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Introduction

Supersonic expansions are well-established today as a tool to isolate
monomers and small clusters of molecules and study their intra- and in-
termolecular interactions.11–33 In combination with vibrational spectroscopy,
it is possible to detect characteristic changes in the potential energy hyper-
surfaces that are induced by the formation of non-covalent contacts. For the
ubiquitous X–H· · ·Y hydrogen bond (where X and Y are N, O, ... atoms), the
distinct spectroscopic “red shift” induced in the donor X–H hydride stretch-
ing frequency constitutes the most sensitive and widely-used probe for this
sort of interaction. The importance of this effect is mirrored by the fact that
it has been included in the most recent 2011 IUPAC definition of the hy-
drogen bond itself,44,55 and empirical relationships have been proposed to cor-
relate the observable red shift and intensity modulation with the strength
of the hydrogen bond.66–88 However, the underlying structural motifs of the
molecular aggregates are typically encoded rather indirectly in their vibra-
tional spectra, and one usually has to compare the observations to quantum
chemical calculations in the hope of matching a specific spectroscopic re-
sponse among a set of proposed conformers. However, the chosen vibrational
signals may be too insensitive to discriminate between structural variations,
and more sophisticated experimental methods may be called for in order to
establish conformational selectivity.

One fundamental problem that arises on the theoretical side is the accu-
racy of the available quantum chemical models, which generally correlates
steeply with the computational cost. This is further aggravated for accurate
vibrational treatments by the need to sample large portions of the nuclear
potential energy hypersurface, which in turn necessitates a large number of
sufficiently high-level electronic structure calculations.99 As a compromise,
one can either cut down on the accuracy of the vibrational part, the electronic
part, or both. Despite a growing number of facilitating approximations being
introduced to quantum chemical methods, even medium-sized systems are
to this day most often treated by falling back to the harmonic vibrational
model and cheaper semi-empirical electronic structure methods. Even for
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INTRODUCTION

small systems, highly accurate anharmonic calculations are far from being
routine. Of course, diminishing the accuracy of the calculations necessarily
opens a gap to the experiment, and the predictions may soon fall short of the
quantitative or even qualitative demands for spectroscopic interpretations
and assignments.

Given the often intertwined constraints imposed by computational de-
mand and spectroscopic complexity, experimental benchmarks of anhar-
monic predictions must rely on the study of small and relatively simple
systems. One such candidate is the methanol molecule as the smallest sat-
urated alcohol with a single spectrally isolated OH stretching mode. Its
monomer and homodimer have been investigated experimentally to great
detail,1010–1313 but gas-phase information on anharmonicity in the latter has
only recently been obtained.1414 The prototype character of the methanol
molecule brings it into focus also for the present work, which will revisit it
for high-level harmonic calculations1515 and further anharmonic treatments
in a vibrational subspace.1616 In addition to the gas-phase experiments, a
number of matrix spectra sheds light on some important vibrational dynam-
ics in this system.1717 As a weaker sibling to this moderately strong interac-
tion, the first-ever experimental investigation of the hydrogen bond between
methanol and ethene will be presented and likewise characterized computa-
tionally.1616

Using these two prototypical OH· · ·O and OH· · ·π hydrogen bonds as
bracketing cases, an investigation on the complex between methanol and
anisole has allowed for a definite structural assignment of the observed
bands. In addition, the analysis of harmonic and anharmonic effects is ex-
tended in the last section of this work to the dimers of ethanol and tert-butyl
alcohol, and some general conclusions will be drawn from the assembled
data.
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Chapter 1

Experimental and Theoretical
Methods

In this section, a short overview of the theoretical background on vibrational
anharmonicity shall be provided, followed by a description of the experimen-
tal and theoretical methods employed throughout this work. Specifically, the
use of supersonic expansions for the study of intermolecular interactions is
reviewed, and its specific application in the “filet” jet apparatus outlined. In
addition, a short description of the matrix-FTIR setup used for some of the
methanol dimer results is included. On the theoretical side, the concepts
behind local and explicit correlation are introduced, together with a short
treatment of anharmonic vibrational calculations.

1.1 Vibrational Anharmonicity
In the harmonic approximation, the vibrational modes of a polyatomic sys-
tem are described by quadratic potential functions which are completely de-
coupled from one another. The resulting term energies of each normal mode
thus depend linearly on a single vibrational quantum number. The simplest
picture beyond this approximation includes linear two-mode or quadratic
one-mode contributions; based on second-order perturbational theory in up
to quartic vibrational potentials,1818,1919 the term energies in a system of N
normal modes take the form

G(v1,v2, ...,vN)=
N∑
i
ωi

(
vi + 1

2

)
+

N,N∑
i≤ j

xi, j

(
vi + 1

2

)(
v j + 1

2

)
, (1.1)

where vi and ωi are the vibrational quantum number and harmonic
wavenumber of mode i, respectively. For i = j, the “diagonal” anharmonic-

3



CHAPTER 1. EXPERIMENTAL AND THEORETICAL METHODS

ity constants xi,i describe the effect of a non-quadraticity in the vibrational
potential of mode i, while the “off-diagonal” anharmonicity constants xi, j in-
troduce pairwise potential couplings between different normal modes i and
j.** For any given mode i, the wavenumber of the n-th transition originating
in the ground state is thus

(nν̃)i = nωi +
(
n2 +n

)
xi,i + n

2

∑
j 6=i

xi, j; (1.2)

and more specifically for the fundamental and first overtone transitions,

ν̃i = ωi+2xi,i + 1
2

∑
j 6=i

xi, j, (1.3)

(2ν̃)i = 2ωi+6xi,i+
∑
j 6=i

xi, j. (1.4)

The diagonal anharmonicity content xi,i of the respective mode can be ob-
tained from these two transitions by

xi,i = 1
2

(2ν̃)i − ν̃i. (1.5)

For two-mode combination and hot bands with (vi,v j) = (1,1) ← (0,0) and
(1,1)← (0,1), respectively, one obtains

ν̃(1,1)←(0,0) = ν̃i + ν̃ j+xi, j, (1.6)
ν̃(1,1)←(0,1) = ν̃i +xi, j. (1.7)

Upon formation of an X–H· · ·Y hydrogen bond, several effects on the vi-
brational dynamics in the donor bond are noticeable. Polarization effects
weaken the X–H bond, decreasing its harmonic wavenumber and increasing
the diagonal anharmonicity in magnitude. The latter can be probed by ob-
serving the first overtone of the stretching vibration in the cluster according
to Equation (1.51.5).

The infrared absorption of a vibrational transition between two states
v′

i 6= v′′
i is governed by the associated transition dipole moment. In a quan-

tum mechanical picture, this can be calculated as the expectation value of
the dipole moment operator, µ̂. Dunham2020 first proposed to expand the
dipole moment µ in a Taylor expansion around the equilibrium geometry,
which allows to express the expectation value in a shorthand notation as

〈µ̂〉v′←v′′
i = 〈v′

i|µ̂|v′′
i 〉 = ∂iµ 〈v′

i|Q i|v′′
i 〉+

1
2
∂iiµ 〈v′

i|Q2
i |v′′

i 〉+ ..., (1.8)

*The denominations as “diagonal” and “off-diagonal” terms stem from the positions of
the elements when arranged in a matrix.
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1.1. VIBRATIONAL ANHARMONICITY

where Q i is the vibrational coordinate associated with the considered nor-
mal mode, vi represents the vibrational wavefunction ψv(Q i), and ∂i denotes
the partial derivative ∂ / ∂Q i (with analogous second derivatives ∂ii). With-
out loss of generality, orthonormal wavefunctions can be assumed so that
the zeroth-order term of the expansion—containing any permanent dipole
moment—vanishes.

Following the Beer-Lambert law, the observable integrated absorbance
of a vibrational band centered at ν̃i is given by2121∫

Adν̃=
∫
κ(ν̃)dν̃ · cd. (1.9)

Here, c is the sample concentration, d the optic absorption path length, and
κ the molar extinction coefficient which depends on the transition dipole
moment as2121 ∫

κ(ν̃)dν̃= 8π3

3hc(4πε0)
NAν̃i

∣∣∣〈µ̂〉v′←v′′
i

∣∣∣2 . (1.10)

In more accurate treatments, the rotational structure of the band in ques-
tion must be included by forming a sum over all contributing rovibrational
transition dipole moments and multiplying the expression by appropriate
Boltzmann factors. Likewise, contributions from hot bands that are spec-
trally close to the fundamental need to be included in the absorption inten-
sity. However, the errors from neglecting both contributions can be assumed
to be small, especially if a low population of excited vibrational states disfa-
vors hot band transitions.2222–2424

In general, the polarizing influence of a hydrogen bond aids in the detec-
tion of an X–H stretching fundamental band since the leading first dipole
derivative, ∂iµ, drastically increases. Conversely, the intensity of the first
overtone band, which is already inherently weaker than the fundamental
itself, is often found to decrease even further due to the hydrogen bond.1414,2525

Intuitively, one might ascribe this to a diminishing in electric anharmonicity,
i.e. the second derivative ∂iiµ, since this term is also responsible for lending
the overtone transition its intensity in the first place. However, Di Paolo
et al.2626 have investigated this trend based on second-order perturbational
treatments in quartic potentials, using analytic transition dipole moment
formulas as derived by Herman and Shuler.2727 Their findings suggest that
the observable low overtone intensity is not primarily due to a decreasing
second dipole derivative; in fact, its contribution has to be of sizable magni-
tude to explain the overall effect. Rather, the resulting intensity expressions
involve some compensation among the first and second derivatives. The
increase in the first derivative—responsible for boosting the fundamental
intensity—is in itself partly responsible for the overtone attenuation, and
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CHAPTER 1. EXPERIMENTAL AND THEORETICAL METHODS

the second derivative must be of equal sign and non-vanishing to explain
the observable effects (whereas it is typically of opposite sign in the absence
of a hydrogen bond). This also implies opposite signs for the corresponding
〈2|Q i|0〉 and 〈2|Q2

i |0〉 integrals in Equation (1.81.8). Calculations on the cor-
responding terms in hydrogen-bonded complexes have been carried out by
Kjaergaard et al.2828 for various water aggregates and by Scharge et al.2929 for
trifluoroethanol, confirming this trend at least for strong hydrogen bonds.
Within this work, the intensity effects will be exemplified for the methanol
dimer throughout Chapter 22, and for the methanol-ethene aggregate in Sec-
tion 3.13.1.

While the donor X–H group exhibits a distinct weakening of its stretch-
ing force constant from the influence of the acceptor site, the opposite is
true for its torsional motion perpendicular to the hydrogen bond. Excitation
of this “librational” motion tends to break the hydrogen bond, diminishing
the acceptor’s grip on the donor bond and thus blue-shifting its stretching
wavenumber towards the non-bonded case.†† An experimental determina-
tion of this important coupling constant requires to observe either combi-
nation or hot bands, in addition to one or both fundamentals, as indicated
by Equations (1.61.6) and (1.71.7). Unfortunately, the free torsion and confined
libration bands appear at low wavenumbers in the far-infrared (FIR) re-
gion which is somewhat difficult to access experimentally. Observing the
stretching-libration hot band according to Equation (1.71.7) would be favorable
in this regard, since only the stretching fundamental is required to obtain
the cross-coupling constant.

The transition dipole moments that drive the IR intensity of combination
and hot bands can be expressed in a two-dimensional extension of Equa-
tion (1.81.8) when using linearly independent normal modes. With labels “s”
and “l” for the stretching and libration bands, respectively, and bra-ket terms

†One may argue that the term “libration” describes the rotation of a quasi-rigid body
against a restoring potential, and that for an organic alcohol, the vibration in question
should rather be denoted a hindered torsion. In the present work however, the term “libra-
tion” will be retained for two reasons. First, these vibrations are typically found at energies
around a few 100 cm−1, comparable to the “true” librational motion in e.g. water; conversely,
the rigid counter-rotation lies much lower in energy and depends strongly on the molecular
mass. Further, it allows an easy distinction from the much less-hindered OH torsion in the
acceptor molecule.

6



1.1. VIBRATIONAL ANHARMONICITY

sorted by stretching terms first, then libration terms, one obtains

〈µ̂〉(1,1)←(0,0)
sl = ∂sµ 〈1|Qs|0〉〈1|0〉+〈1|0〉 ∂lµ 〈1|Ql|0〉+ 1

2∂ssµ 〈1|Q2
s |0〉〈1|0〉

+〈1|0〉 1
2∂llµ 〈1|Q2

l |0〉+∂slµ 〈1|Qs|0〉〈1|Ql|0〉,
〈µ̂〉(1,1)←(0,1)

sl = ∂sµ 〈1|Qs|0〉〈1|1〉+〈1|0〉 ∂lµ 〈1|Ql|1〉+ 1
2∂ssµ 〈1|Q2

s |0〉〈1|1〉
+〈1|0〉 1

2∂llµ 〈1|Q2
l |1〉+∂slµ 〈1|Qs|0〉〈1|Ql|1〉.

Orthonormalized wavefunctions can again be assumed without loss of gen-
erality so that all 〈v′|v′′〉 terms can be replaced by a Kronecker delta δv′v′′ ,
yielding

〈µ̂〉(1,1)←(0,0)
sl = ∂slµ 〈1|Qs|0〉〈1|Ql|0〉, (1.11)

〈µ̂〉(1,1)←(0,1)
sl = ∂sµ 〈1|Qs|0〉+ 1

2∂ssµ 〈1|Q2
s |0〉+∂slµ 〈1|Qs|0〉〈1|Ql|1〉. (1.12)

Assuming a more or less symmetric vibrational potential for the torsional
motion, the 〈1|Ql|1〉 terms in Equation (1.121.12) will approximately vanish; the
remainder of the expression then just reflects the strong stretching funda-
mental transition, ∂sµ 〈1|Qs|0〉+ 1

2∂ssµ 〈1|Q2
s |0〉. Together with the similar

wavenumbers for the stretching fundamental and the stretching-libration
hot band (Equation (1.71.7)), their molar extinction coefficients as per Equa-
tion (1.101.10) should be roughly equal. However, the intensity of the libra-
tionally hot band depends directly on the population of the first excited state,
and for a hypothetical wavenumber around 600 cm−1 at vibrational temper-
atures of 100 to 200 K, the population relative to the ground state would be
on the order of only 10−2 to 10−3. Thus, although the extinction coefficients
of the hot band would favor it over the combination band for the determi-
nation of the anharmonicity constant xs,l, its detectability may be greatly
hampered under vibrationally cold conditions such as in supersonic jets or
cryogenic matrices unless a significant amount of the sample can be pre-
pared in the librationally excited state, e.g. through optical pumping.

Finally, it should be noted that the above expressions for the µ̂ expec-
tation values are useful only if a second-order Taylor expansion provides a
viable approximation to the dipole curves in the regions of space sampled by
the participating wavefunctions. If higher orders are necessary to capture
the essence of the dipole (hyper-)surface, numerical treatments across larger
ranges of displacements may be required, and the highlighted intensity ef-
fects may be either attenuated or exacerbated.
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CHAPTER 1. EXPERIMENTAL AND THEORETICAL METHODS

1.2 Experimental Methods
In 1951, Kantrowitz and Grey3030 proposed the creation of molecular flow
fields by means of supersonic expansions, where a gas flow (“jet”) is driven
along a large pressure gradient through a small nozzle. Such beam sources
promised advantages over common effusive techniques in terms of higher
flow intensities and thermal cooling of the beam while allowing much nar-
rower velocity distributions. Indeed, these favorable properties soon led
to supersonic expansions being accepted as a viable tool for the study of
molecules and molecular clusters in cold and sparse environments. Below,
a general description of the properties of supersonic beam sources is given,
based on the accounts by Morse3131 and Herman et al.;33 yet another compre-
hensive review is provided by Arnó and Bevan.3232 As a concise entry point
to the topic, a brief yet informative paper by Smalley in Reference 22 can be
recommended. Further studies by Hagena3333,3434 detail on the condensation
behavior in supersonic beams.

1.2.1 Supersonic Expansions
In an effusive beam, atoms or molecules from a gas reservoir pass through a
small opening in their confinement solely based on random thermal motion.
This limiting case comes into effect at low sample pressures when the mean
free path of the particles in the reservoir is much larger than the confining
dimension of the opening. Conversely, increasing the stagnation pressure in
the reservoir lowers the mean free path of the gas particles until it reaches
a regime where they experience a large number of collisions while passing
through the outlet. Their overall thermal energy is then partly redistributed
into the directed motion through the opening, leading to an internal cooling
of the gas sample. Ongoing collisions in the expanding beam further equal-
ize the relative particle velocities, corresponding to a low translational tem-
perature in terms of a Maxwell-Boltzmann distribution. Consequently, the
speed of sound inside the particle ensemble effectively decreases until it is
surpassed by its absolute velocity: the gas flow becomes supersonic.

Possibly the most common application of supersonic beams today is the
stabilization of small molecular or atomic aggregates for spectroscopic inves-
tigation. One prominent example for a species first isolated in a jet expan-
sion is the elusive helium dimer.3535 The technique has a decisive advantage
over thermostatted environments which are limited in their applicability
by progressive aggregation of the analytes both to condensation nuclei and
the sample cell walls. Typically, aggregation experiments in supersonic ex-
pansions are carried out in “seeded” beams in which a small amount of the

8



1.2. EXPERIMENTAL METHODS

analyte is diluted in a carrier gas—most often a rare gas—which serves as
a spectroscopically silent collisional-cooling agent. The cooling of the ana-
lyte molecules in the heat bath of the carrier gas is more efficient than in
pure beams, and rotational temperatures drop low enough so that the spec-
troscopic signatures become vastly simplified. The concentration and size
distribution of the clusters can be controlled by the dimensions of the out-
let nozzle, seeding fraction of the analyte, composition of the carrier gas,
stagnation pressure in the reservoir, and temperature of the gas sample.
Further, the geometry of the nozzle can be designed so as to restrict the
gas flow after the expansion, increasing the number of many-body collisions
and promoting cluster formation. A similar effect can be achieved by us-
ing an elongated slit instead of a pinhole nozzle, limiting the outwards gas
flow from the beam and leading to a slower density fall-off along the expan-
sion. The longer absorption pathway permitted by a slit-nozzle expansion
zone is further advantageous for the application of spectroscopic techniques.
However, the inherently low particle densities in supersonic beams remain
a fundamental and lasting problem in their application, prompting for high-
intensity light sources and sensitive detection strategies.

Due to the non-uniformity of the collisional energy redistribution, su-
personic expansions represent non-equilibrium environments in which the
translational, rotational and vibrational temperatures of the ensemble in-
crease as Ttrans ≤ Trot < Tvib. For Ttrans, values as low as a few milli-Kelvin
have been reported,33 and typical values can be assumed to be in the low
Kelvin to sub-Kelvin regime. If the number of collisions in the expansion
is not a limiting factor, rotational cooling may be as efficient as its transla-
tional counterpart, but small molecules may retain rotational temperatures
of up to a few tens of Kelvins in supersonic expansions.3636 For the vibra-
tional degrees of freedom, estimates become more difficult due to their sub-
stantial energy content and incomplete inter-mode equilibration, and the vi-
brational temperature Tvib becomes ill-defined. This non-uniformity comes
into play for conformational interconversion processes which are initialized
by appropriate large-amplitude backbone molecular motions. For the facile
and tunneling-assisted gauche–trans torsion coordinate in ethanol, confor-
mational temperatures down to ca. 50 K were found in a previous Raman-jet
study.3737 However, an analogous characterization of trifluoropropanol3838 sug-
gested that relevant interconversion motions may easily become kinetically
“frozen” at least for high-barrier, tunneling-deficient motions, and similar
disequilibration was found for the dispersion-driven folding and unfolding
of long alkane chains.3939 The observable, jet-cooled conformer distributions
are hence governed by complicated thermodynamic and kinetic characteris-
tics of both the employed setup and the gas sample.

9



CHAPTER 1. EXPERIMENTAL AND THEORETICAL METHODS

Further downstream of the nozzle, the initially large number of colli-
sions drops due to the spreading of the gas beam and an equalization of the
particle velocities. A “zone of silence” is established where the energy redis-
tribution in the expansion largely comes to a halt and the Mach number of
the gas flow reaches its maximum. Finally, the “over-expanded” low-density
beam is recompressed by collisions with residual gases in the apparatus,
forming a terminal shock wave in which its temperature and density dis-
continuously rise to background levels. Similar lateral shock waves blanket
the sides of the expansion, encasing the cold supersonic flow in regions of
warmer boundaries. In order to avoid interference from these shock waves,
the cold core of the expansion can be isolated by placing appropriate skim-
mers in the beam and passing the selected gas into a secondary vacuum
chamber where further manipulations and detection can be carried out.

Most commonly, intermolecular interactions in supersonic jets are stud-
ied by means of vibrational spectroscopy, probing subtle changes of the con-
stituent’s potential energy surfaces from the monomeric to the aggregated
situation. Direct laser absorption techniques have been implemented,4040 al-
though many newer experimental approaches employ multi-resonance laser
excitations and mass-detection schemes, adding the advantage of size- or
even conformer selectivity in the experiments.4141 However, the number of
vibronic states that are involved in the probing schemes bereaves such tech-
niques of direct intensity information and may further obfuscate the desired
vibrational signatures. One such case is apparent in a cyclohexanol study
by Léon et al.4242 who observed broad hydrogen-bonded OH stretching bands
in IR/UV and IR/IR multi-resonance experiments, as opposed to the typical
narrow patterns that were found through direct IR absorption.

Jet experiments can be designed for either continuous or pulsed opera-
tion.4343 Since the position of the terminal recompression shock waves in a
supersonic expansion is governed by the square-root ratio of the stagnation
pressure in the gas reservoir and the residual background pressure in the
jet chamber, pulsed jets may provide more well-defined expansions and more
pronounced cooling behavior than continuously operated nozzles if the back-
ing vacuum system is adequately sized and pumped between pulses. Buffer-
ing the pressure increase in the system thus permits large gas throughputs
during each pulse and consequently high optical densities in the probing
zone. However, the maximum attainable pulse duration imparts some lim-
itations for interferometric sampling techniques in terms of spectroscopic
resolution and scanning speed if the full interferogram is to be recorded
during a single gas pulse. These limitations can be circumvented by step
scanning, i.e. sectionally recording the interferogram during subsequent gas
pulses, at the obvious cost of an increased time demand for a full scan.4444
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Finally, two interesting features of seeded supersonic beams shall not go
unmentioned. First, particles with higher velocity components perpendicu-
lar to the expansion centerline naturally remove themselves from the core
of the gas stream. Thereby, the “perpendicular” translational temperature
in the beam center decreases as the expansion progresses. Since the width
of the Maxwell-Boltzmann distribution (and thus the fraction of faster par-
ticles) decreases with increasing mass, the heavier component in a seeded
beam tends to enrich at the core of the expansion.4545 Second, a large mass
disparity in a seeded expansion can cause the acceleration of the heavier
component to lag behind the lighter one. This “velocity slip” effect may be
pronounced enough to allow supersonic beam sources to be used for isotope
separation by means of velocity selection.4646,4747

1.2.2 The “Filet” Jet
Overview

The supersonic beam apparatus used throughout this work, nicknamed the
“filet” jet, was constructed in the context of the PhD thesis of Nicole Borho4848

in 2003. Over the years, the apparatus has seen the exchange of the con-
nected FTIR spectrometer and an extension of its realistic spectral range to
200–8000 cm−1.1414,2929,4949,5050 A recent account of its features and operation is
given in Reference 4343, together with a demonstration of its capabilities for
the measurement of O–H stretching fundamental and overtone bands. The
following description will thus be restricted to a brief overview of the setup,
noting only important key points and changes to previously established rou-
tines.

The unmatched eponymous feature of the setup is the “fine, but lengthy”
slit nozzle of 600×0.2 mm2 dimensions with a throughput of up to 3 mol s−1,
backed by a buffer volume of up to 23 m3 and a pumping system of up to
2500 m3 h−1. Six solenoid valves pass the sample gas mixture from a 67 L
reservoir into a pre-expansion chamber which serves to ensure a spatially
homogeneous feeding of the nozzle. The large absorption pathway through
the elongated expansion zone allows convenient sampling at a variable
downstream distance by the mildly focused beam of an unmodified, evac-
uated Bruker IFS 66v/S FTIR spectrometer and its built-in light sources.5151

Measurements in the spectral OH and OD fundamental region of ca. 4000–
2400 cm−1 are possible using a tungsten light source, KBr or CaF2 optics
and beamsplitters, and an external LN2-cooled 3 mm2 InSb detector; for
the measurement of the respective stretching overtones between 7500 and
6400 cm−1, a 7 mm2 InGaAs detector is available. The mid- and far-infrared
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Figure 1.1: Schematic of the “filet” jet (not to scale).

(MIR and FIR) regions are accessible by MCT detectors or a liquid helium-
cooled bolometer in conjunction with KBr or Mylar beamsplitters; these
were, however, not put to use for the present work. In all cases, appropriate
optical filters allow to reduce the bandwidth of the detector and increase the
signal-to-noise ratio. The jet valves are synchronized to the rapid scans of
the FTIR spectrometer, with typical pulse durations on the order of 150 ms
followed by an evacuation period of 30 to 60 s.

Sample preparation is carried out in thermostatted glass saturators by
directing a stream of the carrier gas through the liquid or solid analyte. By
varying the carrier gas pressure, saturator temperature, and opening/clos-
ing times of the feeding solenoid valves, the concentration of the sample can
be controlled. For more concentration-sensitive measurements or gaseous
analytes, a mixing line is available to prepare more well-defined sample mix-
tures in a 50 L gas cylinder which can be fed directly into the reservoir.

One advantage of the filet jet over its size- or even conformer-selective
multi-resonance siblings is the reliance on direct infrared absorption, al-
lowing band positions as well as intensity information to be extracted from
the recorded spectra. Both quantities provide estimates for the strength of
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hydrogen-bonded stretching modes (see Section 1.11.1) and can serve as sen-
sitive benchmarks for quantum chemical predictions. Observing the weak
overtone bands of hydrogen-bonded stretching vibrations, however, proves
somewhat elusive due to their inherent intensity penalty outlined above. Ul-
timately, this mandates the measurement times (or equivalently, the num-
ber of co-added jet scans) to be increased by about one order of magnitude
as compared to the fundamental bands. Moreover, determining the inten-
sity ratio between fundamental and overtone bands necessitates recording a
number of additional panoramic spectra over their combined spectral re-
gions, using the monomer bands as an internal standard for calibration
of the different optical filters and detectors. The intensity ratio thus pro-
vides an additional, but somewhat remote means of assessing the interaction
strength, and its determination is not a routine task even in the straightfor-
ward filet jet experiment. Within this work, the method has been put to di-
rect use in ambiguous methanol-anisole experiments to validate the assign-
ment of competing structural motifs,5252 as will be presented in Section 3.23.2.

Modifications

Some minor changes to the setup were made during the course of this thesis.
First, a Teflon coating was applied to the inside of the reservoir in order to
prevent issues from corrosion of the stainless-steel tank. However, a certain
amount of adsorption of the sample gas by the coating itself is detectable,
and the reservoir must be thoroughly evacuated after measurements and
before changing sample mixtures. Second, the standard 12 V, 50 W tungsten
lamps employed previously were exchanged for higher-power 24 V, 150 W
analogs in order to facilitate fundamental and overtone experiments. The
resulting signal-to-noise capabilities of the two light sources can be judged
from a standardized “NOTCH” (“Noise Test Challenge”) noise level analy-
sis. In this routine, the jet setup is run up to a normal measurement-ready
state in the desired configuration. 1-minute background and sample scans
are recorded through the empty jet chamber, and the resulting absorbance
spectrum is sent to a custom-made FORTRAN program which calculates a
quadratic fit to the spectral baseline and its root-mean-square error (RMSE)
in a 50 cm−1 moving window. Its negative decadic logarithm is stored for
each window center position as a figure of merit for the noise level in the ac-
cording region, allowing direct comparison of measurement configurations
and different spectrometers as well as long-term stability monitoring.

Figure 1.21.2 shows a set of NOTCH curves obtained using external InSb
and InGaAs detectors in typical measurement configurations with 150 W
and 50 W tungsten lamps. Two measurements were carried out for each, and
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the original data (gray curves) were smoothed to a 200-point moving mean
(∼100 cm−1, with red and blue curves for 150 and 50 W lamps, respectively).
The yellow shading marks regions in which residual water and methane
bands impair the analysis. The lower traces in each graph shows averaged
150 W/50 W RMSE ratios and demonstrate the advantage of the stronger
light source across both spectral regions by a factor of ∼1.5 in the noise level.
Additional details on these measurements are given in Appendix AA.

The standard 80 kHz velocity setting for the scanning interferometer
mirror had previously been reduced to 60 kHz in overtone measurements
due to unfavorable noise impairments at the higher setting. For the over-
tone measurements conducted within this work, the 80 kHz option was re-
visited with the 150 W tungsten source. Two independent error sources were
isolated which produced excessive baseline noise in the near-infrared region
through ill-defined compensation of water vapor bands between the back-
ground and sample scans. It can be assumed that the measures undertaken
to eliminate these problems also take effect in the fundamental region, and
they have thus been implemented permanently.

First, the scanning mirror is reset to an initial position by the control-
ling software at the beginning of each measurement cycle; its motion is
then started, and a number of background scans is recorded. This stopping-
starting event apparently leads to mechanical vibrations of the mirror which
spoil the first background scans, consequently causing artifacts in all ab-
sorbance spectra. To circumvent this problem, a “Wait 5000” command line
was added to the top of the TRS routine that controls the synchronization
of the spectrometer with the jet setup. This pre-scan delay leads to five sec-
onds of “blind” mirror motion, thus allowing the disturbances to settle before
commencing the data acquisition for the background scans.

Second, the front face of the nozzle base plate attached to the pre-
expansion chamber partially extends into the IR beam under typical ex-
perimental conditions. Although the respective part of the construction is
blackened, a portion of this light still appears to be scattered either back
into the interferometer or into the detector chamber. Upon releasing the jet

Figure 1.2 (opposite): NOTCH curves for 150 W (red) and 50 W (blue) tung-
sten lamp comparison using InSb (top) and InGaAs (bottom) detectors and
appropriate optical filters. The lower traces in each graph show averaged
150 W/50 W RMSE ratios. Yellow shading indicates regions where residual
water and methane bands may impair the noise level analysis.
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gas pulse, the nozzle starts to vibrate, modulating this scattered light and
leaving similar noise artifacts as described above. These artifacts vanish
when removing the nozzle from the beam or reducing the vibrations by low-
ering the stagnation pressure. As a simple solution, it is sufficient to block
the offending part of the IR beam from entering the jet chamber by partially
covering the entrance window.

1.2.3 MAX-lab Matrix Isolation Setup
In addition to the jet-FTIR experiments conducted at the filet jet, a matrix
isolation setup situated at the MAX-lab facility in Lund, Sweden, was em-
ployed in cooperation with the group of Wugt Larsen from the Technical Uni-
versity of Denmark in Copenhagen. Details about the setup can be found
in References 5353 and 5454. In short, it features a gold-plated copper mirror
cooled to 2.8 K by a helium cryostat. A wide spectral range is accessible using
KBr and CaF2 beamsplitters together with InSb and MCT detectors. Fur-
ther Mylar/bolometer options and different substrate window materials are
available to sample the FIR region, but were not employed for the present
work. The deposited matrix is sampled through a CsI window by a Bruker
IFS 120 FTIR spectrometer at typical resolutions of 0.1 to 0.5 cm−1. Anneal-
ing is possible by resistively heating the matrix up to about 9 K in order to
promote the mobility and conformational flexibility of the embedded guest
molecules.

1.3 Theoretical Methods
One of the fundamental problems in theoretical chemistry is the often pro-
hibitively steep scaling of their computational demand with respect to the
attainable accuracy. Due to the many-body nature of all but the simplest
quantum systems, their treatment must rely on iterative and approxima-
tive methods. This typically entails first building a Hartree-Fock reference
wavefunction and subsequently recovering the electron correlation energy in
dedicated calculations. The typical basis set expansions for the one-electron
orbitals prompt for the handling of a large amount of data, and practical
issues of memory allocation and disk swapping may become the bottlenecks
of a calculation. Different approximations exist to widen these bottlenecks
either by reducing the data quantity per se, or by facilitating its handling
in a practical sense. A brief overview of three relevant techniques—Density
Fitting, local and explicit correlation treatments—will be given in the first
subsection of this chapter. Still, most standard implementations of ab ini-
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tio methods are already prohibitively expensive for medium-sized molecular
systems, let alone applications at the macromolecular scale.

Tackling vibrational dynamics introduces yet another range of problems.
On grounds of the Born-Oppenheimer approximation, the overall molecular
wavefunction can be separated into dedicated electronic and nuclear prob-
lems, and building a potential energy hypersurface entails solving the elec-
tronic Schrödinger equation (or some approximation thereof) at a large num-
ber of nuclear configurations. Even within only the harmonic approximation,
this already imposes a quadratically-scaling computational demand for cal-
culation of the Hessian matrix of a molecular system. Analytic implemen-
tations of energy gradient calculations help to alleviate this demand, but
are not universally available across quantum chemical methods, as will be
further discussed below. Worse, the harmonic approximation is clearly insuf-
ficient for direct quantitative and often even qualitative comparison to ex-
perimental results. The remaining gap must be closed by introducing anhar-
monic effects into the calculations, and although such treatments can often
be truncated to some lower-order corrections, the resource and time demand
becomes even more drastically dependent on the system size. Reduced-
dimensionality variational or, alternatively, perturbational approaches may
relax these constraints somewhat. Still, thorough anharmonic treatments
are far from being routinely applicable beyond rather small systems or sim-
ple electronic structure methods. The primary leverage in making larger
molecular systems accessible to accurate vibrational calculations lies in re-
ducing the computational demand of the underlying electronic structure
problems, and some strategies to this end will be discussed below.

1.3.1 Approximations in Electronic Structure Methods
Density Fitting

During the evaluation of electron-electron interactions in electronic struc-
ture calculations, large amounts of four-index integrals over the molecular
orbitals need to be calculated and transformed. One technique to reduce
the memory demand of these steps is Density Fitting (DF)5555–5757 in which
orbital products φiφ j are interpreted as an electron density and expanded
in an auxiliary basis set. In this way, the integrals can be reduced to two-
and three-index forms, which simplifies their handling.5757,5858 Usual imple-
mentations of the method rely on prefabricated basis sets for application in
different methods, and a number of optimized sets are available for use in
conjunction with popular atomic orbital (AO) basis sets.

Density Fitting is often synonymously called “Resolution of the Identity”
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(RI) due to its similarity to the mathematical procedure of the same name.
However, RI expansions are of further importance in explicitly correlated
methods (see below). To distinguish between both concepts, the present work
follows the established nomenclature5959 of using the term “Density Fitting”
to refer to the general four-center integral handling described above, while
“Resolution of the Identity” is reserved for more specific factorizations that
are encountered in explicit correlation. A prefix “DF-” to a method’s name
can be used to indicate the use of density fitting, but is customarily dropped
due to the high robustness and negligible errors in optimized implementa-
tions when calculating molecular properties and association energies.

Local Electron Correlation

Electron correlation in wavefunction-based quantum chemical calculations
is introduced by “exciting” electrons from occupied into virtual orbitals of a
reference wavefunction, and mixing the resulting corrections into the ref-
erence energy. This is usually done in a canonical picture where the occu-
pied and virtual orbitals are taken directly from the preceding Hartree-Fock
calculation. However, these symmetry-adapted orbitals may in general be
delocalized over the entire molecular system, while the correlation energy
itself is known to strongly depend on the overlap of the involved orbitals.6060

As a result, an unfortunate number of significant, but “unspecific” correla-
tion contributions must be computed. It is thus rewarding to localize the
orbital space beforehand and preselect the theoretical rigor at which indi-
vidual orbital pair contributions are treated on grounds of their spatial sep-
aration.6161,6262 A detailed account on such local correlation methods (indicated
by a prefix “L”) and their advantages is available in a comprehensive review
by Korona et al.6060 which is reproduced here in short.

Local correlation approaches allow significant computational savings by
demoting a large number of less-relevant electron excitations to simpler
computational levels, or even discarding them altogether. As an additional
benefit, this largely eliminates the notorious basis-set superposition error
(BSSE)6060,6363 which is otherwise usually taken care of by counterpoise (CP)
calculations at additional computational effort.6464 Apart from more accu-
rate electronic energy predictions, e.g. for internal conformational prefer-
ences6565 or intermolecular binding, harmonic vibrational frequencies have
been shown to profit from the reduced BSSE.6666,6767 The accuracy gain of lo-
cal over canonical methods seems to diminish for anharmonic vibrational
treatments,6868 but their performance advantages still uphold.

Looking at the drawbacks, local correlation methods are not as much
of “black box” character as their canonical counterparts. First, the choice
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of localization method for the orbital space is not rigorously dictated, and
different schemes may be applied. As it was found out, Pipek-Mezey lo-
calization6969 generally provides a robust description of the localized orbital
space for most applications.7070,7171 In the established approach by Werner and
co-workers which was employed throughout this work, the localized orbitals
are subject to a population analysis to form “domains” of orbitals which rep-
resent localized electron pairs.7171 While this provides a chemically intuitive
picture of the molecular structure, it requires artificial charge cutoffs to be
defined for building the domains. At ill-defined values, extensive mixing of
low-charge contributions from distant orbital centers may bloat the domains
and counteract the localization approach.‡‡ Additional empirical distance
thresholds must be introduced if long-range domain pairs are to be treated
at a less rigorous level of theory than closer ones. Further, the localization
procedure may be ambiguous in aromatic π systems, or become inconsistent
when sampling molecular structures along a wide range of internal coordi-
nates.7171,7272 Freezing and merging procedures have been introduced for such
cases to avoid discontinuities in the domain definitions (and thus the result-
ing energies) and correctly represent the underlying electronic structure in
a localized picture. Still, the special care that such situations demand may
exceed the scope of a wider user base.

The domain-localization approach allows to go even further than to only
hierarchize the correlation treatment on grounds of distance aspects. In the
LMOMO scheme,7373 specific domains can be singled out to be treated at a
certain level of theory while all others are reduced to some less-demanding
default method. Changes in the chemical environment of some functional
group can thus be treated in a strongly localized sense with little inter-
ference from the remainder of the system. Evidently, the degree to which
the interactions are indeed localized in the selected domains determines the
agreement with a full-scale treatment at the respective level of theory. Apart
from the obvious computational savings, the LMOMO method can provide
detailed insights into the quantum description of molecular systems, as it
has been demonstrated for the methanol dimer.1515

Combination with Density Fitting and explicit correlation (see below) has
allowed the development of highly accurate local Møller-Plesset and Coupled
Cluster correlation treatments, allowing down to linear scaling of the compu-
tational cost with the system size7474 and extending their applicability to very
large systems.7575 As in the original suggestion by Saebø and Pulay,6262 the
virtual orbital space—which is less rigorously defined in a physical sense—

‡While generally unwanted, this effect was deliberately exploited herein to simulate
canonical calculations in a local correlation formalism; see Appendix CC for details.

19



CHAPTER 1. EXPERIMENTAL AND THEORETICAL METHODS

can be localized by using projected atomic orbitals (PAOs), which is also the
approach undertaken in all local calculations within this work. Recently,
the group of Neese, developing the ORCA program system,7676 has devised
an alternative approach based on Pair Natural Orbitals (PNOs) for the vir-
tual space,7777,7878 spawning the first Coupled Cluster calculation on an entire
protein of more than 600 atoms.7979 Exploiting the sparsity of localized multi-
electron integral matrices promises further computational savings.8080 Over-
all, it can be hoped that the physically justifiable and chemically intuitive
concept of localizing electron correlation effects will advance the application
of accurate quantum chemical methods throughout the chemical sciences.

Explicit Correlation

Electronic wavefunctions exhibit “cusps” for any two electrons approaching
each other, reflecting their repulsive Coulomb interaction.8181 However, the
starting point for common ab initio methods is a Hartree-Fock calculation
which, by construction, replaces the exact electron-electron interactions by
a mean-field approximation. The correlation energy is then recovered based
on excitations in the one-electron orbitals of the reference wavefunction, but
these are not efficient to fully recover the Coulomb cusps.8282 It is thus useful
to model the correlation cusps in a more dedicated way during the calcu-
lations, which is done in “explicitly correlated” methods by Kutzelnigg and
Klopper.8383 The improved representation of the electronic wavefunction dras-
tically reduces basis set incompleteness effects and allows to approach the
method’s complete basis set (CBS) limit much faster than in conventional
calculations. Reviews of explicit correlation techniques have been given by
Werner et al.8282 and Klopper et al.5959 from various perspectives and shall be
reproduced here in brief.

In conventional correlation approaches, the interactions of two-electron
“pair functions” with the virtual space play a leading role in the correlation
energy. These pair functions are built as products φiφ j of one-electron or-
bitals from the reference wavefunction. In explicit correlation, their role is
taken by “geminals” which additionally include some functional dependence
on the inter-electron distance r12. In the original formulation by Kutzelnigg
and Klopper,8383 a simple linear r12 term was used; however, the most re-
warding approaches have been found to be of exponential forms exp(−γr12)
as first proposed by Ten-no.8484 Historically, methods with a linear r12 factor
obtain a “-R12” suffix to their name, while any other form is denoted “-F12”.

The conventional pair functions are, by virtue of the Hartree-Fock refer-
ence, inherently orthogonal to the rest of the wavefunction. To achieve the
same for the geminals, projection operators must be applied before the cor-
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relation energies can be computed. Unfortunately, these projections produce
three- and four-electron integrals in the correlation terms which are compu-
tationally difficult to approach. One technique to circumvent this problem is
the approximative “CABS” (Complementary Auxiliary Basis Set) approach8585

which uses a resolution-of-the-identity (RI) expansion of the wavefunction in
an auxiliary basis set. This enables factorization of the offending integrals
into two-electron forms, which are then significantly easier to handle. Cor-
rections from the CABS treatment can further be patched into the Hartree-
Fock reference energy, bringing it close to the CBS limit.8282 For these rea-
sons, CABS expansions today assume an important role for the projectors,
and auxiliary “OPTRI” basis sets have been developed8686 to accompany the
dedicated explicit-correlation basis sets for the atomic orbitals.8787

As noted previously, the RI method mentioned above must not be con-
fused with Density Fitting (DF) which is commonly also called RI as well
by some authors. Drawing a distinction between both approaches is of par-
ticular importance since DF expansions have been introduced to explicitly
correlated methods as well in order to further improve their performance,
in which case one auxiliary basis set must be provided for each expansion.
Furthermore, the group of Werner7474,8282,8888 has combined explicit and local
correlation approaches, and their overall accuracy and performance make
them highly attractive for application to large systems. In the context of
Coupled Cluster theory, additional approximations must be introduced for
calculating the excitation amplitudes. Throughout this work, the “-F12a”
method by Adler et al.8989,9090 was adopted which provides some fortuitous and
systematic error compensation in the correlation energies with small basis
sets.7474,8282 The perturbative triples included in CCSD(T)-F12 are not directly
affected by explicit correlation, but one can include an approximative effect
by scaling them according to the ratio of MP2 and MP2-F12 correlation en-
ergies, yielding “scaled triples” (T∗):9090

E(T∗)= E(T) · EMP2-F12

EMP2
,

This approximation was employed in all explicitly correlated CCSD(T) cal-
culations throughout this work, and details on the practical implementation
are given in Appendix CC.

1.3.2 Anharmonic Calculations
VSCF and Post-VSCF Methods

The harmonic approximation represents the simplest starting point for the
vibrational treatment of molecular systems. However, its restriction to de-
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coupled vibrational modes and purely quadratic potential functions leaves
a wide gap to anharmonic reality. Closing this gap on a rigorous quantum
mechanical basis requires to solve the vibrational Schrödinger equation in
a higher-dimensional formulation, but this is again prohibited by the many-
body problem. The strategies that have been developed to tackle this prob-
lem are in large parts analogous to those employed in electronic structure
theories.

A first approximative solution to the Schrödinger equation is possible in
a variational, self-consistent VSCF (“Vibrational SCF”) picture.9191–9393 In this
approach, the overall wavefunction of a system with N vibrational modes
remains separable as a product of N single-mode functions. These so-called
“modals” are coupled by a full N-dimensional potential, and the product
ansatz allows to integrate out all but one of the coordinates. The remain-
ing one-dimensional eigenproblem is solved in this effective potential, and
the process is cycled through all modes until self-consistency is reached.

In principle, a full potential energy hypersurface in all internal degrees of
freedom is required for the evaluation of the VSCF potential term. Creation
of such a surface entails a large number of electronic energy calculations
throughout the nuclear configuration space, which can obviously become
prohibitively costly. The subsequent evaluation of the multidimensional po-
tential integrals during the VSCF procedure poses another computational
difficulty. Expanding the potential in a polynomial series provides some ben-
efits in that only one-dimensional integrals have to be evaluated, and the
task of calculating the potential hypersurface can likewise be broken down
to a number of lower-dimensional subsurfaces. Still, this approach suffers
from slow convergence of the solutions with respect to the polynomial order,
especially in highly anharmonic, “floppy” systems.9292,9393 The choice of coordi-
nates for the power expansion and VSCF calculation is often non-trivial as
well and by far not solved exhaustively through normal coordinates. Alter-
natively, the potential term of the vibrational Schrödinger equation can be
subdivided into individual n-mode contributions without the need for a poly-
nomial representation.9393 While this “multimode” approach by Bowman and
co-workers further reduces the computational effort if low-dimensional con-
tributions provide sufficient accuracy, it necessitates numerical techniques
and still represents an effortful problem for anything but small molecules.

The anharmonicity effects contained in the VSCF solutions are largely
implicit and approximate, since the true inter-mode couplings have been in-
tegrated out of the potential. Recovering these effects more accurately can
be done by correlation approaches akin to the Møller-Plesset (VMP), Cou-
pled Cluster (VCC) and Configuration Interaction (VCI) techniques found in
electronic structure theory:9292–9494 by coupling different modals in the vibra-
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tional potential, energy corrections to the reference VSCF eigenstates are
obtained. For a more in-depth view of VSCF and post-VSCF methods, a
review by Gerber and Jung in Reference 9292 is recommended.

VPT2

As an alternative to anharmonic (post-)VSCF calculations, the VPT2 method
(“Vibrational Perturbation Theory to 2nd Order”)9595,9696 provides estimates for
anharmonic effects while avoiding the computational burden of building a
full potential surface. Instead, a number of Hessian matrices at deflected
geometries suffices to obtain the desired higher energy derivatives, and the
vibrational Hamiltonian Ĥ is expanded as a Taylor series in the vibrational
coordinates:9595

Ĥ = Ĥ0 + Ĥ1 + Ĥ2

= 1
2

∑
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(1.13)

Here, ωi, qi and pi are the harmonic wavenumber, mass-weighted normal
coordinate and associated momentum of mode i, respectively; the φ are the
mass-weighted force constants—i.e., derivatives of the vibrational potential;
and the last sum holds the equilibrium rotational constants Be

α and vibra-
tional angular momenta jα around the rotational axes α. Obviously, the
term Ĥ0 represents the unperturbed harmonic problem, and anharmonic
corrections come in from the third- and fourth-order terms contributed by
Ĥ1 and Ĥ2, respectively (the latter further including the trailing rovibra-
tional term). A perturbational calculation then results in the term expres-
sions as given in Equation (1.11.1). As with all perturbation methods, however,
this approach relies on the assumption that the anharmonic perturbation of
the harmonic vibrational modes is relatively small. Significant anharmonic
corrections to low-frequency motions can become problematic, possibly ag-
gravated by inadequacies of the underlying electronic structure methods at
treating shallow vibrational potentials.

1.3.3 Software Packages and Basis Sets
All calculations in this work were carried out using the GAUSSIAN 099797 and
MOLPRO 20129898 program packages. While the former implements the effi-
cient anharmonic VPT2 method,9595,9696 the latter software package was used
for its implementation of efficient local and explicit correlation techniques.
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Dunning’s correlation-consistent (aug-)cc-pVnZ basis sets were used
throughout for the expansion of the atomic orbitals. Adhering to common
practice, these basis sets will be abbreviated aVnZ. Diffuse functions on hy-
drogen atoms can often be dropped without significant impact on the ac-
curacy,9999 and such partially augmented basis sets are indicated by aug′-cc-
pVnZ (a′VnZ). However, spectroscopic properties of hydrogen-bonded struc-
tures may be sensitive to these types of basis functions. The present work
thus also investigates the effects of selectively adding diffuse functions
only to hydrogen atoms partaking in non-covalent contacts, and the result-
ing basis sets are called “selectively augmented”, abbreviated saug-cc-pVnZ
(sVnZ). Since these augmentation patterns are somewhat arbitrary, they
need to explicitly defined for each application, and their impact should be
checked thoroughly against the corresponding partially (a′VnZ) and fully
(aVnZ) augmented basis sets.

Besides the ab initio methods used throughout this work, some B2PLYP
and B3LYP calculations were conducted in GAUSSIAN 09 for more difficult
and resource-demanding approaches, mostly anharmonic calculations. In all
of these calculations, an ultrafine integration grid and tight geometry opti-
mization criteria were invoked using the INT=ULTRAFINE and OPT=TIGHT op-
tions, respectively. All calculations include Grimme’s D3 dispersion (D3),100100

but spare Becke-Johnson damping due to implementation faults of analytic
second derivatives in the D.01 revision of GAUSSIAN 09 (see below).

Density Fitting approximations were employed throughout in all MOL-
PRO calculations, using aVnZ/JKFIT5656 auxiliary basis sets for Hartree-Fock
Coulomb and exchange interactions and aVnZ/MP2FIT101101 for MP2 and Cou-
pled Cluster correlation energies. The “DF” prefix to the methods will be
dropped throughout this work on grounds of the negligible errors introduced
by the approximation. In explicitly correlated calculations, the VnZ-F12 AO
basis sets by Peterson and co-workers8787 were used in conjunction with the
appropriate aVnZ/OPTRI8686 sets for the RI procedures.

Local Coupled Cluster calculations pose an additional problem when ap-
plied to intermolecular interactions due to their implementation in MOL-
PRO. Based on the default distance cutoffs for the classification of orbital
pairs, any excitations across distinct molecules tend to be included only at a
lower level of theory, typically MP2. This can be prevented by an INTERACT=1

command, which deliberately promotes all intermolecular orbital pairs to
the highest level of theory irrespective of the distance criteria. This is in-
dicated throughout by a suffix “int” to the method descriptors, and will be
investigated further in the context of the systems studied herein.

Details on further input parameters for the MOLPRO calculations pre-
sented in this work can be found in Appendix CC.

24



1.3. THEORETICAL METHODS

VPT2 Implementation in GAUSSIAN 09

Several practical issues were discovered in the VPT2 implementation in
GAUSSIAN 09, Revision D.01 (although possibly also present in other ver-
sions), which are discussed in Reference 1717. Due to program bugs in Rev.
D.01, analytic second derivatives are potentially unreliable when using
Becke-Johnson damping for Grimme’s D3 dispersion correction.102102 Conse-
quentially, all DFT-D3 results presented in this thesis were obtained with
only zero-damping. Furthermore, the VPT2 results also exhibit a high sensi-
tivity to the underlying molecular structure when combined with DFT meth-
ods, which leads to considerable variations in some band positions and an-
harmonicity constants upon varying the input structure to the preceding
geometry optimization. Further scrutiny of the outputs revealed that this
inconsistency lies in the Coriolis coupling contributions. Meanwhile, MP2
was found to be free of this instability, which suggests problems in the nu-
meric DFT integration steps.

Beyond these DFT-specific inconsistencies, another problem was uncov-
ered relating to the “checkpoint” files that are used by the program to store
and access key results from the calculations. The VPT2 results were found
to differ depending on whether the working molecular structure was used di-
rectly from a preceding geometry optimization, or retrieved from the check-
point file of a separate calculation; this problem also impacts MP2 calcula-
tions. The effects are highly reproducible and hint towards possible accuracy
errors in the storage of the optimized structural data.

In any way, stability and plausibility checks are necessary to extract use-
ful estimates from DFT VPT2 calculations. Such a range of calculations has
been presented in the Supplementary Information of Reference 1717, and the
results are reproduced in Appendix DD.

Due to the large number of finite displacements, together with the per-
turbational approach, it was found to be numerically beneficial for VPT2
calculations to be conducted using basis sets without diffuse functions.103103

This strategy was adopted throughout for the present work.
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Chapter 2

Vibrational Dynamics in
Methanol Monomers and
Dimers

Methanol represents the simplest aliphatic alcohol, offering a single hydroxy
functionality for hydrogen bonding. The O–H stretching motion is, in a
coarse picture, decoupled from motions in the remainder of the molecule.
However, the internal counter-rotation of the hydroxy and methyl groups
experiences a small, threefold barrier, and the resulting tunneling effects
have a significant impact on the structure of the OH stretching band. Al-
though this torsion-stretching interaction is suppressed somewhat in alco-
hols with longer alkyl backbones due to the increased moment of inertia
and decreased symmetry, they may exhibit a conformational variety which
complicates studies of their aggregated forms. This comes into play already
for ethanol, where the distinguishable trans and gauche monomer confor-
mations allow for a total of up to 6 stable dimer structures with partially
overlapping infrared bands.104104,105105 Again, methanol as a model system is ad-
vantageous in that it only forms a single detectable dimer structure.11,106106,107107

While the fundamental transition of the donor OH stretching motion in
the methanol dimer (Figure 2.12.1) is well-established from an experimental
perspective, other important vibrational motions have gone uncharacterized
for a long time. This includes the librational motion, i.e. the torsion of the
OH group in the donor molecule, which is transformed from the low-barrier,
highly symmetric monomer situation into a much more confined and local-
ized motion in a hydrogen bond. Moreover, information on the anharmonic-
ity content of the stretching and libration motions, both in terms of their di-
agonal anharmonicity constants and mutual coupling, is difficult to obtain,
since this demands the detection of overtone and combination transitions
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Figure 2.1: Structure of the methanol dimer.

in both modes. Only recently have the donor OH stretching overtone,1414 the
libration fundamental,103103 and their combination band1717 been observed in
supersonic expansions and cryogenic matrix environments, providing access
to some important anharmonicity constants for the dimer.

Approaching the stretching-libration dynamics in the methanol dimer
from a theoretical side poses further difficulties, arising from the finding
that many popular methods fail in quantitatively predicting the harmonic
OH stretching red shift upon dimerization.1515 Since this quantity is the
most basic constituent in the experimentally observable dimerization shift,
its accurate assessment is indispensable for a thorough quantitative anal-
ysis. Only with advanced computational methods, reliable predictions ap-
pear to be possible in this regard. Beyond the harmonic picture, variational
anharmonic approaches to the methanol dimer remain problematic due to
the large number of vibrational degrees of freedom, while the less demand-
ing full-dimensional perturbational VPT2 approach has been found to sys-
tematically misestimate anharmonicity constants involving the librational
motion.1717 Furthermore, the substantial torsional tunneling effects in the
methanol monomer are not honored by this type of calculations, since they
only sample a single minimum of its threefold torsional potential.

In this chapter, the monomer reference will be discussed with respect
to the OH stretching wavenumber and torsional tunneling effects, and at-
tempts at a localization in the torsional subspace are discussed. Then, the
experimental data from jet- and matrix-FTIR measurements for diagonal
anharmonicity and the stretching-libration coupling are presented, followed
by harmonic and anharmonic quantum chemical predictions. Lastly, the
final section will attempt to explain the overall OH dimerization shift on
grounds of the gathered data.
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2.1 Torsion-Stretching Dynamics in Methanol
Monomers

Based on the rotational symmetry of the methyl group, the OH proton in the
methanol monomer experiences a threefold potential for the torsional motion
around the C–O bond, with a rather low barrier on the order of 400 cm−1.108108

Consequentially, pronounced tunneling interactions between the neighbor-
ing potential wells exist, splitting the otherwise triply-degenerate bound en-
ergy levels into states of A and E symmetry. This torsional behavior has been
intensively studied (see, e.g., References 109109, 108108, 110110, 111111), together with
the overall rotation of the molecular frame around the (pseudo-)figure a axis
that strongly interacts with it.112112–114114 In light of the cold conditions preva-
lent in supersonic expansions, and to facilitate comparison with simple the-
oretical models, the following discussion will be restricted to the rotational
ground state where interactions with the torsional motion vanish.115115,116116 In
addition, some resonances between rovibrational levels exist as detailed by
Hunt et al.,113113 but are not considered to be relevant for the J = 0 states
investigated below. Throughout all following schemes, doubly degenerate
levels will be shown as blue double lines, non-degenerate ones as red lines,
and vs and vt denote the quantum numbers of the stretching and torsion
modes, respectively.

Typical filet-jet FTIR spectra of the OH stretching fundamental and over-
tone bands are shown in Figure 2.22.2. Their intricate structure is partially lost
to the low 2 cm−1 resolution in these spectra, but the overall expanse of the
band systems due to residual rotational structure and offset A/E band cen-
ters still becomes obvious.

Drawing from an extensive body of gas-phase data for the methanol
monomer,108108,113113,117117 some relevant stretching-torsion energy levels are as-
sembled in Table 2.12.1 and on the left side of Figure 2.32.3 for torsion and stretch-
ing states each up to v = 2. Using Equation (1.61.6), the (vs,vt) =(1,1)←(0,0),
(1,0)←(0,0) and (0,1)←(0,0) transitions yield stretching-torsion coupling con-
stants of xs,t = +0.5 cm−1 for the A states and +13.7 cm−1 for the E states.
The analysis can be extended to the stretching overtones per Equations (1.31.3)
and (1.41.4), with

xs,t = 1
2

[
ν̃(2,1)←(0,0) − (2ν̃)s − ν̃t

]
, (2.1)

yielding very similar results of xs,t = +0.1 cm−1 and +13.2 cm−1 for the A
and E states, respectively.

The finite barrier height of the torsion potential implies that at suffi-
ciently high excitation, the energy levels of the torsional motion will resem-
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Figure 2.2: OH fundamental (bottom) and overtone (top) stretching bands
of the methanol monomer in the filet jet (from Ref. 1414, courtesy of F. Kolli-
post). Annotated are the band centers of A←A and E←E, weighted-average
(“avg.”), and plateau-localized (“loc.”) transitions; see Sec. 2.1.12.1.1 for details on
the two latter schemes.

ble those of a free rotor rather than a bound particle.109109 To model the torsion-
rotation problem, a Hamiltonian of the form118118

Ĥ = F
(
jα+ρJa

)2 +Vtors (2.2)

can be used, where jα is the torsional momentum operator around the C–
O bond, and ρJa introduces couplings to the rotational motion of the en-
tire molecular frame projected onto the a axis. Since the present treatment
is concerned only with Ja = 0 states, the latter term vanishes. As will be
shown below, good agreement between theory and experiment is obtained in
this formulation. The proportionality constant F = ħ/(4πc · I) contains the
effective moment of inertia I associated with the torsional motion.
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Figure 2.3: OH stretching-torsion energy levels of the methanol monomer
up to (vs,vt)= (2,2), with experimental data (Eexp, Refs. 108108,113113,117117) on the
left and weighted-average localized levels (Eavg, see Sec. 2.1.12.1.1) on the right.
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Table 2.1: Torsion-stretching transitions (in cm−1) in the methanol
monomer: Gas-phase experiment (“exp.”) and weighted-average (“avg.”) val-
ues for the stretching fundamental and first overtone.

exp.a

A←A E←E avg.b

ν̃t 294.5 199.8 231.3
ν̃s 3685.3 3682.5 3683.4
ν̃s+t 3980.3 3896.0 3924.1
xs,t +0.5 +13.7 +9.3
(2ν̃)s 7198.7 7193.9 7195.5
(2,1)c 7493.3 7420.1 7444.5
xs,t +0.1 +13.2 +8.8
xs,s −86.0 −85.6 −85.7
a Refs. 108108,113113,117117
b Weighted-average localization, see

Sec. 2.1.12.1.1.
c (2,1)←(0,0) transition

For the potential Vtors, a triple-minimum function of the form

Vtors(θ)= V3

2
[1−cos 3θ]+ V6

2
[1−cos 6θ] , (2.3)

is customarily used, with θ as the angular displacement of the OH group.
The relevant parameters F, V3, and V6 have been determined by Xu and
Hougen119119 for the stretching ground state, Hunt et al.113113 for its first excited
state, and Rueda et al.108108 for its second excited state.

2.1.1 Torsional Localization Models
The quantum chemical methods employed within this work sample only a
small portion of a potential energy hypersurface around a single minimum
in order to infer the vibrational properties of a system. For the methanol
monomer, this is clearly in stark contrast to the true torsional motion which
is dominated by the extensive tunneling interactions. In order to compare
the predictions to experimental data, one thus needs to make these two dras-
tically different situations compatible with each other. This problem can be
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approached from both sides: one can either introduce tunneling interactions
to the “localized” theoretical predictions, or alternatively, reduce the “delo-
calized” experimental picture to an artificial single-minimum situation. It
appears to be arguably easier to follow the latter approach and establish a
localized monomer reference instead of subjecting each theoretical data set
to an individual delocalization procedure. A localized reference will further-
more simplify the upcoming discussion of OH stretching dimerization shifts,
since it lifts the ambiguities in the stretching band centers that are present
in the torsionally delocalized monomer.

To this end, two localization models will be discussed below. The first one,
reproduced here from Reference 1717, is a state-specific approach that reduces
each experimental A/E state triplet to a triply-degenerate situation through
a uniform coupling element. Due to the simple expressions that result for
the localized state energies, this model will be called the “weighted-average”
approach below. The second model assumes a new vibrational potential func-
tion that mimics a single torsional minimum, suspended from a potential
energy “plateau”. By using a set of numerical routines, variational eigenval-
ues have been obtained for these modified potentials and will be discussed
below.

Weighted-Average Model

The first localization model assumes degenerate (vs,vt) state triplets to be
split by a uniform coupling element w among the neighboring potential
wells.1717 From the eigenvalues of the corresponding 3×3 coupling matrices,
the observable A–E splittings amount to 3w, and the localized energy lev-
els represent the degeneracy-weighted average of the delocalized ones. The
localized levels can thus be calculated in a straightforward manner from ex-
perimental data, and the results are displayed on the right-hand side of Fig-
ure 2.32.3 as “Eavg”. From these energy levels, one obtains stretching-torsion
couplings of xs,t = +9.3 and +8.8 cm−1 for the stretching fundamental and
overtone, respectively. At the same time, the diagonal OH stretching anhar-
monicity constant xs,s in the weighted-average model is −85.7 cm−1. This
value remains close to jet-experiment values of around −86 cm−1, even when
taking into account uncertainties from different approaches to locating the
stretching band centers.1414 The weighted-average band centers are indicated
in Figure 2.22.2 by “avg.” and listed in Table 2.12.1.

The eigenvalues of the torsional Hamiltonian given in Equation (2.22.2) (see
Figure 2.32.3, left and Figure 2.42.4, left) place the vt = 1 A sub-level just above
the hindering potential barrier in the ground and first excited stretching
states. Only for vs = 2 does this level become subtly confined due to the

33



CHAPTER 2. METHANOL MONOMERS AND DIMERS

increasing barrier height. Furthermore, strong interactions with the adja-
cent vt = 2 A state will likely push both levels apart. These effects are not
appreciated by the simple state-averaging scheme, and sizable errors near
the top of the hindering potential may result. Further above the barrier,
the weighted-average approach even formally fails to capture the transition
from the (near-)bound A/E states to the doubly degenerate free-rotor levels.

Plateau-Localization Model

The alternative plateau-localization model replicates a single potential well
from Equation (2.32.3) in the θ = [−π/3,+π/3] interval, and replaces the neigh-
boring ones by a plateau equal to the barrier height (see Figure 2.42.4, right).
These potential functions conceptually isolate the torsional motion in a sin-
gle minimum while still allowing the eigenstates to become non-bonded
above the respective plateau height. The eigenvalues thus approach the
correct free-rotor behavior at higher excitations, save for a constant offset
relative to the correct triple-well situation. Variational solutions to the one-
dimensional torsional Schrödinger equation were calculated with a home-
made set of numerical MATLAB routines (see Appendix BB for details), and
their robustness was verified by modeling the eigenstates of the Hamilto-
nian in Equation (2.22.2) with the correct threefold potentials. The level en-
ergies and resulting transitions are reproduced to reasonable accuracy, with
errors below 1 cm−1 (see Figures 2.32.3 and 2.42.4, and Table 2.12.1). The parameters
employed in the present work are given in Appendix BB, based on the concise
overview provided by Rueda et al. in Reference 108108.

Using the plateau-localization scheme, the stretching band centers of the
fundamental and overtone transitions uphold to within 0.5 cm−1 with re-
spect to their weighted-average counterpart, and are indicated in Figure 2.22.2
by “loc.” (see also Table 2.22.2). From both transitions, the plateau model
yields a diagonal monomer stretching anharmonicity of xs,s = −85.1 cm−1,
which is in good agreement with both the delocalized experimental and lo-
calized weighted-average values. At higher excitations, the plateau model
by construction behaves correctly in gradually merging its non-degenerate
eigenstates into rotational doublets.

Localized Vibrational Dynamics

In order to calculate localized stretching-torsion couplings, the most
straightforward approach would be to use the two lowest torsional states
within each stretching manifold, which yields a localized fundamental
wavenumber of 212.0 cm−1 (column “lowest” in Table 2.22.2). However, one
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Figure 2.4: Calculated OH stretching-torsion energy levels of the methanol
monomer up to vs = 2, using the correct threefold torsion potentials (from
Eq. (2.32.3), left) and the corresponding plateau-localized models (right).
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Figure 2.5: Evolution of torsional eigenstates upon varying the degree of lo-
calization (top panel) through the depth d of the two side-wells for vs = 0; and
upon varying the barrier/plateau heights Vb and Vp (bottom panel). Grey-
shaded areas represent energies below the barrier/plateau. The “lowest”
and “crossing” transitions from Tab. 2.22.2 are visualized in the top figure, see
the text for details.
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Table 2.2: Localized transitions and anharmonicity constants (in cm−1)
in the methanol monomer: weighted-average experimental (“avg.”, from
Tab. 2.12.1) and plateau-localized (“loc.”) values for the stretching fundamental
and first overtone. The localized data are calculated using either the lowest
excited torsional state (“lowest”), or the average of the states pertinent to an
avoided crossing (“crossing”); see the text for details. All data in cm−1.

loc.

avg. lowest crossing

ν̃t 231.3 212.0 255.9
ν̃s 3683.4 3683.7 3683.7
ν̃s+t 3924.1 3911.3 3960.1
xs,t +9.3 +15.6 +20.6
(2ν̃)s 7195.5 7196.0 7196.0
(2,1)a 7444.5 7436.4 7492.4
xs,t +8.8 +14.2 +20.3
xs,s −85.7 −85.7 −85.7
a (2,1)←(0,0) transition

drawback of the plateau model is the intricate relationship between the lo-
calized energy levels and their correct threefold-degenerate pendants. Fig-
ure 2.52.5 demonstrates the evolution of the eigenstates between both situa-
tions by varying either the degree of localization d (top panel), i.e. the depth
of the two potential wells adjacent to the central one, or the barrier and
plateau heights (Vb and Vp, resp.; bottom panel). Both evolution diagrams
suggest that the second-lowest localized torsion state appears to owe its con-
fined character mostly to an avoided crossing with another level further up,
which only comes into effect for plateau heights above ca. 300 cm−1. The
true methanol barriers are possibly still close enough to this onset point that
the state in question still carries a somewhat mixed character in the fully
plateau-localized calculations. In order to account for these ambiguities, one
could argue for averaging both partaking levels, which yields a torsional
fundamental wavenumber of 255.9 cm−1 in the stretching ground state (col-
umn “crossing” in Table 2.22.2, visualized in Figure 2.52.5). While still some-
what arbitrary, this result is reasonable in light of the weighted-average
wavenumber of 231.3 cm−1. From all possible results listed in Table 2.22.2,
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an approximate localized transition wavenumber of 230(20) cm−1 appears
justified, but this value will retain its uncertainties unless a more physical
description of the localized situation is proposed. The ambiguities further-
more carry forward to the stretching-torsion band, for which a wavenumber
of about 3930(30) cm−1 can be assumed.

More so than the fundamental transition, the first torsion overtone is ill-
defined from the level-evolution perspective. Here, the straightforward ap-
proach suggests that the final localized state for this transition in the vs = 0
manifold would be the 381.9 cm−1 level (see Figure 2.52.5, top) that barely es-
capes the potential well, which would imply a diagonal anharmonicity con-
stant of xt,t =−87.9 cm−1. The corresponding A and E values in the threefold
potential are −117.8 and +50.8 cm−1, respectively, with a weighted average
of −5.4 cm−1. Clearly, the situation in the intermediate region between the
confined and free-rotor limiting cases effectively prohibits a direct compari-
son of the localized and delocalized situations.

Concerning the desired stretching-torsion coupling constants, the
straightforward lowest-level approach to the localized problem yields xs,t =
+15.6 cm−1 for the stretching fundamental, and +14.2 cm−1 for its over-
tone. Averaging the two localized torsion states pertaining to the avoided
crossing, as suggested above, yields values of +20.6 and +20.3 cm−1 for
the two stretching transitions (column “crossing” in Table 2.22.2). Together
with the weighted-average values of +9.3 and +8.8 cm−1, an overall local-
ized stretching-torsion coupling of xs,t = +15(6) cm−1 emerges. Fortunately,
the stretching wavenumbers are less ambiguous due to the stronger confine-
ment of the torsional ground states at the bottom of the potential wells and
the consequentially smaller impact of the tunneling effects. Allowing for
some uncertainties in the numerical solutions, the respective fundamental
and overtone transitions can be placed at 3684(1) and 7196(2) cm−1, yielding
an anharmonicity constant of xs,s =−86(1) cm−1.

Finally, it should be kept in mind throughout the remainder of this work
that the localization approaches above do not carry direct physical mean-
ing as to the vibrational dynamics of the methanol monomer. Rather, their
purpose is to establish possible junction points with the quantum chemical
calculations and their inherently local character.

2.2 Jet- and Matrix-FTIR Spectroscopy
As outlined in Section 1.11.1, a donor-OH stretching vibration in a hydrogen
bond constitutes a sensitive probe for the interaction based on both the mag-
nitude of its spectroscopic red shift and its intensity increase. According to

38



2.2. JET- AND MATRIX-FTIR SPECTROSCOPY

Equation (1.31.3), diagonal and off-diagonal anharmonicity terms pertain to the
observable wavenumber of a fundamental transition, added on top of a har-
monic component. In order to calculate the dimerization shift, the dimer–
monomer differences in all contributions must be considered. Throughout
the remainder of this work, “Dim” and “Mon” superscripts will therefore be
used to provide the relevant context. The dimerization shift is hence given
by −∆ν̃ = ν̃Mon − ν̃Dim, with the negative sign included for the convenience of
writing the overall dominating red shifts as positive numbers. Drawing from
Equation (1.31.3),

−∆ν̃s = −∆ωs −2∆xs,s − 1
2

∑
i 6=s
∆xs,i. (2.4)

The different summation ranges for the monomer (11 off-diagonal terms)
and the dimer (29 terms) are implied for all ∆x sums here and throughout.
In addition, the stretching-torsion coupling in the monomer (xMon

s,t ) and the
corresponding coupling to the libration (“l”) in the dimer (xDim

s,l ) can be sep-
arated from the remaining terms, which will be indicated throughout by a
primed summation sign, i.e.∑

i 6=s
xs,i =

∑ ′
xs, j + xs,l/t. (2.5)

The primed summation index j now excludes both the OH stretching and
respective libration or torsion motions (“l/t”, depending on whether one con-
siders the dimer or monomer situation). Forming the dimer–monomer dif-
ference relevant to Equation (2.42.4) is straightforwards, yielding∑

i 6=s
∆xs,i =

∑ ′
∆xs, j +∆xs,l/t, (2.6)

with ∆xs,l/t = xDim
s,l − xMon

s,t . The different remaining summation ranges for the
dimer (28 terms) and the monomer (10 terms) are again implied.

2.2.1 Filet-Jet Spectra
Jet-FTIR spectra of pure methanol are shown in Figure 2.62.6, reproduced here
in part from Reference 1414. The wavenumber axis of the overtone spectrum is
compressed by a factor of 2 and shifted by 171.4 cm−1 to match the localized
monomer OH stretching band positions (see Table 2.22.2). This style of display
encodes the change in diagonal anharmonicity, ∆xs,s = xDim

s,s − xMon
s,s , as a visible

offset of the dimer overtone band relative to its corresponding fundamental.**

*Note that the size of this offset corresponds to 2∆xs,s if one interprets it in the com-
pressed overtone scale itself.
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Figure 2.6: Jet-FTIR spectra of methanol in the OH stretching fundamental
(bottom) and overtone (top) regions, courtesy of F. Kollipost (see also Ref. 1414).
The monomer (“M”) and dimer (“MM”) band centers are indicated by dashed
lines, using the localized wavenumbers from Tab. 2.22.2.

As outlined above, the extensive tunneling and residual rotational band
structure of the methanol monomer renders its stretching wavenumbers
somewhat ambiguous. Kollipost et al.1414 have used approximate values of
3686 and 7198 cm−1 for the fundamental and overtone bands, respectively,
based on Raman and IR intensity maxima. These values imply a diagonal
stretching anharmonicity content of xMon

s,s = −86 cm−1, but a ±1 cm−1 error
bar remains from the ambiguities in locating the band centers. Alterna-
tively, one can make use of the localized transitions determined above (see
Table 2.22.2), which approximately agree on the stretching anharmonicity of
xMon

s,s =−85.7 cm−1 but place the band centers at slightly lower wavenumbers
of about 3684 and 7196 cm−1.

In contrast to the monomer situation, the dimer stretching bands are
well-defined due to the much smaller rotational constants and the absence
of any significant tunneling structure. Based on the spectra in Figure 2.62.6,
Kollipost et al.1414 have found fundamental and overtone donor stretching
wavenumbers of 3574.5(3) and 6950.6(6) cm−1 and a resulting diagonal an-
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harmonicity constant of xDim
s,s = −99.2(4) cm−1. This implies an increase in

diagonal anharmonicity content by about ∆xs,s =−13.5 cm−1 upon formation
of the hydrogen bond.†† Since this value is added twice in the calculation of a
transition wavenumber, the diagonal anharmonic correction to the dimeriza-
tion red shift amounts to −2∆xs,s = 27(2) cm−1. The overall shift obviously
depends on the chosen monomer reference, but the robust behavior of the
stretching transitions under the different localization approaches presented
in Section 2.12.1 suggests an overall value of −∆ν̃s = 109(1) cm−1.

Further information on the strength of the intermolecular interaction
is contained in the intensity ratio of the fundamental and overtone dimer
bands (see Section 1.11.1). From the spectra displayed in Figure 2.62.6, a ratio
of 320(90) was determined by Kollipost et al. for the dimer, contrasted by
a much smaller monomer value of 6(1) which may, however, be unreliable
due to the higher peak extinction.1414 Calculations suggest that most of these
effects stem from a more than ten- to twenty-fold increase in the fundamen-
tal intensity from the monomer to the dimer, whereas the overtone intensity
decreases only by a factor of about 5.1414 These data provide a direct demon-
stration of the intensity impairments discussed in Section 1.11.1, and will serve
as an experimental reference for quantum chemical predictions further be-
low.

2.2.2 Matrix-FTIR Spectra
As in the monomer case, experimental assessment of the stretching-libration
coupling xDim

s,l in the dimer requires the corresponding combination band
wavenumber, ν̃Dim

s+l. Matrix isolation experiments were conducted to observe
this presumably weak band, using the apparatus maintained by the group
of Wugt Larsen at the MAX-lab facility in Lund, Sweden, and the results are
reproduced here from Reference 1717. Figure 2.72.7 shows spectra of methanol
dimers embedded in a neon matrix, sampled before (black) and after (red)
annealing to 9 K, with difference spectra (“diff.”) in blue. In addition, OH
libration fundamental spectra are included from an earlier study.103103 Due
to optical saturation, the intensities of the dimer stretching fundamental
are unreliable, and the annealing difference trace is omitted for this band.
Neon was specifically chosen over other common substrates since it typically
induces lower perturbations in the vibrational signatures of the embedded
guest molecules.120120–122122

†Arguably, one might also speak of a decrease rather than an increase in anharmonicity
due to the negative sign. More intuitively however, anharmonicity can be regarded as a
departure from the harmonic behavior in either direction, which warrants this wording.
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Figure 2.7: FTIR spectra of methanol dimers embedded in neon matrices
(adapted from Ref. 1717, courtesy of J. Andersen). Black and red traces show
pre- and post-annealing spectra, respectively, with their differences in blue
(omitted for the OH stretching fundamental due to optical saturation distor-
tions). Annotated are the last two digits of sub-band wavenumbers in cm−1.
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Despite this usually benign behavior of neon as a matrix host, the donor
OH stretching fundamental band displayed in Figure 2.72.7 is spread out over
a region of about 30 cm−1, which is incompatible with the jet spectra (Fig-
ure 2.62.6). Furthermore, the complicated sub-band patterns that are visible
in these spectra were found to be mostly insensitive to deuteration of the
methyl group, but change when the OH proton itself is replaced by deu-
terium.1717 This behavior is akin to tunneling of the OH proton into differ-
ent potential minima, but any such effect should be quenched by the highly
directional hydrogen bond in the dimer at least for the donor OH torsion.
Despite their yet unknown origin, an identification of several sub-bands was
attempted. These assignments are listed in Table 2.32.3, and the last two digits
of the respective wavenumbers are annotated in Figure 2.72.7.

Based on previously assigned monomer transitions by Perchard114114 and
the observed annealing trends, a band formation around 4150–4180 cm−1

can be attributed to the stretching-libration combination band. In addition,
a broad feature at 974 cm−1 likely stems from the overtone of the previ-
ously established 558 cm−1 libration band. Under the assumption that the
observable sub-band features can be correlated among the stretching funda-
mental, overtone, and combination band formations, the stretching-libration
coupling xDim

s,l is found to be about +43 cm−1 (see Table 2.32.3). Qualitatively, this
distinctly positive value falls in line with expectations: a librational deflec-
tion of the donor OH group will tend to weaken the hydrogen bond, thus
removing some of the red-shifting effect on the stretching vibration.

Furthermore, the diagonal OH stretching and libration anharmonicity
constants xDim

s,s and xDim
l,l can be calculated from the assigned transitions. Here,

the stretching constant of about −97 cm−1 is reassuringly close to the jet-
FTIR value of −99 cm−1 (see Section 2.2.12.2.1). All coupling constants show
only little variation among the correlated sub-features, which indicates a
highly regular behavior of the underlying vibrational dynamics across the
different stretching/libration excitations.

While the matrix measurements readily enable the observation of the
weak stretching-libration combination band, one still needs to bridge the gap
to the desired, yet unattainable gas-phase situation. The previous monomer
characterization by Perchard et al.114114,121121 is helpful in this regard as well,
demonstrating that the host-guest interactions in neon matrices are small
and systematic enough for the band positions to fall within few cm−1 of the
gas phase. Naturally, this high robustness in the wavenumbers also car-
ries over to the derived anharmonicity constants. Furthermore, an apparent
breakdown of the A←A and E←E sub-state selection rules in the neon ma-
trix114114 lends intensity to A↔E type transitions, which allows to extract a
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Table 2.3: Sub-bands and anharmonicity constants (in cm−1) from matrix-
FTIR spectra (see Fig. 2.72.7) for donor OH stretching (“s”) and libration (“l”)
motions, yielding diagonal anharmonicity constants xs,s and xl,l, resp.; and
stretching-libration combination sub-bands (“s+l”), yielding their mutual
coupling xs,l.

ν̃s (2ν̃)s xs,s ν̃l (2ν̃)l xl,l ν̃s+l xs,l

3568 6943 −97 558a 974 −71 4168 +42
3560 6925 −98 4162 +44
3556 6921 −96 4157 +43

a Ref. 103103.

more comprehensive state-splitting picture from these experiments. Using
the E←A transition of the stretching-torsion combination band, a monomer
coupling constant of xMon

s,t of +12.8 cm−1 was found,121121 close to the correspond-
ing gas-phase value of +10.9 cm−1. This also holds true for the diagonal
monomer OH stretching anharmonicity with an A←A neon-matrix value of
xMon

s,s = −86.2 cm−1,121121 again close to the corresponding gas-phase values of
−86.0 (see Table 2.12.1).‡‡

Concerning the dimer, the diagonal donor OH stretching anharmonic-
ity of xDim

s,s =−97(1) cm−1, averaged over the assigned sub-bands, agrees well
with the jet-cooled gas-phase value of −99 cm−1. Assuming similar agree-
ment to uphold for anharmonicity constants that involve the libration, the
data assembled in Table 2.32.3 should provide a viable benchmark for theo-
retical predictions. Based on the assumption that the anharmonicity con-
stants from the neon-matrix experiments uphold to a good degree in the
gas phase, the OH stretching and libration fundamental wavenumbers of
3575 and 560(10) cm−1 from jet-FTIR experiments,1414,103103 together with the
xDim

s,l = +43(5) coupling determined above, thus suggest a combination band
position of 4178(15) cm−1 in the gas phase.

From the matrix spectra shown in Figure 2.72.7, the stretching overtone
and stretching-libration combination band patterns yield integrated ab-
sorbances of 0.50(10) and 0.20(3) cm−1, respectively, resulting in a combi-
nation:overtone ratio of about 0.4(1). The fundamental band from these

‡Unfortunately, Perchard et al.114114,121121 do not make their assigned sub-level transitions
explicit, and state slightly different coupling constants as calculated herein from their as-
signed transitions. A detailed discussion of their data can be found in Ref. 1717.
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spectra does not lend itself to a similar analysis due to the aforementioned
optical saturation, but the jet experiments suggest a stretching fundamen-
tal:overtone ratio of 320(90) (see Section 2.2.12.2.1 and Reference 1414) so that in
all, the stretching-libration combination band can be estimated to be three
orders of magnitude weaker than the fundamental. Of course, this direct
comparison to gas-phase intensities is only meaningful if the polarizable
matrix environment does not introduce substantial perturbations in the IR
absorption coefficients of the analyte.

Previous matrix-FTIR experiments on the stretching overtone band sug-
gest that the fundamental:overtone intensity ratios for the monomer indeed
shows distinct variations across different matrix host materials, while the
situation for the donor OH stretching vibration is well-comparable to the jet
results.1414 The librational mode, with its large-amplitude motion perpendic-
ular to the hydrogen bond, might possibly experience a larger long-range
polarizing interaction with the matrix environment, but this remains specu-
lative without a direct observation of the stretching-libration band in a filet-
jet experiment. However, this endeavor is hampered by the low intensity of
the combination band and its position close to the margins of the available
optical filters.

2.3 Quantum Chemical Calculations
As per Equation (2.42.4), the starting point for an analysis of the observable
dimerization red shift is the harmonic component, to which anharmonic cor-
rections are added. One lasting difficulty in this scheme is that neither the
harmonic shift nor the full off-diagonal sums are known from the experi-
ment, seeing as this would require a full characterization of all fundamental
bands and their combinations with the OH stretching vibration for both the
monomer and the dimer. Some of the remaining terms must therefore be left
to theoretical predictions, the most obvious one being the harmonic dimer-
ization shift. However, most popular quantum chemical methods were found
to be unreliable for calculating this quantity.1515 An in-depth discussion of this
effect is thus indispensable for the red-shift analysis.

On the anharmonic side, perturbational VPT2 predictions are cur-
rently the only feasible approach to the full 30-dimensional problem in the
methanol dimer. This method will be discussed further below in its role
of predicting both experimentally known diagonal anharmonicity constants
and the remaining elusive off-diagonal sums.
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Local and Canonical Results

One obvious way to tackle the harmonic part of Equation (2.42.4) are quantum
chemical calculations for which harmonic vibrational treatments are read-
ily available and often still feasible. Standard MP2 and DFT methods have
previously been found to predict harmonic red shifts −∆ωs on the order of
150 cm−1 and more (see Table 2.42.4).1313,1515,123123 Together with the experimen-
tally determined change in diagonal anharmonicity, −2∆xs,s = 27 cm−1, and
the (localized) dimerization red shift of −∆ν̃s = 109 cm−1, this would imply
drastic off-diagonal contributions 1

2
∑
∆xs,i on the order of 70 cm−1–whereas

VPT2 predictions, despite carrying their own uncertainties, estimate these
contributions to be significantly smaller.1717,103103 Furthermore, since the corre-
sponding quantities encode the changes in anharmonic couplings from the
monomer to the dimer situation, such large corrections would suggest a
drastic impact of the highly localized hydrogen bond on the vibrational dy-
namics across the entire molecular aggregate, instead of only a few sensitive
vibrational modes. It thus appears that either the harmonic calculations,
their anharmonic counterparts, or both must be at fault.

Given that the influence of diagonal anharmonicity on the donor OH
stretching wavenumber has been determined experimentally,1414 any error
in the harmonic shift is particularly unsatisfying in that it must be com-
pensated with a factor of 2 by the off-diagonal sum in Equation (2.42.4). The
uncertainties associated with the latter may thus become exceedingly large
when deduced from the combined theoretical and experimental data, and
obtaining accurate harmonic estimates is a key point in disentangling the
observable dimerization shift.

A −121 cm−1 reference value for the harmonic red shift was recently ob-
tained from explicitly correlated local Coupled Cluster calculations.1515 The
MP2 results in Table 2.42.4 are of particular interest in this regard, seeing as
they still overshoot this reference by some 30 cm−1 even in comparable local/-
explicit correlation combinations. The error in the harmonic red shifts can
be reduced by including higher-order perturbations further along the MP se-
ries, similar to an MP4 study by Bleiber and Sauer on the water dimer.124124

Based on the irregular behavior of the absolute stretching wavenumbers and
interaction energies however, this appears to be a consequence of error com-
pensation rather than a more faithful description of the electronic structure.

Concerning the local Coupled Cluster results in Table 2.42.4, the importance
of subjecting all intermolecular orbital pairs to the high-level correlation
treatment (“int”) becomes clear. Based on default MOLPRO distance cutoffs,
orbital pairs on different molecules are usually treated at the MP2 level if
the “int” directive is not specified. From the data in Table 2.42.4, inclusion of
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Table 2.4: Collection of harmonic predictions for the methanol dimer: dis-
sociation energies D0 and De in kJ mol−1; and wavenumbers ω for O–H
stretching and torsion/libration modes (subscripts “s”, “t” and “l”, resp.) in
the monomer and dimer, together with corresponding dimerization shifts,
in cm−1.

D0 (De) ωMon
s ωDim

s −∆ωs ωMon
t ωDim

l ∆ωl/t

B3LYP-D3 / VTZ 25.9 (31.9) 3829 3687 142 306 700 395
B2PLYP-D3 / VTZ 25.6 (31.5) 3858 3722 136 307 697 390

MP2 / VTZ 24.2 (29.9) 3882 3740 142 309 699 390
MP2 / aVTZ 20.6 (25.8) 3860 3695 165 290 690 400
MP2 / sVTZa 20.5 (25.8) 3861 3692 169 294 695 401

LMP2 / VTZ 20.0 (25.4) 3876 3758 118 309 661 352
LMP2 / a′VTZb 17.4 (22.4) 3859 3712 146 293 658 364
LMP2 / aVTZ 17.7 (22.6) 3856 3710 147 293 660 366
LMP2 / sVTZa 17.6 (22.5) 3857 3709 148 293 660 367
LMP3 / sVTZa 17.3 (22.6) 3923 3805 118 296 657 360
LMP4 / sVTZa 16.2 (21.1) 3823 3726 98 291 630 339

SCS-MP2 / sVTZa 14.3 (19.5) 3858 3731 127 293 662 369
SCS-LMP2 / sVTZa 15.1 (20.1) 3852 3740 113 293 635 342
LMP2-F12 / VDZ-F12 19.0 (24.0) 3876 3714 162 298 675 377

LCCSD(T0) / sVTZa 16.2 (21.2) 3829 3736 93 294 632 339
LCCSD(T0)(int) / sVTZa 16.5 (22.0) 3723 106 647 353
LCCSD(T0)(int) / a′VTZb 16.3 (21.8) 3831 3727 104 293 644 351

LCCSD(T0∗)-F12a / VDZ-F12 16.8 (21.9) 3862 3754 108 294 647 352
LCCSD(T0∗)-F12a(int) / VDZ-F12 17.7 (22.9) 3740 122 660 365

LCCSD(T0∗)-F12a / VTZ-F12 17.0 (22.2) 3863 3756 108 293 648 355
Best estimatec 18.3 (23.4) 121

a Omitting diffuse functions on methyl hydrogens, see Sec. 1.3.31.3.3.
b Omitting diffuse function on all hydrogens.
c From Ref. 1515; see the text for details.
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intermolecular pairs at the Coupled Cluster level has a notable impact on
the strength of the intermolecular interaction both in terms of its overall
energy and the impact on the harmonic stretching wavenumbers.§§

Adding explicit correlation to the picture produces results that are close
to the CBS limit already at the double-zeta level. Furthermore, since ex-
plicit correlation leaves the CBS limit of a method itself unchanged (see
Section 1.3.11.3.1), the conventional LCCSD(T0) results demonstrate that triple-
zeta basis sets are still somewhat too small for spectroscopic predictions. In-
terestingly, the effects of including intermolecular pairs at Coupled Cluster
level (“int”) are quite similar among the LCCSD(T0) and LCCSD(T0∗)-F12a
results. Even at the explicitly correlated VTZ-F12 level (not included in Ta-
ble 2.42.4), a comparable 1.0 kJ mol−1 increase in the electronic dissociation en-
ergy De was found. It thus appears that the “int” effects are approximately
additive and rather insensitive to CBS limit convergence. A set of best-
estimate values was thus obtained by conducting a structure optimization
and frequency calculation at the VTZ-F12 (non-“int”) level, re-calculating the
interaction energy at the VQZ-F12 (non-“int”) level, and adding the VDZ-F12
“int” effects in the wavenumbers and energies.1515 This composite approach
yields a best-estimate interaction energy of D0 = 18.3 kJ mol−1 and the afore-
mentioned harmonic dimerization shift of 121 cm−1. With respect to these
composite results, the LCCSD(T0∗)-F12a(int)/VDZ-F12 predictions already
provide a remarkable accuracy at reasonable computational costs. To allow
for remaining basis set incompleteness effects and impacts from the various
underlying approximations, a ±5 cm−1 error bar is assumed for the harmonic
dimerization shift.

A comparison of the MP2, LMP2 and LCCSD(T0) data presented in
Table 2.42.4 further provides a consistency check for the partially and selec-
tively augmented a′VTZ and sVTZ basis set constructions introduced in Sec-
tion 1.3.31.3.3. For the methanol dimer, diffuse functions in sVTZ were added
on the donor and acceptor OH protons, leaving the hydrogen atoms of the
methyl groups with the pure VTZ kernel. The results indicate that the
construction is quite robust in all cases, which is plausible in that the
methyl groups do not partake to a significant degree in the association of
the two methanol sub-units. Meanwhile, augmenting only the OH protons
reduces the number of basis functions from 368 (aVTZ) to 314 (sVTZ), and
while practical limitations have rendered it impractical to conduct a full
LCCSD(T0)(int)/aVTZ treatment of the methanol dimer within the course

§Conversely, the default LMP2 method in MOLPRO keeps all correlated orbital pairs at
the MP2 level without reducing the computational rigor for more distant ones. The “int”
directive therefore only takes effect in the local Coupled Cluster calculations presented
herein, and is obviously irrelevant in the monomer context.
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of this thesis, the corresponding sVTZ calculations were still within reach.
If the validity of a selective augmentation scheme can be validated, its use is
thus favorable over the fully augmented basis set. Further omitting diffuse
functions on all hydrogen atoms indiscriminately leads to the a′VTZ basis
set.9999 Here, the LMP2 and LCCSD(T0) results in Table 2.42.4 do not differ
drastically from their sVTZ (and, presumably, also the full aVTZ) counter-
parts. Further stripping the diffuse functions also from all heavy atoms and
retaining only the core VTZ basis set has a significant impact on all prop-
erties at the (L)MP2 level. This is of interest in the context of the VPT2
calculation presented further below, since they were carried out exclusively
in the VTZ basis set for stability reasons. Thus, it is generally important
to include diffuse functions at least on heavy atoms in order to obtain ade-
quate results. Still, the additional cost of the sVTZ construction over a′VTZ
is small, and its practicability makes it a viable candidate for further use.

Apart from the OH dimerization red shift and the associated intensity
modulations, one can also assume the blue-shifting effect of the OH· · ·O con-
tact on the OH torsion motion to constitute another measure for the interac-
tion strength. Listed in Table 2.42.4 are the harmonic wavenumbers of the free
monomer OH torsion and its librational counterpart in the dimer. Across the
chosen methods, the monomer values fall in a range of less than 20 cm−1,
with more accurate treatments agreeing on a value around 293 cm−1. The
variations in the dimer libration wavenumbers are somewhat larger, but still
center around a high-level 660 cm−1 result with deviations of up to 40 cm−1.
The dimer–monomer shift of 350 to 400 cm−1 indicates that the shallow tor-
sional potential in the monomer adopts a much more confined character due
to the attractive and directing influence of the acceptor center.

The mediocre performance of the MP2 calculations for the harmonic red
shift leaves room for improvement. Based on a suggestion by Grimme,125125

the contributions of parallel and antiparallel spin pairs to the MP2 correla-
tion energy can be weighted with individual factors, which is termed “Spin-
Component Scaling” (SCS). The two contained parameters were originally
determined by Grimme from fitting the resulting correlation energies to a
benchmark set. A stringent theoretical reasoning for the individual scal-
ing of the different spin-pair contributions has been provided by Fink.126126 In
practical terms, SCS-MP2 has been found to improve the dissociation ener-
gies of dispersion-dominated intermolecular interactions, but in turn under-
estimate classical hydrogen bonds.127127,128128

In the case of methanol, SCS-LMP2 predicts reasonable monomer and
dimer stretching wavenumbers with respect to the best Coupled Cluster es-
timates, whereas LMP2 only agrees on the monomer value. This leads to an
SCS-LMP2 harmonic dimerization shift of 113 cm−1 for the methanol dimer,
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much closer to the best available estimate (121 cm−1) than the pure LMP2
value (148 cm−1). While dissociation energies from conventional, unscaled
MP2 approaches are still favorable, the harmonic spectroscopic predictions
appear to profit from applying SCS in this case. However, it remains unclear
at this point whether these superficially improved results indeed reflect a
more faithful description of the electronic structure in the methanol dimer,
or rather some fortuitous error compensation. The viability of the approxi-
mation will be further tested on other systems throughout this work.

LMOMO Dissection of Dimerization Shift

Within the framework of local electron correlation, the LMOMO method pro-
vides yet another option to reduce the computational demand while allowing
to approach a desired accuracy. To this end, user-defined subsets of atoms
in a molecular system are used to group the localized domains into “re-
gions” which are to be treated at a certain computational level, while the
remainder of the system is demoted to some less expensive method. Such an
LCCSD(T0):LMP2/aVTZ approach was undertaken for the methanol dimer,
with instructive results reflecting on the notorious MP2 overestimation of
the harmonic dimerization shift.1515 An more detailed look at the region defi-
nitions and corresponding MOLPRO inputs is provided in Appendix CC.

From a standard LMP2/aVTZ starting point (step (a) in Figure 2.82.8),
treating the electron pair in the donor O–H bond at the Coupled Cluster
level (b) already reduces the harmonic red shift by almost 40 cm−1. The
impact of extending the high-level region to the acceptor O–H bond and
all oxygen lone pairs (c, d) is significantly smaller, and further promoting
the intermolecular excitations to the CC level (e) even tends to widen the
monomer–dimer gap again. The most important difference between full
LMP2 and LCCSD(T0) treatments thus appears to be the inclusion of singles
excitations in the donor O–H bond, which MP2 naturally neglects. Further-
more, the LMP2-F12/VDZ-F12 results in Table 2.42.4 suggest that the method
still significantly exaggerates the harmonic dimerization shift when brought
closer to the basis set limit. An application of the LMOMO method with ex-
plicitly correlated methods is still pending, but will be highly desirable also
in the context of larger molecular systems.

The physical justification of the LMOMO scheme itself is again given
by the local nature of electron correlation, suggesting that the interaction
characteristics of the two OH groups are mostly insensitive to the treat-
ment of the largely non-participating moieties. From this standpoint, steps
(d) and (e) in Figure 2.82.8 can be compared to the full LCCSD(T0)/sVTZ and
LCCSD(T0)(int)/sVTZ results; the relevant data are assembled in Table 2.52.5.

50



2.3. QUANTUM CHEMICAL CALCULATIONS

Figure 2.8: Visualization of LMOMO calculations for the methanol dimer
(courtesy of R. A. Mata, reprinted from Ref. 1616 with permission of AIP Pub-
lishing). Displayed are density plots of the orbitals which are successively
included in the LCCSD(T0) region, together with an energy level scheme
and harmonic wavenumbers (in cm−1) for the monomer and dimer donor
OH stretching modes.

Table 2.5: Comparison of LMOMO and LCCSD(T0) results using the sVTZ
basis set construction, with and without inclusion of intermolecular pairs
(“int”) and the C–O bonds (“+C–O”) at the Coupled Cluster level. Given
are the harmonic monomer and dimer donor OH stretching wavenumbers
(ωs, in cm−1), together with the dimerization shifts and electronic/zero-point
corrected dissociation energies (D0 and De, in kJ mol−1).

LMOMOa LMOMO+C–O LCCSD(T0)

non-”int” ωMon
s 3784 3836 3829

ωDim
s 3691 3743 3736

−∆ωs 93 93 93
D0 (De) 16.1 (21.0) 16.1 (21.2) 16.2 (21.2)

“int” ωMon
s 3784 3836 3829

ωDim
s 3670 3730 3723

−∆ωs 114 106 106
D0 (De) 17.0 (22.1) 17.0 (22.1) 16.5 (22.0)

a Calculations (d), (e) in Fig. 2.82.8.

51



CHAPTER 2. METHANOL MONOMERS AND DIMERS

Partitioning the methanol molecules in the scheme discussed above has
a significant impact on the absolute harmonic wavenumbers, red-shifting
them by some 40 to 50 cm−1, whereas the resulting dimerization shifts and
dissociation energies still compare well among the calculations. The discrep-
ancies in the absolute wavenumbers can be significantly reduced by further
including the C–O bonds at the Coupled Cluster level (“LMOMO+C–O” in
Table 2.52.5), providing results within 10 cm−1 of the full LCCSD(T0)(int) cal-
culations.

2.3.1 Anharmonic Calculations
While establishing a high-level harmonic reference for the dimerization shift
allows to deduce estimates for the off-diagonal sum in Equation (2.42.4), it does
not provide detailed insight into its individual components. To this end,
the complete anharmonic coupling matrices in the methanol monomer and
dimer were obtained from a number of VPT2 calculations at the MP2 and
B3LYP levels of theory1414,103103 and shall be discussed in detail below. In ad-
dition, potential energy curves for the OH stretching vibrations were calcu-
lated at the LCCSD(T0∗)-F12a(int) level and subjected to numerical solu-
tions of the vibrational Schrödinger equation in order to obtain diagonally
anharmonic estimates for this level of theory.

VPT2 Calculations

As outlined in Section 1.3.31.3.3, the non-augmented VTZ basis set was used
for all calculations in order to improve the numerical stability of the VPT2
results, and all DFT calculations furthermore only employed zero-damping.
Still, there is a distinct impact of the DFT instabilities that are outlined in
Section 1.3.31.3.3 and further discussed in Reference 1717.

First, the DFT VPT2 calculations are quite sensitive to the underlying
molecular structure, which causes deviations in the anharmonic predictions
already for different input structures to the preceding geometry optimiza-
tions. In the case of the methanol monomer, this effect alone leads to the
stretching-torsion coupling, xMon

s,t , being predicted at the B3LYP-D3/VTZ level
to be between +3 and +8 cm−1 with a drastic outlier of −20 cm−1. In the
dimer, the second-lowest normal mode—corresponding to the hindered tor-
sion of the entire donor methanol molecule around its pseudo-figure axis—
shows an exaggerated sensitivity to numerical instabilities, with unphysi-
cal, often imaginary wavenumbers in many calculations. Conversely, MP2
behaves better in this regard and only experiences inconsistencies due to the
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Table 2.6: VPT2-anharmonic results (in cm−1) for the methanol monomer
and dimer donor on different levels of theory (see also Refs. 1616, 1717): diag-
onal OH stretching anharmonicity constants (xs,s); stretching-torsion and -
libration coupling constants (xs,t and xs,l); and remaining primed-sum terms
as per Eqs. (2.52.5) and (2.62.6). Also given are the available experimental data,
using the localized monomer xs,t reference from Sec. 2.12.1.

Mon Dim

xs,s xs,t
∑ ′

xs, j xs,s xs,l
∑ ′

xs, j

B2PLYP-D3/VTZ −86 +4 −28 −102 +58 +15
B3LYP-D3/VTZ −87 +3 −26 −104 +58 +25
MP2/VTZ −83 +9 −30 −102 +59 +9
exp. −86(1) +15(6) −99 +43(5)

apparent accuracy issues in the storage and retrieval of molecular structures
as outlined in Section 1.3.31.3.3.

The results assembled in Table 2.62.6 show that the diagonal OH stretch-
ing anharmonicity constant xDim

s,s is reproduced with a slight, but system-
atic overestimation among the chosen methods. Any disagreement between
theory and experiment in this value is exacerbated by the pre-factor of 2
in Equation (2.42.4), and the resulting deviations of up to +10 cm−1 in the
dimer–monomer correction −2∆xs,s amount to roughly one third of the true
−27 cm−1 experimental value. The stretching-libration couplings are sim-
ilarly misjudged in magnitude, exceeding the neon-matrix experiment by
some 15 cm−1, again about one third of the experimental value. Fortuitously,
the two errors tend to cancel in their overall effect due to the opposite signs.

For the primed-sum terms
∑ ′

xs, j according to Equation (2.52.5), the results
suggest an average value of about +16(9) cm−1 in the dimer, and a more
robust value of −28(2) cm−1 in the monomer, with a dimer–monomer dif-
ference of

∑ ′
∆xs, j = +44(10) cm−1. The sizable uncertainties in these num-

bers stem mostly from the numerical instabilities. Conversely, both the di-
agonal stretching anharmonicity xDim

s,s and, somewhat surprisingly, also the
stretching-libration coupling xDim

s,l in the dimer are robust to within about
2 cm−1. Since these two coupling constants are the most important anhar-
monic contributions in the methanol dimer,1717 their stability among the cal-
culations is reassuring for their direct use in the combined experimental and
theoretical discussion.
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Table 2.7: Absolute band positions and related anharmonicity constants
(in cm−1) for the methanol monomer (top) and dimer donor (bottom) from
VPT2 calculations at the three chosen levels of theory, all using the
VTZ basis set. “+ωLCC” indicates results with the respective harmonic
wavenumbers replaced by the LCCSD(T0∗)-F12a(int)/VDZ-F12 values (see
also Refs. 1515, 103103). Also given are experimental results (“exp.”), see the text
for details.

ν̃s (2ν̃)s xs,s ν̃l/t (2ν̃)l/t xl,l/t,t ν̃s+l/t xs,l/t

Monomer
B2PLYP-D3 3674 7175 −86 241 413 −35 3919 +4

+ωLCC 3678 7183 229 388 3911
B3LYP-D3 3645 7117 −87 233 391 −37 3881 +3

+ωLCC 3678 7182 221 368 3902
MP2 3706 7247 −83 257 453 −30 3972 +9

+ωLCC 3686 7206 243 425 3937
exp. 3684 7196 −86(1) 230(20) 3930(30) +15(6)

Dimer
B2PLYP-D3 3554 6904 −102 589 1088 −43 4200 +58

+ωLCC 3572 6939 551 1016 4181
B3LYP-D3 3520 6831 −104 586 1079 −45 4164 +58

+ωLCC 3573 6937 545 1000 4176
MP2 3571 6939 −102 592 1088 −46 4222 +59

+ωLCC 3571 6939 552 1012 4183
exp. 3575 6951 −99(1) 558 974 −71(5) 4178(5) +43(5)

In addition to the anharmonicity constants listed in Table 2.62.6, it is in-
structive to judge the intrinsic performance of the VPT2 calculations in pre-
dicting the overall wavenumbers of some relevant transitions. Table 2.72.7 as-
sembles predictions at the three chosen levels of theory for the fundamen-
tal, overtone and combination bands in the methanol monomer and dimer.
Experimental data are included to provide a reference for the calculations,
with an estimated gas-phase value for the stretching-libration combination
wavenumber ν̃Dim

s+l in the dimer based on the fundamental transitions ν̃Dim
s and

ν̃Dim
l , and the xDim

s,l coupling element. Concerning the monomer, the ambigui-
ties in the localization approaches discussed in Section 2.12.1 are too large for
the torsional motion to serve as a stringent benchmark for the calculations,
for which reason its experimental overtone wavenumber and diagonal an-
harmonicity constant are omitted in Table 2.72.7.
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In the dimer, the two chosen DFT levels tend to underestimate the
OH stretching fundamental wavenumber ν̃Dim

s in comparison to the exper-
iment, while MP2 comes close to it. The harmonic results in Table 2.42.4
suggest that the DFT errors might be mostly contained in the harmonic
wavenumbers, which are also too low in comparison to the high-level Cou-
pled Cluster results, whereas MP2/VTZ coincidentally provides a harmonic
stretching wavenumber close to the high-level values. Through the gen-
eral additivity of all harmonic and anharmonic effects in Equation (1.11.1),
one can substitute all harmonic wavenumbers with the respective high-
level LCCSD(T0∗)-F12a(int)/VDZ-F12 results before including the anhar-
monic corrections. These harmonic “updates” are indicated in Table 2.72.7 by
“+ωLCC”. For the dimer donor, using the 3740 cm−1 reference wavenum-
ber then leads to a good agreement of all calculated band positions with the
jet-FTIR experiment. Similar improvements are seen in the first overtone
(2ν̃)Dim

s , although the remaining gap to the experiment is larger than for the
fundamental. This can likely be explained by the slightly overestimated di-
agonal anharmonicity constants xDim

s,s , again due to their larger pre-factors in
the vibrational term formulas.

Concerning the dimer libration band with a high-level harmonic refer-
ence of ωDim

s = 660 cm−1,103103 the agreement is again satisfactory for the funda-
mental, but systematically worse for the overtone due to the underestimated
anharmonicity constant xDim

l,l and its consequentially insufficient red-shifting
contribution. However, since both the stretching and libration fundamental
wavenumbers are in good agreement with the experiment at least after the
harmonic updates, the combination band is similarly well reproduced.

For the monomer, the OH stretching mode again exhibits a beneficial
effect of including the LCCSD(T0∗)-F12a/VDZ-F12 harmonic wavenumber
of 3862 cm−1. As mentioned before, the ambiguities in the torsional local-
ization obfuscate the corresponding results, and no clear advantage of the
high-level harmonic updates is apparent. In addition, it shall be stressed
here again that the localization approaches lack a direct physical meaning
and are only included to compare the experimental and theoretical results.

As indicated in Table 2.82.8, the VPT2 calculations perform adequately in
modeling the 320(90)-fold decrease of the stretching overtone intensity in
relation to the fundamental. However, the matrix-FTIR spectra indicate
the stretching-libration combination band to be weaker by a factor of about
0.4 than the stretching overtone, whereas the VPT2 calculations predict it
to be three times stronger by an average ratio of 3.4(5). Although matrix
effects as discussed in Section 2.2.22.2.2 cannot be excluded to play a role in
this intensity reversal, it is likely that most of these errors are contained in
the VPT2 calculations, seeing as they also misjudge the diagonal libration

55



CHAPTER 2. METHANOL MONOMERS AND DIMERS

Table 2.8: Intensity ratios of stretching overtone to fundamental bands
(“I(2ν̃)s/ν̃s”) and stretching-libration combination to stretching overtone bands
(“Iν̃s+l/(2ν̃)s”) from VPT2 calculations and jet/matrix experiments.

I(2ν̃)s/ν̃s Iν̃s+l/(2ν̃)s

B2PLYP-D3 338 3.6
B3LYP-D3 296 2.8
MP2 430 3.9
exp. 320(90) 0.4(1)

anharmonicity constant xDim
l,l and the stretching-libration coupling element

xDim
s,l .

Altogether, the results suggest that anharmonic VPT2 predictions pro-
vide adequate estimates for absolute OH stretching and libration band posi-
tions at the chosen levels of theory, at least when relating them to high-level
harmonic wavenumbers. However, a deeper analysis of the contributing
terms reveals that the predictions profit from some systematic error com-
pensation in the two most important anharmonicity constants: the diagonal
stretching anharmonicity xDim

s,s and the stretching-libration coupling xDim
s,l . The

intensity ratio of the stretching fundamental and overtone transitions is es-
timated realistically, but comparability with the experiment again breaks
down as soon as the libration is involved. One can thus surmise fundamen-
tal flaws of the perturbational approach with respect to the shallow poten-
tial of this mode, exacerbated in DFT calculations by numerical instabilities
which introduce large uncertainties to the results.

1-D Numerical Solutions

Potential energy curves along the (donor) OH stretching normal coordinates
in the methanol monomer and dimer were built using the LCCSD(T0∗)-
F12a(int)/VDZ-F12 method in order to assess its predictive power for the
diagonal anharmonicity content xs,s in these modes.1616 The resulting ener-
gies were fitted with a modified Morse potential of the form

V (Q)= C

[
1−exp

(
−

5∑
i=1

biQ i

)]2

. (2.7)

This expression was found to provide an improved description of the poten-
tial energies over the standard Morse formula, which holds true even at
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large values of Q where the acceptor atom introduces a short-range confin-
ing potential barrier on top of its long-range attractive influence. Numerical
solutions to the 1-D vibrational Schrödinger equation were calculated by
means of the MATLAB routines employed before in Section 2.12.1, using the
reduced mass as obtained by the preceding normal-mode analysis. In com-
parison to the results in Reference 1616, some modifications were made to the
routines in order to enhance their numerical stability (see Appendix BB for
further details and potential fit parameters), but were found to have no no-
ticeable impact on the results.

The fitted potentials yield harmonic monomer and dimer OH stretch-
ing wavenumbers of 3861.6 and 3737.2 cm−1, respectively, thus reproduc-
ing the usual normal-mode analyses given in Table 2.42.4 to within 1 cm−1 for
the monomer and 3 cm−1 for the dimer. From the eigenstates calculated in
these potentials, one further obtains monomer OH stretching fundamental
and overtone wavenumbers of 3688.7 and 7206.7 cm−1, respectively, with a
resulting diagonal anharmonicity constant of xMon

s,s = −85.4 cm−1; and dimer
donor wavenumbers of 3546.8 and 6902.2 cm−1, yielding xDim

s,s = −95.7 cm−1.
Assuming these results to be accurate, this implies mostly vanishing off-
diagonal corrections in the monomer, and a ∼30 cm−1 blue shift in the dimer
band. In comparison, the VPT2 results in Table 2.62.6 predict off-diagonal an-
harmonic blue shifts (including the prefactor of 1/2) on the order of 10 cm−1

in the monomer and 30 cm−1 in the dimer when substituting the experimen-
tally determined values for the stretching-torsion and stretching-libration
couplings. Taking into account possible fitting inaccuracies in the 1-D po-
tential curves, a probable shortcoming of the perturbational VPT2 approach
at least for some of the involved vibrational couplings, and the difficult
monomer localization of the torsional motion, the numerical solutions can
be deemed to be compatible with the combined experimental and theoretical
data presented above.

Unfortunately, the local Coupled Cluster methods implemented in the
available MOLPRO version did not allow for the calculation of dipole mo-
ments, and intensity estimates were not available at this level of theory nei-
ther in a harmonic nor a 1-D anharmonic picture. Beyond the estimates de-
termined above, a direct variational determination of the stretching-torsion/-
libration coupling constants from LCCSD(T0∗)-F12a potential energy sur-
faces would be greatly desirable.
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Figure 2.9: Visual dissection of the overall methanol OH dimerization red
shift (black) into its harmonic (red) and anharmonic (blue) components, with
the stretching-torsion/libration couplings (orange) separated from the latter.

2.4 OH Dimerization Red Shift
After collecting all available harmonic and anharmonic contributions per-
taining to the monomer and dimer OH stretching bands (see Table 2.92.9), the
data can be assembled in order to explain the overall observable dimeriza-
tion shift,

−∆ν̃s =−∆ωs −2∆xs,s − 1
2

[
∆xs,l/t +

∑ ′
∆xs, j

]
. (2.8)

A dissection of the dimerization shift into its individual components is vi-
sualized in Figure 2.92.9. With the stretching-libration coupling of xDim

s,l =
+43(5) cm−1 in the dimer (Section 2.2.22.2.2) and the corresponding xMon

s,t =
+15(6) cm−1 value for the monomer (Section 2.12.1), the difference term ∆xs,l/t
amounts to about +28(8) cm−1. Adding the best-estimate harmonic red shift
of −∆ωs = 121(5) cm−1 (Section 2.32.3) and the diagonal anharmonic differ-
ence of −2∆xs,s = +27(2) cm−1 (Section 2.2.12.2.1), these data imply a primed
sum of 1

2
∑ ′
∆xs, j = +25(7) cm−1 in order to meet the overall observable

−∆ν̃s = 109(1) cm−1 shift.
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Table 2.9: Summary of harmonic and anharmonic terms (in cm−1) in the lo-
calized methanol monomer and dimer donor, together with negative dimer–
monomer differences (“−∆”) in all quantities. The overall off-diagonal and
primed-sum values are deduced from the preceding data, and the primed
sums are compared to VPT2 predictions in the last line.

Mon Dim −∆
ωs 3862 3740 +121a

ν̃s 3684 3575 +109
2xs,s −171 −198 +27
⇒ 1

2
∑

xs,i −7 +33 −40
1
2 xs,l/t +8 +22 −14
⇒ 1

2
∑ ′

xs, j −15 +11 −26
VPT2: −14 +8 −22

a Best-estimate value, see Sec. 2.32.3.

The VPT2 results, at 1
2
∑ ′
∆xs, j = +22(5) cm−1, perform satisfactorily in

predicting the primed-sum quantity, but it is unclear to what extent this
may be due to error compensation among the large number of contained
normal modes, or even just serendipity in the chosen methods. Among
the directly determined components that govern the dimerization shift, the
largest uncertainties stem from the harmonic contribution and the localized
monomer stretching-torsion constant. Unfortunately, the factor of 1/2 for
the off-diagonal part implies that any error in the harmonic shift is exac-
erbated in the determined primed-sum contribution, which mandates accu-
rate harmonic predictions and a stringent assessment of their uncertainties.
Still, the results can be deemed satisfactory in their consistency and accu-
racy when considering the large number of normal modes contained in the
anharmonic predictions, and the wide range of interwoven theoretical and
experimental methods.

2.5 Summary
In this chapter, the OH stretching-torsion dynamics in the monomer and
their transformation to the confined stretching-libration situation in the
dimer have been investigated on grounds of gas-phase and matrix isolation
experiments. A detailed look at the monomer situation is warranted by the

59



CHAPTER 2. METHANOL MONOMERS AND DIMERS

fact that the anharmonic calculations employed herein are only able to sam-
ple a small portion of any potential energy hypersurface around a single
minimum, which is in contrast to the tunneling-delocalized nature of the
internal OH rotation in the methanol molecule. To this end, attempts at
transforming the available experimental data into a similarly localized situ-
ation have been presented in Section 2.12.1 in order to assess the reliability of
the VPT2 calculations in Section 2.3.12.3.1.

Naturally, the somewhat non-physical reduction of the torsional mode
to a single-minimum localized picture introduces some ambiguities. The
pure stretching transitions however obtain rather well-defined wavenum-
bers of 3684 cm−1 for the fundamental and 7196 cm−1 for the first overtone,
resulting in a largely localization-independent diagonal anharmonicity con-
stant of xMon

s,s =−86 cm−1. These values are compatible to within a few cm−1

with previous suggestions for the band centers by Kollipost et al.1414 From
the localized energy levels, an anharmonicity constant for the stretching-
torsion coupling of xMon

s,t = +15 cm−1 is proposed, but this result carries a
±6 cm−1 uncertainty among the discussed localization approaches. On the
quantum chemical side, VPT2 calculations perform adequately in reproduc-
ing the stretching anharmonicity. The stretching-torsion couplings are pre-
dicted with the correct positive sign, and their agreement with the localized
experimental data can be deemed satisfactory in light of the localization am-
biguities and the perturbational theoretical approach.

The diagonal anharmonicity content of the donor OH stretching mode
in the methanol homodimer has previously been determined by Kollipost et
al.,1414 who reported a gas-phase value of xDim

s,s = −99 cm−1. Together with
a high-level harmonic prediction of 3740 cm−1, these data imply a blue-
shifting +33 cm−1 correction from one half of all anharmonic couplings
to other modes. Among these corrections, VPT2 results have previously
predicted the stretching-libration coupling to be the most important con-
tribution to xDim

s,l ≈ +60 cm−1.103103 This coupling element represents a dy-
namic “stand-off” between the stretching mode itself, which naturally fur-
ther weakens the vibrating O–H bond upon excitation, and the librational
motion, which rotates the donor OH group out of the hydrogen-bonded ar-
rangement and thus tendentially restore its non-bonded character. Experi-
ments in neon matrices, which can be assumed to provide good comparability
with gas-phase data, reveal this coupling to be about +43 cm−1.1717 Still, the
observable dimerization shift in the donor OH stretching wavenumber can
be explained satisfactorily when combining all available experimental data
with the averaged VPT2 predictions.

Besides this direct interpretation of the observable dimerization shift,
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the results also provide a number of insights into some quantum chemical
methods and their advanced implementations in explicitly correlated local
formalisms. Most interestingly, local correlation approaches have allowed
to trace the demonstrable deficiency of the MP2 method to estimate the
harmonic dimerization shift to an unbalanced description of the donor OH
bond.1515 Including single excitations for the bonded electron pair at the Cou-
pled Cluster level largely alleviates this problem, and a full-scale treatment
at this costly theoretical level can be approximated by carefully restricting
it to a selection of important electron pairs in the LMOMO approach. At the
same time, a full treatment of the methanol dimer with the explicitly cor-
related local Coupled Cluster LCCSD(T0∗)-F12a method is still competitive
due to near-CBS convergence already with appropriate double-zeta VDZ-
F12 basis set. A future LMOMO implementation of explicitly correlated lo-
cal methods can be expected to combine the advantages of both approaches,
thus hopefully allowing to achieve a similar accuracy for larger systems.

While the programs employed in the course of this work have not allowed
for full-dimensional anharmonic treatments at the LCCSD(T0∗)-F12a ab
initio level, estimates for the diagonal stretching anharmonicity constants
in the methanol monomer and dimer have been obtained from numerical
solutions of the vibrational Schrödinger equation in one-dimensional poten-
tial curves. The results are in good agreement with the experiment, as are
the implied off-diagonal corrections that would be necessary to explain the
remaining gap to the true experimental values. However, the VPT2 results
provide similarly good results for this high-frequency motion. A variational
determination of stretching-torsion and stretching-libration couplings at the
LCCSD(T0∗)-F12a level would therefore be most interesting to see whether
the notorious VPT2 overestimation of this quantity persists. In addition, fu-
ture VPT2 calculations at some higher ab initio levels with local and explicit
correlation will likely provide further insight into its predictive powers for
hydrogen-bonded systems.

61



CHAPTER 2. METHANOL MONOMERS AND DIMERS

62



Chapter 3

Extension to Weak and Strong
Hydrogen Bonds

In the preceding chapter, the OH stretching dimerization shift in the
methanol dimer has been partitioned into harmonic and anharmonic compo-
nents, isolating specific contributions for dedicated experimental and high-
level quantum chemical treatment. However, the analysis overall demands
an effort that prohibits a routine application both in practical and theoret-
ical terms. The overtone study by Kollipost et al. in Reference 1414 extends
to the ethanol and tert-butyl alcohol homodimers, for which the stronger hy-
drogen bonds lead to more pronounced intensity impairments in the donor
OH stretching overtones than in methanol. In order to facilitate the observa-
tion of the weak overtone bands, and furthermore extend the anharmonicity
analysis to systems of markedly different character, it is thus favorable to
also go to much weaker hydrogen bonds such as OH· · ·π systems.

In this chapter, experimental and theoretical data on the methanol-
ethene prototype will be presented. A stronger focus will be placed on the
production of reliable results rather than a benchmarking of the underly-
ing methods. Based on the results for this OH· · ·π prototype, the struc-
tural preferences in methanol-anisole complexes with competing alkoxy-O
and aromatic π acceptor sites have been elucidated,5252 as detailed below in
Section 3.23.2. Finally, the anharmonicity data collected by Kollipost et al. on
ethanol and tert-butyl alcohol1414 will be used for a tentative analysis of the
observable dimerization shifts, highlighting some common and
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Figure 3.1: ”Perpendicular” (left) and “parallel” (right) arrangements of the
methanol-ethene complex, referring to the orientation of the ethene-C=C
and methanol-C–O bonds. Calculations predict only the perpendicular struc-
ture to be stable.

3.1 Methanol-Ethene
Among the available literature on OH· · ·π hydrogen bonds, a large num-
ber of studies have employed aromatic π acceptor sites or moieties due to
their accessibility in UV resonance schemes.129129–133133 Further, fixation of the
donor and acceptor sites in a common molecular frame aids in increasing
the degree of hydrogen-bonded species, but may introduce structural strain
on the hydrogen bond which distorts the energetic and spectroscopic proper-
ties.134134–137137

The C=C bond in ethene provides the simplest organic π acceptor
site for hydrogen bonding. As such, it had received some interest sev-
eral decades ago, mostly in conjunction with hydrogen halides as acceptor
molecules.138138–140140 However, data on complexes with OH donors is scarce and
most often restricted to theoretical studies,141141–143143 and the available exper-
imental literature was previously limited to H2O as the donor.143143–145145 Con-
cerning the methanol-ethene aggregate, only a single computational study
was available up to the MP2/aVQZ level,141141 predicting a “perpendicular” ar-
rangement of the methanol donor and ethene acceptor molecules as depicted
in Figure 3.13.1, left, and a best estimate for the electronic dissociation energy
of about 3 kcal·mol−1.

The direct FTIR absorption approach in the filet jet eliminates the need
for UV chromophores, while the long optical pathway enables the detec-
tion of low concentrations of molecular aggregates. This spawned the first-
ever experimental characterization of the methanol-ethene dimer1616 which
possesses a distinct prototype character for OH· · ·π contacts due to the ab-
sence of perturbations from either intermolecular fixation or additional chro-
mophore moieties.
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3.1.1 Jet-FTIR Spectra
Jet-FTIR spectra of different methanol-ethene mixtures are depicted in Fig-
ure 3.23.2 in the OH stretching fundamental and overtone regions, reproduced
here from Reference 1616. The strong black trace in the fundamental region
corresponds to a methanol:ethene ratio of about 1:20, the lighter trace to a
1:7 ratio. The latter mixture was further used for the overtone measure-
ments. As in the methanol spectra in Section 2.2.12.2.1, the wavenumber scale
of the OH stretching overtone region is compressed by a factor of 2 and
centered to the methanol monomer band to visualize the increase in dimer
stretching anharmonicity.

In the fundamental region, a prominent band is visible at 3641 cm−1,
with a number of smaller bands congesting the region towards the methanol
homodimer. To ascertain the assignment of the least red-shifted signal to the
methanol-ethene dimer, a concentration series was recorded by subsequently
increasing the relative methanol amount in the sample mixture. The result-
ing spectra are shown in the bottom part of Figure 3.23.2 after scaling to the
3641 cm−1 band, with the strongest trace corresponding to the 1:20 ratio
shown above in the fundamental region. The distinctly different behavior
of the unspecific “>ME” bands with the decreasing relative ethene concen-
tration is in line with a previous study on OH· · ·π hydrogen bonds to bulky
alkene acceptors.146146 These signals were thus assigned to a multitude of pos-
sible mixed structures beyond the dimer, and will not be discussed here any
further. In addition, the dimer band itself shows a slight asymmetry in the
spectra, which may be attributable to residual rotational structure. In rela-
tion to the localized monomer band center of 3684 cm−1 (see Section 2.12.1), the
dimerization shift now amounts to only 43 cm−1, which is the first of several
indications for a remarkably weak hydrogen bond.

In line with expectations, the combined fundamental and overtone spec-
tra displayed in Figure 3.23.2 indicate a much smaller increase in diagonal OH
stretching anharmonicity in the OH· · ·π hydrogen bond when compared to
its OH· · ·O counterpart in the methanol homodimer. From the 3641 cm−1

fundamental and 7105 cm−1 overtone stretching band wavenumbers, a di-
agonal anharmonicity of about xDim

s,s = −89(1) cm−1 is derived for methanol-
ethene, close to the methanol monomer value of ca. −86 cm−1 and distinctly
smaller than in the methanol homodimer with −99 cm−1. At the same time,
the overtone/fundamental intensity ratio is found to be only 170(70), again
quite moderate in comparison to the methanol homodimer value of 320(90).
While both effects testify to the weakness of the OH· · ·π contact, the absolute
overtone intensity does not show a decisive advantage to the pure methanol
spectra in Figure 3.23.2 in terms of facilitating its observation in the filet-jet
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Figure 3.2: Top: Jet-FTIR spectra of different methanol-ethene mixtures
(see also Ref. 1616) in the OH stretching overtone and fundamental regions
(upper and lower panels, resp.). Annotated are the band centers of the
methanol monomer (“M”, from Section 2.12.1), methanol homodimer (“MM”),
and methanol-ethene clusters (dimer “ME”, larger aggregates “>ME”). Bot-
tom: Concentration series in the OH stretching fundamental region (from
Ref. 1616), scaled to the “ME” dimer band by the annotated factors.
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experiment. This is a direct effect of the reduced concentration of the OH
chromophore in the mixed methanol:ethene expansions, and may possibly be
aggravated by a lower energetic propensity for the formation of the weaker
OH· · ·π clusters.

3.1.2 Quantum Chemical Calculations
Due to the comparable size of methanol-ethene and the methanol homodi-
mer, the same computational methods can readily be applied with only mi-
nor differences in resource demand. Where supported, exploiting the appar-
ent Cs symmetry of the methanol-ethene structure (see Figure 3.13.1) further
aids in the calculations. Based on the extensive robustness studies in the
previous chapter, only a selection of methods was applied to the methanol-
ethene problem with a more production-centric focus. In the present case
however, no direct experimental information on the stretching-libration cou-
pling constant is available, and the VPT2 predictions given below are so far
the only available theoretical estimates for these contributions.

Local and Canonical Harmonic Results

Table 3.13.1 contains a number of harmonic results for methanol-ethene.1616

The LCCSD(T0∗)-F12a(int)/VDZ-F12 level of theory was directly chosen as a
benchmark for dissociation energies and harmonic wavenumbers, since the
respective methanol homodimer results did not show substantial variations
from the triple- and quadruple-zeta levels.

Across all calculations, the lowest-frequency vibration represents a tor-
sional motion of the ethene molecule around the axis of the OH· · ·π hydro-
gen bond. In essence, the associated normal coordinate corresponds to an
interconversion between the “perpendicular” and “parallel” arrangements
depicted in Figure 3.13.1. This vibration is occasionally predicted at near-
vanishing or imaginary wavenumbers in the “perpendicular” structures, as
indicated in Table 3.13.1, and adopts values of up to 20 cm−1 in other cases.
For the “parallel” structure, all calculations predict imaginary wavenum-
bers, suggesting that this arrangement is indeed unstable. Even for the cor-
rect “perpendicular” structure however, effects of imaginary ethene-torsion
wavenumbers on the OH stretching mode can be assumed to be small, see-
ing that even a full switchover between both structures leads to only minute
variations at the theoretical levels included in Table 3.13.1. Nevertheless, a
truly robust method should still be able to provide a realistic description of
this motion, which can thus be considered as a sensitive accuracy check.
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Table 3.1: Collection of harmonic predictions for the methanol-ethene dimer,
“parallel” and “perpendicular” geometries (see Fig. 3.13.1): dissociation ener-
gies D0 and De in kJ mol−1; and wavenumbers ω for O–H stretching and
torsion/libration modes (subscripts “s”, “t” and “l”, resp.) in the monomer and
dimer, together with corresponding dimerization shifts, in cm−1.

D0 (De) ωMon
s ωDim

s −∆ωs ωMon
t ωDim

l ∆ωl/t

perpendicular
B3LYP-D3 / VTZ 12.6 (15.9) 3829 3776 53 306 425 119

B2PLYP-D3 / VTZ 11.7 (15.1) 3858 3805 53 307 431 125
MP2 / VTZ 11.1 (14.6) 3882 3823 60 309 448 139
MP2 / aVTZa 11.2 (14.7) 3860 3790 70 290 463 173

LMP2 / aVTZa 8.5 (11.7) 3856 3793 64 293 446 152
SCS-LMP2 / aVTZa 6.3 (9.3) 3852 3809 43 293 428 135
LCCSD(T0) / aVTZa 7.7 (11.2) 3828 3789 39 293 436 142

LCCSD(T0)(int):LMP2 / aVTZb 6.7 (10.1) 3836 3797 39 294 434 139
LCCSD(T0∗)-F12a(int) / VDZ-F12 7.7 (10.9) 3862 3817 45 294 436 142

parallel
MP2 / aVTZa 11.2 (14.8) 3860 3788 72 290 480 190

LMP2 / aVTZa 8.6 (11.7) 3856 3791 66 293 459 166
SCS-LMP2 / aVTZa 6.3 (9.3) 3852 3808 44 293 438 145
LCCSD(T0) / aVTZa,c 8.0 (11.3) 3828 3790 38 293 441 147

a Low or imaginary wavenumbers in lowest normal mode, see text for details.
b LMOMO calculation, see text for details.
c Using default electronic convergence criteria in MOLPRO.

Comparison of the harmonic results to the methanol dimer reveals sev-
eral striking measures for the weakness of the OH· · ·π interaction at hand.
First, the harmonic OH stretching dimerization shift is drastically reduced,
but with similar tendencies for overestimation in MP2 and DFT. Using the
explicitly correlated local Coupled Cluster result of 45 cm−1 as a bench-
mark, canonical and local MP2 methods notoriously exaggerate this quan-
tity by up to 15 cm−1–or 56%—but again benefit from applying SCS. In line
with the reduced weakening of the donor O–H bond, the blue-shifting influ-
ence of the OH· · ·π contact on the monomer OH torsion wavenumber is also
much smaller than in the homodimeric OH· · ·O contact. This can be read-
ily explained with the π electron cloud of the ethene molecule being a much
weaker and spatially more diffuse acceptor site than an oxygen lone pair.
Perhaps even more interesting is the fact that the best harmonic estimates,
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in particular at the LCCSD(T0∗)-F12a(int)/VDZ-F12 level, predict the har-
monic dimerization shift to almost coincide with the experimental value.
The subsequent anharmonic corrections therefore appear to largely compen-
sate each other, which suggests that for sufficiently weak hydrogen-bonding
interactions, the observable dimerization shift might already be adequately
explained in a harmonic picture.

Even despite the moderate size of the molecular system, full-scale
LCCSD(T0)(int) frequency calculations are still rather costly due to the
lack of analytical gradients. However, the benchmark calculations for the
methanol dimer in Section 2.32.3 suggest that such a treatment can be ad-
equately approximated by LMOMO methods as long as the C–O bond in
the methanol donor is included in the high-level region. A calculation sim-
ilar to the “LMOMO+C–O(int)” scheme in Table 2.52.5 was thus carried out
for methanol-ethene, where the full ethene acceptor molecule and all inter-
molecular excitations were kept at the Coupled Cluster level; the results
are included in Table 3.13.1 as “LCCSD(T0)(int):LMP2”. As in the methanol
homodimer, the harmonic OH stretching wavenumber in methanol-ethene
is somewhat lower than the explicitly correlated reference value, while the
dimerization shift falls somewhat short of it.

VPT2 Calculations

As for the methanol dimer, VPT2 calculations were conducted at the B3LYP-
D3, B2PLYP-D3 and MP2 levels using the VTZ basis set. Again, inconsis-
tencies pertaining to the chosen starting geometries and checkpoint files
were found from repeated calculations.1717 Even worse, the general useful-
ness of the B3LYP-D3 results is somewhat doubtful, since a number of low-
frequency vibrations persistently obtain sizable imaginary frequencies of up
to 200i cm−1 in the anharmonic picture. These instabilities were found to be
smaller at the B2PLYP-D3 level.

The results assembled in Table 3.23.2 demonstrate that the chosen methods
generally provide adequate predictions for diagonal stretching anharmonic-
ity constants, xDim

s,s , again with slight DFT tendencies for overestimation as in
the methanol dimer. Due to the lack of experimental data on the stretching-
libration combination band, the VPT2 calculations so far provide the only
estimates for the related coupling element, xDim

s,l . These predictions, averag-
ing some +16(2) cm−1, are again comparable among the three methods, and
significantly smaller in magnitude than in the methanol case (+59(1) cm−1).
At the DFT level, the remaining primed-sum terms now show such large
instabilities that their predictions are practically unusable; only the MP2
value of −4 cm−1 is again robust.
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Table 3.2: VPT2-anharmonic results (in cm−1) for the methanol monomer
and the “perpendicular” methanol-ethene dimer on different levels of the-
ory (see also Refs. 1616, 1717; monomer repeated from Sec. 2.3.12.3.1): diagonal OH
stretching anharmonicity constants (xs,s); stretching-torsion and -libration
coupling constants (xs,t and xs,l); and remaining primed-sum terms as per
Eqs. (2.52.5) and (2.62.6). Also given are experimental data, using the monomer
xs,t reference from Sec. 2.12.1.

Monomer Dimer

xs,s xs,t
∑ ′

xs, j xs,s xs,l
∑ ′

xs, j

B2PLYP-D3/VTZ −86 +4 −28 −91 +14
B3LYP-D3/VTZ −87 +3 −26 −92 +18
MP2/VTZ −83 +9 −30 −88 +17 −4
exp. −86(1) +15(6) −89(1)

1-D Numerical Solutions

As before, a one-dimensional potential curve was calculated in the
OH-stretching normal mode for methanol-ethene at the LCCSD(T0∗)-
F12a(int)/VDZ-F12 level of theory, and fitted with the modified Morse po-
tential given in Equation (2.72.7).1616 Building numerical solutions of the vibra-
tional Schrödinger equation yielded fundamental and overtone transition
wavenumbers of 3641 and 7108 cm−1, respectively, with a diagonal anhar-
monicity constant of xDim

s,s = −88 cm−1. The latter is again in good agree-
ment with the experimental value of −89 cm−1, but more interestingly, the
transition wavenumbers now also closely match the observed ones at 3641
and 7105 cm−1. Conversely, the methanol calculations in Section 2.3.12.3.1 have
shown similar agreement in the anharmonicity constant, but demonstrate a
distinct underestimation of the transition wavenumbers in relation to the ex-
periment due to the neglect of overall blue-shifting anharmonic couplings. In
closely matching the experimental values, the calculated methanol-ethene
wavenumbers thus suggest that the off-diagonal contributions largely can-
cel out. If possible fitting errors and shortcomings of the perturbational
anharmonic method are taken into account, the MP2 VPT2 prediction of a
1
2
∑

xDim
x,i =+7 cm−1 off-diagonal blue shift from Table 3.23.2 is moderately com-

patible with the 1-D result.
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Figure 3.3: Visual dissection of the overall methanol-ethene OH dimeriza-
tion red shift (black) into its harmonic (red) and anharmonic (blue) com-
ponents, with the stretching-torsion/libration couplings (orange) separated
from the latter.

3.1.3 OH Dimerization Red Shift
Among the different contributions to the observable dimerization shift (Ta-
ble 3.33.3),

−∆ν̃s =−∆ωs −2∆xs,s − 1
2

∑
i 6=s
∆xs,i, (3.1)

the harmonic and diagonal anharmonic components are now fairly well-
established, and the analysis again hinges on the off-diagonal contribu-
tions. The jet-FTIR experiments in Section 3.1.13.1.1 indicate a dimerization
shift of −∆ν̃s = 43(1) cm−1 and a contained diagonal harmonic contribu-
tion of −2∆xs,s = +7(2) cm−1. Together with the best harmonic estimate
of −∆ωs = 45 cm−1 from Table 3.13.1, the effective blue-shifting correction
supplied by the halved off-diagonal sum in Equation (3.13.1) must be about
−1

2
∑
∆xs,i =−8 cm−1. The dissection of the overall dimerization shift into its

various components is visualized in Figure 3.33.3.
In contrast to the methanol homodimer, the lack of dedicated experimen-

tal stretching-libration data for the methanol-ethene dimer now only war-
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Table 3.3: Summary of harmonic and anharmonic terms (in cm−1) in the
localized methanol monomer (“M”) and methanol-ethene dimer (“ME”), to-
gether with negative dimer–monomer differences (“−∆”) in all quantities.
Also given are the methanol homodimer data (“MM”) from Tab. 2.92.9. The
overall off-diagonal (

∑
xs,i) and primed-sum (

∑ ′
xs, j) values are deduced from

the preceding data, and the primed sums are compared to VPT2 predictions
in the last line.

M ME −∆ MM −∆
ωs 3862 3817 +45 3740 +121
ν̃s 3684 3641 +43 3575 +109
2xs,s −171 −178 +7 −198 +27
⇒ 1

2
∑

xs,i −7 +2 −9 +33 −40
1
2 xs,l/t +8 +8 0 +22 −14
⇒ 1

2
∑ ′

xs, j −15 −6 −9 +11 −26
VPT2: −14 −2 −12 +8 −22

rants a separation of the off-diagonal contribution into the overall monomer
and dimer sums, i.e. ∑

∆xs,i =
∑

xDim
s,i −

∑
xMon

s,i . (3.2)

The monomer data given in Table 2.62.6 are used here as an anchor point to
deduce the anharmonicity situation in methanol-ethene, seeing their ro-
bustness and the satisfying consistency they have provided for the homo-
dimer analysis. Specifically, the full off-diagonal monomer terms add a
blue-shifting contribution of about −1

2
∑

xMon
s,i = 7 cm−1. Closing the remain-

ing gap to the methanol-ethene experiments consequentially requires the
corresponding dimer terms to contribute only a −1

2
∑

xDim
s,i = +2 cm−1 blue

shift. To achieve this, the primed dimer sum has to mostly negate the
stretching-libration coupling, predicted at the VPT2 level to be +16(2) cm−1;
i.e., 1

2
∑ ′

xDim
s, j =−6 cm−1. While mostly consistent with the MP2 VPT2 predic-

tion of −4 cm−1 (see Table 3.23.2), this would be in contrast to the methanol
dimer, for which the calculations predict a distinctly positive value (Ta-
ble 3.33.3).

Overall, the results suggest that the off-diagonal anharmonic contribu-
tions in methanol-ethene are much smaller than in the methanol homodi-
mer. However, the rather subtle compensation effects among the diago-
nal and off-diagonal contributions to the dimerization shift now cause the
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Figure 3.4: Methanol-anisole structures of OH· · ·π (“MAπ”, left) and OH· · ·O
(“MAO”, right) hydrogen bonding motifs.

analysis to be dominated by their error bars. Obtaining an experimental
stretching-libration coupling constant would be helpful in somewhat driv-
ing these errors back. Still, the VPT2 calculations suggest a much smaller
impact of the OH· · ·π hydrogen bond on this quantity, which would be con-
sistent with other indications of a weak intermolecular contact.

3.2 Concurrent Docking Motifs in Methanol-
Anisole Dimers

The given findings on the OH· · ·π hydrogen bond in methanol-ethene can be
related to a study on the interactions of methanol with anisole (methoxyben-
zene).5252 This molecule offers two potential acceptor sites for hydrogen bond-
ing, as depicted in Figure 3.43.4: the etheric oxygen atom and the extended π

system of the aromatic ring.** Preliminary quantum chemical calculations
had suggested the two binding motifs to yield approximately isoenergetic
structures, with a tendency in MP2 calculations to favor the π-bonded op-
tion. Direct IR-absorption measurements were thus conducted in the filet
jet to verify this close energetic match.

3.2.1 Spectroscopic Evidence
A collection of jet-FTIR spectra of methanol:anisole mixtures is shown in
Figure 3.53.5, reproduced here from Reference 5252.†† In the OH-stretching funda-

*A second OH · · ·π′ structure was found in Ref. 5252, but will not be considered here due to
the presumably facile conversion to the more stable OH· · ·π structure.

†Note that the intensity scale of the “overtone” panel in Reference 5252 is wrong: the given
axis labels should be multiplied by 4.342 = 10/ln10. The OH and OD fundamental regions
are labeled correctly.
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mental region (middle panel of Figure 3.53.5), a dominant signal at 3598 cm−1

is observed between the methanol monomer and homodimer bands, corre-
sponding to a dimerization red shift of 86 cm−1 relative to the localized
monomer band center. The shift and strength of this signal primarily sug-
gest an OH· · ·O origin, but at this point, an accidental overlap with a par-
ticularly strong OH· · ·π band could not be ruled out. Further spectroscopic
information was thus sought through overtone measurements (top panel of
Figure 3.53.5), since the presumably different anharmonicity contents of the
OH· · ·O and OH· · ·π vibrations would drive any overlapping bands apart.

In the overtone spectra, a band of mixed dimer origin is visible at
7005 cm−1, revealing a diagonal anharmonicity constant of xDim

s,s =−96 cm−1.
A re-evaluation of the fundamental/overtone ratios for the methanol-anisole
band in question and its homodimer pendant suggest them to be on order
of 430(150) and 530(250), respectively. The latter value is larger than the
one 320(90) result determined previously by Kollipost et al..1414 This may be
an effect of the high-wavenumber shoulder on the homodimer fundamental
band that is visible in Figure 3.53.5, and the lower signal-to-noise ratio in the
recorded spectra. Still, both the intensity ratio and anharmonicity constant
deduced from these overtone measurements hint towards an OH· · ·O char-
acter of the methanol-anisole signal in question, and the according bands in
Figure 3.53.5 are thus labeled “MAO”.

As an additional tactic to rule out accidental OH· · ·O/OH· · ·π band over-
lap, spectra of methanol-OD:anisole structures were recorded at a slightly
improved 1.5 cm−1 resolution, shown in the bottom panel of Figure 3.53.5 with
a
p

2-fold expanded wavenumber scale. The isotope effect should again lead
to a separation of any offending bands, but no such effect was found in the
spectra.

At a total of 210 co-added jet scans in the OH stretching fundamental
region, a weak band at 3629 cm−1 with a corresponding red shift of 55 cm−1

from the methanol monomer became apparent. The inset in the middle
panel of Figure 3.53.5 furthermore shows the 3632 cm−1 OH stretching band of
the methanol-toluene dimer as a template for the interaction of a methanol
donor molecule with a slightly electron-enriched aromatic π system. The
proximity to this signal suggests the subtle band in the methanol:anisole
mixture to stem from the OH· · ·π-bonded “MAπ” structure (see Figure 3.43.4).
Considering the relative overtone intensities in methanol-ethene and the
MAO structure as limiting cases, the OH· · ·π bond in the proposed MAπ

aggregate can be assumed to induce a relative attenuation factor between
200 and 500 in the corresponding overtone band, effectively disallowing its
observation in the given spectra. Still, the assignment of the fundamen-
tal band is fairly robust in light of the comparable toluene-acceptor signal
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Figure 3.5: Jet-FTIR spectra of methanol:anisole mixtures in the OH
stretching fundamental (middle) and overtone regions (top panel), and of
a methanol-OD:anisole mixture in the OD stretching region (bottom panel),
see also Ref. 5252. “M” and “MM” denote the methanol monomer and homo-
dimer, “MAO” and “MAπ” the methanol-anisole bands (see Fig. 3.43.4); the “M-
Tol” inset shows the methanol-toluene dimer band. Grey traces are pure
methanol spectra from Fig. 2.62.6, intensity-scaled by 0.5.
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Table 3.4: Collection of electronic and zero-point corrected dissociation en-
ergies De and D0 for MAO and MAπ structures, all in kJ mol−1. The ∆π−O
differences give the relative energy of the MAO conformer with respect to
MAπ (negative values indicating a preference for the O-bonded structure).

MAO MAπ ∆π−O

D0 De D0 De D0 De

MP2/aVTZa 28.7 28.6 −0.1
MP2/aVQZ + ∆CCa,b,c 25.0 23.0 −2.0
LMP2/aVTZ 18.1 22.4 18.2 21.6 +0.2 −0.7
SCS-LMP2/aVTZ 14.3 18.6 13.6 16.9 −0.7 −1.7
LMP2-F12/VTZ-F12c 23.4 22.3 −1.1
SCS-LMP2-F12/VTZ-F12c 19.3 17.4 −2.1
LMP2-F12/VTZ-F12d 22.9 21.7 −1.1
SCS-LMP2-F12/VTZ-F12d 19.4 17.3 −2.1
a See Ref. 5252.
b Including Coupled Cluster corrections.
c B2PLYP-D3BJ/aVTZ structures, provided by J. Altnöder.
d SCS-LMP2/aVTZ structures.

and the strong indications for an OH· · ·O origin of the competing lower-
wavenumber dimer. In line with the assignments, harmonic quantum chem-
ical calculations further suggested that the zero-point stabilization due to
the aforementioned H/D substitution should be more pronounced for the
MAO than for the MAπ structure, which is reflected in the spectra by the
absence of an equivalent observable OD· · ·π signal.

The vastly different intensities of the assigned MAO and MAπ signals
reveal a much higher propensity for the formation of the OH· · ·O-bonded
structure, even when taking the inherent effects in the extinction coeffi-
cients into account. In predicting an energetic competitiveness of both mo-
tifs, many quantum chemical calculations clearly contradict this finding (see
Table 3.43.4). The MP2/aVTZ results from Reference 5252 can be seen as an exam-
ple for such a “misbalanced” method for the energy difference. This problem
was overcome by calculating MP2/aVQZ dissociation energies at B2PLYP-
D3BJ/aVTZ structures, and adding Coupled Cluster corrections (“∆CC in
Table 3.43.4).5252 Alternatively, switching from canonical to local correlation al-
ready drives the two conformers apart in the correct direction, and applying
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SCS further widens this gap. In addition, the dissociation energies of the
B2PLYP-D3BJ/aVTZ and SCS-LMP2/aVTZ structures were re-calculated in-
cluding explicit correlation. In both cases, SCS-LMP2-F12/VTZ-F12 yields
an energy gap which is close to the best canonical predictions, at the ex-
pectable expense of underestimated absolute dissociation energies. How-
ever, the lack of structure optimizations at the explicitly correlated levels
renders these results somewhat tentative. In addition, re-calculating the
absolute dissociation energies at local Coupled Cluster levels, preferably
including explicit correlation, would provide more stringent benchmarks
than the empirical MP2/aVQZ + ∆CC scheme. Still, it appears that local
correlation—and possibly also SCS—aid in predicting the correct structural
preference in this system.

By appropriate substitution of the aromatic ring, the energetic scale can
be influenced to some degree, but a general tendency of many popular quan-
tum chemical methods to over-stabilize the π-bonded structures persists for
many substitution patterns.147147

3.2.2 Harmonic and Anharmonic Predictions
The smaller experimental dimerization shift of the MAO band in compari-
son to the methanol dimer band (86 cm−1 vs. 109 cm−1) and the slightly
smaller diagonal anharmonicity constant (−96 vs. −99 cm−1) suggest that
the OH· · ·O hydrogen bond in methanol-anisole is somewhat weaker than
in the methanol homodimer. Conversely, the dimerization shift alone in
the MAπ structure might indicate a slightly stronger contact than in the
methanol-ethene prototype (55 cm−1 vs. 43 cm−1). Without experimental
data on the diagonal stretching anharmonicity however, this remains specu-
lative. A number of harmonic and anharmonic B3LYP estimates, including
comparative calculations on the methanol homodimer, are presented in Ta-
ble 3.53.5.‡‡ No stability tests were carried out for these systems, but based on
the preceding methanol homodimer and methanol-ethene findings, the xs,s
and xs,l coupling constants from VPT2 calculations can be assumed to be
robust even if general numerical inconsistencies are present.

The B3LYP data again show a certain tendency to overestimate harmonic
OH· · ·O dimerization shifts. In the MAπ case however, the results now agree
with SCS-LMP2 on the harmonic OH· · ·π shift, contrary to the behavior in
methanol-ethene (see Table 3.13.1) where B3LYP again slightly exaggerated

‡The B3LYP calculations on methanol-anisole predict the librational motion to be dis-
tributed across two normal modes. The xDim

s,l data in Tab. 3.53.5 therefore reflect the sums of
both corresponding values.
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Table 3.5: Harmonic and anharmonic estimates (in cm−1) for the methanol
monomer, homodimer, and two methanol-anisole structures at various lev-
els of theory. The stretching-libration couplings xs,l in the methanol-anisole
structures are the sums of two values each due to mode mixing; see the text
for details.

Mon Dim

ωs xs,s ωs −∆ωs xs,s xs,l

B3LYP-D3/
6-311+G(d,p) 3846 −88 3688 158 −102 +53

def2-TZVP 3812 −85 3654 157 −102 +52
LMP2/aVTZ 3856 3710 147
SCS-LMP2/aVTZ 3852 3740 112

MAO MAπ

ωs −∆ωs xs,s xs,l ωs −∆ωs xs,s xs,l

B3LYP-D3/
6-311+G(d,p) 3737 108 −98 +44 3801 45 −91 +10

def2-TZVP 3714 98 −97 +45 3765 46 −89 +14
LMP2/aVTZ 3751 105 3790 66
SCS-LMP2/aVTZ 3774 78 3808 44
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this quantity. However, the lack of higher-level references does not allow def-
inite statements about the quality of either method. In terms of the anhar-
monic predictions, the data show a qualitative correlation between the har-
monic red shift, the diagonal anharmonicity content, and the magnitude of
the stretching-libration coupling. Seeing the robustness of similar VPT2 re-
sults across different methods for the methanol dimer and methanol-ethene,
it is possible that these results are representative of those that would be
obtained at higher electronic structure methods.

Concerning the MAπ conformer, the harmonic calculations suggest the
OH· · ·π hydrogen bond to be comparably strong as in methanol-ethene,
whereas the observable 55 cm−1 dimerization shift would suggest a slightly
stronger binding. The discrepancy may either stem from a deficiency in the
calculations in judging the energetics of the contact, or from additional an-
harmonic effects which are not taken into account here. Without an observa-
tion of the corresponding MAπ overtone band however, it will be difficult to
judge the balance between diagonal and off-diagonal anharmonic contribu-
tions in this system. Boosting the relative amount of OH· · ·π-bonded struc-
tures through appropriate ring substitution might be helpful in this regard
if vapor-pressure limitations do not come into effect.147147

Based on the SCS-LMP2 results, an attempt at explaining the absolute
MAO dimer stretching wavenumber of ν̃Dim

s = 3598 cm−1 can be made. Com-
bining the ωDim

s = 3774 cm−1 harmonic wavenumber from Table 3.53.5 with the
experimentally determined xDim

s,s =−96 cm−1 diagonal anharmonicity content
predicts an overall +18 cm−1 blue shift due to the halved off-diagonal anhar-
monic sum, 1

2
∑

xDim
s,i . Since the choice of SCS wavenumbers as the starting

point for this analysis is only based on an empirical rule from the two model
systems studied above, a higher-level confirmation of these results would be
necessary to verify this approach. Still, the overall blue-shifting direction
is qualitatively consistent with the methanol dimer (where it amounts to
+33 cm−1), and would further increase in magnitude if one approached the
unscaled LMP2 wavenumbers. It thus appears plausible to assume similarly
blue-shifting off-diagonal corrections for other OH· · ·O hydrogen bonds, two
examples of which will be investigated below.

3.3 Related OH· · ·O Hydrogen Bonds in
Aliphatic Alcohols

With the thorough analysis of the methanol dimer in terms of its diagonal
OH stretching anharmonicity and harmonic estimates in Chapter 22, it is
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Figure 3.6: Structures of the most stable homodimers of ethanol (gghom
structure, left) and tert-butyl alcohol (right).

desirable to see whether the findings for this OH· · ·O contact qualitatively
uphold in other homodimers of aliphatic alcohols. From the overtone study
by Kollipost et al. in Reference 1414, diagonal OH anharmonicity data is avail-
able for the homodimers of ethanol and tert-butyl alcohol. Based on the
adequate agreement of harmonic SCS-LMP2 predictions with the Coupled
Cluster benchmarks for methanol monomers and dimers (Section 2.32.3), simi-
lar calculations were conducted for these two systems. The data are assem-
bled in Table 3.63.6.

For ethanol, calculations similar to the “LMOMO+C–O(int)” scheme in
methanol (Section 2.32.3) were also carried out. Again, this scheme includes
the electron pairs in the C–O and O–H bonds, the oxygen lone pairs, and all
intermolecular excitations at the CCSD(T) level.

While tert-butyl alcohol is monoconformational, the OH-torsional iso-
merism in ethanol demands a careful matching of the assigned spectral
transitions to the possible monomer and dimer structures.104104 The preferred
trans conformation in the monomer is converted to a homochiral double-
gauche conformation in the most stable dimer structure (depicted in Fig-
ure 3.63.6). Focusing on the trans monomer reference would be advantageous
in that its OH stretching band is free of tunneling splittings, but might dis-
turb the picture when going to the dimer due to the switch in conformational
preference. Thus, the gauche monomer is chosen as the reference through-
out.
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Table 3.6: Assembled spectroscopic data (in cm−1) for the monomers and
homodimers of methanol (Sec. 22), ethanol (gauche monomer/gghom dimer),
and tert-butyl alcohol, from Ref. 1414, including negative sums (−∆) pertaining
to dimerization shifts. The full off-diagonal sums are calculated by closing
the gap to the experiment, based on the respective harmonic predictions
printed in italics.

MeOH EtOH (gghom) t-BuOH

Mon Dim −∆ Mon Dim −∆ Mon Dim −∆
ωs:
LMP2a 3857 3709 148 3833 3677 156 3826 3682 145
SCS-LMP2a 3852 3740 113 3832 3713 119 3829 3722 107
LMOMOb 3836 3730 106 3813 3699 114
Best est.c 3862 3740 121 3840
ν̃s (exp.) 3684 3575 109 3659 3532 128 3642 3497 145
(2ν̃)s (exp.) 7196 6951 245 7144 6861 283 7111 6789 322
2xs,s −171 −198 +27 −176 −202 +26 −174 −205 +31
1
2
∑

xs,i −7 +33 −40 −5 +20 −25 −13 −20 +7
a sVTZ basis set for methanol and tert-butyl alcohol; aVTZ for ethanol.
b LMOMO+C–O(int)/sVTZ, see Sec. 2.32.3 and App. CC.
c LCCSD(T0∗)-F12a(int)/VDZ-F12.

3.3.1 Ethanol
The gauche monomer of ethanol displays tunneling interactions between its
two enantiomeric forms, leading to a subtle 3.3 cm−1 tunneling splitting of
its vibrational states3737 which would in principle warrant similar localiza-
tion considerations as in the methanol monomer. Kollipost et al.1414 have
discussed a number of plausible assignments to the transitions between the
different tunneling states in their overtone spectra, with moderate remain-
ing uncertainties. Their findings suggest fundamental and overtone transi-
tion band centers around ν̃Mon

s = 3659(1) cm−1 and (2ν̃)Mon
s = 7144(2) cm−1, and

a diagonal anharmonicity constant of xMon
s,s =−88(2) cm−1. For the dimer, the

tunneling ambiguities are again lifted due to the lateral confinement of the
OH group in the hydrogen bond, and the corresponding gghom transitions
at ν̃Dim

s = 3532 cm−1 and (2ν̃)Dim
s = 6861 cm−1 yield a diagonal anharmonicity

constant of xDim
s,s =−101 cm−1.

The size of the ethanol monomer still allows for full LCCSD(T0∗)-
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F12a/VDZ-F12 treatments, which yield a best harmonic value for the free
OH stretching wavenumber of 3840 cm−1 (see Table 3.63.6). LMP2 and SCS-
LMP2 are both within 10 cm−1 of this value, while the “LMOMO+C–O”
scheme—simulating a full LCCSD(T0) treatment—falls about 30 cm−1 short
of it. Again, SCS appears to be beneficial for the harmonic dimerization shift,
seeing that it is again considerably closer to the Coupled Cluster value than
the standard LMP2 estimate.

For the dimer, the “LMOMO+C–O” results represent the highest avail-
able level of theory, predicting a harmonic dimerization shift of 114 cm−1.
If similar patterns as for the methanol dimer and methanol-ethene uphold,
this method would tend to underestimate the dimerization shift, and one
can assume the results in Table 3.63.6 to bracket any higher-level references.
At this point, it is again instructive to investigate the absolute OH stretching
wavenumber in the dimer in addition to the dimerization shift. Using the
SCS-LMP2 results as a reference implies an off-diagonal correction 1

2
∑

xDim
s,i

of +20 cm−1, while the LMOMO result qualitatively agrees on the blue-
shifting direction of this correction. This is compatible with the methanol
homodimer and methanol-anisole OH· · ·O situations, where it amounts to
+33 and +18 cm−1, respectively.

Overall, the experiments suggest a slightly stronger OH· · ·O hydrogen
bond than in the methanol dimer, as evidenced by the larger dimerization
shift and the more pronounced overtone intensity attenuation by a factor
of 400(100).1414 The calculations follow this finding in terms of the harmonic
dimerization shift, although the tentative anharmonic analysis presented
above is less certain in this regard due to the lack of robust harmonic bench-
marks.

3.3.2 tert-Butyl Alcohol
The analysis of the third experimental data set for the tert-butyl alcohol ho-
modimer, depicted in Figure 3.63.6, is hampered on the quantum chemical side
by the large size of the system. Only LMP2 and SCS-LMP2/sVTZ calcu-
lations were feasible in this case, lacking the partial LMOMO inclusion of
Coupled Cluster correlation that was still possible in ethanol. The data in-
cluded in Table 3.63.6 thus carry large uncertainties, and one can only analyze
them in terms of their qualitative compatibility to the cases discussed above.

The absence of significant tunneling effects in the monomer OH stretch-
ing band relieves the need for a localization analysis.148148 From the unam-
biguous fundamental and overtone band assignments, Kollipost et al. have
arrived at a diagonal OH stretching anharmonicity of xs,s =−88 cm−1 in the
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monomer, and −103 cm−1 in the dimer. The observable dimerization shift
in the fundamental region amounts to 145 cm−1, suggesting a further gain
in hydrogen bond strength over the ethanol case, which is supported by the
1000(400)-fold overtone intensity attenuation.

Again, SCS-LMP2 predicts a much smaller harmonic dimerization shift
than LMP2. In contrast to all previous systems however, the unscaled
LMP2/sVTZ estimates now coincide with the experimental dimerization
shift instead of significantly overshooting it. Based on these results,
one would arrive at a blue-shifting off-diagonal contribution of 1

2
∑Dim

s,i =
−20 cm−1, negating the change in diagonal anharmonicity. Conversely, using
the much smaller SCS-LMP2 dimerization shift implies that the off-diagonal
shift is slightly red-shifting (as demonstrated in Table 3.63.6), unlike all other
OH· · ·O cases discussed before. Without higher-level harmonic references,
it must remain undecided whether this discrepancy arises from misjudged
harmonic shifts, or a true effect in the summed off-diagonal contributions.

3.4 Summary
In this chapter, the OH· · ·π hydrogen bond in the methanol-ethene com-
plex has been studied in analogy to the methanol homodimer in Chapter 22.
The small observable dimerization shift (−∆ν̃s = 43 cm−1) is almost fully ex-
plained by the best harmonic predictions (−∆ωs = 45 cm−1), and the minute
change in diagonal anharmonicity (−2∆xs,s = 6 cm−1) implies only moderate
off-diagonal corrections (1

2
∑
∆xs,i =−8 cm−1). This is corroborated by a mod-

erate stretching overtone attenuation factor (170±70), a low predicted disso-
ciation energy (D0 = 7.7 kJ mol−1), and a VPT2 estimate for the stretching-
libration coupling constant of only xDim

s,l = +16 cm−1. Overall, the data indi-
cate a rather weak hydrogen bond, and clearly contrast the much stronger
OH· · ·O contact in the methanol dimer.

Based on these two data sets, the two competing interaction motifs in
methanol-anisole clusters were assigned in jet-FTIR spectra, indicating a
clear preference for OH· · ·O over OH· · ·π binding .5252 The results thereby
provide a vital benchmark for quantum chemical calculations, where many
popular methods tend to predict a close energetic match between both bind-
ing options. This problem was originally alleviated by including Coupled
Cluster corrections, but switching to a local-correlation picture also appears
to be beneficial at the MP2 level.

Since the methanol dimer represents the simplest aliphatic OH· · ·O hy-
drogen bond, it is instructive to compare its vibrational dynamics to those
found in other alcohols. To this end, data on ethanol and tert-butyl alco-
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hol from an earlier overtone study1414 were subjected to a tentative analysis
based on a set of new harmonic quantum chemical calculations. The size
of these systems starts to limit the applicability of more accurate computa-
tional approaches, but Coupled Cluster contributions were successfully in-
cluded in the ethanol dimer for the interacting OH groups. Furthermore,
the methanol homodimer and methanol-ethene calculations suggest an em-
pirical benefit of Spin-Component Scaling for harmonic predictions in light
of high-level benchmarks. Deriving some tentative anharmonic data for
methanol-anisole and ethanol dimers by similar means provides a qualita-
tively consistent picture, but the extendibility to the tert-butyl alcohol case is
somewhat unclear. In any case, the role of SCS predictions remains specula-
tive unless more accurate calculations provide a reference for these systems.

Finally, the experimental findings for the alcohol dimers seem to indi-
cate that it is difficult to quantify a correlation between the overall ob-
servable dimerization shift, the increase in diagonal anharmonicity, and
the magnitude of the stretching-libration coupling. The steady increase
of the dimerization shift from methanol (109 cm−1) to ethanol (128 cm−1)
and tert-butyl alcohol (145 cm−1) is accompanied by an only slight increase
in diagonal anharmonicity content (13, 13 and 16 cm−1 respectively). In
addition, an exploratory anharmonic calculation for the ethanol dimer pre-
dicts a stretching-libration coupling (+55 cm−1) on par with the prediction
for methanol (+58 cm−1). Although VPT2 predictions have been found to
misjudge this quantity in the methanol dimer, they have also demonstrated
a distinct robustness among different methods. This raises the question
whether predictions for the ethanol dimer at other computational levels
would fall in line with this closeness to the methanol case; and furthermore,
if the results are likewise in systematic disagreement with the true values.
It would thus be desirable to expend more dedicated theoretical and exper-
imental efforts in order to explain the anharmonic situation in this system
for which higher-level calculations, possibly with advanced explicitly cor-
related LMOMO implementations, would still be within reach. Gathering
similar experimental and theoretical data for isopropyl alcohol dimers could
bridge the remaining gap between the ethanol and tert-butyl alcohol data
and complete this series on the evolution of spectroscopic parameters with
the number of attached methyl groups.
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Summary

The impact of anharmonicity on the vibrational dynamics in hydrogen-
bonded systems has been investigated in this work on several examples. The
largest efforts have been spent on elucidating the situation in the methanol
homodimer as a model for OH· · ·O hydrogen bonding, and methanol-ethene
as a OH· · ·π prototype. Based on the extensive tunneling interactions in
the methanol monomer, localization procedures have been put forward in
order to reduce the intricate experimental situation to a form which can be
compared to quantum chemical predictions and provide a less ambiguous
reference to define spectroscopic dimerization shifts.

Combining a selection of experimental and theoretical data on the
two model systems, one can conclude that their donor OH stretching
wavenumbers encode an overall blue-shifting contribution from the impor-
tant stretching-libration coupling constant, which has also been determined
experimentally for the methanol homodimer. Furthermore, it was found that
popular DFT and MP2 calculations tend to exaggerate harmonic dimeriza-
tion shifts, and that applying Spin-Component Scaling is beneficial in bring-
ing the harmonic results into closer agreement with high-level benchmarks.

A number of additional spectroscopic results on methanol-anisole,
ethanol, and tert-butyl alcohol dimers were subjected to similar analyses.
While the ethanol dimer still shows the same qualitative patterns as in the
methanol case, the tert-butyl alcohol appears to fall out of line either in the
harmonic predictions or the resulting off-diagonal anharmonic corrections.
However, the feasibility of high-level quantum chemical methods starts to
break down for these systems. Any conclusions that one can attempt to draw
from comparison with more well-studied cases therefore remains speculative
until improved harmonic references are available.

With the data gathered from these systems, one can critically assess the
widespread approach of scaling harmonic predictions in order to approxi-
mate anharmonic band positions. As Nibbering has stated in a 2007 review,99

“[w]eak hydrogen bonds with X–H stretching frequencies above 3200 cm−1

can often be sufficiently described in the harmonic approximation applying
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an empirical scaling factor”. The data gathered throughout this work high-
light the drawbacks of such simple approaches: the overall band positions
are the result of counteracting diagonal and off-diagonal anharmonic correc-
tions, and the large number of normal modes contained in the latter makes
it difficult to estimate their overall effect. In addition, the results across the
methanol, ethanol, and tert-butyl alcohol dimers in Section 3.33.3 do not appear
to show a clear correlation between the most important contributions to the
dimerization shift.

The aforementioned review continues in stating that “[a] one-
dimensional anharmonic correction in the proton coordinate” should suf-
fice beyond the simple scaling approach in order to estimate anharmonic
band positions.99 Such calculations have been carried out for the methanol
dimer in Section 2.3.12.3.1 and methanol-ethene in Section 3.1.23.1.2 at a high level
of theory, revealing that the transitions obtained for the methanol dimer
distinctly differ from the experimental ones due to the neglect of important
off-diagonal anharmonic effects. Only in the methanol-ethene case did this
approach provide helpful, but this system clearly represents an extreme case
due to the very weak hydrogen bond, for which the agreement of the 1-D an-
harmonic values with the experiment appears to be serendipitous. From the
data presented in this work, one can actually assume robust harmonic es-
timates to be a generally better estimate of true band positions than such
one-dimensional anharmonic results. Obtaining such estimates does how-
ever require computational efforts and advanced methods which are still
often unfeasible and not widely available today.

One can conclude that the experimental effort to obtain anharmonicity
information for hydrogen-bonded systems is generally prohibitive for routine
applications due to unfavorable intensity effects and the need for accurate
band assignments. It remains to be seen to what extent improved theoretical
methods are able to provide accurate harmonic and anharmonic predictions
for medium-sized to large molecular systems in the future; hopefully, the
findings presented in this work can provide a point of reference for upcoming
developments and applications.
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Appendix A

Experimental Parameters

Given below are the experimental parameters for the spectra shown in this
work: Dates (YY/MM/DD) and identification letters, where available; detec-
tors and preamplifier settings (“Det.” and “Preamp”); light sources; filters;
optics materials; apertures (“Apt.”, in mm); scanner velocities (“Scanner”,
internal setting in kHz); spectral resolution (“Res.”, in cm−1); number of co-
added scans or scanning times (“Scans”, times indicates by seconds); and
details on the samples.

For the jet measurements, three different detectors were used: the newer
one of two available InSb/MCT sandwich detectors (“InSb SW”); and two
InGaAs detectors (“InGaAs old” and “new”). As outlined in Section 1.2.21.2.2,
both 50 and 150 W tungsten lamps were used as light sources (“W50” and
“W150”). The specified optics materials were used for all lenses, windows,
and the beamsplitter. The sample details include the temperatures and he-
lium pressures at which the samples were stored in the saturators (in the
form “‘Temperature@Pressure”). Ethene samples were pre-mixed with he-
lium in a gas cylinder at the specified volume ratios. Also given are the
synchronization times (on/off) of the reservoir feeding valves (“cont.” = con-
tinuous feeding), and the stagnation pressure ps in the reservoir.

For the matrix spectra (Figure 2.72.7), deposition was carried out from a
10 mbar methanol reservoir through a partially opened needle valve, to-
gether with a total of 60 mbar of neon from a different reservoir. For the
older libration fundamental spectrum from Kollipost et al.,103103 sample depo-
sition was carried out from a 3.9 mbar MeOH reservoir and a total of 50 mbar
Ne. For all matrix spectra, the optics materials refer only to the beamsplit-
ter.
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Table A.1: Measurement parameters for NOTCH curves (Figure 1.21.2).
Date/ID Detector Preamp. Source Filter Optics Apt. Scanner Res. Scans

“InSb” 15/11/09, .1 InSb SW 2.4 kΩ W50 13a CaF2 3.5 80 2 60.15 s
15/09/30, .0 InSb SW 2.7 kΩ W50 13a CaF2 3.5 80 2 60.15 s
15/11/09, .2 InSb SW 2.4 kΩ W150 13a CaF2 3.5 80 2 60.15 s
15/09/30, .0 InSb SW 2.7 kΩ W150 13a CaF2 3.5 80 2 60.15 s

“InGaAs” 15/11/09, .2 InGaAs (new) 2.0 kΩ, 1.0 nF W50 16 CaF2 4.0 80 2 60.15 s
15/09/30, .1 InGaAs (new) 2.0 kΩ, 1.0 nF W50 16 CaF2 4.0 80 2 60.15 s
15/11/09, .2 InGaAs (new) 2.0 kΩ, 1.0 nF W150 16 CaF2 4.0 80 2 60.15 s
15/09/30, .0 InGaAs (new) 2.0 kΩ, 1.0 nF W150 16 CaF2 4.0 80 2 60.15 s

Table A.2: Measurement parameters for methanol jet-FTIR spectra (Figure 2.62.6).
Date/ID Detector Preamp. Source Filter Optics Apt. Scanner Res. Scans Sample

Top (overtone region)
(Ref. 1414) 12/08/13 InGaAs (old) 3.1 kΩ, 560 pF W50 16 CaF2 4.0 60 2 1450 MeOH: −13 °C@1.6 bar, cont.;

He@1.6 bar, cont.;
ps = 0.8 bar

Bottom (fundamental region)
14/09/19, h InSb SW 2.7 kΩ W150 13a CaF2 3.5 80 2 100 MeOH: −25 °C@1.6 bar, 0.80/0.20 s;

He@1.6 bar, 0.20/0.80 s;
ps = 0.35 bar
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Table A.3: Measurement parameters for methanol matrix-FTIR spectra (Figure 2.72.7).
Date/ID Detector Source Optics Apt. Scanner Res. Scans Sample

“OH stretching overtone”, “OH stretching fundamental”, “OH stretching-libration combination”
15/06/09 InSb Tungsten CaF2 8.0 40 0.5 1750 s MeOH: 10 mbar reservoir;

60 mbar total Ne deposition
“OH libration overtone”

15/06/09 MCT Globar KBr 4.0 40 0.5 874 s MeOH: 10 mbar reservoir;
60 mbar total Ne deposition

“OH libration fundamental”
(Ref. 103103) 12/11/09 Bolometer Globar Mylar, 6 µm 12.5 10 1 800 s MeOH: 3.9 mbar reservoir;

50 mbar total Ne deposition

Table A.4: Measurement parameters for methanol-ethene spectra (Figure 3.23.2, top).
Date/ID Detector Preamp. Source Filter Optics Apt. Scanner Res. Scans Sample

Top (overtone region)
Strong trace 14/04/11–

14/04/15
InGaAs (new) 2.0 kΩ, 1.0 nF W150 16 CaF2 4.0 80 2 1200 MeOH: −15 °C@1.6 bar, cont.;

Ethene: 10% in He@1.8 bar, cont.;
ps = 0.75 bar

Thin black tr. 14/06/04–
14/07/10

InGaAs (new) 2.0 kΩ, 1.0 nF W150 16 CaF2 4.0 80 2 1050 Ethene: 10% in He@1.8 bar, cont.;
He@1.6 bar, cont.;
ps = 0.75 bar

Grey trace methanol overtone spectrum, as in Fig. 2.62.6
Bottom (fundamental region)
Black trace 14/01/31, b;

02/06/14, c
InSb SW 2.7 kΩ W150 13a CaF2 3.5 80 2 150 MeOH: −25 °C@1.6 bar, 0.10/1.11 s;

Ethene: 2% in He@1.8 bar, 0.95/0.94 s;
ps = 0.75 bar

Grey trace 14/06/17–
14/06/19

InSb SW 3.1 kΩ W150 13a CaF2 3.5 80 2 170 MeOH: −15 °C@1.6 bar, cont.;
Ethene: 10% in He@1.8 bar, cont.;
ps = 0.75 bar89
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Table A.5: Measurement parameters for methanol-ethene concentration series (Figure 3.23.2, bottom).
Date/ID Detector Preamp. Source Filter Optics Apt. Scanner Res. Scans Sample

Black trace as in fundamental spectrum (top part of Fig. 3.23.2, lower panel)
“×0.79” 14/06/03, a+e InSb SW 2.7 kΩ W150 13a CaF2 3.5 80 2 100 MeOH: −25 °C@1.6 bar, 0.56/1.13 s;

Ethene: 2% in He@1.8 bar, 0.95/0.94 s;
ps = 0.75 bar

“×0.81” 14/06/03, b+d InSb SW 2.7 kΩ W150 13a CaF2 3.5 80 2 100 MeOH: −25 °C@1.6 bar, 1.00/1.13 s;
Ethene: 2% in He@1.8 bar, 0.54/0.94 s;
ps = 0.75 bar

“×1.5” 14/06/03, c InSb SW 2.7 kΩ W150 13a CaF2 3.5 80 2 100 MeOH: −25 °C@1.6 bar, 1.00/1.13 s;
Ethene: 2% in He@1.8 bar, 0.10/0.94 s;
He@1.6 bar, 0.49/0.48 s;
ps = 0.75 bar

Table A.6: Measurement parameters for methanol-anisole spectra (Figure 3.53.5).
Date/ID Detector Preamp. Source Filter Optics Apt. Scanner Res. Scans Sample

Top (OH overtone region)
Black trace 14/11/25, a+b;

14/11/26, a+b
InGaAs (new) 2.0 kΩ, 1.0 nF W150 16 CaF2 4.0 80 2 1200 MeOH: −20 °C@1.6 bar, 0.51/0.55 s;

Anisole: 20 °C@1.8 bar, 0.91/0.10 s;
ps = 0.75 bar

Grey trace methanol overtone spectrum, as in Fig. 2.62.6
Middle (OH fundamental region)
Black trace 14/12/09, a;

15/01/16, a–c;
15/01/19, c–g+k

InSb SW 2.7 kΩ W150 13a CaF2 3.5 80 2 210 MeOH: −20 °C@1.6 bar, 0.51/0.55 s;
Anisole: 20 °C@1.8 bar, 0.91/0.10 s;
ps = 0.75 bar

Grey trace methanol fundamental spectrum, as in Fig. 2.62.6
Bottom (OD fundamental region)

15/02/03, a InSb SW 2.7 kΩ W150 13a CaF2 3.5 80 1.5 150 MeOD: −20 °C@1.6 bar, 0.52/0.55 s;
Anisole: 20 °C@1.8 bar, 0.94/0.10 s;
ps = 0.75 bar
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Appendix B

Numeric MATLAB Routines

B.1 Outline and Source Code Excerpts
A set of custom MATLAB routines was written to calculate numerical time-
independent solutions to the Schrödinger equation of the rotational/vibra-
tional problems presented in this work. Below, a basic description of the
program flow is provided, and central code sections are reproduced. The
given code examples include the following physical constants in their re-
spective SI units: h and hbar as Planck’s (reduced) constant; c as the speed
of light in vacuum; and NA as Avogadro’s constant. Further, the following
unit conversions are used: kgtou from kilograms to atomic mass units; Jtocm
from Joules to reciprocal centimeters; and mtoA from meters to Ångstrom.
Built-in MATLAB commands and functions are capitalized throughout.

First, the displacement coordinate interval x is mapped out by a regular
grid of sufficiently fine resolution Dx. Along this coordinate, a basis set is
constructed by first defining a single “seeding” function, user-specified as the
ground-state harmonic vibrational wavefunction (v = 0) of an oscillator of a
given mass µ (mu, in u) and wavenumber ω (omega, in cm−1). Drawing from
the formulation chosen by Hollas in Reference 2121**, this first wavefunction
psi is defined by:

alpha = omega * c / hbar * 100/(kgtou * mtoA^2);

y = SQRT(alpha) * SQRT(mu) .* x;

psi = HERMITE(v,y) .* exp(-1/2 * y.^2) * ...

1 / SQRT(2^v * FACTORIAL(v)) * (alpha / pi)^(1/4);

*Note that in comparison to Eqn. (1.70) in Ref. 2121, the formula used herein includes an
additional factor of α1/4 in the normalization constant. This is necessary due to subsequent
integration over the Cartesian coordinate x instead of the reduced coordinate y.
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This “seeding” function is then assigned to the first row of a basis set array
chi(1,:). The remainder of the basis set is constructed by replicating and
circularly shifting the seeding function along the coordinate x with a user-
defined step size step until the entire definition range has been spanned. In
essence, the i-th basis function in the basis set array chi is produced by:

chi(i,:) = CIRCSHIFT(chi(1,:),(i-1)*step,2);

Through the use of the circshift command, the shifted vectors “wrap
around” their edges, ensuring that the basis function amplitudes are evenly
distributed along the full coordinate interval.

The resulting basis set is orthogonalized by means of diagonalizing its
overlap matrix S:

S = chi * chi' * Dx

[C, S_diag] = EIG(S,'nobalance');

chi_diag = C' * chi;

The functions belonging to eigenvalues below a certain threshold (default
10−5) are discarded. This improves numerical stability and eliminates neg-
ative overlap elements, which would produce complex-valued functions. The
remaining orthogonal basis functions are normalized, and the overlap ma-
trix is re-computed:

chi_diag = chi_diag .* REPMAT(sqrt(1./DIAG(S_diag)),1,SIZE(x,2));

S_diag = chi_diag * chi_diag' * Dx;

For diagnostics purposes, the largest residual off-diagonal element and
the root-mean-square error of all off-diagonal elements are calculated.

% maxres = max. absolute off-diagonal residual

% rmsres = root-mean square of residuals

maxres = MAX(MAX(ABS(S_diag - DIAG(DIAG(S_diag)))));

rmsres = SQRT(SUM(SUM((S_diag - DIAG(DIAG(S_diag))).^2)));

If maxres is larger than a hard-coded value (10−10), orthonormalization is
re-attempted with the new basis set until it falls below this threshold. Typ-
ically, the two diagnostics measures are on the order of 10−14 to 10−15 after
the first orthonormalization attempt if the basis set is well-constructed (i.e.,
the Gaussian functions are not too narrow for the numeric grid, and spaced
not too far apart). The array chi is overwritten with the finalized basis set
of dimension dim.

After preparing the basis set, the Hamiltonian matrix can be calculated,
for which a numeric potential energy vector V and a reduced mass mu†† of the

†Not to be confused with the parameter for the basis set definition above.
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vibrational problem have to be supplied. For the kinetic energy operator, nu-
merical second derivatives are calculated from finite differences in the basis
functions through circular shifts of the basis function array chi along the x

coordinate, again wrapping around at the margins of the numeric vectors.

T = -hbar^2./(2*mu) * kgtou * mtoA^2 * Jtocm .* ...

(CIRCSHIFT(chi,1,2) + CIRCSHIFT(chi,-1,2) - 2*chi) / Dx^2;

While differentiation could in principle also be carried out by a more
straightforward DIFF(chi,x,2) call, the CIRCSHIFT approach is a more cor-
rect formalism for periodic problems such as the torsion/rotation motion in
the methanol monomer, since DIFF naturally clips a vector to a smaller size.
The results published in Reference 1616 were obtained without this circular-
shift differentiation, but the impact of the code modification on the calcu-
lated eigenstates was found to be non-noticeable in these linear problems, at
least if the coordinate interval is chosen large enough so that the amplitudes
of all (relevant) wavefunctions vanish at its margins.

Construction of the potential energy operator is done in a straightfor-
ward way by expanding the numeric potential energy vector V to match the
dimension dim of the basis set.

U = REPMAT(V,dim,1) .* chi;

To finalize the elements of the Hamiltonian matrix, a temporary vector
H_temp is calculated by co-adding the T and U matrices, forming the element-
wise product from the left with the array chi, and numerically integrating
along the coordinate x. Through successively shifting the basis set array chi

upwards in its vertical dimension, different basis functions are combined
on either side of the corresponding bra-ket terms, yielding the off-diagonal
Hamiltonian elements. The Hamiltonian matrix H is iteratively built up
from expanding the temporary vectors H_temp to diagonal matrix forms and
adding them to the appropriate off-diagonals of H.

FOR j=1:dim

% j=1: <1|H|1>, <2|H|2>, ...

% j=2: <2|H|1>, <3|H|2>, ... etc.

H_temp = TRAPZ(x,CIRCSHIFT(chi,-(j-1),1) .* (T+U),2);

H = H + CIRCSHIFT(DIAG(H_temp),j-1,1);

END

A slight non-symmetry in the finalized Hamiltonian matrix is generally
observed, most likely due to remaining numerical inaccuracies. To diag-
nose the impact of this symmetry breaking, the eigenvalues are calculated
twice: first with the original matrix H, then after averaging all equivalent
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off-diagonal elements Hi j and H ji. The eigenvalues and eigenvectors of H

are sorted in ascending order and stored.

E_nonavg = SORT(EIG(H));

H = 1/2 * (H + H');

[C, E] = EIG(H,'nobalance');

[E_diag, permut] = SORT(DIAG(E),'ascend');

FOR i=1:dim

C_diag(:,i) = C(:,permut(i));

END

If any of the resulting eigenvalues (or the n lowest ones, per optional user
request) are found to differ by more than a pre-set parameter (10−3 cm−1)
between the symmetrized and non-symmetrized result sets, a warning is is-
sued; this can typically be rectified by either extending the coordinate space,
increasing the numeric resolution, or adjusting the available parameters of
the distributed Gaussian functions (i.e., their width and spacing).

Construction of the wavefunctions is straightforward, using the eigen-
vectors of the symmetrized Hamiltonian:

psi = C_diag' * chi;

S_diag = psi * psi' * Dx;

Again, the overlap matrix is diagnosed by means of maxres and rmsres as
before during construction of the basis set, triggering a warning if any off-
diagonal overlap element surmounts a threshold. The calculations are fin-
ished by printing the S diagnostics and energy levels to the screen.

B.2 Parameters

B.2.1 Methanol Monomer Torsion
In the torsional monomer calculations in Section 2.12.1, the coordinate x ob-
tains the character of an angular displacement, and the reduced mass of the
vibrational/rotational problem is replaced by an effective moment of inertia.
The nomenclature of both quantities is retained here for consistency. In this
formulation, mu can be determined from the parameters F = ħ/(4πc ·mu) (see
Section 2.12.1), which are given by Rueda et al. in Reference 108108. The param-
eters for the potential functions as per Equation (2.32.3), and the values of F
and mu are given in Table B.1B.1. Small offsets of the potential functions, Vs,
were deduced from minimizing the root-mean-square errors (RMSE) of the
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Table B.1: Hamiltonian and potential parameters for the methanol monomer
torsion calculations (Eqs. (2.22.2) and (2.32.3)) used within this work, from
Ref. 108108. All data except for mu in cm−1.

V3 V6 Vs RMSE F mu / u

vs = 0 373.59 −1.60 −0.2 0.68 27.65 0.610
1 410.20 −1.09 3767.6 0.57 26.83 0.628
2 446.41 −2.85 7186.6 0.66 25.79 0.654

lowest torsional levels up to vt = 2 with the experimental literature data.
Naturally, the coordinate x was defined over the full circular range between
±π:

x = [-pi:pi/5000:+pi];

The basis set was constructed as detailed above with the parameters mu =
1 u, omega= 400 cm−1, and a step size of 5.

The chosen range and gridding in x determines all numeric vectors along
this coordinate to be of length 10001. For the localized problem, the two po-
tential wells at ±π/3 were replaced with the maximum value of the potential
function to build the plateau potentials:

V(1:3334) = MAX(V);

V(6668:10001) = MAX(V);

The energy levels in these potentials were then calculated with the same
parameters and basis sets as before.

B.2.2 OH Stretching Vibrations
For the OH stretching vibration problems in the methanol monomer, the
methanol dimer donor, and methanol-ethene, the normal modes and reduced
masses were obtained from a standard vibrational analysis for each struc-
ture at the LCCSD(T0∗)-F12a(int)/VDZ-F12 level of theory. Potential en-
ergy curves along these vibrational coordinates were built from a number of
single-point energies at displacements up to Q =−0.3 and +0.9 Å, fitted with
a modified Morse potential as per Equation (2.72.7),

V (Q)= C

[
1−exp

(
−

5∑
i=1

biQ i

)]2

. (B.1)
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Table B.2: Hamiltonian and potential parameters for the 1-D OH stretch-
ing calculations of the methanol monomer (“M”), and the methanol dimer
(“MM”) and methanol-ethene (“ME”) donors (Eq. (2.72.7)). The parameters bi
are given in units of Å−i.

C / cm−1 b1 b2 b3 b4 b5 mu / u

M 46907.9 2.2426 −0.2873 0.3649 −0.2575 −0.1303 1.0667
MM 1635843.2 0.3676 −0.4500 0.3209 −0.2468 0.1087 1.0674
ME 78825.4 1.7106 −0.6880 0.1737 −0.2458 0.1830 1.0664

Some multistabilities were found in these fits, but since there is no direct
physical meaning attached to the fitted parameters, they were still judged
to be satisfactory on grounds of the overall 1 to 2 cm−1 residual root-mean-
square errors (RMSE). The results for C and b1 through b5 are listed in
Table B.2B.2, together with the values of mu from normal-mode analyses. For all
systems, the coordinate x was defined in 0.0001 Å steps between −0.5 and
+0.9 Å:

x = [-0.5:0.0001:0.9];

The basis set was constructed with parameters omega = 10000 cm−1 and
step = 25, using the same mu values as for the respective vibrational prob-
lems themselves.
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Appendix C

MOLPRO Inputs and LMOMO
Calculations

For all MOLPRO calculations, increased convergence criteria were used for
the integral accuracy in the SCF routine and global energy calculations,
using the ACCU,16 directive for the Hartree-Fock program, and a global
GTHRESH,ENERGY=1E-10 definition. The OPT=TIGHT geometry convergence
criteria of the GAUSSIAN 09 package were mimicked in MOLPRO by adding
“GAUSSIAN,GRADIENT=1.5E-5,GRMS01E-5,STEP=6E-5,SRMS=4E-5,ENERGY=1E-8”
to the OPTG routine call.

If local electron correlation is employed in Coupled Cluster approaches,
the customary perturbative triples treatment in CCSD(T) must in principle
be carried out iteratively to be exact. However, the errors that arise from
simply calculating the triples in a single iteration are typically negligible,
which is designated “(T0)” and was used per default for all LCCSD(T) cal-
culations presented throughout this work.7171 To aid the robustness of the
automated domain constructions, the two most diffuse basis functions were
deleted from each atomic center by using the PIPEK,DELETE=2 command. Typ-
ical threshold values for the NPA domain-selection criterion (governed by
the NPASEL parameter) were then between 0.03 and 0.05. For calculations on
anisole, the MERGEDOM=1 command was used to merge the non-unique local-
ized domains in the aromatic π system.

C.1 Explicit Correlation
Due to a programming bug in version 2012.1, explicitly correlated
LCCSD(T)-F12 calculations do not honor the request for scaling the per-
turbative triples (SCALE_TRIP=1 keyword). Thus, a series of energy defini-
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tions was added manually in all calculations to step-wise build the desired
LCCSD(T0∗)-F12a energy:

E_CCSDF12A = _ENERGC(1)

E_TRIPF12A = _ENERGY(1) - E_CCSDF12A

E_MP2CORR = _EMP2_SING + _EMP2_TRIP

E_MP2F12CORR = E_MP2CORR + _EF12

E_CHECK = E_CCSDF12A + E_TRIPF12A

E_TARGET = E_CCSDF12A + E_TRIPF12A * E_MP2F12CORR / E_MP2CORR

These definitions specify:

• E_CCSDF12A: full LCCSD-F12a “base” energy, including the CABS-
corrected SCF reference as described in Section 1.3.11.3.1;

• E_TRIPF12A: unscaled triples contributions, extracted from the
LCCSD(T)-F12a energy by subtracting E_CCSDF12A;

• E_MP2CORR: LMP2 correlation energy as calculated from the LMP2 sin-
gles and triples contributions;

• E_MP2F12CORR: LMP2-F12 correlation energy, obtained from adding the
effect of explicit correlation to the correlation energy E_MP2CORR;

• E_CHECK: full LCCSD(T0)-F12a energy (including SCF reference), used
as a consistency check against the output provided by the program;

• E_TARGET: final LCCSD(T0∗)-F12a energy, using the ratio of
E_MP2F12CORR and E_MP2CORR to scale the E_TRIPF12A triples contribu-
tions.

C.2 Spin-Component Scaling
Using Grimme’s Spin-Component Scaling (SCS)125125 in MP2 calculations is
possible in MOLPRO by means of the SCSGRD=1 keyword. Unfortunately, the
program code appears to recognize this command only in the local, but not
the canonical formalism. A workaround for enabling canonical SCS-MP2
calculations is provided by calling the local LMP2 program and extending
the domains to encompass the entire molecule, thereby fully undoing the
localization approach:

{DF-LMP2,BASIS=avtz,SCSGRD=1

LOCAL,THRBP=1.0}
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C.3 LMOMO Calculations
LMOMO calculation in MOLPRO are requested by including a “REGION” key-
word in the input block of the local calculation command. An exemplary
input for the methanol dimer would take the form:

REGION,CCSD(T),DEFAULT=MP2,H6,TYPE=INCLUSIVE

REGION,CCSD(T),DEFAULT=MP2,O8,TYPE=EXCLUSIVE

The INCLUSIVE and EXCLUSIVE cards control whether all domains containing
the given atomic centers are to be treated at specified given level of theory,
or only those domains which are exclusively located on these centers. In the
above example, the first line elevates the electron pair comprising the donor
OH bond to the CCSD(T) level, since the corresponding domain contains the
specified H6 atom. The effect of the second line is to also include the two lone
pairs of the acceptor O8 atom in the CCSD(T) region, but not the adjacent
CO and OH bonds (since they contain more than just this atomic center).

Details about the LMOMO calculations on the methanol dimer (Sec-
tion 2.32.3) are given below in tabulated form. The relevant atomic centers
are labeled O2 and H6 for the donor OH group, and O8 and H12 for the accep-
tor OH group. The methanol-ethene LCCSD(T0)(int):LMP2 calculation in-
cluded in Table 3.13.1 was carried out with an INCLUSIVE treatment of the donor
O and both acceptor C atoms. This scheme again correlates the C–O/O–H
bonds and O lone pairs in the methanol donor, as well as the entire ethene
acceptor and all intermolecular pairs, at the CCSD(T) level.
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Table C.1: LMOMO calculations of the methanol dimer presented in Fig. 2.82.8
(top) and Tab. 2.52.5 (bottom). The treatment of electron pairs is indicated
either at the CCSD(T0) (“CC”) or MP2 level, with “(int)” referring to all in-
termolecular pairs.

Figure 2.82.8

“a” “b” “c” “d” “e”

INCLUSIVE – H6 H6,O8 O2,O8 O2,O8

EXCLUSIVE – – – – –
Donor: O–H bond MP2 CC CC CC CC

O lone pairs MP2 MP2 MP2 CC CC
C–O bond MP2 MP2 MP2 MP2 MP2

Acceptor: O–H bond MP2 MP2 CC CC CC
O lone pairs MP2 MP2 CC CC CC
C–O bond MP2 MP2 MP2 MP2 MP2

(int) MP2 MP2 MP2 MP2 CC

Table 2.52.5

“LCCSD(T0)” “LMOMO” “LMOMO + C–O”

INCLUSIVE – H6,H12 O2,O8

EXCLUSIVE – O2,O8 –
Donor: O–H bond CC CC CC

O lone pairs CC CC CC
C–O bond CC MP2 CC

Acceptor: O–H bond CC CC CC
O lone pairs CC CC CC
C–O bond CC MP2 CC

(int) as specified
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Appendix D

VPT2 Stability Tests

As mentioned in Section 1.3.31.3.3, several numerical instabilities were discov-
ered in the VPT2 calculations in GAUSSIAN 09. The first one exclusively
relates to DFT calculations, which are sensitive to the underlying input
structures; the second one also impacts ab initio methods and occurs when
the input structures are re-read from a checkpoint file instead of directly
taken from a preceding geometry optimization. To demonstrate and assess
these instabilities, a number of nominally equivalent calculations was con-
ducted in Reference 1717 for the methanol monomer, methanol homodimer,
and methanol-ethene. The results are repeated below, including an addi-
tional MP2 calculation “II” for methanol-ethene.

In the following tables, the anharmonic calculations are divided into
four categories, which should in principle all yield the same results: (I)
An original geometry optimization and anharmonic calculation; (II) using
the optimized structure from the checkpoint file of the first calculation
(GEOM=CHECKPOINT), re-optimized using the OPT=TIGHT setting; (III) starting
at a different input structure, using OPT=TIGHT; and (IV) using the struc-
tures stored in the checkpoint file of calculation (I) without re-optimization.
All DFT calculations were done with the INT=ULTRAFINE grid setting. The
data reveal distinct variations in the DFT results for all structures, which
are larger at the B3LYP-D3 that at the B2PLYP-D3 level. In addition to the
stretching and libration modes, the dimer data also includes selected data
on the second-lowest harmonic vibration (subscripts “2”) that represents the
hindered torsion of the acceptor methanol molecule, since it provides a strik-
ing measure for the robustness—or lack thereof—in these calculations. In
methanol-ethene, the torsion of the ethene acceptor around the OH· · ·π hy-
drogen bond is included for the same purpose.
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Table D.1: VPT2 stability tests for the methanol monomer.

MP2 B2PLYP-D3 B3LYP-D3
I II IV I II III IV I II III IV

ωs 3882 3882 3882 3858 3858 3858 3858 3829 3829 3829 3829
ν̃s 3706 3706 3706 3674 3674 3675 3674 3645 3645 3647 3645
ωs 309 309 309 307 307 307 307 306 306 306 306
ν̃t 257 256 256 241 243 243 242 233 236 234 232

∑
xs,i −21 −21 −21 −24 −24 −22 −24 −22 −22 −17 −22∑′
xs, j −30 −30 −30 −28 −28 −28 −28 −26 −25 −26 −26

xs,s −83 −83 −83 −86 −86 −86 −86 −87 −87 −87 −87
xs,t +9 +9 +9 +4 +4 +5 +4 +3 +4 +8 +3
xt,t −30 −31 −31 −35 −34 −34 −35 −37 −36 −37 −37∑′
xt, j +9 +8 +9 +3 +5 +5 +4 −2 0 −3 −2
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Table D.2: VPT2 stability tests for the methanol dimer. Subscripts “2” denote the harmonically second-lowest
vibration which serves as a particularly sensitive accuracy indicator. The last line further includes the summed
couplings of the librational mode to the seven lowest vibrations.

MP2 B2PLYP-D3 B3LYP-D3
I II IV I II III IV I II III IV

ωs 3740 3740 3740 3722 3722 3722 3722 3687 3687 3687 3687
ν̃s 3571 3571 3571 3554 3557 3559 3557 3520 3523 3507 3514
ωl 699 699 699 697 697 697 697 700 700 700 700
ν̃l 592 592 594 589 594 613 600 586 596 556 575
ω2 56 56 56 60 60 60 60 53 53 53 53
ν̃2 36 36 16 11 108 6 23 2 10i 12i 10i

(2ν̃)2 43 43 2i 8i 207 20i 17 30i 60i 55i 53i
ν̃s,l 4222 4222 4225 4200 4209 4230 4215 4164 4178 4120 4147

∑
xs,i +68 +68 +68 +73 +79 +83 +79 +83 +90 +58 +72∑′
xs, j +9 +9 +9 +15 +22 +26 +22 +25 +32 +0 +14

xs,s −102 −102 −102 −102 −102 −102 −102 −104 −104 −104 −104
xs,l +59 +59 +59 +58 +58 +58 +58 +58 +58 +58 +58
xl,l −46 −46 −46 −43 −43 −43 −43 −45 −45 −46 −46∑

xl,1...7 −71 −71 −66 −80 −71 −40 −61 −85 −68 −134 −103
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Table D.3: VPT2 stability tests for the mixed methanol-ethene dimer. Sub-
scripts “1” denote the torsional vibration of the ethene molecule around the
OH· · ·π hydrogen bond.

MP2 B2PLYP-D3 B3LYP-D3
I II IV I III I III

ωs 3823 3823 3823 3805 3805 3776 3776
ν̃s 3652 3652 3652 3633 3622 3601 3604
ωl 448 448 448 431 431 425 425
ν̃l 372 375 372 383 295 324 346
ω1 15 15 15 19 19 12 12
ν̃1 22 18 22 14 45i 206i 16i

∑
xs,i +12 +12 +12 +20 −2 +19 +23∑′
xs, j −4 −4 −4 +6 −15 +1 +5

xs,s −88 −88 −88 −91 −91 −92 −92
xs,l +17 +17 +17 +14 +13 +18 +18
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