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Chapter 1

Introduction

In the flow of a fluid, two extreme states can be distinguished, i.e. laminar and

turbulent. A flow is called laminar if thin layers of the fluid move side by side,

otherwise the flow is called turbulent. While a laminar flow is highly ordered

and small perturbations are damped, a turbulent flow is characterized by strong

fluctuations of the velocity field in time and space leading to irregular and chaotic

flow patterns. Figure 1.1 shows laminar smoke rising from an incense stick and

developing more and more turbulent structures.

The first systematic investigation concerning the transition from laminar to

turbulent flow was performed by Osbourne Reynolds (1883). It is in his honor that

we call the dimensionless parameter determining whether a flow is turbulent or not

the Reynolds number. The Reynolds number of a flow is defined as Re = UL
ν

, where
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Figure 1.1: Smoke rising from an incense stick in the lower right corner. It is

laminar at first and then becomes turbulent as it rises.

U is a characteristic velocity, L is a characteristic length and ν is the kinematic

viscosity of the fluid. One expects flows in similar geometries to behave similarly

if they have the same Reynolds number. Note that, usually there are more than

one characteristic velocity and length scales available for defining the Reynolds

number. The same definition should be used when comparing flows in different

observations. For pipe flows e.g. it is common to choose U to be the mean flow

velocity and L to be the pipe diameter. A different choice, say, the center line

velocity for U and the radius of the pipe for L, would merely change the numeric
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values of the Reynolds number. As a consequence, the Reynolds number that

marks the transition from a laminar to a turbulent state of the flow depends on

the flow geometry and the choice of U and L. In the above example of a pipe flow,

the transition occurs at about Re ∼ 2040 (Avila et al., 2011), while a flow between

parallel plates becomes turbulent around Re ∼ 1100 1 (Hinze, 1975).

The Reynolds number can be interpreted as the ratio of inertial forces to vis-

cous forces. For small Re, the viscous forces dominate and have a strong smoothing

effect on the flow. As a consequence, the flow field is insensitive to small perturba-

tions and the flow stays laminar. On the contrary, high Re flows are dominated by

inertial forces and are turbulent since the viscous forces cannot sufficiently damp

the strong fluctuations occurring in the velocity field. There may also exist a range

of Re where perturbations can trigger the transition from a laminar to a turbulent

flow, but turbulence does not necessarily persist.

In nature we find turbulence, e.g., in astronomic flows where it is involved

in the formation of stars and planets. The earth’s climate is governed by tur-

bulent atmospheric and oceanic flows. Even the pulsating flow in the cardiovas-

cular system is turbulent. In our daily life, turbulence is omnipresent because

viscosities of the involved fluids in natural and technical flows are usually so small

that high Reynolds numbers are easily reached. Considering the flow of water

1In this case Re is defined with U being the mean flow velocity and L being the distance
between the plates.
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(ν ∼ 10−6m2/s at 20℃) through a pipe with a diameter of 2 cm, a Reynolds

number of Re = 2040 is reached with a flow velocity of only 10.2 cm/s. This exam-

ple shows that turbulence occurs in nearly every fluid flow one usually encounters.

Compared to laminar flows, turbulence enhances mixing and increases the rate of

transport of matter, momentum and heat. Therefore, turbulence also plays an

important role in industrial flows. In combustion engines, e.g., oxygen and fuel

need to be mixed efficiently in very short times. In this case we take advantage

of turbulence. But in other applications turbulence is unfavorable, when pumping

oil through pipelines, e.g., turbulence reduces the efficiency of the process due to

an increased pressure drop.

Now let us consider a simple example, and try to get some deeper insights from

it. If we stir the coffee in a cup we produce a turbulent flow. One could also say,

as we pass kinetic energy from the spoon on to the coffee, we inject energy in the

flow. If we stop stirring, the flow comes to rest after a while. This shows that fluid

flows are dissipative and turbulence needs energy to be injected in order to persist.

One also notices that the turbulent small-scale motions in the coffee cup die out

fairly quickly if we stop stirring, while the remaining large-scale circulation dies

out later. This shows that dissipation acts stronger on the small scale motions as

they are attenuated faster.
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The example discussed above reveals an important question that arises when

dealing with turbulent flows, that is, how the energy injected in the flow is trans-

ported from large to small scales where it is dissipated. The injection of energy

is performed on large length scales and the size of this energy injection scale de-

pends on the geometrical properties of the flow. It could be the size of an object

disturbing the flow or the size of a propeller or a spoon stirring the fluid etc. The

dissipation of the injected energy, however, takes place on the smallest scales of

the flow where viscous dissipation transforms kinetic energy into heat. In order

to describe what happens in between, Richardson (1922) introduced the idea of

the energy cascade. In this picture a turbulent flow consists of a superposition of

eddies of different sizes. Regarding the word eddy Batchelor (1950) wrote that

”... the word ’eddy’ does not refer to any particular local distribution

of velocity. It is merely a concise term for a component of motion with

a certain length scale, i.e. an arbitrary flow pattern characterized by size

alone.”

The kinetic energy contained in eddies of large size is transferred to smaller eddies,

which themselves pass the energy on to even smaller eddies and so on. Following

this idea, energy cascades from the largest scales of a flow where it is injected,

down to the smallest scales where viscosity dominates the behavior of the fluid

motion and dissipates the energy into heat.
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In 1941, Kolmogorov derived a statistical theory based on the Navier-Stokes

equations, the equations of motion of a fluid. With the energy cascade picture in

mind he provided predictions for statistical quantities of homogeneous turbulent

flows at high Reynolds numbers. Kolmogorov’s theory, referred to as K41, states

that the average rate of energy injection on the large scales equals the average rate

of energy dissipation on the small scales. Moreover, for high Reynolds number

flows there exists a range in which statistical quantities, like velocity correlations

etc., solely depend on the rate of energy transfer and the scale at hand.

Most efforts in turbulence research, be it experimentally, numerically or theo-

retically, focus on statistically stationary turbulence, i.e., a turbulent flow driven

by a constant energy input. Statistical properties of such flows are independent

of time and can be compared to predictions given by K41. On the other hand,

deeper insight on the energy cascade process might be gained, by perturbing the

energy input and measure the response at different scales of the flow. We there-

fore set up an experiment to measure the temporal evolution of energy transfer

at different scales in a turbulent flow that was subject to a perturbation of the

energy injection. Two types of experiments were performed. In the first type a

step-function-like increase of the energy input was used to force the turbulent flow.

In the second case the forcing of a fully developed turbulent flow was switched off

to observe the decay of the turbulence.
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Experiments investigating the scale dependent response of a turbulent flow to

a perturbation of the large-scale forcing have, to the best knowledge of the author,

not been done so far. This is due to the complexity of the endeavor and the

limitations of state-of-the-art measurement techniques. The approach to overcome

these limitations and the hardware developed for this purpose is also documented

in this thesis.

In Chapter 2 the theoretical framework of turbulence needed for this thesis is

introduced and relevant previous work is reviewed. The experimental setup and

the measurement technique is described in Chapter 3. The results of the conducted

experiments are presented in Chapter 4. Finally, the summary and an outlook is

given in Chapter 5.
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Chapter 2

Theoretical Background

2.1 Navier-Stokes Equations

When considering the balance of forces acting on a fluid element one can derive the

equations of motion for a fluid (Davidson, 2004), i.e., the Navier-Stokes equations

∂u(x, t)

∂t
+ (u(x, t) · ∇)u(x, t) = −1

ρ
∇P (x, t) + ν∇2u(x, t), (2.1)

where u(x, t) denotes the velocity field, P (x, t) represents the pressure field and

ρ and ν are the density and the kinematic viscosity of the fluid, respectively.

Throughout this thesis, we only consider the case of constant fluid density and

constant fluid viscosity. The Navier-Stokes equations, Eq. (2.1), together with the
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continuity equation that arises from conservation of mass for constant density, ∇·

u(x, t) = 0, are believed to fully describe the behavior of incompressible Newtonian

fluids.

The meaning of Eq. (2.1) can be better appreciated after non-dimensionalizing

the equation. This is done by using a characteristic length scale L and a charac-

teristic velocity U to non-dimensionalize each variable:

x̃ =
x

L
t̃ =

tU

L
ũ =

u

U
P̃ =

P

ρU2
. (2.2)

Replacing all variables in Eq. (2.1) according to Eq. (2.2) and dividing by U2/L

leads to the Navier-Stokes equations in dimensionless form

∂u(x, t)

∂t
+ (u(x, t) · ∇)u(x, t) = −∇P (x, t) +

1

Re
∇2u(x, t), (2.3)

where Re = UL/ν is the Reynolds number. In order to increase the readability

of Eq. (2.3), the tildes were dropped. It can be seen that the Reynolds number

appears naturally as the only control parameter when non-dimensionalizing the

equations of motion of a fluid.

While the first term on the left hand side of Eq. (2.3) represents the temporal

change of the velocity field, the second term corresponds to the momentum trans-

port by fluid motion and is therefore called convective term. The second term
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on the right hand side is responsible for viscous dissipation. It is easy to see the

role of the Reynolds number on the behavior of the fluid in this form of the equa-

tions of motion. While the convective term is responsible for the chaotic nature

of fluid flows as it enhances perturbations, the viscous term is able to damp out

these disturbances in low Reynolds number flows and the flow stays laminar. In

high Reynolds number cases the viscous term becomes negligible and turbulence

develops.

The first term on the right hand side, the pressure term, can be related to the

velocity field. When taking the divergence of Eq. (2.3) and using the continuity

condition one finds that the pressure field has to satisfy Poisson’s equation

∇2P (x, t) = −∇ · [(u(x, t) · ∇)u(x, t)] . (2.4)

It is known form electrodynamics (Nolting, 2007) that the solution to Eq. (2.4)

has the form

P (x, t) =
1

4π

∫∫∫ ∇ · [(u(x′, t) · ∇)u(x′, t)]

|x− x′| dx′. (2.5)

This shows that Eq. (2.3) is a deterministic equation with three unknowns, the

components of the velocity field, to solve for. Nevertheless, it is very difficult

to solve the Navier-Stokes equations analytically, except for some special cases

10



(Batchelor, 1967). In addition to that, solving the problem numerically is compu-

tationally very expensive (Pope, 2000) due to the vast number of degrees of freedom

and the non-local character of the equations, which can be seen in Eq. (2.5). In

order to reduce the number of degrees of freedom and to get to a description that

is easier to relate to measurable quantities, it is desirable to adapt a statistical

description of turbulence.

2.2 The Theory of Kolmogorov (1941)

Before we move to the statistical description of turbulence, let us have a closer

look at the phenomenon of the energy cascade. The energy cascade, as introduced

by Richardson (1922), describes the process by which energy is transferred in a

turbulent flow - from the largest scales, where the energy is injected, to the smallest

scales, where dissipation occurs. According to this idea, one considers a turbulent

flow to consist of eddies of different sizes. Large eddies will break up into smaller

eddies and pass on their energy to them. These smaller eddies will also break up

and pass on their energy to eddies that are even smaller. This process goes on until

the energy has reached the smallest scales of the flow where viscosity dominates

and the energy is converted into heat.
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Kolmogorov (1941b) extended the idea of the energy cascade further, in order

to make predictions for statistical quantities in turbulent flows. He states that

eddies of size l have a characteristic velocity u(l) and therefore could be assigned

a scale-dependent Reynolds number Re(l) = u(l)l
ν

. Since the Reynolds number

represents the ratio of inertial to viscous forces, Kolmogorov argued, that the

smallest scales of a turbulent flow where the viscous forces dominate and energy is

dissipated have a Reynolds number of unity. The length scale at which this occurs

is called the Kolmogorov length scale, and is usually denoted η.

Furthermore, for large Re Kolmogorov made assumptions about the conditions

in different scale ranges and proposed three subranges (Fig. 2.1). On the largest

scales of a flow, L, energy is injected, say by a fan with a diameter of L or by a

grid with the mesh size L. Scales where l ∼ L are called energy containing range.

The behavior of the fluid in the energy containing range is dominated by the way

energy is injected and by the boundaries of the flow. This means that statistics of

the large scales in, e.g., grid turbulence in a wind tunnel or in a von Kármán flow

(flow between two counter-rotating propellers in a cylindric vessel) can be very

different, because the geometries of the apparatuses and the means of forcing are

different.

However, for scales that are much smaller than the energy containing range

(l � L), it appears that, the statistics of a turbulent flow are independent of the
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ηL

Energy Containing

Range

Inertial

Range

Dissipation

Range

Universal Subrange

Figure 2.1: A sketch of the energy cascade and the three regimes proposed by

Kolmogorov. Energy is injected in the flow at scales on the order of L, the energy

containing range. Then the eddies break up into smaller and smaller eddies and

pass on their energy down the cascade until the energy is dissipated. The scale

range smaller than L is called universal subrange and is divided into two ranges.

The inertial range (η � l � L) where statistics solely depend on the dissipation

rate ε and the dissipation range (l . η) where the statistics depend on ε and ν.

way in which it was produced and are universal for all turbulent flows (Saddoughi

& Veeravalli, 1994). This range is called universal subrange and can be further

divided into two subranges. The very smallest scales (l . η), where molecular

interactions dominate and the energy is dissipated, are called dissipation range.

In between the energy containing and the dissipation ranges is a range of scales
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(η � l � L) where the statistics are purely dominated by inertia, the inertial

range. This range only exists for very high Reynolds number.

One of the most important assumptions of K41 is that, due to energy conser-

vation, the energy transfer through the scales from the energy containing range

all the way down to the dissipation range stays constant for statistically station-

ary turbulence. Therefore the energy dissipation rate per unit mass equals the

energy transfer rate per unit mass and is called ε. To summarize the discussion

above, Kolmogorov formulated three hypotheses for homogeneous turbulence at

high Reynolds numbers (see also Frisch (1995); Pope (2000); Davidson (2004)).

Hypothesis of local isotropy: In high Reynolds number flows the statistics

in the universal subrange are isotropic. That means, no matter how the flow is

created, the information of the large scale structure is lost. Therefore the small

scale statistics of all high Reynolds number flows are similar and can be compared.

First similarity hypothesis: In the dissipation range of high Reynolds number

flows, statistics are universal and only depend on ν, ε and the scale itself.

Second similarity hypothesis: In the inertial range of high Reynolds number

flows, statistics are universal and only depend on ε and the scale itself.
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With the introduction of his three hypotheses, Kolmogorov provided a useful

framework to predict the behavior of statistical quantities in the universal subrange

of turbulent flows of high Reynolds number. Additionally, the assumption of uni-

versality implies that small scale statistics of different turbulent flows are the same

when normalized by appropriate parameters. Furthermore, since the statistics in

the universal subrange are solely depending on ε and ν, the parameters suitable

for normalization must be fully characterized by these two quantities. Based on

this assumption and dimensional reasoning the Kolmogorov scales for length η,

velocity uη and time τη are defined as

η =

(
ν3

ε

)1/4

uη = (νε)1/4

τη =
(ν
ε

)1/2
. (2.6)

When calculating the Reynolds number using the Kolmogorov scales we find that

Re(η) = uηη

ν
= 1, which is consistent with the assumption that viscous and inertial

forces become comparable at the Kolmogorov scale η.

Following the argumentation of Kolmogorov that the energy transfer rate ε

is constant throughout the scales and that statistical quantities in the inertial

range only depend on ε and the scale itself, dimensional analysis shows that the
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characteristic velocity u(l) for an eddy of size l in the inertial range has to satisfy

u(l) ∼ (εl)1/3 . (2.7)

Using Eq. (2.7) and Eq. (2.6), the scaling of the Reynolds number, Re(l) = u(l)l
ν

,

can be obtained (Pope, 2000).

Re(l)3/4 ∼ l

η

Re(l)1/4 ∼ u(l)

uη

Re(l)1/2 ∼ τ(l)

τη
(2.8)

This shows that, as l increases the Reynolds number also increases. Moreover, the

characteristic velocities u(l) and the so called eddy turn-over times τ(l) increase

accordingly. In addition, Eq. (2.8) shows that high Reynolds number flows have a

larger scale separation than low Reynolds number flows.

In the following the velocity structure functions are introduced and it is shown,

how K41 can be applied to predict the properties of the velocity structure functions,

in particular for those of second order.
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2.3 Second-Order Velocity Structure Function

One of the simplest statistical quantities that contains information related to a

certain scale of a turbulent flow is the second order velocity structure function

tensor

Dij(r, t) = 〈[ui(x + r, t)− ui(x, t)] [uj(x + r, t)− uj(x, t)]〉. (2.9)

It contains covariances of the components of velocity differences between two points

x and x+r. Since we focus on homogeneous turbulence, Dij(r, t) does not depend

on x. The 〈. . .〉 in Eq. (2.9) denotes the ensemble average and is the same as

the spatial average in homogeneous turbulence. In isotropic turbulence, the off

diagonal elements of Dij(r, t) vanish and the tensor can be fully described by

DLL(r, t) and DNN(r, t), the longitudinal and transversal second-order velocity

structure functions, respectively. While the longitudinal structure function,

DLL(r, t) = 〈
[
u‖(x + r, t)− u‖(x, t)

]2〉, (2.10)

represents the component of the velocity difference along the separation vector r,

the transversal structure function,

DNN(r, t) = 〈[u⊥(x + r, t)− u⊥(x, t)]2〉, (2.11)
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stands for the component perpendicular to r (Fig. 2.2). In isotropic turbulence,

both DLL(r, t) and DNN(r, t) are independent of the direction of r.

x + r

x

r

u(x + r, t)

u⊥(x + r, t)

u‖(x + r, t)

u(x, t)
u⊥(x, t)

u‖(x, t)

Figure 2.2: Two fluid particles at the positions x and x + r are shown with the

separation vector r. The blue vectors show the velocities of the particles. The

red vectors are the projections of the velocities onto the separation vector and

are used to calculate DLL(r, t). The green vectors are the velocity components

perpendicular to the separation vector and are used to calculate DNN(r, t).

In this case, Dij(r, t) can be fully expressed by DLL(r, t), DNN(r, t) and the

isotropic second order tensors δij (the Kronecker symbol) and rirj (Pope, 2000):

Dij(r, t) = DNN(r, t)δij + [DLL(r, t)−DNN(r, t)]
rirj
r2

. (2.12)

Taking the derivative of Eq. (2.9) with respect to ri yields ∂
∂ri
Dij(r, t) = 0 due

to the incompressibility condition. Using this result with Eq. (2.12), a relation
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between DLL(r, t) and DNN(r, t) can be derived:

DNN(r, t) = DLL(r, t) +
r

2

∂

∂r
DLL(r, t)

=
1

2r

∂

∂r
(r2DLL(r, t)). (2.13)

That means, in homogeneous isotropic turbulence the full tensor Dij(r, t) is given

by one measurable scalar function DLL(r, t) or DNN(r, t) (Pope, 2000).

A prediction that can be made from K41 for the behavior of DLL(r, t) in the

inertial range, is based on the second similarity hypothesis. Since it states that

statistics here only depend on ε and r, by dimensional analysis one finds that

DLL(r, t) = C2 (εr)2/3 , (2.14)

where C2 is called the Kolmogorov constant. The value of C2 has been determined

experimentally to be ∼ 2 (Pope, 2000; Sreenivasan, 1995). Combining Eq. (2.13)

and Eq. (2.14), a similar expression for DNN(r, t) can be found

DNN(r, t) =
4

3
C2 (εr)2/3 . (2.15)

19



2.4 Kolmogorov Equation

The Kolmogorov equation (Kolmogorov, 1941a) is an exact formula for time depen-

dent statistics of the velocity structure functions. It is based on the Navier-Stokes

equations, which in component notation read

∂uj(x, t)

∂t
= −ui(x, t)

∂uj(x, t)

∂xi
− 1

ρ

∂P (x, t)

∂xj
+ ν

∂2uj(x, t)

∂xi∂xi
. (2.16)

In the following, the principle steps of its derivation are outlined. We start with

the time derivative of Eq. (2.9)

∂Dij(r, t)

∂t
= 〈vi

∂vj
∂t
〉+ 〈vj

∂vi
∂t
〉, (2.17)

where vk = uk(x + r, t)− uk(x, t) is the velocity difference over a distance r. The

time derivatives ∂vk
∂t

can then be replaced with help of the Navier-Stokes equations,

Eq. (2.16), yielding

∂Dij(r, t)

∂t
= −∂Dijk(r, t)

∂rk
+ 2ν

∂2Dij(r, t)

∂rk∂rk
− 4ν〈 ∂vi

∂rk

∂vj
∂rk
〉. (2.18)

Here, the pressure gradient terms dropped out due to isotropy (von Kármán &

Howarth, 1938; Hinze, 1975). Dijk(r, t) denotes the third order velocity structure
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function tensor, given by

Dijk(r, t) = 〈[ui(x + r, t)− ui(x, t)] [uj(x + r, t)− uj(x, t)] [uk(x + r, t)− uk(x, t)]〉.

(2.19)

Just like the second order structure function tensor, which can be related to

DLL(r, t) alone in the case of isotropic turbulence, Dijk(r, t) can be expressed

through the longitudinal third order structure function DLLL(r, t) (Monin & Ya-

glom, 1975; Argyris et al., 2010):

Dijk(r, t) =
1

6

∂

∂r
(rDLLL(r, t))

[
δij
rk
r

+ δik
rj
r

+ δjk
ri
r

]
−1

2
r2
∂

∂r

(
1

r
DLLL(r, t)

)
rirjrk
r3

.

(2.20)

The derivation of the Kolmogorov equation is continued by setting i = j in

Eq. (2.18) in order to find an expression for ∂
∂t
Dii(r, t). Using the relations

Eq. (2.12), Eq. (2.13) and Eq. (2.20) and noting that the energy dissipation rate

can be written as (Davidson, 2004)

ε = ν〈 ∂vi
∂rk

∂vi
∂rk
〉, (2.21)
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one finds

∂Dii(r, t)

∂t
= − 1

r2
∂

∂r

[
1

3r

∂

∂r
(r4DLLL(r, t))

]
+

2ν

r2
∂

∂r

[
1

r

∂

∂r
(r4

∂

∂r
DLL(r, t))

]
− 4ε.

(2.22)

A relation between ∂
∂t
Dii(r, t) and ∂

∂t
DLL(r, t) can be obtained by setting i = j in

Eq. (2.12) and additionally replacing DNN(r, t) according to Eq. (2.13). Deriving

it with respect to time and solving for ∂
∂t
DLL(r, t), one then finds

∂

∂t
DLL(r, t) =

1

r3

∫ r

0

s2
∂

∂t
Dii(s, t)ds. (2.23)

Finally, by replacing ∂
∂t
Dii(r, t) in Eq. (2.23) by Eq. (2.22) and working out the

integral, one arrives at the Kolmogorov equation

∂

∂t
DLL(r, t) = − 1

3r4
∂

∂r
(r4DLLL(r, t)) + 2ν

1

r4
∂

∂r
(r4

∂

∂r
DLL(r, t))− 4

3
ε. (2.24)

The Kolmogorov equation shows the temporal evolution of the longitudinal second

order structure function DLL(r, t) and is derived from the Navier-Stokes equations

without any further modeling except the assumption of homogeneity and isotropy.

It is the starting point of numerous theoretical work afterwards. But it also shows

another problem that we have to face when describing turbulence theoretically.

As one could already see in Eq. (2.18), the system of equations is not closed as
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the third order structure function appears in the equation of motion of the second

order structure function. If one now tries to derive an equation for the temporal

evolution of DLLL(r, t) to close the system, the fourth order structure function will

appear in that equation and so on. This is called the closure problem of turbulence.

To find an appropriate closure model is the center of attention in many studies

(Pope, 2000).

Based on Eq. (2.24), Kolmogorov argued, that for scales in the inertial range

the time derivative is zero due to the statistical steadiness of the small scales and

that the second term on the right hand side becomes negligible compared to the

first. This leads to what is known as Kolmogorov’s 4/5-Law

DLLL(r, t) = −4

5
εr. (2.25)

2.5 Perturbing a Turbulent Flow

Kolmogorov’s theory, presented above, relies on the steadiness of the statistical

quantities. This is reached in turbulent flows with constant energy input. In this

case, the predictions compare well to experiments and simulations (Pope, 2000).

In natural and technical flows, however, the energy input is not always constant.

Eq. (2.24) shows that theoretical predictions for time-dependent statistics can only
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be made if further assumptions for a closure are made. It is therefore important to

investigate turbulent flows with varying energy input in order to understand their

dynamics. In the following, previous work on varying energy input is reviewed.

In a turbulent flow with a forcing consisting of periodically occurring pulses

(kicks), the dependence of the turbulent kinetic energy on the frequency of these

kicks was investigated theoretically (Lohse, 2000), numerically (Hooghoudt et al.,

2001) and experimentally (Jin & Xia, 2008).

Cadot et al. (2003) investigated modulated turbulence in a von Kármán flow,

i.e. the propellers forcing the flow followed a sinusoidal velocity profile. To quan-

tify the response to the modulated large scale forcing, the local turbulent kinetic

energy was measured. They found that for small modulation frequencies f the tur-

bulent kinetic energy followed the modulation and the response amplitude stayed

constant, while for larger frequencies a phase shift of the response was observed and

the response amplitude decreased with 1/f . From the crossover point of these two

regimes the turbulent cascade time was inferred. Moreover, for certain modulation

frequencies response extrema were observed. In these cases, the velocity fluctua-

tions were stronger than in the unmodulated case with the same average energy

input. This suggests that a more efficient mixing can be achieved by modulating

the forcing of a turbulent flow.

In a theoretical study published around the same time (von der Heydt et al.,
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2003a) for a modulated energy input rate, the 1/f decay of the response as well

as the appearance of response extrema was predicted. The authors used a mean-

field theory approach to derive a closure for Eq. (2.24) and assumed a time delay

between energy input and dissipation, the cascade time. The predicted behavior

could also be recovered in numerical studies (von der Heydt et al., 2003b; Kuczaj

et al., 2006; Bos et al., 2007; Kuczaj et al., 2008) and other experiments (Cekli

et al., 2010). Further experimental studies of small scale response to large scale

perturbations can be found in Camussi et al. (1997); Labbé et al. (2007); Ham-

lington & Dahm (2009); Chien et al. (2013).

While the work mentioned above is fairly recent, investigations on pulsating

pipe flow seem to have a longer history (Gerrard, 1971; Tu & Ramaprian, 1983;

Ramaprian & Tu, 1983; He & Jackson, 2009; He & Seddighi, 2013).

Investigations on the time it takes for the energy of the large scales to be

transferred to the smallest scales of turbulence, the cascade time, were presented

by Pumir (1996); Pearson et al. (2004); Meneveau & Lund (1994)

A very traditional field of turbulence research without a constant energy input

focuses on the decay of turbulence (Batchelor, 1953; Saffman, 1967a,b; Comte-

Bellot & Corrsin, 1971; Stalp et al., 1999; George, 1992; Ishida et al., 2006; Lavoie

et al., 2007; Teitelbaum & Mininni, 2009, 2011; Krogstad & Davidson, 2010; Sin-

huber et al., 2015)
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The scope of the work presented in this thesis lies on the investigation of homo-

geneous and isotropic turbulent flows that are subject to an abrupt change of the

large-scale forcing, i.e. an increase of energy input in one case and a cut off of the

energy input in the other case. In comparison to the previously mentioned inves-

tigations, the data presented in this thesis allow an insight in the scale-dependent

response of a turbulent flow under varying large-scale forcing.
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Chapter 3

Experimental Setup

In this Chapter the experimental setup, used to measure the scale dependent

response of the energy transfer in a homogeneous and isotropic turbulent flow

subject to a temporal change of the energy injection, is described. The apparatus,

used to produce such a flow, is introduced in Section 3.1. The measurements

were performed with Lagrangian Particle Tracking (LPT), a non-invasive optical

measurement technique, described in Section 3.2. In the LPT system several high-

speed cameras are used in order to observe the movement of tracer particles1 in

the measurement volume of the apparatus from different angles. As the size of

the internal RAM (Random Access Memory) of the cameras limits the duration of

a measurement a real-time image compression system was developed to overcome

1Particles that faithfully follow the flow.
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this limitation. This system is presented in Section 3.3. A description of the Laser

used for the measurement volume illumination can be found in Section 3.4. An

overview over how the whole setup works together and its automation, is given in

Section 3.5.

3.1 Lagrangian Exploration Module

The apparatus used to obtain the data presented in this work, the Lagrangian

Exploration Module (LEM), is an icosahedron shaped water container with 12

propellers, one on each vertex (Fig. 3.1). Each triangular face has an edge length

of 40 cm, which gives a diameter of the icosahedron of about 1m and a volume of

140 l. In this section, a summary of the most important specifications of the LEM

is given. A more detailed description of the LEM and the flow field it produces

can be found in Zimmermann (2008) and Zimmermann et al. (2010).

The skeletal structure of the Lagrangian Exploration Module consists of stain-

less steel. Out of the 20 faces of the icosahedron, 18 are covered with Plexiglas

windows for optical access. The top and bottom faces are covered with stainless

steel cooling plates to maintain a stable temperature of the experimental fluid.

The cooling plates are flushed with 10℃ cooling water from the building supply

and the flow rate is adjusted manually using a ball valve.
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Figure 3.1: The Lagrangian Exploration Module (LEM) is an icosahedron shaped

container. On each vertex a motor is installed to rotate a propeller inside the con-

tainer. The mechanical drawing on the left was taken from Zimmermann (2008).

On each of the 12 vertices a brushless DC motor (IFE71 by Berger-Lahr) is

installed and drives a propeller inside the LEM through a planetary gear box with

a fixed speed ratio of 5 : 1. While the motor speed can be set between 300 and

5000 rpm (revolutions per minute) the propeller speed is reduced accordingly to

a value between 60 and 1000 rpm. Both, clockwise and counterclockwise rotation

are possible. Rotation rates mentioned in the rest of the thesis will refer to the
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propeller speed if not stated otherwise.

The required DC voltage of 36V for the motors is provided by two DC power

supplies (N5766A by Agilent). All motors are, together with a computer, connected

by a CANopen2 bus network and can be controlled individually. Using a custom

software3 and an Ethernet to CAN gateway (AnaGate CAN by Analytica), the

computer controls the motors and monitors parameters like current, temperature,

velocity etc.

To investigate the development of a turbulent flow under a sudden change in the

energy injection, i.e. a change in motor speed, the moment when the motor speed

changes has to be known as exactly as possible. Therefore the supply current of

one motor was used as an indicator for the change in speed of all motors. For this

purpose, a comparator circuit, developed by Ortwin Kurre, measures the current

of one of the motors of the LEM (Fig. 3.2), compares it to a threshold value set

with a potentiometer, and switches on a laser pointer once the current surpasses

the threshold. The laser pointer produces a bright spot on the sensor of one of the

cameras, such that the change of motor speed can be determined from the same

high-speed recordings used to perform LPT.

As the working fluid, deionized water from the building supply was used for all

2The Controller Area Network (CAN) is a communication protocol developed for networks
of embedded systems.

3The software was written by Robert Zimmermann and Shinji Tanaka. The author embedded
parts of this software in another program for automation of the experiment (Section 3.5).
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Figure 3.2: A comparator circuit (lower right corner) measures the supply current

of one motor of the LEM and compares it to a threshold that can be adjusted with

a potentiometer. If the motor speeds up and its current exceeds the threshold, a

relay is energized and switches on a laser pointer (center). This laser pointer is

guided to the sensor of one of the cameras via a mirror (upper left corner) and

produces a bright spot in the high speed recording, such that the exact moment

of the change of motor speed can be determined.

experiments presented in this thesis. After filling the LEM, the deionized water

was filtered to remove the leftover particles of previous LPT measurements and

dust particles that entered the apparatus through the water supply lines. For the

filtering, a pump was used to circulate the water from the bottom of the LEM
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through two successive filters (pore sizes are 10µm and 5µm) and returning to

the top, see Fig. 3.3 (a). Filtering everything larger than 5µm was sufficient for

our purpose, as tracer particles with an average diameter of 80µm were used. The

filtering procedure usually took about 24 hours.

When filling the LEM, usually some air bubbles are trapped in the vertices

and some stick to the windows. There is also air trapped in the filtering circuit.

Therefore, after filtering, a degassing procedure explained in Zimmermann et al.

(2010) was followed. At each vertex of the LEM, close to the rotating seal where

bubbles are trapped, there is a through-hole for air to escape. These are connected

to a degassing circuit, as shown in Fig. 3.3 (b), where the water is pumped from

the six upper vertices through a small container, where the air bubbles rise to the

top and escape the circuit, to the six lower vertices. It was found by Zimmermann

et al. (2010) that the degassing procedure is more efficient if always two opposing

propellers are switched on and off randomly. For this purpose, a special degassing

motor control scheme, implemented in the motor control software by Robert Zim-

mermann, was used. After a few hours of degassing the deionized water was free of

air. Only after the filtering and degassing procedures, tracer particles were added

to the flow.
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(a) Filtering circuit (b) Degassing circuit

Figure 3.3: (a) Filtering circuit: A pump circulates the deionized water through

two filters, with pore size of 10µm and 5µm, respectiveley. Two extra connectors

are provided, but are not used in this work. (b) Degassing circuit: A pump

circulates the water from the upper six bubble traps through a container that

allows for gas to escape before the water returns to the lower six bubble traps.

The valves V1, V2 and V3 allow a by-passing of the pump, but this function was

not used in this work. Both images, (a) and (b), are taken from Zimmermann

(2008).

33



3.2 Lagrangian Particle Tracking

When describing a flow field, two viewpoints can be taken: the Eulerian or the

Lagrangian point of view. In the Eulerian framework, one focuses on a certain point

in space and describes the velocity at that point. Corresponding measurements

are therefore called Eulerian measurements. Typical techniques are Laser Doppler

Velocimetry, Particle Image Velocimetry and hot-wire measurements. In these

cases, the velocity of a flow is measured as a function of time at fixed positions in

space. In contrast to the Eulerian framework, a fluid flow can also be described

in the Lagrangian framework (Yeung, 2002; Toschi & Bodenschatz, 2009). In this

view, the velocity field is described along the trajectories of fluid particles as they

are moving in the flow. The measurement technique used in this work belongs to

this category and is called Lagrangian Particle Tracking (LPT). One advantage

of LPT is that the obtained data can be interpreted from the Eulerian point of

view as well. The data presented in this thesis are based on analysis of Eulerian

statistics.

The basic idea of LPT is to seed the working fluid with particles and to use

cameras to measure the position of each particle as a function of time to obtain

Lagrangian trajectories (Snyder & Lumley, 1971; Dracos, 1996; Mann et al., 1999).

The cameras, typically three or four4, are set up to focus on the measurement vol-

4The setup presented in this thesis has four cameras, three are used for LPT, the fourth
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ume from different angles in order to obtain particle positions in three dimensions

(3D). The cameras are synchronized, such that all cameras take images at the

same time. To obtain 3D particle tracks in lab space we follow the algorithm pre-

sented in Ouellette et al. (2006a) and Xu (2008). In the following, the setup and

calibration of the cameras are described and the basic steps of the LPT procedure

are outlined.

3.2.1 Camera Setup and Calibration

For this experiment, four Phantom V640 high-speed cameras were set up and

aligned to observe the center of the LEM (Fig. 3.4). Three of those cameras, Cam-

era 0 through to Camera 2, were used to perform Lagrangian Particle Tracking.

The fourth camera was used to record the signal of the laser pointer, indicating

when the change of motor speed occurs. All cameras were controlled by the same

computer and were fed with an external square wave signal to record images at

the same time and with the same frame rate (Section 3.5).

The three cameras used for LPT record the movement of particles in the mea-

surement volume of the LEM. To be able to reconstruct the position of each par-

ticle, detected in the 2D sensor plane of each camera, in 3D lab space we followed

a calibration method described in Tsai (1987) and Ouellette et al. (2006b). In

camera is used to detect the moment of change in motor speed.
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Figure 3.4: The camera setup. The cameras 0 through to 2 are aligned to the

measurement volume in the center of the LEM and used for LPT. Camera 3 is

used to capture when the laser pointer, indicating the change of motor speed, is

switched on.

order to do this, a mask with a regular dot pattern of known spacing (1.016 cm)

was inserted in the center of the LEM (Fig. 3.5). The mask provided dots in two

perpendicular directions (y and z) of lab space. A translation stage on the mask

holder was used to accurately displace the mask in the x direction. Then, im-

age sequences of the mask at various positions along the x axis (every 1 cm) were
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Mask holder Mask

Figure 3.5: Mask and holder for the calibration of the cameras used for LPT.

After removing the top plate of the LEM, the mask holder was placed on the LEM

such that it held the mask in the center of the tank. The mask provided dots with

a defined spacing in y and z direction. A translation stage mounted to the holder

was used to move the mask in the x direction.

recorded. As an example, Fig. 3.6 shows the mask at the center position. With

this information, the camera positions and orientations were determined in lab

space using a program written by Haitao Xu. After this procedure, for a particle

detected in the 2D plane of a camera sensor a line of possible positions through

the measurement volume, the line of sight, could be calculated. It is described in

the sections below, how the information of all cameras was used to determine the

3D position of a particle.
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Camera 0 Camera 1 Camera 2

Figure 3.6: Calibration images of the cameras used for LPT, taken with the mask

in the center of the tank.

3.2.2 Particle Finding

The first step was to find all particles in every image and to determine their x

and y coordinates on the image planes of the cameras. To do this, every pixel

in every frame is compared to a threshold5. While this is usually done in the

post processing, we developed a system to perform the thresholding in real time,

during data acquisition (Section 3.3). Only pixels brighter than this threshold

are considered to represent particles, those pixels with an intensity lower than the

threshold are considered to be the background, which is usually noisy. The pixels

that pass the thresholding typically form groups of connected pixels. Fig. 3.7 shows

5The threshold has to be determined in an iterative approach before the experiment and can
be different for each camera.
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a section of a typical image after thresholding. Now the center of each group of

pixels is determined with sub-pixel resolution by fitting Gaussian functions to the

intensity distribution (Ouellette et al., 2006a). This procedure is done for every

frame of every camera independently.

Figure 3.7: A 60 by 60 pixels section of a typical image of LPT after thresholding.

The center of every group of pixels is determined with sub-pixel resolution by fitting

a Gaussian function to the intensity distribution (Ouellette et al., 2006a).

3.2.3 Stereoscopic Matching

Now that the particle positions on the 2D image plane of each camera at each time

step are known, the 3D position of each particle in lab space at each time step

has to be obtained. This second step of the particle tracking algorithm is called

stereoscopic matching. To understand how it works a setup with only two cameras
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is considered.

As shown in Fig. 3.8 the 2D information about the position of a particle on

the image plane of camera A is used to calculate a line of sight through the mea-

surement volume. This line of sight of camera A is then projected on the image

plane of camera B. If a particle center on the image plane of camera B falls on that

projected line6, then a match is found. The 3D position of the particle can then be

obtained from the intersection of the two lines of sight from cameras A and B. In

reality, a particle center on camera B will never exactly fall on the line projected

from the line of sight of camera A. Therefore a small tolerance is used and parti-

cles within this tolerance are considered matches. It can happen, that two particle

centers on camera B are possible matches for the particle center on camera A.

Therefore the use of three or more cameras is favorable. As a requirement for the

stereoscopic matching, the positions and orientations of the cameras in lab space

need to be determined. In order to do this a calibration method described in Tsai

(1987) and Ouellette et al. (2006b) was followed.

6There is not necessarily a particle center falling on that line, as not all particles are detected
by all cameras.
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Figure 3.8: Stereoscopic matching with two cameras. Starting with a particle on

the image plane of camera A and calculating its line of sight to the measurement

volume (blue line). The line of sight is then projected on the image plane of camera

B with a small tolerance (blue shade). The particle found in the projection region

of camera B is considered to be the match for the particle from camera A and

its line of sight is calculated (green line). Since the lines of sight do not exactly

intersect, the 3D position is considered to be the position with the smallest distance

to all lines of sight.
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3.2.4 Particle Tracking

The final step that has to be performed is the particle tracking in time. In this

step, the 3D particle positions from all time steps are used to build particle tra-

jectories. To do this, every individual particle (in 3D lab space) that has been

found in one time step n has to be identified amongst those particles found in the

consecutive time step n + 1. Different algorithms, together with their advantages

and disadvantages for particle tracking, are discussed in Ouellette et al. (2006a).

The algorithm applied to the experimental data gathered in the scope of this thesis

is briefly described in the following.

When starting a new track the nearest neighbor approach is used. Consider

a particle at the position xn in time step n. This individual particle has to be

identified in time step n+ 1. Therefore, from all particles found in a search radius

around xn in time step n+ 1 the particle closest to xn is chosen.
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Figure 3.9: Illustration of the particle tracking method best estimate. Note that

particles of different time steps are shown. Solid black line with black circles :

a particle track with known particle positions at time steps n − 2, n − 1 and n.

Filled green circles : available particle positions at time step n+1. Filled red circles :

available particle positions at time step n + 2. The known particle positions at

times n−1 and n are used to calculate a velocity and estimate its position at time

step n+1 (open green circle). Then the particles A and B, found in a search radius

(green shaded area) are used, together with the known particle positions at times

n− 1 and n to calculate the accelerations and estimate the positions at time step

n+2 (open red circles). Depending on which particle within the search radius (red

shaded areas) at time n + 2 is the closest to an estimated position, either A or B

is chosen as the continuation of the track. In this example, A continues the track.
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After having a track with at least two positions, the best estimate algorithm

is used. This algorithm is depicted in Fig. 3.9. The starting point is the track we

assembled so far, shown as a black solid line with the positions of the particle at

time steps up to n. The two positions at time n − 1 and n, are used to calculate

the velocity of the particle and estimate its position at time step n+1 (open green

circle). Now all particles found at time step n + 1 (green circles) within a search

radius (green shaded area) around the estimated position are considered possible

candidates to continue the track. In the example in Fig. 3.9 two particles, A and

B, are within the search radius. To decide which continues the track one more step

is necessary. From the particle positions at n − 1, n and each possible position

at n + 1, the particle acceleration is calculated and used to estimate the particle

position at n + 2 (open red circles). In a search radius (red shaded area) around

each estimated position at n+ 2 we find the particle (red circles) closest to one of

the estimated positions. This is then used to decide which particle at time step

n + 1 continues the track. In Fig. 3.9 particle A would be chosen. The algorithm

then repeats to determine the position of this particle at time step n+ 2 by using

information of known particle positions at time steps n and n + 1 and available

particle positions at times n+ 2 and n+ 3.
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3.3 Real Time Image Compression System

High-speed cameras are designed to record videos of processes that are too fast

to be seen with the naked eye. This is done by shooting hundreds or thousands

of images per second and replaying the recorded video at slow frame rates like

25 − 50Hz to analyze the process. Some typical applications are crash tests,

assembly line analysis or slow motion shots for the broadcast of sport events.

Recording videos at such high frame rates produces enormous data rates, e.g.

∼ 1GB/s when recording grey scale images with 512 by 512 pixels at 3 kHz

with 10 bit intensity resolution. These data rates are much larger than the typical

writing speeds of hard disc drives (HDD), which are about 50− 100MB/s. As a

consequence, the high-speed cameras are usually equipped with a few GB of RAM

(Random Access Memory) to buffer the video. The size of the RAM limits the

duration of a high-speed video recording to a few seconds, depending on frame rate

and frame size. To download the buffered video to a computer for processing or

saving it to an HDD, can take several minutes, depending on the size of the video

and the available transfer media. For example, to download and save a 32GB

movie from our camera, a Phantom V640 from Vision Research, to a regular

computer via Ethernet takes about 15 minutes.

Both the short recording times and the relatively long downloading times might

not be very problematic for many applications in which the events one is inter-
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ested in are short and rare. In Lagrangian Particle Tracking, however, these two

limitations have significant effects. Let us first consider the short duration of the

recording. The smallest time scale in a turbulent flow is given by the Kolmogorov

time scale τη. The frame rate of the cameras is typically set at ∼ 30frames/τη

in order to accurately resolve the turbulent dynamics (Xu, 2008). Since τη is on

the order of ms, the frame rate of the cameras has to be on the order of kHz. As

mentioned before, the trade-off for high frame rates is the video duration. That

means, to resolve the fastest time scales one is restricted to short videos for cam-

eras with given internal memory size. In short videos it is difficult to detect slow

processes in turbulence that act on time scales longer than the recording. In this

work, we are interested in the response of the energy cascade to a perturbation

in the energy input. It was not clear a proiri on which time scales this response

would occur and it would have been disadvantageous to be limited to short LPT

measurements.

Now we want to discuss the effects of the downloading times on LPT measure-

ments. Usually, not enough data points for converging statistics can be retrieved

from one high-speed recording due to its limited duration. Therefore, for one LPT

experiment many videos have to be taken and an ensemble average is performed.

How many videos are needed depends on the experiment and which quantity is

measured, but very often several hundred videos are necessary. Considering the

46



relatively long downloading times, this means that the conditions for one exper-

iment (temperature, water quality, alignment of the cameras, etc.) have to be

maintained for several days or even weeks. In a small laboratory experiment,

where the experimentalists have control over the conditions, this is not more than

an inconvenience. But there are experiments where long downloading times are

drastically reducing the efficiency in terms of data per day. Examples are exper-

iments with high operational costs, like LPT in a wind tunnel as planned in the

Göttingen Turbulence Facility (Bodenschatz et al., 2014), or experiments in nature

where the experimentalists cannot control the conditions, like the planned LPT

experiments in clouds in the Environmental Research Station Schneefernerhaus on

Zugspitze (Risius, 2012; Risius et al., 2015; Siebert et al., 2015).

To overcome the issues of short recording times and long downloading times,

we decided to follow an approach pioneered by Chan et al. (2007). The basic idea

is that if one can stream and compress the image sequence from the high-speed

camera to a computer in real time, the videos can be written to a hard disk drive

directly. As an example, the data rate of a high-speed recording with 512×512

pixels and a 10 bit greyscale at 3 kHz is about 1GB/s. As we have argued before

this cannot be written to HDD directly. But let us consider the data rate of the

information we are interested in.

The images in LPT consist of sparse bright spots, the particles, on a black
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background (Fig. 3.7). As explained in Section 3.2.2 the very first step in the post

processing is to threshold the image to find bright pixels that represent particles.

Let us therefore estimate the data rate of the bright pixels. According to Ouellette

et al. (2006a), the stereo matching works efficient for up to 300 particles per image.

If we assume each particle to be represented by 5 pixels we have 1500 bright pixels

per image. Together with the 10 bit greyscale value, we also need to save the

position of each pixel, which can be done with an 18 bit number in case of a

512×512 pixels image. So each of the 1500 pixels can be represented by a 28 bit

number. In our example, with a frame rate of 3 kHz this would result in a data

rate of 1500 · 28 bit · 3 kHz = 15MB/s which is well below the writing speed of

standard HDDs.

Based on this idea, Chan et al. (2007) developed a circuit which receives the

high-speed video stream of the camera at a data rate of 625MB/s and compares

every pixel with a threshold in real-time (Fig. 3.10). Only those pixels brighter

than the threshold and their positions are then sent to the frame grabber card of

a computer and written to the HDD. The system achieves a compression factor7

of 100− 1000 and establishes a real-time data stream from the high-speed camera

to the HDD of the computer. Due to the size of the HDD (600GB) and the fact

that the data is compressed they achieve recording times up to a week while the

7The compression factor is the ratio of the file sizes of the uncompressed video to the com-
pressed video.
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Computer

Frame grabberFPGACamera
≤ 6 MB/s625 MB/s

Figure 3.10: Chan et al. (2007) developed an FPGA circuit that receives the

camera output, compares every pixel to a threshold and only sends those pixels

brighter than the threshold to a frame grabber card. The data rate is reduced by

a factor of 100-1000 and therefore the compressed image data can be streamed to

the HDD of the computer in real-time.

recording to the 4GB RAM of their camera is limited to about 6 s.

The heart of the circuit developed by Chan et al. (2007) is an FPGA (Field-

Programmable Gate Array), i.e. an integrated circuit allowing the modification

of its internal circuit layout and therefore its functionality. The internal circuit

layout of an FPGA is called logic and is designed8 through a Hardware Description

Language (HDL). The internal structure of an FPGA is very versatile and allows

implementation of nearly any kind of digital circuitry. It is therefore suitable

for signal processing and parallelization of processes, and allows for modifications

without a physical redesign of the hardware.

Hence, FPGAs are used in a wide variety of applications and one of which

is real-time image processing as e.g. in machine vision (Dı́az et al., 2006; Jin

8Very often the word programming is used in this context. That is misleading, because in fact
a digital circuit inside the FPGA is designed.
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et al., 2010). Concerning the particular use of FPGAs for real-time image com-

pression in LPT, only two cases are known to the author. The work of Chan et al.

(2007), where an FPGA circuit external to the camera was developed, was already

mentioned. Following the same principle of reducing the data rate by discarding

information not needed for the LPT post processing, Kreizer et al. (2010) presented

a work using an FPGA on board of a high-speed camera. This has the advantage,

that the bandwidth of the camera output to the frame grabber can be used more

efficiently. Moreover, Kreizer et al. (2010) not only thresholded the image to find

the bright pixels but also determined the center of groups of pixels and therefore

output 2D particle positions instead of the positions of all pixels that represent a

particle. In a later work they combined their camera with a four-view image split-

ter to perform 3D LPT (Kreizer & Liberzon, 2011). In the following, our approach

towards real-time image compression for LPT using an external FPGA circuit will

be described.

3.3.1 High-speed Cameras

The high-speed cameras we use are Vision Research’s Phantom V640 equipped

with the CineStream module (Fig. 3.11). This module provides a fiber optical

output9 to transmit image sequences at data rates of about 1GB/s (without over-

9A fiber cable with an MTP/MPO connector can be connected. The camera uses 8 out of 12
fibers in the cable with a transmission rate of 2.125Gbit/s per fiber.
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head). The fiber output can be used to download videos previously recorded to

RAM or to transmit a live image stream. In the live streaming case, the bandwidth

of the fiber connection reduces the achievable frame rates, compared to those when

recording to RAM (Tab. 3.1). All LPT measurements presented in this work were

recorded using the live streaming option with 512×512 pixels at a frame rate of

3 kHz.

Figure 3.11: Vision Research’s Phantom V640 with CineStream module. The

CineStream module provides a fiber output to stream high-speed videos continu-

ously at a data rate of about 1GB/s.

The Cameras are controlled through software commands for the most part

(frame rate settings, exposure time etc.) but also provide input ports for control

using digital signals. Two of those are important in this setup. One is the FSYNC

input. On this port a square wave signal can be sent and the camera will record an
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frame frame rate frame rate

size to RAM (12 bit) through fiber (10 bit)

2560×1600 1500 195

1024×1024 4900 760

512×512 15000 3000

256×256 39800 12200

Table 3.1: Achievable frame rates of the Phantom V640 when recording to RAM

or streaming through fiber. The bandwidth of the fiber (1GB/s) limits the frame

rate.

image with every rising edge. The other external signal is the pre-trigger. A rising

edge on this port starts the live stream transmission through fiber. To terminate

a transmission the FSYNC signal is switched off. The same signals, FSYNC as

well as pre-trigger, are sent to all cameras to ensure they all have the same frame

rate and record images at the same time.

It turned out that the cameras do not start the videos at exactly the same time

as they are expected even though the pre-trigger signal they receive is from the

same source. Measurements showed that delays between the starting times of two

cameras can be up to 0.1 s. This imposed a severe problem on synchronization,

which was solved by using a unique event in the recording. Therefore, in the
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experiments the recording was started before switching on the Nd:Yag Laser for

measurement volume illumination. Hence, the first bright frame of each video was

used to temporally align the image sequences recorded from different cameras.

3.3.2 FPGA System

To take advantage of the option to receive a continuous data stream of the camera

at high frame rates through fiber we developed an FPGA based receiver system.

This receiver system was presented in Di Lorenzo (2010) without the real-time

compression functionality. This function was implemented in the present work.

We therefore developed a real-time image compression system that is comparable

to Chan et al. (2007) in architecture as the FPGA is external to the camera and

a thresholding of each pixel is performed.

The core of the image compression system is the X5-TX, an FPGA module of

Innovative Integration. The X5-TX is mounted in the PCIe slot of a host computer.

Since it only provides differential electrical input channels (eSATA), we designed

an electrical circuit that transforms the optical signals of the camera to differential

electrical signals (Di Lorenzo, 2010). This way we managed to establish a real time

data stream from the high-speed camera via fiber cable, and after conversion to

electrical signals, into an FPGA card that reduces the data rate and writes the

compressed high-speed movie to the hard disc drive of its host computer.
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When transmitting data through the fiber cable, the camera splits up every

image on the eight fibers to equal parts10. We designed a module in the FPGA

logic that receives the data of a fiber channel pixel by pixel and compares each

pixel to a threshold. This module is implemented eight times, such that the data

of all channels can be processed in parallel. The pixels that pass the threshold

are, together with their coordinates, assembled into data packets and passed to

a module that takes care of the communication with the operating system of

the host computer and writes the data to file. This PCIe module was already

implemented in the FPGA logic and cannot be modified as it is proprietary of

Innovative Integration.

The specific logic design of the PCIe module restricted us to a packet size of

16B. We therefore decided to use an output file format based on two types of 16B

packets. One is the frame start packet (FSP) that contains general information

(Tab. 3.2). Every time a new frame starts an FSP is issued for every channel. The

other type of packet is the data packet (DP). Each DP consists of the channel num-

ber from which it was issued and three pixel intensity values with their coordinates

(Tab. 3.3). The last DP of a frame may contain less than three pixels and will be

filled up with zeros. Note that we obey the byte boundaries when filling the DP,

i.e. even though the pixel values are 10-bit numbers and the coordinates are 20-bit

10The information about how the image is distributed over the eight fiber channels is restricted
by a non-disclosure agreement we signed with Vision Research.
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numbers, we use 2 B and 3 B to store the information in the DP, respectively, to

allow byte wise reading of the binary file.

1 bit 7 bits 1 B 2 B 3 B 6 B 1 B 2 B

1 for FSP Channel ID Frame number Line Size Image Size all zero Status Threshold

Table 3.2: Frame Start Packet (FSP)

1 bit 7 bits 3 B 2 B 3 B 2 B 3 B 2 B

0 for DP Channel ID Coordinate 0 Pixel 0 Coordinate 1 Pixel 1 Coordinate 2 Pixel 2

Table 3.3: Data Packet (DP)

The control software of the FPGA board, provided by Innovative Integration

together with the X5-TX, was modified such that a user-defined threshold value can

be sent from the GUI11 to the FPGA12. Moreover the possibility of controlling the

FPGA board remotely through network commands sent from a different computer

was added by the author. We use this for automation of the experiment and for

streaming of the image data to the computer cluster instead of saving them locally

on the FPGA’s host computer.

11Graphical User Interface
12This function was implemented by Simon Schütz.
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3.4 Nd:YAG Laser

For illumination of the measurement volume in the center of the LEM a self-built13

frequency doubled Nd:YAG laser (Fig. 3.12) was used. It outputs laser light at a

wave length of 532nm. To increase the output power a Q-Switch was used to pulse

the laser rather than using the light of a continuous wave. The repetition rate of

the pulsing therefore had to be chosen such that output power was maximized and

every frame of the recorded videos would receive the same number of pulses, i.e.

the repetition rate had to be an integer multiple of the frame rate of 3 kHz. A

sufficient mean output power of ∼ 40W was reached at a repetition rate of 27 kHz

which means that every frame receives nine laser pulses during an exposure.

The beam path can be seen from (Fig. 3.12). After exiting the housing on

the right side of the image, the laser beam is collimated with a plano-concave

lens with a focal length of 75mm and a plano-convex lens with a focal length of

100mm. Then, the beam is elevated with four mirrors to follow a tilted beam path

perpendicular to a window of the LEM. In this tilted part of the beam path, the

beam is extended to a diameter of about 10 cm by two plano-convex lenses with

focal lengths of 25mm and 400mm.

13The laser was built by Jennifer Jucher, Haitao Xu and the author.
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Figure 3.12: The frequency doubled Nd:YAG laser for illumination of the mea-

surement volume. It outputs a mean optical power of ∼ 40W at a wave length of

532nm and a repetition rate of 27 kHz. The laser beam is collimated and then

expanded to a size of about 10 cm. It is guided through the measurement volume

such that it enters the LEM perpendicular to the Plexiglass window.

3.5 Automation of the Experimental Setup

In this section we give an overview on how all the devices involved in the ex-

periments work together to automatically acquire experimental data. The setup

involves the LEM, an Nd:YAG laser, the Master Computer and four units of high-

speed camera, FPGA computer and cluster node (Fig. 3.13). A frequency gen-

erator (FG) provides the laser as well as the cameras with external square wave

signals. The cameras are fed with a 3 kHz signal on their FSYNC inputs in order

to record images at the same time. The Q-Switch of the laser is fed with a 27 kHz

signal, such that every recorded frame is illuminated by nine laser pulses during
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exposure time. The 27 kHz signal is delayed compared to the 3 kHz signal to

ensure that the exposure of the camera sensor starts before the first laser pulse is

released.

Cl. node 0

Cl. node 1

Cl. node 2

Cl. node 3
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FPGA 1
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Camera 1
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Figure 3.13: A sketch of the network of the setup. Every camera is connected to

an FPGA computer via fiber cable. The FPGA computers and the cluster nodes

are in an ethernet network. The real-time data stream runs from the cameras to

the FPGA computers at a high data rate (1GB/s), is compressed by the FPGAs

and sent to the cluster nodes for saving. The Master Computer controls the LEM,

the cameras and the communication between FPGA computer and cluster nodes.

With digital signals from the parallel port, the data stream can be started (using

pre-trigger) or stopped (using FSYNC Enable) and the laser light can be switched

on and off by controlling the shutter of the laser.
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The Master Computer’s parallel port is used to generate three important digital

signals for the other components. (i) The first signal is used to control the shutter

of the laser in order to switch the laser illumination on or off. (ii) The second signal

is sent to the cameras as pre-trigger to start the transmission of live image data

through the fibers. (iii) The third signal is used to terminate the fiber transmission

by interrupting the 3 kHz FSYNC signal. This is done using a simple AND gate

(FSYNC Enable) with the FSYNC signal of the frequency generator on one input,

while the output is connected to the cameras. The parallel port signal on the other

input of the AND gate is used to enable or disable its output and therefore the

transmission of the square wave.

Since the Master Computer is responsible for the control of the cameras, the

FPGA computers, the cluster nodes and the LEM, it resides in three separate

Ethernet networks. (i) The motors of the LEM are controlled through Ethernet 0

using an Ethernet to CAN bus converter (AnaGate CAN). (ii) Ethernet 1 connects

the Master Computer with the Cameras to transfer settings like frame rate, frame

size, exposure time and other control commands. (iii) The FPGA computers and

the cluster nodes are connected to the Master Computer through Ethernet 2, for

the Master Computer to initiate the establishment of the data stream between

each FPGA computer and its respective cluster node, after which it is possible to

stream the data from the cameras through optic fibers to the FPGA computers,
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where the data is compressed and forwarded to the cluster nodes for saving.

The program sequence of the main control program on the Master Computer is

described in the follwing. The purpose of the main control program is to enable the

system to record a specified number of movies, in which the motor speed changes

between two user defined values, automatically. The user can define the timing

by setting three time values before the start of the experiment. (i) The recording

time trec specifies the duration of each recorded movie. (ii) Next, a delay time tdel

determines when the change of motor speed from speed 1 to speed 2 occurs. In

the control program, tdel is given in seconds after the start of the recording. (iii)

After the recording is finished, the motor speed is again changed from speed 2 to

speed 1. To make sure the turbulent flow is stationary again at speed 1 before

starting the next recording a waiting time ∆t between two movies has to be set.

The following description is supplemented by the timing diagram, Fig. 3.14,

and the flow chart, Fig. 3.15. The numbering of the dashed lines in Fig. 3.14

corresponds to the numbering of the boxes in the flow chart (Fig. 3.15). Note that

the spacing between the numbered dashed lines in Fig. 3.14 does not represent the

real time span between the respective steps.
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1 When the program starts, important parameters are set in the LEM, like

acceleration14, and sent to the FPGA computers, such as recording time trec,

and to the cameras (frame rate, frame size, exposure time etc.). After each

device confirms the receiving of the message, FSYNC is enabled to provide

the cameras with the 3 kHz square wave signal.

2 In the second step, the cycle starts. At first, parameters like frame rate,

frame size, exposure time etc. are sent to a server program15 running on the

cluster, which then writes these parameters in the header of the data file.

Then the propellers are set to speed 1 and the program waits for ∆t to make

sure the flow is stationary before executing the next step.

3 In this step the data stream between the FPGA computers and the cluster

nodes is established. This means that the FPGA computers and the cluster

nodes are instructed by the Master Computer to go through a handshake

procedure after which each cluster node is waiting for data from the corre-

sponding FPGA computer and the FPGA computer is waiting for data from

the corresponding camera. The Master Computer waits for confirmation

from all devices before executing step four.

14In all experiments presented in this thesis the maximum possible propeller acceleration of
2000 rpm/s is set.

15This program was written by Haitao Xu.
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4 Now that the FPGA computers and the cluster nodes are ready for data

acquisition, the data transmission of the cameras is started by switching

the pre-trigger signal on. After 0.5 s, which is the time between the start

of recording and switching on the illumination, step five is executed. Since

we measured that the time it takes for two different cameras to process the

pre-trigger signal can take up to 0.1 s, we chose to wait 0.5 s to make sure

all cameras started recording before the laser is switched on.

5 As we argued before, the pre-trigger signal is not reliable enough to start all

cameras recording at exactly the same time. Therefore, the laser is switched

on in this step, 0.5 s after the recording started, such that the first bright

frame can be used for alignment of the image sequences. Then the pre-trigger

is switched off again, as the cameras are only sensitive to the rising edges

of this signal. Finally a timer for the delay time is started, and after tdel

elapsed, step six is executed.

6 The propeller speed is changed to speed 2 and a timer for the recording time

is started and issues the execution of step seven after trec − tdel.
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7 Now that the recording time is elapsed, FSYNC is switched off and therefore

the cameras do not send any more images. However, there might still be

data in the buffers of the FPGA computers and the cluster nodes. Therefore

the Master Computer now waits for those to confirm that the data stream

has ended before executing step eight.

8 After receiving confirmation that the stream stopped, the FPGA computers

and the cluster nodes are instructed to disconnect from each other. Moreover

the Laser is switched off and the FSYNC is switched on again. If the desired

number of movies has been recorded the program ends; otherwise step two

is executed and the cycle starts over again.

Note that between steps 4 and 7 , the data stream is sent continuously

from the camera to the FPGA computer, and then to the cluster node, where it

is received by the server program and written to the HDD.
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Figure 3.14: Timing diagram of the data acquisition. The dashed vertical lines

indicate which instance of the Master Computer program, shown in Fig. 3.15, is

effective at that time. Note that the spacing between the vertical lines is not in

proportion to the amount of time passed between the corresponding events. Three

times are set by the user: ∆t defines a waiting time between two movies, for the

flow to become stationary at speed 1; trec specifies the duration of the recording; tdel

determines when the propeller speed is set to speed 2 after the recording started.

The unlabeled times are not specified and depend on the tasks performed in the

respective steps and the network communication involved.
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Figure 3.15: Flow chart of the main control program running on the Master

Computer. The numbers of the boxes correspond to the timing markers in the

timing diagram (Fig. 3.14). Three times are set by the user: ∆t defines a waiting

time between two movies, for the flow to become stationary at speed 1; trec specifies

the duration of the recording; tdel determines when the propeller speed is set to

speed 2 after the recording started.
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Chapter 4

Results

In this Chapter, the results of the experiments conducted in the scope of this

thesis are presented. Our goal was to investigate the response of a turbulent flow

to a sudden change of the energy input, which was achieved by a motor-speed-

up in one case and by switching off the motors in the other case. In order to

quantify the transition process between the two energy input states, at first steady

state measurements with four different energy input rates were performed and are

presented in Section 4.1. The steady state measurements were performed with

constant propeller speed at 200 rpm, 400 rpm, 300 rpm and 500 rpm, for later

comparison with the measurements of the transient cases. In Section 4.2 the two

cases with a step-function like increase of the large scale forcing, from 200 rpm to

400 rpm and from 300 rpm to 500 rpm, are presented. For the investigation of the
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decay of turbulence two more experiments were performed. In both experiments,

the energy input to an otherwise stationary forced turbulent flow was stopped by

switching off the motors. In one case the initial propeller speed was 200 rpm, in the

other case 400 rpm. The results of these experiments are presented in Section 4.3.

General parameters, which apply for all data sets presented in this thesis, are

listed in Tab. 4.1. The other parameters, that differ from one experiment to

another, will be listed in the respective section.

Frame rate 3 kHz

Exposure time 320µs

Frame size 512×512

FPGA threshold camera 0 150

FPGA threshold camera 1 200

FPGA threshold camera 2 170

FPGA threshold camera 3 170

Tracer particle diameter 80µm

Measurement volume size ∼ (8 cm)3

Spacial resolution ∼ 160µm/pixel

Table 4.1: General parameters, applying to all experiments presented in this

thesis.
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4.1 Steady State

In this section, the steady state measurements that were acquired with constant

propeller speed at 200 rpm, 400 rpm, 300 rpm and 500 rpm are presented. For

each propeller speed about twelve movies were recorded, each with a duration of

60 s. The Lagrangian Particle Tracking algorithm explained in (Section 3.2) was

applied to each recording. In the following, statistical quantities like total kinetic

energy E, dissipation rate ε etc., that were determined from the four data sets, are

presented.

The longitudinal and transverse second order structure functions, DLL(r) and

DNN(r), were measured according to Eq. (2.10) and Eq. (2.11), respectively. Ana-

log to Eq. (2.10), the longitudinal third order structure function was measured

using

DLLL(r) = 〈
[
u‖(x + r, t)− u‖(x, t)

]3〉. (4.1)

These three functions were used to determine the energy dissipation rate ε. Kol-

mogorov’s theory shows that ε in the inertial range can be represented by DLL(r),

DNN(r) and DLLL(r) according to Eq. (2.14), Eq. (2.15) and Eq. (2.25), respec-

tively. Therefore, the functions

εDLL =

(
DLL(r)

C2

)3/2
1

r
,
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εDNN =

(
3

4

DNN(r)

C2

)3/2
1

r
and

εDLLL = −5

4
DLLL(r)

1

r
(4.2)

are shown in Fig. 4.1, Fig. 4.2, Fig. 4.3 and Fig. 4.4 for the 200 rpm, 300 rpm,

400 rpm and 500 rpm cases, respectively. In consistency with the prediction that

ε is constant in the inertial range the data show a plateau in the range between

2− 40mm. However, to minimize the error ε was determined in the range of 4−

16mm where the three curves show the best agreement. Due to the relatively low

particle seeding density in the measurement volume, needed for the LPT algorithm

and the real time image compression to work, the probability to observe two tracer

particles at a close distance from each other is very low. Therefore, the number

of statistics for length scales smaller than 2mm is very small and the data show

significant scatter.

The total kinetic energy per unit mass of the four steady state experiments

was determined by averaging the squares of the measured velocities of all particles

found in the measurement volume, E = 1
2
〈u2〉. From this the root mean square of

the velocity fluctuations, u′ =
√

2E/3, was calculated. Here, the factor 3 appears

because u′ is defined for one velocity component and the flow is isotropic. With

u′ and ε other flow parameters can be determined.
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Figure 4.1: Energy dissipation rate ε for steady-state turbulence at a propeller

speed of 200 rpm, determined from DLL (blue curve), DNN (red curve) and DLLL

(green curve) as a function of scale, using Eq. (4.2). The dissipation rate was

determined by averaging over all three curves in the range of 4−16mm (indicated

by the vertical dashed lines) with a value of ε200 = 2.1 · 10−3 m2

s3
.
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Figure 4.2: Energy dissipation rate ε for steady-state turbulence at a propeller

speed of 300 rpm, determined from DLL (blue curve), DNN (red curve) and DLLL

(green curve) as a function of scale, using Eq. (4.2). The dissipation rate was

determined by averaging over all three curves in the range of 4−16mm (indicated

by the vertical dashed lines) with a value of ε300 = 7.1 · 10−3 m2

s3
.
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Figure 4.3: Energy dissipation rate ε for steady-state turbulence at a propeller

speed of 400 rpm, determined from DLL (blue curve), DNN (red curve) and DLLL

(green curve) as a function of scale, using Eq. (4.2). The dissipation rate was

determined by averaging over all three curves in the range of 4−16mm (indicated

by the vertical dashed lines) with a value of ε400 = 1.7 · 10−2 m2

s3
.
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Figure 4.4: Energy dissipation rate ε for steady-state turbulence at a propeller

speed of 500 rpm, determined from DLL (blue curve), DNN (red curve) and DLLL

(green curve) as a function of scale, using Eq. (4.2). The dissipation rate was

determined by averaging over all three curves in the range of 4−16mm (indicated

by the vertical dashed lines) with a value of ε500 = 3.3 · 10−2 m2

s3
.
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The velocity fluctuation u′ is a characteristic velocity of the turbulent flow

produced in the LEM. Since Eq. (2.7) is valid in the whole inertial range, the

forcing length scale, which also characterizes the scale of the largest eddies, can

be obtained from L = u′3/ε. These quantities could be used to define a Reynolds

number Re = u′L/ν, but in turbulence research it is more common to define the

Reynolds number Rλ = u′λ/ν based on the Taylor micro-scale λ. For isotropic

turbulence Re and Rλ are related by Rλ =
√

15Re (Pope, 2000). Therefore the

Taylor micro-scale based Reynolds number is obtained using Rλ =
√

15u′4/(εν).

The Kolmogorov length scale η and the Kolmogorov time scale τη are obtained

according to Eq. (2.6) and the large-eddy turnover time is given by TE = L/u′.

The flow parameters of the steady-state experiments, determined as described

above, including the temperature of the working fluid θ and the corresponding

kinematic viscosity ν, are given in Tab. 4.2. Since it was difficult to keep the

temperature constant through all experimental realizations, the temperature was

different for each data set. Within each data set, however, the temperature was

not fluctuating more than ± 1 ◦C. This leaves an error of less than ∼ 3 % on the

value for the viscosity and error of less than ∼ 2 % on the quantities derived from

that (Rλ , η and τη). The error in the velocity measurement was estimated to be

10−2m/s. The uncertainty in ε was calculated from the standard deviation of the

curves to the average. All other errors given in Tab. 4.2 are calculated from those.
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200 rpm 300 rpm 400 rpm 500 rpm

E [10−2m2/s2] 0.5 ± 0.1 1.0 ± 0.1 1.8 ± 0.2 2.7 ± 0.2

u′ [10−2m/s] 6 ± 1 8 ± 1 11 ± 1 14 ± 1

ε [10−2m2/s3] 0.21 ± 0.01 0.71 ± 0.03 1.7 ± 0.1 3.3 ± 0.2

Rλ 260 ± 93 310 ± 75 350 ± 64 390 ± 58

L [mm] 87 ± 47 84 ± 30 80 ± 22 80 ± 18

η [µm] 157 ± 2 115 ± 1 93 ± 1 79 ± 1

τη [ms] 22.6 ± 0.5 12.3 ± 0.3 8.0 ± 0.2 5.7 ± 0.1

TE [s] 1.5 ± 0.6 1.0 ± 0.2 0.7 ± 0.1 0.58 ± 0.09

θ [◦C] 16.6 ± 1 17.0 ± 1 16.6 ± 1 16.9 ± 1

ν [10−6m2/s] 1.09 ± 0.03 1.08 ± 0.03 1.09 ± 0.03 1.08 ± 0.03

Table 4.2: Flow parameters for the steady-state experiments with propeller

speeds 200 rpm, 300 rpm, 400 rpm and 500 rpm.
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4.2 Step-up of Energy Injection

In this set of experiments, the response of the turbulent flow in the LEM to a step-

function like increase of the large-scale forcing was investigated. The timing cycle

for the 300 rpm to 500 rpm data set was set such that all propellers were initially set

to 300 rpm for about 2.5min (150TE) to make sure that the flow was statistically

stationary. Then the LPT measurement started and the propeller speed remained

at 300 rpm for another 5 s before it was increased to 500 rpm. The energy input

stayed on the high level for 60 s. Then the data acquisition was terminated and

the propeller speed again reduced to 300 rpm for 2.5min before the next recording

started. That means, videos with a duration of 65 s were recorded, where the first

5 s were recorded with a low energy input. In total, 326 videos were recorded for

the 300 rpm− 500 rpm case.

For the 200 rpm to 400 rpm experiment the waiting time for the flow to become

stationary between two recordings was increased to 5min (200TE) to account for

the longer large-eddy turnover time at the lower motor speed and the higher energy

injection rate. The recording time was reduced to 45 s as the measurements of the

300 rpm − 500 rpm case suggested that this recording time should be sufficient.

Again the first 5 s were recorded with low energy input and the rest with high

energy input. In total, 314 recordings were acquired for this data set.

To obtain time dependent statistics, the recordings of each data set were phase
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averaged. In order to do that, the moment of motor-speed-up in each video was

determined. As described in Section 3.1, when the motors sped up a laser pointer

produced a bright spot on the sensor of one of the cameras. By finding the in-

crease of intensity in the respective region of the image sequences of that camera

the moment of motor-speed-up was determined relative to the moment when the

measurement volume illumination (Nd:YAG laser) was switched on. Fig. 4.5 shows

that the time of the motor-speed-up can vary up to about 0.2 s from movie to

movie, which was a result of imprecision of the software timers used in the con-

trol program and latencies in the communication of the involved devices through

Ethernet and CAN bus.

After determining the moment of motor-speed-up each recording was divided

into bins with a duration of 0.1 s, with the motor-speed-up being defined as t = 0.

Then the data from the respective bins of all recordings were averaged to obtain

time dependent statistics.

At first it had to be confirmed, that the turbulent flows of both cases, 200 rpm

to 400 rpm and 300 rpm to 500 rpm were steady at the low energy input when the

recordings started and reached the steady state corresponding to the high energy

input during the recording. In order to do that, the statistics of the first 5 s of

the datasets were averaged to compare to the 200 rpm and 300 rpm steady state

cases, and the statistics from 20 s to the end of the recordings were averaged to
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Figure 4.5: Intensity in a 20 by 20 pixel region of the camera sensor that captures

the laser pointer lighting up to determine the moment of the motor-speed-up. As

example, the signal of three movies of the 200 rpm to 400 rpm data set is shown.

On average the motors speeded up at 5.26 s after the Nd:YAG laser was switched

on, like in movie 273. Movies 158 and 367 represent extreme cases.

compare to the 400 rpm and 500 rpm steady state cases. The data was analyzed as

explained in Section 4.1 and the flow parameters obtained that way are presented

in Tab. 4.3 and compare very well to the parameters of the steady states, listed in

Tab. 4.2. This confirms that the turbulent flows produced for this two data sets

went through the full transition from a steady state at a low energy input to a
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steady state at a higher energy input.

Now the temporal evolution of the flow from one steady state to the other shall

be examined. We want to start with the kinetic energy E(t), which is expected

to equal the kinetic energy of the low energy input case, 〈EL〉, before the motors

change speed (t ≤ 0). After sufficiently long time E(t) is then expected to reach

the kinetic energy of the high energy input case 〈EH〉. Therefore, in Fig. 4.6

the quantity (E(t) − 〈EL〉)/(〈EH〉 − 〈EL〉) is shown as a function of time for

both step-up data sets, where time is in units of the large eddy turnover time

of the final stationary state, TE, respectively. Both data sets show that there is

a time delay of about 2TE between the motor-speed-up and the moment when

the kinetic energy in the observation volume starts to rise. This is most likely

due to the fact that the momentum, generated at the propellers, needs time to

be transported from the propellers to the measurement volume with a distance of

about D = 20 cm in between. The turbulence transport takes time of the order

of D/u′ = (D/L) · (L/u′) = (D/L) · TE. In our experiments the integral scale

L is nearly constant over the range of Rλ explored (Tab. 4.3). Therefore, the

observed delay time is approximately 2TE, independent of Rλ. This delay has also

been observed in experiments in a von Kármán flow (the so-called French Washing

Mashine) with sinusoidal forcing (Cadot et al., 2003).

The 300 rpm to 500 rpm data set (red curve) shows fairly strong fluctuations

79



200 rpm 300 rpm 400 rpm 500 rpm

from from from from

−5− 0 s of −5− 0 s of 20− 40 s of 20− 60 s of

200-400 rpm 300-500 rpm 200-400 rpm 300-500rpm

〈E〉 [10−2m2/s2] 0.5 ± 0.1 1.1 ± 0.1 1.8 ± 0.2 2.7 ± 0.2

u′ [10−2m/s] 5.6 ± 1 8.4 ± 1 11.1 ± 1 13.8 ± 1

ε [10−2m2/s3] 0.20 ± 0.01 0.72 ± 0.03 1.7 ± 0.1 3.4 ± 0.2

Rλ 250 ± 91 310 ± 73 350 ± 63 380 ± 56

L [mm] 87 ± 47 83 ± 30 81 ± 22 78 ± 17

η [µm] 163 ± 2 116 ± 1 95 ± 1 79 ± 1

τη [ms] 23.7 ± 0.6 12.3 ± 0.2 8.0 ± 0.2 5.7 ± 0.1

TE [s] 1.6 ± 0.6 1.0 ± 0.2 0.7 ± 0.1 0.56 ± 0.09

θ [◦C] 15.6 ± 1 16.2 ± 1 15.6 ± 1 16.2 ± 1

ν [10−6m2/s] 1.12 ± 0.03 1.10 ± 0.03 1.12 ± 0.03 1.10 ± 0.03

Table 4.3: Flow parameters of the steady phases of the 200 rpm to 400 rpm and

the 300 rpm to 500 rpm experiments. The parameters were obtained by averaging

the time dependent statistics over 5 s before the propeller speed change and from

20 s after the propeller speed change to the end of the recording. The time of the

speed change was defined to be t = 0 s.
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around the low energy value and appears to be steady again at 20TE after the

change of motor speed. To avoid a possible effect of the previous high energy state

on the initial low energy state of the new recording, the waiting time between two

recordings was increased, and the recording time was decreased for the 200 rpm to

400 rpm data set (blue curve). This data set shows smaller fluctuations before the

motor speed change and reaches the high energy steady state after about 25TE.

Fig. 4.6 shows that the turbulent flows in both experiments adjusted to the new

energy input within the time of the observation. From the energy cascade picture

one would expect different scales to adjust to the new energy input at different

times. The forcing is performed at the large scales and the energy needs time to

propagate down the cascade to the small scales. Therefore, the energy content of

the large scales should increase earlier, compared to the energy content of smaller

scales. As an indicator for the energy content at a given scale the velocity structure

functions were used.

In Fig. 4.7, the evolution of DLL(r, t) of the 200 rpm to 400 rpm dataset for

different scales is shown. The curve is normalized by DLL(r) of the high energy

input case. The curves for all scales rise to the higher level together without

showing any scale being particularly faster than any other. In Fig. 4.8, the same

quantity is shown as a function of scale at different times after the speed-up.

The vertical dashed line marks the large scale L ∼ 900 r/η. Data points in the
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Figure 4.6: Normalized kinetic energy (E(t)−〈EL〉)/(〈EH〉−〈EL〉) as a function

of large-eddy turnover time. The red curve shows the 300 rpm to 500 rpm and the

blue curve shows the 200 rpm to 400 rpm dataset. The kinetic energy E(t) of the

step up experiments is normalized with the kinetic energies of the respective steady

state energies for high and low energy input, 〈EH〉 and 〈EL〉, respectively. Time

was non-dimensionalized with the large-eddy turnover time TE of the respective

high energy state. The values for 〈EH〉, 〈EL〉 and TE are listed in Tab. 4.3. The

dashed line indicates when the motors speed up.
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Figure 4.7: DLL(r, t), normalized by DLL(r) of the high energy input case, as

a function of large eddy turnover time after motor-speed-up. The curve is shown

for different values of r/η together with the kinetic energy for comparison. The

measurements are taken from the 200 rpm to 400 rpm dataset.

scale range larger than that are more likely to be influenced by the particular

design of the experiment as they are outside of the inertial range. Moreover, the

measurement volume is not spherical beyond this scale and velocities found with

that distances might have a preferential direction. The scales in the range smaller

than L ∼ 900 r/η all seem to adjust to the new forcing at about the same rate.

The full information ofDLL(r, t), normalized byDLL(r) of the high energy input

case, as a function of scale and time is given in Fig. 4.9 where the large scatter at
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Figure 4.8: DLL(r, t), compensated by the inertial range scaling C2(εr)
2/3, as a

function of r/η. The curves for different values of time after motor-speed-up are

shown. The vertical dashed line marks 900 r/η, the size of the large scale L = u′3/ε.

The measurements are taken from the 200 rpm to 400 rpm dataset.

small scales is due to unconverged statistics and limited spatial resolution. Like

Fig. 4.7 and Fig. 4.8, it shows that all scales follow the change of energy input at

about the same rate.

From Fig. 4.9 it can be seen that at later times (t/TE ≥ 20), when the flow

is already steady at the high energy input, the averaged structure functions still

fluctuate significantly even after averaging over 300 realizations. Furthermore,

Fig. 4.10 shows the kinetic energy of several individual realizations in comparison

84



t/TE

r
/
η

 

 

5 0 5 10 15 20 25 30 35 40 45 50

25

50

100

200

400

800
1000 0.2

0.4

0.6

0.8

1

1.2

Figure 4.9: Plot of DLL(r, t) (color coded), normalized by DLL(r) of the low

energy input case, as a function of scale and time.

with the kinetic energy averaged over all recordings shown in Fig. 4.6. The plot

shows that the fluctuations occurring in the single recordings are very strong and,

that not all realizations seem to adapt to the new energy input at the same time.

When considering the moment at which the fluctuations of the kinetic energy

rise above unity for the first time as the time when the flow in the measurement

volume starts to adapt to the change in motor speed, it can clearly be seen that

this happens at very different times. This is due to the fact that the time it takes

for the agitated fluid at the propellers to be convected to the measurement volume

is a fluctuating quantity, despite that its average value is approximately 2TE. This

therefore raises the question whether the way time t = 0 for the phase averaging

was determined (by finding the moment of motor-speed-up) is suitable to observe
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Figure 4.10: Normalized kinetic energy as a function of time. The black curve

shows the average over all realizations of the 200 rpm to 400 rpm dataset while the

other curves show single realizations.

the response of different scales at different times or if the effect was averaged out.

Since the scale-response that we are interested in should, in principle, also

be present in the fluctuations in the steady part of the recordings, we therefore

investigated these fluctuations in detail. At first, the events of strong fluctuations

were identified by selecting local maxima in kinetic energy that were above 2EH .

All maxima from all realizations that occurred in the steady part (after 20TE) were

considered. Then a phase averaging was performed with those events including

2TE before and after the maxima and by defining the peak of the kinetic energy

to be t = 0 for the individual events. The structure functions, DLL(r, t) obtained
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Figure 4.11: Responses of DLL(r, t) to large surpluses of kinetic energy at t = 0.

In the plot, several curves of DLL(r, t) compensated by the inertial range scaling

C2(εr)
2/3, are shown as a function of r/η, where ε is the energy dissipation rate at

the steady state. The vertical dashed line marks 900 r/η, the size of the large scale

L = u′3/ε. The measurements are taken from the 200 rpm to 400 rpm dataset in

the statistically steady regime from t/TE = 20 to the end of the recording.

in this way then provide information on the scale-dependent response to large

surpluses in kinetic energy.

Fig. 4.11 shows DLL(r, t) thus obtained as function of r/η, compensated by the

K41 type inertial range scaling, C2(εr)
2/3, where ε is the energy dissipation rate at

the steady state. The curves corresponding to several different times before and
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after the peak of the kinetic energy are shown. It can be seen that the large scales

rise earlier than the small scales. Especially for −0.5 ≤ t/TE ≤ −0.1, the large

scales increase much faster than the small scales, which leads to the change in the

shape of the compensated DLL(r, t). After approximately t = 0, the smaller scales

rise a bit further to reach the peak of the fluctuation. Then all scales drop back

to the steady state level.

This delay of response in the small scales can be better seen in Fig. 4.12, in

which DLL(r, t) for several scales r/η, normalized by the corresponding values of

DLL(r) at the steady state are shown as a function of time. Different curves for

different scales in the inertial range are shown together with the change of kinetic

energy for reference. This plot clearly shows that after the increase of kinetic

energy, the large scales increase first. The smaller scales then follow at a later

time.

In Fig. 4.13, DLL(r, t) in response to a surplus in kinetic energy, normalized by

DLL(r) at the steady state, are shown as a function of both scale and time. In this

figure, the color-coding is such that the blue color means that DLL(r, t) is close

to the steady-state value, while the red color represents large surges compared to

the steady-state value. It is clear that the surges in the large scales appear first,

then propagate down to smaller scales. This propagation might be interpreted

as the energy cascade through scales. According to K41, the cascade time is
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Figure 4.12: The change of DLL(r, t) in response to large surpluses in kinetic

energy, normalized by DLL(r) at the steady state, as a function of time. The

curves for different values of r/η are shown together with the kinetic energy for

comparison. The measurements are taken from the 200 rpm to 400 rpm dataset in

the statistically steady regime, i.e. from t/TE = 20 to the end of the recording.

τ(r) ∼ (r2/ε)1/3. The dashed line in Fig. 4.13 shows such a relation, which fits

reasonably well with the observation. From such a model, the cascade time from

large to small scales can be estimated to be 0.2 − 0.3TE, which is in agreement

with previous observations from direct numerical simulation (DNS) data (Pumir,

1996; Pearson et al., 2004).
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Figure 4.13: Color coding of DLL(r, t) in response to a surplus in kinetic energy,

normalized by DLL(r) at the steady state, as a function of both scale and time.

The dashed line shows a delay in response according to K41 scaling: τ(r) ∼ r2/3.

4.3 Decay of Turbulence

A natural counterpart to the step increase in energy injection that we studies in

the previous section is the step decrease in energy injection. In particular, when

the energy injection is completely turned off, the corresponding turbulence decay is

a classical problem in turbulence research and can be dated back to the beginning

of modern fluid mechanics (Taylor, 1935; Kolmogorov, 1941a). Traditionally, the

decay was studied in turbulent flows behind a grid in a wind tunnel. The length

of the tunnel, however, limited the duration of the decay that can be observed. In
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out experiments, we are not limited by such a constraint and can observe for much

longer times compared to previous work.

Two data sets, about 130 movies each, were recorded to study the decay of

turbulence. In one case the turbulence was initially at the steady state maintained

with a propeller speed of 200 rpm, in the other case with an initial propeller speed

of 400 rpm. In both cases, recordings with a duration of 65 s 1 were realized.

The propellers were turned off 5 s after the start of the recording. Between two

recordings, the flow was forced for 5min with the respective propeller speed to

ensure stationarity before the measurement started.

The time dependent statistics were obtained as explained in Section 4.2, with

the moment of propeller shut-off being defined as t = 0. By averaging over the

first 5 s of all realizations of the two data sets, the flow parameters of the steady

state of the flow, before the motors were switched off, were determined (Tab. 4.4).

They agree well with the corresponding parameters of the separate steady state

experiments (Tab. 4.2).

Fig. 4.14 shows the kinetic energy of the two experiments as a function of time.

Only data after the stopping of the motors was plotted and it can be seen that the

kinetic energy in the measurement volume stays constant for about 1TE before it

starts to decay, which is comparable to the response delay observed in the step-up

1corresponding to 43TE at 200 rpm and 92TE at 400 rpm
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200 rpm 400 rpm

measured from measured from

−5− 0 s of −5− 0 s of

200− 0 rpm 400− 0 rpm

〈E〉 [10−2m2/s2] 0.45 1.85

u′ [10−2m/s] 5.52 11.06

ε [10−2m2/s3] 0.20 1.75

Rλ 270 381

L [mm] 83.2 77.1

η [µm] 136 79

τη [ms] 20.9 7.1

TE [s] 1.51 0.70

θ [◦C] 25.4 25.7

ν [10−6m2/s] 0.88 0.88

Table 4.4: Flow parameters of the steady phases of the decay experiments started

from propeller speed of 200 rpm and 400 rpm, respectively. The parameters were

obtained by averaging the statistics over 5 s before the propellers were stopped.

The time of the stopping of the propellers was defined to be t = 0 s. These pa-

rameters are in good agreement with the corresponding parameters of the separate

steady state experiments at the same speeds shown in (Tab. 4.2).
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Figure 4.14: Normalized kinetic energy E(t)/Estat as a function of time, after

the motors were switched off. The red curve shows the decay experiment started

at the propeller speed of 400 rpm and the blue curve shows the decay experiment

started 200 rpm. The kinetic energy E(t) is normalized with the kinetic energy of

the respective steady-state. Time is normalized with the corresponding large eddy

turnover time TE. The values for Estat and TE are listed in Tab. 4.4. The dashed

black line corresponds to a t−1.59 scaling.
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cases (Fig. 4.6), and the reason is also due to the convection of the more energetic

fluid near the propellers to the measurement volume. The decay of the kinetic

energy then follows a power law in both cases. From the 400 rpm data, the decay

of the kinetic energy after t ≥ 3TE is approximately t−1.59. For the 200 rpm case,

the data is only plotted up to 6TE because at later times the measurement error

in velocities has an appreciable effect on the measured kinetic energy as the fluid

velocities decrease with time. Therefore, only the decay from 400 rpm will be

further discussed in the following.

In the case of decaying homogeneous turbulence the kinetic energy is related

to the energy dissipation rate by

dE(t)

dt
= −ε(t). (4.3)

Since the kinetic energy was measured to decay as ∼ t−1.6, according to Eq. (4.3),

we expect the dissipation rate ε to decay as∼ t−2.6. The energy dissipation rate can

be directly determined from the inertial range scalings of the structure functions

DLL, DNN and DLLL as explained in Section 4.1 and is shown in Fig. 4.15 (the

blue curve). For comparison, we also obtained ε(t) from the time derivative of

the kinetic energy using Eq. (4.3) and showed the result in the same plot (the

green curve), which follows a power-law decay of approximately t−2.6 as expected.
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In the period of 3 ≤ t/TE ≤ 10, the energy dissipation rate obtained from the

structure functions also decays as approximately t−2.6 and is, in this range, in

good agreement with the energy dissipation rate obtained from the change of the

kinetic energy using Eq. (4.3). The departure of the blue curve from the t−2.6

scaling at later times is due to the fact that the particle velocities decrease below

the level that the measurement error in velocities starts to affect significantly

the energy dissipation rate ε(t) determined from the inertial range scalings of

the structure functions. On the other hand, the effect of the measurement error

on the kinetic energy is relatively small at these times because E ∝ u′2 while

DLL(r) ∝ (δru)2 ∝ (r/L)2/3u′2. For the same error in u′, the relative effect on

DLL(r) is thus (L/r)2/3 times larger, which can be significant for small r.

To illustrate that, Fig. 4.16 shows DLL(r, t) as a function of scale at different

times. It can be seen that, as time progresses and the measured velocity differ-

ences decay, the measurement noise becomes apparent at small r, influencing the

measurements in the scale range that is used to determine ε(t) (4−16mm, marked

by the dashed black lines). The plot also shows that the inertial range scaling of

DLL(r, t) continuously changes after the energy injection was turned off. For the

times later than 10TE, the measured DLL(r, t) in Fig. 4.15 changes its slope and

the measurement of ε(t) using the scaling DLL(r, t) = C2(εr)
2/3 becomes unreliable.

In order to investigate the scale-dependent response, Fig. 4.17 shows DLL(r, t),
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Figure 4.15: Energy dissipation rate as a function of time. The blue curve shows

ε(t) obtained from the inertial range scalings of the structure functions DLL, DNN

and DLLL according to Eq. (4.2) by averaging over the scale range of 4− 16mm.

The green curve shows the energy dissipation rate obtained from the change of

the kinetic energy E(t) according to Eq. (4.3). The dashed black line illustrates a

t−2.6 scaling.
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Figure 4.16: DLL(r, t) is shown as a function of r, at different times. The black

dashed lines indicate the scale range of 4− 16mm that was used to determine the

energy dissipation rate.

normalized by DLL(r) of the steady state, as a function of both scale and time. The

color coding and the contour line are chosen to highlight the time when the energy

content in each scale drops to 80% of the energy content of the respective scale at

the steady state. Fig. 4.18, Fig. 4.19, and Fig. 4.20 show similar plots highlighting

the decay to 50%, 20%, and 12% of the steady state values, respectively. In all cases

it can be seen that the small scales decay faster than the large scales. Moreover,
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the effect is more apparent at later times when the decay proceeded.

In stationary turbulence, large scale motion is constantly fed with energy and

the small scales dissipate the energy that they receive through the energy cascade.

In the case of decaying turbulence, our measurements suggest that after switching

off the energy input, the small scales dissipate energy faster than the rate that they

receive energy from larger scales. This implies that the inertial range scaling of the

second order structure function, known to be r2/3 in stationary turbulence, slowly

changes as the decay of energy progresses. This, together with our observation

of the deviation of DLL(r, t) from the r2/3 scaling in the step-up case (Fig. 4.11),

suggest that the scaling laws for non-stationary turbulence can be different from

those in stationary turbulence. Our observation therefore has important conse-

quences on theoretical understanding of the decay of turbulence, which is almost

exclusively based on the assumption that the inertial range scaling is the same as

in the stationary case.

Our finding might be related to recently reported “non-equilibrium” turbulence

(Valente & Vassilicos, 2012; Valente et al., 2014). The exact connection between

the two, however, requires further detailed studies.
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Figure 4.17: DLL(r, t), normalized by DLL(r) of the steady state, as a function

of both scale and time. The color coding is chosen to highlight the time when the

energy content of each scale drops to 80% of the energy content of the respective

scale at the steady state. The iso-contour corresponds to DLL(r, t) at 80% of its

steady-state value.

99



t/TE

r
/
η

 

 

0 1 2 3 4 5

25

50

100

200

400

800
1000

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Figure 4.18: DLL(r, t), normalized by DLL(r) of the steady state, as a function

of both scale and time. The color coding is chosen to highlight the time when the

energy content of each scale drops to 50% of the energy content of the respective

scale at the steady state. The iso-contour corresponds to DLL(r, t) at 50% of its

steady-state value.
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Figure 4.19: DLL(r, t), normalized by DLL(r) of the steady state, as a function

of both scale and time. The color coding is chosen to highlight the time when the

energy content of each scale drops to 20% of the energy content of the respective

scale at the steady state. The iso-contour corresponds to DLL(r, t) at 20% of its

steady-state value.
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Figure 4.20: DLL(r, t), normalized by DLL(r) of the steady state, as a function

of both scale and time. The color coding is chosen to highlight the time when the

energy content of each scale drops to 12% of the energy content of the respective

scale at the steady state. The iso-contour corresponds to DLL(r, t) at 12% of its

steady-state value.
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Chapter 5

Summary and Outlook

A real-time image compression system was developed, which was demonstrated

to reduce the data rate of the high-speed cameras used for Lagrangian Particle

Tracking (LPT) by about 90%. This was achieved by developing an FGPA-based

system that pre-evaluated the image data and only wrote data that were significant

for the post processing to the hard disc drive. This system extends the capability

of our LPT system in two ways: (i) It allows to download high-speed recordings

from the internal RAM of the cameras at a data rate of about 1GB/s, and there-

fore reduces the waiting time between two realizations to the order of seconds,

rather than the order of minutes when downloading through Ethernet. (ii) In the

continuous streaming mode it is possible to gather high-speed recordings with a

duration that exceeds the duration of movies recorded to on-board RAM by orders
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of magnitude, as compressed data is written to a hard disc drive whose storage

capacity are much larger than the internal RAM.

This system was used to obtain LPT measurements, with a duration of up

to one minute, in turbulent flows subject to a sudden change of the large-scale

energy input to study the scale-dependent, temporal evolution of these flows. Two

different experimental situations were investigated, a step-up increase of the energy

input, as well as the decay of turbulence.

In the step-up case it was shown that no significant difference in the response

of different scales of turbulence to the change in the forcing could be observed, if

the time of the forcing change was used to align the phase averaging of different

realizations of the experiment. The reason is that in our experiments, the energy is

supplied into the flow through the boundary and the fluctuation in the time needed

to connect the injected energy into the observation volume smear out the response.

However, when peaks of the kinetic energy signal of the different realizations in the

steady part of the measurement were used for alignment of the phase averaging,

a clear scale dependence could be measured in the response to the energy peak.

As expected, the energy content of the large scales increases before the energy

contents of smaller scales pick up. With this signal it was possible to estimate the

energy cascade time to be about 0.2-0.3, large eddy turnover times, in agreement

with previous observations from DNS.
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In the case of the decay of turbulence a decay of the kinetic energy with t−1.6

was reported and observed for more than ten large-eddy turnover times. The

measurement of the decay of the energy dissipation rate was found to be consistent

within the measurement uncertainty. An examination of the temporal evolution

of the longitudinal second order structure function revealed a faster decay of the

small scales compared to the large scales, indicating that the inertial range scaling

of the structure function during the decay of turbulence might not be the same as

that in stationary turbulence. .

For future investigations, an evaluation of the Lagrangian statistics, as e.g.

proposed by Meneveau & Lund (1994), of the measured data sets will be very

interesting and the data should be complemented by measurements with higher

spatial and temporal resolution. For better understanding of the phenomena we

observe in our experiments, a close collaboration with numerical simulations and

theoretical development (e.g. modeling the cascade process) would be essential.

Moreover, the apparatus offers a large variety of possibilities concerning the forcing

schemes, e.g. periodic forcing or the change from isotropic to anisotropic turbu-

lence, leaving a large number of options to study the response of turbulence to

changes in large-scale forcing. .

The developed real-time image compression system will not only find applica-

tion in experiments like the one described in this thesis, but also in field experi-
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ments on Zugspitze, where LPT measurements in clouds will be performed, and

in the planned LPT measurements in the wind tunnel of the Göttingen Turbu-

lence Facility. For this purpose, further development towards the use of an on-cam

FPGA instead of an external one is beneficial.
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