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Abstract

Despite the wide range of techniques for the analysis of sub-micrometer objects, label-
free characterization of nanoparticles in solution still remains a challenge. Microme-
chanical resonators with embedded fluidic channels have recently emerged as an en-
abling new technology for the mass characterization of suspended particles. However,
technological limitations have prevented their application to particles and biomolecular
complexes less than ∼1 attogram (0.6 MDa) in mass.

In this thesis, correlation analysis of the time-domain mass signal is introduced
as a novel method to extend the application of microfluidic resonators to samples in
sub-MDa mass range. This method, called mass correlation spectroscopy (MCS), al-
lows the detection of suspended particles even when their signatures in the time-trace
cannot be individually recognized.

The analysis is formally derived and the limits of detection for resonators of different
dimensions are discussed. It is shown that the resolution of the analysis is not limited
by the measurement noise, and the signal-to-noise ratio can be improved by increasing
particle concentration and acquisition time. Measurements on validated samples prove
that resolution enhancement of over five orders of magnitude can be obtained in usual
experimental conditions.

After derivation of an approximate model for the transport of particles in the embed-
ded channel, particle size is inferred from the shape of the correlation curve, enabling
the microfluidic resonators to detect mass, size and density of particles in solution in
a single experiment. Limitations on the detection of samples composed of a heteroge-
neous population of particles are discussed.

Proof-of-principle application of the MCS method for the mass characterization of
samples of biological interest is presented. The time course of amyloid formation is
monitored from the early state of amorphous aggregates to mature fibrils by detecting
the increase in average mass of the complexes in solution. As another application, the
quantification of surface coatings of nanoparticles is discussed; the detection method is
validated by measuring the adsorption of a protein monolayer on the surface of 400 nm
polystyrene beads. Finally, proof-of-concept measurements of ribosomes are presented,
proving that correlation analysis might find wide application in the characterization of
biomolecular complexes in solution.
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Chapter 1

Introduction

The understanding of the composition and function of samples in the sub-micrometer

scale, such as macromolecular complexes or synthetic nanoparticles, requires thorough

characterization of their physical and chemical properties, and of their interactions

with the environment. For this purpose, several techniques have been devised to an-

alyze samples of interest in conditions that mimic the sample’s native environment.

Although optical characterization is limited by light diffraction, visual inspection can

be obtained by using microscopy techniques with resolutions in the low tens of nanome-

ters, such as electron microscopy [1], atomic force microscopy [2] and optical nanoscopy

[3]. These techniques provide unique information on the shape and surface topology of

the sample, however they are affected by various limitations, including low throughput,

extensive sample preparation, and, often, insufficient spatial and temporal resolution

for the study of reaction kinetics. Complementary methods have been developed for the

measurement of reaction kinetics and for the detection of free particles in solution, not

possible with high resolution microscopy techniques. As an example, assays based on

fluorescence labeling are commonly used for the characterization of reaction kinetics.

Fluorescence labeling enables high analysis specificity and sub-millisecond temporal

resolution, and, furthermore, the technique can be used to characterize kinetics in sev-

eral conditions, such as in free solutions or in cellular environments [4, 5, 6]. However,

labeling can potentially interfere with the reaction of interest and label-free meth-

ods are used, when possible, to circumvent this limitation. Surface-based techniques

such as surface plasmon resonance (SPR) and quartz crystal microbalance (QCM) are

1



1 – Introduction

commercial examples of label-free detection methods. Biomolecular interactions are

measured by detecting variations of bound analyte on the sensor surface via refrac-

tive index measurements, or detection of mass deposition and surface stress [7, 8, 9].

These techniques enable real-time characterization of the reaction and high specificity,

ensured by the functionalization of the sensor surface. However, the analysis is limited

to surface bound samples and receptor immobilization can potentially affect the reac-

tion, as discussed for the labeling strategy. To enable detection of samples in solutions,

methods based on intensity measurements of light scattered by free particles in solution

can be used. Scattered light intensity varies with particle size, mass and concentration,

hence providing information on the physical properties of the sample [10, 11, 12]. The

wide dynamic range (from ∼nanometer to ∼micrometer particles) and the detection

in free solution allow these methods to be used for the characterization of molecular

complexes and of their association, such as protein aggregation kinetics [13]. However,

temporal resolution is limited by the acquisition time of the analysis, corresponding to

few tens of seconds, and characterization of heterogeneous samples is strongly biased

by the largest species in solution. Finally, the method can only be performed on opti-

cally clear solutions.

Recently, characterization of samples in solution by mass and density measurements

has been demonstrated by using nanomechanical resonators with embedded microflu-

idic channels [14, 15, 16]. Similar to QCM measurements, these devices can be used for

quantifying the amount of analyte binding to the functionalized surface of the embed-

ded channel, using only microliters of sample and with high efficiency, as a consequence

of the high surface to volume ratio of the embedded channel [14, 17, 18]. Furthermore,

detection of free particles in solution is possible, and mass measurements with resolu-

tion approaching the attogram (∼ MDa) level have already been shown [19, 20, 21].

Characterization of biomolecular interactions is obtained by detecting mass and den-

sity variations of the particles in solution, without interfering with their conditions.

Finally, the use of a microfluidic platform also provides the possibility of modifying

sampling conditions in situ, enabling kinetic studies with minimum lag time.

2



1.1 – Scope of the thesis

1.1 Scope of the thesis

Despite the wide range of techniques for the analysis of sub-micrometer objects, the

characterization of mass and size of particles in solution still remains a challenge.

Nanomechanical resonators with embedded microfluidic channels enable the mass and

density measurement of free particles in solution with minimum sample preparation

and with a label-free approach. Currently, these devices have mostly found applica-

tion in the characterization of cell samples [22, 23, 24]. Although devices with higher

sensitivity have already been presented [16, 20], complications in operating them due

to the small device dimensions and the relatively narrow detection ranges have so far

precluded their wide use for the analysis of nanoparticles and biomolecular complexes.

Here, a novel method of analysis of the time-domain mass signal recorded by embed-

ded channel resonators is presented. This method, called mass correlation spectroscopy

(MCS), allows the detection of suspended particles with buoyant masses of more than

five orders of magnitude below the single-particle detection limit. Resolution enhance-

ment is obtained by using correlation analysis of the mass trace. This enables an in-

crease of the sample contributions in the signal with respect to the background noise,

even when particle signatures cannot be individually detected. The analysis does not

require any modification of the devices and, therefore, can be used to extend their ap-

plication to previously inaccessible fields, namely nanometer/sub-micrometer biological

samples. Finally, the analysis of the MCS signal also provides information on the size

of the particles, enabling the embedded channel resonators to provide characterization

of mass, density and size.

Thesis outline

Firstly, current methods for the detection and characterization of nanoparticles in

the 1-1000 nm range will be presented for comparison. Then, in Chapter 2, the em-

bedded channel resonator devices will be introduced, with a focus on the current

detection modes and limits of resolution. Following, in Chapter 3, the MCS anal-

ysis will be formally derived. The calculations will be carried out for a particular

3



1 – Introduction

class of nanomechamical resonator devices, namely the suspended microchannel res-

onators. Experimental proofs of the mass resolution enhancement are shown on syn-

thetic nanoparticles. Subsequently, in Chapter 4, a detection method to infer particle

size by MCS analysis will be described. Validation of the method by Monte Carlo

simulations and experimental measurements are presented. In Chapter 5, samples of

biological interest are analyzed with the MCS method. Four examples of application

are presented: first, amyloid aggregation of insulin protein is detected by measuring

the increase in average mass of the aggregates; then, adsorption of protein on the sur-

face of nanoparticles in solution is quantified; as another application, the density of

ribosomes is estimated, by detecting the change in buoyant mass as a function of the

density of the suspending solution; at last, correlation analysis is used as a tool to

estimate the mass transport of analytes in the embedded channel during surface-based

measurements.

1.2 Nanoparticle characterization techniques

A brief overview of the main analysis methods currently used for the characterization

of sub-micrometer particles is reported. This overview focuses on methods to mea-

sure mass or size of nanoparticles, with particular interest on techniques that can be

performed on samples in solution. A summary table is shown on page 12 for a rapid

comparison of the application ranges and main limitations of the available methods.

Transmission electron microscopy

Transmission electron microscopy (TEM) produces images of ultrathin (below 1000 nm)

samples by detecting the transmitted intensity of an electrom beam through the sample

of interest [25]. The image obtained from the spatial intensity variations of the beam

corresponds to a projection of the sample onto the detector plane. Interacting with the

specimen, electrons might undergo large-angle scattering or energy loss, which cause

local reductions in beam intensity. For this reason, image contrast is usually interpreted

as representative of sample “mass thickness” [1]. To avoid scattering of the electron

beam before interacting with the sample, electron microscopy is operated in high-

vacuum. Therefore, samples must withstand these working conditions to allow imaging.
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1.2 – Nanoparticle characterization techniques

Extensive sample preparation is usually required when dealing with biological samples.

Common sample preparation techniques are negative staining by heavy metal salt

solutions (e.g. uranyl acetate), chemical fixation or rapid freezing of the sample, either

followed by freeze-substitution to allow subsequent room-temperature characterization

or by imaging at cryo temperatures [25]. Although TEM enables visual inspection of

single-particles with nanometer resolution [26], the complex sample preparation and

the low throughput of the analysis render this technique extremely labor intensive [27].

Furthermore, great care has to be taken during sample preparation, as the fixation and

staining steps might cause sample alteration [25].

Analytical ultracentrifugation

Analytical ultracentrifugation (AUC) is often used as gold standard in particle size

determination. The instrument essentially consists of a high-speed centrifuge and a

detection system to measure the gradient of the sample concentration during centrifu-

gation [28]. The concentration gradient along the centrifuge cell is measured by optical

methods, such as absorbance, refractive index detection or, for fluorescent samples, flu-

orescence intensity [29]. AUC characterization can be performed in two main analysis

modes: sedimentation velocity and sedimentation equilibrium. Sedimentation veloc-

ity detects the temporal evolution of the sample concentration distribution, providing

hydrodynamic information, such as particle size and shape [29, 30]. Samples of dif-

ferent sizes sediment at different velocities and multi-modal sample distributions can

be separated and identified. In contrast, sedimentation equilibrium detects the final

thermodynamic concentration distribution. The sample reaches an equilibrium concen-

tration gradient in the analysis cell, given by the opposing effects of centrifugal force

and particle diffusion. The equilibrium concentration gradient can be used to detect

molecular weight or, in the case of interacting samples, stoichiometry of the reaction,

association energy and binding affinity [28, 29]. In addition to the high resolving power

of AUC, the analysis has the advantage of being performed in solution and in label-free

mode. The dynamic range can be adjusted by properly selecting rotor speed and it

can be used to characterize samples of molecular weight ranging from 100 g/mol to 108

g/mol [31]. However, data interpretation and experimental procedures are complex, as

several experimental factors, such as sample concentration or electrostatic interactions,

5



1 – Introduction

affects the sedimentation velocity or the final concentration gradient [30]. Furthermore,

the technique requires long analysis time (hours) and expensive instrumentation [28].

For these reasons, AUC is used for the characterization of calibration samples, although

interest for applications on biological samples is increasing [30].

Static light scattering

Static light scattering techniques measure the time-averaged intensity of light scattered

by a sample of suspended particles at various angles θ [11]. According to the position

of the detector with respect to the incident light, different types of techniques can be

differentiated [32]. The most versatile technique is multi-angle light scattering (MALS):

the intensity of the scattered light is measured at various angles to extrapolate the

0 degree intercept, which cannot be detected directly because of the overwhelming

intensity of the transmitted beam. From the derivative of the light intensity for θ → 0

and the extrapolated 0 degree scattered intensity, MALS can be used to measure the

radius of gyration and the molecular weight of particles in solution [12]. The radius of

gyration (Rg) is a measure of the mass distribution of the particle around its center

of mass, and it corresponds to its root mean square radius [33]. MALS is usually

combined with separation/fractionation techniques so that precise characterization of

monodisperse samples is obtained. However, in case of heterogeneous samples, the

analysis returns the weighted average values of mass and size of the particles in solution

[12].

MALS characterization is usually performed on samples ranging from ∼20 to ∼500 nm;

as the size of the particles becomes comparable to the incident wavelength, particular

care has to be taken in interpreting the data as fit models might not be applicable [12].

Furthermore, the effect of sample concentration on the refractive index of the solution

has to be known for the analysis to return correct characterization values. This is

usually obtained by working with very dilute samples or measuring, when possible, the

variation of refractive index with concentration [12].

Dynamic Light Scattering

Dynamic light scattering (DLS) determines the diffusion coefficient of suspended par-

ticles. The measurement is obtained by looking at the time fluctuations of scattered
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1.2 – Nanoparticle characterization techniques

light caused by the random Brownian motion of particles in solution. By use of the

Stokes-Einstein equation, the hydrodynamic radius (Rh) of the particles can be cal-

culated from the diffusion coefficient [10]. Rh corresponds to the radius of an object

with equal diffusivity in the suspending solution, hence can be relatively different from

the actual particle size for elongated objects. DLS has a very wide dynamic range,

extending from particles of sub-nanometer size to ∼1− 10 µm. Measurements can be

performed in any optically clear buffer and sample volumes as low as ∼10 − 20 µL

are necessary for detection [34]. DLS is an ensemble-based technique, therefore pro-

viding average size information for polydisperse samples. To mitigate this limitation,

the analysis can be performed after sample separation or population distribution can

be estimated by use of data fitting algorithms [35, 36, 37, 38]. As a consequence of the

light intensity dependence on the sixth power of the particle diameter, large particles

in solution strongly dominates the signal intensity, even at very low concentrations.

For wide size distributions, overestimation of the average size of the particles is likely

to occur [27].

Atomic Force Microscopy

Atomic force microscopy (AFM) can be used to visually inspect the shape of particles

of interest at nanometer resolution, and to characterize their surface topology [2, 39].

However, unlike electron microscopy, AFM can be operated in liquid environments,

reducing the possibility of alterations caused by sample preparation and providing

real-time characterization of sample interactions [40, 41]. Furthermore, AFM can also

be used to apply direct force stimulation to the sample and subsequently measure its

response [40]. Despite these unique features, sample alteration might still occur, as

free particles in solution cannot be characterized and immobilization on a surface is

required for the detection [39]. As a single-particle characterization technique, AFM

can be used to obtain very precise information on sample size distribution. However,

the technique presents a relatively low throughput. Therefore, obtaining a statistical

representation of the sample might be extremely labor intensive.

7
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Fluorescence Correlation Spectroscopy

Fluorescence Correlation Spectroscopy (FCS) is a fluorescence-based technique that

can provide characterization of reaction kinetics, and of the diffusion coefficients and

concentrations of the samples under examination [42]. Similar to DLS, FCS measures

spontaneous concentration fluctuations in the detection volume, manifesting as fluo-

rescence intensity fluctuations. The use of fluorescence intensity for detection present

numerous advantages with respect to scattered light. First, fluorescence labeling al-

lows high-specificity characterization, even for heterogeneous samples. Furthermore,

a confocal approach or a two-photon excitation scheme can be used to enhance the

sensitivity of the measurement and suppress background noise [43, 44]. Another key

difference with respect to DLS is that detection of diffusion coefficients is not limited to

molecules in free solutions. Sample diffusion in different environments, such as in cells

or lipid membranes, can also be measured [45, 46]. Finally, the flexibility given by the

fluorescent labeling can be used to realize a wide variety of correlation experiments,

such as multi-color [47] or dual-focus fluorescence cross correlation spectroscopy [6].

Nanoparticle Tracking Analysis

Nanoparticle tracking analysis (NTA) measures the free diffusion of particles in solution

and, via the Stokes-Einstein relation, estimates their hydrodynamic radius. On the

contrary to DLS, NTA relies on the analysis of single-particle trajectories, acquired

by high temporal resolution videos in enhanced contrast microscopy [48]. Particles

ranging between 30 nm to 1 µm can be detected, with a detection limit depending on

the particle refractive index (for protein samples, the actual detection limit is 40-50

nm) [49]. Although NTA presents a narrower detection range compared to DLS, the

ability of tracking single particles reduces the influence of large objects in solution and

improves the detection of multimodal population distributions. NTA requires higher

sample volumes (∼300 µL) than DLS and estimation bias is possible as a consequence

of the contrast imaging conditions selected by the user during acquisition [49].

Tunable resistive pulse sensor

Tunable resistive pulse sensors (TRPS) measure the increase in electric resistance

caused by the passage of a particle through a pore filled with a conductive fluid. TRPS

8



1.2 – Nanoparticle characterization techniques

differs from conventional resistive pulse measurements, known as Coulter counters, in

that the pore is realized in an elastomeric membrane, where pore size can be adjusted

by stretching of the membrane [50, 51]. Adjustment of the pore size increases the

dynamic range of the TRPS, allowing detection of particles ranging from ∼50 nm to

micrometer size [52]. By measuring the relative changes in electric resistance caused

by the passage of the particles through the pore, particle size and surface charge can

be estimated by use of theoretical models [53]. Detection of the sample distribution

is enabled by the single-particle approach of the measurement technique. However,

particular care has to be taken in sample preparation to avoid pore blockage during

measurement and to avoid unwanted sample aggregation, as salt concentrations in the

∼100 mM range are required for detection [52].

Embedded channel resonators

These devices will be presented in details in the next chapter, however a short intro-

duction is reported here for comparison with the other detection techniques.

Nanomechanical resonators with embedded microfluidic channels enable the character-

ization of buoyant mass and density of particles in solution [14, 15]. Buoyant mass

defines the difference in mass between the particle and the suspending solution, con-

sidering equal volumes. Particles flowing through the embedded microfluidic channel

induce variations to the effective mass of the resonator, causing a shift in the resonance

frequency of the device. The magnitude of this shift depends on the ratio between the

induced mass variation and the resonator effective mass [14]. Therefore, the limit of

detection is intrinsically linked to the resolution in the measurement of the resonance

frequency and to the effective mass of the resonator: single-particle attogram resolu-

tion (1 ag = 10−18 g) has been demonstrated for devices with channels of cross-section

dimensions of 0.4 × 1µm2 [20]. For comparison, a buoyant mass of 1 ag corresponds,

approximately, to a protein aggregate of 20 nm in diameter or a polystyrene bead of 30

nm. Cross-section dimensions directly limit the detection range of the devices, posing

an upper boundary to the size of samples that can be characterized without clogging

the microfluidic embedded channel. These devices have typical mass detection ranges

of ∼2-3 orders of magnitude.

9
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Size Exclusion Chromatography

Size exclusion chromatography (SEC) is a technique for separating biomolecules by hy-

drodynamic radius differences. The main components are identified in the instrument:

a stationary phase, composed of a porous material packed into a container (separa-

tion column) presenting a fluid inlet and outlet, and the sample mobile phase [54].

Separation is obtained by driving the mobile phase through the stationary phase by

pressure or gravity. While flowing, molecules diffuse through the stationary phase and

the extent of diffusion is controlled by the pore size and geometry. As large molecules

are excluded from the pores, they elute first from the separation column, while smaller

particles elute at later times [55]. To determine molecular weight, calibration samples

can be used to estimate the elution times for different size molecules [54]. However, this

method is prone to errors: samples might have similar molecular weights but different

sizes or interact with the stationary phase, hence eluting at different times. To over-

come these problems, SEC is usually combined with detectors able to independently

characterize the eluted sample fractions, avoiding the use of calibration curves. Com-

mon characterization methods include, but are not limited to, UV-absorbance, light

scattering methods and mass spectrometry [56].

SEC presents a very high resolving power in the separation of proteins and is routinely

used for sample preparation and purification. However, it usually presents a narrow

separation range (few tens of nm) dependent on the stationary phase employed and it

can cause dilution of the sample in the elution separation. Furthermore, high pressures

(∼100-500 bars) are sometimes required for driving the solution through micrometer

pore size matrices and care has to be taken to avoid shear degradation of the sample

[54].

Mass spectrometry

Initially developed for the study of chemical compounds, mass spectrometry (MS) has

become a wide spread technique in proteomics [57]. The introduction of soft-ionization

techniques, namely matrix-assisted laser desorption ionization (MALDI) and electro-

spray ionization (ESI), has allowed mass characterization of peptides and proteins

10



1.2 – Nanoparticle characterization techniques

without causing degradation in the ionization process [58]. Recently, intact macro-

molecular complexes with molecular weights up to ∼20 MDa could be analyzed by MS

[59, 60]. Besides mass detection of individual analytes, MS also provides information on

sample composition. Ligand binding and stoichiometry of reactions can be detected by

MS in the presence of interacting samples [61]. The analysis is performed in gas phase,

and great care has to be taken into the conversion of the sample from the solid/liquid

state into the ionized gas condition. Furthermore, the ionization and the analysis of

high molecular weight complexes remains challenging [61]. MS also finds application

in the characterization of nanoparticles, however limited to the detection of elemental

composition [62].
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Chapter 2

Suspended Microchannel

Resonators

2.1 Mass measurements with mechanical

resonators

Nanomechanical resonators have found a number of applications in the field of mass

characterization, due to the high resolution attainable for samples in both vacuum and

liquid environments [63, 14, 64, 65, 19, 20, 21]. The detection method is based on

the relation between the resonator effective mass and resonance frequency, and mass

measurements are obtained by quantifying the variations in the oscillation frequency

upon interaction with the sample of interest. Therefore, mass resolution is intimately

linked to the sharpness of the resonance frequency [66], represented by the device

quality factor Q

Q =
f0

∆f0
(2.1)

where f0 defines the resonance frequency and ∆f0 the full width at half maximum of

the resonance peak. Devices operated in a low-pressure atmosphere can have Q-factors

exceeding 105 [67], while resonators operated in liquid environments usually have Q-

values below ∼100 due to high viscous damping, presenting low mass resolution for

samples in solution. To overcome this limitation, resonators with an embedded fluidic

channel were developed [68]. These devices have enabled measurements of samples
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2 – Suspended Microchannel Resonators

in solution using resonators with Q-factors of ∼ 104, as the oscillation occurs in a

low-pressure environment [14]. Different designs have been proposed for the embedded

microfluidic resonators [14, 15, 17]; however, cantilever resonators, named suspended

microchannel resonators (SMRs), are by far the most used class of devices [14, 16, 20,

22, 23, 24].

2.2 Suspended Microchannel Resonators

Figure 2.1: A suspended microchannel resonator of 75 µm length and 10 µm width. The
cantilever is contained in a vacuum chamber to reduce damping. Due to the thin silicon layer
(300 nm), the embedded microfluidic channel is visible in the picture. Bypass channels of
∼ 50 µm dimensions, on the left and right side, are used for rapid fluid delivery and exchange
in the chip.

Suspended microchannel resonators are micromechanical resonators with a microflu-

idic channel embedded in the oscillating structure. The shape of the SMRs is that of

a cantilever beam, containing a U-shaped channel where the sample of interest is in-

troduced. This design allows the resonator to vibrate in a vacuum environment, while

being sensitive to fluid density and suspended particles (Fig. 2.1).

The resonance frequency of the SMR is dependent on the effective mass m∗ of

the cantilever, which comprises both the silicon structure and the fluid in the embed-

ded channel. Introducing particles with density different from that of the suspending

fluid changes the effective mass of the resonator, causing a variation in the resonance

14



2.3 – Experimental setup

frequency of the device. The resonance f varies according to [14]

f =
1

2π

√
k

m∗ + α∆mp

(2.2)

where k is the resonator spring constant and α is a parameter that depends on the

particle position. For a particle at the tip of the cantilever, α ≈ 1, while for uniformly

distributed samples, such as liquid solutions or particles adsorbed on the channel walls,

α ≈ 0.24. ∆mp denotes the buoyant mass of the particle, and it is defined as

∆mp = mp

(
1− ρb

ρp

)
(2.3)

with mp the dry mass of the particl, ρp and ρb the particle and buffer densities. As-

suming ∆mp/m
∗ � 1, Eq. 2.2 can be approximated as:

f ≈ f0 −
1

2

α∆mp

m∗
f0 (2.4)

where f0 is the resonance frequency when the device is filled with pure buffer.

Mass characterization of suspended objects by SMR can be obtained in two modes:

analyte accumulation on the channel walls, which causes static shifts in resonance fre-

quency, or detection of particles flowing through the resonator, which induce transient

shifts in resonance frequency. These modes are presented in section 2.4.

2.3 Experimental setup

The SMR setup is composed of three main parts, namely the resonator, the electronic

circuits for excitation and detection, and the fluidic system (Fig. 2.2).

Cantilever resonator

The cantilever is made of silicon and sealed between two pyrex wafers to create a

vacuum environment for oscillation. Device vibration is achieved by electrostatic ac-

tuation, obtained with an electrode deposited below the resonator. To ensure temper-

ature stability during measurement and reduce resonance frequency variations caused
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Figure 2.2: Schematic of the SMR setup. Detection of the resonator oscillation is obtained
with an optical lever, impinging on a split photodiode. The converted electric signal is then
amplified and phase shifted. After adding a bias voltage, the electric signal is applied to
the drive electrode for electrostatic actuation. Resonance frequency variations are measured
using a heterodyne detection method, to record only low frequency variations of the resonance
frequency. In the inset, the fluidic component of the SMR device is depicted. The chip features
two bypass channels for rapid delivery of the solutions to the embedded microfluidic channel.
Computer controlled pressurized inlets and outlets allow fine tuning of the flow rates in the
device.

by thermal drifts, the device is positioned on a Peltier element [69].

Fabrication

The SMR devices used in this work were fabricated at Innovative Micro Technology

(Santa Barbara, CA) and generously provided by the laboratory of Prof. Scott Manalis

(MIT, Cambrige, MA). Detailed information on the device fabrication can be found in

Burg et al. [14]. The main steps are summarized here:
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2.3 – Experimental setup

1

The embedded microfluidic channel is etched

by a RIE process into the silicon wafer.

2

Fusion bonding with a silicon wafer to seal

the embedded channel and thinning of the top

silicon wafer.

3

Deposition of aluminum, to improve the re-

flectivity of the cantilever.

4

Etching of the top of the resonator structure

and opening of the connections between the

embedded channel and the top level.

5

Bonding of the top Pyrex wafer, where the by-

pass channels and the vacuum chamber have

been previously etched.

6

Thinning of the bottom wafer and release of

the structure.

7

Bonding of the bottom Pyrex wafer with the

patterned drive electrode. Vacuum sealing of

the resonator chamber.

Oscillation detection

The detection of the cantilever oscillation is achieved by an optical lever method. A

laser beam is focused on the cantilever tip and the displacement of the reflected beam

is used to detect the motion of the resonator. The beam is shaped as an ellipsoid, as

this configuration helps in the positioning of the laser spot along the main dimension
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2 – Suspended Microchannel Resonators

of the resonator. A split photodiode then converts the beam oscillation into an electric

signal that is subsequently amplified and phase shifted, before feeding it back to the

drive electrode. This generates a feedback loop that maintains the cantilever oscillating

at its resonance frequency. An automatic gain control (AGC) circuit is also present to

ensure a constant amplitude oscillation of the cantilever.

The resonance frequency of the device is measured by a heterodyne detection

scheme. The oscillating electric signal coming from the photodiode is multiplied with

a reference signal, with oscillating frequency fR = (f0 − fs), where f0 is the resonance

frequency of the device and fs corresponds to the sampling rate of the acquisition. This

gives rise to a signal presenting two frequency components: f0 + fR and f0 − fR. By

using a lowpass filter, the lower frequency beat is selected and the period of oscillation

is measured. For further information, a detailed description of the feedback circuit is

presented in [69].

Fluid control and delivery

The fluidic component of the SMR consists of two “wide” (∼50 µm) bypass channels

etched in the top Pyrex wafer for rapid fluid delivery to the microfluidic channel embed-

ded in the resonator (see inset in Fig. 2.2). By controlling the pressure at the inlets and

outlets of the bypass channels, the flow in the detection channel can be tuned with high

precision. The use of computer controlled pressure controllers provides good repeat-

ibility of flow rates between experiments and ensures a smooth pulse-free flow. Only

FEP tubing directly fitted to the silicon/glass SMR chip are used to avoid adsorption

of the sample to the external fluidics and to ensure high chemical resistance.
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2.3.1 Double-paddle cantilever SMR

L

W
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Figure 2.3: a) Schematic of the double-paddle SMR used for mass measurements (on top)
and a cross-section of the device (bottom). The dimensions are reported in Table 2.2; b)
frequency response of the SMR when filled with nitrogen gas (f0d ∼ 1.33 MHz, Qd ∼22000)
and with milli-Q water (f0w ∼ 1.26 MHz, Qw ∼6300). Viscous damping causes a reduction
in quality factor, as it can be observed by the widening of the resonance peak.

Device L[µm] W[µm] H[µm] b[µm] h[µm] f0d[MHz] Qd f0w[MHz] Qw

SMR 60 36 7 8 3 1.33 22,000 1.26 6300

Table 2.2: Dimensions of the SMR device used for mass measurements of suspended particles.
The symbols refer to Fig. 2.3a. The subscripts d and w refer to the device dry and filled with
water, respectively.

The SMR is a double-paddle resonator made of silicon and containing an embedded

microfluidic channel of 3 × 8 µm2 (height × width) cross-section dimensions in each

of the cantilevers (Fig. 2.3a). Each side of the double-paddle resonators consists of a

free standing beam measuring 60 µm in length, 36 µm in width and 7 µm in thickness

(nominal dimensions from mask design and manufacturing parameters). When vibrat-

ing in the first resonant mode, the two cantilevers oscillate at the same frequency and

with opposite deflection (i.e. with a phase difference of π). The device has a resonance

frequency of ∼1.3 MHz and quality factor Q of ∼20000 when operated dry. Upon

filling with water, the resonance frequency drops by ∼0.1 MHz as a result of the added

water mass (∼10 ng). Furthermore, the quality factor of the devices is reduced to a Q

value of ∼6000 due to the viscous damping of the liquid inside the embedded channel
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2 – Suspended Microchannel Resonators

[70] (Fig. 2.3b). Small variations in resonance values are expected between devices be-

cause of small dimensional differences among the resonators, caused by manufacturing

tolerances. Device oscillation is obtained with electrostatic actuation by two electrodes

positioned on the bottom pyrex wafer, below the cantilevers. The electrodes have a

bias voltage of ∼100 V, while the AC signal has a 5 V amplitude peak-to-peak.

Mass resolution

The SMR devices used here have mass responsivities of ∼20 mHz/fg (1 fg=10−15g) and

typical readout noise is 0.2 Hz at a 1 kHz sampling rate. This value can be compared

to the thermomechanical noise of the resonator, calculated as [71]

δfth
f0
≈
√
SxBw

2Q∆z
(2.5)

where Bw is the acquisition bandwidth, Sx the noise spectral density, ∆z the cantilever

deflection, f0 the resonance frequency and δfth the resulting frequency uncertainty.

Firstly, the cantilever deflection is calculated from the resonator spring constant and

the force exerted by the electrostatic actuation. To estimate it, the resonator/electrode

structure can be approximated as a parallel plate capacitor, so that the force on each

plate can be readily calculated as [71]

F = ε0
V 2
actA

2d2
(2.6)

where ε0 is the dielectric constant of vacuum, A∼2500 µm2 the electrode/resonator

capacitor area, d∼50µm the distance between the two plates and Vact = Vbias + Vosc

the actuation voltage. However, V 2
bias produces a static force on the cantilever and

does not contribute to the oscillation excitation, therefore it is neglected here; only

V 2
act∗ = V 2

osc + 2VoscVbias ≈ 1000 V2 is considered for the estimation. The calculation

returns a force of 4 nN that, considering a spring constant K∼30 N/m [71] and a

Q-factor ∼6000, causes a displacement ∆z∼800 nm at resonance frequency. Then, the

power spectral density of the thermomechanical noise can be calculated [71]

Sx ≈
4kBTQ

2πf0K
(2.7)
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with kB denoting the Boltzmann constant and T the temperature. It is now possible to

estimate the vibration displacement uncertainty caused by the thermomechanical noise

using Eq. 2.5, obtaining an estimation of the thermomechanical noise of 2 ppb (part

per billion). This value is about two orders of magnitude smaller than the experimental

acquisition noise. Although the frequency readout noise can be lowered by reducing

the signal bandwidth, the thermomechanical noise level cannot be reached as thermal

and mechanical drifts, as well as noise introduced by the excitation/detection scheme,

ultimately limit the acquisition resolution.

Limit of detection

According to the readout frequency noise and requiring a signal-to-noise ratio of 3 to

be able to detect single-particle events, the mass detection limit results in ∼30 fg at 1

kHz sampling frequency. Reducing the signal acquisition rate effectively increases the

resolution at the expense of lowering the throughput of the flow-through measurements:

a sufficient number of points has to be acquired to monitor the particle flowing through

the resonator, hence posing a limit on the maximum applicable flow rates. Considering

a minimum of 20 points per particle needed for proper detection, measuring in a 1

Hz bandwidth would limit the even count to a maximum of ∼2 particles per minute,

and a flow velocity of ∼6 µm/s. Such a low flow rate cannot be obtained experimen-

tally, as it would require maintaining a pressure drop across the embedded channel of

∼0.05 mBar, considering a solution with viscosity similar to water. Experimentally,

a pressure difference of ∼5 mBar (particle average residence time ∼200 ms) was the

limit before obtaining flow instabilities during the measurement. Measurements were

acquired predominantly at sampling rates of 500 Hz or 1 kHz, and typical readout noise

corresponded to ∼100 mHz and ∼200 mHz, respectively.
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2.3.2 50 µm SNR device
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Figure 2.4: a) Schematics of the SNR cantilever resonator structure (top) and embedded
microfluidic channel (bottom). The resonator dimensions are reported in Table 2.3; frequency
response of the SNR50 device when filled with nitrogen gas and with milli-Q water. Because
of the small dimensions of the cross-section, the device does not show a reduction in quality
factor upon filling with water.

Device L[µm] W[µm] H[µm] b[µm] h[µm] f0d[kHz] Qd f0w[kHz] Qw

SNR50 50 10 1 2 0.4 740 7000 700 7000

Table 2.3: Dimensions of the SNR device used for mass measurements of suspended particles.
The symbols refer to Fig. 2.4a. The subscripts d and w refer to the device dry and filled with
water, respectively.

A cantilever resonator with sub-micron cross-section dimensions was also used for mass

characterization of suspended particles (Fig. 2.4a). Because of the scaling in resonator

and embedded channel dimensions, these second generation devices will be referred to

as suspended nanochannel resonators (SNRs) [16]. However, the notation SMRs will be

employed when referring to the general class of resonators with embedded microfluidic

channels, unless otherwise specified to identify a particular device.

The SNR used for mass detection is a 50 µm silicon cantilever resonator with an

embedded microfluidic channel of 2× 0.4 µm2 cross-section dimensions. The resonator

dimensions are reported in Table 2.3. The cantilever has a dry mass of ∼1 ng, i.e. ∼100

times lighter than the SMR presented in the previous section. The resonance frequency

is 741 kHz when filled with nitrogen gas and 700 kHz when filled with water. Due to the

small dimensions of the cross-section, the increase in fluid viscosity caused by the water
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in the embedded channel does not lead to a measurable decrease in device quality factor

[70], corresponding to ∼7000 under both fluid conditions (Fig. 2.4b). The reduction

in resonator thickness corresponds to a reduction in spring constant to ∼6.5 N/m

[16]. However, the maximum deflection does not increase accordingly (∆z∼800 nm),

as a consequence of the smaller capacitor dimensions. The thermomechanical noise

corresponds to ∼5 ppb for a 1 kHz sampling frequency, as estimated from Eq. 2.5. As

for the double-paddle cantilever presented before, the theoretical limitation in frequency

detection cannot be reached, and the readout noise is about two orders of magnitude

larger than the thermomechanical level.

Experimental setup

Due to the reduction in cantilever dimensions, the experimental setup was modified

to allow a more precise focusing of the laser on the SNR cantilever tip. A 5X beam

expander was positioned between the laser and the setup lenses to widen the beam

waist prior to focusing. Further focusing of the beam, to improve the laser placement

and reduce laser drift effects, was not feasible without major modifications to the

setup, as it would have resulted in a too high divergence of the beam before reaching

the photodetector. Excitation of the device oscillation was obtained by electrostatic

actuation using an electrode positioned below the cantilever, under conditions similar

to the SMR actuation.

Mass resolution and detection limit

Measurements with this device presented a ∼200 mHz readout frequency noise at a

500 Hz sampling frequency, that, according to a mass/frequency responsivity of 1

fg/Hz, limits the single-particle resolution to ∼200 ag (1 ag=10−18 g). Lower sampling

frequencies can be used more easily because of the increase in fluid resistance of the

channel: a flow of ∼0.5 mm/s (corresponding to an average transit time of ∼200 ms) in

the embedded channel requires a pressure drop of ∼10 mBar, that can be maintained

with good stability.
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2.4 Detection modes

Mass-induced frequency shifts in the device resonance frequency can be of two types:

permanent shifts, as a consequence of accumulation of analyte in the resonator, or tem-

porary, caused by the flow of particles in the embedded channel. This thesis presents

an analysis method for the resolution enhancement of flow-through measurements;

nevertheless, an overview of the mass accumulation method is included here for com-

pleteness.

2.4.1 Mass accumulation

Mass accumulation on the walls of the embedded microfluidic channel affects the effec-

tive mass of the resonator, causing a variation in resonance frequency (Eq. 2.2). Func-

tionalization the inner surfaces of the resonator renders the device specific to sensing

the captured amount of a particular analyte in solution, similar to mass detection ob-

tained by quartz crystal microbalances (QCM) and surface plasmon resonance (SPR)

devices [14]. However, QCMs and SPR devices usually present flow cells of ∼50 µm in

height, and, as a consequence, measurements of kinetic rates can be affected by mass

transport of the analyte to the surface. To overcome this limitation, high flow rates

(mL/min) can be employed, at the expense of large sample consumption. On the con-

trary, SMR devices present channel dimensions of a few micrometers and an internal

volume of ∼10 pL. Due to the small dimensions and internal volume, reaction-limited

regimes can be obtained with minimal sample consumption: analytes of nanometer

size diffuse through the whole cross-section in ∼10 ms, avoiding the formation of a

depletion layer close to the channel walls; furthermore, flow rates of <1 µL/min would

be sufficient for refreshing the solution in the resonator every ∼0.5 ms [18].

As an example of accumulation detection mode, Fig. 2.5 shows the measurement of

goat anti-mouse immunoglobulin G (IgG) molecules binding on anti-goat IgG antibod-

ies, that were previously immobilized on the resonator surface. Both the surface func-

tionalization process (Fig. 2.5a) and the binding of the analyte molecules (Fig. 2.5b)

can be detected in real time by continuously monitoring the resonance frequency. Mass

accumulation on the resonator surface causes a decrease in resonance frequency, as a

result of the increase in the resonator effective mass. Therefore, quantification of the
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(a) (b)

Figure 2.5: a) The inner surface of the SMR is functionalized to enable capturing of the
analyte in solution. In the example presented here, anti-goat IgG are immobilized on the SMR
surface by a three step process. Flowing of the functionalization solutions is highlighted in red,
while the rinsing with phosphate buffer saline is in blue. As a result of the functionalization
of the surface, the effective mass of the resonator increases, causing a permanent shift in
resonance frequency. In the specific case shown here, a shift of ∼15 Hz was caused by the
immobilization of the antibodies; b) binding of the analyte on the functionalized surface of
the SMR induces a decrease in resonance frequency, as a result of the mass accumulation.
The binding can be monitored in real time by detecting the resonance frequency decrease.
The figure shows frequency variations caused by the injection of goat anti-mouse IgG at
different concentrations (blue curves) and of control solutions (black and red curves). These
figures have been reprinted with permission from Burg et al. [14]. Copyright 2007 Nature
Publishing Group.

induced frequency shift provides a direct measurement of the added mass.

The acquisition bandwidth can be decreased to improve mass resolution, because

signal detection is based on static variations of the resonance frequency. However,

bandwidths below ∼1 Hz are usually ineffective in resolution improvements, as reso-

nance variations caused by thermal and mechanical drifts ultimately limit the frequency

stability. Nevertheless, SMRs can be used for real-time monitoring of binding event

and for the characterization of biomolecular interaction kinetics, with a potential mass

resolution of ∼0.01 ng/cm2 for devices with micrometer size channel dimensions [14].

Finally, the use of devices with a lower effective mass, such as the SNR presented

before, would provide a proportional resolution enhancement. However, limitations

on the maximum size of the analyte would be more stringent due to the reduction in

channel dimensions.
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2.4.2 Flow-through mode

Sensitivity profile

Particles in the resonator induce position-dependent frequency shifts in the resonance

frequency. The magnitude of the shift is proportional to the relative vibration am-

plitude of the resonator at the particle location [72]. Figure 2.6 shows the first three

resonant modes for a cantilever resonator and the associated sensitivity profiles. The

mode shapes are described by [72]

Un(x) = C1 (cos(knx)− cosh(knx)) + C2 (sin(knx)− sinh(knx)) (2.8)

where the subscript n denotes the oscillation mode, kn is the mode wave number, C1 and

C2 are the mode coefficients that fulfill C1/C2 = (cos(knL) + cosh(knL))/(sin(knL) −
sinh(knL)). For the modes reported in Fig. 2.6, knL=1.875, 4.694 and 7.855. Denoting

as ∆fpn the maximum frequency shift induced by the particle flowing in a resonator

oscillating at the n−th mode, the position-dependent response of the cantilever is

shown in Fig. 2.6c. The curves are calculated as [72]

δfp(x)

∆fpn
=

(
Un(x)

Un0

)2

(2.9)

where δfp(x) is the induced frequency shift for a particle at position x and Un0 the

maximum oscillation amplitude at the n-th mode. Nodes in the resonant mode shape

represent points of zero mass sensitivity, while maximum response occurs at points of

maximum vibration. SMR devices operated at the second resonant mode have already

been presented [73], however SMRs are most commonly used in the first mode for

the ease of operation and oscillation detection [14, 16, 20, 22, 23]. For this reason,

the calculations will only focus on the first oscillation mode and ∆fp1 will be simply

referred to as ∆fp.

To simplify the expression of the sensitivity profile in the first resonant mode, the

cantilever deflection function can be approximated by a first order polynomial. The
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Figure 2.6: a) Schematics of a SMR device, with cantilever length L along the x-axis. The
embedded channel length is approximated to 2L; b) first three resonant modes for a cantilever
resonator; c) sensitivity profile of the resonator according to the oscillation mode. The
induced frequency shift varies with the particle axial position.

position-dependent induced frequency shift can be described as

δfp(x) = ∆fp

(x
L

)2
(2.10)

and ∆fp can be derived from Eq. 2.4

∆fp
f0

= −1

2

∆mp

m∗
(2.11)

∆fp corresponds to the induced frequency shift when the particle is at the tip of

the cantilever resonator. The linear approximation of the deflection function and the

resulting quadratic sensitivity profile (Eq. 2.10) are shown in Fig. 2.7.

0 0.2 0.4 0.6 0.8 1-1
-0.8
-0.6
-0.4

0
-0.2

x/L

u(
x)

Linear approx.Mode 1

(a)

0 0.2 0.4 0.6 0.8 1

1
0.8
0.6
0.4

0
0.2

x/L

Linear approx.Mode 1

(
)/

(b)

Figure 2.7: a) The first oscillation mode is approximated with a linear function for simplifying
the calculations; b) comparison between the approximated and the analytical sensitivity
profile.
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Transient particle signature

Particles flowing through the embedded channel in the resonator present a character-

istic transient frequency shift as a result of their motion. For simplicity, the embedded

channel can be mapped to a linear geometry of length 2L, where the point of maximum

deflection is x = L. Defining tp the time spent by the particle in the resonator, the

axial position of the particle is given by

x(t) =
2L

tp
t (2.12)

and 0 ≤ t ≤ tp. Inserting Eq. 2.12 in Eq. 2.10, the characteristic frequency shift for a

flowing particle is

δf(t) = ∆fp



(
x(t)
L

)2
for0 ≤ t ≤ tp/2(

2L−x(t)
L

)2
fortp/2 < t ≤ tp

0 otherwise

(2.13)

From Eq. 2.13 and Eq. 2.11, it can be noticed that the buoyant mass of the particle

∆mp defines the magnitude of the induced frequency shift, while the duration of the

transient depends on the time tp spent by the particle in the channel. Figure 2.8 shows

a typical particle-induced transient frequency shift. Because of the non-negligible width

of the channel at the resonator tip, the maximum induced shift suffers of an intrinsic

position-dependent uncertainty. For a 60 µm cantilever and a 8 µm channel width,

the uncertainty is ∼ 8%. However, this corresponds to an uncertainty of less than 3%

when converted to an uncertainty in particle radius.

Noise in the resonance frequency detection sets a clear limit on the mass of the

objects that can be characterized by the SMRs in flow-through mode. In this work, an

ensemble based method was developed to detect particle signatures, even when these

are orders of magnitude smaller than the readout frequency noise. This is achieved by

correlation analysis of the time-domain mass signal. The method is presented in detail

in Chapter 3 and 4.
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Figure 2.8: Transient frequency shift of a 1.54 µm polystyrene bead suspended in water
(buoyant mass 95 fg). The signature shape is a function of the resonator sensitivity profile
and the time extension equals the time spent by the particle in the resonator. The maximum
shift occurs when the particle passes the apex of the cantilever. The induced frequency shift
scales with the buoyant mass of the particle. For clarity, the trace has been smoothed with
a Savitzy-Golay filter.

2.5 Experimental method

2.5.1 Mass measurements

To begin, the sample is introduced into one of the two bypass channel and the remaining

bypass channel is filled with a wash solution, i.e. a solution that slightly differs from the

suspending buffer of the particles. This has the double advantage of avoiding drastic

changes in sample conditions upon mixing with the wash solution and, at the same time,

clearly identifying what solution is in the resonator at any time of the measurement,

by looking at the resonance frequency variation caused by slight differences in solution

densities.

When the sample bypass is filled, the measurement is ready to begin (Fig. 2.9) and

the solution can be pushed through the embedded channel by varying the externally

applied pressures (P1≈P2 and P3≈P4, with P1>P3). For flow-through measurements,

it is important that the pressure drop across the resonator channel is low enough so

that particle signatures are visible in the time-trace. As particles might interact with

the walls, every 30 s ∼ 1 minute the flow is reversed to rinse the channel with wash

solution (Fig. 2.9, steps II and III). This looping is performed several times to increase

the statistics of the measurement. The typical sample flow rate within the measurement

channel is ∼20 nL/min, however ∼15 µL are required to fill the connecting tubes and
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Figure 2.9: I) The sample is inserted in the bypass channel while the resonator is filled with
wash solution. The measurement is then started, and (II) the sample is flown through the
embedded channel. After ∼1 minute, (III) the flow is reversed to rinse the channel and
remove particles weakly interacting with the walls. The procedure is repeated several times.
IV) End of the measurement; the sample is removed from the bypass channel and the whole
chip is rinsed with wash solution.

bypass channel. When the measurement is concluded, the chip is rinsed with wash

solution (Fig. 2.9, step IV).

Cleaning of the device is accomplished by flowing 10 µL of a mixture of sulfuric

acid and hydrogen peroxide (piranha solution) throughout the two bypass channels

and the resonator embedded channel. The cleaning procedure is performed after each

measurement.

Precise control of the flow conditions and continuous monitoring of the resonance

frequency is done via a custom-designed Labview interface. The resonance frequency

is acquired using a heterodyne measurement scheme, as described before (see page 18).

2.5.2 Data analysis

Slow-varying noise terms

Mass characterization of particles flowing through the embedded channel is based on

the quantification of the transient induced frequency shift. After calibration of the
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mass/frequency response of the resonator, relative frequency variations are sufficient

to obtain the mass characterization of the particles, and absolute resonance frequency

values can be discarded without loss of information. Under normal experimental condi-

tions, particles flow through the resonator in <200 ms, therefore the particle signatures

can be safely separated from the static frequency baseline applying a high pass filter

(cutoff frequency 1 Hz) to the recorded signal (Fig. 2.10). This also removes slow-

varying noise terms, such as fluctuations due to thermal and mechanical drifts during

measurement. The analysis of the time-domain frequency measurement is performed in

MATLAB (Mathworks Inc.), using customized data analysis scripts (see Appendix A).
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Figure 2.10: a) Frequency measurement, as recorded by the frequency counter. The sampling
frequency (∼1 kHz) corresponds to the difference between the cantilever resonance and the
reference frequency; b) time-trace after high-pass filtering (1 Hz cutoff frequency).

Signal preparation for correlation analysis

The zeroed frequency trace is autocorrelated to extract preliminary information on the

average time tavg spent by the particles in the resonator. tavg can be inferred by looking

at the non-zero correlation amplitude around lag zero, corresponding to the sum of all

particle signature autocorrelations1 (see Fig. 2.11a). Particle signature locations in

the frequency trace are identified using a matched filter and their position is stored

for further analysis. The signatures are then deleted from the zeroed trace, removing

1More information on the autocorrelation and the calculation procedure is presented in Sec. 3.1.
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a number of points corresponding to t > tavg. Finally, the remaining trace can be

analyzed with the correlation analysis to characterize particles whose signatures are

buried in the noise background.
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Figure 2.11: a) Autocorrelation of the zeroed time-trace. The non-zero correlation amplitude
is caused by the particle signatures in the time-trace. The average time spent by the particles
in the channel can be calculated from the curve extension; b) clear single-particle signatures
are identified and their signatures are removed from the time-trace. The remaining portions
of the trace are then analyzed with the correlation analysis, for characterizing particles whose
mass falls below the resolution limit.

Single-particle characterization

The characterization of the particle-induced frequency shifts visible in the measurement

trace is done from the raw frequency trace (Fig. 2.10a), as baseline removal by high-pass

filtering might affect the transient signature amplitude2. From the locations identified

in the zeroed trace, particle signatures are extracted from the raw frequency measure-

ment and the baseline is estimated by looking at the trace before and after the induced

characteristic signature. As the portion of analyzed signal is short (≈ tavg), the baseline

drift can be safely approximated with a linear function. Finally, a Savitzy-Golay filter

is applied to the particle signatures to improve the resolution on the frequency shift

estimation (Fig. 2.12). Frequency/mass conversion is then calculated after calibration

of the device responsivity with particles of known mass.

2While the high pass filtering also affects the “small” particle signatures, the effect is usually
negligible because frequency fluctuations already present an average value ≈ 0.
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Figure 2.12: Quantification of single-particle induced frequency shift. The figure compares a
single-particle characteristic signature after baseline removal by high-pass filtering (blue) and
by linear detrending (red). To improve the frequency shift quantification, a shape preserving
Savitzy-Golay filter is also applied to the red curve.

2.5.3 Mass conversion calibration

Particles of known diameter and mass are added to each sample to serve as mass/frequency

conversion calibration and to monitor the flow conditions during measurement.

Double-paddle resonator

NIST quality polystyrene beads of 1.54±0.04 µm size (Polysciences Inc., Cat# 64040)

are used as calibration beads for the double-paddle SMR device. With a buoyant mass

of ∼96 fg, the beads induce clear frequency shifts of ∼-2 Hz in normal experimental

conditions (see Fig. 2.12). Furthermore, the high monodispersivity of the particle

population makes them an ideal sample for calibration purposes. Fig. 2.13 shows

the measured frequency shifts induced by the reference beads suspended in milli-Q

water. The standard deviation of the distribution includes both the intrinsic sample

distribution and the variation caused by the particle position uncertainty at the tip of

the resonator. Particles with diameter comparable to the cross-section dimensions also

act as precise references for the estimation of the flow conditions during measurement,

as they present a very narrow velocity distribution in the channel (as explained in

Chapter 4).

From the measurements in milli-Q water, the mass responsivity of the double-paddle

resonators corresponds to ∼20 mHz/fg.
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Figure 2.13: Measured induced frequency shifts caused by the 1.54 µm polystyrene beads
in water when passing the apex of the SMR. 580 beads were measured under different flow
conditions. The population distribution variance includes the particle mass distribution and
the position dependent uncertainty.

50 µm SNR device

PMMA beads of 222±38 nm (Phosphorex Inc., Cat# NR 1109245-085) were used as

calibration for the measurements with the 50 µm SNR device. With a buoyant mass of

1.09 fg in water, the characterization of the reference particles returns a frequency/mass

conversion of ∼1 Hz/fg. The frequency shifts induced by the particles flowing through

the resonators are shown in Fig. 2.14. With a channel width of 2 µm and a resonator

length of ∼50 µm, particle position uncertainty at the resonator apex generates a ∼2

% variation in mass estimation. Therefore, the large frequency shift distribution in

Fig. 2.14 is mostly dominated by the particle mass distribution.
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Figure 2.14: Induced frequency shifts caused by the 222 nm PMMA beads in water when
passing the apex of the 50 µm SNR device. 559 beads were measured under different flow
conditions.
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Chapter 3

Resolution enhancement of SMR

Suspended microchannel resonators (SMR) have enabled mass measurement of particles

in solution with unmatched resolution [14, 15, 16, 20]. In flow-through mode, particles

induce a transient frequency shift

∆fp = −1

2

f0
m∗

∆mp (3.1)

where ∆mp is the buoyant mass of the particle, f0 is the resonance frequency of the

device and m∗ is the effective mass of the resonator. SMRs of the first generation have

resonator masses of ∼100 ng and resonance frequencies of ∼1 MHz. With a readout

noise level of ∼0.1 Hz, these devices present resolution limits around the 10 fg mark.

This detection capability has allowed SMR application to the mass and density char-

acterization of cells and bacteria in solution, as a result of the single-particle detection

capability and the possibility of rapid exchange of buffer conditions inside the embed-

ded channel [22, 23, 24, 74].

Reducing the acquisition sampling rate effectively increase the mass resolution by lower-

ing the readout noise. However, this approach decreases the measurement throughput:

slower flow rates would need to be used to reliably detect individual particles crossing

the resonator, effectively reducing the particle count rate. Furthermore, because of the

extremely small pressure differences applied to control fluid velocity, instabilities in

flow conditions would likely occur during the measurement. To circumvent these limi-

tations, devices with higher sensitivity were realized by reducing the effective mass of
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the resonators. This solution was pursued with two different strategies, namely scaling

the device dimensions [16, 20] and by operating the devices at higher resonance modes

[73]. This latter strategy, however, presents limited applicability and resolution en-

hancement, due to the difficulties in exciting and detecting higher modes of vibration.

On the contrary, devices with sub-micrometer cross-section dimensions, the suspended

nanochannel resonators (SNRs, page 22), have achieved attogram detection level in

single-particle mode [20]. However, the reduction in channel cross-sections imposes a

strict limit in particle size, as this cannot exceed the channel smallest dimension.

Here, I present a novel approach for enhancing the resolution of embedded channel

resonators. This method extends the measurement range of SMR devices into a regime

where single-particle detection is not possible. Using a correlation analysis of the time-

domain mass signal, enhancement of particle signal contributions with respect to the

uncorrelated noise background is achieved, even when single-particle signatures are

several orders of magnitudes below the noise floor [19]. The theoretical explanation

of the analysis will be presented here and corroborated by measurements on validated

samples. Resolution enhancement of five orders of magnitude was achieved using this

approach.

3.1 Mass Correlation Spectroscopy

Particles flowing through the microfluidic channel embedded in the resonator cause

transient shifts to the resonance frequency of the device. The magnitude of the shifts

depends on the buoyant mass of the particles and on their axial positions (Eq. 2.10).

When the sample concentration is such that more than one particle is present in the

resonator at any time, the effective mass density of the fluid is altered and this is re-

flected in a shift of the mean resonance frequency. This static variation in resonance

value depends on both the sample total dissolved mass in solution and on its density.

However, in typical experimental conditions the shift is too small to be measured with

precision1. This is due to slow varying noise effects, such as thermal drift or non-

specific binding. Additionally, frequency changes induced by fluid pressure variations

1Considering polysterene beads dissolved in milli-Q water at 1 mg/mL, the average frequency shift
would correspond to ∼1.5 Hz for the SMR presented in Sec. 2.3
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Figure 3.1: A single-particle traveling through the resonator generates a characteristic tran-
sient signature in the resonance frequency (red). When several particles are present in the
resonator, they give rise to a static shift of the resonance frequency and to oscillations caused
by the number density fluctuations in the channel (blue).

are of the same order of magnitude, potentially masking this effect. This problem

is not encountered when dealing with number density fluctuations of particles in the

embedded channel. As particles are discrete objects, their number in the resonator

fluctuates around the average concentration value, causing oscillations in resonance

frequency as a consequence of the linear superposition of the individual single-particle

signatures (Fig. 3.1). When flow conditions are kept stable, particle signatures present

similar temporal extension, generating a repeating pattern in the resonance frequency

time-trace. This pattern can be enhanced by using an autocorrelation analysis of

the time-domain mass signal, even when single-particle signatures are several orders

of magnitude smaller than the detection noise. Assuming a random and uncorrelated

measurement noise background, noise contribution in the autocorrelation is confined to

τ ≈ 0 [75], where τ is the autocorrelation lag time. On the contrary, particles spending

on average a time tp in the resonator would affect the autocorrelation for time lags up

to τ ≈ tp. Through the autocorrelation analysis, the sample contribution can be easily

separated from the noise due to their temporal extension differences in the correlation

signal, at the expense of losing single-particle characterization capability.
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3 – Resolution enhancement of SMR

3.1.1 MCS - definition

Assuming a sample of identical particles with maximum induced frequency shift ∆fp,

the fluctuations of the resonance frequency are described by

δf(t) = ∆fp ·
∫
V

δc(x, y, z, t) · u(x)2 dy dz dx (3.2)

where the integral is calculated over the volume V of the embedded microfluidic chan-

nel, δc(x, y, z, t) denotes the concentration fluctuation at position (x, y, z). u(x) is the

deflection function of the cantilever and u(x)2 corresponds to the sensitivity profile of

the resonator. It should be noted that δf(t) only describes the frequency fluctuations

around the average resonance value, and experimentally corresponds to the high-pass

filtered signal, with zero mean and no baseline drift. The autocorrelation analysis2 of

the signal is defined as

C(τ) =< δf(t)δf(t+ τ) > (3.3)

where ‘< •>’ is the ensemble-based expected value. By inserting Eq. 3.2 in Eq. 3.3,

the autocorrelation of the high-pass filtered signal is

C(τ) = ∆f 2
p

∫∫
V

< δc(x, y, z, t)δc(x′, y′, z′, t+ τ) >

× u(x)2u(x′)2 dy dz dx dy′ dz′ dx′. (3.4)

The correlation signal contains information on both the average mass, concentration

and size of the particles. The magnitude of C(τ) increase with the particle concentra-

tion and with the induced frequency shifts ∆fp, proportional to buoyant mass of the

particles in solution. The shape of C(τ), instead, depends on the temporal correlation

of the concentration fluctuations, containing information on the size and diffusion of

the particles, as well as the interactions with each other and with the flow profile.

The velocity profile in the cross-section is not uniform and particles move at dif-

ferent velocities according to their position in the cross-section. However, the velocity

2The function C(τ) is called ‘autocovariance’ in statistics; however, in signal processing it is com-
monly referred to as ‘autocorrelation’, despite the missing normalization factor. This latter convention
will be used in the text and the normalization factor will be stated explicitly when applied.
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Figure 3.2: Expected autocorrelation signals for different types of particles. The autocorre-
lation amplitude depends on the sample individual particle mass and concentration: heavier
particles present a higher autocorrelation, even if the sample dissolved mass coincides; au-
tocorrelation shape varies with the particle size: in red, particles of diameter comparable to
the channel cross-section; in blue and green, small particles, that can closely approach the
channel walls. tL and tS denotes the average time spent in the resonator by the large and
small particles, respectively.

distribution of the sample is not constant, because particles change position in the

radial direction as a result of diffusion [76]. Furthermore, the finite size of the parti-

cles limits the accessible regions of the velocity profile, as particles are precluded from

closely approaching the channel walls [77]. Examples of autocorrelation curves coming

from different samples are depicted in Fig. 3.2. Large particles are confined to the

center region of the cross-section and only experience the fast portion of the velocity

profile. Small particles, instead, present a long-tailed autocorrelation, resulting from

the slow moving particles positioned close to the channel walls. Finally, samples with

the same dissolved mass in solution, but not individual particle mass, present different

autocorrelation amplitudes (green and blue curves in Fig. 3.2).

From here onward, the autocorrelation analysis of the high-pass filtered mass signal

will be referred to as Mass Correlation Spectroscopy (MCS). The results presented in

this chapter will focus on the study of the autocorrelation magnitude, while the anal-

ysis of the autocorrelation shape will be presented in Chapter 4. Here, the calculation

of the autocorrelation will be performed using an compartment approximation of the

velocity profile in the channel.
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3 – Resolution enhancement of SMR

3.1.2 MCS - amplitude

To calculate C(τ) for a sample flowing through an embedded microfluidic channel of

rectangular shape, a simplification of the velocity profile can be made by discretizing the

cross-section into M compartments of area Ai (i = 1 . . .M). Within each compartment,

the flow profile is approximated by a plug flow of velocity

vi =
1

Ai

∫∫
Ai

U(y, z) dy dz. (3.5)

where vi is the average flow velocity in the i-th compartment and U(y, z) is the velocity

profile in the cross-section, defined by [76]

U(y, z) =Umax

[
1− y2

h2
− 32

π3

∞∑
n=0

(−1)n

(2n+ 1)3

×
cosh

(
(2n+1)πy

2h

)
cosh

(
(2n+1)π

2β

) cos

(
(2n+ 1)πz

2h

)]
(3.6)

with Umax = U(0, 0) the maximum flow velocity at the center of the cross-section,

β = h/b the channel aspect ratio, −h ≤ y ≤ h and −b ≤ z ≤ b.

Assuming that concentration fluctuations in different regions of the cross-sections

are uncorrelated and particle diffusion between compartments can be neglected, the

autocorrelation can be expressed as

C(τ) =
M∑
i=1

Ci(τ) (3.7)

where

Ci(τ) = ∆f 2
p

∫∫
V i

< δc(x, y, z, t)δc(x′, y′, z′, t+ τ) >

×u(x)2u(x′)2 dy dz dx dy′ dz′ dx′. (3.8)

Here, the integral is calculated over the compartment volume Vi = Ai × 2L. As the

flow velocity in each compartment is assumed constant, the concentration correlation
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3.1 – Mass Correlation Spectroscopy

function simplifies to

< δc(x, y, z, t)δc(x′, y′, z′, t+ τ) >= c0δ(x− x′ − viτ)δ(y − y′)δ(z − z′) (3.9)

with δ(x) the Dirac delta function and c0 corresponding to the average sample con-

centration. The scaling factor c0 derives from the assumption that the fluctuations of

particle number in the channel are uncorrelated and follow a Poisson distribution [42].

Substituting Eq. 3.9 in Eq. 3.8 yields

Ci(τ) = ∆f 2
p c0 Ai

∫ 2L

0

u(x)2u(x− viτ)2 dx. (3.10)

For a cantilever resonator vibrating at the first resonant mode, the deflection function

can be approximated as (see section 2.4.2)

u(x) =


x
L

for0 ≤ x ≤ L

2L−x
L

forL < x ≤ 2L

0 otherwise

(3.11)

Therefore, the integral can be readily calculated

g(s) ≡
∫ 2L

0

u(x)2u(x− s)2 dx

=


L ·
(

1
30

(
2− |s|

L

)5
− 2

3

(
1− |s|

L

)4)
for |s| ≤ L

L · 1
30

(
2− |s|

L

)5
for L < |s| ≤ 2L

0 otherwise

(3.12)

and the autocorrelation for the i-th compartment of size Ai is

Ci(τ) = ∆f 2
p c0 Ai g(viτ). (3.13)

It is now possible to describe the complete autocorrelation as the sum of Ci(τ) over

all the compartments in the cross-section. However, to fit the experimental data, it is
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3 – Resolution enhancement of SMR

advantageous to define the normalized autocorrelation

G(τ) =

∑M
i=1Ci(τ)∑M
i=1Ci(0)

(3.14)

such that G(0) = 1. This function is then used as the basis for a two-parameter model

β1 ·G(β2
k
fs

) used to fit experimental mass-signal autocorrelations, calculated as

Ĉ[k] =
1

N − k
N−k∑
i=1

δfi · δfi+k. (3.15)

Here δfi denotes the discrete and high-pass filtered signal, with sampling frequency fs

and i = 1 . . . N ,N = Tmeas · fs. The fit parameter β̂1, representing the magnitude of

the curve, corresponds to 〈
β̂1

〉
=

1

5
∆f 2

p c0 V (3.16)

where V is the embedded channel volume. Importantly, the MCS amplitude depen-

dence on particle concentration and mass is not equal. Two samples, which have dis-

solved mass in solution that coincide the same density, would generate an equal static

shift in resonance frequency, but different MCS amplitudes. Finally, for a sample com-

posed of a polydisperse distribution of particles, the factor ∆f 2
p has to be replaced by

the population mean square value
〈
∆f 2

p

〉
.

Compartment approximation

A simple compartment model of the flow profile in the cross-section is used to fit the

experimental curves. Despite the qualitative description of the particle flow, the ap-

proximation follows the experimental data with sufficient precision to obtain reliable

estimations of the MCS amplitude.

As reference beads and particles of interest usually present large differences in size,

two separate compartment approximations are needed, to account for the flow differ-

ences. Figure 3.3 shows the comparison between the flow profile in the channel and

the division in compartments for the reference and the small particles. The size of the

compartments is calculated as the sum of both the particle size and the mean aver-

age diffusion during the crossing of the embedded channel. For the small particles’
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3.2 – Signal-to-noise ratio

0 4

1.5

0

H
ei

gh
t [

µm
]

Width [µm]

Large particles

0 4

1.5

0
H

ei
gh

t [
µm

]
Width [µm]

Small particles

0

1

2

1/
v av

g

0 4

1.5

0

H
ei

gh
t [

µm
]

Width [µm]

Velocity profile

Figure 3.3: Comparison between the fluid velocity profile (left) and the compartment approx-
imation for particles of different sizes (in center, for particles of ∼100 nm; on the right, for
particles larger than 1 µm). The values are normalized to the average fluid velocity. Only one
quarter of the cross-section is shown, as the flow profile presents two planes of symmetry, in
the vertical and horizontal directions. Consistent with the notation used in the text, position
(0,0) corresponds to the center of the cross-section.

situation, the compartments are based on a 100 nm particle crossing the resonator in

50 ms, resulting in a bin size of 450×450 nm2. Since the velocity profile is almost

constant along the horizontal dimension in the vicinity of the channel center, it is pos-

sible to reduce the number of compartments by merging adjacent streams with similar

velocities, obtaining a total number of 20 streams. When dealing with particles of size

comparable to the channel cross-section, such as the 1.54 µm polystyrene beads used

here as frequency/mass calibration beads, one compartment is sufficient to describe

their flow through the channel.

3.2 Signal-to-noise ratio

To estimate to what extent the detection limit of the suspended micro- and nanochannel

resonators can be enhanced with correlation analysis, the signal-to-noise (S/N) ratio

can be calculated as a function of concentration and measurement time. The S/N can

be approximated as the ratio between the autocorrelation amplitude and the residual

noise in Ĉ[k], which has variance σ2
Ĉ
≈ σ4

n

N
for 0 < k � N . Here σ2

n denotes the variance

of the readout noise, which depends on the sampling frequency fs for an adequately

band limited signal. Therefore, the S/N corresponds to
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S/N ≥ 1

5

∆f 2
p

σ2
n

c0 V
√
Tmeasfs (3.17)

Figure3.4 shows the minimum required sample concentrations for having a S/N ratio

greater than 1 for different generation devices as a function of buoyant mass of the

particles and considering typical experimental conditions.

Interestingly, the MCS method does not present a limit in terms of detectable mass,

but the limit of detection is defined by the sample concentration and measurement

time. Resolution can be enhanced by increasing the acquisition time and the sample

concentration within practical experimental limitations: sample volume and flow sta-

bility ultimately defines the maximum acquisition time, and concentration is limited

by the sample solubility. Furthermore, Eq. 3.17 also shows that shrinking the internal

volume V of the resonator would cause a decrease in S/N ratio. However, the effect

of volume reduction would be compensated by the higher mass responsivity and lower

fluid damping of resonators with smaller dimensions [70].
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3.3 – Validation of the MCS method

3.3 Validation of the MCS method

To validate the resolution enhancement obtained using correlation analysis, mass mea-

surements of polystyrene nanoparticles suspended in aqueous solutions are presented.

Polystyrene beads of known size were characterized with devices of different cross-

section dimensions to demonstrate the capability of the analysis in extending the de-

tection range of difference generation devices.

3.3.1 SMR resolution enhancement

A sample containing 85 nm polystyrene beads suspended in an aqueous buffer was char-

acterized by using a double-paddle SMR. To characterize measurement repeatability

and concentration dependence of the autocorrelation signal, the beads were measured

under different flow conditions, ranging from ∼0.6 to ∼6.5 mm/s average flow velocity,

and at concentrations of 0.38% solid and 0.25% solid content in solution.

The autocorrelations of the two bead solutions are shown in Fig. 3.5, compared to

the correlation curve of pure buffer with no particles. As expected, the magnitude of

the curves scales linearly with the sample concentration and oscillates around zero for
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Figure 3.5: MCS signals for a sample of 85 nm polystyrene nanoparticles measured at differ-
ent concentrations and pure solution correlation curve. The fit curves used for interpreting
the data are shown in red. In the insets, short excerpts of the 1 Hz high-pass filtered time
domain traces for the three measurements are shown. Reprinted from Modena et al. [19].
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3 – Resolution enhancement of SMR

the case of no beads in solution. The insets in Fig. 3.5 show short segments of the time-

domain mass traces for the three cases. Due to the low buoyant mass of the beads, no

single-particle event and no systematic frequency fluctuations can be identified. The

average buoyant mass of the particles can be calculated by fitting the autocorrelation

curves with the model described before. From the curve amplitude and knowing the

particle concentration, a single bead induces an average frequency shift of 467 ± 16

µHz. The error reported here corresponds to the reproducibility error calculated from

the measurements taken at different concentrations and flow conditions. With a fre-

quency/mass conversion of -21.7 ± 1.7 mHz/fg calculated from the reference particles

in solution, the average mass of the individual bead translates to 21.5 ± 0.7 ag (sta-

tistical error ∼0.3 ag) that corresponds to a diameter of 97 ± 1 nm, assuming a bead

density of 1.05 g/cm3. The average values found here are in agreement with the man-

ufacturer specification of 85.4 ± 6.4 nm, considering possible systematic uncertainties

in calibration, geometry manufacturing tolerances or the presence of a low amount of

aggregated beads in solution.

Finally, the readout frequency noise in the measurements was ∼200 mHz, corre-

sponding to a resolution limit of ∼30 fg in single-particle detection mode for a signal-

to-noise ratio of 3. Therefore, correlation analysis of the time-traces allowed an increase

in mass resolution of about five orders of magnitude.

3.3.2 SNR resolution enhancement

Measurements were also taken with a SNR device with cross-section dimensions of

2 ×0.4µm2 (width × height). The resonator has a mass sensitivity of -1.0 ± 0.1 Hz/fg,

limiting single-particle detection to objects above ∼200 ag. Here, 43 nm polystyrene

beads suspended in water (expected buoyant mass of ∼2 ag) were successfully charac-

terized using the MCS method.

As a result of the change in cross-section dimensions and aspect ratio, a differ-

ent compartment approximation of the velocity profile was calculated. Considering a

sample of 50 nm transiting through the embedded microfluidic channel in 100 ms, the

compartments take a characteristic dimension of ∼700 nm. Three compartments in the

wide dimension are sufficient to accurately fit the autocorrelation curve of the beads.
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Figure 3.6: MCS signal for a sample of 43 nm polystyrene beads in milli-Q water. For
comparison, the pure water correlation signal is shown.

The MCS signal and the relative fit are presented in Fig. 3.6. From the fit parameters,

the average particle buoyant mass corresponds to 2.4 ± 0.3 ag. The error reported

here includes the calibration error in frequency/mass conversion, while the statistical

error in the autocorrelation fit reduces to ∼2%. According to the manufacturer spec-

ifications, the expected bead mass corresponds to 2.1 ag, in good agreement with the

measured value.

The measurement of the 43 nm polystyrene beads shows that the resolution en-

hancement obtained via correlation analysis would enable these devices to characterize

samples of biological interest, at relatively low concentrations. As a comparison, a hu-

man 80S ribosome has a mass of 4.2 MDa [78], corresponding to an expected buoyant

mass of ∼2.5 ag in an aqueous buffer. Considering similar working conditions to the

polystyrene bead measurement, human ribosomes could be detected by SNR using a

sub-µM sample concentration with mass resolution exceeding the attogram level.

3.3.3 Materials and Methods

Sample preparation

85 nm carboxylated polystyrene beads (Polysciences Inc., P/N 16688) were suspended

in an aqueous buffer containing 100 mM NaCl, 350 µM SDS and 0.01% solid (w/v)

NaN3. The buffer was selected to minimize the risk of clogging of the channel during
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3 – Resolution enhancement of SMR

measurement and avoid particle aggregation. The beads were suspended at two final

concentrations, namely 1.15× 1013 and 7.67× 1012 bead mL−1 (0.38% solid and 0.25%

solid content in solution, respectively). Both samples were mixed with a small volume

of 1.54 µm polystyrene beads (NIST certified size, Polysciences Inc., P/N 64060). These

beads were used as standards for frequency/mass conversion calibration and to monitor

the flow conditions of the sample during measurement. The final concentration of the

reference beads was 5× 106 particle mL−1.

43 nm carboxylated polystyrene beads (Polysciences Inc., P/N 15913) were suspended

in pure Milli-Q water at a concentration of 9× 1013 beads mL−1 (0.4% solid content in

solution). A value of 1.05 g/cm3 was considered for polystyene density. As reference

particles, 222 nm carboxylated PMMA nanoparticles (Phosphorex Inc., P/N MMA220)

were added to the bead solution, at a final concentration of 1.5×109 beads mL−1. These

particles were used for mass/frequency calibration, considering a PMMA density of 1.19

g/cm3.

Before measuring, the solutions were ultrasonicated for ∼1 minute to separate possible

bead aggregates and to obtain a homogeneous distribution of particles in the volume.

MCS measurements

Mass measurements of the 86 nm polystyrene beads were taken with a double-paddle

resonator with geometrical dimensions as reported in Sec. 2.3.1. The traces were

recorded in a 750 Hz and 1 kHz bandwidth, and the average flow velocity varied between

∼0.6 mm/s and ∼6 mm/s, which allowed reliable detection of the reference particle

signatures. Experimental autocorrelation curves were fitted using the 20-compartment

approximation presented before.

The 43 nm polysyterene beads were measured with a SNR device with cross-section

dimensions 2× 0.4 µm2, presented in Sec. 2.3.2. The time-domain mass measurements

were taken in a 500 Hz bandwidth, to reduce the frequency noise to ∼200 mHz, while

retaining enough data points for particle detection. Average sample flow velocity was

∼ 1 mm/s. The autocorrelation curves were calculated using a 3-compartment approx-

imation.

Data treatment followed the procedure presented in Sec. 2.5.2.
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Chapter 4

Size characterization by MCS

In the previous chapter, correlation analysis of the time-domain mass signal was used to

extend the detection range of the SMR devices up to five orders of magnitude below the

single-particle detection limit. However, the analysis only focused on the amplitude of

the MCS signal. Information contained in the temporal behavior of the curve could not

be analyzed using the compartment approximation of the fit function. In this chapter,

a model that includes finite size effects and diffusion of the particles in the channel is

derived and integrated in the MCS fit function to extract particle size information [21].

4.1 Theory

Pressure driven laminar flows present a non-uniform velocity profile in the cross-section

and particles move at different velocities according to their radial positions [79, 80].

This generates a distribution of residence times of the particles in the resonator, which

manifests as a distribution of temporal extensions of the particle signatures in the res-

onance frequency trace (see Eq. 2.13 for the description of particle signature).

The residence time distribution (RTD) of the sample in the resonator has a strong

dependence on flow velocity: faster flows result in smaller average times in the res-

onator. Furthermore, particle size influences the shape and the width of the RTD by

two mechanisms: first, particles diffuse in the cross-section while flowing in the embed-

ded channel and vary their advection velocity as a result of changes in radial position.

49



4 – Size characterization by MCS

Second, their finite size also precludes the particles from closely approaching the chan-

nel walls, effectively excluding the particles from the slowest regions of the velocity

profile [77]. Therefore, measuring the RTD of a sample flowing in a channel of known

dimensions can be used for the characterization of particle size [81]. Figure 4.1 shows

the expected MCS signals for particles of different diameters. Samples with compact

RTDs, such as large particles with size comparable to the channel cross-section or par-

ticles with high diffusivity, have correlation signals corresponding to, approximately, a

flat flow profile in the channel; on the contrary, for samples with wide RTDs, the MCS

curve is a long-tailed function due to the slow moving particles near the channel walls.

Finally, the interplay of convection and diffusion affects the MCS shape, as particles

have more time to diffuse in the cross-section when the average flow speed is slow.

A model describing the particle transport in the resonator at different flow velocities
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Figure 4.1: Expected mass correlation signals for particles of various sizes subjected to three
different flow rates in a SMR with cross-section dimensions of 3×8 µm2. The average time
spent by the fluid in the embedded channel is shown with the gray dashed line. Particles
of 1 nm rapidly diffuse in the whole cross-section, hence sampling the whole velocity profile;
they present a narrow velocity distribution as they tend to move at the average flow velocity.
On the contrary, 10 and 100 nm particles diffuse more slowly, therefore presenting a wider
velocity distribution. This results in long tails (long correlation times) in the autocorrelation
because of the slow moving particles. However, as particles have more time to diffuse, i.e. flow
velocity decreases, the slow moving objects diffuse towards regions of higher velocities and the
tails in the autocorrelation reduce. Particles of size comparable to the cross-section (i.e. the
1 µm particles) are excluded from the slowest regions of the velocity profile and all move at
similar velocities, because of the confinement in the center region of the channel. Reprinted
from Modena and Burg [21].
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4.1 – Theory

is therefore of paramount importance for the correct interpretation of the autocorrela-

tion shape.

Concentration fluctuations

The autocorrelation1 of the time-domain mass signal is defined as

C(τ) = ∆f 2
p

∫∫
V

〈δc(x, y, z, t)δc(x′, y′, z′, t+ τ)〉 (4.1)

× u(x)2u(x′)2 dx dy dz dx′ dy′ dz′

where ∆fp is the maximum frequency shift induced by a particle at the apex of the

cantilever resonator, u(x) is the deflection function of the cantilever (Eq. 3.11) and

〈δc(x, y, z, t)δc(x′, y′, z′, t+ τ)〉 is the correlation function of the concentration fluctu-

ations. Assuming that the correlation of the concentration fluctuations only depends

on the time difference τ , Eq. 4.1 can be rewritten as

C(τ) = ∆f 2
p

∫∫
V

〈δc(x, y, z, 0)δc(x′, y′, z′, τ)〉 (4.2)

× u(x)2u(x′)2 dx dy dz dx′ dy′ dz′.

To calculate C(τ), it is necessary to describe the time evolution of the concentration

fluctuations according to the convection diffusion equation

∂δc

∂t
= D

[
∂2δc

∂x2
+
∂2δc

∂y2
+
∂2δc

∂z2

]
− U(y, z)

∂δc

∂x
(4.3)

1The function C(τ) is called ‘autocovariance’ in statistics; however, in signal processing it is com-
monly referred to as ‘autocorrelation’, despite the missing normalization factor. This latter convention
will be used in the text, as stated previously on page 38.
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where D is the diffusion coefficient of the particles and U(y, z) the velocity profile

defined in Eq. 3.6. The initial and boundary conditions are [76]

δc(x, y, z, 0) = δ(x)Φ(y, z) (4.4)

∂δc

∂y

∣∣∣∣
y=−b,b

= 0 (4.5)

∂δc

∂z

∣∣∣∣
z=−h,h

= 0 (4.6)

lim
x→∞

δc = lim
x→∞

∂δc

∂x
= 0 (4.7)

where Φ(y, z) = c0 (for |y| < (b− rp) and |z| < (h− rp), with rp the particle radius) is

the initial uniform distribution over the cross-section and c0 the average concentration

of particles.

Following the procedure of Doshi et al. [76], it is convenient to construct a solution

for the concentration integrated over the cross-section

δcm(x, t) =

∫∫
A

δc(x, y, z, t) dy dz (4.8)

where A is the cross-section area. Eq. 4.8 can be easily integrated in the correla-

tion function, since the sensitivity profile of the cantilever only depends on the axial

direction. Eq. 4.2 thus becomes

C(τ) = ∆f 2
p

∫∫ 2L

0

〈δcm(x, 0)δcm(x′, τ)〉u(x)2u(x′)2 dx dx′. (4.9)

Although there is no complete analytical solution for the problem described in Eq. 4.3-

4.7, approximate solutions for δcm(x, t) valid for different regimes can be constructed.

In the literature, the special case of point-like particles in channels of circular cross-

sections has been discussed extensively [82]. This situation, however, is seldom en-

countered in microfluidics, as rectangular cross-sections are more easily obtained by

micro-fabrication techniques and particle size can be comparable to the channel di-

mensions. The remainder of this section will describe an approximation for δcm(x, t)

that covers, for the first time, the entire range of experimental conditions relevant for

correlation measurements in micrometer and sub-micrometer fluidic channels.
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As diffusion in the radial direction affects the sample dispersion, it is useful to define

a dimensionless time parameter

τD =
D t

a2
(4.10)

to quantify the radial average diffusion of the particles. Here, t is the dimensional

time and a is the characteristic channel dimension (e.g. the channel radius or, for high

aspect ratio rectangular channels, the minimum cross-section dimension).

Different regimes for the dispersion of the particles in the channel can be identified:

for τD � 1, particles do not diffuse considerably and follow their streamline. This

situation will be defined as “advection regime”; for τD > 1, the radial diffusion of the

particles is larger than the cross-section, i.e. particles have sampled the entire flow

profile. As this regime was first investigated by Taylor for channels of circular cross-

section [79], it is usually referred to as “Taylor regime”; for 0 < τD < 1, the intermediate

transition from the advection to the Taylor regime, diffusion is not negligible, however

it is yet not sufficient to narrow the sample velocity distribution.

Once the particle behavior for τD � 1 and τD > 1 is known, the concentration

profile at any time can be interpolated by a weighted sum of the limiting cases [83] as

δcm(x, t) = A(t) · δcmA(x, t) + (1− A(t)) · δcmT (x, t) (4.11)

where δcmA(x, t) and δcmT (x, t) denote the concentration profile in the advection and

Taylor regime respectively, and A(t) is a time-dependent amplitude factor.

Assumptions

The following assumptions are made for the derivation of the model:

• particles move at the velocity of their center of mass (Fig.4.2a);

• the flow is a fully-developed laminar flow and particles do not affect the velocity

profile in the channel;

• the embedded channel is approximated as a straight channel with cross-sectional

area 2b× 2h and length 2L (Fig.4.2b).
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Figure 4.2: Assumptions for the derivation of the axial dispersion model: a) the solid black
line represents the laminar flow profile in the channel. Particles move at the fluid velocity
at their center of mass (dashed lines). The finite-size of the particles precludes them from
approaching the channel walls at a distance smaller than the particle radius rp. The gray area
shows the accessible portion of the velocity profile; b) the embedded channel is approximated
by a linear geometry. The channel is parallel to the x-axis and measures 2L, with the position
x = L corresponding to the point of greatest deflection of the resonator. The cross-section
has dimensions 2b× 2h and lies in the yz-plane. Reprinted from Modena and Burg [21].

4.1.1 Taylor regime

This regime occurs for τD > 1, when particles have sampled, on average, the entire

velocity profile. This situation was first described by Taylor [79] and Aris [80] for round

cross-section channels, showing that a plug of particles assumes a Gaussian distribution

in the axial direction with a time-dependent variance. This axial concentration profile

occurs regardless of the original radial distribution [80]. It was later demonstrated

that this solution applies to channels of arbitrary cross section shape, and that channel

geometry directly affects the variance of the particle axial distribution [84].

For point-like particles flowing in a channel of rectangular cross-section, a solution

for δcm(x, t) was derived by Doshi et al. [76] and is given by

δcmT (x, t) = c0V
exp

[
− (x−Uavgt)2

4k(t)t

]
√

4πk(t)t
. (4.12)

The profile follows a Gaussian distribution, moving at the average flow velocity Uavg.

The parameter k(t), controlling the variance of the distribution, is the time-averaged
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dispersion coefficient and is defined as

k(t) =
1

t

∫ t

0

k(t′) dt′. (4.13)

This parameter contains information on the particle diffusion coefficient D and channel

dimensions. The dispersion coefficient, k(t), can be approximated as the sum of the

dispersion caused by the velocity variations in the horizontal and vertical directions.

Considering a channel of aspect ratio β = h/b, it is defined as [76]

k(t) = D

[
1 +

(
Umaxh

D

)2

(Khoriz(t) +Kvert(t))

]
(4.14)

where

Khoriz(t) =
∞∑
m=1

B2
m

(
1− e

(
−m

2π2tD
b2

))
(4.15a)

Kvert(t) =
∞∑
n=1

B2
n

(
1− e

(
−n

2π2tD
h2

))
(4.15b)

and

Bm =
256(−1)m

π6m

∞∑
j=1,3,5

tanh
(
jπ
2β

)
j3[j2 + 4m2β2]

(4.16a)

Bn =
4(−1)n

π3n3
+

256(−1)n+1β

π6n
×

∞∑
j=1,3,5

tanh
(
jπ
2β

)
j3(2n+ j)(2n− j) .

Corrections for particles of finite size

Because of their finite size, particles are excluded from the slowest regions of the velocity

profile. The reduction in velocity distribution experienced by the particles affects both

the average velocity of the sample and its dispersion [77]. Defining the particle radius

rp, the effective sample velocity can be calculated as

Ueff =
1

b′
1

h′

∫ b′

0

∫ h′

0

U(y, z) dz dy (4.17)
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Figure 4.3: Comparison between the average velocity and dispersivity for pointlike and finite-
size particles. a) Ratio between the average particle velocity and the average fluid velocity.
Channel dimensions are 3 × 8 µm2; b) k(t) for pointlike and finite-size particles. The pa-
rameters considered for the plots are: t = 1 s, cross-section dimensions 3 × 8 µm2 and flow
velocity 1.3 mm/s. As the particle size becomes comparable with the channel dimension, the
dispersion decreases as a consequence of the narrowing of the velocity profile experienced.

where U(y, z) is the velocity profile described in Eq. 3.6, and h′ = h−rp and b′ = b−rp
are the effective dimensions of the channel. From Eq. 4.17 it can be noticed that

particles of finite size move, on average, at a velocity higher than the suspending fluid

(Fig. 4.3a). This result follows from the assumption that particles move at the velocity

of their center of mass (Fig. 4.2a). Despite the simplicity of the assumption, this

approach approximates well the behavior of particles of different dimensions, as it is

shown by the validation measurements taken on beads of different sizes (Sec. 4.3).

Finally, excluding particles from the slowest regions of the velocity profile causes a

reduction in the sample dispersion coefficient, as particles are subjected to a narrower

velocity distribution. Following the results of James et al. for particles flowing in

parallel plate conduits [77], the dispersion coefficient k(t) for particles of finite size is

calculated by modifying the horizontal and vertical contributions as

K ′horiz(t) =
∞∑
m=1

B2
m

(
1− e

(
−m

2π2tD
b′2

))
·
(

1− rp
b

)6
(4.18a)

K ′vert(t) =
∞∑
n=1

B2
n

(
1− e

(
−n

2π2tD
h′2

))
·
(

1− rp
h

)6
. (4.18b)
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The comparison between the time-averaged dispersion coefficient calculated for point-

like and finite-size particles is shown in Fig. 4.3b. Figure 4.4 shows the axial concentra-

tion profiles for particles of different diameters. The increase of sample velocity with

particle size and the reduction in axial dispersion are clearly visible.

0.5 1 1.5 2 2.50

2

4

6

8

10
10 nm

1.5 µm
100 nm

Pointlike Finite
 δ

c m
T(x

/U
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 t)
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Figure 4.4: Comparison between the axial concentration profile of pointlike and finite-size
particles of different diffusivity injected as a concentrated plug at t = 0. The channel dimen-
sions are 3 × 8 µm2, flow velocity is ∼1.3 mm/s and the profiles have been calculated for
t = 7 s (τ ≈ 1 for the 1.5 µm particles). The solid curves show the distribution for finite-size
particles calculated with the corrections derived for Uavg and k(t); the dashed curves depict
the concentration distribution for pointlike particles with equal diffusivity. While the average
sample velocity increases with the particle size, the variance follows a non-monotonic behav-
ior, caused by the narrowing of the sample velocity distribution due to the increase of the
particle diameter. The results are normalized with normalization factor Uavg · t.

4.1.2 Advection regime

For τD � 1, particles present small diffusion lengths and a uniformly distributed sheet

of particles disperses according to the velocity profile in the channel. To describe this

situation, a compartment approximation similar to the solution presented in the pre-

vious chapter (page 42) can be used. However, the model derived here is more general

and becomes asymptotically more accurate with increasing number of compartments.

Plane Couette flow approximation

By approximating the velocity profile as composed of M regions of linearly varying

flows, each compartment can be approximated by plane Couette flow. The dispersion
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coefficient for each stream can be calculated as [85]

kAi = D

[
1 +

1

30
Pe2i

]
(4.19)

where Pei = ∆Uiw/D is the Péclet number in the compartment i = 1, 2 . . .M and

w =
√

4bh/M is the effective size of the compartment. The size w is chosen such that

the velocity profile in the compartment can be approximated by a linear function. ∆Ui

represents the velocity variation with respect to the average speed Ui in the compart-

ment, causing sample dispersion. Using this approximation, the axial concentration

profile can be expressed by a mathematical description similar to the solution obtained

for τ > 1. Here,

δcmA(x, t) =
c0V

M

M∑
i=1

exp
[
− (x−Uit)2

4kAit

]
√

4πkAit
(4.20)

where the distribution in each stream is described by a Gaussian function moving at

the velocity Ui and variance proportional to kAi. Fig. 4.5 shows the mean velocities and

the respective distribution variances in each compartment. At the center of the cross-

section, the dispersion coefficients present a minimum as the velocity profile is almost

flat; moving toward the channel walls corresponds to steep variations of the velocity

(a) (b)

Figure 4.5: The color maps show the average velocity Ui (a) and the dispersion coefficient
kAi (b) per compartment. The calculations are done for a sample of 200 nm particles flowing
in a 3× 8 µm2 channel, at an average fluid velocity of 1.3 mm/s. The dispersion coefficient
shows a minimum at the center of the channel, where the velocity profile is almost flat. The
gray regions show the excluded portion of the profile because of the finite size of the particles.
Because of the symmetry of the profile, one quarter of the cross-section is represented. The
position (0, 0) identifies the center of the channel.
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profile, as shown by the large differences in mean velocities of the compartments and

by the increase in kAi.

Corrections for particles of finite size

The finite size of the particles is taken into account by excluding particles from the

portions of the cross-section not accessible to them. The compartment approximation

is then applied over the region

−b′ ≤y ≤ b′ (4.21a)

−h′ ≤z ≤ h′ (4.21b)

where b′ and h′ are the effective channel dimensions. Fig. 4.6 shows the approximated

axial distribution obtained by Eq. 4.20 and Eq. 4.21.
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Figure 4.6: The plot shows the axial concentration profile of a plug of 200 nm particles flowing
in a channel of 3×8 µm2 cross-section at t = 10 ms (τ ≈ 0.003), flow velocity 1.3 mm/s. The
results are normalized by Uavg · t. The blue line corresponds to the concentration profile, the
red dashed curves show six of the compartment contributions. For clarity of presentation, the
compartment distributions have been rescaled so that

∑
i δcmi(x/Uavgt, t) = 1. Fast moving

streams at the center of the channel present a lower dispersion compared to the slower streams
close to the channel walls, as shown in Fig. 4.5.
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4.1.3 Concentration dispersion model

A combination of the solutions for τD � 1 and τD > 1 can be used for the description

of the axial concentration profile at any time [83] by using an expression of the form

δcm(x, t) = A(t) · δcmA(x, t) + (1− A(t)) · δcmT (x, t) (4.22)

with δcmA defined in Eq. 4.20 and δcmT in Eq. 4.12. A(t) is a time-dependent weighing

factor enabling the transition from the advection to the Taylor regime. Defining

Ah(t) =
1− exp[−9Dt/b′2]

9Dt/b′2
(4.23a)

Av(t) =
1− exp[−9Dt/h′2]

9Dt/h′2
, (4.23b)

the dispersion coefficients in the horizontal and vertical dimensions (see Eq. 4.15) tend

to their steady state values as, approximately, 1 − Ah(t) and 1 − Av(t), respectively.

The factor 9 in the equation derives from the symmetry planes in the velocity distribu-

tion for a rectangular cross-section channel [86]. b′ and h′ correspond to the effective

channel dimensions, defined before.

Additionally, A(t) depends on the aspect ratio β of the channel, since the velocity

profile does not vary uniformly along the two dimensions. Considering these require-

ments, the transition coefficient is defined as follows:

A(t) = β · Ah(t) + (1− β) · Av(t) (4.24)

The variation of the transition coefficient with channel aspect ratio and particle size is

shown in Fig. 4.7. It can be noted that, as β → 0, the transition factor only depends

on the smaller cross-section dimension.

With Eq. 4.24, Eq. 4.22 can be used to describe the axial concentration profile of

a plug of finite-size particles flowing in a channel of rectangular cross-section at any

time.
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Figure 4.7: a) Time to reach A(t) = 1/2 as a function of the channel aspect ratio β. The
inset shows how τD1/2 is calculated. As β → 0, the minimum channel dimension dominates
and the behavior resembles that of a square channel. Time is normalized as τD = Dt/h2;
b) transition coefficient for particles of different sizes flowing in a SMR channel (3× 8 µm2).
In normal experimental conditions (particle average time in the channel t∼100 ms), τD is
in the transition from the advection to the Taylor regime. In contrast, SNR measurements
are taken under Taylor dispersion behavior, due to the reduction in particle size and channel
dimensions.

4.1.4 Effect of aspect ratio on MCS signal

Expected correlation curves for particles of different size flowing in rectangular mi-

crofluidic channels can be generated by inserting Eq. 4.22 in Eq. 4.9. Fig. 4.8 shows

the effect of the channel aspect ratio on the MCS curves. The curves are calculated by

keeping the channel height constant and varying the channel width. Square channels

(β = 1) have the widest velocity distribution in the cross-section, with the maximum

velocity being approximately twice the fluid average velocity; in parallel plate chan-

nels, instead, the velocity distribution extends from 0 to approximately 1.5 times the

fluid average velocity. Because of the larger velocity distribution, channels with β → 1

should be favored for particle size identification, while channels with β → 0 should be

chosen when sample dispersion is to be minimized.

4.2 Monte Carlo simulations

The model describing δcm(x, t) (Eq. 4.22) was tested using Monte Carlo (MC) sim-

ulations, to study the concentration dispersion under different flow velocities and to

validate the goodness of the transition factor A(t). Since finite-size effects can mask the
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Figure 4.8: Channel aspect ratio effects on the autocorrelation signals from particles of
different sizes. The expected curves are generated for channels of 3 µm height and with
square and parallel plate cross-sections. The dashed vertical lines show the average residence
time of the fluid in the channel. Square channels present larger velocity differences between
portions in the cross-section, as the velocity distribution extends from 0 to approximately
2Uavg, with Uavg the average velocity of the fluid. This corresponds to larger differences
in sample average velocities according to the particle size and, in turn, to larger variations
in autocorrelation shape and time extension. Channels with low aspect ratios (β → 1) are
therefore preferred for size identification by correlation analysis. Reprinted from Modena and
Burg [21].

axial dispersion caused by particle diffusion and affect the transition between the ad-

vection and the Taylor regime, the simulations were performed in the limit of point-like

particles. MC simulations are presented in terms of normalized time τD and distance

χ = Dx/(Uavga
2) (4.25)

where the characteristic dimension a corresponds to the effective channel radius a2 =

4bh/π2. Uavg denotes the average fluid velocity and, following the point-like assumption,

coincides with the average velocity of the particle plug.

4.2.1 Method

The MC simulation consist of 5000 non-interacting particles released at the entrance

of a microfluidic channel and subjected to advection and diffusion. The magnitude

of the advection per time step is U(yi, zi) · ∆t, where U(yi, zi) is the fluid velocity at

the particle center position and ∆t the simulation time increment. Particles are free

to diffuse in three dimensions, and the length of the diffusion vector per time step is
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4.2 – Monte Carlo simulations

equal to
√
D∆t. The time increment ∆t is chosen such that particles need, on average,

more than 200 steps to transit through the simulated channel. MC simulations were

calculated using a custom MATLAB script.

4.2.2 Results

Dispersion of point-like particles

The MC simulation at different time points for a channel of aspect ratio β = 3/8, as the

one employed for the mass measurements, is shown in Fig. 4.9. In terms of dimensional

units, the simulation corresponds to following the dispersion of a 50 nm particles in a

3×8 µm2 channel, subjected to a flow of average velocity 1.4 mm/s, Pe ≈ 400 (where

Pe = Uavgh/D is the Péclet number). As expected, Eq. 4.22 matches the simulation

precisely only for τD � 1 and τD > 1, where models describing the axial concentration

profile exist. However, also for values of 0.1 ≤ τD ≤ 1 the approximation developed

here describes the behavior of the sample plug adequately, following its evolution from

the early convective regime to the final Gaussian form.
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Figure 4.9: Monte Carlo simulation for a plug of 5000 point-like particles. At τD=0, the
particles are uniformly distributed in the cross-section at the entrance of the channel, χ = 0.
The particles are then subjected to an advection transport mechanism that follows the velocity
profile in the cross-section. Particles are free to diffuse in three dimensions. The blue bars
indicate the simulation results, while the red solid lines show the distributions obtained
with the approximated model. For short times (τD ≤ 0.1) particles disperse according to
the velocity profile; as time increases and particles change their velocities because of radial
diffusion in the cross-section, the concentration profile tends to a normal distribution function
moving at the average velocity of the fluid. Reprinted from Modena and Burg [21].
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4.3 Experimental validation

Five monodisperse solutions of nanoparticles were characterized by MCS to test the

validity of the sample dispersion model[21]. The nanoparticle diameters were 15± 1.5

nm (gold), 30± 3 nm (gold), 85± 6 nm (polystyrene), 210± 10 nm (polystyrene) and

490 ± 10 nm (polystyrene). A heterogeneous sample, composed of two populations

of nanoparticles with different sizes, was also characterized with the MCS analysis.

Each sample was measured at different flow velocity to detect the particle dispersion

at different time scales and increase the resolution on size determination.

4.3.1 Materials and methods

Sample preparation

15 nm gold nanoparticles (0.005% w/v stock solution, Nanopartz Inc., P/N A11-15)

suspended in pure DI water were measured with no dilution, at a concentration of

1.6×1012 part mL−1; 30 nm gold nanoparticles (0.005% w/v stock solution, Nanopartz

Inc., P/N A11-30) were suspended in pure milli-Q water at a final concentration of

1.02× 1011 part mL−1; 85 nm polystyrene (2.6% w/v stock solution, Polysciences Inc.,

P/N 16688) and 210 nm polystyrene beads (2% w/v stock solution, Invitrogen, P/N

F8809) were suspended in an aqueous buffer containing 100 mM NaCl, 350 µM SDS

and 0.01% w/v NaN3 and were measured at final concentrations of 2.28 × 1012 and

1.18 × 1011 part mL−1, respectively. The purpose of the buffer was to minimize the

risk of particle aggregation and interaction with the channel walls; 490 nm polystyrene

beads (2.6% w/v stock solution, Polysciences Inc., P/N 18720) were suspended in pure

milli-Q water at a final concentration of 4× 108 part mL−1.

A sample composed of a mixture of 93 nm polystyrene nanoparticles (1% w/v stock

solution, Phosphorex Inc., P/N 105) and 490 nm polystyrene beads was prepared by

diluting the stock solutions in pure milli-Q water. The final concentrations of the two

populations were 5.7× 1012 and 5.4× 108 part mL−1, respectively.

All samples were prepared fresh before each experiment and ultrasonicated for ∼1

minute to reduce possible aggregation of the beads. To characterize the frequency/mass

response of the device and monitor the flow velocity, 1.54 µm NIST polystyrene beads
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(Polysciences Inc., P/N 64040) were added to the solutions as reference particles, at a

final concentration of 5× 106 part mL−1.

MCS measurements

Each sample was measured using a minimum of four different flow velocities to detect

the dispersion behavior of the particles at different time scales. The average residence

times in the resonator ranged from ∼20 ms to ∼200 ms and each mass trace was

acquired for ∼30 s to a few minutes, the acquisition time being limited by the stability

of the flow during the detection. Figure 4.10 shows an example of a measurement

taken at different flow velocities. The fit function of the MCS curves present two free

parameters, namely particle size and curve amplitude. All curves taken at different

flow velocities are fitted using a single size parameter to monitor the goodness of the

dispersion prediction at different time scales. The magnitude of the fit curve, instead,

is free to vary as small amplitude differences are expected between measurements.

Measurements were acquired using sampling rates of 1 kHz and 2 kHz.
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Figure 4.10: MCS signals for a 210 nm polystyrene sample (in blue) and best fit curves
(in red), obtained by constraining the fitted particle size to be identical for all four curves.
The average residence time of the fluid in the resonator is shown by the gray dashed lines,
estimated from the reference particle signatures. The correlation curves change their shape
according to the flow velocity, as particles have different time to diffuse in the cross-section.
Reprinted from Modena and Burg [21].
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Figure 4.11: a) The high-pass filtered signal (top) is separated into two traces: a trace
composed of only reference particles (in red) and a trace without detectable individual par-
ticle signatures (in blue), as presented on page 33. The reference trace is used both for
mass/frequency conversion calibration and for estimating the flow velocity during the mea-
surement; b) as the size of the reference particles is known, the fit of the autocorrelation curve
(in red) can be used to measure the flow velocity during the acquisition. This information is
then used to fit the sample curve (in blue), to estimate the particle size. The figures show a
short excerpt of the time-trace and autocorrelation curves for a sample of 210 nm polystyrene
beads, average flow velocity 1.2 mm/s.

Data analysis

Each measurement trace is separated in two signals: one composed exclusively of ref-

erence particle signatures and a second trace with the portions of the time-domain

mass signal only containing fluctuations caused by the unknown sample (Fig. 4.11a).

The reference signal is used for mass/frequency conversion calibration, as explained in

Sec. 2.5.3, and for the estimation of the flow velocity, by fitting the autocorrelation

curve for particles of known size. The flow velocity is then used during the correla-

tion analysis of the unknown sample trace for estimating the particle size (Fig. 4.11b).

Knowledge of the flow velocity is a fundamental prerequisite in the estimation of parti-

cle size from the MCS curve, as particles of different size may present similar dispersion

behavior at different time scales.
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Error estimation

A bootstrap algorithm [87] is used to estimate the uncertainty on the autocorrelation fit

parameters. From the experimental time-domain mass trace, a pool of 500 pseudo time-

traces are generated and their autocorrelations are independently analyzed, following

the procedure described before. The uncertainties in particle size and curve amplitude

estimation are calculated from the fit parameters found for the autocorrelation curves

generated from the pseudo time-traces: the means of the respective fit values are

taken as best fit parameters; the uncertainties on these estimations correspond to the

standard deviations of the fit values found.

Due to the time correlation present in the data, the pseudo time-traces are generated

according to a Stationary Bootstrap method [88], described as follows (Fig. 4.12): each

pseudo time-trace is constructed by selecting blocks of random length from the original

time-trace and combining them to generate a trace with a number of points equal to or

higher than the original trace. The number of points per block is based on a geometric

distribution. The average block length was set at ∼10 s to avoid the disruption of the

time correlation of the data. A uniform block length strategy could have been applied

for the generation of the pseudo time-traces; however, the results obtained by using

this simpler strategy may show a dependency on the block length. This situation is

avoided by the geometric distribution of the block lengths[88].

4.3.2 Monodisperse populations

The analysis was tested on nanoparticles of different size and materials, namely gold

nanoparticles of 15±1.5 and 30±3 nm in diameter and polystyrene beads of 85±6,

210±10 490±10 nm size. The 15, 30 and 490 nm samples were measured in pure

milli-Q water, while the 85 and 210 nm beads were suspended in an aqueous buffer

containing a small concentration of salt and surfactant, to reduce unwanted sample

aggregation.

Size detection

The fits of the experimental autocorrelations show minimum residual errors for diam-

eters of 37 ± 1, 51 ± 2, 109 ± 24, 245 ± 40 and 537 ± 32 nm for the 15, 30, 93, 210
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Figure 4.12: The bootstrap algorithm used for uncertainty calculation of the fit parameters.
a) 500 pseudo time-traces are generated by combining blocks of random length of the ex-
perimental time-traces (top trace). The average block length corresponds to 10 s, not to
disrupt the time correlation of the data within each block. The starting points of the blocks
have uniform probability over the whole trace and data repetition is allowed in the pseudo
time-traces; b) the pseudo time-traces are autocorrelated and independently analyzed. The
figure shows 10 autocorrelations generated from the pseudo time-traces.
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Figure 4.13: Normalized residuals after fitting the experimental data with test autocorrela-
tion curves of different diameters. The residuals were offset to their minimum values, with
0 corresponding to the best fit obtained. The gray shaded areas shows the variability of the
residual fit curve obtained by the bootstrap analysis. The legend reports the manufacturer
reported sizes. Reprinted from Modena and Burg [21].

and 490 nm beads, respectively (Fig. 4.13). The uncertainties are calculated using

the bootstrap method presented before. The estimation intervals account for differ-

ent sources of measurement uncertainties, including the acquisition frequency noise

and flow instabilities that might affect the size characterization. The results present
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approximately a 25 nm overestimation of the particle sizes, possibly due to the approx-

imation used in the model derivation and to tolerances in device dimensions. However,

relative differences between particles can still be inferred from the analysis, showing

that the samples under investigation ranged from few tens to hundreds of nanometers.

The use of calibration particles for detecting the accuracy of the measurement could

provide a solution for obtaining absolute size quantification during mass measurement.

It is interesting to note that the model applies correctly for particles whose size is

not negligible with respect to the cross-section dimensions, such as the 490 nm beads.

Under the experimental conditions employed here, particles of this size do not diffuse

considerably and characterization is based on the sample average velocity. Despite

the simplistic approximations used for estimating the velocity distribution of finite-size

particles, the model correctly predicts the average velocities of the samples. Finally,

the largest estimation uncertainty is obtained for the 85 nm beads. Particles of size

ranging from ∼50 to ∼150 nm present small diffusion lengths under typical measure-

ment conditions, while the average velocity almost coincides with the average velocity

of the fluid. Therefore, particle size identification cannot be based on diffusion, nor on

sample average velocity, resulting in a large size uncertainty.

Comparison with DLS characterization

The beads were also characterized by Dynamic Light Scattering (DLS) at the same

conditions. DLS measurements provide the average hydrodynamic radius of the parti-

cles and information on the polydispersivity (Pd) of the sample.

The characterization returned average particle diameters of 17.2 nm (Pd 26%), 37.6

nm (Pd 14%), 66 nm (Pd 19%), 248 nm (Pd 23%) and 473 nm (Pd 10%) for the 15, 30,

85, 210 and 490 nm nanoparticles, respectively. Pd reports the percent polydispersity

of the sample: for Pd ≤ 15% the sample is considered monomodal and monodisperse,

15 < Pd ≤ 30 the sample is monomodal polydisperse (i.e. it might present low per-

centages of dimeric-trimeric species), while higher values corresponds to heterogeneous

populations [89]. High values of polydispersivity, likely corresponding to the presence

of small aggregates of particles in solution, might be the cause of the relatively large

uncertainties obtained in size determination with the MCS analysis. However, no direct

correspondence between MCS and sample distribution can currently be inferred.
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4 – Size characterization by MCS

Mass characterization

Average information on particle mass can be estimated from the amplitude of the

correlation analysis, as presented in Chapter 3. Inserting Eq. 3.1 in Eq. 3.16, the

autocorrelation amplitude at t = 0 corresponds to

C(0) =
1

5
c0Vc

(
∆mp ·

∂f

∂m

)2

(4.26)

where c0 is the particle concentration, Vc the embedded channel volume, δf/δm the

mass responsivity of the device and ∆mp the average buoyant mass of the particles. As

the sample concentration c0 is known, the analysis allows the independent and simul-

taneous measurement of the mass and size of the particles (Fig. 4.14). The buoyant

mass estimated from the MCS curve actually corresponds to
√〈

∆m2
p

〉
and it follows

that, when dealing with samples presenting a large distribution of sizes, the estimated

mass might be considerably different from the arithmetic mean mass. The estimated

values of buoyant mass are 32±3 ag, 184±17 ag, 26±2 ag, 0.43±0.05 fg and 3.5±0.3

fg for the 15, 30, 85, 210 and 490 nm particles, respectively. The uncertainty intervals

reported include both the statistical error on the fitting of the correlation curves and

the experimental uncertainty on the mass/frequency conversion. Systematic errors,
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Figure 4.14: Buoyant mass and size of the particles measured by MCS. The manufacturer
specifications are reported for comparison. Size estimations with the MCS method shows a
deviation of approximately 25 nm from the manufacturer reported values, however relative
size differences between particles can be detected by the analysis. The non monotonic behav-
ior of the mass with particle size clearly shows that the samples under examinations where
composed of different materials, with a large difference in density. Reprinted from Modena
and Burg [21].
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due to device tolerances or sample preparation, are not included. As a comparison,

the detection limit for single-particle measurements with these devices corresponds to

∼30 fg, considering a minimum signal-to-noise ratio of 3, a detection limit more than

three orders of magnitudes higher than the mass of the 85 nm particles.

Although the absolute quantification of particle density is affected by the accuracy

of the measurement, the non-monotonic variation of mass with particle sizes clearly

indicates that the samples are composed of materials with a large density difference.

The particle densities calculated from the size and mass estimations are 2.04±0.30

g/cm3, 3.65±0.56 g/cm3, 1.02±0.02 g/cm3, 1.06±0.03 g/cm3 and 1.04±0.01 g/cm3 for

the 15, 30, 85, 210 and 490 nm samples, respectively. As expected, the gold particles

are strongly affected by the accuracy of the measurement, and present a much lower

value compared to the theoretical density of bulk gold of 19.3 g/cm3; in contrast, a mi-

nor deviation is obtained for the larger polystyrene particles, whose estimated densities

present good agreement with the expected density of polystyrene of 1.05-1.06 g/cm3.

Discussion

The uncertainty intervals on the estimated parameters, obtained with the bootstrap

analysis technique, are intimately linked to the quality of the acquired data. Therefore,

no direct inference on the distribution of particle size and mass can be done starting

from the uncertainties of the fit parameters.

Furthermore, the mass values are estimated from the concentration of the sample in

solution and from the volume of the microfluidic channel embedded inside the resonator.

As a consequence, the analysis can be affected by systematic errors introduced by

tolerances in device fabrication or in the estimation of the particle concentration in

solution.

Density measurements of suspended particles by SMRs have already been presented

in the literature: these measurement consisted in detecting the variations of buoyant

mass of the particles when suspended in solutions of different densities [23, 24, 74].

Although this method can achieve very high resolution, this technique is based on the

assumption that changes in solution do not alter the sample, a condition that cannot
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always be fulfilled. Furthermore, density measurements of particles composed of heavy

materials, such as gold nanoparticles, would be equally challenging when performed

by buffer density variation: for the method to reach high resolution, the sample needs

to be measured in solutions of density both lower and higher than the sample itself, a

condition that cannot be met for metallic particles.

To conclude, detection of particle dispersion in the resonator enables the MCS

method to characterize suspended particles in terms of mass, density and size, in a

single experiment.

4.3.3 Heterogeneous samples

The results presented so far have focused on the analysis of monodisperse sample

populations. However, the autocorrelation analysis may also provide more insight into

the sample composition. To illustrate how information on size distribution can be

inferred, characterization of a sample with a bimodal particle distribution is presented

and discussed.

MCS signal and curve fitting

A heterogeneous sample composed of two monodisperse populations of beads, namely

93 nm and 490 nm polystyrene beads (manufacturer values), is analyzed with the

correlation analysis method. Figure 4.15 shows the autocorrelation curves of the mass

signals acquired at different flow velocities. The experimental curves are compared

with the fits calculated for monodisperse samples of 93 and 490 nm and by assuming

that both populations are present in the sample. A single population autocorrelation is

not sufficient to describe correctly the experimental curves and a bimodal distribution

follows better the time dependence of the curves. A least-squares method was used to

find the superposition of the two particle autocorrelation functions that could best fit

the experimental curves for all flow rates. Similarly to the size estimation procedure,

the absolute amplitude of the fit function is free to vary between measurements, while

a single value for the ratio of the two particle contributions in the correlation signal is

used for all the curves.
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Figure 4.15: Autocorrelation curves for a sample composed of two different monodisperse
populations of polystyrene beads, with diameters of 93 and 490 nm. The experimental curves
are compared to the fit functions obtained assuming a monodisperse population (dash lines)
or bimodal sample composition (solid red). This latter shows a better fit of the experimental
curves. For clarity only three measurements are shown, with average flow velocities ranging
from ∼ 3 to ∼ 4.5 mm/s. Reprinted from Modena and Burg [21].

Results and discussion

The fit procedure is applied to the autocorrelation curves of the generated pseudo time-

traces to obtain the uncertainty intervals on the parameter estimations. The analysis

returns a relative amplitude of the 93 nm sample contribution in the correlation signal

of 0.4 ± 0.05. As the total dissolved mass of the two samples is known (2.5 mg/mL)

and assuming that the two particle populations have equal density, the absolute con-

centrations result in (5.6± 0.1)× 1012 and (4.1± 0.9)× 108 particles mL−1 for the 93

and 490 nm particles, respectively. According to these results, the estimated particle

density corresponds to 1.07± 0.01 g/cm3.

As for the analysis of the monodisperse samples, the uncertainty intervals do not

take into account systematic errors, such as uncertainties on the particle radius or on

the total solid content. These errors can cause large deviations of the calculated quan-

tities and be the source of mismatch between the calculated and the expected values

of densities and concentrations of the particles.

The measurement shows how the MCS signal can be an indicator of the polydis-

persivity of the particle population. However, an absolute quantification of the sample

properties can be challenging when no prior knowledge of the sample is available.
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Chapter 5

Applications of the MCS method

In this chapter, different applications of the Mass Correlation Spectroscopy method to

samples of biological relevance are presented. These systems have been chosen as rep-

resentative of the wide spectrum of biological questions that mass characterization by

MCS method can help addressing. The analysis developed enable the label-free char-

acterization of the sample in free solution, i.e. without requiring surface attachment of

the sample as for quartz crystal microbalance (QCM) and surface plasmon resonance

(SPR) characterization.

Four examples of applications of the correlation analysis will be shown: firstly,

insulin aggregation is monitored from the pre-fibrillar aggregates in solution to the

formation of mature fibrils of MDa average mass. Secondly, the correlation analysis is

used to quantify the surface coatings of nanoparticles in solution. Both theoretical cal-

culations and proof-of-concepts measurements of polystyrene beads coated by a protein

layer are presented. Thirdly, proof-of-principle detection of ribosomes and of ribosome

density is presented. The last example shows how the correlation analysis can be used

in conjunction with other SMR characterization methods to provide information on

flow rates during measurement.
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5 – Applications of the MCS method

5.1 Insulin aggregation kinetics

Protein aggregation was detected with the MCS method. The formation of aggregates

in solution and their growth were characterized by quantifying the variation of corre-

lation amplitude at different time points during the aggregation assay.

Mass characterization was also compared to ThT fluorescence detection of fibrils

in solution, a technique commonly used to follow the aggregation kinetics of amyloid

aggregates. With respect to the fluorescence indicator, MCS characterization shows

superior detection in the early stages of aggregation, when amorphous aggregates are

formed in solution. Precise estimates of the average aggregate mass and concentra-

tion at different time points can be obtained, proving that MCS can provide valuable

insights on the formation of protein aggregates.

5.1.1 Protein aggregation

Over 40 human diseases are associated with protein conversion from their soluble func-

tional state into insoluble fibrillar aggregates, referred to as amyloid fibrils [90, 91].

Despite the wide diversity between the predominant proteins involved in the aggre-

gation process in each disease, the amyloid fibrils formed during the process present

similar characteristics, such as extensive β-sheet structures [92].

Globular proteins sample different native-like conformations via thermal fluctu-

ations. The exposition to solvent of hydrophobic residues, normally concealed in the

inner part of the folded protein, can greatly increase the chance of intermolecular in-

teractions, leading to the formation of protein aggregates in solution [91, 93]. Further-

more, mutations or modifications of the sample environment can also promote protein

aggregation by shifting the population equilibrium towards a higher concentration of

unfolded or partially unfolded protein conformations [91]. Figure 5.1 depicts the main

steps in the pathway for amyloid fibril formation, showing also the major off-pathway

products that can occur during fibrillogenesis [94].

A fibril formation pathway similar to that presented in Fig. 5.1 also applies to in-

trinsically disordered proteins, but for a main difference: as a consequence of the lack

of a naturally stable structure, fibrillogenesis usually begins with the formation of a

partially folded protein conformation. This non-native state is then responsible for the
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5.1 – Insulin aggregation kinetics

(a) (b)

Figure 5.1: a) Protein energy landscape. In light gray, the protein different native-like con-
formations; in dark gray, the protein aggregates. The intermolecular contacts increases the
ruggedness of the protein energy profile; b) protein aggregation pathway, from the folded
native state to insoluble amyloid fibrils. Several off-pathway stable conformations can occur
during aggregation, as a consequence of the energy landscape. Images are modified from
Jahn and Radford [93]

specific intermolecular interactions necessary for the subsequent protein oligomeriza-

tion and fibrillation [95].

5.1.1.1 Insulin as model protein

Insulin was selected as model protein for the characterization of the aggregation process

by MCS. Insulin is a peptide hormon of 51 amino acids, consisting of two chains of 21

and 30 residues linked by two disulphide bridges. The monomer is the active form of

the protein. However, insulin is known to associate in dimers, tetramers and hexamers,

this latter being the preferred form for storage in the pancreatic vesicles [96].

Insulin aggregation occurs as side effect in the sub-cutaneous treatment of diabetes

patients [97]. In vitro, aggregation is promoted by exposing the protein to denat-

urating conditions, including high-temperature, acid environments and high sample

concentration [96, 98, 99].
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5.1.1.2 Amyloid formation detection by ThT fluorescence

Thioflavin-T (ThT) is a fluorescent dye that specifically binds to stacked β-sheets,

therefore presenting high selectivity towards amyloid fibrils [100]. Upon binding, ThT

experiences both a shift in excitation (from 385 nm to 450 nm) and emission maxima

(from 445 nm to 482), and a dramatic increase in fluorescence intensity, making this

dye a very sensitive reporter of fibrillation in solution [101]. Fig. 5.2 shows the ThT

emission increase caused by the binding with amyloid fibrils and the typical fluorescence

intensity behavior during the aggregation process. ThT fluorescence intensity scales

with the amount of fibrils in solution, while being independent of the number or length

of the fibrils [102]. The lag phase in the fluorescence intensity increase shows the

absence of mature fibrils, although it does not report any information on the presence

of amorphous aggregates in solution.

(a) (b)

Figure 5.2: a) ThT experiences an increase in fluorescence emission of several orders of mag-
nitude upon binding to amyloid fibrils. The figure shows the emission maximum, centered
around 485 nm; b) ThT fluorescence increase during an aggregation assay. Increase in flu-
orescence emission occurs during amyloid fibril elongation, while the preceding lag phase
corresponds to the formation of pre-fibrillar aggregates in solution. Addition of impurities
or fibril fragments in solution can generate fibril nucleation centers and dramatically shorten
the lag phase. ThT intensity scales with protein concentration. Figures are reprinted with
permission from Biancalana and Koide [102]. Copyright 2010 Elsevier B.V.
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5.1 – Insulin aggregation kinetics

5.1.2 Mass characterization of insulin aggregates

A solution of 5 mg/mL insulin dissolved in a glycine-HCl buffer (pH=2.3) was moni-

tored for 81/2 hours, to detect the formation of protein aggregates and their conversion

into amyloid fibrils. Quantification of the MCS amplitude showed an increase in aver-

age mass of the aggregates from ∼75 kDa to mature fibrils of ∼15 MDa in the course

of the aggregation assay.

5.1.2.1 Insulin aggregation

During the 81/2 hours of aggregation, the MCS signal experienced an increase of over

two orders of magnitudes, as a result of the conversion of insulin from a mostly dimeric

state into mature amyloid fibrils. The increase of the correlation signal is shown in

Fig. 5.3, where MCS curves of the insulin solution registered at different time points

are compared. The amyloid fibril formation is also confirmed by ThT fluorescence

measurements, presented in Fig. 5.4. The fluorescence intensity shows the typical

nucleation-polymerization behavior, with an initial lag phase where the fibril nuclei

are formed. Here, ThT characterization is blind, because of the absence of fibrils in so-

lution, and no information on the state of aggregation can be inferred [103]. Nucleation

is followed by a fibril elongation phase, where the ThT signal shows a rapid increase in

intensity. In contrast, the MCS signal directly depends on the average aggregate mass
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Figure 5.3: The figure shows the MCS signals of the insulin solution measured at different time
points. The increase of correlation amplitude with time is a clear indicator of the formation
of aggregates in solution. Curves are normalized to the average estimated fluid velocity for
comparison. A triangular 5 points smoothing was applied on the curves, to improve figure
clarity. Reprinted from Modena et al. [19].
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and concentration, regardless of the structure of the aggregates. Increase in correlation

amplitude can be observed in the lag phase of the reaction, indicating the formation

of pre-fibrillar aggregates in solution during the lag-phase. Small oligomers are known

to form during the early stages of aggregation, acting as nuclei and building blocks of

the subsequent fibril formation [104]. The first aggregate products are of particular

interest because of increasing proofs that these species might play an important role

in the pathogenesis of amyloid related diseases [90]. Therefore, characterization of the

early aggregation stages is of fundamental importance in the study of amyloid kinetics.

In contrast to ThT fluorescence characterization, MCS measurements do not present

an intrinsic blind phase and lack of resolution at early stages would only depend on

the sample mass and concentration.
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Figure 5.4: Average aggregate mass increase (in blue) during the aggregation process. The
blue dashed line is shown to guide the eye. The mass increase is compared to the recorded ThT
fluorescence intensity (in green) at the different time points, showing that the formation of
first oligomeric aggregates occurred during the blind phase of the fluorescence measurement.
The ThT data are fitted with a sigmoidal, showing the typical nucleation-elongation behavior
with a lag phase of ∼3.5 hours. Reprinted from Modena et al. [19].

5.1.2.2 Average mass of aggregates in solution

From the MCS signal, it is possible to estimate an average mass of the aggregates for

each time point, defined as

mavg =
〈m2〉
〈m〉 . (5.1)

The average mass values mavg are calculated by solving the system of equations com-

posed of the MCS amplitude
〈
β̂1

〉
, the total amount of protein in solution T and the
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definition of buoyant mass 〈∆m〉

〈
β̂1

〉
= 1

5

(
〈∆m2

i 〉
(
δf
δm

)2)
ci V

T = ci 〈mi〉

〈∆mi〉 = 〈mi〉 (1− ρb/ρp)

(5.2)

The subscript i indicates the time point and ‘〈•〉’ denotes the ensemble-based average;

〈∆mi〉 and 〈mi〉 are the average buoyant and dry mass of the aggregates at the i-th

time point, with concentration ci. V denotes the embedded channel volume, δf/δm

the device mass responsivity, ρb and ρp the buffer and protein densities, respectively.

Figure 5.4 shows the calculated values during the aggregation reaction. These

estimates are obtained considering a protein density of 1.5 g/cm3 [105] for insulin and

a solid content of 5 mg/mL. For monomeric insulin (0.01 ag), a concentration of ∼1

M is needed to generate a detectable signal in the autocorrelation analysis, according

to the device responsivity and readout noise. However, at t=0 the MCS signal has an

amplitude of 4×10−5 Hz2, corresponding to an average buoyant mass of the aggregates

of ∼ 0.04±0.01 ag (or a dry mass of ∼ 72±18 kDa). This confirms the presence of small

aggregates in solution when insulin is dissolved at low pH and high concentrations (mM

concentration regimes) [106]. As the aggregation proceeded, the signal presented larger

frequency fluctuations, leading to stronger MCS signals. After 8 hours of aggregation,

the correlation signal shows an increase of more than two orders of magnitude with

respect to the t = 0 measurement, corresponding to an average fibril mass of ∼15 MDa.

5.1.2.3 Sonication of amyloid fibrils

After 81/2 hours of aggregation, the insulin solution was subjected to two cycles of ultra-

sonication, a common technique used for preparing short fragments of seed fibrils [107]

and for generating relatively monodisperse populations of fibrillar aggregates [108].

The ultrasonication was performed in an ice-water bath, to avoid temperature induced

fibril formation during the process. The comparison between the signal variation expe-

rienced by the mass correlation signal and the ThT fluorescence is shown in Fig. 5.5a.

Fluorescence intensity decreased ∼20% after sonication, showing that ultrasonication
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Figure 5.5: a)Variation of MCS and ThT fluorescence intensity upon ultrasonication of the
fibril solution. Values are normalized to the average intensity before sonication. ThT only
presents a small intensity variation, as the amount of fibrillated material in solution remains
almost constant. In contrast, the MCS signal reflects the changes in fibril average mass;
b) TEM image of the insulin solution before sonication. Scale bar 200 nm; c) TEM image
after sonication. Scale bar 200 nm. The micrographs confirms the large variation in fibril
length caused by ultrasonication. TEM images were taken by Dr. Riedel of the facility for
Transmission Electron Microscopy, MPI for Biophysical Chemistry, Göttingen. Reprinted
from Modena et al. [19].

slightly affected the amount of fibrillated material in solution; in contrast, mass mea-

surements by SMR show a reduction of over 80% in correlation amplitude, denoting

a large variation in sample average mass (size) and concentration. The average fibril

mass correponds to 25.2 ± 2.0 ag (buoyant mass 8.6 ± 0.6 ag) for the non-sonicated

sample and 4.2 ± 0.4 ag (buoyant mass 1.40 ± 0.16) for the sonicated fibrils. Mass

values can be converted to fibril length considering an expected insulin fibril mass per

length of 2.47 kDa Å−1 [109]. The average calculated length before sonication corre-

sponds to 616± 48 nm and 100± 8 nm after ultrasonication. These results are in good

accordance with the TEM images of the fibrils in the two cases, shown in Fig. 5.5b and

5.5c. Finally, as the correlation amplitude depends on the sample concentration, it is

possible to define a fibril concentration in solution from the calculated average mass

values: this corresponds to 330±50 nM for the non-sonicated solution and 2.0±0.3 µM

after sonication. The results are summarized in Table 5.1.
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5.1 – Insulin aggregation kinetics

Sample Mass [ag] Length [nm] Concentration

Before sonication 25.2±2.0 616±48 330±50 nM

After sonication 4.2±0.4 100±8 2.0±0.3 µM

Table 5.1: Length and concentration of fibrils in solution before and after ultrasonication,
estimated from the average mass of the fibrils.

5.1.3 Materials and methods

Insulin aggregation protocol

5 mg/mL recombinant human insulin (Sigma-Aldrich Co.) was dissolved in 50 mM

glycine buffer (Calbiochem) adjusted with HCl to obtain a pH value of 2.3. To re-

move amorphous aggregates that might act as aggregation center, the solution was

centrifuged at 30,000×g at 4 oC for 45 minutes. The supernatant was then collected

and filtered with a 0.2 µm filter. A final volume of 1 mL solution in a glass vial was

subjected to continuous stirring with a magnetic stirrer, at 37 oC.

After 8 1/2 hours of incubation, the insulin solution was subjected to 2 cycles of 15

minutes ultrasonication in an ice-water bath.

MCS measurements

75 µL of solution were withdrawn at different time points to measure the sample

average mass by MCS. Each aliquot was mixed with a small concentration of 1.54 µm

NIST polystyrene beads (Polysciences Inc., Cat# 64040), to monitor the flow velocity

during the measurements. The reference beads were pre-diluted in the same buffer

used for the insulin aggregation to avoid changing the pH upon addition. 3 µL of bead

solution were added to the 75 µL insulin aliquot. Then, the mixture was filtered with a

2 µm filter, to remove large aggregates or clumps of beads that could block the device

channel. The final concentration of reference particles was 5.5×106 beads mL−1.

Mass measurements were taken using a double-paddle cantilever SMR (see section

2.3.1) in a 500 Hz and 1 kHz bandwidth. The readout frequency noise was ∼0.15 Hz,

corresponding to ∼8 fg single-particle detection limit.
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Data analysis

Time-domain mass traces were high-pass filtered (cutoff frequency 1 Hz) before apply-

ing the correlation analysis. The error bars in Fig. 5.4 and 5.5a are calculated from

the statistical errors on the fitting parameters and the uncertainty on the characteriza-

tion of the resonator sensitivity. Systematic errors caused by tolerances on the device

geometry or sample preparations are not included.

ThT fluorescence assay

ThT (Sigma-Aldrich Co., ) was dissolved in 50 mM glycine, pH 8.2, at a concentration

of 500 µM and stored at 4 oC. At each time point, 3 µL of insulin solution were

aliquoted and mixed with 87 µL ThT solution. The fluorescence emission of this

mixture was meaured with a NanoDrop 3300 fluorospectrometer (Thermo Scientific

Inc.). The excitation and emission wavelengths were 470 nm and 506 nm, respectively.

Blank measurements were taken before each time point, using ultrapure Milli-Q water.

At each time point, three repetitions of fluorescence measurements were performed.

The values reported in Fig. 5.4 and Fig. 5.5a correspond to the average fluorescence

intensity value and error bars are calculated from the difference between the minimum

and maximum values recorded per time point.

84



5.2 – Quantification of bead protein coatings

5.2 Quantification of bead protein coatings

Particles of nanometer dimensions find application in a large variety of fields, ranging

from the medical field, where they are used as drug carriers or imaging contrast en-

hancer, to the production of solar cells, where they have shown the ability of improving

solar energy absorption and conversion [110, 111, 112, 113]. As a result of their high

surface-to-volume ratio and accurate control of their surface chemistry, nanoparticles

are also widely used in biology for sample fractionation and purification [114, 115], or for

the realization of bead-based assays for analyte detection [116, 117, 118, 119, 120, 121].

The quantification of surface coatings is therefore of primary importance for monitor-

ing the correct functionalization of the bead surface and, for bead-based assays, for

estimating the amount of captured target molecules. Currently, analyte quantification

is obtained using label-based methods [118], such as fluorescence, or by elution and

subsequent target analysis [114]. These approaches are usually not applied for quan-

tifying the coating on the bead surface, as labeling might interfere with the capturing

mechanism and simpler quantification strategies can be employed. Estimation of the

surface coating layer is commonly achieved by measuring the variation of free solute

concentration before and after the coupling step [122]. However, this method has the

obvious limitation of only indirect inferring the amount of material on the bead surface.

Direct quantification of bead coverage would provide a more reliable detection method.

Here, theoretical calculations and proof-of-concepts measurements of the MCS ca-

pability in detecting surface coverage of nanoparticles in aqueous solutions are pre-

sented. Firstly, the limit of detection of a bead-based assay for the quantification of

protein in solution is calculated theoretically. The detection limit is estimated by con-

sidering the minimum amount of mass increase that can be detected by MCS analysis.

Subsequently, the adsorption of BSA protein on the surface of untreated polystyrene

beads is quantified experimentally, as a proof-of-concept of the ability to detect mass

variations caused by surface coatings using MCS. The correlation analysis does not

require detection of single-particle signatures, therefore extending the analysis beyond

the single-particle limits. In fact, MCS enables the characterization of surface coatings

on nanoparticles below the single-particle detection limit; furthermore, it can also be

used to quantify the average mass increase of visible particles, allowing the detection
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at concentrations exceeding one particle per channel volume.

Application of SMR devices for measuring coatings of nanoparticles have recently

been demonstrated [123, 124]. To increase resolution, a large number of particles

(>1000) were individually characterized to elucidate the shifts in population average

mass caused by the deposition on the bead surface. However, the need for high mass

resolution and reliable characterization of the sample population causes long analysis

time, due to the low sample concentrations required for single-particle analysis and the

slow flow rates employed for reducing the acquisition bandwidth (discussed on page

21). By using the MCS approach, sample concentration can be increased with the dual

advantage of high mass resolution and reduction in measurement time.

5.2.1 Theoretical calculations of bead-based assay resolution

5.2.1.1 Bead assay procedure

In this section, the theoretical detection range of a bead-based assay for the quantifi-

cation of a protein of interest in solution is calculated. The assay consists of three

steps: firstly, the average mass of polystyrene beads functionalized with antibodies is

measured for reference. These antibodies will be referred to as primary antibodies.

Secondly, the sample of interest is mixed with the functionalized beads and the protein

binds to the immobilized primary antibodies. The last step consist of mixing with sec-

ondary antibodies to enhance the bead mass variation caused by the protein binding

on the surface and to improve the specificity of the analysis. No washing is required

after the last step, as free proteins in solution do not generate a detectable contribution

in the correlation analysis unless their concentration exceeds ∼10− 100 µg/mL.

5.2.1.2 Assumptions

The following conditions are considered for the binding reaction: the protein and the

antibodies have molecular weights of mP =10 kDa and mA =150 kDa respectively;

their density ρA is 1.35 g/cm3; the dissociation constant Kd between antibody and

protein is 1 nM. Secondary antibodies are present in excess with respect to the analyte

concentration and Kd.

The buffer has density ρb equal to water (1 g/cm3); polystyrene beads have density ρn
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5.2 – Quantification of bead protein coatings

of 1.05 g/cm3 and their surface binding capacity βC is 250 ng/cm2 [125]. The embedded

channel resonator is a 50 µm SNR, with a frequency/mass responsivity of 1 Hz/fg and

a detection noise of 200 mHz in a 500 Hz bandwidth. The acquisition time is 200 s.

A list of the main symbols used in the calculations is reported here

Symbol Definition Symbol Definition

dn Bead diameter [AP ] Concentration of primary anti-
body/protein complexes

cn Bead concentration [X] Free concentration

ρn Bead density [XT ] Total concentration

βC Surface capacity of the bead mA Antibody molecular weight

∆m0 Bead buoyant mass before assay mp Protein molecular weight

∆mf Bead buoyant mass after assay ρA Antibody and protein density

ρb Buffer density Kd Protein/antibody dissociation con-
stant

Tmeas Acquisition time V Channel volume

δf/δm Mass responsivity of the resonator fs Sampling frequency

[X] refers to antibody (A) or protein (P ) concentration

[A∗] refers to the effective primary antibody concentration

Table 5.2: List of symbols used for the theoretical estimation of the detection capability of a
bead-based assay by MCS.

5.2.1.3 MCS signal variation

Detection of protein in solution is obtained by quantifying the mass increase of the

beads upon binding of the protein and secondary antibodies to the functionalized sur-

face. The mass increase of the beads causes a relative increase of the correlation

amplitude of
Gf (0)

G0(0)
=

(
∆mf

∆m0

)2

(5.3)

where G(0) is the maximum correlation amplitude, ∆m denotes the average buoyant

mass of the beads, and the subscripts ‘0’ and ‘f ’ denote the initial and final values.

The buoyant mass of the functionalized beads at the beginning of the assay is

∆m0 =
1

6
πd3nρn

(
1− ρb

ρn

)
+ βCπd

2
n

(
1− ρb

ρA

)
(5.4)

The first term is the buoyant mass of the untreated bead, while the second term is the

mass added by the functionalization of the bead surface. After binding of the protein
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and secondary antibodies to the immobilized primary antibodies, the buoyant mass of

the bead corresponds to

∆mf = ∆m0 +
[AP ]

cn
(mP +mA)

(
1− ρb

ρA

)
(5.5)

where [AP ]/cn is the average number of complexes per bead, multiplied by the buoyant

mass of the protein and secondary antibody. Assuming a 1:1 stoichiometry of the

antibody/protein reaction, Kd =
[A∗][P ]

[AP ]
(with [P ] = [PT ] − [AP ] and [A∗] = [A∗T ] −

[AP ]). The concentration of complexes [AP ] can be readily calculated as

[AP ] =
1

2

(
[PT ] + [A∗T ] +Kd −

√
([PT ] + [A∗T ] +Kd)

2 − 4[PT ][A∗T ]

)
(5.6)

Figure 5.6 shows the variation of MCS signal as a function of protein concentration.

The signal variation is shown for three different sizes of beads suspended at their

minimum detectable concentrations, as discussed in the next section.

[A∗T ] depends on bead size and concentration and is estimated as

[A∗T ] = cn
πd2nβC
mA

. (5.7)
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Figure 5.6: The MCS variation as a function of protein concentration for beads of three
different sizes. The bead concentrations are calculated from Eq. 5.8. The corresponding
effective concentrations of primary antibodies are 0.3 µM, 4 nM and 0.6 nM for the 20 nm,
100 nm and 200 nm beads, respectively. The dashed lines show the detection ranges for a
tenfold increase in bead concentration, corresponding to a tenfold concentration of [A∗T ].

88



5.2 – Quantification of bead protein coatings

Smaller beads show larger dynamic ranges of mass variation over the detection in-

terval as a result of their lower buoyant mass. However, the high concentrations of

beads required to detect their signal in the correlation curve limit the sensitivity of the

analysis.

5.2.1.4 Limit of detection

Minimum required bead concentration

From the definition of signal-to-noise (S/N) ratio of the MCS signal (Eq. 3.17), it is

possible to calculate the minimum concentration of beads that is required to generate

a detectable signal. By requiring a S/N ratio of 3, the minimum concentration is given

by

cn = 3 · 5σ2
n

V
√
Tmeasfs (∆m0 δf/δm)2

(5.8)

The symbols are defined in Table 5.2 and ∆m0 in Eq. 5.4. The corresponding effective

concentration of immobilized antibodies [A∗Tmin] can be calculated by inserting Eq. 5.8

in Eq. 5.7. Figure 5.7 shows the minimum concentration of beads as a function of their

size and the resulting [A∗Tmin].
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Figure 5.7: a) Concentration of functionalized beads to have a signal-to-noise ratio of 3 in the
autocorrelation analysis using a 50 µm SNR device. The concentration scales as the square
of the particle mass; b) average number of antibodies per bead, considering a surface binding
capacity of 250 ng/cm2 and a molecular weight of the antibodies of 150 kDa.
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Detection range

Once the effective concentration of immobilized antibodies is known, the limit of de-

tection of protein in solution and the detection range of the assay can be estimated

as a function of bead size. The detection limit can be defined as the minimum pro-

tein concentration required to induce an increase of 25% of the correlation amplitude,

corresponding to a mass increase of ∼22%. From Eq. 5.5 and Eq. 5.4, the minimum

detectable concentration of complexes is

[APmin] = 0.22 · cn∆m0

(mp +mA) (1− ρb/ρA)
(5.9)

Therefore, the minimum detectable protein concentration can now be estimated from

the dissociation constant, resulting in

[PTmin] =
[APmin](Kd+ [A∗Tmin]− [APmin])

[A∗Tmin]− [APmin]
. (5.10)

The correlation signal increases linearly with the analyte concentration when the an-

tibody/protein complexes do not exceed ∼90% of the immobilized antibody. By im-

posing [APmax] = 0.9[A∗T ], the maximum limit of detection in the linear range can be

estimated from Eq. 5.10 by substituting [APmin] with [APmax]. The limit of detection

of the assay and the associated detection range as a function of bead size are shown

in Fig. 5.8a. The increase in detection range with bead size is caused by the decrease

in the effective concentration [A∗] of unbound primary antibodies. This can be clearly

noticed for beads larger than 150 nm, where the effective concentration of the primary

antibodies is of the same magnitude as Kd.

The variation in correlation amplitude in the detection range is

Gf (0)

G0(0)
=

(
1 +

[AP ] (mp +mA) (1− ρb/ρA)

cn∆m0

)2

(5.11)

where [AP ] is given by Eq. 5.6 and varies between [APmin] and [APmax]. The saturation

level of the MCS variation as a function of bead size is shown in Fig. 5.8b.

With a detection range in the low nM regime and a MCS signal doubling over the

detection range of the assay, beads of ∼100 nm show a good compromise between
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5.2 – Quantification of bead protein coatings

detection limit and signal variation. Finally, the curves in Fig. 5.8 show the detection

range for the minimum concentration of beads. However, the assay can be extended to

detect higher concentrations of protein by increasing the number of beads, as shown

in Fig. 5.6.
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Figure 5.8: a) Theoretical detection ranges of the protein in solution. The minimum con-
centration is calculated considering a 25% increase in MCS signal caused by the binding of
the protein and secondary antibodies on the bead surface. The maximum range corresponds
to 90% of the active sites on the bead surface bound to the protein. The blue shaded area
shows the detection range considering a bead concentration equal to the minimum detectable
one; b) expected MCS signal increase during the assay. The shaded area shows the dynamic
range of the correlation increase in the detection range.

5.2.2 Quantification of surface coating of polystyrene beads

The measurements reported here are presented as proof-of-concept of the MCS capa-

bility in quantifying surface coatings of suspended beads.

390 nm polystyrene beads suspended in phosphate-buffered saline (PBS) solution and

in a 0.5 mg/mL Bovine Serum Albumin (BSA) in PBS solution were measured with

a double-paddle SMR device. After 1 hour incubation with the protein solution, the

average detected mass of the polystyrene beads showed an increase of ∼30% caused

by the BSA adsorption on the particle surface. The beads could not be detected in

single-particle detection mode and quantification of the protein coating on the bead

surface could only be obtained by MCS analysis.
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5.2.2.1 Results and discussion

After diluting the 390 nm beads in pure PBS and PBS with BSA solutions, the samples

were analyzed with the SMR. No separation or purification of the beads was necessary,

as the amount of free protein in solution was too low to be detected by correlation

analysis (see Fig. 5.9a). The average induced frequency shift can be calculated with

high precision after fitting the MCS signal, as the bead concentration in solution is

known. In fact, the beads employed here present a very high monodispersivity and the

mean square frequency shift 〈∆f 2〉 is practically equal to 〈∆f〉2. From the parameters

extracted from the MCS fit, the beads induced an average frequency shift of 31.8±3.1

mHz and of 41.2±0.2 mHz before and after BSA, respectively. This, in turn, can be

converted to a buoyant mass of 1.55±0.15 fg (experimental repeatability, statistical

error ∼0.03 fg) and 2.01±0.01 fg before and after protein coating (see Fig. 5.9b). The

frequency/mass conversion was calculated by assuming a buffer density of 1.005 g/cm3,

because of the presence of the salts and protein in solution, and a polysterene density

of 1.05 g/cm3. According to the reference particle signatures, the mass responsivity

corresponded to 20.5±1.0 mHz/fg. Therefore, the average mass increase per bead

caused by protein adsorption was 0.46±0.15 fg. Considering a protein density of 1.35

g/cm3 for BSA [105], this value corresponds to (16 ± 5) × 103 BSA monomers per

bead or to a surface binding density of 380±120 ng/cm2, a value in good accordance

with complete monolayer coverage of untreated polystyrene [126]. Finally, it should be

noted that knowledge of the absolute bead concentration is not required to characterize

the surface coating, if information on the relative increase in bead mass is sufficient.

Considering that the bead concentration is conserved during the coupling protocol, the

ratio of the correlation magnitudes (see Eq. 3.16) returns 〈∆f 2
C〉 / 〈∆f 2

B〉, where ∆fC

and ∆fB are the induced frequency shifts for the coated and bare beads, respectively,

and ‘<•>’ denotes the population mean value. Therefore, the relative increase of the

buoyant mass of the beads can be readily calculated from the autocorrelation amplitude

values, resulting here in a 30% average mass increase of the beads, consistent with the

absolute quantification of the bead mass.
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Figure 5.9: a) Comparison between the autocorrelation curve of solutions of bare and protein
coated polystyrene beads. Free BSA in solution (0.5 mg/mL) is not sufficient to give a
detectable signal; b) average buoyant mass of the beads before and after incubation. Error
bars represent the statistical errors from the fit uncertainties.

5.2.2.2 Materials and methods

Sample preparation

390 nm NIST polysterene beads (Polysciences, Cat# 64017) were initially dissolved in

a 50 mM NaCl aqueous buffer together with 1.54 µm NIST polystrene beads (Poly-

sciences, Cat# 64040), here referred to as reference particles. This solution was then

added to a PBS solution (1:1) and to a solution of 1 mg/mL BSA (Carl Roth GmbH)

in PBS (1:1), obtaining a concentration of 3×109 beads mL−1 for the 390 nm particles

and of 5× 106 beads mL−1 for the reference particles.

The beads were incubated in the protein solution for 1 hour at room temperature and

stirred with a magnetic stirrer, to avoid settling of the particles at the bottom of the

vial.

MCS measurements

The bead solutions were measured without any further preparation and purification.

Pure solutions without suspended beads were also measured under similar flow rates

to quantify the background noise in the time domain signal. Each measurement trace

was acquired for ∼4 minutes, keeping the pressure conditions constant during the

measurement. The 1.54 µm particle signatures in the time-domain signal were used to
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characterize the mass/frequency response of the SMR and to monitor the stability of

the flow.

Time-traces were high pass filtered (cut off frequency 1 Hz) before data analysis, to

remove the slow varying noise contributions in the signal and the static component of

the frequency measurement.

A double-paddle SMR resonator, as described in Sec. 2.3.1, was used for the detection

of the bead mass variation.
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5.3 Label-free detection of ribosomes

The ribosome is a macromolecular complex composed of ribonucleic acids (RNAs) and

proteins. Present in all cells, ribosomes are in charge of protein synthesis by translating

the messenger RNA (mRNA) into polypeptides. Protein synthesis requires several steps

of interactions between the two subunits of the ribosome and of the subunits with the

mRNA, transport RNA (tRNA) and protein factors, which result in the formation

different translation complexes [5, 127]. Kinetic information on the interactions of the

different players involved are therefore of great interest for improving our understanding

of protein synthesis. Kinetic measurements are currently obtained using fluorescence-

based techniques, such as Förster resonance energy transfer (FRET) measurements

[5, 128, 129], or based on the detection of radioactively labeled molecules [130, 131,

132]. Despite the high specificity given by the labeling strategies, labeling presents

several disadvantages as it can possibly interfere with the reaction mechanism. The

resolution enhancement obtained by correlation analysis might enable the detection of

ribosome complexes by SMR, hence providing a label-free alternative for the kinetic

measurements.

Here, proof-of-principle measurements of 70S Escherichia coli ribosomes by SMR

are shown. Firstly, the density of the ribosome is estimated, presenting the capability of

the correlation analysis in detecting particle density by using different density solutions.

Subsequently, the average mass value calculated from the correlation amplitude is

discussed. The mismatch between the detected and the theoretical ribosome mass

shows that improvements in detection protocol are needed before proceeding to kinetic

studies.

5.3.1 Density characterization

The density of bacterial ribosomes was measured by detecting the variation of correla-

tion amplitude as a function of density of the suspending solution.

95



5 – Applications of the MCS method

5.3.1.1 Detection method

The MCS amplitude scales as the square of the buoyant mass of the particles in solution

(see Eq. 3.1 and Eq. 3.16). By explicitly expressing the dependence on the density of

the suspending solution, the correlation amplitude at lag zero is given by

β1 (ρb) =

(
1

5
c0V m2

p

(
δf

δm

)2
)
·
(

1− ρb
ρp

)2

(5.12)

where β1 represents the correlation amplitude, c0 is the sample concentration, V the

channel volume, mp the dry mass of the particle, δf/δm the device responsivity, ρp and

ρb are the particle and buffer densities, respectively. From Eq. 5.12 it can be noticed

that the correlation amplitude varies as a parabola with the buffer density, and the

amplitude reaches its minimum for ρb = ρp with β1 (ρb = ρp) = 0. Characterization

of the sample in at least two solutions of different densities is required to obtain an

estimate of the particle density.

5.3.1.2 Ribosome density

70S E.coli ribosomes suspended in buffer A (see Materials and methods on page 98)

with different concentrations of sucrose content were characterized by MCS. Ribosome

concentration was kept constant in all measurements and changes in correlation am-

plitude are only caused by the buffer density variations, as presented in Eq. 5.12.

Figure 5.10 shows the variation of correlation amplitude for a sample of 2 µM ri-

bosomes suspended in solutions of densities 1.01 and 1.21 g/cm3. The trend of the

correlation amplitude is fitted by a quadratic function

y = K(ρp − ρb)2 (5.13)

to estimate the density ρp of the ribosomes. The parameterK includes the experimental

conditions that are constant during the measurements, namely sample concentration,

channel volume, ribosome mass and device responsivity (see Eq. 5.12). From the fit

of the correlation amplitude variation, a density estimation of 1.37±0.04 g/cm3 is

obtained. This value is consistent with an expected value of density ranging between
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Figure 5.10: Variation of MCS amplitude for a sample of 70S E.coli ribosomes as a function
of solution density. The ribosomes were suspended in buffers with different sucrose content.
The trend of the correlation amplitude is fit by a quadratic function of the form y = a(b−x)2,
where a and b are fit parameters (blue solid line). The shaded gray area indicates the 90%
confidence interval of the fit. The parameter b is 1.37±0.04 g/cm3 and corresponds to the
estimated density of the ribosomes.

1.3 and 1.6 g/cm3. This interval is calculated from the molecular weight of the ribosome

in solution ∼2.7 MDa [133, 134] and its estimated volume from air-dried EM, between

3.0 and 3.6× 103 nm3 [135].

5.3.2 Results and discussion

The mass of the ribosomes can be calculated from the correlation amplitude using

the density value estimated in the previous section. As both the molar concentration

of ribosomes and the solid content in solution are known, the average mass can be

calculated from the mean square mass value (Eq. 3.16) as

m1 =

√
5β1

c0V (1− ρb/ρp)2(δf/δm)2
(5.14)

or from the solid content in solution (Eq. 5.1) as

m2 =
〈m2〉
〈m〉 . (5.15)

m1 =
√
〈m2〉 and, for a monodisperse population of particles with concentration c0,

m1 and m2 converge, as 〈m2〉 ≈ 〈m〉2. The results obtained from the calculations are
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Sample ∆m1 [ag] m1 [ag] ∆m2 [ag] m2 [ag]

BufferA 1 2.20± 0.21 8.4± 0.8 4.44± 0.93 17.0± 3.6

BufferA 2 2.16± 0.20 8.2± 0.8 4.29± 0.83 16.4± 3.2

BufferA 3 2.19± 0.17 8.3± 0.7 4.40± 0.78 16.8± 3.0

BufferA 4 2.19± 0.14 8.4± 0.8 4.41± 0.67 16.8± 2.7

Sucrose 1 0.96± 0.14 8.2± 1.3 1.92± 0.70 16.4± 6.0

Sucrose 2 0.97± 0.13 8.3± 1.3 1.96± 0.68 16.8± 5.9

Sucrose 3 1.07± 0.11 9.2± 1.1 2.36± 0.73 20.2± 6.4

Table 5.3: Estimates of the buoyant (∆m) and dry (m) mass of the ribosomes. m1 is
calculated according to Eq. 5.14, while m1 according to Eq. 5.15. The ribosome density is
1.37 g/cm3

reported in Table 5.3, both for the measurements taken in buffer A and in sucrose-

buffer A solution mixture. The large differences between the m1 and m2 values show

that the ribosome mass cannot be estimated from the acquired measurements, as the

sample might present a high degree of polydispersivity or interactions with the channel

walls. Furthermore, m1 and m2 are, respectively, ∼1.5 and ∼3 times larger than the

expected ribosome mass (∼2.7 MDa). Non-filtered time-traces of both measurement

conditions are shown in Fig. 5.11. The decreasing frequency values are evidence of the

interaction between the ribosomes and the silicon walls. Variations of measurement

conditions, for example by passivation of the channel walls, need to be investigated to

reduce this behavior.

Although the density estimate might also be affected by these interactions, density

measurements are not based on absolute quantification of the correlation amplitude.

The repeatability of the measurements suggests that the interactions are stable during

the acquisition, and, as such, only affect the absolute amplitude of the correlation

curve and not the dependence on solution density. However, density measurements

need to be repeated once a suitable protocol is developed, to confirm the validity of

the assumption.

5.3.3 Materials and methods

Sample preparation

70S E.coli ribosomes suspended in buffer A (50 mM Tris-HCl, pH 7.5, 70 mM NH4Cl,

30 mM KCl and 7 mM MgCl2) at a concentration of 14.5 µM were diluted in buffer
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Figure 5.11: Time-traces of the ribosome measurements in buffer A (a) and sucrose-buffer A
solution (b). The frequency decrease is evidence on sample interaction with the walls. Note
that the reference particles induce a positive shifts in the sucrose solution, as a consequence
of the particle density being lower than the solution one.

A or with a solution of sucrose - buffer A, to obtain a ribosome concentration of

2.9 µM. These solutions were then filtered with a 0.2 µm low protein binding filter

(Merck Millipore) and sample concentration was checked by absorbance measurement

at 260 nm using a NanoDrop 2000c photospectrometer (Thermo Scientific Inc.). Sample

solutions were then diluted with buffer A to obtain a final sample concentration of 2

µM.

1.54 µm polystyrene beads suspended in the sample solutions were added before MCS

measurements as standards for density calibration and monitoring of flow conditions

during measurement. The bead concentration was 7× 106 beads mL−1.

Solution density characterization

Sample solution densities were estimated from the magnitude of the frequency shifts

induced by the calibration particles, assuming a device responsivity of ∼20.5 × 10−3

Hz/fg and a dry mass of the beads of 2.01 pg. The estimated densities of the suspending

solutions were 1.01 g/cm3 for buffer A and 1.21 g/cm3 for the 1.5 M sucrose - buffer A

mixture.

The histograms of the measured frequency shifts induced by the reference particles in

the two solutions are shown in Fig. 5.12. As the density of the sucrose solution was

higher than polystyrene density (1.05 g/cm3), the reference beads induced a positive

frequency shift.
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Figure 5.12: The frequency shifts induced by the reference beads in buffer A (a) and in a
solution of 1.55 M sucrose - buffer A (b).

Ribosome density estimation

Ribosome density was estimated from the variation of the autocorrelation amplitude

as a function of buffer density. Eq. 5.13 was used as fit function for the correlation

amplitude trend. A lower boundary of 1.3 g/cm3 for ρb was set to obtain a unique

solution to the fit.

MCS measurements

MCS measurements were taken using a double-paddle SMR device, as presented in

section 2.3.1. Measurements were acquired at sampling rates of 500 Hz and 1 kHz,

with acquisition noise of ∼0.1 Hz and ∼0.2 Hz, respectively
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5.4 Flow velocity detection in SMR channel

SMR detection in mass accumulation mode requires interaction between the free ana-

lyte in solution and the functionalized surfaces of the channel (see page 24). Therefore,

depletion of the analyte at the channel walls could hinder the reaction under investi-

gation. Correlation analysis can be used to precisely measure the flow velocity in the

channel by adding tracer particles to the solutions, hence providing estimation on the

mass transport of the analyte during the detection.

Here, application of the correlation analysis for flow velocimetry is presented in

the context of measurements of insulin fibril elongation by mass accumulation mode.

These results are part of the doctoral thesis of Y. Wang [136] and have been recently

presented in Wang, Modena et al. [18].

5.4.1 Label-free detection of amyloid elongation

Several methods have been developed for detecting protein aggregation. Dye-binding

assays are commonly used for reporting amyloid formation thanks to their high speci-

ficity and sensitivity, as already discussed on page 78 for ThT based assays. However,

precise quantitative information on binding rate constants cannot be obtained with

such assays. Thefore, label-free methods are usually preferred for measuring the elon-

gation reate of amyloid fibrils [137]. High spatial resolution and real time monitoring of

the growth of individual aggregates are possible by AFM detection [138]. However, the

limited throughput and the complexity of the analysis renders this method not suit-

able for quantitative studies. Larger statistics are obtained by using ensemble-based

detection methods, such as quartz crystal microbalance (QCM) or surface plasmon res-

onance (SPR). Here, aggregate growth is measured by detecting the increase in mass

of the fibrils immobilized on the sensor surface.

Detection of kinetic rate constants by surface-based methods can be affected by the

mass transport of the protein monomers to the immobilized fibrils. This effect can be

accounted for during data analysis, however this would introduce large uncertainties

on the kinetic rate estimation [139]. To avoid mass transport limitations, fast flows in

the detector cells can be used, at the expense of large sample consumption.

Similar to QCM and SPR measurements, SMRs operated in mass accumulation
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mode can detect changes of the adsorbed mass on the surface of the embedded mi-

crofluidic channel, with femtogram resolution [14]. However, the small channel volume

(∼10 pL) enables the use of fast flows to avoid mass transport limitations, while al-

lowing low sample consumption (less than ∼1 µL/min).

Human insulin was selected as model protein for the study of the fibril elonga-

tion kinetics in the SMR. Elongation was detected at different conditions, such as at

different monomer concentrations or ionic strength of the solutions.

5.4.2 Results

All surface preparations and amyloid elongation measurements were done by Y. Wang.

Analysis of the flow rates was done by M. Modena and Y. Wang by using the methods

developed in this thesis. TEM imaging and sample preparation was done by D. Riedel

and G. Heim of the MPI for Biophysical Chemistry. AFM imaging and sample prepa-

ration was done by Mitja Platen of the University of Göttingen.

Insulin fibrils of ∼100 nm length were covalently bound to the aminated surfaces

of the 3 × 8 µm2 microfluidic channel embedded in the double-paddle SMR. The im-

mobilization of the fibrils resulted in a static frequency shift of ∆71.3± 8.6 Hz (repro-

ducibility error), corresponding to a mass deposition of (8.56 ± 1.03) × 10−16 g/µm2.

This can be translated in 734 ± 89 molecules/µm2, estimated from the length of the

fibrils (98 ± 20 nm, from TEM characterization) and the mass per length density of

the fibrils [109]. As the device resonance frequency settles at a constant value during

the functionalization, it is safe to assume that fibrils saturate the channel walls, there-

fore being uniformly distributed in the resonator. Functionalization was followed by a

passivation step to avoid unspecific adsorption of the monomers on the walls. For the

complete protocol for surface immobilization and preparation of the seed fibrils, please

refer to Wang et al. [18].

After immobilization of seed fibrils, a solution of 1 mg/mL insulin monomer was

injected in the resonator and continuously flown. Figure 5.13a shows the variation

of resonance frequency caused by the elongation of the fibrils. Frequency decrease is

linear with time, indicating a constant growth rate of the fibrils. Knowing the density

of fibrils on the surface and the buoyant mass of insulin monomers (∼2.9 × 10−3 ag),
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(a) (b)

Figure 5.13: a) Frequency shift induced by the elongation of the insulin fibrils immobilized
on the channel walls, compared to the non-functionalized/passivated resonator. A solution
of 1 mg/mL insulin monomer is flowing in the channel; b) Increase of fibril growth rate as a
function of metal ions and of their concentration. Reprinted with permission from Wang et
al. [18]. Copyright 2015 American Chemical Society.

the elongation rate dN/ dt can be calculated and corresponds to 12.2± 1.2 monomer

molecules per fibril per minute. For linear fibril elongation,

dN

dt
= k ×Nfibril × cmonomer (5.16)

with Nfibril the bound monomer per fibril and cmonomer the concentration of free

monomers in solution. The estimated growth reaction rate is k = (1.2 ± 0.1) ×
103 M−1s−1.

Immobilized fibrils were exposed to different conditions to detect variations in elon-

gation rate. As an example, Fig. 5.13b shows the results obtained by detecting the

fibril growth in the presence of different metal ions in solution. Insulin elongation

measurements were taken by Yu Wang.

5.4.2.1 Mass transport estimation

To ensure that the elongation occurs in a reaction-limited regime, it is necessary to

estimate the monomer transport to the immobilized fibrils. Flow in the embedded

channel is controlled by pressurized inlets and outlets, and estimation of flow velocity

has to be done experimentally. Although theoretical calculations regarding the flow

resistance of the channel can be made, these might result in large deviations from the
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actual value because of tolerances in device dimensions during fabrication. Further-

more, the viscosity of the solution also varies with protein concentration, increasing

the uncertainties on theoretical velocity estimations. Solutions containing 1.54 µm

polystyrene particles were run through the functionalized channel. Similar to the mea-

surements discussed in the previous sections, these particles were used as references for

flow velocity estimation. Although particles are clearly identifiable in the time-trace

and individual signatures could be used for the detection of flow velocity, the corre-

lation analysis approach presents multiple advantages. A single fit of the correlation

curve is required for the estimation of the flow rate in the channel, regardless of the

number of tracer particles. The increase in signal amplitude with particle number also

improves the resolution of the estimation. On the contrary, a single-particle approach

requires identification of the signatures and their individual fitting, with a signal-to-

noise ratio of the signature only dependent on the buoyant mass of the particle.

From the analysis, the slowest flow velocity at experimental conditions was shown

to be ∼14 mm/s. Assuming a diffusivity D = 1× 10−10 m2/s for the insulin monomer,

the Péclet number Pe = Uavgh/D during the elongation measurements was higher

than 200 (h half height of the channel). This indicates that any concentration gra-

dient would only occur in the vicinity of the channel walls, where convection is slow.

However, insulin monomers diffuse across the whole cross-section in ∼20 ms, while the

average addition of a monomer to a fibril has a characteristic time of few seconds. The

Damkohler number is Da � 1 (where Da=time(diffusion)/time(reaction)), indicating

that the analysis is performed in reaction-limited regime.

5.4.3 Materials and Methods

Insulin seed fibril

Insulin was dissolved in 10 mM HEPES buffer, pH 2.0, at a concentration of 6 mg/mL.

The solution was incubated at 37 oC under continuous stirring and amyloid formation

was confirmed by ThT fluorescence measurements. At the conclusion of the elongation

phase, the solution was diluted to 1 mg/mL and ultrasonicated for 150 min at 4 oC to

generate the seed fibrils. Seed fibrils were then characterized by TEM.
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SMR measurements

A double-paddle resonator (page 19) was used for the kinetic studies. The mass/frequency

response was calibrated using solutions of sodium chloride at different concentrations

and measuring the frequency variations induced. Mass accumulation measurements

were performed on 0.1 Hz low-pass filtered signals. On the contrary, correlation anal-

ysis for flow velocity detection was performed on 1 Hz high-pass filtered traces.

Surface functionalization

Seed fibrils were immobilized on the aminated surfaces of the SMR embedded chan-

nels. After immobilization, the channels were passivated by injecting a 50 mM glycine

solution, to avoid unspecific binding of monomers to the channel walls.
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Chapter 6

Conclusions

In this thesis, the application of suspended microchannel resonators (SMRs) has been

extended to the characterization of macromolecular complexes in the sub-MDa mass

range, such as protein aggregates or cellular organelles. This has been enabled by the

introduction of correlation analysis of the time-domain mass signal as novel method for

mass characterization of particles in solution. Discrete particles flowing through the

microfluidic channel embedded in the resonator generate a detectable signal in the cor-

relation curve, even when single-particle signatures cannot be individually recognized

in the time-trace. Resolution enhancement of over four orders of magnitude in mass

detection has been demonstrated by characterizing validated synthetic nanoparticles

and samples of biological interest.

First, the theoretical basis of the mass correlation spectroscopy (MCS) method has

been presented, elucidating the dependence of the correlation amplitude on the buoy-

ant mass and on the concentration of the particles in solution. It was demonstrated

that the detection limit of the analysis does not depend exclusively on the readout

noise of the measurement, and it can be improved by increasing sample concentration

and acquisition time. Therefore, the resolution attainable is ultimately limited by the

sample volume and flow stability. Previously, mass sensitivity increase was achieved

by reducing the resonator effective mass, and devices with single-particle resolution

approaching the attogram (∼MDa) level have been recently demonstrated. However,

these devices already present sub-micrometer channel dimensions and further scaling

of the resonator structure is technologically challenging. Furthermore, the use of small

cross-sections poses severe limitations on the sample, as particle size cannot exceed
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the cross-section dimensions and the high fluid resistance of the channel limits the

viscosity of the solutions that can be injected in the resonator. In contrast, resolution

enhancement by correlation analysis does not require modifications of the devices, and

sub-attogram resolution has been obtained in this thesis using resonators with 3×8

µm2 embedded channels and femtogram single-particle resolution.

Furthermore, a model was built to enable size determination of particles in solution

with the SMR devices. The evolution of the concentration fluctuations in the em-

bedded channel was described by developing an approximate model for the transport

of finite-size particles in a channel of rectangular cross-section. Including this model

into the description of the correlation analysis allows size determination of particles

in solution by MCS measurements. As a proof-of-principle, monodisperse samples of

particles of different dimensions were measured and their size, mass and density was

obtained in a single experiment. Particle size is inferred from the diffusion/dispersion

of the sample in the embedded channel. As a result of the dual detection of size and

mass, the MCS analysis is significantly more sensitive to small size changes than purely

diffusivity-based methods, such as dynamic light scattering. As an example, a 5% in-

crease in diameter, corresponding to an equal decrease in diffusivity, would generate

an increase of over 30% in correlation amplitude.

The ability to analyze samples made up of a heterogeneous population of particles

has also been discussed, showing that the correlation shape contains information on

the mass and size distribution of the particles. However, the deconvolution of the MCS

signal for a polydisperse sample is not trivial. The determination of the size distri-

bution might be limited to samples composed of populations with large differences in

average velocities and dispersion in the channel. Similar to characterization by light

scattering techniques, size determination would be best performed after fractionation

of the sample.

Characterization of samples of biological interest in the sub-MDa regime can now

be performed by SMRs thanks to the resolution enhancement obtained by correlation

analysis. To explore the applicability of the method to different domains of applica-

tions, four proof-of-principle measurements have been presented.

First, the kinetics of amyloid formation in solution was monitored by mass using

108



insulin as a model system, and the MCS method has been compared with the conven-

tional Thioflavin-T fluorescence assay. The MCS method enabled label-free detection

of protein aggregation kinetics, by quantifying the increase of the average mass of the

aggregates in solution. As a consequence of the purely mass-based detection method,

the aggregation kinetics could be monitored from the formation of the early amorphous

aggregates, where the fluorescence assay is blind, to the conversion into mature fibrils.

In the specific case discussed here, the variation of the average mass of the aggregates

was quantified in ∼100 kDa at the onset of aggregation to 15 MDa at the end of the

aggregation study, using a device with single-particle resolution of ∼1000 MDa.

As another application, quantification of protein coatings on nanoparticles was

demonstrated by detecting the mass increase caused by BSA adsorption onto 400 nm

polystyrene beads. Correlation analysis for the quantification of surface coatings shows

superior performance compared to single-particle detection, as large statistics on the

sample population can be obtained with shorter analysis times and higher resolution.

Theoretical calculations on the minimum resolvable mass increase for particles of differ-

ent sizes have been presented. This information was used to estimate the detection limit

of protein concentration with SMR devices using a mass-based bead-linked immunosor-

bent assay, as a function of device responsivity and bead properties. The calculations

presented allows predictions on the optimal size of the beads for the immunosorbent as-

say, providing estimations on minimum detectable protein concentration and detection

range of the assay. Although theoretical calculations in this thesis are only presented

for the case of bead-based immunoassays, detection of nanoparticles by correlation

analysis finds larger application. Nanoparticles ranging from a few to hundreds of

nanometers are also emerging as carriers for drug delivery. Mass characterization can

therefore be used as a method for direct quantification of the active component encap-

sulated in or grafted to the nanoparticle carrier.

Application of the MCS method has also been presented in conjunction with SMR

measurements by mass accumulation detection mode. As surface-based kinetic mea-

surements might be affected by transport of the analyte to the functionalized surface,

precise quantification of the flow rate during acquisition is required to asses whether the

characterization is performed in reaction-limited regime. By adding tracer particles to

the sample solution, correlation analysis can provide characterization of flow velocity
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in situ by measuring the correlation time of the particles in the embedded microfluidic

channel.

Finally, proof-of-principle detection of large biomolecular complexes has been pre-

sented in the thesis to evaluate the prospects for label-free biochemical interaction

studies involving large macromolecular machines and small organelles.

As an example of application, SMRs with 1 Hz/fg mass responsivity should be able

to detect ribosome complexes and ribosome subunits at sub-micromolar concentration.

This would enable the monitoring of the binding of the ribosome subunits and of the

pre-initiation complexes by detecting the mass variations of the complexes in solution.

To this end, first proof-of-principle measurements of ribosomes have been presented.

However, interactions of the ribosomes with the channel walls currently preclude re-

liable mass characterization of these complexes. Further investigation is required to

overcome such limitation, for example by testing passivation strategies of the channel

walls for reducing sample interaction.

To enable detection of reactions in the millisecond/second regime, modifications of

the microfluidic platform are required. Currently, the time resolution of kinetic mea-

surements by MCS is limited by the acquisition time of the mass-trace. Integration

of the SMRs with continuous flow mixers would improve the temporal resolution of

the analysis by decoupling the acquisition time required for the measurement and the

time points of the reaction detected by MCS. In continuous flow mixers, the reaction

is initiated by the mixing of two or more flowing solutions and the mixture is analyzed

at later positions in the channel corresponding to different time points of the kinet-

ics. Using this approach, the temporal resolution of the MCS measurements would

ultimately be limited by the time spent by the particles in the resonator, usually in

the order of a few tens of milliseconds. The combination of fast microfluidic mixers

and the high mass sensitivity obtained with correlation analysis would enable label-free

detection of the early phases of biomolecular interactions by looking at mass variations

of the complexes in solution. Possible examples of application are the detection of the

first oligomeric species at the onset of protein aggregation, or the characterization of

transient ribosome complexes during protein synthesis.
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Appendix A

Computer scripts

Matlab scripts

Each measurement generates two files:

• frequency trace: continuous monitoring of the resonance frequency. Sampling
frequency is set by the difference between the device resonance frequency and
the reference frequency (see Sec. 2.3)

• measurement intervals: file containing the temporal informations of when the
sample solution was in the resonator embedded channel.

The measurement traces are then analyzed as follows:

1. Import data

2. Calibration

3. Fit correlation

4. Calculate mass

To detect particle size, multiple measurements at different flow velocities are required.
Steps 1 and 2 of the amplitude analysis are performed on each measurement trace. The
subsequent steps are:

1. Prepare pseudo-curves

2. Fit pseudo-curves

3. Estimate size

The main scripts used for the analysis are reported here, written in MATLAB pseudo-
code.
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MATLAB functions

Import data

Requires: measurement files

Load coefficients of low pass filter lpf filter

Import frequency trace in freq raw %Raw values of resonance frequency
Fs=mean(freq raw); %Sampling frequency
time meas=convert to ms(freq raw); %From frequency to measurement time
extremes=Import measurement intervals %Import file with temporal extremes of when sample was
in the resonator
freq lpf=filter(lpf filter, 1, freq raw); %Low pass filter the measurement trace
freq hpf=freq raw - freq lpf; %Removes slow varying noise terms and baseline drifts. Take only
frequency fluctuations

%Prepare signal for correlation analysis: remove visible particles in the trace
t approx=find approx(freq hpf, Fs); %Find approximate residence time of the particles in the
resonator
(references, sample, small)=separate(freq raw, freq hpf, t approx, Fs);%references: only
reference particle signatures; sample no visible particle signature; small small visible particle sig-
natures

%Separate the measurement intervals
for i=1:N %N number of intervals

interval{i}.freq raw=freq raw(extremes(i,1):extremes(i,2));
interval{i}.freq hpf=freq hpf(extremes(i,1):extremes(i,2));
interval{i}.sample=sample(extremes(i,1):extremes(i,2));

end

Calibration

Requires: interval, t approx Fs

Returns: responsivity, interval

npoints=t approx*Fs; %Average number of points of reference signature
for i=1:length(interval)

ref sgolay=sgolayfilt(references, 3, n points/10); %Apply a Savitzy-Golay filter of the third
order to find the maximum frequency shift

locations, shifts=findpeaks(-ref sgolay, thres value, 2npoints); %Find locations and
induced frequency shifts of reference particles by detecting peaks higher than thres value in
ref sgolay. The minimum peak distance is twice npoints

%Frequency/mass response
ref buoyant= 1

6πd ref3(ρref − ρbuff ); %Buoyant mass of reference. d ref diameter of ref par-
ticle

ref shift=mean(shifts); %Induced frequency shift by reference
responsivity=ref shift/ref buoyant

%Find average time spent by the fluid in the resonator
Rref=xcorr(references, 2*npoints, ‘unbiased’); %Calculate autocorrelation of reference par-

ticle signatures
interval{i}.t mean=fitXcorrRef(Rref, d ref, Fs); %Fit autocorrelation of reference particles

knowing the particle diameter. Flow velocity can be estimated from the correlation shape
end
return responsivity, t mean
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Fit correlation curve

Requires: interval, Fs
Returns: Beta1 for all intervals

for i=1:length(interval) %If all t mean have similar values, concatenate all interval{i}.sample
to increase signal-to-noise ratio

nr lags=interval{i}.t mean*Fs*1.5; %Number of points for autocorrelation calculation
Rsample=xcorr(interval{i}.sample, nr lags, ‘unbiased’); %Calc. autocorrelation
Rsample=Rsample(nr lags+3: end); %Take one sided autocorrelation and remove 2 points of

max noise
time axis=(3:nr lags)/Fs;
beta0=[a interval{i}.t mean]; %Starting point for the fit
mdl=nonlinearmodel.fit(time axis, Rsample, autocorr curve, beta0); %Non linear fitting: au-

tocorr curve is the compartment autocorrelation model
%Amplitude value and standard deviation

end
return Beta1

Calculate mass

Requires: interval{i}.Beta1, responsivity, ρp, ρb, c0 or T %ρp particle density, ρb buffer
density, c0 particle concentration, T solid content
Returns: ∆mp, mp

for i=1:length(interval) %If all t mean have similar values, analyze all intervals together
%Calculate average induced freq. shift
if c0 is known then

∆fp =
√

5Beta1
c0V ; %Average frequency shift, V channel volume

else T is known
TotT=T*Chann Volume; %Mass in the channel
TotF=ToT*(1− ρb/ρp)*responsivity; %Mass in the channel, converted in freq.
∆fp=5V Beta1/TotF; %Average frequency shift

end if
Returns: ∆mp, mp

∆mp = ∆fp/responsivity; %Average buoyant mass
if ρp and ρb are known then%Calculate mass of the particle

mp = ∆mp/ (1− ρb/ρp); %Dry mass of the particle
end if

end
return ∆mp, mp

Prepare pseudo-curves

Requires: data %Data is a structure with all measurements recorded for one sample
Returns: Rsamples, T %Rsamples contains all generated correlation curves, T the time axis

npoints=0; %Total nr of points in the fit curve
for i=1:length(data) data{i}.n points=data{i}.Fs*data{i}.t mean*1.5; n points=n points+data{i}.n points-
2; %Remove points of maximum noise
end
Rsamples=zeros(n points, 500); %Initialize variables for all generated autocorrelations
start=1;
for i=1:length(data)

finish=start+data{i}.n points-3;
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for j=1:500
temp=[];
while (length(temp)<length(data{i}.sample)) %Generate pseudo-trace

temp=[temp random(data{i}.sample)]; %function random takes a block from the trace
sample. The block is concatenated to temp

end
Rsample=xcorr(trace, data{i}.n points, ‘unbiased’); %Autocorrelation pseudo-trace;
Rsample=Rsample(vardata{i}.n points+3:end); %One sided correlation curve
Rsamples(start:varfinish, j)=Rsample;

end
T(start:finish, :)=[i, (3:vardata{i}.n points)/Fs]; %T contains an index column and the time

axis of the correlation
start=finish+1;

end

return Rsamples T

Estimate size

Requires: Rsamples, T, data
Returns: size

n=number of flow rate measured
d test=linspace(. . . , . . . ) %Test diameters for particle size identification
ampl=zeros(length(d test), n*length(Rsample(:,1)));
err=zeros(length(d test), length(Rsample(:,1)));
for i=1:length(d test) %For all test diameters

ampl temp & err temp = zeros(n, length(Rsample(:,1)))
for j=1:n %For all flow rates

int= points of the correlation recorded at the j-th flow rate
Rtest=generate rtest(T, data.t mean, d test(i)) %Generates a normalized autocorrelation

with time axis T, average time in the resonator t mean and particle size d test(i)

[ampl temp(j, :)]=Rsamples(int, :)\Rtest; %Least-square fit of all the pseudo-curves at
j-th flow rate

[err temp(j, :)]=(Rsamples(int, :)-ampl temp*Rtest).2̂; %(Residuals)
end
err(i, :)=sum(err temp); %Save residuals for the i-th test diameter
ampl(i, :)=mean(ampl temp); %Take the mean amplitude value per each test curve

end
d splines=linspace(d test(1), d test(end), 200) %Refine the d test
ps=spline(d test, err’, d splines); %Fit the residuals with a spline to find particle size that
minimizes the residual for each pseudo-curve
[temp, best]=min(ps, [], 2); %Find minimum residual per each pseudo-curve according to the spline
fitting
sizes=d splines(best);
delta size=std(sizes); %Uncertainty size
size=mean(sizes); %Particle size

ampl xcorr=zeros(length(res), 1);
for i=1:length(res)

ampl xcorr(i)=ampl(i, res(i)); %Amplitude of the best fit curve
end
delta ampl=std(ampl xcorr); %Uncertainty size
ampl xcorr(i)=mean(ampl xcorr(i)); %Curve amplitude, best fit paramters
%From ampl xcorr the buoyant mass of the particle can be calculated
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List of scientific contributions

Part of this thesis have been published as follows:

Mario M. Modena, Yu Wang, Dietmar Riedel, and Thomas P. Burg. Resolution

enhancement of suspended microchannel resonators for weighing of biomolecular com-

plexes in solution. Lab on a Chip, vol. 14, pp. 342–350, 2014.

Yu Wang, Mario M. Modena, Mitja Platen, Iwan A. T. Schaap, and Thomas

P. Burg. Label-Free Measurement of Amyloid Elongation by Suspended Microchannel

Resonators. Analytical Chemistry, vol. 87, pp. 1821–1828, 2015.

Published after the submission of the thesis

Mario M. Modena and Thomas P. Burg. Mass correlation spectroscopy for mass-

and size-based nanoparticle characterization in fluid. Journal of Applied Physics,

118(22):224901, 2015.
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[22] Michel Godin, Francisco Feijó Delgado, Sungmin Son, William H. Grover, An-

drea K. Bryan, Amit Tzur, Paul Jorgensen, Kris Payer, Alan D. Grossman,

Marc W. Kirschner, and Scott R. Manalis. Using buoyant mass to measure the

growth of single cells. Nature Methods, 7(5):387–390, 2010.

[23] Sungmin Son, Amit Tzur, Yaochung Weng, Paul Jorgensen, Jisoo Kim, Marc W.

Kirschner, and Scott R. Manalis. Direct observation of mammalian cell growth

and size regulation. Nature Methods, 2012.

[24] Andrea K. Bryan, Vivian C. Hecht, Wenjiang Shen, Kristofor Payer, William H.

Grover, and Scott R. Manalis. Measuring single cell mass, volume, and density

with dual suspended microchannel resonators. Lab on a Chip, 2013.

[25] E. V. Orlova and H. R. Saibil. Structural Analysis of Macromolecular Assemblies

by Electron Microscopy. Chemical Reviews, 111(12):7710–7748, 2011.

[26] Henk G. Merkus. Particle Size Measurements, volume 17 of Particle Technology

Series. Springer Netherlands, Dordrecht, 2009.

[27] Will Anderson, Darby Kozak, Victoria A. Coleman, Åsa K. Jämting, and Matt
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