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Introduction 
 

 

Our capacity to experience and interact with the material world depends largely on our 

senses. Sensory systems, from receptors to sensory cortices, endow mammals with the 

ability to collect information on the surrounding environment across a range of modalities – 

visual, tactile, vestibular, auditory, gustatory, and olfactory. These sensations, in turn, form 

the fabric from which our perceptions are generated, that is, our capacity to recognize a 

speeding red Ferrari from the various, segregated sensory stimuli it elicits as it roars past in 

a colourful blur. The cerebral cortex in particular is believed to be critically involved in 

generating a mental representation of the surrounding world that serves as an interface 

with it. An overarching aim in systems neuroscience is therefore to deepen our 

understanding of how sensory cortices process incoming information from the periphery 

and extract meaning from it. In this endeavour, a great emphasis has been placed on 

elucidating the structure-function relationship of sensory cortices, and considerable effort 

has been invested in mapping the connections between the numerous types of neurons 

populating the cortex as well as in probing their response properties. Because of the sheer 

size and complexity of the cerebral cortex, and because of the broad diversity of its cellular 

composition, such a task may at first glance appear hopelessly overwhelming in spite of the 

many decades of diligent work it has inspired. However, important conceptual advances 

have offered a glimmer of hope in simplifying it. Two important concepts in functional 

neuroanatomy are indeed guiding research in understanding the functional organization of 

the cortex: cortical layers and the cortical column.   

 

Fertile concepts in functional neuroanatomy 

A striking and highly conserved feature of the neocortex is its regular, laminated structure 

composed of 6 layers. The first hint of a layered structure in the cortex is often credited to 

Francesco Gennari of Parma, who noticed a white line running horizontally in the cerebral 

cortex of several species and which was later named the line of Gennari (Gennari, 1784). 
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This observation was corroborated in 1786 by Vicq d’Azyr, personal physician of Queen 

Marie Antoinette, who reports rather amusingly that “an anatomist of Pavia had made the 

same observation” (Vicq d’Azyr, 1786). A more detailed and impactful description of cortical 

lamination would not emerge before 1840, however, when Baillarger reported his own 

observations on the cerebral cortex (Baillarger, 1840). He described a pattern of 6 

alternating transparent and opaque layers visible in thin sections through the cortical 

mantle examined with transmitted light. Remarkably, these early reports derived from 

inspection of brain tissue with naked eye, and a determining milestone was reached when 

Meynert, relying on microscopic methods instead, recognized that the 6 cortical layers also 

differ in their cellular composition (Meynert, 1867, 1868; von Economo, 1927; Clarke and 

O’Malley, 1968; Gilbert, 1983). These original observations were refined following the 

development of the Golgi staining method. The technical leap enabled distinguished 

investigators such as Cajal to visualize the full morphology of individual neurons, resulting in 

the first elaborate descriptions of dendritic arbors, dendritic spines, and axonal 

ramifications (Ramon y Cajal, 1893). It rapidly became apparent that cortical layers differed 

not only in their cellular composition, but also in the afferent received, and the pattern of 

efferent connections. As an example, layer IV (LIV) receives the strongest input from the 

thalamus in sensory systems (Wimmer et al., 2010; Oberlaender et al., 2012), and is 

therefore considered the main input layer to the cortex. Thalamocortical (TC) synapses 

converge on spiny stellate (SpS) neurons, a cell type particularly abundant in LIV, and these 

neurons in turn project vertically oriented axons predominantly to LII/III and to a lesser 

extent to LVa, while the reciprocal connections from LII/III to LIV are sparse (Lefort et 

al.,2009; Staiger et al., 2015). In the somatosensory cortex, LI is the main target of 

projections from the motor cortex, which projects only weakly to other layers and ignores 

LIV almost entirely (Kinnischtzke et al., 2013). LI only contains very few neurons but is rich in 

the ramifications of apical dendrites of for example the large LV neurons pyramidal neurons, 

which project to a variety of subcortical structures (Welker et al., 1988; Mercier et al., 1990; 

Wright et al., 1999 and 2000). Such apparent laminar specializations in cellular makeup, 

inputs and outputs are naturally suggestive of a division of labour among cortical layers, 

such that “in order to understand the computations being performed by the cortex, we need 

to understand the nature of the processing undertaken by each layer” (Miller et al., 2001; 

Miller, 2003).   
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The second of these helpful concepts is the cortical column. As early as 1933, Lorente de Nó 

anticipated the existence of functionally distinct neuronal assemblies in the cerebral cortex. 

These elementary units are composed of afferent fibers, short axon neurons and pyramidal 

cells, and were postulated to form “cylinders” spanning the depths of the cortex and 

imparted with a coherent function (Lorente de Nó, 1949; Larriva-Sahd, 2014). The advent of 

electrophysiological recordings brought about the possibility to directly observe functionally 

distinct cortical columns, which was first carried out in a study of the cat somatosensory 

cortex (Mountcastle et al., 1957; Mountcastle, 1957). This seminal study used extracellular 

recordings to probe the responses of individual cortical neurons to a variety of mechanical 

stimuli delivered either to the skin (movement of hair, pressure on the skin) or to deep 

tissues (pressure on deep fascia or rotation of a joint). A remarkable result was that upon 

penetrating the cortex perpendicularly, the recording electrode encountered neurons that 

responded exclusively to one of these modalities – stimulation of cutaneous or deep 

mechanoreceptors. When the angle of penetration was slanted to 45°, however, the 

electrode first met neurons responding to one modality, before a transition to the other was 

observed as the electrode advanced deeper into the cortex. These data led Vernon B. 

Mountcastle to his formulation of the concept of the cortical column: “…there is an 

elementary unit of organization in the somatic cortex made up of a vertical group of cells 

extending through all the cellular layers. The neurons of such a group are related to the 

same, or nearly the same, peripheral receptive field upon the body surface.” (Mountcastle, 

1957). The dimensions of the column were estimated to be below 500 µm in diameter and 

spanning all layers. These results were soon reinforced by similar observations from the 

visual cortex of cats and monkeys (Hubel and Wiesel, 1962, 1968), and much experimental 

evidence has since consolidated the concept, which endures as a fundamental principle of 

cortical organization (Lübke and Feldmeyer, 2007; da Costa and Martin, 2010; Feldmeyer et 

al., 2013) 

 

The interplay of these concepts has given rise to the widely held view that cortical columns 

represent elementary modules in cortical processing and are home to what is referred to as 

a “canonical microcircuit” that can be generalized, with relatively little variation, to any area 
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of the neocortex (Lübke and Feldmeyer, 2007; Fox, 2008; Feldmeyer, 2012; Feldmeyer et al., 

2013). According to this view, processing of input to sensory cortex is segregated between 

cortical columns according to their stimulus feature selectivity, and processing within a 

column involves a sequential, interlaminar flow of information (Lübke and Feldmeyer, 2007; 

Lefort et al., 2009; Feldmeyer et al., 2013). The model proposes that sensory input reaches 

the cortex in LIV. LIV neurons, in turn, project strongly to LII/III and, to a lesser extent, to LV. 

LII/III neurons heavily project to LV neurons as well, and LV projects to a variety of 

subcortical targets (Welker et al., 1988; Mercier et al., 1990; Wright et al., 1999 and 2000). 

Although a variety of other connections exist that bequeath the model considerable 

flexibility, these represent the most substantial connections of the canonical microcircuit 

and account for the sequential, thalamus – LIV – LII/III – LV – thalamus processing loop 

(Lübke and Feldmeyer, 2007; Lefort et al., 2009; Feldmeyer et al., 2013). What makes this 

concept so attractive is that it considerably simplifies experimental approaches to the 

sensory cortex: indeed, elucidating the intra and interlaminar flow of information within a 

column should shed considerable light into its function, and because the cortex is 

considered a juxtaposition of largely similarly organized cortical columns, the lessons 

learned from individual columns in individual sensory systems can easily be generalized. And 

indeed, contemporary descriptions of cortical circuits make liberal use of the concept of 

cortical columns, which conveniently accounts for experimental results – and perhaps 

nowhere as conveniently as in the primary somatosensory cortex of rodents, for reasons we 

will examine.  

 

The rodent somatosensory system 

Like many species of mammals, rodents possess an array of facial vibrissae or whiskers on 

each side of their snout. The relevance of whiskers to rodent perception, however, is likely 

to be more important in nocturnal and burrow dwelling species such as mice and rats as it is 

in cats or seals (Hartmann, 2011). Indeed, a classical study revealed that rats were more 

impaired in learning a maze when deprived of their whiskers than when deprived of vision, 

hearing or olfaction (Vincent, 1912), demonstrating the reliance of this species on tactile 

information. Individual whiskers are inserted into individual follicles, which are attached to 

striate muscles under voluntary control that provide exquisite control over the whisker pad 
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(Fox, 2008; Haidarliu et al., 2010). As a result, rodents can be observed sweeping their 

whiskers back and forth while engaging in exploratory behaviour, a movement referred to 

as “whisking” (Berg and Kleinfled, 2003; Hartmann, 2011). A convenient hallmark of this 

array of whiskers is its stereotypical spatial arrangement on the animal’s snout. Indeed, 

follicles are aligned in five horizontal rows labelled A to E, and in vertical arcs numbered 1 to 

7 (Brecht et al., 1997; Diamond and Arabzadeh, 2012). Individual whiskers can therefore be 

identified within a naturally occurring coordinate system with a combination of letter and 

number (for instance, C2 is a whisker of choice for experimenters). This arrangement has 

largely contributed to the success of the somatosensory pathway as a model system, as it 

simplifies the delivery of controlled stimulation to identical whiskers across animals.  

 

Ample evidence exists that rodents actively sweep their whiskers along surfaces and objects 

in search of tactile information. Accordingly, a wide range of behaviour appear to involve 

the use of whiskers, starting with locomotion. Rats and mice typically display thigmotactic 

exploratory behaviour when introduced to a maze, indicating that whiskers are used to keep 

track of solid surfaces during locomotion, an observation that perhaps reflects adaptation to 

nesting in tunnels or a strategy aimed at minimizing vulnerable angles while exploring 

(Vincent, 1912; Ahl, 1986; Simons et al., 1994; Luhmann et al., 2005; Lamprea et al., 2008;). 

In addition, whiskers can be used to evaluate the width of an aperture such as in the gap 

crossing task (Jenkinson and Glickstein, 2000; Krupa et al., 2001), where rats choose 

whether or not to jump a gap based on sensing how distant the far edge is, indicative of 

their role in object localization. Whiskers are involved in sensory discrimination, and help 

rodent discriminate texture with high sensitivity (Guić-Robles et al., 1989; Brecht, 2007). 

Shapes can also be recognized using whiskers, such as triangular or round cookies (Brecht et 

al., 1997). A particularly telling example of shape recognition is provided by the Etruscan 

shrew, the smallest known living mammal. These shrews prey on insects, and rely on their 

whiskers to locate, recognize and bite prey, and can even be lured into attacking dummy 

crickets made of plastic, while they will ignore other objects of similar dimensions but 

different shape (Anjum et al., 2006). Interestingly, most attacks are targeted to the thorax of 

victims, revealing what fine a perception these animals have of their prey. A range of social 

behaviours involve the use of whiskers as well. Upon meeting unknown conspecifics, 
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rodents will engage in sniffing each other around the snout, a behaviour preceded by 

whisker-to-whisker contact, which may guide head placement (Wolfe et al., 2011; Lenschow 

and Brecht, 2015). A similar use of whiskers can be observed in boxing rats, and actively 

trimming the whiskers off of cagemates signals social dominance in mice (Long, 1972; Sarna 

et al., 2000; a behaviour also called barbering or Dalila effect and considered abnormal by 

some, see Garner et al., 2004). This already long yet non-exhaustive list of behaviours shows 

that whiskers may be as crucial a tactile organ in rodents as hands in primates.    

 

The anatomy of the whisker sensory system has been described in great detail and is 

summarized in figure 1. The follicles in which whiskers are inserted consists in a large sinus 

encasing the so called glassy membrane that ensheathes the whisker shaft, the sinus itself 

being enclosed in a thick, collagenous membrane (Rice et al., 1986; Fox, 2008; Diamond and 

Arabzadeh, 2012). The sinus is pressurized with blood and provides stiffness to the follicle 

and the base of the whisker. As the whisker is bent upon contact with an object, pressure is 

transmitted to the walls of the turgid sinus (Ahl, 1986; Hartmann, 2011). A variety of nerve 

endings can be found in the follicle, including but not restricted to, Merkel receptors, Pacini 

corpuscules, and lanceolate endings that either wrap the follicle like a ring or are arranged 

vertically and run along it (Rice et al., 1986; Ebara et al., 2002). These nerve endings 

emanate from neurons located in the trigeminal ganglion, which provide up to 200 axons 

per follicle (Lee and Woolsey, 1975); unfortunately, in spite of efforts in this direction, it has 

not been possible as of yet to clearly assign specific nerve endings to specific neurons in the 

trigeminal ganglion, which would otherwise help greatly in understanding the synthesis of 

receptive fields along the whisker sensory system (Rice et al., 1997). Neurons of the 

trigeminal ganglion then project to the trigeminal nuclei of the brainstem, where a first 

synapse on the way to the cortex is formed. A defining feature of the whisker to cortex 

pathway appears here. Indeed, individual follicles are represented in the trigeminal nuclei 

by clusters of cells called barrelettes, which are especially visible in sections through the 

nucleus principalis stained for cytochrome oxidase. Together, barrelettes form a 

somatotopic representation of the whisker follicles arrayed on the snout (Belford and 

Killackey, 1979). Neurons in the trigeminal principalis then project to the thalamus, and 

most importantly to the ventral posteromedial nucleus (VPm). The same somatotopic 
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representation of the whisker pad is present in the VPm, where each whisker is represented 

by a so-called barreloid (Van der Loos, 1976; Lübke and Feldmeyer, 2007; Petersen, 2007; 

Brecht, 2007; Diamond et al., 2008; Fox, 2008; Feldmeyer et al., 2013). 

 

 

 

Figure 1. Anatomy of the whisker to barrel pathway and the organization of the somatosensory 

cortex. A: the whisker to barrel pathway. Rats and mice actively use whiskers on their snout to 

palpate surrounding objects, such as a walnut. Axons innervating the whisker follicles and originating 

from the trigeminal ganglion carry tactile information to the trigeminal nuclei of the brainstem, 

which in turns projects to the ventral posteromedial nucleus of the thalamus; thalamocortical axons 

finally bring this information to the cortex. A somatotopic representation of the whiskers can be 

found at each stage of the pathway, composed of barrelettes in the brainstem, barreloids in the 

thalamus and barrels in the cortex. B: functional organization of the barrel cortex and canonical 

microcircuit. Individual whiskers can be identified by a letter and a number corresponding to their 

position within the arcs and rows formed by the follicles, respectively. Each whisker is represented by 

a single barrel in the cortex, and each barrel defines the dimensions of a barrel-related column. 

Stereotyped patterns of connectivity, commonly referred to as the canonical microcircuit, unite the 

cortical layers that subdivide cortical columns. Briefly, individual barreloids in the thalamus project to 

the corresponding cortical barrel in a one-to-one fashion. Input reaches the cortex primarily through 
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LIV, which projects to LII/III and LV and therefore distributes thalamic input to the cortical network. 

LV projects back to the thalamus, closing the thalamo-cortico-thalamic loop. Individual columns are 

not separate processing channels, but communicate strongly through horizontal, cortico-cortical 

connections originating in LV and LII/III. Concerted integration of sensory information reaching the 

cortex through segregated pathways by cortical columns working in unison is thought to enable the 

cortex to reconstruct a mental representation of the walnut, that is: a perception. Courtesy of Dr. 

Dirk Schubert and Prof. Jochen Staiger. 

 

 

The next step in the whisker sensory system is the primary somatosensory cortex itself, 

which receives extensive thalamic input. TC fibers from the VPm terminate predominantly in 

LIV, and to a lesser degree, at the LV/LVI border (Wimmer et al., 2010; Oberlaender et al., 

2012). LIV is remarkable for it contains the so-called barrels, clusters of neurons which 

correspond to the barreloids and barrelettes occurring at earlier stages of the pathway 

(Woolsey and Van der Loos, 1970). Together, barrels form the barrel field, a somatotopic 

representation of the whiskers on the snout (Woolsey and Van der Loos, 1970; Masino et 

al., 1993; Kleinfeld and Delaney, 1996). Indeed, numerous studies have demonstrated that 

neurons within the barrel strongly respond to a stimulation of the corresponding whisker 

and with short latencies (Armstrong-James and Fox, 1987; Brecht and Sakmann, 2002). 

Responses can also be evoked by stimulation of neighbouring whiskers, albeit weaker and at 

increased latencies, hence the notion that the receptive fields of barrel related neurons 

include a principal whisker as well as a number of adjacent whiskers (Zhu and Connors, 

1997; Brecht and Sakmann, 2002). Three types of excitatory neurons populate the barrels, 

namely, pyramidal, star pyramidal and SpS neurons (Feldmeyer at al., 1999; Schubert et al., 

2003; Staiger et al., 2004). The SpS are of particular interest, as they receive much of the 

VPm input to the cortex, and possess unique properties (Benshalom and White, 1986). 

Morphologically, these cells differ from other excitatory neurons in that they do not possess 

an apical dendrite. Their dendritic arbor consists in 4-6 dendrites which are largely confined 

within the border of their home barrel (Simons and Woolsey, 1984; Staiger et al., 2004). The 

dendrites are covered with numerous spines, which are the target of thalamic axons. 10 to 

25% of all excitatory synapses are TC synapses, a larger proportion than other excitatory 

neurons, and the overwhelming majority of TC synapses are formed on dendritic spines 
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(Benshalom and White, 1986). SpS neurons predominantly project to LII/III, and to a lesser 

extent, LV. Projections to neighbouring barrels are scarce (Staiger et al., 2004; Schubert et 

al., 2007). Given their strong thalamic input, pattern of output projections, and response 

properties, these neurons are well suited to initiate the cascade of sequential interlaminar 

processing proposed in the canonical microcircuit.  

 

A great advantage of the barrel cortex as a model system is derived from its characteristic 

functional organization: mentally extending the perimeter of a barrel through the depth of 

the cortex allows one to define a “barrel related column”, or in other words, every barrel 

specifies the location and approximate borders of an individual cortical column. The barrel 

cortex is therefore a very suitable system in which to study sensory processing within and 

across columns (Brecht, 2007; Lübke and Feldmeyer, 2007; Feldmeyer et al., 2013). 

Together with the ease with which whisker stimulation can be controlled, and the 

convenient “built-in” coordinate system of this cortical area, this has led the barrel cortex to 

become a model of choice in the last few decades. 

 

A mutant that questions cortical layers 

A central aspect of the columnar hypothesis is that specific functions can be assigned to the 

specific layer compartments it is made of, and that these functions are subserved by the 

specific, non-random connectivity that links layers together. It is therefore interesting to 

consider what would happen in a cortex devoid of cortical layers. 

 

The reeler mouse provides a model in which such a question is amenable to experimental 

scrutiny. The mutant first appeared spontaneously in 1948 at the Institute of Animal 

Genetics in Edinburgh (Falconer, 1951; D’Arcangelo, 1998). The gene affected encodes for 

the extracellular matrix protein reelin, and the mutation consist in an autosomal deletion in 

excess of 150 kb resulting in the loss of reelin expression. The roles of reelin are diverse and 

not fully elucidated (Förster et al., 2010), but considerable amount of research highlights its 

role in cortical development (Caviness, 1982; D’Arcangelo et al., 1995; Frotscher, 1998). 
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Indeed, reelin is expressed in Cajal-Retzius cells, a transient type of cells that populates the 

marginal zone (destined to become layer I) during development. Through binding to its 

receptors, ApoEr2 and VLDLr, reelin guides the migration of newborn neurons along radial 

glia into their destined position within their home layers (although the exact function of 

reelin as a stop signal or chemoattractant for migrating neurons remains a complex matter, 

see Zhao and Frotscher, 2010; Tissir and Goffinet, 2003). The absence of reelin or its 

receptors disturbs the process of cortical development and formation of layered structures. 

In reeler mice, the brain displays an abnormally reduced size and the cerebellum in 

particular displays severe hypoplasia, a cellular dispersion, and a dramatic reduction in the 

number of Purkinje neurons (Heckroth et al., 1989; Badea et al., 2007). These cerebellar 

abnormalities may account for the severe locomotor deficits these animals suffer from 

(Falconer 1951). Neurons in the hippocampus, another layered structure, are also dispersed 

and layers hardly recognizable. (Caviness and Sidman, 1973; Stanfield and Cowan, 1979; 

Boyle et al., 2011)   

 

The extent of disruption of layered structures is nowhere as striking as in the cerebral 

cortex, however. The nature of the disorganization was initially described to be an inversion 

of the cortical layers (Caviness and Sidman, 1973; Caviness, 1982; D’Arcangelo, 1995). It was 

proposed that the normal “inside out” pattern of cortical layers resulting from brain 

development was inverted into an “outside in” pattern, one in which LVI would be just 

underneath the pia and LI close to the white matter. More recent results indicate a far more 

chaotic pattern of cellular dispersion (Wagener et al., 2010; Dekimoto et al., 2010; Boyle et 

al., 2011; Wagener et al., 2015). To make matters even more complex, the exact nature of 

the dispersion appears to depend on the cortical area examined. In the motor cortex, for 

instance, neurons destined to LII/III, IV and V are massively intermingled, although they still 

arrange themselves in the proper order. LVI neurons, however, are massively present close 

to the pia and the white matter, essentially flanking other cell types in a sandwich-like 

pattern (Mingo Moreno and Wagener; unpublished results from our laboratory). This is in 

contrast with the visual cortex, where cells are also massively intermingled, but with a 

tendency towards an inverted pattern of layering as the majority of LV and LVI fated cells 

are found close to the pial surface. The somatosensory cortex presents yet another pattern 
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of disorganization, with LII/III and LIV fated cells broadly scattered around the middle of the 

cortical depth and sandwiched by LV and LVI-fated cells, resulting in a so-called “mirror 

image” in the cortex (see figure 2). A similar pattern is observed in the auditory cortex. The 

loss of proper cortical layering is therefore a ubiquitous feature in the reeler cortex, even 

though the precise pattern of cellular disorganization can vary from one area to another 

(Dekimoto et al., 2010; Boyle et al., 2011).    

 

 

 

Figure 2. Cortical lamination defect in the reeler somatosensory cortex. Coronal sections through 

the somatosensory cortex of wild type (WT, A) and reeler (B) mice. Cortical layers were visualized 

with chromogen in situ hybridization for layer specific mRNA in separate sections, and merged into a 

pseudocolor representation. The pattern of mRNA expression in the WT cortex reveals the well 

described laminar architecture of the cortex composed of 6 distinct layers (A), summarized in a 

density plot to the right of the photomontage. This ordered pattern is absent from the reeler cortex, 

which shows extensive cellular dispersion instead (B). Scalebar: 250 µm; wm: white matter. Courtesy 

of Dr. Robin Wagener.  

 

 

The extensive abnormalities described in reeler naturally raises questions about the 

connectivity and functional organization of its sensory cortex. These questions are especially 

interesting considering the fact that abnormal connectivity has been described in other 

systems. In the cerebellum, for instance, aberrant input has been described in the form of 

synapses from mossy fibers on Purkinje neurons, in addition to ectopic synapses between 

granule cells and Purkinje neurons (Mariani et al., 1977). In the reeler hippocampus, a large 
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fraction of mossy cells have been found to receive aberrant, direct input from the 

performant path (Kowalski et al., 2010). Such misconnections may have important 

functional consequences and warrant further investigation in the functional connectivity of 

the reeler sensory cortex. In this regard, it seems intuitive to first ask whether input from 

the thalamus can still find its targets in the extensively disorganized cortex of reeler.  

 

In the somatosensory cortex, TC input mainly targets LIV barrels. Early studies yielded 

contradictory results as to whether or not barrels can form at all in reeler, but an abundance 

of research has since demonstrated the existence of dense clusters of cells reminiscent of 

barrels (Cragg, 1975; Caviness et al., 1976; Welt and Steindler, 1977). However these 

“barrels equivalent” structures present some abnormalities, in that their radial span is far 

greater than that of LIV in normal mouse, giving them the appearance of being smeared 

over the depth of the cortex (Caviness et al., 1976). In addition, their orientation through 

the cortex often appears slightly oblique rather than purely radial, and their borders are 

somewhat fuzzy with respect to wild type (WT) barrels. In spite of the altered shape of 

barrel equivalents and the massive cellular dispersion reported above, tracing studies found 

that TC fibers seem to find their ectopic, LIV equivalent targets (Steindler et al., 1976; 

Caviness and Frost, 1983; Wagener et al., 2010). The trajectories of the fibers are not 

unaffected, however. In a normal brain, TC fibers travel tangentially through the white 

matter towards their terminal fields; upon reaching them they ascend radially towards layer 

IV and substantially ramify there. In reeler, TC fibers extend towards the pia in an oblique 

fashion as they exit the internal capsule, run tangentially along the pia to their terminal 

fields, before diving back into the cortex towards their targets (Caviness and Frost, 1983; 

Harsan et al., 2013). The specificity of the TC input to the reeler cortex with respect to the 

cell type targeted is evidenced by the fact that the distribution of TC boutons extensively 

overlap with populations of neurons labelled using a LIV specific marker (Wagener et al., 

2015). Thus it appears that TC input does indeed reach LIV equivalent neurons in the 

somatosensory cortex of the reeler mouse, an observation which has been obtained in the 

visual cortex as well (Pielecka-Fortuna et al., 2014).   
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Simply observing an apparent colocalization of TC fibers and LIV equivalent neurons is 

insufficient to demonstrate proper connectivity, however. Indeed, in the context of the 

somatosensory cortex, it is possible in principle for TC fibers to reach LIV equivalent 

neurons, but in a way that does not obey the somatotopy observed in WT mice. In other 

words, the establishment of columnar modules segregated by thalamic input may be 

compromised in reeler. It is therefore of great interest to resort to functional methods to 

determine whether somatotopy is preserved as all. When the study reported here was 

initiated, very little effort had been invested in solving this puzzle. To our knowledge, our 

laboratory had provided the only study addressing this question (Wagener at al., 2010). The 

approach was based on the use of the staining of c-fos, an immediate early gene, as a 

marker for neuronal activity (Dragunow and Faull, 1989; Staiger et al., 2002). Animals of 

both genotypes were allowed to freely explore a new, enriched environment for two hours 

after some of their whiskers had been clipped. At this end of this period, animals were 

perfused, their brains sectioned, and c-fos staining was performed on sections through the 

somatosensory cortex, thalamus, and brainstem. C-fos expression in the cortex was present 

only in those barrel equivalent columns that were activated by sensory stimulation, that is, 

those barrel equivalents whose corresponding whisker had not been clipped. In tangential 

sections through the barrel field, the pattern formed by spared columns was in agreement 

with a somatotopic arrangement of barrel equivalents in reeler. Somatotopy was also 

observed in the VPm as well as in the brainstem. In addition, the number of c-fos positive 

neurons in apparent reeler columns was similar to that in the WT, suggesting that cortical 

networks were equally active in both genotypes. The study concluded that in spite of absent 

layering, the reeler cortex underwent proper formation and somatotopic activation of 

columnar modules. It therefore appears that the presence of layers as such is not a 

prerequisite for the formation and function of cortical columns.   

 

While the study established the existence of somatotopy in the reeler barrel field on a 

functional basis, many questions are left open by the use of c-fos combined with the 

stimulus paradigm chosen – free exploration. Indeed, c-fos may not reveal differences 

between the genotypes in term of functional activation, as reeler animals may have 

compensated for potential sensory deficits by adapting their exploratory strategy. For 
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instance, it is conceivable that reeler animals would spend more time investigating an 

object, completing a higher count of whisker-to-object contacts, in the case where the 

responsiveness of their cortical networks to sensory input is weaker. This possibility is not 

only theoretical: single unit extracellular recordings in the visual cortex of reeler have 

already found lower overall firing rates in response to visual stimulation (Dräger, 1981). 

Ideally, a more accurate estimate of cortical responsiveness would combine a precise 

control over the stimulation with a global measure of neuronal activity such as local field 

potential or functional imaging techniques. Even these methods, however, may lack the 

sensitivity to detect some of the more subtle alterations in the reeler brain that have been 

documented so far.  

 

Indeed, a number of alterations in the properties of individual neurons have been found in 

reeler. In the mutant hippocampus for example, the action potential (AP) timing jitter of 

mossy cells is substantially more heterogeneous than in WT animals (Kowalski et al., 2010). 

Temporal imprecision in a neuronal network can blunt its computational capabilities, 

because feedforward and feedback inhibition impose temporal constraints to the 

integration of EPSPs in individual neurons, such that excitatory input requires a degree of 

synchronization to be optimally effective (Wehr and Zador, 2003; Wilent and Contreras, 

2005; Bruno and Sakmann, 2006). The morphology of several neuronal types has been 

found to be altered in reeler as well. In the cerebellum, Purkinje neurons have abnormally 

oriented dendrites (Heckroth et al., 1989), and the dendrites of hippocampal granule cells 

display similar alterations (Stanfield and Cowan, 1979). Our own lab has also observed that 

cortical pyramidal neurons have abnormally oriented apical dendrites, with an oblique or 

even tangential orientation instead of radial. Because the dendritic field of a neuron 

provides the anatomical substrate on which specific connections are established, 

abnormally structured dendrites can potentially indicate aberrant input, as has been 

documented in the cerebellum and hippocampus (Mariani et al., 1977; Kowalski et al., 

2010). Intrinsic electrophysiological properties of individual neurons may be altered too, in a 

way that can affect the response to incoming input. In hippocampal and neocortical LV 

neurons, reelin is crucial in establishing the gradient of HCN1 channels that underlie the 

gradient in the hyperpolarization-activated cation current (Ih, Magee, 1998; Kupferman et 
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al., 2014). Downregulation of Disabled-1 (Dab1) expression, a crucial molecular partner in 

the signalling cascade initiated by the binding of reelin to its receptors, results in a collapse 

of Ih in the distal apical dendrites of these large neurons, together with a marked increase in 

input resistance and a more hyperpolarized resting membrane potential (Kupferman et al., 

2014). Beyond the fact that Ih itself regulates temporal summation of EPSPs in distal 

dendrites, changes in input resistance and resting membrane potential can easily affect the 

general responsiveness of these neurons to synaptic input. Unfortunately, virtually nothing 

is known about the properties of identified, LIV equivalent neurons in reeler that permits 

speculation as to their responsiveness to thalamic input.  

 

In summary, the somatosensory cortex of the reeler mutant mouse is devoid of cortical 

layers. Barrel equivalent structures nonetheless seem to form properly, and input from the 

thalamus find their ectopic targets in a way that preserves somatotopy, suggesting that the 

establishment of columnar modules does not necessitate the presence of cortical layers. A 

quantitative description of the strength of responses of the cortical network to controlled 

stimulation is still lacking, however. In addition, virtually nothing is known of the 

physiological properties of thalamic input to defined neuronal classes in reeler. The present 

study aims at clarifying these points, in an effort to further document the abnormalities – or 

lack thereof – in the organization and function of the reeler barrel cortex. 

 

Aims and approaches    

The purpose of the work presented here is to elucidate some aspects of the functional 

connectivity of the reeler cortex about which knowledge is either incomplete or completely 

lacking. On the one hand, as mentioned above, an evaluation of cortical responses evoked 

by controlled stimulation is lacking, and the evidence for somatotopy our laboratory has 

gathered in the past was obtained from post mortem material (Wagener at al., 2010). We 

therefore probed the functional activation of reeler somatosensory cortex using in vivo 

functional imaging (Masino et al., 1993). On the other hand, investigating the functional 

connectivity of a network necessitates to obtain information on the connectivity of the 

variety of neuronal classes that compose the network. In order to further document this 
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little investigated issue, we resorted to in vitro patch clamp in TC slices of reeler and WT 

animals (Porter et al., 2001).  

 

The aims of our functional imaging study were to obtain a confirmation of somatotopy in 

the reeler barrel cortex, as well as a more accurate measure of evoked responses. This work 

was carried out in animals anesthetised with urethane, which has the advantage of 

providing long lasting anaesthesia with relatively mild disturbance of cortical networks 

(Simons et al., 1992; Friedberg et al., 1999). The anesthetised preparation also made it 

possible to tightly control the parameters of individual whisker stimulation using a computer 

controlled piezo actuator. Such arrangement enabled us to test the responses to a variety of 

stimulus frequencies and investigate the dynamic range in which cortex represents 

stimulation. By stimulated up to nine whiskers sequentially, it was possible to probe the 

functional organization of the cortex and verify the presence or absence of somatotopy. The 

imaging technique chosen was intrinsic signal optical imaging (ISOI), a functional imaging 

method that relies on hemodynamic signals as a surrogate measure for neuronal activity 

(Vanzetta and Grinvald, 2008). The method can be readily applied to anesthetized animals, 

provides good spatial and decent temporal resolution and importantly, has a long history of 

use in probing the functional organization of sensory cortex, including barrel cortex 

(Grinvald et al., 1986; Frostig et al., 1990; Masino et al., 1993). The results we obtained in 

this way about the organization of the reeler cortex were the first of their kind ever 

published, and form a substantial part of the present thesis.  

 

The other approach we used, and which forms another part of this thesis, was to investigate 

the electrophysiological properties and functional connectivity of individual, defined 

neurons in the reeler cortex. Such an approach complements well that based on functional 

imaging, which does not capture sensory transmission on a cellular level. We decided to 

restrict our investigation to LIV equivalent neurons in reeler. Indeed, LIV neurons receive 

much of the thalamic input to the cortex in WT animals, and it appeared intuitive to start 

our investigation of the reeler cortical network with what is considered its input stage. More 

specifically, we decided to investigate the properties of thalamic input to SpS neurons, by 



17 
 

means of in vitro patch clamp on TC slices. In order to control thalamic input, we introduced 

channelrhodosin 2 into thalamic relay neurons by injection of a viral vector to the VPm. A 

laser was then used to specifically stimulate thalamic fibers while recording the responses 

from SpS neurons. These results, together with the electrophysiological and morphological 

characterizations of the recorded neurons, provide the first detailed description of the 

properties of SpS neurons in reeler, the first neurons in the cortex to process incoming 

thalamic input.  

 

A major challenge in the study of defined cell types in fresh slices of the reeler cortex is that 

it is nigh impossible to identify neurons a priori based on their location (depth) in the cortex, 

due to the absence of cortical lamination characteristic of this mutant. Yet, the ability to 

specifically label and locate LIV equivalent neurons is instrumental in mapping the sensory 

representation of individual whiskers with respect to underlying anatomical barrels when 

looking for somatotopy, and it is absolutely essential when attempting to record from SpS 

neurons during electrophysiological experiments. In order to specifically visualize LIV 

equivalent neurons, we used the LIVtdTomato mouse line, where LIV neurons and their 

equivalents in reeler are readily recognizable for the fact that they express the tdTomato 

fluorescent protein (Madisen et al, 2010; Guy et al., 2014). The mouse line was developed in 

the laboratory of Prof. Jochen F. Staiger by Dr. Robin Wagener, and a brief description of the 

distribution of tdTomato positive neurons in the brain of such animals, which constitute a 

further innovation in the study of cortical networks in reeler, will follow.   

 

Visualization of the barrel field in LIVtdTomato animals 

In LIVtdTomato reeler and WT mice lines, Cre recombinase is expressed under the Scnn1a 

promoter (non-voltage gated sodium channel, subunit alpha) while tdTomato is expressed 

in a Cre dependent manner (Madisen et al., 2010). The resulting distribution of dTomato 

positive cells is illustrated in figure 3, where figure 3 A and C are photographs of coronal and 

tangential sections through the somatosensory cortices of a WT mouse, respectively. In the 

coronal section, dTomato positive cells are found in LIV of the neocortex and to a lesser 

degree in thalamic structures, with the strongest expression located in the posterior medial 
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barrel subfield (PMBSF). More specifically, dTomato positive cells form barrels in LIV of the 

PMBSF (examples are marked with white asterisks in figure 3). Such structures are also 

obvious in a tangential section through the PMBSF (figure 3 C), where the characteristic 

barrel field, organized in arcs and rows, is visible and individual barrels can indeed be 

recognized (Woolsey and Van der Loos, 1970; Welker and Woolsey, 1974; Welker, 1976). 

Thus, dTomato expression appears to be enriched in LIV of the LIVtdTomato mouse cortex and 

can hence provide a mean to reliably identify single barrels in WT animals and their 

equivalents in reeler. Clusters of dTomato expressing cells are also present in the cortex of 

reeler animals (figure 3 B) although they are not restricted to a single layer but span almost 

the entire cortical thickness, in agreement with the loss of lamination characteristic of this 

mutant (Boyle et al., 2011; Dekimoto et al., 2010; Wagener et al., 2010). These clusters are 

also visible in tangential sections (figure 3 D) where they form a recognizable barrel field. A 

previous study from our laboratory established that barrel equivalents in reeler have a 

significantly less symmetrical shape than their WT counterpart, are smaller, but occupy a 

proportionally equivalent size when taking the overall hypotrophy of the reeler brain into 

account (Wagener et al., 2010). The cellular composition of the reeler cortex has been the 

subject of scrutiny as well, revealing for instance that the total number of cells within a 

radial column does not differ from WT (Goffinet et al., 1984; Polleux et al., 1998). Although 

the composition of the cortical neuronal population has been shown to differ between 

genotypes, with a relative increase in the proportion of late generated neurons and a 

corresponding decrease in the share of early generated neurons in reeler (Polleux et al., 

1998), the number of LIV equivalent cells, which form barrel-like clusters, does not differ 

from WT (Wagener et al., 2010). The study presented here benefited immensely from the 

capacity to identify LIV cells based on Cre driven fluorescence that the LIVtdTomato lines 

provide.   
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Figure 3. Cytoarchitecture of the barrel field in LIVtdTomato  WT and reeler mice. A, B: coronal sections 

through the barrel field of LIVtdTomato  WT and reeler respectively. C, D: tangential sections through the 

barrel field of LIVtdTomato  WT and reeler respectively. A subset of barrels and barrel equivalents 

clusters of dTomato positive cells are marked for comparison (white asterisks). Both sections were 

obtained from comparable depths of about 400 µm below the pia. ALBSF: Anterior Lateral Barrel 

Subfield; Au1: primary auditory cortex; HC: Hippocampus; PMBSF: Posterior Medial Barrel Subfield; 

RV: Right Ventricle; V1: primary visual cortex; VB: Ventrobasal nucleus. Scale bar: 1000 µm. Data and 

figure created by Dr. Robin Wagener. Reproduced from Guy et al., 2014 under the terms of the 

Creative Commons Attribution Non-commercial License. 
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Material and methods 
 

 

Animals 

All animal experiments were carried out in accordance with institutional regulations 

regarding animal use in research. All animals were housed with a 12h light/dark cycle with 

food and water ad libitum prior to the experiments.  

 

Mice line used  

Two reeler mice lines were used in the study presented here. One is the B6C3Fe line, 

maintained by the Jackson Laboratory (D’Arcangelo and Curran, 1998). The other line is 

henceforth referred to as LIVtdTomato.  

Briefly, LIVtdTomato were generated by first crossing heterozygous reeler animals (B6C3Fe Reln 

±) with Scnn1a-Tg3-Cre mice (full strain name: B6.Cg-Tg(Scnn1a-cre)3Aibs/J; Stock Number: 

009613, Jackson Laboratory). The resulting Scnn1a-Tg3-Cre reelers were then crossed again 

with each other and animals homozygous for Scnn1a and heterozygous for the mutation of 

reelin were chosen for further crossings. ROSA-Tomato-LSL mice (full strain name: B6; 

129S6-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J; Stock number:007905; Jackson Laboratory) 

were crossed with heterozygous reeler in the same way, the resulting strain was called 

ROSA-Tomato-LSL reeler. Crossing of Scnn1a-Tg3-Cre reeler and Tomato-LSL reeler resulted 

in LIV specific expression of tdTomato in LIV fated cells. Thus, the respective mouse line was 

called LIVtdTomato.  

Regardless of the reeler mouse line used in specific experiments, WT animals of the same 

line served as controls and heterozygous reeler were excluded. Animals of both sexes were 

used.  
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In vivo functional imaging 

Two types of functional imaging experiments were conducted on separate subsets of 

animals. 

In a first set of experiments, we mapped the functional representation of 9 whiskers, 

namely C2 and its eight immediate neighbours, in 6 B6C3Fe WT and 7 B6C3Fe reeler mice. A 

subset of experiments were performed on LIVtdTomato WT and reeler (n=2 animals per group). 

In a second series of experiments, we determined the mean amplitude and area of the 

intrinsic signals evoked by stimulation of whisker C2 at discrete frequencies (1, 5, 10 and 25 

Hz). 11 B6C3Fe WT and 12 B6C3Fe reeler mice were used for that purpose.  

 

Labelling of blood vessels 

A further 6 B6C3Fe WT and 6 B6C3Fe reeler were used in order to obtain a staining of blood 

vessels in the barrel cortex.   

 

In vitro electrophysiology 

A total of 34 LIVtdTomato mice were included in experiments with in vitro electrophysiology 

and optogenetics, 20 of which WT and 14 reeler.  

 

Optic chamber implantation 

In order to perform functional imaging on anesthetized animal, a surgery aimed at 

implanting an optical chamber over the barrel cortex was required, the purpose of which is 

to enable stable delivery of light to, and recording of reflected light from, the underlying 

cortical structures. Surgery was performed on all animals used for intrinsic signal optical 

imaging experiments (n=27). Mice were anesthetized with intraperitoneal injection of 

urethane (1.8 g/kg, Sigma-Aldrich) dissolved in a 0.9% sodium chloride solution. Atropine 

(0.5 mg/kg, Sigma-Aldrich) was injected subcutaneously to minimize breathing impairment 

caused by urethane. Body temperature was maintained at 37°C with a heating pad (ATC 

1000, World Precision Instruments) and a life monitoring system was used to monitor 

breathing rate, heart rate and blood oxygen levels throughout the experiment (Mouse Ox, 

Starr Life Science Corp.). Data obtained during the functional imaging experiments were 
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discarded if the oxygen saturation level dropped below 80%. Depth of anaesthesia was 

monitored by breath rate and by the response to a noxious stimulus delivered to the hind 

paw. Lidocaine (Xylocaine 2%, AstraZeneca) was injected subcutaneously under the scalp to 

provide local analgesia. The scalp was dissected out to reveal the skull, and a custom built 

head post was attached to the right side of the skull with cyanoacrylate adhesive to 

facilitate head fixation during imaging. The skull over the left somatosensory cortex was 

carefully thinned to transparency with a dental drill (OS-40, Osada Electric Company) under 

regular cooling from a 0,9% sodium chloride solution. A ring of dental cement was raised 

around the resulting cranial window, filled with saline, topped with an 8 mm diameter 

round cover glass (Electron Microscopy Sciences) and sealed with vaseline, thus forming an 

optic chamber through which illumination of, and image acquisition from the 

somatosensory cortex was possible. Functional imaging experiments started immediately 

following the conclusion of surgery with the same anaesthetic regimen. 

 

Whisker stimulation 

Functional activation of the barrel cortex during imaging experiments was brought about by 

stimulation of the whiskers of anesthetized animals. The whiskers on the contralateral side 

of the snout were shaved except C2 and its eight immediately adjacent neighbours, which 

were trimmed to about 1 cm in length instead. Stimulation was achieved by inserting 

individual whiskers into a glass capillary (1.5 mm outer diameter, World Precision 

Instruments) glued to a piezo actuator activated by a computer controlled amplifier (E-650 

LVPZT, Physik Instrumente). Stimulation consisted in rostro-caudal deflections of about 1 

mm, delivered for 2 seconds at controlled frequencies (1, 5, 10 or 25 Hz).  

 

Intrinsic signal optical imaging 

In order to acquire images from the cortex, we used a CCD camera (Adimec 1000m, Adimec) 

mounted on a tandem lens assembly composed of a 50 mm Nikon bottom lens adapted on a 

135 mm Nikon top lens for a final magnification of 2.7x. The maximum resolution of the CCD 

camera was 1000*1000 pixels with a final pixel size of about 2.8*2.8 µm. The CCD camera 

was coupled to an Imager 3001 data acquisition system (Optical Imaging). We obtained 

pictures of the superficial blood vessel pattern by focusing the camera on the pial surface 

while illuminating the cortex with a 100W halogen lamp with stable power supply (Kepco 
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ATE 15-15M, Kepco), filtered through a 546 nm filter, in order to enhance contrast between 

blood vessels and surrounding parenchyma. For functional imaging, the focal plane was 

subsequently moved 300 µm below the pial surface and the illumination wavelength was 

changed to 630 nm by exchanging filters. The light intensity was adjusted to just below 

camera saturation in every experiment. 

 

Two data sets were obtained from our experiments. When mapping cortical representation 

of nine individual whiskers in LIVtdTomato animals, (n=17), full resolution data frames were 

acquired at a rate of 50 frames per second (fps) and binned to a rate of 5 fps. Data 

acquisition started 0.2 s after stimulation onset and lasted 2 s, with 30 s between individual 

trials, and the stimulation was delivered at 5 Hz for 2 s. 30 trials were averaged in order to 

improve signal to noise ratio. This data set was used to localize the functional 

representations of individual whisker with respect to one another.   

 

In another set of experiments, a separate data set was obtained on which to quantify the 

amplitude and area of the intrinsic signal evoked by whisker stimulation (n= 11 B6C3Fe WT 

and 12 B6C3Fe reeler). In these experiments, data frames were acquired as described above 

with an additional 9x9 spatial binning. Data acquisition started 15 s before stimulation onset 

and lasted 36 s, with 60 s between individual trials. Whisker stimulation lasted 2 s and was 

delivered to whisker C2 at varying frequencies (see below). 20 trials were averaged for every 

stimulus condition. Whisker stimulation and data acquisition were synchronized with 

custom written LabVIEW routines (National Instruments).    

 

Perfusion and tissue collection 

At the end of the imaging experiments, animals were given an overdose of urethane 

intraperitoneally and were transcardially perfused with 10% sucrose followed by a 4% 

paraformaldehyde (PFA) solution containing 15% (vol/vol) picric acid in 0.1 M phosphate 

buffer (PB). The brain was collected; the cortex over the left hemisphere was dissected out, 

flattened, and postfixed overnight in the same fixative (Welker and Woolsey, 1974).  

 

Animals used for staining of blood vessels were given an overdose of ketamine 

hydrochloride intraperitoneally and decapitated before the brain was dissected out and 
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fixed by immersion in 4% PFA-15% picric acid in 0.1 M PB overnight. Because the 

quantification of blood vessel density in the cortex relied on the presence of erythrocytes as 

a surrogate marker for blood vessels, we did not perform transcardial perfusion in order to 

minimize blood loss from the brain.  

 

Stereotaxic injections 

Stereotaxic injections were carried out on animal destined for in vitro electrophysiology 

experiments. The purpose of the injections was to provide a means of stimulating VPm 

fibers reaching the cortex by having VPm neurons express channelrhodopsin-2 (ChR2). To 

that effect, adeno-associated virus (AAV5) particles carrying the hSyn.hChR2(H134R)-eYFP 

vector (Addgene 26973P) were purchased from Penn Vector Core (Perelmann School of 

Medicine, University of Pennsylvania). Stereotaxic injections of AAV5 in the VPm were 

performed on 21 days old reeler and WT mice unless their body weight remained below 5 g, 

in which case surgery was delayed until the animal reached 5 g. Anesthesia was induced in a 

sealed transparent container filled with 5% isoflurane delivered in pure oxygen. Once 

sedated, mice were quickly transferred to a stereotaxic apparatus (Kopf Instruments), where 

anesthesia was maintained with 1-2% isoflurane in pure oxygen delivered through a mask. 

Depth of anesthesia was monitored throughout the surgery by visual inspection of the 

breathing rate and the response to a noxious stimulus delivered to the hind limb, and body 

temperature was maintained at 37°C with a thermostatic heating pad. The eyes were 

protected from desiccation by application of ointment (Bepanthen, Bayer). Subcutaneous 

injections of lidocaine provided local analgesia to incision sites. The scalp was incised along a 

rostro caudal axis, and a small craniotomy was opened over the VPm of each hemisphere. 

Long tapered, thin (tip diameter ~20 microns) injection capillaries pulled from borosilicate 

glass (GB150F-8P, Science Products) using a P-97 puller (Sutter Instruments) were front 

filled with a solution of AAV5 in phosphate buffer (titer approximately 2.84*109 

particles/µl). The injection capillaries were then lowered into the brain at standard 

coordinates from Bregma (in mm): -1.7 antero-posterior (AP), +/- 1.75 medio-lateral (ML) 

and -3.25 dorso-ventral (DV). Because of the generally small and variable size of juvenile 

mice, a correction factor often needed to be calculated for individual animals and applied to 

the standard coordinates. Briefly, given an expected Bregma-Lambda distance of 4.2 mm in 



25 
 

adult mice (Paxinos and Franklin, 2001) and a measured Bregma-Lamda distance of D, the 

corrected injection coordinates were calculated as follows (from Bregma, in mm):  

𝐴𝑃 =  −1.7 ∗ ( 
𝐷

4.2
 ) 

𝑀𝐿 =  ±1.75 ∗ ( 
𝐷

4.2
 ) 

𝐷𝑉 =  − ( 
2

3
∗ (1 −

𝐷

4.2
) + 𝐷 ) ∗ 3.25 

Volumes of 200 to 300 nl of virus containing solution were pressure-injected in each site 

using a PDES-02DX picospritzer (Npi). The scalp was sutured immediately after retraction of 

the capillary and the animal was allowed to recover. Carprofen (4 mg/kg, Rimadyl, Pfizer) 

was administered subcutaneously every 24 hours for a minimal period of three days 

following surgery, during which the postoperative weight of the mice was carefully 

monitored. Food and water containing 1.5 mg/ml Metamizol (Novaminsulfon, Ratiopharm) 

were provided ad libitum. No retrogradely labeled neuron was ever observed in the barrel 

cortex of any animal with confocal and epifluorescence miscroscopy. 

 

Slice preparation 

In vitro electrophysiology experiments took place three to four weeks after stereotaxic 

injections. Mice were sedated with isoflurane in a sealed container and quickly decapitated. 

The skull was opened and the brain transferred to ice cold cutting solution (87 mM NaCl, 

1.25 mM NaH2PO4, 2.5 mM KCl, 10 mM glucose, 75 mM sucrose, 0.5 mM CaCl2, 7 mM 

MgCl2, 26 mM NaHCO3, bubbled with 95% O2/5% CO2 (vol/vol)). The hemispheres were 

separated and cut into serial, 300 microns thick TC slices through the somatosensory cortex 

using a VT1200S vibratome (Leica) following standard methods (Porter et al., 2001). Slices 

were incubated in recording solution (125 mM NaCl, 1.25 mM NaH2PO4, 2.5 mM KCl, 25 mM 

glucose, 2 mM CaCl2, 1 mM MgCl2, 26 mM NaHCO3, bubbled with 95% O2/5% CO2 (vol/vol)) 

at 32°C for 30-60 min and at room temperature thereafter.  
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In vitro electrophysiology 

TC slices were transferred to a recording chamber constantly perfused with recording 

solution (1-2 ml/min) and visualized using the 2.5x and 40x objectives of a Zeiss Axio 

Examiner.A1 fixed-stage microscope (Zeiss). Whole cell patch clamp recordings were 

targeted at visually identified, tdTomato positive SpS neurons located on the edge of a 

barrel or barrel equivalent. Patch pipettes (resistance 6-10 MOhm) were pulled from 

borosilicate glass (GB150F-8P, Science Products) using a P-97 or P-1000 puller (Sutter 

Instruments) and filled with potassium based intracellular solution (135 mM K-gluconate, 5 

mM KCl, 0.5 mM EGTA, 10 mM HEPES, 4 mM MgATP, 0.3 mM Na GTP, 10 mM Na-P-creatin, 

pH 7.4, 300 mOsm) containing 0.5% biocytin (Sigma-Aldrich). Patch pipettes were steered 

into position with a micromanipulator (Luigs & Neumann). Recordings were carried out at 

32°C in discontinuous current clamp mode using a SEC-05XS amplifier (Npi). Access 

resistance was monitored and compensated for. If access resistance compensation became 

impossible, the recording was terminated. Membrane potential was held around -70 mV by 

DC current application throughout the recording after measuring the resting membrane 

potential (VRMP) on break-in. We did not correct for the liquid junction potential (16 mV).  

 

In order to obtain a thorough characterization of the intrinsic properties of the recorded 

neurons, we routinely performed standard characterization recordings immediately after 

establishing the whole cell patch clamp configuration. Passive properties were calculated 

from the membrane potential responses recorded in response to standard current pulses. 

Pulses were delivered for 1 s, and were of an amplitude of -10 and -50 pA. Ten responses for 

each current amplitude were recorded in order to calculate representative averages. In 

addition, we sequentially recorded the responses to current pulses of incrementing 

amplitude in order to build I-V curves for individual neurons. The current amplitude used 

ranged from -100 pA to whichever positive value caused the firing of at least one AP, with 

increments of 10 pA between individual sweeps. Rheobase recordings were performed by 

gradually adjusting the amplitude of the injected current to a value that would consistently 

elicit the firing of only one AP. The firing pattern was recorded by increasing the current 

amplitude above rheobase in 10 pA steps until enough APs were fired to reliably classify the 

resulting firing pattern.  
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Expression of ChR2 in VPm neurons enabled us to specifically activate thalamic fibers in the 

cortex and compare the properties of their input to cortical neurons. Stimulation of ChR2 

expressing thalamic fibers was achieved using a computer controlled 473 nm diode laser 

(Rapp optoelectronics) guided through the 40x objective of the microscope, resulting in a 

circular illuminated field of about 100 µm in diameter on the slice. Data acquisition and 

photostimulation were synchronized using custom-written programs in Signal (CED). 

Tetrodotoxin (TTX) and 4-aminopyridine (4-AP) containing recording solution (0.5 µM and 

0.1 mM, Tocris and Sigma-Aldrich respectively) were prepared for each experiment and 

perfused into the recording chamber at will.  

 

Upon completion of the recordings, TC slices were incubated in 4% paraformaldehyde (PFA) 

and 15% picric acid in PB (0.1 M, pH 7.4) at 4°C overnight prior to staining.  

 

Subcellular channelrhodopsin-assisted circuit mapping (sCRACM) 

sCRACM was performed to map the distribution of thalamic input on recorded neurons 

following published methods (Petreanu et al., 2009). 0.5 µM tetodotoxin (TTX) and 0.1mM 

4-aminopyridine (4-AP) were introduced into the recording chamber. TTX blocks network 

activity caused by ChR2 stimulation, ensuring that only the thalamic synapses directly in 

contact with the recorded neuron contribute to its response. 4-AP blocks voltage gated 

potassium channels of the Kv1 family and thereby enable the depolarization of the 

presynaptic terminal induced by ChR2 stimulation to reach the threshold for activation of 

high threshold calcium channels, which in in turn cause inflow of calcium and vesicle 

release. Stimulation of ChR2 was achieved as described above with a notable difference in 

the size of the illuminated area. Indeed, a shutter placed in the path of the laser restricted 

the size of the illuminated area to a field of 25 by 25 µm. After setting the focal plane on the 

center of the soma, the position of the light beam was gradually changed using the 

Morgentau software (Morgentau solutions) so as to scan an area of n-by-m fields over the 

cell being recorded. Stimulation, data acquisition and steering of the laser beam were 

synchronized using custom-written Signal routines. Recordings were performed in 
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discontinuous current clamp and membrane potential was held at -70 mV with constant 

direct current injections. Three stimulations were recorded from every field with an inter-

stimulus interval of 6 seconds. Laser pulses were 10 ms in duration. The laser power was set 

individually for every SpS neuron to the highest value which did not elicit a measurable 

response when flashing just outside of the home barrel but relatively close to the recorded 

soma.  

 

Histochemistry    

The tissue obtained from animals at the conclusion of functional imaging experiments was 

used to examine the spatial relationships between the functional representations of up to 9 

individual whiskers imaged during the experiment with the anatomical barrel field. The 

flattened cortex of the imaged hemisphere was cut in 100 µm thick tangential sections with 

a vibratome (VT1200S, Leica), collected and rinsed in PB (pH 7.4). DAPI staining was carried 

out on tissue collected from LIVtdTomato animals according to the manufacturer’s 

specifications (Molecular Probes), before the sections were mounted and coverslipped with 

Aqua-Polymount (Polysciences). Because LIV fated cells constitutively express dTomato in 

LIVtdTomato animals, no further staining was necessary to reveal the barrel field.  

 

A further pool of tissue obtained from B6C3Fe animals was used for the purpose of 

measuring blood vessel density in the barrel cortex of WT and reeler mice (6 animals per 

group). This tissue was stained with DAB (diaminobenzidine tetrahydrochloride dihydrate, 

Roth), which stains erythrocytes when quenching of intrinsic peroxidase is omitted. Serial, 

100 µm-thick coronal sections containing the barrel field were cut on a vibratome, collected 

and rinsed several times in PB (pH 7.4). They were subsequently incubated for at least 90 

minutes in 0.01 M phosphate-buffered saline containing 25% saccharose and 10% glycerol, 

followed by three freeze/thaw cycles on dry ice. After rinsing with PB (3*15 minutes), 0.05M 

TRIS buffer (TB, pH 7.4, 15 minutes) and TRIS-buffered saline (TBS, pH 7.4, 2*15 minutes), 

the sections were incubated overnight at 8°C in TBS containing avidin and biotinylated 

horseradish peroxidase diluted to 1:400 each (ABC Vectastain). Sections were recovered the 

next day, rinsed in TBS for 20 minutes and thrice in TB for 20 minutes, before incubation 

with 0.5 mg/ml DAB in TB. The reaction was started by adding 1 µl TB containing 1% 
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hydrogen peroxide, allowed to develop under regular visual control, and stopped by rinsing 

thrice in TB. We proceeded with a cytochrome oxidase staining as described by Wong-Riley 

and Welt (1980) to reveal LIV barrels and barrel equivalents. Finally, the sections were 

mounted and coverslipped with Aqua-Polymount.    

 

TC slices obtained from in vitro electrophysiology experiments were stained for biocytin 

with Alexa633 conjugate streptavidin so as to recover the morphology of the neurons 

recorded. The fixed slices were removed from PFA and successively rinsed 10 times with PB 

for 15 min each at room temperature. Slices were then rinsed in TB and TBS (pH 7.6) for 15 

min at room temperature, followed by two rinses in Tris Buffer Saline containing 0.5% 

Triton-X 100 (TBST) for 15 min each. Alexa633 conjugated Streptavidin (Molecular Probes) 

1:400 in TBST buffer containing Triton was then incubated with the slices overnight at 4°C 

on a rocking plate, before a DAPI staining was performed according to the manufacturer’s 

specifications (Molecular Probes). Slices were rinsed in TBS and TB buffer before being 

mounted and coverslipped with Aqua-Polymount. Histochemistry was performed chiefly by 

Patricia Sprysch. 

 

Data analysis  

Intrinsic signal optical imaging 

Analysis of intrinsic signals was performed with custom written MATLAB routines (The 

MathWorks). Series of camera frames were normalized using the following formula:  

 

𝛥𝑅

𝑅0
=

𝑅 −  𝑅0

𝑅0
 

 

where 𝛥𝑅/𝑅0 is the fractional change in reflectance from reference, 𝑅 is the light reflected 

during any given frame and 𝑅0 the light reflected during the reference frame immediately 

preceding whisker stimulation onset. 
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The data obtained from experiments on LIVtdTomato mice, where the functional 

representations of 9 individual whiskers were mapped, was processed in the following way. 

The 5 data frames spanning 1.2 to 2.2 seconds after stimulation onset, when the intrinsic 

signal is clearly visible (figure 4), were averaged. A Gaussian filter (σ = 86 µm) was applied to 

the resulting frame to improve threshold detection, and the median of the data frame was 

subtracted to minimize the effect of noise, especially the slow spontaneous oscillations in 

reflectance (Mayhew et al., 1996; Drew and Feldman, 2009). In order to localize the intrinsic 

signals evoked by stimulation of different whiskers with minimal overlap, we extracted the 

contour lines encompassing the area where the signals were at 90% of their maximum 

(figure 5 and Chen-Bee et al., 2000). 

 

In order to map intrinsic signals on the barrel field, we reconstructed the barrel field and 

pial vascular network from serial tangential sections of LIVtdTomato mice cortex under the 5x 

objective of an Axio Imager M2 microscope (Zeiss) using the Neurolucida software (MBF 

Bioscience). Before mapping the location of sensory evoked signals on the reconstructed 

barrel field, we used a warping algorithm written in MATLAB and designed to align the 

reconstructed pial vascular network to the one photographed during the experiment, using 

a set of fiducial points in order to partly compensate for the curvature of the brain and 

distortion of the tissue (see figure 5).    

 

The data obtained from B6C3Fe animals and used for quantifying the amplitude and area of 

the response evoked by stimulation at varying frequencies was treated as described above, 

with a few notable differences. The 15 frames spanning the 1-4 seconds after stimulation 

onset were averaged, and a Gaussian filter with σ=130 µm was applied to the resulting 

frame. The median of the resulting frame was subtracted. We measured the response 

amplitude as the peak 𝛥𝑅/𝑅0 value in the resulting data frame, which was always located 

within the region activated by whisker stimulation, and fixed thresholds (1, 2, 3, 4, and 

5*10e-4) where applied to all experiments for area measurements (see figure 6 and Chen-

Bee et al., 2000).   
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Electrophysiology 

Electrophysiological data were analyzed offline using custom written Signal and MATLAB 

scripts. Signal scripts were written by Dr. Martin Möck. ChR2 evoked responses were 

accepted if their amplitude crossed the threshold of 3 times the standard deviation of the 

baseline membrane potential measured in a 100 ms window prior to stimulus onset. In 

order to compare responses between the two groups on a population basis, we built Peri 

Stimulus Time Histograms (PSTH) by averaging the membrane potential values obtained 

from individual traces in 4 ms bins. The bin size was chosen so as to be large enough to fully 

exclude APs from traces where they appeared (for instance figure 12 F and G) while 

minimizing the subsequent loss of data. The same bin size was applied to traces that did not 

contain APs (for instance Fig 12 A, B and C) for the sake of comparability. Intrinsic properties 

were measured from the membrane potential responses to -10 pA current pulses delivered 

for 1 second. Input resistance (Rin) was measured from the maximal deflection from 

baseline. Membrane time constant (τ) was measured from an exponential fit applied from 

stimulus onset to maximal deflection. Sag index was calculated according to the following 

formula:  

 

𝑉𝑠𝑎𝑔 =  100 ∗  
(

1
𝑅𝑖𝑛𝑠𝑠

−
1

𝑅𝑖𝑛ℎ𝑑
)

1
𝑅𝑖𝑛𝑠𝑠

 

 

where 𝑅𝑖𝑛𝑠𝑠 is the input resistance measured at steady state and 𝑅𝑖𝑛ℎ𝑑 the input resistance 

measured at maximal deflection (Halabisky et al., 2006; Karagiannis et al., 2009). Rheobase 

was measured as the minimal stimulus current intensity required to reliably elicit a single 

AP. Reconstruction of filled neurons and delineation of the barrel and barrel equivalents 

was carried out by Alexandra Sachkova on confocal stacks using Neurolucida. Scholl analysis 

was performed on reconstructed neurons using Neurolucida; parameters measured were 

number of dendritic spines and dendritic length, and the bin size was set to 25 µm. 
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Histological quantifications 

Images of coronal sections stained with DAB and used for blood vessel density analysis were 

acquired with the 5x objective of an AXIO Imager M2 microscope (Zeiss) controlled by  

Neurolucida and digitized with an AXIO cam MRm CCD camera. Minimum intensity 

projections were obtained from stacks of pictures acquired in 5 µm steps through the 

thickness of each individual 100 µm thick sections (n=6 animals per group). We examined 6 

successive coronal sections through the barrel field in each animal. A threshold detection 

algorithm written in MATLAB was applied to calculate the relative section surface occupied 

by stained erythrocytes and thus blood vessels within selected regions of interest (ROIs). 

Briefly, the surface of the pia over the barrel field was manually outlined in pictures of 

coronal sections. The algorithm automatically generated successive, 100 µm-thick ROIs 

starting at the outline of the pia and covering the entire cortical thickness. The number of 

pixels detected above threshold in each successive bin was divided by the total number of 

pixels in that bin, resulting in an estimate of blood vessels density in dimensionless numbers 

reported as arbitrary units (see figure 7).  

 

Images of the distribution of eYFP and tdTomato fluorescence in stained TC slices were 

acquired through the 10x objective of an Axio Imager M2 epifluorescence microscope 

controlled by Neurolucida. Image stacks (11 planes, 5 µm z steps) restricted to the cortex 

were acquired with the same objective and quantification of eYFP and tdTomato expression 

was performed on the corresponding maximum intensity projections. A custom written 

MATLAB script was used to measure the fluorescence intensity in 50 bins covering the 

distance from pia to white matter. The script calculated the sum of pixel values contained 

within each bin, and the resulting fluorescence intensity profile was normalized to its peak.  

 

Statistics  

Statistical analyses were performed with SigmaPlot (Systat Software Inc) with a significance 

threshold fixed at 0.05. Spatial autocorrelation (Moran’s I) was calculated using the GeoDa 

software (GeoDa Center) according to standard methods (Moran, 1950). Briefly, spatial 

autocorrelation was estimated by calculating an index 𝐼 according to the following formula:   
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𝐼 =
𝑁

∑ ∑ 𝑤𝑖𝑗
𝑗
1

𝑖
1

∑ ∑ 𝑤𝑖𝑗 
𝑗
1

𝑖
1 (𝑋𝑖 − 𝑋̅)(𝑋𝑗 − 𝑋̅)

∑ (𝑋𝑖 − 𝑋̅)2𝑖
1

 

 

Where 𝑖𝑗 refers to an indexed n-by-m array of EPSP amplitudes containing 𝑁 fields, 𝑋 to the 

EPSP amplitude in a selected field 𝑖, and 𝑤𝑖𝑗 is an element of an 𝑁 by 𝑁 weight matrix. The 

array of EPSP amplitudes were obtained from sCRACM experiments. Because the input 

maps frequently contained domains composed of adjacent fields receiving no input (that is, 

the amplitude equals zero) which can cause an overestimation of 𝐼, they were trimmed into 

the smallest possible n-by-m array that did not exclude fields containing input. The 𝑁 by 𝑁 

weight matrix was designed following a king’s rule, that is only the fields immediately 

adjacent to the 𝑖𝑡ℎ in either direction were taken into account in the calculation of 𝐼. 

Theoretical values of 𝐼 range from -1 to 1. A value close to 1 indicates a spatial pattern 

where similar amplitudes tend to cluster around each other, a value close to 0 indicates a 

random pattern of amplitude distribution, and a negative value indicates a pattern where 

similar amplitudes avoid each other.  
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Results 
 

Intrinsic signal optical imaging  

A major goal of the present study is to elucidate the functional organization of the reeler 

barrel field with respect to somatotopy. We chose to investigate this issue by in vivo intrinsic 

signal optical imaging in urethane anesthetized mouse combined with controlled whisker 

stimulation. Urethane was chosen because of the very long lasting anaesthesia it provides, 

and because of its comparatively mild impact on cortical function (Simons et al., 1992; 

Friedberg et al., 1999). Whisker stimulation was achieved with a computer controlled piezo 

actuator, which enables precise control over stimulation parameters such as direction, 

amplitude, frequency, and identity of the whisker selected. Before the intrinsic imaging 

experiment began, we performed cranial surgery in order to implant optical chambers over 

the barrel cortex (see Materials and methods). The ring of dental cement was filled with 

saline and topped with a glass coverslip, enabling unhindered diffusion of light and imaging. 

This procedure allowed acquisition of detailed images from the cortex where individual 

vessels were clearly recognizable (figure 4 B and C, left).  

 

 

 



35 
 

Figure 4. The hemodynamic response to single whisker stimulation. A: time series of camera frames 

illustrating the response to stimulation of whisker C2 at 5 Hz for 2 seconds in two representative 

examples of WT and reeler animals. Stimulation starts at time 0, each frame represents 200ms. The 

camera frame immediately before stimulation onset was used as reference for normalization; the 

scale bar represents fractional change in reflectance with respect to that frame. Stimulation evoked a 

localized hemodynamic response corresponding to the sensory representation of whisker C2 in WT 

but also in reeler mice. Neither the mean latency nor mean duration of the evoked intrinsic signal 

differed significantly between genotypes (one way ANOVA, p=0.7 and p=0.46, respectively). B, C: left, 

photograph of the surface vasculature in two representative examples corresponding to the data in 

A. SCV: Superior Cerebral Vein, MCA: Middle Cerebral Artery, M: Medial, L: Lateral, A: Anterior, P: 

Posterior. Scale bar: 500 µm. Right, sensory maps obtained by binning 15 frames spanning the period 

from 1 to 4 seconds after stimulation, applying Gaussian blur with σ = 86 µm and subtracting the 

median of the filtered image. Reproduced from Guy et al., 2014 under the terms of the Creative 

Commons Attribution Non-commercial License. 

 

 

A first step towards our goal was to establish the feasibility of in vivo imaging in reeler mice. 

Representative results of intrinsic signals evoked by stimulation of whisker C2 in two WT 

and two reeler mice under urethane anaesthesia are shown in figure 4. Variations in blood 

volume and haemoglobin oxygen saturation levels are expressed as changes in reflectance 

with respect to a reference frame corresponding to the 200 ms preceding stimulation onset 

(Time: -0,2 in figure 4), such that increases in blood supply and oxygenation following 

enhanced neuronal activity, which locally cause an increase in light absorption, are 

represented in blue shades. The intrinsic signal recorded across entire camera frames over 

time comprised several components, including spontaneous variations in blood supply to 

the cortex and vascular artefacts (visible in the later frames of WT 1, for instance). In 

addition to these spontaneous components, we were able to reliably record hemodynamic 

signals evoked by sensory stimulation and appearing as spatially restricted increases in 

blood supply and oxygenation (see frames 1.8 and 2). We investigated the temporal 

dynamics of the intrinsic signal by measuring its latency and duration for comparison 

between genotypes. The intrinsic signal typically became visible within 1 s of stimulation 

onset and returned to baseline within approximately 10 s of stimulation onset in both 

groups. Neither response latency nor response duration were significantly different when 

comparing genotypes (mean onset latency and standard deviation: 0.76 ± 0.15 s in WT, 0.73 

± 0.1 s in reeler, one way ANOVA: p=0.7; mean duration and standard deviation: 8.9 ± 1.7 s 
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in WT, 8 ± 2 s in reeler, one way ANOVA: p=0.46; n=10 and 9 for WT and reeler, 

respectively). Intrinsic signals can therefore be evoked and captured in reeler mice, with a 

time course that is very similar to that in WT.  

 

Sensory map organization  

Having established that barrel equivalent clusters of LIV fated neurons can be recognized in 

tangential sections through the somatosensory cortex of LIVtdTomato reeler, and that intrinsic 

signals can be recorded from the reeler cortex, we combined the two elements and used 

ISOI to determine whether somatotopy exists in functional maps in the reeler barrel cortex. 

By binning 15 frames spanning 1 to 4 s from whisker stimulation onset, it was possible to 

reliably extract spatially restricted intrinsic signals corresponding to the sensory 

representation of the stimulated whiskers in the imaged cortex (figure 4 B and C, right). 

Therefore, we stimulated an array of 3*3 whiskers (centered on C2 because of its central 

position in the whisker pad) in LIVtdTomato animals, which enabled us to determine whether 

their functional representations were aligned along rows and arcs in the same manner 

barrels are aligned in the barrel field. In addition, we reconstructed the barrel field and 

superficial blood vessel pattern from tangential sections (representative examples are 

shown in figure 5 A, C). By aligning the reconstructed superficial vasculature with that 

photographed during the experiment, it was possible to map the localization of any given 

whisker representation on the barrel field. Hence, we could examine the spatial 

relationships of functional whisker representations with one another in functional maps and 

compare the resulting pattern with that formed by barrels in the anatomical barrel field. In 

WT animals, sequential stimulation of whiskers along a row, for instance whiskers B1 to B3, 

yielded intrinsic signals which were aligned along a “row axis”. This alignment matched that 

observed between the corresponding barrels in the anatomical barrel field (figure 5 B). In 

addition, sequential stimulation of whiskers along an arc, such as whiskers D1, C1 and B1, 

evoked intrinsic signals that were also aligned along an “arc axis” similar to that defined by 

their corresponding barrels. In both the functional and anatomical maps of the whisker pad, 

the row and arc axis intersected at a roughly perpendicular angle. These similarities 

between the functional and anatomical maps constitute evidence for the existence of 

somatotopy in functional sensory maps, as previous authors have demonstrated (Masino et 

al., 1993; Kleinfeld and Delaney, 1996).  
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How is the sensory map of the whisker pad spatially organized in the otherwise highly 

disorganized reeler barrel cortex? We applied the same sequential stimulation of 9 whiskers 

to reeler animals (figure 5 D) to probe the spatial relationships of their functional 

representations. Stimulation of whiskers along a row evoked intrinsic signals which were 

aligned, as they were in WT. Upon stimulating whiskers along an arc, the same alignment of 

their functional representations was observed than in WT. Similarly, the row and arc axis in 

reeler also intersected at a roughly perpendicular angle. It can be concluded from these 

observations that the spatial organization of functional sensory maps in reeler is essentially 

the same as in WT. The most parsimonious explanation for this finding is that like its WT 

counterpart, the reeler barrel cortex remains organized as a somatotopic representation of 

the whisker pad in spite of the otherwise extensive disruption of its laminar organization.    
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Figure 5. Somatotopic organization of the barrel cortex. A, C: pseudo 3D-reconstruction of the 

location of the hemodynamic response evoked by single whisker stimulation with respect to the 

barrel field in WT and reeler, respectively. Top: photograph of the superficial blood vessels acquired 

during the experiment under a 546 nm wavelength illumination (Scale bar: 500 µm). Bottom: the 

barrel field was imaged and reconstructed post mortem from tangential sections through the barrel 

cortex of LIVtdTomato mice. Middle: surface plot of the averaged intrinsic signal evoked by stimulating 

the C1 whisker at 5Hz for 2 seconds (scale bar, fractional change in reflectance from reference in 

absolute values). The location of the peak and 90% of maximum isoline were mapped on the barrel 

field after aligning the blood vessels present in the reconstructions of the serial tangential sections 

with those present in the pial surface photograph of the living animal. B, D: overlay of peak (x) and 

90% maximum isolines locations of 9 intrinsic signals evoked by sequential stimulation of 9 whiskers 
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in the same WT and reeler mouse, respectively. The spatial relationship between the functional 

intrinsic signals locations show an rough but adequate match with those of individual structural 

barrels. Scale bar: 250 µm. Reproduced from Guy et al., 2014 under the terms of the Creative 

Commons Attribution Non-commercial License. 

 

 

A degree of mismatch exists between the functional and the anatomical maps however, in 

that the peak of the intrinsic signals rarely perfectly matched the barrel centers. This can be 

explained by at least two facts. On the one hand, the exact location of the center of an 

intrinsic signal evoked by single whisker stimulation is determined not only by the center of 

the corresponding barrel, but also by the location of the nearest penetrating arteriole 

(Blinder et al., 2013), suggesting that a small degree of intrinsic, physiological mismatch 

between the intrinsic signal and the underlying barrel can easily be observed with this 

method. On the other hand, the accuracy of our reconstructions and warping algorithm are 

limited. Any inaccuracies in the alignment of successive serial sections or in the alignment of 

blood vessels during the warping process are likely to add up and contribute to the observed 

mismatch. This technical component is likely the primary contributor to the shift observed in 

our experiments. The mismatch itself, however, bears little consequence on the observation 

that WT and reeler functional maps are highly similar in their spatial arrangement and the 

ensuing conclusion that somatotopy exists in the reeler barrel cortex, and should not be 

interpreted as illustrating a large and systematic biological mismatch between structural 

and functional maps (Dubroff et al., 2006). 

 

In summary, the present data offers direct evidence for somatotopy in the reeler barrel 

cortex and, to our knowledge, the first derived from in vivo functional imaging approaches.  

 

Single whisker stimulus representation in barrel cortex 

Beyond mapping the localization of the functional representation of individual whiskers, 

intrinsic imaging may help us probe the responsiveness of cortical networks to sensory 

stimulation by measurement of the amplitude of the evoked intrinsic signal. In particular, 

how the cortex responds to whisker stimulation of varying frequencies constitutes a 

property worthy of investigation, since rodents can use a range of frequencies with which to 
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whisk during exploratory behaviour. We therefore asked how a discrete parameter of 

individual whisker stimulation such as frequency represented in the barrel cortex. We 

investigated this question by stimulating whisker C2 for 2 seconds at frequencies of 1, 5, 10 

and 25 Hz, a frequency range that overlaps with spontaneous whisking in awake behaving 

rodents (Carvell and Simons, 1990), and measured the peak amplitude of the response 

(figure 6 A, B). The amplitude of the response increased with increasing stimulation 

frequency in both genotypes. Interestingly, the response amplitude in reeler were higher 

than in WT at low frequencies (1 and 5 Hz), before being overtaken at higher frequencies 

(10 and 25 Hz). This result may potentially indicate that the dynamic range of response 

amplitude in which stimulus frequency can be encoded is somewhat narrower in reeler. 

Statistical analysis, however, concluded that this effect was not statistically significant (two 

way ANOVA with repeated measures, genotype and frequency; effect of frequency, 

p<0.001; no effect of genotype, p=0.71; no genotype*frequency interaction, p=0.67; n=11 

WT and 12 reeler). We conclude that under similar experimental conditions, the intrinsic 

signals evoked by single whisker stimulation are comparable across the range of frequencies 

we tested. Therefore, in spite of the loss of lamination and resulting cortical disorganization, 

cortical processing of sensory information in the barrel cortex as measured with intrinsic 

imaging seems indistinguishable between reeler and WT.  
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Figure 6. Stimulus representation in somatosensory cortex. A: top, representation of whisker C2 

overlaid with threshold isolines. The level of subsequent thresholds is indicated on the scale bar, 

which represents fractional change in reflectance. The asterisk labels the peak amplitude of the 

evoked response. Bottom, same data as top in absolute value. B: peak amplitude of evoked response 

(in fractional change in reflectance, absolute value) as a function of stimulation frequency (mean ± 

sem, n.s.: non-significant, ANOVA, p=0.71). C: Area encompassed within isolines of thresholds 

indicated in A as a function of stimulation frequency (in mm², mean ± sem, n.s.: non-significant, 

ANOVA, p=0.12, p=0.09 and p=0.35 for 5, 10 and 25 Hz, respectively). The 1 Hz stimulation frequency 

did not evoke responses that consistently reached threshold values and is therefore not represented 
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here. N= 11 WT and 12 reeler. Reproduced from Guy et al., 2014 under the terms of the Creative 

Commons Attribution Non-commercial License.       

 

 

Transcolumnar connectivity revealed by intrinsic imaging 

In addition to the functional organization of the barrel cortex and its responsiveness to 

sensory stimulation, intrinsic imaging can reveal differences in functional connectivity, and 

in particular transcolumnar connectivity. Indeed, tactile information in the rodent whisker 

to barrel pathway reaches the somatosensory cortex primarily through TC synapses 

clustering in LIV barrels. From there, information spreads vertically through intracolumnar 

projections from LIV to the supra- and infragranular layers, but also horizontally through 

transcolumnar projections originating in LII/III and V (Petersen et al., 2001; Schubert et al., 

2007; Staiger et al., 2015), which contributes to the horizontal spread of the evoked intrinsic 

signal (Wester and Contreras, 2012). The sensory evoked intrinsic signals we recorded in our 

experiments typically covered an area spanning several barrels (figure 5 A and C; notice the 

broad “base” of the signal just above background), representing the horizontal span of 

corticocortical connections to neighbouring columns. In order to compare the span of 

transcolumnar connectivity, we measured the area contained within fixed activation 

thresholds (1 to 5*10e-4) and compared both genotypes on that basis (figure 6 A, C and 

table 1; Chen-Bee et al., 1996; Masino and Frostig, 1996). At all frequencies tested (5, 10 

and 25 Hz), the area encompassed by the intrinsic signal increased as the threshold was 

lowered, a result that was entirely expected. The areas measured in reeler were larger than 

in WT, regardless of stimulus frequency or threshold. Statistical analysis (two way ANOVA, 

genotype and threshold) was carried out separately for each frequency. We consistently 

found an effect of the threshold on the area (p<0.01 for all frequencies, n=11 WT and 12 

reeler) but not of the genotype (p=0.12; p=0.09 and p=0.35 for 5, 10 and 25 Hz respectively) 

and no genotype *threshold interactions (p=0.99; p=0.97 and p=0.96 for 5, 10 and 25 Hz 

respectively). These results do not support the hypothesis that reeler transcolumnar 

connectivity differs from WT in its horizontal reach.   
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Genotype WT  Reeler 

Frequency 

(Hz) 

 
5 

 
10 

 
25 

  
5 

 
10 

 
25 

 

 Th
re

sh
o

ld
 (

*1
0

-4
) 

-5 0.04 (0.15) 0.11 (0.14) 0.13 (0.12)  0.20 (0.15) 0.16 (0.11) 0.26 (0.12) 

-4 0.09 (0.11) 0.12 (0.11) 0.19 (0.11)  0.24 (0.12) 0.18 (0.09) 0.34 (0.12) 

-3 0.22 (0.11) 0.18 (0.09) 0.28 (0.11)  0.35 (0.12) 0.32 (0.08) 0.43 (0.11) 

-2 0.48 (0.11) 0.32 (0.09) 0.47 (0.13)  0.58 (0.12) 0.46 (0.09) 0.56 (0.11) 

-1 0.73 (0.11) 0.60 (0.10) 0.77 (0.14)  0.82 (0.12) 0.77 (0.09) 0.67 (0.25) 

 

 

Table 1. Areal quantification of the sensory evoked intrinsic signal. Cortical area covered by intrinsic 

signal evoked by whisker stimulation at different frequencies in reeler and WT. The average areas 

within absolute activation thresholds are given in mm² with standard error of the mean in 

parenthesis (n=11 WT, 12 reeler). Adapted from Guy et al., 2014 under the terms of the Creative 

Commons Attribution Non-commercial License. 

 

 

Cortical vasculature in reeler and wild type mice 

As a functional imaging technique, optical imaging of intrinsic signals measures multi- 

component hemodynamic signals including haemoglobin oxygenation level, blood flow and 

volume (Malonek et al., 1997; Vanzetta et al., 2008). A difficulty in the interpretation of 

quantitative measures of the intrinsic signal such as amplitude comes from the fact that 

hemodynamic signals are a surrogate, rather than direct, measure of neuronal activity. 

Indeed, the transfer function, the quantitative relationship between neural activity and 

hemodynamic signals is not known explicitly in the present study and might confound the 

interpretation of our results. While simultaneous recordings of both neural and 

hemodynamic signals is the most straightforward approach for estimating the transfer 

function, they are technically challenging and beyond the scope of the present study 

(Cardoso et al., 2012).  

 



44 
 

However, functional mapping with intrinsic imaging, as presented here, also depends 

critically on there being a densely interconnected microvascular network in the cortical area 

under scrutiny, capable of supplying blood to regions of heightened neuronal activity with a 

high spatial fidelity – a prerequisite that we had the means to investigate (Drew et al., 

2011). We therefore asked whether the loss of reelin and the ensuing disturbance in 

neocortical development also alter the development and patterning of the cortical vascular 

bed (Lindhorst et al., 2012). We sought to answer this question by staining coronal sections 

of WT and reeler animals with DAB, which reveals the hydrogen peroxidase rich 

erythrocytes left in the cortical vessels after fixation by immersion in PFA of unperfused 

tissue and provides a suitable surrogate staining for blood vessels in sections of adult mouse 

cortex (figure 7 A, B). We measured the density of blood vessels contained in the cortex in 

100 µm bins, starting 100 µm below the pia because of the higher background staining 

immediately below the pia. Results are shown in figure 7 C. The distribution of blood vessels 

in WT broadly varied with increasing depth, with the supragranular layers containing a 

higher density of vessels than the infragranular layers. Vascular density peaked at a depth of 

300 to 400 µm, which extended across the LII/III to LIV border into LIV in our sections. The 

vascular density was significantly higher between 200 and 400 µm than from 700 to 1000 

µm (ANOVA, p<0.05 in all tests). The vascular density in reeler mice followed a similar 

distribution along the depth of the cortex, peaked between 300 and 400 µm from the pia, 

but there was no significant difference in the density of blood vessel at different depths. 

Hence, the radial density of blood vessels across the cortex in reeler cortex varies within a 

narrower spectrum but follows the same pattern than in WT. Thus, the results obtained 

with intrinsic imaging are unlikely to be skewed by differences in brain perfusion related to 

distinct anatomical organizations of the cortical vasculature in reeler and WT.  

 

Figure 7. Vascular network in the barrel cortex. A, B: coronal sections through the somatosensory 

cortex of two representative WT and reeler mice, respectively (n = 6 in each group). DAB staining was 

used to stain erythrocytes in an unperfused brain, providing an indirect but efficient way of revealing 

the vascular network of the somatosensory cortex. wm: white matter. Scale bar: 100 µm.C: Relative 

density of blood vessels as a function of depth in WT (left) and reeler (right) animals. Density was 

calculated in 100 µm bins from the pia to the white matter. The first 100 µm below the pia were 

excluded because a heightened background was consistently found near the pia. Histochemistry by 

Patricia Sprysch. Reproduced from Guy et al., 2014 under the terms of the Creative Commons 

Attribution Non-commercial License. 
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Lessons drawn from intrinsic signal imaging 

In summary, our functional imaging experiments have unraveled some elementary 

properties of the reeler neocortex. First, we confirm that sensory input reaches the highly 

disorganized barrel cortex in the reeler mouse, and provide further evidence of its 

somatotopic organization, the first such observation from an in vivo preparation. This result 

demonstrate that a rather precise columnar organization exists in reeler, in agreement with 

previous reports (Caviness et al., 1976; Wagener et al., 2010; Boyle et al., 2011). Second, we 

found that individual barrel related columns respond with equal strength to a controlled 

stimulation across a range of behaviorally relevant frequencies, indicating that cortical 

excitability is not blunted by the loss of cortical layers and the potentially ensuing loss of 

sequential information processing along the canonical microcircuit, a result that is in 

agreement with an independent study in the reeler visual cortex (Pielecka-Fortuna et al., 

2014). Finally, these results provide some indication that the cortico-cortical connectivity of 

the reeler mouse remains comparable to that of WT, as functional activation of one barrel 

related column spread equally well, and as far as in a normal cortex. It thus appears that a 

normal functional organization persists in the reeler cortex, a finding that was both 

surprising and mildly disappointing to the author who expected a more obvious 

physiological phenotype to match the anatomical phenotype. 

 

It is crucial however, to keep in mind that the method chosen, intrinsic signal imaging, is an 

indirect measure of network activity. As such, it offers only limited insight into the details of 

cortical connectivity in reeler, and little to none with regard to the presence and properties 

of specific connections between defined cell types as they have been documented in WT. 

Because of this, while it is an appropriate method when it comes to investigating columnar 

organization, intrinsic imaging by itself is insufficient to determine whether the canonical 

microcircuit remains in reeler. Instead, one must rely on methods that provide cellular and 

synaptic resolution. In our search for the canonical circuit of the reeler mouse, we decided 

to turn to in vitro electrophysiology on TC brain slices (Porter et al., 2001) to probe the input 

of the thalamus to a defined excitatory neuron type in the cortex, the SpS, a well described 

connection that constitutes the input stage of the canonical microcircuit (Lübke and 

Feldmeyer, 2007; Feldmeyer et al., 2013).  
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Thalamic axon projection domains in reeler and wild type mice 

In order to visualize SpS neurons in TC slices through the somatosensory cortex and target 

them during in vitro electrophysiology experiments, we capitalized on the LIVtdTomato mouse 

line (Guy et al., 2014). As described above, in these animals, tdTomato is expressed in a Cre 

dependent manner (Madisen et al., 2010) and restricted to excitatory neurons (Xue et al., 

2014). Figure 8 shows photographs of representative TC slices, as recovered from in vitro 

electrophysiology experiments. The distribution of tdTomato positive revealed the typical 

pattern of barrels and barrel equivalents in the somatosensory cortex of WT (figure 8 A’ and 

B’). Quantification of the fluorescence intensity in the WT cortex revealed that tdTomato 

expression peaked at a depth of about 300 to 500 µm from the pial surface in WT (figure 8 

B’ and C), consistent with the finding that tdTomato is enriched in LIV neurons. Importantly, 

however, sparse tdTomato expression could also be found in LV (figure 8 B’). In reeler 

animals (figure 8, D’ and E’), the tdTomato fluorescence intensity profile in the reeler cortex 

did not produce a clear peak, but rather seemed to plateau between ~400 µm from the pial 

surface and the white matter (figure 8 E’ and F), consistent with the smearing of barrel 

equivalents characteristic of this mutant. Because SpS neurons are found exclusively in LIV 

in the WT mouse, and presumably in clusters of LIV equivalent neurons in reeler, Cre driven 

fluorescence is helpful in identifying such cells prior to recordings.  

 

In order to visualize and stimulate TC fibers arising from the VPm specifically, we performed 

stereotaxic injections of AAV5-ChR2-eYFP to the VPm of WT and reeler mice. Three weeks 

after injection, neurons in the VPm strongly expressed the ChR2-eYFP fusion protein (figure 

8, A’’ and D’’). In WT mice, eYFP expressing fibers were found throughout the depth of the 

cortex, but were most prominent in LIV and LVb (Fig 8 B’’). The fluorescence intensity profile 

of eYFP in cortex displayed a bimodal distribution, with the strongest peak colocalizing with 

the peak of tdTomato expression in LIV, and a weaker peak at the LVb/LVIa border (figure 8 

B’’’ and C). This pattern of VPm projections to the cortex is well described and in perfect 

agreement with previous literature in rats (Wimmer et al., 2010; Oberlaender et al., 2012). 

In reeler animals, the distribution of eYFP was similar to that of tdTomato and characterized 

by the absence of an obvious peak in the fluorescence intensity profile (figure 8 E’’ and F) as 
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well as a strong colocalization with tdTomato (figure 8 E’’’). These results suggest that 

clusters of tdTomato cells in transgenic reeler mice receive most of the VPm input to the 

cortex, as do LIV barrels in the WT, in good agreement with previous studies (Wagener et 

al., 2010).   

 

 

 

Figure 8. Distribution of tdTomato and eYFP expression in somatosensory cortex. A and D: 

representative examples of TC slices of WT and reeler animals, respectively. tdTomato positive 

neurons are numerous in the cortex (A’ and D’, A’’’ and D’’’), while eYFP expression concentrates 

around the injection site in the VPm (asterisk, A’’ and D’’, A’’’ and D’’’). Scalebar: 1mm. B and E: high 

magnification images of the somatosensory cortex of a WT and a reeler animal respectively, 

illustrating the clustering of tdTomato expressing neurons into barrels and barrel equivalents (B’ and 

E’). eYFP expressing fibers are clearly visible in both genotypes (B’’ and E’’) and overlap with the 
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clusters of tdTomato expressing neurons (B’’’ and E’’’). The superimposed curves represent the 

normalized fluorescence as a function of depth from the pia of the corresponding image; 

fluorescence intensity was averaged in 49 bins spanning the cortical thickness. Scale is visible at the 

top or bottom of each image. Layer borders are represented to the right; layers are by definition 

inexistent in the reeler cortex. Scalebar: 200 µm. C and F: normalized fluorescence intensity versus 

depth from pia in WT and reeler, respectively. Each curve represents the average ± SD of 16 brain 

slices. 

 

 

Cellular identity of tdTomato positive neurons 

Expression of tdTomato in acute TC slices enabled us to target whole cell patch clamp 

recordings at LIV and LIV equivalent neurons in WT and reeler, respectively. More 

specifically, we targeted LIV SpS neurons, as these cells receive direct input from the VPm 

(Porter et al., 2001; Inoue and Imoto, 2006; Bruno and Sakmann, 2006). Cells were selected 

for recordings on the basis of fluorescence, soma shape, presence of a local cluster of 

similarly shaped somata, and localization within a barrel or cluster of tdTomato positive 

neurons. Because SpS neurons are only one among several types of excitatory neurons 

populating LIV barrels (Feldmeyer et al., 1999; Schubert et al., 2003), and because sparse 

tdTomato expression was also observed in LV neurons, it was necessary to confirm the 

identity of the neurons we recorded. To that effect, we routinely added biocytin to our 

intracellular solution in order to recover the morphology of the neurons we recorded. 22 of 

the 91 neurons included in the present study could be recovered after termination of the 

recordings, a recovery rate just below 25%. 
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Figure 9. Morphology of biocytin-filled neurons. A: representative examples of the morphology of 

recovered neurons in WT. Cells were reconstructed from TC slices of 4 animals and display the 

morphological characteristics typical of their class, most notably a dendritic arborization largely 

restricted to their home barrel (grey shade) and the lack of an apical dendrite. B: same as in A, in 

reeler animals. Scalebar: 100 µm. Reconstructions were carried out by Alexandra Sachkova. 

 

 

Representative examples of cellular morphologies are shown in figure 9 and figure 10, A and 

C. The cells recovered from both genotypes were found to possess morphological properties 

characteristic of SpS neurons, including the lack of an apical dendrite, 4-6 dendrites confined 

within the home barrel or cluster, and numerous spines (Feldmeyer et al., 1999; Staiger et 

al., 2004). Quantitative analysis of 6 neurons in reeler and 7 in WT was carried out in order 

to compare a number of morphological variables, namely the number of primary dendrites, 

the total length and span of the reconstructed dendrites, and the number of spines and 
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branching points. The mean values for of these parameters were in agreement with 

previous literature (Staiger et al., 2004; Sun et al., 2014) and surprisingly similar when 

comparing genotypes, with no statistically significant difference (table 2). These results 

indicate that the absence of reelin does not affect the global morphological properties of 

SpS neurons apart from constraining their dendritic arborisation into a geometry that befits 

their home barrel.  

 

Although just under a quarter of the neurons we included in the present study could be 

recovered, all displayed the same morphological characteristics, which indicates that our 

experimental approach allowed reliable detection of SpS cells. Only one neuron was ever 

recovered that displayed the semblance of an apical dendrite, which justified its complete 

exclusion from the dataset presented here. Taking into account the 22 recovered neurons 

reported here, the proportion of incorrect cell type lies below a mere 5% (1/23). We are 

therefore reasonably confident in our assumption that the overwhelming majority of the 

non-recovered neurons we recorded from were also SpS. In conclusion, our use of the 

LIVtdTomato mouse line enabled us to reliably target SpS neurons, the morphological 

properties of which are virtually unchanged in the reeler mouse. 

 

 
 

Number of 
primary 
dendrites 

Dendritic 
length  
(µm) 

 
Spine count 

Branching 
points 

Dendritic 
span 
(µm) 

WT 5.14 
(0.9) 

1872.7 
(431.9) 

768 
(161.7) 

26.1 
(4.4) 

132.1 
(31.3) 

Reeler 4.83 
(3.0) 

1874.26 
(268.1) 

774.5 
(279.6) 

23.1 
(3.4) 

150 
(27.4) 

P value 0.138 
 

0.994 0.956 0.101 0.302 

 

Table 2. Quantitative analysis of SpS neuron morphology. Numbers are given as mean and standard 

deviation (in brackets) of 7 WT and 6 reeler biocytin-filled and reconstructed neurons. P values 

derived from t-tests. 
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Intrinsic properties of tdTomato positive neurons 

The goal of the line of experiments reported here is to investigate the properties of thalamic 

input to SpS neurons in reeler and WT mice. Responses to synaptic input are determined 

partly by the intrinsic properties of the recorded neurons such as Rin or τ. In addition, such 

properties are instrumental in further ascertaining the identity of the neurons we recorded, 

and determining whether the absence of reelin can influence the intrinsic properties of 

defined neuronal classes is also a goal in itself. We therefore characterized the elementary 

electrophysiological properties of the neurons we recorded prior to investigating their 

responses to thalamic input. All neurons exhibited the regular spiking firing pattern typical 

of LIV excitatory neurons (Zhu and Connors, 1997; Feldmeyer et al., 1999; Schubert et al., 

2003), regardless of genotype (figure 10 B and D). Additional properties we analyzed 

included resting membrane potential (VRMP), sag index, rheobase, and medium 

afterhyperpolarization (mAHP) amplitude. The values for these properties were found to be 

in agreement with previous literature regarding passive properties of SpS (Schubert et al., 

2003) and are summarized in table 3. No significant differences were found between the 

genotypes in Rin (table 3 and figure 10 E) or τ (table 3). It must be noted, however, that 

significant differences were found in VRMP which was slightly more negative in reeler (figure 

3 F, t-test, p<0.05) and in the sag index, which was lower in reeler. Although the h current 

underlying the voltage sag is involved in temporal summation, its weakness in SpS and slow 

kinetics (Magee, 1998) led us to expect little contribution of Ih to the responses to short 

pulses of light (10 ms). In addition, minor differences in VRMP could not have contributed to 

any differences between reeler and WT as we performed all subsequent recordings at a 

holding membrane potential of -70 mV in all cells. We therefore reasoned that eventual 

differences in responses to synaptic input would result from synaptic mechanisms rather 

than from differences in intrinsic properties between genotypes.  
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Figure 10. Intrinsic properties of SpS neurons. A and C: confocal images of biocytin-filled neurons 

obtained from WT and reeler animals, respectively, obtained with a 10x objective. Left insets: 

fluorescence images of TC slices acquired during recordings illustrating the approximate position of 

the recording pipette with respect to clusters of tdTomato expressing neurons. Right: close up on the 

filled neurons. The grey dotted lines indicate the apparent borders of the home barrel. Scalebar: 200 

µm on the left, 50 µm on the right. B and D: representative electrophysiology of WT and reeler 

neurons, respectively. Individual traces represent the membrane potential responses to a series of 

successive current pulses of incrementing amplitude (-100 to +50 pA, 10 pA steps). The firing pattern 

was obtained by injection of 130 pA in both genotypes. E: population I-V curves calculated from data 

acquired as indicated above and represented as mean ± SD of 46 WT (red) and 45 reeler (blue) 

neurons. F: Box plots of the sag index (left, measured from responses to -10 pA pulses) and resting 

membrane potential on breakthrough (right). Both properties were significantly different (sag index: 

one tailed t-test, p<0.005; membrane potential: one tailed t-test, p<0.05; n= 46 WT and 45 reeler). 

Streptavidin staining was carried out by Patricia Sprysch. 
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 VRMP 

(mV) 
Rin 

(MΩ) 
T 
(ms) 

Sag index 
(%) 

Rheobase 
(pA) 

AHP amp  
(mV) 

WT -72.4 
(3.3) 

193.8 
(68.6) 

15.8 
(6.0) 

11.4 
(6.2) 

108.5 
(44.1) 

15.8 
(3.0) 

Reeler -73.6 
(2.5) 

203.9 
(84.7) 

14.0 
(6.2) 

8.1 
(4.8) 

97.8 
(41.3) 

16.7 
(3.0) 

P value 
 

0.032* 0.827 0.065 0.004 ** 0.275 0.183 

 

Table 3. Values for intrinsic properties of SpS neurons. Numbers are given as mean and standard 

deviation (in brackets) of 46 WT and 45 reeler neurons. * and **: significant difference at the α=0.05 

and 0.005 thresholds, respectively. P values derived from t-tests.  

 

 

Optogenetic control of thalamic relay neurons 

The experimental approach chosen here to probe VPm input to SpS neurons relies on direct 

optogenetic activation of ChR2 expressing fibers. The comparability of the results obtained 

from such an approach rest on the assumptions that expression levels and diffusion of ChR2 

do not differ significantly between genotypes, and that the properties of the presynaptic 

element, the thalamic relay neuron, are also similar. We therefore acquired intracellular 

recordings of thalamic relay neurons (TN) in both genotypes to verify the feasibility and 

comparability of direct light activation of neurons in both strains. TN displayed the bistable 

firing pattern typical of their class, responding to a depolarizing current injection either with 

a single burst or a train of APs depending on the membrane potential at which they were 

held with DC current injection (figure 11 A and B, McCormick and Bal, 1997). Optical 

stimulation of the recorded neurons resulted in fast depolarization that increased in 

amplitude as laser intensity was gradually raised. Using sufficiently high laser intensity, it 

was possible to reliably elicit spiking in TNs, the pattern of which, burst or single spike, was 

also determined by membrane potential (figure 11 C and D). The behaviour of TN was thus 

unaffected by genotype.  

 

The present results are of course insufficient to definitively rule out differences in 

expression or distribution of ChR2 which may in turn contribute to differences observed in 
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the responses of SpS neurons to TC fiber stimulation. For instance, the modest number of 

cells recorded in the thalamus does not allow for a statistically solid comparison of measure 

of ChR2 expression, such as the minimum laser intensity required to elicit firing of an AP, 

between reeler and WT. In addition, properties of TN neurons measured from somatic 

recordings may be a poor predictor of the behaviour of their presynaptic boutons in the 

cortex, such that a lack of difference between genotypes observed in the VPm may not hold 

true in the cortex. However, the high degree of similarity between reeler and WT TN 

observed here gave us at least little reason to doubt the assumption that the abundant eYFP 

expressing thalamic fibers in the cortex could be activated reliably and without dramatic 

differences between genotypes. We conclude that differences in the responses of SpS 

neurons to TC input would likely result from synaptic mechanisms rather than differences in 

the intrinsic properties of TN neurons, including their levels of ChR2 expression. 

 

 

 

Figure 11. ChR2 evoked responses in thalamic relay neurons. A and B: representative firing pattern 

of thalamic neurons patched in WT in reeler, respectively. Top traces shows the bursting firing 

pattern in response to current injections while the cell is maintained at a relatively hyperpolarized 
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membrane potential. Bottom traces illustrate the switch to a regular spiking firing pattern observed 

when maintaining the cell in a relatively depolarized state. Note the rebound burst occurring after all 

hyperpolarizing pulses regardless of holding membrane potential. C and D: optogenetic activation of 

thalamic neurons was sufficient to elicit firing of APs in transfected neurons. Stimulation is indicated 

by blue squares and lasts for 1ms. A switch in firing pattern (burst to single spike) could be observed 

upon depolarizing the recorded neurons.  

 

 

Channelrhodopsin-2 evoked responses in spiny stellate neurons  

Confident in our ability to control the presynaptic element, we next compared the 

properties of thalamic input to SpS neurons in both genotypes. Optical stimulation of 

thalamic fibers with various laser intensities reliably elicited subthreshold, compound 

responses in SpS neurons held around -70 mV by DC current injection (figure 12 A and B). 

These compound responses consisted of multiple, summed EPSPs and often appeared to 

include sharp repolarizing events reminiscent of GABAergic inhibition (figure 12 A and B, 

insets, arrows). Feedforward inhibition is a well described phenomenon in LIV of the WT 

cortex, and is be brought about by cortical interneurons that receive direct input from the 

thalamus and, in turn, project to local excitatory neurons (Swadlow, 1995; Swadlow, 2003; 

Inoue and Imoto, 2006; Sun et al., 2006; Porter et al., 2001). Because a demonstration that 

this essential circuit motif is preserved in reeler is lacking, we seized the opportunity to 

document its existence with our experimental approach. We reasoned that the apparent 

amplitude or strength of the putative inhibitory potentials observed in compound responses 

could be modulated by holding the recorded neurons at varying membrane potentials with 

respect to the reversal potential of inhibition. We therefore repeated TC fibers stimulation 

while holding the cell at -70, -60 and -90 mV and observed that the repolarizing events could 

indeed be modulated by membrane potential, such that they appeared stronger if the 

neuron was held around -60 mV (figure 12 D). Conversely, they reversed polarity and 

became depolarizing at a membrane potential of -90 mV, below the reversal potential for 

chloride, in agreement with GABAA receptor-mediated inhibition. In order to verify that 

compound responses included inhibition, we performed similar recordings in the presence 

of 1 µM of the GABAA receptor blocker Gabazine (figure 12 E). Under these conditions, 

stimulation of thalamic fibers resulted in far stronger responses in SpS neurons, consisting 
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of large and long lasting depolarization accompanied by firing of numerous actions 

potentials, and occasional Ca²+ plateaus, consistent with blockade of GABAA mediated 

inhibition. Washing out Gabazine restored the ChR2 evoked responses to their original 

appearance. These results did not differ between genotypes and demonstrate that reeler 

SpS neurons receive both thalamic input as well as GABAergic inhibition, probably 

feedforward inhibition provided by local fast-spiking basket cells, a circuit motif well 

described in the WT cortex (Swadlow, 1995; Swadlow, 2003; Inoue and Imoto, 2006; Sun et 

al., 2006; Porter et al., 2001). In addition, excitatory inputs probably arose from recurrent 

excitation as well as direct thalamic input. Indeed, SpS neurons are known to readily engage 

in reciprocal connection, and it is therefore highly probable that recurrent excitation 

accounts for at least a fraction of the depolarization observed in response to TC fibers 

stimulation (Feldmeyer et al., 1999; Cowan and Stricker, 2004; Lefort et al., 2009). 

 

A further goal of our recordings was to determine whether a difference exists in the 

strength of thalamic input to SpS neurons between the genotypes. In order to compare the 

strength of the responses to thalamic input, we asked how much an optical stimulation 

could depolarize WT and reeler SpS neurons. We repeatedly stimulated TC fibers with an 

interstimulus interval of 6 s and laser power of ~0.04 mW and calculated the membrane 

potential variation (dVM) evoked in the recorded SpS by subtracting the average membrane 

potential measured in a 50 ms window starting 100 ms before stimulus onset from 

individual traces. Three traces per neuron were then averaged, and dVm was averaged 

across 17 WT and 13 reeler neurons in 4 ms bins, resulting in a peristimulus time histogram 

of membrane potential variation (figure 12 C). The latency to the response onset was in 

agreement with monosynaptic input and not significantly different between genotypes 

(figure 12 H, 2.5±0.7 ms and 2.7±0.8 ms in reeler, rank-sum test), and the responses peaked 

within 4-8 ms after stimulus onset in both genotypes. The peak dVM, however, was 

significantly higher in reeler, with reeler SpS remaining significantly more depolarized after 

stimulation for a sustained period of time (up to ~45 ms; bin by bin comparison, t-tests, 

p<0.05). Because we found no significant difference in either Rin or τ between reeler and WT 

neurons (table 3), this difference in the magnitude of evoked responses most likely results 
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from differences in synaptic input, such as, for instance, a shift in the balance of excitation 

and inhibition. 

 

 

 

Figure 12. ChR2 evoked responses in SpS neurons. A and B: representative examples of subthreshold 

responses to optical stimulation of thalamic afferent in SpS neurons in WT (red) and reeler (blue), 

respectively. In all four cells, ChR2 stimulation evoked compound responses that appeared to involve 

excitation as well as inhibition (inset). Insets illustrate magnified view of individual responses; arrows 

point to the onset of apparent inhibitory post synaptic potentials (IPSPs). Scalebars in A apply to B. C: 
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average membrane potential variation (dVm) around ChR2 stimulation in 4 ms bins. Baseline was 

calculated from -100 to -50 ms relative to stimulus onset. Black bars represent the average difference 

between reeler and WT. Reeler SpS were significantly more depolarized by the stimulation than WT 

SpS for a duration of up to 45 ms. D: modulation of the strength of inhibition by membrane potential. 

Putative inhibition appeared stronger when the membrane potential (VRMP) was held at -60 mV than 

at -70 mV. By contrast, IPSPs reversed polarity and became depolarizing when the membrane 

potential was held at -90 mV, consistent with the GABAA reversal potential of about -70 mV. E: 

blockade of GABAA inhibition with 1 µM Gabazine caused epileptiform activity in both genotypes. F: 

top: overlaid suprathreshold responses in WT (left) and reeler (right). APs were truncated at -20 mV. 

Bottom: same traces as above, aligned to the AP. G: average spike triggered membrane potential 

variation (STA) in 4 ms bins. Baseline was calculated as in C. Reeler SpS remained significantly more 

depolarized after spiking for up to 70 ms. H: average ± SD latencies of subthreshold and AP firing in 

response to ChR2 stimulation. I: proportion of cells that fired in response to a ChR2 stimulation of 10 

ms and of sufficient intensity. Percentages were 85% in WT and 77% in reeler and not significantly 

different (Fisher’s exact test, p=0.73). 

 

 

In a subset of neurons, we determined whether TC fibers stimulation was sufficient to elicit 

AP firing in the recorded SpS neurons by gradually increasing stimulus intensity. 22 out of 26 

(85%) WT and 20 out of 26 (77%) reeler neurons tested for that property responded with an 

AP after stimulation intensity had passed a sufficient threshold (figure 12 F). We found no 

significant difference in either the proportion of cells firing (figure 12 I, Fisher’s exact test, 

p=0.73) or the laser intensity required between genotypes (rank-sum test, p=0.76, median 

of 0.05 mW in WT and 0.08 mW in reeler). Likewise, the latency to AP firing remained 

unaffected by genotype (figure 12 H, 5.9±4.6 ms in WT, 5.5±2.6 ms in WT and reeler, 

respectively; rank sum test). Aligning individual traces of WT and reeler neurons to the AP 

indicated that reeler neurons repolarized more slowly after firing (figure 12 F). We therefore 

calculated the spike-triggered average dVm in 17 WT and 13 reeler neurons, excluding the 

bin containing the AP (figure 12 G). We found that reeler SpS remained significantly more 

depolarized after firing for a long period of time (~70 ms, bin by bin comparison, t-tests, 

p<0.05), an effect that was qualitatively similar to that observed in subthreshold responses 

but surpassed it in magnitude and duration. Such an effect may in principle be due to a 

weakened AP afterhyperpolarization in reeler. However, because we found no significant 

differences in the AHPs between reeler and WT (table 3), we again conclude that the slower 

repolarization of reeler SpS neurons after firing an AP evoked by TC fibers stimulation is 
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likely the result of altered synaptic inputs, and in particular a shift in the balance of 

excitation and inhibition.  

 

Taken together, these results indicate that the net excitation brought to bear by TC fibers 

and local network input combined is greater in reeler than in WT SpS neurons. Furthermore, 

the proportion of reeler SpS neurons firing in response to TC fibers input being no different 

than that in WT suggest that TC fibers input is at least as effective at recruiting SpS neurons 

in both genotypes, which was expected given that our intrinsic signal imaging revealed that 

cortical networks are equally responsive to whisker stimulation in both genotypes. 

 

Properties of thalamic input to reeler spiny stellate neurons 

Stimulation of TC fibers typically evoked multicomponent postsynaptic responses in 

targeted neurons. Because of the complex nature of such responses, the actual strength of 

the TC fibers input is difficult to estimate, as its relative contribution to the response is 

masked by network effects such as recurrent excitation and feedforward inhibition. We 

therefore added 0.5 µM TTX and 0.1 mM 4-AP to the bath chamber, in order to remove the 

contribution of network effects from the ChR2 evoked responses while preserving the ability 

to stimulate TC fibers, respectively (Petreanu et al., 2009; Yang et al., 2013). Indeed, TTX, a 

blocker of voltage gated sodium channels, prevents firing of actions potentials in the slice, 

which effectively blocks any network activity. The drawback of such an approach is the 

resulting inability to elicit AP firing in TC fibers, a prerequisite for activation of the voltage 

activated calcium channels of the presynapse that enable vesicle release. In order to make it 

possible for a depolarization mediated by laser activation of ChR2 alone to mediate opening 

of these channels, it is necessary to prevent the fast repolarization mediated by voltage 

gated potassium channels through the application of the Kv1 potassium channel blocker 4-

AP. Application of both TTX and 4-AP results in the fact that only presynaptic boutons, 

rather than entire fibers, are stimulated by laser light. 
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Under these experimental conditions, SpS responded to optical stimulation with 

monophasic responses of markedly reduced amplitude, consistent with the loss of recurrent 

excitation (figure 13 A and B), and possibly also as a consequence of the fact that unlike an 

AP, stimulation of ChR2 will not elevate the membrane potential to positive values given its 

reversal potential in the vicinity of 0 mV (Lin, 2011; this interpretation remains questionable 

in the absence of accurate knowledge of the events occurring at the presynapse following 

ChR2 stimulation, however).  In addition, the fact that SpS neurons respond to optogenetic 

stimulation in a situation where only presynaptic terminals can be stimulated demonstrate 

that TC input on these neurons is indeed direct, a result that is true for both WT and reeler 

and confirm the predictions of previous studies (Wagener et al., 2010). In order to evaluate 

and compare the strength of this direct input between genotypes, we repeated our analysis 

of stimulation evoked dVm with 17 WT and 13 reeler neurons and a laser power of ~0.04 

mW, obtaining a PSTH of the response to the purely thalamic input (figure 13 C). To our 

surprise, the peak ChR2 evoked responses were slightly weaker in reeler in the absence of 

network activity, in sharp contrast with our observations on compound responses (bin by 

bin comparison, t-tests, p<0.05).  

 

The finding that intracellularly recorded responses to TC fibers stimulation differs between 

genotypes seems to contradict expectations. Indeed, our functional imaging experiments 

revealed that cortical networks of both genotypes were equally responsive to whisker 

stimulation, which would lead to the prediction that TC input to these networks does not 

substantially differ. One of several differences between the two experimental strategies 

presented here is the nature of the stimulation. In functional imaging experiments, we 

repeatedly stimulated the whisker at frequencies of 1 to 25 Hz, meaning that short term 

plasticity may have occurred at the TC synapse on SpS neurons. TC fibers synapses on LIV 

excitatory neurons are known to undergo short-term depression when repetitively 

stimulated (Gil et al., 1999; Chung et al., 2002), and we reasoned that differences in short-

term depression might compensate for the differences in the responses to TC input 

between the genotypes. We therefore stimulated TC fibers at frequencies of 1, 5 and 10 Hz, 

setting the laser power so that the response to the first laser pulse would be of about 5-10 

mV (figure 13 D and E). We found that TC input markedly depressed at all frequencies, 
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irrespective of genotype. In addition, the amplitudes of the evoked EPSPs following the first 

in a train were not substantially different between genotypes, and in particular they were 

not higher in reeler. Interestingly, the fact that compound responses in reeler SpS neurons 

exceed those in WT while the purely TC input they receive is weaker hints at the existence 

of compensatory mechanisms which amplify TC input in reeler. Such mechanisms, however, 

do not appear to involve alterations in how TC input adapts to sustained stimulation. 

 

 

 

Figure 13. Properties of TC input to SpS neurons. A: representative examples of compound and 
monophasic responses to ChR2 stimulation in the absence and presence of 5 µM TTX and 100 µM 4-
AP. B: overlaid, evoked monophasic responses in WT (red) and reeler (blue). Individual traces are 
displayed in light hues, averages are dark. C: mean membrane potential variation evoked by ChR2 
stimulation in the presence of TTX and 4-AP. Black bars represent the average difference between 
reeler and WT. Baseline was calculated as in Fig 12, C. WT SpS were significantly more depolarized by 
TC input than their reeler counterparts, in contrast with our findings on compound responses. D: 
representative examples of responses to trains of ChR2 stimulation at 5 Hz in one WT SpS neurons 
(red) and one reeler SpS (blue). 10 individual traces are displayed in light hues, average traces are 
dark. E: aggregate short-term synaptic plasticity data in both genotype. Massive short term 
depression was visible at all frequencies in both genotypes, with amplitudes of EPSPs following the 
first in a train dropping by more than 50%.   
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Subcellular distribution of thalamocortical input to spiny stellate neurons 

TC synapses are distributed over the entire dendritic arbor of LIV excitatory neurons, with a 

well described propensity for being found at higher densities close to the soma (Schoonover 

et al., 2014; Jia et al., 2014) and for forming small clusters along dendrites (Benshalom and 

White, 1986). Such a spatial distribution of synapses may enhance the reliability of sensory 

transmission, as inputs close to the soma are less affected by dendritic filtering, while 

synchronous, clustered input are more likely to recruit active dendritic properties (Larkum 

et al., 2008). We reasoned that the scattering of LIV equivalent neuronal clusters and their 

afferent thalamic fibers characteristic of the reeler phenotype might alter the distribution of 

TC synapses on SpS cells. We therefore compared the spatial distribution of TC input in SpS 

neurons in WT and reeler by means of subcellular channelrhodopsin-2 assisted circuit 

mapping (sCRACM, Petreanu et al., 2009; Yang et al., 2013). Briefly, neurons were selected 

for recording according to the criteria described above, as well as for being located at the 

edge of their home barrel or barrel equivalent. After bath application of TTX and 4-AP, we 

restricted the size of the illuminated spot to 25*25 µm and scanned a 225*300 µm area 

roughly centered on the recorded neuron and covering as much of the barrel or barrel 

equivalent as possible. Because only presynaptic boutons can be stimulated in such 

conditions, this method enabled us to map the localization of TC synapses on the dendritic 

arbors of recorded and reconstructed neurons.  

 

A difficulty of this approach resides in the proper choice of a laser intensity with which to 

stimulate presynaptic boutons. Indeed, in spite of the blockade of voltage gate sodium 

channels in the axon, it is difficult to formally exclude the possibility of a purely electrotonic 

propagation of a ChR2 induced depolarization from one presynaptic bouton to another, 

nearby bouton through a shared axonal stem. While this effect is of little consequence in 

situations where stimulation of a large domain of the slice is desired, is can negatively 

impact the desired spatial resolution of 25 µm in the context of sCRACM experiments, as the 

stimulation of one field could propagate into another. In order to minimize this effect, we 

took advantage of the position of the recorded neuron. Indeed, owing to the position of the 

recorded neuron on the edge to its home barrel, the scanned area encompassed tissue lying 

both inside and outside of barrel borders. Because the dendrites of SpS neurons are 



64 
 

restricted to their home barrel, this configuration enabled us to set the laser power to the 

maximal value that evoked no response when stimulating outside of the barrel (i.e. in the 

infra or supragranular layer in WT) while preserving the responses to a stimulation centered 

on the soma, thereby providing a calibration procedure adaptable to individual neurons that 

at least minimized the potential contribution of electrotonically propagated depolarizations 

to our sCRACM maps.  

 

Representative results of sCRACM experiments are illustrated in figure 6. Reconstructing 

recovered neurons enabled us to align the sCRACM map with the morphology of the 

recorded SpS. In WT, the spatial distribution of inputs was characterized by a central cluster 

of strongly responsive fields, encompassed in a gradually weaker surround (figure 14 A and 

B). Interestingly, the position of the peak response was consistently found on segments of 

proximal dendrites rather than on the soma, and always overlapped with the center of the 

barrel. This is presumably a reflection of the facts that (i) we recorded neurons whose soma 

was located on the edge, rather than at the center, of the barrel, which presumably 

constraints SpS dendrites to extend towards the barrel center rather than radiating from it; 

(ii) proximal dendrites tend to be richer in TC synapses than distal dendrites (Schoonover et 

al., 2014; Jia et al., 2014), and (iii) those proximal dendrites receiving strongest inputs in our 

experiments were also extending through the area of the barrel where the density of TC 

fibers is expected to be highest (Wimmer et al., 2010; Oberlaender et al., 2012). Thus the 

spatial distribution of inputs shown in figure 14 A and B is in good agreement with reported 

anatomy. In reeler animals, we found a qualitatively similar pattern of input distribution 

(figure 14 C and D), with domains of strong input more centrally located within the barrel or 

barrel-equivalent than weaker fields. A slight difference was apparent, however, in the fact 

that the clustering of strongly responsive fields appeared less tight or orderly in reeler, 

where comparatively high amplitude responses were routinely found further along the 

dendrite than in WT.  

 

In order to obtain a statistical evaluation of input clustering, we used spatial autocorrelation 

and more specifically Moran’s I (Moran, 1950). Moran’s I is an established global measure of 
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spatial association based on the calculation of a statistic, I, that assesses the degree of 

correlation or “sameness” among neighboring features of a spatial distribution. The value of 

I varies from -1 to 1, where a value of 0 indicates a random spatial distribution, a value close 

-1 indicates a dispersed pattern (such as a chessboard), and a value tending towards 1 

indicative of a clustered pattern where similar features are found next to each other. 

Applying this analysis to sCRACM data offered two advantages. First, it enabled us to 

determine whether the clustered pattern we believed to have noticed could be validated 

statistically. Second, and more importantly, the values of I were used as a quantification of 

how strong the clustering was in individual datasets and enabled a comparison across 

groups on the basis of an unbiased statistical measure (Ianella et al., 2010). In all datasets 

tested, the spatial pattern of input amplitude distribution was deemed statistically clustered 

(figure 14 A-D, p<0.001 in all of 13 WT and 14 reeler sCRACM maps). Furthermore, the 

values of I were lower on average in reeler SpS, an effect that was statistically significant 

(figure 14 G, t-test, p<0.05, n=13 WT and 14 reeler), indicating a lower degree of clustering 

of similarly responsive fields. 

 

Finally, we compared the amplitude of TC fibers input to SpS neurons obtained from 

sCRACM experiments. figure 14 E and F illustrates the distribution of EPSP amplitudes 

recorded across 673 fields in WT and 683 fields in reeler from 13 and 14 individual neurons, 

respectively, in 1 mV bins. The median EPSP amplitude was significantly lower in reeler 

(ANOVA on ranks, p<0.001), in agreement with the data obtained from full-field stimulation 

under TTX and 4-AP (figure 12 C). Interestingly, the distribution of amplitude in reeler was 

not best characterized by a general shift of the WT distribution towards zero, but rather by a 

selective decrease in the number of strongly responsive fields (>5 mV) and a concomitant 

increase in the fraction of low amplitude fields (<5 mV), an effect that was also statistically 

significant (two sample Kolmogorov Smirnov test, p<0.05). A similar analysis on response 

latencies yielded no significant difference (ANOVA on ranks, p=0.2, data not shown). Taken 

together, these results indicate that reeler SpS neurons receive an overall weaker, direct TC 

input with a lower degree of spatial organization, a finding which is likely to reflect 

differences in the spatial organization of TC synapses on these cells. 
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Figure 14. ChR2-assisted mapping of TC input to SpS. A and B: two representative datasets obtained 

from WT SpS. Left: raw amplitude map, overlaid with reconstructions of the recorded neuron and 

home barrel. The size of individual fields is 25*25 µm. Middle: same dataset, interpolated to a final 

resolution of 45*60. The clustering of strongly responsive fields around a segment of proximal 

dendrite is clearly visible. Right: example of responses recorded during the sCRACM experiment. Each 

trace is the average of three repetitions delivered at the same location. The number above each trace 

corresponds to the location indicated on the raw amplitude map. Blue segments indicate the time of 

optogenetic stimulation. B and C: same as A and B, from reeler animals. E: distribution of response 

amplitudes across our dataset. The amplitudes were significantly lower in reeler (n=683 fields, 14 

neurons) than in WT (n=673, 13 neurons; Kolmogorov-Smirnov test, p<0.005). F: cumulative fraction 

of response amplitude in both genotypes. G: mean Moran’s I values calculated for 13 WT and 14 

reeler mice. The mean I was significantly lower in reeler (one tailed t-test, p<0.05), indicating a lesser 

degree of spatial clustering of TC input.    
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TC synapses are predominantly formed on dendritic spines. We sought to determine 

whether the spatial distribution of dendritic spines on reconstructed neurons was altered in 

reeler in a way that could at least partly account for the results obtained from sCRACM 

experiments. We therefore conducted a Scholl analysis on 6 reeler and 7 WT reconstructed 

neurons. We quantified the total length of axon and the number of spines in consecutive 

rings of 25 µm thickness centred on the soma and spanning a total radius of    175 µm. In 

addition, we calculated the average density of spines in each consecutive ring by dividing 

the spine count by the total dendritic length measured. The results are illustrated in figure 

15.  

 

Figure 15 A shows the distribution of total dendritic length as a function of distance from 

the soma. In WT SpS neurons, this length increases from a modest value in the perisomatic 

region to peak between 26 and 50 µm from the center of the soma, and gradually decreases 

with increasing distance. A similar pattern was observed in reeler, with a lower peak and 

comparatively higher values further away from the soma. A two way ANOVA (distance and 

genotype) revealed that dendritic length was significantly affected by distance from the 

soma (p<0.001). No effect of genotype was observed (p=0.94), in line with our previous 

analysis (see table 2). Interestingly, we observed a genotype * distance interaction (p<0.05), 

which indicates that the effect of distance differs between genotypes, and indeed, the total 

length of dendrites was found to peak higher in WT than in reeler (Fig 15 A, 26-50 µm, Holm-

Sidak post hoc test, p<0.05). The distribution of spines as a function of distance followed a 

pattern similar to that of dendritic length in both genotypes (Figure 15 B). We found no 

difference between genotypes in the overall number of spines (two way ANOVA, p=0.99), 

but the number of spines was significantly affected by distance (p<0.001). We again found 

an interaction between distance and genotype (p<0.026), and effect which was narrowed 

down to be due to a significantly lower number of spines within a distance of 50 µm from 

the soma in reeler SpS. The average density of spines (Figure 15 C) was found to be affected 

by distance as well (two way ANOVA, p<0.001), but we found neither an effect of genotype 

(p=0.63) nor an interaction (p=0.24). These results demonstrate that the reduction of spine 

number close to the soma in reeler is due to a reduction of average dendritic length in this 

location, rather than to a specific effect on spine localization along dendrites.  
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Figure 15. Distribution of spines on the dendrites of reconstructed SpS neurons. A: average 

cumulative length of dendrite in the 7 concentric rings of our Scholl analysis. Every ring has a 

thickness of 25 µm. Traces represent the average +/- SD of 7 WT (red) and 6 reeler (blue) animals. 

Average dendritic length was found to be significantly higher in the bin spanning 26 to 50 µm from 

the soma in WT (p<0.05). B: average number of spines as a function of distance from the soma. The 

number of spines was significantly lower in the first 50 µm in reeler (p<0.05). C: dividing the results in 

B by those in A reveals the average density of spines as a function of distance from the soma.  

 

 

Interestingly, the distribution of dendritic spines along the somatodendritic arbor of SpS 

neurons matches rather well with the sCRACM maps, at least on a qualitative level. The 

number of spines was found to be highest close to the soma, but not directly on it, in good 
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agreement with the localization of the most strongly responsive fields in sCRACM maps. In 

addition, we found that the number of spines proximal to the soma was significantly 

decreased in reeler, an effect that appeared to be compensated for by a concomitant (but 

not statistically significant) increase in the number of spines found at greater distances away 

from the soma. This slightly altered pattern of spine distribution may well account, at least 

partly, for the altered distribution of input strength observed in reeler sCRACM experiments. 

Such a conclusion is subject to caution, however, as the number of spines is a poor indicator 

of the number of TC synapses actually contacting these spines, as only a relatively small 

fraction of the total spines are occupied by TC synapses in SpS neurons. The present results 

therefore support the possibility that subtle alterations in the morphology of reeler SpS 

neurons may contribute to shaping the patterning of TC input; it is almost beyond doubt, 

however, that effects specific to the TC synapses, such as differences in synaptic weight, 

also contribute heavily. 
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Discussion 
 

 

Functional organization of the reeler somatosensory cortex 

The most striking characteristic of the reeler cortex is its cellular disorganization resulting in 

the loss of cortical layers. Such a dramatic abnormality would lead many observers 

expecting major disturbances in the functional organization of the cortex, and in particular 

in the establishment of functional columnar modules as well as the specific pattern of 

interlaminar connectivity that forms the canonical columnar microcircuit in WT.  

 

In the present study, we contributed to shedding light on these questions by using a mouse 

line in which Cre driven fluorescence enables the visualization of clusters of LIV cells in the 

WT mouse and their equivalent in reeler. LIV equivalent cells cluster together and form 

barrel equivalent structures in reeler (Wagener et al., 2010). In tangential sections through 

the somatosensory cortex, these barrel equivalent structures form the very recognizable 

pattern of the barrel field, where 5 rows and multiple arcs were unequivocally visible. It is 

widely considered that individual barrels mark the dimensions of what is referred to as a 

barrel related column (Lübke and Feldmeyer, 2007; Feldmeyer et al., 2013). The existence of 

a properly ordered pattern of barrel related columns in reeler constitutes the first piece of 

evidence of a conserved columnar organization in spite of the otherwise massive laminar 

disorganization. Such results are in perfect agreement with the literature (Caviness and 

Sidman, 1973; Caviness and Frost, 1976; Caviness and Rakic, 1978; Caviness et al., 1982; 

Wagener et al., 2010; Boyle et al., 2011).  

 

Beyond providing a map of putative functional columns, barrel equivalents also delineate 

the domains where the terminal fields of TC axons are expected to be densest. Indeed, layer 

IV and, to a lesser degree, the LV/VI border are well known to receive the majority of the 

input from the VPm, although all layers receive some thalamic innervation (Wimmer et al., 

2010; Oberlaender et al., 2012). The results of our AAV5 injections, which caused expression 
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of eYFP in TC fibers, revealed an innervation pattern in perfect agreement with the 

literature on WT animals, with a strong presence of eYFP in LIV, at the LV/VI border, and a 

weaker expression in other layers. In reeler animals, we found that eYFP expression was 

highest in clusters of tdTomato positive neurons, indicating a strong innervation of barrel 

equivalents by thalamic neurons. Furthermore, our electrophysiological recordings revealed 

that SpS neurons responded to a stimulation of TC fibers, indicating that functional synapses 

are established in both genotypes. These results confirm and extend previous studies and 

provide compelling evidence that, similarly to the WT, thalamic input predominantly 

reaches the cortex by specifically targeting barrels (Wagener et al., 2010).  

 

A purely descriptive assessment of the cytoarchitecture of the reeler barrel field is 

insufficient to demonstrate another critical aspect of the functional organization of the 

barrel cortex, which is somatotopy. The barrel field indeed constitutes a somatotopic 

representation of the whiskers on the snout, where every single whisker is represented by 

one single barrel (Woolsey and Van der Loos, 1970; Masino et al. 1993). While solid 

evidence of somatotopy in reeler existed prior to the present study, we hereby provide the 

first demonstration of somatotopy in the reeler barrel cortex from in vivo functional imaging 

using standard methods (Grinvald et al., 1986; Frostig et al., 1990; Masino et al. 1993; 

Kleinfeld and Delaney, 1996; Wagener et al., 2010). Stimulation of an individual vibrissa 

evoked a hemodynamic signal centered on, and peaking at, the location of the 

corresponding barrel in the barrel field. Upon stimulating a total of nine whiskers in 

sequence, we observed that the center of their functional representation was shifted with 

respect to one another, resulting in a pattern that matched the pattern defined by the 

underlying barrels and barrel equivalents. We conclude that information flow into the 

cortex retains a columnar and somatotopic organizing principle in the otherwise 

disorganized reeler cortex (Mountcastle et al., 1957; Mountcastle, 1957 and 1997; Petersen 

and Sakmann, 2001; Horton and Adams, 2005; Feldmeyer et al., 2013). It follows that the 

cortical layers are not a prerequisite for the establishment of columnar modules.  
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Interestingly, the persistence of columnar modules in reeler indicates that neurons sharing 

similar receptive field properties cluster together, as they do in the WT. During cortical 

development, newly generated neurons deriving from common progenitors migrate radially 

into the cortex where they form networks of sibling neurons sharing similar receptive field 

properties, and the reeler functional columnar modules revealed here are therefore likely to 

be composed of neurons sharing a common lineage (Yu et al., 2012; Li et al., 2012). The 

process of cortical arealization is believed to involve the projection of an arealized protomap 

already extent at the level of the early proliferative cortical sheet onto the developing 

cortical plate, through the radial migration of newborn neurons (Rakic, 1988). According to 

this view, the size and number of (barrel-related) cortical columns are predetermined but 

can be modulated by thalamic input (Rakic, 1988; Sur and Rubenstein, 2005). In the present 

study, we found no obvious differences in the number or pattern of barrel related columns 

between the genotypes, and neither did we find differences in the distribution of thalamic 

fibers in the cortex, in that it preferentially targeted barrels or barrel equivalents in both 

genotypes, suggesting that TC pathfinding relies on cell autonomous cues rather than 

depths dependent cues (Wagener et al., 2010; Wagener et al., 2015). It is therefore 

conceivable that the loss of reelin, affecting only the radial migration of newborn neurons 

along radial glia, leaves the arealization of the early proliferative cortical sheet and 

subsequent formation of columns untouched. Formation of appropriate TC connections 

ensues. Such a scenario could account for the fact that cortical columns are properly formed 

in the reeler barrel cortex in the absence of laminar organization.  

 

Functional connectivity in reeler barrel-related columns   

Having established the existence of functional cortical columns in reeler, we can turn our 

attention to the matter of whether or not the canonical circuit is preserved in these 

mutants. The canonical circuit is composed of the many neurons that populate the cortical 

column and establish nonrandom, specific connections through which sensory information 

flows in a sequential manner (Lübke and Feldmeyer, 2007; Feldmeyer et al., 2013). Evidence 

for the existence of cortical columns alone provides little guarantee that such specific 

connections are maintained in reeler. Previous studies have reported abnormal connectivity 

outside of the somatosensory cortex. Ectopic and heterologous synapses have been 
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described in the cerebellum, such as synapses formed by mossy fibers on Purkinje cells in 

reeler cerebellum with no equivalent in WT (Mariani et al., 1977; Wilson et al., 1981; Sotelo, 

1990). In the hippocampus, a fraction of fibers from the entorhino-hippocampal pathway 

are found in ectopic position and innervate inappropriate layers (Borrell et al., 1999). These 

ectopic fibers are likely to form functional synapses, and a fraction of mossy cells have 

indeed been found to receive aberrant, direct input from fibers of the perforant path 

(Kowalski et al., 2010). Furthermore, in the same study, mossy cells which do not receive 

direct input from the perforant path have been found to respond with a much lower 

temporal precision to disynaptic activation through stimulation of the perforant path than 

their WT equivalents. These results indicate that as a population, mossy cells are likely to 

fire in a much more asynchronous manner in reeler with respect to WT, leading to the 

notion that proper hippocampal network function might be compromised. Whether such 

misconnections also exist in the somatosensory cortex remains an open question, but their 

existence has been postulated (Caviness and Rakic, 1978; Caviness and Frost, 1983). 

 

Our functional imaging studies have enabled us to confirm that columnar modules exist in 

reeler, but what have we learned on a more intimate level about the connectivity of the cell 

types that form these modules in reeler? An exhaustive inquiry of this question necessitates 

the painstaking work of probing every connection described so far in the canonical 

microcircuit, and is obviously neither within the means of the author, nor the most 

expedient approach imaginable. While the present work only scratches the surface of 

intracortical connectivity in reeler, some valuable lessons have nevertheless been learned.  

 

First and foremost, our imaging experiments have demonstrated that sensory information 

from the thalamus reaches the reeler barrel cortex in a properly ordered, somatotopic way. 

Furthermore, our electrophysiological experiments showed that TC synapses are formed 

directly on SpS neurons, the primary recipients of thalamic input, in both genotypes. The 

input stage of the reeler cortical column is therefore comparable to that of WT and in 

agreement with the canonical microcircuit (Lübke and Feldmeyer, 2007; Feldmeyer et al., 

2013). In addition, the subthreshold responses of SpS neurons to TC activation consisted in 

long lasting, compound depolarizations including direct, thalamic activation, as well as 
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numerous EPSPs occurring within several tens of milliseconds after the end of the 10 ms 

light pulse TC fibers were activated by. The long latency of some of the EPSPs recorded is 

incompatible with direct input from TC fibers and rather suggests a contribution from 

recurrent excitation. In WT animals, LIV neurons are known to strongly engage in reciprocal 

connections, and it is highly plausible that recurrent excitation originating from 

neighbouring SpS neurons contributed to the compound response we recorded (Zhu and 

Connors, 1997; Feldmeyer et al., 1999; Egger et al, 1999; Feldmeyer and Sakmann, 2000; 

Lübke et al., 2000; Schubert etal., 2003; Cowan and Stricker, 2004). In addition, LIV neurons 

are also targeted by LVI pyramidal cells, which provide yet another putative source of 

recurrent excitation (Zhang and Deschênes, 1997). Responses of reeler neurons were 

qualitatively similar to that of WT, and we can therefore conclude that intracortical, 

recurrent excitation can be recruited by TC fibers stimulation alone. While the exact source 

of the recurrent excitation observed in reeler with regard to the neuronal types involved 

remains elusive, its existence is beyond doubt.   

 

Secondly, our recordings demonstrate that GABAergic inhibition also contributed to the 

compound responses, indicating inhibitory connections onto SpS neurons from local 

interneurons. Because we consistently observed the presence of inhibition in subthreshold 

responses at short latencies (<10 ms), it is highly plausible that feedforward inhibition (FFI) 

accounted for most of the inhibition observed (Sun et al., 2006). FFI is a well-documented 

phenomenon in the barrel cortex (Swadlow, 1995, 2002 and 2003). Inhibitory interneurons 

of LIV not only receive direct thalamic input (Staiger et al., 1996 and 1996), they also 

respond more vigorously, at lower thresholds, and with shorter latencies (Gibson et al., 

1999; Porter et al., 2001; Gabernet et al., 2005; Cruikshank et al., 2007; Hull et al., 2009). 

Several species of interneurons may contribute to feed forward inhibition, but the more 

likely candidates share common features such as the expression of Parvalbumin (PV) and a 

fast-spiking (FS) firing pattern (Porter et al., 2001; Sun et al., 2006). Basket cells, for 

instance, are driven by TC input and target the soma of neighbouring excitatory neurons, 

which places them in an ideal position to exert tight inhibitory control over their targets 

(Sun et al., 2006; Staiger et al., 2009). Although the short latency of inhibition reported here 

suggests a strong contribution of FFI, we do not exclude the possibility that feedback 
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inhibition may occur as well, and in fact, we frequently observed sharp repolarizations after 

the recorded neuron fired an AP, which could not be fully attributed to 

afterhyperpolarization. Potential sources of feedback inhibition include the basket cells 

themselves, as well as the barrel-confined inhibitory interneuron, a PV positive, FS 

interneuron characterized by a dense axonal arborisation restricted to its homme barrel and 

a very high incidence of strong, reciprocal connections with local excitatory neurons (Staiger 

et al., 2009; Koelbl et al., 2013). Determining which species of interneuron accounts for the 

inhibition observed in reeler is not a byzantine question, since they differ in the strength and 

kinetics of inhibition they provide (for example, FS cells provide stronger inhibition than 

regular spiking non-pyramidal neurons, Sun et al., 2006) and in their role in neuronal 

computation (Wilson et al., 2012). Such cell type specific properties may account for 

putative alterations in the inhibition received by reeler LIV equivalent neurons. While this 

question is, unlike many interneurons, a spiny one, the fact that LIV equivalent neurons in 

reeler receive thalamus evoked inhibition is beyond dispute.  

 

Our third observation concerns transcolumnar connections. The canonical circuit model 

emphasizes a vertically oriented, translaminar flow of sensory information in the cortical 

column. But substantial anatomical and functional evidence demonstrate that cortical 

column communicate with each other as well, through horizontal, transcolumnar 

connections (Schubert et al., 2007; Narayanan et al., 2015). Here, we found that single 

whisker stimulation evokes a hemodynamic response that spreads further horizontally than 

the size of the corresponding barrel to encompass a large fraction of the barrel field, in 

agreement with previous reports (Masino et al., 1993; Masino and Frostig, 1996; Chen-Bee 

et al., 1996 and 2012; Drew and Feldman, 2009). Our intrinsic signals were acquired from a 

depth of 300 micrometers below the pia, implying that our signals were dominated by 

granular and supragranular layer sources in WT animals. Tactile information reaches the 

somatosensory cortex through TC synapses clustering in LIV barrels. From there, excitation 

spreads vertically to LII/III and horizontally to neighbouring columns through transcolumnar 

excitatory connections originating from LV and LII/III, resulting in a hourglass-shaped profile 

of neuronal excitation spread that encompasses a barrel and a large domain of the supra 

and infragranular layers (Kohn et al., 2000; Petersen et al., 2001 and 2007; Schubert et al., 
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2007). This lateral spread of excitation causes single whisker stimulation to evoke 

hemodynamic signals that cover more than the size of their corresponding barrel to actually 

encompass a large fraction of the barrel field, and effect that can also be observed with 

voltage-sensitive dye imaging (Ferezou et al., 2006). Functionally, such connections are 

thought to broaden the receptive fields of single neurons in neighboring columns (Brecht 

and Sakmann, 2002; Fox et al., 2003). In reeler mice, LII/III and LV fated cells are spread 

across the depth of the cortex instead of forming distinct layers (Wagener et al., 2010). 

Because we found no increase (or decrease) in the area covered by the sensory evoked 

intrinsic signal in reeler animals, we conclude that transcolumnar cortico-cortical 

connections innervate a domain that is similar in size to what is observed in a laminated 

cortex, and hypothesize that the receptive fields of individual neurons is likely to be equally 

broad in both genotypes.  

 

In summary, our results indicate that a proper intracortical connectivity in the reeler brain is 

likely to be preserved even in the absence of cortical lamination. We found conclusive 

evidence for a direct thalamic input on a defined class of LIV equivalent excitatory neuron, 

as well as convincing indication that a substantial, intracortical excitatory network is 

recruited by thalamic afferents. We also established that LIV equivalent neurons receive 

inhibition, with suggestive indication that both feedforward and feedback inhibition are at 

work in the reeler cortex. It thus appears that functional connectivity in the somatosensory 

cortex is largely unaffected by the loss of reelin, leading to the expectation that cortical 

function is also largely preserved.   

 

Evoked responses: the reeler paradox 

Two complementary approaches were used to probe cortical function in response to 

sensory input in the present study. In a first series of experiments, we used controlled 

whisker stimulation in anesthetized animals and measured the evoked responses with 

intrinsic signal imaging. In a second series, we relied on channelrhodopsin-2 to specifically 

stimulate TC fibers and recorded evoked responses by means of intracellular recordings in a 

reduced preparation, the TC slice. This dual strategy enabled us to compare a measure of 
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global network activity, the intrinsic signal, with a measure of evoked activity in a 

subcomponent of the network, the thalamorecipient LIV SpS neuron. The comparison 

yielded surprising and unexpected results.  

 

Our intrinsic signal imaging experiments revealed that evoked responses were of similar 

magnitude in both genotypes across a range of behaviourally relevant stimulus frequencies 

(Carvell and Simons, 1990). Similar results have been obtained in the visual cortex of reeler 

with intrinsic signal imaging (Pielecka-Fortuna et al., 2014), and a previous study from our 

laboratory utilizing c-fos expression as a marker of neuronal activity reached yielded the 

same observations (Wagener et al., 2010). These congruent results naturally suggest that 

thalamic input was comparable across genotypes in all three studies. Surprisingly, our 

intracellular recordings indicated that the thalamic input to SpS neurons is slightly, but 

significantly weaker in reeler. These findings are somewhat contradictory and warrant 

further explanation. 

 

Could the discrepancy be explained by differences inherent to the methods we utilized? As a 

hemodynamic signal, the intrinsic signal we recorded critically depends on there being a 

dense microvascular network in the cortex, the development of which might be 

compromised in reeler (Malonek et al., 1997; Vanzetta et al., 2008; Drew et al., 2011; 

Lindhorst et al., 2012). In order to rule out such a possibility, we quantified the density of 

the microvascular network using a staining protocol which labels erythrocytes rather than 

blood vessels. We did not find major differences between the genotypes that may have 

skewed our functional imaging results, in agreement with the scarce literature on the 

subject in the reeler cortex (Stubbs et al., 2009), and in contrast with literature on the 

hippocampus (Lindhorst et al., 2012). It may be objected that the method chosen offers at 

best a crude labelling of blood vessels, insufficiently sensitive for detection of subtle 

differences; in response, we must emphasize that our results are perfectly in line with those 

obtained with high-throughput, automated histology coupled with extensive labelling of the 

cortical microvascular network (Blinder et al., 2013). It appears, therefore, that the loss of 
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either reelin or cortical layers does not strongly affect the development of a dense cortical 

blood vessel network.  

 

If the fact that we failed to find a difference between the genotypes in the evoked intrinsic 

signal, as would be expected if reeler received a weaker thalamic input, cannot be explained 

by differences in the cortical microvasculature, what other possibilities exist? One may 

argue that another parameter, the neurovascular transfer function, or quantitative 

relationship between a given amount of evoked neuronal activity and the corresponding 

hemodynamic signals, is not known explicitly in reeler cortex (Cardoso et al., 2012). Without 

this knowledge, the interpretation of hemodynamic signals with respect to the underlying 

neuronal processes they represent is delicate. Studies combining functional imaging with 

electrophysiological recordings have demonstrated that the neurovascular transfer function 

is not invariant, but can be affected by anaesthesia (Martin et al., 2006) and differs 

depending on the anatomical structure under investigation (Devonshire et al., 2012). It is 

therefore conceivable that the neurovascular transfer function is slightly steeper in reeler, 

such that an overall weaker network activity would be translated into a roughly similar 

hemodynamic signal. The opinion of the author is however that such a coincidence is rather 

implausible. A more likely methodological source of the discrepancy can be found in the 

respective resolutions of the methods used. Our electrophysiological recordings provided 

cellular and sub-millisecond resolution, while hemodynamic signals typically integrates 

neural activity across far greater spatial and temporal dimensions, with time constants in 

the range of seconds (Grinvald et al., 1986; Frostig et al., 1990). Neural activity evoked by 

stimulation of LIV is known to spread through the entire cortical column within a few tens of 

milliseconds (Petersen and Sakmann, 2001), but the temporal resolution provided by our 

intrinsic signal imaging protocol was 200 milliseconds. It is therefore likely that our imaging 

experiments simply lacked the sensitivity to detect a hemodynamic correlate of the 

otherwise modest difference we found in intracellular recordings. 

 

Finally, one should take into consideration a more interesting and scientifically satisfying 

possibility. One of the most parsimonious explanations for the lack of difference in the 

hemodynamic signal between the genotypes is simply that there is not difference in the 

underlying sensory evoked, network activity. In such a view, favoured by the author, the 
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observations reported here constitute neither a discrepancy nor a contradiction, but a 

stimulating paradox: how can cortical networks be equally active in reeler if the sensory 

drive they receive from the thalamus is weaker?  

 

Possible causes of a weakened thalamocortical input in reeler 

As such, the fact that TC input to SpS is weak is neither surprising nor new, as individual TC 

synapses have been described as weak (Bruno and Sakmann, 2006). A number of 

mechanisms that ensure the reliability of sensory transmission in the context of weak 

synaptic input have been described as well, including convergence and synchronous 

activation of TC synapses originating from high numbers of VPm neurons on individual LIV 

excitatory neurons (up to 85 in rats, Bruno and Sakmann, 2006; Wang et al., 2010), 

enrichment of TC synapses in perisomatic loci (Richardson et al, 2009; Schoonover et al., 

2014; Jia et al., 2014), local clustering of synapses along the dendritic arbor, potentially 

allowing for cooperativity and recruitement of active dendritic properties such as Ca²+ and 

Na+ spikes (Larkum et al., 2008), and expression in SpS neurons of voltage insensitive NMDA 

receptors containing the NR2C subunit (Binshtok et al., 2006). To our knowledge, whether 

and how the loss of reelin affects these properties is unclear, but accumulating evidence 

suggest that reelin plays a role in the regulation of synaptic function at both pre and 

postsynaptic levels. Postsynaptically, reelin modulates the function of NMDA receptors. In 

cortical and hippocampal neurons, reelin enhances NMDA receptor mediated current and 

calcium influx through Src family tyrosine kinase (SFKs) and Dab 1 dependent tyrosine 

phosphorylation of their NR2 subunits (Beffert et al., 2005; Chen et al., 2005; Qiu et al., 

2006). The absence of this amplification mechanism in the reeler mouse may very well 

explain the lower responses of SpS neurons to TC input. Reelin has been proposed to 

regulate presynaptic function as well. In reeler hippocampus, the number of presynaptic 

vesicles is increased while the expression of SNAP25, a protein of the SNARE complex, is 

decreased (Hellwig et al., 2011). These results point to compromised vesicle fusion and 

neurotransmitter release, which could easily account for the weaker TC input observed 

here. Beyond purely synaptic effects, reelin also modulates the outgrowth of dendritic 

spines. Reelin deficiency results in a reduction of the density and number of dendritic spines 

in hippocampal pyramidal neurons (Liu et al, 2001; Niu et al., 2008). Because TC synapses 
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overwhelmingly contact spines (Benshalom and White, 1986), fewer spines may indicate an 

overall reduction in the number of TC synapses formed onto reeler SpS neurons, thereby 

dampening their responsiveness to thalamic input. Our own results are at odds with data 

from the hippocampus, however. We found similar numbers of dendritic spines in SpS 

neurons of the cortex in both genotypes. It is therefore unlikely that such a mechanism 

would account for the weakened TC input reported here. Together, these data suggest that 

reelin deficiency can impact synaptic function via mechanisms that are independent of 

developmental abnormalities. 

 

Compensation mechanisms for a weak thalamocortical input: solving the reeler paradox 

What mechanisms compensate the weakness of the TC input to SpS neurons in reeler and 

enable normal network activation? One possibility lies in the fact that VPm input does not 

target only LIV but also LV, and to a lesser degree, all other cortical layers (Wimmer et al., 

2010; Meyer et al., 2010; Oberlaender et al., 2012). It is therefore conceivable that in reeler, 

the weaker input to LIV equivalent neurons is compensated for by a concomitant 

strengthening of TC input to other cell populations. However, such a possibility may not fully 

account for the fact that the same paradox is observed on the scale of individual reeler SpS 

neurons. Indeed, the compound responses to thalamic stimulation we recorded in reeler 

exceeded that in WT, although the purely thalamic component was weaker. These results 

indicate that the relative contribution of network effects to the compound response is 

larger in reeler. One excitatory component of the compound response, aside of direct TC 

input, is recurrent excitation. LIV excitatory neurons readily engage in reciprocally 

connected networks (Feldmeyer et al., 1999; Egger et al, 1999; Feldmeyer and Sakmann, 

2000; Lübke et al., 2000; Cowan and Stricker, 2004), giving birth to the idea that LIV may act 

as more than just a relay for, but also as an amplifier of, sensory input (Douglas et al., 1995; 

Suarez et al., 1995; Feldmeyer et al., 1999; Egger et al, 1999; Feldmeyer and Sakmann, 2000; 

Lübke et al., 2000; Li et al., 2013a and 2013b; Lien and Scanziani, 2013). An appealing idea is 

therefore that the reeler cortex, in order to accommodate a weaker TC sensory input, 

increases its intracortical amplification. The mechanisms involved may include stronger or 

more numerous reciprocal connections between nearby LIV equivalent neurons allowing for 

enhanced recurrent excitation.  
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An alternative possibility involves differences in TC evoked inhibition in SpS neurons. The 

present results confirm the existence of FFI in reeler SpS in subthreshold, compound 

responses. Subthreshold responses in reeler were stronger that in WT, which can indicate a 

decrease in inhibitory tone, as suggested by previous authors (Carboni et al., 2004; Qiu et 

al., 2006), possibly due a lower number of synapses formed by fast spiking, PV expressing 

interneurons in reeler (Xue et al., 2014; Tao et al., 2014). In addition, we found that reeler 

SpS neurons repolarize less sharply after firing an AP than their WT counterparts, which 

could be caused by a decrease in feedback inhibition. Interestingly, CA1 hippocampal 

neurons receive reduced spontaneous IPSCs but unchanged EPSCs in reelin haploinsufficient 

mice, whose reelin expression is reduced by about 50% (Qiu et al., 2006; Liu et al., 2001). It 

follows that a decrease in inhibitory tone represents a plausible compensatory mechanism 

for the weaker TC input in reeler. Further experiments are required to precisely disentangle 

these various possibilities, such as paired recordings of SpS and inhibitory interneurons, 

which would allow direct comparison of the potency of reciprocal connection as well as of 

thalamic input between excitatory and inhibitory neurons (Cruikshank et al., 2007).  

 

Differences in intrinsic properties of SpS neurons are unlikely to account for the weaker TC 

responses in reeler. We found no significant difference between genotypes in input 

resistance or rheobase, indicating that the lower responsiveness to TC input in reeler must 

result from synaptic, rather than intrinsic, properties. Not all intrinsic properties were 

equivalent in both genotypes. We observed that reeler SpS had a slightly more 

hyperpolarized resting membrane potential upon breakthrough. In addition, the voltage sag 

was significantly weaker in reeler, indicating possible differences in the hyperpolarization-

activated cation current Ih (Magee, 1998). Such findings are not without precendent. Reelin 

has been demonstrated to mediate the establishment of a somatodendritic gradient of 

HCN1 channel density in neocortical pyramidal neurons through its downstream, Dab1 

dependent signaling cascade. Disruption of the Reelin/Dab1 signaling pathway results in an 

impoverishment of the HCN1 content of distal dendrites, leading to a decrease in sag ratio 

and a hyperpolarized resting membrane potential in that cellular compartment (Kupferman 

et al., 2014). Our findings therefore imndicate a weakening of Ih in reeler SpS neurons. 

Although Ih has been linked to dendritic integration and temporal summation of inputs in 
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dendrites of large cortical pyramidal and hippocampal neurons (Magee, 1998; Nolan et al., 

2004), much less is known about the role of these channels in smaller neurons such as SpS. 

At any rate, it is unlikely that differences in Ih contributed much to the differences in 

synaptically evoked responses reported here. Indeed, the difference in Ih found here could 

only be detected when using recording and analysis protocols specifically designed to detect 

it, and even then, it was very modest. So modest, in fact, that we could not see a difference 

between genotypes in input resistance or time constant, as would be expected if the 

difference in Ih was large (Magee, 1998). A possible explanation is that the effect of Ih on Rin 

and τ is “diluted” by other, larger sources of variability, in particular cell-to-cell variability in 

the expression of other conductances contributing to Rin and τ. Furthermore, we recorded 

evoked responses in neurons that were held around a comparable membrane potential of -

70 mV, a value at which Ih is only minimally active (Magee, 1998). It must be noted, 

however, that a small difference in Ih may in principle contribute to to the differences in the 

evoked responses evoked under TTX and 4-AP. Indeed, given its reversal potential of -25 to 

40 mV and its very slow deactivation kinetics (Solomon and Nerbonne, 1993; Magee, 1998; 

Robinson and Siegelbaum, 2003; Biel et al., 2009), Ih can provide a “boost” to synaptically 

evoked responses. Because Ih is weaker in reeler, the smaller boost could account for the 

relative weakness in TC evoked responses. The same argument does not work for evoked 

responses, however. A weaker Ih in reeler would lead to expect smaller compound 

responses as well, and we found the opposite to be the case. Therefore, while Ih could at 

least partly explain the weaker response to TC input in reeler, it cannot solely account for 

the differences in compound responses, and does not solve the reeler paradox by itself. 

Overall, the author holds the view that differences in Ih are unlikely to be large enough to 

account for the results presented here.  

 

Altered somatodendritic distribution of thalamocortical input in reeler 

A further difference we observed between reeler and WTwas in the spatial distribution of TC 

input on their somatodendritic arbors. sCRACM experiments revealed that TC input was 

strongest in perisomatic regions, and became weaker further from the soma. In WT, the 

strongest input was found to be on proximal dendrites close to the center of their home 

barrel, rather than directly on the field containing the soma, indicating that relative density 
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of TC fibers, rather than dendritic filtering, was probably the dominant factor shaping the 

input maps (Petreanu et al., 2009; Wimmer et al., 2010; Oberlaender et al., 2012). Although 

a qualitatively similar pattern appeared in reeler, statistical analysis revealed that the 

clustering of inputs close to the soma was weaker resulting is a less tight grouping of highly 

responsive fields around the soma and comparatively higher input from more distant 

dendritic sites. sCRACM maps provide an approximation of the relative densities of synapses 

along the somatodendritic arbor (Petreanu et al., 2009). Because the number of TC synapses 

on WT SpS is higher in proximal rather than distal dendritic compartments (Jia et al., 2014; 

Schonoover et al., 2014), a possible interpretation of these results is that they are caused by 

differences in the dendritic distribution of TC synapses in reeler, such that the gradient in 

synaptic density along dendrites is less steep in reeler than in WT or perhaps nonexistent.  

 

We could find some evidence to that effect using a Scholl analysis on the distribution of 

dendritic spines in our reconstructed neurons. Indeed, the number of spines was slightly but  

significantly reduced within a 50 µm radius from the soma in reeler, which was 

compensated for by a concomitant increase in spine number at all further distances along 

the dendritic arbor (this increase did not, however, reach statistical significance), such that 

the average number of spines remained similar across genotypes. Because the average 

density of spines (spine count per unit of dendritic length) was not different between the 

genotypes, these results can be attributed to a slight decrease in the average dendritic path 

length within a 50 µm radius from the soma in reeler, with a compensatory, slight increase 

at further distances. It is therefore possible that slight alterations in the reeler 

somatodendritic arbor could have contributed to shaping the sCRACM maps. This 

interpretation must be viewed with caution, however. First, although the majority of TC 

synapses contact the spines of SpS neurons, the reverse is not true, meaning that dendritic 

spines are a rather poor predictor of TC synapse localization (Benshalom and White, 1986). 

Second, our filling, confocal imaging and reconstruction protocols may not have captured 

the entirety of the spine population, and the number reported here may be underestimated 

(in spite of being somewhat higher than in published literature, Sun et al., 2014). Finally, the 

response amplitude measured with sCRACM is determined not only by the number but also 

the strength of the stimulated synapses, which makes the correlation of anatomical and 



84 
 

functional maps delicate. Nevertheless, these results illustrate that slight morphological 

alterations in reeler may in principle contribute to differentially shaping synaptic inputs.  

 

The sCRACM data revealed yet another difference between the genotypes, namely in the 

amplitude of the responses, which was lower in reeler in agreement with our full-field 

stimulation experiments. This result may reflect the putatively more scattered distribution 

of TC synapses suggested above, which would result in a larger fraction of the total amount 

of TC synapses being located comparatively far from the soma, with the consequence of 

adding to the average dendritic length that evoked EPSPs travel on their way to the soma 

and thereby increasing attenuation. An alternative hypothesis leaps to mind, however. The 

decrease in evoked amplitude observed in sCRACM experiments in reeler is best described 

as a marked reduction in the number of dendritic stimulation points that yielded high 

amplitude responses, and a concomitant increase in the number of weakly responsive fields. 

This raises the possibility that tight clustering of TC synapses on SpS dendrites, which has 

been described in WT (Benshalom and White, 1986; Lavzin et al., 2012), may not exist in 

reeler. Clustering of TC synapses has been predicted by theoretical work as a putative 

consequence of LTP learning rules (Govindarajan et al., 2006; Larkum et al., 2008) and is 

thought to enable synchronous, cooperative input to recruit active dendritic properties such 

as Ca²+ or Na+ spikes. In recent years, this notion has gained experimental support (Losonczy 

et al., 2008; Ianella et al, 2010; Makino et al., 2011; Takahashi et al., 2012; Lavzin et al., 

2012; Smith et al., 2013), leading to the emergence of a model of memory formation based 

on the formation of such clusters (Losonczy et al., 2008; Kastellakis et al, 2015). 

Interestingly, substantial evidence indicates that hippocampal LTP is regulated by reelin, the 

absence of which could lead to impaired formation of strong and stable connectivity either 

as the basis of memory formation or reliable sensory transmission (Weeber et al., 2002; 

Beffert et al., 2005 and 2006; Qiu et al., 2006; Trotter et al., 2013). Further experiments are 

required to ascertain the extent of TC synapse clustering impairment in reeler and its 

consequences on sensory transmission to the cortex.  
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Functional implications for the reeler cortex 

Finally, the present study sheds new light on the potential computational consequences of a 

loss of reelin. In vivo extracellular recordings in the anesthetized reeler visual cortex have 

provided evidence of an overall reduction in firing rates in response to visual stimulation 

(Dräger, 1981). This result can be well explained by the weakening of TC drive described in 

the present study. In addition, the proportion of cells with sharp orientation tuning is 

reduced in reeler visual cortex (Dräger, 1981), a finding which may be connected to the 

deficit in visual orientation discrimination observed in these mice (Pielecka-Fortuna et al., 

2014). Several synaptic and cellular mechanisms are thought to contribute to the synthesis 

of receptive fields in sensory cortices, one of which being inhibition (Isaacson and Scanziani, 

2011). Inhibition has been involved in modulating receptive fields in several ways depending 

on the identity of the GABAergic interneurons involved. Dendrite targeting and 

somatostatin expressing neurons in particular were found to provide subtractive inhibition 

resulting in a sharpened angular tuning of nearby excitatory neurons of visual cortex (Mao 

et al., 2011; Wilson et al., 2012). The timing of FFI with respect to excitation also seems to 

be implicated in receptive field synthesis in the somatosensory cortex, where a shift in the 

delay of inhibition with respect to excitation underpins direction selectivity (Wilent and 

Contreras, 2005). Interestingly, Kowalski et al have described a higher heterogeneity in spike 

timing in reeler hippocampal mossy cells in response to electrical stimulation of the 

perforant path, an effect probably due to aberrant excitatory input in a subset of such cells 

in reeler (Kowalski et al., 2010). Because FFI determines the window of opportunity for 

temporal summation of EPSPs to cross firing threshold (Swadlow, 2003; Wehr and Zador, 

2003; Gabernet et al., 2005), the same form of temporal imprecision in interneurons firing 

could easily alter the receptive fields of nearby excitatory neurons. Our observation that 

inhibition may be impaired in reeler is therefore of particular interest, as it could explain the 

abnormalities in receptive field structure observed in this mutant.  

 

Active dendritic properties provide an additional set of mechanisms contributing to the 

synthesis of receptive fields. Dendritic spiking and NMDA receptor mediated regenerative 

amplification contribute to the computation of angular tuning in both somatosensory and 

visual cortices (Lavzin et al., 2012; Smith et al., 2013; but see also Jia et al., 2014). 
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Recruitement of dendritic computation is facilitated by clustering and synchronous 

activation of similarly tuned synapses (Larkum et al., 2008). Our own results indicate that 

the formation of reliable synaptic clusters may be impaired in reeler, providing an additional 

mechanism by which receptive field structure may be altered in this mutant. Determining 

which of these mechanisms is causal to the reeler phenotype with regard to angular tuning 

abnormalities and orientation discrimination deficits will be central to future research 

focusing not only on the roles of reelin but also on the function of cortical networks.  

 

Conclusion and perspectives 

Although the reeler phenotype has been described over half a century ago (Falconer, 1951) 

and has since provided a fruitful model for the study of cortical development (Herz et al., 

2006; Förster et al., 2010; D’Arcangelo, 2014), few investigators have examined the 

consequences of reelin deficiency on the function of cortical networks. What studies exist 

relied chiefly on electrophysiological methods, and examined the reeler hippocampus (Bliss 

and Chung, 1974; Ishida et al., 1994; Kowalski et al., 2010), visual cortex (Dräger, 1981; 

Lemmon and Pearlman, 1981; Simmons and Pearlman, 1983), and somatosensory cortex 

(Wagener et al., 2010, 2015; Guy et al., 2014), and found at most modest differences. 

Behavioural studies have failed to report major deficiencies in the basic function of sensory 

systems (Salinger et al., 2003; Pielecka-Fortuna et al., 2014). The consensus emerging from 

these studies is that in spite of a few marginal abnormalities, the reeler brain retains a 

connectivity comparable to that of the WT brain and hence, a comparable function. The 

results reported here are in broad agreement with this notion. Using a combination of 

functional imaging in vivo and electrophysiology in vitro, we could elucidate several aspects 

of the structure and function of the reeler somatosensory cortex, and found them to be 

strikingly normal. We report a functional organization of the reeler cortex comparable to 

that of a WT cortex. Standard patterns of connectivity, such as a concentration of thalamic 

input on LIV cells and thalamus-evoked FFI, are preserved in reeler. Accordingly, the 

responsiveness of cortical networks seems to be unchanged by reelin deficiency. It would 

appear that we must align ourselves with the predominant view that aside of the massive 

cellular disorganization that is its hallmark, nearly all is normal in the reeler brain.  
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However, many of the studies mentioned here reported some abnormalities in the reeler 

brain, such as aberrant connectivity in the hippocampus (Borrel et al., 1999, Kowalski et al., 

2010) and the cerebellum (Mariani et al., 1977). Small functional differences such as lower 

firing rates and a higher incidence of comparatively broad receptive fields were also 

documented in the visual cortex (Dräger, 1981; Lemmon and Pearlman, 1981). In the 

present thesis, we also report a potentially important abnormality: the thalamic input to LIV 

SpS neurons, the main recipients of sensory information in the cortex, is weaker in reeler. 

This rather surprising result is in apparent contradiction with the data obtained from our 

and others (Pielecka-Fortuna et al., 2014) functional imaging experiment. This paradox 

prompted us to propose a model of the compensatory changes occurring in the reeler 

circuitry that enable a weaker thalamus to be equally effective at recruiting the cortex. The 

model is detailed in figure 16 and hypothesizes that the weakness of the thalamic input is 

rescued either by an increase in the gain of its intracortical amplification by enhanced 

recurrent excitation, or by a shift in the balance of excitation and inhibition towards more of 

the former and less of the latter. These hypothetical mechanisms are not mutually exclusive 

and might act in unison. The model, while possibly erroneous, has the advantage of leading 

to testable hypotheses, which will guide future work. The strength of recurrent excitation, 

for example, can be investigated with paired recordings in vitro. The balance of excitation 

and inhibition in evoked activity in vitro can be deduced from the corresponding changes in 

conductance mathematically derived from compound responses (Cruikshank et al., 2007; 

Monier et al., 2008). Finally, a characterization of the receptive fields on individual neurons 

in reeler cortex can be achieved with 2-photon targeted patch clamp in vivo. 
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Figure 16. Proposed model of alterations in the circuits of LIV of the reeler somatosensory cortex. 

A: circuit diagram of LIV of the normal (WT, left) and mutant (reeler, right) cortex. Red lines indicate 

excitatory input, blue lines indicate inhibition. A thickening of a line in one diagram with respect to 

the other represents a connection that is stronger; weaker connections are represented in dashed 

lines. In both genotypes, SpS neurons receive direct thalamic input (1), but this input is weaker in 

reeler, as demonstrated in the present study. Two hypothetical, possibly complementary mechanisms 

compensate for the weakness of the thalamic input, enabling comparable network activation. 

Recurrent excitation with LIV may be enhanced (2), effectively increasing the gain of intracortical, 

thalamic input amplification. Alternatively, inhibition may tune itself to a weakened excitation, and 

become weaker as well (3). This weakening of inhibition could also be brought about by a 
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concomitant weakening of the TC input to inhibitory interneurons, similarly to TC input to SpS (4). 

VPm: ventral posteromedial nucleus of the thalamus.B: schematic representation of the 

somatodendritic distribution of TC synapses on SpS neurons the in WT (left) and reeler (right) mice. 

The same number of synapses is represented in both neurons, following two rules of somatodendritic 

distribution. In WT animals, TC synapses have a weak tendency, exaggerated here, to be found in 

higher densities closer to the soma; this rule is illustrated on the left side of the neurons (1). In reeler, 

we hypothesize this gradient to be less steep or even non-existent (1). Another rule of TC synapse 

organization is the formation of small clusters along the dendrite (2). We hypothesize such clusters to 

be less numerous, to involve fewer synapses, or to be absent altogether from the dendritic arbors of 

reeler SpS (2).  

 

 

As mentioned above, earlier studies have documented a variety of slight alterations in the 

reeler brain. The importance of these alterations was often belittled by their discoverers, 

who rather emphasized the more unexpected finding of how broad the similarities were. It 

is the ambition of the present thesis to contribute to a reappraisal of how relevant these 

differences may be. The abnormalities documented here indicate that a substantial 

developmental plasticity enables the reeler cortex to compensate its shortcomings, the 

understanding of which may teach us about plasticity beyond this mutant. Likewise, the 

subtle weakening and disorganization in TC input we describe may cause equally subtle 

alterations in the perception these mutants have of their environment; understanding their 

nature and mechanism will teach us not only about the function of one missing protein, but 

about the cortex and about perception in all mammals. In other words, although the 

functional abnormalities in the reeler cortex may be mild, it is precisely this quality that 

makes them interesting and worthy of further research. For whatever the years to come 

teach us about reeler, the years past carried a strangely uplifting message: even a very 

chaotic brain may think. 
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Summary 
 

Rodents possess an array of facial whiskers on either side of their snout, which they use to 

collect tactile information about their surroundings. In layer IV of the somatosensory cortex, 

individual whiskers are represented by dense clusters of cells called barrels. Together, the 

barrels form the barrel field, a somatotopic representation of the whiskers on the snout. 

Layer 4 barrels receive direct sensory input from the thalamus, which is then distributed to 

all other layers of the cortex along the so-called canonical microcircuit, resulting in 

widespread cortical activation.   

In the reeler mouse, the loss of function of the reelin protein causes abnormal development 

of the cortex leading to the loss of cortical lamination. In this chaotic cortex, neurons that 

ought to be grouped together in layers are found in ectopic positions, scattered across the 

cortical depth. Although solid evidence exists that barrel equivalent structures may form in 

reeler, the functional organization and connectivity of its somatosensory cortex remains 

obscure.  

Here, using in vivo intrinsic signal optical imaging, we demonstrate that sensory input 

reaches and activates the barrel cortex of the mutant mouse normally, and that somatotopy 

persists in spite of laminar disorganization. Furthermore, using in vitro whole cell recordings 

and optogenetics, we demonstrate that thalamic input to layer IV equivalent neurons is 

direct in reeler. Direct thalamic input is weakened, however, while network activity 

increases with respect to the normal cortex.  

These results reveal an unexpected paradox in the reeler brain, one that opposes a 

weakened thalamic input to a normal activation of cortical networks. We propose a model 

of cortical network changes that solves this paradox, whereby a weakened thalamic input 

can be rescued by an increase in the gain of its intracortical amplification and an adaptive 

shift in the excitation-inhibition balance. These results question the hitherto prevailing view 

that both connectivity and function are left unchanged in the reeler mouse, and may 

contribute to a reappraisal of its relevance as a model of adaptive circuit plasticity.  
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articles under the following references. For additional publications please look up the 
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Guy J, Wagener RJ, Möck M, Staiger JF. Persistence of functional sensory maps in the 
 absence of cortical layers in the somatosensory cortex of reeler mice. Cereb Cortex. 
 2015 Sep;25(9):2517-28. doi: 10.1093/cercor/bhu052. Epub 2014 Apr 23. PubMed 
 PMID: 24759695; PubMed Central PMCID: PMC4537421. 

 

 

Abstract: In rodents, layer IV of the primary somatosensory cortex contains the barrel field, 

where individual, large facial whiskers are represented as a dense cluster of cells. In the 

reeler mouse, a model of disturbed cortical development characterized by a loss of cortical 

lamination, the barrel field exists in a distorted manner. Little is known about the 

consequences of such a highly disturbed lamination on cortical function in this model. We 

used in vivo intrinsic signal optical imaging together with piezo-controlled whisker 

stimulation to explore sensory map organization and stimulus representation in the barrel 

field. We found that the loss of cortical layers in reeler mice had surprisingly little incidence 

on these properties. The overall topological order of whisker representations is highly 

preserved and the functional activation of individual whisker representations is similar in 

size and strength to wild type controls. Because intrinsic imaging measures hemodynamic 

signals, we furthermore investigated the cortical blood vessel pattern of both genotypes, 

where we also did not detect major differences. In summary, the loss of the reelin protein 

results in a widespread disturbance of cortical development which compromises neither the 

establishment nor the function of an ordered, somatotopic map of the facial whiskers.    
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Guy J, Sachkova A, Möck M, Witte M, Wagener JR, Staiger JF. Thalamic input to clusters of 
 layer 4 fated neurons in the reeler somatosensory cortex is monosynaptic but 
 weaker than in WT. In preparation, soon to be submitted.  

 

 

Abstract: Layer 4 of the rodent primary somatosensory cortex contains the barrel field, a 

somatotopic representation of the whiskers on the snout. Layer 4 barrels receive much of 

the sensory input to the cortex through a dense innervation by thalamocortical axons (TCAs) 

arising from the ventroposterior medial nucleus of the thalamus (VPM). In the reeler mouse, 

a profound disruption of cortical development results in the absence of cortical layers and 

the formation of mispositioned barrel-equivalent clusters of layer 4 fated neurons. Although 

functional imaging studies suggested that sensory input reaches and activates the cortex, 

little is known about the cellular and synaptic properties of identified excitatory neurons of 

the reeler cortex. Here, we examined the properties of thalamic input to spiny stellate 

neurons in the reeler barrel cortex by means of in vitro whole cell recordings combined with 

optogenetic activation of TCAs and subcellular channelrhodopsin-2 (ChR2) assisted circuit 

mapping (sCRACM). Our results indicate that spiny stellate neurons populating clusters of 

layer 4 fated neurons receive direct input from the lemniscal thalamus, but this input is 

weaker and its spatial distribution along the somatodendritic arbor appears dispersed with 

respect to wild type controls. These results question the prevalent notion of unaltered 

functional connectivity in the reeler cortex. 
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