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Chapter 1

Introduction

Mechanical forces are omnipresent when cells grow and divide as part of a population. A cell
surrounded by other microorganisms has to push away neighbors during cellular growth in
order to create space for new cell material.

During tissue development mechanical forces play an integral part, for instance in em-
bryogenesis, scar tissue formation and bone growth [I]. Tissue cells are embedded in the
extracellular matrix, which is a substrate on which cells can adhere and differentiate. Ad-
ditionally, the extracellular matrix is a scaffold for tissues providing mechanical support [2].
Tissue cells can remodel this stress bearing scaffold as a response to changes in mechanical
load by adjusting their protein synthesis levels to alter the composition of the extracellular
matrix [3].

Mechanical forces are furthermore important in tumor growth. Tumors confined by other
tissues exert forces onto their environment during growth. Conversely, the tumors experience
the same mechanical forces due to the restoring response of the surrounding tissue. The
stress that results from cellular growth is termed growth-induced stress [4]. In this doctoral
thesis we measure the isotropic part of the stress tensor. Consequentially, we introduce the
term growth-induced pressure as the pressure a population of cells exerts during growth and
division. External stresses acting on tumors can decrease proliferation [4, [5] and increase
apoptosis (programmed cell death) [4, 6]. At the same time these external stresses can
promote invasion by cancer cells, thus helping the tumors to progress [6].

Populations of microbial cells under confinement were also found to exert substantial
growth-induced pressures of about 0.3 MPa [7]. Microbes (e.g. bacteria and yeast) often grow
as multicellular communities, called biofilms, embedded in a matrix consisting of extracellular
polymeric substance [§]. Biofilms are found in the soil and in rocks [9 [10], where they
can be partially confined. The growth of biofilms on or in stone monuments was found to
promote deterioration of the host material [IT]. Most of the causes for this biodeterioration
are attributed to biochemical factors related to microorganisms [12] 13]. In a few studies
it has been argued that mechanical forces attributed to the presence of biofilms in stones
can facilitate biodeterioration. Shrinking and swelling cycles of the extracellular polymeric
substance of biofilms can induce mechanical stress to the mineral structures of stones and
thus change the pore size distribution [I1]. Furthermore, the growth-induced pressure exerted
by fungal biofilms was found to propagate cracks in marble [I4]. When microbes grow in
confinement and exert mechanical forces in order to grow, they are also subjected to and
influenced by these forces. Microbes adapt their morphology when growing in confinements
smaller than their typical size [I5HI7].



1.1. Structure of this thesis Chapter 1. Introduction

Despite the ubiquitous nature of mechanical forces during growth of cells only few mi-
crobial studies address these forces and to the best of our knowledge no reliable method has
been established so far that allows for the measurement of growth forces on the population
level. In this study we show that growing populations of the yeast Saccharomyces cerevisiae
can form and propagate cracks in agar gels, and we present a microfluidic chemostat that
allows for the measurement of growth-induced pressures S. cerevisiae populations exert, while
fully controlling the nutrient conditions. Furthermore, our microfluidic chemostat enables us
to control the growth-induced pressures the cells exert and experience by employing various
leaky cell flow outlets that confine the cell populations to different degrees.

1.1 Structure of this thesis

Several key characteristics of the yeast S. cerevisiae are presented in chapter 2. Furthermore,
this chapter features examples on how mechanical forces influence cells and which techniques
have already been employed to measure mechanical forces exerted by populations of cells in
the literature. In chapter 3 the materials and methods necessary to conduct the experiments
described in this thesis are presented. Chapter 4 describes the analysis steps that are required
for the image processing, data analysis and finite element simulations. The development
of the microfluidic device and of the growth-induced pressure measurement technique are
discussed in chapter 5. The results of this doctoral thesis are presented in chapter 6 and the
corresponding discussion can be found in chapter 6 and 7. Chapter 8 features the summary
and conclusion of this doctoral thesis and gives an outlook on possible experiments that can
be conducted with the developed microfluidic device. In appendix A several additional results
and details about the analysis are presented.



Chapter 2

State of the art

2.1 The cell cycle of S. cerevisiae

Most aspects detailed in this section are adapted from [I8| 19]. The cell cycle is an asexual
reproduction process that generates two genetically identical cells. The cell division of S.
cerevisiae is asymmetrical. A mother cell produces a smaller daughter, which initially grows
as a bud on its mother’s cell wall. Hence, S. cerevisiae is also known as budding yeast.

In order to commit to cell division a (potential) mother cell has to pass a checkpoint
termed Start. At this cell cycle checkpoint the cell checks for nutrient availability, cellular
volume and intactness of DNA. If the cell passes this checkpoint, it commits irreversibly to
cell division.

The cell cycle of budding yeast can be separated into four main phases shown in figure

2.1

e In early G1 phase cytokinesis (the process of dividing the cytoplasm) and cell separation
of the last cell cycle occur. This is in contrast to mammalian cells, in which cytokinesis
and cell separation occur late in the M phase. Furthermore, the cell grows in volume
until the cell commits to a new division if the cell passes Start. Upon initiation of Start
and before bud formation the mother cell implements a chitin ring into its cell wall at
the site of the future bud. The Young’s modulus of the cell wall at the site of the chitin
ring is higher than the remaining cell wall [20]. This stabilizes the connection between
mother cell and bud, while the bud increases in size.

e In the S phase DNA is duplicated in the nucleus and the bud starts to increase in
volume.

e In the G2 phase the nucleus migrates towards the bud and the bud keeps on growing.
New cell wall material is incorporated in the wall of the bud.

e Mitosis (nuclear division) takes place during the M phase.

Notably, after a cell has committed to cell division (after initiation of Start) the mother cell
hardly increases in volume. It mostly grows during the G1 phase. Cells can only delay in
their cell cycle during the G1 phase before or at Start for instance under nutrient starvation
[21]. The growth delayed phase is termed stationary phase. Stationary phase cells are not
metabolically active but they can initiate cell division when nutrients become available [22].

3
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stationary
Start phase

Figure 2.1: A sketch of the S. cerevisiae cell cycle is shown. The cell cycle is divided into
four phases: The G1 phase, in which cytokinesis (separation of the cytoplasm) occurs and the
single cell grows. The S phase, in which the DNA is duplicated (not shown). Then the G2
phase follows, in which the bud grows. Afterwards, the M phase follows, in which the nucleus
divides and Start is a checkpoint that can only be passed if certain criteria are fulfilled. E.g.
a cell starved for essential nutrients does not commit to cell division, but rather delays in the
cell cycle in the stationary phase. The sketch was adapted from [I8], [19].
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2.2 Turgor pressure

The turgor pressure of a cell is defined as the hydrostatic pressure that results from the
difference between internal (II;) and external (Il.) osmotic pressure at equilibrium [23]

Pturgor = Hi - He- (2.1)

For a positive turgor pressure (Pturgor > 0) water flows into the cell due to the osmotic
pressure difference. As a result a hydrostatic pressure acts onto the cell wall. Figure
illustrates S. cerevisiae cells under positive and zero turgor pressure.

b

Pturgor > 0

Pturgor =0

Figure 2.2: a) Sketch of a S. cerevisiae cell under positive turgor pressure. The cell assumes
its ellipsoidal shape. b) The turgor pressure is zero. The cell shrinks under the absence of
the turgor pressure.

When the external osmotic pressure (I1.) rises S. cerevisiae can adapt its internal osmotic
pressure (II;) to some extent. A S. cerevisiae cell achieves this by accumulating glycerol into
its vacuole [24]. This glycerol accumulation is mediated by the high osmolarity glycerol
(HOG) pathway [25]. The vacuole is the main storage site of solutes in S. cerevisiae [26] and
hence of utmost importance for osmoregulation and maintenance of positive turgor pressure.
Another way to increase the internal osmotic pressure lies in the increase of the internal ion
concentration. This ion concentration is probably a passive response to membrane stretching,
which induces the opening of mechanosensitive ion channels [27].

Yeasts require a positive turgor pressure in order to maintain their shape and to facilitate
cellular growth by means of cell wall stretching [28], 29]. A positive turgor pressure stretches
the cell wall, which facilitates breaking of molecular bonds in order to incorporate new cell
wall material [I7]. When growing under confinement, a yeast cell has to build up a turgor
pressure higher than the mechanical pressure acting on the cell wall from the outside. As a
consequence the external mechanical pressure at which growth seizes is equal to the maximal
turgor pressure a cell can establish [30].

2.3 The cell wall of S. cerevisiae

The cell wall of S. cerevisiae is essential for osmotic and physical protection and it defines
the shape of the microorganism [31, 32]. Furthermore, the cell wall has to be able sustain
the turgor pressure or the cell would simply burst.
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The thickness of the cell wall in S. cerevisiae is about 125 nm [33]. Hence, for a cell with
an average diameter of 5 pm the cell wall composes about 14% of the cellular volume.

The cell wall of S. cerevisiae consists of two layers, one stiff internal and a softer external
layer [32]. The main component of the stiff inner layer is §1,3-glucan (50-55% of the cell
wall dry weight) [32]. (31,3-glucan is a polysaccharide that forms 3D networks in the cell
wall with a mesh size that allows for permeation of most proteins [34]. Chitin is also part
of the cell wall. Tt is mainly found in bud scars (the sites of cell division) with about 90%
of the overall chitin content. Hence, it plays an important role in cell division (see section
2.1). Chitin rich cell wall sections are stiffer than chitin scarce sections [20]. The external
layer is mainly composed of cell wall proteins that are bound to the polysaccharide scaffold
of the internal layer. These cell wall proteins are important for numerous functions (e.g. cell
adhesion, growth, metabolism, etc. [32]). Under adverse growth conditions the composition
of both cell wall layers changes to adapt to the environmental cues. The aforementioned
values of cell wall size and composition are typically found in exponentially growing cells in
glucose-rich medium [32].

Several studies have been conducted to measure the cell wall elasticity of S. cerevisiae.
Depending on the method used for the measurement the Young’s modulus can differ a lot.
In atomic force microscope (AFM) measurements the Young’s modulus was found to be in
the order of 0.1-1 MPa [20, B5H38]. Micromanipulation measurements, in which a cell is
compressed between two parallel plates, give a Young’s modulus in the order of 100 MPa for
the cell wall [39H42]. It has been argued that AFM measurements penetrate the cell wall so
little that only the soft external layer, which mostly consists of cell wall proteins, is probed.
However, micromanipulation measurements allow for probing of the whole cell wall due to
the relatively large deformations [43].

2.4 Cell adhesion of S. cerevisiae

Since S. cerevisiae cells are nonmotile eukaryotes, cell wall proteins are important for the
cells to interact with their surroundings. The adhesins are an essential class among these cell
wall proteins. They are required for adhesion to substrates and to other cells [44].

A strong cell-cell adhesion mechanism found in S. cerevisiae is known as flocculation, in
which cells form velcro-like interconnections [45]. Interestingly, most lab strains (e.g. S288c)
have been evolved against flocculation by human selection, such that they do not adhere in
contrast to their undomesticated counterparts (e.g. BR-F). This inability to flocculate arises
from a mutation in one of the flocculin-encoding genes found in S. cerevisiae. This mutation
prohibits the lab strain to express the cell wall flocculins (proteins) flolp and flol1p. Flolp is
essential for cell-cell adhesion while flol1p drives the adhesion of cells to (abiotic) substrates
[46].

The undomesticated yeast strain BR-F is capable of local flocculation between single cells
and cells belonging to this strain can form long chains of cells known as pseudohyphae. These
pseudohyphae enable the otherwise nonmotile cells to access nutrient sources away from the
initial colony [47]. Furthermore, the BR-F cells are able to invade agar, when grown on a flat
surface of agar and starved for essential nutrients [48]. It has been shown that the flocculin
flol1p is required for both pseudohyphae formation and surface agar invasion [49]. This
explains why the lab strain S288c does neither form pseudohyphae nor invades agar surfaces.
Figure [2.3] shows an example of such an agar invasion for BR-F yeasts. We let colonies of
BR-F yeast grow on YPD agar surfaces at room temperature. YPD is a glucose rich growth

6
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medium for S. cerevisiae. After about 3 days we observe that the cells invade the agar gel
as small roots beneath the colony. In our experiments the lab strain S288c has never shown
any sign of agar invasion.

The flocculin flolp (involved in cell-cell adhesion) provides a remarkable adhesion strength.
An average force of 2000 pN is needed to separate two S. cerevisiae cells that had an initial
contact area radius of about 90 nm [50]. These values translate to an adhesive pressure of
about 80 MPa. This value is roughly 65 times as high as the largest growth-induced pressure
we measured in our BR-F strain experiments (1.2 MPa). El-Kirat-Chatel et al. found that
cells of the lab strain S288c do not exhibit any measurable adhesion strength and hence do
not adhere noticeably to each other [50], except during cell division.

agar invasion site agar invasion site agar invasion site

Figure 2.3: Three examples of agar invasion by BR-F yeast. The yeasts were grown at room
temperature on a YPD agar surface for about 3 days until we observe the formation of roots
beneath the agar surface. This root formation is due to the invasion of agar surfaces by the
BR-F strain.

2.5 5. cerevisiae under stress

Yeast cells react to (sudden) environmental changes via stress responses. The first broadly
studied stress response is the heat shock that has been investigated in S. cerevisiae since
the beginning of the seventies. A sudden increase in environmental temperature results
in extensive changes in the cell’s gene expression. Following the heat shock, total protein
synthesis is down-regulated while the transcription of heat shock protein genes is heavily
up-regulated. The synthesized heat shock proteins facilitate the repair and recovery of the
cell from harmful conditions. Furthermore, this increased abundance of heat shock proteins
help the cell to resist further stresses. This stress tolerance buildup is probably the most
important result of the cellular stress response [51].

It has been shown that S. cerevisiae shows similar responses to a diversity of stresses
e.g. exposure to salt, to reactive oxygen species, to heavy metals or to acids, starvation
or increase in osmolarity [51]. Each individual reaction to stress in S. cerevisiae is part of
a general protective program, the environmental stress response. Since the same program
is activated under various environmental stresses, cells that experience one stress acquire
resistance to a second different environmental stress [52]. Furthermore, stress sensitivity
seems to be related to the growth conditions. Yeast cells undergoing fast proliferation show
weak stress resistance [53] while cells close to the stationary phase are more resistant to stress
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[54, 55]. Elliott and Futcher have shown that a slow growth rate is strongly correlated to an
increased resistance to heat shock and degradation of the cell wall by the enzyme Zymolyase
[56]. Furthermore, in a recent study first evidence was provided that cells are more resistant
to mechanical stress when cultured at slow growth rates [57]. Additionally, the position of
the cell in its cell cycle has hardly any influence on its stress resistance [56]. These findings
provide first hints that increased stress resistance is not unique to stationary phase cells.
The stationary phase rather marks the end of the spectrum with total growth delayed cells
expressing the highest stress resistance [50].

The adaption of turgor pressure can also be understood as a stress response. Under
hyperosmotic shock S. cerevisiae cells shrink. This can lead to a decrease in growth rate
since growth and cell division are only possible if a cell maintains a minimal volume. As a
response to hyperosmolarity S. cerevisiae cells can increase their turgor pressure in order to
recover their size [51].

2.6 Clogging and jamming

In many-particle-systems clogging is readily observed when large numbers of particles pass
through bottlenecks [58]. Depending on the geometry of the orifice the flow of particles
is fluid-like, intermittent or completely clogged [58]. In a completely fluid-like flow no clots
appear while in a completely clogged systems no particle movement occurs through the orifice.
An intermittent flow is observed when clots take turns with fluid-like behavior [58,59]. A clot
can be dissolved when the driving force of the system is large enough to overcome frictional
forces between neighboring cells or between cells and the surrounding material of the orifice
[60].

Interestingly, the widening and subsequent closing of an escape channel can promote
clogging. Helbing et al. simulated pedestrians escaping through channels similar to the one
depicted in figure [61]. They found that clots form more frequently for larger channel
widening and narrowing angles. We exploit this finding by designing analog structures to
control the flow of S. cerevisiae cells (cf section [5.1.1)).

In a clogged state a many-particle-system might get jammed. A jammed system does not
deform irreversibly under small finite stresses, while flows occur at any stress in an unjammed
system [62]. Clogging and jamming are not necessarily the same phenomenon. Particles that

narrowing / widening
angles

\
\
\
\
\
\
\
\
\
\
/

NS

Figure 2.4: A sketch of an escape channel is illustrated. The subsequent widening and
narrowing of the channel promotes clot formation. The larger the channel the more clogging
occurs [61]. The sketch was adapted from [61].
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are trapped by a clot might still rearrange. These rearrangements would be incompatible
with the definition of a jammed state. A clot can also be thought of as a local jamming
event, since a clot must not deform irreversibly in order to be preserved.

2.7 Forces in cellular growth and division

2.7.1 Consequences of growth forces

The growth forces that cells exert onto their surroundings can be exploited in various ways.
Single bacteria of the species E. coli, B. subtilis and P. aeruginosa have been encapsulated
in agarose hydrogels [63]. When these bacteria grow, they deform the surrounding gel ma-
trix. The cell wall elasticity of these bacteria can be extracted from the displacement of the
surroundings as 50-150 MPa for F. coli, 100-200 MPa for B. subtilis and 100-200 MPa for
P. aeruginosa [63]. Another way to exploit the growth forces of cells is to grow microbial
colonies into long vertical cylinders. The yeast S. cerevisiae can form cylinders with a height
to diameter aspect ratio of 4:1 on paper filters lying on nutrient agar surfaces. To achieve
this vertical growth the nutrient supply to the colony is horizontally constrained by blocking
the pores of the filter paper with polydimethylsiloxane (PDMS). The growth forces enable
the cells in contact with the nutrient source to push thousands of cell layers in the upper part
of the cylinders towards the vertical direction [64].

Cells are also able to mechanically interact with their surroundings via growth forces.
The growth of populations of the rod-shaped bacterium FE. coli in microfluidic channels can
induce ordering of the cells. This ordering is observed as a transition from a disordered phase
to a nematic phase. The long axis of the cells align during this transition. The growth forces
can be interpreted as mechanical short range interactions that lead to a large scale ordering
in the bacterial population [65]. Furthermore, the ordering of E. coli under confinement
by microfluidic channels is believed to facilitate escape of cells from the confinement and
diffusion of nutrient into the bulk of the population [66].

Cells that grow under physical constraint can change their shape due to the growth forces
acting on them. S. cerevisiae cells grown in rigid cubic holes adapt their shape to the physical
constraint [I5]. From our point of view it is not yet clear if the cell wall is only elastically
deformed or if the cell wall architecture is remodeled in the case of S. cerevisiae.

Gram-negative bacteria have a thinner cell wall than gram-positive bacteria. Gram-
negative bacteria F. coli are able to squeeze through rigid channel with a width half as large
as the short axis of the cells. They push each other through a narrow channel with help of
forces exerted by growth and division of the cells. When the FE. coli cells escape the channel
they show distorted cells shapes. These shape changes most likely enable the cells to pass
through the channels in the first place and are a result of an adaption of cell wall architecture.
Interestingly, gram-positive bacteria of the species B. subtilis are not able to pass through
channels narrower than their short axis. Furthermore, B. subtilis cells do not alter their shape
in the way FE. coli cells do. Mannik et al. attribute this inability to traverse narrow channels
to the thicker cell wall the gram-positive B. subtilis possess (about 30-40 nm compared to
3 nm for the gram-negative E. coli) and to the higher osmotic pressure acting inside of B.
subtilis cells, which is as high as 2-5 MPa compared to 0.2-0.3 MPA in the case of E. coli
[16].

When gram-negative Caulobacter crescentus bacteria are grown in cylindrical holes they
adapt their cell wall curvature to the physical constraint of the holes. After removal from the

9



2.7. Forces in cellular growth and division Chapter 2. State of the art

physical constraint the cells retain their curvature when further cellular growth is inhibited.
This shows that the physical constraint initiates an adaption of cell wall architecture in the
gram-negative bacterium C. crescentus [17].

2.7.2 Measurement of growth-induced pressure

Few techniques have been developed to measure the growth-induced forces (or pressures)
cells exerts. Cheng et al. embedded cancer spheroids (non-metastatic murine mammary
carcinoma 67NR cells) and fluorescent beads in agarose gels [4]. The displacement of the
beads was measured to access the stress field around tumor spheroids. A growth-induced
pressure of about 3.7 kPa was measured after 30 days of growth. The growth of the tumors
in confinement was followed by cellular necrosis. Upon stress release, which resulted from
the formation of cracks in the agarose gels, tumor growth was resumed [4].

In another study tumor spheroids (WT mouse colon carcinoma CT26, HeLa and mouse
sarcoma S180 cells) were enclosed in permeable, deformable, hollow microspheres made of
alginate. Once the tumor cells started to deform the shell of the microsphere the growth-
induced pressure exerted by the tumor could be measured from the deformation. After 8
days growth-induced pressures of about 3.3 kPa were measured. In terms of dynamics the
pressure curves of all tested cell types share a common behavior. For the first 24 hours the
growth-induced pressure showed a fast linear increase of about 2.4 kPa/day. The pressure
increase slowed down to about 0.2 kPa/day for the remainder of the experiments [67].

To measure the growth-induced pressure of rod-shaped fission yeast S. pombe, single cells
were entrapped in cylindrical holes molded into PDMS. When a cell starts to grow against
the PDMS walls, the growth-induced pressure is inferred from the PDMS deformation. The
stalling pressure, at which growth ceases is equal to the maximal turgor pressure these cells
can build up. Minc et al. measured the maximal turgor pressure of S. pombe to be 0.85
MPa. However, the approach of Minc et al. to measure growth-induced pressures is limited
to single cell measurements [30].

A cell reactor for studies of growth-induced pressures of whole microbial populations was
designed by Stewart and Robertson in 1989. A population of E. coli was confined in a steal
casing. The exerted growth-induced pressure was measured by a pressure transducer, which
was sensitive to the deformation of a membrane in contact with the bacterial population.
A maximal growth-induced pressure of about 0.3 MPa was observed for E. coli. In these
experiments higher pressure values could not be measured, since cells started to leak from
the device. Additionally, their device does not allow for direct observation of cells during
the pressure measurement. Cells had to be taken out in order to take microscopic images.
They could modify their device to actively impose a mechanical stress onto cell populations.
A simultaneous growth-induced pressure measurement was not possible due to the required
modification. Stresses up to 0.9 MPa were applied for 12 hours onto the cell populations.
The cells were removed from the device and their average volume was measured. Stewart and
Robertson found that the average cell volume decreased with an increase in applied stress
7.

In this section we introduced how other research groups have measured growth-induced
pressures of various cells. In the following chapters we will describe our experimental approach
and the results obtained from our measurements.

10



Chapter 3

Materials and methods

3.1 Fabrication of microfluidic devices

The microfluidic devices presented in this thesis were molded into polydimethylsiloxane
(PDMS). PDMS is fabricated by mixing two liquid chemicals (a base and a curing agent),
which will cure after mixing in 1 to 24 hours depending on temperature [68]. It has a Young’s
modulus in the order of 0.1 to 1 MPa, which can be altered by using different base to cur-
ing agent ratios [69] or curing temperatures [70]. To create the devices from PDMS a mold
is required, that we fabricate using photolithography on silicon wafers. In the following, a
master is the structured silicon wafer used to mold PDMS. The various steps of fabrication
are detailed in the next section.

3.1.1 Photolithography

Masters for parts of the microfluidic chips were created from silicon wafers (WaferNet Inc.,
USA) and negative photoresists SU-8 2000.5 and SU-8 3010 (MicroChem Corp., USA) using
photolithography [71]. In principle, one can fabricate multilayer molds, which permit to have
structures at different heights. In this thesis, we used single and double layer devices, whose
fabrications are presented in the following.

It is essential to conduct the fabrication process in a cleanroom or otherwise dust particles
can easily accumulate on the surface of the silicon wafer and thereby prohibit the fabrication
of cohesive and well defined structures. The microfabrication of the master with photolithog-
raphy is a multistep process. In order to fabricate single layer devices one has to simply leave
out steps 3 to 8 in the following description.

1. A silicon wafer with a diameter of 10 cm was rinsed first with acetone (Sigma-Aldrich
Corp., MO, USA) and than with isopropanol (Sigma-Aldrich Corp., MO, USA). After-
wards the wafer was dried using a Ny blowing gun (figure[3.1h). The wafer was checked
for visible particles on its surface (e.g. dust) and if any are observed the cleaning step
was repeated.

2. The cleaned wafer was placed onto a hotplate set to 200°C for 10 minutes to dehydrate
the surface. This helps to achieve a better adhesion between photoresist and substrate
in the next step. Subsequently, the wafer was set aside from the hotplate to cool it
down to room temperature. If the wafer were not cooled down, the photoresist that
was poured onto it in the next step would evaporate more quickly leading to a non-
reproducible photoresist layer height.

11
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3. The wafer was mounted onto the chuck of a spin coater and 2 ml of negative photoresist
SU-8 2000.5 was poured on it so that roughly two thirds of the wafer surface was covered.
Initially, the wafer was spun at 500 rpm (100 rpm/s acceleration) for 10 seconds to
distribute the photoresist over the whole surface. The spinning speed was increased to
3000 rpm for 30 seconds (300 rpm/s acceleration). After spincoating the thickness of
the photoresist layer was approximately 0.5 pm (figure )

4. The thickness of the photoresist was not completely uniform. Photoresist tended to
accumulate during the spincoating on the edge of the wafer. This elevated part could
lead to a bad resolution of the structures since it introduces a cavity between mask and
wafer during exposure (see step 5). It was possible to get rid of this photoresist edge
by wiping the rim of the wafer with a cleanroom wipe soaked with acetone at an angle

of approximately 45° (figure [3.1k).

5. The wafer was soft-baked on a hotplate at 95°C for 1 minute and cooled down to room
temperature afterwards. When the wafer had cooled down the photoresist layer should
have hardened and lost its stickiness. If the wafer was still sticky it was put back onto
the 95°C hotplate to let it soft-bake for one more minute and it was again checked for
stickiness after letting it cool down (figure [3.1).

6. To deposit structures onto the silicon wafer the photoresist layer has to be selectively
exposed to i-line UV light (365 nm). This was accomplished by placing a mask over the
silicon wafer and exposing it with 365 nm light through the mask. Quartz chromium
masks were used, whereas the chromium site was in contact with the soft-baked pho-
toresist. The mask also contained alignment marks that were transferred onto the
wafer. These marks are necessary to align the wafer with a second mask in a later step
so that the two different photoresist layers are positioned properly with respect to each
other. Wafer and mask were mounted into a mask aligner (OAI mask aligner) to allow
for good contact and alignment of both parts. The smallest structures we wanted to
resolve have a size of 1 pm, for this required resolution it is important to bring the
wafer and the mask in very tight contact. This was possible by using the hard contact
mode of the mask aligner, in which the wafer was pushed against the mask with an
additional force. For a structure height of 0.5 pm a exposure dose of about 60 mJ /

em? gave good results (figure )

7. After exposure the wafer was baked for one minute on a hotplate at 95°C (post-
exposure-bake, PEB) and cooled down to room temperature. As a result the parts
that had been exposed to UV light in the previous step were now well cross linked

(figure [3.1k).

8. The remaining parts that had not been exposed to UV light were removed chemically by
immersing the wafer in a SU-8 developer (MicroChem Corp., USA) bath for 1 minutes.
The wafer was removed from the bath and rinsed with SU-8 developer for 10 seconds.
The remaining SU-8 developer was removed by rinsing the wafer with isopropanol for
10 seconds and drying it with a N blowing gun (figure )

9. The second layer of photoresist was spincoated onto the already structured wafer (or
the cleaned smooth wafer in the case of a single layer device). For this layer 4 ml of
SU-8 3010 was poured onto the wafer so that about two thirds of the surface were
covered. In a first spin coating step of 500 rpm for 10 seconds with an acceleration of

12



Chapter 3. Materials and methods 3.1. Fabrication of microfluidic devices

100 rpm/s the surface was completely covered with photoresist. In the second step the
spinning speed was increased to 3000 rpm for 30 seconds with an acceleration of 300
rpm/s. This yielded a photoresist height of approximately 10 pm (figure )

10. The elevated edge and the photoresist covering the alignment marks were removed with
a clean room wipe (figure [3.1h).

11. The wafer was softbaked for 7 minutes at 95°C on a hotplate and cooled down again.
If the photoresist was still sticky after cooling, it was again heated for 2 minutes (figure

31h).

12. The wafer was mounted with another mask, carrying the (second) structures, into the
mask aligner. The previously transferred alignment marks on the wafer were manually
aligned with the alignment marks on the mask. Alignment was only necessary for
devices consisting of two layers. This was done to properly position the two layers of
photoresist with respect to each other. After alignment the wafer was exposed with an
energy density of 150 mJ / cm?, which was appropriate for the aimed structure height

of 10 pm (figure [3.1]).

13. The wafer was post-exposure-baked for 3 minutes at 95°C and cooled down afterwards.
If the wafer were not cooled down before it comes into contact with the developer, the
photoresist might crack rendering the structured wafer unusable.

14. The photoresist that had not been exposed to UV light was not crosslinked and was
removed by immersing the wafer in SU-8 developer for 3 minutes. The wafer was
rinsed afterwards for ten seconds with SU-8 developer and subsequently, washed with
isopropanol for another ten seconds. The structured wafer was dried with a Ny blowing

gun (figure [3.1}).

15. In a last step the structured wafer was hard-baked for 30 minutes at 150°C to enhance
the adhesion between photoresist and silicon wafer.

3.1.2 PDMS molding and device preparation

We used Sylgard 184 (Dow Corning Corporation,USA) elastomer kits to fabricate PDMS
molds. Two chemicals are part of this kit, a base and a curing agent. Base and curing agent
were mixed in a mass ratio of 10:1 (as recommended by the manufacturer). The mixture was
put under a low pressure environment in a desiccator for 60 minutes to get rid of air bubbles
trapped in the mixture. The degassed mixture was poured over a structured silicon wafer
that had previously been placed into a Petri dish. The typical height of the PDMS layer we
prepared was 1 cm. The wafer with the PDMS was placed once again under a low pressure
environment for 15 minutes (usually a few bubbles formed when pouring the PDMS onto the
structured wafer). The degassed PDMS on the silicon wafer was placed in an oven over night
that ran at 60°C to completely cure the PDMS (figure [3.2h).

A rectangular PDMS bloc containing the structures of the device was cut out with a
scalpel and gently detached from the silicon wafer (figure ) Holes were punched into the
PDMS bloc with a Standard FUE puncher (Mediquip Surgical, USA) with an outer diameter
of 0.75 mm at positions of the inlets that were required for the device operation (figure[3.2¢).

A round glass coverslip (VWR International GmbH, Darmstadt,Germany) thickness No.
1 (0.13 to 0.17mm) with a diameter of 2.5 cm and the previously prepared PDMS bloc were
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Figure 3.1: Photolithography for the fabrication of a double layered silicon wafer: a) A
clean and dry wafer was prepared. b) Negative photoresist was spincoated onto the wafer
and an elevated edge remains. c¢) The photoresist edge was removed and the remaining
photoresist is softbaked. d) A quartz-chromium mask was brought into contact with the
softbaked silicon wafer and the wafer was exposed through the mask with 365 nm UV-light.
e) A post-exposure-baking step crosslinked the UV-exposed parts of the negative photoresist.
f) The remaining non-crosslinked photoresist was dissolved by immersing the wafer in SU-8
developer. g) A second layer of photoresist was spun onto the wafer. h) The edges were
removed and the alignment marks were freed from photoresist. i) A second mask was aligned
with respect to the alignment marks, brought into contact with photoresist layer and exposed.
j) The photoresist was post-exposure-baked and the non-crosslinked parts were dissolved by
a developing step. After cleaning the wafer was hard baked to enhance the crosslinking of
the photoresist.
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Figure 3.2: PDMS molding and preparation of microfluidic device: a) Base and curing agent
were previously mixed at a mass ratio of 10:1, degassed, poured onto a structured silicon
wafer to give an approximate height of 1 mm and degassed again to remove air bubbles from
the mixture. The PDMS was cured overnight at 60°C. b) A rectangular bloc including the
structures was cut out from the cured bulk PDMS and removed from the wafer. ¢) Holes were
punched into the PDMS bloc to connect syringes to the microfluidic channels via tubing. d)
A glass slide and the PDMS bloc were rinsed with isopropanol and dried with Ns. Afterwards
both were placed in an oxygen plasma. After removing both parts from the oxygen plasma,
they were brought into contact to form irreversible bonds.

rinsed with isopropanol and dried with a Ny blowing gun. PDMS and glass treated with
oxygen plasma form silanol groups (Si-O-H) on their surfaces. When bringing both surfaces
into conformal contact Si-O-Si groups form resulting in irreversible bonds [72H74]. In order
to achieve a strong irreversible bond glass slide and PDMS bloc were placed in an oxygen
reactive ion etching (RIE) plasma chamber so that the sides that were supposed to be bound
are facing upwards to be optimally exposed to the oxygen plasma. Air was pumped out of
the chamber and oxygen was let in to give a pressure of about 21 Pa. The power of the
chamber was adjusted to 100 W for 20 seconds. Afterwards the pressure in the chamber
was equilibrated with the environmental pressure in about 5-10 seconds. Immediately once
the chamber could be opened the glass slide and the PDMS bloc were brought into contact
(figure 3.21d). Additionally, we gently pushed onto the PDMS bloc to enhance the bonding
of glass and PDMS.

3.1.3 Composite PDMS device

For one application we required a device consisting of two layers of PDMS that were bound
together. This device is different from the one we constructed by using double layer pho-
tolithography (compare section. We required a 10 pm thick sheet of PDMS between the
different structured layers, which can not be accomplished with only one structured wafer no
matter the number of photoresist layers. In figure a sketch is shown that illustrates this
device. The red structure is part of the upper layer of the device, while the black structures
show the lower layer. Two layers are required since the valve is supposed to close the channel
underneath by pushing onto the PDMS sheet (for details about this device see section .
This kind of valve was previously introduced by Quake et al. [75], it is thus called Quake
valve.

Figure illustrates the fabrication process for a device consisting of two PDMS layers.
First of all liquid PDMS was prepared as described in section but with a base to
curing agent ratio of 15:1 for the lower layer. This ratio results in a softer PDMS than the
standard recipe. We require a higher deformability to effectively tighten channels in the lower
layer. We took about 5 ml of the still liquid PDMS mixture and poured it onto a structured

15



3.1. Fabrication of microfluidic devices Chapter 3. Materials and methods

NWND\

Quake valve
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Figure 3.3: A sketch of the composite PDMS device is shown. For this device two layers of
PDMS are required. The structures of the two layers are separated by a 10 pm PDMS sheet,
when bound together. The red valve closes to black channel when the hydrostatic pressure
in the valve is increased. This valve was introduced by Quake et al., it is hence called Quake
valve [75].

silicon wafer with a structure height of approximately 10 pm (figure [3.4a). We spincoated the
wafer initially with a rotational speed of 500 rpm with an acceleration of 100 rpm/s for 10
seconds to completely cover the wafer with PDMS. In a second step the rotational speed was
increased to 2000 rpm with an acceleration of 300 rpm/s for another 120 seconds. This recipe
yields a PDMS layer height of about 20 pm, which was measured with a profilometer, Dektak
XT (Bruker Corporation Billerica, MA USA). The structures were completely submerged in
PDMS and an additional 10 pm of PDMS lies on top of the structures, which served as the
deformable sheet (figure ) Another mixture of PDMS in this case at a base to curing
agent ratio of 6.7 to 1 was identically processed and poured over a second structured wafer
to give a PDMS height of about 1 mm. This yielded the top layer of our composite PDMS
device. Both PDMS layers were cured over night at 60°C. A bloc of PDMS carrying the
structures was cut out for the top layer (figure ), while the lower layer remained attached
to the wafer. Both layers are exposed to an Oy plasma as described in The two layers
were aligned with respect to each other, so that the required parts of the two layers intersect
horizontally. The two parts were aligned with a stereo microscope (custom built by Dr.
Jiseok Lim) and brought into contact to form irreversible bonds (figure ) They were
baked in an oven for an hour at 75°C following the bonding to further strengthen the bonds.
In another step we cut into the lower layer of PDMS along the outer rim of the top layer and
lift off the composed PDMS device (figure [3.4p). The holes for the inlets were punched into
the PDMS and the composed device was bound to a glass slide as described in section [3.2]

(figure [3.4f).
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Figure 3.4: PDMS molding and preparation of composite PDMS device: a) A droplet of
15:1 liquid PDMS was poured onto a structured wafer. b) Spincoating to give a PDMS layer
height of 20 pm. ¢) A bloc of 6.7:1 PDMS was cut out from second wafer. d) Alignment and
bonding of the two layers. e) Cutting out of lower layer and lifting off from silicon wafer. f)
Punching of holes and bonding to glass slide of the composite device.

3.2 Cell strains and culture

In the experiments discussed in this thesis cells belonging to the species Saccharomyces cere-
visiae also known as baker’s yeast were probed. We used several strains of this species in
these experiments.

3.2.1 Saccharomyces cerevisiae strains

A derivative of the strain K699 [76], [77], which we term ParisCFP, was genetically modified
so that it expresses the cyan fluorescent protein (CFP) [78]. We received this strain from
Erin O’Sheas laboratory. The CFP in this strain can be found everywhere in the cytoplasm
resulting in a non specific staining.

Additionally, we conducted experiments with a strain derived from S288c [79]. This
derived strain is termed Whi5-GFP. It has a green fluorescent protein (GFP) attached to
the protein Whi5. Whib is a cell cycle repressor, that acts on the late G1 checkpoint called
Start in S. cerevisiae. It has a nuclear sublocalization, and relocates to the cytosol owing
to multiple phosphorylations, at the onset of Start. Hence, its cellular sublocalization is an
indication whether the cell in the cell cycle is located before Start (nuclear signal in ﬁgure
or has committed, irreversibly, to the cycle and further cell division (cytosolic signal in figure
[80]. We used a standard (not genetically modified) S288c strain in the experiments
conducted with agar gels (cf section .

We also used an undomesticated strain of S. cerevisiae termed BR-F. In contrast to our
lab strains (ParisCFP and S288c), this undomesticated strain is able to form strong cell-cell
cohesive bonds, whose formation is made possible by the expression of flocculin proteins [50].
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Figure 3.5: Microscopic images of the fluorescent signal during the cell cycle are shown for the
Whi5-GFP yeast strain. When in G1 phase the Whib protein is concentrated in the nucleus,
while the protein is found in the cytosol when it has committed to the cell cycle. Bright dots
show cells currently in G1 phase a), whereas the more diffusive fluorescent signal with lower
intensity depict cells that have committed to cell division b). The images were acquired at
different growth-induced pressures.

3.2.2 Cell culture

We used two different media to culture cells YPD medium [81] and Complete Synthetic
Medium (CSM) [82]. Cells were stored at -80°C, and thawed when needed. Initially, we took
a small portion of the frozen cultures by scraping the surface with a 200 pl pipette tip and
immersed the cells into one of the liquid media in a culture tube (VWR International GmbH,
Darmstadt, Germany). The culture tube was put on a shaker (KS 260 basic, IKA®)-Werke
GmbH & CO. KG, Staufen, Germany) to counteract sedimentation situated in an incubator
(KB 115, Binder GmbH, Tuttlingen, Germany) running at 30°C or at room temperature over
night. We stroke liquid cell culture using an inoculation loop (VWR International GmbH,
Darmstadt, Germany) onto a Petri dish (VWR International GmbH, Darmstadt, Germany)
containing YPD or CSM agar. The corresponding agar (Sigma Aldrich, MO, USA) was
fabricated by dissolving 2 vol % agar in liquid medium, which was poured into Petri dishes
before solidification. The inoculated Petri dish was put into the incubator for two to three
days until the cellular colonies on the agar surface had grown to a size of approximately 2
mm in diameter. The agar Petri dish was stored in a refrigerator at 4°C. We picked one
colony from the agar Petri dish and resuspended it in liquid medium. The culture tube was
put on the shaker in the incubator at 30°C for 4 hours or at room temperature over night.
This liquid medium with cells was filled into an 1 ml syringe (Terumo Medical Corporation,
USA) to be loaded into the microfluidic device. In the microfluidic experiments we loaded
one to ten cells into a chamber. The experimental time zero ty was reached when the cells
filled the whole chamber, which is accomplished by their cell division. As a consequence the
absolute number of cells in the medium, before we inject the cells into our device, is of no
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importance.

3.3 Cracking of agar gels

Several experiments were conducted to study cracking of agar gels under the influence of
growing cell populations. In order to observe the formation or propagation of cracks two sets
of experiments were designed in the scope of this thesis.

To study the propagation of cracks Petri dishes with 5 cm diameter and 1 cm height, were
filled with liquid YPD agar gel that solidified after cooling down. A liquid yeast culture that
grew overnight at room temperature was previously prepared. A syringe needle tip (Terumo
Medical Corporation, USA) with a outer diameter of 0.4 mm was immersed into the liquid
cell culture and directly punched into solid agar gel. This punching drove a hole (including
initial cracks) into the agar gel and transferred yeast cells into the hole (figure )

In order to study if yeast cells can also create cracks when growing, cellular colonies were
completely trapped in agar gel matrices. Furthermore, we can measure the growth-induced
pressure of a colony completely embedded in agar gel in the same experiment. Liquid YPD
agar at 50°C was poured into Petri dishes to give a layer height of about 2 mm. This layer of
YPD agar was cooled down to room temperature in order for it to solidify. A yeast colony,
previously grown on another YPD agar Petri dish, was scraped from the surface and immersed
into liquid YPD agar at 50°C in a preheated (50°C) 1.5 ml eppendorf tube. The colony and

solidified punching hole and yeast
Ia layer b into C cells remain
syringe
needle
II a solidified yeast colony C yeast colony
layer in liquid embedded in
[ o

Figure 3.6: Preparation of agar gel crack experiments to study crack propagation I and crack
formation II. Ia) In order to study crack propagation a solid layer of YPD agar was prepared.
Ib) A syringe needle previously dipped in a liquid yeast cell culture was punched into the agar
layer. Ic) The syringe needle was removed and a hole of the size of the needle remained with
yeast cells covering parts of the hole surface. IIa) A YPD agar layer with a height of 2 mm
was prepared. IIb) A yeast colony submerged in a liquid YPD agar droplet was transferred
onto the first layer. IIc) Another layer of 2 mm liquid YPD agar was poured into the Petri
dish onto the still liquid droplet of YPD agar so that the colony was completely immersed.
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the liquid YPD agar was aspired with a 1 ml pipette tiff|, which was also heated to 50°C
and a droplet of the liquid YPD agar containing the colony was placed onto the previously
prepared YPD agar layer. Before the droplet solidifies liquid YPD agar is poured over the
droplet to fill the Petri dish with another 2 mm high layer of agar (figure [3.6]1). When the
YPD agar had become solid the Petri dish was closed with a lid and parafilm. Small holes
were inserted into the parafilm so that gas could be exchanged between Petri dish and its
surroundingsﬂ

3.4 Imaging

In this study data was accumulated by different imaging techniques, which are briefly pre-
sented in the following.

3.4.1 Microfluidic experiments

For the study of the microfluidic experiments an inverted microscope Olympus IX 81 was
used. In order to measure the growth-induced pressure and growth rate of the cells (cf
section , bright field images were taken. Furthermore, the microscope is equipped with
a helium xenon burner (MT20 Olympus) and filter sets (DAPI, CFP, GFP, YFP, RFP) to
take epifluorescence images. We took epifluorescent pictures for instance to measure the
distribution of glucose in the densely packed growth chamber by flowing fluorescent glucose
(2-NBDG [84]) into the chamber (see section or to study the Whi5-GFP strain (cf

section [6.2.5]).

3.4.2 Cracks in YPD agar gels

In case of agar crack experiments an inverted Olympus IX 71 microscope and a upright Zeiss
AxioZoom.V16 microscope were used to take bright field images of agar cracks in Petri dishes.

*The inner diameter of the pipette tip is critical in this step. If the diameter is too small the corresponding
shear forces acting on the yeast colony are strong enough to rip it apart. To decrease the shear forces the
diameter can be increased by cutting off part of conically shaped pipette tip.

TThis was necessary to counteract the saturation of YPD agar with COsz, which is produced by S. cerevisiae
cells when degrading sugars [83].
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Chapter 4
Analysis

In the following the analysis methods are presented. If not mentioned otherwise we use
MATLAB Version 2012b (The MathWorks, Inc., Natick, MA, United States) for the image
processing steps.

4.1 Volume of S. cerevisiae colony in agar gel

We completely embedded colonies of S. cerevisiae in agar gels as described in section [3.3
Microscopic images were acquired while the colonies were growing and pushing against the
surrounding agar gel. To extract the volume of the colony we employ several image processing
techniques, which are described in the following text.

Figure depicts a S. cerevisiae colony of the lab strain S288c embedded in 2% agar
gel. In a first image processing step the outline of the colony is extracted by employing the
Canny edge detection function] As a result we obtain part of the outline of the colony as
shown as the black lines in figure [f.Ip. A zoom into a section of the outline, shown in figure
, reveals that the outline is not completely closedlﬂ

.-

Figure 4.1: Images that illustrate the measurement of the colony volume are shown. a) A
microscopic image of a S. cerevisiae colony of the S288c lab strain is shown. b) The edge
detected image reveals the outline of the colony. ¢) A zoom into the outline shows that
parts of the outline are not closed, the closing of the outline is described in figure d)
The interior of the outline is filled after closing and the area of the colony is measured. We
assume the colony to be spherical and calculate the volume accordingly.

*Canny edge detection is described in detail in section
"We require a closed outline to fill the interior of this outline in another processing step and thus obtain
an area for the colony.
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In order to close these gaps we employ the function imclose to further process the edge de-
tected image. The imclose function performs a morphological close operation (image dilation
followed by erosion as described in the following), which is sketched in figure Figure
shows the pixels of a section of the outline. The outline is shown in black, while the remaining
pixels are shown in grey. In the first step of the close operation the image is scanned with
a structuring element. In figure this structuring element is depicted as a red cross (the
structuring element in the analysis of the experiment is a disk with a radius of 5 pixels, we
chose to show a red cross for convenience). If any pixel of the structuring element overlaps
with the outline, the pixel in the center of the structuring element is set to blac The result
of this processing step is depicted in figure [£.2c. In the following step the image is scanned
again with the same structuring element as is shown in figure [£.2[d. In this step the pixel
in the center of the structuring element is set to grey if any part of the structuring element
overlaps with a grey pixe]ﬂ The result of the whole close operation is a closed outline that
retains its thickness as shown in figure [4.2p.

After closing of the outline the interior is filled with the imfill function as depicted in
figure [.1d. The area of the colony is calculated as the number of black pixels by means of
the regionprops function. We image the colony with transmitted light microscopy in order to
extract the area of the colony at the largest dimensions of the colony@. Under the assumption
that the colony is roughly spherical, which we checked by eye, we can determine the volume
V and radius R of the colony from the area A by

4 |A3
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Figure 4.2: This scheme shows the steps of the imclose function that is used to close the
outline of the colony. a) The black pixels schematically show parts of the outline, while the
grey pixels show parts of the image that are not registered as part of the outline. b) The
image is scanned with a structuring element shown as the red cross. When a pixel of the
structuring element overlaps with a black pixel the pixel in the center of the cross is set to
black. The resulting image is shown in c). d) The resulting image is scanned with the same
structuring element. If part of the structuring element overlaps with a grey pixel the pixel in
the center of the cross is set to grey. The result is depicted in e).

#This part of the close operation is known as image dilation.
$This part of the close operation is known as image erosion.
I1f the colony is spherical this would be a cut right through the middle of the colony.
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4.2 Pressure measurement in the microfluidic device

The growth-induced pressure measurement techniques we developed for the microfluidic ex-
periments all rely on image processing. We either extract the position of a membrane or the
width of a channel to obtain the growth-induced pressure.

The membrane (and the channel) need to lie parallel to one of the image axis for our
analysis. For some of our experiments we have to rotate the images in a post-processing step
accordingly. We use ImageJ [85] for this task, where the rotated image is calculated by a
bilinear interpolation. Figure [£.3] shows an example of such an image rotation.

When extracting the membrane position it is necessary to correct the images for drift (es-
pecially perpendicular to the membrane). Hence, the drift correction algorithm as described
in section [5.4.2]is applied. For the measurement of the channel width a drift correction is not
as important since the channel edges will move simultaneously when the image drifts.

After image rotation and drift correction we apply a Canny edge detection algorithm
in a region of interest (ROI). The ROI either contains the middle part of the membrane
or a section of the channel as indicated in figure [f.4h. The result of the edge detection
is a binarized image, in which edges are segregated from the rest. Edges are identified by
means of image intensity gradients, where the algorithm allows to chose thresholds for the
gradient magnitudes. Gradients above the threshold are identified as edges. Examples of the
application of the edge detection on two regions of interest are shown in figures [L.4b, [4.4c
and [4.44, respectively. From these binarized images we measure the membrane position
or channel width as indicated in figures [f.4c, [{.-4p by averaging over the outermost pixels
identified as edges.

default image rotated image

Figure 4.3: An example for an image rotation is displayed. The image is rotated so that
the membrane and channel between growth chamber and valve are parallel to the horizontal
image axis. This alignment is required for the growth-induced pressure measurement.
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Figure 4.4: Measurement of growth-induced pressure via channel width and membrane dis-
placement. a) Image of microfluidic device, in which the dashed rectangles mark the selection
of the regions of interest. b) The region of interest (ROI) in the dashed blue rectangle is shown.
c¢) The image in b) is processed by a canny edge detection algorithm. We measure the width
of the channel by automatically averaging over the uppermost and lowermost pixels for each
column in the ROI as indicated by the arrows. d) The ROI in the dashed magenta rectangle
is shown. e) The image in d) is processed by a Canny edge detection algorithm. We measure
the position of the membrane by averaging over the right most pixels for each row in the ROI
as indicated by the arrow.
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4.3 Particle image velocimetry

Cell flow velocities are measured to characterize the cell flow valves by their degree of confine-
ment (cf section and to determine the growth rate as a function of the growth-induced
pressure (cf section . The bright field images we acquire do not allow for cell segmen-
tation and consequentially a different approach was required to measure cell flow velocities.
We developed a MATLAB program that applies particle image velocimetry (PIV) to
achieve this cell flow velocity measurement. The program determines the velocity of the cells
as a continuum velocity. The PIV algorithm calculates the correlation between subsequent
images. The correlation calculation is similar to the drift correction algorithm (compare
section . In the PIV algorithm we use the shift in x and y direction to determine the
cell velocity between the two imagesm The shift is divided by the time difference between the
two images (typically 2-5 min) to obtain the cell velocity. In figure we applied our PIV
algorithm on two images that show the channel leading from growth chamber to the valve.

a default images b shifted images

Figure 4.5: Illustration of PIV algorithm. a) The default images are shown. b) The PIV
algorithm calculates the shift by taking the maximum of the correlation function into account.
The calculated shift is shown by the displacement of the two images.

4.4 Finite element simulations

Finite element simulations are a powerful tool to solve partial differential equations with
boundary conditions. The basic principle of the finite element method is that the mod-
eled system is divided into elements of finite size. For each of these elements the partial
differential equations are solved numerically. This makes it possible to numerically solve

I Notably, the time lapse series are drift-corrected before the application of the PIV algorithm. For the
drift correction a region of interest is chosen that does not include any cells to prohibit any bias that might
result from cell movement.
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differential equations for complex geometries. We use the finite element software Comsol
Multiphysics ®)(Version 4.0.0.925) to simulate several aspects of our experiments.

4.4.1 Colony embedded in agar gel

In order to extract the growth-induced pressure from the volume of the colony embedded in
agar gels, Comsol simulations were conducted.

We mimic the experimental setup (compare section by implementing the agar gel as
a cylinder with a diameter of 55 mm and a height of 10 mm (see figure[4.6p). The agar gel we
use in our experiments has a agar mass percentage of 2%. The Young’s modulus of the 2%
agar gel is set to 0.2625 MPa in the simulations, as was previously measured by Nayar et al.
[86]. The agar gel mostly consists of water (compare section and consequentially the
Poisson ratio is close to 0.5 [86]. Notably, a Poisson ratio of exactly 0.5 results in a singularity
(indicated by the red box in equation ) in the stress-strain constitutive relation given by
linear elasticity [87]

E

1%
ok = —— | €k + =——=cudix | -
| )

with o being the stress tensor, € being the strain tensor, J;; being the Kronecker delta, F
being the Young’s modulus and v being the Poisson ratid™ As a test we compare two
simulations with different Poisson ratios (0.49 and 0.499) for the agar gel. The results for
the two Poisson ratios (0.49 and 0.499) differ less than 0.3% from each other (see figure
in section . This difference does not influence our results in a noticeable way. Since the
Comsol simulation might become prone to errors when approaching a Poisson ratio of 0.5
due to the singularity in equation , we decided to set the Poisson ratio of the simulated
agar gel to 0.49.

We implement boundary conditions for the agar gel layer that mimic the experimental
setup by fixing the displacement of the agar gel surfaces (in contact with the plastic walls of
the Petri dish in the experiments) as is indicated by the surfaces colored in red in figure |4.6b.

In the center of the cylinder a spherical gap with the size of the initial colony@ is im-
plemented (see figure ). We simulated growth-induced pressures between 0.0125 and 0.1

(4.3)

**The Einstein notation is used in the preceding equation.
HFor each experiment we conduct one Comsol simulation. The size of the spherical gap is adjusted to the
corresponding initial volume of the colony.

10 mm

Figure 4.6: The geometries of the comsol model used in simulating the growth of colonie
embedded in agar are depicted. a) The agar gel is simulated as a cylinder with a diameter
of 55 mm and a height of 10 mm. b) The displacements of the surfaces colored in red are
fixed to zero, since these surfaces are in contact with the Petri dish in the experiments. The
top of the cylinder can still be displaced. c) In the center of the cylinder a spherical gap is
implemented, which represents the colony embedded in agar gel.
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MPa that push onto the surface of the spherical gap. The pressures push the surface of the
sphere outwards into the agar gel. For each simulated pressure the corresponding volume
of the sphere is measured. Figure [4.7h, 4.7 and show examples of the displacement of
the sphere surface for three different pressures and an initial sphere radius of about 0.7 mm.
The volume of the sphere is plotted as a function of the simulated pressure in figure [4.7d
together with a linear fit of the data pointﬂ We extract the growth-induced pressures in
our experiments from these linear fit functions.

a 0.00 MPa b 0.05 MPa C 0.10 MPa
0.2
8
016 g
o
(2]
0122
Q
(0]
0.08 3
3
3
0.04 3
0
d 3 T T T T T T T T T
O data points
25T ———— V=10.16 mm®/ MPa - p + 1.3483 mm® ')

V: volume (mm?)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
p: pressure (MPa)

1 | | |

Figure 4.7: The results of a Comsol simulation for an initial colony radius of 0.7 mm are
shown. a), b) and c¢) The total displacement of the colony at different pressures is shown. d)
The volume is plotted as a function of pressure together with a linear fit.

HThe graphs of the remaining Comsol simulations for the different initial sphere volumes are shown in the
appendix in section@
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4.4.2 Microfluidic device
Deformation of PDMS under pressure

In one of our Comsol simulations we study the deformation of PDMS under pressure. We
built the geometry of the growth chamber, control channel, membrane and exit channel with
the model builder of Comsol (shown from the bottom view in figure [4.8).

In order to simulate the displacement of the membrane we define boundary conditions for
the surfaces in the model. The bottom surface (colored red in figure that corresponds to
the part of the device that is bonded to glass is set to have a fixed position. This assumption
is reasonable since the glass will be hardly displaced at the simulated pressures, which are in
the order of 0.1 to 1.0 MPa, while the Young’s modulus of borosilicate glas@ is about 63 GPa
[88]. We simulate pressures ranging from 0 to 1.1 MPa with an increment of 0.1 MPa onto
all surfaces belonging to the growth chamber and exit channel. Furthermore, we conducted
simulations for different Young’s moduli (1.6, 1.8, 2.0, 2.2, 2.4 MPa), which lie in the range
of what we expect for the stiffness of our devices [70]. The Poisson’s ratio is set to 0.45 as

has previously been used by others [89]. Figures , and show the displacement of
the membrane for a Young’s modulus of E = 2.0 MPa at different pressures. The color bar

$8Borosilicate glass is the material of the here used glass slides.

~
s~~
~
~

membrane

Figure 4.8: A part of the geometry we built in Comsol is shown. The bottom surface bound
to glass (in the experiments) is colored in red.
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represents displacement values of the membrane normal to its default surface. We measure
the maximal membrane displacement for various values of the simulated pressure divided by
the Young’s modulus p/E and plot the results in figure [4.9d. The data points collapse for the
different Young’s moduli and the functional relationship between displacement and pressure
is linear over the whole simulated pressure range.

Furthermore, we extract the width of the exit channel as a function of pressure divided
by the Young’s modulus of PDMS. Figure [4.10p, [4.10b and [4.10 show the deformation of the
channe]@ at different pressures for a Young’s modulus of 2 MPa, while the channel width is
plotted as a function of p/E in figure . For plots that relate the cross-section of the exit
channel with pressure and maximal channel width see section [A-1] The results from these
plots are required for the cell flow measurements.

The growth chamber volume gives a measure of how many cells are present in the device
provided cell density does not change. Since the growth chamber volume increases with
growth-induced pressure, we have to take this relation into account when calculating the
growth rate as a function of time (compare section . Figure , and show
the growth chamber at different simulated pressure values. The volume increases noticeably
with pressure. We measure the volume of the growth chamber for pressures between 0.1 and
1.1 MPa and plot the result in figure [f.11d. The linear fit indicates that the volume increases
linearly with pressure.

Nutrient supply

In another set of Comsol simulations we probed the distribution of nutrients in our device. In
a first simulation we consider the diffusion of nutrients without flow in the growth chamber of
our device. The concentration of nutrients in the nutrient channels is fixed to a constant value
of Cy. Furthermore, we implement the consumption of nutrients by the cells as described in
section This consumption can be mimicked in Comsol by adding a reaction term to the
model. The reaction term describes at which rate a chemical is transformed. This is analog
to a consumption rate since in both cases the concentration of the nutrients is diminished at
a defined rate (see figure [1.12h).

In a second nutrient concentration simulation we first derive the velocity field in the
growth chamber from the experimental boundary conditions (see figure ) The inflow in
the nutrient channels on one side of the growth chamber is set to 0.2 nl/s while the outflow
on the opposite side of the growth chamber is set to the same value. The resulting velocity
field is taken into account when the distribution of nutrients is simulated. The results of the
nutrient distribution are presented in section [6.2.1]

Y9The color bar represents the total displacement values derived by Comsol.
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Figure 4.9: Results of the finite element simulation of the membrane displacement. a,b,c) The
displacement of the membrane is shown for three different pressures for a Young’s modulus
of 2 MPa. The color bar represents the displacement of the membrane perpendicular to its
default surface. d) The maximal displacement of the membrane is measured for different
values of pressure divided by the Young’s modulus p/E. We extract the linear dependency
of the displacement as a function of p/FE from these data.
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Figure 4.10: Results of the finite element simulation of the channel width. a,b,c) The defor-
mation of the channel is shown for three different pressures for a Young’s modulus of 2 MPa.
The color bar represents the total displacement. d) The maximal channel width is measured
for different values of pressure divided by the Young’s modulus p/E. We extract the linear
dependency of the displacement as a function of p/F from these data.
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Figure 4.11: a,b,c) Comsol simulation of the growth chamber volume at different pressures
with color coded total displacement. d) The growth chamber volume is plotted as a function
of pressure for a Young’s modulus of 1.7 MPa together with a linear fit through the data
points.
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——— | | —
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Figure 4.12: Velocity fields of the two Comsol simulations that were conducted to measure the
concentration of nutrients in the growth chamber. a) In this case only diffusion is considered,
so that the velocity field is zero everywhere. The concentration in all nutrient channels is set
to Cp. b) The velocity field in the growth chamber is derived from boundary conditions in
this second case. Liquid is flowing into the growth chamber from the left at a flow rate of 0.2
nl/s and flowing out at the opposite side at the same flow rate. The color code represents
the magnitude of the velocity.
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4.5 Cell avalanche statistics

4.5.1 Data extraction

We observe intermittent behaviors of the pressure curves in some of our microfluidic exper-
iments. We determined that large drops in pressure result from the dissolution of cell clots
followed by cell avalanches (cf section [6.2.3). Here we describe the extraction of the pressure
drops Ap and survival times of the cell clots 7 from the data.

The pressure curves are discrete functions of time p(¢;) with ¢; the time corresponding to
the i-th data point. In a first step we calculate the moving average for three time points of
the pressure curve to smooth out noise from the pressure values by

1

psmooth(ti) = é Z p(tiJrj)' (44)
j=—1

In the next step we scan the data to find drops in pressure. We identify the local pressure
maximum at time ¢; and local pressure minimum at time t; of a given pressure drop. We
calculate the pressure drop as

Aptest = psmooth(tk) — Psmooth (tl) with t, < ;. (45)

If Apiesy is greater or equal to a threshold of 0.02 MPa we detect an avalanche. In order to
give values for the pressure drop we use the raw data:

Ap = p(te) — p(tr) (4.6)

with g € tp_1,tk, tkr1 and ty € 11,1, 4+1. Due to the moving average calculation it is
possible that the local extrema shift by £1 time steps. As a consequence we have to search
for the local maximum and minimum in pressure in +1 neighborhoods.

In conclusion we use a smoothed pressure curve to identify cell avalanches but we calculate
the actual pressure drops from the raw data. This methods helps to avoid artificial pressure
drops that result from noise. The smoothed pressure drops are always smaller than the actual
drops. This is a bias we circumvent by taking the raw data into account when having already
identified a cell avalanche.

The survival times of clots 7 are given as the time difference of two subsequent cell
avalanches. We define 7 as the time difference between the local pressure minimum of a first
avalanche and local pressure maximum of the subsequent avalanche.

4.5.2 Survival function

We employ survival functions to further analyze the distributions of pressure drops Ap and
survival times 7 of the cell avalanche statistics. Survival functions are a convenient tool
to compare data sets with different experimental conditions. The survival function for a
probability density function (pdf) f(t) is defined as

S(T> 1) = / T dt (@7)

with S(T" > 7) being the probability to find events 7" in the data that are greater or equal
to 7. In figure [4.13| we plotted the probability density function of a Gaussian distribution
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(variance of 2). The survival function for 7 = 0.5 is equal to the shaded area beneath the
pdf.
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Figure 4.13: The blue curve is the probability density function of a Gaussian distribution
with a variance of 2. The shaded grey area is equal to the survival function S(7° > 7) for
T =0.5.

We are especially interested in the tails of the survival functions since it has been shown
for other intermittent flows that the corresponding tails show power-law decay behavior
[58, ©0] O91].

We assume that the pdf f(¢) exhibits a power-law decay for ¢ > Tin

4.8
B-t— fort > Tmin (48)

() = {g(t) for t < Tmin

with ¢(¢) some pdf and /5 the normalization constant. A power-law decay exponent of o > 1
is required to satisfy the normalization condition

/ T d L, (4.9)

since for a < 1 the integral does not converge. The survival function for 7 > T,y is given as

S(T>7) = /oo f(t) dt = /005 T dt (4.10)
_ L —a+1 >
= [_a+1 tot L (4.11)
_ 5 —a+1 —a+1
= —7 oo et (4.12)

In words, if the pdf has a power-law tail that decays as t~¢, the survival functions decays as
rootl
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Chapter 5

Microfluidic setup

The microfluidic device, employed in most of the experiments described in this thesis, has
been developed based on previous work of Nils Podewitz and Dr. Hedvika Toncrova. Here, the
different steps in device development as performed by the author of this thesis are detailed.

5.1 Design

5.1.1 Version I

We present here the device previously designed by Nils Podewitz and Dr. Hedvika Toncrova.
It is a single layered device with structures having a height of approximately 10 pm. The ex-
periments conducted with this version of the device were performed by Dr. Hedvika Toncrova
and data analysis was conducted by the author of this thesis.

In figure an overview of the overall structures of the device is shown. The design for
the various inlets is based on a device previously developed by Rowat et al. [92]. The filters
adjacent to the inlets prevent large dust particles from entering and obstructing the channels.
The loading of cells and the supply with nutrients are provided separately by different inlets.
Channels connected to the corresponding inlets meet at a junction (figure ) When the
flow from the cell inlet is switched off and the nutrient flow is maintained, cells upstream
from the junction are transported back to the cell inlet (see Supporting Information in [92]).
This backflow helps to prevent cells from entering the device after it had already been suf-
ficiently loaded. The cells everywhere in the device increase exponentially in number [22].
Consequentially, if the yeast cells are not hindered from entering the device from the inlet
after loading all channels are filled with cells after some time.

The control channels, which are essential for the growth-induced pressure measurement
(figure5.1h), can be filled with distilled water via their inlets. After they are completely filled
the outlets are closed.

Figure shows a zoom into the functional parts of the device, which are located just
downstream from the junction in figure [5.1p. This is also the region of the device of which
the microscopic pictures are taken. Several components of the device which are crucial to our
experiments are displayed. The two growth chambers act as defined volumes, in which cell
populations grow. In figure [5.3|a growth chamber filled with different cell densities is shown.
The volume of the growth chambers was chosen such that it can contain between 100 and
200 cells depending on cell size and packing fraction. The width of the channel connected
to the growth chamber is as wide as one average cell diameter (the average diameter of a

37



5.1. Design Chapter 5. Microfluidic setup

- control ===
Q Sso ’
O channel ¢
inlet/outlet

nutrient cell
inlet inlet

nutrient/cell
outlet

Tmm
I
b loading scenario C feeding scenario
Ny, NUtr:
& &
cells backflow
| S ~
25 um
—_—

Figure 5.1: Structures of the Version I device are detailed. a) An overview of the structures
is shown. The design for the inlets and filters were adapted from [92]. b) A zoom in onto the
junction at which nutrient medium and liquid cell suspension flows intersect. ¢) When the
liquid cell suspension flow is switched off, a backflow of nutrients in the direction of the cell
inlet helps to keep cells from entering the whole device when proliferating.
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Figure 5.2: Image showing the section of the Version I device, in which the experiments are
conducted. The growth chamber is the compartment, in which the growth-induced pressure
is measured by detecting the displacement of a PDMS membrane separating the growth
chamber from a control channel. The leaky valves promote the formation of cell clots that
result in a increase of growth-induced pressure. The bottom exit channel is 5 pm wide, while
the top exit channel has a width of 7.5 pm. Nutrients are supplied to the cells via a supply
channel and nutrient slits that are 1 pm wide.
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Figure 5.3: Growth chamber of the device filled with different cell densities: a) Cells (S.
cerevisiae) were loaded into the growth chamber. b) The cells have proliferated for about
7.6 hours and the growth chamber is filled with cells, but the growth-induced pressure is
still zero. c) Cells have proliferated for another 7.6 hours. The growth-induced pressure has
noticeably increased, which can be seen by the deformation of the surrounding PDMS walls.

S. cerevisiae cell is approximately 5 pm [93]). The growth chamber is initially loaded with
a few cells as shown in figure . The cells proliferate, filling the growth chamber (figure
5.3b). At this point the growth-induced pressure is still zero and no deformation of the
PDMS is apparent. In figure 5.3k, the build-up of growth-induced pressure by the confined
cells is evident as seen by the deformation of the PDMS. Notably, the deformation of the
membrane between the control channel and the growth chamber, marked by the dashed line,
and the deformation of the rectangles between the nutrient slits, indicated by the red, dashed
rectangle, are obvious.

Another essential component of the device is the cell outlet. We designed different outlets
in order to confine yeast populations in the growth chambers. In this version of the device
three different designs for outlets have been implemented. They differ in their opening angle
(45°, 90° and 135°) towards the exit channel (see figure . Yeast populations are partially
confined by these outlets. Several cells are pushed towards the exit at the same time due to
the broadening and subsequent narrowing of the exit channel. This leads to a clogging of the
outlets, which depends on the exit channel width (see section [6.2.2). Once the mechanical
pressure increases due to forces developed by cell growth, the cells and the surrounding PDMS
deforms further. These forces can lead to breaking of the cell clot and a subsequent pressure
decrease until another cell clot forms. This process gives the outlets a leaky nature. Since
these outlets essentially act as valves when we consider the cellular populations as fluids we
term them leaky valves.

In between the two growth chambers a supply channel is implemented (figure . After
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Figure 5.4: The designs of the three leaky outlets/valves are shown. They differ in their
opening angle towards the exit channel.

loading the growth chambers with cells, a continuous flow of 1 nl/s of nutrient medium is
applied to this supply channel. Nutrients enter the growth chamber by flow and diffusion
through the nutrient slits. These slits are 1 pm wide so that a S. cerevisiae cell with a
minimal diameter of about 3.4 pm [I5] cannot simply escape through them. The nutrient
slits are also necessary for loading of the growth chambers with cells, since a portion of the
liquid cell suspension flows into the growth chamber, while cells are trapped at the nutrient
slits.

The main application of our device is the measurement of growth-induced pressures ex-
erted by cell population under confinement. In order to accomplish this task we rely on the
deformability of PDMS at the pressure range we are interested in. As already mentioned
in section [3.1.2] PDM stiffness can be tuned in the order of 0.1 - 1 MPa. The maximal
growth-induced pressure that we measure for a cell population is about 1.2 MPa (section
. When taking this growth-induced pressure and the Young’s modulus range of PDMS
into account we can assume that deformations due to growth-induced pressure in PDMS are
noticeable. This is also apparent in figure where the growth chamber deforms under the
pressure the cell population exerts. It is clear that the stronger the deformation is, the more
accurate the pressure measurement is. For instance a PDMS membrane with a width of 4
pm deforms more than a bloc of 1 mm at a given pressure. We exploit this by implementing
control channels that are separated from the growth chambers by 4 pm thick membranes.
The deformation of this membrane can be observed in figure In the first two images of
figure [5.3h, the growth-induced pressure is zero whereas it increases to a value in the
order of 0.1 MPa in figure [5.3k. This pressure results in a well deformed membrane.

5.2 Pressure measurement

The growth-induced pressure measurement method relies on the displacement of the PDMS
membrane between growth chamber and control channel. The displacement of the membrane
is balanced by adjusting the hydrostatic pressure inside of the control channel. The sketches
in figure illustrate the measurement technique. Figure[5.5h shows the default situation, in
which the pressures in the growth chamber and control channel are zer(ﬂ Then, the pressure
in the growth chamber in figure[5.5pb rises to about 0.4 MPa, which is higher as the pressure in
the control channel resulting in a displaced membrane. The hydrostatic pressure in the control

*Sylgard 184 silicone elastomer kit, Dow Corning Corporation MI United States
We only consider effective pressures defined as peg = P — Patmosphere
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Phydro= 0.0 MPa | Phydro™ 0.4 MPa

Figure 5.5: Microscopic images illustrate the balancing of the membrane between growth
chamber and control channel. The given values are the growth-induced pressures in the
population. a) The default situation is shown, in which the pressures in growth chamber
and control channel are zero. b) The growth-induced pressure in the growth chamber has
increased while the hydrostatic pressure in the control channel is still zero, which results in a
displaced membrane. c¢) The hydrostatic pressure in the control channel has been increased
to recover the initial position of the membrane. In this case the two pressures are equal.

channel is increased accordingly (figure ) to match the pressure in the growth chamber.
In this case the membrane assumes its default position, so that the hydrostatic pressure in
the control channel is equal to the growth-induced pressure in the growth chamber. In the
experiments in which we directly measure the growth-induced pressure, the position of the
membrane is balanced every one to two minutes. In fact, we did not wait until the membrane
deforms as strongly as shown in [5.5p, before we increase the hydrostatic pressure. We would
otherwise artificially exert a force onto the cell population by displacing the membrane by
such a large amount.

In the experiments conducted by Dr. Hedvika Toncrova the hydrostatic pressure in the
control channel was changed by means of a syringe (1 ml, Terumo Medical Corporation, New
Jersey, USA) filled with 1 ml air in contact with the distilled water reservoir in the control
channel. By compressing the air in the syringe the hydrostatic pressure in the water reservoir
increased. The ideal gas law was assumed to hold true in this case

pV =nRT, (5.1)

with pressure p, air volume V', amount of moles n, ideal gas constant R and temperature
T. For an isothermal process at constant amount of moles a change in volume from Vj at
atmospheric pressure p; to Vo results in a pressure of

Vi
=p1—. 5.2

P2 = p1 % (5.2)

We are only interested in the effective pressure peg, that is the pressure py subtracted by the

atmospheric pressure p;

%
- g 53
Pet pl(VQ ) (5.3)
P1
orVy = W2 5.4
2 1P1+Peff ( )
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This method of measuring the hydrostatic pressure is prone to errors especially for high
pressure values. This can be visualized by extracting values from V5 as function of peg (see
figure [5.6)). For instance the volume V5 changes to achieve effective pressures of 0.35 MPa
and 0.4 MPa respectively are

Vo(pefizo.35MPa) = 222 1l (5.5)
200 L. (5.6)

Q

Vo (Peft=0.4 MPa)

The error with which the initial volume V; ml is set to 1 ml is already in the order of 1% (10
nl), so that pressures above 0.35 MPa can not be measured with sufficient precision. One
can easily see in figure by the decrease in slope of the curve that pressure measurements
with this method become increasingly inaccurate at even higher pressure values (> 0.4 MPa).
Over the course of this project we developed more sophisticated techniques to measure the
hydrostatic pressure that allow us to also resolve high pressure ranges (see section .
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Figure 5.6: The volume of the air reservoir in the syringe is plotted as function of the

effective hydrostatic pressure peg for an initial volume V4 = 1 ml and initial atmospheric
pressure p; = 0.1 MPa.

5.3 Development of experimental design

In this section changes in the design of the device are presented to guide the reader through
the development process.
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5.3.1 Valves

The valves that had already been developed do not allow for an active control of the growth-
induced pressure acting in the growth chamber. By choosing one of the three leaky valves
(45°,90° or 135°) in the experiment, we set the range of mechanical pressures a cell population
exerts and consequentially experiences.

Several strategies for controlled closing of microfluidic channels with active valves by other
research groups have already been developed. One example are Quake valves which work by
implementing a second (or higher order) valve layer on top of a microfluidic channel layer
[75]. One can close channels in a lower layer by increasing the hydrostatic pressure in the
corresponding valve channel above. The two layers are separated by a thin horizontal layer
of PDMS. A similar approach is used in a valve described by Abate et al. in [94] that we
term Abate valve for convenience. Abate valves close a channel by increasing the hydrostatic
pressure in an adjacent channel, with both channels being separated by PDMS walls. In this
case all structures are part of the same horizontal layer.

First, we designed Quake valves as an active control of the growth-induced pressure.
These valves are constructed to reduce the height of the exit channel. Parts of the two layers
that compose the device are shown figure The valve that is located over the exit channel
pushes onto the PDMS layer when a hydrostatic pressure is applied. The fabrication process
of this device which is made up of two structured PDMS molds is described in section [3.1.2]

Although, we successfully conducted experiments with this Quake valve design, which
are presented in section [6.2.2] we decided to develop a different strategy to actively control
the growth-induced pressure since the fabrication process of the Quake valves is difficult and
non-reproducible. The fabrication of the Abate valve device is easier since only a single layer
of PDMS is needed. The difficulties in producing Quake valves are due to the fact that the
two PDMS layers require accurate alignment. In order to establish a bond between the two
layers needed for a Quake valve we have to activate the surfaces in an Oy plasma. After this
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Figure 5.7: The Quake valve device is shown in this microscopic image. The Quake valve
is positioned above the exit channel. The layer of the Quake valve is situated 10 pm above
the lower layer and thus appears blurred since the focus is set to the lower structures. The
boundary of the Quake valves is indicated by the turquoise, dashed lines.

44



Chapter 5. Microfluidic setup 5.3. Development of experimental design

plasma treatment the alignment of the two layers and the establishment of a contact have to
take place during 1 minute. If this time span is not met, the bonding between the two PDMS
layers is not strong enough to sustain the high hydrostatic pressures we want to apply onto
the valves. The bonding strength of PDMS depends strongly on the parameters used during
O plasma treatment [72]. Another factor that complicates the process is that the two layers
immediately bond upon contact. This means that small errors in alignment can occur easily
(e.g. a shift in the order of 10 pm), which render the fabrication process non-reproducible
since the effectiveness of the valve depends on its position above the exit channel. We decided
to test Abate valves as a possible alternative, since these devices only require a single PDMS
layer and consequentially are easier to construct in a reproducible way.

To this end an Abate valve with a length of 65 pm lying next to the exit channel separated
by a 4 pm thick PDMS membrane as shown in figure is implemented.

Unfortunately, the valve does not close the exit channel to a sufficient extent. We did
not measure any difference in growth-induced pressure for valve pressures from 0.25 to 0.45
MPa. Additionally, we discovered that the close vicinity of the valve and control channel is
disadvantageous. The PDMS between these channels separates frequently at valve pressures
of about 0.5 MPa resulting in a leaking channel, which consequentially renders the valve
unusable.

In the latest design (shown in figure of the Abate valve we increased the distance
from control channel to valve channel. Additionally, we increased the length of the valves to
300 pm and implemented a second Abate valve on the opposite side, so that the exit channel
can be compressed from both sides. This device enables us to control the growth-induced
pressure of the cell population as is presented in section In order to incorporate the
second Abate valve on the opposing side of the exit channel a new design of the nutrient
supply system was necessary. This new design is introduced in the following section.

The aforementioned active Abate valve can in principle completely confine a cell popula-
tion. In order to achieve this complete confinement a valve pressure higher than the maximal
growth-induced pressure has to be applied. From the experimental data we found that this
maximal growth-induced pressure can be as high as 1.2 MPa for S. cerevisiae (see section
. When one applies a hydrostatic pressure of this magnitude (or even a pressure as low

Abate valve

™

Figure 5.8: First design of the Abate valve, which has a length of 65 pm and is situated next
to the exit channel. The idea behind this set-up is that the PDMS wall between exit channel
and Abate valve gets displaced when the hydrostatic pressure in the latter is higher than in
the exit channel.
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Figure 5.9: The final design of the Abate valve device is shown. The two Abate valves are
300 pm wide and situated next to the exit channel. Thus, the exit channel is compressed
from both sides when a hydrostatic pressure is applied.

as 0.5 MPa) in a microfluidic PDMS channel bonded to glass, the PDMS can separate from
the glass slide [72]. These high pressures can also detach the tubing from the inlets/ outletﬂ
As a consequence, we had to develop a different technique to completely confine yeast popu-
lations.

We designed a passive valve that exploits the growth-induced pressure the cells exert by
letting the cells actuate the valve themselves, hence we name it self-closing valve. Figure
shows a self-closing valve in its open and closed state. The cells that proliferate in the
extremities next to the exit channel push onto the surrounding PDMS (and thus push against
the walls of the exit channel) resulting in narrowing of the exit. This process closes the valve
nearly completely. The exit channel is narrower than the other valves we use (3 pm instead
of 5 um). However, it is still possible to load the device with S. cerevisiae cells, which have

Of course, this can also be problematic for the actual growth-induced pressure measurement we conduct,
but we fortunately found a solution for this problem (see section |5.4)).

a open b closed

extremities

exit channe

Figure 5.10: Microscopic images of the self-closing valve in its open a) and closed b) state.
The growth-induced pressure exerted by the cells in the extremities narrow the exit channel.
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a minimal diameter of 3.4 pm [I5] since we can apply a high hydrodynamic pressure during
loading of the device, which results in deformations that broaden the exit channel temporarily.
For a detailed description of the dimensions of the various valve types be referred to figure

[A4] in appendix A.

5.3.2 Nutrient supply

As described before (section nutrients flow through and diffuse into the growth chamber
by means of the nutrient slits. We observed in our experiments that S. cerevisiae cells can
be pushed through these 1 pm wide nutrient slits provided that the growth-induced pressure
in the growth chamber is at least as high as 0.2 MPa. Figure [5.11] shows an example of cells
escaping via the nutrient slits. The possibility of cells escaping through these nutrient slits
negatively influences the effectiveness of the designed valves rendering a complete confinement
impossible. Furthermore, tracking and counting the cells that leave the growth chamber is
nearly impossible. Due to the high flow velocity in the supply channel of vgupply = 1%1 /(10 pm-
15pm) ~ 6.7- 10322 cells are washed away in about 0.02 seconds when slipping out of the left
most nutrient sliﬁ Still, we want to estimate the number of cells leaving the growth chamber
as well as possible in order to measure the growth rate as function of the growth-induced

pressure (see section [6.2.4)).

Figure 5.11: Microscopic image of the first version of the device is shown. Cells escape
through the nutrient slits already at a pressure of about 0.2 MPa.

In a first attempt we changed the geometry of the pillars separating the nutrient slits
from one another to a concave-planar shape (figure |5.12]). The idea behind this approach is
that cells pressing onto the concave side of the pillars would narrow the nutrient slits and
thus keep cells from slipping through. As a result, cells are mostly escaping through the
nutrient slits at the borders of the growth chamber as indicated by the arrows in figure [5.12]
The minimal growth-induced pressure, at which cells escape through the nutrient slits in this
device is still about 0.2 MPa.

Consequentially, we redesigned the device as shown in figure by removing the slits at
the borders of the growth chamber to close off the main reason for an unwanted loss of cells.
We found that cells are still able to escape through the remaining slits, as can be observed
in figure [5.13] The pressure at which cells escape is still about 0.2 MPa. Interestingly, no

$The length of the supply channel section that is still in the field of view during the imaging is about 80
pm.
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Figure 5.12: Microscopic images of the first redesign of the nutrient slits to have a concave-
planar shape. Cells mostly escape through the nutrient slits at the borders of the growth
chamber as indicated by the arrow. The pressure, at which cells start to escape through the
slits is still about 0.2 MPa.

Figure 5.13: Microscopic images of the second redesign of the nutrient slits. The slits at
the borders of the growth chamber have been removed. The pressure at which cells start to
escape through the slits is still about 0.2 MPa.

matter the geometry S. cerevisiae cells are able to push through these narrow nutrient slits
at the same growth-induced pressure. The reported value of 0.2 MPa is close to the turgor
pressure that was previously reported for non-confined cells [23]. When approaching growth-
induced pressures of this magnitude the cells might increase their internal turgor pressure
to counteract this external mechanical pressure (compare section . This turgor pressure
increase might enable the cells to deform the narrow nutrient slits made of PDMS and squeeze
themselves through. This might be similar to bacteria that pass through narrow channels
simply be means of growth and division forces [16] (see also section .

Consequentially, we developed a nutrient supply mechanism that does not rely on nutrient
slits as previously employed to feed the cells in the growth chamber in order to block this
escape route for the cells. Figure 5.14h depicts a device, in which the growth chamber is
centered between two self-closing valves. This device completely confines a cell population,
but we find that cells do not have access to the same amount of nutrients. The valves are
closer to the nutrient channel so that they have easier access to fresh nutrients as compared to
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Figure 5.14: Sketch a) and microscopic image b) of a device without any nutrient slits. The
growth chamber is centered by two self-closing valves. b) Cells do not grow with the same
rate in the growth chamber versus inside of the walls before a steady state is reached. The
pressure difference is visible by the deformation of the channels which changes with respect
to the distance from the valves. This dependency hints at a higher pressure acting in the
valves as compared to the growth chamber.

cells in the growth chamber. Consequentially, cells in both self-closing valves grow faster and
exert higher local growth-induced pressures than in the growth chamber as long as the steady
state has not been reached. The difference in growth-induced pressure and hence growth rate
can be observed qualitatively in figure[5.14b. The deformation of the channels between valves
and growth chamber very likely result from a pressure difference between these structures.
The channels are deformed closer to the valves than near the growth chamber hinting at a
non-zero pressure gradient between valves and growth chamber. We measured the velocity
of cells in these channels by means of particle image velocimetry (for details of the analysis
see section [4.3) and plotted the result in figure Positive velocity values correspond
to a movement of cells from left to right, while negative values indicate a movement in the
opposite direction. One can observe in this plot that cells were transported from the valves
towards the growth chamber by the forces generated by growth and division of the cells. This
shows that the nutrient conditions in the growth chamber are not ideal, but since we want
to study the effect of mechanical pressure on confined cell populations without additional
influences of nutrient limitations, a more reliable method of nutrient supply to the growth
chamber had to be designed.

We designed nutrient channels that deliver nutrients directly to the growth chamber. The
design is depicted in figure In this device, we do no longer require a supply channel
to load the growth chamber. We simply load the device directly through the exit channel.
The inset in figure shows the side view of the growth chamber at the position where the
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Figure 5.15: Results of the analysis of the experiment shown in figure Cell velocity in
the channel between valves and growth chamber as a function of time is plotted. A positive
velocity indicates a movement of cells from left to right, while a negative velocity corresponds
to a movement from right to left.
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nutrients

Figure 5.16: The latest design of the device is shown. Inset) Side view of the growth cham-
ber at the position where the nutrient channels enter the growth chamber is shown. The
nutrient channels are lower (0.5 pm compared to 10 pm) than all other parts of the device.
These channels are nearly (except at very high growth-induced pressures) impassable for S.
cerevisiae cells.
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nutrient channels are connected to the growth chamber. The nutrient channels are only 0.5
pm high and 1 pm wide, which makes them nearlym impassable for S. cerevisiae cells that
have a minimal diameter of 3.4 pm [15].

The nutrient channels enable us to keep the nutrient conditions in the growth chamber
at an ideal level. This is shown in section [6.2.1], where we determine the diffusion constant of
glucose in the growth chamber filled with cells and incorporate this result into finite element
simulations. Additionally, we can also change the chemical environment of the cells at any
state of the experiment by replacing the nutrient medium with a desired chemical, which is
then pumped through the nutrient channels.

5.4 Pressure measurement development

5.4.1 Pressure sensors

In a first step, the pressure measurement was improved by replacing the air filled syringes
connected to the water reservoir in the tubes and control channel (compare section
with hydrostatic pressure sensors that are attached to a 10 ml glass syringe mounted onto
a neMESYS mid pressure module syringe pump (all components were bought from cetoni,
Korbussen, Germany). This setup enables us to change the hydrostatic pressure in the control
channel by pumping water in or out of the PDMS device with the syringe pump. The pressure
sensor generates a voltage signal that is an affine function of the hydrostatic pressure.

The implementation of pressure sensors enables us to measure the hydrostatic pressure in
the control channel accurately. However, to adjust the hydrostatic pressure to counteract the
growth-induced in the growth chamber precisely, is another challenge. The actual precision
with which the membrane is balanced is what sets the quality of the measurement of the
growth-induced pressure.

5.4.2 Feedback algorithm

In the experiments conducted during the beginning of this project, balancing of the membrane
was achieved by adjusting the hydrostatic pressure manually. When the membrane was
displaced it was judged by eye how to change the hydrostatic pressure to compensate for the
displacement. This method is inaccurate since very small displacements can not be properly
measured. Furthermore, this measurement technique turns out to be subjective as can be
seen in figure [5.171 The growth-induced pressure was manually measured in collaboration
with Dr. Morgan Delarue in a device, where the growth chamber is centered between two
self-closing valves (compare figure ) We observe an increase in the growth-induced
pressure when another researcher took over the measurementm as indicated by the arrow in
figure [5.17] This increase is simply an artifact since each of us judged differently when the
membrane was balanced. This observation led us to set the error bars of the measurement
to 0.05 MPa.

Due to these problems of the manual measurement, it was of utmost importance to develop
an automatic and accurate method to balance the membrane and through this measure the

IWe found that at very high growth-induced pressures (about 1.0 MPa) the PDMS can deform enough
for the cells to enter these narrow channels but these cells immediately get stuck in the channel, making it
harder for the next cell to enter the nutrient channel.

I'We took turns to measure the growth-induced pressure manually, since the overall measurement took
about 24 hours.
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Figure 5.17: Result of a growth-induced pressure measurement, in which the pressure was
measured by adjusting the membrane displacement by hand. The jump after 10 hours is a
measurement artifact. This artifact arises as the first part of the measurement was conducted
by another researcher than the second part.

growth-induced pressure cell populations exert in our device. To this end, a robust image
processing algorithm is needed that can extract the displacement of the membrane, but the
image acquisition software (Xcellence, Olympus, Hamburg, Germany) does not allow for live
image processing to the required extent. It is especially important for us to be able to adjust
the hydrostatic pressure in the control channel in accordance to the result of the image
processing, which is used as a feedback. In a further collaboration with Dr. Morgan Delarue
a live image processing algorithm was developed that allows to directly apply a pressure
feedback. All hardware components are controlled via a custom Matlab program. In the
following we described several aspects of this program.

The principle of the feedback algorithm is illustrated in figure[5.18 Initially, the program
determines the ideal focal plane by acquiring images in a region of interest containing only
the nutrient channeld™] at different focal planes and calculating a quantitative score for each
image [ individually as detailed below (figure |5.18p). For each image I the local standard
deviation for each individual pixel is calculated in a 3x3 pixel neighborhood with the STDFILT
function provided by Matlab. The result is a matrix J that has the same size as I with the
components being the local standard deviation of the corresponding pixel in I. We define the

**If we would use structures of the device with cells inside, the deformation of the PDMS by the growth of
the cells would alter the results for the determination of the ideal focal plane. This bias can lead to a drift in
the focal plane during the experiment. The nutrient channels are the only structures in the field of view that
do not contain any cells and are consequentially not influenced by this bias.
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Figure 5.18: The feedback algorithm with several necessary analysis steps is shown. a) For
the autofocus, images are acquired at different focal positions and a score representing the
mean local standard deviation of each image is calculated. The maximum score gives the
best focal position. b) The default membrane position is calculated by edge detection of a
ROI around the membrane, while autofocus is maintained and possible drifts are accounted
for. ¢) An example for the edge detection is shown. The binarized image has been inverted
and the membrane position is extracted by averaging over the right most detected edge in
the binarized image. d) In the feedback loop the membrane position is measured, focus is
maintained and drift is corrected for. The hydrostatic pressure is changed according to the
displacement of the membrane.
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score for the ideal focal plane through the average local standard deviation for each image as

;] MN
score = - Z Z Jij (5.7)

i=1 j=1

for an image with M x N pixels. The ideal focal plane was defined as the image with the
highest score. A high local standard deviation hints at a sharp image, while a defocused
(blurred) image has a relatively low local standard deviation. The gray scale values of the
defocused image do not differ as strongly, especially in a local neighborhood around each
pixel.

After this autofocusing, a picture is taken at the derived ideal focal plane. Two regions
of interest (ROI) are selected as shown in figure [5.18b. The dashed blue rectangle is located
above the nutrient channels to correct for possible drifts perpendicular to the membrane. We
correct for possible drifts at every acquisition during the experiments, hence we require a
drift correction algorithm that does not use up too much computational time. We calculate
the cross correlation between the ROI of the initial image Aror and current image Bror

M N
C(s,t) =YY Agou(i,j) - Brou(i+ 5,5 +)* (5.8)

i=1 j=1

with * denoting the complex conjugation. The second image is shifted by s pixels in x-
direction and ¢ pixels in y-direction. The direct calculation of this double sum for all possible
combinations of s and t is costly in terms of computational time. Fortunately, one can
calculate the Fourier transform of C by one simple matrix multiplication and by an inverse
Fourier transform

C = Ffl [F[AROI] . F[BROI]*] s (59)

which directly follows from the convolution theorem. Matlab provides a fast Fourier transform
algorithm that only requires 2M N log, (M N) arithmetic operations for each Fourier transform
[95], while the direct calculation over the double sum in equation for all s and ¢ requires
(M N)? operations in total. For a typical ROI size of about 100 x 100 pixels this translates to
about 8 - 10° operations for the Fourier transform method and 10® operations for the direct
calculation, which means that the Fourier transform method is over 100 times faster.

The position of the maximum of C gives the needed correction vector for the current
image with respect to the initial image for drift correction. The position of the second ROI
positioned above the membrane (dashed magenta rectangle in figure ) is drift corrected
accordingly. This second ROI is required to measure the position of the membrane by means
of image processing. The Matlab function EDGE with the Canny edge detection option is
applied to the ROI (low threshold 0.1, high threshold 0.5). This function calculates local
gray scale value gradients using the derivative of the Gaussian filtered image and generates a
binary image based on the result [96]. Pixel in the ROI for which a local gradient maximum
above the high threshold@ is found are set to 1, while the remaining pixel values are set to 0
(see figure for an example image). The detected edge indicated by the arrow in figure
5.18c are extracted from the binarized image to determine the position of the membrane.
This process is repeated for an hour with pictures being taken every 2 minutes and the

"Weak edges are detected when the local gradient maxima are higher as the low threshold if they are
connected to strong edges, which is not required for our image processing, but simply part of the edge
detection algorithm [96].
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default position of the membrane is calculated from the average of all accumulated values.
Before calculating the position of the membrane in each image the best focal position is again
calculated by the autofocussing algorithm and a possible drift perpendicular to the membrane
is corrected for by means of the drift correction algorithm.

After the calculation of the default membrane position xy has been established the experi-
ment starts. In each time step the best focal position is determined and after the pictures have
been taken the drift perpendicular to the membrane is corrected as previously described. The
pictures are taken in each time step and the mean position of the membrane <z> is calcu-
lated from the edge detected images. If the membrane has been displaced dz = x¢g— <> # 0
the hydrostatic pressure is changed accordingly by op = sgn(dx) - 0.005MPa (sgn is the sign
function) by activating the syringe pump (figure ) The new hydrostatic pressure is
recorded and an image is acquired at the corresponding time step. The growth-induced pres-
sure is measured with an error of 0.005 MPa with this feedback algorithm as is calculated in
section

5.4.3 Pressure from membrane displacement

As previously discussed the PDMS can separate from the glass when a hydrostatic pressure
of about 0.5 MPa is reached in the control channel. We found that a completely confined S.
cerevisiae population (undomesticated yeast strain BR-F) exerts a maximal growth-induced
pressure of about 1.2 MPa. We are not able to measure this high pressure regime by using
the feedback algorithm. Instead we can measure the growth-induced pressure directly from
the displacement of the membrane. The feedback algorithm has the advantage that it is
twice as precise in terms of pressure than the direct measurement of the membrane position
(see section for the calculation of the error for the membrane displacement measure-
ment technique and section for the calculation of the error of the feedback algorithm
measurement). The temporal resolution of the feedback method depends on the speed of
the algorithm and the hardware components (e.g. pumps). The temporal resolution of the
pressure measurement from the displacement of the membrane is better since it is directly
determined by the frequency of image acquisition. Consequentially, we use the feedback al-
gorithm for experiments, in which the pressure does not rise higher than 0.5 MPa and when
we are not interested in a high temporal resolution. The hydrostatic pressure in the con-
trol channel is maintained at an effective value of 0 MPa (subtracted by the atmospheric
pressure) when we measure the growth-induced pressure directly by the displacement of the
membrane. In order to extract the growth-induced pressure from the measurement of the
membrane displacement a calibration curve is required.

A test membrane with adjacent channels is implemented in each of the devices. The
hydrostatic pressure on one side of the membrane is increased stepwise and the corresponding
membrane displacement is measured with the edge detection method described in section
(.42l The maximal hydrostatic pressure we can apply without risking leakage is 0.5 MPa.
Up to this pressure the calibration curve gives a linear relationship between pressure p and
membrane displacement d. The average calibration curve (from all experiments) is given as

d="7.30 pm - p. (5.10)

The error of the distance measurement is about 0.07 pm due to the edge detection that can
only determine the position of the membrane with an error of 0.5 pixels. In the microscopic
images we acquire with our microfluidic device 1 pm is equal to 7 pixels.
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Since we also want to measure higher growth-induced pressures, we have to determine how
the functional relationship between displacement and pressure can be described for higher
pressure values. In order to achieve this we conducted finite element simulations with Comsol.
The finite element simulations are described in detail in section [£.4] We obtain a relationship
between the displacement of the membrane and the pressure acting in the growth chamber.

The displacement is given as
p

d=12.09 pm - i3 (5.11)
with E the Young’s modulus of the PDMS and p the acting pressure. When comparing
equations and we can estimate the Young’s modulus of our devices, which gives
a value of about 1.7 MPa. This is in good agreement with the study of Johnston et al., in
which the Young’s moduli of PDMS was measured for different curing temperatures for a
base to curing agent ratio as is used in our experiments [70].

We can also improve the pressure measurements of the old experiments, in which we
measured the growth-induced pressure manually, by means of finite element simulations.
In this case it is not possible to use the displacement of the membrane to measure the
growth-induced pressure since the hydrostatic pressure in the control channel was changed
manually, which makes it difficult to properly define the change with respect to the default
position of the membrane. We chose to measure the width of the channel connected to the
growth chamber instead to extract the growth-induced pressure from the change in channel
width. From the microscopic images of the experiments we can measure the channel width by
applying the previously described edge detection algorithm, but this time choosing a region
of interest located over the channel and extracting the positions of both outer walls of the
PDMS channel. The calibration curve for the channel width w as a function of pressure is
calculated from the finite element simulations (details are described in section

w=11.63 um - % +5 pm. (5.12)
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Chapter 6

Results

We present the experimental results in this chapter. First of all we show the outcomes of the
agar gel crack experiments. In these experiments yeast colonies are grown embedded in agar
gels or in cavities plunged into agar gels (cf section .

In the following the characterization of the latest microfluidic device, shown in figure[5.16
is presented. This characterization includes

e the degree with which the cells are confined by the various valves,
e the analysis of the nutrient supply to the cells in the growth chamber,
e and the pressure measurement technique via feedback algorithm.

In the subsequent sections the various pressure curves are shown and the growth rate as
a function of pressure is presented. Furthermore, we present the results of an experiment
conducted with the undomesticated yeast strain BR-F. This strain expresses strong cohesive
cell-cell bonds. Further analysis of the pressure curves corresponding to the leaky valve
devices gave access to statistical results on the occurring cell avalanches.

Additionally, we analyzed fluorescence time lapse series conducted with the Whi5-GFP
strain. This strain enables us to distinguish between cells having committed to cell division
and cells delayed in the G1 phase of the cell cycle (cf section .

Finally, we qualitatively show how growth-induced pressure influences cellular shape.

6.1 S. cerevisiae in agar gels

6.1.1 Plunging of cells into agar gels

We observed that S. cerevisiae cells can propagate cracks in agar gels. As described in section
w we initiated cracks by plunging syringe needles seeded with S. cerevisiae cells (lab strain
S288c and undomesticated strain BR-F) into agar gels. The initial cracks that result from
the insertion of a syringe needle extents in opposite directions as can be observed in figures
[6.1la and [6.1[[b. The figures show the cracks at time points at which the yeast cells filled the
entire cracks by proliferation but before the cracks started to propagate. In figures[6.1[Ia and
[6.ITb the cracks are depicted after 26.5 hours. The cracks maintained their main direction
during propagation. We do not observe any obvious difference between the two yeast strains.

We also used pipette tips instead of syringe needles to initiate cracks in agar gels. The
initial cracks for one of these experiments are shown in figure[6.1Jlc and the propagated cracks
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Figure 6.1: Ta,Ib) Images of initial cracks, initiated with syringe needles, in agar gels that are
filled with cells of the strains S288c and BR-F, respectively. Ila,IIb) Images after 26.5 hours
of the same cracks as shown in Ia, Ib, in which the cracks propagated by cell proliferation.
Ic) Initial crack pattern that was initiated by plunging a pipette tip with cells of the lab
strain S288c into the agar gel. Ilc) The cracks propagate in the star shaped crack pattern.
The crack on the right hand side of the insertion site is likely out of focus and thus not well
visible in Ic.
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Figure 6.2: a) A pipette tip and a syringe needle that were used to plunge holes into agar
gels are shown. b) A schematic representation of the shape of the tips of a pipette tip and a
syringe needle are depicted as cuts from cones.

after 1 day are depicted in figure[6.1[lIc. The resulting crack pattern is star shaped in contrast
to cracks initiated with syringe needles. In section we present more crack patterns that
were initiated either with syringes or pipette tips. The crack patterns initiated with syringe
needles always extent in opposite directions from the insertion site, while the pipette tip crack
patterns are star shaped in the experiments conducted here. We can explain this difference
by taking the shape of the plunging tools into account (see figure ) The shape of the
pipette tip can be described as a cone, which top was truncated parallel to its base. The
syringe needle tip on the other hand is shaped like a cone, which top was cut off at an angle
with respect to its base (cf figure [6.2p).

6.1.2 S. cerevistae colonies embedded in agar gels

We embedded S. cerevisiae colonies of the lab strain S288c in agar gels as described in
section This method enables us to confine cells without initiating any artificial cracks.
We observed that the embedded colonies of the lab strain S288c yeasts grow as shown in
figures and [6.3p. 4 to 8 hours after embedding of the colonies cracks appear in the
agar gels next to the growing colonies (see figure ). The cracks are filled with cells and
propagate by the growth and division of the yeasts as depicted in figure [6.3(d.

a 00:00 b 04:05 C 06:00 d

propagated
cracks

initial

colony

0.5 mm

Figure 6.3: a) A yeast colony of the lab strain S288c¢ is shown directly after embedding. b)
The colony grows and compresses the surrounding agar gel in the next 4 hours and 5 minutes.
c) First cracks appear adjacent to the colony. d) The cracks propagate and the colony keeps
on growing.
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We extracted the growth-induced pressure from the volume of the colonies (cf section
for the volume measurements) by simulating the compression of the surrounding agar gel
through Comsol simulations as described in section [4.4.1 We obtained relations between
growth-induced pressure and volume of the colony from these simulations that we applied to
our colony volume measurements. One has to keep in mind that the formation of cracks in
the agar gels leads to a release of growth-induced pressure in the colony. Consequentially,
we can only extract the growth-induced pressure from the volume of the colony before any
cracks appear. The time dependent growth-induced pressure curves for different initial colony
volumes Vipitial are shown in figure 6.4l The pressure curves show exponential increases, where
the values at the end of the curves mark the failure pressures at which the agar gels start to
crack. The average failure pressure is 0.047(3) MPa, in which the error was calculated from
the standard deviation of the mean. This average failure pressure is close to the compressive
strengt of the agar gels with about 0.059 MPa of agar gels (for 2% agar, as we use in our
experiments) measured by Nussinovitch and Peleg [97].

We embedded colonies of the undomesticated lab strain BR-F in agar gels. In all of these
experiments the BR-F colonies detached part of the agar gel immediately after embedding. A
cavity between the newly formed agar layers was created by the detachment and this cavity
grew as shown in figure As a consequence, we could not extract the growth-induced
pressure from these experiments since the BR-F yeast colonies did not stay confined.

*The compressive strength is defined as the stress, at which the material fails under compression.
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Figure 6.4: The growth-induced pressure curves of the
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volumes Vipitial embedded in agar gels are shown.
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experiment 1 experiment 2

detachment detachment detachment
4 of agar

Figure 6.5: a+c) The two pictures show a BR-F colony directly after embedding. The agar
gel starts to detach immediately after the colonies are embedded. b+d) The detachment of
the agar gels continue. Hence, the BR-F colonies do not stay confined.

6.2 Microfluidic experiments

6.2.1 Device characterization
Degree of confinement

In order to quantify the confinement of the various valves we determine the cell flow in the
channels exiting the valves. The dashed blue rectangle in figure [6.6p illustrates the position
of the region of interest (ROI) used to measure the cell flow rate

v-A

chll = .
Veenl

(6.1)

v is the cell velocity parallel to the exit channel, A the cross section of the channel and Vg
the average volume of a cell (Ve =~ 65 ptm? for a spherical cell with an average diameter of 5
pm [93]). We make use of the fluid like behavior of the cell population when the cells are not
confined by cell clots in order to measure the outflow of cells (cf section . We found that
the cross section stays at its default value for the leaky valves since the cells do not deform
the 5 pm wide exit channels. In the case of the self-closing valve the exit channel is only
3 pm wide, so that cells will deform the channel when passing through. Hence, we have to

0

Figure 6.6: a) The cell flow velocity is measured in the region of interest indicated by the
dashed blue rectangle. The velocity is determined by applying a particle image velocimetry
algorithm. b) The cross section of the exit channel is shown with a pressure of 1.1 MPa
acting onto the channel walls. The deformation is calculated by a Comsol simulation. The
color bar represents the total displacement of the PDMS.
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6.2. Microfluidic experiments Chapter 6. Results

measure the channel width to determine the cross section. The exit channel does not deform
isotropically when a pressure is applied inside of the channel as can be observed in figure
[6.6b. Here, the result of a Comsol simulation is shown, in which a pressure is exerted onto
the channel walls. We determine the cross section as a function of the channel width and plot
the result in figure in section The cell velocity v is measured by a particle image
velocimetry algorithm (PIV). The PIV algorithm determines the displacement of the cells
parallel to the channel between two images. This displacement is divided by the difference
in acquisition time of the two images (cf section . We define the degree of confinement
for a valve as

chll, with valve
doc=1— . (6.2)
chll, without valve

We normalize the cell flow rate of a given valve by the cell flow rate through a plain 5 pm
channel.

The degree of confinement for the various valves is plotted in figure[6.7] As can be seen by
a doc of about 98 % the self-closing valves confine S. cerevisiae populations nearly completely
only about 0.75 cells per hour escape. The leaky valves on the other hand only confine the cell
populations partially. The 90° and 135° leaky valves have degrees of confinement of about
55 % and 65 % respectively. The 45° leaky valve has a significantly lower doc of about 20 %.
The error bars correspond to the standard error of the mean calculated over all experiments
of a given valve. For the 45° valve we could only conduct one successful experiment in the
scope of this thesis so that we assumed an error bar equal to the average of the other leaky
valves.

um

100 F L i
T 80f =
€
o T
S L T T i
60
2 i
S
o
o
5 40 -
(0]
o
4
S 20 + I .
0 - — -
|
Al

Figure 6.7: The degree of confinement is plotted for the various valves. The confinement
becomes more efficient the larger the exit angle of the leaky valve is. The self-closing valve
confines S. cerevisiae populations nearly completely.
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Nutrient supply

We conducted several tests to elucidate the efficiency of the nutrient supply via nutrient chan-
nels into the growth chamber (see ﬁgurein section for an image of the corresponding
device). We extracted the diffusion coefficient of glucose in the growth chamber when it is
densely packed with cells. In CSM and YPD growth media glucose is the major source for
ATP production in S. cerevisiae cells [98]. Consequentially, glucose limitation will have a
pronounced impact on the growth of cells in our experiments. First, we let a cell population
grow in a device with a self-closing valve until it reached a steady state. We exchange the
growth medium (CSM) with a solution of 2-NBDG (a fluorescent D-glucose derivative [84])
and let the solution diffuse into the growth chamber.

In figure fluorescent images (GFP) of a section of the growth chamber at different
time points during diffusion of 2-NBDG are shown. We measured the fluorescent profile along
the growth chamber at different time points and extracted the full width at half maximum
(FWHM). Thus, we obtain a measure for the diffusion length of the fluorescent glucose. The
FWHM is related to the standard deviation o for a gaussian distribution by

FWHM = 20 V2 - In 2. (6.3)

For a random walk in one dimension (which is analog to what we measure in the experi-
ment) the standard deviation as a function of time is given by

o? = 2Dt (6.4)

with D being the diffusion coefficient. The relation between FWHM and diffusion coefficient
is obtained by comparing equations (6.3]) and (6.4))

FWHM =v2-4-2-In2- VDt (6.5)

We fitted the data with a square root function in order to obtain the diffusion coefficient (see

figure [6.9h)

2

D = 0.36 + 0.06 % (6.6)
I >I >I
0 min 1 min 2 min 3 min

Figure 6.8: Fluorescent image series of a section of the growth chamber. The intensity
increases with time, while the 2-NBDG (fluorescent glucose) diffuses into the growth chamber.
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This diffusion coefficient is three orders of magnitude lower than the diffusion coefficient
of glucose in free solution [99]. Furthermore, this value is a lower bound for diffusion of
glucose into the growth chamber since the 2-NBDG molecules are larger than normal glucose
molecules, hence they diffuse slower, and part of the fluorescence can be blocked by the tightly
packed cells leading to a weaker fluorescent signal.

To estimate if cells have access to sufficient nutrients in the growth chamber we conducted
finite element simulations (Comsol Muliphysics), in which we also incorporated the consump-
tion of glucose by the cells. The fermentation yield of S. cerevisiae cells is 0.45 g of biomass
/ & consumed glucose [100]. If we assume that the cells in the densely packed case can still
divide with the same doubling time of 2 hours as in the free solution case, the consumption
rate of glucose is 4.6 mTOI

We conducted two Comsol simulations with these parameters. In a first simulation we
considered that glucose only diffuses into the growth chamber. We assumed a constant
glucose concentration of Cy at the sites where the nutrient channels are connected to the
growth chamber. We depict the concentration of glucose normalized by Cy in figure [6.9b.
The concentration drops rapidly to zero due to the relatively high (compared to the diffusion
coefficient) glucose consumption. In a second simulation we implemented a flow of glucose of
0.2 n;l into the model, which is the flow rate that is applied during the experiments. As can
be seen in figure the concentration of glucose does not drop below 99 %. This shows that
nutrients are not a limiting factor in the growth of S. cerevisiae cells in the growth chamber
even at high cell densities. For details about the Comsol simulation setup see section

"The mass of a S. cerevisiae cell at the beginning of its first cell division is about 21.3 pg [101].
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Figure 6.9: a) The diffusion coefficient of glucose was determined by fitting the FWHM of
the intensity distribution along the growth chamber with a square root function. b+c) We
conducted Comsol simulations of the concentration of glucose in the growth chamber. We also
incorporated the consumption of glucose by the cells. b) Here, we only simulated diffusion of
nutrients with the concentration at the nutrient channel inlets being fixed to Cy. ¢) We also
implemented a flow of nutrients of 0.2 %1 similar to what we apply in the actual experiments.
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Feedback algorithm

In the following we present the characterization of the pressure measurement via feedback
algorithm. As described earlier (section we measure growth-induced pressures exerted
by cell populations either through the displacement of a 4 pm thick membrane, through
the deformation of a channel or through balancing the displacement of the membrane by a
feedback algorithm. This feedback algorithm is used to adjust the hydrostatic pressure in the
control channel according to the membrane displacement.

In order to assess the capabilities of the feedback algorithm we impose a known hydrostatic
pressure in the growth chamber. In doing so we can test how accurate the imposed pressure
is mimicked by the feedback algorithm that controls the hydrostatic pressure in the control
channel. The result of this test experiment is displayed in figure As can be observed
in the plot, the feedback pressure follows nicely the imposed pressure curve at least up to
a pressure increase of 1 MPa/h. To relate this value to our experiments we calculate the
maximal increase in pressure we can expect. The turgor pressure divided by the doubling
time of S. cerevisiae [102), 103] is a decent estimate for this. For this fraction we obtain
a value of 0.5 MPa/h. This value is only half as high as the maximal value that can be
measured with our feedback algorithm. We also observe sudden drops in pressure in our
experiments conducted with leaky valves. The feedback algorithm is not always able to
follow these sudden drops, hence a measurement of the growth-induced pressure via the
displacement of the membrane without applying the feedback algorithm is more suited to
study the pressure drops we observe. Due to the linear relationship between pressure and
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Figure 6.10: Result of feedback algorithm performance test. A known pressure was imposed
onto the membrane and the feedback mimicked this imposed pressure. The inset shows the
difference between the pressures in growth chamber and control channel. The mean of the
difference is taken as an estimate for the error of the pressure measurement technique.
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membrane displacement (cf figure ) it is sufficient to test the pressure regime shown in
figure[6.10] Additionally, we cannot only measure the absolute pressure in the growth chamber
but also relative changes in pressure difference between growth chamber and control channel
by using the feedback algorithm. To do so, we only have to choose the default position
of the membrane accordingly. For instance if we measure and set the default membrane
position when a pressure of 0.2 MPa is acting in the growth chamber while the hydrostatic
pressure in the control channel is zero, the feedback algorithm will balance the membrane
displacement in a way that this pressure difference of 0.2 MPa is maintained. The inset in
figure illustrates a quantification of the error of the pressure measurement. We calculate
the difference between imposed and feedback pressure and take the mean value as an estimate
for the error of the pressure measurement. The error is equal to about 0.005 MPa.

6.2.2 Pressure curves in microfluidic experiments

In this section pressure curves acquired with the various devices are presented. If not men-
tioned otherwise the experiments were conducted with the lab strain S288c in CSM medium.

Active valves

First, we compare our two active valve devices (Abate, Quake valves). The result of the
pressure measurement for the Abate valve device is presented in figure In each step the
Abate valve pressure was kept constant for about 10 hours (except for the first and last step)
before being increased in steps of 0.05 MPa. The growth-induced pressure increases with the
Abate valve pressure. The growth-induced pressure only adapts to the valve pressure after a
few hours.

Furthermore, we measured the growth-induced pressure from the displacement of the
membrane as a function of time for the Quake valve device. We used a different PDMS
mixing ratio of base to curing agent (15:1 instead of 10:1) for this device as described in
section [3.1.3] Since we did not conduct a calibration measurement for this mixing ratio, we
could only estimate the Young’s modulus of the corresponding PDMS device. Wilder et al.
measured the Young’s modulus of PDMS at different mixing ratios [104]. They obtained
a Young’s modulus of about 0.88 MPa for a base to curing agent ratio of 15:1, which is
the value we used for our further analysis. Notably, they measured the Young’s modulus of
PDMS prepared at a mixing ratio of 10:1 to be about 1.7 MPa, which is equal to what we
obtained for our 10:1 PDMS devices (cf section . The growth-induced pressure rises
with the Quake valve pressure as can be observed in figure [6.12

The growth-induced pressure is less compliant to the valve pressure in the case of the
Quake valve. We plotted the growth-induced pressure as a function of the valve pressure for
both devices in figure [6.13h. The Quake valve device differs in one important aspect from
the Abate valve device (apart from the valve itself) as is indicated in figures and .
The Quake valve device is an older design, in which nutrient slits were incorporated. Cells
can readily escape through the nutrient slits, while the narrow (1 pm wide and 0.5 pm high)
nutrient channels (used in the Abate valve device) are nearly impassable for the S. cerevisiae
cells. In the Quake valve experiment we observed that cells escaped through the nutrient slits
for valve pressures higher than 0.2 MPa. This hints at the importance of the development of
the nutrient channels as a reliable way to feed the population.

68



Chapter 6. Results 6.2. Microfluidic experiments

06 T T T T
growth-induced pressure

Abate valve pressure

pressure (MPa)

0 20 40 60 80 100

time (hours)

Figure 6.11: The growth-induced and the Abate valve pressure are plotted as a function of
time. The growth-induced pressure rises with the valve pressure.
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Figure 6.12: The growth-induced and the Quake valve pressure are plotted as a function of
time. The growth-induced pressure rises with the valve pressure.
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Figure 6.13: a) A comparison of the two active valve devices (Abate and Quake valve) is
shown, in which growth-induced pressure is plotted as a function of the valve pressure. b)
The Abate valve design is shown. The cells are fed through nutrient channels. c¢) The
Quake valve design is displayed. In this device nutrients are supplied via nutrient slits, which
provides the cells another way to escape the growth chamber.
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Passive valves with nutrient channels

Figure illustrates the pressure curves recorded for the nutrient channel devices. The
data for each individual valve are displayed as data range plots. The shaded area for each
color represents the extension from minimal to maximal pressure value with respect to all
experiments conducted with the same valve. Furthermore, for each valve one exemplary
pressure curve is plotted as a thick line. The starting time for the experiments can be chosen
arbitrarily, so that the pressure curves for different valves have been shifted in time for better
visibility. The beginning of each pressure curve marks the first time point when growth
chamber, valve and channel in between were completely filled with cells.

The experiments conducted with the self-closing valve reach a maximum in growth-
induced pressure of about 1.0 MPa. One of the self-closing valve experiments showed a
faster increase in pressure in the beginning (indicated by the red shaded region). Unfortu-
nately, this experiment could only be recorded for 17 hours due to a loss of focus, which
rendered the pressure measurement unreliable. The growth-induced pressure in the 135°
leaky valve devices reached maximal values between 0.6 and 0.7 MPa. In one of the 90° valve
experiments the pressure rose up to over 0.5 MPa, while the other experiments with this
valve only reached maximal pressures of about 0.4 MPa. The 45° valve experiment resulted
in a maximal growth-induced pressure of about 0.2 MPa. Additionally, in the plain 5 pm
channel device the pressure did not increase to more than 0.01 MPa.

Passive valves with nutrient slits

The corresponding pressure curves for the nutrient slit device are shown in figure |[6.15] The
device with the plain 5 pm channel also reaches pressure values that only fluctuate between
0 and 0.01 MPa. The curves for the 45° and 90° valves reach lower pressures (about 0.1
and 0.2 MPa respectively) as the corresponding pressure curves for the nutrient channel
device (cf figure . This finding might be explained by the fact that cells tend to escape
through the nutrient slits but not through the nutrient channels as described in section [5.3.2
Interestingly, the pressure curves for the 135° valve device show a different picture. The
variance of pressure values is particularly high. In one of the experiments the growth-induced
pressure hardly reaches 0.4 MPa (lower bound of shaded area), while in two experiments
the maximal growth-induced pressure is about 0.8 MPa. This exceeds the pressure values
obtained in the experiments conducted with the nutrient channel device that also contain
a 135° valve. This finding is counterintuitive since the maximal growth-induced pressure
reached in these experiments should be lower compared to the nutrient channel device due to
the nutrient slits that provide another escape route for the cells (when using the same valve).

A possible explanation for this paradox is that the valves do not function in the same way
for the nutrient slit and nutrient channel devices. In the nutrient slit experiments that reach
growth-induced pressure of about 0.8 MPa, the 135° valve tends to behave like a self-closing
valve, which is displayed in figure At the exit of the valve, which is indicated by the
arrows the growth-induced pressure exerted onto the valve walls results in a narrowing of the
exit channel. We did not observe this behavior in any of the experiments conducted with the
nutrient channel device.

It remains to be explained why the same valve behaves differently in the two devices.
The most obvious difference is the way nutrients are supplied to the cells. We conducted
a Comsol simulation to elucidate the concentration of nutrients in the channel next to the
growth chamber under real experimental conditions. A flow of nutrients is applied through
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Figure 6.14: The pressure curves for the nutrient channel device are plotted in this figure.
The different curves for the same valve have been plotted in terms of their data range. At
each time point the maximal and minimal pressure values are shown by the shaded region.
The solid line shows one exemplary pressure curve for each valve. The curves for different
The time point, at which the
curves start, is equal to the beginning of growth-induced pressure increase, when the device
is completely filled with cells for the first time.

valves have been shifted in time to visualize them better.
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Figure 6.15: The pressure curves for the nutrient slit device are plotted in this figure. The
different curves for the same valve have been plotted in terms of their data range. At each
time point the maximal and minimal pressure values of all curves are shown by the shaded
region. The solid line shows one exemplary pressure curve for each valve. The curves for
different valves have been shifted in time to visualize them better. The time point, at which
the curves start, is equal to the beginning of growth-induced pressure increase, when the
device is completely filled with cells for the first time.

narrowing of
exit channel

Figure 6.16: A picture in the late stages of an experiment conducted with a nutrient slit
device is shown. The tightening of the exit channels is indicated. The narrowing for this type
of leaky valve only occurs when using the nutrient slit device.
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the nutrient channels and the cells consume the nutrients (cf section . The result is
displayed in figure We observe that the nutrient concentration drops to zero in the
channel after about 23 pm. In the actual device the valve is positioned about 35 pm apart
from the growth chamber, so that it is reasonable to assume that the cells in the valve do
not have access to sufficient nutrients in order to proliferate. We conclude that in order for
the 135° valve to partly function as a self-closing valve the cells need to be growing in the
valve itself and not only being pushed towards the exit channel by the proliferating cells in
the growth chambexﬂ
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Figure 6.17: Result of a Comsol simulation of the nutrient channel device, in which the
adjacent channel was incorporated. The normalized glucose concentration is shown with
the nutrient concentration dropping to zero after about 23 pm along the channel. In the
microfluidic device the valve is positioned 35 pm away from the growth chamber. No nutrients
reach the cells in the valve. The position of the valve is only indicated in the figure and has
not been incorporated in the Comsol simulation since the Comsol version (4.0) accessible in
our institute was not able to find a solution for this slightly more complicated model.

Influence of channel width

In figure two pressure curves are shown that were recorded in the same device with
lab strain S288c yeasts. Figure shows an image of the experiment just before the cells
completely fill the 135° valves. The channels connected to the valves and growth chambers
are 7.5 pm and 5 pm wide for the upper and lower part of the device, respectively. The

#Notably, we could not simulate the nutrient concentration in the nutrient slit device, since the Comsol
version available in our institute (version 4.0) is incapable of finding a solution for this more complicated
model.
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Figure 6.18: a) Comparison of the growth-induced pressure curves that result from different
channel widths. b) Micrograph of the device, in which the upper part has a channel width
of 7.5 ym and the lower part a channel width of 5 pm.

pressure curve for the 7.5 pm wide channel fluctuates between small pressure values of 0 and
0.03 MPa, while the pressure curve of the 5 pm wide channel behaves as shown before. For
all experiments with any of the leaky valves the pressure curves for the 7.5 pm wide channels
hardly show any pressure buildup. This indicates that the width and probably the more
general value of the cross section of the exit channel determines if cell clots can form and
how easy these clots are dissolved.

Influence of cell adhesion

We conducted an experiment with the undomesticated yeast strain (BR-F) in the self-closing
device. The pressure curve is plotted together with the corresponding result for the lab strain
S288c in figure[6.19. As mentioned before (section [3.2) the difference between the two strains
is that the cells of the undomesticated strain express proteins involved in cell adhesion that
are not expressed in the lab strain. In a confined space these two strains behave differently,
as can be observed in figures [6.19b and [6.19¢. The lab strain cells fill every available space
before any increase in pressure can be observed (figure [6.19¢). The undomesticated cells
cannot rearrange that easily due to the strong cell-cell bonds, as can be seen in figure [6.19pb.
The channels are strongly deformed before the cells even reach the membrane in the growth
chamber. The pressure curve of the undomesticated strain shows a very fast increase of
about 0.2 MPa/h where the pressure is increasing from 0.3 MPa to 0.95 MPa in about 3.3
hours. This slope is unmatched in magnitude by any other experiment we conducted. The
undomesticated strain reaches a higher maximal pressure of 1.2 MPa, which is about 20%
higher than the corresponding value for the lab strain. More replicates for both strains are
required to determine if this difference is only due to sample variation.

6.2.3 Cell avalanche statistics

The pressure curves corresponding to the leaky valve devices usually show an intermittent
behavior as can be seen in figures and The growth-induced pressure suddenly drops
and starts to rise again. This intermittency is a result of the interplay between formation
of cell clots at the exit channels (or nutrient slits in the corresponding devices) and cell
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Figure 6.19: a) Comparison of the pressure curves measure for the undomesticated (BR-
F) and the lab yeast strain (S288c). b) Image of a self-closing valve device filled with the
undomesticated strain. c¢) A self-closing valve device is shown with lab strain cells inside.

avalanches, which occur when cell clots get dissolved. A cell clot dissolves when the growth-
induced pressure increases to such an extent that frictional forces between neighboring cells
(or between cells and the surrounding PDMS) are overcome [60]. When cells escape via
avalanches, the cell density and hence the growth-induced pressure decrease rapidly inside
of the growth chamber. However, when a clot forms the density and consequentially the
growth-induced pressure in the growth chamber increase due to cell proliferation. In order
to provide evidence for this interpretation we plotted the pressure curve of one experiment
(90° leaky valve with nutrient channels) together with the cell velocity in the exit channel on
the same axis in figure[6.20] One can observe that large pressure drops usually coincide with
high cell velocities, which implies that pressure drops are caused by cell avalanches.

In order to extract statistical properties from the pressure curves we measure pressure
drops Ap and survival times of the cell clots 7 from the data as indicated in figure [6.20
We defined a threshold of Ap > 0.02 MPa in order to distinguish pressure drops from the
noise in the pressure measurement. The survival functions for both properties (Ap and 7)
for each device were calculated separately. Details about the survival function are presented
in section m In short, the survival function S(P > Ap) for the pressure drops describes
the probability to find a pressure drop P in the data that is greater or equal to Ap.

Pressure drops due to cell avalanches

The pressure drop survival functions S(P > Ap) for four of the leaky valve device&ﬁl (135°
valve with nutrient slits, 90° valve with nutrient slits, 135° valve with nutrient channels and
90° valve with nutrient channels) are displayed in figure The probability to find large
pressure drops is higher in devices, which feature 135° valves than those that contain 90°

$We incorporated the data from all the conducted experiments for a given valve in this plot. We did not
include the 45° leaky valve due to the relative small statistics we have for these devices.
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Figure 6.20: The growth-induced pressure is plotted together with the cell velocity in the
exit channel for a 90° leaky valve device. High velocities usually coincide with large pressure
drops. The definitions of the statistical parameters pressure drop Ap and survival time 7 are
indicated on the pressure curve.

valves when considering the two nutrient supply methods separately (cf ¢ to [J and + to
o). This result coincides with the observation that growth-induced pressures are typically
higher for the 135° valves (figures and . When comparing the survival functions
for different nutrient supply methods, it can be observed that the nutrient slit devices show
more of the higher pressure drops than the nutrient channel devices for a given valve (cf ¢
to + and [ to o). Interestingly, the survival functions for the 135° valve nutrient channel
device (+) and the 90° valve nutrient slits device (L) coincide, although the absolute pressure
values are significantly higher for the 135° nutrient channel device (maximum of about 0.6
MPa compared to 0.15 MPa as shown in figures and respectively). This leads
to the possible interpretations that cell avalanches occurring at the nutrient slits let more
cells escape or that cell avalanches at either end (valve or nutrient slit) can promote another
cell avalanche at another site due to rearrangements inside of the cell population. Such
subsequent cell avalanches might occur between two image acquisitions so that they cannot
be observed in the pressure curves.

Survival times of cell clots

In figure the survival functions for the survival times are plotted. The probability to
observe cell clots that are sustained for more than 0.7 hours is higher for the nutrient channel
devices. This implies that cell avalanches are more frequent in the nutrient slit devices as is
expected due to the additional escape routes the slits provide.

Furthermore, we analyzed the tails of the survival functions to further characterize sta-
tistical behaviors of the cell avalanches. In other intermittent flows it has been shown that
the tails of the probability density functions of the survival times follow power-law decays
[58, 90L 91]. Clauset et al. provide a powerful Matlab program to analyze power-law distri-
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Figure 6.21: Survival functions of the pressure drops that occur due to cell avalanches are
plotted for four devices. The data from all experiments conducted with the same device are
combined.
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Figure 6.22: Survival functions of the survival times of the cell clots (= time between cell
avalanches) are plotted for four devices. The data from all experiments conducted with the
same device are combined.
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butions in empirical data [105], which we also applied to our data. The program rigorously
calculates the value Ty, from which on the distribution follows a power-law decay by fitting
a power-law decay to a range of 7% values and selecting the best fit from these values.

If we assume that the probability density function follows a power-law decay for ¢ > Tpin

f(t) oct™, (6.7)

the survival function behaves as
S(T > 71) oc 771 (6.8)
for 7 > Tmin, which we derive in section Notably, the power-law decay fits in figure
have slopes of —a + 1 and we prompt the a values in the figure legends analog to [5§].
These « values enable us to further describe the cell flow behavior. Zuriguel et al. [58]
proposed a flowing parameter ® to describe systems consisting of granular particles that flow
through orifices. The flowing parameter is defined as

- <ty >
<ty >+ <t >

(6.9)

with < t, > being the average duration of the cell avalanches and < t. > being the average
survival time of the cell clots. Cell avalanches have a finite average size and hence a finite
duration < t, > as described by Zuriguel et al. [58]. In a system without cell clots < t. >=0
a continuous flow is observed and the flowing parameter assumes a value of 1. Intermittent
flows are present for a finite average survival time so that 0 < ® < 1, while in a totally
clogged system the average survival time < t. > diverges and hence ® = 0. When looking
at empirical experiments it is impossible to calculate an infinite average survival time < t. >
from the data due to the inherent finite number of the acquired data points. As a consequence
the power-law decay exponents need to be taken into account since the values for a determine
if the average survival time diverges. We can calculate the average clogging duration < ¢, >
from the probability density function f(t) via

<te> = / f(t)-tdt (6.10)
0
— / Ry tdtes [t ar (6.11)
0 Tmin
= constant = C>0
= C+8 t=ot dt (6.12)

with 8 being a normalization constant. The remaining integral diverges for a < 2 and
converges for o > 2. In our experiments all « values are greater than 2 indicating that our
systems are not completely clogged. We calculate the ® values for the four different devices
from our empirical data. The results are shown in table together with the a values, Timin
values and the total number of avalanches for each device. The ® values are similar for all
four devices, which indicates that the cell flow dynamics are comparable. Possibly, the overall
cell flow behavior is largely determined by the width of the exit channel, which is identical
for the four different devices.

Interestingly, the two survival functions for the 135° valves decay faster for large survival
times. This shows that it is more probable that cell clots surviving for long times can be
observed in the 90° valve experiments than in the 135° valve experiments. This is again a
counter intuitive result since the 135° valve exhibit higher absolute growth-induced pressures.
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Table 6.1: Flowing parameter ®, slope of power-law decay «, minimal clogging duration
for which the probability density function follows a power-law decay 7Tmin and number of
avalanches Nayalanches for each of the four analyzed devices.

device ) (07 Tmin (hOUI‘S) Navalanches
135° nutrient slits 0.152(1) 7T+ 2 1.3 £0.8 150
90° nutrient slits 0.162(2) 4+1 0.9 +£0.2 84
135° nutrient channels 0.134(1) 7T+4 2.0+0.8 99
90° nutrient channels 0.148(4) 2.8 £0.9 0.8+ 0.4 55

6.2.4 Growth rate versus pressure

We describe the cell populations as fluid-like in order to extract the growth rate of the cells
as a function of growth-induced pressure from the time lapse movies. We define the growth

rate as
_<v> *Achannel

) 6.13
Vchamber ( )

g:
where < v > is the mean velocity of the cells in the channel between growth chamber and
valve, Achannel the cross section of this channel and Vepamper the volume of the growth chamber.

We measure the cell velocity between two subsequent images by means of PIV (for details
see section . We choose a region of interest that is positioned around the channel as
indicated by the dashed blue rectangle in figure [6.23h for the velocity measurement. We av-
erage the cell velocity over time intervals that correspond to certain growth-induced pressure
ranges. Figure shows a pressure curve recorded for a 90° valve experiment, in which
the interval over which the average cell velocity is measured is indicated. The corresponding
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Figure 6.23: a) Image of a 90° valve device, in which the dashed blue rectangle indicates
where the cell velocity is measured. b) The growth-induced pressure and cell velocity are
plotted as functions of time on the same axis. The time interval over which cell velocity and
growth-induced pressure were averaged for the growth rate measurement is indicated.
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growth-induced pressure was also averaged over the same time interval.

As seen in section[6.2.3| we frequently observe cell avalanches in the experiments conducted
with the leaky valve devices. These avalanches result in high cell flow velocities in the channel
between growth chamber and valve. Since we are only interested in cell velocities, which
result from the growth of the cells, we have to neglect high cell velocities corresponding to
cell avalanches. We account for this by neglecting cell flow velocities higher than a threshold
velocity Uthreshold- Lhis threshold is chosen according to the maximal theoretical cell velocity
we expect to observe in the channel. In the zero pressure state the growth chamber has a
volume of 65 x 25 x 10 pm?. If we assume that the chamber is completely filled, about 248
cells are present in the growth chamber (spherical cells with an average diameter of 5 pm).
If all of these cells produce a daughter in a time interval of 2 hours (minimal doubling time
in free solution) and the cell density in the growth chamber stays constant, cells are pushed
out of the growth chamber with a velocity of about

Vthreshold = % . 248 - 5 pm - i — 310 % (6.14)
The factor 1/2 is taken into account since our devices have a structure height of about 10 pm,
which implies that two cells with average diameter of 5 pm can move through the channel at
the same time with one cell being on top of the other.

The channel cross section Acpannel @and the growth chamber volume Vipamber depend on
the growth-induced pressure in the PDMS devices. We measure Achannel and Vipamber a8
functions of the growth-induced pressure in a Comsol simulation (details shown in section
. We take these deformations into account when calculating the growth rate via equation
(16.13]).

The results of the growth rate analysis are displayed in figure [6.24] in which the growth
rate is plotted as a function of the growth-induced pressure. When considering the errorbars,
the growth rate seems to decay exponentially with increasing growth-induced pressure. This
behavior can also be observed in the inset of figure where we plotted the same data
points on a semi-logarithmic scale.

6.2.5 Pressure versus G1 phase

As previously shown in section [6.2.4] an elevated growth-induced pressure results in a de-
creased growth rate. In this section we investigate if cells spend more time in the G1 phase
of the cell cycle when the growth rate of the population is low. We conducted experiments
with the Whib5-GFP yeast strain, for which we acquired fluorescent images. Yeast cells that
have not committed to cell division have a high concentration of Whi5 proteins in their nu-
clei, which in the case of the Whi5-GFP strain results in a strong fluorescent signal from the
nucleus [80] as indicated in figure . When a cell passes the cell cycle checkpoint Start,
it commits irreversibly to cell division. In order to pass this checkpoint a cell may require a
certain size, sufficient nutrients need to be available and its DNA has to be intact [106-108].
Upon the initiation of Start the Whib proteins are excluded from the nucleus, which results in
a diffusive cytosolic fluorescent signal in our Whi5-GFP strain [80] as shown in figure [6.25p.

In figure the Whib nuclear densitym is plotted as a function of growth rate (the
analysis for this particular plot was conducted by Dr. Morgan Delarue). The graph shows
a linear relationship between growth rate and Whib nuclear density. A high anti-correlation

Thumber of nuclei per unit area
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Figure 6.24: The growth rate is plotted as a function of time. The data points follow an
exponential decay. The inset shows the same data points plotted semi-logarithmically.
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determined by a correlation coefficient of -0.988 for the data was derived. Hence, we conclude
that the decrease in growth rate is intertwined with the amount of time cells spend in the
G1 phase.
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Figure 6.25: a) Fluorescent GFP image of a section of the growth chamber filled with Whi5-
GFP yeast cells at a growth-induced pressure of 0.95 MPa. The bright dots indicate a high
concentration of Whib proteins inside of the nuclei of the yeast cells, which labels these cells
as being in the G1 phase of the cell cycle. b) Fluorescent GFP image of a section of the
growth chamber filled with Whi5-GFP yeast cells at a growth-induced pressure of 0.16 MPa.
The diffusive circular patches are cells, in which the Whib proteins were excreted from the
nucleus, and thus were marked as having initiated their cell division. ¢) The Whib nulear
density (number of cells in G1 phase per unit area) is plotted as a function of the growth rate.
A correlation coefficient of -0.988 was calculated, which indicates a strong anti-correlation
between the time cells spend in the G1 phase and the growth rate (The analysis for this
particular plot was conducted by Dr. Morgan Delarue).
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6.2.6 Pressure influences cell shape

We observed that S. cerevisiae cells possess different shapes when subjected to low or high
growth-induced pressures, respectively.

Figure [6.26] shows a fluorescent image of one of our nutrient slit devices at the end of
an experiment. The nutrient medium was replaced with a fluorescent glucose (2-NBDG)
solution analog to section We can nicely observe the cell shapes in this image since
the boundaries between cells are highlighted by the fluorescent glucose. In this device the
upper part of the device has a default exit channel width of 7.5 pm, while the exit channel in
the lower part is 5 pm wide analog to the device shown in figure [6.18] Consequentially, the
growth-induced pressure in the upper part is about 0.0 MPa, while a growth-induced pressure
of about 0.4 MPa is found in the lower part. The cells that experience a low growth-induced
pressure in the upper growth chamber are mostly oval in shape. The cells subjected to a high
growth-induced pressure in the lower growth chamber on the other hand assume polygonal
shapes where the contact area between adjacent cells is increased.

Figure 6.26: A fluorescent image is shown that depicts the difference in shape the S. cerevisiae
cells possess at different growth-induced pressures. At low pressures the cells are mostly oval
in shape, while a high pressure results in polygonal cell shapes.
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Discussion

7.1 S. cerevisiae in agar gels

In section we qualitatively describe how S. cerevisiae cells grow in artificially created
cracks inside agar gels and how the cells propagate these cracks. The initial crack patterns
depend strongly on the tool we use for plunging the cells into the solid agar gels (syringe
needles or pipette tips). We manually plunged the cells into the agar gels and consequentially,
we could not exactly control how deep and at which angle the tools were inserted. This
variability in crack initiation most likely biased the observed crack patterns. In order to obtain
quantitative results from these kinds of crack propagation experiments, a more controlled
method of crack initiation needs to be developed. For example a z-stage on which the plunging
tool is fixed could be applied. Furthermore, it would be interesting to observe if cells of the
undomesticated BR-F strain start to invade the agar gels after the cracks were propagated
(for details about agar invasion compare section . In our crack propagation experiments
conducted with BR-F yeasts we did not observe any agar invasion, which might be due to
the fact that we only image two dimensional projections of the crack patterns. In these
projections small cracks initiated by agar surface invasion of the cells could remain hidden.

By embedding whole colonies of S. cerevisiae cells, the bias of crack initiation could be
circumvented since no cracks are present after the agar solidifies. Furthermore, we could
extract the growth-induced pressure values from the volume of the colonies as a function of
time up to the time point of crack formation. The volume measurement (cf section can
be further improved by acquisition of three dimensional images of the colonies since in our
measurement technique we have to assume that the colony is spherical which might not be
the case in the z-direction that is not imaged. We plot the pressure curves of the embedded
colonies together with the beginning of slowest increasing pressure curve of a self-closing
valve in figure[7.1] The variability between the pressure curves for the in agar gels embedded
colonies could be due to different three dimensional shapes of the colonies. Interestingly,
the pressure in the self-closing valve device increases faster than all of the curves related to
embedded colonies. A possible explanation is that not all cells in the embedded colonies have
access to nutrient. The cells at the periphery of the colony are directly in contact with the
nutrients of the YPD agar gel, while the cells in the bulk of the colony do not have direct
access to this nutrient source. In the self-closing valve on the other hand the nutrient supply
to all cells in the growth chamber is ideal as is shown in section

Due to the relatively low compressive strength of the agar gels (0.059 MPa [97]) and the
corresponding failure of the material, we can only measure growth-induced pressures up to
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approximately this value in our experiments. In order to measure higher growth-induced
pressures different hydrogels with higher compressive strength might be employed (e.g. acry-
lamide gel or Tetra-PEG gel [109]). Since our main interest was to observe the formation
of cracks by the forces the cells exert during growth, we did not try out other hydrogels.
Furthermore, we additionally designed a microfluidic device that allows for measurements of
growth-induced pressures, better controlled nutrient supply to the whole cell population and
direct observation of single cells by fluorescence microscopy. Nevertheless, embedding cell
colonies in hydrogels with appropriate material properties can provide a very easy method
to measure growth-induced pressures without the need of creating microfluidic structures by
photolithography (compare section and PDMS molding (compare section . A
similar technique was developed by Cheng et al. [4], in which cancer spheroids were em-
bedded in agarose gels. They also observed crack formation mediated by growth-induced
pressures in their experiments.
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Figure 7.1: The growth-induced pressure curves of the in agar gels embedded yeast colonies
are plotted together with the slowest increasing pressure curve of the self-closing valve device
for comparison. The data are the same as in figure and

7.2 Dynamics of pressure curves

The pressure curve of the self-closing valve device in figure [6.14 clearly shows two regimes. A
first regime where the pressure increases fast with a slope of about 0.2 MPa/h and a second
regime, in which the increase slows down to about 0.009 MPa/h. These two regimes were also
observed in other systems. Alessandri et al. encapsulated tumor spheroids in alginate shells
[67]. The corresponding pressure curves also show two regimes even though the pressures
were lower with values in the order of 1 kPa. The growth of confined bacterial populations
of E. coli resulted in similar pressure dynamics as well, as was measured by Stewart and
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Robertson [7]. It is remarkable that these three different cell types (bacteria, mammalian
cancer cells and yeasts) all show similar pressure dynamics when grown in confinement.

For the cancer spheroid experiments most of the cells in the tumor sphere started to die
with the start of the second regime and only a small fraction of cells close to the surface kept
growing. This explains the slowdown in pressure increase in the corresponding experiment.

In our experiments we found that the growth rate decays exponentially with growth-
induced pressure (compare figure in section . The decrease in growth rate is
strongly correlated to a cell cycle delay of cells in their G1 phase (see figure . Further
test experiments conducted by Dr. Morgan Delarue revealed that only a small fraction (about
10 %) of the yeast cells dies in our experiments at a high growth-induced pressure of about
1.0 MPa, as is shown in figure The cells rather completely cease to metabolize nutrients,
as was measured by independently staining cells for metabolic activity and for viability,
respectively. These results indicate that cells in our system are not dying as in the cancer
spheroids of Alessandri et al. [67], but rather delay in the G1 phase of the cell cycle (details
about the cell cycle can be found in section . The decrease in growth rate can also be
a direct response to the increased mechanical forces acting on the cells, since slow growing
S. cerevisiae cells show an increased resistance to a wide range of stresses (e.g. mechanical
stress [57]), as we discussed already in section

o — Viability (alive) f
Vitability \
0.9r (metabolically active) ]

0.8f 4

0.7r J

0.5+ 4

cell fraction

0.4r .

0.3r :

0.2r :

0 0.2 0.4 0.6 0.8 1
growth-induced pressure (MPa)

Figure 7.2: Fraction of cells that are viable (alive) and vitable (metabolically active) at
different growth-induced pressure values. The experiments and analysis were conducted by
Dr. Morgan Delarue.

7.3 Channel width and cell adhesion

The influence of the width of the exit channel on the growth-induced pressure is very strong
as can be seen in figure [6.18] in section [6.2.2] The channel that has a width of 7.5 pm is too
wide to promote any noticeable cell clot formation in the experiments conducted with the
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lab yeast strain S288c, as is apparent from the growth-induced pressure curve that fluctuates
only between 0 MPa and 0.03 MPa.

The strong cell-cell adhesion found in the undomesticated yeast strain BR-F (compare
section leads to a significant promotion of cell clot formation as can be seen in figure
[73] The corresponding device is equipped with 45° leaky valves. The upper exit channel
has a default width of 7.5 pm, while the lower channel is 5 pym wide. The growth-induced
pressures in the upper and lower part of the device are very high with about 0.9 MPa. Cells
are being pushed out of the nutrient slits at this pressure but stay attached to other cells of
the population still inside the growth chamber. In order to compare this to the lab strain
S288¢ we refer to figure in section[6.2.2] in which the pressure curve of the corresponding
45° leaky valve device hardly surpasses pressure values of 0.1 MPa. This indicates that the
ability to form cell clots and the strength of these clots strongly depend on the strength of
cell-cell adhesion of the corresponding cells.

In nature one typically encounters undomesticated yeast strains that exhibit strong cell-
cell adhesion. As a consequence, cell clots can easily form even when the constrictions are
not very narrow and hence, large growth-induced pressures can be exerted by the cells (if the
nutrient conditions are favorable enough). This indicates that high mechanical forces might
be exerted by the growth and division of S. cerevisiae and bacterial cells showing strong
cell-cell adhesion in the soil [9] or in rocks [10].

Figure 7.3: An image of a nutrient slit device, in which cells of the undomesticated strain
BR-F are growing, is shown. The growth-induced pressures in both parts (upper and lower
part) are measured as about 0.9 MPa.

7.4 Cell avalanche statistics

The survival functions presented in section describe the statistical behavior of cell
avalanches and overall cell flow characteristics (e.g. through the flowing parameter ®).

If meaningful results shall be extracted from the survival functions large statistics are
important. Especially, the tails of the survival functions, which describe the cell flow charac-
teristics, require good statistics. The shape of the tails is largely determined by rare events
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of large magnitude in pressure drops or survival times. The relative errors of the power-
law exponents (cf table are quite large with values between 25% and 57%. Hence, the
statistical results and corresponding interpretations could greatly benefit from additional ex-
periments. Especially, more experiments with 45° leaky valve devices are required since we
did not present the corresponding data yet due to the small amount of experiments and
hence cell avalanches. Nevertheless, the analysis method we adapted from Zuriguel et al. [58]
provides a powerful tool to understand the characteristics of the cell avalanches we observe
in our various devices.

When microbes grow in small cavities in the soil [9] or in rocks [10] they might be partially
confined similar to our leaky valve devices. Accordingly, cell avalanches might readily occur
in nature. The cells might experience alternating periods of rises and drops in growth-
induced pressure. It would be interesting to understand how cells adapt to this intermittent
pressure behavior for instance in terms of protein composition and cell wall architecture
(compare sections and . Our device is especially suited for this task since we can tune
the magnitude of the growth-induced pressure and the characteristics of the cell avalanches
by choosing the appropriate leaky valve. At the same time we can study the cells with
fluorescence microscopy. Provided the access of appropriate yeast strains or staining methods
suited for a specific question we want to address (e.g. abundance of a certain cell wall protein),
we can easily study this problem with our device.
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Summary, conclusion and outlook

We developed a microfluidic device that provides the possibility to study Saccharomyces
cerevisiae cells under mechanical confinement, while fully controlling the nutrient conditions.
We explicitly aimed at measuring the mechanical pressure induced by the growth of whole
cellular populations, which consist of several hundreds of cells. The measurement of this
growth-induced pressure is achieved by the displacement of a PDMS membrane in contact
with the cellular population. To the best of our knowledge our microfluidic device provides
for the first time a reliably way to measure growth-induced pressures of cell populations.

We can influence the magnitude and dynamics of the growth-induced pressure by choosing
from a set of passive cell flow control valves. One of these passive valves enables us to
completely confine the cells and by this measure the maximal stalling pressure S. cerevisiae
populations can exert. This valve makes use of the growth-induced pressure itself to close
the cells in and hence is called self-closing valve. The other passive valves used in this study
do not completely confine the cells, but rather facilitate the formation of cell clots. A cell
clot can get dissolved when the growth-induced pressure rises to a certain value. As a result
a whole avalanche of cells escapes the confinement of the device leading to a sudden drop in
growth-induced pressure until another cell clot forms. The resulting growth-induced pressure
curves show an intermittent behavior from which we can study statistics of the cell avalanches.

The ubiquitous flow of cells through the valves enables us to measure growth rates of the
cell populations from cell flow velocities. We find that the growth rate decays exponentially
with increasing growth-induced pressure. Furthermore, we studied a specific S. cerevisiae
strain in our device, whose cells exhibit a fluorescent signal dependent on the cell cycle
position. From these experiments we found that the decrease in growth rate is strongly
correlated to the amount of cells delayed in the G1 phase of the cell cycle.

Finally, we studied S. cerevisiae cells in YPD agar gels. In these experiments we observed
that the yeast cells are able to propagate and even form cracks inside of the agar gels. We
developed a method to measure the growth-induced pressure from the growth of a colony
totally embedded in agar gel. Even though the nutrient conditions are not as controlled
as in our microfluidic device and we can not image single cells, this method provides an
easy alternative to measure growth-induced pressures. The agar gel experiments can still be
improved by changing the type of hydrogel since only growth-induced pressures approximately
up to the compressive strength of the surrounding hydrogel can be measured (0.059 MPa in
the case of 2 % agar gels)).

In standard culture methods microbes are typically grown in liquid suspension and hence

“mass percentage
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do not experience any physical confinement. In our device we can mimic the mechanical
conditions that are close to those found in some natural habitats where cells grow embedded
in biofilms [§], confined in the soil [9] or inside rocks [I0]. Additionally, our experiments
can further elucidate the mechanical contribution of cellular population growth to biodete-
rioration. Biodeterioration was for example observed in marble through mechanical forces
exerted by fungal cells during growth [I4]. These mechanical forces lead to propagation of
cracks in the marble [I4]. Moreover, studying cell populations in our leaky valve devices
can shed light on how cells can be confined in natural habitats. Our results indicate that
cells entrap themselves through the formation of cell clots at narrow orifices. The interplay
between the formation of cell clots and the escape of cells in the form of avalanches prob-
ably presents the prevalent growth condition cells under confinement experience in nature.
Confined cells would consequentially be subjected to intermittent changes in growth-induced
pressure whose influences can be studied easily with our devices. It can also be tested under
which conditions cell clots, which are responsible for the confinement of the cell populations,
form. These intermittent changes in growth-induced pressure mediated by the various leaky
cell flow valves is reminiscent of driven granular materials [62, 110] and crowd swarming
during escape panic [58]. In these systems the driving forces induce (temporal) clogging and
subsequent increases in contact forces when the grains or individuals encounter bottlenecks.
These formed clots can be destroyed when the contact forces reach a high enough value to
overcome the frictional interaction between granular particles [60]. In our experiments the
driving force of the soft granular material (yeast cells) is the growth-induced pressure, which
results from the proliferation of the cellular population. Hence, we can study self-driven clot
formation of growing cell populations with our device.

As mentioned in section [7.4] our cell avalanche results would greatly benefit from larger
statistics. To meet this requirement Dr. Morgan Delarue has designed a new device with
64 single growth chambers. The device is depicted in figure (only 32 of the 64 growth
chambers are shown in this figure). Figure shows a zoom onto two of the growth
chambers, in which the position of the PDMS membrane, the nutrient channels and the
valves are indicated. The measurement of the growth-induced pressure is achieved over the
displacement of the PDMS membranes without any feedback, since in order to apply the
feedback algorithm 64 independent syringe pumps and pressure sensors would be required
and it is questionable if our technical capabilities are sufficient to operate this many pumps
and sensors independently. Additionally, the device is loaded with cells from two different
inlets. This way the growth chambers in the upper and lower halves can be filled with
cells from two different cell strains. Hence, we can conduct one experiment, in which two
cell strains are investigated at the same time each strain in 32 different growth chambers.
Furthermore, the cells in the upper and lower growth chambers are supplied by different
supply channels, so that two different nutrient media can be tested simultaneously.

In section[6.2.2]first results of our active valve device (equipped with Abate valves [94]) are
presented. With this device we can actively control the growth-induced pressure of the cell
population (see figure . We still observe that the growth-induced pressure also increases
due to cell clots in this device. We could possibly circumvent this by implementing a larger
exit channel that does not induce cell clot formation as easily. In section we found that
a exit channel width of 7.5 nm is already large enough to prevent cell clot formation in the
lab strain experiments. The device needs to be tested further to determine how the growth-
induced pressure reacts to the hydrostatic pressures applied in the Abate valves. These active
valves enable us to probe the cells under a variety of adaptable mechanical conditions. For
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instance, we can elucidate how fast the cells recover from high growth-induced pressures. In
order to measure the speed of recovery, we can rapidly decrease the hydrostatic pressure in
the Abate valves, which consequentially lowers the growth-induced pressure and we thus can
observe the duration until the growth rate increases again (in section we have shown
that the growth rate decreases exponentially with increasing growth-induced pressure).

Furthermore, we can study other S. cerevisiae strains in our device at various growth-
induced pressure conditions. For instance in the yeast strain Hspl2 the green fluorescent
protein (GFP) is fused to the Hspl2 stress protein. This protein is hundredfold upregulated
under different environmental stresses, e.g. cell wall stress [I11]. Our device can be used to
observe at which stress value this Hsp12 upregulation occurs and how long it takes until the
protein is downregulated once the growth-induced pressure decreaseﬂ Another S. cerevisiae
strain worth studying is the Hog strain. Hog is the name of the high osmolarity glycerol
pathway. The function of this pathway is to increase the intracellular glycerol concentration
in order to increase the turgor pressure under hyperosmotic stress [25] (compare also section
in which the turgor pressure is explained). In the Hog strain GFP is fused to the Hog-
protein responsible for increasing the intracellular glycerol concentration. In our device we
can study if and when this pathway is activated under mechanical stress.

To study other cell types (for instance bacteria and mammalian cancer cells) our device
would have to be adapted. In order to confine bacteria as for instance E. coli and B. subtilis
in our device we have to downsize the exit channel and nutrient channels. Both bacterial
species are rod-shaped with an average short axis diameter of about 0.8 pm and FE. coli cells
are even able to push through channels with a width that equals half of this diameter [16].

TWe can use our Abate valve device to decrease the growth-induced pressure at controllable stages in the
experiment.
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Figure 8.1: a) An alternative design of our device that enables us to simultaneously study 64
cell populations is shown (only 32 of the 64 growth chambers are depicted). Two different
cell strains can be studied at the same time by loading the growth chambers in the upper and
lower part independently. Also two different nutrient media can be used in the two supply
channels so that cells in the upper and lower growth chamber can be subjected to different
nutrient conditions. b) A zoom onto two of the growth chambers show the PDMS membrane,
nutrient channels and the growth chamber in more detail.
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Consequentially, we have to build structures with channels smaller than 0.4 pm in width to
study FE. coli populations under confinement. With our standard photolithography methods
we are not able to create such small structures. Electron beam lithography could provide a
solution for this problem, since in electron beam lithography structures with sizes down to
10 - 30 nm can be created [I12]. In order to study mammalian cancer cells the device needs
to be upsized. HeLa cells for instance have a diameter of 15 pm [113], and thus would not
fit through our exit channel. Mammalian cancer cells exert much lower growth-induced
pressures in the order of 1 kPa [4] [67] than the pressures in the order of 0.1 - 1 MPa exerted
by S. cerevisiae cells in our experiments. The precision of the growth-induced pressure
measurement in our device is 5 - 10 kPa. Consequentially, we have to improve this precision
in order to study mammalian cancer cells in our device. One way to solve this could be to
use the elastomer poly(glycerol sebacate) (PGS) instead of PDMS [114]. PGS has a Young’s
modulus of 0.056 MPa when synthesized at 110°C [115]. Due to the linear relation between
displacement and pressure divided by Young’s modulus (see equation in section ,
we can estimate the precision of the growth-induced pressure measurement to be about 0.165
- 0.330 kPa if we substitute PGS for PDMS in our devices, which would be precise enough
to measure growth-induced pressures in the order of 1 kPa for mammalian cancer cells.

iThe exit channels are 5 pm wide in the current designs.
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Appendix A

Appendix

A.1 Further results of Comsol simulations

Here, we show further results of our Comsol simulations.

Figures [A.1p and [A-Ib depict the results of the colony volume simulations as functions
of pressure with the corresponding linear fits for the different initial colony volumes. We
measure the volumes of the colonies from the microscopic images as functions of time as
described in section and obtain the growth-induced pressure from the colony volume with
help of the determined linear relations between volume and pressure.

We compare two Comsol simulations of a colony embedded in agar gel for different Poisson
ratios of 0.49 and 0.499. We obtain linear relationships between the volume of the colony and
the acting pressure. The results are shown in figure The difference between the slopes
of the two linear fit functions is less than 0.3%. We can conclude that the two simulations
do not differ in any way that would noticeably influence our results. We decided to set the
Poisson ratio of the agar gel in the Comsol simulations to 0.49, since when approaching a
Poisson ratio of 0.5 the simulations might become prone to errors due to the singularity in

a 7 O data points b 10t O data points |
— V = 23.16 mm¥MPa - p + 3.07 mm? . V= 36.68 mm*/MPa -p +4.86 mm’
mE 61 V = 15.6202 mm°/MPa -p + 2.0739 mm® "’E 9r V =12.01 mm®MPa p + 1.53 mm® B
IS V = 5.3323 mm°/MPa -p + 0.7075 mm® £ 8t V = 5.7607 mm°/MPa - p + 0.7649 mm°
>l >
5 |
o g7
[] ° L
o 4 8 6
= Y
o 6 5
Q@ ®
3F 4t J
5 £
O = - |
> 2F g 3
p < 2t .
1r @7ﬂ79777——6—77770**”@””G’”’o’"” % o o —o0—o0—O0 9
0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1
p: pressure (MPa) p: pressure (MPa)

Figure A.1: Volume as function of pressure curves are shown together with the calculated
linear fits. The additive terms depicted in the legends are the initial volumes of the respective
colonies.
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the stress strain constitutive relation (cf section .

For the cell flow measurements, we have to consider how the cross section of the channel
between growth chamber and valve deforms with pressure. These cell flow measurements are
needed to determine the degree of confinement of the various valves (compare section
and for the determination of the growth rate as a function of pressure (see section [6.2.4).
The cross section is plotted in figure as a function of pressure together with the fit we
obtain from our data. Additionally, we plotted the cross section as a function of maximal
channel width in figure for default channel widths of 3 pm and 5 pm, respectively.
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Figure A.2: We compare two Comsol simulations of a colony embedded in agar in this plot.
We tested two different Poisson ratios for the agar gel in order to see if our choice had any
strong influence.
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Figure A.3: a) The channel cross section is plotted as a function of pressure for a Young’s
modulus of 1.7 MPa. b) The channel cross section is plotted as a function of maximal channel
width for default channel widths of 3 pm and 5 pm.
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A.2 Dimensions of microfluidic structures

Figure[A.4]shows detailed images of the structures used in the microfluidic experiments. Here,
we show all physical dimensions in the corresponding images. Figure shows the growth
chamber with the adjacent membrane used for the growth-induced pressure measurements.
The self-closing valve, which nearly completely confines cell populations, is depicted in figure
[A4p. The three leaky valves (45°, 90° and 135°) are shown in figures [A.4k, [A.4d and [A.dp.
Finally, the newest design of the Abate valves is depicted in figure [A4.

wr gz

Figure A.4: Transmitted light micrographs of the PDMS molds of some of the microfluidic
structures that were used in the experiments of this doctoral thesis are shown. The images
show a) the growth chamber with PDMS membrane and nutrient channels, b) the self-closing

valve, ¢) the 45° leaky valve, d) the 90° leaky valve, e) the 135° leaky valve and f) the Abate
valves.
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A.3 Additional images of cracks in agar gels

We show several images of agar cracks in this section. The cracks in figure were initiated
with pipette tips. After propagation the typical star shaped patterns are visible. In figure
cracks are shown that were initiated with syringe needles. These cracks always extent in
opposite directions from the insertion site. Since the cracks always show these characteristic
patterns with respect to the crack initiation tool (pipette tip or syringe needle), the chosen
tool is most likely responsible for the pattern, as we argue in section [6.1.1

b

a

il |

" 4

Figure A.5: Images of cracks in agar gels. The cracks were initiated with pipette tips and
show characteristic star shaped patterns. The cracks were grown for different amounts of
time: a) 1 day, b) 3 days, c¢) 5 days and d) 1 day.
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Figure A.6: Images of cracks in agar gels. The cracks were initiated with syringe needles and
extent in two opposite directions from the insertion site. The cracks were grown for different
amounts of time: a) 1 day, b) 3 days, c¢) 2 days and d) 3 days.
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A.4 Error calculation

Here, the error for the growth-induced pressure measurement via membrane displacement
(compare section [5.4.3]) is calculated. The displacement d of the membrane as function of
pressure p is given in equation When solving for the pressure p we obtain

d

=—. Al
P= 730 um (A1)
The error of the growth-induced pressure p can be calculated by error propagation as
0
oy = L 0d (A.2)

~89d 7T 730 mm

with o4 the error of the displacement measurement. We assume an error of 0.5 pixels for the
displacement measurement, since the edge detection algorithm can only detect the position of
the membrane at integer pixel values. The conversion from pixels to micrometers is given as
7 pixels = 1 pm for the microscopic images taken for our microfluidic experiments. With this
the error of the growth-induced pressure measurement by membrane displacement is given

as
~0.5/7 pm

= ~ 0.01 MPa. A3
P 7.30 pm & ( )

109






Acknowledgements

First of all I would like to thank Prof. Dr. Oskar Hallatschek for giving me the opportunity to
work on this exciting topic and to be part of this research groups. From the Gottinger group
I would especially like to thank Dr. Lukas Geyrhofer, Dr. Fabian Stiewe, Dr. Sven Boekhoff,
Dr. Jean-Francois Flot, Dr. Jens Nullmeier and Clemens Buss for helpful discussions about
science and other non-work related activities. Especially, I would like to thank Diana Striiver
for all the times she prepared growth media for me. I stayed for 4.5 months in the new
research group at University of California Berkeley, where I received the opportunity to
widely broaden my knowledge about microfluidics, programming and yeast biology through
a fruitful collaboration with Dr. Morgan Delarue. Furthermore, I would like to thank Matti
Gralka from the Berkeley group who helped me to get settled in the lab and in Berkeley itself.

I am very grateful to Prof. Dr. Stephan Herminghaus, who gave me the opportunity
to join his department once I relocated from Berkeley. Without his help I would not have
been able to finish my project. I would also like to thank him for many discussion and very
helpful suggestions on how to develop my project. I would also like to thank several members
of the Dynamics of Complex Fluids department of the Max-Planck-Institute for Dynamics
and Self-organization: Dr. Arnaud Hermerle for great and numerous discussions about our
intertwined projects, Dr. Marcin Makowski for introducing me to the microscope I conducted
the agar gel experiments on, Dr. Kristian Hantke for help with lab equipment and Thomas
Eggers for help with all my IT problems.

I would like to thank Prof. Dr. Jorg Enderlein for helpful discussions and suggestions
that came up in the thesis committee meetings.

Most of all I want to thank Rabea for all the help with my work and for providing the
framework that enabled me to see the last three years and three months through.

111






Lebenslauf

Jorn Hartung

geboren am 18.09.1985 in Braunschweig, Deutschland

Nationalitat: deutsch

Schulischer und wissenschaftlicher Werdegang

seit 08/2012

07/2012

10/2009-07/2012

08,/2009

10/2006-08/2009

06,/2005

Promotion (Gottingen Graduate School for Neurosciences, Bio-
physics, and Molecular Biosciences (GGNB), Programm Physics
of Biological and Complex Systems). Wissenschaftlicher Mitar-
beiter am Max Planck Institut fiir Dynamik und Selbstorganisa-
tion Gottingen

Erlangung des Grades Master of Sciences (Physik) nach Abschluss
der Masterarbeit mit dem Titel “Biofilme in Scherstromung”
im Max Planck Institut fiir Dynamik und Selbstorganisation
Gottingen

Masterstudiengang Physik an der Georg-August Universitét
Gottingen

Erlangung des Grades Bachelor of Sciences (Physik) nach Ab-
schluss der Bachelorarbeit mit dem Titel “Aggregation und Perko-
lation in feuchter granularer Materie” am Institut fiir theoretische
Physik an der Georg-August Universitdt Gottingen

Bachelorstudiengang Physik an der Georg-August Universitéat
Gottingen

Erlangung der allgemeinen Hochschulreife am Gymnasium Neue
Oberschule in Braunschweig

113






	Introduction
	Structure of this thesis

	State of the art
	The cell cycle of S. cerevisiae
	Turgor pressure
	The cell wall of S. cerevisiae
	Cell adhesion of S. cerevisiae
	S. cerevisiae under stress
	Clogging and jamming
	Forces in cellular growth and division
	Consequences of growth forces
	Measurement of growth-induced pressure


	Materials and methods
	Fabrication of microfluidic devices
	Photolithography
	PDMS molding and device preparation
	Composite PDMS device

	Cell strains and culture
	Saccharomyces cerevisiae strains
	Cell culture

	Cracking of agar gels
	Imaging
	Microfluidic experiments
	Cracks in YPD agar gels


	Analysis
	Volume of S. cerevisiae colony in agar gel
	Pressure measurement in the microfluidic device
	Particle image velocimetry
	Finite element simulations
	Colony embedded in agar gel
	Microfluidic device

	Cell avalanche statistics
	Data extraction
	Survival function


	Microfluidic setup
	Design
	Version I

	Pressure measurement
	Development of experimental design
	Valves
	Nutrient supply

	Pressure measurement development
	Pressure sensors
	Feedback algorithm
	Pressure from membrane displacement


	Results
	S. cerevisiae in agar gels
	Plunging of cells into agar gels
	S. cerevisiae colonies embedded in agar gels

	Microfluidic experiments
	Device characterization
	Pressure curves in microfluidic experiments
	Cell avalanche statistics
	Growth rate versus pressure
	Pressure versus G1 phase
	Pressure influences cell shape


	Discussion
	S. cerevisiae in agar gels
	Dynamics of pressure curves
	Channel width and cell adhesion
	Cell avalanche statistics

	Summary, conclusion and outlook
	Appendix
	Further results of Comsol simulations
	Dimensions of microfluidic structures
	Additional images of cracks in agar gels
	Error calculation

	Lebenslauf

