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Abstract

In this thesis, we study properties and the geometry related to the generalization of
the Seiberg–Witten equations introduced by Taubes and Pidstrygach. A crucial
ingrediant to these equations is a hyperkähler manifold M with a permuting Sp(1)-
action. We study the differential forms induced on M and construct cocycles of degree
2 and 4 in the Cartan model for equivariant cohomology and the corresponding
(generalizations of) moment maps in hyperkähler and multi-symplectic geometry. We
generalize this and provide a natural and explicit construction of such a homotopy
moment map for each cocycle in the Cartan model (of arbitrary degree). Coming
back to the generalized Seiberg–Witten equations, we study properties of the
generalized Dirac operator and provide new Lichnerowicz–Weitzenböck formulas in
dimension 3. Finally, we give a list of examples of the generalized Seiberg–Witten
equations, which have been studied in the literature.
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Chapter 1

Introduction

Starting with the work of Donaldson ([Don83]), gauge theory proved to be a very useful
tool in the study of the (smooth) geometry of 4-manifolds. The anti-selfduality equations
also allowed him to define the Donaldson polynomials, which provide invariants of smooth
4-manifolds. In particular, he used these to prove the existence of exotic smooth structures
in dimension 4 ([Don87]). The Seiberg–Witten equations ([SW94]) later made it possible
to reprove many results obtained using Donaldson theory. Since an abelian structure
group is used, these proofs are often easier than the original ones using Donaldson theory.
A similar set of differential equations, the PU(2)-monopole equations, were used by
Pidstrygach and Tyurin ([PT95]) to find a link between the Donaldson polynomials and
the Seiberg–Witten invariants.

More recently, less well known examples like the Vafa–Witten equations ([VW94]) and
the complex anti-selfduality equations gained interest, as they are closely related to gauge
theory in higher dimensions. On the other hand, the Pin(2)-monopole equations were
used by Manolescu ([Man16]) to disprove the triangulation conjecture.

All of these differential equations are examples of the generalized Seiberg–Witten equations,
which were introduced by Taubes ([Tau99]) in dimension 3 and Pidstrygach ([Pid04])
in dimension 4 and also studied in [Hay06], [Sch10], [Cal10]. An important ingredient
to these is a hyperkähler manifold M with a permuting Sp(1) = SU(2)-action. After
studying these actions in the first chapters, we will describe these generalized Seiberg–
Witten equations in chapter 5 and explain how specific choices of the hyperkähler manifold
M and the permuting action lead to various well-studied differential equations.

In the chapter 2, we study the properties of hyperkähler manifolds M with an isometric
action of a Lie group. Besides the tri-hamiltonian action of a Lie group G, we focus on
the case of a permuting action of the group Sp(1) = SU(2) ([Swa91], [BGM93]). One
approach to understanding these actions is to study the differential forms obtained from
the symplectic forms by applying (graded) derivations of Ω∗(M) which are induced by
the group action. More precisely, those forms obtained by inserting the fundamental
vector field for the action and taking Lie derivatives with respect to these and exterior
derivatives, i.e. the G?-submodule of Ω∗(M) generated by the symplectic forms. In the
case of a tri-hamiltonian action, this submodule is essentially determined by the moment
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2 Chapter 1. Introduction

map. In the case of a permuting action, it contains all the differential forms (with values
in G-representations) that appear in [BGM93].

For a symplectic manifold (M,ω) with hamiltonian G-action and moment map µ, Atiyah
and Bott observed that ω − µ is a degree 2 cocycle in the Cartan model CG(M) for
equivariant cohomology. Similarly, a tri-hamiltonian acion on a hyperkähler manifold
gives a cocylce for each of the three symplectic forms. In the case of a permuting Sp(1)-
action, we show how some of the differential forms in the Sp(1)?-module give rise to a
similar cocylce in CSp(1)(M).

Another canonical differential form on a hyperkähler manifold M is the 4-form Ω =
ω1 ∧ ω1 + ω2 ∧ ω2 + ω3 ∧ ω3, which also admits extensions to degree 4-cocycles in the
Cartan model for equivariant cohomology.

In chapter 3, we interpret Ω as a multi-symplectic form (more precisely, a 3-plectic form)
and show how the cocycles in the Cartan model for equivariant cohomology give rise
to homotopy moment maps. These have been introduced and studied in [FRZ13] and
provide a natural generalization of moment maps in symplectic geometry. We generalize
this and show how cocycles of arbitrary degree give rise to homotopy moment maps.

In chapter 4, we return to the permuting actions on hyperkähler manifolds and explain how
such an action can be used to construct a generalized Dirac operator (following [Tau99]
and [Pid04]). In contrast to the previous literature, we allow the metric connection to
have non-vanishing torsion. An example of a generalized Dirac operator of this sort is
studied in [Sal13]. Chapter 5 is then concerned with the generalized Seiberg–Witten
equations and various examples of these.

In chapter 6, we focus on the 3-dimensional case and prove Lichnerowicz–Weitzenböck
formulae for the generalized Dirac operator DA. In constrast to the case of usual Dirac
operators, the generalized Dirac operator is a section in an infinite dimensional vector
bundle and therefore not linear. This leads to three different Lichnerowicz–Weitzenböck
formulae: one compares the non-linear Laplacian associated to the non-linear Dirac
operator to the non-linear connection Laplacian, the second one is a Lichnerowicz–
Weitzenböck formula for the linearization of the Dirac operator and the third one compare
the squares of the norms of DAu and ∇Au.



Chapter 2

Hyperkähler manifolds and
permuting actions

In this chapter we first recall the basic properties of a permuting action on a hyperkähler
manifold. We then study the differential forms induced by such an action and show
how these can be combined to give cocycles in degrees 2 and 4 in the Cartan model for
equivariant cohomology. We also provide various equivalent conditions for the permuting
action to induce a hyperkähler potential. We also describe the subspaces of differential
forms generated by the symplectic forms and the action, both in the case when the action
induces a hyperkähler potential as well as in the case when it does not.

2.1 Hyperkähler manifolds

2.1.1 Definition (Kähler manifold). An almost complex structure on a manifold M
is an endomorphism I ∈ Γ (M,End (TM)) satisfying I2 = − idTM . A Kähler manifold
is a Riemannian manifold (M, gM) with a parallel (with respect to the Levi-Civita
connection) orthogonal almost complex structure I ∈ Γ (M,End (TM)) such that the
2-form ω ∈ Ω2(M) is closed, where ω(v, w) = gM(v, I(w)) for all v, w ∈ TxM . The
symplectic form ω is called Kähler form.

2.1.2 Definition (hyperkähler manifold). A hyperkähler manifold is a Riemannian
manifold (M, gM ) with three parallel (with respect to the Levi-Civita connection) orthog-
onal almost complex structures I1, I2, I3 ∈ Γ (M,End (TM)) such that I1I2I3 = − idTM
and M is a Kähler manifold with respect to each of the three complex structures.

2.1.3 Remark ([Hit87, Lem. 6.8]). For M to be hyperkähler, it is enough to require
the existence of two anti-commuting orthogonal almost complex structures I1, I2 ∈
Γ (M,End (TM)) (define I3 := I1I2) such that the three 2-forms are closed: dω1 = dω2 =
dω3 = 0, where ω`(v, w) := gM(v, I`(w)) for all v, w ∈ TxM and ` ∈ {1, 2, 3}.

2.1.4 Remark (dimensions and holonomy groups). The existence of the three com-
plex structures on a hyperkähler manifoldM implies that the dimension ofM is a multiple
of 4.

3



4 Chapter 2. Hyperkähler manifolds and permuting actions

Let H be the skew field of quaternions. As a vector space we identify H ∼= R4. The
holonomy group of a 4n-dimensional hyperkähler manifold M is contained in Sp(n) ⊂
SO(4n), where Sp(n) is the group of (right) H-linear metric preserving automorphisms
of Hn. Conversely, every 4n-dimensional manifold with holonomy group contained in
Sp(n) ⊂ SO(4n) is a hyperkähler manifold.

The group Sp(1) can be identified with the sphere S3 in the quaternions. We have an
isomorphism H ⊃ S3 → Sp(1), q 7→ Lq, Lq(h) := qh for h ∈ H. From now on, we will use
this isomorphism to identify Sp(1) with the sphere in the quaternions and its Lie algebra
sp(1) with the space of imaginary quaternions Im(H) := {h ∈ H|h̄ = −h}. Throughout
this text, we will also denote ζ1 := i, ζ2 := j, ζ3 := k.

2.1.5 Remark. Note that Sp(1) is isomorphic to SU(2) as well as to Spin(3), the simply
connected double cover of SO(3).

2.1.6 Note (scalar multiplication). The tangent bundle of a hyperkähler manifold
M is a bundle of (left) H-modules, i.e. we have a ring homomorphism called scalar
multiplication

I : H→ Γ (M,End (TM)),
h 7→ Ih,

where Ih := h0 idTM +h1I1 + h2I2 + h3I3 for h = h0 + h1i+ h2j + h3k. In particular, for
all ζ ∈ Im(H) with ‖ζ‖2 = 1 we have

I2
ζ = Iζ2 = −Iζζ̄ = −I1 = − idM

This implies that I maps the sphere S2 ⊂ Im(H) ⊂ H into the space of complex structures
on M . The scalar multiplication I is injective (if dim(M) > 0) and we have a sphere of
complex structures

{ 3∑
`=1

ζ`I`

∣∣∣∣ 3∑
`=1

ζ2
` = 1

}
. Unless mentioned explicitly, we shall therefore

assume dim(M) > 0.

Note that we can also interpret I as a morphism from the trivial bundle with fibre H
over M into End (TM).

We define a 2-form ω ∈ sp(1)∨ ⊗Ω2(M) as follows:

〈ω, ζ〉 := ωζ for all ζ ∈ sp(1) = Im(H),

where ωζ(v, w) = gM(v, Iζw) for all x ∈ M and v, w ∈ TxM . If ζ ∈ Im(H) = sp(1) is of
norm one, ‖ζ‖2 = 1, then Iζ is an (almost) complex structure and ωζ the corresponding
symplectic form.

2.1.7 Example. Consider M = H with the standard metric gM(v, v′) = Re(vv̄′) and
complex structures given by

I1(v) := iv I2(v) := jv I3(v) := kv,
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for v, v′ ∈ ThH = H. The scalar multiplication is given by Ih′(v) = Lh′v = h′v for all
h′ ∈ H, v ∈ ThH = H. The three symplectic forms ω` = gM(·, I`(·)) for ` ∈ {1, 2, 3} are

ω1 = −dh0 ∧ dh1 − dh2 ∧ dh3,

ω2 = dh1 ∧ dh3 − dh0 ∧ dh2,

ω3 = −dh0 ∧ dh3 − dh1 ∧ dh2,

where h = h0 + ih1 + jh2 + kh3. Note that iω1 + jω2 + kω3 = 1
2dh ∧ dh̄.

In the same way, one also obtains the standard hyperkähler structure on Hn.

2.1.8 Example. On the other hand, we can use multiplication from the right to define
a hyperkähler structure on M = H using the complex structures:

I1(v) = −vi = vī I2(v) = −vj = vj̄ I3(v) = −vk = vk̄,

for v ∈ ThH = H. The scalar multiplication is then given by Ih′(v) = Rh′v = vh′ for
all h, h′ ∈ H, v ∈ ThH. The corresponding three symplectic forms ω` = gM(·, I`(·)) for
` ∈ {1, 2, 3} are

ω1 = dh0 ∧ dh1 − dh2 ∧ dh3

ω2 = dh0 ∧ dh2 + dh1 ∧ dh3

ω3 = dh0 ∧ dh3 − dh1 ∧ dh2

where h = h0 + ih1 + jh2 + kh3. Note that iω1 + jω2 + kω3 = 1
2dh̄ ∧ dh.

Also note that the induced orientation on H ∼= R4 is not the standard orientation of R4.

In the same way, one also obtains a hyperkähler structure on Hn.

2.1.9 Remark. Note that the conjugation on H is a diffeomorphism

(H, Li, Lj, Lk)→ (H, Rī, Rj̄, Rk̄),

which intertwines the hyperkähler structures. While in most cases (H, Li, Lj, Lk) is more
convenient, it is in sometimes useful to consider (H, Rī, Rj̄, Rk̄). For instance, when
dealing with quaternionic matrices, acting on Hn as H-linear maps. These act by standard
matrix multiplication on (H, Rī, Rj̄, Rk̄), but due to the non-commutativity of H, the
action on (Hn, Li, Lj, Lk) is slightly more complicated.

2.1.10 Remark. Since we are interested in group actions on hyperkähler manifolds of
a certain kind, which imply that the manifold is non-compact, we will mostly ignore
compact examples like the K3-surface and 4n-dimensional tori.

Further examples can be constructed using the hyperkähler reduction ([HKLR87, Thm.
3.2]), also cf. Example 2.1.22. Other constructions of hyperkähler metric use twistor
methods ([HKLR87, Thm. 3.3] other examples include [Fei99], [Bie99])
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2.1.1 Group actions and moment maps
2.1.11 Definition ([CE48]). Given a Lie algebra g, the Chevalley–Eilenberg differential
is given by

δg :
∧n(g∨)→

∧n+1(g∨)
(δgc)(ξ1, . . . , ξk+1) :=

∑
1≤i<j≤n+1

(−1)i+jc([ξi, ξj], ξ1, . . . , ξ̂i, . . . , ξ̂j, . . . , ξn+1).

2.1.12 Remark. The complex (∧∗(g∨), δg) computes the Lie algebra cohomology of g.
Furthermore, note that if g = Lie(G) for some connected Lie group G, then (∧∗(g∨), δg)
is isomorphic to the complex (Ω∗(G)G, d) of left-invariant differential forms on the Lie
group G.

2.1.13 Definition. Let G be a Lie group acting on a manifold M . The infinitesimal
action induces the following insertion operations:

ιkg : Ω∗(M)→
∧k(g∨)⊗Ω∗−1(M),

ιkgα(ξ1, . . . , ξk) := ιvG
ξk

· · · ιvG
ξ1
α ∈ Ω∗−k(M) for α ∈ Ω∗(M), ξ1, . . . , ξk ∈ g.

Here vG is the fundamental vector field, i.e. vGξ |x := d
dt

exp(−tξ)x|t=0, where x ∈M, ξ ∈ g.
Also, denote ιg := ι1g.

There is also a corresponding Lie derivative

Lg : Ωk(M)→ g∨ ⊗Ωk(M),
α 7→ Lgα, 〈Lgα, ξ〉 := LvG

ξ
α for ξ ∈ g.

We will also use the notation Lξ := LvG
ξ
. As usual, ιg and Lg are related by Lg = dιg + ιgd.

We use the same operations for differential forms with values in some G-module V .

2.1.14 Remark. Since vG : g → Γ (M,TM) is G equivariant, then ιkg and Lg map G-
invariant differential forms with values in V into G-invariant differential forms with values
in g∨ ⊗ V , where V is an arbitrary representation of G. Here, g∨ is understood as the
coadjoint representation of G.

2.1.15 Remark. Note that if GyM is a smooth action, ρ : G→ Aut (V ) a representa-
tion and α ∈ Ωp(M,V ) a differential form with values in V , then the infinitesimal version
of α being G-invariant (i.e. L∗gα = ρ(g)α for all g ∈ G) is Lξα = ρ∗(ξ)α for all ξ ∈ g.
Also note that if G is connected, these two conditions are equivalent.

A special case of this, which will be crucial for the rest of this chapter, is the k-th power
of the coadjoint representation g∨ = Lie(G)∨ of a Lie group G.

2.1.16 Lemma. Let GyM be a smooth G-action and α ∈ ((g∨)⊗k ⊗Ωp(M))G. Then

〈Lgα, ξ0 ⊗ · · · ⊗ ξk〉 = 〈α,
k∑
`=1

ξ1 ⊗ · · · ⊗ ξ`−1 ⊗ [ξ0, ξ`]⊗ ξ`+1 ⊗ · · · ⊗ ξk〉. (2.1)
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In particular:

1. For α ∈ (g∨ ⊗Ωp(M))G: Lgα = −δgα.

2. For α ∈ (g∨ ⊗ g∨ ⊗Ωp(M))G: 〈Lgα, ξ ⊗ ξ′ ⊗ ξ′′〉 = 〈α, [ξ, ξ′]⊗ ξ′′〉+ 〈α, ξ′ ⊗ [ξ, ξ′′]〉

Proof.

〈Lgα, ξ0 ⊗ · · · ⊗ ξk〉 = LvG
ξ0
〈α, ξ1 ⊗ · · · ⊗ ξk〉 = d

dt
(Lexp(−tξ0))∗〈α, ξ1 ⊗ · · · ⊗ ξk〉|t=0

= − d
dt
〈α,Adexp(−tξ0)(ξ1)⊗ · · · ⊗ Adexp(−tξ0)(ξk)〉|t=0

=
〈
α,

k∑
`=1

ξ1 ⊗ · · · ⊗ ξ`−1 ⊗ [ξ0, ξ`]⊗ ξ`+1 ⊗ · · · ⊗ ξk
〉

for all ξ0, . . . ξk ∈ g. �

2.1.17 Remark. In particular, if g = [g, g] (e.g. if g is semisimple), then α ∈ (g∨ ⊗
Ωk(M))G can be recovered from Lgα. Moreover, using the Cartan formula Lg = dιg + ιgd,
we see that any closed form α ∈ (g∨ ⊗Ωk(M))G is exact.

2.1.18 Definition (moment map). A smooth action of a Lie group G on a symplectic
manifold (M,ω) is said to be a symplectic action if it fixes the symplectic form ω (i.e.
L∗hω = ω for all h ∈ G). A smooth map µ : M → g∨ is said to be a moment map for the
symplectic G-action on M if

1. dµ = −ιgω (moment map condition),

2. µ(gx) = Ad∗g(µ(x)) for all g ∈ G, x ∈M (equivariance).

A hamiltonian action is a symplectic G-action which admits a moment map.

2.1.19 Definition (hyperkähler action). A smooth action of a Lie group G on a
hyperkähler manifold (M, gM , I1, I2, I3) is said to be a hyperkähler action, if

1. G acts isometrically, i.e. for all h ∈ G : L∗hgM = gM ,

2. G fixes the symplectic forms, i.e. for all h ∈ G : L∗hω = ω.

In particular, in this situation, the induced G-action on TM commutes with the complex
structures.

The definition of a moment map for a hyperkähler action is analoguous to the definition
for symplectic actions, but now we have to take care of three symplectic structures.

2.1.20 Definition. Let (M, gM , I1, I2, I3) be a hyperkähler manifold with a hyperkähler
action of a Lie group G. Consider the form ω ∈ sp(1)∨ ⊗ Ω2(M). A smooth map
µ : M → g∨ ⊗ sp(1)∨ is said to be a hyperkähler moment map for the G-action on M if

1. dµ = −ιgω (moment map condition),
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2. µ(gx) = Ad∨g (µ(x)) for all g ∈ G, x ∈M (equivariance).

A tri-hamiltonian action is a hyperkähler G-action which admits a moment map.

2.1.21 Remark. If µ : M → g∨ ⊗ sp(1)∨ is a hyperkähler moment map, then d〈µ, ζ〉 =
−ιgωζ , and therefore 〈µ, ζ〉 : M → g is a moment map for ωζ . In particular, let

µ1 := 〈µ, i〉, µ2 := 〈µ, j〉, µ3 := 〈µ, k〉.

Then µ : M → g∨ ⊗ sp(1)∨ is a hyperkähler moment map if and only if µ1, µ2, µ3 are
moment maps for ω1, ω2, ω3, respectively.

2.1.22 Example (hyperkähler reductions). Many known examples of hyperkähler
manifolds can be obtained from quaternionic vector spaces (or subspaces of such) by
hyperkähler reduction ([HKLR87]): Given a tri-hamiltonian action G y M and ξ ∈
(g∨)G ⊗ sp(1)∨ a regular value of the moment map and if G acts freely on µ−1(ξ), then
µ−1(ξ)/G is again a hyperkähler manifold. In many cases, it is also useful to allow M to
be infinite-dimensional (often M is an infinite-dimensional quaternionic vector space).

Examples of this sort include

1. G ⊂ Sp(n) y Hn = M . For example, from various groups G, the following
hyperkähler manifolds are obtained as hyperkähler quotients:

a) Calabi metric on T ∗CP n ([Cal79], description as hyperkähler quotient in [Fei99,
Example 1.7]), generalizing the Eguchi–Hanson metric on T ∗CP 1 ([EH78])

b) Nakajima quiver varieties ([Nak94])

i. moduli space of framed instantons (of charge k) on S4 ([AHDM78]),
ii. ALE spaces and moduli spaces of instantons on ALE spaces ([Nak94])

c) toric hyperkähler manifolds ([BD00])

2. spaces of solutions of Nahm’s equations ([Nah82]), with various boundary conditions

a) cotangent bundles to complex semisimple Lie groups ([Kro88])

b) moduli space of Bogomolny monopoles ([Hit83], [Don84], [AH88][Prop 16.1])

c) ALE spaces (cf. [Kro89]), or more generally, intersections of complex coadjoint
orbits with certain slices (cf. [Bie97])

d) coadjoint orbits of semisimple Lie groups (cf. [Kro90a], [Kro90b], [Biq96],
[Kov96], overview in [Bie07][2.2])
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2.1.23 Example (linear actions G→ Sp(n) y Hn). Consider (Hn, R−i, R−j, R−k)
as a hyperkähler manifold as in Example 2.1.8. The moment map for the action
Sp(n) ⊂ EndH (Hn) ∼= Mn(H) y Hn by matrix multiplication (A, x) 7→ Ax is

µ : Hn → sp(1)∨ ⊗ sp(n)∨,
µ =1

2ιsp(1)ιgg, i.e. 〈µ(x), ζ ⊗ ξ〉 = 1
2 Re(ζx∗ξx).

A proof for this is given in [Sch10, Lem. 3.4.1] and also follows from Corollary 2.2.46
below.

We can also study any action G→ Sp(n) y Hn. The moment maps is given by composing
µ with the dual sp(n)∨ → g∨ of the induced Lie algebra morphism g→ sp(n). We will be
mostly interested in the case of a subgroup G ⊂ Sp(n).

2.1.24 Remark. Whenever (Hn, Li, Lj, Lk) is more convenient than (Hn, R−i, R−j, R−k),
we can use the isomorphism (Hn, R−i, R−j, R−k) → (Hn, Li, Lj, Lk), x 7→ x from Re-
mark 2.1.9. The Sp(n)-action on (Hn, Li, Lj, Lk) then becomes

(A, x) 7→ Ax = (xtA∗)t,

where A∗ denotes the (quaternionic) conjugated and transposed matrix.

2.1.25 Example (U(1) ⊂ U(n) ⊂ Sp(n)). Consider the isomorphism of quaternionic
vector spaces

Cn ⊗C H→ Hn,

v ⊗ h 7→ vh.

For both Cn ⊗C H and Hn, we use the complex structures Rζ̄`
, ` = 1, 2, 3, to define the

hyperkähler structure. The natural action U(n) y Cn ⊗C H corresponds to the action
U(n) ⊂ Sp(n) y Hn induced by Mn(C) ⊂ Mn(H) y Hn. Its moment map can be
computed as follows:

Let x = v1 + v2j with v1, v2 ∈ Cn, ζ ∈ sp(1) and ξ ∈ u(n). Then the moment map is

〈µU(n)(v1 + v2j), ζ ⊗ ξ〉 =1
2 Re(ζ(v1 + v2j)∗ξ(v1 + v2j))

=1
2 Re(ζ(v∗1ξv1 − v∗2ξv2))− Re(ζjv∗2ξv1)

=− 1
2〈ζ, tr(ξ(v1 ⊗ v∗1 − v2 ⊗ v∗2))〉sp(1) + 〈ζ, j tr(ξv1 ⊗ v∗2)〉sp(1)

=1
2〈ζ, i tr(ξi(v1 ⊗ v∗1 − v2 ⊗ v∗2))〉sp(1)

+ 〈ζ, j Re(tr(ξv1 ⊗ v∗2))− k Im(tr(ξv1 ⊗ v∗2))〉sp(1)

=− 1
2n

(
〈ζ, i〉sp(1)〈ξ, i(v1 ⊗ v∗1 − v2 ⊗ v∗2)〉u(n)

+ 〈ζ, j〉sp(1)〈ξ, v1 ⊗ v∗2 − v2 ⊗ v∗1〉u(n)

+ 〈ζ, k〉sp(1)〈ξ, i(v1 ⊗ v∗2 + v2 ⊗ v∗1)〉u(n)
)
,
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where 〈A,B〉u(n) = −n tr(AB) for A,B ∈ u(n). Alternatively, using sp(1)∨ ⊗ u(n)∨ ∼=
sp(1)⊗ u(n), we have

µU(n)(v1 + v2j)
=− 1

2n(i⊗ i(v1 ⊗ v∗1 − v2 ⊗ v∗2) + j ⊗ (v1 ⊗ v∗2 − v2 ⊗ v∗1) + k ⊗ i(v1 ⊗ v∗2 + v2 ⊗ v∗1)).

This is the form in which this moment map (or its restriction to Lie subalgebras of u(n))
often appears in the literature.

For m ∈ Z, let us now consider the action U(1) → U(n) ↪→ Sp(n) y Hn, z 7→ zm. For
ζ ∈ sp(1) and i ∈ iR = Lie(U(1)), we have

〈µU(1)(x), ζ ⊗ i〉 =m
2 Re(ζx∗ix) = −m

2 〈ζ, x
∗ix〉sp(1)

Alternatively, using sp(1)∨ ⊗ u(1)∨ ∼= sp(1) (using evaluation at i to identify u(1)∨ ∼= R),
we have

µU(1)(x) = −m
2 x
∗ix.

In terms of v1, v2 ∈ Cn, we have µU(1) = µ1i+ µCj with

µ1(v1 + v2j) = −m
2 (‖v1‖2 − ‖v2‖2),

µC(v1 + v2j) = −miv∗1v2.

For m = 1, the hyperkähler quotient of Hn by this S1-action at the level i
2 ∈ sp(1) ∼=

sp(1)∨ ⊗ (iR)∨ is T ∗CP n−1 with the Calabi metric ([Cal79], [Fei99]). The quotient has a
residual hamiltonian PU(n)-action.

Note that if we take the same action on Hn \ {0}, then the hyperkähler reduction at 0
gives the highest weight nilpotent coadjoint orbit of SLn(C) (cf. [BGM93, Example 4]).

2.1.26 Example (Hn y Hn). We also have Hn acting by hyperkähler isometries on Hn

(Example 2.1.8) by translations: Hn y Hn, (h, x) 7→ h+ x. The fundamental vector field
is vHnh |x = −h. There is a hyperkähler moment map

µH
n : Hn → sp(1)∨ ⊗ (Hn)∨,

〈µHn(x), h〉 = Im(h∗x) ∈ Im(H) ∼= sp(1)∨.

When restricting this action to Rn ⊂ Hn, the moment map is 〈µRn(x), v〉 = Im(v∗x) =
v∗ Im(x), where v ∈ Rn.

This action for n = 1 can be combined with the action R → S1 y Hm to an action
Ry Hm+1, whose reduction at level 0 is the generalized Taub-NUT metric (cf. [BGM93,
Example 3])
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2.1.27 Remark. Note that we also have a hyperkähler action of the semidirect product
Hn o Sp(n) y Hn, ((h,A), x) 7→ Ax + h for A ∈ Sp(n), h, x ∈ Hn. The fundamental
vector field for this action is vH

noSp(n)
(h,ξ) |x = −ξx− h, and

µH
noSp(n) : Hn → (Hn o sp(n))∨ ⊗ sp(1)∨,

〈µHnoSp(n)(x), (h, ξ)⊗ ζ〉 = 1
2 Re(ζ(x∗ξx− 2 Im(h∗x)))

is a hyperkähler moment map.

2.1.2 Hyperkähler potential

2.1.28 Definition (Kähler potential). Let (M, gM , I) be a Kähler manifold with Käh-
ler form ω. For a 1-form α ∈ Ω1(M) define Iα ∈ Ω1(M) by Iα(v) := α(I(v)) for all
v ∈ TM . A smooth function f : M → R is said to be a Kähler potential if dIdf = 2ω.

2.1.29 Remark. In terms of complex valued differential forms and Dolbeault operators,
this condition reads −i∂∂̄f = ω.

2.1.30 Definition (hyperkähler potential). A smooth map f : M → R on a hyper-
kähler manifold (M, gM , I1, I2, I3) is said to be a hyperkähler potential if f is a Kähler
potential for each of the three complex structures:

dIζdf = 2ωζ for all ζ ∈ sp(1), ‖ζ‖2 = 1.

2.1.31 Example (hyperkähler potential for Hn). Consider the hyperkähler mani-
fold M = Hn (with either of the hyperkähler structures from Example 2.1.7 or Exam-
ple 2.1.8). Then the function f : Hn → R, f(h) = 1

2‖h‖
2 is a hyperkähler potential. This

is easy to check and will also follow from Example 2.2.50.

2.2 Hyperkähler manifolds with permuting actions

2.2.1 Definition. An isometric action of Sp(1) on a hyperkähler manifold M is said to
be permuting if the induced action on the sphere of complex structures is the standard
action of Sp(1)→ SO(3) y S2, i.e.

q∗Iζq∗ = Iqζq for all q ∈ Sp(1), ζ ∈ Im(H), ‖ζ‖2 = 1.

Let SpinGε (3) := (Sp(1) × G)/ ± 1, where ±1 is the subgroup of order 2 generated by
(−1, ε), with central ε ∈ G and ε2 = 1. A SpinGε (3)-action on M is said to be permuting
if the action Sp(1)→ SpinGε (3) yM is permuting and the action G→ SpinGε (3) yM
is hyperkähler.
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2.2.2 Remark. Note that Spin(3) ∼= Sp(1) and hence, SpinGε (3) generalizes Spin(3),
Spinc(3) and SO(3)×G.

Since Spin(4) ∼= Sp(1)+ × Sp(1)−,1 denote SpinGε (4) := Spin
Sp(1)−×G
(−1,ε) (3) ∼= (Spin(4) ×

G)/±1. Therefore, a SpinGε (4)-action onM is permuting if the Sp(1)+-action is permuting
while the Sp(1)− ×G-action is hyperkähler.

2.2.3 Remark. Since we assume permuting actions to be isometric, we can use any
of the following equivalent conditions for an isometric Sp(1)-action on a hyperkähler
manifold to be permuting:

1. The induced Sp(1)-action on End (TM) restricts to the standard action

Sp(1)→ SO(3) y S2 ⊂ sp(1) I
↪→ Γ (M,End (TM)),

i.e. q∗Iζq∗ = Iqζq for all q ∈ Sp(1), ζ ∈ Im(H).

2. The map ω : S2 → Ω2(M), ζ 7→ ωζ is Sp(1)-equivariant.

3. ω ∈ (sp(1)∨ ⊗Ω2(M))Sp(1), that is L∗qωζ = ωq−1ζq for all q ∈ Sp(1), ζ ∈ sp(1).

4. Lsp(1)ω = −δsp(1)ω.

Also note that for none of these conditions really requires the action to be isometric.
However, the conditions 1. and 2. are only equivalent if the Sp(1)-action is isometric.

2.2.4 Example (permuting actions on (Hn, Rī, Rj̄, Rk̄)). There are two permuting
Sp(1)-actions on Hn (considered as a hyperkähler manifold as in Example 2.1.8):

1. Sp(1) y Hn: (q, h) 7→ hq̄

2. Sp(1)→ SO(3) y Hn: (q, h) 7→ qhq̄

Note that in the second case, Sp(1) acts trivially on Rn ⊂ Hn and is the standard SO(3)-
action on each (R3)n ∼= Im(H)n. This action is permuting for either of the hyperkähler
structures from Example 2.1.7 and Example 2.1.8.

2.2.5 Remark. The two permuting actions in Example 2.2.4 are prototypical examples
of permuting actions on hyperkähler manifolds. Is is also possible to consider one of
these actions on some factors of Hn and the other one on the remaining factors. In many
examples, a permuting action arises as a residual action on a hyperkähler quotient.

2.2.6 Example (permuting actions on (Hn, Li, Lj, Lk)). There are also two per-
muting actions on Hn (considered as a hyperkähler manifold as in Example 2.1.7):

1. Sp(1) y Hn: (q, h) 7→ qh

2. Sp(1)→ SO(3) y Hn: (q, h) 7→ qhq̄

1We use the notation Sp(1)± to distinguish the two factors of Spin(4).
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The first one is closely related to the spinor representations in dimensions three and four:
It also commutes with any Lie subgroup G ⊂ Sp(n) acting by H-linear isometries on Hn.
In particular, this includes the following example: Let n = 1, G = S1 and ε = −1. Define
an action Spinc(3) = (Sp(1)×G)/± 1 yM = H:

[(q, z)] · h := qhz for [(q, z)] ∈ (Sp(1)× S1)/± 1, h ∈ H.

This is a permuting SpinGε (3)-action, which is the spinor representation W of Spinc(3) =
(Sp(1) × S1)/ ± 1. If we interpret M = H as a hyperkähler manifold with permuting
Spinc(4)-action (with trivial Sp(1)−-action), we obtain the Spinc(4)-representation W+.
This uses the following identifications:

1. Spin(3) ∼= Sp(1) ⊂ H diag
↪→ H⊕H ∼= Cl3,

2. Spin(4) ∼= Sp(1)+ × Sp(1)− ⊂ H⊕H ↪→M2(H) ∼= Cl4

3. Cl3 ∼= Cl04 ↪→ Cl4, (h, h′) 7→
(
h 0
0 h′

)
∈M2(H)

Here is a list of useful representations of Spin(3) and Spinc(3):

name vector space homomorphism
R3 R3 ∼= Im(H) Sp(1)→ SO(3) q · v = qvq̄ for v ∈ Im(H) ∼= R3

S H Sp(1)→ Aut (H) q · h = qh for v ∈ H = S
W H Spinc(3)→ Aut (H) [(q, z)] · h = qhz for v ∈ H

Here q ∈ Sp(1), z ∈ S1 and [(q, z)] ∈ (Sp(1)× S1)/± 1 ∼= Spinc(3).

Here is a list of useful representations of Spin(4) and Spinc(4):

name vector space homomorphism
R4 R4 ∼= H Spin(4)→SO(4) (q+, q−)·h = q+hq̄− for h ∈ H ∼= R4

S+ H Spin(4)→Aut (H) (q+, q−)·h = q+h for h ∈ H
S− H Spin(4)→Aut (H) (q+, q−)·h = q−h for h ∈ H
R4 R4 ∼= H Spinc(4)→SO(4) [(q+, q−, z)]·h = q+hq̄− for h ∈ H ∼= R4

W+ H Spinc(4)→Aut (H) [(q+, q−, z)]·h = q+hz for h ∈ W ∼= H

W− H Spinc(4)→Aut (H) [(q+, q−, z)]·h = q−hz for h ∈ W ∼= H

2.2.1 Differential forms from permuting actions
We will now recall some results about differential forms on hyperkähler manifolds with
permuting actions. Some of these appear in the work of Swann [Swa91], who studied the
case when a hyperkähler potential exists, Boyer, Galicki, Mann [BGM93, §2], who studied
ρ in terms of dρ and assumed H1(M,R) = 0 and Pidstrygach [Pid04, Section 2.2.1], who
observed that ρ can be constructed explicitly in the general case.

2.2.7 Proposition. [BGM93, Pid04] Let Sp(1) yM be a permuting action on a hyper-
kähler manifold M . Then



14 Chapter 2. Hyperkähler manifolds and permuting actions

1. ω = dγ, where γ := 1
2πsp(1)∨ιsp(1)ω ∈ (Ω1(M)⊗ sp(1)∨)Sp(1),

2. ιsp(1)ω = −δsp(1)γ + dρ, where ρ := −ιsp(1)γ ∈ (Ω0(M)⊗ sp(1)∨ ⊗ sp(1)∨)Sp(1),

3. ρ is symmetric, i.e. ρ ∈ (Ω0(M)⊗ S2(sp(1)∨))Sp(1),

4. dρ− πS2sp(1)∨ιsp(1)ω = 0.

Furthermore, if GyM is a hyperkähler action that commutes with the permuting Sp(1)-
action, then µ := ιgγ ∈ C∞(M, g∨ ⊗ sp(1)∨)Sp(1)×G is a hyperkähler moment map for this
action.

Here, S2(sp(1)∨) is the second symmetric power of the coadjoint representation sp(1)∨,
πsp(1)∨ : sp(1)∨ ⊗ sp(1)∨ → sp(1)∨ denotes the dual of the map π∨sp(1)∨ : sp(1)→ sp(1)⊗
sp(1), i 7→ 1

2(j⊗k−k⊗j), j 7→ 1
2(k⊗i−i⊗k), k 7→ 1

2(i⊗j−j⊗i), and πS2sp(1)∨ : sp(1)∨⊗
sp(1)∨ → S2(sp(1)∨) is the symmetrization η1 ⊗ η2 7→ 1

2(η1 ⊗ η2 + η2 ⊗ η1).

Proof.
1. Since dω = 0 and [·, ·] ◦ π∨sp(1)∨ = 2 idsp(1), we have

dγ = 1
2πsp(1)∨dιsp(1)ω = 1

2πsp(1)∨Lsp(1)ω = 1
2πsp(1)∨ ◦ [·, ·]∨ω = ω.

2. ιsp(1)ω = ιsp(1)dγ = Lsp(1)γ − dιsp(1)γ = −δsp(1)γ + dρ.

3. Using that 1
2π
∨
sp(1)∨ ◦ [·, ·] = π∧2sp(1)∨ is the skew-symmetrization, we compute the

skew-symmetric part of ιsp(1)γ:

(ιsp(1)γ)(ξ1 ⊗ ξ2 − ξ2 ⊗ ξ1) =1
2(ιsp(1)γ)(π∨sp(1)∨ ◦ [·, ·](ξ1 ⊗ ξ2 − ξ2 ⊗ ξ1))

=(πsp(1)∨ιsp(1)γ)([ξ1, ξ2])
=(Lsp(1)πsp(1)∨ιsp(1)γ)(ξ1 ⊗ ξ2)
=(ιsp(1)πsp(1)∨dιsp(1)γ)(ξ1 ⊗ ξ2)
=(ιsp(1)πsp(1)∨Lsp(1)γ)(ξ1 ⊗ ξ2)
− (ιsp(1)πsp(1)∨ιsp(1)dγ)(ξ1 ⊗ ξ2)

Observing that πsp(1)∨Lsp(1)γ = 2γ and πsp(1)∨ιsp(1)dγ = πsp(1)∨ιsp(1)ω = 2γ, we see
that the expression above vanishes.

4. To prove the last assertion, we only need to apply the symmetrization πS2sp(1)∨ to
the equation ιsp(1)ω = −δsp(1)γ + dρ.

Note that if G acts hyperkähler and the G-action commutes with the permuting Sp(1)-
action, the forms ω and γ are not only Sp(1)-invariant, but also G-invariant forms. Since
ιg preserves the invariance, µ = ιgγ ∈ C∞(M, g∨ ⊗ sp(1)∨)Sp(1)×G. The moment map
condition follows immediately from Cartan’s formula and the G-invariance of γ:

dµ = dιgγ = Lgµ− ιgdγ = −ιgω. �
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2.2.8 Notation. Consider the decomposition of

sp(1)⊗ sp(1) ∼= S2(sp(1))⊕
∧2

sp(1) ∼= R⊕
∧2

sp(1)⊕ S2
0(sp(1))

of Sp(1)-representations into irreducibles. More precisely, we consider the four projections
prR, pr∧2 , prS2sp(1), prS2

0sp(1) ∈ End (sp(1)⊗ sp(1)):

prR : sp(1)⊗ sp(1)→ sp(1)⊗ sp(1), ζ ⊗ ζ ′ 7→ 〈ζ, ζ ′〉H 1
3

3∑
`=1

ζ` ⊗ ζ`,

pr∧2 : sp(1)⊗ sp(1)→ sp(1)⊗ sp(1), ζ ⊗ ζ ′ 7→ 1
2(ζ ⊗ ζ ′ − ζ ′ ⊗ ζ).

prS2sp(1) : sp(1)⊗ sp(1)→ sp(1)⊗ sp(1), ζ ⊗ ζ ′ 7→ 1
2(ζ ⊗ ζ ′ + ζ ′ ⊗ ζ).

prS2
0sp(1) : sp(1)⊗ sp(1)→ sp(1)⊗ sp(1), prS2

0sp(1) = prS2sp(1)− prR .

These induce the decomposition

sp(1)∨ ⊗ sp(1)∨ ∼= S2(sp(1)∨)⊕
∧2(sp(1)∨) ∼= R⊕ S2

0(sp(1)∨)⊕
∧2(sp(1)∨).

Therefore, we can decompose ρ ∈ S2(sp(1)∨)⊗C∞(M) into ρ0 := −1
3 tr(ρ) ∈ C∞(M) and

the traceless symmetric part ρ2 ∈ (S2
0sp(1)∨⊗C∞(M))Sp(1), ρ2(ζ⊗ζ ′) := ρ(prS2

0sp(1)(ζ⊗ζ ′)).
Here, tr : sp(1)∨⊗ sp(1)∨ → R is the evaluation at i⊗ i+ j⊗ j + k⊗ k and S2

0(sp(1)∨) :=
ker(tr : S2(sp(1)∨)→ R).

In particular, if ρ2 ≡ 0, then ρ0 is a hyperkähler potential (cf. §2 in [BGM93] or
Corollary 2.2.37 below).

2.2.9 Remark. Note that if G y M is a smooth hyperkähler action that commutes
with the Sp(1)-action, then all the differential forms that appear in the proposition are
G-invariant. In particular, this holds in the case of permuting SpinGε (m)-actions: ω, γ
and µ are SpinGε (m)-invariant.

2.2.10 Remark. The first assertion of the previous proposition implies that a hyperkähler
manifold M (dim(M) > 0) with permuting Sp(1)-action cannot be compact ([BGM93,
Prop 2.7]): For ζ ∈ sp(1), ‖ζ‖2 = 1, the form ωζ is a Kähler form and exact. Therefore,
the volume form is also exact, and hence M cannot be compact.

2.2.11 Example (Explicit formulae for γ, ρ, ρ0 and ρ2).
We give explicit formulae for γ, ρ0 and ρ2 in terms of the Kähler forms ω1, ω2, ω3 and the
fundamental vector fields vSp(1)

ζ`
, where ζ1 := i, ζ2 := j, ζ3 := k.

1. Unwrapping the definition of γ, we have

〈γ, i〉 = 1
4〈ιsp(1)ω, j ⊗ k − k ⊗ j〉 = 1

4(ι
v
Sp(1)
ζ2

ω3 − ιvSp(1)
ζ3

ω2),

〈γ, j〉 = 1
4〈ιsp(1)ω, k ⊗ i− i⊗ k〉 = 1

4(ι
v
Sp(1)
ζ3

ω1 − ιvSp(1)
ζ1

ω3),

〈γ, k〉 = 1
4〈ιsp(1)ω, i⊗ j − j ⊗ i〉 = 1

4(ι
v
Sp(1)
ζ1

ω2 − ιvSp(1)
ζ2

ω1).
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2. Using ρ = −ιsp(1)γ = −1
2ιsp(1)∨πsp(1)∨ιsp(1)ω = −1

2(id⊗πsp(1)∨)ιsp(1)ιsp(1)ω, we obtain

〈ρ, i⊗ i〉 = 1
4(ω2(vSp(1)

ζ3 , v
Sp(1)
ζ1 )− ω3(vSp(1)

ζ2 , v
Sp(1)
ζ1 )),

〈ρ, j ⊗ j〉 = 1
4(ω3(vSp(1)

ζ1 , v
Sp(1)
ζ2 )− ω1(vSp(1)

ζ3 , v
Sp(1)
ζ2 )),

〈ρ, k ⊗ k〉 = 1
4(ω1(vSp(1)

ζ2 , v
Sp(1)
ζ3 )− ω2(vSp(1)

ζ1 , v
Sp(1)
ζ3 )),

〈ρ, i⊗ j〉 = 〈ρ, j ⊗ i〉 = 〈ρ2, i⊗ j〉 = 〈ρ2, j ⊗ i〉 = −1
4ω1(vζ3 , vζ1) = 1

4ω2(vζ3 , vζ2),
〈ρ, j ⊗ k〉 = 〈ρ, k ⊗ j〉 = 〈ρ2, j ⊗ k〉 = 〈ρ2, k ⊗ j〉 = −1

4ω2(vζ1 , vζ2) = 1
4ω3(vζ1 , vζ3),

〈ρ, k ⊗ i〉 = 〈ρ, i⊗ k〉 = 〈ρ2, k ⊗ i〉 = 〈ρ2, i⊗ k〉 = −1
4ω3(vζ2 , vζ3) = 1

4ω1(vζ2 , vζ1).

In particular,

ω1(vSp(1)
ζ3 , v

Sp(1)
ζ2 ) =2(〈ρ, i⊗ i〉 − 〈ρ, j ⊗ j〉 − 〈ρ, k ⊗ k〉),

ω2(vSp(1)
ζ1 , v

Sp(1)
ζ3 ) =2(〈ρ, j ⊗ j〉 − 〈ρ, i⊗ i〉 − 〈ρ, k ⊗ k〉),

ω3(vSp(1)
ζ2 , v

Sp(1)
ζ1 ) =2(〈ρ, k ⊗ k〉 − 〈ρ, i⊗ i〉 − 〈ρ, j ⊗ j〉).

3. ρ0 = −1
3 tr(ρ) yields

ρ0 = 1
6(g(I1v

Sp(1)
ζ2 , v

Sp(1)
ζ3 ) + g(I2v

Sp(1)
ζ3 , v

Sp(1)
ζ1 ) + g(I3v

Sp(1)
ζ1 , v

Sp(1)
ζ2 ),

= −1
6(ω1(vSp(1)

ζ2 , v
Sp(1)
ζ3 ) + ω2(vSp(1)

ζ3 , v
Sp(1)
ζ1 ) + ω3(vSp(1)

ζ1 , v
Sp(1)
ζ2 )),

and, finally

〈ρ2, i⊗ i〉 = −1
6ω1(vSp(1)

ζ2 , v
Sp(1)
ζ3 ) + 1

12ω2(vSp(1)
ζ3 , v

Sp(1)
ζ1 ) + 1

12ω3(vSp(1)
ζ1 , v

Sp(1)
ζ2 ),

〈ρ2, j ⊗ j〉 = 1
12ω1(vSp(1)

ζ2 , v
Sp(1)
ζ3 )− 1

6ω2(vSp(1)
ζ3 , v

Sp(1)
ζ1 ) + 1

12ω3(vSp(1)
ζ1 , v

Sp(1)
ζ2 ),

〈ρ2, k ⊗ k〉 = 1
12ω1(vSp(1)

ζ2 , v
Sp(1)
ζ3 ) + 1

12ω2(vSp(1)
ζ3 , v

Sp(1)
ζ1 )− 1

6ω3(vSp(1)
ζ1 , v

Sp(1)
ζ2 ).

2.2.12 Example (Sp(1) y (Hn, Rī, Rj̄, Rk̄)). Consider Hn as a hyperkähler manifold
as in Example 2.1.8 and the first permuting Sp(1)-action from Example 2.2.4. Then

〈γ, i〉 = 1
2(ht0dh1 − ht1dh0 − ht2dh3 + ht3dh2),

〈γ, j〉 = 1
2(ht0dh2 − ht2dh0 + ht1dh3 − ht3dh1),

〈γ, k〉 = 1
2(ht0dh3 − ht3dh0 − ht1dh2 + ht2dh1),

and

〈ρ(h), i⊗ j〉 = 〈ρ(h), j ⊗ k〉 = 〈ρ(h), k ⊗ i〉 = 0,
〈ρ(h), i⊗ i〉 = 〈ρ(h), j ⊗ j〉 = 〈ρ(h), k ⊗ k〉 = −ρ0(h) = −1

2‖h‖
2.

In particular, ρ2 = 0.
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2.2.2 Modifying a permuting action
The aim of this section is to give explicit formulae for ρ in the case of the permuting
Sp(1)-action on Hn which factors through SO(3), cf. Example 2.2.4. Note that this
action is a diagonal action for a Sp(1)× Sp(1)-action, where the action of one factor is
permuting while the other factor preserves the hyperkähler structure.

More generally, consider a hyperkähler manifold with a permuting action ϕ of Sp(1) and
a hyperkähler action ϕhk of Sp(1) that commutes with the permuting one. Then we can
define a new diagonal Sp(1)-action ϕ′:

ϕ′q(m) := ϕq(ϕhkq (m)) = ϕhkq (ϕq(m)) for q ∈ Sp(1),m ∈M.

Note that this action is again permuting:

(ϕ′q)∗Iζ(ϕ′q)∗ = (ϕq)∗(ϕhkq)∗Iζ(ϕhkq)∗(ϕq)∗ = (ϕq)∗Iζ(ϕq)∗ = Iqζq

2.2.13 Example. In the case of the first permuting Sp(1)-action on Hn from Exam-
ple 2.2.4, ϕq(h) = hq̄, the conjugation induces the hyperkähler action ϕhkq (h) = hq = qh.
The modified permuting action is the second permuting action in Example 2.2.4: ϕ′q(h) =
qhq̄.

Similarly, we could have modified the permuting action only on some of the factors of Hn.

The following Lemma shows how the forms γ′ and ρ′ for the modified permuting action
can be computed from γ and ρ for the original permuting action.

2.2.14 Lemma. Let M be a hyperkähler manifold with a Sp(1)×Sp(1)-action, such that
one Sp(1)-action is permuting, while the other is hyperkähler. Let γ, ρ, ρ0, ρ2 be the forms
defined in Proposition 2.2.7 for the permuting Sp(1)-action ϕ, and µhk = ιsp(1)hkγ the
moment map for the hyperkähler action. Then the forms γ′, ρ′, ρ′0, ρ′2 for the modified
permuting action are:

1. γ′ = γ − 1
2πsp(1)∨dµ

hk,

2. ρ′ = ρ− πS2sp(1)∨µ
hk

3. ρ′0 = ρ0 + 1
3 tr(µhk)

4. ρ′2 = ρ2 − πS2
0sp(1)∨µ

hk

Proof. Since the two actions commute, the fundamental vector field for the modified
action is given as follows:

v
Sp(1)′
ζ |m = v

Sp(1)
ζ |m + v

Sp(1)hk
ζ |m.

In particular, ιsp(1)′ = ιsp(1) + ιsp(1)hk .

1. γ′ = 1
2πsp(1)∨ιsp(1)′ω = 1

2πsp(1)∨ιsp(1)ω + 1
2πsp(1)∨ιsp(1)hkω = γ − 1

2πsp(1)∨dµ
hk.



18 Chapter 2. Hyperkähler manifolds and permuting actions

2. Using the fact that πsp(1)∨µ
hk is Sp(1)′-equivariant, we compute

ρ′ =− ιsp(1)′γ
′ = −ιsp(1)′(γ − 1

2πsp(1)∨dµ
hk)

=− (ιsp(1) + ιsp(1)hk)γ + 1
2ιsp(1)′πsp(1)∨dµ

hk

=ρ− µhk + 1
2Lsp(1)′πsp(1)∨µ

hk

=ρ− µhk − 1
2 [·, ·]∨πsp(1)∨µ

hk

=ρ− µhk + π∧2sp(1)∨µ
hk

=ρ− πS2sp(1)∨µ
hk

3.&4. These follow immediately from 2. �

2.2.15 Example (Sp(1) y (Hn, R−i, R−j, R−k)). Using Lemma 2.2.14, we compute
ρ′ for the second permuting action in Example 2.2.4. the modified action. In the situation,
the components of the moment map for Sp(1) ⊂ Sp(n) y Hn are (from Example 2.1.23):

〈µhk(x), i⊗ i〉 = 1
2(−‖x0‖2 − ‖x1‖2 + ‖x2‖2 + ‖x3‖2),

〈µhk(x), j ⊗ j〉 = 1
2(−‖x0‖2 + ‖x1‖2 − ‖x2‖2 + ‖x3‖2),

〈µhk(x), k ⊗ k〉 = 1
2(−‖x0‖2 + ‖x1‖2 + ‖x2‖2 − ‖x3‖2),

〈µhk(x), i⊗ j〉 =− 〈x0, x3〉 − 〈x1, x2〉,
〈µhk(x), j ⊗ i〉 = 〈x0, x3〉 − 〈x1, x2〉,
〈µhk(x), j ⊗ k〉 =− 〈x0, x1〉 − 〈x2, x3〉,
〈µhk(x), k ⊗ j〉 = 〈x0, x1〉 − 〈x2, x3〉,
〈µhk(x), k ⊗ i〉 =− 〈x0, x2〉 − 〈x3, x1〉,
〈µhk(x), i⊗ k〉 = 〈x0, x2〉 − 〈x1, x3〉,

〈πS2sp(1)∨µ
hk(x), i⊗ j〉 =− 〈x1, x2〉,

〈πS2sp(1)∨µ
hk(x), j ⊗ k〉 =− 〈x2, x3〉,

〈πS2sp(1)∨µ
hk(x), k ⊗ i〉 =− 〈x3, x1〉,

trµhk(x) = 1
2‖ Im(x)‖2 − 3

2‖Re(x)‖2.

Therefore, we obtain

ρ′0(x) = 2
3‖ Im(x)‖2,

ρ′(i⊗ i) = −‖x2‖2 − ‖x3‖2,

ρ′(j ⊗ j) = −‖x1‖2 − ‖x3‖2,

ρ′(k ⊗ k) = −‖x1‖2 − ‖x2‖2,

ρ′2(i⊗ i) = 2
3‖x1‖2 − 1

3‖x2‖2 − 1
3‖x3‖2,

ρ′2(j ⊗ j) = 2
3‖x2‖2 − 1

3‖x1‖2 − 1
3‖x3‖2,

ρ′2(k ⊗ k) = 2
3‖x3‖2 − 1

3‖x1‖2 − 1
3‖x2‖2,

ρ′2(i⊗ j) = ρ′(i⊗ j) = 〈x1, x2〉,
ρ′2(j ⊗ k) = ρ′(j ⊗ k) = 〈x2, x3〉,
ρ′2(k ⊗ i) = ρ′(k ⊗ i) = 〈x3, x1〉.
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Note that ρ′0 is not a hyperkähler potential. However, a hyperkähler potential exists:
x 7→ 1

2‖x‖
2.

Similarly, one could modify the permuting action on some of the factors of Hn.

2.2.3 Permuting actions and the Cartan model
In this section, we explain how ω, γ, ρ and µ can used to construct cocycles in the Cartan
model for equivariant cohomology.

2.2.16 Remark. Recall that for a G-manifold M , the Cartan complex ([GS99, section
6.5]) is

C∗G(M) :=
(
S∗(g∨)⊗Ω∗(M)

)G
,

dG := d− πS∗(g∨) ◦ ιg
(2.3)

where πS∗(g∨) ◦ ιg is the composition of ιg and the symmetrization πS∗(g∨) : g∨ ⊗ S∗(g∨)→
S∗+1(g∨). Here, S∗(g∨) is the symmetric algebra on g∨. Note that the grading on C∗G(M)
is given in such a way that g∨ is in degree 2. A detailed account of the grading will be
given in subsection 3.3.5.

If G is compact, then the cohomology of CG(M) is the equivariant cohomology of M
(Cartan’s theorem, [Car51]).

By an observation of Atiyah and Bott ([AB84]), µ ∈ (g∨⊗Ω0(M))G is a moment map for
a symplectic G-action on (M,ω) if and only if ω − µ ∈ C2

G(M) is a cocycle in the Cartan
model, i.e.

0 = dG(ω − µ) = −ιgω − dµ.

Similarly, µ ∈ (g∨ ⊗ sp(1)∨ ⊗Ω0(M))G is a moment map for a hyperkähler G-action on
M if and only if ω − µ ∈ sp(1)∨ ⊗ C2

G(M) is a cocycle (cf. Remark 2.1.21).

In particular, if ω = dγ is exact, with γ ∈ (sp(1)∨ ⊗Ω1(M))G, then µ := ιgγ is a moment
map (since dGγ = ω − ιgγ).

If Sp(1) yM is permuting, then ω is an exact diffential form with natural primitive γ,
and therefore, we obtain a moment map µ = ιgγ for any hyperkähler G-action, recovering
the last statement of Proposition 2.2.7.

On the other hand, we can interpret ω ∈ (sp(1)∨ ⊗ Ω2(M))Sp(1) ⊂ C4
Sp(1)(M) and

γ ∈ (sp(1)∨ ⊗Ω1(M))Sp(1) ⊂ C3
Sp(1)(M). We can again consider the coboundary dSp(1)γ.

By Proposition 2.2.7, we have
dSp(1)γ = ω + ρ.

Therefore, −ρ can be seen as an analogue of a moment map for a permuting action: both
define cocyles ω − µ ∈ C2

G(M)⊗ sp(1)∨ and ω + ρ ∈ C4
Sp(1)(M).

Given a Sp(1)×G-action on M , with permuting Sp(1)-action and hyperkähler G-action,
we also have

dSp(1)×Gγ = ω + ρ− µ ∈ C4
Sp(1)×G(M).
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Apart from the sp(1)∨-valued 2-form ω, which can be extented to cocycles in the Cartan
model, we also have a closed 4-form Ω on any hyperkähler manifold. Theorem 2.2.22
shows how this can be extended to give 4-cocycles in the Cartan model.

2.2.17 Definition. The fundamental 4-form Ω on a hyperkähler manifoldM with Kähler
forms ω1, ω2, ω3 is defined as

Ω := tr(ω ∧ ω) =
3∑
`=1

ω` ∧ ω` ∈ Ω4(M).

2.2.18 Remark. Since dω = 0, we also have dΩ = 0. Furthermore, it is well-known that
Ω is non-degenerate, and hence (M,Ω) is a multisymplectic (or, more precisely, 3-plectic)
manifold. Indeed, for v ∈ TxM we have

Ω(v, I1v, I2v, I3v)

=
3∑
`=1

ω` ∧ ω`(v, I1v, I2v, I3v)

= 2
3∑
`=1

(
ω`(v, I1v)ω`(I2v, I3v)− ω`(v, I2v)ω`(I1v, I3v) + ω`(v, I3v)ω`(I1v, I2v)

)
= 2

(
ω1(v, I1v)ω1(I2v, I3v)− ω2(v, I2v)ω2(I1v, I3v) + ω3(v, I3v)ω3(I1v, I2v)

)
= 6‖v‖4

Therefore, ιvΩ 6= 0 for all v 6= 0.

2.2.19 Remark. Note that by studying the fundamental 4-form Ω, we consider the
hyperkähler M as a quaternionic Kähler manifold (i.e. a manifold with holonomy in
Sp(1)Sp(n)). Even though the complex structures are not globally defined for quaternionic
Kähler manifold, Ω is still globally defined, parallel with respect to the Levi-Civita
connection (and therefore closed) and non-degenerate.

2.2.20 Remark. The fundamental 4-form Ω on a hyperkähler manifold with permuting
Sp(1)-action is Sp(1)-invariant, since tr : sp(1)∨ ⊗ sp(1)∨ → R is a morphism of Sp(1)-
representations and ω is Sp(1)-invariant.

Before constructing the explicit 4-cocycles extending Ω, we prove the following technical
Lemma:

2.2.21 Lemma. Let Sp(1) yM be a permuting action on a hyperkähler manifold. Then
the following equalities hold:

1. ιsp(1)πsp(1)∨(γ ∧ γ) = −2(idsp(1)∨ ⊗πsp(1)∨)(ρ⊗ γ),

2. ιsp(1) tr2,3(ρ⊗ ω) = τ tr2,4(ρ⊗ (−δsp(1)γ + dρ)),

3. πS2ιsp(1)(4πsp(1)∨(γ ∧ γ) + 2 tr23(ρ⊗ ω)) = dρ2,
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Here, tri,j : (sp(1)∨)⊗k → (sp(1)∨)⊗(k−2) denotes the application of tr on the i-th and j-th
tensor factor and the identity in all the other tensor factors. Furthermore, τ : sp(1)∨ ⊗
sp(1)∨ → sp(1)∨⊗sp(1)∨ the dual of the map ξ1⊗ξ2 7→ ξ2⊗ξ1 and, finally, ρ2 := tr23(ρ⊗ρ).

Proof.
1. Use πsp(1)∨ ◦ (idsp(1)∨⊗sp(1)∨ −τ) = 2πsp(1)∨ to obtain

ιsp(1)πsp(1)∨(γ ∧ γ) =(idsp(1)∨ ⊗πsp(1)∨)ιsp(1)(γ ∧ γ)
=(idsp(1)∨ ⊗πsp(1)∨)

(
(ιsp(1)γ)⊗ γ − (idsp(1)∨ ⊗τ)(ιsp(1)γ)⊗ γ

)
=2(idsp(1)∨ ⊗πsp(1)∨)((ιsp(1)γ)⊗ γ)
=− 2(idsp(1)∨ ⊗πsp(1)∨)(ρ⊗ γ).

2. For ξ1, ξ2 ∈ sp(1), we have

ιsp(1) tr2,3(ρ⊗ ω)(ξ1 ⊗ ξ2) = tr(ρ(ξ2 ⊗ ·)⊗ ιvξ1
ω)

= tr(ρ(ξ2 ⊗ ·)⊗ (γ([ξ1, ·]) + dρ(ξ1 ⊗ ·)))
=(tr2,4(ρ⊗ (−δsp(1)γ + dρ)))(ξ2 ⊗ ξ1).

Therefore, ιsp(1) tr2,3(ρ⊗ ω) = τ tr2,4(ρ⊗ (−δsp(1)γ + dρ)).

3. Using 4πsp(1)∨ = − tr13(idsp(1)∨ ⊗δsp(1)), we obtain

πS2sp(1)∨ιsp(1)
(
4πsp(1)∨(γ ∧ γ) + 2 tr23(ρ⊗ ω)

)
= 4πS2sp(1)∨ιsp(1)πsp(1)∨(γ ∧ γ) + 2πS2sp(1)∨ιsp(1) tr2,3(ρ⊗ ω)
= − 8πS2sp(1)∨(idsp(1)∨ ⊗πsp(1)∨)(ρ⊗ γ) + 2πS2sp(1)∨ tr2,4

(
ρ⊗ (−δsp(1)γ + dρ)

)
= 2πS2sp(1)∨ tr2,4(ρ⊗ δsp(1)γ)− 2πS2sp(1)∨ tr2,4

(
ρ⊗ (δsp(1)γ − dρ)

)
= dρ2. �

The following theorem constructs 2-step extensions of Ω in the Cartan model C∗H(M)
for H ∈ {G,Sp(1), Sp(1)×G}. These are 4-cocycles of the form Ω + PH

1 + PH
2 , where

PH
` ∈ (S`h∨ ⊗Ω4−2`(M))H . The choices for H are: a trihamiltonian G-action on M , a

permuting Sp(1)-action on M , or, combining the two, a permuting Sp(1)×G-action on
M .

2.2.22 Theorem. Let M be a hyperkähler manifold with fundamental 4-form Ω =
tr(ω ∧ ω). There are the following 2-step extensions of Ω in the Cartan model for
equivariant cohomology:

1. If GyM is tri-hamiltonian with moment map µ, PG
1 = −2 tr(µ⊗ ω) and PG

2 :=
tr(µ⊗µ), then ΩG := Ω+PG

1 +PG
2 = Ω−2 tr(µ⊗ω)+tr(µ⊗µ) = tr((ω−µ)∧(ω−µ))

is closed in the Cartan model for G-equivariant cohomology.

If, additionally, ω = dγ for some γ ∈ sp(1)∨ ⊗Ω1(M)G, there is a 1-step extension
dG tr(γ ∧ ω) = Ω − tr(µ⊗ ω)− tr(γ ∧ dµ). In this case, ΩG = dG tr(γ ∧ (ω − µ)),
i.e. the two extension of Ω differ by the exact term −dG tr(γ ⊗ µ).
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2. If Sp(1) yM is permuting, P1 := 4πsp(1)∨(γ ∧ γ) + 2 tr2,3(ρ⊗ω) and P2 := ρ2, then
Ω := Ω + P1 + P2 = Ω + 4πsp(1)∨(γ ∧ γ) + 2 tr2,3(ρ⊗ ω) + ρ2 = dSp(1) tr(γ ∧ (ω + ρ))
is closed in the Cartan model for Sp(1)-equivariant cohomology.

Note that dSp(1) tr(γ ∧ ω) = Ω + 4πsp(1)∨(γ ∧ γ) + tr13(γ ∧ dρ) + tr23(ρ⊗ ω) is also a
1-step extension of Ω. Furthermore, Ω = dSp(1) tr(γ ∧ ω) + dSp(1) tr12(γ ∧ ρ).

3. If Sp(1) × G y M , where Sp(1) acts permuting while G acts hyperkähler, then
Ω
Sp(1)×G := Ω+P1 +PG

1 +P2 +PG
2 − tr23(ρ⊗µ) = Ω+ 4πsp(1)∨(γ ∧ γ) + 2 tr2,3(ρ⊗

ω) − 2 tr(µ ⊗ ω) + ρ2 + tr(µ ⊗ µ) − tr23(ρ ⊗ µ) = dSp(1)×G tr12(γ ∧ (ω − µ + ρ)) is
closed in the Cartan model for Sp(1)×G-equivariant cohomology. Here, we denotes
the symmetric extension of tr23(ρ⊗ µ) ∈ (sp(1)∨ ⊗ g∨ ⊗Ω0(M))Sp(1)×G by the same
name.

Note that dSp(1)×G tr(γ ∧ ω) = Ω + 4πsp(1)∨(γ ∧ γ) + tr12(γ ∧ dρ) + tr23(ρ ⊗ ω) −
tr(µ ⊗ ω) + tr(γ ∧ dµ) is also a 1-step extension of Ω. Furthermore, ΩSp(1)×G =
dSp(1)×G tr(γ ∧ ω) + dSp(1)×G tr12(γ ∧ (ρ− µ)).

2.2.23 Remark. Even though in the case of a permuting action, the form ω is always
exact, we still wrote down the 2-step extensions of Ω that are constructed analogously to
the 2-step extension in the case of a tri-hamiltonian action. One reason for this is that the
homotopy moment maps constructed from these in Proposition 3.2.3 using Theorem 3.2.1
have a simpler form than those constructed from the 1-step extension.

Furthermore, these moment maps arising from two extensions of Ω which differ by a
coboundary can be thought of as “equivalent”, generalizing the notion of equivalence in
[FLGZ14].

2.2.24 Remark. An analogue of the first part of Theorem 2.2.22 holds for quaternionic
Kähler manifolds: Let (M,Ω) be a quaternionic Kähler manifold with scalar curvature
s 6= 0. Let G denote the rank 3 subbundle of almost complex structures. Denote by
ω ∈ Γ (M,G∨⊗∧2 T ∗M) the section which maps Gx 3 I 7→ ωI = g(·, I·) ∈ ∧2 T ∗xM . Since
this only uses the metric, ω is parallel with respect to the Levi-Civita connection ∇.
Let now GyM be an action of a compact Lie group which preserves Ω. Furthermore,
let µ ∈ (g∨ ⊗ Γ (M,G∨))G the corresponding moment map (∇µ = −ιgω, introduced by
Galicki and Lawson in [GL88]). Since ω : G ↪→ ∧2 T ∗M , we can use the metric on G to
obtain an element trG(µ⊗ ω) ∈ (g∨ ⊗Ω2(M))G. This satisfies 2d trG(µ⊗ ω) = −ιgΩ (cf.
[Sal89, Lem. 9.7]). Using this, ΩG := Ω − 2 trG(µ⊗ ω) + trG(µ⊗ µ) is again closed in the
Cartan model for G-equivariant cohomology.

Proof (of Theorem 2.2.22).
1. The cocycle condition dGΩ

G = 0 is equivalent to the following three equations:

dΩ = 0,
dPG

1 = ιgΩ,

dPG
2 = πS2g∨ιgP

G
1 .
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The first of these follows immediately from dω = 0. The second equation can be
easily varified using the moment map condition dµ = −ιgω:

dPG
1 = −2d tr(µ⊗ ω) = −2 tr(dµ ∧ ω) = 2 tr(ιgω ∧ ω) = ιg tr(ω ∧ ω) = ιgΩ.

For the third equation, we compute for ξ1, ξ2 ∈ g:
d tr(µ⊗ µ)(ξ1 ⊗ ξ2) = d tr(〈µ, ξ1〉 ⊗ 〈µ, ξ2〉)

= tr(〈dµ, ξ1〉 ⊗ 〈µ, ξ2〉) + tr(〈µ, ξ1〉 ⊗ 〈dµ, ξ2〉)
= tr(µ⊗ dµ)(ξ1 ⊗ ξ2 + ξ2 ⊗ ξ1)
= 2πS2g∨ tr(µ⊗ dµ)(ξ1 ⊗ ξ2)
= − 2πS2g∨ tr(µ⊗ ιgω)(ξ1 ⊗ ξ2)
= πS2g∨ιgP

G
1 (ξ1 ⊗ ξ2).

If ω = dγ, then d tr(γ ∧ ω) = Ω, and therefore, dG tr(γ ∧ ω) is a 1-step extension of
Ω. Furthermore,

Ω
G − dG tr(γ ∧ ω) = − tr(µ⊗ ω) + tr(γ ∧ dµ) + tr(µ⊗ µ)

= −d tr(µ⊗ γ) + πS2g∨ιg tr(µ⊗ γ)
= −dG tr(µ⊗ γ)

2. As in the previous case, dSp(1)Ω = 0 is equivalent to the following three equations:
dΩ = 0,
dP1 = ιsp(1)Ω,

dP2 = πS2sp(1)∨ιsp(1)P1.

Again, the first of these follows immediately from dω = 0. The second equation is
easily checked:

dP1 = 4dπsp(1)∨(γ ∧ γ) + 2d tr2,3(ρ⊗ ω)
= −2 tr2,3(δsp(1)γ ∧ ω) + 2 tr2,3((dρ) ∧ ω)
= 2 tr2,3((−δsp(1)γ + dρ) ∧ ω)
= 2 tr2,3((ιsp(1)ω) ∧ ω)
= ιsp(1) tr(ω ∧ ω)
= ιsp(1)Ω.

Here, we used dπsp(1)∨(γ ∧ γ) = −1
2 tr2,3(δsp(1)γ ∧ ω), which can easily be checked on

a basis of sp(1).

The third equation is the third claim in Lemma 2.2.21.

Finally, to see that this cocycle is actually dSp(1)-exact, we compute:
dSp(1) tr12(γ ∧ (ω + ρ))

= d tr12(γ ∧ (ω + ρ))− πS∗sp(1)∨ιsp(1) tr12(γ ∧ (ω + ρ))
= tr12(ω ∧ (ω + ρ))− tr12(γ ∧ dρ)− πS∗sp(1)∨ tr23(ιsp(1)(γ ∧ (ω + ρ)))
= Ω + tr12(ω ⊗ ρ)− tr12(γ ∧ dρ) + πS∗sp(1)∨ tr23(ρ⊗ (ω + ρ)) + tr13(γ ∧ ιsp(1)ω)
= Ω + 2 tr23(ρ⊗ ω)− tr12(γ ∧ dρ) + πS2sp(1)∨ tr23(ρ⊗ ρ) + tr13(γ ∧ ιsp(1)ω).
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Since ιsp(1)ω = −δsp(1)γ + dρ and tr13 ◦(idsp(1)∨ ⊗δsp(1)) = −4πsp(1)∨ , we obtain

dSp(1) tr12(γ ∧ (ω + ρ)) = Ω + 2 tr23(ρ⊗ ω) + πS2sp(1)∨ tr23(ρ⊗ ρ)− tr13(γ ∧ δsp(1)γ)
= Ω + 2 tr23(ρ⊗ ω) + tr23(ρ⊗ ρ) + 4πsp(1)∨(γ ∧ γ).

3. Using the decomposition Lie(Sp(1) × G) = sp(1) ⊕ g and S2(sp(1)∨ ⊕ g∨) ∼=
S2sp(1)∨ ⊕ S2g∨ ⊕ sp(1)∨ ⊗ g∨, dSp(1)×GΩ

Sp(1)×G = 0 is equivalent to the following
equations:

dΩ = 0,
dP1 = ιsp(1)Ω,

dPG
1 = ιgΩ,

dP2 = πS2sp(1)∨P1,

dPG
2 = πS2g∨ιgP

G
1 ,

πS2(sp(1)∨⊕g∨)(ιsp(1)P
G
1 + ιgP1) = −d tr2,3(ρ⊗ µ),

where, on the right hand side of the last equation, we used the symmetric extension
sp(1)∨ ⊗ g∨ → S2(sp(1)∨ ⊕ g∨). All but the last equation follow from the previous
statements. We observe that

ιsp(1)P
G
1 =− 2ιsp(1) tr(µ⊗ ω) = 2 tr1,3(µ⊗ (δsp(1)γ − dρ)), and

ιgP1 = 4ιgπsp(1)∨(γ ∧ γ) + 2ιg tr2,3(ρ⊗ ω) = −2 tr1,3(µ⊗ δsp(1)γ)− 2 tr2,3(ρ⊗ dµ).

Here we used that µ is a moment map ιgγ = µ and also 2ιgπsp(1)∨(γ ∧ γ) =
− tr1,3(µ⊗ δsp(1)γ), which follows from a short computation. Therefore, we obtain

πS2(sp(1)∨⊕g∨)(ιsp(1)P
G
1 + ιgP1)((ζ, 0)⊗ (0, ξ))

=− tr1,3(µ⊗ dρ)(ξ ⊗ ζ)− tr2,3(ρ⊗ dµ)(ζ ⊗ ξ)
=− d tr2,3(ρ⊗ µ)(ζ ⊗ ξ).

This proves that the sp(1)∨⊗g∨⊗Ω1(M)-component of dSp(1)×GΩ
Sp(1)×G = 0 holds.

Finally, we compute

dSp(1)×G tr(γ ∧ (ω − µ+ ρ))
=dSp(1) tr(γ ∧ (ω + ρ))− πS∗(sp(1)∨⊕g∨)dSp(1) tr(γ ⊗ µ)
− πS∗(sp(1)∨⊕g∨)ιg tr(γ ∧ (ω − µ+ ρ))

=dSp(1) tr(γ ∧ (ω + ρ))− tr(µ⊗ ω) + tr(γ ∧ dµ)− πS∗(sp(1)∨⊕g∨) tr(ρ⊗ µ)
− πS∗(sp(1)∨⊕g∨) tr(µ⊗ (ω − µ+ ρ)) + tr(γ ∧ ιgω)

=Ω + 4πsp(1)∨(γ ∧ γ) + 2 tr23(ρ⊗ ω) + ρ2 − 2 tr(µ⊗ ω)− tr23(ρ⊗ µ) + tr(µ⊗ µ).

�
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2.2.25 Remark. Note that if ω is exact, then all the cocycles in Theorem 2.2.22 are
coboundaries and, hence, the corresponding cohomology classes vanish. However, the
construction of homotopy moment maps from these in Proposition 3.2.3 shows that they
still contain interesting information.

Furthermore, if ω = dγ is exact, then Ω = tr(ω ∧ ω) = d tr(γ ∧ ω) is exact and there is a
1-step extension of Ω obtained as the coboundary dG tr(γ ∧ ω).

There are, however, situations where a 1-step extension of this type cannot exist, for
example if Ω (and hence ω) is not exact.

Examples for hyperkähler manifolds with non-exact Ω are, for instance, closed hyperkähler
manifolds (otherwise the volume form would be exact, and hence, by Stokes Theorem, the
volume of M would be zero). However, an action of a non-discrete Lie group on a closed
hyperkähler manifold cannot be tri-hamiltonian, since µ2 + iµ3 would be holomorphic
with respect to I1, and hence constant.

Non-compact examples with non-exact Ω are (certain neighborhoods of the zero section
in) the cotangent bundle T ∗N of a compact real-analytic Kähler manifold N ([Fei99,
Thm. 2.1]): Since one of the Kähler forms, ω1, restricts to the Kähler form on the zero
section, ω1 cannot be exact (nor ω1 ∧ ω1 if dim(N) > 2). On the other hand, T ∗N admits
a rotating S1-action (by scalar multiplication on the fibres). Therefore, ω2, ω3 as well as
ω2 ∧ ω2 + ω3 ∧ ω3 are exact. Hence, Ω = tr(ω ∧ ω) cannot be exact.

The most basic example of this situation is the Calabi metric on T ∗CP n ([Cal79]). Since
it can be constructed as a hyperkähler quotient of Hn+1 by S1 (cf. [Fei99, Ex. 1.7], also
Example 2.1.25), it has a residual tri-hamiltonian PU(n+ 1)-action.

2.2.4 Vector fields on hyperkähler manifolds with permuting
action

On a hyperkähler manifold with a smooth G-action, we can extend (negative of) the
fundamental vector field vG : g→ Γ (M,TM) to a H-linear map g⊗H→ Γ (M,TM):

g⊗H→ Γ (M,TM),
ζ ⊗ h 7→ −IhvGζ .

(2.4)

Equivalently, we have a bundle homomorphism g⊗H→ TM from the trivial bundle to
TM .

In particular, we are interested in the following two cases:

1. GyM hyperkähler,

2. Sp(1) yM permuting,

and in the case when these two can be combined into an action of SpinGε (m) yM .
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2.2.26 Remark. Note the choice of the additional sign in the quaternionic linear exten-
sion of the fundamental vector fields. Even though this might not be the most natural
choice, it is the most convenient and compatible with the existing literature.

2.2.27 Definition (Vector fields from a permuting action).
If the hyperkähler manifold (M, g, I1, I2, I3) comes with a permuting SpinGε (3)-action,
then we have a linear map

spinGε (3)⊗H = (sp(1)⊕ g)⊗H→ Γ (M,TM),
(ζ, ξ)⊗ h 7→ −(IhvSp(1)

ζ + IhvGξ ).

We are mostly interested in the following restrictions of this map:

χ : sp(1)⊗ sp(1)→ Γ (M,TM), ζ ⊗ ζ ′ 7→ −Iζ′vSp(1)
ζ

Y : g⊗ sp(1)→ Γ (M,TM), ξ ⊗ ζ 7→ −IζvGξ
χG : (sp(1)⊕ g)⊗ sp(1)→ Γ (M,TM), (ζ, ξ)⊗ ζ ′ 7→ χ(ζ, ζ ′) + Y(ξ, ζ ′).

As necessary, we will also understand χ ∈ sp(1)∨⊗sp(1)∨⊗Γ (M,TM), χG ∈ spinGε (3)∨⊗
sp(1)∨ ⊗ Γ (M,TM) and Y ∈ sp(1)∨ ⊗ g∨ ⊗ Γ (M,TM).

2.2.28 Remark. Note that χG as well its components χ and Y are SpinGε (3)-equivariant.

Components of χ

Using the decomposition sp(1)∨ ⊗ sp(1)∨ ∼= S2
0sp(1)∨ ⊕ sp(1)∨ ⊕R, we decompose χ into

its components. We first consider the symmetric and skew-symmetric part of χ, using the
isomorphism πsp(1)∨ : ∧2(sp(1)∨) ∼= sp(1)∨:

〈χSym, ζ ⊗ ζ ′〉 := 〈χ, prS2sp(1)(ζ ⊗ ζ ′)〉 = −1
2(IζvSp(1)

ζ′ + Iζ′vSp(1)
ζ ),

χAlt := πsp(1)∨χ ∈ sp(1)∨ ⊗ Γ (M,TM),

and further decompose the symmetric part χSym ∈ S2sp(1)∨ ⊗ Γ (M,TM) into

χ0 := −1
3 tr(χ) = 1

3

3∑
`=1

I`v
Sp(1)
ζ`

∈ Γ (M,TM),

〈χ2, ζ ⊗ ζ ′〉 := 〈χ, prS2
0sp(1)(ζ ⊗ ζ ′)〉 = −1

2(IζvSp(1)
ζ′ + Iζ′vSp(1)

ζ ) + Re(ζζ ′)χ0.

The following lemma relates the vector fields above to the differential forms on hyperkähler
manifolds with permuting action in subsection 2.2.1

2.2.29 Lemma ([BGM93], [Pid04]). The following identities hold:

1. dρ = ιχSymg and therefore grad(ρ) = χSym. In particular, grad(ρ2) = χ2 and
grad(ρ0) = χ0.
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2. ιχAltg = 2γ,

3. µ = 1
2ιgιχAltg, i.e. 〈µ, ζ ⊗ ξ〉 = 1

2g(〈χAlt, ζ〉, v
G
ξ ) is a hyperkähler moment map for

any hyperkähler G-action which commutes with the permuting Sp(1)-action.

The first two items appear in [BGM93], while the third was also observed in [Pid04] and
follows from ω = dγ. To familiarize ourselves with the notations, we quickly recall the
proof:

Proof. Recall that

ρ :=− ιsp(1)γ ∈ (S2sp(1)∨ ⊗Ω0(M))SpinGε (3),

ρ0 :=1
3 tr(ιsp(1)γ) ∈ Ω0(M)SpinGε (3),

ρ2(ζ ⊗ ζ ′) :=ρ(prS2
0sp(1)(ζ ⊗ ζ ′)) for ζ, ζ ′ ∈ sp(1).

1. Note that for all ζ, ζ ′ ∈ sp(1) we have

〈ιχg, ζ ⊗ ζ ′〉 = −g(Iζ′vSp(1)
ζ , ·) = g(vSp(1)

ζ , Iζ′·) = 〈ιsp(1)ω, ζ ⊗ ζ ′〉.

The equality ιχSymg = dρ is obtained as the symmetrization of ιχg = ιsp(1)ω =
dρ− δsp(1)γ.

2. Since ιsp(1)ω = ιχg, we have γ = 1
2πsp(1)∨ιsp(1)ω = 1

2πsp(1)∨ιχg = 1
2ιχAltg.

3. µ = ιgγ = 1
2ιgιχAltg. �

2.2.30 Note. Note that the SpinGε (3)-invariance of ρ0 implies the SpinGε (3)-invariance of
χ0, i.e. LspinGε (3)χ0 = 0. In particular, the Lie derivative Lχ0 commutes with the insertion
operator ιspinGε (3).

2.2.31 Remark. For a modified rotating action as in Lemma 2.2.14, we have

χ′0 = χ0 + 1
3 grad(tr(µhk)).

2.2.5 Rotating S1-actions from permuting actions
Instead of considering a permuting action of the group Sp(1), it is also interesting to study
an action of S1 which fixes one of the complex structures, while rotating the other two.
In [Hay08], Haydys constructs another hyperkähler manifold with hyperkähler potential
from such an action. A basic tool in studying such actions is the following Lemma:

2.2.32 Lemma ([HKLR87, Sec. 3.E]). Consider an isometric S1 action on a hyper-
kähler manifold which preserves one of the complex structures (say I1) and rotates the
other two (i.e. L

vS
1

i
ω1 = 0,L

vS
1

i
ω2 = 2ω3,LvS1

i
ω3 = −2ω2. If µS1 : M → (iR)∨ is a

moment map for this action and the symplectic form ω1, then 〈µS
1
, i〉 ∈ C∞(M,R)S1 is a

Kähler potential for ω2.
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Proof. The moment map condition is d〈µS1
, i〉 = −ι

vS
1

i
ω1. Therefore,

d〈µS1
, i〉(I2(v)) = −ι

vS
1

i
ω1(I2(v)) = −g(vS1

i , I1(I2(v))) = −ω3(vS1

i , v)

Hence I2d〈µS
1
, i〉 = −ι

vS
1

i
ω3. The claim now follows from

dI2d〈µS
1
, i〉 = −dι

vS
1

i
ω3 = −L

vS
1

i
ω3 = 2ω2

Thus, 〈µS1
, i〉 is a Kähler potential for ω2. �

2.2.33 Remark. 〈µS1
, i〉 is a Kähler potential for any Kähler form in the circle S2 ∩ ω⊥1

of Kähler forms containing ω2 and ω3. Indeed, we can choose ω2 to be any Kähler form
on this circle (and ω3 accordingly) and repreat the proof above.

2.2.34 Example. An example for an S1-action as in the Lemma 2.2.32 is the following:
Consider a hyperkähler manifold M with permuting Sp(1)-action and for ζ ∈ sp(1),
‖ζ‖2 = 1 the inclusion S1 ↪→ Sp(1), a+ ib 7→ a+ζb. Then the restriction of the permuting
action to S1 satisfies the conditions

L
vS

1
i
ωζ = 0, L

vS
1

i
ωζ′ = 2ωζ′′ , L

vS
1

i
ωζ′′ = −2ωζ′ ,

where (ζ, ζ ′, ζ ′′) are an oriented orthonormal basis is sp(1) (e.g. ζ = i, ζ ′ = j, ζ ′′ = k).

The following lemma is also well-known (cf. [Sch10, Lem. 3.2.1]):

2.2.35 Lemma. Consider the S1-action induced by the permuting action of Sp(1) which
perserves the complex structure Iζ. Then µS

1 : M → (iR)∨ is a moment map for this
S1-action, where 〈µS1

, i〉 = −〈ρ, ζ ⊗ ζ〉 ∈ C∞(M,R)S1.

Proof.

d〈µS1
, i〉 = −d〈ρ, ζ ⊗ ζ〉 = −ιgrad(〈ρ,ζ⊗ζ〉)g = −ι〈χ,ζ⊗ζ〉g = −ι

v
Sp(1)
ζ

ωζ

We only need to observe that vS1
i = v

Sp(1)
ζ since S1 ⊂ Sp(1) yM . �

2.2.36 Remark. This moment map can be interpreted in terms of equivariant cocycles:
Given S1 ↪→ Sp(1) mapping i 7→ ζ, we obtain an induced chain map

C4
Sp(1)(M)→ C4

S1(M),

mapping ω+ ρ to i∨⊗
(
ωζ − µS

1
)
. Thus, the image in C4

S1(M) is given by the product of
i∨ and the 2-cocycle ω − µS1 corresponding to the moment map µS1 for the S1-action.

Since we can do this for any circle S1 ↪→ Sp(1), we obtain a family of moment maps for
these circle actions. In equivariant cohomology, these can be combined into the degree 4
cocycle ω + ρ.
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Combining Lemma 2.2.35 and Lemma 2.2.32, we obtain the following corollary, which
essentially recovers [BGM93, Thm. 2.15] (reformulated in terms of the explicitly given ρ0
and ρ2 which were found in [Pid04]).

2.2.37 Corollary. We obtain a map ρ̂ : S2 → C∞(M,R) with the following properties:

1. ρ̂(ζ) = −ρ(ζ ⊗ ζ), i.e. −ρ̂ is the restriction to S2 of the quadratic form associated
to ρ.

2. ρ̂(ζ) ∈ C∞(M,R)S1
ζ is a moment map for S1

ζ y (M,ωζ), where S1
ζ ⊂ Sp(1) is the

stabilizer of ωζ and we use the evaluation at i as an isomorphism (iR)∨ ∼= R.

3. ρ̂(ζ) is a Kähler potential for any Kähler form in S2 ∩ ω⊥ζ .

4. If ρ̂ is constant (or equivalently ρ2 = 0), its image ρ0 is a hyperkähler potential.

Using the decomposition of ρ into its components ρ0 and ρ2 (cf. Notation 2.2.8), observe
that ρ2 is the defect of the family of moment maps and Kähler potentials −〈ρ, ζ ⊗ ζ〉 from
being independent of ζ.

2.2.38 Example (S1-actions and potentials for (Hn, R−i, R−j, R−k)).
Consider Hn as a hyperkähler manifold as in Example 2.1.8. We will now consider the
action of S1 ⊂ Sp(1) y H which is induced by one of the two permuting actions in
Example 2.2.4 and stabilizes the first complex structure:

1. Consider the following S1-action on Hn: (z, h) 7→ hz̄, where S1 ⊂ C ⊂ H. It follows
from Example 2.2.12 that the moment map for ω1 and Kähler potential for ω2, ω3 is

〈µS1
, i〉(h) =− 〈ρ, i⊗ i〉 = 1

2‖h‖
2.

Also, ρ2 = 0, and hence, ρ0(h) = 1
2‖h‖

2 is a hyperkähler potential.

2. Consider the following S1-action on Hn: (z, h) 7→ zhz̄, where S1 ⊂ C ⊂ H. It
follows from Example 2.2.15 that the moment map for ω1 and Kähler potential for
ω2, ω3 is

〈µS1
, i〉(h) = −〈ρ, i⊗ i〉 = 1

2(‖h2‖2 + ‖h3‖2),
where h = h1 + ih2 + jh3 + kh4. However, this is not a Kähler potential for ω1, and
therefore, no hyperkähler potential, and ρ2 6≡ 0.

A similar computation can be done for any complex structure Iζ , not only I1.

2.2.6 Forms and vector fields
The following lemma shows how the fundamental vector fields are related to the differential
forms studied above:

2.2.39 Lemma. Let M be a hyperkähler manifold with permuting Sp(1)-action. Then

ιsp(1)g = −4γ + 3ιχ0ω ∈ (sp(1)∨ ⊗Ω1(M))Sp(1)

In particular,
dιsp(1)g = 3dIdρ0 − 4ω.
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Proof. Using the explicit formula for γ from Example 2.2.11, we obtain

3〈ιχ0ω, i〉 =
3∑
`=1

ι
I`v

Sp(1)
ζ`

ω1 = ι
v
Sp(1)
ζ1

g + ι
v
Sp(1)
ζ2

ω3 − ιvSp(1)
ζ3

ω2,

3〈ιχ0ω, j〉 =
3∑
`=1

ι
I`v

Sp(1)
ζ`

ω2 = ι
v
Sp(1)
ζ2

g − ι
v
Sp(1)
ζ1

ω3 + ι
v
Sp(1)
ζ3

ω1,

3〈ιχ0ω, k〉 =
3∑
`=1

ι
I`v

Sp(1)
ζ`

ω3 = ι
v
Sp(1)
ζ3

g + ι
v
Sp(1)
ζ1

ω2 − ιvSp(1)
ζ2

ω1.

Therefore,
3ιχ0ω = ιsp(1)g + 4γ.

Applying d to the above formula and using dγ = ω and ιχ0ω = Idρ0, we obtain

dιsp(1)g = 3dιχ0ω − 4dγ = 3dIdρ0 − 4ω. �

2.2.40 Corollary. If M is a hyperkähler manifold with permuting SpinGε (3)-action, then

1. ιχ0ιsp(1)g = −4ιχ0γ, i.e. g(χ0, v
Sp(1)
ζ ) = −4〈γ(χ0), ζ〉,

2. g(χ0,Y) = −4
3µ−

1
3ιgιsp(1)g

3. ‖χ0‖2 = 1
3ωζ(v

Sp(1)
ζ , χ0)− 4

3γ(Iζχ0) for all ζ ∈ sp(1), ‖ζ‖2 = 1.

4. ‖vSp(1)
ζ ‖2 = 4〈ρ, ζ ⊗ ζ〉 − 3〈dρ(χ0), ζ ⊗ ζ〉 for all ζ ∈ sp(1).

Proof. All of these claims follow from inserting a vector field into the 1-form from
Lemma 2.2.39:

1. ιχ0ιsp(1)g = −4ιχ0γ + 3ω(χ0, χ0) = −4ιχ0γ.

2. ιgιsp(1)g = −4µ− 3ιχ0ω = −4µ− 3g(χ0,Y).

3. ‖χ0‖2 =− ιIζχ0ιχ0ωζ = −1
3g(vSp(1)

ζ , Iζχ0)− 4
3〈γ, ζ〉(Iζχ0)

=− 1
3ωζ(v

Sp(1)
ζ , χ0)− 4

3〈γ, ζ〉(Iζχ0)
.

4. ‖vSp(1)
ζ ‖2 = −4〈γ, ζ〉(vSp(1)

ζ ) + 3ωζ(χ0, v
Sp(1)
ζ ) for all ζ ∈ sp(1). Finally, since

−〈γ, ζ〉(vSp(1)
ζ ) = 〈ρ, ζ ⊗ ζ〉 and

−ωζ(χ0, v
Sp(1)
ζ ) = 〈ιχ0πS2sp(1)∨ιsp(1)ω, ζ ⊗ ζ〉 = ιχ0d〈ρ, ζ ⊗ ζ〉 = 〈dρ(χ0), ζ ⊗ ζ〉,

the claim follows. �
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2.2.41 Lemma (ρ0 and ‖χ0‖2). Let M be a hyperkähler manifold with permuting
Sp(1)-action. Then

‖χ0‖2 = 1
9

3∑
`=1
‖vSp(1)

ζ`
‖2 + 4

3ρ0

In particular, ρ0 ≤ 3
4‖χ0‖2.

Proof. Take a trace of the last equation in Corollary 2.2.40 to obtain

3∑
`=1
‖vGζ`‖

2 = −12ρ0 + 9dρ0(χ0) = −12ρ0 + 9Lχ0ρ0

Since χ0 = grad(ρ0), we have ‖χ0‖2 = Lχ0ρ0 and, hence, the claim follows. �

2.2.7 Manifolds with hyperkähler potential
Among the hyperkähler manifolds with permuting SpinGε (3)-action, there are those
hyperkähler manifolds with permuting action, which admit a hyperkähler potential.

2.2.42 Example (Swann bundles). Let N be a compact quaternionic Kähler manifold
with positive scalar curvature. Swann constructed [Swa91] a fibre bundleM = U(N)→ N ,
with fibre H×/± 1. The total space U(N) is hyperkähler and admits a permuting Sp(1)-
action with ρ2 ≡ 0 and hyperkähler potential ρ0 = 1

2‖ · ‖
2, where ‖ · ‖ is the norm on the

fibres. Conversely, Swann proved that a hyperkähler manifold with permuting action and
ρ2 ≡ 0 is locally homothetic to a Swann bundle ([Swa91, Thm. 5.9]). Examples for compact
quaternionic Kähler manifolds with positive scalar curvature are Wolf spaces. These
are the compact homogeneous quaternionic Kähler manifolds, i.e. HPn = Sp(n)

Sp(n−1)×Sp(1) ,
Gr2(Cn) = SU(n)

S(U(n−2)×U(2)) , G̃r4(Rn) = SO(n)
SO(n−4)×SO(4) and five quotients of the exotic simply

connected compact Lie groups G2, F3, E6, E7, E8. The corresponding hyperkähler manifold
M = U(N) for a Wolf space N is the minimal nilpotent coadjoint orbit of the simple
complex Lie group (for details cf. [Swa91]).

Swann’s characterization of hyperkähler potentials

Swann proves that f ∈ C∞(M,R) is a hyperkähler potential if and only if ∇(df) = g:

2.2.43 Proposition ([Swa91, Prop 5.5, Prop 5.6]).
Let M be a hyperkähler manifold with ω ∈ sp(1)∨ ⊗Ω2(M) and f ∈ C∞(M,R). Then

∇(df) = g ⇔ dIdf = 2ω

Furthermore, such a hyperkähler potential f exists if and only if there is a local permuting
Sp(1)-action with χ2 = 0.
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Equivalent characterizations of hyperkähler manifolds with permuting
action and potential ρ0

We will provide a number of equivalent conditions for ρ2 = 0. That the sixth, seventh
and nineth condition are consequences of ρ2 = 0, was observed in [BGM93]. The twelveth
characterization first appeared in [Swa91]. We would also like to thank Henrik Schumacher
for pointing out the eleventh characterization ([Sch10, Lem. 3.2.5]).

2.2.44 Proposition (Hyperkähler manifold with potential).
Let M be a hyperkähler manifold with permuting Sp(1)-action. Then the following
conditions are equivalent:

1. ρ2 = 0

2. χ2 = 0

3. IζvSp(1)
ζ = ‖ζ‖2χ0 for all ζ ∈ sp(1)

4. ιχ0ω = ιsp(1)g

5. 2γ = ιχ0ω

6. Lχ0ω = 2ω

7. Lχ0γ = 2γ

8. Lχ0ρ0 = 2ρ0

9. ρ0 = 1
2‖χ0‖2

10. ‖χ0‖2 = 1
3
∑3
`=1 ‖v

Sp(1)
ζ`
‖2

11. ∇χ0 = idTM

12. ∇(dρ0) = g

13. ρ0 is a hyperkähler potential, i.e. dIdρ0 = 2ω
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Proof. The following diagram shows which implications we prove (including the proofs in
Remark 2.2.45). Next to the arrows we provide a hint to what is used in the proof:

1.

2.

3.

4.
5.

6.

7.

8.

9.

10.
11.

12.

13.

ρ2=0

χ2=0

Iζv
Sp(1)
ζ

=‖ζ‖2χ0

ιχ0ω=ιsp(1)g
2γ=ιχ0ω

Lχ0ω=2ω

Lχ0γ=2γ

Lχ0ρ0=2ρ0

ρ0= 1
2 ‖χ0‖

2

‖χ0‖
2= 1

3

3∑̀
=1
‖Kζ`

‖2 ∇χ0=id

∇(dρ0)=g

dIdρ0=2ω

��

χ2=grad ρ2
S2

0sp(1)∨irred.

SS

2.2.35, 2.2.37

��

��

χ2

]]
))

gii

GG

χ0
‖·‖2

��

112.2.39
qq

d

zz

d

��

dd

=
Idρ0=ιχ0ω

$$

GG

2.2.30
d

��

2.2.30

��

WW

=

��
dd

2.2.41
$$

uu g

55
��

[Swa91]

AA

We first prove that the conditions 1, 2, 3 are equivalent:

1⇔ 2 The condition ρ2 = 0 implies χ2 = 0 since χ2 = grad(ρ2). On the other hand, if
0 = χ2 = grad(ρ2), then ρ2 has to be locally constant. But ρ2 ∈ C∞(M,S2

0sp(1)) is
equivariant and the Sp(1)-representation S2

0sp(1)∨ is irreducible. Now if for some
x ∈ M : ρ2(x) 6= 0, then there exists g ∈ Sp(1) such that ρ2(x) 6= gρ2(x). Since
Sp(1) is compact and connected, the exponential map is surjective and we can write
g = exp(tξ) for some ξ ∈ sp(1). Since x and gx are in the same component of M
(connected by the path exp(tξ)x), we know that ρ2(gx) = ρ2(x). However, this leads
to the contraction ρ2(x) 6= gρ2(x) = ρ2(gx) = ρ2(x). Hence, we can conclude that
ρ2 = 0.

1⇒ 13 We proved this in Lemma 2.2.35 and Corollary 2.2.37.

2⇔ 3 For ζ ∈ sp(1), ‖ζ‖2 = 1, we have

〈χ2, ζ ⊗ ζ〉 = 〈χ2, ζ ⊗ ζ〉 = χ0 − IζvSp(1)
ζ .

Hence, χ2 = 0 if and only if χ0 = IζvSp(1)
ζ for all ζ ∈ sp(1), ‖ζ‖2 = 1.

3⇒ 4 For ζ ∈ sp(1)
ωζ(χ0, v) = −g(Iζχ0, v) = g(vSp(1)

ζ , v),
and therefore ιχ0ω = ιsp(1)g.
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4⇒ 5 We know from Lemma 2.2.39 that ιsp(1)g = 3ιχ0ω − 4γ, and therefore,

ιsp(1)g = ιχ0ω = 1
3ιsp(1)g + 4

3γ.

Thus, 2
3ιsp(1)g = 4

3γ and therefore, 2γ = ιsp(1)g = ιχ0ω.

5⇒ 6 Lχ0ω = dιχ0ω + ιχ0dω = dιχ0ω = 2dγ = 2ω.

6⇒ 7 We use Note 2.2.30 to compute

Lχ0γ = 1
2Lχ0(πsp(1)∨ιsp(1)ω) = 1

2πsp(1)∨Lχ0ιsp(1)ω

= 1
2πsp(1)∨ιsp(1)Lχ0ω = 1

2πsp(1)∨ιsp(1)2ω
= 2γ.

7⇒ 8 From Lχ0γ = 2γ and Lχ0ιsp(1) = ιsp(1)Lχ0 , we obtain

Lχ0ρ0 = 1
3Lχ0 tr(ιsp(1)γ) = 1

3 tr(ιsp(1)Lχ0γ) = 2
3 tr(ιsp(1)γ) = 2ρ0.

8⇒ 9 Using Lχ0ρ0 = 2ρ0, we obtain g(χ0, χ0) = dρ0(χ0) = Lχ0ρ0 = 2ρ0.

9⇒ 10 We use Lemma 2.2.41 to compute

2g(χ0, χ0) = 4ρ0 = 3g(χ0, χ0)− 1
3

3∑
`=1

g(vSp(1)
ζ`

, v
Sp(1)
ζ`

),

and therefore, g(χ0, χ0) = 1
3
∑3
`=1 g(vSp(1)

ζ`
, v

Sp(1)
ζ`

).

10⇒ 3 Let w = 1
3
∑3
`=1 v` and assume that ‖w‖2 = 1

3
∑3
`=1 ‖v`‖2. Then

1
3

3∑
`=1
‖v`‖2 = ‖w‖2 = 1

9

3∑
`=1
‖v`‖2 + 2

9

∑
1≤m<n≤3

〈vm, vn〉,

and therefore, ∑3
`=1 ‖v`‖2 = ∑

1≤m<n≤3〈vm, vn〉. We conclude that

0 =
3∑
`=1
‖v`‖2 −

∑
1≤m<n≤3

〈vm, vn〉 = 1
2

∑
1≤m<n≤3

‖vm − vn‖2,

and hence, v1 = v2 = v3 = v. We apply this to v` := I`v
Sp(1)
ζ`

, w = χ0 to prove the
assertion.

5⇒ 13 dIdρ0 = dιχ0ω = 2dγ = 2ω.

11⇒ 12 For all vector fields v, w ∈ Γ (M,TM) we have

∇v(dρ0)(w) = ∇v(dρ0(w))− dρ0(∇v(w)) = ∇v(g(χ0, w))− g(χ0,∇v(w))
= g(∇vχ0, w) = g(v, w),

and therefore ∇(dρ0) = g.
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12⇒ 11 For all vector fields v, w ∈ Γ (M,TM) we have

g(∇vχ0, w) =d(g(χ0, w))(v)− g(χ0,∇vw) = d(dρ0(w))(v)− dρ0(∇vw)
=∇v(dρ0)(w) = g(v, w),

and therefore ∇(χ0) = idTM .

12⇔ 13 Swann proves in [Swa91, Prop. 5.6] that f ∈ C∞(M,R) is a hyperkähler potential
if and only if ∇(df) = g. Therefore, ∇(dρ0) = g.

13⇒ 6 We always have ιχ0ω = Idρ0. Therefore, if ρ0 is a hyperkähler potential, i.e.
dIdρ0 = 2ω, we obtain

Lχ0ω = ιχ0dω + dιχ0ω = dιχ0ω = dIdρ0 = 2ω. �

2.2.45 Remark. We will now prove some more implications directly:

4⇒ 3 g(IζvSp(1)
ζ , v) = −g(vSp(1)

ζ , Iζv) = −ωζ(χ0, Iζv) = ‖ζ‖2g(χ0, v) for all v ∈ TM and
ζ ∈ sp(1).

5⇒ 4 Using ιsp(1)g = −4γ + 3ιχ0ω from Lemma 2.2.39, we obtain ιsp(1)g = −4γ + 3ιχ0ω =
−2ιχ0ω + 3ιχ0ω = ιχ0ω.

7⇒ 6 Lχ0ω = Lχ0dγ = dLχ0γ = 2dγ = 2ω.

6⇔ 13 Note that Lχ0ω = dιχ0ω = dIdρ0.

10⇒ 9 We know from Lemma 2.2.41 that g(χ0, χ0) = 1
9
∑3
`=1 g(vSp(1)

ζ`
, v

Sp(1)
ζ`

) + 4
3ρ0. Using

g(χ0, χ0) = 1
3
∑3
`=1 g(vSp(1)

ζ`
, v

Sp(1)
ζ`

), we obtain g(χ0, χ0) = 1
3g(χ0, χ0)+ 4

3ρ0 and hence
ρ0 = 1

2g(χ0, χ0).

3⇒ 10 g(χ0, χ0) = 1
3
∑3
`=1 g(χ0, χ0) = 1

3
∑3
`=1 g(I`χ0, I`χ0) = 1

3
∑3
`=1 g(vSp(1)

ζ`
, v

Sp(1)
ζ`

).

2.2.46 Corollary ([Cal10, Prop. 3.2.6], [Sch10, Lem. 3.4.1]). If one of the condi-
tions in the previous proposition holds, then

1. dµ(χ0) = Lχ0µ = 2µ

2. µ = 1
2ιgιχ0ω, or equivalently, µ = 1

2ιsp(1)ιgg.

Proof.
1. dµ(χ0) = Lχ0µ = Lχ0ιgγ = ιgLχ0γ = 2ιgγ = 2µ

2. We use 2γ = ιχ0ω to obtain µ = ιgγ = 1
2ιgιχ0ω. �

2.2.47 Remark. Another way to obtain µ = 1
2ιgιχ0ω is to observe that χ2 = 0 implies

χAlt = vSp(1)
· and IζvSp(1)

ζ = ‖ζ‖2χ0. Combining this with µ = 1
2ιgιχAltg, this gives

µ = 1
2ιgιχAltg = 1

2ιgιsp(1)g = 1
2ιgιχ0ω.
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2.2.48 Remark. As we have seen in Example 2.2.15, even if ρ2 6≡ 0 a hyperkähler
potential can still exist.

Also note that if a vector field χ̂ ∈ Γ (M,TM) satisfies ∇χ̂ = idTM , then f := 1
2‖χ̂‖

2 ∈
C∞(M,R) satisfies

df = 1
2dg(χ̂, χ̂) = g(∇χ̂, χ̂) = g(·, χ̂),

and therefore, χ̂ = grad(f). In particular, ∇ grad(f) = idTM , which using the same proof
as in “11⇒ 12” of Proposition 2.2.44 implies ∇(df) = g. Therefore, by Swann’s criterion
(Proposition 2.2.43), f = 1

2‖χ̂‖
2 is a hyperkähler potential.

2.2.49 Remark (Uniqueness of hyperkähler potentials). Let M be a connected
hyperkähler manifold of dimension 4n.

If f is a hyperkähler potential and c ∈ R, then f + c is also a hyperkähler potential.
However, the previous remark provides a natural normalization, i.e. 1

2‖ grad(f)‖2. This
was also observed in [Sch10, Rem. 3.2.6].

If M has two hyperkähler potentials f1 and f2 with df1 6= df2, then ∇(grad(f1 − f2)) = 0.
Hence, v := grad(f1 − f2) is a parallel, nowhere vanishing vector field. Furthermore,
I1v, I2v and I3v are also parallel and the holonomy group reduces to Sp(n− 1) ⊂ Sp(n)
and M is locally isometric to a product of a 4n − 4-dimensional hyperkähler manifold
and H. If M is simply-connected and complete, then it is globally a product of this form.

In particular, ifM is irreducible, then the hyperkähler potential is unique up to a constant.

Conversely, if v ∈ Γ (M,TM) is a parallel vector field and f = 1
2‖ grad(f)‖2 is a (normal-

ized) hyperkähler potential, then 1
2‖ grad(f) + v‖2 = f + df(v) + 1

2‖v‖
2 is a hyperkähler

potential since ∇(grad(f) + v) = idTM . Therefore, if f is a hyperkähler potential on M ,
then every other hyperkähler potential on M is of the form f + df(v) + c for some parallel
vector field v and a constant c. If M admits a hyperkähler potential, then the dimension
of the space of hyperkähler potentials is the sum of the dimension of the space of parallel
vector fields and the number of connected components of M .

2.2.50 Example (hyperkähler potential on quaternionic vector spaces).
Consider M = Hn from Example 2.2.6 with the action of Sp(1) on Hn given by left
multiplication in each component. The fundamental vector field for this action is

(vSp(1)
ζ )x = d

dt
exp(−tζ)x|t=0 = −ζx ∈ Hn = TxH

n for all x ∈ Hn, ζ ∈ sp(1).

We obtain

Iζ(vSp(1)
ζ )x = −ζζx = x ∈ Hn = TxH

n for all ζ ∈ sp(1), ‖ζ‖2 = 1.

The vector field χ0 = IζvSp(1)
ζ is independent of ζ ∈ sp(1), ‖ζ‖2 = 1. This is the Euler

vector field χ0|x = x ∈ Hn = TxH
n. The hyperkähler potential is

ρ0(x) = 1
2g

M(χ0|x, χ0|x) = 1
2‖χ0|x‖2 = 1

2‖x‖
2.



2.2. Hyperkähler manifolds with permuting actions 37

It follows from Remark 2.2.49 that an arbitrary hyperkähler potential is of the form
f(x) = 1

2‖x‖
2 + Re(x∗v) + c for some v ∈ Hn and c ∈ R. The corresponding permuting

Sp(1)-action from Proposition 2.2.43 is obtained from the above action and the translation
by v.

2.2.8 SpinG
ε (3)?-module generated by ω

In this section, we show how the forms γ, ρ, ρ0, ρ2 naturally appear from the permuting
SpinGε (3)-action on M . Recall the following definition ([GS99]):

2.2.51 Definition. Given a smooth action GyM , we have an action of the Z-graded
Lie superalgebra g̃ := g[−1]⊕ g⊕R[1] on Ω∗(M) by derivations:

g[−1] acts as the insertion operator ιg,
g acts as the Lie derivative Lg,

1 ∈ R[1] acts as the exterior derivative d.

Here, g[−1] is the Lie algebra of G sitting in degree −1, g is in degree 0 and R[1] is in
degree 1. The Lie bracket on g̃ is defined in such a way that the usual commutation
relations between Lie derivative, insertion operation and exterior derivative hold in g̃.

A G?-module is a Z-graded vector space A with a linear G-action and a G-equivariant
g̃-action such that the infinitesimal G-action on A coincides with the action of g ⊂ g̃.

A morphism of G?-modules is a degree-preserving linear map which commutes with the
G-action and the g̃-action.

Given a hyperkähler manifold M with a permuting SpinGε (3)-action, we can understand
Ω∗(M) as a SpinGε (3)?-module and study the SpinGε (3)?-submodule generated by one of
the symplectic forms ω1.

Since the Lie derivative LspinGε (3) generates the 3-dimensional space of 2-forms spanned
by ω1, ω2, ω3, but leaves ω ∈ sp(1)∨ ⊗Ω2(M) invariant, we can equivalently iterate the
insertion operation:

2∑
`=0

(ιspinGε (3))`ω ∈
2⊕
`=0

(∧`
spinGε (3)∨ ⊗ sp(1)∨ ⊗Ω2−`(M)

)SpinGε (3)
.

Since everything generated by these insertion operations is SpinGε (3)-invariant, the Lie
derivatives do not produce any new elements of the SpinGε (3)?-module. The same
holds for the exterior derivative d, since dω = 0, dLspinGε (3) = LspinGε (3)d and dιspinGε (3) =
LspinGε (3) − ιspinGε (3)d. Therefore, the image of ⊕2

`=0

(∧` spinGε (3)∨ ⊗ sp(1)∨
)
in Ω∗(M) is

the SpinGε (3)?-submodule of Ω∗(M) generated by ω1. This also contains all the differ-
ential forms from Proposition 2.2.7. To see this, we use the following decomposition of
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SpinGε (3)-representations:

∧0(sp(1)∨ ⊕ g∨)⊗ sp(1)∨ ∼= sp(1)∨,∧1(sp(1)∨ ⊕ g∨)⊗ sp(1)∨ ∼= sp(1)∨ ⊕ S2sp(1)∨ ⊕ g∨ ⊗ sp(1)∨
∼= sp(1)∨ ⊕ S2

0sp(1)∨ ⊕R⊕ g∨ ⊗ sp(1)∨,∧2(sp(1)∨ ⊕ g∨)⊗ sp(1)∨ ∼= (
∧2

sp(1)∨ ⊕ sp(1)∨ ⊗ g∨ ⊕
∧2

g∨)⊗ sp(1)∨

∼= (sp(1)∨ ⊕ sp(1)∨ ⊗ g∨ ⊕
∧2

g∨)⊗ sp(1)∨

∼= (R⊕ g∨)⊗ (sp(1)∨ ⊕ S2
0sp(1)∨ ⊕R)⊕

∧2
g∨ ⊗ sp(1)∨

The representations and the corresponding components of ∑2
`=0(ιspinGε (3))`ω are listed in

the following table:

representation component
sp(1)∨ ⊗Ω2(M) ω
sp(1)∨ ⊗Ω1(M) γ = 1

2πsp(1)∨ιsp(1)ω
S2sp(1)∨ ⊗Ω1(M) dρ = πS2sp(1)∨ιsp(1)ω
S2

0sp(1)∨ ⊗Ω1(M) dρ2 = πS2
0sp(1)∨ιsp(1)ω

Ω1(M) dρ0 = −1
3 tr(ιsp(1)ω)

g∨ ⊗ sp(1)∨ ⊗Ω1(M) −dµ = ιgω
g∨ ⊗ sp(1)∨ ⊗Ω0(M) µ = ιgγ

sp(1)∨ ⊗ sp(1)∨ ⊗Ω0(M) ρ = −ιsp(1)γ
sp(1)∨ ⊗Ω0(M) π∧2sp(1)∨ρ = 0
S2

0sp(1)∨ ⊗Ω0(M) ρ2
Ω0(M) ρ0

g∨ ⊗ S2sp(1)∨ ⊗Ω0(M) ιgdρ = Lgρ = 0
g∨ ⊗ S2

0sp(1)∨ ⊗Ω0(M) ιgdρ2 = Lgρ2 = 0
g∨ ⊗Ω0(M) ιgdρ0 = Lgρ0 = 0

∧2g∨ ⊗ sp(1)∨ ⊗Ω0(M) ι2gω = ιgdµ = −δgµ

Note that for sp(1)∨ ⊗ Ω1(M), g∨ ⊗ sp(1)∨ ⊗ Ω0(M), sp(1)∨ ⊗ sp(1)∨ ⊗ Ω0(M) and
sp(1)∨ ⊗Ω0(M) we implicitly used the isomorphism πsp(1)∨ : ∧2 sp(1)∨

∼=−→ sp(1)∨.

Furthermore, this explains why apart from ω, the forms γ, ρ = (ρ0, ρ2) and µ naturally
appear on a hyperkähler manifold with permuting SpinGε (3)-action.

From this table, we also obtain an 18-dimensional, universal Sp(1)?-module Aperm

Aperm := sp(1)[2]⊕ sp(1)[1]⊕ S2
0sp(1)[1]⊕R[1]⊕ S2

0sp(1)⊕R
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for permuting actions, with differential given by

d|sp(1)[2] = 0,
d|sp(1)[1] = idsp(1) : sp(1)[1]→ sp(1)[2],

d|S2
0sp(1)[1] = 0,
d|R[1] = 0,

d|S2
0sp(1) = idS2

0sp(1) : S2
0sp(1)→ S2

0sp(1)[1],
d|R = idsp(1) : R→ R[1],

the Lie derivatives

Lsp(1)|sp(1)[2] = [·, ·] : sp(1)⊗ sp(1)[2]→ sp(1)[2],
Lsp(1)|sp(1)[1] = [·, ·] : sp(1)⊗ sp(1)[1]→ sp(1)[1]
Lsp(1)|S2

0sp(1)[1] = ([·, ·]⊗ idsp(1) +(idsp(1)⊗[·, ·]) ◦ τ12) : sp(1)⊗ S2
0sp(1)[1]→ S2

0sp(1)[1]
Lsp(1)|R[1] = 0

Lsp(1)|S2
0sp(1) = ([·, ·]⊗ idsp(1) +(idsp(1)⊗[·, ·]) ◦ τ12) : sp(1)⊗ S2

0sp(1)→ S2
0sp(1)

Lsp(1)|R = 0,

where τ12 : sp(1) ⊗ sp(1) ⊗ sp(1) → sp(1) ⊗ sp(1) ⊗ sp(1) is ζ ⊗ ζ ′ ⊗ ζ ′′ 7→ ζ ′ ⊗ ζ ⊗ ζ ′′.
Finally, the insertion operations are

ιsp(1)|sp(1)[2] = ([·, ·], prS2
0sp(1),

1
3 tr) : sp(1)[−1]⊗ sp(1)[2]→ sp(1)[1]⊕ S2

0sp(1)[1]⊕R[1],
ιsp(1)|sp(1)[1] = (− prS2

0sp(1),−1
3 tr) : sp(1)[−1]⊗ sp(1)[1]→ S2

0sp(1)⊕R,
ιsp(1)|S2

0sp(1)[1] = ([·, ·]⊗ idsp(1) +(idsp(1)⊗[·, ·]) ◦ τ12) : sp(1)[−1]⊗ S2
0sp(1)[1]→ S2

0sp(1)
ιsp(1)|R[1] = 0

ιsp(1)|S2
0sp(1) = 0

ιsp(1)|R = 0.

Furthermore, we have a smaller, 8-dimensional version of this,

Aperm0 := sp(1)[2]⊕ sp(1)[1]⊕R[1]⊕R,

which has the same operations as above, only the two S2
0sp(1)-components are missing.

There is a natural projection Aperm → Aperm0 .

From these definitions, we immediately obtain:

2.2.52 Lemma. Given a hyperkähler manifold with permuting Sp(1)-action, we obtain a
natural morphism of Sp(1)?-modules

Aperm → Ω∗(M).

Its image is the Sp(1)?-module generated by ω1 (or equivalently ω1, ω2, ω3). It factors
through Aperm0 if and only if ρ2 = 0.
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2.2.53 Remark. Note that the morphism Aperm → Ω∗(M) is injective if ρ2 6= 0. And if
ρ2 = 0, the morphism Aperm0 → Ω∗(M) is injective. This follows from Lemma 2.2.41 and
Proposition 2.2.44 and the Sp(1)-equivariance of the morphisms.

2.2.54 Remark. Similarly, one can define a SpinGε (3)?-module structure on

ApermG := Aperm ⊕ (g⊗ sp(1))[1]⊕ (g⊗ sp(1)),

and, given a hyperkähler manifold M with permuting SpinGε (3)-action, obtain a degree-
preserving morphism of SpinGε (3)?-modules ApermG → Ω∗(M), whose image is the SpinGε (3)?-
module generated by ω1 (or, equivalently, ω1, ω2, ω3).

2.2.55 Remark. Alternatively, the Sp(1)?-module Aperm can be described as quotients of
the universal enveloping algebra U(s̃p(1)): Consider the left ideal I ⊂ U(s̃p(1)) generated
by

d,Lζ1 ,Lζ2Lζ3 , ι1ι2ι3,L2
ζ2+4,L2

ζ3+4, ιζ1ιζ3Lζ2−ιζ2ιζ1Lζ3 , ιζ1ιζ2− 1
2ιζ3ιζ2Lζ2 , ιζ1ιζ3+ 1

2ιζ2ιζ3Lζ3 .

It follows from Example 2.2.11 and the super version of the Poincaré–Birkhoff–Witt
theorem ([MM65, Thm. 5.15]) that

Aperm = U(s̃p(1))/I,

and a real basis is given by

ω1, ιζ1ω1, ιζ2ω1, ιζ3ω1,

Lζ2ω1,Lζ3ω1, ιζ1Lζ2ω1, ιζ2Lζ2ω1, ιζ3Lζ2ω1, ιζ1Lζ3ω1, ιζ2Lζ3ω1, ιζ3Lζ3ω1,

ιζ1ιζ2ω1, ιζ1ιζ3ω1, ιζ2ιζ3ω1, ιζ1ιζ2Lζ2ω1, ιζ1ιζ3Lζ2ω1, ιζ1ιζ3Lζ3ω1.

Similarly, we have
Aperm0 = U(s̃p(1))/I ′,

where I ′ is the left ideal generated by I and the additional generators

ιζ1ιζ2 , ιζ1ιζ3 , 2ιζ3 − ιζ1Lζ2 , 2ιζ1 + ιζ3Lζ2 ,

2ιζ2 + ιζ1Lζ3 , 2ιζ1 + ιζ2Lζ3 , ιζ2Lζ2 − ιζ3Lζ3 , 2ιζ2ιζ3 + ιζ1ιζ2Lζ2

and a real basis of Aperm0 is given by

ω1, ιζ1ω1, ιζ2ω1, ιζ3ω1,Lζ2ω1,Lζ3ω1, ιζ2ιζ3ω1, ιζ2Lζ2ω1

2.2.56 Remark. We will also study an analogue of ∑2
`=0(ιspinGε (3))`ω, where ω is replaced

by the fundamental 4-form Ω = tr(ω ∧ ω), in chapter 3.



Chapter 3

Homotopy moment maps and
equivariant cohomology

In this chapter we study the notion of homotopy moment maps, which generalize moment
maps in symplectic geometry to the case of Lie group actions on manifolds preserving a
closed n + 1-form, called pre-n-plectic form. We are particularly interested in the case
of n = 3, i.e. manifolds with a closed 4-form. As an example, we construct homotopy
moment maps for tri-hamiltonian as well as permuting actions on hyperkähler manifolds
equipped with the fundamental 4-form Ω. These are obtained from the cocylces of
degree 4 in equivariant cohomology constructed in Theorem 2.2.22. We generalize this
construction and show that cocycles of arbitrary degree in equivariant cohomology give
rise to homotopy moment maps. This generalizes the interpretation of moment maps in
terms of equivariant cohomology given by Atiyah–Bott ([AB84]).

Work on this section started after discussions with Christopher L. Rogers and Marco
Zambon, after Marco Zambon gave a talk on homotopy moment maps in the “Higher
Structures” seminar in Göttingen, shortly after the first version of their joint paper
[FRZ13] with Yaël Frégier appeared on the arXiv. The results of section 3.3 also appear
in the second version of the same paper [CFRZ15]. The author is grateful to Yaël Frégier,
Christopher L. Rogers and Marco Zambon for allowing him to join their project at such a
late stage, and in particular to Christopher L. Rogers for helpful discussions and hints.

Throughout, G will be a Lie group with Lie algebra g and M a G-manifold.

3.1 Homotopy moment maps

3.1.1 Definition. Let M be a manifold, Ω ∈ Ωn+1(M) closed and G y M a smooth
action which preserves Ω. A homotopy moment map f = ∑n

k=1 fk for (M,Ω) consists of
fk ∈

∧k(g∨)⊗Ωn−k(M), k = 1, . . . n satisfying

δgf + df = −
n+1∑
k=1

ζ(k)ιkgΩ,

41
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where ζ(k) := −(−1)
k(k+1)

2 , δg is the Chevalley–Eilenberg differential and d is the exterior
derivative.

A homotopy moment maps f is said to be G-equivariant if f1, . . . fn are G-invariant.

3.1.2 Remark. The origin of this definition is the following: Associated to (M,Ω) is
a Lie-n-algebra of observables Ham∞(M,Ω), which generalizes the Poisson Lie algebra
of a symplectic manifold. A homotopy moment map f is the same as an L∞-morphism
g→ Ham∞(M,Ω), lifting the infinitesimal G-action by hamiltonian vector fields. This
generalizes the interpretation of a (co)moment map in symplectic geometry as a lift of
the infinitesimal G-action to the Poisson Lie algebra. More details on this point of view
can be found in [CFRZ15], in particular in Def./Prop. 5.1. For our purposes, it will be
sufficient to work with the above definition.

The Lie n-algebra L∞(M,Ω), of which Ham∞(M,Ω) is a sighly modified version, was
first constructed in [Rog12].

3.1.3 Notation. We will also use f̃ := ∑n
k=1 ζ(k)fk. In terms of f̃ , the moment map

condition for f reads
dgf̃ = FΩ, (3.1)

where FΩ := ∑n+1
k=1(−1)k+1ιkgΩ and dg := δg + (−1)kd is the differential on the total

complex C∗(g,M) of the double complex

Ck,m(g,M) :=
∧k(g∨)⊗Ωm(M). (3.2)

This complex computes the Lie algebra cohomology of g with values in the trivial g-
module Ω∗(M). A similar complex which computes the Lie algebra homology with values
in the g-module Ω∗(M) has been studied by Brylinski in [Bry90]. The interpretation
of homotopy moment maps in terms the complex C∗(g,M) has also been studied in
[FLGZ14].

3.1.4 Remark. If we interpret FΩ : ∧∗(g∨) → Ω∗(M), then the image of FΩ and Ω
linearly span the G?-submodule of Ω∗(M) generated by Ω.

3.1.5 Remark. Note that if f = ∑n
k=1 fk is a homotopy moment map for a pre-n-plectic

action of G on (M,Ω) (i.e. Ω ∈ Ωn+1(M)G), then the restriction of −f̃n to ker δg ⊂
∧n g∨

is a multi-moment map in the sense of Madsen and Swann ([MS12], [MS13]).

3.1.6 Example (n = 3). Since one of our main interests is the case of pre-3-plectic
manifolds (M,Ω), i.e. Ω is a closed 4-form, we explicitly write out the moment map
conditions in this case: A homotopy moment map f consists of

• f1 ∈ g∨ ⊗Ω2(M),

• f2 ∈
∧2 g∨ ⊗Ω1(M),

• f3 ∈
∧3 g∨ ⊗Ω0(M),
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satisfying the following conditions for all ξ1, ξ2, ξ3, ξ4 ∈ g:

df1(ξ1) + ιvG
ξ1
Ω = 0, (3.3)

df2(ξ1, ξ2) + ιvG
ξ2
ιvG
ξ1
Ω = f1([ξ1, ξ2]), (3.4)

df3(ξ1, ξ2, ξ3)− ιvG
ξ3
ιvG
ξ2
ιvG
ξ1
Ω = f2([ξ1, ξ2], ξ3)− f2([ξ1, ξ3], ξ2) (3.5)

+ f2([ξ2, ξ3], ξ1),
−ιvG

ξ4
ιvG
ξ3
ιvG
ξ2
ιvG
ξ1
Ω = f3([ξ1, ξ2], ξ3, ξ4)− f3([ξ1, ξ3], ξ2, ξ4) (3.6)

+ f3([ξ1, ξ4], ξ2, ξ3) + f3([ξ2, ξ3], ξ1, ξ4)
− f3([ξ2, ξ4], ξ1, ξ3) + f3([ξ3, ξ4], ξ1, ξ2).

3.2 Homotopy moment maps from degree 4
cocycles in the Cartan model

In this section we construct explicit homotopy moment maps from degree 4 cocycles in
the Cartan model for equivariant cohomology and apply this to the cocycles constructed
in Theorem 2.2.22 for actions on hyperkähler manifolds.

Even though the first part of the following Theorem 3.2.1 is a special case of the more
general Theorem 3.3.27 below, we still give an independet, direct proof, without using
the other models for equivariant cohomology. The second part of the theorem compares
the homotopy moment maps constructed from two degree 4 cocycles which differ by a
dG-exact form. The first part of this theorem seemed to be well-known to the experts, and
the author would like to thank C. Rogers and M. Zambon for sharing the formula for the
moment map in this case. The second part is an immediate consequence of the first part.

3.2.1 Theorem.
1. Every cocycle Ω = Ω + P1 + P2 ∈ C4

G(M) in the Cartan model with Ω ∈ Ω4(M)G,
P1 ∈ (g∨ ⊗ Ω2(M))G and P2 ∈ (S2(g∨) ⊗ Ω0(M))G induces a (G-equivariant)
homotopy moment map f with

f1 := −P1,

f2 := ιgf1 + dP2 = π∧2g∨ιgf1,

f3 := ιgf2 + (idg∨ ⊗δg)P2 = −π∧3g∨ι
2
gf1 + π∧3g∨(idg∨ ⊗δg)P2.

2. Let α ∈ (g∨ ⊗ Ω1(M))G and β ∈ Ω3(M)G. Then the homotopy moment map
constructed from the 2-step extension Ω + P1 + P2 + dG(α + β) of Ω + dβ is

f ′1 = f1 − ιgβ + dα,

f ′2 = f2 − ι2gβ − π∧2g∨ιgdα,

f ′3 = f3 − ι3gβ − δgπ∧2g∨ιgα,

where f is the homotopy moment map constructed from Ω + P1 + P2.
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3.2.2 Remark. The second part of Theorem 3.2.1 generalizes [FLGZ14, Prop. 7.11]. In
Corollary 3.3.31 below, we generalize this to arbitrary to cocycles of arbitrary degree.

Proof (of Theorem 3.2.1).
1. Before proving that the conditions (3.3-3.6) hold, we need to check that f2 and
f3 is actually skew-symmetic. For f2, this is obvious from f2 = ιgf1 + dP2 =
ιgf1 − πS2g∨ιgf1 = π∧2g∨ιgf1. From the definition of f3, we see immediately that
f3(ξ1, ξ2, ξ3) = −f3(ξ1, ξ3, ξ2). Furthermore,

f3(ξ1, ξ2, ξ3) = −ι2gf1(ξ1, ξ2, ξ3) + LgP2(ξ1, ξ2, ξ3)− P2(ξ1, [ξ2, ξ3])
= −ι2gf1(ξ1, ξ2, ξ3) + P2([ξ1, ξ2], ξ3) + P2(ξ2, [ξ1, ξ3])− P2(ξ1, [ξ2, ξ3])
= ι2gf1(ξ2, ξ1, ξ3)− LgP2(ξ2, ξ1, ξ3) + P2(ξ2, [ξ1, ξ3])
= −f3(ξ2, ξ1, ξ3).

Hence f3 ∈
∧3 g∨ ⊗Ω0(M) as claimed.

The cocycle condition in the Cartan model is dΩ = 0, df1 = −dP1 = −ιgΩ and
dP2 = πS2g∨ιgP1. The second of these is already (3.3). To check the second condition
(3.4), we compute

f1([ξ1, ξ2]) =Lgf1(ξ1 ⊗ ξ2) = (ιgd+ dιg)f1(ξ1 ⊗ ξ2)
=− ιgιgΩ(ξ1 ⊗ ξ2) + dιgf1(ξ1 ⊗ ξ2)

Since the left hand side and ιgιgΩ(ξ1 ⊗ ξ2) are skew-symmetric in ξ1, ξ2, we have
f1([ξ1, ξ2]) = −ιvG

ξ1
ιvG
ξ2
Ω + dπ∧2g∨ιgf1(ξ1 ⊗ ξ2) = ιvG

ξ2
ιvG
ξ1
Ω + df2(ξ1 ⊗ ξ2).

Using f2 = ιgf1 + dP2 and Equation 3.4, we compute

−δgf2(ξ1, ξ2, ξ3) =Lgf2(ξ1, ξ2, ξ3)− f2(ξ1, [ξ2, ξ3])
=Lgf2(ξ1, ξ2, ξ3)− ιgf1(ξ1, [ξ2, ξ3])− dP2(ξ1, [ξ2, ξ3])
=Lgf2(ξ1, ξ2, ξ3) + ιgδgf1(ξ1, ξ2, ξ3)− dP2(ξ1, [ξ2, ξ3])
=Lgf2(ξ1, ξ2, ξ3)− ιgdf2(ξ1, ξ2, ξ3)− ι3gΩ(ξ1, ξ2, ξ3)− dP2(ξ1, [ξ2, ξ3])
=dιgf2(ξ1, ξ2, ξ3)− dP2(ξ1, [ξ2, ξ3])− ι3gΩ(ξ1, ξ2, ξ3)
=df3(ξ1, ξ2, ξ3)− ι3gΩ(ξ1, ξ2, ξ3).

This proves (3.5). We now turn our attention to the last condition (3.6). We first
observe that

δgf2(ξ2, ξ3, ξ4) =f2
(
−([ξ2, ξ3], ξ4) + ([ξ2, ξ4], ξ3)− ([ξ3, ξ4], ξ1)

)
=(ιgf1 + dP2)([·, ·]⊗ id)

(
−(ξ2, ξ3, ξ4) + (ξ2, ξ4, ξ3)− (ξ3, ξ4, ξ2)

)
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We use this to show −δgf3 − Lgf3 = ιgδgf2:

(−δgf3 − Lgf3)(ξ1, . . . , ξ4)
= f3([ξ2, ξ3], ξ1, ξ4)− f3([ξ2, ξ4], ξ1, ξ3) + f3([ξ3, ξ4], ξ1, ξ2)
= ι2gf1

(
(ξ1, [ξ2, ξ3], ξ4)− (ξ1, [ξ2, ξ4], ξ3) + (ξ1, [ξ3, ξ4], ξ2)

)
− LgP2

(
(ξ1, [ξ2, ξ3], ξ4)− (ξ1, [ξ2, ξ4], ξ3) + (ξ1, [ξ3, ξ4], ξ2)

)
+ P2

(
(ξ1, [[ξ2, ξ3], ξ4])− (ξ1, [[ξ2, ξ4], ξ3]) + (ξ1, [[ξ3, ξ4], ξ2])

)
= ιgδgf2(ξ1, . . . , ξ4)
−
(
(id⊗[·, ·]⊗ id)∨ιgdP2

)(
−(ξ1, ξ2, ξ3, ξ4) + (ξ1, ξ2, ξ4, ξ3)− (ξ1, ξ3, ξ4, ξ2)

)
−
(
(id⊗[·, ·]⊗ id)∨LgP2

)(
(ξ1, ξ2, ξ3, ξ4)− (ξ1, ξ2, ξ4, ξ3) + (ξ1, ξ3, ξ4, ξ2)

)
= ιgδgf2(ξ1, . . . , ξ4).

To finally prove the last condition (3.6), we again use the equivariance of f3 and
condition (3.5) to compute:

−δgf3 = Lgf3 + ιgδgf2 = Lgf3 + ιg(−df3 + ι3gΩ) = Lgf3 − Lgf3 − ι4gΩ = −ι4gΩ.

2. We have Ω+P1 +P2 +dG(α+β) = Ω′+P ′1 +P ′2 is a 2-step extension of Ω′ := Ω+dβ
with P ′1 := P1 − ιgβ + dα and P ′2 := P2 − πS2g∨ιgα. In particular, we have

f ′1 = −P ′1 = −P1 + ιgβ − dα = f1 + ιgβ − dα,
f ′2 = π∧2g∨ιgf

′
1 = π∧2g∨ιgf1 + π∧2g∨(ιg)2β − π∧2g∨ιgdα = f2 − ι2gβ − π∧2g∨ιgdα,

Before turning to f ′3, we observe that

Lgπ∧2g∨ιgα(ξ1, ξ2, ξ3) = 1
2

(
LvG

ξ1
ιvG
ξ2
α(ξ3)− LvG

ξ1
ιvG
ξ3
α(ξ2)

)
= 1

2

(
ιvG[ξ1,ξ2]

α(ξ3) + ιvG
ξ2
α([ξ1, ξ3])− ιvG[ξ1,ξ3]

α(ξ2)− ιvG
ξ3
α([ξ1, ξ2])

)
= π∧2g∨ιgα

(
([ξ1, ξ2], ξ3)− ([ξ1, ξ3], ξ2)

)
,

and, therefore,
(
(idg∨ ⊗δg)π∧2g∨ιgα + Lgπ∧2g∨ιgα

)
(ξ1, ξ2, ξ3)

=π∧2g∨ιgα
(
([ξ2, ξ3], ξ1) + ([ξ1, ξ2], ξ3)− ([ξ1, ξ3], ξ2)

)
=− δgπ∧2g∨ιgα(ξ1, ξ2, ξ3).
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Using this, we finally compute

f ′3 = ιgf
′
2 + (idg∨ ⊗δg)P ′2

= ιgf2 − ι3gβ − ιgπ∧2g∨ιgdα + (idg∨ ⊗δg)P2 − (idg∨ ⊗δg)πS2g∨ιgα

= f3 − ι3gβ − ιgLgα + ιgdπ∧2g∨ιgα− (idg∨ ⊗δg)πS2g∨ιgα

= f3 − ι3gβ + (idg∨ ⊗δg)ιgα + Lgπ∧2g∨ιgα− (idg∨ ⊗δg)πS2g∨ιgα

= f3 − ι3gβ + (idg∨ ⊗δg)π∧2g∨ιgα + Lgπ∧2g∨ιgα

= f3 − ι3gβ − δgπ∧2g∨ιgα �

3.2.3 Proposition. Let M be a hyperkähler manifold. Each of the 2-step extensions of
Ω = tr(ω ∧ ω) in Theorem 2.2.22 induces a homotopy moment map:

1. If GyM is tri-hamiltonian, then

fG1 := 2 tr(µ⊗ ω),
fG2 := 2π∧2g∨ tr(µ⊗ dµ),
fG3 := 3π∧3g∨(idg∨ ⊗δg) tr(µ⊗ µ)

is a homotopy moment map.

If additionally, ω = dγ, there is another homotopy moment map

f ′G1 := tr(µ⊗ ω),
f ′G2 := 2π∧2g∨ tr(µ⊗ dµ) + δg tr(γ ⊗ µ),
f ′G3 := 3π∧3g∨(idg∨ ⊗δg) tr(µ⊗ µ),

which is constructed from the 1-step extension dG tr(γ ∧ ω).

2. If Sp(1) yM is permuting, then

f1 := −4πsp(1)∨(γ ∧ γ)− 2 tr23(ρ⊗ ω),
f2 := 2π∧2sp(1)∨ tr24(ρ⊗ (dρ− 2δsp(1)γ)),
f3 := 2 tr(ρ)2 − 4 tr(ρ2)

is a homotopy moment map (constructed from Ω). Furthermore,

f ′1 := −4πsp(1)∨(γ ∧ γ)− tr23(ρ⊗ ω)− tr13(γ ∧ dρ),
f ′2 := π∧2sp(1)∨ tr24(ρ⊗ (2dρ− 3δsp(1)γ)) + π∧2sp(1)∨ tr14(γ ⊗ Lsp(1)ρ),
f ′3 := 2 tr(ρ)2 − 4 tr(ρ2)

is a homotopy moment map (constructed from dSp(1) tr(γ ∧ ω)).
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3. If Sp(1)×GyM , the Sp(1)-action is permuting and the G-action is hyperkähler,
then fSp(1)×G is a homotopy moment map:

f
Sp(1)×G
1 = −4πsp(1)∨(γ ∧ γ)− 2 tr2,3(ρ⊗ ω) + 2 tr(µ⊗ ω),
f
Sp(1)×G
2 = f2 + fG2

+ π∧2(sp(1)∨⊕g∨)
(
2 tr23((dρ− δsp(1)γ)⊗ µ)− 8πsp(1)∨(µ⊗ γ) + 2 tr12(dµ⊗ ρ)

)
,

Finally, fSp(1)×G
3 is uniquely determined by its restrictions:

f
Sp(1)×G
3 |sp(1)⊗3 = f3,

f
Sp(1)×G
3 |g⊗3 = fG3 ,

f
Sp(1)×G
3 |sp(1)⊗2⊗g = tr34((Lsp(1)ρ+ (idsp(1)⊗δsp(1))ρ)⊗ µ)− 4(idsp(1)⊗g⊗πsp(1)∨)(ρ⊗ µ)

− tr23(Lsp(1)µ⊗ ρ),
f
Sp(1)×G
3 |sp(1)⊗g⊗2 = 8πsp(1)∨(µ⊗ µ)− (idsp(1)⊗δg) tr23(ρ⊗ µ).

Here, we used the isomorphisms
∧2(sp(1)∨ ⊕ g∨) ∼=

∧2(sp(1)∨)⊕
∧2(g∨)⊕ sp(1)∨ ⊗ g∨,∧3(sp(1)∨ ⊕ g∨) ∼=

∧3(sp(1)∨)⊕
∧2(sp(1)∨)⊗ g∨ ⊕ sp(1)∨ ⊗

∧2(g∨)⊕
∧3(g∨).

3.2.4 Remark. In the case of the permuting Sp(1)-action on a hyperkähler manifold,
we can use the decomposition S2(sp(1)∨) ∼= R ⊕ S2

0(sp(1)∨), and the corresponding
decomposition of ρ into ρ0 and ρ2 to write f3 in terms of ρ0 and ρ2:

f3 = f ′3 = 6ρ2
0 − 4 tr(ρ2

2).

3.2.5 Remark. After this result was obtained, C. Shahbazi and M. Zambon pointed
out an alternative way of constructing a homotopy moment map for a tri-hamiltonian
action on a hyperkähler manifold in [SZ15]. Their approach is to first construct homotopy
moment maps for wedge powers of n-plectic forms and afterwards take sums of homotopy
moment maps. Their construction yields a moment map which in general differs from the
homotopy moment map obtained in Theorem 3.3.27.

3.2.6 Remark. The third part of the Proposition 3.2.3 provides an explicit moment map
for a permuting SpinGε (m)-action (Definition 2.2.1) on a hyperkähler manifold M .

To show that the explicit formulae for the moment maps in the corollary hold, we first
prove the following two lemmas:

3.2.7 Lemma. Let GyM be a tri-hamiltonian action on a hyperkähler manifold. Then

π∧3g∨ι
2
g tr(µ⊗ ω) = −π∧3g∨(idg∨ ⊗δg) tr(µ⊗ µ).
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Proof. The G-invariance of µ implies

(δg ⊗ idsp(1)∨)µ = −Lgµ = −ιgdµ = ιgιgω.

Using this, we compute

− tr(µ⊗ µ)(ξ1 ⊗ [ξ2, ξ3]) = tr(µ⊗ ιgιgω)(ξ1 ⊗ ξ2 ⊗ ξ3)
=ιgιg tr(µ⊗ ω)(ξ2 ⊗ ξ3 ⊗ ξ1).

Skew-symmetrizing in ξ1, ξ2, ξ3 gives the claimed identity. �

3.2.8 Lemma. Let Sp(1) yM be a permuting action on a hyperkähler manifold. Then
the following equalities hold:

1. ιsp(1)ιsp(1)ω = −(idsp(1)∨ ⊗δsp(1))ρ+ Lsp(1)ρ,

2. π∧3sp(1)∨ιsp(1)ιsp(1) tr2,3(ρ⊗ ω) = (4
3 tr(ρ2)− 2

3 tr(ρ)2)volsp(1),

3. π∧3sp(1)∨ιsp(1)ιsp(1)πsp(1)∨(γ ∧ γ) = 1
6(tr(ρ2)− tr(ρ)2)volsp(1),

4. π∧3sp(1)∨(idsp(1)∨ ⊗δ)ρ2 = −2
3 tr(ρ2)volsp(1),

5. ιsp(1) tr13(γ ∧ dρ) = − tr24(ρ⊗ dρ)− tr14(γ ⊗ Lsp(1)ρ),

6. π∧3sp(1)∨ιsp(1)ιsp(1) tr13(γ ∧ dρ) = ((2 tr(ρ2)− 2
3 tr(ρ)2)volsp(1).

Here, volsp(1) denotes the standard volume form on sp(1) ∼= R3.

Proof.
1. ιsp(1)ιsp(1)ω = ιsp(1)(−δsp(1)γ + dρ) = −(idsp(1)∨ ⊗δsp(1))ρ+ Lsp(1)ρ.

In particular, using the Sp(1)-invariance of ρ, we have

(Lsp(1)ρ)(ξ1 ⊗ ξ2 ⊗ ξ3) = ρ([ξ1, ξ2]⊗ ξ3) + ρ(ξ2 ⊗ [ξ1, ξ3]),

and hence,

ι
v
Sp(1)
j

ι
v
Sp(1)
k

ω1 = 2(ρ(i⊗ i)− ρ(j ⊗ j)− ρ(k ⊗ k)),

ι
v
Sp(1)
k

ι
v
Sp(1)
i

ω2 = 2(ρ(j ⊗ j)− ρ(i⊗ i)− ρ(k ⊗ k)),

ι
v
Sp(1)
i

ι
v
Sp(1)
j

ω3 = 2(ρ(k ⊗ k)− ρ(i⊗ i)− ρ(j ⊗ j)),

ι
v
Sp(1)
j

ι
v
Sp(1)
k

ω2 = ι
v
Sp(1)
k

ι
v
Sp(1)
i

ω1 = 4ρ(i⊗ j),

ι
v
Sp(1)
j

ι
v
Sp(1)
k

ω3 = ι
v
Sp(1)
i

ι
v
Sp(1)
j

ω1 = 4ρ(i⊗ k),

ι
v
Sp(1)
k

ι
v
Sp(1)
i

ω3 = ι
v
Sp(1)
i

ι
v
Sp(1)
j

ω2 = 4ρ(j ⊗ k).
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2. Using the previous statement, we have

π∧3sp(1)∨ιsp(1)ιsp(1) tr2,3(ρ⊗ ω)(i⊗ j ⊗ k)
= π∧3sp(1)∨ tr2,5(ρ⊗ ιsp(1)ιsp(1)ω)(i⊗ j ⊗ k)

= 1
3 tr2,5(ρ⊗ ιsp(1)ιsp(1)ω)(i⊗ j ⊗ k + j ⊗ k ⊗ i+ k ⊗ i⊗ j)

+ ρ(j ⊗ i)ι
v
Sp(1)
k

ι
v
Sp(1)
i

ω1 + ρ(j ⊗ j)ι
v
Sp(1)
k

ι
v
Sp(1)
i

ω2 + ρ(j ⊗ k)ι
v
Sp(1)
k

ι
v
Sp(1)
i

ω3

+ ρ(k ⊗ i)ι
v
Sp(1)
i

ι
v
Sp(1)
j

ω1 + ρ(k ⊗ j)ι
v
Sp(1)
i

ι
v
Sp(1)
j

ω2 + ρ(k ⊗ k)ι
v
Sp(1)
i

ι
v
Sp(1)
j

ω3)

= 1
3(2ρ(i⊗ i)(ρ(i⊗ i)− ρ(j ⊗ j)− ρ(k ⊗ k)) + 4ρ(i⊗ j)2 + 4ρ(i⊗ k)2

+ 4ρ(j ⊗ i)2 + 2ρ(j ⊗ j)(ρ(j ⊗ j)− ρ(i⊗ i)− ρ(k ⊗ k)) + 4ρ(j ⊗ k)2

+ 4ρ(k ⊗ i)2 + 4ρ(k ⊗ j)2 + 2ρ(k ⊗ k)(ρ(k ⊗ k)− ρ(i⊗ i)− ρ(j ⊗ j)))

= 2
3
∑
`

ρ(ζ` ⊗ ζ`)2 − 2
3
∑
6̀=m

ρ(ζ` ⊗ ζ`)ρ(ζm ⊗ ζm) + 4
3
∑
` 6=m

ρ(ζ` ⊗ ζm)2

= − 2
3
∑
`,m

ρ(ζ` ⊗ ζ`)ρ(ζm ⊗ ζm) + 4
3
∑
`,m

ρ(ζ` ⊗ ζm)2

= 4
3 tr(ρ2)− 2

3 tr(ρ)2,

where, as before, we use the notation ζ1 := i, ζ2 := j, ζ3 := k.

3. For ξ1, ξ2, ξ3 ∈ sp(1) we have

ιsp(1)ιsp(1)πsp(1)∨(γ ∧ γ)(ξ1 ⊗ ξ2 ⊗ ξ3)
=− 2ιsp(1)(idsp(1)∨ ⊗πsp(1)∨)(ρ⊗ γ)(ξ1 ⊗ ξ2 ⊗ ξ3)
=− 2ρ(ξ2 ⊗ ·)ιvSp(1)

ξ1
γ(π∨sp(1)∨(ξ3))

= 2ρ(ξ2 ⊗ ·)ρ(ξ1 ⊗ ·)(π∨sp(1)∨(ξ3))
= 2(idsp(1)∨ ⊗πsp(1)∨ ⊗ idsp(1)∨)(ρ⊗ ρ)(ξ1 ⊗ ξ3 ⊗ ξ2).

Skew-symmetrizing this and evaluating on i⊗ j ⊗ k gives

π∧3sp(1)∨ιsp(1)ιsp(1)πsp(1)∨(γ ∧ γ)(i⊗ j ⊗ k)
= − 1

3

(
(idsp(1)∨ ⊗πsp(1)∨ ⊗ idsp(1)∨)(ρ⊗ ρ)

)
(i⊗ j ⊗ k + j ⊗ k ⊗ i+ k ⊗ i⊗ j

− i⊗ k ⊗ j − j ⊗ i⊗ k − k ⊗ j ⊗ i)
= 1

6

(
ρ(j ⊗ i)ρ(i⊗ j)− ρ(j ⊗ j)ρ(i⊗ i) + ρ(k ⊗ j)ρ(j ⊗ k)− ρ(k ⊗ k)ρ(j ⊗ j)

+ ρ(i⊗ k)ρ(k ⊗ i)− ρ(i⊗ i)ρ(k ⊗ k)− ρ(k ⊗ k)ρ(i⊗ i) + ρ(k ⊗ i)ρ(i⊗ k)
− ρ(i⊗ i)ρ(j ⊗ j) + ρ(i⊗ j)ρ(j ⊗ i)− ρ(j ⊗ j)ρ(k ⊗ k) + ρ(j ⊗ k)ρ(k ⊗ j)

)
= 1

6(
3∑

`,m=1
(ρ(ζ` ⊗ ζm)2 − ρ(ζ` ⊗ ζ`)ρ(ζm ⊗ ζm))

= 1
6(tr(ρ2)− tr(ρ)2)
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4. We have

π∧3sp(1)∨(idsp(1)∨ ⊗δsp(1))ρ2(i⊗ j ⊗ k)
= 1

3(idsp(1)∨ ⊗δsp(1))ρ2(i⊗ j ⊗ k + j ⊗ k ⊗ i+ k ⊗ i⊗ j)
=− 2

3ρ
2(i⊗ i+ j ⊗ j + k ⊗ k)

=− 2
3 tr(ρ2),

and hence, π∧3sp(1)∨(idsp(1)∨ ⊗δsp(1))ρ2 = −2
3 tr(ρ2)volsp(1).

5. ιsp(1) tr13(γ ∧ dρ) = tr24(ιsp(1)(γ ∧ dρ)) = − tr24(ρ⊗ dρ)− tr14(γ ⊗ Lsp(1)ρ).

6. For ξ1, ξ2, ξ3 ∈ sp(1), we have

ιsp(1)ιsp(1) tr13(γ ∧ dρ)(ξ1 ⊗ ξ2 ⊗ ξ3)
=−

(
ιsp(1) tr24(ρ⊗ dρ) + ιsp(1) tr14(γ ⊗ Lsp(1)ρ)

)
(ξ1 ⊗ ξ2 ⊗ ξ3)

=−
(
tr35(ιsp(1)(ρ⊗ dρ)) + tr25(ιsp(1)γ ⊗ Lsp(1)ρ)

)
(ξ1 ⊗ ξ2 ⊗ ξ3)

=− tr(ρ(ξ2 ⊗ ·)LvSp(1)
ξ1

ρ(ξ3 ⊗ ·) + tr(ρ(ξ1 ⊗ ·)LvSp(1)
ξ2

ρ(ξ3 ⊗ ·)

= 2(π∧2sp(1)∨ ⊗ idsp(1)∨) tr25(ρ⊗ Lsp(1)ρ)(ξ1 ⊗ ξ2 ⊗ ξ3).

In particular, we have π∧3sp(1)∨ιsp(1)ιsp(1) tr13(γ ∧ dρ) = 2π∧3sp(1)∨ tr25(ρ ⊗ Lsp(1)ρ).
Using this, we can compute

π∧3sp(1)∨ιsp(1)ιsp(1) tr13(γ ∧ dρ)(i⊗ j ⊗ k)
= 1

3 tr25(ρ⊗ Lsp(1)ρ)(i⊗ j ⊗ k+j ⊗ k ⊗ i+k ⊗ i⊗ j−k ⊗ j ⊗ i−j ⊗ i⊗ k−i⊗ k ⊗ j)

= 1
3

3∑
`=1

(
ρ(i⊗ ζ`)ρ([j, k]⊗ ζ`) + ρ(i⊗ ζ`)ρ(k, [j, ζ`])

+ ρ(j ⊗ ζ`)ρ([k, i]⊗ ζ`) + ρ(j ⊗ ζ`)ρ(i, [k, ζ`])
+ ρ(k ⊗ ζ`)ρ([i, j]⊗ ζ`) + ρ(k ⊗ ζ`)ρ(j, [i, ζ`])
− ρ(k ⊗ ζ`)ρ([j, i]⊗ ζ`)− ρ(k ⊗ ζ`)ρ(i, [j, ζ`])
− ρ(i⊗ ζ`)ρ([k, j]⊗ ζ`)− ρ(i⊗ ζ`)ρ(j, [k, ζ`])
− ρ(j ⊗ ζ`)ρ([i, k]⊗ ζ`)− ρ(j ⊗ ζ`)ρ(k, [i, ζ`])

)
= 4

3

3∑
`=1

(
ρ(i⊗ ζ`)2 + ρ(j ⊗ ζ`)2 + ρ(k ⊗ ζ`)2

)
+ 2

3

(
−ρ(i⊗ i)ρ(k ⊗ k) + ρ(i⊗ k)2 − ρ(i⊗ i)ρ(j ⊗ j) + ρ(i⊗ j)2

+ ρ(j ⊗ i)2 − ρ(j ⊗ j)ρ(i⊗ i)− ρ(j ⊗ j)ρ(k ⊗ k) + ρ(j ⊗ k)2

+ ρ(j ⊗ k)2 − ρ(k ⊗ k)ρ(j ⊗ j) + ρ(k ⊗ i)2 − ρ(k ⊗ k)ρ(i⊗ i)
)

= 4
3

3∑
`,`′=1

ρ(ζ` ⊗ ζ`′)2 + 2
3

3∑
`,`′=1

(
ρ(ζ` ⊗ ζ`′)2 − ρ(ζ` ⊗ ζ`)ρ(ζ`′ ⊗ ζ`′)

)

= 2
3∑

`,`′=1
ρ(ζ` ⊗ ζ`′)2 − 2

3

3∑
`,`′=1

ρ(ζ` ⊗ ζ`)ρ(ζ`′ ⊗ ζ`′)

= 2 tr(ρ2)− 2
3 tr(ρ)2. �
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Proof (of Proposition 3.2.3). In each of the cases, we can apply either Theorem 3.2.1 or
the more general Theorem 3.3.27 below. They both produce the same homotopy moment
map. More precisely, given a cocycle of the form Ω + P1 + P2 ∈ C4

G(M), then

f1 =− P1,

f2 =− π∧2g∨ιgP1,

f3 =π∧3g∨ι
2
gP1 + π∧3g∨(idg∨ ⊗δg)P2

is a homotopy moment map. We compute these explicitly in the case of the cocycles from
Theorem 3.2.1:

1. For the 2-step extension Ω − 2 tr(µ ⊗ ω) + tr(µ ⊗ µ) ∈ C4
G(M), we have PG

1 =
−2 tr(µ⊗ ω) and PG

2 = tr(µ⊗ µ). Using Lemma 3.2.7, we obtain

fG1 = −PG
1 = 2 tr(µ⊗ ω),

fG2 = −π∧2g∨ιgP
G
1 = 2π∧2g∨ιg tr(µ⊗ ω) = −2π∧2g∨ tr(µ⊗ ιgω) = 2π∧2g∨ tr(µ⊗ dµ),

fG3 = π∧3g∨ι
2
gP

G
1 + π∧3g∨(idg∨ ⊗δg)PG

2

= −2π∧3g∨ι
2
g tr(µ⊗ ω) + π∧3g∨(idg∨ ⊗δg) tr(µ⊗ µ)

= 3π∧3g∨(idg∨ ⊗δg) tr(µ⊗ µ).

For the 1-step extension Ω − tr(µ ⊗ ω) − tr(γ ∧ dµ) ∈ C4
G(M), we have P ′G1 =

− tr(µ⊗ ω)− tr(γ ∧ dµ) and P ′G2 = 0, and hence

f ′G1 = −P ′G1 = tr(µ⊗ ω) + tr(γ ∧ dµ),
f ′G2 = −π∧2g∨ιgP

′G
1 = π∧2g∨ιg tr(µ⊗ ω) + π∧2g∨ιg tr(γ ∧ dµ)

= 2π∧2g∨ tr(µ⊗ dµ)− π∧2g∨ tr(γ ⊗ Lgµ) = 2π∧2g∨ tr(µ⊗ dµ) + δg tr(γ ⊗ µ),
f ′G3 = π∧3g∨ι

2
gP

G
1 = π∧3g∨ιgf2 = 2π∧3g∨ιg tr(µ⊗ dµ) + 2π∧3g∨ιgδg tr(γ ⊗ µ)

= 3π∧3g∨(idg∨ ⊗δg) tr(µ⊗ µ).

2. The claimed formula for f2 also follows from the first and second identity in
Lemma 2.2.21 and 4πsp(1)∨ = − tr13(idsp(1)∨ ⊗δsp(1)):

f2 = −4π∧2sp(1)∨ιsp(1)πsp(1)∨(γ ∧ γ)− 2π∧2sp(1)∨ιsp(1) tr23(ρ⊗ ω)
= 8π∧2sp(1)∨(idsp(1)∨ ⊗πsp(1)∨)(ρ⊗ γ) + 2π∧2sp(1)∨ tr2,4(ρ⊗ (−δsp(1)γ + dρ))
= 2π∧2sp(1)∨ tr2,4(ρ⊗ (dρ− 2δsp(1)γ)).

Furthermore, using the identities (2)− (4) from Lemma 3.2.8, we obtain

f3 =π∧3sp(1)∨ιsp(1)ιsp(1)f1 + π∧3sp(1)∨(idsp(1)∨ ⊗δsp(1))ρ2

=(−4(1
6 tr(ρ2)− 1

6 tr(ρ)2)− 2(4
3 tr(ρ2)− 2

3 tr(ρ)2)− 2
3 tr(ρ2))volsp(1)

=(2 tr(ρ)2 − 4 tr(ρ2))volsp(1)
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For the 1-step extension dSp(1) tr(γ ∧ ω), we have P ′1 = 4πsp(1)∨(γ ∧ γ) + tr23(ρ ⊗
ω) + tr12(γ ∧ dρ) and P ′2 = 0. Hence, using the last two identities from Lemma 3.2.8

f ′1 =− P ′1 = −4πsp(1)∨(γ ∧ γ)− tr23(ρ⊗ ω)− tr12(γ ∧ dρ),
f ′2 =− π∧2sp(1)∨ιsp(1)P

′
1

= π∧2sp(1)∨(−4ιsp(1)πsp(1)∨(γ ∧ γ)− ιsp(1)π∧2sp(1)∨ tr23(ρ⊗ ω)− ιsp(1) tr(γ ∧ dρ))
= 8π∧2sp(1)∨(idsp(1)∨ ⊗πsp(1)∨)(ρ⊗ γ) + π∧2sp(1)∨ tr24(ρ⊗ (dρ− δsp(1)γ))

+ π∧2sp(1)∨ tr24(ρ⊗ dρ) + π∧2sp(1)∨ tr14(γ ⊗ Lsp(1)ρ)
= π∧2sp(1)∨ tr24(ρ⊗ (2dρ− 3δsp(1)γ)) + π∧2sp(1)∨ tr24(γ ⊗ Lsp(1)ρ),

f ′3 = π∧3sp(1)∨ιsp(1)ιsp(1)f
′
1

= (−2
3(tr(ρ2)− tr(ρ)2)volsp(1) + (2

3 tr(ρ)2 − 4
3 tr(ρ2))volsp(1)

+ (2
3 tr(ρ2)− 2 tr(ρ2))volsp(1)

= (2 tr(ρ)2 − 4 tr(ρ2))volsp(1).

3. Since P Sp(1)×G
1 = P1 + PG

1 , we obtain fSp(1)×G
1 = f1 + fG1 . The restrictions fo the

skew-symmetric part of ιsp(1)⊕gf
Sp(1)×G
1 are

π∧2(sp(1)∨⊕g∨)
(
ιsp(1)⊕gf

Sp(1)×G
1

)
|sp(1)⊗sp(1) = π∧2(sp(1)∨)ιsp(1)f

Sp(1)
1 ,

π∧2(sp(1)∨⊕g∨)
(
ιsp(1)⊕gf

Sp(1)×G
1

)
|g⊗g = π∧2(g∨)ιsp(1)f

G
1 ,

and

π∧2(sp(1)∨⊕g∨)
(
ιsp(1)⊕gf

Sp(1)×G
1

)
|sp(1)⊗g(ζ ⊗ ξ)

= 1
2(ιsp(1)⊕gf

Sp(1)×G
1 |sp(1)⊗g((ζ, 0)⊗ (0, ξ)− (0, ξ)⊗ (ζ, 0)))

= 1
2(ιsp(1)f

G
1 (ζ ⊗ ξ)− ιgfSp(1)

1 (ξ ⊗ ζ))
= π∧2(sp(1)∨⊕g∨)(ιsp(1)f

G
1 + ιgf

Sp(1)
1 )(ζ, 0)⊗ (0, ξ).

Here, we are using the convention that, for example, ιsp(1)f
G
1 |g⊗sp(1) = 0. Since∧2(sp(1)∨ ⊕ g∨) ∼=

∧2(sp(1)∨) ⊕ sp(1)∨ ⊗ g∨ ⊕ ∧2(g∨), these uniquely determine
f
Sp(1)×G
2 :

f
Sp(1)×G
2 = π∧2(sp(1)∨⊕g∨)

(
ιsp(1)⊕gf

Sp(1)×G
1

)
=f2+fG2 +π∧2(sp(1)∨⊕g∨)(ιsp(1)f

G
1 +ιgfSp(1)

1 )

Since

ιsp(1)f
G
1 = 2ιsp(1) tr(ω ⊗ µ) = 2 tr23(ιsp(1)ω ⊗ µ) = 2 tr23

(
(dρ− δsp(1)γ)⊗ µ

)
and

ιgf1 =− 4ιgπsp(1)∨(γ ∧ γ)− 2ιg tr12(ω ⊗ ρ)
=− 8πsp(1)∨(µ⊗ γ) + 2 tr12(dµ⊗ ρ),

the formula for fSp(1)×G
2 follows.
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In the case of

f
Sp(1)×G
3 = ιsp(1)⊕gf

Sp(1)×G
2 + (idsp(1)⊕g⊗δsp(1)⊕g)P Sp(1)×G

2

= ιsp(1)⊕g(fSp(1)
2 + fG2 + π∧2(sp(1)∨⊕g∨)(ιsp(1)f

G
1 + ιgf1))

+ (idsp(1)⊕g⊗δsp(1)⊕g)(P Sp(1)
2 + PG

2 − tr23(ρ⊗ µ),

we again have the decomposition∧3(sp(1)∨ ⊗ g∨) ∼=
∧3(sp(1)∨)⊕

∧2(sp(1)∨)⊗ g∨ ⊕ sp(1)∨ ⊗
∧2(g∨)⊕

∧3(g∨).

Note that using the formula from Theorem 3.2.1, we do not need to skew-symmetrize.
In the formula above, we omitted the projections to sp(1)⊕g→ sp(1) and sp(1)⊕g→
g.

The ∧3(sp(1)∨) and ∧3(g∨) components of fSp(1)×G
3 are clearly f3 and fG3 , respectively.

In the following, we compute the ∧2(sp(1)∨)⊗ g∨ and sp(1)∨ ⊗ ∧2(g∨)-components
by restricting to sp(1) ⊗ sp(1) ⊗ g and sp(1) ⊗ g ⊗ g, respectively. Together, all
these uniquely determine fSp(1)×G

3 .

f
Sp(1)×G
3 |sp(1)⊗2⊗g =ιsp(1)π∧2(sp(1)∨⊕g∨(ιsp(1)f

G
1 + ιgf1),

f
Sp(1)×G
3 |sp(1)⊗g⊗2 =ιsp(1)f

G
2 − (idsp(1)⊗δg) tr23(ρ⊗ µ).

We compute the necessary insertion operations:

ιsp(1)f
G
2 =− 2ιsp(1)π∧2g∨ tr(dµ⊗ µ)

=− 2(idsp(1)⊗π∧2g∨) tr23(Lsp(1)µ⊗ µ),
= 8πsp(1)∨(µ⊗ µ),

ιsp(1)π∧2(sp(1)∨⊕g∨)ιsp(1)f
G
1 |sp(1)⊗2⊗g = 1

2ιsp(1)ιsp(1)f
G
1

= ιsp(1) tr23((dρ− δsp(1)γ)⊗ µ)
= tr34((Lsp(1)ρ− ιsp(1)δsp(1)γ)⊗ µ)
= tr34

((
Lsp(1)ρ+ (idsp(1)⊗δsp(1))ρ

)
⊗ µ

)
,

ιsp(1)π∧2(sp(1)∨⊕g∨)ιgf1(ζ ⊗ ζ ′ ⊗ ξ) =− 1
2ιsp(1)ιgf1(ζ ⊗ ξ ⊗ ζ ′)

= 1
2ιsp(1)

(
8πsp(1)∨(µ⊗ γ)− 2 tr12(dµ⊗ ρ)

)
(ζ ⊗ ξ ⊗ ζ ′)

=− 4(idsp(1)⊗g⊗πsp(1)∨)(ρ⊗ µ)(ζ ⊗ ξ ⊗ ζ ′)
− tr23(Lsp(1)µ⊗ ρ)(ζ ⊗ ξ ⊗ ζ ′).

Therefore,

f
Sp(1)×G
3 |sp(1)⊗2⊗g(ζ ⊗ ζ ′ ⊗ ξ) = tr34((Lsp(1)ρ+ (idsp(1)⊗δsp(1))ρ)⊗ µ)(ζ ⊗ ζ ′ ⊗ ξ)

− 4(idsp(1)⊗g⊗πsp(1)∨)(ρ⊗ µ)(ζ ⊗ ξ ⊗ ζ ′)
− tr23(Lsp(1)µ⊗ ρ)(ζ ⊗ ξ ⊗ ζ ′)

and
f
Sp(1)×G
3 |sp(1)⊗g⊗2 = 8πsp(1)∨(µ⊗ µ)− (idsp(1)⊗δg) tr23(ρ⊗ µ). �
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3.2.9 Remark. Note that the zeros of the homotopy moment map fG in the first part
of Proposition 3.2.3 coincide with the zeros of fG1 , which also coincide with the zeros
of the hyperkähler moment map µ. Indeed, µ(x) = 0 implies fG1 |x = 0 and hence also
fG2 |x = 0. Furthermore, tr(µ⊗ µ)|x = 0 if and only if µ(x) = 0. Conversely, if fG1 |x = 0,
then µ(x) = 0, since ω1, ω2, ω3 are linearly independent, nowhere vanishing elements in
Ω2(M).

3.2.10 Remark. Note that if we know ω, we can easily recover µ = 1
2 ∗ (fG1 ∧ ∗ω) from

fG1 .

3.2.11 Remark. If G y (M,Ω) is a tri-hamiltonian action of an abelian group, then
fG3 = 0. Furthermore, if G = R or U(1), then fG1 is the only non-vanishing component of
the homotopy moment map.

3.2.12 Remark. The analogue of the first part of Proposition 3.2.3 also holds for quater-
nionic Kähler manifolds G y (M,Ω) with quaternionic Kähler moment map µ. As
explained in Remark 2.2.24, Ω − 2 trG(µ⊗ ω) + trG(µ⊗ µ) ∈ C4

G(M) is again closed in
the Cartan model for G-equivariant cohomology and we obtain a homotopy moment map
as in the hyperkähler case.

3.2.13 Remark. Note that in the case of a permuting action, the third component of
the homotopy moment map constructed from the 2-step extension is equal to the one
constructed from the 1-step extension, i.e. f3 = f ′3. The same holds in the case of the
tri-hamiltonian action, if the 1-step extension exists. As the second part of Theorem 3.2.1
shows, this is not a coincidence:

Given pre-3-plectic action G y (M,Ω), i.e. Ω ∈ Ω4(M)G closed, a 2-step extension
Ω+P1 +P2 and α ∈ (g∨⊗Ω1(M))G which satisfies ιgα = πS2g∨ιgα ∈ (S2(g∨)⊗Ω0(M))G,
then the third components of the homotopy moment maps constructed from Ω + P1 + P2
and Ω + P1 + P2 + dGα agree.

3.2.1 Examples
Swann bundles

Let M be a hyperkähler manifold with permuting Sp(1)-action and assume ρ2 = 0. Then
ρ = 1

3 tr(ρ)1, where 1(ζ`, ζm) = δ`,m, ρ2 = 1
9 tr(ρ)21 and tr(ρ2) = 1

3 tr(ρ)2.

In this situation, the homotopy moment map from Proposition 3.2.3 is

f1 =− 4πsp(1)∨(γ ∧ γ)− 2
3 tr(ρ)ω = −4πsp(1)∨(γ ∧ γ) + 2ρ0ω,

f2 = 4
3 tr(ρ)δsp(1)γ = −4ρ0δsp(1)γ = −4ρ0π∧2sp(1)∨ιsp(1)ω,

f3 = 2
3 tr(ρ)2volsp(1) = 6ρ0volsp(1).

The “reduction” f−1
3 (r)/Sp(1) for r > 0 is a quaterionic Kähler manifold ([Swa91]).
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Proof.
1. We have tr2,3(ρ ⊗ ω) = 1

3 tr(ρ) tr2,3(1 ⊗ ω) = 1
3 tr(ρ)ω. Hence the formula for f1

follows.

2. For f2, we have

f2 =2π∧2sp(1)∨ tr2,4(ρ⊗ (−2δsp(1)γ + dρ))
=2

3π∧2sp(1)∨ tr2,4(tr(ρ)1⊗ (−2δsp(1)γ + 1
3d tr(ρ)1))

=− 4
3 tr(ρ)π∧2sp(1)∨ tr2,4(1⊗ δsp(1)γ)

=4
3 tr(ρ)δsp(1)γ.

Here, we used that π∧2sp(1)∨ tr2,4(1⊗ 1) = π∧2sp(1)∨1 = 0.

3. The formula for f3 follows immediately from tr(ρ2) = 1
3 tr(ρ)2. �

Quaternionic vector spaces with SO(3)-action

Consider Hn with the permuting action of SO(3) as in Example 2.2.15. Write x =
x0+ix1+jx2+kx3 with x` ∈ Rn. We have tr(ρ)|x = −3ρ0(x) = −2‖ Im(x)‖2. Furthermore,

tr(ρ2)|x = 2‖ Im(x)‖4 − 2(‖x2‖2‖x3‖2 + ‖x1‖2‖x3‖2 + ‖x1‖2‖x2‖2)
+ 2(〈x1, x2〉2 + 〈x1, x3〉2 + 〈x2, x3〉2).

Hence,

f3 = 2 tr(ρ)2 − 4 tr(ρ2)
= 8

(
‖x2‖2‖x3‖2 + ‖x1‖2‖x3‖2 + ‖x1‖2‖x2‖2 − 〈x1, x2〉2 − 〈x1, x3〉2 − 〈x2, x3〉2

)
.

3.3 Homotopy moment maps and equivariant
cohomology

In this section, we study the relationship between equivariant cohomology and homotopy
moment maps. After interpreting FΩ in terms of the Bott–Shulman–Stasheff complex,
we provide general constructions of homotopy moment maps from cocycles in the Bott–
Shulman–Stasheff model (Proposition 3.3.10) as well as from cocycles in the Cartan model
(Proposition 3.3.25, generalizing Theorem 3.2.1). The moment map for cocycles in the
Cartan model arises via a chain map from the Cartan model to the Bott–Shulman–Stasheff
model, which was outlined in [Mei05, App. C]. As we need to compute (a component) of
the image of this map, we give a detailed description of this chain map. This section grew
out of discussions with C. Rogers and M. Zambon and also appears in [CFRZ15].

3.3.1 Differential forms on simplicial manifolds
If X• is a simplicial manifold with face maps di : Xn → Xn−1, i = 0, . . . , n, then the
simplicial differential ∂n : Ω∗(Xn)→ Ω∗(Xn+1) is

∂n =
n+1∑
i=0

(−1)id∗i . (3.7)
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Consider the following double complex of differential forms on a simplicial manifold and
its total complex

Ωj,k(X•) := Ωk(Xj),
Ω∗(X•) :=

(
Tot(Ω∗,∗(X•)),d

)
,

d := ∂ + (−1)jd,

where d is the exterior derivative.

If X• is a simplicial manifold which is paracompact in each dimension, then the de
Rham theorem of Bott–Shulman–Stasheff ([BSS76]) implies that there exists a natural
isomorphism

H
(
Ω∗(X•)

) ∼=−→ H
(∥∥∥X•∥∥∥),

where H
(∥∥∥X•∥∥∥) is the singular cohomology with R coefficients of the fat geometric

realization of X•.

3.3.1 Example. Let M be a manifold and M• the simplicial manifold Mn = M , whose
face and degeneracy maps are idM . Since all ∂n are either zero or isomorphisms, the
inclusion

(Ωn(M), d) = (Ωn(M0), d) ι
↪→ (Ω∗(M•),d) (3.8)

is an quasi-isomorphism.

3.3.2 Example. LetM be a G-manifold, and let E•G×M denote the product E•G×M•,
i.e., the simplicial manifold

[n] 7→ EnG×M = Gn+1 ×M

with the “usual” face and degeneracy maps, i.e.

di(g0, . . . , gn, p) = (g0, . . . , gi−1, gi+1, . . . , gn, p).

If we equip E•G×M with the diagonal G action

G× EnG×M →M,

(h, g0, . . . , gn, p) 7→ (g0h
−1, . . . , gnh

−1, hp),
(3.10)

then the projection π : E•G×M →M• is a morphism of simplicial G-manifolds.

The idea for the following proof was pointed out to the author by C. Rogers:

3.3.3 Proposition. The map π induces a quasi-isomorphism

π∗ : Ω∗(M•)→ Ω∗
(
E•G×M

)
. (3.11)
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Proof. Denote the (thin) geometric realization of X• by |X•|. Since | · | preserves products,
and since both G and M are manifolds, it follows from [Seg74, Prop. A1] and the de
Rham theorem of Bott–Shulman–Stasheff ([BSS76]) that we have a commuting diagram

H
(
Ω∗(M•)

) ∼= //

π∗

��

H
(∥∥∥M•∥∥∥) ∼= //∥∥∥π∥∥∥∗
��

H
(
|M•|

)
= //

|π|∗
��

H
(
|M•|

)
(π|M•|)∗
��

H
(
Ω∗(E•G×M)

) ∼= // H
(∥∥∥E•G×M∥∥∥) ∼= // H

(
|E•G×M |

) ∼= // H
(
|E•G| × |M•|

)
.

(3.12)

Since |E•G| is contractible, the Künneth formula implies that the right vertical arrow in
the diagram (3.12) is an isomorphism. Hence π∗ is also an isomorphism. �

3.3.4 Example. (cf. [Mei05, App. C.2]) If M is a G-manifold, consider the simplicial
manifold G• ×M , i.e.

[n] 7→ Gn ×M,

with the face maps di : Gn ×M → Gn−1 ×M given by

(g1, . . . , gn, p) 7→


(g2, . . . , gn, p) i = 0,
(g1, . . . , gigi+1, . . . , gn, p) 0 < i < n,

(g1, . . . , gn−1, gnp) i = n.

Note that the map
Gn+1 ×M → Gn ×M,

(g0, . . . , gn, p) 7→ (g0g
−1
1 , . . . gn−1g

−1
n , gnp)

induces an isomorphism of simplicial manifolds
E•G×GM ∼= G• ×M,

where E•×GM is the quotient of E•G×M by the diagonal G-action (3.10). The de Rham
theorem of Bott–Shulman–Stasheff ([BSS76]) implies that the cohomology of

(
Ω∗(G• ×

M),d
)
is the equivariant cohomology of M . Therefore, the complex

(
Ω∗(G• ×M),d

)
is

called Bott–Shulman–Stasheff model for equivariant cohomology.

3.3.2 Homotopy moment maps and the
Bott–Shulman–Stasheff complex

Consider the first row Ω1,∗(G•×M) = Ω∗(G×M) of the Bott–Shulman–Stasheff complex
and the subcomplex

Ω∗(G×M)G ⊂ Ω1,∗(G• ×M)
of forms invariant under the G-action Gy G×M , (h, (g, p)) 7→ (hg, p). This is the total
complex of the double complex of G-invariant forms

Ωk,m(G×M)G := Γ (G×M,
∧k

T ∗G⊗
∧m

T ∗M)G ⊂ Ωk+m(G×M)G,

Ω∗(G×M)G = Tot
(
Ω∗,∗(G×M)G

)
,

d = dG + (−1)kdM
(3.14)
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with differentials dG and dM , the exterior derivatives in the G and M directions, respec-
tively.

Consider the natural isomorphism

Ψ :
∧m(g∨ ⊕ T ∗M)

∼=−→
⊕

k+`=m

∧k(g∨)⊗
∧`

T ∗M,

Ψ(α)
(
(x1, . . . , xk)⊗ (w1, . . . , w`)

)
= α

(
(x1, 0), . . . , (xk, 0), (0, w1), . . . , (0, w`)

)
.

(3.16)

3.3.5 Remark. The following diagram outlines the rest of this section and shows how
(parts of) these various complexes are related and how the condition for f̃ to be a homotopy
moment map can be understood in terms of the Bott–Shulman–Stasheff complex:

Ωn+1(M)

∂

��

d //

⊆
Ωn+1
cl (M)G 3Ω

Ωn+2(M)

∈

0

Ωn(G×M) d //

⊆

Ωn(G×M)G∼=

Lemma 3.3.6

Cn(g,M)

∈

f̃

Ωn+1(G×M)

⊆

Ωn+1(G×M)G 3 ∂Ω∼=

Cn+1(g,M) 3 r∂Ω
Lemma 3.3.7

=

moment map=
condition

FΩ

∈

dgf̃

� //
_

��

_

��

d //

dg
//

� //

The consequence of this will be Proposition 3.3.10, in which we show that certain elements
in the Bott–Shulman–Stasheff complex give rise to homotopy moment maps.

3.3.6 Lemma. Restriction to M = {e}×M i
↪→ G×M induces an isomorphism of double

complexes
r :
(
Ω∗,∗(G×M)G, dG, dM

)
→
(
C∗,∗(g,M), δg, d

)
,

where Gy G×M , (h, (g, p)) 7→ (hg, p). In particular, we have an isomorphism of total
complexes:

r :
(
Ω∗(G×M)G, d

)
→
(
C∗(g,M), dg

)
.

Proof. The restriction of sections of ∧m T ∗(G×M) to M = {e} ×M ↪→ G×M induces
an isomorphism:

Γ
(
G×M,

∧m(T ∗(G×M))
)G
→ Γ

(
M, i∗

∧m
T ∗(G×M)

)
= Γ

(
M,

∧m(g∨ ⊕ T ∗M)
)
.

Composing with Ψ (3.16), we obtain the isomorphism r : Ωm(G ×M)G → Cm(g,M).
Finally, rdM = dr follows immediately from the definition of the differentials dM and d.�

Now that we identified C∗(g,M) as sitting inside Ω1,∗(G• × M), we can reinterpret
the term on the right hand side of the moment map condition (3.1) in terms of the
Bott–Shulman–Stasheff complex.
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3.3.7 Lemma. Let Ω ∈ Ωn+1(M)G. Then

r(∂Ω) = FΩ.

Proof. The face map d1 : G×M →M is the G-action. Therefore, it is G-equivariant and
hence d∗1Ω ∈ Ωn+1(G×M)G. Since d0 = πM , we also have d∗0Ω = π∗MΩ ∈ Ωn+1(G×M)G,
and hence

∂Ω = d∗0Ω − d∗1Ω ∈ Ωn+1(G×M)G.

The differential of d1 at the point (e, p) is given by

d(d1)|(e,p)(x,w) = w − vGx , for x ∈ TeG,w ∈ TpM.

Let x1, . . . , xn+1 ∈ g and w1, . . . , wn+1 ∈ TpM . Then

r(d∗0Ω − d∗1Ω)(w1, . . . , wn+1) = 0,
r(d∗0Ω − d∗1Ω)(x1, . . . , xk, w1 . . . , wn−k+1) = (−1)k+1〈ιkgΩ, x1, . . . , xk〉(w1, . . . , wn−k+1).

Thus r∂Ω = ∑n+1
k=1(−1)k+1ιkgΩ = FΩ. �

3.3.8 Corollary. An element f = ∑n
k=1 fk ∈ Cn(g,M) with fk ∈ Ck,n−k(g,M) is a

homotopy moment map for the pre-n-plectic form Ω ∈ Ωn+1(M)G if and only if f̃ =∑n
k=1 ζ(k)fk satisfies dgf̃ = r(∂Ω).

3.3.9 Remark. Note that the Ω0,n+1(G×M)G-component of ∂Ω vanishes. This is the
reason why f only has n components fk ∈

∧k(g∨)⊗Ωn−k(M), k = 1, . . . , n. For a general
solution η ∈ Ωn(G×M)G of dη = ∂Ω, this component does not vanish, but is an arbitrary
closed n-form on M .

3.3.3 Homotopy moment maps and Bott–Shulman–Stasheff
cocycles

If the group G is compact, we can average to obtain G-invariant forms. For β ∈ Ωn+1(M)
and β′ ∈ Ωn(M), denote βG ∈ Ωn+1(M)G and β′G ∈ Ωn(G × M)G the G-invariant
forms obtained by averaging with respect to the actions G y M and G y G × M ,
(h, (g, p)) 7→ (hg, p), respectively.

For α1 ∈ Ωn(G ×M), denote the component of r(α1) in Ck,n−k(g,M) by rk(α1), i.e.
r(α1) = ∑n

k=0 rk(α1). Using the projection

ř : Ωn(G×M)G r−→ Cn(g,M) �
n⊕
k=1

Ck,n−k(g,M), (3.17)

ř(α1) :=
n∑
k=1

rk(α1). (3.18)

Corollary 3.3.8 gives us two simple ways of constructing homotopy moment maps from
cocycles in the Bott–Shulman–Stasheff complex:



60 Chapter 3. Homotopy moment maps and equivariant cohomology

3.3.10 Proposition. LetM be a G-manifold and α = ∑n+1
i=0 αi ∈ Ωn+1(G•×M) a cocycle

in the Bott–Shulman–Stasheff complex with αi ∈ Ωi,n−i+1(G• ×M) = Ωn−i+1(Gi ×M).

• If α0 ∈ Ωn+1(M)G ⊂ Ω0,n+1(G• ×M) and α1 ∈ Ωn(G ×M)G ⊂ Ω1,n(G• ×M),
then f̃ := řα1 defines a homotopy moment map f for the G-invariant pre-n-plectic
form α0.

• Let G be compact. Then f̃ := ř
(
αG1
)
defines a homotopy moment map f for the

G-invariant pre-n-plectic form αG0 ∈ Ωn+1(M)G.

Proof. The cocyle condition dα = 0 implies that

dα0 = 0,
∂α0 = dα1.

Therefore, α0 is indeed a pre-n-plectic form. The first claim follows immediately from
Corollary 3.3.8 and the observation that dgr(α1) = dgř(α1). For the second claim, we
check that

dgr
(
αG1
)

= r
(
dαG1

)
= r

(
(dα1)G

)
= r

(
(∂α0)G

)
= r

(
∂αG0

)
,

and again observe that dgr
(
αG1
)

= dgř
(
αG1
)
. �

3.3.11 Remark. Note that we do not need a full cocycle in the Bott–Shulman–Stasheff
complex, but only a G-invariant 1-step extension of α0 ∈ Ωn+1(M)G in the Bott–Shulman–
Stasheff complex, i.e. α1 ∈ Ωn(G ×M)G satisfying dα0 = 0 and ∂α0 = dα1 (cf. Re-
mark 3.3.5).

This also recovers the homotopy moment map for exact pre-n-plectic forms constructed
in [FRZ13, Lem. 8.1]:

3.3.12 Corollary. If Ω = dβ ∈ Ωn+1(M)G is an exact pre-n-plectic form with β ∈
Ωn(M)G, then

f :=
n∑
k=1

ζ(k + 1)ιkgβ

is a homotopy moment map.

Proof. Take α0 := Ω and α1 := ∂β. Then

dα1 = d∂β = ∂dβ = ∂α0.

Using Lemma 3.3.7, we obtain the homotopy moment map f from f̃ = r∂α1 = r∂β. �

3.3.13 Corollary. Let α = dβ be a coboundary in the Bott–Shulman–Stasheff complex
with β = ∑n

i=0 βi ∈ Ωn(G• × M), where βi ∈ Ωi,n−i(G• × M), β0 ∈ Ωn(M)G and
β1 ∈ Ωn−1(G×M)G. Then f̃ = řα1 = ř(∂β0 − dβ1) defines a homotopy moment map f
for the pre-n-plectic form α0 = dβ0, which is given by

f̃ =
n∑
k=1

(−1)k+1ιkgβ0 − δgřβ1 −
n−1∑
k=1

(−1)kdrk(β1).
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In particular, given two cocycles in the Bott–Shulman–Stasheff complex with G-invariant
components in Ω0,n(G• ×M) and Ω1,n−1(G• ×M) and which differ by a coboundary dβ,
the associated homotopy moment maps differ by r∂β0 − δgřβ1 −

∑n−1
k=1(−1)kdrk(β1).

Proof. From α = dβ, we have α0 = dβ0 and α1 = ∂β0 − dβ1. Since β0 and β1 are
G-invariant, it follows that α0 and α1 are as well. Therefore, we can apply the second
part of Proposition 3.3.10. We obtain

f̃ = řα1 = ř∂β0 − řdβ1

=
n∑
k=1

(−1)k+1ιkgβ0 −
n∑
k=1

rk((dG + (−1)kdM)β1)

=
n∑
k=1

(−1)k+1ιkgβ0 −
n−1∑
k=1

(δg + (−1)kd)rk(β1)

=
n∑
k=1

(−1)k+1ιkgβ0 − δgř(β1)−
n−1∑
k=1

(−1)kdrk(β1). �

3.3.14 Remark. Note that adding a coboundary dβ to a cocycle α will change the pre-
n-plectic form α0 to α0 + dβ0. However, the construction of the tuple of the pre-n-plectic
form and the homotopy moment map from a cocylce is linear.

3.3.4 Simplicial differential forms
We recall the notion of simplicial differential forms introduced by Dupont [Dup76, Def.
2.1]:

Let X• be a simplicial manifold with face maps di : Xq → Xq−1 for i = 0, . . . , q. Let
∆q ⊂ Rq+1 be the standard q-simplex and εi : ∆q−1 → ∆q the inclusion of the i-th face.

A simplicial differential n-forms ϕ on X• consists of a sequence of forms

ϕ(q) ∈ Ωn(∆q ×Xq), q = 0, 1, . . .

satisfying
(εi × id)∗ϕ(q) = (id×di)∗ϕ(q−1)

for all q and all i = 1, . . . , q.

The set of all simplicial n-forms on X• is denoted Ωn
spl(X•). Equipped with the usual

exterior derivative d, simplicial differential forms form a differential graded algebra
(Ω∗spl(X•), d), which is also the total complex of the following double complex:

Ωn
spl(X•) =

⊕
j+k=n

Ωj,k
spl(X•). (3.19)

Here, similar to (3.14), Ωj,k
spl(X•) consists of simplicial differential n-forms ϕ =

(
ϕ(q)

)
, for

which each

ϕ(q) ∈ Γ (∆q ×Xq,
∧j

T ∗∆q ⊗
∧k

T ∗Xq) ⊂ Ωj+k(∆q ×Xq).
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The exterior derivative d on Ω∗spl(X•) is

d = d∆ + (−1)jdX ,

where d∆ and dX denote the exterior derivatives in the ∆q and Xq-directions, respectively.

3.3.15 Remark. Intuitively, simplicial n-forms should be thought of as n-forms on the
fat geometric realization ‖X•‖ of X•.

Dupont proved that Ω∗(X•) and Ω∗spl(X•) are quasi-isomorphic.

3.3.16 Theorem ([Dup76, Thm. 2.3]). There are natural maps of doubles complexes(
Ω∗,∗spl(X•), d∆, dX

) I //
(
Ω∗,∗(X•), ∂, d

)
,

C
oo

which give natural chain homotopy equivalences between
(
Ω∗,kspl (X•), d∆

)
and

(
Ω∗,k(X•), ∂

)
.

In particular, the maps C and I induce quasi-isomorphisms between the total complexes(
Ω∗spl(X•), d

)
and

(
Ω∗(X•),d

)
.

The map I in Dupont’s theorem is defined as the fibre integral

Ωj,k
spl(X•) 3 ϕ 7→ I (ϕ) :=

∫
∆j
ϕ(j) ∈ Ωk(Xj). (3.20)

The map C is defined as follows:

C (β)(q) :=

j!
∑
|I|=j

∑j
`=0(−1)`ti`dti0 ∧ . . . ∧ d̂ti` ∧ . . . ∧ dtij ∧ µ∗Iβ q ≥ j

0 q < j,
(3.21)

for β ∈ Ωk(Xj), where I = (i0, . . . , ij) is a multi-index with 0 ≤ i0 < · · · < ij ≤ q and
|I| := j. Furthermore, µI = dι̃q−j ◦ . . . ◦ dι̃1 : Xq → Xj is the face map corresponding to
the complementary sequence 0 ≤ ι̃1 < · · · < ι̃q−j ≤ q of I.

3.3.5 Cartan complexes
If A is a G?-module in the sense of Definition 2.2.51 (also cf. [GS99, Def. 2.3.1]), with
differential dA and insertion operation ιAg , let

CG(A) :=
(
S(g∨)⊗ A

)G
dG =δ + dA

(3.23)

denote the usual Cartan complex ([GS99, Sec. 6.5]) with δ = −πS∗(g∨)ι
A
g the composition

of −ιAg and the symmetrization projection πS∗(g∨) : g∨ ⊗ S∗(g∨)→ S∗+1(g∨). This is also
the total complex of the double complex

Ci,j
G (A) =

(
Si(g∨)⊗ Aj−i

)G
.

The following Lemma provides a criterion for a chain map φ : A→ B to induce a quasi-
isomorphism CG(A) → CG(B). The author is grateful to C. Rogers for pointing out
[McC01, Thm. 3.5].
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3.3.17 Lemma. Let G be a compact Lie group, A and B two G?-modules which are
bounded below as complexes and let φ : A→ B a quasi-isomorphism of G?-modules, i.e., a
morphism of G?-modules, which induces an isomorphism of G-modules on total cohomology.
Then the induced map of Cartan complexes

idS∗(g∨)⊗φ : CG(A)→ CG(B)

is a quasi-isomorphism.

Proof. For a G?-module A, define the decreasing filtration on CG(A):

FpCG(A) :=
⊕
i≥p

⊕
j

Ci,j
G (A) (3.24)

If A is bounded below, then the associated spectral sequence clearly converges.

The induced map idS∗(g∨)⊗φ respects the filtrations associated to A and B. Since φ is a
quasi-isomorphism and G is compact, idS(g∗)⊗φ induces an isomorphism between the E1
pages

Ep,q
1 (A) =

(
Sp(g∨)⊗Hq−p(A)

)G
→
(
Sp(g∨)⊗Hq−p(B)

)G
= Ep,q

1 (B)

of the associated spectral sequences (e.g. [GS99, Thm. 6.5.1]). Since A and B are
bounded below, the filtrations are bounded in each degree. Therefore, idS(g∗)⊗π∗ is a
quasi-isomorphism (e.g. [McC01, Thm. 3.5]). �

3.3.18 Example. For M a G-manifold the Cartan complex of Ω∗(M) with the usual
G?-module structure is the usual Cartan complex for M :

CG(M) := CG(Ω∗(M)). (3.25)

3.3.19 Example. For a simplicial G-manifold X•, the total complex of differential forms
Ω∗(X•) = Tot(Ω∗,∗(X•)) with differential d = ∂ + (−1)jd and the insertion operation
ι
Ω∗(X•)
g := (−1)jιg is a G?-module. Note that

dιΩ∗(X•)g + ιΩ
∗(X•)

g d = dιg + ιgd

is still the usual Lie derivative. Its Cartan complex

C∗G(X•) :=
(
CG(Tot(Ω∗,∗(X•)),dG

)
,

dG := (−1)jδ + d = ∂ + (−1)jδ + (−1)jd.
(3.27)

The Cartan complex CG(X•) is also the total complex of the tricomplex

Ci,j,k
G (X•) :=

(
Si(g∨)⊗Ωk−i(Xj)

)G
.
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3.3.20 Example. For a simplicial G-manifold X•, consider the Cartan complex of
Ω∗spl(X•) with its usual G∗-module structure:

C∗G,spl(X•) :=CG(Ω∗spl(X•)),
dG = δ + d.

(3.29)

Also note that this is the total complex of the tricomplex

Ci,j,k
G,spl(X•) :=

(
Si(g∨)⊗Ωj,k−i

spl (X•)
)G
⊂
∞∏
q=0

(
Si(g∨)⊗Ωj,k−i(∆q ×Xq)

)G
,

C∗G,spl(X•) := Tot(C∗,∗,∗G,spl(X•)),
dG :=δ + d∆ + (−1)jdX .

(3.31)

The G?-module structures on Ω(M), Ω∗(E•G ×M) and Ω∗spl(E•G ×M) are chosen in
such a way, that the quasi-isomorphisms ι (3.8), π∗ (3.11) and Dupont’s map C (3.21)
are maps of G?-module. Therefore, Lemma 3.3.17 now implies

3.3.21 Proposition. If G is compact, then the map induced by C ◦ π∗ ◦ ι : Ω∗(M) →
Ω∗spl(E•G×M) on the total Cartan complexes

 := idS(g∨)⊗(C ◦ π∗ ◦ ι) : C∗G(M)→ C∗G,spl
(
E•G×M

)
.

is a quasi-isomorphism.

3.3.6 The Cartan map
Let π : P → B be a principal G-bundle. Cartan [Car51] constructed a chain map
C∗G(P )→ Ω∗(B) that is knows as the Cartan map:

Pick a connection A ∈ Ω1(P, g)G on P → B. Denote its curvature by FA = dA+ 1
2 [A,A] ∈

Ω2(P, g)Ghor and let horA : Ω∗(P )G → Ω∗(P )Ghor be the projection to horizontal forms
defined by A. Then

CarA : C∗G(P )→ Ω∗(P )Ghor ∼= Ω∗(B),(
Si(g∨)⊗Ω∗(P )

)G
3 β 7→ horA

(
〈F i

A, β〉
)
∈ Ω∗+2i(P )Ghor.

(3.33)

3.3.22 Remark. Recall that π∗ : Ω∗(B)→ Ω∗(P )Ghor is an isomorphism. If G is compact,
then the inclusion

Ω∗(B) π∗−→ Ω∗(P )Ghor ↪→ C∗G(P )

induces an isomorphism in cohomology H∗(B)→ H∗G(P ), with homotopy inverse CarA.

There is also a simplicial version of this construction: Let P• → B• be a simplicial
principal G-bundle with a simplicial connection A ∈ Ω1

spl(P•, g)G. The connection A is
defined by a sequence of 1-forms A(q) ∈ Ω1(∆q × Pq, g)G, where each A(q) is a connection
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on the principal G-bundle ∆q × Pq → ∆q ×Bp. Applying the degree-wise Cartan maps
CarA(q) : C∗G(∆q × Pq) → Ω∗(∆q × Bq) gives a chain map between the total complexes
(3.31) and (3.19)

CarA : C∗G,spl(P•)→ Ω∗spl(B•). (3.34)

If G is compact, then CarA is a quasi-isomorphism.

3.3.23 Example. Let M be a G-manifold and P• := E•G × M → E•G ×G M the
simplicial principal G-bundle. For i = 0, . . . , q, let

πi : EqG×M = Gq+1 ×M → G

denote the projections and let θL ∈ Ω1(G, g)G denote the left-invariant Maurer–Cartan
form on G. Following Dupont [Dup76], we consider the distinguished simplical connection

θ =
(
θ(q)

)
∈ Ω0,1

spl(E•G×M, g)G,

θ(q) :=
q∑
i=0

tiπ
∗
i θL ∈ Ω1(∆q × EqG×M, g)G,

(3.36)

where ti, i = 0, . . . , q are barycentric coordinates on ∆q. The curvature of θ is

Fθ(q) =d∆θ(q)︸ ︷︷ ︸
type 1,1

+ dEqG×Mθ(q)+ 1
2 [θ(q), θ(q)]︸ ︷︷ ︸

type 0,2

∈ Ω1,1(∆q×EqG×M)Ghor⊕Ω0,2(∆q×EqG×M)Ghor.

For example, for q = 1, we have

θ(1) =t0π∗0θL + t1π
∗
1θL,

Fθ(1) =− dt1 ∧ (π∗0θL − π∗1θL)− t0t1
2 [π∗0θL − π∗1θL, π∗0θL − π∗1θL],

(3.38)

3.3.24 Remark. Note that θ = C (π∗0θL), with π∗0θL ∈ Ω1(E0G ×M, g)G = Ω1(G ×
M, g)G the pullback of the left-invariant Maurer–Cartan form.

3.3.7 Cartan complex and Bott–Shulman–Stasheff complex
By composing the chaim maps defined above, we obtain the chain map constructed in
[Mei05, App. C], which, if G is compact, is a quasi-isomorphism between the Cartan
complex and the Bott–Shulman–Stasheff complex:

3.3.25 Proposition. Let G be a Lie group and M a G-manifold. Then there is a natural
chain map from the Cartan model to the Bott–Shulman–Stasheff model

C∗G(M) −→ C∗G,spl(E•G×M) Carθ−−→ Ω∗spl(G• ×M) I−→ Ω∗(G• ×M),

where

•  is the chain map from Proposition 3.3.21,
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• Carθ is the simplicial Cartan map (3.34) for the simplical connection θ (3.36) on
E•G×M → E•G×GM ∼= G• ×M ,

• I is the quasi-isomorphisms (3.20) defined by Dupont in Theorem 3.3.16.

If G is compact, then all of the above are quasi-isomorphisms and hence C∗G(M) →
Ω∗(G• ×M) is a quasi-isomorphism.

3.3.26 Remark. Note that if G is not compact, , C and Carθ can fail to be quasi-
isomorphisms.

3.3.8 Homotopy moment maps from Cartan cocycles
We will now combine Proposition 3.3.25 and Proposition 3.3.10 to obtain an explicit
homotopy moment map for each cocycle in the Cartan complex, generalizing [FRZ13,
Thm. 6.3]:

3.3.27 Theorem. Given a degree n + 1 Cartan cocycle Ω + ∑bn+1
2 c

i=1 Pi ∈ Cn+1
G (M),

with Ω ∈ Ωn+1(M)G and Pi ∈ (Si(g∨) ⊗ Ωn−2i+1(M))G, there is a natural homotopy
moment map f for the G-action on the pre-n-plectic manifold (M,Ω). More precisely,
for k = 1, . . . , n we have

fk =
b k+1

2 c∑
i=1

(−1)iζ(k)i!(k−i)!
2i−1(k−2i+1)! π∧k(g∨)

(
ιk−2i+1
g Pi(·, [·, ·], . . . , [·, ·]︸ ︷︷ ︸

i−1

)
)
,

where π∧k(g∨) is the skew-symmetrization projection and ζ(k) = −(−1)
k(k+1)

2 .

In particular, the homotopy moment map f is G-equivariant, i.e., fk ∈
(∧k(g∨) ⊗

Ωn−k(M)
)G

.

Proof. Given the chain map from Proposition 3.3.25 and the second part of Proposi-
tion 3.3.10, we immediately obtain a homotopy moment map from the cocycle Ω +∑bn+1

2 c
i=1 Pi ∈ Cn+1

G (M) if the Lie group G is compact. However, we will compute the
Ω1,n(G• ×M) = Ωn(G×M) and Ω0,n+1(G• ×M) = Ωn+1(M)-components of the image
of Ω + ∑bn+1

2 c
i=1 Pi in Ωn+1(G• × M) and observe that these are G-invariant for G an

arbitrary (possibly non-compact) Lie group. This will then allow us to use the first part
of Proposition 3.3.10 to construct a homotopy moment map.

First note, that the images of Ω and Pi under CG(M)→ C∗G(E•G×M) are

π∗MΩ ∈ Ωn+1(G×M)G = C0,0,n+1
G (E•G×M),

π∗MPi ∈
(
Si(g∨)⊗Ωn−2i+1(G×M)

)G
= Ci,0,n−i+1

G (E•G×M),
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respecively, where πM : G×M →M is the projection. Therefore, Ω+∑bn+1
2 c

i=1 Pi is mapped
to

π∗MΩ +
bn+1

2 c∑
i=1

π∗MPi ∈ Cn+1
G (E•G×M).

The elements

(Ω) ∈ C0,0,n+1
G,spl (E•G×M) ⊂

∞∏
q=0

Ω0,n+1(∆q × EqG×M)G,

(Pi) ∈ Ci,0,n−i+1
G,spl (E•G×M) ⊂

∞∏
q=0

(
Si(g∨)⊗Ω0,n−2i+1(∆q × EqG×M)

)G
,

are given by the sequences (Ω)(q) = π∗MΩ ∈ Ω0,n+1(∆q×EqG×M)G and (Pi)(q) = π∗MPi,
respectively.

The next step is to compute the Cartan map of (Ω) and (Pi), i.e. to compute
Carθ(q)(π∗MΩ) and Carθ(q)(π∗MPi) for all q. Recall that the Cartan map was defined
by inserting the curvature, taking a horizontal component and then pushing the resulting
G-invariant horizontal form down to the base. Since the bundle EqG×M → EqG×GM ∼=
Gq ×M is trivial with section s (cf. [Mei05, App. C.2])

s : Gq ×M → Gq+1 ×M = EqG×M,

(g1, . . . , gq, p) 7→ (e, g−1
1 , . . . , (g1 · · · gq)−1, g1 · · · gqp),

(3.40)

we have

Carθ(q)(π∗MΩ) = s∗horθ(q)π∗MΩ,

Carθ(q)(π∗MPi) = s∗horθ(q)〈F i
θ(q) , π

∗
MPi〉 = 〈s∗F i

θ(q) , s
∗ horθ(q) π∗MPi〉.

(3.42)

Keeping in mind that Proposition 3.3.10 only uses the components in Ω0,n+1(G• ×M)
and Ω1,n(G• ×M), we only need to compute the (0, n + 1) and (1, n)-components of
I
(
Carθ(π∗MΩ)

)
and I

(
Carθ(π∗MPi)

)
.

From the definition of I , we see that the Ω0,n+1(G• ×M)-components are computed
by applying

∫
∆0 Carθ(0) to π∗MΩ and π∗MPi, respectively. Since θ(0) = π∗0θL, Fθ(0) = 0,

∆0 = {1} ⊂ R, s∗horθ(0) = s∗ and πM ◦ s = idM , we have∫
∆0

Carθ(0)(π∗MΩ) = s∗horθ(0)(π∗MΩ) = s∗π∗MΩ = Ω,∫
∆0

Carθ(0)(π∗MPi) = 0.

Therefore, the Ω0,n+1(G• ×M)-component of I
(
Carθ((π∗M(Ω +∑

i Pi)))
)
is indeed the

n-plectic form Ω, and, in particular, G-invariant.

We now turn to the Ω1,n(G•×M)-components. Since Carθ(1)(π∗MΩ) ∈ Ω0,n+1(∆1×E1G×
M)G, we have ∫

∆1
Carθ(1)(π∗MΩ) = 0.
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Thus, the homotopy moment map is constructed from∫
∆1

Carθ(1)(π∗MPi) =
∫
∆1
〈s∗F i

θ(1) , s
∗ horθ(1) π∗MPi〉.

We will now compute this explicitly, and also show that it defines a G-invariant n-form
on G×M , so that we can apply the second part of Proposition 3.3.10.

Denote by I : G → G the map g 7→ g−1 and let θR ∈ Ω1(G, g) be the right-invariant
Maurer–Cartan form. The differential of the section s : G×M → G2 ×M from (3.40) is

ds|(g,p)(x̃, w) =
(
0, dI(x̃), dLg(w)− vGθR(x̃)|gp

)
for x̃ ∈ TgG,w ∈ TpM. (3.43)

From (3.38) and (3.43) we obtain

s∗Fθ(1) = −dt1 ∧ π∗GθR − t0t1
2 π∗G[θR, θR],

s∗F i
θ(1) = (−1)ii (t0t1)i−1

2i−1 dt1 ∧ π∗G
(
θR ∧ [θR, θR]i−1

)
+
(
− t0t1

2 π∗G[θR, θR]
)i
.

(3.45)

On E1G×M = G2 ×M , the horizontal projection for the connection θ(1) is given by

T(g0,g1,p)(G2 ×M)→T(g0,g1,p)(G2 ×M),
(x̃0, x̃1, w

′) 7→(x̃0, x̃1, w
′)− vG2×M

A(x̃0,x̃1,w′) = (x̃0, x̃1, w
′)− vG2×M

t0θL(x̃0)+t1θL(x̃1).

Here, vG2×M is the infinitesimal action for the diagonal action Gy G2 ×M from (3.10).
In particular,

dπM
(
horθ(1)(x̃0, x̃1, w

′)
)

= w′ − t0vGθL(x̃0)|p − t1vGθL(x̃1)|p. (3.46)

Combining (3.43) and (3.46), and using θL(dI(x̃)) = −θR(x̃) as well as t0 = 1− t1 and
dLg−1vGθR(x̃) = vGθL(x̃), we have

dπM
(
horθ(1)ds(x̃, w)

)
= dπM

(
horθ(1)(0, dI(x̃), dLg(w)− vGθR(x̃)|gp)

)
= dLg(w)− vGθR(x̃)|gp − t1vGθL(di(x̃))|gp = dLg(w)− t0vGθR(x̃)|gp
= dLg(w − t0vGθL(x̃)|p)

for all (x̃, w) ∈ T(g,p)(G×M). Using the G-invariance of Pi, i.e. L∗gPi = Ad∨gPi, we have

s∗ horθ(1) π∗MPi|(g,p)
(
(x̃1, w1), . . . , (x̃n−2i+1, wn−2i+1)

)
= Pi|gp

(
dLg(w1 − t0vGθL(x̃1)|p), . . . , dLg(wn−2i+1 − t0vGθL(x̃n−2i+1)|p)

)
= L∗gPi|p

(
w1 − t0vGθL(x̃1)|p, . . . , wn−2i+1 − t0vGθL(x̃n−2i+1)|p

)
=
(
Ad∨g

)⊗i
Pi|p

(
w1 − t0vGθL(x̃1)|p, . . . , wn−2i+1 − t0vGθL(x̃n−2i+1)|p

)
.

Denoting the map TgG ⊕ TpM 3 (x̃, w) 7→ w − t0vGθL(x̃)|p ∈ TpM , as well as any tensor
power of it by φt0 , we have

s∗ horθ(1) π∗MPi = (Ad∨g )⊗iPi ◦ φt0 (3.47)
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Combining (3.42), (3.45), (3.47) and Adg−1θR = θL, we have

Carθ(1)(π∗MPi)) =
〈
(−1)ii (t0t1)i−1

2i−1 dt1∧π∗G
(
θL∧ [θL, θL]i−1

)
+
(
− t0t1

2 π∗G[θL, θL]
)i
, Pi ◦φt0

〉
.

Since φt0 is invariant under the left action (g, (t, h, p)) 7→ (t, gh, p), this also proves that

Carθ(1)(π∗MPi) ∈ Ωn(∆1 ×G×M)G,

where G acts by the same action. Hence also∫
∆1

Carθ(1)(π∗MPi) =
∫
∆1

(−1)ii (t0t1)i−1

2i−1 dt1∧
〈
π∗G
(
θL∧[θL, θL]i−1

)
, Pi◦φt0

〉
∈ Ω1,n(G•×M)G.

(3.48)
However, recall that φt0 depends on t0 = 1−t1. For x1, . . . , xk ∈ g and w1, . . . , wn−k ∈ TpM
we have

〈π∗G
(
θL ∧ [θL, θL]i−1

)
, Pi ◦ φt0〉

(
(x1, 0), . . . , (xk, 0), (0, w1), . . . , (0, wn−k)

)
=
∑
σ∈Sh

(−t0)σ(−1)k−2i+1〈θL ∧ [θL, θL]i−1(xσ(1), ..., xσ(2i−1)), Pi(vGxσ(2i)
, ..., vGxσ(k)

, w1, ..., wn−k)〉

= k!tk−2i+1
0

(k−2i+1)!〈π∧k(g∨)ι
k−2i+1
g Pi(·, [·, ·], . . . , [·, ·]︸ ︷︷ ︸

i−1

), x1, . . . , xk〉(w1, . . . , wn−k).

Here, Sh = Sh(2i − 1, k − 2i + 1) denotes the set of (2i − 1, k − 2i + 1)-shuffles, i.e.
permutations σ, which satisfy σ(`) < σ(` + 1) for all ` 6= 2i − 1. Combining this with
(3.48), and since

∫ 1
0 t

k−i
0 ti−1

1 dt1 = (i−1)!(k−i)!
k! , we see that the image of Ω + ∑bn+1

2 c
i=1 Pi in

C∗,∗(g,M) is

f̃ :=
bn+1

2 c∑
i=1

ř
∫
∆1

Carθ(1)(π∗MPi) =
n∑
k=1

b k+1
2 c∑
i=1

(−1)ii!(k−i)!
2i−1(k−2i+1)!π∧k(g∨)

(
ιk−2i+1
g Pi(·, [·, ·], . . . , [·, ·]︸ ︷︷ ︸

i−1

)
)

︸ ︷︷ ︸
f̃k

.

With fk = ζ(k)f̃k, this completes the proof. �

3.3.28 Example. For a cocycle of the form Ω + P1 ∈ Cn+1
G (M), with P1 ∈

(
g∨ ⊗

Ωn−1(M)
)G

, we recover the statement of [FRZ13, Thm. 6.3], i.e. the moment map is

fk = −ζ(k)π∧k(g∨)ι
k−1
g P1 = −ζ(k)ιk−1

g P1.

Note that by [FRZ13, Prop. 6.2], ιk−1
g P1 is already skew-symmetric.

In particular, for n = 1, a degree 2 cocycle is of the form Ω − µ ∈ C2
G(M), where

Ω ∈ Ω2(M) is a pre-symplectic structure on M and µ ∈ (g∨ ⊗ Ω0(M))G is a moment
map. The homotopy moment map is the usual moment map

f = f1 = µ.
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3.3.29 Example. If Ω +∑bn+1
2 c

i=1 Pi ∈ Cn+1
G (M) is a degree n+ 1 cocycle in the Cartan

model with Pi ∈
(
Si(g∨) ⊗ Ωn−2i+1(M)

)G
, then the first components of the homotopy

moment map are

f1 = −P1,

f2 = −π∧2(g∨)ιgP1,

f3 = π∧3(g∨)ι
2
gP1 − π∧3(g∨)P2(·, [·, ·]),

f4 = π∧4(g∨)ι
3
gP1 − 2π∧4(g∨)ιgP2(·, [·, ·]),

f5 = −π∧5(g∨)ι
4
gP1 + 3π∧5(g∨)ι

2
gP2(·, [·, ·])− 3π∧5(g∨)P3(·, [·, ·], [·, ·]),

...

(3.50)

3.3.30 Example. If M = pt, then C∗G(M) = C∗G(pt) =
(
S∗(g∨)

)G
, then the construction

produces (
Si(g∨)

)G
→
(
∧2i−1(g∨)

)G
,

Pi 7→ f̃2i−1 = (−1)i i!(i−1)!
2i−1 π∧2i−1(g∨)

(
Pi(·, [·, ·], . . . , [·, ·]︸ ︷︷ ︸

i−1

)
)
,

which differs by an additional factor of −i! from the Cartan map defined in [Car51, Sec.
2] (also cf. [GHV76, Ch. VI Prop. IV]).

The following corollary shows how the homotopy moment map changes when the cocyle
in the Cartan model is changed by a coboundary. This generalizes [CFRZ15, Lem. 7.5]
and [FLGZ14, Prop. 7.11].

3.3.31 Corollary. Given a cocycle Ω +∑bn+1
2 c

i=0 Pi ∈ Cn+1
G (M) and a coboundary dGQ =

dG
∑bn2 c
i=0 Qi ∈ Cn+1

G (M) in the Cartan complex of M with Q ∈ Cn
G(M), then the homotopy

moment map for the pre-n-plectic form Ω + dQ0 associated to Ω +∑bn+1
2 c

i=0 Pi + dGQ is
given by

f̃ ′ = f̃ + r(∂Q0)− δgf̃Q −
n−1∑
k=1

(−1)kdf̃Qk ,

where, f̃ is the homotopy moment map for the pre-n-plectic action on (M,Ω) associated

to Ω +∑bn+1
2 c

i=0 Pi and f̃Q = ř(β1), where β = ∑n
k=0 βk is the image of Q under the chain

map from Proposition 3.3.25.

3.3.32 Remark. If dQ0 = 0, f̃Q is a homotopy moment map for the pre-(n− 1)-plectic
G-action on (M,Q0). In this situation, f̃ and f̃ ′ both define homotopy moment maps for
the pre-n-plectic G-action on (M,Ω).

If dQ0 6= 0, the form Q0 is not a pre-n-plectic form. However, f̃Q is given by the same
formula (cf. Theorem 3.3.27).
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Proof (of Corollary 3.3.31). Let β0 ∈ Ωn(M)G ⊂ Ω1,n−1(G• ×M) and β1 ∈ Ωn−1(G ×
M)G ⊂ Ω1,n−1(G• × M) be the relevant components of the image of Q under the
chain map from Proposition 3.3.25. Since the preimage of Ω1,n(G• ×M) under d is
Ω0,n(G•×M)⊕Ω1,n−1(G•×M), only β0 and β1 will contribute to the homotopy moment
map. The component of d(β0 + β1) in Ω1,n(G• ×M) is

∂β0 − dβ1.

Therefore,
f̃ ′ = f̃ + ř(∂β0 − dβ1).

The claim now follows from Corollary 3.3.13. �





Chapter 4

The generalized Dirac operator

In this chapter, we recall the definition of the generalized Dirac operator in dimensions
three and four associated to a hyperkähler manifold with permuting action. This Dirac
operator was introduced by Taubes [Tau99] for three-dimensional manifolds and by
Pidstrygach [Pid04] for four-dimensional manifolds. As usual, the Dirac operator is a
composition of a covariant derivative and a Clifford multiplication. We study the Dirac
operator, its linearization and its behavior on manifolds with boundary.

4.1 SpinGε (m)-structures and spinors
Recall that for a compact Lie group G and ε ∈ G central with ε2 = 1,

SpinGε (m) := (Spin(m)×G)/± 1,

where ±1 is the order 2 subgroup generated by (−1, ε).

In this chapter, we restrict ourselves to m ∈ {3, 4} and use the isomorphisms

SpinGε (3) ∼= (Sp(1)×G)/± 1,
SpinGε (4) ∼= (Sp(1)+ × Sp(1)− ×G)/± 1.

4.1.1 Remark. This generalizes Spin(m), Spinc(m) and SO(m)×G.

4.1.2 Note. Then we have a short exact sequence

1→ 〈(1, ε)〉 → SpinGε (m) λG−→ SO(m)×G/ε→ 1, (4.1)

where λG : SpinGε (m)→ SO(m)×G/ε is the quotient map, 〈(1, ε)〉 the (normal) subgroup
of SpinGε (m) generated by [(1, ε)] = [(−1, 1)] ∈ SpinGε (m) and G/ε the quotient of G by
the subgroup generated by ε.

Let now Qm → Z be a SpinGε (m)-structure on a oriented Riemannian manifold Z of
dimension dim(Z) = m, i.e. Qm is a λG-reduction π : Qm → PSO(m) ×Z PG/ε of principal
bundles, where PSO(m) → Z is the bundle of oriented orthonormal frames and PG/ε → Z
is a principal G/ε-bundle.
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We will denote the components of π by πSO : Qm → PSO(m) and πG/ε : Qm → PG/ε.

Given a SpinGε (m)-structure on Z and a hyperkähler manifold M with permuting
SpinGε (m),

4.1.3 Definition (spinor). A (generalized) spinor is a smooth SpinGε (m)-equivariant
map u : Qm →M . We will denote the space of spinors by

Nm := C∞(Qm,M)SpinGε (m).

4.1.4 Note. Note that a Spin(m)-structure, a Spinc(m)-structure and a principal G-
bundle are special cases of SpinGε (m)-structures and using the representations from
Example 2.2.6 as hyperkähler manifold with permuting action, we recover the usual
(positive) spinor bundles.

Using C∞(Qm,M)SpinGε (m) ∼= Γ (Z,Qm ×SpinGε (m) M), a spinor u ∈ N can also be inter-
preted as a section of the associate fibre bundle with fibre M , which generalizes the usual
(positive) spinor bundles.

4.1.5 Remark (Connectors, cf. [KMS93]). Recall that a linear connection on a vec-
tor bundle π : E →M can also be described in terms of a connector, i.e. a smooth map
K : TE → E which satisfies K( d

dt
v + tw|t=0) = w for all v, w ∈ TxE and which is a

morphism of vector bundles for both vector bundle structures on TE:

TE
K //

πE
��

E

π
��

E π //M

TE
K //

Tπ
��

E

π
��

TM
πM //M

The horizontal subspace is then the kernel of K : TE → E, where TE is considered as a
vector bundle over E. A connector also defines a covariant derivative on all pullbacks of E:
Given s ∈ Γ (N, f ∗E) ∼= C∞(N,E)f for some smooth f : N →M , we have ∇Ks = K ◦Ts.

Furthermore, let κM : TTM → TTM be the canonical flip, i.e. the unique smooth map
satisfying d

dt
d
ds
c(t, s)|s=0|t=0 = κM

d
ds

d
dt
c(t, s)|t=0|s=0 for all smooth c : R2 →M .

The curvature of ∇K is given by
FK(X, Y )s = (K ◦ (TK) ◦ κTM −K ◦ (TK))T 2s ◦ TX ◦ Y

for any section s : M → TM , and vector fields X, Y ∈ Γ (M,TM). The torsion 1-form
T∇

K ∈ Ω2(M,TM) is then given by

T∇
K (v, w) = (K ◦ κM −K)Tv ◦ w for all v, w ∈ Γ (M,TM).

For more details on connectors and proofs of the formulae for the curvature and torsion,
we refer the reader to [KMS93, Thm. 37.15],

4.1.6 Remark. Note that Nm is a (infinite-dimensional) smooth manifold. If Z is
compact, it admits a natural Riemannian L2-metric gN (induced by gM ) and Levi-Civita
connection ∇N , whose connector KN : TTNm → TNm is given by composition with the
connector KM : TTM → TM of the Levi-Civita connection on M . Details are explained
in [Cal10, App. A].
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4.2 Connections and covariant derivatives
The Lie algebra spinGε (m) of SpinGε (m) splits as a direct sum spinGε (m) ∼= so(m)⊕ g. Let
ϕZ be the Levi-Civita connection on PSO(m) → Z.

4.2.1 Definition. By Am we denote the affine space of connections on Qm → Z with
so(m)-component given by the lift of a chosen connection ϕZ on PSO(m), i.e.

Am :=
{
A ∈ A (Qm)

∣∣∣ prso(m) ◦A = π∗SO(m)ϕZ
}
.

4.2.2 Remark. Most of the time, we use the Levi-Civita connection as ϕZ , since this is
the natural choice of a connection on PSO(m). However, it is also possible to use another
metric connection on Z which is not torsion-free. This will be the case in Example 4.6.3.

4.2.3 Notation. Note that we have a commuting diagram of Lie algebras, where all
maps are isomorphisms:

spin(m)⊕ g

��

// spinGε (m)

��

so(m)⊕ g // so(m)⊕ Lie(G/ε)

We will use this to identify spinGε (m) ∼= so(m)⊕ g. The maps prso(m) : spinGε (m)→ so(m)
and prg : spinGε (m)→ g will denote the above isomorphims composed with either of the
projections to the two summands of so(m)⊕ g.

4.2.4 Remark. Note that in the case of G = S1, it is sometimes convenient to use
the isomorphism S1/ ± 1 ∼= S1, [z] 7→ z2 and the induced isomorphims of Lie algebras
Lie(S1/±1) ∼= Lie(S1) ∼= iR. In this case, the bottom map in the diagram is idso(m)×2 idiR.
This factor of 2 often appear in the literature on Seiberg–Witten theory.

4.2.1 Gauge group
We can now study the automorphism group of a SpinGε (m)-structure.

4.2.5 Definition. Let Qm → Z be a SpinGε (m)-structure on Z. The gauge group of the
Spin(m)-equivariant principal G-bundle Qm → PSO(m) is denoted by Gm, i.e.

Gm := C∞(Qm, G)SpinGε (m) ∼= G (Qm → PSO(m))Spin
G
ε (m) ⊂ Aut (Qm) .

We will refer to Gm as the gauge group. It naturally acts on Nm and Am.

4.3 Covariant derivative
Let Q → PSO(m) → Z be a reduction of the principal bundle of oriented orthonormal
frames, with structure group H. We are particularly interested in the case when H =
SpinGε (m) and Q is a SpinGε (m)-structure.
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4.3.1 Definition. For a connection 1-form A ∈ A (Q) which lifts a connection ϕZ on
PSO(m), we define a covariant derivative

dMA : C∞(Q,M)H → C∞(Q, (Rm)∨ ⊗ TM)H ,
〈(dMA u)(p), w〉 := Tu(w̃) for w ∈ Rn.

Here w̃ ∈ TpQ is the horizontal lift of πSO(p)(w) ∈ TπZ(p)Z.

We will also use the following variation of the concept of covariant derivative: Consider a
H-equivariant vector bundle E → M with a fixed H-equivariant connection on E and
the corresponding connector K : TE → E. We define

dEA,K : C∞(Q,E)H
dEA−→ C∞(Q, (Rm)∨ ⊗ TE)H

id(Rm)∨ ⊗K−−−−−−−→ C∞(Q, (Rm)∨ ⊗ E)H ,
dEA,Kv := (id(Rm)∨ ⊗K) ◦ dEAv, v ∈ C∞(Q,E)H .

Here dEA : C∞(Q,E)H → C∞(Q, (Rm)∨ ⊗ TE)H is the covariant derivative defined above
for the total space of the vector bundle E →M .

4.3.2 Example. For a representation M = V of H the map dMA is the usual covariant
exterior derivative if we identify C∞(Q, (Rn)∨ ⊗ V )H ∼= Ω1(Q, V )Hhor.

4.3.3 Remark. Note that dMA is a smooth section of the infinite-dimensional vector
bundle C∞(Q, (Rm)∨ ⊗ TM)H → C∞(Q,M)H , α 7→ πM ◦ α (cf. [Cal10, Lem. 3.4.4]).

Similarly, dEA,K is a morphism of infinite-dimensional vector bundles

C∞(Q,E)H

πM
��

dEA,K
// C∞(Q, (Rm)∨ ⊗ E)H

πM
��

C∞(Q,M)H id // C∞(Q,M)H ,

where πM denotes the composition with the projection toM . In particular, we can restrict
our attention to the fibres over u ∈ C∞(Q,M)H : The following commutative diagram
defines a covariant derivative ∇A,K on the vector bundle π!u

∗E := u∗E/H → Q/H = Z:

C∞(Q,E)Hu
dEA,K

//

∼=
��

C∞(Q, (RM)∨ ⊗ E)Hu
∼=
��

Γ (Q, u∗E)H //

∼=
��

Γ (Q, (Rm)∨ ⊗ u∗E)H

∼=
��

Γ (Z, π!u
∗E) ∇A,K // Γ (X,T ∗X ⊗ π!u

∗TM)

The following Lemma generalizes [Cal10, Lem. 3.4.4] and states some essential properties
of the covariant derivative:
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4.3.4 Lemma (Properties of the covariant derivative). Let A ∈ A (Q) lifting a
connection ϕZ on PSO(m) and K the connector of a connection on TM → M with
vanishing torsion. Then the covariant derivative

dMA : C∞(Q,M)H → C∞(Q, (Rm)∨ ⊗ TM)H

is smooth and we have

1. TdMA = (id(Rm)∨ ⊗κM) ◦ dTMA ,

2. (id(Rm)∨ ⊗K) ◦ TdMA = dTMA,K,

3. TdE
A,KE = (id(Rm)∨ ⊗((TKE) ◦ κE)) ◦ dTEA , where KE is a connector on E,

4. KETdE
A,KE = (id(Rm)∨ ⊗(KE ◦ (TKE) ◦ κE)) ◦ dTEA , where KE is a connector on E.

5. For a H-equivariant smooth map f : M →M ′ we have Tf ◦ dMA u = dM
′

A (f ◦ u).

6. If χ̂ ∈ Γ (M,TM) satisfies ∇KM χ̂ = idTM , then dTMA,K(χ ◦ u) = dMA u.

Proof. Proofs for the first two claims for H = SpinGε (m) can be found in [Cal10, Lem.
3.4.4], but the exact same proofs works in the case of an arbitrary Lie group H. The third
and fourth claim are immediate consequences of the definition of dE

A,KE and the second
claim. The fifth item is obvious from the definition of dMA .

We now proof the sixth item: From KMT χ̂ = ∇KM χ̂ = idTM and the fifth item, we obtain

〈(dTMA,K(χ̂ ◦ u))(p), w〉 = KT χ̂Tu(w̃) = Tu(w̃) = 〈(dMA u)(p), w〉

for all w ∈ Rm, p ∈ Q and where w̃ ∈ TpQ is the horizontal lift of πSO(p)(w) ∈ TπZ(p)Z.�

4.3.5 Remark. Under the isomorphism C∞(Q, (Rm)∨ ⊗ TM)H ∼= Ω1(Q, TM)Hhor, the
covariant exterior derivative dMA u corresponds to pr∗HA

Tu.

4.4 Clifford multiplication and hyperkähler
manifolds

In this section, we recall the definition of the Clifford multiplication used for the generalized
Dirac operator. Note that in contrast to other references on the topic (e.g. [Pid04], [Hay06],
[Sch10], [Cal10]), we allow Sp(1)− to act non-trivially (hyperkähler) in the 4-dimensional
case. To generalize Clifford multiplication to the case of spinors with values in a hyperkähler
manifold M , we need a SpinGε (m)-equivariant bundle of Clm-modules.

In dimension 3, this is given by the scalar multiplication on TM :

c3 : R3 ⊗ TM ∼= Im(H)⊗ TM → TM,

h⊗ v 7→ Ih̄v
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defines a SpinGε (m)-equivariant Cl3-module structure on TM (cf. [Cal10, Lem. 3.5.1]).

In dimension 4, the situation is slightly more complicated. Let us first consider the
Sp(1)+ × Sp(1)− ×G-equivariant vector bundle E →M , which is isomorphic to TM as
a vector bundle and carries the following Sp(1)+ × Sp(1)− ×G-action:

Sp(1)+ × Sp(1)− ×Gy E,

((q+, q−, g), v) 7→ Iq+(q+)∗(q−)∗g∗v.

This is a well-defined action since the Sp(1)+-action on M is permuting and, therefore,
(q+)∗Iq+ = Iq+(q+)∗ commutes with the complex structures on TM .

Since TM is a bundle of Cl04 = Cl3-modules,

T̂M := Cl4 ⊗Cl3 E

is a natural bundle of Cl4-module constructed from TM . Furthermore, this Cl4-module
structure is SpinGε (4)-equivariant with the SpinGε (4)-action induced by the Sp(1)+ ×
Sp(1)− × G-action on E and Spin(4) ⊂ Cl4 y Cl4. Additionally, T̂M has a Z/2Z-
grading induced by Cl4 = Cl04 ⊕ Cl14 with even and odd parts

T̂M
0 = Cl04 ⊗Cl04 E

∼= TM, T̂M
1 = Cl14 ⊗Cl04 E,

where T̂M1 is again TM as a vector bundle and carries the following SpinGε (4)-action:

SpinGε (4) ∼= (Sp(1)+ × Sp(1)− ×G)/± 1 y T̂M
1
,

([(q+, q−, g)], v) 7→ Iq−Iq+(q+)∗(q−)∗g∗v.

In particular, we have a Clifford multiplication

c4 : R4 ⊗ T̂M → T̂M,

which interchanges the even part TM and the odd part T̂M1 of T̂M . Under the isomor-
phism End

(
T̂M

) ∼= End
(
TM ⊕ TM˜

)
, the Clifford multiplication on T̂M corresponds

to the map

e0 7→
(

0 − idTM
idTM 0

)
and e` 7→

(
0 c3(e`)

c3(e`) 0

)
for ` ∈ {1, 2, 3}.

In particular, c4(e0)−1c4(e`) = c3(e`) ∈ End (TM) = End
(
T̂M0

)
for ` ∈ {1, 2, 3}.

4.4.1 Remark. Also note that T̂M ∼= [(S+ ⊕ S−)⊗C E]r for some real structure r and
TM ∼= [S+⊗CE]r, T̂M

1 ∼= [S−⊗E]r. These isomorphisms have been used in [Pid04] and
[Hay06]. The Clifford multiplication is then induced by the usual Clifford multiplication
Cl4 : R4 ⊗ S± → S∓.
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4.4.2 Example. For the Spin(c)(m)-representation from Example 2.2.6, we recover the
usual Clifford multiplication on the (positive) spinor module. In all considered cases, the
Clifford multiplication is given by

H⊗H→ H,

h⊗ h′ 7→ hh′.

This can be interpreted as a homomorphism of Spin(m) or Spinc(m)-representations

R3 ⊗ S → S and R3 ⊗W → W for m = 3,
R4 ⊗ S+ → S− and R4 ⊗W+ → W− for m = 4,

where in the three-dimensional case, we take the restriction of the above homomorphism
to Im(H)⊗H.

4.4.3 Remark. Since the Clifford multiplication cm : Rm ⊗ TM → TM is given by
scalar multiplication, it is parallel with respect to the Levi-Civita connection on M ,
i.e. ∇M(cm) = 0. This can be written as KT (cm) = cm ◦ (id(Rm)∨ ⊗K), where K is the
connector of the Levi-Civita connection ∇M = ∇K (cf. [Cal10, Lem. 3.5.4]).

4.5 Dirac operator
We define the Dirac operator as the composition of the covariant derivative and Clifford
multiplication.

4.5.1 Definition (Dirac operator).
The (three-dimensional) Dirac operator DA for a connection A ∈ A3 is defined to be the
composition

C∞(Q3,M)SpinGε (3) dMA−−→ C∞(Q3, (R3)∨ ⊗ TM)SpinGε (3) c3−→ C∞(Q3, TM)SpinGε (3),

DAu := c3(dMA u).

The (four-dimensional) Dirac operator D+
A for a connection A ∈ A4 is defined to be the

composition

C∞(Q4,M)SpinGε (4) dMA−−→ C∞(Q4, (R4)∨ ⊗ TM)SpinGε (4) c4−→ C∞(Q4, T̂M
1)SpinGε (4),

D+
Au := c4(dMA u).

4.5.2 Note. The Dirac operators DA and D+
A are sections of (infinite-dimensional) vector

bundles over C∞(Qm,M)SpinGε (m), which are given by composition with the projection
TM →M .

4.5.1 The linearized Dirac operator
We will now linearize the Dirac operator in three dimensions. Let Qm → Z be a SpinGε (m)-
structure on a compact oriented Riemannian manifold Z of dimension m ∈ {3, 4}.
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4.5.3 Definition. Using the connector K : TTM → TM for the Levi-Civita connec-
tion on M , we define the linearized Dirac operator D lin,u

A in dimension 3 (at u ∈
C∞(Q3,M)SpinGε (3)) to be

D lin,u
A : C∞(Q3, TM)SpinGε (3)

u → C∞(Q3, TM)SpinGε (3)
u ,

v 7→ K ◦ TuDA(v),

and the linearized Dirac operator D lin,u,+
A in dimension 4 (at u ∈ C∞(Q4,M)SpinGε (4)) to

be

D lin,u,+
A : C∞(Q4, TM)SpinGε (4)

u → C∞(Q4, T̂M
1)SpinGε (4)
u ,

v 7→ K ◦ TuD+
A (v).

Also, with an eye to Proposition 4.5.10, we define

D lin,u,−
A : C∞(Q4, T̂M

1)SpinGε (4)
u → C∞(Q4, TM)SpinGε (4)

u ,

v 7→ c4 ◦ dT̂M
1

A,K (v).

We also denote

D lin,u,∗
A : C∞(Q3, TM)SpinGε (3) → C∞(Q3, TM)SpinGε (3)

D lin,u,∗
A w := D lin,u

A w − c3(T ϕ ⊗ w),

and

D lin,u,+,∗
A : C∞(Q4, T̂M

1)SpinGε (4) → C∞(Q4, TM)SpinGε (4),

D lin,u,+,∗
A w := D lin,u,−

A w − c4(T ϕ ⊗ w).

Here T ϕ ∈ Ω1(Z) ∼= C∞(Qm, (Rm)∨)SpinGε (m) denotes the torsion 1-form for the connection
ϕ on PSO(m) which A lifts, i.e. T ϕ(η) = − tr(ιηTϕ), where Tϕ ∈ Ω2(Z, TZ) is the torsion
of ϕ.

4.5.4 Remark. Note that if Z is compact, then the linearized Dirac operator D lin,u
A is

the covariant derivative ∇N DA at u ∈ N3, where ∇N is the metric compatible covariant
derivative corresponding to the connector KN in Remark 4.1.6.

4.5.5 Remark. Note that in the 4-dimensional case, K : T T̂M1
→ T̂M

1 is SpinGε (4)-
equivariant, since we are using the Levi-Civita connection, which is SpinGε (4)-invariant,
since SpinGε (4) acts isometrically.

4.5.6 Remark. Note that in the definition of D lin,u,−
A , we are using the Clifford multipli-

cation (R4)∨ ⊗ T̂M1
→ TM obtained by restricting the action of the Clifford algebra on

T̂M := Cl4 ⊗Cl04 E
∼= TM ⊕ T̂M

1.
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4.5.7 Remark. Note that from Remark 4.4.3, we immediately obtain

D lin,u,(+)
A (v) = K ◦ TuD (+)

A (v) = K ◦ T (cm)T (dMA )(v) = cm ◦ (id(R3)∨ ⊗K) ◦ T (dMA )(v)
= cm ◦ dTMA,K(v).

and therefore D lin,u
A = c3 ◦ dTMA,K and D lin,u,+

A = c4 ◦ dTMA,K are usual Dirac operators for the
connection ∇A,K on π!u

∗TM described in Remark 4.3.3.

In some cases, the generalized Dirac operator DA is determined by its linearization.

4.5.8 Corollary. Let χ̂ ∈ Γ (M,TM)SpinGε (m) be a SpinGε (m)-equivariant vector field
satisfying ∇M χ̂ = idΓ (M,TM), where ∇M is the Levi-Civita connection on M . Then

D lin,u
A (χ̂ ◦ u) = c3(dTMA,K(χ̂ ◦ u)) = c3(dMA u) = DA(u),

and
D lin,u,+
A (χ̂ ◦ u) = c4(dTMA,K(χ̂ ◦ u)) = c4(dMA u) = D+

A (u),

where u ∈ C∞(Qm,M)SpinGε (m) with m = 3 or m = 4, respectively.

4.5.9 Remark. The special case ρ2 ≡ 0 and χ̂ = χ0 was also discussed in [Sch10, Cor.
4.6.2], [Cal10, Lem. 3.6.9].

However, as we have seen in Remark 2.2.48, even if ρ2 6≡ 0, a vector field χ̂ with∇χ̂ = idTM ,
or equivalently, a hyperkähler potential, may still exist. Examples can be obtained by
modifying permuting actions with ρ2 ≡ 0.

The following Lemma reflects the fact that D lin,u,(+)
A is a usual Dirac operator acting

on sections in π!u
∗TM := u∗TM/SpinGε (3) (or π!u

∗T̂M). We also use π!h to denote
the function on Z which is induced by a SpinGε (3)-invariant function h on Qm. The
3-dimensional case with ϕ the Levi-Civita connection was also discussed in [Cal10, Lem.
3.6.8].

4.5.10 Proposition. Let Qm → PSO(m) → Z be a SpinGε (m)-structure on a compact
oriented Riemannian manifold Z of dimension m ∈ {3, 4}, with boundary ∂Z. Let
A ∈ Am be a connection lifting a metric connection ϕ with covariant derivative ∇ on
Z. Let T ∇(v) := − tr(ιvT∇) denote the torsion 1-form obtained from the torsion tensor
T∇ ∈ Ω2(Z, TZ), where we think of T ∇ ∈ C∞(Q, (Rm)∨)SpinGε (m). Then

1. for all v, w ∈ C∞(Q3, TM)SpinGε (3)
u :

〈D lin,u
A v, w〉L2 = 〈v,D lin,u

A w〉L2 +
∫
Y

div∇(Uv,w) ∗ 1

= 〈v,D lin,u,∗
A w〉L2 −

∫
∂Y
π!g

M(v, c3(f~n ⊗ w)) ∗ 1

where div∇ denotes the divergence with respect to the SO(3)-connection on PSO(3)
which A lifts and Uv,w ∈ Γ (Y, TY ) is defined by gY (Uv,w, Z) = −π!(gM (v, c3(fZ⊗w)))
for Z ∈ Γ (Y, TY ) and fZ : Q3 → R3 the corresponding SpinGε (3)-equivariant map.
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In particular, if Y is closed and A projects to the Levi-Civita connection on Y , or
more generally, if

∫
Y div∇(Uv,w) = 0 for all v, w ∈ C∞(Q3, TM)SpinGε (3)

u , then D lin,u
A

satisfies:
〈D lin,u

A v, w〉L2 = 〈v,D lin,u
A w〉L2 ,

2. For all v ∈ C∞(Q4, TM)SpinGε (4), w ∈ C∞(Q4, T̂M
1)SpinGε (4):

〈D lin,u,+
A v, w〉L2 = 〈v,D lin,u,−

A w〉L2 +
∫
X

div∇(Uv,w) ∗ 1

= 〈v,D lin,u,+,∗
A w〉L2 −

∫
∂X
π!g(v, c4(f~n ⊗ w)) ∗ 1

where div∇ denotes the divergence with respect to the SO(4)-connection ∇ on
PSO(4) to which A projects and Uv,w ∈ Γ (X,TX) is defined by gX(Uv,w, Z) =
−π!(gM(v, c4(fZ ⊗ w))) for Z ∈ Γ (X,TX) and fZ : Q4 → R4 the corresponding
SpinGε (4)-equivariant map.

In particular, if X is closed and A projects to the Levi-Civita connection on X,
or more generally, if

∫
X div∇(Uv,w) = 0 for all v ∈ C∞(Q4, TM)SpinGε (4), w ∈

C∞(Q4, T̂M
1)SpinGε (4), then:

〈D lin,u,+
A v, w〉L2 = 〈v,D lin,u,−

A w〉L2 .

4.5.11 Remark. Note that on the boundary ∂Y , the outward pointing normal vector field
~n defines a reduction of the frame bundle P∂Y = {f ∈ PSO(3)|∂Y | f(e1) = ~n} ⊂ PSO(3)|∂Y ,
and a reduction Q∂Y ⊂ Q3|∂Y . Note that on Q∂Y , we have

gM(v, c3(f~n ⊗ w)) = gM(v, c3(e1 ⊗ w)) = gM(I1v, w)

Similarly, we have a reduction Q∂X ⊂ Q4|∂X and on Q∂X :

gM(v, c4(f~n ⊗ w)) = gM(v, c4(e0 ⊗ w)) = gM(v, w)

Proof (of Proposition 4.5.10). Except for allowing torsion connections on PSO(m), the
proof resembles the usual proof that the Dirac operator is formally self-adjoint. A similar
proof for a Dirac operator obtained from a connection with non-vanishing torsion can be
found in [HH06, Thm. 4.5.3], where symplectic Dirac operators are studied.

Consider the covariant derivative ∇u∗TM on u∗TM → Q3, which is the pullback of
the Levi-Civita connection on M . For Z ∈ TQ3 and v ∈ C∞(Q3, TM)SpinGε (3)

u
∼=

Γ (Q3, u
∗TM)SpinGε (3) we obtain

∇u∗TM
Z v = KTv(Z).

Since the Levi-Civita connection is compatible with the metric on M , the pullback ∇u∗TM

is compatible with the pullback metric on u∗TM :

gM(∇u∗TMv, w) + gM(v,∇u∗TMw) = d(gM(v, w)) for all v, w ∈ C∞(Q3, TM)SpinGε (3)
u .



4.5. Dirac operator 83

Note that if we insert a horizontal lift X̃ ∈ TQ (with respect to A) of X ∈ TY , the right
hand side is

d(gM(v, w))(X̃) = dA(gM(v, w))(X̃) = dπ!(gM(v, w))(X),

where π!(gM(v, w)) ∈ C∞(Y,R) is induced by gM(v, w) : Q3 → R, and its exterior
derivative on Y is dπ!(gM(v, w)) ∈ Ω1(Y,R).

Fix a point p ∈ Q3, y := πY (p) and let X` := πSO(p)(e`) ∈ TyY for ` ∈ {1, 2, 3}.
Extend X` ∈ TyY to vector fields X` ∈ Γ (Y, TY ). Since TY is the associated bundle
TY = Q3 ×SpinGε (3) R

3, these correspond to SpinGε (3)-equivariant maps f` : Q3 → R3. In
particular, X` = πSO(p)(e`) implies that f`(p) = e`. With these choices, we obtain

gM(D lin,u
A (v)(p), w(p))

=
3∑
`=1

gM(c3(e` ⊗∇u∗TM
X̃`

v)(p), w(p))

=−
3∑
`=1

gM(∇u∗TM
X̃`

v(p), c3(e` ⊗ w)(p))

=−
3∑
`=1

gM(∇u∗TM
X̃`

v(p), c3(f`(p)⊗ w(p)))

=−
3∑
`=1

d(gM(v, c3(f` ⊗ w)))(X̃`|p) +
3∑
`=1

gM(v(p),∇u∗TM
X̃`

(c3(f` ⊗ w))(p)).

=−
3∑
`=1

d(gM(v, c3(f` ⊗ w)))(X̃`|p) +
3∑
`=1

gM(v(p), c3(∇A
X̃`

(f`)⊗ w)(p))

+ gM(v(p),D lin,u
A (w)(p)).

(4.3)

The first two summand on the right hand side of Equation 4.3 can be interpreted as a
divergence:

−
3∑
`=1

d(gM(v, c3(f` ⊗ w)))(X̃`) +
3∑
`=1

gM(v(p), c3(∇A
X̃`

(f`)⊗ w)(p))

= −
3∑
`=1

dπ!(gM(v, c3(f` ⊗ w)))(X`)−
3∑
`=1

gY (Uv,w,∇X`X`))

=
3∑
`=1

d(gY (Uv,w, X`))(X`)−
3∑
`=1

gY (Uv,w,∇X`X`))

=
3∑
`=1

gY (∇X`Uv,w, X`))

= div∇(Uv,w).

We obtain

gM(D lin,u
A (v)(p), w(p)) = gM(v(p),D lin,u

A (w)(p)) + div∇(Uv,w)(y).
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In particular, integrating over the compact manifold Y , we obtain

〈D lin,u
A v, w〉L2 = 〈v,D lin,u

A w〉L2 +
∫
Y

div∇(Uv,w) ∗ 1.

Recall that for any vector field V ∈ Γ (Y, TY ), the divergence div∇(V ) := tr(∇V ) and
the divergence with respect to the Levi-Civita connection ∇LC are related by 1

div∇(V ) = div∇LC (V ) + T ∇(V ).

Finally, we compute using Stokes’ theorem:∫
Y

div∇(Uv,w) ∗ 1 =
∫
Y

div∇LC (Uv,w) ∗ 1 +
∫
Y
T ∇(Uv,w)

=
∫
∂Y
gM(Uv,w,~n) ∗ 1 +

∫
Y
T ∇(Uv,w)

=−
∫
∂Y
π!g

M(v, c3(f~n ⊗ w))−
∫
Y
π!g

M(v, c3(T ∇ ⊗ w))

The proof also immediately carries over to the case of m = 4. �

4.5.2 Dirac operators on manifolds with boundary
Consider an oriented Riemannian 4-manifold X with boundary Y = ∂X with SpinGε (4)-
structure Q4 → X. Let i : Y = ∂X ↪→ X the inclusion and ~n ∈ Γ (∂X, i∗TX) be the
outward pointing normal vector field of unit length. We use the induced orientation on
∂X, i.e. an orthonormal frame {v1, v2, v3} in Ty∂X is positively oriented if {~n, v1, v2, v3} is
a positively oriented orthonormal frame in TyX. Note that PSO(3) := {(y, f) ∈ i∗PSO(4) |
f(e0) = ~n|y} is the bundle of oriented orthonormal frames on ∂X.

Define Q3 := {(y, p) ∈ i∗Q4 | πSO(4)(p)(e0) = ~n|y}

↪→ i∗Q4. This is a principal SpinGε (3)-

bundle over ∂X, where the action is induced by the inclusion SpinGε (3) ↪→ SpinGε (4). This
is a SpinGε (3)-structure on ∂X, the induced SpinGε (3)-structure on the boundary.

Given a spinor u : Q4 → M , its restriction u∂X := u|Q3 : Q3 → M is a spinor on ∂X.
Given a connection A ∈ A4 lifting a metric connection ϕ with covariant derivative ∇X ,
determines a connection A∂X = πspin(3)⊕g

∗A ∈ A3. Note, that the Clifford-multiplication
c4(e0) : TM → T̂M

1 is an isomorphism, which we will use to identify u∗∂XTM and
u∗∂X T̂M

1. Pushed down to sections of bundles over ∂X, this is the Clifford multiplication
with the normal vector field ~n.

Recall that the second fundamental form

N ∈Γ (∂X, T ∗∂X⊗T ∗∂X)∼=Γ (Q3, T
∗Q3⊗T ∗Q3)Spin

G
ε (3)

hor
∼=C∞(Q3, sp(1)∨⊗sp(1)∨)SpinGε (3)

1This follows from g((∇v1 −∇LC
v1

)v2, v3) = 1
2 (g(T∇(v3, v1), v2) + g(T∇(v3, v2), v1) + g(T∇(v1, v2), v3))

for any metric-compatible connection ∇, which can be derived using the Koszul formula for the Levi-Civita
connection, the metric compatibility of ∇ and T∇(v1, v2) := ∇v1v2 −∇v2v1 − [v1, v2].
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is defined by N(v, w) := g(~n,∇X
v w) and ∇∂X

v w := prT∂X ∇X
v w. For v ∈ T∂X, we can

extend N(v, ·)~n : T∂X → ~nR, to a skew-symmetric endomorphism TX|∂X → TX|∂X .
Lifting this to Q3, we obtain αso(4) ∈ Ω1(Q3, so(4))Spin

G
ε (3)

hor . Now, define α := ν−1
∗ αso(4) ∈

Ω1(Q3, spin(4))Spin
G
ε (3)

hor , where ν∗ : spin(4) → so(4) is the isomorphism induced by the
double cover Spin(4) → SO(4). Then ∗A = A∂X + α on ∂X. More explicitly, we
have αso(4)(v) = ∑3

`=1N(v, ẽ`)(e∨` ⊗ e0 − e∨0 ⊗ e`), where v ∈ TpQ3, where we interpret
N ∈ Γ (Q3, T

∗Q3⊗ T ∗Q3)Spin
G
ε (3)

hor and ẽ`|p = ˜πSO(3)(p)(e`) is any horizontal lift. Therefore,
α(v) = 1

2
∑3
`=1N(v, ẽ`)e`e0.

In the following, we will relate (D+
Au)|Q3 and DA∂X (u∂X), generalizing the results in

[KM07, Sec. 4.3–4.5]:

4.5.12 Lemma.
In the situation described above, we have

1. (dMA u)|Q3 = dMA∂Xu∂X + e∨0 ⊗ dMA u(e0) + α · u∂X ,

2. (D+
Au)|Q3 = c4(e0)

(
DA∂X (u∂X) + dMA u(ẽ0)− H

2 (χ0 + χ−0 )|u∂X
+ 1

2〈N0, (χ2 + χ−2 )|u∂X 〉+ 1
2〈g(~n, ∗T∇X ), (χAlt + χ−Alt)|u∂X 〉

)
,

where α ·u∂X := vSp(1)+
α+ |u∂X + vSp(1)−

α− |u∂X with α± the sp(1)±-components of α, H = tr(N)
is the mean curvature, N0 := prS2

0sp(1)∨ N is the traceless symmetric part of the second
fundamental form N , and χ−0 , χ−2 , χ−Alt are the vector fields defined in the same way as
χ0, χ2, χAlt, but using the Sp(1)−-action instead of the Sp(1)+-action.

Proof. The first part immediately follows from ∗A = A∂X + α. Applying the Clifford
multiplication c4, we obtain

(D+
Au)|Q3 = c4(dMA∂X (u∂X) + e0 ⊗ dMA u(e0) + α · u∂X)

= c4(e0)c3(dMA∂X (u∂X)) + c4(e0)dMA u(e0) + c4(α · u∂X)
= c4(e0)(DA∂X (u∂X) + dMA u(e0) + c3(α · u∂X)).

Since we allow metric connections with torsion, the second fundamental form is no longer
symmetric, but

N(v, w)−N(w, v) = g(~n,∇X
v w −∇X

w v) = g(~n,∇X
v w −∇X

w v − [v, w]) = g(~n, T∇X (v, w)).

Therefore, the skew-symmetric part is π∧2sp(1)∨N = 1
2g(~n, T∇X (v, w)).

Note that

c3
(
vSp(1)+

prsp(1)+ α|u∂X
)

=−
3∑

k=1
Ikv

Sp(1)+
prsp(1)+ α(ek)|u∂X = 1

2

3∑
k,`=1

N(ẽk, ẽ`)IkvSp(1)+
ζ`

|u∂X

=− H
2 χ0|u∂X + 1

2〈N0, χ2|u∂X 〉+ 1
2〈g(~n, ∗T∇X ), χAlt|u∂X 〉.

Similarly,

c3
(
vSp(1)−

prsp(1)− α
|u∂X

)
=− H

2 χ
−
0 |u∂X + 1

2〈N0, χ
−
2 |u∂X 〉+ 1

2〈g(~n, ∗T∇X ), χ−Alt|u∂X 〉. �
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4.5.13 Example. For M = H as in Example 2.1.7, and ∇X the Levi-Civita connection,
we have χ2 = 0, χ0 = −1

3tr(χ) = id: H→ H, I`vSp(1)
ζ`

= − idH and hence

α̂(u∂X) = c3(α · u∂X) = 1
2〈N,χ|u∂X 〉 = −H

2 u∂X ,

Where H = tr(N) is the mean curvature of ∂X.

4.6 Examples

4.6.1 Example (twisted Dirac operator). If Y is an oriented 3-dimensional Rieman-
nian Spin-manifold, G = Z/2Z × O(k) with ε = (−1, 1) and M = S ⊗ Rk, P → Y a
principal O(k)-bundle with connection a and A = a + π∗SO(3)ϕY ∈ A3, then we recover
the twisted Dirac operator for the bundle S ⊗ ξ, where ξ = P ×O(k) R

k:

DA : Γ (S ⊗ ξ) ∇
A

−−→ Γ (T ∗Y ⊗ S ⊗ ξ) c3⊗idξ−−−−→ Γ (S ⊗ ξ).

A similar construction can be done for m = 4, where we recover

D+
A : Γ (S+ ⊗ ξ) ∇

A

−−→ Γ (T ∗X ⊗ S+ ⊗ ξ) c4⊗idξ−−−−→ Γ (S− ⊗ ξ).

If G = S1×U(k) with ε = (−1,−1, 1) and M = W ⊗Ck, P → Y a principal U(k)-bundle
with connection a and A = a+ π∗SO(3)ϕY ∈ A3, then we recover the Spinc-Dirac operator
twisted with the hermitian bundle E = P ×U(k) C

k:

DA : Γ (W ⊗ E)→ Γ (W ⊗ E).

Similarly, in dimension 4, we recover the twisted Dirac operator

D+
A : Γ (W+ ⊗ E)→ Γ (W− ⊗ E).

4.6.2 Example (SO(m)-action). Let G be the trivial group and hence, SpinGε (m) =
SO(m). Consider the standard SO(3)-action on H = R⊕ Im(H), which we intepret as
a hyperkähler manifold (H, Li, Lj, Lk). Then there is a unique SpinGε (m)-structure on
a three or four dimensional oriented Riemannian manifold, which is just given by the
principal SO(m)-frame bundle Q = PSO(m) and the only element in A is the Levi-Civita
connection. Recall that the Dirac operator for ∧∗Rm ∼= Clm with the left action of the
Clifford algebra on itself is −(d+d∗) (cf. [LM89, Ch. II Thm. 5.12] and use our convention
for Clifford multiplication).

1. For m = 3, we have H = {0} ⊕H = Cl−3 ⊂ Cl3 = H⊕H.

C∞(Q,H)SpinGε (3) ∼= C∞(Q,Cl−3 )SpinGε (3).

Using the isomorphism ∧0R⊕∧1R3 ∼= Cl−3 , (f, α) 7→ 1−∗
2 f + 1+∗

2 α, we can interpret
the generalized Dirac operator as (f, α) 7→ (−d∗α,−df − ∗dα).
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2. For m = 4, we have H = Cl0,+4 = ∧0R4 ⊕ ∧2
+R

4 and

C∞(Q,H)SO(4) ∼= Ωev
+ (X).

A direct computation shows that the generalized Dirac operator is

−(d+ d∗)|Ωev+ (X) : Ωev
+ (X)→ Ωodd

− (X).

Using the isomorphisms Ω0(X) ⊕ Ω2
+(X) ∼= Ωev

+ (X), (C,B) 7→ C + ∗C + B and
Ω1(X) ∼= Ωodd

− (X), α 7→ α − ∗α, we can identify the generalized Dirac operator
with the map

Ω0(X)⊕Ω2
+(X)→ Ω1(X),

(C,B) 7→ dC + d∗B.

3. For m = 4, we also have H ∼= Cl1,+4
∼=
∧1R4, and the corresponding Dirac operator

Ω1(X)→ Ωev
− (X) ∼= Ω0(X)⊕Ω2

−(X),
α 7→ (d∗α, (dα)−).

The difference between two choices in dimension 4 is the rotating action: Once, the
rotating action factors through Spin(4)→ Sp(1)+ → SO(3) y ∧0R4 ⊕ ∧2

+R
4, while in

the other case, we have the full SO(4)-action on ∧1R4. These two choices will reappear
when we discuss examples of the generalized Seiberg–Witten equations (which uses these
Dirac operators). These will lead to the Vafa–Witten equations and the (stable) complex
anti-selfduality equations, respectively.

Similarly, we can take a non-trivial group G and takeM = H⊗g with the same permuting
SO(m)-action and the adjoint action of G on its Lie algebra g. The Dirac operators for a
connection A in a principal G-bundle are the same as above, with d and d∗ replaced by
dA and d∗A, respectively, and all forms taking values in the associated vector bundle for
the adjoint action.

4.6.3 Example (Fueter operator). Since we allow the fixed connection on Y 3 to have
torsion, we can use the flat connection induced by a trivialization (a frame) TY ∼= Y ×R3.
Note that such a frame always exists for a compact oriented 3-manifold. In the case of
a divergence free frame (as considered in [Sal13], for related theories also cf. [HNS09a],
[HNS09b]), the Dirac operator is symmetric ([Sal13]) and is also refered to as the Fueter
operator. More general Fueter operator (in dimensions 3 and 4, with non-trivial principal
bundles) have been studied more recently in [Wal15]. We now give a more detailed
description of how the Fueter operator on a 3-manifold with a frame can be understood
as a generalized Dirac operator:

Let Y be a compact, orientable 3-manifold. Recall that Y is parallelizable, i.e. we can
fix a trivialization TY ∼= R3 of the tangent bundle TY → Y , given by three nowhere
vanishing sections v1, v2, v3, which span TyY at each y ∈ Y . We also denote this frame by
v = (v1, v2, v3).
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Given a frame v on Y , we can define a Riemannian metric gv on Y by gv(v`, vk) = δ`,k.
The frame v is orthonormal in this metric and volvY := α1 ∧ α2 ∧ α3 ∈ Ω3(Y ) is a volume
form on Y and hence fixes an orientation, where α` := gv(v`,−).

The oriented orthonormal frame bundle PSO(3) → Y for this metric is the trivial bundle
Y × SO(3) → Y . Let Q := Y × SpinGε (3) → Y be the trivial SpinGε (3)-bundle. This
defines a SpinGε (3)-structure on Y .

First, note that the space of spinors is N3 = C∞(Y,M). Furthermore, we have two
connections from the previous constructions: Instead of using the Levi-Civita connection
for the metric gv, we chose the flat connection (with torsion) ∇flat = (v−1)∗∇R3 pulled
back from R3 to TY via the frame v. Note that by construction ∇flatgv = 0. However,
its torsion does not vanish in general:

T∇
flat(v`, vk) = v(d(v−1(vk))(v`))− v(d(v−1(v`))(vk))− [v`, vk] = −[v`, vk],

and therefore the torsion 1-form is T ∇flat(vk) = ∑
` g

v(v`, [vk, v`]).

The corresponding generalized Dirac operator is

DAu =
3∑
`=1

c3(v` ⊗ du(v`)) = −
3∑
`=1

I`du(v`) ∈ C∞(Y, TM)u

for a spinor u ∈ C∞(Y,M). Up to a sign, this is the Fueter-operator studied in [HNS09a],
[HNS09b], [Sal13].

In [Sal13], this operator is considered in the situation where another volume form volY
is fixed and v is a divergence-free positive frame with respect to this volume form, i.e.
Lv` volY = 0 and volY (v1, v2, v3) > 0. With h := volY (v1, v2, v3) ∈ C∞(Y,R>0), we have
volY = h volvY = volgY is the volume form associated to the metric g := h

2
3 gv.

Note that in particular, we have div∇LC,g(v`) = Lv`vol
g
Y = 0, where∇LC,g is the Levi-Civita

connection for the metric g = h
2
3 gv. Furthermore,

v`(h) = Lv`(h) = Lv`(vol
g
Y (v1, v2, v3)) = div∇LC,g(v`)h+

∑
k

gv([v`, vk], vk)h.

If Y is closed, we can varify that the linearized Dirac operator is formally self-adjoint:

Indeed, using

divvolY (U)volY = LU(hvolvY ) = hLUvolvY + U(h)volvY = h divvolvY (U)volvY + U(h)volvY
= (divvolvY (U) + U(ln(h)))volY
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for any vector fields U ∈ Γ (Y, TY ), we can compute for U = ∑
` f`v` with f` := gv(U, v`):

div∇flat(U) = div∇LC,g
v

(U) + T ∇flat(U) = div∇LC,g(U)− U(ln(h)) + T ∇flat(U)
= div∇LC,g(U)− h−1U(h) +

∑
`

f`T ∇
flat(v`)

= div∇LC,g(U)−
∑
`

h−1f`v`(h) +
∑
k,`

f`g
v(vk, [v`, vk])

= div∇LC,g(U)−
∑
`

f` div∇LC,g(v`)−
∑
k,`

f`g
v(vk, [v`, vk]) +

∑
k,`

f`g
v(vk, [v`, vk])

= div∇LC,g(U).

In particular,
∫
Y div∇flat(Uv,w)∗1 =

∫
Y div∇flat(Uv,w)∗1 = 0 and the formal self-adjointness

follows from Proposition 4.5.10.

4.6.4 Remark. Note that instead of using a trivial principal G-bundle, we could have
used a non-trivial principal G-bundle as well.





Chapter 5

The Seiberg–Witten equations

In this chapter, we expain the Seiberg–Witten equations associated to a hyperkähler
manifold M with permuting SpinGε (m)-action for m ∈ {3, 4} and give an overview over
various examples of these equations that have been studied in the literature.

For this purpose, we fix a compact Lie group G, an central element ε ∈ Z(M) satisfying
ε2 = 1, a SpinGε (3)-structure Q3 → PSO(3) ×Y PG/ε on a 3-dimensional compact oriented
Riemannian manifold Y and a SpinGε (4)-structure Q4 → PSO(4)×XPG/ε on a 4-dimensional
compact oriented Riemannian manifold X. To write the Seiberg–Witten equations, we
also fix an Ad-invariant scalar product 〈·, ·〉g on the Lie algebra g. We use this to identify
g ∼= g∨. Finally, let µ : M → g∨ ⊗ sp(1)∨ be the SpinGε (m)-equivariant hyperkähler
moment map for the G-action (constructed explicitly in [Pid04, Sec. 2.2.1], also see
Proposition 2.2.7). Another survey on these equations can be found in [Hay15a].

5.1 Seiberg–Witten equations
We have now collected all the necessary ingrediants to write the generalized Seiberg–Witten
equations in dimensions three and four.

5.1.1 Definition. For (u,A) ∈ C3 = N3 ×A3, consider the generalized Seiberg–Witten
equations in three dimensions, which were first studied in [Tau99]:

 DA(u) = 0
∗Fa + Φ3(u) = 0

where a is the g-component of A ∈ A3, the Hodge star operator ∗ : ∧2(R3)∨ → (R3)∨

induces ∗ : Ω2(Q3, g)Spin
G
ε (3)

hor → Ω1(Q3, g)Spin
G
ε (3)

hor and the moment map defines Φ3(u) ∈
Ω1(Q3, g)Spin

G
ε (3)

hor
∼= C∞(Q3, g⊗ (R3)∨)SpinGε (3) as the composition

Q3
u−→M

µ−→ g∨ ⊗ sp(1)∨ ∼= g⊗ (R3)∨.

91
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5.1.2 Definition. For (u,A) ∈ C4 = N4 ×A4, consider the generalized Seiberg–Witten
equations in four dimensions, which were first studied in [Pid04]: DA(u) = 0

F+
a + Φ4(u) = 0

where a is the g-component of A ∈ A4, F+
a ∈ Ω2

+(Q4, g)Spin
G
ε (3)

hor is the selfdual part of
the curvature Fa of a, and Φ4(u) ∈ Ω2

+(Q4, g)SpinGε (4) ∼= C∞(Q4, g ⊗ (∧2
+R

4)∨)SpinGε (4) is
defined as the composition

Q4
u−→M

µ−→ g∨ ⊗ sp(1)∨ ∼= g⊗
∧2

+(R4)∨.

In both cases, we obtain a moduli space M, i.e. the quotient of the space of solutions by
the action of the gauge group Gm.

5.1.3 Note. Note that the left hand side of the generalized Seiberg–Witten equations is
a section in an (infinite-dimensional) vector bundle over the configuration space. Details
on this point of view can be found in [Cal10, Ch. 4].

5.2 Examples
Here is a list of examples of the generalized Seiberg–Witten equations. By default, we use
the Levi-Civita connection as the fixed connection on the base manifold.

Anti-selfduality equation

• G Lie group, ε = 1,

• SpinGε (m) = SO(m)×G, SpinGε (m)-structure: principal G-bundle P → Z,

• M = {∗},

• Nm = {∗}, Am = A (P → Z),

• 3D equations: Fa = 0,M =Mflat(P ),

• 4D equations: F+
a = 0 (anti-selfduality equation),M =Masd(P ).

By allowing the hyperkähler manifold to be just one point M = {∗}, the equations
reduce to F+

a = 0 in four dimensions and the Fa = 0 in the three-dimensional case. The
solutions are the anti-selfdual connection in four dimensions and flat connections in three
dimensions. The moduli space of the anti-selfduality equations was used by Donaldson
to study smooth 4-dimensional topology (starting with [Don83]), which turned out to
be very fruitful and lead to the Donaldson polynomials, which are invariants of smooth
structures on 4-manifolds and later to Floer homology [Flo88] (also cf. [Don02]).
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Seiberg–Witten equations

• G = S1, ε = −1,

• SpinGε (m) = Spinc(m), SpinGε (m)-structure: Spinc(m)-structure,

• M = H as Spinc(3)-representation W or Spinc(4)-representation W+,

• N3 = Γ (Y,W), N4 = Γ (X,W+), Am = A (Pdet → Z),

• 3D equations: 3D Seiberg–Witten equations,

• 4D equations: 4D Seiberg–Witten equations.

Seiberg–Witten equations first appeared in [SW94]. Consider M = H as in Example 2.2.6,
G = S1 and ε = −1. In this case, a SpinS1

−1(m)-structure is the same as a Spinc(m)-
structure and the Dirac operator is the usual Spinc(m) Dirac operator.

Note that in the literature, the most common form of the Seiberg–Witten equations is
to apply Clifford multiplication to the second equation and, thus, get an equation for
skew-hermitian endomorphisms of the spinor bundle (cf. [KM07]). The second equation
then reads c3(Fa) = (u⊗ u∗)0 in dimension three and c4(F+

a ) = (u⊗ u∗)0 in dimension
four.

The Seiberg–Witten equations turned out to be a very useful tool in 4-dimensional smooth
topology and many results that had been proved using the anti-selfdualty equation and
Donaldson theory, were reproved in a simpler way using the Seiberg–Witten equations.
Floer homology groups have been defined in this case in [KM07].

Harmonic spinors

• G = Z/2Z, ε = −1,

• SpinGε (m) = Spin(m), SpinGε (m)-structure: Spin(m)-structure,

• M = H as Spin(3)-representation S or Spin(4)-representation S+,

• N3 = Γ (Y,S), N4 = Γ (X,S+), Am = {∗},

• 3D equations: DAu = 0,

• 4D equations: D+
Au = 0.

Choosing G = Z/2Z and the usual Spin(m)-representation H, solutions of the generalized
Seiberg–Witten equations are harmonic spinors. For X = R4 ∼= H, we recover the
equation studied by Fueter [Fue34]. For this reason, the generalized Dirac operator is
sometimes called Fueter operator.
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Fueter operator from a frame

• G = Z/2Z, ε = −1,

• 3-manifold Y with frame v : R3 ∼=→ TY , and the flat connection (with torsion)
∇flat = (v−1)∗∇R3 pulled back from R3 to TY via the frame v,

• trivial Spin(3)-structure induced by the frame,

• M hyperkähler manifold,

• N3 = C∞(Y,M),

• 3D equations: DAu = 0.

As we have seen in Example 4.6.3, this recovers the Fueter operator studied in [Sal13],
[HNS09a], [HNS09b] and the corresponding Hyperkähler Floer theory. Allowing non-
trivial bundles and different connections leads to the Fueter operators in dimensions 3
and 4 studied in [Wal15].

Vafa-Witten equations

• G compact Lie group, ε = 1,

• SpinGε (m) = SO(m)×G, SpinGε (m)-structure: principal G-bundle P → Z,

• M = H⊗g as SO(3)×G-representation, (∧0⊕∧1)⊗g or SO(4)×G-representation,
(∧0⊕∧2

+)⊗ g,

• N3 = Ω0(Y, gP )⊕Ω1(Y, gP ), N4 = Ω0(X, gP )⊕Ω2
+(X, gP ), Am = A (P → Z),

• 3D equations: 3D Vafa-Witten equations,

• 4D equations: 4D Vafa-Witten equations ([VW94]).

Consider a compact Lie group G with an Ad-invariant scalar product 〈·, ·〉g on its Lie
algebra g. LetM := H⊗g with the action of SpinG1 (m) = SO(m)×G given by the action
SO(m) y H and the adjoint action of G on its Lie algebra g. Then M has a natural
hyperkähler structure induced by the hyperkähler structure on H given in Example 2.1.7.
A SpinG1 (m)-structure Q on a manifold Z (m = dim(Z) ∈ {3, 4}) has a corresponding
principal G-bundle P → Z, whose isomorphism class determines the SpinG1 (m)-structure
uniquely. Using the Levi-Civita connection ϕ on PSO(m), we obtain A ∼= A (P → Z).

The moment map for the G-action on H⊗ g is well-known from the ADHM-construction
(which, however, has a different Sp(1)-action). Its components are

µ1(T ) = −[T0, T1]− [T2, T3],
µ2(T ) = −[T0, T2]− [T3, T1],
µ3(T ) = −[T0, T3]− [T1, T2],
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where T = T0 + iT1 + jT2 + kT3. The full moment map is given by µ(T ) = −[T0, T+]−
JT+, T+K ∈ sp(1) ⊗ g, where T+ = iT1 + jT2 + kT3 and J·, ·K the following bracket on
g ⊗ Im(H): Jh ⊗ X, h′ ⊗ X ′K := 1

4 [h, h′] ⊗ [X,X ′] ∈ Im(H) ⊗ g for X,X ′ ∈ g and
h, h′ ∈ Im(H).

1. (m = 4) Let X = Z be a Riemannian 4-manifold. Using the isomorphisms
C∞(Q,∧ev+ (R4)∨)SpinG1 (4) ∼= Ω0(X, gP ) ⊕ Ω2

+(X, gP ) and T̂M1 = ∧odd
− (R4)∨ ⊗ g we

obtain C∞(Q, ˆTM1)SpinG1 (4) = Ωodd
− (X, gP ) ∼= Ω1(X, gP ) from Example 4.6.2. Using

these identifications, the Dirac operator DA on a generalized spinor (C,B) ∈
Ω0(X, gP ) ⊕ Ω2

+(X, gP ) is dAC + d∗AB ∈ Ω1(X, gP ), where A ∈ A (P → X) ∼= A .
Thus the first equation is dAC + d∗AB = 0.

The (4-dimensional) generalized Seiberg–Witten equations thus give the Vafa-Witten
equations [VW94] for A ∈ A (P → X), B ∈ Ω2

+(X, gP ) and C ∈ Ω0(X, gP ) :

dAC + d∗AB = 0
F+
A − [C,B]− JB,BK = 0

2. (m = 3) Let Y = Z be a Riemannian 3-manifold. From Example 4.6.2 we know
that C∞(Q,H)SpinGε (3) ∼= Ω0(Y, gP )⊕Ω1(Y, gP ) and the generalized Dirac operator
is given by

DA : Ω0(Y, gP )⊕Ω1(Y, gP )→ Ω0(Y, gP )⊕Ω1(Y, gP ),
(C,B) 7→ (−d∗AB,−dAC − ∗dAB)

The (3-dimensional) generalized Seiberg–Witten equations thus give the following
equations for A ∈ A (P → Y ), B ∈ Ω1(Y, gP ) and C ∈ Ω0(Y, gP ) :

d∗AB = 0
dAC + ∗dAB = 0

∗FA − [C,B]− JB,BK = 0

Complex anti-selfduality equations for Gc

• G compact Lie group, ε = 1,

• SpinGε (4) = SO(4)×G, SpinGε (4)-structure: principal G-bundle P → Z,

• M = H⊗ g as SO(4)×G-representation ∧1⊗g,

• N4 = Ω1(X, gP ), Am = A (P → Z),

• 4D equations: (stable) complex anti-selfduality equations.
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Let B = a+ ib ∈ A (P c), with a ∈ A (P → Z) and b ∈ Ω1(X, gP ), where P c := P ×G Gc

with Gc the complexified Lie group. Then the generalized Seiberg–Witten equations can
be written as

d∗ab = 0
F+
B = 0.

The three-dimensional analogue of these equations agrees with the three-dimensional
Vafa–Witten equations.

These equations for Gc = SL2(C) have recently been studied by Taubes in [Tau13b],
[Tau13a], [Tau14], who proved a generalization of Uhlenbeck’s compactness theorem in
this case. The interpretation of these equations as generalized Seiberg–Witten equations
is also discussed in [Hay15a].

Pin−(2)-monopole equations

• G = Pin−(2) = S1 ∪ jS1 ⊂ Sp(1), ε = −1,

• SpinGε (m) = SpinPin
−(2)

ε (m),

• M = H as SpinPin
−(2)

−1 (m)-representation, where Pin−(2) ⊂ Sp(1) acts hyperkähler,

• 3D equations: Pin−(2)-monopole equations,

• 4D equations: Pin−(2)-monopole equations.

Nakamura ([Nak13]) uses the generalized Seiberg–Witten equations for G = Pin−(2) =
S1∪jS1 ⊂ Sp(1) andM = H with the Pin−(2)-action (g, h) 7→ hg−1 to study intersection
forms with local coefficients on 4-manifolds. The Pin−(2)-monopole equations are also
used by Manolescu ([Man16]) to disprove the Triangulation Conjecture in dimensions
≥ 5.

Linear actions G→ Sp(n) y Hn

Similar to G = S1 for the Seiberg–Witten equations, G = U(n) for the U(n)-monopole
equations, G = Pin(2) for the Pin(2)-monopole equations, we can also take other
subgroups G→ Sp(n) y Hn, with the moment map from Example 2.1.23.

Hyperkähler quotients

Another possibility is to consider a hyperkähler quotient of a manifold M with permuting
action by a Lie group H, and, if this admits a permuting action, study the generalized
Seiberg–Witten equations with values in this quotientM0. Using [Hay12, Thm. 4.6], which
was independently discovered by Pidstrygach, solutions to the generalized Seiberg–Witten
equations with values in the hyperkähler quotient correspond to solutions of a similar set
of equations for a connection and a spinor with values in M .
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Examples for M0 include the moduli space of of framed SU(n)-instantons of charge k on
R4 obtained using the ADHM construction or infinite-dimensional examples including
the moduli space of framed G-instantons on R4 obtained as a hyperkähler reduction of
the space of connection, as well as some moduli spaces of solutions to Nahm’s equations
(including the moduli space of Bogomolny monopoles).

Spin(7)-instantons and instanton-valued spinors

In [Hay12], Haydys proves that the generalized Seiberg–Witten equations in dimension 4
with values in a suitable space of connections A 0 on a principal bundle P → R4 (with
framing at infinity) are (up to a order zero term) the Spin(7)-instanton equations on
the total space of a spinor-bundle over the 4-manifold. These are also closely related to
harmonic spinors with values in the moduli space of framed instantons.

Relatives of the U(n)-monopole equations

• G = U(n),

• E → X a rk(E) = n hermitian vector bundle with corresponding principal U(n)-
bundle P → X,

• Spin
U(n)
−1 (m) = (Spin(m)× U(n))/± 1,

• M = S(+) ⊗C Cn, where Cn is the tautological representation of U(n),

• equations: U(n)-monopole equations.

Note that U(n)/(Z/nZ) = S1 × PU(n) and hence in particular, for n = 2, u(2) ∼=
iR⊕ so(3). Therefore, the second equation splits into an equation involving the curvature
of the determinant line bundle and an equation involving the PU(2) ∼= SO(3)-connection.

5.2.1 Remark. There are several (elliptic) systems of equations closely related to these:

1. It is possible to study the full generalized Seiberg–Witten equations for G = U(2),
even though the second equation splits. For example, these are discussed in [Zen12].

2. Pidstrygach and Tyurin [PT95] studied the case of a PU(2)-bundle ξ with fixed
lift to a U(2)-bundle E. Their equations are closely related to the U(2)-monopole
equations. These are: the first (Dirac equation), the projection of the second
equation to su(2) and the condition that the curvature of the determinant bundle is
a fixed 2-form ω ∈ Ω2(X, iR): Fadet = ω (ω in certain cohomology class, ω is related
to a perturbation).

3. In contrast, Teleman [Tel00] (also in previous collaborations with Ch. Okonek)
fixes the connection on the determinant line bundle and writes the projection of
the generalized Seiberg–Witten equations for G = U(2) to su(2), where he only
considers connections which induce the fixed connection on the determinant line
bundle.
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4. Feehan and Leness ([FL98], [FL01]) also fix a unitary connection on the square
root of the determinant line bundle of W+. These are generalized Seiberg–Witten
equations for G = SU(2).

These appear in the context of the SO(3)-monopole program ([PT95]). The idea for the
proof of the equivalence of the Donaldson polynomial and the Seiberg–Witten invariants
is the look at the fixed points of the S1-action on the moduli space of PU(2)-monopoles.
These are the PU(2)-instantons and U(1)-monopoles (for a rank 1 subbundle of S+ ⊗E).
Quotienting the moduli space of PU(2)-monopoles, one obtains a cobordism between a
projective bundle over the moduli spaces of PU(2)-instantons and projective bundles over
the moduli spaces of U(1)-monopoles.



Chapter 6

Lichnerowicz–Weitzenböck formulae

In this chapter we present 3-dimensional versions of the 4-dimensional Lichnerowicz–
Weitzenböck formulae in [Sch10] and [Pid04]. Note that our conventions differ in some
minor details from the conventions in [Sch10](the symplectic forms and the moment
map differ by a sign) and also from those used in [Pid04](in particular we use the other
Clifford module structure on TM , cf. [Cal10][Note 3.5.2, Section 2.3.2]). A Lichnerowicz–
Weitzenböck formula for 3-dimensional generalized Dirac operator first appeared in
[Tau99].

Before proving the Lichnerowicz–Weitzenböck formulae, we first study the different Dirac
Laplacians appearing in the Lichnerowicz–Weitzenböck formulae, and how they are related
to each other (Proposition 6.1.3).

6.1 The covariant derivative, it’s adjoint and the
Laplacian

Let M be an oriented Riemannian manifold. Recall that for a vector field v ∈ Γ (M,TM)
and sections s, s′ ∈ Γ (M,E) of a Riemannian vector bundle E → M with metric
compatible connection ∇, we have the following standard computation:

〈∇s, v ⊗ s′〉 = 〈∇vs, s
′〉 = −〈s,∇vs

′〉+ d(〈s, s′〉)(v)
=− 〈s,∇vs

′〉+ div∇M (〈s, s′〉v)− 〈s, s′〉 div∇M (v)
=− 〈s,∇vs

′〉 − 〈s, div∇M (v)s′〉+ 〈s, T ∇M (v)s′〉+ div∇LC (〈s, s′〉v)
=− 〈s, tr(∇(v ⊗ s′))〉+ 〈s, T ∇M (v)s′〉+ div∇LC (〈s, s′〉v).

If s, s′ are compactly supported, integration yields

〈∇s, v ⊗ s′〉L2 = −〈s, tr(∇(v ⊗ s′))〉L2 + 〈s, T ∇M (v)s′〉L2 +
∫
∂M
〈s, 〈~n, v〉s′〉.

Therefore, one usually denotes

∇∗α := − tr(∇T ∗M⊗Eα) + 〈T ∇M , α〉

99
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for any α ∈ Ω1(M,E), where tr : T ∗M ⊗ T ∗M → R is induced by the metric. If M is
closed, then ∇∗ : Ω1(M,E)→ Γ (M,E) is the formal L2-adjoint of ∇.

The previous discussion and Remark 4.3.3 justify the following generalization: Let M be
a Riemannian manifold and E →M a H-equivariant vector bundle with H-equivariant
connector KE. Let Q→ Z be principal H-bundle which is a reduction of the bundle of
oriented orthonormal frames PSO(m) → Z. Furthermore, let ϕ be a connection on PSO(m)
with torsion Tϕ and torsion 1-form T ϕ(v) := − tr(ιvTϕ), interpreted as an equivariant
map T ϕ ∈ C∞(Q, (Rm)∨)H . Denote N = C∞(Q,M)H .

6.1.1 Definition. Let u ∈ N , v ∈ C∞(Q, (Rm)∨ ⊗ E)H , A ∈ A lifing a connection ϕ.
We define

dE,∗A,K : C∞(Q, (Rm)∨ ⊗ E)H → C∞(Q,E)H ,
α 7→ dE,∗A,Kα := 〈α, T ϕ〉 − tr(d(Rm)∨⊗E

A,K α),
and, in the case E = TM , and K the connector of the Levi-Civita connection, the
Laplacian is

∆M
A,K : C∞(Q,M)H → C∞(Q, TM)H

u 7→ dTM,∗
A,K dMA u = 〈dAu, T ϕ〉 − tr(d(Rm)∨⊗TM

A,K (dMA u)),
where tr : (Rm)∨ ⊗ (Rm)∨ ∼= (Rm)∨ ⊗Rm → R is induced by the standard metric on Rm.

6.1.2 Remark. Note that
dE,∗A,K : C∞(Q, (Rm)∨ ⊗ E)Hu → C∞(Q,E)Hu ,

and, if E = TM
∆M
A,K : C∞(Q,M)H → C∞(Q, TM)H

is a section of the infinite-dimensional vector bundle πM : C∞(Q, TM)H → C∞(Q,M)H ,
i.e. ∆M

A,Ku ∈ C∞(Q, TM)Hu .

The following statement shows that this generalization is reasonably behaved, in particular,
how the linearization of the Laplacian is related to the Laplacian of the linearized covariant
derivative.

6.1.3 Proposition. ∆M,lin
A,K :=∇N(∆M

A,K) = K◦T (∆M
A,K) :C∞(Q, TM)H→C∞(Q, TM)H

is given by
∆M,lin
A,K v = dTM,∗

A,K dTMA,Kv − trhor(u∗ιvFK),
where u = πM ◦ v and trhor(u∗ιvFK) := ∑

` F
K(v, Tu(ẽ`))Tu(ẽ`) for an orthonormal basis

{ẽ`} of horizontal vector fields on Q.

Proof. Since dTM,∗
A,K v = 〈v, T ϕ〉−tr(dRm⊗TMA,K v) and Td(Rm)∨⊗TM

A,K = (id(Rm)∨⊗(Rm)∨ ⊗((TK)◦
κTM)) ◦ dTTMA , we obtain

T (dTM,∗
A,K )fα = 〈fα, T ϕ〉 − tr(TdRm⊗TMA,K fα)

= 〈fα, T ϕ〉 − tr((id(Rm)∨⊗(Rm)∨ ⊗((TK) ◦ κTM)) ◦ d(Rm)∨⊗TTM
A fα)

= 〈fα, T ϕ〉 − (TK) ◦ κTM ◦ tr(d(Rm)∨⊗TTM
A fα).
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for all fα ∈ C∞(Q, (Rm)∨ ⊗ TTM)H , and therefore

K ◦ (TdTM,∗
A,K )fα = K〈fα, T ϕ〉 − K ◦ (TK) ◦ κTM ◦ tr(d(Rm)∨⊗TTM

A fα).

Using this and T (dMA ) = (id(Rm)∨ ⊗κM) ◦ dTMA , we have

∆M,lin
A,K (v) = K ◦ T∆A,Kv = K ◦ T (dTM,∗

A,K dMA )(v) = K ◦ T (dTM,∗
A,K ) ◦ T (dMA )(v)

= 〈(id(Rm)∨ ⊗(K ◦ κM)) ◦ dTMA v, T ϕ〉

− K ◦ (TK) ◦ κTM ◦ tr(d(Rm)∨⊗TTM
A ((id(Rm)∨ ⊗κM) ◦ dTMA v))

= 〈dTMA,Kv, T ϕ〉 − K ◦ (TK) ◦ κTM ◦ T (κM) ◦ tr(d(Rm)∨⊗TTM
A (dTMA v)).

Furthermore, we know that

d
(R3)∨⊗TM,∗
A,K dTMA,Kv

= 〈dTMA,Kv, T ϕ〉 − tr(d(Rm)∨⊗TM
A,K dTMA,Kv)

= 〈dTMA,Kv, T ϕ〉 − tr((id(Rm)∨ ⊗K) ◦ d(Rm)∨⊗TM
A ((id(Rm)∨ ⊗K) ◦ dTMA v))

= 〈dTMA,Kv, T ϕ〉 − tr((id(Rm)∨ ⊗(K ◦ T (K))) ◦ d(Rm)∨⊗TTM
A (dTMA v))

= 〈dTMA,Kv, T ϕ〉 − K ◦ (TK) ◦ tr(d(Rm)∨⊗TTM
A (dTMA v))

for all v ∈ C∞(Q, TM)H .

Note that given three tangent vectors v1, v2, v3 ∈ TxM , we can extend them to (locally)
commuting vector field V1, V2, V3 ∈ Γ (M,TM) with V1|x = v1, V2|x = v2, V3|x = v3.
Then consider c(s, t, u) := ΦV3

s Φ
V2
t Φ

V1
u (x), where ΦV3

s , Φ
V2
t , Φ

V1
u are the flows of V1, V2, V3,

respectively. Then

TκMT
2V3(TV2(V1|x)) = TκM

d
du
TV3(V2|ΦV1

t (x))|u=0 = TκM
d
du

d
dt
V3|ΦV2

u (ΦV1
t (x))|t=0|u=0

= TκM
d
du

d
dt

d
ds
c(s, t, u)|s=0|t=0|u=0 = d

du
κM

d
dt

d
ds
c(s, t, u)|s=0|t=0|u=0

= d
du

d
ds

d
dt
c(s, t, u)|t=0|s=0|u=0 = d

du
d
ds
dΦV3

s

(
V2|ΦV1

s (x)

)
|s=0|u=0

= d
du

d
ds

(
V2|ΦV3

s (ΦV1
s (x))

)
|s=0|u=0 = d

du
TV2

(
V3|ΦV1

s (x)

)
|u=0

= T 2V2(TV3(V1|x)).

Using the formula for the curvature from [KMS93, Thm. 37.15], we have for vector fields
V1, V2, V3 ∈ Γ (M,TM):

FK(V3|x, V1|x)V2|x = (K ◦ (TK) ◦ κTM −K ◦ (TK))T 2V2 ◦ TV3(V1|x)
= (K ◦ (TK) ◦ κTM −K ◦ (TK))TκMT 2V3(TV2(V1|x))
= (K ◦ (TK) ◦ κTM ◦ TκM −K ◦ (TK))T 2V3(TV2(V1|x)).

The same argument as in the second part of [KMS93, Thm. 37.15], namely computing in
a local trivialization of the bundle, shows that this identity can be extended to sections of
the pullback bundle:

(K ◦ (TK) ◦ κTM −K ◦ (TK)) ◦ T (κM) ◦ T 2v(T ẽ`(ẽ`|p)) = FK(v, Tu(ẽ`))Tu(ẽ`).
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Therefore

(K ◦ (TK) ◦ κTM ◦ T (κM)−K ◦ (TK)) ◦ tr(d(Rm)∨⊗TTM
A (dTMA v))(p)

= (K ◦ (TK) ◦ κTM −K ◦ (TK)) ◦ T (κM) ◦ tr(d(Rm)∨⊗TTM
A (dTMA v))(p)

= (K ◦ (TK) ◦ κTM −K ◦ (TK)) ◦ T (κM) ◦ T 2v(T ẽ`(ẽ`|p))
= FK(v, Tu(ẽ`))Tu(ẽ`)(p)
= trhor(u∗ιvFK)(p).

Finally, combining these formulae, we obtain

∆M,lin
A,K (v) = 〈dTMA,Kv, T ϕ〉 − K ◦ (TK) ◦ κTM ◦ T (κM) ◦ tr(d(Rm)∨⊗TTM

A (dTMA v))

= d
(R3)∨⊗TM,∗
A,K dTMA,Kv

− (K ◦ (TK) ◦ κTM ◦ T (κM)−K ◦ (TK)) ◦ tr(d(Rm)∨⊗TTM
A (dTMA v))

= d
(R3)∨⊗TM,∗
A,K dTMA,Kv − trhor(u∗ιvFK). �

6.1.4 Remark. If Z is an interval, Q→ Z is the trivial bundle and H acts trivially on
M , then ∆M

A,Ku = 0 if and only if u is a geodesic. Furthermore, ∆M,lin
A,K v = 0 if and only if

v : Z → TM is a Jacobi vector field along u : Z →M . If Z = S1 = R/Z, then the same
holds and additionally, u is a periodic geodesic.

More generally, if H acts trivially on M and A lifts the Levi-Civita connection, then
∆M
A,Ku = 0 if and only if u : Z → M is harmonic. Harmonic maps have been studied

intensively in the literature, see for instance [EL95], [Xin96] for introductions to the
subject. The following Corollary is of cause well-known in this situation.

Therefore, the general case above is a equivariant generalization of harmonic maps, and a
solution of ∆M

A,Ku = 0 can equivalently be understood as harmonic sections in a (nonlinear)
fibre bundle.

We are of cause mostly iterested in the case m ∈ {3, 4}, H = SpinGε (m), M a hyperkähler
manifold with permuting SpinGε (m)-action. In this case, the Lichnerowicz–Weitzenböck
formula (Theorem 6.2.1, Theorem 6.7.1) compares the Laplacian ∆M

A,K to the Dirac
Laplacian.

6.1.5 Corollary. Assume Z closed and consider the energy E(u) := 1
2
∫
Z ‖dMA u‖2. Then

dE(v) =
∫
Z
〈∆M

A,Ku, v〉,

and hence grad(E)(u) = ∆M
A,Ku, and the Hessian of E is

Hess(E)(v, w) =
∫
Z
〈dTM,∗
A,K dTMA,Kv, w〉 −

∫
Z
〈trhor(u∗ιvFK), w〉

This generalizes well-known results in the non-equivariant case (cf. [Xin96, Section 1.4.3],
[EL95, Section 3.8]).
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Proof. Using the L2-metric on C∞(Q,M)H and its Levi-Civita connection ∇ (as in
Remark 4.1.6), we can compute

dE(v) = ∇v(E) = 1
2∇v(g(dMA u, dMA u)) = g(∇v(dMA ), dMA u))

= g(dTMA,Kv, dMA u) = g(v, dTM,∗
A,K dMA u) = g(v,∆M

A,Ku)

and
∇v(grad(E)) = ∇v(∆M

A,K) = dTM,∗
A,K dTMA,Kv +

∑
`

FK(v, Tu(ẽ`))Tu(ẽ`).
�

6.2 Lichnerowicz–Weitzenböck formulae and
curvature identities

Consider a hyperkähler manifold M with a permuting action of SpinGε (3) and let
K : TTM → TM be the connector of the Levi-Civita connection.

Fix a SpinGε (3)-structure Q3 → Y over a oriented Riemannian 3-manifold Y . Let
A ∈ A3 be a connection 1-form on Q which lifts a metric connection ϕ ∈ A (PSO(3)), i.e.
prsp(1)A = ν−1π∗SO(3)ϕ, where ν : sp(1)→ so(3) is the isomorphism of Lie algebras induced
by the 2-fold covering Sp(1) ∼= Spin(3)→ SO(3). We denote the g-component of A by a.
Finally, let θY denote the canonical 1-form θY ∈ Ω1(Q,R3)SpinGε (3).

Using this notation, we have the following:

6.2.1 Theorem (Lichnerowicz–Weitzenböck formulae).
Let u ∈ C∞(Q3,M)SpinGε (3) a spinor, v ∈ C∞(Q3, TM)SpinGε (3) satisfying πM ◦ v = u and
A ∈ A . Then

1. Lichnerowicz–Weitzenböck formula for generalized Dirac operator:

D lin,u,∗
A DAu = ∆M

A,Ku+ sY
4 χ0|u + 1

2〈χ2|u, Ric0〉+ 〈Y|u, ∗Fa〉
− 〈dMA u, T ϕ〉+ c3(〈∗Tϕ, dMA u〉)− c3(T ϕ ⊗DAu).

2. Lichnerowicz–Weitzenböck formula for linearized Dirac operator:

D lin,u,∗
A D lin,u

A v = dTM,∗
A,K dTMA,Kv + sY

4 ∇
K
v (χ0)|u + 1

2〈∇
K
v (χ2)|u, Ric0〉

+ 〈∇Kv (Y)|u, ∗Fa〉)− c3(∗ι2horu∗FKv)
− 〈dTMA,Kv, T ϕ〉+ c3(〈dTMA,Kv, ∗Tϕ〉)− c3(T ϕ ⊗D lin,u

A v).

3. Norms and L2-Lichnerowicz–Weitzenböck formula:

‖DAu‖2 = ‖dMA u‖2 − 2〈Φ3(u), ∗Fa〉+ sY
2 ρ0 ◦ u+ 〈ρ2 ◦ u,Ric0〉

+ 2 ∗ d〈θY ∧ (u∗γ)hor〉 − 2 ∗ 〈Tϕ ∧ (u∗γ)hor〉,
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and, if u ∈ C∞(Q,M)SpinGε (3) has compact support

‖DAu‖2
L2 = ‖dMA u‖2

L2 − 2〈Φ3(u), ∗Fa〉L2 +
∫
Y

sY
2 ρ0 ◦ u+

∫
Y
〈ρ2 ◦ u,Ric0〉

+ 2
∫
∂Y
〈θY ∧ (u∗γ)hor〉 − 2

∫
Y
〈Tϕ ∧ (u∗γ)hor〉.

Here ι2hor : Ω2(Q,End (TM))Spin
G
ε (3)

hor
∼−→ C∞(Q,∧2(R3)∨ ⊗ End (TM))SpinGε (3) and ∗

denotes the 3-dimensional Hodge star operator ∗ : ∧2(R3)∨ → (R3)∨.

The proof, which will be given below, is similar to the one in the 4-dimensional case (cf.
[Sch10, Thm. 4.7.1, Thm. 4.7.2] and [Pid04, Thm. 5.4]). A Lichnerowicz–Weitzenböck
formula for a generalized Dirac operator in dimension 3 first appeared in [Tau99]. Note
that we allow the metric connection ϕ on PSO(3) to have torsion.

We start by reminding the reader of the curvature formulae ([Sch10, Lem. 2.4.1 and Lem.
2.4.2]1).

6.2.2 Lemma (curvature formulae). Let P → Y a principal H-bundle, V1, V2 ∈
Γ (P, TP ), v ∈ C∞(P, TM)H with u := πM ◦ v ∈ C∞(P,M)H

[∇A,K
V1 ,∇A,K

V2 ]v −∇A,K
[V1,V2]v = FK(dAu ◦ V1, dAu ◦ V2)v −K(vHFA(V1,V2)|v),

∇A,K
V1 ∇

A
V2u−∇

A,K
V2 ∇

A
V1u−∇

A
[V1,V2]u = ΘK(∇A

V1u,∇
A
V2u)− vHFA(V1,V2)|u.

Here, ∇A
V u := Tu(prHA

(V )) and ∇A,K
V v := K(Tv(prHA

(V ))).

We will now return to our principal SpinGε (3)-bundle Q → Y with connection A ∈ A3,
and let M a hyperkähler manifold with permuting SpinGε (3)-action and connector K
corresponding to the Levi-Civita connection. In particular, the torsion ΘK vanishes.

Note that 〈dMA u(p), V 〉 = Tu( ˜πSO(p)(V )) = ∇A
Ṽ
u(p), where V ∈ Rm, πSO : Q → PSO(m)

is the projection and Ṽp := ˜πSO(p)(v) ∈ TpQ is the horizontal lift of πSO(p)(v) ∈ Tπ(p)Y .
Similarly, ∇A,K

Ṽ
v = 〈dTMA,Kv, V 〉.

Let now Rϕ be the curvature of the metric connection ϕ on TY → Y . Slightly abus-
ing notation, we will use Rϕ for the 2-form in Ω2(Q, so(3))SpinGε (3) as well as for the
corresponding equivariant map in C∞(Q,∧2(R3)∨ ⊗ so(3))SpinGε (3), implicitly using the
isomorphism ι2hor : Ω2(Q, so(3))Spin

G
ε (3)

hor → C∞(Q,∧2(R3)∨ ⊗ so(3))SpinGε (3). We proceed
similarly with FA and Fa.

The following lemma shows how ν−1 ∗Rϕ ∈ C∞(Q, (R3)∨ ⊗ sp(1))SpinGε (3) can be decom-
posed into scalar curvature and traceless Ricci curvature.

6.2.3 Lemma.

prR ν−1 ∗Rϕ = − sY
4

1
3

3∑
`=1

ζ` ⊗ ζ` and prS2
0sp(1) ν

−1 ∗Rϕ = 1
2Ric0

1Note that [Sch10] uses a different sign convention for the fundamental vector fields.
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In particular,
〈χ, ν−1 ∗Rϕ〉 = sY

4 χ0 + 1
2〈χ2, Ric0〉,

where we use the isomorphism sp(1) ∼= R3, ζ` 7→ e`.

Even though it is clear from representation theory which components appear, the co-
efficients are crucial and we therefore do the computation explicitly in terms of the
components of the curvature tensor.

Proof. We first compute prR ν−1∗Rϕ: Let Rϕ = ∑
k<`
i<j

Rϕ
ijk`ei∧ej⊗Ek,`, where Ek,` ∈ so(3)

maps ek 7→ e`, e` 7→ −ek and the third basis vector to zero. Then

ν−1 ∗Rϕ = 1
2(Rϕ

1212e3 ⊗ ζ3 −Rϕ
1213e3 ⊗ ζ2 +Rϕ

1223e3 ⊗ ζ1

−Rϕ
1312e2 ⊗ ζ3 +Rϕ

1313e2 ⊗ ζ2 −Rϕ
1323e2 ⊗ ζ1

+Rϕ
2312e1 ⊗ ζ3 −Rϕ

2313e1 ⊗ ζ2 +Rϕ
2323e1 ⊗ ζ1).

Applying prR yields

prR ν−1 ∗Rϕ = 1
6(Rϕ

1212 +Rϕ
1313 +Rϕ

2323)
( 3∑
`=1

ζ` ⊗ ζ`
)

= − sY
4

1
3

3∑
`=1

ζ` ⊗ ζ`.

In particular,

〈χ, prR ν−1 ∗Rϕ〉 = − sY
4 〈χ,

1
3

3∑
`=1

ζ` ⊗ ζ`〉 = sY
4 χ0.

Note that ν−1 ∗Rϕ is symmetric, and hence ν−1 ∗Rϕ = prR ν−1 ∗Rϕ + prS2
0sp(1) ν

−1 ∗Rϕ.
In particular, prS2

0sp(1) ν
−1 ∗Rϕ = ν−1 ∗Rϕ − prR ν−1 ∗Rϕ. Therefore,

prS2
0sp(1) ν

−1 ∗Rϕ

= 1
2((2

3R
ϕ
1212 − 1

3R
ϕ
1313 − 1

3R
ϕ
2323)ζ3 ⊗ ζ3 + (2

3R
ϕ
1313 − 1

3R
ϕ
1212 − 1

3R
ϕ
2323)ζ2 ⊗ ζ2

+ (2
3R

ϕ
2323 − 1

3R
ϕ
1212 − 1

3R
ϕ
1313)ζ1 ⊗ ζ1 −Rϕ

1213ζ3 ⊗ ζ2 −Rϕ
1312ζ2 ⊗ ζ3 +Rϕ

1223ζ3 ⊗ ζ1

+Rϕ
2312ζ1 ⊗ ζ3 −Rϕ

2313ζ1 ⊗ ζ2 −Rϕ
1323ζ2 ⊗ ζ1).

On the other hand, the Ricci curvature is

Ric =
3∑

i,j=1

3∑
`=1

Rϕ
i``jζi ⊗ ζj

=Rϕ
1221ζ1 ⊗ ζ1+Rϕ

1331ζ1 ⊗ ζ1+Rϕ
2112ζ2 ⊗ ζ2+Rϕ

2332ζ2 ⊗ ζ2+Rϕ
3113ζ3 ⊗ ζ3+Rϕ

3223ζ3 ⊗ ζ3

+Rϕ
1332ζ1 ⊗ ζ2+Rϕ

2331ζ2 ⊗ ζ1+Rϕ
1223ζ1 ⊗ ζ3+Rϕ

3221ζ3 ⊗ ζ1+Rϕ
2113ζ2 ⊗ ζ3+Rϕ

3112ζ3 ⊗ ζ2,

and therefore, the traceless part of the Ricci cuvature is

Ric0 = Ric− sY
3

3∑
`=1

ζ` ⊗ ζ`

= (1
3R

ϕ
1221 + 1

3R
ϕ
1331 − 2

3R
ϕ
2332)ζ1 ⊗ ζ1 + (1

3R
ϕ
1221 + 1

3R
ϕ
2332 − 2

3R
ϕ
1331)ζ2 ⊗ ζ2

+ (1
3R

ϕ
1331 + 1

3R
ϕ
2332 − 2

3R
ϕ
1221)ζ3 ⊗ ζ3 +Rϕ

1332ζ1 ⊗ ζ2 +Rϕ
2331ζ2 ⊗ ζ1 +Rϕ

1223ζ1 ⊗ ζ3

+Rϕ
3221ζ3 ⊗ ζ1 +Rϕ

2113ζ2 ⊗ ζ3 +Rϕ
3112ζ3 ⊗ ζ2

= 2 prS2
0sp(1) ν

−1 ∗Rϕ.
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Combining all these, we finally obtain

〈χ, ν−1 ∗Rϕ〉 = 〈χ, prR ν−1 ∗Rϕ〉+ 〈χ, prS2
0sp(1) ν

−1 ∗Rϕ〉 = sY
4 χ0 + 1

2〈χ,Ric0〉
= sY

4 χ0 + 1
2〈χ2, Ric0〉. �

6.3 Lichnerowicz–Weitzenböck formula
We will now use the curvature identities above to prove the Lichnerowicz–Weitzenböck
formula

D lin,u,∗
A DAu = ∆M

A,Ku+ sY
4 χ0|u + 1

2〈χ2|u, Ric0〉+ 〈Y|u, ∗Fa〉
− 〈dMA u, T ϕ〉+ c3(〈∗Tϕ, dMA u〉)− c3(T ϕ ⊗DAu).

Proof (Theorem 6.2.1, part 1). First note that ν−1 maps the matrix Eij ∈ so(3) to 1
2eiej ∈

spin(3) ⊂ Cl3. Here Eij ∈ so(3) sends ei 7→ ej, ej 7→ −ei and the third basis vector the
standard basis (e1, e2, e3) of R3 is send to zero. We obtain FA = prspin(3) FA + prg FA =
ν−1π∗SOR

ϕ + Fa. Moreover

ν−1π∗SOR
ϕ(ẽk, ẽ`) = ν−1Rϕ

k` =
∑
i<j

ν−1Rϕ
ijk`Eij = 1

2

∑
i<j

Rϕ
ijk`eiej,

where Rϕ = ∑
k<`R

ϕ
k`ek ∧ el with R

ϕ
k` ∈ C∞(PSO, so(3)), Rϕ

k` = ∑
i<j R

ϕ
ijk`Eij.

Fix a point p ∈ Q3, y := πY (p) and let X` := πSO(p)(e`) ∈ TyY for ` ∈ {1, 2, 3}.
Extend X` ∈ TyY to a local oriented orthonormal frame field given by the vector fields
X` ∈ Γ (Y, TY ). Since TY is the associated bundle TY = Q3×SpinGε (3)R

3, these correspond
to SpinGε (3)-equivariant maps f` : Q3 → R3. In particular, X` = πSO(p)(e`) implies that
f`(p) = e`. More generally, for a vector field X ∈ Γ (Y, TY ), denote the corresponding
equivariant map by fX ∈ C∞(Q3,R

3)SpinGε (3). With this notation at hand we can compute

D lin,u
A DAu(p) =

3∑
k=1

3∑
`=1

c3(ek)∇A,K
X̃k

(c3(f̃`)∇A
X̃`
u)(p)

=
3∑

k=1

3∑
`=1

(
c3(ek)c3(e`)∇A,K

X̃k
∇A
X̃`
u+ c3(ek)c3(f∇AXkX`)∇

A
X̃`
u
)

(p)

=
3∑

k=1

3∑
`=1

(
c3(ek)c3(e`)∇A,K

X̃k
∇A
X̃`
u− c3(ek)c3(e`)∇A

∇̃AXkX`
u

)
(p)

=− tr(d(R3)∨⊗TM
A,K (dMA u))(p)

+
∑

1≤k≤`≤3
c3(ek)c3(e`)

(
∇A,K
X̃k
∇A
X̃`
u−∇A,K

X̃`
∇A
X̃k
u−∇A

∇̃AXkX`−∇̃
A
X`
Xk
u

)
(p)

= ∆M
A,Ku(p)− 〈∇Au, T ∇〉 −

∑
1≤k≤`≤3

c3(ek)c3(e`)
(
v
SpinGε (3)
FA(Xk,X`)+∇

A
Tϕ(Xk,X`)u

)
(p),



6.4. Lichnerowicz–Weitzenböck formula for the linearized Dirac operator 107

where we used 〈∇A
Xk
X`, Xm〉(p) = −〈X`,∇A

Xk
Xm〉(p) and the second curvature identity

in Lemma 6.2.2. The third summand can be reinterpreted as follows:

−
∑

1≤k<`≤3
c3(ek)c3(E`)vSpin

G
ε (m)

FA(Xk,X`)|u(p) = −
3∑
`=1

I`v
SpinGε (m)
∗FA(X`) = −

3∑
`=1

I`v
Sp(1)
ν−1∗Rϕ(X`) −

3∑
`=1

I`v
G
∗Fa(X`)

= 〈χ|u(p), ν
−1 ∗Rϕ|p〉+ 〈Y , ∗Fa|u(p)〉.

= sY (πY (p))
4 χ0|u(p) + 1

2〈χ2|u(p), Ric0|p〉+ 〈Y|u(p), ∗Fa|u(p)〉,

where we used Lemma 6.2.3. Finally, the contribution of the torsion is

−
∑

1≤k≤`≤3
c3(ek)c3(e`)∇A

Tϕ(Xk,X`)u(p) = c3(∇A
∗Tϕu)(p). �

6.4 Lichnerowicz–Weitzenböck formula for the
linearized Dirac operator

We will now prove the Lichnerowicz–Weitzenböck formula for the linearized Dirac operator:

D lin,u,∗
A D lin,u

A v = dTM,∗
A,K dTMA,Kv + sY

4 ∇
K
v (χ0)|u + 1

2〈∇
K
v (χ2)|u, Ric0〉+ 〈∇Kv (Y)|u, ∗Fa〉)

− c3(∗ι2horu∗FKv)− 〈dTMA,Kv, T ϕ〉+ c3(〈dTMA,Kv, ∗Tϕ〉)− c3(T ϕ ⊗D lin,u
A v).

Proof (Theorem 6.2.1, part 2). We use the same notation as in the proof of the first part
of Theorem 6.2.1. From the first curvature identity in Lemma 6.2.2 we obtain

D lin,u
A D lin,u

A v(p) =
3∑

k=1

3∑
`=1

c3(ek)∇A,K
X̃k

(c3(f`)∇A,K
X̃`

v)(p)

=
3∑

k=1

3∑
`=1

(
c3(ek)c3(e`)∇A,K

X̃k
∇A,K
X̃`

v − c3(ek)c3(e`)∇A,K
∇̃AXkX`

v

)
(p)

=− tr
(
dR

3⊗TM
A,K (dTMA,Kv)

)
(p)

+
∑

1≤k≤`≤3
c3(ek)c3(e`)

(
∇A,K
X̃k
∇A,K
X̃`

v −∇A,K
X̃`
∇A,K
X̃k

v −∇A

∇̃AXkX`−∇̃
A
X`
Xk
v

)
(p)

= dTM,∗
A,K dTMA,Kv(p)− 〈dTMA,Kv, T ϕ〉(p)

+
∑

1≤k≤`≤3
c3(ek)c3(e`)

(
FK(∇A

X̃k
u,∇A

X̃`
u)v−K(vGFA(Xk,X`)|v)−∇

A,K
Tϕ(Xk,X`)v

)
(p).

We first compute ∑
k<`

c(ek)c(e`)FK(Tu(X̃k), Tu(X̃`))v(p)

=
3∑
`=1

I`(∗FK)(Tu(X̃`))v(p) =
3∑
`=1

I`(∗u∗FK)(X̃`)v(p)

=− c3(∗ι2horu∗FKv(p)).
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For the other curvature term we use KvSpin
G
ε (3)

ξ |v(p) = (∇Kv(p)v
SpinGε (3)
ξ )|u(p):

−
∑
k<`

c(ek)c(e`)KvSpin
G
ε (3)

FA(X̃k,X̃`)
|v(p) =−

3∑
`=1

I`KvSpin
G
ε (3)

∗FA(X̃`)
|v(p) = −

3∑
`=1

I`∇Kv(p)

(
v
SpinGε (3)
∗FA(X̃`)

)
|u(p)

=−
3∑
`=1
∇Kv(p)

(
I`v

SpinGε (3)
∗FA(X̃`)

)
|u(p)

= ∇Kv(p)(〈χ, ν−1 ∗Rϕ|p〉+ 〈Y , ∗Fa|p〉)|u(p)

= ∇Kv(p)(〈
sY (πY (p))

4 χ0 + 1
2〈χ2, Ric0|p〉+ 〈Y , ∗Fa〉)|u(p)

= sY (πY (p))
4 ∇Kv(p)(χ0)|u(p) + 1

2〈∇
K
v(p)(χ2)|u(p), Ric0|p〉

+ 〈∇Kv(p)(Y)|u(p), ∗Fa|u(p)〉.

Finally, the contribution of the torsion is

−
∑
k≤`

c3(ek)c3(e`)∇A,K
Tϕ(X̃k,X̃`)

v(p) = c3(∇A,K
∗Tϕv)(p). �

6.5 L2-Lichnerowicz–Weitzenböck formula
We will now prove the final Lichnerowicz–Weitzenböck formula, which compares the norms
of the Dirac operator and the covariant derivative:

‖DAu‖2 =‖dMA u‖2 − 2〈Φ3(u), ∗Fa〉+ sY
2 ρ0 ◦ u+ 〈ρ2 ◦ u,Ric0〉

+ 2 ∗ d〈θY ∧ (u∗γ)hor〉 − 2 ∗ 〈Tϕ ∧ (u∗γ)hor〉.

The 4-dimensional version of this formula can be found in [Pid04]. Our approach is similar
to the proof in [Pid04], however avoids using the frame bundle of the hyperkähler manifold
M .

Proof (Theorem 6.2.1, part 3). First consider the H-valued form hM = gM + iω1 + jω2 +
kω3 ∈ H⊗ Γ (M,T ∗M ⊗ T ∗M). Let x, x′ ∈ R3 ∼= Im(H) and v, v′ ∈ TxM and note that
hM is H-linear in the following sense:

hM(Ixv, v′) = xhM(v, w) and hM(v, Ix′v′) = hM(v, w)x̄′.

The induced metric on R3 ⊗ TM is

〈x⊗ v, x′ ⊗ v′〉R3⊗TM = Re(x′∗x)gM(v, v′) = Re(x′∗x) Re(hM(v, v′)).

Furthermore,

gM(c3(x⊗ v), c3(x′ ⊗ v)) = Re(hM(Ix̄v, Ix̄′v′)) = Re(x̄hM(v, v′)x′) = Re(x′x̄hM(v, v′))
= Re(x′x̄) Re(hM(v, v′)) + Re(Im(x′x̄) Im(hM(v, v′)))
= 〈x⊗ v, x′ ⊗ v′〉R3⊗TM − 〈Im(x′x̄), ω(v, v′)〉.
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Therefore,

gM(DAu,DAu) = 〈dMA u, dMA u〉R3⊗TM −
3∑

k,`=1
〈Im(ζ`ζ̄k), ω(Tu(ẽk), Tu(ẽ`))〉

= 〈dMA u, dMA u〉R3⊗TM − 2
∑
k<`

〈ζkζ`, u∗ω(ẽk, ẽ`)〉

= 〈dMA u, dMA u〉R3⊗TM − 2 ∗ 〈θY ∧ (u∗ω)hor〉,

where θY is the canonical 1-form θY ∈ Ω1(Q3,R
3)SpinGε (3) and (u∗ω)hor denotes the

composition of the horizontal projection for A and u∗ω. Since ω = dγ and (u∗ω)hor =
(du∗γ)hor = dA(u∗γ)hor + u∗γ(vSpin

G
ε (3)

FA
) (cf. [Pid04, Lem. 5.3]), we have

2〈θY ∧ (u∗ω)hor〉 =− 2d〈θY ∧ (u∗γ)hor〉+ 2〈dAθY ∧ (u∗γ)hor〉+ 2〈θY ∧ u∗γ(vSpin
G
ε (3)

FA
)〉.

Since u : Q→M is SpinGε (3)-equivariant and ιspinGε (3)γ = µ− ρ, we obtain

u∗γ(vSpin
G
ε (3)

FA
) = 〈u∗ιspinGε (3)γ, FA〉 = 〈u∗(µ− ρ), FA〉,

and hence

〈θY ∧ (u∗ω)hor〉
=− d〈θY ∧ (u∗γ)hor〉+ 〈Tϕ ∧ (u∗γ)hor〉+ 〈θY ∧ u∗µ(Fa)〉 − 〈θY ∧ u∗ρ(Fϕ)〉
=− d〈θY ∧ (u∗γ)hor〉+ 〈Tϕ ∧ (u∗γ)hor〉+ 〈µ ◦ u, ∗Fa〉 ∗ 1− 〈ρ ◦ u, ν−1 ∗Rϕ〉 ∗ 1
=− d〈θY ∧ (u∗γ)hor〉+ 〈Tϕ ∧ (u∗γ)hor〉+ (〈Φ3(u), ∗Fa〉 − sY

4 ρ0 ◦ u− 1
2〈ρ2 ◦ u,Ric0〉) ∗ 1.

In particular,

‖DAu‖2 = ‖dMA u‖2 + 2 ∗ d〈θY ∧ (u∗γ)hor〉 − 2 ∗ 〈Tϕ ∧ (u∗γ)hor〉
− 2〈Φ3(u), ∗Fa〉+ sY

2 ρ0 ◦ u+ 〈ρ2 ◦ u,Ric0〉.

If u ∈ C∞(Q,M)SpinGε (3) has compact support, we can integrate over Y and obtain

‖DAu‖2
L2 = ‖dMA u‖2

L2 − 2〈Φ3(u), ∗Fa〉L2 +
∫
Y

sY
2 ρ0 ◦ u+

∫
Y
〈ρ2 ◦ u,Ric0〉

+ 2
∫
∂Y
〈θY ∧ (u∗γ)hor〉 − 2

∫
Y
〈Tϕ ∧ (u∗γ)hor〉. �

6.6 Seiberg–Witten functional
It follows immediately from the Lichnerowicz–Weitzenböck formula that, on a compact
oriented Riemannian 3-manifold Y , the solutions of the Seiberg–Witten equations are the
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zeros of the functional

LSW (u,A) := ‖ ∗ Fa + Φ3(u)‖2
L2 + ‖DAu‖2

L2

= ‖Fa‖2
L2 + 2〈∗Fa, Φ3(u)〉L2 + ‖Φ3(u)‖2

L2 + ‖dMA u‖2
L2

+ 1
2〈sY , ρ0 ◦ u〉L2 + 〈Ric0, ρ2 ◦ u〉L2 − 2〈Φ3(u), ∗Fa〉L2

− 2〈T∇ ∧ (u∗γ)hor〉L2 + 2
∫
∂Y
〈θY ∧ (u∗γ)hor〉

= ‖Fa‖2
L2 + ‖Φ3(u)‖2

L2 + ‖dMA u‖2
L2 + 1

2〈sY , ρ0 ◦ u〉L2 + 〈Ric0, ρ2 ◦ u〉L2

− 2〈T∇ ∧ (u∗γ)hor〉L2 + 2
∫
∂Y
〈θY ∧ (u∗γ)hor〉.

In particular, if χ2 = 0, sY ≥ 0, T∇ = 0 and ∂Y = ∅, then LSW ≥ 0 and a solution
satisfies Fa = 0, dAu = 0, and either ρ0 ◦ u = 0 or sY = 0.

6.7 Lichnerowicz–Weitzenböck formulae in
dimension 4

The 4-dimensional version of Theorem 6.2.1, reads

6.7.1 Theorem ([Sch10, Thm. 4.7.1, Thm. 4.7.2], [Pid04, Thm. 5.4]).
Let Q4 → X be a SpinGε (4)-structure on an oriented Riemannian 4-manifold X, u ∈
C∞(Q4,M)SpinGε (4) a spinor, v ∈ C∞(Q4, TM)SpinGε (4) satisfying πM ◦ v = u and A ∈ A4
lifting ϕ. Let η` = (e0 ∧ e`)+ ∈

∧2
+R

4 Then

1. Lichnerowicz–Weitzenböck formula for the generalized Dirac operator:

D lin,u,+,∗
A D+

Au = ∆M
A,Ku− 〈dMA u, T ϕ〉+ sX

4 χ0|u + 1
2〈χ2|u, R++

X,0〉+ 〈Y|u, 1
2R

+−
X + F+

a 〉
+ c4(〈Tϕ,+, dMA u〉)− c4(T ϕ ⊗DAu).

2. Lichnerowicz–Weitzenböck formula for linearized Dirac operator:

D lin,u,+,∗
A D lin,u,+

A v = dTM,∗
A,K dTMA,Kv + sX

4 ∇
K
v (χ0)|u + 1

2〈∇
K
v (χ2)|u, R++

X,0〉

+ 〈∇Kv (Y)|u, 1
2R

+−
X + F+

a 〉+ 2
3∑
`=1

I`〈(u∗FK)hor, η`〉v

− 〈dTMA,Kv, T ϕ〉+ c4(〈dTMA,Kv, Tϕ,+〉)− c4(T ϕ ⊗D lin,u
A v)

3. Norms and L2-Lichnerowicz–Weitzenböck formula:

‖D+
Au‖2 = ‖dMA u‖2 + sX

2 ρ0 ◦ u+ 〈R++
X,0, ρ2 ◦ u〉 − 〈R+−

X,0, µ
Sp(1)−◦u〉 − 2〈Φ4(u), F+

a 〉
− ∗d〈(u∗γ)hor ∧ (θX ∧ θX)+〉+ 〈(u∗γ)hor ∧ (Tϕ ∧ θX − θX ∧ Tϕ)+〉
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In particular, if u ∈ C∞(Q4,M)SpinGε (4) has compact support, we can integrate over
X and obtain

‖D+
Au‖2

L2 = ‖dMA u‖2
L2 − 2〈Φ4(u), F+

a 〉L2

+
∫
X

sX
2 ρ0 ◦ u+

∫
X
〈R++

X,0, ρ2 ◦ u〉 −
∫
X
〈R+−

X , µSp(1)− ◦ u〉

−
∫
∂X
〈(u∗γ)hor ∧ (θX ∧ θX)+〉+

∫
X
〈(u∗γ)hor ∧ (Tϕ ∧ θX − θX ∧ Tϕ)+〉.

Here, R++
X,0 is the positive Weyl curvature and R+−

X ∈ C∞(Q4,
∧2

+(R4)∨ ⊗ ∧2
−R

4)SpinGε (4)

is component of the Riemannian curvature tensor R ∈ C∞(Q4,
∧2(R4)∨ ⊗ ∧2R4)SpinGε (4)

of ϕ. Note that R+−
X can be identified with the traceless part of the Ricci curvature.

6.7.2 Remark. The proofs for these formulae in the case when ϕ is the Levi-Civita
connection and Sp(1)− acts trivially, can be found in [Sch10, Thm. 4.7.1, Thm. 4.7.2],
[Pid04, Thm. 5.4]. The proof in the case of non-vanishing torsion is similar to 3-dimensional
case. In the case of a non-trivial Sp(1)−-action, the fundamental vector field for the
Sp(1)−-action appears in addition to the fundamental vector field for the Sp(1)+-action
and leads to the additional terms containing R+−

X .

6.7.3 Remark. If M admits a SpinGε (4)-invariant vector field χ̂ which satisfies ∇Kχ̂ =
idTM , then a L2-Weitzenböck formula also follows from the first part of Proposition 4.5.10,
Theorem 6.7.1 and Lemma 4.5.12:

‖D+
Au‖2

L2 = 〈χ̂u,D lin,u,+,∗
A D+

Au〉L2 −
∫
∂X
π!g(χ̂u, c4(f~n ⊗D+

Au))

= 〈χ̂u, ∆M
A,Ku− 〈dMA u, T ϕ〉+ sX

4 χ0|u + 1
2〈χ2|u, R++

X,0〉+ 〈Y|u, 1
2R

+−
X + F+

a 〉〉L2

+ 〈χ̂u, c4(〈Tϕ,+, dMA u〉)− c4(T ϕ ⊗D+
Au)〉L2 −

∫
∂X
π!g(χ̂u, c4(f~n ⊗D+

Au))

= ‖dMA u‖2
L2 − 〈χ̂u, 〈dMA u, T ϕ〉+ sX

4 χ0|u + 1
2〈χ2|u, R++

X,0〉+ 〈Y|u, 1
2R

+−
X + F+

a 〉〉L2

+ 〈χ̂u, c4(〈Tϕ,+, dMA u〉)− c4(T ϕ ⊗D+
Au)〉L2 −

∫
∂X
π!g(χ̂u, c4(f~n ⊗D+

Au))

−
∫
∂X
π!g(χ̂u∂X , dMA u(f~n))

= ‖dMA u‖2
L2 − 〈χ̂u, 〈dMA u, T ϕ〉+ sX

4 χ0|u + 1
2〈χ2|u, R++

X,0〉+ 〈Y|u, 1
2R

+−
X + F+

a 〉〉L2

+ 〈χ̂u, c4(〈Tϕ,+, dMA u〉)− c4(T ϕ ⊗D+
Au)〉〉L2 +

∫
∂X
π!g(χ̂u∂X ,DA∂Xu∂X))

−
∫
∂X
π!g(χ̂u∂X , H2 (χ0 + χ−0 )|u∂X )

+
∫
∂X
π!g(χ̂u∂X , 1

2〈N0, (χ2 + χ−2 )|u∂X 〉+ 1
2〈g(~n, ∗Tϕ), (χAlt + χ−Alt)|u∂X 〉),

where we use the same notation as in Lemma 4.5.12. If we restrict ourselves to the case
where ρ2 = 0 and χ̂ = χ0, the chosen connection on PSO(4) is the Levi-Civita connection,
and Sp(1)− acts trivially on M , then this reads

‖D+
Au‖2

L2 = ‖dMA u‖2
L2 + 〈χ0|u, sX4 χ0|u〉L2 − 2〈Φ4(u), F+

a 〉L2

+
∫
∂X
π!g(χ0|u∂X ,DA∂Xu∂X))−

∫
∂X
π!g(χ0|u∂X , H2 χ0|u∂X )
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In particular, we have the topological energy and the analytic energy defined as follows

E top(u,A) := −1
2‖〈Fa ∧ Fa〉g‖

2
L2 −

∫
∂X
〈χ0|u,DA∂X (u∂X)〉+ 1

2

∫
∂X
〈χ0|u∂X , Hχ0|u∂X 〉,

Ean(u,A) := 1
2‖Fa‖

2
L2 + ‖dMA u‖2 + 〈χ0|u, sX4 χ0|u〉L2 + ‖Φ4(u)‖2

L2 .

Since in this situation

Ean(u,A) = E top(u,A) + ‖D+
Au‖2

L2 + ‖F+
a + Φ4(u)‖2

L2 ,

solutions of the generalized Seiberg–Witten equations have a well-defined energy. This
geralizes the case of the Seiberg–Witten equations (cf. [KM07, Section 4]).

Note that in this situation, there is also a Chern–Simons–Dirac functional ([Cal10]), which
is closely related to the topological energy.

However, also other situations (for example nontrivial torsion), it can be interesting to
study the corresponding energies. Examples are the Fueter operator constructed from a
divergence-free frame ([Sal13]) and the Vafa–Witten equations (where ρ2 6≡ 0).

In the general case, it is however unknown ho the boundary terms are related to the Dirac
operator on the boundary.



Chapter 7

Conclusion

We have seen how the differential forms which naturally appear on a hyperkähler manifold
with permuting SpinGε (m)-action can be interpreted in terms of the Cartan model for
equivariant cohomology. The cocycles constructed from these then give rise to homotopy
moment maps. More generally, we provided a natural construction of a homotopy moment
map for each cocycle in the Cartan model for equivariant cohomology, generalizing the
construction of Atiyah and Bott ([AB84]).

One of the applications of moment maps in symplectic geometry is the symplectic
reduction. While it is still unknown what a general multisymplectic reduction is, there
are examples for which one can perform such a reduction ([CFRZ15]). Also in the
cases of tri-hamiltonian action on hyperkähler manifolds and hamiltonian actions on
quaternionic Kähler manifolds, a “reduction” can easily be constructed, which recovers the
notion of hyperkähler/quaternionic Kähler quotients. However, in all these examples, the
components of the moment maps are either determined by f1, or many of the components
vanish. Examples are tri-hamiltonian actions for G = S1, where only f1 is non-zero and,
on the other hand, permuting action on Swann bundles, or more generally the reductions
constructed by Madsen and Swann [MS12], [MS13], where only the highest component
fn is used to construct the quotient. It is therefore unknown how a reduction should be
constructed in the general case.

Hyperkähler manifolds with permuting SpinGε (m)-action are also a crucial ingredient
for the generalized Seiberg–Witten equations, where such a manifold takes the role of
the spinor representation in Seiberg–Witten theory. Starting with the anti-selfduality
equations and Donaldson theory, later Seiberg–Witten theory, the generalized Seiberg–
Witten equations for various target manifolds had a great impact on low-dimensional
geometry and topology. More recently, other examples turned out to be closely related
to gauge theories in dimensions 5, 6, 7 and 8 ([Hay12], [Hay15b], [DS11]). A uniform
treatment of all these cases would be desirable, as well as, ultimately, a Floer theory for
generalized Seiberg–Witten theory. While the Lichnerowicz–Weitzenböck formulae in
dimension three provide another step in this direction, this goal is currently beyond reach,
as the properties of the moduli spaces (in particular compactness or compactifications) are
not yet understood well enough. However, the progress made in the case of complex anti-
selfduality equations ([Tau13b], [Tau13a], [Tau14]) as well in the case of Seiberg–Witten
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equations with n spinors ([HW15]) and also in the case of Fueter sections ([Wal15]),
might ultimately lead to a better understanding of the moduli spaces for generalized
Seiberg–Witten equations constructed from a larger class of hyperkähler manifolds. The
bubbling phenomenon in codimension 2, which can be seen in these cases, is analytically
involved and not yet completely understood. However, there is hope that this leads to a
suitable compactification of the moduli spaces.
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