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1 Summary 

RNA interference (RNAi) is a highly conserved cellular mechanism and in the last 

years it has become to a major tool for functional analyses of genes in different 

species. Moreover, RNAi has recently been suggested as a novel and promising 

approach for pest control. Transgenic plants can be engineered to express double 

stranded RNAs (dsRNAs) targeting essential genes of a pest species. Upon feeding, 

the dsRNAs induce gene silencing in the pest, resulting in its death. However, the 

main challenge of RNAi-mediated plant protection is the identification of efficient 

RNAi target genes. In most pest species, the screening for RNAi target genes by a 

whole-animal-high-throughput-approach is not feasible due to missing genomic tools 

and limited breeding capacity.  

Therefore, the first aim of this thesis was to use Tribolium castaneum (Tc) as a 

screening platform in order to identify the most efficient RNAi target genes. By 

employing the data from the iBeetle RNAi screen, some novel and highly efficient 

RNAi target genes were identified that induced organism death most rapidly after 

knockdown. The orthologs of these genes are hence excellent candidates for RNAi 

based pest control methods in other pest insects. Based on this set of RNAi targets, 

Gene Ontology term (GO term) combinations were identified that are predictive for 

efficient RNAi target genes and which detect proteasomal genes as prime targets. 

Further, I could show that the efficiency of RNAi mediated pest control cannot be 

increased by synergistic action in double knockdowns. Finally, an off target analysis 

revealed that protein sequence conservation does not strongly correlate with the 

number of potential off target sites, indicating that it will be difficult to design dsRNAs 

without potential off-target sites in non-target organisms.  

In the second part of this thesis, I aimed to establish a method to regulate the 

RNAi response. Ubiquitous gene silencing can sometimes lead to pleiotropic effects, 

hampering the identification of specific phenotypes. Temporal and/or spatial 

regulation of RNAi can circumvent such effects. The viral RNAi suppressor protein 

CrPV1A can be used for this purpose. The expression of CrPV1A effectively blocks 

the RNAi mechanism and does not impair the development or viability of Tribolium. 

Probably, it also does not interfere with the microRNA (miRNA) pathway. 

Furthermore, temporal activation of CrPV1A is able to terminate the RNAi response 

of a previously silenced gene, resulting in a rescued RNAi phenotype. Temporally 
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controlled RNAi by CrPV1A activation is therefore an effective approach to 

investigate genetic interactions of further genes. 

Parts of this thesis are being published in BMC Genomics: Ulrich, J., et al. (2015). 

Large scale RNAi Screen in Tribolium reveals novel Target Genes for Pest Control 

and the Proteasome as prime target. 
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2 Introduction 

2.1 RNAi based strategies of plant protection 

Worldwide, agriculture pests cause billions of dollars in crop losses by harming the 

plants or consuming grain or fruit products. Currently, the control of insect pests is 

mainly restricted to chemical pesticides, but this approach is becoming more 

challenging due to vast hazards to the environment and human health and the 

emergence of resistant pest populations, resulting in increasing costs of chemical 

plant protection (Ffrench-Constant, 2013, 2014; Moffat, 2001). An alternative strategy 

to keep pests under control is the application of genetically modified (GM) crops. 

Transgenic plants expressing Bacillus thuringiensis (Bt) insecticidal proteins belong 

to the common used GM crops. The soil-dwelling bacterium produces crystal protein 

toxins (Cry toxins) during sporulation, which attack midgut receptors of certain insect 

groups, resulting in insect death. Despite this specificity, some species have evolved 

resistance to Bt-toxins (Baxter et al., 2005; Gassmann et al., 2011; Gould et al., 

1997; van Rensburg, 2007; Tabashnik et al., 2008, 2013). Furthermore, the fact that 

some important pests like leafhoppers, whiteflies and aphids are not affected by Bt 

proteins whereas non-target organisms can be harmed raised a demand for 

alternative and more specific transgenic approaches in plant protection (Dutton et al., 

2002; Hilbeck et al., 1998, 1999; Losey et al., 1999). The most promising method for 

pest control appears the RNAi, which triggers sequence-specific silencing of gene 

expression upon injection or feeding of dsRNA (Gordon and Waterhouse, 2007; 

Narva et al., 2013; Price and Gatehouse, 2008). This evolutionary conserved 

mechanism was first observed in Caenorhabditis elegans (Ce) (Fire et al., 1998; Guo 

and Kemphues, 1995), in which dsRNA injection led to systemic degradation of 

specific messenger RNA (mRNA) and blocked gene expression in all cells as well as 

the offspring. Since then, it has become a major tool in functional analysis of genes in 

insects as well as a more specific alternative for plant protection (Akiyama-Oda and 

Oda, 2006; Brown et al., 1999; Bucher et al., 2002; Fire et al., 1998; Hughes and 

Kaufman, 2000; Liu and Kaufman, 2004; Meister and Tuschl, 2004; Pechmann et al., 

2011; Scott et al., 2013; Winston et al., 2002).  
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2.1.1 RNA interference 

RNAi is a universal gene-silencing mechanism in eukaryotic organisms. It is 

triggered by exogenous or endogenous double stranded RNA and regulates mRNA 

expression, silences transposons and defends cells against viral infections 

(Hammond, 2005; Meister and Tuschl, 2004). Upon entering the cell, dsRNA 

molecules are recognized and processed by the RNase III enzyme Dicer into 21-23 

nucleotide (nt) long small interfering RNAs (siRNAs) (Bernstein et al., 2001; Elbashir 

et al., 2001). Subsequently, these siRNAs are loaded into the RNA-induced silencing 

complex (RISC) and unwound, resulting in an association between the single siRNA 

strand and the complex. The siRNAs serve as guides for RISC to find the 

complementary target mRNA, which is then cleaved after perfect base pairing (Fig. 

2.1) (Hammond et al., 2000; Zamore et al., 2000). In C. elegans the RNAi 

mechanism is robust and long-lasting. This persistent response is accomplished by a 

two-step pathway. In the first step, dsRNAs are cleaved by Dicer into siRNAs. These 

siRNAs are, in the second step, incorporated into the RNA-dependent RNA 

polymerase (RdRP) which amplifies secondary dsRNAs, leading to a potent RNAi 

response (Sijen et al., 2001; Tomoyasu et al., 2008). 

Fig. 2.1: RNAi mechanism. 

The RNAi pathway is triggered by dsRNAs which 

are cleaved by Dicer into siRNAs. Subsequently, 

siRNAs are recognized and unwound by the RISC 

complex. RISC uses the single stranded siRNA as 

guide to find the target mRNA and to degrade it 

after perfect base pairing. 
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There are two conserved gene families that are universal components of the RNAi 

mechanism: the Dicer and the Argonaute family.  

Dicer proteins (Dcr) involved in producing small RNAs reveal several conserved 

domains: two amino-terminal DExH-Box helicase domains, a Piwi/Argonaut/Zwille 

(PAZ) domain, tandem RNase III domains and a carboxy-terminal dsRNA binding 

domain (Bernstein et al., 2001; Carmell and Hannon, 2004; Tomoyasu et al., 2008). 

In Drosophila melanogaster (Dm) two different Dicer proteins, Dm-Dcr-1 and Dm-

Dcr-2, are known to be responsible for two distinct processes. Dm-Dcr-1 specifically 

operates in the microRNA (miRNA) pathway which regulates the stability and rate of 

mRNA translation and thereby directs developmental processes. Dm-Dcr-2 is 

involved in the RNAi mechanism (Lee et al., 2004; Pasquinelli et al., 2005; Tomoyasu 

et al., 2008). In contrast to the situation in the fruit fly, C. elegans exhibits only one 

Dicer protein that is regulating both, the miRNA and the RNAi pathway (Bernstein et 

al., 2001; Ketting et al., 2001; Knight and Bass, 2001; Tomoyasu et al., 2008). 

Previous studies of the RNAi mechanism in Tribolium castaneum have shown that 

Tc-Dcr-2 is solely involved in the RNAi pathway, while Tc-Dcr-1 is suggested to 

participate in both processes (Tomoyasu et al., 2008).  

Argonaute (Ago) proteins mediate target mRNA recognition as well as degradation 

and are core components of the RISC or the miRNA ribonucleoprotein particle 

(miRNP) complex, which is part of the miRNA machinery (Carmell et al., 2002; 

Meister and Tuschl, 2004; Parker and Barford, 2006; Tomoyasu et al., 2008). Ago 

proteins consist of two domains: a dsRNA binding PAZ and an RNAse H PIWI 

domain (Parker and Barford, 2006; Tomoyasu et al., 2008). Several Ago paralogs 

have been identified in Drosophila and Tribolium. Drosophila Dm-Ago-1 is involved in 

the miRNA and Dm-Ago-2 in the RNAi pathway (Okamura et al., 2004). Likewise, the 

recognized Tribolium Tc-Ago-1 is assumed to function in the miRNA mechanism, 

while two duplicated Tc-Ago-2 proteins have been shown to act in RNAi response 

(Tomoyasu et al., 2008). As in Drosophila and Tribolium, RNA mediated silencing 

processes of C. elegans use distinct Ago proteins for each mechanism: Rde-1 and 

Ergo-1 for the RNAi and Alg-1 and Alg-2 for the miRNA pathway (Tabara et al., 2002; 

Yigit et al., 2006).  

In many species, including Tribolium and C. elegans the RNAi response spreads 

throughout the animal, resulting in systemic target gene silencing. For instance, 

Tribolium and C. elegans are even able to transmit the effect to the progeny (Bucher 
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et al., 2002; Liu and Kaufman, 2004; Lynch and Desplan, 2006; Sijen et al., 2001; 

Tomoyasu and Denell, 2004; Tomoyasu et al., 2008; Whangbo and Hunter, 2008). 

However, Drosophila melanogaster is known to miss such a robust and systemic 

effect and the genes responsible for these variations between several species still 

remain unclear. The presence of a sid-1 gene, which is required for systemic 

spreading in C. elegans has been suggested to determine the presence or absence 

of systemic response in different organisms as Drosophila lacks sid-1 (Roignant et 

al., 2003; Winston et al., 2002). Indeed, some insects, such as Tribolium and 

migratory locust (Locusta migratoria) reveal sid-1-like genes but these are not true 

orthologs of Ce-sid-1 and appear not to be involved in systemic spreading (Luo et al., 

2012; Tomoyasu et al., 2008). Hence, further analyses are necessary to completely 

understand the exact mechanism of robust, systemic RNAi response. 

 

2.1.2 Application of RNAi in pest control and current limitations 

RNA interference offers an opportunity to develop novel tools for pest control in 

agriculture. Due to the sequence specificity of RNAi, this mechanism might provide 

an outstanding approach to target individual or closely related species, excluding 

non-target organisms. Importantly, some insects are able to trigger RNAi response 

upon ingestion of dsRNA, which is a prerequisite for RNAi-mediated plant protection. 

The first report of gene silencing post feeding in insects was described in the light 

brown apple moth Epiphyas postvittana (Turner et al., 2006). Based on this, Baum et 

al. and Mao et al. have for the first time demonstrated that dsRNA expression of 

essential pest-specific genes in GM plants can trigger gene silencing in the western 

corn rootworm (WCR) Diabrotica virgifera virgifera and the cotton bollworm 

Helicoverpa armigera, resulting in insect death or developmental stunting upon oral 

dsRNA uptake (Baum et al., 2007; Mao et al., 2007). Furthermore, by feeding of 

WCR larvae with artificial diet supplemented with various dsRNAs against a large 

number of essential WCR genes, 14 efficient target genes were identified that 

induced mortality in the western corn rootworm even when provided low levels of 

dsRNA (Baum et al., 2007). Since then, these genes (mostly the midgut enzyme 

vacuolar ATPase (vATPase)) were used as targets for many other pest species in 

RNAi-mediated silencing approaches with varying success (Kwon et al., 2013; Li et 

al., 2013, 2011a, 2011b; Upadhyay et al., 2011). One major challenge of RNAi-
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mediated plant protection is, hence, the effectiveness of target gene silencing. 

Sometimes, an efficient RNAi target in one species may be useless in another 

species. This could be due to varied susceptibility of different organisms to RNAi 

effects or to different target genes.  

 

2.1.2.1 RNAi upon dsRNA ingestion 

A core RNAi machinery is present in all insects (Gu and Knipple, 2013). Therefore, 

it is theoretically possible to target any pest by RNAi-mediated silencing of essential 

genes. However, some insects do not show a systemic RNAi response while others 

are not able to trigger RNAi upon dsRNA ingestion. For instance, dsRNA injection 

into larvae of the lepidopteran Spodoptera litura against a midgut aminopeptidase-N 

gene led to efficient transcript downregulation whereas ingestion of the same dsRNA 

produced no RNAi effect (Rajagopal et al., 2002). Hence, the success of RNAi-

mediated pest control depends on the ability of the respective pest to trigger RNAi 

response. 

 

2.1.2.2 Off targets 

The specificity of RNAi based crop protection on target organisms is an important 

factor for the application of this technology in agriculture. Sequences that could affect 

non-target organisms (off targets) should be minimized. This could be accomplished, 

for example, by designing dsRNA constructs against less conserved gene fragments 

or against less conserved non-coding untranslated regions (UTRs) of mRNA 

transcripts which are responsible for mRNA transport, translation efficiency, 

subcellular localization and mRNA stability (Bashirullah et al., 2001; Jansen, 2001; 

Mignone et al., 2002; van der Velden and Thomas, 1999). 

A further important aspect which should be considered when expressing RNAi 

target genes in transgenic plants is the emergence of unintended effects on plant 

physiology. A study in Arabidopsis has reported that transgenic RNAi plants revealed 

unexpected pleiotropic effects which resulted in reduced pollen viability, while no 

other obvious deviations from wild-type plant development were visible (Xing and 

Zachgo, 2007). This effect might alter plant fitness and biodiversity. Therefore, the 

potential for off targets in transgenic plants should also be carefully evaluated, for 

instance by searching for homologies between the RNAi target genes and the 

genome of the respective host plant (Fairbairn et al., 2007). 
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2.1.2.3 Endogenous plant RNAi mechanism  

The development of transgenic plants capable of inducing RNAi response in insect 

pests was performed by plant transformation via Agrobacterium tumefaciens carrying 

vectors with inverted repeats of the target gene sequences (Baum et al., 2007; 

Kumar et al., 2012; Mao et al., 2007; Pitino et al., 2011; Zha et al., 2011). When 

transcribed in the plants they form hairpin RNAs, which are able to induce RNAi 

mechanism like long dsRNAs and thereby reduce transcript levels of respective 

genes. However, further investigations have shown that hairpin RNAs trigger plant 

RNAi response, resulting in cleaved siRNAs before being ingested by insects (Pitino 

et al., 2011; Zha et al., 2011). These short siRNAs caused less efficient silencing 

effects than long hairpin RNAs, indicating that the effectiveness of this strategy need 

to be increased (Kumar et al., 2012; Mao et al., 2007). Simultaneous downregulation 

of multiple targets has been done in several species, like Drosophila, C. elegans and 

Rhipicephalus sanguineus (Fuente et al., 2006; Schmid et al., 2002; Tischler et al., 

2006) and might be an option to increase the RNAi effect in insects, which is 

hampered by endogenous plant RNAi machinery.  

Furthermore, it has been reported that chloroplasts lack an endogenous RNA 

mechanism (Zhang et al., 2015). Thus, dsRNA expression in this cellular 

compartment can provide efficient crop protection. 

 

2.1.2.4 Resistance development  

RNAi-mediated plant protection techniques can be limited by potential emergence 

of sequence polymorphisms (small variations in DNA sequences) in the target gene 

of a pest species which might decrease the desired RNAi effect, resulting in 

resistance development to the RNAi-based control agent (Gordon and Waterhouse, 

2007). Combinatorial expression of multiple target genes could help to minimize the 

possibility of resistance emergence. Likewise, successive expression of dsRNAs 

targeting different genes might be an option to overcome polymorphism 

development. 

 

2.1.2.5 Target gene selection  

The main limitation of RNAi-mediated plant protection is the identification of 

suitable target genes that will affect the pest after dsRNA digestion. Due to missing 

genomic and genetic tools and difficult rearing conditions in the lab, the screening for 
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RNAi target genes in agriculture pest species by a high-throughput-approach is not 

feasible. The main insect model system Drosophila melanogaster lacks systemic 

RNAi and is therefore not well suited to screen for RNAi target genes (Miller et al., 

2008). 

 

2.1.3 Tribolium as model system and screening platform 

The red flour beetle, Tribolium castaneum, has developed to an excellent insect 

model organism in the last few years. It belongs to the most species rich insect order, 

the Coleoptera, and is a serious pest of stored grain products. In many respects the 

flour beetle development is more typical for insects than that of Drosophila. In 

contrast to the long-germ fly, Tribolium undergoes short-germ embryogenesis where 

the germ rudiment, composed of head and thorax anlagen, is build during 

blastodermal patterning. The posterior segments are produced successively from a 

posterior growth zone (GZ) during elongation. Besides, the presence of large 

extraembryonic tissues and unlike Drosophila, a non-involuted larval head are 

characteristic for Tribolium development (Bucher and Wimmer, 2005; Handel et al., 

2000; Posnien et al., 2010; van der Zee et al., 2005). This mode of arthropod 

development is believed to be more ancestral and hence, results obtained from this 

beetle are more representative for insects in contrast to Drosophila melanogaster 

(Bucher and Wimmer, 2005; Klingler, 2004; Lynch and Roth, 2011; Schröder et al., 

2008; Tautz et al., 1994).  

Furthermore, Tribolium reveals a strong and systemic RNAi response, that can be 

elicited in any animal stage by dsRNA injection into the body cavity (Brown et al., 

1999; Bucher et al., 2002; Tomoyasu and Denell, 2004). Moreover, dsRNA injection 

into female pupae or adults causes a long-lasting RNAi response in the offspring. In 

addition, by induction of RNAi in larval stages gene functions in post-embryonic and 

adult development can be analyzed (Tomoyasu and Denell, 2004).  

Unlike the common pest species, Tribolium can be reared in large amounts in the 

laboratory. It reproduces all year round and reveals a short generation time. All these 

advantages make the flour beetle to a suitable organism for evolutionary and 

developmental biology. The accessibility to a sequenced genome and genetic and 

transgenic tools allow comprehensive functional analyses among others a large scale 

insertional mutagenesis screen (Berghammer et al., 1999; Richards et al., 2008; 



Introduction 

14 
 

Trauner et al., 2009). By transgenic tools, like heat shock and Gal4/UAS system, 

spatially regulated misexpression of genes is possible (Schinko et al., 2012, 2010). 

Furthermore, an unbiased, large-scale RNAi screen (iBeetle) was performed in 

Tribolium (Schmitt-Engel et al., accepted). In this screen, more than 5.000 genes 

were investigated by pupal and/or larval RNAi. The resulting phenotypes were 

annotated and revealed a large number of novel genes with essential functions, 

including those that induced death of the injected animals most rapidly (Schmitt-

Engel et al., accepted). The results are available on the iBeetle-Base (Dönitz et al., 

2015).  

 

2.1.4 Potential RNAi target genes 

RNAi target genes for application in pest control are genes encoding proteins with 

essential functions. For example, arginine kinase (AK) is a phosphotransferase which 

is important in cellular energy homeostasis in invertebrates and is expressed in gut 

epithelial cells, muscle fibers as well as neurons (Chamberlin, 1997; Kucharski and 

Maleszka, 1998; Lang et al., 1980). It is only present in invertebrates and is assumed 

to be a promising candidate for pest control (Brown and Grossman, 2004; Liu et al., 

2015; Pereira et al., 2000; Wu et al., 2007). Silencing of AK post dsRNA injection 

resulted in developmental disruption of the flea beetle, Phyllotreta striolata (Zhao et 

al., 2008). Likewise, expression of dsRNAs against the AK gene in transgenic 

Arabidopsis plants led to a drastic mortality rate of the insect pest, Helicoverpa 

armigera, upon plant feeding (Liu et al., 2015). 

Similarly, downregulation of the vacuolar sorting gene Snf7 which is involved in 

sorting and lysosomal degradation of transmembrane proteins, induced lethality in 

WCR larvae upon feeding with respective dsRNA (Baum et al., 2007; Ramaseshadri 

et al., 2013). Therefore, impairment of crucial protein functions might be helpful in 

controlling insect pests.  

Further promising candidates for RNAi-mediated plant protection might be genes 

involved in proteasome assembly. The proteasome (26S proteasome) is a large 

protein complex composed of at least 32 different gene products (Wójcik and 

DeMartino, 2002). It consists of a proteolytic core particle, called 20S proteasome, 

and additional regulatory complexes (e.g. 19S complex) which bind either one or 

both ends of the core complex and thereby regulate its activity in various ways (Hölzl 
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et al., 2000; Peters et al., 1993; Yoshimura et al., 1993). The main function of 26S 

proteasomes or the ubiquitin-proteasome pathway is to catalyze degradation of 

cellular proteins in higher eukaryotes (Rock et al., 1994). This coordinated and 

temporal degradation of proteins by the ubiquitin-proteasome system influences cell 

cycle progression, transcriptional control and a vast number of other cellular 

pathways (Chen et al., 2005; Ciechanover, 1994; Hershko, 1997; King et al., 1996; 

Murray and Norbury, 2000; Spataro et al., 1998; Wang et al., 1998). Before 

degradation most substrate proteins are modified by polyubiquitin chains which allow 

the recognition of these proteins by 26S proteasome (Wójcik and DeMartino, 2002). 

Silencing of proteasome subunits in e.g. Drosophila S2 cells leads to reduced cell 

growth, increased apoptosis, reduced proteasome function and increased levels of 

ubiquitinated proteins, indicating inhibited protein degradation via the ubiquitin-

dependent pathway (Heinemeyer et al., 1991; Soldatenkov and Dritschilo, 1997; 

Wójcik and DeMartino, 2002; Wójcik et al., 1996). In cancer therapy, disruption of the 

proteasome pathway by using inhibitors has already been successfully applied 

(Crawford et al., 2011). Proteasome inhibitors are able to specifically impair the 

proteasome function of cancer cells which are more susceptible to proteasome 

inhibitors than normal cells, resulting in cellular dysfunction and apoptosis (Almond 

and Cohen, 2002; Crawford et al., 2011; Ria et al., 2014; Wu et al., 2010). 

Furthermore, it has been demonstrated that knockdown of Rpn7, a non-ATPase 

subunit gene of the 26S proteasome, in the root knot nematode, Meloidogyne 

incognita, led to interrupted M. incognita locomotion as well as reduced egg 

production (Niu et al., 2012). Both Rpn7 dsRNA soaking and dsRNA expression in 

transgenic plants significantly reduced nematode motility and infectivity and therewith 

suggested Rpn7 as a promising target gene for controlling this plant parasitic 

nematode. Hence, this conserved multi-protein complex represents an excellent 

target for the application in pest control.  

 

2.2 Aims 

2.2.1 Identification of novel RNAi target genes for pest control 

One aim of this work was to identify the most efficient RNAi target genes that 

induce organism death most rapidly after knockdown for their application in pest 
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control. Because pest species are usually too difficult to handle for a large scale 

screen, Tribolium castaneum was employed as a screening platform. The orthologs 

of these target genes are likely to represent good candidates for RNAi-mediated crop 

protection against other pest species, but this needs further investigations. In order to 

find those candidates the data produced by the large-scale unbiased RNAi screen 

iBeetle should be analyzed (Schmitt-Engel et al., accepted). For further selection, 

candidate dsRNAs need to be retested by titration experiments and verified based on 

their rapidly induced lethality. To examine whether the lethality can be increased 

synergistically, simultaneous downregulation of two dsRNAs, respectively, should be 

tested. GO term clustering analysis should identify GO term combinations that are 

predictive for potential RNAi target genes. Finally, an off target analysis should shed 

light on the species specificity of the candidate genes. 
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2.3 Temporal and/or spatial regulation of RNAi mechanism 

Downregulation of endogenous genes via RNA interference has become a major 

role for the characterization of gene function in several organisms. However, due to 

the fact that genes are able to reveal a variety of functions throughout life cycle, 

constitutive and ubiquitous gene silencing can lead to pleiotropic effects which can 

hamper the correlation of phenotype to gene function. The possibility to initiate RNAi 

at different developmental stages in Tribolium can sometimes be an effective 

strategy to avoid such effects. For instance, RNAi in adult beetles might circumvent 

unwanted sterility which occurs after gene silencing during pupal development. 

However, a temporal shifting of RNAi is not able to prevent pleiotropy of genes that 

are involved in multiple functions simultaneously.  

Pleiotropic effects were demonstrated e.g. for the segment polarity gene wingless 

(wg). Wingless is an essential protein for many processes in several species, 

including Drosophila and Tribolium. Among other functions, it is an important factor 

for leg development (Campbell et al., 1993; Cohen et al., 1993; Grossmann et al., 

2009; Struhl and Basler, 1993). It has been tried to study its role in leg formation by 

using parental RNAi (pRNAi). However, Tc-wg dsRNA injection into pupae or adult 

beetles induced beetle sterility as well as a strong empty egg phenotype in case of 

some laid eggs, indicating multiple essential roles of Tc-wg, including gonad 

development or oogenesis. The same was true for early embryonic RNAi against Tc-

wg. Silencing of Tc-wg expression either led to an empty egg phenotype or produced 

severely malformed cuticles where it was difficult to specifically analyze the leg 

phenotype (Grossmann et al., 2009).  

A tool for temporally and/or spatially controllable activation of the RNAi mechanism 

would solve the problem of pleiotropic effects. In case of Tc-wg, a local knockdown of 

Tc-wg expression which is restricted e.g. to leg buds, would lead to a specific leg 

phenotype without other defects. Temporally controlled activation of Tc-wg RNAi 

might circumvent gonad and oogenesis defects which led to sterility, resulting in 

considerably more embryonic offspring with the RNAi effect. Moreover, the activation 

of Tc-wg silencing during later embryonic stages might rescue the early lethality 

phenotype, which was observed in RNAi embryos that were injected at the age of 4-8 

hours (Grossmann et al., 2009). 
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In different species, transgenic systems are used to temporally and/or spatially 

regulate gene functions. For instance in mice, site-specific recombinase systems, like 

Cre/LoxP and FLP/FRT, has allowed to engineer spatial and temporal loss-of-

function or gain-of-function mutations (Lobe and Nagy, 1998; Nagy and Rossant, 

2001). Cre (Cyclization recombinase) or FLP (Flippase) proteins are able to induce 

DNA recombination if the target sequence is flanked by respective LoxP or FRT 

recognition sites. The orientation of LoxP sites determines whether target DNA will 

be cleaved or exchanged (Gierut et al., 2014). Furthermore, controlled RNAi 

mediated gene silencing is possible by expressing short-hairpin RNAs (shRNAs) 

against specific genes which are flanked by LoxPs (Coumoul et al., 2005; Kasim et 

al., 2004; Liao and Xu, 2008; Ventura et al., 2004; Xia et al., 2006). It has, for 

example, been demonstrated that mammalian cells, carrying shRNAs (with LoxP-

Stop-LoxP sites in the loop of the shRNA sequence) driven by a tissue specific 

promoter, were not able to express shRNAs due to the LoxP-flanked Stop region 

which was placed within the shRNA fragment. When Cre recombinase was delivered 

to these cells, the Stop region was excised, resulting in spatial and temporal shRNA 

expression and therewith induced RNAi mechanism (Kasim et al., 2004).  

In Drosophila, tissue-specific RNAi has been performed using the binary 

expression system Gal4/UAS (Dietzel et al., 2007; Fortier and Belote, 2000; 

Giordano et al., 2002; Martinek and Young, 2000; Piccin et al., 2001; Roignant et al., 

2003). Besides, a genome-wide library of transgenic RNAi strains has been 

generated in which 88% of all predicted protein-coding genes can be targeted 

(Dietzel et al., 2007). To locally inactivate genes, the yeast transcriptional activator 

Gal4 was cloned downstream to a promoter that drives Gal4 in tissue-specific 

manner (Duffy, 2002). In addition, inverted repeats (IRs) of different target gene 

sequences were ligated downstream to the upstream activating sequence (UAS). 

Upon crossing the Gal4 driver line with the UAS responder line, Gal4 bound to the 

UAS site and thereby activated IR transcription in the pattern defined by Gal4, 

resulting in shRNA production and RNAi initiation. While these studies provide local 

control over RNAi, further methods have been developed that add temporal control to 

the Gal4/UAS system (Han et al., 2000; McGuire et al., 2003; Nicholson et al., 2008; 

Osterwalder et al., 2001; Roman et al., 2001). These either used a steroid-activated 

version of Gal4 or a temperature-sensitive Gal80ts repressor to temporally and 

spatially regulate Gal4 expression. Steroid-activated Gal4 proteins were produced by 



                                                                                                                     Introduction 

19 
 

fusion of the Gal4 domain with a steroid hormone receptor domain, which was 

activated by respective ligand binding (Han et al., 2000; Nicholson et al., 2008; 

Osterwalder et al., 2001; Roman et al., 2001). For instance, the fusion protein of 

Gal4-progesteron-receptor could be activated by mifepristone (RU486) (Nicholson et 

al., 2008; Osterwalder et al., 2001; Roman et al., 2001), while the Gal4-estrogen-

receptor fusion protein (Gal4-ER) was activated by exposure to estrogen (Han et al., 

2000).  

Alternatively, the Gal4/UAS system can be temporally regulated by Gal80ts, a 

temperature-sensitive Gal4 repressor from Saccharomyces cerevisiae. Gal80ts is 

able to repress Gal4 expression when animals are reared at 19°C and to activate 

Gal4 when shifting animals to 30°C (McGuire et al., 2003).  

The binary Gal4/UAS system is also well established in Tribolium and has been 

shown to be a successful method for ectopic misexpression in this organism 

(Schinko et al., 2010). Furthermore, the Cre/LoxP system has been applied with 

promising results (Bucher, personal communication).  

However, the main disadvantage of these introduced gene functional studies is 

that, additionally to the required tissue specific Gal4, Cre or FLP lines, each target 

gene has to be cloned separately and, therefore, a vast array of UAS, LoxP or FRT 

lines is required. Although genome-wide UAS-IR collections have been generated for 

Drosophila (Dietzel et al., 2007), this is not feasible for most other organisms due to 

the lack of balancer chromosomes. 

 

2.3.1 Suppression of the RNAi pathway  

The RNAi pathway is a natural antiviral defense mechanism in animal and plant 

cells. In order to overcome the host antiviral silencing pathway, some animal and 

most plant viruses have adopted counter defense strategies in form of RNAi 

suppressor proteins (Ding and Voinnet, 2007; Li et al., 2002; van Rij et al., 2006; 

Wang et al., 2006). These independently evolved viral suppressors of RNAi (VSRs) 

are able to target different steps of the RNAi pathway. Some of the VSRs sequester 

long dsRNAs or short siRNAs and thereby prevent their incorporation into RISC 

complex, while others directly interfere with Dicer or Argonaute proteins and impair 

the RNAi mechanism (Bortolamiol et al., 2007; Chao et al., 2005; Lakatos et al., 

2006; Lu et al., 2005; Sullivan and Ganem, 2005; Vargason et al., 2003; Ye et al., 
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2003; Zhang et al., 2006). Moreover, to increase viral pathogenicity some plant 

viruses are able to inhibit the miRNA pathway, resulting in disturbed host 

development, whereas some animal viruses have been demonstrated to interfere 

with the silencing mechanism directed against transposable elements (TEs) (Berry et 

al., 2009; Bortolamiol et al., 2007; Chapman et al., 2004; Dunoyer et al., 2004; Mérai 

et al., 2005; Yu et al., 2006).  

Viral suppressor proteins have been exploited to study RNAi pathways in different 

organisms (Berry et al., 2009). Theoretically, VSRs could be used to temporally 

and/or spatially regulate RNAi silencing in developmental analyses, thus enabling 

gene functional studies in specific tissues or at certain time points. A requirement is, 

however, that VSRs only inhibit the RNAi mechanism and do not interfere with the 

miRNA pathway or produce developmental defects which would impede gene 

analyses.  

 

2.3.1.1 FHV B2 

The insect Flock House virus (FHV) belongs to the Nodaviridae family, which 

infects animals and plants in the natural environment. In order to ensure viral 

accumulation in the host, the positive-strand virus encodes an RNAi suppressor 

protein, B2, that binds long dsRNAs as well as siRNAs and thereby prevents their 

processing by Dicer and RISC proteins (Tab.2.1) (Chao et al., 2005; Li et al., 2002; 

Lingel et al., 2005). In addition, it has been demonstrated that B2 protein sequesters 

the PAZ domain of Dicer proteins in armyworm Sf21 cells. Mutation in the C-terminus 

of B2 impaired its ability to inhibit RNAi and to bind Dicer proteins in these cells, 

suggesting that FHV B2 might suppress the RNAi mechanism by direct interaction 

with Dicer (Tab.2.1) (Singh et al., 2009). Furthermore, while FHV B2 seems not to 

interfere with the miRNA pathway in Drosophila, it has been shown to silence the 

suppression of TEs in somatic tissues and gonads, which might lead to increased 

viral infection in the fly (Berry et al., 2009).  

 

2.3.1.2 DCV1A 

Drosophila C virus (DCV) is a positive-strand virus from the Dicistroviridae family 

that is a major pathogen of many Drosophila strains and leads to a non-lethal 

persistent fly infection in nature (Aravin et al., 2003; Gomariz-Zilber and Thomas-
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Orillard, 1993; Gomariz-Zilber et al., 1995; Thomas et al., 2003). The RNAi 

suppressor protein of DCV (DCV1A) specifically binds long dsRNAs and inhibits their 

Dicer-2 cleavage into siRNAs (see Tab. 2.1) (van Rij et al., 2006). Moreover, DCV1A 

has been shown to affect RISC complex assembly, suggesting an additional RNAi 

suppressor function (Nayak et al., 2010). Like FHV B2, DCV1A seems to suppress 

TEs silencing in armyworm Sf21 cells but does not interfere with miRNAs or siRNAs 

(Berry et al., 2009; van Rij et al., 2006). 

 

2.3.1.3 CrPV1A 

Cricket Paralysis virus (CrPV) was initially identified and isolated from field 

crickets, Teleogryllus oceanicus and Teleogryllus commodus, and it is a highly potent 

virus of many species in the laboratory (Nayak et al., 2010; Plus et al., 1978; 

Reinganum et al., 1970). CrPV is closely related to Drosophila C virus and likewise 

belongs to the positive-strand Dicistroviridae family. In contrast to DCV, CrPV leads 

to mortality upon infection of crickets and flies (Manousis and Moore, 1987; Nayak et 

al., 2010). This high pathogenesis of CrPV is partially based on its efficient RNAi 

suppressor protein, CrPV1A (Nayak et al., 2010). It has been shown that adding 

CrPV1A to the Sindbis virus, which does not naturally encode an endogenous RNAi 

suppressor, resulted in increased virus production and fly lethality upon infection 

(Nayak et al., 2010). The mode of action of CrPV1A relies on its interaction with the 

endonuclease Ago-2, a component of the RISC complex (see Tab. 2.1). This 

interaction blocks Ago-2 cleavage activity, resulting in inhibited RISC-mediated 

mRNA degradation and therewith RNAi disruption. Nevertheless, the suppressor 

protein CrPV1A does not interfere with the miRNA pathway or alter the physiology 

and development of the animals when expressed in flies (Nayak et al., 2010). 

 

2.3.1.4 Nora virus VP1 

The positive-strand Nora virus is a member of the Picornavirales virus family and 

is a persistent natural pathogen of the fruit fly Drosophila (Habayeb et al., 2006). In 

order to establish virus infection and to counteract the host RNAi machinery, Nora 

virus has evolved a suppressor protein, the viral protein 1 (VP1) which is able to 

inhibit Ago-2 slicer activity, like CrPV1A (Tab.2.1) (van Mierlo et al., 2012). Although 

the viral suppressors, CrPV1A and VP1, do not show significant amino acid 

sequence similarities, both proteins reveal similar RNAi suppression mechanism, 
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indicating the important role of Ago-2 against viral infections (van Mierlo et al., 2012). 

Further analyses are necessary to investigate the effect of VP1 on the miRNA 

pathway and the animal development  

 

2.3.1.5 TCV p38 

The Turnip Crinkle virus (TCV) is a positive-sense RNA virus that belongs to the 

family of Tombusviridae. It was originally identified and isolated from turnip (Brassica 

campestris ssp. rapa) but TCV is able to infect a large number of plant species, 

including Nicotiana benthamiana and Arabidopsis thaliana. Like the most plant 

viruses, TCV also encodes a VSR, the p38, which is capable of disrupting plant RNAi 

mechanism by interacting with Ago-1 protein of plants. This interaction relies on the 

glycine/tryptophane (GW) domain of p38 that mimics host endogenous GW-

containing proteins to recruit Ago proteins and therewith to assemble the RICS 

complex (Tab.2.1) (Azevedo et al., 2010). While plant Ago-1 protein is required for 

miRNA and siRNA-mediated target RNA degradation, the binding of p38 to Ago-1 

does not seem to influence the miRNA pathway (Dunoyer et al., 2004; Ruiz-Ferrer 

and Voinnet, 2009; Schott et al., 2012). This might be due to distinct pools of miRNA- 

and siRNA-loaded Ago-1 proteins which are assumed to exist in plants (Schott et al., 

2012). In order to analyze whether the RNAi suppression ability of p38 is transferable 

to insects, Berry et al. generated p38 expressing, transgenic Drosophila flies and 

treated them with exogenous dsRNAs (by injection) or endogenous siRNAs (by IR 

expression against a target gene). p38 in Drosophila transgenic lines did not reveal 

silencing activity, suggesting that interaction proteins of p38 are not conserved 

between plants and the fly (Berry et al., 2009). However, in animal cell cultures p38 

production has been demonstrated to significantly interfere with the RNAi pathway 

(Dunoyer et al., 2004).  

 

2.3.1.6 PVX p25 

The Potato virus X (PVX, genus Potexvirus) is a positive-sense, single-stranded 

RNA virus that infects many plants, including species of the Solanaceae family. It 

encodes a multifunctional suppressor protein, p25, which is important for cell-to-cell 

movement of PVX and for inhibition of plant RNAi mechanism. The suppression 

activity of p25 partially relies on its ability to affect RNA-dependent RNA polymerase 

(RdRP) that amplifies dsRNA or siRNA/virus-derived RNAs (viRNAs) and thereby 

http://en.wikipedia.org/wiki/Nicotiana_benthamiana
http://en.wikipedia.org/wiki/Arabidopsis_thaliana
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enables a robust and systemic RNAi signal in plants as well as C. elegans (see 

Section 2.2) (Bayne et al., 2005; Schwach et al., 2005; Voinnet et al., 2000; Xie and 

Guo, 2006). Furthermore, p25 was also shown to interact with the nuclease Ago-1 

and to promote its degradation (see Tab.2.1) (Chiu et al., 2010). Despite this 

interaction of p25 with Ago-1, it seems exactly like p38 not to affect the microRNA 

pathway. Furthermore, when expressing p25 in transgenic flies it was not able to 

suppress the RNAi mechanism (Berry et al., 2009; Dunoyer et al., 2004). Hence, the 

detailed suppression mechanism of p25 needs further investigation. 

 

Tab. 2.1: Insect and plant viral RNAi suppressors. 

Viruses with the appropriate RNAi suppressor proteins and their mode of action in the RNAi pathway. 

 

2.4 Aims 

2.4.1 Establishment of a tool for temporal and/or spatial regulation of RNAi 

A further aim of this work was to establish a tool for time and/or tissue-specific 

RNAi activation or repression. The binary Gal4/UAS system should be used to 

activate tissue-specific or ubiquitous expression of viral RNAi inhibitors which should 

repress the RNAi response in a temporal and/or spatial manner. To the same end, an 

Insect viruses encode viral 

suppressors of RNAi 
RNAi suppressor protein Mode of action in animals 

Flock House virus B2 

Binds long dsRNA and siRNA; 

interacts with the PAZ domain 

of Dicer proteins 

Drosophila C virus DCV1A 
Binds long dsRNA; affects 

RISC assembly 

Cricket paralysis virus CrPV1A Interacts with AGO-2 

Nora virus VP1 Interacts with AGO-2 

Plant viruses encode viral 

suppressors of RNAi 
RNAi suppressor protein Mode of action in plants 

Turnip Crinkle virus p38 
Interacts with AGO-1 by the 

GW motif of the suppressor 

Potato virus X p25 

Suppresses the host (RdRP)-

dependent branch of RNA 

silencing; interacts with AGO-1 
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artificial RNAi inhibitor based on Dicer-2 suppression by transgenic hairpin 

expression should be tested.  

In order to gain temporal control over the RNAi effect the most potent RNAi 

inhibitor should be expressed via heat shock activation. By this inhibitor activation it 

should be tested whether previously silenced gene expression can be rescued.  

 



                                                                                                   Materials and Methods 

25 
 

3 Materials and Methods 

3.1 Strains 

Tribolium castaneum beetles were reared under standard conditions (Brown et al., 

2009).The wild type strain San Bernadino (SB) was used for the RNAi target gene 

experiments. 

The vermillion white (vw) strain was used for transgenesis experiments. The strain 

revealed white eye color due to a mutation in the Tc-vermillion gene (Lorenzen et al., 

2002a). 

The transgenic beetle lines Bauchbinde-Gal4 (BB-Gal4), Boje-Gal4, Tc-hsp-EGFP 

[transgenic beetle line was generated by Johannes B. Schinko as described in 

(Schinko et al., 2012)], UAS-tGFP [transgenic beetle line was generated by 

Johannes B. Schinko as described in (Schinko et al., 2010)] and UAS-DsRed 

[transgenic beetle line was generated by Stefan Dippel (Dippel, personal 

communication)] used for the RNAi inhibitor experiments, were generated with 

piggyBac transgenesis in vermillion white strains. The enhancer trap lines BB-Gal4 

and Boje-Gal4 were identified in an enhancer trap screen performed by Elke Küster 

in the lab. The mutator strain carries the transactivator piggyBac conctruct: 

pBac[3XP3-Tc-vermillion;Tc-bhsp-Gal4] marked with black eye color (generated by 

Johannes B. Schinko). The construct in this strain was remobilized by crossing with 

the M26 jumpstarter/helper strain (Lorenzen et al., 2007; Trauner et al., 2009), which 

carries an X-chromosomal insertion of a 3xP3-DsRed marked Minos element 

(pMi[3xP3-DsRed;Dm-hsp70-pBac] (Horn et al., 2003; Trauner et al., 2009). To 

visualize new insertions and potential novel enhancer trap patterns, the remobilized 

strain was crossed to a UAS-tGFP line. The resulting enhancer trap line BB-Gal4 

shows Gal4 expression in a thoracic stripe pattern (called Bauchbinde or BB) in late 

larval, pupal and early adult stages. In early larval stages Gal4 reveals ubiquitous 

expression.  

Except for early embryonic stages (0-24 h old) which do not reveal any Gal4 

expression, the transgenic Boje-Gal4 strain appears to express Gal4 ubiquitously 

during all developmental stages.  
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3.2 Molecular cloning 

Genes were amplified from complementary DNA (cDNA) of 0-72 h old embryos 

[cDNA was prepared by Sebastian Kittelmann and Jonas Schwirz with the SMART 

PCR cDNA Synthesis kit (Clontech)] with PhusionTM and cloned into pJET1.2 vector. 

Gene specific primers were either designed based on the AUGUSTUS gene 

predictions (version 4.0) and the transcriptome data at the Tribolium gene browser 

(http://bioinf.uni-greifswald.de/gb2/gbrowse/tcas4/) or based on the Tribolium 

sequences obtained from searching for orthologs with Drosophila gene sequences at 

the National Center for Biotechnology Information (NCBI, 

http://blast.ncbi.nlm.nih.gov/Blast.cgi) using the Basic Local Alignment Search Tool, 

BLAST (Altschul et al., 1990). Primers were generated using PCR primer designing 

software GeneRunner (www.generunner.com) and synthesized by Eurofins MWG 

Operon (Ebersberg, Germany). A complete list of primers is attached in the appendix 

(see appendix Tab. 7.1). 

 

3.3 RNA interference  

RNAi was performed using the established protocols (Posnien et al., 2009; 

Tomoyasu and Denell, 2004). Embryonic, pupal, larval and adult injections were 

performed with a FemtoJet® express device (Eppendorf, Hamburg, Germany) (and a 

borosilicate glass capillaries for embryonic injections) with an applied injection 

pressure of 150-300 hPa for embryos, 400-800 hPa for pupae and larvae (L6 instar 

larvae) and 500-1000 hPa for adult beetles. Injected embryos were allowed to 

develop for four days at 32°C under humid conditions and then were treated as 

described for cuticle analysis. 

dsRNAs for the RNAi target gene experiments were ordered from Eupheria 

Biotech GmbH (www.eupheria.com), titrated from 0.5ng/µl to 1µg/µl and injected into 

10 larvae or adult beetles, respectively. Titrated dsRNAs against the pigmentation 

gene Tc-ebony were injected in parallel as negative controls. For the best 40 target 

genes non-overlapping fragments (1µg/µl) were injected in additional RNAi 

experiments to rule out off target effects. Likewise, 1µg/µl concentrated dsRNA 

against Tc-ebony was used as negative control. The survival rate was scored every 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.generunner.com/
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second day post treatment. The respective primers and sequences are documented 

at iBeetle Base (Dönitz et al., 2015). 

For the RNAi inhibitor experiments, dsRNAs were synthesized using the Ambion® 

MEGAscript® T7 kit (Life Technologies, Carlsbad, CA, USA). Templates for in vitro 

transcription were amplified by PCR using primers with an attached T7 polymerase 

promoter sequence (see appendix Tab. 7.2). The dsRNA concentration ranged from 

1.6-2.7µg/µl and the injections were done at several developmental stages (see Tab. 

3.1). The clone for Tc-paired dsRNA was provided by E. A. Wimmer lab 

(Developmental Biology, University Göttingen). The clones for EGFP and tGFP 

dsRNA were generated and provided by Johannes B. Schinko (Developmental 

Biology, University Göttingen).  

 

Tab. 3.1: dsRNAs used for the RNAi inhibitor experiments. 

The table shows the gene, the used dsRNA concentration, the fragment size and the injection method. 

(lRNAi: larval RNAi, pRNAi: pupal RNAi, eRNAi: embryonic RNAi). 

Gene 
dsRNA concentration 

(µg/µl) 
Size (bp) lRNAi pRNAi eRNAi 

EGFP 2.6 720  X  

tGFP 2.5 780 X   

Tc-ebony 1.6 648 X   

Tc-paired 2.7 540  X X 

 

For cuticle analysis, developing L1 larvae were dechorionated in 50% Klorix 

bleach, embedded in 50 % Hoyer’s medium 50 % lactic acid and were incubated at 

65 °C overnight as described in (Bucher and Klingler, 2004). Cuticle defects were 

analyzed using a Zeiss Axioplan 2 microscope. Images were generated using the 

Cy3 filter set and the ImageProPlus (Media Cybernetics, Rockville, USA) software. 

Cuticle stack Z-projections were produced by recording 30 planes, deconvolving 

them by “No Neighbour” method and using the “Maximum Projection” method of 

ImageJ (Version 1.48, http://rsbweb.nih.gov/ij/disclaimer.html).  

 

 

http://rsbweb.nih.gov/ij/disclaimer.html
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3.4 GO term clustering and identification of novel potential RNAi 

target genes 

DAVID 6.7 (The Database for Annotation, Visualization and Integrated Discovery) 

(Huang et al., 2009a, 2009b) was used to analyse the eleven and 40 RNAi most 

efficient target genes. The Drosophila genome was set as background and p-values 

(p-value≤ 0.05) represented a modified Fisher’s exact t-test. The enriched GO terms 

were clustered into classes by the functional annotation clustering tool, which uses a 

grouping algorithm based on the hypothesis that similar genes should share similar 

annotations. The option settings were: classification stringency “high” and enrichment 

thresholds “EASE 0.05”. The enrichment score of each group is the geometric mean 

(in-log) of the p-values in an annotation cluster. Thus, the uppermost group shows 

the highest biological significance. GO Fat database, developed as part of the 

Annotation Tool of the DAVID suite of bioinformatics resources, was used for this 

analysis. This category filters out the broadest terms prior to the enrichment test so 

that they will not overshadow the more specific terms. The clustering of the top 40 

RNAi target genes was done with 37 genes in total, because three genes were not 

associated with any GO term. Note that the last DAVID GO database update was in 

2009, some GO terms have changed in the last years and could be wrongly 

annotated in the clusters. In order to find further potential RNAi target genes, the GO 

terms of each cluster were used in the Flybase Query Builder (Gelbart et al., 1997). 

With the obtained Flybase gene IDs we searched for Tribolium orthologs in the 

iBeetle Base (Dönitz et al., 2015). Genes that caused a mortality of ≥70% in the 

screen on day eleven after pupal or larval injection were assumed to be novel 

potential RNAi target genes. 

 

3.5 Off target analysis 

The nucleotide sequence of the RNAi target genes (Query) was used to identify 

potential off target sites in transcript sequences of other species by BLAST analysis. 

To this end, the length of the exact match was defined as ≥15 nt by the word size 

function at NCBI BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) (Altschul et al., 1990) 

and the match/mismatch score was defined as 1/-4. Exact matches smaller than 17 

nt were excluded manually.  
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3.6 Phylogenetic analysis 

The Tribolium protein sequences were blasted against Drosophila melanogaster, 

Apis mellifera, Aedes aegypti, Acyrthosiphon pisum and Mus musculus RefSeq 

protein collection (Altschul et al., 1990) at NCBI 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). The alignments were done using ClustalW as 

implemented in the Geneious program (v.5.6.4) (Biomatters, Auckland, New 

Zealand) and trimmed to remove unclear parts of the alignments. The phylogenetic 

trees were calculated using the Geneious Tree Builder with the Jukes Cantor genetic 

distance model, neighbor-joining (Saitou and Nei, 1987) as tree building method, and 

a number of 10.000 replicates for creation of the bootstrap consensus tree 

(Felsenstein, 1985). Phylogenetic trees are attached in the appendix (see appendix 

Fig. 7.2). 

 

3.7 Transgenesis 

3.7.1 Constructs 

All restriction enzymes were provided by Fermentas/Thermo Fisher Scientific 

(Waltham, MA, USA) or by New England Biolabs (Ipswich, MA, USA) and used 

according to manufacturer’s protocols. Vector maps were designed with ApE – A 

plasmid Editor v2.0.47 (M. Wayne Davis; 

http://biologylabs.utah.edu/jorgensen/wayned/ape/) and are attached in the appendix 

(see section 7.7.). All primer sequences for construct design and sequencing are 

attached in the appendix (Tab. 7.3) 

The plasmids for the viral suppressors of RNAi (VSR) CrPV1A (from Cricket 

Paralysis virus), FHV B2 (from Flock House virus), DCV1A (from Drosophila C virus) 

and VP1 (from Nora virus) were provided by Ronald Van Rij (Radboud Institute for 

Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the 

Netherlands). The plasmids for the viral suppressors of RNAi PVX p25 (from Potato 

virus X) and TCV p38 (Turnip Crinkle virus) were provided by Christophe Himber 

(Institut de Biologie Moléculaire des Plantes, UPR2357, CNRS, Strasbourg, France). 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://biologylabs.utah.edu/jorgensen/wayned/ape/
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Plasmid pBac[3XP3-DsRed;UAS-Tc-bhsp-VSR-SV40] was generated as follows: 

The coding sequence of the RNAi suppressors was amplified via PCR with sequence 

specific primers (see Tab. 7.3). The PCR products were sub-cloned into the plasmid: 

pSLaf[UAS-Tc-bhsp-SV40] (generated by Johannes B. Schinko) using the restriction 

enzymes NotI and Acc65I. Finally, the UAS-Tc-bhsp-tGFP-SV40 fragment from the 

pBac[3XP3-DsRed] vector [generated by Johannes B. Schinko as described in 

(Schinko et al., 2010)] was exchanged with the UAS-Tc-bhsp-VSR-SV40 fragment 

from the pSLaf plasmid by AscI digestion and ligation. 

Plasmid pBac[6XP3-ECFP;TcαTub1-3’UTRdcr2-intron-3’UTRdcr2-SV40] was 

generated as follows: The plasmid pBac[6XP3-ECFP] (generated by Johannes B. 

Schinko) was amplified via PCR using primers, JUFw_pBacL, JURv_Sv40, with 

attached restriction sites (see Tab. 7.3) and linearized by NheI and XhoI digestion. 

The ubiquitous Tc-alpha-Tubulin1 promoter (843bp) (Siebert et al., 2008) was 

amplified via PCR from cDNA of 0-72 h old embryos using sequence specific 

primers, JUFwtubulin, JURvtubulin, with attached NheI and XhoI restriction sites 

(Tab. 7.3), cut and ligated with the piggyBac plasmid. The next cloning steps were 

done using the In-Fusion® HD Cloning kit (Clontech, Mountain View, CA, USA). The 

3’ untranslated region (3’UTR; 252bp) of Tc-Dicer-2 was amplified by PCR with two 

primer pairs: UTRFw_Inf, UTRRv-Inf and UTR2Fw_Inf, UTR2Rv_Inf (Tab. 7.3) in 

order to obtain an inverted repeat (IR) orientation of this fragment. On the basis of 

reports about the ability of introns to enhance nuclear export (Llopart et al., 2002; 

Maniatis and Reed, 2002) an intron (931bp long) from a highly expressed TC000503 

gene was amplified via PCR from genomic DNA of adult Tribolium beetles with 

primers: IntronFw_Inf, IntronRv_Inf (Tab. 7.3). Genes were considered to be highly 

expressed if read coverage from RNA-Seq was ≥ 7000 (http://bioinf.uni-

greifswald.de/gb2/gbrowse/tcas4/). The intron was ligated within the inverted repeats 

of 3’UTR Tc-dcr2 to improve the stability during cloning (Kalidas and Smith, 2002; 

Lee and Carthew, 2003; Reichhart et al., 2002) and the fragment 3’UTRdcr2-intron-

3’UTRdcr2 was ligated downstream of Tc-αTubulin1 promoter into the linearized 

piggyBac vector (with NheI). 

Plasmid pBac[3XP3-DsRed;Tc-hsp5’-CrPV-3’UTR-SV40] was generated as 

follows: The coding sequence of the RNAi suppressor CrPV1A was amplified using 

primers, JUFw_CrPVi and JURv_CrPVi (Tab. 7.3), with attached Acc65I and NotI 

restriction sites, cut and sub-cloned into the vector pSLaf[Tc-hsp5’-3’UTR] 

http://bioinf.uni-greifswald.de/gb2/gbrowse/tcas4/
http://bioinf.uni-greifswald.de/gb2/gbrowse/tcas4/
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(generated by Johannes B. Schinko). The Tc-hsp5’-EGFP-3’UTR fragment from the 

pBac[3XP3-DsRed] vector [generated by Johannes B. Schinko as described in 

(Schinko et al., 2012)] was replaced by Tc-hsp5’-CrPV-3’UTR fragment by AscI 

digestion and subsequently ligation. 

 

3.7.2 Germline transformation and transgenic lines 

Tribolium germline transformation was performed as described (Berghammer et 

al., 2009). All piggyBac constructs (500ng/µl) were injected along with a hyperactive 

helper plasmid [generated by Stefan Dippel (Yusa et al., 2011)] into embryos of the 

vw strain. The constructs and hyperactive helper were mixed and filtered through a 

Millex-HV 0.45µm Filter Unit (Millipore, Billerica, MA, USA). Embryos were injected 

using a borosilicate glass capillaries and a FemtoJet® (Eppendorf AG, Hamburg, 

Germany). The embryos were kept under humid conditions for three days at 32°C 

and then transferred to lower humidity for hatching. The hatched larvae were 

transferred to whole grain flour and adult beetles (G0) were crossed to vw strain. 

Offspring (F1) were screened for red or blue fluorescent eyes and outcrossed with 

vw strain. The heterozygous transgenic animals (F2) of this crossing were pooled and 

produced heterozygous and homozygous offspring. The established transgenic lines 

are summarized in Table 3.2. 

 

Tab. 3.2: Established transgenic beetle lines.  

RNAi suppressors and the established transgenic beetle lines are indicated. Superscript numbers of 

each VSR strain indicate different insertion lines. Except for hsCrPVi (i=inhibitor), a heat shock 

inducible inhibitor strain and Dicer-i line, a ubiquitous inverted repeat Dicer-2 strain, all transgenic 

beetles are UAS-VSR responder lines, which can be activated by a Gal4 driver strain.  

RNAi suppressors Established transgenic lines 

CrPV1A CrPVi
56

, CrPVi
61

, hsCrPVi
47

, hsCrPVi
49

 

FHV B2 B2i
22

, B2i
40

 

DCV1A DCVi
13

, DCVi
21

 

VP1 VP1i
23

, VP1i
20

 

PVX p25 p25i
30

, p25i
35

 

TCV p38 p38i
55

, p38i
25

 

IR of dcr2-3’UTR Dicer-i
18

, Dicer-i
22
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3.7.3 Transformation markers and GFP analysis 

The 3 X P3 driven expression pattern of the fluorescent markers ECFP (Patterson 

et al., 2001) and DsRed1 (Horn et al., 2002) was detected in Tribolium eyes using a 

Leica MZ 16FA fluorescence stereomicroscope with a planachromatic 0.8 x objective 

(Leica, Wetzlar, Germany). The filter sets used for ECFP expression were: (425/50 

nm excitation filter, 460nm LP emission filter). The filter sets used for DsRed1 were: 

(546/12 nm excitation filter, 605/75 nm emission filter). 

The dark eye pigmentation of the Tc-vermillion marker (Lorenzen et al., 2002a) in 

the transgenic beetle lines BB-Gal4 and Boje-Gal4 could be observed without any 

filter. 

The Tc-hsp5’-3’UTR driven ubiquitous expression of the fluorescent marker EGFP 

(Cormack et al., 1996; Yang et al., 1996) (transgenic beetle line Tc-hsp-EGFP) or the 

Gal4 driven expression pattern of the fluorescent marker tGFP in the “Bauchbinde” 

region was analyzed using the filter sets for EGFP: (470/40 nm excitation filter, 500 

nm LP emission filter). 

 

3.7.4 Tribolium genetic crosses 

To activate RNAi suppressor expression by the binary expression system, 

transgenic pupae selected for the dominant markers of the driver (BB-Gal4 and Boje-

Gal4 lines) and responder lines (CrPVi56, CrPVi61, B2i22, B2i40, DCVi13, DCVi21, VPi23, 

VPi20, p25i30, p25i35, p38i55, p38i25), respectively, were crossed together (G0). All 

crosses were carried out at 32°C. The F1 offspring of the crossings Boje-Gal4 X 

UAS-VSR or BB-Gal4 X UAS-VSR were examined to verify the presence of both 

driver (Tc-vermillion marker) and responder (DsRed marker) constructs. The 

crossings Boje-Gal4 X UAS-VSR were further treated with Tc-ebony dsRNA as 

described for RNAi.  

The F1 offspring (heterozygous for both alleles) of the crossings BB-Gal4 X UAS-

inhibitor were collected as pupae, selected for driver (black) and responder (red) eye 

markers and further crossed either to the heterozygous pupae of the line UAS-tGFP 

or Tc-hsp-EGFP. Line UAS-tGFP, line Tc-hsp-EGFP as well as UAS-VSR lines had 

DsRed as eye marker. The probability that F2 progeny of these crossings carried one 

copy each of the driver (BB-Gal4), the responder (UAS-VSR) and the responder 
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UAS-tGFP or Tc-hsp-EGFP allele was 12.5% (1/8), but it increased to 33.3% (1/3) 

(for the progeny of BB-Gal4 X UAS-VSR X Tc-hsp-EGFP) when selected for black 

and red eye markers. In the case of the crossing BB-Gal4 X UAS-VSR X UAS-tGFP 

the chance that F2 offspring carried all three alleles could be increased to 50% when 

selected for the eye markers and the obvious tGFP fluorescence in the BB. 

Subsequently, the selected pupae were injected with EGFP or tGFP dsRNA and/or 

heat shocked and analyzed for GFP fluorescence. 

For the triple crossings, BB-Gal4 X UAS-VSR X Tc-hsp-EGFP, 300 pupae with 

black/red eye color were tested, respectively. The triple crossings BB-Gal4 X UAS-

VSR X UAS-tGFP were carried out with 300 animals, respectively, that showed 

black/red eye color and tGFP fluorescence in the BB-tissue.  

 

3.7.5 Heat shock conditions 

Heat shock experiments were performed as described in (Schinko et al., 2012). 

The transgenic beetle line Tc-hsp-EGFP crossed to a Gal4 and UAS-VSR line was 

used to study the RNAi suppression. To this end, pupae were heat shocked for ten 

minutes at 48°C in a water bath to activate EGFP expression, one day post EGFP 

RNAi. EGFP knockdown was performed before heat shock mediated EGFP 

activation, in order to obtain complete downregulation of EGFP expression. Injected 

and heat shocked pupae were incubated for eight or twelve hours at 32°C and the 

EGFP fluorescence was documented. There were no significant differences in EGFP 

fluorescence between pupae analyzed for EGFP fluorescence 8 or 12 hours post 

heat shock. Due to that, further EGFP analyses were always done 8 hours post heat 

shock treatment.  

In the case of embryonic heat shocks, transgenic line hsCrPVi (heat shock 

CrPV1A inhibitor line) was used. Staged embryo collections were allowed to develop 

for 10-15h, 11-16h and 12-17h at 32°C and heat shocked for two times at the same 

conditions as for pupal heat shocks. The regeneration time between the treatments 

was two hours at 32°C. Embryos were then allowed to develop into L1 larvae and 

were embedded and cuticles were analyzed as described for RNAi. 
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4 Results 

4.1 Large scale RNAi screen identifies novel RNAi target genes  

So far, the targets for dsRNA based pest control have been identified by small 

scale screens and on knowledge based approaches, i.e. by testing genes where 

previous data indicated an essential function. However, this approach will miss many 

genes that have not yet been linked to an essential function in one of the model 

species. Therefore, data produced by the large scale RNAi screen iBeetle (Schmitt-

Engel et al., accepted) was screened, where randomly selected genes were 

downregulated by injection into pupae and larvae and the resulting phenotypes were 

documented in the iBeetle-Base (Dönitz et al., 2015). Of about 5,000 screened genes 

100 revealed ≥90% mortality both nine days after pupal and eleven days after larval 

dsRNA injection (see appendix Tab. 7.4). In order to confirm these results and to test 

for sensitivity, different concentrations (3ng/µl, 30ng/µl, 100ng/µl, 300ng/µl and 

1µg/µl) of the same dsRNAs were injected into 10 penultimate instar larvae (L6), 

respectively, and the survival rate was scored every second day. The pigmentation 

gene Tc-ebony was used as negative control. Injection of titrated Tc-ebony dsRNAs 

into larvae did not induce lethality in the treated organisms (Fig. 4.1 A). The most 

effective 40 genes caused a mortality of 50-100% at day eight post injection using 

the lowest concentrated dsRNA (see appendix Tab. 7.5, Fig. 7.1). I focused on the 

eleven most effective target genes, which were marked by mortality of 100% at least 

on day eight and of at least 80% on day six post injection (Fig. 4.1 B-M). This high 

degree of lethality was confirmed by repeating the experiment using non-overlapping 

dsRNA fragments (1µg/µl) making off target effects improbable (see appendix Tab. 

7.7).  

For comparison, the same experiment was performed with the orthologs of five 

RNAi target genes published in the seminal paper of Baum et al. (Baum et al., 2007), 

which caused lethality in the western corn rootworm upon dsRNA ingestion. Indeed, 

the Tribolium orthologs of these genes induced a high degree of mortality, but 

especially with low dsRNA concentrations, the mortality did not reach the one of the 

eleven candidates identified in this study (Fig. 4.1 N-R).  
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Fig. 4.1: Identification of novel RNAi target genes in Tribolium castaneum. 

The survival after knock-down of the eleven most efficient RNAi target genes identified in this study is 

shown. dsRNAs of different concentrations were injected into 10 Tribolium larvae (L6 instar), 

respectively, and the survival rate was recorded every second day. (A) The pigmentation gene Tc-

ebony was used as negative control. (B-M) Most of the identified RNAi target genes showed a larval 

mortality of 100% on day eight and 80% on day six post treatment for every dsRNA concentration. (N-

R) RNAi treatment of commonly used targets based on the seminal paper of Baum et al., 2007 

revealed a lower efficiency. 
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In order to check for stage dependence of the lethal effect, dsRNAs (concentration 

100ng/µl and 3ng/µl) targeting these eleven genes were injected into 10 adult 

beetles, respectively. Likewise, titrated dsRNAs against Tc-ebony were injected as 

negative controls (Fig. 4.2 A). Mortality rate on day eight post treatment was at least 

90% with 100ng/µl dsRNA concentration while injection of 3ng/µl dsRNA led to lower 

degree of mortality indicating that this concentration is at the lower limit for 

application (Fig. 4.2 B-M). In summary, eleven novel RNAi target genes were 

identified that efficiently and rapidly induce lethality at larval, pupal and adult stages 

even at low doses of dsRNA and are more efficient than previously used target 

genes at least in Tribolium. 

 

 

Fig. 4.2: Lethality is induced in adult stages as well. 

The most efficient eleven RNAi target genes were also tested at two different concentrations (3ng/µl, 

100ng/µl) by injections into adult beetles. (A) Tc-ebony was used as negative control. (B-M) All RNAi 
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target genes are lethal in adult stages as well but at lower concentrations, the efficiency was slightly 

lower compared to larval injections shown in Fig. 4.1. 

 

4.1.1 Double RNAi led to additive but not to synergistic effects 

I asked whether the lethality of RNAi treatments can be increased synergistically 

by combined injection of two dsRNAs targeting different essential genes. All 55 

pairwise combinations of the eleven top RNAi target genes were injected into larvae 

(L6 instar) at the same dsRNA end concentration as the single injections (0.5ng/µl) 

and the survival was documented (see numbers in the appendix Tab. 7.8). Tc-ebony 

dsRNA (0.5ng/µl) was injected in parallel as negative control and did not induce 

larval mortality (see appendix Tab. 7.8). For better illustration of a potential 

synergistic effect, the survival differences between the double and the single 

knockdowns were calculated. For that purpose, the numbers of surviving animals of 

the single RNAis, e.g. L10 or L11, were subtracted from the numbers of surviving 

animals of the respective double knockdown, in this case of L10+L11 (Fig. 4.3 A-B). 

A higher lethality in the double treatment (e.g. L10+L11) should be indicated by 

negative values in both graphics e.g. of Fig. 4.3 A and B. There was no indication for 

synergism. Instead, the observed deviations from the baseline in some combinations 

are explained by additive effects: The most efficient targets become less penetrant 

when “diluted” with less effective dsRNAs (e.g. Fig. 4.3 A) while less efficient targets 

become more potent when supplemented with stronger target genes (e.g. Fig. 4.3 F). 

In conclusion, there was no indication for synergistic effects that would allow to 

significantly enhance the technique (Fig. 4.3).  
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Fig. 4.3: Double RNAi led to additive but not synergistic effects. 

(A-L) Double RNAi treatments were performed and the number of surviving animals at different days 

post injection was documented (see values in appendix Tab.7.8). From these values, the number of 

surviving animals of the respective single treatments (M) was subtracted, such that higher lethality in 

the double treatment is indicated by negative values in the panels. For every target gene, 10 different 

pairwise combinations were injected with a total dsRNA concentration of 0,5ng/µl and compared to the 

single injections (0,5ng/µl total concentration). (M) Single injections of the eleven RNAi target genes 

were performed with a dsRNA concentration of 0,5ng/µl. 

 

4.1.2 Degree of sequence conservation does not strongly influence the 

number of off targets 

In order to protect non-target organisms it would be desirable to use dsRNA 

fragments that are specific to the pest species and do not contain sequences 

targeting genes in non-target organisms (off targets). Therefore, I asked whether 

protein sequence conservation of the identified RNAi target genes correlated with the 

number of potential off target sites in other species. On the protein sequence level 
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most of the RNAi target genes showed a strong conservation between some well 

sequenced species covering insect diversity (Drosophila melanogaster, Aedes 

aegypti (Diptera), Apis mellifera (Hymenoptera), Acyrthosiphon pisum (Hemiptera). 

L10, L67 and L82 were the least conserved (Fig. 4.6 A). For protein L76 no ortholog 

could be identified in Aedes aegypti (Fig. 4.6 A; see appendix Fig. 7.2 H for 

phylogenetic analysis).  

DsRNAs are processed by the enzyme Dicer into 21-23 nt long siRNAs. After 

incorporation into RISC, they serve as template to recognize the complementary 

mRNA and target it for destruction (Meister and Tuschl, 2004). However, siRNAs with 

an exact sequence identity of ≥17 nt can already induce off target effects (Kulkarni et 

al., 2006). Therefore, the nucleotide sequences of the eleven Tribolium target genes 

were searched against the well annotated NCBI transcriptome databases of the 

above mentioned species for >17bp long stretches of identity 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) (Altschul et al., 1990). For visualization, these 

putative off target regions targeting genes of other species were plotted against the 

RNAi target gene nucleotide sequence (Fig. 4.4). 

There was no overt correlation between the conservation of a protein and the 

number of potential off target regions (compare the most diverged genes L10, L67 

and L82 with more conserved genes in Fig. 4.4). Likewise, within a given gene I 

found no enrichment of off target regions in more conserved stretches of the 

sequence (e.g. conserved protein domains) compared to less conserved stretches 

(e.g. non-coding UTRs; Fig. 4.4). Importantly, the location of off target sites was 

generally different for the different species. Together, these observations indicate 

that the number and location of the off target sites does not strongly correlate with 

protein sequence conservation.  

 

 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Fig. 4.4: Location of potential off target regions is not restricted to stretches of conserved 

protein sequence. 

The non-coding and rapidly evolving UTRs are indicated as open bars, the coding sequence as grey 

bar. Conserved protein domains are indicated above the coding sequence by black bars and the 
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protein domain name. Sites with ≥17 nt identity were identified. The hits were plotted at the respective 

position of the query for each species (rows below the query). There was no strong if any correlation 

between the degree of sequence conservation (UTR<coding sequence<conserved domains) and the 

location of potential off target sites. This indicates that it will be difficult if impossible to exclude off 

target effects when misexpressing dsRNAs in plants. Multiple isoforms of different genes were not 

figured. Dm Drosophila melanogaster, Am Apis mellifera, Aa Aedes aegypti, Ap Acyrthosiphon pisum. 

 

4.1.3 GO term clusters identify the proteasome as prime insecticide target 

I tried to identify common properties of the identified RNAi targets, because this 

information might help identifying novel RNAi targets in species less amenable to 

large scale screens. I first analyzed the adult body expression levels in Tribolium and 

compared them to their Drosophila orthologs (Gelbart et al., 1997). A striking pattern 

was not found apart from generally high expression of the Drosophila orthologs, 

which was specifically true for the central nervous system (Fig. 4.5). 

 

Fig. 4.5: Expression levels of eleven RNAi target genes in Tribolium versus Drosophila. 

Expression levels of the eleven RNAi target genes of Tribolium adult male body were obtained from 

RNA-Seq data of the Tribolium au2 gene set (http://bioinf.uni-greifswald.de/tcas/genes/au2/) and 

compared to the expression levels of the orthologous Drosophila genes in the adult male body 

obtained from modENCODE high-throughput RNA-Seq data in Flybase (Graveley et al., 2011). 

Tribolium expression levels were calculated and categorized into four expression strengths: low 

expression with 0-1.5, moderate expression with 1.6-3, high expression with 3.1-4.5 and very high 

expression with ≥4.6 number of reads per position. The comparison revealed similar expression levels 

only for L10, L11 and L76 in the adult male body of Tribolium and Drosophila.  

 

Next, I searched for GO term clusters of the top eleven and top 40 RNAi targets 

(Huang et al., 2009a, 2009b) using Drosophila melanogaster GO term annotations as 

http://bioinf.uni-greifswald.de/tcas/genes/au2/
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the background. The clustering of the 40 RNAi target genes resulted in 10 clusters 

(see appendix Fig. 7.3). In order to test, in how far these GO terms are predictive, 

1328 Drosophila genes were identified sharing the same GO term combinations of at 

least one of these clusters (see materials and methods for further details). For those, 

the respective Tribolium orthologs were determined and 502 of them had by chance 

been included in the iBeetle screen. Almost all novel genes identified by GO term 

combinations of cluster 1 and 2 (GO terms related to proteasome function) showed a 

strong lethality in the iBeetle screen (≥70% after pupal or larval injection; Fig. 4.6 B, 

C; see appendix Tab. 7.6). Cluster 7 (GO terms related to cytoskeleton organization) 

represented the third-best cluster with 37 of 66 novel genes showing lethality in the 

screen (Fig. 4.6 B, C; see appendix Tab. 7.6). The clustering of the top eleven RNAi 

target genes did not result in clusters, which were able to predict novel RNAi target 

genes. This could be due to the low number of input genes, which makes statistical 

analysis challenging (data not shown). Taken together, this analysis reveals GO term 

combinations that are predictive for potential RNAi target genes and identify the 

proteasome as prime target for insecticides. 
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Fig. 4.6: GO term clustering reveals the proteasome as efficient target. 

(A) All eleven RNAi target genes have Drosophila orthologs and overall, their protein sequence 

identity with other species is high. Only Cact, Inr-a and Gw show a low degree of sequence 

conservation. Dm Drosophila melanogaster, Am Apis mellifera, Aa Aedes aegypti, Ap Acyrthosiphon 

pisum. (B) GO term clustering of the top 40 RNAi target genes revealed ten clusters with enriched 

biological processes. Searching for genes that share the respective GO term combinations identified 

additional RNAi target genes. For cluster 1, seven novel genes with the respective combination were 

found and six of them (86%) turned out to be highly lethal at day 11 (d11) after injection (see appendix 

for genes Tab. 7.6). Cluster 1, 2 and 7 showed the highest predictive power. (C) The GO terms of the 
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most predictive clusters are shown. Count is the number of genes annotated with a given term. 

GOTERM_BP_FAT, GOTERM_MF_FAT, GOTERM_CC_FAT are annotations with respect to 

biological processes, molecular functions and cellular component (see appendix Fig. 7.3 for all 

clusters). See details for the enrichment score in materials and methods. 
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4.2 Identification of an efficient RNAi suppressor protein in 

Tribolium castaneum 

The systemic RNAi response (i.e. the spread of injected dsRNA throughout the 

animal) in Tribolium castaneum can be obstructive for investigation of gene functions 

in certain tissues. Downregulation of genes with essential developmental roles can 

cause lethality or sterility in the injected animals masking their potential later 

functions in e.g. specific patterning processes. In order to circumvent such pleiotropic 

effects, a tool is necessary to restrict RNAi to a specific tissue or point in time. One 

possibility is the expression of viral proteins in Tribolium, which are known to 

suppress the RNAi machinery in different organisms. Once an efficient RNAi pathway 

suppressor is identified, controllable RNAi is possible by temporal or local activation 

of the suppressor. Hence, to identify efficient RNAi suppressors in Tribolium, my first 

approach was to investigate inhibitors previously tested in Drosophila and other 

organisms. The insect viral proteins from the Cricket Paralysis virus (CrPV1A), the 

Flock House virus (FHV B2), Drosophila C virus (DCV1A) and Nora virus (VP1) have 

been shown to work as suppressors of the RNAi mechanism in Drosophila 

melanogaster (Aliyari et al., 2008; Chao et al., 2005; Li et al., 2002; van Mierlo et al., 

2012; Nayak et al., 2010; van Rij et al., 2006). Thus they were selected for analysis 

in Tribolium. Additionally, the plant viral proteins p25 from Potato virus X (PVX) and 

p38 from Turnip Crinkle virus (TCV) were tested, because of their known function to 

suppress the RNAi mechanism but not the microRNA pathway in plants (Bayne et al., 

2005; Dunoyer et al., 2004; Jin and Zhu, 2010; Voinnet et al., 2000). In the following 

the viral proteins are referred to as RNAi inhibitors or VSRs (viral suppressors of 

RNAi). The different RNAi inhibitor strains are suffixed with an “i” (i=inhibitor). 

 

4.2.1 VSRs did not suppress silencing of heat shock activated EGFP 

In order to test the suitability of the selected VSRs in Tribolium, each VSR was 

expressed in a restricted tissue and subsequently, a ubiquitously expressed target 

gene, the enhanced green fluorescent protein (EGFP), was silenced via RNAi. If a 

given VSR is able to suppress the RNAi pathway in Tribolium, EGFP signal should 

be gone after RNAi in all tissues except for those that expressed an active VSR.  
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For this rescue approach the binary Gal4/UAS system (Schinko et al., 2010) was 

used. The Gal4 line (marked by black eye color) shows Gal4 expression in a thoracic 

tissue (called “Bauchbinde” or “BB”) in late larval, pupal and early adult stages (Fig. 

4.7, treatment 3, respectively, as a control for Gal4 expression). Upon crossing with 

UAS-VSR lines (marked by red eye color), VSRs were activated in the BB pattern. In 

order to exclude position effects, two independent transgenic lines for each of the six 

different VSR constructs were crossed to BB-Gal4 line, respectively. Subsequently, 

animals carrying both the driver BB-Gal4 and responder UAS-VSR were crossed to a 

Tc-hsp-EGFP strain (marked by red eye color) where EGFP was driven by an 

endogenous heat shock inducible promoter. This promoter leads to ubiquitous EGFP 

expression after heat shock at all developmental stages (Schinko et al., 2012). 

Because DsRed marked both the Tc-hsp-EGFP and the UAS-VSR construct, it was 

not possible to select for animals that carried all three vectors. Further, the Tc-hsp-

EGFP and the UAS-VSR strains were heterozygous. Therefore, the chance that 

offspring of these crossings exhibited one copy each of the driver line (BB-Gal4), the 

responder UAS-VSR and Tc-hsp-EGFP was 33.3% when selected for black and red 

eye color (based on Mendelian inheritance). For that reason approximately 300 

transgenic pupae (with black and red eye color) were treated with RNAi in each VSR 

test with the expectation that about 100 animals should contain all three constructs. 

Selected pupae were injected with EGFP dsRNA, heat shocked 24 hours post 

injection (see materials and methods) and then checked for EGFP fluorescence 8 

hours later (Fig. 4.7). To ensure effective downregulation of EGFP, RNAi was 

performed before heat shock mediated EGFP activation and tests revealed that 

EGFP expression could be completely silenced after this treatment (data not shown). 

As a positive control 100 transgenic pupae (black/red eye color) were heat shocked 

but not injected with dsRNA and around 60 revealed a heat shock inducible EGFP 

fluorescence (Fig. 4.7, treatment 1, respectively).  

I could not detect any GFP fluorescence in the BB-region where expressed VSRs 

should suppress the RNAi mechanism resulting in persistent EGFP signal (Fig. 4.7, 

treatment 2, respectively). All six tested lines (with two different insertion lines, 

respectively) showed no significant differences to each other and the negative control 

which was neither injected nor heat shocked (Fig. 4.7, treatment 4, respectively). 

Furthermore, the analysis of EGFP fluorescence after downregulation did not reveal 

significant differences among the injected animals of the same crossing experiment, 



                                                                                                                           Results 

47 
 

despite the fact that only one third of the transgenic pupae carried one copy of all 

three constructs while the remaining two third missed either Tc-hsp-EGFP or UAS-

VSR.  

A possible explanation for the failure of this test might be that the potentially 

rescued EGFP fluorescence in the BB could be insufficient to be apparent. 

Especially, since the pupal wings are known to exhibit autofluorescence it is possible 

that they would mask weak BB-EGFP signal. Hence, a clearly visible signal is 

necessary to monitor effective RNAi suppression.  

 

 

Fig. 4.7: Test of different VSR lines for the ability to suppress the RNAi mechanism.  

Six different VSRs were tested in Tribolium. Anterior is up for pupae. Ventral views. Treatment 1-4 

indicates that the pupae of the respective treatment carried the same constructs and were treated in 

the same way. The pupae of treatment 1, 2 and 4, respectively, carried the BB-Gal4, the respective 
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UAS-VSR and the Tc-hsp-EGFP construct (see table).The pupae of treatment 3, respectively, carried 

Gal4 and UAS-DsRed construct and served as a control for BB-Gal4 expression. Stars indicate that 

only one third of the pupae in the respective column carried all three constructs (see text for further 

details). The pupae of treatment 1, respectively, served as positive controls for fluorescence and were 

heat shocked but not injected (see table for treatments). Each pupa of treatment 4 served as a 

negative control for fluorescence and was neither heat shocked nor injected. The pupae of treatment 

2, respectively, were injected with EGFP dsRNA (2.6 µg/µl) and heat shocked to activate ubiquitous 

EGFP expression (see table for treatments). Pupae with an efficient RNAi inhibitor should exhibit BB-

restricted EGFP fluorescence. However, there were no visible fluorescence differences to the controls 

(compare each second pupa to each fourth control pupa; fourth pupa appears darker due to the lateral 

position in the picture). Due to the same results between several insertion lines, only one VSR 

insertion line for each UAS-VSR construct is shown: CrPVi
56, B2i

22, DCVi
13, VPi

23, p25i
30, p38i

55
 

(i=inhibitor) (see materials and methods). 

 

4.2.2 CrPV1A efficiently suppressed the knockdown of UAS-Gal4 expressed 

tGFP 

To ensure a strong fluorescence in the rescue VSR experiments, BB-Gal4 (black 

eye marker) was crossed to a responder line, UAS-tGFP (red eye marker), which 

revealed an obvious GFP fluorescence in the BB when activated by Gal4 (Fig. 4.8, 

treatment 1, respectively). The progeny of this crossing (black/red eyes) were further 

crossed to UAS-VSRs (red eye marker). Thus, VSRs and GFP were co-expressed in 

the same BB-tissue (Fig. 4.8, treatment 3, respectively).  

The activation of VSRs in the same tissue as turboGFP (tGFP) should locally 

suppress the RNAi mechanism and thus rescue BB-tGFP expression upon tGFP 

knockdown, if a given VSR is able to inhibit RNAi in Tribolium. 

Again, six transgenic UAS-VSR lines, with two different insertion lines, 

respectively, were tested. Due to the same DsRed eye marker in the strains, UAS-

tGFP and UAS-VSRs, two different selection criteria were applied. First, the larval 

progeny of these crosses were screened for black/red eye color. Second, only larvae 

were selected that revealed BB-tGFP fluorescence. These criteria increased the 

chance that the heterozygous animals carried all three constructs to 50% (based on 

Mendelian inheritance). The remaining 50% carried one copy of BB-Gal4 and one 

copy of UAS-tGFP without UAS-VSR, which could additionally be used as an internal 

positive control for tGFP silencing post injection. Each VSR approach was performed 

with approximately 300 transgenic larvae, of these about 150 were expected to 
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contain all three constructs. L6 instar larvae were injected with tGFP dsRNA (see 

materials and methods), incubated for one week at 32°C until pupation to allow 

decay of tGFP protein and then analyzed for GFP fluorescence (Fig. 4.8, treatment 3, 

respectively). In the control, tGFP RNAi of transgenic larvae, carrying BB-Gal4 and 

UAS-tGFP led to complete downregulation of the tGFP signal (Fig. 4.8, treatment 2, 

respectively). Untreated BB-Gal4 X UAS-tGFP animals served as negative controls 

(Fig. 4.8, treatment 1, respectively).  

Of the tested VSR lines, only transgenic BB-Gal4 X UAS-CrPVi X UAS-tGFP line 

revealed GFP fluorescence in the BB-region after tGFP knockdown (Fig. 4.8 pupa in 

the red box). This was true for both insertion lines of UAS-CrPVi (CrPVi56 and 

CrPVi61) (data not shown). About half of the treated animals (141 pupae of insertion 

line CrPVi56 and 134 pupae of insertion line CrPVi61) revealed continuous BB-GFP 

fluorescence after RNAi, while in the remaining animals (138 pupae of CrPVi56 and 

127 pupae of CrPVi61) tGFP expression was completely silenced. Inefficient silencing 

could therefore be excluded. These results coincided with the expectation that 50% 

of the selected transgenic animals would carry all three constructs.  

In summary, this approach could identify the protein CrPV1A from Cricket 

Paralysis virus as an efficient RNAi suppressor in Tribolium castaneum.  
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Fig. 4.8: CrPV1A was able to suppress the RNAi pathway in Tribolium castaneum.  

Six transgenic VSR lines were analyzed for the ability to inhibit RNAi in Tribolium. Anterior is up for 

pupae. Ventral views. Treatment 1-3 indicates that the pupae of the respective treatment carried the 

same constructs and were treated in the same way. The pupae of treatment 1 and 2, respectively, 

carried a Gal4 and UAS-tGFP construct (see table). Each pupa of treatment 3 is a crossing result of 

Gal4, UAS-tGFP and the respective UAS-VSR line (see table). The pupae of treatment 1, respectively, 

are RNAi untreated pupae (see table for treatment) which served as negative control for RNAi and 

revealed a strong BB-specific tGFP expression. The pupae of treatment 2, respectively, served as 

positive control for RNAi and showed complete tGFP silencing after tGFP dsRNA (2.5µg/µl) injection 

(see table for treatment). The pupae of treatment 3, respectively, were injected with dsRNA against 

tGFP (2.5µg/µl) and represent the VSR rescue test. Only CrPVi line revealed efficient RNAi pathway 

suppression and displayed BB-tGFP fluorescence despite tGFP silencing (pupa in the red box). Due 

to the same results between several insertion lines, only one VSR insertion line for each UAS-VSR 
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construct is shown: CrPVi
56, B2i

22, DCVi
13, VP1i

23, p25i
30, p38i

55
 (i=inhibitor) (see materials and 

methods). 

4.2.3 Confirmation of CrPV1A as an efficient inhibitor  

In order to confirm the results from the previously described VSR approach (see 

section 4.2.2) a further test was performed, in which downregulation of a target gene 

should be rescued by the respective VSR expression. For that purpose, the Tribolium 

pigmentation gene Tc-ebony was used as target gene. Ebony codes for a NBAD (N-

beta-alanyl dopamine) synthetase, which is important for the formation of NBAD 

sclerotin and is known to be involved in body color formation in different insects 

(Hopkins and Kramer, 1992; Wright, 1987). Larval RNAi against Tc-ebony in the wild 

type (wt) SB strain led to darkening of the adult body color from red-brown to black 

(Fig. 4.9 A-B). In animals, a blocked RNAi pathway due to ubiquitous VSR 

expression should result in wild type body colored beetles despite Tc-ebony 

knockdown. 

For this VSR approach, UAS-VSR lines (red eye color) were crossed to a Boje-

Gal4 strain (black eye color), an enhancer trap line which appears to express Gal4 

ubiquitously during all developmental stages except for early embryos (0-24h) (see 

materials and methods). Larval progeny of these crossings were screened for black 

and red eye markers and subsequently treated with dsRNA against Tc-ebony. 

Injected animals (L6 instar larvae) were incubated for approximately three weeks at 

32°C until hatching and then analyzed for body color development. This treatment 

confirmed that the Cricket Paralysis virus protein, CrPV1A, is an efficient RNAi 

suppressor. Both CrPVi insertion lines revealed a wild type or dark-brown body color 

phenotype despite Tc-ebony downregulation, indicating that the RNAi machinery was 

effectively blocked (Fig. 4.9 C-D). Tc-ebony RNAi in transgenic lines with an active 

FHV B2 protein (B2i22 and B2i40) resulted in a diverse body color phenotype with 

46% black colored, 25% dark-brown colored and 29% wild type colored animals for 

B2i22 (Fig. 4.9 E) and 57% black colored, 14% dark-brown colored and 29% wild type 

colored animals for B2i40 (Fig. 4.9 F). This indicated some activity in suppressing of 

RNAi. Nevertheless, FHV B2 was excluded from further analysis due to insufficient 

RNAi inhibition in the previous rescue experiments (Fig. 4.7 and Fig. 4.8). The 

remaining VSRs were not able to interfere with the RNAi mechanism in my tests and, 

hence, were excluded from further study, as well (Fig. 4.9 G-O).  
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To avoid false positive results, I repeated the experiments, including positive 

controls which confirmed efficient Tc-ebony knockdown and achieved the same 

results for the analyzed VSRs (see numbers in the appendix Tab. 7.9). 

 

4.2.4 Silencing of endogenous Dicer-2 gene failed to suppress Tc-ebony RNAi 

In order to test whether silencing of the Tribolium gene Tc-Dcr-2 which encodes a 

protein involved in the RNAi pathway would lead to the same strong RNAi inhibition 

as described for CrPV1A, I designed a further transgenic line carrying inverted 

repeats against Tc-Dcr-2 (Tomoyasu et al., 2008). IRs have been reported to induce 

RNAi effect in Drosophila (Fortier and Belote, 2000; Kennerdell and Carthew, 2000; 

Lam and Thummel, 2000; Lee and Carthew, 2003; Martinek and Young, 2000) and 

IR-mediated Tc-Dcr-2 depletion should ensure RNAi suppression. 

The 3’ UTR of Tc-Dcr-2 mRNA was used as IR target. To enhance nuclear export 

of the transgene (Llopart et al., 2002; Maniatis and Reed, 2002) and exclude cloning 

difficulties (Kalidas and Smith, 2002; Lee and Carthew, 2003; Reichhart et al., 2002) 

a functional intron was placed between the IRs and the entire fragment was cloned 

downstream of the ubiquitously and constitutively active Tc-alpha-Tubulin1 promoter 

(Siebert et al., 2008) (see materials and methods). Upon mRNA expression of the 

transgene, it should form hairpin-loops and induce RNAi response leading to 

competitive inhibition of the endogenous Tc-Dcr-2 mRNA translation in Tribolium. 

Like the viral VSR strains, two independent transgenic insertion lines for this 

construct (called Dicer-i18 and Dicer-i22) were tested for the suitability to interfere with 

the RNAi mechanism.  

Larval offspring of the Dicer-i strains (blue eye marker) were screened for the eye 

marker and subsequently treated with dsRNA against Tc-ebony as described in 

section 4.2.3. However, both Dicer-i insertion lines did not show obvious RNAi 

suppression after RNAi (Fig. 4.9 P-Q). The same was true when repeating the 

experiment (see numbers in the appendix Tab. 7.9). 

In summary, of several RNAi inhibitors only CrPV1A revealed efficient RNAi 

suppression and could be used for further investigations.  
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Fig. 4.9: Tc-ebony silencing in several inhibitor lines confirmed CrPV1A as an effective RNAi 

suppressor. 

VSR lines expressing different viral proteins (CrPVi, B2i, VP1i, DCVi, p25i, p38i) as well as a Tc-Dcr-2 

IR-line (Dicer-i) were examined for the ability to suppress RNAi by injecting of dsRNA targeting the 

pigmentation gene Tc-ebony. (A-B) Positive controls: Larval RNAi (L6 instar larvae) against Tc-ebony 

(dsRNA concentration: 1.6µg/µl) in the wild type strain, SB, led to a black body color in (A) 94% or (B) 

68% of all treated animals. (C-O) VSRs were ubiquitously expressed and the respective animals were 
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injected with Tc-ebony dsRNA as the controls. (C-D) Both CrPVi lines displayed efficient RNAi 

suppression after RNAi. (E-F) FHV B2 expressing strains revealed a diverse body color phenotype 

after RNAi, indicating a minor RNAi suppression activity. (G-O) The remaining VSR lines did not show 

obvious RNAi suppression. (P-Q) Larval progeny of Dicer-i lines were treated with Tc-ebony dsRNA 

as described above but no RNAi inhibition was observed.  

 

4.2.5 CrPV1A does not interfere with development and reproduction  

For effective, local and/or temporal regulation of the RNAi pathway, the activated 

viral RNAi suppressor, CrPV1A, should not interfere with viability or development in 

Tribolium castaneum. I tested this by crossing both independent homozygous UAS-

CrPVi lines (CrPVi56 and CrPVi61) to Boje-Gal4 strain (homozygous) which activated 

CrPV1A in the offspring. The Boje-Gal4 line appears to express Gal4 ubiquitously in 

late embryonic, larval, pupal and adult stages but not in early embryonic stages when 

visualized by crossing to UAS-tGFP. Furthermore, there is no Gal4 expression in the 

ovaries (data not shown).  

As control, UAS-CrPVis, Boje-Gal4 and wild type, vermillion white, beetles were 

outcrossed with wild type beetles and the respective offspring were analyzed like the 

experimental animals. Each crossing assay was performed with 20 males and 20 

females.  

First, the developmental velocity of the transgenic progeny in relation to the 

controls was analyzed. To this end, 0-24h old embryos were collected, counted and 

incubated at 32°C until larval, pupal and adult stages. Subsequently, it was 

documented when the first 20 L5-L6 instar larvae, pupae and adults developed (Fig. 

4.10 A). The Gal4 driven VSR expression in the progeny (CrPVi56 X Boje and CrPVi61 

X Boje) had no significant effect on the developmental velocity (Fig. 4.10 A). The 

same was true for the amount of embryos compared to the control crossings (egg 

numbers ranged from 130 to 151) (see total numbers in grey in Fig. 4.10 A). Further 

egg collections were analyzed for larval hatch rates (hr), empty eggs (ee) (i.e. eggs 

which did not develop any cuticle structure) and cuticle phenotypes (i.e. larvae which 

developed but did not hatch) which were differentiated between cuticles without 

phenotype (wt) and with cuticle phenotypes (ph) (Fig. 4.10 B). The results revealed 

similarly high hatching rates ranged from 69-85%, low numbers of empty eggs (14-

19%) and very low levels of non-hatched larvae (1-13%), suggesting a quite similar 

development between the inhibitor strains and the controls. Finally, the comparison 
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of cuticles of unhatched L1 larvae and their comparison to the controls should 

indicate whether expression of CrPV1A interferes with development and 

reproduction. In case of unhatched cuticles, all available L1 larvae were analyzed. In 

case of hatched cuticles, 25 were scored per collection.  

Overall, CrPV1A expressing lines revealed similar defects as the controls 

(compare C, E with G, I, L, N and D, F with H, K, M, O in Fig. 4.10). The observed 

nature and frequency of cuticle defects which was also observed in wild types was 

possibly due to mutations in the genetic background. Importantly, the low numbers of 

unhatched animals in relation to the high numbers of hatched ones indicated a 

proper larval development. 

In conclusion, expression of the RNAi suppressor, CrPV1A, in late embryonic, 

larval, pupal and adult stages did not produce significant developmental defects and 

appeared not to interfere with reproduction. However, due to the lack of a ubiquitous 

Gal4 driver line, that promotes expression at all developmental stages including early 

embryos, these findings remain to be confirmed once such a driver is generated.  
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Fig. 4.10: Developmental analysis of CrPV1A expressing animals.  
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(A) Progeny carrying both, the responder UAS-CrPVi and the driver Boje-Gal4 (both insertion lines: 

CrPVi
56

 X Boje, CrPVi
61

 X Boje) as well as controls without CrPV1A expression (both insertion lines: 

CrPVi
56

 X wt, CrPVi
61

 X wt), control with only Gal4 expression (Boje X wt) and wild type control (wt X 

wt) were analyzed for developmental velocity. Absolute numbers for each egg collection are given in 

grey. Collected offspring were incubated at 32°C and the day was documented when the first 20 

larvae (L5-L6), pupae and adults emerged. (B) Further egg collections of the same crossings were 

used to investigate the hatch rates (hr), empty eggs (ee) and unhatched larvae that showed a wild 

type (wt) or a cuticle phenotype (ph) in percent. Absolute numbers for each egg collection are given in 

grey. (C, E, G, I, L, N) Unhatched cuticles of the same crossings were analyzed for morphological and 

bristle defects. All available non-hatched larvae were examined. (D, F, H, K, M, O) Hatched larvae of 

the same crossings were analyzed for cuticle defects. 25 L1 cuticles were scored per hatched 

collection. Abbreviations for the cuticle defects are given next to the corresponding bar once for each 

category. At br.: antenna bristles, vertex: vertex triple bristles, gena: gena triplet bristles, bell row: bell 

row bristles, maxilla: maxilla escort bristles, dorsal r.: dorsal ridge row bristles, tracheal: tracheal 

openings, T1-A8 br.: affected bristles of the thoracic segments T1-T3 and of the abdominal segments 

A1-A8. 

 

4.3 Temporal restriction of RNAi  

In order to gain temporal control over RNAi, I tested both the triggering of RNAi by 

the time of injection (called RNAi pulse) and the termination of RNAi by a heat shock 

mediated expression of the VSR (called hsVSR pulse). 

For testing I used the secondary pair-rule gene Tc-paired (Tc-prd) which is known 

to be a downstream target of primary pair-rule genes. It is required for the formation 

of all odd-numbered segments and downregulation of Tc-prd produces a typical 

secondary pair-rule phenotype with some missing gnathal (mandible and labium), 

thoracic (T2) and odd-numbered abdominal segments (Choe and Brown, 2007; Choe 

et al., 2006).  

 

4.3.1 Starting of an RNAi pulse by injection in staged embryos failed 

At late blastoderm stages the head and thorax anlagen are already established. 

By embryonic RNAi (eRNAi; injection of dsRNA into embryos) against the gene Tc-

prd in staged embryos (SB strain) I therefore aimed to find convenient developmental 

time point for the RNAi pulse (eRNAi arrowhead in Fig. 4.11 A) after which gnathal 

and thoracic segments are built normally, but abdominal segments are affected (Fig. 
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4.11 A). Upon injection into early elongating embryos, a strong Tc-prd phenotype 

(with a total of 4-5 abdominal segments (AS)) was expected which should decrease 

with later injections.  

Knockdown of Tc-prd in staged wild type embryos (aged 5-6h and 6-7h), 

developed at 32°C, resulted in a phenotype lacking mandible (Md), labium (Lb), 

second thoracic segment (T2) and urogomphi as well as an abdominal phenotype 

with a total of 4-5 AS (Fig. 4.11 B upper panels). However, injection into older 

embryos did not lead to the expected intact gnathal and thoracic segmentation in 

combination with defective abdominal segments. Indeed, the gnathal and thoracic 

phenotype seemed to be tightly linked to the abdominal phenotype i.e. both 

phenotypes were weaker or stronger depending on the timing of injection (see 7-8h, 

8-9h, 9-10h old embryos in Fig. 4.11 B upper panels).  

In order to check whether these results are due to the rapid development of 

embryos based on the high incubation temperature (32°C), I decreased the 

temperature to 25°C. At these conditions, the embryonic incubation time was 

duplicated because of the slowed down development. It should be noted that for both 

experiments embryos were incubated at the respective temperature before and after 

injection until cuticle preparation. Like in the first assay, Tc-prd dsRNA injection into 

15-16h or 16-17h old embryos led to a strong abdominal phenotype with 4-5 AS 

accompanied by anterior gnathal and thoracic defects, followed by a mainly wt 

phenotype when injected into embryos aged 17-18h, 18-19h and 19-20h (Fig. 4.11 B 

lower panels). Additional tests with younger embryos (10-15 hours) showed the same 

strong phenotype like described for embryos aged 15-16 hours (data not shown). 

Hence, Tc-prd RNAi in embryos with slowed embryonic development did not result in 

the expected normal gnathal and thoracic development but defective abdominal 

segmentation.  
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Fig. 4.11: Induction of RNAi by injection. 

(A) Scheme for the starting of RNAi by embryonic injection. Upon injection of dsRNA (eRNAi 

arrowhead) into staged embryos the expression of Tc-prd is expected to decrease (solid line). As 

blastodermal phase is unaffected by Tc-prd RNAi, only abdominal segments should be impaired 

(dashed line).  

(B) dsRNA of the secondary pair-rule gene Tc-prd was injected into staged embryos and cuticles were 

analyzed for anterior defects as well as the number of remaining abdominal segments. The absolute 

numbers for each cuticle analysis are given in grey. Before the injection procedure, embryos were 

kept at 32°C (upper panels) or 25°C (lower panels) until the respective age (5-6h to 9-10h and 15-16h 

to 19-20h) and after treatment, incubated at the same temperature for four or eight days, respectively, 

until cuticle preparations. The amount of cuticle defects of the head, thorax and urogomphi are shown 

in the left panels. The numbers of the remaining abdominal segments are shown in the panels on the 

right side. Abbreviations for the cuticle defects are given next to the corresponding bar. An: antenna, 

Lr: labrum, Md: mandible, Mx: maxilla, Lb: labium, T1-T3: thoracic segments 1 to 3, Urog: urogomphi, 

4AS-7AS: a total of four to seven abdominal segments, wt: wild type phenotype. 
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4.3.2 Heat shock induced VSR expression rescues abdominal segmentation of 

Tc-prd RNAi embryos 

Next, I asked whether it was possible to suppress the RNAi effect by activation of 

VSR during GZ-elongation in order to regain previously silenced gene expression. 

For that purpose, Tc-prd served again as control gene. Two transgenic hsVSR lines 

(hsCrPVi47 and hsCrPVi49) were generated, carrying CrPV1A under the control of a 

heat shock promoter (Schinko et al., 2012) (see materials and methods). Both 

insertion lines were tested in the rescue experiments. Heterozygous or homozygous 

hsVSR pupae were selected for their DsRed eye marker. Female pupae of these 

animals were injected with Tc-prd dsRNA (2.7µg/µl) and, subsequently, crossed to 

transgenic males for mating and egg deposition. Hence, at least 75% of the 

embryonic offspring should be heterozygous or homozygous for the transgene 

hsCrPVi. Parental RNAi against Tc-prd (pRNAi arrowhead in Fig. 4.12) should affect 

embryonic blastodermal patterning, leading to anterior structure defects in the 

gnathal and thoracic segments of the progeny. The subsequent heat shock mediated 

VSR activation (hsVSR in Fig. 4.12) during elongation should be able to recover the 

expression of the secondary pair-rule gene Tc-prd, resulting in a rescued abdominal 

segmentation (Fig. 4.12 increasing lines). The segmentation was considered to be 

rescued if the heat shocked Tc-prd RNAi cuticles revealed six to eight AS in contrast 

to the non-heat shocked control Tc-prd RNAis, which showed a strong abdominal 

phenotype with four to five AS (Fig. 4.13, Fig. 4.14 B). In order to establish the proper 

time point for the VSR pulse, RNAi embryos developed at 32°C until they reached 

germ rudiment to elongation stages (egg collections of 10-15h, 11-16h and 12-17h 

old embryos) and then heat shocked for 10 minutes at 48°C to activate the RNAi 

suppressor (see materials and methods) (Fig. 4.12, 4.13). In parallel, wt embryos of 

the same age were stained for Tc-wg expression to determine the embryonic stage 

at the heat shock treatment (Fig. 4.12). Furthermore, transgenic, non-heat shocked 

Tc-prd RNAi embryos and non-injected but heat shocked embryos were used as 

controls (Fig. 4.13).  

As expected, VSR activation in staged Tc-prd RNAi embryos of the lines 

hsCrPVi47 and hsCrPVi49 resulted in a strong defective gnathal and thoracic 

phenotype (Fig. 4.13 A-B left panels, Fig. 4.14 B-E) but rescued abdominal 

phenotype (Fig. 4.13 A-B right panels, Fig. 4.14 D). This phenotype was observed in 

each egg collection (Fig. 4.13). Especially, heat shocks of transgenic RNAi embryos 
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at the age of 10-15h led to a high number of cuticles with restored abdomen (38% of 

line hsCrPVi47 and 25% of hsCrPVi49) (Fig. 4.13). The remaining treated embryos 

revealed either a shortened abdomen with 4-5 AS (Fig. 4.13, Fig. 4.14 C) or 

undefined segmentation number (called “no segmentation” in Fig. 4.13 right panels, 

Fig. 4.14 E).  

Furthermore, the transgenic line hsCrPVi49 tended to exhibit lower cuticle numbers 

with rescued AS than line hsCrPVi47, indicating some position effect (Fig. 4.13, 

compare right panels of A and B). 

 

 

Fig. 4.12: Model for the abdominal rescue approach by VSR activation. 

Parental RNAi (arrowhead) of the secondary pair-rule gene Tc-prd silenced the expression 

(decreasing solid line represents the downregulated gene expression) in pupal, adult and embryonic 

stages. In order to rescue Tc-prd function during GZ-elongation, egg collections with embryos aged 

10-15h, 11-16h and 12-17h (developed at 32°C) were heat shocked twice for 10 minutes at 48°C (see 

further details in materials and methods) to start VSR expression (bars indicate the age of the 

respective egg collections at the time when the first heat shock was performed). Suppressor activation 

in staged embryos resulted in rescued Tc-prd expression, associated with rescued abdominal 

segmentation (increasing lines represent rescued gene expression and rescued segmentation; solid 

line for 10-15h old embryos, dotted line for 11-16h old embryos and dashed line for 12-17h old 

embryos). Anterior segmentation was, however, impaired due to the knockdown of Tc-prd expression 

(decreased line during embryogenesis). Embryonic developmental stages corresponding to the timing 

of the first heat shock were determined by Tc-wg staining. As an example, a 10h old germ rudiment, a 
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13h old germ band with five Tc-wg stripes, a 15h old elongating germ band with nine Tc-wg stripes 

and a fully elongated 17h old germ band stage with fifteen Tc-wg stripes are shown (anterior is up). 

 

Fig. 4.13: Cuticle defects post parental Tc-prd RNAi followed by RNAi rescue in staged 

embryos  
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(A, B)Two transgenic insertion lines carrying heat shock inducible CrPV1A were used (hsCrPVi
47 

in A 

and hsCrPVi
49

 in B) for the abdominal rescue approach. pRNAi against Tc-prd was followed by heat 

shock mediated CrPV1A activation in staged embryos (prd RNAi;+hs) (see respective age at the left). 

Absolute numbers for each cuticle analysis are given at the right. The percentage of cuticle defects in 

head, thorax and urogomphi are shown in the left panels. The numbers of remaining abdominal 

segments are shown in the right panels. Transgenic, non-heat shocked Tc-prd RNAi embryos (prd 

RNAi; -hs) served as RNAi controls. Transgenic, non-injected but heat shocked embryos (hs control) 

served as heat shock controls. Abbreviations for the cuticle defects are given next to the 

corresponding bar once for each insertion line and category. An: antenna, Lr: labrum, Md: mandible, 

Mx: maxilla, Lb: labium, T1-T3: thoracic segments 1 to 3, Urog: urogomphi, 1AS-8AS: a total of one to 

eight abdominal segments, no s.: no visible abdominal segments, wt: wild type phenotype. 

 

 

Fig. 4.14: L1 larval cuticle phenotype classes after Tc-prd pRNAi and RNAi rescue by VSR 

activation. 

Anterior is to the left. (A-E) Lateral views. (B-E) Transgenic embryos carried hsCrPV1A (at least 75%). 

(A) Wild type untreated L1 cuticle. (B) Non-heat shocked Tc-prd RNAi control cuticle represents a 

strong RNAi phenotype with missing gnathal segments (mandibles and labium) and thoracic segment 

T2 as well as with remaining 4 AS (white arrows). (C) Heat shocked Tc-prd RNAi cuticle with 4-5 AS 

(white arrows) and gnathal and thoracic defects like in B, indicating that the rescue was not successful 

either due to the age of the embryo or because the embryo did not inherit the construct (25%). (D) 

Heat shocked Tc-prd RNAi cuticle with 7 AS (white arrows) and gnathal and thorax defects like in B, 

indicating that the RNAi effect was successfully rescued. (E) Heat shocked Tc-prd RNAi cuticle 

represents the “no segmentation” phenotype. Cuticle shows gnathal defects like in B and missing 

thoracic (T2 and T3) and abdominal segments. Abbreviations: An: antenna, Lr: labrum, Md: mandible, 

Mx: maxilla, Lb: labium, T1-T3: thoracic segments 1 to 3, A1-A8: abdominal segments 1 to 8, wt: wild 

type.  
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5 Discussion 

5.1 RNAi target genes for pest control 

5.1.1 Necessity for more efficient target genes  

RNA interference appears to be a promising method for pest control. Sequence-

specific gene silencing by RNAi enables targeting of individual or closely related 

species selectively. The fact that some insects are able to trigger RNAi response 

after dsRNA ingestion led to the development of insecticidal RNAi approaches in 

plants (Baum et al., 2007; Mao et al., 2007). For instance, transgenic corn plants 

have been engineered to express dsRNA targeting the vacuolar ATPase gene of the 

western corn rootworm. Upon feeding on these plants, the dsRNA induced gene 

silencing in the WCR, resulting in its death (Baum et al., 2007). Despite this 

efficiency, only early larval stages of the western corn rootworm were affected by 

ingestion of plant derived dsRNA, indicating that the effectiveness of target gene 

silencing needs to be increased (Bucher, personal communication).  

Potential reasons for this observation might be limited or insufficient dsRNA 

expression levels in transgenic plants to elicit an RNAi response in late larval stages 

of WCR. It is suggested that high doses of dsRNAs are required to trigger a strong 

RNAi effect upon ingestion (Terenius et al., 2011; Tian et al., 2009; Zhang et al., 

2013). Besides, it has been demonstrated that the production of dsRNAs in 

transgenic plants is limited because it is hampered by endogenous plant RNAi 

machinery, which cleaves long dsRNAs into siRNAs (Pitino et al., 2011; Thakur et al., 

2014; Zha et al., 2011). These siRNAs are less potent than long dsRNAs possibly 

because short dsRNAs (≤60 bp) are not efficiently taken up by insect cells (Kumar et 

al., 2012; Mao et al., 2007; Miller et al., 2012).  

The identification of efficient target genes that kill the pest even at low dsRNA 

concentrations independent of the developmental stage of the organism is thus 

essential for RNAi based pest control techniques. Unfortunately, the detection of 

suitable RNAi target genes by high-throughput-screens is not feasible in pest species 

due to missing genomic and genetic tools and difficult rearing conditions. 
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5.1.2 The large scale RNAi screen reveals novel genes for application in pest 

control  

The large scale, unbiased RNAi screen, iBeetle, in the red flour beetle, Tribolium 

castaneum is a great opportunity to identify novel gene functions which might be 

more representative for insects because the beetle development is believed to be 

more ancestral than that of Drosophila (Bucher and Wimmer, 2005; Klingler, 2004; 

Lynch and Roth, 2011; Schröder et al., 2008; Tautz et al., 1994). In the iBeetle 

screen, a large number of genes were investigated, resulting in the identification of 

novel genes that induced lethality upon knockdown. (Schmitt-Engel et al., accepted) 

(Dönitz et al., 2015). Indeed, by re-injection and titration experiments, I selected the 

best 40 and eleven RNAi target genes which caused organism death even when 

provided in minute amounts. This high mortality rate is an important factor for the 

application of target genes in RNAi-mediated crop protection as already mentioned in 

section 5.1.  

The most efficient eleven RNAi target genes induced lethality at different 

developmental stages in Tribolium (Fig. 4.1, Fig. 4.2) and did not show any strain 

specificity since they were tested in three different strains: the pig19 and D17Xred 

strains during the iBeetle screen and the San Bernardino strain during my thesis 

(Schmitt-Engel et al., accepted) (Kitzmann et al., 2013). The efficacy of these genes 

is therefore based on their essential roles during development, probably due to 

housekeeping functions. Hence, the respective orthologs are likely to be effective 

targets in other pest species.  

 

5.1.2.1 Tests in further pest species are required 

The analysis of the eleven RNAi target genes revealed a more efficient RNAi 

effect and therewith a much higher mortality rate than the orthologs of previously 

published genes (Baum et al., 2007) which I tested in Tribolium by dsRNA injection 

(Fig. 4.1 N-R). However, these genes induced lethality in WCR upon dsRNA 

ingestion, while all RNAi experiments in Tribolium were performed by injection 

procedure. Moreover, it has been shown that the effectiveness of a target gene might 

vary among species which could be due to varied susceptibility of several organisms 

to different RNAi targets (Kwon et al., 2013; Li et al., 2013, 2011a, 2011b; Upadhyay 

et al., 2011). To investigate the efficacy of the identified RNAi target genes, dsRNA 
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feeding approaches in further pest species are therefore necessary. Although high-

throughput screening of thousands of genes is challenged in pest species, the testing 

of a restricted set of RNAi target genes (namely ten to 40 targets) is feasible.  

 

5.1.2.2 Off target effects on non-target organisms cannot be excluded but are 

improbable 

The high selectivity of RNAi-mediated crop protection is based on the nucleotide 

sequence identity of the dsRNA to its target gene sequence. However, 

downregulation of genes in non-target organisms have also been reported (Baum et 

al., 2007). For instance, dsRNA against vATPase of the Colorado potato beetle 

(CPB; Leptinotarsa decemlineata) also silenced the orthologous gene in the western 

corn rootworm, indicating an off target effect on a non-target organism (Baum et al., 

2007). Hence, to reduce off target effects in non-target organisms it has been 

suggested to use RNAi target genes which are species-specific. The analysis of the 

eleven Tribolium RNAi targets, however, indicated that species-specific genes will 

have as many off targets in non-target organisms as highly conserved proteins. This 

became apparent when potential off target sites, targeting genes of other species, 

were plotted against their RNAi target gene nucleotide sequence. There was no 

obvious correlation between the number or location of potential off targets and 

conserved protein regions (see black bars in Fig. 4.4). In contrast, off target stretches 

were also found in less conserved non-coding UTRs. This indicates unpredictable, 

evenly distributed putative off target sites (see open bars in Fig. 4.4). Additionally, a 

Tribolium-specific gene also led to putative off target sites in a non-target organism 

as demonstrated in Aedes aegypti. Although Aedes aegypti missed an orthologous 

gene of L76 (hsc70-3) (Fig. 4.6 A; Fig. 7.2 H), the search for off targets in the 

transcriptome database of this species resulted in potential off target stretches when 

using the Tribolium specific L76 nucleotide sequence (Fig. 4.4 H).  

Moreover, the more species were added to this analysis, the more difficult it was to 

find off target free stretches. It should be noted, that potential off target sites were 

identified by searching the nucleotide sequences for siRNAs with an exact sequence 

identity of ≥17 nucleotides (Kulkarni et al., 2006). However, further reports have 

shown that siRNAs with as few as seven nucleotides of sequence complementarity to 

an mRNA can also trigger silencing of unintended genes (Birmingham et al., 2006; 

Jackson et al., 2006; Lin et al., 2005). These results indicate that it is difficult if not 
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impossible to predict dsRNA fragments without off target sites in non-target 

organisms even when using species-specific genes. 

Despite this finding, the species specificity of the RNAi based pest control 

technique remains unchallenged when compared to other methods that usually target 

all or at least many species. The chance that in silico predicted siRNAs of an 

arbitrary range of length (from 17 to 29 nt) will induce off target effects range from 5 

to 80% (Qiu et al., 2005). It is therefore impossible to predict whether the identified 

potential off target sites will induce an RNAi response in non-target organisms. 

However, at least half of the unwantedly target genes will not result in lethality due to 

the fact that about 50% of investigated genes in large scale screens lead to a 

phenotype when mutated or silenced in Drosophila or Tribolium (Schmitt-Engel et al., 

accepted) (Mullins et al., 1994; Nusslein-Volhard, 1994; Wieschaus et al., 1984). 

Further, only individuals that eat the protected plants will suffer. And finally, only a 

small number of non-target organisms will be able to induce RNAi response after 

dsRNA digestion because many species lack a dsRNA uptake mechanism in gut 

cells (Huvenne and Smagghe, 2010).  

These results indicate that efforts to increase safety should focus on selected 

species (e.g. beneficial insects, other herbivores) that need to be protected in the 

respective given ecological setting. This can be accomplished by designing target 

sequences without potential off target stretches in these organisms. Furthermore, 

selected dsRNAs could be tested in vivo by feeding treatments in the respective 

species.  

 

5.1.3 GO term clusters are predictive for efficient RNAi target genes and 

identify the proteasome as prime target  

By using the top 40 RNAi target genes, GO term clusters were identified that are 

predictive for genes with lethal phenotype upon RNAi. The search for the most 

efficient RNAi targets in e.g. gut transcriptomes of pest species may therefore be 

accelerated by selecting genes that show these GO term combinations. 

Furthermore, it was possible to detect the proteasome as prime RNAi target by 

using these clusters. The first two clusters revealed the highest biological 

significance (due to the highest enrichment score; see materials and methods) and 

were related to proteasome function (Fig. 4.6 C). The significance of proteasome 
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function was confirmed by the fact that almost all novel Tribolium orthologs that 

shared the same GO term annotations and were analyzed in the iBeetle screen 

showed a strong lethal phenotype upon RNAi (Fig. 4.6 B). 

The proteasome is a multi-protein complex which is composed of at least 32 

different proteins. It is conserved among eukaryotic cells and plays an important role 

in catalyzing various essential functions (see section 2.1.4). Therefore, silencing of 

genes involved in proteasome assembly or in related pathways might be an excellent 

method for RNAi-mediated pest control. For instance, it has been demonstrated that 

downregulation of a proteasome subunit gene, Rpn7, in the root knot nematode, 

Meloidogyne incognita, led to a significant reduction of nematode motility and 

reproduction. The same was observed when the nematode fed on transgenic plants 

which were engineered to express dsRNA against Rpn7, indicating that proteasome 

genes are promising candidates for controlling this plant parasitic nematode (Niu et 

al., 2012). Further studies concerning the 26S proteasome function in C. elegans 

have shown that RNAis targeting different 26S proteasome subunit genes resulted in 

embryonic and postembryonic lethality, indicating an essential function of these 

genes (Takahashi et al., 2002). Moreover, two of the most efficient eleven RNAi 

target genes in this thesis are subunits of the 26S proteasome (L80 and L84, see Fig. 

4.6 A) and seven proteasomal genes rank among the best 40 RNAi targets (see Fig. 

4.6 C and appendix Tab. 7.5). In total, fourteen different genes (seven genes of the 

top 40 targets and seven novel genes in the GO term analysis; see cluster 1 in the 

appendix Tab. 7.6) involved in proteasome assembly or pathway were recognized in 

this study. Of these, thirteen induced significant mortality when downregulated in 

Tribolium. It will be interesting to test whether further genes of the proteasome 

pathway will elicit the same strong lethality in RNAi approaches. Nevertheless, these 

results coincide with the assumption that genes related to proteasome function might 

be ideal target genes for pest control. However, the proteasome pathway is 

conserved across different species. Therefore, biosafety is only achieved by RNAi 

mediated approaches due to the fact that the pathway can be triggered in a 

sequence-specific way. The application of chemicals against this pathway would 

affect non-target organisms. 
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5.1.3.1 Potential reasons for the failure to identify predictive GO term clusters 

for the top eleven RNAi target genes  

It was not possible to identify predictive GO term combinations for the most 

effective eleven RNAi target genes, indicating that these genes either do not share 

similarities or existing similarities were not detected. As not all genes are linked to a 

GO term annotation, clustering was incomplete and might lack important term 

combinations. Furthermore, functional annotation clustering of GO terms for the 

eleven RNAi target genes resulted in three clusters (data not shown) but it was not 

possible to find Drosophila genes that shared the respective annotations. A possible 

explanation is that GO terms change with new discoveries, resulting in redundant or 

obsolete annotations. In line with this assumption, the last DAVID database update 

was in 2009 (Huang et al., 2009a, 2009b) whereas the Flybase Query Builder, which 

was used to find Drosophila genes that shared the respective GO term combinations, 

was last updated in 2013 (Gelbart et al., 1997). Some GO annotations might 

therefore be not compatible with the Flybase database. The same “not up-to-date 

situation” was observed when using other tools for GO term analysis like e.g. 

WebGestalt at that time (data not shown) (Zhang et al., 2005). Finally, an input 

number of eleven genes might be insufficient to perform statistical analyses, leading 

to the identification of rather general terms. Thus, large gene lists have higher 

statistical power, resulting in higher sensitivity for more specific terms.  

 

5.1.4 Possibilities to increase the efficacy of the identified RNAi target genes 

As already mentioned, if RNAi target genes are expressed in transgenic plants, 

their efficiency can be reduced by endogenous plant RNAi machinery (Pitino et al., 

2011; Thakur et al., 2014; Zha et al., 2011). It has been suggested that combinatorial 

RNAi could enhance the effectiveness of RNAi based control strategies by e.g. 

synergistic effects (Gu and Knipple, 2013; Price and Gatehouse, 2008). However, my 

results demonstrate that silencing of different RNAi target genes in double 

knockdowns do not result in synergism and increased lethality of the organisms (Fig. 

4.3).This indicates that either more genes should be tested for synergism or that the 

efficiency of RNAi mediated pest control cannot be enhanced by synergistic action in 

combinatorial RNAis. Therefore, further methods are required to improve the pest 

control approach.  
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One possibility to overcome the reduction of RNAi effects could be a target gene 

expression in plant chloroplasts. It has been shown that chloroplasts lack an 

endogenous RNAi machinery. Therefore, the expression of dsRNAs in these cellular 

compartments of transgenic tomato plants led to stable dsRNA production (Zhang et 

al., 2015). Chloroplast expression of long dsRNAs should thus be the preferred way to 

retain the effectiveness of identified RNAi target genes.  

 

5.1.5 The identification of more efficient RNAi target genes is unlikely 

The most efficient RNAi target genes induced a mortality rate of 100% within eight 

days after injection even when dsRNAs were provided in minute amounts (Fig. 4.1). 

As the iBeetle screen comprised one third of the genome, it is not likely that any gene 

will be found which induces organism death more rapidly. However, it remains 

unclear why there is a time-lag between the RNAi treatment and the organism death. 

Such a time delay has already been reported for WCR as well as the flea beetle 

(Baum et al., 2007; Zhao et al., 2008). On the one hand, RNAi is not able to affect 

already produced proteins. Hence, it takes time until the respective proteins are 

degraded, resulting in a time-lagged organism mortality. On the other hand, it is 

unknown how fast the dsRNA is distributed and enters the cells. Quantitative real 

time PCR (RT-qPCR) would be helpful to investigate this assumed time-lag in 

Tribolium. Finally, the requirement for RNAi amplification could account for the 

delayed mortality. Although insects apparently lack an RdRP which is responsible for 

RNAi amplification and systemic spread in C. elegans, RNAi amplification in 

Tribolium might be based on a different mechanism (Sijen et al., 2001; Tomoyasu et 

al., 2008). Such an amplification mechanism could explain the fact that low 

concentrated dsRNAs triggered organism death but with delay. 
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5.2 Investigation of RNAi suppressors in Tribolium  

5.2.1 The viral protein CrPV1A reveals a broad RNAi suppression activity 

among different species including Tribolium 

A method by which the RNAi mechanism can be suppressed might allow 

controlling the pathway in different ways. For instance, by temporal repression and 

activation of the RNAi mechanism, the time point when gene silencing should occur 

can be determined. Local inhibition of RNAi might permit gene silencing in restricted 

tissues.  

To identify an effective way for RNAi inhibition, six different viral suppressors of 

RNAi as well as transgenic RNAi, targeting the Dicer-2 gene, were tested. Of these, 

the Cricket Paralysis virus protein CrPV1A was the most potent suppressor of RNAi 

in Tribolium (Fig. 4.8, Fig. 4.9). These results correspond to studies in which the 

Cricket Paralysis virus has been reported to be a highly efficient virus of several 

species in the lab, indicating a broad activity among different organisms (Nayak et 

al., 2010; Plus et al., 1978; Reinganum et al., 1970). This broad host spectrum may 

rely on a broadly effective RNAi inhibition mechanism. 

 

5.2.1.1 Failed test of local suppression of CrPV1A: Experimental design or 

limitation of the technique? 

Spatial RNAi inhibition is an important factor when establishing a tool for gene 

functional studies in specific tissues. In order to investigate whether CrPV1A is able 

to locally suppress RNAi, EGFP was expressed ubiquitously (by heat shock 

activation) while the VSR was activated in a nested domain (by Gal4/UAS). After 

silencing, EGFP should be suppressed in all tissues except for those that expressed 

an active VSR. However, it was not possible to confirm that CrPV1A locally inhibits 

the RNAi pathway. Likewise, it was not possible to locally suppress the silencing of 

heat shock activated ubiquitous EGFP expression (Fig. 4.7). 

 

Potential ubiquitous CrPV1A activity 

An important factor for this analysis was a continuous local expression of RNAi 

inhibitor. In my approach the VSR was activated by the BB-Gal4 driver line which 
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displayed spatially restricted expression pattern in late larval, pupal and adult stages 

but ubiquitous expression in early larval stages. Hence, the activation of the VSR by 

BB-Gal4 in young larvae resulted in initially ubiquitous suppressor protein activity, 

which might still operate (depending on the protein stability) when Gal4 expression 

was already restricted to the BB pattern. Upon EGFP RNAi, the silencing of EGFP 

might therefore be not only prevented in the BB region but rather in the entire animal. 

 

Local suppression might be impeded by spread of CrPV1A throughout the 

body 

Several reports in plants have shown that plant viruses defective for their RNAi-

suppressors displayed an impaired long distance movement and were even 

incapable to move from cell-to-cell (Chu et al., 2000; Hacker et al., 1992; Kasschau 

and Carrington, 2001). Further studies have investigated the situation in fruit flies 

which were injected with a recombinant Sindbis virus that was engineered to express 

GFP and the RNAi suppressor CrPV1A. Sindbis virus that expressed CrPV1A 

showed a dramatic increase of virus replication (visualized by GFP), suggesting that 

the RNAi suppressor might be involved in virus spread (Nayak et al., 2010). This 

could be due to a potential capability of CrPV1A to cross cell boundaries. If this is the 

case, then locally expressed VSR protein might spread from the BB-restricted tissue 

(where it was activated by Gal4/UAS) throughout the whole organism, resulting in 

widespread suppression of the RNAi mechanism. This might also explain why 

downregulation of the ubiquitously expressed EGFP did not result in the expected 

BB-specific EGFP fluorescence (Fig. 4.7).  

Alternatively, the reported virus replication and spreading might be just a 

consequence of VSR-mediated RNAi suppression but not VSR spreading itself. The 

RNAi machinery functions as an antiviral defense response to limit the extent of virus 

invasion. This limitation is mostly accompanied by systemic spreading of a virus-

specific immunity signal (i.e. siRNAs) to uninfected tissues (Saleh et al., 2009; 

Voinnet, 2005). Most RNAi suppressors interfere with this signal and might thereby 

enable viral movement and infection of surrounding cells (Lakatos et al., 2006; Li et 

al., 2002; Lingel and Sattler, 2005; Scholthof, 2006; Voinnet et al., 1999). Therefore, 

the question whether CrPV1A is actually capable to spread from its expression 

location remains unclear and needs further investigation. Western blot analyses 
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could quantify inhibitor protein in various tissues (e.g. BB tissue versus abdomen) 

and thereby clarify whether VSR can spread in Tribolium.  

 

Improvements in the experimental design are necessary 

The argumentations about locally non-restricted inhibitor activity do not explain 

why no differences in EGFP fluorescence signal in relation to the controls were 

recognized. For instance, if CrPV1A was indeed active in the entire animals and 

thereby inhibited EGFP downregulation in the pupae, there should be obvious 

differences in fluorescence between the pupae of the treatment and the control. But it 

was not the case. In all pupae, EGFP expression appeared to be downregulated to 

the same extent. Hence, it could be that the heat shock mediated EGFP expression 

level was not high in the BB tissue. It is not known, what tissue or organ is marked by 

BB and it is not certain whether EGFP was efficiently activated in the VSR 

expressing tissue by the heat shock. In that case, CrPV1A was probably able to 

rescue EGFP signal in the BB domain, but this signal might have been too faint to be 

apparent. Further, a faint BB-EGFP fluorescence might also be masked by the 

autofluorescence of pupal wings. Moreover, EGFP expression was activated by 

performing one heat shock pulse in Tribolium pupae. However, there is some 

evidence that two heat shocks with a regeneration time of two hours in between 

might be more efficient in activating gene expression (Oberhofer, 2014). Further tests 

with two heat shocks for target gene expression could clarify this issue. Besides, 

different driver, reporter and target gene strains should be used to test the ability of 

this VSR to locally inhibit the RNAi mechanism. 

A line with Tc-polyubiquitin driven GFP expression might reveal a much stronger 

signal than the heat shock line (Lorenzen et al., 2002b). Another possibility would be 

the activation of the VSR in Tribolium wings by a Gal4 driver line which has recently 

been identified during an enhancer trap screen in the lab (Bucher, personal 

communication). Silencing of the pigmentation gene Tc-ebony in this genetic 

background could clarify the question about the potential of the RNAi inhibitor to 

locally suppress RNAi. An adult phenotype with wild type, red-brown wings but black 

body color phenotype would indicate a disrupted RNAi mechanism exclusive in the 

wings but intact mechanism in the remaining tissues.  
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5.2.1.2 CrPV1A has probably no effect on the microRNA pathway 

The identification of the viral RNAi suppressor CrPV1A which efficiently impaired 

the RNAi mechanism in Tribolium raised the question of whether this inhibitor will 

interfere with the viability or development when ubiquitously expressed in transgenic 

organisms. This is important for further application of CrPV1A to regulate gene 

silencing in temporal and/or spatial manner. Developmental defects would hamper 

gene functional studies, leading to invalid results. In Drosophila, for example, 

CrPV1A neither affects the normal physiology nor the development of transgenic flies 

(Nayak et al., 2010). The same could be true for Tribolium based on my experiments. 

Except for some bristle defects, ubiquitously activated CrPV1A expression did not 

significantly influence the viability or development of transgenic progeny compared to 

the controls (Fig. 4.10). Due to similar frequency of affected bristles in the controls, 

these defects might be explained by mutations in the genetic background.  

Furthermore, CrPV1A expression in transgenic fruit flies does not interfere with the 

miRNA pathway which plays an important role in different developmental processes 

(Nayak et al., 2010). Viral impairment of miRNAs is mostly accompanied by 

developmental defects in the organisms which resemble defects observed in mutant 

species deficient in their miRNA pathway (Chapman et al., 2004; Dunoyer et al., 

2004; Lecellier et al., 2005; Pasquinelli et al., 2005; Yu et al., 2006). The fact that 

CrPV1A did not significantly affect Tribolium development might indicate an intact, 

unaffected miRNA pathway.  

However, CrPV1A was activated by a Gal4 driver line which expressed the 

inhibitor in late embryonic, larval, pupal and adult stages but not in early embryos. 

Hence, some interference with viability might have been missed. A transgenic line 

which ubiquitously and constitutively expresses CrPV1A in all developmental stages 

(driven by e.g. polyubiquitin promoter) is necessary to confirm my results.  

 

5.2.2 VP1 and CrPV1A reveal similar suppression mechanism but different 

potency 

The Nora virus suppressor protein VP1 acts like CrPV1A by Ago-2 inhibition (van 

Mierlo et al., 2012; Nayak et al., 2010). Despite the similar mechanism, both proteins 

revealed different RNAi suppression outcomes. While CrPV1A efficiently interfered 

with RNAi in Tribolium, there was no obvious suppression activity of VP1 (Fig. 4.7, 
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4.8, 4.9). Presumably both inhibitor proteins might interact with different domains or 

sequences of Ago-2. For instance, CrPV1A might bind conserved domains of Ago-2, 

like PIWI or PAZ, while VP1 might act on species-specific non-conserved sequences 

(van Mierlo et al., 2014; Obbard et al., 2006). This assumption corresponds to 

recently published data in which suppressor proteins of several Nora-like viruses of 

diverse Drosophila species have been demonstrated to be highly host-specific (van 

Mierlo et al., 2014). Therefore, despite the same inhibition mode of CrPV1A and VP1 

the exact interaction domains or sequences might be of prime importance for efficient 

RNAi silencing in different species.  

 

5.2.3 Potential reasons for the failure of FHV B2 and DCV1A  

The FHV B2 is able to inhibit the RNAi mechanism in several organisms like 

Drosophila, C. elegans, as well as plants (Li et al., 2002; Lingel et al., 2005; Lu et al., 

2005; Singh et al., 2009). The mode of action of FHV B2 relies on its ability to bind 

dsRNAs as well as siRNAs and thereby protect them from Dicer and RISC 

recognition (Chao et al., 2005; Fenner et al., 2006, 2007; Li et al., 2002; Lingel et al., 

2005). Therefore, this suppressor should be functional irrespective of the organism. 

However, in Tribolium the capability of B2 to inhibit the RNAi pathway remains still 

unclear. While FHV B2 did not show suppression of tGFP RNAi which was driven by 

the Gal4/UAS system (Fig. 4.8), it displayed slight inhibition of Tc-ebony RNAi (Fig. 

4.9 E, F). It seems that B2 interferes to some extent with the RNAi mechanism but 

this interference might be not sufficient enough. Likewise, in Drosophila the Flock 

House virus is less virulent than the Cricket Paralysis virus which might correlate with 

a less potent RNAi suppressor of FHV (Wang et al., 2006). Considering the mode of 

action of B2 it is quite likely that high amounts of B2 are needed to bind all applied 

dsRNAs or siRNAs to block RNAi against highly expressed genes. Hence, either the 

B2 expression level was insufficient to efficiently disrupt RNAi or the expression 

levels of target genes were too high to be completely rescued or both. The applied 

dsRNA concentration might be a further important factor. Indeed, silencing of Tc-

ebony in B2 expressing animals using 1.6µg/µl concentrated dsRNA resulted in a 

minor interference with RNAi (Fig. 4.9 E, F). The knockdown of tGFP, however, using 

2.5µg/µl concentrated dsRNA was not suppressed by this VSR (Fig. 4.8). To test 
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whether the concentration was actually responsible for these varying outcomes, the 

different approaches should be repeated with decreased dsRNA concentrations. 

Besides, FHV B2 has also been demonstrated to bind the PAZ domain of Dicer 

proteins in armyworm cells (Singh et al., 2009). Tribolium Dicer-2, which is involved 

in the RNAi pathway contains a PAZ domain, but this is more diverged compared to 

the domains of Tc-Dicer-1 and Dm-Dicer-1 (Tomoyasu et al., 2008). Hence, the 

inefficiency of B2 in Tribolium might be a result of the diverged Dicer-2 PAZ domain. 

However, Drosophila Dicer-2 protein is assumed to lack PAZ but FHV B2 is still able 

to impair the RNAi mechanism in this species (Berry et al., 2009; Lee et al., 2004; 

van Rij et al., 2006; Tomoyasu et al., 2008; Wang et al., 2006). Therefore, whether 

the PAZ interaction plays an essential role for B2-mediated RNAi suppression in 

Tribolium and Drosophila remains unclear.  

The RNAi suppressor of Drosophila C virus, DCV1A, functions in a similar way as 

FHV B2, namely by binding long dsRNAs but not siRNAs (van Rij et al., 2006). In my 

tests, it did not show any RNAi inhibition activity in Tribolium (Fig. 4.7, 4.8, 4.9). This 

inefficiency might have the same reasons like B2. However, a further reason for the 

failed RNAi suppression might be the assumed additional ability of the inhibitor to 

affect the RISC complex assembly (Nayak et al., 2010). The detailed mechanism 

how DCV1A interferes with RISC in Drosophila is still unclear but the interaction 

proteins/domains/sequences might differ to those of Tribolium. 

 

5.2.4 Plant viral RNAi suppressors p38 and p25 might be ineffective in 

Tribolium due to their non-conserved interaction partners 

The viral suppressor p38 from the Turnip Crinkle virus has been shown to bind 

Ago-1 of plants by imitating host endogenous GW-containing proteins to recruit Ago 

proteins (Azevedo et al., 2010). This binding blocks RISC complex assembly and 

thereby disrupts the RNAi mechanism in plants. While p38 interfered with the RNAi 

mechanism in animal cell culture, it did not reveal any activity in the fruit fly (Berry et 

al., 2009; Dunoyer et al., 2004). The same was true for the flour beetle in my 

experiments (Fig. 4.7, 4.8, 4.9). GW-containing proteins have been demonstrated to 

be functionally and evolutionarily conserved and are among others necessary for 

Argonaute binding in several species, including Drosophila melanogaster (El-Shami 

et al., 2007). Both Dm-Ago-1 and Dm-Ago-2 which are involved in the miRNA and 
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siRNA pathway, respectively, are able to interact with GW proteins (e.g. GW182) 

(Behm-Ansmant et al., 2006; Schneider et al., 2006). However, despite this 

interaction of GW domains with Ago proteins and the fact that suppressor p38 

reveals GW-repeats and is able to recruit Ago-1 protein of plants there was no visible 

RNAi suppression activity in insects. Furthermore, the plant as well as fly miRNA 

pathway seems also not to be affected by p38 (Berry et al., 2009; Dunoyer et al., 

2004; Ruiz-Ferrer and Voinnet, 2009; Schott et al., 2012) Hence, either the 

suppression model of p38 is incorrect or the mechanism of action of p38 is more 

complex and includes interaction partners which are not conserved between plants 

and insects. 

The RNAi suppression mechanism of p25 from the Potato virus X relies on its 

interference with RNA-dependent RNA polymerase in plants. However, Drosophila 

as well as Tribolium seem to lack an RdRP-mediated amplification of RNAi effect 

(Tomoyasu et al., 2008). This might be the reason for the inefficiency of p25 in 

suppressing the RNAi mechanism of Tribolium (Fig. 4.7, 4.8, 4.9).  

 

5.2.4.1 Further plant VSRs might be more effective 

It will be interesting to test further plant viral RNAi suppressors in Tribolium, like 

p15 from the Peanut Clump virus, p19 from the Tomato Bushy Stunt virus and p21 

from the Beet Yellows virus which inhibit plant RNAi machinery by siRNA binding and 

have been demonstrated to efficiently suppress the RNAi mechanism in transgenic 

Drosophila flies without interrupting the miRNA pathway (Berry et al., 2009; Mérai et 

al., 2006; Vargason et al., 2003; Ye et al., 2003).  

 

5.2.5 Potential reasons for the failure of the Dicer-i line 

It has been demonstrated that the knockdown of Tc-Dicer-2 and a subsequent 

EGFP dsRNA injection into an enhancer trap line which expresses EGFP in the eyes 

and the wing primordia, resulted in reduced efficiency of EGFP RNAi. By this method 

Tc-Dcr-2 has been shown to be involved in the RNAi pathway in Tribolium 

(Tomoyasu et al., 2008). A similar approach was used during this thesis with the 

difference that Tc-Dcr-2 was not downregulated by injection but instead, it was 

constitutively silenced by an inverted-repeat transgene ubiquitously expressed in the 
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beetles. However, the transgenic Dicer-i line did not produce visible RNAi 

suppression in Tribolium (Fig. 4.9 P, Q). The outcome is unexpected due to the fact 

that an endogenous gene involved in the RNAi mechanism was targeted in this case. 

The Dicer-i line carried IR sequences against the 3’UTR of Tc-Dcr-2 mRNA. This IR 

construct was driven by a ubiquitously active Tc-alpha-Tubulin1 promoter (Siebert et 

al., 2008). However, there is some evidence that Tc-alpha-Tubulin1 is a rather weak 

promoter and thereby might be not effective enough to drive strong transgene 

expression which is necessary to efficiently downregulate the Tc-Dcr-2 mRNA 

(Bucher, personal communication). Furthermore, the 3’UTR sequence might be not 

able to sufficiently downregulate the Dcr-2 gene. In order to test this, successive 

dsRNA injections could be performed as described above, in which first dsRNA 

against 3’UTR of Tc-Dcr-2 could be injected at different concentrations followed by 

dsRNA injection against e.g. Tc-ebony. In case of negative results (namely no visible 

suppression of Tc-ebony RNAi), another dsRNA fragment of the coding sequence of 

Tc-Dcr-2 could be used. In case that high dsRNA concentrations of 3’UTR of Tc-Dcr-

2 are required to suppress Tc-ebony RNAi, the expression level of the 3’UTR-IR 

construct should be increased. Therefore, Tc-alpha-Tubulin1 could be replaced by 

Tc-polyubiquitin promoter which might be more efficient for transgene expression 

(Lorenzen et al., 2002b). A further possible reason for the failure of Dicer-i line might 

be an unsuitable intron spacer which was used to stabilize the inverted repeat 

sequences during cloning procedure and to enhance nuclear export of the transgene 

(Kalidas and Smith, 2002; Lee and Carthew, 2003; Llopart et al., 2002; Maniatis and 

Reed, 2002; Reichhart et al., 2002). Upon transgene expression, the intron should be 

spliced out thus enabling the folding of IRs into hairpin-loops. Incorrect splicing might 

account for inefficient hairpin folding, leading to a non-functional transgenic line. 

 

5.2.6 The effectiveness of most RNAi suppressors remains unclear and needs 

further analyses  

Many experiments could be performed in order to investigate the respective 

reasons for the non-functionality of the most VSRs and the Dicer-i line in Tribolium. 

For instance, by RT-qPCR slight RNAi suppression activity of VSRs or the Dicer-i line 

could be measured. Upon RNAi, expression changes of e.g. Tc-ebony mRNA in VSR 

or Tc-Dcr-2-IR (of Dicer-i line) producing beetles in relation to the controls might thus 
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be validated. In case that some of the RNAi inhibitors suppress the RNAi mechanism 

but this suppression is insufficient for clear results, the efficiency of these inhibitors 

could be enhanced by e.g. increasing the level of inhibitor expression. To this end, 

the ubiquitously active promoter Tc-polyubiquitin could be used (Lorenzen et al., 

2002b). 

Alternatively, the potency of the inhibitors could be enhanced by viral synergism. It 

has been demonstrated in plants and insects that co-infection of hosts with two 

distinct viruses can elicit more severe disease symptoms than those induced by 

single infections. These synergistic effects seem to depend among others on viral 

inhibitors which might act as synergism genes (Berry et al., 2009; Pruss et al., 1997; 

van Rij et al., 2006).  

However, given that the RNAi suppressor CrPV1A efficiently inhibits the RNAi 

pathway in Tribolium, the most important experiment which is required for further 

application of CrPV1A is to analyze whether this VSR can cross cell boundaries. The 

potential tests are described in section 5.2.1.1 

 

5.3 Establishment of a tool for temporal regulation of RNAi  

5.3.1 Start of the RNAi effect after injection is too slow to separate sequential 

gene functions 

RNAi is an effective tool for gene functional studies in Tribolium. However, due to 

the multifunctional roles of some genes, their downregulation can induce pleiotropic 

effects which can be obstructive for the analysis of gene functions. Temporal 

regulation of RNAi, e.g. by varying the timing of RNAi onset, might circumvent such 

unwanted effects. For instance, the transcription factor cap’n’collar (cnc) is an 

important gene for labrum development in different organisms including Tribolium 

(Birkan et al., 2011; Kittelmann et al., 2013; Mohler et al., 1995). However, pupal 

RNAi against Tc-cnc led to beetle sterility, indicating that Tc-cnc is also involved in 

gonad development or oogenesis. Silencing of Tc-cnc in adult flour beetles allowed 

to overcome this sterility phenotype (Kittelmann et al., 2013). Nevertheless, staged 

injection of dsRNA is not able to prevent all undesired gene functions as 

demonstrated by embryonic RNAi against the segmentation gene Tc-prd in this 

study. Downregulation of Tc-prd produces a strong pair-rule phenotype with defective 
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gnathal, thoracic (anterior) and abdominal (posterior) segments (Fig. 4.11 B, Fig. 

4.14 B) (Choe and Brown, 2007; Choe et al., 2006). Hence, for test conditions 

anterior segmentation defects were defined as to circumvent and posterior defects 

were aimed to be affected by RNAi.  

However, by varying the time of dsRNA injection into staged embryos, it was not 

possible to induce a sharp RNAi pulse i.e. all segments were affected in a similar 

way either strongly in early injections or weakly in later injected embryos (Fig. 4.11 

B). The same was true when embryonic development was slowed down at lower 

incubation temperature (Fig. 4.11 B). A likely explanation for this outcome is that the 

RNAi effect starts too slowly to solely affect the posterior elongation without affecting 

anterior segmentation. The slowdown of embryonic development might also slow 

down the kinetics of the RNAi machinery. Hence, temporal control over RNAi by the 

timing of dsRNA injection is only able to separate gene functions which are 

separated by extended developmental time. 

 

5.3.2 Heat shock inducible CrPV1A activation: General considerations 

The heat shock controlled activation of CrPV1A expression might be a more 

effective way for temporal RNAi regulation because the production of this VSR is 

assumed to be a fast process. For instance, it has been shown on cultured 

Drosophila S2 cells transfected with CrPV virus, that the viral RNA reached maximal 

levels within 6h post infection (Garrey et al., 2010; Wilson et al., 2000). This rapid 

virus amplification might correlate with a rapid VSR activity which is responsible for 

the protection of viral mRNA from host RNAi defense mechanism.  

Before application, the time point for the onset of VSR expression (VSR pulse) 

should be optimized depending on the studied process due to the unknown delay 

between the heat shock activation and the production of functional CrPV1A protein. 

In order to test how much time it takes from heat shock to regained gene expression 

(e.g. of Tc-prd), RNAi embryos could be heat shocked and subsequently fixed for in-

situ hybridization at different time points after heat shock. This treatment will give 

information about the lag between the heat shock pulse and the existence of a 

functional CrPV1A protein. 

Some side effects should be considered when performing heat shocks for 

temporal regulation over the onset of CrPV1A expression. For example, in the locust, 
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Schistocerca gregaria, as well as in Drosophila heat shocks of early embryos 

resulted in disrupted abdominal segments, indicating either an interference with the 

segmentation process or deletion of already formed segment primordia (Eberlein, 

1985; Mee and French, 1986a, 1986b). Moreover, it has been demonstrated that 

heat shocks of mutant Drosophila embryos for the pair-rule gene hairy increased the 

frequency of hairy phenotype, suggesting a more severe effect produced by this 

treatment (Eberlein, 1985).  

I observed the same situation in Tribolium. When Tc-prd was used as a test gene, 

some heat shocked, transgenic RNAi embryos showed a completely disrupted 

segmentation phenotype, called “no segmentation” (Fig. 4.13). This phenotype could 

be a side effect of Tc-prd RNAi combined with the heat shock treatment itself 

because it appears only in this treatment in significant amounts. Heat shock 

procedure in transgenic, non-injected hs control embryos also led to a disrupted 

abdomen (Fig. 4.13) but the additional knockdown of the segmentation gene Tc-prd 

might increase this effect in prdRNAi;+hs embryos as it was reported for mutant 

Drosophila embryos. Therefore, positive and negative controls should always be 

included when the heat shock inducible CrPV1A line (hsCrPVi) is used for gene 

functional studies.  

 

5.3.3 Temporal RNAi regulation by CrPV1A activation is possible  

By activating the CrPV1A expression via heat shock during embryonic GZ 

elongation, it was possible to terminate the RNAi effect of a previously silenced Tc-

prd gene during the segmentation process. This RNAi termination resulted in the 

expected gnathal and thoracic defects but rescued abdominal segmentation due to 

the regained Tc-prd expression (Fig. 4.13 and Fig. 4.14 D). Restored abdomen was 

observed in large quantities in those cuticles that were heat shocked at the 

embryonic age of 10-15h (Fig. 4.13, Fig. 4.14 D). However, many cuticles also 

displayed 4-5 AS like the non-heat shocked Tc-prd RNAi control (Fig. 4.13, Fig. 4.14 

B-C). This phenotype could be explained on the one hand by the non-homozygous 

state of hsCrPVi lines, producing a low percentage (at most 25%) of progeny without 

transgene CrPV1A. On the other hand, VSR activation might have been too late for a 

rescue effect in older embryonic stages. This explanation is in line with the results of 
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11-16h and 12-17h old RNAi embryos which showed a decreased number of cuticles 

with recovered abdomen post heat shock (Fig. 4.13).  

As egg collections of embryos aged 10-15h showed germ rudiment to elongating 

germ band stages with at most nine Tc-wg stripes (three established abdominal 

segments), the VSR pulse should be performed in germ band stages (embryos with 

up to six Tc-wg stripes) before Tc-wg expression arise in the abdominal segment 

anlagen (Fig. 4.12). The early VSR activation in this experiment is important due to 

the rapid segmentation process in Tribolium which establishes all segment anlagen 

within seven hours post germ rudiment formation (at 32°C) (Fig. 4.12) and the 

unknown delay between heat shock and CrPV1A production as described in section 

5.3.2. Hence, further heat shock tests with Tc-prd RNAi embryos at the age of 

approximately 10-13h as well as homozygous hsCrPVi lines are necessary to 

achieve higher cuticle amounts with rescued segmentation.  

In summary, the heat shock inducible CrPV1A line can be used to temporally 

regulate the RNAi effect of previously silenced genes, thereby enabling a more 

detailed investigation of genes involved in different processes.  

 

5.3.4 Prospective application of hsCrPVi line to analyze genes involved in 

abdominal patterning 

The possibility to regain the expression of silenced genes by temporally defined 

VSR activation allows a detailed analysis of genes involved e.g. in the GZ 

segmentation process of Tribolium.  

Unlike the long germ insect Drosophila melanogaster, where all body segments 

form simultaneously in a syncytial blastoderm, in the short germ insect Tribolium only 

anterior segments are built at the blastodermal stage. The abdominal segments form 

sequentially from a posterior GZ during germ band elongation. The detailed 

mechanism is not well understood, but there is some evidence that a segmentation 

clock determines the segment formation during elongation similar to vertebrates 

(Choe et al., 2006; Sarrazin et al., 2012). Moreover, a dynamic wave like expression 

of the primary pair-rule gene, Tc-even-skipped, has been demonstrated at the 

blastoderm stages, indicating that a clock mechanism is employed in the blastoderm 

patterning as well (El-Sherif et al., 2012). Potential candidates for the vertebrate-like 

clock and wavefront model are the three Tribolium primary pair-rule genes which 
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might represent the clock, namely Tc-even-skipped, Tc-runt and Tc-odd-skipped. 

These genes have been described to regulate one another as well as their 

downstream targets, the secondary pair-rule genes Tc-paired and Tc-sloppy-paired, 

in a three-gene circuit (Choe and Brown, 2007; Choe et al., 2006). Candidates for the 

wavefront are caudal, some members of the Wnt signalling pathway (WntD/8, arrow, 

Frizzled-1, Frizzled-2) or members of the FGF signalling pathway (Beermann et al., 

2011; Bolognesi et al., 2008, 2009; Copf et al., 2004; El-Sherif et al., 2014). Despite 

their assumed different roles, they all lead to a segmentation breakdown when 

silencing. 

The knockdown of these candidate genes and a subsequent expression rescue 

during GZ elongation by hsCrPVi activation might clarify whether there is an 

upstream factor that can re-induce the GZ or whether the segmentation breakdown is 

irreversible.  

Parental RNAi of assumed upstream genes (e.g. caudal or Wnt pathway) would 

downregulate the respective gene expression in the blastodermal stages of 

embryonic progeny, resulting in affected anterior segmentation (Fig. 5.1 A). The 

following VSR activation during GZ elongation should rescue the expression (Fig. 5.1 

A) but not the abdominal segmentation due to the upstream function of these genes 

(Fig. 5.1 B dashed line). On the other hand, RNAi against assumed downstream 

targets (e.g. eve, odd, runt) should lead to temporary abdomen disruption and should 

be recovered by RNAi suppressor activation during GZ elongation as it has been 

demonstrated for the downstream, secondary pair-rule gene Tc-prd (Fig. 5.1 B solid 

line).  



Discussion 

84 
 

 

5.1 Model for the investigation of genes involved in GZ elongation. (A) Gene expression changes 

post RNAi and VSR activation. The x-axis represents organism development as well as the offspring 

embryogenesis. The y-axis represents the expression of genes which are involved in embryonic 

development. Parental RNAi against candidate genes involved in GZ elongation will result in a 

downregulation of the respective gene expression (decreasing lines). Heat shock mediated VSR 

activation (indicated by bars) will rescue the gene expressions of both downstream and upstream 

genes (increasing lines). (B) Different segmentation phenotypes after VSR activation. The x-axis 

represents the embryogenesis. The y-axis represents the segmentation after gene silencing. hsVSR 

activation should rescue abdominal segmentation when the silenced genes are downstream in the GZ 

regulatory cascade (solid line) but should lead to an irreversible abdominal breakdown when silenced 

genes are upstream factors (dashed line). 

 

5.4 Concluding remarks 

I showed that the viral protein CrPV1A can be successfully used in Tribolium to 

block the RNAi pathway without impairing the development or viability of the 

organisms. Ubiquitous and constitutive expression of CrPV1A in all developmental 

stages is necessary to strengthen the hypothesis that the suppressor protein does 

not influence the miRNA pathway. Furthermore, RT-qPCR analyses should answer 

the question concerning the ability of other VSRs to suppress the RNAi pathway in 

Tribolium.  
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The establishment of a heat shock inducible CrPV1A line has been demonstrated 

to temporally regulate the RNAi pathway. Activation of CrPV1A was able to terminate 

the RNAi response of a previously silenced segmentation gene and even to rescue 

the gene specific phenotype. By this temporally controlled tool, investigations of 

further genes involved in the GZ maintenance are possible which will elucidate their 

genetic interactions in the segmentation process. Moreover, by using CrPV1A 

spatially regulated RNAi silencing might be possible which will further strengthen 

Tribolium as an important model organism for gene functional studies.  
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7 Appendix 

7.1 Abbreviations 

BB   Bauchbinde 

BLAST  Basic Local Alignment Search Tool 

bp   base pair 

cDNA   complementary DNA 

CPB   Colorado potato beetle 

Cry   crystal protein 

dsRNA  double stranded RNA 

ee   empty egg 

EGFP   enhanced green fluorescent protein 

eRNAi   embryonic RNAi 

GFP   green fluorescent protein 

GM   genetically modified 

GO   Gene Ontology  

GW   glycine/tryptophane 

GZ   growth zone 

hr   hatch rate 

hs   heat shock 

IR   inverted repeat 

lRNAi   larval RNAi 

miRNA  microRNA 

miRNP  miRNA ribonucleoprotein particle complex 

mRNA   messenger RNA 

NCBI   National Center for Biotechnology Information 

nt   nucleotide 

ORF   open reading frame 

PAZ domain  Piwi/Argonaute/Zwille domain 

PCR   polymerase chain reaction 

pRNAi   parental RNAi 

RdRP   RNA-dependent RNA polymerase 

RISC   RNA-induced silencing complex 

RNAi   RNA interference 

RT-qPCR  Quantitative real time PCR 

SB   San Bernardino; a Tribolium wild type strain 

shRNA  short-hairpin RNA 

siRNA   small interfering RNA 

TE   transposable element 

tGFP   turboGFP 

UTR   untranslated region 

viRNA   virus-derived RNA 
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VSR   viral suppressor of RNAi 

vw   vermillionwhite; a white-eyed Tribolium strain 

WCR   western corn rootworm 

wt   wild type 

An   antenna 

AS   abdominal segment 

br.   bristles 

Lb   labium 

Lr   labrum 

Md   mandible 

Mx   maxilla 

no s.   no abdominal segments 

T1-T3   thoracic segment 1 to 3 

A1-A8   abdominal segment 1 to 8 

tracheal.  tracheal openings 

Urog.   urogomphi 

Organisms: 

Aa   Aedes aegypti 

Am   Apis mellifera 

Ap   Acyrthosiphon pisum 

Bt   Bacillus thuringiensis 

Ce   Caenorhabditis elegans 

CrPV   Cricket Paralysis virus 

DCV   Drosophila C virus 

Dm   Drosophila melanogaster 

FHV   Flock House virus 

Mm   Mus musculus 

PVX   Potato virus X 

Tc   Tribolium castaneum 

TCV   Turnip Crinkle virus 

Genes and proteins: 

ago   Argonaute 

ak   arginine kinase 

alg-1   argonaute-like gene 1 

alg-2   argonaute-like gene 2 

Dcr   Dicer 

ergo-1   endogenous RNAi-deficient Argonaute 1 

eve   even-skipped 

odd   odd-skipped 

prd   paired 

Rde-1   RNAi-defective 1 
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rpn7   regulatory particle non-ATPase 7 

run   runt 

sid-1   systemic interference defective-1 

slp   sloppy-paired 

snf7   Sucrose non-fermenting 7 

wg   wingless 

Tc   prefix, if the gene is a Tribolium ortholog 

 

FHV B2  Flock House virus B2 protein 

CrPV1A  Cricket Paralysis virus 1A protein 

DCV1A  Drosophila C virus 1A protein 

PVX p25  Potato virus X protein 25 

TCV p38  Turnip Crinkle virus protein 38 

VP1   Nora virus viral protein 1 

 

7.2 Primers used in this work 

Tab. 7.1 Primers for cloning of gene fragments. Primer names, sequences and gene names are 

shown. 

Primer Sequence Gene 

UFwEbony CTGTGCTACCAACCCGGAGAGAT ebony 

JURvEbony GTCCATAAGCTCCTTATAGTCCGACT ebony 

JUFwL10 CTAAGAGTAAAGTGCAGGAACCAC cactus 

JURvL10 TCTGCATGTTCGTAAATCACCAT cactus 

JUFwL11 TTGATGACCATCATGGACAG Srp54k 

JURvL11 GCAACTGTCGCATCATGTTCT Srp54k 

JUFwL44 GTCCAGGACAAACGCATGCAATC Ras opposite 

JURvL44 TGTGACTCATACGGCAAGAAGGCA Ras opposite 

JUFwL47 GCAAAAAGCTCAGCAGCTAAT alpha-snap 

JURvL47 GCAGTTCACCGCCTCGTTAATAT alpha-snap 

JUFwL50 GGAAACGGACCGAGTCAC shibire 

JURvL50 GAAGACCTTGAGGATCGAC shibire 

JUFwL55 CATCTGTCTTTTGCTCGCCTACA pp1alpha-96a 

JURvL55 TCAGGATCTGACCACAACAG pp1alpha-96a 

JUFwL67 AGACGTGTATGATTGCGACGAT Inr-a 

JURvL67 TCTCTCAACTCACGTTTCAAATC Inr-a 

JUFwL76 CACTTGCCACATTGACTACAGA Hsc70-3 

JURvL76 TCCAGTCACGTCCAATCAGAC Hsc70-3 

JUFwL80 GTACGAGCTCATTATCAAGGAC Rpn7 

JURvL80 TAAACCGATTCTGATTAGATG Rpn7 

FwL82 TAGATCCGAGAGAACAAATGAGA Gw 

RvL82 ATGACACCACACTGAACCGTCT Gw 

FwL84 GACGAGCAACGCAACTTGAAGA Rpt3 

RvL84 GACGTCAGGCTTCTCATCAG Rpt3 
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Tab. 7.2: Primers for dsRNA synthesis. Primer names, sequences and gene name are shown. 

Primer Sequence Gene 

JUFw_EGFP taatacgactcactatagggATGGTGAGCAAGGGCGAGGAG EGFP 

JURv_EGFP taatacgactcactatagggTTACTTGTACAGCTCGTCCATG EGFP 

JUFw_tGFP taatacgactcactatagggATGGAGAGCGACGAGAGCG tGFP 

JURv_tGFP taatacgactcactatagggTATTCTTCACCGGCATCTGCATC tGFP 

 

Tab. 7.3: Primers for design of constructs. Primer names, sequences and purpose are shown. 

Primer Sequence Purpose 

JUFw_p25i ACAGGTACCATGGATATTCTCATCATTAGTTTGA  
Cloning of p25 with 

Acc65Ⅰ overhang 

JURv_p25i ACAGCGGCCGCTTCTATGTCCCTGCGCGGACAT 
Cloning of p25 with 

NotⅠ overhang 

JUFw_p38i ACAGGTACCATGGAAAATGATCCTAGAGTCCGGAAGT  
Cloning of p38 with 

Acc65Ⅰ overhang 

JURv_p38i ACAGCGGCCGCTTCTAAATTCTGAGTGCTTGCAAT  
Cloning of p38 with 

NotⅠ overhang 

JUFw_DCVi ACAGGTACCATGGAATCTGATAAAAGTATGGCCTGT 
Cloning of DCV1A with 

Acc65Ⅰ overhang 

JURv_DCVi ACAGCGGCCGCTTTCCTGATAACAAGAGCAACATCTGA 
Cloning of DCV1A with 

NotⅠ overhang 

JUFw_VP1i ACAGGTACCCCACCAGCAGAGGAGAAAAGGA 
Cloning of VP1 with 

Acc65Ⅰ overhang 

JURv_VP1i ACAGCGGCCGCTTTTAACATTGTTGTTTCTGCGAGAT 
Cloning of VP1 with 

NotⅠ overhang 

JUFw_CrPVi ACAGGTACCATGTCTTTTCAACAAACAAACAACAAC 
Cloning of CrPV1A with 

Acc65Ⅰ overhang 

JURv_CrPVi ACAGCGGCCGCTTGAAGGCTCTGCATTCATCATTACT 
Cloning of CrPV1A with 

NotⅠ overhang 

JUFw_B2i ACAGGTACCATGCCAAGCAAACTCGCGCTAATCCAG 
Cloning of B2 with 

Acc65Ⅰ overhang 

JURv_B2i ACAGCGGCCGCTTCAGTTTTGCGGGTGGGGGGTCA 
Cloning of B2 with NotⅠ 

overhang 

UTRFw_Inf CAACTACCAAGCTAGTAACTTGAAACAGTTTTAATTTGA 
Cloning of IRs by 
InFusion system 

UTRRv_Inf ATCTTCTCTCTGGTATTAACGCACGAAGTCACAATG 
Cloning of IRs by 
InFusion system 

UTR2Fw_Inf ATTTCGATCCAAGTATTAACGCACGAAGTCACAATG 
Cloning of IRs by 
InFusion system 

UTR2Rv_Inf TCCAAACTCATCAGGTAACTTGAAACAGTTTTAATTTGA 
Cloning of IRs by 
InFusion system 

IntronFw_Inf GACTTCGTGCGTTAATACCAGAGAGAAGATCGTGTTAC 
Cloning of an intron by 
InFusion system 

IntronRv_Inf GACTTCGTGCGTTAATACTTGGATCGAAATGCTC 
Cloning of an intron by 
InFusion system 

JUFw_pBacL 
TATCTCGAGCTTAAGGGGCCCTATCTTAGATCTGAC 
AATGTTCA 

PCR amplification of 

pBac vector with AflⅠ, 

ApaⅠ, NheⅠ, StuⅠ, XhoⅠ 

overhangs 

JURv_Sv40 
TCACTCGAGGCTAGCAGGCCTGATGAGTTTGGACAAA 
CACAACT 

PCR amplification of 

pBac vector with AflⅠ, 

ApaⅠ, NheⅠ, StuⅠ, XhoⅠ 

overhangs 

 
 

 
 

 
 



Appendix 

110 
 

 
JUFwtubulin 

 
CATCTCGAGACCTCACACTTGCCGTAAATGGAG 

Cloning of Tc-

αTubulin1 with XhoⅠ 

overhang 

JURvtubulin GTATCGCTAGCTTGGTAGTTGAGTTTTACAAATTAC 

Cloning of Tc-

αTubulin1 with NheⅠ 

overhang 

JUFw_IR GAGTCTCTGCACTGAACATTGT 
Sequencing of IR 
vector 

JURv_IR TCACTGCATTCTAGTTGTGGT 
Sequencing of IR 
vector 

JUFw_IR2 CGGTTATGATGGTGCAACGA 
Sequencing of IR 
vector 

JURv_IR2 CATCATAACCGTTCACTGCAG 
Sequencing of IR 
vector 

JUFW_pSL  CGACTTTAACAAAGTTGAGTGAATTA  
Sequencing of VSRs in 
pSLfa vector 

JURv_pSL GTGGTATGGCTGATTATGATCTA 
Sequencing of VSRs in 
pSLfa vector 

JuFw_pBac GCTGGCTTCGGTTTATATGAGA 
Sequencing of VSRs in 
pBac vector 

JURv_pBac GAGTCTCTGCACTGAACATTGTCA 
Sequencing of VSRs in 
pBac vector 

 

7.3 Identification of novel RNAi target genes in Tribolium  

 

Tab. 7.4: Top 100 RNAi target genes. The gene symbols, the iB numbers, the Tribolium genes and 

the orthologous Drosophila genes are shown. 

Symbol iB Tc gene Dm gene Dm gene name 

control iB_05139 TC011976  CG3331 ebony 

L1 iB_00003                TC000029 CG1212 p130CAS 

L2 iB_00004                TC000040 CG42341 Pka-R1 

L3 iB_00011                TC000069 CG4097 Prosβ6 

L4 iB_00015            TC000082 CG7506 - 

L5 iB_00029                TC000161 CG6202 Surf4 

L6 iB_00031                TC000165 CG40470 - 

L7 iB_00053                TC000258 CG4904 Prosα6 

L8 iB_00063                TC032227 CG5706 - 

L9 iB_00141                TC000614 CG18495 Prosα1 

L10 iB_00322                TC002003 CG5848 cact 

L11 iB_00404                TC002574 CG4659 Srp54k 

L12 iB_00411                TC002601 CG1743 Gs2 

L13 iB_00462                TC002881 CG11856 Nup358 

L14 iB_00472                TC002933 CG8749 snRNP-U1-70K 

L15 iB_00503                TC003020 CG14813 δCOP-PB  

L16 iB_00512                TC003079 CG15609 Ehbp1-PG 

L17 iB_00606                TC003747 CG2063 - 

L18 iB_00607                TC003752 CG18412 ph-p 

L19 iB_00621                TC003818 CG9854 hrg 

L20 iB_00655                TC004029 CG4153 eIF-2β 

L21 iB_00731                TC004599 CG7007 VhaPPA1 

L22 iB_00753                TC004683 CG8843 Sec5 

L23 iB_00788                TC004949 CG18617 Vha100-2 

L24 iB_00825                TC005313 CG5395 nmd 

L25 iB_00950                TC005869 CG18174 Rpn11 

L26 iB_00985            TC006047 CG5269 vib 

L27 iB_01026            TC006281 CG17332 VhaSFD 

L28 iB_01103                TC006982 - - 
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L29 iB_01207                TC007510 CG9177 eIF5 

L30 iB_01233            TC007640 CG7957 MED17 

L31 iB_01271                TC007846 CG8432 Rep 

L32 iB_01280                TC007891 CG4157 Rpn12 

L33 iB_01347                TC008407 CG31004 mesh 

L34 iB_01385            TC008671 CG10938 Prosα5 

L35 iB_01456                TC009010 CG7610 ATPsyn-γ 

L36 iB_01467                TC033679 CG18076 shot 

L37 iB_01493                TC009191 CG1250 Sec23 

L38 iB_01528                TC009328 CG10540 cpa 

L39 iB_01562                TC009491 CG2910 nito 

L40 iB_01675                TC010367 CG1088 Vha26 

L41 iB_01682                TC010405 CG3992 srp 

L42 iB_01709                TC010557 CG9539 Sec61α 

L43 iB_01800                TC011082 CG2674 Sam-S 

L44 iB_01807                TC011120 CG15811 Rop 

L45 iB_01824                TC011204 CG17420 RpL15 

L46 iB_01879                TC011708 CG5930 TfIIA-L 

L47 iB_02161                TC013571 CG6625 alpha snap 

L48 iB_03390                TC002507 CG17603 Taf1 

L49 iB_00268 TC001600 CG6601 Rab6 

L50 iB_01793 TC011058 CG18102 shi 

L51 iB_01796 TC011068 CG2467 pot 

L52 iB_01857 TC031473 CG1782 Uba1 

L53 iB_01884 TC011725 CG6022 Cchl 

L54 iB_02377 TC015014 CG9012 Chc 

L55 iB_02456 TC015321 CG6593 pp1alpha-96a 

L56 iB_02457 TC015322 CG11154 ATPsyn-β 

L57 iB_02509 TC015727 CG17170 su(f) 

L58 iB_02531 TC015935 CG13281 Cas 

L59 iB_02553 TC031972 CG5931 l(3)72Ab 

L60 iB_02593 TC030579 CG6174 Arp1 

L61 iB_02601 TC030625 CG12323 Prosβ5 

L62 iB_02611 TC030666 CG11522 RpL6 

L63 iB_02644 TC000801 CG2503 atms 

L64 iB_02646 TC030619 CG8118 mam 

L65 iB_02695 TC003405 - - 

L66 iB_02765 TC008190 CG12202 Nat1 

L67 iB_02771 TC008263 CG10228 inr-a 

L68 iB_02788 TC013746 - - 

L69 iB_02796 TC014300 CG18398 Tango6 

L70 iB_02797 TC031145 CG34418 sif 

L71 iB_02808 TC033251 - - 

L72 iB_02921 TC012455 CG9206 Gl 

L73 iB_03608 TC003731 CG3780 Spx 

L74 iB_03656 TC003944 - - 

L75 iB_03752 TC004420 CG1703 - 

L76 iB_03754 TC004425 CG4147 hsc70-3 

L77 iB_03836 TC004760 CG11152 fd102C 

L78 iB_04084 TC006188 CG4644 mtRNApol 

L79 iB_04099 TC006253 CG8566 unc-104 

L80 iB_04125 TC006375 CG5378 Rpn7 

L81 iB_04162 TC006514 CG5341 Sec6 

L82 iB_04192 TC006679 CG31992 gw 
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L83 iB_04235 TC006902 - - 

L84 iB_04411 TC007999 CG16916 Rpt3 

L85 iB_04531 TC008662 CG4584 dUTPase 

L86 iB_04581 TC009040 CG4548 XNP 

L87 iB_05229 TC012381 CG6843 - 

L88 iB_05303 TC012723 CG12104 - 

L89 iB_05370 TC013003 CG5971 Cdc6 

L90 iB_05404 TC013245 CG10002 fkh 

L91 iB_05526 TC013939 CG1109 - 

L92 iB_05560 TC014109 CG31155 Rpb7 

L93 iB_05604 TC014294 CG1828 dre4 

L94 iB_05628 TC014413 CG7269 Hel25E 

L95 iB_05683 TC014730 CG12245 gcm 

L96 iB_05693 TC014785 CG12750 ncm 

L97 iB_05726 TC014931 CG2909 - 

L98 iB_05983 TC016270 CG3962 Keap1 

L99 iB_06042 TC032389 CG5081 Syx7 

L100 iB_06050 TC030708 CG2252 fs(1)h 

 

Tab. 7.5: Top 40 RNAi target genes. The gene symbols, the iB numbers, the Tribolium genes and 

the orthologous Drosophila genes are shown. 

Symbol iB Tc gene Dm gene Dm gene name 

control iB_05139 TC011976  CG3331 ebony 

L2 iB_00004                TC000040 CG42341 Pka-R1 

L3 iB_00011                TC000069 CG4097 Prosβ6 

L5 iB_00029                TC000161 CG6202 Surf4 

L7 iB_00053                TC000258 CG4904 Prosα6 

L9 iB_00141                TC000614 CG18495 Prosα1 

L10 iB_00322                TC002003 CG5848 cact 

L11 iB_00404                TC002574 CG4659 Srp54k 

L14 iB_00472                TC002933 CG8749 snRNP-U1-70K 

L17 iB_00606                TC003747 CG2063 - 

L25 iB_00950                TC005869 CG18174 Rpn11 

L27 iB_01026            TC006281 CG17332 VhaSFD 

L32 iB_01280                TC007891 CG4157 Rpn12 

L37 iB_01493                TC009191 CG1250 Sec23 

L39 iB_01562                TC009491 CG2910 nito 

L42 iB_01709                TC010557 CG9539 Sec61α 

L43 iB_01800                TC011082 CG2674 Sam-S 

L44 iB_01807                TC011120 CG15811 Rop 

L47 iB_02161                TC013571 CG6625 alpha snap 

L50 iB_01793 TC011058 CG18102 shi 

L52 iB_01857 TC031473 CG1782 Uba1 

L54 iB_02377 TC015014 CG9012 Chc 

L55 iB_02456 TC015321 CG6593 pp1alpha-96a 

L56 iB_02457 TC015322 CG11154 ATPsyn-β 

L58 iB_02531 TC015935 CG13281 Cas 

L61 iB_02601 TC030625 CG12323 Prosβ5 

L62 iB_02611 TC030666 CG11522 RpL6 

L63 iB_02644 TC000801 CG2503 atms 
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L64 iB_02646 TC030619 CG8118 mam 

L67 iB_02771 TC008263 CG10228 inr-a 

L76 iB_03754 TC004425 CG4147 hsc70-3 

L79 iB_04099 TC006253 CG8566 unc-104 

L80 iB_04125 TC006375 CG5378 Rpn7 

L82 iB_04192 TC006679 CG31992 gw 

L84 iB_04411 TC007999 CG16916 Rpt3 

L88 iB_05303 TC012723 CG12104 - 

L90 iB_05404 TC013245 CG10002 fkh 

L93 iB_05604 TC014294 CG1828 dre4 

L94 iB_05628 TC014413 CG7269 Hel25E 

L95 iB_05683 TC014730 CG12245 gcm 

L100 iB_06050 TC030708 CG2252 fs(1)h 

 

Tab. 7.6: Lethal genes found by GO term combinations of cluster 1, 2 and 7. By searching for 

genes that share GO term combinations of cluster 1, 2 and 7 (see Fig. 4.6 C and Fig. 7.3 for clusters) 

additional RNAi target genes (given are the iB numbers) were found which showed strong lethality 

(70-100%) in the iBeetle screen after larval or pupal RNAi. 

Cluster 1 [iB_genes] iB_pupal lethality in % iB_larval lethality in % 

iB_01385 100.0 90.0 

iB_05343 60.0 90.0 

iB_04808 100.0 100.0 

iB_04154 100.0 100.0 

iB_00780 100.0 100.0 

iB_01375 100.0 100.0 

Cluster 2 [iB_genes] iB_pupal lethality in % iB_larval lethality in % 

iB_01385 100.0 90.0 

iB_00780 100.0 100.0 

iB_01375 100.0 100.0 

Cluster 7 [iB_genes] iB_pupal lethality in % iB_larval lethality in % 

iB_02921 100.0 80.0 

iB_02249 80.0 100.0 

iB_00560 90.0 100.0 

iB_06329 100.0 100.0 

iB_04169 60.0 100.0 

iB_03627 80.0 100.0 

iB_00655 100.0 100.0 

iB_00476 90.0 90.0 

iB_01431 100.0 100.0 

iB_00704 50.0 100.0 

iB_05580 80.0 100.0 

iB_02653 40.0 100.0 

iB_00929 90.0 100.0 

iB_01820 100.0 100.0 

iB_01531 100.0 100.0 

iB_01977 60.0 70.0 

iB_01181 60.0 88.89 

iB_03608 90.0 100.0 

iB_06425 100.0 20.0 

iB_05731 70.0 90.0 

iB_02215 80.0 50.0 
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iB_01311 100.0 20.0 

iB_06301 90.0 0.0 

iB_01484 70.0 100.0 

iB_00920 60.0 80.0 

iB_05243 90.0 70.0 

iB_05446 80.0 88.89 

iB_01552 70.0 100.0 

iB_01666 70.0 100.0 

iB_01166 90.0 100.0 

iB_01965 90.0 100.0 

iB_01215 80.0 90.0 

iB_05428 90.0 80.0 

iB_00780 100.0 100.0 

iB_04868 70.0 60.0 

iB_01375 100.0 100.0 

iB_02877 80.0 80.0 

 

7.4 Single and double RNAi treatments of RNAi target genes 

 

Tab. 7.7: RNAi of non-overlapping dsRNA fragments. Lethality was confirmed by injection of non-

overlapping dsRNAis (1µg/µl). Injections were done into 10 larvae, respectively, and survival animals 

were counted every second day post injection. Tc-ebony was used as negative control. d= day 

 d2 d4 d6 d8 d10 

Tc-ebony 1µg/µl 10 10 9 9 9 

L2_2 1µg/µl 6 2 2 0 0 

L3_2 1µg/µl 9 4 0 0 0 

L5_2 1µg/µl 8 0 0 0 0 

L7_2 1µg/µl 9 6 0 0 0 

L9_2 1µg/µl 7 6 0 0 0 

L10_2 1µg/µl 6 0 0 0 0 

L11_2 1µg/µl 10 1 0 0 0 

L14_2 1µg/µl 6 5 3 0 0 

L17_2 1µg/µl 7 3 2 0 0 

L25_2 1µg/µl 8 5 0 0 0 

L27_2 1µg/µl 10 5 0 0 0 

L30_2 1µg/µl 7 4 2 0 0 

L32_2 1µg/µl 7 4 4 0 0 

L37_2 1µg/µl 9 6 1 0 0 

L39_2 1µg/µl 10 4 2 0 0 

L42_2 1µg/µl 7 4 1 0 0 

L43_2 1µg/µl 10 7 2 0 0 

L44_2 1µg/µl 7 1 0 0 0 

L47_2 1µg/µl 10 2 0 0 0 

L50_2 1µg/µl 10 2 0 0 0 

L52_2 1µg/µl 8 4 0 0 0 

L54_2 1µg/µl 9 3 0 0 0 

L55_2 1µg/µl 10 4 0 0 0 

L56_2 1µg/µl 10 3 0 0 0 

L58_2 1µg/µl 10 6 5 0 0 
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L61_2 1µg/µl 10 3 0 0 0 

L61_3 1µg/µl 9 2 0 0 0 

L62_2 1µg/µl 9 3 1 0 0 

L62_3 1µg/µl 10 3 0 0 0 

L63_2 1µg/µl 10 9 5 0 0 

L64_2 1µg/µl 10 9 8 0 0 

L67_2 1µg/µl 8 0 0 0 0 

L76_2 1µg/µl 10 5 0 0 0 

L79_2 1µg/µl 10 2 0 0 0 

L80_2 1µg/µl 10 0 0 0 0 

L82_2 1µg/µl 10 1 0 0 0 

L84_2 1µg/µl 10 1 0 0 0 

L88_2 1µg/µl 10 9 5 2 0 

L90_2 1µg/µl 10 6 1 0 0 

L90_3 1µg/µl 10 7 0 0 0 

L93_2 1µg/µl 7 1 0 0 0 

L94_2 1µg/µl 10 1 0 0 0 

L95_2 1µg/µl 10 0 0 0 0 

L100_2 1µg/µl 10 5 0 0 0 

 

Tab. 7.8: Single and double RNAi treatments. RNAis were performed in 10 penultimate instar 

larvae (L6), respectively. Each total dsRNA concentration was 0.5ng/µl. Number of surviving animals 

was documented every second day post injection and compared to the single injections. d=day 

 d2 d4 d6 d8 d10 

L11 9 9 7 7 5 

L11+10 10 8 8 6 2 

L11+44 10 10 9 8 4 

L11+47 10 8 8 6 3 

L11+50 10 9 5 2 2 

L11+55 10 10 10 9 8 

L11+67 10 7 5 4 2 

L11+76 10 10 10 9 2 

L11+80 10 9 8 7 5 

L11+82 10 10 9 4 3 

L11+84 10 10 10 7 2 

L50 10 9 9 7 5 

L50+10 10 8 6 5 5 

L50+44 10 10 10 10 3 

L50+47 10 8 5 2 0 

L50+55 8 7 7 4 3 

L50+67 10 9 8 6 3 

L50+76 10 10 7 5 3 

L50+80 9 9 9 7 5 

L50+82 10 10 6 6 4 

L50+84 8 8 7 5 3 

L67 10 8 6 4 0 

L67+10 10 10 5 5 4 

L67+44 10 9 9 9 4 

L67+47 10 8 7 3 1 

L67+55 10 9 5 4 3 

L67+76 10 6 5 3 1 

L67+80 9 9 9 9 7 
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L67+82 10 8 6 2 0 

L67+84 10 8 7 5 3 

L76 10 9 5 1 0 

L76+10 9 8 8 5 3 

L76+44 10 5 5 4 4 

L76+47 9 6 5 3 0 

L76+55 10 9 7 7 4 

L76+80 10 9 8 5 3 

L76+82 10 9 9 6 3 

L76+84 10 10 10 6 4 

L84 10 9 6 3 1 

L84+10 10 10 10 7 7 

L84+44 10 9 9 8 3 

L84+47 10 5 5 3 0 

L84+55 10 10 10 9 7 

L84+80 9 7 7 7 3 

L84+82 10 7 7 3 2 

L55 10 10 10 10 8 

L55+10 10 10 9 6 7 

L55+44 9 8 8 3 2 

L55+47 10 10 6 4 1 

L55+80 10 10 10 9 8 

L55+82 9 9 9 4 1 

L80 9 6 5 2 1 

L80+10 10 8 8 7 6 

L80+44 9 8 8 6 2 

L80+47 10 10 9 7 1 

L80+82 10 9 8 7 2 

L82 10 8 7 2 0 

L82+10 10 8 7 5 3 

L82+44 10 9 9 5 2 

L82+47 10 7 7 2 0 

L44 9 8 8 7 0 

L44+10 10 8 8 6 4 

L44+47 10 8 6 3 0 

L47 10 6 5 3 1 

L47+10 10 4 4 2 1 

L10 10 5 2 2 0 

Tc-ebony 10 9 9 9 9 
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Fig. 7.1: Identification of 40 novel RNAi target genes in Tribolium castaneum 
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Based on data of the iBeetle screen, the 100 most efficient RNAi target genes were selected and 

retested using different dsRNA concentrations. The results for the most efficient 40 lethal genes are 

shown. The corresponding results of the top eleven candidates are shown in Fig. 4.1. See further 

details in figure legend of Fig. 4.1. 
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7.5 Phylogeny and GO term analysis 

Fig. 7.2: Phylogenetic trees of the novel RNAi target genes 
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(A-L) Phylogenetic trees were generated by ClustalW alignment as implemented in Geneious version 

5.6.4 (Biomatters) by removing unclear parts of the sequences. Trees and images were created using 

Geneious Tree Builder and neighbour joining method. Dm Drosophila melanogaster, Am Apis 

mellifera, Aa Aedes aegypti, Ap Acyrthosiphon pisum, Mm Mus musculus.  
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Fig. 7.3: GO term analysis of top 40 RNAi target genes reveals additional targets 

 

The functional clusters as revealed by GO term analysis (DAVID database) using the top 40 RNAi 

target genes are displayed. GOTERM_BP_FAT where BP means biological process; 
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GOTERM_CC_FAT where CC means cellular component; GOTERM_MF_FAT where MF means 

molecular function; SP_PIR_KEYWORDS where PIR means protein information resource. 

 

7.6 Repetition of Tc-ebony RNAi in transgenic inhibitor lines 

 

Tab. 7.9: Tc-ebony knockdown in VSR lines. Repetition of Tc-ebony RNAi in transgenic lines 

carried Boje-Gal4 X UAS-VSRs and Dicer-i lines. Absolute numbers are given for each body color 

phenotype. 

SB wt dark brown black p38i
55

 wt dark brown black 

n=48 6 14 28 n=18 0 6 13 

CrPVi
56

 wt dark brown black DCVi
13

 wt dark brown black 

n=31 21 9 1 n=30 4 10 16 

CrPVi
61

 wt dark brown black DCVi
21

 wt dark brown black 

n=16 12 4 0 n=28 1 6 21 

B2i
22

 wt dark brown black VP1i
20

 wt dark brown black 

n=28 10 12 6 n=19 0 4 15 

B2i
40

 wt dark brown black VP1i
23

 wt dark brown black 

n=15 2 3 10 n=23 3 5 15 

p25i
30

 wt dark brown black Dicer-i
18

 wt dark brown black 

n=38 1 11 26 n=22 0 2 20 

p25i
35

 wt dark brown black Dicer-i
22

 wt dark brown black 

n=26 0 10 16 n=25 0 9 16 

p38i
25

 wt dark brown black 
 

n=20 0 6 14 
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7.7 Vector maps 

 

>pBac3xP3-DsRed;UAS-Tc'Hsp-p-CrPV1A-SV40 

TCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGAT

GCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCA

GAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCG

CCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAG

GGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGCC

AAGCTTTGTTTAAAATATAACAAAATTGTGATCCCACAAAATGAAGTGGGGCAAAATCAAATAATTAACTAGTGTCCGTAAAC

TTGTTGGTCTTCAACTTTTTGAGGAACACGTTGGACGGCAAATCGTGACTATAACACAAGTTGATTTAATAATTTTAGCCAAC

ACGTCGGGCTGCGTGTTTTTTGCGCTCTGTGTACACGTTGATTAACTGGTCGATTAAATAATTTAATTTTTGGTTCTTCTTTAA

ATCTGTGATGAAATTTTTTAAAATAACTTTAAATTCTTCATTGGTAAAAAATGCCACGTTTTGCAACTTGTGAGGGTCTAATAT

GAGGTCAAACTCAGTAGGAGTTTTATCCAAAAAAGAAAACATGATTACGTCTGTACACGAACGCGTATTAACGCAGAGTGCA

AAGTATAAGAGGGTTAAAAAATATATTTTACGCACCATATACGCATCGGGTTGATATCGTTAATATGGATCAATTTGAACAGT

TGATTAACGTGTCTCTGCTCAAGTCTTTGATCAAAACGCAAATCGACGAAAATGTGTCGGACAATATCAAGTCGATGAGCGA

AAAACTAAAAAGGCTAGAATACGACAATCTCACAGACAGCGTTGAGATATACGGTATTCACGACAGCAGGCTGAATAATAAA

AAAATTAGAAACTATTATTTAACCCTAGAAAGATAATCATATTGTGACGTACGTTAAAGATAATCATGCGTAAAATTGACGCAT

GTGTTTTATCGGTCTGTATATCGAGGTTTATTTATTAATTTGAATAGATATTAAGTTTTATTATATTTACACTTACATACTAATA

ATAAATTCAACAAACAATTTATTTATGTTTATTTATTTATTAAAAAAAAACAAAAACTCAAAATTTCTTCTATAAAGTAACAAAAC

TTTTAAACATTCTCTCTTTTACAAAAATAAACTTATTTTGTACTTTAAAAACAGTCATGTTGTATTATAAAATAAGTAATTAGCTT

AACTTATACATAATAGAAACAAATTATACTTATTAGTCAGTCAGAAACAACTTTGGCACATATCAATATTATGCTCTCGACAAA

TAACTTTTTTGCATTTTTTGCACGATGCATTTGCCTTTCGCCTTATTTTAGAGGGGCAGTAAGTACAGTAAGTACGTTTTTTCA

TTACTGGCTCTTCAGTACTGTCATCTGATGTACCAGGCACTTCATTTGGCAAAATATTAGAGATATTATCGCGCAAATATCTC

TTCAAAGTAGGAGCTTCTAAACGCTTACGCATAAACGATGACGTCAGGCTCATGTAAAGGTTTCTCATAAATTTTTTGCGACT

TTGAACCTTTTCTCCCTTGCTACTGACATTATGGCTGTATATAATAAAAGAATTTATGCAGGCAATGTTTATCATTCCGTACAA

TAATGCCATAGGCCACCTATTCGTCTTCCTACTGCAGGTCATCACAGAACACATTTGGTCTAGCGTGTCCACTCCGCCTTTA

GTTTGATTATAATACATAACCATTTGCGGTTTACCGGTACTTTCGTTGATAGAAGCATCCTCATCACAAGATGATAATAAGTA

TACCATCTTAGCTGGCTTCGGTTTATATGAGACGAGAGTAAGGGGTCCGTCAAAACAAAACATCGATGTTCCCACTGGCCT

GGAGCGACTGTTTTTCAGTACTTCCGGTATCTCGCGTTTGTTTGATCGCACGGTTCCCACAATGCGGGGATTATTCATTAGA
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GACTAATTCAATTAGAGCTAATTCAATTAGGATCCAAGCTTATCGATTTCGAACCCTCGACCGCCGGAGTATAAATAGAGGC

GCTTCGTCTACGGAGCGACAATTCAATTCAAACAAGCAAAGTGAACACGTCGCTAAGCGAAAGCTAAGCAAATAAACAAGC

GCAGCTGAACAAGCTAAACAATCGGGGTACCGCTAGAGTCGACGGTACCGCGGGCCCGGGATCCACCGGTCGCCACCAT

GGTGCGCTCCTCCAAGAACGTCATCAAGGAGTTCATGCGCTTCAAGGTGCGCATGGAGGGCACCGTGAACGGCCACGAG

TTCGAGATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCCACAACACCGTGAAGCTGAAGGTGACCAAGGGCGGC

CCCCTGCCCTTCGCCTGGGACATCCTGTCCCCCCAGTTCCAGTACGGCTCCAAGGTGTACGTGAAGCACCCCGCCGACAT

CCCCGACTACAAGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGCGTGGTG

ACCGTGACCCAGGACTCCTCCCTGCAGGACGGCTGCTTCATCTACAAGGTGAAGTTCATCGGCGTGAACTTCCCCTCCGA

CGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCACCGAGCGCCTGTACCCCCGCGACGGCGTGCTGAA

GGGCGAGATCCACAAGGCCCTGAAGCTGAAGGACGGCGGCCACTACCTGGTGGAGTTCAAGTCCATCTACATGGCCAAG

AAGCCCGTGCAGCTGCCCGGCTACTACTACGTGGACTCCAAGCTGGACATCACCTCCCACAACGAGGATTACACCATCGT

GGAGCAGTACGAGCGCACCGAGGGCCGCCACCACCTGTTCCTGTAGCGGCCGCGACTCTAGATCATAATCAGCCATACCA

CATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACTTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTT

GTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTG

CATTCTAGTTGTGGTTTGTCCAAACTCATCATGTATCTTAAGCTTATCGATACGCGTACGGCGCGCCTAGGCCGGCCGAATT

CGAATGGCCATGGGACGTCGACCTGAGGTAATTATAACCCGGGCCCTATATATGGATCCAATTGCAATGATCATCATGACA

GATCTGCGCGCGATCGATATCTGCAGGTCGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGAGCGGAGTACTGTCCT

CCGAGCGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGAGCGGAGACTCTAGCGAGCGCCGGAGATCCGTTTCATAT

ATAAGCGCGGTCTCGCGGCGCGTTGTCAGTGAATTTGAATCAAGCGAAGCGAAAGCAACAAAGCTAAGCAAGCGACTCAA

AGCAAATTTTCAAAGCGACTTTAACAAAGTTGAGTGAATTATTTACTAGTGAATTCAAAGTGGTACCATGTCTTTTCAACAAA

CAAACAACAACGCAACCAACAACATCAACTCCCTTGAGGAGCTTGCTGCTCAAGAACTAATAGCAGCACAATTTGAAGGAAA

TCTTGATGGTTTCTTTTGCACTTTTTATGTGCAGTCCAAACCACAACTATTGGACTTAGAGAGTGAATGTTATTGTATGGATG

ATTTTGATTGTGGGTGTGATAGGATCAAGAGAGAAGAAGAATTACGTAAACTGATTTTCTTAACATCGGACGTTTATGGATAT

AACTTTGAAGAGTGGAAAGGATTAGTTTGGAAATTTGTTCAAAATTATTGCCCAGAACATCGATATGGATCAACTTTTGGTAA

TGGATTATTAATTGTGAGTCCCCGTTTCTTTATGGATCATCTTGACTGGTTTCAGCAATGGAAACTTGTTTCAAGTAATGATG

AATGCAGAGCCTTCAAGCGGCCGCGACTCTAGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAA

CCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGGTT

ACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCA

ATGTATCTTAAGCTTGGCGCGCCTAGGCCGGCCGATCTCGGATCTGACAATGTTCAGTGCAGAGACTCGGCTACGCCTCG

TGGACTTTGAAGTTGACCAACAATGTTTATTCTTACCTCTAATAGTCCTCTGTGGCAAGGTCAAGATTCTGTTAGAAGCCAAT

GAAGAACCTGGTTGTTCAATAACATTTTGTTCGTCTAATATTTCACTACCGCTTGACGTTGGCTGCACTTCATGTACCTCATC

TATAAACGCTTCTTCTGTATCGCTCTGGACGTCATCTTCACTTACGTGATCTGATATTTCACTGTCAGAATCCTCACCAACAA

GCTCGTCATCGCTTTGCAGAAGAGCAGAGAGGATATGCTCATCGTCTAAAGAACTACCCATTTTATTATATATTAGTCACGA

TATCTATAACAAGAAAATATATATATAATAAGTTATCACGTAAGTAGAACATGAAATAACAATATAATTATCGTATGAGTTAAAT

CTTAAAAGTCACGTAAAAGATAATCATGCGTCATTTTGACTCACGCGGTCGTTATAGTTCAAAATCAGTGACACTTACCGCAT

TGACAAGCACGCCTCACGGGAGCTCCAAGCGGCGACTGAGATGTCCTAAATGCACAGCGACGGATTCGCGCTATTTAGAA

AGAGAGAGCAATATTTCAAGAATGCATGCGTCAATTTTACGCAGACTATCTTTCTAGGGTTAAAAAAGATTTGCGCTTTACTC

GACCTAAACTTTAAACACGTCATAGAATCTTCGTTTGACAAAAACCACATTGTGGCCAAGCTGTGTGACGCGACGCGCGCT

AAAGAATGGCAAACCAAGTCGCGCGAGCGTCGACTCTAGAGGATCCCCGGGTACCGAGCTCGAATTCGTAATCATGGTCA

TAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGG

GTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGC

TGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCG

CTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGA

TAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCC

ATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGA

TACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTT

CTCCCTTCGGGAAGCGTGGCGCTTTCTCAATGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTG

GGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAG

ACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCT

TGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAA

AAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGC
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GCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAG

GGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTA

TATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCC

ATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCG

CGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTG

CAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAA

CGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATC

AAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTT

GGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTG

ACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGAT

AATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTAC

CGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGG

GTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCT

TTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAAT

AGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAAT

AGGCGTATCACGAGGCCCTTTCGTC 

 

>pBac3xP3-DsRed;UAS-Tc'Hsp-p-B2-SV40 

TCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGAT

GCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCA

GAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCG

CCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAG

GGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGCC

AAGCTTTGTTTAAAATATAACAAAATTGTGATCCCACAAAATGAAGTGGGGCAAAATCAAATAATTAACTAGTGTCCGTAAAC

TTGTTGGTCTTCAACTTTTTGAGGAACACGTTGGACGGCAAATCGTGACTATAACACAAGTTGATTTAATAATTTTAGCCAAC

ACGTCGGGCTGCGTGTTTTTTGCGCTCTGTGTACACGTTGATTAACTGGTCGATTAAATAATTTAATTTTTGGTTCTTCTTTAA

ATCTGTGATGAAATTTTTTAAAATAACTTTAAATTCTTCATTGGTAAAAAATGCCACGTTTTGCAACTTGTGAGGGTCTAATAT

GAGGTCAAACTCAGTAGGAGTTTTATCCAAAAAAGAAAACATGATTACGTCTGTACACGAACGCGTATTAACGCAGAGTGCA

AAGTATAAGAGGGTTAAAAAATATATTTTACGCACCATATACGCATCGGGTTGATATCGTTAATATGGATCAATTTGAACAGT
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TGATTAACGTGTCTCTGCTCAAGTCTTTGATCAAAACGCAAATCGACGAAAATGTGTCGGACAATATCAAGTCGATGAGCGA

AAAACTAAAAAGGCTAGAATACGACAATCTCACAGACAGCGTTGAGATATACGGTATTCACGACAGCAGGCTGAATAATAAA

AAAATTAGAAACTATTATTTAACCCTAGAAAGATAATCATATTGTGACGTACGTTAAAGATAATCATGCGTAAAATTGACGCAT

GTGTTTTATCGGTCTGTATATCGAGGTTTATTTATTAATTTGAATAGATATTAAGTTTTATTATATTTACACTTACATACTAATA

ATAAATTCAACAAACAATTTATTTATGTTTATTTATTTATTAAAAAAAAACAAAAACTCAAAATTTCTTCTATAAAGTAACAAAAC

TTTTAAACATTCTCTCTTTTACAAAAATAAACTTATTTTGTACTTTAAAAACAGTCATGTTGTATTATAAAATAAGTAATTAGCTT

AACTTATACATAATAGAAACAAATTATACTTATTAGTCAGTCAGAAACAACTTTGGCACATATCAATATTATGCTCTCGACAAA

TAACTTTTTTGCATTTTTTGCACGATGCATTTGCCTTTCGCCTTATTTTAGAGGGGCAGTAAGTACAGTAAGTACGTTTTTTCA

TTACTGGCTCTTCAGTACTGTCATCTGATGTACCAGGCACTTCATTTGGCAAAATATTAGAGATATTATCGCGCAAATATCTC

TTCAAAGTAGGAGCTTCTAAACGCTTACGCATAAACGATGACGTCAGGCTCATGTAAAGGTTTCTCATAAATTTTTTGCGACT

TTGAACCTTTTCTCCCTTGCTACTGACATTATGGCTGTATATAATAAAAGAATTTATGCAGGCAATGTTTATCATTCCGTACAA

TAATGCCATAGGCCACCTATTCGTCTTCCTACTGCAGGTCATCACAGAACACATTTGGTCTAGCGTGTCCACTCCGCCTTTA

GTTTGATTATAATACATAACCATTTGCGGTTTACCGGTACTTTCGTTGATAGAAGCATCCTCATCACAAGATGATAATAAGTA

TACCATCTTAGCTGGCTTCGGTTTATATGAGACGAGAGTAAGGGGTCCGTCAAAACAAAACATCGATGTTCCCACTGGCCT

GGAGCGACTGTTTTTCAGTACTTCCGGTATCTCGCGTTTGTTTGATCGCACGGTTCCCACAATGCGGGGATTATTCATTAGA

GACTAATTCAATTAGAGCTAATTCAATTAGGATCCAAGCTTATCGATTTCGAACCCTCGACCGCCGGAGTATAAATAGAGGC

GCTTCGTCTACGGAGCGACAATTCAATTCAAACAAGCAAAGTGAACACGTCGCTAAGCGAAAGCTAAGCAAATAAACAAGC

GCAGCTGAACAAGCTAAACAATCGGGGTACCGCTAGAGTCGACGGTACCGCGGGCCCGGGATCCACCGGTCGCCACCAT

GGTGCGCTCCTCCAAGAACGTCATCAAGGAGTTCATGCGCTTCAAGGTGCGCATGGAGGGCACCGTGAACGGCCACGAG

TTCGAGATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCCACAACACCGTGAAGCTGAAGGTGACCAAGGGCGGC

CCCCTGCCCTTCGCCTGGGACATCCTGTCCCCCCAGTTCCAGTACGGCTCCAAGGTGTACGTGAAGCACCCCGCCGACAT

CCCCGACTACAAGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGCGTGGTG

ACCGTGACCCAGGACTCCTCCCTGCAGGACGGCTGCTTCATCTACAAGGTGAAGTTCATCGGCGTGAACTTCCCCTCCGA

CGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCACCGAGCGCCTGTACCCCCGCGACGGCGTGCTGAA

GGGCGAGATCCACAAGGCCCTGAAGCTGAAGGACGGCGGCCACTACCTGGTGGAGTTCAAGTCCATCTACATGGCCAAG

AAGCCCGTGCAGCTGCCCGGCTACTACTACGTGGACTCCAAGCTGGACATCACCTCCCACAACGAGGATTACACCATCGT

GGAGCAGTACGAGCGCACCGAGGGCCGCCACCACCTGTTCCTGTAGCGGCCGCGACTCTAGATCATAATCAGCCATACCA

CATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACTTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTT

GTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTG

CATTCTAGTTGTGGTTTGTCCAAACTCATCATGTATCTTAAGCTTATCGATACGCGTACGGCGCGCCTAGGCCGGCCGAATT

CGAATGGCCATGGGACGTCGACCTGAGGTAATTATAACCCGGGCCCTATATATGGATCCAATTGCAATGATCATCATGACA

GATCTGCGCGCGATCGATATCTGCAGGTCGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGAGCGGAGTACTGTCCT

CCGAGCGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGAGCGGAGACTCTAGCGAGCGCCGGAGATCCGTTTCATAT

ATAAGCGCGGTCTCGCGGCGCGTTGTCAGTGAATTTGAATCAAGCGAAGCGAAAGCAACAAAGCTAAGCAAGCGACTCAA

AGCAAATTTTCAAAGCGACTTTAACAAAGTTGAGTGAATTATTTACTAGTGAATTCAAAGTGGTACCATGCCAAGCAAACTCG

CGCTAATCCAGGAACTTCCCGACCGCATTCAAACGGCGGTGGAAGCAGCCATGGGAATGAGCTACCAAGACGCACCGAAC

AACGTGCGCAGGGACCTCGACAACCTGCACGCTTGCCTAAACAAGGCAAAACTAACGGTAAGTCGGATGGTAACATCACT

GCTGGAGAAACCCAGCGTGGTGGCATACCTAGAGGGAAAGGCCCCCGAGGAGGCAAAACCAACACTCGAAGAACGCCTC

CGAAAGCTGGAGCTCAGCCACAGCCTTCCAACAACCGGAAGTGACCCCCCACCCGCAAAACTGAAGCGGCCGCGACTCTA

GATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACCTCCCCCTGAACCTGAAACATA

AAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAA

ATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTAAGCTTGGCGCGCCTAGGCCGG

CCGATCTCGGATCTGACAATGTTCAGTGCAGAGACTCGGCTACGCCTCGTGGACTTTGAAGTTGACCAACAATGTTTATTCT

TACCTCTAATAGTCCTCTGTGGCAAGGTCAAGATTCTGTTAGAAGCCAATGAAGAACCTGGTTGTTCAATAACATTTTGTTCG

TCTAATATTTCACTACCGCTTGACGTTGGCTGCACTTCATGTACCTCATCTATAAACGCTTCTTCTGTATCGCTCTGGACGTC

ATCTTCACTTACGTGATCTGATATTTCACTGTCAGAATCCTCACCAACAAGCTCGTCATCGCTTTGCAGAAGAGCAGAGAGG

ATATGCTCATCGTCTAAAGAACTACCCATTTTATTATATATTAGTCACGATATCTATAACAAGAAAATATATATATAATAAGTTA

TCACGTAAGTAGAACATGAAATAACAATATAATTATCGTATGAGTTAAATCTTAAAAGTCACGTAAAAGATAATCATGCGTCAT

TTTGACTCACGCGGTCGTTATAGTTCAAAATCAGTGACACTTACCGCATTGACAAGCACGCCTCACGGGAGCTCCAAGCGG

CGACTGAGATGTCCTAAATGCACAGCGACGGATTCGCGCTATTTAGAAAGAGAGAGCAATATTTCAAGAATGCATGCGTCA

ATTTTACGCAGACTATCTTTCTAGGGTTAAAAAAGATTTGCGCTTTACTCGACCTAAACTTTAAACACGTCATAGAATCTTCG
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TTTGACAAAAACCACATTGTGGCCAAGCTGTGTGACGCGACGCGCGCTAAAGAATGGCAAACCAAGTCGCGCGAGCGTCG

ACTCTAGAGGATCCCCGGGTACCGAGCTCGAATTCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCA

CAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTG

CGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGA

GGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGT

ATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCA

GCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAA

ATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTG

CGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAATGC

TCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGA

CCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTG

GTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGA

AGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAA

ACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTG

ATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCT

TCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAAT

GCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAAC

TACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTAT

CAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATT

GTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGT

CACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCA

AAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAG

CACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAA

TAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTG

CTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTC

GTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAA

AAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTAT

TGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGC

CACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTC 
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>pBac3xP3-DsRed;UAS-Tc'Hsp-p-VP1-SV40 

TCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGAT

GCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCA

GAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCG

CCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAG

GGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGCC

AAGCTTTGTTTAAAATATAACAAAATTGTGATCCCACAAAATGAAGTGGGGCAAAATCAAATAATTAACTAGTGTCCGTAAAC

TTGTTGGTCTTCAACTTTTTGAGGAACACGTTGGACGGCAAATCGTGACTATAACACAAGTTGATTTAATAATTTTAGCCAAC

ACGTCGGGCTGCGTGTTTTTTGCGCTCTGTGTACACGTTGATTAACTGGTCGATTAAATAATTTAATTTTTGGTTCTTCTTTAA

ATCTGTGATGAAATTTTTTAAAATAACTTTAAATTCTTCATTGGTAAAAAATGCCACGTTTTGCAACTTGTGAGGGTCTAATAT

GAGGTCAAACTCAGTAGGAGTTTTATCCAAAAAAGAAAACATGATTACGTCTGTACACGAACGCGTATTAACGCAGAGTGCA

AAGTATAAGAGGGTTAAAAAATATATTTTACGCACCATATACGCATCGGGTTGATATCGTTAATATGGATCAATTTGAACAGT

TGATTAACGTGTCTCTGCTCAAGTCTTTGATCAAAACGCAAATCGACGAAAATGTGTCGGACAATATCAAGTCGATGAGCGA

AAAACTAAAAAGGCTAGAATACGACAATCTCACAGACAGCGTTGAGATATACGGTATTCACGACAGCAGGCTGAATAATAAA

AAAATTAGAAACTATTATTTAACCCTAGAAAGATAATCATATTGTGACGTACGTTAAAGATAATCATGCGTAAAATTGACGCAT

GTGTTTTATCGGTCTGTATATCGAGGTTTATTTATTAATTTGAATAGATATTAAGTTTTATTATATTTACACTTACATACTAATA

ATAAATTCAACAAACAATTTATTTATGTTTATTTATTTATTAAAAAAAAACAAAAACTCAAAATTTCTTCTATAAAGTAACAAAAC

TTTTAAACATTCTCTCTTTTACAAAAATAAACTTATTTTGTACTTTAAAAACAGTCATGTTGTATTATAAAATAAGTAATTAGCTT

AACTTATACATAATAGAAACAAATTATACTTATTAGTCAGTCAGAAACAACTTTGGCACATATCAATATTATGCTCTCGACAAA

TAACTTTTTTGCATTTTTTGCACGATGCATTTGCCTTTCGCCTTATTTTAGAGGGGCAGTAAGTACAGTAAGTACGTTTTTTCA

TTACTGGCTCTTCAGTACTGTCATCTGATGTACCAGGCACTTCATTTGGCAAAATATTAGAGATATTATCGCGCAAATATCTC

TTCAAAGTAGGAGCTTCTAAACGCTTACGCATAAACGATGACGTCAGGCTCATGTAAAGGTTTCTCATAAATTTTTTGCGACT

TTGAACCTTTTCTCCCTTGCTACTGACATTATGGCTGTATATAATAAAAGAATTTATGCAGGCAATGTTTATCATTCCGTACAA

TAATGCCATAGGCCACCTATTCGTCTTCCTACTGCAGGTCATCACAGAACACATTTGGTCTAGCGTGTCCACTCCGCCTTTA

GTTTGATTATAATACATAACCATTTGCGGTTTACCGGTACTTTCGTTGATAGAAGCATCCTCATCACAAGATGATAATAAGTA

TACCATCTTAGCTGGCTTCGGTTTATATGAGACGAGAGTAAGGGGTCCGTCAAAACAAAACATCGATGTTCCCACTGGCCT

GGAGCGACTGTTTTTCAGTACTTCCGGTATCTCGCGTTTGTTTGATCGCACGGTTCCCACAATGCGGGGATTATTCATTAGA

GACTAATTCAATTAGAGCTAATTCAATTAGGATCCAAGCTTATCGATTTCGAACCCTCGACCGCCGGAGTATAAATAGAGGC

GCTTCGTCTACGGAGCGACAATTCAATTCAAACAAGCAAAGTGAACACGTCGCTAAGCGAAAGCTAAGCAAATAAACAAGC

GCAGCTGAACAAGCTAAACAATCGGGGTACCGCTAGAGTCGACGGTACCGCGGGCCCGGGATCCACCGGTCGCCACCAT

GGTGCGCTCCTCCAAGAACGTCATCAAGGAGTTCATGCGCTTCAAGGTGCGCATGGAGGGCACCGTGAACGGCCACGAG

TTCGAGATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCCACAACACCGTGAAGCTGAAGGTGACCAAGGGCGGC

CCCCTGCCCTTCGCCTGGGACATCCTGTCCCCCCAGTTCCAGTACGGCTCCAAGGTGTACGTGAAGCACCCCGCCGACAT

CCCCGACTACAAGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGCGTGGTG

ACCGTGACCCAGGACTCCTCCCTGCAGGACGGCTGCTTCATCTACAAGGTGAAGTTCATCGGCGTGAACTTCCCCTCCGA

CGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCACCGAGCGCCTGTACCCCCGCGACGGCGTGCTGAA

GGGCGAGATCCACAAGGCCCTGAAGCTGAAGGACGGCGGCCACTACCTGGTGGAGTTCAAGTCCATCTACATGGCCAAG

AAGCCCGTGCAGCTGCCCGGCTACTACTACGTGGACTCCAAGCTGGACATCACCTCCCACAACGAGGATTACACCATCGT

GGAGCAGTACGAGCGCACCGAGGGCCGCCACCACCTGTTCCTGTAGCGGCCGCGACTCTAGATCATAATCAGCCATACCA

CATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACTTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTT

GTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTG

CATTCTAGTTGTGGTTTGTCCAAACTCATCATGTATCTTAAGCTTATCGATACGCGTACGGCGCGCCTAGGCCGGCCGAATT

CGAATGGCCATGGGACGTCGACCTGAGGTAATTATAACCCGGGCCCTATATATGGATCCAATTGCAATGATCATCATGACA

GATCTGCGCGCGATCGATATCTGCAGGTCGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGAGCGGAGTACTGTCCT

CCGAGCGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGAGCGGAGACTCTAGCGAGCGCCGGAGATCCGTTTCATAT

ATAAGCGCGGTCTCGCGGCGCGTTGTCAGTGAATTTGAATCAAGCGAAGCGAAAGCAACAAAGCTAAGCAAGCGACTCAA

AGCAAATTTTCAAAGCGACTTTAACAAAGTTGAGTGAATTATTTACTAGTGAATTCAAAGTGGTACCCCACCAGCAGAGGAG

AAAAGGAGTATCCATTTTTATGGTTACAAACCAAAAGGAATCCCTAACAAAGTTTGGTGGAACTGGGTCACCACTGGCACAG

CTATGGACGCTTATGAAAAAGCTGACCGTTATCTGTATCATCAATTTAAACGAGAAATGATGATATACAGAAATAAATGGGTC

AAATTTAGTAAGGAGTTCAATCCATACCTATCAAAACCGAAAATGGTGTGGGAAGAGAATACATGGGAATATGAATATAAAA

CGGACGTTCCCTATAATTTTATTCTCAAATGGCGCCAGTTAGTACAGACTTACAAACCTAACACACCAATCCAGGCTGATTG



                                                                                                                        Appendix 

133 
 

GTATAAAATCTCGCAGAAACAACAATGTTAAAAGCGGCCGCGACTCTAGATCATAATCAGCCATACCACATTTGTAGAGGTT

TTACTTGCTTTAAAAAACCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATT

GCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGT

TTGTCCAAACTCATCAATGTATCTTAAGCTTGGCGCGCCTAGGCCGGCCGATCTCGGATCTGACAATGTTCAGTGCAGAGA

CTCGGCTACGCCTCGTGGACTTTGAAGTTGACCAACAATGTTTATTCTTACCTCTAATAGTCCTCTGTGGCAAGGTCAAGAT

TCTGTTAGAAGCCAATGAAGAACCTGGTTGTTCAATAACATTTTGTTCGTCTAATATTTCACTACCGCTTGACGTTGGCTGCA

CTTCATGTACCTCATCTATAAACGCTTCTTCTGTATCGCTCTGGACGTCATCTTCACTTACGTGATCTGATATTTCACTGTCA

GAATCCTCACCAACAAGCTCGTCATCGCTTTGCAGAAGAGCAGAGAGGATATGCTCATCGTCTAAAGAACTACCCATTTTAT

TATATATTAGTCACGATATCTATAACAAGAAAATATATATATAATAAGTTATCACGTAAGTAGAACATGAAATAACAATATAATT

ATCGTATGAGTTAAATCTTAAAAGTCACGTAAAAGATAATCATGCGTCATTTTGACTCACGCGGTCGTTATAGTTCAAAATCA

GTGACACTTACCGCATTGACAAGCACGCCTCACGGGAGCTCCAAGCGGCGACTGAGATGTCCTAAATGCACAGCGACGGA

TTCGCGCTATTTAGAAAGAGAGAGCAATATTTCAAGAATGCATGCGTCAATTTTACGCAGACTATCTTTCTAGGGTTAAAAAA

GATTTGCGCTTTACTCGACCTAAACTTTAAACACGTCATAGAATCTTCGTTTGACAAAAACCACATTGTGGCCAAGCTGTGT

GACGCGACGCGCGCTAAAGAATGGCAAACCAAGTCGCGCGAGCGTCGACTCTAGAGGATCCCCGGGTACCGAGCTCGAA

TTCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATA

AAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGA

AACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTC

CTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTAT

CCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGC

GTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACC

CGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACC

GGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAATGCTCACGCTGTAGGTATCTCAGTTCGGTGTAG

GTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCT

TGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAG

GCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGA

AGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTT

GCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGA

ACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGT

TTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGAT

CTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCC

CAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCG

AGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGC

CAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAG

CTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGAT

CGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCC

GTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGC

CCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGA

AAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTA

CTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGT

TGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGT

ATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCA

TGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTC 
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>pBac3xP3-DsRed;UAS-Tc'Hsp-p-DCV1A-SV40 

TCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGAT

GCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCA

GAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCG

CCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAG

GGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGCC

AAGCTTTGTTTAAAATATAACAAAATTGTGATCCCACAAAATGAAGTGGGGCAAAATCAAATAATTAACTAGTGTCCGTAAAC

TTGTTGGTCTTCAACTTTTTGAGGAACACGTTGGACGGCAAATCGTGACTATAACACAAGTTGATTTAATAATTTTAGCCAAC

ACGTCGGGCTGCGTGTTTTTTGCGCTCTGTGTACACGTTGATTAACTGGTCGATTAAATAATTTAATTTTTGGTTCTTCTTTAA

ATCTGTGATGAAATTTTTTAAAATAACTTTAAATTCTTCATTGGTAAAAAATGCCACGTTTTGCAACTTGTGAGGGTCTAATAT

GAGGTCAAACTCAGTAGGAGTTTTATCCAAAAAAGAAAACATGATTACGTCTGTACACGAACGCGTATTAACGCAGAGTGCA

AAGTATAAGAGGGTTAAAAAATATATTTTACGCACCATATACGCATCGGGTTGATATCGTTAATATGGATCAATTTGAACAGT

TGATTAACGTGTCTCTGCTCAAGTCTTTGATCAAAACGCAAATCGACGAAAATGTGTCGGACAATATCAAGTCGATGAGCGA

AAAACTAAAAAGGCTAGAATACGACAATCTCACAGACAGCGTTGAGATATACGGTATTCACGACAGCAGGCTGAATAATAAA

AAAATTAGAAACTATTATTTAACCCTAGAAAGATAATCATATTGTGACGTACGTTAAAGATAATCATGCGTAAAATTGACGCAT

GTGTTTTATCGGTCTGTATATCGAGGTTTATTTATTAATTTGAATAGATATTAAGTTTTATTATATTTACACTTACATACTAATA

ATAAATTCAACAAACAATTTATTTATGTTTATTTATTTATTAAAAAAAAACAAAAACTCAAAATTTCTTCTATAAAGTAACAAAAC

TTTTAAACATTCTCTCTTTTACAAAAATAAACTTATTTTGTACTTTAAAAACAGTCATGTTGTATTATAAAATAAGTAATTAGCTT

AACTTATACATAATAGAAACAAATTATACTTATTAGTCAGTCAGAAACAACTTTGGCACATATCAATATTATGCTCTCGACAAA

TAACTTTTTTGCATTTTTTGCACGATGCATTTGCCTTTCGCCTTATTTTAGAGGGGCAGTAAGTACAGTAAGTACGTTTTTTCA

TTACTGGCTCTTCAGTACTGTCATCTGATGTACCAGGCACTTCATTTGGCAAAATATTAGAGATATTATCGCGCAAATATCTC

TTCAAAGTAGGAGCTTCTAAACGCTTACGCATAAACGATGACGTCAGGCTCATGTAAAGGTTTCTCATAAATTTTTTGCGACT

TTGAACCTTTTCTCCCTTGCTACTGACATTATGGCTGTATATAATAAAAGAATTTATGCAGGCAATGTTTATCATTCCGTACAA

TAATGCCATAGGCCACCTATTCGTCTTCCTACTGCAGGTCATCACAGAACACATTTGGTCTAGCGTGTCCACTCCGCCTTTA

GTTTGATTATAATACATAACCATTTGCGGTTTACCGGTACTTTCGTTGATAGAAGCATCCTCATCACAAGATGATAATAAGTA

TACCATCTTAGCTGGCTTCGGTTTATATGAGACGAGAGTAAGGGGTCCGTCAAAACAAAACATCGATGTTCCCACTGGCCT

GGAGCGACTGTTTTTCAGTACTTCCGGTATCTCGCGTTTGTTTGATCGCACGGTTCCCACAATGCGGGGATTATTCATTAGA

GACTAATTCAATTAGAGCTAATTCAATTAGGATCCAAGCTTATCGATTTCGAACCCTCGACCGCCGGAGTATAAATAGAGGC

GCTTCGTCTACGGAGCGACAATTCAATTCAAACAAGCAAAGTGAACACGTCGCTAAGCGAAAGCTAAGCAAATAAACAAGC
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GCAGCTGAACAAGCTAAACAATCGGGGTACCGCTAGAGTCGACGGTACCGCGGGCCCGGGATCCACCGGTCGCCACCAT

GGTGCGCTCCTCCAAGAACGTCATCAAGGAGTTCATGCGCTTCAAGGTGCGCATGGAGGGCACCGTGAACGGCCACGAG

TTCGAGATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCCACAACACCGTGAAGCTGAAGGTGACCAAGGGCGGC

CCCCTGCCCTTCGCCTGGGACATCCTGTCCCCCCAGTTCCAGTACGGCTCCAAGGTGTACGTGAAGCACCCCGCCGACAT

CCCCGACTACAAGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGCGTGGTG

ACCGTGACCCAGGACTCCTCCCTGCAGGACGGCTGCTTCATCTACAAGGTGAAGTTCATCGGCGTGAACTTCCCCTCCGA

CGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCACCGAGCGCCTGTACCCCCGCGACGGCGTGCTGAA

GGGCGAGATCCACAAGGCCCTGAAGCTGAAGGACGGCGGCCACTACCTGGTGGAGTTCAAGTCCATCTACATGGCCAAG

AAGCCCGTGCAGCTGCCCGGCTACTACTACGTGGACTCCAAGCTGGACATCACCTCCCACAACGAGGATTACACCATCGT

GGAGCAGTACGAGCGCACCGAGGGCCGCCACCACCTGTTCCTGTAGCGGCCGCGACTCTAGATCATAATCAGCCATACCA

CATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACTTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTT

GTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTG

CATTCTAGTTGTGGTTTGTCCAAACTCATCATGTATCTTAAGCTTATCGATACGCGTACGGCGCGCCTAGGCCGGCCGAATT

CGAATGGCCATGGGACGTCGACCTGAGGTAATTATAACCCGGGCCCTATATATGGATCCAATTGCAATGATCATCATGACA

GATCTGCGCGCGATCGATATCTGCAGGTCGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGAGCGGAGTACTGTCCT

CCGAGCGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGAGCGGAGACTCTAGCGAGCGCCGGAGATCCGTTTCATAT

ATAAGCGCGGTCTCGCGGCGCGTTGTCAGTGAATTTGAATCAAGCGAAGCGAAAGCAACAAAGCTAAGCAAGCGACTCAA

AGCAAATTTTCAAAGCGACTTTAACAAAGTTGAGTGAATTATTTACTAGTGAATTCAAAGTGGTACCATGGAATCTGATAAAA

GTATGGCCTGTTTAAATAGAATTTTGATGAACAAGATGATGTTTGTGGAAGATAAGATCTCCACCCTTAAGATGGTTGCTGAT

TATTATCAAAAAGAAGTAAAGTATGATTTTGATGCAGTTGAATCTCCCCGTGAGGCACCCGTATTTAAATGTACTTGTAGATT

TCTTGGTTATACCATTATGACTCAAGGCATCGGTAAGAAGAATCCGAAACAGGAAGCTGCACGTCAGATGTTGCTCTTGTTA

TCAGGAAAGCGGCCGCGACTCTAGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCAC

ACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAA

GCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTT

AAGCTTGGCGCGCCTAGGCCGGCCGATCTCGGATCTGACAATGTTCAGTGCAGAGACTCGGCTACGCCTCGTGGACTTTG

AAGTTGACCAACAATGTTTATTCTTACCTCTAATAGTCCTCTGTGGCAAGGTCAAGATTCTGTTAGAAGCCAATGAAGAACCT

GGTTGTTCAATAACATTTTGTTCGTCTAATATTTCACTACCGCTTGACGTTGGCTGCACTTCATGTACCTCATCTATAAACGC

TTCTTCTGTATCGCTCTGGACGTCATCTTCACTTACGTGATCTGATATTTCACTGTCAGAATCCTCACCAACAAGCTCGTCAT

CGCTTTGCAGAAGAGCAGAGAGGATATGCTCATCGTCTAAAGAACTACCCATTTTATTATATATTAGTCACGATATCTATAAC

AAGAAAATATATATATAATAAGTTATCACGTAAGTAGAACATGAAATAACAATATAATTATCGTATGAGTTAAATCTTAAAAGT

CACGTAAAAGATAATCATGCGTCATTTTGACTCACGCGGTCGTTATAGTTCAAAATCAGTGACACTTACCGCATTGACAAGC

ACGCCTCACGGGAGCTCCAAGCGGCGACTGAGATGTCCTAAATGCACAGCGACGGATTCGCGCTATTTAGAAAGAGAGAG

CAATATTTCAAGAATGCATGCGTCAATTTTACGCAGACTATCTTTCTAGGGTTAAAAAAGATTTGCGCTTTACTCGACCTAAA

CTTTAAACACGTCATAGAATCTTCGTTTGACAAAAACCACATTGTGGCCAAGCTGTGTGACGCGACGCGCGCTAAAGAATG

GCAAACCAAGTCGCGCGAGCGTCGACTCTAGAGGATCCCCGGGTACCGAGCTCGAATTCGTAATCATGGTCATAGCTGTT

TCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTA

ATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTA

ATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCT

CGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCA

GGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCT

CCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGG

CGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTT

CGGGAAGCGTGGCGCTTTCTCAATGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGT

GTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGA

CTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGT

GGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAG

TTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAA

AAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTT

GGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGA

GTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTG

CCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGAC
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CCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTT

ATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTT

GCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGA

GTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCA

GTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTG

AGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCG

CGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTT

GAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCA

AAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAAT

ATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTT

CCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTA

TCACGAGGCCCTTTCGTC 

 

>pBac3xP3-DsRed;UAS-Tc'Hsp-p-p25-SV40 

TCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGAT

GCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCA

GAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCG

CCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAG

GGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGCC

AAGCTTTGTTTAAAATATAACAAAATTGTGATCCCACAAAATGAAGTGGGGCAAAATCAAATAATTAACTAGTGTCCGTAAAC

TTGTTGGTCTTCAACTTTTTGAGGAACACGTTGGACGGCAAATCGTGACTATAACACAAGTTGATTTAATAATTTTAGCCAAC

ACGTCGGGCTGCGTGTTTTTTGCGCTCTGTGTACACGTTGATTAACTGGTCGATTAAATAATTTAATTTTTGGTTCTTCTTTAA

ATCTGTGATGAAATTTTTTAAAATAACTTTAAATTCTTCATTGGTAAAAAATGCCACGTTTTGCAACTTGTGAGGGTCTAATAT

GAGGTCAAACTCAGTAGGAGTTTTATCCAAAAAAGAAAACATGATTACGTCTGTACACGAACGCGTATTAACGCAGAGTGCA

AAGTATAAGAGGGTTAAAAAATATATTTTACGCACCATATACGCATCGGGTTGATATCGTTAATATGGATCAATTTGAACAGT

TGATTAACGTGTCTCTGCTCAAGTCTTTGATCAAAACGCAAATCGACGAAAATGTGTCGGACAATATCAAGTCGATGAGCGA

AAAACTAAAAAGGCTAGAATACGACAATCTCACAGACAGCGTTGAGATATACGGTATTCACGACAGCAGGCTGAATAATAAA

AAAATTAGAAACTATTATTTAACCCTAGAAAGATAATCATATTGTGACGTACGTTAAAGATAATCATGCGTAAAATTGACGCAT

GTGTTTTATCGGTCTGTATATCGAGGTTTATTTATTAATTTGAATAGATATTAAGTTTTATTATATTTACACTTACATACTAATA

ATAAATTCAACAAACAATTTATTTATGTTTATTTATTTATTAAAAAAAAACAAAAACTCAAAATTTCTTCTATAAAGTAACAAAAC
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TTTTAAACATTCTCTCTTTTACAAAAATAAACTTATTTTGTACTTTAAAAACAGTCATGTTGTATTATAAAATAAGTAATTAGCTT

AACTTATACATAATAGAAACAAATTATACTTATTAGTCAGTCAGAAACAACTTTGGCACATATCAATATTATGCTCTCGACAAA

TAACTTTTTTGCATTTTTTGCACGATGCATTTGCCTTTCGCCTTATTTTAGAGGGGCAGTAAGTACAGTAAGTACGTTTTTTCA

TTACTGGCTCTTCAGTACTGTCATCTGATGTACCAGGCACTTCATTTGGCAAAATATTAGAGATATTATCGCGCAAATATCTC

TTCAAAGTAGGAGCTTCTAAACGCTTACGCATAAACGATGACGTCAGGCTCATGTAAAGGTTTCTCATAAATTTTTTGCGACT

TTGAACCTTTTCTCCCTTGCTACTGACATTATGGCTGTATATAATAAAAGAATTTATGCAGGCAATGTTTATCATTCCGTACAA

TAATGCCATAGGCCACCTATTCGTCTTCCTACTGCAGGTCATCACAGAACACATTTGGTCTAGCGTGTCCACTCCGCCTTTA

GTTTGATTATAATACATAACCATTTGCGGTTTACCGGTACTTTCGTTGATAGAAGCATCCTCATCACAAGATGATAATAAGTA

TACCATCTTAGCTGGCTTCGGTTTATATGAGACGAGAGTAAGGGGTCCGTCAAAACAAAACATCGATGTTCCCACTGGCCT

GGAGCGACTGTTTTTCAGTACTTCCGGTATCTCGCGTTTGTTTGATCGCACGGTTCCCACAATGCGGGGATTATTCATTAGA

GACTAATTCAATTAGAGCTAATTCAATTAGGATCCAAGCTTATCGATTTCGAACCCTCGACCGCCGGAGTATAAATAGAGGC

GCTTCGTCTACGGAGCGACAATTCAATTCAAACAAGCAAAGTGAACACGTCGCTAAGCGAAAGCTAAGCAAATAAACAAGC

GCAGCTGAACAAGCTAAACAATCGGGGTACCGCTAGAGTCGACGGTACCGCGGGCCCGGGATCCACCGGTCGCCACCAT

GGTGCGCTCCTCCAAGAACGTCATCAAGGAGTTCATGCGCTTCAAGGTGCGCATGGAGGGCACCGTGAACGGCCACGAG

TTCGAGATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCCACAACACCGTGAAGCTGAAGGTGACCAAGGGCGGC

CCCCTGCCCTTCGCCTGGGACATCCTGTCCCCCCAGTTCCAGTACGGCTCCAAGGTGTACGTGAAGCACCCCGCCGACAT

CCCCGACTACAAGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGCGTGGTG

ACCGTGACCCAGGACTCCTCCCTGCAGGACGGCTGCTTCATCTACAAGGTGAAGTTCATCGGCGTGAACTTCCCCTCCGA

CGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCACCGAGCGCCTGTACCCCCGCGACGGCGTGCTGAA

GGGCGAGATCCACAAGGCCCTGAAGCTGAAGGACGGCGGCCACTACCTGGTGGAGTTCAAGTCCATCTACATGGCCAAG

AAGCCCGTGCAGCTGCCCGGCTACTACTACGTGGACTCCAAGCTGGACATCACCTCCCACAACGAGGATTACACCATCGT

GGAGCAGTACGAGCGCACCGAGGGCCGCCACCACCTGTTCCTGTAGCGGCCGCGACTCTAGATCATAATCAGCCATACCA

CATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACTTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTT

GTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTG

CATTCTAGTTGTGGTTTGTCCAAACTCATCATGTATCTTAAGCTTATCGATACGCGTACGGCGCGCCTAGGCCGGCCGAATT

CGAATGGCCATGGGACGTCGACCTGAGGTAATTATAACCCGGGCCCTATATATGGATCCAATTGCAATGATCATCATGACA

GATCTGCGCGCGATCGATATCTGCAGGTCGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGAGCGGAGTACTGTCCT

CCGAGCGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGAGCGGAGACTCTAGCGAGCGCCGGAGATCCGTTTCATAT

ATAAGCGCGGTCTCGCGGCGCGTTGTCAGTGAATTTGAATCAAGCGAAGCGAAAGCAACAAAGCTAAGCAAGCGACTCAA

AGCAAATTTTCAAAGCGACTTTAACAAAGTTGAGTGAATTATTTACTAGTGAATTCAAAGTGGTACCATGGATATTCTCATCA

TTAGTTTGAAAAGTTTAGGTTATTCTAGGACTTCCAAATCTTTAGATTCAGGACCTTTGGTAGTACATGCAGTAGCCGGAGC

CGGTAAGTCCACAGCCCTAAGGAAGTTGATCCTCAGACACCCAACATTCACCGTGCATACACTCGGTGTCCCTGACAAGGT

GAGTATCAGAACTAGAGGCATACAGAAGCCAGGACCTATTCCTGAGGGCAACTTCGCAATCCTCGATGAGTATACTTTGGA

CAACACCACAAGGAACTCATACCAGGCACTTTTTGCTGACCCTTATCAGGCACCGGAGTTTAGCCTAGAGCCCCACTTCTA

CTTGGAAACATCATTTCGAGTTCCGAGGAAAGTGGCAGATTTGATAGCTGGCTGTGGCTTCGATTTCGAGACCAACTCACC

GGAAGAAGGGCACTTAGAGATCACTGGCATATTCAAAGGGCCCCTACTCGGAAAGGTGATAGCCATTGATGAGGAGTCTG

AGACAACACTGTCCAGGCATGGTGTTGAGTTTGTTAAGCCCTGCCAAGTGACGGGACTTGAGTTCAAAGTAGTCACTATTG

TGTCTGCCGCACCAATAGAGGAAATTGGCCAGTCCACAGCTTTCTACAACGCTATCACCAGGTCAAAGGGATTGACATATG

TCCGCGCAGGGACATAGAAGCGGCCGCGACTCTAGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAA

AAACCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATG

GTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCA

TCAATGTATCTTAAGCTTGGCGCGCCTAGGCCGGCCGATCTCGGATCTGACAATGTTCAGTGCAGAGACTCGGCTACGCCT

CGTGGACTTTGAAGTTGACCAACAATGTTTATTCTTACCTCTAATAGTCCTCTGTGGCAAGGTCAAGATTCTGTTAGAAGCC

AATGAAGAACCTGGTTGTTCAATAACATTTTGTTCGTCTAATATTTCACTACCGCTTGACGTTGGCTGCACTTCATGTACCTC

ATCTATAAACGCTTCTTCTGTATCGCTCTGGACGTCATCTTCACTTACGTGATCTGATATTTCACTGTCAGAATCCTCACCAA

CAAGCTCGTCATCGCTTTGCAGAAGAGCAGAGAGGATATGCTCATCGTCTAAAGAACTACCCATTTTATTATATATTAGTCA

CGATATCTATAACAAGAAAATATATATATAATAAGTTATCACGTAAGTAGAACATGAAATAACAATATAATTATCGTATGAGTT

AAATCTTAAAAGTCACGTAAAAGATAATCATGCGTCATTTTGACTCACGCGGTCGTTATAGTTCAAAATCAGTGACACTTACC

GCATTGACAAGCACGCCTCACGGGAGCTCCAAGCGGCGACTGAGATGTCCTAAATGCACAGCGACGGATTCGCGCTATTT

AGAAAGAGAGAGCAATATTTCAAGAATGCATGCGTCAATTTTACGCAGACTATCTTTCTAGGGTTAAAAAAGATTTGCGCTTT

ACTCGACCTAAACTTTAAACACGTCATAGAATCTTCGTTTGACAAAAACCACATTGTGGCCAAGCTGTGTGACGCGACGCGC
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GCTAAAGAATGGCAAACCAAGTCGCGCGAGCGTCGACTCTAGAGGATCCCCGGGTACCGAGCTCGAATTCGTAATCATGG

TCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCT

GGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCC

AGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGAC

TCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGG

GGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTT

TCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAA

AGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGC

CTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAATGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAA

GCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGG

TAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAG

TTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTC

GGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATT

ACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGT

TAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAA

AGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTC

ATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGAT

ACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGT

CCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGC

GCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAAC

GATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTA

AGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTC

TGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACG

GGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGAT

CTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTT

TCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTC

TTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAA

CAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATA

AAAATAGGCGTATCACGAGGCCCTTTCGTC 

 



                                                                                                                        Appendix 

139 
 

>pBac3xP3-DsRed;UAS-Tc'Hsp-p-p38-SV40 

GACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTT

TCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCT

GATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCA

TTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGT

TACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTA

AAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGA

ATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCA

TAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACA

ACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACC

ACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAA

TAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAAT

CTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATC

TACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGG

TAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATC

CTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAG

GATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTT

GCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGT

GTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGC

TGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCT

GAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCATTGA

GAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACG

AGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTG

TGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCC

TTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTC

GCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCC

CCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATT

AATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCG

GATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGAATTCGAGCTCGGTACCCGGGGATCCTCTAGAGTCGACG

CTCGCGCGACTTGGTTTGCCATTCTTTAGCGCGCGTCGCGTCACACAGCTTGGCCACAATGTGGTTTTTGTCAAACGAAGA

TTCTATGACGTGTTTAAAGTTTAGGTCGAGTAAAGCGCAAATCTTTTTTAACCCTAGAAAGATAGTCTGCGTAAAATTGACGC

ATGCATTCTTGAAATATTGCTCTCTCTTTCTAAATAGCGCGAATCCGTCGCTGTGCATTTAGGACATCTCAGTCGCCGCTTG

GAGCTCCCGTGAGGCGTGCTTGTCAATGCGGTAAGTGTCACTGATTTTGAACTATAACGACCGCGTGAGTCAAAATGACGC

ATGATTATCTTTTACGTGACTTTTAAGATTTAACTCATACGATAATTATATTGTTATTTCATGTTCTACTTACGTGATAACTTAT

TATATATATATTTTCTTGTTATAGATATCGTGACTAATATATAATAAAATGGGTAGTTCTTTAGACGATGAGCATATCCTCTCT

GCTCTTCTGCAAAGCGATGACGAGCTTGTTGGTGAGGATTCTGACAGTGAAATATCAGATCACGTAAGTGAAGATGACGTC

CAGAGCGATACAGAAGAAGCGTTTATAGATGAGGTACATGAAGTGCAGCCAACGTCAAGCGGTAGTGAAATATTAGACGAA

CAAAATGTTATTGAACAACCAGGTTCTTCATTGGCTTCTAACAGAATCTTGACCTTGCCACAGAGGACTATTAGAGGTAAGA

ATAAACATTGTTGGTCAACTTCAAAGTCCACGAGGCGTAGCCGAGTCTCTGCACTGAACATTGTCAGATCCGAGATCGGCC

GGCCTAGGCGCGCCTAGGCCGGCCGAATTCGAATGGCCATGGGACGTCGACCTGAGGTAATTATAACCCGGGCCCTATAT

ATGGATCCAATTGCAATGATCATCATGACAGATCTGCGCGCGATCGATATCTGCAGGTCGGAGTACTGTCCTCCGAGCGGA

GTACTGTCCTCCGAGCGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGAGCGGAGACT

CTAGCGAGCGCCGGAGATCCGTTTCATATATAAGCGCGGTCTCGCGGCGCGTTGTCAGTGAATTTGAATCAAGCGAAGCG

AAAGCAACAAAGCTAAGCAAGCGACTCAAAGCAAATTTTCAAAGCGACTTTAACAAAGTTGAGTGAATTATTTACTAGTGAAT

TCAAAGTGGTACCATGGAAAATGATCCTAGAGTCCGGAAGTTCGCATCTGATGGCGCCCAATGGGCGATAAAGTGGCAGA

AGAAGGGCTGGTCAACCCTAACCAGCAGACAGAAACAGACCGCCCGCGCAGCGATGGGGATCAAGCTCTCTCCTGTGGC

GCAACCTGTGCAGAAAGTGACTCGGCTGAGTGCTCCGGTGGCCCTTGCCTACCGCGAGGTTTCCACCCAGCCTCGGGTCT

CTACTGCCAGGGACGGCATAACCAGAAGCGGTTCTGAACTGATCACAACCTTGAAGAAGAACACTGACACTGAACCTAAGT

ACACCACAGCTGTGCTTAACCCAAGCGAACCCGGAACATTCAACCAGCTCATTAAGGAGGCGGCCCAGTATGAAAAATACC

GATTCACGTCACTCAGATTTAGGTACTCCCCCATGAGCCCTTCAACCACCGGAGGCAAGGTGGCTCTGGCATTCGACCGA

GATGCAGCCAAACCTCCGCCCAACGACCTCGCTTCCCTCTACAACATAGAGGGTTGTGTATCTAGCGTGCCTTGGACAGG
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GTTTATTTTGACCGTCCCAACAGATTCTACTGACCGCTTTGTGGCGGATGGTATCAGCGATCCAAAGCTTGTCGATTTCGGC

AAGCTCATCATGGCCACCTACGGCCAAGGAGCCAATGATGCCGCCCAACTCGGTGAAGTGCGAGTCGAGTACACCGTGCA

GCTCAAGAACAGAACTGGCTCAACCAGCGACGCCCAGATTGGGCAGTTCGCAGGTGTTAAGGACGGACCCAGGCTGGTTT

CATGGTCCAAGACCAAGGGGACAGCTGGGTGGGAGCACGATTGTCATTTTCTCGGAACCGGAAACTTCTCGTTGACATTGT

TCTACGAGAAGGCGCCGGTCTCGGGGCTAGAAAACGCAGACGCCTCTGACTTCTCGGTCCTGGGAGAAGCCGCAGCAGG

TAGTGTCCAATGGGCAGGAGTGAAGGTAGCAGAAAGGGGACAAGGCGTGAAAATGGTCACAACTGAGGAGCAGCCAAAG

GGTAAATTGCAAGCACTCAGAATTTAGAAGCGGCCGCGACTCTAGATCATAATCAGCCATACCACATTTGTAGAGGTTTTAC

TTGCTTTAAAAAACCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCA

GCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTG

TCCAAACTCATCAATGTATCTTAAGCTTGGCGCGCCGTACGCGTATCGATAAGCTTAAGATACATGATGAGTTTGGACAAAC

CACAACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCAA

TAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTTCAGGTTCAGGGGGAAGTGTGGGAGGTTTTTTAAAGCAAGTAAA

ACCTCTACAAATGTGGTATGGCTGATTATGATCTAGAGTCGCGGCCGCTACAGGAACAGGTGGTGGCGGCCCTCGGTGCG

CTCGTACTGCTCCACGATGGTGTAATCCTCGTTGTGGGAGGTGATGTCCAGCTTGGAGTCCACGTAGTAGTAGCCGGGCA

GCTGCACGGGCTTCTTGGCCATGTAGATGGACTTGAACTCCACCAGGTAGTGGCCGCCGTCCTTCAGCTTCAGGGCCTTG

TGGATCTCGCCCTTCAGCACGCCGTCGCGGGGGTACAGGCGCTCGGTGGAGGCCTCCCAGCCCATGGTCTTCTTCTGCA

TTACGGGGCCGTCGGAGGGGAAGTTCACGCCGATGAACTTCACCTTGTAGATGAAGCAGCCGTCCTGCAGGGAGGAGTC

CTGGGTCACGGTCACCACGCCGCCGTCCTCGAAGTTCATCACGCGCTCCCACTTGAAGCCCTCGGGGAAGGACAGCTTCT

TGTAGTCGGGGATGTCGGCGGGGTGCTTCACGTACACCTTGGAGCCGTACTGGAACTGGGGGGACAGGATGTCCCAGGC

GAAGGGCAGGGGGCCGCCCTTGGTCACCTTCAGCTTCACGGTGTTGTGGCCCTCGTAGGGGCGGCCCTCGCCCTCGCCC

TCGATCTCGAACTCGTGGCCGTTCACGGTGCCCTCCATGCGCACCTTGAAGCGCATGAACTCCTTGATGACGTTCTTGGAG

GAGCGCACCATGGTGGCGACCGGTGGATCCCGGGCCCGCGGTACCGTCGACTCTAGCGGTACCCCGATTGTTTAGCTTG

TTCAGCTGCGCTTGTTTATTTGCTTAGCTTTCGCTTAGCGACGTGTTCACTTTGCTTGTTTGAATTGAATTGTCGCTCCGTAG

ACGAAGCGCCTCTATTTATACTCCGGCGGTCGAGGGTTCGAAATCGATAAGCTTGGATCCTAATTGAATTAGCTCTAATTGA

ATTAGTCTCTAATGAATAATCCCCGCATTGTGGGAACCGTGCGATCAAACAAACGCGAGATACCGGAAGTACTGAAAAACA

GTCGCTCCAGGCCAGTGGGAACATCGATGTTTTGTTTTGACGGACCCCTTACTCTCGTCTCATATAAACCGAAGCCAGCTA

AGATGGTATACTTATTATCATCTTGTGATGAGGATGCTTCTATCAACGAAAGTACCGGTAAACCGCAAATGGTTATGTATTAT

AATCAAACTAAAGGCGGAGTGGACACGCTAGACCAAATGTGTTCTGTGATGACCTGCAGTAGGAAGACGAATAGGTGGCCT

ATGGCATTATTGTACGGAATGATAAACATTGCCTGCATAAATTCTTTTATTATATACAGCCATAATGTCAGTAGCAAGGGAGA

AAAGGTTCAAAGTCGCAAAAAATTTATGAGAAACCTTTACATGAGCCTGACGTCATCGTTTATGCGTAAGCGTTTAGAAGCT

CCTACTTTGAAGAGATATTTGCGCGATAATATCTCTAATATTTTGCCAAATGAAGTGCCTGGTACATCAGATGACAGTACTGA

AGAGCCAGTAATGAAAAAACGTACTTACTGTACTTACTGCCCCTCTAAAATAAGGCGAAAGGCAAATGCATCGTGCAAAAAA

TGCAAAAAAGTTATTTGTCGAGAGCATAATATTGATATGTGCCAAAGTTGTTTCTGACTGACTAATAAGTATAATTTGTTTCTA

TTATGTATAAGTTAAGCTAATTACTTATTTTATAATACAACATGACTGTTTTTAAAGTACAAAATAAGTTTATTTTTGTAAAAGA

GAGAATGTTTAAAAGTTTTGTTACTTTATAGAAGAAATTTTGAGTTTTTGTTTTTTTTTAATAAATAAATAAACATAAATAAATTG

TTTGTTGAATTTATTATTAGTATGTAAGTGTAAATATAATAAAACTTAATATCTATTCAAATTAATAAATAAACCTCGATATACA

GACCGATAAAACACATGCGTCAATTTTACGCATGATTATCTTTAACGTACGTCACAATATGATTATCTTTCTAGGGTTAAATAA

TAGTTTCTAATTTTTTTATTATTCAGCCTGCTGTCGTGAATACCGTATATCTCAACGCTGTCTGTGAGATTGTCGTATTCTAGC

CTTTTTAGTTTTTCGCTCATCGACTTGATATTGTCCGACACATTTTCGTCGATTTGCGTTTTGATCAAAGACTTGAGCAGAGA

CACGTTAATCAACTGTTCAAATTGATCCATATTAACGATATCAACCCGATGCGTATATGGTGCGTAAAATATATTTTTTAACCC

TCTTATACTTTGCACTCTGCGTTAATACGCGTTCGTGTACAGACGTAATCATGTTTTCTTTTTTGGATAAAACTCCTACTGAGT

TTGACCTCATATTAGACCCTCACAAGTTGCAAAACGTGGCATTTTTTACCAATGAAGAATTTAAAGTTATTTTAAAAAATTTCA

TCACAGATTTAAAGAAGAACCAAAAATTAAATTATTTAATCGACCAGTTAATCAACGTGTACACAGAGCGCAAAAAACACGCA

GCCCGACGTGTTGGCTAAAATTATTAAATCAACTTGTGTTATAGTCACGATTTGCCGTCCAACGTGTTCCTCAAAAAGTTGAA

GACCAACAAGTTTACGGACACTAGTTAATTATTTGATTTTGCCCCACTTCATTTTGTGGGATCACAATTTTGTTATATTTTAAA

CAAAGCTTGGCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCA

CATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGG

CGAATGGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATATGGTGCACTCTCAGTACAATC

TGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCC

GGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCG

CGA 
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>pBac6XP3-ECFP;αTub1-3’UTRdcr2-intron-3’UTRdcr2-SV40 

GACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTT

TCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCT

GATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCA

TTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGT

TACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTA

AAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGA

ATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCA

TAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACA

ACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACC

ACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAA

TAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAAT

CTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATC

TACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGG

TAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATC

CTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAG

GATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTT

GCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGT

GTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGC

TGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCT

GAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCATTGA

GAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACG

AGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTG

TGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCC

TTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTC

GCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCC

CCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATT

AATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCG

GATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGAATTCGAGCTCGGTACCCGGGGATCCTCTAGAGTCGACG

CTCGCGCGACTTGGTTTGCCATTCTTTAGCGCGCGTCGCGTCACACAGCTTGGCCACAATGTGGTTTTTGTCAAACGAAGA

TTCTATGACGTGTTTAAAGTTTAGGTCGAGTAAAGCGCAAATCTTTTTTAACCCTAGAAAGATAGTCTGCGTAAAATTGACGC
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ATGCATTCTTGAAATATTGCTCTCTCTTTCTAAATAGCGCGAATCCGTCGCTGTGCATTTAGGACATCTCAGTCGCCGCTTG

GAGCTCCCGTGAGGCGTGCTTGTCAATGCGGTAAGTGTCACTGATTTTGAACTATAACGACCGCGTGAGTCAAAATGACGC

ATGATTATCTTTTACGTGACTTTTAAGATTTAACTCATACGATAATTATATTGTTATTTCATGTTCTACTTACGTGATAACTTAT

TATATATATATTTTCTTGTTATAGATATCGTGACTAATATATAATAAAATGGGTAGTTCTTTAGACGATGAGCATATCCTCTCT

GCTCTTCTGCAAAGCGATGACGAGCTTGTTGGTGAGGATTCTGACAGTGAAATATCAGATCACGTAAGTGAAGATGACGTC

CAGAGCGATACAGAAGAAGCGTTTATAGATGAGGTACATGAAGTGCAGCCAACGTCAAGCGGTAGTGAAATATTAGACGAA

CAAAATGTTATTGAACAACCAGGTTCTTCATTGGCTTCTAACAGAATCTTGACCTTGCCACAGAGGACTATTAGAGGTAAGA

ATAAACATTGTTGGTCAACTTCAAAGTCCACGAGGCGTAGCCGAGTCTCTGCACTGAACATTGTCAGATCTAAGATAGGGC

CCCTTAAGGTACTATGGTTGCTTTGACGTATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGC

GCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAA

GGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGC

CAAGCTGGCCGGCCTAGGCGCGCCAAGCTCTAGTCGCGCTCGCGCGACTGACGGTCGTAAGCACCCGCGTACGTGTCCA

CCCCGGTCACAACCCCTTGTGTCATGTCGGCGACCCTACGCCCCCAACTGAGAGAACTCAAAGGTTACCCCAGTTGGGGC

ACTACTCCCGAAAACCGCTTCTGACCTGGGAAAACGTGAAGCCCCGGGGCATCCGCTGAGGGTTGCCGCCGGGGCTTCG

GTGTGTCCGTCAGTACTAGAGCTCTCGAGACCTCACACTTGCCGTAAATGGAGGTGATATCACAAATCCCTACTAAACGTG

GTATTCGCGGCATGACTCATAGTTTATTTGAAATCATTTTAACCCTAATCTTTTAATCAATAAACTGAATTTTTCTCAAGTTAAT

GCCTTTTCTTGGTTTGGAAATAAGTGTGTTATTAATAGCTTTAACTGTCTACAATGCTGAAGAACCAGCAAGTTTATTTTGGG

GTCAAAGAAAGCACTTGAAAAGGGTGCCAGATGTCTATGTATCTCCCGTGAAACTATTTTAAAAGGAGTTTATCACACGTTTT

CATATCTATTGTCTTATGAAAGAAGGGAAAAGTAGAGTTTTCTTGAAGAAACTGTCCCAAAATTAATATTATTGAACAAAAAAT

TCTGAGAAATTCACACTGCAGTGAACGGTTATGATGGTGCAACGACCGGGACCTCAGCTGTATAAAAAATCTGAAAATAATT

GATAATGGTCGAAGACCATAAGGAAAAATAATTCGAAAATTAAAGGCAAAGTATGAAAATGCTGGAAATAAATCGGGAAACA

CCGAATTTTTGGTCACAGGAACCAACGAATTTTTTTTTGAATATTGATTTGAAAAGAGATCGAGAACAAGGATAACAATCTTC

CGTTAGAGACCGTTGGTACCGACATGGCGGGGAGCCAATCAGAAGTCTGGAAATCGGGCGTTGGTTGCTGACGTCAACAA

GCTTATAAATAGCAACGACAGTTGAAAATCGAATCAAAGTCGTTTGGAAAAAGCCAGAGCTTGTATTTCCGAAGCGTACTCC

CGTTTTTCTGCTCTTTTGTGGTGTAATTTGTAAAACTCAACTACCAAGCTAGTAACTTGAAACAGTTTTAATTTGAAAACGAAT

TATTTTTGGAACCACCTAATGACAAATTAAAGGTTGGCTGTAATTTAAAAATTCTCCTACTTAATTATCAGCGTGAGTTAAATT

CACCATTTTTGTGATAGGTATCAAAGCGAATGAATTTAACTGACGGTATATAGTTGAACAATGGAAAACAGCATTTTTCAAAC

AATCCTAGCGAGTAACTGAATCAATATAAGCGCATTGTGACTTCGTGCGTTAATACCAGAGAGAAGATCGTGTTACCGAACG

CCCAAGGTAAACAAACACCCGGCCCTGGATGGTTGCGGCTAACACAACCCCTGCGTTTGGCTTCTTTCACTCGCTACTAAT

ATTTGCCCAGATTTTTGGATAAGTGGGTTTGCACCCACATTGCCAAGAGCAATACCTCACATAACGAGATTATTCACTTTCG

GTGCGAATGAGTCATGGAAAAAGTGAAACAAGATTGCGTTTTAAATTTTTGCTGGAGGGTTTTTTCTGTTAATTACACGCCAA

ATGTTAAATTTGTTCAATGCAGATGTCATTACGGATCGTTTGTAAATTTGTTTCTAAAACACATCTGGCAAATGCAGCCTACA

TAAAACTTGTTAGAAAACAAATCTAATATTTATTAATTCTCAATTTTTCATTGACCAAGCAGATAAGAGTACCACATGCAGAAC

GGAAACCGAACGTTAAAACACTGATAATATGTTGGTTGTTGGTAGCCAATCCAGTTTACGACCAGGATTAGAAGTTATCGAC

CTTTTATGGTTTAATCATTGCTAACTCTAAAACGTTCCAACTAATTCCTTATAAATCATTTCATGTAAATTTAACTCACAATTAA

ACTTGACCGATTTTAATGCAAGTTATTGCGTCAACAGTTAAAATATCGCACAAATATTCATGTAGCGATTTTCGATTGAAGGG

TCATGGTTGGGTTATCTTCAGTCGGATTGAAAAGCTCAAAGAGGCACTGTAATTACCATTCTGTTTTCAGTCGGCTTTAGGC

GGATTTCCGCTTGATAACAATATCACTAACACAGCGATTGACATGTTTGCTTACACTCCTCGATGATTTCCTAATATTGGGTT

ATACTTTTTAGATGTAGCGGCCGAGAAAACGGAGAAAGCTCTGATCGCCGGTATCGAGCATTTCGATCCAAGTATTAACGC

ACGAAGTCACAATGCGCTTATATTGATTCAGTTACTCGCTAGGATTGTTTGAAAAATGCTGTTTTCCATTGTTCAACTATATA

CCGTCAGTTAAATTCATTCGCTTTGATACCTATCACAAAAATGGTGAATTTAACTCACGCTGATAATTAAGTAGGAGAATTTTT

AAATTACAGCCAACCTTTAATTTGTCATTAGGTGGTTCCAAAAATAATTCGTTTTCAAATTAAAACTGTTTCAAGTTACCTGAT

GAGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAAC

CATTATAAGCTGCAATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTTCAGGTTCAGGGGGAAGTGTGGGAGGTTT

TTTAAAGCAAGTAAAACCTCTACAAATGTGGTATGGCTGATTATGATCTAGAGTCGCGGCCGCTTTACTTGTACAGCTCGTC

CATGCCGAGAGTGATCCCGGCGGCGGTCACGAACTCCAGCAGGACCATGTGATCGCGCTTCTCGTTGGGGTCTTTGCTCA

GGGCGGACTGGGTGCTCAGGTAGTGGTTGTCGGGCAGCAGCACGGGGCCGTCGCCGATGGGGGTGTTCTGCTGGTAGT

GGTCGGCGAGCTGCACGCTGCCGTCCTCGATGTTGTGGCGGATCTTGAAGTTGGCCTTGATGCCGTTCTTCTGCTTGTCG

GCGGTGATATAGACGTTGTGGCTGATGTAGTTGTACTCCAGCTTGTGCCCCAGGATGTTGCCGTCCTCCTTGAAGTCGATG

CCCTTCAGCTCGATGCGGTTCACCAGGGTGTCGCCCTCGAACTTCACCTCGGCGCGGGTCTTGTAGTTGCCGTCGTCCTT

GAAGAAGATGGTGCGCTCCTGGACGTAGCCTTCGGGCATGGCGGACTTGAAGAAGTCGTGCTGCTTCATGTGGTCGGGGT
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AGCGGCTGAAGCACTGCACGCCCCAGGTCAGGGTGGTCACGAGGGTGGGCCAGGGCACGGGCAGCTTGCCGGTGGTGC

AGATGAACTTCAGGGTCAGCTTGCCGTAGGTGGCATCGCCCTCGCCCTCGCCGGACACGCTGAACTTGTGGCCGTTTACG

TCGCCGTCCAGCTCGACCAGGATGGGCACCACCCCGGTGAACAGCTCCTCGCCCTTGCTCACCATGGTGGCGACCGGTA

CCACTTTGAATTCACTAGTAAATAATTCACTCAACTTTGTTAAAGTCGCTTTGAAAATTTGCTTTGAGTCGCTTGCTTAGCTTT

GTTGCTTTCGCTTCGCTTGATTCAAATTCACTGACAACGCGCCGCGAGACCGCGCTTATATATGAAACGGATTAATTGAATT

AGCTCTAATTGAATTAGTCTCTAATTGAATTAGATCTTAATTGAATTAGCTCTAATTGAATTAGTCTCTAATTGAATTAGATCGT

CGACGTCCCATGGAACCATTGTGGGAACCGTGCGATCAAACAAACGCGAGATACCGGAAGTACTGAAAAACAGTCGCTCC

AGGCCAGTGGGAACATCGATGTTTTGTTTTGACGGACCCCTTACTCTCGTCTCATATAAACCGAAGCCAGCTAAGATGGTAT

ACTTATTATCATCTTGTGATGAGGATGCTTCTATCAACGAAAGTACCGGTAAACCGCAAATGGTTATGTATTATAATCAAACT

AAAGGCGGAGTGGACACGCTAGACCAAATGTGTTCTGTGATGACCTGCAGTAGGAAGACGAATAGGTGGCCTATGGCATT

ATTGTACGGAATGATAAACATTGCCTGCATAAATTCTTTTATTATATACAGCCATAATGTCAGTAGCAAGGGAGAAAAGGTTC

AAAGTCGCAAAAAATTTATGAGAAACCTTTACATGAGCCTGACGTCATCGTTTATGCGTAAGCGTTTAGAAGCTCCTACTTTG

AAGAGATATTTGCGCGATAATATCTCTAATATTTTGCCAAATGAAGTGCCTGGTACATCAGATGACAGTACTGAAGAGCCAG

TAATGAAAAAACGTACTTACTGTACTTACTGCCCCTCTAAAATAAGGCGAAAGGCAAATGCATCGTGCAAAAAATGCAAAAA

AGTTATTTGTCGAGAGCATAATATTGATATGTGCCAAAGTTGTTTCTGACTGACTAATAAGTATAATTTGTTTCTATTATGTAT

AAGTTAAGCTAATTACTTATTTTATAATACAACATGACTGTTTTTAAAGTACAAAATAAGTTTATTTTTGTAAAAGAGAGAATGT

TTAAAAGTTTTGTTACTTTATAGAAGAAATTTTGAGTTTTTGTTTTTTTTTAATAAATAAATAAACATAAATAAATTGTTTGTTGA

ATTTATTATTAGTATGTAAGTGTAAATATAATAAAACTTAATATCTATTCAAATTAATAAATAAACCTCGATATACAGACCGATA

AAACACATGCGTCAATTTTACGCATGATTATCTTTAACGTACGTCACAATATGATTATCTTTCTAGGGTTAAATAATAGTTTCT

AATTTTTTTATTATTCAGCCTGCTGTCGTGAATACCGTATATCTCAACGCTGTCTGTGAGATTGTCGTATTCTAGCCTTTTTAG

TTTTTCGCTCATCGACTTGATATTGTCCGACACATTTTCGTCGATTTGCGTTTTGATCAAAGACTTGAGCAGAGACACGTTAA

TCAACTGTTCAAATTGATCCATATTAACGATATCAACCCGATGCGTATATGGTGCGTAAAATATATTTTTTAACCCTCTTATAC

TTTGCACTCTGCGTTAATACGCGTTCGTGTACAGACGTAATCATGTTTTCTTTTTTGGATAAAACTCCTACTGAGTTTGACCT

CATATTAGACCCTCACAAGTTGCAAAACGTGGCATTTTTTACCAATGAAGAATTTAAAGTTATTTTAAAAAATTTCATCACAGA

TTTAAAGAAGAACCAAAAATTAAATTATTTAATCGACCAGTTAATCAACGTGTACACAGAGCGCAAAAAACACGCAGCCCGA

CGTGTTGGCTAAAATTATTAAATCAACTTGTGTTATAGTCACGATTTGCCGTCCAACGTGTTCCTCAAAAAGTTGAAGACCAA

CAAGTTTACGGACACTAGTTAATTATTTGATTTTGCCCCACTTCATTTTGTGGGATCACAATTTTGTTATATTTTAAACAAAGC

TTGGCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCC

CCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATG

GCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATATGGTGCACTCTCAGTACAATCTGCTCT

GATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCAT

CCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGA 
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>pBac3xP3-DsRed;Tc'hsp5'-CrPV1A-3'UTR 

GACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTT

TCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCT

GATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCA

TTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGT

TACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTA

AAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGA

ATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCA

TAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACA

ACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACC

ACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAA

TAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAAT

CTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATC

TACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGG

TAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATC

CTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAG

GATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTT

GCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGT

GTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGC

TGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCT

GAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCATTGA

GAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACG

AGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTG

TGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCC

TTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTC

GCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCC

CCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATT

AATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCG

GATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGAATTCGAGCTCGGTACCCGGGGATCCTCTAGAGTCGACG
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CTCGCGCGACTTGGTTTGCCATTCTTTAGCGCGCGTCGCGTCACACAGCTTGGCCACAATGTGGTTTTTGTCAAACGAAGA

TTCTATGACGTGTTTAAAGTTTAGGTCGAGTAAAGCGCAAATCTTTTTTAACCCTAGAAAGATAGTCTGCGTAAAATTGACGC

ATGCATTCTTGAAATATTGCTCTCTCTTTCTAAATAGCGCGAATCCGTCGCTGTGCATTTAGGACATCTCAGTCGCCGCTTG

GAGCTCCCGTGAGGCGTGCTTGTCAATGCGGTAAGTGTCACTGATTTTGAACTATAACGACCGCGTGAGTCAAAATGACGC

ATGATTATCTTTTACGTGACTTTTAAGATTTAACTCATACGATAATTATATTGTTATTTCATGTTCTACTTACGTGATAACTTAT

TATATATATATTTTCTTGTTATAGATATCGTGACTAATATATAATAAAATGGGTAGTTCTTTAGACGATGAGCATATCCTCTCT

GCTCTTCTGCAAAGCGATGACGAGCTTGTTGGTGAGGATTCTGACAGTGAAATATCAGATCACGTAAGTGAAGATGACGTC

CAGAGCGATACAGAAGAAGCGTTTATAGATGAGGTACATGAAGTGCAGCCAACGTCAAGCGGTAGTGAAATATTAGACGAA

CAAAATGTTATTGAACAACCAGGTTCTTCATTGGCTTCTAACAGAATCTTGACCTTGCCACAGAGGACTATTAGAGGTAAGA

ATAAACATTGTTGGTCAACTTCAAAGTCCACGAGGCGTAGCCGAGTCTCTGCACTGAACATTGTCAGATCCGAGATCGGCC

GGCCGAATTCGAATGGCCATGGGACGTCGACCTGAGGTAATTATAACCCGGGCCCTATATATGGATCCCAACCTTCAATAA

AAAATTGTTCTTTATTTATTATTAATCACTATTATTTAGGCATCTTCTGCAAAAGTAATTGATTATAAACGATAAAAGTAAAAAA

AAGGATTAATCTAAAACATTTTACTTAAAGACCTATTAATAAGTTTAAAAAGAAAAAAAATAGGAAAATTGTTTTATTAAAATTG

CTATGACAATCCAACTTTGGCATATGTATATGAAATCAAAACAATTCACTACTCATTCATAATATTGCCGAACTTTACCAAATT

AAAAATAAACATGAAATAGTCAACAACTCATTCGTTATGTAACGTTTTTTTTTTAAATGCATTAATATATAATGATTGTTTTTATT

TTGGAAGTTGAAATAAATTAGGGCACAACCAGTTTCCACTATTCTCCTTTATCTTTACGGAAATAGCATGAATAATACCGAAA

AGGCCGTTTTAAAAATAAAAATTCGAGAAAATTCAAACGCAAATCAATGGAAACTTCGAGATCATTCGGTGAAGTTCGAGAC

GAATTCCCCGTTTCATATATAAGCGCGGTCTCGCGGCGCGTTGTCAGTGAATTTGAATCAAGCGAAGCGAAAGCAACAAAG

CTAAGCAAGCGACTCAAAGCAAATTTTCAAAGCGACTTTAACAAAGTTGAGTGAATTATTTACTAGTGAATTCAAAGTAAATC

GAAAAGTGTATCTAGAGGTACCATGTCTTTTCAACAAACAAACAACAACGCAACCAACAACATCAACTCCCTTGAGGAGCTT

GCTGCTCAAGAACTAATAGCAGCACAATTTGAAGGAAATCTTGATGGTTTCTTTTGCACTTTTTATGTGCAGTCCAAACCACA

ACTATTGGACTTAGAGAGTGAATGTTATTGTATGGATGATTTTGATTGTGGGTGTGATAGGATCAAGAGAGAAGAAGAATTA

CGTAAACTGATTTTCTTAACATCGGACGTTTATGGATATAACTTTGAAGAGTGGAAAGGATTAGTTTGGAAATTTGTTCAAAA

TTATTGCCCAGAACATCGATATGGATCAACTTTTGGTAATGGATTATTAATTGTGAGTCCCCGTTTCTTTATGGATCATCTTG

ACTGGTTTCAGCAATGGAAACTTGTTTCAAGTAATGATGAATGCAGAGCCTTCAAGCGGCCGCCTGCAGCTGGCGCCATCG

ATACGCGTACGTCGCGACCGCGGACATGTACAGAGCTCGAGATGATCGGTTTGTGTTCCTACTTAGTTAATTGTGATAGTTT

ATTTTTGTAAATAATAGTACGTAAAGTTACTTTAGTTATAATAAAGTAGATAGTGACTGCATTAAGTTTAAAGACTGATTTTTGT

AGATTATTTAAAAATTTTTAATAAATTATTTAATTTAAAGATAAAAAGTTGTTTCATTTTAAAATAATAAAAAACTTACCGCATTA

GTCGTGGCCTTGGCAGTATTAAGCGCAAACGGGCTCTCCTTCGTATGCCCATCAGGAATATAGAAAAAAACAACTGGCTGC

TCACTAGTGGCCACGTGGGCCGTGCACCTTAAGCTTGGCGCGCCGTACGCGTATCGATAAGCTTAAGATACATGATGAGTT

TGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTAT

AAGCTGCAATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTTCAGGTTCAGGGGGAAGTGTGGGAGGTTTTTTAAA

GCAAGTAAAACCTCTACAAATGTGGTATGGCTGATTATGATCTAGAGTCGCGGCCGCTACAGGAACAGGTGGTGGCGGCC

CTCGGTGCGCTCGTACTGCTCCACGATGGTGTAGTCCTCGTTGTGGGAGGTGATGTCCAGCTTGGAGTCCACGTAGTAGT

AGCCGGGCAGCTGCACGGGCTTCTTGGCCATGTAGATGGACTTGAACTCCACCAGGTAGTGGCCGCCGTCCTTCAGCTTC

AGGGCCTTGTGGATCTCGCCCTTCAGCACGCCGTCGCGGGGGTACAGGCGCTCGGTGGAGGCCTCCCAGCCCATGGTCT

TCTTCTGCATTACGGGGCCGTCGGAGGGGAAGTTCACGCCGATGAACTTCACCTTGTAGATGAAGCAGCCGTCCTGCAGG

GAGGAGTCCTGGGTCACGGTCACCACGCCGCCGTCCTCGAAGTTCATCACGCGCTCCCACTTGAAGCCCTCGGGGAAGG

ACAGCTTCTTGTAGTCGGGGATGTCGGCGGGGTGCTTCACGTACACCTTGGAGCCGTACTGGAACTGGGGGGACAGGAT

GTCCCAGGCGAAGGGCAGGGGGCCGCCCTTGGTCACCTTCAGCTTCACGGTGTTGTGGCCCTCGTAGGGGCGGCCCTCG

CCCTCGCCCTCGATCTCGAACTCGTGGCCGTTCACGGTGCCCTCCATGCGCACCTTGAAGCGCATGAACTCCTTGATGAC

GTTCTTGGAGGAGCGCACCATGGTGGCGACCGGTGGATCCCGGGCCCGCGGTACCGTCGACTCTAGCGGTACCCCGATT

GTTTAGCTTGTTCAGCTGCGCTTGTTTATTTGCTTAGCTTTCGCTTAGCGACGTGTTCACTTTGCTTGTTTGAATTGAATTGT

CGCTCCGTAGACGAAGCGCCTCTATTTATACTCCGGCGGTCGAGGGTTCGAAATCGATAAGCTTGGATCCTAATTGAATTA

GCTCTAATTGAATTAGTCTCTAATTGAATTAGATCCCCGGGCGAGCTCGAATTAACCATTGTGGGAACCGTGCGATCAAACA

AACGCGAGATACCGGAAGTACTGAAAAACAGTCGCTCCAGGCCAGTGGGAACATCGATGTTTTGTTTTGACGGACCCCTTA

CTCTCGTCTCATATAAACCGAAGCCAGCTAAGATGGTATACTTATTATCATCTTGTGATGAGGATGCTTCTATCAACGAAAGT

ACCGGTAAACCGCAAATGGTTATGTATTATAATCAAACTAAAGGCGGAGTGGACACGCTAGACCAAATGTGTTCTGTGATGA

CCTGCAGTAGGAAGACGAATAGGTGGCCTATGGCATTATTGTACGGAATGATAAACATTGCCTGCATAAATTCTTTTATTATA

TACAGCCATAATGTCAGTAGCAAGGGAGAAAAGGTTCAAAGTCGCAAAAAATTTATGAGAAACCTTTACATGAGCCTGACGT

CATCGTTTATGCGTAAGCGTTTAGAAGCTCCTACTTTGAAGAGATATTTGCGCGATAATATCTCTAATATTTTGCCAAATGAA
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GTGCCTGGTACATCAGATGACAGTACTGAAGAGCCAGTAATGAAAAAACGTACTTACTGTACTTACTGCCCCTCTAAAATAA

GGCGAAAGGCAAATGCATCGTGCAAAAAATGCAAAAAAGTTATTTGTCGAGAGCATAATATTGATATGTGCCAAAGTTGTTT

CTGACTGACTAATAAGTATAATTTGTTTCTATTATGTATAAGTTAAGCTAATTACTTATTTTATAATACAACATGACTGTTTTTA

AAGTACAAAATAAGTTTATTTTTGTAAAAGAGAGAATGTTTAAAAGTTTTGTTACTTTATAGAAGAAATTTTGAGTTTTTGTTTT

TTTTTAATAAATAAATAAACATAAATAAATTGTTTGTTGAATTTATTATTAGTATGTAAGTGTAAATATAATAAAACTTAATATCT

ATTCAAATTAATAAATAAACCTCGATATACAGACCGATAAAACACATGCGTCAATTTTACGCATGATTATCTTTAACGTACGTC

ACAATATGATTATCTTTCTAGGGTTAAATAATAGTTTCTAATTTTTTTATTATTCAGCCTGCTGTCGTGAATACCGTATATCTCA

ACGCTGTCTGTGAGATTGTCGTATTCTAGCCTTTTTAGTTTTTCGCTCATCGACTTGATATTGTCCGACACATTTTCGTCGAT

TTGCGTTTTGATCAAAGACTTGAGCAGAGACACGTTAATCAACTGTTCAAATTGATCCATATTAACGATATCAACCCGATGCG

TATATGGTGCGTAAAATATATTTTTTAACCCTCTTATACTTTGCACTCTGCGTTAATACGCGTTCGTGTACAGACGTAATCAT

GTTTTCTTTTTTGGATAAAACTCCTACTGAGTTTGACCTCATATTAGACCCTCACAAGTTGCAAAACGTGGCATTTTTTACCAA

TGAAGAATTTAAAGTTATTTTAAAAAATTTCATCACAGATTTAAAGAAGAACCAAAAATTAAATTATTTAATCGACCAGTTAATC

AACGTGTACACAGAGCGCAAAAAACACGCAGCCCGACGTGTTGGCTAAAATTATTAAATCAACTTGTGTTATAGTCACGATT

TGCCGTCCAACGTGTTCCTCAAAAAGTTGAAGACCAACAAGTTTACGGACACTAGTTAATTATTTGATTTTGCCCCACTTCAT

TTTGTGGGATCACAATTTTGTTATATTTTAAACAAAGCTTGGCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCC

TGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATC

GCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTT

CACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCC

GCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGT

GTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGA 
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