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Introduction

The theory of automorphic forms lies at the heart of number theory and has connections
to many fields in theoretical mathematics like harmonic analysis, representation theory,
spectral theory, partial differential equations, mathematical physics and algebraic geo-
metry, thus there are several different “angles” one can look at automorphic forms. From
the analytical point of view one is interested in the eigenfunctions of the Laplacian on a
Riemannian manifold, in mathematical physics especially in the square integrable eigen-
states. From the algebraic point of view one is interested in the modern adelic theory of
automorphic representations of reductive groups and their connections to the Langlands
program. On the geometrical side the fractional transformations induced by elements of
the modular group are isometries of the hyperbolic upper half plane. The Eisenstein series
span the orthogonal complement of the space of cusp forms. In contrast to the cusp forms,
Eisenstein series can be written down explicitly through an infinite series and as a result
of this the important properties like meromorphic continuation, functional equations and
Fourier coefficients can be calculated exactly. There are several good reasons why one
should study Eisenstein series in detail. We will quote a few here and explain how they
fit in the general picture sketched above. In the theory of automorphic forms and the
Langlands program Eisenstein series are used to study cusp forms. A way to do this is the
Rankin-Selberg method (and the Langlands-Shahidi method for automorphic representa-
tions), which consists of integrating an Eisenstein series against a cusp form, unfolding
the Eisenstein sum and then transfering the meromorphic continuation and functional
equation from the Eisenstein series to the L-function of the cusp form. In analytic number
theory the fact is used that the Fourier coefficients of Eisenstein series contain arithmetic
information, for example the Siegel-Weil formula gives the ways a number can be repre-
sented by quadratic forms on average. In spectral theory direct integrals of Eisenstein
series describe for a non cocompact lattice I' the continous spectrum of the self adjoint
extension of the Laplacian on the Hilbert space £2(T'\ $). In the language of representa-
tion theory this is equivalent to the decomposition of the right regular representation of
£2(T"\ $) into irreducible subrepresentations.

First we give a short overview over the literature about Eisenstein series and their Fourier
expansions (without guarantee of completeness). The theory of Eisenstein series was
first treated in great generality for Lie groups in Langlands’ famous work [21]. The
treatment in [21] relies heavily on the use of representation theory and it is not trivial to
translate this into the classical language. The standard reference for Eisenstein series and
spectral theory for reductive groups in the modern adelic language is [24]. The theory
of Eisenstein series for arbitrary Fuchsian groups of GLy was discussed in great detail
in the classical language, see the standard references [11], [12]. For the general linear
group G L, explicit calculations for Eisenstein series in the classical language were mostly
done for the lattice SL,(Z), we give now a short summary of the results. Langlands did

iii



iv INTRODUCTION

some explicit calculations of the functional equations for SL,(Z) in the appendix of his
book [21], but did not calculate explicit Fourier expansions. In [13] and [26] the Fourier
expansion for the Eisenstein series twisted by a Maass cusp form is calculated for the
lattice SL3(Z), though in these papers the space of positive definite matrices was used
as a model of the generalized upper half plane and also generalized K-Bessel functions
instead of Whittaker functions were used for the calculations. In [23] the same is done
with Whittaker functions but in a more representation theoretic way. In [6] the Eisenstein
series twisted by a constant Maass form for the lattice SL3(Z) is handled. The minimal
Eisenstein series for the lattice SL3(Z) is discussed in great detail in [4] and [27]. In
this thesis the Fourier expansions of all types of GL3 Eisenstein series for the congruence
subgroup I'g(N) of SL3(Z) defined by

* % X
To(N):=<¢v€ SL3(Z)|y= |+ * x| mod N  , (0.1)
*

with N squarefree, are explicitly calculated. Further certain invariance properties of the
Fourier coefficients are proved from which the functional equation can be deduced. This is
explicitly carried out for the Eisenstein series twisted with a constant Maass form of prime
level. To avoid to many notations we will use the notation of I'g(IV) also to denote the
analogous congruence subgroup of SLo(Z). Note that, unlike the G La-version of I'o(N),
in the higher rank case I'g(/V) has not many symmetries. This means precisely that T'o(V)
is not invariant under the involution

zre 2= -1 (z=HT -1
-1 -1

In order to facilitate the reading of this quite technical thesis we will give a brief introduc-
tion into the theory of automorphic forms on G L3 in the classical language. The standard
references for this topic are [4], |7] and [9, ch. 12], where also detailed proofs for the
cited theorems can be found. For each introduced object, we give a short description
how this object is used in the thesis. We begin with the introduction of the generalized
upper half plane, a symmetric space on which our automorphic forms are defined. Note
that the generalized upper half plane is a generalization of the well known upper plane
H = {# € C|Jm(z) > 0} in the complex plane. This becomes more transparent if one
describes these spaces as quotients of GL3(R) by the orthogonal group Os, which is a
maximal compact subgroup, and the center of GL3(R).

DEFINITION 0.1. The generalized upper half plane h® associated to GL3(R) is defined as
the symmetric space

1 2o w3 Y192
h3:: Zi=x-y = 1 x Y1 r;€Randy; >0for 1 <i<3,1<5<2
1 1

~GL3(R)/OsR” .
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Related to the above definition is the Iwasawa decomposition of the group GL3(R), which
states that every matrix g € GL3(R) has a decomposition g = hkr with elements h €
b3,k € Oz,r € R*. Note that the factor h is unique and the factors k and r are unique up
to the multiplication with +F3, where F3 denotes the 3 x 3 identity matrix. In order to
introduce Maass forms on h2, note that the manifold h> has odd dimension five so there
does not exist any complex structure, hence there does not exist an analogon of modular
forms, so we have to introduce an analogon of the hyperbolic Laplace operator. We cite
the introduction of G'Ls-invariant differential operators in |9, def. 12.3.14], a more detailed
treatment can be found in 7], [8]. For each a € g := gl(3,R), where gl(3,R) denotes the
Lie algebra of GL3(R), we define a differential operator D, acting on smooth functions
¢ : GL3(R) — C by the formula

Daolg) = lim © (8(g - exp(ta)) — 6(9)) - 02)
Then the algebra of differential operators with real coefficients generated by the operators
D, « € g is a realization of the universal enveloping algebra U(g). Its center, 3(U(g)) is
isomorphic to a polynomial algebra in 3 generators. One choice of generators is given by
the Casimir differential operators, see [9), def. 12.3.14]. In [4} ch. 2] the only relevant two
generators (the third one acts trivially on functions defined on 3, since it is differential
operator induced by the identity matrix F3) are calculated in detail. Note that one can
generalize this construction to Lie groups. With these preparations we can state the notion
of an automorphic form on the generalized upper half plane.

DEFINITION 0.2. Let N be a positive integer. A Maass form of level N is a smooth function
¢ : b3 — C satisfying the following conditions

(1)
¢(v-2) =¢(z)  Vyelo(N),
(2) the function ¢ is an eigenfunction of every element of 3(U(g)) (the action is well
defined),
(3) the function ¢ is of moderate growth, meaning for each fixed o € GL3(Q), there
exist constants ¢, C' and B such that

[f(o-2)| < C-(h1yo)”
for all z =z -y € b3 such that min(yy,y2) > c.

Next we introduce the two maximal conjugated parabolic subgroups and the minimal
parabolic subgroup of SL3(Z) by

ail G612 G613

Py = az1 ag2 a3 | € SLi(Z) p
1
1 a2 a3
Py = aso az3 | € SL3(Z) p
as2 a33

1 a2 a3
Poin = 1 az3 | € SLg(Z)
1
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The parabolic subgroups are stabilizers of flags and play a tremendous role in the general
theory of the constant terms of automorphic forms. Since we are working with the Fourier
expansions in this thesis we go on without introducing the precise notion of a GL3 Maass
cusp form for T'o(N) and the notion of the constant term. The general theory of the
constant term is developed in detail for example in [21], [28] and [29]. The “translation”
into the classical language can be found in [9, ch. 12]. To issue a warning in order
to add clarity we will use the notation P,,;, also to denote the analogous subgroup of
SL9(Z). Analogously to the GLy case where through separation of variables the obvious
eigenfunction y° of the hyperbolic Laplacian was constructed, see |15, ch. 1.7], one can
construct a special eigenfunction of 3(U(g)), see [7, ch. 2.4, 10.4, 10.5] for details. For
complex parameters si, s the function

1(81782)(z) = yi1+282y551+52 V2 € []3

is an eigenfunction of 3(U(g)) and invariant against left multiplication with real upper
triangular matrices, whose diagonal entries are +1. Further for a complex parameter s
the functions

Is—25) (2, Pa1) == (yig)” Vzep®

and
I(2s,—s)(zv P1,2) = (y%yl)s Vz € b3

are eigenfunctions of 3(U(g)) and invariant against left multiplication with real matrices
in P, 1, P12, respectively. Now we have the tools to define the different types of G L3 Eisen-
stein series. There are actually three different kinds of Eisenstein series, the minimal one
associated to the minimal parabolic subgroup, the one twisted by a Maass cusp form asso-
ciated to the two maximal parabolic subgroups and the one twisted by a constant Maass
form associated to the two maximal parabolic subgroups. Note that since the congru-
ence subgroups for GLy have no residual spectrum besides the point so = 1, see [15] ch.
11.2] for details, there are only constant residual Maass forms. So there are only the
twists with constant or cuspidal Maass forms, which occur in the spectral decomposition
of £2(To(N) \ h®). Analogously to the GLs situation we will define the Eisenstein series
associated to the three different parabolic subgroups through averaging the various I func-
tions defined above over the congruence subgroup I'g(N'), which implies trivially the I'o(NV)
invariance. Associated to “cusps” a € I'o(N)\ SL3(Z)/P2q,8 € T'o(IN)\ SL3(Z)/P; 2 and
a constant or cuspidal GLo Maass form ¢ of level M, with M a divisor of N, are the
twisted Eisenstein series

Z ¢ (mP2,1 (ailf}/z)) I(s,f2s) (ailf)/za P2,1) s
'YGQF(M,PQJ)a_lmFD(N)\FO(N)

Z ¢ (mp, (B7'92)) Lias —s) (B vz, Pr2)

YEBT(M,P1,2)3~1NTo(N)\To(N)
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where mp, |, mp, ,, respectively, denotes the upper left, lower right, respectively, 2x2 block
of a matrix in Py 1, P2, respectively. And I'(M, P» 1), I'(M, Py 2), respectively, consists
of the matrices in Py 1, P2, respectively, whose upper left, lower right, respectively, 2 x
2 block matrix lies in T'o(M). Note that the above Eisenstein series are well defined,
this follows from the automorphy of ¢ and the invariance of the function I, o4 (x, P2,1),
I g, - 8)(*, P, 1), respectively, against left multiplication with P 1, P 2, respectively. For a
“cusp” § € I'o(N) \ SL3(Z)/Ppin define the associated minimal Eisenstein series by

Z I(51752) (6_172) )

YES Prnind~'NLo(N)\T'o (V)

again this is well defined. The minimal Eisenstein series is absolutely convergent for
Re(s1), Re(s2) > 2 in the case of SL3(Z), see [4} ch. 7] and [7, Prop. 10.4.3] for a proof
following [3]. Since the P01 N To(N) \ To(N) cosets can be viewed as a subset of
the cosets corresponding to SL3(Z), the minimal Eisenstein series for I'g(N) is absolutely
convergent in the same right half plane. The I;-functions in the definition of the twisted
Eisenstein series are in fact shifted versions of the function /(,, ,), so since a constant or
cuspidal Maass form for G Ly has moderate growth, the absolute convergence is inherited
from the minimal Eisenstein series. Note that the construction of the G L3 Eisenstein series
are carried out in the same way as in the GLg case through the method of images, hence
summing up shifted versions of a special eigenfunction. In the calculation of the Fourier
expansions one has to overcome several barriers. The first one is to calculate an explicit set
of double coset representatives for the “cusps” for each parabolic subgroup. The second
one is to have a set of left coset representatives for the sets in the summation condition
and then to calculate the corresponding Iwasawa decompositions, so one can calculate the
associated values of I,-functions and Maass forms explicitly. This is solved by explicitly
defining a set of elements in SL3(Z) in Bruhat decomposition for each parabolic subgroup
such that each element in SL3(Z) is represented uniquely as the product of one element
from this set and one element from the associated parabolic subgroup. Then we will show
how to choose a suitable set of coset representatives from these matrices. These coset
representatives are described by gcd-conditions on the primes dividing the level N. In
contrast to the theory for SL3(Z) the calculations here are much more elaborate. Further
the construction here will be in such a generality, that one can handle each parabolic
subgroup, in the literature for SL3(Z) one used to construct coset representatives for the
twisted and minimal Eisenstein series separately, see [13] for the twisted and [4], [27]
for the minimal Eisenstein series. Once the above construction is achieved one has to
calculate the h3-part in the Iwasawa decomposition of those coset representatives and the
corresponding values of the functions I; and ¢. Since one needs the terms ordered in a
special way, for further calculations one cannot leave the whole calculations to programs
like Mathematica. Note that these explicit constructions can also be applied to Poincaré
series for I'g(/V) or generalized to other congruence subgroups of SL3(Z). After these
preparations one can start with the calculation of the Fourier coefficients.

We now give a short review of the Fourier expansions of G L3 automorphic forms. In the
adelic language the Fourier expansion was first proved in [18], [19]. For the Fourier expan-
sion of SL3(Z) invariant automorphic forms in the classical language see [4, Thm. page
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65,(4.10)] for details. Note that in the Fourier expansion of I'g(V) invariant automorphic
forms there are no additional sums, since the congruence subgroup I'g(N) contains the
group P 1. Note that in contrast to the GLo theory, where the invariance against the

1 1y, .. Lo : . .
element < 1> implies the periodicity and the Fourier expansion of a Maass form, in the

G L3 case one has to make an effort to get the Fourier expansion and further the structure
of the expansion is more complicated, since an additional sum over the left cosets of the
lower rank group SLs(Z) occurs. This is due to the noncommutativity of the Heisenberg

group.

THEOREM 0.3. Let ¢ be an automorphic form on GLs for the congruence subgroup I'o(N).
Then ¢ possesses there a Fourier expansion

B Sr ST S Sy qb"“*"”((7 1) )

m2=0 ’Yepmin\GIQ (Z) mi1=1mo=0

with

1 p1 gl 1 2z 3
Gmamo(2) = / / / 10) 1 x| 2| e(—miz1 — moxe)dridaadas .
o Jo Jo 1

The existence of Whittaker models for G L3 implies that ¢, m,(2) is a linear combination
of six Whittaker functions. This is proven in |4, ch. 2] using the two differential equations
¢ satisfies and the invariance against the upper triangular matrices. The general theory of
Whittaker functions was developed by Jacquet in [17] on arbitrary Chevalley groups and
explicitly worked out for the group GLs in [4} ch. 3]. For Re(ry),Re(rz) > 1, integers
ni,n2 and with the notation & = £1&3 — &3, the explicit integral formulas in [4] (3.10)-
(3.15)] for the Whittaker functions read as follows

1 — .

W(Vl,V2) _ AR (351) r (352) r (3V1+3V2 1) I(V17V2)(z) ; ifng=ny=0;

ni,m2 (Z>w0) - .
0, otherwise .

i TR | 3v 3 3v1 +31s — 1
Wr(ll,lﬁf)(szl) = g3t (21> T <22) r <122) I(Vl,VQ)(Z)e(nlxl + noxa)
3v

1 3v

3+&UT ] 2 (&8 +1y2+y1y2_726—n11—n22 1d&2d&3 .
] [52 &yt 22] [(¢ &) + Ey3 22] (—n1é §2)d€1déadg

7T_3V1_3V2+%F (3%) r (3%) T (%) I(V1,V2)(Z)e(n2$2)

14 % o0 —SL .
W) (z,wa) = 4 [ (€24 42] 7 7 e(—naka)dés iy =0
0, otherwise .
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a3 31/2+2F (%) T (31/2) (%) [(VI’VQ)(z)e(nlwl)
IZW% oo e i
WA (zrws) = 3 1%, [ 402) 7 e(-min)de | e =0
0 otherwise .

i

g3t s (&) T (3%) r (M) I(lq ) (2)e(naza)

[ ZW% _ o] o] > e i
Wil (owa) = 25 o5 [+ R+ ohf]T 7 (S +08) 77 e(-mat)deadsy , ifm =0
otherwise .

)

R () T (32 ) () Fy Gt

V1,V _ 0o roo - 1 -5 i
Wr(n,ln;) (27 ’LU5) - f—oo f—oo [5% + y%] [ 1y2 + ZJ1Z/2] ? 6(—nlfl)d§1d§4 ’ ifny =0 ;

, otherwise .

The above Whittaker functions are the “building blocks” of the Fourier expansion of
automorphic forms and only depend on the manifold GLs3, which means that ¢, m,(2)

is a linear combination of Whittaker functions W&l’},%)(z, x). The spectral parameters
v1,v9 come from the eigenvalues of the automorphic form, see |4, thm. page 65] for a
closer description of the dependencies. Further the Whittaker functions have meromorphic
continuation and satisfy certain functional equations, see again [4, ch. 3] for the precise
statements and proofs, which are used to obtain the functional equation of Eisenstein
series. One main application of the Fourier expansion of the Eisenstein series is the
derivation of the associated functional equation, by showing that each and every summand
in the Fourier expansion has a certain invariance against the transformation s — 1 — s,
s — w - (s1,s2) (action of the Weyl group, see [4, (2.5)]), respectively. It turns out
that through permuting the summands in the Fourier expansion, one gets the functional
equation. In the Fourier expansion of our Eisenstein series the Fourier coefficients in the
linear combination of these Whittaker functions depend on the complex parameter(s) s,
s1, S92, respectively, and contain all the number theoretic and combinatorial information
about the lattice Io(N). These Fourier coefficients are in fact Dirichlet series, which split
into a number theoretic part, the L-function of the Maass cusp form in the twisted case,
divisor sums in the other cases, and into a combinatorial part. The functional equations
of the L-function and the divisor sums, see Theorem Lemma [20.3} give the necessary
invariance property of the number theoretic part. The combinatorial part is described
through the introduction of certain families of power series in two variables associated to
each prime number. The most important family of these power series occurs in the Fourier
coefficients at the unramified primes (primes coprime to the level) after substituting certain
number theoretic functions, Hecke eigenvalues, divisor sums, respectively, for the two
variables. The other families of power series for the ramified primes (primes dividing
the level) can be expressed as a sum of the power series with “good” transformation
behaviour and a remaining term, which can be calculated explicitly. So for non trivial level
one has to take linear combinations of the Eisenstein series for the different double coset
representatives to compensate the absence of a nice transformation behaviour of the power
series at the ramified primes. This is analogous to the treatment of G Ly Eisenstein series,
where one has to take the Eisenstein vector parametrized over the cusps and transform it
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with a certain scattering matrix, see [15] and |20] for a detailed treatment. We will apply
this method to the Eisenstein series twisted by a constant Maass form for prime level.

The following summary lists the main results in this thesis. For the Eisenstein series
twisted by a constant Maass form explicit Fourier expansions are proved in Theorem
and [12.3] further the functional equation is proved in Theorem For the Eisenstein
series twisted by a Maass cusp form Fourier expansions are stated in Theorem [14.3] and
[15.2] the finer structure of the Fourier coefficients are examined in Lemma [T4.5] and [15.3]
Eventually the result, where the longest calculations are involved, is the Fourier expansion
of the minimal Eisenstein series, stated in Theorem The chosen normalization of the
cusp forms and Whittaker functions in the above theorems is not canonical, the natural
choice will be dictated by the functional equation.



Part 1

Eisenstein series






CHAPTER 1

Double coset representatives

The first step of the calculation of the Fourier expansion for all three different kinds of
Eisenstein series is to explicitly calculate a set of representatives for the double cosets
Lo(N) \ SL3(Z)/Py3—m and T'o(N) \ SL3(Z)/Ppin. The double cosets above can be
considered as the algebraic analogon of the cusps of the corresponding symmetric space
To(N) \ b3, In the classical theory for GLy it is well known that there is a one-to-one
correspondence between the elements of the double coset I'g(N) \ SL2(Z)/Ppin, and the
cusps for T'o(N) (see |22] for a proof).

First we state two trivial lemmata which are often needed later in technical steps of
calculations.

LEMMA 1.1. Let dy,da, N be integers with N > 1 and (dy,d2) = 1. Then there exists a
positive integer s with the property (di + sda, N) = 1.

PROOF. If N =1 we can choose s arbitrarily, so assume N > 1. Since (d;,d2) = 1,
the number N has the following prime factor decomposition

=T I I

pldi pldo pldidz

This implies | N,di +d2- [[ p| = 1. Hence the choice s = ][] p will do. O
pIN pIN
pldida ptd1da

The proof of the following is trivial and omitted.

LEMMA 1.2. Let & be a group and $), R subgroups of the group &. Further let a,b € &.
The two double cosets HaR and HOR are equal if and only if there exists an element k € R
such that akb™! € 9.

Now we return to our primary goal and begin with the calculation of a suitable set of

double coset representatives for I'o(N) \ SL3(Z)/ P 3—m.-

LEMMA 1.3. Let m, N be positive integers such that m < 3. Further let f1, fo be positive
divisors of N. Then the two double cosets



4 1. DOUBLE COSET REPRESENTATIVES

1 1
FQ(N) 1 Pm’gfm and Fo(N) 1 Pm’gfm
f1 1 f2 1

are equal if and only if f1 = fo.

PRrROOF. Obviously we get equality if fi = fo holds, so there is only the “only if” part
of the statement to prove. Using symmetry it is sufficient to prove f; | fo. We use Lemma

and calculate directly

1 1
Lo(N) 1 Pr3—m = To(N) 1 Prs-m
fi 1 Jo 1
-1
1 1
= (13 g) S Pmygfm : 1 (13 g) 1 S FO(N)
fi 1 fo 1
A X 1 4 x\ [ !
& 3(0 D> € Ppzm: el 1 (0 D> 1 = (0,0, %) mod N .
bil 1 —f2 1

Since f1 divides N, reducing the last equation modulo f; implies:
(=f2,0,1) = (0,0,%) mod f1, ifm=2,
(—fgdz’g,dz’l,dz’g) = (0,0, *) mod f1 s if m=1.
In the case m = 2 the congruence for the first entry immediately implies f; | fo. For
m = 1 notice that since D is an invertible matrix, the entries of the last row (da1,d22)

are coprime. Now the above equation implies f; | d21 so fi is coprime to dz 2. But then
the equation — fads 2 = 0 mod f; implies fi | fa. O

LEMMA 1.4. Let t,m,N be positive integers such that m < 3. Then the two double cosets

1 1
FU (N) 1 Pm;g,,m and Fo(N) 1 Pm’gfm
t 1 (t,N) 1
are equal.

ProoOF. We distinguish between two cases.

Casel: m=2



5

Choose two integers x,y such that a:(tt—N) =1+ y(tf\]fv). Since (ac, (tf\jf\,)> =1and m =2

N
the row (x, %) can be completed to a matrix <m (t’N)> in SLy(Z). A short direct
: * ok
calculation gives the result:
1
Lo(N)- 1 “Py3 o
t 1
N
1 TGN 0
:Fo(N) 1 * * 0 Pg,l
t 1 0 0 1
N
T wn Y 1 1
:Po(N) * * 0 1 1 P271
tr. Ngy 1) \=(tN) 1/ \(t,N) 1
N
z v 1
—Fo(N) * * 0 1 P2’1
tx — (t,N) N(th) 1) \(¢,N) 1
N
T o) 0 1
=Io(N) | = * 0 1 Py
yN N(th) 1 (t,N) 1
1
=I'o(V) 1 Py
(t,N) 1

Case2: m=1

Apply Lemma and choose an integer s such that ((tt—N) — s%, N) = 1. So the row

* *
N, -t~ — SL) can be completed to a matrix < N ) in SLo(Z). Again
( (t,N) (t,N) N (t,l}\f) A (W Y)) 22). Ae

a short direct calculation gives the result:

1
Lo(N)- 1 P31
t 1
1 1 0
_FO(N) 1 0 =« * PL?
t 1/ \o N N
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1 0 0 1 1
=To(N) |0 * * 1 1 Py
t N (;N)—s(tf},) —(t,N) 1 (t,N) 1
1 0 0 1
:FO(N) * * * 1 P1,2
sN' N oxy—sam/) \(&N) 1
1
=Iy(N) 1 Pio
(t,N) 1

In the next lemma the main double coset decomposition is stated.

LEMMA 1.5. Let m, N be positive integers with m < 3. The disjoint double coset decom-
position

. 1
SL3(Z) = | JTo(V)- 1 - Pm3-m
fIN f 1

holds.

Proor. Using Lemma and Lemma it is sufficient to show the following (in
general not disjoint) double coset decomposition:

1

SLs(Z) = | To(dV)- 1 Prsm -
0<t<N t 1

So let A = (aij)ij=1,23 € SL3(Z). Define the rows a1 := (a3i,...,a3,) and ay =
(@3m+1, -, a3,3). Further define the corresponding ged’s of these rows, distinguishing
between the cases that the row vanishes or not:

d _ (a371,...,a37m) if al 750
"o ifa; =0

d _ (a3,m+1, ceey a373) lf as 75 0
7o if ay =0 .

Next we complete (if possible) the coprime rows d%al and %az to matrices in SL,,(Z)
and SLs_,,(Z) treating the case of vanishing separately:



1
(d#“) if ay £ 0 (1*> if ag # 0
B = * and C = dy 12

Em if ay = 0 Eg_m if as = 0.
Since the matrix A is in SL3(Z), the entries of the last row are coprime and this gives that
(d1,ds) = 1. Note that d; = 0 implies do = 1 and vice versa. Lemma guarantees the
existence of an integer s such that (dj + sda, N) = 1, and there exists an integer 0 < t < N

such that t(dj + sd2) = d; mod N. With these preparations the proof is easily completed,
so that

Lo(N)-A-Ppnz-m

B! 0
:FO(N)A < 0 C—1> Pm,37m

* *
“TN) (51 gy ) Pt

* % % 1 S
:FQ (N) * ok %k 1 Pm73_m
di 0 do 1
* * 1 1
:FQ (N) * * 1 1 Pm’gfm
di 0 dp+sd; —t 1) \t 1
* * * 1
dy —t(da 4+ sdy) 0 dg+ sdy t 1
1
:FQ(N) 1 Pm73_m .
t 1

0

For the explicit calculations in the following chapters it is useful to have another similar
set of double coset representatives as in Lemma [I.5] for m = 2.

COROLLARY 1.6. Let N be a positive integer. The double coset decomposition

: 1
SLs(Z) = | JTo(N)- 1 Py
fIN f1

holds.
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PROOF. It is sufficient to show that the double cosets in Lemma [I.5] are equal to the
double cosets corresponding to the representatives in the claimed decomposition above.
This can be seen easily through a short calculation,

1
Lo(N)- 1 Py
f 1
-1 1 -1
—To(N) | -1 1 1 Py
1/ \5y 1 1
1
=To(N) 1 P
f1

0

In conclusion, one sees that these results can be easily generalized to maximal parabolic
subgroups for GL,. Next we concentrate on the double cosets I'g(N) \ SL3(Z)/Ppin.-

LEMMA 1.7. Let N be a positive integer and A € SL3(Z). Then there ezist a positive
divisor f of N and a matriz B € SLs(Z) such that the double coset corresponding to A
can be described through f and B as

To(N)- A- Pran = To(N) | 1 <B 1) Pon -
I

Proor. Corollary implies the existence of a positive divisor f of N and elements
v € T'g(N) and p € P55 such that

1
A=~y 1 D.
1
a b 1 T 0 b
Decompose p= | ¢ d 1 y | and note that B := (c d) € SLy(Z).
1 1

The rest of the proof is a straightforward calculation absorbing + and the factor of p
in the unipotent radical into the corresponding subgroups

[o(N)-A- Pyin



To abbreviate notation we make the following definition.

DEFINITION 1.8. Let N be a positive integer and f a positive divisor of N. The GLo
congruence subgroup I'g (%) NIy ((%, f)) is denoted by T'(IV, f).

LEMMA 1.9. Let N be a positive integer, f a positive divisor of N and A € SLa(Z). Then
the double coset

rov) | 1 (A 1) Prnin
o

only depends on the double coset representative of A in I'(N, )\ SL2(Z)/Ppin.

PROOF. Let v = (v5)ij=1,2 € I'(N, f) and w € Z. We need to show that the following
two double cosets

1 1 w
To(N) 1 (A 1) Ppin and To(N) 1 7A< 1> Prin
1 1 1

are equal. First make a calculation simplifying the double coset on the right-hand side.
We have

1 1 w
FO(N) 1 7A< 1) Prin
f1 1
1 1 w
—To(N) [ 1 (7 1) (‘4 1) 1| Puin
f1 1

=To(N) <7 1) : 1 <A 1) Prin

Youf e2f 1



10 1. DOUBLE COSET REPRESENTATIVES

1 1
A
v2,1f 1 Yo of 1

1
:FO(N) 1 (A 1> Poin .
Yoo f 1

Note that the last equation follows since v € I'(V, f) and this gives 721 = 0 mod % To
complete the proof let z € Z be arbitrary. Since A is invertible, we can choose integers

x,1y depending on z such that A <';C> = <2) Finally we apply Lemma to prove the

claimed form. We start with the chain of statements

1 1
ro(N) |1 (‘4 1) Poin =To(N) | 1 <A 1) Ponin
Y22f 1 f 1
1 1 1 -
= 1 (A 1) 1y 1 A 1> e I'y(N)
Yo2f 1 1 [l
1 1 T 1
el 1 <A 1) 1y (A ' 1) ( 1 = (0,0,*) mod N
Y2,2f 1 1 -1
1 1 1
el 1 1 =z 1 = (0,0, %) mod N
Yo,2f 1 1 -1

<:>(Oﬂ (1 - fz)72,2f - f7 *) = (07 0, *) mod N

> fy222 =722 —1mod — .

f

Since v € T'(N, f) reducing the last equation modulo ( 7 ?) gives zero on both sides.

Hence the previous statement is equivalent to

-1 N
02,2 mod

e _ 21 N
) () )

Since v € I'(N, f) implies that ’YQQW is a unit modulo ﬁ, the last congruence is
o

f f%
solvable in the variable z. O

At the end a suitable set of double coset representatives for I'g(N) \ SL3(Z)/Pmin can be
stated.
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LEMMA 1.10. Let N be a positive integer. The following disjoint double coset decomposition

: A
fIN fol
A€ET(N,f)\SL2(Z)/Pmin

holds. Hence there is a parametrization of GL3 cusps by the divisors of the level and the
cusps of the GLy congruence subgroups T'(N, f).

PROOF. Lemma[I.7] and Lemma [I.9] prove the decomposition. So it remains to prove
that this decomposition is disjoint. Let f1, fo be positive divisors of N and ~,d € SLy(Z)
such that the corresponding double cosets to these parameters are equal:

1
To(N) 1 <V 1) Prin = To(N) 1 (5 1) Poin -
il fa 1

With the same argument as in the proof of Lemma reducing the double coset equation
above modulo f; immediately gives us fi | fo and symmetry gives the reverse relation
hence f; = fo. For easier notation define f := f; = f. Using Lemma [I.2] we find integers
x1,x2,x3 € Z such that:

-1

1 1 Ir1 I3 1
} <7 1) 1 1 <5 1> € To(N) .
1

With the definitions <x> =y <x3) and (a b)
) T2 c

’ ~ (1 371) 6~1 the above statement

0 1
is equivalent to the chain of statements

1 a b x 1
1 c d vy 1 € I'o(N)
1 1 —f 1
1 a b x 1
el 1 c d y 1 = (0,0, *) mod N
1 1 —f 1
— cf = 0 mod N
fld—fy)—f = 0 mod N
= 0 d
— c mo i
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c = 0 mod %
<~
d—1 = 0 mod ( 1 %) .
Hence (Z Z) € I'(N, f), which implies that the corresponding double cosets to v and ¢
in I'(N, f) \ SLa(Z)/ Ppin are equal. O

At the end of this chapter we introduce special names for the calculated representatives
in order to simplify later notations.

DEFINITION 1.11. Let N be a positive integer, f a positive divisor of N and h a positive
divisor of % Define three kinds of matrices belonging to these parameters by the formulas

[
[

Qyf = s Bf = 1 N /\f,h = 1 h

f1 f 1 f 1 1

Note that in the case of a squarefree level N (which is the only case treated in this thesis)
the identity I'(V, f) = Ty (%) holds and Lemma [20.4] in Appendix C tells us that the

cusps for this congruence subgroup are indeed parameterized through the divisors of %




CHAPTER 2

Definition of Eisenstein series for I'o(N)

In this chapter the various Eisenstein series (corresponding to the double coset rep-
resentatives from the previous chapter) which occur in the spectral decomposition of
£2(Io(N) \ b?) are defined. In fact there are three different types of Eisenstein series,
which contribute to the spectral decomposition, namely Eisenstein series twisted by Maass
cusp forms, Eisenstein series twisted by a constant Maass form and minimal Eisenstein
series. The well-definedness and the region of absolute convergence of these Eisenstein
series was discussed in the introduction. We begin with the definition of Eisenstein series
twisted by Maass cusp forms.

DEFINITION 2.1. Let N be a positive squarefree integer and M a positive divisor of V.
Define the following subgroups of P> 1 and Pj 2 by

k
P(M,Pyy) =4 [« e Py ’ AeTy(M) Y |

1

(M, Pyy) = {<1 *A*> € Py ’ Ac FO(M)} :

Further we shortly recall here the definition of the principal character and Dirichlet L-
series, for a detailed treatment see [16].

DEFINITION 2.2. Let N be a positive integer. Denote by yn the principal character
modulo N defined by

1 if N)=1
XN:Z—C, n—<q’ 1(n, ) ’
0, if (n,N)>1,

and with Ly, (s) := ) xn(n)n™*® the associated Dirichlet series, which is absolutely
n>1
convergent for Re(s) > 1.

DEFINITION 2.3. Let N be a positive squarefree integer and f, M positive divisors of
N. Let ¢ be a Maass cusp form with eigenvalue v(v — 1) for the congruence subgroup
[y (M) C SLy(Z). The Eisenstein series twisted by ¢ for the maximal parabolic subgroup
P51, Py o, respectively, is defined by

13
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E(z,s,f,¢,Pp1) := Z 10) (mpz,1 (a;lfyz)) Iis —2s) <a;17z,P271) ,

’YeA(va7P271)\FO(N)

E(z,s, f, 6, P12) = > ¢ (mPLz (ﬂ]lvz)) Tias,—s) (5}1’%131,2) ;

'YGA(sz7P1,2)\F0(N)
where the stabilizers are defined by
A(f, M, Pyy) := aT(M, Pyy)a; ' NTo(N),

A(f7 Ma Pl,?) = BfF(Mv P1,2)6;1 N FO(N) .

The associated completed Eisenstein series are defined by

- 1
G(z,s, f,0,P1) := 733 <382 V) T (38 +2V ) E(z,s,f,¢,P21) ,

G(z,s, f,¢,P12) == Tr%_?’sf <382_ V) T (38 +2V _ 1) E(z,s,f,¢,P12) .

Next the analogous definition of Eisenstein series twisted by constant Maass forms is given.

DEFINITION 2.4. Let N be a positive squarefree integer and f a positive divisor of N. The
Eisenstein series twisted by a constant Maass form for the maximal parabolic subgroup
P51, P 2, respectively, is defined by

E(z,s, f, P21) = Z I (s, —24) <04J?1’YZ,P2,1> ,
YEA(f,1,P2,1)\To(N)

E(Z,S,f, PLQ) = Z 1(257_3) (5;172,P1’2) .

YEA(£,1,P1 2)\T'o(N)

The associated completed Eisenstein series are defined by

3s

G(z, s, f, Po1) = Wf%lﬂ < 5

) LXN(3S)E(ZJ S, f) P2,1) 5

G(z,s, f,P12) == 75T (328> Ly (35)E(z,s, f,P12)
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Note that the functions (s _os) (%, P2,1), I(2s,—s)(*, P1,2), Tespectively, are invariant against
left multiplication with elements in P 1, P2, respectively. Eventually the definition of
the minimal Eisenstein series is given.

DEFINITION 2.5. Let N be a squarefree positive integer, f a positive divisor of N and h
a positive divisor of &. The minimal Eisenstein series associated to the “cusp” A f,h 18
defined by the formula

E(z, 51,52, f, h, Pin) == Z L(s1,5) (Ajt,}ﬂz) :
YEA(Sf i, Prin)\L'o (V)

With the stabilizer A(f, h, Ppin) = )\ﬁhPmm)\}T}L NTo(N) and the associated completed
Eisenstein series given by the formula

1 3 3 3 3s9 — 1
G(zv 51,52, f7 h, Pmln) = 17773817382+%F <;1> T (;2> I (Sl * 282 )

¢ (3s1) ((3s2) ¢ (3s1 + 3s2 — 1) E(2, 81,52, f, by Prin) -

At the end of this chapter a lemma is stated, which gives a slightly easier description of
the stabilizers occuring in the twisted Eisenstein series.

LEMMA 2.6. For the stabilizers of the twisted Fisenstein series the following equations

A(f, M, Py1) = 4T Niiﬁ,l Oéflﬂro(N),

and

A0 Pra) = 847 (s Pha ) B ()

hold.

PROOF. The inclusion ”C” is obvious. Hence it remains to prove the other inclusion.

a b x
(1) Forp=|c d y| el (NM, P2,1> the equivalence
1 (51)

b =z
d vy 1 = (0,0, *) mod N
1 —f 1
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— cf = 0 mod N
fld=fy)—f = 0 mod N
c = 0 mod ¥

<~

fy = d-—1 modT

g
|2

is valid. From the first congruence one sees immediately that

yS A(f7M>P2,1)'

| ¢ so

(

==
=
SN—|

1 =z y
(2) For p = a b|er (%, PLQ) an analogous calculation is done. We start
c d 7
with
BB " € To(N)

1 1 = y 1

el 1 a b 1 = (0,0, *) mod N
f 1 c d —f 1

fA—=fy)—df = 0 modN
= fr+c = 0 mod N .

Reducing the last congruence modulo f gives f | ¢, which implies % | ¢ so
again p € A(f, M, P 2).

O



Part 11

Bruhat decompositions






CHAPTER 3

Bruhat decompositions for SL3(Z)

The goal of this chapter is to construct a set of representatives in Bruhat decomposition
for the cosets which occur in the summation of the Eisenstein series. First we explicitly
construct for a given coprime row, column, respectively, a matrix in SL3(Z) such that
this matrix has the given row, column, respectively, as its last row, first column, respec-
tively. This will give us an explicit set of coset representatives in Bruhat decomposition

for Py1/SL3(Z), P12/SL3(Z), respectively.
LEMMA 3.1. Let (a,b,c) be a row vector of integers with coprime entries.

(1) If a # 0 then every pair of integers r, s which satisfies

b
rm = —1 mod @#“b) and sc=—1 mod (a,b),

defines a matriz in SL3(Z) with the above row as the last row by

1 g 1 a b c
S a,b —rc
Vabe) = 1 (a,b) 1 ( a ) T S SLg(Z) .

—_
—_
—~
L
=
Y

(2) If a =0, b # 0, then every integer t which satisfies

tc=—1 mod b,

defines a matriz in SL3(Z) with the row (0,b,c) as the last row by

1 -1 1

Y(0,b,c) = 1 -1 —-b — S SLg(Z) .

= o
\
—
|
Salalie

(8) If a =0, b =0 then a matriz in SL3(Z) with the row (0,0,c) = (0,0,£1) as the
last row is defined by

19
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+1

Y(0,0,41) = 1
+1

PROOF. First note that the two congruences in r,s in the first part can always be
solved even if ¢ = 0 or b = 0, because in this case the gcd-condition on the row implies
(a,b) =1, ﬁ = 1, respectively. An analogous argument is valid for the second part.
The determinant multiplication formula implies that the matrix v(4,,) has determinant 1
in all three cases. Hence it remains to check that all entries are integers and the last row
is (a, b, c). This is done through a short calculation, which gives us the formulas

r br+(a,b) 0 1
a
b 1 _ t41
Nabd) = | Gy @h Gp | A N0 = b5
a b c b c

0

For further calculations we need that the integers r, s in the above lemma can be chosen
in a way that they satisfy certain additional gcd-conditions.

LEMMA 3.2. Let N be squarefree, f a positive divisor of N and (fa, fb,c) a row vector of
integers with coprime entries.

(1) If a # 0 then the integers r, s in Lemma part (1) can be chosen in a way
such that the following gcd-conditions hold.

(a) The integer r is coprime to N(a,b).

(b) The integer s is coprime to %

(2) If a =0 and b # 0, then the integer t in Lemmal[3.1] part (2) can be chosen in a
way such that t is coprime to %

PROOF. The proof of this lemma is done by the use of elementary modular arithmetics.

(1) (a) Choose integers 71, t1 such that %rl +1= tlﬁ. Applying Lemma

With di =171, dy = ﬁ and N = N(a,b) gives the existence of an integer

a a

w such that (7’1 + wm,N(a, b)) = 1. Hence choose 7 := 71 + wi s and
note that the equation

£b B b fa
Gago) 717 <“ T fb)> (Fa, 10)
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holds.

(b) Choose integers si, t1 such that cs; + 1 = ¢1(fa, fb). Applying Lemma
with dy = s1, d2 = (fa, fb) and N = % gives the existence of an integer w

such that (51 +w(fa, fb), %) = 1. Hence choose s := s; + w(fa, fb) and
note that the equation

cs+1=(t1 + cw)(fa, fb)
holds.

(2) Choose integers t;, p1 such that ct; + 1 = p1fb. Applying Lemma with
di = t1, do = fband N = % gives the existence of an integer w such that

(tl + wfb, %) = 1. Hence choose t := t; + wfb and note that the equation

ct+1=(p1+ cw)fb
holds.

0

The next analogous calculations are performed for the case of a column vector of integers
with coprime entries. First an analogous result to Lemma [3.1] is stated, but note that we
need the inverse of the constructed matrix here.

LEMMA 3.3. Let (a,b,c)’ be a column vector of integers with coprime entries.

(1) If a # 0 then every pair of integers r, s which satisfies

b a
=1 d
(a,b) % (@)

defines a matriz in SL3(Z) with the column (c,b,a)’ as the first column by

and sc=—1 mod (a,b),

r

@y o © 1 O
Oap,c) = (ab) 1 1 0] eSLsyz).
a 1 1
The inverse is given explicitly by
I o5 = 1 (a,b) cr —cibrt(la’b)
5_1 — 0 1 a b
(a,b,c) (a,b) (a,b)
1 1 1
a
cs+1  bers+es(a,b)+br+(a,b)
—S -r (a,b) a(a,b
=1 (a,b) cr —cibﬂraa’b)
0 a b

(a,b) " (a,b)
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(2) If a =0, b # 0, then every integer t which satisfies tc = 1 mod b defines a matriz
in SL3(Z) with the column (c,b,0)T as the first column by

1 t
b & -1 1 b
5(0,b,c) = b 1 1 S SLg(Z) .
1 1 1
The inverse is given explicitly by
t 1—ct
. 1 - 1 b —IC t Tc
5(071)’0) = 1 —1 b = —b C
1 1 1 1

(3) If a =0, b =0 then a matriz in SL3(Z) with the column (c,0,0)T = (£1,0,0)
as the first column is defined by

+1

8(0,0,41) := 1
+1

PROOF. The proof is essentially the same as in Lemma[3.I] Again all congruences are

solvable and the determinant multiplication formula implies that the matrix d(, ) has
determinant 1 in all three cases. Also again we check that all entries are integers and the
first column is (¢, b,a)7:

cs+1
R b+(() b) ¢
5(a,b,c) =15b ﬁs Dray) aa, and 5(O,b,c) =15 t
a ﬁs r 1

The explicit formulas for the inverse matrices are checked through a trivial calculation. [

In calculations later we need that the integer r in the definition of §(,, ) satisfies a ged-
condition similarly to that in Lemma [3.2]

LEMMA 3.4. Let N be squarefree, f a positive divisor of N and (fa,b,c) a row vector of
integers with coprime entries and with a # 0. The integer r in Lemma part (1) can be
chosen in a way such that (r,(fa,b)) =1 holds.

PRrOOF. Choose an integer r such that
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b fa

= -1 mod —— .

(fa,b) (fa,b)

r

Next applying Lemma with dy =r, dy = 0 fJ; ab) and N = (fa,b) gives the existence of

an integer s such that (r + 8(}3;7%), (fa,b)) = 1. Passing from r to r + s% does not

change the above congruence.

0

In order to derive an explicit set of coset representatives in Bruhat decomposition for
Prin/SL3(Z) we first state a Bruhat decomposition for P, /SL2(7Z).

LEMMA 3.5. Let (¢,d) be a row vector of integers with coprime entries. For ¢ # 0 every
integer t which satisfiestd = 1 mod c defines a matrixz in SLo(Z) with the above row

as the last row by
(1 ¢ 1\ (¢ d
T(c,d) = 1 1 1 B

For ¢ =0 a matriz in SLo(Z) with the row (0,d) = (0,%1) as the last row is defined by

(£l
T(O,:i:l) = +1 .

Further the matrices 7(c,q) build a set of right coset representatives for Ppin/SLa(Z).

dt—1

PROOF. A straightforward calculation shows that 7. q) = . ccl has integer en-

tries. In conjunction with the determinant multiplication formula this gives the first claim.
Hence it remains to prove that these matrices build a set of right coset representatives for
Prin/SL2(Z). Since we have the equivalence of the conditions PrinT(c;.d,) = PminT(cs,do)

and (c1,dy) = e%ﬂT(chdl) = 6%7‘(02@2) = (2, d2) we get the disjointedness of the correspond-

ing left cosets. Now let v = <CC" g

us a = d = +1 hence 7 is equivalent to 7(g +1). If ¢ # 0 a short calculation shows that v
is equivalent to 7. 4):

1 _f(a b d—dt—c_l_ad—bc * —1*€P'
Ted) = \e d)\-c ¢t )7\ 0 —ellyg) =\ 1)="mn

An easy corollary is the unique decomposition of elements in SL3(Z) as a product of an
element of Py, P2, respectively, and a matrix of the type in Lemma [3.1} Lemma [3.3]

> € SLy(Z). If ¢ = 0 the determinant condition gives
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respectively, and also a slightly more complicated decomposition for P,.

COROLLARY 3.6. Let v = (’}/i,j)i7j:172’3 € SLg(Z)

(1)

(2)

(3)

There exists a unique row vector (a,b,c) € Z3 with coprime entries and a unique
element p € P21 such that the decomposition v = py(ap.c) holds. Also there exists

a unique column vector (a, b, C)T € 73 with coprime entries and a unique element
p € P1a such that the decomposition v = 64 p,¢)p holds.

There exists a unique row vector (a,b,c) € Z3 with coprime entries and a unique
element p € P12 such that the decomposition v = pé(_alb 0 holds.

There exist unique Tow vectors (a,b,c) € Z3, (e, f) € Z* with coprime entries and
a unique element p € Ppn such that the decomposition v = p <T(e’f) 1> V(abe)
holds.

PROOF. (1) We only give the proof for P ; since the proof for P 5 is essentially

~3.1,73.2,73.3) Dave the same last row, VY (s, v3.2073.8) © Py,
holds, which gives the existence. For the uniqueness assume p17y(q, b ,c;) =

the same. Since v and

D2%(az,b2,c2) With certain elements pi,p2 € P,1. Using the fact engi = e3 gives
immediately that the two rows (a;, b;, ¢;) are equal. Since (g, c,) 15 invertible
p1 = po follows and the proof is complete.

Use part (1) for y~1, hence y~1 = d(a,b,c)p With a suitable element p € Py 5. Tak-
ing inverses gives v = p_15(a7b,c) with p~1 € P; 2. Since inversion is an involution
part (1) also gives us uniqueness.

1
Part (1) implies the decomposition v = py(, p.¢) With p = 1 * <A 1) €
1

*

P> 1. Decomposing A = <1 1

) T(e,f) Using Lemma gives the existence. For

the uniqueness assume p; (T(el’fl) 1) V(a1,b1,c1) = P2 Ten f2) 1) V(az,ba,c2) with

certain elements py,p2 € Pni,. Part (1) gives immediately that the two rows
(ai, b, ¢;) are equal. Since p1,pa € Py, the uniqueness in Lemma applied to

the upper left 2 x 2 matrices in py T(erf1) = po T(e2.f2) 1 gives immedi-

ately that the two rows (e;, f;) are equal. Finally p; = py follows and the proof
is complete.
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The reason why we constructed these matrices is that we want to give an explicit descrip-
tion of the cosets which occur in the summation of the Eisenstein series. The upcoming
lemma shows that the parametrization over the last row, first column, respectively, is a
suitable choice for this task.

LEMMA 3.7. Let N be a positive squarefree integer, f, M positive divisors of N and h a
positive divisor of %

(1) Let piy(a;bs,er) € a;ll“g(N) for i = 1,2 with elements p; € P>1 and row vectors

(ai, bi, c;) with coprime entries. Then the cosets A(f, M, Pa1)ospiy(a; are

i5Ci)

equal if and only if the rows (a;, b;, ¢;) are equal and the cosets I'g <<NMM) mp, , (pi)
f K

are equal .

(2) Let pid(_al, bisci) € BJZIFO(N) fori = 1,2 with elements p; € P12 and column vectors
(a;,b;,c;)T with coprime entries. Then the cosets A(f, M, PLQ)ﬁfpi(s(_al_b_ e) are
equal if and only if the columns (a;, b;, c;)T are equal and the cosets Ty (%) mp,, (pi)

are equal.

<T(m"’y") 1) V(aibi,ei) € AJT}LFO(N) fori = 1,2 with elements p; € Pypn and

(3) Let p;
row vectors (a;, b;, ¢;), (zi,y;) with coprime entries. Then the cosets
A(f, by Prin) A £ 1pi (T(“’yi) 1) Vaibie) are equal if and only if the rows (a;, b;, ¢;)

as well as the rows (z;,y;) are equal.

PRrROOF. (1) For the “if” direction assume (a1, b1, c1) = (ag, b, c2) and I'y < M ) mp,, (p1) =

(54)

Iy NL mp,, (p2). A short calculation
()

7P2»1 a;lﬁFO(N) = A(f? Mu P271) )

_ o M
(afpl'}/(al,bl,cl)) (afp27(a2,b2702)) ! = Oéfplp2 1af1 c afr 7(]\/' M)
€lo(N) €lo(N) o
shows the equality of the cosets A(f, M, P2 1)afpiv(a,bsc;)- In the last step
Lemma part (1) is used. For the “only if” direction assume the two cosets
A(f, M, P21)aspirY(a; bs,c;) ave equal. Again a short calculation gives the equality

of the rows (a;, b;, ¢;):

’Y(a1,b1,cl)7(;;b2,52) = (afpl)_l (afpl'Y(al,bl,cl))(afPQ’V(ag,bg,CQ))_l (afp2)

M

(01)

€ pfl(afl/l(fa M, Py1)as)ps Cpy'T Poi | p2 C P
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In the last step Lemma part (1) is used again. So there exists an element
p € P21 such that py(, b,.c1) = V(ag,ba,cs) Which implies (a1,b1,c1) = (ag,ba, o).
With this result in mind the claimed equality of the cosets can be proved by

_ _ -1
mp, (P1)mP2,1 (p2) 1= mp, (P1p2 1) =mp,, <Oéf1 (afp1’7(a1,b1,c1)) (Oéfpﬂ(az,bg,@)) af)
€ mp,, <O[]71/1(f, M, P271)Oéf) cTIy

(2) The proof of the second part is analogous to the proof of the first part using

Lemma [2.6| part (2).

(3) For the “if” direction assume (a1, b1,c1) = (a2, ba,c2) and (x1,y1) = (z2,92). A
short calculation

—1
T$ T$
Afhp1 ( (z1,91) 1) V(ar,br,e1) (}\fthQ ( (z2,y2) 1) 7((12,172,62))

€To(N) €T (N)

= Arnp1py Afp € ApnPrinA 7 N To(N) = A(f, b, Pryin) -
shows the equality of the cosets A(f, h, Prin) A £ nDi (T(Zi’yi) 1) Vas.brci)- For the

“only if” direction assume the two cosets A(f, h, Ppin) A f,npi <T(sz'7yi) 1) Yaibies

are equal. Again a short calculation gives the pairwise equality of the rows
(ai7biaci> and (x'uyl)

—1
<T(x1,y1) 1) Varbrer) <<7'(z2,y2) 1> ’Y(ag,bz,m))

-1
_ T(x T(x
=(A\pup1) ! (Af,hm ( (@1.31) 1) ’Y(al,bl,cl)> (Af,hm ( (@2,42) 1) V(az,b2,02)> (Af,np2)

€ pl_l()‘;}LA(fv ha Pmin))\f,h)pZ C pl_lpminPQ = szn .

With the same argument as in part (1) the equality of the rows (a;, b;,¢;) is
obtained, after that using Lemma gives the equality of the rows (z;,y;).

O
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At the end of this chapter we collect the elements of the cosets in the summation of the
Eisenstein series into sets concerning the Weyl element in their Bruhat decomposition.

DEFINITION 3.8. Let N be a positive squarefree integer, f, M positive divisors of N and
h a positive divisor of &. Decompose each of the sets in the summation of the Eisenstein
series in the sets I'; defined below, according to their Bruhat decomposition. Of course
theses decompositions are not unique.

(1) Let

U asTi(s, M, P2y)
1<:i<3

be a system of left coset representatives for A(f, M, P>1) \ T'o(XN) with
PEP2 1 }

a#0 ’
pEP2 1 }

b£0 [

pE PQ,I} .

Fl(f, M, PZ,l) - {p’V(a,b,c)

Lo(f, M, Py1) C {pV(o,b,c)

L3(f, M, Py1) C {P’Y(o,o,il)

(2) Let '
U 8Tu(f, M, Prp)

1<i<3
be a system of left coset representatives for A(f, M, P 2) \ T'o(XN) with

pEP 2
a#0 ’

PEP 2
bA0 (0

pE P1,2} ~

Fl(fa M, P1,2) c {pé(a%b,c)

FQ(fv M7 P172) - {pé(_(),lb,c)

F3(f7 M7 P1,2> - {pé(_(),lo,:tl)

(3) Let

U AraTi(f by Prin)
1<i<6

be a system of left coset representatives for A(f,h, Ppin) \ To(N) with

T e perin
Fl(f7 hv Pm’m,) - {p ( (d:e) 1) Y(a,b,c) 3;8 } ,
Pl Poie) € {p (T(O’ﬂ) 1) Vabo) peai”ém} ’

perin
bA0 b
d#£0

T e
I3(f, h, Pmin) C {p< (d:e) 1) Y(0,b,¢)
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F4(f7 h, Pmln) c {p (T(Od:l) 1> ’Y(O,b,c)

T e
Ts5(f, hy Pmin) C {p< (de) 1) 7(0,0,41)

Le(f, by Prin) C {p (T(O’il) 1) 7Y(0,0,£1)

p

p

epmin
b=£0 )

epmin
a#0 (o

pGPmin} .



CHAPTER 4

Calculation of T';(f, M, Py;)

In this chapter we calculate a system of coset representatives for A(f, M, P> 1) \I'g(N) and
also determine the corresponding sets I';(f, M, P» 1) in Definition First we state an
easy technical lemma which is needed in further calculations.

LEMMA 4.1. Let N, M be positive squarefree integers and a an integer. There exist integers
x,y, z with (x,y) =1 such that the congruence

(;) =z (2) mod N (4.1)

In the case of the existence of a solution, for any row vector (c,d) with coprime entries

holds if and only if (a, N) = 1.

M
such that d | % and 0 < ¢ < %, one can choose a solution in a way such that a

suitable completed matriz <: Z) € SLy(Z) has the following three properties.

(1) The matrices (: Z) and (Z 2) lie in the same left coset of I'g (%) \

SL, ().
1 0

(M, N) (c, %) 1
of Do (M)N\SL2(Z) /' Ppin. Further there exist a decomposition

(Z Z) =7 ((M, N) (i ) (1)) (é (‘f>

with v € Ty (M) and the integer o depends only on the integers c¢,d, M, N modulo
M

(2) The matrices (; Z) and ) lie in the same double coset

(M. (eria)

PROOF. Since the integers x,y must be coprime the ged-condition (a, N) =1 is obvi-
ously necessary, so it remains to prove that it is sufficient. We do this by constructing a
solution which also fulfills the two propertles described above. The squarefreeness of M
guarantees that the 1ntegers dN and I,NYd ) - are coprime. So choose an integer N such

that NN =1 mod I,V ) holds, then choose an integer k£ such that the integer

29
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- M
Nc+k-m (4.2)

is coprime to d. Now define the integers z, y and z by

~ M
w::N(Nc+k-(MN)d> , (4.3)
y:=d (4.4)
and
z:=da (4.5)

with aa = 1 mod N.

We first show that the integers x and y are coprime. In order to fulfill this task we use
the coprimeness of the integer in (4.2) and d. We have

(z,y) = <N (NCH“'(MAJJV)Cz) ,d> = (N,d)=1.

Note that the squarefreeness of M and the divisibility condition d | MLN) imply (N, d) = 1.
Next we show that the integers x, y and z fulfill the congruence (4.1]). We have

Y M
) = N(Nc_’_k.(M,N)d) = 9 =z 0 mod N .
Yy d d(aa) a
Now we use Lemma to show that the integers x,y also satisfy the claimed properties:
r M * 5\ _p M * %
NNy \e y)— PNQLN)) \e d
x ok %) cT M
v y)\e d "\ (M, N)

<
T [* * d = _ M
= e (x y) <_c *> e; = 0 mod 7(M,N)
<= dr—cy =0 mod O, N)
<~ dN N+kL d=0mod ——
CTYanNy) T LN
M
s

(NN—l)cEOmodW.



31

Obvious the last congruence is true. In order to check the second property we first calculate
the ged

— (M, N) <c, (Mﬂfv)d> : (4.6)

In the above splitting we used the squarefreeness of M. Finally we can prove the second
property. The following equivalence transformations

To (M) (m ;) Prin = To (M) ((%IM) g) Prin
1

cmez (00 (W Y en
e—=3JaeZ: z(1-(z,M)a)—(z,M)y=0mod M

—xa—dEOmodL

T
3 7 :
DR e V) (@ M)

hold. The squarefreeness of M gives that = is a unit modulo %, hence the last congru-
ence is solvable. The explicit formula in (4.6 finishes the proof of the second property. [

Now we are well prepared to start our calculations.

LEMMA 4.2. Let N be a squarefree integer and f, M positive divisors of N. A possible
choice of the sets I';(f, M, Py 1) is given by

(1)

(fa,fb,e)=1
a#0

*
a,b, ¥ )=1
Fl(f; M, P2,1) _ Pab,c,de) | Ytartb.e) (e(f{]\)J)
1 0<d< L)
(de)=1

(2) The set T'y(f, M, Paq) is given by

(0,fb,c)=1
b£0
*
b, ¥ )=1

Po(f. M, Pyy) = § | P05 |y oy <e|(§,%4) ’
1

0<d< UM
(d,e)=1
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(3) The set I's(f, M, Py1) is given by

¢

. iff#N,
T3(f, M, Py1) = i eI\
POoELde) | o 0<d< b if f=N
1 "y (d7e):6i

With p(ap.cde) € SLa (Z) satisfying the following three properties.

(1) The matrices piapc.de) and (2 Z) lie in the same right coset of To ((f,M)) \
SLy(Z).
1 0
(2) The matrices pq p,c,de) and MY (d (f,M)) 1) lie in the same double coset
' f T e

of To (M)NSL2(Z) / Ppin. Further there exist a decomposition

1 0\ /11 «
Papede) =7 <<M, %) (d, (fvéw)) 1> <0 1>

with v € Ty (M) and the integer o depends only on the integers d, e, M, ? modulo
(M. f)
(a, 20y

PROOF. (1) For our calculations we use part (1) in Corollary and Lemma
and determine which last rows occur in I'i(f, M, P»1). Reducing modulo f
immediately gives that the last rows must have the form (fa, fb, ¢), so it remains
to investigate which additional conditions must be fulfilled. This is done by the
equivalence transformations

Ip€ Pt DV(fagbe) € OCJTIFO(N>

— dpechP: egafpfy(fmfb’c) = (0,0,%) mod N
<— dr,y,z€Z,(z,y)=1:
1 * %k r bT+{§a’b) 0
el 1 oy 2| | & (fob) ffj,z}) = (0,0, %) mod N
f1 1 fa fb c

— dr,y,z€Z,(x,y)=1:
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f$7"+fy(fb)+(1+fz)fa = Omod N
fCCbH_(a’b) + fy(ffb) + (1 + fz)fb = (Omod N .

a

Divide by f in each equation and write the system in matrix form, so the equiv-
alent system

a (a,b)

r 35 N
3,y 2 € L, (2,y) = 1: (Ma,b) S;?) (f{j) = —(fz+1) (Z) mod & (47)

is obtained. For further calculations we need the determinant of the above 2 x 2
matrix:

r ol bs as br+ (a,b)
det | pri(a @b ) _ .. - L = —5.
(b el <2fb)> (@.b) (@b a

Finally we solve the matrix equation in (4.7) by multiplying with the comple-
mentary matrix, which is an equivalence transformation since Lemma [3.2] states
that s is coprime to % So we get the equivalent system

bs as
- N
dx,y,z € Z,(x,y)=1: s (5) =(fz+1) ( brffz)a’b) (a,b)> <Z> mod 7 (4.8)
The squarefreeness of N gives that fz 4+ 1 is again any integer modulo % after

a suitable choice of z. After simplifying the system (4.8)) we get the equivalent
System

Sa,y,2 € Z, (z,y) = 1 - (;) = (_(27 b)> mod ]}7 . (4.9)

Lemma with NV = %, M = M and a = —(a,b) implies that the above system
is solvable if and only if (a, b, %) = 1. In the case of solvability, Lemma

guarantees that one can choose rows (z,y) in such a way that the completed

matrix pgp.c,de) = <; Z) has the properties claimed in the theorem, note that

the squarefreeness of N and M | N implies NL = (f,M). The explicit de-
71

scription of the left cosets of I'g(N) in Lemma in conjunction with Lemma

W guarantees that the cosets in A(f, M, Py 1) \ I'o(IN), associated to the above

constructed representatives, are disjoint and the so constructed representatives

exhaust Fl(f, M, P271).

(2) We proceed analogously to part (1) and use Corollary and Lemma and
determine which last rows occur in I'a(f, M, P»1). Again reducing modulo f
immediately gives that the last rows must have the form (0, fb,c), so it remains
to investigate which additional conditions must be fulfilled. This is done by the
equivalence transformations
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dpE€ Pt Py, fbe) € Oéflro(N)

& dpePo: egafpv(07fb’c) = (0,0, %) mod N

— dr,y,z€Z,(r,y)=1:
1 ¥ ok k -1
e?; 1 x Yy z t Ctﬁl = (0,0,*) mod N
f1 1 fb c

— dr,y,z€Z,(r,y)=1:

—fr = O0Omod N

fyt+ (1 4+ f2)fb = 0mod N .

Divide by f in both equations. Lemma part (2) gives that ¢ is a unit modulo

% and the squarefreeness of N gives that fz 4+ 1 is again any integer modulo

% after a suitable choice of z. After simplifying the above system we get the

equivalent system
T\ 0 N

Lemma with N = % M = M and a = b implies that the system 1} is

Jr,y,2 € Z, (z,y)
solvable if and only if (b, %

1. In the case of solvability argue as in part (1).

Same procedure as in the last two cases. We start with

dpe P pyop+1) € 04,71F0(N) -
Reducing modulo N and comparing the last rows of both sides immediately gives
f = N. So it is necessary that f = N holds and in this case the result is easily
verified through absorbing the ay, (9 +1) into ['o(V). Again Lemma in
conjunction with Lemma gives the claimed result.

0



CHAPTER 5

Calculation of T';(f, M, P, 5)

In this chapter we calculate a system of coset representatives for A(f, M, P 2)\I'o(N) and
also determine the corresponding sets I';(f, M, Py 2) in Definition Again we state an
easy technical lemma, which is needed in further calculations.

LEMMA 5.1. Let M, f1, fo be positive squarefree integers with (f1, f2) = 1, further let a,b
be integers with (a, f1) = 1. For any row vector (c,d) with coprime entries such that
M

d | Mf LA and 0 < c¢ < @, one can choose a solution x,y of the congruence

ax + by =0 mod f;

with (fax,y) = 1 in a way such that a suitable completed matrix <f>2kl‘ Z) € SLy (Z) has
the following three properties.

(1) The matrices ( ) and ( ) lie in the same left coset of Ty (%) \
SLy(Z).
h ! ) l h
2) The matrices e 1n the same
(2) ( ) (fo, M) (b, M, fl)( W) 1

double coset of Ty (M)\SL2(Z) / Pin. Further there exist a decomposition

(f::c y> -7 ((fg,M) (b, M, f11>( i) 2) (3 ?)

with v € To (M) and the integer o depends on a,b,c,d, f1, fo, M only modulo
M

(fZ:M)(@M:fl)(QW) '

PRrROOF. The squarefreeness of M guarantees that the integers f; and m are
coprime. So there exist integers [, k such that

fac+1- —abd 4+ k - f1 (5.1)

M J—
(M, fif2)d

where aa = 1 mod f; and fg- fo =1 mod m holds. Since d and m are coprime
choose a suitable integer m such that (k: + mm, d) = 1. Through passing in 1)

35
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from k, [, respectively, to k + mm, I + mfi, respectively, we can assume w.l.o.g.
that (k,d) = 1. Now define the integers x and y by

T = foc+1- 5= —abd+ k- fi (5.2)

M
(M, f1f2)

and

y:=d. (5.3)

We first show using the ged-condition (k,d) = 1 that the integers fox and y are coprime.
We have

(fox,y) = (fa (—abd + kf1),d) = (kfife,d) = (fif2,d) = 1.

Note that the squarefreeness of M and the divisibility condition d | W imply (f1f2,d) =
1. Next we show that the integers fox and y fulfill the claimed congruence

ax + by = a(—abd + kf1) + bd = —(aa)bd + bd = 0 mod f; .

Now we use Lemma [1.2]to show that the integers fox, y also satisfy the claimed properties:

() i )=o) )
(G DG D) (i)

* % d . M
2 (fzsv y) (—c ) =0l G R

_ M
dfer — cy = 0 mod 7(M, )

M . M
ar, f1f2>d> —ed=0mod o
M

(Maf1f2)d .

dfs <f2c+z

P11

(fgfg*l)CEOmOd

Obvious the last congruence is true. In order to check the second property we first calculate
the ged

(o ) = (1230 (. g ) ) o O, )

(M, f1f2)
M M

(M, f1fa)d” (M, f1f2)d

:(f27M) <f20+l >(_dbd+kf17M>f1)
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= (fa, M) (c, M d) (b, M, f1) . (5.4)

(M, f1f2)

In the above splitting we used the squarefreeness of M and the fact that f; and fy are
coprime. Finally we can prove the second property. The following equivalence transfor-
mations

00 5) =500 5Ly )

=aaezs (70 (e 0>_16F(M)
- \hroy) U 1) \(fer, M) 1 ’
<~ 3Jda€Z: for(l— (foxr,M)a)— (foxr,M)y =0 mod M

fox M
— dJacZ: ———= — fora—d=0mod — .
(o, 30) % (Faz. 1)
hold. The squarefreeness of M gives that fox is a unit modulo %, hence the last

congruence is solvable. The explicit formula in (5.4]) finishes the proof of the second
property.

O

Now we can state the main result of this chapter.

LEMMA 5.2. Let N be a squarefree integer and f, M positive divisors of N. A possible
choice of the sets I';(f, M, Py 2) is given by

(1)

(fa7b7c):1
a#0

* ok

1
o -1
Fl(f, M, P172) = 8 Uabede) 5(fa,b,c)

with qap.c.de) € Lo (ﬁ) satisfying the following four properties.

*

(a) The matrices qq,p,c,de) and <d :) lie in the same right coset of T ((%, M))\
SLy(Z).
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1 0
(b) The matrices qqp,c,de) and ((L M) (( M. ) 7(1}]M)> )

[:b)’ (fa, b) ’ e
lie in the same double coset of To (M)N\SLa(Z) / Ppin. There exist a de-

composition
ﬂ
f
7

with v € To (M) and the integer a depends on (f b)? (f,b),c,d,e, f, M only

M - )
(topon) (tp3.00.10) (22

(2) The set T'y(f, M, Pi2) is given by

Q(a,be,de) =7 ((f]jb)’M) (E

modulo

—1
{5(0,17,6)

(3) The set T's(f, M, P 2) is given by

Lo(f, M, P2) =

@gfq» if f=N.

o iff#N,

Is(f,M,Pr2) = 1 -1
1, 1 if f=N.

PROOF. The proof of this lemma is analogous to the proof of Lemma

(1) For our calculations we use part (2) in Corollary Lemma (3.7 and determine
which first columns occur in I'y (f, M, Py 2). We start with the statement

dp € PLQ : pé(_a?b,c) S ,B;lrg(N) . (55)

Multiplying from the right with J(,4..) in (5.5, then reducing modulo f gives
immediately that the entry with indices (3, 1) vanishes modulo f, hence f | a. So
(5.5) is equivalent to the chain of statements
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dpePy: 63Tﬁfp5(}z,b,c) = (0,0,*) mod N
Az, y,u,w € Z, (u,w) =1:
cs+1  bers+cs(fa,b)+br+(fa,b)

1 1 2 y =5 TT{Fab) fa(fa,b)
o . . x (fa,b) or _ w = (0,0, %) mod N
f 1 U w 0 fa —
(fa,b) (favb)
Az, y,u,w € Z, (u,w) =1:
—sf+ (fa,b)(fr+u) = Omod N
—rfcjf:;—i—cr(fx—i-u)—i-(f;%b)(fy‘i‘w) = Omod N

Writing the above equations in matrix form gives us the equivalent system

Az, y,u,w € Z, (u,w) =1:
< - (fj;a,tb)> (w) - (Tf Cs+1 Cm:f in‘z) ) mod N . (5.6)

It remains to prove that QD is solvable if and only if @ is coprime to &. We

f
begin with proving the “only if” part through contradiction. Since our precon-

dition is that the matrix equations in have a solution we multiply with the
complementary matrix, then calculate the matrix product and dividing out f.
Note that the multiplication with the complementary matrix is in general not a
equivalence transformation, since its determinant fa need not be coprime to N.
This gives us the system

dz,y,u,w € Z, (u,w) =1:

u fo g sf— (fa,b)fz
()= (B o) (ot ) oo

— dr,y,u,w € Z,(u,w) =1:

U s — Jar N
a<w> ((f rb— fay ) mod 7 (5.7)

Assume now (a, f> > 1 and let p be a prime which divides (a, f> If p | fa 5

=

reducing (5.7)) modulo p 1mphes r = 0 mod p, which is a contradiction to the con-
fa _
gruence obstruction r—+-~ 4 f B = —1 mod T ab) in Lemma SO ( Tab)' T ) 1.

Otherwise p | (fa,b) holds, again reducing 1) modulo p implies ( fj; ab)s =
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0 mod p, hence s = 0 mod p which is a contradiction to the congruence obstruc-
tion sc = —1 mod (fa,b) in Lemma [3.3]

For the proof of the “if” part assume (a, %) = 1. The squarefreeness of N allows

us to split the system 1D into one system modulo f and one modulo % Hence

(5.6) is equivalent to

dz,y,u,w € Z, (u,

w)=1:

B0\ fu
(UZ) (ffb)) <w> - <8> mod / (5.8)

(fa.b) 0 ) (u 5f — (fa,b)fr N
< - (f]:b)> ( ) (Tf CJer,}) cref — fai)y) mod 7 (5.9)

The squarefreeness of N and the precondition (

unit modulo &,
as in the “only if”

3‘,'E7 y7 u7 w E Z? (u7

((fz;b) (ffob) ) (Z)

&F

w)=1:

(8) mod f

) = 1 implies that fa is a

so the system |D can be transformed with the same methods
part. This gives us the equivalent system

(5.10)

(5.11)

fa .
VAN a <u> = (favb)s fax mod E .
w r— fay f

Again since fa is a unit modulo %, in the system 1’ for any row (u,w)
consisting of coprime integers one can choose integers x,y such that the system
is fulfilled. So the two systems (5.10|) and (5.11)) simplify to one system

(faab) 0 wy _ 0
Ju,w € Z, (u,w) =1: < or (fj;%)> <w> = <0> mod f .

split f =
u’s, which are divisible by (;%), the first equation in the above system

(5.12)

In order to construct a solution of (5.12

(f,b) - 0] b) Considering only
5.12) is

true and the whole system collapses to a single equation

f > f fa
——u,w | =1: u+w
(f,0) ) (f ,b)

o)t el omag

EIu,weZ,( =0 mod f

<—3Ju,w € Z, < cru + w
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The column (fa,b,c)” consists of coprime entries and Lemma implies that
r is coprime to (fa,b), so cr is a unit modulo (f,b). So Lemma guarantees

that one can choose rows (ﬁu,w) in such a way that the completed matrix

* *

Q(apede) = ( fu has the properties claimed in the theorem, note that
(f.b)

the squarefreeness of N and M | N implies % = (%,M ) The explicit de-

scription of the left cosets of I'g(N) in Lemma in conjunction with Lemma

[3.7) guarantees that the cosets in A(f, M, Py )\ To(N), associated to the above

constructed representatives, are disjoint and the so constructed representatives

exhaust I'1 (f, M, Py 2).

For our calculations we use part (2) in Corollary Lemma and determine
which first columns occur in I'y(f, M, P; 2). We start with the statement

Ipe P2 Py € B To(N). (5.13)

Since 5(_0117 o € I'p(V) this element can be absorbed into I'g(IV). So the statement
(5.13]) above is equivalent to the chain of statements

dpePiy: 63Tﬁfp = (0,0, *) mod N
1 1

8 ¥ W

*
* | =(0,0,%) mod N
foo1 y

— dr,y,z€Z,(zr,y)=1:

3)

f = Omod N
fz+4x = Omod N .

Obviously the last system is solvable if and only if f = N and N | = and one

can choose p as the identity matrix. Since in this case I'g (%) = SLy(Z)

holds, Lemma [3.7] guarantees that the so constructed coset representatives in
A(f,M,Py2) \Tg(N) are disjoint and that they exhaust I'>(f, M, P 2).

Since 6!

0,041) € I'o(IV) we proceed analogously as in the second case.






CHAPTER 6

Calculation of T';(f, h, Ppin)

It remains to calculate a system of coset representatives for A(f, h, Ppin) \ To(N) and the
corresponding sets I';(f, h, Ppin) in Definition

LEMMA 6.1. Let N be a squarefree integer, f a positive divisor of N and h a positive divisor
of % With the notation 7. q) from Lemma a possible choice of the sets T'y(f, h, Ppin)
s given by

(1)
(fa,fb,e)=1
a#0
T a,b,ﬂ =1
T1(f;hs Prnin) = { T@bede) ( (e 1) YV fafv.) ((dh,ﬁ))zl ,
d#0
(a.85)=1
with T(a,b,c,d,e) € Poin.
(2) The set T'a(f,h, Ppin) is given by
Z ifh# %,

FQ(fa h7 szn) ==
T(avbzcvo’il) 1 ry(fa,fb,c)

with T(a,b,c,0,41) € Pmin-

(fa,fb,c)=1
a70 ifh=1%4

(8) The set T's(f, h, Pynin) is given by

(fb,e)=1
b£0
T(dh.e b Y )=1
L3(f, hy Prin) =  T(0,b,c,d,e) ( (dh.e) 1) Y(0,1b,) gdhfg:l ;
440

(#5)

43
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with T(0,b,c,de) € Poin.-

(4) The set T4(f,h, Pyin) is given by

2 ifh#

Ly(f, hy Prin) = . bt
{T(O,b,C,O,:I:I) ( (0:21) 1) Y(0,fb,c) (bb]f;:l} if h = % ,

f

with 7(0,b,¢,0,+1) € Poin.

(5) The set T's(f,h, Ppin) is given by

o iff#N,

F5(f7 h7 Pm'Ln) -
T(de) ~
1 (0,0,£1)

(6) The set T's(f,h, Pyin) is given by

(dg;ggl} if f=N.

o iff#N,

Fﬁ(fa h7 Pm’m,) ==
{(T(O’ﬂ) 1) ’Y(o,o,ﬂ)} if f=N.

ProOOF. Note that in all six calculations Lemma ensures that the calculated coset
representatives are disjoint and exhaust the respective I';(f, h, Ppin)-

(1) For our calculations we use part (3) in Corollary and determine which rows
occur in 'y (f, h, Ppin). Reducing modulo f immediately gives that the last row in
Y(a,b,c) Must have the form (fa, fb, c), so it remains to investigate which additional
conditions the two rows (fa, fb,c) and (d,e) must fulfill. We start with the
statement

T(de _
€ Pin: D < (de) 1) Y osbe) € AFATO(N) . (6.1)

With the defintion of the matrix 7(4,.) in Lemma we pass from (6.1]) to the

equivalent condition



45

1 1 =z y t %
Jr,y,z €Z: h 1 1 =z d e Y(fa,fbe) € a;lfo(N)
1 1 1
t+dx ol ey y
= dx,y,z€Z: th + hdx +d %h—l—hem—i—e hy + 2 | Y(fa,fb.) Ea;lfo(N) .

1

Now we can resort to the calculations in the proof of part (1) in Lemma All
the calculations there can be transfered to this situation. So using (4.9) implies
that the above condition is equivalent to the following condition

th + hdx + d )

ax;?J,ZEZf (etl

e o) = U2+ ((af’b)) mod ¥ (6.2)

f

Since N is squarefree we can achieve that —(f(hy+z)+1) is any integer modulo
% by choosing a suitable integer z. So 1) is equivalent to the condition

) th+hdr+d \ _ 0 N
Jz,u€Z: <etd1h+hex+e> =u <(a,b)> mod T (6.3)

Note that the row (th + hdx 4+ d, etglh + hex + e) has coprime entries since it is
a row of an invertible 2 x 2 matrix, which occurs above as an upper left block in a
3 X 3 matrix in P» 1. So Lemma implies that it is necessary for the solvability
of the system that the ged condition

<a,b, {}Y) =1 (6.4)

holds. In this case a suitable integer u can be chosen so that the second equation
of (6.3) is satisfied. Hence the system (6.3)) collapses to a single congruence

N
JreZ: th+hdw+d50mod7. (6.5)

Since h is a divisor of % reducing the congruence in |i modulo h immediately
gives the divisibility relation

h|d. (6.6)
Write d = hd; and substitute this into (6.5). So we get the equivalent system

N
JreZ: t+d1(h:x+1)50modﬁ

N
<— dxe€Z: t+diz=0mod —

fho

The last equivalence holds since IV is squarefree. Reducing the above congruence
modulo (dl, %) gives (dl, f—A}fl> | t. But since (¢, hdy) is the first column of the
invertible matrix 7(4.), which implies that the integers ¢, hd; are coprime, we get
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(dl, %) = 1. Obviously this last equation is solvable for the variable x if the

condition

<d1, %) 1 (6.7)

holds. Collecting the conditions (6.4} -, 6.6) and (6.7)) gives the proof of the claim.

(2) We use the same argumentation as in part (1) and will omit steps and arguments
which are similar. We have the following chain of equivalences

T
Elpepmin: p< (0.£1) ) fa,fbc) E)‘thO(N)

1 =z y +1
<— dr,y,z€Z: 1 =z +1 V(fa.foe) € Of ITo(V)
1 1
Yy
<— dr,y,z€Z: j:h j:ha:+1) hy + z ’y(fmfb,C)Ea;lFo(N)
1
0 N
<~ dr,u€eZ: (h:c—|—1)> u((a,b)> modF.

The first congruence in the above system is solvable if and only if h = % and in
this case the second congruence is equivalent to the congruence

+1 = u(a,b) mod ]}7 .

This congruence is solvable if and only if (a, b, %) =1.

(3) Reducing modulo f immediately gives that the last row in Y(0,b,c) Mmust have the
form (0, fb, c). To obtain the requested result we will use a similar calculation as
in the previous cases. We have the following chain of equivalences

T(d.e _
dp € Prin: p < (de) 1> Yo.6.c) € Ag Lo (V)

t, +dz et%d_l + ex Y
— dr,y,z2€Z: tih+ hdx +d %h—i— her +e hy+z | Y0,fbe) € aJIlFO(N) .
1

Now we can resort to the calculations in the proof of part (2) in Lemma All
the calculations can be transfered to this situation. So we obtain that the above
condition is equivalent to the system
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dx,y,z € Z: t( bih + hdr +d >

N
et e EUUw+@+J)@>nmd. (6.8)

f

We now argue analogously as in part (1). First we use the squarefreeness of N
to choose a suitable integer z such that t~!(f(hy + 2) + 1) is any integer modulo
%. So the system in is equivalent to the system

t1h+hda:—|—d>: (0> N

etldflh + hex +e b mod 7 . (69)

Next with the same argument as in part (1) we obtain that the row (t1h+ hdz +
d, et%[lh + hex + e) has coprime entries. Again Lemma implies that it is
necessary for the solvability of the system that the ged condition

(b, ]]Y) =1 (6.10)

holds. In this case a suitable integer u solves the last congruence of . Hence
the system (6.9) collapses to a single congruence

Jx,ueZ: <

N
xeZ: t1h+hd:1:—|—dz()mod7. (6.11)

Since h is a divisor of %, reducing 1’ modulo h immediately gives the gcd

condition

hld. (6.12)
Write d = hd;, so we obtain with the same steps as in part (1) the congruence
N
JreZ: tl—i—dleOmodﬁ, (6.13)

which is equivalent to (6.11]). Again this last congruence is solvable in the variable
x if and only the ged condition

(5.5) - 619

holds. Collecting the ged conditions (6.10]),(6.12)) and (6.14]) gives the proof.

We adopt most of the steps in part (3) and will omit arguments, which are of the
same nature as the ones in part (3). We have the following chain of equivalences

T _
Ip € Poin:  p ( (0,+1) 1) Y0.6¢) € AppT0(NV)

+1 +x Y
<— dr,y,z€Z: +h £(hx+1) hy+ 2| Y0, be) € a;lI‘o(N)
1

<— dr,u€’Z: < +h >

0\ g Y
+(ha + 1) “<b> mot
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The first congruence in the above system is solvable if and only if h = % and in
this case the second congruence is equivalent to the congruence

N
JueZ: +£1=ubmod 7 (6.15)

The congruence ((6.15]) is solvable if and only if (b, %) =1.

In the last two cases we must handle the rows (0,0,+1). We start with the
statement

T(de _
Jp € Poin: P < (@e) 1) Yoo.s1) € ATETo(N) (6.16)

Since v(0,0,+1) € T'o(IV) reducing modulo N in (6.16]) gives immediately f = N,
hence h = 1. In this case absorb /\JT}Z and 7(0,0,+1) into [o(N) which gives the
condition

e Puin: p (We) 1) e To(N), (6.17)
which is equivalent to condition (6.16]). Selecting p as the identity matrix satisfies

the condition (6.17)).
O
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Iwasawa decompositions






CHAPTER 7

Iwasawa decompositions for I';(f, M, P»;1) and I';(f, M, P, 5)

In this chapter we will recall a well known algorithm based on the Schmidt procedure in
linear algebra and compute the h3-part of the Iwasawa decomposition of the elements in the
sets I;(f, M, Py1) and I';(f, M, P1 2) . These results are needed for the explicit calculation
of the Fourier coefficients of the Eisenstein series. Note that most of the calculations in
this and the following chapter can also be executed by a scientific computer program, e.g.
mathematica, but in order to compute the Fourier expansions we need the terms sorted
in a special way, which is not automatically done by those programs. So I decided to do
all the calculations by hand. The reader only interested in the results can go straight to
the Lemmata [7.4] [8:3] [8.6] and skip all the calculations.

LEMMA 7.1. Let (-,-) denote the standard inner product on R" and || - || the induced norm.
Let A € GL,(R) and let a; denotes its i-th row. Then the Iwasawa decomposition of the
matriz A is given by the formula

M1 Mg e Mo
. 1y
Mou] L
A= : [N
1
A—1n-1 An-1n o, On
1
where the coefficients \; ; and the vectors by, are defined by
(1)
n
Qn_i,b .
bp—i i = ap—i — Z ka , 0<i<n.
k=n—i+1
(2)
(aivb'>
A w4 Lsi<isn,
ij 15 i Q=
16w ’ J

PROOF. Since A is invertible we can apply the Schmidt procedure for the inner product
(+,+) to the basis ay,...,a; of R™. So we obtain an orthogonal basis by, ..., b1 of R", where
each vector is explicitly given by the formula

n

<6Ln,i, bk‘>
bp—i == an—; — Z by .
iy (brsbr)

51
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Writing the above formulas in matrix form gives us

1 lawba) 0 (anba)
(b2,b2) (bn,bn,)
1 : b1
A= . :
CE ) b
(O n el B
1
1 leba) o (enba)
<b2,b2> <bnzbn> HblH 1
. bn _L
1 1on] o1
pu— . b
_ o G [n
1 <a<z;,1bf;> H nH 1 ||bn|| n
1
floall  (a1,b2) . {a1,bn)
lonl  Nlo2]l[on ] 1612 )
b : T
o2} Tt
= : [onll
: 1
[bn-1ll  (an—1,bn) 5,7 On
Toal  fon]? el
1

which is the claimed Iwasawa decomposition of A.

0

With this algorithm at our hand we are able to calculate the h3-part in the Iwasawa de-
composition of any invertible matrix. Since all relevant matrices for our calculations are
already in Bruhat decomposition, we only have to calculate the h3-part for matrices in b3
transformed with elements from the Weyl group. The next lemma gives explicit formulas
of the h3-part for these transformed matrices.

Y2 T2 I3
LEMMA 7.2. Let z = y1 z1| € b? and w be an element of the Weyl group of
1

GL3(R). Let a;; denote the coefficients of the h3-part in the Iwasawa decomposition of
wz, 1i.e.

a1 air2 ais
wz = a272 as 3 mod OgRX .
1
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Then the following explicit formulas for the coefficients a; j are valid.

-1
(1) Forw = 1

S Y12\ 5 + 25 ,
U VB el 4 a3 (wems — a1 (2 + 13))? + 33 (03 + 23 + 23)
V3 + a3(yizoxs — 1 (x5 + y3))
(43 + 23 + 2}/ (nwaws — 21 (23 + 43))? + yiy3 (43 + 23 + 23)
.
:y% + 2%+ 23’
Uy = V (raaws — @123 +3)) + yiy3 (v3 + 25 + 23) 7
7 VY3 +a3(ys + a3 + )

_ Y1T2 + 1173

ai2 =

ai,3

a3 =—5H 5 5 -
Y3 + 2% + 23
1
(2) For w = 1
1
y1yo —y1z223+21 (y3+23) yizat1zs
ail ai2 ai3 Vystadtad/y3+ad  (y3+ad+ad)\/y3+a3  vataatay
aso a3 | = y3+a5 3
1 y2+a5+as ya+x5+as
1
1
(8) Forw= |1
1
Y1y2 _ y1(T172—y173) T
2 2
ai1 a2 a13 V2 +a3y/ (Y3 +a?)y3+(z1m2—y123)2 (W3+22)\/ (V3 +23)y3+(z1m2—y173)2 yita
azz a3 | = V (Wi+a?)yd+(z1w2—y1a3)? yiza+zias
1 i tyi yi+el
1
-1
(4) For w = -1
-1
Y2 —Z122+23Y1  T2Y1+T123
ail a2 a3 Vvita? yi+a o4yt
agz2 a3 | = L Ll
yita? z2+y?

1 1
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1
(5) Forw= [ —1
1
a Y1y2 _ iz T
L1 12 a13 Vsta3 Vstas
i o) = VAT o
1

PROOF. A (long) straightforward computation using Lemma which we omit.

A corollary of the above results are the explicit Iwasawa decompositions for the blocks
in the Langlands Levi decomposition of the above matrix products. These formulas are
needed for the calculations of the Fourier expansions of the Eisenstein series twisted by a
Maass cusp form.

Y2 T2 T3
COROLLARY 7.3. Let z = y1 x1 | € b3, The formulas below for the Iwasawa de-
1

compositions of the Levi components of the products wz for certain Weyl elements w are
valid.

1 y1y2/y3+a3+a3 _ ats
Forw = 1] : mp, , (wz) = y2+a2 y 2122 | mod OsR™ .
1
-1 o R
For w= —1]: mp,  (wz) = ( yi +at s - > mod OoR™ .
-1
1 \/(y%-*-x%)y%-i-(wwz—yws y1:c2+x1$3
Forw= |1 : mp, ,(wz) = 23+y3 y1+x1 mod OoR* .
1
1
Forw= | -1 : mp, ,(wz) = ( V2 + 3 f‘?’) mod O;R™ .
1

ProoF. Use Lemma and multiply in the first and second formula with a suitable
element in R* to obtain the G Lo-Iwasawa form.

O
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Finally we give explicit formulas for the Levi components of the elements in the sets
Li(f, M, Py1) and I';(f, M, Py 2).

LEMMA 7.4. Let N be a squarefree integer and f a positive divisor of N. Further let
Yi1y2 Yir2 I3

z = yi1 x| € b3 With the notation in Lemma 4.4, Lemma |5.9, respec-
1

tively, the explicit formulas for the Levi components of the elements in I';(f, M, Py1) and
Li(f, M, Py 2) below are valid.

(1) We have

P(ab,c,de)

k y .
mp, * | V(fa,fb,e)% | = Pla,b,c,de) 1)
1

with the coefficients:

) —(aby2yy YTV PPy D T (fas + b + o)
o a?y3 + (axs + b)? )

) a?ys + (azg + b)?

xTr =

(2) We have

P(0,b,c,d,e)

* y
mp, * 170,560,002 | = P0,b,c,de) 1]
1

with the coefficients:

y =y2\[y202 f2 + (fbry + )2,
x=—>bfxrs+ (fox1 + c)xa .

(3) We have
1 * ok vz
~1
e 8 4(a,b,c,de) 5(fa’b’c)z _Q(a,b,c,d,e)< 1) 7

with the coefficients:

2 V F2a2yy2 + y3(afry — b)2 + ((faxy — b)zs — faxs + c)?
(faxy — b)2 + f2a?y} ’
(af,er  (af,)? Pasies + (fazs — o)(fazs — b
fa fa f2a?y? + (faxy —b)?

y=yi(af,b
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(4) We have
1 * ok vz
—1
e 8 9(0,b,c,d,e) 6(071776)2 :q(o’b’c’d’e)< 1>7

with the coefficients:

y=m \/beS + (bzg — )2,

T =cr1 — brs .

PRrROOF. (1) First we use the Bruhat decomposition in Definition and do a
brute force calculation

mp, | P(a,b,c,d,e) s | Vfafve)®
1
1 fa 1 fa fb o c Yiya Yi1r2 I3
=P(a,b,c,d,e)MPs 1 1 % 1 @ }TZC Y1 1
! Fah) !
L\ [Palebmys o bulazs+b) flab)(fars+ fors + o)
=P(a,b,c,d,e)MP2 1 1 7(a,bffy1 (a’b)jﬂcl — TC(S’b)
1 1

Now we apply Corollary to recast the previous equation as

*

€T
p(a7b7c7d76) * ’Y(fa,fb,c)z — p(a,b,c,d’e) <y 1) ,
1

mp,

with the coefficients y, z given by the two formulas (before and after cancellation)

Pty VT @O + T, Dy, + B + (a0 (fazs + Jbi + o
Yy ) Y192 f4(a, b)2a2y%y§ + f4(a’ b)2y%(aﬂfg T b)2

= (a,b)” Vv IPa?yiys + FPyiaws +b)° + (faxs + fbay + c)?
»0)7Y2 a?y2 + (azy + b)?

)

(a,b)fzx1 — re(a,b) %(amz +b)(faxs + fbxy + ¢)

a  f4a,0)2a2yy3 + f(a,b)2y? (azs + D)2

(a,b)fx1 —re (af)2 (azo + b)(faxs + fbx1 + c)
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(2) Again we use the Bruhat decomposition in Definition and calculate directly

mP2,1 p(O,b,c,d,e) * V(O,fb,c)z
1 ' -1 1 Y1y2 Yix2 T3
:p(O,b,c,d,e)mPQJ 1 7o -1 _fb _f Y1 1
1 -1 —% 1
—1 —bfyiy2  —bfroy —bfx3
:p(o,b,c,d,e)mPQJ _1 f2b2y1 bele + Cfb
-1 1

Corollary [7.3] implies the formula

Po.bcde)

k y T
mp, * ] Y0,£b,0)% | = P(0,be,d,e) 1) >
1

with the coefficients y, x given by the two formulas

y1y2bf\/ 162f2)2 + (f2b%31 + cfb)?

1202y,
(f20%w1 + cfb)(—z2y1bf) .

r=—bfrs — 02y,

Using the right invariance against the orthogonal group O3 and multiplying with
-1
1 from the right eliminates the minus sign in entry (1,1). Cancella-
1
tion gives us finally the claimed formulas

y =y2\ Y202 f2 + (fbry + c)?
x=—>bfxs+ (fbr1 + c)zg .

(3) Use the Bruhat decomposition in Lemma and proceed similarly as in part
1
(1). For easier readabilitiy use the abbreviation w = | 1 and calculate

directly

L 3

mp o, z
b2 (a,b,c,d,e) (fab.c)

S O =
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br+(fa,b)

1 ~Gep) ~Ta 1\ ((fab) ‘;T ¢ fa Y1y2 Yi1T2 T3
R a
_q(a7bvc7d7e)mP112 1 O 1 (fa,b) B (fll,b) yl xl
1 1 1 1
fa

fa(fa,b)y1y2  fa(fa, b)m;ggél + facry;  fa(fa,b)xs + éagrxl —cbr — ¢(fa,b)

_ f f —fab

=(abcde)MPrz | W ( fif)l a( f;,b) -

Now we apply Corollary to recast the previous equation as

1 * ok vz
m 0 D ,
= 0 Uabedo (fa,b,c) 4(ab,c,d,e) ( 1>

with the coefficients y, z given by the two formulas (before and after cancellation)

y—K((fa?b)) +< Fa D) ))(fa(fa,b)ylyz) +<< () >(fa(fa,b):z2y1+facry1)

B <f2a2y1 2 % <f2a2.731 — fab>2 4 <f2a2y1>2 -
(fa,b) (fa,b)

(fa,b)
_ 2V F2a?yiy3 + y3(afzy — b)% + ((faxy — b)zg — fazs + c)?
= yl(afa b) (fa«%'l . b)2 4 f2a2y% ’

2a2 1 2(12117 a
(szaﬁ) ) (fa(fa,b)zays + facry) + (i (fa7b)f b) (fa(fa,b)xs + facrzy — cbr — c(fa,b))
f2a2 2 f2a2x1—fab 2
(G )+ (Ptast)
(af,b)er N (af,b)? f2a*yizy + (faxs — c)(fazy — b)
fa fa f2a%yi + (faxy —b)?

) (fa(fa,b)xs + facrzy — cbr — c(fa, b)))

xTr =

(4) The last case is analogous to the previous one. Again use the Bruhat decompo-
sition in Lemma [3.3] getting

1 * ok
mp 0 oL 2
1,2 0 Q(0,b,0c,d,e) (0,b,c)
1 - 1 b ¢ Y1y2 Y1T2 T3
:q(07b767d76)mP1,2 1 _1 B yl 1
1 1 1 1
1 by1y2 yl(bxz — C) brs — cxq
=4(0,b,c,d,e)MP1 2 -1 u o
1 1

Again apply Corollary to recast the previous equation as
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1 * ok

-1 o Yy x
mp, , 8 A(0,0,0.d,c) 6(07b,c)z = 4(0,b,c,d,e) < 1> )

with the coefficients y, z given by the two formulas (before and after cancellation)

y =v/ (by1y2)2 + (y1(bx2 — )2 = \/522/% + (bxzg —¢)?,
r =cx1 — bxs .






CHAPTER 8

Values of various /,-functions

In this chapter we calculate the values of the three different Is-functions for the elements
of the associated sets I';. We begin with a trivial lemma which allows us to calculate the
determinant and the scaling factor of certain Iwasawa decompositions directly.

LEMMA 8.1. Let v € GL3(R)t and || - || be the euclidean norm on R3. There exists a
Y1y2 Y1x2 T3

unique Iwasawa decomposition such that v = zkr with z = y om | €3k €
1

SOs,r > 0 and the determinant of the matrix z and the scaling factor r are given explicitly
through the formulas

r=esvll
_ T -3
det(z) =det(y) [[e3y |7 -

PRrROOF. First note that since the determinant of v is positive we can achieve k € SO3
and r > 0 in the Iwasawa decomposition (maybe we have to change the sign of r). For
the formula of the scaling factor we calculate directly using the fact that the rows of the
orthogonal matrix k are normalized:

T T T
lesy =l ez zkr [|=7 [l esk [|= 7

The formula for the determinant follows immediately applying the determinant multipli-
cation rule

det(z) = det(v) det(k)1r=3 = det(y) || eI~ | .

O

With this preparation the explicit formulas for the I;-functions occuring in the twisted
Eisenstein series can be proved. Note that the following formulas are also proved in [7].
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LEMMA 8.2. Let v € GL3(R)" and || - || be the euclidean norm on R3, then the explicit

values for the functions I(s _gs)(*, P21) and I(gs _s)(*, P12) at v are given through the
formulas

L(s,—25) (7, Pax) =det(7)® [ e3y || 7%,
Los,—5) (7, Pr2) =det() ™ | v Per |7

Y1y2 Y1x2 T3
PROOF. First write down the Iwasawa decomposition v = zkr with z = Y1

1
b3, k € SOz, r > 0. We calculate explicitly using Lemma

Is—25) (7, Pap) = I (5 —05)(2, Pa1) = (yiy2)® = det(2)® = det(7)* [ e5v |7*° . (8.1)

For the proof of the second part we have to pass to the element w(y~!)Tw where w =

-1
-1 is the long Weyl element. Note that the Iwasawa decomposition trans-
-1
forms
_INT _ _ 1 -1 —
w (’y 1) w = (w(z 1)Twy1y2) . (w(k I)Tw) . (7‘ 1y1 1y2 1) , (8.2)
T Y2y1  —Y2T1 T1T2 — T3
with w (zfl) WYY = Yo —Z € b? and w(k~1)Tw € SO;3.

1

So combining (8.1) and (8.2) and afterwards using the formulas in Lemma gives the
result

1(287—5) (’77 P1,2)
:I(Qs,—s) (Za P1,2) = (ygyl)s
= det (w(z’l)Twylyg)s
=det (w (1) w)" || ety w |
=det(y) ™" |7 ter |7

Note that the w and the transposition in the last term can be dropped, since neither a
permutation of the entries of a vector nor the transposition changes its euclidean norm.

O
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Now the values of the I,-functions for the sets I';(f, M, P>1) and I';(f, M, Py 2) can be
given in an explicit form.

LEMMA 8.3. Let N be a squarefree integer and [ a positive divisor of N. Further let

Yi1y2 Yirz2 I3
z= y1 x| € b3 With the notation in Lemma|4.2, Lemma 5.9, respectively,
1

the functions 1(87_25)( Py1) and T a5, (%, P 2) take the following explicit values
(1)

P(a,b,c,d,e)

*
I(s5,—2s) | Y(fa,o0)% Pt
1

3s

=(yiy2)® [fPa’yiys + fPyi(azs + b)* + (faxs + foxy +¢)%] " 7,

(2)
p * _3s
Iis 25 Obede) | v ez Pog | = (Wiye)® [f2yb + (foxr +¢)?] 2,
1
(3)
1 * %
Tios _4 0 57, P
(25,=) 0 d(a,b,c,d,e) (fa,b,c)z 1.2
_3s
=(193)° [f2a®yiys + y3(b— fax1)® + (c — bao + fa(ziz — x3))] 2 |
(4)
1 * ok .
Is—s 0 57 ZP = 2)s 2b2+ c—bx 2172
(2s,—s) 0 A0.bresde) (0,b,c)%2 11,2 (v13) [112 ( 2) }

PROOF. We treat the parts (1),(2) and (3),(4) together.
(1) First use the invariance of I(sy,Qs)(*,Pg’l) against the group P 1, then Lemma

[8.2] getting

DP(ab,ede)

Iis 26 | Vtasve) s Pt | =L —25) (Vfafo.0)% Poit)
1

=det(V(fa,15.0)2)° | €3V farpp.002 | 725= (Wi2)® || (fa, fb,c)z || 7%
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3s

=(yiy2)® [f2a®yivs + fPyi(aws +b)° + (faxs + fbar +¢)*] 7

Considering the cases a = 0 and a # 0 separately gives the proof.

(2) Use the invariance of I(a, _s(*, P12) against the group Pi2, then Lemma
getting

k*  k

1
1
I(ZS,—S) 8 5

— -1
q(a7b’c7d7e) (fa b c)Z P1,2 — 1(28,—3) (6(fa,b,c)z’ P172>

=det (50&1[)6) ) | (57, fabc z)” ley [l —3s5__ (y ya) " || z—l(c, b, fa)T ||—35
3s

=(yiy2)* [fPa® +y12(b— faxz1)® + i 2yy 2 (e — bag + fa(zias — 23))%] 2

=(y13)° [f*a’yiys +y3(b — faz1)? + (c — bz + fa(z12z — 23))°]

3s
2

Again considering the cases a = 0 and a # 0 separately gives the proof.

0

Next we handle the I(,, ,,)-function occuring in the definition of the minimal Eisenstein
series. Again we first state a trivial fact concerning the calculation of the I(,, ,,)-function.

Y2 T2 T3
LEMMA 8.4. Let z = y1 x1 | € b3, Then the formula
1

So—S81, 281+89

I(s1,82)( ) =Y Ya

for the calculation of the Iy, s,)-function holds.

1 % I3 Y1 (Z%)
PrROOF. Write z = 1 = n and use the definition of the
1 1

I (5, s,)-function.

y2 251+s2
2 2
I(Sl,sz)(z) = yfﬁ_ o2 <y1> = yi2 51y281+52 )

O

For completeness we restate the explicit formulas for the values of the I(,, ,,)-function on
Weyl elements in [4, (3.4)-(3.9)]. Note that our definition of the Iy, ,,)-function differs
from the definition in [4, page 19] in this respect that the complex variables si,so are
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swapped.
Y2 T2 I3
LEMMA 8.5. Let z = y1 =1 | € b2 and denote with w certain Weyl elements. Then
1

we have the following explicit calculations of the values of the I(4, s,)-function at wz.

-1
(1) For w = 1 we have

2 2 2
T _
Y5 + a3 (92) + <9:3 -= 2) ] Y Sygsitee
Y1 Y1

(2) For w = 1 | we have
1

359

1(51,32)(("}2) = (y% + ‘T% + x%)_ 2

_3s2 _351 o 9
Lsysn(W2) = (Y3 + 25+ 23) " 2 (y3 +a3)" 2y Foegmitee

(3) Forw= [ —1 we have

-1
y 2 . 2 2
¥+ a2 <2> + <x3 _= 2) ] yf2_81y551+52 '
Y1 Y1

(4) For w = —1 | we have
-1

3s9

I(sl,sz)(wz) = (y% + ‘T%)i 2

_8sy
Loy sy (w2) = (yf + )72 g g™

-1
(5) Forw= |1 we have
1

_351 o 9
1(51,82)(("}2) = (y% + 1‘%) 2 y151+52y281+82 '

PROOF. We use Lemma [8.4] and the explicit Iwasawa decompositions in Lemma [7.2]
and calculate directly, note that trivial simplifications of the terms are omitted.
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~1
(1) For w = 1 we have
1
2s1+s2
Ty (02) = Y1Yy2\/ Y3 + 3
51,8
o V3 + 23 + 23/ (yrwars — 21 (23 + 43))% + v33 (43 + 23 + 23)
S9—S81
V(nzaxs — x1 (22 +y2))2 + y2y2 (Y3 + 22 + 22)
V5 + a5y + a3 + x3)
3s
=(y1y)* T2 (3 +ad +2d) 2
_ 351
[y%w% — 2wy wowayr (o3 + y3) + 21 (x3 + y3)* + yivs (v + a3 + w%)] 2
2 2
Yy + T35

3s
=(y3 + a3 +a3)" 2"

y 2 1T 2 73%
ys + a1 <2> + (fca -— 2) Yy
n Y1

1
(2) For w = 1 | we have
1
281482 §2—S1
7 (wz) = Y1y2 VY3 + 23
(e1,22) \/y§+x§+x§\/y§+x% Y3 + a3 + a3
3s 3s
= (3 +a3+af) T (3 Had) gy
1
(3) Forw= [ -1 we have
-1
1(81782)((“)2)
2814582 s2—S1
_ Y1y2 V@2 +2D)ys + (v122 — yr123)?
Vi + i/ (i + 2)ys + (w1 — yix3)? a3+t
3s 3s
=(y}3 + o3y} + 2lad — 2yimiaas + yiad)TE (o +yd) T ()

3s1

2 217 2
3s 1T _
3sg y%—l—ﬂc% <y2> i <x3— 1 2> ] yfz slygsl—&-SQ.
Y1 Y1

=(yf +a7) 2

(4) For w = —1 | we have
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2s1+52

S9—51
Y2 U1 2 N—352 505 2s +s
I w2 = | —= =y+:c 2y21y12.
(51,32)( ) \/m |:y%+$%:| ( 1 1) 1 2
—1
(5) Forw= (1 we have
1
[ Y1y2 et s 9 o ) )
e e b= I R IR R
(s1,82) _\/m 2 2 1 2

0

At the end of this chapter we give an analagous result to Lemma by doing the calcu-
lation of the values of the I(, ,)-function for the sets I';(f, h, Ppin)-

LEMMA 8.6. Let N be a squarefree integer, f a positive divisor of N and h a positive

Y1y2 Yix2 T3
divisor of % Further let z = y1 =1 | € b3 With the notation in Lemma|6.1
1

the function I (s, ,,)(x) takes the following explicit values on the sets T'i(f, h, Pin)-

(1) For the elements in T'1(f, h, Prin) the I (s, s,)-function takes the value

T e
L(s1,5) (T(a,b,c,d,@ ( (i) 1) V(fa,fb,c)z>
3s9

351
a S S S S _ 3sg
= <h|dl(|ab)> y% 2+ 1 2 1+s2 [f2a %—}— f2y%(ax2 + b)Q + (faxg + fbml + 0)2] 5

2
rc ea
F2ayiys + a’ys (fxl “an T ) >

a,b)  hd(a,b)?
275
+ <(fa$3 + fb.’El + C) - (fxl (a Cb> hd(ibab)2> (a(L’Q + b)> ]

(2) For the elements in I'y (f, mm) the I, s,)-function takes the value

_
Loy 52) <T<a7b7c7o¢1) < (O 1> V(fa,fb,c)z>
3s9

:(a’b)351yi91+282y§2+251 [f2a2y%y§ + ny%(a:E2 —|—b)2 + (fal'g + fbl’l _‘_6)2]*7
3s1

[a2y§ + (ax2 + b)Q} 2
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(8) For the elements in U's(f, h, Pmin) the I (s, s,)-function takes the value

T e
L(sy,59) (T(o,b,c,d,e) < (dh,e) 1) V(O,fb,c)2>

3s9

R [P (b 4+ )7

3s1

[h2 FAA20%2y2 + h2d%2(fbat + )2 + (e — hfdbas + hd(fbxy + cm)?}

(4) For the elements in T'y (f, %, Pmm> the I(s, s,)-function takes the value

3s9

T S S S S -9
I(31,52) (T(O,b,c,o,il) ( (0.£1) 1) ’Y(o,fb,c)z> = y11+2 21/% 1 [beQy% + (fbx1 + 0)2] ’

5) For the elements in I's(N, 1, Ppin) the I, -function takes the value
(s1,82)

_3s1

T e S S S S
I(Sl,sz) << (d:€) 1) ’7(0,0,:&1)2) = y11+2 Q?J% 1he2 [d2y§ + (xod + 6)2] 2

PROOF. Our main tool for this proof is the explicit formula in Lemma for the
I(s, s,)-function in conjunction with the left-invariance of the I(,, ,,)-function against Ppn
and diagonal matrices with entries =1 on the diagonal. Further we use the Bruhat de-

composition for 7(q) and v, ) in Lemma and

(1) The proof is performed by a straightforward calculation

T(dh,e
I(sl,SQ) (r(a,b,c,d,e) < (dh.e) 1> /Y(fa,fb,c)z>

1 L -1 dh e
=1(s,52) 1 1 & V(fa,fb,c)?
1 1 1
~1 dh e 1 a 1 fa fb ¢
= 1 1 L 1 s 1 (ab)  —rc
(s1,52) dh f(a,b) a a
1 1 1 1 @B
—1 1 * dh e 1 fa (fl;) c
a, —
=I(s, 50) 1 1 =4 1 2 T | 2
1 1 1/ \1 i
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1 * -1 dh e fa (flz) c
=I5, .50) 1 x 1 ﬁ T
1 1 1 T;b)
fa

-1 1

S 1, 1)

-1\ (1 fa (fl;) ¢ Yiye Y1T2 T3
=I5, ) ) 1 dh ? = }—Zc ( Y1 xll)

dh f(a b)

1 f?hda(a,b)y1ys  f2hd(a,b)y;(axs + b) fhd(a, b)(fa:vg + fbxl + c)

=I(s).0) 1 1 w h2d2(a b)? (fJUl s+ hd(a = )
1

Now apply the explicit formula in Lemma and simplify the terms. This is
done in the calculation

T(dh,e
L(s1,52) (m,b,c,d,e) < e 1) 'V(fmfb,C)Z)
3s9

= [(f2hda(a, b)yrye)? + (F2hd(a,b)y1(azs + b))% + (fhd(a, b)(faxs + fbay + c))Q] ER

2
h2d?(a,b)? re ea 2 f?hda(a,b)y1yo
2 2 ’ )
(Fhda(a, b)yry2)” + <a (fxl Tl " hd(a,b)2)> L

(fxl @) T Al )>(f hd(a, b)y1 (ax2 + b)) 1-%

a

(h2d2
+ ((fhd(a, b)(faxs + fbxy +c)) —

h2 a,b 2d2 52781 S14+8
<f(|a’)y1> (f2h ‘d| |a| (CL, b)y1y2)2 1+82

3s9

3s __2°2
=(£2h%d*(a,)%)" 2" [2d®y33 + [Py} (axs +b)® + (faxs + ooy +¢)?] 2

2
(f2hda(a,b)yry2)? + (fhd(a, b)ays)? <f:c1 _ e 4 c )2>

(a,b)  hd(a,b
re ea 277
+ <(fhd(a, b))(faxs + fbxi +c¢) — (fhd(a,b)) <f:L‘1 " @) + hdla, b)2> (aza + b)> ]

(Fhla, )™ (£ lal)™ yisst g3t

3s1 3s
a S S S S —=2
= (h ,d} (’a b)> Y oyt [ 2622y + f2yf(aws + b)? + (faxs + fbar +¢)?] 2
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2
rc ea
FPayiys + a’ys <fx1 @t ) )

a,b)  hd(a,b)?
212
+ ((fcw:s + fba1 + ) - <fx1 - (;Cb) + hd(‘;“b)Q) (azs +b)> ]

(2) We do a straightforward calculation, which is similar to that in the first part, but
shorter since 7o 41 is an upper triangular matrix. We have

I(51,52)< a,b,c,0,+1) < 1> V(fa,fb,c)z>
fa

1 1 fa (fl;) ¢ Y1y2 Yixr2 T3
=l(s1,0) L ) 1 o TJa Y1 11
1 1 f(; ) 1
1 fra(a,b)yryz f2(a, b))y (2a:132 +0b) f(a,b)(faxs+ fox1 +c)
=I(s1,5) 1 1 Tab)y, @) (f(a,b)z1 —re)
1

Apply the explicit formula in Lemma and simplify the terms. This is done in
the calculation

T
1(81,52) (T(a,b,C,O,:I:I) ( (0.:£1) 1) ’Y(fa,fb,c)z)
3s9

= [(Pala, b)) + (F2(a, by (aza + ) + (F(a,b)(faws + fher +¢)2]" %
3s1 a.b)2 2s1+52
[(Pala, Byrye) + (F2(a, by (azs + 1)) 2 <<f(b)y1> (Pala, b)y1y2)>

a

3s9

=(f(a, )72 [ fa®yiy; + fyilams + b)* + (faws + fba1 +c)*] 2

(f*(a, D)yn) > [y + (az + b)z]_s% (£3(a. b)yiyz) ™

_3sg
:(a7 b)3s1yf1+252y§s1+52 [f2a2y2y§ + ny%(afL'Q + b)2 + (faxg + fbl‘l +C)2] 2
3s1

[a2y§ + (awg + b)2] Sz

(3) A short calculation gives



T(dh,e
I(sl,sz) (T(O,b,c,d,e) < ( ) 1> V(O,fb,c)z>

1 ﬁ -1 dh e
1
=l(s1,0) 1 1 ah Y(0,£b,c)%
1 1 1
—1 dh e 1 —1 1
1 t
=1(s,,50) 1 dh 1 i -1 —fo _f
1 1 1 -1 ~75
1 * —1 dh e —1 1
=I(s, 50) 1o« |1 o -1 —fb ¢
1 1 1 -1 ~75
1 -1 —dh —e 1
=I5 | | -1 -1 — —fo ez
~1 ~1 ~1 —%
1\ [dh e 1 Yiy2 Yira T3
:I(51752) -1 1 ) —fb _f Y1 x1
-1 @ L 1
1 R2fd%byrys  —h2fd*byixy  hd(e — hfdbxs)
=I5, 59 -1 f2hb?dy hfbd(fi)x1+c)
-1

In the last step the right invariance against the maximal compact subgroup Os
was used to kill the minus sign in the (1,1) entry. So it remains to apply the

explicit formula in Lemma [8.5] and simplify the terms. We have

T e
L(s1,50) (T(o,b,c,d,@ ( () 1) ’V(O,fbﬁ)z)
3s9

=(h2fd? |b| yry2)** T2 (f2Rb3dy1 )™ 5 [(f2hb2dyr)? + (hfbd(fbzy +¢))?]” 2

272 2
(W2 fd*byry2)? + <m> (hfbd(fbxy + c))?
(hfbd(fb.%'l +C))(—h2fd2by1$2) 2 73;1
+ <(hd(e — hfdbas)) — S > ]

_3s2
=yr T2t R ([ d]) PR (f [B])P2 (B (8] 1)) 72 [f200yE + (fban +¢)?] 2

3s1

[(h2 Fdbyry)® + WA d 3 (foy + ¢)? + (hd(e — hfdbas) + h2d>(fory + c)@)Q]
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_3sg
:yi1+2szygsl+sz [beZy% + (fb$1 + 6)2] 2

3s1

2 £2d20% 292 + h2d%2(fbwy + ¢)2 + (e — hfdbas + hd(fbay + c)xg)Q]

(4) This case is similarly to part (2). The proof is given through the calculation

-
L(s1,50) <7"(0,byc,0,i1) < O 1> W(O,fb,c)2>

Loy [ ! yiy2 iz w3
o (|1 o L T
1 —1 —75 1
—1 fbylyg —fbylxg —fb.’L'g
:I(sl,SQ) -1 f262y1 fb(fb$1 + C)
3s9

= (£20%1)" 7 (foyrye)™ 2 [(f26%y1)* + (FO(fbr1 + )% %

_ 32
Sy [22  (fba 4 )]

(5) Finally we handle the last case. We have

T e
I(sl,sg) << (d’ ) 1> 7(0,0,:‘:1)2>

1 % —1 d e +1 Y1Yy2 Yixr2 I3
([ 1) [ ; | P
1 1 1 +1 1
-1 y1yed yi(e £ xod) dxs £ ex;
=l(s1,52) 1 v +7
1 1

Similarly to part (3) we used the right invariance against the maximal compact
subgroup Os to ensure that all diagonal entries are positive. We have

T e
I(81782) << (de) 1) 7(0,07i1)2>
3s1

= () (2" [ramd)? + (e £ o)) 7

:yf1+232y§51+52 [deg + (xgdie)ﬂ_ 2
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Power series






CHAPTER 9

Power series for unramified primes

In this section we will take a closer look at certain families of power series in two indepen-
dent variables, which will occur in the unramified parts of the Fourier coefficients in the
Eisenstein series. We will introduce these power series in a generality such that we can
handle both the twisted and the minimal Eisenstein series together through substituting
certain number theoretic functions into the two independent variables. It turns out that
the power series associated to the degenerate Fourier coefficients can be easily calculated
and the ones occuring in the non degenerate Fourier coefficients are even rational polyno-
mials, which conform to a certain transformation rule. This transformation rule, which is
of purely combinatorial nature, can be viewed as the combinatorial part of the functional
equation of the Eisenstein series. The terminology and notation, which are used through
the whole chapter is introduced in the following definition.

DEFINITION 9.1. Let p be a prime number. Let (A,), .y, C C[X,Y] be a sequence of
polynomials in the two variables X, Y, which has the initial value Ag = 1 and fulfills the
recursion

An+2 = AlAnJrl —YA, VYneN.

Associated to the prime p and the sequence (A,),.y are the family of power series
(Fp(a,ﬁ))(a B)eNox ({03uptio) C C(X,Y) and the two degree three polynomials Sy, T}, de-

fined by

(1)
Fy(a, ) = ZX” Z Cpn—t (B)Cph (p™) Apya_okY"

n>0 0<k<n
2k<a+n

(2)
Sp=1-A4X+YX?,

(3)
T,:=1-pA X +pYX?,

where ¢4(h) denotes the Ramanujan sum.

Our main results in this chapter are formulas for the power series Fj,(c, ), distinguishing
whether § vanishes or not, which are of a more explicit nature than the definition. In

75
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order to reach this goal we first state two technical lemmata.

LEMMA 9.2. For any nonnegative integers o, 3 the identity

A1+ Z X" [An-i-a—i-lcp" <p5> - An+a—lcpn—1 (pﬁ) Y] = Sp Zﬁ: Aot 14" X"

n>1 n=0

holds.

PRrROOF. The proof is given through induction over .

(1) Basis: 8 =0.
We use the properties of the Ramanujan sums summarized in Lemma [18.3] in
Appendix A. We have

Agy1 + Z X" [An+a+lcp” (pO) - An—i—a—lcpn*l (pO) Y]

n>1
=Aas1 + X [A1par1(—1) = Arya1Y] + X2 [0 — Agyq1(—1)Y]
=Aat1 — X A1 Ao + A1 Y X?

0
=5p Z Aat14ap" X" .

n=0

In the second last equation the recursion formula for the sequence A,, was used.

(2) Induction step:

Agt+1 + ZX" [An+a+1cpn (pﬁH) — Apta—1Cpn—1 (p'BH) Y}

n>1

=Aat+1  + ZXnAn-I—a-i-lcp" <p’6+1) - ZXnAn-ﬁ-a—lcp"*l (pml) Y

n>2 n>3
+ x! |:A1+Oé+1cp1 (pﬁH) — A1 pa-10p1 (pﬁﬂ) Y} — X?Agia-10p21 (p’BH) Y

=Aq+1 + Z X" Apyatr1pcyn—1 (pﬁ) — Z X" Apta—1pcyn—2 (pﬁ) Y
n>2 n>3

+ X [Aago(p—1) — AY] — (p— 1)Aa 1 XY .

The reduction property of the Ramanujan sum in Lemma m part (4) was
applied in the last equation. Make the index shift n — n — 1 in each sum and
add suitable terms to extract the power series in the induction hypothesis. We
have



e

Agt1 + Z X" |:An+a+lcp” (pﬁ-H) - An—&-a—lcpnfl (pﬁ—i_l) Yi|

n>1
=Aay1 + Z X" A agopepn (p6> - Z X" Ay apeyn- (278) Y
n>1 n>2

+ X [Agi2(p—1) = AY] — (p— 1) Aq1 XY

=pX A1 + Y X" [An+(a+1)+10p" (PB> — Ant(a+1)-16pn-1 (p'g) Y}
n>1

+ pAai1X?Y = pAaiaX + Aay1 + X [Aaga(p— 1) — AY] = (p— 1) A0 X?Y .

Now apply the induction hypothesis for the sum and the recursion for the sequence
A,, for the additional terms. Finally the proof is completed by the calculation

Ant1 + Z X" |:An+a+lcp" (pB—H) - AnJrafle"*l (pﬁ+1> Y:|

n>1
8
=pX Sy Z Aot 1) 414D " X" + Aat15)p

n=0
B+1
=5 > Aar1anp" X"

n=0

LEMMA 9.3. For any nonnegative integer o the identity

Aa-l—l + Z X [An—&-a—l—l(b (pn) - An—l—oz—lq5 (pnil) Y} =2 (Aoc—H - pAaXY)

n>1

holds, where ¢ denotes Euler’s ¢-function.

PRrROOF. Similarly as in the proof of the previous lemma we calculate directly. We
have

Tp Aa—l—l + Z X" [An+a+1¢ (pn) - An+a—1¢ (pn—l) Y]

n>1

:TpAaJrl + Z X" [An+a+1¢ (pn) - An+a71¢ (pn—l) Y]

n>1

- Z Xn+1 [AlAn+a+1p¢ (pn> - AlAn+a—1p¢ (pn—l) Y}

n>1
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+ Z xnt2 [An+a+1p2¢ (pn) Y — An+a71p2¢ <pn—1) Y2]

n>1
=(1 - pA1X + p*Y X*)Aay1 + X [Aat20 () — AaY] + X? [Aas3¢ (p°) — Aat16 () Y]
— X? [A1Aat2pd (p) — A1AapY]

X (a6 () = ArAneapd (0" 1) + Avsacips (0" ) )

n>3

-Y (An+a—1¢ (pnil) - AlAn+a—2p¢ (pn72) + An+o¢—3p2¢ (pnig) Y) } :

Using the recursion formula for the sequence A,, implies that the sum vanishes up to the
last summand for n = 3. So finally we get the formula

Ty | Ao + Z X" [Antas10 (0") — Apsa—19 (p" ) Y]

n>1

:Aa—i-l -X (pYAa + AlAa+1) + X2Y (Aa+1 + pAlAa) - pAaY2X3
=S, (Aay1 — pAXY) .

O

Now we can state an explicit formula for the polynomials [}, in the case 3 is non-zero.
This formula does not include complicated obstructions like the inner sum in the original
definition of F},.

LEMMA 9.4. The explicit formula

B«

Fp (a7p6> = Sp Z Zpk+lAa+k—le+lYl s
k=0 1=0

for the polynomials F, holds.

PRrROOF. The proof is given through double induction over « and .

(1) Basis: a=0.
We start calculating the base case. We have

Fp (07p0) = Z X" Z cp"*]’c (pO)Cpk (pO)AnJrOkaYk
n>0 0<k<n
2k<0+n

=Ao + Arey (0°) cpo (0°) X + Aocy () ¢ (°) Y X
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:Sp
0 O

=5, Z ZPHZAOM#XHZW .
k=0 1=0

Next we continue with the calculation for prime powers greater than 1, so let 8
be a nonnegative integer. The identity

Fy (0,195“) =D X" > e (07T (0°) Apgo—ak Y

n>0 0<k<n
2k<0+n
=Ap + Aicp (pBJrl) X+ Z X |:Cpn (pB‘H) Ap + cpn (pB‘H) cp(pO)An,gY]

n>2

holds. Use the reduction property of the Ramanujan sums to transform the above
sum into

F, (0, pﬁ+1> =1+ Asc, (pﬁ“) X ¢ (;ﬁ“) AY X2+ 3" X" peyns <pﬁ) A,

n>2
— ZanCpn72 (p/3> An oY .
n>3

Then make the index shift n — n + 1 in both sums to transform the above term
into

Fy (0,p5+1> =1+ Aip- DX —(p— Y X+ > X" peyn (pﬂ) Ans1

n>1
— Z X”Hpcpn_l (pﬁ) Ap 1Y
n>2

=1- A X —(p— 1Y X%+ ey <p5) AopY X2

+pX [A1+ Z X" [Cp" (P’B> Apy1 — cpn (PB) Anfly}

n>1

Finally Lemma [9.2] gives us the result

8
By (0.971) =5, +pX S, > Agyrnp" X"
n=0
B+1 0
:Sp Z Zpk+lA0+k—le+lYl )
k=0 1=0
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(2) Induction step:

The proof is given through a straightforward calculation. First use the reduction
property of the Ramanujan sums. We have the identity

Fy (a + 1apﬂ> = Z X" Z Cpn—F (pﬁ) e (P°7) App a2 Y "

n>0 0<k<n
2k<(a+1)+n
= Z X" Z Cpn—1)—(k=1) (pﬁ> pepe-1 (0%) Apn—1)ra—20e—1) Y"1V
n>0 2-1<k—1<n—1

2(k—1)<oa+(n—1)
+ Z X" Z Cpn—Fk (pﬁ) Cpk (po‘H) Apyari_anY".

n>0 0<k<min(1,n)
2k<a+n+1

In the first sum make the index shifts n —+ n + 1 and £k — k + 1 and add the
missing term for £ = 0 to obtain F), (a, P ) This transforms the above sum into

F, (oz + 1,p5) =pXY g X" g Cpn—k (pﬁ) cpr (P%) Apyoa_oYF
n>1 1<k<n
2k<a+n

+ Z X" Z Cpn—k (p'3> Cpk (pO‘H) Aptar1_onY"

n>0 0<k<min(1,n)
2k<a+n+1

=pXYF, (a,p6> —pXY Z X"epn (pﬂ) Anta
n>0

+ Z X" Z Cpn—k (p'g) Cpk (po‘+1) Apyari—anY".

n>0 0<k<min(1,n)
2k<a+n+1

Next shift the index n — n + 1 in the first sum and evaluate the inner sum in
the second sum. We have

E, <a + 1,pﬁ> =pXYF, (a,pﬁ) — ZanCpn—l (p6> ApraY

n>1

+ Aat1 + Z X" [Cp" (Pﬁ) Antat+1 + Cpn—1 (pﬁ) (p— 1)An+a—1Y}
n>1

=pXYF, (a,pﬁ) + Agt1 + ZX” [An+a+1cpn (pﬁ) — Apta—1Cpn—1 (pﬂ> Y} :

n>1

Now apply the induction hypothesis and Lemma [9.2] This gives us
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B« B
F, (a +1, pﬁ) =pXY S, > > A XY 48, T An " X
k=0 1=0 n=0
B

:sz

k=0

A(a+1)+kpk+0Xk+0Yo T Zpk+(l+1)A(a+1)+k7(l+1)Xk+(l+l)YlJrl
1=0

Finally make the index shift [ — [ + 1 in the inner sum and get the requested
result. We have the identity

B8 a+l

Fp (04 + 17296) =S Y Y P Ay XY
k=0 =0

An important transformation law for the polynomials F}, can now easily derived.

LEMMA 9.5. The transformation law

(FP (;;pﬁ)> (p_2X_1Y_1, Y) _ p—a—ﬁX—a—BY—ﬁ <Fp (g;pa)> (X,Y)

for the polynomials F}, holds.

PROOF. Use the formula in Lemma [0.4] and calculate directly

The index shifts 8 — k — k and o — [ — « gives the result

(M) (p2X 'y 1Y)

Sp
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a B
— p—a—ﬁX—a—ﬂy—ﬂ Z Zpk+lAﬁ+l—ka+lYk
=0 k=0

:pfafﬁXfa*5Y*5 (Fp (vaa)> (ij) .
SP

O

At the end of this chapter an explicit formula for the polynomials F}, in the case that j3
vanishes is given.

LEMMA 9.6. The explicit formula

for the polynomials F}, holds.

PROOF. Again the proof is given through induction over .
(1) Basis: o = 0.

We do a straightforward calculation

F0,00=7,3x" Y ¢ <p"—k) e (0°) Anso ok Y*
n>0 0<k<n
2k<0+n

=Tp |1+ (p—DAX + D X" [¢(p") An— ¢ (") Ap_2Y]

n>2

Make an index shift n — n—1 and use the reduction property of Euler’s ¢-function
to transform the above terms into

TPFP (Oa 0) :TP I+ (p - 1)A1X + Z Xn+1 [¢ (pn+1) An+1 - (]5 (pn) Anfly]

n>1

=pXT, | A+ X" [6(0") Ans1 = & (p" ") AnrY]

n>1

+T, (1 — A1 X +pX?Y — ¢ (p) X?Y) .

To get the result apply Lemma to the above sum. We have

T,F, (0,0) = pXS, (A1 — pXY) + 1,5, = SpAo .
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(2) Induction step:

The proof is given through a straightforward calculation. First use the reduction
property of the Ramanujan sums. We have the identity

T,F,(a+1,00=T,3 X" Y ¢ <p”—’f) e (D7) Apstagt)—an Y

n>0 0<k<n
2k<(a+1)+n
=1p Z X" Z ¢ (p(n_l)_(k_l)) Pyt (P%) Apn1)ra—a(e—1) Y ¥ Y
n>0 2—1<k—1<n-—1

2(k—1)<a+(n—1)

+ 1, Z X" Z o) (Pnik) cpr (p*T1) Apyati—aY" .
n>0 0<k<min(1,n)
2k<a+n+1

In the first sum make the index shifts n — n+ 1 and & — k£ + 1 and add the
missing term for £ = 0 to obtain F), («,0). We have

TyF, (a+1,0)=pXYT, S X" 3 ¢ (pn_k) e (0) AnyaonY*
n>1 1<k<n
2k<a+n

+T,Y X" Y ¢ (pn_k) e (0°) AngarionY"

n>0 0<k<min(1,n)
2k<a+n+1

=pXYT,Fp(2,0) = pXYT, > X" (p") Anta

n>0

+ TP Aa-i—l + Z Xn [(;5 (pn) An+a+1 + ¢ (pn—l) (p - 1)An+a—1y]

n>1

=pXYTpFp (0, 0) + Tp | Aatr + Z X" [Antar10 (p") — Apta-19 (pn_l) Y]

n>1

The induction hypothesis in conjunction with Lemma [9.3| applied to the second
series gives the result

TpFp (a+1,0) = pXY SpAq + Sp (Aay1 — PALXY) = SpAatt -






CHAPTER 10

Power series for ramified primes

In this section we analyze the power series, which will occur in the ramified parts of
the Fourier coefficients in the Eisenstein series. It will turn out that these power series
are closely related to the power series associated to the unramified primes. Analogously
to the explicit calculation of Fj,(a, §) we will calculate some of these power series in the
“degenerate” case explicitly. We adopt the terminology and notation from the last chapter.

DEFINITION 10.1. Associated to the prime p and the sequence (Ay,),en are the families of
power series (G (@, 8))(a,8) (Hp (@, 8))(a,8) C C(X,Y) defined by

Gp(aa B) = Z X" Z Cpn—k (5)Cpk+1 (pa)AnJrozkalek )

n>0 0<k<n
2k+1<a+n
Hy(o, 8) 1= X" Aqincpn(B) |
n>0

with (a, 8) € Ng x ({0} U p"0).

The calculation of these power series shows that they are expressible as a sum consisting of
the power series F}, and a rest term of a quite elementary form. Since the power series G,
also occurs in the minimal Eisenstein series, we will present this technique by calculating
G)p in the case of a vanishing 3. The other power series occuring in the Eisenstein series
twisted by a Maass cusp form can be handled similarly.

LEMMA 10.2. With the convention A_y := 0 the explicit formulas for the power series G,
and H, given by

(1)
_ 2
H, (a,0) Aq — (Aag1 + pAa1Y) X +pAY X ,

(2)

hold.

Proor. The proof is given by reduction of G, to F}, and applying the explicit formula
in Lemma
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(1) We begin with the calculation of H,. Combining the reduction formula for Ra-

manujan sums and the recursion for the sequence A, will give the proof. We
have

T,H, (2,0) = (1 - pA1 X + p°YX?) Y " X"¢ (p") Anya

n>0
1
—ZX”(]S Anta _pAlXZXn¢ (P") Anta +p2YX2Aa
n=0
+ Z Xn Apya — P9 ( " 1) A1Anta—1+ p2¢ (pn_2) AnJrafZY]

n>3
= (Ao + X (p) Aay1 + X?¢ () Aas2) — (PA14aX +p¢ (p) A1Aa1 X?) + PPY XP A,
=Aq — (Aas1 +PAa 1Y) X +pAY X? .

(2) Next we continue with the calculation of G),. For a = 0 evaluate G, directly
using the recursion formula for the sequence A,. The identiy

T,Gp(0,0) =T, > X" > cpur(0)cpest (p°) Apso—ap—1Y™*

n>0 0<k<n
2k+1<0+n
— (1 =pAiX +p’YX?) > X" (p") An

n>1
— (X (p) Ay + X?¢ (p°) A1) + pA1 X (X¢ (p) Ao)
= X" [¢(p") A1 —pd (P") A1An_2 + 9% (p"%) An_sY]
n>3
=—(r-1X
=(p—1) (A1 — X Ap)

holds. For o > 0 use the reduction property of the Ramanujan sums to trace
back the polynomials G, to the polynomials F}, and H,,. This gives us

T,Gpla+1,0)=T,) X" > cpn—r (0) ot (P°T) A (ar)—26-1 Y™
n>0 0<k<n
2k+1<(a+1)+n

Split the inner sum into two sums according to whether k vanishes or not, then ap-
ply the reduction formula for Ramanujan sums and the recursion for the sequence
A,,. After that use Lemma to evaluate F, and part (1) for the evaluation of

H,. We have
T,Gp(a+1,0) =pT,, Z X" Z cpn—k(0)cpr (p%) Anta 2wY" + (p Z X"cpn (0) Anta
n>0 0<k<n n>0

2k<a+n



=pTpFp (,0) = pT, > X "¢ (p") Anta+ (p— DT Y X6 (0") Anta

n>0 n>0
=pSpAa — (Ao — (Aag1 + PAa—1Y) X 4+ pAY X7?)
=(p—1) (Aa — A1 X) .
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Part V

Fourier expansion and functional
equation for the Eisenstein series twisted
by a constant Maass form






CHAPTER 11

Fourier expansion of the Eisenstein series E(z,s, f, P»1)

In this chapter the Fourier expansion of the Eisenstein series E(z, s, f, P21) is calculated.
As a preparation we evaluate the Dirichlet series which occur in the Fourier coefficients of
the Eisenstein series E(z,s, f, Pa1).

DEFINITION 11.1. Let N be a squarefree integer, f a positive divisor of N and m an
integer. Define the Dirichlet series A,,(s, f, P»,1) associated to these parameters by

shP)=Ya" 3 (mt> R

a>1 0<t<a 0<g< fa
(%,a,t) =1 (f(a,t),q)=1

The next step is to evaluate these Dirichlet series.

LEMMA 11.2. Let N be a squarefree integer, f a positive divisor of N and m a non-zero
integer. The following explicit formulas for the Dirichlet series A (s, f,P2;1) are valid.

(1) For a non-zero index of the above Dirichlet series we have

(s foPea) = [J0 = 1) [T = p')oas(Im) Ly (5) ",

plf p\%

(2) For a vanishing index of the above Dirichlet series we have

Ao(s, £ Pon) = [0 = D) T (1 = p" %) Ly (5) (s = 2) -

plf p\%

PROOF. We handle part (1) and (2) together and assume for the present that m is an
arbitrary integer. The first step is to evaluate the inner sum. In order to do this split the
summation over ¢ = f(a,t)k + 1 with 0 < k < ﬁ and 0 <[ < f(a,t). We have

SHP)=Ya" 3 <mt) DR

a>1 0<t<a 0<k< 2% )

(— at) 1 @O Flat) D=1

Fil
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Y 3 e(ml) et

a>1 0<t<a

N
(f,at) 1

In the second step split ¢t = t1t with ¢; | @ and (%, t2) = 1. Note that the ged-conditions
transforms as (a,t) =t; and 1 = (%,a,t@) = (%,tl). This gives us

s, f, P21) Za Z Z ( ) o(ft1) Za 5 Z C%(m)%gb(ftl) .

a>1 tl\a 0<t2<f a>1 t1|a

(50)=1 () =1 (50)=1

o0
In the third step split the summation over a = ajagas with aq | (%) ,ag | f°,

(a3, N) =1 and do the same for the summation over ¢;. We have

— —5 ai1agas
m(s, [, Pan) = Y w(amzag) > Cataam (m) = 2S0(fhitats)
a1|(ﬁ) t1|a1
a2|§°° §2|a2
(a3,N)=1 3las

( 7 ,t1t2t3)—1

o0
In the fourth step note that 1 = (f ,t1t2t3> = (%,tl) and t1 | (%) implies t; = 1.

Then use the multiplicativity of the Ramanujan sums to factorize the Dirichlet series. We
have

m(8, f, Pa1) = Z a%iscm (m) Z agy Z C“2 o(ft2)
al\(%)‘” as|f>*  talas
> gty ea(m)Polts)

(ag,N):l t3|a3

In the fifth step factorize the second and third Dirichlet series, which are both convolutions
of two Dirichlet series. We have

Ap (s, f,Pap) = Z ca(m)alfs Z ca(m)alf‘s Z o(fa)a™?

al (%)™ alfe alfee
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> ca(m)als) > bla)a?
(a,N)=1 (a,N)=1

= an@n)a”) (Z s(fa)a | | Y o(a)a™
a1 alfo° (a,N)=1

_ e (m)al=* p—1 Lyy(s—1)

= [ 2 elm) )(flpls w)

LXN(S_l)
= — S atScq(m
! Col i el PO

For the evaluation of the second Dirichlet sum Lemma part (2) was used and for the
third one Lemma part (4). In the evaluation of the last Dirichlet series one has to
distinguish between the cases m vanishes or not. In the case m # 0 use Lemma part
(2). So in this case we finally get the claimed formula

A5, £ Po) =[]0~ Dy (5 = Dl ()7 ooy (mi) (s = )7

plf
=TI - =p"*)os(m)Lyy(s) "
plf p|%

In the case m = 0 use Lemma part (4). Again we get the claimed formula

ot e g SE=D =)
Ao(s, f, Pa1) _g(p 1)Lx%( DLy (s) C(s—1)
=[Ie-D ][0 =) Lyy(s)7 (s = 2) .
plf pl ¥

0

So now the main result of this chapter, the Fourier expansion of the Eisenstein series
E(z,s,f,P21), can be stated. In the case of the lattice SL3(Z) this result was first
established in [6].

THEOREM 11.3. Let N be a positive squarefree integer and f a positive divisor of N. The
Fisenstein series G (2, s, f, P2,1) satisfies the explicit Fourier expansion
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G(Z787f7P2,1) = Z GO,mQ (Z757f7P2,1) Z Z Z Gml,mg << 1) Z757f7P2,1) .

mo=0 ’Yerzn\GLQ(Z m1 1m2=0

Let myi,mo be positive integers and let my = [[p®® be the prime decomposition of m;.

P
Then the Fourier coefficients satisfy the explicit formulas

(1)
Gml,m2 (Zv S;f) PQ,l) =0 )
(2)
B 5 53 1 1— p(173s)(ap+1) -p +p1+(173s)ap p173s -1
G0 (25, f, Po1) _4y1 ny Tl 11 p(=39)(ap+1) _ L =)o) — 1
p |i
1-3s (Ima]) Ksso1 (27 [ma|y1) e (miz1)
(3)
g 1- _ 3s_
Goms (2,8, 1, Pan) =4y1 gy 2 f 2 [J0— 1) [] (1 = p'7%) 02-s5(Imal) Imal 2
plf p\%
Kss_y (21 [ma|y2) e (maxa)
(4)
1-3s
o 1-38 1 Y223 D— 1-p 3s
Goo (2,8, f, Po1) =21 2y "y °f SH 25 H 1 —p2—35r <2 ; 1) L (35 =2)
plf p|ﬂ
1-8s 1_ p—1 3s—1
+om 2yl [ 2 p= ( 5 >LXN(33—1)
plf

. 3s
+ 20 N7 yPysT <2> Lyy(3s) .

PROOF. Since the unipotent part of z can be absorbed into the integration, one can
Y1Yy2
assume without loss of generality that z = Y1 € h3. We start the calculation
1
of the Fourier coefficients by dividing the summation in the Eisenstein series into several
cases according to the Bruhat decomposition in Definition [3.8] Assume for the present
that mq, mg are arbitrary integers, then we have

T3

2
Gml,mg(zv'S)faPZ,l):/ / / G 1 x| 28, f, Py | e(—miz1 — mozo)dedrades
o Jo 1
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223: D w—?r(?;)LXN(?)s)

=1 ~ely(f,1,P2,1)

1 zo x3
/ / / I(s7—2$) Y 1 T Z,ngl 6(—m1x1—m2x2)d$1d$2dl’3
0 0 0 1

3
Z%m

Using the explicit description of the sets I';(f, 1, P>1) in Lemma and the explicit for-

mula for the values of the I(; o (*, P2 1)-function on these sets in Lemma we start to
calculate each of the three summands above.

1) We start with the most difficult part the calculation of G%) mo- We have
( ) p 1,m2

Gﬁ,ﬂvmz(z,S)—f?F( > w®B)> > >

a0 bEZ e
N (ah))=1 Fafbe)=1

/// y1y2 f2a29192 f2 (ax2+b)2+(faa;3+fbx1+c)2]_37s

—mi1xr1 — m2x2>dx1d$2d1‘3

In the first step pass to the condition a > 1 extracting a factor 2. After that split
the summation over c¢ in this way ¢ = fak +r with k € Z, 0 < r < fa. Note
that the ged-condition transforms as follows 1 = (fa, fb,c) = (fa, fb, fak+7r) =
(fa, fb,r). This gives us

G o (2,8) = 207 (yy)°T <?;> LinBs)) > > >,

a>1 beZ k€Z 0<r<fa
(%,(a,b)):l (fa,fb,r)=1

3s

/ / / [f2a®yiys + fPyilams + b)* + (fales + k) + foar +71)%] 2

—Mmi1xr1 — m2$2)d$1dx2da}3

In the second step pass to an infinite integral in the variable z3 by the shift
x3 — x3 + k. Then substitute z3 — z3 + % in the infinite integral in the
variable 3. We have

G oy (28) = 207 % (y3y2) T (?’;> L 35)Y Y 3

a>1 beZ 0<r<fa
(% (ab))=1 (Fafbr)=1
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1 1 3s
/ / / [fzaQy%y% + ny (azq + b) + f2a? xg] 2 e(—mix1 — maoxe)dridaedrs .
oo J0 0

After that split the summation over b in this way b = ak + t with k € Z,
0 <t < a. Note that the two ged-conditions transform as follows 1 = (fa, fb,r) =

(fa, f(ka+t),r) = (fa, ft,r)and 1 = (%, (a,b)) = <%, (a,ka —|—t)) = (%, (a,t)).

This gives us

G%LMWS)_%T%(ﬁwff(ivl&NQQEZEZ S 3

a>1keZ 0<t<a 0<r<fa
(X (@) =1 Uaftr)=1

[ee) 1 1 _ 3s
/ / / [f2a2y%y% + f2y%(a($2 +k)+ t)2 + f2a2x§] 2 e(—myx1 — moxg)dridrades .
—oco JO JO
In the fourth step pass to an infinite integral in the variable xo through the shift

T9 — 29 + k. Then substitute z9 — 9 + ﬁ in the infinite integral in the variable
29 and pick up an exponential e (mgé) We have

s s 3 t
G%LmQ(z,s) —or— % (y%m) r (;) Ly (3s) Z Z e <m2a> Z / —myx1)day

a>1l 0<t<a 0<r<fa

(ﬂ (a t)):l (fa ft T

2 2 2 2 2 -5
f a*yiys + fra’yizs + f2a $3] e(—moxg)dradrs .

Now evaluate the exponential integral in the variable 1 and pull out the factor
f?a? in the infinite double integral. This gives the identity

_3s . 3¢ s 3s
G%z,mz (27 S) :2607771177- 2 f s (y%yQ) r <2> LXN (3S)Am2 (337 f7 P2,1)

e’} 0 3s
/ / [yiy3 + yizd + 23] 2 e(—mows)dwades .
—00 J —00

Use Lemma [[1.2] to evaluate the Dirichlet series and Lemma [19.3] for the evalua-
tion of the double integral. For ms # 0 the formula

_3s . s s 38
GW) o (2,8) =200, 2 f73 (yyo)°T <2> Ly (35)

[T -D]] (1 -p") oassllma) Ly, (3s)

N
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s 1-2(%) 1-3 35\
2m 2y, yp * lmo|FIT 5 | K, @rlme|y)

e 1-2 _ 3s
= 40yl LT[0 = D [T (1= ") oosallmal) lmal ™" Ks y (2 [ma] )

plf p|¥

is valid. For mg = 0 the formula

_3s . 3¢ s S
ngio( 8) =200mm 2 f 3 (y%yg) F<2> Lyy(35)

plf p|¥
S S 3* —
) G )
3
r(3)
s p— 1 _pl—35 3s
=200m, 2y Yy B 381‘[ = H =l Lyy (35 —2)
plf pl%
is valid.

(2) We proceed with the calculation of G@,mg. Since many steps are similar to those
in the calculation before we will take an abbreviation here. We have

_3s 3s
Gggzrm(z,s) =r 2F<2> v (39) Z Z

b#0 c€Z
()10

1,1 p1 s
/ / / (y%yg)s [fszyf + (fbz1 + c)z] 2 e(—myxy — moxe)dridaaders .
o Jo Jo

Again pass to the condition b > 1 extracting a factor 2. After that split the
summation over c in this way ¢ = fbk 4+ r with k € Z, 0 < r < fb and note that
the ged-condition transforms as follows 1 = (fb,c) = (fb, fbk+7r) = (fb,r). This
gives us

Ggsz,mz(zﬁg) :2(3/%3/2) %F <3 > XN 38 Z Z Z

b>1  kez 0<r<fb
NY_ b,r)=1
(b’T)*l (fo,r)

_3s
/ / / f2l)2y1 + (fb(z1 + k) + 7“)2] 2 e(—myxy — moxs)dridaades .
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Pass to an infinite integral in the variable x; through the shift 1 — x1 + k. Then
substitute x1 — x1 + ﬁ in the infinite integral in the variable x1 and pick up an

exponential e (ml ﬁ) This gives the identity

Gl ma (#:5) 2(9?1/2)5”_%(32) w2 2 ( )

b>1 0<r<fb

(, ) 1 (for)=
1 1 o] _3s
/ / / [f2b2y% + f262:17%] 2 e(—myx1 — moxs)dridaadrs
0 0 —00
3s

=2 (y%y2)sﬂi%r <2> Ly (3s)f% Z b~ ¥ cpp(my / dx3/ —maoz)dry

b>1

(0:5)

o0 _3s
/ [y% + x%] 2 e(—myxy)dey .

—0o0

Evaluate the integrals in the variables xo and x3 and use the multiplicativity of
the Ramanujan sums to split the Dirichlet series. We have

— 38 S — —aS
Ggi mQ( 2, 8) =200,m, (y%yg)sﬂ 5T < > s)f~ 3 Z b3 cp(ma) Z b3 cep(ma)
b>1 bl fo°
(b,N)=1

o0 _3s
/ [y% + x%] 2 e(—myxy)dey .

—0o0

First assume m; # 0 with prime factor decomposition m; = [[ p*. Use Lemma

p
18.4] part (2) to evaluate the first Dirichlet series, Lemma [18.5 part (1) for the
second one and use Lemma [19.3] part (3) for the evaluation of the integral. The
formula

G%z,mg (27 S)

s _3s 3s _3s
:250,m2 (y%yz) n 2I <2> LXN(38)f 3 01-3s ) XN 38
I‘

-1
> K ;(27T!m1|y1)>

1_3s
I1 ((p — o135 (p™) —p1+(1_38)°“’> (27r 7 | Ty

plf
3s—1
2 H ((p —1Do1_35 (p*?) — p1+(1_35)%)
plf

s+1 _
=400,myY1° Y3
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01-3s p*? K% (27 ma| y1)
(p,N)=1
B 1 — p(1=3s)(ap+1) _ 1+(1-3s)ap 1-3s _q
—450m2f91 y2f Bs‘mﬂs?lH . 1-3 L ;
p( —3s)(ap+1) _ 1 e p(l_ss)(ap+1) —1
plf plF

1-3s ([m1) Kssr (27 [ma]y1)

is valid. Next assume m; = 0. Use Lemma part (4) to evaluate the first
Dirichlet series, Lemma part (2) for the second one and use Lemma [19.3]
part (4) for the evaluation of the integral. The formula

Gy (2,5) =200, (y1y2) 73T (328> L (@) <W>
(3T (-1
T (ﬁyi ()(u)))

p—
=200.mm 2 Y1 3SH i < 5 >L><N(38—1)
plf

is valid.

(3) It remains to do the easiest part namely the calculation of Gﬁf{{m(z, s). Again

Lemma gives the description of the set I's(f,1, P> 1), which consists of two
diagonal matrices at most. Use Lemma[8.2] to calculate the corresponding values

of the I(; o4 (*, P2 1)-function directly. We have

3s 1 1 Tro I3
Gﬁ;”;{m(z s) = 5fN7T_2F( > v (35) / / / [ 5,—25) 1 1 x|z P
1 1
-1 1 z9 x3
+ I(s,—Zs) 1 1 x|z P271 6(—?7111'1 — m2$2)dx1dx2dx3
-1 1
/38 Lo yiye iz as\ ) Yiys Y1T2 T3
:5f’N7T77F <2> LXN(?’S)/ / / det Y1 1 H eg: U1 € H73s
o Jo Jo 1 1
—Y1y2 —Y1r2 —I3 ° —Y1y2 —Y1x2 —I3
+ det 1 1 I 63T 1 1 H_?’S e(—mix1 — maoxo)drydredrs
-1 —1

_3s 3s
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So it remains to collect the results in the three calculations to complete the proof. (Il



CHAPTER 12

Fourier expansion of the Eisenstein series E(z,s, f, P 2)

In this chapter the same work as in the previous chapter is done for the Eisenstein series
E(z,s, f,P12). Again we start with the definition and calculation of a Dirichlet series
which occurs in the Fourier coefficients of the Eisenstein series E(z, s, f, P 2).

DEFINITION 12.1. Let N be a squarefree integer, f a positive divisor of N and m an
integer. Define the Dirichlet series A, (s, f, P12) associated to these parameters by

An(s. fP2) = Y ot Y <mft) Yol

a>1 0<t<fa 0<¢g<fa
(a7ﬂ):1 ((favt)>q):1

Again the next step is to evaluate this Dirichlet series.

LEMMA 12.2. Let N be a squarefree integer, f a positive divisor of N and m = [[p*®

P
a non-zero integer with corresponding prime factor decomposition. The following explicit
formulas for the Dirichlet series Ay (s, f, P12) are valid.

(1) For a non-zero index of the above defined Dirichlet series we have

Am(sa fv PLQ) = H ((p2 - 1)02—8 (pap> - p2+(2*8)04p> 02—s H pap LXN(S)i1 .

plf (p,N)=1

(2) For a vanishing index of the above Dirichlet series we have

AQ(S, f, PLQ) = H (p2 — 1) —_—
plf

PRrROOF. We proceed similarly as in the proof of Lemma and handle both parts
together, so assume for the present that m is an arbitrary integer. Again the first step is
to evaluate the inner sum, so split the summation over ¢ = (fa,t)k+1 with 0 < k < (fj;—at)
and 0 <[ < (fa,t). This gives us

AnlsifPa) = 5 0 3 e () L asan).

a>1 0<t<fa

101



102 12. FOURIER EXPANSION OF THE EISENSTEIN SERIES E(Z, S, F, P1,2)

Again the second step is to split the summation over t = t1t5 with ¢1 | fa and <{—f, t2> =1.
We have

An(s, f,Pro)= Y a®) > 6(7712) ]:Gf’(tl): > a_scha(m)%ﬂtf

a>1 t1|fa 0<to< f;l t1

(a, ):1 <t2 {f) ) (a,%):l

=z

So the next step is to split the summation over a = ajas with a; | f*°, (a2, N) = 1 and
do the same for the summation over ¢. Then factorize the Dirichlet series and also the
convolutions of Dirichlet series occuring in the following calculation. This gives us the
identity

Ap(s, £, Pro) = Y (a102)™° D oy ap(m fallazﬁb(htz)

ar|f>° t1|fa ot
(ag,N):l tz‘(l2
“(Z e eamn | | X e emon
alf> t|fa (a,N)=1 tla
— ZQ_SZC%(m)%QB(t) Z al™%ca(m) Z a *¢(a)
al fo° t|fa (a,N)=1 (a,N)=1
=Y a c%(m)%gb(t) > a'eq(m) Lxlf(s(;)”
oo _ XN
alf tlfa (a,N)=1

For the calculation of the third Dirichlet series Lemma [18.4] part (4) was used.
First assume m # 0 and use Lemma [18.7) part (1) for the calculation of the first Dirichlet
series and Lemma part (2) for the second one. The formula

—S)a a _ L s—1
An(s,fPr2) =1 (07 = Doos 00 =99 Yooy | T 9% | L =) LN(<>)
plf (p,N)=1 XN

=11 ((p2 — 1)oa—s (p°?) — p2+(2‘5)“”) oas | I 2% | Law(9)!

plf (p,N)=1

is valid. So finally assume m = 0 and use Lemma part (2) for the calculation of the
first Dirichlet series and Lemma [I8.4] part (4) for the second one. The formula
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2 - L S — — L S —
Aols, £, Pi2) = ll_I 1p— p215 Xlz(( (s 1)1) i ?/V( (5)1) - H (p2 - 1)
plf XN XN

is valid.

With these preparations we can proof the explicit Fourier expansion for the Eisenstein
series E(z, s, f, P12) analogously to Theorem m

THEOREM 12.3. Let N be a positive squarefree integer and f a positive divisor of N. The
FEisenstein series G (z, s, f, P12) satisfies the explicit Fourier expansion

G(Z787fa Pl,Q) = Z GO,mz (Z757f7P1,2)+ Z Z Z Gml,mg <<’Y 1) Z757f7P1,2) .

mo=0 ’YEPmin\GLQ(Z) m1=1m2=0

Let my,ma be a positive integer with corresponding prime decomposition my = [[p®r.
p
Then the Fourier coefficients satisfy the explicit formulas

(1)
Gml,mz (Z, 87f7 P1,2) =0,

(2)
1— p(2—35)(ap+1) _ p2 + p2+(2—35)ap p2—35 -1

a5 1-s -3
G0 (2,5, f, Pra) =ty " F 7 [ ] S5 ] S5 1
plf p\%

3s _
02-3s (!m1|) Imq]2 ! K%S_l(% \ml\ yl)e (myz1)

(3)

Lts 3s—1
Goms (25, F, Pro) = 405 nyiy,™ [T (1=p7) Imal ™2 o1 s (Imal) Kass (27 [maf yo) € (ma)

pIN

(4)
1-3 p’—1 —3s, 225, 1—s 3s
Goo (2,8, f, PL2) =21 2 H mf vi Ty T o5 1) Lyy(3s—2)
plf
1-3s _ 1-— p738 3s—1
+20r N2 yfy% s H . _p1_351“ < 5 > Ly\,(3s—1)
pIN

s 3s
+ 25f7N7r_37yfy%SF (2> Ly, (3s) .
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PRrROOF. Since the unipotent part of z can be absorbed into the integration, one can
Y1Yy2
assume without loss of generality that z = Y1 € h3. We start the calculation
1
of the Fourier coefficients dividing the summation in the Eisenstein series into several cases
according to the Bruhat decomposition in Definition Assume for the present, that
m1, Mo are arbitrary integers, then we have

1 p1 2 I3
Gm17m2(273,f,P1,2)=/ / / G 1 x| zs, f, P2 | e(—miz1 — moxg)dadzadas
0o Jo

1

> _3s 3s
=> > o« <2> Ly (35)
=1 'yeI‘,'(f,l,PLg)

1.7}2 T3

1

///1(23,3) Yy 1 T Z,PLQ 6(—m1$1—m21‘2)d$1d$2d$3
0 0
3

=: Z Gml,mz

=1

Using the explicit description of the sets I';(f, 1, P1 2) in Lemma and the explicit for-
mula for the values of the I(os (¥, P12)-function on these sets in Lemma we proceed
analogously as in the proof of Theorem [L1.3] and start calculating each of the three sum-
mands above.

(1) Again we start with the most difficult part, the calculation of G,%)lmz. We have

Gﬁ,{}m(z,s) :7T2F(325> v (39) Z Z Z

aZ0  bEZ T 062'3
N) a,b,c)=1
(a,T)fl

/ / [ )" [a203 + 300~ Jawr)? + 0= b+ fatarz — 2]

—mixr1 — mQ:I}Q)dl'ld.%’gdxg

In the first step pass to the condition a > 1 extracting a factor 2. After that split
the summation over c in this way ¢ = fak +r with k € Z, 0 < r < fa. Note the
transformation of the ged-condition 1 = (fa,b,c) = (fa, fb, fak+71r) = (fa,b,r).
Then we have

3s
2
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GO (2:8) =277 (193)° F(328> wBs) > > > D

a>1l  beZ keZ 0<r<fa
<a7¥>:1 (fa,b,r):1

_3s

/// f2a2y1yz+y2(b fax1)* + (r — bas + fazizs — fa(zs — k))*| °

—Mmi1xr1 — m2$2)dx1dx2d$3

In the second step pass to an infinite integral in the variable xg through the shift
23 — x3 + k. Then substitute 3 — x3 + %;fam in the infinite integral in
the variable x3. After that split the summation over b in this way b = fak + ¢t
with k € Z, 0 <t < fa. Note again the transformation of the gcd-condition

1=(fa,b,r) = (fa, fak +t,r) = (fa,t,r). This gives us

e =20t ) T (5 009 ¥ X S X [ dcmaran

a>1l  0<t<fakeZ 0<r<fa
(a,%):l (fa,t,r)=1

[e'e] 1 _3s
/ / [fPa®yiys +v3(t — fa(z1 — k))* + fPa®a3] 7 e(—mqzr)dzidas .
—o0 J0

In the next step, first evaluate the exponential integral in the variable xo. Then
pass to an infinite integral in the variable x1 through the shift 1 — x1 — k, after
that substitute xr; — 1 — ﬁ in the infinite integral in the variable z1 and pick up

an exponential e (—ml ﬁ) Finally pull the factor fa out of the double integral.

We have
_3s s 3s _3g _3s t
G% mg( 2, 5) =200,m,T 2 (ylyg) T <2> LXN(3S)f 3 Z a3 Z e <_m1fa> Z
azl 0<t<fa 0<r<fa
(a,%):l (fa,t,r)=1

0 0 s
/ / [yfy% + y%x% + x?))] 2 e(—mqzy)deides .
—0oQ —00

To evaluate the Dirichlet series we use Lemma and for the double integral
use Lemma [19.3] note that y; and yo are exchanged. For mj # 0 the formula

_3s S 3s
G%Z m2( 2,8) =200,m,m 2 (ylyg) T <2> L, (3s)

f_3s H ((pg o 1)02_35 (pap) B p2+(2—3s)ap) O9_3s H p XN 35)

plf (p,N)=1
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3s 1-2(38) 1-3s 3s _ 35\ 1
(27723/2 (2)?/1 2 |m1‘2 1F<> Kg;l(27r|ml\y1)>

-5 B
=400,moyy Yy T H ((p2 — 1)og_s, (p°7) — p2T2 35)%)
plf

3s _
02-3s H p? | Ima| > ! K%S_1<27T lma|y1)
(p,N)=1
1— p(2—3s)(ap+1) _ p2 + p2+(2—3s)ap p2—35 -1

_ 1-=5 1-5p—3s
=400,may1 Yo S | | (2-3s)(ap+1) _ 1 (2=3s)(ap+1) _ 1
P 5P
plf pl5F

3s_
o9-3s (Jmal) [ma] > 7! Ksa (2 [ma|y1)
is valid. For m; = 0 the formula

_3s s 3s
G(()?ng (Z, S) :25()an7'r 2 (yly%) r (2> LXN (38)

L ﬂ.(35_2) (33\ o_of3s 35
o (T - ) XL, e (Wy; (), 2295 - 1))
plf X

_3s _ _ _ 3s
=200 my T 2 H (p* — 1) f3y7 25ys T ( — 1) Lx% (35 — 2)
plf

2
_3s p°—=1 _ _ 3s
=260 m, T 2 H T pZ_sz 38225y l=sp < — 1) Ly (35 —2)

plf

is valid.

(2) Next we do the calculation of G%iﬂm. We have

6 mal9) =trm T (5) L39S
b£0 (bce)%1

1 1 p1 . e
/ / / (1193)" [¥3b* + (c — bx2)?] ™ * e(—miz1 — maws)dadzades .
o Jo Jo

In the first step pass to the condition b > 1 extracting a factor 2 and factorize
the integral. After that split the summation over ¢ in this way ¢ = bk + r with
keZ,0<r <band note 1 = (b,c) = (b,kb+r) = (b,r). This gives us
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s 3 (3
Gg,m( ,8) =205Nn (ylyg) T E r <28) LXN(3S)ZZ Z

b>1 keZ 0<r<b
(b,r)=1

3s

/01 [y%b2 + (r —b(xg — k:))ﬂ 2 e(—moxg)das /01 e(—myz1)da /01 dzs .

In the second step pass to an infinite integral in the variable zo through the shift
r9 — To+k, then substitute zo — 29 +% in the infinite integral in the variable xo
and pick up an exponential e (—mgg). After that evaluate the other two integrals
and pull out the factor b in the integral in the variable zo. Then we have

s s (3 L
2 m5) =253 ()" 7T () Bar 39 07 3 (ma)

o0 _3s
/ [y% + x%] 2 e(—maxo)dzy .

—00

For the evaluation of the Dirichlet series use Lemma [[8.4] and for the evaluation
of the integral use Lemma For mo # 0 the formula

s _3s 3s _
G7(72L2,m2 (Z, 5) :25f,N50,m1 (ylyg) m 2D <2> LXN (35) (0'1,38(7’)12)(:(35) 1)

3s 3s—1 1=3s 3s -1
272 Tyt U5 ) Keg (2mfmely)

1+s

S, 2 —3s 3s—1
=405 500myiye” [ (1—p7%) Imel ™= o1-ss(jma|) K (27 [ma] y2)
pIN

is valid. For my = 0 the formula

. o 3s 3s—1
G2 o(2,8) =207 NOo,my (y193) 75T (38> LXN(?’s)M <\f Ty L2 )F(f)>

2 ((3s) (%)
1—s —3s 3s—1
:26f,N50,m177 > Z/1y2 H (1 —-Pp ) r 5 ((3s—1)
pIN
s 1—p3 3s—1
=267 n00 m17r = ylyl H : _p1_38F ( 5 ) Ly,(Bs—1)
pIN

is valid.
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(3) It remains to calculate GngQ (z,8). Again Lemma |5.2| gives a description of the
set I's(f, 1, P12), which consists of two diagonal matrices at most. Use Lemma
to calculate the values of the (5, g (x, P 2)-function directly. We have

3s 1 1 T2 I3
GG oy (2, 5)—5fN77_2F< > xn (38) / // Tios —s) 1 1 21 |zPp
1 1

e(—mix1 — moza)dridredrs

-1
+ L(25,—s) 1 ) z,P1o
-1
[ -1

3s Y1Yy2 Yixr2 T3 - Y1y2 Yire2 I3
_(5fN7T_2F< ) XN 38 / // det Y1 T || U1 T el H_3S

1 1
-1
—Yiy2 —Yy1rz2 —I3 —Y1Yy2 —y1$2 —x3
+ det Y1 H 1 el H*BS e(—myxz1 — maoxs)daidredas
-1
_3s -3
= 20 £ N00,m;00,m™ 5T < ) v (35) (yfyg yzl) °

—26fN50m150m27T 2yly F< )LXN(3$).



CHAPTER 13

Functional equation for the Eisenstein series twisted by a
constant Maass form

Now we will use the Fourier expansions in the Theorems and to obtain the mero-
morphic continuation and the functional equations for the Eisenstein series twisted by a
constant Maass form. In order to simplify the calculation we will only handle the case
where the level N is prime. To simplify the upcoming calculations we split the Fourier
coefficients of the Eisenstein series into a product of two functions. For these functions we
will prove some invariance properties which will imply the functional equations.

DEFINITION 13.1. Let N be a squarefree integer and f a positive divisor of N, further let
my = [[p® and mg =[] pP be positive integers in prime decomposition.
p P

(1) Define a family of functions on the generalized upper half plane associated to
these integers by

3s5—1
2
s+1
gmo(zs) =4 w3 | I] o) oras | T 0™ | Kaex @nlmufyn) e (muan)
(N7p):1 (p,N):l
!
—s 1-%
goms(z,8) =4y "y, | I 07 ovess | II 07 | Kaooy @mimalyz) e (maxs) |
(p,N)=1 (p,N)=1

s 9-95 1_3s 3s
gé,l())(ZHS) = 2yi y% 2 7'(1 2F<2—1> 4(38—2) s

2 g g 1=3s 35 —1
96,3(%8) =2y YT 2 F( 5 >C(33— 1),

_3s 3s
g((]?(%(za 5) = 2y%Sy§7T EN <2> C(38) .

(2) Define the following holomorphic functions:

3s—1
2

amio(s, )= 1 TTr | T (0= Dovss (o) = 07900
pIN plf
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13. FUNCTIONAL EQUATION FOR THE EISENSTEIN SERIES TWISTED BY A CONSTANT MAASS

110 FORM
381
a0.my (s, f) i= f75¢ Hpﬁp 09_3s Hpﬁp H(p —1) H (1 _p1—3s) ’
pIN pIN olf pl
s )= e-nI[a-»),
plf p|%
alio(s. ) = af(s. f)
at(),()J(Saf) = 5N,fH (1—p3),
pIN
351
balso 1) = 770 (1T | TT(07 = Doass ) 2500
pIN plf
3s—1
2
bO,mQ (S, f) = 6N,f Hpﬁp 01-3s Hpﬁp H (1 _ p—38) ,
pIN p|N p|N
bio(s. )= [[w* -1 [[ - ).
plf p|¥

58?3(87 H=on][-p%),

p|N

b5, ) == b5 (s, f) -

Using the functional equation of the divisor sum and the K-Bessel function, we will derive
some functional equations for the above defined family of functions gs..

LEMMA 13.2. With the notation in Definition for the family of functions g, the
functional equations

(1)
Gma 0 (z ,1— s) = go.m, (%, 8) ,

(2)

g60 (21— 5) = g (2,9,
(3)

g0 (1= 5) = g0 (2,9) |
(4)

g60 (2,1 = s) = g50(2,) ,

hold.

PROOF. (1) The proof is given through a straightforward calculation. We have



111

3(1—s)—1
t (Log)tl 1—s a i
gml,o(z 1= 3) =4y, 2 U1 H p?
(N,p)=1

o a0 | [] p™ Ksa-n-1 (21 [ma]yo) e (mi22)

(p,N)=1
-3
_e 1-2
=4y 70y, 2| I P o @3 | ] »™ K_(3s_y) (2 |maly2) e (maz2) -
(N,p)=1 (p,N)=1

Now use the functional equation for the divisor sum in Lemma Appendix A
and the functional equation for the K-Bessel function in Lemma [19.2] Appendix
B. Then we have

1-38 —(2—3s)
L 1-2
gmo(zh1—s) =4y 7y, 2 | [[ »™ IT » oass | [ p*
(N,p)=1 (N,p)=1 (p,N)=1
Kas (27 Ima|ya) e (m172)
351
L1-s
=dy; "y, > H pr 0235 H por K3y (27 |m1|y2) e (m122)

(N7p):1 (p,N):l

=90,m (Z7 5) .

(2) The parts 2) and 4) are dual to each other. The functional equation follows
immediately from the functional equation of the completed Riemann zeta function
C(s):=n"2T (5)¢(s) =¢ (1 —s). We have

ol (21,1 — s) =245~ 72 209¢ (31 — ) — 2)
—2y2y3C (1 — 3s)
=2y7°y5¢ (3s)

3
=go (2,) -
(3) A short straightforward calculation gives the result. We have

gon (41— s) =25 Tyl (31— 5) — 1)
=2yl "*y5¢ (2 — 3s)
—2yl=ysC (1 — (2 — 35))
=2y; Y5 (35 — 1)
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2
=5 (2,5) -

O

Next we show that there exist some scattering matrices such that certain vectors of the
holomorphic functions a, and b, fulfill some functional equations.

LEMMA 13.3. Let N = p be prime. With the notation in Definition[13.1] for the family of
functions a, and b, the functional equations

(1)
a(s) b(s) ‘ by 0(s, 1)\ (am0(1—s,1)
(c(s) d(s)) (bm1,0 s,p)) B (amho(l s,p)> ’
v (s) b(s) (s,1) ( )
a(s) b(s bo,mo(5,1)\ _ [aom.(1 —s,1
(c) ) Gt )) = (oomti Z5))
(3)
<a<s> b<s>> , (bé%&(s, 1)) _ (ao‘?%(l s, 1))
c(s) d(s) b(()())s,p) a&%(l—s,p) ’
(4)
<a<s> b<s>) _ (bo?3<s, 1)) _ (ao?éu - s@))
c(s) d(s) b(()())s,p) a&[))(l—s,p) ’
(5)
<a<s> b<s>) (béi”é(s, 1)) _ (afﬁ&(l ~s, 1>>
c(s) d(s) b&g(s,p) aé}%(l—s,p) ’

hold with the matrix entries:

(1) ,
p°—1
a(s):p2_p2—ss’
(2) .
p° —p°*
b(s):pz_p2—357
(3) "
1 —p>~
c(s) = —5—+,
(s) p? — p2-8s
(4) "
(p—1)p>*~
d(s) = ——F——— .
(s) p? — p2-3s

PRrROOF. The proof is given through checking each row in a straightforward calulation.
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(1) Checking the first row:
a(s)bm, 0(8,1) + b(8)bm, 0(s,p)

2_q . 2 . 3s -
:< p . ) .pap(% 1) + < p p > D 3spap( ) [(p2 _ 1)0_2_35 (pap) _p2+(2 3s)ap]

p2 — p2-3s p? — p2-3s
3-1) (ap+1)(2—3s)
pap( 2 2 2-3 2 L—pr 2+(2-3
p2 — p2-3s [p —1=(1=p7) ("= 1) 1_p23s P rsslay
P

p

(5-1) 2 (op+1)(2—3s) 2+(2=3s)a 2-3s
5 (2 = 1)pler +p (=)

_ p2—3s
3

S

(67
Q

p
p o(5-1) 2-3 2 9.3
P2 — pt- 5P ep(2=3) (p —-Pp S)
3(1— s)—l)

ol

:aml’o(l — S, 1) .

Checking the second row:
C(S)bm1,0(87 1) + d(s)bm1,0(57p) - am1,0(1 - S7p)

_ ( 1—p3st ) pon(%-1) 4 <(]I; - 1)1?381) p3pen(5 1) [(p2 — 1)oass (%) _p2+(2—38)ap}

p2 _ p2—33 2 _ p2—35
3(1—s)—1

73(178)13“?( E ) {(p — 1oy 3014 (p™) —

_p p1+(173(1fs))ap} '

Use the functional equation for the divisor sum in the second summand. We have

c(8)bmy,0(8,1) + d(8)bm, 0(8,P) — amy 0(1 — 8,p)

1— 3s—1 3s -1 —1 3s
:p2 _];2738])@1,( 5 1) + ;pg — p)2p35 poap( 5 1) |:(p2 i 1)0_38_2 (pap)p(QfBS)ap _ p2+(273s)ap

2—3s

- p3573pap(%) (p - 1)0_38_2 (pap) - p1+(3372)ap} .

Finally evaluate the divisor sums. This gives us

c(8)bmy,0(8,1) + d(8)bm, 0(8,P) — amy 0(1 — 8,p)

o (35%) 1 — plopt1)(3s-2)
_p [(1 _p3s—1) pap(35—2) —I—p_l(p ~1) [(p2 _ 1) f_ = 2

_p2 _ p2—3s

. s 1— p(ap+1)(3sf2) 9
— pP3 (p? — p23) [(p _1) = _ pltBs=2)ey

2—3s )

pap( 2

= (p2 _ p2—33) (1 _ p3572) [(1 — p3872) (1 _ pSS*I) pap(.?)SfQ)



13. FUNCTIONAL EQUATION FOR THE EISENSTEIN SERIES TWISTED BY A CONSTANT MAASS
114 FORM

T lp—1) [(pQ —1) (1 _ p(ap+1)(3s—2)> —p2(1- p3372)}

_p¥3 (pz _ p2—35) [(p —1) (1 _ p(ap+1)(33—2)> _ (1 _ p35—2) p1+(3s—2)ap]]

2—3s )

(5 - 1y op(3s—
T (pE— p23s) (1 — p2) [(1 —p?7?) (1= p* ) prr(2)

p

tplp—1) |:p33 1 (pz _ 1) p3372pa,,(3372)}

(% - 1) {(p3s—2 ~p) por(35=2) Ly 1]]

=0.

Finally we order the terms and see that the result vanishes.

(2) First note that bgm,(s,1) = 0. Here the calculations are shorter and we handle
the whole matrix in one calculation. Again we use the functional equation for
the divisor sum. Then we have

3(1—s)
(somlt =50 _ (1" p“ Ny gy (o) (1 %-9)
a0m2(1 Sap) p —s) Bp( (12 s) —1
p P

02-3(1-s) (Pﬁp) (p—1)

1— 3

Bp(
353

(pﬁ )p~ Bp(1—3s) ( P 2))

p(l‘;’ )o1_ss (p%) p~ 5p(1 35)
2= 35 pﬁp(%g )Ul 3s (pﬁp) (1 _p738)>
2—3s

1) (ﬂp( 7)oy 3 (p) (1_p735)>

p

(
(<

a(s) -0 s )b0,mo (8, p))

o
9]
-p

(C((S) d(8)bo,ms (5, p)
= (e ) (eten)

(3) Note that a(()?())(s, 1) = 0 and do a straightforward matrix calculation:

<a<s> b<s>> bho(s, 1)\ _ [al)bio(s, 1) +b(s)bo(s,p
e(s) d(s)) \sihis,p)) ~ \el)pd(s. 1) + ()b (s, p
(7255 ) - (1= p27%) + (55 ) - (%@ - 1)

B <pl;—1;2*35) : (1 _p2733) + <%) : (pigs(pz - 1))
0
= ((1_p235_p351+p)+(p2_p_1+pl)>
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G®b@> b
e(s) d(s)) \p2

)

sﬁ)_ﬁ@%%ﬁ+%ﬁ%mﬁ
- (2)
$ 0

,p)

2_.3s
pg_pﬁ : (1 —pfgs)
- 1Y\a3s—T
((zz,lg,gfss ) : (1 _p—3s)
(5) Again note that b((f())(s, 1) = 0. We have

_ pl-301-9) >
p 3= (p—1)

O

With these preparation we can easily prove the functional equation of the Eisenstein series
E(z,s,f,Py1) and E(z,s, f, P12).

THEOREM 13.4. Let N = p be a prime. Then the four Fisenstein series twisted by a
constant Maass form corresponding to the level p have meromorphic continuation and
satisfy the functional equation
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G(z,1—5,1,P1) a(s) b(s) G(z,8,1,Py1)
G(z,1=s,p,P1) | _ c(s) d(s) | | G(zs,p Paa)
G(Z71 _8117P1,2) 6(8) f(S) G(Z,S,I,Pl’g)
G(Z,l - 5D, P1,2) g(S) h(S) G(Zas7p>P1,2)
with the scattering matrix:
p2_1 p2_p35
2_2—3s 2_2—3s
a’(s) b(S) pl_zgs—l (g_lgjp&sfl
c(s) d(s) P R s Bt
e(s) 1)
p2_p2735 p2_p2735
g(s) h(s) p—p>~1  (pPP-1)p>!
p2_p2—35 p2_p2—.js

The variable transformation s — 1 — s maps the lower left most 2 x 2-block in the
scattering matriz to the inverse of the upper right most 2 x 2-block.

PRrROOF. The meromorphic continuation of the Eisenstein series follows immediately
from the explicit Fourier expansion in Theorem and Since the above scattering
matrix has block form we start to handle the upper right most 2 x 2-block first. We
calculate directly using the Fourier expansion and the functional equations worked out in

this section. We start with
(50 ) ()
W) (Gonta i)
> (59 40) (i)
(S))' Gmyo [ (7 L) 78 L P
)

1 Z787p7P1,2

Next express the Fourier coefficients through the functions defined in Definition hence
3 . ,
Gonyma (215, f, Pr2) = by (5, ) gma.my () and Glog (2,5, f, Pr2) = 3 bip(s. )gtial= o).
i=1

So the equation

(s o) (G i)
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« oot (3 40) (Zzzzé )

mo=1

"> Zwm(< P ) () 5 ()

YEPrpin \GL2(Z) m1=1

holds. Apply the functional equations in Lemma to the functions g, and the functional
equations in Lemma to the functions b,. This leads to

(%49 2. (GeBaa)

- a0.my (1 — ,1)
_ 0,m2 — 9,
+ Z gO,mQ(za 1 5) (ao m2(1 _ S,p))

T e () ) ()
YEPpin \GL2(Z) m1=1 mi, )

_(G(z,1=5,1,P1)
B G(Za]-_supaPZ,l) '

Next we handle the lower left most block matrix. This can be easily solved through
multiplying the above equation with the inverse matrix and making the transformation
s — 1 —s. We start with

(G- (am) 60)) (@G

So it remains to calculate the inverse. The equation

B 1 dl—s) —=b(1—2ys)
Ca(l—s)d(1—s)—b(1—5)c(l —s) \—c(l—5) a(l—s)
1 (p—Dp?C=9-1 p2_p3-s)
_ p2—p2—3(1—) p2_p2—3(1=5)
- p2—1 (p—1)p3(1—s)—1 p2—p3(1—s) 1—p3(l—s)-1 1—p3(—s)—1 2,1
p2—p2—3(1—5) : p2—p2—3(1=5) - p2—p2—3(1=5) 'pz_p273(175) _p —p2-3(1-s) p2—p2—3(1=s)

_ p2 _ p3871 (p o 1)p2_35 —p2 + p3_3$
p2—3s _ p2 +p5—3s _ p5 6s -1 _|_p2—3s p2 1
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(p3_35 — 1) p35—1 (p _ 1)]92_38 _p2 _|_p3—3s
(p3—35 _ 1) (p2 _ p2—3s) -1 + p2—3s p2 -1

2 3s+1

2p —2p3 p2—p2 3
— | po—p=°¢ pe—p=°°
p7p3571 (p271)p3s—1

p2_p273s p2_p2735

for the inverse holds.



Part VI

Fourier expansion for the Eisenstein
series twisted by a Maass cusp form






CHAPTER 14

Fourier expansion of the Eisenstein series E(z,s, f, ¢, 1)

In this chapter we want to calculate the Fourier expansion of the Eisenstein series F' (2, s, f, ¢, P2.1)
twisted by a Maass cusp form. We start with the definition of a certain family of Dirichlet
series which occurs in the Fourier coefficients of these Eisenstein series.

DEerFINITION 14.1. Let N be a squarefree integer, f, M positive divisors of N, ¢ =
(¥(k)) ey @ sequence of complex numbers and n a positive divisor of (f, M). For a positive
integer m; and a non-negative integer my define the Dirichlet series Ay, m, (S, f, M, ¥, n, Pa1)
associated to these parameters by

a

min-—s-x
Aml,mg (S,f, M,Qb’n,PQ,l) = Za_s Z (0 (fl(a(c;,)t)> (a,t)_le <m22> Cf(a,t)<m1) .
) )

a>1 o<t<a(f,M
(%)=t

Fat)lman 2

The next lemma shows that the integration of a periodic function over an interval of period
length is translation invariant. In later calculations this lemma is needed several times to
expand the integration interval in the calculation of the Fourier coefficients of the Eisen-
stein series. The proof follows after a simple variable shift and is omitted.

LEMMA 14.2. Let f : R — R be a continuous and periodic function with period p.
Integration of f over an interval of period length p has the invariance property

z+p 4
/ F(t)dt :/ fdt  VreR.
T 0

Now we are prepared to state the main result in this section.

THEOREM 14.3. Let N be a squarefree positive integer and f, M positive divisors of N.
Let ¢ be a Maass cusp form for T'o(M) with eigenvalue v(v—1). The associated Eisenstein
series G (2, s, f, ¢, Pa1) has the explicit Fourier expansion

G(z,5,f.0,P21) = Y Gomy (2,5, f,6,Pa1) Y. SN Goime <('V 1) %8, f, ¢,P2,1> .

mz=0 YEPpin\GL2(Z) m1=1m2=0

Recall Lemma, in Appendiz C and introduce for the coprime pair of integers e | (f, M)
M

and 0 < d < f’e the following notation. Let a4 = % denote the cusp for To(M)

(d,e)

121
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associated to h(qe) = <%,M) (d, @) and mqe) = h({\i/[) = (d({}%l))) its width. Let

1 1 « md.e
o — (dye) ( ’ )
(de) - h(d@) 1 1 A /m(d,e)_l

be a scaling matriz associated to the cusp a(yc), where the integer o) depends only

on the integers d,e,M,% modulo (d(](\{,{f)) Further let ¢ge) = ((ﬁ(dv@)(n))nez denote

the sequence of Fourier coefficients associated to the Fourier expansion of ¢ at the cusp
A(de)- Let my,mo be positive integers, then the following explicit formulas for the Fourier
coefficients are valid.

(1) In the non-degenerate case we have

s—% |m2’237g

1 —3s
Gml,mg (Z)Saf7¢7p2,l):2(f’M) 3

mi ]m2|

Z Z Am17m2( -1 va ¢de)a de)aPQ 1)W1(1 3’7) mi Z, W1
e|(f,M)0<d§(f7M) 1
(d,e)=1

N

(2) In the first partially degenerate case we have

Z Z Api03s = 1, f, M, §(a.e), Md,e)s P2,1)
€l(£.M) g << LoD
(d,e)=1

Gml,O (Z, S, f, (25, P271) =2 (f’ljw) _

_v 2v
Wl(i) 3°73 ) my 2z, w1

)

(3) In the second partially degenerate case we have

Gomy (2,8, f, 0, Pa1) =0N 5 Z Z ) (mamya.e)) + dae) (—mamae))]
elM p<d< Jg
(d,e)=1
(s—%,2) ma|
Ima| Wy 270 1 2, Wwo
1

(4) In the totally degenerate case we have

GO,O (zvsafa¢ap2,1) =0.
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PROOF. Like in the proof of Theorem [IT.3| without loss of generality it can be assumed
Y1Yy2
that z = Y1 € h3. We start the calculation of the Fourier coefficients dividing
1
the summation in the Eisenstein series into several cases according to the Bruhat decom-
position in Definition Assume for the present that mq,mo are arbitrary integers, then
we have

1 1 g1 T3
Gml,m2(Z,8,f,¢,P2,1)=/ / / G 1 z1 |28 f,0,P1 | e(—mixy — maxg)daidzades
o Jo Jo 1
(f,M)—1 k+1 p1 1 x w3
Z // /G 1 x| zs f,¢,Pa1 | e(—miz1 — moxe)derideedes
0 1
1 (M) pl 1 xo w3
= // /G 1 x| 28 f,¢,Pa1 | e(—miz1 — maxg)deideedes
(f, M) Jo Jo 0 1

Sy e () ()

i=1 yel;i(f,M,P2,1)

(f,M) 1 o I3 1 Tro I3
// / mp21 1 I | =2 I(s,—25) Y 1 1 Z,PQJ

( mixry — mng)diL'ldiL‘QdiL‘g

= Z Gml m2

In this calculation Lemma was applied to each integral. This is possible since the
left invariance of the Eisenstein series against the matrices : 1 11, : 1 : gives
the periodicity with period 1 in the variables x1,x3. Further Lemn:a applield to the
integral in the variable x3 over the Eisenstein series, considered as a function in x9, in
conjunction with the invariance against : 1 , gives the periodicity with period 1

in the variable xs.

Using the explicit description of the sets I'; (f, M, ) in Lemma and the explicit
formulas for the values of the I(s o) (¥, P2,1)-function and for the Levi components on
these sets in Lemma and [7.4] we start calculating each of the three summands above.
For further calculations note first that Lemma [£.2] gives the splitting



124 14. FOURIER EXPANSION OF THE EISENSTEIN SERIES E(Z, S, F, ¢, P21)

- 1 1 auge - m}
P(ab,c,de) =7 (h(d,e) 1) ( (i’ )) = V0(d,e) ( (die) 1) v/ M(d,e) » (14'1)

with 4 € To(M) and the integer Q(4,e) € Z depends only on the integers d, e, M, % modulo
(M, f)

(1) We start with the most difficult part, the calculation of G%i,mr We have

R e e B e ) D DIED DD DD S Z

el(£,M) g<d< UM a0 bEL c€Z
(d,e)=1 (f (ab)) 1 (f(ab).c)=

3s

(£.0M) . s
/ / / Plabe,de) (‘g f)) (viy2)” [F2a®yivs + fPyi(azs +b)* + (faxs + fbay +¢)?] 2

—Mmi1x1 — mgxg)dxldﬂfgdl'g y

with the coefficients:

\/f2a2y1y2 + f2y1(ax2 +0)? + (fazs + for1 + c)?
a%ys + (axz +b)?

(a,b)fz1 —re (af)2 (azo + b)(faxs + fbx1 + c)

@h) a’ys + (axz + b)?

=(a,b)’y

9

xTr =

In the first step pass to the condition @ > 1 extracting a factor 2 and substitute
the splitting in for p(ap.cde), note that ¢ is invariant against the center
R*. After that split the summation over ¢ in this way ¢ = fak + s with k € 7Z,
0 < s < fa. Note that the ged-condition transforms as follows 1 = (fa, fb,¢) =
(fa, fb, fak + s) = (fa, fb,s). This gives us

G (2, 5)

mi,msa

e CRI D LG D D D DD SED DD »

el(f,;M) g qg< M) a>1 beZ k€Z 0<s<fa
<(d,_e):1 <7,(a,b)):1 (f(a,b),5)=1

/ /UM / <U(d€ <0 1>) FPatid + 1y (ax2+b)2+(fa($3+k)+fbx1-i-s)z}_?);

—MmMi1T1 — Tngxg)dl’ldxgdxg y

=2

with the coeflicients:
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@R VPR PR 02 5 s ) + o+
Mde) a?y3 + (axs +b)?

)

(@b)fri—rs  flab)rk  mcesa(@r2 +b) (fa (e + k) + forr +5)
M(d.e) (a'fb) M (d,e) a?y3 + (axa + b)? '

In the second step first recall that mg.) | (f, M). So since ¢(o(qe)2) is peri-

d fla,b)rk .
mq

odic with period 1 in the real part, the integer summan in the variable

x can be deleted. Next pass to an infinite integral in the Vé;iable x3 through
the shift x3 — x3 + k. Then substitute z3 — 3 + % in the infinite in-
tegral in the variable x3. After that split the summation over b in this way
b=a(f,M)k+twithk €Z,0<t<a(f,M). Note that the two gcd-conditions
transform as follows 1 = (fa, fb,s) = (fa,f(a (f,M)k+1t),s) = (fa, ft,s) and

1= (%, (a, b)> - (%, (a,a (f, M)k + t)) - (%, (a,t)). The identity

G (2, s)

mi,m2

(f’lMW;_gs (292)° T (332— y> . (33 +2y - 1) ., > S

<t<a(f,M 0<s
' a,t

=2

—MmM1T1 — m2$2)d$1d$2dx3 N

with the coefficients:

VPR P e (1R 0+
(de) a2y + (a (z2 + (f, M) k) +1)* ’
_(a,t)fxy —rs % (a(z2+ (f, M) k) +1t)xs
Moy a3+ (a(e+ (£ M)k) +1)?

holds.

In the third step pass to an infinite integral in the variable x5 through the shift
x9 — w2 + (f, M) k. Then substitute zo — xo + é in the infinite integral in the
variable xo and pick up an exponential e (mgé) This gives us

1 1_gg s 3s —v 3s+v—1
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SO Yt ¥ oe(ml) ¥
el(f;M) g<g< L2 a1 0<t<a(f,M) @) 0<s<fa
(de)=1 (¥ (@)=t (f(art)5)=1

(a,t)?
flat)?  VRtiadta  (af)fai—rs fm(d >a“m3
O(de) | maoa?? " y3+a3 M) o) y3+a3
0 1
3s
2 2 2.2 21— %
[ylyz +yixs + x3] 2 e(—myixy — maxe)dridaaders .
Now Theorem in Appendix C provides the Fourier expansion of the Maass

cusp form ¢ at the cusp a(g.). In the additional calculations these Fourier ex-
pansions are used to clear up the above expression. We have

1 1 3s —v 3s+v—1
(1) —9 =—3s 2 SF T
Crrtonalr9) =23y i) ( 2 ) < 2 >

> O Yar ¥ oe(ml) ¥

e|(f,M) g<q< LMD M) a>1 0<t<a(f M) 0<s<fa
(d e) f (a t ) 1 (f(avt)vs):]'
R 1y2—|—y1x2+:r \/ylyQ—l—y%x%—i-:c?
/ / /Z2¢>< n Sk, (2ninl L 7
—00 J—00 J0 n£0 de)a y2 + 1‘2 2 (d e)a y2 + )
(a,b)f £
a,t)fry —rs . 3s
eln ! — N m(; f (Y75 + yias + 23] 2 e(—mix1 — mozo)dardaades .
M (d.e) (a,1) Y5 + 3

Simplify the above terms and extract an exponential integral in the variable z;.
We have

1 s+ 3s —v 3s+v 1 1 1
G(lz 2('2 S) =4 . 7T2 3sy28y 2T < > r () f2 3s
mi,m ) i 5
( | ) el(f,M) 0<d<@ M(d,e)

(d,e)=1
—3ds ¢ nrs
Za 373 Zd)(d,e)(n)\/m Z e (mga) (a,t) Z e (_mda>
a>1 n#0 0<t<a(f,M) 0<s<fa (d,e) (a,0)
(%,(a,t)) =1 (f(a7t)7s):1

! a,t Lo B
/O e << (i ))f 1 dxl/ / 23+ y2ad + a2] T F (42 + 02) 7% e(—maws)
&) @0

t)2 t)?
P ORI CE \/y1y2+y1932+ff3 < nf(a,t) s )dxzdxa (14.2)
M(d,e)@ y2 —1—1‘2 M(de)d y2 +x

Through the calculation of the series in the variable s and the integral in the
variable x1, the double integral is separated from the Dirichlet series. Begin with
the calculation of the innermost sum in the variable s and extract a geometric
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sum. First note that Lemma [3.2| part (1a) implies that —r can be absorbed into
the summation. Then split the summation s = f(a,t)k +w with 0 < k < (a )

and 0 < w < f(a,t). Let 1z denote the indicator function of Z, then the identity

Z e(— m’sa>_ Z e( nwa) Z €<nf(a,t21k>
0<s<fa Ao ) ocwes(ar) \ @D/ ochera \"MdO D

(f(at),s)=1 (f(a,t)w)=1 (@0

a nf(a,t nw
() £ ()
) (dse) Ta,t) 0<w< f(at) (die) Tast)

(f(at),w)=1
holds.
If # is an integer, which is the only relevant case since otherwise the above
€) (a,t)

geometric sum vanishes, the exponential integral in the variable z; is non-zero if
n(a, t)
M(d,e) (a ol

hold if my # 0. So one gets the formula

! t
/ € ((W — mi 1 dl'l - 57’71 n(a,t)f . (144)
0 M(d.e) Ta,t) 1’m(d,e>7(a‘ft)

M1M(4,e)

So put n = W and the other results in (14.3)), (14.4) in the formula (|14.2

and only if m; = . Note that n # 0 implies that this equality can only

for G&i} .mo and simplify the terms. This will give us the claimed separation

1 3s — 3 -1 1
Gﬁ,ll17m2(z,s) =4(1 — So.my ) T2 3sy25y;+ r < s V> r (‘H'”) m2 f3

(f, M) 2 2
_ MM (d.e) G 1) _
1-3 ) 1
D VT e
el(f.M) p<d< L!M) a>1 0<t<a(f,M) ’
(de)= (F.(an)=1
flat)lmimqg e (a )
miw 1_3s
S () [ st ) eloman)
0§w<f(at
(f(at)w)=
2,2 2,..2 2
Ku—l 27Tm1y2 \/yly2 ;_ yla;Q + xS (& (—m1§2$32> dl‘gdl‘g
2 Y5 + T5 Y5 + Ty

1 3s — 3 —1 1
= 40— dom) 5 )m —B3y28, %2 P( ° )F( Sty >mff‘3s

mim.e aa _
Z Z Za1—3s Z Plde) (W) (a,t) le <m22> Cf(a,t)(ml)

e|(f;M) g g< M) a1 0<t<a(f,M)
- e
(de)=1 (5 (an)=1
fla)lmima,e) 4
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P a9 99 gk, o1
[ylyg + Y1 %o + .’E3j| 42 (y2 + 1132) 2 e(—m2$2)
—0o0 -0

2,2 2.2 2
K, 1 (27Tm1y2 \/ylyQ 2—’—_’3_/1'22 i x3> e (—mlgj_ng> dxodzs
2 Ya T T3 Yo T I

of the double integral and the Dirichlet series.

To complete our calculations we distinguish between the cases whether mo van-
ishes or not. In the upcoming calculations use the notation in Definition for
the Dirichlet series.

(a) 1. Case: mg # 0. First substitute xo — maxs in the integral in the variable

xo, after that substitute x3 — mimoxs in the integral in the variable xs.
Then expand the terms with the spectral parameters. We have

G%z,mg (Z7 S)

=2(1-9 );f*?’s\/m m msj%\m ]25—3 Z Z A (3s—1,f,M,¢ m Py1)
= 0,m1 (f M) 1211y 2 my,ma2 y Sy IV, P(de)s T1(de)r £2,1
’ el(£,M) o< L2
(d,e)=1
\ _v _v 2.\ _ 5 y
3o 5)-3(2 ) (3 (- 3)>r<3(3 i) +360) 1) g 25+ (g =)+ ()
00 00 1_3(, vy_3(2v -1
[ Tomunmal ya)? + (a3 + a3 36075 () ) 4 03) ™ o)
2 2.2 2
may1)? (|mal y2)” + (miy1)?z3 +
Koy | 27 sl Vomp? (malue)” + munPaf o) (g
S (Imaly2)” + x5 (Imaly2)” + x5

Lemma part (1) in Appendix B implies that the above double integral

v1,v2)

is a Whittaker function of the type Wl(’1 (*,w1). Finally we get

1 _ 3 e
Gl (219) = 201 = boam) [y £ Vimimamy* maf™ 5 37 37
, €|(f’M)0<d§(f’76M>
(d,e)=1
) my [ma
’ 3

Amlme (33 - 17 fa Mv ¢(d,e)7 M(d,e)> PQ,I)Wl(j_ mq Z, W1

w(v

(b) 2. Case: mg = 0. Substitute 3 — mjx3 in the integral in the variable x3,
then expand the terms with the spectral parameters. We have
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1
Gf’rlzi,O(as) :2(1_6O,m1)(f M Z Z Am1 0( 17f7M7¢(d,e)7m(d,e)7P2,1)
’ e|(fM)0<d<(f M)
(d,e)=
v v 2
0 —3(s—5)~ (2 )+ 1 (3 (32— 3)> r (3 (s—%) +23 (gy) - 1> (g2 5+ 3 (5 (%)
1y ;

<[ 2.2 2 9, 211-3(=5)-3(%) /2, 2\-
[(m1y1)?ys + (may1)*as + a3] 3 (3 + x3)
— 0 —o0
(27Ty2 \/(m1y1)2y§ + (may1)?a3 + x%) . (_ Tox3

d.CL‘Qd.CL‘g .
Y3 + 3 Y5 + x%)

o)
2

Lemma m part (2) in Appendix B implies that the above double integral
is a Whittaker function of the type Wl(?()lm)(*, wy). Finally we get

Giiio(z,s>=2<1—5o7ml)(fM TN YT A 0Bs =1, f M, Sy miaeys Po)
e|(fM)0<d<<fM)
(d,e)=
v 2v m1
Wl(i)*?’T) my 2z, w1
1

(2) We proceed with the calculation of G%} mo- It turns out that this part of the
Fourier coefficient always vanishes. We have

6 malees) = o (M) o (B )Z IO IEDD

el(f,M) g« dg(fM) b0 =3
(de)=1 (b,g)ﬂ(fb,cH

Lo el Yo/ Y2 f2 + (fbxy +¢)2  —bfxs + (fbry + c)xo
0 0 ¢ p(O,b,c,d,e) O 1

3s

(y%y2)s [ny%bQ + (fbxy + 0)2] -2 e(—myz1 — mowg)dridradrs .

Again substitute the splitting in (14.1). So we get

G%mz(27s):(ﬂ1]w)ﬂ;3SF<352—V)F<35+V—1)Z SIS

e|(f,M) g<g< L2 M) b#0 c€Zﬁ
(de)=1 (b¥)=1P=1

1 (M) 1 252 72 1 __bf (foz1+c)zo
/ / / ¢ | oae o >\/y DAZ (oot o) = sms S
0 Jo 0 0 1
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3s

(y%yg)s [ny%bQ + (foxy + 0)2] -2 e(—myz1 — mowy)dridradrs .

Now Theorem in Appendix C provides the Fourier expansion of the cusp
form ¢ at the cusp ag). This gives us

O T el Ce = I DD DD DD S

e|(f M) 0<d§ (f ]M) b;«éO CGZ
(de)=1 (b,2)=1PO=

//(fM/Z2¢d Il o JURR 2 (fbrs 402K 1<2”'”'
e) M(d0) 1 V=3 M(de

2 \/y%62f2+(fbx1+c)2>
0 n#0 (dse)

e <—nm / T3+ n M) ( ) [f2 + (fbxr + 0)2]_373 e(—mix1 — moxo)dridredrs .
(d,e) (d,e)

Note that we can extract the exponential integral in the variable x3. Since n,b # 0
and mg ) | f was shown in the first part, this integral vanishes

! f
/ e <— bn$3> dzs =0.
0 M(d,e)

So this part of the Fourier coefficient always vanishes:

G2 (2,8)=0.

mi,ma2

(3)

(3) It remains to do the easiest part, the calculation of Gy} m,(2,s). Again Lemma
gives a description of the set I's (f, M, P» 1), which consists of two diagonal ma-
trices at most. Then use Lemmato calculate the values of the (5 _o,) (x, P21)-
function directly. We have

1 £—3s
honter9) =i gyt (M

)e(=57)5

elM o<d<2L
(d,e)=1

(f,M) 1 1 xz9 x3
// / mp,, P(0,0,41,d,e) 1 1 2|2
1 1
T2 I3
1(87725) P(0,0,41,d,e) 1 x| 2Py
*
*
1

» — 1 T2 I3
0,0,£1,d,
+¢ | mp,, ( °)
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* -1 1 zo z3
I(S,*Z,s) p(0,0,il,d,e) * 1 1 1 27 P271
1 —1 1

e (—myx; — maxy) dridradas .

To simplify the above terms use the left invariance of the I(; o) (*, P2,1)-function
against the real maximal parabolic subgroup P 1 and the right invariance against
the maximal compact subgroup Os in the second summand. Substituting the
splitting in for p(o,0,+1,4,¢) gives the formula

1 1 g, (35s—v 3s+v—1
G§1m2(273)25f,NW7T2 3 F( 5 >F< >

:M

0<d<
(d, ) 1
(f,M) Y1yY2 Yi1r2 I3
// / e)< (de >mP2,1 Y1 T
1
Y1y2 y1932 fL“3 Yiy2 Yirz2 I3
det I €3 yioow | |7
1
S
yiy2 yi(—w2) 3 yive yi(—x2) 3
+ ¢ U(d,€)< )mP21 A —x1 det Y1 -1
1
1 1
- [V y1(—x2) B
e Y1 _5‘31 7% | e(—=myz1 — moxs)drydaadas .
1

Calculating the integrals in the variable x1, x5 gives us the formula

1 13 3s —v 3s+v—1 s
Gvgi,mg(zas)zéﬁwmhowm 3F< 5 >F< 5 )(?J%yz) >

elM 0<d<2L
(de)=1

(f,M) Y2 2 Y2 )
/ |:¢ <U(d,e) (m(d,e) m(f,e))) + (;5 <J(d,e) <m(d,e) ml(d,e)>>:| 6(—m2x2)dx2 .
0

For the calculation of the integral in the variable xo use the Fourier expansion of
the cusp form ¢ at the cusp ag.). This gives us

1 1 g5, (38 —V 3s+v—1 s
Gng%@=®w%m%ﬁMyw3F< 2 )F<2>@@ﬂ

Z Z ZQ¢(de n| K,/,% <27T|n| Y2 >
e|M g<d< M n#0 M(d.e) M(d,e)

(d7e)_:(;i
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(f,M) n n
/ e<( —m2>x2)—|—e<—( —|—m2> x2> dzs .
0 M(d,e) M(d,e)

Note that m 4 | (f, M) implies that the exponential integrals are only non-zero
if mg = Since n # 0 this implies immediately mq # 0. We have

m(dﬁ)

G 1 (2.8) =0N $0my.0(1 = Gmayo Z Z [Da,e) (Mamae)) + Dae) (—mamae)] Ima| ™

elM 0<d<
(d,e)=1
2v 1% v 2v
ora(o-n) " (3(s—5) L (3(s—5) +3(%) —1
2 2
2(8 3 2v l+( _Z)+%
Y (Imaf y2)2 ™32 Ky gy, (2 [maf y2)

The explicit formula for the Whittaker function W(VI’VQ)(z,wQ) in Lemma (19.4]
in Appendix B finally gives the claimed form

G 1 (2.8) =0N 1Oy ,0(1 = Gmas0 Z Z [D(a,e) (Mamae)) + Dae) (—mamae)]

elM o<d<?L
(d,e)=1
(s—2,22) |ma|
Ima| Wy 270 1 2z, wo
1

0

For a general Maass cusp form the Fourier coefficients don’t have to be multiplicative, so in
the general case one cannot expect to be able to analyze the Dirichlet series Ay, m, (5, Iy M, dae)s Md,e)s P271)
more closely. But since the twisting with a Maass cusp form in the Eisenstein series is
linear, one can restrict to a basis of Maass cusp forms for I'g(M). Atkin Lehner theory,
see |2, thm. 5], implies that one can assume ¢(z) = ¥(gz) with ¢ a newform for I'o(m)
with m | M and g a proper divisor of % Since a newform is an eigenfunction of all
Hecke operators, even at the ramified primes, the Fourier coefficients at infinity of the
newform are multiplicative and fulfill the recursions in Theorem [20.2] in Appendix C. In
the paper [1] it is proved that for a newform with squarefree level the Fourier coefficients
at any cusp are identical with the Fourier coefficients at the cusp co up to multiplication
with a character. Note that in the case of a non squarefree level this is no longer true, so
there exist cusps such that the corresponding Fourier coefficients do not satisfy any Hecke
relations. These results were stated and proved for modular forms, but it can be easily
seen that the same results are true for Maass forms. With this in mind we can make the
assumption that the sequence ¢4 consists of the Fourier coefficients of a newform at the
cusp oo and begin to analyze the Dirichlet series A, m, (s ( Iy M, @ae)s Md,e)s P2, 1) It
turns out that this Dirichlet series can be factorized into an Euler product whose factors
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are the power series defined in chapter 9 and 10. We start specifying the theory of power
series developed in chapter 9 and 10, so that it can be applied to the Fourier coefficients of
the twisted Eisenstein series. Let ¢ be a newform of level M and let ¢(n) denote the n-th
Fourier coefficient of ¢ at the cusp co. Use the notation introduced in the part “Power
series” and associate to any prime number p the power series and variables

X :=p'=% (14.5)
Yi=p ! (14.6)
Ay = cb(p ) (14.7)
Sp =1— AlX 4 YX2 —-1— ¢ (p) p7(3371) +p71p72(3871) (148)
Tp -1 — pAlX +p2YX2 —1— ¢ (p) p—(35—2) +p—1p—2(3s—2) (149>
Fy(s,a, ) = Zp (1=3s)n Z ) (p”*“*%) p*kcpn_k(ﬂ)cpk (»%) (14.10)
n>0 0<k<n
2k<a+n
(s,a,8) = Zp (1=3s)n Z o (p”+°‘_2k_1> p_kcpnfk(ﬁ)cpkﬂ(po‘) (14.11)
n>0 0<k<n
2k+1<a+n
Hy(s, o0, 8) = Y _pU=3Im¢ (p°7) cpn () (14.12)
n>0
(s,,8) : Zp (1=3s)n Z ¢ (p'8+”+1_2k) P epni-k(a)ep <pr) (14.13)
n>0 0<k<n
2k<B+n+1
(s,a, ) : Zp (1=3s)n Z o <p°‘+" %) -k cpn—k (B)cpesr (p) (14.14)
n>0 0<k<n
2k<a-+n
(s,a, ) : Zp (1=3s)n Z o (pa+"_2k_1) p_kcpnfk(ﬁ)cpkﬂ (»*) (14.15)
n>0 0<k<n
2k+1<a+n
Ly(s,a,8) =Y pU=3I7¢ (p*7) cpn (B) (14.16)
n>0
S v, ,8 Zp (1-3s)n
n>0

o <pﬁ+1+”) cpn+1 (@) + Z ¢ (p’BJrnH*%) pikanH—k(O‘)Cpk (p'g> - (14.17)
k
QkISSBEnn-&-l

Note that for (p, M) = 1 the Hecke relations for the Fourier coefficients ¢,» are identical
with the recursion for the sequence (Ay), cy. Also note that the polynomials Sy, T}, are
the Euler factors at the unramified primes of the L-function of ¢. We will now use the
theory developed in chapter 9 and define for each prime a holomorphic function, which
occurs at the unramified primes in the Fourier coefficients of the non degenerate terms of
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the twisted Eisenstein series and has the right transformation behaviour.

DEFINITION 14.4. For any prime number p and nonnegative integers «, 5 define the mero-
. . . (s—ﬁ)a (QS—E)ﬁFp(S:a,PB) :
morphic function B, (x,a, ) : C = C, s — p\*"2/% i RO The function B,

is holomorphic and obeys the transformation law B,(1 — s, «, ) = B(s, 5, a).

PROOF. The proof follows easily from the transformation law in Lemma [0.5 and
p2X 1y —1 = pl=3(0-3)  We have

%p(l -5, O"ﬁ)

_ ((1=9)=2)a, (2(1-s)—2)s Fp(L = 5,0, p7)

—p Jou( )8 Lp s

_ (~t-s)a, (~1-25)8 ( 1-3s\—a—B ( —1\—B Fp(s, 5, %)
p p (pp' %) (r1) 5

_(5=3)8, (25-3)a E(5, 8. p%)
Y P Sp(s)

:%p(sv Ba OZ) .

With the same notation as in Theorem |14.3| and under the assumption that the sequence
(¢(n)),,en consists of the Fourier coefficients of a newform for I'g(M) at the cusp oo, the

following explicit formulas for the Dirichlet series Ay, m, (s, 7, M, ((;S(n))neN ,m, P271) are
valid.

LEMMA 14.5. Let my = [[p®, ma = [[p% be positive integers with corresponding prime
J2 p
decompositions and m be a positive divisor of (f, M). The explicit formulas

Aml,m2 (35 - 17 fa Mv ((b(n))nEN , M, P2,1)

8
= (f, M) Ly(3s — 1)~ ~(s=3)anp=(25-3)0sg (5. a1, Tp (5, ap, )
(f, M) Ly(3s — 1) (p};)[le P (5, 0, By) pHm o@D

[ folenr) | (1 G| [ [ oot
1— —(3s—1) S 1— —(3s—1)
) o(p)p o p(8) (3 (p)p
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and

Am1,0(33 - 17 f> M7 (d)(n))neN , 1, P2,1)
B Ly(3s —2) o (1 = ¢(p)p=B=2) J, (s, p, 0)
= (f7 M) m ( H ¢ (p )) (H 1— <Z>(p)p_(3s_1) )

(1- ¢(p)p7(3872)) Ky (s, ap,0) Tp(s)Gp (s, ap,0)
H H Sp(s)

f
Pl Plran

1 — ¢(p)p=Gs=1) I Sp(s)

) plrmh

H (1 - ¢(p)ip_(3s_2)) Ly (s,0,0) H Tp,(s)Hp (s, ap, 0)
%M

p\(

for the Dirichlet series A, « (8, [ M, (o(n))pen > M, Pg,l) in Definition are valid.

PROOF. Like in the proofs of the Lemmata we handle both parts together,
so assume for the present that ms is a nonnegative integer. In the beginning split the
summation in the inner sum of Ay, m, in the way t = al +¢ with 0 < [ < (f, M) and
0 <t < a. This implies (a,t) = (a,f), also note the transformation of the ged-condition

1= (%,(a, t)) = (%, (a,f)). We obtain

Aml,mz (57 f7 Ma (¢(n))n€N ’m’ szl)

mim_—= ~ 1+t
B s (a,t) -1 a -
TP PR ¢( ) ) @07t (ma® ) capton)
a>1 0<I<(f,M) 0<t<a

<%,(a,t~)):1

Fadlmim 2y

s mme S 1 t
=(f.M)Y a > ¢< et )(a,t) e<m2a> Cf(ap(m1)
a>1 0<t<a ’

(%(a,f))d

fla,b)lmam

L
(at)
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In the first step split the summation in the inner sum of A,,, ,, in the way t = tito

with ¢1 | @ and (tg, %) = 1. This implies (#,a) = t1, also note the transformation of the

ged-condition 1 = (% (a, t)) (f’ ) We obtain

Aml,mg (safv M:( (n))n€N7m P2 1)

UDSESND DRND DFE

a>1 ti|a 0<tq <—

to
)h e may | ey (ma)
o
(F1)=1 (tzvtl)—l

ftllmlmﬂ

M)y a Y ¢<m1m> “lea (ma) epr (ma)

a>1 ta

(F4)=1

ft|m1m%

The multiplicativity of the Fourier coefficients (¢(n)),,cy implies that the Dirichlet series

can be factorized. In order to do this decompose m; = mgl)mg2)mgg)mg4)m§5)m§6) and split

the summation in the outer and inner sum a = ajasagaqasag and t = t1totstststs according
o0
to the divisibility conditions <m§1)a1t1,N) =1, m( )agt | m®, mgg)agtg | (M> ,

m
N
f

mg4)a4t4 | <fM)>OO, m§5)a5t5 | (%,M)oo and mgﬁ)a6t6 ] <1va)> . Note that the

ged-condition 1 = (?t) — ( : ,t1t2t3t4t5t6) — ( : ,t5t6) — tste implies t5 = tg = 1.
(k)

Hence the divisibility condition ft mlma is equivalent to the four conditions 2 | m3" ay,

for k =1,2, (f’ t2 | my %) 45 and 2L ) a,. We obtain

(fM) | m;

m1,m2( f7 a(¢( ))neNvma P2,1)

mgl)al m§2)a2 mgg)ag m§4)a4 (5)
o —S8
=(f,M) Y (aiazazasasa) > el Uiy 2™
(a1,N)=1 ti]ay ! 2 m "3 (f,M) 74
- t
a |(<1?,|fr,7u))°° tz}gg
7; . talag
CL4|<7(fJM)>Oo t2|m12)a1
asl (3 .1) t5lmy”a;
N o (.fﬂM)t2| (3)
f
ag| f
Qywﬁ i

m, ), 3), 4) (5) (6)
(el 05518 (M) s (5200 ) (0 e i)

a5mg6)a6)



=(f,M

PRI

alm®> tla

2. At )

a\(M *°

(1)
my°a
| S 5 o) o)
(a,N)=1 tla
tQ\mEUa

)a> tilc% (m2)cme (m§2)>

2 |m(12> a

) tla
m M) 421,
m 1

(4)

mqa

(g ) g (o)

e (f,M)
(f,M)

f tQ‘m(l‘l)a

al (F.0)” ( i >°°

(F)
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Next factorize each of the six Dirichlet series into an Euler product. This gives us the

formula

ml,mQ( f v(¢(n))neNamaP2,l)

:(f7 M) H Z —ns Z (Z)( ap+n— 2k:) k - k(m2)cpk (pap)

(p,N)=1n=0 0<k<n
2k<ap+n
9
I3 3 o (o) r e stmalpn 47)
p|m n=0 0<k<n
2k<ap+n
o0
[T X 3 o) epetmadepen ()
| (f;M) n=0 0<k<n

2k+1<ap+n
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H ZP‘”S S o (p ) e ma)en ()

p| 0<k<n
(f.M) M) 2k+1<ap+n

H Zp "o (p*rt") epn(ma) H ZP "¢ (PP T epn(ma)
¥, ;

) Pl "

8 (5 )

Finally we distinguish between the cases whether my vanishes or not and use the notation
for the power series introduced above to express the factors in the Euler product.

(1) 1. Case: mg # 0. Use the notation from Definition and note that the
polynomial S}, coincides with the p-th factor in the Euler product of the L-function
associated to the sequence of Fourier coefficients ¢ at the unramified primes (see
Appendix C Theorem for details). We obtain the claimed formula

Aml,mg (35 - 17 fa Ma (d)(n))neN , T, P2,1)

a0 [ 1 (o)) (TL8 (o)) [ T1 0 ()

(p,N)=1 plm »| (f,M)
m

H Gp (s,ap,p5p> H L, (s,ozp,pﬂp) H H, (S’ampﬁp)

p‘ﬁ |<f7M> p|(

,M)

~z
~|

=My | [T pCm2)orp= (20, (58, (5, 0, )

(p,N)=1

H Jp (s, ap,pﬂp> H K, <s,ap,pf81’)

M
plm m%

G s,ap,pﬁp L, s,ap,pﬁp H, s,oap,pﬁp
P

N

7

!
Pl pl(%M) ol to
77

— (f, M) Ly(35 — 1) p=(=2)erp=(25-3)5r 3 (5, 0, By)
(p,N)=1
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JIp (3, ap,pﬂp) K, (s, ap,pﬁp)
(H oo | | 50, e

M
plm p| (fm )

Gp (57041),}?6") Ly (37 apapﬁp) Hy (s, O‘P’pﬁp>
II‘4i55747 1 1— ¢(p)p~ (D Il BEON
p'(%’M> I

(30

i
Pl

(2) 2. Case: mg = 0. Use the explicit formula for F, in Lemma and extract a
quotient of shifted L-functions associated to the sequence of Fourier coefficients
¢. We obtain the claimed formula

Aml,o(gs -1, fa M, (¢(n))n€N , M, P2,1)

(f,M)( H Fp(5>ap70)) (HJp(s,ap,O) H Ky (s, 0p,0)
(p,N)=1

M
plm ?| (fm )

H Gp (s, ap,0) H Ly (s,p,0) H H, (s, ap,0)

p\ﬁ p|<7’M> P\(ﬁfiM)
v,
Lo(35—2) . (1—o(p)p~®2) J, (5,0, 0)
= ’M _— P
(1 - ¢(P)p_(38_2)) K (s,ap,0) T,(5)Gp (8, 9, 0)
g& 1 —¢(p)p=3s=1) le Sp(s)
“m (f,M)

H (1 - ¢(p)p7(3572)) Ly (s, Qp, 0) H Tp(s)Hyp (5,2, 0)

. 1—¢(p)p~Bs=D) N Sp(s)
Al ) plrgtry






CHAPTER 15

Fourier expansion of the Eisenstein series E(z,s, f, ¢, P12)

In this chapter we do the same calculations for the Eisenstein series E(z,s, f, ¢, P12) as
we did for the Eisenstein series E(z,s, f, ¢, P»1). Again we start with the definition of a
certain family of Dirichlet series which occurs in the Fourier coefficients of the Eisenstein
series.

DEFINITION 15.1. Let N be a squarefree integer, f, M positive divisors of N and 3 =
(1/1;471(71))(,c Ln)eNxNoxN & Sequence of complex numbers. Further let n = (n(k, 1)) 4 penxn,

be a sequence of integers such that n(k, () is a divisor of (fk,1) (%, M) . For a positive inte-

ger mgy and a non-negative integer m; define the Dirichlet series Ay, m, (s, f, M, 9, n, P 2)
associated to these parameters by

Am17m2 (37f7 M,'l/},n,PLQ) =

s mzn(a,t)(fl;iat) y t
= - " <(fat) e <_m1fa) C(fat) (M2) -
ozt 0<t<fa

<a7¥):1 (fa7t)|m2n(a,t)%

Now we are prepared to state the main result in this section.

THEOREM 15.2. Let N be a squarefree positive integer and f, M positive divisors of N.
Let ¢ be a Maass cusp form for T'o(M) with eigenvalue v(v—1). The associated Eisenstein
series G (2, s, f, ¢, P12) has the explicit Fourier expansion

G(Z,S,f, (ba P1,2) = Z GO,mg (Z,S,f, (bv P1,2)+ Z Z Z Gml,mg <<'Y 1> Z,S,f, ¢a P1,2> .

ma=0 YEPrpin \GL2(Z) m1=1m2=0

Recall Lemma in Appendiz C and introduce for the coprime pair of integers e |

N A
(%,M) and 0 < d < Q and the row vector (a,b,c) with coprime integer en-

tries the following notation. Let a(qpqe) = i :d : denote the cusp for T'o(M) asso-
- / (fb)a (5:m) M
ciated to higp 4.e) = <W’M> ((fa,b)’M’ 1, b) d, >~ and Mg pde) = Fnas =

141
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M its width. Let

() (#2 0000) (4222

o - ( 1 0) <1 a(a,b,c,d,e)) < M(a,b,de) >
(a,b,c,dye) - h(a,b,d,e) 1 0 1 lim(a,b,d,e)_l

be a scaling matriz associated to the cusp a(qp d.c), where the integer a g p e q.c) depends only

on the integers f,b),c,d,e, f, M modulo M . FPurther
fab)v( ’ ) y &y €5 (fM)((f’b)abe><d (1}7,M)>
(f,b>7 (fa,b)7 1 ) e
let Q(apde) = (qﬁ(a’b’d,e) (n))neZ denote the sequence of Fourier coefficients associated to

the Fourier expansion of ¢ at the cusp a(qp d.e)-

Let my, mo be positive integers, then the following explicit formulas for the Fourier coeffi-
cients are valid.

(1) In the non-degenerate case we have
_3
Gonyms (28, f &, Pr2) = 21725 /ma [ma] [ma|* "2 my” 2
Z Z Am1,m2 (35 -1, f: M, (d)(a’t’d’e))(a,t)eNxNo ) (m(‘I’tvdve))(a,t)eNxNo aP1,2>

el (%.m) o<d§(fM)
(d,e)=1

2v _5) my ’m2|

(2) In the first partially degenerate case we have

| |

Gony 0 (218, £,6, Pr2) = g [6 (1) + 6 (=ma)] | > W™ 9) mil | 2w
1
(3) In the second partially degenerate case we have
Gomy (2,5, f, 6, Pra) =2f75 [mo* ™" Y >
|<JJ\‘]’M> 0<d§w
(d,e)=1
AO,mz <35 - 1’ f7 Ma (gb(a"t’d’e))(a,t)ENXNo ) (m(aﬂt’d’e))(a,t)ENXNo a-Pl,Q)
_v 2v ‘m2|
Wl(j) 5%) 1 Z,wy
1

(4) In the totally degenerate case we have

Go,o (szafa¢apl,2) =0.
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PROOF. Like in the proof of Theorem [T1.3] without loss of generality it can be assumed
Y1Yy2
that z = Y1 € 3. We start the calculation of the Fourier coefficients dividing
1
the summation in the Eisenstein series into several cases according to the Bruhat decom-
position in Definition Assume for the present that my, mo are arbitrary integers, then
we have

1 1 gl 1 z9 3
Gmyms (2,8, f, ¢, P12) = / / / G 1 x| zs,f,¢, P2 | e(—mizy —maoxe)dridredrs
o Jo Jo

1
N o) —
N -1 (f ’M> Yokl o1 1 x2o 3
— M Z G 1 x| 28 f,¢0,P12 | e(—miz; — maoxo)daidaades
f k ’
k=0 0 J0 1

2,8, f, 0, P12 | e(—miz1 — moxg)daidrades

|
() 2 () ()
|

YEL (f,M,P1 2)

(%M) 1 1
¢ (mp, | v Iz )z
0 o Jo 1

e(—mix1 — moxwe)dridredrs

1 T2 I3
1(25,—5) v 1 x| 2 P1,2

3 .
=: ZG%)LmQ(z,S) .
=1

In this calculation Lemma [14.2| was applied to the integral in the variable x3. The same
argument as in Theorem [14.3| gives that the Eisenstein series is periodic in the variable
xg with period 1. Using the explicit description of the sets I'; (f, M, P; 2) in Lemma
and the explicit formulas for the values of the (55 g (*, P12)-function and for the Levi
components on these sets in Lemma and [7.4] we start calculating each of the three
summands above. For further calculations note first that Lemma gives the splitting

- 1 0\ (1 aped, - milbd
Q(a,bcde) =7 <h(a,b,d,e) 1) (0 (@ 1c e)> = Y0 (a,b,c,d,e) ( (a.b.dse) 1 M(a,b,d,e)>

(15.1)
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with 4 € T'o(M) and a4 pcde) € Z depends on Ejﬁ’b)b‘ﬁ, (f,b),c,d,e, f, M only modulo

a,
M
/ (f.b)a (F2)
(/o) ({15.00.10) (22
(1) We start with the most difficult part, the calculation of G,(727m2. We have

-1
G%,mg(z 5) = <J}7,M> a33sT (352_V>r<33+27/—1> Z Z

el(¥:4) gcac T2

> > / () /01 /01 ¢ <Q(a,b,c,d,e) (g T)) (y193)°

a#0  beZ cEL

(a71}/>:1 (fa,b,e)=1

3s

[fa®yiys +y3(b — fax1)® + (c — faxs + (fazy — b)z2)?] 2 e(—mizy — maxs) dzidasdas ,

with the coefficients:

b)? \/f2a2y1y2 +y3(fazy — b)? + ((fawy — b)xy — faxs + c)?
(fax1 — b)% + f2a?y} ’

_(fa,b)er N (fa,b)? f2ayixg + (faxs — c)(fary —b)

- fa fa fra%yi + (faxy —b)?

y =y1(fa,b)

In the first step pass to the condition a > 1, extracting a factor 2 and substitute
the splitting in (15.1) for g, ¢ 4,)- Note that ¢ is invariant against the center
R*. After that split the summation over ¢ in this way ¢ = <%, M> fak + s with
keZ,0<s< (%,M ) fa. Note that the gcd-condition transforms as follows

1 = (fa,b,c) = (fa, b, (%,M) fak+s> = (fa,b,s). Further the properties of
the scaling matrix imply o(qp.c.de) = O(ab,s,d,c)- We have

—1
Gy (2:8) = (J}T,M> (y193)° 72T <352_ > r <35 +v— 1) > >

el (M) o d§<%¥ )
A G )

| — |
Kﬁ
[}
IS
[
N
—
Ny
no
+
Ny
no
=
|
~
Q
8
_
7N
v
|
—

IS
7 N\
8
w
|
7N

~
~~_
x5
~_
-
IS
8
—_
|
>
S~—
8
[\
N~
%
|
(V]
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e(—mix1 — moxe)dridredrs |

with the coefficients:

fa b)2 \/f a?y?y3 + y2(faxy — b)2 + ((faa:l —b)xs — fa (l‘3— (%,M) k) —|—s>2

M(a,b,d,e) (famlfb) +f2a2y% )
(fa,b)sr (fa,b)r (%, M) k (fa, b)2 f2a2y%x2 + <fa (H?g - <%, M> k) — s) (faxy —b)
“m fa+ m +m fa f2a2y? + (faxy — b)? ’
(a,b,de) (a,b,d.e) (a,b,d,e) 'h ax1

In the second step recall that mqpq4.) | (fa,b) ( ) So since G(0(q,p,s,d,e)?)
(fap)r(F.M)k

is periodic with period 1 in the real part, the integer summand in

M(a,b,d,e)
the variable x can be deleted. Next pass to an infinite integral in the variable x3

through the shift x3 — z3 + (%, M) k. Then substitute x3 — z3 — (ﬁml}%
in the infinite integral in the variable x3. After that split the summation over
b in this way b = fak 4+t with & € Z, 0 < t < fa. Note that the gcd-
condition transforms as follows 1 = (fa,b,s) = (fa, fak+t,s) = (fa,t,s). Again
the properties of the scaling matrix and the width imply the transformations
O(a,b,s,d,e) = O(a,t,s,d,e) and M(a,b,d,e) = M(a,t,d,e)- We obtain

Gﬁ,ﬂ,m(z 5) =2 <JJ\Z,M>_1 (ylyg)%%—?’sr <382— y) . <33+2,,_1>
SIS 5

el (%) 0<d< (% <aaﬂ21 1keZOSt<fa055<(%M)f“
(d,e) f ((fa,t),s)=1

/ // (a’t’sde (3 T))[annyngry%(fa(m—k) B2 + f2a2a2]F

—mixr1 — mgl’z)dl‘ldl‘gdl‘g s

with the coefficients:

- (fa,t)? \/f2a2ydys + v3(fa(zy — k) — t)2 + f2a22

m(a,t,d,e) (fa(xl - k) - t)Q + f2a2y% ’
__Wat)sr _(fo, t)?  flayiwe + (faxs + (fa(zr — k) — t)xo)(fa(z1 — k) — 1)
m(a,t,d,e)fa m(a,t,d,e)fa f2a2y% + (fa($1 - k) - t)2 .

In the third step pass to an infinite integral in the variable x; through the shift
z1 — x1 — k. Then substitute x;1 — x1 — ﬁ in the infinite integral in the variable

x1 and pick up an exponential e <—m1 ﬁ) This gives us
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xr =
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N -1 1_ 3s —v 3s+v—1
T

DS (-mi) T
7 a>1  0<i<fa 0<s<(&,M) fa
((fa,t),s)=1

_ 3s
/ / / < (a,t,s,d,e) <y T)) [f2a2y%y2 f2a2y2$1 f2a 1‘3] °

—Mmi1x1 — mgiﬂg)dl‘ldl‘QdI‘g s

with the coefficients:

_(fa,t)? VPPaPylys + fPaPysal + fPalay  (fat)® ylys +ysat + a3
T Mt de) f2a%a? + f2a?y} - M(atde)] @ x3 +yi ’
(fa,t)sr (fa,t)?  f2a®yixa + (faxs + faxixo)(far)
Mgt de)f@  Mardefa fra?y? + fra’a}
__at)sr  (fat)* o (fa,t)’ Sy
Matde)f@  Mapde)fa Mat,de)fayi + 27

Now Theorem in Appendix C provides the Fourier expansion of the Maass
cusp form ¢ at the cusp a(g¢q.)- In the additional calculations these Fourier

expansions are used to clear up the above expression. We have

N ! s 1 4. (3s—v 3s+v—1\ ,
Conma( )_2<f M> (32) 7r23F( 2 >F< 2 >f3

XX X ety e(my) X

el (§) 0<d<ﬂ 5 Ost<fa 0<s<(§.0) fa
fom (F) ((fart),$)=1
(fa, )2 V/yiy3 +y§x%+x§
Z2¢(atde) \n\ Y1 5
T n#£0 m(atde)fa IE1+Z/1
K, 1| 27|nly (fa,t)*  Vyiys + y5] + a3
v M(qtde)f@ 22 + 42
(fa,t)sr (fa,t)? (fa,t)? 311 )) e T
eln + o + Y15 +ysxy] + a3 2
( <m(a¢vdve)f @ Mrdefa M(atde)fayy + ] [viv2 + vz + 3]

e(—mix1 — mozo)dzidzedes .

Simplify the above terms and extract an exponential integral in the variable xs.

This gives us
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Ga) s (2, 9)
sl 5o 1 g (3s—v 3s+v—1 1,
_4<f,M> Y 2y27r23I‘< 5 )F< 5 )f 3 Z Z
N
el (1) g (F1)
(d,e)=1
Z a_%—?:s Z Z¢ i |n’€ <m1t> (fa t) Z e <(fa’t)nTS>
(I 8 )
a]\?l 0<t<fa V M(at,de) n#0 fa 0§s<(%,M)fa m(a7t7d7€)f(l
()= (fart)9)=1

NI

_3s 9 9 _1
2 (ml +y1) 2 e(—myxy)

1 _ n(fat) t e R I I I
—me | 22 dxg/ / [ylyQ +ysx] + azg]

( ]n[ fat y\/y1y2+y%w%+x§>e< n(fa,t)? 3w
my

m(atdefa $1+y% atdefayl

) dl’ldl‘g (15.2)

Through the calcualtion of the series in the variable s and the integral in the
variable xo the double integral is separated from the Dirichlet series. Begin with
the calculation of the innermost sum in the variable s and extract a geometric
sum. First note that Lemma [3.4] implies that  can be absorbed into the sum-

mation. Then split the summation s = (fa,t)k +w with 0 < k < ( M) (fj;“t)
and 0 < w < (fa,t). We have

5 e<mmmM>: 5 e(mmww> e( mm@i>
M(at,d e)fa m(a,t,d,e)fa fa M(q,t.d,e) TGah)

f )

) o<w a, N
o<s<(¥, _)fa ((}a,f),(f:):t)l o<k< (5.M) s
((fat),s)=1
N

_ <,M> fat 112( n(fa,t)fa > S e <”(f“’t)w> . (153)

/ (fCL, ) M(q,t,d,e) Fad) /) 0<w<(fa,t) M(at,d,e) fa

((favt)»w)zl

If "(#t)a is an integer, which is the only relevant case since otherwise the

M(a,t,d,e) (Fa,t)
above geometric sum vanishes, the exponential integral in the variable x5 is non-

zero if and only if mo = m(% Note that n # 0 implies that this equality
(a,t,d.e) (fa,t)

can only hold if my # 0. So one gets the formula

1 t
/‘e<<7ﬂﬂ%1u_nm v ) des =6 gen (15.4)
0 m( 7 ) ’ fa

a7t)dae) (f(l,t M (a,t,d,e) (fa,t)
So put n = %tt;l;)fa and the other results in (|15.3)), (15.4) in the formula

1} for G,(%i,mz and simplify the terms. This will give us the claimed separation
of the double integral and the Dirichlet series. The identity

N 1 - 3 -1
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D DD DD D

ol (M) geqe (T4) 92 1_
(fze)=61 (a’T)_
Z 1 v <m2m a,t,de)fa \/'T?’LQmatde . —mli (fa 1)
a,, € t fat fa )
0<t (a,t,de fa
(fa,t>|m251:,fz,e)(f{l—it)
N a 1_3s _1
o) o y1y5+y3x%+x§]4 P (a2 4 4?) " e(—mi)
f (fa,t) o< <(f t
((fa,t),w
K, 1|27 |ma|y \/y1y2 i ygml o ( ) dzidxs
2 oy +yi

- 4(1 — (5()7mz)yi"'%y%s7-‘-§*3811 < ) < > fl 3s Z Z

6‘(1” >O<d< % )
(d,e):l
fa
Ma,t,d )7 (Fa i
5 0<§<:fa e ( (fa,t) ) (fa.t)! ( m fa> C(fa,t) (M2)
(a%_) 1 (Fat)lmam(a,ia.e) s

o0 1_3s _1
/ ylyg + y%x% + x%] 42 (x% + y%) 2 e(—myxq)
— o0

2 2,..2 2
Y3 +ysrt+ o 371
( |m |y 1 2 5 2 21 3> e <m22_{_2> dfxldfﬂg

8

/

1+ Y1 Yy — a9

holds.

To complete our calculations we distinguish between the cases whether m; van-
ishes or not. In the upcoming calculations use the notation from Definition [15.1
for the Dirichlet series.

(a) 1. Case: my # 0. First substitute 1 — miz; in the integral in the variable
x1, after that substitute 3 — —mimox3 in the integral in the variable 3.
Then expand the terms with the spectral parameters. We have

o5
G&i#@( 78) = 2(1 - 5O,m2)f1_38\/m |77”L2|S_g m? :
Z Z Aml,mg (38 — 1; fv M: (¢(a7t7d7e))(a,t)€N><N0 s (m(a’t’d’e))(a,t)ENXNo ’P172>
4(%]\4) 0<d< (F-m)
(d,e)=1

2v

2305~ 5)-1¥) i (3 U 5)) r (3 b= +3(F) - 1) (sl 2 % ()5
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N[
S

w[§

SIE

1-3-5-3(

/oo /OO [(m1y1)2(‘m2’y2)2+(\m2’y2)2 x%—l—x%]

V)2 (Imal 2)® + (jmal y2)? a2 + 3 s
e —(— dz1dxs .

(magn)? +a3) * e(—a1)
(

)1 |27 (m1y1) 5

(may1)” + 23 miy1)® + a3

Lemma m part (1) in Appendix B implies that the above double integral
is a Whittaker function of the type Wl(’yll’w)(*, wi). So we get

5
285

_3
G oy (28) =2(1 = So,my ) f1 725/ my [mo] |ma|*”2 my

Z Z Am1,m2 (38 - 17 f7 M7 (¢(a7t7dve))(a,t)€N><N0 ) (m(a7t7d’e))(a,t)€N><Ng 7P1,2)

el (%) 0<d§@

(d,e)=1

(S—Z 7) |m2‘ my Ya2y1

Wl 1 2 ’m2| Y2 , W1
1 1

So in the last step apply the transformation laws [4), (3.24),(3.16)] for the
Whittaker function and use the right invariance of the Whittaker function
against the maximal compact subgroup O(3) and the center R*. This gives
us finally

o
GSLLW('Z’ s) =2(1 - 50,m2)fl_3s\/mhnz\s*g mf ?
Z Z Am1,m2 (35 -1, fv M, (¢(a’t’d’e))(a,t)ENXN0 s (m(a’t’d’e))(a,t)ENXNo ’P172)

el <%’M> 0<d§@
(d,e)=1

my |ma

(b) 2. Case: m; = 0. Substitute x3 — —mox3 in the integral in the variable x3,
then expand the terms with the spectral parameters. We have

Gy (:5) = 2(1 = o) 17 ol
Z Z AO,mQ <33 - 17 fa Mv ((b(avtvdve))(a,t)eNXNo ; (m(avtvdve))(a,t)eNxNo 7P1,2>
el (F) g (F20)

2ﬂ—3(s—§)—%(%)+%r (3 (S — g)) r (3 (S — %) +3 (%V) - 1> (‘m2’ y2)2(5*%)+2§" ylé""(s_%)"'%(%y)
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1_38(_vy_3(2v 1
S b+ Gt 59 iy
yi(lmaly2)? + (Imol y2)?2af + 3 T123
3 Y1 + g yi + a7

Lemma m part (3) in Appendix B implies that the above double integral
is a Whittaker function of the type W(W"/Z) (,w1). Then apply the transfor-
mation laws [4, (3.24),(3.17)] for the Whittaker function and use the right

invariance of the Whittaker function against the maximal compact subgroup
O(3) and the center R*. This gives us finally

Gl (28) =2(1 = G, ) f1 75 o[
> >, Aom (38 - LA M, (d)(“’t’d’e))(a,t)eNxNo ’ (m(a’tvdve))(a,t)eNxNo ,P1,2>
el (5:M) g g (F4)
(die)=1
(22,5-2) |ma Yay1
Wo,l [ma| Y2 , W1

=2(1 = 8o,y ) 1% o™
Z Z AO,mz (33 - 17 fv M7 (¢(a,t,d,e))(a7t)€NXN0 ) (m(avtvdve))(a,t)ENXNo 7P1,2>

(2) We proceed with the calculation of qui,mT It turns out that this part of the
Fourier coefficient always vanishes. We have

N - 1 3, (3s—v 3s+v—1
G%’m(z’s):%’f(f’M) i 3F< > >P< > >Z 2

b#0 c€eZ
(bye)=1

[ (e i)

(193)° [Y30% + (¢ — ba2)?] 2 e(=miry — moze)dridradrs .

Now Theorem in Appendix C provides the Fourier expansion of the Maass
cusp form ¢ at the cusp co. This gives us
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s 1 35 (35—V 3s+v—1
GP) 1 (2,8) = O p(y1y3)*m2 3F< 5 >F< 5 )Z >

b#0 c€Z
(b,e)=1

1 1 1
/0 /0 /0 1;)2¢(n)\/|n| y1\/b2y§ + (bzg — C)QKuf% <27r |n| yl\/be% + (bay — C)2> '

_3s
e (ncx; — nbxs) [y%bQ + (¢ — bl‘2)2] 2 e(—myx1 — moxg)dridaades .

Note that we can extract the exponential integral in the variable x3. Since n,b # 0
this integral vanishes

1
/ e(—bnxs)drs =0 .
0

So this part of the Fourier coefficient always vanishes:

(3)

(3) It remains to do the easiest part, the calculation of Gy} m,(z,s). Again Lemma
gives a description of the set I's (f, M, Py 2), which consists of two diagonal ma-
trices at most. Then use Lemma to calculate the values of the I(o, ) (x, P12)-
function directly. We have

—1 ﬂ
() . N %75 3s—v 38+V—1 fo
Ot =y (Foar) - wboor (B ) (B )/ //

1 1 29 x3 1 1z 3
¢ | mp,, 1 12| 2| | Ls—s) 1 1 x| 2 P2
1 1 1 1
—1 1 zo x3 -1 1 xo w3
—+ qb ‘(I’LPL2 1 1 T | 2 I(QS’,S) 1 1 X1 | =, P1,2
-1 1 -1 1

e (—myix1 — maxy) dridrades .

To simplify the above terms use the right-invariance of the (55 ) (*, P12)-function
against the maximal compact subgroup Oj in the second summand. This gives

us
3s — 3 -1
i =aehr (S22 (B =) [ [
-1
Yiyz2 Yirz2 X3 Yi1y2 Yira2 I3 - Y1y2 Yir2 I3
¢ | mp, y1 Tl det y1 71 | v x| e |7

1 1 1
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Yy1y2 yl(*fz) €3

Yyi1y2 yl(*@) x3 -
+¢ | mp, Y1 - det Y1 —x1
1 1
-1
Y1y2 Z/l(—$2) T3
I Y1 —T1 €1 |_SS] e(—miz1 — maxo)drdaadas .
1

Calculating the integrals in the variables x5 and z3 gives us the formula

1_g¢ 3s —v 3s+v—1 —5, _1 _1\-3s
ng,mz(z,S) :5f,N5m2,07T2 3 r ( 5 > T < 5 ) (y%yQ) (y1 lyg 1)

[la(( ) + o((" )] eccmman.

For the calculation of the integral in the variable x1 use the Fourier expansion of
the cusp form ¢ at the cusp co. We have

1_ g, (3s—v 3s+v—1 s
G o (2:8) = 0p N0y o2~ T ( 5 > r (2) (v193)
1
S 26(n) V[ yiK, s (2 || 1) / e (- my)ay) + e (~(n +my)zy) da;
n#0 0

Note that n # 0 implies that m; # 0 is a necessary condition for the exponential
integral to be non-zero. We obtain

G (28) =05 00,5 (1 — Sy 0) [@(m1) + $(—ma)] [ma]
o) s nyiap (3 (52— 8\ <3 (%) + 353 —5) - 1)

E14 2 v
(Ima yl)%+%+(57%)y%+2(8_§

The explicit formula for the Whittaker function of the type Wl(ff)l’VQ)(z,wg) in
Lemma in Appendix B finally gives the formula

G 1 (228) = b p0my (1 0) (B0 + G(—my)] |~ W) ma| | 2 ws
1
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For the calculation of the Dirichlet series Ap,, m, (s, f, M, 9, n, P12) we make the same
considerations as in the previous chapter and adopt the notation from there. Again we
will restrict our calculations to Fourier coefficients from newforms.

LEMMA 15.3. Let my = [[p®, mo = prBP be positive integers with corresponding prime
D p

decompositions and define for coprime integers d and e the positive divisor ng ¢y of (%, M)
by

With the same notation as in Theorem and under the assumption, that ¢ is a new-
form for To(M), the explicit formulas below for the Dirichlet series

As o <s, M, ((b(a’tadae))(a,t)eNxNo , (m(aﬂt’d’e))(a,t)eNxNO ,PLQ) in Definition|15. 1| are valid.

(1) In the non-degenerate case we have

Am1,m2 (35 -1, fa M? (¢(avtvd76))(a,t)ENxN0 ) (m(autvdve))(a,t)ENXNg aPLZ)

_ C(5-2)8, —(25-3)a ¢ (P!
:L¢(3S — 1) 1 H p ( Z)BPP (2 2) pSBP(Sa /pr ap) H 1— ¢Ep)p—(??s—l)
(p,N)=1 pln(d,e)

<Z> (pﬂp) ¢ (pﬁp) Mp(S,paP7/Bp) Ip(5>pap7 5}7)
Il i~ ¢(p)p~G=1) 1} Sp(s) pl(I;IM) 1 —g(p)p~ =) 11 Sp(s)

Pl
n(d,e) Pl (%,IW)

(2) In the partially degenerate case we have

AO,mz (33 -1 f7 M, (¢(avtvd75))(a,t)€NXNo ’ (m(avtvdve))(a,t)eNxNo 7P1,2)

_Ly(3s—2) 1T o (pgp> 1 (L =o(p)p~®2) ¢ (™)
(p,N)=1

Lg(3s —1) g 1— ¢(p)p—Bs—D)

—

(1 —p(p)p= =) ¢ (p) 1 Ty(s)o (p°)
< )
N

1 — ¢(p)p=Bs—b

(3.)

2

|

3
=N
)
=
|
k4
g
S—|
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(1 - ¢(p)p_(3s_2)) Mp(sv 0, 61)) TP(S)IP(S7 0, ﬁp)
11 1— ¢(p)p=Gs—b 11 Sp(s)

pl(f,M) Pl

PROOF. We proceed analogously to the proof of Lemma and handle both parts

together, so assume for the present that m; is a nonnegative integer. In the first step split
the summation in the inner sum of A,,, ,,,, in the way ¢t = t1t with ¢; | fa and (tg, {—f) =1
and note that this implies (¢, fa) = t1. The dependencies of ¢, 4¢) and Mm(g¢ 4 on a,t

in Theorem imply the transformations ¢(q ¢.d.e) = P(a,t1,d,e) A0 My(q t.d,e) = M(arty,d,e)-
We have

Aml,mQ <Sa I M, (¢(art’d’e))(a,t)€NxNo ) (m(avt’d’e))(a,t)ENXNo 7P1,2)

fa
—8 m2m(a7t7d7e) a, — t
— Z a Z Plartde) < Fat) v t)> (fa,t)"te (_mlfa> C(faz) (M2)

a>1 0<t<fa
(a3)=1  (ablmomeae s
fa
B . 5 M2M(a,ty,d,e) T Y a2 (ms)
- a (a,tl,d,e) tl 1 € my ﬁ Ctl ma
az1 t1lfa 0<ty<{e t
((l ﬂ)zl t%|m2m(a t1,d e)fa “
’f B L) (tQ,T;):].

s mamatde)fay
= X X e (") e ) e ()
a>1
a,%):l

t|fa
(

&2 |m2m(a,t,d,e) fa

The multiplicativity of the Fourier coefficients (¢(a,t,d,e) (n))neN implies that the Dirichlet

series can be factorized. In order to do this decompose mgy = mgl)mg)mgg)mgl)m;s)

and split the summation in the outer and inner sum a = ajasasaqas and t = tytotstyts
(o]
according to the divisibility conditions (mgl)altl, N ) =1, mg2)a2t2 | (ﬁ) , mg3) asts |

(4 N > 5 [e'¢)

(f, M), my Dasty | L and mg Jasts | (E,M> . Note that the ged-condition
(%) !

(a, % = 1 implies that a4, as,t4,t5 = 1. Next we examine the behaviour of the cusp and

its width under the above splitting. The identity

N
Mand) = (f M> <(f’t1t2t3)ala2a3 M, f t1t2t3> d w
(at,de) (f,titats)’ (farasaz, titatz) 7 7
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N
O F N (mer () as (fts) ) (5.m)
B ((fv ta2) (f, ts)’M) ( t1tats M, fots d, e
N
M) (as(fots) (%)
_(ﬂM)tB)( t3 7M’f’t3) ¢ e
=h(ag,ts,d,e) (15.5)

holds. So we get the transformations ¢, sd.e) = Pas,t5,de) N Mg tde) = Masts,de)-
Further (15.5)) delivers us precise formulas for the ged’s

: (15.6)

(M) = (0,5 ):< (£.M.13)

hatd.e) L(};’tS) , M, f, t3>

G 87

Recall that m (4, 1, ae) | M holds, hence the divisibility condition 2| MM (a5,t.d,e) f O 18

equivalent to the three conditions ¢? | mgl)al, 2| %mg)ag and 3 | (f, M) (f, M, m4y 1, d.)) mgS)ag.

Using (15.6) and (|15.7)) we obtain

Am1,m2 (Sv f7 M7 ((;S(aﬂt?d’e))(a,t)ENxNo ) (m(a’tidie))(a,t)eNXNo ) P1,2>

= > (a102a3)° >

(a,l,N):l t1|a1
R f
a2l (7hry) tQ\‘((J@M))”
a M) t3|(f,M)as
3| (f,M) 2imMay

2
3lms” phryaz

t% |mé3) (f:Mvm(a3,t3,d,e))(f»M)a3

W, mP L ay m® (M
my a1 2 (FM)72 My (f7 ) (f7 M, Mgzt ,d,e)) as 4 5 N
qb(¢l37753,d76) Qt% ’ L‘% : t% 238 . mg ). mg ) 7, M, M (a3,t5,d,e)

L 1), @) (3), (1) ()

titot3) ~ Ciytot (m My "My "My "My~ ) € f

(batats) ™ Cuataty (M3 My ma my my T )€k
ty to t3
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= Z (a1az2a3)™* Z

(a17N):1 t1|CL1
a2|(7(f§m>oo Zz‘\(i(]{%gm
%) ) a
aSl(f7M) :ﬂmgl)af
t%\méz)i(f’];vf)ag

£21m® (f,M,t3) f,M)as
3| 2 (%ﬁ,ﬂl,f,%)( )

(3) (f7M7t3)
@ _f My (fs M) 7oy
Paz ts,dse) mgl)al (M2 N2 ’ (D) -m§4) : (m§5)n(d )>
3,03,4, t% t% t% )
— 1 2 3 4 5
(t1t2t3) 1 Ctitots (mé )mg )mg )mg )mg )) c(L1 (f,J;vI)GQ ortyes (ml) . (158)

t1 t2 t3

In the paper [1, Thm. 1.1, Thm. 1.2] it is proved that for a newform with squarefree level
the Fourier coefficients at any cusp are identical with the Fourier coefficients at the cusp
oo up to multiplication with a character. So we can replace w.1.o.g. ¢4, ¢, 4.¢)(12) by ¢(n).
This allows us to factorize the Dirichlet series in . We have

Am1,m2 <57 fv M, (¢(a7t7d76))(a,t)€NXN0 ) (m(avtvdve))(a,t)eNXNg 7P1,2)

o ()0 (rPman) | 3w 5 o) e () s
(a,N)=1

tla
tz\mél)a
(2 ¢
m T~ a
- 2 (f,M) -1 (2)
S k]
>« >, ¢ 2 e (my” ) e s, (ma)
ol(7hny)” (2‘t>‘a t
’ 2Imy” e

>, a > ¢ o tle (mg’)) C(f.Ma (ma)
al(f,M) tla

2{mg® (f,M) LMD —a
(T’,M,f,t)

Next factorize each of the three Dirichlet series into an Euler product. This gives us

Aml,mz <57 fa Ma (qb(a’tvd’e))(a,t)eNXNo ) (m(avt’d’e))(a,t)ENXNo ) P1,2>
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= I ¢(p/3p+1) I1 ¢<pﬁp>

Pln(d,e) P|%

L S 3 o) tomtms ()

(p,N)=171=0 0<k<n
2k<Bp+n

00
[T 5 o)t st ()
n=0

N 0<k<n
(f, M) 2k<Bptn+1
o0
—ns
II >» >
p|(f,M) n=0 0<k<n

2k<Bp+1+min(1,k)—min(1,k,n—k+min(1,k))+n

b <pﬂp+1+min(17k)—min(l,k,n—k+min(1,k))+n—2k) p_kanJrlfk (ml)Cpk <pﬂp)>

= 11 ¢(p’3”+1) r]gd)(pﬁp)

pln(d,e) p| Tias)

1 3 3 o) etmis ()

(p,N)=171=0 0<k<n
2k§ﬁp+n

o.9]
[L 3 B o)t eastm ()
n=0

pl = 0<k<n
A0 2%k <Bptn+1
o0
( H Zp_ns (qb (pﬁp+1+n) Cpn+1 (my) + Z o <pﬁp+n+1_2k> p_karH»l—k(ml)Cpk <p5”)>> .
M) n=0 1<k<
p|(f,M)n QkSBpQ?;l

Finally we distinguish between the cases whether my vanishes or not and use the notation
for the power series introduced in the previous chapter to express the factors in the Euler
product.

(1) 1. Case: my # 0. Use the notation from Definition and note, that the
polynomial S, coincides with the p-th factor in the Euler product of the L-function
associated to the sequence of Fourier coefficients ¢(n) at the unramified primes

(see Appendix C Theorem for details). We have

Am1,m2 (35 -1, f7 M? (d)(‘lvt’d’e))(a,t)eNXNo ) (m(a’tvdie))(a,t)eNXNo aPLQ)
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p|n(d,e)

__ N f
L Pl

PIn(d,e)

=1L o(*) TI o’ )( [T v <283>%sp<s>%p<s,ﬁp,ap>)
(p,N

PPy

H Ip(s,p"", Bp) ( H Mp(s,pap,ﬁp)>
Pl

p\ﬁ (f.M)
5 ¢ (pﬁp'i‘l)
=Ly(3s — 1)~ H P (s— ﬁpp (2s Q)ap%p(s,ﬁp’ap)> ( H —
(( N)=1 PIn(d,e) 1= ¢(p)p (el
¢ (pﬂp) M, (3 p pa/Bp) Ip(sapap75p>

1;[ 1 - ¢(p)p=Bs=D) ll ( Il 5 1= ¢(p)p=(+=D 11 Sp(s)
o ) dem) PILAD Plany

"(d,e) %,M

(2) 2. Case: m; = 0. Use the explicit formula for F), in Lemma and extract a

quotient of shifted L-functions associated to the sequence of Fourier coefficients
¢. We have

AO,mz (35 -1, fa M) (¢(a7t7d’e))(a,t)6N><No ) (m(a’tvdve))(ai)eNXNo aPLZ)

p|n(d,e) plﬁl\;’e) (p N p|ﬁ (va)
_Le(B3s—2) T o() )| II (1= o)p~*>2) ¢ (p7*)
L4(3s—1) P 1— ¢(p)p—Bs—1)
(p,N)=1 Pl (d,e)

—

(1= o(p)p= =) ¢ (p*) I T,(s)¢ (p™r)
1 — ¢(p)p=Gs=1) y )

1— o(p)p G D
|(f,M) é(p)p

(1 = ¢(p)p~ =) M, (s,0, Bp) T,(s) (5,0, Bp)
(p H P P H :

= H ¢<pﬁp+1) H ¢(p6p>< H Fp(s,ﬁp,po‘”)) H Ip(s, 7, Bp) ( H Mp(s, p*r
(p,N)=1 Pl

- H ¢<pﬁp+1) H ¢(pﬂp)( H Fp ( Bp’o)) H I)(s,0, 8p) ( H Mp(S,O,Bp))
Pl



Part VII

Fourier expansion for the minimal
Eisenstein series






CHAPTER 16

Dirichlet series associated to the minimal Eisenstein series

In the case of the minimal Eisenstein series there are several Dirichlet series of different
complexity occuring in the Fourier coefficients. This chapter is concerned with the def-
inition and evaluation of these Dirichlet series. We start specifying the theory of power
series developed in chapter 9 and 10 so that it can be applied to the Fourier coefficients
of the minimal Eisenstein series. Use the notation introduced in the part “Power series”
and associate to any prime number p the power series and variables

X :=p 3 (16.1)
Y ;= plT3 (16.2)
Ay i=01-35 (p") (16.3)
S,=1—-A X +YX? (16.4)
T, =1-pA; X +p°Y X? (16.5)
Fy(s1, 82,0, 8) = sz?"”" Z Cpn—t (B)cyr (p¥) o135, (p”*“’%) p(1=3s1)k (16.6)
n>0 0<k<n
2k<a+n
Gp(s1, 82,0, B) = ZP_SSM Z Cpn—k (B)Cprr1 (p) o135, (Pma_%_l) pl =30k,
n>0 0<k<n
2k+1<a+n
(16.7)

Subsequently the polynomials S, and T}, are calculated and it is checked that the sequence
(An) ey fulfills the necessary recursion. The identities

Sp=1—-—A1X+ YX2=1- o1-3s (D) p 352 4 pl=3s (p—352)2
-1 — (1 +p1—3s1) p—352 +p1—652—351 _ (1 _p_352) (1 _p1_351_382) 7

_ _ _ 2
Ty =1 —pAiX +p*Y X* = 1 = poy_s, (p) p~ 22 +p°p' =5 (p7°%2)

=1 — (1 +p1—381) p1—352 +p3—652—381 — (1 _ p1—382) (1 _ p2—382—351)

and

161
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A1Ap1 — YA, 2017351 (p) o1-35, (pn+1) —P1_3$1017351 (r")
n+1 n
— Zp (1-3s1)k Zp (1-3s1)k p17331 Zp(lf?)sl)k
k=0

n+2

= Zp(l_?’sl)k = Ani2
k=0

hold.

The situation here is similar to the situation of the Eisenstein series twisted by a Maass
cusp form. First note that the polynomials S, T}, are the Euler factors of certain shifted
Riemann zeta functions. Further the theory developed in chapter 9 is used to define a
holomorphic function for each prime number, which describes the unramified parts of the
Fourier coeflicients in the non degenerate terms. It turns out that these holomorphic func-
tions have the right transformation behaviour.

DEFINITION 16.1. For any prime number p and nonnegative integers «, 5 define the mero-
: : 2 2 -1 2s9—1)B Fp(s1,52,0,p"
morphic function 2, (%, a, B) : C2 — C, (s1, s2) — pZs1Fs2-Haplsi+2sa—1)5 pf;pl(ji;f ),

The theory developed for Fj, in chapter 9 implies the holomorphicity of the function
2, (*, o, f) and after a short calculation also the invariance against the action of the Weyl-
group, see (4, (2.5)] for details. In order to execute this calculation a trivial polynomial
identity is needed, which is stated in the lemma below.

LEMMA 16.2. Let «, 8 be nonnegative integers, then in the polynomial ring C[X,Y] the
identity

a+pB—k—l a+k—1

za: i Xk—i—jyl—i—j Z ZXk-i—lyl Z Yg

=0 k=0 j=0 =0 k=0

holds.

PROOF. Split the innermost sum and divide the whole sum into two parts. After that
reorder the Cauchy product of the two innermost sums in the first part and consecutively
make the index shifts j = 7 — (¢ =l + 1) and @ — « — [ in the second part. We have

a+p—k—l1

a B
Z Z iyl —

1=0 k=0 j=0

a+p—k—l1
Xk:+j Yl+j

a—l1

M=

@ «a
Z Xk+jyl+j + Z

=0 j5=0 =0

i

0 j=a—I+1
1

B B—k—
Z Z Xk—i—(a I+1) +]Yl+(a I+1)+j
=0 k=0 j=

«

a—m
Z k+m Z Yh+m +
h=0

Q

El ol
it Mm
(e
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a B a—l a B p-k-1
X k+1 ZYj-H + Z Z X (k+j+1) —HY()H-J-H
1=0 k=0 =0 1=0 k=0 j—0

Next reorder the Cauchy product of the two innermost sums in the second sum. So we

get

B8 a+pB—k—l1

i Z Xk—i—ij-j _ Z Z Xk-i—l Z Y]-H + Z Z Xn+l Z YOH-TL h
=0 k=0 j=0 =0 k=0 =0 n=0

za: f:XkH ZYyH + Zya+k h

=0 k=0

a B a+k—1
=S xS v
1=0 k=0 Jj=0

O
LEMMA 16.3. The function A,(x, o, B) is holomorphic and invariant against the action of

the Weyl group.

Proor. The explicit formula for F}, in Lemma implies immediately the holomor-
phicity of the function 2, (x, «, 8). To show the invariance against the action of the Weyl
group, it is sufficient to check the invariance for the elements wo,ws, since theses two
elements generate the Weyl group, see [4} (2.5)] for the definition of this action.

(1) We begin with the invariance for wy. Use the explicit formula in Lemma (9.4] and
the identity in Lemma and calculate directly

1 2
A (wa(s1,82), o, B) =2, (81 + 59 — 373 " S»a ,5>
= p(2srts2=3)+(F-s2)-1)ap((s1+s2—3)+2(5-s2)-1)8
B«
EVPRRNN =t VTN
Zzpk+lal 331+52**) pOéJrk*l) <p 3(3 2)) (pl 3( 1o 3))
k=0 1=0

B
_p(251+82 Do (51 SQ)BZ
k=01

pk+l0273817382 <pa+k—l> (p332—2)k+l (p2—351—352)l .

NE

Il
o

Make the index shift & — 5 — k and expand the divisor function. This gives us

B« a+(B—k)—1
s1+s2—1)a, (s1—s — So— —k —3s1\! —3s1—3s2)7
Ap(wa(s1, 52), @, B) =pEr T Doplsn=s2)f N =N ", (BRI (582 2)AF (y=3s1) § psnss)
k=0 1=0 =0
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a+pB—k—I

B
:p(281+82—1)o¢p(51+252—1)ﬁ Z i Z pk+] —352)k+j (p1—3s1)l+j )

k=0 =0 7=0

To get the invariance apply the identity in Lemma to the sum. We have

a+k—I

pk;+l (p—352)k+l (p1—3sl)l Z (p1—351)j

J=0

pk;+l (p—352)k+l (p1—351)1017381 (pa—l—k—l)

Ay (wa(s1, 52), @, B) =pZrFs2=Daplst2—1)8

M= 1M
- 10

:p(251+82—1)o¢p(51+252—1)ﬁ

B
Il
o
o~
I
o

:le(sla 52, O‘aﬁ) .

(2) Next the invariance for ws is proved. We use Lemma and the functional
equation of the divisor function and then calculate directly

2
2, (ws3(s1,s2),a, ) =A 3

—p(2(G—s1)+(s14s2=5) 1) ((5-s1)+2(s1+52-5)-1)8

1
—81,81-1-82—3,0475)

B«

Zpk-i-lal 32 ) <pa+k l) (p 3(sl+32,,)>k+z <p1 3(7751)>z

k=0 =0

B
:p(SQ—sl)cxp(sl—l-QSQ 18 Z
k=0

k+lp 351—1)(cx+k—l)0_17381 <pa+k—l) (p1—3sl—332)k+l (p?;sl—l)l

hE

p

@
o

07

:p(231+3271)ap(51+232 1B ZZ 0_1 38, ( a+kfl) (p,352)k+l (p17331)l

=0 (=0
:le(sh S2, O/, B) .

After these preparations we define and evaluate the Dirichlet series corresponding to the
minimal Eisenstein series.

DEFINITION 16.4. Let N be a squarefree integer, f a positive divisor of N and h a pos-
itive divisor of % For nonnegative integers mq, mo define the following Dirichlet series

associated to these parameters.



165

(1) The Dirichlet series Ay, m, is defined by

b
Am17m2 (Sla 52, fa h7 Pmln) = Z aing Z digsl Z (a, b)7381€ (mga)

azl d>1 b mod Ha

(d’;lh>:1 (a,b,%)le
C ae
c mo;\f(a b)e <m1 f(a’b)> Z Ne (mldhf(aab)2> ‘

e mod dh(a,b)
(f(a,b),c)=1 (e,dh)=1

(2) The Dirichlet series B, is defined by

35135 5 b
Buna (51,82, f, Prn) = 3 a7 (a,bﬁle(m?a) >

axl b mod Ya ¢ mod Na

! (f(a,b),c)=1
(a,b, ﬂ) =1

(3) The Dirichlet series C,y,, is defined by

ol £ B = 3 005 5 e(mf) 2wt S0
>1
)

b>1 c(}]%o% ]\{b d e ?Cll%d )dh{\/'b
N\ _ ,C)= _ €)=
(1) (%)-

(4) The Dirichlet series D,,, is defined by

Dm1 (527 f) szn) = Z b7382 Z e (ml‘]fb> .

b>1 C(?;)Od) ]\{b
N\ _ ,C)=
(v.5)=1

LEMMA 16.5. Let my = [[p®?, ma = Hpﬁp be positive integers in prime factor decompo-

2 P
sition. The explicit formulas below for the Dirichlet series in Definition are valid.
(1) The formula for Am, m., is

Am1 m2(317 52, f') h: Pmin)

N3 _ e _
=7z (TS s 282L><ﬂ(351) lLth(3$2) 'Ly n (351 4+ 359 — 1) H 2, (51, 52, 0, Bp)
! (p.N)=1
(p —1) (1 _ p7352) O1_3s, (pﬁp) —p (1 _ pfssl) (1 _ p1*332*331) p(17331)apg2_381_382 (pﬁp)
H 1 _ p1—381
plh

HG;D <517 59, p, P ) Hp 251+s2— l)app(81+282 1) 5;70-1 359 H pﬁp
plf pIN P,
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(2) The formula for Ay, o is

Aml,O(Sh 52, f> ha Pmm)

N3

:F0-17331 H p*r f% (351 + 352 — 2)((352 — 1)Lx% (381)_1foh(352)_1LXN(351 sy - 1)L
(p,N)=1
(p—1) (1 — p—382) (1 —p* 351—352) —p (1 — p1—351—3$2) (1 _p—3s1) (1 _ p1—332) p(1—351)ap
1|_£ 1—pl=3s1
p
LI =1 (o180 (0771) = 180 07) 072
plf

(3) The formula for Agm, is

LX N (381 — 1)LXN (381 + 3s9 — 2)
i

) D nf .
0,mz2 (517 s2, f, h, mm f2 H Ul 392 (mz) C(352)L X N (351)LXN (331 + 352 — 1)
7

plfh
(4) The formula for Agq is
| N3 ¢(3s2 — l)Lx% (3s1 — 1)Lx% (3s1 + 3s2 — 2)
00(81, 82, fohy Fonin) = Fﬂfh -1 ((3s2)Ly Xy (351) Ly (351 + 352 — 1)

(5) The formula for By, is

N 2 LX% (382 — 1)
B, (81,82, f, Pmin) = <f> 1_} (p = 1) 023513, (mZ)C(3S1 + 359 — 1)Ly (3s2)

(6) The formula for By is

C(351 + 352 — 2)LXN (382 — 1)

N\? Fil
BO(S1, s9, f, Pmin) = <f> H (p o 1) C(351 + 382 — 1)Ifo (352)

(7) The formula for C’m1 is

Cm1(51a 52, f» ha Pmm = f H - 1 H ( - 1)0273517332 (pap) _p1+(2—351—352)ap)

plh olf
LXﬂ (351 —1)
fh
02-35,—3 p '
51—3s2 (p,lj\:)[ % (351) Ly y (351 + 352 — 1)
(8) The formula for Cy is
? Ly (3s1 = DLy (351 + 352 — 2)

N
h, Ppin) = — —1 "
Co(s1, 82, f, h, ) [ pl|;[f (p ) Ly, (351)LXN(351 +3s9 — 1)
F
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(9) The formula for Dy, is

Dy, (327f7 Pmm — f H( _ 1 Ul 38 (pOép) _p1+(1—352)ap> 0136, H po LXN (382)_1
plf (p,N)=1

(10) The formula for Dy is
(3s9 — 1)
XN (332)

&~ \\2

D0(827f7Pm7,n == | |
f
plf

PROOF. In all parts we handle the cases whether mi,mo vanish or do not vanish
together, assuming for the present that mi, mo are nonnegative integers.

(1) First split the summation over b in this way b = b1be with b; | a and (bg, %) =1.
We have

Ay ms (51,52, f, by Prin) = Z a =352 Z d—3s1 Z Z (a,by b2)7351 e <m2bi72>

a>1 d>1 bila by mod ¥ &

(270)=1 (B F)=1 ()

¢ mod N(a,b1b2) e mod dh(a,bib2)N

(f(a,b1b2),c)=1 (e,dh)=1

b
Tt T B 5 o)
a>1 d>1 by mod & b

(4.7%)=1 <bv%)=1 (b2r8)=1
2 (i) %, (i)

¢ mod Nb
(fb,c)=1 (e,dh)=1

Next split the summation over c¢ in this way ¢ = fbk + ¢ with 0 < k < %,

0 < ¢ < fb, split the summation over b in this way be = ¢l 4+ g with 0 <[ < %,
0 < g < % and split the summation over e in this way e = dhj+e with 0 < j < bN,
0 < e < dh. This gives us

Aml,mz (51, 52, fa ha Pmm) = Z a_3$2 Z d—351 Z b_351 Z e (ng)
b

a>1 d>1 0<l<X g mod

(a.45)=1 (bw),l ) "(gf;>
¥ % clmg) 3 (i) 3 (maie)

N d fb
0<k<i C(ﬁbloc) f e(e’dh):
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2
_({;7) Z —3s2 Z 4351 Z p3s1. ca mQ)Cfb (ml)

a>1 d>1

(a5)=1 (b%):l
2 e(”‘%) 2 e<m1dfll;b>‘

j mod bN e mod dh
(e,dh)=1

S|

Extract the geometric series in the variable j and evaluate it. We obtain

> e( by> BN L if fb|mi§,
Y rb 0 , otherwise .

j mod bN

Substituting this result back into the above equation and splitting the summation
over d in this way d = eg with e | h* and (g, h) = 1, yields the formula

—3s s s mia
Aml,mz(slaSQafah,szn = f2 Z 352 Z b3 10“ m2 Cfb ml Z d— Yedn <fb2>

a>1 bla d>1
(v5)=1 (49%)=1
fv?imia
— _ mia _ mia
Lt T e mentm) Y g () St ()
a>1 b|a (g ﬂ) 1 €|hoo
N)_ o f
(0.5 )=1
be\mla

The next step is to factorize the Dirichlet series. In order to do this, decompose
the summation in the outer and inner sum in the way a = ajasaszaq and b =
b1babsby according to the divisibility conditions (aibi, N) = 1, agsbe | h* and

o
asbs | f°° and a4by | <f—]\;l> . Note that the ged-condition (b, %) = 1is equivalent
to be, by = 1. So we get

3
Am17m2 (81, S92, f, h, Pmin) = ]]\0[2 Z Z Z Z (a1a2a3a4)*332

(a1,N)=1 az|h> as|f> ;| (%)w

1- _ mi1a1a2a30a4
E (blbg) ! cajagagay (mg) Cbl(be E 351 T
byb3 fble
b1|a1 <g N) 1
bslas f
b%\mlal
fb3|mias

Z 6_3510 miaia2a3ay
eh fb2b2 .

e|h>®
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Using the multiplicativity and the other properties of the Ramanujan sums the
above Dirichlet series can be factorized in a product of four Dirichlet series. We
have

N3 B
Am17m2(517527fa h, Prin) :F Z a 3SQCQ (mg)
(9
Z a"3%2¢, (mg) Z e e n(mia)

alh>® elh>e
) . mia
Z 339 Z bl 351 % m2)cfb (ml) Zg 58109 (fle)
ot glfee
s
S wt S e et ¥ o ().
(a,N)=1 bla (g "=
b%|m1ia

Now we can start with the evaluation of each Dirichlet series dividing between
the cases whether my, my vanish or not.

(a) 1. Case: m; = 0. Note that in this case the divisibility conditions are always
satisfied. We have

3
Agmsy (51,52, f, by Prin) 2]}; Z —352¢, (my) Z a=3%2¢, (my) Z e 31 ¢(eh)

N\ alh™>® e|h>°
al o

Za‘3”261 Mg (ma) $(f0) Y 97 6(9)

alfo° glfe

Yooa ¥y p e (ma)g(0) Y g % e(g)
)=1

(a,N)=1 bla (9,N)=

Our next goal is to factotrize the product of the Dirichlet series further.
First pull out the Dirichlet series in the variables g, e, then factorize the
convolution of Dirichlet series in the third and fourth Dirichlet series. So we
get

A07m2 (517 s2, f, h, Pmm sy Z a 3820a m2 Z a7381¢(a’)

a>1 (a7¥):1
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Z a173317352¢(a) Z a173317352¢(fa) Z a7351 (b(ha)

(a,N)=1 alfo° alh>®

Use Lemma in Appendix A for the evaluation of the second and third
Dirichlet series and use Lemma, for the fourth and fifth Dirichlet series.
We obtain

AO,mQ (51) 52, f7 h’a Pmln)

N3
= Z a_3826a(m2)

Ly (3514 3s2 —2) H p—1 H p—
(351) Lyy(3s1+3s2 — 1) T 1 — p2—3s1-3s2 pl- 331
p
Ly (351 = 1)Ly \ (351 + 352 — 2)
R T

NS
= 11 P-1 a=>*2cq(my) !
f2 I][;J}:l ; “ LX% (381)LXN (381 + 359 — 1)

Finally apply Lemma to the first Dirichlet series distinguishing between
the cases mo vanishes or not. So the two formulas

LX N (381 — 1)LXN (381 + 359 — 2)
N

A h, Proin) = ~1) L
0ma (81, 82, f, B, Prnin) f2 l_f[h ) o1-3a2 (m2)C(352)L v (351) Ly (351 + 352 — 1)
P ¥

and

C(382 — 1)Ly
C(332)Lx

(351 — 1)L X% (351 4+ 3s2 — 2)
(381)LXN (381 + 359 — 1)

5:\2

A0,0(517327f7hupm1n = f2 H
plfh

=z

hold.

(b) 2. Case: my # 0. Split m; = m( )mgf) (R) 1(fh) according to the divisi-

N o

bility conditions (mgN),N> =1, m1f) | f, m1h) | h* and ml(fh> | <%

Further use Lemma to evaluate the Dirichlet series in the variable g.

We have

A P . —N73 —3s2
mi,ma2 (817 82, fa h7 mm) ) Z a Cq (mg)
al(f)”
D a e (mg) 3 e cen (ma)
alh™> e|hoo
-3 1—-3 mgf)a _3

;a 52 Z pl=3s1, ca mQ)Cfb(ml)O'l 3s1 fbg q(l_p 51)
a|f>® p

fb2|m1a
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(N)
- - my 'a B
Z a =352 Z bt 3510% (m2) Cp (m1) 01-3s; (#) LXN(381) 1
((LN):l b|a
b%|mia

Next we factorize the last two Dirichlet series and use the notation for the
Dirichlet series I, and G,. This gives us

N3 _ -
Ay mso (51582, f By Pmin) = —5 Ly (351) ! Z a=3%2¢, (mo)
7

/ «
(%)

—3s —3s
g a”"*%¢cq (Mma) E e > eep (mya) HG (81,82, 0p, M2) H F, (51,82, 0p,m2) .

alhoe elh>e plf (p,N)=1

Finally distinguish between the cases whether mqy vanishes or not.

(i) 1. Case: my # 0. Use Lemma and Lemma [18.6] to evaluate the
two Dirichlet series and use the notation in Definition [16.1l We obtain

Aml,mz (517 52, f7 ha Pmm)

N3 _
:ﬁLXﬂ(&Sl) 01-3s9 H pﬁp H —-p 382) HGp (51,52,Oép»PBp)
i
Pl plF% plf
(p —1) (1 _ p—3s2) O1—3s, (pﬁp) —p (1 _ p—351) (1 _ p1—332—3s1) p(1—3sl)ap02_381_382 (pﬂp)
]{g 1— p1—381
P
LXN(382)_1LXN(331 + 3s2 — 1)_1 p_(281+82_1)app_(sl+282_1)6p91p(51, 52, apaﬁp)
(p,N)=1
N3 17
ZFLXM (351) th(382) XN(381 + 359 — 1 0'1 —3s9 H pﬁp
f
p| fh
H (p —1) (1 _ p*352) 0138, (pﬁp) —p (1 _ p73sl) (1 _ p173527331) 10(17331)%02_381_352 (pﬁp)

1 — p17381
plh

HGP (31, 52, 04p>p’3p> Hp(281+82_1)%29(81—*—252_1)6”771%72817827’”%7817282 H RUp(51, 52, p, Bp) -
lf pIN (p,N)=1

(ii) 2. Case: mg = 0. Again evaluate the Dirichlet series and use the

explicit formulas in Lemma and Lemma for Fj, and Gp. We
obtain
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—332

N3
Am1,0(81732>f7hvpmin): f XN 381 1H 1 3s9
p|fh

(p _ 1) (1 _ p—382) (1 _ p2—351—352) —p (1 _ p1—351—352) (1 _ p—351) (1 _ p1—352) p(1—351)o¢p
H (1 _ pl—?)sl) (1 _ p2—381—352) (1 _ p1—352)

plh

) 0138 (pap*].) — 0135, (pozp)prSQ (1 _ p7352) (1 _p173317352) o
H(p - 1) (1 — pl—8s2) (1 — p2—3s2-8s1) H (1— pl—8s2) (1 p2*352*351)01_351 (™)

plf (p,N)=1

N3 1 1 1
:Fclf&,l H PP fﬂ (3s1 + 3s2 — 2)((3s2 — 1)Lx% (351)7 Lixs;, (352) 7 Ly (351 + 352 — 1)

(p,N)=1
(p o 1) (1 _ p7332) (1 _ p273517332) —p (1 o p173517332) (1 o p7351) (1 o p17352) p(17351)ap

r|£ 1 _ p1—381

p

H(p - 1) (01—331 (pap_l) — 01-3s1 (pap)p_382) .

plf

(2) First split the summation over ¢ in this way ¢ = f(a,b)k+c with 0 < k < %(;Lb),

0 < ¢ < f(a,b), then split the summation over b in this way b = de with d | a
and ( 7) = 1. We have

Bm2 (517 s2, f, Pmm ZCL*3S1 3s2 Z Z a de 3s1 (mzcie> Z Z 1

azl 0<e<Na 0<k<¥ e c mod f(a,de)
oyt TN (flade) =1

(dv%:l (e,)=1
N
:7 Z a173517332 Z d35171¢(fd) e (m22> ]
a>1 dla 0<e< N d

se<s

(+5)=1 (%)

= ale

Next split the summation over e in this way e = kj + e with 0 < k < %,

O§e<%. So we get

Bm2(317327fapmzn :< ) Zal 381352 Z d351 1¢ fd) %(mQ) :
a>1
(d,%):1

The next step is to factorize the Dirichlet series. In order to do this, decompose
the summation in the outer and inner sum in the way a = ai1a2a3 and d = d;dads
o0

according to the divisibility conditions (a1di, N) = 1, aads | (ﬂ> and asds |
f°°. Note that the gcd-condition (d, f> = 1 implies do = 1. We obtain
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2
Biny (51,82, [, Prmin) = <Z}[> ST Y Y (aragag)! I

(a1,N)=1 aQ‘(ﬂ>°° az|f>®

Z Z (d1ds) sorm 1¢(fdld3)0a1a2:3 (mg)

dila1 dslas

2

(a1,N)=1 di]ay

Z a%_381_352ca2 (mg) Z é 3s51—3s2 Z d351 l(ﬁ(fdg)C% (mg)

aﬂ(%)w as|f> dslas

Split the Dirichlet convolutions in the first and third Dirichlet series and factorize
both. This gives us

N 2
Bm2 (317 32,f7 Pmm) = <f> Z a173517352a35171¢<a)
(a,N)=1

Z (11_351_382Ca (m2) Z (11_351_382Ca (m2)
):

L (a,N _a|(%)oo

- al ety (fa) | Y 0l e, (my)
| foo | lalfe
2
— <]J\Z> Za1—381—3s2ca (m2) Z a_3s2¢(fa) Z a—352¢(a)

a>1 al £ (a.N)=1

Use Lemma in Appendix A to evaluate the third Dirichlet series and Lemma,
[I8.5 for the evaluation of the second Dirichlet series. We obtain

N 359 — 1
Bm2(81)827f7pmin): (f) Z 1=3s1= 3820 m2 H P~ 1 3o XN( 2 )

a>1 olf x (352)

Finally use Lemma [I8.4] in Appendix A to evaluate the first Dirichlet series dis-
tinguishing between the cases whether mo vanishes or not. We have

2
Bm2 (81, S92, f, szn) = <va> H (p — 1) Z a1—3s1—3520a (mZ)

plf azl

L (382 — 1)

xw (3s2)

|
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N 9 Ly (3s2—1) .
(%) r,; (= 1) 02351 -85 (M2) 35 33, ~ 11y 0] , ifma #0,
— P
= 2 ((3514352—2) Ly  (352—1)
(%) =1 A Jifmy =0
P
(3) Split the summation over e in this way e = dhk + 1 with 0 < k < Nb, 0 <[ <
dh and note that the gcd-condition transforms as follows 1 = (dh,e) = (dh,1).
Further split the summation over ¢ in this way ¢ = fbj + ¢ with 0 < j < ? 0<
i < fband note that the ged-condition transforms as follows 1 = (fb, c) = (fb,1).
We have
—351—3s i —3s
oo = 3 5 S () ¥4t S
(hg):l 0<]<1}’ Z(Jrcrll)i()i fb (d N) 1 O<k<Nbl(dHfl7,OlC)1 dh

2
:]i S et iy || SD d g (dn)
(b5)=1 (2.57)=1

Split the summation in the first Dirichlet series b = bybe with (b;, N) = 1 and
by | f°° and in the second Dirichlet series d = dyda with <d1, %) = 1landds | h™.

Then factorize the Dirichlet series. So we get

N? —3s51—3s —351—3s
le (81,82,f, h,Pmm) :7 Z bl 351—3 zcb (ml) Z bl 351—3 QCfb (ml)
(b,N)=1 b|foe

Y. A7) | | X A7 (dh)

(15 i

Use Lemma in Appendix A to evaluate the third Dirichlet series and Lemma
for the fourth one. This gives us

le (817 52, f7 h7 Pmm)

N2
:7 Z b1735173826b (ml) Z b1738173320fb (ml)
(b.N)=1 bl

(381—1) p—l

_ nl—3s
%(351) oih 1— pl=3s:
1-3s1—3 1-3s1-3 Lx%(&sl_l)
-1 pl—3s1—3s2 pl—3s1—3s2 w7
=7 H > a (ma) | | cpy (ma) NET
7

plh (b,N)=1 blfo°

RN \\z
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Distinguish between the cases whether m; vanishes or not and use Lemma [I8.4]in
Appendix A to evaluate the first Dirichlet series and Lemma for the second
one. We obtain

le(sl, S92, f, h, Pmm =— f H -1 H ( — 1)02—351—352 (poép) _ p1+(273517332)ap>
plh plf
L X N (351 — 1)
jid

02-3s1—3s2 (pq P v (351)Ly 5 (351 + 352 — 1)
k) T

and

L (381 - 1)
N2 Ly, (3s1 +3s2 —2) p—1 Y
h Pmin =7 -1 AN »
00(517527f> ’ ) f H (p ) LXN(351 + 359 — 1) 1_}[ 1 7p273517382 L (351)
p
LX N (381 — 1)LXN (381 + 389 — 2)
yi

_N2 fh
_pr P =) Bsn) L (351 1 35 — 1)

%\2

=
L
=z

(4) Split the summation over ¢ in this way ¢ = fbk + 1 with 0 < k < %, 0<Il< fb.

We have
l
Dm1(52a f: Pmm) = Z b—332 Z Z <m1fb> f Z b~ 3schb (ml) .
b>1 0< k<N [ mod fb b>1
paj TR 65

Next split the summation over b in this way b = byby with (b1, N) = 1 and be | f°°.
We obtain

N —3s —3s
D, (82, f, Pmin) = 7 E b=3%2¢y (my) E b2y, (M)
— b|foo

Distinguish between the cases whether m; vanishes or not and use Lemma [18.4]in
Appendix A to evaluate the first Dirichlet series and Lemma for the second
one. This gives us finally

Dm1 (527 f7 Pmm = f H ( - 1 (71 —3s9 (pap) - p1+(17382)ap> 01—-3s9
plf (p.N

H p XN 352) !

and
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LX (382 - 1)

LXN (352) '

2

N Ly, (352 — 1) p—1 N
D Prin) = — XN = — | | —1
0(827 f7 ) f LXN (382) p|f 1 _ p1_352 f |f (p )



CHAPTER 17

Fourier expansion for the minimal Eisenstein series

In this chapter the Fourier expansion of the Eisenstein series E(z, s1, s2, f, h, Ppmin) is calcu-
lated. We begin with a lemma, which is needed to do the technical steps in the calculation
of the Fourier coefficients.

LEMMA 17.1. Let N be a squarefree positive integer, f a positive divisor of N and h a
positive divisor of &-. Let a,d,b,r,z be integers, where a and d are non-zero and these

integers satisfy the ged-conditions (a, b, ?) =1, (d7 %) =1 and the equation —rﬁ =

1+ Zﬁ. Then the map

(afbf,c)=1
(dh,e):1 _
6:q(afbfcdhe k) €2T| | kier b — {(af,bf,c,dh,e>ez5 (‘22;?@3211}

e mod dhN(a,b)
(af,bf,c,dh,e k,l) +— (af,bf Nak+ Nbl + c,dh,dh(a,b)N (kr —1z) +e)

s a bijection.

PROOF. (1) The first thing to do is to check that ¢ is welldefined.
This is done quickly, since only two ged conditions

(af,bf, Nak + Nbl +c) = (af,bf,c) =1

and

(dh, dh(a,b)N (kr — 12) + €) = (dh,e) = 1

have to be verified.

(2) Next we show that ¢ is injective. In order to do this, suppose that two elements
have the same image under ¢, precisely:

#((af,bf,c1,dh,e1,k1,11)) = ¢((af,bf, ca, dh, ez, ka,12))
<~ (af,bf, Naky + Nbly + ¢1,dh,dh(a,b)N(kir — l1z) + e1)
= (af,bf, Naky + Nbly + co,dh,dh(a,b)N (ker — l2z) + €2) .

177
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We start looking at the equation induced through comparison of the last entries.
We have

dh(a,b)N(kir —l1z) + e1 = dh(a,b)N (kar — l2z) + €3 . (17.1)

Reducing both sides in ((17.1]) modulo dh(a,b)N gives e; = ey. Since d is non-zero
this implies the equation

/{1’1” — llz = kg’l“ — ZQZ
<~ (k‘l — k‘g)?” = (ll — ZQ)Z .

Since (r,z) = 1 we get k1 = ko +xz and [; = lo + xr with a suitable integer z. In
the last step we look at the equation induced through comparison of the entries
at the third place. We have

Naki + Nbly + ¢1 = Naks + Nbls + ¢

& N(a,b)z <r(abb) + z(;b)> =cs—c1

< —N(a,b)x=cy—c1.

Reducing the last equation modulo N(a,b) implies ¢; = ¢3 and = = 0. So k; = ko
and l; = Is.

(3) It remains to show that ¢ is surjective. Let (af,bf,c,dh,e) € Z° be a row satis-
fying the ged conditions (af,bf,c) =1 and (dh,e) = 1. Split e = dhN(a,b)z + ey
with e; mod dhN(a,b), x € Z and split ¢ = N(a,b)y + ¢; with ¢; mod N(a,b),
y € Z. The above ged conditions imply (dh,e1) = 1 and (af,bf,c1) = 1. To
show that the row (af,bf,c,dh,e) lies in the image of ¢, it is sufficient to solve
the linear system in the integral variables k,! given by

a b
=kr—1 = k l
TERTE N VTR @)
() (1))
<~ a b l —
(@b)  (ab) Y
. r -z b a . .
Since det a b =Tan T ¥ay = —1 this system has an integer
(a,b)  (a,b) ’ ’
solution (k1,11). So (af,bf, c1,k1,l1,dh,e1) is a preimage of (af,bf, c,dh,e) under

the map ¢.
O

After these preparations we can state the main theorem concerning the Fourier expansion
of the completed minimal Eisenstein series.



179

THEOREM 17.2. Let N be a squarefree positive integer, f a positive divisor of N and h a
positive divisor of % The completed minimal Eisenstein series G (z, s1, 82, f, h, Pmin) has
the explicit Fourier expansion

G(Z7817327f7 h7 Pm’bn) = Z Go,mg (Z7317827f7 h) szn)

mo=0

+ Z Z Z Gm1,m2 <<’Y 1) 2?513327fahapm'm> .

YEPpin \GL2(Z) m1=1m2=0

Let my, ma be positive integers with prime decompositions mi = [[p®® and my = [] p°r.

P
Then the following explicit formulas for the Fourier coefficients are valid.

(1) In the non-degenerate case we have

mims
Gml,mg (27817827f7 h’a szn) = H le(sla‘SZaap’Bp) (m1m2)71 Wl(f12781) ma Z, W1
(p,N)=1 1
s T 2= D (L =p7%2) o1oge, (p7) —p (1L—p=>) (1 —p!=275%) pl=30% 0y 55, g, ()
I (1= ph50) (L 9) (L—p 5% (1= p o5

plh
Hp(251+52—1)app(51+282—1)6p
plh
f1_381_3s2 H Gp (81, S, Oép,pﬁp) p(251+5271)o¢pp(31+25271),813 p(251+32fl)app(51+23271)ﬁp0.173s2 (pﬁp)
(1 _ p7382) (1 _ p173817382) (1 _ p7381) (1 _ p173517332)
plf Pl

|
>

(2) In the first partially degenerate case we have

C;ml,O (Z, 51, 52, fa h, szn)

a4, (p o 1) (1 _ p7352) (1 _ p273517352) —p (1 _ p173s17352) (1 o p7331) (1 _ p17352) p(17351)ap
=h H (1— pl3s1) (1 — p351) (1 — p392) (L — pl-3s1-3s2)

plh

e P (por™1) — o135, (p*) p%* 1

(1 _ p—382) (1 _ p1—381—382) (1 _ p—351) (1 _ p1—381—382)
plf p\f%

ap—1

Ly (3514352 = 2)((3s2 = Dor-ss, IT » | w5 (zw)
(p.N)=1



17. FOURIER EXPANSION FOR THE MINIMAL EISENSTEIN SERIES

180
+f173s1*352 H (p - 1)02—351—382 (pap) - p1+(2_381_382)ap H 1
1— p1—351—382 (1 _ p—381) (1 _ p—351—382+1)
plf p\%
h3 H (p—1) 023535, H p™ | Ly y (351 — 1)((3s2) Wf,ff,’él)(z, ws)
plh (p.N)=1 "
- 1 (p — 1)o1_ss, (p°r) — p'T(173s2)s
3s 52
+5h,¥f : H 1 _ p—352 H 1 _ p—352
p|% plf

[T % | ¢(351)C(3s1+ 352 — D) W25V (2, ws) .

(p,N)=1

01—3s9

(3) In the second partially degenerate case we have

Go,mz (27 51, 52, f7 h7 szn)
_1—3s p—1 1-3s1—3s p—1 1
7h ' H (1 _ p—351) (1 _ p1—381—382) f ' ’ H 1— p1—381—352 H (1 _ p—381) (1 _ p1—381—382)
i T o2
Wéss';g )(Z7 wl)

L XN (381 )LXﬂ (381 + 389 — 2)0'1—352 (mg)
h f

S p—= 1 52,8
0,2 ] p_382 [T 1202} (351) Loy (352 = WG (2, w)

plf p|%

<

+67,8C (351) € (351 + 352 — 1) 0130, (m2) W2 (2,109) .

(4) In the totally degenerate case we have

Goo (2,51, 82, f, by Prnin)
_p—3s1 p—1 1-351—3s9 p—1 1
=h H (1 — p=3s1) (1 — pl—3s1-3s2) f ' H 1 — pl=3s1—3s2 H (1 —p=351) (1 — pl—3s1-3s2)
plh olf p'flh

C(3s2 = 1)Ly (351 — 1)Ly (351 + 3sp — 2)W32* (2, w1)
hf F

h

<

s p— 1 52,8
+0y,, Nf 332 H —352 H T—T C(3s1)C(3s1 + 3s2 — 2)Lx% (3s9 — I)Wé%;)(z,wzl)
plf

plF
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1-3s1—3s07 —3 p—1 !
—|—f SLTOs2 oS H (p - 1) H 1— p1—351—382 H (1 _p—351) (1 — p1_351_352)

plh plf ol ¥

C(3s2) Ly 5 (351 — 1)Ly 5 (351 + 3s2 — 2)W(§502’81)(z ws)
7h i

s p—1 1 52,5
o f” . H — 11 1 _p_352§(331) Lx%(332 —1)C (351 + By — 1) W5 (2, ws)
plf |%

+67,5C (381) € (352 — 1) € (351 + 352 — D) W™ (2, wn)

+07,nC (351) ¢ (3s2) ¢ (3s1 + 3s2 — 1) WO(SZ’SI)(Z,’LU()) .

Y1Y2
PROOF. Again without loss of generality it can be assumed that z = Y1 €
1
h3. We start the calculation of the Fourier coefficients dividing the summation in the
Eisenstein series into several cases according to the Bruhat decomposition in Definition
Assume for the present that mq,mo are arbitrary integers, then we have

ml,mg Z 31752af7h Pmm)

1 .CCQ I3
/// w1 | 2,51,52, f, by Prin | e(—=miz1 — maws)deidrades
1
N ks+1 ko+1 k1+1 T2 I3
:<) / / / 1 a1 | z,81,82, f, hy Prin
f k’kk’ k?g k2 kl 1

e(—mix1 — maoxo dZL'leE‘QdCCg

x3
( ) / / / x1 | 2,81, 52, [, by Pmin | e(—miz1 — moxg)dadzadas
1

>y i(?)_***‘w

=1 'Yerz(fvhypmzn)

T <3231> T <3232> r <331+§32—1> ¢ (351) ¢ (352) ¢ (351 + 32 — 1)

e
/0/0/01(31,52) (vz) e(—max1 — mowg)dzidaades
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6
E $n ma (z,81,82) .

With the same argument as in Theorem we applied Lemma to all three integrals.
Using the explicit description of the sets T';(f, h, Pmnin) in Lemma and the explicit
formula for the values of the I -function in Lemma we start calculating each of
the six summands above.

51,82)
(1) We first handle the most difficult term Gﬁ}l}m (z,51,s2). We have

G'ErlLi,mg (Z, S1, 52)

-3
:i (]]\Z) a3s1=3s24 5 <3;1) T (3‘;2> r (331+;’32_1> ((351)C(352) C (351 + 352 — 1)

2 = 2 Z 2 / / / <hyd:a’ab>3819382+31y331+52

a#0 bezZ cEL ecZ
(abN) 1 (f(a,b),0)= (d’f> 1(edh) 1

3s9

[f2a2y%y% + f2yi(axy + )% + (faxs + fbxy + 0)2] 2

2
222 2 2 2 A ea
[f i+ o (0 5+ )

3s1
2

e(—mix1 — mowe)dridredrs .

) <(fax3 e <f "t hd(izc,lb)z’) (a2 + b>>2

Using the deﬁmtlon of the 1nteger r in Lemma one can choose an integer z
such that — o) ) =1+ z( 5) and apply Lemma This gives us

GV | (z,51,82)

mi,m2

-3
:% (JJ\Z) ro3s1-3s2 3 <3;1) r (3282> r <381+Z’52_1> ¢ (351) € (3s2) ¢ (351 + 353 — 1)

2 3 — 3
e S SACES SIS I SED ST DD >
a#0 beZ ¢ mod N(ab) d#0 e mod dhN(a,b) k,l€Z
(ab)=1 (flab)o=1 (4,4)=1 (e,dh)=1

3s9

N N N
N T T T2
/ / / [f2a2y%y% + fzy%(axg + b)2 + (faxs + fbxy + (Nak + Nbl + c))2] 2
o Jo Jo

Nak + Nbl + dhN (a,b)(kr — 12) + 2
[f2a2y%?/§ + a?y3 <f$1 _ iV (@b) J + (dhN(a hil((afb)Q & e)a)
r(Nak + Nbl+¢)  (dhN(a,b)(kr —1z) + €e)a
(a,b) + hd(a,b)? )

+((faxz + foxy + (Nak + Nbl + ¢)) — (fxl _



183

3s1
2

(azxe + b))2 e(—mix1 — mozo)dridredrs

-3
:% (]}f) 7T—3s1—3s2+%r <3281) T (3;2> I (3514_282_1) C(351) ¢ (352) ¢ (351 + 359 — 1)

y%82+81y581+52h7351Z‘a|381 Z ‘d‘—351 Z (a7b)7331 Z Z Z

a70 d#0 beZ ¢ mod N(a,b) e mod dhN(a,b) k,lEZ
N & °
(d’fh) 1 (a b, ) (f(a,b),c)=1 (e,dh)=1

N N N ?
A [fzazy%y§+f2y%<am+b>2+ (0 (s 74) 8 (22 1) +)
N ae rc 2

[fza%/%y% +a’y3 (f (xl + fl> T ah@? @ b)>

(e (e ) o (o 7)) 0 (o 71) - e~ ) o 0)

e(—mix1 — mozo)dridredrs .

_ 3sg
2

First pass to infinite integrals in the variables x1, x5 by the shifts 1 — z1 + %l,
T3 — T3+ %k, then shift 3 — 23 + gxl + ﬁ After that split the summation

over b in this way b = k%a +bwithk e€Z,0<0b< %a and note that the

ged-condition transform as follows 1 = (a,b) = (a, k:%a + b) = (a,b). We obtain

G,(ﬁi,m (2, 51,52)

-3
:% (]}[) po3s1-3s24 3 <3;1) T (3'292> r <351+;"92_1) ((351)C(352) (351 + 352 — 1)

y%S2+81y381+82 351 Z ‘a|351 Z ‘d‘—381 Z (a, b)—381 Z Z Z

a#0 d#0 b mod Ya ¢ mod N(a,b) e mod th( ,b) keZ
(d fT) 1 (a b ) (f(a,b),0)=1 (e,dh)=

x.,

00 % 0o N 2 73;2
/ / / [anQy%yg + 23 <a <:v2 + fk) + b> + fZan?,,]
—o0 J0 —00

2
222 2 2 2 ae TC
[f i+t (04 i~ )

3s1

2 2
+ (famg - <f$1 + dh(ccbjb)Q _ (;ﬁ))) (a <x2 + ?[k) + b>> ] e(—mixy — moxo)dridredrs .
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Pass to an inﬁnite integral in the variable xo by the shift zo — x9 + N k:, then
shift xo — xo + 2 plcklng up the exponential e (mg ) After that shift

1 — r1+ 7dhf(a7b)2 — 7f(a,b) picking up the exponential e <m1 dhfc(bg,bﬂ —mq f(Zfb)>.
We have

GV (2, 51,59)

mi,m2

-3
:% (JJ\Z) roinTitir (3;1> T (352) T (3814_282_1> C(351)C(3s2)C (351 +3s2— 1)

y%82+81y331+82h_351 Z \a|351 Z |d‘_351 Z (a b) 3s1 <m22> Z

a#0 d#0 b mod ﬂ ¢ mod N(a, b)
(d f—h> 1 ( ) (f(ab),c)=

Z e (mldhfc(fb)? (@b )/ / / f2a2y1y2 f2a2yla:2 f2a 333]

e mod dhN(a,b)
(e,dh)=1
3s1

[fQQQy%y% + frayset + (faxs — fawlm)ﬂ * e(—myzy — maxs)dzdradas

Finally we do some additional simplifications. Pass in the summation over a, d to
positive values collecting two factors 2, note that this is possible since the minus
sign can be absorbed in the other summations. Next absorb —r into the summa-
tion over ¢, note that this is also possible since Lemma [3.2] gives that r is coprime
to N(a,b). Use the formula in [4} (3.11)] and the notation in Definition to
extract the Whittaker function and the Dirichlet series Ay, m, (51, 52, f, Ry Prin)-
So we get

-3
ng ms (2,51, 52) = <‘7}7> € (351) € (352) € (351 + 359 — 1) h 381 3517352

I D A ) I Gy

azl dz1 b mod Fa ¢ mod N(a,b)

(@)= ()= (F(ab).c)=1
ae o5
> (ml dhf(W) Wizt (z,wn)
e mod dh(a,b)N
(e,dh)=1
N -3
= <f> C(le) C (352) C (381 + 352 _ 1) h7351f73517332
Aml,m2 (Sla s2, f, h, Pmm) W,—(,fi’sn-blg (Z, wl) .

Finally use Lemma, and evaluate the Dirichlet series Ay, m, (51,52, f, R, Prin)-
Further use the transformation law for Jacquet’s Whittaker function in [4} (3.16)]
in the non degenerate case. So we obtain the formulas
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mimsg
GO oy (zrs1,52) = [ Wpls1, 52, 0, Bp) (Mamy) ™! Wl(ff’sl) my Z, w1
(p,N)=1 1
=351 H (p—1) (1=p32) 013, (p%) —p (1 —p=31) (1 — pt=327391) p(l=3s0)engy 5 5, (p™)
(1 —pt=3s1) (1 — p=3s1) (1 — p=3s2) (1 — pl=3s173%2)

plh
Hp(251+52—1)app(31+252—1),Bp
plh
f1_331_352 H G, (51, s9, apjpﬂp) p(zsl+sz—1)app(sl+232—1)ﬁp p(281+82—l)app(81+2s2—1)6p0-1_382 (pﬂp)
(1 _ p—352) (1 _ p1—3s1—352) (1 _ p—381) (1 _ p1—351—352>
plf p|f—]\;
and
1 2
ngz,o(za S1, 52) = LXA (381 + 359 — 2)((382 — 1)01_351 H pap Wr(jigl)(z’wl)
7R
(p,N)=1

34 (p _ 1) (1 _ p7332) (1 _ p273s17332) —p (1 _ p173317352) (1 _ p7331) (1 _ p17352) p(173s1)ap
h H (1 _ p1*381) (1 _ p7381) (1 _ p7382) (1 _ p173817382)

plh
fleds—3s H( B 1)01—351 (por~ 1) — o134, (p?) p~ 322 1
p (1— p32) (1 — pl—3s1-3s2) (1— p3s1) (1 — pl—Bs1-3s2)
plf p'fﬂh
and

G(()%r)ng (z, S1, 82) = LX (331 — 1>LXﬂ (381 + 389 — 2)01_352 (TTLQ)W(S2781)(Z, wl)
f

N 0,ma
hf
~3s, p—1 1-3s1—3s2 p—1 1
h H (1 _ p*381) 1— p1*3817382) f H 1— p17381*382 H (1 _ p*381) (1 _ p1*3817382)
plh plf p|f—1\}rZ
and

G((f())(z, s1,82) = ((3sa — 1)Ly, , (3s1 — 1)LX% (3s1 + 3s2 — 2)W0(f02’81)(z,w1)

15

- p—1 1-3s1—3s p—1 1
h 3s1 1 2 .
g (1 _ p7351) (1 _ p17351*382) f g 1— p173517382 pg (1 _ p7381) (1 _ p173817352)
fh

(2) We continue with the calculation of ngmw(z, s1, $2). Since many steps are sim-

ilar to the calculations done for the other Eisenstein series we abbreviate some
arguments. Note that we collect an additional factor 2 caused by the sign in
T(0,41)- We have
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1 N\ 3 3s 3s 3s1 +3s9 —1
(2) — 9 —3s1— 352-‘,— 1 2 #
Cnama (2815 52) = 270, <f> " F( 2 >F< 2 >F< 2 )

4(331) C (382) 4(331 + 359 — 1 Z Z Z / / / a, b 351 252+81 2s1+s2

a#0 beZ
(a2 )1 (10 Bio)=1
3s9 3s1

[£2ayiys + 2y (amo + b)° + (fazs + fbxy +¢)*]” 7 [aPys + (amy +b)°] 2
e(—mix1 — mozo)dridredrs .

Split the summation over ¢ in this way ¢ = kNa+cwith k € Z, 0 < ¢ < Na and
note, that the corresponding gcd-condition transforms in the right way. Then
pass to an infinite integral in the variable xz3 and shift x5 — x3 + %. We
obtain

1 N\ 3 _ 3s 3s 3s1 +3s9 —1
G (2,51, 82) = 25h77 <f> 3s1-3s2t5T ( 21> r (22> r <122>

C(351) ¢ (3s2) C (3514 3sg — 1)y 1+ 3~ N~ (a0

a#0 beZ (f(m(l))? J)sz
N a,b),c)=1
(a b, 7 ) 1
" 3s1

/ / /f [f2a®yiys + fryi(ams + b)? + f2a’a3]” # [ay3 + (axz +b)?] 2

—MmM1T1 — mgxg)dxldmgdxg

Split the summation over b in this way b = kz%a +bwithk e€Z,0<b< %a

and note that the corresponding ged-condition holds again for b. Then pass to an

infinite integral in the variable x9 and shift o — x2+§, picking up an exponential
(m2 ) So we get

1 N\? _ 3s 3s 351+ 359 —1
ey (3) o in () () (2

C(351) ¢ (3s2) ¢ (Bs1 4 3sp — 1)y ™13 72y~ N (a,b)%e <m22> >

0 N d N
“#0b mod Fa (F(@p).e)=1
N)_
(a,b,T)fl

N
f 952 331
/ / / f2a2y1y2 fPa’yias + fra® ] E [a Y3 + ‘12%2}

—mi1x1 — mgiﬂz)dl‘ldl‘gdﬂfg

N
Extract and evaluate the exponential integral fof e(—myx1)de; = %5,,1170. Pass

in the summation over a to positive values collecting a factor 2, note that this is
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possible since the minus sign can be absorbed in the other summations. Use the
formula in |4, (3.14)] and the notation in Definition to extract the Whittaker
function and the Dirichlet series B, (S1, $2, f, Pmin). This gives us

N —2
G (2,51, 80) = O, 0my 0 <f) € (351) ¢ (352) € (351 + 353 — 1)
J7RY e S (ab)e (m2b> > W (zwa)
a>1 b mod Ya ¢ mod Na
f (f(avb)7c):1

(r07)
N

-2
:6117%5””70 <f> C (331) C (352) C (331 + 359 — 1) f 3SQBm2 (317 52, f szn)WSS%Sl)(Zv w4) .

Finally use Lemma and evaluate the Dirichlet series By, (s1, $2, f, Pmin). We

have
G(2) 5 3s2 p— 1
my,ms2 (Z 81782) h N m1,0 f H —382 H 1 _p—382
plf p|ﬁ
0235135, (M2)C (381) Lx% o 1)W(552’51)( , Wy)
and

9 3 p—1 1
ng) o(z,51,82) =6, N5m170f * H —p3s2 H 1 —p3s2

plf Pl

0,m2

¢ (351) C(3s1 + 359 — 2) Ly, (352 — W2 (2, y) .
f

(3) Next we handle the calculation of GS{)IWQ (z,51,52). We have

G®) . (2, 51,59)

mi,m2

-3
:i (?) T (3;1> s (3282> : <351+282_1) ¢ (351) ¢ (3s2) ¢ (3s1 4 3s2 — 1)

>y » ¥ [

b#£0 cEL e€Z o Jo
(bN) (fbc) l(dN> (dhe) 1

3sg

282+81 281+82 [f2b2y2+ (fbxl +C) ] D)

N
!

\\2

3s1

[h2 P20 y22 + R2d23(fbay + €)% + (e — hfdbas + hd(fbay + C)xg)z}

e(—mix1 — mozg)dzidredrs .
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Split the summation over e in this way e = dhNbk +e with k € Z, 0 < e < dhNb
and note that the corresponding gcd-condition holds again for e. Then pass to an

infinite integral in the variable x3 and shift x3 — z3 — %ﬁmm. We obtain

G,(ﬁi,m (2,51,52)

-3
(7)o () () <31+Z’2_1) C(351) € (352) € (31 +352— 1)

A SIS Z 3 / / / 20292 + (fbay + 0] %

b#0 cEZ e mod thb -
(5)-2 05 ()"0

3s
(12 f2d*b*yTys + h2d®y5(fbar + ¢)® + h? F2d°b*a3] e e(—miz1 — moxs)dridradrs .

Split the summation over ¢ in this way ¢ = Nbk + ¢ with k € Z, 0 < ¢ < Nb
and note that the corresponding gcd-condition holds again for ¢. Then pass to
an infinite integral in the variable z; and shift x1 — x1 + ﬁ, picking up an

exponential e <m1 ﬁ) This gives us

G,(ﬁi,mg (2,51,52)

-3
:% (?) —3s1-3s24 3 <3;1> r (3282> r <351+;"921> ¢ (351) ¢ (352) ¢ (351 + 352 — 1)

y%SQ"!‘Sl 2s1+52 Z Z <m1!}fb> Z Z / / / f2b2 + beQx%]iT
b#0 ¢ mod Nb d#0 e mod thb -
(b ﬂ>:1 (fb,e)=1 (d N) 1 (dh,e)=

S1

[R? F2d20%yys + h2d? 22 atys + B2 f2d2bP ] E e(—myxz1 — moxs)daidzedrs .

N
Extract and evaluate the exponential integral fof e(—moxg)day = %57,1270 and
pass to positive values in the summation over b, d, collecting two factors 2. Use
the formula in |4} (3.15)] to extract the Whittaker function and the notation in
Definition for the Dirichlet series Cy, (s1, S2, f, by Pmin), note that here we
have z3 = £4. So we get

N -2
G (251, 52) = (f) n 0 (351) € (352) ¢ (351 + 352 — 1)

—381—38217,—3s —3s81—3s C —3s (52 81)
s S e S () X0t S Wi )
b>1 ¢ mod Nb d>1 e mod dhNb
(b,g)zl (fbe)=1 (dvfﬂh)zl (dh,e)=1

! - 52,8
= <f> 5m2,0§ (331) ¢ (382) ¢ (381 + 359 — 1) f_381—382 B3s1 le (817 s2, f, h, Pmin)anivol)(Z’ ’11)5) .
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Finally use Lemma and evaluate the Dirichlet series Cyy,, (s1, 52, f, by Prin)-
So the formulas

1

3 1—3s1—3s27 —3
G7(ni,m2(z 51, 32) mz, of Y H (p - 1) H (1 _ p—351) (1 _ p—3s1—352+1)
plh p|%
11 (p — 1)09—35,—3s, (p°r) — p T 3517 352)e
1 _ ml1—3s1—3s2
plf p
092351 —3s9 P | Ly (351 —1)¢(3s2) Wr(,ff,’gl)(%ws))
(p.N)=1 ™
and
3 p—1 1
G((),,)m(z 81, 82) =0y of O TR SSIH(p_l)H — 1-3s1-3s H — . 3s — 1-3s,-3s
1 —pl=dsi=3s2 LL (1 — p=3s1) (1 — pl=3s1-3s2)
plh plf p|%
¢ (352) Ly, (351 — 1)Ly (351 + 3s2 — 2)W32* (2, ws)
i 7
hold.

(4) Next we handle the calculation of Gg)%z’mQ(Z,Sl,SQ). Note that we collect an
additional factor 2 caused by the sign in 7o +1). We have

1/N\7? _3e 1 3s 3s 381 +3s9—1
G%z,mz('zasla s2) = 21 <f> 5h,%7r ds1—dsatap <21) r <22) r (122)

C(351)C(3s2) C(Bs1+3sa—1) >

(bff (fhoy=t
b, )=1 (00)=

N N N
T T N _3s2
/ / / yptEsysaten [0y} + (fbz1 +¢)?] 2 e(—miz1 — mows)dardzadas .
o Jo

Pass in the summation over b to positive values collecting a factor 2. Split the
summation over c¢ in this way ¢ = Nbk + ¢ with kK € Z, 0 < ¢ < Nb and note
that the corresponding gcd-condition holds again for ¢. Then pass to an infinite
integral in the variable x1 and shift x1 — 1 + ﬁ, picking up an exponential

e (m1 ﬁ) We obtain

N -3 _ 351 389 3514+ 3s9 — 1
4 351—3s
Wbt = () grorerin () () (5
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C(381) ¢ (382) ¢ (381 + 359 — 1) yi1+232 s52+2s1 Z Z < )

( b>>1 c(]rg;)od) Nb
b, )=1 V€

N N
T[T [ _3s2
/ / / [f2b2y% + fzbzx%] 2 e(—myx1 — moza)daidzedes .
0 0 —00

N
Extract and evaluate the exponential integral fof e(—moza)day = %67%270 and

N
the integral [,/ dasg = % Then use the formula in [4} (3.13)] and the nota-
tion in definition [[6.4] to extract the Whittaker function and the Dirichlet series
Dy, (82, fy Prin). This gives us

N -1
Gl ma (% 51,52) = <f) Oms 003, 3 € (351) € (352) € (351 + 352 — 1)

—3s —3s C 52,8
f3e Z b3 Z €<m1fb)W,(nf,ol)(Z,w3)

b>1 c(]l;réod) ]\{b
N\ _ ,C)=
(b,7>_1

N\7! 528
= <> 5m2,05h,%C (351) € (359) ¢ (351 + 359 — 1) £ 352Dy, (50, f, Pmm)W,Sqi’ol)(Z, w3) .

Finally use Lemma and evaluate the Dirichlet series Dy, (s2, f, Pmin). So
the formulas

1+(1-3s2)ayp

- 1 (p—1)o1_3s, (p°?) — p
ngzmQ (Z’ 817‘92) :5m2705h7%f 52 H 1 —3s2 H = —3s2

— 1—
AP P
01-3s, p™ | €(3s1)((3s1 + 3s2 — 1) Wﬁff,’é”(z,ws)
(p,N)=1
and
G802 1,52) =0y 0, 722 [] 2 :
0,m2 %, 81,82 m270 h, N H p—382 H 1— p—382
plf p|%
¢ (351) Ly (352 — 1)C (3s1 + 32 — 1) W32 (2, ws)
N
hold.

(5)

(5) Finally we treat the two easiest calculations, beginning with G} m, (%, s1, S2).
We have
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G®) (2, 51,59)

my,Mm2
1 /N\ 3 1
LAY g e ssatdp (250 p (352 (3514352 T LN gy c(300) ¢ (361 4 85y — 1)
4\ f 2 2 2
3s
Z Z / / / 81+282 S2+281 [d2y2 + (xgd—i-e) ] 21 e(—mlxl — mgxg)dxldxgdxg
7 i

N N N

5T [T 3y
+/0 /0 /0 yf1+282y82+231 [d2y§ + (xod — 6)2] 2 e(—miz1 — mowy)dridredrs .

Next pass in the summation over d to positive values collecting a factor 2. Split
the summation over e in this way e = dk 4+ e with k € Z, 0 < e < d and note
that the corresponding gcd-condition holds again for e. Then pass to an infinite
integral in the variable wo and shift zo — z9 & 35, picking up an exponential
e (imgg). So we get

1 s1—3s 3s 3s 3s1 +3s9 — 1
Gl (251, 82) = Gopm P17 Stir ( 21>F<22> (122>

¢ (351) € (352) € (351 + 359 — 1) i1 +2o2y2 21 37 e (mQZ) +e( mzfl)}

d>1 m(;d

/ / / d2y2 +d ] e(—mlxl — moxy)dridrades .

Extract and evaluate the exponential integral fol e(—myx1)dey = 0, 0 and the

integral fol drg = 1. Absorb the minus sign in the second sum over e into the
summation. Use the formula in [4, (3.12)] and extract the Whittaker function.
We obtain

GE) oy (2,51, 52) = Omy 007 8C (351) € (352) € (Bs1 +3s2 — 1) > d™*2¢q (m )Wésﬁ{;l)(%wz) :
a>1

Using Lemma in Appendix A and distinguishing between the cases whether
me vanishes or not the final result is

GO)

mi,m2

(2,51, 5) = Omy,007,nC (351) C (351 +3s2 — 1) 01— 352(m2)Wés2’81)(2,w2) yif mg #0,
’ Sy 007.8C (351) € (352 — 1) € (351 + 35 — 1) Wémﬂ( ws) L ifmo=0.

(6) In the last calculation we treat G$,6137m2(z, s1, $2). Note that the set T'g(f, h, Ppin)
contains at most four elements. We have

1 /N\® L [3s 3s 351 + 389 — 1
(6) — —3s81—3s2+ = 1 2 #
G ma (751, 52) 4<f> OpNT 2F< 2 >F< 2 )F( 2 )
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N N N
N N F
¢ (351) € (352) € (351 + 35 — 1)4 / / / e
0 0 0

e(—mix1 — mozo)dridreders

¢ (351) ¢ (352) ¢ (351 + 350 — 1) yf1+252y§2+281
:(5f7N6m1705m270€ (381) C (382) g (381 _|_ 352 _ 1) Wé;s02,81)(z’ wo) )

In the last equation we used the formula in [4} (3.10)] and extracted the Whittaker
function.

0

In the classical case of SL3(Z) one gets the well known Fourier expansion and functional
equation of the minimal G L3 Eisenstein series, which was explicitly calculated in [4, Thm.
7.2] and [27]. In the case of a level N > 1 one has to proceed similarly as in chapter
13 and show that there exists a certain scattering matrix, such that the Eisenstein vector
fulfills a functional equation. Note that unlike as in the SL3(Z) case, for a general level the
Eisenstein series are not invariant under the involution z — 2%, because the congruence
subgroup I'g(NNV) is not fixed. So in order to obtain functional equations in the general
case, one probably also has to consider the Eisenstein series G (zt, s1,89, f, h, Pmm).
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CHAPTER 18

Appendix A: Ramanujan sums and associated L-functions

In this appendix we recall some basic facts about Ramanujan sums and divisor sums.
Further we evaluate certain associated L-functions. All the results are well known but for
easier readability of the main text it is advantageous to collect these facts. We start with
the definition of Ramanujan sums and divisor sums.

DEFINITION 18.1. Let n be a positive integer and m an integer. The associated Ramanujan
sum ¢, (m) is defined through the formula

z mod n
(z,n)=1

DEFINITION 18.2. Let n be a positive integer and s a complex number, then the associated
divisor sum o4(n) is defined through the formula

os(n) == st .
dln

Next some well known properties of these Ramanujan sums and divisor sums are stated.

LEMMA 18.3. Let nyi,na, h, q be positive integers with (n1,n2) = 1, k,l nonnegative integers
and n an arbitrary integer. Further let p be a prime number and m an integer with
(p,m) = 1. Ramanujan sums fulfill the following properties.

(1) Ramanujan sums are multiplicative:

Cning (M) = Cny (M)Cny (M)
(2) Ramanujan sums satisfy a cancellation property:

oo () = ()

(8) The following explicit formula holds:

1, if k=0,
! Plp-1), if 0<k<I,
Cp’“(p>: ! ) _
—p', if k=141,
0, if k>1+1.

195
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(4) Ramanujan sums satisfy reduction formulas:
(a)
ey (P1) =g (#')

Cph+1 (0) = pCph (0) .

(b)

(5) The explicit formula
_Jao i oqln,
>~ ca(n) = .
0, otherwise
dlg

for divisor sums of Ramanujan sums holds.

(6) The divisor function satisfies the following transformation rule:
o—s(In|) = [n|"" os(Inl) -

PROOF. See [10] for details.

0

The main application of the previous results concerning Ramanujan sums is the calcula-
tion of certain associated L-functions and finite Euler products. These functions occur in
the Fourier coefficients of the Eisenstein series.

LEMMA 18.4. Let N, m be positive integers, where m = myimsg withmy | N and (mg, N) =
1. For the L-functions below the explicit formulas

(1)
Z a fco(m) = o1-s(my) H(1 -p7),

a| N> pIN
(2)
Z a Sca(m) = 01—5<m2)LXN (5)_1 )

(a,N)=1
(3)
1—p=s
> ae@) =]+ 5 ,
a| N p|N
(4)
(a,N)=1 LXN (S)

are valid.

PRrooF. For now let m be an arbitrary integer.
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(1) Since Euler’s ¢-function is just the Ramanujan sum ¢, (0) the parts (1) and (3)
can be handled together. Use the formula for divisor sums in Lemma [I8.3] part

(5) and calculate directly

11 1 doaTCem) =Y 0T Y aCam) =Y ¢ D clm) | =D ¢

p|N a| N n|N a| N q|Noe dlq q|N*°
qlm

S gt ifm=0,

_ JalN>
S qts, ifm#£0.
qlma
1|_[ T pl =, ifm=0,
= pN

al,s(ml), ifm#o.

(2) With the same method as above the parts (2) and (4) are handled. Again we
calculate directly

Z a *cqe(m) = Z n- Z a *cqe(m

(a,N)=1 (n,N)=1 (a,N)=
Z g | D calm) Z ¢
(a.N)= dlq (¢,N)=

q\m

D itm=0,

_ ) (@N)=1
D itm#0.
Q|m2
) Lyy(s—1) itm=0,
N o1-s(ma) ifm=£0.
O
LEMMA 18.5. Let N be a squarefree positive integer and m = [[p®® a positive integer with
P
corresponding prime factor decomposition. The factorizations
(1)
> o ean(m) = [T (0 = Dory () = p 7072020 )
a| N p|N
(2)
> oot = [T s
a|No° p|N

of the above Dirichlet series into finite Euler products are valid.
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PrOOF. We handle both parts together assuming for the moment that m is any non-
negative integer. The multiplicativity of the Ramanujan sums gives the factorization

Z a con(m) = H Zp*kscpkp(m)

a|N>® p|N k=0

of the above Dirichlet sum in a finite Euler product. Note that in the right-hand side of
the equation the squarefreeness of N was used. Now we distinguish between the cases
whether m vanishes or not. For m non-zero use the cancellation property of Ramanujan
sums in Lemma part (2). This gives us

[T 5 p cpm (%), im0,

—s p|N k=0
2 o ean(m) = ks o (ke :
al N HZp_Sq[)(p"‘), ifm=0.
p|N k=0

Then apply the explicit formula in Lemma [18.3| part (3). This gives the formula

( op—1
[I ( > p_kscpk+l (p°r) ‘f‘p_apscp%ﬂ (pap)) ) it m#0,

Z a_scaN(m) — /) p|N ook:O
a| N> I1 X p*pk(p—1), ifm=0.
p|N k=0
ap—1
[T{ X p™*e—1)+p > (—p™)|, ifm#0,
= { pIN \ k=0
[T(p—1) Y pt=9k, ifm=0.
p|N k=0

Now evaluate the geometric sums. So we have

[T ((p— 1)o1—s (por) — ptH=s)an) ifm=#0,
Z a *can(m) = pIN
I1 = iftm=0.

a| N> pIN 1—pt=s>

O

Last but not least explicit formulas for certain convoluted Dirichlet series are stated. The
Dirichlet series in the first lemma will occur in the Fourier coefficients of the minimal
Eisenstein series, the one in the second lemma in the Fourier coefficients of the Eisenstein
series twisted by a constant Maass form.
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LEMMA 18.6. Let N be a squarefree positive integer and my = [[p®® and my = [[p®

P p
positive integers with corresponding prime factor decomposition. Then the explicit formulas

Z a"*2cq(ma) Z b~ cpn(mia)

a|No° b|Noo
_ H (p—1)(1—p2)01-s, (pﬁp) —p(l—p™) (1 _p1—52—sl) p(l—sl)ap02_52_51 (pﬁp)
- 1— 1—s1

pIN b
and

Z a *2¢(a Z b~ *tepn(mya)

a|No b|Noo

1] (p—1D(1—p )1 =p* ) —p(1—p'2 1) (1 —p=*) (1 - p'~2) pll=s)
i (1=pt=s1) (1 —p2s27s1) (1 — pl==)

hold.

PRrROOF. We handle both cases together assuming for the present that mo is an arbi-
trary integer. The squarefreeness of N and the cancellation property of the Ramanujan
sums imply that the Dirichlet series below can be factorized into a finite Euler product.
We have

Z a"*2cq(ma) Z b~ epn (maa) Hzp_ksch ip e ( a”+k) :
1=0

a| N b|N e p|N k=0

Next use the explicit formula for the inner Dirichlet series in Lemma A direct
calculation gives

Z a”*2cy(ma) Z b~ cyn (mia)

= H Zp—k52cpk (m2) ((p —Doi—g, (pap+k) _ p1+(1—sl)(ap+k))
p|N k=0
—ks p—1+ pl_sl —-p p(l—Sl)(ap-i-k')
_HZ ksa m2)< ( = 1_)81
p|N k=0 p

=l | ' =ty p W he(ma) + (0= 1) 3 _p e (ma)

pIN k>0 k>0
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Now we divide between the cases whether mso vanishes or not and use Lemma to
calculate the two Dirichlet series.

(1) 1. Case: mgy # 0. In this case the cancellation property of the Ramanujan sums
gives the result

Z a”*2cq(ms2) Z b~ *tepn(maa)

a| N b| N>
B (p—1)(1—p2)o1_s, (pﬁp) —p(1—p ) (1 _ pl—s2—sl) p(l—s1)ozpo.2_82_s1 (pﬁp)
_ ll‘[ N .
p|N

(2) 2. Case: mg = 0. Since Euler’s ¢-function is just the Ramanujan sum ¢, (0) we
can apply the identity

S s _Cs=1)

to evaluate the above Dirichlet series. This gives us the result

Z a 2¢(a) Z b *tepn (mya)
a| N b| N
_ H (p _ 1) (1 _ p752) (1 _p2752731) —p (1 _ plfsgfsl) (1 _ pfsl) (1 _plfSQ) p(lfsl)ap
(TP (o) (1= pi=) '

p|N
O

LEMMA 18.7. Let f be a squarefree positive integer and m = [[ p® be a positive integer
P
with corresponding prime factor decomposition. Then the formulas
(1)
_ fa 2 24(2—5)
s _ o s)a
> Y cn(m) o) = T (02 = Voos (o) —p+ @00
alfe t|fa plf
(2)
- fa\ fa p*—1
> e\ ) e =111
t t 1—p
alfe> t|fa plf
hold.
PrROOF. We handle both cases together, in order to do this assume for the present

that m is an arbitrary integer. The multiplicativity of the Ramanujan sums implies the
factorization of the Dirichlet series in a finite Euler product. We have
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k+1
Z a_SZc%(m)fT H (Zp ’“Zc ka1t (m)p Tl <pl>> )

alfo° t|fa plf

Make an index shift in the inner sum and seperate the zeroth summand. This comes to

) k
Z a=* Z CfTa (m)%qb(t) _ prks (Z ¢yl (m)pl¢ (pk:+1fl) + cpk+1(m)pk+1¢> (pk+1(k+1)>>
0 k 00
= ((p -1) Zp_(s_l)k Z cpt(m) +p Zp_(s_l)kcpk+1 (m)> :
k=0

k=0 =0

Factorize the first Dirichlet series, which is a convolution of two Dirichlet series. This
comes to

ZGSZCT(m)iaqﬁ(ﬂ—H((ﬁ—l > pen 1’“21)’(3 DE +pzp TR m))
k

alfo t|fa plf =0

1 X e 0o i
:H<1Ii s Zp ¢ l)kcpk(m)+pzp ( l)kcpk“(m)) '
olf P Do k=0

In the case m # 0 use LemmaMpart (1) to evaluate the first Dirichlet series and Lemma
18.5] part (1) for the second one. In the case m = 0 use Lemma [18.4] part (3) to evaluate
the first Dirichlet series and Lemma m part (2) for the second one. So finally we get

>0 Y esm) o)

alf> t\fa
( 01— (o) (™) (1= p~ D) +p ((p — Doy (o) (p“p)—p”(l‘(s‘”)“")), ifm#0,

_ ) plf o)
—p—(s— -1 .
plf (1 pl s1_ 51 (s—1) +p17p€7(371)> ’ lf m=0.
( p - 1 02 S ap) - p2+(2_s)ap) ’ it m 7& 0 ’
_ plf
IT-2 - pQ <, ifm=0.
plf






CHAPTER 19

Appendix B: K-Bessel function and GL3;-Whittaker
functions

In this appendix basic facts about the well known K-Bessel function, which is up to the
root of the y-coordinate Jacquet’s Whittaker function for GLo, are summarized. The
connection between the K-Bessel function and Jacquet’s Whittaker function for GLj3 are
worked out. These integral formulas are crucial in the calculation of the Fourier expansion
for the twisted Eisenstein series.

DEFINITION 19.1. The K-Bessel function K, : R, — C is a C*°-differentiable function
parametrized through a complex index v defined through the formula

1 [ 1 dt
K,(2) ::2/O exp(—; (t—f—t))t”t.

Here is a summary of a few properties of the K-Bessel function K, .
LEMMA 19.2. Let A, B,C be real numbers with A > 0 and 4AC — B%2 > 0. The K-Bessel
function K,, has the following properties.

(1) The K-Bessel function satisfies the functional equation K, = K_,.
(2) For Re(v) > 3 the K-Bessel function satisfies the integral representation

A"IK

v—

ol

/ (Az’+Bz+C)e(—z)dx = T = (4AC — B2)i*% ov+
—00 I'(v)

(3) For Me(v) > & the integral formula

(W VAAC — 32)
.

1
2

2 v 201 _ p2\3 v s (v —3)
(Az® + Bz + C)Vdx = /72 (4AC-B%)2 " A )

holds.
(4) The formula

o P J—
/ Ky_l(y)y”%dy:T%F(HS ”>r(3+”)
0 2 y 2 2

for the Mellin transform of the K-Bessel function is valid for Re(s) + % >
|Re(v) — 3.
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PROOF. Part (1) can be seen immediately through the substitution ¢ + ¢t~! in the
integral representation of the K-bessel function. Part (2) and (3) are proved in [4,
(3.54),(3.55)] referring to [30|. Part (4) can also be found in [30].

0

Next some important integral representations of the K-Bessel function and Jacquet’s Whit-
taker functions are derived. Starting with integral representations, which are needed in
the calculation of the Fourier expansion for the Eisenstein twisted by a constant Maass
form.

LEMMA 19.3. Let m be a non-zero integer and y1,ya positive real numbers. For Re(v) >
the four integral representations

1
2

(1)
o o -V 1-2v 1—v v—1 —1
/ / 392 + 3a? + 23] e(—mar)dzrdas = 20yl [m|" " ()" K- (27 [l )
—00 J—0
(2)

Y AT R b 1-20, 22, L (v = 1)
[y1y2 +yix] + CCQ] d.Tld:Eg =Ty Y5 W ,
—o00 J—o0

(3)

o oyv v—1 -v 1
[+l emandn =20 by 0,y (2n ) |

—0o0

(4)

o0 _y o, I v—1
[ ety i =y T

are valid.
PROOF. (1) Apply LemmaMpart (3) with A =1, B = 0 and C = 3243 4+ 3322
to the integral in the variable 3. We have
o0 o .
/ / (V303 + yia? + 23] " e(—may )day das
—00 —0o0

1o D (v—3)

o) e(—maxq)dz; .

[ee]
= / V2P (4(yiv + yixd))
—00
Make the substitution mz; — z1 and simplify the terms. We have

(e.) [o¢] _
/ / (293 + yia? + 23] " e(—ma)dar das
—0oQ —00

1D =3) s [ a0 oiow
:ﬁyl W ‘m| [m y2 + 1171] e(—fl)dxl .
—o0
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_fyl 2v (

Next apply Lemmam part (2) with A =1, B =0 and C = m®y; and evaluate
the integral in the variable x;. This gives us

o0

!

/ / (293 + yia? + 23] " e(—mar)da das

2

_1
) |m|2y—2 m”
I'(v)

2 1 V*%
4(m2y2)) 2

F(l/— %) ( ( y2))

=27 y1 ™y, Im[ T T () T K, (27 [m] o)

(2) Note that the first step in the proof of part (1) is also valid for m = 0, so the
identity

/ / [yiys + yia] + 23] dagdey = Vry;

F'(v-3)

o/
holds. So it remains to apply Lemma-part (3)withA=1,B=0and C = y;
to evaluate the last integral. We have

(2 + 222" dz,
/ / [ty + yiat + 23] dayday
1,1 IR _
_\fyl 2u (( ) )\F22(1/ (42/%)2 (v—3) ((V
» JIwv—1
R =

o0

[yi + 7] " e(—maq)dzy = \m|2'/_1/ [m2y; + 23] e(—21)day
us

(3) Make the substitution ma; — x; and simplify the terms. The identity
o0
/ 2, 21V 217V
holds. Apply Lemmam part (2) with A =1, B =0 and C = yym?*. This gives
/OO

—v _ v 1_v
32+ o8] e cmandes =l T ()b, (g
—00 F(V) 2
R
or¥ Im|" "2 y? T(v) 'K,

1 (2 ml 1)
(4) Apply Lemmam part (3) with A=1, B=0 and C = y;. We have

o

2422 day =

v— %_VF(V l) v (V_
vazet ) S - et
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The following lemmata establish a connection between the K-Bessel function and Jacquet’s
Whittaker function for GL3. Note that we use the notation in |4] and start with the de-
generate case, whose proof is similar to that of Lemma [I9.3] Note that the results of the
following lemma can be found in [4, (3.40),(3.45)].

Y1Yy2
LEMMA 19.4. Let z = Y1 € b3. Then the degenerate Whittaker functions
1

Wéﬁl’VQ)(z, w2) and Wl(fal’VQ)(z, w3) have the representations through the standard K -Bessel
function given by the formulas

(1)
v,V — —241 — 1 3 7
Wé 117 2)<z’w2) | 322+ér <32V1> T <3V1+3V2> y%v1+uzy22+111+ 2 Ky—1 (27ry2) ,
) T2

2
(2)

3v 3 3 3vg — 1\ Lling,
Wi ) = 2 By (2 ) p (BT EL) e e o)

PROOF. First we assume Re(v1),Re(r2) > %, so that we can apply the integral for-
mulas developed before. The general result follows through meromorphic continuation.

(1) The definition of Wéﬁl’”)(z, wy) in [4] (3.12)] gives the formula

W) (2, ws)

3 3 3 3 _ 1 o0 _3u2
_3n-3mt i < ;1> r <;2> r <V1+2’/2> yfl/1+1/2y12/1+21/2/ [2+12] 7 e(—&)ds, .
—0o0

Apply Lemma part (2) with A =1, B=0and C = y3 and v = 3% to the
integral in the variable £;. This gives us

Wéﬁl’yz’)(z, w2) — g 3i—Svata (312/1> r (?) r <3V1+§V2_1> 2y k2

3vg 3vg
™2 -2 3vy 1
T2 Ky, (m/zxyg)
2 2

— (493)
3 ( Y2
r (%)
. 1 1
:27T—3V1—3T2+%1" (32111> T (?m?) yfV1+V2y22+”1+ 3 K3u2271 (27ys) -

S

(2) The definition of Wl(jf)l’VQ)(z,wg) in |4, (3.13)] gives the formula
(v1,v2)
Wi (2, w3)

e 1 3 3 3v1 4+ 3 — 1 v1+2v > -5
—r 31 31/2+§1—\ < ;1) T <;2> T <V12I/2> y%V1+V2y21+2 2/ [5% + y%] 2 6(—51)(151 .
—00
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Apply Lemma part (2) with A=1, B=0and C = ¢y} and v = 3% to the
integral in the variable &;. This gives us

3 3 3 39— 1
Wl(:)l’w)(z, w3) :77_3”1_3V2+%F ( V1> T <V2> T <V1+V2> y%l/1+l/2y51+21/2

2 2 2
vy N
Tz 2\i~ Mgl 2
rey ()T (” 4y1>
3v 3 3 3vg — 1Y\ 144
B R a0 <;2> r <V1+2V2> yf+ 2 +V2y51+2V2K3u1271 (27my1) -

0

Finally we state a result from [4, (3.56)], which expresses Jacquet’s Whittaker function
for GL3 as a double integral of the K-Bessel function. This integral formula is needed to
incorporate the Fourier expansion of a GLs Maass cusp form into the Fourier expansion
of the Eisenstein series twisted by a Maass cusp form.

Y192
LEMMA 19.5. Let z = Y1 € bh3. Then the following representations of
1
Jacquet’s Whittaker functions through a double integral over the standard K-Bessel func-
tion hold.

(1) The representation for Wl(ﬁl’yz’)(z,wl) reads as follows

v - 1,42
W1(71/117V2)(Z’w1) _ 27T—3V1—372+%F <32yl> T (31}14_231/21> y%V1+V2y22+ 143

I 1_3v_3vy 1 202 1 222 & 22
[ utadad] T F v ad) R e K (2@2“ VivB ¥yt + 2}
—o0 J—o0

2 y% + x%
e (— 2@:1:3 2) dxodxs .
Y + 13

(2) The representation for Wfi)l’y2)(z,w1) reads as follows

v _ 1 y vy
WA (2 ) = 2080 FHT <32V1> r <3V1+§V21> O L

<[ 13 3y L o2 + y222 + 22
/ / ytyz +yie + 23] 7T+ 3) P K <2Try2\/1 T R
—o00 J —00

Y3 + a3
e <2$2x32> dxodzs .
Y3 + 3
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(8) The representation for Wéﬁl’VZ)(z,wl) reads as follows

Wé’vlhl/z)(z’wl) _ 271_—3:/2—%-%%{* <3;2> T <3V2+§V1_1> yglfzﬂllyl%‘w?"'%

/ / vouy +woet + 23] 7 (i) K (27ry1\/2 Ly
—00 J —00

yi + i

13

e| ———— | dz1dzs .
< y%“ﬁ%)

PRrROOF. The first part is proved in [4, (3.56)]. For the proof of the second part recall

the definition of the Whittaker function Wl(ff)l’l/?)(z,wl) in [4, (3.11)] and use the same
argument as in the first part with the difference that the exponential factor e(—x3) is

absent. The correctness of the last part is easily seen through applying the transformation
laws in [4} (3.17),(3.24)] to the Whittaker function in the second part.

0



CHAPTER 20

Appendix C: Automorphic forms on G L,

In this appendix the facts, which are needed in this thesis, about the Fourier expansion and
L-series associated to an automorphic form for the group GG Lo are summarized. For brevity
the Atkin Lehner theory is omitted. As a reference we refer to the original paper [2]. We
start with the main tool, the Fourier expansion and the L-series of an automorphic form,
for a reference see |15, thm 3.1], [14] and |7, ch. 3.5, 3.13].

THEOREM 20.1. Let ¢ be a Maass cusp form with eigenvalue v(v — 1) for the congruence
subgroup To(N). At any cusp a the cusp form ¢ possesses a Fourier expansion

Boa2) = 3 20a(0) /[y, _1 (2 |n] y)e(nz)

n#0

Denote the Fourier coefficients at infinity with ¢,. For Re(s) > 1 the L-function

Ly(s) := Z O °
n=1

converges absolutely.

Now we state the main results about the Fourier coefficients and the functional equation of
a newform. Details about newforms, Hecke operators, the Fricke involution and functional
equations can be found in [2], |14, ch. 6] or [22]. Note that we use the normalization of
the Hecke operators in |14} ch. 6].

THEOREM 20.2. Let ¢ be a newform with eigenvalue v(v — 1) for the congruence subgroup
I'o(N). Then the Fourier coefficients of ¢ have the following properties and the L-series
of ¢ possesses an Euler product.

(1) The Fourier coefficients (¢n),cn are normalized, multiplicative and identical to
the Hecke eigenvalues, hence T¢ = ¢np with the Hecke relations ¢pnt1 = ¢pdpn
for primes p | N and ¢yniz2 = ¢pPpni1 — p Loy for primes (p,N) = 1.

(2) For Re(s) > 1 the L-series Ly has an Euler product

1 1
Ly(s) = —_— .
0(5) H 1— ¢pp—> H 1—gpp* +p 1p 29

p|N (p,N)=1
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Next we state the functional equation of the L-series of a Maass newform. This result is
well known, but since most proofs in the literature are abbreviated or given for modular
forms, a complete proof will be given here. We will generalize the proof in |7, thm 3.13.5]
to newforms of level N.

THEOREM 20.3. Let ¢ be a newform with eigenvalue v(v — 1) for the congruence sub-
group T'o(N). Let a = £1 be the eigenvalue of the Fricke involution for the eigenform
¢, hence ¢ (—i) = a¢(z). Further assume that ¢ is an odd or even cusp form, hence

o ((y f)) = (=1)% <<y 3;)) with € = 0 if ¢ is even and € = 1 if ¢ is odd. Then

the completed L-series L£4(s) = (2i)67r_5_%N%F (stLEev) D (Sh2) [y (s) satisfies the
functional equation

Lo(s) = (=1)%aLy(—s) .

PROOF. (1) 1. Case: ¢ is even. For fRe(s) > 1 the cuspidality of ¢ implies that
the Mellin transform

2 > Yy s%_ s > s%
[T (V) e =t [T 20K,y en il

n#0
converges absolutely. Substitute y — 27ny and note that since ¢ is even, the
Fourier coefficients satisfy ¢_,, = ¢,,. We have

s & dy o1 goo _ o0 ldy
i [Co((t ) st S [y
; 1 y (2) > ; 1(y) )

2
—£4(5) . (20.1)

In the last equation the formula for the Mellin transform of the K-Bessel function
in Lemma [19.2] was applied. Now we calculate the above Mellin transform using
Riemann’s trick and breaking the integral into two parts. We have

ol ) [To(( )it [ o(( )

Apply the fact that ¢ is an eigenform of the Fricke involution with eigenvalue a
in the first integral. After that substitute y — (Ny)~! in the first integral. This
gives us

e )y

=(2i)07 "z N3T (8 r1+0- ”) r <S t0+v

(NI

N

(NI

N
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o [ e [o(C )
(7)) [l (v ]

The cuspidality of ¢ implies rapid decay in the cusps in the variable y, hence the
above integral is an entire function on C. Further a = +1 implies that the above
integral is invariant up to the constant factor a = (—1)¢a under the transforma-
tion s — —s. Comparison with gives the functional equation for the even
newform ¢.

(2) 2. Case: ¢ is odd. In the case of an odd newform the antisymmetry of the
Fourier coefficients would imply that the above Mellin transform vanishes, so our
approach is to take the derivative of ¢. Again the cuspidality implies the absolute
convergence of the Mellin transform

S AC())

El b 8 s dy
N [ S 20K,y ernlggena) || Y
n#0

Yy
=0

ys+1 %
=0 Yy

[o¢]
s d
:Nz/ E 20/ |In|yK, 1 (27 |n|y)2mwin ySny
2 Yy
n#0

of the derivative of ¢. Substitute y — 27ny and note that since ¢ is odd the
antisymmetry of the Fourier coefficients implies ¢_,,(—n) = ¢,n. We have

LR DLt

3 s >0 >
=8mi (27)°"2 N2 Y ¢on*® / K, 1(y)y"2—

. 915 1
zzmséNzL¢(s)r< ts ”)r(” +”)

ys—i-l %
x=0 )

2 2
. 141— 1
—(2i) 7 *"ENSD <S+ JQF V>F<S+2+V> Ly(s)
—L4(5) - (20.2)

In the last equation the formula for the Mellin transform of the K-Bessel function
in Lemma([19.2] was applied. Now we calculate the above Mellin transform through
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breaking the integral into two parts and differentiating the Fricke involution in

the first integral. This gives us

s [T 9 y sr1dy

v (e (O D)L

i [T ((v e wndy s [0 (L ((y c1dy
S A () ) IS e A A () | IR

0

Apply the fact that ¢ is an eigenform of the Fricke involution with eigenvalue a
in the first integral and then differentiate the integrand functions using the chain

rule. Note that the variables z and y are interchanged. We have

s [0 Yy x dy
N v s+1-5
AR G(G)) A
1 T
—N3 /m 9 <a¢ <(N(y§+x2) _N(92+w2)>)> ys+1d7y
o Ox 1 2=0 y
L DL
ﬁ €T =0 Y
1 y T yCQ*yz —2zy d
N(2+22) ~ N@y2+z?) > > N(m22+y2)2 N(m22+y;)2 es s+19Y
Ty z<—y
! N(z2+y2)*  N(z2+y?)? 2=0 Y

s (R0 (-1) rdy | s [ 00 ((y a1y
=t [TE (7)) ey /fa<< )y

Lin the first integral. This gives us finally

Now substitute y — (Ny)~
ys—&-l@

I G () I
(" 0))rensemi [ 5 ()

1
N_L_
—aN3 VN N—522
o0

Lo () [ () () o

4875
VN

[Nl

N

=0

Again this is an entire function on C, which is up to the constant factor —a =
(—1)€a invariant under the transformation s — —s. Comparison with (20.2) gives

the functional equation for the odd newform ¢.
O
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Finally an explicit description of the cusps and their width for the congruence subgroup
['o(N) in the case of a squarefree N is given. The following lemma gives an explicit
description of the inequivalent cusps, their width, scaling matrices and a set of right coset
representatives for I'g(/NV) in the case of a squarefree N.

LEMMA 20.4. Let N be a positive squarefree integer.

(1) A set of coset representatives for To(N) \ SLa(Z) is given by

e )

where for each c,d we choose a,b so that ad — bc = 1.

N
(c,d)_1,d\N,o<c§d} ,

h|N}.

(8) The width my, of the cusp % satisfies the formula my = % A scaling matriz is

)™ )

(2) A set of inequivalent cusps for T'o(N) is given by {}l

given through op, = (ilz 1

(4) The double coset decomposition

To(N) \ SLs(Z)/Poin = | JTo(IV) (111 1) Pruin
h|N
15 valid.

PRrROOF. Part (1) and (2) is the version stated in [8) prop. 3.3.7, prop. 3.3.8], the
proof for an arbitrary level can be found in |25]. In |5, Ch. 2] the explicit formulas for
the width, the scaling matrices in part (3) and the double coset decomposition in part (4)
can be found. Further in [5] the question how scaling matrices to different representatives
of the same cusp are related is discussed in much greater detail and for arbitrary level.

0
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