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Abstract 

ABSTRACT 

As no successful therapeutic approach to treat Alzheimer’s disease (AD) has been 

developed to date, preventative strategies and non-pharmacological interventions 

increasingly become a major research focus. In recent years, substantial evidence for a 

protective role of physical and cognitive activity on the risk of AD has been growing. In 

the present study, the effect of a challenging environment in combination with regular 

exercise on the Alzheimer-like pathology of the Tg4-42 and 5XFAD mouse models was 

investigated.  

The Tg4-42 model overexpresses N-truncated Aβ4-42 without any mutations and 

develops an age- and dose-dependent neuron loss in the CA1 region of the 

hippocampus associated with a severe memory decline. It could be shown that long-

term cognitive and physical stimulation significantly delay hippocampal neuron loss 

and completely rescue memory deficits in 12-month-old Tg4-42 mice. Moreover, long-

term gene expression profile changes yielding to neuroprotective events could be 

observed in enriched housed Tg4-42 mice. These effects were irrespective of brain Aβ4-

42 levels and increased neurogenesis rates. The present findings provide evidence for 

the first time that neuron loss and memory decline can be counteracted by prolonged 

physical and cognitive activity in a mouse model that rather reflects the sporadic form 

of AD. 

The 5XFAD model is a well-characterized, commonly used AD model for the familial 

form of the disease, representing an early and aggressive pathology. In the present 

work, it could be demonstrated that prolonged cognitive and physical activity has no 

therapeutic benefit on the pathophysiology of this conventional 5XFAD model. Despite 

partial improvements in motor performance, no beneficial effects in terms of 

behavioural deficits, Aβ plaque deposition, Aβ1-42 levels or inflammatory phenotype 

were observed. These results suggest that a rather mild intervention like mental 

stimulation and regular exercise cannot counteract the aggressive AD pathology seen 

in 5XFAD mice.  

In sporadic AD cases, a decelerated degradation of Aβ is supposed to be the primary 

cause of an enhanced accumulation of the peptide in the brain. Neprilysin (NEP) 

represents the major Aβ-degrading enzyme as shown by numerous in vitro and in vivo 
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studies and hence is assumed to play a pivotal role in the progression of AD. In order 

to gain deeper knowledge about the function of NEP, 5XFAD mice were crossed with 

homozygous NEP knock-out mice. NEP reduction led to an impaired spatial working 

memory performance in 6-month-old 5XFAD mice. Furthermore, depletion of the 

enzyme increased extracellular amyloid deposition in specific brain regions and 

enhanced the inflammatory response in the brain. In young 5XFAD mice, however, NEP 

knock-out led to a delayed Aβ plaque deposition accompanied by elevated levels of the 

NEP homologue endothelin-converting enzyme 1 (ECE1). These data support previous 

observations showing that NEP is a substantial Aβ-degrading enzyme and suggest a 

reciprocal effect between NEP and ECE1 activities in young 5XFAD mice.  
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Introduction 

1 INTRODUCTION 

1.1 Alzheimer’s disease 

Alzheimer’s disease (AD) is an irreversible, progressive brain disorder representing 

the most common cause of dementia in the elderly population (Barker et al., 2002). 

According to the Alzheimer’s association report, AD is the sixth-leading cause of natural 

death in the United States and evolved to be an enormous public health problem 

(Alzheimers Association, 2015). For those aged 65 and older, the risk to develop AD 

doubles every five years (Querfurth and LaFerla, 2010). Currently, there are 

approximately 1.5 million people suffering from dementia in Germany, with two-thirds 

of them being diagnosed with AD. This number is estimated to increase up to 3.0 

million by 2050 due to the demographic development (Bickel, 2012).  

1.2 Clinical features of Alzheimer’s disease 

The course of AD is slowly progressive and can be separated in different stages. Before 

clinical symptoms become apparent, neurodegenerative processes in the brain start 

and accumulate. This time period is referred to as preclinical AD and can last several 

years (Backman et al., 2004). When neurodegeneration reaches a certain level, 

neuropsychological tests can reveal the stage of mild cognitive impairment (MCI). In 

this stage, a person still lives independently but learning and memory abilities start to 

decline. Patients tend to forget recent events and appointments and develop difficulties 

in performing tasks in work and social settings. In the moderate stage of AD, patients 

require supervision as they develop impairments of language, motor deficits, 

disorientation and strong memory decline. Furthermore, personality and behavioural 

changes such as aggression, suspiciousness and delusions develop (Forstl and Kurz, 

1999). In the late stage of AD, patients lose the ability to interact with their 

environment and require full-time assistance. Next to extreme lethargy and apathy, 

language skills are minimized and motor impairments, including rigidity, poor posture 

and bradykinesia become apparent (Scarmeas et al., 2004). Ultimately, patients lose 

their ability to swallow and become prone to infections like pneumonia (Frank, 

1994;Forstl and Kurz, 1999).   
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1.3 Neuropathological hallmarks 

1.3.1 Amyloid deposits 

The extracellular deposition of amyloid beta (Aβ) in form of plaques represents one of 

the major hallmarks of AD. Based on their morphology, senile amyloid plaques can be 

categorized in either neuritic or diffuse plaques (Yamaguchi et al., 1988;Small, 1998) 

(Figure 1). Neuritic plaques, or dense-core plaques, are composed of highly aggregated 

filamentous Aβ surrounded by dystrophic neurites, micro- and astrogliosis (Selkoe, 

2001;Duyckaerts et al., 2009). These plaques can be detected with β-sheet binding dyes 

like Thioflavin S and Congo Red and range in size from 10 to 120 µm. Being primarily 

formed in the neocortex, neuritic plaques later spread to the hippocampus, amygdala, 

subcortical layers and brain stem (Arnold et al., 1991;Thal et al., 2002). In contrast, 

diffuse plaques are not detectable with β-sheet binding dyes as they consist of 

amorphous, less aggregated Aβ depositions. They vary in size from 50 µm to several 

hundred µm and they are suggested to be precursors for neuritic plaques (Yamaguchi 

et al., 1988;Dickson, 1997). Intriguingly, diffuse plaques are not only detectable in AD 

patients, but also in cognitively normal, healthy individuals (Morris et al., 1996).    

 

 

Figure 1: Amyloid plaques. Neuritic plaques (A) and diffuse amyloid plaques (B) visualized by 
immunohistochemistry. 

1.3.2 Neurofibrillary tangles 

Neurofibrillary tangles (NFTs) represent another major histopathological hallmark of 

AD (Alzheimer, 1907). These intracellular aggregates are present in the perikarya or 

apical dendrites of neurons and consist of paired helical filaments (PHFs) wound into 

A B
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a helical structure. PHFs are composed of hyperphosphorylated, microtubule-

associated tau (MAPT) (Kidd, 1963). Tau, under physiological conditions, supports the 

assembly of microtubules and therefore stabilizes the cytoskeleton (Drechsel et al., 

1992). However, upon phosphorylation by diverse kinases, tau dissociates from the 

microtubules and aggregates into NFTs. Hyperphosphorylated tau aggregates cause 

diverse cellular dysfunctions including protein mistrafficking and loss of neuronal 

integrity (Ittner and Gotz, 2011). Unlike amyloid pathology, the localization of NFTs 

correlates well with the severity of AD progression. Therefore, tau pathology is used to 

stage the severity of AD into the Braak stages I-VI (Braak and Braak, 1991;Braak et al., 

2006).   

1.3.3 Brain atrophy 

Next to amyloid plaques and NFTs, brain atrophy represents one of the most prominent 

pathological features of AD (Figure 2). This atrophy is caused by neuron loss in a region 

specific manner and is characterized by enlarged ventricles, widening of cortical sulci 

and shrinkage of gyri. Using magnetic resonance imaging (MRI), brain volume and 

weight reductions can be detected even at early stages of disease progression and are 

therefore predictable for the progression from MCI to AD (Jack et al., 2005). Atrophy is 

predominantly affecting the medial temporal lobe including the hippocampus, 

amygdala and entorhinal cortex (Bottino et al., 2002). The underlying cause of neuron 

death is still not known in great detail. Very early studies suggested a correlation 

between NFTs and neuron loss (Cras et al., 1995). Other findings reported evidence for 

apoptosis as one of the mechanisms contributing to cell death in AD (Shimohama, 

2000). However, more recent studies link the neurotoxicity of intraneuronal and/or 

oligomeric Aβ with cell death (Bayer and Wirths, 2010).  

In addition to neuron death, loss of synapses contributes to the cortical atrophy in AD 

brains. Synaptic loss is supposed to be an early pathological alteration that precedes 

neuron death (Serrano-Pozo et al., 2011). Accordingly, patients with mild AD display 

significantly fewer synapses in the cornu ammonis area 1 (CA1) region of the 

hippocampus when compared to healthy controls or patients with MCI (Scheff et al., 

2007). The loss of synapses represents the structural correlate to early cognitive 

decline as supported by the fact that synaptic counts significantly correlate with the 

severity of dementia (DeKosky and Scheff, 1990;Ingelsson et al., 2004).     
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Figure 2: Brain atrophy in AD. Compared to the control subject (left), a patient with AD (right) shows 
enlargement of ventricles, widening of sulci and shrinkage of gyri. Tissue loss is specifically evident in 
the hippocampal region and entorhinal cortex. Modified from http://www.alz.org/braintour.asp. 

1.3.4 Inflammation 

Neuroinflammation represents an additional pathological hallmark of AD. 

Inflammatory processes are consistently found in brains of AD patients and also occur 

in transgenic AD mouse models (Hoozemans et al., 2006;Schwab et al., 2010). As astro- 

and microgliosis are predominantly present in close proximity of neuritic plaques, it is 

suggested that Aβ promotes the inflammatory profile (Itagaki et al., 1989). Activated 

astrocytes (Figure 3) and microglia release proinflammatory as well as potentially 

neurotoxic substances such as cytokines, complement factors, reactive oxygen 

intermediates and chemokines. However, activated microglia have also been shown to 

phagocytose Aβ deposits and remove soluble forms of Aβ, therefore exerting a 

neuroprotective role (Mandrekar-Colucci and Landreth, 2010). Moreover, activated 

astrocytes can internalize and degrade Aβ42 deposits (Wyss-Coray et al., 2003). In 

support of this, it is still controversy whether inflammatory processes are causative for 

AD or if it is a protective reaction in response to Aβ toxicity (Wyss-Coray and Rogers, 

2012).   
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Figure 3: Inflammatory response in AD. Confocal image of activated astrocytes in 5XFAD mice. A 
neuritic plaque (green) is surrounded by activated astrocytes (red). 

1.4 The amyloid precursor protein 

The amyloid precursor protein (APP) is a ubiquitously expressed, type I integral 

membrane protein that is encoded by a gene located on chromosome 21 (Yoshikai et 

al., 1990). APP is part of a large evolutionary conserved gene family with two 

mammalian homologs, APLP1 and APLP2 (Wasco et al., 1992). These proteins display 

a high degree of homology in extracellular domains and intracellular C-terminal 

portions, but the Aβ containing trans- and juxtamembrane domains are unique to APP 

(Bayer et al., 1999).  Through alternative splicing, different isoforms of APP are being 

generated. While APP695 is primarily expressed in neurons, longer isoforms like 

APP751 and APP770 are also being expressed in other tissues and cell types (Mattson, 

1997). In the endoplasmatic reticulum (ER) and Golgi networks, immature APP 

undergoes posttranslational modifications before it is transported and integrated to 

the plasma membrane (Weidemann et al., 1989). During development, APP expression 

is found at growth cones of developing neurites, while in mature neurons, the protein 

is localized within pre- and postsynaptic structures and at focal adhesion sites 

(Yamazaki et al., 1997;Sabo et al., 2003). Although the precise physiological role of 

uncleaved APP remains unclear, the protein has been implicated in processes such as 

synapse formation (Priller et al., 2006), cell growth (Saitoh et al., 1989), neurite 

outgrowth (Allinquant et al., 1995) and neural plasticity (Turner et al., 2003).  
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1.4.1 Amyloidogenic and non-amyloidogenic processing of APP 

APP is physiologically processed in two alternative pathways, which constantly 

compete with each other (Figure 4). In the non-amyloidogenic pathway, α-secretases 

cleave APP within the Aβ domain, thereby preventing its generation. Numerous 

members of the “a disintegrin and metalloprotease” (ADAM) family can function as α-

secretases with ADAM10 being the physiologically most relevant, constitutive 

secretase in neurons (Kuhn et al., 2010). The ADAM10 cleavage induces the release of 

the soluble sAPPα fragment into the lumen/extracellular space (Sisodia, 1992). The 

remaining C-terminal fragment (C83) is subsequently cleaved by γ-secretase which 

liberates the soluble fragment p3 and the APP intracellular domain (AICD) (Zheng and 

Koo, 2011). The p3 fragment is rapidly degraded while the physiological role of AICD 

remains unclear. Controversial studies have implicated AICD in the regulation of gene 

transcription (Haass et al., 1993).  

In the amyloidogenic pathway, Aβ is produced by the consecutive action of β- and γ-

secretase. β-site APP cleavage enzyme 1 (BACE1) releases a large part of the 

ectodomain of APP (sAPPβ) and generates the membrane-bound APP C-terminal 

fragment C99 (Vassar et al., 1999). C99 is subsequently cleaved by the y-secretase 

protein complex at various cleavage sites, resulting in the liberation of Aβ peptides and 

AICD (Annaert and De Strooper, 2002). As the final γ-secretase cleavage is not precise, 

generated Aβ peptides can range from 37 to 43 amino acids in length, with Aβ1-40 being 

the most common isoform under physiological conditions (Haass et al., 1992;Citron et 

al., 1995). The γ-secretase protease complex consists of four trans-membranous 

subunits: presinilin (PSEN) 1 or PSEN2, nicastrin (NCT), anterior pharynx defective 

(APH)-1a or APH-1b and the PSEN enhancer (PEN)-2. While PSEN1/2 contain the 

catalytic active domain for APP cleavage, little is known about the biological function 

of NCT, APH-1 and PEN-2 (Wolfe et al., 1999;Francis et al., 2002;Edbauer et al., 2003).   
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Figure 4: APP processing pathways. During the non-amyloidogenic pathway (left), APP is sequentially 
cleaved by α- and γ-secretase, resulting in the release of p3 and AICD. The Aβ-liberating amyloidogenic 
way (right) is initiated by a BACE1 cleavage of APP. Subsequently, the γ-secretase complex induces the 
release of Aβ and AICD. Adapted from (Haass et al., 2012).  

1.5 The amyloid hypothesis 

The amyloid cascade hypothesis (Figure 5) was first described by Hardy and Allsop in 

1991 and is based on the idea that Aβ has a central role in the pathological cascade of 

AD (Hardy and Allsop, 1991). The hypothesis states that an increase of extracellular Aβ 

levels is the causative event of AD pathology leading to the formation of NFTs, neuron 

and synapse loss, vascular damage, memory loss and other clinical AD symptoms. 

Numerous observations support the classical amyloid cascade hypothesis. For 

example, mutations in APP and PS increase the production of Aβ thereby leading to the 

familial form of AD (FAD) (Rademakers and Rovelet-Lecrux, 2009). Furthermore, 

transgenic rodent models that express mutations linked to FAD recapitulate numerous 

aspects of AD pathology including Aβ plaque deposition, gliosis and memory deficits 

(Duyckaerts et al., 2008). In addition, Down-Syndrome patients harbour a triplication 

of the APP gene on chromosome 21 which ultimately leads to AD pathology formation 

at young ages (Wisniewski et al., 1985). However, over time, some major controversies 

against the classical amyloid hypothesis have evolved. First of all, studies in humans 

and AD mouse models revealed that plaque load does not correlate consistently with 

the severity of cognitive decline (Snowdon, 2003;Walsh and Selkoe, 2007). 

Accordingly, cognitively normal individuals who do not show any signs of dementia 

can display strong amyloid plaque deposition (Pimplikar, 2009). In addition, many AD 
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mouse models develop cognitive deficits and neuropathological changes before 

showing extracellular plaques (Walsh and Selkoe, 2007;Lesne et al., 2008).  

In consideration of these observations, a modified amyloid hypothesis has been 

proposed. The revised version emphasizes intraneuronal Aβ accumulation prior 

extracellular plaque deposition as a key contributor in AD pathology (Wirths et al., 

2004). Intraneuronal Aβ was observed already 30 years ago by Masters et al. (Masters 

et al., 1985) and has later been shown to accumulate specifically in brain regions 

vulnerable to AD (Aoki et al., 2008;Hashimoto et al., 2010). It is hypothesized that 

intracellular Aβ has two potential origins. Next to its production through intracellular 

APP cleavage, Aβ can be secreted and re-uptake might occur from the extracellular 

space. Intraneuronal Aβ, particularly Aβ42 variants, accumulate to toxic oligomers 

which ultimately cause neuronal and synaptosomal dysfunction, brain atrophy and 

dementia (Wirths et al., 2004). The hypothesis is supported by observations in Down 

syndrome patients, where intracellular Aβ was found to accumulate at young ages 

before extracellular plaque pathology is present. With age, intraneuronal Aβ decreases 

and plaques begin to deposit (Gyure et al., 2001). Furthermore, numerous mouse 

models reflect typical pathological AD hallmarks such as plaque deposition and 

inflammation, however, without showing neuron loss (Wirths et al., 2004). In contrast, 

more recently developed AD models such as APP/PS1KI (Casas et al., 2004), 5XFAD 

(Oakley et al., 2006) and Tg4-42 (Bouter et al., 2013) show an early accumulation of 

intracellular Aβ, which correlates with a neuron loss as well as behavioural deficits. All 

of these findings imply that soluble intracellular and extracellular Aβ oligomers are key 

players in the development and progression of AD. 
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Figure 5: The classical and modified amyloid cascade hypothesis. Adapted from (Wirths et al., 
2004).   

1.6 Aβ clearance mechanisms 

Under physiological conditions, constant levels of Aβ in the brain are maintained by a 

dynamic balance between synthesis, clearance and re-uptake of the peptide. While 

familial forms of AD are characterized by both increased Aβ synthesis rates and 

decreased Aβ clearance, sporadic AD is characterized by an impaired clearance of Aβ 

(Mawuenyega et al., 2010;Tarasoff-Conway et al., 2015). These clearance mechanisms 

implicate non-enzymatic and enzymatic pathways (Figure 6).  

1.6.1 Non-enzymatic clearance pathways 

Non-enzymatic clearance pathways of Aβ include the transport across the blood brain 

barrier (BBB) by clearance receptors. These specialized transporters are necessary as 

endothelial cells of the BBB are connected through tight junctions, which prevent Aβ 

and other proteins to freely pass into the blood (Deane and Zlokovic, 2007). The 

transporters being mainly responsible for the efflux of Aβ from the brain belong to the 

LDL receptor (LDLR) family and include LRP-1 (low-density lipoprotein receptor-

related protein-1) as well as ABC transporters (ATP-binding cassette transporters) 

(Shibata et al., 2000).  
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LRP-1 binds multiple ligands including Aβ, secreted APP, ApoE and α2-macroglobulin 

and was originally described to regulate the metabolism and transport of cholesterol 

(Harris-White and Frautschy, 2005). LRP-1 rapidly transports Aβ1-40 across the BBB 

while Aβ1-42 is removed at a much slower rate. Additionally, Aβ1-40 variants harbouring 

the Dutch mutation are cleared with less efficiency than the non-mutated version, 

delineating the role of LRP-1 function in AD pathogenesis (Monro et al., 2002).   

ABCB1 is the main ABC transporter exporting Aβ into the blood circulation. ABCB1 

does not bind Aβ directly, but transports the peptide in an ApoE-dependent manner. 

However, the precise mechanism of ABCB1-mediated Aβ clearance remains to be 

elucidated. Next to LRP1 and ABCB1, Aβ can be cleared from the brain by LRP2 and α2-

macroglobulin. The receptor being predominantly responsible for the re-entry of Aβ 

from the circulation into the brain is RAGE (receptor for advanced glycation end 

products) (Deane et al., 2003). In plasma, Aβ is bound by numerous proteins including 

albumin, α2-macroglobulin and the soluble form of LRP (sLRP) (Bates et al., 2009). 

After being transported to the liver and kidney, unbound Aβ as well as complexes of 

sLRP-Aβ become systematically cleared (Sagare et al., 2007). Next to BBB transport 

mechanisms, Aβ can be eliminated from the brain through the perivascular interstitial 

fluid (ISF) drainage pathway (Weller et al., 2000) and phagocytosis by activated 

astrocytes and microglia followed by lysosomal degradation (Rogers et al., 2002). 

1.6.2 Enzymatic clearance pathways 

Amyloid-β can be catabolized by a diversity of proteolytic enzymes which have specific 

regional and subcellular localizations, pH optima and target specificities. Hence, Aβ-

degrading enzymes (ADEs) are capable to target distinct pools of intra- and 

extracellular Aβ (Leissring, 2014;Nalivaeva et al., 2014). ADEs include, among others, 

neprilysin (NEP), endothelin-converting enzyme (ECE)-1, insulin-degrading enzyme 

(IDE), angiotensin-converting enzyme (ACE) and cathepsin D (Wang et al., 2006). In 

the following paragraph, NEP, ECE-1 and IDE will be introduced in more detail.  

The type-II metallo-endopeptidase neprilysin is ubiquitously expressed and has been 

reported to be the major ADE in the brain, where it is mainly present within neurons 

(Matsas et al., 1986;Iwata et al., 2000). NEP is also named CD10, enkephalinase or 

neutral endopeptidase and belongs to the M13 family of zinc peptidases. It is an 

integral membrane protein regulating the degradation of extracellular peptides, as its 
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active centre is facing the extracellular side of the membrane (Fukami et al., 2002). 

Besides Aβ, NEP is responsible for the degradation of diverse biologically active 

peptides such as tachykinins, enkephalins and natriuretic and chemotactic peptides 

(Turner et al., 2001). Numerous NEP cleavage sites have been identified within the Aβ 

sequence using in vitro assays (Wang et al., 2006;Miners et al., 2011), however, the 

ability of the peptidase to degrade oligomeric Aβ is still under controversial discussion 

(Kanemitsu et al., 2003;Leissring et al., 2003). Genetic depletion of NEP in AD mouse 

models results in an impaired degradation of both endogenous and exogenously 

administered Aβ (Iwata et al., 2001). In addition, inhibition of the protease by 

thiorphan results in increased accumulation of Aβ, cognitive dysfunction and a 

reduction in cholinergic activity in rats (Zou et al., 2006). On the contrary, 

overexpression of NEP ameliorates Aβ-induced spatial memory deficits in AD mouse 

models, inhibits extracellular plaque deposition and reduces Aβ accumulation (Poirier 

et al., 2006;Iijima-Ando et al., 2008;Meilandt et al., 2009). Intriguingly, it has been 

demonstrated in aged D. melanogaster, rodents and humans that NEP levels diminish 

during aging in AD vulnerable brain regions such as hippocampus, temporal gyrus and 

cortex. In contrast, brain regions rather unaffected by amyloid deposition display 

increased or unaltered steady-state levels of the protease (Yasojima et al., 

2001;Caccamo et al., 2005). Furthermore, NEP levels have been shown to be 

significantly lower in AD patients when compared to healthy controls, leading to the 

hypothesis that decreased levels of the endopeptidase and a resulting diminished Aβ 

clearance significantly contribute to the progression of the disease (Yasojima et al., 

2001).  

The endothelin-converting enzyme (ECE) induces the conversion of the inactive form 

of the potent vasoconstrictive peptide endothelin into its active version. Two different 

isoforms of ECE have been described (ECE-1 and ECE-2), however, only ECE-1 is 

supposed to act as an ADE. Like NEP, ECE-1 is a type II metallo-endopeptidase being 

predominantly localized in plasma membranes, but also in intracellular compartments. 

At the amino acid level, ECE-1 shares approximately 38% sequence homology with 

NEP (Wang et al., 2006). ECE-1 is active at a pH of 7 and has been shown to degrade Aβ 

within intracellular compartments (Eckman et al., 2001). A study in SH-SY5Y cells 

recently reported that ECE-1 degrades at least two distinct pools of Aβ, consisting of 

one that is degraded in the endosomal-lysosomal pathway and the other being destined 
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for secretion (Pacheco-Quinto and Eckman, 2013). In addition, mice lacking ECE-1 and 

ECE-2 display significantly higher levels of Aβ40 and Aβ42 when compared to controls, 

further emphasizing the importance of ECE in Aβ clearance (Eckman et al., 2003).    

IDE represents another zinc metallo-endopeptidase which, in addition to Aβ, has 

numerous substrates including AICD, insulin, glucagon, β-endorphin and transforming 

growth factor-α (Duckworth et al., 1998). IDE is expressed in liver, blood cells, skeletal 

muscle and brain and is active at a neutral pH. The protease is predominantly located 

in the cytosol, however, it has also been found in plasma membranes and peroxisomes 

(Wang et al., 2006). Like NEP and ECE-1, IDE has been shown to successfully degrade 

Aβ. Overexpression of IDE in mice results in a massive reduction of amyloid deposition 

and a prolonged survival rate (Hama et al., 2004). On the contrary, genetic depletion of 

IDE elevates brain Aβ levels (Farris et al., 2003). Like NEP, IDE mRNA and protein levels 

display region-dependent, reduced expression levels in aged healthy individuals as 

well as AD patients (Cook et al., 2003;Caccamo et al., 2005). Hence, IDE is another 

crucial ADE potentially playing a role in AD pathology.   

 

 

Figure 6: Aβ clearance pathways. Aβ can eliminated from the brain by enzymatic degradation, 
transport through the BBB, degradation through activated astrocytes and microglia or by the ISF 
drainage pathway. LRP2 and ABCB1 mediate the efflux of the peptide while RAGE promotes its re-entry 
into the brain. In the plasma, unbound or bound Aβ is transported to kidneys or liver and systematically 
cleared. Figure generated after (Tarasoff-Conway et al., 2015;Vandal et al., 2015).  

1.7 Mouse models of Alzheimer’s disease 

Upon the discovery of mutations in APP and PSEN genes in familial AD patients, a 

variety of transgenic murine mouse models have been developed. These models carry 
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transgenes with mutated forms of human APP and/or PSEN1/2 and mimic various 

pathological features of AD such as amyloid plaque deposition, accumulation of 

phosphorylated tau, inflammation and behavioural deficits (Elder et al., 2010). The 

first APP-based transgenic AD model was the PDAPP model harbouring the Indiana 

mutation reported by Games et al. (Games et al., 1995). Subsequently, numerous other 

mouse lines with promoters driving the expression of APP transgenes with one or more 

FAD mutations were developed (e.g. Tg2576 (Hsiao et al., 1996), APP23 (Calhoun et al., 

1999) and TgCRND8 (Chishti et al., 2001)).  

Overexpression of human mutant PSENs alone does not cause amyloid plaque 

deposition but leads to elevated levels of AβX-42. However, crossing of PSEN lines with 

APP-based transgenic mice causes early onset pathology and an extensive Aβ plaque 

load (Holcomb et al., 1998). Examples for well-characterized APP/PS1 bigenic lines are 

APP/PS1KI (Casas et al., 2004), APP/PS1ΔE9 (Borchelt et al., 1997) and 5XFAD mice 

(Oakley et al., 2006). 

As rodents do not develop Aβ plaque pathology spontaneously (Sarasa and Pesini, 

2009), the relevance of APP/PSEN mouse models is undisputed. However, due to the 

use of mutations, they only reflect the minor fraction of approximately 1% of familial 

AD cases. Thus, the generation of genetically modified mice that represent a better 

model for sporadic AD has gained particular attention in recent years. A model showing 

features of the sporadic form of AD has been developed by intracerebroventricular 

(icv) injection of streptozotozin (STZ) leading to insulin-resistance in the brain. This 

icv-STZ model is therefore based on the AD environmental risk factor diabetes mellitus 

type II and reflects important pathological characteristics of the disease such as 

memory impairment (Salkovic-Petrisic et al., 2006). Another mutation-independent 

model is the previously generated Tg4-42 model, which exclusively expresses an N-

truncated version of Aβ without APP overexpression and therefore represents the 

sporadic form of AD better than APP/PSEN-based models (Bouter et al., 2013). 

1.7.1 The Tg4-42 mouse model 

The Tg4-42 mouse model exclusively expresses the Aβ4-42 peptide, which is one of the 

most abundant Aβ species found in human AD brain (Portelius et al., 2010). The Aβ4-42 

sequence is fused to the murine thyrotropin-releasing hormone (TRH) signal peptide, 

ensuring secretion through the secretory pathway, under the control of the Thy1-
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promoter (Figure 7). Aβ accumulation correlates with the expression pattern of the 

neuron-specific promoter and occurs in a region-specific manner. Intraneuronal Aβ 

becomes apparent starting at 2 months of age in heterozygous Tg4-42 mice (Tg4-42het) 

and is predominantly present in the CA1 region of the hippocampus, but also in the 

occipital cortex, piriform cortex, striatum, superior colliculus and spinal cord. Aβ 

immunoreactivity in the CA1 layer is accompanied by an inflammatory response as 

shown by reactive micro- and astroglia. Intraneuronal CA1 Aβ immunoreactivity 

declines during aging due to a massive neuron loss, leaving mainly larger extracellular 

Aβ aggregates. The CA1 neuron loss in Tg4-42 mice happens in an age- and dose-

dependent manner. At 8 months of age, Tg4-42het animals display a 38% neuron loss 

that is even more pronounced in homozygous Tg4-42 mice (Tg4-42hom) with a 66% 

decline compared to WT controls. With 12 months of age, neurodegeneration is 

proceeded up to a loss of 50% in Tg4-42het mice. The profound neuron death in Tg4-42 

mice is accompanied by spatial reference memory deficits as assessed by the Morris 

water maze (MWM), starting with 12 months of age in heterozygous and 6 months of 

age in homozygous animals (Bouter et al., 2013). Additionally, 12-month-old Tg4-42het 

mice display an impaired contextual learning, as demonstrated in the fear conditioning 

task (Bouter et al., 2014). Despite the massive neuron loss and the subsequent memory 

decline that develops in Tg4-42 mice, this model still responds to therapeutic 

interventions. A passive immunization study using an antibody directed against Aβ4-x 

effectively decreased hippocampal neurodegeneration and rescued spatial reference 

memory deficits in Tg4-42hom mice (Antonios et al., 2015). As the Tg4-42 model neither 

expresses human APP nor possesses any mutations, it rather represents the sporadic 

form of AD and therefore demonstrates a physiologically relevant model suitable to 

study new preventative and therapeutic approaches. 
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Figure 7: Schematic diagram of Tg4-42 transgene. The Aβ4-42 sequence is fused to the pre-pro-TRH 
peptide. The Thy1 promoter induces the neuronal expression of the pre-pro-TRH-Aβ4-42 fusion peptide. 
The fusion peptide is directed into the ER by an N-terminal signal sequence. In the ER, signal peptidases 
liberate the pro-TRH-Aβ4-42 peptide. In the trans-Golgi network and secretory granules, prohormone 
convertases subsequently cleave off the remaining pro-TRH sequence and liberate the Aβ4-42 peptide 
(Alexandru et al., 2011). Figure generated after (Wittnam, 2012).   

1.7.2 The 5XFAD mouse model 

The conventional 5XFAD mouse model co-expresses the two human mutant transgenes 

APP and PS1 under the control of the neuron-specific Thy1 promoter (Figure 8). The 

hAPP695 transgene contains the Swedish (KM670/671NL), Florida (I716V) and 

London (V717I) mutations and PS1 harbours the mutations M146L and L286V (Oakley 

et al., 2006). These mutations are known to cause familial AD in humans and promote 

the overproduction of Aβx-42, leading to an accelerated amyloid plaque formation as 

early as 2 months of age. While the Swedish mutation promotes elevated levels of total 

Aβ, the Florida, London and PS1 mutations specifically enhance the formation of Aβ42. 

The amyloid pathology in 5XFAD mice starts with the accumulation of intraneuronal 

Aβ42 in the 5th cortical layer, rapidly followed by plaque deposition in cortex and 

subiculum. With age, Aβ plaques become detectable throughout the hippocampus and 

cortex and amyloid pathology is paralleled with massive astro- and microgliosis 

(Oakley et al., 2006;Jawhar et al., 2012). In addition to the 5th cortical layer, 5XFAD mice 

display intraneuronal Aβ accumulation in the subiculum, which correlates well with a 

significant neuron loss in these regions (Eimer and Vassar, 2013). 5XFAD mice display 

a reduced body weight compared to healthy WT animals starting with 9 months of age, 

which further aggravates over time (Jawhar et al., 2012). Concomitantly, the model 

shows a premature death phenotype, probably caused by the heavy amyloid deposition 

and subsequent cerebral vascular damage (Heraud et al., 2014). 5XFAD mice develop 
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working memory deficits with 4 to 5 months of age in the Y-Maze test (Oakley et al., 

2006) and display reduced anxiety levels starting with 6 months. Furthermore, this 

strain shows an age-dependent decline in motor function starting with 9 months of age 

(Jawhar et al., 2012;Shukla et al., 2013) and significant spatial reference memory as 

well as contextual and tone memory deficits with 12 months of age (Bouter et al., 

2014). The 5XFAD model develops a rapid pathology and recapitulates the main 

features of AD. Therefore, the model is a useful tool to investigate the molecular 

mechanisms of neurodegeneration in AD (Ou-Yang and Van Nostrand, 2013;Bouter et 

al., 2014;Guzman et al., 2014;Landel et al., 2014;Anderson et al., 2015) as well as 

possible therapeutic strategies (Wirths et al., 2010;Hillmann et al., 2012;Cho et al., 

2014;Zhang et al., 2014;Devi and Ohno, 2015). 

 

 

Figure 8: Schematic diagram of 5XFAD transgenes. 5XFAD mice co-express the human APP695 and 
PS1 transgenes under the control of the neuron-specific Thy1 promoter. Mutations in Thy1-APP and 
Thy1-PS1 transgenes are indicated by arrow heads. Sw, Swedish mutation; Lon, London mutation; Fl, 
Florida mutation. Figure generated after (Oakley et al., 2006).   

1.8 Risk factors for Alzheimer’s disease 

1.8.1 Genetic risk factors 

Besides advanced age, family history is one of the major risk factors of AD (Sperling et 

al., 2011). Twin and family studies have shown that up to 80% of all AD cases involve 

the inheritance of genetic factors (Gatz et al., 2006). AD is classified into early-onset AD 

(EO-FAD) and late-onset AD (LOAD). EO-FAD develops before the age of 65 years and 

accounts for only 2-5% of all AD cases (Campion et al., 1999). This rare form of AD is 

characterized by a rapid disease progression and a Mendelian pattern of inheritance. 

So far, more than 200 different mutations in the genes encoding APP, PSEN1 and PSEN2 

have been identified to cause EO-FAD (Tanzi, 2012). Most of these mutations are 
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inherited in a penetrant, autosomal-dominant manner and lead to elevated levels of 

Aβ42. The increase of extracellular Aβ42 promotes its aggregation and fosters cerebral 

deposition of amyloid plaques (Scheuner et al., 1996).  

Being clinically indistinguishable from EO-FAD, LOAD develops above the age of 65 and 

has no consistent mode of transmission (Bertram and Tanzi, 2005). Instead, LOAD is 

believed to be a multifactorial disease, with a combination of genetic and 

environmental factors influencing its onset. The greatest genetic risk factor linked to 

the sporadic form of AD is the ε4 allele of the lipid/cholesterol carrier apolipoprotein 

E (ApoE) on chromosome 19q3 (Strittmatter et al., 1993). In humans, three major 

polymorphisms in the ApoE gene have been described: ε2, ε3 and ε4. The ApoE ε4 allele 

is found in about 15% of the general population, while its frequency in AD patients is 

40% (Farrer et al., 1997).  The mechanism how ApoE ε4 predisposes to AD is still 

unclear, however, ApoE ε4 has been shown to codeposit and interact with Aβ (Namba 

et al., 1991). Furthermore, it has been described that ApoE ε4 modulates Aβ 

accumulation and clearance in the brain (Castellano et al., 2011). Additionally, ApoE ε4 

is supposed to impair synaptic and mitochondrial function, representing an early event 

in the onset of sporadic AD (Ji et al., 2003;Valla et al., 2010). Next to ApoE ε4, recent 

genome-wide association studies (GWAS) have found new susceptibility genes linked 

to LOAD, such as TREM2 (triggering receptor expressed on myeloid cells2) 

(Boutajangout and Wisniewski, 2013), CLU (clusterin) and PICALM 

(phosphatidylinositol-binding clathrin assembly protein) (Harold et al., 2009). 

1.8.2 Environmental risk factors 

The probability of developing LOAD is influenced by numerous environmental risk 

factors, including metabolic and cardiovascular (e.g. diabetes, midlife hypertension 

and midlife obesity) (Beydoun et al., 2008;Kennelly et al., 2009;Lu et al., 2009), 

psychological (e.g. depression) (Ownby et al., 2006) and health risk factors (e.g. 

smoking) (Cataldo et al., 2010). In addition, several studies showed that traumatic 

brain injuries in early adulthood increase the risk of developing AD in later life 

(Plassman et al., 2000). Population-based data analysis disclosed that such potentially 

modifiable risk factors cause about one third of all LOAD cases worldwide (Norton et 

al., 2014). On the other hand, several retrospective epidemiological studies suggested 

that a physically active lifestyle as well as cognitively stimulating activities result in a 
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significantly reduced risk of dementia (Valenzuela, 2008;Scarmeas et al., 

2009;Scarmeas et al., 2011). For example, a study with 1449 participants showed that 

regular leisure-time physical activity at midlife lowers or delays the risk of developing 

dementia in later life (Rovio et al., 2005). In addition, a recent long-term follow-up 

study with a Finnish twin cohort revealed that vigorous physical activity protects from 

dementia and hence led to a lower mortality rate (Iso-Markku et al., 2015). Accordingly, 

a meta-analysis of 16 prospective studies led to the suggestion that 13% of all AD cases 

worldwide can be attributed to physical inactivity. A 10% reduction of physical 

inactivity could hence lead to the prevention of 380000 AD cases worldwide (Barnes 

and Yaffe, 2011). Intriguingly, beneficial effects of physical activity have also been 

proven in individuals already suffering from mild cognitive impairment and dementia 

(Heyn et al., 2004;Nagamatsu et al., 2013). There are ample mechanisms proposed how 

physical activity reduces the risk of AD and dementia (Barnes et al., 2007). First, 

physical activity lowers the risk of developing cardiovascular diseases such as diabetes 

or hypertension, which are, as previously mentioned, associated with LOAD (Profenno 

et al., 2010). Second, numerous studies in humans and animals have shown that 

physical activity has a direct beneficial effect on the structure and function of the brain 

(Cotman et al., 2007;Voss et al., 2010). As already stated, besides exercise, high 

education and cognitive stimulation throughout life are associated with a lower risk of 

AD. There is strong evidence that enhanced educational opportunities help to build up 

a cognitive reserve (CR) which enables individuals to stay asymptomatic despite 

ongoing neurodegenerative changes in the brain (Stern, 2002).  

1.9 The cognitive reserve hypothesis 

As mentioned earlier, AD is characterized by severe anatomical changes of the brain. 

Massive neuron loss leads to shrinkage of several brain areas with the hippocampus 

and cortex being primarily affected. Interestingly, a study in 1988 showed that there is 

a discrepancy between the degree of brain atrophy and the extent of clinical 

manifestation. The post mortem analysis revealed that individuals with no signs for 

cognitive decline during lifetime displayed a strong brain AD pathology (Katzman et 

al., 1988). This finding supported the idea of individual differences regarding the ability 

to compensate a certain degree of neurodegeneration and established the concept of a 
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“cognitive reserve”. The cognitive reserve hypothesis postulates that a stimulating 

environment consisting of complex mental activities, high education, occupational 

attainment and diverse leisure activities provides a brain reserve capacity that 

tolerates brain damage to a greater extent before becoming clinically present (Stern, 

2002). Numerous following studies supported the cognitive reserve hypothesis and 

substantiated the idea that one can influence cognitive outcomes through lifestyle 

choices. For instance, individuals with high educational levels showed a 5-year delay 

in dementia onset when compared to lower educated persons (Katzman, 1993). 

Furthermore, a study with nuns revealed that a high extent of ideation and creativity 

throughout life correlates with well-preserved cognitive capacities in older age (Tyas 

et al., 2007a;Tyas et al., 2007b). In addition, a 9-year follow-up study by Paillard-Borg 

and colleagues showed that mental, social and physical activity delays the onset of 

cognitive decline. Intriguingly, a combination of all three types of activities clearly 

entailed an even stronger delay of disease onset (Paillard-Borg et al., 2012). However, 

it has to be considered that different genetically determined endowments in terms of 

brain structure and circuitry can influence the capacity to compensate certain 

disruptions as well (Stern, 2009). Therefore, it is suggestive that cognitive reserve is 

based on an interaction between genetic and environmental elements (Sale et al., 

2014). The underlying neurobiological mechanisms contributing to cognitive reserve 

might include positive effects on synaptic plasticity, synaptic connectivity, 

hippocampal neurogenesis, neuronal density, as well as cortical thickness (Stern, 

2009;Sale et al., 2014). These effects in humans have been tried to be explained by data 

obtained in animal models. Therefore, rodents are exposed to enriched environment 

(EE) paradigms, which mimic an intellectually and physically enriched lifestyle and will 

be addressed in the following paragraph. 

1.10 The environmental enrichment paradigm 

The beneficial effects of an enriched environment have first been described in 1940, 

when D.O. Hebb took a group of rats from the laboratory and let them run and play 

freely with his kids at home. When he compared these rats with the ones that remained 

under standard laboratory conditions, he observed positive effects on learning and 

memory of the animals (Redolat and Mesa-Gresa, 2012). Rosenzweig and colleagues 
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later introduced the EE as a scientific paradigm (Rosenzweig et al., 1962). Ever since, 

extensive studies have revealed that rodents kept in an EE display behavioural, 

physiological and anatomical alterations. The environmental enrichment is defined as 

“a housing condition that facilitates enhanced sensory, cognitive and motor stimulation 

relative to standard housing conditions” (Nithianantharajah and Hannan, 2006) 

(Figure 9). In this experimental setting, sensory and cognitive stimulation are provided 

by numerous enrichment objects including colourful toys, climbing apparatuses, 

ladders, nesting material, houses and tunnels. The regular re-arrangement and 

exchange of EE objects (daily or weekly) provides novelty and complexity in the system 

and therefore challenges cognitive modalities such as learning and memory. In order 

to model a physically active lifestyle, EE cages can be equipped with running wheels, 

providing the continuous possibility to exercise voluntarily. In addition, the larger size 

of cages used for EE, but also the EE objects itself, encourage the animals to be more 

active and support exploration. To increase social interaction, higher numbers of 

conspecifics are maintained together in EE cages. Enriched environment protocols can 

vary substantially amongst studies, depending on the number and complexity of EE 

objects, the duration of the paradigm, the number of animals per cage and the age at 

which the protocol starts (Nithianantharajah and Hannan, 2006). However, rodents 

display highly motivated behaviours in such enriched environments. In order to handle 

these environmental demands, the brain undergoes a variety of changes (Leggio et al., 

2005;Mandolesi et al., 2008).  

 

 

Figure 9: The environmental enrichment paradigm. EE promotes physical activity, cognitive 
stimulation, somatosensory stimulation and social interaction. Figure generated after 
(Nithianantharajah and Hannan, 2006)  
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1.10.1 Benefits of environmental enrichment in rodents 

In rodents, enriched housing has been shown to have numerous positive effects on a 

cellular, molecular and behavioural level. Next to an altered cortical weight and 

thickness (Diamond et al., 1976), studies described increased branching and length of 

dendrites, increases in the number of dendritic spines and the size of synapses 

(Greenough and Volkmar, 1973;Connor et al., 1982;Turner and Greenough, 1985). 

Furthermore, EE stimulates hippocampal neurogenesis and the integration of new-

born neurons into existing neuronal circuits (Kempermann et al., 1997;1998;van Praag 

et al., 2000). It also promotes an increase in levels of neurotransmitter receptors as 

well as an elevation of neurotrophic and growth factors in the brain (Kempermann et 

al., 2010). Additionally, in brain regions that are susceptible for neurodegenerative 

changes such as hippocampus or striatum, EE has been described to induce long-term 

changes in terms of altered gene expression profiles (Li et al., 2007;Thiriet et al., 2008). 

At the behavioural level, EE has been shown to decrease anxiety and increase 

exploratory behaviour (Chapillon et al., 1999;Roy et al., 2001). Moreover, enriched 

housing diminishes memory decline in aged animals and improves cognitive function 

and sensory-motor performance (Bennett et al., 2006;Nithianantharajah and Hannan, 

2006). 

1.10.2 Benefits of environmental enrichment in AD mouse models 

As EE is thought to represent a preventative therapeutic intervention, the paradigm 

has been evaluated in numerous mouse models of AD. Regarding cognitive outcomes, 

the majority of results indicate that living in an EE has beneficial effects on AD mice. 

After long-term exposure to EE, APP23 mice displayed an improved spatial memory 

performance (Polito et al., 2014). Verret et al. found that an exposure of Tg2576 mice 

to EE prior to the onset of amyloidosis protects against cognitive impairment during 

AD pathology (Verret et al., 2013). In addition, lifelong EE counteracted age-related 

cognitive decline in both male and female PS1/PDAPP mice (Costa et al., 2007). 

However, other studies have not confirmed positive effects of EE on the cognitive 

performance of AD mouse models. For example, Cotel et al. found that after 4 months 

of continuous EE, no improvement in working memory performance was present in 

APP/PS1KI mice (Cotel et al., 2012). Levi and colleagues also observed that EE did not 
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counteract memory decline in APOE ε4 mice after exposure to EE (Levi and Michaelson, 

2007). Furthermore, conflicting results regarding Aβ deposition upon EE living 

conditions have been reported. For example, some studies found a decrease in Aβ 

deposition (Yuede et al., 2009;Ke et al., 2011;Liu et al., 2013), some constant Aβ plaque 

loads (Parachikova et al., 2008;Richter et al., 2008;Cotel et al., 2012;Marlatt et al., 2013) 

or even enhanced Aβ abundance (Jankowsky et al., 2003) following enriched housing.  
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1.11 Project objectives 

1.11.1 Project I: The effect of long-term environmental enrichment and physical 

activity on the pathology of Tg4-42 and 5XFAD mice  

To date, no efficacious therapeutic approach against Alzheimer’s disease has been 

developed. Hence, preventative strategies and non-pharmacological interventions to 

delay age-related cognitive changes and AD have moved into focus. Numerous 

epidemiological studies revealed that a physically and cognitively active lifestyle 

reduces the risk of developing AD (Rovio et al., 2005;Valenzuela, 2008;Scarmeas et al., 

2009). The experimental work carried out in the present doctoral thesis aims to extend 

and broaden investigations of a challenging lifestyle in combination with regular 

exercise as a potential preventative strategy for AD. To this end, the effect of long-term 

housing in an enriched environment (EE) on the newly-developed Tg4-42 as well as 

the widely-used 5XFAD mouse model will be tested. Tg4-42 mice reflect the key 

features of sporadic AD as this model overexpresses Aβ4-42 without APP mutations. 

Hence, special emphasize will lay on the effect of EE on hippocampal neuron loss and 

associated behavioural impairments. Therefore, the following questions will be 

addressed: 

- Does living in an enriched environment prevent the severe memory decline of 

Tg4-42 mice? 

- Can the CA1 neuron loss in Tg4-42 mice be delayed or rescued due to prolonged 

enriched living conditions? 

- Does mental and physical activity influence neurogenesis in aged WT and Tg4-

42 mice? 

- Are Aβ brain levels changed upon lifelong living in a physically and cognitively 

enriched environment? 

- Are gene expression profiles changed in WT and Tg4-42 mice maintained under 

enriched conditions? 

- How does physical activity alone affect neurodegenerative processes in Tg4-42 

mice? 

 



24 

 

Introduction 

To date, the well characterized 5XFAD model has not been tested in a physically and 

mentally demanding environment. The aim of this project is to investigate, whether the 

strong behavioural and neuropathological phenotype of 5XFAD mice can be modified 

by a rather mild intervention like EE. Therefore, the aims of this part of the study can 

be summarized in main questions as follows: 

- Can the severe motor phenotype of 5XFAD mice be ameliorated due to lifelong 

EE? 

- Does cognitive and physical activity influence the behavioural changes in the 

5XFAD mouse model? 

- Are Aβ levels in 5XFAD mice modifiable through enriched living conditions? 

1.11.2 Project II: Neprilysin deficiency alters the neuropathological and 

behavioural phenotype in the 5XFAD mouse model of Alzheimer’s 

disease 

The 5XFAD mouse model represents a widely used, conventional model that develops 

major neuropathological AD hallmarks such as extracellular amyloid deposition, 

memory impairment, motor deficits and selective neuron loss (Jawhar et al., 2012). 

Neprilysin has been described to be the major Aβ-degrading enzyme in the brain and 

its role in AD pathology has been proposed in a variety of studies. The aim of this part 

of the thesis will be the analysis of the effects of neprilysin depletion in 5XFAD mice. 

Therefore, the following inquiries will be investigated: 

- Does neprilysin deficiency have an effect on the working memory performance 

of 5XFAD mice? 

- Does the lack of a neprilysin allele aggravate extracellular plaque pathology? 

- Is the inflammatory response in 5XFAD mice increased upon depletion of 

neprilysin? 

- How does the neprilysin loss influence the expression levels of other ADEs? 
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2 MATERIALS AND METHODS  

2.1 Chemicals, Reagents and Kits  

The chemicals and reagents used in the present study are listed in Table 1, kits used 

are listed in Table 2. 

Table 1: Chemicals and Reagents  

Reagent Manufacturer 

3,3 –diaminobenzidine-tetrahydrochloride 
(DAB)  

Roth, Karlsruhe, Germany 

Agarose Lonza, Basel, Switzerland  

Acetic acid Merck, Darmstadt, Germany 

Amersham Hybond-ECL Membrane GE Healthcare, Chalfont St. Gilles, GB 

Benzonase Merck, Darmstadt, Germany 

Boric acid Sigma-Aldrich, St. Louis, USA  

Bovine serum albumin (BSA) Roth, Karlsruhe, Germany 

Citric acid Roth, Karlsruhe, Germany 

Complete Mini-Protease Inhibitor Tablets Roche, Basel, Switzerland 

Complete Mini-Phosphatase Inhibitor Tablets Roche, Basel, Switzerland 

Cresyl violet Merck, Darmstadt, Germany 

Dimethyl sulfoxide Roth, Karlsruhe, Germany 

DNA ladder 100 bp Bioron, Ludwigshafen, Germany 

DNAse 10X reaction buffer with MgCl2 Thermo Fisher Scientific, Waltham, USA 

DNAse Thermo Fisher Scientific, Waltham, USA 

dNTPs  Invitrogen, Carlsbad, CA, USA 

Dulbecco’s Phosphate Buffered Salt Solution 
(DPBS) 

Pan Biotech, Aidenbach, Germany 

Ethanol, absolute Merck, Darmstadt, Germany 

Ethidium bromide Roth, Karlsruhe, Germany 

Ethylendiaminetetraacetic acid (EDTA) AppliChem, Darmstadt, Germany 

Fetal Calf Serum (FCS) Biochrom, Berlin, Germany 

Formic Acid, 98% Roth, Karlsruhe, Germany 

Hematoxylin Solution Roth, Karlsruhe, Germany 

Histofix solution containing 4% formalin Roth, Karlsruhe, Germany 

Hydrochloric acid (HCl), 37% Roth, Karlsruhe, Germany 
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Hydrogen peroxide (H2O2) Roth, Karlsruhe, Germany 

Isopropanol Roth, Karlsruhe, Germany 

Ketamine Medistar, Ascheberg, Germany 

Methanol AppliChem, Darmstadt, Germany 

MgCl2 (25 mM) Axon, Kaiserslautern, Germany 

Molecular-grade water Braun, Melsungen, Germany 

Natrium acetate trihydrate Roth, Karlsruhe, Germany 

Non-fat Dry Milk Powder Roth, Karlsruhe, Germany 

Paraffin Roth, Karlsruhe, Germany 

Paraformaldehyde (PFA) Roth, Karlsruhe, Germany 

PCR 10X reaction buffer Axon, Kaiserslautern, Germany 

Ponceau S Roth, Karlsruhe, Germany 

Proteinase K Peqlab, Erlangen, Germany 

Roti-Histokitt Roth, Karlsruhe, Germany 

Sodium chloride (NaCl) Roth, Karlsruhe, Germany 

Sodium dodecyl sulfate (SDS) Roth, Karlsruhe, Germany 

Sodium hydroxide (NaOH) AppliChem, Darmstadt, Germany 

Sucrose Roth, Karlsruhe, Germany 

Taq polymerase Axon, Kaiserslautern, Germany 

Thioflavin S Sigma-Aldrich, St. Louis, USA  

Trifast® Peqlab, Erlangen, Germany 

Tris(hydroxymethyl)aminomethane (Tris) Roth, Karlsruhe, Germany 

Triton X-100 Roth, Karlsruhe, Germany 

Tween 20 Roth, Karlsruhe, Germany 

Xylazine (Xylariem) Ecuphar, N.V. Oostkamp, Belgium 

Xylene Roth, Karlsruhe, Germany 

 
 
 
Table 2: Kits 

Kit Manufacturer 

Human (6E10) Abeta Peptide Ultra-Sensitive Kit Meso Scale Discovery, Rockville, USA 

RevertAid First Strand cDNA Synthesis Kit Thermo Fisher Scientific, Waltham, 
USA 

FastStart Universal SYBR Green Master (Rox) qRT-
PCR Kit 

Roche, Basel, Switzerland 

RotiQuant Universal Protein Assay Roth, Karlsruhe, Germany 

Vectastain ABC Kit Vector Laboratories, Burlingame, USA  
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2.2 Laboratory Animals 

2.2.1 Animal care and general conditions 

All animals used for these studies were of the species Mus musculus and were housed 

under specific-pathogen-free (SPF) conditions in the central animal facility of the 

University Medicine Göttingen (UMG). Mice were kept on a 12 hour/12 hour inverted 

dark/light cycle (light from 8.00 p.m. to 8.00 a.m.), while handling and behavioural 

testing were performed during the dark phase. Access to food and water was provided 

ad libitum. Only female mice were used in the current study. All animal experiments 

were conducted in accordance with the guidelines of the ‘Federation of European 

Laboratory Animals Science’ (GV-SOLAS) and the guidelines of the ‘Federation of 

European Laboratory Animal Science Association’ (FELASA). All animal experiments 

were approved by the ‘Lower Saxony State Office for Consumer Protection and Food 

Safety’ (LAVES). All effort was made to minimize the number and the suffering of 

animals used in the present study.  

2.2.2 Housing conditions 

2.2.2.1 Standard housing 

Mice kept under standard housing (SH) conditions were maintained in standardized 

individually ventilated cages (33 cm x 18 cm x 14 cm) in groups of 4-5 animals until the 

age of 12 months. The cages were equipped with sawdust bedding and nesting 

material. 

2.2.2.2 Environmental enrichment housing 

Mice that were assigned to environmental enrichment (EE) living conditions were 

transferred to rat cages (55 cm x 34 cm x 20 cm) after weaning until the age of 12 

months. EE cages were equipped with sawdust bedding, nesting material, tunnels, 

houses, climbing apparatuses and toys, which were cleaned, changed and re-arranged 

weekly to maintain the concept of novelty and complexity in the system 

(Nithianantharajah and Hannan, 2006). Additionally, the cages were equipped with 
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three different running wheels to promote physical activity on a voluntary basis. Mice 

were kept in groups of 4-5 animals. 

2.2.2.3 Individual cage housing 

Individual cage housing experiments were performed in collaboration with the group 

of Prof. David Liebetanz in Göttingen. For running wheel recording experiments, 2-

month-old Tg4-42hom mice were assigned to individual cages (22 cm x 16 cm x 14 cm), 

which were equipped with sawdust bedding and a running wheel (diameter of 11.3 

cm) until the age of 6 months. The running wheels of one group were freely movable 

and a rotation sensor connected to the running wheel axis transmitted the running 

activity with a resolution of 1/16 revolution and a sampling rate of 1/0.48 s to a 

customized recording device (Boenig und Kallenbach oHG). The average weekly 

running distance (km) was calculated and visualized using a custom-designed Matlab 

(The MathWorks, Inc.) program. The running wheels of the control group were blocked 

to prevent the mice from running activity while providing the same level of 

environmental enrichment.  

2.2.3 Tg4-42 transgenic mice 

The generation of Tg4-42het mice has been described previously (Bouter et al., 2013). 

In brief, Tg4-42 mice express the human Aβ4-42 sequence combined with the signal 

peptide sequence of the thyrotropin‐releasing hormone (TRH), ensuring secretion 

through the secretory pathway, under the control of the neuronal Thy1 promoter. Tg4-

42 mice were generated and maintained on a C57Bl/6J background. In addition to 

heterozygous Tg4-42 mice, a homozygous Tg4-42 line (Tg4-42hom) was generated in 

our group and used in the present study. 

2.2.4 5XFAD transgenic mice  

The generation of 5XFAD mice (Tg6799) has previously been described by Oakley and 

colleagues (Oakley et al., 2006). Briefly, 5XFAD mice overexpress the 695 amino acids 

isoform of the human amyloid precursor protein (APP695) carrying the Swedish, 

Florida and London mutations under the control of the murine Thy1 promoter. 

Additionally, human presinilin-1 (PSEN1), carrying the mutations M146L and L286V, 
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is expressed under the control of the murine Thy1 promoter. 5XFAD mice used in the 

current study were backcrossed for more than 10 generations to C57Bl/6J wild-type 

mice (WT) (Jackson Laboratories) to obtain an incipient congenic line on a C57Bl/6J 

genetic background (Jawhar et al., 2012).  

2.2.5 Neprilysin gene-disrupted mice 

The neprilysin gene-disrupted mouse model has been initially generated and described 

by Lu and colleagues (Lu et al., 1995) and was a generous gift of Dr. Takaomi Saido 

(RIKEN Brain Institute, Japan). The mice were kept as a homozygous line (NEP-/-) and 

bred with hemizygous 5XFAD mice resulting in the genotypes 5XFAD/NEP+/- and 

NEP+/-. 

2.2.6 Tissue collection and preservation 

Brain tissue was collected and preserved in different ways depending on the 

subsequent analysis: 

For RNA and protein extractions, directly frozen tissue is needed. Therefore, mice were 

sacrificed via CO2 anesthetization followed by cervical dislocation. Brains were rapidly 

dissected on ice, cerebellum and olfactory bulb were removed and hemispheres were 

separately frozen on dry ice. The tissue was kept at -80°C until further processing. 

For immunohistochemical stainings, mice were sacrificed and brains were dissected as 

described above. Hemispheres were placed into embedding cassettes (Simport) and 

stored in 4% formalin histofix solution at 4°C for at least 72 h under light protection 

until being embedded in paraffin (Section 2.6.1). 

Another way to obtain brain tissue for immunohistochemical stainings and/or 

stereological analysis is the perfusion via the vascular system through the heart. 

Therefore, mice were deeply anesthetized with a mixture of ketamine (10% stock 

solution) and xylazine (23.3 mg/ml) diluted in molecular-grade water. The anaesthetic 

was administered intraperitoneally at a dosage of 100 mg/kg ketamine and 10 mg/kg 

xylazine body weight, respectively. Once mice were no longer responsive to pain 

stimuli, they were pinned by their limbs on a perfusion board. The abdominal wall was 

opened, the diaphragm was cut and the rib cage was split to reveal the beating heart. 

The right atrium was supplied with an incision to allow blood to drain from the 
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circulatory system. A sterile needle, which was attached to a tubing system of a 

peristaltic pump, was inserted into the left ventricle and the mouse was perfused with 

20 ml of ice-cold 0.01 M PBS to clear the circulatory system from blood. Then, the 

perfusion tubing was transferred to a cylinder containing ice-cold 4% PFA in 0.01 M 

PBS and perfusion was continued until an amount of approximately 40 ml PFA solution 

was administered. After perfusion, brain tissue was carefully collected. The right 

hemisphere was placed in 4% formalin histofix solution for post-fixation before being 

embedded in paraffin as described above. The left hemisphere was post-fixated for 

additional 24 h in 4% PFA in 0.01 M PBS before being transferred in 10 ml of 30% 

sucrose solution prepared in 0.01 M PBS. The brain tissue was incubated in sucrose 

until it sunk to the bottom of its container, subsequently frozen on dry ice and stored 

at -80°C until further use. 

2.3 Behavioural Analysis  

2.3.1 Motor phenotype assessment 

2.3.1.1 Balance Beam 

To analyse balance and fine motor coordination, the balance beam test was conducted 

(Luong et al., 2011). A 1 cm wide wooden beam was attached to two wooden support 

columns at a height of 44 cm. The surface was padded to protect against fall injuries. 

At either end of the 50 cm long beam, a 9 x 15 cm escape platform was attached. Mice 

were gently placed on the centre of the beam facing one of the platforms and released. 

The latency to fall from the beam or to reach one of the platforms was recorded. The 

test consisted of 60-seconds trials with 3 consecutive trials on a single testing day. If a 

mouse remained on the beam for the whole 60-seconds trial or escaped to one of the 

platforms, the maximum time of 60 seconds was recorded. Between each trial, the 

apparatus was cleaned with 70% ethanol to remove any olfactory cues. 

2.3.1.2 String suspension 

To test agility and grip strength, the string suspension task was performed (Arendash 

et al., 2001). The string suspension apparatus was comprised of a 50 cm long cotton 

string fixed between two wooden support beams at a height of 35 cm. The surface was 
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padded to protect against fall injuries. Mice were allowed to grasp the 3 mm thick 

cotton string only by their forepaws. During a single 60-second trial, the performance 

of each animal was assessed using a 0 to 5 rating system (Moran et al., 1995): 0 = unable 

to remain on the string; 1 = hangs only by for- or hind paws; 2 = as for 1, but with 

attempt to climb onto string; 3 = sits on string and holds balance; 4 = four paws and tail 

around string with lateral movement; 5 = escape to one of the platforms. Between each 

trial, the apparatus was cleaned with 70% ethanol to diminish odour cues. 

2.3.1.3 Rotarod 

Motor performance and motor learning were tested using the rotarod task. Testing 

consisted of four trials per day for 2 consecutive days with inter-trial intervals of 2–3 

min using a computer-controlled Rotarod system (TSE, Technical and Scientific 

Equipment). Each mouse was placed on the rod, which accelerated from 1 to 45 rpm 

over a maximum trial time of 300 seconds. Trials were terminated when animals fell 

off (or the maximum time was reached) and latency to descent (in sec) served as an 

indicator of motor coordination. Between each trial, the rotarod was cleaned with 70% 

ethanol to diminish odour cues. 

2.3.2 Y-Maze 

Working memory performance was assessed using a triangular Y-maze apparatus. The 

maze consisted of three arms (30 cm length x 8 cm width x 15 cm height), which 

extended from a triangular central region. During a 10-minute test session, each mouse 

was randomly placed at the end of one arm and was allowed to explore the Y-maze 

freely while it was tracked by the ANY-mazeTM video tracking system. Alternation was 

defined as successive arm entries into all three arms in overlapping triplet sets (e.g. 1, 

3, 2 or 3, 1, 2 but not 1, 2, 1). The percentage alternation was calculated as the ratio of 

actual alternations to possible alternations. Between each trial, the maze was cleaned 

with 70% ethanol to diminish odour cues. 

2.3.3 Cross Maze 

Spontaneous alternation rates were determined using the cross maze test (Jawhar et 

al., 2012). The cross maze apparatus was constructed of black plastic material and 
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consisted of four arms arranged in a 90° position extending from a central space of 8 x 

8 cm. Each arm was 30 cm in length, 8 cm in width and 15 cm in height. During a single 

10-minute test session, each mouse was randomly placed in 1 arm and allowed to move 

freely through the maze, while it was tracked using the ANY-mazeTM video tracking 

system. The sequence of the arm entries, the average speed as well as the total distance 

travelled was recorded. An alternation was defined as successive entries into the four 

arms in overlapping quadruple sets (e.g. 2, 3, 1, 4 or 4, 2, 1, 3 but not 2, 3, 4, 2) 

(Arendash et al., 2001). The alternation percentage was calculated as the percentage of 

actual alternations to the possible number of arm entries (n (arm entries) – 3) 

(Wietrzych et al., 2005). To standardize odours, the maze was cleaned with 70% 

ethanol after each mouse. 

2.3.4 Elevated plus maze 

The elevated plus maze tests anxiety-related behaviours in rodents (Karl et al., 2003). 

The test is based on the conflict of the animals desire to explore a novel environment 

and the avoidance of elevated open spaces due to the anxiety to fall. Therefore, the time 

spent in the open arms is an indication of the intensity of anxiety of the animal. The 75 

cm raised maze was shaped like a “+” with two open and two closed arms (15 cm length 

x 5 cm width) extending from a central platform (5 cm length x 5 cm width). Mice were 

placed individually into the centre field facing one of the closed arms and allowed to 

explore the maze freely for a single, 5 min trial. The percentage of time spent in the 

open arms as well as the ratio of open arm entries to total arm entries were measured 

using the ANY-mazeTM video tracking system. After each mouse, the maze was cleaned 

with 70% ethanol to standardize odours. 

2.3.5 Morris water maze 

Spatial reference memory abilities were evaluated using the Morris water maze 

(Morris, 1984). In this task, mice learn to locate a hidden circular platform (10 cm 

diameter) in a circular pool (110 cm diameter) filled with tap water using spatial cues. 

By adding a non-toxic white paint, the water was made opaque and maintained at 20°C 

for the whole test duration. By the use of the ANY-Maze video tracking software, the 

pool was divided into four virtual quadrants that were defined based on their spatial 
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relationship to the platform: left (L), right (R), opposite (O), and target quadrant (T), 

which contained the goal platform. Escape latency, swimming speed, swimming path 

and quadrant preference were recorded.  

Before animals were obliged to locate the submerged platform, a three-day cued 

training, in which the platform was marked with a triangular flag, was performed. Mice 

were introduced into the water at the edge of the pool facing the wall. They were given 

a maximum time of 1 min to find the platform. If mice were not able to find the platform 

in 60 sec, they were gently guided to it and allowed to sit on the platform for a few 

seconds before being removed to their cages. Between the cued training trials, both the 

location of the visible platform and the position from where mice were introduced into 

the pool, changed each time. The cued training served to evaluate the general health 

condition and intact vision of the animal. Each mouse received four cued training trials 

per day with an inter-trial interval of at least 10 minutes.  

Twenty-four hours after the last cued training trial, mice performed five days of 

acquisition training. In this part of the test, the platform was submerged and invisible 

for the animals. In addition to distal cues attached to curtains surrounding the pool, 

proximal cues were placed to the outside of the pool. Between the acquisition training 

trials, the position of the platform remained stationary while the position from where 

mice were introduced into the pool changed each time (Vorhees and Williams, 2006). 

Again, each mouse received four trials per day.  

Twenty-four hours after the last trial of the acquisition training, the probe trial was 

performed to assess spatial reference memory. The platform was removed from the 

pool and mice were placed into the water from a novel position. Mice were allowed to 

swim freely for 1 minute and the time spent in each of the virtual quadrants as well as 

the swimming speed was recorded. During the whole testing period, mice were kept in 

front of a heat lamp between the different trials to prevent hypothermia. 

2.3.6 Novel object recognition  

The novel object recognition (NOR) test was performed in an open field box made of 

grey plastic (50 cm x 50 cm). On the first day, each mouse was given 5 min to explore 

the testing environment and become habituated. 24 h later, the 5 min exploration 

phase was performed in which the arena contained two identical objects (two red 

bricks). Again 24 h later, mice were placed in the apparatus for the 5 min test trial, now 
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with a familiar and a novel object (a red brick and a glass cylinder). The time mice spent 

with each object was recorded. The objects were cleaned with 70% ethanol between 

each animal to remove any lingering scents.  

2.4 Molecular Biology 

2.4.1 Isolation of genomic DNA and genotyping of transgenic mice 

Genomic DNA was isolated from tail biopsies. 500 µl lysis buffer (100 mM Tris/HCl [pH 

8.5], 5 mM EDTA, 0.2% dodecyl sulfate [SDS] and 200 mM NaCl) supplemented with 5 

µl Proteinase K was added to the tail biopsy and incubated at 55°C for 20 h under 

shaking conditions in a Thermomixer Compact (450 rpm). Samples were then 

centrifuged at 17,000 rpm for 20 min at 4°C (Heraeus Biofuge Stratos). The 

supernatant was transferred to a fresh 1.5 ml reaction tube containing 500 µl ice-cold 

isopropanol and inverted in order to precipitate the DNA. The sample was centrifuged 

again at 13,000 rpm for 10 min at room temperature (RT). The supernatant was 

discarded and the remaining pellet was washed with 500 µl ice-cold 70% absolute 

ethanol. After another centrifugation step at 13,000 rpm for 10 min at RT, the 

supernatant was removed and the DNA pellet was dried at 37°C in a Thermomixer 

Compact for 45 min. Genomic DNA was resuspended in 30 µl molecular-grade water 

and dissolved at 55°C overnight in a Thermomixer Compact before being stored at 4°C 

until further usage. Genomic DNA samples were diluted to a concentration of 20 ng/µl 

and used for genotyping by conventional Polymerase-chain-reaction (PCR) as follows: 

Reagents for the reaction mixtures and cycling conditions are in Table 3, Table 4, Table 

5 and Table 6, respectively. Primer details are listed in Table 9. 

PCR products were analysed using agarose gel electrophoresis. Therefore, 100 ml of 

1xTBE buffer was mixed with 2.0 g agarose to prepare a 2 % agarose gel and boiled in 

a microwave at 560 W until the agarose was dissolved. 3 µl ethidiumbromide (10 

mg/ml) was added before the agarose solution was transferred into a casting tray with 

a 20-pocket sample comb. After solidification, the comb was removed and the gel was 

placed in an electrophoresis chamber (Biorad) containing 1xTBE buffer. 10 µl PCR 

product was mixed with 2 µl of 10x agarose gel sample buffer and loaded into the wells. 

The first well was filled with 5 µl of 100 bp DNA ladder for size indication of the PCR 

products. The gel was run for 30 – 60 min at 120 V and then visualized under UV light 
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using the Gel Doc 2000 (Biorad). Gels were analysed with the Quantity One software 

program (Version 4.30; Biorad). 

 

10XTBE buffer: 108 g Tris and 55 g boric acid were dissolved in 900 ml ddH20. 40 ml 

0.5 M Na2EDTA (pH 8.0) was added and the volume was adjusted to 1 l with ddH20. 

Before use, the solution was diluted 1:10 in ddH20 to obtain 1XTBE buffer.  

Table 3: Reaction mix for Tg4-42 genotyping PCR 

Reagent Volume (µl) 

DNA (20 ng/µl) 2.0 

Aβ3-42 for2 primer 1.0 

Aβ3-42 rev2 primer 1.0 

dNTPs (2 mM) 2.0 

MgCl2 (25 mM) 1.6 

10X Reaction buffer 2.0 

ddH2O 10.2 

Tag polymerase (5 U/µl) 0.2 

Total volume per sample 20 

 
 
Table 4: Reaction mixture for 5XFAD genotyping PCR 

Reagent Volume (µl) 

DNA (20 ng/µl) 2.0 

hAPP for primer 0.5 

hAPP rev primer 0.5 

dNTPs (2 mM) 2.0 

MgCl2 (25 mM) 2.0 

10X Reaction buffer 2.0 

ddH2O 10.8 

Tag polymerase (5 U/µl) 0.2 

Total volume per sample 20 
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Table 5: Reaction mixture for NEP knockout genotyping PCR 

Reagent Volume (µl) 

DNA (20 ng/µl) 1 

5’-ex12 primer 0.4 

3’-ex13 primer 0.2 

3’-neo(3) primer 0.5 

dNTPs (2 mM) 2.5 

MgCl2 (25 mM) 2.5 

10X Reaction buffer 2.5 

ddH2O 15.2 

Tag polymerase (5 U/µl) 0.2 

Total volume per sample 24 

 

Table 6: Cycling program for genotyping PCR 

Step Temperature Duration 

1 94°C 180 sec 

2 94°C 45 sec 

3 58°C 60 sec 

4 72°C 60 sec 

5 Repetition of steps 2-4 for 35 cycles 

6 72°C 300 sec 

7 4°C ∞ 

 

2.4.2 RNA isolation from mouse brain 

Deep frozen brain hemispheres were weighed and supplied with 1 ml Trifast® reagent 

per 100 mg brain tissue. Samples were homogenized using a glass-teflon homogenizer 

(15 strokes, 800 rpm) and incubated at RT for 5 min for dissociation of nucleoprotein 

complexes. 0.2 ml chloroform per 1 ml Trifast® was added to each sample and the 

mixture was vigorously shaken for 15 sec and then incubated for 10 min at RT. To 

separate the RNA from other cellular components, samples were centrifuged at 12,000 

x g for 15 min at 4°C. The upper RNA-containing aqueous phase was carefully 

transferred to a sterile 2 ml microcentrifuge tube containing 0.5 ml isopropanol per 1 

ml Trifast®. The samples were gently mixed and incubated on ice for 20 min for RNA 
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precipitation. After centrifugation at 12,000 x g for 10 min at 4°C, the supernatant was 

discarded and RNA pellets were washed twice with a volume of 75% absolute ethanol 

equivalent to that of isopropanol and centrifuged at 7,500 x g for 10 min at 4°C. After 

the last centrifugation step, the residual ethanol was carefully removed and RNA 

pellets were air-dried at RT. The RNA was redissolved with 30 µl of molecular grade 

water and incubated on ice for 1 h. RNA was stored at -80°C until further use. 

2.4.3 Determination of nucleic acid concentration 

DNA and RNA concentrations were determined using a Biophotometer (Eppendorf). 

80 µl of molecular grade water was used as a blank for the photometry reading prior 

to sample measurements. For each sample, 2 µl DNA or RNA were diluted with 78 µl 

molecular grade water in an Uvette® 220-1600 nm cuvette (Eppendorf). For each DNA 

and RNA sample, the 260/230 and 260/280 absorbance ratios were measured, 

respectively. Concentration measurements were considered accurate if the 260/230 

and 260/280 absorbance ratios were between 1.6 and 2.0. 

2.4.4 Reverse transcription 

Before total RNA isolated from mouse brain was used as a template for reverse 

transcription, RNA was subjected to digestion by DNAse I. Therefore, 1 µg of RNA was 

mixed with 1 µl of 10x DNAse reaction buffer (+MgCl2) and 1 µl DNase I (1 u/µl). The 

reaction mixtures were brought to a total volume of 10 µl using molecular grade water 

and then incubated for 30 min at 37°C in a LabCycle (SensoQuest). 1 µl of 25 mM EDTA 

was added to each reaction mixture to inactivate the DNAse I and samples were 

incubated for further 10 min at 65°C. The entire volume (11 µl) of the DNAse digested 

RNA sample was used as a template for cDNA synthesis.    

Reverse transcription was conducted using the RevertAid First Strand cDNA Synthesis 

Kit (Thermo Fisher Scientific) according to the manufacturer’s instructions. Therefore, 

the 11 µl of DNAse digested RNA sample were mixed with 1 µl of random hexamer 

primer, 4 µl 5x reaction buffer, 1 µl RiboLock® RNAse inhibitor (20 u/µl), 2 µl of 10 mM 

dNTP mix and 2 µl M-MuLV reverse transcriptase (20 u/µl). The total reaction volume 

of 21 µl was incubated for 5 min at 25°C, 1 h at 37°C and 5 min at 70°C in a LabCycle 

(SensoQuest). The cDNA was stored at -20°C until further use. 
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2.4.5 Quantitative real-time polymerase chain reaction (qRT-PCR) 

Gene expression analysis were performed using the FastStart Universal SYBR Green 

Master qRT-PCR Kit containing SYBR green as the intercalating fluorescent dye and 

ROX as an internal reference dye. cDNA was diluted 1:10 in molecular grade water to 

serve as a sample qPCR template. The reaction mix and the cycling program are given 

in Table 7 and Table 8, respectively. Every reaction was performed in duplicates. cDNA 

dilutions were pipetted into 200 µl qRT-PCR tubes (Biozym Scientific) followed by the 

qRT-PCR reaction mix. Using a Spectrafuge Mini (Labnet Inc.), the tubes were briefly 

centrifuged before starting the qRT-PCR reactions in the Mx3000P cycler (Stratagene). 

Raw data were collected using the MxPro Mx3000P software (Stratagene). Average Ct 

values were determined from duplicates and relative quantification was performed 

using murine β-Actin as a reference gene for normalization. The transgene levels of the 

respective genes of interest (GOIs) were normalized to those of murine β-Actin and 

calibrated to a selected control animal using the ΔΔCt method (Schmittgen and Livak, 

2008): 
 

𝐴𝑚𝑜𝑢𝑛𝑡𝑔𝑒𝑛𝑒 = 2−𝛥𝛥𝐶𝑡 

 

For an animal (q), the level of the gene of interest (GOI) gene expression normalized to 

the expression of murine β-Actin as a reference gene and calibrated to a control animal 

(cb), ΔΔCt is calculated as follows: 
 

𝛥𝐶𝑡 =  𝐶𝑡,𝐺𝑂𝐼 −  𝐶𝑡,𝛽−𝐴𝑐𝑡𝑖𝑛 

−𝛥𝛥𝐶𝑡 =  −(𝛥𝐶𝑡,𝑞 −  𝛥𝐶𝑡,𝑐𝑏) 

Table 7: qRT-PCR reaction mixture 

Reagent Volume 
(µl) 

1:10 cDNA dilution 2.0 

SYBR Green Master Mix 
(Rox) 

10 

Primer for 0.5 

Primer rev 0.5 

ddH2O 7 

Total volume per sample 20 
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Table 8: qRT-PCR cycling program 

Step Temperature Duration 

1 95°C 10 min 

2 95°C 15 sec 

3 58°C 30 sec 

4 72°C 30 sec 

5 Repetition of steps 1-4 for 39 cycles 

6 95°C 1 min 

7 55°C 30 sec 

8 95°C 30 sec 
 

2.4.6   Primers 

All primers were purchased from Eurofins (Ebersberg) and used at a final 

concentration of 10 pmol/µl (1:10 dilution of the 100 pmol/µl primer stock prepared 

in ddH2O). The primers are listed in order of the appearance in the results part. 

Table 9: List of primers used for genotyping and qRT-PCR 

Name Sequence (5’ – 3’) Usage 

Aβ3-42 for GTGACTCCTGACCTTCCAG Genotyping 

Aβ3-42 rev GTTACGCTATGACAACACCC Genotyping 

hAPP for GTAGCAGAGGAAGAAGTG Genotyping 

hAPP rev CATGACCTGGGACATTCTC Genotyping 

5’-ex12 GCCTATTCTTACCAAATATTCTCCCAG Genotyping 

3’-ex12 TTGCGGAAAGCATTTCTGGACTCCTTG Genotyping 

3’-neo CTATCGCCTTCTTGACGAGTTCTTCT Genotyping 

Actb for ATGGAGGGGAATACAGCCC qRT-PCR 

Actb rev TTCTTTGCAGCTCCTTCGTT qRT-PCR 

BDNF for GCCTTCATGCAACCGAAGTA qRT-PCR 

BDNF rev TGAGTCTCCAGGACAGCAAA qRT-PCR 

Nr4a1 for ATTGAGCTTGAATACAGGGCA qRT-PCR 

Nr4a1 rev GCTAGAAGGACTGCGGAGC qRT-PCR 

Nfil3 for CATCCATCAATGGGTCCTTC qRT-PCR 

Nfil3 rev CTTTCTTTTCCCCCTCACG qRT-PCR 

Grin2b for AGCTTGCTGTTCAATGGATG qRT-PCR 

Grin2b rev TCTGCTCAGACTCTCACCCC qRT-PCR 
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Hspa1b for ATGACCTCCTGGCACTTGTC qRT-PCR 

Hspa1b rev GCTCGAATCCTATGCCTTCA qRT-PCR 

Cyrab for GATCCGGTACTTCCTGTGGA qRT-PCR 

Cryab rev TCTCTCCGGAGGAACTCAAA qRT-PCR 

Gabra2 for CTTTCCATTTTTGCCGAAAG qRT-PCR 

Gabra2 rev TGATAATCGGCTTAGACCAGG qRT-PCR 

Gabrb2 for TCTCCAGGCTTGCTGAAAAT qRT-PCR 

Gabrb2 rev GACCAGATTTTGGAGGTCCC qRT-PCR 

Ptgds for ACTGACACGGAGTGGATGCT qRT-PCR 

Ptgds rev CGGCCTCAATCTCACCTCTA qRT-PCR 

Dnaja4 for ATTGCCTGTTCTCCACCTTG qRT-PCR 

Dnaja4 rev CAAGTACCACCCGGACAAGA qRT-PCR 

Hsp105 for GGCTTCTACAGGCAGCTCAA qRT-PCR 

Hsp105 rev CAGAAGAAAGCAAAACCCCA qRT-PCR 

Ociad2 for GATTTGGGGCAAAACAACAG qRT-PCR 

Ociad2 rev ACGGCAATAGAAGAAAACGC qRT-PCR 

Stip1 for AGCACTGTAAGGCATCATCAA qRT-PCR 

Stip1 rev GAATTCGATTCAACGGGGT qRT-PCR 

Hsp90ab1 for ACGGACCCTTCTAAGTTGGAC qRT-PCR 

Hsp90ab1 rev TCAGCCRRGGRCATGCCAATG qRT-PCR 

Bfsp2 for GCGTTTTCTAGGACAGCCTC qRT-PCR 

Bfsp2 rev GAACTGGAAACACAACTGCG qRT-PCR 

Ndn for GTGTGGAGATTGGTCAGCCT qRT-PCR 

Ndn rev AAAGAGGTCATGGGCAGCTA qRT-PCR 

Nep for CCTCAGCCGAAACTACAAGG qRT-PCR 

Nep rev TTGCTCTCTCCAGCAAAAGC qRT-PCR 

Gfap for CCTTCTGACACGGATTTGGT qRT-PCR 

Gfap rev ACATCGAGATCGCCACCTAC qRT-PCR 

Ide for CAGGCATCGTTCATCACATT qRT-PCR 

Ide rev ACAGGTTTGCGCAGTTTTTC qRT-PCR 

Bace1 for TGGTAGTAGCGATGCAGGAA qRT-PCR 

Bace1 rev ATGTGGAGATGACCGTAGGC qRT-PCR 

Ece1 for ATTTGTGTTACCCTGGTGGG qRT-PCR 

Ece1 rev ACTTGGAGCTGGAGCCTTAG qRT-PCR 

Ece2 for CCCAGCTCCACCATGTAGTC qRT-PCR 

Ece2 rev TCATCCAGGTGGACCAGTCT qRT-PCR 

Ace for CACTGCTTGATCCTGAAGTCC qRT-PCR 
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Ace rev CGATGTTAGAGAAGCCCACC qRT-PCR 

 

2.4.7 Protein isolation from mouse brain 

Frozen hemispheres were weighed and homogenized in 700 µl TBS buffer (120 mM 

NaCl, 50 mM Tris, pH 8.0 incl. complete protease inhibitor cocktail) per 100 mg tissue 

using a R50D homogenizer at 800 rpm. The resulting solution was centrifuged at 

17,000 x g for 20 min at 4°C (Heraeus Biofuge Stratos). The TBS-soluble protein 

containing supernatant was stored at -80°C. The remaining pellet was dissolved in 800 

μl of 2 % SDS with complete protease inhibitor and sonicated with a Branson Sonifier 

100 at intensity 2 (G. Heinemann Ultraschall und Labortechnik) followed by a 

centrifugation step of 17,000 x g for 20 min at 4°C. The supernatant, which contained 

SDS-soluble proteins, was transferred to a new tube containing 1 μl of Benzonase and 

was rotated at RT for 10 min followed by storage at -80°C. 

2.4.8 Protein concentration determination 

Protein concentrations were determined using the Roti®-Quant universal colorimetric 

protein concentration analysis kit according to the manufacturer’s protocol. Briefly, a 

stock solution of 2 mg/ml albumin fraction V in 0.01 M PBS was diluted (2, 1.5, 1.0, 

0.75, 0.5, 0.25, 0.125 mg/ml and ddH2O) for the generation of a standard curve. 50 µl 

of 1:10 dilutions of protein samples as well as albumin dilutions were applied in 

triplicates into a 96-well plate. Reagent 1 and Reagent 2 were mixed in a ratio of 15:1 

and added to each well in a total volume of 100 µl. The samples were gently mixed on 

a 96-well plate mixer and incubated at 37°C for 30 min in the dark. Protein 

concentrations were measured at 490 nm using a µQuant plate reader (BioTek 

Instruments, Inc.) combined with the MikroWin 2000 software (v4.04, Mikrotek).    

2.4.9 Enzyme-linked immunosorbent assay (ELISA) analysis  

ELISA measurements were performed in collaboration with the group of Sascha 

Weggen in Düsseldorf, Germany. Protein samples were isolated as described in section 

2.4.7. Monoclonal antibody IC16 (1:250 in PBS, pH 7.2), raised against amino acids 1-

15 of the Aβ sequence, served as a capture antibody. To generate standard curves, 
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synthetic Aβ40 and Aβ42 peptides (JPT Peptide Technologies) were used. These Aβ 

peptides were solubilized in DMSO at 10 μg/mL and aliquots were stored at –80°C. 96-

well high-binding microtiter plates were incubated overnight at 4°C with the capture 

antibody. After the capture antibody was removed, freshly diluted brain samples and 

freshly diluted Aβ peptide standards (125-6000 pg/ml in PBS containing 0.05 % 

Tween-20, 1 % BSA) were added. Subsequently, C-terminal detection antibodies 

specific for Aβ40 and Aβ42 labeled with horseradish peroxidase (HRP) using the Pierce 

EZ-LinkTM Plus Activated Peroxidase kit (Thermo Fisher Scientific) were diluted in 

PBS containing 0.05 % Tween-20, 1 % BSA, added to each well, and incubated 

overnight at 4°C. Plates were washed 3 times with PBS containing 0.05 % Tween-20 

and once with PBS. Then 50 μl of TMB ELISA Peroxidase Substrate (Interchim) was 

added and incubated for 1-10 min at RT in the dark. The reaction was stopped by 

adding 50 μl of 2 M H2SO4 and the absorbance was measured using a Paradigm 

microplate reader (Beckman Coulter) at 450 nm.  

2.4.10 Electrochemiluminescence Aβ assay 

For determination of Aβ levels in whole brain hemispheres, an 

electrochemiluminescence total Aβ assay obtained from Meso Scale Discovery was 

used. The Aβ assay is based on the Human (6E10) Aβ40 Ultra-Sensitive kit. Here, the 

Aβ40 detection antibody is replaced by anti-Aβ 4G8 monoclonal antibody. Therefore, 

the total Aβ assay employs monoclonal antibody 6E10 (directed against an amino 

terminal epitope of Aβ) for capture and the monoclonal antibody 4G8 (directed against 

Aβ17-26) for detection.  

The assay was performed according to the protocol of the manufacturer and readout 

on a MSD QuickPLex SQ 120. In brief, a 96-well plate pre-coated with an Aβ antibody 

(6E10) was blocked with 3% BSA under shaking conditions at room temperature for 1 

h. After 3 washing steps with 150 μl/well of 1 X Tris Wash Buffer, 25 μl of 2 mg/ml 

protein lysates or calibrator was added per well and incubated under shaking 

conditions at room temperature for 1 h. After 3 additional washing steps, 25 μl of 

detection antibody solution (4G8) was added and again incubated with shaking for 1 h 

at room temperature in the dark. Upon 3 more washing steps, 150 μl of 1X Read Buffer 

T was added to each well and plate was read on MSD instrument. 
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2.5 Deep sequencing analysis  

Deep sequencing analysis were performed in collaboration with the Microarray and 

Deep-Sequencing Core Facility of the University Medicine Göttingen (UMG). Total RNA 

was extracted from WT and Tg4-42het SH/EE mouse brain hemispheres (n = 6 per 

group) as described in section 2.4.2. 0.5 µg of total RNA was used as start material for 

the library preparation.  The libraries were generated according to the TruSeq mRNA 

Sample Preparation Kits v2 Kit from Illumina (Cat. N°RS-122-2002). For accurate 

quantitation of cDNA libraries a fluorometric based system, the QuantiFluor™ dsDNA 

System from Promega (Mannheim, Germany) was used. The size of final cDNA libraries 

was determined by using the Fragment Analyser from Advanced Bioanalytical. The 

average of libraries was 320 bp. cDNA libraries were amplified and sequenced by using 

the cBot and HiSeq2000 from Illumina (SR; 1x50 bp; ca. 30 Mio reads per sample). 

Sequence images were transformed with Illumina software BaseCaller to bcl files, 

which were demultiplexed to fastq files with CASAVA v1.8.2. Quality check was done 

via fastqc. Read alignment was performed using STAR v2.3.0 to the hg19 reference 

genome. Data were converted and sorted by samtools 0.1.19 and reads per gene were 

counted via htseq version 0.6.1. Data analysis was performed using R/Bioconductor 

(3.0.2/2.12) with DESeq2 and gplots packages. Candidate genes were filtered to a 

minimum of FDR-corrected p-value < 0.05. For functional analysis, gene ontology 

enrichment was tested via R-package goseq. Protein-protein interactions of 

differentially expressed genes were assessed using the Search Tool for the Retrieval of 

Interacting Genes/Proteins database (STRING v10).  

2.6 Immunohistochemistry 

2.6.1 Paraffin embedding of mouse brain 

Following tissue fixation (section 2.2.6), brains were transferred in the TP Automatic 

Tissue Processor (Leica) for dehydration and paraffin immersion. Table 10 displays the 

dehydration protocol:  
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Table 10: Brain tissue dehydration protocol 

Reagent Time 

4% histofix 5 min 

Tap water 30 min 

50%, 60%, 70%, 80%, 90% EtOH 1 h, respectively 

100% EtOH 2 x 1 h 

Xylol  1h 

Melted paraffin 2 x 1 h 

 

The tissue was embedded in paraffin blocks after processing using an EG1140 H 

Embedding Station (Leica). Embedded brains were cut in 4 µm sagittal sections using 

a HM 335E microtome (Thermo Fisher Scientific). Sections were transferred to a 

ddH2O water bath and mounted onto Superfrost® slides (Thermo Fisher Scientific). In 

a 55°C water bath (Medax), sections were defolded and fixed onto slides before a 30 

min incubation at RT followed by an overnight incubation at 37°C before being used 

for immunohistochemistry.  

2.6.2 3, 3’-Diaminobenzidine (DAB) immunohistochemistry 

For DAB staining, sections were deparaffinized in xylol (2 x 5 min) and rehydrated in a 

series of ethanol (10 min 100% EtOH; 5 min 95% EtOH; 3 min 70% EtOH) followed by 

a 1 min incubation in ddH2O. After treatment with 0.3% H2O2 in 0.01 M PBS to block 

endogenous peroxidases, antigen retrieval was achieved by boiling sections in 0.01 M 

citrate buffer pH 6.0 (2 min at 800 W, 8 min at 80 W). After a 10 min cool down, sections 

were dipped in ddH2O for 1 min and permeabilized for 15 min in 0.1% Triton X-100 in 

0.01 M PBS. A washing step in 0.01 M PBS for 1 min was followed by 3 min incubation 

in 88% formic acid to reveal intracellular Aβ. Non-specific binding sites were blocked 

for 1 h by treatment with 10% skim milk and 4% fetal calf serum (FCS) in 0.01 M PBS 

prior to the addition of the primary antibodies. The primary antibodies were diluted to 

the desired concentrations in 10% FCS in 0.01 M PBS (Table 11). After incubation 

overnight in a humid chamber at RT, sections were washed with 0.1% Triton X-100 in 

0.01 M PBS for 15 min followed by a brief rinse in 0.01 M PBS. Then, sections were 

incubated with the respective biotinylated secondary antibodies (Table 12), which 

were diluted in 0.01 M PBS containing 10% FCS, for 1 h. At least 30 min before use, the 
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Avidin-biotin complex (ABC) solution was prepared using the Vectastain Elite ABC Kit 

according to the instructions of the manufacturer and stored at 4°C. Following a 15 min 

washing step in 0.01 M PBS, sections were incubated with 100 µl of ABC solution per 

section for 1.5 h at 37°C. After removal of the ABC solution by washing in 0.01 M PBS 

for additional 15 min, the staining was visualized using DAB as a chromogen. The DAB 

developing solution was prepared by mixing 100 µl DAB stock solution (25 mg/ml DAB 

in 50 mM Tris/HCl) with 5 ml 50 mM Tris/HCl and 2.5 µl 30% H2O2. Sections were 

incubated with the DAB developing solution until the desired staining pattern was 

seen. Then, sections were washed in 0.01 M PBS for 15 min and counterstained with 

hematoxylin for 40 seconds. Sections were dipped in tap water and washed under 

running tap water for 5 min before getting dehydrated using the following incubations: 

1 min 70% EtOH; 5 min 95% EtOH, 10 min 100% EtOH, 2 x 5 min xylol. Each section 

received 3 drops of Roti®-Histokitt mounting medium and a cover slip was applied to 

the slide.       

2.6.3 Free-floating immunohistochemistry 

As DAB immunohistochemistry in paraffin sections is not applicable for the detection 

of antigens with sensitive epitopes, they can be visualized by immunostaining in free-

floating frozen sections. Therefore, one series of frozen sections was carefully 

transferred to a 12-well net system (Costar) providing constant floating of the sections. 

First, sections were hydrated for 15 min in ice-cold 0.01 M PBS before being 

transferred to 0.3% H2O2 in 0.01 M PBS for blocking endogenous peroxidase activity. 

Sections were subsequently washed 3 x 10 min in 0.01 M PBS containing 0.1% Triton 

X-100 for membrane permeabiliziation. Unspecific binding of antibodies was blocked 

by treatment with 0.01 M PBS containing 10% FCS and 4% skim milk powder for 1 h 

at RT prior to overnight incubation in primary antibody diluted in 0.01 M PBS with 

10% FCS. On the next day, sections were washed 3 x 10 min in 0.01 M PBS containing 

0.1% Triton X-100 followed by one washing step in 0.01 M PBS for 1 min. Then, 

sections were incubated with the secondary antibody in 0.01 M PBS containing 10% 

FCS for 2 h at RT followed by three additional washing steps in 0.01 M PBS for 10 min 

each. As a next step, sections were incubated in Avidin-Biotin complex (ABC) solution 

for 1.5 h at RT. After washing, staining was visualized using DAB as described in section 

2.6.2. Sections were incubated in DAB staining solution for 4 min followed by 3 x 10 
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min washing in 0.01 M PBS. After washing, sections were mounted in PBS onto 

Superfrost slides and left to dry overnight. The next day, sections were incubated in 

0.01 M PBS for hydration before being counterstained with filtered hematoxylin for 40 

sec. After shortly being dipped in ddH2O, sections were put under running water for 5 

min. Thereafter, sections were dehydrated in baths of the following EtOH 

concentrations: 1 min 70% EtOH; 5 min 95% EtOH; 10 min 100% EtOH followed by 2 

x 5 min in xylol. As a final step, sections were embedded using Roti® Histokitt mounting 

medium.   

2.6.4 Thioflavin S staining of paraffin sections 

Thioflavin S stains aggregated forms of Aβ, but no monomers or dimers. Paraffin 

embedded sections were deparaffinized and rehydrated as described in section 2.6.2. 

Then, sections were washed 2 x 1 min in distilled water and stained with 1% Thioflavin 

S solution in distilled water for 8 min. Sections were then washed 2 x 1 min in distilled 

water and again immersed for 4 min in the Thioflavin S solution. Followed by 2 x 1 min 

washes in 80% ethanol and 3 x 1 min washes in distilled water, sections were 

counterstained with DAPI and embedded in aqueous fluorescent protecting mounting 

medium. 

2.6.5 Quantification of Aβ plaque load, Thioflavin S and GFAP 

immunoreactivity 

Extracellular Aβ plaque load and Thioflavin S signal was evaluated in cortex (Ctx), 

dentate gyrus (DG), subiculum (Subic) and thalamus (Thal) using an Olympus BX-51 

microscope equipped with a Moticam Pro 282A camera (Motic) and the ImageJ 

software package. Serial images of 100x magnification were captured on three sections 

per mouse which were at least 30 μm apart from each other. Using ImageJ the pictures 

were binarized to 8-bit black and white images and a fixed intensity threshold was 

applied defining the DAB signal or Thioflavin S signal. Measurements were performed 

for a percentaged area covered by DAB or Thioflavin S staining.  

Accordingly, for GFAP staining quantification, images of 200x magnification were 

captured and the astrocyte-covered areas were analysed as described before. The 

relative Aβ plaque load or GFAP immunoreactivity is expressed with 5XFAD-SH mice 

as the reference parameter.   
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2.6.6 Primary Antibodies 

Table 11: Primary Antibodies 

Antibody Host Epitope Working 
dilution 

Manufacturer Usage 

4G8 mouse Aβ18-22 1:10000 Covance IH 

4G8-SULFO-TAG mouse Aβ18-22 1:50 Mesoscale 
Discovery 

MSD 

IC16 mouse Aβ1-15 1:250 Generous gift of 
Sascha Weggen 

ELISA 

BAP-24 mouse Aβ40 1:500 Roche ELISA 

BAP-15 mouse Aβ42 1:500 Roche ELISA 

DCX goat Doublecortin, 
expressed by 

migrating neurons 

1:500 Santa Cruz IH 

GFAP mouse Glial fibrillary acidic 
protein 

1:500 Synaptic 
Systems 

IH 

NEP mouse Neprilysin 1:250 Santa Cruz IH 

 

2.6.7 Secondary Antibodies  

Table 12: Secondary Antibodies 

Antibody Host Conjugate Working 
dilution 

Manufacturer Usage 

anti-mouse rabbit biotinylated 1:250 Dako IH 

anti-goat rabbit biotinylated 1:250 Dako IH 

 

2.7 Quantification of neuron numbers 

2.7.1 Sample preparation 

For neuronal stereology, fixed frozen left brain hemispheres were cut into 10 series of 

30 µm thick coronal sections using a CM1850 UV cryostat (Leica). Every 10th section 

was systematically sampled and stored at -80°C until further use. One brain series was 

transferred into ice-cold 0.01M PBS, carefully mounted onto Superfrost® slides and 

dried overnight at RT. Sections were stained with cresyl violet and used for 

stereological analysis.  
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2.7.2 Cresyl violet staining 

Sections were treated 2 x 10 min in work solution A followed by 20 min in work 

solution B and again 2 x 10 min in work solution A for delipidation. As a next step, 

sections were stained twice for 8 min in filtered cresyl violet staining solution. After 

washing, sections were dehydrated by incubating them 3 x 10 min in 100% EtOH, 10 

min in isopropanol and 2 x 5 min in xylol. Slides were mounted with 5 drops of Roti®-

Histokitt mounting medium and a cover slip was applied to the slide. 
  

Work solution A: 13.61 g Natrium Acetate Trihydrate was diluted in 100 ml ddH2O to 

produce a 1 M Natrium Acetate solution. 40 ml of 1 M Natrium Acetate solution was 

mixed with 9.6 ml 100% Acetic acid and the volume was adjusted to 1 l with ddH2O   
 

Work solution B: 2 ml Triton X-100 was dissolved in 10 ml ddH2O. 2.5 ml of this 

solution was mixed with 50 ml ddH2O and 150 ml 100% EtOH. 
 

Cresyl violet staining solution: 0.1 g cresyl violet was added to 1 l work solution A and 

stirred overnight under light protection.  

2.7.3 Stereological analysis 

2.7.3.1 Quantification of total neuron numbers in CA1 area and dentate gyrus 

of the hippocampus 

Design-based stereological analysis were performed on cresyl violet stained brain 

sections to quantify the neuron numbers in the CA1 pyramidal cell layer and the 

subgranular cell layer of the dentate gyrus in an unbiased manner. Therefore, a BX51 

stereology work station (Olympus) with a motorized specimen stage for automatic 

sampling and the Stereo Investigator 7 software (MBF Bioscience) were used. The 

parameters used for stereological analysis of neurons in the CA1 and dentate gyrus are 

listed in Table 13. 
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Table 13: Parameters for stereological analysis of CA1 and dentate gyrus neuron numbers 

Parameter CA1 Dentate 
gyrus 

Sampling Grid (x) (µm) 49 133 

Sampling Grid (y) (µm) 105 75 

Sampling Grid Area (xy) (µm2) 5145 9975 

Counting Frame Width (X) 
(µm) 

14 14 

Counting Frame Height (Y) 
(µm) 

14 14 

Counting Frame Area (XY) 
(µm2) 

196 196 

asf 26.25 50.9 

ssf 10 10 

Z (µm) 5 5 

 

The CA1 area of the hippocampus or the granular cell layer of the dentate gyrus were 

delineated at a low magnification (40x), respectively (CA1: Bregma -1.22 to -3.80 mm; 

DG: Bregma -1.34 to -3.80 mm (Franklin and Paxinos, 2012) (Figure 10). Neuronal 

nuclei were sampled randomly at a high magnification (100x) using optical dissector 

probes, and the total number of neurons was subsequently estimated by the optical 

fractionator method using a 2 µm top guard zone. On every grid site, the section 

thickness was measured with a 5 µm dissector height (Z). The number of neurons was 

estimated using the following formulas: 
 

 P = 𝑎𝑠𝑓 𝑥 𝑠𝑠𝑓 𝑥 𝑡𝑠𝑓 

 

 N = ∑ (𝑃 𝑥 𝑄)𝑖𝑛
𝑖=1  

 

Where: 

asf = area sampling fraction (xy/XY) 

ssf = section sampling fraction 

tsf = thickness sampling fraction (T/Z) 

P = number of neurons 

Q = total markers counted 
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Figure 10: Schematic representation of hippocampal counting areas. (A) The CA1 region (outlined 
in red) was counted from Bregma -1.22 mm to -3.80 mm. (B) The granule cell layer of the dentate gyrus 
was counted from Bregma 1.34 mm to -3.80 mm. The pictures are modified from (Franklin and Paxinos, 
2012). 

The number of doublecortin (DCX)-positive neurons within the subgranular zone 

(SGZ) of the dentate gyrus was counted using the Meander Scan platform of the Stereo 

Investigator 7 software. Sections were obtained by systematically collecting every 10th 

30 µm thick coronal frozen section. Therefore, the adult neurogenesis rate was 

obtained by multiplying the counted number of DCX-positive neurons by a factor 10.   

2.7.3.2 Estimation of volume of CA1 area and dentate gyrus of the hippocampus 

To estimate the volume of the CA1 pyramidal cell layer and the granular cell layer of 

the dentate gyrus, the Cavalieri principle was used (Rosen and Harry, 1990). The 

formula used to calculate the volume is the following: 

  

A

-1.22

-3.80

-2.54

-1.94
B

-1.34

-3.80

-3.16

-2.06
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V = 𝑑 (∑(𝑦𝑖)) − (t)

𝑛

𝑖=1

𝑦𝑚𝑎𝑥 

Where: 

V = Cavalieri’s estimator of volume  

d = distance between analysed sections (d = 300 µm) 

yi = cross-sectional area of the i-th section  

n = total number of sections 

ymax = maximal value of y (maximum area) 

t = thickness of ymax section 

2.8 Statistical analysis 

Details of statistical analysis are given in the respective results section and in the figure 

legends. Differences between groups were tested with unpaired t-test, paired t-test, 

one-way analysis of variance (ANOVA) followed by Bonferroni multiple 

comparison/unpaired t-test or two-way ANOVA followed by Bonferroni multiple 

comparison. Survival data were analysed using the log-rank test. Significance levels 

were given as follows: ***p < 0.001; **p < 0.01; *p < 0.05. The number of animals used 

for behavioural experiments as well as sample sizes used for biochemical or 

stereological analysis are given in the figure legends (n). All data were given as means 

± standard error of the mean (SEM). All statistics were performed using GraphPad 

Prism version 5.04 for Windows (GraphPad Software, San Diego, CA, USA).    
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3 RESULTS 

3.1 PROJECT I: The effect of long-term environmental enrichment 

and physical activity on the pathology of Tg4-42 and 5XFAD 

mice 

Wild-type (WT), Tg4-42het and 5XFAD mice were randomly assigned to either standard 

housing (SH) or environmental enriched (EE) housing conditions at an age of 1 month 

for a duration of 11 months. At the end of either housing paradigm, mice were 

subjected to behavioural testing and sacrificed for further biochemical and/or 

stereological analysis (Figure 11).  

 

 

Figure 11: Housing conditions and experimental design. (A) Exemplary pictures of standard housing 
(SH) and environmental enrichment (EE) cages used for the study. Mice were housed in groups of 4-5. 
EE cages were equipped with colourful toys, tunnels, climbing apparatuses and three different running 
wheels. The environment was modified and rearranged completely once a week. (B) After weaning, 
female wild-type, Tg4-42het and 5XFAD mice were randomly assigned to either SH or EE housing 
conditions for 11 months. With 12 months of age, mice were behaviourally analysed followed by sacrifice 
and tissue collection.  
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3.1.1 Part I: Enriched living conditions and physical activity delays 

hippocampal neurodegeneration and rescues memory deficits in the 

Tg4-42 mouse model of Alzheimer’s disease 

3.1.1.1 The impact of environmental enrichment and voluntary exercise on the 

sensory-motor performance of Tg4-42het mice 

In order to examine the effect of enriched housing combined with voluntary exercise 

on the sensory-motor performance of Tg4-42het mice, animals were subjected to 

different motor tasks. In the balance beam test, no significant difference was detected 

between WT SH and Tg4-42het SH mice. However, Tg4-42het EE mice performed 

significantly better than Tg4-42het SH mice (One-way ANOVA, p < 0.01). No difference 

in the proportion of mice remaining on the beam or reaching the escape platform was 

noticed between WT SH and WT EE mice (Figure 12A).  

In the string suspension task, standard housed Tg4-42het displayed significant 

impairments when compared to WT SH controls (One-way ANOVA, p < 0.05). This 

phenotype was completely rescued after 11 months of enriched housing as Tg4-42het 

EE mice showed significantly higher scores compared to sedentary controls (One-way 

ANOVA, p < 0.01). Housing conditions did not affect the performance of WT animals in 

the string suspension task (Figure 12B). 

Typical phases of motor skill learning as well as motor coordination and balance were 

assessed in the rotarod task. Over eight trials in two days, WT SH, Tg4-42het SH and EE 

mice improved their ability to stay on the rotarod over each trial. No differences in the 

rotarod performance could be determined between WT SH and Tg4-42het SH mice. 

However, enriched transgenic mice showed a significantly better performance on the 

rotarod compared to standard housed Tg4-42het mice as demonstrated by overall 

higher latencies to fall (Two-way repeated measures ANOVA, p < 0.05, Figure 12C). No 

WT EE mice were tested in the rotarod task. 
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Figure 12: Effects of EE on sensory-motor performance of WT and Tg4-42het mice. (A) Tg4-42het SH 
mice and WT SH controls displayed a comparable performance in the balance beam test. However, Tg4-
42het EE mice stayed significantly longer on the beam when compared to Tg4-42het SH mice. No such 
improvement could be detected in enriched housed WT mice compared to sedentary controls. (B) Tg4-
42het SH mice performed significantly worse than WT SH mice in the string suspension test. This 
phenotype could be completely rescued upon EE with Tg4-42het EE animals performing at WT levels. No 
differences in string suspension performance were detected between WT SH and EE mice. (C)  In the 
rotarod test, Tg4-42het EE showed significantly higher latencies to fall compared to Tg4-42het SH mice. 
No differences were seen between WT controls and Tg4-42het SH animals. (A) and (B): One-way ANOVA 
followed by Bonferroni multiple comparisons. (C): Two-way repeated measures ANOVA. **p < 0.01; *p 
< 0.05. All data were given as means ± standard error of the mean (SEM). n = 7-16 per group.   

3.1.1.2 Enriched environment and voluntary exercise prevent spatial reference 

memory deficits in Tg4-42het mice 

12-month-old Tg4-42het mice display severe spatial reference memory deficits (Bouter 

et al., 2013). To analyse whether long-term environmental enrichment in combination 

with voluntary exercise leads to an amelioration of these behavioural deficits, the 

Morris water maze (MWM) test was performed. WT SH and EE as well as Tg4-42het SH 

and EE mice showed progressively decreased escape latencies over three days of cued 

training, which serves as an initial control experiment to rule out that sensory or motor 
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deficits bias the interpretation of the MWM result. However, Tg4-42het SH mice 

performed significantly worse than WT SH controls during the cued training as shown 

by overall higher escape latencies (Two-way repeated measures ANOVA, p = 0.0475, 

Figure 13A). All groups showed comparable swimming speeds during the whole cued 

training phase (Figure 13C).  

In the following acquisition training phase, no difference in spatial learning could be 

detected between standard housed WT and Tg4-42het mice. However, enriched housed 

WT and Tg4-42het mice displayed significantly shorter escape latencies over the whole 

5-day training period compared to their sedentary controls, respectively. This 

indicates improved spatial learning upon prolonged enrichment and physical activity 

(Two-way repeated measures ANOVA, p < 0.0199 (WT) and p < 0.0208 (Tg4-42het), 

Figure 13B). Again, no differences in swimming speed were noted during the 

acquisition training period between all groups analysed (Figure 13D).  

During the probe trial, WT SH and EE mice showed a clear, significant preference for 

the target quadrant. Standard housed Tg4-42het mice displayed no significant 

preference for the target quadrant demonstrating severe spatial reference memory 

deficits. This phenotype could be completely rescued by long-term physical and 

cognitive stimulation as Tg4-42het mice maintained under enriched conditions showed 

a clear preservation of spatial reference memory demonstrated by their target 

quadrant preference (Figure 13E).  The swimming speed was comparable between WT 

and Tg4-42het SH/EE mice in the probe trial, indicating that altered motor abilities 

could not account for the observed results (Figure 13F). Representative occupancy 

plots of all groups revealed that WT mice and enriched housed Tg4-42het mice focused 

their search on the initial platform location during the probe trial while sedentary 

transgenic animals visited the quadrants randomly (Figure 13E). 
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Figure 13: Impaired spatial reference memory in Tg4-42het mice is restored upon EE housing. (A) 
WT SH and EE as well as Tg4-42het SH and EE mice showed decreased escape latencies over the three 
days of cued training. However, Tg4-42het SH mice displayed a significantly poorer performance than 
WT SH mice as shown by overall higher escape latencies during the entire duration of the cued training. 
(B) Similar to A, mice of all groups showed progressively reduced escape latencies over the five days of 
acquisition training. WT EE and Tg4-42het EE mice displayed an improved spatial learning performance 
compared to their sedentary control groups, respectively, as seen by lower escape latencies over the 
whole training period. (C, D) No differences in swimming speed were observed between WT and Tg4-
42het SH/EE mice in both cued and acquisition training. (E) Tg4-42het SH mice showed no preference for 
any of the quadrants during the probe trial. WT SH and EE as well as Tg4-42het EE mice displayed an 
intact spatial reference memory as they spent significantly more time in the target quadrant (T) 
compared to all the other quadrants (L, R, O). The occupancy plots indicate exemplarily the averaged 
swimming traces of WT and Tg4-42het SH/EE mice during the probe trial. (F) During the probe trial, all 
groups analysed showed comparable swimming speeds. (A-D): Two-way repeated measures ANOVA. (E, 
F): One-way ANOVA followed by Bonferroni multiple comparisons. ***p < 0.001; **p < 0.01; *p < 0.05. 
All data were given as means ± standard error of the mean (SEM). n = 7-16 per group. L = Left, R = Right, 
O = Opposite.   
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3.1.1.3 Enriched environment combined with physical activity restores 

recognition memory in Tg4-42het mice 

The novel object recognition (NOR) task was used to measure object recognition 

memory and preference for novelty in standard and enriched housed WT and Tg4-42het 

mice (Silvers et al., 2007). On the exploration day, WT and Tg4-42het SH/EE spent an 

equal amount of time with the two presented identical objects (Figure 14A). When 

tested for recognition memory 24 h later, standard housed WT as well as enriched 

housed WT and Tg4-42het mice spent significantly more time with the novel object (N) 

compared to the familiar one (F), indicating intact object recognition memory (t-test, p 

< 0.001, respectively). Tg4-42het SH mice did not show a preference for any of the 

objects, indicating recognition memory deficits (Figure 14B). 

 

 

Figure 14: The impact of EE and physical activity on recognition memory performance. (A) The 
novel object recognition (NOR) task was used to test recognition memory. During the exploration phase 
on day one, SH and EE WT and Tg4-42het mice spent an equal amount of time with each of the similar 
objects 1 and 2 (O1, O2). (B) During the test trial, WT SH as well as enriched housed WT and Tg4-42het 
mice spent significantly more time with the novel object (N) while sedentary controls spent an equal 
amount of time with the familiar (F) and novel object. Paired t-test. *p < 0.05; ***p < 0.001. All data were 
given as means ± standard error of the mean (SEM). n = 7-16 per group.      
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3.1.1.4 The effect of environmental enrichment and voluntary exercise on 

hippocampal neuron numbers and volume in Tg4-42het mice 

Heterozygous 12-month-old Tg4-42 mice display a massive neuron loss in the CA1 

layer of the hippocampus compared to wild-type controls (Bouter et al., 2013). In order 

to analyse whether lifelong cognitive and physical stimulation positively impacts on 

CA1 neuron numbers of Tg4-42het mice, unbiased design-based stereological analyses 

were conducted. Therefore, the hippocampal CA1 pyramidal cell layer was quantified 

from Bregma -1.22 to -3.80 mm. As previously shown, stereological analysis revealed 

a 51.1% loss in CA1 neuron numbers between WT SH controls (mean = 293319.88 ± 

34662) and Tg4-42het SH mice (mean = 146346.43 ± 4655) (One-way ANOVA, p < 

0.001). However, Tg4-42het mice maintained under enriched conditions with 

permanent access to running wheels showed a 12.8% higher number of CA1 pyramidal 

neurons (mean = 165123.88 ± 3332) compared to Tg4-42het SH mice (t-test, p < 0.01), 

indicating reduced CA1  neuronal death upon EE. Housing condition did not affect the 

number of CA1 neurons in WT animals (WT EE: mean = 291750.77 ± 21897) (Figure 

15A). 

Analysis of the CA1 volume did not show significant differences related to housing 

conditions in Tg4-42het mice (Tg4-42het SH: mean = 2.412 × 108 ± 1.239 × 107 µm3; Tg4-

42het EE: mean = 2.345 × 108  ± 1.189 × 107   µm3). In contrast, enriched housed WT 

mice (mean = 3.274 × 108 ± 3.252 × 107 µm3) showed a significantly higher CA1 volume 

compared to sedentary controls (mean = 2.541 × 108 ± 1.393 × 107 µm3) (One-way 

ANOVA, p < 0.001). Despite the massive neuron loss in Tg4-42het SH mice, no CA1 

volume difference could be detected between WT SH and Tg4-42het SH mice (Figure 

15B).   

In order to investigate whether long-term effects of an EE paradigm and voluntary 

exercise influence the total neuron number of the granular cell layer of the dentate 

gyrus (DG), stereological analysis were performed in this region from Bregma -1.34 to 

-3.88 mm. However, no changes in DG granule cells could be revealed between any of 

the analysed groups (WT SH: mean = 451001 ± 61864; WT EE: mean = 517112 ± 

30443; Tg4-42het SH: mean = 509158.86 ± 16460; Tg4-42het EE mice: mean = 

527183.84 ± 22760, Figure 15C).  

Analysis of the DG volume showed no difference between Tg4-42het SH (mean = 5.376 

× 108 ± 5.335 × 107 µm3) and Tg4-42het EE mice (mean = 5.780 × 108 ± 4.778 × 107 µm3). 
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However, WT mice displayed a higher dentate gyrus volume upon EE (mean = 5.434× 

108 ± 5.161 × 107 µm3) compared to standard housed controls (mean = 4.010 × 108 ± 

6.742 × 107) (One-way ANOVA, p < 0.001). No dentate gyrus volume difference was 

seen between standard housed WT and Tg4-42het mice (Figure 15D). 

 

 

Figure 15: The effect of EE on hippocampal neuron numbers and volume. (A) Design-based 
stereological analysis revealed significantly reduced CA1 neuron numbers in Tg4-42het SH mice 
compared to WT SH littermates (-51.1%). This massive neuron loss was reduced upon enriched housing 
as Tg4-42het EE mice showed significantly higher CA1 neuron numbers (+12.8%) when compared to SH 
littermates. Housing condition had no effect on CA1 neuron numbers in WT mice.  (B) No differences in 
CA1 volume could be discovered between SH and EE Tg4-42het mice. In contrast, WT EE mice displayed 
a significantly higher CA1 volume than sedentary WT animals. (C) Stereological analysis revealed no 
differences in dentate gyrus (DG) granule cells between WT and Tg4-42het SH/EE mice. (D) No 
differences in DG volume could be discovered between SH and EE Tg4-42het mice. WT EE mice showed 
a significantly higher DG volume than WT SH mice. One-way ANOVA followed by Bonferroni multiple 
comparisons. (A) Tg4-42het SH vs. Tg4-42het EE: One-way ANOVA followed by unpaired t-test. **p < 0.01; 
***p < 0.001. All data were given as means ± standard error of the mean (SEM). n = 7-8.       
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3.1.1.5 Enriched environment and physical activity do not affect subgranular 

adult neurogenesis in Tg4-42het mice 

Frozen brain sections were stained with an antibody directed against Doublecortin 

(DCX) (Figure 16A). DCX is a marker protein being expressed in new-born, immature 

neurons. The quantification of DCX+ neurons has been shown to accurately measure 

modulations in the rate of adult neurogenesis (Couillard-Despres et al., 2005). The 

number of new-born neurons in the subgranular zone (SGZ) of the DG was significantly 

reduced in 12-month-old Tg4-42het SH mice in comparison to WT SH mice (-39.09%, 

WT SH: mean = 985 ± 195.4; Tg4-42het SH: mean = 600 ± 148.4) (One-way ANOVA, p < 

0.01). Despite higher levels of physical activity and environmental diversity, enriched 

housed Tg4-42het mice still showed very low levels of adult neurogenesis, which were 

comparable to Tg4-42het SH mice. Also WT mice did not show increased DCX+ neuron 

numbers upon enriched living conditions with 12 month of age (Figure 16B). 

 

 

Figure 16: The impact of EE on adult neurogenesis in WT and Tg4-42het mice. (A, B) New-born 
doublecortin (DCX)-positive neurons were stained and quantified in the subgranular zone (SGZ) of the 
DG. 12-month-old Tg4-42het SH showed significantly reduced neurogenesis levels compared to standard 
housed WT mice. This marginal adult neurogenesis could not be restored upon enriched living 
conditions at that age in Tg4-42het mice.  Housing condition also had no effect on adult neurogenesis in 
WT animals. (B): One-way ANOVA followed by Bonferroni multiple comparisons. **p < 0.01. All data 
were given as means ± standard error of the mean (SEM). n = 7-8. Scale bar: 100 µm. 
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3.1.1.6 The effect of long-term cognitive and physical stimulation on Aβ brain 

levels in Tg4-42het mice 

Tg4-42 mice display strong intraneuronal Aβ immunoreactivity predominantly in the 

CA1 region of the hippocampus starting with 2 months of age. Due to massive neuron 

loss, CA1 Aβ immunoreactivity is declining during aging, showing mainly larger, 

extracellular aggregates by the age of 12 months (Wittnam, 2012). In order to evaluate 

if enriched living conditions combined with voluntary exercise are accompanied by 

decreased levels of Aβ4-42 in Tg4-42het mice, immunohistochemical stainings using a 

pan-Aβ antibody (4G8) were performed in enriched and sedentary animals. 

Qualitatively, no differences in Aβ immunoreactivity could be determined between 

Tg4-42het SH and EE mice (Figure 17A).  

To further confirm this result quantitatively, brain Aβ levels of Tg4-42het SH and EE 

mice were measured using an electrochemiluminescence Aβ assay. However, no 

significant differences in Aβ levels could be detected between both groups (Tg4-42het 

SH: mean = 19.69 ± 0.69 pg/ml; Tg4-42het EE: mean = 21.74 ± 1.05 pg/ml, Figure 17B).  

 

 

Figure 17: The effect of EE and physical activity on Aβ brain levels in Tg4-42het mice. (A) 
Immunohistochemical stainings using a pan-Aβ antibody (4G8) revealed that Tg4-42het SH and EE mice 
showed a comparable Aβ staining pattern in the CA1 region of the hippocampus. (B) Using an 
electrochemiluminescence assay, Aβ levels of whole brain hemispheres were quantified. Tg4-42het SH 
and EE displayed equal amounts of the peptide. (B): Unpaired t-test. All data were given as means ± 
standard error of the mean (SEM). n = 6 per group. Scale bar: 200 µm.    

3.1.1.7 Housing under enriched conditions and physical activity changes the 

gene expression profile of WT and Tg4-42het mice 
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standard and enriched housed animals. In order to demonstrate gene expression 

changes, volcano plots were created for both WT and Tg4-42het mice (Figure 18A, C). 

Each dot represents one gene that is significantly differentially regulated in WT or Tg4-

42het EE when compared to SH mice, respectively. In 12-month-old WT EE mice, 375 

genes were significantly (p < 0.05) differentially expressed when compared to SH 

controls, with 296 genes being upregulated and 79 genes being downregulated (Figure 

18A). In Tg4-42het EE mice, 155 genes were found to be significantly differentially 

expressed in comparison to their sedentary counterparts, with 80 genes being 

upregulated and 75 genes being downregulated (Figure 18C). To validate deep 

sequencing results, several differentially expressed genes (DEGs) either up- or 

downregulated were randomly selected and verified by qRT-PCR analysis. For all 

selected genes, the qRT-PCR analysis confirmed the expression levels of the deep 

sequencing results in WT and Tg4-42het mice (Figure 18B, D). A gene ontology (GO) 

analysis of the upregulated genes in WT EE mice using the String 10 software package 

revealed a significant association with several GO terms. Among those, the biological 

processes “cellular macromolecule metabolic process” (p = 1.55E-5), “gene expression” 

(p = 3.40E-4), “negative regulation of apoptotic process” (p = 5.94E-3) and “cellular 

response to stress” (p = 4.70E-2) were present. A GO analysis of the upregulated genes 

in Tg4-42het EE animals indicated an association with the biological processes “protein 

folding” (p = 7.750E-6), “response to stress” (p = 5.689E-3) and “negative regulation of 

inclusion body assembly” (p = 1.830E-2). A KEGG pathway analysis of upregulated 

genes in WT EE mice showed a significant association with several pathways like “basal 

transcription factors” (p = 9.48E-3), “glutamatergic synapse” (p = 2.04E-2) and “protein 

processing in endoplasmatic reticulum” (p = 3.49E-2). In Tg4-42het EE mice, a KEGG 

pathway analysis revealed only one significant pathway association for “protein 

processing in endoplasmatic reticulum” (p = 3.15E-9). Interestingly, 15 genes were 

identified to be upregulated upon EE in both WT and Tg4-42het mice indicating a 

common pathway associated with long-term cognitive and physical stimulation 

(Figure 18E). A GO analysis of this common subset of genes exhibited a significant 

association with the biological process “protein folding” (p = 4.73E-6) and a significant 

pathway association with “protein processing in endoplasmatic reticulum” (p = 1.55E-

5, Figure 18F). GO analysis of downregulated genes in WT EE mice showed no 

significant association with any biological processes. A KEGG pathway analysis 
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revealed a significant association with the pathway “ECM-receptor interaction” (p = 

3.11E-3). In Tg4-42het EE mice, downregulated genes showed a significant association 

with the biological process “response to stimulus” (p = 4.97E-3). However, no pathway 

was significantly associated with the downregulated genes in Tg4-42het mice upon 

enriched living conditions. 8 genes were found to be downregulated in both WT EE and 

Tg4-42het EE mice. These genes however could not be assigned to any significant 

association with biological processes or pathways.  
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Figure 18: Gene expression profile changes upon long-term EE in WT and Tg4-42het mice. (A, C) 
Volcano plots of significantly differentially expressed genes (DEGs) in 12-month-old WT (A) and Tg4-
42het mice (C) upon prolonged enriched living conditions. The x-axis represents the log2-fold change, the 
y-axis the p-value. White dots indicate downregulated genes, grey dots indicate upregulated genes. (B, 
D) To validate deep sequencing data, qRT-PCRs were performed in WT and Tg4-42het mice for randomly 
selected DEGs. Normalization was performed against the house-keeping gene actin. (E) Venn diagram 
analysis for genes that were significantly upregulated upon EE in both WT and Tg4-42het mice.  (F) Using 
the STRING10 software, a protein-protein interaction network of the 15 genes found to be induced upon 
EE in both WT and Tg4-42het mice was created. A significant pathway association with “protein 
processing in endoplasmatic reticulum” was found. The involved proteins are highlighted in red. (B, D): 
Unpaired t-test. ***p < 0.001;**p < 0.01; *p < 0.05. All data were given as means ± standard error of the 
mean (SEM). n = 6 per group.       
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The most strongly downregulated gene upon EE in Tg4-42het mice was Necdin (NDN). 

In order to analyse whether NDN levels per se are changed under pathological 

conditions, qRT-PCR analyses were performed with WT SH/EE and Tg4-42het SH/EE 

mice. NDN expression levels were significantly increased in Tg4-42het mice when 

compared to healthy control animals (One-way ANOVA, p < 0.001). Upon enriched 

living conditions, however, NDN levels significantly decreased again in Tg4-42het mice 

(One-way ANOVA, p < 0.01). In WT animals, housing condition had no influence on 

Necdin levels (Figure 19). 

 
Figure 19: Necdin expression analysis. Tg4-42het mice display significantly increased Necdin 
expression levels when compared to healthy WT controls. However, upon enriched living conditions, 
levels drop again to baseline. In WT mice, housing condition has no effect on Necdin expression. 
Normalization was performed against the house-keeping gene actin. One-way ANOVA followed by 
Bonferroni multiple comparisons. ***p < 0.001; **p < 0.01. All data were given as means ± standard error 
of the mean (SEM). n = 6 per group.   

3.1.1.8 The effect of physical activity alone on the pathology of Tg4-42hom mice 

As the enriched environment paradigm in combination with voluntary exercise did not 

allow predictions about running wheel use of individual animals, an additional control 
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show a fast AD pathology progression. At 2 months of age, no difference in the number 

of neurons can be observed between Tg4-42hom mice and wild-type littermates 
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running wheel recordings were performed for 3.5 months. With 5.5 months of age, Tg4-

42hom mice were analysed (Figure 20A).  

Tg4-42hom mice with continuous access to running wheels showed increasing weekly 

running distances which reached a plateau from week seven on and corresponded to 

~30 km/week at the end of the trial (Figure 20B).  

In order to assess if physical activity alone is sufficient to ameliorate the neuronal cell 

death in Tg4-42 mice, stereological analysis of the CA1 pyramidal cell layer was 

performed. Single-housed Tg4-42hom mice subjected to free wheel conditions revealed 

a 16.5% increase in CA1 neuron numbers (mean = 146867.857 ± 3202) compared to 

the blocked wheel group (mean = 126120.238 ± 3422) (t-test, p < 0.001, Figure 20C). 

However, no significant differences in CA1 volume could be detected between both 

groups (Blocked wheel: mean = 1.784 × 108 ± 6.128 × 106 µm3; Free wheel: mean = 

1.945 × 108 ± 5.742 × 106 µm3) (Figure 20D). 

Due to an unexpected tail hyperflexion phenotype, which broke experimenter’s 

blindness and precluded MWM testing due to swimming incapability, the stereological 

data of this group could not be backed-up with behavioural data (Figure 20E).   
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Figure 20: The effect of physical activity on hippocampal neurodegeneration of Tg4-42hom mice. 
(A) Experimental design. 2-month-old Tg4-42hom mice were randomly assigned to single cages equipped 
with either a blocked or a free running wheel, which was connected to a rotation sensor. With 5.5 months 
of age, mice were analysed. (B) Overview of average weekly running distance (km). (C) Tg4-42hom mice 
with continuous access to a free running wheel displayed 16.5% increased CA1 pyramidal neuron 
numbers compared to mice housed in cages with a blocked wheel. (D) However, no significant CA1 
volume difference could be detected between active and inactive mice. (E) Exemplary picture of tail 
hyperflexion due to excessive running wheel usage. (C, D): Unpaired t-test. ***p < 0.001. All data were 
given as means ± standard error of the mean (SEM). n = 9 per group.  
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3.1.2 Part II: Lifelong environmental enrichment in combination with 

voluntary exercise has limited effects on the pathology of 5XFAD mice 

3.1.2.1 The effect of environmental enrichment on the physiological status and 

the sensory-motor phenotype of 5XFAD mice 

To examine if enriched housing conditions and voluntary exercise have an impact on 

the survival rate of WT and 5XFAD SH/EE mice, a survival analysis was performed.  All 

WT SH and EE mice reached the 12-month time point. 5XFAD SH mice displayed a 

premature death phenotype compared to WT SH controls as only 70% survived the 

entire paradigm (Log-rank test, p = 0.03). However, housing condition had no 

significant effect on the survival rate of 5XFAD mice (Figure 21A). 

To assess if the enriched environment has an impact on the physiological status of the 

animals, their body weight was determined at the end of each paradigm. As previously 

shown, 12-month-old 5XFAD SH mice exhibited a drastically reduced body weight 

when compared to WT SH littermates (One-way ANOVA, p < 0.001). The environmental 

enrichment in combination with long-term voluntary exercise had no influence on the 

body weight of WT or 5XFAD mice (Figure 21B).  

12-month-old 5XFAD mice show significant impairments in sensory-motor abilities 

compared to WT controls (Jawhar et al., 2012). Therefore, after 11 months spent either 

in SH or EE living conditions, the motor performance of 5XFAD mice was analysed 

using different tasks. 5XFAD SH mice performed significantly worse than age-matched 

WT SH mice in the balance beam task (One-way ANOVA, p < 0.001). This phenotype 

could not be rescued upon prolonged enriched housing. However, a significantly higher 

proportion of mice remaining on the beam or reaching the escape platform was noticed 

in WT EE mice compared to their sedentary littermates (One-way ANOVA, p < 0.01, 

Figure 21C).  

Housing conditions also had no effect on the performance of 5XFAD mice in the string 

suspension task. Both standard and enriched housed 5XFAD mice performed poorly in 

this task when compared to WT SH mice (One-way ANOVA, p < 0.001 respectively). EE 

had no effect on the string suspension performance of WT animals (Figure 21D). 

In the rotarod test, the typical phases of motor skill learning and as well as motor 

coordination and balance are assessed. With 12 months of age, 5XFAD SH mice showed 

a worsened rotarod performance when compared to WT SH controls (two-way 
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repeated measures ANOVA, p < 0.01). This phenotype could be reversed upon enriched 

living conditions in 5XFAD EE mice as shown by overall higher latencies to fall over all 

trials (two-way ANOVA, p < 0.01, Figure 21E).  

  

Figure 21: The effect of EE and physical activity on the survival, body weight and sensory-motor 
performance of 5XFAD mice. (A) Kaplan-Meier survival curve of WT and 5XFAD mice housed under 
standard or enriched living conditions. All WT SH and EE mice survived the entire paradigm.5XFAD SH 
mice showed a premature death phenotype when compared to WT SH mice. Enriched housed 5XFAD 
displayed a tendency towards a better survival compared to 5XFAD SH mice which, however, did not 
reach statistical significance (B) Housing conditions had no effect on the significantly reduced body 
weight of 12-month-old 5XFAD mice. (C-E) The combination of EE and physical activity had limited 
effects on the sensory-motor performance of 5XFAD mice. The balance beam (C) and string suspension 
test (D) showed no improvement in enriched housed 5XFAD mice compared to sedentary controls. The 
rotarod test (E) revealed a rescue of the phenotype as 5XFAD EE mice stayed significantly longer on the 
rod when compared to 5XFAD SH mice. (A): Log-rank test. (B-D): One-way ANOVA followed by 
Bonferroni multiple comparisons. (E): Two-way repeated measures ANOVA. **p < 0.01; ***p < 0.001. All 
data were given as means ± standard error of the mean (SEM). n = 7-16 per group.           

3.1.2.2 Environmental enrichment fails to restore decreased anxiety levels and 

spatial working memory deficits in 5XFAD mice 

5XFAD mice show significantly reduced levels of anxiety in comparison to WT mice 

starting at the age of 6 months (Jawhar et al., 2012). To investigate whether this 

phenotype can be modulated by enriched living conditions, the elevated plus maze test 
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was performed. 12-month-old 5XFAD SH mice displayed abnormally low levels of 

anxiety as shown by a significantly higher time spent in open arms compared to WT SH 

mice, which was not influenced by prolonged enriched living conditions (One-way 

ANOVA, p < 0.001 respectively). Housing under enriched conditions did not affect the 

anxiety phenotype of WT animals (Figure 22A). The number of arm entries did not 

differ among the groups, leading to the suggestion that reduced anxiety levels in 5XFAD 

SH and EE mice could not be explained by an overall decreased explorative behaviour 

(Figure 22B).    

To investigate whether the housing condition in combination with physical activity 

effects hippocampus-related spatial working memory, mice were tested in the cross 

maze task. As previously published, 12-month-old 5XFAD SH mice displayed a 

significantly impaired spatial working memory compared to age-matched wild-type 

controls (One-way ANOVA, p < 0.05). Enriched housed 5XFAD animals did not show an 

amelioration in spontaneous alternation behaviour when compared to sedentary 

controls as they still performed significantly worse than WT SH mice (One-way ANOVA, 

p < 0.01). Housing condition also had no effect on spatial working memory in WT 

animals (Figure 22C). Again, all analysed groups showed equal numbers of total arm 

entries indicating that the reduced alternation percentage of transgenic mice was not 

caused by a decrease in overall explorative behaviour (Figure 22D).   
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Figure 22: Anxiety-related behaviour and working memory performance in standard and 
enriched housed 5XFAD mice. (A) 5XFAD exhibited decreased levels of anxiety in the elevated plus 
maze task in both SH and EE housing conditions. Housing condition had no effect on anxiety levels of WT 
animals. (B) Decreased anxiety-related behaviour could not be explained by alterations in explorative 
behaviour, as all groups showed comparable numbers of arm entries. (C) Regarding hippocampus-
related working memory, 5XFAD mice maintained under EE conditions for 11 months showed no 
improvement in spontaneous alternation behaviour measured in the cross maze task. (D) Again, no 
differences in arm entries could be detected between all analysed groups. One-way ANOVA followed by 
Bonferroni multiple comparisons. *p < 0.05; **p < 0.01; ***p < 0.001. All data were given as means ± 
standard error of the mean (SEM). n = 7-16 per group.   

3.1.2.3 Long-term physical and cognitive stimulation does not influence 

amyloid plaque load and Aβ1-42 levels in brains of 5XFAD mice 

The 5XFAD model harbours a robust Aβ plaque pathology in various brain areas at the 

age of 12 months (Oakley et al., 2006). In order to investigate if amyloid deposition is 

affected by enriched living conditions and physical exercise, a plaque load 

quantification was performed in cortex, dentate gyrus, subiculum and thalamus of 
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enriched and sedentary animals. Hence, immunohistochemical stainings using an anti 

Aβ antibody to quantitatively examine Aβ deposition were performed (Figure 23A). 

Brains of 5XFAD SH and EE mice showed a comparable Aβ plaque load in all areas 

analysed (Figure 23B). 

Using mass spectrometric analysis it has been shown that Aβ1-42 is the most dominant 

Aβ species in the brain of 5XFAD mice (Wittnam, 2012). To determine whether housing 

condition and voluntary exercise have an impact on Aβ1-42 levels, ELISA experiments 

were conducted to measure Aβ1-42 contents in TBS-soluble and insoluble (SDS soluble) 

brain fractions. No differences in Aβ1-42 levels could be detected in either fraction 

between sedentary 5XFAD mice and enriched housed littermates (Figure 23C, D) 

(ELISA measurements were performed by Sandra Baches, Department of 

Neuropathology, Heinrich Heine University, Düsseldorf). 

 

Figure 23: Housing condition has no effect on Aβ plaque pathology and Aβ1-42 levels of 5XFAD 
mice. (A, B) Aβ plaque load in the cortex (Ctx), dentate gyrus (DG), subiculum (Subic) and thalamus 
(Thal) was unaffected by living conditions in 12-month-old 5XFAD mice. (C, D) Using ELISA, Aβ1-42 levels 
were quantified in TBS- (C) and SDS-soluble (D) brain fractions of 5XFAD SH and EE mice. No differences 
could be detected in either fraction between the two groups. Unpaired t-test. All data were given as 
means ± standard error of the mean (SEM). (B): n = 5 per group. (C, D): n = 8 per group.  
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3.1.2.4 Housing condition has no impact on the inflammatory phenotype of 

5XFAD mice 

5XFAD mice start to develop amyloid deposits and exhibit neuroinflammation as early 

as 2 months of age (Oakley et al., 2006). To determine whether long-term voluntary 

exercise prevents activation of inflammatory pathways, immunohistochemical 

stainings and subsequent quantifications with the reactive astrocyte marker GFAP 

were performed. No differences in GFAP signal could be detected in cortex, dentate 

gyrus and thalamus between standard and enriched housed 5XFAD mice with 12 

months of age (Figure 24A, B).  

 

Figure 24: Housing condition has no influence on the inflammatory phenotype of 5XFAD mice. (A, 
B) The presence of reactive astrocytes was revealed by immunohistochemical stainings directed against 
the astrocytic marker GFAP and a quantification was performed in the cortex (Ctx), dentate gyrus (DG) 
and thalamus (Thal) of 12-month-old 5XFAD SH and EE mice. Equal levels of astrogliosis were detected 
between the two groups in all brain areas analysed. Unpaired t-test. All data were given as means ± 
standard error of the mean (SEM). n = 5 per group. Scale bar 100 µm.  
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3.1.2.5 The effect of voluntary exercise on gene expression in 5XFAD mice 

To determine the effects of housing conditions on gene expression changes in 12-

month-old 5XFAD mice, qRT-PCR analysis have been conducted (Figure 25). Numerous 

studies have shown that BDNF gene expression is upregulated upon EE, which could 

be confirmed in the present study as 5XFAD EE mice showed significantly higher levels 

of the neurotrophin when compared to sedentary controls (t-test, p < 0.05).  

Proteases known to influence A levels in the brain like neprilysin (NEP), insulin-

degrading enzyme (IDE) and BACE did not show expression level changes upon long-

term environmental enrichment. However, mRNA levels of CRYAB, STIP1, HSPA1B and 

HSP105, which are members of the heat-shock protein family, were significantly 

upregulated in 5XFAD EE mice compared to 5XFAD SH animals (t-test, p < 0.05 and 

0.01, respectively). 

 

 

Figure 25: Gene expression changes in enriched housed 5XFAD mice. qRT-PCR analysis of RNA 
isolated from brain hemispheres revealed significant upregulated levels of BDNF, CRYAB, STIP1, HSPA1B 
and HSP105 in enriched housed 5XFAD mice compared to sedentary controls. Expression levels of NEP, 
IDE and BACE were not changed by housing conditions. Normalization was performed against the house-
keeping gene actin. Unpaired t-test. **p < 0.01; *p < 0.05. All data were given as means ± standard error 
of the mean (SEM). n = 5 per group.    
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3.2 Project II: Neprilysin deficiency alters the neuropathological 

and behavioural phenotype in the 5XFAD mouse model of 

Alzheimer’s disease 

3.2.1 Characterization of 5XFAD/NEP+/- mice 

In order to evaluate the effect of a reduction of the neprilysin (NEP) gene doses, NEP 

mRNA expression levels were analysed in 2.5- and 6-month-old WT, 5XFAD, 

5XFAD/NEP+/-, NEP+/- and NEP-/- animals using qRT-PCR. Interestingly, young 5XFAD 

mice showed significantly reduced NEP levels compared to WT mice (t-test, p < 0.05), 

which were further reduced in 5XFAD/NEP+/- mice (t-test, p < 0.001 compared to WT 

and 5XFAD). NEP+/- mice displayed levels comparable to 5XFAD mice at 2.5 month of 

age (Figure 26A). Neprilysin expression in 6-month-old 5XFAD mice was reduced 

when compared to WT mice, however, without reaching statistical significance. A 

hemizygous NEP knock-out led to a further significant reduction compared to 5XFAD 

mice (t-test, p < 0.05). Compared to WT mice, 5XFAD/NEP+/- showed a drastically 

reduced NEP expression, reaching less than 10% of WT levels (t-test, p < 0.001, Figure 

26B). In 2.5- as well as 6-month-old NEP-/- animals, no neprilysin expression could be 

detected.  

The successful NEP depletion was also confirmed using immunohistochemistry with 

an antibody against NEP. Compared to WT mice, 5XFAD and 5XFAD/NEP+/- mice 

showed a strongly reduced immunoreactivity, which was most prominent in the area 

of the dentate gyrus, with an absent signal in NEP-/- animals (Figure 26C). 
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Figure 26: Neprilysin mRNA and protein levels. (A) qRT-PCR analysis revealed that 5XFAD mice 
displayed significantly reduced neprilysin (NEP) mRNA levels compared to WT mice at 2.5 months of 
age, which were even further decreased in 5XFAD/NEP+/- mice. NEP+/- mice showed comparable NEP 
levels like 5XFAD mice while in NEP-/- animals, expression of the enzyme was not detectable. (B) In 6-
month-old 5XFAD mice, NEP levels were still reduced when compared to WT mice without reaching 
statistical significance. 5XFAD/NEP+/- mice showed drastically reduced NEP levels compared to WT and 
5XFAD mice. Again, no detectable expression of NEP was seen in NEP-/- mice. (C) Immunostaining in the 
hippocampus using an antibody against NEP (56C6, Santa Cruz) showed a clear NEP signal in WT mice, 
a strongly reduced immunoreactivity in 5XFAD and 5XFAD/NEP+/- and an absent signal in NEP-/- mice. 
One-way ANOVA followed by unpaired t-test. *p < 0.05; **p < 0.01; ***p < 0.001. All data were given as 
means ± standard error of the mean (SEM). n = 3-5. Scale bar: 200 µm   
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month-old animals in both tests (data not shown). In the Y-Maze, 6-month-old 5XFAD 

mice displayed alternation rates comparable to WT mice. However, age-matched 

5XFAD/NEP+/- mice performed significantly worse when compared to WT (t-test, p < 

0.01), 5XFAD (t-test, p < 0.001), NEP+/- (t-test, p < 0.01) and NEP-/- (t-test, p < 0.01) 

animals (Figure 27A). The reduced alternation percentage of 5XFAD/NEP+/- mice was 

not due to a decreased explorative behaviour as the number of arm entries did not 

differ among the groups (Figure 27B). 

In the cross maze task, 6-month-old 5XFAD mice showed a tendency towards a reduced 

performance when compared to WT mice (t-test, p < 0.0835). 5XFAD/NEP+/- mice 

displayed alternation rates only reaching chance level (dotted line) being significantly 

different from WT animals (t-test, p < 0.01) or NEP+/- mice (t-test, p < 0.05).  Compared 

to 5XFAD mice, 5XFAD/NEP+/- animals showed a trend towards a reduced performance 

(t-test, p < 0.082, Figure 27C).  Again, the number of total arm entries did not 

significantly differ among the analysed groups in this task (Figure 27D). 
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Figure 27: Spatial working memory performance of 5XFAD mice upon NEP depletion. (A) 5XFAD 
mice showed no impairment in spatial working memory performance at 6 months of age when 
compared to WT controls in the Y-Maze task. However, 5XFAD/NEP+/- mice displayed a reduced working 
memory performance compared to WT, 5XFAD, NEP+/- and NEP-/- mice. (C) In the cross maze task, 
5XFAD mice showed a tendency towards a reduced alternation rate compared to WT mice, which only 
reached significance upon hemizygous NEP depletion. (B, D) The observed impairments of 
5XFAD/NEP+/- mice in the Y- and cross maze task were not due to overall reduced exploratory behaviour 
as shown by equivalent number of arm entries in all groups in both tests. One-way ANOVA followed by 
unpaired t-test. *p < 0.05; **p < 0.01; ***p < 0.001. All data were given as means ± standard error of the 
mean (SEM). n = 3-10. 

3.2.3 Region-specific increase in extracellular Aβ plaque load in aged 

5XFAD/NEP+/- mice 

5XFAD mice display extracellular Aβ deposition in various brain areas starting with 2 

months of age. To analyse whether neprilysin deficiency aggravates Aβ plaque 

pathology, plaque load was quantified in the cortex, dentate gyrus, subiculum, 

thalamus and spinal cord of 6-month-old 5XFAD and 5XFAD/NEP+/- animals using the 
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plaque load could be detected between the two groups. In contrast, 5XFAD/NEP+/- mice 

displayed a significant increase in the overall plaque load in both dentate gyrus (+32%; 

t-test, p < 0.05) and subiculum (+40%; t-test, p < 0.01) when compared to 5XFAD mice 

(Figure 28A, B). Accordingly, plaque load quantification in the cervical spinal cord 

showed a related finding with significantly increased Aβ plaque deposition in 

5XFAD/NEP+/- compared to 5XFAD mice (+74%; t-test, p < 0.05, Figure 28D).  

A fluorescent Thioflavin S staining was performed to analyse extracellular amyloid-β 

deposits with β-sheet structures. However, no statistical differences were detected in 

any of the analysed brain regions between 5XFAD and 5XFAD/NEP+/- mice (Figure 

28C). 

Protein quantification of Aβ1-40 and Aβ1-42 levels in whole brain lysates of 6-month-old 

5XFAD and 5XFAD/NEP+/- mice revealed significantly increased Aβ1-42 levels in the 

TBS-soluble fraction of 5XFAD/NEP+/- animals (t-test, p < 0.05), while Aβ1-40 levels 

where comparable between both groups (Figure 28E). Similar Aβ1-40 and Aβ1-42 levels 

were also detected in the SDS-soluble fraction of 5XFAD and age-matched 

5XFAD/NEP+/- brain lysates (Figure 28F) (ELISA measurements were performed by 

Sandra Baches, Department of Neuropathology, Heinrich Heine University, 

Düsseldorf). 
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Figure 28: Aβ plaque deposition and Aβ1-42 level in 6-month-old 5XFAD and 5XFAD/NEP+/- mice. 
(A, B) Immunohistochemical staining against Aβ (A) using a pan-Aβ antibody (4G8, detecting A17-14) 
and quantification (B). An increased amyloid plaque pathology was detected in the dentate gyrus (DG) 
and subiculum (Subic) in 5XFAD/NEP+/- mice compared to 5XFAD controls. No changes were seen in 
cortex (Ctx) and thalamus (Thal). (C) Quantification of Thioflavin-S-positive deposits showed no 
difference between the two groups in all brain areas analysed. (D) Staining with the 4G8 antibody 
against Aβ showed significantly increased plaque pathology in the cervical spinal cord of 6-month-old 
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5XFAD/NEP+/- mice. (E) 6-month-old 5XFAD/NEP+/- mice showed significantly increased soluble A1-42 

levels while A1-40 levels were unchanged in the TBS fraction. (F) In SDS-soluble fractions, no changes in 
A1-40 or A1-42 levels were detected between 5XFAD and 5XFAD/NEP+/- mice. Unpaired t-test. *p < 0.05; 
**p < 0.01. All data were given as means ± standard error of the mean (SEM). n = 4-5 per group. Scale 
bar: 100 µm. 

3.2.4 Increased astrocytosis in 5XFAD/NEP+/- mice 

To assess if the knock-out of neprilysin aggravates the inflammatory response in 

5XFAD mice, immunohistochemical stainings and quantification of astrogliosis were 

carried out in different brain regions in 6-month-old 5XFAD and 5XFAD/NEP+/- mice 

using an antibody against GFAP. 5XFAD mice lacking one NEP allele showed more 

abundant astrogliosis in the dentate gyrus (+39%; t-test, p < 0.05), cortex (+30%; t-

test, p < 0.05) and thalamus (+23%; t-test, p < 0.01) (Figure 29A, B). 

qRT-PCR analysis revealed 6- to 7-fold increased GFAP mRNA levels in 6-month-old 

5XFAD and 5XFAD/NEP+/- mice when compared to WT and NEP-/- animals. However, 

no significant difference could be determined between 5XFAD and 5XFAD/NEP+/- mice 

(Figure 29D). At the age of 2.5 months, only 5XFAD mice displayed significantly 

increased GFAP mRNA levels compared to WT (t-test, p < 0.01), 5XFAD/NEP+/- (t-test, 

p < 0.05), NEP+/- (t-test, p < 0.05) and NEP-/- mice (t-test, p < 0.01) (Figure 29C). 
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Figure 29: Inflammation status of 6-month-old 5XFAD and 5XFAD/NEP+/- mice. (A, B) Using an 
antibody against the astrocytic marker GFAP, 5XFAD/NEP+/- mice showed significantly elevated 
numbers of reactive astrocytes in the dentate gyrus (DG), cortex (Ctx) and thalamus (Th) compared to 
age-matched 5XFAD mice. (C) At 2.5 months of age, GFAP mRNA levels were significantly increased in 
5XFAD mice compared to WT, 5XFAD/NEP+/-, NEP+/- and NEP-/- mice. (D) GFAP levels strongly increased 
at 6 months of age in both 5XFAD and 5XFAD/NEP+/- animals when compared to WT and NEP-/- controls. 
(B): Unpaired t-test. (C, D): One-way ANOVA followed by unpaired t-test. *p < 0.05; **p < 0.01; ***p < 
0.001. All data were given as means ± standard error of the mean (SEM). (B): n = 5 per group. (C, D):  
n = 3 per group. Scale bar: 50 µm. 

3.2.5 Amyloid pathology in young 5XFAD/NEP+/- mice 

We were interested to assess whether an increased Aβ plaque pathology upon NEP 

depletion could be detected already at earlier time-points. Hence, young 5XFAD and 

5XFAD/NEP+/- mice at 2.5 months of age were analysed with regard to extracellular 

amyloid deposition. As expected, at an age of 2.5 months, the abundance of amyloid 

plaques was strongly decreased in both groups when compared to 6-month-old mice. 

Due to the brain-wide low abundance, plaque quantification was only possible in the 

cortex of young animals, where 5XFAD/NEP+/- mice revealed a significantly reduced 
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amyloid deposition compared to age-matched 5XFAD mice (-69%; t-test, p < 0.01, 

Figure 30A-C). 

Figure 30: A plaque load quantification in 2.5-month-old 5XFAD and 5XFAD/NEP+/- mice. (A-C) 
Immunohistochemical stainings using a pan-A antibody (4G8) revealed a strongly reduced plaque load 
in young 5XFAD/NEP+/- mice (C) compared to age-matched 5XFAD mice (B). Unpaired t-test. **p < 0.01.  
All data were given as means ± standard error of the mean (SEM). n = 4 per group. Scale bar 50 µm.  

3.2.6 A-degrading enzyme expression in 5XFAD and 5XFAD/NEP+/- mice  

To explore the finding of a reduced plaque load in young 5XFAD/NEP+/- mice in more 

detail, the expression levels of additional proteases known to be capable of Aβ 

degradation were measured in young and aged mice (Figure 31A, B). Young 5XFAD 

mice displayed significantly upregulated levels of insulin-degrading-enzyme (IDE) 

compared to both WT (t-test, p < 0.05) and 5XFAD/NEP+/- mice (t-test, p < 0.01). No 

difference in IDE expression levels could be detected between 6-month-old 5XFAD and 

5XFAD/NEP+/- mice. Interestingly, the expression levels of endothelin-converting 

enzyme 1 (ECE1) were significantly increased in 5XFAD/NEP+/-, NEP+/- and NEP-/-mice 

when compared to WT and 5XFAD mice at the 2.5-month-time point. However, no 

differences could be measured between the different genotypes at 6 months of age. 

Additional members of Aβ-degrading enzymes like angiotensin-converting enzyme 

(ACE) or endothelin-converting enzyme 2 (ECE2) did not show any differences in 

expression levels between groups of young or aged mice of either genotype. 
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Figure 31: Expression analysis of Aβ-degrading enzymes. (A, B) IDE expression was significantly 
elevated in young 5XFAD mice, whereas 5XFAD and 5XFAD/NEP+/- mice had similar levels at 6 months 
of age. Young 5XFAD/NEP+/- mice showed significantly increased ECE1 levels compared to 5XFAD mice 
which did not differ at 6 months of age. Neither ECE2 nor ACE levels were significantly different among 
the analysed genotypes at 2.5 or 6 months of age. One-way ANOVA followed by unpaired t-test. *p < 0.05; 
**p < 0.01. All data were given as means ± standard error of the mean (SEM). n = 3-5 per group. 
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4 DISCUSSION 

4.1 Project I: The effect of long-term environmental enrichment 

and physical activity on the pathology of Tg4-42 and 5XFAD 

mice 

4.1.1 Part I: Enriched living conditions and physical activity delays 

hippocampal neurodegeneration and rescues memory deficits in the 

Tg4-42 mouse model of Alzheimer’s disease 

4.1.1.1 Improved sensory-motor performance in enriched housed Tg4-42het 

mice   

Next to cognitive symptoms like impaired memory or aphasia, an increasing number 

of reports have associated non-cognitive symptoms like loss of motor function with the 

progression of AD (Buchman and Bennett, 2011). Even though motor impairments are 

particularly present in late stages of AD, deficits have also been reported in early stage 

patients (Scarmeas et al., 2004). However, previous studies characterizing the novel 

Tg4-42 model have shown no alterations in measures of general motor activity when 

compared to WT mice, although Aβ pathology has been found in the spinal cord of 12-

month-old animals (Wittnam, 2012). The absence of motor impairment could be 

largely validated in the present study as sedentary Tg4-42het mice performed similar 

to WT controls in the balance beam and rotarod tests, which evaluate fine motor 

coordination and balance (Luong et al., 2011;Brooks et al., 2012) (Figure 12A, C). 

However, in the string suspension task, testing motor coordination as well as grip and 

muscle strength, Tg4-42het mice showed an impaired performance compared to WT 

animals (Figure 12B). Intriguingly, Tg4-42het mice exposed to an enriched environment 

exhibited a significant improved motor performance in all implemented tasks relative 

to standard housed controls (Hüttenrauch et al., 2016). Hence, the impaired 

performance of Tg4-42het mice in the string suspension test could be completely 

rescued (Figure 12B). These observations are in accordance with recent studies in AD 

patients indicating beneficial effects of exercise on their physical performance and 

mobility (Pitkälä et al., 2013) as well as numerous analyses in rodents showing an 

improved general locomotor activity upon enriched living conditions (Cotel et al., 
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2012;Ohia-Nwoko et al., 2014). Even though the increased motor performance of WT 

EE mice in comparison to standard housed controls did not reach statistical 

significance in the present study, an enhanced motor coordination has also been 

observed in physically active, healthy WT mice compared to their sedentary 

counterparts (Marlatt et al., 2012). Therefore, it is suggestive that this effect is 

independent of the genotype but rather a general consequence of the complex 

naturalistic motor stimulation induced through an environmental enrichment 

consisting of running, balancing and climbing. This is further corroborated by studies 

showing that enriched housing induces multiple morphological changes in brain areas 

coordinating motor function, such as an increased branching of dendritic trees in 

cortical pyramidal neurons, an enhanced size and arborisation of Purkinje cells as well 

as increased number of associated synapses (Uylings et al., 1978;Black et al., 1990). In 

conclusion, long-term enriched living conditions in combination with voluntary 

exercise led to an enhanced motor coordination of Tg4-42het mice, corroborating an 

effective interaction with the environmental enrichment paradigm used in this study. 

4.1.1.2 Voluntary exercise decelerates CA1 neuron loss in Tg4-42 mice  

One of the major hallmarks of AD progression is severe hippocampal atrophy caused 

by neuron death (Carter and Lippa, 2001). To date, only a small number of AD mouse 

models display a reliable hippocampal neuron loss (Wirths and Bayer, 2010). 

Interestingly, Tg4-42 mice develop an age- and gene dose-dependent neuron loss in 

the CA1 layer of the hippocampus. The neuron loss strongly correlates with 

intraneuronal Aβ4-42 accumulation and reaches approximately 51% in hemizygous 

animals at the age of 12 months (Bouter et al., 2013). In comparison, homozygous Tg4-

42 mice display a neuron loss of approximately 50% with 6 months of age (Antonios et 

al., 2015). The precise mechanisms by which Aβ, and specifically Aβ4-42, generates its 

toxicity are currently not known in detail. Former studies have shown that Aβ 

oligomers modulate pre- and postsynaptic structures and functions, thereby blocking 

long-term potentiation (LTP) (Haass and Selkoe, 2007). It has been further proposed 

that Aβ1-42 oligomers cause dysfunction of the metabotropic glutamate receptor 5 

(mGlur5) by triggering cell surface receptor clustering near or within synapses 

(Renner et al., 2010). Glabe and Kayed have shown that Aβ oligomers lead to 

membrane permeabiliziation resulting in the initiation of a common group of 
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downstream pathological processes. These processes incorporate calcium 

dyshomeostasis, altered signaling pathways, production of reactive oxygen species 

(ROS) and mitochondrial dysfunction which ultimately lead to cellular dysfunction and 

neuron death (Glabe and Kayed, 2006). In the current thesis, stereological analyses 

revealed that long-term cognitive and physical stimulation significantly diminished the 

CA1 neuron loss in Tg4-42 mice (Hüttenrauch et al., 2016). Tg4-42het mice maintained 

under enriched conditions with continuous access to running wheels showed a 12.8% 

higher number of CA1 pyramidal cells when compared to sedentary controls (Figure 

15A). As one can not dissect whether the effect on neuron loss can be attributed to the 

EE paradigm, voluntary exercise or a combination of both, a control experiment using 

singly housed mice in cages equipped with blocked or free running wheels was 

performed employing homozygous Tg4-42 mice (Tg4-42hom). Like Tg4-42het mice, 

physically active Tg4-42hom mice displayed significantly increased CA1 neuron 

numbers compared to mice housed in blocked wheel cages (Figure 20C). Therefore, it 

can by hypothesized that physical activity alone is sufficient to attenuate the 

pathological events triggering neuronal cell death (Hüttenrauch et al., 2016). Several 

studies support this hypothesis (Kobilo et al., 2011), however, without providing 

quantitative evidence using unbiased, design-based stereology. Um and colleagues 

showed that treadmill exercise for 12 weeks led to a decreased number of TUNEL-

positive cells in the hippocampus of Tg-NSE/PS2m mice, concluding that neuronal cell 

death in the hippocampus could be markedly decreased due to physical activity (Um et 

al., 2011). Moreover, Tapia-Rojas and colleagues recently investigated the effect of 10 

weeks of voluntary wheel running on hippocampal neuron numbers in the 

APPswe/PS1ΔE9 mouse model. The number of neurons was assessed by Nissl staining 

and subsequent manual counting of cells present in different hippocampal zones. 

Compared to WT mice, 7-month-old APPswe/PS1ΔE9 displayed significantly less 

neurons in the CA1-CA2, CA3 and dentate gyrus. After running, cell loss could be 

partially prevented in the CA3 and dentate gyrus, but not in the CA1 region (Tapia-

Rojas et al., 2015). All of these studies indicate that physical activity can activate 

processes in the brain that lead to a better survival of neurons. The possible 

mechanistic links between exercise and its neuroprotective effect will be discussed in 

one of the next sections. 



88 

 

Discussion 

4.1.1.3 Prolonged physical activity prevents the cognitive decline in Tg4-42het 

mice  

The hippocampal expression of Aβ4-42 and the severe CA1 neuron loss correlate well 

with spatial reference memory deficits in Tg4-42 mice. Tg4-42het mice display 

significant deficits with 12 months of age (Bouter et al., 2013), while homozygous 

animals develop comparable deficiencies with 6 months of age (Antonios et al., 2015). 

As mentioned earlier, both genotypes reveal a neuron loss of approximately 50% at 

that age. Former studies have assessed the cognitive decline in Tg4-42 mice using the 

Morris water maze (MWM) paradigm, a key method in the investigation of behavioural 

alterations due to changes in hippocampal circuitry (Morris, 1984). The MWM enables 

to distinguish between spatial learning, which is assessed by repeated trials in the 

acquisition training, and long-term spatial reference memory, evaluated by the 

preference for the platform quadrant when the platform is removed during the probe 

trial (Vorhees and Williams, 2006). Confirming previous studies, spatial memory was 

not impaired in the acquisition training in 12-month-old Tg4-42het SH mice compared 

to WT controls in the present study. However, an improved spatial learning upon long-

term physical activity was detected in both WT and Tg4-42het mice when compared to 

their sedentary counterparts, respectively, indicating a general beneficial effect of the 

enriched environment independent from the genotype (Figure 13B). The lack of a 

quadrant preference in the probe trial validated the previously reported spatial 

reference memory deficits in 12-month-old Tg4-42het SH mice (Figure 13E). Even 

though the MWM performance has been shown to be specifically sensitive to 

hippocampal function, lesions in other brain regions like entorhinal and perirhinal 

cortices, prefrontal cortex, cingulate cortex and neostriatum can influence the outcome 

of the test as well (D'Hooge and De Deyn, 2001). However, as Tg4-42 mice show Aβ4-42 

immunoreactivity predominantly in the CA1 region of the hippocampus, it is suggestive 

that the toxic action of the N-truncated peptide and the accompanied neuron loss in 

this specific area mainly account for the observed memory impairment. Within the 

scope of this thesis, it could be demonstrated that in addition to a delayed CA1 neuron 

loss, spatial reference memory deficits in Tg4-42het mice can be completely prevented 

by long-term physical and cognitive stimulation (Hüttenrauch et al., 2016). 12-month-

old Tg4-42het animals maintained under enriched living conditions displayed a 

preserved memory performance comparable to healthy wild-type mice (Figure 13E). 
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This finding is in line with recent clinical data claiming that aerobic fitness improves 

the memory performance of healthy individuals and patients with mild cognitive 

impairment (Etnier et al., 2007;Nagamatsu et al., 2013;Makizako et al., 2014). 

Moreover, beneficial effects of long-term exercise on memory task performance have 

been detected in other rodent AD models (Adlard et al., 2005;Verret et al., 2013;Rao et 

al., 2015). However, in the present study, the preserved memory capacity of active Tg4-

42het mice might be explained by the diminished hippocampal neurodegeneration and 

is in good agreement with data from Antonios and colleagues. They have shown that a 

13% increase in CA1 neuron numbers upon immunization with an antibody targeting 

N-truncated Aβ was sufficient to rescue functional spatial reference memory in Tg4-

42hom mice at 6 months of age (Antonios et al., 2015). The fact that only moderate 

increases in CA1 neuron numbers, either due to physical activity as in the current study 

or a therapeutic approach by Antonios et al., can preserve memory in this mouse 

model, supports the findings of Broadbent and colleagues, who studied the relationship 

of hippocampal lesion size and spatial memory performance in rats (Broadbent et al., 

2004). They claim that after bilateral dorsal hippocampal lesions that encompass 30-

50% of the total volume, impairments in spatial memory start to be apparent. However, 

when lesion size increased from 50-100%, memory performance worsens 

dramatically. Therefore, it can be hypothesized that a certain percentage of 

hippocampal neuron loss can be compensated, while a loss of 50% and more seems to 

be critical for learning and memory performance. This is supported by the fact that 5-

month-old homozygous Tg4-42 mice display a 43% loss of CA1 neurons and first but 

mild signs of cognitive decline. With 6 months of age, the spatial reference memory 

deficits become significant and the CA1 neuron number is reduced to 50% (Antonios 

et al., 2015).    

Due to an unexpected tail hyperflexion phenotype of singly housed Tg4-42hom mice, the 

stereological data of this group could not be backed-up with MWM data. The 

hyperflexion broke experimenter’s blindness and caused a swimming incapability. 

There is not much literature existing on this phenomenon, however, it has been 

reported that such tail transformations can occur after extensive and regular running 

wheel usage for periods of at least 8 weeks (Richter et al., 2014). Therefore, it cannot 

be ruled out that the beneficial effects on spatial reference memory performance in 

Tg4-42het mice are attributable to a combination of the enriched environment and 
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voluntary exercise and not to the physical activity per se. To address this point, future 

experiments using variations in the running wheel paradigm in order to prevent the 

formation of the tail hyperflexion phenotype are planned. 

An alternative test to examine the neural basis of memory is the novel object 

recognition task (NOR) (Winters et al., 2008). In contrast to the MWM, the NOR task 

does not evaluate spatial learning and memory, but recognition memory, which is 

based on the ability to recognize a previously encountered object as familiar (Squire et 

al., 2007). For a long time, no consensus was apparent which areas of the brain are 

important for recognition memory performance. Many studies supported the 

assumption that recognition memory depends on the integrity of the medial temporal 

lobe (MTL) system, a brain structure including the hippocampus, entorhinal, perirhinal 

and parahippocampal cortices (Squire and Zola-Morgan, 1991). However, latest 

studies involving rodents, non-human primates and memory-impaired patients 

provided strong evidence that damage limited to the hippocampus is sufficient to cause 

recognition memory impairments (Squire et al., 2007;Broadbent et al., 2010). 

Consistent with these findings, an impaired recognition memory performance could be 

detected in 12-month-old Tg4-42het mice. This phenotype was completely reversed by 

housing under enriched conditions (Figure 14) (Hüttenrauch et al., 2016). O´Callaghan 

and colleagues already reported an exercise-related improvement of recognition 

memory in rats after only 7 days of forced running (O'Callaghan et al., 2007). Moreover, 

it has been shown that 4 months of voluntary wheel running led to an improved 

memory in the object recognition test in 9-month-old Tg2576 mice (Yuede et al., 2009).   

In summary, the findings of an amelioration of spatial reference and recognition 

memory deficits in enriched housed Tg4-42het mice indicate that enhanced physical 

and cognitive activity has an overall positive effect on hippocampus-dependent 

memory performances, which is not task-specific.  

4.1.1.4 Adult hippocampal neurogenesis is unaffected in enriched housed WT 

and Tg4-42het mice 

Adult hippocampal neurogenesis drastically decreases in rodents in an age-dependent 

manner (Kuhn et al., 1996). Accordingly, 12-month-old WT mice displayed only 

marginal levels of new-born neurons in the present study. However, Tg4-42het animals 

showed even lower levels of neurogenesis when compared to wildtypes (Figure 16), 
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which is consistent with numerous AD mouse models displaying abnormal low, or even 

absent neurogenesis levels (Feng et al., 2001;Donovan et al., 2006). It is currently not 

known which mechanisms lead to the diminished production of neurons in AD models, 

however, one hypothesis is the inflammatory environment in diseased brains. In vivo 

data have demonstrated that new-born neurons are highly vulnerable to inflammation 

insults, shown by a negative correlation between their survival rate and the number of 

activated microglia cells (Ekdahl et al., 2003). Hence, the low neurogenesis levels in 12-

month-old Tg4-42het mice might be explained by the strong gliosis present in the 

hippocampal area due to intraneuronal Aβ accumulation (Bouter et al., 2013).   

There is vast literature reporting that environmental enriched living conditions, and 

specifically physical activity, increase hippocampal neurogenesis in rodent brains 

(Kempermann et al., 1997;van Praag et al., 1999). Surprisingly, no difference in the 

number of new-born cells could be detected between sedentary and enriched housed 

mice in both WT and Tg4-42het animals in the current work (Figure 16). This 

observation is contradictory to numerous studies that have linked the cognitive 

protection provided by EE with increased levels of subgranular neurogenesis 

(Kempermann et al., 1998;van Praag et al., 2000;van Praag et al., 2005). Even under 

deleterious conditions like chronic stress or in advanced aged animals, hippocampal 

neurogenesis has been shown to be restored through exposure to enriched 

environment (Kempermann, 2002;Veena et al., 2009). On the contrary, a study 

employing healthy WT mice by Meshi and colleagues strongly supports the finding of 

the present study. They demonstrated that a blockade of neurogenesis by exposure to 

focal X-ray irradiation did not prevent the beneficial effects of EE on their cognitive 

performance (Meshi et al., 2006). Furthermore, another report from Catlow et al. could 

not find a difference in the number of new-born neurons between standard and 

enriched housed PS1/APP mice, despite overall cognitive-enhancing effects of the 

enriched environment (Catlow et al., 2009). Therefore, it is suggestive that 

neurogenesis does not necessarily contribute to the beneficial effects induced by a 

stimulating environment. Consequently, the cognitive protection seen in enriched 

housed Tg4-42het mice is independent of changes in neurogenesis levels. 
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4.1.1.5 Tg4-42het SH and EE mice display unaltered brain A levels 

N-truncated Aβ4-42 is one of the major species in the cortex and hippocampus of AD 

patients and its impact on AD pathology has long been neglected (Portelius et al., 2010). 

The Tg4-42 model exclusively expresses N-truncated Aβ4-42 fused to the TRH signal 

peptide under the control of the Thy1 promoter. The accumulation of Aβ4-42 therefore 

correlates with the expression pattern of the neuron-specific promoter and occurs in a 

region-specific manner (Caroni, 1997). Intraneuronal Aβ is detectable starting from 2 

months of age and is predominantly present in the CA1 region of the hippocampus. 

However, due to the massive neuron loss, intracellular Aβ4-42 reactivity declines with 

age, leaving mainly larger extracellular Aβ aggregates as remnants of disintegrated 

neurons by the age of 12 months (Figure 17A). This phenomenon has also been 

observed in human AD patients. Brain regions with an excessive intracellular Aβ42 

accumulation showed evidence of neuronal death, resulting in the release and 

dispersion of the peptides to the extracellular space where they contributed to the 

formation of plaques (D'Andrea et al., 2001).  

Improved memory performance and a reduced neuron loss in Tg4-42het mice upon 

enriched environment was not accompanied by decreased levels of Aβ4-42 in the 

present study (Figure 17B) (Hüttenrauch et al., 2016). Therefore, it can be speculated 

that the cognitive improvement and the neuroprotective effect induced by long-term 

environmental and physical stimulation is not dependent on a simple reduction in Aβ 

levels. This is in contrast to many other studies on enriched environment in AD mouse 

models showing reduced Aβ levels upon continuous exercise. Rao and colleagues 

recently reported that environmental enrichment lowered total, soluble and insoluble 

Aβ levels in both cortex and hippocampus of active APP/PSEN1 mice while they 

concurrently showed an improved cognition (Rao et al., 2015). In addition, Lazarov et 

al. reported decreased levels of Aβ upon enrichment in another AD model which they 

explained by enhanced levels of the Aβ-degrading enzyme neprilysin (NEP) through 

long-term exercise (Lazarov et al., 2005). However, it is worth noting that a study by 

Costa and colleagues revealed decreased levels of Aβ deposition upon enrichment in 

double transgenic PS1/PDAPP mice without being able to correlate their cognitive 

performance with the Aβ pathology (Costa et al., 2007). This supports the finding of the 

present study showing that the cognitive protection induced by exercise can occur 
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irrespective of brain Aβ levels. However, it cannot be ruled out that despite unchanged 

total Aβ levels, long-term exercise has an impact on conformational changes of the 

peptide resulting in reduced neurotoxicity. This hypothesis will be further discussed in 

the next section.  

4.1.1.6 Gene expression changes underlying the beneficial effects of long-term 

enriched environment 

BDNF – a notorious gene found to be induced upon EE 

Multiple studies have linked beneficial effects of voluntary exercise and enriched 

environment with gene expression changes in specific brain areas (Tong et al., 

2001;Barak et al., 2013;Hu et al., 2013). One candidate gene found to be upregulated 

upon enriched living conditions in both WT and Tg4-42het mice in the present study is 

the brain derived neurotrophic factor (BDNF) (Figure 18D) (Hüttenrauch et al., 2016). 

BDNF belongs to a small family of secreted trophic proteins including nerve growth 

factor (NGF), neurotrophin 3 (NT-3) and neurotrophin 4 (NT-4) and regulates neural 

development, synaptogenesis and neuronal plasticity in the brain (McAllister et al., 

1999;Huang and Reichardt, 2001;Poo, 2001). Consistent with the present study, 

numerous former reports have shown that both environmental enrichment and long-

term physical activity increase BDNF expression levels (Neeper et al., 1996;Ickes et al., 

2000;Rossi et al., 2006). As an induction of BDNF is often accompanied by an enhanced 

cognitive performance, it is suggestive that the beneficial effects of exercise on memory 

function depend on BDNF. Several lines of evidence link BDNF with improved learning 

and memory. For example, mutations or region-specific manipulations of BDNF and its 

receptors have been shown to cause deficits in spatial, as well as object recognition 

memory (Linnarsson et al., 1997;Mizuno et al., 2000;Saarelainen et al., 2000;Furini et 

al., 2010). In addition, BDNF appears to play a substantial role during the late phase of 

LTP in the CA1 region of the hippocampus (Pang and Lu, 2004) and its overexpression 

causes increased dendrite complexities in the CA1 region and dentate gyrus (Tolwani 

et al., 2002;Alonso et al., 2004). Hence, it is tempting to speculate that the exercise-

induced cognitive improvement in WT and Tg4-42het mice is at least partially 

dependent on BDNF function. Another factor supporting the notion of BDNF as a 

trigger for the beneficial effects of EE on Tg4-42 pathology is its neuroprotective 

function. Nagahara and colleagues recently reported an ameliorated neuron loss in an 
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AD model upon BDNF gene delivery to the entorhinal cortex (Nagahara et al., 2013). 

This neuroprotection was achieved without detectably altering Aβ deposition, which is 

in good agreement with the findings of the current thesis and demonstrates that BDNF-

dependent neuronal survival is not per se dependent on changes in amyloid pathology.   

 

Molecular chaperones and their attempt to protect neurons from damage 

A striking number of transcripts found to be upregulated in physically active Tg4-42het 

mice belong to the family of heat shock proteins (Hsps) (Figure 18D) (Hüttenrauch et 

al., 2016). It has been shown in numerous studies that the induction of Hsps can be 

triggered by environmental stress conditions such as exercise in both humans and 

rodents (Lancaster et al., 2004;Nickerson et al., 2005;Ding et al., 2006). The 

fundamental role of Hsps is to protect cells from damage by refolding or degrading 

misfolded proteins and therewith maintaining the functionality of the proteome 

(Wilhelmus et al., 2007). Due to the tendency of Aβ to misfold into toxic oligomers, the 

role of Hsps in AD and especially their interaction with Aβ, has gained particular 

interest. Magrané and colleagues have shown that an overexpression of Hsp70 protects 

primary neuronal cultures from toxic effects of intracellular Aβ42 accumulation 

(Magrane et al., 2004). Furthermore, Hsp70/40 and Hsp90 have been described to 

block Aβ self-assembly at substochioemetric concentrations in vitro, mainly by causing 

structural changes in Aβ oligomers (Evans et al., 2006). A similar function has been 

proposed for the HSP40-homolog DNAJB6, which modulated Aβ42 aggregation in vitro 

by binding to Aβ fibrils thereby inhibiting their elongation and growth (Mansson et al., 

2014). The strongest upregulated gene in Tg4-42het EE mice was αB-Crystallin, a small 

heat shock protein being predominantly localized in astrocytes and oligodendrocytes, 

as well as around neuron surrounding plaques (Shinohara et al., 1993;Renkawek et al., 

1994). αB-Crystallin has been shown to co-localize with Aβ in vivo (Yoo et al., 2001). In 

vitro, the co-chaperone binds to Aβ42 fibrils along their entire length thereby inhibiting 

their elongation (Shammas et al., 2011). Moreover, αB-Crystallin has been described to 

have a protective effect on Aβ-induced cytotoxicity (Dehle et al., 2010). Taken together, 

it can be assumed that the chaperones found to be upregulated in Tg4-42het mice in the 

current analysis interact with Aβ4-42 in a similar fashion. Thereby, they might induce 

conformational changes resulting in a reduced neurotoxicity, as shown by a diminished 

CA1 neuron loss, despite unchanged total Aβ levels. 
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A subset of Hsps found to be upregulated upon enriched environment in Tg4-42het mice 

could also been observed in active WT animals (Figure 18E), indicating a common 

pathway associated with long-term cognitive and physical stimulation, which is 

independent of the genotype. This collective of genes, implying CRYAB, HSPH1 and 

HSPA1B, can be collated to the “protein processing in the endoplasmic reticulum” 

pathway (Figure 18F). This pathway is involved in endoplasmic reticulum (ER) quality 

control leading to the disposal of misfolded proteins and their degradation through the 

proteasome and is part of a cellular stress response (Liu and Chang, 2008). The 

induction of growth factors like BDNF, as well as the upregulation of genes that encode 

cytoprotective proteins such as heat-shock proteins, is carried out by neurons as a 

consequence of mild stressors like exercise or caloric restriction. This might represent 

a synergistically acting “pre-conditioning” phenomenon needed to increase cellular 

abilities to resist more severe stress, including accumulation of misfolded amyloid 

peptides (Mattson et al., 2004). 

 

Necdin – a new candidate gene implicated in the beneficial effects of EE? 

The gene showing the strongest downregulation in Tg4-42het mice upon lifelong 

exercise compared to standard housed animals was Necdin (NDN) (Figure 19), a 

protein implicated in Prader-Willi syndrome (Jay et al., 1997). NDN is expressed in 

postmitotic neurons and it was shown that Ndn-/- mice display an improved spatial 

learning and memory performance in the MWM task (Muscatelli et al., 2000). As NDN 

expression levels increase in Tg4-42het SH mice compared to wild-type controls and 

drop again to baseline upon enrichment (Figure 19), it is suggestive that Ndn plays a 

role in the improved phenotype of exercised Tg4-42het mice. However, further studies 

are warranted to explore the precise mechanistic link between Necdin and memory 

performance. 

In summary, EE training appears to upregulate genes involved in pathways yielding to 

neuroprotective events. As these genes control multiple cellular processes, their 

analysis at the system level would be the next suitable step to gain further knowledge 

about the molecular substantiation of EE. It is indisputable that the beneficial effects 

seen upon cognitive and physical enrichment in rodents are a product of multiple 

mechanisms either acting additive or overlapping.  
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4.1.1.7 Conclusions of Project I, Part I: 

Based on the results of the current work: 

- Long-term physical activity exerts a preventive effect on CA1 neuron loss 

induced by intraneuronal Aβ4-42 expression in the Tg4-42 AD mouse model. 

- The diminished neuronal cell death is accompanied by an improved motor 

performance and a complete memory recovery in Tg4-42het mice. 

- The observed beneficial effects of cognitively and physically stimulating living 

conditions in Tg4-42het mice are irrespective of a change in Aβ4-42 total brain 

levels and neurogenesis rates. 

- Long-term enriched living induces genes involved in pathways yielding to 

neuroprotective events. 

4.1.2 Part II: Lifelong environmental enrichment in combination with 

voluntary exercise has limited effects on the pathology of 5XFAD mice 

4.1.2.1 Long-term enriched living conditions have a limited effect on the 

physiological status and the sensory-motor phenotype of 5XFAD mice 

APP transgenic mouse models frequently exhibit a premature death phenotype caused 

by heavy amyloid deposition and subsequent cerebral vascular damage (Calhoun et al., 

1999;Van Dorpe et al., 2000). As reported in previous studies, a reduced survival rate 

of 5XFAD SH mice could be observed in course of the current thesis (Heraud et al., 

2014). However, this phenotype could not be attenuated upon enriched conditions 

(Figure 21A).  

5XFAD mice display a reduced body weight starting with 9 months of age. The weight 

loss is aggravated over time, reaching a loss of 25% in comparison to WT littermates 

by the age of 12 months (Jawhar et al., 2012). Prolonged living in an enriched 

environment had no influence on the drastically reduced body weight of 5XFAD mice 

(Figure 21B). Therefore, no improvement in general health condition could be 

achieved by long-term physical and cognitive stimulation.   

12-month-old 5XFAD mice are characterized by prominent amyloid plaque pathology 

in motor-related brain areas. Furthermore, accumulation of intraneuronal A in motor 

neurons of the brain and spinal cord cause an impaired axonal transport with the 
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formation of axonal spheroids (Jawhar et al., 2012). Accordingly, severe sensory-motor 

impairments in the string suspension task and beam walking have been reported for 

5XFAD mice starting with 9 months of age (Jawhar et al., 2012). This phenotype could 

not be rescued due to prolonged cognitive and physical stimulation (Figure 21C, D). 

However, as shown in previous studies, 5XFAD mice exhibit an abnormal rotarod 

performance with 12 months of age, which was completely rescued upon enriched 

living conditions (Figure 21E) (Shukla et al., 2013). As no amelioration in other motor 

tasks like string suspension and balance beam could be detected, the significant rescue 

of the rotarod performance points to a better overall motor coordination. This is likely 

based on a continuous interaction with the enriched environment, but not general 

muscular strength. Hence, the improved rotarod performance confirms the validity of 

the enrichment paradigm in the present study.  

4.1.2.2 Enriched living conditions do not alter the behavioural phenotype of 

5XFAD mice 

Anxiety, disinhibition and depression belong to the neuropsychological changes that 

frequently accompany disease progression of AD patients (Mega et al., 1996;Lyketsos 

and Olin, 2002). Anxiety-related behaviour in mice can be studied using the elevated 

plus maze task. An increased time spent in open arms reflects reduced anxiety levels 

while more time spent in the closed arms is an indication of increased anxiety (Walf 

and Frye, 2007). Mechanistically, changes in the circuitries of the limbic system, 

susceptible to A accumulation, seem to be involved in altered elevated plus maze 

behaviour (Lalonde et al., 2012). At the age of 6 months, 5XFAD mice demonstrate 

reduced anxiety levels, which further decrease in an age-dependent manner (Jawhar 

et al., 2012). Environmental enrichment in combination with exercise was not capable 

to compensate anxiety-related behavioural deficits (Figure 22A). Literature on the 

effect of EE on this phenotypic trait in AD mouse models is scarce. Therefore, the data 

gathered in the current thesis can only be confronted to a limited number of 

comparable studies. The present finding is consistent with recent data from our group 

demonstrating no changes in low levels of anxiety-like behaviour in the APP/PS1KI 

mouse model, which was unchanged after 4 months of EE (Cotel et al., 2012). In 

contrast, Verret and colleagues recently reported a restoration of an abnormal anxiety 
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phenotype in Tg2576 mice when EE occurred early in the animal’s lifespan (Verret et 

al., 2013).  

With 6 months of age, 5XFAD mice start to suffer from working memory deficits which 

further increase in an age-dependent manner (Oakley et al., 2006;Jawhar et al., 2012). 

To evaluate working memory deficits in rodents, spontaneous alternation tasks like the 

Y-, T- or cross-maze are used. These tasks are sensitive to lesions in the prefrontal 

cortex and hippocampus, making them suitable for AD pathology relevant 

impairments. Many studies on the effect of enriched environment in AD mouse models 

reported clearly improved performances in cognitive tests (Parachikova et al., 

2008;Dao et al., 2013;Wang et al., 2013). However, no improvement in working 

memory performance upon enriched living conditions in 5XFAD mice could be 

assessed in course of this thesis (Figure 22C). This again is in good agreement with 

results from a study previously performed in our group, where standard- and enriched 

housed APP/PS1KI mice showed equally bad performances in the Y-maze task 

compared to age-matched WT controls (Cotel et al., 2012). It is worth mentioning that 

in most of the environmental enrichment studies, cognitive performances are assessed 

using the MWM test, which allows to analyse both spatial working, as well as reference 

memory capacities. Unfortunately, we were unable to perform the MWM test with 12-

month-old 5XFAD mice, due to their massive impairments in swimming capability and 

their drastic motor phenotype at that age.  

In summary, enriched housing combining cognitive enhancement and physical activity 

did not ameliorate the behavioural deficits seen in 12-month-old 5XFAD mice. 

4.1.2.3 Standard- and enriched housed 5XFAD mice display similar levels of 

amyloid pathology 

No differences in amyloid plaque pathology due to enriched environment living 

conditions were found between 5XFAD SH and EE mice in course of the present study 

(Figure 23A, B). Previous analyses on the influence of EE on extracellular plaque 

pathology in AD mouse models are inconsistent. Some investigations are in accordance 

with our observations reporting no effect of enriched living conditions on amyloid 

deposition (Arendash et al., 2004;Wolf et al., 2006;Parachikova et al., 2008;Cotel et al., 

2012), while others found a reduction (Mirochnic et al., 2009;Ke et al., 2011;Liu et al., 

2013) or even increased Aβ plaque deposition (Jankowsky et al., 2003). 5XFAD mice 
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harbour a robust plaque pathology which is preceded by intraneuronal accumulation 

of Aβ starting at the age of 6 weeks. With 2 months of age, first plaques appear in deep 

layers of the cortex and in the subiculum. During aging, amyloid deposition progresses 

and becomes present in the entire cortex, subiculum and hippocampus. To a lesser 

extent, plaques also become apparent in thalamus, olfactory bulb and brainstem 

(Oakley et al., 2006). The EE starting time point of the current study was chosen in the 

presymptomatic phase as there are studies showing that only when access to running 

wheels is given prior to disease onset, reduced plaque pathology can be observed 

(Adlard et al., 2005;Richter et al., 2008). However, no differences in Aβ plaque load 

were revealed in cortex, hippocampus, subiculum or thalamus between enriched and 

sedentary 5XFAD mice at 12 months of age. Notably, it has been reported earlier that 

there is a rapid increase in amyloid pathology in 5XFAD mice until the age of 6 months, 

which subsequently becomes less severe and reaches a certain plateau level at the age 

of 10 to 14 months, depending on the sex of the animal (Bhattacharya et al., 

2014;Richard et al., 2015). Therefore, one cannot exclude that the enrichment 

paradigm leads to a certain delay in plaque deposition at earlier time points during 

disease progression, which, by the end of the treatment period is not visible anymore 

due to the reached plateau level of amyloid plaques. To test this hypothesis, plaque 

pathology could be analysed at earlier ages during the EE treatment period in a time-

dependent manner.  

Beauquis and colleagues recently reported lowered Aβ1-40 and Aβ1-42 levels upon 

enriched housing while the number and size of Aβ plaques did not change (Beauquis et 

al., 2013). These observations were further extended by Rao and colleagues, showing 

significantly decreased levels of soluble and insoluble Aβ1-40 and Aβ1-42 levels in both 

cortex and hippocampus upon voluntary exercise (Rao et al., 2015). There are multiple 

mechanisms described which could possibly be involved in lowering Aβ levels due to 

exercise and thereby improving cognitive abilities. For example, Rao et al. found 

reduced protein levels of β-secretase (BACE1) in active APP/PSEN mice compared to 

sedentary mice, which could be one mechanism explaining reduced Aβ levels. 

Moreover, increased levels of Aβ-degrading enzymes (ADEs) like neprilysin (NEP) and 

insulin-degrading enzyme (IDE) following EE paradigms have been reported, 

supposably leading to an increased degradation of Aβ peptides (Lazarov et al., 

2005;Briones et al., 2009). However, in the present study, no differences in soluble and 
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insoluble Aβ1-42 levels could be detected (Figure 23C, D). Accordingly, BACE1, NEP and 

IDE levels were unchanged between active and inactive 5XFAD mice (Figure 25).  

Neuroinflammation, characterized by activation of astrocytes and microglia, is one of 

the major hallmarks of AD and develops concomitantly with amyloid deposition in the 

5XFAD mouse model (Oakley et al., 2006). Many reports describe a decline in 

inflammatory markers like GFAP upon voluntary exercise accompanied by reduced Aβ 

levels (Nichol et al., 2007;Nichol et al., 2009;Kang et al., 2013;Souza et al., 2013). 

Corresponding to the comparable amyloid phenotype seen in the current study, our 

findings show no changes in the inflammatory status between enriched and sedentary 

5XFAD mice in the analysed brain areas cortex, hippocampus and thalamus (Figure 

24).  

4.1.2.4 Induction of neuroprotective genes in physically active 5XFAD mice 

As already mentioned earlier, numerous reports have shown elevated expression 

levels of the neurotrophic factor BDNF following voluntary exercise in both humans 

and rodents. Accordingly, active 5XFAD mice displayed significantly increased BDNF 

mRNA levels when compared to sedentary controls, which further indicates a 

successful EE protocol (Figure 25). An induction of BDNF due to physical activity is 

often paralleled by an enhanced cognitive performance, which supposes this 

neurotrophic factor as a key player in this process. However, in the present study, 

increased BDNF levels in 5XFAD EE mice were not associated with beneficial effects on 

cognitive impairment. Congruently, Liu and colleagues even found an exercise induced 

decrease of BDNF mRNA levels in APP/PS1 mice paralleled by a better cognitive 

performance and LTP (Liu et al., 2011). Next to BDNF, mRNA expression analyses 

revealed that members of the heat-shock protein family were upregulated in enriched 

housed 5XFAD mice compared to standard housed controls (Figure 25). In contrast to 

WT and Tg4-42het mice, the induction of HSPs in 5XFAD was not accompanied by 

beneficial effects on the cognitive performance. This could be explained by the fact that 

the 5XFAD model represents a robust and aggressive mouse model of AD pathology, 

which is based on multiple mutations in AD-related genes. Even though 

neuroprotective genes like BDNF and HSPs are being induced upon exercise, the 

pathology of this familial AD model is too advanced to be attenuated.   
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4.1.2.5 Conclusions of Project I, Part II: 

Based on the results of the current work: 

- Long-term environmental enrichment has limited effects on the general health 

condition and sensory-motor phenotype of 5XFAD mice. 

- Anxiety-related behavioural deficits and working memory impairments are not 

ameliorated due to physically and cognitively stimulating living conditions. 

- Enriched-housed 5XFAD mice do not display diminished amyloid pathology and 

A1-42 levels. 

- The inflammatory response in brains of 5XFAD mice is not declined upon 

prolonged EE. 

- Long-term enriched living induces genes involved in pathways yielding to 

neuroprotective events, however, without an effect on the pathology. 

 

4.2 Project II: Neprilysin deficiency alters the neuropathological 

and behavioural phenotype in the 5XFAD model of Alzheimer’s 

disease 

5XFAD mice are characterized by amyloid plaque formation as early as two months of 

age, which is preceded by intraneuronal Aβ accumulation. Next to Aβ1-40, Aβ1-42 levels 

are tremendously increased due to the co-expression of five familial AD mutations in 

this double transgenic APP/PS1 mouse model (Oakley et al., 2006;Jawhar et al., 2012). 

5XFAD mice therefore display a valuable tool recapitulating many AD-related 

phenotypes and represent a suitable model to analyse possible therapeutic strategies. 

During the last decades, numerous therapeutic approaches that target Aβ have been 

developed with the ultimate goal to diminish its toxic action in brains of AD patients. 

These approaches include the prevention of Aβ oligomerization, an improved 

clearance of the peptide through the blood brain barrier, the prevention or reduction 

of Aβ production, as well as enhanced degradation (Bates et al., 2009). A slowdown of 

Aβ degradation by Aβ-degrading enzymes (ADEs) is the major presumed cause of Aβ 

accumulation in sporadic AD cases (Iwata et al., 2005). Among a variety of ADEs, 

neprilysin (NEP) is considered to be one of the most important physiological enzymes 

regulating cerebral Aβ levels (Miners et al., 2011). Numerous in vitro studies described 
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the ability of NEP to cleave Aβ monomers and oligomers at several cleavage sites 

(Wang et al., 2006;Miners et al., 2011). A role of NEP has also been shown in vivo. A 

knock-out of the metalloprotease led to enhanced levels of soluble and oligomeric Aβ 

and subsequent impairments in synaptic plasticity as well as cognitive abnormalities 

in APP transgenic and WT mice (Huang et al., 2006;Madani et al., 2006). The primary 

objective of this part of the study was to evaluate the in vivo effect of NEP level 

reduction on the neuropathological and behavioural phenotype in young and aged 

5XFAD mice. Therefore, the 5XFAD/NEP+/- mouse model was generated by crossing 

NEP-/- mice with 5XFAD mice (Lu et al., 1995;Oakley et al., 2006). It could be shown 

that young 5XFAD mice per se display strongly reduced NEP levels when compared to 

WT animals. In 6-month-old 5XFAD mice, reduced NEP levels were still present, albeit 

being not that distinct (Figure 26A, B) (Hüttenrauch et al., 2015). These results confirm 

recent findings from Ohno and colleagues, who observed reduced NEP levels in 12-

month-old 5XFAD mice (Devi and Ohno, 2015). In accordance, NEP levels have been 

shown to decrease during normal aging, as well as during disease progression in 

human AD brains, further substantiating its crucial role during AD development (Iwata 

et al., 2002;Caccamo et al., 2005;Wang et al., 2010). In young and aged 5XFAD mice, a 

heterozygous NEP knock-out led to a further decrease in the NEP mRNA expression 

level, reaching only 7 or 8.5% of WT mice levels, respectively. A successful NEP 

depletion in 5XFAD/NEP+/- mice could also been proven on the protein level by 

performing immunohistochemical stainings (Figure 26C).     

Intriguingly, 5XFAD/NEP+/- mice displayed deficits in spatial working memory at 6 

months of age when compared to 5XFAD littermates (Figure 27) (Hüttenrauch et al., 

2015). This is consistent with recently published data showing an impaired 

performance in the MWM task in a mouse model of amyloidosis with heterozygous NEP 

deficiency (Mohajeri and Wolfer, 2009). Moreover, Huang et al. observed behavioural 

deficits in the Y-maze and MWM in APP23 mice on a homozygous NEP knock-out 

background (Huang et al., 2006). Therefore, the inefficient removal of Aβ from the 

brain due to NEP depletion in the current study led to a diminished performance of 

5XFAD/NEP+/- mice in hippocampus-dependent cognitive tasks, further confirming 

previous results showing that a downregulation of NEP contributes to the 

pathophysiology of AD (Hüttenrauch et al., 2015). 
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In line with the altered memory performance, immunohistochemical stainings and 

subsequent quantifications revealed a significantly increased Aβ plaque load in the 

dentate gyrus, subiculum and spinal cord of 6-month-old 5XFAD/NEP+/- mice when 

compared to 5XFAD controls (Figure 28A, B). Previous studies in J9 mice on a hemi- or 

homozygous NEP deficient background corroborate the findings of the current thesis. 

NEP depletion markedly increased the hippocampal amyloid plaque burden in this APP 

transgenic model (Farris et al., 2007). The fact that Thioflavin S-positive deposits were 

unchanged in all analysed brain areas between 5XFAD and 5XFAD/NEP+/- mice, 

supports the hypothesis that NEP mainly degrades soluble Aβ peptides (Figure 28C) 

(Hüttenrauch et al., 2015). A related observation was reported in hAPP transgenic mice 

which were crossed with neprilysin transgenic mice. NEP overexpression in these mice 

reduced soluble Aβ levels but had no impact on amyloid plaque load (Meilandt et al., 

2009). This is in line with higher Aβ1-42 levels in TBS-soluble brain fractions in the 

presence of unchanged SDS-soluble Aβ levels in 5XFAD/NEP+/- mice in the current 

study (Figure 28E, F).  It is noteworthy that the extracellular Aβ plaque load in 5XFAD 

and 5XFAD/NEP+/- mice was unchanged in cortex and thalamus. However, the higher 

abundance of amyloid plaques in the dentate gyrus and subiculum of 5XFAD/NEP+/- 

animals correlates well with the previously demonstrated intense NEP 

immunoreactivity in the hippocampal area of WT mice, suggesting that NEP deficiency 

has a stronger impact in this brain region than in regions like the cortex or thalamus 

(Fukami et al., 2002). 

Surprisingly, at young ages 5XFAD mice displayed a 70% higher extracellular plaque 

load when compared to age-matched 5XFAD/NEP+/- mice (Figure 30). Amyloid 

deposition is always accompanied by an inflammatory response. Accordingly, 2.5-

month-old 5XFAD mice showed increased GFAP mRNA expression levels in in 

comparison to all other experimental groups, while at older ages, GFAP levels were 

equally increased in 5XFAD and 5XFAD/NEP+/- mice in comparison to healthy controls 

(Figure 29). This finding is in accordance with significantly increased insulin-

degrading enzyme (IDE) mRNA levels in young 5XFAD mice when compared to WT and 

5XFAD/NEP+/- mice. IDE is another putative protease that has been shown to degrade 

Aβ peptides in vivo (Eckman and Eckman, 2005) and is known to be upregulated in 

response to increased Aβ production (Vepsäläinen et al., 2008). In older 5XFAD/NEP+/- 

mice, IDE expression is increased up to the level of 5XFAD mice.  
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Intriguingly, expression analysis of the close NEP homologue endothelin-converting 

enzyme 1 (ECE1) revealed that this ADE is significantly increased in NEP-deficient mice 

compared to 5XFAD mice in young animals (Figure 31). ECE1 has been shown to 

degrade Aβ within intracellular compartments, which ultimately leads to a reduced 

secretion of the peptide and reduced extracellular accumulation (Eckman et al., 2001).  

As recently detected in SH-SY5Y cells, ECEs are capable of degrading at least two 

distinct pools of Aβ. One is intended for secretion, while the other is being produced 

and degraded within endosomes and lysosomes (Pacheco-Quinto and Eckman, 2013).  

The increased ECE1 levels in young 5XFAD/NEP+/- mice correlate well with the 

strongly reduced extracellular Aβ signal compared to 5XFAD animals and suggest a 

reciprocal effect between ECE and NEP activities in A degradation (Hüttenrauch et al., 

2015). This is also supported by the reported expression profile of ECE1 in pyramidal 

neurons of cortical layer V (Pacheco-Quinto et al., 2013), the same layer that shows 

prominent intracellular accumulation of A peptides in 5XFAD mice (Jawhar et al., 

2012). The results of the current thesis provide in vivo evidence for a mutual regulation 

between the two ADEs NEP and ECE1, further supported by the observation that NEP+/- 

and NEP-/- mice display elevated ECE1 expression levels as well, with NEP-/- animals 

showing the highest levels of ECE1 at this early time point. However, it warrants 

further investigation to delineate why ECE1 levels are normalized at older ages 

although NEP levels are still drastically reduced in hemi- and homozygous NEP-

deficient mice.  

4.2.1 Conclusions of Project II: 

Based on the results of the current work: 

- 5XFAD mice display strongly reduced neprilysin levels compared to WT mice. 

- Neprilysin deficiency leads to spatial working memory deficits in 6-month-old 

5XFAD mice. 

- Aged 5XFAD/NEP+/- mice demonstrate region-specific increases in extracellular 

Aβ deposition, overall increased levels of soluble Aβ1-42 and an elevated 

astrocytosis in all studied brain areas. 

- In young 5XFAD/NEP+/- mice, extracellular Aβ plaque pathology is delayed 

when compared with age-matched 5XFAD animals. 



105 

 

Discussion 

- 2.5-month-old 5XFAD/NEP+/-, NEP+/- and NEP-/- display elevated levels of ECE1, 

suggesting a compensatory upregulation upon NEP depletion.   
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5 SUMMARY & CONCLUSIONS 

There is substantial evidence for a protective role of physical and cognitive activity on 

the risk and progression of Alzheimer’s disease (AD). Although numerous studies in 

rodent models have explored beneficial effects of an enriched environment (EE) 

combined with voluntary exercise on AD pathology, it is difficult to draw clear-cut 

conclusions. Confounding variables are variations in study design regarding the type 

of enrichment, different durations and extent of physical activity, different ages at 

which animals are exposed to EE, as well as differences in the used AD models.  Most 

studies were conducted in models overexpressing mutant forms of human APP, 

presinilin 1/2, or a combination of both. Even though all of these AD models develop 

typical pathological hallmarks of AD, it is hard to translate findings to the situation of 

sporadic AD patients, which neither possess any mutations nor APP overexpression. 

Furthermore, despite massive research, relatively little is known about the effect of 

physical activity on neurodegenerative processes in the hippocampus, a brain region 

being one of the first and most severely affected during AD progression. This is likely 

due to the fact that only a small number of AD mouse models display a reliable 

hippocampal neuron loss. 

The goal of the first part of the present work was to investigate the effect of long-term 

enriched environment, combining cognitive enhancement and physical activity, on the 

newly-developed Tg4-42 mouse model. This model overexpresses Aβ4-42 without any 

mutations and develops an age-dependent hippocampal neuron loss associated with a 

severe memory decline. Tg4-42 mice therefore represent a valid AD mouse model 

which reflects the key features of sporadic AD. By using unbiased, design-based 

stereology, it was demonstrated that long-term physical stimulation exerts a 

preventive effect on hippocampal CA1 neuron loss induced by intraneuronal Aβ4-42 

expression in Tg4-42het and Tg4-42hom mice. Behavioural analyses revealed that the 

diminished neuronal cell death was accompanied by an improved motor performance 

and a complete memory recovery. Furthermore, lifelong exercise induced gene 

expression pathways yielding to neuroprotective events. These effects were 

irrespective of total Aβ4-42 brain levels and increased neurogenesis rates. Taken 

together, the present study provides evidence for the first time that enhanced cognitive 
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and physical activity counteracts hippocampal neuron loss and behavioural deficits in 

a transgenic AD mouse model without mutations and APP overexpression. 

Furthermore, we found evidence that changes in gene-expression programs play a 

substantial role in the observed effects. These results underscore the relevance of a 

challenging lifestyle in combination with regular exercise as a potential strategy in the 

prevention of sporadic AD.   

In contrast to Tg4-42 mice, 5XFAD mice represent a conventional model with an early, 

robust and aggressive AD pathology. Although vast literature is reporting about 

beneficial effects of EE on the pathology of familial AD models, no study investigated 

the widely-used 5XFAD model so far. In the present work, despite of partial benefits in 

motor performance, no effect on anxiety levels, working memory performance, plaque 

deposition, Aβ1-42 levels or inflammatory status could be observed upon prolonged 

enriched living conditions. Therefore, a lifelong cognitive and physical stimulation has 

no therapeutic benefit on the Alzheimer-like pathophysiology of 5XFAD mice.  

Taken together, the results of the first part of this thesis support that physical activity 

and environmental enrichment can counteract disease progression in the Tg4-42 

mouse model, which likely represents a model more suitable for the most common 

sporadic form of AD. In contrast, the 5XFAD model represents a robust and aggressive 

model of familial AD incorporating five different mutations. The disease phenotype of 

5XFAD mice cannot be counteracted efficiently by a rather mild intervention like EE 

and voluntary exercise. 
 

The deposition of Aβ in form of soluble oligomers, insoluble fibrils or neuritic plaques 

is one of the major hallmarks of AD. In familial AD cases, an enhanced production of Aβ 

caused by mutations in genes encoding APP and presinilins leads to an enhanced 

accumulation of the peptide. In sporadic AD cases, however, the cause of increased Aβ 

accumulation is likely due to decelerated degradation. The metalloprotease neprilysin 

(NEP) is one of the major Aβ-degrading enzymes (ADEs) as shown by numerous in 

vitro, in vivo and reverse genetic studies. This second part of the current thesis aimed 

on gaining deeper knowledge about the role of neprilysin during the progression of AD. 

Therefore, 5XFAD mice were crossed with homozygous NEP knock-out mice (NEP-/-). 

It was shown that 5XFAD mice per se exhibit reduced NEP levels when compared to 

WT mice. 5XFAD/NEP+/- animals displayed an even stronger NEP level reduction 

resulting in an impaired spatial working memory. Furthermore, hemizygous NEP 
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deficiency led to region-specific increases in extracellular amyloid deposition, overall 

increased levels of Aβ42 and an enhanced inflammatory response in all studied brain 

areas. In contrast, young 5XFAD/NEP+/- mice showed cortical Aβ plaque pathology to a 

much lesser extent than age-matched 5XFAD animals. This finding was accompanied 

by elevated levels of endothelin-converting enzyme 1 (ECE1) in young 5XFAD/NEP+/-, 

NEP+/- and NEP-/- mice, suggesting a mutual regulation of ECE1 and NEP in 2.5-month-

old animals. In total, these observations support previous in vivo data indicating that 

NEP is one of the main Aβ-degrading peptidases. Hence, the current findings provide 

evidence for a reciprocal effect between NEP and ECE1 activities in Aβ degradation. 
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