The Effect of Finite Temperature
on the Jamming Transition

Dissertation zur Erlangung des
mathematisch-naturwissenschaftlichen Doktorgrades
“Doctor rerum naturalium” der

Georg—August—Universitiat Gottingen

im Promotionsprogramm der International Max Planck Research
School “Physics of Biological and Complex Systems” der Gottingen
Graduate School for Neurosciences, Biophysics, and Molecular
Biosciences

vorgelegt von
Clemens N. Bulfs
aus Heidelberg

Gottingen, 2016






Examination board

Prof.

Prof.

Dr.

Prof.

Prof.

Prof.

Oral

Dr. Oskar Hallatschek, referee, main supervisor and member
of the thesis committee.

Biological Physics and Evolutionary Dynamics Group
University of California, Berkeley

Dr. Florentin Worgotter, referee and member of the thesis
committee.

Computational Neuroscience
Georg-August-Universitdt Gottingen

Claus Heussinger, second supervisor and member of the thesis
committee.

Institute for Theoretical Physics
Georg-August-Universitat Gottingen

Dr. Stephan Herminghaus

Dynamics of Complex Fluids
Max Planck Institute for Dynamics and Self-Organization

Dr. Marc Timme

Network Dynamics
Max Planck Institute for Dynamics and Self-Organization

Dr. Marcus Miiller

Computational Soft Condensed Matter
Georg-August-Universitdt Gottingen

examination: 19. June 2015



I confirm that I have written this thesis independently and with no other
sources and aids than quoted.

Gottingen, 2016



Abstract

We study the effect of finite temperatures on spring networks obtained from
amorphous, jammed packings of repulsive spheres. By means of a Monte Carlo
Metropolis scheme, we analyse this two-dimensional model of an amorphous solid
with fixed connectivity. Those spring networks act as a general model system for
the thermal behaviour of amorphous solid materials. A particularly interesting
feature of the model system is that it contracts with increasing temperature and
starts to collapse when crossing a certain threshold temperature.

Our observables include thermal expansion, bulk and shear modulus and the
localisation length of particles in response to changes in temperature, pressure
and distance from the isostatic point. We find scaling relations which strongly
support theoretical considerations of the model system based on the analysis of
its soft modes and their non-affine contributions.

Using these results we are able to construct the phase diagram for the system so
that we can understand the parameters which lead to collapse.

In order to complement the research on spring networks, we investigate the pro-
cesses in jammed packings. One would expect that these packings expand with
increasing temperature. Counterintuitively, the packings contract similarly to the
spring networks in a regime of low temperatures and far away from isostaticity.
Based on this evidence we conjecture that spring networks might be seen as a
higher level of abstraction with regard to the corresponding sphere packings.
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1 Introduction

In the following, we will give a short introduction to jamming because the concept
is constitutive to the work presented in this thesis. Having introduced jamming,
we will give an overview on glasses and the glass transition as well as the phe-
nomenon of negative thermal expansion.

1.1 Jamming

Granular materials or fragile matter such as sand exhibit a surprising and fas-
cinating property: they jam. Jamming occurs with certain materials at the
transition from a flowing state to a rigid one. Increasing compression or lowering
the applied shear stress induces this transition by bringing the constituents of
the material into contact. At a certain point the constituents do not have the
possibility of rearranging and get stuck [1|. In this way they become solid. The
rigid state of the material is characterized by its elastic properties such as a finite
bulk and shear modulus [2]. The jamming transition is exciting because both the
rigid and the flowing state are disordered in their microscopic structure. Further
examples of materials and phenomena to which the theory applies are for instance
foams, such as shaving foam, toothpaste, mayonnaise and all types of granular
media like cereals and coffee beans among others as well as bacteria in a crack
or crowds of panicking people trying to pass a bottleneck [3]. Figure 1.1 shows
some of these examples.

Jamming is a path to rigidity different from a common thermodynamic or chem-
ical first order phase transition [5]. Usually matter goes from liquid to solid
involving the emission of latent heat [6]. This solid-fluid transition is driven by
temperature, and one speaks of a change from one thermodynamic ground state
to another. The liquid phase is governed by unordered motions while the solid
phase is usually highly ordered and the dynamics are constrained because the
constituents form chemical bonds. In the jamming transition, in contrast, the
dynamics of the constituting particles get more and more constrained until they
get stuck. They are trapped in a small region of phase space. This marks the
flowing-rigid transition in jamming. How particles get stuck will be discussed in
greater detail in Section 1.1.1. The jammed material can be made to flow again



1 Introduction

Figure 1.1: Examples of jamming in everyday life. Top left: marbles in
a box representing a packing of hard spheres. By pure accident the
marbles are of glass themselves. Top right: shaving foam maintain-
ing a static structure. Bottom left: cereals stuck in a bag. Even
though a single corn flake would fit through the gap nothing flows
out of the bag. Shaking — a mesoscopic temperature — can make this
jammed systems flow again. Bottom right: cars stuck in a traffic
jam [4] in Bangkok (Photo from wikipedia.org, CC BY 2.0).

by increasing stress in the case of foams or by reducing the system’s pressure in
the case of colloidal suspensions |7, 8.

The resulting rigid structure is disordered. It is impossible to tell from the order
of the material if it is in the jammed or flowing regime. This particular differ-
ence comes up when we compare the microscopic picture close to the jamming
transition in the flowing phase to the one in the freshly jammed system. This
is in large contrast to the chemical solid-fluid transition where the solid phase is
highly ordered and easily discernible. Moreover, the jamming transition does not
involve emission of latent heat.

Let us first deal with compression that governs the jamming transition. Together
with the effect of shear stress this is what has been mainly investigated in the

10



1.1 Jamming

field looking into to many different types of jammed systems [9,10] It is the aim
of this work to shed further light on the influence of temperature [11,12].

1.1.1 Frictionless Soft Spheres

Historically speaking, jamming describes the athermal, zero-load phenomena of
granular materials [5]. Sometimes phenomena induced by load or temperature
are lumped into the term as well and we will consider these cases in Section 1.1.6.
Yet, at this point we will stick with the historical and more strict definition.

Jamming is conceptually most easily understood and established by the model of
soft frictionless spheres which interact repulsively on contact, 7.e. through finite-
ranged forces [13|. This is the case in a two-dimensional box with a fixed area
which is filled with round particles and where thermal fluctuations are turned
off. Here softness is approximated by the possibility of spheres to overlap, which
involves repulsion, but does not cause deformation. Imagine a two-dimensional
volume with area A that is filled with a number N; of circles of radius r; and a
number N, of circles with radius ro. We fill the volume bi-disperse — with particles
of two different sizes — to avoid crystallization in the process. This allows us to
define the packing fraction or gas fraction ¢ of the system as the ratio of the
"filled" area over the total area:

TN} + wNor3

¢ A

(1.1)
N is the total number of spheres N = N; + Ny, with usually Ny = Ny. The
interaction potential V' is like a one-sided spring between touching spheres with
the exact definition:

0, if dij > R
Vi' — 1 1.2
’ “(R—dy), ifdy; <R (12
€
The distance d;; is measured between the centres of two spheres 7, j and R is the
sum of their radii. These spheres interact with a potential characterized by the
exponent €. In this work we will mostly choose it to be harmonic, i.e. € = 2.

11
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Figure 1.2: Sketch of the route to jamming with the model of soft
spheres. Initially, the spheres are loose and distributed in the vol-
ume. By increasing their size they start to touch at a certain packing
fraction ¢.. For values of ¢ > ¢, the particles are constrained. They
are jammed. Further increasing the packing fraction ¢ leads to their
deformation and increase in system pressure.

1.1.2 The Jamming Transition

The section will describe the path to jamming by means of soft spheres in a two-
dimensional volume. Starting from an initially loose and random configuration
of spheres, this system gets jammed by increasing the packing fraction.

Initially, we choose the packing fraction low enough so that we can randomly
distribute the spheres in the volume without touching each other. The pressure
p is defined via a virial expansion as follows:

N - 0
>3 Tij Jig

p=Ea (1.3)

The virial includes all interactions between overlapping particles, where a7; is the
position vector between particle ¢ and j and f;j the force between them. The
factor 2 can be attributed to the dimensionality of the system. Contributions
to the pressure by pushes against the system’s wall are zero because the system
is athermal. The force is computed from the potential by differentiation with
respect to position:

0, if dy; >R

L 1.4
fy {w—%r%ih%gR (14

12



1.1 Jamming

At the beginning the pressure in the system is zero. In the following, we increase
the packing fraction by inflating the radii of the spheres and keeping the volume
constant. Whenever there is an overlap between particles they can push each
other apart so that all forces are relieved. The system is still in the fluid phase.
At some point the spheres touch and overlap without a chance to relax all of
the forces [14]. This is when they get stuck in the jammed, rigid regime. The
spheres form a force network and we can measure a finite pressure p. All spheres
will contribute to the system pressure, except a few which are not integrated in
the jammed state. These spheres which are in no contact with other spheres and
thus do not contribute to the overall pressure, are called rattlers [1]. It is safe to
say that they amount to less than 5% of the spheres in the system; this will be
discussed in greater detail in section 2.

The packing fraction for which the packing starts to exhibit a finite pressure is
the critical packing fraction ¢. [15]. The jamming transition happens at ¢.. The
exact numeric value of ¢. depends on the finite size of the simulation system [16].
Additionally, it varies between realizations — or in other words the history — of
a system of given size. Yet, for a particular realization at hand it is a sharply
defined value. Many phenomena in jamming are governed by the distance of the
system’s packing fraction from ¢..

In contrast to unjammed systems ¢ < ¢., jammed systems ¢ > ¢, exhibit measur-
able mechanical moduli. This discriminates the two states of the system meso-
scopically. In other words, for ¢ < ¢. we can shear and compress the flowing
system freely, much like a liquid. For ¢ > ¢,, the system reacts elastically within
certain limits and exhibits finite values for bulk and shear modulus, as we would
expect from a solid body. At ¢ = ¢. it is exactly at the jamming point J [17].
This is the first moment when the system has a finite total number of contacts Z,
which is the number of overlapping and thus interacting spheres in the volume.
We define the average number of contacts per sphere, the coordination number:

27
= —. 1.5
2= (15)

This definition is fully sufficient for a first understanding of the coordination
number [13]. The full definition, however can be found in section 2.1.

Increasing the packing fraction further from ¢., we observe that the pressure
rises due to an increasing overlap and that the number of contacts per particle
increases as well |7]. This has also been shown in experiments [18]. In a foam
the overlap can be pictured as deformation of the bubbles [19].

13



1 Introduction

1.1.3 lIsostatic Point

The average coordination number z is an important quantity for understanding
the stability of jammed systems. It is also a fundamental parameter for the spring
networks we are considering later. We want to know the coordination number z,.
of the described packing at the jamming point J.

To do so this it is important to understand the isostatic point z;s, [1], defined
as the state at which a mechanical structure has exactly the minimal number of
constraints needed to balance the forces in the system. Through counting argu-
ments we can determine the isostatic point of a system by its static properties.
A coordination number z > z;, is a necessary condition for jamming. As we will
see in the case of frictionless soft spheres, they are identical where the system
jams, i.e.

Ze = Ziso- (1.6)

First of all, we know that forces balance in the volume filled with frictionless
soft spheres. If they were not balanced, there would be movement, possibly
rearrangement, in the system until it balances. We have Z = % degrees of
freedom for the contact forces to balance each of the N spheres in d dimensions.
This can only work if:

N

TZ > dN = z, > 2d. (1.7)
This is in essence the long-known Maxwell criterion for mechanical stability estab-
lished by James Clerk Maxwell in the 19th century [20]. The minimum value for

force balance is the isostatic point, which in our case has a coordination number
of ziso = 2d. Thus:

Ze > Ziso = 2d. (1.8)

Secondly, we know that at the critical point our spheres are undeformed but do

touch as they have to hold each other in position over the whole system. If they

did not touch, the system would be below the critical packing fraction and below

the isostatic point. In fact, the coordination number of the system would be zero

in that case. If they were deformed we would be beyond the isostatic point in

the static regime. Thus, at z. we have Nd positional degrees of freedom for the
Nz

system of spheres and = constraints on every contact for just touching. This

can only work if:

14



1.1 Jamming

N
TZ < dN = 2 < 2d. (1.9)
(1.7) and (1.9) can both only hold for:
2e = 2d = zjg. (1.10)

This result can be generalized to higher dimensions, not only spheres, as long
as the particles are round and interact without friction. It is agnostic towards
the chosen type of repulsive interaction potential as well as towards other poly-
disperse configurations. The distance to the critical coordination number Az is
a parameter better adapted to capture the network structure of a system and its
mechanical stability,

Az =z.— 2. (1.11)

Yet, due to effects stemming from the finite size of real systems — known as finite
size effects [16] — this generally means isostatic values smaller than 4.0, which is
the isostatic value for infinite systems as derived in (1.10). The isostatic value of
a specific simulated system is referred to as zy. In this case Az means:

Az =z — 2. (1.12)

In most cases this will not lead to misunderstandings. The coordination number
is connected with the packing fraction of the system in an interesting non-trivial
way:

Az x \/Ag. (1.13)

This is the well-known square root scaling of z with A¢ = ¢ — ¢. which holds
still for orders of magnitude away from the critical point. We accept it here
as a numerical result [17]. How we obtain these results via simulations and
how zy is determined will be shown and discussed in detail in 2.2. Introducing
friction [21] or different shapes of particles like ellipses 22|, spheroids, ellipsoids
or spherocylinders, the counting arguments can only deliver a range of possible
values for z. [1]. We will not cover these cases here but refer to further reading
on.

1.1.4 Non-Affinity

A central issue is to understand the processes in a jammed system. As a first
model assumption we consider our jammed system as being ordered and derive
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1 Introduction

results from that. Loosening the requirement on orderliness we still assume that
global deformations scale down linearly to local deformations. If this assumption
holds we call our system affine. The assumption of affinity, together with the
assumption that we can get macroscopic observables for our system by coarse-
graining it over microscopic contacts, defines the effective medium theory [1].
As an example take a packing of spheres in a hexagonal lattice, also known
as liquid honeycomb [23]. This system is anticipated to be affine and it has
a packing fraction ¢ = ;%= where the contacts and therefore rigidity is lost.
However, for ¢ > ¢. due to the orderliness the contact number stays constant
at 6 independently of ¢. Other ordered packings will expose analogue behaviour
and thus cannot account for the crucial square root scaling of the coordination
number of (1.13).

The elastic response of jammed packings is very different from predictions of
effective medium theory. Since effective medium theory neither incorporates iso-
staticity nor considers local packing specifics it predicts finite shear and bulk
moduli below the isostatic point. Yet, packings expose a vanishing shear mod-
ulus and a discontinuous drop of the bulk (or compression) modulus [2]|. So the
loss of order in amorphous matter comes with consequences: the non-affine con-
tributions in jammed packings have to be considered — as they are not negligible
— in order to account for the observed phenomena. It is not enough to resort to
models of ordered, affine systems. Consequently, because the systems are difficult
to handle analytically in every respect, computer simulations are a powerful tool
to investigate the effects of the non-affine contributions.

1.1.5 Vibrational Spectrum

Jammed systems and customary, crystalline solids show intriguing differences
in their vibrational spectrum, too. The textbook example for determining the
density of vibrational states is a body with evenly distributed vibrating atoms.
The density of state is the relative number of vibrations for a given frequency. For
such a crystalline body, following Debye’s arguments, we can determine D(w) o
w?™! as the scaling for the density of vibrational modes [24] for a frequency w
and d denoting the dimensionality of the system. These vibrational modes come
as transversal or longitudinal plane waves and are often called acoustic modes or
sound modes.

Jammed packings do not follow the described Debye-behaviour for the whole
frequency spectrum. In fact, they exhibit an excess of low-frequency modes which
is not seen in usual solids and cannot be accounted for with Debye’s arguments.
The closer the system is to the jamming transition, the more extended towards low
frequencies the regime of these modes is. As a matter of fact, there is a plateau of
low-frequency modes to a crossover frequency w*, while below that frequency the

16



1.1 Jamming

Debye-behaviour of common solids is found. The crossover frequency w* shifts
to lower frequencies, the closer we get to the critical packing fraction, or in other
words the smaller we tune A¢ [25].

Silbert et al. [25] found that the characteristic frequency scales like the distance
in coordination to the jamming point:

w* ~ Az, (1.14)

Thus, moving a packing towards J it appears less and less like a usual solid body.
It does not matter how J is approached, e.g. by lowering pressure.

This peculiar property of the jammed materials is explained by vibrational modes
which are known as soft modes or floppy modes. They form the excess of modes
compared to normal solids. The terms soft and floppy themselves suggest the fact
that these modes require very little to no energy. Below isostaticity zero-energy
movements are possible without violating the condition that particles just touch
(1.9) and balance their forces (1.7). In this sense a system at the jamming point J
is considered marginally stable. Thus, removing a few contacts results in opening
up new, generally global, degrees of freedom for the spheres [26].

Consider cutting a square patch of size [ out of a packing which is slightly over-
coordinated compared to isostaticity. The absolute number of missing contacts
at the boundary will be of the order [ in two dimensions. If the total number of
contacts Zpgicn ~ Az- [2 in the patch is below the isostatic value, we have created
a patch with floppy modes. The number Ny, of these modes can be quantified
by substracting the cut contacts at perimeter of dimension d from the number of
contacts in the patch [8]:

Nooge ~ 1771 — Azl (1.15)

We identify the critical cutting length [* below which the system behaves isostat-
ically and above it like a normal solid. For this we simply check when N,z is
zero and arrive at:

1
X —.
Az

* (1.16)
This scaling relation condenses important properties of jammed packings. Below
[* the packing behaves isostatically. Above [*, for packings far away from the
jamming transition, modes are localized and plane waves. This is consistent with
the predictions derived from Debye’s arguments for a continuous elastic medium.
Thus, the smaller we make Az - the closer we get to the jamming point - the more
extended the soft modes become. Modes may extend over the whole system to
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1 Introduction

its borders and they can be excited thermally or by shear. In fact, they are much
more sensitive to the applied stress than the conventional acoustic modes [8].

Hence, the responses to a force at some point in the packing lead to a highly
non-local response which may spread out over the whole system [27]. Yet, note
that even far away from the jamming point we can still build a sub-system with a
length [ smaller than [* oc 1/Az, which is not rigid. Thus, at short length scales
the system behaves isostatically.

In this sub-system so-called anomalous modes appear, which are essentially trial
soft modes which disappear at the borders where the sub-system has been cut.
They appear above a frequency w* o< 1/1*, consistent with the scalings for the
cutting length [* (1.16) and the characteristic frequency w* (1.14). The closer
we get to w* the more extended anomalous modes become, while the further we
move to higher frequencies the more localized they become. At some frequency w
far above w* modes are highly localized. The frequency being further increased
the density of states vanishes abruptly. Below, for w < w*, the system behaves
like a normal solid [8,28,29].

The exact character of the anomalous modes seems slightly less clear, however.
Theoretical considerations by Wyart predict that they have a character different
from simple plane waves [28,29]. In fact, many wave vectors seem to partici-
pate in anomalous modes [30]. Furthermore, their appearance is described to
be causal for the plateau in the density of states above w*, while below it plane
waves dominate the spectrum. At least for frequencies around w* the interplay
between anomalous modes and plane waves is not yet clear. Silbert et al. [30] see
for jammed packings that waves are not strongly plane wave already in the regime
w < w*. The prediction holds for contact networks created through compression
(see section 2) in which after creation contact forces are relieved through exchange
with relaxed springs [31]. This is an important model system for our consider-
ations. Results on relaxed spring networks under temperature are presented in
section 5.

18



1.1 Jamming

1.1.6 The Jamming Phase Diagram

This section will present a concept that unifies jammed and glassy systems. The
obvious unifying element for glasses and jammed materials is the disorder in the
structure of their constituents.

Glasses show a liquid-solid phase transition which is induced by lowering the
temperature. Yet, jammed systems, like a pile of sand or a package of coffee
beans, are in general mesoscopic and athermal: temperature-induced fluctuations
are negligible because their interaction potentials are large compared to thermal
energies of order kgT.

Foams, highly deformable bubbles in a liquid, are athermal too and additionally
exhibit a finite elastic response to shear stress up to a maximum where the foam
will flow again. The contact interactions of these systems are repulsive.

So far, our considerations have been restricted to athermal jammed systems con-
sidering soft sphere packings and their properties. Liu and Nagel in 1998 made an
attempt to connect phenomena of athermal jammed systems with observations
concerning liquids and glasses [5]. For doing this they loosened two constraints
on what is to be considered a jammed system:

1. No attractive interactions

2. Individual particles are large so that there is no thermal motion.

A system with attractive forces shows similar behaviour to a system with repulsive
forces in a box which exerts external pressure [32]. Jammed systems become rigid
with increasing density. On the other hand, supercooled liquids form glasses when
the temperature is further decreased below a critical value. In both cases a similar
behaviour is observed: a system which is flowing in the beginning responds to a
change of an external macroscopic parameter such as temperature or pressure.
The system becomes more viscous and, at some point, suddenly hardens. It is
then trapped in a small region of phase space and its structure is amorphous.
This process is reversible because lowering pressure will lead to unjamming -
heating will lead to liquefaction.

There seems to be a common denominator for the described amorphous systems:
an external control parameter governs the path to rigidity, which is a confined
state in phase space. Thus, inverse density, which is the result of external uniform
pressure, and temperature are two of the axes in the phase diagram the authors
drew. The third axis is external shear stress. As an example one might think of
foams that unjam when the applied shear stress exceeds a certain threshold. Liu
and Nagel synthesized all these considerations in the phase diagram for jamming,
see Figure 1.3.
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Figure 1.3: Jamming phase diagram for repulsive particles. The jamming
axis — marked in light blue — is scaled with inverse density of parti-
cles. The other axes are temperature and shear load. The connec-
tion between amorphous materials of different nature is hypothesized.
Adapted from [5].

The jamming diagram includes a conjecture about how the three parameters
inverse density, temperature and stress relate to each other.

The diagram includes the hypothesis that jammed materials begin to flow when a
sufficiently high temperature is introduced. The temperature might be considered
an effective temperature on a mesoscopic scale. Shaking movements, which are
mesoscopic vibrations, that make a jammed systems flow again are an example
for such a "temperature". Furthermore, the diagram suggests that an increase in
shear stress would decrease the temperature at which glass melts.

All in all the diagram might be called a motivational piece to unify existing find-
ings on amorphous materials. It comes in a handy pictorial form with the inten-
tion to spark off new research. In the study presented here we will create athermal
jammed packings and probe their dependence on external pressure and temper-
ature. We are mainly interested in the effect of very low, finite temperatures on
the packings and their contact networks represented by harmonic springs. This
is particularly interesting because temperature will excite the anomalous modes
(see section 1.1.5 of the jammed systems). We sketch this approach in Figure 1.4.

20



1.2 Glasses

Figure 1.4: Our mission. We consider jammed systems of different coordination
(directly connected to the inverse packing fraction quantified by the
blue axis) and investigate their response to external tension and finite
temperatures. In this sense we move up in the plane as marked by
the yellow arrows.

1.2 Glasses

The jamming diagram sets out the possible connection between jammed materials
and glasses. Yet, it is not purely speculative. The amorphous structure is a
strong link between granular material, colloids, foams and glass. The response
to thermodynamic and mechanical control parameters gives an additional hunch
on how similar their phase transitions are. This section will give more evidence
on the connection.

Despite the similarities, atoms of glasses are not spherical and interactions andn
be attractive and long-ranged. Hence, the properties of glasses and the jammed
soft sphere packings have to be observed closely in order to assess how parallel
they are. The focus will be the vibrational modes of glasses and how they relate
to the findings of Section 1.1.5.

When a glass is blown in such a way that its cooling is sufficiently quick it moves
into a metastable, supercooled state instead of crystallizing. Further decrease
of temperature leads to evermore arrested dynamics of the supercooled liquid.
Below a specific temperature Ty the liquid will have rigid mechanical properties
on all timescales of relevant length. This is the glass transition temperature
which marks the glass transition. The liquid is now in the glass state. The
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1 Introduction

cooling process is called wvitrification. The glass transition temperature depends
on the material and the rate at which the cooling happens [33|. It is believed
that a crystalline groundstate, reachable through a second-order phase transition,
exists for glass, but is practically unreachable due to the quenched dynamics. In
order to arrive at this underlying crystalline groundstate, the cooling would have
to be infinitesimally slow. The practical interpretation of this hypothesis can
be debated. As a last remark we want to emphasize that the glass transition
is marked by dynamics out of equilibrium in which the history of the system is
important [34].

Glasses have a higher density of states for low-frequency modes compared to the
Debye-behaviour for the density of states of acoustic modes, which are seen in
most crystals. This phenomenon, the boson peak [35], is long-known [36]. At
low temperatures this results, for instance, in a higher heat capacity and lower
thermal conductivity than what is expected from a crystal [37,38|. Glasses store
more heat and transport less of it than crystals. Silica, S1O,, exists in crystalline
and amorphous, glassy form. Experiments show that for low temperatures around
2bm K, the specific heat capacity of silica glass is more than 1000 times larger
than that of crystal [38]. Also, the heat capacity for glasses scales linearly with
T instead of T3, which is the prediction of Debye’s model [39]. Tt is widely
believed that the atomic motions which are associated with the boson peak are
indispensable for understanding this particular behaviour.

Strong theoretical and experimental evidence exists that the boson peak can be
understood with the concept of soft modes (1.1.5). Brito and Wyart [40] show
that in hard sphere liquids rearrangements happen during vitrification along soft
modes. This implies that rearrangements leading to structural relaxation happen
as extended collective motions instead of localized events [41].

1.2.1 Silica

Silica is an important material to probe glasses experimentally. Trachenko et
al. [42] use a model which describes silica as Si04-tetrahedra which are connected
through joints. The tetrahedra are rigid compared to the forces of the rather
flexible joints. The joints are modelled as loaded harmonic springs with zero
equilibrium length and a spring constant tuned to mimic experimental results.
This leads to rigid unit modes, which are rotations of tetrahedra without deform-
ing. They are the lowest vibrational energy modes in the system.

We apply Maxwell’s criterion for stability to the tetrahedral structure. In total,
each tetrahedron has 6 degrees of freedom for translation and rotation. Then,
each bridging oxygen at the corner of a tetrahedron imposes 3 constraints. This
gives 6 degrees per tetrahedron as every oxygen is shared by two tetrahedra. As
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1.2 Glasses

no degree of freedom is left, we conclude that the whole system is isostatic. When
the pressure on such a system is increased, so called five-fold defects occur. This
means that the number of five-fold Silicon atoms increases. This way the whole
system is departing from isostaticity and the effect on vibrational modes can be
studied [43|. It shows that the excess of modes shifts away from low frequencies
much like in sphere packings [25].

Silica glass [42] and the corresponding crystal [44] with the same chemical com-
position show a similar density of states, i.e. with a boson peak. We can draw
the conclusion that order cannot be the crucial factor which determines the den-
sity of states, for the glass is amorphous and the crystal’s structure is ordered.
Additionally, because it is very similar, the vibrational spectrum alone cannot
account for the peculiar behaviour of glasses compared to crystals. Wyart [29,45]
proposes that it is:

1. the coordination instead of positional disorder which matters for the low-
frequency spectra [26] and

2. the exact nature of the modes which is decisive and which is affected by
disorder [29].

For crystals anomalous modes come as plane waves. For amorphous solids the
anomalous modes are very heterogeneous. Hence there is a difference between
crystals and glasses and anomalous modes are the decisive factor in their different
thermodynamic behaviour [46]. This view is not undisputed and the exact nature
of the boson peak in silica is subject to current research and debate [26,47].

Chen et al. [48] tested in lab-experiments the validity of the results for the vi-
brational spectrum of the soft sphere model (see section 1.1.5). They used a
bi-disperse mixture of Poly(N-isopropylacrylamide) (NIPA) microgel particles,
which swell with decreasing temperature. Consequently, temperature is used
to tune the packing fraction of the jammed system. They found that the vi-
brational properties are in good agreement with those in athermal soft sphere
packings: Firstly, they are in the excess of low frequency modes which extends
to lower frequencies when approaching the jamming point is approached. Sec-
ondly, the same nature of the modes as seen in the soft spheres was recovered: at
low frequency, modes are quasilocalized; at intermediate frequencies, modes are
highly disordered and extended; at high frequencies they are localized [48].

The exact process of the melting of a sphere packing is not trivial. One of the
questions is how a particle can escape its position if it is fully enclosed by other
particles. The collective motions of the neighbouring particles which are needed
for this to happen are a subject of ongoing research [49].
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1.3 Negative Thermal Expansion

In this section we discuss several aspects of negative thermal expansion. The
simplest example is the Gough-Joule effect alread found the 19th century. It
sheds some lights on the thermodynamics of negative thermal expansion in one
dimension. In two dimensions rotations of rigid units, as introduced in the last
chapter, play a decisive role. Three-dimensional models are discussed towards
the end of this section.

1.3.1 Rubber elasticity

Rubber elasticity is a good example for negative thermal expansion in one dimen-
sion [50]. Of course, a real rubber band is not one-dimensional but the effect itself
is. A rubber is made of a network of long polymer-chains instead of crystalline
ordered atoms. Putting stress on the rubber band, it gets stretched balancing the
gravitational force on the weight with its elastic Hookean force. In that process
it will emit heat. Considering the Gibbs Free Energy helps to further understand
the situation:

TAS = AH — AG, (1.17)

where T is the absolute temperature. In the case of the stretched rubber band
the change in enthalpy AH is negative due to the emission of heat and the change
in Gibbs-energy AG is positive because the process absorbs energy. Then, the
change in entropy AS can only be negative to match the equation: the entropy of
the rubber band is decreasing. Stretching leads to less possible arrangements of
the chains in the rubber band. If we now heat the rubber band, it contracts [51].
This is known as the Gough—Joule effect. It happens, because with temperature,
the entropic forces are increasing. The less the chains are stretched, the more
configurational states are possible. In other words, with decreasing length [ of the
rubber band its configuration space is increasing. Entropic force favors a larger
space of microstates and thus leads to contraction.

Cooling of the rubber band, on the other hand, leads to its expansion. The rubber
band exhibits negative thermal expansion along the direction of stretching, i.e.
the direction of gravitation. This effect is not unique to rubber bands, though.
Also other polymers exhibit contraction on heating, where [52] is an intersting
example with a particularly high coefficient of negative thermal expansion.
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1.3 Negative Thermal Expansion

1.3.2 Negative thermal expansion due to network rotations

Interestingly, some glasses, especially silica, exhibits a negative thermal expansion
coefficient. In 1.2 the vibrational spectrum and the character of the vibrations was
already discussed. They were attributed to rigid unit modes which are rotations of
essentially stiff atomic tetrahedrons, where the terahedrons are connected through
a harmonic potential.

Heine et al. [53] showed how isotropic negative thermal expansion can be ex-
plained through geometric effects in framework structures: materials which are
made up of octahedral or tetrahedral crystal units that are stiff compared to
the forces connecting their corners. Examples are many aluminosilicates and the
ceramic zirconium tungstate ZrW,0s. In their calculations the authors [53] com-
pute the overall effect of the rotations in two dimensions of a framework structure
to negative thermal expansion. The framework structure is represented as square
boxes connected at their corners and referred to as 2D-perovskites.

In the simplest consideration of this model all the squares rotate with the same
Einstein frequency w,;. 6 is the angle of the rotations. The relative change of
the area AJA(6 = 0) in dependence of 6 is in lowest order given by:

i (1.18)

Equipartition theory tells us how the average potential rotational energy of a unit
with inertia I relates to temperature kgT"

Icu2t<92> kBT
e = . 1.1
2 2 (1.19)

This gives for the relative change of the area due to thermal fluctuations:

<ma?:m>:_%i' (1.20)

Increasing temperature decreases the overall area of the system. The results give
some insights on the phenomenon:

1. the effect is geometrical, due to a rotation-induced folding of structures.

2. the relative change in area scales with 1/w? hence low-frequency rotations
contribute stronger to the temperature-induced contraction.

However, the calculations make some approximations, too:
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1. anharmonic interaction potentials between atoms, which are not considered
here, lead to thermal expansion.

2. all modes have been coarsely packed into a single frequency, instead of
summing over the vibrational spectrum.

3. the vibrational spectrum itself is temperature-dependent, consequently neg-
ative thermal expansion is connected to regimes of certain temperatures.

Heine et al. [53] tackle these shortcomings of the simpler considerations above and
succeed to encoparate the geometric effect in Griineisen theory of thermal expan-
sion. The overall results, though are supported by the more detailed calculations
of Heine et al. and we refer to them in case of deeper interest.

Another example of a material that exhibts negative thermal expansion is scan-
dium trifluoride ScFj3, that consists of ScFg octahedra, which share a corner [54].
The scandium atoms sit at the centre. It exhibits negative thermal expansion
over a large range of temperature from 10K to about 1100K [55]. In contrast to
Silica and the rigid unit modes model in ScFj during vibrations, the connection
Sc — F — Sc between two scandium atoms is stretched. The potential energy of
the interaction is quartic, i.e. 2* with x being the transverse displacement of the
fluoride atom. Li et al. [56] find that the quartic potential of interaction between
the octahedra accounts for significant part of the negative thermal expansion
behaviour.

Negative thermal expansion is a field of active research where especially exact
mechanisms behind the phenomenon and the search for materials with the NTE-
property are of interest [57-59].

1.3.3 Soft mode analysis of jammed spring networks

The main subject of this research are spring networks obtained from jammed
packings under temperature [11,12,60]. We want to complement the computer
simulations with derivations made from analyzing the anomalous modes of spring
networks [61]. The derivations sketched here are based on the analysis of the soft
mode spectrum of jammed packings [29].

We present the main steps of the derivation. For this we need to consider affine
contributions of the athermal network and non-affine contributions derived from
the energy required to excite a soft mode.

The network has a defined distance to isostaticity Az and is subject to a tension
7 (which we specify in units of the spring constant ks, see Equation 3.1).

The affine part €, of the extension AA/A = €, + €,, is direcly proportional to the
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1.3 Negative Thermal Expansion

/"{ - = ff

Figure 1.5: Temperature excites soft vibrational modes of the system
which lead to contraction of the system. We call this the
squeezebox-effect. Here we show how the chains in one direction of
a square lattice get contracted. In this state an external tension will
lead to stretching the zig-zag folding of the line instead of affecting
individual bonds.

coordination number z of the system and the external stress:

€= (1.21)
From [29] we have a predicition for the energy to excite a soft mode. It turns out,
that the excitation of soft modes leads to a large negative contribution to the
non-affine part of extension [61], as long as tension is small, 7Az7? < 1. This
can be most simply understood intuitivley when considering a fourfold network
Figure 1.5.

Summing up the affine and non-affine contributions gives a prediction for the
extension with respect to T, Az and small tension 7:

AA T T Con—1
T—Ga—ena—z—m(l—f-TAZ ) . (122)

The bulk modulus is obtained from the first derivative of the relative extension
with respect to tension 7:

1 1 T 9
— = 1+7A272) 7. 1.23
B B, 4Az3( +7Az7) (1.23)

When tension dominates, 7A272 > 1, we get for the extension [61]:
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AA T T (1.24)
A T4z 87 '

By differentiation the bulk modulus becomes:

1 1 T

-~

TR TE (1.25)

The athermal shear modulus G is proportional to Az [62] for vanishing tension:

G~ Az, (1.26)

and

G ~ /T, (1.27)

for dominating tension. At fixed volume thermally activated soft modes will

lead to an internal pressure. To obtain it we set the extension to zero in (1.24),

_ AA _ |§.
€= =5 =0:

T~ T3 (1.28)

In terms of the shear modulus we thus get for the scaling dominating thermal
tension, 7" >> Az3, in the canonical ensemble:

G~TV? (1.29)

If we find the same scalings in the simulations like presented, this is strong evi-
dence for the mode spectrum being correct.

1.4 Structure of this work

This work is structured as follows.
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1.4 Structure of this work

In the next chapter we introduce the athermal protocol which we used to obtain
jammed packings and their corresponding spring networks.

Furthermore, we introduce the protocol to obtain pruned networks.

In Chapter 3 we describe the Monte Carlo Metropolis scheme used to simulate
jammed spring networks and packings at finite temperatures.

In Chapter 5 we present the results on jammed spring networks at finite temper-
ature and connect the finding to theoretical predictions.

In Chapter 6 we show how the structure of a network influences elastic properties.

In Chapter 8 we consider thermal jammed packings and set the findings into
context with the results from spring networks.

We finalize with a discussion of the main results and give an outlook on future
research paths.
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2

Generating jammed sphere
packings

In this chapter we will describe the exact protocol utilized to generate sphere
packings. To execute the jamming transition a two-dimensional volume is filled
up with soft spheres which interact through harmonic repulsive forces without
friction as introduced in chapter 1.1.1. The algorithm is in large parts parallel to
the standard introduced by O’Hern et al. [13].

We generate such packings according to the following protocol:

1.

Place N particles randomly in a two-dimensional, quadratic box of edge
length L. N/2 particles have radius r = 0.5. The other N/2 have ra-
dius 7o = 0.7. L is chosen such that the packing fraction ¢ = 7T(N1T% +
Ngrg)/ﬁ ~ 0.7.

. Minimise the energy of the system with the lammps [63| software pack-

age, making use of its implementation of the Polak-Ribiére version of the
conjugate gradient algorithm in the minimize function.

Measure the pressure — defined in Eq. (4.14) — and the coordination
number z of the system. As explained in Chapter 2.1.

Increase the packing fraction by slightly inflating the radii of the spheres
in the packing by a common factor ccompress-

Repeat steps 2 - 4 until coordination number z = 6.0.

Decompress the packing fraction by deflating the radii of the spheres in
the packing slightly by the same factor oyefiate. The factor agefiqre should
be chosen small compared to the packing fraction so that the sampling is
dense in ¢. Furthermore, rearrangements due to a large release of pressure
are less likely this way.

Repeat steps 2, 3 and 6 and record the resulting packings at each level of
adjusted packing fraction until coordination number drops to zero.

The spheres are bi-disperse to avoid crystallization. The described protocol gen-
erates a number of sphere packings which should be in the same arm of energy
minimisation for different z. Rearrangements during deflation are minor and rep-
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Figure 2.1: From jammed packing to contact network at coordination
z = 4.60 with system size N = 200. The left side shows a jammed
packing obtained by the protocol described in the text. In the middle
touching spheres define a contact between spheres. The spring net-
work is generated by connecting the centres of the interacting spheres.
We keep only the network and leave aside the extent of the spheres.

resent the simplest movement to realize a lower pressure. The idea is to avoid
redistribution of the spheres to a completely different jammed state.

Figure 2.1 shows a jammed packing obtained by the protocol. Touching spheres
define a contact between spheres. Such contact networks will be used for major
parts of this work. Each connection in the contact network describing a harmonic
spring.

Figure 2.2 shows four examples of the contact network’s structure of jammed
packings at different average coordinations.

By visual inspection, the networks are isotropic. For large packing fractions ¢,
(Figure 2.2 d) the contact network is very fine and most vertices are five- or
six-fold connected. With decreasing packing fraction the connectivity lowers and
holes start appearing in the contact network. Holes are a sign of spheres in the
packing which are not connected, i.e. rattlers.

The total fraction of rattlers depends on the packing fraction of the jammed
packing and amounts to approximately 5% of the spheres in the packing close to
the isostatic point, see Figure 2.3.

Figure 2.4 shows the development of coordination number, energy and pressure
as a function of the packing fraction. When inflating the spheres there are config-
urations of packing fractions below the isostatic point which are stable towards
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2 Generating jammed sphere packings

energy minimisation. However, any thermal fluctuation would destroy those con-
figurations because they are highly under-coordinated. This can be seen as well in
the relatively small to vanishing energy and pressure which is stored in these pack-
ings. Using the packings obtained out of decompression however we get packings
which are stable to (in the sense of this work) small thermal pertubations.

Coordination number z
w
T

inflate

o r ‘ ‘ ‘ ‘ decc‘>mpress ‘
0.8 0.9 1 1.1 1.2 1.3
Packing fraction ¢
1081 4
-6
- 107 b
> g ]
(0] _f
2 109 4
L
1011 L B
10141 inflate
‘ ‘ ‘ ‘ decqmpress ‘
0.8 0.9 1 1.1 1.2 1.3
Packing fraction ¢
0.2 i
o
=]
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(0]
S
o o1k |
inflate
0 decqmpress

1.1 1.2 1.3

08 09 1
Packing fraction ¢

Figure 2.4: Coordination number, reduced energy in units of kspR?j and
pressure as a function of the packing fraction. System size
N = 4000. Details in main text.
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2.1 Measuring coordination
2.1 Measuring coordination

In practice measuring coordination is slightly more involved than presented in
Equation 1.5. For instance it needs to be defined below which number of contacts
a sphere is identified as a rattler.

A link between vertices ¢ and j is established when the spheres overlap:

1, ifd;; < R; + R;
Zij == : ! . ’ (21)
0, otherwise.
This gives for the number of links of ::
ZZU, if ZZ” > 1
Zi=q j (2.2)

0, otherwise.

Total number of non-rattler links in the system:

Z=Y 7. (2.3)

The rattler function is defined as:

V= 0, otherwise. '

We use R(7) to get the total number of rattlers:

R= Z R(i). (2.5)

The average coordination is then:
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Figure 2.5: Scaling of the coordination number’s distance to isostaticity
with the packing fraction minus its isostatic values. The fit
for the exponent delivers 0.5014 £ 0.0003, which restores the square
root scaling of Az [17].

2.2 ldentification of the critical coordination
number

In the introduction we discussed the square-root scaling of the coordination num-
ber for jammed packings (1.13).

To verify this for the packings we generate we need to identify the critical packing
fraction ¢g and critical coordination number z, first. In a finite system zg, for
instance, is slightly smaller than 4.0 [16]. Also, the finite minimisation steps
for one packing fraction and the finite spacing when lowering ¢ leave residual
configurations which are actually unstable.

We identify ¢y and zy by probing pairs (¢, z) which are close to the drop in
pressure seen in Figure 2.4 as fit parameters. The best fit for (¢ — ¢o)'/? = 2 — 2
will give us ¢¢ and zy. Figure 2.5 shows the best fit we obtained for the packings
obtained from the decompression.
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06— T L ey m— 06F T 113921, pruned
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: Corinect?vity ¢ : Cognect?vity °
Figure 2.6: Left: Distribution of links for a network directly obtained from a
jammed packing.
Right: Distribution of links for a pruned network out of the pruning
protocol starting from a packing at z = 5.990.

2.3 Pruning protocol

To complement the protocol that infers spring networks directly from jammed
packings we introduce another protocol to initial networks. This is to investigate
the effect of structure on thermalized spring networks. In this way we can probe
if the coordination number alone is sufficient to describe a spring network’s be-
haviour with temperature or if the way links are arranged is important, too. The
study is found in chapter 6.

The algorithm to generate lower coordination numbers out of networks with a
given average z was constructed in the hope of maintaining the main physical
properties of the system and to avoid percolation. Such an algorithm is often
referred to as a pruning protocol. In the community these networks are often
referred to as random networks [2,64,65].

We use the following:

. Take a given contact network with a certain average z.
. Identify the set of vertices with the highest z.

. Choose a vertex i out of that set randomly.

1

2

3

4. Find the vertices connected to ¢ with the highest coordination.

5. Choose one vertex j out of these and remove the spring connecting ¢ and j.
6

. Continue until desired average z is reached.

As a result we get contact networks as illustrated in Figure 2.7. The average
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3 Model

We want to probe the effect of temperature on jammed systems. To do so we
need a suitable model system. We focus on thermodynamic properties as we want
to determine the contraction in volume of a fixed-pressure system, as well as the
bulk and the shear modulus. Of particular interest is the behaviour of spring
networks derived from jammed packings as well as jammed packings themselves.

The system is created through athermal energy minimisation. Let’s assume that
we have a packing created through the energy minimisation protocol described
in chapter 2. Spheres form a contact network in which overlapping spheres are
replaced with springs connecting the centres of the spheres, while rattlers are
excluded. That is how we obatin spring networks. Their structure is fixed through
the static connections defining a network of springs. In contrast to thermalized
packings no rearrangments or breaking contacts are possible.

The connectivity of the packing yields the first parameter of the system, the
dimensionless average coordinaton number z.

The spring networks or packings will be in two-dimensional square volume. The
boundaries of the volume are determined by the two vectors U and V', see Fig-
ure 3.1 for their definition. In order to be able to measure reaction to shear we
allow the vectors U and V enclosing the area to change [66]. This situation is
illustrated in Figure 3.1.

In the case of fixed-volume simulations we can keep the area of the system and
only change U and V so that the system gets sheared. In order to simplify the
situation, U is always rotated so that it aligns with the horizontal axis.

In the case of fixed-pressure simulations we also allow the vectors to change in
length which allows us to measure thermal expansion. Furthermore, we can set a
pressure in the system through the external tension 7*. Then we can immediateley
define the reduced external tension 7 without dimensions by comparing it to the
spring constant ks, as follows:
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Figure 3.1: Vectors U and V defining the area of our system. In general,
only initially the system is a square. By changing U and V' to U’ and
V' we get a parallelogram with a change in area and angle « defining
the shear of the system.

A positive 7 draws the volume apart, resulting in a negative pressure. A negative
7 pushes it together, resulting in a positive internal pressure within the system,
see Figure 3.2.

The energy of the spring network at fixed volume is:

ks
Eno = 71’ (dij — Rij)? (3.2)

<ij>

where the sum runs over all springs between vertices ¢ and j. The distance
between two vertices is d;;, R;; the rest length of the spring and A the area of
the system. The spring constant ks, is commonly set to 1.0 in this study.

In the case of packings:

<ij>

eij:{( J ;)% ifd J (3.4)

0, otherwise.

In the isothermal-isobaric ensemble with fluctuating area, the enthalphy reads:
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Figure 3.2: The system may be put under positive or negative external
tension. If the system collapses with temperature positive tension
will support it in staying stable. A negative tension will result in
reaching the system’s collapse at lower temperatures.

H=EFEy—TA (3.5)

Mainly, we are interested in thermal spring networks and jammed packings at
temperature 7. The dimensionless temperature 7' is defined as the ratio of
thermal energy over the average energy in the harmonic potentials [66]:

kgT™ 1
T = — = — (3.6)
kspRij BkspRij

where kp is the Boltzmann factor, which is the probability to find a particle
at a certain energy state in thermodynamic equilibrium and S is the inverse
temperature times kg and R;; the average rest length in the system.

This model system allows us to study the effect of thermal excitation on spring
networks and jammed packings. The defining dimensionless parameters are the
coordination number z and its distance to the isostatic point Az = z — 2 respec-
tively, the external tension 7 and the dimensionless temperature 7.

In order to study equilibrium properties of the described model system we employ
a version of the Metropolis Monte Carlo algorithm. Temperatures will be rather
low and the situation similar to the encased phase space of a typical glassy system.
The details are found in the following Chapter 4.
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The creation of networks or packings as described in 2 introduced how the initial
systems are created. We use contact networks formed by the particles in the
packings to create spring networks in order to study the effect of temperature on
these in the next step.

The algorithms behind the computer simulations to investigate the effect of tem-
perature will be explained in the following. This encompasses a description of the
Monte Carlo Metropolis method as well as performance optimisations developed
in the course of the project.

4.1 A small remark on the role of simulations

Simulations are necessary because we are dealing with a complex model system,
which is all but impossible to be fully treated analytically. In order to obtain
results for many relevant aspects of the proposed model, computer simulation is
the appropriate tool. Nevertheless — as explained in the previous chapter — we
have a prediction of how our system behaves within certain parameters. The
simulations validate the theoretical predictions and the underlying assumptions
in silico. In modern physics computer simulations represent an increasingly im-
portant tool and provide new scientific insight — indepedently from theory and
classical experiments. It is hard to imagine today how high-dimensional models
might be tested and prepared for experimental verification in other ways. How-
ever, simulations interplay well with theory and experiments as suggested in Fig.
4.1, in the best case bridging both fields by validating theory and inspiring new
experiments.

Among the many advantages of computer experiments is the direct accessibility
to all - even microscopic - quantities of the system at hand. The quantities have
to be derivable from the used model, of course. In real experiments it can be
difficult to access certain observables, like the exact position of each constituent
over time.
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Figure 4.1: Role of computer simulations in modern physics. In the best
case simulations validate theory and inspire new experiments. In
recent decades computer simulations have squeezed in between theory
and experiment becoming an entity of their own.

4.2 Monte Carlo

In order to obtain values for the observables in our system - such as the pressure
or mechanic moduli - we have to simulate the model. The model was described
in chapter 3. As we are only interested in average values of our observables we
can make use of Monte Carlo methods in order to sample our system.

Described with a wide lense, Monte Carlo algorithms utilise random trials to sam-
ple the state space of the system at hand. Over time this leads to a probability
distribution of the system’s state space. This distribution can then be used to
compute values for the observables we are interested in. The method was intro-
duced in the late 1940s by Stanislaw Ulam [67] within the Manhattan Project.
Yet, Monte Carlo algorithms can be generalized to a broad range of applications,
such as finance [68], which go beyond physics.

4.2.1 Theoretical foundations

The essential idea behind Monte Carlo simulations consists in making the model
system at hand propagate through state space so that the statistical properties
of each state are represented. This means that, for each point in time, the
occurrence probability for a state u is equal to its weight in state space at that
point in time [69]. The weight is connected to the energy F of the state through
the Boltzmann distribution w(E) o exp(—E/kgT’), where kg is the Boltzmann
factor.

The trick is to find simulation dynamics which let the system propagate on a
path fulfilling this. Letting the system run for sufficiently long simulation times
under such dynamics ensures that each state is sampled with sufficient accuracy.
As a result, the observables which are derived from the state space statistics will
mirror the actual system behavior.
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For large systems — or more precisely systems with a large state space — such as
the ones we are dealing with in this work [70], it will be impossible to sample
all possible states. Thus, one should make good use of simulation time and
only choose the states which actually make a large contribution to the partition
function of our system.

But how do we identify these states? Only a small subset of states, i.e. those with
a high probability of occurring, contribute significantly to the average. Likewise
the real system does not cover all possible states (rather a very small subset)
during observation at the laboratory for finite times. The states with a high
probability of occurring are those which are associated with low energy compared
to the rest of the spectrum. Thus, instead of picking states randomly, we choose
them so that low energy states are picked more frequently than those with high
energy:

"Instead of choosing configurations randomly, then weighting them
with exp(—FE /kgT), we choose configurations with a probability
exp(—E/kpT) and weight them evenly.”

Metropolis et al. (1953) [71]

Because of their large contribution to the system’s behaviour they should be
sampled densely. This approach is called importance sampling.

As argued above, it is important to sample the right set of states. Moreover,
it is important to see how the system moves through state space: generating
loose states randomly is not a good idea, as in this way many states with a
low probability of occurrence will be generated. This results in a lot of wasted
computation time.

In Monte Carlo simulations an algorithm generates a series of successional states
with each state v generated out of a given state p. This strategy defines a
Markov process creating the states of our system. As we will see in section 4.3.8,
defining an adequate mechanism to create new states is crucial for Monte Carlo
simulations.

Our Markov process needs to satisfy two additional properties in order to make
sure that the thermal fluctuations of the system are sampled properly:

First, the process needs to be ergodic. This means that for a given state p it
is possible for our process to reach any state v of the system through a chain
of reachable states at finite times. Hence, for getting average properties of the
system we can use snapshots at certain time intervals instead of following the
exact dynamics of the system. The time average can be replaced by the ensemble
average.
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Second, the process has to fulfill detailed balance:

pul(p— v) =p.P(v— p) (4.1)

where P(p — v) is the transition probability from state u to state v. As a
condition the process needs to run long enough, so that it is equilibrated, i.e. has
overcome an initial bias in its configuration. Then detailed balance ensures that
we can demand the Markov chain to create states p with the desired Boltzmann
probability distribution oc e #Fx (See [69], Chapter 2.2.3 for details), where 3
denotes the dimensionless inverse temperature.

If both conditions are fulfilled, the simulation moves through state space as the
real system does. However, it has to be emphasized again that this does not
mean that the trajectory through states of our simulation itself is necessarily real
or physical. The simulation dynamics are primarily those of the Monte Carlo
algorithm, not the real dynamics. Yet, this should be unproblematic as we have
already declared that only average values are of interest and not the dynamics.

4.2.2 Monte Carlo Metropolis

The transition probability from one state p to another state v is the product
of the probability g(u — v) that our program chooses v when it is in g and
the acceptance probability A(u — v), which is our freely tunable parameter and
determines if our program accepts a newly created step v or not:

P(p—v)=g(p—v)Ap —v) (4.2)

The condition for detailed balance, Equation (4.1), leaves freedom in the choice
of the transition probabilities as long as the following ratio holds:

Plu—v) glp—=v)Ap—v) (43)
Pv—pu) gv— A —p) '

Additionally, we picked the Boltzmann distribution for the probabilities, thus:

9n = VAP =v) _ s,

g > AW S ) (4.4)

In the famous Metropolis version of the Monte Carlo algorithm [71] the selection
probabilities g(u — v) are equal for all possible states and otherwise zero. Moving
from p to v or vice versa does not matter either. Furthermore, without loss of
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generality, we take the energy E, of state p to be smaller than E,. We can now
set A(v — p) to be 1. Thus, we do not waste any computation time if we find a
lower energy state because we will always accept it. We still have to satisfy (4.4)
in order to end up then with the following acceptance probability:

1, it £, < E,
Alp —»v) = BB (4.5)

otherwise.

Essentially, we use the Monte Carlo Metropolis algorithm with an acceptance
probability as in (4.5).

4.3 Implementation

In the following we will describe the specifics of the algorithm in use and its
implementation.

4.3.1 Boundary conditions

The volume of the simulation has periodic boundaries, which constitutes a topo-
logical torus: when a vertex or sphere moves over the border at one side it appears
at the opposite side of the simulation box. This procedure approximates an in-
finitely large system. In the case of the vertices, where each vertex is connected
through a spring, the measurement of the spring length can be slightly more
cumbersome.

Yet, the vertices move and the shortest distance betweeen two vertices may change
its character: at the beginning of the simulation it is shortest via one of the
borders of the box. Later, when the vertices move a lot it might be shortest
when simply taking the cartesian distance inside the box. Hence, in theory we
need to record how the initial distance was measured. Only then can we later
measure the distance correctly when computing the energy contribution of the
spring to the system’s Hamiltonian.

In practice, though, the movements of the vertices are small compared to the size
of the box as we are interested in the low-temperature behaviour of the system.
Consequently, it is sufficient to compute the shortest distance with respect to the
periodic boundaries between two vertices.

The simulation box is generally not a square, but a parallelogram in the simula-
tions conducted, see Figure 3.1. The fluctuations of the opening angle of the sim-
ulation box allow to measure the shear modulus of the system, see section 4.3.9.
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In order to conveniently handle the coordinate transformations connected to the
boundary conditions, a coordinate system of unity edge length is used. For cal-
culations of the energy and other physical quantities these coordinates are folded
back to physical coordinates.

4.3.2 NVT simulation

One part of the simulations is conducted in the canonical ensemble, where the
number N of entities being vertices or spheres as well as the volume V' and
the temperature T' are fixed. Here, it will usually be denoted by NVT. In each
simulation step one of the N entities in the system is chosen randomly. Next,
a Monte Carlo trial move is performed by displacing the entity to a randomly
chosen position inside a square box of a certain edge length. If the energy of the
system is smaller after the trial move the algorithm accepts the move. If not, the
algorithm accepts the move with the Boltzmann probability according to (4.5).

The edge length of the box in which we choose a new step is called stepsize.
The stepsize is a critical parameter for the performance of the computer simu-
lation. It might be fixed a priori or changed in the course of the simulation. In
subsection 4.3.8 the algorithm to choose it automatically is explained.

4.3.3 NpT simulation

In NpT simulations the number N of entities being vertices or spheres is fixed,
as well as the pressure and the temperature. This ensemble is referred to as the
isothermal-isobaric ensemble. The trial moves for the entities are equal to the
NVT case in subsection 4.3.2.

Furthermore, the vectors U and V' defining the simulation box size and shape
- shown in Figure 3.1 - are subject to trial moves. The trial move is similar to
the one for the entities of the system: The ends of both vectors are displaced to
a randomly chosen position inside a square box defined by the stepsize. Then,
U and V are rescaled, i.e. rotated, so that V only has a component in the x
direction [66]. If the energy of the system is smaller after the trial move the
algorithm accepts the move. If not, the algorithm accepts the move with an
acceptance probability according to what is sometimes referred to as the pseudo
Boltzmann weight [72]:

A(MUV — VUV) = 675((EV7E#)+T(AV7A#))+N'ln(AV/Au)’ (46)

where A, is the area before and A, the area after the trial step. This change
in volume entails a rescaling of the coordinates of the particles in the system.
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Figure 4.2: Comparison on how frequently the area needs to be adapted
compared to moves on the vertices in a NpT-simulation of a
spring network. The area moves cost computation time on the order
of N so they should be used sparingly. The choice of conducting area
trial moves on every N’th step is supported by the comparison shown
here. Furthermore the data on pressure, which are not explicitly
shown here, tell that this choice accomplishes the applied external
pressure - it is zero in the shown case. z = 4.7400, N = 100, 7 = 0.0

This variable transformation has to be corrected in the partition function when
integrating over the volume [73].

The trial moves for the vectors enclosing the system are performed after on av-
erage IV trial moves of spheres or vertices. Area trial moves are computationally
costly as they involve adapting all N vertices to the newly defined simulation box
and calculating the energy for all the springs in the system. In 4.2 we can see
that the choice of area moves after N vertex steps is sufficient for a large regime
of temperatures.

Thus, first the algorithm tries to relieve strain among all the entities of the
system. Then, in addition it tries to reduce the total energy further by changing
the system’s area. The virial pressure in the system should then fluctuate around
the applied external pressure: p = 7. In Figure 4.3 this is verified.
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Figure 4.3: The system’s pressure in the NpT simulation is equal to the
tuned external tension 7. For a system of N = 100, z = 4.74 and
a wealth of temperatures T’

4.3.4 NpT simulation of spring networks

The simulation of spring networks at fixed pressure is a particularly important
case for the research presented here. It should be illustrated in greater detail.

In Figure 4.4 we try to illustrate the simulation dynamics induced by temperature
in a snapshot.

In Figure 4.5 the collapse |74] of a spring network is shown. We speak of col-
lapse when vertices cross other bonds, which leads to an ongoing folding of the
structure. Due to the tendency to contract, eventually in this case the volume
will vanish.

The snapshots of the collapsing spring network show that in this regime the
simulation presented here is not meaningful any more: springs cross each other
wildly because volume is not excluded. The model is not suitable to give results
of interest at high temperatures which are associated with the collapsed region.
Yet, this is sufficient because the subject of this study is to consider effects of
rather low temperatures and to consider the solid phase.

Still, it is interesting to investigate with which parameters the collapse begins to
set in. This is looked at in chapter 7.
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Figure 4.5:
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Collapse of the same spring network at two simulation times.
The left picture shows the beginning of the collapse with the charac-
teristic folding of some springs in certain regions. In the right picture
the collapse is more advanced and the area of the system has de-
creased strongly. This effect is seen because volume is not excluded
in our simulation and because it is not suited to model the behaviour
at high temperatures. In this work we are interested in the effect
of rather low temperatures and in where the phase transition to the
collapse happens. The collapsed phase itself is not part of this work
as the model we are using is not meaningful in a physical way any
more in this regime. z = 4.0013, N = 1600, 7' = 1072, 7 = 0.0.
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Figure 4.6: Pressure in a NVT simulation of a packing of spheres with

initial equilibration because of initial minor rearrangements.
Packing fraction ¢ = 0.89 (z = 4.7400), N = 100, T' = 107°.

4.3.5 Averaging

We have set the acceptance probability according to the Metropolis algorithm
4.5 and we have made this choice so that our system moves through phase space
sampling energies with probabilities stemming from the Boltzmann distribution.
Thus, we can simply average the observable o we are interested in over simulation
steps J to get an estimate for it in equilibrium:

< |

1 J
6==>Y o (4.7)
j=1

where o0, is the value of observable o at step j. Usually we do not measure o at
every single simulation time step as it involves extra computation.

Furthermore, successive steps that are closely together in the Markov chain are
strongly correlated. Thus J is in practice a small subset of all simulation steps
performed and chosen so that correlations among steps are avoided as well as
possible. A typical picture of the measurement of pressure in our system looks,
for instance, as shown in Figure 4.6.

It must also be noted that we trim away a fraction of steps at the beginning which
do not contribute to the set J as the system is still in the process of equilibration,
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Figure 4.7: Pressure in a NVT simulation of a packing of spheres at
equilibrium. Packing fraction ¢ = 0.89 (z = 4.74), N = 100, T' =
107°.

see 4.6. A typical timetrace of the NVT simulation of sphere-packings is shown
in Figure 4.6, which shows the pressure fluctuations in equilibrium.

In Figure 4.8 a typical trace of the area measurement over simulation steps for
the NpT ensemble is shown. Figure 4.9 shows the distribution of values for the
observable area. Also there the burn-in or equilibration time at the beginning is
cut and not used for the measurement of the average |75].
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Histogram of area in a NpT simulation of a spring network
at equilibrium. We can assume that the process obeys Gaussian
statistics [76]. Initial equilibration is taken into account, 4.74, N =
100, T =107%, 7=0.0

Identifiying when a system is completely equilibrated is difficult to almost im-

possible to

do rigorously. However, there are some hints:
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In Figure 4.6 we see that after some initial large changes in pressure a certain
value is approached. This is probably the equilibrium we are looking for and the
system’s pressure in this case will fluctuate around the average equilibrium pres-
sure. A second simulation with a different initial random seed would eventually
reach the same average value. This way we know that the algorithm did not get
stuck in a local energy minimum.

For relatively high temperatures, in which phase space exploration is dense, equi-
libration is usually not a problem in the simulations conducted: the temperature
allows to overcome energy barriers easily during the simulation steps given.

For very low temperatures, the initial conditions of the system have a larger
impact because the slow simulation dynamics take longer to reach equilibrium
values. Hence, we have to increase the equilibration time. Yet it is hard to assert
how many steps of heating the system are enough. The more simulation steps
we can cut away at the beginnning the sharper the result. However, we need
many measurements to get decent values for the observables of the system and
simulation time has to be spent well. In practice we can look at the fluctuations
of results at temperatures close to each other in order to identify down to which
temperature we can trust the data. In packings we find glassy dynamics and
ageing, hence we might never really a stationary state.

4.3.6 Independent states and estimation of errors

In order to find out how many simulation steps are needed so that two measure-
ments are considered uncorrelated we look at the autocorrelation function. It is
a simple measure for finding repeating patterns in a time series [69]:

J—j
1
Autocorrelation (j) = T Z o(j")o(j" + 7)—
J'=0
o o (4.8)
./ -/ -
—_— o) —— o) +17)
7o o) gy el

where j denotes the time step in the set J of the total number of measurements,
0(j) is the value of the observable we are considering at simulation time j. Using
the autocorrelation in this form presupposes that the system is equilibrated and
stationary.

In Figure 4.10 the autocorrelation is shown at two temperatures. Note that a
change in area happens on average at every N** time step.
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Figure 4.10: Autocorrelation of area after equilibration of a spring net-
work at two temperatures. The autocorrelation decays with
increasing simulation steps as it should. For the lower temperature
the decay is slightly slower. The decay is expected to be exponential
and on the order of j; = 3000 timesteps for reaching 1/e ~ 0.37.
As a rule of thumb 2j,; ~ 5000 steps should at least be between two
measurements of the area for this network and in this temperature
range. z = 4.74, 7 = 0.0, N = 100.
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The autocorrelation should decay like oc e=9/74 [69], which yields a timescale jy
for the decay of correlations.

The correct standard deviation for the average of an observable is |77]:

_ AT 2a/AT (o
”—V?(O ). (4.9)

where Aj is the interval between two measurements. For large J we can thus use
the standard error:

a%\/Jil (52—52), (4.10)

as long as there are at least two correlation times between two measurements:
A] > 294

If we are taking more steps that are correlated, we have to correct J in (4.10)
to the number of actually uncorrelated steps. In other words: it is the number
of uncorrelated observations that counts rather than the total number of obser-
vations [75]. One practical problem is that it is hard to know beforehand what
the autocorrelation time will be, so we will choose the number of iterations to be
sufficient, based on the knowledge of previous simulations.

The standard deviation amounts to the statistical error of a simulation run. The
systematic error of the simulation is much harder to estimate. It is connected
to the way the simulation is choosing its steps and to properties such as the
equilibration time. In 4.3.5 the difficulties in knowing equilibration times were
already discussed. For the systematic error this means that it is very hard to
estimate, too. For the results of the simulations conducted we can see on the
basis of consistency when values for low temperatures get out of hand compared
to higher temperatures, even though statistical errors might be small.

In Figure 4.11 the measured average area is shown over a regime of relatively low
temperatures.

o8



4.3 Implementation

166.05678 — w ‘
10" measurements ——s——
10° measurements — ~ i
166.05676 | 108 measurements ———— ]
166.05674 - |
<
®©
S 166.05672 - |
-
<
166.05670 - |
166.05668 |- |
b
166.05666 Lol et e B
102 10 10" 10° 10 107

Temperature T

Figure 4.11: Fixed pressure Monte Carlo simulation of spring network
with coordination z = 4.9495 for number of measurements.
Error bars for the statistical errors are smaller than the symbols for
a data point. Increasing the number of measurements while having
the same equilibration time improves the quality of the area-over-
temperature graph significantly.

It can be seen that increasing the number of measurements while using the same
equilibration time improves the quality of the final result significantly. This is
the case even though the statistical error is small compared to the fluctuations
inside the graph and the distance between two measurements is the same, i.e.
Aj > 2j4.

4.3.7 Optimisations - Neighbour lists

In scientific simulations it is essential to be efficient with respect to the given
computational — both processing and spatial — resources. This may determine
if a result can be obtained in a humanly meaningful time and, thus, if certain
phenomena are observed at all. As Newman and Barkema [69] point out it is
rarely the most efficient approach to just program the Monte Carlo Metropolis
algorithm. Small deliberations can improve the runtime by orders of magnitude.

A common way to reduce the computational complexity of a system with inter-
acting particles in a box is to employ a neighbour or Verlet list [73].

In the case of spring networks this optimisation is not necessary or, alas, trivial
because the fixed connectivity of the vertices naturally defines a neighbour list.
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Figure 4.12: Neighbourhood of a disc in the packing. Neighbourhood of
given discrete length for a disc, marked in black, in the packing.
Its neighbours are marked in red. Discs which will not be in the
neighbour list are coloured in blue. Blue discs will not be evalu-
ated in a trial step, which is unproblematic due to the short-ranged
interactions. The size of the neighbourhood is 10.

This means that only the up to six springs connected to neighbouring vertices
must be evaluated in order to get the change in energy of the Hamiltonian of the
system. Thus, the computation cost is of order O(N) for a trial move of every
vertex.

In the case of thermalized packings the neighbour relations between spheres may
change. Naively speaking, this means evaluating all possible interactions between
spheres in the box which would drive the computation cost to O(N?). As a
remedy a list of neighbours for each sphere is kept and only interactions between
the sphere and the sphere in its neighbour list are evaluated. The neighbour list
is pictured in Figure 4.12.

The mean free path length of the system determines how often the neighbour
list has to be updated. In a gas for instance, the neighbour list needs to be
updated frequently with respect to the possible displacement of a particle in one
step since their environment(the neighbouring particles) changes rapidly over
time. This extra effort in programming was saved and a version which can be
implemented with low programming complexity and which is just right for our
case was chosen. In the simulations conducted in this work it is enough to keep
a constant neighbour list initialized in the beginning of the simulation. This
is because in our jammed system the interactions do not change that fast and
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we can use such a "simple" implementation of neighbour lists and only update
those when necessary at a long time interval. This is motivated by the fact that
movements of spheres are rather small and rearrangements only happen at high
temperatures. The length of the neighbour list is tuned to the temperature of
the simulation and checks to confirm that the neighbour list is still sufficient are
performed at certain intervals. For high temperatures we simply use the whole
system as a neighbour list, which is sufficient as we do not need many steps to
get enough uncorrelated steps for measurements.

4.3.8 Optimisations — Choice of stepsize

An adequate choice of the stepsize reduces the simulation effort of our model
system drastically. We have to ask ourselves what a good stepsize is and how to
find it. The acceptance rate is an important measure for Monte Carlo simulations
in order to understand if parameters are correctly chosen. The acceptance rate
is defined as:

Steps accepted

4.11
Total number of MC steps ( )

Acceptance rate =

The acceptance rate is a direct result of the choice of a certain stepsize [76]. In
our case, having a high acceptance rate means that each sphere or vertex in our
system is covering its vicinity with many small successful steps. Even though not
many steps are wasted this means that for a given finite number of steps we only
cover a small area around each sphere. Moreover, the coverage in phase space of
our system is probably not optimal either. On the other hand, a low acceptance
rate means that most of the suggested steps are dismissed by the Monte Carlo
criterion. This is not an optimal situation either because it will result in a series
of strongly correlated steps.

As it is not apparent how to fix the acceptance rate, we introduce another measure
which we will call total movement. The total movement is simply the sum of steps
accepted of all vertices added up over a certain simulation time interval:

J N
Total movement = Z |02;] + |y, (4.12)

J

where J is the number of simulation steps for the chosen interval, 0z the displace-
ment in z-direction, dy the displacement in y-direction and N is the number of
entities (spheres or vertices) in our system. This measure should not be mistaken
for the mean square displacement. In general, the total movement should be
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Figure 4.13: Total movement per vertex as a measure of the efficiency
of phase space exploration for different temperatures over
a range of stepsizes. The best stepsize in terms of computational
efficiency depends on the temperature of the simulation for a given
network. The described algorithm finds the best stepsize at all times
and makes use of the convexity of the total movement function over

stepsize. NpT simulation of spring network with coordination z =
4.86 with 7 = 0.0.

divided by computing time. In our case, however, the computing time does not
depend on accepted or rejected moves or the magnitude of trial step.

The goal is to maximize this measure with the choice of the stepsize. The higher
the total movement, the larger the environment each vertex or sphere is exploring
with respect to a given amount of Monte Carlo steps. The total number of the
Monte Carlo steps will include dismissed as well as accepted moves because we
are interested in the efficient exploration of phase space volume.

Special care, however, has to be taken of rattlers so that this measure can be a
meaningful heuristic for the efficiency of the simulation. They should be excluded,
since if this is not done the rattlers will explore their free volume and drive the
stepsize to a value which optimises the exploration of the free volume of the
rattlers. A choice of such a stepsize, however, is not optimal for the non-rattlers.

It seems most simple and straightforward to implement the search for an optimal
stepsize - as defined by our total movement measure - by implementing a finite
state machine. We utilize the fact that the function of the total movement over
stepsize is convex for an infinitesimal number of measurements J, see Figure 4.13
as an illustration for a finite number of steps.

This can be understood from the argument that for low stepsizes a small amount
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of phase space is explored. If we increase the step size the degree of exploration -
measured by the total movement - is increasing. At the other end of the spectrum,
for very large stepsizes almost no movement and thus exploration of phase space
is happening as steps are neglected by our Monte Carlo criterion. In between
those two ends there has to be a maximum of the total movement.

The algorithm to maximize the phase space exploration is:

1. Initialize a vector S of stepsizes which will be evaluated in the following.
Go to state 2.

2. Record values with the chosen stepsize s for Jy,, iterations. Do this for all
stepsizes in S.
Go to 3.

3. Evaluate best stepsize s, out of S with respect to the highest total movement
and run for this stepsize a number of iterations Jy., >> Ji.
Go to 1.

The application of this measure to fixed step sizes for simulation runs at different
temperatures can be seen in Figure 4.13. The described algorithm finds the best
stepsize defined by generating the highest total movement at all times.

4.3.9 Observables

Now we will briefly define the observables of the system and how they were
obtained within the simulation.

Area

The area of the system is defined by the encompassing vectors U and V', as defined
in Figure 3.1. The area of the parallelogram is then measured straightforwardly:

A=U,-V, (4.13)

where U, is the component of U in the z direction and V,, the component of V/
in the y direction. Note that V is aligned with the y-Axis.

Pressure

We measure the virial terms of the pressure, i.e. neglect pushes with the walls
of the system of order N - T'/A. These contributions are small compared to the
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virial terms in the temperature ranges we operate. The pressure is defined as a
dimensionless quantity:

N
1

where the sum goes over all pairs ij with distance s;; among them, the factor d
indicates the dimension of the system and the force f;; between entities ¢ and j
being:

fii = ksp - (50 — sij)- (4.15)

The equilibrium length of the spring is sy or in the case of packings the sum of
radii r; 4+ r; of both spheres. For s;; > r; + r; the force between the two spheres
vanishes. The constant factor ky, of the potential - i.e. the spring constant - is
generally set to unity.

Coordination
Average coordination z of a spring network is defined as:

2z
- N—-R’

z

(4.16)

where Z is the total number of springs in the network and R the number of
rattlers (the number of springs or spheres with < 1 contact, see Chapter 2.1).

For simulations of packings we measure the effective coordination number z.¢; in
which Z becomes the number of contacts at simulation time . More details on
coordination are dealt with in chapter 2.

Direct bulk measurement

The bulk modulus can be measured directly by using its definiton [78,79|:

B dp dp

where JA = 1 — A/A, is the relative change of the area. This change can be
conveniently used in order to probe the derivative in the equation.

64



4.3 Implementation

Bulk modulus through linear response

The bulk modulus can be measured through the fluctuations in the area with
help of the fluctation dissipation theorem [80|. Its response to fluctuations of the
area are the same as to a small applied force [73].

The bulk modulus B is then [66]:

{4)

=T
B=Traazy

(4.18)

where (A) is the average in area obtained through Monte Carlo sampling and
(AA?) the corresponding variance.

Measuring the bulk directly through this method we have to run series of simu-
lations for different values of fixed §A. Measuring the bulk via fluctuations we

need to sample longer for one combination of (7',z,7). There is no free lunch after
all.

Simple shear modulus through linear response

The simple shear modulus [81] can be derived through the fluctuations in the
defining vector V' of the volume’s shape [66]:

T (Vy)
S_< ><( Va

In Figure 3.1 the angle o = tcm(%).

)2) = T(A) V) (v (4.19)

T

Localisation length

We define the localisation length LL of an entity ¢ in the system as:

LL =< (r;(t)— < ri(t) >)* >= Var(ri(t)) (4.20)

In principle one could calculate the variance directly from the movement of an
entity, but this turned out to be unreliable and not stable to handle as global
movements and rotations of the system have to be taken care of. Furthermore,
using (4.20) directly means collecting the positions of ¢ first in order to compute
the average and only then the variance.
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Instead of using the definition directly, the variance of the distance of two entities
1 and j was measured. If they are uncorrelated, this gives twice the localisation
length:

Var(ri(t) —rj(t)) = < (ri(t) =r;(t)* > = < (r:(t) — (1)) >*

= <rit)? >+ <) > +2 <ri(O)r(t) > — < rit) —ri(t) >3
<ri(t)? > — <ri(t) >+ <) > — < ri(t) >?
2-Var(ri(t))
2-LL

Q

Q

In the second step we assume both entities to be uncorrelated. In the third step
we use the fact that the localisation length does not depend on a specific entity.

To determine the localisation length of entities in the simulation box the following
algorithm is used:

1. Choose a set of entities in the system
2. Record their distance

3. Calculate the average distance and its variance of each entity-pair of the
selection

If we choose two vertices ¢ and 5 which are far away enough away from each
other, their movements over simulation time ¢ will not be correlated. Therefore
the variance of their distance will give us twice the localisation length of one of
the entities itself:

Figure 4.14 shows the variance in distance over mean distance.

It can be seen that a certain distance is needed to be safe that vertices are
uncorrelated. Certainly this decay is stronger in a larger system, see Figure 4.15.

For our purposes it is enough to average over the variance in distance of the largest
average distances. Divided by 2 and the average radius (0.5+0.7) /2 = 0.6 squared
this is the mean square displacement.
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Var(Distance / Radius) / 2
3

2 4 6 8 10 12 14
Average distance: d / 0.6

Figure 4.14: Variance of distance plotted over distance of vertices in a
spring network. For a meaningful lengthscale, variance and av-
erage distance are corrected by the average radius of spheres in
the initial packing configuration. In this figure and work this is:
(0.540.7)/2 = 0.6. The scaling on temperature can already be as-
sumed from this plot - it will be discussed in section 5.4. N = 100,
z = 4.74, Edge-length L/0.6 ~ 21.5. Minimum image of two points
with maximum distance (L/2 in x and y direction) is 15.2.
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Var(Distance / Radius) / 2

10 20 30 40 50
Average distance: d /0.6

Figure 4.15: Variance of distance plotted over distance of vertices in a
spring network with N = 1600 vertices. In Figure 4.14 there is a
cutoff in distance at around 15, due to the smaller system size. In this
figure it can be seen that it is sufficient to estimate the mean square
displacement through the variance in distance even in such a small
system with N = 100. N = 1600, z = 4.39, Edge-length L/0.6 ~
85.9. Minimum image of two points with maximum distance is 60.7.

4.4 Concluding remarks

The simulations conducted in this work are marked by the problems which come
up when doing computer experiments at low temperatures of glassy systems [82].
The limitation one has to work around here is that many states are blocked
by large energy barriers, which are practically impossible to overcome when the
temperature is low. This is known as ergodicity breaking.

Thus rearrangements disregarded in this research on jammed packings as we focus
to sample the small movements consistent with the structure of the packing or
spring network. In this trimmed state space ergodicity can be assumed. Still, the
given scenario results in long equilibration because of the strong history depen-
dence of the sampling.The optimisations employed were good enough for what
we wanted to study over a large range of temperatures. Yet, there is a strong
dependence on the implemented algorithm and randomness for these kinds of
systems.

Possible improvements would be to employ more advanced Monte Carlo tech-
niques like entropic sampling or simulated tempering. In the first method, state
space is sampled with higher probability in regions where the density in state
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space is low. This is done because in glassy systems these phase space regions
are not well sampled in importance sampling. This way the partition function
is approximated, which can then be used to calculate all properties of the sys-
tem at all temperatures. It has non-trivial aspects to it in programming and
practice. In simulated tempering a second simulation at a higher temperature is
conducted and in exchange with the actual simulation. The higher temperature
of the second simulation helps to overcome energy barriers.
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5 Thermally Activated Networks
of Springs

In this chapter we will present the results thermally activated networks of springs.
The setting is clear: jammed materials exhibit ample intriguing phenomena al-
ready in the athermal case. Here, we want to investigate how the model sytem
described in chapter 3 behaves when we turn on the heat. Further parameters
are the varying connectivity and external pressure. Our main focus is on the
resulting linear response.

71



5 Thermally Activated Networks of Springs

5.1 Area development

As explained in section 1.3, negative thermal expansion is an interesting phe-
nomenon of certain usually amorphous materials. To investigate this effect for
amorphous spring networks the area of the system is measured at different tem-
peratures. In Figure 5.1 we can see the area development under temperature for
a network with coordination z = 4.9495 and N = 100 vertices. The pressure of
the simulated system network is fixed at zero. This is the NpT' ensemble, where
the number of particles or vertices N, the pressure p and the temperature T —
for each data point — are fixed.

200
150 - I .
<
(4v)
qL) 100 [~ 7
<
50 - s
z2=4.9495 ————— A
0 | . | . | . | . | . | . |
10712 10710 108 10°° 104 102 10°

Temperature T

Figure 5.1: Fixed pressure Monte Carlo simulation of a spring network
with coordination z = 4.9495. The system contracts with increas-
ing temperature up to a transition temperature 7T,.. For T" > T, the
spring network is collapsed. In the collapsed regime the model is not
physically meaningful anymore. This regime will be discarded in the
following. System size N = 100.

The area development in Figure 5.1 shows two regimes: For very low temperatures
up to approximately 7. = 2.9 - 1072 the area A first looks constant on the linear
scale and then decreases. This contraction is a first hallmark of negative thermal
expansion. Then the system’s area decreases rapidly and by orders of magnitude
at T, and the system is found in a collapsed state.
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The main reason is, that the simulation model itself breaks down quite literally
at this point. As volume is not excluded in the simulations, vertices go criss-cross
— Figure 4.5 shows a snapshot of the situation — and the gathered data in this
regime is not of a meaningful system any more. Yet, the model works as expected
up to this transition.

The point of the transition will be of interest in 7 where the phase diagram of
spring networks is discussed. The collapsed state itself, however, will not be
discussed further in this work.

5.1.1 Negative thermal expansion

We will focus now on the contraction of the area with temperature. The general
definition of the thermal expansion coefficient is [81]:

ay = % (g—‘;p) (5.1)

Applied to the two-dimensional model system we get:

1 0 0 A
o= a5 A Tl =55 (1- 4 ). 5.2

The term 1—A/Ajg is the relative contraction, which compares the area to the area
Ap at zero temperature for the given values of Az and 7. The relative contraction
in the contracted regime is shown in Figure 5.2.
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Figure 5.2: Spring network with coordination z = 4.9495 as a function of
temperature T. The area is measured as the relative contraction 1—
A/A0. The triangle has a slope 1 proportional to the temperature. We

see that the network contracts directly proportionally to temperature
T over at least five decades. System size N = 100.

We see that the network contracts directly proportionally to temperature T" over
at least five decades. The lower the temperature, the longer simulations are
needed in order to get precise values. That is why the line is not smooth at low
temperatures. This was explained in detail in Chapter 4. Thus we find:

—ay ~T. (5.3)

Next, it has to be checked how this result depends on network properties. The
coordination number clearly is a determining quantity for spring networks as it is
directly connected to its mechanical stability and mode spectrum [29]. Figure 5.3
shows a variety of networks of different coordination.

Firstly, it can be seen that a higher coordination number accounts for a stiffer
network, ¢.e. with a lower contraction at a given temperature. Furthermore, it can
be seen that the temperature 7, at which the collapse is happening increases with
coordination z. Most importantly, we find that the negative thermal expansion is
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Figure 5.3: Fixed pressure Monte Carlo simulation of spring networks
with different coordination numbers z. A network becomes
stiffer and more resilient to temperature with increasing connectivity.
The linear scaling with temperature holds for different coordination
numbers z over many decades. System size N = 100.

proportional to T independently of the coordination z: spring networks contract
with temperature.

5.1.2 Effective coordination number

In Figure 5.4 we show the average effective coordination z.s¢ for different spring
networks as a function of temperature. Measuring effective coordination is done
by taking a snapshot of the network at a simulation time to measure the coor-
dination of the corresponding packing of spheres. In other words, each vertex is
exchanged through its corresponding sphere with radius R; or R and then (2.1)
is used. This quantity is interesting because it provides an understanding of how
strong the movement of the vertices is due to the heat. Furthermore, the effective
coordination number is a useful order parameter to discriminate the contracted
from the collapsed regime in the case of spring networks. This will be important
in Chapter 7 where we consider the phase diagram of these spring networks. It
will be especially important when we later consider sphere packings in Chapter
8 as there exists no fixed neighbour connection for spheres.
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Figure 5.4: Average effective coordination z.;; for spring networks with
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different coordination numbers z. The effective coordination
number measures the coordination of the network at one point in
simulation time as if it was a packing of spheres. The shown values
are the simulation time and thus ensemble averages for given temper-
ature and connectivity of the network. This quantity is interesting
because it provides an understanding of how strong the movement of
the vertices is due to the heat. On average the number of contacts
decreases with temperature.



5.1 Area development

0.1 1
Coordination Az

Figure 5.5: Relative contraction of spring networks for different temper-
atures over the distance in coordination Az from the isostatic
point. Low coordination numbers and high temperature favor col-
lapse of a spring network. Furthermore, networks contract with di-
minishing distance from the isostatic point. Low temperatures are
computationally costly to simulate, hence the more wiggly data.

5.1.3 Dependence on coordination number

The dependence on the connectivity of spring networks will now be investigated
further. In Figure 5.5 we plot the relative contraction as a function of the distance
from the isostatic coordination number Az.

In Figure 5.5 we see that the lower the coordination numbers the lower the critical
temperature 7, above which the spring networks collapse. Furthermore, networks
contract with diminishing distance to the isostatic point. This is not surprising
as a lower coordination is a mark of lower mechanical stability and should result
in contraction. The wiggly data for low temperatures again stems from the
computational cost to simulate in this parameter range.

The linear dependence of the reduced volume on temperature was already estab-
lished before, thus it can be scaled out. This is done in Figure 5.6.
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Figure 5.6: Fixed pressure Monte Carlo simulation of spring networks
with different coordination numbers 2. With increasing net-
work connectivity they become stiffer and more resilient to tempera-
ture. Linear scaling with temperature holds for different coordination
numbers z for 1 decade. The triangle has a slope Azt

The following dependence is found:

1 A 1
(1= A—O) ~ (5.4)

Due to the linear dependence of the area on temperature the negative thermal
expansion NTE coefficient becomes:

NTE = —ay = % <1 - ﬁ) ~ (5.5)

It holds for a large regime of values as visible in Figure 5.6 as long as the network
is uncollapsed. Lower temperatures than the ones shown are expected to show
the same behaviour.

5.1.4 Effect of external tension

The situation changes when the system is subject to external tension 7. It is
either pulled, which means 7 > 0, or squeezed, which means 7 < 0.
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Figure 5.7 shows the development of the area for positive and negative tensions.

Squeezing the system leads to an earlier collapse of the system. The exact value
7 where the collapse happens depends on the temperature. The lower the tem-
perature, the more external pressure a network can sustain.

However, if the temperature is low, the area development is dominated purely by
external pressure for much lower values of 7. Supporting tension prevents collapse
for the temperatures used here and leads to lower thermal expansion. Above a
temperature-dependent value of 75(T") the area of the system is extended beyond
the area at zero temperature, i.e. A > Ay [74]. The higher the temperature, the
longer the system sustains the contraction against pulling external tension. Above
75(T") the area is completely dominated by the tension and linearly extended with
T.
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Figure 5.7: Fixed pressure Monte Carlo simulation of a spring network
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with coordination z = 4.9495 in dependence of external ten-
sion 7. Compressing tension leads to collapse of the system if it is
larger than a certain value depending on the temperature of the sys-
tem. Supporting tension leads to a total area A > Aj for a certain
temperature-dependent value of 7. The black line marks where the
behaviour of the spring networks is dominated by 7 and becomes in-
dependent from temperature 7. In between those limiting cases the
networks show negative thermal expansion. Above this value the area
is dominated by the tension.
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Figure 5.8: Scaling of system’s area at fixed pressure for temperatures
T, coordination numbers 2 and external tensions 7. The y-
axis is the negative thermal expansion coefficient (NTE) times the
distance from the jamming point Az. The predictions derived from
our scaling arguments are plotted on top of the data. The dotted
orange line indicates the predicted area development for vanishing
tension. The solid red line indicates the predicted area development
for dominating tension. The data is in decent support of the predicted
scaling for five orders of magnitude in 7" and approximately three
orders for Az. System size is N = 3200.

5.1.5 Scaling with temperature, coordination and tension

The relative contraction is measured for different combinations of 7', z and 7.
The data is scaled on the x-axis for 7- Az~2 and on the y-axis for NTE - Az. In
order to get close to the isostatic point and to be able to check the scaling for
low Az the network size N = 3200 is large in comparison to the data shown until
now. The resulting scaling plot is shown in Figure 5.8.

For low coordination numbers the data is less accurate, see the blue curves in
Figure 5.8. The reason is that simulating the system for low temperatures and
low coordination numbers demands more computational time than for high tem-
peratures and high coordinations. But for low coordinations we cannot tune the
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temperature too high before the collapse of the spring network happens. That is
why in the figure the data for coordinations close to the isostatic point gets less
sharp. This will be more problematic when we compute the bulk modulus from
the data.

The shape of the scaling functions can be extracted from the scaled simulation
data.

We can now verify the scalings derived from analysis of the soft mode spectrum
[61] with the simulation data (see Chapter 1.3.3). The predictions derived from
our scaling arguments are plotted on top of the data. The limiting cases for
TAz7? << 1 and 7TAz72 >> 1 derived from the theory are decently supported
by the simulations: at values of 7 << Az? the tension does not play a role, while
7 >> Az? means that tension dominates the behaviour of the material. The
data is in decent support of the predicted scaling for five orders of magnitude in
temperature T' and approximately three orders of magnitude for the distance to
isostaticity Az.

Let us conclude with the side note that the scaling extends to negative tensions
7 with a constant scaling function as long as the pressing tension is not too high.
This prediction is supported by simulations, too.
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Figure 5.9: Bulk modulus in dependence of temperature 7' for different
z at zero tension. The system softens with increasing temperature.
The collapsed regime is not shown. System size N = 100. NpT
simulation.

5.2 Bulk modulus

Introducing temperature leads to contraction of the model system. It will surely
also affect its other properties. Here we will investigate the bulk modulus B,
which measures the material’s resistance to uniform compression:

dp

B=-A-"L,
dA

(5.6)

One could imagine that a decrease in area will lead to a hardening of the system
and thus an increase of the bulk modulus. This is not the case.

5.2.1 Dependence on temperature
Figure 5.9 shows simulation data of the bulk modulus, defined in (4.18) in the

NpT ensemble at zero external tension. The system softens with increasing
temperature even though the area is decreasing.

83



5 Thermally Activated Networks of Springs

Bulk modulus 1/B - 1/B

—_
o
N

|

1072

— 7z=4.02
—x— z=4.10
—— 7=4.43
z=4.67
z=5.01
z=6.00

L L Nig

i

107 10 10 10 103 102
Temperature T

Figure 5.10: Inverse bulk modulus (compressibility) in dependence of

temperature 7' for different > at zero tension compared to
inverse zero-temperature bulk modulus. The system softens
with increasing temperature. The black lines indicate the fitted func-
tion through a linear least squares fit of the logarithmized data. Ex-
ponents are found in the table in the main text. The dependence on
temperature is linear. The collapsed regime is not shown. System
size N = 100. NpT simulation.

Figure 5.10 shows the inverse bulk modulus — which is the compressibility — as
a function of T" compared to the inverse zero-temperature bulk modulus. We
introduce this quantity because it is what we will use later for the scaling plot.

The data in Figure 5.10 can be used to determine the dependence on temperature.
The black lines indicate the fitted function through a linear least squares fit of the
logarithmized data. The following exponents are found for different coordinations
of the spring network:
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Coordination z | Exponent of T-dependence
4.021 1.13 +0.06
4.1031 1.05 £0.08
4.433 1.09 + 0.01
4.6735 1.13+£0.02
5.0101 1.06 £ 0.05
6.0 1.08 £ 0.04

The limiting factor in determinig the exponents is the measurement of the bulk
modulus at zero temperature. As the bulk modulus is measured through the
fluctuations of the area of the system, we need another order of magnitude for the
simulation time in order to get the same accuracy as for the area determination
of the system. Higher values of z yield more exact results as a larger set of
measurements for large temperatures can be used because the system is still
stable, i.e. not collapsed, for these temperatures.

Furthermore, the exponent is probably subject to finite size effects and thus
depending on the relatively small system size as well.

From the exponents found in the table above we conclude that the dependence
on temperature is approximately linear.

5.2.2 Dependence on coordination

In Figure 5.11 the bulk modulus is shown as a function of coordination for different
temperatures. Following intuition the bulk modulus should stiffen with increasing
connectivity.

The dependence for very low temperatures is similar to the athermal case. In
the athermal case the bulk modulus decreases with connectivity and drops to
zero below the isostatic point, which is defined by ill-connectedness and resulting
mechanical instability.

Figure 5.12 shows schematically what is found in the simulations: despite the con-
traction — counter-intuitively — the material softens with increasing temperature.
For Az — 0 the difference between temperatures diverges. At zero temperature
the bulk modulus is vanishing for coordinations below the isostatic point Az < 0,
and finite and increasing with z for Az > 0. This discontinuous phase transition
gets blurred at finite temperatures resulting in a sigmoid curve.

We are interested in the dependence of the bulk modulus on the coordination of
the system. It should be clear that again the distance from the isostatic point
will determine the scaling of the bulk modulus.
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5 Thermally Activated Networks of Springs

Bulk modulus B

Coordination Az

Figure 5.11: Bulk modulus in dependence of distance in coordination
from the isostatic point Az for different temperatures 7T at
zero tension. The system softens with decreasing connectivity as
expected. The collapsed regime is not shown. System size N = 100.
NpT simulation.

Figure 5.12: Bulk modulus of spring network as a function of Az for
different temperatures. Schematic. For vanishing temperature
the bulk modulus stays finite until the isostatic point. B gets more
and more softened with increasing temperature towards a sigmoidal

curve.
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Figure 5.13: Compressibility compared to the athermal compressibility
as a function of the distance from the isostatic point. Black
lines indicate the fitted power functions for different temperatures.
Exponents can be found in the table in the text. The relative com-
pressibility scales with Az73.

Figure 5.13 shows the compressibility compared to the athermal case as a function
of Az for different temperatures.

The black lines indicate the fitted function through a linear least squares fit of the
logarithmized data. The following exponents are found for different temperatures
of the spring network:

Temperature | Exponent of Az-dependence
1072 —-3.20 £ 0.17
1077 —2.9140.15
1074 —2.93+0.24
107° —3.07+£0.53

Again for low temperatures the data is less accurate, yet the results indicate a
dependence of the compressibility where the coordination scales like Az~3.

Hence, for the zero-tension case we get:
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5 Thermally Activated Networks of Springs

1 1 T

5.2.3 Scaling with temperature, coordination and tension

The bulk modulus is measured for different combinations of 7', z and 7.
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Figure 5.14: Rescaled data for the (inverse) bulk modulus. The dotted
orange line indicates the predicted inverse bulk modulus for vanish-
ing tension. The solid red line indicates the predicted inverse bulk
modulus for domination tension. Predictions derived from scaling
arguments are plotted on top of the data. The data is in decent
support of the predicted scaling for three orders of magnitude in T’
and Az > 0.01. Smaller Az support the scaling only for 7' = 1073
and T = 10~* and dominating tension. System size is N = 3200.

If we want to compute the bulk modulus the fluctuations of the area are needed.
Hence, in order to get data of the bulk modulus that are equally sharp as those
of the area we would even need another order of magnitude of more simulations.
This is why the agreement with the scaling prediciton is only good for larger
temperatures T in the range 1073 — 107°. In this temperature regime, however,
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5.2 Bulk modulus

Az 5 0.01 collapses for vanishing tension. Still, the overall agreement with the
scaling is strong.

The scalings derived from mode analysis following Chapter 1.3.3 are applied to
the simulation data of the bulk modulus in Figure 5.14. The simulation supports
the predicted scaling.
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5 Thermally Activated Networks of Springs

5.3 Shear modulus

Let us consider the shear modulus, which measures the resistance of a material
to deformations induced by stress which operates coplanar to the material’s cross
section. In our case this means that the angle a between the volume-enclosing
vectors U and V is changing, see Figure 3.1. Except in the case of collapse,
a will fluctuate around orthogonality. The shear modulus G is defined as the
proportionality factor connecting shear stress 7ypeqr and shear strain agpqin:

Tshear — G- Astrain (58)

The angle aqin is the material’s response to the shearing force. For small
deformations we can approximate this angle by the change of vector V' in the x
direction.

The force Typeqr is the shearing force trying to deform the system. In the Hamil-
tonian of the system (3.5) there is no apparent active shearing force. Indeed, this
element is not included in the model. However, the Monte Carlo moves of U and
V" allow a change of the simulation box’s shape, which introduces shear fluctua-
tions. This change in shape is mapped so that U always has a zero y-direction
component. Consequently, the fluctuations in V' allow us to compute the shear
modulus, see (4.19).

We are interested in what happens to the shear modulus of jammed spring net-
works at a constant volume when we excite their soft modes through temperature.
The system’s volume cannot contract because we keep its size fixed, but it is al-
lowed to change its shape. At simulation time ¢t = 0 the simulation box is a
square so the changes in shape will make the box a rhombus.

Now, at fixed volume the network cannot contract as it would at fixed pressure.
This force cannot vanish. If we fixed the volume’s shape, it would have to increase
the system’s pressure — this situation will be discussed in chapter 8. Allowing the
volume to change we expect the force to increase the shear modulus, too. This
is commonly referred to as shear stiffening.

Analysis of soft modes gives [61] a predicition.

In Figure 5.15 we plot the results for G of NVT-simulations for different tem-
peratures and coordination numbers together with the scaling obtained from
considerations on the mode spectrum.

Even for very high temperatures where T is of the order of the spring constant
k the scaling holds well. Shear stiffening is an interesting phenomenon as such.
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5.3 Shear modulus

0% 10 109 102 . 100 102 10°
T Az
Figure 5.15: Scaling of shear modulus in the canonical ensemble at
deeply spaced coordinations and several temperatures. The
scaling derived from the soft mode analysis is strongly supported
by the simulation data. The data is for eight orders of magnitude
in temperature and deep in dz from 0.01 — 2.0. 10! Iterations per
(z, T)-configuration including equilibration. System size N = 1600.

Metals, for instance, usually have a shear modulus decreasing with temperature.
In the case of our system it may be realized that G can be tuned quite sensitively
through Az or — in other words — the number of contacts. The scaling of the
shear modulus is another support for our theory.
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Figure 5.16: Localisation length as a function of temperature 7. N = 100,
7=0.0

5.4 Localisation length

As a dynamic — in contrast to thermodynamic — quantity we determine the lo-
calisation length of vertices in spring networks derived from jammed packings.
The localisation length LL is the average variance in displacement of vertices in
the system, defined as in (4.20) and measured through the algorithm defined in
Section 4.3.9.

By intuition it should increase with temperature as thermal fluctuations will lead
to greater exploration of the space surrounding a vertex. Furthermore, it should
decrease with connectivity because a more connected vertex is more strongly
constrained in its movement. Both intuitions are confirmed by simulation results
and supported by theory.

Figure 5.16 shows the localisation length as a function of temperature for different
coordinations.

The exponent for the temperature dependence is 1 for the whole range of coor-
dinations:
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5.4 Localisation length

Localisation Length LL

0.1 1
Coordination Az

Figure 5.17: Localisation length as a function of Az. N =100, 7 = 0.0

Coordination z Exponent of T-dependence

4.021 1.021 £ 0.006
4.206 1.001 £ 0.0003
4.860 0.99994 £ 0.00008
5.420 1.00001 = 0.00006
5.940 1.00002 +£ 0.00006

Figure 5.17 shows the localisation length as a function of temperature for different
coordinations.

The scaling with respect to Az is not as perfect as the temperature-dependence:

Temperature T Exponent of Az-dependence

1.0-1071 —1.18 £0.09
7.9-10710 —1.12 £ 0.08
6.3-107% —1.06 £0.07
5.0-107°8 —1.03 £ 0.06
4.0-107Y7 —1.14 £0.08
3.2-107% —1.12£0.08

Still, assuming Az~!, as the mode analysis suggests seems justifiable. Together

with finite size effects, the dependence on coordination is strongly influenced by
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5 Thermally Activated Networks of Springs

the exact preparation of the packing from which we derive the spring network.
For the relatively small networks we used here, there seems to be a rearrangement
which results in the bump in the Az dependence.

We conclude that the localisation length is proportional to temperature T and
inverse proportional to dz:

T
LL < — 5.9
e (5.9)

This can not come as a great surprise because displacement of a vertex and the
contraction of the whole volume are intimately connected and we already found
the same scaling relation for the area of the system, see Chapter 5.1.

5.4.1 Scaling with temperature, coordination and tension

We will now investigate the dependence of the localisation length LL on tem-
perature T', coordination distance from the isostatic point Az and tension 7, see
Figure 5.18.
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Figure 5.18: Scaling of Localisation length LL times Az over T with 7 -
Az72. Localisation length (times by Az) as a function of T. System
size is N = 3200.
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5.4 Localisation length

We can apply the scalings described in Chapter 1.3.3 to simulation data for LL.
The support is strong in the case of Az Z 0.01 but for a much larger range
of temperatures compared to the results for the bulk modulus. Again, we have
to measure fluctuations, i.e. the variance in distance, to get the localisation
length. This is why low temperatures are problematic due to longer equilibration
and correlation times. It is not entirely clear why low temperatures are still
better represented than in the case of bulk modulus measurements. One vector
to explain this might be the fact that in the case of the bulk modulus area
fluctuations are needed and in the case of the localisation length LL the variance
in distance is considered. However, a vertex move happens as often as an area
move in our simulation, i.e. at every N** steps.

Still, the results for coordinations Az Z 0.01 decently support the predictions.
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6 Dependence on network
Sstructure

In this chapter we will test the effect of a network’s structure on its mechanical
properties. After all there are many to infinite ways imaginable to create a
network with a certain average coordination number z. In our case we demand
that the networks are only locally connected, i.e. only neighbours but no crossing
links are allowed [83]. We consider the thermal expansion and the bulk modulus
and how they are affected by temperature and coordination. The considerations
shown here are mainly qualitative so that we can characterise jammed packing
networks and emphasize their significance.

As networks to be compared with derived jammed spring networks we consider
the following:

e Pruned networks obtained from jammed packings, starting with the pruning
at different coordinations Az.

e (C4 networks: each vertex is connected to its 4 next neighbours while vertices
at T' = 0 are distributed like the crossings on a chess board. Figure 6.1, left
panel shows such a network being thermally activated.

e (6 networks: each vertex is connected to its 6 next neighbours while the
structure is triangulated (with equilateral triangles at 7' = 0).

e Pruned C6 networks: we start from a regular C6 network and take out links
according to the described pruning protocol (see Chapter 2.3).

In Figure 6.2 the development of the relative decrease in area 1 — A/A, and the
bulk modulus B are shown for C4, C6 and pruned C6 networks in the top row and
for pruned networks in the lower row. Both are compared to networks obtained
from jammed packings.

C4 networks (Figure 6.2 top, pink line), C6 and pruned C6 networks (Figure 6.2
top, dotted lines) show negative thermal expansion over a large regime of tem-
peratures. Traces of this behaviour could already be found in [66] and [84].

Also the pruned networks contract with temperature. We may conclude that this
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Figure 6.1: Structure of fourfold (C4, left picture) and triangulated (C6,

Area 1-A/A,

Area 1-A/A,

right picture) networks. Both networks are shown thermally acti-
vated. In the network with fourfold connectivity we can see how tem-
perature leads to soft deformations of the zero-temperature square
structure of the network. Parallelograms and other shapes — favoured
by entropy — form and make the whole system’s area decrease |66].
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Figure 6.2: Relative contraction of area and bulk modulus for C4,
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C6 and pruned C6 networks (top figures) and for pruned
jammed packing spring networks (bottom) compared to net-
works from jammed packings.



is a general property of spring networks at vanishing tension and that they do so
directly proportionally to temperature 7.

To which extent this is the case at finite positive and negative tensions needs to
be explored further. C4 networks according to [66] show NTE only for "some"
positive tensions and expand for all negative tensions 7 < 0.0. If this is only due
to the limited range of tensions in the study needs to be further clarified. In any
case we showed in Figure 5.7 and the scaling of the area, Figure 5.8, that our
jammed packing networks maintain the NTE property for Az=27 << 1 while it
vanishes quickly when the tension begins to dominate for Az=27 >> 1.

We will now consider the onset of collapse and the bulk modulus. C4 networks
seem to show no transition into the fully contracted state where 1 — A/A, — 1.0.
They reach this state for lower temperatures than jammed packings with the
same number of links. C6 and pruned C6 networks reach the collapse earlier as
their counterparts derived from jammed packings with the same number of links
and were found to be unstable for coordinations below a certain threshold around
Az =~ 0.5. Furthermore, C4 networks and pruned C6 networks were found to be
much softer when considering the bulk modulus. C6 networks seem to be of an
order similar to fully connected jammed packings.

Pruned networks show only a slightly earlier collapse with T. More importantly
their bulk modulus behaves very differently from original jammed packings. This
stems from cutting links this way leads to rigidity percolation [15,85,86].

Figure 6.3 shows the bulk modulus as a function of Az for jammed packing
networks and their pruned counterparts while we started pruning at two different
values of z.

We see that the bulk modulus of the pruned networks vanishes quickly with Az
from the point on where pruning starts. The scaling with coordination is roughly
B o Az'® known from [64] when approaching isostaticity. The networks for
jammed packings maintain a finite bulk modulus in the athermal case [2| and
for low temperatures. In contrast to the slow divergence of the pruned networks
close to isostaticity they diverge abruptly close to Az = 0. Approaching the
isostatic point they show the characteristic softening observerd alread in Chapter
Figure 5.11.

In the pruning algorithm there is an element of random choice of links to be
removed. This results in different pruned networks for different runs of the al-
gorithm even though the network we started with was the same. We implicitly
check the variance induced by pruning in such a way that each Az seen in Fig-
ure 6.3 stems from an individually pruned network. This is why the data becomes
less sharp (with increasing Az). For the purposes of the considerations here the
variability induced by pruning is not an important factor.
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Bulk modulus for networks from packings (solid line) and
their pruned counterparts where pruning started from Az =
1.99 (dashed line) and Az = 0.61 (solid and dotted line). Data
as a function of the distance from the isostatic point of the jammed
packing spring networks. The bulk modulus is compared to its value
at zero-temperature far away from the isostatic point Az = 1.99.
Strongly vanishing bulk modulus with Az from where pruning starts
for both pruned networks with scaling oc Az'® [64] approaching iso-
staticity. The networks for jammed packings maintain their bulk mod-
ulus approaching the isostatic point unless they get softened by tem-
perature. In the limit of zero temperature the networks obtained from
jammed packings have a large bulk modulus while the one of pruned
networks vanishes, also see [2|. The wiggly data for pruned networks
stems from every Az data point being pruned independently. Hence,
on a qualitative scale we can say that the random component which
induces variability in the pruning algorithm plays no important role.
System size is N = 100.



7 Phase diagram of jammed
spring networks

In this chapter we will present the phase diagram of networks of jammed sphere
packings. Until now the behaviour of networks of a given coordination Az under
tension 7 and subject to temperature 7" has been considered in a range where the
structure and a finite volume of the system is maintained. When the temperature
gets too high the system’s volume collapses to almost zero. We determined the
exact parameters where this transition happens.

The area at zero temperature Ay to which we compare the current area A to, is
measured at a given 7 of the system at T = 0.0.

Figure 7.1 shows examples how the transition is approached with temperature
for different coordinations Az and tensions 7.

For low tensions at a given Az the transition is sharply defined with a large jump
in area. With increasing 7 the transition is shifted towards higher temperatures
and the size of the jump A; gets smaller. For very large tensions, i.e. 7 > 1.0,
the system gets extended without boundariess.

We detect the position of the transition by finding the largest change in area with
temperature for fixed values of z and 7. This is achieved by shifting a window of
given size through the values and measuring the slope through linear regression.
The algorithm records the temperature at which the transition happens and which
area A; it had at the jump. The jump size at the transition would be 1 —A;. We
expect A; to decrease with increasing tension 7.

Figure 7.2 shows the measured jump size as a function of 7 for different Az.

The top panel shows the jump size which we measured with the method described
in the text. For a particular value of 7 the data gets more noisy and it becomes
next to impossible to estimate the jump size. This is where the system goes
continuously from the contracted to the collapsed state of matter. We can think
of it as analogue to the liquid-vapour transition with a critical point and the
procedure to identify the position of the jump as a Maxwell construction [87].

101



7 Phase diagram of jammed spring networks

Az=1.9525 1=0.01 ——— ]
1=0.04 ——=— |
1=0.18 ——+— ]
=042 — % |

107" 109

1=0.01 Az=0.1431 — % |
Az=1.9525 — + |

Figure 7.1:

102

10!
Temperature T

Both figures show the relative area contraction 1 — A/A, as
a function of temperature for different tensions at constant
coordination (top) and at constant tension for two different
coordinations (bottom). Top: It can be seen that temperature T,
at which the transition from the contracted to the collapsed shifts with
increasing tension 7. Furthermore, the jump measured in relative area
becomes smaller and gets blurred in the case of 7 = 0.42. Bottom:
At a finite tension 7 we can see that close to isostaticity(green) the
transition is already quite blurred while it is sharp far away from
isostaticity (blue).
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Figure 7.2: Area at jump A;/A, at transition as a function of tension
for different coordinations Az. The top panel shows the jump
size which we measured with the method described in the text. For a
particular value of 7 the data gets more noisey and it becomes next to
impossible to estimate the jump size with the resolution given by the
method. This is where we hypothesize that the system goes contin-
uously from the contracted to the collapsed state of matter. This is
strongly supported by visual inspection of the area development with
temperature for (Az, ) around the critical point.
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Figure 7.3: Phase diagram of spring networks obtained from jammed
packings in the T-7 plane. The system has two states: it either is
contracted or collapsed. Lines mark the phase transition for different
coordinations Az. The system has a critical point where contrac-
tion changes into collapse continuously. Around the critical point the
density of parameters was increased. Values for 67032 combinations
of (Az,7,T) were used to compute the phase diagram. System size
N = 3200.
Figure 7.3 shows the phase diagram of spring networks obtained from jammed
packings.

As pointed out the system has two states in which it is either contracted or
collapsed, and the lines in the figure mark the phase transition for different coor-
dinations Az. We hypothesize a critical point where contraction goes into collapse
continuously. This hypothesis is supported by visual inspection of the area de-
velopment with temperature for (Az, 7). Furthermore, this is a valid assumption
taking into account the resolution of the method used.
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8 Jammed Packings of Spheres

In this chapter we will go back to jammed packings as such and investigate their
response to temperature. In particular, we want to explore how jammed packings
differ from spring networks, and on the other hand, what we can predict from
the networks for the packings.

This study is conducted in the canonical ensemble (NVT), i.e. we keep the area
A of the system fixed. Shear movements are excluded, too.

In the isothermal-isobaric ensemble — NpT — we saw that spring networks contract
with increasing temperature. In the NV'T ensemble this behaviour should show
as a decrease in pressure. On the other hand, a dense packing cannot contract —
we might think. This is based on the fact that its pressure was already minimized
given a certain packing fraction during the generation protocol.

One could expect that z.;; grows with 7" as each sphere in the packing explore
more of the system and thus sees more links. This, however is not the case for
low temperatures [88].

The Figure 8.1 shows how key parameters and quantities in packings and networks
relate.

It is trivial but still important to remember that spring networks have a fixed
connectivity, which means that the coordination is independent of temperature,
i.e. z(T) = z. Packings have a constant packing fraction ¢ at fixed-volume.
However, to be consistent with the earlier work on networks we will mainly use
zro for packings, which is the coordination number at T = 0. This quantity
is directly comparable to spring networks and related to the packing fraction
through the square root scaling Azrg? oc Ag.

8.1 Pressure development in NVT

We want to know if the negative thermal expansion seen in spring networks
transfers to jammed sphere packings. If this is the case we will see a decrease in
pressure with temperature, analogue to a contraction of the system’s volume in
the NpT-ensemble.
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8 Jammed Packings of Spheres

’ Networks \ Packings
Temperature T Temperature T
Volume V Volume V
Pressure p Pressure p
Coordination number z Packing fraction, T-independent ¢
Coordination number z Coordination number zrqg at 7' = 0
Coordination number z | Effective coordination number z.ss(7')

Figure 8.1: Comparison of key quantities in networks and packings of
spheres. The main difference is that networks by definition do
not change their (topological) structure while packings generally do.
Hence, the true constant for a packing is its packing fraction ¢. To be
consistent with the earlier work on networks we will mainly use zpg
for packings, which is the coordination number at 7" = 0. Further-
more, to quantify the change in structure we measure the effective
coordination number z.;r(7"), which is dependent on temperature.

We define the isochoric thermal pressure coefficient :

1/ 0p
=—(=) . 8.1
! p (8T>v (81)
To make packings and networks directly comparable, the spring networks will
be loaded at T = 0, i.e. the rest-length of a spring is set to its sum of radii of

interacting spheres from which the contact was derived. In Figure 8.2 we show
the pressure in sphere packings compared to loaded springs.

Close to jamming where the temperature 7" is low packings and networks have
similar pressure. With increasing temperature the springs exhibit the expected
decrease in pressure, while repulsive interactions in the packings lead to an in-
crease in p. The pressure in packings scales like 7%/2. This is due to the one-sided
repulsive interaction potential for which the sphere-overlap § scales like square-
root of temperature [88]. The sphere-overlap in volume § is directly related to
the pressure |7]:

p~ 6t (8.2)

For harmonic interactions we have o = 2, which then explains the scaling of the
packing’s pressure.

The regime where p oc T"/? is defined by contacts which are lost due to heat-
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8.1 Pressure development in NV'T'
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Figure 8.2: Upper panel: Pressure of sphere packings (circles) compared
to the corresponding spring networks (crosses) as a function
of temperature for coordination numbers at zero tempera-
ture zry. Lower panel: pressure of packings compared to
pressure at 7' = 0. Each density corresponds to a coordination
at zero temperature, which is conveniently compared to the coordina-
tion of networks where it is independent of T'. For low temperatures —
close to jamming — packings and networks have similar pressure. With
increasing temperature the springs exhibit the expected decrease in
pressure, while repulsive interactions in the packings lead to an in-
crease in p. The packing’s pressure scales with temperature like 7/
(black line). System size N = 100.
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Figure 8.3: Pressure p — py of loaded (circles) and relaxed (crosses)
springs in NVT. (log-log) Both types of spring networks exhibit
negative pressure linear with temperature 7.

ing. This will be further discussed in section 8.2. Further increasing temperature
leads to rearrangements and a less steep increase in pressure. At some point
we will reach the limit of an ideal gas, where the virial pressure terms are con-
stant and neglibile compared to pushes against the wall and the total pressure is
proportional to temperature 7.

In Figure 8.3 we show the pressure p — pg for fixed-volume in loaded and relaxed
springs as a function of temperature 7.

In networks contacts are permanent and have an attractive component. As ex-
pected — from the NpT simulations and considerations — the networks contract.
The scaling is of the pressure where temperature is negative and linear:

p—po~ —T. (8.3)

This holds as long as there are no rearrangements: for low coordinations (z =
4.101) and high temperatures (7' > 1073) it can be seen in Figure 8.3 that the
scaling becomes invalid. This is where the deplacement of vertices gets too large.
Before that, springs stretch — instead of breaking contacts as packings would —
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8.2 Breaking of contacts

and the attractive element in their interaction leads a decrease in pressure.

As a gedankenexperiment, the situation for jammed sphere packings should not
be different from the corresponding networks with loaded springs as long as no
contacts are broken. In both cases the same link-structure exists and interactions
are repulsive. Hence, jammed sphere packings should exhibit a negative relative
pressure Ap = p — pg, too. In Figure 8.5 simulation data is shown for large
coordination numbers.

Indeed, we find that packings contract for coordination numbers down to zpy =
4.7, which is not to be understood as a universal value but as the limit that we
determined with the simulations.

Considering that packings only exhibit repulsive contact interactions it is an
intriguing result that they contract for a certain range of temperatures.

8.2 Breaking of contacts

Increasing the temperature leads to movements of spheres in a packing and results
in broken bonds for certain finite temperatures. In order to understand this
we consider the effective coordination number z.;;(T") of packings, which is the
number of contacts averaged over snapshots of the system:

1

r(T) = 2 32 a(T). (8.4)
t

In this work we average over simulation time t according to the described Monte

Carlo sampling. The effective coordination number is a good observable to quan-

tify the change in structure due to heating [88|.

In Figure 8.6 we show the effective coordination compared to its value at zero
temperature z.sr/zro.

One might think that as we increase T the spheres in the volume explore more
of their environment and form new contacts. This is not the case. The effective
coordination number is lowered with increasing temperature [88]. Consistent
with [88] zeff/2r0 goes to 1/2.

A change in the contact network affects the behaviour of the packing. Close to
the jamming point this can be due to single links that break and results in a
change of the mode spectrum [89].

The contraction we see for jammed packings happens far away from the jamming
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point, which means an excess of links. Spring networks have a fixed contact net-
work. Hence, thermal fluctuations cannot break links and the mode spectrum is
kept intact. Spring networks show contraction over a large range of temperatures
and for coordinations close to isostaticity as the mode analysis predicts.

So the key is in understanding how many links might be broken before the pre-
dictions fail. This needs to be investigated further.

8.3 Brief note: the handling of rattlers

We studied the effect of rattlers on the pressure of jammed sphere packings.
Trivially a spring network does not contain rattlers and the decrease in pressure
with 7" is much more prevalent approaching the isostatic point. Approaching the
isostatic point, however, the number of rattlers increases, see 2.3.

This is one of the reasons we investigated the effect of rattlers. For this we
compared three situations: keeping rattlers, excluding rattlers and keeping them
but excluding their contribution to pressure during the simulation.

Even though one might think that excluding rattlers might lead to decreasing
pressure due to the freed volume, this is not the case.
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Overall we conclude that the effect of rattlers on the development of the pressure
is neglibile.

8.4 Bulk modulus

We consider the bulk modulus of jammed packings, see Figure 8.7. It softens
with increasing temperature which might because of contacts breaking due to
temperature.

We want to probe if we see the same scaling behaviour as in the case of jammed
spring networks in NpT'. For this we apply the scaling to our data and show it
in Figure 8.8.

Very cautious we may argue that the scaling might hold over a regime of finite
temperatures and that we find the same scaling as in Chapter 5.2. Interestingly
the scaling might hold even though many contacts are broken already due to the
rise in pressure. This relation needs to be clarified especially as a function of the
contact number Az.
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8 Jammed Packings of Spheres
8.5 Localisation length

As a final quantity we probe the localisation length. In Figure 8.9 have data for
LL as a function of coordination number for different temperatures.

The localisation length shows the scaling ~ Az~! which we already found in the
spring networks. This is reassuring and maybe the least surprising because the
movement of spheres in the packing should depend the least on contact forces,
after all the volume in which they quite small and for low temperatures defined
by the pressure at 7" = 0.
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O Discussion

Spring networks are an interesting and meaningful model system for probing the
influence of temperature on the jamming transition. In this chapter we recap the
tentpole results of our work and draft trajectories of future complementing and
continuative research.

9.1 Spring networks show negative thermal
expansion

Jammed spring networks contract at finite temperatures. We find that in the case
of vanishing tension that the relative contraction 1 — A% scales linearly with tem-
perature 7' and inversely with coordination number, Az~!. Hence, the negative
thermal expansion coefficient NT'E in the isothermal-isobaric ensemble scales like
Az~! at vanishing tension 7 = 0. To the best of our knowledge this statement

has not been made yet.

9.2 Spring networks exhibit a finite bulk modulus
above the jamming point which softens with
increasing temperature

Athermal jammed spring networks maintain a finite bulk modulus B until the
jamming point J, where B drops sharply to zero [2]. We confirm this behaviour
and add that the bulk modulus softens with increasing temperature, which leads
to the smearing of the otherwise sharp transition. For vanishing tension the
inverse bulk modulus or compressibility relative to the athermal compressibility
relates to temperature T" and coordination Az as:

1 1 T 0.1)
B By, Az '
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9 Discussion

It would have been imaginable that with temperature-induced contraction the
system will become stiffer. This is not the case.

9.3 The shear modulus of spring networks
stiffens with temperature

Shear moves — like temperature — activate the anomalous modes of a jammed
system [62,90]. Hence they determine the non-affine shear response of the mate-
rial. This is known as shear dilatancy [9]. We considered the shear modulus in
the canonical ensemble at finite temperatures. In the NpT ensemble temperature
leads to contraction. By definition this cannot happen in the canonical ensemble,
where the volume is kept fixed. The resulting internal pressure leads to shear
stiffening with temperature 7"

GrTY3Az! (9.2)

9.4 The characteristics of spring networks are
directly connected to their anomalous modes

For the relative area contraction, the bulk modulus, the localisation length and
the shear modulus we found scalings with simple exponents. The collapse on the
master curve is in good agreement with the data for large ranges of temperatures
T, distance to isostaticity Az and tension 7.

The scalings found in the simulations are consistent with the predictions derived
from the analysis of anomalous modes [61] — and vice versa. This is further
support for the mode spectrum explained in [28,29] being correct for finite tem-
peratures. Furthermore, it punctuates the importance of non-affine contributions
in amorphous media.

9.5 Negative thermal expansion is a feature of
most spring networks

From the spring networks we explored we tentatively draw the conclusion that
negative thermal expansion is a general feature of Hookean spring networks. The
networks we considered were locally connected, which seems reasonable when
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9.6 The structure of spring networks strongly affects their mechanical features

having (amorphous) matter in mind. As a side note let us add that an early
study of networks with completely randomly crossing Hookean springs showed
these to be nonrigid on small deformations [83].

Tessier found traces of negative thermal expansion behaviour in fourfold con-
nected networks [66] and Lammert [84] for the case of triangulated networks.
We confirm this characteristic for pruned jammed spring networks — often called
random networks |2,64,65] — and pruned triangulated networks.

9.6 The structure of spring networks strongly
affects their mechanical features

As pointed out, networks are often pruned to study how they behave with de-
creasing distance from the isostatic point. From Ellenbroek et al. [2] we know
that the bulk modulus for random networks decreases and becomes zero at the
isostatic point while it remains finite until Az = 0 in the case of jammed spring
networks. We can confirm the scaling of B ~ Az!% [64] in the case of pruned
networks. On a qualitative scale we see no strong temperature dependence of the
pruned networks while jammed spring networks show the characteristic smearing
of B with T'. Hence, when considering thermal fluctuations pruned networks and
jammed spring networks show different behaviour.

This leaves the shear modulus as a comparable elastic modulus for jammed spring
networks vs. pruned networks [2|. Dennison et al. [91] studied the shear modulus
G of pruned triangulated networks at finite temperatures. Their scaling variable
is comparable to what we find in jammed spring networks: Az=28T. Their shear
modulus for zero temperature is found to depend on coordination as G ~ Az'4.
In contrast, our results suggest that G(7" = 0) ~ Az. Hence we want to stress
the point that when studying the Az-dependence of elastic moduli of networks
with temperature it makes a difference if they are directly obtained from jammed
packings or not.

In the case of the shear modulus also the protocol from which packings are ob-
tained needs to be considered closely. From [10,16,92] we learn that most jammed
packings close to isostaticity obtained from compression-only protocols are un-
stable to shear. As a remedy they introduce a shear-stabilizing protocol. How
the shear modulus develops for networks obtained from such a protocol will be
subject of further studies.

One type of network we did not consider are fourfold networks with added links
[93]. This could easily be added to this study.
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9 Discussion

9.7 Jammed spring networks expose a
contraction-collapse phase transition with
strong indication of a critical point

We studied the phase transition from the regime where jammed spring networks
contract to the regime where temperature becomes so high that the system col-
lapses. This is definitely the case for 7 > 1.0 — remember that this tension is
larger than the spring constant. We find that the positive tension at certain
values stabilizes the system so that the collapse transition shifts to higher tem-
peratures. As a consequence the relative contraction is larger when the collapse
happens at a certain temperature T,(Az, 7).

We have strong indications of a first-order phase transition with a critical point
in the p — T-plane which is probably shared for differently coordinated networks.
In [74,94] triangulated networks were studied. They find a collapse transition as
well but no critical point in the case of NpT' simulations [94]. Perhaps this has
to do with the anisotropy of hexagonal networks: Their networks collapse from
C6 to C2 while jammed spring networks are isotropic and should collapse evenly
in both dimensions. They do so to the best of our knowledge on a qualitative
scale. This point needs to be further investigated and quantified. Additionally,
finite-size effects need to be checked and blocked in order to determine the exact
position of the criticial point and the phase boundaries.

The phase diagram connects back to the jamming diagram Figure 1.3 [5], even
though we do not consider active shearing as the proposed diagram does. It is
an example of a phase diagram for a real jammed system.

9.8 Spring networks contract, jammed packings
do not always expand

We studied the effect of temperature on jammed packings and in particular com-
pared the results to those in spring networks in the canonical ensemble. Spring
networks contract, or rather exhibit negative pressure in the canonical ensemble.
Packings expand, but they do so close to the isostatic point and for large tem-
peratures T'. Packings far away from the jamming point show negative pressure
before a certain number of links are broken. Then they expand, too.

This effect — to the best of our knowledge — has not been observed yet. It is
especially interesting because in contrast to the spring networks the interactions in
the jammed packings are merely repulsive. Within the limits of low temperatures,
however, it seems that the main difference to the networks is that their link
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9.9 Spring networks help in understanding thermalized jammed packings

structure is persistent. And hence their mode spectrum.

This leads us to our last statement which predictions we can transfer from spring
networks to jammed packings.

9.9 Spring networks help in understanding
thermalized jammed packings

We could show that there is a relation between jammed packings and their spring
networks at finite temperatures. This seems to go beyond the contraction for
certain rather high packing fractions.

It might be conceivable that the prediction from spring networks for the bulk
modulus holds over a range of temperatures for packings, too. One might draw
the conclusion that the bulk modulus is less sensitive to losing contacts.

As a third observable we checked the localisation length for jammed packings
and its dependence on Az. The result gave the strongest agreement with the
predictions and the simulations of spring networks.

The shear modulus is another obvious candidate to be checked. If we see shear
stiffening behaviour like in the spring networks shear might even lead to new
contacts. However, we need to see how stable the packings we use are actually
to shear movements [10,16,92].
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10 Outlook

This study explored many interesting aspects of jammed spring networks and
jammed packings subject to finite temperature. Yet many questions are left open
— or opened up when details were investigated.

The exact conditions for contraction of packings should be subject of further
research. More importantly, a detailed study of scalings in packings is of high
interest. Results indicate that there might be more connections between spring
networks and jammed packings than initially expected. It is crucial to understand
how many links can be broken before predictions fail. It seems likely that this
number is different for different properties of the system.

An obvious extension of this work is to consider packings also in the isothermal-
isobaric ensemble which has not been done so far. It would be interesting to
probe different potentials, i.e. Hertzian or attractive. In the latter, bonds do not
break as easily, as in the repulsive case, which should make comparisons easier.

The jammed spring networks we presented provide a model system for a material
in dependence of temperature, coordination and tension. It would be interesting
to find out if this can model the behaviour of real materials. After all, the
properties we showed are very interesting: negative thermal expansion, shear
stiffening and a finite bulk modulus above the jamming transition which softens
with temperature. Negative thermal expansion — as discussed in the introduction
— is attributed to anomalous modes and prevalent in many materials.

It would be interesting to see if it is possible to prepare a packing in the labora-
tory so that it exhibits contraction as we see it. This is an interesting property
for engineering purposes. We showed that jammed spring networks provide an
interesting model system with realistic mechanical properties which is now well
understood. Other types of networks exhibit negative thermal expansion as well,
but are less stable towards collapse with temperature and expose a rather unre-
alistic behaviour of the bulk modulus.

Furthermore, it would be interesting to see if some of the results can be related to
glasses, i.e. silica [95-97]. Even though jammed spring networks exhibit negative
thermal expansion, as silica does, its bulk modulus stiffens with temperature.
This is in contrast to the networks we considered, hence it does not seem that
there is an easy connection.
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10 Outlook

Instead of searching for materials with similar features, maybe our insights will
help to engineer new materials. It might be useful to be able to finely tune
negative thermal expansion. In some of the simulations for certain packings we
saw that the pressure for packings was not changing over a range of temperatures.
This effect could not be reproduced in a resilient manner under clear conditions
so it might just be an artefact of the energy minimisation. On the other hand
it gives a hint that zero thermal expansion (ZTE) [98] is an interesting topic of
research. What are the conditions for zero thermal expansion in the context of
jamming and the connectivity of a packing or a network? Can a ZTE material
be designed? Certainly, this is interesting for many engineering purposes.

It seems that the presented research leaves more questions open than it answered,
which — with all due humbleness — is not a bad sign.
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APPENDIX






Dependence on interaction
potential

Anharmonic Interactions — quartic repulsion

In order to probe the effect of anharmonic interactions we use the potential:
(d—do)* +Q(d—do)", if d<do

V(d) = 2 . (1)
(d — do) s Zf d Z do,

where d is the length of the spring and dj its rest length. The parameter () tunes
the strength of the quartic term of the repulsion in units of the harmonic spring
constant. Increasing Q makes the quartic term and hence the anharmonicities
more and more dominant.

We want to test if the harmonic potential we used in our work is a prerequisite
to observe the NTE (negative thermal expansion) effect.

Q dependence

Figure .1 shows the effect for different values of Q at different fixed temperatures.

T dependence

The NTE effect prevails, perhaps even with the same dz~! scaling until a cer-
tain temperature-dependent strength of (). The transition of the collapse shifts
to lower temperatures for larger () factors. Yet the feature of negative ther-
mal expansion prevails for anharmonicities defined by a factor Q up to 10? for
temperatures below 7' = 107> for the case of dz = 5.96.
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Figure .1: z=5.96. Anharmonic potential with dependence on
the strength of repulsive quartic term.
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Analytical approach

We calculate the mean excitation for an oscillator (x) in the chosen, Q-dependent
potential through the thermodynamic average:

2 ze V@ dy )
(v) = = e V@ds (:2)

Using the potential .1 inside the Boltzmann factor we can develop around har-
monic contributions:

e Bl Qu) . o—Ba® o—BQut o =Bt (] _ gLt ) (:3)

Then we get for the numerator in (.2):

oo 0 00
/ ze PV @iy = / ze P (1 = BQz*)dx + / ze P dx
—00 0

——60 [ e s (4)
— (~BQ)(—57?)
_ Qs

And for the denominator in (.2):

o0 0 >

—00

\ /2
~(3)

In total we get for the mean excitation:

Qs

(5)" (o
QT

(z)

e

() ~

Which explains the temperature dependence with the characteristic exponent 1.5
in Figure .2, taking the mean excitation of the oscillator as the mean expansion
of the whole system, i.e. (x) ~ (A).
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Figure .3: Quartic attraction.

Anharmonic Interactions — quartic attraction

v<d>={(d_d°>2’ , s ()
(d—do) —|—Q(d—d0) 5 ldedO
Double Quartic
We use:
4 .
V(d):{Q(d—do)4> 'Zfdﬁdo (8)
Q(d_dO) ) ZdedO

In the case of the double quartic potential the NTE effect remains for () up to
at least 10° and the full range of relevant temperatures 7' < 1073,
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