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Summary

In recent years, a novel type of multiscale variational statistical approaches, based on so-
called multiscale statistics, have received increasing popularity in various applications, such
as signal recovery, imaging and image processing, mainly because they in general perform
uniformly well over a range of different scales (i.e. sizes of features). By contrast, the
underlying statistical theory for these methods is still lacking, in particular with regard to
the asymptotic convergence behavior. For the sake of narrowing such gap, we propose and
analyze a constrained variational approach, which we call MultIscale Nemirovski-Dantzig
(MIND) estimator, for recovering smooth functions in the settings of nonparametric re-
gression and statistical inverse problems. It can be viewed as a multiscale extension of the
Dantzig selector (Ann. Statist., 35(6): 2313–51, 2009) based on early ideas of Nemirovski
(J. Comput. System Sci., 23:1–11, 1986). To be precise, MIND minimizes a homogeneous
Sobolev norm under the constraint that the multiresolution norm of the residual is bounded
by a universal threshold.

The main contribution of this work is the derivation of convergence rates of MIND both
almost surely and in expectation for nonparametric regression and linear statistical in-
verse problems. To this end, we generalize the Nemirovski’s interpolation inequality for
the multiresolution norm and Sobolev norms, and introduce the method of approximate
source conditions to our statistical setting. Based on these tools, we are able to obtain
certain convergence rates under abstract smoothness assumptions about the truth. For
a one-dimensional signal, such assumptions can be translated into classical smoothness
classes and source sets by means of the approximation properties of B-splines. As a conse-
quence, MIND attains almost minimax optimal rates simultaneously over a large range of
Sobolev and Besov classes, for nonparametric regression of functions and their derivatives.
Analogous results have been also obtained for certain linear statistical inverse problems,
such as deconvolution if the Fourier coefficients of the convolution kernel is of polynomial
decay. Put differently, these results reveal that MIND possesses certain adaptation to the
smoothness of the underlying true signal. In parallel, we have presented a similar anal-
ysis for a penalized version of MIND, and its parameter choice via the Lepskĭı balancing
principle. Finally, complimentary to the asymptotic analysis, we examine the finite sample
performance of MIND by various numerical simulations.
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1. Introduction

In this work, we will consider the estimation of a smooth function f : [0, 1]d → R from n
measurements

yn(x) = (Tf)(x) + ξn(x) for x ∈ Γn, (1.1)

where Γn is the regular grid on [0, 1]d containing n equidistant points, {ξn(x);x ∈ Γn} a
set of independent, identically distributed (i.i.d.) centered sub-Gaussian random variables,
and T a bounded linear operator. In particular, we are interested in the nonparametric
regression, i.e. T is the identity operator, and the statistical inverse problems, i.e. T does
not have a bounded inverse, as well. The model (1.1) is typical for a considerable number
of practical applications, see e.g. (Korostelëv and Tsybakov, 1993; Chan and Shen, 2005;
Mallat, 2009). For simplicity, we assume that the truth f can be extended periodically to
Rd to avoid boundary effects, and that the noise level is known.

1.1. Methodology

1.1.1. Variational statistical estimation

Since the fundamental work of (Nadaraya, 1964; Stone, 1984) and many others, the litera-
ture on nonparametric regression techniques has become enormously rich and diverse, and
has found its way into many textbooks, see (Green and Silverman, 1994; Fan and Gijbels,
1996; Györfi et al., 2002; Tsybakov, 2009; Korostelev and Korosteleva, 2011) for example.
As an extension, statistical inverse problems (due to Sudakov and Khalfin, 1964) deal with
indirect data, and cast inverse problems as statistical estimation and inference problems.
This research topic has been expanded and developed along with the nonparametric regres-
sion, see (O’Sullivan, 1986; Plaskota, 1996; Tenorio, 2001; Evans and Stark, 2002; Kaipio
and Somersalo, 2005; Cavalier, 2008) for surveys. A prodigious amount of these estimation
methods in both nonparametric regression and statistical inverse problems can be cast in a
variational framework, which can be roughly categorized into three different formulations:
penalized estimation, smoothness-constrained estimation, and data-fidelity-constrained es-
timation, see Figure 1.1.

Penalized estimation is a solution of the Lagrangian variational problem (also known as

1



1. Introduction

Penalized estimation

min
f
L(Tf, yn) + λS(f)

Data-fidelity-constrained estimation

min
f
S(f) s.t. L(Tf, yn) ≤ γ

Smoothness-constrained estimation

min
f
L(Tf, yn) s.t. S(f) ≤ η

Figure 1.1.: Variational statistical estimation.

generalized Tikhonov(-Phillips) regularization, Phillips, 1962; Tikhonov, 1963a,b)

min
f
L(Tf, yn) + λS(f). (1.2)

The regularization term S(f) accounts for a-priori assumptions of the truth f , such as
smoothness, sparsity, etc. The data fidelity term L(Tf, yn) measures the deviation from
the data yn. If L(·, yn) is the log-likelihood function of the model, this amounts to pe-
nalized maximum-likelihood estimation (see e.g. van de Geer, 1988; Mair and Ruymgaart,
1996; Bissantz et al., 2007; Eggermont and LaRiccia, 2009; Bühlmann and van de Geer,
2011, for general exposition), and maximum a posteriori estimation (see e.g. Kaipio and
Somersalo, 2005; Stuart, 2010) from Bayesian perspective. Prominent examples include
smoothing splines (Wahba, 1990), local polynomial estimators (Fan and Gijbels, 1996),
locally adaptive splines (Mammen and van de Geer, 1997), and non-concave penalized
methods (Antoniadis and Fan, 2001; Fan and Li, 2001). It is known that the choice of the
balancing parameter λ is in general subtle, although there are nowadays many data driven
strategies, such as (generalized) cross validation (Wahba, 1977), or Lepskĭı balancing prin-
ciple (Lepskĭı, 1990), to mention a few. The latter even provides adaptation over a range
of generalized Sobolev scales, see e.g. (Goldenshluger and Nemirovski, 1997; Lepski et al.,
1997; Goldenshluger and Pereverzev, 2000; Mathé and Pereverzev, 2006).

Smoothness-constrained estimation is to minimize the data fidelity term L under the
regularization constraint S,

min
f
L(Tf, yn) subject to S(f) ≤ η. (1.3)

It includes the well-known lasso (Tibshirani, 1996) for L(·, yn) = ‖·− yn‖2 and S = ‖·‖1 as
a special case. Another example is Nemirovski’s (1985) regression estimator f̂p,η defined
as a solution to

min
f
‖Snf − yn‖B subject to ‖Dkf‖Lp ≤ η, (1.4)

2



1.1. Methodology

where Sn denotes the sampling operator on the grid Γn, and the multiresolution norm ‖·‖B
measures the maximum of normalized local averages on cubes specified by B (see Section 2.2
for a formal definition). The estimator f̂p,η is known to be minimax optimal (up to at most
a log-factor) over Sobolev ellipsoids {f ; ‖Dkf‖Lp ≤ η} ⊂ W k,p, see (Nemirovski, 1985,
2000). This indicates one drawback of this type of estimator: the choice of the threshold
η determines a priori the smoothness information (measured by S) of the truth f , which
is often unavailable in reality.

Data-fidelity-constrained estimation results from the “reverse” formulation of (1.3),
given by

min
f
S(f) subject to L(Tf, yn) ≤ γ. (1.5)

Many basis (or dictionary) based thresholding-type methods, such as soft-thresholding
(Donoho, 1995a), and block thresholding (Hall et al., 1997; Cai, 1999, 2002; Cai and Zhou,
2009; Chesneau et al., 2010), can be written this way. Here γ = γn can be chosen as a
universal threshold, not depending on the data. For example, proper wavelet thresholding
provides spatial adaptivity, and is known to be minimax optimal for the regression of
smooth functions, see (Donoho and Johnstone, 1994; Donoho et al., 1995, 1996; Härdle
et al., 1998), while at the same time computationally fast as the thresholding is applied to
each empirical wavelet coefficient, separately. Such adaptivity of wavelet based methods
is also known for linear inverse problems, see e.g. (Donoho, 1995b; Cavalier et al., 2002;
Cohen et al., 2004; Hoffmann and Reiss, 2008). The Dantzig selector (Candès and Tao,
2007) is also a particular data-fidelity-constrained estimator, which has the form

min
f∈Rp
‖f‖1 subject to ‖T ∗(Tf − yn)‖∞ ≤ γ, with matrix T ∈ Rn×p. (1.6)

Many other `1-minimization approaches for recovering sparse signals also take the form of
(1.5), see (Donoho et al., 2006; Cai et al., 2010) for example.

In the most common case that L(·, yn) and R(·) are convex functionals, all three estimation
methods in Figure 1.1 can be regarded, from a convex analysis point of view, as equivalent,
as under rather weak assumptions each estimator in (1.2), (1.3), (1.5) can be obtained as
a solution of the other optimization problems (cf. Bickel et al., 2009, for this in the case
of the lasso and the Dantzig selector). More precisely, if f̂ is a solution of (1.2), then it
is also a solution of (1.5) for γ := L(T f̂ , yn). Conversely, if f̂ is a solution of (1.5), and
f̂ 6∈ arg minS, and if the Slater’s condition

L(Tf0, yn) < γ for some f0 in the domain of S

holds, then there exists some λ ≥ 0 such that f̂ also solves (1.2). Similar relation holds be-
tween (1.2) and (1.3) as well. These equivalences essentially follow from duality (cf. Ekeland
and Témam, 1999, Proposition 3.1, Chapter III) in convex optimization, see (Ivanov et al.,
2002; Teuber et al., 2013; Haltmeier and Munk, 2015) for a detailed argument. However,

3



1. Introduction

we emphasize that the correspondence between the parameters λ, η, γ for the equivalence
relations is not given explicitly, and depends on the data yn. It is exactly the lack of this
explicit correspondence that makes the different statistical nature of these estimations.
From this perspective, the data-fidelity-constrained estimation (1.5) has a certain appeal,
since its threshold parameter can be chosen universally, i.e. only determined by the noise
characteristics and the sample size n, and still allows for a sound statistical interpretation.
For instance, it can often be chosen in such a way that the truth f satisfies the constraint
on the right hand side of (1.5) with probability at least 1− α, which immediately leads to
the so called smoothness guarantee of the estimate f̂ in (1.5),

inf
f

P
{
S(f̂) ≤ S(f)

}
≥ 1− α. (1.7)

1.1.2. MIND estimator

In the literature, multiscale data-fidelity-constrained methods which do not explicitly rely
on a specific basis or dictionary and hence do not allow for component or blockwise thresh-
olding have also been around for some while. For example, Nemirovski (1985) briefly
discussed the “reverse” of his estimator (1.4) as well, which is given by

min
f
‖Dkf‖Lp subject to ‖Snf − yn‖B ≤ γ. (1.8)

These estimators all combine variational minimization with so called multiscale testing
statistics. Empirically, they have been found to perform very well and even outperform
those explicit methods based on wavelets or dictionaries (cf. Candès and Guo, 2002; Dong
et al., 2011; Frick et al., 2013). In fact, the latter methods, as signal-to-noise ratio de-
creases, often show visually disturbing artifacts because of missing band pass informa-
tion (Candès and Guo, 2002). On the other hand, the computation of such multiscale
data-fidelity-constrained estimators, in general, leads to a high dimensional non-smooth
convex optimization problem, remaining a burden for a long time. However, recently cer-
tain progress has been made in the development of algorithms for this type of problems (see
Beck and Teboulle, 2009; Chambolle and Pock, 2011; Frick et al., 2012, for example). In
the one dimensional case, fast algorithmic computation is sometimes feasible for specific
functionals S (e.g. Davies and Kovac, 2001; Davies et al., 2009; Dümbgen and Kovac,
2009; Frick et al., 2014). In contrast to these computational achievements, the underlying
statistical theory for these methods is currently not well understood, in particular with
regard to their asymptotic convergence behavior. In fact, there is only a small number of
results in this direction we are aware of: for fixed k ∈ N and p ∈ [1,∞], and under the
somewhat artificial assumption that the truth f lies in the constraint on the right hand
side of (1.8), Nemirovski (1985) derived the convergence rate of (1.8) (i.e. S := ‖Dk·‖Lp)
which coincides with the minimax rate over Sobolev ellipsoids in W k,p up to a log-factor.

4



1.2. A heuristic explanation

Special cases of this result have also appeared in (Davies and Meise, 2008) for k = p = 2,
and in (Davies et al., 2009) for k = 2, p = ∞. In particular, adaptation of this type
of estimators for nonparametric regression and statistical inverse problems has not been
provided so far, to the best of our knowledge. Intending to fill such gap, we will consider
a particular multiscale fidelity-constrained estimation method f̂γn defined by

f̂γn = arg min
f

1

2
‖Dkf‖2L2 subject to ‖SnTf − yn‖B ≤ γn, (1.9)

which we call the MultIscale Nemirovski-Dantzig estimator (MIND). The choice of the name
credits the fact that it generalizes a particular “reverse” Nemirovski’s estimator (1.8) with
p = 2 to statistical inverse problems, and the right hand side is a (multiscale) extension of
the Dantzig estimator (1.6).

1.2. A heuristic explanation

For simplicity, we assume throughout this section that the random errors ξn(x) in (1.1) are
i.i.d. standard Gaussian distributed.

1.2.1. Separation between signal and noise

Concerning the rationale for the chosen methodology, we illustrate the intuition behind
MIND’s ability to recover features of the truth in a multiscale fashion by a toy example in
the setting of nonparametric regression.
Example 1. Let us consider the estimation of a smooth function f : [0, 1]d → R from mea-
surements in (1.1) with T being the identity operator. Assume now that we have an
estimator f̂ ≡ f̂s,t,a, such that

f̂s,t,a(x) := f(x) + sϕa(x) + tξn(x) for every x ∈ Γn,

where s, t ≥ 0, a > 1, ϕa(x) := ad/2ϕ (a(x− 1/2)) and

ϕ(x) :=

{
Ce

1
|x|2−1 if |x| < 1

0 if |x| ≥ 1
for x ∈ Rd,

with the constant C such that ‖ϕ‖L2 = 1. That is, the estimator f̂ differs from the truth
f only by a deterministic distortion ϕa of scale a and a random perturbation tξn. By
elementary computations one can show that∣∣t− s

ad/2

∣∣n . ‖f̂ − f‖1 . (t+
s

ad/2
)
n,

5



1. Introduction

‖f̂ − f‖2 ∼ (t+ s)
√
n,

‖f̂ − f‖∞ ∼ t
√

log n+ sad/2,

hold almost surely as n→∞.

These estimates indicate that the difference between f and the estimator f̂ measured with
respect to the `1-norm depends on the level of the random perturbation as well as the
level and the scale of the deterministic distortion. Moreover, both the random and the
deterministic part of the difference scale linearly with n, which indicates that the `1-norm
is incapable of distinguishing random from deterministic deviations. For the `2-norm the
situation is similar. In contrast, in case of the `∞-norm, the deterministic and the random
part scale asymptotically differently, and thus the `∞-norm can, in principle, distinguish
between these distortions. However, it also depends on the scale of the deterministic
distortion; if the scale of the deterministic distortion is of order log n, then again it is
indistinguishable from random noise.

Now note that one can also show that for the cube B := [1/2− 1/a, 1/2 + 1/a)d,

1√
#B ∩ Γn

∣∣∣∣ ∑
x∈B∩Γn

f̂(x)− f(x)

∣∣∣∣ ∼ t√log n+ s
√
n, (1.10)

holds almost surely as n→∞. Here, the deterministic and the random parts scale differ-
ently, and the scale of the deterministic distortion does not influence the right hand side
of (1.10). These favorable properties are, however, based on the prior knowledge of the
support of the deterministic distortion ϕa, which explicitly appears on the left hand side
of (1.10). Still, it is possible to use the local averages in (1.10) by taking the supremum
over all possible scales and locations of deterministic perturbation, which, basically, results
in the multiresolution norm. Later on we will see that this approach results in the same
asymptotic estimate as (1.10), cf. Figure 2.1. Therefore, if we choose γn ∼ log n, the mul-
tiscale constraint of MIND in (1.9) will guarantee that every feasible candidate contains no
deterministic distortion, and the smoothness-enforcing regularization term will then select
the one without random distortion. The combination of both ensures that MIND avoids
both deterministic and random distortions, thus being close to the truth.

1.2.2. Multiscale testing

In addition, we give an interpretation of the multiscale constraint in MIND from a hypoth-
esis testing perspective. Under the model (1.1), given a cube B ⊂ [0, 1]d, and a function
f̃ , we have by simple calculation that the normalized local average on B

1√
#B ∩ Γn

∣∣∣ ∑
x∈B∩Γn

yn − T f̃(x)
∣∣∣

6



1.3. Main results

is the likelihood ratio testing statistic for the multiple hypotheses

H0 : (T f̃)B = (Tf)B vs. H1 : (T f̃)B 6= (Tf)B (1.11)

where gB :=
∑

x∈B∩Γn
g(x)/

√
#B ∩ Γn for any function g. As a direct implication, the

multiresolution norm ‖yn−SnT f̃‖B is a statistic for testing the hypotheses (1.11) simulta-
neously over B ∈ B (cf. Definition 2.2.1). Thus, if we calibrate the threshold in such a way
that the family-wise error is controlled, it holds with the prescribed probability that for
every candidate function f̃ lying in the constraint of MIND (the right hand side of (1.9)),
(T f̃)B is close to (Tf)B uniformly over B ∈ B, which in turn confirms that T f̃ is close to
Tf over various scales and locations specified by B. This is again a merit of the multiscale
data fidelity term, which is not shared by the data fidelity term with respect to classic
`p-norms, i.e. ‖yn − T f̃‖p, with 1 ≤ p ≤ ∞.

Importantly, we note that for mildly ill-posed problems (which are studied in Chapter 3),
every minimax optimal test for H0 : T f̃ = Tf is necessarily minimax optimal for H ′0 : f̃ =
f , see (Laurent et al., 2011). This indicates that the multiscale test in the form of (1.11)
would also be a reasonable test for H ′0 : f̃ = f . It further suggests that ‖yn − SnT f̃‖B
is a plausible measure on the closeness between f̃ and f , which we are mainly interested
in. For more details on testing problems in inverse problems, we refer to (Holzmann et al.,
2007; Butucea et al., 2009; Laurent et al., 2012; Ingster et al., 2012).

1.3. Main results

We mainly focus on the bounds for the Lq-risk (1 ≤ q ≤ ∞) of the MIND estimator (1.9)
for nonparametric regression and statistical inverse problems. The main contributions are
summarized as follows. First, we derive two interpolation inequalities of the multiresolution
norm and Sobolev norms, as extensions of the original one by (Nemirovski, 1985). These
inequalities provide a crucial link between the loss, the regularization, and the multiscale
data fidelity functional, which is fundamental for the theoretical analysis of MIND.

Second, we introduce the approximate source conditions (Hofmann and Yamamoto, 2005;
Hofmann, 2006) from regularization theory and inverse problems into the statistical anal-
ysis of nonparametric regression and statistical inverse problems. By combining them
with the interpolation inequalities mentioned above, we are able to translate the statistical
analysis into a deterministic approximation problem. The approximate source condition
is essentially equivalent to smoothness concepts in terms of (approximate) variational in-
equalities (cf. Hofmann et al., 2007; Scherzer et al., 2009; Flemming and Hofmann, 2010)
via Fenchel duality, see (Flemming, 2012); and conditions of this kind are fundamental for
convergence analysis in inverse problems (see e.g. Engl et al., 1996, Section 3.2).
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Third, we present both the Lq-risk convergence rate (1 ≤ q ≤ ∞) and the almost sure
convergence rate of MIND for nonparametric regression and statistical inverse problems,
provided that an estimate of the approximate source condition is known. It is worth noting
that the derivation of the Lq-risk convergence rate is more involved, for which one has to
bound the size of MIND, when the truth does not lie in the multiscale constraint, which
notably extends Nemirovski (1985)’s technique. Our analysis for such situation is built on
the observation that the MIND estimator is always close to the data, which leads us to an
upper bound on its Lq-loss in terms of the multiresolution norm of the noise. The latter
can be easily controlled because it has a sub-Gaussian tail.

Fourth, we show a partial adaptation property of MIND in one dimension. More precisely,
for nonparametric regression of functions and derivatives and for a fixed k, it attains
minimax optimality (up to a log-factor) simultaneously over Sobolev ellipsoids in W s,p

and Besov ellipsoids in Bs,p′
p for all (s, p) ∈ [1, k) × {∞} ∪ {k} × [2,∞] ∪ [k + 1, 2k] ×

[2,∞] and p′ ∈ [1,∞]. In case of statistical inverse problems, if the operator T and its
adjoint T ∗ are β-smoothing (see Definition 3.1.1) for some β ≥ 0, MIND with a fixed k-th
order regularization adapts to the truth smoothness, and is almost minimax optimal, over
functions f that satisfy Hölder-type source conditions

f = T ∗g with g ∈W s,2

for any fixed s ∈ {k − β} ∪ [k − β + 1, 2k]. These results explain to some extent the
remarkably good multiscale reconstruction properties of MIND empirically found in various
signal recovery and imaging applications, see Sections 2.7 and 3.4, and (Candès and Guo,
2002; Davies et al., 2009; Frick et al., 2013).

Finally, we note that a penalized version of MIND given by

min
f
‖SnTf − yn‖B +

α

2
‖Dkf‖2L2 , (1.12)

if combined with the Lepskĭı balancing principle, performs nearly the same as MIND in
asymptotic sense, e.g. possessing the aforementioned partial adaptation property. In par-
ticular, we give an exemplary analysis for this variant of MIND in the setting of nonpara-
metric regression. For a fixed sample size, a certain constant involved in Lepskĭı balancing
principle turns out to be quite pessimistic, and may deteriorate the performance of the
penalized variant in practice. Thus, as far as the finite sample behavior is concerned, we
recommend the original MIND, which allows for a universal threshold, and meanwhile pro-
vides statistical inference on the smoothness of the truth (cf. the smoothness guarantee
in (1.7)). In contrast, we emphasize again that the Nemirovski’s estimator f̂p,η in (1.4) for
nonparametric regression is only known to be (nearly) minimax optimal if the parameters
k and p match the actual smoothness of the truth perfectly. Such a strict requirement
makes it practically difficult to select the proper values for k, p, and η.
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The rest of the work is organized as follows. In Chapter 2, we focus on the nonparametric
regression of functions and the derivatives. After some necessary notation in Section 2.1, we
present the multiresolution norm together with its deterministic and stochastic properties
in Section 2.2. Section 2.3 is devoted to approximate source conditions and so called
distance functions, which provide methods for analyzing the Lq-loss (1 ≤ q ≤ ∞) of
MIND. Combining such general results and an estimate of the distance functions, we obtain
explicit convergence rates for smooth functions, in the one dimensional case, in Section 2.4.
In parallel, Section 2.5 provides an asymptotical analysis of the penalized version of MIND,
as well as the Lepskĭı balancing principle. In addition to the asymptotic results, based on
the algorithms in Section 2.6, the finite sample behavior, as well as choices of the tuning
parameter, of MIND is examined empirically on simulated examples in Section 2.7.

In Chapter 3, we extend the previous analyses to statistical inverse problems. By means of
an extended interpolation inequality, we derive the convergence rates for MIND in terms of
approximate source conditions in Section 3.2. Section 3.3 considers the case d = 1. By the
estimate of distance function in the previous chapter, the abstract smoothness assumptions
are translated into classical Hölder-type source conditions, from which we again derive the
explicit convergence rates and the partial adaptation property for MIND. Moreover, some
numerical studies are collected in Section 3.4.

The last part of this work is contained in Chapter 4, where we present some discussions
and open questions. Technical proofs are given in the appendix.
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2. Nonparametric Regression

In this chapter, we consider the asymptotic properties of MIND for regression of smooth
functions and their derivatives. We start with a general framework of convergence analysis
by means of approximate source conditions. On the basis of this framework, in one di-
mensional setting, we derive convergence rates for Sobolev and Besov smooth classes, and
examine the minimax optimality and adaptation behaviors. Complimentary to the asymp-
totic findings, we study the finite sample performance of MIND by numerical simulations
as well. In parallel, we also consider a penalized formulation of MIND, and investigate
its properties in the same setting. Most of the results have appeared in (Grasmair et al.,
2015), while the extensions mainly include a proof of an interpolation inequality between
multiresolution norms and Sobolev norms, asymptotics for estimation of derivatives, an
analysis of the penalized version of MIND and Lepskǐı’s balancing principle, and some
additional numerical studies.

2.1. Model and notation

The nonparametric regression problem is to estimate a function f : [0, 1]d → R from n
measurements

yn(x) = f(x) + ξn(x) for x ∈ Γn. (2.1)

Here, the regular grid Γn on [0, 1]d is given by

Γn :=
{

(
τ1

n1/d
, . . . ,

τd
n1/d

); τi = 0, . . . , n1/d − 1, for i = 1, . . . , d
}
, (2.2)

and the error {ξn(x);x ∈ Γn} is a set of i.i.d. centered sub-Gaussian random variables with
scale parameter σ, i.e., each ξn(x) satisfies

E
[
eτξn(x)

]
≤ e(τσ)2/2 for every τ ∈ R. (2.3)

The sub-Gaussian random variable in (2.3) includes centered Gaussian random variable,
and bounded and centered random variable on [−σ/2, σ/2] as special cases. We now
introduce the point evaluation Sn on the grid Γn as the mapping

f 7→ Snf =
(
f(x)

)
x∈Γn

∈ RΓn ,
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for every continuous function f : [0, 1]d → R. The nonparametric regression (2.1) can then
be rewritten as

yn = Snf + ξn,

where yn :=
(
yn(x)

)
x∈Γn

, and ξn :=
(
ξn(x)

)
x∈Γn

.

For technical simplicity, we make the following assumption throughout this chapter.
Assumption 1. (a) The truth f is periodic, in the sense that it can be regarded as a

(continuous) function defined on the d-dimensional torus Td ∼ Rd/Zd.

(b) The truth f has mean zero, i.e.,
∫
Td f(x) dx = 0.

(c) The scale parameter σ in (2.3) of the random error is known.
Remark 2.1.1. The main reason for assumption (a) is that this avoids having to deal with
boundary conditions that would have to be taken into account in non-periodic cases. The
assumption (b) is to simplify norms of Sobolev spaces, and we will see that dropping it
is actually possible (see Proposition 2.3.6). The last assumption is reasonable, since the
level σ of random error can be easily pre-estimated with

√
n-rate, see e.g. (Rice, 1984; Hall

et al., 1990; Dette et al., 1998) among other references.

In this setting, the MIND estimator f̂γn (i.e. T = I in (1.9)) is defined by

f̂γn = arg min
f∈Hk

0 (Td)

1

2
‖Dkf‖2L2 subject to ‖Snf − yn‖B ≤ γn, (2.4)

where ‖·‖B is the multiresolution norm with respect to the system B of cubes (the definition
will be given in Section 2.2), and

γn = C(log n)r for some r ≥ 1

2
and C >

{
0 if r > 1

2 ,

σ
√

6 + 2k
d if r = 1

2 .
(2.5)

We stress that such choice of threshold γn is universal, in the sense that it is independent
of the smoothness of the truth f , and the system of cubes B. In particular, when r > 1/2,
γn depends on the sample size n only.

Note that the MIND estimator f̂γn has derivatives up to order k, so its derivative can

be used as a natural estimator for that of the truth f , that is, Dαf̂γn ≈ Dαf for each
α ∈ Nd0 and |α| ∈ [0, k). In what follows this derivative estimator will also be analyzed
asymptotically.

2.1.1. Smooth functions on Td

As it is required, we will give a brief introduction to Sobolev and Besov spaces on Td ∼
Rd/Zd. These spaces are defined in a similar way as those on Rd or [0, 1]d, see (Triebel,
1983, 1992, 1995; Adams and Fournier, 2003) for further details.
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Let us first introduce the multi-index notation for partial derivatives. A multi-index α, is
a d-tuple of nonnegative integers αi, i.e. α := (αi)

d
i=1 ∈ Nd0. The length of α is defined

as

|α| :=
d∑
i=1

αi.

For a sufficiently smooth function f , we denote partial (weak) derivatives by

Dαf :=
∂|α|f

∂xα1
1 · · · ∂xαdd

, and Dlf :=
(
Dαf

)
|α|=l, α∈Nd0

for l ∈ N0.

Given 1 ≤ p ≤ ∞ and k ∈ N0, we define the Sobolev space W k,p(Td) by

W k,p(Td) :=
{
f ∈ Lp(Td) : Dαf ∈ Lp(Td) for every α ∈ Nd0 and 0 ≤ |α| ≤ k

}
.

The norm on W k,p(Td) is defined by

‖f‖Wk,p :=


(∑

0≤|α|≤k, α∈Nd0
‖Dαf‖pLp

)1/p
if 1 ≤ p <∞

max0≤|α|≤k, α∈Nd0
‖Dαf‖L∞ if p =∞

for every f ∈W k,p(Td). It is known that
(
W k,p(Td), ‖·‖Wk,p

)
is actually a Banach space.

We next denote the forward and backward differences of a function f : Td → R by

Dh,+f(·) = f(·+ h)− f(·), and Dh,−f(·) = f(·)− f(· − h) with h ∈ Rd,

and that of a sequence (ai)0≤i≤n−1 by

(D+a)i = ai+1 − ai, and (D−a)i = ai − ai−1,

where (D+a)n−1 = a0 − an−1 and (D−a)0 = a0 − an−1. We note that the adjoints of these
mappings are given, respectively, by

D∗h,+ = −Dh,−, and D∗+ = −D−.

Given 1 ≤ p ≤ ∞, t ≥ 0 and r ∈ N, the r-th modulus of smoothness of f ∈ Lp(Td) is
defined as

$r(f ; t)p := sup
0≤|h|≤t

‖Dr
h,+f‖Lp .

Based on it, we define the Besov norm ‖·‖
Bs,p

′
p

, with s > 0, 1 ≤ p, p′ ≤ ∞, as

‖f‖
Bs,p

′
p

:= ‖f‖Lp + |f |s,p,p′,r,
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2. Nonparametric Regression

where r > s, r ∈ N is arbitrary, and

|f |s,p,p′,r :=


(∫

T (t−s$r(f ; t)p)
p′ dt

t

)1/p′

if 1 ≤ p′ <∞
ess supt>0 t

−s$r(f ; t)p if p′ =∞.

The Besov space Bs,p′
p (Td) is then defined as the Banach space consisting of functions with

bounded Besov norm, that is,

Bs,p′
p (Td) := {f ∈ Lp(T d); ‖f‖

Bs,p
′

p
<∞}.

For a non-integer s ∈ (0,∞), the fractional order Sobolev space W s,p(Td) (a.k.a. Sobolev-
Slobodeckij space) is defined by W s,p(Td) := Bs,p

p (Td). One should, however, be aware of

the fact that W k,p(Td) 6= Bk,p
p (Td) for all k ∈ N and p 6= 2. In the case of k ∈ N, it actually

holds that (cf. Adams and Fournier, 2003, Paragraph 7.33)

Bk,p
1 (Td) ⊂W k,p(Td) ⊂ Bk,p

∞ (Td) for 1 ≤ p <∞,
Bk,p
p (Td) ⊂W k,p(Td) ⊂ Bk,p

2 (Td) for 1 < p ≤ 2,

and Bk,p
2 (Td) ⊂W k,p(Td) ⊂ Bk,p

p (Td) for 2 ≤ p <∞.

Equivalently, Besov spaces can be introduced by means of the (real) interpolation theory
of Banach spaces. We in particular recall the K-method. Let (X0, ‖·‖0), (X1, ‖·‖1) be
closed subspaces of a common Banach space. If 0 < t <∞ and f ∈ X0 +X1, then Peetre
(1963a,b)’s celebrated K-functional is given by

K(t, f) := inf{‖f0‖0 + t‖f1‖1; f = f0 + f1, f0 ∈ X0, f1 ∈ X1}.

For 1 ≤ p ≤ ∞ and 0 < θ < 1, the interpolation space (X0, X1)θ,p is defined as

(X0, X1)θ,p := {f ∈ X0 +X1; ‖f‖θ,p <∞},

where

‖f‖θ,p :=


(∫ 1

0 [t−θK(t, f)]p dtt

)1/p
if 1 ≤ p <∞,

ess sup
0<t<1

t−θK(t, f) if p =∞.

One key result from interpolation space theory is given below (Triebel, 1983, Section 2.4).

Proposition 2.1.2 (Convexity theorem). Let 1 ≤ p ≤ ∞ and 0 < θ < 1. If A is
a bounded linear operator mapping Xi into Yi with norm ‖A‖i, for i = 0, 1, then it is
also a bounded linear operator mapping (X0, X1)θ,p into (Y0, Y1)θ,p with norm ‖A‖θ,p ≤
‖A‖1−θ0 ‖A‖θ1.
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Now, for 0 < s < ∞ and 1 ≤ p, p′ ≤ ∞, the Besov space Bs,p′
p (Td) can be also defined

as
Bs,p′
p (Td) := (W k0,p(Td),W k1,p(Td))θ,p′

where s = (1− θ)k0 + θk1, k0 6= k1 and θ ∈ (0, 1).

In addition, it is worth noting that C∞(Td) is dense in W s,p(Td) and Bs,p′
p (Td) for all

s ∈ (0,∞) and 1 ≤ p, p′ ≤ ∞.

2.1.2. Functions with zero mean

Let us consider the particular closed subspaces of Sobolev and Besov spaces, which consist
of functions with zero mean. We denote these spaces by

W s,p
0 (Td) := {f ∈W s,p(Td);

∫
Td
f(x)dx = 0},

and Bs,p′

p,0 (Td) := {f ∈ Bs,p′
p (Td);

∫
Td
f(x)dx = 0},

where 0 < s < ∞, and 1 ≤ p, p′ ≤ ∞. It is possible to introduce equivalent norms of
a simpler form for them. For instance, for W k,p

0 (Td) with k ∈ N and 1 ≤ p ≤ ∞, the
semi-norm given by

‖f‖
Wk,p

0
:=
( ∑
|α|=k, α∈Nd0

‖Dαf‖pLp
)1/p

(2.6)

turns out to be indeed a norm, see the following proposition.
Proposition 2.1.3 (Ziemer (1989), Theorem 4.4.2). Let k ∈ N and 1 ≤ p ≤ ∞.
There exists constant C depending only on k, p such that

‖f‖
Wk,p

0
≤ ‖f‖Wk,p ≤ C‖f‖Wk,p

0
for every f ∈W k,p

0 (Td).

From now on, when referring to W k,p
0 (Td), we will always assume the norm ‖·‖

Wk,p
0

in (2.6),

which we call the homogeneous Sobolev norm. If p = 2, we also denote W k,2
0 (Td) by Hk

0 (Td),
and the corresponding norm ‖·‖

Wk,2
0

by ‖·‖Hk
0
. In this case, the fact of Proposition 2.1.3

can be easily seen by means of Fourier series expansions, that is,

‖f‖2
Hk

0
= (2π)2k

∑
λ∈Zd\0

|λ|2k|cλ|2.

Here, the Fourier coefficient cλ := 〈f, e−2πi〈λ,·〉〉L2 ; in particular, c0 =
∫
Td f(x)dx = 0.

Similarly, for Hs
0(Td) := W s,2

0 (Td) with s ∈ R, we introduce the equivalent norm

‖f‖Hs
0

:= (2π)s
( ∑
λ∈Zd\0

|λ|2s|cλ|2
)1/2

. (2.7)
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2.2. Multiresolution norm

We now consider the multiresolution norm, which is one of the main tools we are working
with, and its properties as well. For the sake of generality, all the results are given for
functions on [0, 1]d in this section. In particular, they apply to functions on Td as well.

First, we define a cube B as a subset of [0, 1]d of the form B =
∏d
i=1[ai, ai + h), where

0 ≤ ai < 1, i = 1, . . . , d, and 0 < h ≤ 1. By |B| we denote its d-dimensional volume hd,
i.e. the Lebesgue measure of B.
Definition 2.2.1 (Nemirovski (1985)). Given a non-empty system of cubes B, the mul-
tiresolution norm ‖·‖B on RΓn is defined by

‖y‖B := sup
B∈B, B∩Γn 6=∅

1√
#Γn ∩B

∣∣∣ ∑
x∈Γn∩B

y(x)
∣∣∣ for y =

(
y(x)

)
x∈Γn

∈ RΓn . (2.8)

The multiresolution norm simultaneously screens a signal on cubes of various scales and
locations. With regard to multiresolution, the system of cubes B should be sufficiently rich.
For this purpose, we introduce the normality and the regularity of a system to characterize
its richness.
Definition 2.2.2. A system of cubes B is called normal (or c-normal), if there is a con-
stant c > 1, such that for every cube B ⊆ [0, 1]d there is a cube B̃ ∈ B satisfying

B̃ ⊆ B, and |B̃| ≥ |B|/c.

The above concept is a generalization of normality in (Nemirovski, 1985), where it was
defined with c = 6.
Definition 2.2.3. A system of cubes B is called regular (or m-regular) for some m ∈ N,
m ≥ 2, if it contains at least the m-partition system, which is defined as all sets of the form

[`m−j , (`+ 1)m−j) for all ` ∈ Nd0, j ∈ N0.

From the definition, it is clear that every m-regular system of cubes is necessarily normal
(or precisely m-normal). The converse, however, does not hold in general. That is, there
exist normal systems of cubes that are not m-regular for any m ∈ N (see Example 2
(c)).

Formally, the normality and regularity of a system B are independent of the grid Γn. For a
given grid Γn, the value of the multiresolution norm, however, depends on the intersection
of the cubes in B with Γn. In particular, it is the number of distinct cubes of B on Γn,
namely, #{B ∩ Γn;B ∈ B}, which we call the effective cardinality of B, that determines
the computational complexity of evaluating the multiresolution norm, and of solving op-
timization problems with the multiresolution norm ‖·‖B (e.g. MIND). In order to obtain
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numerically feasible algorithms, one therefore would like to choose this effective cardinality
of B as small as possible while still retaining multiresolution nature. Some examples of B
are given below.
Example 2. (a) The system of all cubes. It is clearly normal and regular. The corre-

sponding multiresolution norm also appears as a particular scan statistics, which is
the maximum likelihood ratio statistic in the Gaussian setting. The scan statistics
is a standard tool for detecting a deterministic signal with unknown spatial extent
against a noisy background, see e.g. (Kulldorff, 1997; Glaz and Balakrishnan, 1999;
Siegmund and Yakir, 2000; Dümbgen and Spokoiny, 2001; Glaz et al., 2009). However,
the effective cardinality of all the cubes on Γn is O

(
n2
)
, making it computationally

impractical for large scale problems.

(b) The system of cubes with dyadic edge lengths. It consists of cubes of the form

d∏
i=1

[ai, ai + 2−l), for ai ∈ [0, 1), l = 0, 1, . . . .

It is easy to see that this system is normal, 2-regular, and of effective cardinality
O (n log n) on Γn. This system has been employed in (Frick et al., 2014) to acceler-
ate the computation of a multiscale inference procedure for multiple change-points
detection.

(c) The sparse systems with optimal detection power. In one dimension, one
can construct a normal system of effective cardinality O (n) by combining the one
introduced in (Rivera and Walther, 2013), and some intervals of small scales (namely
lengths ≤ log(n)/n)

blog2(logn)c⋃
l=0

{[
(2i− 1)2l

n
,
i2l+1

n

)
: i = 1, . . . , n2−l−1

}
.

This system is still sufficiently rich to be statistically optimal, in the setting of bump
detection in the intensity of a Poisson process or in a density (see Rivera and Walther,
2013), but it is not regular. The heuristics behind is that after considering one
interval, not much is gained by looking at intervals of similar scales and similar
locations (see also Chan and Walther, 2013). For higher dimensions, such system can
be constructed similarly, see (Walther, 2010; Sharpnack and Arias-Castro, 2014).

(d) The m-partition system. It has linear effective cardinality in terms of the number
of measurements, i.e., O (n) on Γn, while it is normal and obviously m-regular. As we
will see in Section 2.4, this system is rich enough to guarantee that MIND recovers
smooth functions in a nearly optimal way (cf. Section 2.7 for the practical perfor-
mance). In particular, for m = 2, it corresponds to the support sets of the wavelet
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multiresolution scheme. The 2-partition system has been used in (Davies and Kovac,
2001; Davies et al., 2009; Pein et al., 2015) for inference of one dimensional signals.

Note that the multiresolution norm is, actually, not necessarily a norm but always a semi-
norm. That is, it can happen that ‖y‖B = 0 although the vector y ∈ RΓn is different
from zero. Clearly this is the case if B ∩ Γn = ∅ for every B ∈ B, in which case ‖·‖B
is identically zero. However, if the system B is normal, this situation cannot occur for
n sufficiently large: the normality of B implies in particular that B contains a cube of
volume at least 1/c, which, for n > c necessarily has a non-empty intersection with the
grid Γn. Still it is possible that ‖y‖B = 0 for some non-zero y. On the other hand, if B
is normal and f : [0, 1]d → R is continuous and non-zero, then there exists some n0 ∈ N
such that ‖Snf‖B 6= 0 for all n ≥ n0, which means that the multiresolution norm of the
point evaluation of a continuous non-zero function will eventually become non-zero. For
simplicity, we will always assume the following.

Assumption 2. The system of cubes B is rich enough such that ‖·‖B is a norm.

This allows us later to define the dual norm of ‖·‖B. Moreover, in the case of every system
in Example 2, it is easy to see that ‖·‖B is indeed a norm, and that it can be bounded from
below by the maximum norm ‖·‖∞ on RΓn .
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Figure 2.1.: Illustration of the growth of multiresolution norm ‖·‖B with respect to 2-
partition systems. The multiresolution norm of a realization of standard Gaus-
sian random variables and that of smooth function f(x) = x2 are plotted
against the number of samples.

The main property of the multiresolution norm is that it allows to distinguish between
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2.2. Multiresolution norm

random noise and smooth functions, see Figure 2.1. As the number n of sampling points
increases, the multiresolution norm of a smooth function increases with a rate of n1/2.
In contrast, the multiresolution norm of i.i.d. Gaussian noise can be expected to grow
only with a rate of

√
log n. More precisely, the multiresolution norm has the following

properties:
Proposition 2.2.4. Let θ > 0, B be a system of cubes, and ξn := {ξn(x);x ∈ Γn} a set of
i.i.d. sub-Gaussian random variables (2.3) with scale parameter σ > 0. Then there exists
a constant C depending only on θ such that

P {‖ξn‖B ≥ t} ≤ min

{
1, 2n2e−

t2

2σ2

}
,

E
[
‖ξn‖θB

]
≤ C

(
σ
√

log n
)θ

for every n > 1.

Proof. Let ξB :=
(∑

x∈Γn∩B ξn(x)
)
/
√

#Γn ∩B. Then

P {‖ξn‖B ≥ t} ≤
∑
B∈B

P {|ξB| ≥ t} ≤
∑
B∈B

min
τ≥0

e−τtE
[
eτ |ξB |

]
≤
∑
B∈B

min
τ≥0

e−τtE
[
eτξB + e−τξB

]
≤n2 min

τ≥0
2e

(τσ)2

2
−τt = 2n2e−

t2

2σ2 .

The second result follows from the first using

E
[
‖ξ‖θB

]
=

∫ ∞
0

θtθ−1P {‖ξ‖B ≥ t} dt. �

Remark 2.2.5. If for every n ∈ N and x ∈ Γn there exists a cube B ∈ B such that x ∈ B
and #Γn ∩B = 1, then it is known from (Kabluchko and Munk, 2009) that

lim sup
n→∞

‖ξn‖B√
2 log n

= sd(ξn) a.s.

where sd(ξn) is the common standard deviation of ξn(x) for x ∈ Γn. It follows directly
that under such a condition the upper bound for the expectation given above is actually
optimal in order.
Proposition 2.2.6. Given any function f ∈ C([0, 1]d), it holds that

lim
n→∞

1√
n
‖Snf‖B = sup

B∈B

1√
|B|

∣∣∣∫
B
f(x)dx

∣∣∣.
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2. Nonparametric Regression

Proof. Let m := n1/d, and Bn := B ∩ Γn + [− 1
2m ,

1
2m)d for every B ∈ B. It can be easily

shown that

lim
n→∞

sup
B∈B, B∩Γn 6=∅

1√
|Bn|

∣∣∣∫
Bn

f(x)dx
∣∣∣ = sup

B∈B

1√
|B|

∣∣∣∫
B
f(x)dx

∣∣∣. (2.9)

Given any ε > 0, the uniform continuity of f implies that for sufficiently large n∣∣∣∫
x+[− 1

2m
, 1
2m

)d
f(z)dz − 1

n
f(x)

∣∣∣ ≤ ε

n
for every x ∈ Γn.

It follows that for large enough n∣∣∣∣ sup
B∈B, B∩Γn 6=∅

1√
|Bn|

∣∣∣∫
Bn

f(z)dz
∣∣∣− 1√

n
sup

B∈B, B∩Γn 6=∅

1√
#B ∩ Γn

∣∣∣ ∑
x∈B∩Γn

f(x)
∣∣∣∣∣∣∣

≤ sup
B∈B, B∩Γn 6=∅

1√
|Bn|

∣∣∣∫
Bn

f(z)dz − 1

n

∑
x∈B∩Γn

f(x)
∣∣∣

≤ sup
B∈B, B∩Γn 6=∅

1√
|Bn|

∑
x∈B∩Γn

∣∣∣∫
x+[− 1

2m
, 1
2m

)d
f(z)dz − 1

n
f(x)

∣∣∣ ≤ ε.
This together with (2.9) completes the proof. �

The next result provides an interpolation inequality for the Lq-norm of a function in terms
of its multiresolution norm and the Lp-norm of its k-th order derivative. For k, l, d ∈ N
and 1 ≤ p, q ≤ ∞, we introduce

ϑl ≡ ϑl(k, d, p, q) :=

{
k−l

2k+d if q
p ≤ 2k+d

2l+d ,
k−l−d/p+d/q
2k+d−2d/p if q

p ≥ 2k+d
2l+d ;

(2.10)

and

ϑ′l ≡ ϑ′l(k, d, p, q) :=
(2k

d
+ 1− 2

p

)
ϑl(k, d, p, q). (2.11)

Theorem 2.2.7. Let B be a c-normal system of cubes, and assume that 1 ≤ p, q ≤ ∞,
l ∈ {0, . . . , k − 1} and k, d ∈ N satisfy either k > d/p or k = d and p = 1. Then
there are constants C and n0, both depending on c, k, d and p only, such that for every
f ∈W k,p([0, 1]d) and for n ≥ n0,

‖Dlf‖Lq ≤ C max
{‖Snf‖2ϑlB

nϑl
‖Dkf‖1−2ϑl

Lp ,
‖Snf‖B
n1/2

,
‖Dkf‖Lp
nϑ
′
l

}
, (2.12)

where ϑl = ϑl(k, d, p, q) is given by (2.10) and ϑ′l = ϑ′l(k, d, p, q) by (2.11).
Proof. See Appendix A.1. �
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2.3. Asymptotics under abstract smoothness assumptions

Remark 2.2.8. This is an extension of the result in (Nemirovski, 1985), where (2.12) was
shown to hold for c-normal systems with c = 6, and p > d or p = d = 1. It is known
that k > d/p or k = d and p = 1 is the weakest condition to guarantee the continuity of
f ∈ W k,p([0, 1]d) (cf. Adams and Fournier, 2003, Theorem 4.12), which is required for the
definitions of the evaluation Sn and the multiresolution norm ‖·‖B. From this perspective,
this result is already in its most general form.

2.3. Asymptotics under abstract smoothness assumptions

For the asymptotic analysis for MIND, we will now introduce more recent techniques from
regularization theory and inverse problems, which have not been applied in a statistical
context so far, to the best of our knowledge. To that end we interpret the problem of
nonparametric regression as the inverse problem of solving the equation

Snf = yn

for f , where we regard the point evaluation Sn as a mapping from Hk
0 (Td) to RΓn (see also

Bissantz et al., 2007). If k > d/2, which we always assume, it follows from the Sobolev
embedding theorem (see e.g. Adams and Fournier, 2003, Theorem 4.12) that Hk

0 (Td) is
continuously embedded in the space of all continuous functions, which in turn implies that
the mapping Sn is bounded.

Typical conditions in regularization theory that allow the derivation of estimates of the
quality of the reconstruction in dependence of the actually realized noise level on yn are so
called source conditions. In this setting, they would usually be formulated as the condition
that f = S∗nω for some source element ω ∈ RΓn , where S∗n : RΓn → Hk

0 (Td) denotes the
adjoint of the sampling operator Sn with respect to the norm on Hk

0 (Td) (see Groetsch,
1984; Engl et al., 1996). Such an assumption, however, is quite restrictive in this setting;
for instance, for d = 1, it basically implies that the function f is a spline with equidistant
knots Γn.

Therefore, we use a different, but related, approach based on approximate source condi-
tions (see Hofmann and Yamamoto, 2005; Hofmann, 2006). The idea here is to measure
how well the function f can be approximated by functions of the form S∗nω for approximate
source elements ω of given norm t ≥ 0; we thus obtain a function d : R≥0 → R≥0, which
measures for each t ≥ 0 the distance between f and the image of the ball of radius t under
S∗n. In (Hofmann and Yamamoto, 2005), this function d has been called distance function.
Its asymptotic properties, as the deterministic “noise level” goes to zero, have been used
to obtain convergence rates for the solution of inverse problem.

In order to apply this approach to nonparametric regression using the multiresolution norm,
we have to consider two refinements.
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2. Nonparametric Regression

(i) We are interested in the asymptotics as n → ∞, which means that the operator Sn
we are considering changes as well. Therefore, we will have to regard instead of a
single distance function a whole family of distance functions dn : R≥0 → R≥0, one for
each possible grid size.

(ii) Since we are measuring the defect of the solution not with respect to the usual
Euclidean norm but rather with respect to the multiresolution norm, we have to
measure the approximation quality of an approximate source element in terms of the
dual multiresolution norm (see Hein, 2008, for a similar argumentation in the case
of Banach space regularization). This complicates the theory considerably, since the
(dual) multiresolution norm is neither uniformly smooth nor uniformly convex.

2.3.1. Multiscale distance functions

Recall that the multiresolution norm ‖·‖B is indeed a norm (cf. Assumption 2). Thus, we
can consider its dual norm ‖·‖B∗ on RΓn with respect to the set of cubes B. This norm is
defined as

‖ω‖B∗ := max

{∑
x∈Γn

ω(x)v(x); v ∈ RΓn , ‖v‖B ≤ 1

}
.

From the definition of the multiresolution norm in (2.8) it readily follows that for proper
real numbers (cB)B∈B

‖ω‖B∗ = min
{∑
B∈B
|cB|

√
#Γn ∩B;ω(x) =

∑
B3x

cB for all x ∈ Γn

}
.

Next note that, since Sn : Hk
0 (Td) → RΓn is bounded linear, it has an adjoint S∗n : RΓn →

Hk
0 (Td), which is defined by the equation∑

x∈Γn

f(x)ω(x) = 〈f, S∗nω〉Hk
0

= 〈Dkf,DkS∗nω〉L2 =

∫
Td
Dkf DkS∗nω dx.

Definition 2.3.1. Given n ∈ N and t ≥ 0, the multiscale distance function dn(t) for f is
defined as

dn(t) := min
‖ω‖B∗≤t

‖DkS∗nω −Dkf‖L2 = min
‖ω‖B∗≤t

‖S∗nω − f‖Hk
0
.

The function dn(t) measures the distance between f and the image of the ball of radius
t with respect to ‖·‖B∗ under the mapping S∗n. Put differently, it describes how well the
function f can be approximated (with respect to the homogeneous k-th order Sobolev
norm, ‖Dk·‖L2 ≡ ‖·‖Hk

0
) by functions in the range of S∗n.
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2.3. Asymptotics under abstract smoothness assumptions

In what follows we will provide some description of the mapping S∗n. We first denote for
every x ∈ Γn by ex ∈ RΓn the standard basis vector at x defined by

ex(z) =

{
1 if z = x,

0 else.

Moreover, we define
ϕx := S∗nex ∈ Hk

0 (Td).

Then, we have for every f ∈ Hk
0 (Td) the equality

f(x) =

∫
Td
DkuDkϕx dy.

Now let f ∈ Hk(Td) be arbitrary. Then f −
∫
Td f dz ∈ Hk

0 (Td) and therefore,

f(x)−
∫
Td
f dz =

∫
Td
Dkf Dkϕx dz = (−1)k

∫
Td
f ∆kϕx dz = 〈f, (−1)k∆kϕx〉L2

for every f ∈ Hk(Td). Since f(x) = 〈f, δx〉, we obtain that ϕx = S∗nex is the unique weak
solution in Hk

0 (Td) of the equation

(−1)k∆kϕx = δx − 1. (2.13)

Moreover, we have for general ω ∈ RΓn , ω =
∑

x∈Γn
ωxex, the representation

S∗nω =
∑
x∈Γn

ωxϕx.

Then, the definition of dn(t) implies that

dn(t) = min
{
‖f −

∑
x∈Γn

cxϕx‖Hk
0
; ‖(cx)x∈Γn‖B∗ ≤ t

}
. (2.14)

Because of the definition of the dual multiresolution norm, we can further rewrite this by
introducing the functions

ϕB :=
∑

x∈B∩Γn

ϕx for B ∈ B.

We then obtain the representation

dn(t) = min
{
‖f −

∑
B∈B

cBϕB‖Hk
0
;
∑
B∈B
|cB|

√
#Γn ∩B ≤ t

}
. (2.15)
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2. Nonparametric Regression

Remark 2.3.2. By means of Fourier series expansions, one can derive a solution in series
form to the equation (2.13), which is given by

ϕx(z) =
∑

λ∈Zd\{0}

(2π|λ|)−2ke2πiλ·(z−x) =
∑

λ∈Nd0\{0}

2(2π|λ|)−2k cos (2πλ · (z − x)) .

In addition, it is worth noting that

ϕx(z) = R(x, z) for every x ∈ Γn and z ∈ Td,

where R(·, ·) is the reproducing kernel of the Hilbert space Hk
0 (Td). Finally, we point

out that equations (2.14) and (2.15) translate the behavior of multiscale distance functions
dn(t) into the approximation property of bases

(
ϕx
)
x∈Γn

and frames
(
ϕB
)
B∈B, respectively.

2.3.2. Abstract convergence rates

We will derive the convergence rates of the MIND estimator f̂γn , which is defined as the
solution of the optimization problem given in (2.4), in terms of multiscale distance functions
dn(t) (see Definition 2.3.1). Our first result provides an estimate of the accuracy of MIND,
measured in terms of an Lq-norm, under the assumption that the multiresolution norm of
the error is bounded by γn. While the result is purely deterministic, it immediately allows
for the derivation of almost sure convergence rates by adapting the parameter γn to the
number of measurements.
Theorem 2.3.3. Let l ∈ {0, . . . , k − 1}, k, d ∈ N, k > d/2 and 1 ≤ q ≤ ∞. Assume that
B is c-normal and the inequality

‖ξn‖B = ‖Snf − yn‖B ≤ γn
is satisfied, and denote by f̂γn the MIND estimator (2.4). In addition, define

cn := min
t≥0

(
dn(t) + (γnt)

1/2
)
.

Then there exist constants C > 0 and n0 ∈ N, both depending only on c, k and d, such that

‖Dlf̂γn −Dlf‖Lq ≤ C max
{γ2ϑl

n c1−2ϑl
n

nϑl
,
γn

n1/2
,
cn

nϑ
′
l

}
for n ≥ n0, (2.16)

where ϑl = ϑl(k, d, 2, q) is given by (2.10) and ϑ′l = ϑ′l(k, d, 2, q) by (2.11).
Proof. See Appendix A.2.1. �

Note that the estimate (2.16) provides error bounds for estimating the function f and its
derivatives Dαf for α ∈ Nd0 and 0 < |α| < k. As a direct consequence of the previous
result and the fact that the multiresolution norm of independent sub-Gaussian noise with
high probability increases at most logarithmically (see Proposition 2.2.4), we obtain an
asymptotic convergence rate almost surely for the MIND estimator.
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2.3. Asymptotics under abstract smoothness assumptions

Corollary 2.3.4. Let l ∈ {0, . . . , k − 1}, k, d ∈ N, k > d/2 and 1 ≤ q ≤ ∞. Assume that
B is normal, that γn is chosen as in (2.5), and that

min
t≥0

(
dn(t) + (log n)r/2t1/2

)
= O

(
n−µ

)
as n→∞ (2.17)

for some 0 ≤ µ < 1/2. Then there exists a constant C such that the MIND estimator f̂γn
in (2.4) satisfies the estimate

lim sup
n→∞

(
nµ(1−2ϑl)+ϑl(log n)−2rϑl‖Dlf̂γn −Dlf‖Lq

)
≤ C a.s. (2.18)

with ϑl = ϑl(k, d, 2, q) in (2.10).
Proof. With the given choice of γn, Proposition 2.2.4 implies that

P {‖ξn‖B > γn} → 0 as n→∞.

As a consequence, the probability that the estimate in Theorem 2.3.3 applies tends to 1 as
n → ∞. Noting that, for n sufficiently large and 0 ≤ µ < 1/2, the first term on the right
hand side of (2.16) is always dominant, we obtain (2.18). �

The condition (2.17) is often referred to as the approximate source condition. It encodes
the smoothness of the truth f essentially by how fast the function dn(tn) decays, for
some proper choice of tn, as the number of samples n tends to infinity. In other words,
the smoothness of the truth f is measured by the asymptotic closeness between f and
functions in {S∗nw; ‖w‖B∗ ≤ tn} with respect to the homogeneous Sobolev norm.

Moreover, we obtain under the same assumptions also the same convergence rate in expec-
tation. The proof of this result, however, is more involved, because it requires an estimate
for the error ‖f̂γn − f‖Lq in the high noise case ‖ξn‖B > γn, in which case the estimate
from Theorem 2.3.3 does not apply. Thus it is relegated to the appendix.
Theorem 2.3.5. Assume the same setting as Corollary 2.3.4. Then the MIND estimator
f̂γn in (2.4) satisfies

E
[
‖Dlf̂γn −Dlf‖Lq

]
= O

(
n−µ(1−2ϑl)−ϑl(log n)2rϑl

)
as n→∞, with ϑl = ϑl(k, d, 2, q) given in (2.10).
Proof. See Appendix A.2.2. �

The convergence rates in Corollary 2.3.4 and Theorem 2.3.5 are somewhat “abstract” in
the sense that they rely on the approximate source condition (2.17). The merit here is,
however, to transform the statistical convergence analysis of MIND into a deterministic
approximation problem in terms of dn(t). As a consequence, the following example pro-
vides concrete convergence rates based on a simple upper bound of the multiscale distance
functions dn(t).
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2. Nonparametric Regression

Example 3 (Proper smoothing). Assume that

f ∈W k,p
0 (Td) for some p ∈ [2,∞].

It readily follows that

min
t≥0

(
dn(t) + (log n)r/2t1/2

)
≤ dn(0) = ‖Dkf‖L2 ≤ ‖f‖

Wk,p
0
.

Therefore, by Corollary 2.3.4 and Theorem 2.3.5, we obtain for MIND

‖Dlf̂γn −Dlf‖Lq = O
(
n−ϑl(log n)2rϑl

)
as n→∞,

almost surely and in expectation, where ϑl = ϑl(k, d, 2, q) is given in (2.10). In particular,
in the case of 2 < p ≤ ∞, 1 ≤ q ≤ 2k+d

2l+d p, and of p = 2, 1 ≤ q ≤ ∞, this rate

‖Dlf̂γn −Dlf‖Lq = O
(
n−

k−l
2k+d (log n)

2r(k−l)
2k+d

)
actually coincides with the minimax optimal rate up to a log-factor over Sobolev ellipsoids
in W k,p

0 (Td) for estimating the l-th order derivatives with l ∈ {0, . . . , k−1} (see Nemirovski,
1985, for the minimax optimal rates).

Example 3 essentially shows that the MIND estimator is nearly minimax optimal for those
functions of the same smoothness as required by the regularization term ‖Dk·‖L2 . One
natural question arises whether it is possible for MIND with a fixed k to achieve faster or
even nearly optimal rates for functions of higher order smoothness. To answer it, we need
better estimates of the multiscale distance functions dn(t). As mentioned before, this relates
to the approximation property of the bases

{
ϕx;x ∈ Γn

}
, or the frames

{
ϕB;B ∈ B

}
, with

the size of coefficients controlled in certain sense, see (2.14) and (2.15). In one dimension,
we are able to derive sharp error bounds for such approximation problem, using the well-
developed theory of B-splines, and give affirmative answer to the previous question, see
the next section. However, in higher dimensions, the approximation problems (2.14) and
(2.15) remain still open. Note that there exist some results on the approximation error of
bases

{
ϕx;x ∈ Γn

}
(see Dyn et al., 1999; Narcowich et al., 2002, 2003), but we are not

aware of any results about the size of the coefficients.

We conclude this section with some discussion on the possibility of dropping the zero mean
requirement, i.e. Assumption 1(b). The idea is to first compute the MIND estimator with
zero mean from centered data; and then we adjust it by the mean of the data. To be
precise, we consider the modified MIND estimator f̂γn given by

f̂0
γn := arg min

f∈Hk
0 (Td)

1

2
‖Dkf‖2L2 subject to ‖Snf − (yn − ȳn)‖B ≤ γn,

f̂γn := f̂0
γn + ȳn,

(2.19)
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2.4. Examples in one dimension

where ȳn :=
∑

x∈Γn
yn(x)/n. Under certain conditions, we are able to obtain the same

results as above for this modified estimator.
Proposition 2.3.6. Under Assumptions 1(a), 1(c), and 2, let d = 1 or 2, k ∈ N, k > d/2,
l ∈ {0, . . . , k − 1}, and 1 ≤ q ≤ ∞. Assume that the truth f ∈ C1(Td) ∩ Hk(Td), that B
is normal, and that f̂γn is the modified MIND estimator in (2.19). In addition, define
ϑl := ϑl(k, d, 2, q) in (2.10), ϑ′l := ϑ′l(k, d, 2, q) in (2.11), and

cn := min
t≥0

(
dn(t) + (γnt)

1/2
)
.

(i) If the inequality ‖ξn‖B = ‖Snf − yn‖B ≤ γn holds, we have

‖Dlf̂γn −Dlf‖Lq = O
(

max
{γ2ϑl

n c1−2ϑl
n

nϑl
,
γn

n1/2
,
cn

nϑ
′
l

})
as n→∞.

(ii) If γn is chosen as in (2.5), and cn = O(n−µ) for some 0 ≤ µ < 1/2, it holds almost
surely and in expectation that

E
[
‖Dlf̂γn −Dlf‖Lq

]
= O

(
n−µ(1−2ϑl)−ϑl(log n)2rϑl

)
as n→∞.

Proof. See Appendix A.2.3. �
Remark 2.3.7. We note from the proof that the requirement f ∈ C1(Td) is only needed for
the control of approximation error∣∣∣∫

Td
f(z)dz − 1

n

∑
x∈Γn

f(x)
∣∣∣ = O

( 1

n1/d

)
. (2.20)

This even holds under the weaker assumption that f has bounded variation in the sense of
Hardy and Krause (see Kuipers and Niederreiter, 1974, Chapter 2, Theorem 5.5). More-
over, we have to restrict ourselves to the cases of d = 1, 2 because we want the approxi-
mation error (2.20) to be no slower than the parametric estimation rate 1/

√
n. In higher

dimensions d ≥ 3, this is possible for some grid on [0, 1]d other than Γn. For instance,
the left hand side of (2.20) with instead the average on the Hammersley grid is of order
n−1 logd−1 n, see e.g. (Davis and Rabinowitz, 1984, Section 5.5) for details.

2.4. Examples in one dimension

In this section we will apply the general results of the previous section to the particular
setting of nonparametric regression of one-dimensional (periodic) functions. Here it is pos-
sible to translate the approximate source conditions introduced previously into conditions
concerning the Besov or Sobolev smoothness of the function f to be estimated.
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2. Nonparametric Regression

As a first step, we show that the range of the adjoint S∗n of the sampling operator consists
basically of splines. Moreover, it is possible to obtain estimates for the dual multireso-
lution norm of splines provided that the system of intervals on which the multiresolution
norm is based is sufficiently rich. The desired approximate source conditions follow then
from approximation results for splines. In the following, we will introduce the necessary
notation and state our main theorems, while the major proofs are, again, postponed to the
appendix.

2.4.1. Dual operator, reproducing kernel and splines

We start with some notation. Given m ∈ N, by Pm we denote the space of polynomials of
order m (or equivalently, of degree ≤ m− 1), that is,

Pm :=
{ m∑
i=1

aix
i−1 : ai ∈ R, i = 1, . . . ,m

}
.

Now assume that Γ ⊂ T is a discrete subset. The space of piecewise polynomials of order
m on T with knots in Γ is defined by

PPm(Γ;T) :=
{
p : T→ R : for all (x, y) ⊂ T \ Γ,

there exists q ∈ Pm s.t. p(t) = q(t) for all t ∈ (x, y)
}
.

Then we define the space of m-order splines on T with simple knots in Γ as

Sm(Γ;T) := PPm(Γ;T) ∩ Cm−2(T).

Let Qm0 ∈ Sm(Γn;T) be given by

Qm0 (x) :=
nm−1

(m− 1)!

m∑
i=0

(−1)i
(
m

i

)(
x− i

n

)m−1

+
for x ∈ [0, 1),

where (x)+ := max{x, 0}. Then {Qmi (x) := Qm0 (x− i/n); i = 0, . . . , n− 1} forms a basis
of Sm(Γn;T), which is called the basis of normalized B-splines. More details about splines
can be found in (Wahba, 1990; Schumaker, 2007) for example.

For each i = 0, 1, . . . , n− 1, we denote by ϕi,n the unique weak solution of the differential
equation

(−1)kϕ
(2k)
i,n = δ

( i
n
− ·
)
− 1, ϕi,n ∈ Hk

0 (T). (2.21)
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2.4. Examples in one dimension

As demonstrated in Section 2.3.1, it follows that S∗nei/n = ϕi,n. We recall from Remark 2.3.2

that the reproducing kernel R(·, ·) for Hk
0 (T) (see also Wahba, 1990, Section 2.1) is

R(x, z) =
∞∑
λ=1

2

(2πλ)2k
cos
(
2πλ(x− z)

)
.

It relates to the periodic Bernoulli polynomial B2k of degree 2k (see e.g. Kress, 1998, Section
9.4) via

R(x, z) = (−1)k−1B2k(x− z),
where the periodic Bernoulli polynomial Bm of degree m is defined recursively by

B0(x) = 1 and B′m(x) = Bm−1(x) for x ∈ T and m ∈ N

with the normalization condition
∫
TBm(x)dx = 0, m ∈ N. It readily implies that

ϕi,n(x) = R
(
x,
i

n

)
= (−1)k−1B2k

(
x− i

n

)
for x ∈ T.

We will further show in the following that the span of the functions ϕi,n in particular
contains the space of all splines of order 2k on Γn with zero mean.

To that end, let us first define χn ∈ L2(T) by

χn(z) :=

{
1, if 0 ≤ z < 1

n ,

0, if 1
n ≤ z < 1.

By integrating both sides of (2.21) and respecting the zero mean we obtain

(−1)k−1ϕ
(2k−1)
i,n (z) =

{
z − i

n + 1
2 , if 0 ≤ z < i

n ,

z − i
n − 1

2 , if i
n ≤ z < 1.

Therefore

(−1)kD 1
n
,−ϕ

(2k−1)
i,n (z) = χn

(
z − i

n

)
− 1

n
.

Repeating this procedure m times (with m ≤ 2k), we see that

(−1)kDm
1
n
,−ϕ

(2k−m)
i,n (z) = (χn ∗m−1 χn)

(
z − i

n

)
− 1

nm
.

As a consequence, it follows that

ψmi,n(z) := (−1)knm−1Dm
1
n
,−ϕ

(2k−m)
i,n (z)

= nm−1(χn ∗m−1 χn)
(
z − i

n

)
− 1

n
= Qmi (z)− 1

n
(2.22)
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2. Nonparametric Regression

is the L2-projection of the normalized B-spline Qmi onto L2
0(T). We do note here that the

functions ψmi,n are not linearly independent, their sum being zero.

Now assume that

h =

n−1∑
i=0

c̃iψ
m
i,n

for some coefficients c̃i ∈ R. Noting that

D1/n,−ϕ
(l)
i,n(z) = ϕ

(l)
i,n(z)− ϕ(l)

i,n

(
z − 1

n

)
= ϕ

(l)
i,n(z)− ϕ(l)

i+1,n(z) for l ∈ N0,

we see that

h =(−1)knm−1
n−1∑
i=0

c̃iD
m
1
n
,−ϕ

(2k−m)
i,n

=(−1)knm−1
n−1∑
i=0

c̃i

(
Dm−1

1
n
,− ϕ

(2k−m)
i,n −Dm−1

1
n
,− ϕ

(2k−m)
i+1,n

)
=(−1)knm−1

n−1∑
i=0

(D−c̃)iD
m−1
1
n
,− ϕ

(2k−m)
i,n .

Repeating this argumentation m times, we obtain

h = (−1)knm−1
n−1∑
i=0

c̃iD
m
1
n
,−ϕ

(2k−m)
i,n = (−1)knm−1

n−1∑
i=0

(Dm
− c̃)iϕ

(2k−m)
i,n .

This shows that, indeed, the span of the functions ψmi,n is contained in the span of the

functions ϕ
(2k−m)
i,n , and that the change of coefficients with respect to the different spanning

sets is given by the linear mapping c̃ 7→ (−1)knm−1Dm
− c̃.

2.4.2. Convergence rates for Sobolev/Besov classes

We now derive the main results of this chapter, where we prove convergence rates in
the one-dimensional case for f contained in various Sobolev and Besov spaces (cf. Sec-
tion 2.1.1).

Under-smoothing

Our first main result in the one-dimensional setting is concerned with the high regularity
situation, where the function f actually is of higher smoothness than assumed by the regu-
larization term ‖Dkf̂‖2L2 . In this case, it turns out that indeed a higher order convergence
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2.4. Examples in one dimension

rate is obtained than the one discussed in Example 3. For this to hold, however, we have
to assume that the system of intervals B is regular (see Definition 2.2.3), which implies its
normality. The proof of this result, mainly postponed to the appendix, relies on estimates
for the multiscale distance function dn, which in turn follow from various approximation
results with splines.
Proposition 2.4.1. Assume that d = 1, r ≥ 1/2, k ∈ N, that B is regular, and that

f ∈ Bs,p′

p,0 (T) for some s ∈ [k + 1, 2k] and p, p′ ∈ [1,∞].

Then
min
t≥0

(
dn(t) + (log n)r/2t1/2

)
= O

(
n−µ(log n)2rµ

)
with

µ =
s− k −

(
1
p − 1

2

)
+

2s+ 1− 2
(

1
p − 1

2

)
+

. (2.23)

The same result holds for f ∈W s,p
0 (T) with k + 1 ≤ s ≤ 2k and 1 ≤ p ≤ ∞.

Proof. See Appendix A.3.3. �
Theorem 2.4.2. Assume that d = 1, l ∈ {0, . . . , k− 1}, k ∈ N, that B is regular, and that

f ∈ Bs,p′

p,0 (T) for some s ∈ [k + 1, 2k] and p, p′ ∈ [1,∞].

Then the MIND estimator f̂γn satisfies, with a parameter choice γn given by (2.5),

‖Dlf̂γn −Dlf‖Lq = O
(
n−µ(1−2ϑl)−ϑl(log n)2rµ(1−2ϑl)+2rϑl

)
as n→∞,

almost surely and in expectation, with ϑl = ϑl(k, 1, 2, q) given in (2.10) and µ in (2.23).
The same result holds for f ∈W s,p

0 (T) with k + 1 ≤ s ≤ 2k and 1 ≤ p ≤ ∞.
Proof. This is a direct consequence of Proposition 2.4.1, Corollary 2.3.4, and Theorem 2.3.5�
Remark 2.4.3. Note that the rate obtained in the previous result greatly simplifies in the
case where p ≥ 2 and q ≤ 4k+2

2l+1 . Then, a short computation shows that it can be written
as

‖Dlf̂γn −Dlf‖Lq = O
(
n−

s−l
2s+1 (log n)2r s−l

2s+1

)
as n→∞.

Over-smoothing

In the one-dimensional case, it is also possible to obtain convergence rates in the case where
the regularity of the function f is overestimated by the regularization term. In this case,
the approach based on the multiscale distance function does not readily apply, because it is
inherently based on the assumption that f ∈ Hk

0 (T). Instead, it is possible to approximate
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2. Nonparametric Regression

f by a sufficiently regular function, for which then the higher order results can be applied.
The final convergence rate then follows from a combination of these higher order rates and
the approximation error.
Theorem 2.4.4. Let B be normal, d = 1, k ∈ N, and

f ∈W s,∞
0 (T) or Bs,p′

∞,0(T) with s ∈ [1, k] and p′ ∈ [1,∞].

Let also f̂γn be the MIND estimator by (2.4) with the homogeneous Sobolev norm ‖Dk·‖L2,
and the threshold γn in (2.5). Then it holds almost surely and in expectation that

‖Dlf̂γn −Dlf‖Lq = O
(
n−

s−l
2s+1 (log n)ε+

s−l
2s+1

)
as n→∞,

for every ε > (k−l)(2r−1)
2k+1 with r in (2.5), and for every l ∈

{
0, . . . , bsc−1

}
and q ∈

[
1, 4k+2

2l+1

]
.

Proof. See Appendix A.3.4. �
Remark 2.4.5. For simplicity, the convergence rates results of Theorems 2.4.2 and 2.4.4
were only given in O notation. However, it is worth pointing out that the proofs, if
followed closely, actually also provide the constants in these rates. Most importantly, one
can show that the constant only depends on the norm of f in the corresponding Besov or
Sobolev space. For instance, it can be shown that the constant in Theorem 2.4.2 can, in
the Besov space case, be written in the form

C‖f‖1−2ϑl

Bk+s,p
′

p,0

with C > 0 only depending on k, s, p, and B,

and the analogous result holds for the Sobolev space case. As we will see in the next sub-
section, this observation leads to the partial adaptation property of the MIND estimator,
in minimax sense.

2.4.3. Minimax optimality and partial adaptation

Given a class F of functions, we define the minimax Lq-risk of nonparametric regres-
sion (2.1) of the l-th order derivative over F by

Eq,l(n;F) := inf
{

sup
f∈F

E
[
‖f̂ − f (l)‖Lq

]
: f̂ is an estimator

}
.

In other words, we measure for each estimator, the maximal expected error over all func-
tions f ∈ F , and then compute the infimum of this maximal error over the class of all
estimators. In particular, when l = 0, it is the minimax Lq-risk of nonparametric regres-
sion (2.1) of the function f itself.
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2.4. Examples in one dimension

In the case of F consisting of Sobolev or Besov functions of a certain regularity, it is possible
to derive explicit lower bounds for the minimax risk Eq,l. To that end, we introduce, for
s ≥ 0, 1 ≤ p ≤ ∞, the Sobolev ball of radius L > 0 by

Ss,pL :=
{
f ∈W s,p

0 (T) : ‖f‖W s,p
0
≤ L

}
, (2.24)

and for s ≥ 0, 1 ≤ p, p′ ≤ ∞, the Besov ball of radius L > 0 by

Bs,p,p′

L :=

{
f ∈ Bs,p′

p,0 (T) : ‖f‖
Bs,p

′
p,0

≤ L
}
. (2.25)

In (Nemirovski, 1985) it has been shown that, for s ∈ N, l ∈ {0, . . . , s−1}, and n sufficiently
large, there exists a constant C > 0 depending only on s such that

Eq,l(n;Ss,pL ) ≥ C


(
σ2

n

)β
L1−2β if q < 2s+1

2l+1 p (regular zone),(
σ2 logn

n

)β
L1−2β if q ≥ 2s+1

2l+1 p (logarithmic zone),
(2.26)

where β = β(k, l, p, q) := ϑl(k, 1, p, q) given in (2.10).

Similar to the proof of lower bounds in (Nemirovski, 1985), one can show that this re-
sult (2.26) still holds for non-integer s > 1/p or s = p = 1, and also for all the Besov balls

Bs,p,p′

L with s > 1/p or s = p = 1, whenever 0 ≤ l ≤ bsc − 1. Even more, in the case
of q = 2s+1

2l+1 p (critical zone), the lower bound can be tightened to include the logarithmic
factor

(log n)
1
q

(
1− p

min{p, p′}

)
+

see (Donoho et al., 1996, Theorem 1) for details.

Partial adaptation

Comparing these minimax Lq-risks with the convergence rates of MIND in Theorems 2.4.2
and 2.4.4, and Example 3, we see that, for l ∈

{
0, . . . ,min{k, bsc} − 1

}
and 1 ≤ q ≤ 4k+2

2l+1 ,
the polynomial part of our rates coincides with the polynomial part of the minimax risk in
case either the function f is contained in the Sobolev space W s,p

0 (T) with either 1 ≤ s ≤ k
and p =∞, s = k and 2 ≤ p ≤ ∞, or k + 1 ≤ s ≤ 2k and p ≥ 2 (see Figure 2.2). In other
words, in all of these cases, the convergence rates we obtain with MIND are optimal up to
a logarithmic factor.

We want to stress here that our convergence rates do not rely on a precise knowledge
of the smoothness class of the function f . In contrast, the regularization parameter γn
does only depend on the sample size, and the smoothing order of the regularization term
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2. Nonparametric Regression

need only be a rough guess of the actual smoothness of f . Neither in the case where the
smoothness of f is overestimated nor in the case where it is slightly underestimated do
we obtain results that are, asymptotically, far from being optimal. The proposed method
MIND automatically adapts to the smoothness of the function f independent of our prior
guess. Note further that the adaptation range of MIND scales with the smoothness order
of regularization k.

p

s1 k k + 1 2k0

∞

2

1

0

q ∈
[
1, 4k+2

2l+1

]
, l ∈ [0, s ∧ k) ∩ N0

(a)

∗

p

q

∞

2

1

0
1 2 4k+2

2l+1
∞0

s ∈ [k + 1, 2k] ∪ {k}, l ∈ [0, k) ∩ N0

(b)

Figure 2.2.: Adaptive minimax optimality of the MIND estimator in (2.4) with the homo-

geneous Sobolev norm of order k, over balls in W s,p
0 (T) or Bs,p′

p,0 (T) in terms

of ‖Dl·‖Lq -loss. (a) For l ∈
{

0, . . . ,min{bsc, k} − 1
}

and q ∈
[
1, 4k+2

2l+1

]
, MIND

attains minimax optimal rates up to a log-factor, simultaneously in all classes

Ss,pL or Bs,p,p′

L with smoothness parameters s, p within the red region (“partial

adaptation”). By contrast, the Nemirovski’s estimator f̂2,η in (1.4) is minimax

optimal up to a log-factor only for Sk,2L , marked by a green asterisk. (b) For
l ∈ {0, . . . , k− 1} and s ∈ [k+ 1, 2k]∪ {k}, MIND is minimax optimal up to a

log-factor over Ss,pL or Bs,p,p′

L with parameters q, p within the red region. Note
that no linear estimator is optimal for parameters q, p in the blue region.

Remark 2.4.6. For the estimation of function f ∈ W s,p
0 (T) or Bs,p′

p,0 (T), we have evaluated

the performance of MIND in (2.4) with respect to ‖Dl·‖Lq -loss for l ∈ [0,min{s, k}) ∩ N0

and q ∈ [1,∞] so far. We do note that it is possible to extend it to general Sobolev
‖·‖W r,q

0
or Besov ‖·‖

Br,q
′

q,0

losses, with 0 ≤ r < s − (1/p − 1/q)+ and 1 ≤ q, q′ ≤ ∞, by

means of interpolation relations between Sobolev and Besov spaces, see e.g. Chapter 3.
We conjecture that the corresponding convergence rates will still be minimax optimal up
to a log-factor, under the same smoothness assumption as above, i.e. (s, p) ∈ [1, k]×{∞}∪
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2.5. Penalized MIND and Lepskǐı principle

{k} × [2,∞] ∪ [k + 1, 2k]× [2,∞].

2.5. Penalized MIND and Lepskǐı principle

As an alternative, we now consider a penalized version of the MIND estimator for the
nonparametric regression problem (2.1). More precisely, we study the estimator f̂α given
by

f̂α := arg min
f∈Hk

0 (Td)

‖Snf − yn‖B +
α

2
‖Dkf‖2L2 , (2.27)

which we call penMIND for abbreviation. This is a special case of (1.12) with T = I,
and also known as Tikhonov regularization as mentioned in Chapter 1. We note that the
strict convexity and coercivity of the regularization functional implies that f̂α exists and
is unique for every data yn ∈ RΓn . In this section, we will derive nearly the same results
for penMIND as those for MIND in Sections 2.3 and 2.4.

We start by a general upper bound on the Lq-loss of f̂α for estimating f and its derivatives
in terms of the noise ξn and the multiscale distance function dn(t) (cf. Definition 2.3.1).

Theorem 2.5.1. Assume that l ∈ {0, . . . , k − 1}, k, d ∈ N, k > d/2 and 1 ≤ q ≤ ∞, and
that B is c-normal. Then for the penMIND estimator f̂α in (2.27) there exist constants
C > 0, and n0 ∈ N, both depending only on c, k and d, such that for n ≥ n0

‖Dlf̂α −Dlf‖Lq ≤ C max

{
α2ϑldn( 1

2α)1+2ϑl

nϑl
+
‖ξn‖1/2+ϑl

B
α1/2−ϑlnϑl

;

αdn( 1
2α)2

√
n

+
‖ξn‖B√

n
;
dn( 1

2α)

nϑ
′
l

+
(‖ξn‖B)1/2

nϑ
′
l
√
α

}
,

where ϑl = ϑl(k, d, 2, q) is given by (2.10) and ϑ′l = ϑ′l(k, d, 2, q) by (2.11).
Proof. See Appendix A.4 �

We note that the previous error estimate is deterministic in the sense that the error esti-
mate takes into account the actually realized noise level ‖ξn‖B. Since the estimate holds
independent of the size of the error, it is, however, easy to obtain statistical estimates
and also convergence rates if one additionally postulates some behavior of the multiscale
distance function dn.
Corollary 2.5.2. Let l ∈ {0, . . . , k − 1}, k, d ∈ N, k > d/2 and 1 ≤ q ≤ ∞. Assume that
B is normal, and that

min
t≥0

(
dn(t) + (log n)1/4t1/2

)
= O

(
n−µ

)
(2.28)
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for some 0 ≤ µ < 1/2. Then for a parameter choice

α ∼ n2µ
√

log n

the penMIND estimator f̂α in (2.27) satisfies that

‖Dlf̂α −Dlf‖Lq = O
(
n−µ(1−2ϑl)−ϑl(log n)ϑl

)
as n→∞,

both almost surely and in expectation, with ϑl = ϑl(k, d, 2, q) given in (2.10).
Proof. This follows directly from Theorem 2.5.1 and the fact in Proposition 2.2.4 that

E
[
‖ξn‖θB

]
= O

(
(log n)

θ
2

)
and lim

n→∞
P
{
‖ξn‖B > (2 + ε)σ

√
log n

}
= 0,

for every θ > 0 and every ε > 0. �

We stress that the choice of α above is the one that gives the minimal error bound for the
Lq-loss as n goes to infinity. The assumption (2.28) on the multiscale distance function,
as mentioned already in Section 2.3.2, is known as the approximate source condition,
which encodes the smoothness assumption of the truth. And it is actually a special case
of (2.17) there with r = 1/2. Note further that this corollary provides exactly the same rate
for penMIND as Corollary 2.3.4 and Theorem 2.3.5 for MIND. In particular, in the case
considered by Example 3 (i.e. proper smoothing), the penMIND estimator f̂α in (2.27) with
α ∼ √log n also attains the nearly minimax rate for estimating the l-th order derivative
of f ∈ W k,p

0 (Td) in terms of Lq-loss with either 2 < p ≤ ∞, 1 ≤ q ≤ 2k+d
2l+d p or p = 2,

1 ≤ q ≤ ∞. This follows readily from Corollary 2.5.2 with µ = 0.

2.5.1. Lepskĭı balancing principle

One problem of penMIND is that of parameter selection. If one knows the smoothness
class of the truth f (which is encoded in the multiscale distance function dn) in advance,
then one can define the penalization parameter α in such a way that the estimates become
optimal in rate (cf. Corollary 2.5.2). In general, however, the precise smoothness class is
unknown but has to be estimated and therefore the best convergence rates are difficult to
obtain in practice. Now we will discuss an a-posteriori parameter choice rule, which does
not require such a priori knowledge.

Let us consider the case that noise ξn satisfies

‖ξn‖B ≤ θσ
√

log n with some θ >

√
6 +

2k

d
. (2.29)

From Theorem 2.5.1, we further have that for n ≥ n0
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‖Dlf̂α −Dlf‖Lq ≤ C0 max

{
α2ϑldn( 1

2α)1+2ϑl

nϑl
+

(σ2 log n)(1+2ϑl)/4

α1/2−ϑlnϑl
;

αdn( 1
2α)2

√
n

+

√
σ2 log n√
n

;
dn( 1

2α)

nϑ
′
l

+
(σ2 log n)1/4

nϑ
′
l
√
α

}
, (2.30)

where C0 = C0(k, d, θ,B) and n0 = n0(k, d,B) are some constants. For abbreviation, we
denote each term in the maximum by Φi,n(α) + Ψi,n(α), i = 1, 2, 3, with

Φ1,n(α) :=
α2ϑldn( 1

2α)1+2ϑl

nϑl
, Ψ1,n(α) :=

(σ2 log n)(1+2ϑl)/4

α1/2−ϑlnϑl
,

Φ2,n(α) :=
αdn( 1

2α)2

√
n

, Ψ2,n(α) :=

√
σ2 log n√
n

,

Φ3,n(α) :=
dn( 1

2α)

nϑ
′
l

, Ψ3,n(α) :=
(σ2 log n)1/4

nϑ
′
l
√
α

.

For the optimal choice of α, we want to minimize the estimate in the right hand side
of (2.30) over a sequence of bounded sets Cn ⊂ Hk

0 (Td), which the truth belongs to. That
is, the optimal α is given by

max
i∈{1,2,3,}

sup
f∈Cn

{
Φi,n(α) + Ψi,n(α)

}
→ min

α
.

Note that it is reasonable to consider the loss uniformly over some set Cn instead of a fixed
function f in the asymptotic analysis, because the richness of Cn essentially characterizes
the complexity of the problem, see (Tsybakov, 2009, Section 1.2.4) for a detailed argument.
Unfortunately, as mentioned early, set Cn is often unknown, so it is unrealistic to find such
optimal α in general. We claim, however, that it is possible to find some α that is almost as
good as the optimal one, namely, the α that balances Φi,n and Ψi,n. A heuristic explanation
goes as follows (see also Mathé, 2006): Note that Φi,n’s are non-decreasing in terms of α
while Ψi,n’s are non-increasing, so it amounts to find

max α subject to Φi,n(α) ≤ Ψi,n(α) for i = 1, 2, 3.

Because of (2.30), it is further “equivalent” to select

max α subject to ‖Dlf̂α −Dlf‖Lq ≤ 2C0 max
i∈{1,2,3}

Ψi,n(α).

For every α̃ ≤ α satisfying the constraint above, it always holds that

‖Dlf̂α̃ −Dlfα‖Lq ≤ ‖Dlf̂α̃ −Dlf‖Lq + ‖Dlf̂α −Dlf‖Lq ≤ 4C0 max
i∈{1,2,3}

Ψi,n(α̃).

This suggests that we should choose

max α subject to ‖Dlf̂α̃ −Dlfα‖Lq ≤ 4C0 max
i∈{1,2,3}

Ψi,n(α̃) for every α̃ ≤ α,
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which is now “computable”, and is almost the α that we are searching for (cf. (2.33)).

To make the above argument precise, we first select α0 (which might depend on n) satisfying

α0 sup
f∈Cn

dn(1/2α0)2 ≤ σ
√

log n. (2.31)

Such α0 always exists since

α sup
f∈Cn

dn(1/2α) ≤ α sup
f∈Cn

dn(0) = α sup
f∈Cn
‖Dkf‖2L2 → 0 as α→ 0.

If sets Cn’s are further known to be uniformly bounded, the condition (2.31) will asymp-
totically hold for any fixed α0 as n goes to infinity.

For an arbitrary κ > 1, we next consider a discrete set Aκ of candidate parameters by

Aκ :=
{
α0κ

i : i = 0, 1, . . .
}
. (2.32)

We now define an empirical rule for the selection of parameter α, which is known as the
Lepskĭı (balancing) principle (Lepskĭı, 1990), by

αL := max
{
α ∈ Aκ : ‖Dlf̂α̃ −Dlf̂α‖Lq ≤ 4C0 max

i∈{1,2,3}
Ψi,n(α̃)

for each α̃ ≤ α ≤ n, α̃ ∈ Aκ
}
. (2.33)

Note that αL can be computed if the constant C0 is known. In fact, the explicit value of
C0 depends on the constant in the interpolation inequality in Theorem 2.2.7, which can
be calculated by tracing down the proof in Appendix A.1. Alternatively, one can simply
replace C0 by a logarithmic in n factor, for which all the asymptotic analysis still holds at
the expense of adding such a log-factor in the rate.
Theorem 2.5.3. Let l ∈ {0, . . . , k − 1}, k, d ∈ N, k > d/2 and 1 ≤ q ≤ ∞. Assume that
B is normal, that the inequality (2.29) holds, and that a sequence of bounded sets Cn in
Hk

0 (Td) satisfy

n sup
f∈Cn

dn(1/2n)2 > σ
√

log n for n ≥ n1. (2.34)

Assume also that αL is given by (2.33) with Aκ in (2.32) and α0 in (2.31). Then the
penMIND estimator f̂αL satisfies that for n ≥ max{n0, n1},

sup
f∈Cn
‖Dlf̂αL −Dlf‖Lq ≤ 6

√
κC0 min

α
max

i∈{1,2,3}
sup
f∈Cn

{
Φi,n(α) + Ψi,n(α)

}
,

where C0 and n0 are the constants in (2.30).
Proof. See Appendix A.4. �
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2.5. Penalized MIND and Lepskǐı principle

Remark 2.5.4. Note that the condition (2.34) essentially requires that the convergence
rate over Cn is slower than

√
log n/n, which is often the case for typical choices of Cn,

such as Sobolev/Besov balls (cf. Section 2.4.3). In fact, if the reverse of (2.34) holds
for n large enough, it follows from (2.30) that the Lq-loss is of order

√
log n/n under the

assumption (2.29). This leads to the same convergence rate for the Lq-risk, see the coming
corollary.

Note also the influence of the design parameter κ onto the error bound. By choosing κ > 1
small we have little loss compared to the best possible error, but many comparisons have
to be carried out in order to find αL. Thus, in practice, one has to compromise between
desired accuracy and computing time.
Corollary 2.5.5. Let l ∈ {0, . . . , k − 1}, k, d ∈ N, k > d/2 and 1 ≤ q ≤ ∞. Assume that
B is normal, that a sequence of bounded sets Cn in Hk

0 (Td) satisfy (2.34), and that αL is
the same as in Theorem 2.5.3. Then for penMIND f̂αL it holds almost surely that

sup
f∈Cn
‖Dlf̂αL −Dlf‖Lq = O

(
min
α

max
i∈{1,2,3}

sup
f∈Cn

{
Φi,n(α) + Ψi,n(α)

})
as n→∞.

Moreover, if for any ε > 0

sup
f∈Cn
‖f‖L∞ = o(nε) as n→∞, (2.35)

then the assertion above also holds in expectation.
Proof. See Appendix A.4. �
Remark 2.5.6. The technical condition (2.35) says that sets Cn are almost uniformly bounded
in L∞(Td), in the sense that the size of Cn is allowed to increase at a logarithmic rate as
n→∞. We stress that such requirement is mild, since the L∞-norm is rather weaker than
the norm of Hk

0 (Td).

2.5.2. Convergence rates for d = 1

Based on the results from Section 2.4, we can further derive the concrete convergence rates
of penMIND for Sobolev/Besov functions in the one-dimensional case.
Proposition 2.5.7 (Under-smoothing). Assume that d = 1, l ∈ {0, . . . , k − 1}, k ∈ N,
that B is regular, and that

f ∈ Bs,p′

p,0 (T) for some s ∈ [k + 1, 2k] and p, p′ ∈ [1,∞].

Assume also that µ is defined in (2.23). Then the penMIND estimator f̂α in (2.27) with

α ∼ n2µ
√

log n
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satisfies almost surely and in expectation that

‖Dlf̂γn −Dlf‖Lq = O
(( log n

n

)µ(1−2ϑl)+ϑl
)

as n→∞,

with ϑl = ϑl(k, 1, 2, q) given in (2.10).
The same result holds for f ∈W s,p

0 (T) with k + 1 ≤ s ≤ 2k and 1 ≤ p ≤ ∞.
Proof. It follows readily from Proposition 2.4.1 and Corollary 2.5.2. �
Proposition 2.5.8 (Over-smoothing). Let B be normal, d = 1, k ∈ N, and

f ∈W s,∞
0 (T) or Bs,p′

∞,0(T) with s ∈ [1, k] and p′ ∈ [1,∞].

Let also f̂γn be the penMIND estimator by (2.27) with the homogenous Sobolev norm
‖Dk·‖L2 and the penalization parameter

α ∼ n−
2(k−s)
2s+1 (log n)

2(k−s)
2s+1

+ 1
2 .

Then it holds almost surely and in expectation that

‖Dlf̂γn −Dlf‖Lq = O
(( log n

n

) s−l
2s+1

)
as n→∞,

for every l ∈
{

0, . . . , bsc − 1
}

and every q ∈
[
1, 4k+2

2l+1

]
.

Proof. See Appendix A.4. �

The above two propositions present the convergence rates for penMIND, which are of the
same order as those for MIND in Theorems 2.4.2 and 2.4.4, and even with a slightly sharper
logarithmic factor in the over-smoothing case. Note, however, that the results here hold
only when we choose α properly according to the smoothness of the truth. Provided that
such priori information is available, as a comparison to the discussion after Corollary 2.5.2,
the results here make it possible to choose a smaller k for the regularization term of
penMIND in (2.27) than the exact smoothness order of the truth. This will enhance the
numerical stability for the computation of penMIND. In addition, recall that the penMIND
estimator f̂αL with Lepskĭı principle performs as well as we know a-priori the best choice
of α. Thus the above results also serve as theoretical tools for studying the adaptation
property of f̂αL . As a consequence, we have the following result.
Theorem 2.5.9 (Partial adaptation). Let d = 1, l ∈

{
0, . . . ,min{bsc, k} − 1

}
, s ∈ R,

k ∈ N, and B be regular. Let also C be either the Sobolev ball Ss,pL in (2.24) or the Besov

ball Bs,p,p′

L in (2.25), with

(s, p) ∈ [1, k)× {∞}, {k} × [2,∞], or [k + 1, 2k]× [2,∞],
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and 1 ≤ p′ ≤ ∞, 0 < L < ∞. Then the penMIND estimator f̂αL with Lepskĭı princi-
ple (2.33) satisfies almost surely and in expectation that

sup
f∈C
‖Dlf̂αL −Dlf‖Lq = O

(( log n

n

) s−l
2s+1

)
as n→∞,

for every 1 ≤ q ≤ (4k + 2)/(2l + 1).
Proof. In the case of s = k or k + 1 ≤ s ≤ 2k, the assertion follows directly from Corol-
lary 2.5.5 with Cn = C, Proposition 2.5.7, and the discussion below Corollary 2.5.2.
We next consider the case of 1 ≤ s < k. Let us introduce gλ ≡ gλ(f) for every f ∈ C and
λ ≡ λn = b(n/ log n)1/(2s+1)c as in the proof of Proposition 2.5.8. We define

Cn :=
{
gλn ≡ gλn(f) : f ∈ C

}
for n ∈ N.

It follows from Proposition A.3.4 that

sup
gλn∈Cn

‖gλn‖L∞ ≤ C
1

λsn
sup
f∈C
‖f‖W s,∞ = O

(
(log n/n)s/(2s+1)

)
,

which implies that Cn satisfies the condition (2.35). Thus, the assertion for 1 ≤ s < k
comes from Corollary 2.5.5 and Proposition 2.5.7. �

We emphasize that the rate in the above theorem is minimax optimal over such choice of C.
It shows that the penMIND estimator possesses the same adaptation property as MIND,
see Section 2.4.3, and in particular Figure 2.2.

2.6. Computation

We mainly discuss here some efficient algorithms for the computation of the MIND esti-
mator. In what follows, we describe the details of the algorithms, and the corresponding
computation complexity. Moreover, we briefly talk about the computation of the penMIND
estimator. The implementation is provided in our MATLAB package “Multiscale OPti-
mization (MOP) ”, which is available at http://www.stochastik.math.uni-goettingen.
de/mop.

2.6.1. Discretization and algorithms

The MIND estimator defined by (2.4) is the solution to a high-dimensional non-smooth
convex optimization problem, due to the multiresolution norm. It is clear that the solution
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f̂γn always exists and is unique since the norm ‖Dk·‖L2 is strictly convex and coercive on

Hk
0 (Td). From the convex optimization theory, we know that f̂γn is characterized by

−f̂γn ∈ ∂(χB ◦ Sn),

where the subgradient on the right hand side is defined with respect to 〈·, ·〉Hk
0
, and

χB(z) := 1{‖z−yn‖B≤γn} =

{
0 if ‖z − yn‖B ≤ γn
∞ otherwise

for every z ∈ RΓn . (2.36)

Note that ∂(χB ◦ Sn) = S∗n∂χB by the chain rule for subdifferentials (see e.g. Ekeland and
Témam, 1999, Proposition I.5.7). It readily follows that

f̂γn ∈ Ran(S∗n) = span{ϕx : x ∈ Γn} with ϕx in (2.13).

In particular, for d = 1 the solution f̂γn is a 2k-order spline, see (2.22). Thus, it is sufficient

to compute only the discretized values of f̂γn on Γn, i.e. Snf̂γn . The original solution f̂γn
can then be recovered by the interpolation in terms of {ϕx : x ∈ Γn}.
There are various ways of discretizing the homogeneous Sobolev norm ‖Dk·‖L2 . For in-
stance, it can be discretized by means of finite differences, with computation complexity
O(kn). Since differentiation turns out to be a simple multiplication after Fourier series
expansion, we can also discretize ‖Dk·‖L2 by means of discrete Fourier transforms. This
can be efficiently computed by the fast Fourier transform, with complexity O(n log n).
Furthermore, we do note that in one dimension it is possible to compute ‖Dk·‖L2 a little
more precisely, based on the fact that the derivative of a spline is again a spline (but of
lower order), and the corresponding coefficients with respect to the B-spline bases are re-
lated via finite difference (cf. Schumaker, 2007, Theorem 5.9). In practice, we found that
these different discretization schemes lead to almost the same solution of the optimization
problem (2.4). Thus, for the sake of simplicity, we always choose the discretization by finite
differences.

After discretization, it is easy to see that the optimization (2.4) turns out to be a quadratic
program (i.e. quadratic objective under linear constraints). For small sample size (such as
in one dimension), this can be efficiently solved, for instance, by interior point methods (see
e.g. Nesterov and Nemirovskii, 1994). The closeness of the l-th iteration to the optimal
solution is often measured by the duality gap µl, and it is known that for any ε > 0 it
needs

l = O
(

(#B)τ log
µ0

ε

)
iterations to ensure the duality gap µl ≤ ε, where τ = 1/2, 1 or 2 depending on the
algorithm, see (Potra and Wright, 2000; Bonnans et al., 2006). Implementations of interior
point methods are widely available, such as the MATLAB built-in function quadprog.
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2.6. Computation

For large sample sizes, the interior point methods, however, become infeasible (see Marnitz,
2010, for example). In such situation, as mentioned in Section 1.1.2, there are several
efficient algorithms nowadays that are able to tackle the high dimensional optimization
problems like (2.4). In particular, we have chosen the alternating direction method of
multipliers (ADMM) algorithm (see Fortin and Glowinski, 1983; Boyd et al., 2011, for
example), which is indeed the Douglas-Rachford splitting algorithm (Lions and Mercier,
1979) applied to the dual problem. We follow the approaches outlined in (Frick et al., 2012,
2013), and illustrate the algorithm for a general problem (involving a convex functional R
and a linear operator T ) of the form

min
f∈Rm

R(f) + χB(Tf), (2.37)

where χB is given by (2.36), and matrix T ∈ Rn×m. Note that the mean zero requirement
of f can be incorporated into the functional R. By introducing a slack variable g ∈ Rn,
we can rewrite the above problem into the equivalent problem

min
f,g
R(f) + χB(g) subject to Tf − g = 0.

By the convex duality theory, it is equivalent to find the saddle point of the augmented
Lagrangian Lλ(f, g;h), that is,

min
f,g

max
h

Lλ(f, g;h) := R(f) + χB(g) + 〈h, Tf − g〉2 +
λ

2
‖Tf − g‖22,

where h ∈ Rn is the Lagrangian multiplier, and λ > 0. As its name suggests, the ADMM
algorithm solves such saddle point problem alternately over f , g and h. The details are
given below.

Algorithm 1: Alternating direction method of multipliers (ADMM)

Input: data yn ∈ Rn, step size λ > 0, tolerance ε > 0, initial values f0 ∈ Rm, g0, h0 ∈ Rn
Iterate for l = 1, 2, ...

fl := arg min
f

λ

2
‖Tf − (gl−1 − λ−1hl−1)‖22 +R(f) (2.38)

gl := arg min
g

λ

2
‖g − (Tfl + λ−1hl−1)‖22 + χB(g) (2.39)

hl := hl−1 + λ(Tfl − gl) (2.40)

until max{‖Tfl − g‖2, ‖T (fl − fl−1)‖2} ≤ ε

Note first that the update of dual variable h in (2.40) is simply a gradient assent step
of maximizing Lλ(f, g;h) over h. We next discuss how to solve the subproblems (2.38)
and (2.39): The subproblem (2.38) is a typical regularization problem, the algorithm for
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2. Nonparametric Regression

which depends on the choice of R. For instance, it can be solved by the inversion of
linear equations if R(f) = ‖Af‖2 with some matrix A, which covers the case of MIND.
Furthermore, one can even avoid the operator T by considering instead the following prob-
lem

fl := arg min
f

λ

2
‖Tf − (gl−1 − λ−1hl−1)‖2 +R(f) +

λ

2
(τ‖f − fl−1‖2 − ‖T (f − fl−1)‖2)

with τ ≥ ‖T‖2. Such modification leads to the inexact ADMM (Frick et al., 2013), also
known as Chambolle-Pock algorithm (Chambolle and Pock, 2011). The subproblem (2.39)
is to find the projection onto the intersection of a finite number of convex sets (more
precisely, closed half spaces). It can be computed by the Dykstra’s algorithm (Dykstra,
1983; Boyle and Dykstra, 1986), which converges linearly (Deutsch and Hundal, 1994).
See (Birgin and Raydan, 2005) for an efficient stopping rule.

For the optimization problem (2.4) of MIND, we have a linear convergence guarantee
from (Deng and Yin, 2015, Corollary 3.1) for the ADMM algorithm

λ‖fl − f∗‖22 +
1

λ
‖hl − h∗‖22 ≤

( 1

1 + δ

)l (
λ‖f0 − f∗‖22 +

1

λ
‖h0 − h∗‖22

)
with

δ = 2

(
λ

nk sin2k(2π/n1/d)
+

22knk

λ

)−1

.

In particular, the choice of λ =
(
2n sin(2π/n1/d)

)k
yields the largest

δ = 2−k sin2k(2π/n1/d) ∼
(
π/n1/d

)k
.

This also gives suggestion on the choice of parameter λ, although such bound turns out to
be rather pessimistic in practice.

For small sample sizes, we found by simulation that the ADMM algorithm works as well as
the interior point methods. Thus, for consistency, we always assume the ADMM algorithm
when referring to the computation of MIND.

We now turn to the optimization problem (2.27) of penMIND, which is equivalent to

min
f,δ

α

2
‖Dkf‖2L2 + δ subject to ‖Snf − yn‖B ≤ δ,

This is similar to the problem (2.4) of MIND, so all the discussions above also apply to the
computation of penMIND.
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2.6.2. Software

As a companion to this work, the package “MOP” implements the algorithms discussed
above for the numerical computing software MATLAB, The MathWorks, Inc. The code
is designed for both one-dimensional signals and two-dimensional images. It includes pro-
cedures for solving the general optimization problem (2.37) in the case that R is either a
total variation (TV) semi-norm, or a homogeneous Hk-norm (i.e. the MIND estimator),
by means of Algorithm 1. Moreover, an implementation based on interior point methods
is also provided for such problems in the case of d = 1. For instance, the procedure

mind︸ ︷︷ ︸
estimator

problem︷ ︸︸ ︷
Regression2d ADMM︸ ︷︷ ︸

algorithm

(...)

computes the MIND estimator in (2.4) for two-dimensional nonparametric regression by the
ADMM algorithm. Following this naming convention, one can easily find the correct piece
of code for a specific purpose. In addition, the package also contains the implementation
of the Nemirovski’s estimator in (2.44), the penMIND estimator (2.27), and the other
estimators considered in Sections 2.7 and 3.4.

2.7. Numerical experiments

In this section, we consider the finite sample behavior, that is, the practical performance
of the MIND estimator for the recovery of signals living on one-dimensional domain, by
means of numerical simulations.

2.7.1. Practical considerations

Note that the MIND estimator by (2.4) involves in total three parameters: the system of
cubes B, the threshold γn, and the smoothness parameter k. It follows from the asymptotic
analysis in previous sections that both of them can be chosen automatically in a way that
relies rather weakly on the underlying true signal. We next discuss some adjustment in
order to improve the performance of MIND for fixed sample sizes.

The choice of the system of cubes B. The abstract convergence rate results (cf.
Corollary 2.3.4 and Theorem 2.3.4) require that the system B should be normal (see Def-
inition 2.2.2). In particular, when d = 1, the result of concrete rates needs the same
requirement for the over-smoothing case (cf. Theorem 2.4.4), while it imposes a slightly
stronger condition, namely that the system B should be regular (see Definition 2.2.3) for
the under-smoothing case (see Theorem 2.4.2). Thus, every regular system B is sufficient
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to guarantee that all the theoretical analyses hold. For instance, the m-partition system is
regular, which is also the sparsest system of m-regularity, see Example 2 for more examples.
In some applications, if the true signal is known a-priori to have features of certain scales
and locations, we can incorporate this prior information by choosing a regular system B
that includes all cubes of those scales and locations. Concerning different regular systems,
the richer ones tend to give better performance, while such difference is diminishing as
the sample size n increases, and even visually indistinguishable when n is large. We know
from Section 2.6 that the computational complexity of MIND increases as the system B
becomes larger. As a compromise between computation and performance, we recommend
to use the system of cubes with dyadic edge lengths for small and medium scale problems,
and the 2-partition system for large scale ones.

The choice of the threshold γn. The asymptotic theory only requires that γn satisfies
the condition (2.5), which is independent of the system of cubes B, and the smoothness
of the truth. In the finite sample situation, we recommend a refined choice, which has
a direct statistical interpretation, see Chapter 1 and also (Donoho, 1995a; Dümbgen and
Walther, 2008; Davies et al., 2009; Frick et al., 2014). It selects γn as the α-quantile of the
multiscale statistic ‖ξn‖B, i.e.,

γn(α) := inf
{
γ : P {‖ξn‖B > γ} ≤ α

}
. (2.41)

This ensures that the truth f lies in the confidence set defined by the multiscale constraint
in the right hand side of (2.4) with probability at least 1− α. Thus we have

P
{
‖Dkf̂γn‖L2 ≤ ‖Dkf‖L2

}
≥ 1− α, (2.42)

that is, the MIND estimator is smoother than the truth with probability at least 1−α. In
this way, the choice of threshold γn amounts to select the significance level α. It is clear
that the MIND estimator f̂γn(α) is smoother for smaller α. In addition, MIND f̂γn(α) is
actually quite robust against the choice of α, see Section 2.7.2.

The asymptotic distribution of ‖ξn‖B is, under general assumptions, a Gumbel law (after
proper rescaling), see (Kabluchko, 2011; Haltmeier and Munk, 2013). If B consists of all
the cubes and ξn is standard Gaussian, then

γn(α) ∼
√

2d log n+
log(d log n) + log Jd − 2 log log(1/α)

2
√

2d log n
as n→∞,

where Jd ∈ (0,∞) is a constant. Although this violates the condition (2.5) when d = 1, the
asymptotic analysis in this chapter still holds for γn(αn) if αn → 0 sufficiently fast, which
might even possibly improve the rates, in terms of the log-factor and the constant.

The estimation of γn(α) can be done by Monte-Carlo simulations using the distribution of
noise ξn. If ξn is only known to be sub-Gaussian in (2.3), we then draw ξn from N (0, σ2),
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i.e. the relation (2.3) holds with equality. This gives an upper bound of γn(α), and makes
the interpretation (2.41) still valid. As mentioned early, the noise level σ can be easily
estimated when it is unknown (see Remark 2.1.1). In general, the computational complexity
of multiscale statistic ‖ξn‖B depends on the effective cardinality of B (cf. discussion below
Definition 2.2.3). In the case of d = 1, however, there are fast algorithms with linear
complexity in terms of the sample size n, even though the effective cardinality of B can be
O(n2), see (Bernholt et al., 2007, 2009). It is worth noting that the computation of γn(α)
is needed only once for a fixed size of measurements n and a fixed system of cubes B.

The choice of smoothness parameter k. From Section 2.4.3 we see that the adap-
tation region of MIND enlarges as the smoothness order of regularization k increases (see
in particular Figure 2.2). This suggests that we should choose k as large as possible. The
minimization problem in (2.4) becomes, however, more numerically unstable as k increases,
since it involves k-th order derivatives. Thus, the choice of k should balance the adaptivity
and the numerical stability. In practice, we find that it works fine for k = 1, 2, 3 (see
Section 2.7.2).

2.7.2. Simulation results

In the simulations, we always assume the noise level is known. The MIND estimator (2.4)
is computed by an ADMM algorithm, see Section 2.6. If there is no explicit statement,
the multiresolution norm is defined using 2-partition system, and for MIND the threshold
γn(α) in (2.41) with the significance level α = 0.1 is chosen, which is estimated by Monte-
Carlo simulations with 105 repetitions. All the experiments can be reproduced by means
of the MATLAB package “MOP” (see Section 2.6.2 for details).

Comparison study

We now investigate the performance of MIND f̂γn(α) on spatially variable functions, Bumps,
HeaviSine, and Doppler (Donoho and Johnstone, 1994), and compare it with the smoothing
spline estimator (SS) f̂λ, defined as the solution of

min
f
‖Snf − yn‖2 + λ‖Dkf‖2L2 , (2.43)

and the Nemirovski’s estimator (Nem) f̂η as the solution of

min
f
‖Snf − yn‖B subject to ‖Dkf‖L2 ≤ η, (2.44)

which is indeed a particular case of f̂p,η in (1.4) with p = 2. We choose k = 1 for all
three estimators. The parameter α in MIND is set to 0.1, λ in SS is tuned manually to
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give the best visual quality, and η in Nem is chosen as the oracle ‖Df‖L2(=: η0), which
is numerically estimated using finite differences. As MIND, the Nemirovski’s estimator is
computed by an ADMM algorithm.
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Figure 2.3.: Comparison of SS in (2.43), Nem in (2.44), and MIND in (2.4) (number of
samples n = 211, noise level σ = 0.12‖f‖L2).
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The simulation results are summarized in Figure 2.3. One can see that MIND detects a
large number of features at various scales of smoothness, and performs best on all the test
signals. By contrast, SS with the “optimal” parameter recovers only a narrow range of
scales of smoothness; for instance, on the Doppler signal, it works well for the smoother
part (on [0.5, 1]), but deteriorates fast as the signal gets more oscillatory. The Nem with
oracle η(= η0) is still very noisy on each test signal. We note that convex duality (cf.
Section 1.1.1) implies that there is a one-to-one correspondence between MIND and Nem
as long as the different parameters are not unreasonably large. The Nem will reproduce
the results by MIND if we choose as the threshold η, 0.8η0 for Bumps, 0.3η0 for HeaviSine,
and 0.6η0 for Doppler. This means that, even if η0 ≡ ‖Df‖L2 is known exactly, one cannot
find a universal threshold η for Nem, which explains our numerical findings.
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Figure 2.4.: Comparison of MIND in (2.4) and penMIND in (2.27) with Lepskĭı principle
in (2.33) on the HeaviSine signal (number of samples n = 211, noise level
σ = 0.12‖f‖L2).

Moreover, we make a comparison between MIND and the penMIND estimator with the
Lepskĭı principle, which is introduced in Section 2.5. The homogeneous H1-norm (i.e. k =
1) is chosen as the regularization term for both estimators. Concerning the implementation
of the Lepskĭı principle, we choose q = 2, α0 = 0.01, κ = 1.1, and C0 = 0.4, see (2.33).
Such choice of C0 gives desirable performance uniformly over various signals and a range
of sample sizes, in the current setting, i.e. k = d = 1. We compute penMIND using an
ADMM algorithm, see Section 2.6 for details. Similar to the asymptotic analysis, MIND
and penMIND with the Lepskĭı principle works nearly the same for signals of different
nature in practice. For example, we show in Figure 2.4 the results of MIND and penMIND
with the Lepskĭı principle on the estimation of the HeaviSine signal from the same data
as the previous simulation study. There is almost no visual difference, and the relative
difference between them with respect to L2-norm is less than 0.18%. We note, however,
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2. Nonparametric Regression

that the competent performance of penMIND with the Lepskĭı principle relies heavily on
the empirical choice of C0 = 0.4, which is way smaller than the theoretical value, and needs
to be adjusted for different values of k and d. We are not aware of any better strategy for
the tuning of C0 than the exhaustive search. Therefore, we recommend MIND for practical
purpose, and only present the results for MIND in the coming experiments.

Robustness and stability in significance level

We first examine the robustness of SS, Nem, and MIND, with respect to the choice of pa-
rameters, and the smoothness assumption, on the Blocks signal (Donoho and Johnstone,
1994), which is not even continuous, and hence falls not into the domain of our estima-
tor. From Figure 2.5 we find that the MIND estimator is rather robust to the choice of
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Figure 2.5.: Impact of parameter choices: various λ for SS f̂λ in (2.43), various η for Nem
f̂η in (2.44), and various α for the MIND f̂γn in (2.4) with γn = γn(α) in (2.41).
(number of samples n = 211, noise level σ = 0.3‖f‖L2 , and η0 = ‖Dkf‖L2).
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significance level α, while SS and Nem are much more sensitive. Besides, MIND recovers
the truth quite well with the correct number of local extrema, and slight distortion near
change-points. As we already noted before, the performance SS is restricted to some fixed
scale of smoothness. In contrast, Nem with a proper choice of threshold η adapts to a
wider range of smoothness scales, which is due to its relation to MIND via duality. Thus,
this study again confirms that MIND is practically preferable over SS and Nem.

Now, we continue to consider the impact of significance level on the performance of the
MIND estimator. Exemplarily, we choose Bumps as the test signal for different noise levels.
In Figure 2.6, it shows that MIND with various choices of significance levels perform almost
identically well in the case of low noise level (σ = 0.1) and medium noise level (σ = 0.5).
However, in the high noise level (σ = 1.2) case, MIND with larger α tends to detect more
bumps. For example, MIND (α = 0.9) recovers 6 more bumps than MIND (α = 0.1), four
out of which are actually correct (marked by vertical blue lines), while 2 false bumps are
detected (marked by vertical red dashed lines, in the bottom panel of Figure 2.6). Recall
that the significance level α can be interpreted as an error control in the sense of (2.42).
Thus, the additional power by an increased significance level comes at the expense of a
lower confidence about the inference. It is natural to cast the choice of large α into the
asymptotics that αn 6→ 0 as n → ∞, which leads to inconsistency of MIND f̂γn with
γn = γn(αn). Consequently, this makes impossible to derive convergence rates for such
choice of αn, but we conjecture that in such situation it might be possible to control
instead the false discovery rate (see Li et al., 2014, for an answer in multiple change-point
segmentation).

We next study the influence of the noise distribution on the choice of threshold γn(α), and
in turn on the behavior of MIND. We still assume the noise level σ := sd(ξn) is known, but
the common distribution of ξn is only known to have sub-Gaussian tails as in (2.3). This
situation is often encountered in real applications, since compared to the exact distribution,
the noise level is way easier to be estimated. Noting that the Gaussian distributionN (0, σ2)
attains the worst bound in (2.3), one should simulate γn(α) by assuming that the noise
distribution is Gaussian in order to guarantee the validity of the theoretical analysis, see
also Section 2.7.1. To investigate how much we lose for such a conservative choice of γn(α),
we consider the example that the data are collected from the Doppler signal with uniformly
distributed noise, see Figure 2.7. The upper panel shows the result of MIND with γn(α)
(precisely, γn(0.1) = 4.02) that is estimated from Gaussian distribution, as well as the
noisy data and the true signal. As a comparison, we also illustrate in the lower panel
the behavior of MIND when the threshold γn(α) (precisely, γn(0.1) = 3.35) is simulated
from the exact distribution of ξn, namely the uniform distribution. These two choices of
thresholds lead to in general comparable recovered signals, but with slight differences. In
particular, one can see from the magnified region that MIND with γn(α) given by the exact
noise distribution detects one additional peak from the underlying truth, which is marked
by a shaded blue bar.
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Figure 2.6.: Stability of MIND in significance level α and noise level σ. The reconstructions
by MIND f̂γn with γn = γn(α) for a range of α’s are shown, together with the
true signal and noisy data, in the cases of different noise levels (number of
samples n = 211).

Note additionally that all the test signals considered so far are not strictly periodic, so the
simulations also reveal that MIND is not too sensitive to the periodicity assumption. In
practice, one can extend a non-periodic function to a periodic one by symmetric extension,
see for instance (Mallat, 2009).
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Figure 2.7.: Influence of noise distribution on MIND for the Doppler signal (number of
samples n = 210, noise level σ = 0.2‖f‖L2).

Estimation of derivatives

Besides the estimation of the function itself, MIND also serves as an estimator for deriva-
tives. We further evaluate the performance of MIND in this setting. For that purpose, we
consider

f(x) := sgn(x− 0.5) sin4(2πx) ∈ H4.5−ε
0 (T) for any ε > 0

as the test signal, see (Griebel and Hamaekers, 2014). The smoothness order of the reg-
ularization term is set as k = 3. From the theoretical result, it follows that MIND is
nearly minimax optimal for the estimation of the test signal above, and of its derivatives
up to second order, see Section 2.4. The corresponding empirical performance is given
in Figure 2.8, where the derivatives of the truth are calculated analytically, while those
of MIND are estimated by finite differences. As one can see, MIND performs fairly well
in the recovery of both the true signal and derivatives. In addition, we point out that
the performance of MIND gets worse for the estimation of higher order derivative for a
fixed sample size. This can be seen from the fact that MIND detects all major features
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Figure 2.8.: Estimation of derivatives by MIND (number of samples n = 211, noise level
σ = 0.1‖f‖L2).

of the signal and the first derivative, but misses the inflection point at 0.5 for the second
derivative.

Choice of smoothness order

Now we explore the choice of smoothness parameter k in the regularization term for the
MIND estimator. The Doppler with symmetric extension (see Figure 2.9) is chosen as the
test signal, and the noise is independent Gaussian distributed with standard deviation σ =
The significance level for MIND is set to α = 0.1. Figure 2.9 shows that MIND detects
more features of different smoothness scales as k increases, namely 24 peaks for k = 1,
26 for k = 2, and 27 for k = 3. Meanwhile, the height of the peaks gets more accurate
for larger k. This is in accordance with our theoretical finding that the adaptation range
increases with k, see Section 2.4.3. As already mentioned, one should, however, notice that
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Figure 2.9.: Various choices of smoothness order k in the regularization term for MIND
in (2.4) on symmetric ‘Doppler’ signal (number of samples n = 213, noise level
σ = 0.3‖f‖L2).

the optimization problem becomes numerically more ill-conditioned as k increases.
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In this chapter we consider the application of the MIND estimator to linear statistical
inverse problems. We are particularly interested in the situations where the forward oper-
ator is β-smoothing over Hilbert scales Hs

0(Td) with s ≥ 0. This includes nonparametric
regression, deconvolution, and reconstruction from Radon transform measurements as spe-
cial cases. In such a setting, we study the asymptotic property of MIND as an extension of
the analytical methodology introduced in the previous chapter. A first and crucial result is
an interpolation inequality between Sobolev norms and the multiresolution norm applied
to the range of the forward operator. This, together with a natural generalization of the
multiscale distance functions, forms essentially the basis of all the coming results. The
material is organized similarly as the previous chapter: we first give a general analysis
based on abstract smoothness assumptions, then focus on examples in one dimension, and
finally present some simulation results.

3.1. MIND as regularization methods

We study the inverse problem of solving an operator equation

Tf = y

with noisy right hand side y, where

T : L2([0, 1]d)→ L2([0, 1]d)

is a bounded linear operator. More precisely, we sample the data y on the regular grid Γn
on [0, 1]d (cf. (2.2)) and assume that we are given noisy data

yn(x) = Tf(x) + ξn(x) for x ∈ Γn, (3.1)

where the vector (ξn(x))x∈Γn is the realization of an i.i.d. centered sub-Gaussian noise
process with scale parameter σ as in (2.3). For technical simplicity, we assume that the
solution f can be periodically extended to Rd and has mean zero, and the noise level σ is
known beforehand; that is, Assumption 1 holds.
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In the following we study operators T that are defined on the Hilbert scale Hs
0(Td), that

is, for each s ≥ 0 we can write T as an operator

T : Hs
0(Td)→ Hs

0(Td).

Moreover, we assume that the forward operator T satisfies the following property.
Definition 3.1.1. A linear operator T is called β-smoothing for some β ≥ 0 if there are
constants C1, C2 > 0, depending only on s and d, such that

C1‖f‖Hs
0
≤ ‖Tf‖

Hs+β
0
≤ C2‖f‖Hs

0
, (3.2)

for every f ∈ Hs
0(Td) and every s ≥ 0.

Remark 3.1.2. Note that if β > 0, then every β-smoothing operator T : Hs
0(Td)→ Hs

0(Td)
is compact, due to the compact embedding theorem (Adams and Fournier, 2003, Theorem
6.1) of Sobolev spaces, and thus does not have a bounded inversion. For the clarity and
simplicity of exposition, we restrict ourselves to Hilbert scales Hs

0(Td), s ≥ 0, and will not
pursue the most general case. The aim is mainly to give an illustration on how to extend
the analysis framework established in Chapter 2 to problems other than nonparametric
regression.

Some examples of model (3.1) with β-smoothing operators T are collected below.
Example 4. (a) The nonparametric regression corresponds to a special case of (3.1) with

T = I, the identity operator. Obiviously, the identity operator I satisfies the esti-
mate (3.2) with β = 0, i.e. is 0-smoothing.

(b) For deconvolution problem, the operator T is defined as Tf = ρ ∗ f with convolution
kernel ρ. Given a fixed β ≥ 0, if the Fourier coefficients uλ := 〈ρ, e−2πi〈λ,·〉〉L2 of the
kernel ρ satisfy the growth condition

uλ ∼ |λ|−β for all λ ∈ Zd \ {0},

then it can be easily seen that the convolution operator T is β-smoothing.

(c) The computerized tomography problem also lies in the model (3.1) with T being the
Radon transform. Some rescaling is necessary to ensure that the Radon transform is
an operator from L2(Td) to L2(Td). In this case, the d-dimensional Radon transform
is actually (d− 1)/2-smoothing, see e.g. (Natterer, 2001, Chapter II, Theorem 5.1).

To guarantee that the point evaluation in model (3.1) is well defined, we further assume
that the true solution f of this inverse problem is such that Tf ∈ Hs

0(Td) is continuous.
Because of the Hilbert scale assumption, this will be the case if s > d/2. Actually, for
β-smoothing operators, the condition f ∈ Hs

0(Td) with s > d/2 + β would be sufficient for
the continuity of Tf . In such a setting, we can write the evaluation of Tf on the grid Γn as
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a composition of T with the sampling operator Sn. Doing so, we can rewrite the problem
we want to solve as the inverse problem of solving the equation

Tnf := (Sn ◦ T )f = yn

with noisy right hand side yn ∈ RΓn as given in (3.1). In order to solve the inverse problem,
we propose the MIND estimator as a regularization method. To be precise, we consider
the estimator f̂γn given by

f̂γn = arg min
f∈Hk

0 (Td)

1

2
‖Dkf‖2L2 subject to ‖Tnf − yn‖B ≤ γn, (3.3)

which is a reformulation of (1.9) with abbreviation Tn = Sn ◦ T . Here, the threshold γn is
chosen in a universal way as

γn = C(log n)r for some r ≥ 1

2
and C >

{
0 if r > 1

2

σ
√

6 + 2k+2β
d if r = 1

2

, (3.4)

and the system B of cubes satisfies Assumption 2, that is, the corresponding multiresolution
norm being indeed a norm. Provided that

Ran(Tn) = RΓn for every n ∈ N,

which we always assume, it follows directly that the multiscale constraint in (3.3) is non-
empty for all γn ≥ 0 and yn ∈ RΓn . From the strict convexity and coercivity of ‖Dk·‖L2

on Hk
0 (Td), we further see that MIND f̂γn as a solution to (3.3) always exists and is

unique.

3.2. Convergence analysis

3.2.1. An interpolation inequality

We start by an interpolation inequality between Hs
0-norms (s ≥ 0), and the multiresolution

norm (cf. Section 2.2).
Lemma 3.2.1. Assume that 0 ≤ r < bsc, d < 2bsc, r, s ∈ R, d ∈ N, and that B is a
normal system of cubes. Then there exist constants C and n0, depending only on s, d, and
B, such that for every f ∈ Hs([0, 1]d) and for n ≥ n0,

‖f‖Hr
0
≤ C max

{
n−

s−r
2s+d ‖Snf‖B

2s−2r
2s+d ‖f‖

2r+d
2s+d

Hs
0
, n−1/2‖Snf‖B, n−

2bsc(s−r)
d(2bsc+d) ‖f‖Hs

0

}
.

Proof. See Appendix B.1. �
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The above inequality is an extension of Theorem 2.2 to homogeneous Sobolev norms with
non-integer orders of smoothness, in the case of p = q = 2. Recall that s > d/2 is
sufficient for the continuity of functions in Hs([0, 1]d), which in turn guarantees the well-
definedness of Sn. Thus the technical requirement d < 2bsc is slightly stronger than
necessary. It is imposed because the approach of the proof relies on a certain approximation
by polynomials. We conjecture that the lemma holds also for d < 2s if we instead use some
well behaved functions for the approximation part in the proof.
Proposition 3.2.2. Assume that the operator T is β-smoothing for some β ≥ 0, that
k+ bβc > d/2, k, d ∈ N, and that the system B is normal. Then there are constants C > 0
and n0 ∈ N only depending on k, d, B, and T , such that for every f ∈ Hk

0 ([0, 1]d)

‖f‖L2 ≤ C max
{‖Tnf‖2ϑB

nϑ
‖f‖1−2ϑ

Hk
0
,
‖Tnf‖B
n1/2

,
‖f‖Hk

0

nϑ′

}
,

where

ϑ :=
k

2k + 2β + d
, (3.5a)

and ϑ′ :=
2k(k + bβc)

d(2k + 2bβc+ d)
. (3.5b)

Proof. It follows by applying Lemma 3.2.1 to Tf with r = β and s = k + β, and the
estimate (3.2). �

It always holds that ϑ < ϑ′, since k + bβc > d/2. Note that it is actually possible to
consider the Hθ

0 -norm (0 ≤ θ < k + bβc − β) on the left hand side of the inequality from
Proposition 3.2.2, if we choose r = β+θ in the proof. This will in turn lead to estimates for
the Hθ

0 -loss of MIND, and the analysis of MIND for the estimation of derivatives. However,
for the sake of simplicity, we only consider the L2-loss and the estimation of function itself
here and later, which can be easily extended to the more general case.

3.2.2. Approximate source conditions

Similar as in Chapter 2, our analysis of convergence is based on approximate source con-
ditions and the multiscale distance function corresponding to the operator T at the true
solution f . In order to define the latter, we first recall that Tn : Hk

0 (Td)→ RΓn is bounded
linear, and thus has a well-defined adjoint T ∗n : RΓn → Hk

0 (Td) given by∑
x∈Γn

Tf(x)ω(x) = 〈f, T ∗nω〉Hk
0

= 〈Dkf,DkT ∗nω〉L2 =

∫
Td
Dkf DkT ∗nω dx for ω ∈ RΓn .

Moreover, we recall the dual ‖·‖B∗ of the multiresolution norm from Section 2.3.1.
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Definition 3.2.3. We define the multiscale distance function dn(t;T ) with respect to f
and a linear operator T by

dn(t;T ) := min
‖ω‖B∗≤t

‖DkT ∗nω −Dkf‖L2 = min
‖ω‖B∗≤t

‖T ∗nω − f‖Hk
0

for t ≥ 0.

Remark 3.2.4. The definition of the multiscale distance function immediately implies that
it is a decreasing function in t for each fixed n and T . Moreover

dn(0;T ) = ‖f‖Hk
0
,

which provides an upper bound of the multiscale distance function provided that the truth
f is contained in Hk

0 (Td). Note that Definition 2.3.1 is a particular case of Definition 3.2.3,
namely, dn(t) = dn(t; I).

By the introduction of multiscale distance functions, we are able to derive an upper bound
on the L2-loss of MIND in case that the truth f is admissible to the multiscale constraint
in (3.3).
Lemma 3.2.5. Assume that the operator T is β-smoothing for some β ≥ 0, that k, d ∈ N,
k + bβc > d/2, that the system B is normal, and that the inequality

‖ξn‖B = ‖Tnf − yn‖B ≤ γn

holds. Let f̂γn be the MIND estimator in (3.3), and

cn := min
t≥0

(
dn(t;T ) + (γnt)

1/2
)
.

Then there are constants C > 0 and n0 ∈ N only depending on k, d, B, and T , such that

‖f̂γn − f‖L2 ≤ C max
{γ2ϑ

n c1−2ϑ
n

nϑ
,
γn

n1/2
,
cn
nϑ′

}
for n ≥ n0,

where ϑ and ϑ′ are given in (3.5).
Proof. The proof follows similarly as that of Theorem 2.3.3, while one should replace Sn
by Tn, and the inequality in Theorem 2.2.7 by the one in Proposition 3.2.2. �

Based on such an estimate, we can obtain convergence rates for MIND under certain
smoothness assumption, that is, approximate source conditions (cf. (2.17) and the discus-
sion thereinafter).
Theorem 3.2.6. Assume that the operator T is β-smoothing for some β ≥ 0, that k, d ∈
N, k + bβc > d/2, and that the system B is normal. Denote by f̂γn the MIND estimator
in (3.3) with γn given in (3.4), and assume that

min
t≥0

(
dn(t;T ) + (log n)r/2t1/2

)
= O

(
n−µ

)
as n→∞ (3.6)
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for some 0 ≤ µ < 1/2. Then it holds almost surely that

‖f̂γn − f‖L2 = O
(
n−µ(1−2ϑ)−ϑ(log n)2rϑ

)
as n→∞, (3.7)

with ϑ in (3.5a). If the operator T in addition satisfies

C∞0 (Td) ⊂ Ran(T ), (3.8)

where C∞0 (Td) consists of all functions in C∞(Td) with mean zero, then the assertion (3.7)
also holds in expectation.
Proof. See Appendix B.2. �
Remark 3.2.7. Note that the additional requirement (3.8) for the convergence rate in ex-
pectation is clearly satisfied for all convolution operators that are β-smoothing. If such
requirement is violated, we can still obtain an asymptotic estimate for the L2-risk of MIND
by means of a projection trick. More precisely, we consider the projection of MIND f̂γn
onto an L2-ball of radius κn, that is,

f̂γn,κn := proj
(
f̂γn , B2(κn)

)
= f̂γn min

{
κn/‖f̂γn‖L2 , 1

}
with B2(κn) :=

{
f : ‖f‖L2 ≤ κn

}
. Let us assume that κn ∼ log n, and that n is sufficiently

large such that the truth f ∈ B(κn). Then it is easy to see that

‖f̂γn,κn − f‖L2 ≤ ‖f̂γn − f‖L2 and ‖f̂γn,κn − f‖L2 ≤ 2κn. (3.9)

It further implies that

E
[
‖f̂γn,κn − f‖L2

]
=E

[
‖f̂γn,κn − f‖L2 ; ‖ξn‖B ≤ γn

]
+ E

[
‖f̂γn,κn − f‖L2 ; ‖ξn‖B > γn

]
≤E

[
‖f̂γn − f‖L2 ; ‖ξn‖B ≤ γn

]
+ 2κnP {‖ξn‖B > γn} .

Combining it with Lemma 3.2.5 and Proposition 2.2.4, we can obtain by simple calculations
exactly the same estimate for the L2-risk of f̂γn,κn as in (3.7). Furthermore, from (3.9) it

follows that such an estimate of the L2-loss of f̂γn,κn also holds almost surely as n→∞.
Example 5. As an application of Theorem 3.2.6, we consider a simple example that the
truth satisfies

f ∈ Hk
0 (Td).

This is the “proper smoothing” case, where the smoothness order k in the regularization
term of MIND matches perfectly to that of the underlying truth. From Remark 3.2.4, we
obtain an estimate of the approximate source condition (3.6) with µ = 0, i.e.

min
t≥0

(
dn(t;T ) + (log n)r/2t1/2

)
≤ dn(0;T ) ≤ ‖f‖Hk

0
.
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3.3. Convergence rates in one dimension

It follows directly from the theorem that

‖f̂γn − f‖L2 = O
(
n−ϑ(log n)2rϑ

)
with ϑ in (3.5a)

holds almost surely and in expectation, provided that the operator T is β-smoothing and
satisfies (3.8). In the following, we show that the above estimate is actually minimax
optimal over ellipsoids in Hk

0 (Td) up to a log-factor. Note first that

‖f̂ − f‖L2 ∼ ‖T f̂ − Tf‖
Hβ

0
for any estimator f̂ ,

and C∞0 (Td) ⊂ T
(
Hk

0 (Td)
)

:=
{
Tf : f ∈ Hk

0 (Td)
}
⊂ Hk+β

0 (Td).

Following the proof of (Nemirovski, 1985, Theorem 1) closely, one can derive that the min-

imax rate for nonparametric regression with respect to Hβ
0 -loss over ellipsoids in Hk+β

0 (Td)
is at least of order n−k/(2k+2β+d) = n−ϑ, and will further find that this lower bound still
holds for ellipsoids in T

(
Hk

0 (Td)
)

because it contains C∞0 (Td) as a subset. Therefore, the
rate for estimating f from the measurement in (2.2) is no faster than n−ϑ, which leads to
the almost minimax optimality of MIND in this setting.

3.3. Convergence rates in one dimension

In this section, on the basis of Proposition 2.4.1, we are able to translate the approx-
imate source conditions (3.6) into classical Hölder-type source conditions that relate to
the Sobolev smoothness, in the setting of recovering functions defined on one-dimensional
domain T. As a consequence, we derive explicit convergence rates for MIND, and dis-
cuss the minimax optimality of such rates, which leads naturally to an adaptation phe-
nomenon.

3.3.1. Hölder-type source conditions

Theorem 3.3.1. Let d = 1, k ∈ N, β ∈ N0, and k ≥ β ≥ 0. Assume moreover that the
operator T : L2(T) → L2(T) and its adjoint T ∗ : L2(T) → L2(T) are β-smoothing, that B
is regular, and that

f = T ∗h for some h ∈ Hs
0(T) with k − β + 1 ≤ s ≤ 2k. (3.10)

Then the MIND estimator f̂ in (3.3), with the threshold γn given by (3.4), satisfies almost
surely and in expectation that

‖f̂γn − f‖L2 = O
(
n
− s+β

2s+4β+1 (log n)
2r(s+β)
2s+4β+1

)
as n→∞.
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Proof. See Appendix B.3. �
Remark 3.3.2. It is worth pointing out that from the proof of Theorem 3.3.1 one can see
that the constant hidden in the O-notation takes the form

C‖h‖1−2ϑ
Hs

0
with ϑ given in (3.5a),

where C > 0 depends only on k, s, and B. The smoothness assumption (3.10) is often
referred to as Hölder-type source conditions, which are the typical smoothness conditions
for linear inverse problems. Under the setting of the theorem, one can show that the
condition (3.10) is equivalent to

f ∈ T ∗
(
Hs

0(T)
)

= (T ∗T )1/2
(
Hs

0(T)
)

= Hs+β
0 (T) with k − β + 1 ≤ s ≤ 2k.

Note that every β-smoothing convolution operator satisfies the requirements on T in the
theorem, since its adjoint is again β-smoothing, see Example 4 (b). For such operators,
the condition (3.10) can be further rewritten as

f ∈ T ∗
(
Hs

0(T)
)

= (T ∗T )µ
(
H
s+(1−2µ)β
0 (T)

)
for every µ ≥ 0.

Moreover, if µ ∈ N0, the above relation holds for every operator T such that its adjoint
and itself are β-smoothing.

3.3.2. Adaptation property

By E(n;F) we denote the minimax L2-risk of the statistical inverse problem (3.1) over a
class F of functions for a fixed sample size n (cf. Section 2.4.3). We consider in particular
the source sets with respect to the operator T

Hs
L(T ∗) :=

{
f : f = T ∗h, ‖h‖Hs

0
≤ L

}
for s ≥ 0 and L > 0

as the function classes F . Following the discussion in Example 5, one can show that
the minimax L2-risk E

(
n;Hs

L(T ∗)
)

is of the same order in n as the minimax Hβ-risk of
nonparametric regression over Hs

L(TT ∗), provided that the operator T is β-smoothing. If
the adjoint T ∗ is also β-smoothing, then we have for some constants L′, L′′,

Ss+2β,2
L′ ⊂ Hs

L(TT ∗) ⊂ Ss+2β,2
L′′ with Ss,2L given by (2.24).

By (2.26) it further implies that for n sufficiently large

E
(
n;Hs

L(T ∗)
)
≥ C

(σ2

n

) s+β
2s+4β+1

L
2β+1

2s+4β+1 ,

where constant C > 0 depends only on s, β and T .
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3.4. Numerical results

Comparing the lower bound of E
(
n;Hs

L(T ∗)
)

with the upper bounds in Theorem 3.3.1 and
Example 5, we see that the convergence rates of MIND in (3.3) are minimax optimal up
to a log-factor over

Hs
L(T ∗) for every s ∈ {k − β} ∪ [k − β + 1, 2k].

It is worth noting that our convergence rates do not rely on a precise knowledge of the
smoothness class of the function f , because the threshold γn in (3.4) is independent of
the truth f . This suggests that in practice the smoothing order k of the regularization
term need only be a rough guess of the actual smoothness s of f . Furthermore, if the true
smoothness s is available, one should choose k = s/2 rather than k = s+ β for the sake of
numerical stability.

Put differently, the convergence result above says that MIND automatically adapts to
the smoothness of the truth f over a range of source sets Hs

L(T ∗), including both the
“proper smoothing” case, s = k − β (cf. Example 5), and the “under-smoothing” case,
s ∈ [k−β+1, 2k], where the truth f is smoother than that is required by the regularization
term. We refer to such property as partial adaptation. As a by-product, in the particular
case of T = I, it implies that MIND attains the minimax optimal rates up to a log-factor
with respect to L2-risk over Sobolev ellipsoids

Hs
L(I∗) = Ss,2L with s ∈ {k} ∪ [k + 1, 2k]

for nonparametric regression. This reproduces part of our results in the previous chap-
ter, see Section 2.4 for a more comprehensive analysis in this special setting. Moreover,
although we were not able to derive (nearly) optimal rates for the “over-smoothing” case,
we believe that similar result as in Section 2.4.2 possibly holds if Sobolev spaces W s,∞

0 (T)
are considered instead of Hs

0(T).

Finally, we point out that one can also study the penalized version of MIND in (1.12), as
a generalization of the penMIND estimator in (2.27) to statistical inverse problems (3.1),
and derive similar convergence results as those developed in this and the previous sections,
in an analogous way as in Section 2.5.

3.4. Numerical results

We now investigate the practical performance, i.e. the finite sample behavior, of the
MIND estimator on some simulated examples. From Section 2.6.1, we see that the MIND
estimator defined by (3.3), being the solution of a non-smooth convex optimization problem,
can be efficiently solved by an ADMM algorithm. As a practical adjustment to enhance
the performance of MIND for finite sample sizes, we choose the threshold γn as the α-
quantile γn(α) of the multiresolution norm of random error by (2.41), rather than the one
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in (3.4), see Section 2.7.1 for explanation. In the coming simulations, the significance level
α for γn(α) is set to 0.1, and the quantile γn(α) is estimated by 105 independent random
draws of Monte-Carlo simulations. The random error is assumed to be i.i.d. Gaussian
distributed with zero mean and a known variance. Moreover, for the definition of the
multiresolution norm, we always select the 2-partition system (see Definition 2.2.3), which
is indeed the sparsest system that satisfies the requirement of all the asymptotic analysis.
Implementation is provided in the MATLAB package “MOP” (see Section 2.6.2).

3.4.1. Deconvolution in one dimension

First of all, we evaluate the performance of MIND for a one-dimensional deconvolution
problem if the convolution kernel is 1-smoothing. The spatially variable function Bumps
(Donoho and Johnstone, 1994) is chosen as the test signal. For comparison, we consider a
Sobolev regularization method (SOB) defined by

min
f
‖Tnf − yn‖2 + λ‖Dkf‖2L2 (3.11)

which can be regarded as a generalization of the smoothing spline estimator (2.43) to
statistical inverse problems. Moreover, by DAN we denote a variant of the Dantzig selector
in (1.6), which is given by

min
f
‖Dkf‖L2 subject to ‖T ∗n(Tnf − yn)‖L∞ ≤ γ. (3.12)

In order to study the impact of different data fidelity terms, we pick the same regularization
term, Hk

0 -norm, for the three estimators, and choose in particular k = 1 for the smoothness
order. The balancing parameter λ for SOB is manually tuned to give the best performance,
and the threshold γ for DAN is chosen similarly as MIND, that is, the 0.1-quantile of
‖T ∗nξn‖L∞ . The simulation results are collected in Figure 3.1. It shows that MIND is able
to recover all the bumps of various scales and locations, while presents slight distortions
form the truth. This reflects our theoretical finding that MIND attains nearly optimal
rates for Hs

0(T) with s = 1, or 2 ≤ s ≤ 3 in this particular setting. By a sharp contrast,
SOB and DAN only detect the isolated bumps, and fail to discern bumps that are closely
located.

For a robustness study, we repeat the previous experiment but with a Gaussian convolution
kernel. This lies outside of our asymptotic analysis, since such a convolution operator is
not β-smoothing for any β ≥ 0. From Figure 3.2, one can see that MIND detects most of
the bumps, and still outperforms both SOB and DAN. Compared to SOB, DAN recovers
more bumps, but meanwhile introduces many artificial bumps in the nearly constant part
of the true signal. The SOB performs similarly as the previous experiment, finding only
bumps of large scales.
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Figure 3.1.: Deconvolution of Bumps signal with 1-smoothing kernel by various methods:
SOB in (3.11), DAN in (3.12), and the proposed MIND in (3.3) (number of
samples n = 210, noise level σ = 0.08‖Tf‖L2).

3.4.2. Imaging in two dimension

We next continue to study the multiresolution norm as the data fidelity term in imaging ap-
plications. In particular, let us consider the recovery of the Shepp-Logan phantom (Shepp
and Logan, 1974) from noisy measurements of the Radon transform, i.e. the model (3.1)
with T chosen as the Radon transform. This is a standard example for computerized
tomography (see Natterer, 2001, for an overview).

Recall that the total variation (TV) semi-norm of functions f : Td → R is defined as

‖f‖TV := sup
g∈V

∫
Td

(−fdiv g)dx,

where the set of test functions

V :=
{
g : Td → Rd ; g is differentiable, and |g(x)| ≤ 1 for all x ∈ Td

}
.

In particular, for differentiable functions f , it reduces to the L1-norm of the gradient of f ,
i.e. ‖f‖TV ≡ ‖Df‖L1 , see e.g. (Ambrosio et al., 2000) for further details. It is well known
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Figure 3.2.: Deconvolution of Bumps signal with Gauss kernel ρ(x) ∼ exp(− x2

2σ2 ) with
σ = 0.01 by various methods: SOB in (3.11), DAN in (3.12), and the proposed
MIND in (3.3) (number of samples n = 210, noise level σ = 0.08‖Tf‖L2).

that the TV semi-norm favors carton-like images (including Shepp-Logan phantom as an
example) if applied as the regularization term, because it is effective at preserving sharp
edges whilst smoothing away noise in flat regions, mainly due to the sparsity enhancing
nature of L1-norm. Thus, as an extension of MIND, we introduce the MIND-TV estimator
defined by

min
f
‖f‖TV subject to ‖Tnf − yn‖B ≤ γ. (3.13)

Similar to MIND, the threshold parameter γ here is selected as γn(α) by (2.41) with
α = 0.1. Meanwhile, we consider the famous filtered back projection (FBP) reconstruction
method, and the classical TV-regularization (TVreg) method given by

min
f
‖Tnf − yn‖2 + λ‖f‖TV. (3.14)

The Ram-Lak filter is used for FBP, see (Natterer, 2001, Section V.1) for details. The
penalization parameter λ of TVreg is manually tuned for the best visual quality of the
reconstruction.

A comparison result among the three methods is given in Figure 3.3. It shows that TVreg
and MIND-TV are comparable, and perform significantly better than FBP, concerning both
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Figure 3.3.: Reconstruction for Radon data by FBP, TVreg in (3.14) and MIND-TV (3.13),
with noise level σ = 1.

the removal of noise and the recovery of features. Furthermore, the MIND-TV detects one
more feature of the truth, which is marked by a red rectangle, compared to TVreg. This
is a consequence of the favorable multiscale nature of the multiresolution norm, which is
not shared by the global method TVreg. To get an impression about the performance of
Algorithm 1, we further illustrate the details of each iteration for the computation of MIND-
TV in terms of objective values and gaps of the multiscale constraint in Figure 3.4.
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Figure 3.4.: Convergence curves of ADMM iterations for the computation of MIND-TV
from the data in Figure 3.3. The objective value ‖fl‖TV of the l-th iteration,
as well as the corresponding gap of the multiscale constraint ‖Tnfl− yn‖B− γ,
is plotted versus the iteration l, cf. Algorithm 1.
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4. Discussion and Outlook

In the settings of nonparametric regression and statistical inverse problems, we have in-
troduced a constrained variational estimator, MIND, which minimizes the L2-norm of the
k-th order derivatives (i.e. the homogenous Hk-norm), k being the anticipated smoothness
of the function to be recovered, subject to the constraint that the multiresolution norm of
the residual is bounded by some threshold γn depending on the sample size n. The idea
behind this approach is that the multiresolution norm effectively allows to differentiate
between smooth functions and noise, as the multiresolution norm of a continuous function
is of the order of

√
n, while the expected multiresolution norm of a sample of independent

sub-Gaussian noise is of the order of
√

log n. If we therefore use a threshold parameter
γn ∼ (log n)r with r > 1/2 we can expect that, for a sufficiently large sample size, our
estimator, MIND, will be close to the true function, while the residuals consist mostly of
noise.

The main theoretical contribution of this work was to underpin the already known em-
pirically good performance of MIND in several special cases by some theoretical evidence.
For a general dimension d, from interpolation inequalities for the multiresolution norm
and Sobolev norms, we derive asymptotic convergence rates of MIND for nonparametric
regression and statistical inverse problems, provided that f ∈ Hk

0 (Td) and one applies
regularization with the homogeneous Hk-norm. Moreover, these rates turn out to be min-
imax optimal up to a logarithmic factor. In order to derive convergence rates for different
smoothness classes or source sets, we have adapted the concept of approximate source con-
ditions, to our statistical setting. These are known to be a useful tool for the derivation of
rates for deterministic inverse problems. With this approach we have obtained conditions
that guarantee certain convergence rates. However, these conditions are quite abstract,
and it is not immediately clear how they relate to more tangible properties of f .

In the one-dimensional setting, a much more detailed analysis is possible. Here the abstract
conditions for convergence rates can be related to approximation properties of splines.
Mainly we have shown that the rates depend on how well the derivative of the function f
can be approximated by B-splines with coefficients that are small with respect to the dual
multiresolution norm. Using results from approximation theory, we were able to translate
the approximate source conditions into very general smoothness conditions for the function
f . For nonparametric regression of functions and derivatives, this mainly gives us optimal
convergence rates for a function f ∈ Hs

0(T) with k + 1 ≤ s ≤ 2k. More general, we
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have obtained with this argumentation convergence rates for functions f contained in the
fractional order Sobolev space W s,p

0 (T) with k+1 ≤ s ≤ 2k, and the rates are again optimal
as long as p ≥ 2. Moreover, the same results hold for comparable Besov spaces. In the case
of statistical inverse problems, we have derived by a similar argument optimal convergence
rates for functions f in source sets T ∗

(
Hs

0(T)
)
≡ Hs+β

0 (T) for every k − β + 1 ≤ s ≤ 2k,
provided that the forward operator T and its adjoint T ∗ are both β-smoothing. However,
these results are only concerned with functions f that are of higher regularity than assumed
a-priori. By contrast, for nonparametric regression (i.e. T = I the identity operator) it
is also possible to derive rates for the case where f is of lower regularity, that is, where
the prior assumption that f ∈ Hk

0 (T) fails. The idea here is to approximate f by a spline
of higher regularity and then to apply the higher order convergence rate results to this
spline. The final rate then results from a trade-off between the approximation power of
the spline and the higher order convergence rate. With this technique, one obtains optimal
convergence rate for the lower order setting f ∈W s,∞

0 (T) with 1 ≤ s ≤ k.

It is important to note here that the choice of the parameter γn is independent of the actual
smoothness of f . This is why MIND yields (up to a logarithmic factor) simultaneously
optimal convergence rates for a range of smoothness classes (with smoothness order s ∈
[1, k] ∪ [k + 1, 2k] for nonparametric regression, and s ∈ {k} ∪ [k + 1, 2k + β] for statistical
inverse problems), making it truly an adaptive method. Note further that all the theoretical
results also hold for the practical adjustment γn := γn(α) the α-quantile of ‖ξn‖B, provided
that the significance level α goes to zero sufficiently fast. This allows for the statistical
inference that the truth is no smoother than the estimator with probability at least 1−α,
namely the smoothness guarantee. Additionally, the numerical results indicate that MIND
appears to be fairly robust with respect to the actual choice of the parameter γn for a given
sample size n, further enhancing its practical applicability.

In addition, we stress that the argumentation developed here can apply to the analysis
of a penalized version of MIND, the penMIND estimator, as well. As an illustration, we
have presented convergence rates of penMIND for nonparametric regression. Moreover,
with the Lepskĭı principle for the choice of balancing parameter, the penMIND estimator
performs adaptively over the same range of smoothness classes as MIND, while its finite
sample behavior is still improvable due to a certain constant that is not tight. If we replace
such a theoretical constant by a well-tuned one, the practical performance of penMIND
will be significantly enhanced and even comparable to that of MIND. For comparison,
we recall that no adaptation result is available for the Nemirovski’s estimator, which can
be viewed as a smoothness-constrained version of MIND. Thus, it is rather intricate to
calibrate this estimator in practice. Empirically, the Nemirovski’s estimator shows an
inadequate performance regarding the removal of noise, even with the oracle choice of
parameter η := ‖Dkf‖Lp of the truth f . An overview of these three related estimators is
given in Table 4.1.
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Table 4.1.: A summary of the three multiscale variational statistical estimations.

MIND penMIND Nemirovski’s

Choice of parameters Quantiles of ‖ξn‖B Lepskĭı principle Oracle

Statistical property
Partial adaptation &

Partial adaptation No adaptation
Smoothness guarantee

Practical performance Satisfactory (Less) satisfactory Unsatisfactory

There are several questions still open concerning MIND. First of all, almost all concrete
results concerning convergence rates in this work were derived for a one-dimensional setting.
In higher dimensions we only have the (somehow generic) result mentioned in Examples 3
and 5 that gives us an optimal convergence rate if our guess for the smoothness class of f is
correct. It is, however, not at all obvious how to obtain rates for higher order smoothness
classes. In the one-dimensional case, the method we used relied both on approximation
results using B-splines and on estimates for the dual multiresolution norm of the coefficients
of these B-splines. In higher dimensions, we expect that similar results for polyharmonic
splines would be required, but it is not clear which basis splines have to be used. Moreover,
in the literature, there is few results on the size of approximation coefficients, which are
necessary for our analysis (cf. the discussion below Example 3). Similarly, the method we
have used for the derivation of the lower order convergence rates relies intrinsically on spline
approximation, which, again, makes the generalization to higher dimensions difficult.

Also in the one-dimensional case there are several interesting open questions. Our results
only apply to a periodic setting with functions that have zero mean. The main reason for the
restriction to periodic functions is that this avoids having to deal with boundary conditions
that would have to be taken into account in non-periodic cases. As an alternative, one
could consider functions that satisfy zero boundary conditions. Throughout the analysis,
one only needs to adjust the approximation B-splines at boundaries. Since B-splines have
compact supports, the impact of such modification, we guess, will vanish asymptotically.
Furthermore, there are still some regularity classes, for which we do not know whether our
proposed method provides optimal convergence rates. Most importantly, we are concerned
with the gap between Hk

0 (T) and Hk+1
0 (T). It seems reasonable to assume that MIND is

asymptotically optimal also for functions in Hs
0(T) with k < s < k + 1, but the methods

we have used for the derivation of the different rates appear not to be applicable to this
case. In contrast, we believe that the upper limit of smoothness order for the adaptation
range is sharp, i.e. the full adaptation may not be possible for MIND.

Finally, we collect some stimulating directions for extending both our methodology and
the theoretical analysis, which we plan to explore in our future research.

(a) Recall from one dimensional nonparametric regression that we do obtain convergence
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rates for functions f ∈ W s,p
0 (T) with p < 2, but these rates are not optimal. Here

we suspect that this is due to the fact that we use the L2-norm of the k-th order
derivative for regularization and that better rates could be obtained by using the
L1-norm instead, which can be naturally generalized to TV semi-norms if k = 1. In
addition, the combination of the TV regularization and the multiscale constraint is
shown to be quite promising in various imaging and image processing applications,
see Section 3.4.2, and (Frick et al., 2012, 2013) for example. Note that the point
evaluation becomes problematic for bounded variation functions when d ≥ 2. Thus,
as a first step, we should reinterpret the measurements as local averages rather than
point-wise values, that is,

yn(x) =

∫
x+[− 1

2m
, 1
2m

)
(Tf)(z)dz + ξn(x) for x ∈ Γn,

where m := n1/d. The definitions of the multiresolution norm and its dual need to
be adjusted in a similar way as well.

(b) For nonparametric regression and statistical inverse problems we always assume that
the random error is distributed according to a sub-Gaussian law. In many applica-
tions (see e.g. Frick et al., 2013; Aspelmeier et al., 2015), this assumption is only an
approximation, and sometimes unsatisfactory. It is therefore interesting to extend
our argumentation to measurement models with other noise distributions. For in-
stance, one could consider the standard exponential family distributions, which have
densities exp

(
〈θ, ·〉 − ψ(θ)

)
for some parameter θ ∈ Rd. Motivated by the relation

between the multiresolution norm and multiple testing (see Section 1.2), we suggest
to redefine the multiscale constraint on residuals by

LB(Tf, yn) := sup
B∈B

√
2(#B ∩ Γn)J

(
ȳB, (Tf)B

)
≤ γn,

where J(x, θ) := ψ∗(x) +ψ(θ)− 〈x, θ〉 with ψ∗(x) := supθ〈x, θ〉 −ψ(θ) the Legendre-
Fenchel conjugate of ψ, and (̄·)B denotes the average overB∩Γn (cf. Frick et al., 2014).
Note that this reduces to ‖Tf−yn‖B when the noise distribution is Gaussian. A first
and key step is to establish an interpolation-type inequality between the multiscale
functional LB, the loss functional, and the regularization functional, which is probably
more involved since LB is in general not necessarily a norm.

(c) The statistical optimality we are concerned throughout lies in the classical minimax-
ity paradigm with respect to the Lq-loss for 1 ≤ q ≤ ∞. In the development over
nearly half a century, there have already been a rich and diverse collection of optimal
statistical approaches for nonparametric regression and statistical inverse problems
(cf. Section 1.1.1). However, the optimality theory does not fully reflect the em-
pirically different performances of various approaches for a given sample size. We
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doubt that this might be a consequence of the choice of loss functionals, which have
a global nature due to the integration, and for instance cannot differentiate random
deviations from deterministic ones, as we see in Example 1. A perhaps reasonable
choice would be something like the multiresolution norm that takes a range of scales
into account. As an alternative remedy, instead of a fixed signal, we suggest to con-
sider a sequence of signals that depends on the sample size n and tends to be more
challenging to recover as n increases. In this way, we believe that the real difficulty
for finite sample sizes will be better reflected in the asymptotic analysis.

75





A. Proofs of Chapter 2

A.1. Nemirovski’s interpolation inequality

In this section, we will prove the interpolation inequality (in Theorem 2.2.7) between mul-
tiresolution norms and Sobolev semi-norms. For brevity, by ‖f‖B,∗ we denote ‖f1B‖∗ for
any set B, and norm ‖·‖∗. We first need some basic properties of d-dimensional polynomi-
als, which are summarized in the following two lemmata. Since these results are known,
we only present a proof when there is no proper reference.
Lemma A.1.1. Let Bθ,r := {x ∈ Rd; ‖x−θ‖∞ ≤ r}, and Pm := {polynomials of degree ≤
m on Rd}. Then for every p ∈ Pm, γ ∈ (0, 1), and every Bθ0,r0, there exists a sub-cube
Bθ1,r1 ⊂ Bθ0,r0 such that

min
x∈Bθ1,r1

|p(x)| ≥ γ max
x∈Bθ0,r0

|p(x)|,

and the ratio r1/r0 depends on γ, m and d only.
Proof. We w.l.o.g. assume m ≥ 1. Let x∗ := arg maxx∈Bθ0,r0

|p(x)|, r1 := r0(1−γ)/(2dm2),

and θ1 satisfy that Bθ1,r1 3 x∗. Let also x∗∗ := arg minx∈Bθ1,r1
|p(x)|. Note that

|p(x∗)| − |p(x∗∗)| ≤|p(x∗)− p(x∗∗)| = |
∫ 1

0

d

dt
p
(
x∗∗ + t(x∗ − x∗∗)

)
dt|

≤
d∑
i=1

∫ 1

0
|∂ip

(
x∗∗ + t(x∗ − x∗∗)

)
||x∗(i) − x∗∗(i)|dt

≤2r1

d∑
i=1

max
x∈Bθ1,r1

|∂ip(x)| ≤ 2r1

d∑
i=1

max
x∈Bθ0,r0

|∂ip(x)|

≤2r1dm
2

r0
|p(x∗)|,

where the last inequality is because of the Markov brothers’ inequality (see e.g. DeVore
and Lorentz, 1993, Chapter 4, Theorem 1.4). It follows that

|p(x∗∗)| ≥
(
1− 2r1dm

2

r0

)
|p(x∗)| = γ|p(x∗)|,

which is equivalent to the assertion. �
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Lemma A.1.2 (Brenner and Scott (2008), Proposition 4.3.2). Let B ⊂ [0, 1]d be
a cube, diam(B) its diameter, and Ur ⊂ B an `2-ball with radius r. Then, for every
f ∈ W k,p([0, 1]d) with k > d/p or k = d and p = 1, there is a polynomial fUr of degree
≤ k − 1, depending on f and Ur only, such that

‖f − fUr‖B,L∞ ≤ Cdiam(B)k−d/p‖Dkf‖B,Lp ,

where the constant C depends on k, d, p and the ratio diam(B)/r only.
Remark A.1.3. The polynomial fUr is actually the averaged Taylor polynomial of order k
(i.e. degree k − 1) over Ur := {x ∈ Rd; ‖x− x0‖2 ≤ r}, that is,

fUr(x) :=

∫
Ur

T ky f(x)φ(y)dy,

where the Taylor polynomial

T ky f(x) :=
∑

|α|<k,α∈Nd0

1

α!
Dαf(y)(x− y)α,

and

φ(x) :=

{
C exp

(
−r2/

(
r2 − ‖x− x0‖22

))
if x ∈ Ur

0 otherwise

with C such that
∫
Rd φ(x)dx = 1.

We also need an interpolation inequality between derivatives of different order.
Lemma A.1.4 (Gagliardo-Nirenberg interpolation inequality (Nirenberg, 1959)).
Let 1 ≤ p, r ≤ ∞, l ∈ {0, . . . , k − 1}, k ∈ N, and q, γ ∈ R such that

d

q
− l = γ

d

r
+ (1− γ)(

d

p
− k) and 0 ≤ γ ≤ k − l

k
.

Then, for every f ∈W k,p([0, 1]d), it holds that

‖Dlf‖Lq ≤ C1‖f‖γLr‖Dkf‖1−γLp + C2‖f‖Ls , (A.1)

where s > 0 is arbitrary (constants C1, C2 depend only on d, k, p, r) with the following
exceptional cases:

(i) If l = 0, k < d
p and r = ∞, we assume in addition that either f tends to zero at

boudary or f ∈ Lq̃(Rd) for some finite q̃ > 0;

(ii) If 1 < p < ∞ and k − l − d
p is a nonnegative integer, then the inequality (A.1) does

not hold for γ = 0.
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A.1. Nemirovski’s interpolation inequality

Proposition A.1.5. Let 0 < λ < ∞, 1 ≤ p, q, r ≤ ∞, l ∈ {0, . . . , k − 1}, and k ∈ N. Let
also k > d/p or k = d and p = 1. Then, for every f ∈W k,p([0, 1]d), it holds that
either

‖Dkf‖Lp ≤ λ‖f‖L∞ and then ‖Dlf‖Lq ≤ C1‖f‖L∞ ,
or

‖Dlf‖Lq ≤ C2‖f‖γLr‖Dkf‖1−γLp ,

where

γ ≡ γ(d, k, l, p, q, r) :=

{
k−l
k if k

q ≥ k−l
r + l

p ,
k−l−d/p+d/q
k−d/p+d/r if k

q ≤ k−l
r + l

p ;

and constants C1, C2 depend only on d, k, p, r and λ.
Proof. This is an application of Lemma A.1.4. Obviously, exception (i) does not happen.
We first consider the case when k

q ≤ k−l
r + l

p . By the choice of γ = γ(d, k, l, p, q, r), we have

d

q
− l = γ

d

r
+ (1− γ)(

d

p
− k) and 0 < γ ≤ k − s

k
,

which implies exception (ii) does not happen either. It follows, in particular, that

‖Dlf‖Lq ≤ C1‖f‖γLr‖Dkf‖1−γLp + C2‖f‖Lr .

If ‖Dkf‖Lp ≤ λ‖f‖L∞ , then

‖Dlf‖Lq ≤ C1‖f‖γL∞(λ‖f‖L∞)1−γ + C2‖f‖L∞ ≤ C3‖f‖L∞ .

If ‖Dkf‖Lp > λ‖f‖L∞ , then

‖Dlf‖Lq ≤ C1‖f‖γLr‖Dkf‖1−γLp + C2‖f‖γLr(λ−1‖Dkf‖Lp)1−γ ≤ C4‖f‖γLr‖Dkf‖1−γLp .

The case when k
q ≥ k−l

r + l
p follows from the first case by noticing that in this case γ does

not depend on q and that ‖Dlf‖Lq ≤ ‖Dlf‖Lq′ if q ≤ q′. �
Remark A.1.6. The facts of Lemma A.1.1 and Proposition A.1.5 also appeard in (Ne-
mirovski, 1985), while here we give elementary proofs based on results that are relatively
more well-known.

We now are ready to present the proof of Theorem 2.2.7.
Proof (of Theorem 2.2.7). In this proof, by C (with subscripts) we denote positive con-
stants depending on c, k, d and p only. Let us define

B̃ := B ∩ [0, 1]d for each cube B.

It follows from Lemma A.1.2 that, for every f ∈ W k,p([0, 1]d) and every cube B with its
center in [0, 1]d, there exists a polynomial fB of degree (k−1), corresponding to a maximal
ball Ur ⊂ B̃ ≡ B ∩ [0, 1]d such that

‖f − fB‖B̃,L∞ ≤ C1diam(B̃)k−d/p‖Dkf‖B̃,Lp .
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Let us call a cube B regular, if

‖f‖B̃,L∞ ≥ 4C1diam(B̃)k−d/p‖Dkf‖B̃,Lp .

It implies for a regular cube B,

‖f − fB‖B̃,L∞ ≤
1

4
‖f‖B̃,L∞ . (A.2)

In the following we consider separately two cases.

Case I. The cube [0, 1]d is not regular.

Let U := {x ∈ (0, 1)d; f(x) 6= 0}. It is easily seen that for every x ∈ U there is a maximal
regular cube Bx containing x as its center (i.e. the one with the largest radius). Since
[0, 1]d is not regular, every maximal regular cube Bx must satisfy

‖f‖B̃x,L∞ = 4C1diam(B̃x)k−d/p‖Dkf‖B̃x,Lp .

It follows that
‖f‖B̃x,L∞ ≤ C2|B̃|

k
d
− 1
p ‖Dkf‖B̃,Lp .

By Besicovitch’s covering theorem (Besicovitch, 1945, 1946, 1947), we can extract a count-
able sub-system A from {Bx;x ∈ U}, such that

U ⊂
⋃
B∈A

B̃ and #{B 3 x;B ∈ A} ≤ C3 for every x ∈ U.

Let us set

r ∈ [
2k + d

d
p,∞), A := sup

B∈A
|B̃|1/2‖f‖B̃,L∞ and ζ :=

1/r + k/d− 1/p

1/2 + k/d− 1/p
.

Then we have

‖f‖rLr =

∫
U
|f(x)|rdx ≤

∑
B∈A

∫
B̃
|f(x)|rdx

≤
∑
B∈A
|B̃|‖f‖r

B̃,L∞
=
∑
B∈A

(
|B̃|1/2‖f‖B̃,L∞

)rζ(
|B̃|−( k

d
− 1
p

)‖f‖B̃,L∞
)r−rζ

≤ Cr−rζ2 Arζ
∑
B∈A
‖Dkf‖r−rζ

B̃,Lp

≤ Cr−rζ2 Arζ
(∑
B∈A
‖Dkf‖p

B̃,Lp

)(r−rζ)/p
(since r − rζ ≥ p)

≤ Cr−rζ2 C
(r−rζ)/p
3 Arζ‖Dkf‖r−rζLp .
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That is
‖f‖Lr ≤ C1−ζ

4 Aζ‖Dkf‖1−ζLp .

By letting r →∞, we see that the above inequality is valid for r ∈ [2k+d
d p,∞].

By definition of A, there is a regular cube B such that

‖f‖B̃,L∞ |B̃|1/2 ≥
1

2
A.

Since B is regular, we have from (A.2) that

3

4
‖f‖B̃,L∞ ≤ ‖fB‖B̃,L∞ ≤

5

4
‖f‖B̃,L∞ .

Since fB is a polynomial of degree ≤ k − 1, by Lemma A.1.1 there is a cube B∗ ⊂ B̃ such
that

|B∗| ≥ C5|B̃| and |fB(x)| ≥ 1

2
‖f‖B̃,L∞ for every x ∈ B∗. (A.3)

It together with (A.2) implies that

|f(x)| ≥ 1

4
‖f‖B̃,L∞ if x ∈ B∗ =⇒ A ≤ 8C

−1/2
5 |B∗|1/2 min

x∈B∗
|f(x)|.

Thus, we have for r ∈ [2k+d
d p,∞],

‖f‖Lr ≤C1−ζ
4

(
8C
−1/2
5

)ζ(|B∗|1/2 min
x∈B∗
|f(x)|

)ζ
‖Dkf‖1−ζLp

≤C6

(
|B∗|1/2 min

x∈B∗
|f(x)|

)ζ
‖Dkf‖1−ζLp . (A.4)

If |B∗| > cn−1, since B is a c-normal system, there is a cube B∗∗ ∈ B such that |B∗∗| ≥
c−1|B∗| and B∗∗ ⊂ B∗, and we get

‖Snf‖B ≥ (#B∗∗ ∩ Γn)1/2 min
x∈B∗∗

|f(x)| ≥ C7n
1/2|B∗∗|1/2 min

x∈B∗∗
|f(x)|,

where Γn is the grid. Then, we have

‖f‖Lr ≤ C8n
−ζ/2‖Snf‖ζB‖Dkf‖1−ζLp .

If |B∗| ≤ cn−1, inequality (A.4) with r =∞ yields

‖f‖L∞ ≤ C6

(
|B∗|1/2 min

x∈B∗
|f(x)|

)ζ∗‖Dkf‖1−ζ∗Lp

≤ C6

(
|B∗|1/2‖f‖B∗,L∞

)ζ∗‖Dkf‖1−ζ∗Lp ,
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where ζ∗ = k/d−1/p
1/2+k/d−1/p . It follows that

‖f‖L∞ ≤ C1/(1−ζ∗)
6 |B∗|

ζ∗
2(1−ζ∗) ‖Dkf‖Lp ,

which together with (A.4) implies that

‖f‖Lr ≤ C
1+ ζ

1−ζ∗
6 |B∗|

ζ
2(1−ζ∗) ‖Dkf‖Lp

=⇒ ‖f‖Lr ≤ C9n
−( k

d
− 1
p

+ 1
r

)‖Dkf‖Lp .

Therefore, we obtain that for r ∈ [2k+d
d p,∞]

‖f‖Lr ≤ C10 max
{
n−ϑ0‖Snf‖2ϑ0B ‖Dkf‖1−2ϑ0

Lp , n−ϑ
′
0‖Dkf‖Lp

}
, (A.5)

with ϑ0 = ϑ0(k, d, p, r) given in (2.10), and ϑ′0 = ϑ′0(k, d, p, r) in (2.11).

Since [0, 1]d is not regular, it holds that

‖f‖L∞ < 4C1d
k
2
− d

2p ‖Dkf‖Lp .

Assume q ≥ 2k+d
2l+d p and choose r = 2k+d

d p. Then it follows from (A.5) and Proposition A.1.5

with λ−1 = 4C1d
k
2
− d

2p that

‖Dlf‖Lq ≤ C11 max
{
n−ϑl‖Snf‖2ϑlB ‖Dkf‖1−2ϑl

Lp , n−ϑ
′
l‖Dkf‖Lp

}
, (A.6)

with ϑl = ϑl(k, d, p, q) and ϑ′l = ϑ′l(k, d, p, q).

Since the values ϑl(k, d, p, q), ϑ
′
l(k, d, p, q) for q < 2k+d

2l+d p are the same for q = 2k+d
2l+d p,

inequality (A.6) is indeed valid for all q ∈ [1,∞].

Case II. The cube [0, 1]d is regular.

Note that (A.2) with B = [0, 1]d implies ‖f − fB‖L∞ ≤ 1
4‖f‖L∞ . Same as the argument

for (A.3), there is a cube Bo such that

|Bo| ≥ C12 and |f(x)| ≥ 1

4
‖f‖L∞ for x ∈ Bo.

Since B is a normal system with c, there is Boo ∈ B such that Boo ⊂ Bo and |Boo| ≥ c−1|Bo|.
Let n0 := bc/C12c+ 1. If n ≥ n0( =⇒ #Boo ∩ Γn ≥ 1), we get

‖Snf‖B ≥ C−1
13 n

1/2‖f‖L∞ .

The regularity of [0, 1]d implies that

‖f‖L∞ ≥ 4C1d
k
2
− d

2p ‖Dkf‖Lp .
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By Proposition A.1.5 with λ−1 = 4C1d
k
2
− d

2p , we have

‖Dlf‖Lq ≤ C14‖f‖L∞ ≤ C14C13n
−1/2‖Snf‖B. (A.7)

Combining (A.6) and (A.7), we complete the proof. �
Remark A.1.7. The proof above follows more or less the idea from (Nemirovski, 1985), but
with sharpened tools: one is to use averaged Taylor polynomials (Lemma A.1.2) instead of
Taylor polynomials; the other is to select Besicovitch cover rather than Vitali cover.

A.2. General convergence analysis

This section gives proofs of convergence results under approximate source conditions.

A.2.1. Good noise case

The convergence rate is derived provided that the noise ξn is good, namely, ‖ξn‖B ≤ γn.

Proof (of Theorem 2.3.3). The assumption ‖ξn‖B = ‖Snf − yn‖B ≤ γn implies that f is
admissible for the minimization problem (2.4), which in turn implies that

1

2
‖Dkf̂γn‖2L2 ≤

1

2
‖Dkf‖2L2 .

As a consequence, we obtain the estimate

1

2
‖Dkf̂γn −Dkf‖2L2 =

1

2
‖Dkf̂γn‖2L2 −

1

2
‖Dkf‖2L2 − 〈f, f̂γn − f〉Hk

0

≤ −〈f, f̂γn − f〉Hk
0

= min
t

min
‖ω‖B∗≤t

(
〈S∗nω − f, f̂γn − f〉Hk

0
− 〈S∗nω, f̂γn − f〉Hk

0

)
≤ min

t
min
‖ω‖B∗≤t

(
‖DkS∗nω −Dkf‖L2‖Dkf̂γn −Dkf‖L2

+ ‖ω‖B∗‖Snf̂γn − Snf‖B
)

≤ min
t

(
dn(t)‖Dkf̂γn −Dkf‖L2 + t‖Snf̂γn − Snf‖B

)
.

Thus we have for every t ≥ 0 the inequality

1

2
‖Dkf̂γn −Dkf‖2L2 ≤ dn(t)‖Dkf̂γn −Dkf‖L2 + t‖Snf̂γn − Snf‖B.
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Since
‖Snf̂γn − Snf‖B ≤ 2γn,

we obtain the inequality

‖Dkf̂γn −Dkf‖L2 ≤ dn(t) +

√
dn(t)2 + 2t‖Snf̂γn − Snf‖B

≤ 2dn(t) + (2t)1/2‖Snf̂γn − Snf‖1/2B
≤ 2dn(t) + 2(γnt)

1/2

(A.8)

for every t ≥ 0. We now recall the interpolation inequality in Theorem 2.2.7 with p = 2

‖Dl(f̂γn − f)‖Lq ≤ C max

{‖Sn(f̂γn − f)‖2ϑlB
nϑl

‖Dk(f̂γn − f)‖1−2ϑl
L2 ,

‖Sn(f̂γn − f)‖B
n1/2

,
‖Dk(f̂γn − f)‖L2

nϑ
′
l

}
(A.9)

for n sufficiently large, with some C > 0.

If the maximum in (A.9) is attained at the first term, the estimate (A.8) implies that

‖Dl(f̂γn − f)‖Lq ≤ C
‖Snf̂γn − Snf‖2ϑlB

nϑl
‖Dkf̂γn −Dkf‖1−2ϑl

L2

≤ C (2γn)2ϑl

nϑl
min
t

(
2dn(t) + 2(γnt)

1/2
)1−2ϑl

≤ 2C
γ2ϑl
n

nϑl
min
t

(
dn(t) + (γnt)

1/2
)1−2ϑl .

On the other hand, if the maximum in (A.9) is attained at the second term, we have

‖Dl(f̂γn − f)‖Lq ≤ C
‖Sn(f̂γn − f)‖B

n1/2
≤ 2C

γn

n1/2
.

Finally, if the maximum in (A.9) is attained at the third term, we have

‖Dl(f̂γn − f)‖Lq ≤ C
‖Dk(f̂γn − f)‖L2

nϑ
′
l

≤ C min
t

2dn(t) + 2(γnt)
1/2

nϑ
′
l

≤ 2C
1

nϑ
′
l

min
t

(
dn(t) + (γnt)

1/2
)
.

The assertion of Theorem 2.3.3 follows from combining the above three cases. �
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A.2.2. Estimate of Lq-risk

The crucial part of the proof below is to show that the loss of MIND asymptotically vanishes
fast enough when the noise is not good, i.e. ‖ξ‖B > γn.
Proof (of Theorem 2.3.5). Denote in the following

p(t) := P {‖ξn‖B ≤ t} .

Using Theorem 2.3.3, we see that we can estimate, for n sufficiently large,

E
[
‖Dl(f̂γn − f)‖Lq

]
≤ P {‖ξn‖B ≤ γn}Cn−µ(1−2ϑl)−ϑl(log n)2rϑl

+

∫ ∞
γn

sup
{
‖Dl(f̂γn − f)‖Lq ; ‖ξn‖B = t

}
dp(t). (A.10)

In the following, we will show that the second term on the right hand side of (A.10) tends
to zero faster as n → ∞. To that end, we observe first that the Sobolev embedding
theorem (Adams and Fournier, 2003, Theorem 4.12) and the Poincaré inequality (Ziemer,
1989, Theorem 4.4.2) imply that

‖Dl(f̂γn − f)‖Lq ≤ ‖Dlf̂γn‖Lq + ‖Dlf‖Lq ≤ C‖Dkf̂γn‖L2 + ‖Dlf‖L∞ (A.11)

for some constant C depending only on d and k. Moreover, by construction, we have

‖Dkf̂γn‖L2 ≤ ‖Dkg‖L2 for all g satisfying ‖Sng − Snf − ξn‖B ≤ γn.

Now let h ∈ Hk(Rd) be such that h(0) = 1,
∫
Rd h(x) dx = 0, and supph ⊂ [−1/2, 1/2]d.

Define moreover, for n ∈ N and x ∈ Γn, the function hn,x : Td → R by

hn,x(z) = h(n1/d(z − x)) for x− 1/2 ≤ z ≤ x+ 1/2.

Let now n and ξn ∈ RΓn be fixed and define

g :=
∑
x∈Γn

(f(x) + ξn(x))hn,x.

Since the functions hn,x, x ∈ Γn, have pairwise disjoint supports, it follows that

‖Dkg‖L2 =
∑
x∈Γn

|f(x) + ξn(x)|‖Dkhn,x‖L2 =
∑
x∈Γn

|f(x) + ξn(x)|n 2k−d
2d ‖Dkh‖L2

=n
2k−d
2d ‖Snf + ξn‖1‖Dkh‖L2 ≤ n 2k+d

2d
(
‖f‖L∞ + ‖ξn‖∞

)
‖Dkh‖L2

≤Cn 2k+d
2d
(
‖Dlf‖L∞ + ‖ξn‖∞

)
‖Dkh‖L2 [by the same argument as in (A.11)].
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From the inequality ‖ξn‖∞ ≤ ‖ξn‖B we thus obtain that, for some constant C only de-
pending on d, and k,

sup
{
‖Dlf̂γn −Dlf‖Lq ; ‖ξn‖B = t

}
≤ Cn 2k+d

2d (‖Dlf‖L∞ + t).

As a consequence, we can estimate the last term in (A.10) by∫ ∞
γn

sup
{
‖Dl(f̂γn − f)‖L∞ ; ‖ξn‖B = t

}
dp(t) ≤

∫ ∞
γn

Cn
2k+d
2d (‖Dlf‖L∞ + t) dp(t)

= Cn
2k+d
2d (‖Dlf‖L∞ + γn)(1− p(γn))− Cn 2k+d

2d

∫ ∞
γn

(p(t)− 1) dt.

From Proposition 2.2.4 we obtain that

(1− p(t)) ≤ 2n2e−
t2

2σ2

for sufficiently large n. Thus we see that∫ ∞
γn

sup
{
‖Dl(f̂γn − f)‖L∞ ; ‖ξn‖B = t

}
dp(t)

≤2Cn
2k+5d

2d (‖Dlf‖L∞ + γn)e−
γ2n
2σ2 + 2Cn

2k+5d
2d

∫ ∞
γn

e−
t2

2σ2 dt ≤ C ′n 2k+5d
2d γne

− γ2n
2σ2

for sufficiently large n. Now the choice of γn in (2.5) implies that

n
2k+5d

2d γne
− γ2n

2σ2 = O(n−
1
2
−ε)

as n→∞ for some ε > 0. This shows that the second term in (A.10) tends to zero faster
as n→∞, which concludes the proof of Theorem 2.3.5. �

A.2.3. Removal of zero mean requirement

Proof (of Proposition 2.3.6). (i) It is clear that for every f ∈ Hk(Td), function f0 :=
f −

∫
Td f(z)dz ∈ Hk

0 (Td), and Dkf0 = Dkf . Let m := n1/d, and note that for each x ∈ Γn∣∣∣∫
x+[− 1

2m
, 1
2m

)d
f(z)dz − 1

n
f(x)

∣∣∣ =
∣∣∣∫
x+[− 1

2m
, 1
2m

)d

∫ 1

0
〈(Df)(x+ t(z − x)), z − x〉dtdz

∣∣∣
≤
∫ 1

0

∫
x+[− 1

2m
, 1
2m

)d
|〈(Df)((1− t)x+ tz)), z − x〉|dzdt
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≤
√
d

2m

1

n
‖f‖C1 .

It follows that∣∣∣∫
Td
f(z)dz − 1

n

∑
x∈Γn

f(x)
∣∣∣ ≤∑

x∈Γn

∣∣∣∫
x+[− 1

2m
, 1
2m

)d
f(z)dz − 1

n
f(x)

∣∣∣
≤
√
d

2m

∑
x∈Γn

1

n
‖f‖C1 =

√
d

2m
‖f‖C1 .

Then

‖Snf0 − (yn − ȳn)‖B ≤‖Snf − yn‖B + ‖
∫
Td
f(z)dz − 1

n

∑
x∈Γn

f(x)‖B + ‖ 1

n

∑
x∈Γn

f(x)− ȳn‖B

=‖ξn‖B +
√
n
∣∣∣∫

Td
f(z)dz − 1

n

∑
x∈Γn

f(x)
∣∣∣+
√
n|ξ̄n|

≤2‖ξn‖B +O(n1/2−1/d) = O(γn). (A.12)

We now apply Theorem 2.3.3 to (f̂0
γn − f0) and obtain that

‖f̂0
γn − f0‖Lq = O

(
max

{γ2ϑl
n c1−2ϑl

n

nϑl
,
γn

n1/2
,
cn

nϑ
′
l

})
It further implies

‖f̂γn − f‖Lq ≤‖f̂0
γn − f0‖Lq + ‖

∫
Td
f(z)dz − 1

n

∑
x∈Γn

f(x)‖Lq + ‖ 1

n

∑
x∈Γn

f(x)− ȳn‖Lq

=‖f̂0
γn − f0‖Lq + |

∫
Td
f(z)dz − 1

n

∑
x∈Γn

f(x)|+ |ξ̄n|

≤‖f̂0
γn − f0‖Lq +O(n−1/d) + n−1/2‖ξn‖B (A.13)

=O
(

max
{γ2ϑl

n c1−2ϑl
n

nϑl
,
γn

n1/2
,
cn

nϑ
′
l

})
.

(ii) Based on the estimates (A.12) and (A.13), the assertion follows from Corollary 2.3.4
and Theorem 2.3.5 in a similar way as (i). �

A.3. Results in one dimension

We now give the proofs of Proposition 2.4.1 and Theorem 2.4.4. As a preparation, we
will need several results concerning approximation properties of splines, most of which
are well known in approximation theory, and a result that allows us to bound the dual
multiresolution norm of a spline function.
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A.3.1. Approximation properties of splines

The following result is a generalization of a known result for splines on R (Scherer and
Shadrin, 1999) to periodic splines.
Proposition A.3.1 (Condition number of B-splines). Assume that

{Qmi (x), i = 0, . . . , n− 1}

is the family of normalized B-splines in Sm(Γn;T). Then for any ci ∈ R, i = 0, . . . , n− 1,

‖(c)n−1
i=0 ‖p ≤ m2mn1/p‖

n−1∑
i=0

ciQ
m
i ‖Lp for 1 ≤ p ≤ ∞. (A.14)

Proof. Let us first consider 1 ≤ p < ∞. By {Q̃mi }ln−1
i=−m+1 we denote the normalized B-

splines on the real line with equally spaced knots

{(−m+ 1)/n, (−m+ 2)/n, . . . , (ln+m− 1)/n}.

Let
c̃i := ci mod n for i = −m+ 1, . . . , ln− 1.

It is known from (Scherer and Shadrin, 1999, Theorem 1) that

‖(c̃i)ln−1
i=−m+1‖p ≤ m2mn1/p‖

ln−1∑
i=−m+1

c̃iQ̃
m
i ‖Lp for any l ∈ N.

It implies that

l‖(ci)n−1
i=0 ‖pp + ‖(ci)n−1

i=n−m+1‖pp

≤ n(m2m)p

(
l‖
n−1∑
i=0

ciQ
m
i ‖pLp + ‖

n−1∑
i=n−m+1

Qmi 1[0,m−1
n

)∪[n−m+1
n

,1)‖
p
Lp

)
or

‖(ci)n−1
i=0 ‖pp +

1

l
‖(ci)n−1

i=n−m+1‖pp

≤ n(m2m)p

(
‖
n−1∑
i=0

ciQ
m
i ‖pLp +

1

l
‖

n−1∑
i=n−m+1

Qmi 1[0,m−1
n

)∪[n−m+1
n

,1)‖
p
Lp

)
.

By letting l→∞, we obtain (A.14) for 1 ≤ p <∞.

The case p =∞ follows by taking p→∞. �
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Proposition A.3.2 (Boundedness of L2-projector). Let PS be the orthogonal projec-
tor onto Sm(Γn;T) in the topology of L2(T). Then there is a constant C depending only
on m such that

‖PSu‖Lp ≤ C‖u‖Lp for any u ∈ Lp(T) and 1 ≤ p ≤ ∞.

Proof. By the fact that (L1(T), L∞(T))1−1/p, p = Lp(T) for 1 < p < ∞ (cf. Freitag, 1978)
and Proposition 2.1.2, it is sufficient to prove this assertion only for p = 1 and p =∞.

Consider first the case p = ∞. Let Qmi ∈ Sm(Γn;T) be the normalized B-splines, and
Rmi := nQmi implying that ‖Rmi ‖L1 = 1. If PSf =

∑n−1
i=0 aiQ

m
i , then

n−1∑
j=0

aj〈Qmj , Rmi 〉 = 〈f,Rmi 〉,

that is, we have an equation of the form Ga = b with a := (ai)
n−1
i=0 , b := (〈f,Rmi 〉)n−1

i=0 and
G := (〈Rmi , Qmj 〉)i,j . Note that

‖b‖∞ = max
i
|〈f,Rmi 〉| ≤ max

i
‖f‖L∞‖Rmi ‖L1 = ‖f‖L∞ .

This implies that

‖PSf‖L∞ =
∥∥∥n−1∑
i=0

aiQ
m
i

∥∥∥
L∞
≤ ‖a‖∞ ≤ ‖G−1‖∞‖b‖∞ ≤ ‖G−1‖∞‖f‖L∞ .

It follows from (de Boor, 2012) that

‖G−1‖∞ ≤ Cm
for some constant Cm depending only on m. Thus, ‖PSf‖L∞ ≤ Cm‖f‖L∞ .

Next consider p = 1. Let PSf =
∑n−1

i=0 ãiR
m
i , then

∑n−1
j=0 ãj〈Rmj , Qmi 〉 = 〈f,Qmi 〉, i.e.,

Gtã = b̃, where (·)t denotes transpose, ã := (ãi)
n−1
i=0 and b̃ := (〈f,Qmi 〉)n−1

i=0 . It follows from∑
iQ

m
i = 1 and Qmi ≥ 0 that

‖b̃‖1 =
∑
i

|〈f,Qmi 〉| ≤
∑
i

〈
|f |, Qmi

〉
=
〈
|f |,

∑
i

Qmi

〉
= ‖f‖L1 .

Then

‖PSf‖L1 =
∥∥∥n−1∑
i=0

ãiR
m
i

∥∥∥
L1
≤ ‖ã‖1 ≤ ‖G−t‖1‖b̃‖1

=‖G−1‖∞‖b̃‖1 ≤ ‖G−1‖∞‖f‖L1 ≤ Cm‖f‖L1 .

That is, we obtain the assertion for p = 1. �
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Remark A.3.3. The above result (of periodic splines with equally spaced knots) is probably
proven in 1970s, but we are not aware of the reference. The proof we give here also shows
the result for periodic splines with non-equally spaced knots, since de Boor (2012) proved
the boundedness of the inverse Gram matrix of B-splines for any knots. Similar results
for non-periodic splines with arbitrary knots are originally proven in (Shadrin, 2001), and
recently shortened in (Golitschek, 2014).
Proposition A.3.4 (Approximation property). Let 1 ≤ p, p′, q ≤ ∞. There exists a
linear operator A : L1

0(T)→ Sm(Γn;T) such that for every u ∈ L1
0(T)

‖u−Au‖W r,q
0
≤ C1

‖u‖
Bs,p

′
p,0

ns−r−(1/p−1/q)+
with 1 ≤ s ≤ m, 0 ≤ r ≤ bs− 1c,

‖Au‖W r,q
0
≤ C2

‖u‖
Bs,p

′
p,0

ns−r−(1/p−1/q)+
with 1 ≤ s ≤ dse ≤ r ≤ m− 1,

where C1, C2 depend only on m, p. Moreover, both inequalities hold also for the Sobolev
norm ‖·‖W s,p

0
when p = p′ and s ∈ N.

Remark A.3.5. In the case of Sobolev norm ‖·‖W s,p
0
, s ∈ N, the assertions follow from

(Schumaker, 2007, Theorem 8.12). Following the idea of the proof of (Schumaker, 2007,
Theorem 6.31), such results can be extended to Besov norms using Proposition 2.1.2.
Proposition A.3.6 (Finite differences and W 1,p(T)). Let h > 0 and 1 ≤ p ≤ ∞.
Then

‖Dh,+f‖Lp = ‖Dh,−f‖Lp ≤ h‖Df‖Lp for f ∈W 1,p(T). (A.15)

Proof. The case of p =∞ is obviously true. Now consider 1 ≤ p <∞. Since ‖Dh,+f‖Lp =
‖Dh,−f‖Lp , it is sufficient to prove (A.15) only for Dh,+. Note that for each f ∈ W 1,p(T)
there is a sequence of smooth functions fn, such that ‖Dh,+fn‖Lp → ‖Dh,+f‖Lp and
‖Dfn‖Lp → ‖Df‖Lp as n→∞. Therefore, we assume without loss of generality that f is
a smooth function. It follows from the equation f(x+ h)− f(x) = h

∫ 1
0 f
′(x+ th)dt that∫ 1

0
|f(x+ h)− f(x)|pdx ≤ hp

∫ 1

0

(∫ 1

0
|f ′(x+ th)|dt

)p
dx

≤ hp
∫ 1

0

∫ 1

0
|f ′(x+ th)|pdt dx

= hp
∫ 1

0

∫ 1

0
|f ′(x+ th)|pdx dt

= hp‖f ′‖pLp .

That is, ‖Dh,+f‖Lp ≤ h‖Df‖Lp . �
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A.3.2. Regular systems of intervals

Next we state two technical lemmas, which allow us to estimate the dual multiresolution
norm of piecewise constant vectors in case the system B is m-regular (cf. Definition 2.2.3).
These piecewise constant vectors will appear as spline coefficients for certain approximation
splines needed for the proof of Proposition 2.4.1.
Lemma A.3.7. Assume that m ∈ N, m ≥ 2, and that n ∈ N is written as

n =

r∑
j=0

djm
j with dj ∈ {0, . . . ,m− 1}

and r = blogm nc. Then
r∑
j=0

djm
j/2 ≤ (

√
m+ 1)

√
n.

Proof. We prove this claim by induction over r. For r = 0 it is trivial.

Now assume that the claim holds for r and let n be such that blogm nc = r + 1. Then(r+1∑
j=0

djm
j/2
)2

=
( r∑
j=0

djm
j/2
)2

+ d2
r+1m

r+1 + 2dr+1m
(r+1)/2

r∑
j=0

djm
j/2

≤(
√
m+ 1)2

r∑
j=0

djm
j + d2

r+1m
r+1 + 2dr+1m

(r+1)/2(
√
m+ 1)

( r∑
j=0

djm
j
)1/2

≤(
√
m+ 1)2

r∑
j=0

djm
j + d2

r+1m
r+1 + 2dr+1m

(r+1)/2(
√
m+ 1)m(r+1)/2

=(
√
m+ 1)2

r∑
j=0

djm
j +

(
dr+1 + 2(

√
m+ 1)

)
dr+1m

r+1.

From dr+1 ≤ m− 1 and m− 1 + 2(
√
m+ 1) = (

√
m+ 1)2, it follows that the claim holds

for r + 1, which concludes the proof. �
Lemma A.3.8. Assume that the family B is m-regular for some fixed m ≥ 2. Let now
I = {i0, i0 + 1, . . . , i0 + p − 1}/n ⊂ Γn and define c ∈ RΓn by ci = 1 if i ∈ I and ci = 0 if
i 6∈ I. Then

‖c‖B∗ ≤ (
√
m+ 1)

√
2mp.

Proof. Let r = dlogm ne. Let `− ∈ N be maximal such that `−m
−r ≤ i0/n, and let `+ ∈ N

be minimal such that `+m
−r > (i0 + p− 1)/n. Then

`+ − `− <
mr

n
(p− 1) + 2 < mp.
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Now write

`− =
r∑
j=0

d−j m
j and `+ =

r∑
j=0

d+
j m

j .

Let moreover 0 ≤ s ≤ r − 1 be maximal such that d−s < d+
s and denote by ˆ̀ the minimal

number of the form

ˆ̀= d̂sm
s +

r∑
j=s+1

d+
j m

j

such that `− ≤ ˆ̀.

Next we denote by B1 the collection of intervals of the form

[`mk−r, (`+ 1)mk−r) where 0 ≤ k ≤ s− 1, and

` =

r∑
j=k+1

d+
j m

j + dmk with 0 ≤ d < d+
k .

Similarly, we denote by B2 the collection of intervals of the form

[`ms−r, (`+ 1)ms−r) where ` = ˆ̀+ dms with 0 ≤ d < d+
s − d̂s.

Then the intervals contained in B1 ∪ B2 form a disjoint cover of [ˆ̀m−r, `+m
−r).

Next we write

ˆ̀− `− =
s−1∑
j=0

d̂−j m
j

and denote by B3 the collection of intervals of the form

ˆ̀m−r − (`mk−r, (`+ 1)mk−r] where 0 ≤ k ≤ s− 1, and

` =
s−1∑

j=k+1

d̂−j m
j + dmk with 0 ≤ d < d̂−k .

Then the intervals contained in B3 form a disjoint cover of [`−m
−r, ˆ̀m−r).

Note in addition that by construction all of these intervals are also contained in B. Now
denote B̂ = B1∪B2∪B3 and define cB := 1 if B ∈ B̂ and B∩I 6= ∅ and cB := 0 if B ∈ B\B̂
or B ∈ B̂ and B ∩ I = ∅. Then ci =

∑
B3i cB for all i ∈ Γn and therefore

‖c‖B∗ ≤
∑
B∈B
|cB|

√
#Γn ∩B ≤

∑
B∈B̂

√
#Γn ∩B.
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Now note that√
#[`mk−r, (`+ 1)mk−r) ∩ Γn ≤ mk/2 for all 0 ≤ k ≤ r.

Therefore Lemma A.3.7 and the definition of B̂ imply that

‖c‖B∗ ≤
s−1∑
k=0

d+
km

k/2 + (d+
s − d̂s)ms/2 +

s−1∑
k=0

d̂−km
k/2

≤ (
√
m+ 1)

((
(d+
s − d̂s)ms +

s−1∑
k=0

d+
km

k
)1/2

+
(s−1∑
k=0

d̂−km
k
)1/2

)
= (
√
m+ 1)

(√
`+ − ˆ̀+

√
ˆ̀− `−

)
≤ (
√
m+ 1)

√
2(`+ − `−)

≤ (
√
m+ 1)

√
2mp. �

Remark A.3.9. Note that the estimate in the previous lemma can be improved to ‖c‖B∗ ≤
(
√
m+1)

√
2p if n is some power of m, because in this case, with the notation of the lemma,

we have `+ − `− = p. Also we have the obvious estimate ‖c‖B∗ ≤
√
p in case the family B

contains all intervals.

A.3.3. Estimate of multiscale distance functions

In order to estimate the multiscale distance function dn, we need to approximate Dkf by a
function of the formDkS∗nω, where ω ∈ RΓn is small with respect to the dual multiresolution
norm. As illustrated in Figure A.1, we will perform this approximation in two steps:
First, we will show that a spline of order k + 1 defined on a coarser grid than Γn can
be approximated well by a function of the form DkS∗nω in such a way that the dual
multiresolution norm of ω increases sufficiently slowly with the decreasing grid size (see
Lemma A.3.10). In the second step, we then approximate Dkf by a spline g of order k+1.
Balancing the grid on which g is defined with n, then gives us the behavior of dn claimed
in Proposition 2.4.1.
Lemma A.3.10. Let 1 ≤ q ≤ ∞, k ∈ N, β ∈ N0, and k ≥ β ≥ 0. Let also Γ ⊂ T be a
finite set such that

τmin := min {dist(x, y);x 6= y ∈ Γ} > 2k + 2β + 2

n
.

Denote
τmax := max {dist(x, y); (x, y) ⊂ T \ Γ} ,
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Coarse Grid

“Controllable”

(k+1) order B-Spline

k order B-SplineGrid Γn coefficients
error &

error

DkS*
nω =

Dk f

Figure A.1.: Idea for the proof of Proposition 2.4.1.

and assume that

g ∈ Sk+β+1(Γ;T) with

∫
T
g dx = 0,

and that B is m-regular. Then there exists c ∈ RΓn such that

‖g − (S∗nc)
(k−β)‖L2 ≤ C1n

−k−β‖g(k+β)‖L2 ,

‖c‖B∗ ≤ C2n
1/q−1(nτmax)(1/2−1/q)+(#Γ)1−1/q‖g(k+β)‖Lq ,

where constants C1, C2 > 0 only depend on k, q, and m.
Proof. Let h be the best approximation of g in span{ψk+β

i,n : i = 0, . . . , n − 1} in the L2

sense, see (2.22). Then we can write

h =
n−1∑
i=0

c̃iψ
k+β
i,n

for some coefficients c̃i ∈ R. Because the functions ψk+β
i,n are not linearly independent, the

coefficients c̃i are not unique. It is, however, possible to choose them in such a way that

n−1∑
i=0

c̃i = 0.
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Then

h =

n−1∑
i=0

c̃iψ
k+β
i,n =

n−1∑
i=0

c̃iQ
k+β
i . (A.16)

Now note that the fact
∫
T g dx = 0 implies that h is at the same time the best approximation

of g in Sk+β(Γn;T). Thus (A.16) shows that, actually, the coefficients c̃i are the coefficients
of the (k + β)-th order spline that approximates g best in the L2-sense. Thus it follows
from Proposition A.3.4 that

‖h− g‖L2 ≤ C1
‖g(k+β)‖L2

nk+β
.

Now let
ci := (−1)knk+β−1(Dk+β

− c̃)i, for i = 0, . . . , n− 1,

which implies that

h =
n−1∑
i=0

ciϕ
(k−β)
i,n = (S∗nc)

(k−β).

We will next derive an upper bound for ‖c‖B∗ .
Since h is the best approximation of g within Sk+β(Γn;T), it follows that

〈h,Qk+β
j 〉L2 = 〈g,Qk+β

j 〉L2

for all j. Applying r-th order finite differences to these vectors, we obtain that

Dr
−

((
〈h,Qk+β

j 〉L2

)
j

)
= Dr

−

((
〈g,Qk+β

j 〉L2

)
j

)
for all r. From this, we obtain that

〈h,Dr
1
n
,+
Qk+β
j 〉L2 = 〈g,Dr

1
n
,+
Qk+β
j 〉L2

for all j. Since (Dr
1
n
,+

)∗ = (−1)rDr
1
n
,−, this further implies that

〈Dr
1
n
,−h,Q

k+β
j 〉L2 = 〈Dr

1
n
,−g,Q

k+β
j 〉L2 (A.17)

for all j and all r. Next we note that

Dk+β+1
1
n
,− h =

n−1∑
i=0

(Dk+β+1
− c̃)iQ

k+β
i = (−1)kn1−k−β

n−1∑
i=0

(D−c)iQ
k+β
i . (A.18)
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Now let j/n ∈ Γn be such that j/n 6∈ Γ + (−(k + β)/n, (k + β + 1)/n) and let x ∈
supp(Qk+β

j ) = [j/n, (j + k + β)/n]. Then the fact that g is a polynomial of degree k + β
outside of Γ implies that

(Dk+β+1
1
n
,− g)(x) = 0.

As a consequence, we obtain from (A.17) with r = k + β + 1 and (A.18) that

0 = 〈Dk+β+1
1
n
,− g,Qk+β

j 〉L2 = (−1)kn1−k−β
n−1∑
i=0

(D−c)i〈Qk+β
i , Qk+β

j 〉L2 .

Since this holds for every j/n ∈ Γn with j/n 6∈ Γ + (−(k + β)/n, (k + β + 1)/n), it follows
from the properties of B-splines that

(D−c)j = 0

for all j such that j/n 6∈ Γ + (−(k + β)/n, (k + β + 1)/n).

Now denote by I ⊂ Γn the set of all points i/n for which i/n 6∈ Γ + (−(k + β)/n, (k + β +
1)/n). Then the set I consists of #Γ disjoint sets Ij ⊂ T, j = 1, . . . ,#Γ, of subsequent grid
points. The considerations above imply that for each of these sets Ij there exists ωj ∈ R
such that ci = ωj for i/n ∈ Ij . Therefore Lemma A.3.8 implies that

‖c‖B∗ ≤
#Γ∑
j=1

C|ωj |
√

#Ij ∩ Γn +
∑
i/n6∈I

|ci| (A.19)

for some constant C > 0 only depending on m. Now define

ti :=

1 if i/n 6∈ I = ∪jIj ,
C

1√
#Ij ∩ Γn

if i/n ∈ Ij for some j.

Then the right hand side term in (A.19) can also be written as a sum over all products
ti|ci|, i = 0, . . . , n− 1. Therefore

‖c‖B∗ ≤
n−1∑
i=0

ti|ci|.

Applying Hölder’s inequality gives

‖c‖B∗ ≤ ‖c‖q‖t‖q∗ = ‖c‖q
(

#Γn \ I + Cq∗
#Γ∑
j=1

(#Ij ∩ Γn)1−q∗/2
)1/q∗
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≤ ‖c‖q
(

2(k + β)#Γ + Cq∗
#Γ∑
j=1

(#Ij ∩ Γn)1−q∗/2
)1/q∗

for any 1 ≤ q ≤ ∞ and q∗ = q/(q − 1). Since 1 ≤ #Ij ∩ Γn ≤ nτmax for all j, this further
implies that

‖c‖B∗ ≤ ‖c‖q
(

2(k + β)#Γ + Cq∗#Γ(nτmax)(1−q∗/2)+
)1/q∗

≤ C‖c‖q(#Γ)1/q∗(nτmax)(1/q∗−1/2)+ = C‖c‖q(#Γ)1−1/q(nτmax)(1/2−1/q)+ . (A.20)

Now note that (A.17) implies that Dk+β
1/n,−h is the best approximating spline in the L2-sense

of Dk+β
1/n,−g. Thus the definition of c and Propositions A.3.1, A.3.2 and A.3.6 imply that

‖c‖q = nk+β−1‖Dk+β
− c̃‖q ≤ Cnk+β−1+1/q‖Dk+β

1/n,−h‖Lq

≤ Cnk+β−1+1/q‖Dk+β
1/n,−g‖Lq ≤ Cn

−1+1/q‖g(k+β)‖Lq .

Together with (A.20) this shows that

‖c‖B∗ ≤ C‖g(k+β)‖Lq(#Γ)1−1/qn1/q−1(nτmax)(1/2−1/q)+

for some constant C > 0. �
Proof (of Proposition 2.4.1). Assume first that p ≥ 2. Proposition A.3.4 applied with

u = f (k) ∈ Bs,p′

p,0 (T), m = k+ 1, and q = p implies for every λ ∈ N the existence of a spline
g ∈ Sk+1(Γλ;T) such that

‖f (k) − g‖L2 ≤ C
‖f‖

Bs,p
′

p,0

λs−k
,

‖g(k)‖Lp ≤ C
‖f‖

Bs,p
′

p,0

λs−2k
.

Next we obtain from Lemma A.3.10 the existence of a vector c ∈ RΓn such that

‖g − (S∗nc)
(k)‖L2 ≤ C ‖g

(k)‖L2

nk
,

‖c‖B∗ ≤ C‖g(k)‖Lpλ1/2n−1/2,

provided that λ is sufficiently large (here we use that, in the notation of the lemma, β = 0,
#Γ = λ and τmax = 1/λ). Combining these estimates, it follows that, for

t ≥ C‖f‖
Bs,p

′
p,0

n−1/2λ1/2−s+2k,
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we have
dn(t) ≤ C‖f‖

Bs,p
′

p,0

λ−s+k(1 + λkn−k).

Choosing
λ ∼ n1/(2s+1)(log n)−2r/(2s+1),

we obtain that

min
t≥0

(
dn(t) + (log n)r/2t1/2

)
= O

(
n−µ(log n)2rµ

)
with µ =

s− k
2s+ 1

as n→∞.

Now let p ≤ 2. Again applying Proposition A.3.4 with u = f (k) ∈ Bs,p′

p,0 (T) and m = k+ 1,
but now with q = 2 yields g ∈ Sk+1(Γλ;T) such that

‖f (k) − g‖L2 ≤ C
‖f‖

Bs,p
′

p,0

λs−k−1/p+1/2
,

‖g(k)‖L2 ≤ C
‖f‖

Bs,p
′

p,0

λs−2k−1/p+1/2
,

and we obtain, for λ sufficiently large, from Lemma A.3.10 the existence of c ∈ RΓn with

‖g − (S∗nc)
(k)‖L2 ≤ C ‖g

(k)‖L2

nk
,

‖c‖B∗ ≤ C‖g(k)‖L2λ1/2n−1/2.

This shows that, for
t ≥ C‖f‖

Bs,p
′

p,0

n−1/2λ1/p−s+2k,

we have
dn(t) ≤ C‖f‖

Bs,p
′

p,0

λ1/p−1/2−s+k(1 + λkn−k).

Choosing
λ ∼ n1/(2s+2−2/p)(log n)−2r/(2s+2−2/p),

we obtain that

min
t≥0

(
dn(t) + (log n)r/2t1/2

)
= O

(
n−µ(log n)2rµ

)
with µ =

s− k − 1/p+ 1/2

2(s+ 1− 1/p)
,

which proves the assertion.

The above argument holds also for f ∈W s,p
0 (T) if we replace ‖·‖

Bs,p
′

p,0

by ‖·‖W s,p
0

. �
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A.3.4. Over-smoothing

We need a simple upper bound on the multiresolution norm, which has a similar flavor as
Proposition 2.2.6.
Lemma A.3.11. Let B be a family of intervals, f ∈ C1(T), and F (t) :=

∫ t
0 f(x)dx. Then,

‖Snf‖B√
n
≤ ‖F‖W 1/2,∞ +

‖Df‖L∞
2n

.

Proof. Denote in the following

Bn :=
{

[i/n, j/n]; there exists B ∈ B such that B ∩ Γn = {i/n, . . . , j/n}
}
.

Then

‖Snf‖B√
n

= max
[i/n,j/n]∈Bn

√
n√

j − i+ 1

∣∣∣ 1
n

j∑
k=i

f
(k
n

)∣∣∣
≤ max

[i/n,j/n]∈Bn

{ √
n√

j − i+ 1

∣∣∣∫ (j+1)/n

i/n
f(x)dx

∣∣∣
+

√
n√

j − i+ 1

j∑
k=i

∣∣∣ 1
n
f
(k
n

)
−
∫ (k+1)/n

k/n
f(x)dx

∣∣∣}
≤ sup

s 6=t∈T

|F (t)− F (s)|√
t− s

+ max
[i/n,j/n]∈Bn

√
n√

j − i+ 1

j∑
k=i

∫ (k+1)/n

k/n

∣∣∣f(k
n

)
− f(x)

∣∣∣dx
≤ ‖F‖W 1/2,∞ + max

[i/n,j/n]∈Bn

√
n√

j − i+ 1

j − i+ 1

2n2
‖Df‖L∞

≤ ‖F‖W 1/2,∞ +
‖Df‖L∞

2n
. �

Proof (of Theorem 2.4.4). By C we denote a generic constant whose value may be different
from place to place. Let ε̃ > 0 be fixed and set

λ :=

⌊(
n

log n

) 1
2s+1

(log n)ε̃

⌋
.

Let Gλ(t) ∈ Sk+2(Γλ;T) be the approximation spline of F (t) :=
∫ t

0 f(x)dx as in Proposi-
tion A.3.4, and gλ(t) := G′λ(t). It follows that gλ ∈ Hk

0 (T), and that

‖Dl(f − gλ)‖Lq = ‖Dl+1(F −Gλ)‖Lq ≤ C
‖F‖W s+1,∞

λs−l
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≤ C
(

log n

n

) s−l
2s+1

(log n)−(s−l)ε̃‖f‖W s,∞ ,

and ‖Dkgλ‖L2 = ‖Dk+1Gλ‖L2 ≤ Cλk−s‖F‖W s+1,∞

≤ C
(

n

log n

) k−s
2s+1

(log n)(k−s)ε̃‖f‖W s,∞ .

The second relation implies that

d̃n(t) := min
‖w‖B∗≤t

‖DkS∗nw −Dkgλ‖L2 ≤ d̃n(0) = ‖Dkgλ‖L2

≤ C
(

n

log n

) k−s
2s+1

(log n)(k−s)ε̃‖f‖W s,∞ (A.21)

for every t ≥ 0. By Proposition A.3.4 and Lemma A.3.11, we have

‖Snf − Sngλ‖B ≤
√
n‖F −Gλ‖W 1/2,∞ + o(1)

≤ C√n‖f‖W s,∞

λs+1/2
≤ C(log n)

1
2
−(s+ 1

2
)ε̃‖f‖W s,∞ .

for sufficiently large n. Consequently

‖Sngλ − yn‖B ≤ ‖Sngλ − Snf‖B + ‖Snf − yn‖B
≤ C(log n)

1
2
−(s+ 1

2
)ε̃‖f‖W s,∞ + ‖ξn‖B.

(A.22)

Set γ̃n := C0
√

log n < γn with some C0 > σ
√

5 + 2k/d. Then ‖ξn‖B ≤ γ̃n, together
with (A.22), implies that ‖Sngλ−yn‖B ≤ γn for large enough n. In such case we can apply
Theorem 2.3.3, but with f replaced by its approximation gλ, and obtain the estimate

‖Dl(f̂γn − gλ)‖Lq ≤ C max

{
γ2ϑ
n

nϑ
min
t≥0

(
d̃n(t) + (γnt)

1/2
)1−2ϑ

,

γn

n1/2
,

1

nϑ′
min
t≥0

(
d̃n(t) + (γnt)

1/2
)}

,

with ϑ = (k− l)/(2k+ 1) and ϑ′ = 2k(k− l)/(2k+ 1). By (A.21), this further implies that,
for sufficiently large n, the estimate

‖Dl(f̂γn − gλ)‖Lq

≤C max

{
(log n)

s−l
2s+1

+ε

n
s−l
2s+1

‖f‖
2l+1
2k+1

W s,∞ ,
(log n)r

n1/2
,
(log n)(k−s)ε̃− k−s

2s+1

n
s−l
2s+1

+ϑ 4ks−1
2s+1

‖f‖W s,∞

}

≤C(log n)
s−l
2s+1

+εn−
s−l
2s+1 ‖f‖

2l+1
2k+1

W s,∞ ,
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with ε = (2l+1)(k−s)ε̃+(2r−1)(k−l)
2k+1 > (2r−1)(k−l)

2k+1 . Note that limn→∞ P {‖ξn‖B > γ̃n} = 0 by
Proposition 2.2.4. Thus we obtain that

‖Dl(f̂γn − f)‖Lq ≤ ‖Dl(f̂γn − gλ)‖Lq + ‖Dl(gλ − f)‖Lq

≤ C(log n)
s−l
2s+1

+εn−
s−l
2s+1 ‖f‖

2l+1
2k+1

W s,∞ + C(log n)
s−l
2s+1

−(s−l)ε̃n−
s−l
2s+1 ‖f‖W s,∞

≤ C(log n)
s−l
2s+1

+εn−
s−l
2s+1 max{1, ‖f‖W s,∞}

almost surely as n→∞.

If p(t) := P {‖ξn‖B ≤ t}, it follows that for n sufficiently large,

E
[
‖Dl(f̂γn − f)‖Lq

]
≤ P {‖ξn‖B ≤ γ̃n}C(log n)

s−l
2s+1

+εn−
s−l
2s+1 max{1, ‖f‖W s,∞}

+

∫ ∞
γ̃n

sup
{
‖Dl(f̂γn − f)‖L∞ : ‖ξn‖B = t

}
dp(t)

≤ C(log n)
s−l
2s+1

+εn−
s−l
2s+1 max{1, ‖f‖W s,∞}

+

∫ ∞
γ̃n

sup
{
‖Dl(f̂γn − f)‖L∞ : ‖ξn‖B = t

}
dp(t).

As in the proof of Theorem 2.3.5, we see that∫ ∞
γ̃n

sup
{
‖Dl(f̂γn − f)‖L∞ : ‖ξn‖B = t

}
dp(t) ≤ Cn 2k+5d

2d γ̃n exp

(
− γ̃2

n

2σ2

)
,

which tends to zero faster than (log n)(s−l)/(2s+1)+εn−(s−l)/(2s+1) as n→∞.
It is easy to see that the above argument also holds for f ∈ Bs,p′

∞,0(T) with 1 ≤ p′ ≤ ∞.
This completes the proof. �

A.4. Results for penMIND

In what follows we collect all the missing proofs of the results about the penMIND estima-
tor, including Theorems 2.5.1, 2.5.3, Corollary 2.5.5, and Proposition 2.5.8.
Proof (of Theorem 2.5.1). The fact that f̂α solves (2.27) implies that

‖Snf̂α − yn‖B +
α

2
‖Dkf̂α‖2L2 ≤ ‖Snf − yn‖B +

α

2
‖Dkf‖2L2 .
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Consequently,

1

2
‖Dkf̂α −Dkf‖2L2 =

1

2
‖Dkf̂α‖2L2 −

1

2
‖Dkf‖2L2 − 〈f, f̂α − f〉Hk

0

≤ 1

α

(
‖Snf − yn‖B − ‖Snf̂α − yn‖B

)
+ min

t
min
‖ω‖B∗≤t

(
〈S∗nω − f, f̂α − f〉Hk

0
− 〈S∗nω, f̂α − f〉Hk

0

)
≤ 1

α

(
‖ξn‖B − ‖Snf̂α − yn‖B

)
+ min

t
min
‖ω‖B∗≤t

(
‖DkS∗nω −Dkf‖L2‖Dkf̂α −Dkf‖L2

+ ‖ω‖B∗‖Snf̂α − Snf‖B
)

≤ 1

α

(
‖ξn‖B − ‖Snf̂α − yn‖B

)
+ min

t

(
dn(t)‖Dkf̂α −Dkf‖L2 + t‖Snf̂α − Snf‖B

)
≤ 1

α
‖ξn‖B −

1

α

(
‖Snf̂α − Snf‖B − ‖Snf − yn‖B

)
+ dn

( 1

2α

)
‖Dkf̂α −Dkf‖L2 +

1

2α
‖Snf̂α − Snf‖B

=
2

α
‖ξn‖B + dn

( 1

2α

)
‖Dkf̂α −Dkf‖L2 − 1

2α
‖Snf̂α − Snf‖B.

From this we further obtain the estimate

‖Dkf̂α −Dkf‖L2 ≤ dn
( 1

2α

)
+

√
dn

( 1

2α

)2
+

4

α
‖ξn‖B −

1

α
‖Snf̂α − Snf‖B

≤ dn
( 1

2α

)
+

√
2dn

( 1

2α

)2
+

8

α
‖ξn‖B −

1√
α
‖Snf̂α − Snf‖1/2B

≤ (1 +
√

2)dn

( 1

2α

)
+

2
√

2√
α
‖ξn‖1/2B −

1√
α
‖Snf̂α − Snf‖1/2B .

(A.23)

We now recall the interpolation inequality from Theorem 2.2.7

‖Dlw‖Lq ≤ C1 max
{‖Snw‖2ϑlB

nϑl
‖Dkw‖1−2ϑl

L2 ;
‖Snw‖B
n1/2

;
‖Dkw‖L2

nϑ
′
l

}
, for n ≥ n0. (A.24)

We apply this inequality to w = f̂α − f , and treat each term in the maximum separately.

For the first term in the r.h.s. of (A.24), it follows from Young’s inequality and (A.23) that

‖Snf̂α − Snf‖2ϑlB
nϑl

‖Dkf̂α −Dkf‖1−2ϑl
L2
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=
α2ϑl

nϑl

(( 1√
α
‖Snf̂α − Snf‖1/2B

) 4ϑl
1+2ϑl ‖Dkf̂α −Dkf‖

1−2ϑl
1+2ϑl

L2

)1+2ϑl

≤ α
2ϑl

nϑl

(
4ϑl

1 + 2ϑl

1√
α
‖Snf̂α − Snf‖1/2B +

1− 2ϑl
1 + 2ϑl

‖Dkf̂α −Dkf‖L2

)1+2ϑl

≤ α
2ϑl

nϑl

(
(1 +

√
2)dn

( 1

2α

)
+

2
√

2√
α
‖ξn‖1/2B

)1+2ϑl

≤C2

(
α2ϑldn( 1

2α)1+2ϑl

nϑl
+
‖ξn‖1/2+ϑl

B
α1/2−ϑlnϑl

)
.

For the second term in the r.h.s. of (A.24), we have by (A.23) that

‖Snf̂α − Snf‖B
n1/2

≤n−1/2

(
(1 +

√
2)
√
αdn

( 1

2α

)
+ 2
√

2‖ξn‖1/2B
)2

≤C3

(
αdn( 1

2α)2

√
n

+
‖ξn‖B√

n

)
.

And for the last term in the r.h.s. of (A.24), we have again by (A.23) that

‖Dkf̂α −Dkf‖L2

nϑ
′
l

≤n−ϑ′l
(

(1 +
√

2)dn

( 1

2α

)
+

2
√

2√
α
‖ξn‖1/2B

)
≤C4

(
dn( 1

2α)

nϑ
′
l

+
(‖ξn‖B)1/2

nϑ
′
l
√
α

)
.

Combining the three estimates above proves the assertion. �
Proof (of Theorem 2.5.3). We always assume that n is large enough, i.e. n ≥ max{n0, n1}.
Note that for i = 1, 2, 3,

α sup
f∈Cn

dn(1/2α)2 ≤ σ
√

log n ⇐⇒ sup
f∈Cn

Φi,n(α) ≤ Ψi,n(α). (A.25)

Let us introduce the following notation

αor := arg min
α

max
i∈{1,2,3}

sup
f∈Cn

{
Φi,n(α) + Ψi,n(α)

}
,

α∗ := max
{
α ∈ Aκ : sup

f∈Cn
‖Dl(f̂α − f)‖Lq ≤ 2C0 max

i∈{1,2,3}
Ψi,n(α)

}
,

and α∗∗ := max
{
α ∈ Aκ : α sup

f∈Cn
dn(1/2α)2 ≤ σ

√
log n

}
.

If αor ≤ α∗∗, then for i = 1, 2, 3,

sup
f∈Cn

Φi,n(αor) + Ψi,n(αor) ≥ Ψi,n(α∗∗).
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If α∗∗ < αor < α∗∗κ, then for i = 1, 2, 3,

sup
f∈Cn

Φi,n(αor) + Ψi,n(αor) ≥ Ψi,n(α∗∗κ) ≥ κ−1/2Ψi,n(α∗∗).

If α∗∗κ ≤ αor, then for i = 1, 2, 3,

sup
f∈Cn

Φi,n(αor) + Ψi,n(αor) ≥ sup
f∈Cn

Φi,n(α∗∗κ) ≥ Ψi,n(α∗∗κ) ≥ κ−1/2Ψi,n(α∗∗).

Combining all three cases, we obtain

max
i∈{1,2,3}

Ψi,n(α∗∗) ≤ κ1/2 max
i∈{1,2,3}

sup
f∈Cn

{
Φi,n(αor) + Ψi,n(αor)

}
. (A.26)

From the definition of α∗∗ and (A.25), it follows that

sup
f∈Cn

Φi,n(α∗∗) ≤ Ψi,n(α∗∗) =⇒ sup
f∈Cn

Φi,n(α∗∗) + Ψi,n(α∗∗) ≤ 2Ψi,n(α∗∗).

Then we obtain by Theorem 2.5.1 that

sup
f∈Cn
‖Dl(f̂α∗∗ − f)‖Lq ≤ sup

f∈Cn
‖Dl(f̂α∗∗ − f)‖Lq

≤ C0 sup
f∈Cn

max
i∈{1,2,3}

{
Φi,n(α∗∗) + Ψi,n(α∗∗)

}
≤ 2C0 max

i∈{1,2,3}
Ψi,n(α∗∗).

It follows that α∗∗ ≤ α∗. This together with the definition of α∗ implies that for for every
α̃ ≤ α ≤ α∗∗,

‖Dl(f̂α − f̂α̃)‖Lq ≤ sup
f∈Cn
‖Dl(f̂α − f)‖Lq + sup

f∈Cn
‖Dl(f̂α̃ − f)‖Lq

≤ 2C0 max
i∈{1,2,3}

Ψi,n(α) + 2C0 max
i∈{1,2,3}

Ψi,n(α̃)

≤ 4C0 max
i∈{1,2,3}

Ψi,n(α̃). (A.27)

Note also that the condition (2.34) implies α∗∗ < n, so we obtain α∗∗ ≤ αL.

Therefore,

sup
f∈Cn
‖Dl(f̂αL − f)‖Lq

≤‖Dl(f̂αL − f̂α∗∗)‖Lq + sup
f∈Cn
‖Dl(f̂α∗∗ − f)‖Lq

≤ 4C0 max
i∈{1,2,3}

Ψi,n(α∗∗) + 2C0 max
i∈{1,2,3}

Ψi,n(α∗∗) [by (A.27) and α∗∗ ≤ α∗]

≤ 6C0 max
i∈{1,2,3}

Ψi,n(α∗∗)

≤ 6κ1/2C0 max
i∈{1,2,3}

sup
f∈Cn

{
Ψi,n(αor) + Ψi,n(αor)

}
[by (A.26)]. �
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Proof (of Corollary 2.5.5). For the choice of θ in (2.29), we have by Proposition 2.2.4 that

P
{
‖ξn‖B > θσ

√
log n

}
→ 0 as n→∞,

This together with Theorem 2.5.3 implies that the assertion holds almost surely.

We next prove that the assertion holds in expectation. Let p(t) := P {‖ξn‖B ≤ t}. It follows
from Theorem 2.5.3 that

sup
f∈Cn

E
[
‖Dl(f̂α − f)‖Lq

]
≤ 6
√
κC0P

{
‖ξn‖B ≤ θσ

√
log n

}
min
α

max
i∈{1,2,3}

sup
f∈Cn

{
Φi,n(α) + Ψi,n(α)

}
+ sup
f∈Cn

∫ ∞
θσ
√

logn
sup

{
‖Dl(f̂α − f)‖Lq ; ‖ξn‖B = t

}
dp(t). (A.28)

As in the proof of Theorem 2.3.5, we have for the second term in (A.28) that

sup
f∈Cn

∫
θσ
√

logn
sup

{
‖Dl(f̂α − f)‖Lq ; ‖ξn‖B = t

}
dp(t)

≤ Cn 2k+5d
2d

(
sup
f∈Cn
‖f‖L∞ + θσ

√
log n

)
e−

θ2 logn
2 .

By the choice of θ in (2.29), the upper bound above tends to zero faster than 1/
√
n as

n→∞. Note, on the other hand, that the first term in (A.28) goes to zero no faster than√
log n/n. This concludes the proof. �

Proof (of Proposition 2.5.8). By C we denote a generic constant whose value may change
from place to place. Let us set

λ :=

⌊(
n

log n

) 1
2s+1

⌋
.

As in the proof of Theorem 2.4.4, there is gλ ∈ Sk+1(Γλ;T) ∩Hk
0 (T) such that

‖Dl(f − gλ)‖Lq ≤ C
(

log n

n

) s−l
2s+1

‖f‖W s,∞ , (A.29a)

‖Dkgλ‖L2 ≤ C
(

n

log n

) k−s
2s+1

‖f‖W s,∞ , (A.29b)

and ‖Snf − Sngλ‖B ≤ C
√

log n‖f‖W s,∞ . (A.29c)

We apply Theorem 2.5.1, but with f replaced by its approximation gλ, and obtain that
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‖Dl(f̂α − gλ)‖Lq ≤ C max

{
α2ϑd̃n( 1

2α)1+2ϑ

nϑ
+
‖ξ̃n‖1/2+ϑ

B
α1/2−ϑnϑ

;

αd̃n( 1
2α)2

√
n

+
‖ξ̃n‖B√

n
;
d̃n( 1

2α)

nϑ′
+

(‖ξ̃n‖B)1/2

nϑ′
√
α

}
,

with ϑ = (k − l)/(2k + 1) and ϑ′ = 2k(k − l)/(2k + 1). Here for every t ≥ 0

d̃n(t) := min
‖w‖B∗≤t

‖Dk(S∗nw − gλ)‖L2

≤d̃n(0) = ‖Dkgλ‖L2 ≤ C
(

n

log n

) k−s
2s+1

‖f‖W s,∞ [by (A.29b)],

and

‖ξ̃n‖B :=‖yn − Sngλ‖B
≤‖yn − Snf‖B + ‖Snf − Sngλ‖B ≤ ‖ξn‖B + C

√
log n‖f‖W s,∞ [by (A.29c)].

If ‖ξn‖B ≤ θσ
√

log n with some θ >
√

6 + 2k and

α ∼ n−
2(k−s)
2s+1 (log n)

2(k−s)
2s+1

+ 1
2

then it implies that, for sufficiently large n,

‖Dl(f̂α − gλ)‖Lq

≤C max

{
(log n)

s−l
2s+1

n
s−l
2s+1

‖f‖
2l+1
2k+1

W s,∞ ,
( log n

n

)1/2
,
(log n)−

k−s
2s+1

n
s−l
2s+1

‖f‖W s,∞

}

≤C
( log n

n

) s−l
2s+1 ‖f‖

2l+1
2k+1

W s,∞ .

Based on it and (A.29a), we obtain

‖Dl(f̂α − f)‖Lq ≤ ‖Dl(f̂α − gλ)‖Lq + ‖Dl(gλ − f)‖Lq

≤ C(log n)
s−l
2s+1n−

s−l
2s+1 ‖f‖

2l+1
2k+1

W s,∞ + C(log n)
s−l
2s+1n−

s−l
2s+1 ‖f‖W s,∞

≤ C(log n)
s−l
2s+1n−

s−l
2s+1 max{1, ‖f‖W s,∞}.

Note that limn→∞ P
{
‖ξn‖B > θ

√
log n

}
= 0 by Proposition 2.2.4, so the above error bound

holds almost surely as n→∞.

If p(t) := P {‖ξn‖B ≤ t}, it follows that for n sufficiently large,

E
[
‖Dl(f̂γn − f)‖Lq

]
≤ P

{
‖ξn‖B ≤ θσ

√
log n

}
C(log n/n)

s−l
2s+1 max{1, ‖f‖W s,∞}
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+

∫ ∞
θσ
√

logn
sup

{
‖Dl(f̂γn − f)‖L∞ : ‖ξn‖B = t

}
dp(t)

≤ C(log n/n)
s

2s+1 max{1, ‖f‖W s,∞}

+

∫ ∞
θσ
√

logn
sup

{
‖Dl(f̂γn − f)‖L∞ : ‖ξn‖B = t

}
dp(t).

As in the proof of Theorem 2.3.5, we see that∫ ∞
θσ
√

logn
sup

{
‖Dl(f̂γn − f)‖L∞ : ‖ξn‖B = t

}
dp(t) ≤ Cn 2k+5d

2d

√
log n exp

(
−θ

2 log n

2

)
,

which tends to zero faster than (log n/n)(s−l)/(2s+1) as n→∞. Thus, we have

E
[
‖Dl(f̂γn − f)‖Lq

]
= O

((
log n/n

) s−l
2s+1

)
.

It is clear that the above argument also holds for f ∈ Bs,p′

∞,0(T) with 1 ≤ p′ ≤ ∞. �
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B.1. Interpolation inequality

Proof (of Lemma 3.2.1). The proof essentially follows that of Theorem 2.2.7, but we re-
place the usage of the Gagliardo-Nirenberg interpolation inequality (see Lemma A.1.4) by
that of the interpolation inequality between homogeneous Sobolev norms

‖f‖
H
α(1−θ)+βθ
0

≤ ‖f‖1−θHα
0
‖f‖θ

Hβ
0

for α, β ∈ R and θ ∈ (0, 1),

which follows from the Hölder’s inequality, and the definition of such norms in (2.7).

The detail goes as follows. Let C be a generic constant, which depends at most on s, d,
and B. Let also k := bsc. Consider first the case that [0, 1]d is not regular. It follows from

‖f‖Hk
0
≤ ‖f‖1−

k
s

L2 ‖f‖
k
s
Hs

0

and (A.5) that

‖f‖L2 ≤ C max
{
n−

s
2s+d ‖Snf‖

2s
2s+d

B ‖f‖
d

2s+d

Hs
0
, n
− 2k(s−r)
d(2k+d) ‖f‖Hs

0

}
.

This together with

‖f‖Hr
0
≤ ‖f‖1−

r
s

L2 ‖f‖
r
s
Hs

0

further implies that

‖f‖Hr
0
≤ C max

{
n−

s−r
2s+d ‖Snf‖

2(s−r)
2s+d

B ‖f‖1−
2(s−r)
2s+d

Hs
0

, n
− 2k(s−r)
d(2k+d) ‖f‖Hs

0

}
.

Next we consider the other case that [0, 1]d is regular. As the argument for (A.7), we obtain
that

‖f‖Hr
0
≤ ‖f‖1−

r
k

L2 ‖f‖
r
k

Hk
0
≤ C‖f‖L∞ ≤ Cn−

1
2 ‖Snf‖B.

Combining the above two cases, we conclude the proof. �
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B.2. General analysis

Proof (of Theorem 3.2.6). The almost sure convergence result comes from Lemma 3.2.5
and the fact from Proposition 2.2.4 that

P {‖ξn‖B > γn} → 0 as n→∞,

for the choice of γn in (3.4).

We now consider the convergence rate in expectation. Let h ∈ C∞0 (Td) satisfy that h(0) = 1
and supph ⊂ [−1/2, 1/2]d. For n ∈ N, x ∈ Γn, we further introduce the functions hn,x :
Td → R by

hn,x(z) = h(n1/d(z − x)) for x− 1/2 ≤ z ≤ x+ 1/2.

Note that C∞0 (Td) ⊂ Ran(T ). Thus, for fixed n ∈ N and x ∈ Γn, there exists a function g
such that

Tg =
∑
x∈Γn

yn(x)hn,x =
∑
x∈Γn

(
(Tf)(x) + ξn(x)

)
hn,x.

Since Tng = yn, we have by construction of MIND that

‖f̂γn‖Hk
0
≤ ‖g‖Hk

0
. (B.1)

Moreover, from the estimate (3.2) and the fact that the functions hn,x, x ∈ Γn have pairwise
disjoint supports, we obtain that

‖g‖Hk
0
≤C‖Tg‖

Hk+β
0

= C
∑
x∈Γn

|(Tf)(x) + ξn(x)|‖hn,x‖Hk+β
0

≤Cn 2k+2β−d
2d ‖Tnf + ξn‖1‖h‖Hk+β

0

≤Cn 2k+2β+d
2d

(
‖Tf‖L∞ + ‖ξn‖∞

)
‖h‖

Hk+β
0

≤Cn 2k+2β+d
2d

(
‖Tf‖

H1+β
0

+ ‖ξn‖∞
)
‖h‖

Hk+β
0

≤Cn 2k+2β+d
2d

(
‖f‖H1

0
+ ‖ξn‖B

)
‖h‖

Hk+β
0

. (B.2)

The last second inequality above is due to the Sobolev embedding theorem (Adams and
Fournier, 2003, Theorem 4.12) and the Poincaré inequality (Ziemer, 1989, Theorem 4.4.2).
By the same argument, we can also derive that

‖f̂γn − f‖L2 ≤ ‖f̂γn‖L2 + ‖f‖L2 ≤ C
(
‖f̂γn‖Hk

0
+ ‖f‖H1

0

)
.

Together with (B.1) and (B.2), it further implies

‖f̂γn − f‖L2 ≤Cn 2k+2β+d
2d

(
‖f‖H1

0
+ ‖ξn‖B

)
‖h‖

Hk+β
0

+ C‖f‖H1
0
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≤Cn 2k+2β+d
2d

(
‖f‖H1

0
+ ‖ξn‖B

)
‖h‖

Hk+β
0

. (B.3)

By Lemma 3.2.5, we can estimate the L2-risk of MIND, for n large enough,

E
[
‖f̂γn − f‖L2

]
≤ P {‖ξn‖B ≤ γn}Cn−µ(1−2ϑ)−ϑ(log n)2rϑ

+

∫ ∞
γn

sup
{
‖f̂γn − f‖L2 ; ‖ξn‖ = t

}
dp(t), (B.4)

with p(t) := P {‖ξn‖B ≤ t}. Using (B.3), we derive an upper bound for the second term in
the right hand side of (B.4)∫ ∞

γn

sup
{
‖f̂γn − f‖L2 ; ‖ξn‖ = t

}
dp(t) ≤Cn 2k+2β+d

2d

∫ ∞
γn

(
‖f‖H1

0
+ t
)
‖h‖

Hk+β
0

dp(t)

≤Cn 2k+2β+5d
2d γne

− γ2n
2σ2 [by Proposition 2.2.4].

The choice of γn in (3.4) implies such an estimate is of order n−1/2−ε for some ε > 0,
which goes to 0 than the first term in the right hand side of (B.4) as n → ∞. It follows
immediately that for n sufficiently large

E
[
‖f̂γn − f‖L2

]
≤ Cn−µ(1−2ϑ)−ϑ(log n)2rϑ. �

B.3. Concrete rates for d = 1

Proof (of Theorem 3.3.1). Applying Proposition A.3.4 with u = h(k−β), q = 2 and m =
k + β + 1 yields for every λ ∈ N the existence of a spline g ∈ Sk+β+1(Γλ;T) such that

‖g − h(k−β)‖ ≤ C
‖h‖Hs

0

λs−k+β
,

‖g(k+β)‖ ≤ C
‖h‖Hs

0

λs−2k
.

From Lemma A.3.10 with q = 2, #Γ = λ and τmax = 1/λ, it follows that there exists a
vector c ∈ RΓn such that

‖g − (S∗nc)
(k−β)‖L2 ≤ Cn−k−β‖g(k+β)‖L2 ,

‖c‖B∗ ≤ Cλ1/2n−1/2‖g(k+β)‖L2 ,
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if n is sufficiently large. Combining these estimates, we have, for

t ≥ Cλ1/2−s+2kn−1/2‖h‖Hs
0
≥ Cλ1/2n−1/2‖g(k+β)‖L2 ≥ ‖c‖B∗

it holds that

dn(t;T ) ≤‖T ∗S∗nc− T ∗h‖Hk
0
≤ ‖S∗nc− h‖Hk−β

0
[since T ∗ is β-smoothing]

≤‖(S∗nc)(k−β) − g‖L2 + ‖g − h(k−β)‖L2

≤Cn−k−β‖g(k+β)‖L2 + Cλ−s+k−β‖h‖Hs
0

≤Cλ−s+k−β
(
1 + (λ/n)k+β

)
‖h‖Hs

0
.

Choosing
λ ∼ n1/(2s+4β+1)(log n)−2r/(2s+4β+1),

we obtain that

min
t≥0

(
dn(t;T ) + (log n)r/2t1/2

)
= O

(
n−µ(log n)2rµ

)
with µ =

s− k + β

2s+ 4β + 1
(B.5)

as n→∞.

Note that the fact that T and T ∗ are β-smoothing implies that C∞0 (T) ⊂ Ran(T ). Thus,
the assertion follows by (B.5) and Theorem 3.2.6. �
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List of Symbols

#S The number of elements in set S

|S| The Lebesgue measure of set S

Γn The regular grid on [0, 1]d, page 11

N0 The set of non-negative integers, i.e. N ∪ {0}
‖·‖B The multiresolution norm w.r.t. the system B of cubes, page 16

‖·‖TV The total variation (TV) semi-norm, page 67

‖·‖Hk
0
, ‖·‖

Wk,p
0

The homogeneous Sobolev norm, page 15

‖·‖Lp The Lp-norm w.r.t. the Lebesgure measure

‖·‖p The `p-norm w.r.t. the counting measure

‖·‖W s,p , ‖·‖
Bs,p

′
p

The Besov/Sobolev norms, page 14

Ran(T ) The range of operator T

Td The d-dimensional torus Rd/Zd

Dlf The partial weak derivatives
(
Dαf

)
|α|=l, α∈Nd0

of order l ∈ N0 for

function f , page 13

dn(t) The multiscale distance function for nonparametric regression, page 22

dn(t;T ) The multiscale distance function for statistical inverse problems, page 61

Hs
0(Td) The Sobolev space W s,2

0 (Td), page 15

Sn The point evaluation (or the sampling operator) on the regular grid
Γn, page 12

Tn The operator Sn ◦ T , page 59

W s,p(Td), Bs,p′
p (Td) The Sobolev/Besov spaces, page 14

W s,p
0 (Td), Bs,p′

p,0 (Td) The subspace of Sobolev/Besov spaces consisting of functions with
zero mean, page 15
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