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Summary

Summary

Vocal repertoires of nonhuman animals and especially of terrestrial mammals are often

characterized by their relatively small size of innate vocal types which can show consid-

erable variation in acoustic structure. To understand the proximate and ultimate causes

that shape the structure of acoustic communication systems in animals, an objective

characterization of the vocal repertoire of a given species is critical, as it provides the

foundation for comparative analyses among individuals, populations, and taxa.

The common approach to characterize vocal repertoires is by using unsupervised clus-

tering algorithms to identify call types and to de�ne a repertoire's size. Progress in the

�eld has been hampered by a lack of standard in methodology which can lead to an arbi-

trary decision about the size of a species' repertoire. To investigate whether this di�culty

is based on the used methodology or whether it is intrinsic to the acoustic structure of

a given repertoire, the major aim of my dissertation was to investigate and advance the

available methods in the �eld. To do so, I focused on three main aspects of a vocal

repertoire analysis: (1) how is the analysis a�ected by the input parameters, i.e. the

acoustic features that are used; (2) how can we quantify the acoustic variation within and

between di�erent vocal types; (3) what is the impact of data set composition, i.e. the call

recordings that are being used in the analysis.

In the �rst part of my thesis, I re-analyzed recordings from wild chacma baboons (Papio

ursinus) to test the impact of the number and type of acoustic features that are included

in the analysis. To do this, I constructed data sets with the same 912 call exemplars

but with a varying number of acoustic features to describe these calls. To this end, I

had three data sets with 9, 38, and 118 acoustic features as well as a data set with 19

factors derived from a principal component analysis. By comparing and validating the

resulting classi�cations of two clustering algorithms, namely k-means and hierarchical

Ward's clustering, I could show that the data sets with a higher number of acoustic

features lead to better clustering results than data sets with only a few features. I further

showed that factors are not suited to cluster the chacma baboon's calls. None of the

applied clustering algorithms gave strong support to a speci�c cluster solution. Since
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Summary

there was substantial acoustic variation within and between the di�erent call types, I

applied an approach based on fuzzy logic that we developed to describe the gradation

within vocal repertoires and which provides a quantitative description of the gradation

within the chacma baboon's repertoire.

To investigate the impact of potential evolutionary forces that shape a species' com-

munication system, comparative studies that quantify the di�erences in these systems

between di�erent species are necessary. In the second part of my thesis, I strove towards

such a quantitative comparison by systematically comparing the vocal repertoire of the

chacma baboon with the vocal repertoire of the Barbary macaque, Macaca sylvanus. I

quanti�ed the gradation within and between di�erent call types of both species with an ex-

tended version of the fuzzy clustering approach that was used to characterize the chacma

baboon's repertoire in the �rst part of this thesis. The analysis con�rmed the �ndings of

previous studies by showing that the repertoire of the Barbary macaque exhibits a signif-

icant larger amount of gradation within and between di�erent call types. An important

aspect of this method is that it allows the quanti�cation of gradation irrespective of the

number of call types by circumventing the problem to settle on one cluster solution when

several solutions are largely equivalent.

In the third part of my thesis, I investigated the in�uence of the data set composition

that is used for the analysis of vocal repertoires. Speci�cally, I was interested in the

e�ects of size- and arousal based di�erences in the recorded animals and their impact

on clustering results. The di�erences in body size and arousal were simulated with a

software-based model that simulates muscle characteristics of the larynx and vocal tract

anatomy. With this model I created pseudo repertoires of three distinct baboon call

types that varied in subglottic pressure levels (as a proxy of arousal-based di�erences)

and vocal fold and vocal tract characteristics (size-based di�erences). The preliminary

results show that whereas di�erences in subglottic pressure levels had a minor impact on

the characteristics of vocal repertoires and all three call types can be clearly separated

from each other, di�erences in body size can hamper classi�cation and characterization

of call types.

In conclusion, I investigated several aspects that have to be taken into account when
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Summary

analyzing vocal repertoires. The composition of the data sets as well as the selection of

acoustic features that are used in the analysis can both have a profound e�ect on the

classi�cation outcome and on cluster determination. To overcome the often arbitrary de-

cision about a species repertoire size I developed a method that is useful to describe the

gradation within and between di�erent call types over several cluster solutions and there-

fore circumvents the problem to settle on one speci�c solution. In addition, the method

allows a systematic comparison of di�erent species' vocal repertoires, a prerequisite to

investigate potential driving forces in signal evolution.
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Zusammenfassung

Zusammenfassung

Vokale Repertoires von nichtmenschlichen Tieren und im Besonderen von terrestrischen

Säugetieren sind häu�g durch eine relativ kleine Anzahl angeborener Ruftypen gekennze-

ichnet, welche ein hohes Maÿ an akustischer Variation aufweisen können. Objektive

Beschreibungen von vokalen Repertoires werden benötigt, um die proximaten und ul-

timaten Faktoren die die Struktur akustischer Kommunikationssysteme beein�ussen zu

verstehen, da diese die Grundlage für vergleichende Analysen zwischen Individuen, Pop-

ulation und Taxa bilden.

Üblicherweise werden vokale Repertoires durch nichtüberwachte Clusterverfahren be-

schrieben, da hiermit Ruftypen identi�ziert und die Gröÿe eines Repertoires de�niert

werden kann. Der Fortschritt in diesem Forschungsfeld wird jedoch durch eine nicht-

standardisierte Methodik erschwert, was oft zu einer arbiträren Entscheidung bezüglich

der Gröÿe eines vokalen Repertoires führt. Um zu überprüfen ob diese Problematik auf

der verwendeten Methodik beruht, oder ob eine klare Einteilung durch die akustische

Variation in den analysierten Datensätzen nicht möglich ist, lag der generelle Fokus

meiner Dissertation auf der Überprüfung und Weiterentwicklung der vorhanden Klas-

si�zierungsmethoden. Im Speziellen untersuchte ich drei elementare Aspekte der Analyse

von vokalen Repertoires: (1) welchen Ein�uss hat die Auswahl der akustischen Parameter

die genutzt werden um die Rufstruktur zu beschreiben; (2) wie kann die akustische Vari-

ation innerhalb und zwischen den verschieden Ruftypen quanti�ziert werden; (3) welchen

Ein�uss hat die Zusammensetzung des Datensatzes, sprich der Rufaufnahmen die in der

Analyse verwendet werden.

In dem ersten Teil meiner Arbeit analysierte ich Rufaufnahmen von freilebenden Bären-

pavianen (Papio ursinus), um die Auswirkungen der Auswahl akustischer Parameter, die

in die Analyse ein�ieÿen, zu untersuchen. Hierfür erstellte ich Datensätze derselben 912

Rufaufnahmen, variierte jedoch die Anzahl der akustischen Parameter mit der die Rufe

beschrieben werden. Insgesamt erstellte ich drei Datensätze mit jeweils 9, 38 und 118

akustischen Parametern, sowie einen Datensatz mit 19 Faktoren, die ich durch eine Haup-

tkomponentenanalyse gewonnen hatte. Durch den Vergleich und die Validierung der re-
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Zusammenfassung

sultierenden Ergebnisse der zwei Clusteralgorithmen (k-means und hierarchisches Ward's

Clustering) konnte ich zeigen, dass Datensätze mit einer höheren Anzahl an akustischen

Parametern zu besseren Clusterergebnissen führen als Datensätze mit weniger akustischen

Parametern. Des Weiteren zeigte ich, dass der Datensatz, der auf Faktoren basiert, nicht

geeignet ist, um die Rufe der Bärenpaviane zu klassi�zieren. Keiner der angewandten

Clusteralgorithmen fand eine eindeutige Lösung bezüglich der Gesamtzahl von Ruftypen.

Da der Datensatz jedoch eine substantielle akustische Variation innerhalb und zwischen

den verschiedenen Ruftypen aufwies, wendete ich in einem zusätzlichen Analyseschritt ein

Clusterverfahren an, welches auf den Prinzipien der Fuzzy-Logik beruht und das von uns

entwickelt wurde, um die Variation innerhalb von vokalen Repertoires zu beschreiben. Das

Ergebnis dieser Analyse liefert eine quanti�zierte Beschreibung dieser Variation innerhalb

des vokalen Repertoires des Bärenpavians.

Um den Ein�uss von evolutionären Faktoren zu untersuchen, die das Kommunika-

tionssystem einer Art beein�ussen, werden vergleichende Studien zwischen verschiedenen

Arten benötigt. Diese Studien müssen in der Lage sein, die strukturellen Unterschiede

in diesen Kommunikationssystemen zu quanti�zieren. Aus diesem Grund verglich ich

im zweiten Teil meiner Arbeit systematisch das vokale Repertoire des Bärenpavians mit

dem vokalen Repertoire des Berbera�ens, Macaca sylvanus. Die Variation innerhalb und

zwischen verschiedenen Ruftypen beider Arten wurde mit einer erweiterten Version der

Methodik quanti�ziert, die bereits zur Beschreibung des Bärenpavian Repertoires im er-

sten Teil dieser Arbeit entwickelt und genutzt wurde. Die Methodik ermöglichte die

Unterschiede in der Variation zwischen den beiden Repertoires zu quanti�zieren. Die

Analyseergebnisse bestätigten Ergebnisse früherer Studien, welche zeigen konnten, dass

Berbera�en ein hohes Maÿ an akustischer Variation innerhalb und zwischen verschiede-

nen Ruftypen aufweisen. Ein wichtiger Aspekt dieser Methode ist, dass sie es ermöglicht

die Variation innerhalb eines Repertoires ungeachtet der Gesamtzahl der Ruftypen zu

quanti�zieren.

Im dritten Teil meiner Arbeit untersuchte ich den Ein�uss der Zusammenstellung des

Datensatzes, der für die Analyse eines vokalen Repertoires genutzt wird. Speziell war

ich an dem Ein�uss interessiert, den die Körpergröÿe und der Erregungszustand des
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aufgenommenen Tieres auf die Analyseergebnisse spielen. Körpergröÿe und Erregungszu-

stand wurden durch ein software-basiertes Modell variiert, welches die Eigenschaften von

Kehlkopfmuskeln sowie die Anatomie des Vokaltraktes simuliert. Mit Hilfe dieses Models

habe ich Pseudo-Repertoires von drei distinkten Ruftypen erstellt, die akustische Variatio-

nen aufweisen, die durch Variation des Anpressdrucks in der Lunge (Erregungszustand)

sowie Variation in Eigenschaften der Stimmlippen und des Vokaltraktes (Körpergröÿe)

hervorgerufen werden. Die vorläu�gen Ergebnisse zeigen, dass während Variation im Er-

regungszustand einen eher untergeordneten Ein�uss auf die Charakteristik eines vokalen

Repertoires hat und die drei Ruftypen weiterhin klar voneinander unterschieden wer-

den können, Variationen, die durch Gröÿenunterschiede hervorgerufen werden die Klassi-

�zierung und Charakterisierung von Ruftypen deutlich erschweren kann.

Zusammenfassend habe ich verschiedene analytische Aspekte untersucht, die maÿge-

bliche Auswirkungen auf die Ergebnisse einer vokalen Repertoire Analyse haben können

und eine Methode entwickelt, um die akustische Variation innerhalb eines Repertoires zu

quanti�zieren. Die Zusammenstellung der Datensätze sowie die Auswahl der akustischen

Parameter die für die Analyse genutzt werden, können die Bestimmung der Repertoire-

gröÿe erheblich erschweren. Um zu vermeiden, dass die Repertoiregröÿe arbiträr fest-

gelegt wird, kann die von mir entwickelte Methodik angewendet werden, in welcher die

akustische Variation eines Repertoires über mehrere mögliche Clusterlösungen beschrieben

und die Veränderung der Variation quanti�ziert wird. Zusätzlich erlaubt die Methodik

einen systematischen Vergleich von vokalen Repertoires verschiedener Arten, welcher eine

Grundvoraussetzung darstellt, um die evolutionären Faktoren die die Struktur von Kom-

munikationssystemen beein�ussen zu untersuchen.
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Chapter 1 - General Introduction

1 | General Introduction

Human language is strikingly di�erent from communication systems in other species.

Whereas human language applies conventional rules about the referential content of words

and uses syntactical rules and recursion to generate limitless meaning (Hauser et al.

2002; Fischer 2010), nonhuman animals do not show these key components of human

language (or only to a very limited degree). The importance and large interest in language

evolution led to a number of studies that explore human language evolution based on

hypotheses regarding the evolution of symbolic communication and syntax (Nowak et al.

2000; Komarova et al. 2001; Chater and Manning 2006; Chater et al. 2009). To investigate

the evolution of communication at a more general level however, comparative studies of

di�erent species' communication systems are necessary.

In order to compare such systems, detailed descriptions of nonhuman animals' vocal

repertoires are a prerequisite. Studies to describe vocal repertoires are manifold and

investigate several aspects such as the number of calls that a species produces or the

acoustic variation within and between di�erent call types. Over the last decades, the

upsurge of computer technology has given researchers more sophisticated software-based

tools to analyze the �ne di�erences in acoustic structure of calls. However, the avail-

able tools require several decisions of the researcher during the analytical process, which

often impede objectivity of such studies and hence hinder comparability. Therefore, a

major goal of bioacoustics research is to �nd solutions to overcome these limitations and

advance methodology to generate detailed and quantitative descriptions of nonhuman

animal communication systems.

In the following sections of this chapter, I will �rst introduce the basic principles of vo-

cal production in terrestrial mammals and highlight di�erences in the anatomy of human
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Chapter 1 - General Introduction

and primate vocal organs and neural circuits and their implications for speech produc-

tion. Although the main focus in behavioural bioacoustics research lies on the ultimate

evolutionary explanations for the structure of these systems, a basic knowledge of sound

production mechanisms is crucial to understand physical factors and potential constraints

that can in�uence the evolution of vocal communication systems. Following from this, I

will discuss signal structure and external as well as internal factors that can in�uence it,

before I turn towards signal repertoire design and informational content of signals. I will

then summarize the most common analytical tools in bioacoustics research and their ap-

plications before I �nally outline the overall aim of my thesis and introduce the conducted

studies.

1 Sound Production

1.1 Anatomy of the Vocal Organs

The basic mechanisms of sound production in humans and other terrestrial mammals are

well explored and show a high level of similarity (Taylor and Reby 2010). Air that is

exhaled from the lungs by muscle contraction drives oscillations of the vocal folds which

are located in the larynx. Depending on lung capacity and strength of muscle contraction,

duration and amplitude of the generated sound can be altered. Since the vocal folds are

associated with several laryngeal muscles and cartilages, the fundamental frequency (i.e.

pitch) of the produced sound can be changed by lengthening or shortening the vocal folds.

If the vocal folds are lengthened, their oscillation rate triggered by the air�ow is increased

and therefore fundamental frequency is increased. The shorter the vocal folds, the lower

their oscillation rate and the lower the fundamental frequency. The generated acoustic

energy then passes through the vocal tract where it is �ltered before it exits the vocal tract

through the nostrils and lips. This �ltering process is accomplished by a series of bandpass

�lters, termed formants. The formants modify the sound that is emitted by allowing only

a narrow range of frequencies to pass unhindered. Formants are determined by the length

and shape of the vocal tract and are modi�ed during vocalizations by movement of the

2



Chapter 1 - General Introduction

articulators like lips, tongue, and soft palate (Fitch 2000a).

All terrestrial mammals that have been studied produce sounds in essentially this way,

using similar larynges and vocal anatomy. One striking di�erence in the vocal tract

anatomy of humans and most other mammals is the position of the larynx. Whereas in

most mammals the larynx is located high enough in the throat to enable simultaneous

breathing and swallowing, the lowered human larynx allows the tongue to move both ver-

tically and horizontally within the vocal tract and therefore greatly expands the phonetic

repertoire in humans (Lieberman et al. 1969).

1.2 Neural Circuits of Vocal Production

Most terrestrial mammals exhibit a common neurobiological circuitry for volitional vocal

control. The analyses of the neurobiological control mechanisms engaged in phonatory

functions relied predominantly on brain stimulation studies on squirrel monkeys (Jür-

gens and Ploog 1970; Gonzales-Lima 2010). Vocal control consists of two hierarchically

organized pathways. One of the pathways that controls the readiness to vocalize, cen-

tres around the periaqueductal gray (PAG) in the midbrain. The PAG gets input from

motivation-controlling regions, sensory structures, motor areas, and arousal-related sys-

tems and seems to gate vocalizations in response to emotions such as fear and aggression

(Ackermann et al. 2014). After integration of these input signals, the PAG projects into

the reticular formation of pons and medulla oblongata, including a vocal pattern gener-

ator, which innervate the phonatory motor neurons and �nally the vocal tract muscles

(Hage and Jürgens 2006). The second pathway that is responsible for the production

of innate vocal patterns runs from the motor cortex via the reticular formation to the

phonatory motor neurons. Before the �nal motor commands are generated, two feedback

loops provide the motor cortex with pre-processed information from the basal ganglia

and the cerebellum (Jürgens 2009). However, the role of basal ganglia and cerebellum in

motor aspects of vocal behaviour are still not fully understood (Ackermann et al. 2014).

An additional pathway that directly links regions in the primary motor cortex with the

phonatory motor neurons has so far only be found in humans and three distantly related

3
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groups of birds (parrots, hummingbirds, and songbirds) (Nottebohm 1972; Janik and

Slater 1997). Sparse projections have also recently been identi�ed in mice (Arriaga and

Jarvis 2013). This direct link is assumed to enable these species to modify the acoustic

structure of produced sounds, including imitation and improvisation, called vocal produc-

tion learning (Hammerschmidt et al. 2015). Other mammals including bats, cetaceans,

seals, and elephants also show vocal learning, however, their brain pathways for learned

vocalizations have not yet been studied (see Jarvis 2007 for a review). Notably, nonhuman

primates do not have the ability of vocal production learning and the structure of their

vocalizations is largely innate.

2 Signal Design

The evolution of signal structure is in�uenced by a range of ecological factors. These fac-

tors can generally be assigned to one of the two opposing components of signal selection,

the e�cacy and the strategic component. From the signaler's perspective, a signal should

in�uence the receiver in a way that bene�ts the signaler and at the same time should

be energetically cheap. The e�cacy component therefore selects for signal structure that

provides the optimal trade-o� between costs and bene�ts of the signal (Krebs and Davies

1997). From a receiver's perspective, a signal should be a source of information that

bene�ts the receiver by adjusting its behavior in response. As receivers are under strong

selection to only respond to reliable signals, the strategic component of signal structure

evolution ensures that signalers pay additional costs that guarantee honest signals (Brad-

bury and Vehrencamp 2011). In the following subsections I will discuss some of the

numerous ecological and biological factors that in�uence signal structure with respect to

these two components of signal selection.

2.1 Signaler Anatomy and Phylogenetic Constraints

A signaler's body size and structure of the vocal apparatus are among the most salient

biological factors that in�uence the acoustic structure of a signal. As I discussed in the

previous section, sound production results from a process of three steps, starting with air
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compression in the lungs, glottal wave generation at the larynx and subsequent �ltering

in the supralaryngeal vocal tract. Since the variability of signal structure is constrained

by the physical properties of these anatomical structures, receivers may be able to use

features of the signal to reliably gain information about the physical attributes of the

signaler (Fitch and Hauser 1998). This is of particular importance since many terrestrial

mammals use acoustic signals in aggressive interactions and mate attraction (Clutton-

Brock and Albon 1978) and the outcome of these interactions can depend strongly on

physical attributes such as body size, sex, or age (Taylor and Reby 2010).

Generally, reliable cues to physical attributes of the signaler can originate at all three

structures, the lungs, larynx, and vocal tract. Since in mammals the lungs occupy most

of the thorax, their size is closely related to body size. Acoustic features that are directly

linked to body volume (such as signal duration) should therefore be reliable cues for

body size. Although there has been no experimental test of this hypothesis to date,

MacLarnon and Hewitt showed that primates with air sacs, which are assumed to function

as "accessory lungs", have longer signal durations than those without air sacs (MacLarnon

and Hewitt 1999).

At the level of the larynx, vocal fold characteristics determine the fundamental fre-

quency (F0) of produced signals. F0 does not seem to be a reliable indicator for body

size, since the growth of the vocal folds is not constrained by an individual's body size

(Fitch 1997; Riede and Titze 2008). However, several studies have shown that during de-

velopment, F0 can be correlated with body size (Rendall et al. 2005; Pfe�erle and Fischer

2006) and that, among females, F0 can be a reliable indicator of body size even within

age classes (Pfe�erle and Fischer 2006). Furthermore, in some species F0 has been found

to be negatively correlated with reproductive success (Reby and McComb 2003).

At the level of the vocal tract, it has been argued that vocal tract size is constrained

by skeletal structures (Fitch 2000,b) and formant dispersion should therefore be a reliable

cue of body size (Fitch and Reby 2001). In support of this hypothesis, several studies have

found a direct negative correlation of formant dispersion and body size (e.g. in domestic

dogs: Riede and Fitch 1999). However, others argue that formant dispersion might not

be as reliable as hypothesized since formant dispersion can be altered by lip con�guration
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and jaw movements and, in some species, by lowering down the larynx to the sternum,

hence increasing vocal tract length (Pfe�erle and Fischer 2006).

Since signal structure is highly in�uenced by these anatomical features, the variation in

signal structure is limited to a small portion of adaptive space that is explorable through

genetic recombination and mutation (Fitch and Hauser 1998). Especially in primates,

where vocal signal structure is largely innate, vocalizations are expected to represent

strong phylogenetic traits. Although studies that systematically compare signal structure

and genetic relatedness are rare, existing studies on crested gibbons and leaf monkeys

showed a high correlation between signal structure and genetic similarity (Thinh et al.

2011; Meyer et al. 2012). In addition to these phylogenetic traits, several studies have

found correlations of signal structure and geographic distance (Geissmann and Nijman

2006), and geographic distance and genetic similarity between populations of the same

species (Meyer et al. 2012).

2.2 Physical Properties of the Habitat

As I have discussed in the last section, a signal can be a reliable indicator of several

characteristics of the signaler such as its sex, size, �ghting ability, or identity. Numer-

ous studies have shown that the distance of signal propagation has profound e�ects on

frequency-dependent features of a signal (e.g. in Maciej et al. 2011). Hence, particularly

the structure of long-distance vocal signals should underlie strong environmental selec-

tive pressures to minimize propagation losses ("acoustic adaptation hypothesis": Morton

1975).

A strong focus in investigating environmental e�ects on sound structure is based on the

comparison between signal structures of species that inhabit closed and open habitats.

Since open habitats provide more variable conditions for sound propagation (Morton

1975) and visual signals of communication can support vocal signals, selection pressure

is assumed to be stronger in closed than in open habitats. These environmental-related

variations might a�ect several characteristics of signals (Ey and Fischer 2009), such as

signal duration (longer signals in closed habitats increase the chance of detection), signal
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repetition rate (lower repetition rate in closed habitats avoid reverberation), frequency

modulation (lower modulation in closed habitats since transmission is less consistent), or

frequency range (lower range in closed habitats since high frequencies experience stronger

attenuation). However, whereas some studies support the hypothesis that signals of a

species show higher propagation levels under environmental conditions that represent the

habitat of the species (e.g. in Japanese macaques: Tanaka et al. 2006) other studies did

not �nd this trend (e.g. in marmosets: Daniel and Blumstein 1998).

Furthermore, environmental-related variations have been hypothesized to impact the

structure of a species' entire vocal repertoire. This point is a central part of my work and

will be described in more detail in section 1.3.

2.3 Motivational and A�ective State of the Signaler

Whereas the physical properties of a habitat have a signi�cant impact on the structure of

signals that are used over large distances, structure of signals used in short-distance com-

munication is much less in�uenced by the selective pressures of habitat characteristics.

Nonetheless, selection for e�ective detection on the structure of short-distance signals

exists. According to Morton (1977), the acoustic structure of a signal varies with the

signaler's motivational state of fear and aggression. Whereas signals of an aggressive in-

dividual are assumed to be characterized by low frequency and broad bandwidth, signals

of a fearful individual are characterized by high frequency and narrow bandwidth. Mor-

ton assumed that, since larger individuals can produce lower-frequency sounds and larger

individuals often win aggressive encounters with smaller individuals, selective pressures

act to lower the frequency of vocal threat signals. In contrast, high-frequency calls with

narrow bandwidth of fearful animals symbolize small size, indicating appeasement and

therefore reducing the likelihood of being attacked during aggressive encounters (Owings

and Morton 1998). As aggressive and fearful signalers bene�t from the coupling of sig-

nal structure and motivational state by making the signals clearly distinguishable, the

selective pressures that lead to the divergence of signal structures can be assigned to the

e�cacy component of signal selection. Evidence for the validity of Morton's motivation-
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structural code comes from studies on a broad range of vocalizing taxa (e.g. in canids:

Brady 1981), or nonhuman primates: Gouzoules and Gouzoules 2000; Fichtel et al. 2001).

However, contradicting results have been found and doubts on the general validity of the

model across call types have been raised (Cheney and Seyfarth 1990; Hauser 1993).

In humans, preverbal vocalizations like cries and moans that are given in emotional

negative situations show higher frequency ranges, higher peak frequencies and longer

duration than in emotional positive situations Scheiner et al. (2002). Similarly, in squirrel

monkeys calls that are given in aversive situations di�er structurally from calls given in

pleasant situations (Jürgens and Pratt 1979) by being noisier and having higher peak

frequencies. A correlation between aversiveness and peak frequency has also been shown

in other species such as pigs and Barbary macaques (Hammerschmidt and Fischer 2008).

3 Signal Repertoires

After I have discussed several factors that can in�uence signal structure, I will now discuss

how all signals used by a given species make up its vocal repertoire, factors that can

in�uence repertoire structure and the potential informational content of a repertoire.

3.1 Signal Repertoire Structure

One of the prominent views on species' repertoires is that signal receivers only gain in-

formation from signals if the signaler is su�ciently consistent in emitting a speci�c signal

when a certain condition is true. The mapping between signals and conditions is termed

the coding scheme of a species and the sum of all signals makes up a species' vocal reper-

toire (Bradbury and Vehrencamp 2011).

Signal repertoires can be characterized by the structural variation within and between

di�erent signals. If the signals that constitute a signal repertoire are individually distinct

and show no structural intermediates, the signal repertoire is considered being discrete.

If structural variation occurs and intermediate structures between di�erent signals can

be found, the signal repertoire is considered being continuous or graded. For signal

repertoires to be discrete, acoustic features of di�erent signals must have separated values
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so that receivers can easily discriminate between them and assign each to an expected

category (see Bradbury and Vehrencamp 2011). In a graded signal repertoire in contrast,

signals can vary in one or more features on a continuous scale and therefore the alternatives

of signals are potentially in�nite in number. However, since variations in signal features

have to vary with some minimal resolution to be discriminable by signal receivers, even

graded signal repertoires are perceptually �nite (categorical response) and many species

categorize continuous signals into meaningful categories (categorical perception) (reviewed

in Fischer 2006).

For vocal repertoires, several factors have been assumed to have a major impact on the

gradation within a species' repertoire structure. Marler suggested that in species that

live in habitats that restrict visual access between signaler and receiver and/or show high

background noise (such as dense rainforest), discrete repertoires should have evolved to

avoid signal misinterpretation (Marler 1975). On the other hand, species that live in open

habitats with visual access to each other (such as savannah), graded repertoires should

have evolved since the integration of visual signals could be used to avoid misinterpreta-

tion. For the same reason, within a species graded repertoire structures have been assumed

to occur in close-range signals, whereas signals that are used over long distances should

show a more discrete structure (Marler 1967). Marler further assumed that species that

live in single-male groups should have evolved discrete signals since single males require

loud, unambiguous signals to defend and in�uence their group (Marler 1976). Another

factor that has been assumed to in�uence vocal repertoire structure is predation (Cheney

and Seyfarth 1990; Fischer and Hammerschmidt 2001). In species with predator-speci�c

defense strategies, alarm calls that are easily discriminable by signal receivers should

evolve.

In nonhuman primates, graded and discrete vocal repertoires have been described in a

number of species (graded: Barbary macaques, Macaca sylvanus (Hammerschmidt and

Fischer 1998); bonobos, Pan paniscus (de Waal 1988); rhesus macaques, Macaca mulatta

(Rowell and Hinde 1962); and Japanese macaques, Macaca fuscata (Green 1975) - dis-

crete: putty-nosed monkeys, Cercopithecus nictitans (Arnold and Zuberbühler 2006); blue

monkeys, Cercopithecus mitis (Papworth et al. 2008), and Diana monkeys, Cercopithecus
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diana (Zuberbühler et al. 1997)). As Kennan and colleagues point out however, labelling

whole repertories as being either discrete or graded often represents an oversimpli�ca-

tion, since gradation can occur within and between call types, and call types may vary

to di�erent degrees (Keenan et al. 2013). Whereas between-call-type variation might be

dependent on the call's function, within-call-type variation could be linked to an animal's

general a�ective state (Fischer et al. 1995; Manser 2001). Within this general a�ective

state, similar situations can potentially evoke slightly di�erent forms of excitement or

fear, which can then relate to dissimilar acoustic structures within call types (Fischer et

al. 2001). The importance to di�erentiate between these di�erent forms of gradation,

however, is neglected in most studies on vocal repertoires.

Despite the widespread usage of graded signals, receivers often assign perceived signals

to discrete categories, even when signalers emit continuous signals. This phenomenon,

called categorical perception, was �rst described by Liberman et al. (1957) who analyzed

the perception of the human spoken phonemes /ba/ and /pa/ (there is no continuous per-

ception although the two phonemes represent an acoustic continuum). Whereas Liberman

believed that categorical perception is special to human speech, several studies have shown

that categorical perception of continuous signals is a widespread phenomenon across taxa

and can be found in insects, rodents, birds, and nonhuman primates (see Fischer 2006

for a review). The widespread presence of categorical perception has led to the ques-

tion of why receivers would give up potential information that is encoded in continuous

signals by lumping received signals into discrete categories (Bradbury and Vehrencamp

2011). Theories why this phenomenon occurs are manifold. In an early work, Ehret

hypothesized that the adaptive function of categorical perception is to reliably di�erenti-

ate discrete call-type-speci�c features within noisy and variable multidimensional signals

that also vary in continuous motivational parameters (Ehret 1987). Another hypothesis

is that categorical perception of continuous signals allows groups to communicate within

a group-speci�c communication system and hence fosters group cohesion.
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3.2 Vocal Complexity

In vocal repertoires with clear distinct acoustic signals, the number of signals can be a

good descriptor for communicative complexity, as it is often the case in repertoires of

songbirds. Here, species with a higher number of distinct signals exhibit a more complex

communication system than species with fewer signals. As I have discussed in the previous

section, vocal repertoires of nonhuman primates and of many other mammalian species

can exhibit a substantial level of gradation within and between acoustic signals. Besides

the di�culty to verify the number of signals within a graded repertoire, the �ne struc-

tured variations in signals can also provide an additional dimension of vocal complexity

(Freeberg et al. 2012). Another way of accessing the complexity of a vocal repertoire

stems from information theory and is based on the measurement of uncertainty (Shannon

1948). The argument goes that the greater the diversity of signals in a vocal repertoire,

the greater the uncertainty of a speci�c signaling event. With the occurrence of a signal-

ing event then, the reduction of uncertainty is higher in repertoires that have a greater

diversity of signals. As a consequence, the potential information or complexity that such

repertoires possess is higher. Studies on several taxa use repertoire size (e.g. in zebra

�nch: Boogert et al. 2008; Templeton et al. 2014) or information theory (e.g. in pari-

dae: Krams et al. 2012 or nonhuman primates: Bouchet et al. 2013) to measure vocal

complexity. Freeberg and colleagues point out that the actual way in which variation in

signals a�ects the behavior of receivers has to be taken into account, in order to describe

all aspects of vocal complexity in a species (Freeberg et al. 2012). Supporting this view

Skyrms suggests that in order to measure the information of a signal, it is important to

distinguish between the quantity of information in a signal and the informational content

of a signal. Whereas the quantity of information can be measured as the extent that

the use of a particular signal changes the probability of a speci�c condition to be true,

the informational content lies in the direction the signal a�ects probabilities, i.e. which

condition is more likely to be true (Skyrms 2010).
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4 Approaches to Analyze Vocal Repertoires

4.1 Signal De�nition

The �rst step in the analysis of vocal repertoires is to de�ne the signal, i.e. the call

unit given by the signaler. Generally, a call unit can be de�ned on the level of production

mechanisms, which focus on how the sounds are generated by the signaler, or by perception

mechanisms, which focus on how the sounds are interpreted by the receiver (Kershenbaum

et al. 2014). Since the details of acoustic production and perception can be hidden from

the researcher however, the acoustic features that can be observed are usually used to

de�ne the call unit (Catchpole and Slater 2003). Based on acoustic features, call units are

most commonly de�ned by the presence of silent gaps before and after the unit, which can

be identi�ed by the inspection of the time signal or spectrogram of the call (Kershenbaum

et al. 2014). Once the call unit has been identi�ed, there are several approaches to extract

acoustic features from the sound recording. In species that use less complex call structures

Zero-Crossings Analysis (ZCA) is a fast and e�cient tool. By counting how many cycles

occur in a given time interval, ZCA can be used to identify frequency and frequency

modulation. This technique is commonly used to analyze ultrasonic calls in bats (Fenton et

al. 2001; Corben 2002) and �nds its application in diverse taxa such as anurans (Wilczynski

et al. 1995; Huang et al. 2009) or crickets (Bailey et al. 2001). If species use more complex

calls and harmonics and amplitude represent important acoustic features of the signal,

other methods have to be used. The most common approach to extract acoustic features

from acoustically more complex signals is by fast Fourier transforming (FFT) the signal

into its frequency-time domain (spectrogram). From this spectrogram, many temporal

and spectral features can be extracted that are relevant for acoustic communication using

software tools such as Avisoft (Specht 2004), PRAAT (Boersma and Heuven 2001), or

Raven (Charif et al. 2006). For an overview of such features, see the method section of

Chapter 2. An alternative approach (which is often veri�ed by FFT) is linear predictive

coding (LPC). LPC is based on the source-�lter model I introduced in Chapter 1.1.1

and is used to measure formant frequencies. From the vocal tract length of the signaler,
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the number of formants can be determined and subsequently, formant dispersion can be

calculated. LPC has its origin in human speech analysis, but is also used in call analysis of

primates (Fitch 1997; Rendall et al. 1999; Pfe�erle and Fischer 2006) and other mammals

(e.g. in dogs: Riede and Fitch 1999 or pigs: Schön et al. 2001). Other techniques, such as

wavelet or cepstral analysis, are less common. I will discuss the usage of these alternative

techniques in the general discussion of this thesis.

4.2 Call Classi�cation Using Unsupervised Clustering

After acoustic features have been extracted from the identi�ed call units using one of

the mentioned techniques, call classi�cation is commonly used to separate the calls into

discrete types. Traditionally, calls have been categorized by visual inspection of spectro-

grams (Kroodsma 1974; Marler and Pickert 1984). Although humans are considered to

be good at visual categorization (Ripley 1996), this procedure can include bias related to

human perceptual processing and therefore lack objectivity (Hopp et al. 1998). Further,

this technique is generally not suitable for the categorization of highly graded systems,

time consuming, and prone to subjective errors (Burghardt et al. 2012). The upsurge of

computational possibilities brought new methodologies that allow standardization across

large datasets without the disadvantage of subjective a priori classi�cation (Clemins and

Johnson 2006). These unsupervised clustering algorithms have proven to be time-saving

and more objective (Stowell and Plumbley 2014). Since the notion of a cluster cannot

be precisely de�ned, unsupervised clustering algorithms are manifold and based on di�er-

ent calculations. Two groups of algorithms that are commonly used to categorize vocal

repertoires are centroid models like k-means clustering which represent each cluster by

a single mean vector, and connectivity models, like hierarchical clustering, that build

clusters based on distance connectivity between data samples (Duda et al. 2012).

Unsupervised clustering has been used to categorize vocal repertoires of several species,

such as sperm whales (Weilgart and Whitehead 1997), dolphins (McCowan 1995), piglets

(Tallet et al. 2013), Barbary macaques (Hammerschmidt and Fischer 1998), and true

lemurs (Gamba et al. 2015). Since for unsupervised clustering algorithms the desired
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classi�cation is unknown, several techniques exist to quantify the stability of the clustering

result, as an indicator of clustering quality (Kershenbaum et al. 2014). One common

method is to inspect silhouette values which represent the tightness of calls within a

cluster and the separation between di�erent clusters in a given repertoire (Rousseeuw

1987). By identifying the cluster solution with the highest silhouette value, the solution

that best represents the structure of the dataset can be extracted (e.g. Maciej et al.

2013). Another method that can be used to access cluster quality of by calculating the

normalized mutual information (NMI) that compares how well the results of two di�erent

clustering schemes match (Fred and Jain 2005).

It is important to keep in mind that these techniques heavily rely on the acoustic features

that are used to characterize the structure of the calls and hence the cluster stability

gives no evidence for the biological signi�cance of the calculated clusters. To access

which features of a signal are perceptually salient, playback experiments are required in

which acoustic features are systematically excluded, distorted, or held constant to access

their importance for signal receivers (Hauser 1996). Cluster stability is also a�ected

by the composition of the dataset that is analyzed and can change if more calls are

included in the analysis (Ben-David et al. 2006). The usage of di�erent unsupervised

clustering algorithms, the measurement of clustering quality, and current shortcomings in

the analysis of highly graded repertoires are an integral topic of this thesis and will be

discussed in detail throughout the next chapters.

5 Aims of this Thesis

Detailed descriptions of vocal repertoires are not only necessary to investigate driving

forces in signal evolution (Chapter 1.2), but also needed to determine a repertoire's com-

plexity and to understand consequences for signal processing by signal receivers (Chapter

1.3). In Chapter 1.4 I discussed several approaches to analyze vocal repertoires and

highlighted remaining hindrances towards an objective description of vocal repertoires,

especially the ones that show a high degree of variation within call structures.

In Chapter 2 of this thesis, I am investigating several factors that can in�uence the
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outcome of a vocal repertoire analysis. The main focus of this chapter is put on the

choice of acoustic features that are used in the analysis, di�erences between alternative

unsupervised clustering algorithms that can be applied as well as di�erent approaches of

cluster validation. I also present a novel approach based on fuzzy logic that we developed

to describe the variation of call structure on a quantitative level. The datasets that have

been used for this study come from recordings of chacma baboons, a species which vocal

behavior has been intensely studied in the past and therefore served as a good model to

access the accuracy of the di�erent approaches. The study was published in PLoS One

at the beginning of this year (Wadewitz et al. 2015a).

As a next step, we systematically compare the vocal repertoire of chacma baboons with

the vocal repertoire of Barbary macaques in Chapter 3. Since we are interested in the

di�erences concerning the level of gradation within vocal repertoires, the comparative ap-

proach between the rather discrete repertoire of chacma baboons and the rather graded

repertoire of Barbary macaques allows us to evaluate our developed method and to re-

examine existing hypotheses about the in�uencing factors that drive signal evolution. We

also present an extension of our approach that circumvents the problem of the determi-

nation of the appropriate number of call types. This study was recently submitted to a

peer-reviewed journal.

In Chapter 2 we investigated several factors that are dependent on decisions by the re-

searcher during the analytical steps to characterize a vocal repertoire. Another important

aspect of a vocal repertoire analysis is the construction of the data set that is used for the

analysis and several factors based on the data set composition can have a profound e�ect

on the vocal repertoire analysis. In Chapter 4, two of these factors, namely arousal- and

size-based di�erences of the recorded animals, are investigated. To do so, we collaborated

with Ingo Titze and colleagues from the National Center for Voice and Speech in Salt

Lake City, Utah and Ingo Riede from the Department of Physiology in Glendale, Ari-

zona. We created pseudo vocal repertoires with di�ering levels of call structure variation

by using an elaborated �nite element model that simulates muscle characteristics of the

larynx and vocal tract anatomy (Chapter 1.1). This model was developed by Titze and

colleagues and has been successfully used to model vocalizations of di�erent taxa. The
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study is currently prepared for submission.

Finally, in Chapter 5 I summarize the results of my studies and discuss their implica-

tions for the ongoing methodological development in bioacoustics research as well as for

the general examination of the evolution of vocal communication.
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1 Abstract

To understand the proximate and ultimate causes that shape acoustic communication in

animals, objective characterizations of the vocal repertoire of a given species are critical,

as they provide the foundation for comparative analyses among individuals, populations

and taxa. Progress in this �eld has been hampered by a lack of standard in methodology,

however. One problem is that researchers may settle on di�erent variables to characterize

the calls, which may impact on the classi�cation of calls. More important, there is no

agreement how to best characterize the overall structure of the repertoire in terms of the

amount of gradation within and between call types. Here, we address these challenges by

examining 912 calls recorded from wild chacma baboons (Papio ursinus). We extracted

118 acoustic variables from spectrograms, from which we constructed di�erent sets of

acoustic features, containing 9, 38, and 118 variables; as well 19 factors derived from

principal component analysis. We compared and validated the resulting classi�cations of

k-means and hierarchical clustering. Datasets with a higher number of acoustic features

lead to better clustering results than datasets with only a few features. The use of

factors in the cluster analysis resulted in an extremely poor resolution of emerging call

types. Another important �nding is that none of the applied clustering methods gave

strong support to a speci�c cluster solution. Instead, the cluster analysis revealed that

within distinct call types, subtypes may exist. Because hard clustering methods are not

well suited to capture such gradation within call types, we applied a fuzzy clustering

algorithm. We found that this algorithm provides a detailed and quantitative description

of the gradation within and between chacma baboon call types. In conclusion, we suggest

that fuzzy clustering should be used in future studies to analyze the graded structure of

vocal repertoires. Moreover, the use of factor analyses to reduce the number of acoustic

variables should be discouraged.
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2 Introduction

Objective classi�cations of animal signals are a prerequisite for addressing a broad array

of questions, both at the proximate and ultimate level. Much progress has been made

in developing quantitative methods to objectively characterize single acoustic patterns

(Boersma and Heuven 2001; Tchernichovski et al. 2000). Less agreement, however, exists

on how to objectively characterize the structure of the entirety of a species, that is, its

vocal repertoire. Being able to compare the vocal repertoires of di�erent species is crucial

to test hypotheses regarding the selective pressures that shape signal repertoires. For

instance, the habitat a species lives in was suggested to in�uence both the spectral char-

acteristics as well as the overall structure of a repertoire (Forrest 1994; Padgham 2004;

Waser and Brown 1986). More recently, it was suggested that increased social complex-

ity gives rise to increased vocal complexity (Gustison et al. 2012; McComb and Semple

2005). To rigorously test this assumption, quantitative assessments of vocal complexity

are needed. More important, broader comparative or meta-analyses are hampered be-

cause studies from di�erent labs often lack consistency in the methods used and in the

categorization criteria applied.

Many vocal repertoires are characterized by their graded morphology, meaning that

the acoustic structures of vocalizations are not well separated and discrete, but rather

form a continuum in the acoustic space (Winter et al. 1966). Such graded systems are

assumed to have evolved in species with ready visual access to each other (Marler 1975)

and are common in most mammalian vocal systems. Although graded vocal systems are

described in a number of nonhuman primates (Arnold and Zuberbühler 2006; Green 1975;

Hammerschmidt and Fischer 1998; Marler 1970, 1976; Abbot et al. 2011; Rowell and Hinde

1962; Tomasello and Zuberbühler 2002; de Waal 1988), labelling whole repertories as being

either discrete or graded often represents an oversimpli�cation, since gradation can occur

within and between call types, and call types may vary to di�erent degrees (Keenan et

al. 2013). Whereas between-call-type variation might be dependent on the call's function,

within-call-type variation could be linked to an animal's general a�ective state (Fischer

et al. 1995; Manser 2001). Within this general a�ective state, similar situations can

19



Chapter 2 - Hard vs. Soft Classi�cation

potentially evoke slightly di�erent forms of excitement or fear, which can then relate to

dissimilar acoustic structures within call types (Fischer et al. 2001). The importance to

di�erentiate between these di�erent forms of gradation, however, is neglected in most

studies on vocal repertoires.

Whereas historically, vocal repertoires were established by human observers via visual

categorization of spectrograms (Marler 1976), current approaches largely make use of

unsupervised clustering methods (Hammerschmidt and Fischer 1998) that are based on

acoustic features extracted from spectrograms. The selection and number of these features

may have a potentially critical impact on the subsequent analysis. Thus, the question

arises whether a quantitative comparison of repertoires is feasible if repertoires are based

on di�erent types and numbers of extracted features. In addition, many studies use factors

derived from factor analysis to avoid the use of highly correlating acoustic features (Arnold

and Zuberbühler 2006; Bouchet et al. 2012; Gros-Louis et al. 2008). In this study, we use

a de�ned dataset of chacma baboon (Papio ursinus) vocalizations to examine how the

choice of extracted acoustic features a�ects clustering results. The structure and function

of chacma baboon calls are well known (Fischer et al. 2001; Kitchen et al. 2005; Maciej et

al. 2013; Owren et al. 1997), and were partly validated in playback experiments (Fischer

et al. 2000, 2001; Rendall et al. 2000). These previous descriptions of call types allowed

us to externally validate the structure of the chacma baboon's vocal repertoire.

A second focus of this study was to assess how suited di�erent clustering algorithms are

to describe the �ne structure of graded vocal systems. In a recent study, Kershenbaum

and colleagues tested the performance of di�erent unsupervised clustering-algorithms (k-

means, hierarchical clustering, and an adaptive resonance theory neural network) for

grouping dolphin signature whistles and compared the results with those of human ob-

servers (Kershenbaum et al. 2013). Although all algorithms performed relatively well in

the classi�cation of signature whistles, there are some inherent shortcomings that all of

them share when constructing vocal repertoires - none of these hard algorithms are able

to capture the graded transition of call types that occur in many vocal repertoires. We

compared two commonly used non-overlapping models, center-based k-means and hierar-

chical Ward's clustering, and opposed them to a soft clustering approach, fuzzy c-means
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clustering (Dunn 1973). Fuzzy set theory has a broad range of applications and has for

instance been used in numerical taxonomy (Bezdek 1974) or to cluster ecological data

(Equihua 1990). Despite its successful application in these �elds, it has not yet been

used in vocalization taxonomy. Whereas in k-means and Ward's the existence of a graded

separation between call types is not implemented, fuzzy c-means is an algorithm designed

to describe systems with not strictly separated categories. We thus expected that fuzzy

c-means would be able to describe the graded structure of the chacma baboon's vocal

repertoire better than the other methods.

Our overarching goal is to develop recommendations for future analyses of vocal reper-

toires, with the long-term perspective of creating uni�ed and standardized procedures in

the �eld of bioacoustic research.

3 Methods

3.1 Study Site and Subjects

In this study, we reanalyzed call recordings that were collected during January 1998 and

June 1999 in the Moremi Wildlife Reserve in Botswana. A number of comprehensive

studies on the social behavior as well as on the vocal communication of this population

has been published (see references in Silk et al. 1999).

3.2 Recordings and Call Parameterization

Recordings were taken as part of a number of studies on the monkeys' vocal communica-

tion (Fischer et al. 2002). Vocalizations were recorded with a Sony WM TCD-100 DAT

recorder and a Sennheiser directional microphone (K6 power module and ME66 record-

ing head with MZW66 pro windscreen) (Fischer et al. 2002). We assembled a data set

comprising of 912 calls, which we selected to capture the overall diversity of the chacma

baboon's vocalizations. The selected calls were given by 35 adult females and 34 adult

males, as well as 5 infant females and 4 infant males (weaning calls). We fast Fourier trans-

formed (FFT) the calls into their frequency-time domain with Avisoft (Avisoft SASLab
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Pro, version 5.2.05), using a FFT size of 1024 points, Hamming window and 96.87% over-

lap. Depending on the frequency range of calls we used a sampling frequency of 5 kHz

(grunts) or 20 kHz (all others), resulting in a frequency range of 2.5 or 10 kHz and a

frequency resolution of 5 or 20 Hz. The time increment was 6.4 or 1.6 milliseconds. The

resulting frequency-time spectra were analyzed with the software LMA 2012 developed

by Kurt Hammerschmidt.

To assess the in�uence of datasets with varying numbers of acoustic features on the

clustering results, we constructed 4 di�erent sets for the subsequent analyses, all based

on the 912 calls in the analysis. The sets include

a) "sparse set": 9 features, which were used in a previous analysis of the Guinea

baboon' vocal repertoire and had proven to be instructive

(Maciej et al. 2013)

b) "medium set": 38 features, which are an extension of a) including more detailed

features in the frequency- and time domain

c) "full set": 118 features - the maximum amount of features that can be

extracted out of the FFT using LMA

d) "factors": 19 features - derived from a factor analysis of the 118 features

dataset.

We performed Factor analysis with IBM SPSS Statistics (version 21) using varimax

rotation and factors with an Eigenvalue ≥ 1 were selected. Factor loadings, Eigenvalues,

and detailed information about all acoustic features used are given in the appendix.

Clustering Schemes

To classify the calls, we performed unsupervised clustering using the above mentioned

feature sets. Sets were standardized by z-scoring all of the values and cluster analysis

was run within the Matlab environment (Mathworks; version R2011b). We used di�erent

clustering methods for comparison, which are described in the following sections in more

detail. First, hard algorithms (k-means, Ward's clustering) were used and validated.
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Second, a soft classi�cation scheme based on fuzzy set theory (Zadeh 1965) was applied

to capture more details of the dataset's underlying structure.

Hard Classi�cation Models and Clustering Validation

Ward's clustering (Ward 1963) is a hierarchical clustering procedure, that is often used

to cluster calls and to analyze vocal repertoires (Fuller 2014; Kershenbaum et al. 2013;

Laiolo et al. 2000; Shulezhko and Burkanov 2008). The algorithm works by �rst linking

individual calls to their nearest neighbor and then merging the pair of clusters with the

minimum between-cluster distance at each time step. This linkage procedure is repeated

on these clusters until the top hierarchic level is reached (single-linkage clustering).

In k-means clustering (MacQueen 1967), initial cluster centroids are selected randomly

and individual calls are assigned to the cluster whose mean yields the least within-cluster

sum of squares (WCSS). In iterative steps the new centroids of the clusters are being

calculated and the procedure is repeated until the WCSS cannot longer be improved.

Since poor initial cluster centroids can lead to non-optimal solutions by running into

local maxima, we executed 100 replications to ensure that the best cluster solution was

revealed. K-means clustering has the advantage that initially poorly attributed calls are

reassigned by the algorithm and is therefore an often used procedure to classify calls

(Hammerschmidt and Fischer 1998; Hammerschmidt and Todt 1995; Kershenbaum et al.

2013; Maciej et al. 2013). However, since in several studies the determination of the

optimal number of clusters k showed to be challenging, we here did a further validation

of clustering quality.

To assess which of the feature sets give rise to classi�cations most robust against changes

of the clustering method, we measured the Normalized Mutual Information (Dunn 1973)

between clusters extracted by two di�erent methods. Normalized mutual information

(NMI) is a single metric that measures how well the results of the two di�erent clustering

approaches match. If the clusters extracted by Ward and k-means methods are perfectly

overlapping, NMI takes a value of 1. If the resulting clusters have little conformity, NMI

takes a positive value close to zero. NMI is de�ned as:
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NMI =

∑
k,c nk,clog

[
N×nk,c
nk×nc

]
√

(
∑
k nklog

nk
N )(

∑
c nclog

nc
N )

(2.1)

where nc is the number of calls assigned to cluster c by method 1, nk is the number of

calls assigned to cluster k by method 2, nk,c is the number of calls in cluster c and cluster

k, and N is the total number of calls.

We also used NMI to compare clustering results with a reference classi�cation. Based

on prior studies of the usage, function and meaning of vocalizations, we established six

call types, namely male barks (Kitchen et al. 2005); grunts (Owren et al. 1997); weaning

calls (Maciej et al. 2013); female barks (Fischer et al. 2001); noisy screams (Maciej et al.

2013); and tonal screams (Maciej et al. 2013). Representative calls are shown in Figure

2.1. Based on acoustic and visual spectrogram evaluation, we assigned each call in the

dataset to one of these categories. This procedure provided a de�ned human expert

reference classi�cation.

The quality of a clustering was also validated by the analysis of silhouette values. Sil-

houette values range from 1 to -1 and represent the tightness of data points within a

cluster and the separation between di�erent clusters in a given model (Rousseeuw 1987).

Silhouette values are computed as following:

S(i) =
b(i)−a(i)

max[a(i),b(i)]
(2.2)

where a(i) denotes the average Euclidean distance between data point i and other data

points in the cluster A and b(i) denotes the average Euclidian distance between i and

points in the second closest cluster. A silhouette value around zero means that the data

point is at similar distance to two clusters. Positive values show that the data point lies

closer to one cluster than to the second closest one. Negative values indicate a potential

misclassi�cation (even if reassigning a point with a negative silhouette to a di�erent

cluster would change as well the cluster means, resulting in a potentially larger number
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of negative silhouette scores). The overall silhouette width S(A) is de�ned as the average

of the S(i) over the whole dataset and is used as a global measure of the quality of a

clustering.

Figure 2.1: Spectrograms of calls in the used dataset. Shown are call types that have been
described in the literature. (A) Male bark (Kitchen et al. 2005). (B) Grunt (Owren et al.
1997). (C) Female bark (Fischer et al. 2001). (D) Noisy scream (Maciej et al. 2013). (E)
Weaning call (Maciej et al. 2013). (F) Tonal scream (Maciej et al. 2013).

Soft Classi�cation Model: Fuzzy c-means clustering

Fuzzy set theory (Zadeh 1965) extends conventional set theory allowing for the notion of

imperfect membership. In this way, it is particularly suited to the classi�cation of data

in which the separations between di�erent classes of data-points is gradual rather than

sharp (Zadeh 2008). Each call is associated an assigned membership value for each of

the clusters, ranging from m = 1 (fully displays the properties of the cluster) and m = 0

(does not display any of the properties of the cluster). Intermediate membership values
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0 < mia < 1 mark calls that do not fully belong to one of the clusters, but can be classi�ed

as intermediates between di�erent call types. Membership vectors are normalized in such

a way that
∑c

α=1miα = 1.

More speci�cally, we adopted a fuzzy c-means algorithm (Jang and Sun 1997; Xu et al.

2008). To determine the number of clusters that describe the dataset best, two parameters

of the algorithm can be adjusted. The �rst parameter is the maximal number of clusters

allowed and the second is the fuzziness parameter µ. If µ = 1, the extracted clusters are

very crisp and membership values of data points are either 1 or 0 (in this limit indeed

fuzzy c-means converges exactly to k-means). However, by increasing µ, clusters become

fuzzier and nearby clusters can eventually merge, unlike in k-means, leading to a smaller

number of clusters. We assumed a relatively large possible number of clusters c = 15

(larger than the number of reasonably detectable clusters).

Similar to k-means, the fuzzy c-means algorithm builds up clusters by creating randomly

selected cluster centroids and a subsequent iterative optimization process. In this aspect

both clustering algorithms su�er from the same sensitivity to the initial cluster centroids.

Like in k-means, we computed 100 replications to �nd the optimal cluster solution with

fuzzy c-means. In contrast to k-means, where objects do either belong or not belong to a

cluster, in fuzzy c-means membership vectors m(t)
i for c clusters are computed at a given

iteration t. Cluster centroids are given by vectors u(t+i)α (α = 1...c) with components u(t)αl .

1

m
(t)
iα

=
c∑

λ=1

(
d
(t)
iα

d
(t)
iλ

) 2
µ−1

(2.3)

where d(t)iλ is the Euclidean distance between the data-point fi and the centroid u(t)λ at a

given iteration t.

These membership vectors are used in turn to compute a new set of cluster centroids

u(t+ 1) with coordinates:
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u
(t+1)
αl =

∑N
i=1(m

(t)
iα )µfil∑N

i=1(m
(t)
iα )µ

(2.4)

This procedure is designed to minimize a speci�c cost function (Dunn 1973), namely the

sum of the squared distances of the data-points from the di�erent centroids, weighted by

the relative fuzzy memberships:

J t =
N∑
i=1

c∑
λ=1

(m
(t)
iλ )µ × (d

(t)
iλ )2 (2.5)

Once the fuzziness parameter µ is set and the clusters (i.e. call types) have been

computed, the main type α for each call i is the call type with the highest assigned

membership component miα = m
(1st)
i . By subtracting the second largest membership

component miα = m
(2nd)
i from the �rst, we get the typicality coe�cient d(i) = m

(1st)
i −

m
(2nd)
i for each call. The average d of all typicality coe�cients and their distribution,

quanti�ed by the halved mean absolute deviation ∆ = d − d/2 were quanti�ed over the

entire dataset. Based on the observed distribution of typicality coe�cients, calls were

then considered as typical if d > dtypical = d+ ∆ and as atypical if d < dtypical = d− ∆.

4 Results

The hierarchical clustering trees generated by Ward's method show similar classi�cations

of calls for all four sets (Fig. 2.2). However, crucial di�erences in linkage distances can be

found (see y-axes of the four graphs). In the following, the results are exempli�ed for the

full set. Calls are �rst segregated into two clusters. All calls of cluster 1 (n = 124) are

characterized by their high frequency distribution over the entire call and are hereafter

denoted as "screams". In contrast, all calls of cluster 2 (n = 788) are characterized by a

substantially lower overall frequency distribution. Cluster 2 was further divided into two

second-order branches. Cluster 2.2 (n = 350), is characterized by very short and low-
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frequency calls (grunts). In the next higher order, cluster 2.1 (n = 438), splits into cluster

2.1.1 (n = 97) and cluster 2.1.2 (n = 341). Calls in cluster 2.1.1 are characterized as

highly tonal, long and little frequency-modulated (weaning calls), whereas calls in cluster

2.1.2 are shorter and have a higher change in frequency-modulation (barks). On the next

level, cluster 1 (screams), is split into cluster 1.1 (n = 68) and cluster 1.2 (n = 56).

Calls between these two sub-clusters di�er mainly in their signal to noise ratio (STNR),

with calls in cluster 1.1 having a higher average STNR. Further structure was detected

by the hierarchical clustering. However we did not analyze it in further detail, due to the

instability of these classi�cations (as revealed by fuzzy c-means, see below). Since the

Euclidean distance is de�ned as the square root of the sum of the squared distances per

feature, the less features are included in the analysis, the smaller the average Euclidean

distance within a cluster becomes (Fig. 2.2). Although the within-cluster distances are

decreasing with decreasing number of acoustic features, the separation of the �rst three

clusters remains rather distinct (see branch structure of dendrograms in Fig. 2.2 A-C).

An exception of this pattern is formed by the factorial dataset, which shows a much worse

separation of even a small number of call clusters (Fig. 2.2 D).
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Figure 2.2: Unsupervised Ward's clustering of 912 chacma baboon calls based on di�erent
frequency dependent and temporal feature setups. The x-axis represents groups of
calls, and the y-axis represents average Euclidian within-cluster linkage distance. (A) Set
consisting of 118 features. High-frequency (cluster 1) and low-frequency (cluster 2) were
segregated into two �rst-order clusters. High frequency calls further subdivide into more
tonal (cluster 1.1) and relatively noisier (cluster 1.2) calls. Low frequency calls subdivide
into short and very low-frequency grunt-calls (cluster 2.2), moderate-frequency and har-
monic weaning-calls (cluster 2.1.1), and more noisy, short bark-calls (cluster 2.1.2). (B) Set
consisting of 38 features. (C) Set consisting of 9 features. (D) Set consisting of 19 factors
determined by factor analysis.

To compare the clustering quality of the four feature sets, we validated the results of k-

means clustering. For this purpose we calculated silhouette widths for k = 2− 20 clusters

for all four datasets (Fig. 2.3). The general trend for all datasets but the one based on

factors was that a 2-cluster solution gained a relatively high value in silhouette widths,

followed by a drop and a subsequent stable cluster quality that decreased slowly the more

clusters were generated. Silhouette widths for the 9-feature set were generally higher than

for the other datasets and silhouette widths for the 19-factor set were generally lower for

lower number of cluster solutions.
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Figure 2.3: Comparison between the average silhouette width for K-means clustering for k
= 2 to 20 clusters for all 4 feature sets. The 9 feature set (green) shows generally
higher silhouette width. For the 2-cluster-solution, all but the set based on factors (yellow)
show globally the highest value. Excluding the 2-cluster-solution (not to be retained because
of its lack of detail), no solution is markedly superior over all others, although plateau values
of average silhouette width are already obtained for cluster numbers as small as k = 5 (apart
from factor-based clustering).

We then evaluated the large-scale behavior of the four considered curves. Here we found,

for the sets with 38 and 118 features slightly decreasing silhouette widths (for more than

two clusters), for the set with 9 features essentially constant values (for more than two

clusters) and for the set with 19 factors an increase up to 13 clusters that was followed

by saturation. For these reasons, Normalized Mutual Information (NMI) was calculated

to further explore the quality of clustering results. If our two unsupervised methods (k-

means and Ward's), operating on opposite approaches result in a similar classi�cation,

this would be a strong indicator for the robustness of the classi�cation. Classi�cations

extracted by the di�erent methods were overall highly consistent between both algorithms

over a wide range of cluster numbers, with peak consistencies for all four datasets nearby

k = 5 (excluding, as in Fig. 2.3, the too unresolved k = 2 clustering).

As a �nal check, since we know from previous studies that the call types of the 5
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cluster solution (screams, barks, weaning calls and grunts) are well described calls in ba-

boon vocalizations, NMIs between the 5-cluster partition extracted by k-means or Ward's

unsupervised clustering and the human expert-based reference classi�cation were also cal-

culated (Fig. 2.4). The results show, that the classi�cations generally match well. This

con�rms that the 5-cluster solution obtained through k-means and Ward's methods are

consistent with the results obtained by human expert inspection allowed us endorsing

the unsupervised methods as valid alternatives to human inspection when the size of the

dataset becomes prohibitively large to be manually parsed. The increase of NMI from the

9-feature set to the 38-feature set is quite large for both clustering algorithms, whereas

the 118-feature set only gains a small increase in NMI compared to the 38-feature set.

Thus, as a compromise between clustering quality and feature overview, we decided to

work with the 38-feature set for the subsequent analysis. We decided against a subsequent

usage of the 19-factor set, because factors not only showed the worst separation of clusters

(Fig. 2.2), but also because factors are di�cult to interpret if feature types are highly

mixed (see discussion and appendix).

Figure 2.4: Sensitivity of the algorithm performance (normalized mutual information) be-
tween the human-made reference classi�cation and K-means (purple), and
Ward's (orange) clustering for the three feature sets. NMI values have been calcu-
lated for k = 5 clusters.
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4.1 Fuzzy c-means clustering

To gain better insight into the graded structure of our dataset, we applied fuzzy c-means

clustering. This allowed us to determine the best number of clusters in an alternative to

silhouette widths for di�erent cluster solutions in the aforementioned algorithms. Hereby,

we followed an approach described in (Battaglia et al. 2013), where we made use of the

fuzziness parameter µ. By starting with a su�ciently large µ, all calls were grouped indis-

tinctively into one fuzzy class. Decreasing the fuzziness, high-frequency calls ("screams")

separated then �rst at µ = 2.38 (Fig. 2.5 A&C). At µ = 1.96, a second cluster crystallized,

consisting of short and low-frequency calls ("grunts") (Fig. 5 A&D). Between µ = 1.565

and 1.515, a third cluster of modulated, short and harsher "bark" calls separated and

at µ = 1.51, the high-frequency "scream"-cluster split between calls with a higher and

lower signal-to-noise ratio (Fig. 5 A&E). Below µ = 1.44 down to µ = 1 several smaller

clusters emerged that were not very stable over µ. Looking at stability (cluster existence

over fuzziness parameter µ), the 2-, 3- and 5-cluster solutions are most robust (Fig. 5

A). These results go along with the �ndings of k-means and Ward's clustering analyses.

In Figures 5 C-E membership values for all calls to the existing clusters are shown for

selected values of µ. The remaining analyses were performed for the speci�c classi�ca-

tion obtained for µ = 1.505, leading to 5 clusters. The results were very similar to the

results of the k-means and Ward's clustering, which provides as a strong indicator that

the obtained classi�cation is very robust.
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Figure 2.5: Fuzzy partitions with decreasing fuzziness (µ values) are visualized as mem-
bership matrices. (A) Number of clusters in dependence on the fuzziness parameter µ.
Partitions with more than �ve clusters exist only over very narrow ranges of µ values (red).
(C-D) membership matrices for the identi�ed clusters: Rows correspond to di�erent fuzzy
clusters and columns to individual calls. Membership values of single calls to each class are
color coded (B). The scream-cluster is the �rst to emerge (cluster 1, C), followed by grunts
(cluster 2, D). The scream-cluster splits into two clusters and the weaning-cluster emerges
(cluster 1-2; cluster 4, E).

In Figure 2.6 a 2-dimensional visualization of how calls are scattered in the membership

space is presented. Each call is represented by the closest and the second closest cluster.

For the �ve considered calls types we found common boarders between weaning-calls and

barks and weaning-calls and grunts. In both cases, highly typical calls can be found along

with calls that appear to belong to both clusters. Intermediate calls can also be found

between the two scream types and sparsely between the bark and the scream 1 cluster.

Calls in the bark- and grunt-clusters share common boarders and typical grunts and barks

exist. In contrast to the other pairs, no calls at the very edge to the other cluster can be

found and the two clusters remain separated.
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Figure 2.6: Pairwise comparisons of cluster segregations. Two-dimensional projections of mem-
berships of calls belonging to the grunt (red), scream 1 (green), scream 2 (pink), weaning
(yellow), and bark (blue) cluster. Every call is represented once (by closest and second clos-
est cluster). Diagonal lines in the panels represent identical memberships. Spectrograms
represent transitions from most typical call of cluster A to most typical call of cluster B with
hybrids close to the joint cluster borders. Sound examples can be found in the supporting
information.

To quantitatively describe the graded structure of our dataset, typicality coe�cients

for each call were calculated (Fig. 2.7; see Methods). Calls with a typicality larger or

smaller than speci�c thresholds, related to the halved mean absolute deviation of the

typicality distribution, were considered as typical or atypical, respectively. According to

these criteria, the threshold for atypical calls was calculated at datypical = 0.256 (142 of
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912 ≡ 16% of the calls) and for typical calls at dtypical = 0.767 (120 of 912 ≡ 13% of the

calls). However, the distribution of typical and atypical calls was not homogeneous across

di�erent clusters. Most grunts and the majority of bark-calls were well-separated from

the other call types, as indicated by their large average typicality coe�cients (Fig. 2.7).

Weaning calls were less detached and the two scream clusters were highly graded towards

their shared borders.

Figure 2.7: Histogram of typicality coe�cients. Sections with di�erent colors indicate calls with
di�erent main type. Grunts and barks are more distinctly separated from other call types
than screams and weaning calls.

5 Discussion

We investigated how di�erent feature setups can a�ect the clustering quality, and com-

pared the usage of hard and soft clustering methods for the description of a primate

vocal repertoire and. Our e�orts provided two key results. Firstly, datasets with a higher

number of acoustic features led to better clustering results than datasets with only a few
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features. Secondly, in datasets with considerable gradation within and between clusters,

an optimal number of clusters (call types) may not exist, no matter which clustering al-

gorithm is applied. Yet, fuzzy clustering allows one to capture and quantify the extent of

variation within and between clusters, providing a potentially fruitful avenue to compare

the extent of gradation within and between call types between taxa.

With regard to the number and types of features in the analysis, we found that a low

number of features resulted in higher silhouette values. This was not necessarily due to

a better separation of the call types, but rather the consequence of a smaller number of

acoustic dimensions, and therefore a higher statistical spread of values. For this reason, the

usage of absolute silhouette values to compare datasets with varying number of features

does not appear to be appropriate. Indeed, when we compared the human-expert refer-

ence classi�cation with the cluster solution, we found that the matching success increased

with an increasing number of acoustic features. We therefore recommend the usage of

a su�ciently large set of features to capture the di�erent acoustic dimensions. Whereas

correlated features can cause problems in multivariate statistical hypothesis testing due

to colinearity, these restrictions do not apply to clustering procedures. In fact, correlating

features can perform badly in classifying call types when taken on their own, but become

well performing classi�ers when combined. Since every feature has independent measure-

ment noise that can hinder its classi�cation performance, two or more features can share

correlating trends but not the stochastic �uctuations around these trends (Guyon and

Elissee� 2003).

We also found that using factors derived from factor analysis resulted in an extremely

poor resolution of emerging call types. In addition to the argument above, that corre-

lating features can provide a sort of "error correction" for measurement noise, the weak

performance of the factor analysis can be explained by its linear nature, always being

based on a matrix decomposition of the covariance matrix. If the established clusters

have non-spherical shapes in high-dimensional feature space it might not be possible to

properly separate them by hyperplanes orthogonal to the factors. Thus reducing the di-

mensionality of the data by projecting them to the linear space spanned by only a few

factors may conceal non-linear correlations in the data-set, which on the contrary can
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be exploited for performing clustering by unsupervised algorithms operating on an even

smaller number of the original, not factor-reduced features. For these reasons, we gener-

ally discourage the use of factors in cluster analysis, and recommend caution when used

in acoustic analyses more generally. Factors can be di�cult to interpret, especially when

highly divergent feature types load onto the same factors (see appendix). In such cases,

the usage of selected features, preferably derived from a good understanding of the sound

production mechanisms (Fitch and Hauser 1995), is more advisable. If factors are ex-

tracted, we recommend inspecting the factors and factor loadings carefully. If parameters

load in an interpretable way onto a few factors that explain most of the variance of the

dataset, then working with factors may be feasible, but it may also be the case that the

construction of apparently meaningful factors results in the loss of crucial variation that

would be helpful to distinguish between calls or call types.

A second important insight is that in datasets with a considerable variation an obvious

optimal number of call types may not exist. Although the call types in our analysis were

easy to distinguish, neither k-means nor Ward's clustering were able to identify an obvious

"best solution". Based on the silhouette coe�cients, di�erent cluster solutions appeared

to be appropriate to partition the dataset. In this aspect, fuzzy c-means clustering did not

facilitate the decision on the best cluster solution. The �nding that none of the applied

approaches gave strong support to a speci�c cluster solution is somewhat surprising,

since the chacma baboon vocal repertoire was previously described as representing a

rather discrete system and call types can be easily categorized by human experts. With

fuzzy c-means clustering, the 5-cluster solution was the most stable solution for k > 2,

but di�erences in cluster stability were relatively small. A 5-cluster solution was also

supported by high silhouette values in k-means and the NMI for call classi�cation between

k-means and Ward's also had an average peak at the 5-cluster solution. Overall, there

appeared to be a trade-o� between stability and acuity in our analysis.

When inspecting silhouette values, researchers should be aware that these values are

a�ected by a number of factors. Firstly, with increasing number of features, the di-

mension of the acoustic space is increased. This leads to higher dispersion within and

between clusters and consequentially to smaller silhouette widths. Secondly, although

37



Chapter 2 - Hard vs. Soft Classi�cation

for this reason silhouette widths might be high for low feature sets, these sets may miss

some crucial acoustic features to separate between di�erent call types and therefore the

clustering does not represent the true structure of the vocal system. Thirdly, within one

feature set, silhouette widths indicate which cluster solutions are qualitatively better than

others. Nevertheless, if the highest silhouette width commends a low number of clusters,

this might be mathematically the best solution, but might not provide su�cient detail to

describe a species' vocal repertoire.

Soft clustering allowed us to capture details of the graded nature of vocal repertoires

that hard methods did not. Since fuzzy memberships directly represent structural dif-

ferences of calls, typical and atypical calls within huge datasets can easily be detected

and visualized. We propose that the robustness of cluster solutions over the fuzzy pa-

rameter in fuzzy c-means clustering (Fig. 2.5 A) should be used in future studies to

compare di�erences in the gradation of vocal repertoires between species on a �rst level.

We further showed that the variation in the level of gradation within and between call

types can be visualized and even quanti�ed by calculating typicality scores for each call.

Whereas the visualization presents a good overview of the repertoire structure, quanti�-

cation even allows the systematic comparison of the level of gradation between di�erent

species' repertoires.

In sum, although it would be desirable to have completely objective criteria to determine

the optimal number of call types, this may not be possible. Therefore, especially in more

graded datasets, the researcher's preference to use di�erent features, or to either split or

lump data (McKusick 1969), may also come into play. Transparency with regard to these

decisions and awareness of their consequences is therefore invaluable.

5.1 Summary

We conclude that the usage of a high number of acoustic features results in better cluster

solutions. The use of factors derived from PCA may result in the loss of critical informa-

tion and may lead to extremely poor solutions. We therefore discourage their usage for

the construction of vocal repertoires. We also showed that fuzzy clustering is a powerful
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tool to describe the graded structure of a species vocal repertoire. It reveals details of

the graded nature of vocal repertoires that cannot be captured with classical approaches

and allows a quanti�cation of typical and atypical calls. Researchers should be aware of

and transparent about the fact that the outcome of their analysis is a�ected by several

decisions and that the choice of the eventual cluster solution eventually depends on re-

searcher preferences and research interests. Therefore, data repositories should be used so

that the same methods can be applied to di�erent datasets. This would greatly enhance

the possibilities to compare species' vocal repertoires within and across taxa.
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A Appendix

Table A.1: Descriptions of all 118 acoustic features that were used in the analyses.

parameter used in 9- / 38-feature set description and unit

Duration 9 / 38 Duration [ms]
DFA1 st Start frequency 1st DFA (distribution of frequency amplitude) [Hz]
DFA1 end End frequency 1st DFA [Hz]
DFA1 max Maximum frequency 1st DFA [Hz]
DFA1 min Minimum frequency 1st DFA [Hz]
DFA1 mean Mean frequency 1st DFA [Hz]
DFA1 med Median frequency 1st DFA [Hz]
DFA1 maloc Location of the maximum frequency 1st DFA [(1/duration)*location]
DFA 2st Start frequency 2nd DFA (distribution of frequency amplitude) [Hz]
DFA2 end End frequency 2nd DFA [Hz]
DFA2 max Maximum frequency 2nd DFA [Hz]
DFA2 min Minimum frequency 2nd DFA [Hz]
DFA2 mean 9 / 38 Mean frequency 2nd DFA [Hz]
DFA2 med Median frequency 2nd DFA [Hz]
DFA2 maloc 38 Location of the maximum frequency 2nd DFA [(1/duration)*location]
DFA3 st Start frequency 3rd DFA (distribution of frequency amplitude) [Hz]
DFA3 end End frequency 3rd DFA [Hz]
DFA3 max Maximum frequency 3rd DFA [Hz]
DFA3 min Minimum frequency 3rd DFA [Hz]
DFA3 mean Mean frequency 3rd DFA [Hz]
DFA3 med Median frequency 3rd DFA [Hz]
DFA3 maloc Location of the maximum frequency 3rd
DFA range 38 DFA3 mean â�� DFA1 mean [Hz]
DFB1 st start frequency 1st DF (dominant frequency band) [Hz]
DFB1 end end frequency 1st DF[Hz]
DFB1 max maximum frequency 1st DF [Hz]
DFB1 min minimum frequency 1st DF [Hz]
DFB1 mean 9 / 38 mean frequency 1st DF [Hz]
DFB1 med median frequency 1st DF [Hz]
DFB1 chfre 38 number of changes between original and �oating average curve local modulation (LM) 1st DF
DFB1 chmea 9 / 38 mean deviation LM 1st DF [Hz]
DFB1 chmax maximum deviation LM 1st DF [Hz]
DFB1 pr 38 percent of time segments where a 1st DF could be found [%]
DFB1 maloc 38 location of the maximum frequency 1st DF [(1/duration)*location]
DFB1 miloc 38 location of the minimum frequency 1st DF [(1/duration)*location]
DFB1 trfak 38 factor of linear trend of 1sr DF (global modulation)
DFB1 fretr 38 alternation frequency between 1st DF and linear trend
DFB1 maxtr 38 maximum deviation between 1st DF and linear trend [Hz]
DFB1 mintr minimum deviation between 1st DF and linear trend [Hz]
DFB2 st start frequency 2nd DF (dominant frequency band) [Hz]
DFB2 end end frequency 2nd DF [Hz]
DFB2 max maximum frequency 2nd DF [Hz]
DFB2 mean 38 mean frequency 2nd DF [Hz]
DFB2 med median frequency 2nd DF [Hz]
DFB2 pr percent of time segments where a 2nd DF could be found [%]
DFB3 mean 38 mean frequency 3rd DF [Hz]
DFB3 med median frequency 3rd DF [Hz]
DFB3 pr percent of time segments where a 3rd DF could be found [%]
DFB4 pr percent of time segments where a 4th DF could be found [%]
Di� max maximum di�erence between 1st & 2nd DF [Hz]
Di� mean 38 minimum di�erence between 1st & 2nd DF [Hz]
Di� remax maximum number of DFâ��s
Di� remin minimum number of DFâ��s
Di� req 38 mean number of DFâ��s
Ampratio 1 amplitude ratio between 1st & 2nd DF
Ampratio 2 amplitude ratio between 1st & 3rd DF
Ampratio 3 amplitude ratio between 2nd & 3rd DF
F1 mean 38 (global frequency peak) [Hz]
F2 mean 38 [Hz]
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Table A.2: Descriptions of all 118 acoustic features that were used in the analyses. continued

parameter used in 9- / 38-feature set description and unit

F1 wst start frequency of 1st P [Hz]
F1 wend end frequency of 1st P [Hz]
F1 wmax maximum frequency of 1st P [Hz]
F1 wmin minimum frequency of 1st P [Hz]
F1 wmean 38 mean frequency of 1st P [Hz]
F1 wmed median frequency of 1st P [Hz]
FP1 max maximum frequency 1st P (global frequency peak) [Hz]
FP1 mean mean frequency 1st P [Hz]
FP1 amax maximum amplitude 1st P (global frequency peak) [rel. amplitude]
FP1 amean 38 mean amplitude 1st P [rel. amplitude]
F2 pr 38 percent of time segments where a 2nd P could be found [%]
F2 wmean 38 mean frequency of 2nd P [Hz]
F3 pr 38 percent of time segments where a 3rd P could be found [%]
Range max maximum frequency range [Hz]
Range mean 9 mean frequency range [Hz]
Range min minimum frequency range [Hz]
PF st start PF (peak frequency) [Hz]
PF end end PF [Hz]
PF max maximum PF [Hz]
PF min minimum PF [Hz]
PF mean 38 mean PF [Hz]
PF med median PF [Hz]
PF totmax frequency of the total maximum amplitude [Hz]
PF totmin frequency of the total minimum amplitude [Hz]
PF maloc 38 location of the maximum PF [(1/duration)*location]
PF miloc 38 location of the minimum PF [(1/duration)*location]
PF jump 38 maximum di�erence between successive PFâ��s [Hz]
PF trfak 38 factor of linear trend of PF (global modulation)
PF trfre 38 alternation frequency between PF and linear trend
PF trmean 9 / 38 mean deviation between PF and linear trend [Hz]
PF trmax maximum deviation between PF and linear trend [Hz]
CS mean 9 / 38 mean correlation coe�cient of successive time segments
CS maxd standard deviation correlation coe�cient of successive time segments
CS maloc 38 location of maximum correlation coe�cient of successive time segments [(1/duration)*location]
F0 mean mean frequency F0 [Hz]
Noise 9 / 38 percentage of noisy time segments [%]
Disturb percentage of disturbed time segments [%]
Tonal F0 percentage of tonal time segments and it is possible to estimate the F0 [%]
PF mean mean PF (peak frequency) [Hz]
PF max maximum PF [Hz]
PF min minimum PF [Hz]
Di� mean mean di�erence between F0 & PF [Hz]
Di� max maximum di�erence between F0 & PF [Hz]
Di� min minimum di�erence between F0 & PF [Hz]
Amprat1 amplitude ration between F0 & 1st harmonic
Amprat2 amplitude ration between F0 & 2nd harmonic
Amprat3 amplitude ration between 1st & 3rd harmonic
HNR1 mean mean harmonic to noise ratio DFA1 (1= no noise)
HNR2 mean 9 / 38 mean harmonic to noise ratio DFA2 (1= no noise)
HNR3 mean mean harmonic to noise ratio DFA3 (1= no noise)
HNR1 max max harmonic to noise ratio DFA1 (1= no noise)
HNR2 max max harmonic to noise ratio DFA2 (1= no noise)
HNR3 max max harmonic to noise ratio DFA3 (1= no noise)
Shimmer mean 38 mean frequency of vocal fold vibration [Hz]
Shimmer max max frequency of vocal fold vibration [Hz]
Jitter mean 38 mean amplitude of vocal fold vibration
Jitter max max amplitude of vocal fold vibration
Range max maximum frequency range [Hz]
Range min minimum frequency range [Hz]
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Table A.3: Eigenvalues of �rst 20 factors. Extraction Method: Principal Component Analysis

Total Variance Explained

Total % of Variance Cumulative % Total % of Variance Cumulative %
1 47,619 40,355 40,355 45,231 38,332 38,332
2 8,314 7,046 47,401 7,365 6,242 44,573
3 6,569 5,567 52,968 3,765 3,190 47,764
4 5,221 4,425 57,393 3,760 3,186 50,950
5 4,207 3,565 60,958 3,728 3,159 54,109
6 2,854 2,419 63,377 3,491 2,958 57,067
7 2,439 2,067 65,444 3,162 2,679 59,747
8 2,172 1,841 67,284 2,787 2,362 62,109
9 2,016 1,708 68,993 2,747 2,328 64,437
10 1,873 1,588 70,581 2,342 1,985 66,421
11 1,683 1,426 72,007 2,295 1,945 68,367
12 1,561 1,323 73,330 2,277 1,930 70,296
13 1,462 1,239 74,569 2,275 1,928 72,224
14 1,357 1,150 75,718 2,003 1,698 73,922
15 1,293 1,096 76,814 1,765 1,496 75,418
16 1,256 1,065 77,879 1,737 1,472 76,890
17 1,169 ,990 78,869 1,603 1,359 78,249
18 1,137 ,964 79,833 1,547 1,311 79,560
19 1,031 ,874 80,707 1,354 1,148 80,707
20 ,977 ,828 81,535

Figure A1: Scree Plot Eigenvalues of 118 factors.
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Table A.4: Rotated Component Matrix. Extraction Method: Principal Component Analysis; Ro-
tation Method: Varimax with Kaiser Normalization; Rotation converged in 21 iterations

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Duration ,781
DAF1 1st ,910
DFA1 end ,916
DFA1 max ,966
DFA1 min ,907
DFA1 mean ,973
DFA1med ,968
DFA1 maloc ,471 ,346
DFA2 st ,853
DFA2 end ,849
DFA2 max ,878
DFA2 min ,931
DFA2 mean ,979
DFA2 med ,973
DFA2 maloc ,761
DFA3 st ,724 ,430
DFA3 end ,748 ,355
DFA3 max ,731 -,347 ,389
DFA3 min ,933
DFA3 mean ,933
DFA3 med ,941
DFA3 maloc ,764
DFB1 st ,589 ,475 -,305
DFB1 end ,651 ,332
DFB1 max ,783 ,550
DFB1 min ,686
DFB1 mean ,947
DFB1 med ,928
DFB1 chfre ,614 -,402
DFB1 chmea ,709 ,413
DFB1 chmax ,513 ,746
DFB1 pr ,818
DFB1 maloc ,456
DFB1 miloc -,448 -,382
DFB1 trfak ,793
DFB1 fretr ,729
DFB1 mtr ,736 ,415
DFB1 maxtr ,578 ,725
DFB2 st ,642 ,431
DFB2 end ,696 ,356
DFB2 max ,815 ,390
DFB2 mean ,954
DFB2 med ,944
DFB2 pr ,343 ,722
DFB3 mean ,942
DFB3 med ,913
DFB3 pr ,618 ,386 ,309
DFB4 pr ,765
Di� max ,639 ,534
Di� mean ,807
Di� remax ,594 ,650
Di� remin ,702 ,342
Di� req ,862
Ampratio1 -,903
Ampratio2 -,789 -,379
Ampratio3 -,761
F1 mean ,950
F2 mean ,789
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Table A.5: Rotated Component Matrix. continued

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
F1 wst ,357 ,490
F1 wend ,401 ,499 ,309
F1 wmax ,837 ,361
F1 wmin -,339 ,406 ,364
F1 wmean ,672 ,609
F1 wmed ,566 ,639
FP1 max ,925
FP1 mean ,944
FP1 amax -,695
FP1 amean -,724
F2 pr ,710
F2 wmean ,777
F3 pr ,443 ,427 ,329
Range mean ,900
Range max ,756 -,302
Range min ,507 ,407
PF st ,685 ,367
PF end ,601 ,613
PF max ,931
PF min ,499 ,702
PF mean ,942
PF med ,911
PF totmax ,874
PF totmin ,683 ,452
PF maloc ,428
PF miloc ,731
PF jump ,848
PF trfak ,636
PF trfre ,327 -,506
PF trmean ,784 -,342
PF trmax ,849
CS mean ,751
CS maxd -,638 ,343
CS maloc ,455 -,305
F0 mean ,704 ,317
Noise ,316 -,681
Disturb ,593
Tonal F0 -,343 ,734
PF mean ,694 ,506
PF max ,591 ,522
PF min ,498 ,536 ,333
Di� mean ,515 ,766
Di� max ,485 ,680
Di� min ,311 ,770
Amprat1 -,361 ,595 ,443
Amprat2 ,544 ,565
Amprat3 ,865
HNR1 mean -,696
HNR2 mean ,329 ,596
HNR3 mean ,757
HNR1 max -,341 -,320 ,511 ,342 ,305
HNR2 max ,815
HNR3 max ,883
Shimmer mean -,321 ,753
Shimmer max -,381 ,745
Jitter mean ,840
Jitter max ,752
Range mean ,637 ,301 ,395
Range max ,445 ,354 ,361 ,315
Range min ,493 ,379 ,437 ,343

44



Chapter 2 - Hard vs. Soft Classi�cation

Figure A2: Call exemplars of typical and hybrid calls. (A) Grunt to bark. (B) Tonal scream to
noisy scream. (C) Weaning call to bark. (D) Weaning call to grunt. (E) Bark to noisy
scream. Colors represent the color code for call types in Figure 2.6 and 2.7.
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1 Abstract

A core problem in biology is to sort tokens such as haplotypes, ecological communities,

or behavioral patterns that vary in multi-dimensional trait-spaces into discrete types or

categories. To establish such categories, cluster analyses are frequently used although it is

typically di�cult to identify a unique decomposition of biological data into clusters. As a

consequence, the exact number of categories remains empirically under-constrained, and

the certainty with which categories can be established is hard to explicitly represent and

assess. Here we develop a method to quantitatively compare the degree to which high-

dimensional data sets can be partitioned into distinct clusters. Using the vocal repertoires

of two nonhuman primate species as an example, we show that the distribution of typical-

ity coe�cients (DTC) enables a systematic comparison of the structure of di�erent data

sets. It allows moving on from frequently contentious statements about speci�c numbers

of types or categories that can be identi�ed to a quantitative assessment of the overall

di�erentiation within a complex data set. This method may thus be useful in a wide range

of biological disciplines.
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2 Introduction

Categorization of objects that show a high degree of variation has already preoccupied

Darwin and Hooker (Endersby 2009) and remains indispensable in many �elds of mod-

ern biology. One of the core problems in such endeavors is the need to either split or

lump objects that are to be categorized (McKusick 1969). Whereas splitting creates new

categories by focusing on often subtle di�erences of samples, lumping results in broader

categories, emphasizing similarities over di�erences. The identi�cation of species is a

typical case where di�erent preferences for lumping or splitting appear to complicate an

objective assessment of biodiversity (Isaac et al. 2004). At the same time, progress in

feature detection and data technology raise the hope that the acquisition of large and

high-dimensional data sets can facilitate an objective categorization of biological objects

(Gomez-Marin et al. 2014; Vogelstein et al. 2014).

Unsupervised clustering is considered to be one of the best candidate tools to detect

and cluster objects that share similar features (Larrañaga et al. 2006). If the data is

intrinsically organized in discrete categorical classes it should in principle be possible to

obtain the number and de�nition of these classes by an objective data driven approach. A

variety of unsupervised clustering algorithms have thus been used across biological �elds

for exploratory data mining and statistical data analysis (Jain 2010). Most of the available

algorithms are indeed based on the assumption that the computed classes re�ect discrete

categories (MacQueen 1967). Numerous biological systems, however, exhibit a substantial

level of gradation. This is expected in particular if sample di�erences are produced by

continuous di�erentiation over evolutionary (or ontogenetic) time scales (Handley et al.

2007). Hard clustering algorithms by construction are not well suited for characterizing

such graded systems. In population dynamics, neighboring populations may show grad-

ual transition zones (Evanno et al. 2005). In neurobiology, cortical neurons can display a

large structural and physiological diversity which can either form a continuum or discrete

cell types (Armañanzas and Ascoli 2015; Battaglia et al. 2013; Markram et al. 2004). In

community ecology, plant species may show continuous dispersal patterns along climate

gradients (Gauch and Whittaker 1972; Whittaker 1953). Nevertheless, unsupervised clus-
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tering is still commonly used to classify graded systems, evoking the misleading impression

that objects in these systems would belong to distinct classes (Jain 2010). In addition, in

such cases there is typically not one, but several equally good (or poor) cluster solutions

that may result in a rather idiosyncratic choice which cluster solution to accept. Thus,

across a wide range of biological problems, it would be desirable to develop a methodology

that does not presume the existence of discrete categories but extracts from the structure

of the data a set of indicators that characterize the degree of gradation within a system.

Here we develop a method to critically probe and quantitatively compare the degree to

which a high-dimensional data set can be partitioned into distinct clusters. Our approach

is based on Fuzzy set theory, in which every item of a data set is assessed with regard to

its memberships of all generated clusters (Zadeh 1965). In contrast to other clustering al-

gorithms, fuzzy clustering (Jang and Sun 1997) does not rely on strict boundaries between

types as a basic assumption. In short, our approach begins by examining the quality of

di�erent cluster solutions by assessing their stability over a parameter µ that controls the

level of fuzziness of the emerged clusters. The fuzzy clustering yields typicality coe�-

cients, which quantify to which degree an item shares its membership not only with its

main cluster, but also with other cluster(s) (Zadeh 1965). The critical next step that we

are proposing here is the quantitative analysis of the distribution of typicality coe�cients

(DTC) for the obtained solutions, which provide an indicator of the level of gradation

within a high-dimensional data set. Whereas discrete data sets are characterized by a

majority of typical items resulting in a DTC with a prominent peak at high typical-

ity coe�cients and an overall left-skewed shape, graded data sets contain a substantial

amount of items with low typicality coe�cients and DTCs can range from none-skewed to

even highly right-skewed, with a peak near zero. Importantly, these measures are largely

independent from the number of clusters in the chosen solution.

To examine the utility of the proposed method, we compared the structure of the vocal

repertoire of chacma baboons (Papio ursinus) to the structure of Barbary macaques

(Macaca sylvanus). The vocal behavior of both species has been intensely studied and

therefore the two repertoires serve as good model data sets to evaluate the accuracy

of our approach (Fischer and Hammerschmidt 2002; Hammerschmidt and Fischer 1998;
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Wadewitz et al. 2015a).

From an evolutionary perspective, the comparison of the structure of di�erent vocal

repertoires is relevant because of an interest in the driving forces in signal evolution, and

consequences for processing of graded signals by signal recipients (Bailey 1994; Marler

1977; Rowell and Hinde 1962; Wadewitz et al. 2015a).

3 Results

3.1 Fuzzy c-means as a tool to compare data sets with di�erent

level of gradation

We adopted a variant of the fuzzy c-means algorithm (Battaglia et al. 2013; Jang and

Sun 1997) to systematically compare our two reference primate vocalization data sets.

However, to �rst illustrate how the approach works, we created two arti�cial "toy" data

sets both including three distinct classes, but with highly discrete (Fig. 3.1 A) and highly

graded levels of separation, respectively (Fig. 3.1 E). For small values of the fuzziness

parameter µ, our clustering algorithm identi�ed three distinct clusters for both data sets.

However, whereas in the discrete data set the retrieved solution robustly continued to

yield a partition into three clusters throughout the entire range of µ (Fig. 3.1 B), the

graded data set dropped from three to one cluster solutions with increasing µ (Fig. 3.1

F). While all three clusters are extremely well separated in the discrete data set (Fig.

3.1 C), clusters of the graded data set show typical and intermediate objects between all

three clusters (Fig. 3.1 G). The visualized segregation of clusters can be quanti�ed by

object co-memberships (how well is an object separated from the corresponding cluster)

and residual co-memberships (how much of an object's membership is captured by the

two corresponding clusters). The overall gradation of objects within a data set can be

quanti�ed by calculating typicality coe�cients (TCs), which show constantly high values

for the discrete data set even when µ is set to relatively high values (Fig. 3.1 D). In the

graded data set, typicality coe�cients drop signi�cantly with increasing fuzziness (Fig.

3.1 H). These di�erent evolution patterns of the DTCs with increasing µ provide a strong
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qualitative signal of the di�erent level of gradedness of the considered toy examples, which

can be identi�ed even when analyzing data sets from real world applications.
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Figure 3.1: Modelled data sets to illustrate all performed calculations. To illustrate our ap-
proach, two-dimensional data sets were created that vary substantially in their level of
gradation. In a �rst step, objects in both data sets are clustered by using the fuzzy c-means
algorithm at a very low level of fuzziness (see Online Methods). By stepwise incrementing
µ, nearby clusters eventually merge which leads to an overall smaller amount of cluster.
This way the stability of cluster solutions can be evaluated over µ. Whereas in our discrete
sample the three-cluster solution remains stable over the entire range of µ, clusters in the
graded sample eventually merge to one all-embracing cluster. Once the most robust cluster
solution and its corresponding µ value (here µ = 2.5) are identi�ed, cluster segregation
can be visualized by pairwise comparison of memberships. If clusters are well separated,
objects in the projections do not share borders (dashed diagonals). If clusters are graded,
a continuum between objects of both clusters can be observed. Typicality coe�cients of
the cluster solutions allow the quanti�cation of the level of gradation within our two data
sets. Highly typical objects have a typicality coe�cient close to 1; highly atypical objects
have a typicality coe�cient close to 0. For very low values of µ di�erences in typicality
coe�cients between discrete and graded data sets are not apparent since for low µ fuzzy
c-means operates like any hard clustering algorithm (no intermediate forms possible). By
investigating the evolution of typicality coe�cients over µ, di�erences in the two data sets
become conspicuous. Whereas in the discrete data set objects remain highly typical over
the entire range of µ, in the graded data set typicality scores of objects drop signi�cantly
with increasing µ.
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3.2 Determining the number of call types in the analyzed vocal

repertoires

Figure 3.2 shows the number of call types in dependence of the fuzziness parameter µ

for the two real data sets of chacma baboon (A) and Barbary macaque (B) calls. For

the chacma baboon data set, the two-, three- and �ve-cluster solutions are most robust,

before several smaller clusters emerge that are not very stable over µ (Fig. 3.2 A). In

the Barbary macaque data set, solutions for k > 5 are equally unstable and lower cluster

solutions are even less structured (Fig. 3.2 B). In the Barbary macaque data set, the �rst

split into two clusters appears at a much lower value of µ (2.02 vs. 2.40) and successive

cluster splits appear systematically at lower µ values than in the Barbary macaque data

set (Fig. 3.2 C). This continuous pattern indicates that fuzzy c-means �nds less de�ned

and, therefore, fewer clusters in the Barbary macaque data set for any �xed resolution

(i.e. level of fuzziness). In general, no clear preferable solution for k > 3 can be found in

either of the analyzed data sets. In the subsequent analysis the graded structure of the

repertoire is compared between the two species. For this purpose, cluster solutions with

k = 2 − 10 were established with µ values at the lower end of the cluster stability range.

3.3 Describing the Gradation of Vocal Repertoires

As an example, Figure 3.3 visualizes the segregation of call types for both data sets

in a 2-dimensional space. In both sets, the most stable cluster solutions with k > 3

have been chosen (Fig. 3.2 A&B - dashed lines). The position of each call between two

select call types can be quanti�ed by calculating each call's co-membership and residual

co-membership. For chacma baboon call types, common borders can be found between

weaning calls and barks and weaning calls and grunts (Fig. 3.3 A). In both cases, highly

typical calls (low co-membership) can be found along with calls that appear to belong to

both call types (high co-membership). Intermediate calls can also be found between tonal

and noisy screams. Although typical grunts and barks exist, calls in these clusters share

common borders. In contrast to the other pairs, no calls at the very edge to the other
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Figure 3.2: Number of call types in dependence on the fuzziness parameter µ. For low values of
µ the initial 15 clusters remain separated. With an increase in µ, nearby clusters eventually
merge and form larger clusters leading to a smaller total number of clusters. (A) In the
chacma baboon repertoire, partitions with more than �ve call types exist only over very
narrow ranges of µ values. (B) In the Barbary macaque repertoire, no clear superior cluster
solution for k > 2 can be identi�ed. Dashed lines indicate values for µ that have been used
in the example of two-dimensional pairwise projections (Fig 3.4). (C) Combined plot of A
and B. Dashed line represents the same number of call types for identical µ values in A
and B. Since the parametric curve lies constantly above the dashed line, call types in the
Barbary macaque data set are less well de�ned than call types in the chacma baboon data
set for any given level of resolution.
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cluster can be found and the two clusters remain separated. Calls between the grunt, bark,

and weaning call clusters share most of their membership between the two corresponding

clusters, which results in low residual co-memberships. Calls between the other cluster

pairs share their membership between several clusters (high residual co-membership) and

are therefore even more hybrid.
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Figure 3.3: Pairwise comparisons of cluster segregations. Exemplary, two-dimensional projec-
tions of memberships of calls belonging to the most stable-cluster solutions for k > 3 are
shown for chacma baboons (A) and Barbary macaques (B). Every call is represented by
its closest and its corresponding second membership. Dashed lines in the panels repre-
sent identical memberships. For each cluster pair, means of co-memberships and residual
co-memberships are shown. In chacma baboons, common boarders can be found between
weaning calls and barks and weaning calls and grunts and between tonal and noisy screams.
Calls in the bark- and grunt-clusters share common borders and typical grunts and barks
exist. In contrast to the other pairs, no calls at the very edge to the other cluster can be
found and the two clusters remain separated. Whereas calls between grunts, barks, and
weaning calls share most of the membership between the two corresponding clusters (calls
close to the solid diagonal; low residual co-membership), calls in the other cluster pairs are
even more hybrid, lying between several clusters (high residual co-membership). In Barbary
macaques, common borders can be found between almost all established call types. With
some exceptions, highly typical calls can only be found in grunts. The mean residual co-
memberships are systematically higher in the macaque cluster pairs, indicating that calls
generally share their membership with more clusters and therefore exhibit a higher level of
gradation.
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In the Barbary macaque data set, common borders can be found between almost all

established call types (Fig. 3.3 B) and with some exceptions, highly typical calls can

only be found in grunts. The mean residual co-memberships are systematically higher

in the Barbary macaque cluster pairs, indicating that calls generally share their mem-

bership with more than just one or two clusters and therefore exhibit a higher level of

gradation compared to the chacma baboons. Average co-memberships and residual co-

memberships of all pairwise clusters including their 95% con�dence intervals can be found

in the appendix.

To quantify the overall typicality of calls in both data sets and for all cluster solutions,

typicality coe�cients have been computed by subtracting the membership value of the

second closest from the membership value of the closest call type. Results show that

highly typical calls (TC close to 1) can be found along with calls that appear to belong

to two or more call types and therefore have a highly atypical character (TC close to

0). Between these extreme cases a continuum of calls with varying degree of typicality

coe�cients is present (Fig. 3.4).

In the chacma baboon data set, typicality plots for all cluster solutions show a left-

skewed distribution with an obvious mode at a typicality coe�cient of > 0.5, meaning

that the majority of calls are typical, i.e. well related to a main call prototype. The

left-skewed distribution is quanti�ed by the slope of the regression line for all typicality

coe�cient values within a cluster solution and is highest for the 2-cluster solution, drops

signi�cantly for the 3- to 5-cluster solution and increases again for the 6- and 7-cluster

solution (see appendix). A further split into more clusters does not increase the slope

and the overall typicality of the repertoire remains stable. In general, the grunt and bark

clusters are very stable over the di�erent solutions, with the scream and weaning calls

forming clusters with mostly atypical calls (i.e. calls between cluster centers). For the

Barbary macaque data set, a left-skewed distribution of typicality coe�cients can only

be found for the 2-cluster solution. All solutions with k > 2 show a signi�cant decrease

in regression line slope which becomes stronger with increasing number of clusters until

a highly right-skewed distribution is reached (i.e. most of the calls have a highly atypical

character, i.e. cannot be easily described as related to a unique call prototype).
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Figure 3.4: Histograms of typicality coe�cients. Quanti�cation of the overall typicality of calls in
both data sets and for all cluster solutions by typicality coe�cients. Typicality coe�cients
are calculated by subtracting the membership value of the second closest from the mem-
bership value of the closest call type. Repertoires of chacma baboons (left) and Barbary
macaques (right). Shown are histograms for k = 2, 4, 6, 8 & 10 (top to bottom). Sections
with di�erent colors indicate calls of di�erent main type. Names and color codes of call
types are denoted explicitly for k = 6. Values of µ and regression line slope for k = 2− 10
stated in table 1. In both species, repertoires with a very low number of call types consist
of mainly typical calls (left-skewed distribution). Repertoires in the chacma baboon remain
typical with increasing number of call types, especially grunt and bark types were very sta-
ble over the di�erent solutions. The repertoires of the Barbary macaques show a signi�cant
decrease in typicality coe�cients for all solutions with k > 2 until a highly right-skewed
distribution is reached (i.e. most of the calls have a highly atypical character).
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To quantify the distribution of typicality coe�cients over k, we used di�erent metrics

(Fig. 3.5). Mean values of chacma baboon typicality coe�cients are higher for all solutions

with k = 2 − 10 in comparison to the Barbary macaque calls with no overlapping 95%

con�dence intervals. These di�erences even increase with an increase of clusters and

remain relatively stable for k ≥ 6. The �nding that the DTC of the Barbary macaque

repertoire decreases with the number of clusters is supported by the two other measured

metrics, the mode and Kelley's measure of skewness.

Figure 3.5: Quanti�cation of typicality coe�cients over all cluster solutions. Mean (A), Mode
(B), and Kelley's measure of skewness (C) including 95% con�dence intervals have been
calculated. Whereas in the chacma baboon repertoire typicality remains stable over di�erent
solutions, the Barbary macaque typicality is decreasing with increasing number of call types.
The slight increase in mean, skewness, and modes' con�dence interval for the 5-cluster
solution can be explained by the bimodal distribution of the typicality coe�cients, which
represents a transition stage between low-cluster solutions with mainly typical calls and high-
cluster solutions with mainly atypical calls. The metrics support the �ndings illustrated in
Fig. 3.4 that di�erences in typicality coe�cients between repertoires of di�erent species
might only become conspicuous with higher values of k. For larger k, all three metrics
eventually stabilize and give a clear image of the gradation in the two given repertoires.
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The results show that for very low cluster solutions, di�erences in typicality coe�cients

might not be obvious between repertoires with varying level of gradation. However, by

examining the change of the metrics over k, values eventually stabilize and give a clear

image of the gradation in a given repertoire. Overall, Figures 3.2-3.5 highlight that the

Barbary macaque repertoire shows a signi�cantly higher degree of gradation independently

of the (in principle arbitrary) decision on how many call types the repertoires consist of.

4 Discussion

The data-driven comparison of the vocal repertoires of Barbary macaques and chacma

baboons presented above revealed clear di�erences in the level of gradation, con�rming

previous studies (Fischer and Hammerschmidt 2001; Fischer et al. 2001; Hammerschmidt

and Fischer 1998), with Barbary macaques having a more graded system than chacma

baboons. The assessment of the distribution of typicality coe�cients (DTC) allowed us

to describe the di�erences in the degree of gradation in a quantitative manner. Impor-

tantly, above a certain number of clusters, the derived metrics were robustly insensitive

to the number of clusters obtained. Thus, the strength of our approach may lie precisely

in circumventing the problem of settling on one speci�c cluster solution when multiple

solutions are largely equivalent. Furthermore, the output of the analysis provides an in-

tuitively accessible depiction of the structure of the data set. We suggest that the DTC

method is not only promising for characterizing and comparing vocal repertoires (Bouchet

et al. 2013; Freeberg et al. 2012; Krams et al. 2012), but should also be a useful tool for

similar research questions, such as assessing variations of allele frequencies between and

within populations (Evanno et al. 2005) or quantifying vegetation distribution patterns

(Collins et al. 1993).

The DTCmethod allows for a quanti�cation of the di�erences in the degree of gradation,

largely irrespective of the number of clusters under investigation. Thus, our proposed

method overcomes the limitation that in graded repertoires a unique solution can rarely

be found and it is left to the investigator to settle on some rather arbitrary number

of clusters. Di�erently from other clustering methods that automatically determine the
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"best" number of clusters (Blatt et al. 1996; Frey and Dueck 2007), our method does not

force the convergence to a crisp classi�cation, but preserves and exploits the extracted

information about the whole spectrum of diversity present in the data set, beyond simply

partitioning it into some number of classes. The analysis of the discrete arti�cial data set

furthermore revealed that a highly robust discrete clustering solution can be found if it

exists (Battaglia et al. 2013).

The fact that the most stable cluster solutions (see Fig. 3.2 A&B, k=2, 3) are not

necessarily the best solutions to describe the biological structure of the data set is a major

problem for characterization or comparison of di�erent assemblages. In past analyses of

vocal repertoires a two cluster solution often turned out to be the most stable solution

(Hammerschmidt and Fischer 1998; Wadewitz et al. 2015a). This does not mean that a

two call category solution is really appropriate to describe the communicative diversity

of these repertoires (Fischer and Hammerschmidt 2001, 2002). It remains to be seen

whether such stable but inappropriately low numbers of clusters also emerge in data sets

of entirely di�erent provenance.

For a comprehensive assessment of di�erence in overall structure between di�erent data

sets, we suggest inspecting the DTC over a range of possible cluster solutions. As we

demonstrated in this study, the gradation of the two vocal repertoires does not di�er

signi�cantly for solutions with a low number of clusters and the di�erences only become

apparent if the level of resolution (i.e. number of clusters) is increased.

4.1 Comparing Vocal Repertoires

In the Barbary macaque data set, clusters split systematically at lower values of µ. This

�nding indicates that for any given resolution (i.e. level of fuzziness) the established Bar-

bary macaque call types exhibited a higher level of gradation compared to the established

chacma baboon call types. For instance, in the Barbary macaque data set at the fuzziness

level of µ = 2.02, the two previously existing call types merged to one all-embracing call

type, whereas the two previously existing call types in the chacma baboon repertoire still

remained separated. This indicates that already at the level of two call types, the chacma
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baboon repertoire showed a higher separation than the two Barbary macaque call types.

Calls do not vary only between di�erent call types, but can also exhibit considerable

within-call type variation (Marler 1976; Vehrencamp 2000).

With our approach we were able to capture both, between- and within-call type vari-

ation over multiple cluster solutions as well as in detail for speci�c solutions. While the

majority of calls in the chacma baboon repertoire shared their membership between two

call types, the calls in the Barbary macaque repertoire had common borders with several

call types. For the chacma baboons, all solutions showed a right-skewed distribution of

typicality scores (i.e. the repertoires had a rather discrete structure), while the Barbary

macaque repertoires dropped signi�cantly in typicality coe�cients for all repertoires with

k > 2, resulting in a highly left-skewed distribution. In other words, many calls in the

repertoires had a very atypical character, lying between the centers of established call

types.

4.2 Implications for Acoustic Communication

Describing the gradation of vocal repertoires at a quantitative level is a prerequisite to

evaluate hypotheses on the possible selective factors that drive the structure of communi-

cation systems. The results of our approach allow to re-examine some classic hypotheses,

for instance, that graded repertoires should occur in species with higher visual access

towards each other (Marler 1976, 1977). Moreover, the DTC method in principle pro-

vides a way to quantitatively test the hypothesis that social complexity (McComb and

Semple 2005) drives vocal complexity (Bouchet et al. 2013; Freeberg et al. 2012; Krams

et al. 2012). More speci�cally, it allows us to reconsider the notion of vocal complexity.

Previous studies used the number of call types in the repertoire as a proxy (Freeberg

et al. 2012), but as discussed above, this number is di�cult to determine with certainty

in graded repertoires, which are typical in mammalian species. Instead, we propose to

use the mean typicality coe�cient. It is also worth considering a more information-based

notion of complexity. According to such an information-based notion, the level of grada-

tion between di�erent call types might be a better indicator for vocal complexity than
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the sheer number of call types. As expected by information theory, complex systems are

neither completely ordered, nor completely disordered, but rather stand in between these

two extremes (Crutch�eld 2011; Tononi et al. 1998). In the case of vocal complexity, the

information that a completely discrete repertoire exhibits can only lie in the existing call

types itself. In contrast in a system with no di�erentiation, the information may be high,

but di�cult to distinguish from noise, and thus altogether useless for communication.

Complex vocal repertoires would therefore show both, typical calls that serve as a "refer-

ence map" that guides interpretation (decoding) and atypical calls that convey additional

information via variation in the acoustical structure. The metrics that we extracted from

the distribution of typicality coe�cients revealed that the repertoires of the two analyzed

species exhibit both, typical and atypical calls and that this distribution changes signi�-

cantly with an increasing number of call types in the more graded repertoire of Barbary

macaques.

4.3 General Implications

The usage of typicality coe�cients to describe structured data sets and the investigation

of the distribution of these typicality coe�cients over several possible cluster solutions

allows for an objective description of the level of di�erentiation in a given data set. Rep-

resentations in fuzzy membership space (Fig. 3.3) provide a strong visual hook on the

structure of a data set, and their interpretation in terms of similarity to concrete data pro-

totypes appears more direct and natural than for other powerful but abstract dimensional

reduction approaches, such as deep learning (Hinton and Salakhutdinov 2006). Beyond

the application in bioacoustics research, we believe that the DTC method may be helpful

in other scienti�c domains where graded data sets need to be quanti�ed, compared, and

visualized. In neurobiology, the large diversity of morphological, synaptic, electrophysio-

logical, and molecular properties of inhibitory interneurons can be quanti�ed by the use of

typicality coe�cients (Battaglia et al. 2013). In population genetics, edge and core popu-

lations show a di�erent level of diversity in haplotypes (Eckert et al. 2008) and the DTC

method could be used to describe these di�erences in detail. In vegetation classi�cation,
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di�erent models exist that make assumptions of whether plant communities form discrete

units or whether they are structured continuously (Collins et al. 1993). Typicality coef-

�cients may be used to quantify the distribution of these vegetation patches. In sum, we

suggest that this approach has a good potential to facilitate the comparison of complex

structured data sets in a novel and productive fashion. More speci�cally, it provides an

alternative to settling on rather arbitrary numbers of types or categories, and focus on

the degree of di�erentiation within a given data set instead.
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5 Methods

5.1 Data sets and Recordings

Chacma baboons

In a previous study (Wadewitz et al. 2015a), we re-analyzed call recordings that were

collected during January 1998 and June 1999 in the Moremi Wildlife Reserve in Botswana.

A number of comprehensive studies on the social behavior of this population has been

published (Silk et al. 1999) and recordings were taken as part of an array of studies on

the monkeys' vocal communication (Fischer et al. 2002). Vocalizations were recorded

with a Sony WM TCD-100 DAT recorder and a Sennheiser directional microphone (K6

power module and ME66 recording head with MZW66 pro windscreen) (Fischer et al.

2002). We assembled a data set comprising of 912 calls, which we selected to capture the

overall diversity of the chacma baboon's vocalizations. The selected calls were given by
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45 females (41 adults, 4 infants) and 28 males (24 adults, 4 infants). For an overview of

the call types included in the data set, spectrograms of typical calls are shown in Figure

3.6 A.

Barbary macaques

For the Barbary macaque data set, we used recordings that were taken in an outdoor

enclosure at Rocamadour, France, between 1987 and 1993. The enclosure is a visitor

park where monkeys range freely while visitors are restricted to a path. Vocalizations

were recorded at a distance of 1-10 m with a Marantz cp430 or a Sony WM DC6 cassette

recorder and a Sennheiser directional microphone (KN3 power module and ME80 or ME88

recording head with Sennheiser windscreen) and transferred to a DAT tape (SONY TCD-

D3) for storage. We assembled a data set of 934 calls to match the sample of the chacma

baboon repertoire. The selected calls were given by 41 females (34 adults, 7 infants) and

33 males (27 adults, 6 infants). Spectrograms of calls in the data set that have been

described in previous studies are shown in Figure 6 B.

5.2 Call Parameterization

Calls of both data sets were fast Fourier transformed (FFT) into their frequency-time do-

main with Avisoft (Avisoft SASLab Pro, version 5.2.05), using a FFT size of 1024 points,

Hamming window and 96.87% overlap. Depending on the frequency structure of calls we

used a sampling frequency of 5 kHz (low frequency grunts of chacma baboons) or 20 kHz

(all others), resulting in a frequency range of 2.5/10 kHz, a frequency resolution of 5/20 Hz

and a time increment of 1.6/6.4 ms. The resulting frequency-time spectra were analysed

with the software LMA 2012 developed by Kurt Hammerschmidt. For all acoustic analy-

sis we chose a set of 38 acoustic features that broadly describe the temporal- and spectral

characteristics of the vocalizations as well as the call tonality and the spectral modulation

of the calls (see appendix). This set of acoustic features has proven to su�ciently de-

scribe the call morphology of the di�erent call types in chacma baboons (Wadewitz et al.

2015b). Since Barbary macaque vocalizations have fairly similar temporal- and spectral
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Figure 3.6: Spectrograms of calls in the used data sets. Shown are call types given by the two
investigated species. (A) The chacma baboon repertoire consists of several call types that
have been well described in the literature and are mostly referred to as being rather discrete.
Next to more noisy calls like wahoos and the majority of screams, chacma baboons also
possess several tonal call types such as barks, grunts, weaning calls and some tonal screams.
(B) The vocal repertoire of Barbary macaques consists of calls that seem to be much noisier
and exhibit a high degree of variation. Prior studies have shown that the categorization of
Barbary macaque calls proves to be di�cult. The repertoire consists of a variety of di�erent
scream types as well as lower frequency calls such as grunts and pants.
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characteristics (Hammerschmidt and Fischer 1998) the same acoustic features have been

used for the analysis.

5.3 Fuzzy c-means clustering

Fuzzy set theory (Zadeh 1965) extends conventional set theory allowing for the notion

of imperfect membership. In this way, it is particularly suited to the clustering of data

in which the separations between di�erent classes of data-points is gradual rather than

sharp (Zadeh 2008). Each call is associated an assigned membership value for each of

the clusters, ranging from m = 1 (fully displays the properties of the cluster) and m = 0

(does not display any of the properties of the cluster). Intermediate membership values

0 < mia < 1 mark calls that do not fully belong to one of the clusters, but can be classi�ed

as intermediates between di�erent call types. Membership vectors are normalized in such

a way that
∑c

α=1miα = 1.

More speci�cally, we adopted a fuzzy c-means algorithm (Jang and Sun 1997; Xu et al.

2008). To determine the number of clusters that describe the dataset best, two parameters

of the algorithm can be adjusted. The �rst parameter is the maximal number of clusters

allowed and the second is the fuzziness parameter µ. If µ = 1, the extracted clusters are

very crisp and membership values of data points are either 1 or 0 (in this limit indeed

fuzzy c-means converges exactly to k-means). However, by increasing µ, clusters become

fuzzier and nearby clusters can eventually merge, unlike in k-means, leading to a smaller

number of clusters. We assumed a relatively large possible number of clusters c = 15

(larger than the number of reasonably detectable clusters) and increased µ until all calls

were grouped indistinctively into one fuzzy cluster (µ = 2.5).

Similar to k-means, the fuzzy c-means algorithm builds up clusters by an iterative

optimization process. In contrast to k-means, where objects do either belong or not belong

to a cluster, in fuzzy c-means membership vectors m(t)
i for c clusters are computed at a

given iteration t. Cluster centroids are given by vectors u(t+i)α (α = 1...c) with components

u
(t)
αl .
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1

m
(t)
iα

=
c∑

λ=1

(
d
(t)
iα

d
(t)
iλ

) 2
µ−1

(3.1)

where d(t)iλ is the Euclidean distance between the data-point fi and the centroid u(t)λ at a

given iteration t.

These membership vectors are used in turn to compute a new set of cluster centroids

u(t+ 1) with coordinates:

u
(t+1)
αl =

∑N
i=1(m

(t)
iα )µfil∑N

i=1(m
(t)
iα )µ

(3.2)

This procedure is designed to minimize a speci�c cost function (Dunn 1973), namely the

sum of the squared distances of the data-points from the di�erent centroids, weighted by

the relative fuzzy memberships:

J t =
N∑
i=1

c∑
λ=1

(m
(t)
iλ )µ × (d

(t)
iλ )2 (3.3)

In practice we randomly initialized a collection of 15 cluster centroids u(0)α in the feature

space, by selecting 15 arbitrary data-points fi. Initial membership vectors m(0)
i were then

computed and the procedure was iterated until the positions of the 15 centroids converged

to a �xed point (with a prescribed tolerance) or until a �xed maximal number of iterations

was reached. As an extension to the original fuzzy c-means strategy (Jang and Sun 1997),

the �nal set of centroids was then inspected to identify potential coalescences and drop

redundant centroids. Following our previous studies (Battaglia et al. 2013; Wadewitz et

al. 2015a), whenever the Euclidean distances between di�erent centroids was smaller than

a tolerance threshold (set to ε = 0.01), the associated fuzzy classes were merged, and the

membership vectors of data-points correspondingly shrunk to a length c∗ < c, by adding

up memberships of the merged classes. Thus, given a data set and a maximum number of
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15 allowed clusters, the e�ective number c∗ of clusters in the �nal fuzzy partition depended

on µ.

5.4 Call Type Memberships

Once the fuzziness parameter µ is set and the clusters (i.e. call types) have been computed,

the main type α for each call i is the call type with the highest assigned membership

component miα = m1st
i . In a pairwise cluster comparison, the co-membership of every

call between its main type α and corresponding cluster β is calculated by:

c(i) =
min(miα−miβ)

max(miα−miβ)
(3.4)

Its residual co-membership is calculated by:

r(i) =
1−miα−miβ

max(miα−miβ)
(3.5)

The interval of both indices lies between 0 and 1. C-values close to 0 indicate a high

separation of the call from its corresponding cluster. R-values close to 0 indicate that the

membership of the call is shared by several clusters. By subtracting the second largest

membership component m2nd
i from the �rst, we get the typicality coe�cient for each call,

which represents the overall typicality of a call:

TC(i) = m
(1st)
i −m

(2nd)
i (3.6)

The typicality coe�cient is bounded in the interval 0 ≤ TC ≤ 1. A typicality coe�cient of

1 indicates that the call lies right in the center of a call type and therefore highly typical,

a typicality coe�cient of 0 indicates that the call lies exactly between the centers of two

call types and has an intermediate morphological structure (i.e. is a highly atypical call).
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In this way, the typicality coe�cient can be used to quantify how discrete or graded call

types are within a repertoire. Note that here we phrase our notion of typicality simply in

terms of the fuzzy memberships themselves unlike in other available de�nitions (Lesot et

al. 2006).

To see how typicality coe�cients are a�ected by the decision on one of the possible

cluster solutions, typicality coe�cients have been calculated for k = 2 − 10. To compare

the two data sets, regression lines and their slopes for each cluster solution have been

calculated (estimator: ordinary least squares).

5.5 Quanti�cation of Typicality Coe�cients

Di�erent metrics have been used to describe the developing of typicality coe�cients over

k. Besides the arithmetic mean including 95% con�dence intervals, and the mode (value

that occurs most often in the data set), we calculated Kelley's measure of skewness as an

additional percentile based measure:

sk =
P10+P90−2×P50

P10−P90

(3.7)

where P10,P50, and P90 are the 10th, 50th, and 90th percentile of the ordered list of typicality

coe�cients for a given k. Positive values for sk indicate negative skewness (more typical

calls), whereas negative values indicate a positive skewness (more atypical calls).
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A Appendix

Table A.1: Descriptions of all 38 acoustic features used in the analysis.

Acoustic Feature Description and unit

(01) Duration Duration [ms]
(02) DFA range Frequency Range (DFA3-DFA1) [Hz]
(03) DFA2 mean 2nd quartile of frequency amplitudes distribution [Hz]
(04) DFA2 maloc Location of the maximum frequency 2nd DFA [Hz]
(05) DFB1 mean 1st dominant frequency band [Hz]
(06) DFB1 chfre Number of changes between original and �oating average curve local modulation 1st DF
(07) DFB1 chmean Deviation local modulation 1st DFB [Hz]
(08) DFB1 pr Time segments where a 1st DF could be found [%]
(09) DFB1 maloc Location of the maximum frequency 1st DFB [Hz]
(10) DFB1 miloc Location of the minimum frequency 1st DFB [(1/duration)*location]
(11) DFB1 trfak Factor of linear trend of 1st DFB
(12) DFB1 fretr Alternation frequency between 1st DF and linear trend
(13) DFB1 mtr Max deviation between 1st DFB and linear trend [Hz]
(14) DFB2 mean 2nd dominant frequency band [Hz]
(15) DFB3 mean 3rd dominant frequency band [Hz]
(16) Di� mean Minimum di�erence between 1st & 2nd DFB [Hz]
(17) Di� req Mean number of DFâ��s
(18) F1 mean 1st global frequency peak [Hz]
(19) F2 mean 2nd global frequency peak [Hz]
(20) F1 wmean Mean frequency 1st peak [Hz]
(21) FP1 mean Mean frequency 1st peak [Hz]
(22) FP1 amean Mean amplitude 1st P [rel. amplitude]
(23) F2 pr Time segments where a 2nd P could be found [%]
(24) F2 wmean Mean frequency 2nd peak [Hz]
(25) F3 pr Time segments where a 3rd P could be found [%]
(26) PF mean Peak frequency [Hz]
(27) PF maloc Location of the maximum PF [(1/duration)*location]
(28) PF miloc Location of the minimum PF [(1/duration)*location]
(29) PF jump Maximum di�erence between successive PFâ��s [Hz]
(30) PF trfak Factor of linear trend of PF
(31) PF trfre Alternation frequency between PF and linear trend
(32) PF trmean Deviation between PF and linear trend [Hz]
(33) CS mean Correlation coe�cient of successive time segments
(34) CS maloc Location of maximum correlation coe�cient of successive time segments [(1/duration)*location]
(35) Noise Noisiness [%]
(36) Hnr2 Mean signal to noise ratio (1=no noise) [%]
(37) Shimmer mean Mean frequency of vocal fold vibration [Hz]
(38) Jitter mean Mean amplitude of vocal fold vibration [rel. amplitude]
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Table A.2: Average co-memberships and residual co-memberships including 95% con�dence intervals of
chacma baboon calls.

Cluster1 Cluster2 Co-Memb 95% CI Residual 95% CI

Grunt Bark 0.2012 0.2012 0.2019 0.2858 0.2848 0.2862
Grunt Weaning 0.235 0.2342 0.2351 0.2464 0.2457 0.2468
Grunt Tonal Scream 0.0099 0.0099 0.0101 0.4556 0.4543 0.4563
Grunt Noisy Scream 0.0236 0.0234 0.0238 0.5057 0.5057 0.5080
Bark Weaning 0.3005 0.2997 0.3010 0.2903 0.2888 0.2905
Bark Tonal Scream 0.0272 0.0271 0.0276 0.5635 0.5623 0.5649
Bark Noisy Scream 0.0636 0.0635 0.0645 0.5907 0.5905 0.5931

Weaning Tonal Scream 0.0511 0.0504 0.0513 0.6771 0.6747 0.6784
Weaning Noisy Scream 0.1029 0.1016 0.1033 0.7887 0.7868 0.7911

Tonal Scream Noisy Scream 0.6214 0.6201 0.6228 0.4381 0.4330 0.4394

Table A.3: Average co-memberships and residual co-memberships including 95% con�dence intervals of
Barbary macaque calls.

Cluster1 Cluster2 Co-Mem 95% CI Residual 95% CI

Grunt Complex Scream 0.0244 0.0243 0.0247 0.7434 0.7409 0.7460
Grunt Pant 0.222 0.2216 0.2232 0.5219 0.5217 0.5244
Grunt Tonal Scream 0.0357 0.0353 0.0359 0.6973 0.6943 0.6990
Grunt Shrill Bark 0.1451 0.1449 0.1458 0.7527 0.7513 0.7535
Grunt Squeak 0.1147 0.1137 0.1149 0.972 0.9699 0.9745

Complex Scream Pant 0.0192 0.0192 0.0195 0.8223 0.8223 0.8258
Complex Scream Tonal Scream 0.3361 0.3359 0.3384 0.5954 0.5937 0.5983
Complex Scream Shrill Bark 0.0507 0.0505 0.0509 0.9207 0.9194 0.9218
Complex Scream Squeak 0.3226 0.3207 0.3228 0.9608 0.9606 0.9655

Pant Tonal Scream 0.0196 0.0193 0.0197 0.7996 0.7977 0.8009
Pant Shrill Bark 0.5143 0.5138 0.5148 0.3975 0.3961 0.3980
Pant Squeak 0.0941 0.0935 0.0944 0.9687 0.9669 0.9701

Tonal Scream Shrill Bark 0.0636 0.0635 0.0639 0.8956 0.8939 0.8962
Tonal Scream Squeak 0.4989 0.4977 0.4999 0.7632 0.7627 0.7673
Shrill Bark Squeak 0.2659 0.2646 0.2659 0.8301 0.8288 0.8309
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Table A.4: Values of µ and slope of regression line for k = 2− 10.

k chacma baboons Barbary macaques

µ slope µ slope
2 1.98 19.7 1.56 11.6
3 1.54 -1.5 1.46 -7.5
4 1.46 2 1.44 -13.7
5 1.42 1.3 1.4 -11.4
6 1.4 4.5 1.36 -24.4
7 1.38 7 1.34 -23.9
8 1.36 10.5 1.332 -23.7
9 1.344 7.6 1.324 -25.3
10 1.34 7.2 1.3 -22.8
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1 Abstract

Objective characterizations of vocal repertoires are a prerequisite to understand the prox-

imate and ultimate causes that shape acoustic communication in animals, as they provide

the foundation for comparative analyses among individuals, populations and taxa. To

achieve progress in this �eld it is important to standardize the methodological approach.

In two former studies we evaluate the in�uence of di�erent cluster procedures and the

e�ect of acoustic feature selection on the result of on acoustic analysis. In this study we

focused on the e�ect of call selection, how the inclusion of arousal- and size-dependent

variation in�uences the ability to retrieve given vocal types. We create di�erent reper-

toires using a larynx �nite element model based on the estimated anatomy of a baboon

larynx and varied arousal and size of possible callers. Our results showed that whereas

moderate variation in arousal has only a minor impact on the ability to retrieve the given

vocal types, di�erences in body size made the recognition of the existing three vocal types

impossible. Higher variation of arousal strengthens the negative e�ect of size. We suggest

limiting size variation to improve vocal type recognition.
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2 Introduction

In acoustically communicating species, the analysis of vocal repertoires is a widespread

approach to investigate how communicative systems are shaped by possible selective fac-

tors like environmental conditions or the social structure of a species. Despite the large

interest in an objective methodology to analyze vocal repertoires, some major hindrances

still remain. One of these hindrances is the determination of the ultimate number of call

types within a vocal repertoire. Since many vocal repertoires show a considerable amount

of variation within and between call types, commonly used clustering techniques fail in

providing satisfying results. With an approach that we currently proposed that is based

on typicality coe�cients we were able to describe and compare the graded structure of the

vocal repertoires of two selected nonhuman primates in detail (Wadewitz et al. 2015b). In

addition to individual decisions that can in�uence the result of a constructed repertoire

(e.g. the selection of acoustic features or the choice of one supposedly optimal number of

call types), another important aspect concerns the size of the analyzed dataset and the

selection of recordings. Since di�erences in physiology and arousal have been shown to

in�uence the structure of calls (Fischer et al. 2002; Ey et al. 2007; Bouchet et al. 2010),

the composition of the dataset regarding factors like sex or age of the individuals will

presumably have a compound e�ect on the shape of the constructed vocal repertoire. In

this study, we aim to investigate the e�ect of these individual and arousal based variations

in animal calls by creating controlled sets of vocal repertoires that cover arousal- and size-

dependent di�erences. To create these repertoires we used a larynx �nite element model

based on the estimated anatomy of a baboon larynx. The model simulates oscillating

vocal folds positioned within a laryngeal cartilaginous framework, applies intrinsic laryn-

geal muscle activations (Alipour and Titze 1999) and includes a wave propagation model

of the vocal tract (Story and Titze 1995). The created sets are subsequently quanti�ed

using a novel approach that we proposed to compare vocal repertoires in a recent study

(Wadewitz et al. 2015b).
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3 Methods

3.1 General Design of the Finite Element Model

To create controlled sets of pseudo repertoires that cover natural individual variation

and arousal based variation in animal calls, we used a �nite element (FE) model of

vibrating vocal fold tissue which is continuously developed by Titze and colleagues and

has been successfully used to model vocalizations of cervids (Titze and Riede 2010). The

model is based on the combination of physical modeling of tissue and air movement with

physiologic modeling that progresses �rst from muscle activation to muscle mechanics,

then to cartilage and soft tissue posturing, then to self-sustained oscillation of tissue, then

to glottal air�ow, and �nally to wave propagation in the vocal tract. A full description

of the soft tissue simulation and its physical properties can be found in (Titze and Riede

2010). A schematic overview of the working model is given in Figure 4.1. The model is

superior over other existing vocal fold models by its simulation of vocal fold posturing

with realistic biomechanics and muscle activation.
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Figure 4.1: 3-dimensional FE model of the vocal folds. Frontal section through the thyroid
cartilage and the vibrating portion of the vocal folds. Mucosa, ligament, and TA muscle are
shown in color for the left vocal fold. Taken and modi�ed from (Titze and Riede 2010)

.

3.2 Laryngeal Structures in the Model

Inside the larynx, interactions between the laryngeal muscles and cartilages determine

the shape of the vocal folds and are therefore crucial for phonation. The four critical

cartilages that can be found in the model are the thyroid, cricoid, and two arytenoid

cartilages. The intrinsic laryngeal muscles that activities can be simulated in the model

are the cricothyroid muscle (CT), the thryoarytenoid muscle (TA), the interarytenoid

muscle (IA), the lateral crico-arytenoid muscle (LCA), and the posterior cricothyroid

muscle (PCA). A detailed description of the laryngeal cartilage and muscle structures

is given in Fig. 4.2. The activities of each mentioned muscle could range from 0 to 1

(0-100%) and the e�ects of adduction/elongation of them are described in Table 4.1. In

our approach, vocal fold dimensions were set to 10mm length, 5mm thickness, and 4.5mm

depth. Since we did not have exact measures on baboon vocal fold characteristics, we

based our estimates on measurements from other species (Riede et al. 2005; Pfe�erle and
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Fischer 2006).
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Figure 4.2: Intrinsic muscles and cartilages of the larynx. (A) posterior-lateral view, (B) anterior-
lateral view, and (C) superior view. Taken and modi�ed from (Titze 1994)

.

Table 4.1: Description of laryngeal muscles

Muscle Function E�ect

Cricothyroid muscle Tilts back the upper border of the cricoid cartilage lamina Increases voice pitch
CT -> Tension and lengthening of vocal folds

Lateral cricoarytenoid muscles Adduct and internally rotate the arytenoid cartilages Closes glottis
LCA -> Adduction of vocal folds

Thyroarytenoid muscle Draws the arytenoid cartilages forward toward the thyroid Lowers voice pitch
TA -> Relaxation and shortening of the vocal folds

Interarytenoid muscles Adducts the arytenoid cartilages Closes glottis
IA -> Adduction of vocal folds

posterior cricoarytenoid muscle Abducts and externally rotates the arytenoid cartilages Opens glottis;
PCA -> Abduction of vocal folds Responsible for breathing

78



Chapter 4 - Vocal Repertoire Modeling

3.3 Vocal Tract Design

In mammals the vocal tract consists of the laryngeal cavity, the pharynx, the oral cavity,

and the nasal cavity and has a �ltering function of the sound that is produced at the lar-

ynx. Filtering is generated by resonances of the vocal tract that allow certain frequencies

(formants) to pass and radiate from the mouth better than others. Which frequencies

are ampli�ed and which suppressed is highly dependent on the shape of the vocal tract

(Story et al. 1996; Riede and Titze 2008).

In our approach we worked with a simple model of the vocal tract since we did not

have precise measures of nonhuman primate vocal tract geometry. The supraglottal tract

was modeled with 50 tubelets of equal length for a total length of 19.9cm (Fig. 4.3

B). The vocal tract length was based on existing measurements of hamadryas baboons

(Pfe�erle and Fischer 2006). The shape of the oral cavity was designed to simulate a

simpli�ed version of the vocal tract geometry of a human producing an /a/-vowel with

jaws separated and lips open (Fig. 4.3 A).
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Figure 4.3: Schematic drawing of the vocal tract (VT) simulation. (A) Measurement of human
VT when producing an /a/ vowel and description of the di�erent sections. (B) VT sim-
ulation for a medium sized animal. (C) VT simulation for a small sized animal. (D) VT
simulation for a large sized animal.
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3.4 Created Datasets

Datasets with di�erent level of gradation

To create controlled repertoires with variation of call structure within and between call

types we aimed to simulate three known call types given by chacma baboons (Wadewitz

et al. 2015a) by adjusting laryngeal muscle activities and subglottic pressure of the model.

To identify the settings of these features that match our desired call templates, we �rst

created a muscle activation plot (MAP). The MAP plots CT activity against TA activity

and indicates the relationship between these two muscle activities, subglottic pressure, and

the fundamental frequency. Fundamental frequency lines indicate muscle activity settings

that produce speci�c fundamental frequencies (Fig. 4.4). To calculate these lines, calls

for all possible combinations of TA and CT activities in steps of 10% were simulated for

750ms duration. Each simulation created a wav-�le which was visually inspected and the

fundamental frequency was calculated using the software PRAAT (Boersma and Heuven

2001). Based on these calculations, the fundamental frequency lines were calculated

via linear interpolation. Additionally, for every simulation, signal to noise ratio of the

simulated call was measured in PRAAT and color coded in the MAP. Highlighted in the

MAP are settings to create the three simulated call prototypes. In �gure 4.5 the original

templates and their corresponding simulations are shown.
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Figure 4.4: Muscle activation plot (MAP). Fundamental frequency lines for vocal fold oscillation
based on simulations with the �nite element model. Gray scaled squares indicate signal-to-
noise ratio of the simulated sounds (Darker squares indicate lower signal-to-noise ratios).
Settings of muscle activity for the four simulated calls are indicated in the plot.
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a
Grunt ScreamBark

b

Figure 4.5: Spectrograms of recorded call templates (A) and their simulated calls (B). Call simu-
lations were created with the laryngeal �nite element model and vocal fold and vocal tract
settings for a medium sized individual.

Modelling Arousal- and Size-dependent Di�erences in Call Structure

To simulate arousal based di�erences in call structure, 23 simulations of each call type

have been constructed with di�erent subglottic pressures. For all call types subglottic

pressures ranged from 0.78kPa to 2.94kPa. Subglottic pressure data during phonation

are available for a few mammals (in vivo measurements: human: 0.3 − 6kPa (Bouhuys

et al. 1968); bat: 0.5− 7kPa (Fattu and Suthers 1981); horses: 0.5− 8kPa (Rakesh et al.

2008); excised larynx experiments in various species: 0.3−5kPa (e.g. in squirrel monkeys:

Brown et al. 2003). We therefore considered our simulated range of subglottic pressure

level as a realistic estimate when low to high e�ort is exerted. The change of subglottic

pressure level is meant to simulate a reduction in individual arousal leading to a smaller

motivation to build up subglottic pressure (Stoeger et al. 2011).

To simulate size-dependent di�erences in call structure, the same sets have been created

with di�erent sizes of vocal tract and vocal fold characteristics. We aimed to simulate a
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smaller individual as well as a larger individual. Settings for the di�erent simulations are

summarized in Table 4.2 and di�erences in vocal fold lengths are additionally visualized

in Figure 4.3 B&C. An overview of all created datasets can be found in Table 4.3.

Table 4.2: Vocal fold (VF) and vocal tract (VT) characteristics in the model

Individual VF length VF thickness VF depth VT length

Small 7mm 3.5mm 3.15mm 15.89cm

Medium 10mm 5.0mm 4.50mm 19.87cm

Large 13mm 6.5mm 5.85mm 23.34cm

Table 4.3: Overview of created datasets

Individual Variation Call Types Rep Size

Small Arousal Grunt 23
Bark 23
Scream 23

69
Medium Arousal Grunt 23

Bark 23
Scream 23

69
Large Arousal Grunt 23

Bark 23
Scream 23

69
All Arousal + Size Grunt 69

Bark 69
Scream 69

207

83



Chapter 4 - Vocal Repertoire Modeling

3.5 Sound Analysis

Call Parameterization

Every simulation created a wav �le of the simulated call. This call was subsequently fast

Fourier transformed (FFT) into its frequency-time domain with Avisoft (Avisoft SASLab

Pro, version 5.2.05), using a FFT size of 1024 points, Hamming window and 96.87%

overlap. We used a sampling frequency of 20 kHz, resulting in a frequency range of

10 kHz, a frequency resolution of 20 Hz and a time increment of 6.4ms. The resulting

frequency-time spectra were analysed with the software LMA 2012 developed by Kurt

Hammerschmidt. For all acoustic analysis we chose a set of 118 acoustic features that

describe the temporal- and spectral characteristics of the vocalizations as well as the call

tonality and the spectral modulation of the calls (see chapter 2 - Table A.1). The acoustic

features have proven to su�ciently describe the call morphology of the di�erent call types

in chacma baboons (Wadewitz et al. 2015a).

Determining the Number of Call Types

Since we simulated three call types, we expected the three cluster solution to be superior

over other possible solutions. To assess our expectations we used a fast validation method

that is based on k-means clustering (MacQueen 1967) and the analysis of silhouette values

(Rousseeuw 1987). For a description of the implementation of k-means clustering and

silhouette validation see (Wadewitz et al. 2015a). With this method the clustering quality

of di�erent cluster solutions with k = 2 − 10 has been validated for every dataset.

Quanti�cation of Call Structure Variation

To quantify the variation of call structure in the simulated datasets, we applied a method

that is based on fuzzy c-means clustering and which has been successfully used for the

description of call variation in the acoustic repertoires of chacma baboons and Barbary

macaques. The detailed descriptions of our approach can be found in the Methods sec-

tion of (Wadewitz et al. 2015b). In fuzzy c-means clustering, every call is associated an

assigned membership value for each of the clusters, ranging from m = 1 (fully displays
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the properties of the cluster) and m = 0 (does not display any of the properties of the

cluster). Intermediate membership values 0 < mia < 1 mark calls that do not fully belong

to one of the clusters, but can be classi�ed as intermediates between di�erent call types.

Membership values are a�ected by a parameter (µ) of the algorithm that de�nes the fuzzi-

ness of the system. Since we knew the optimal cluster solution of our created datasets

from prior cluster quality validation, we set µ to 2.0 for all datasets. This allowed us to

standardize the analyses of the di�erent datasets and make results best comparable.

For each call, typicality coe�cients have been calculated by subtracting the second

largest membership component from the �rst:

TC(i) = m
(1st)
i −m

(2nd)
i (4.1)

The typicality coe�cient is bounded in the interval 0 ≤ TC ≤ 1. A typicality coe�cient

of 1 indicates that the call lies right in the center of a call type and therefore highly typical,

a typicality coe�cient of 0 indicates that the call lies exactly between the centers of two

call types and has an intermediate morphological structure (i.e. is a highly atypical call).

In this way, the typicality coe�cient can be used to quantify how discrete or graded call

types are within a repertoire.

4 Results

In the three moderate datasets, the three-cluster solutions show the highest validity and

all simulated calls fall into their pre-assigned categories. Higher numbers of clusters do

not lead to higher validity but on the contrary silhouette values drop signi�cantly. In

the fourth dataset that includes all calls from the other three datasets ('All'), no cluster

solution is signi�cantly more valid than the others. In contrary to the moderate datasets,

in the extended datasets with a higher variation in subglottic pressure levels (Fig. 4.6 B)

the three-cluster solution is not superior over the other solutions. In addition, the dataset

including size variation ('All') has generally lower silhouette values, which means that the
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Figure 4.6: Comparison between the average silhouette width for K-means clustering for
k=2-10 cluster for all four datasets. All moderate data sets without size-variation show
a similar curve of average silhouette widths with a three-cluster solution that is superior over
all other created solutions. For the extended data sets with higher variation in subglottic
pressure levels the three-cluster solution is not superior over the others and an optimal
solution is hard to determine. Data sets with variation in body size show generally lower
silhouette values, i.e. the established clusters are less well separated. Shaded areas represent
95% con�dence intervals.

clusters are less well separated than in the other three datasets. To be able to compare

the quantitative variation in call structure between all datasets, subsequent analysis has

been carried out for the three-cluster solution.

In Figure 4.7, two acoustic features, namely fundamental frequency (F0) and peak fre-

quency (PF), have been chosen to visualize their distribution over the three call types

when subglottic pressure is changed. The change in subglottic pressure does not a�ect

F0 in a signi�cant way and the three call types remain separated (Fig. 4.7 A-C). How-

ever, if all data sets are being combined, F0s of the small individual's barks are hardly

discriminable from the F0s of large individual's screams (Fig. 4.7 D). Concerning the

peak frequency, grunts and barks are not discriminable in any of the data sets, whereas

the screams remain separated (Fig. 4.7 E-G). If all data sets are being combined, PFs of

the large individual's screams are not discriminable from the PFs of smaller individual's

grunts and barks (Fig. 4.7 H).
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Figure 4.7: Distribution of fundamental frequency (F0) and peak frequency (PF) over
changes in subglottic pressure levels and body size.Whereas changes in subglot-
tic pressure level do not a�ect the discriminability of the three call type in the data sets
without body size variation, with changing body size F0 auf small individual's barks and
large individual's screams overlap (a). Considering PF, the grunt and bark cluster are not
discriminable whereas the scream cluster remains separated for data sets without size varia-
tion (b). Taking body size into account, PFs of large individual's screams overlap with PFs
of smaller individual's grunts and barks. Shaded areas represent the calls incorporated in
the extended data sets.

Taking all acoustic features into account and calculating membership values for all calls,

the three call types are segregated in the acoustic space in a rather discrete fashion if the

data sets do not include individuals of di�erent sizes (Fig. 4.8 A). A higher variation

of subglottic pressure levels leads to higher acoustic variation, but does not change the

general pattern of rather discrete call types (Fig. 4.8 B). In the fourth dataset that

incorporates calls from di�erent sized individuals, a larger amount of variation within and

between call types can be found (Fig. 4.8 'All'). Especially between the bark and scream

call types, there is a considerable amount of gradation and some calls that we modelled as

"scream" types with the settings of a large individual were "misclassi�ed" into the bark

cluster.
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Figure 4.8: Tetrahedral comparison of cluster segregations. Three-dimensional representation
linking all three simulated call types. Individual calls are depicted as dots in the 3D space
of memberships. The X, Y, and Z axes correspond to membership of the bark, grunt, and
scream clusters, respectively. Spectrograms represent transitions from most typical calls to
most atypical calls of the three clusters. Sound examples can be found in the supporting
information. Whereas in the data sets without size-variation call types remain relatively
separated, data sets with size-variation show a considerable amount of gradation between
the bark and scream call types. This pattern holds for the extended data sets which show
a generally higher variation in acoustic structure.

The level of gradation that is visualized in Fig. 4.8 has been quanti�ed by the calculation

of typicality coe�cients and the distribution of typicality coe�cients (DTC) is shown in

Fig. 4.9. In all data sets, screams show higher typicality coe�cients than grunts and barks,

indicating a better separation of this call type. Although this pattern remains throughout

all of the created datasets, typicality coe�cients are generally lower in the dataset with

size variation (Fig. 4.9 'All'). This reduction in typicality coe�cients con�rms the visual

impression from the three dimensional representation in Fig. 4.8, where the bark cluster

shows much more variation in call structure.

88



Chapter 4 - Vocal Repertoire Modeling

0 0.5 1
0

25

50

N
um

be
r o

f C
al

ls

 

0 0.5 1
0

20

40

60

80

Typicality Coe�cient

 

0 0.5 1
0

25

50

 

0 0.5 1
0

30

60

90

 

Bark
Grunt
Scream

0 0.5 1
0

20

40

60

80

Typicality Coe�cient

N
um

be
r o

f C
al

ls

 

0 0.5 1
0

25

50

 

0 0.5 1
0

20

40

60

80

Typicality Coe�cient

 

0 0.5 1
0

50

100

150

Typicality Coe�cient

 

Small Medium Large Alla

b

Figure 4.9: Distribution of typicality coe�cients. Quanti�cation of the overall typicality of calls in
all four datasets by typicality coe�cients. Typicality coe�cients are calculated by subtract-
ing the membership value of the second closest from the membership value of the closest
call type. Sections with di�erent colors indicate calls with di�erent main type. In all data
sets, screams show higher typicality coe�cients than grunts and barks, indicating a better
separation of this call type. In the data sets with size-variation typicality coe�cients are
generally lower.

5 Discussion

In this study we showed that the composition of a species' vocal repertoire can have a

profound in�uence on the analysis of its acoustic structure. Whereas moderate variation

in subglottic pressure has only a minor impact on the ability to retrieve the given vocal

types, di�erences in body size made the recognition of the existing three vocal types

impossible. Higher variation of arousal strengthens the negative e�ect of size.

The application of the FE model to simulate calls of a nonhuman primate allows us to

imitate physical and physiological mechanics of sound production. Despite the general

accuracy of the model, some limitations have to be kept in mind. First, the muscle pa-

rameters of the three simulated call types are not based on measurements of a vocalizing

animal, but are chosen to simulate our call templates based on the inspection of spectro-

grams, measurements of fundamental frequencies and muscle activation plots including

iso-fundamental frequency contours. Generally, other muscle activation patterns are pos-
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sible that could lead to a similar acoustic output. Another limiting factor concerns the

laryngeal anatomy as well as precise measurements of the vocal tract of baboons. These

characteristics have been estimated by existing literature on Hamadryas baboons (Pfef-

ferle and Fischer 2006), Diana monkeys (Riede et al. 2005) and humans (Titze 1994).

Because the �exibility of vocal tract geometry of nonhuman primates is highly debated

amongst bio-acousticians and linguists (Lieberman et al. 1969), we kept the shape of the

vocal tract simple and constant in all simulations. A third limitation is that subglottic

pressure range is estimated based on available data of other mammals. To ensure that

our pressure levels could actually be applied by an animal with the size of our simulated

baboons, we took a rather conservative approach with moderate lower and upper pressure

level boundaries (1.8kPa - 3.9kPa).

Keeping these limitations in mind, we were able to simulate all three call templates and

to analyze the di�erences in call structure that were induced by di�erences in body size

and subglottic pressure level. Our analysis shows that the applied clustering algorithm

reveals a three-cluster solution as the optimal solution to describe the structure of the

data sets with moderate subglottic pressure variation and no body size variation. The

determination of the optimal cluster solution becomes however problematic if variation in

subglottic pressure levels is extended towards the boundaries of physical call production.

Di�erences in subglottic pressure levels do therefore in�uence the general determination

of the number of call types in our datasets if taken to extreme values, whereas data

sets with moderate pressure variation are not a�ected. We assume that the di�culty

to separate call types with an extreme variation in subglottic pressure levels is due to

chaotic oscillation patterns of the vocal folds if the subglottal airstream exceeds a certain

threshold. If a data set contains calls that do not only di�er in the applied subglottic

pressure (i.e. state of arousal of the signaling animal), but also contains calls of animals

with strongly varying body size, the clustering quality drops signi�cantly and an optimal

solution regarding the number of call types in the dataset becomes harder to determine

(Fig. 4.6 'All').

Interestingly, the constructed data sets without body size di�erences already show some

degree of gradation within and between their call types. Although most calls show a highly
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typical structure and only a minority of calls shows lower typicality coe�cients, the dif-

ferences between typical and atypical calls is not strikingly obvious when inspecting their

spectrograms. A possible explanation could be that these calls di�er in some hidden

acoustic features that cannot easily been assessed by eye in the spectrograms. Despite

these atypical calls, all three call types remain separated in all of the data sets. In the

datasets with size variation, the di�erences in body size of the simulated calls leads to a

much higher variation in call structure which results into lower typicality coe�cients in

all three call types. A striking result is that especially the calls in the bark cluster show

considerably lower typicality. A reason for this e�ect might lie in the acoustic structure

of the bark type. Both, fundamental frequency as well as frequency modulation show

medium characteristics that are located between the non-modulated and lower-pitched

grunts and the stronger-modulated higher-pitched screams (see also Fig. 4-7). Through

the variation in body size, grunts of smaller individuals might approach call characteris-

tics of barks given by large individuals and similarly screams of larger individuals might

approach call characteristics of barks given by small individuals. The intermediate char-

acter of the bark call type might therefore lead to reduced typicality in their calls, whereas

in the scream and grunt cluster, gradation towards a di�erent call type can only occur in

one direction (towards the bark type). This e�ect is demonstrated and even increased by

the misclassi�cation of scream types (given by a large individual) into the bark cluster.

In summary, our approach shows that whereas moderate di�erences in the state of

arousal have a minor impact on the characteristics of vocal repertoires, di�erences in body

size can hamper classi�cation and characterization of call types. Although it would be

desirable to have precise measurements of the modelled species' anatomy and especially its

muscle activation patterns while vocalizing, we assume that the shown e�ects are widely

applicable. The degree of these e�ects is, as discussed in this manuscript, dependent on

several factors and not least at the general level of gradation within a species' repertoire.

Researchers should be aware of these e�ects and should construct their data sets based on

the underlying research question. To determine the number of call types and investigate

their acoustic structure, our results show that it is bene�cial to only incorporate recordings

from animals of one age class (i.e. minimizing the variation in body size). To investigate
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a communication system from the perspective of signal receivers, all age classes should be

taken into account.
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5 | General Discussion

The quantitative characterization of a species' vocal repertoire is not only necessary to in-

vestigate potential driving forces in signal evolution but is also important to understand

consequences for signal processing by signal receivers. For these reasons, the analysis

of vocal repertoires has a broad signi�cance in animal communication studies. Analyt-

ical tools that are currently used to characterize vocal repertoires, however, have some

shortcomings and often lack objectivity.

In my dissertation I evaluated some of the common methods used for the analysis of

vocal repertoires, investigated the major factors that hinder objectivity and developed a

method that allows a quantitative assessment of call structure variation within and be-

tween vocal repertoires. In the following chapter, I will �rst summarize the most important

�ndings of the di�erent studies imbedded in this thesis, highlight their contribution to

the current way of how vocal repertoires are analyzed and discuss their implications for

bioacoustics research in general. Finally, I will give an outlook and make suggestions for

future research.

1 Common Ways to Analyze Vocal Repertoires

As I have introduced in Chapter 1.4.2, several methods to cluster acoustic data exist. In

Chapter 2, two of the most common clustering algorithms have been used to analyze the

vocal repertoire of chacma baboons, namely k-means (MacQueen 1967) and hierarchical

Ward's clustering (Ward 1963). Although based on di�erent metrics (in k-means ran-

dom cluster centers are improved to minimize within-cluster distance whereas in Ward's

method nearby clusters are linked in a bottom-up fashion), both procedures resulted in
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very similar categorization of calls which matched our reference classi�cation (gained by

visual inspection of spectrograms) to a high degree. Therefore, our results con�rm the

�ndings of several studies that these algorithms are useful to cluster calls in a given reper-

toire into call types that consist of similarly structured calls (e.g. Ward's: Laiolo et al.

2000; Shulezhko and Burkanov 2008; Kershenbaum et al. 2013; Fuller 2014; K-means:

Hammerschmidt and Todt 1995; Hammerschmidt and Fischer 1998; Maciej et al. 2013).

We also investigated clustering approaches that have been developed to overcome some

shortcomings of the more traditional clustering algorithms like k-means. A�nity propa-

gation (AP) circumvents the problem of running into a local maximum that is globally

not the best cluster solutions (Frey and Dueck 2007) and super-paramagnetic clustering

(SPC) is based on the physical properties of a ferromagnetic model that outperforms

other approaches in sophisticated data structures (Blatt et al. 1996). Both algorithms

have been successfully applied to cluster large amounts of data (for instance on genetic

data: Getz et al. 2000 (AP); Leone et al. 2007 (SPC)) and recently Gamba and colleagues

used AP to analyze and compare vocal repertoires of Eulemur (Gamba et al. 2015). To

test the strength of both approaches for vocal repertoire analysis we applied both algo-

rithms on our chacma baboon data set (data not shown). Both approaches resulted in

similar results than k-means and Ward's clustering. One of the reasons why we already

gained high reference matching with k-means is due to the high number of repetitions of

the iterative optimization procedure of the algorithm. The basic idea of this procedure is

to �nd some reasonable initial partition of the data and to then move the samples from

one cluster to another if such a move improves the clustering result. In this way, the

algorithm reveals the locally optimal cluster solution. If the procedure is only run once,

the argument of Frey & Dueck that clustering results with k-means can be inferior by

�nding the local but not global optimization is valid, since the starting points of the pro-

cedure might have been badly chosen. If, however, the optimization procedure is repeated

often enough, using newly assigned initial cluster centers for every repetition, the glob-

ally optimal solution can be found (Duda et al. 2012). Although from a computational

perspective this procedure might be less e�cient, the relatively small data sets that are

used to characterize vocal repertoires allow the usage of this procedure. Ward's clustering
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on the other hand hierarchically groups nearby clusters in a bottom-up fashion starting

with one sample in every cluster. In this way, the approach avoids the problem of initial

cluster selection and can also reveal subclusters in the data (Duda et al. 2012).

Several factors in the usage of these and similar unsupervised clustering algorithms can

have a profound in�uence on the outcome of repertoire analysis, such as feature selection

and determination of the number of call types. In the following sections of this chapter,

I will discuss our �ndings in regards to these factors which can hinder objectivity in the

analysis of vocal repertoires and make comparative studies di�cult.

2 Acoustic Feature Selection

The decision of the acoustic features that are used in the analysis of vocal repertoires is

one of the most crucial steps in the analysis of vocal repertoires and is often a matter of

opinion among researchers. Whereas some prefer to use a small set of selected features

that are thought to describe the structure of the analyzed calls in the most important

aspects (e.g. Bastos et al. 2015), others prefer to use a large set of features to take all

structural dimensions into account (e.g. Hammerschmidt and Fischer 1998). Others again

use a small amount of factors derived from feature reduction methods that explain a large

amount of structural variation (e.g. Gros-Louis et al. 2008). To test the in�uence of feature

choice in a systematic way, we created four data sets of the recorded chacma baboon calls

that varied in the number of acoustic features that were taken into account and compared

the clustering results with our human-expert reference classi�cation. Interestingly, the

usage of a very low number of features resulted in a rather poor matching success with

the reference, whereas a high number of clusters resulted in a high matching success.

Our results therefore suggest that su�ciently large sets of acoustic features should be

incorporated to capture all acoustic dimensions of the calls. This result may be surprising

since correlated features can cause problems in multivariate statistical hypothesis testing

and are therefore generally avoided. However, these restrictions do not apply in clustering

procedures and in fact correlating features can perform well in classifying call types when

combined. This e�ect can be explained by the fact that every measured feature shows
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some amount of measurement noise, which can be cancelled out if features are taken

into account that share correlating trends but di�er in measurement noise (Guyon and

Elissee� 2003). The assumed problem that a high number of correlating features can make

it di�cult to �nd appropriate cluster centers could not be con�rmed in our analysis.

Another reason why some researchers prefer the usage of a small set of acoustic features

is due to the results of validation methods that are often used to access the quality of

cluster solutions. One of these validation methods is to inspect silhouette values of cluster

solutions which describe how tight data points lie within a cluster and how separated

the di�erent clusters in a given data set are (Rousseeuw 1987). Data sets with a lower

number of acoustic features intrinsically have a lower statistical spread of values since

every additional acoustic feature adds variation to the data. Silhouette values in sets

with lower number of acoustic features will therefore be higher. If the quality of clustering

is evaluated by silhouette values, this results in the misleading impression that a lower

number of acoustic features is leading to a better separation of clusters. I have shown this

e�ect by calculating silhouette values from k-means clustering results based on di�erent

combinations of 13 acoustic features and comparing them to the matching success with

our reference classi�cation (Fig. 5.1). As the Figure indicates, data sets with a lower

number of acoustic features (light gray) show higher silhouette coe�cients, but are less

similar to the human-expert reference. With an increase in acoustic feature (dark grey),

the similarity to the reference (i.e. the cluster quality) increases, whereas the silhouette

coe�cient decreases.

2.1 Factor Analysis

A common way to circumvent the assumed problem of correlation between acoustic fea-

tures in the analysis of vocal repertoires is the usage of factor analysis (e.g. Fuller 2014;

Gros-Louis 2006; Templeton et al. 2014). However, as our data set that was based on

factors resulted in a poor resolution of emerging call types, we generally discourage the

usage of factors in cluster analysis. The weak performance of the factor analysis can be

explained by its linear nature, always being based on a matrix decomposition of the co-
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Figure 5.1: Top 200 feature combinations that achieved the highest score based on silhouette
values and similarity to reference classi�cation. Gray scale represents the number
of features used in the k-means clustering. Data sets with more features gained generally
lower silhouette values, but were more similar to reference classi�cation than data sets with
fewer features.

variance matrix. If the established clusters have non-spherical shapes in high dimensional

feature space it might not be possible to properly separate them by hyperplanes orthog-

onal to the factors. Thus reducing the dimensionality of the data by projecting them to

the linear space spanned by only a few factors may conceal non-linear correlations in the

data set.

Although this limitation does not necessarily have to be the case in every kind of data

set, there are additional reasons why factors have to be used with caution. Factors can

be di�cult to interpret, especially when highly divergent features load onto the same

factors. If the acoustic features load in an interpretable way onto a few factors working

with factors may be feasible. However, the construction of apparently meaningful factors

may also result in the loss of crucial variation that would be helpful to distinguish between

calls or call types.
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2.2 Fast Fourier Transfrom vs. Wavelet Transform

To extract acoustic features from sound recordings, signals are usually transformed into

their time-frequency spectrum by using Fast Fourier transformation (FFT). In this way,

the signal is represented as the sum of a series of sines and cosines. Since the original

representation of the FFT has only frequency resolution but no time resolution (i.e. all

frequency components of a signal can be determined, but there is no temporal information

of when the frequencies occur), the signal is cut into small sections (windows) which are

analyzed separately and from which frequency and temporal features of the signal can

be extracted. Depending on the size of the windows that are analyzed, either frequency

resolution or time resolution is increased, while the other resolution is decreased (Heisen-

berg's uncertainty principle). However, by overlapping the windows, this limitation can

be signi�cantly decreased.

The wavelet transform was developed to overcome the FFT's initial shortcomings con-

cerning the frequency- and time resolution by using a scalable modulated window that is

shifted along the signal. For every position, the spectrum is calculated. By stretching or

compressing the window, a collection of time-frequency representations is gained which

all di�er in resolutions. Since this stretch/compression (scaling) of the wavelet is directly

correlated with its frequency, the scaling coe�cients can be seen as the frequency compo-

nents of the signal (for comprehensible summaries of wavelet transforms see Valens 1999

and Torrence and Compo 1998).

To test whether the analysis of vocal repertoires could gain from wavelet analysis, we

extracted scaling features from the chacma baboon recordings and used them in clus-

ter analysis. In Figure 5.2 representations of the same call in spectrogram and wavelet

representation are shown.

As Figure 5.2 shows, the main di�erence between the FFT and the wavelet represen-

tation of the signal is that whereas in the FFT representation the frequency and time

resolution are constant throughout the signal, these resolutions change in the wavelet

transform. Here, low frequencies (high scale) are characterized by a good frequency but

poor temporal resolution whereas high frequencies (low scale) are characterized by good
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Figure 5.2: Di�erent representations of a chacma baboon weaning call. (A) Time signal; (B)
Spectrogram after Fast Fourier transformation with a window overlap of 97%; (C) Wavelet
power spectrum after Discrete Wavelet transformation.

temporal but poor frequency resolution (note that the y-axis is logarithmic).

Using the wavelet coe�cients (instead of extracted acoustic features of the FFT) to

cluster the calls, the matching success with our reference classi�cation is extremely poor

(Tables 5.1 & 5.2). A possible reason for this poor matching success might be that

although the high frequency resolution in the low frequency areas allows a precise deter-

mination of some crucial features such as fundamental or dominant frequency, the low

temporal resolution in the low frequencies of the calls does not cover the frequency modu-

lations that are potentially important to discriminate between call variants appropriately.

The results of our analyses con�rm the general view that although wavelet analysis might

be helpful in speci�c bioacoustics applications such as the recognition of discontinuities

and sharp spikes in bird sounds (Selin et al. 2007) or the detection of sperm whale clicks

(Lopatka et al. 2005), it is rather unsuited to analyze vocalizations of nonhuman primates.
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Table 5.1: Cross-tabulation of reference classi�cation and k-means cluster solution for k=4.
The cluster solution is based on 123 acoustic features that have been extracted from Fast
Fourier transforms of the recorded calls. Similarity score: 0.95.

label bark grunt scream wean.

bark 334 0 24 2
grunt 0 339 0 0

scream 0 0 106 0
wean. 6 11 4 86

Table 5.2: Cross-tabulation of reference classi�cation and k-means cluster solution for k=4.
The cluster solution is based on 12 wavelet coe�cients that have been extracted from Discrete
Wavelet transforms of the recorded calls. Similarity score: 0.73.

label bark grunt scream wean.

bark 286 67 51 13
grunt 1 239 0 19

scream 1 0 83 0
wean. 52 44 0 56

3 Determination of the Number of Clusters

Determining the optimal number of call types in a given repertoire can be challenging or

even impossible, especially if there is a high level of variation in the acoustic structure

within and between di�erent call types. Several cluster validation methods are available

to determine the optimal number of call types. By calculating the reduction in variance

of calls within di�erent call types, cluster solutions that partition a data set best can be

revealed (Hammerschmidt and Fischer 1998). Silhouette values, which are based on simi-

lar calculations, can in principle be used as a reliable indicator of the quality of a speci�c

cluster solution. However, results are often less obvious than assumed (e.g. Maciej et

al. 2013). In the analysis of the chacma baboon repertoire, di�erent cluster solutions ap-

peared to be appropriate to partition the data set. As discussed in Chapter 5.2, silhouette

values are a�ected by the number of acoustic features that are taken into account and

therefore the comparison of cluster quality should not be compared between data sets if

the number of acoustic features di�ers in a signi�cant way. Another approach that can

be used to determine the number of call types is based on neutral mutual information
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(NMI) between di�erent clustering methods (e.g. Kershenbaum et al. 2013). We suc-

cessfully used NMI between the classi�cation results of k-means and Ward's clustering

which resulted in similar cluster stabilities that we gained from silhouette analysis. How-

ever, the same limitations that I described for the silhouette analysis applies for NMI and

researchers should be aware of them when characterizing vocal repertoires.

A critical aspect that concerns all validation methods is that often a low number of

clusters can lead to a high cluster quality. It is important to mention that although

these solutions can be mathematically superior, they might not provide su�cient detail

to describe a species' vocal repertoire. An additional problem which hinders objectivity in

the determination of the number of call types irrespective of the used validation method

is the researcher's preference to either split or lump data (McKusick 1969).

In the following section I will discuss the results of our developed approach to describe

vocal repertoires in detail. An integral part of this approach is the determination of the

optimal number of call types, which discussion I will therefore shift into the next section.

4 Fuzzy Clustering to Describe Vocal Repertoires

One of the main de�cits that the hard clustering algorithms I discussed in the previous

sections possess is the initial assumption that computed call types re�ect discrete cat-

egories. Since vocal repertoires of most terrestrial mammals exhibit a substantial level

of gradation within and between call types (e.g. pigs: Tallet et al. 2013; giant otters:

Leuchtenberger et al. 2015; mice: Scattoni et al. 2008; nonhuman primates: Rowell and

Hinde 1962; Green 1975), we developed a method that is based on fuzzy logic and that

allows us to capture details of the graded structure of vocal repertoires.

To examine the utility of our approach, we quanti�ed the graded structure of the

chacma baboon vocal repertoires in Chapter 2 and systematically compared it to the

vocal repertoire of the Barbary macaque in Chapter 3. We chose these two species because

the vocal behavior of both species has been intensely studied and therefore they served as

good models to evaluate the accuracy of our approach (Hammerschmidt and Fischer 1998;

Fischer et al. 2001). Our results con�rmed the �ndings of previous studies that Barbary
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macaques show a higher level of gradation within and between di�erent call types.

The �rst step in our approach is the determination of the number of clusters, which

often proves to be di�cult as I discussed before. To tackle this problem we tested the

stability of di�erent cluster solutions over a parameter that determines the fuzziness of the

algorithm. Surprisingly, except from solutions with very low number of clusters, in neither

of the two vocal repertoires one superior cluster solution could be identi�ed. This result

leads to the question of whether the methodology is not suited to �nd the "true" best

cluster solution, or whether several cluster solutions are simply largely equivalent. Since

this technique has been applied to identify the best cluster solution among morphological

variation in interneurons (Battaglia et al. 2013), I assume the latter is the case. Support

for this assumption comes from our results in Chapter 2, were we showed that other cluster

validation methods like NMI or silhouette values could not identify one superior solution

in the chacma baboon data set either. Although our approach did not �nd one superior

cluster solution, the direct comparison of cluster stabilities of the chacma baboon and

the Barbary macaque repertoire still revealed interesting insights. Since in the Barbary

macaque data set, clusters split systematically at lower fuzziness values, the established

Barbary macaque call types exhibit a higher level of gradation for any given resolution.

This is already a �rst indication that the call types in the Barbary macaque repertoire are

less well separated than in the chacma baboon repertoire without the detailed analysis

that follows after this �rst step.

Although the decision on how many call types can be found in a given repertoire can

be di�cult, in Chapter 2 we focused on one speci�c cluster solution and described how

we can quantify each call's typicality in the vocal repertoire of chacma baboons. With

this �rst study we could already measure the variation in call structure between and

within call types and reveal details of the level of gradation that cannot be captured

with other clustering approaches. One aspect of this detailed analysis is that call types

di�er in their level of gradation. Whereas for instance barks and weaning calls have

shared boundaries showing intermediate call structures, variation in grunt structure is

less pronounced, resulting in a stronger separation of this call type with overall higher

typicality coe�cients.
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In Chapter 3 we extended our approach to circumvent the problem of settling on one

speci�c cluster solution when multiple solutions are largely equivalent. In order to do

this, we assessed the distribution of typicality coe�cients over a range of possible cluster

solutions. Our results showed that the gradation of the two vocal repertoires does not

di�er signi�cantly for solutions with a low number of clusters. When increasing the

number of clusters however, the di�erences between the two repertoires become apparent

and remain stable above a certain number of clusters. We showed that the majority

of calls in the chacma baboon repertoire shared their membership value between two

call types and all solutions showed a left-skewed distribution (i.e. the repertoires had

a rather discrete structure). In contrast, calls in the Barbary macaque repertoire had

common borders with several call types and typicality coe�cients dropped signi�cantly

with an increase in the number of clusters, resulting in a highly right-skewed distribution.

With our approach we were able to show that the Barbary macaque repertoire exhibits

signi�cantly more variation within and between di�erent call types in comparison to

the chacma baboon repertoire which con�rms previous studies on the vocal behavior

of chacma baboons (Owren et al. 1997; Fischer et al. 2001a) and Barbary macaques

(Hammerschmidt and Fischer 1998).

5 Repertoire Composition

In addition to the analytical factors such as feature selection and determination of the

number of call types that I discussed in the previous sections, the composition of a species'

vocal repertoire is another factor that can have a profound in�uence on repertoire struc-

ture. A change in the level of acoustic variation within a given repertoire can be caused

by several factors such as variations in sex and age of the recorded animals (e.g. Ey et al.

2007) which seem to correspond to variations in body size, according to the mechanisms

of sound production (Fitch and Hauser 1995). Other potential factors are the animal's

arousal (e.g. Stoeger et al. 2011; Townsend and Manser 2011) or di�erent recording con-

ditions leading to signal fragmentation (Maciej et al. 2011). Whereas the latter can be

avoided or at least diminished by trying to keep recording conditions constant and dis-
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miss bad quality recordings, di�erences in signalers body size or state of arousal might

be harder to access. In Chapter 4 of this thesis, I simulated di�erences in body size and

arousal and evaluated the in�uence of these factors on the constructed vocal repertoire.

Simulation of arousal has been done by changing subglottic pressure level, which has been

shown to be a�ected by arousal (Stoeger et al. 2011). However, it is important to mention

that this is only one (even though crucial) factor that can be a�ected by arousal and in-

�uence signal structure. The results of our analysis show that by changing the subglottic

pressure level only, the three call types that have been simulated remain separated and

the three cluster solution is superior over all other solutions. One limitation of the study

in this respect is that subglottic pressure range was estimated based on available data

of other mammals. To ensure that our pressure levels could actually be applied by an

animal with the size of our simulated baboons, we took a rather conservative approach

with a moderate upper pressure level boundary.

Interestingly, when a data set contains calls that do not only di�er in the applied

subglottic pressure level, but also contains calls of animals with strongly varying body size,

the clustering quality drops signi�cantly and an optimal solution regarding the number

of call types in the data set becomes harder to determine. In this constructed repertoire,

especially the calls in the bark cluster show considerably lower typicality. I assume that

this e�ect can be explained by the intermediate character of the bark cluster considering

frequency-related acoustic features. In this regard, taking calls of animals into account

that vary in body size, screams (characterized by higher-frequency components) given

by larger individuals can converge bark characteristics given by smaller individuals and

grunts (characterized by lower-frequency components) given by smaller individuals can

converge bark characteristics given by larger individuals. Despite the general accuracy of

the used model, some limitations have to be kept in mind when interpreting the results.

A limitation concerning the simulated body size variation is that laryngeal anatomy as

well as vocal tract size has been estimated by existing literature on Diana monkeys (Riede

et al. 2005) and humans (Titze 1994) and does not represent true characteristics of the

baboon's morphology.

Although the study is still in preparation for submission and it is planned to produce
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larger data sets and do additional analyses, the results indicate the strong in�uence that

the data set composition can have on the resulting repertoire. Whereas di�erences in

epiglottal pressure seem to have a minor impact on the characteristics of vocal repertoires,

di�erences in body size can hamper classi�cation and characterization of call types and

researchers should be aware of these e�ects when preparing data sets to analyze a species'

vocal repertoire.

6 General Implications

In addition to the detailed descriptions of the chacma baboon and Barbary macaque vocal

repertoires, the results of my dissertation have some general implications on bioacoustics

research and potentially on other scienti�c domains. The importance of feature selection,

identi�cation of the number of clusters and composition of data sets which I discussed in

detail in the previous sections should be taken into account in future repertoire analysis

and interpretation. Our approach based on fuzzy clustering (DTC) has the potential

to evaluate possible selective factors that drive the structure of signals and entire vocal

repertoires.

Within a repertoire, several studies have shown that structural variation in calls can

di�er between di�erent call types. In Campbell's monkeys, for instance, contact calls

are rather graded, whereas alarm calls are more discrete (Outarra et al. 2009; Lemasson

and Hausberger 2011). In chimpanzees, screams show a high level of variability, whereas

copulation calls are much more discrete (Slocombe et al. 2009; Townsend and Zuberbuhler

2009). Other examples include gray mouse lemurs (Leliveld et al. 2011) and baboons

(Fischer et al. 2001; Rendall et al. 2009). The di�erences in the variability between

di�erent call types are assumed to be related to the call function (Bouchet et al. 2012).

The results of our analyses con�rm the �ndings that within a repertoire call types can

di�er in their variability. In the chacma baboon repertoire, for instance, grunts show

a much more discrete structure than screams, which is preserved over all constructed

cluster solutions. The level of detail that our method provides can be used to quantify

these di�erences in variability between di�erent call types that other methods cannot.
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Between vocal repertoires of di�erent species, the quanti�cation of gradation can be

used to re-examine some classic hypotheses, for instance, that graded repertoires should

occur in species with higher visual access towards each other, since additional sensory

modalities can be used by the signaler and receiver (Marler 1976, 1977). Following this

hypothesis, Barbary macaques with a higher level of gradation within their repertoire

should have better visual conditions than chacma baboons. The characteristics of the

habitats of both species are strikingly di�erent with Barbary macaques living more arbo-

real, inhabiting mainly cedar, �r, and oak forests in the Atlas Mountain range of Morroco

and Algeria (Fa 1984) and chacma baboons inhabiting mainly desert, savannah grassland

and woodland in southern Africa (Cowlishaw 2013). However, in both species individuals

have generally good visual access towards each other. Therefore, our �nding that the vo-

cal repertoire of Barbary macaques exhibits a higher level of gradation does not support

this hypothesis. One important aspect that has to be taken into account is the historic

distribution of a species that might di�er from the current distribution but might have

shaped the communication system. However, since chacma baboons are endemic to south-

ern Africa and never inhabitated closed habitats, and Barbary macaques are endemic to

the extreme North Africa, this possibility can be ruled out.

Detailed descriptions of vocal repertoires are needed to determine a repertoire's com-

plexity. To evaluate the theory that vocal complexity (Freeberg et al. 2012; Krams et al.

2012; Bouchet et al. 2013) is driven by social complexity (McComb and Semple 2005),

an explicit de�nition of vocal complexity is necessary. As I have introduced in Chap-

ter 1, two de�nitions of vocal complexity exist. The �rst and simpler one looks at the

total number of call types within a species' repertoire (Freeberg et al. 2012), which can

be complicated to determine if repertoires show a higher level of gradation. The second

de�nition of vocal complexity is based on information theory. According to this concept,

complex systems are neither completely discrete, nor completely graded, but rather lie in

between these two extremes (Tononi et al. 1998; Crutch�eld 2011). Whereas in discrete

systems the information only lies in the call types itself, totally graded systems without

structure would be useless for communication since potential information could not be

distinguished from noise. Following this de�nition, the quanti�cation of typicality within
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repertoires that our method provides could be a useful indicator for vocal complexity.

Beyond the application in bioacoustics research, our developed method can be poten-

tially useful in other scienti�c domains where graded data sets need to be quanti�ed, com-

pared, and visualized. In neurobiology, Battaglia and colleagues successfully quanti�ed

the large diversity of morphological and molecular properties of inhibitory interneurons

using typicality coe�cients (Battaglia et al. 2013). In population genetics, edge and core

populations show a di�erent level of diversity in haplotypes (Eckert et al. 2008) and our

method could be used to describe these di�erences in detail. In vegetation classi�cation,

di�erent models exist that make assumptions of whether plant communities form discrete

units or whether they are structured continuously (Collins et al. 1993) and typicality

coe�cients may be used to quantify the distribution of these vegetation patches.

7 Outlook

In my dissertation, I investigated di�erent factors that can hinder objectivity in the anal-

ysis of vocal repertoires and provide a method that allows quantifying and comparing the

level of gradation within species' repertoires. Although I already discussed several poten-

tial areas of application in the previous sections of this chapter, I would like to conclude

with some thoughts on additional future research perspectives.

As I have discussed, feature selection is a crucial step in the analysis of vocal repertoires

and I recommend taking a large number of features into account. If a smaller set of

features is desired, one has to make sure that features that might be important for the

discrimination of call variants are not ignored. Concerning the analytical process, a

systematic study could be designed in a way that data sets with a large number of features

serve as a reference classi�cation. From these data sets features could be iteratively

excluded measured by the smallest loss in reference matching until a threshold is reached

that accounts for a good trade-o� between number of features and loss in information.

An important aspect that has to be kept in mind, however, is that the features that

are important to discriminate call variants on the analytical level are not necessarily

the features that receivers within a species' communication system use to discriminate
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between call variants.

To investigate this question and additionally validate the accuracy of our developed ap-

proach, playback experiments could be conducted using the "habituation-dishabituation"

paradigm (Fischer 1998). Since several species show categorical perception (Fischer 2006),

call variants that grade from one into another call type could be used to detect the change

points in the acoustic structures that are perceived as di�erent categories and lead to a

change in response behavior. To identify the call variants that might be in the relevant

acoustic area for categorical perception, membership values of constructed vocal reper-

toires could be used. If the acoustic features that have been chosen in the analysis accu-

rately re�ect the acoustic features that are used by receivers to discriminate between call

variants, the relevant intermediate calls that lie between two call types could be detected

at the category boundaries (Figures 2.6 & 3.3, dashed lines).

Although this might be an enormous endeavor, systematic changes of speci�c acoustic

features of call variants could be modelled to measure di�erences in response behavior

and evaluate the importance of these features for call discrimination. It is important to

mention however that when using the "habituation-dishabituation" paradigm, one does

not measure the acoustic di�erence that the receiver is able to distinguish, but the acoustic

di�erence that is meaningful to the receiver (Nelson and Marler 1989).

Another interesting aspect that could be investigated using our approach is whether the

level of gradation within a repertoire and speci�cally within di�erent call types changes

with ontogeny. Several studies on alarm call development (for a review see Hollén and

Radford 2009), but also on other call types (e.g. Hauser 1989) have found changes in call

structure with ontogeny that are beyond changes in body size. Quantifying these changes

using typicality coe�cients could allow re-examining existing hypotheses concerning the

function of these changes.
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