the calculations. We must first determine
which polytropic index Np in the polytropic relation

p(r) = Kρ1+1/Np(r) (2.9)

is appropriate for the central body. In this work Np = 3, Np = 3/2, and Np = 0
are chosen for the calculations. Np = 3 is suitable for stars which are well modeled
by a relativistic completely degenerate electron gas, like relativistic white dwarfs. The
same polytropic index also describes main sequence stars with M & M�, (Kippenhahn
and Weigert, 1990). Np = 3/2 is appropriate for objects which are well modeled by a
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non relativistic completely degenerate electron gas, like non-relativistic white dwarfs and
brown dwarfs. And Np = 3/2 is also relevant for main sequence stars with a mass below
M ∼ 0.4M�, these are fully convective stars (Kippenhahn and Weigert, 1990; Chabrier
et al., 2009). For planets, the range of Np is 0 ≤ Np . 1.5, depending on how massive they
are (Horedt, 2004). In the polytropic case ρ(r) can be obtained by solving the Lane-Emden
equation. This equation can be derived through the usage of Eq. (2.9), the equation for
hydrostatic equilibrium and the Poisson equation (Kippenhahn and Weigert, 1990). The
appropriate β were determined by simply fitting the power law Eq. (2.8) to the ρ(r) for
the polytropic profiles with Np = 3, Np = 3/2, and Np = 0. The values for ρ(r) in the
polytropic case are taken from Horedt (1986).

It is easily verified that ∇ · (ρ0u0) = 0 and ∇ × {(u0 · ∇)u0 + 2Ωp × u0} = 0. The curl
of the gradient terms in Eq. (2.6) is trivially zero. Therefore, after taking the curl of Eq.
(2.6) only the term ∇× { 1

ρ0
∇p0} = 1

ρ2
0
∇ρ0 ×∇p0 is left. This term is zero if the interior

of the central object is in hydrostatic equilibrium, because then

0 = −∇p0 − ρ0∇(Φ0 + Φt). (2.10)

Therefore ∇p0 must be aligned with ∇(Φ0 + Φt). Taking the curl of Eq. (2.10) and using
∇×∇ = 0 yields 0 = ∇× ρ0∇(Φ0 + Φt) = ∇ρ0 ×∇(Φ0 + Φt), hence ρ0 must be aligned
with p0. u0 and ρ0 as given above are therefore solutions of the Euler equation for some
perturbing potential, albeit not necessarily for the perturbing potential of a point mass at
a finite distance. ρ0 can be viewed as an approximation to the real density profile, or as
the exact profile for a perturbing potential which approximates a real tidal potential.

After introducing quantities which are decomposed into a value for the basic state, in-
dicated by an index zero and a perturbation, which is considered to be small, the linear
stability of the ground state can be investigated. The quantities are ρ = ρ0+ρ′, u = u0+u′,
p = p0 + p′ and Φself = Φ0 + Φ′. Henceforth we omit the primes at the perturbation quan-
tities, because only the perturbation and the background variables (denoted by the zero
subscript) appear. The linearized equations are:

∂tu + (u0 · ∇)u + (u · ∇)u0 + 2Ωp × u = − 1
ρ0
∇p+ ρ

ρ2
0
∇p0 +∇Φ, (2.11)

∂tρ+∇ · (ρu0 + ρ0u) = 0. (2.12)

We restrict ourselves to the consideration of only convective unstable objects, as Wu
(2005a). In the paper by Cébron et al. (2010b) it was shown that even in flows with a
stable stratified region and a convective region the instability can grow over the whole
fluid, this is interesting for stars with a convective region on top of a radiative region,
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as in our sun, or vice versa. Due to the restriction on convective unstable objects the
Brunt-Väisälä frequency is zero and therefore

∇ρ0 = ρ0
ιp0
∇p0, (2.13)

with the adiabatic index ι, which is given by ι = ∂ ln p0/∂ ln ρ0|s and is related to the
speed of sound by ι = c2

sρ/p. Furthermore, we assume that the perturbation is adiabatic,

δp

p0
= ι

δρ

ρ0
. (2.14)

Lagrangian and Eulerian perturbation are related by

δZ = Z + ξ · ∇(Z0 + Z), (2.15)

with the displacement vector ξ and Z the Eulerian perturbation, together with Eqs. (2.13)
and (2.14) it gives:

p/p0 = ιρ/ρ0. (2.16)

The right hand side of the equation for conservation of momentum Eq. (2.11) then sim-
plifies according to ∇( pρ0

) = − ρ
ρ2

0
∇p0 + 1

ρ0
∇p.

The continuity equation can be simplified by using the anelastic approximation, which we
will adopt from here on. This approximation is applicable as long as the rotation rate of
the central object is much slower than the characteristic frequency Ω∗ =

√
Gmce/R3

ce of
the central object, with G the gravitational constant and mce and Rce, mass and radius
of the central object, respectively. More about the validity of the anelastic approximation
for inertial modes excited by tides can be found e.g. in Ivanov and Papaloizou (2010).

The equation for conservation of momentum for the now simplified linear stability problem
reads

∂tu + (u0 · ∇)u + (u · ∇)u0 + 2Ωp × u = ∇ψ (2.17)

and with use of the anelastic approximation the continuity equation reads

∇ · (ρ0u) = 0, (2.18)

with ψ = p
ρ0

+Φ. This equations will be solved subject to the boundary condition n̂ ·u = 0
on the ellipsoidal surface (2.2). This boundary conditions enforces that the pressure per-
turbation at the surface has to be zero, as will be shown later. A zero pressure perturbation
is expected at the surface of a planetary or stellar atmosphere, because there is vacuum
outside the surface.
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We now follow a procedure similar to that used by Gledzer and Ponomarev (1992) to
determine the growth rates of the elliptical instability. The dimensions are removed by
rescaling the Cartesian coordinates with their respective semi-major axis and the time
with ΩF,

x∗ = x

a
, y∗ = y

b
, z∗ = z

c
, u∗ = u

ΩFa
, v∗ = v

ΩFb
,

w∗ = w

ΩFc
, t∗ = ΩFt, R =

√
a2 + b2

2 , ψ∗ = ψ

Ω2
FR

2 ,

ρ∗ = ρ

ρ̃0
,

(2.19)

where u, v and w are the x, y and z components of u, respectively. In the following we use
the simplification c = R =

√
(a2 + b2)/2. Below it becomes plausible that a change of c

will not cause substantial changes. In the following the stars above the rescaled quantities
will be omitted, Eq. (2.17) then becomes

∂u

∂t
+ x

∂u

∂y
− y∂u

∂x
− v − 2vΩ b

a
= − 1

1 + ε

∂ψ

∂x
,

∂v

∂t
+ x

∂v

∂y
− y ∂v

∂x
+ u+ 2uΩa

b
= − 1

1− ε
∂ψ

∂y
,

∂w

∂t
+ x

∂w

∂y
− y∂w

∂x
= −∂ψ

∂z
,

(2.20)

∇ · (ρ0u) = 0, (2.21)

with ε the ellipticity of the boundaries in the x, y-plane ε = (a2 − b2)/(a2 + b2) and
Ω = Ωp/ΩF. And the density profile Eq. (2.8) becomes

ρ0 = (1− x2 − y2 − z2)β. (2.22)

In this nondimensionalized variables initial elliptical streamlines correspond to circular
streamlines.

The next step is a switch from Cartesian coordinates to cylindrical coordinates (s, z, ϕ).
In cylindrical coordinates, the above system of equations is written as

M
(
∂u
∂t

+ Hu
)

+ 2Ω(1− ε2)1/2Λu = −∇ψ, ∇ · (ρ0u) = 0, (2.23)

with
M = I + εT, H = I ∂

∂ϕ
+ 2Λ,

T =


cos(2ϕ) − sin(2ϕ) 0
− sin(2ϕ) − cos(2ϕ) 0

0 0 0

 , Λ =


0 −1 0
1 0 0
0 0 0

 ,
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where I is the identity matrix. If the calculations were not restricted to a certain ellipsoidal
shape, with c = R, additional terms would appear in the equation M = I + εT (Seyed-
Mahmoud et al., 2000). We use the ansatz

u =
∑
j

Cjuje
ift,

ψ =
∑
j

Cjψje
ift,

(2.24)

for the solution of Eq. (2.23), where the uj are solutions of the unperturbed eigenvalue
problem (ε = 0)

Huj +∇ψj + 2ΛujΩ = −iωjuj, ∇ · (ρ0uj) = 0,

n̂ · uj = 0 on the unit sphere.
(2.25)

This solution method is called Galerkin method. Eq. (2.25) is the equation for inertial
modes in a sphere. j is a proxy for the indices (nj ,mj , kj) which characterize an inertial
mode in a sphere (Greenspan, 1968). If necessary the variables n, m, and k will be indexed
to distinguish different modes, otherwise they appear without an index. n is the spatial
degree (on the surface of the sphere, the pressure distribution is given by the spherical
harmonic Y k

n ), k the azimuthal wavenumber, and m a number which has a finite range,
as a third number one can also use the frequency of the mode ω instead of m. For the
incompressible case it is possible to obtain an analytical solution of the equations (Zhang
et al., 2001). Within the anelastic approximation and the restriction on density profiles of
the form

ρ0 = (1− s2 − z2)β (2.26)

the equations are separable.

We now show that vacuum outside the surface entails that the pressure perturbation at
the surface has to be zero, as in Wu (2005a). We use spherical coordinates (r, θ, ϕ) in this
abstract. In these spherical coordinates the above density profile becomes ρ0 = (1− r2)β.
Furthermore we use the continuity equation in the form

∇ · (ρξ) = ∇ · ξ − er · ξ
H

= 0, (2.27)

with the density scale height H ≡ −dr/d ln ρ = c2
s/g with g the local gravitational acceler-

ation. The zero pressure perturbations condition written in the convenient form δp/ρ0 = 0
(Unno et al., 1989) gives

δp/ρ0 = ι
δρ

ρ0

p0
ρ0

= −ι(∇ · ξ)p0
ρ0

= −gξr, (2.28)
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because ur = iωξr this relates to n̂ · u = 0 at the surface.

Repeating the steps of Wu (2005a) (see Appendix A), one arrives at an eigenvalue problem
for ψ which is written as a product in the form ψ(x̄1, x̄2, ϕ̄, t) = ψ1(x̄1)ψ2(x̄2)J(ϕ̄, t).
(x̄1, x̄2, ϕ̄) are the ellipsoidal coordinates used in Wu (2005a) and introduced by Bryan
(1889). It is ϕ̄ = ϕ+ t. In this chapter an overline about a coordinates indicates that this
coordinate is chosen with respect to a reference frame rotating with ΩF+Ωp. Furthermore,
one must be careful to distinguish the index which characterizes the different inertial modes
from the index used in Eqs. (2.29) and (2.30) which stands for the two coordinates x̄1 and
x̄2. In this paragraph we omit the index which characterizes the different inertial modes.
The range of the three coordinates is x̄1 ∈ [ζ, 1], x̄2 ∈ [−ζ, ζ], with ζ = −(ω+k)/(2(1+Ω))
and ϕ̄ is the azimuthal angle such that ϕ̄ ∈ [0, 2π]. −ζ is half the frequency of the
inertial mode with respect to the frame rotating with Ωp +ΩF and ω is the frequency with
respect to the frame rotating with Ωp. All variables X (pressure and velocity components)
depend on time t and on the azimuthal angle ϕ, respectively ϕ̄, through the relation
X ∝ J(ϕ̄, t) = exp[i(kϕ̄ − 2ζ(Ω + 1)t] = exp[i(kϕ + ωt]. We adopt the convention that
ζ ≥ 0 with k > 0 representing a prograde mode and k < 0 a retrograde mode. Modes
with denotation (k, ζ) and (−k,−ζ) are physically the same modes so that one can restrict
either ζ or k to positive numbers and avoid redundancy. It is numerically more accurate
to solve for the gi defined by gi = ψi/[(1 − x̄2

i )|k|/2(ω + k)2], i = 1, 2. The eigenvalue
problem for the eigenvalue le and the eigenfrequency ζ reads

(1− x̄2
i )

d2gi
dx̄2

i

− 2x̄i(|k|+ 1) dgi
dx̄i

+ 2βx̄i(1− x̄2
i )

x̄2
i − ζ2

dgi
dx̄i

+
[
o2 − 2β|k|x̄2

i

x̄2
i − ζ2 + 2βkζ

x̄2
i − ζ2

]
gi = 0,

(2.29)

with the boundary conditions

dg1
dx̄1

∣∣∣∣
x̄1=1

= o2 + 2β[(kζ − |k|)/(1− ζ2)]
2(|k|+ 1) g1|x̄1=1,

dg1
dx̄1

∣∣∣∣
x̄1=ζ

= −(k − |k|ζ)
1− ζ2 g1|x̄1=ζ ,

dg2
dx̄2

∣∣∣∣
|x̄2|=ζ

= −sgn(x̄2)(k − |k|ζ)
1− ζ2 g2||x̄2|=ζ ,

(2.30)

and o2 = le(le+1)−|k|(|k|+1). In general, both ζ and le have to be determined numerically,
but for β = 0, le is simply given by le = n.
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For the following calculation the scalarproduct is defined as

(uj,ui) =
∫
V

ujui
∗ρ0rdrdϕdz. (2.31)

The eigenvalues calculated in the anelastic approximation are orthogonal with this scalar
product. The proof follows the proceeding in Greenspan (1968), see Appendix B.

We substitute (2.24) in (2.23) and multiply this equation by ρ0uj. This yields the system

(f − ωj)CjN2
j + ε(f + kj)

∑
i

Vj,iCi = 0,

N2
j = (uj,uj), Vi,j = (Tuj,ui).

(2.32)

We assume the uj to be normalized such that N2
j = 1. For incompressible fluids it

was proven analytically that Vi,j 6= 0 only for ni = nj and ki = kj ± 2 by Kerswell
(1993). That the latter condition also holds in the compressible case is easy to see, because
the dependence of the variables on the azimuthal angle is given by exp(ikϕ). The first
condition is less obvious. It was proven analytically by Kerswell (1993) for incompressible
fluids. This proof can not simply be adapted to the compressible case because no analytical
expressions exist for the modes in this case. Therefore we calculated the Vi,j numerically,
for all mode combinations with indices up to n = 20 and |k| = 10. In all cases, the results
appeared to converge to zero as the spatial resolution used in the integration was improved.
Due to the foregoing it can be deduced that the elliptical instability is the result of the
interaction of modes with azimuthal wavenumber k and k + 2 and the spatial degree n of
the interacting modes must be the same. For ε� 1 instability is possible only for modes
with frequencies close to each other. With ωi and ωj such that ωi ≈ ωj , and ki = kj + 2
or ki = kj − 2 at first order of perturbation theory Eq. (2.32) may be reduced to

(f − ωi)CiN2
i + ε(f + ki)Vi,jCj = 0,

ε(f + kj)Vj,iCi + (f − ωj)CjN2
j = 0,

(2.33)

this leads to the quadratic equation

(1−W 2)f2 − [ωi + ωj +W 2(ki + kj)]f + (ωiωj −W 2kjki) = 0,

W 2 = ε2
Vi,jVj,i
N2
i N

2
j

.
(2.34)
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The result is a growth rate σinv and frequency ωe (f = ωe + iσinv)

σ2
inv = −(W 2(ki − kj) + ∆ω)2 + 4W 2(ωi + ki)(ωj + kj)

4(1−W 2)2 , (2.35)

ωe = ωi + ωj +W 2(ki + kj)
2(1−W 2) , (2.36)

with ∆ω = ωi − ωj . Eqs. (2.35) and (2.36) are the same as Eq. (3.5) of Gledzer and
Ponomarev (1992). It follows from this equation that instability is possible only if |∆ω| ≤
O(ε). Modes in resonance will be written as (k, k + 2) and the spatial degree n will
be stated separately. To consider viscosity in the calculations a damping rate is added
to σinv. The damping rate depends on the applied boundary condition. For free slip
boundary conditions the approximation is

σfs = σinv − h1 n(n+ 1)Ek (2.37)

and for no slip boundary conditions

σns = σinv − h2|1 + Ω|
√
Ek − h1 n(n+ 1)Ek. (2.38)

h1 and h2 are constants of order 1 which in this study are always chosen as h1 = h2 = 1
and Ek is the Ekman number. This is a heuristic approach. The term ∝ Ek, which
appears in both equations corresponds to dissipation in the bulk. n(n + 1) appears in
this term, because the velocity field of an inertial mode contains on the surface only the
spherical harmonic Y k

n . Assuming this is a reasonable approximation to the inertial mode
at any radius r, and using

∇2Y k
n (Θ, ϕ) = −(n+ 1)n

r2 Y k
n , (2.39)

one justifies the formula for σfs (Lorenzani, 2001). The term ∝
√
Ek which appears only

in the equation with no slip boundary conditions is due to friction inside Ekman layers
at the boundaries. This term is usually computed in the frame of reference in which
the boundaries are at rest and expressed in multiples of the rotation rate of that frame,
yielding decay rates of inertial modes of the form h2

√
Ek. Transformed to the frame of

reference and the unit of time used in Eq. (2.19), the decay rate is g1|1 + Ω|
√
Ek with

Ek = ν/(|ΩF + ΩP |R2) and ν the viscosity.
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Figure 2.1.: The elliptic orbit is the reason for the libration of the central object (big sphere) on its
orbit around the tidal perturber (small sphere). The orbit is synchronized but not circularized.
One face of the central object is always pointing at the empty focus of the ellipse, while the tidal
bulge (which is not plotted here) always points to the tidal pertuber (the occupied focus) (Murray
and Dermott, 1999). Therefore the red parts of the central objects can be seen from the tidal per-
turber, caused by the libration. On a circular orbit only the green parts would be visible from the
tidal perturber (see figure in zum.de/Faecher/Materialien/gebhardt/astronomie/libration.html).

2.1.2. Librational driven elliptical instability

We consider now the case that the objects spin is already synchronized but its orbit is
not circularized. As already written in the introduction to this chapter the librational
driven elliptical instability appears in fluid central objects which are not circularized on
their orbit around their tidal perturber. That means the orbit is eccentric, and for an
eccentric orbit the central objects orbital angular velocity equals its rotational angular
velocity only on average, as illustrated in Fig. 2.1. The proceeding here is similar to
that in Kerswell and Malkus (1998). We take the x-y plane as the orbital plane. Time is
nondimensionalized such that the basic spin of the central object has an angular velocity
of ẑ. The tidal bulge has then angular velocity Ωb(t)ẑ, with

Ωb(t) = 1−$l

∞∑
cl=1

acl cos clt, (2.40)

since Ωb(t) is 2π periodic. In the following we assume that |$l| � 1 . In the frame of the
tidal bulge the background flow of the fluid is elliptical

u0 = (1− Ωb(t))(−(1 + ε)yx̂ + (1− ε)xŷ). (2.41)
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We consider the Euler equation and determine the stability of the flow,

∂u
∂t

+ 2Ωb(t)ẑ× u + dΩb
dt ẑ× r + u · ∇u +∇ψ = 0, (2.42)

∇ · (ρ0u) = 0, (2.43)

whereby the anelastic approximation is used and ψ has the same meaning as ψ in the
preceding section. The linear stability problem for the perturbation flow writes

∂tu + (u0 · ∇)u + (u · ∇)u0 + 2Ωb(t)ẑ× u = ∇ψ, (2.44)

∇ · (ρ0u) = 0. (2.45)

Multiplying (2.44) by ρ0u yields

d(ρ0u2/2)
dt + ρ0u · (u · ∇u0) = −ρ0u · ∇ψ. (2.46)

Integrating about the volume and dividing by < ρ0u2 >, where <>=
∫
dV , gives

σ(t) = 1
2

d
dt ln < 1

2ρ0u2 >= −< ρ0u · ∇u0 · u >

< ρ0u2 >
= ε(1− Ωb(t)) < 2ρ0uxuy >

< ρ0u2 >
. (2.47)

For the solution we make an ansatz consisting of a superposition of two inertial waves,
with each satisfying the equation for the undeformed not librating sphere ($l = 0 and
ε = 0). It is < 2ρ0uxiuyj >=Vi,j (see Eq. (2.32)), as one can easily see by transforming
from cartesian to cylindrical coordinates. Therefore, from Eq. (2.47) it can be deduced
that a resonance with qi−qj = ±cl (cl ∈ Z) , ki−kj = ±2 and ni = nj between two inertial
modes (with frequencies qi and qj) is necessary to obtain a non-vanishing mean growth
rate. In the following we consider the case cl = 1, because if hypothetically the central
objects orbital and spin angular momenta are constant, it is a1 = 2 and acl = O($l)
for cl > 1 (see e.g. Colwell 1992). This indicates that the cl = 1 resonance is of most
importance. For the not librational driven elliptical instability and perfect resonance it
needs to be ∆ω = 0, with ωi = (1 + Ω)qi−ki for all i. The frequencies qi and qj have then
to obey

qi − qj = ki − kj
1 + Ω . (2.48)

We consider now the case Ω = 1, then the resonance conditions for both kinds of elliptical
instabilities are the same. Correspondingly we can deduce the nondimensionalized growth
rate of the librational driven elliptic instability σ/(ε$l) equals the nondimensionalized
growth rate of the not librational driven elliptic instability σ/ε for the case Ω = 1, because
then the same modes interact with each other.
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Also for the librational induced elliptical instability imperfect resonances are possible.
Then a frequency detuning as in Cébron et al. (2014) has to be considered.

2.2. Numerical implementation

We used numerical methods to calculate the growth rates. We need the frequencies and
velocity fields for the modes to calculate the growth rates according to Eq. (2.35). First
the frequencies for the inertial modes with β = 0 were calculated by solving Eq. (29) from
Wu (2005a)

dP kn (x̄1)
dx̄1

∣∣∣∣
x̄1=ζ

= − k

1− ζ2P
k
n (x̄1)|x̄1=ζ (2.49)

by bisection. These eigenfrequencies together with the corresponding eigenvalues le, with
le = n for the incompressible case, are used as starting values for a shooting method to
solve Eq. (2.29). In Wu (2005a) it is written “the number of eigenmodes remains conserved
when β varies, with a close one-to-one correspondence between modes in different density
profiles”. Therefore we obtained the frequencies by incrementing β in steps of 0.1 and use
the eigenvalues of the foregoing β as an initial point for the shooting method. A Runge
Kutta Cash-Karp method of fifth order with an adaptive stepsize control was implemented
to integrate the ODE. Because the endpoints of the ODE for one variable are both singular
points, the method of shooting to a fitting point was used (Press et al., 1992). To calculate
the integrals for Eq. (2.35) only the modes which satisfy the resonance condition have to be
considered. A simple calculations shows that instability is only possible if |∆ω| < 4ε+ 2ε2

(Appendix C).

We solved the integrals Vi,j by Gaussian quadrature. This calculation can not be performed
in the ellipsoidal coordinate space (x̄1, x̄2, ϕ̄) because in these coordinates the limits of in-
tegration depend on the eigenfrequencies and in general the two wave functions have two
different eigenfrequencies. Therefore the integration was performed in (s̄, z̄, ϕ̄) space. The
overline indicates that these coordinates are chosen with respect to a reference frame ro-
tating with ΩF + Ωp. We obtained the scalars ψ1 and ψ2 at several points x̄1 and x̄2 by
the numerical integration of the ODE (2.29). The final integrations were performed using
Gaussian quadrature with Gauss-Legendre abscissas and weights with a resolution of 50
points in both s̄ and z̄ directions. The integration in ϕ̄ direction can be performed analyt-
ically. We know x̄1(s̄, z̄) and x̄2(s̄, z̄) and obtain ψ1(x̄1(s̄, z̄), x̄2(s̄, z̄))ψ2(x̄1(s̄, z̄), x̄2(s̄, z̄)).
The scalars ψ1 and ψ2 were obtained at some points x̄1 and x̄2 which in general do not
coincide with the points we need for the gaussian quadrature. Therfore we need the scalars
ψ1, ψ2 at arbitrary points x̄1, x̄2. This was accomplished by a cubic-spline interpolation.
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Figure 2.2.: Frequencies of inertial modes in the co-rotating frame, q, for β = 0 (cross) and β = 18
(circle) as a function of the spatial degree n. Only the modes with k = −1 (green) and k = 1
(blue) are shown. Credit: Clausen & Tilgner, A&A, 562, A25, 2014, reproduced with permission
©ESO.

2.3. Results

First we consider inviscid flows and include viscous effects at the end of this section. In
Fig. 2.2 the dispersion relation for k = −1 and k = 1 for incompressible fluids and for
β = 18 is shown. There is a noteworthy distinction between the cases kq > 0 and kq < 0
in that the modes with the frequency q with the smallest absolute value at any given
n always occurs for kq < 0. These low frequency modes will be important later. The
mode frequencies change continuously with β so that individual modes can be tracked as
a function of β. It depends on β if a chosen triad leads to instability or not, this can be
seen in Fig. 2.3(a) and Fig. 2.4(a). The structure of the mode as well as the frequency
are changed if β is changed, and hence also the integrals in Vi,j and ∆ω in Eq. (2.35).
The impact of the detuning can be seen if one additionally considers Fig. 2.3(b) and Fig.
2.4(b). The fact that positive growth rates are only possible for |∆ω| ≤ O(ε) is displayed
here. An exception is the mode with |k| = 1 and n = 2 because it corresponds to the
purely toroidal motion in the spin-over mode. Toroidal modes have no radial velocity
component; therefore, with a radially dependent background density profile ρ0, as in this
study, ρ0 drops from the continuity equation ∇ · (ρ0u) = 0. As a consequence eigenvalue
problem and stability problem are independent of ρ0, and therefore β. This fact can be
seen in Fig. 2.3 and Fig. 2.4 for the triad with (−1, 1) and n = 2. But this triad is the
only one where the modes are in perfect resonance with ∆ω = 0.

The tidal flow is unstable if any two inertial modes form a triad with positive growth rate.
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Figure 2.3.: Growth rates of modes (-1,1) for various n as a function of the compressibility pa-
rameter β for ε = 0.04, Ωp = 0, and Ek = 0 (a). The corresponding ∆ω (b). Credit: Clausen
& Tilgner, A&A, 562, A25, 2014, reproduced with permission ©ESO.
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Figure 2.4.: Same as Fig. 2.3 but for ε = 0.16. Credit: Clausen & Tilgner, A&A, 562, A25, 2014,
reproduced with permission ©ESO.
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Figure 2.5.: Maximum growth rates as a function of Ω for Ek=0. For this figure we take into
account all modes with |k| ≤ 10 and n ≤ 40. The black line in this figure is the growth
rate given by Eq. (2.50). Credit: Clausen & Tilgner, A&A, 562, A25, 2014, reproduced with
permission ©ESO.

The main concern is if the flow as whole is stable or not. Therefore one has to consider
not the growth rate of single modes, but since there exist an infinite number of modes, a
restriction has to be made. Figures 2.5(a) and 2.5(b) is the result of a scan through all
possible triads out of modes with |k| ≤ 10 and n ≤ 40. In this figures the maximum growth
rate of this scan for a certain ε as a function of Ω for different β is shown. Resonances
are impossible in the interval −3/2 < Ω < −1/2 (Craik, 1989), therefore we choose a part
of the complementary interval by way of example. The various curves appear to have a
common envelope σud given by (Miyazaki et al., 1995)

σud = (3 + 2Ω)2

16(1 + Ω)2 ε. (2.50)

Miyazaki et al. (1995) calculated this inviscid growth rate for an incompressible, infinitely
extended fluid. Also this curve is plotted in Fig. 2.5 (the black line). There are deviations
between Eq. (2.50) and the computed maximum growth rates. But it seems that they
get smaller if a bigger ε is chosen. This makes sense because at a certain ε only the
modes with |∆ω| ≤ O(ε), required by Eq. (2.35), are potential candidates for a resonance,
the smaller ε the less modes fulfill this criterion. Therefore for a smaller ε more modes
are needed to minimize the deviations between Eq. (2.50) and the computed maximum
growth rate, because as can be seen in Fig. 2.2 with higher spatial wavenumber n the
frequencies get denser. It is plausible to assume that the deviations will entirely disappear
if all inertial modes are taken into consideration. From the foregoing it can be deduced
that β determines which modes are unstable but the stability limit does not depend on β,
at least in the inviscid case.
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Figure 2.6.: The corresponding values of the spatial degree n = ni = nj for the growth rates in
Fig. 2.5.

In the following it will be determined how the necessary number of modes for an unstable
flow changes, if one changes ε, assuming that the frequencies are statistically uniformly
distributed. The number of modes depend on the spatial degree n and therefore also a
relation between the minimum n to obtain an unstable flow and ε will be derived. A
resonance can only occur if two modes i and j have frequencies such that ωi − ωj < O(ε).
With ωi = (1 + Ω)qi − ki for all i, the frequencies qi and qj have to obey

qi − qj = ki − kj
1 + Ω + 1

1 + ΩO(ε). (2.51)

That means for a mode with frequency qj a resonance to form an unstable triad is only
possible if there is another mode with a frequency in an interval of size O(ε)/(1 + Ω)
centered around qj + (ki − kj)/(1 + Ω). We consider first the case of small Ω, then
qi − qj ≈ ki − kj +O(ε). If the frequencies are statistically uniformly distributed over the
interval, and the matrix elements in Eq. (2.35) do not systematically vary with frequency
then one will find on average one resonance with positive growth rate among a number
N of modes proportional to 1/ε. Only a finite number of modes exist with an n smaller
than some limit L: For every n and k, there are n− |k| modes if k 6= 0 and n− 1 modes
if k = 0. For every n, the index k has to obey |k| ≤ n so that there are n2 − 1 modes of
spatial degree n and N(L) modes exist with n ≤ L, with N(L) given by:

N(L) =
L∑
n=1

(n2 − 1) = 1
6L(L+ 1)(2L+ 1)− L. (2.52)

For large L, one has N ∝ L3, and in order for these modes to contain a resonance, one
needs L ∝ ε−1/3, independently of Ω or β. Figure 2.7 verifies this scaling. This figure
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has been obtained as follows: At fixed ε, 20 equidistant points have been chosen in the
interval of Ω ranging from −0.45 to 0.5. The triad with the mode with the smallest n for
which the growth rate is at least 0.1σud and 0.8σud was determined for every point. This
minimal n, averaged over all points, is < n > and is shown in Fig. 2.7 as a function of ε.
The average < n > is a measure of the minimum n that is typically necessary to obtain a
resonance with a given ε. This averaging procedure is necessary, because as it can be seen
exemplarily for the viscous case in Fig. 2.11 the n value of the modes which form a triad
is scattered about a certain range of values. Because of the viscosity this range is limited.
In Fig. 2.6 the n values for the inviscid case are shown.
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Figure 2.7.: Mean value of the spatial degree < n >, for the modes with a growth rate of at least
0.1σud (dashed lines) or 0.8σud (solid lines) as a function of ε for β = 0 (green x), β = 2.8 (red
circles), and β = 18 (blue squares), together with fits according to Eq.2.52. Credit: Clausen &
Tilgner, A&A, 562, A25, 2014, reproduced with permission ©ESO.

Now we will consider the case of large Ω. Positive growth rates are only possible for
qiqj < 0, as can be seen in Eq. (2.35). Additionally for Ω tending to infinity qi − qj tends
to zero, this two conditions imply that qi and qj both have to go to zero as 1/|Ω| for large
|Ω|. A large enough n is necessary to find an absolute value below a certain border, as
can be seen in Fig. 2.2. Therefore a minimal spatial degree nmin is necessary to find a
resonance at a given Ω. Furthermore the second mode frequency needs to lie in an interval
of size O(ε)/(1 + Ω) for a positive growth rate. This additional condition is possibly met
only for n larger than nmin.
For the determination of nmin we need a relationship between the smallest frequency and
the spatial degree of the mode. As already stated the frequencies of inertial modes in a
uniform density sphere can be calculated according to Eq. (29) from Wu (2005a), see Eq.
(2.49).
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Figure 2.8.: Minimum value of n, nmin, as a function of Ω for various ε and positive Ω. β = 2.8
and β = 18 (a) and β = 0 (b). Credit: Clausen & Tilgner, A&A, 562, A25, 2014, reproduced
with permission ©ESO.
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Figure 2.9.: Same as in Fig. 2.8 but for negative Ω. Credit: Clausen & Tilgner, A&A, 562, A25,
2014, reproduced with permission ©ESO.
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For large n the asymptotic expansion (Abramowitz and Stegun, 1972)

P kn (cos θ) = Γ(n+ k + 1)
Γ(n+ 3/2)

(1
2π sin(θ)

)−1/2

× cos
[(
n+ 1

2

)
θ − π

4 + kπ

2

]
+O(n−1)

(2.53)

holds. We set ζ = cos(θ) and θ = π/2 + εw with εw small for ζ small. A short calculation
shows that for small ζ and large n, Eq. (2.49) is equivalent to

−k cos
[(
n+ 1

2

)
εw + (n+ k)π

2

]
=
(
n+ 1

2

)
sin
[(
n+ 1

2

)
εw + (n+ k)π

2

]
.

(2.54)

For n+ k even this gives

εw ≈
−k(

n+ 1
2

)2 for
(
n+ 1

2

)
εw → 0, (2.55a)

εw ≈ ±
haπ

n+ 1
2

for
(
n+ 1

2

)
εw → ±haπ, (2.55b)

and for n+ k odd

εw ≈ ±
haπ

2
(
n+ 1

2

) for
(
n+ 1

2

)
εw → ±

haπ

2 , (2.56)

where ha is an integer. For large n and small k the ζ with the smallest absolute value
tends towards zero as k/(n+1/2)2. We can classify these modes as “slow modes”, because
if the frequency of modes on any other branch of the dispersion relation in Fig. 2.2 tends
to zero, it does so only in 1/(n+ 1/2). The growing resonance is either between two slow
modes, or at least one of the two inertial modes involved is not a slow mode. In the latter
case, nmin ∝ |Ω|, whereas in the former case, nmin ∝

√
|Ω|. However, since |k1 − k2| = 2,

and choosing the indices such that k2 > k1, a resonance between slow modes can only
occur if k1 = −1 and k2 = 1, and from Eq. (2.51) it can be deduce that Ω must be
negative. In summary, the expectation is nmin ∝ Ω for positive Ω, and for negative Ω, too,
except when modes with frequencies of approximately k/(n+1/2)2 can resonate with each
other. This scaling for positive Ω can be found in Fig. 2.8. Additionally from this figure
a prefactor d1 can be obtained with nmin = d1Ω, this prefactor depends on β. From the
figure it can be deduced d1 = 3, 5 and 10 for β = 0, 2.8 and 18, respectively. The reason
why some points lie above the line nmin = d1Ω is the additionally condition that they
must find a mode to resonate with in the interval O(ε)/(1 + Ω). For negative Ω (Fig. 2.9)
points below nmin = d1Ω can be found which correspond to resonances between two slow
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modes. These always involve the azimuthal wavenumbers k1 = −1 and k2 = 1. In most
applications Ω > 0, therefore nmin is used in the estimation of dissipation effects below.

In the remaining part of this section we will examine viscous effects. Dissipation is taken
into account according to Eqs. (2.37) and (2.38). At the Ek and n under consideration,
the first term corresponding to friction at the boundaries dominates in the equation for no
slip boundary conditions, Eq. (2.38). Therefore the maximum growth rate in Fig. 2.10(b)
is roughly given by σud−h2|1+Ω|

√
Ek. Instability is expected if σud−h2|1+Ω|

√
Ek > 0,

independently of β. Values of h1 depend on the inertial mode and can vary by an order
of magnitude, but much bigger is in practice the uncertainty in Ek, therefore it is not
necessary to determine the prefactor h1 more accurately.

For free slip boundary conditions according to Eq. (2.37) only bulk dissipation matters.
In this case dissipation always depends significantly on the spatial degree n. For the free
slip case bigger Ek are possible in general because there is no term ∝

√
Ek. Only for

very large Ω or very small ε, depending on Ek, a high n is necessary such that then the
deviation between the growth rates for free slip and no slip boundary conditions becomes
negligible.

For free slip boundary conditions the stability limit depends on the structure of the un-
stable mode and hence on β and Ω. As an estimate for the growth rate in this case we
take the inviscid growth rate reduced by the decay rate of modes with a typical n value.
We take < n > as a typical value for small |Ω| and nmin for large |Ω|. A formula which
interpolates between these two limits is n = d1|Ω| + d2ε

−1/3. For the parameters of Fig.
2.10, only the term d2ε

−1/3 is important and one arrives at

σfs = σud − d2
2ε
−2/3Ek, (2.57)

which is again independent of β. From Fig. 2.10(a), we deduce that d2 is roughly 3.35.

2.3.1. Examples: Io’s tides on Jupiter, the binary system V636 Centauri and the Earth

How the results of the previous section can be used to determine if in a given planet or star
the elliptical instability appears, is content of this section. It will be shown with help of
three examples. The 0.85M� secondary is considered as the perturbing object within the
binary system V636 Centauri, the Moon as the perturbing object for the Earth, and the
tides on Jupiter raised by Io. The first problem we encounter is which boundary conditions
are suitable. For the Earth’s core it is clear that no-slip boundary conditions apply. In
the two remaining examples we use free-slip conditions. According to a study by Tassoul
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Figure 2.10.: Maximum growth rates as a function of Ω for Ek 6= 0. For this figure we take into
account all modes with a maximum |k| ≤ 10 and n ≤ 40. In (a) calculated for free slip boundary
conditions according to Eq. (2.37). In (b) calculated for no slip boundary conditions according
to Eq. (2.38). The black line in this figure is the growth rate given by Eq. (2.50). The cyan
colored line in (a) is the growth rate given by Eq. (2.57) with d2 = 3.35. Credit: Clausen &
Tilgner, A&A, 562, A25, 2014, reproduced with permission ©ESO.
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Figure 2.11.: The corresponding values of the spatial degree n = ni = nj for the growth rates in
Fig. 2.10.
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and Tassoul (1997) (see also Tassoul 1987, 1995) also with free slip boundary conditions
a dissipation due to Ekman pumping proportional to Ek1/2 can appear, while Rieutord
(1992) (see also Rieutord and Zahn 1997; Rieutord 2008) argues that the dissipation due
to Ekman pumping scales always as Ek for free slip boundary conditions. If Tassouls
stronger dissipation scaling applies also for the free slip case a damping rate according to
Eq. (2.38) would be appropriate. But Tassouls derivation only applies if a linearization
is tractable, this is not the case for our two examples (according to the condition in Eq.
(19) of Tassoul and Tassoul 1997). The case Jupiter Io was treated in Tassoul and Tassoul
(1997). There it is argued why their scaling not applies for Jupiter Io and in a analogous
way it can be derived why it not applies for V636 Centauri. Although V636 Centauri
is a binary star system with about equal components and therefore is a candidate for a
stronger dissipation scaling according to Tassouls mechanism.

More problematic is how to deal with additional fluid motion, such as turbulent convec-
tion. According to at least one well established turbulence model, the Langranian-averaged
Navier Stokes α (LANS-α) turbulence model, the growth rate of the elliptical instability is
enhanced for wavelengths of the inertial wave that are longer than the turbulence correla-
tion length and suppressed for shorter wavelengths (Fabijonas and Holm, 2003). Whereby
it can be suppressed such that a without turbulent motion instable flow gets stabilized.
They considered the inviscid case, also the turbulent viscosity was set to zero. The maxi-
mal value of the growth rate with turbulent motion is σinv = ε.

Furthermore, in stellar and planetary objects in the region where turbulent convection
takes place one has to consider a turbulent viscosity, due to the turbulent motion. This
is generally much higher than the molecular viscosity. If the tidal period is shorter than
the turn over time of turbulent eddies, the turbulent viscosity is attenuated. Several
authors (Wu (2005b) and in a similar form Ogilvie and Lin (2007)) have used the following
expression for the turbulent viscosity νt;NR:

νt,NR ∼ vcvlcv
1

1 + (ωtideτcv/(2π))se
(2.58)

where vcv, lcv and τcv = lcv/vcv are the characteristic convection velocity, mixing length
and turnover time and ωtide = 2|ΩF| is the frequency of the tidal forcing. se is a constant,
generally se = 1 or se = 2 is used. NR stands for non-rotating convection, because the
effects of rotation on the convection is not incorporated into the formula above. How we
will incorporate these effects is shown below.

We will use in this work se = 1 for Tf & τcv, with Tf = 2π/ωtide, and se = 2 for Tf � τcv,
as suggested by Penev et al. (2009). The reasons for this will now be explained, according
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to the work of Penev et al. (2009) and Goldreich and Nicholson (1977). We consider first
the case Tf & τcv, Komlogorov scaling is then not expected to apply, because turnover
times on the order of Tf correspond then to eddies with sizes comparable or larger than
the pressure scale height or density scale height. If Tf & τcv a limit to νt is obtained
by setting se = 1, this scaling was found in this regime by Penev et al. (2009) through
numerical calculations. For Tf � τcv Kolmogorov scaling applies, a limit to νt is obtained
by replacing lcv by vcvTf , the distance over which the turbulent fluid can move in one
tidal cycle, this would correspond to se = 1, ignoring the summand 1 in the denominator.
But when Tf � τcv this is probably a gross overestimate of νt, because turbulent eddies
have lifetimes which are comparable to their turnover times and lifetimes τλ decrease with
decreasing eddy size λ. Therefore the contribution to νt by the largest eddies is likely to
be smaller than vcvlcv(Tf/τcv) by at least one additional factor of (Tf/τcv). Eddies with
τλ ≤ Tf contribute an amount νλ ≈ λvλ to the effective turbulent viscosity. Now assuming
Kolmogorov scaling applies the turnover time of an eddy of size λ is given by

τλ ≈ τcv

(
λ

lcv

) 2
3
. (2.59)

The typical velocity difference across such an eddy is

vλ ≈ vcv

(
λ

lcv

) 1
3
. (2.60)

Therefore it is
νλ = λvλ = lcvvcv

(
τλ
τcv

)2
. (2.61)

Among those eddies with τλ ≤ Tf those with τλ ≈ Tf have the most important contribution.
These give rise to a turbulent viscosity

νt ≈ lcvvcv

(
Tf
τcv

)2
. (2.62)

That se = 2 should be used at small tidal periods is in accordance with results from Ogilvie
and Lesur (2012).

The mixing length is estimated by lcv ≈ H, with H = − dr
d ln ρ = r−1−r

2β the density scale
height. Therefore an order of magnitude estimation gives lcv ∼ Rce

2β . The convective
velocity is approximated by vcv ≈ (F/ρ)1/3, with the energy flux F = L/(4πR2

ce) and Rce

the radius of the central body. An order of magnitude for vcv is therefore obtained by
using vcv ≈ (4πR3

ce F/(3mce))1/3, with mce the mass of the central body.

The effect of rotation on convection was until recently ignored in the calculation of the
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turbulent convection, but based on the work of Barker et al. (2014) in Mathis et al. (2014) it
is described how to incorporate these effects. Barker et al. (2014) used high resolution non
linear 3-D cartesian simulations of turbulent convection to confirm asymptotic scaling laws
which were proposed by Stevenson (1979) for the regimes of slow and rapid rotation. The
actual regime can be determined by the convective Rossby number defined as (Stevenson,
1979)

Roc =
(

vcv
lcv2Ωspin

)
= τspin

τcv
, (2.63)

with τspin = 1/(2Ωspin). Roc � 1 and Roc � 1 correspond to rapid and slow rotation
regimes, respectively. For Jupiter and the primary of V636 Centauri it is Roc � 1 (see
Table 2.1), so these objects lie in the regime of rapidly rotating convection. In this regime
it is νt;RC/νt;NR ≈ 3(Roc)4/5 (Mathis et al., 2014), with νt;RC the turbulent viscosity for
which the effects of rapid rotation on convection are taken into account.

Table 2.1 lists for the three examples the growth rate for an inviscid fluid, and the damping
rates computed for molecular and turbulent viscosities. In the no slip case the damping
rate χ is given by χ = (1 + Ω)

√
Ek according to Eq. (2.38). We neglect the volume

damping term in both cases because Ω and Ek are small enough. In the free slip case,
χ = d2

2ε
−2/3Ek according to Eq. (2.37). For d2 we choose 3.35, the value extracted from

Fig. 2.10(a). We neglect the terms which are relevant if Ω is large because Ω is small
enough in both cases. The ellipticity is calculated according to

ε = 1
2
mp
mce

(
Rce
asm

)3
, (2.64)

with mp the mass of the perturbing body and asm the distance between the central and
the perturbing body. The Ekman number is calculated according to

Ek = ν

ΩspinR2
E

, (2.65)

with Ωspin = ΩF + Ωp and RE = Rco the radius at the edge of the outer conducting
region in the case of the Earth and the Jupiter-Io system and RE = Rce in the case V636
Centauri.

Instability is expected if the inviscid growth rate exceeds the viscous damping in Table
2.1. Table 2.2 summarizes the results of different modeling assumptions. If one only takes
into account molecular viscosity the flow is unstable in Jupiter and the primary of V636
Centauri for all cases. In practice, the turbulence model decides on whether instability is
predicted or not. Unfortunately, we have no turbulence model we can safely rely upon.
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Constant Earth-Moon Jupiter-Io V636 Cen.
Rce(m) 6.37× 106 a 6.99× 107 a 7.08× 108 b

Rco(m) 3.47× 106 c 5.71× 107 c ...
mce(kg) 5.97× 1024 c 1.90× 1027 c 2.09× 1030 b

asm(m) 3.84× 108 c 4.22× 108 c 9.57× 109 d

mp(kg) 7.35× 1022c 8.91× 1022 c 1.70× 1030 b

L(W) ... 3.34× 1017 e 4.31× 1026 b

νm(m2s−1) 1.4× 10−6 f 3× 10−7 e 10−4 g

Ωspin(day−1) 2π 2π/0.41 h 2π/3.96 i

Ωp(day−1) 2π/27.32 2π/1.77 h 2π/4.28 b

Ω 0.0380 0.305 12.40
ε 2.8× 10−8 1.1× 10−7 1.6× 10−4

Ekm 1.6× 10−15 5.2× 10−19 1.1× 10−17

β ... 1.5 18
se ... 2 1
Ekturb;NR ... 1.6× 10−13 6.3× 10−5

Roc ... 1.94× 10−5 5.05× 10−2

Ekturb;RC ... 8.44× 10−17 1.74× 10−5

σud 1.6× 10−8 5.1× 10−8 4.4× 10−5

χm n.s. 4.2× 10−8 ... ...
χturb;NR f.s. ... 8.3× 10−8 0.24
χturb;RC f.s. ... 4.22× 10−11 6.5× 10−2

Table 2.1.: Parameters for the example objects. νm is the molecular viscosity, Ekm the
Ekman number based only on the molecular viscosity, and Ekturb;NR and Ekturb;RC
the Ekman number based on the turbulent viscosity without and with the effects of
rotation on convection, respectively, (the molecular viscosity is negligible in comparison
to the turbulent in these examples). χm, χturb;NR, and χturb;RC are damping constants
calculated with Ekm, Ekturb;NR, and Ekturb;RC, respectively. n.s. and f.s. stands for no
slip and free slip boundary conditions, respectively.

References. a Archinal et al. (2011); b Clausen et al. (2009); c Wicht and Tilgner
(2010); d Calculated according to Kepler’s third law, with values given in Clausen et al.
(2009); e Guillot et al. (2004); f DeWijs et al. (1998); g Miesch (2005);
h Wu (2005b); i Calculated according to v = Ωspin · Rce with v the equatorial velocity
given in Clausen et al. (2009)

J-I: νt;NR J-I: νt;RC VC: νt;NR VC: νt;RC
uncertain unstable stable stable

Table 2.2.: Summary of the stability characteristics of the flow for the examples Jupiter-Io (J-
I) and V636 Centauri (VC). The top row indicates if turbulent viscosity without the effects of
rotation on the convection has been used (νt;NR) or with these effects (νt;RC) in the computation
of the viscous damping. We used free slip boundary conditions.
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2.4. Conclusion and discussion

We computed the linear stability limit of tidal flow within the anelastic approximation
through a perturbation calculation in which the small parameter is the deformation of
the central body from spherical shape. The instabilities are described as superpositions of
two inertial modes of the rotating sphere. The perturbation calculation is tractable if the
initially three dimensional problem of the computation of the inertial modes is separable
and reduces to the solution of an ordinary differential equation. This is the case if the
density profile obeys a power law. For an inviscid fluid, the growth rate of the combination
of two chosen modes depends on the density profile, but the growth rate maximized over all
possible combinations does not. Furthermore, the maximum growth rate is the same as the
one known for elliptical instability in infinitely extended, incompressible fluids. The fact
that one finds the same maximum growth rates in so widely different situations justifies
some tolerance towards modeling assumptions. For example, we restricted our analysis to
density profiles obeying power laws and to the boundary condition that the velocity normal
to the boundary be zero at the surface. After the calculations presented here, we expect
that different modes will be found to be the most unstable for more realistic assumptions,
but that the stability limit of the flow will stay the same. In the same fashion, we do not
expect the particular choice of the major axis parallel to the rotation axis in Eq. (2.19)
to affect the stability limit.

We added viscous effects empirically. If friction at a solid boundary dominates dissipation,
the stability is easily determined as a function of the rotation rates of the central body and
the tidal companion, the tidal deformation, and the Ekman number. If on the other hand
bulk dissipation dominates, the dissipation depends on the flow structure of the unstable
modes and therefore on all details of the model, in particular the density profile. However,
dissipation depends mostly on the spatial degree which on average obeys a simple scaling
law as a function of tidal deformation, so that an estimate of the stability limit is still
possible.

Viscous damping also depends on boundary conditions, and models of an object’s interior
help to decide on which approximation to the viscous damping is most accurate. For
instance, the dissipation in Ekman layers usually dominates if a solid core is present.
However, if one wants to predict the stability limit of a particular astrophysical object, the
biggest uncertainty comes from a possible turbulent viscosity. Progress in the calculation
of tidal dissipation thus mostly hinges on advances in the treatment of turbulence.
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For the orbital evolution of objects in a planetary system it is important to know how
much energy is dissipated due to tides. Usually tidal dissipation is parameterized by the
so called tidal quality factor Q or the modified tidal quality factor Q′ (see Sect. 3.1.5).
In exoplanetary systems for terrestrial planets one often calculates with a Q′ value of 100
which approximates the modified tidal quality factor of the Earth (Murray and Dermott,
1999). The Earth has Q = 12 (Murray and Dermott, 1999) which is on the same order as
the quality factor of other terrestrial planets in our solar system. According to a study by
Goldreich and Soter (1966) these lie in the range 10 ≤ Q ≤ 190.

A study by Hansen and Murray (2015) suggests that a Q′ of approximately 10 is a reason-
able a priori estimate for terrestrial planets. They obtained with this value the best match
with the observed eccentricity distribution of terrestrial exoplanets, assuming a scenario
for planet formation (which fixes the initial conditions for the orbital evolution) as studied
in Hansen and Murray (2013).

A recent paper by Henning and Hurford (2014) investigated how Q′ depends on the orbital
period and on the interior of the planet, they also considered multilayer planets with the
possibility of oceans and ice regions.

That it is inappropriate to approximate super Earth tidal quality factors with that of
the solid Earth was already claimed by Efroimsky (2012), because due to a higher self
gravitation in a super Earth compared to an Earth mass object tidal damping in super
Earth is less efficient. But for strong tidal forcing, if a stable equilibrium between tidal
heat production and heat transport is possible also the scaling of heat transport and heat
production with radius needs to be considered.

The Q′ parameterization is controversial, it not only depends on the size of the object, it
additionally depends on the frequency (Efroimsky and Lainey, 2007). The relative small
tidal quality factor of the Earth comes from the fact that on the Earth the dissipation
due to the ocean is high, a small quality factor means high tidal dissipation. If a liquid
ocean out of water as on the Earth or lava may be present an estimate of tidal dissipation
becomes more complicated.

In this study only planets with strong tidal forcing are investigated, because if the forcing
is strong enough a stable equilibrium between heat transport due to convection or melt
migration and tidal heat production is possible (see, e.g., Henning et al. 2009). The
influence of convection as opposed to melt migration as possible heat transport mechanism
is investigated. Jupiters moon Io and the exoplanet Corot 7 b are used as objects of study.
One aim of this study is to investigate how the quality factor depends on the size of the
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terrestrial planet, the thickness of the asthenosphere, and on the orbital parameters and
thereby investigate which Q′ value is reasonable for a rocky planet.

3.1. Theoretical background

3.1.1. Equilibrium tide

The amplitude of the tidal deformation and the associated energy are determined by the
tide raising potential and by the internal structure of the satellite. On a synchronous
eccentric orbit, the time varying potential is given to first order in eccentricity by

Φt = r2Ω2
pe

(
−3

2P
0
2 (cos θ) cos(Ωpt)

)
+ r2Ω2

pe

(1
4P

2
2 (cos θ)[3 cos Ωpt cos 2ϕ+ 4 sin Ωpt sin 2ϕ]

)
,

(3.1)

where r is the radius from the center of mass of the planet, Ωp the orbital angular ve-
locity, e the eccentricity of the orbit, θ and ϕ are the colatitude and longitude with zero
longitude at the near pole, t is the time, P 0

2 and P 2
2 are associated Legendre polynomials.

Throughout this chapter, “planet” denotes the tidally deformed body, be it a planet or
a moon. Below we will see the problem simplifies if coordinates are chosen such that
the problem is rotationally symmetric and the solution has then only to be expanded in
Legendre polynomials. Therefore, we introduce ϑ the angle between the position vector
and the line joining the center of the planet and the guiding center. The guiding center is
the point which rotates about the occupied focus of the ellipse (where the tidal partner is
placed) in a circle of radius asm, the semi major axis, and with angular speed Ωp (Murray
and Dermott, 1999). Additionally we introduce ϑ′ the angle between the position vector
and the vector of the point [θ = π/2, ϕ = π/4]. Now the potential can be written as
(Murray and Dermott, 1999)

Φt = r2Ω2
pe
[
3P2(cos(ϑ)) cos(Ωpt) + 4P2(cosϑ′) sin(Ωpt) + 2P2(cos θ) sin(Ωpt)

]
, (3.2)

with P2 the Legendre polynomial of second degree.

In this study planets for which the tidal dissipation can be approximated by a calculation
of the equilibrium tide are considered, as written in the introduction to this chapter. The
dissipation due to the equilibrium tide for a tidally locked object on an elliptic orbit can
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be calculated according to (Segatz et al., 1988)

DT = −21
2 =(k2)(ΩpRp)5

G
e2, (3.3)

with =(k2) the imaginary part of the tidal Love number, G the gravitational constant
and Rp planet radius. For our purpose Eq. (3.3) is accurate enough, but for high ec-
centricities the equation underestimates tidal heating (Leconte et al., 2010). The factor
=(k2) can be calculated similarly to the elastic spheroidal oscillations for a layered sphere
(Alterman et al., 1959; Takeushi and Saito, 1972). If the planet is perfectly elastic no en-
ergy dissipation would take place, but planetary interiors for typical tidal forcing periods
behave like viscoelastic bodies. The viscoelastic problem can be solved with the help of
the correspondence principle (Biot, 1954), which allows one to extend the elastic problem
formulation to the resolution of an equivalent viscoelastic problem.

The Maxwell model is used in this study for the viscoelastic interior. In this model
k2 = k2(η, µ,Ωp, ρ, g, Rp), with η dynamic viscosity, µ shear modulus, ρ density and g

gravitational acceleration. The Maxwell model should be valid as long as η/µ . 2 · π/Ωp,
for higher orbital angular velocities an effective viscosity can be introduced (Behounkova
et al., 2013), this was not necessary in this study.

We follow the proceeding described in Sabadini and Vermeersen (2004) to derive the
governing system of ordinary differential equations (ODEs). But opposed to them we
solve these ODEs with a shooting method, they used a propagator matrix method. The
here used notation follows Takeushi and Saito (1972). The equations require the density
ρ, µ and η to be given as a function of radius.

For spheroidal oscillations, one has to consider the momentum and the Poisson equation.
Contrary to the formulation in Takeushi and Saito (1972), we consider the planetary
material as incompressible and the inertial term will be neglected. The former is justified
by calculations in Tobie et al. (2005) and own calculations (see Fig. 3.3), which show that
the results depend only slightly on the bulk modulus. The latter is justified due to the
fact that the excitation periods are on the order of days, but the natural period of the
objects which will be investigated are ∼ 117 min and ∼ 82 min for the case of Io and
Corot 7b, respectively. These periods are calculated for an incompressible homogeneous
fluid sphere, calculated according to the classical formula of Lord Kelvin (see e.g. Dahlen
and Tromp 1998)

ω2
k = 8

3
πlk(lk − 1)Gρ

2lk + 1 , (3.4)

for a rough estimate, with degree lk = 2 for the longest period. In a fluid sphere the only
restoring force is the gravity, so especially in the less massive Jupiter moon Io the effects
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of elasticity would lead to a higher eigenfrequency than our estimates above.

We now follow the steps in Sabadini and Vermeersen (2004) (details can be found therein)
to derive the governing system of ODEs. Conservation of linear momentum requires that
the body forces F per unit mass acting on the element of the body are balanced by the
stresses that act on the surface of the element. For the stress tensor σ acting on an
infinitesimal block with density ρ:

∇ · σ + ρF = 0. (3.5)

The stress tensor is the sum of the initial pressure plus a perturbation σ′:

σ = σ′ − p0I. (3.6)

σ′ is a tensor and describes non-hydrostatic stress, related to the strain, p0 is the hydro-
static pressure and I the identity matrix. At a fixed point in space the pressure change
due to an elastic displacement ξ at time t0 is given by

p0(t0 + δt)− p0(t0) = −ξ · ∇p0. (3.7)

After the elastic displacement, the linear momentum Eq. (3.5) reads with p0(t0 + δt)
instead of p0(t0),

∇ · σ′ −∇p0(t0)−∇(ρgξ · r̂) + ρF = 0, (3.8)

where we used that the initial pressure is given by ∇p0 = −ρgr̂, where r̂ is the unit
vector, positive outward from the planetary center. The force F can be split into all
kinds of forcings and loads. For our case it is the sum of gravity and tidal force which
can be written as a gradient field of a potential Φf , with F = −∇Φf . Φf can be written
as Φf = Φ0 + Φ′, Φ0 is the field in the initial state and Φ′ is the perturbation of the
gravitational potential due to mass redistribution and the tidal potential. The linearized
equation of momentum becomes

∇ · σ′ −∇(ρgξ · r̂)− ρ∇Φ′ = 0, (3.9)

since the second term of Eq. (3.8) is canceled by the term −ρ∇Φ0. The perturbation
potential Φ′ satisfies the Poisson equation, which because of incompressibility reduces to
the Laplace equation

∇2Φ′ = 0. (3.10)

Further steps on these two governing equations can be found in Appendix D and E. After
performing the steps in Appendix D the equation of motion and the Laplace equation can



48 3. Dissipation of rocky planets for strong tidal forcing

be written in terms of six functions yi(i = 1, 2, .., 6) to calculate spheroidal oscillations

dy1
dr =− 1

r
[2y1 − l(l + 1)y3],

dy2
dr =4

r

(3µ
r
− ρg

)
y1 −

l(l + 1)
r

(6µ
r
− ρg

)
y3 + l(l + 1)

r
y4 + ρ(l + 1)

r
y5 − ρy6,

dy3
dr = 1

µ
y4 + 1

r
(y3 − y1),

dy4
dr =− 1

r

(6µ
r
− ρg

)
y1 −

1
r
y2 + 2(2l2 + 2l − 1)µ

r2 y3 −
3
r
y4 −

ρ

r
y5,

dy5
dr =y6 + 4πGρy1 −

l + 1
r

y5,

dy6
dr = l − 1

r
(y6 + 4πGρy1) + 4πGρ

r
[2y1 − l(l + 1)y3],

(3.11)

with l the degree of the spherical harmonic in the solution ansatz. The yi’s are coefficients
in radius for an ansatz to solve the spheroidal oscillations problem in form of a spherical
harmonic representation (see (D.7)). The ansatz for the tidal problem consists only of
Legendre polynomials of second degree because the tidal potential can be written in form
of only these polynomials, see Eq. (3.2).

The boundary conditions for the coefficients yi are

y1(0) = 0, y3(0) = 0, y5(0) = 0, (3.12)

at the center, and

y2(Rp) = 0, y4(Rp) = 0, y6(Rp) = 2n+ 1
Rp

, (3.13)

at the surface.

y1 and y3 are associated with radial and tangential displacement, y2 and y4 with radial
and tangential stresses, respectively. y5 is associated with the gravitational potential and
y6 is defined such that the continuity of the gradient of the gravitational potential is taken
into account.

It is µ = 0 in a liquid layer. The proceeding with this circumstance is analogue to the
proceeding in Saito (1974). The equations of equilibrium in the radial and transversal
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directions and Poisson’s equation can be written as

ρ
dy5
dr + ρgX − ρ d

dr (gy1) + dy2
dr = 0,

y2 = ρ(gy1 − y5),
d2y5
dr2 + 2

r

dy5
dr −

l(l + 1)
r2 y5 = 4πG

(dρ
dr y1 + ρX

)
,

(3.14)

with X as the radial factor of dilation. These equations are the compressible counterpart
of (Eqs. (D.10a), (D.10b) and (D.11)). This time we consider compressibility because we
want to derive boundary conditions at the core mantle boundary, where the density has
a jump discontinuity. The first equation of Eqs. (3.14) together with the differentiated
second equation gives

ρgX = dρ
dr (y5 − gy1) = −dρ

dr
y2
ρ

(3.15)

and by making use of the third

d2y5
dr2 + 2

r

dy5
dr −

l(l + 1)
r2 y5 = dρ

dr
4πG
g

y5. (3.16)

From the last equation it can be deduced that the potential y5 is decoupled from displace-
ment when µ = 0. For a given density distribution, we might be able to integrate Eq.
(3.16), provided that dy5/dr is continuous in the liquid layer. But dy5/dr is not continu-
ous when ρ has a jump discontinuity. To circumvent this difficulty, a new variable will be
introduced (details see Saito (1974))

y7 = y6 + 4πG
g

y2 = dy5
dr +

(
l + 1
r
− 4πGρ

g

)
y5, (3.17)

this variable is continuously everywhere. Eq. (3.16) can now be rewritten in terms of y5

and y7 as two first order differential equations

dy5
dr =

(4πGρ
g
− l + 1

r

)
y5 + y7,

dy7
dr = 2(l − 1)

r

4πGρ
g

y5 +
(
l − 1
r
− 4πGρ

g

)
y7.

(3.18)

This two equations will be integrated in the liquid core starting from initial values

y5(r) = rl ry7(r) = 2(l − 1)rl. (3.19)

The integration can not be started at r = 0 because then the differential equation will
become singular at r = 0. But for the case of this work, a numerical integration in
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the liquid core is not necessary because the liquid core is assumed to be homogeneous
therefore the relations in Eq. (3.19) are solutions throughout the whole core. Except y3

the yi’s should be continuous at Rc, the core mantle boundary. y4 is zero in the liquid
because it is related to the tangential stress. y1, y2 and y6 can not be determined by Eqs.
(3.18), they are related to each other through the second equation in Eqs. (3.14) and
Eq. (3.17), therefore only one is independent. The values y1(Rc) and y3(Rc) are taken as
constants of integration. In the solid region there exist three independent solutions, under
the condition of regularity at r = 0. The boundary conditions at Rc are decomposed into
three independent sets

set 1: yso
11(Rc) =0 yso

21(Rc) = −ρli(Rc)yli
51(Rc)

yso
51(Rc) =yli

51(Rc) yso
61(Rc) = yli

71(Rc) + 4πGρli(Rc)
g(Rc)

yli
51(Rc)

set 2: yso
12(Rc) =1 yso

22(Rc) = ρli(Rc)g(Rc)yso
12(Rc)

yso
62(Rc) =− 4πGρli(Rc)yso

12(Rc)

set 3: yso
33(Rc) =1,

(3.20)

the superscripts so and li refer to values in the solid mantle and in the liquid core, re-
spectively. If a boundary value for yso

ij is not explicit given it has the value zero. It is
yi = ∑3

j=1Q
so
j y

so
ij in the solid mantel and the index j stands for the different independent

solutions. The Q’s are determined by the boundary conditions at the surface, Eqs. (3.13).

The radial functions at the surface define the so called Love numbers

hl(Ωm
l ) =y1(Rp,Ωm

l )g(Rp),

kl(Ωm
l ) =y5(Rp,Ωm

l )− 1,

`l(Ωm
l ) =y3(Rp,Ωm

l )g(Rp),

(3.21)

hl is the ratio of the height of the solid body tide to that of the deforming potential. kl is
the ratio of the additional tidal potential, produced by the redistribution of mass, to the
deforming potential. `l is the ratio of horizontal displacement of the crust to that of the
equilibrium tide if the planet were fluid.

As already stated, planetary interiors for typical tidal forcing periods behave like viscoelas-
tic bodies, which is modeled in this work by the Maxwell model. In the Maxwell model
the stress strain relation is written in Cartesian coordinates as

σ̇ij + (µ/η)
(
σij −

1
3σkkδij

)
= 2µε̇ij +

(
KE −

2
3µ
)
ε̇kkδij , (3.22)

in this formula and in the following the Einstein notation is used. The Fourier transform
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of Eq. (3.22) leads to a Hooke like law

σ̃ij = 2µ̃(Ωm
l )ε̃ij +

[
KE −

2
3 µ̃(Ωm

l )
]
ε̃kkδij , (3.23)

with
µ̃(Ωm

l ) = (Ωm
l )2µη2

µ2 + (Ωm
l )2η2 + i µ2Ωm

l η

µ2 + (Ωm
l )2η2 , (3.24)

the tilde indicates complex values in the frequency domain. In an incompressible medium
the dilatation ∇ · ξ = εkk, with ξ the displacement vector, goes to zero while KE goes to
infinity in such a way that their product has a finite limit (Love, 1911), i.e.

lim
KE→∞,εkk→0

KEεkk = Π. (3.25)

Therefore under the condition of incompressibility Eq. (3.23) becomes

σ̃ij = 2µ̃(Ωm
l )ε̃ij + Πδij . (3.26)

According to the correspondence principle (Biot, 1954), the elastic problem can be ex-
tended to an equivalent viscoelastic problem, by simply replacing the parameter µ in Eq.
(3.11) with the complex counterpart Eq. (3.24), this results in complex yi and complex
love numbers. Ωm

l can be replaced with Ωp because for tidal forcing periods of a few days,
one can assume that the response frequency of the body equals the forcing frequency Ωp.

Relevant for the calculation here is also the radial distribution of the tidal dissipation,
according to Tobie et al. (2005) this is given by

Htide(r) = −21
10

Ω5R4
pe

2

r2 Sµ̃=(µ̃), (3.27)

with
Sµ̃ =5

3 |2ỹ1 − l(l + 1)ỹ3|2 −
4
3rRe

{
dỹ†1
dr [2ỹ1 − l(l + 1)ỹ3]

}
+ l(l + 1)r2|ỹ4|2/|µ̃|2 + l(l2 − 1)(l + 2)|ỹ3|2,

(3.28)

the radial sensitivity to the shear modulus µ, whereby this is the incompressible counter-
part of Eq. (37) in Tobie et al. (2005). The superscript † stands for complex conjugated.
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Figure 3.1.: Only the rheological boundary layer, with thickness δrh, of the diffusive lid, with
thickness δd, participates in the convective flow and only this part is mobile, ux 6= 0. But also in
the rheological boundary layer uy = 0, such that also across this layer heat is transported only
by diffusion. Figure after Douce (2011).

3.1.2. Heat transport mechanism

Convection

The two extremes of convection regarding the efficiency were considered in this study,
stagnant lid convection and plate tectonic convection. Stagnant lid convection is less
efficient than plate tectonic convection. Viscosity is highly dependent on temperature,
therefore if the surface temperatures are relatively cold, there is a highly viscous zone
near the surface. In stagnant lid convection which e.g. occurs in Io, this highly viscous
zone doesn’t take part in the convection and through this region heat can generally only
be transported by conduction (an exception will be shown below, the heat pipe model).
Also on Earth the surface temperatures are relatively cool, but here the plate is broken
into pieces because much of these are subductil (the oceanic plates), they can take part in
the convection. Plate tectonic convection is therefore as efficient as isoviscous convection.
In stagnant lid convection, convection is driven by the rheological boundary layer (see
Fig. 3.1), this can become negative buoyant and sink, analogue to the plates in plate
tectonic convection. Various numerical studies disagree if plate tectonic convection should
become more likely with growing object size. A recent study (Stamenkovic and Breuer,
2014) suggests that with growing mass and inner temperature plate tectonic convection
becomes less likely.
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The laws determining the heat flux in a planet are a matter of ongoing research. Here,
we present a few relations which have been used in the past in similar studies of tidal
dissipation, at the end of this section a few explanations will be given. For time dependent
stagnant lid convection according to a numerical calculation in a spherical shell with
internal heating and free slip boundary conditions (Reese et al., 2005)

Nu = 0.67θ−4/3Ra1/3
i . (3.29)

With the Nusselt number
Nu = Fdc

k(Ti − Ts)
, (3.30)

Rayleigh number

Rai = αρmgs(Ti − Ts)d3
c

κη(Ti)
, (3.31)

and the Frank-Kamenetskii parameter θ = γ(Ti−Ts), for a strictly temperature dependent
viscosity γ = Ea/(R̄T 2

i ) (Reese et al., 1999; Moore, 2003), F is the heat flux, dc the
thickness of the convecting layer without the stagnant lid (in the four layer model dc

equals the thickness of the asthenosphere) and Ti is the interior temperature. For the case
of stagnant lid convection Ti = TL + arhγ

−1, with TL the temperature at the bottom of
the lid, and arhγ

−1 the temperature jump across the rheological boundary layer, where
arh a numerical coefficient, for the spherical shell arh = 3.2 (Reese et al., 1999). For the
remaining constants see Table 3.1.

For comparison, also another scaling for time dependent stagnant lid convection will be
used. Recently a study by Deschamps and Lin (2014) proposed the scaling

Nu = 1.46θ−1.21Ra0.27
i . (3.32)

It was obtained in a 3D-Cartesian box, with free slip conditions at the top and bottom
boundary heated from below. It should be valid especially for the regime below Ra <

108, so below the chaotic regime, for the chaotic regime the scaling with a 1/3 Rayleigh
exponent should be valid (Dumoulin et al., 1999).

For plate tectonic convection with internal heating a scaling as in O’Connell and Hager
(1980) is used

Nu = 2a2

Ra
1/4
c

Ra
1/4
F ≈ 0.35Ra1/4

F , (3.33)

with a flow geometry constant a2 ∼ 1 and the critical Rayleigh number Rac ∼ 1100 and

RaF = αρgFd4
c

kκη(Ti)
. (3.34)
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Because RaF /Rai = Nu the Eq. (3.33) is equivalent to

Nu = (2a2)4/3

Ra
1/3
c

Ra
1/3
i ≈ 0.244Ra1/3

i . (3.35)

The correctness of this scaling is supported by newer numerical simulations byWolstencroft
et al. (2009), who find scaling relations which differ only slightly.

It is assumed that the scaling relations for Nu(Ra) used here with a Rayleigh number
exponent of 1/3 are also applicable for convection in a material with a high melt fraction
and high Rayleigh number because this scaling is in accordance with boundary layer theory
(Turcotte and Schubert, 2002; Douce, 2011) and generally numerical simulations at high
Rayleigh number differ only little from this scaling, see the review by Ahlers et al. (2009)
and references therein.

Now the case of stagnant lid convection and the difference to plate tectonic convection
will be elucidated according to the work in Douce (2011). As already stated stagnant lid
convection is driven by the temperature difference across the rheological boundary layer
∆Trh = Ti−Trh, with Trh the temperature at the top of the rheological boundary layer (see
Figure 3.1). Convection with moving plates is driven by the full temperature difference
∆T = Ti − Ts, with Ts the surface temperature. The rheological boundary layer can be
defined as the part of the thermal boundary layer in which the viscosity ηrh is of the same
order of magnitude as the viscosity of the convecting fluid ηi = η(Ti). For the viscosity an
Arrhenius law is used

η = Kae
Ea/(R̄T ), (3.36)

with Ka a material property. Restriction of temperature to a relatively narrow interval
allows us to write the viscosity as

η = η0e
Ea
R

T0−T

T T0 , (3.37)

with T0 a reference temperature in this interval and the viscosity η0 at this reference
temperature. If T and T0 are not too different, the approximation

η ≈ η0e
−γ(T−T0) (3.38)

is valid. With T0 = Ti it is
ηrh ≈ ηie

γ∆Trh , (3.39)
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the condition ηrh ∼ ηi is satisfied if γ∆Trh = 1. It is therefore

∆Trh = 1
γ
. (3.40)

The Rayleigh number based on the temperature γ−1 is

Rae = αρgd3
c

κηiγ
= Rai(γ∆T )−1. (3.41)

Assuming now convection beneath the lid is similar to constant viscosity convection with a
driving temperature γ−1, the scaling for plate tectonic convection can be used to estimate
the scaling for stagnant lid convection by simply substituting ∆T by ∆Trh. Therefore,
according to Eq. (3.35) the heat flow is given by

F ≈ 0.244Ra1/3
e

k∆Trh
dc

. (3.42)

The Nusselt number is still defined on basis of the full temperature difference and therefore
according to Eq. (3.35)

Nu = F
k∆T
dc

= (2a2)4/3

Ra
1/3
c

Ra1/3
e (γ∆T )−1 ≈ 0.244Ra1/3

i (γ∆T )−4/3, (3.43)

which is on the order of the scaling according to Eq. (3.29) and only differs by the
prefactor.

Melt migration

In a partial molten mantle, magma transport can be important for the heat transport, as
for example stated by Moore (2001) for Io’s asthenosphere. The governing equations for
heat transport by melt through the mantle (Moore, 2001) are:

• The conservation of mass

∇ · (vlφ) = Γ
ρl

and∇ · (vs(1− φ)) = − Γ
ρs
, (3.44)

with vl and vs the velocities of the liquid and solid components, ρl and ρs the liquid
and solid densities, φ the melt volume fraction, and Γ the melt production rate (in
kg m−3s−1). Contrary to Moore (2001) we take into account the difference between
the densities of liquid and solid in Eq. (3.44).
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• The Darcy flow equation
φ(vl − vs) = kφ∆ρg

ηl
, (3.45)

with the permeability kφ = b2φnm/τ , b is a typical grain size, τ is a constant which
depends on the exponent nm, ηl is the viscosity of the liquid and ∆ρ the density
contrast between liquid and solid material. In our calculations we chose nm = 2.6
and τ = 60 (Miller et al., 2014). These expressions are valid as long as the solid
matrix does not disaggregate and the melt does form an interconnected network.

• The conservation of energy
ΞΓ = H, (3.46)

with Ξ the latent heat of fusion and H the heating rate per volume.

The system of Eqs. (3.44)-(3.46) can be written as two first order equations for φ and vl

by eliminating Γ and vs
dvl
dr

= Γ
φρl
− vl (r)

(2
r

+ 1
φ

dφ

dr

)
, (3.47)

dφ

dr
= ∆ρφ2(2b2gρlρs(φnm − φnm−1)− Γητr) + φητρsΓr

ρlρsr(b2gφnm∆ρ(nm − 1− φnm) + φητvl)
. (3.48)

From Eq. (3.44) we can deduce

ρlvlφ+ ρsvs(1− φ) = 0, (3.49)

this equation is valid globally. If one considers parts of the melting zone, one has to
consider flux of mass into or out of the zone, for instance due to an upwelling mantle.
Equations (3.45)-(3.49) can be rearranged such that the heat flux due to melt migration
FM is given by

FM =
∫
H · dV
4πR2

p
= ρlL|vl|φ = ρlL

1− φ
φ(ρl/ρs − 1) + 1

kφ∆ρ|g|
ηl

. (3.50)

For |g| we use the surface gravity. ∆ρ = ρs − ρl and ηl are calculated with the MELTS
program (Ghiorso and Sack, 1995) and for ρs we use the mantle density ρm. The radial
component of the liquid and solid velocities is approximated through the absolute value of
vl and vs, respectively. Equation (3.50) is only correct if the melting zone has a constant
melt volume fraction. This would roughly be the case for large enough grain sizes. We
checked the validity of this approach by solving the six coupled ODEs (Eq. (3.11)) with
a fixed viscosity and shear modulus in the deep mantle and the lithosphere, but in the
asthenosphere the viscosity was determined by solving additionally Eqs. (3.47) and (3.48)
with initial conditions φ = 0.01 and vl = 0 at the base of the molten zone. With the
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obtained value for φ and the resulting temperature the viscosity can be determined self-
consistently and becomes thereby depth dependent in the asthenosphere. The heating
rate per volume is given by Eq. (3.27). In the asthenosphere, the system of ODEs (Eqs.
(3.11), (3.47) and (3.48)) can not be solved according to the scheme described in Sect.
3.1.1, because the equations are now nonlinear. We therefore use a shooting method as
described in Sect. 2.2, but shooting to a fitting point is this time not necessary. Again a
Runge Kutta Cash-Karp method of fifth order with an adaptive stepsize control was used
to integrate the ODEs.

The heat pipe model

In stagnant lid convection one generally assumes that through the lithosphere (the lid) heat
can only be transported by conduction. This resulted in problems regarding Io with a high
heat flow and high mountains on it because high heat flow results in a small lithosphere
which is contradictory with high mountains. An explanation was given by O’Reilly and
Davies (1981), the heat pipe model. They assumed that part of the heat is removed by
advection through pipes in the lithosphere.

3.1.3. Coupling between heat transport and tidal heat production

Tidal dissipation can be estimated by the determination of a balance between heat trans-
port and tidal heat production rate. Therefore the tidal dissipation depends on the effi-
ciency of the heat transport mechanism.

The convective heat flux is given by a relation of the form

Fconv = ac
k(Ti − Ts)

dc
θ−αRaςi , (3.51)

where ac, α, and ς are constants depending on the Nu(Rai) relation of choice. This flux
must equal the tidal heat flux through the surface

Ftidal = DT
4πr2

l
. (3.52)

For the four layer model of Io we calculate with a fixed rl = Rp − dlit, with dlit the
lithosphere thickness (see Table 3.4). For plate tectonic convection we approximate rl by
Rp. For these cases, equating Eqs. (3.51) and (3.52) fixes Ti if Ts is given so that DT is
computable. For stagnant lid convection in the homogeneous mantle model (this is a two
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layer model with a liquid core and a solid mantle) we calculate rl by taking into account
the thermal effect of the lithosphere, as done by Moore (2003). In such a model, the upper
surface of the convection zone is the bottom of the lid, which is located at radius rl and
has temperature Tl, so that one has to find conditions to determine rl, Tl and Ti. These
are the balance between tidal and convective heat fluxes and two expressions for Tl (Reese
et al., 1999)

Tl = Ti − arh
1
γ

= Ts + H

6k (R2
p − r2

l ) +
(
Fconvr

2
l

k
− Hr3

l
3k

)(
1
rl
− 1
Rp

)
, (3.53)

with
H = DT

(4/3)π(r3
l − (rl − dc)3) , (3.54)

being the rate of internal heat generation (in W/m3). If we consider only melt migration
the heat flux is FM instead of Fconv and if we consider both it is FM + Fconv instead of
Fconv.

In the study of Io below, Ts is assumed given by observations. In the study of exoplanets,
Ts is determined from the tidal dissipation and the irradiance of the host star (Henning
et al., 2009)

Ts =
(

DT
4πR2

pσsbεr
+ 1−A

4σsbεr

(
Lstar
4πa2

))1/4

, (3.55)

σsb is the Stefan-Boltzmann constant, εr the emissivity, A the albedo, L the stellar lumi-
nosity, and a the semi major axis. Finally, the temperature T in DT(T ) is identified with
Ti.
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3.1.4. Rheology

The rheology used for this study is similar as in Moore (2003). For the temperature
dependence of the shear modulus and viscosity, it is

µ(T ) =


µsol, if T ≤ Tcrit

10µ1/T+µ2 Pa, if Tcrit < T ≤ Tdis

0 Pa, if Tdis < T

(3.56a)

η(T ) =


η0 · eEA/R̄T , if T ≤ Tsol

η0 · eEA/R̄T e−Bφ, if Tsol < T ≤ Tdis

(1.35φ− 0.35)−5/2 · 103 Pa s, if Tdis < T,

(3.56b)

B is a dimensionless melt fraction coefficient. In this study B = 25 and B = 40 are used.
We chose B = 25 because Mei et al. (2002) reported this value for diffusion creep (see also
Karato (2013)) and B = 40 because it is the highest value that Moore (2003) used. As
in Moore (2003) the solidus temperature Tsol is assumed to be at 1598K and the critical
temperature Tcrit at 1600K. φ is the volume melt percentage. It increases linearly from the
solidus to the liquidus at a rate of 1% per Kelvin. The liquidus is assumed to be at 1698K.
Above the disaggregation temperature Tdis the shear modulus is zero. Disaggregation
happens at ∼ 30% partial melting (Moore, 2001; Scott and Kohlstedt, 2006). The figures
in this study are partly plotted up to 1670K , which corresponds to a melt fraction of 72%.
Keep in mind that the solid matrix may already have disaggregated at ∼ 1630K. Values
for the parameters can be found in Table 3.1 and Table 3.3. Viscosity and shear modulus
as a function of temperature are plotted in Fig. 3.2. The bulk modulus can be calculated
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Figure 3.2.: Left: Viscosity as a function of temperature; Right: Shear modulus as a function of
temperature
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according to
KE = ρV 2

p −
4
3µ, (3.57)

where vp is the velocity of the elastic p-wave.

3.1.5. Tidal quality factor

We calculate the tidal quality factor according to Murray and Dermott (1999)

Q = ΩpE0
DT

, (3.58)

with E0 the peak energy stored during the cycle

E0 = 21
2
|k2|Ω4

pR
5
pe

2

G
. (3.59)

With Eq. (3.3) this gives
Q = − |k2|

=(k2) . (3.60)

The modified tidal quality factor is defined as

Q′ = 3Q
2|k2|

= − 3
2=(k2) . (3.61)

The modified tidal quality factor is defined such that it only depends on =(k2), which is the
quantity that appears in Eq. (3.3) and that for a homogeneous liquid sphere (k2 = 3/2)
Q′ = Q.

3.2. Validation

The validation of the code computing =(k2) through a solution of coupled ODEs (see Sect.
3.1.1) was done by a comparison with various other studies, in particular with Segatz et al.
(1988) and Sotin et al. (2009). The results from the comparison with Segatz et al. (1988)
and Sotin et al. (2009) are displayed here. As written by Beuthe (2013) Segatz et al.
(1988) forgot a factor 2π in the angular frequency. Thus all viscosity values in Segatz
et al. (1988) should be divided by 2π. Therefore the viscosity values here are adjusted
through a division by 2π for this validation. The results with our code are shown in Fig.
3.3(a) and 3.3(b). The figures agree relatively well with Fig. 5 of Segatz et al. (1988). The
calculation for 3.3(b) was performed as in Tobie et al. (2005), that means with a finite bulk
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Figure 3.3.: Tidal dissipation rateDT, modulus of the tidal love number k2 and dissipation factor Q
versus asthenosphere thickness of Io, using parameters from Segatz et al. (1988), and equivalent
to their Fig. 5. (a): own incompressible calculations; (b): own compressible calculations.

modulus KE and taking into account the inertial term. We choose vp = 6000ms−1 for the
core and vp = 8000ms−1 for the silicate mantle (Tobie et al., 2005). For simplification the
results in the following section were obtained with the approximation of incompressibility
and neglecting the inertial term. The comparison with Sotin et al. (2009) is shown in Fig.
3.4.

3.3. Results

3.3.1. Tidal dissipation of Io

An estimate of the tidal dissipation for Io has already been made by Moore (2003), their
coupled tidal convection model led to a heat flux of ≈ 2 × 1013W. This is lower as the
observed value 0.6−1.6×1014W (Moore et al., 2007). Therefore they deduced that either
Io is currently out of thermal equilibrium or another heat transport mechanism such as
melt segregation determines Io’s thermal state. In Lainey et al. (2009) it was shown that Io
is close to thermal equilibrium, according to this presumably only another heat transport
mechanism would be an explanation.
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Figure 3.4.: Love number h2 versus ice viscosity of Europa using parameters from Sotin et al.
(2009), and equivalent to their Fig. 5.

Symbol Description Value
cp Specific heat at constant pressure 103Jkg−1K−1a

EA Activation energy for subsolidus mantle creep 3.33 × 105Jmole−1

G Gravitational constant 6.67 × 10−11m3kg−2s−2

k Thermal conductivity 4.0 Wm−1K−1b

α Thermal expansion coefficient 3.0 × 10−5K−1 b

κ Thermal diffusivity 10−6 m2s−1b

R̄ Universal gas constant 8.32 JK−1mole−1

Ξ Latent heat 5× 105 Jkg−1c

Tsol Solidus temperature 1598 Kb

Tcrit Critical temperature 1600 Kb

Tdis Dissagregation temperature not fixed
σsb Stefan Boltzmann constant 5.67× 10−8 Wm−2K−4

εr Emissivity 1d

Table 3.1.: Notation and Parameters which are treated as constants in this study.
References. a Fischer and Spohn (1990); b Moore (2003); c Moore (2001);
d Henning et al. (2009)

Symbol Description Value
e Orbital eccentricity 0.0041a

m[kg] Mass of the object 8.93× 1022 b

Rp[m] Radius of the object 1.82× 106b

Ts[K] Surface temperature 100c

Rc[m] Core radius 9.80× 105d

Ωp[s−1] Orbital angular velocity 4.11× 10−5a

ρm[kgm−3] Mantle density 3300d

Table 3.2.: Notation and parameters for Io.
References. a Jacobson (2003); b Schubert et al. (2004); c Rathbun et al. (2004);
d Segatz et al. (1988)
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Symbol Value
µsol 5.0× 1010 Pa
µ1 8.2× 104 K
µ2 −40.6
η0 1.6× 105 Pas

Table 3.3.: Parameter values for the rheology model according to Fischer and Spohn (1990).
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Figure 3.5.: Dissipation according to time dependent convection (tdC) and tidal heat (DT) for
two different rheologies in a homogenous mantle model. Model parameter see Table 3.1-3.3.
Nu(Ra) according to Eq. (3.29). Credit: Clausen & Tilgner, A&A, 2015, DOI: 10.1051/0004-
6361/201526082, reproduced with permission ©ESO.

We will now use a Nu(Ra) scaling according to Eq. (3.29) for the homogeneous mantle
model to determine the tidal dissipation in Io. With this scaling it is DT ≈ 1.1× 1014W,
as can be deduced from Fig. 3.5. Therefore with this scaling the obtained dissipation rate
is on the order of the observed value. In Clausen and Tilgner (2015) we wrote that we
were unable to reproduce the results of Moore (2003), if we use the scaling for the heat
transport which is stated in his work. Furthermore we wrote that the results in Moore
(2003) were presumably obtained with the heat transfer law for steady-state convection.
But it turns out that his model is more sophisticated than we originally thought. He
used a multi-layered model and thereby determined the radially dependent viscosity and
shear modulus to calculate the tidal dissipation in Io. So his model is not identical with
our simple homogeneous mantle model. It is therefore not surprising that the results for
the tidal dissipation differ, even if we use the same scaling for the heat transport. The
confusion arose among other things by his Fig. 4, in which the tidal heating is plotted as
a function of a single temperature. It is not clear to us what is meant by this temperature
in a multi-layered model. He obtained a tidal dissipation of ≈ 2× 1013W with his model.
So our homogeneous mantle model may be oversimplified.
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Symbol Description M1 M2
dL[m] Lithosphere thickness 30× 103 30× 103

µL[Pa] Lithosphere shear modulus 65× 109 65× 109

µdm[Pa] Deep mantle shear modulus 60× 109 50× 109

ηL[Pas] Lithosphere viscosity 1023 1023

ηdm[Pas] Deep mantle viscosity 1020 1016

Table 3.4.: M1 values according to Segatz et al. (1988) and M2 with a lower shear modulus and
viscosity in the deep mantle. For the lithosphere thickness see also Turtle et al. (2007).

Furthermore, at the interior temperature of the equilibrium found in Fig. 3.5, the rheolog-
ical law assumes a nonzero melt fraction, so that some contribution of melt migration to
the total heat transport is likely. This motivates us to study an asthenosphere model, in
which Io consists of a liquid core, a deep mantle with zero melt fraction, an asthenosphere,
and a lithosphere. We define the asthenosphere as the zone with a nonzero melt fraction.
An asthenosphere with a rock melt fraction of 20% or more and at least 50km thickness
was recently inferred from magnetic data by Khurana et al. (2011), which supports this
model. The results for different asthenosphere thicknesses are shown in Fig. 3.6(a). The
behavior of the tidal dissipation as a function of the asthenosphere temperature DT(T )
depends sensitively on the asthenosphere thickness while the convective heat flux accord-
ing to Eqs. (3.29) and (3.30) does not. This time we only plot the results for B = 25 and
not B = 40, because the difference between the convection-dissipation equilibrium values
for different B values is negligible, at least for 25 ≤ B ≤ 40, as made plausible in Fig. 3.5
and as written in Moore (2003).

Hereinafter we assume 1014W as the nominal value of Io’s tidal dissipation. Furthermore
for the following it is important to know that our calculations have shown that with melt
migration stable equilibra are also possible where the slope of the tidal heating curve is
positive. At the temperature at which the tidal dissipation equals 1014W the convective
heat flux must be less than or equal to 1014W. If it is less than 1014W a contribution
by melt migration is possible. This requires an asthenosphere thickness of at least 100km
as seen in Fig. 3.6(a). An asthenosphere thinner than 100km is also unlikely because it
requires a presumably too high disaggregation temperature to obtain a tidal dissipation
of 1014W. From Fig. 3.6(a) it can be deduced that if melt migration is the dominant
mechanism (i.e. transporting more heat than convection) the asthenosphere must be
bigger then 200km, but still roughly 50% of the heat is transported by convection to
obtain a tidal dissipation of 1014W for a 200km thick asthenosphere.

In Fig. 3.6(b) a similar plot as in Fig. 3.6(a) is shown but with a thermal conductivity
of 2Wm−1K−1 and different asthenosphere thicknesses. Now the asthenosphere needs to
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be larger than 75km and for melt migration as the dominant heat transport mechanism
larger than 150km. For this conductivity and a 150km thick asthenosphere roughly 50%
of the heat is transported by convection to obtain a tidal dissipation of 1014W before the
peak. But 2Wm−1K−1 is presumably a too low value which may not even be valid for
familiar igneous rocks, such as basalt, at laboratory pressures (Stacey, 2007).

The result is also influenced by the right parameterization of convection, as written by
Dumoulin et al. (1999) a Nu(Ra) parameterization with a 1/3 Rayleigh exponent is valid
only for cases in the chaotic regime, this regime applies for large values of the Rayleigh
number typically larger than 108, which is the case for Io. But for comparison in Fig.
3.7(a) a Nu(Ra) scaling according to Eq. (3.32) was used. Then the asthenosphere needs
to be larger than 75km and for melt migration as the dominant heat transport mechanism
larger than 150km. In Fig. 3.7(b) a Nu(Ra) scaling according to Eq. (3.29) was used but
with ς = 0.3 and α = 1.3 instead of 1/3 and 4/3. For that case the asthenosphere needs
to be thicker than 60km and melt migration is the dominant heat transport already for an
asthenosphere thicker than 100km. For comparison also a model with higher dissipation in
the mantle was considered, see Fig. 3.6(a) the M2 model. For this model with an 100km
thick asthenosphere at 1631K it is DT ≈ 1014W and roughly half of the tidal heating is
produced in the asthenosphere at this temperature. For the M1 model with a 100km thick
asthenosphere at 1634.4K it is also DT ≈ 1014W, whereby for this model roughly 99.5%
of the heat are produced in the asthenosphere. The amount of heat which is produced in
the asthenosphere was calculated with the help of Eq. (3.27).

For simplicity so far the melt fraction is assumed constant throughout the asthenosphere.
Especially if heat transport by melt migration is important a viscosity change with depth
similar as in Fig. 1 of Moore (2001) is expected. The lowest viscosity is found at the top
of the melting zone, we call this viscosity in the following ηBL. The tidal dissipation with
a depth dependent viscosity due to melt migration is smaller than the tidal dissipation
with a constant viscosity ηc for ηc = ηBL and identical asthenosphere thickness as long
as ηBL is lower than the viscosity at which the tidal dissipation peaks, because then
the tidal dissipation decreases if the viscosity increases. We confirmed this relationships
by simulations. The convective heat flux is only little affected by a depth dependent
viscosity, if the Rayleigh number is defined by the viscosity ηBL, at least for high Nusselt
numbers and a strong viscosity contrast due to the temperature dependence of the viscosity
(Dumoulin et al., 1999). Therefore the obtained asthenosphere thicknesses in this section
can be viewed as lower bounds, because we need thicker asthenospheres in the case with
a depth dependent viscosity due to melt migration to obtain the same tidal dissipation as
in the constant viscosity case. Below it will be shown that our determined asthenosphere
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Figure 3.6.: Tidal dissipation (DT) and transported heat assuming time dependent convection
(tdC) for three different asthenosphere thicknesses with a conductivity of 4Wm−1K−1 (a) as
general assumed in this study and for comparison with a conductivity of 2Wm−1K−1 (b). Model
parameter see Tables 3.1-3.4, if not otherwise stated in the legend the values for Model 1, M1,
were used. Nu(Ra) according to Eq. (3.29) (tdC). B = 25.

thicknesses are not only a lower bound, they are furthermore a proper estimate for the
thickness with depth dependent viscosity.

Now we want to include melt migration. As already stated a contribution by melt migra-
tion is likely. Moore (2001) calculated according to his Eqs. (6) and (7) that all of Io’s
tidal heat can be transported by melt migration for melt fractions below 20%, depending
on the exact parameters. But both crystal size and melt viscosity are uncertain. Carr
et al. (1998) assumed a crystal size ∼ 1mm and Keszthelyi et al. (2004) suggests that
the liquid viscosity ηl varies between 1 and 400Pa s and the density contrast between 520
and 690kg/m3 as partial melting varies between 50% and 20%. Here we calculate with a
viscosity ηl and a density contrast ∆ρ obtained with the MELTS program (Ghiorso and
Sack, 1995), as in Keszthelyi et al. (2004) for the LL-chrondite model (Keszthelyi et al.,
2004). In Figs. 3.8(a) and 3.8(b) the heat flux for melt migration was calculated accord-
ing to Eq. (3.50). With a significant contribution by melt migration to the heat flux the
obtained tidal heat depends on the melt fraction coefficient B, because in the Darcy law
the viscosity of the liquid is used and the tidal dissipation depends on the viscosity of
the partially molten rock. If our parameterizations are correct and we have e.g. a 400km
thick asthenosphere, B = 25 and grain size b = 5mm, the obtained tidal dissipation is
9.1× 1013W, see Fig. 3.8(a). The contribution by convection can be ignored in this case.
These calculations show that taking into account melt migration, stable equilibra are also
possible where the slope of the tidal heating curve DT (T ) is positive, see e.g. Figs. 3.8(a)
and 3.8(b). For a heat transport only by convection this is generally not the case because
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Figure 3.7.: As in Fig. 3.6(a) but with a Nu(Ra) scaling according to (3.32) (a) and with the same
scaling as in (3.29) but with ς = 0.3 and α = 1.3 instead of 1/3 and 4/3(b), the asthenosphere
thicknesses can be found in the respective legend. B = 25.

an equilibrium between heat transport and tidal heat flux is stable only if the slope of
the tidal heating curve is smaller than the slope of the heat transport curve, otherwise a
runaway temperature increase would occur.

From Figs. 3.8(a) and 3.8(b) we can deduce that only for small grain sizes it is possible that
convection is the dominant heat transport mechanism, smaller than 2.2mm for B = 40 and
even smaller for B = 25. If the tidal dissipation is 1014W and convection dominates the
heat transport, more than 5× 1013W must be carried by convection. The curves for heat
fluxes due to convection and melt migration intersect at 5×1013W for a grain size of 2.2mm
in Fig. 3.8(b). The tidal dissipation of 1014W is realized for an asthenosphere thickness
slightly thicker 200km for this grain size and the temperature of the intersection point.
We can deduce from this figure that a a tidal dissipation of 1014W for B = 40 is mainly
transported by convection for smaller grain sizes than 2.2mm and by melt migration for
larger. For B = 25 the analogue grain size boundary lies at smaller values, see Fig. 3.8(a).

In the remainder of this section we assume that disaggregation happens at a viscosity of
1012 Pa s, which is already a low viscosity for a partial molten mantle with a competent
solid matrix (Kohlstedt and Mackwell, 2009). This means we assume Tdis as the tempera-
ture corresponding to a viscosity of 1012 Pa s. Presumably only if a mushy magma ocean,
a mix of crystals and melt, could exist smaller viscosities than 1012 Pa s would be possible.
If such a mush zone could exist is questionable because of the separation process. Steven-
son (2002) predicts that a mushy magma ocean thicker than 20km would be unstable
over geologic timescales. If smaller viscosities would be attainable equilibria between heat
transport and tidal heat production would be possible where the slope of the DT (T ) curve
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is negative. But to obtain a tidal dissipation of 1014W at a higher temperature than the
peak temperature the grain size needs to be small, smaller than 0.5mm (see Figs. 3.8(a)
and 3.8(b)) and the asthenosphere needs to be large, for b = 0.5mm larger than 600km.

From Fig. 3.9(a) we can deduce that our calculations with a constant melt fraction in
the asthenosphere are roughly correct. For this plot we considered melt migration as the
sole heat transport mechanism. The largest discrepancy is present for an asthenosphere
thickness of 250km and B = 25, the obtained grain size differs in this case by a factor of 2.
The grain size is only poorly known to begin with, therefore this difference is acceptable.
Figure 3.9(b) also confirms that our estimated asthenosphere sizes deduced from Fig.
3.6(a) are appropriate for a rough estimate and are a lower bound. Comparing the models
with variable and constant viscosity, we find that for a tidal dissipation of 1014W and any
given asthenosphere thickness, the melt fraction is slightly higher at the top of the molten
zone for the case of a variable viscosity profile. The difference is strongest for B = 40
and a 250km thick asthenosphere. For this case the melt fraction differs by 10%, which
corresponds to a temperature difference of 10K. TheNu(Ra) relation is not exactly known,
so that a temperature difference of 10K is of little importance. Furthermore, because the
melt fractions on top are always higher for the variable viscosity profile, our asthenosphere
thicknesses are a lower bound.

It can be deduced from Fig. 3.10 that with increasing asthenosphere thickness melt mi-
gration becomes more important and the grain size needs to be larger to obtain a tidal
dissipation of 1014W. If viscosities smaller than 1012 Pa s would be attainable a dominant
contribution by convection is also possible for big asthenosphere thicknesses. Such small
viscosities are not considered in Fig. 3.10 but our calculations revealed that it is possible
to obtain a tidal dissipation in the range of the observed one for a viscosity smaller than
1012 Pa s, an asthenosphere larger than 785km and a grain size smaller than 100µm. For
asthenosphere thicknesses in the range from 200km to 785km melt migration is always the
dominant mechanism.

3.3.2. Tidal dissipation of Corot 7 b

The tidal evolution of Corot 7b was computed among others by Rodríguez et al. (2011).
It is usually assumed by these authors that Q′ = 100 on the grounds that Corot 7b is a
terrestrial planet (see also e.g. Léger et al. 2011). It will be shown in this section that
reasonable assumptions about terrestrial exoplanets lead to values of Q′ scattered over
several orders of magnitude, but Q′ = 100 is a realistic approximation.
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Figure 3.8.: Heat transported by melt migration (mm) for three different grain sizes, assuming time
dependent convection (tdC) and tidal heat (DT) for three different asthenosphere thicknesses
and B = 25 (a) and B = 40 (b), model M1. See Tables 3.1-3.4 for model parameters. Nu(Ra)
according to Eq. (3.29) for time dependent convection and melt migration according to Eq.
(3.50). Credit: Clausen & Tilgner, A&A, 2015, DOI: 10.1051/0004-6361/201526082, reproduced
with permission ©ESO.
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Figure 3.9.: The grain size b (a) and the corresponding melt fraction at the top of the melting zone
(b) for which a tidal dissipation of 1014W is obtained as a function of asthenosphere thickness,
calculated with a constant melt fraction in the asthenosphere (φ const) according to Eq. (3.50)
and a variable (φ vari) as described in Sect. 3.1.2. The convective heat transport is neglected.
Credit: Clausen & Tilgner, A&A, 2015, DOI: 10.1051/0004-6361/201526082, reproduced with
permission ©ESO.
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Figure 3.10.: Amount of heat transported by time dependent convection (Dc) divided by the
total heat transported by convection plus melt migration (DT ) as a function of asthenosphere
thickness (a). The corresponding grain size (b) was chosen such that the value of tidal dissipation
is 1014W, respectively 6×1013W for small asthenosphere thicknesses, were a value of 1014W was
not accessible. The M1 model was used, model parameter see Tables 3.1-3.4. Nu(Ra) according
to Eq. (3.29) for time dependent convection and melt migration according to Eq. (3.50).
Credit: Clausen & Tilgner, A&A, 2015, DOI: 10.1051/0004-6361/201526082, reproduced with
permission ©ESO.

In the following, we will obtain Q′ for objects surrounding Corot 7b’s host star, which
have either the size and density of Corot 7b or the size and density of Io, and which have
orbital periods P of either P = 2d or P = 6d.

Various heat transport mechanisms will be considered with the same rheology as for Io
in the previous section, model M1, but for the deep mantle we use a lager viscosity, see
Table 3.5.

For the case of melt migration, the grain size b equals either 1mm or 5mm. The viscosity ηl

and the density contrast ∆ρ are again calculated with the MELTS program (Ghiorso and
Sack, 1995) as in Keszthelyi et al. (2004) for the LL-chrondite model (see Keszthelyi et al.
2004). The surface temperature is determined with Eq. (3.55). Again Tdis is assumed to
be the temperature corresponding to a viscosity value of 1012 Pa s.

The results are summarized in Figs. 3.11 and 3.12, in which Q′ is given as a function
of eccentricity e in a range of eccentricities which may plausibly be encountered during
orbital evolution.

For eccentricities too large the tidal forcing is so strong that melt fraction coefficients
larger than the melt fraction at the assumed disaggregation point would be necessary to
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Figure 3.11.: Q′ as a function of eccentricity calculated with depth dependent viscosity as described
in Sect. 3.1.2, for a planet with the size and density of Corot 7 b and four different asthenosphere
thicknesses. The contribution by a convective heat transport is not included for the calculation
of Q′ . Two different orbital periods P = 2d (a) and P = 6d (b) were considered. If not otherwise
stated b = 5mm and B = 40. Model parameter see Tables 3.1 and 3.3-3.5. Credit: Clausen &
Tilgner, A&A, 2015, DOI: 10.1051/0004-6361/201526082, reproduced with permission ©ESO.

transport the heat. This applies to both heat transport mechanism, convection and melt
migration. With increasing eccentricities the tidal dissipation curve is shifted to higher
values for temperatures smaller than Tdis. If the eccentricity exceeds a certain value an
intersection with the heat transport curve becomes impossible for a given Tdis. Therefore
no Q′ values were obtained at large eccentricities. With a heat transport by convection
and small eccentricities it is possible that the tidal dissipation is too small at any given
temperature to maintain a heat flux compatible with the convective heat transport at that
temperature, so that there can be no equilibrium between convective and tidal heat fluxes.
For this case no Q′ can be determined, either.

From Figs. 3.11 and 3.12 it can be deduced that a Q′ of 100 is a realistic approximation
for planets under strong tidal forcing. The values for Q′ lie mainly between 10 and 1000.
With melt migration as the dominant heat transport mechanism, Q′ larger than 1000 is
only possible for small asthenospheres at small periods or very high eccentricities.

From the figures it can be deduced that there is an influence of heat transport mechanism,
eccentricity, orbital period, asthenosphere thickness and size of the object on Q′. The
asthenosphere thickness has a huge influence on Q′. Because asthenosphere thicknesses are
presently not known for any exoplanet it is not useful to describe in detail the dependencies
of Q′ on the other parameters.
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Figure 3.12.: (a) As in Fig 3.11 but for a planet with the size and density of Io. The respective
orbital period is quoted in the legend. See Tables 3.1-3.4 for model parameters. (b) Q’ for
stagnant lid convection (sl) and plate tectonic convection (pt) as the dominant heat transport
mechanism as a function of the eccentricity, for a planet with the size and density of Corot 7 b.
Credit: Clausen & Tilgner, A&A, 2015, DOI: 10.1051/0004-6361/201526082, reproduced with
permission ©ESO.

Symbol Description Value
m[kg] Mass of the object 31.06× 1024a

Rp[m] Radius of the object 10.07× 106a

Rc[m] Core radius 5.25× 106a

ρm[kgm−3] Mantle density 5490a

L[W] Stellar luminosity 1.84× 1026b

mstar[kg] Stellar mass 1.81× 1030b

A Planetary albedo 0.3
ηdm[Pa s] Deep mantle viscosity 1025

Table 3.5.: Notation and parameters for Corot 7 b. For the planetary albedo we assume a
typical value for terrestrial planets. For the deep mantle viscosity we assume a higher
value as in Io as expected for a super earth (Tackley et al., 2013).

References. a Wagner et al. (2012); b Léger et al. (2011)
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3.4. Conclusion and discussion

In this work the tidal dissipation of rocky planets was investigated for planets with a near
equilibrium tide, excluding dynamic tides as the oceanic tides on Earth. Throughout this
chapter, “planet” denotes the tidally deformed body, be it a planet or a moon. Tidal
forcing is assumed to be strong in the sense that there is a stable equilibrium between
tidal dissipation and heat transport due to convection or melt migration. This equilibrium
determines the tidal dissipation of the planet.

The method used here is adapted from the method by Moore (2003) (see also Fischer and
Spohn 1990). This method is only applicable to planets with a heat budget dominated by
tides and solar/stellar radiation. Radiogenic and accretional heat production are ignored.
Both the tidal dissipation rate and the convective heat flow depend on the viscosity which
in turn depends on temperature. Therefore the temperature must be adjusted such that
there is an equilibrium between tidal heat flow and convective heat flow.

The heat flow due to melt migration depends contrary to the convective heat flux and the
tidal heat production on the viscosity of the liquid in the partially molten region and not
on the viscosity of the partially molten rock.

For the case of melt migration the equilibrium heat production therefore depends on the
melt fraction coefficient, and also on the grain size. It is more precise to take into account
the depth dependence of the viscosity than using a single viscosity for the partial molten
region. For the case of a heat transport dominated by melt migration this is possible by
coupling Eq. (3.11) with Eqs. (3.47) and (3.48).

Tidal dissipation was calculated for a body consisting of a solid mantle with a lithosphere,
a convecting asthenosphere and a liquid core. Stagnant lid, plate tectonic convection,
and melt migration were considered. It was shown that the tidal dissipation of Io can
be explained by an equilibrium between convection and tidal heat production. But for
the basic assumptions, which entail that the Nu(Ra) scales according to (3.29) and that
the smallest attainable viscosity is 1012 Pa s, a heat transport dominated by convection is
only possible for an asthenosphere smaller than ∼ 200km, but larger than ∼ 100km, and
grain sizes smaller than 2.2mm, if B ≤ 40. With an exponent of −1.3 and 0.3 instead
of −4/3 and 1/3 in the Nu(Ra) relationship Eq. (3.29), as used in Fig. 3.6(a), a heat
transport dominated by convection becomes more unlikely, because then the asthenosphere
needs to be smaller than ∼ 100km for a heat transport dominated by convection. But
an asthenosphere smaller than ∼ 100km is unlikely, because it requires a presumably too
high disaggregation temperature to obtain a tidal dissipation of 1014W.
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Corot 7b was also investigated as an example of an exoplanet. The modified tidal quality
factor Q′ of a planet depends on its size. Such a dependence is already mentioned in
Efroimsky (2012) as a result of a gravitational effect, whereas here also thermal effects are
considered. The radius of exoplanets is usually well constrained by observations, while
the eccentricity of their orbit is not. However, Q′ also depends on eccentricity and orbital
frequency as shown above, which also implies that Q′ varies during orbital history.

Another large uncertainty is introduced by the parameters characterizing the heat trans-
port. These uncertainties add up to a range of plausible values for Q′ spanning several
orders of magnitude. But our results suggest that a Q′ value of 100 is a realistic approxi-
mation for strong tidal forcing. The values for Q′ lie mainly in the range 10 to 1000, see
Figs. 3.11 and 3.12.
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The motivation for this chapter is the finding in Chap. 2 that the question if an elliptical
instability is possible depends decisively on how turbulent motion has to be considered by
the calculation of the decay rate. The growth rate of the elliptical instability depends on
the decay rates of the single modes see Eqs. (2.37) and (2.38), or e.g. Kerswell (1994), and
thereby on the viscosity. For the viscosity, it is important to know if turbulent convection
is present such that a turbulent viscosity has to be introduced or if using only the molecular
viscosity is appropriate. In Sect. 2.3.1 it is written how to model turbulent viscosity. The
intention for this section was to determine more precisely how inertial modes are affected
by turbulent motion. It will now be explained what the original plan was, which we were
not able to complete and is left for future studies. The reference frame is rotating with
Ωsẑ. We consider a region confined in the z-direction. The basic flow has only a velocity
component in the x-direction and depends only on the z component, u0(z)x̂. u0(z) is
randomly chosen, but nondimensionalized such that u0(z) ∈ [−1, 1] and the arithmetic
mean value of the basic flow has to be zero. For the perturbation velocity, we make an
ansatz for inertial modes. The problem reduces then to a one dimensional problem, which
can be solved with a shooting method. From the imaginary part of the frequency of
the inertial mode, which we determine directly by the shooting method, we can calculate
the turbulent viscosity. In the following sections the Euler equation is considered. For
a validation of the shooting method, we perform an analytical calculation of a simplified
version of the problem described above with u0(z) = −U for z < 0 and u0(z) = U for
z ≥ 0. We numerically treat the problem with u0(z) = U tanh(Fsz) to avoid the velocity
jump. We expected that the resulting profiles resemble each other for suitable chosen Fs

and identical remaining parameters.

4.1. Equations for fluid motion in Ekman-Couette flow

We consider an incompressible fluid. The governing equations of fluid motion are the
Navier-Stokes equations

∂tu + u · ∇u + 2Ω0ẑ× u = −1
ρ
∇p+ ν∆u, (4.1)

∇ · u = 0, (4.2)

where u(x, y, z, t) is the flow velocity field and p(x, y, z, t) is the pressure field. The fol-
lowing proceeding with the governing equations is similar to the formulation in Shi et al.
(2014). We nondimensionalize the equations by taking the half gap distance between the
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two plates D/2 as the length unit and D/2U as the time unit,

l = l∗D/2, t = t∗D/2U, u = u∗U, p = p∗ρU2. (4.3)

Henceforth, we will omit the stars at the symbols, which indicate the nondimensionality
in the equations. The nondimensional form of Eqs. (4.1) can now be written as

∂tu + u · ∇u + 1
Ro

ẑ× u = −∇p+ 1
Re

∆u, (4.4)

∇ · u = 0, (4.5)

with the Reynolds number and the Rossby number

Re = UD

2ν , Ro = U

Ω0D
, (4.6)

respectively. The base velocity profile has the form of [u0(z), 0, 0]. The velocity can be
decomposed into its value in the basic state and a perturbation, which is considered to be
small: u = u0(z)x̂ + u′. By taking the curl of Eq. (4.4) once and twice, respectively, and
then projecting into the z direction, we obtain the linearized equations for the perturbation
values (w, η),

∂t∇2w + u0∂x∇2w − (∂xw)(∂2
zu0) = 1

Re
∇4w − 1

Ro
∂zη

∂tη + u0∂xη − (∂yw)(∂zu0) = 1
Re
∇2η + 1

Ro
∂zw,

(4.7)

with w the z-component of the velocity u′ and η the z-component of the perturbation
vorticity.

Henceforth, we consider the inviscid case. We want to treat the system analytically and
numerically. For the analytical case we assume for simplification instead of a continuous
varying basic velocity field, a velocity field that in the upper region (z > 0) has constant
velocity U and in the lower region (z < 0) −U . We have a discontinuity in this case and
need jump conditions to solve the problem. The derivation of the governing analytical
equations can be found in the results, Sect. 4.2.

We numerically solve the problem of a continuous varying velocity field which has the
form u0(z) = U · tanh(Fsz). We expect that the numerical calculations approximates the
analytical calculation for suitable Fs and otherwise the same parameter. So we can use
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the analytical calculation to check our numerical code. We start from the equations

∂t∇2w + u0∂x∇2w − (∂xw)(∂2
zu0) = − 1

Ro
∂zη, (4.8)

∂tη + u0∂xη − (∂yw)(∂zu0) = 1
Ro

∂zw, (4.9)

which is the inviscid counterpart of Eq. (4.7). Substituting the ansatz

w = ŵ(z)ei(ωt−kxx−kyy), η = η̂(z)ei(ωt−kxx−kyy), (4.10)

into Eq. (4.9) and isolating η̂ gives

η̂ = (∂zu0)kyŵ − i(∂zŵ/Ro)
ω − u0(z)kx

. (4.11)

Substituing this and the ansatz (4.10) into Eq. (4.8) gives

ω(∇̂2ŵ)− u0kx∇̂2ŵ + kxŵ(∂2
zu0)− 1

Ro
∂z

( ikyŵ(∂zu0) + (∂zŵ/Ro)
ω − u0(z)kx

)
= 0, (4.12)

with ∇̂2 = ∂2
z − (k2

x + k2
y). Now we have eliminated η̂ in the equation. This last equation

can be solved with a shooting method (Press et al., 1992) to obtain ŵ(z) and the eigenvalue
ω, for certain kx, ky, Ro and Fs.

4.2. Results

For the inviscid, analytical case Eq. (4.7) can be written as

∂t∇2u± U∂x∇2w = − 1
Ro

∂zη, (4.13)

∂tη ± U∂xη = 1
Ro

∂zw, (4.14)

with the upper sign for z > 0 and the lower for z < 0. These two equations can be
combined to eliminate η

(∂t ± U∂x)(∂t ± U∂x)∇2w = − 1
Ro

∂z(∂t ± U∂x)η = − 1
Ro2∂zw. (4.15)

As we are interested in inertial modes, we make the ansatz for the perturbation velocity

w = ŵ(z)ei(ωt−kxx−kyy), (4.16)
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where kx and ky are the wavenumbers in the x and y direction and

ŵ(z) = A±e
iγ±z +B±e

−iγ±z. (4.17)

Substituting this ansatz in Eq. (4.15) gives

γ± = k

( 1
(ω ∓ kxU)2Ro2 − 1

)−1/2
, (4.18)

with k =
√
k2
x + k2

y. Because we consider an inviscid flow, the velocity has only to satisfy
the no penetration condition at the liquid-solid boundary w(z = ±d/2) = 0 and therefore
it needs to be ŵ(z = ±d/2) = 0:

A±e
±iγ± +B±e

∓iγ± = 0. (4.19)

Furthermore, we need jump conditions at the velocity discontinuity. We expect that here
the continuity of particle displacement needs to be satisfied. This condition differs from the
condition of a continuous particle velocity because of the convective term. The correctness
of this condition has been pointed out before by Miles (1957), Ribner (1957) and Ingard
(1959) for acoustic wave reflection and transmission at an interface between two moving
fluids, but without rotation. With S(x, y, t) as the z-coordinate of the free boundary (the
discontiuity), a particle on the free boundary has the z-coordinate S, it is

w = D

Dt
S = ∂tS + u∂xS + v∂yS, (4.20)

with u and v the velocities in x- and y-direction, respectively. We consider small pertur-
bations, therefore we could linearize the above equation, this gives

w = (∂t ± U∂x)S. (4.21)

and for the limit to ±0
w
∣∣
0+ = (∂t + U∂x)S,

w
∣∣
0− = (∂t − U∂x)S.

(4.22)

Therefore, it is

(∂t − U∂x)w|0+ = (∂t + U∂x)w|0− = (∂t + U∂x)(∂t − U∂x)S, (4.23)

with Eq. (4.16) this gives the condition

(ω + Ukx)(A+ +B+) = (ω − Ukx)(A− +B−). (4.24)
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Now we want to derive a fourth condition which can be deduced from the fact that the
pressure needs to be continuous at the free boundary. For the pressure, we make the
ansatz

p = p̂(z)ei(ωt−kxx−kyy), (4.25)

with p̂(z) = (C±eiγ±z +D±e
−iγ±z). The linearized Euler equations read

∂tu + 1
Ro

ẑ× u± U∂xu = −∇p, (4.26)

∇ · u = 0, (4.27)

and the z-component of the momentum equation, Eq. (4.26),

∂tw ± U∂xw = −∂zp. (4.28)

Calculating the divergence of the Euler equation gives

−∇2p = − η

Ro
, (4.29)

this gives together with Eq. (4.13)

(∂t ± U∂x)∇2p = ∂zw

Ro2 . (4.30)

Substituing Eq. (4.25) in Eq. (4.30) gives

C± = ω ∓ kxU
γ±

(−A±),

D± = ω ∓ kxU
γ±

B±.

(4.31)

Now with the continuity of p at the velocity discontinuity, we get the fourth condition

ω − kxU
γ+

(−A+ +B+) = ω + kxU

γ−
(−A− +B−). (4.32)

Combining the four deduced conditions gives

−
(
γ+ ·

d

2

)
tan

(
γ+ ·

d

2

)
(ω + Ukx)2 =

(
γ− ·

d

2

)
tan

(
γ− ·

d

2

)
(ω − Ukx)2. (4.33)

This equation together with Eq. (4.18) will be used to calculate ω and γ± at certain kx,
ky, d, Ro and U .

We now want to check our analytical solution. This can be performed by calculating
analytically ω and γ± for given kx, ky, d, Ro and U as described above. Then we solve
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(a) (b)

Figure 4.1.: Real (red solid line) and imaginary part (green dashed line) of the velocity component
ŵ as a function of height for the analytical calculation (left) and the numerical calculation
according to Eq. (4.12) (right). Wave parameters are kx = 3, ky = 1 and ω ≈ 0.611 and it is
U = 0.1 and for the numerical calculation Fs = 160.

numerically with MAPLE the Eq. (4.12) for the analytical calculated ω, the other pa-
rameters are the same, but u0(z) = U tanh(Fsz) because with a discontinuous shear flow
a numerical calculation is not possible. The result of an example calculation can be seen
in Fig. 4.1. From this figure it can be deduced that in the lower part of the shear flow,
where we started our numerical integration, the analytical and numerical solution show a
good match. In the upper part (z > 0), the two solutions do not agree. From this we can
deduce that presumably the jump condition is not correct, but to verify our calculation
we also conduct an other derivation of an equation with the velocity component w as the
only variable and solve this numerically, instead of Eq. (4.12). To obtain this equation,
we combine Eq. (4.4) which corresponds to 3 scalar equation and Eq. (4.5) such that
we get an equation for the velocity component w alone. We use MAPLE to perform the
necessary operations on the equations. The resulting equation is a bit lengthy, therefore
we display the commands and resulting equations in Fig. F.1. In Figs. 4.2 and 4.3(b),
w and p according to Eqs. eqv and pw (see Fig. F.1(b)), respectively, is plotted. We see
Fig. 4.2 matches well with Fig. 4.1(b). In Fig. 4.3(a) c3 is plotted, which is given by

c3 = (ω + u0(z)kx)ŵ(z). (4.34)

If the condition according to Eq. (4.24) would be satisfied by the numerical calculation,
c3 needs to be continuous. From Fig. 4.3(a) we can see that this is not the case, but
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the pressure is continuous in the numerical calculation, see Fig. 4.3(b). From this we can
deduce that the condition of pressure continuity at the free boundary is correct and the
error lies presumably in the condition of particle displacement.

Figure 4.2.: Real (red solid line) and imaginary part (green dashed line) of the velocity component
ŵ as a function of height for the numerical calculation according to the Eq. eqv, displayed in
Fig. F.1. Parameters as in Fig 4.1.

4.3. Conclusion and discussion

In this chapter we considered a basic velocity profile u0(z)x̂ in the form of a stairstep,
u0(z) = −U for z < 0 and u0(z) = U for z ≥ 0. The system is rotating with Ωsẑ, therefore
the propagation of inertial modes is possible. The flow is confined in the z-direction. The
governing inviscid equations were solved analytically with an ansatz for the perturbation
velocity describing inertial modes. At the velocity discontinuity jump conditions have to be
satisfied. A similar problem was solved numerically with MAPLE, where the discontinuous
velocity profile was substituted by a continuous profile u0(z) = U tanh(Fsz). We expected
that for appropriate Fs and otherwise the same parameters as in the analytical case the
numerically calculated velocity profiles would resemble the analytically calculated velocity
profile. But this was not the case, see Fig. 4.1. Because in the lower part z < 0, where we
started our numerical calculations, the profiles are similar, and in the upper part z > 0
the solutions do not agree, we assume that the error lies in the jump conditions for the
analytical case. We can see in Fig. 4.3 that the condition for the continuity of particle
displacement is not fulfilled numerically contrary to the condition of constant pressure,
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(a) (b)

Figure 4.3.: Real (red solid line) and imaginary part (green dashed line) of c3, Eq. (4.34), as a
function of height for the numerical calculation according to the Eq. eqv, displayed in Fig. F.1,
(left) and the real and imaginary part of the corresponding pressure p̂ according to Eq. pw,
displayed in Fig. F.1, (right). Parameters as in Fig 4.1.

which indicates that this condition in incorrect. The condition of continuity of particle
displacement in the used form may be correct without rotation, but it needs to be checked
if the rotation changes this condition.
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This thesis is divided into three main parts, in accordance with the last three chapters.
The common feature of these three parts is that they all aim to better understand the
tidal dissipation in planets and/or stars.

In Chap. 2 we investigated the elliptical instability under the influence of compressibility.
To determine the growth rates we studied the linear stability of the flow. We solved the
Euler equations. The viscosity was then introduced in our calculations heuristically. We
assumed a power law for the radial dependence of the background density. Together with
the use of the anelastic approximation, this enabled us to apply semi-analytical methods
for solving the equations. We found that the growth rate of a certain mode combination
depends on the compressibility. However, the influence of the compressibility is negligible
for the growth rate maximized over all possible modes if viscous bulk damping effects can
be neglected. The growth rate maximized over all possible modes determines the stability
of the flow. From this we can deduce that the stability limits for the compressible flow are
the same as for the incompressible flow as long as the effects of viscous bulk dissipation
are negligible. But depending on the ratio ΩP /ΩF , with ΩF the spin rate of the central
object in the frame of the rotating tidal perturber and ΩP the orbiting frequency of the
tidal perturber in the inertial frame, certain pairs of modes resonate with each other.
Because the size of the bulk damping term depends on the modes that resonate with
each other, the growth rate of the viscous flow depends on the compressibility. However
the difference in the stability limit caused by the compressibility is in general negligible
against the uncertainty in the estimation of the turbulent viscosity. Furthermore, as the
correct choice of the boundary conditions for stars and giant planets is unclear, another
uncertainty is introduced.

In Chap. 3 we investigated the tidal dissipation of rocky planets for strong tidal forcing.
Tidal dissipation depends on the heat transport mechanism. For strong tidal forcing,
one can obtain an equilibrium between heat transport by convection and heat production
by tidal dissipation, which determines the tidal dissipation. By this means we checked
whether convection is the dominant heat transport mechanism in Io. The tidal dissipation
also depends on the interior model of Io. We considered various asthenosphere thicknesses
and determined which of these gives results that are compatible with observations. Fur-
thermore, we determined the modified tidal quality factors (Q′) for Corot-7b for various
orbital parameters but such that tidal forcing is strong and used convection and melt
migration as a possible heat transport mechanism. We did the same for a hypothetical
planet with the size and density of Io on the orbit of Corot-7b. We found that a heat
transport dominated by convection in Io is possible, but for this the grains size needs to be
smaller than 2.2mm. For larger grain sizes melt migration is the dominant heat transport
mechanism. Additionally, we found that Io’s asthenosphere must be thicker than 100km.
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The computation of the modified tidal quality factors (Q′) for Corot-7b and a planet with
the size and density of Io on the orbit of Corot-7b show that Q′ is scattered over several
orders of magnitude, but a value of 100 for Q′ is an acceptable estimate for a rocky planet
under strong tidal forcing. For Corot-7b and the planet with the size and density of Io
we also used a model with different asthenosphere thicknesses. Our calculations revealed
that the asthenosphere thickness has a huge influence on Q′. Asthenosphere thicknesses
for exoplanets are presently unknown, therefore a description about the dependencies of
Q′ on the size of the planet, its orbital eccentricity, and heat transport mechanism was
not stated.

In Chap. 4 we investigated inertial modes in shear flow. The aim was to better estimate
the influence of turbulence on inertial modes in order to better quantify the turbulent
viscosity, inspired by the findings in Chap. 2. This task remains unfinished and is left for
future studies. In this part we considered a basic velocity profile u0(z)x̂ in the form of
a stairstep, u0(z) = −U for z < 0 and u0(z) = U for z ≥ 0 and one with a continuous
profile u0(z) = U tanh(Fsz). The system rotates with Ωsẑ and the flow is confined in the z-
direction. The governing inviscid equations were solved analytically with an ansatz for the
perturbation velocity describing inertial modes for the stairstep profile and numerically,
for the continuous profile. We expected that for an appropriate Fs and otherwise the same
parameters as in the analytical case, the numerically calculated velocity profiles would
resemble the analytically calculated velocity profile. But this was not the case. For the
analytical case, two jump conditions must be fulfilled: continuity of particle displacement
and continuity of pressure. Numerically, the latter condition is fulfilled but not the former.
We therefore assume that the condition of continuity of particle displacement cannot be
correct with rotation; without rotation it is used often and its validity has been widely
recognized for a long time (Miles, 1957; Ribner, 1957; Ingard, 1959).
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A Eigenvalue problem for the power-
law density sphere

This derivation is in accordance with the work in Wu (2005a) (details can be found therein).
The following definition will be used

ζ = − ω + k

2(1 + Ω) . (A.1)

Equation (2.25) can now be written as

ξ + i
ζ
ẑ× ξ = ∇ψ̃, (A.2)

with ψ̃ = ψ/(ω + k)2. The subscript j, which indicates the respective mode, is omitted
here. The relationship between ξ and ψ̃

ξ = 1
1− 1

ζ2

(
1− i

ζ
ẑ×− 1

ζ2 ẑẑ·
)
∇ψ̃ (A.3)

can be deduced by operating on Eq. (A.2) with ẑ· and ẑ×. Combining this equation with
Eq. (2.27) gives

∇2ψ̃ − 1
ζ2
∂2ψ̃

∂z2 = 1
H

(
∂ψ̃

∂r
− 1
ζ2 cos θ∂ψ̃

∂z
−
k 1
ζ

r
ψ̃

)
, (A.4)

with the zenith angle θ̄ and cos θ̄ = z̄/r̄, with z̄ being the height along the rotational
axis. The partial derivatives here are to be understood as ∂/∂r̄ = ∂/∂r̄|θ̄, ∂/∂θ̄ = ∂/∂θ̄|r̄,
∂/∂z̄ = ∂/∂z̄|s̄, and ∂/∂s̄ = ∂/∂s̄|z̄, with s̄ the cylindrical radius. The overline denotes
that the coordinates are chosen with respect to a reference frame rotating with ΩF + Ωp.
In this appendix the coordinates are always chosen in that way, therefore we omit the
overline henceforth.



90 A. Eigenvalue problem for the power-law density sphere

Now following Bryan a set of ellipsoidal coordinates (x1, x2, ϕ) will be used, x1 and x2

depend on the value of ζ. The left hand side of Eq. (A.4) is separable in these coordinates.
The right side of the same equation is generally inseparable, but for the two special cases
of uniform and power law density profile the right hand side becomes separable. The
ellipsoidal coordinates are related to the Cartesian coordinates as

x =
[

(1− x2
1)(1− x2

2)
1− ζ2

] 1
2

cosϕ, y =
[

(1− x2
1)(1− x2

2)
1− ζ2

] 1
2

sinϕ, z = x1x2
ζ

. (A.5)

with x1 ∈ [ζ, 1], x2 ∈ [−ζ, ζ], and ϕ is the azimuthal angle with ϕ ∈ [0, 2π]. The cylindrical
and spherical radii are given by

s2 = x2 + y2 = (1− x2
1)(1− x2

2)
1− ζ2 ,

r2 = x2 + y2 + z2 = 1− (x2
1 − ζ2)(ζ2 − x2

2)
(1− ζ2)ζ2 .

(A.6)

Partial differentiation with respect to s, z and r can be expressed as 1

∂

∂s

∣∣∣∣∣
z

= ∂x1
∂s

∣∣∣∣∣
z

∂

∂x1

∣∣∣∣∣
x2

+ ∂x2
∂s

∣∣∣∣∣
z

∂

∂x2

∣∣∣∣∣
x1

= −(1− ζ2)s
x2

1 − x2
2

(
x1

∂

∂x1
− x2

∂

∂x2

)
,

∂

∂z

∣∣∣∣∣
s

= ∂x1
∂z

∣∣∣∣∣
s

∂

∂x1

∣∣∣∣∣
x2

+ ∂x2
∂z

∣∣∣∣∣
s

∂

∂x2

∣∣∣∣∣
x1

= ζ

x2
1 − x2

2

[
x2(x2

1 − 1) ∂

∂x1
− x1(x2

2 − 1) ∂

∂x2

]
,

∂

∂r

∣∣∣∣∣
θ

= ∂z

∂r

∣∣∣∣∣
θ

∂

∂z

∣∣∣∣∣
s

+ ∂s

∂r

∣∣∣∣∣
θ

∂

∂s

∣∣∣∣∣
z

= −(1− x2
1)x1

(x2
1 − x2

2)r
∂

∂x1
+ (1− x2

2)x2
(x2

1 − x2
2)r

∂

∂x2
.

(A.7)

We consider now density profiles with only radial dependence in spherical coordinates
(r, θ, ϕ) in the form of a power law

ρ = ρ̃0(1− r2)β = ρ̃0[(x1 − ζ)2(ζ2 − x2
2)]β. (A.8)

The density scale height H writes

H−1 ≡ −d ln ρ
dr = −

(
z

r

∂

∂z
+ s

r

∂

∂s

)
ln ρ

= 2 (1− ζ2)ζ2βr

(x2
1 − ζ2)(ζ2 − x2

2) .
(A.9)

1The original equation (A6) in Wu (2005a) is incorrect. The correct form is reproduced here.
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The partial differential equation (A.4) can be recast into[
D1 + 2βx1(1− x2

1)
x2

1 − ζ2
∂

∂x1
+ 2ζβk
x2

1 − ζ2

]
ψ̃ −

[
D2 + 2βx2(1− x2

2)
x2

2 − ζ2
∂

∂x2
+ 2ζβk
x2

2 − ζ2

]
ψ̃ = 0,

(A.10)
with

Di = ∂

∂xi

[
(1− x2

i )
∂

∂xi

]
− k2

1− x2
i

. (A.11)

Therefore, with the density profile in power law form the equation for the inertial modes
are separable. With the decomposition ψ̃(x1, x2) = ψ̃1(x1)ψ̃2(x2), ψ̃i needs to satisfy[

Di + 2βxi(1− x2
i )

x2
i − ζ2

∂

∂xi
+ 2ζβk
x2
i − ζ2

]
ψ̃i +K2

e ψ̃i = 0, (A.12)

with Ke a constant introduced due to the separation of variables, we define K2
e ≡ le(le +1).

In the incompressible case it is ψ̃1 = ψ̃2 = P kn , with P kn a spherical harmonic of the first
kind and n = le. As in Wu (2005a) we now introduce a variable gi that is related to ψ̃i as

ψ̃i(xi) = (1− x2
i )|k|/2gi(xi). (A.13)

This variable satisfies

(1− x2
i )

d2gi
dx2

i

− 2xi(|k|+ 1) dgi
dxi

+ 2βxi(1− x2
i )

x2
i − ζ2

dgi
dxi

+
[
o2 − 2β|k|x2

i

x2
i − ζ2 + 2βkζ

x2
i − ζ2

]
gi = 0,

(A.14)

where o2 = K2
e − |k|(|k| + 1). Due to this new variable the condition for regularity at

x1 = 1 can be written as a boundary condition

dg1
dx1

∣∣∣∣∣
x1=1

= o2 + 2β[kζ − |k|]/(1− ζ2)
2(|k|+ 1) g1. (A.15)

Furthermore at the equator (x2 = 0), even parity modes satisfy

dg2
dx2

∣∣∣∣∣
x2=0

= 0, (A.16)

while odd parity modes satisfy
g2|x2=0 = 0. (A.17)

As written in Sect. 2.1.1 at the surface (x1 = ζ or |x2| = ζ) ξr = 0 is required. The radial
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displacement is related to ψ̃ as 2

ξr = (1− x2
1)(1− x2

2)
(1− ζ2)(x2

1 − x2
2)r

[
x1
∂ψ̃

∂x1

ζ2 − x2
2

1− x2
2
− x2

∂ψ̃

∂x2

ζ2 − x2
1

1− x2
1

+ kζ
x2

1 − x2
2

(1− x2
1)(1− x2

2) ψ̃
]
(A.18)

and therefore ξr = 0 translates into

∂ψ̃1
∂x1

∣∣∣∣∣
x1=ζ

= − k

1− ζ2 ψ̃1|x1=ζ ,

∂ψ̃2
∂x2

∣∣∣∣∣
|x2|=ζ

= −SIGN[x2] k

1− ζ2 ψ̃2||x2|=ζ .

(A.19)

Equation (A.19) is modified for gi as

∂g1
∂x1

∣∣∣∣∣
x1=ζ

= −(k − |k|ζ)
1− ζ2 g1|x1=ζ ,

∂g2
∂x2

∣∣∣∣∣
|x2|=ζ

= −SIGN[x2]k − |k|ζ1− ζ2 g2||x2|=ζ .

(A.20)

2The original equation (28) in Wu (2005a) is incorrect. The correct form is reproduced here.



B Orthogonality of the scalar prod-
uct

This proof follows the proceeding in Greenspan (1968). With (ui, qi), (uj , qj) two arbitrary
eigenfunction-eigenvalue pairs which satisfy Eq. (2.25) and qi 6= qj . It is

iqiρ0u†j · ui + 2ρ0u†j · Λui(Ω + 1) = −ρ0u†j · ∇ψi
−iqjρ0u†i · uj + 2ρ0u†i · Λuj(Ω + 1) = −ρ0u†i · ∇ψj ,

(B.1)

deduced from Eq. (2.25), we used that qi = ωi+ki. It is Λui = ẑ×ui, therefore, according
to the rules for a scalar triple product u†j ·Λui = −ui ·Λu†j . Now adding the two equations
in (B.1) and integrating over the volume gives

(qi − qj)
∫
ρ0u†j · uidV = 0. (B.2)

According to the assumption qi 6= qj and therefore
∫
ρ0u†j · uidV = 0.



C Relation between frequency dif-
ference and ellipticity

For instability

0 < σ2
inv = −(2W 2 ±∆ω)2 + 4W 2qiqj

4(1−W 2)2 (C.1)

needs to be the case. If the right hand side is negative the flow is with safety stable. For
all modes it is |qi| ≤ 2 and for all mode-pairs 0 ≤ W̃ 2 ≤ 1, with W̃ ≡ W/ε. With this
relations from Eq. (C.1) can be deduced that we need to find out for which ∆ω

0 ≥ −
(

2W ± ∆ω
W

)2
+ 16, (C.2)

without fail, to be sure that the flow is stable. We start by determining for which W the
term in brackets on the right hand side is maximal. The first derivative is

0 = d
dW

(
2W ± ∆ω

W

)2
= 2

(
2W ± ∆ω

W

)(
2∓ ∆ω

W 2

)
, (C.3)

a check of the second derivative

0 = d2

dW 2

(
2W ± ∆ω

W

)2
= −2(4W 4 + 2∆ω2)

W 4 (C.4)

gives that the maximum lies at W̃max = ±
√
|∆ω|/(2ε2). We distinguish between two cases

• |∆ω| ≥ 2ε2: For this case it is W̃ 2
max ≥ 1, it needs to be W̃ 2 ≤ 1, because of the

normalization of the inertial modes. The second derivative Eq. (C.4) is negative
everywhere, therefore, the maximum value of this term with the constraint W̃ 2 ≤ 1
is at W̃ = ±1. For W̃ = 1 (C.2) gives that if |∆ω| ≥ 4ε+ 2ε2 the flow is stable.

• |∆ω| < 2ε2: This case occurs for |∆ω| < 2ε2.
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We can conclude that only for
|∆ω| ≤ 4ε+ 2ε2 (C.5)

instability is possible.



D Equations governing spheroidal
oscillations

This derivation follows the proceeding in Sabadini and Vermeersen (2004). The following
formulations are expressed in spherical coordinates (r, θ, ϕ). The spherical coordinates can
be chosen such that the problem is rotationally symmetric, see Eq. (3.2). We will make
use of this simplification in the following, such that the longitudinal component drops out
and the solution has to be only expanded in Legendre polynomials. Taking account of the
continuity equation, ∇·ξ = 0, the r and θ component of the momentum equation and the
Poisson equation become

−ρ∂rΦ′ − ρ∂r(ξrg) + ∂rσrr + r−1∂θσrθ + r−1(2σrr − σθθ − σϕϕ + σrθ cot θ) = 0, (D.1a)

−ρr−1∂θΦ′ − ρgr−1∂θξr + ∂rσrθ + r−1∂θσθθ + r−1((σθθ − σϕϕ) cot θ + 3σrθ) = 0, (D.1b)

r−2∂r(r2∂rΦ′) + (r2 sin θ)−1∂θ(sin θ∂θΦ′) = 0, (D.1c)

where the σij ’s denote the stress components in spherical coordinates and ξr the radial
component of the displacement vector. In this appendix we omit the prime about the
perturbation quantities σij because only the perturbation appears here, and we omit the
tilde above the complex quantities because the equations here are valid for complex µ

according to the viscoelastic problem as well as for real µ according to the pure elastic
problem. For the stress strain relations, it is assumed that materials in the planet obey
a generalized Hooke’s law, this means it exists a linear dependence between stress and
strain. The components of stress tensor are

σθθ = λ∇ · ξ + 2µεθθ,

σϕϕ = λ∇ · ξ + 2µεϕϕ,

σrθ = 2µεrθ.

(D.2)



97

Here the approximation of incompressibility will be used, therefore, λ Lame’s second
parameter goes to infinity while the dilatation ∇·ξ goes to zero and the product Π = λ∇·ξ
remains finite. A formulation for Π can be found e.g. in Henning and Hurford (2014), it is
not stated here, because in the final equations to solve it doesn’t appear. The components
of the strain tensor are

εrr = ∂rξr,

εθθ = 1
r

(∂θξθ + ξr),

εϕϕ = 1
r

(ξθ cot θ + ξr),

εrθ = 1
2

(
∂rξθ −

ξθ
r

+ ∂θξr
r

)
,

(D.3)

with ξθ the tangential component of the displacement vector. The r component of the
momentum equations becomes in terms of the displacement components

−ρ∂rΦ′ − ρ∂r(ξrg) + ∂r(Π + 2µ∂rξr)

+ µ

r2 [4r∂rξr − 4ξr + r(∂θ∂rξθ + ∂rv cot θ)

+∂2
θξr + ∂θξr cot θ − 3(∂θξθ + ξθ cot θ)] = 0.

(D.4)

The θ component of the momentum equation is given by

−ρ
r
∂θΦ′ −

ρg

r
∂θξr + µ∂r(∂rξθ −

ξθ
r

+ 1
r
∂θξr)

+1
r
∂θΠ + 2µ

r2 (∂2
θvθ + ∂θξθ cot θ − ξθ cot2 θ − ξθ)

+3µ
r
∂rξθ + 5µ

r2 ∂θξr −
µ

r2 ξθ = 0.

(D.5)

The divergence of the displacement in spherical coordinates is

∇ · ξ = ∂rξr + 2
r
ξr + 2

r
∂θξθ + cot θ

r
ξθ. (D.6)

Solutions of the form
ξr =

∞∑
l=0

y1,l(r)Pl(cos θ),

ξθ =
∞∑
l=0

y3,l(r)∂θPl(cos θ),

Φ′ =
∞∑
l=0

y5,l(r)Pl(cos θ),

(D.7)

are assumed for the spheroidal oscillations, where yi,l(r) is an unknown function to be
determined. Only the yi,2(r) are nonzero for the tidal problem. Henceforth, we omit the
subscript l at the yi,l.
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Now with the Legendre equation

d2

dθ2Pl(θ) + cot θ d
dθPl(θ) = −l(l + 1)Pl(θ), (D.8)

and the derivative of the Legendre equation

d3

dθ3Pl(θ) + d2

dθ2Pl(θ) cot θ − d
dθPl(θ)[1 + cot2 θ] = −l(l + 1) d

dθPl(θ), (D.9)

the r and θ components of the momentum equations become

ρ∂rϕl − ρ∂r(gy1) + ∂r(Π + 2µ∂ry1) + µ

r2 [4r∂ry1 − 4y1 + l(l + 1)(−y1 − r∂ry3 + 3y3)] = 0,

(D.10a)

ρy5 − ρgy1 + Π + µr∂r(∂ry3 −
y3
r

+ y1
r

) + µ

r
[5y1 + 3r∂ry3 − y3 − 2l(l + 1)y3] = 0.

(D.10b)

The Laplace equation can be written as

∂2
ry5 + 2

r
∂ry5 −

l(l + 1)
r2 y5 = 0, (D.11)

and the continuity equation as

0 = ∂ry1 + 2
r
y1 −

l(l + 1)
r

y3. (D.12)

With the definitions
y2 = Π + 2µ∂ry1,

y4 = µ

(
∂ry3 −

y3
r

+ y1
r

)
,

y6 = dy5
dr − 4πGρy1 + l + 1

r
y5.

(D.13)

The momentum and Laplace equation for the incompressible case can now be written in
the form of Eqs. (3.11). y2 and y4 are associated with radial and tangential stresses,
respectively, the meaning of y6 is depicted in Appendix E.



E Continuity of the total gravita-
tional potential and its gradient

Except at liquid solid boundaries displacement, stress, and potential have to be continuous,
this condition is automatically satisfied if the functions yi(i = 1, 2, .., 5) are continuous.
Another condition is that

dy5
dr − 4πGρy1 + l + 1

r
y5 = continuous. (E.1)

It will now be explained why this has to be the case. The explanation here is analogue to
the proceeding in Saito (1974). Deformation due to a tidal potential of the form

Φ′t =
(
r

Rp

)l
Yl(θ, ϕ) (E.2)

is considered. The planet undergoes redistribution of mass due to this potential, which in
turn changes its gravitational potential. The total perturbation in potential can then be
written as Φ′ = Φ′t + Φ′d, with Φ′d the perturbation in gravitational potential due to the
mass redistribution. It is assumed that outside the planet

Φ′d = kl

(
Rp
r

)l+1
Yl(θ, ϕ), (E.3)

with kl a tidal Love number (see Eqs. 3.21). The gradient of total potential has to be
continuous, therefore,

∂Φ0(r0 + ξ)
∂r

+ ∂Φ(r0 + ξ)
∂r

= ∂Φ0(r0)
∂r

+ ξr

(
∂2Φ0(r0)
∂r2 + 4πGρ0

)
+
(
∂Φ(r0)
∂r

− 4πGρ0ξr

)
.

(E.4)
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The first and the second term are always continuous, the first because it represents the r-
component of gravity and the second because it is the Poisson equation for the undisturbed
spherical planet. We can deduce that

∂Φ(r0)
∂r

− 4πGρ0ξr = continous, (E.5)

at any surface of discontinuity. Therefore, across the surface of the planet(
∂Φ′d
∂r
− 4πGρξr

)
i

=
(
∂Φ′d
∂r

)
e
, (E.6)

with i and e referring to values just inside and outside the planet’s surface, respectively.
With (Φ)i = y5(r)Yl(θ, ϕ) and Eqs. E.2 and E.3 one surface boundary condition is

dy5
dr − 4πGρy1 + l + 1

Rp
y5 = 2l + 1

Rp
. (E.7)

This is not automatically satisfied, even if the yi(i = 1, 2, .., 5) are continuous, but with
the definition y6 = dy5

dr − 4πGρy1 + l+1
r y5 and the boundary condition y6 = (2l+ 1)/Rp at

the surface, it will be satisfied.
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Figure F.1.
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component ŵ as a function of height for the numerical calculation according
to the Eq. eqv, displayed in Fig. F.1. Parameters as in Fig 4.1. . . . . . . . 82

4.3. Real (red solid line) and imaginary part (green dashed line) of c3, Eq.
(4.34), as a function of height for the numerical calculation according to
the Eq. eqv, displayed in Fig. F.1, (left) and the real and imaginary part
of the corresponding pressure p̂ according to Eq. pw, displayed in Fig. F.1,
(right). Parameters as in Fig 4.1. . . . . . . . . . . . . . . . . . . . . . . . 83

F.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



List of Tables

2.1. Parameters for the example objects. νm is the molecular viscosity, Ekm

the Ekman number based only on the molecular viscosity, and Ekturb;NR

and Ekturb;RC the Ekman number based on the turbulent viscosity without
and with the effects of rotation on convection, respectively, (the molecular
viscosity is negligible in comparison to the turbulent in these examples).
χm, χturb;NR, and χturb;RC are damping constants calculated with Ekm,
Ekturb;NR, and Ekturb;RC, respectively. n.s. and f.s. stands for no slip and
free slip boundary conditions, respectively. . . . . . . . . . . . . . . . . . . . 41

2.2. Summary of the stability characteristics of the flow for the examples Jupiter-
Io (J-I) and V636 Centauri (VC). The top row indicates if turbulent viscos-
ity without the effects of rotation on the convection has been used (νt;NR)
or with these effects (νt;RC) in the computation of the viscous damping. We
used free slip boundary conditions. . . . . . . . . . . . . . . . . . . . . . . . 41

3.1. Notation and Parameters which are treated as constants in this study. . . . 62
3.2. Notation and parameters for Io. . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3. Parameter values for the rheology model according to Fischer and Spohn

(1990). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4. M1 values according to Segatz et al. (1988) and M2 with a lower shear

modulus and viscosity in the deep mantle. For the lithosphere thickness see
also Turtle et al. (2007). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5. Notation and parameters for Corot 7 b. For the planetary albedo we assume
a typical value for terrestrial planets. For the deep mantle viscosity we
assume a higher value as in Io as expected for a super earth (Tackley et al.,
2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



Acknowledgments

First of all, I would like to express my gratitude to my advisor Professor Andreas Tilgner
for giving me the opportunity to perform this thesis and his support during my years at
the Institute of Geopyhsics. For me it was always a pleasure to work with him.

This thesis was funded by the Deutsche Forschungsgemeinschaft (DFG) under grant SFB
963/1, project A5, thanks a lot to the DFG for creating this SFB and the financial support.

I would like to thank my second supervisor Professor Stefan Dreizler for his interest in
this thesis and for agreeing to act as a second examiner.

I would also like to thank all current and former members of the Institute of Geophysics
for interesting discussions and a supportive, friendly working atmosphere.

Furthermore, I want to thank Antoinette Solomon and Natascha Tetzlaff, who helped me
to revise this thesis for the final version.

Finally, I would thank my friends and my family, especially my parents, for the support
and nice hours outside of work.


	Nomenclature
	Scientific contribution
	Introduction
	Elliptical instability of compressible flow in ellipsoids
	Theoretical background
	Mathematical formulation of the model
	Librational driven elliptical instability

	Numerical implementation
	Results
	Examples: Io's tides on Jupiter, the binary system V636 Centauri and the Earth

	Conclusion and discussion

	Dissipation of rocky planets for strong tidal forcing
	Theoretical background
	Equilibrium tide
	Heat transport mechanism
	Coupling between heat transport and tidal heat production
	Rheology
	Tidal quality factor

	Validation
	Results
	Tidal dissipation of Io
	Tidal dissipation of Corot 7 b

	Conclusion and discussion

	Inertial modes in shear flow
	Equations for fluid motion in Ekman-Couette flow
	Results
	Conclusion and discussion

	Summary
	Eigenvalue problem for the power-law density sphere
	Orthogonality of the scalar product
	Relation between frequency difference and ellipticity
	Equations governing spheroidal oscillations
	Continuity of the total gravitational potential and its gradient
	MAPLE commands 
	Bibliography
	List of Figures
	List of Tables

