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Summary 
 

Initial studies on genetic aspects of immunoglobulins were performed on humans and 

mice but were successfully applied to various other animals such as chicken, rabbit, 

swine, cattle, and horses, too. Especially in cattle and horses, fundamental research in 

immunoglobulin genetics still needs more attention to complete previous information 

such as the number of available gene segments, gene families, and allotypes of 

different isotypes of the immunoglobulin heavy and light chains. Results will enable the 

analysis and generation of synthetic recombinant antibodies, as well as an alternating 

treatment of infectious diseases to prevent resistance to antibiotics. 

As reviewed in the first publication, the understanding of the organization of equine 

immunoglobulin genes has increased significantly in the recent years. For equine 

heavy chains, 52 immunoglobulin heavy chain variable gene segments (IGHV), 

40 immunoglobulin heavy chain diversity gene segments (IGHD), 8 immunoglobulin 

heavy chain joining gene segments (IGHJ) and 11 immunoglobulin heavy chain 

constant region genes (IGHC) are present. Seven of these IGHCs are gamma chain 

genes. Sequence diversity is increasing between fetal, neonatal, foal and adult age. 

The kappa light chain contains 60 immunoglobulin kappa light chain variable gene 

segments (IGKV), 5 immunoglobulin kappa light chain joining gene segments (IGKJ) 

and 1 immunoglobulin kappa light chain constant region gene (IGKC), whereas there 

are 144 immunoglobulin lambda light chain variable gene segments (IGLV), 

7 immunoglobulin lambda light chain joining gene segments (IGLJ), and 

7 immunoglobulin lambda light chain constant region genes (IGLC) for the lambda light 

chain, which is expressed predominantly in horses. A decrease in IGLVs is noted 

during age development, although nucleotide diversity and significant differences in 

gene usage increased. A standardization of the existing nomenclature of 

immunoglobulin genes is suggested. 

The first experimental study focused on the identification of allotypic variants of equine 

IGLC and differences in the expression of IGLV within and between the two horse 

breeds Rhenish-German Coldblood (RGC) and Hanoverian Warmblood (HW). The two 

breeds differ in stud book size and breeding goals. After PCR amplification of cDNA 

and subcloning, 120 samples per breed were isolated and sequenced. Statistical 

analysis of transcription frequencies were performed applying non-parametric tests. 

The significant majority of the sequences represented IGLC6/7 in both breeds, 
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whereas IGLC1, IGLC4, and IGLC5 occurred in significant different frequencies per 

breed. Five allotypic IGLC1 variants, four allotypic IGLC5 variants, and three allelic as 

well as two allotypic IGLC6/7 variants were identified in breed specific proportions. 

Eleven out of 144 known IGLV segments were transcribed of which IGLV15 and 

IGLV17 were preferred significantly. IGLV25 displayed significant differences in the 

rearrangement between both breeds. In addition, the pseudogenes IGLV101ψ and 

IGLV74ψ were also identified. Rearrangements with IGLC genes showed significant 

differences for IGLV15 in both breeds, whereas IGLV25 also revealed significant 

differences between the breeds. The transcriptional orientation of the functional 

segments had no influence on the occurrence of the IGLV.  

The second experimental study carried out in cattle dealt with two main topics. On the 

one hand it focused on the third complementarity determining region of the bovine 

heavy chain (CDR3H) whose exceptional length previously was described as a 

specificity of bovine IgG and IgM. On the other hand, the genomic organization of the 

immunoglobulin heavy chain locus was analyzed with a special focus on the number of 

IGHV. After isotype-specific cDNA-PCR, subcloning of 20 DNA plasmids per 

immunoglobulin isotype and sequence analyzes of the variable regions, we proved the 

existence of exceptionally long CDR3H in all five bovine isotypes. The sequences of 

CDR3H belong to three distinct groups and possess ≤10, 12 to 31 or ≥48 amino acid 

residues. Hydrophilic amino acid residues dominated in long and intermediate long 

CDR3H, while short CDR3H possessed hydrophobic amino acid residues, too. All 

sequences with exceptionally long CDR3H were related to the germline IGHV10. 

Further, the germline IGHD2, with 148 bp in size, contributes to those CDR3H.  

The genomic organization of the bovine immunoglobulin heavy-chain locus was 

analyzed using the current genome assembly, Bos taurus NCBI build 6.1. A main locus 

was identified on BTA21. Additional exons coding for immunoglobulin heavy chain 

variable (IGHV), diversity (IGHD), and joining (IGHJ) segments, as well as for the 

constant regions of different isotypes, were localized on BTA7, BTA8, BTA20, and on 

unplaced contigs, too. Altogether, 36 IGHV were detected of which 13 are putatively 

functional. For the phylogenetic analysis, the complete nucleotide sequences of the 36 

bovine IGHV segments were aligned with one member of the human IGHV families 1 to 

7. Results proved the existence of two bovine IGHV families (boVH1, boVH2). The 

boVH1 comprises all functional segments. This study substantially improved the 

understanding of the generation of immunoglobulin diversity in cattle.  
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The third study aimed to gain more insight into the combinatorial diversity, somatic 

hypermutations and putative gene conversions of IgG in the four cattle breeds Aubrac, 

German Simmental, German Black Pied, and Holstein Friesian. For the more detailed 

analysis of rearranged bovine heavy chain immunoglobulin variable regions, a new 

bioinformatics framework was developed by combining and refining widely used 

alignment algorithms. Immunoglobulin heavy chains possessing exceptionally long 

CDR3Hs can now be analyzed specifically, as well as the dominantly transcribed 

IGHV, IGHD, and IGHJ segments and their recombination. 

The use of 15 different IGHV segments, 21 IGHD segments, and 2 IGHJ segments 

was investigated with significant different transcription levels within the breeds. There 

are preferred rearrangements within the 3 groups of CDR3H lengths. In sequences of 

group 1 (≤10 aa) and 3 (≥48 aa) a lower number of recombinations were observed than 

in sequences of group 2 (11-47 aa). The combinatorial diversity revealed 162 

significantly different rearrangements of germline IGHV, IGHD, and IGHJ segments. 

The few preferably rearranged gene segments within group 3 CDR3H regions are 

supposed to indicate specialized antibodies because this length is unique in cattle.  

The main result of this study enabled by the new bioinformatics framework, is the 

strong evidence for gene conversion as a rare event using pseudogenes fulfilling all 

definitions for this particular diversification mechanism. 

In conclusion, this thesis contributes to a more detailed understanding of the expressed 

immunoglobulin repertoire in cattle and horses. Breed and husbandry conditions are 

supposed to influence the repertoire significantly. This thesis also highlights that the 

bovine heavy chain diversity is not restricted to the use of a limited number of germline 

genes although there are preferred rearrangements within the three groups of CDR3H 

lengths. These results will be of future importance in analyzing seroconversion data 

after infection or vaccination, as well as determining breed specific differences to select 

healthy, robust animals. 
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General Introduction 
 
Immunoglobulin genetics focuses on the special genetic aspects of immunoglobulins. 

As relatively few research groups work on immunogenetics, fundamental research is 

still necessary. Consequently no definite numbers of germline gene segments leading 

to immunoglobulins, gene families and allotypic variants are known in many species. 

Nevertheless, in the last few decades, this field of research has attracted higher 

attention because of its increasing importance in the regional or global eradication and 

monitoring of several infectious diseases. The availability of new high throughput 

technologies and descending prices facilitate and advance the experimental work flow 

in analyzing the entire immunoglobulin repertoire. Initial studies were performed on 

humans and mice but successful techniques were applied to various other animals 

such as chicken, rabbit, cattle, and horses, too. Especially in cattle and horses, 

investigation in immunoglobulin genetics still needs more attention to complete 

previous information about fundamentals such as the number of available gene 

segments, gene families, and allotypes of different isotypes of the immunoglobulin 

heavy and light chains. Results will contribute to the analysis and generation of 

synthetic recombinant species-specific antibodies. The production of antibodies from 

animals may be replaced and first of all, the results will enable an alternating treatment 

of infectious diseases to avoid antibiotics and resulting resistance of antigens. Side 

effects of conventional therapeutics might be excluded and higher antigen specificity 

will be achieved. Therefore, recombinant antibodies and antibody fragments are 

important tools for research, diagnostics and therapy (Hust et al. 2002; Hust and Dubel 

2004). A widely used method for the selection of recombinant antibody fragments is the 

phage display (Smith 1985; Taussig et al. 2007). Further, monoclonal antibodies have 

been used successfully for the therapeutic treatment of many disorders, including 

inflammatory and putative autoimmune diseases as they bind to cell-specific antigens 

and mediate immune response (Hohlfeld and Wekerle 2005). By adding an appropriate 

constant domain, a promising antibody fragment is converted into any antibody isotype, 

for example IgG from different species (Moutel et al. 2009).  

This present thesis was performed to contribute to a more detailed understanding of 

immunoglobulin diversity in cattle and horses. One of the major scopes was to 

investigate the bovine germline heavy chain gene segments in silico, which represent 

the theoretical immunoglobulin repertoire. The expressed repertoire was then 
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investigated in four different cattle breeds by transcriptional analyses and statistical 

methods. Further, the bovine specific mechanism of exceptionally long CDR3H 

contributing to diversity was proven in all five immunoglobulin isotypes. Gene 

conversion using pseudogenes was indicated for the first time in bovine heavy chains.  

In addition, gene segments of transcribed equine lambda light chains were evaluated 

statistically in two different horse breeds. The previous findings of horse 

immunoglobulins were collated and reviewed.  

 

 

The objectives of this dissertation were:  

 

1. Equine immunoglobulins and organization of immunoglobulin genes  

 

2. Transcriptional analysis of equine λ light chains in the horse breeds Rhenish-

German Coldblood and Hanoverian Warmblood  

 

3. Exceptionally long CDR3H are not isotype restricted in bovine immunoglobulins 

 

4. Development of a bioinformatics framework for the detection of gene conversion and 

the analysis of combinatorial diversity in immunoglobulin heavy chains in four cattle 

breeds 
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General Structure of immunoglobulins 

 

The three-dimensional structure of immunoglobulins was determined by crystallization. 

Immunoglobulins (Ig) are described as a Y-shaped tetramer composed of four 

polypeptide chains containing two identical heavy chains (IGH) and two identical light 

chains (IGL) that are covalently connected by disulfide bonds (Figure 1) (Edelman 

1973). In addition, non-covalent interactions contribute to the connection of IGH and 

IGL. While an IGH has a molecular mass of about 50 kDa, the molecular mass of an 

IGL is of about 25 kDa.  

Both the IGH and IGL chains are further divided functionally and genetically into 

variable and constant domains that show a similar structural folding (Marchalonis et al. 

2002; Ramsland and Farrugia 2002). Each chain possesses one variable domain 

(IGHV, IGLV), while the number of constant domains depends on the chain type and 

isotype. The variable domains of both chains are located at the arms of the Y-shaped 

structure (Figure 1). The variability, mediated by the first 110 amino-terminal amino 

acids, accounts for competent and highly specific antigen binding, whereby both the 

heavy and light chain variable region work together (Ramsland and Farrugia 2002; 

Torres et al. 2007). At the carboxyl terminus of the IGH, at least two constant regions 

(IGHC2 and IGHC3) are connected to the arms of the Y shaped structure. The IGHC3 

regions of both IGH interact, but steric hindrance by carbohydrate side chains inhibits 

the interaction of the IGHC2 (Ramsland and Farrugia 2002).  

In addition to flexible regions or hinge regions between the IGHC1 and IGHC2 

connection between variable and constant domain is adjustable, too. Both torsion and 

bending are possible and enable simultaneous binding of antigen structures with 

different distances, as well as the interaction with signal proteins to enable effector 

mechanisms (Porter 1973; Ramsland and Farrugia 2002). 

The proteases papain and pepsin cleave the polypeptide chain at specific amino acids 

generating fragments of different sizes (Porter 1973). While cleavage with papain 

occurs at the carboxyl terminal side of the disulfide bonds within the hinge region of an 

IgG resulting in two fragments, cleavage at the amino terminal side of the disulfide 

bonds using papain generates three fragments. The resulting fragments are named 

according to their characteristic features such as antigen binding (F(ab‘)2 fragment) and 

the ability to crystallize (Fc fragment) (Yamaguchi et al. 1995). F(ab‘)2 fragments 

contain the complete IGL, as well as the variable domain and the first constant region 

(IGHC1) of the heavy chain. They may still bind antigens. IGHC2 and IGHC3 belong to 
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the easy crystallizable Fc fragment. These regions mediate effector mechanisms after 

antigen binding.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Structure of an immunoglobulin G (IgG) 
The heavy chains are shown in blue, the light chains are red. IGLV and IGHV designate the 
variable regions of light and heavy chain. White boxes within IGLV and IGHV show the 
complementarity determining regions. The constant regions of light and heavy chain are marked 
by IGLC and IGHC1 to IGHC3. The hinge region is shown in black, disulfide bonds are colored 
in yellow. The antigen binding fragments are named Fab and Fc denominates the easy 
crystallizable fragment. Carbohydrate side chains are colored in green. 

 

The secondary and tertiary structure of all domains is similar but there are differences 

between variable and constant domains (Ramsland and Farrugia 2002). Both domains 

consist of seven stacked antiparallel beta-strands that form a beta-barrel (Figure 2). At 

the end of each beta-strand and change of direction flexible turns are generated. 

Variable domains possess one more turn than constant domains. The three turns of 

each the IGH and IGL variable domain generate the area for antigen binding and 

consist of hypervariable regions contributing to the diversity of the immunoglobulin 

repertoire as these regions are characterized by extraordinary variability. They are 

located at restricted areas at the tip of the arms of the Y-shaped molecule (Figure 1, 2). 

The three-dimensional structure of their amino acid motif is complementary to the 

three-dimensional structure of the antigen epitope and is called complementarity 

determining region (CDR1-3, Figure 2) (Wu and Kabat 1970; Decanniere et al. 2000; 

Ramsland and Farrugia 2002). The length of the CDRs varies. Especially the CDR3 of 

the heavy chain is highly variable as described in cattle (Walther et al. 2013). 
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Depending on the amino acid sequence, electrostatic interactions, hydrogen bonds, 

Van-der-Waals-forces, and hydrophobic interactions also contribute to antigen binding 

(Braden and Poljak 1995; Braden et al. 1998). The complete specificity for antigens is 

generated by the combination of IGH and IGL. 

The three hypervariable regions are interspersed by four less variable parts called 

framework regions (FR1-4). Their amino acid sequences within the variable and 

constant domain are very similar and they are responsible for stability and structure 

(Ramsland and Farrugia 2002). 

 

 

 

 

 

 

 

 

 

 
 
Figure 2: Secondary structure of the constant (left) and variable (right) domains 
There are three hypervariable loops (CDR1-3) within the IGHV and the IGLV domains that 
account for most of the structural variability of the binding site. The CDRs are colored in red. 
The β-strands build the framework. The insertion of two β-strands (3b and 3c) linked by a loop 
containing the CDR2 in the variable domain is also marked red. (Branden 1991) 

 

Immunoglobulin heavy chains 

One immunoglobulin heavy chain is composed of one variable domain and a varying 

number of constant domains. The variable region is composed of three different gene 

segments that were randomly joined together during B-cell development and finally 

possesses around 110 amino acid residues. These gene segments are the variable 

(IGHV), diversity (IGHD), and joining (IGHJ) segments existing in multiple copies at the 

heavy chain locus (Figure 3) (Taussig 1988). Numbers of the gene segments are 

species specific. For instance in human, 123-129 IGHV, 27 IGHD, and 9 IGHJ 

segments are known, whereby not all of these segments are functional (Lefranc 2001). 

Non-functional gene segments are called pseudogenes. Mutations leading to 

premature stop codons prevent the formation of functional proteins. Further, changes 

within sequence regions necessary for gene recombination such as promotor or 
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recombination signal sequences lead to potentially functional gene segments, named 

open reading frame (ORF) (Lefranc 1998).  

 

Figure 3: Genomic organization and recombination of the heavy chain gene segments 
The immunoglobulin heavy chain variable (V1-x, light red), diversity (D1-x, orange), and joining 
(J1-x, dark yellow) gene segments, as well as the constant region genes (C1-2, blue) are 
organized in separated clusters on the genome. The recombination of single gene segments 
occurs at random in multiple steps and results in the deletion of gene segments between the 
recombined ones. 

 

In general, the immunoglobulin heavy chain gene segments are located on a single 

chromosome. However, for instance in cattle there is evidence for gene segments 

located outside the major locus which are called orphan genes (Walther et al. 2013). 

Each IGHV is preceded by a leader sequence and they are grouped together upstream 

of an IGHD cluster. Downstream of IGHD, a separate cluster of IGHJ follows. The 

constant region genes are located 3’ of the IGHJ cluster (Figure 3). Each IGHC 

corresponds to a different isotype.  

The different variable gene segments are divided into several families where the 

members show sequence identities of at least 80% as recommended for mice (Brodeur 

and Riblet 1984). Families are further combined to clans. Families within one clan are 

more similar than families of different clans (Kirkham et al. 1992; Ota and Nei 1994). 

The variable gene segments of reptiles, amphibians, and mammals belong to the same 

three clans. During evolution, gene duplication and diversifications led to the variable 

gene segments known so far. 

The number of constant domains in the immunoglobulin molecule depends on the 

isotype of which five different ones are described in humans, as well as in i.e. mice, 

cattle, and horses (Berens et al. 1997). These isotpyes are known as IgM, IgD, IgG, 
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IgE, and IgA (Figure 4), whereby they are encoded by μ, δ, γ, ε, and α genes (Woof 

and Burton 2004). IgM and IgD are coexpressed in naïve B-cells due to alternative 

splicing of mRNA or class switch recombination in artiodactyls. Activation by antigen 

contact leads to a switch of isotypes which is also called class switch recombination. 

 

 

 

Figure 4: The 5 immunoglobulin isotypes and their multimers 
The immunoglobulin variable domains are shown in light red, the constant region genes are 
shown in blue. The white boxes within the variable domains indicate the complementarity 
determining regions. Green spots symbolize carbohydrate side chains. Disulfide bonds are 
shown in yellow and the hinge region is black. The red triangle indicates an additional 15 kDa 
polypeptide chain contributing to polymerization. 

 

Heavy chains of the α-, δ-, and γ-isotype possess a constant region composed of three 

domains (IGHC1, IGHC2, IGHC3) whereas the μ- and ε-isotypes have an additional 

fourth constant region (IGHC4). While IgA, IgD, and IgG possess a flexible hinge 

region, IgM and IgE achieve flexibility by bending of the antibody binding fragments 

(Mousavi et al. 1998; Janeway 2001). Furthermore, isotypes vary in the number of 

disulfide bonds between the chains, connected oligosaccharids, and length of the hinge 

region. Different sizes and compositions are characteristic for each isotpye. 

Consequently, α and γ possess 450 amino acids, whereas δ contains approximately 

500 amino acids, and μ and ε are composed of 550 amino acids. Further, the antibody 

classes may occur as monomers (membrane bound in all isotypes), dimers, or 

multimers (Fudenberg and Warner 1970; Mestecky 1972). Secreted IgM and IgA may 
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occur as pentamers in plasma or dimers in mucous secretions, respectively (Figure 4). 

The IGHCs are responsible for complement activation, Fc receptor binding, serum 

half-life, and flexibility or stabilization of the variable region (Ravetch and Kinet 1991; 

Woof and Burton 2004). 

 

Immunoglobulin light chains 

Light chains contribute to antigen binding and enlarge variability of antibodies. They 

enable the expression of the heavy chains in pre-B-cells and therefore are responsible 

for the expression of B-cell receptors, as well as of secreted antibodies (Meffre et al. 

2001). Immunoglobulin light chain constant regions support antigen recognition, 

stabilize the variable region, and are associated to the first constant region of heavy 

chain isotypes by specific amino acid residues that form an interdomain interface and 

contribute to non-covalent binding, as well as they contribute to covalent binding due to 

disulfide bonds (Padlan et al. 1986; Chen et al. 2008). 

In mammals, two isotypes of IGL exist, which are called kappa (κ) and lambda (λ) 

(Korngold and Lipari 1956). As there is no shared origin for the light chain isotypes, 

they are polyphyletic (Sitnikova and Su 1998). The ratio of the isotypes depends on the 

species. A κ:λ ratio of 2:1 is found in human and swine, mice possess a ratio of 20:1, 

whereas in cattle and horse ratios of 1:20 and 1:13 are described. Consequently, in 

cattle and horses λ-light chains are predominantly expressed (Home et al. 1992; Arun 

et al. 1996; Butler 1998). Exceptions from these immunoglobulins with either κ- or 

λ-light chain are found in chicken, camel, and shark where solely λ-light chains are 

expressed or antibodies without any light chains and heavy chain homodimers were 

found (Ford et al. 1994; Wernery 2001; Saini et al. 2003). In Xenopus laevis an 

additional IGL of σ-isotype was described (Klein et al. 2002).The light chain isotypes 

can be distinguished by specific conserved amino acid motifs (Das et al. 2008). Hence, 

this isotype occurs in more than 90% of horse serum antibodies (Gibson 1974).  

The light chain isotypes comprises of 211 to 217 amino acid residues (Janeway 2001). 

Characteristic amino acid motifs within the framework regions of the variable domain 

allow differentiation of the three IGL isotypes (Das et al. 2008). Distinctive features are 

the additional three amino acids in FR3 in σ-isotype compared to κ- and λ-light chains, 

22 amino acids within FR1 in λ-isotypes and 23 amino acids building FR1 in the 

κ-isotypes. Further, amino acids Ser and Thr are distinguished at position 7 using the 

Ensembl annotation which is based on the IMGT nomenclature (Das et al. 2008). Also 
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the amino acid residue at position 53 differentiates κ- and λ-light chains (κ: Phe/Tyr vs. 

λ: Ala/Gly). A conserved amino acid motif in λ-isotype is Asp/Glu/Ala/Asp, which is 

missing in the σ- and κ-isotypes. Beside the differences within the variable gene 

segments, differences within the joining gene segments are described (σ: Ser 4, Ser 7; 

λ and κ: Gly 4, Thr 7; κ: Thr 2, Glu-Ile-Lys/Glu-Leu-Lys 10-12; λ and σ: Thr-Val-

Leu/Thr-Val-Thr und Ile-Val-Thr 10-12). Specific amino acids at the positions 14, 32, 

34, 79, and 91 using the Ensembl annotation enable to discriminate the constant 

regions of σ-light chains from κ- and λ-light chains, while particular amino acids at 

positions 17, 56, 60, 65, and 102 are responsible for the differentiation of κ- and 

λ-isotypes (Das et al. 2008). 

Genes coding for light chain isotypes are located on different chromosomes. While 

κ- and λ-light chains show similar differences in their sequences compared to the 

σ-light chains, the genomic organization of joining gene segments and constant region 

genes of σ- and κ-light chains is analogical and differs from the organization found for λ 

(Das et al. 2008). Joining gene segments and constant region genes in σ- and κ-loci 

have an own cluster, whereas in the λ-locus joining gene segments and constant 

region genes cluster pairwise (Figure 5).  

Hitherto no functional differences were described between the light chain isotypes 

although they appear in connection to specific diseases (Das et al. 2008). For instance, 

allotypic markers of human light chains were associated with the susceptibility to 

different infectious diseases (Pandey et al. 1995; Pandey 2000; Giha et al. 2009). 
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Figure 5: Genomic organization and recombination of the light chain gene segments 
The immunoglobulin light chain variable (V1-x, light red), diversity (D1-x, orange), and joining 
(J1-x, dark yellow) gene segments, as well as the constant region genes (C/ Cx, blue) are 
organized in separated clusters on the genome. (A) Lambda light chain genes, the joining and 
constant region genes occur pairwise. (B) Kappa light chain genes, joining gene segments and 
the constant region gene are separated. The recombination of single gene segments occurs at 
random in multiple steps and results in the deletion of gene segments between the recombined 
ones. 

 

 

A 

B 
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Development of the immunoglobulin repertoire 

The vertebrate immune system is able to produce a large diversity of antibodies with 

different specificities from a relatively modest number of gene segments (Parng et al. 

1996). Therefore, immunoglobulins are a major component of the humoral immunity 

(Saini et al. 2007). Immunoglobulins are produced by B-cells, whereas each of these 

cells is specific for one antigen. Consequently, the immunoglobulin repertoire at a 

certain point in time is restricted by the number of B-cells and depends on antigen 

contacts (Janeway CA Jr 2001). 

In one individual, the repertoire of immunoglobulins is immense. Immunoglobulins are 

produced by B-lymphocytes and plasma cells and may be membrane-bound (B-cell 

receptors) or secreted proteins (antibodies), which become diversified additionally. The 

development of the whole immunoglobulin repertoire depends on different primary and 

secondary mechanisms. The original repertoire is generated by the combinatorial 

diversity due to heavy and light chain pairing, random gene rearrangements, as well as 

the junctional diversity, which introduces insertions and deletions of nucleotides at the 

recombination site. Antigen contact and effector functions of the expressed antibodies 

further increase the primary repertoire. This secondary part of diversification is based 

on somatic hypermutations, gene conversion, and class switch recombination. 

During the early development of lymphatic progenitor B-cells, variable and constant 

domains are joined together by somatic recombinations of separate heavy and light 

chain variable (IGHV, IGLV), diversity (IGHD), joining (IGHJ, IGLJ), and constant 

(IGHC, IGLC) germline components (Tonegawa 1983). In B-lymphocytes, the heavy 

chain rearrangement precedes the rearrangement of the light chains (Alt et al. 1981). 

Thus, recombination process starts within the heavy chain locus in the pro-B-cells. The 

separate gene segments rearrange together to form one complete variable domain 

exon. This process depends on recombination signal sequences (RSS) consisting of 

two conserved parts, the heptamer and the nonamer that are separated by a 12 or 

23 bp spacer. The heptamer is directly connected to the gene segment. The spacer 

length is specific for the segment type e.g. the spacer following the IGLV of the λ-light 

chain (IGVL) has 23 bp, whereas the nonamer and the heptamer of the joining 

segment (IGJL) are separated by a 12 bp spacer. Spacer lengths between heptamer 

and nonamer of the IGLV and IGLJ of the κ-light chains (IGVK and IGKJ) possess 12 

bp and 23 bp, respectively. Due to the spacer length, the heptamer and nonamer bind 

to the protein complex catalyzing the somatic recombination (Kim et al. 2015; 
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Lapkouski et al. 2015). This process follows the 12/23 rule and uses gene segments 

located on the same chromosome. During the process of recombination, the DNA 

located between the two joined segments is deleted (Sakano et al. 1979; Akira et al. 

1987). After effective rearrangement, a µ-chain is expressed and associates with 

surrogate light chains. These surrogate light chains simulate the variable and constant 

region of the light chains that are not expressed yet at this step in B-cell development. 

Their expression is caused by the transcription factors E2A and EBF. This first 

checkpoint induces the completion of the heavy chain rearrangement and results in 

allelic exclusion (Loffert et al. 1996; Melchers et al. 1999; Vettermann and Schlissel 

2010). Consequently, only one of the two alleles is expressed in one pro-B-cell. 

Subsequently, pro-B-cells divide and result in a large number of pro-B-cells that 

contain the same heavy chain and develop into pre-B-cells. The rearrangement of the 

light chain genes starts and is repeated until a productive light chain emerges. In case 

of unsuccessful recombinations of one light chain isotype, the rearrangement may also 

switch to the second light chain isotype. This process is called light chain rescue to 

prevent cell death. Also during rearrangements in the light chain genes, allelic 

exclusion and isotype exclusion occur. Therefore, just one light chain isotype is 

transcribed in one B-cell (Arakawa et al. 1996; Loffert et al. 1996; Melchers et al. 

1999). Finally, the associated µ- and light chains are expressed as B-cell receptors on 

the surface of immature B-cells. Before these immature cells leave the bone marrow 

for the periphery, they undergo several types of negative selection, such as clonal 

deletion (Nemazee and Burki 1989), receptor editing (Gay et al. 1993; Tiegs et al. 

1993), clonal anergy (Goodnow et al. 1988), or apoptosis to avoid autoreactivity 

(Levine et al. 2000). 

Beside the random combination of different variable, diversity, and joining gene 

segments a junctional diversity occurs during rearrangements by the insertion or 

deletion of nucleotides within the joining area of IGHV-IGHD, IGHD-IGHJ, IGKV-IGKJ, 

and IGLV-IGLJ, respectively. The inserted nucleotides are called N- and P-nucleotides 

that are characterized by the addition of non-encoded (N-) or palindromic (P-) 

nucleotides catalyzed by the enzymes terminal deoxynucleotidyltransferase, as well as 

RAG-proteins and the artemis enzyme complex. Further, exonucleases may delete 

nucleotides. These mechanisms result in an increased variability of nucleotides and 

amino acid residues within the CDR3 of both heavy and light chains, as well as in 

length differences. Following, the identification of the originating IGHD is sometimes 

difficult or may even be impossible in some cases. 
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The secondary diversification mechanisms, somatic hypermutation, gene conversion, 

and class switch recombination introduce changes into the sequence of functional, 

secreted antibodies (Figure 6). All these mechanisms are initiated on single stranded 

DNA by the activation induced cytidine deaminase (AID) (Di Noia and Neuberger 2002; 

Petersen-Mahrt et al. 2002; Bransteitter et al. 2003; Chaudhuri et al. 2003).  

 

 

Figure 6: Secondary diversification mechanisms 

AID: activation induced cytidine deaminase; UNG: uracil DNA glycosylase; APE1: 
apurinic/ apyrimidinic endonuclease 1 (modified from “Janeway Immunologie”, (Murphy 
2009)) 
 

Deamination of cytidine to uracil by AID results in transition mutations, one kind of 

somatic hypermutation. A second kind of somatic hypermutation, transversion 

mutation, is generated by the base excision enzyme uracil DNA glycosylase (UNG), 

which deletes the uracil generated by AID. Somatic hypermutation occurs in B-cells 

located in peripheric lymphoid tissues after stimulation by an antigen and generates 

point mutations within the complete exon of the variable region of both the heavy and 

light chains (Muramatsu et al. 2000). While silent mutations accumulate also in FRs, 

mutations affecting amino acid substitutions and protein structure are mainly found in 

the CDRs (Maizels 2005; Neuberger 2008). Certain major hotspots targeting somatic 

hypermutation are known. For instance, a cytosine (C) residue is more likely to be 

mutated if it is part of a WRCY motif (W= A or T, R= A or G, Y= T or C) and also WA 

motifs (Li et al. 2004; Wang et al. 2010). If this leads to improved affinity for antigens, 

the resulting affinity maturation of cells expressing such immunoglobulins leads to 
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further expansion. After deamination of cytidine by AID and deletion of uracil by UNG 

an abasic residue exists. This abasic residue is exised by the apurinic/ apyrimidinic 

endonuclease 1 (APE1) leading to a single strand break which is assumed to result in 

matrix-based replication and gene conversion or shifted double strand brakes and 

class switch recombination, respectively. Gene conversion also affects the complete 

variable regions. Parts of pseudogene sequences replace the original sequence, which 

is assumed to be a homology based repair mechanism characteristically found in 

chicken and rabbits. This mechanism increases antibody diversification in species with 

small number of germline gene segments for the variable region such as chicken, 

sheep, rabbits, cattle, and is assumed in horses (Reynaud et al. 1985; Reynaud et al. 

1987; Reynaud et al. 1989; Becker and Knight 1990; Reynaud et al. 1995; Parng et al. 

1996; Sun et al. 2010). Class switch recombination concerns the constant region. 

Hence, the same heavy chain variable region associates with different IGHC during 

one immune response. Once a B-cell was stimulated by an antigen, CD40 and toll like 

receptors provide the activation for B cells to undergo class switch recombination. For 

this purpose, toll like receptors on the surface of major B cells respond to microbial 

products such as lipopolysaccharides and CpG-enriched DNA. Both ligands 

(lipopolysaccharides and CpG DNA) of toll like receptors stimulate cell proliferation, 

AID expression and class switch recombination, as well as differentiation into antibody 

secreting cells by signals transduced through the toll like receptors (Edry et al. 2008; 

Pone et al. 2012). During class switch recombination, the primary IgM is replaced by 

an alternative IGHC isotype resulting in an increased functional diversity of the 

immunoglobulin molecule. This process is directed by repetitive nucleotide sequences 

(switch-regions). For instance, common elements are GGGGT, GGGCT, or GAGCT 

within the introns upstream of the IGHC and downstream of the IGHJ. Switch regions 

possess tandem repeats of short consensus elements that function as hotspot target 

for the AID. Class switches are supposed to occur by a non-homologous end joining 

mechanism. Cytokines produced by T-helper cells and dendritic cells regulate this 

intrachromosomal deletional recombination by inducing transcription form promotors 

located upstream to the acceptor switch region. Consequently, cytokines target the 

class switch recombination to a specific isotype (Stavnezer et al. 2008). In mice, IL-4 

induces the switch to IgG1 and IgE, while TGF-β induces the switch to IgG2b and IgA 

(Stavnezer and Amemiya 2004). Class switch recombination always results in 

functional immunoglobulins.  
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The nature and extent of my contribution to the work was the following: 
 
1. Equine immunoglobulins and organization of immunoglobulin genes  

Nature of contribution Extent of contribution 

1. Scientific design 70% 

2. Laboratory work - 

3. Evaluation 70% 

4. Scientific Writing 80% 

 

2. Transcriptional analysis of equine λ light chains in the horse breeds Rhenish-

German Coldblood and Hanoverian Warmblood  

Nature of contribution Extent of contribution 

1. Scientific design 50% 

2. Laboratory work - 

3. Evaluation 70% 

4. Scientific Writing 70% 
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Abstract 

Our understanding of how equine immunoglobulin genes are organized has increased 

significantly in recent years. For equine heavy chains, 52 IGHV, 40 IGHD, 8 IGHJ and 

11 IGHC are present. Seven of these IGHCs are gamma chain genes. Sequence 

diversity is increasing between fetal, neonatal, foal and adult age. The kappa light 

chain contains 60 IGKV, 5 IGKJ and 1 IGKC, whereas there are 144 IGLV, 7 IGLJ, and 

7 IGLC for the lambda light chain, which is expressed predominantly in horses. 

Significant transcriptional differences for IGLV and IGLC are identified in different 

breeds. Allotypic and allelic variants are observed for IGLC1, IGLC5, and IGLC6/7, and 

two IGLV pseudogenes are also transcribed. During age development, a decrease in 

IGLVs is noted, although nucleotide diversity and significant differences in gene usage 

increased. The following paper suggests a standardization of the existing nomenclature 

of immunoglobulin genes. 

 

Keywords: horse, immunoglobulin genes, immunoglobulin heavy and light chains, 

allotype, diversity, equine developmental stages 
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1. Introduction 

 

Equine immunoglobulins have played a key role throughout the history of human and 

veterinary immunology. Since the 19th century, horses have been important blood 

donors for serum therapy in heterospecific hosts. In the early 20th century, common 

horse serum or serum from immunized horses was produced, especially for the 

treatment and prophylaxis of diphtheria in humans (Bingel, 1918; Daniels, 1921). Later, 

horses assisted with the production of sera not only for the treatment of diphtheria but 

also for the treatment of other human infectious diseases such as tuberculosis, 

tetanus, and pneumonia (Behring von, 1918; Cole and Moore, 1917; Glatman-

Freedman and Casadevall, 1998; Winau and Winau, 2002). Albert Calmette employed 

this method to produce antivenoms against poisonous bites from snakes and spiders 

(Calmette, 1896; Hawgood, 1999). Today, equine immunoglobulins are also used to 

support immunosuppression after organ or stem cell transplantation, or to manage 

autoimmune diseases in humans (Leleu et al., 2006; Zand, 2006). However, repeated 

systemic injections of hyperimmune sera or polyclonal and monoclonal antibodies from 

different species resulted in serum sickness and therefore, were not a feasible option 

for repeated therapy (Lang et al., 2000; Theakston et al., 2003). Early studies on the 

structure and function of equine immunoglobulins have already generated a 

considerable amount of data on the characterization of equine immunoglobulin genes 

and their genomic organization (Helms and Allen, 1970; Hill and Cebra, 1965; Pahud 

and Mach, 1972; Rockey, 1967; Sandor et al., 1964a; Vaerman et al., 1971; Wagner, 

2006; Weir et al., 1966; Zolla and Goodman, 1968). As is known for humans and mice 

(Edelman, 1973), and nearly all jawed vertebrates, equine immunoglobulins are 

heterotetramers with two identical heavy and light chains. Both of them can be divided 

functionally and genetically into a variable region and a constant region. The variable 

regions are created by the random fusion of germline variable (V), diversity (D), and 

joining gene segments (J) that are combined with a constant region gene (Tonegawa, 

1983), which are found in species-specific numbers in the genome. The 

immunoglobulin diversity depends on several processes of combinatorial and junctional 

diversity due to the imprecise joining of the single gene segments and non-templated 

or palindromic nucleotide insertions between two adjacent gene segments, as well as 

somatic hypermutations. In addition, several secondary mechanisms such as gene 

conversion and isotype switch may increase diversity further. The resulting variable 

regions of the heavy and light chains together are responsible for antigen binding. 
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Highly specialized, complementary determining regions form a perfect counterpart of 

the antigen epitope and are stabilized by conserved framework regions (Kabat and Wu, 

1991). The repertoire of immunoglobulins in one individual is immense because they 

are produced by B-lymphocytes and plasma cells and may be membrane-bound (B-cell 

receptors) or secreted proteins (antibodies), which additionally become diversified. In 

B-lymphocytes, the heavy chain rearrangement precedes the rearrangement of the 

light chains (Alt et al., 1981). In mammals there are two types of light chains – the 

lambda and kappa light chains – which are expressed in species-specific ratios. In 

contrast to humans and mice, where the kappa isotype dominates in serum antibodies, 

the lambda isotype is predominantly found in cattle and horses (Almagro et al., 1998; 

Arun et al., 1996). In addition to what is already known about the general structural 

features of equine immunoglobulins and their function, most recent studies on diversity 

provide the scientific basis for the production of highly specific and effective 

recombinant antibodies or antibody libraries. 
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2. Immunoglobulins in equine offspring 

 

Evidently, as early as in the equine fetus, an initial B-cell repertoire is developed 

despite the lack of exogenous antigenic stimulation (Tallmadge et al., 2009). 

Corresponding antibodies such as IgM, IgG1, and IgG4/7 are detectable on a limited 

scale at birth. Nevertheless, newborn foals are immunocompetent but do not possess 

an effective humoral immunity to infections and, therefore, depend on the absorption of 

maternal colostral immunoglobulins by specialized cells lining the small intestine 

(Jenvey et al., 2012). During the first 6 h after birth, absorption is highest and 

decreases gradually within 24 h (Franz et al., 1998). After this time, absorption of 

antibodies is no longer possible (McGuire and Crawford, 1973) leading to the rapid 

decrease of IgA and IgG levels in the mare´s milk for the first days after parturition. 

Failure of passive transfer (FPT) – meaning the insufficient transfer of immunoglobulins 

via the mare´s colostrum in the first 12-24 h after birth – results in a considerably higher 

risk of sepsis, bacteremia and localized infections (Haas et al., 1996; Koterba et al., 

1984). Both the foal and the dam may suffer from FPT, which could be attributed to 

poor colostrum quality, lack of colostrum ingestion, poor intestinal absorption or a 

combination of these factors (Drogoul et al., 2008). At least 60 g of Ig/l are regarded as 

a sufficient quality colostrum (Drogoul et al., 2008). Nevertheless 23% to 32% of mares 

produce colostrum of low qualities (LeBlanc et al., 1992). With up to 70%, IgG is the 

main isotype present (Turtinen and Allen, 1982). An average of about 100 g IgG is 

secreted per lactation. Furthermore, colostrum comprises 20% IgA that shows limited 

absorption but has a local protective local function within the digestive tract of newborn 

foals (Sedlinska et al., 2006). Similarly, horse type and breed are known to have an 

influence on the overall Ig concentration. Arabian and Quarter Horse mares show 

better colostrum qualities than Thoroughbred and Standardbred (Leblanc and Tran, 

1987). Six hours after delivery, Haflinger exhibit higher whey protein amounts than 

Arabian and Trotter, but these quantities decrease more rapidly (Civardi et al., 2002). 

Age and rank of lactation, nutrition and body condition of mares, as well as vaccination 

programs, season, and temperature may be further variables concerning colostrum 

quality (Drogoul et al., 2008). 

After maternal colostrum antibodies disappear and the appropriate antigenic 

stimulation is provided, the active antibody synthesis begins in the foal. The immune 

system starts the production of IgM followed by the other Ig classes (Wagner, 2006). 
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Endogenous IgG and IgA synthesis begins within the first four weeks of life. Stable 

levels were reached by 8 weeks of age (IgGa), 12 weeks of age (IgG(T) and IgA), and 

51 weeks of age (IgGb) (Holznagel et al., 2003). 

 

3. The equine immunoglobulin heavy chain gene locus 

 

In silico analyses identified the heavy chain locus on two unplaced contigs, which are 

called Un0011 and Un0038 (Fig. 1a and b, Tables 1-3). The nomenclature used in 

previous studies to denominate Ig heavy and light chain gene segments varied, 

although they conformed to current definitions by the international ImMunoGeneTics 

(IMGT) information system, as well as to the WHO–IUIS Nomenclature Subcommittee 

for immunoglobulins and T-cell receptors (Hara et al., 2012; Lefranc, 2001b, 2007; Sun 

et al., 2010; Tallmadge et al., 2014; Tallmadge et al., 2013). Nevertheless, in the 

designation system (Tallmadge et al., 2014) used most recently, pseudogenes and 

open reading frames are not indicated precisely. This led us to propose a 

supplemented taxonomical designation for all known Ig heavy and light chain genes 

investigated in the most recent studies (Sun et al., 2010; Tallmadge et al., 2013; 

Wagner et al., 2006), which is shown in Tables 1-10 and in Figs 1-3. The gene 

segments IGHV/IGLV/IGKV, IGHD, IGHJ/IGLJ/IGKJ, IGHC, IGLC, and IGKC (without 

superscript letters) are potentially functional variable gene segments. Superscript ORF 

was used to indicate variable gene segments with open reading frames that have either 

a defect in splicing sites, recombination signal sequence (RSS) and/or regulatory 

elements, and/or changes to the conserved amino acids, and therefore have been 

suggested to lead to incorrect folding (Lefranc, 1998). Superscript P indicates pseudo-

variable gene segments. The genes were named according to the subgroup they 

belong to (Sun et al., 2010) and their number within this subgroup. The former ‘VH1’ 

was renamed ‘IGHV1S1’ to designate sequence 1 of subgroup 1. Based on >75% 

nucleotide identity 28 subgroups were established for the 40 IGHD genes and 2 

subgroups were established for the 8 IGHJ genes. The classification of variable genes 

followed previous research. In Sun et al. (2010) and Tallmadge et al. (2013) sequences 

with at least 75% identity were grouped to the same family (Giudicelli and Lefranc, 

1999). Their genes were named accordingly (Tallmadge et al., 2013). However, for 

future analyses we suggest to use 80% nucleotide identity as already recommended in 

1984 for mouse immunoglobulin genes (Brodeur and Riblet, 1984). The IGHC 
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nomenclature also conforms to IMGT. Positions identified on several contigs are listed 

as well. The contigs are Un0011/NW_001876796, *Un0388/NW_001871527, 

**NW_001869767, and ***NW_001872990. The variable gene segments that were not 

classified into subgroups because they were too divergent or truncated are marked 

with n.c. (Sun et al., 2010). 
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Fig. 1: Map of the equine heavy chain gene segments 
(A) Within the scaffold Un0011 (NW_001876796), IGHV, IGHD and IGHJ gene clusters span a 
510 kb region. (B) Scaffold Un0388 (NW_001871527) contains two potentially functional IGHVs 
(IGHV4S5 and IGHV2S4, according to the supposed designation), one IGHV ORF 
(IGHV1S4ORF) and one IGHVᴪ (IGHV4S16P). (C) Map of the IGHC region of the horse, 
indicating the order of the eleven IGHC genes (adapted from Wagner et al., 2004). Boxes 
indicate IGHC genes. This map is adapted from Wagner et al. (2004) and Sun et al. (2010) to 
ensure that the newly proposed nomenclature (Tables 1-4) is designated to the respective 
positions on the locus. IGHV without superscript letters are potentially functional variable gene 
segments. Superscript ORF indicates variable gene segments with open reading frames that 
either have a defect in splicing sites, RSS and/or regulatory elements, and/or changes to the 
conserved amino acids, and therefore have been suggested to lead to incorrect folding 
(Lefranc, 1998). Superscript P indicates pseudo-variable gene segments. 

 

 

The heavy chain contig Un0011 contains 50 variable gene segments (IGHV), 40 

diversity gene segments (IGHD), as well as eight joining gene segments (IGHJ). 

Twelve out of 50 IGHV were described as functional, whereas 33 IGHV were defined 

as pseudogenes. Five open reading frames (ORF) were also described by Sun and 

coworkers. Two additional functional IGHV, as well as one ORF and one pseudogene 

were identified on Un0038 (Sun et al., 2010). All IGHV, IGHJ, and IGHC show the 

same transcriptional orientation (Fig. 1a, b). Most of the IGHV segments are flanked by 

23 bp-spaced RSSs at their 3’ends, except IGHV7S1, IGHVxS1P, IGHVxS2P, 

IGHVxS7P, IGHVxS8P, IGHV3S7P, and IGHV1S5P, which either lack the nonamer or 

carry spacers shorter than 23 bp. The segments IGHV1S6 and IGHV4S17 were 

identified on the unplaced contigs NW_001869767 and NW_001872990, respectively 

(Table 1) (Tallmadge et al., 2013). IGHJ2S1 and IGHJ1S4 have 22 bp-spaced RSSs at 

their 5’ends. The remaining 6 IGHJs show 23 bp-spaced RSSs. All the IGHDs have 12 

bp-spaced RSSs on both sides (Sun et al., 2010). With 40 IGHD identified, horses 

belong the mammalian species that possess the most IGHD. For instance, in guinea 

pig and the African elephant 41 and 87 IGHD gene segments were identified so far 

(Guo et al., 2011; Guo et al., 2012). 

The equine immunoglobulin heavy chain constant region gene locus was localized on 

chromosome 24 (ECA24qter) and comprises 11 genes. All five isotypes known from 

humans were also identified in horses (Fig. 1c, Table 4). The entire equine IGHC 

region is located on a minimum of two overlapping clones from the CHORI-241 Horse 

Bacterial Artificial Chromosome library, suggesting that the size of the IGHC region is 

250–350 kb (Wagner et al., 2004). 
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Table 1: Nomenclature of the equine IGHV gene segments 

IGHV  
subgroup 

Designation 
Sun et al. 2010 

Designation 
Tallmadge et al. 
2013 

Proposed  
designation 

Genome 
Position 

1 VH1 IGHV1S1 IGHV1S1 349128-349423 

1 VH6 IGHV1S2 IGHV1S2 211197-211492 

1 VH7 IGHV1S3 IGHV1S3 175891-176186 

1 VHORF6 IGHV1S4 IGHV1S4ORF 7876-8169* 

1 pVH24 IGHV1S5 IGHV1S5P 126998-127283 

1 Novel Vha IGHV1S6 IGHV1S6 38420-38913** 

2 VH2 IGHV2S1 IGHV2S1 322988-323280 

2 VH4 IGHV2S2 IGHV2S2 254382-254674 

2 VH5 IGHV2S3 IGHV2S3 237777-238067 

2 VH14 IGHV2S4 IGHV2S4 19736-20028* 

3 VHORF1 IGHV3S1 IGHV3S1ORF 283617-283909 

3 VHORF4 IGHV3S2 IGHV3S2ORF 132488-132804 

3 VHORF5 IGHV3S3 IGHV3S3ORF 110030-110316 

3 pVH8 IGHV3S4 IGHV3S4P 330696-330991 

3 pVH9 IGHV3S5 IGHV3S5P 303932-304217 

3 pVH14 IGHV3S6 IGHV3S6P 227389-227680 

3 pVH17 IGHV3S7 IGHV3S7P 203930-204210 

3 pVH21 IGHV3S8 IGHV3S8P 172321-172616 

3 pVH23 IGHV3S9 IGHV3S9P 147144-147434 

3 pVH27 IGHV3S10 IGHV3S10P 79642-79940 

4 VH3 IGHV4S1 IGHV4S1 280198-280496 

4 VH9 IGHV4S2 IGHV4S2 156258-156556 

4 VH11 IGHV4S3 IGHV4S3 100632-100927 

4 VH12 IGHV4S4 IGHV4S4 75777-76072 

4 VH13 IGHV4S5 IGHV4S5 4967-5265* 

4 VHORF2 IGHV4S6 IGHV4S6ORF 232063-232361 

4 pVH4 IGHV4S7 IGHV4S7P 370921-371206 

4 pVH5 IGHV4S8 IGHV4S8P 344891-345187 

4 pVH12 IGHV4S9 IGHV4S9P 266901-267198 

4 pVH13 IGHV4S10 IGHV4S10P 248659-248968 

4 pVH15 IGHV4S11 IGHV4S11P 223950-224266 

4 pVH22 IGHV4S12 IGHV4S12P 169462-169754 

4 pVH26 IGHV4S13 IGHV4S13P 87064-87357 

4 pVH28 IGHV4S14 IGHV4S14P 59569-59865 

4 pVH29 IGHV4S15 IGHV4S15P 54540-54838 

4 pVH34 IGHV4S16 IGHV4S16P 13567-13866* 

4 Novel VHb IGHV4S17 IGHV4S17 11760-12258*** 

5 VHORF3 IGHV5S1 IGHV5S1ORF 165239-165534 

6 VH8 IGHV6S1 IGHV6S1 159437-159729 
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IGHV  
subgroup 

Designation 
Sun et al. 2010 

Designation 
Tallmadge et al. 
2013 

Proposed  
designation 

Genome 
Position 

7 VH10 IGHV7S1 IGHV7S1 141209-141509 

n.c. pVH1  IGHVxS1P 400324-400623 

n.c. pVH2  IGHVxS2P 385845-386119 

n.c. pVH3  IGHVxS3P 375741-376041 

n.c. pVH6  IGHVxS4P 339915-340211 

n.c. pVH7  IGHVxS5P 333740-334025 

n.c. pVH10  IGHVxS6P 301302-301579 

n.c. pVH11  IGHVxS7P 277258-277526 

n.c. pVH16  IGHVxS8P 217225-217491 

n.c. pVH18  IGHVxS9P 200550-200817 

n.c. pVH19  IGHVxS10P 188124-188419 

n.c. pVH20  IGHVxS11P 185173-185466 

n.c. pVH25  IGHVxS12P 89740-89991 

n.c. pVH30  IGHVxS13P 47308-47605 

n.c. pVH31  IGHVxS14P 35699-35979 

n.c. pVH32  IGHVxS15P 24565-24859 

n.c. pVH33  IGHVxS16P 19976-20184 

Un0011 NW_001876796 
*Un0388=NW_001871527 
**NW_001869767 
***NW_001872990 
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Table 2: Nomenclature of the equine IGHD gene segments 

IGHD  
subgroup 

Designation 
Sun et al. 2010 

Designation 
Tallmadge et al. 
2013 

Proposed  
designation 

Genome 
Position 

1 DH1 IGHD1S1 IGHD1S1 415757-415787 

2 DH2 IGHD2S1 IGHD2S1 417275-417293 

3 DH3 IGDH3S1 IGDH3S1 417450-417497 

4 DH4 IGHD4S1 IGHD4S1 419955-419986 

5 DH5 IGHD5S1 IGHD5S1 422080-422110 

5 DH10 IGHD5S2 IGHD5S2 430784-430814 

5 DH15 IGHD5S3 IGHD5S3 441806-441836 

5 DH21 IGHD5S4 IGHD5S4 453012-453042 

5 DH25 IGHD5S5 IGHD5S5 459989-460019 

5 DH28 IGHD5S6 IGHD5S6 466318-466348 

6 DH6 IGHD6S1 IGHD6S1 423268-423286 

7 DH7 IGHD7S1 IGHD7S1 423733-423761 

7 DH17 IGHD7S2 IGHD7S2 445696-445724 

8 DH8 IGHD8S1 IGHD8S1 426759-426777 

8 DH16 IGHD8S2 IGHD8S2 443012-443030 

8 DH19 IGHD8S3 IGHD8S3 447486-447504 

9 DH9 IGHD9S1 IGHD9S1 428333-428363 

10 DH11 IGHD10S1 IGHD10S1 433564-433589 

11 DH12 IGHD11S1 IGHD11S1 435422-435455 

12 DH13 IGHD12S1 IGHD12S1 436872-436890 

12 DH37 IGHD12S2 IGHD12S2 486726-486744 

13 DH14 IGHD13S1 IGHD13S1 439594-439631 

14 DH18 IGHD14S1 IGHD14S1 446390-446423 

15 DH20 IGHD15S1 IGHD15S1 450401-450433 

15 DH27 IGHD15S2 IGHD15S2 463956-463987 

16 DH22 IGHD16S1 IGHD16S1 454814-454843 

17 DH23 IGHD17S1 IGHD17S1 456420-456444 

17 DH26 IGHD17S2 IGHD17S2 461177-461201 

18 DH24 IGHD18S1 IGHD18S1 457832-457861 

19 DH29 IGHD19S1 IGHD19S1 467519-467540 

20 DH30 IGHD20S1 IGHD20S1 471601-471618 

20 DH40 IGHD20S2 IGHD20S2 490706-490721 

21 DH31 IGHD21S1 IGHD21S1 475562-475586 

22 DH32 IGHD22S1 IGHD22S1 477123-477153 

23 DH33 IGHD23S1 IGHD23S1 478925-478957 

24 DH34 IGHD24S1 IGHD24S1 480174-480192 

25 DH35 IGHD25S1 IGHD25S1 483056-483084 

26 DH36 IGHD26S1 IGHD26S1 485482-485512 
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IGHD  
subgroup 

Designation 
Sun et al. 2010 

Designation 
Tallmadge et al. 
2013 

Proposed  
designation 

Genome 
Position 

27 DH38 IGHD27S1 IGHD27S1 489459-489477 

28 DH39 IGHD28S1 IGHD28S1 489958-489978 

Un0011 NW_001876796 

 

 

Table 3: Nomenclature of the equine IGHJ gene segments 

IGHJ  
subgroup 

Designation 
 Sun et al. 2010 

Designation 
Tallmadge et al. 
2013 

Proposed  
designation 

Genome 
Position 

1 JH1 IGHJ1S1 IGHJ1S1 504144-504197 

1 JH3 IGHJ1S2 IGHJ1S2 504660-504713 

1 JH4 IGHJ1S3 IGHJ1S3 505003-505050 

1 JH5 IGHJ1S4 IGHJ1S4 505280-505330 

1 JH6 IGHJ1S5 IGHJ1S5 505855-505908 

1 JH7 IGHJ1S6 IGHJ1S6 506275-506331 

1 JH8 IGHJ1S7 IGHJ1S7 506729-506782 

2 JH2 IGHJ2S1 IGHJ2S1 504350-504402 

Un0011 NW_001876796 
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Table 4: Nomenclature of the equine IGHC genes  

Original  
nomen-clature 

Current  
desig-nation 

Gene Allel 
Genome Position  
on NW_001876796 

IgM IgM IGHM M_02 519420-524201 

    
514993-518108 

   
M_01 516522-517025 

    
515374-515717 

IgD IgD IGHD 
 

531198-534510 

    
526129-527334 

IgGa IgG1 IGHG1 
 

576506-576800 

    
577273-577607 

    
577685-578019 

   
G1_01 576506-578019 

 
IgG2 IGHG2 

 
608720-610787 

    
625782-627849 

IgG(T) IgG3 IGHG3 G3_01 651171-651465 

    
651958-652292 

    
652361-652695 

   
G3_02 650866-653171 

 
IgG7 IGHG7 G7_01 674467-676688 

   
G7_02 674945-676422 

IgGb IgG4 IGHG4 G4_02 674954-676422 

    
651171-651701 

   
G4_01 674827-676691 

IgGc IgG6 IGHG6  698724-700204 

    651171-651723 

IgG(T) IgG5 IGHG5  730626-732347 

IgGB     

IgE IgE IGHE E_01 754864-756464 

   E_02 756129-756464 

    755315-755639 

    755732-756058 

    754864-755155 

   E_03 756129-756585 

    755732-756058 

   E_04 756129-756551 

    755732-756058 

    755315-755639 

    754858-755155 

IgA IgA IGHA  766888-768383 

    768662-769379 
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3.1. IgM 

 

IgM is the first isotype that appears phylogenetically, as well as ontogenetically. It is the 

first immunoglobulin produced by fetuses. This isotype is responsible for the primary 

immune response. IgM may be bound to the membrane as a monomer or secreted as 

a pentameric molecule with high avidity. IgM, as well as IgG, is present in the plasma 

(Tallmadge et al., 2009).  

The equine IGHM locus spans 1472 bp coding for 451 amino acid residues (Fig. 1c, 

Table 4). This isotype exhibits six potential N-glycosylation sites. Similar to IgE, no 

separated hinge region was identified. To enable flexibility of this istopye, the second 

constant region may act as hinge. The third and fourth constant regions of IgM are 

conserved even between different species, which indicates a specific role of IgM in 

complement activation (Schrenzel et al., 1997). 

 

 

3.2. IgD 

 

Although the importance of this isotype remains unclear and a receptor-like function is 

supposed, constant region genes coding for IgD are not restricted to primates and 

rodents. After successful description of the IgD isotype in cattle, sheep and swine, IgD 

was also identified in horses (Wagner et al., 2004; Zhao et al., 2002). The equine IgD 

locus was identified 5 kb downstream of the genes coding for IgM (Fig. 1c, Table 4). 

The entire genomic locus spans about 9.1 kb and contains eight exons that are: CH1, 

two exons coding for the hinge region, CH2, CH3, one exon for the secreted molecule, 

as well as two exons for the transmembrane anchor; the first of which contains a 

specific splicing site. For IgD, the secreted form consists of 391 amino acid residues 

and the transmembrane form of 418 amino acid residues. The coding nucleotide 

sequences of CH1 to CH3 exons show sequence identities of 64% to human and 

porcine IgD genes and 61% to bovine and ovine IgD genes. In analogy to the human 

IgD, there is no switch-region between the genes coding for IgM and IgD, indicating 

that there is an alternative splice mechanism (Wagner et al., 2004). In contrast, a 

c-switch region has only been identified for cattle and pig (Zhao et al., 2002; Zhao et 

al., 2003). 
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3.3. IgG 

 

The IgG isotype is considered to be the most versatile immunoglobulin in all mammals 

and birds. Only in the porcine immune system has a similarly high number of eleven 

genomic constant region genes representing six putative subclasses been described 

(Fig. 1c, Table 4) (Butler et al., 2009). IgG performs all functions of a typical 

immunoglobulin molecule such as antigen binding, complement fixation, and binding to 

various cells like phagocytic cells, lymphocytes, platelets, mast cells, and basophils. It 

contributes about 75% of the antibodies. The isotype was defined at a biochemical and 

serological level and the different genomic elements were characterized. The 

subclasses IgGa, IgGb, IgGc, IgG(T), and IgG(B) were classified (Klinman et al., 1965; 

Rockey, 1967; Rockey et al., 1964; Sandor et al., 1964b; Sheoran and Holmes, 1996; 

Widders et al., 1986) according to their antigenic differences and their serological and 

electrophoretic properties. Restriction enzyme analyses of the genomic DNA of horse 

lambda phage clones, deletion analyses of heterohybridomas, and nucleotide 

sequencing of individual IGHC genes revealed six constant region genes in the equine 

haploid genome (Overesch et al., 1998; Wagner et al., 2006). The characterization of 

the complete IGHC region and the analysis of 34 overlapping genomic clones from the 

CHORI-241 BAC library revealed seven constant region genes of equine IgG (Table 4) 

and constituted the current repertoire of IgG IGHCs based on their sequences, 

phylogeny, and homologous structures (Wagner et al., 2002; Wagner et al., 2004). 

Multiple duplications, gene conversions, and crossovers are supposed to explain these 

seven IgG isotypes, which are unique in all species investigated. IgG4 and IgG7 seem 

to be the latest duplication events in evolution as their sequences show 96% identity. 

As available reagents are insufficient for differentiation, isotypes IgG2 and IgG7 could 

not yet be diversified in serum and other body fluids (Wagner et al., 2006). The 

individual subclasses possess specific roles in protective immunity. Thus, the FcγR and 

complement-binding isotypes IgG1, IgG4, and IgG7 (former IgGa and IgGb) contribute 

to the protection against several equine pathogens such as equine influenza virus 

(Breathnach et al., 2006; Nelson et al., 1998), Streptococcus equi (Sheoran et al., 

1997) and Rhodococcus equi (Lopez et al., 2002). In addition, systemic and mucosal 

IgG responses were described to play an important role in limiting the spread and 

severity of equine herpes virus 1 (Kydd et al., 2006). Although IgG4 and IgG7 

represent the dominating serum antibodies, these isotypes are rarely found in clinically 

healthy horses (Keggan et al., 2013). 
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All these seven IgG subclasses were expressed in vivo (Wagner et al., 2004). Based 

on these insights, the first recombinant versions of all seven equine IgG subclasses 

(mouse -light chains, horse IGHG1-7) were expressed in Chinese Hamster Ovary 

cells to analyze their individual physical and biological properties (Lewis et al., 2008). In 

contrast to these first recombinant equine immunoglobulins, which were expressed for 

functional analyses, seven distinct monoclonal equine antibodies (IgM, IgG1, IgG3, 

IgG4/7, IgG5, IgG6, and IgE) were produced in equine-murine heterohybridomas to be 

used for quantification of isotypes in diagnostic testing and immunological research 

(Keggan et al., 2013). 

All recombinant IgGs were N-glycosylated and maintained the affinity for their antigen. 

Heavy and light chains assembled in intact IgG were stabilized by interchain disulfide 

bridges except in a small proportion of IgG4 and 7. Complete IgG molecules 

possessed molecular weights of approximately 150 kDa. Nevertheless, differences in 

complement activation, Fc-receptor binding and the bacterial protein binding capacity 

between the IgG isotypes were observed. IgG3 showed O-glycosylation in addition to 

N-glycans. As its hinge region is rich in Proline at position -1 and +3 relative to 

Threonine residues, which are known sites for O-glycan attachment, O-glycans may be 

attached to the hinge region of the equine IgG3 (Lewis et al., 2008; Wilson et al., 

1991). In IgG4, IgG6, and IgG7 the Cystein equivalent to the human Cys131 was 

missing within the CH1 region. Disulfide bond formation – with a Cystein at position 

220 in the upper hinge region – is assumed to support the formation of intact IgG. 

Amino acid substitutions at key positions (234-239, 251-154, 270, 311, 314, 318, 320, 

322, 329, 331, 380, 382, 428, 432-436, 438) of the IgG molecule, which is responsible 

for binding to protein A and G, were described (Lewis et al., 2008). IgG1, IgG3, IgG4, 

IgG5, and IgG7 elicited strong respiratory burst activity in equine peripheral blood 

leukocytes (PBL), indicating an efficient interaction with FcγR. In contrast, IgG2 and 

IgG6 induced little or no response. Apparently, they are unable to interact with FcγR. 

An amino acid residue motif at the N-terminus of the CH2 domain (Leu234-Leu235-

Gly236-Gly237-Pro238-Ser239) seemed to be involved in Fc-receptor binding. In 

complement activation, IgG1, IgG3, IgG4, and IgG7 showed positive reactions, 

whereas IgG2, IgG5, and IgG6 failed. Responsible C1q binding sites appeared not to 

be conserved between different mammalian species, but there was a Lysine 

corresponding to human and mouse Lysine at position 322, which was found in all 

complement activating equine IgG, as well as in IgG6, but Lys322 was replaced by 

Serine in IgG2 and IgG5 (Keggan et al., 2013; Lewis et al., 2008). 
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Evidently, IgG plays an important role both in serum and mucosal compartments in 

horses. Therefore, the summarized considerations appear to be relevant to systemic 

and mucosal vaccination strategies. IgG antibodies of the subclasses IgG1, IgG3, 

IgG4/IgG7 should be induced by vaccines to achieve maximal protection via FcγR and 

complement-mediated elimination mechanisms. Less effective protection is provided by 

vaccines that trigger only IgG2, IgG5 or IgG6 antibodies (Lewis et al., 2008). 

 

 

3.4. IgE 

 

IgE is the least common serum immunoglobulin isotype (Oethinger et al., 1997). 

Besides the immune response against parasites, IgE is also known to be responsible 

for type 1 allergies and resulting diseases like summer eczema, urticaria, COPD 

(recurrent airway obstruction) or head shaking (Wagner et al., 2006). For primary 

investigations, equine IgE was prepared from the serum of foals suffering from 

endoparasitic infections (Suter and Fey, 1981). Compared to humans, horses revealed 

a high concentration of IgE in serum (Wagner et al., 2006). The constant region gene is 

located between the constant region genes coding for IgG5 and IgA, and it contains 

four exons. Similar to IgM, there is no separated hinge region for IgE and the second 

constant region enables flexibility. The switch region is located 2-4 kb upstream of the 

constant region gene. Three haplotypes are described differing in two SNPs, which 

result in two amino acid residue substitutions (Fig. 1c, Table 4) (Navarro et al., 1995; 

Wagner et al., 2006). The polymorphic character of the IgE genes may influence 

effector functions, binding mast cells and basophils, and finally the level of allergic 

reactions. 

 

 

3.5. IgA 

 

IgA dominates in the mucosal immune response of respiratory, gastrointestinal and 

genitourinary tracts (Souza et al., 2010). In body fluids such as milk, nasal secretions 

and saliva, it appears as a dimeric secreted molecule and is called secretory IgA. In 

serum it shows itself in monomeric form (Sheoran et al., 1997; Wagner et al., 2003). 

IgA produced by B1 lymphocytes represents a T-lymphocyte independent source of 

IgA, which recognizes commensal bacteria. IgA produced by B2 lymphocytes in the 
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mucosal-associated lymphoid tissues represents T-dependent secreted IgA, e.g. 

directed against exotoxins (Macpherson et al., 2000). 

The IgA locus possesses three exons, two introns, and one hinge region. This hinge 

region is an extension of the CH2 sequence. Within the equine IGHC region, IGHA is 

the most 3’located gene (Fig. 1c, Table 4). The switch region is located 1.4 kb 

upstream of the constant region genes coding for IgA. Phylogenetic comparisons show 

a common cluster with the IgA genes of humans, dogs, swine, cattle, and sheep. In 

contrast to rabbits possessing 13 subclasses of IgA and humans with two subclasses 

of IgA, horses have only one IgA class (Burnett et al., 1989; Mestecky et al., 2004; 

Wagner et al., 2003). 

Investigations concerning the concentration of IgA in serum showed significantly lower 

IgA quantities in sport horses when compared to extensively reared horses (Souza et 

al., 2010). Comparable amounts of IgA were found in the colostrum of Warmblood and 

Standardbred mares after parturition (Kohn et al., 1989). In milk, the reduced IgA 

concentration is likely due to passively transferred IgA, which was observed in a similar 

way for IgG (Jenvey et al., 2012). Once the window for absorbing maternal IgA has 

passed, IgA levels in the mare’s milk persisted but the significance of this observation 

is yet to be fully established. However, investigations in human neonates demonstrated 

that IgA and other factors within breast milk may provide an ongoing contribution to 

local passive protection and immunological development (Corthesy, 2007). Equine 

serum and secretory IgA was quantified in Shetland ponies 182 days after parturition. 

While IgG levels decreased with time after parturition, IgA levels increased until IgA 

was the predominant immunoglobulin (McGuire and Crawford, 1972). In contrast, the 

quantity of IgA in colostrum and milk from Thoroughbred mares rapidly decreased 

during the first 19 days after parturition, and fluctuated at this level until day 60 p.p. 

(Jenvey et al., 2012). 
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4. Equine immunoglobulin light chain gene loci 

 

As known from other mammals, horses also express two isotypes of light chains ( and 

) differentiated by isotype-specific amino acid residue motifs, antigenic properties, and 

chemical structure. In contrast to other mammals, 95% of the equine serum antibodies 

combine -light chains with the heavy chains, although the reason for this phenomenon 

is not yet clear (Gibson, 1974; Home et al., 1992). The assumption that amino acid 

residue substitutions in IGKC result in structures with reduced binding efficiency to the 

heavy chains was not verified (Ford et al., 1994; Sun et al., 2010). Therefore, a 

correlation between the number of IGLV gene segments and the preferred usage of a 

particular isotype is supposed. The -light chain locus was mapped on equine 

autosome 8 (ECA8) and the gene segments of the -light chain were located on 

ECA15 (Das et al., 2008).  

First studies on the organization of the equine light chain loci revealed a restricted 

number of variable gene segments for both isotypes. The assembly of variable, joining, 

and constant region genes was also found to be similar to other species (Ford et al., 

1994; Home et al., 1992). Today 144 IGLV, 7 IGLJ and 7 IGLC are identified within 

1310 kb on ECA8 (Fig. 2, Tables 5-7). Each of the 7 IGLJ is preceded by one IGLC 

and there are two clusters of IGLV possessing different transcriptional orientations. 

Within each IGLV cluster there are functional genes and pseudogenes (Sun et al., 

2010). Similarly, pseudogenes are described in different species such as chicken, 

where it is already known that pseudogenes are used for gene conversion (Reynaud et 

al., 1985). 

As there were differences in the nomenclature, we also suggest a supplemented 

designation for the light chain gene segments (Tables 5-7). The name of Ig lambda 

light chain variable (IGLV) and joining (IGLJ) gene segments were assigned according 

to IMGT nomenclature guidelines; the international ImMunoGeneTics information 

system (www.imgt.org). The genes were named according to the subgroup they belong 

to (Sun et al., 2010) and their number within this subgroup. Furthermore, to denote 

open reading frames or pseudogenes, sequence names were complemented by 

superscript ORF and P, respectively. The former ‘Vλ1’ was renamed ‘IGLV1S1’ to 

designate sequence 1 of subgroup 1. In analogy, IGLJ and IGLC genes were 

designated IGLJ1S1 through IGLJ7S1 and IGLC1S1 through IGLC7S1, instead of 

‘‘Jλ1’’ and ‘‘Cλ1’’, which is consistent with the human nomenclature of Ig lambda genes 
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(Hara et al., 2012; Lefranc, 2001a; Sun et al., 2010; Tallmadge et al., 2014). Positions 

identified on several contigs are also listed. The contigs are NW_001867428.1 and 

chromosome 8 (Sun et al., 2010). Superscript P indicates pseudo-variable gene 

segments. The variable gene segments that were not classified to subgroups because 

they were too divergent or truncated were marked with n.c. (Sun et al., 2010). 

According to the supposed nomenclature, which is in analogy to the heavy and -light 

chain, IGLJ5S1, IGLJ6S1, and IGLJ7S1 show identical sequences. IGLC2S1P is 

defined as pseudogene due to premature stop codons, as well as IGLJ2S1P, 

IGLJ3S1P, and IGLJ4S1(P) (Sun et al., 2010). Among the 144 IGLV segments identified 

by Sun et al. (2010), 108 have RSS heptamers and nonamers, 9 lack conserved 

nonamers and the remaining segments lack both heptamers and nonamers. IGLV3S1, 

IGLV9S1, IGLV9S2, and IGLV9S3ORF have 22-spaced RSS and the remaining 

potentially functional and ORF-IGLVs carry 23-spaced RSS. The spacer length is more 

varied among the 76 IGLVP segments, which have the intact RSSs. As many as 55 

IGLVP segments maintain 23 bp-spaced RSSs, whereas 16 IGLVP segments carry 22 

bp-spaced RSSs. The IGLVxS36P, IGLV9S4P and IGLVxS59P have spacer lengths of 

21, 21 and 19 bp, respectively. All 7 IGLJ segments have 12 bp-spaced RSSs at their 

5’end. 
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Fig. 2: Map of the equine lambda light chain gene locus 
The lambda light chain genes are located on chromosome 8 spanning about 1310 kb. The 
IGLJ-IGLC pairs and the IGLVs upstream of the (IGLJ-IGLC)7 show opposite transcriptional 
orientation to the IGLVs downstream of the (IGLJ-IGLC)7 cluster. This physical map is adapted 
from Sun et al. (2010) to ensure that the newly proposed nomenclature (table 4-7) is designated 
to the respective positions on the locus. IGLV without superscript letters are potentially 
functional variable gene segments. Superscript ORF indicates variable gene segments with 
open reading frames that either have a defect in splicing sites, RSS and/or regulatory elements, 
and/or changes to the conserved amino acids, and therefore have been suggested to lead to 
incorrect folding (Lefranc, 1998). Superscript P indicates pseudo-variable gene segments. 
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Table 5: Nomenclature of the equine IGLV gene segments 

IGLV subgroup 
Designation 
Sun et al. 2010 

Designation 
Tallmadge et al. 
2013 

Proposed  
designation 

Genome 
Position 

1 Vλ1 IGLV1-38 IGLV1S1 4171705-4171992 

2 Vλ2 IGLV2-41 IGLV2S1 4195092-4195381 

3 Vλ3 IGLV3-44 IGLV3S1 4210612-4210896 

4 Vλ4 IGLV4-61 IGLV4S1 4330800-4331090 

4 Vλ5 IGLV4-66 IGLV4S2 4366543-4366833 

4 Vλ6 IGLV4-69 IGLV4S3 4381050-4381340 

4 Vλ7 IGLV4-75 IGLV4S4 4411343-4411633 

4 VλORF1 IGLV4-92 IGLV4S5ORF 4529112-4529396 

4 pVλ13 IGLV4-50 IGLV4S6P 4245996-4246283 

4 pVλ16 IGLV4-53 IGLV4S7P 4267110-4267396 

4 pVλ18 IGLV4-55 IGLV4S8P 4287903-4288193 

4 pVλ39 IGLV4-80 IGLV4S9P 4447087-4447374 

4 pVλ42 IGLV4-83 IGLV4S10P 4458683-4458970 

4 pVλ48 IGLV4-90 IGLV4S11P 4502561-4502854 

5 Vλ8 IGLV5-87 IGLV5S1 4489461-4489759 

5 Vλ9 IGLV5-95 IGLV5S2 4554617-4554901 

6 Vλ10 IHLV6-98 IHLV6S1 4571250-4571546 

6 Vλ11 IGLV6-101 IGLV6S2 4590316-4590612 

6 Vλ12 IGLV6-109 IGLV6S3 4648068-4648364 

6 Vλ13 IGLV6-111 IGLV6S4 4660775-4661062 

6 VλORF2 IGLV6-104 IGLV6S5ORF 4614091-4614386 

6 pVλ54 IGLV6-99 IGLV6S7P 4574617-4574913 

6 pVλ55 IGLV6-100 IGLV6S8P 4584807-4585103 

6 pVλ57 IGLV6-103 IGLV6S9P 4607689-4607985 

6 pVλ59 IGLV6-106 IGLV6S10P 4624835-4625128 

6 pVλ61 IGLV6-108 IGLV6S11P 4643773-4644068 

6 pVλ62 IGLV6-110 IGLV6S12P 4654126-4654437 

7 Vλ14 IGLV7-116 IGLV7S1 4763155-4763451 

7 pVλ67 IGLV7-117 IGLV7S2P 4766554-4766835 

8 Vλ15 IGLV8-122 IGLV8S1 4855083-4855381 

8 Vλ17 IGLV8-128 IGLV8S2 4916905-4917203 

8 Vλ18 IGLV8-133 IGLV8S3 4944794-4945086 

8 Vλ19 IGLV8-137 IGLV8S4 4975350-4975639 

8 Vλ22 IGLV8-28 IGLV8S5 3994214-3994503 

8 Vλ23 IGLV8-26 IGLV8S6 3976833-3977125 

8 Vλ25 IGLV8-24 IGLV8S7 3942211-3942500 

8 Vλ26 IGLV8-20 IGLV8S8 3902029-3902327 

8 Vλ27 IGLV8-12 IGLV8S9 3799404-3799702 

8 pVλ74 IGLV8-125 IGLV8S10P 4878404-4878692 
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IGLV subgroup 
Designation 
Sun et al. 2010 

Designation 
Tallmadge et al. 
2013 

Proposed  
designation 

Genome 
Position 

8 pVλ89 IGLV8-32 IGLV8S11P 4023156-4023449 

8 pVλ101 IGLV8-14 IGLV8S12P 3838136-3838430 

8 pVλ105 IGLV8-9 IGLV8S13P 3781419-3781717 

9 Vλ16 IGLV9-126 IGLV9S1 4904149-4904473 

9 Vλ24 IGLV9-25 IGLV9S2 3948638-3948962 

9 VλORF4 IGLV9-16 IGLV9S3ORF 3870582-3870906 

9 pVλ69 IGLV9.119 IGLV9S4P 4780685-4780996 

9 pVλ73 IGLV9-124 IGLV9S5P 4866218-4866534 

9 pVλ76 IGLV9-129 IGLV9S6P 4922628-4922938 

9 pVλ78 IGLV9-131 IGLV9S7P 4929757-4930046 

9 pVλ80 IGLV9-134 IGLV9S8P 4950548-4950857 

9 pVλ81 IGLV9-136 IGLV9S9P 4968911-4969235 

9 pVλ82 IGLV9-138 IGLV9S10P 4981125-4981435 

9 pVλ85 IGLV9-142 IGLV9S11P 4999541-4999848 

9 pVλ91 IGLV9-30 IGLV9S12P 4006944-4007268 

9 pVλ94 IGLV9-23 IGLV9S13P 3936435-3936744 

9 pVλ95 IGLV9-22 IGLV9S14P 3914834-3915157 

9 pVλ97 IGLV9-19 IGLV9S15P 4780685-4780996 

9 pVλ99 IGLV9-17 IGLV9S16P 4866218-4866534 

9 pVλ102 IGLV9-13 IGLV9S17P 3812261-3812584 

9 pVλ103 IGLV9-11 IGLV9S18P 3793651-3793937 

9 pVλ104 IGLV9-10 IGLV9S19P 3788296-3788612 

10 VλORF3 IGLV10-135 IGLV10S1ORF 4954678-4954976 

10 pVλ77 IGLV10-130 IGLV10S2P 4926370-4926670 

10 pVλ87 IGLV10-144 IGLV10S3P 5012699-5012989 

10 pVλ98 IGLV10-18 IGLV10S4P 3892471-3892771 

10 pVλ110 IGLV10-3 IGLV10S5P 3723141-3723424 

11 pVλ20 IGLV11-140 IGLV11S1P 4300066-4300348 

11 pVλ21 IGLV11-33 IGLV11S2P 4316629-4316892 

11 VλORF5 IGLV11-5 IGLV11S3ORF 3730193-3730489 

n.c. pVλ1  IGLVxS1P 4157587-4157847 

n.c. pVλ2  IGLVxS2P 4160537-4160835 

n.c. pVλ3  IGLVxS3P 4166903-4167176 

n.c. pVλ4  IGLVxS4P 4178429-4178741 

n.c. pVλ5  IGLVxS5P 4188046-4188311 

n.c. pVλ6  IGLVxS6P 4199645-4199909 

n.c. pVλ7  IGLVxS7P 4205575-4205866 

n.c. pVλ8  IGLVxS8P 4216947-4217233 
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IGLV subgroup 
Designation 
Sun et al. 2010 

Designation 
Tallmadge et al. 
2013 

Proposed  
designation 

Genome 
Position 

n.c. pVλ9  IGLVxS9P 4221861-4222159 

n.c. pVλ10  IGLVxS10P 4226486-4226798 

n.c. pVλ11  IGLVxS11P 4232825-4233111 

n.c. pVλ12  IGLVxS12P 4236991-4237275 

n.c. pVλ14  IGLVxS13P 4252560-4252850 

n.c. pVλ15  IGLVxS14P 4259340-4259638 

n.c. pVλ17  IGLVxS15P 4276218-4276516 

n.c. pVλ19  IGLVxS16P 4293600-4293868 

n.c. pVλ22  IGLVxS17P 4320273-4320548 

n.c. pVλ23  IGLVxS18P 4327257-4327515 

n.c. pVλ24  IGLVxS19P 4336476-4336776 

n.c. pVλ25  IGLVxS20P 4341721-4341986 

n.c. pVλ26  IGLVxS21P 4345368-4345651 

n.c. pVλ27  IGLVxS22P 4350798-4351060 

n.c. pVλ28  IGLVxS23P 4370580-4370835 

n.c. pVλ29  IGLVxS24P 4377206-4377464 

n.c. pVλ30  IGLVxS25P 4387212-4387524 

n.c. pVλ31  IGLVxS26P 4393759-4394024 

n.c. pVλ32  IGLVxS27P 4397408-4397690 

n.c. pVλ33  IGLVxS28P 4403625-4403886 

n.c. pVλ34  IGLVxS29P 4407546-4407804 

n.c. pVλ35  IGLVxS30P 4417549-4417861 

n.c. pVλ36  IGLVxS31P 4423822-4424107 

n.c. pVλ37  IGLVxS32P 4433296-4433588 

n.c. pVλ38  IGLVxS33P 4444562-4444847 

n.c. pVλ40  IGLVxS34P 4450690-4451002 

n.c. pVλ41  IGLVxS35P 4454114-4454375 

n.c. pVλ43  IGLVxS36P 4464714-4465026 

n.c. pVλ44  IGLVxS37P 4476525-4476807 

n.c. pVλ45  IGLVxS38P 4483271-4483580 

n.c. pVλ46  IGLVxS39P 4495317-4495629 

n.c. pVλ47  IGLVxS40P 4498517-4498783 

n.c. pVλ49  IGLVxS41P 4508307-4508617 

n.c. pVλ50  IGLVxS42P 4532982-4533235 

n.c. pVλ51  IGLVxS43P 4539033-4539326 

n.c. pVλ52  IGLVxS44P 4560252-4560551 

n.c. pVλ53  IGLVxS45P  

n.c. pVλ56  IGLVxS46P 4595924-4596217 
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IGLV subgroup 
Designation 
Sun et al. 2010 

Designation 
Tallmadge et al. 
2013 

Proposed  
designation 

Genome 
Position 

n.c. pVλ58  IGLVxS47P 4621790-4622080 

n.c. pVλ60  IGLVxS48P 4629113-4629400 

n.c. pVλ63  IGLVxS49P 4670998-4671281 

n.c. pVλ64  IGLVxS50P 4684017-4684281 

n.c. pVλ65  IGLVxS51P 4753071-4753353 

n.c. pVλ66  IGLVxS52P 4760021-4760299 

n.c. pVλ68  IGLVxS53P 4775528-4775824 

n.c. pVλ70  IGLVxS54P 4807475-4807769 

n.c. pVλ71  IGLVxS55P 4808989-4809266 

n.c. pVλ72  IGLVxS56P 4860864-4861172 

n.c. pVλ75  IGLVxS57P 4910505-4910786 

n.c. pVλ79  IGLVxS58P 4938347-4938661 

n.c. pVλ83  IGLVxS59P 4985429-4985745 

n.c. Vλ20  IGLVxS60P 4994608-4994903 

n.c. pVλ84  IGLVxS61P 4998412-4998621 

n.c. pVλ86  IGLVxS62P 5010496-5010800 

n.c. pVλ88  IGLVxS63P 4033346-4033647 

n.c. Vλ21  IGLVxS64P 4031616-4031911 

n.c. pVλ90  IGLVxS65P 4017794-4018083 

n.c. pVλ92  IGLVxS66P 4000617-4000857 

n.c. pVλ93  IGLVxS67P 3988326-3988631 

n.c. pVλ96  IGLVxS68P 3908433-3908722 

n.c. pVλ100  IGLVxS69P 3864249-3864531 

n.c. pVλ106  IGLVxS70P 3745800-3746092 

n.c. pVλ107  IGLVxS71P 3742171-3742365 

n.c. pVλ108  IGLVxS72P 3738392-3738672 

n.c. pVλ109  IGLVxS73P 3726480-3726695 

n.c. pVλ111  IGLVxS74P 3719722-3720011 

n.c. pVλ112  IGLVxS75P 3703267-3703501 

IGLV: Sun et al., 2010, Chromosom 8, NW_001867428.1 
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Table 6: Nomenclature of the equine IGLJ gene segments 

IGLJ  
subgroup 

Designation 
 Sun et al. 2010 

Designation 
Tallmadge et al. 
2013 

Proposed  
designation 

Genome 
Position 

1 Jλ1 IGLJ1 IGLJ1S1 4146337-4146302 a 

2 Jλ2 IGLJ2 IGLJ2S1P 4141033-4140996 a 

3 Jλ3 IGLJ3 IGLJ3S1P 4135576-4135541 a 

4 Jλ4 IGLJ4 IGLJ4S1(P) 4132448-4132410 a 

5 Jλ5 IGLJ5 IGLJ5S1 4129086-4129050 a 

6 Jλ6 IGLJ6 IGLJ6S1 4125743-4125707 a 

7 Jλ7 IGLJ7 IGLJ7S1 4122272-4122236 a 

a Contig_ NW_001867428.1 

 

Table 7: Nomenclature of the equine IGLC genes  

IGLC  
subgroup 

Designation 
 Sun et al. 2010 

Designation 
Tallmadge et al. 
2013 

Proposed  
designation 

Genome 
Position 

1 Cλ1 IGLC1 IGLC1S1 4144802-4144483 a 

2 pCλ2 IGLC2 IGLC2S1P 4139692-4139371 a 

3 Cλ3 IGLC3 IGLC3S1 4134292-4133973 a 

4 Cλ4 IGLC4 IGLC4S1 4131021-4130702 a 

5 Cλ5 IGLC5 IGLC5S1 4127666-4127347 a 

6 Cλ6 IGLC6 IGLC6S1 4124320-4124002 a 

7 Cλ7 IGLC7 IGLC7S1 4120851-4120531 a 

a Contig_ NW_001867428.1 

 

The -light chain locus shows a unique feature of two IGLV clusters compared to this 

locus in all other species analyzed, whereas the -light chain genes are arranged as 

usual in one cluster. In the 820 kb locus, there is one cluster of 60 IGKV, one cluster of 

five IGKJ, and a single IGKC (Fig. 3, Tables 8-10) (Sun et al., 2010). Moreover, the 

functional and nonfunctional IGKV are located within one locus. All IGKV segments 

have 12 bp-spaced RSSs at their 3’ends except IGKV1S21P, which possesses an 

11 bp spacer and additional 8 IGKVP segments where RSSs are lacking completely. 

IGKJ1S1, IGKJ2S1, and IGKJ4S1 have 23 bp-spaced RSSs at their 5’ends in contrast 

to IGKJ3S1, which has a 20 bp-spaced RSS. IGKJ5S1P is nonfunctional as there is no 

conserved heptamer within the RSS (Sun et al., 2010). Transcriptional orientations in 

both directions are found without grouping. The single IGKC is separated from the 

IGKJ by a 2926 bp intron. IGKJ5S1P has no heptamer in the recombination signal 

sequence (RSS) and is therefore described as pseudogene. In IGKJ3S1, the spacer of 

the RSS shows 20 bp instead of 23 bp, which does not result in reduced recombination 

frequency (Ford et al., 1994; Sun et al., 2010). 
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Fig. 3: Physical map of the equine kappa light chain gene locus 
820 kb of the kappa light chain genes are located on chromosome 15. The potentially functional 
IGKVs, 2 ORFs and 15 pseudogenes show opposite transcriptional orientation to the 
(IGKJ)5-IGKC cluster. Arrows below the vertical lines directed 5’ indicate transcriptional 
orientation. This physical map is adapted from Sun et al. (2010) to ensure that the newly 
proposed nomenclature (table 3) is designated to the respective positions on the locus. IGKV 
without superscript letters are potentially functional variable gene segments. Superscript ORF 
indicates variable gene segments with open reading frames that either have a defect in splicing 
sites, RSS and/or regulatory elements, and/or changes to the conserved amino acids, and 
therefore have been suggested to lead to incorrect folding (Lefranc, 1998). Superscript P 
indicates pseudo-variable gene segments. 
  



             Chapter 2: Equine immunoglobulins and organization of immunoglobulin genes 
 

53 

 

 
Table 8: Nomenclature of the equine IGKV gene segments 

IGKV  
subgroup 

Designation 
 Sun et al. 2010 

Proposed  
designation 

Genome 
Position 

1 Vκ1 IGKV1S1 17071497-17071783 

1 Vκ2 IgKV1S2 17057542-17057828 

1 Vκ3 IGKV1S3 17023418-17023704 

1 Vκ4 IGKV1S4 17010212-17010498 

1 Vκ5 IGKV1S5 16958378-16958664 

1 Vκ6 IGKV1S6 16941855-16942141 

1 Vκ7 IGKV1S7 16933657-16933943 

1 Vκ8 IGKV1S8 16855771-16856057 

1 VκORF1 IGKV1S9ORF 16739610-16739895 

1 VκORF2 IGKV1S10ORF 16560248-16560552 

1 pVκ2 IGKV1S11P 17046559-17046846 

1 pVκ4 IGKV1S12P 16998516-16998803 

1 pVκ6 IGKV1S13P 16917360-16917646 

1 pVκ7 IGKV1S14P 16912894-16913180 

1 pVκ8 IGKV1S15P 16868993-16869281 

1 pVκ9 IGKV1S16P 16849772-16850060 

1 pVκ10 IGKV1S17P 16835919-16836203 

1 pVκ11 IGKV1S18P 16789755-16790042 

1 pVκ12 IGKV1S19P 16778531-16778817 

1 pVκ13 IGKV1S20P 16728653-16728934 

1 pVκ14 IGKV1S21P 16720475-16720760 

1 pVκ19 IGKV1S22P 16659096-16659390 

1 pVκ20 IGKV1S23P 16626800-16627104 

2 Vκ9 IGKV2S1 16700635-16700951 

2 pVκ24 IGKV2S2P 16557308-16557612 

3 Vκ10 IGKV3S1 16599670-16599971 

3 Vκ11 IGKV3S2 16540025-16540326 

3 Vκ14 IGKV3S3 16470843-16471144 

3 Vκ16 IGKV3S4 16407261-16407562 

3 Vκ17 IGKV3S5 16383431-16383732 

3 Vκ18 IGKV3S6 16360142-16360443 

3 pVκ17 IGKV3S7P 16676005-16676305 

3 pVκ21 IGKV3S8P 16608233-16608528 

3 pVκ22 IGKV3S9P 16591859-16592160 

3 pVκ28 IGKV3S10P 16461689-16461983 

3 pVκ29 IGKV3S11P 16450171-16450478 

3 pVκ30 IGKV3S12P 16441110-16441414 

3 pVκ34 IGKV3S13P 16351930-16352220 

4 Vκ12 IGKV4S1 16502696-16502982 

4 pVκ18 IGKV4S2P 16672345-16672638 

5 Vκ13 IGKV5S1 16484542-16484828 

6 Vκ15 IGKV6S1 16431518-16431804 

7 Vκ19 IGKV7S1 16313053-16313339 
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IGKV  
subgroup 

Designation 
 Sun et al. 2010 

Proposed  
designation 

Genome 
Position 

n.c. pVκ1 IGKVxS1P 17053257-17053545 

n.c. pVκ3 IGKVxS2P 17004266-17004536 

n.c. pVκ5 IGKVxS3P 16927468-16927746 

n.c. pVκ15 IGKVxS4P 16709612-16709911 

n.c. pVκ16 IGKVxS5P 16689071-16689357 

n.c. pVκ23 IGKVxS6P 16581856-16582113 

n.c. pVκ25 IGKVxS7P 16550552-15550840 

n.c. pVκ26 IGKVxS8P 16534333-16534598 

n.c. pVκ27 IGKVxS9P 16520693-16520979 

n.c. pVκ31 IGKVxS10P 16434887-16435177 

n.c. pVκ32 IGKVxS11P 16413133-16413356 

n.c. pVκ33 IGKVxS12P 16370408-16370629 

n.c. pVκ35 IGKVxS13P 16348990-16349239 

n.c. pVκ36 IGKVxS14P 16342798-16343043 

n.c. pVκ37 IGKVxS15P 16338745-16339014 

n.c. pVκ38 IGKVxS16P 16332882-16333152 

n.c. pVκ39 IGKVxS17P 16305235-16305453 

IGKV: Sun et al., 2010, Chromosom 15, NW_001867379.1 

 

 

 

Table 9: Nomenclature of the equine IGKJ gene segments 

IGKJ  
subgroup 

Designation 
 Sun et al. 2010 

Proposed  
designation 

Genome 
Position 

1 Jκ1 IGKJ1S1 13727254-13727217* 

2 Jκ2 IGKJ2S1 13727624-13727586* 

3 Jκ3 IGKJ3S1 13727931-13727894* 

4 Jκ4 IGKJ4S1 13728269-13728232* 

5 pJκ5 IGKJ5S1P 13728570-13728534* 

*Contig: NW_001867379.1 

 

 

 

Table 10: Nomenclature of the equine IGKC genes  

IGKC  
subgroup 

Designation 
 Sun et al. 2010 

Proposed  
designation 

Genome 
Position 

1 Cκ1 IGKC1S1 13731499-13731821* 

*Contig: NW_001867379.1 
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5. Transcription analyses of heavy and light chain genes 

 

5.1. Heavy chain genes 

 

Newborn foals are unable to mount an effective humoral immune response despite 

many features of the equine immune system having been developed during fetal life. 

Immunohistochemical experiments showed the expression of essential B-cell genes 

during equine gestation. Active gene recombination and isotype switching were 

suggested and underpinned by limited but detectable production of IgM and IgG at birth 

(Tallmadge et al., 2009). After demonstrating that equine neonatal B-cells produce all 

known five Ig isotypes, usage frequencies of the equine variable, diversity, and joining 

gene segments of the heavy and light chains were first investigated in two unrelated 

horses (Sun et al., 2010). Both animals showed a similar usage pattern of IGHV, IGHD, 

and IGHJ. Out of 50 IGHV, four (IGHV4S1, IGHV2S2, IGHV2S3, and IGHV4S5) were 

expressed but IGHV2S2 and IGHV2S3 were used preferably. Six out of eight IGHJ 

were recombined. IGHJ1S1 and IGHJ2S1 were not detected, whereas IGHJ1S5 was 

mainly rearranged. The analysis of the usage frequencies of the 40 germline IGHD 

revealed the dominant frequent use of IGHD18S1. The transcription of five additional 

IGHDs (IGDH3S1, IGHD12S1, IGHD8S2, IGHD8S3, IGHD28S1) was not observed. 

Eight clones indicated the incorporation of more than one IGHD into the IGHV-IGHD-

IGHJ rearrangement resulting in IGHV-IGHD-IGHD-IGHJ. The second incorporated 

IGHD was supposed to be located 5’ of the first IGHD in the germline locus (Sun et al., 

2010). In addition to these studies of immunoglobulin diversity in adult horses, the level 

of Ig heavy chain variable region diversity was analyzed from fetal spleen, neonatal, 

foal, and adult horse mesenteric lymph node samples (Tallmadge et al., 2009). 

Interestingly, combinatorial and junctional levels of VDJ sequences in equine fetus 

were comparable to those of adult horses and a similar set of variable gene segments 

was used during fetal and post-natal life stages (Tallmadge et al., 2009; Tallmadge et 

al., 2013). During fetal life stage, 7 IGHV genes were identified with nucleotide 

identities of at least 97% compared to the donor germline sequences. Besides the 

gene segments IGHV2S2, IGHV2S3, IGHV1S3, IGHV4S2, IGHV4S5 and IGHV2S4, a 

newly identified IGHV4S17 was recognized. A reduced repertoire was observed in 

neonates where only 4 segments were used: IGHV2S2, IGHV2S3, IGHV2S4, and a 

novel IGHV1S6. In foals and adult horses, 5 and 4 IGHV were transcribed, respectively 

(foal: IGHV2S2, IGHV2S3, IGHV2S4, IGHV1S3, IGHV4S2; adult: IGHV2S2, IGHV2S3, 
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IGHV2S4, IGHV4S2). The segments IGHV2S2, IGHV2S3, and IGHV2S4 were used 

predominantly at all ages. Between the expressed gene segments, there are 250,000 

bases suggesting that the entire IGHV locus is available throughout equine life 

(Tallmadge et al., 2013). Similarly, in fetal piglets the IGHV usage was described to be 

independent of the genome position although there is a limited number of IGHV 

representing the Ig repertoire, too (Butler et al., 2011; Eguchi-Ogawa et al., 2010). In 

contrast, the biased usage of germline IGHV in the mouse fetus was explained with 

different accessible positions within the IGHV locus (Jeong et al., 1988). 

Analysis of the IGHD gene segments revealed that 13, 17, 15, and 20 different IGHDs 

were used in fetuses, neonates, foals, and adult horses. The predominant IGHD was 

IGHD18S1 at all ages. Four out of 8 IGHJ had an influence on diversity in all life 

stages, whereas IGHJ1S5 was the most common (Tallmadge et al., 2013). 

VDJ diversity increased mainly during the last two thirds of gestation. Overall, there 

was no biased usage of a single IGHV, IGHD, or IGHJ gene segment at any age. In 

foals, first variations in the length of CDR2H were found. Sequence diversity and length 

variation further increased in CDR1H and CDR2H, and framework regions of adult 

horses in accordance to somatic hypermutation (Tallmadge et al., 2013). Non-

templated nucleotide insertions of about 8 nucleotides were observed at the IGHV-

IGHD junction in fetuses and neonates, although there was no significant increase in 

CDR3H length, varying from 7 to 21 amino acids in contrast to cattle (Walther et al., 

2013). The length of the IGHV-IGHD and IGHD-IGHJ junctions increased significantly 

until birth and then remained similar in foals and adult horses. At least 5 amino acid 

residues were observed within the CDR3H of an adult horse, whereas 25 amino acid 

residues were counted in the longest CDR3H, which was identified in an equine 

neonate (Tallmadge et al., 2013). In comparison, recent studies showed the existence 

of very short CDR3H (5-10 amino acids), midlength CDR3H (11-31 amino acids) and 

exceptionally long CDR3H (more than 47 amino acids) in both bovine fetuses and adult 

cattle. This length heterogeneity is not isotype restricted and very long CDR3H 

contribute to diversity by uniquely folded small domains (Koti et al., 2010; Saini et al., 

1999; Saini and Kaushik, 2002; Shojaei et al., 2003; Walther et al., 2013; Wang et al., 

2013). 
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5.2. Light chain genes 

 

For the IGKV, a preferential usage pattern was also observed. IGKV1S1, IGKV1S4, 

and IGKV2S1 were used most often. These gene segments showed an opposite 

transcriptional orientation to the IGKJ and IGKC cluster. All four functional IGKJ were 

expressed (Sun et al., 2010). 

Within the transcribed -light chains, IGLVs belonging to subgroup 8 were preferred. 

IGLV from subgroup 6 and 4 were also transcribed but less frequently. The recombined 

IGLVs – especially IGLV8S2 and IGLV8S7 – were located within the IGLV cluster 

downstream of the IGLJ-IGLC cluster and were oriented in opposite transcriptional 

polarity. In both animals, examined by Sun and coworkers, genomic IGLJ-IGLC were 

amplified, whereas IGLJ-IGLC5 could not be amplified and IGLJ-IGLC7 was amplified 

successfully in one of these animals. IGLJ4S1(P) was found to be functional but without 

the single C-insertion, which is present in the database sequence of the equine 

genome project (Sun et al., 2010). Subsequent investigations of the transcription 

frequencies of -light chain genes in ten animals of Rhenish-German Coldblood (RGC) 

and Hanoverian Warmblood (HW), respectively, showed similar results (Hara et al., 

2012). Eleven out of 144 IGLV were identified; all members of subgroup 8 as caused 

by the applied primers. In both breeds analyzed, the preferred use of two IGLV 

(IGLV8S1 and IGLV8S2) was observed. In addition, significant differences in usage 

frequencies of the IGLV (both within and between the breeds) were noted. Two 

pseudogenes were also recombined (IGLV8S10P and IGLV8S12P). The transcriptional 

orientation of the IGLV had no influence on the transcription frequencies. All four 

functional IGLC were also transcribed. IGLC6S1/7S1 was predominantly used in both 

breeds. These two constant region genes could not be distinguished due to high 

sequence similarity. Isotypes IGLC1S1 and IGLC5S1 revealed significantly higher 

transcription frequencies than IGLC4S1 in RGC and showed significant usage 

differences in HW. New allotypic variants were observed for IGLC1S1, IGLC5S1 and 

IGLC6S1/7S1 (Hara et al., 2012; Tallmadge et al., 2014). 

The constant gene usage was also investigated in fetal spleen, neonatal, foal, and 

adult horse mesenteric lymph node tissues (Tallmadge et al., 2014). In equine fetuses, 

IGLC1S1, IGLC4S1 and IGLC5S1 were expressed. This feature changed in neonates, 

where IGLC1S1 and IGLC7S1 were transcribed. Both of these IGLC were still 

expressed in foal and adult horses but they also showed IGLC4S1. IGLC1S1, solely 
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found in all four developmental stages, was not the predominantly used constant region 

gene. 

Furthermore, the usage and diversity of the equine IGLV was analyzed in fetal spleen 

and mesenteric lymph nodes of neonates, foals, and adult horses (Tallmadge et al., 

2014). Analysis of the transcribed IGLV revealed usage of 13 IGLV in equine fetuses; 

14 IGLV were used in neonates; 11 IGLV were identified in foals; and 9 IGLV were 

expressed in adult horses. Out of 27 functional genomic IGLVs, 18 different were 

identified in this study. In addition, the pseudogene IGLV8S10P (Table 4) was also 

transcribed, as it had already been observed in Hanoverian Warmblood and Rhenish-

German Coldblood horses (Hara et al., 2012). Interestingly, five sequences of equine 

fetus and neonate were not assigned to the currently defined germline IGLVs. These 

new IGLVs belonged to subgroups 4, 6, and 8, whereas the already known expressed 

IGLVs belonged to subgroups 2, 3, and 11. Within each age group, subgroup 8 was the 

most prevalent. Furthermore, the first allelic variants in horse IGLV were identified. 

Nine IGLV genes were found in only one developmental stage and 5 IGLV genes were 

identified in all life stages investigated. More and varying IGLVs were used during 

equine fetal life than in later stages. Nucleotide diversity increased significantly with 

time (Tallmadge et al., 2014). 

 

 

6. New allotypic variants of IGLC 

 

It is well known today that immunoglobulin light chains increase antibody variability and 

contribute to antigen binding. In addition to the use of non-functional variable gene 

segments due to gene conversion, genes coding for the constant regions also influence 

antibody diversity (Emorine et al., 1983; Moxley and Gibbs, 1992). Allotypic variants 

from allels of IGHCs and IGLCs originate from single nucleotide polymorphisms (SNPs) 

and amino acid residue substitutions. Resulting epitope variability can improve immune 

responses as already shown for human and cattle. Allotypic markers of human light 

chains were associated with the susceptibility of infectious diseases caused by 

Plasmodium falciparum malaria, Haemophilus influenza, and Meningococcus 

polysaccharides for example (Giha et al., 2009; Granoff et al., 1984; Pandey et al., 

1979). For allotypes of the bovine IgG2, correlations regarding complement activation, 

age-dependent expression, and influences on the effector function were reported in 



             Chapter 2: Equine immunoglobulins and organization of immunoglobulin genes 
 

59 

 

binding of Haemophilus somnus immunoglobulin binding protein (IgBP) and cleavage 

by Tritrichomonas foetus extracellular cysteine proteinase (Bastida-Corcuera et al., 

2000; Bastida-Corcuera et al., 1999a; Bastida-Corcuera et al., 1999c; Corbeil et al., 

1997). Allelic variations of the bovine light chain have been described for different cattle 

breeds (Diesterbeck et al., 2012; Stein et al., 2012). Similarly, the constant region 

genes of the -light chains of the horse breeds RGC and HW showed five allotypic 

IGLC1S1 variants (IGLC1S1a-e), four allotypic IGLC5S1 variants (IGLC5S1a-d), and 

three allelic, as well as two allotypic IGLC6S1/7S1 variants (IGLC6S1/7S1a1-a3,b). In 

RGC, IGLC1S1b,d, IGLC5S1c,d and IGLC6S1/7S1a3, b were observed, whereas 

IGLC1S1c and IGLC5S1b were detected in HW. Amino acid residue substitutions were 

identified inside the molecule, as well as on the solvent accessible surface. They were 

shown by homology-based 3D modeling. Conservative amino acid residue 

substitutions as well as changes of charge or hydrophobicity were identified. 

Replacements adjacent to the interface and within the interface to IGHC1 were 

supposed to potentially influence the stable connection between both the heavy and 

light chains (Hara et al., 2012). These investigations of the Ig lambda constant region 

genes in adult horses of two different breeds were complemented by the analyses of 

the Ig lambda joining gene segments in combination with the constant genes at 

different equine developmental stages (Tallmadge et al., 2014). In fetuses, the usage 

of germline IGLJ1S1-IGLC1S1, IGLJ4S1(P)-IGLC4S1 and IGLJ5S1-IGLC5S1 was 

found. New allelic variants were identified for IGLJ1S1, IGLC1S1, IGLJ4S1(P) and 

IGLC4S1. The previously described isotype IGLC5S1b was also expressed. Neonatal 

sequences showed the transcription of IGLJ1S1-IGLC1S1, as well as IGLJ7S1-

IGLC7S1, whereas there were two allelic variants for IGLJ7S1-IGLC7S1. The same 

allelic IGLJ7S1-IGLC7S1 variants were also expressed in addition to one version of 

IGLJ1S1-IGLC1S1 in neonates. Both in foals and adult horses, IGLJ1S1-IGLC1S1, 

IGLJ4S1(P)-IGLC4S1, and IGLJ7S1-IGLC7S1 were transcribed. Two alleles were 

identified for IGLC7S1 in both developmental stages. IGLC4S1 revealed two allelic 

versions in foal. Only IGLC1S1 was detected at all four life stages, but it was not the 

most frequently used gene at any stage (Tallmadge et al., 2014). 
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7. Future Directions 

 

Since the late 19th century, horse antibodies in terms of anti-sera were closely 

connected with the medication of human diseases. Today equine antibody applications 

come more and more to the fore in order to prevent or treat equine infectious diseases. 

Amongst others they can be regarded as potential alternatives to antibiotic therapy in 

the near future.  

Starting with the germline repertoire, it is, therefore, necessary to investigate the 

fundamental immunoglobulin genetics underlying the equine immunoglobulin immune 

response. 

Recent analyzes already revealed individual and breed specific differences in the 

genomic fundament, as well as the gene usage at discrete life stages and an increased 

variability throughout life (Hara et al., 2012; Sun et al., 2010; Tallmadge et al., 2014; 

Tallmadge et al., 2013). However, more detailed studies are required to substantiate 

allelic or haplotypic differences for both variable and constant region genes and link 

them to individuals or breeds. Such detailed maps of the germline repertoire are 

currently available for human and mice. In vitro analyses of bovine IgG already 

determined the influences of genetic variations on the immune response (Bastida-

Corcuera et al., 2000; Bastida-Corcuera et al., 1999a; Bastida-Corcuera et al., 1999c; 

Corbeil et al., 1997). Similar studies are still missing in horses as well as analyzes of 

their in vivo impact. 

Subsequent investigations in genetic, structural, and configurational properties of 

equine immunoglobulins might offer opportunities for the development of new antibody-

based immunotherapeutics. For instance, recombinant antibodies or antibody-fragment 

related products are among the fastest growing new therapeutics worldwide (Dübel, 

2010). However, only few engineered species-specific antibodies have been developed 

against veterinary pathogens (Koti et al., 2014). The most promising outcome from 

latest equine immunoglobulin research might be the construction of tailor-designed 

antibodies based on the format of single chain fragments variable (scFv). In these 

antibodies VH and VL domains are linked together by, e.g., a (Gly4Ser)3 linker. When 

naïve or immunized immunoglobulin libraries are constructed for this reason by PCR 

amplification with well established primer sets for the equine VH and VL domains, 

highly affine and neutralizing recombinant scFv molecules can be assembled by phage 

display against any desired viral, bacterial, and parasitic antigenic site, as well as 

toxins. To elongate the short half-life time and clearance of scFvs in vivo, and to 
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achieve effector functions, such as opsonization, complement-dependent cytotoxicity 

(CDC), and antibody-dependent cellular cytotoxicity (ADCC), equine scFv-molecules 

can be enhanced in the same way as established for human antibodies to scFv-

FCGRT (FcRn) fusion proteins (Kontermann, 2011; Koti et al., 2014) or to complete 

IgG antibodies through genetic manipulation. 

Meanwhile, X-ray crystal structure analyses of antigen/antibody binding are increasing 

(Saini et al., 1999; Saini and Kaushik, 2002; Wang et al., 2013) and together with 

immunoglobulin sequencing data, even from high-throughput next generation 

sequencing, they will give valuable information on antigen-/antibody interactions. 

Subsequent amino acid replacement, especially in the CDR-regions, may contribute to 

enhanced binding efficiency of equine recombinant antibody molecules. 

Consequently, future investigations of the basic biology once might lead into translation 

of new prophylaxis and treatment options of diseases. 
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Abstract 

The present study analyzed equine λ-light chain genes (IGLV and IGLC) transcribed in 

the horse breeds Rhenish-German Coldblood (RGC) and Hanoverian Warmblood 

(HW). Primers were generated for the major expressed IGLV subgroup 8. The 

significant majority of the sequences represented IGLC6/7. In RGC, IGLC1 and IGLC5 

were observed in significant higher frequencies than IGLC4. In HW, significant 

differences were obtained for the transcription of IGLC1 and IGLC5. IGLC4 was not 

determined in this breed. Five allotypic IGLC1 variants, four allotypic IGLC5 variants, 

and three allelic as well as two allotypic IGLC6/7 variants were identified. IGLC1b, d, 

IGLC5c, d, and IGLC6/7a3, b were detected in RGC while IGLC1c and IGLC5b were solely 

found in HW. Furthermore, 11 out of 144 known IGLV-segments were transcribed of 

which IGLV15 and IGLV17 were preferred significantly. IGLV25 displayed significant 

differences in the rearrangement between both breeds. The classified pseudogenes 

IGLV101ψ and IGLV74ψ were also identified. Rearrangements with IGLC-genes 

showed significant differences for IGLV15 in both breeds, whereas IGLV25 also 

revealed significant differences between the breeds. The transcriptional orientation of 

the functional segments has no influence on the occurrence of the IGLV.  

 

 

Keywords 

Equus caballus; horse; immunoglobulin; immunoglobulin light chains; allotype  
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1. Introduction 

In jawed vertebrates, immunoglobulins (Ig) are usually described as a Y-shaped 

tetramer composed of two identical heavy chains (IGH) and two identical light chains 

(IGL) (Edelman, 1973). Both chains are comprised of variable and constant domains. 

During differentiation of B-lymphocytes they are joined together by combinatorial 

assembly of separate heavy and light chain variable (VH+L), diversity (DH), joining (JH+L), 

and constant (CH+L) germline components (Tonegawa, 1983). While IGH are encoded 

by a single locus, mammals express 2 isotypes of IGL, which are called kappa (κ) and 

lambda (λ) (Korngold and Lipari, 1956). In comparison to IGH, evolution of IGL seems 

to be more complex. Sequences similar to κ light chains described in different species, 

such as mammals and fish, gave rise to this assumption (Sitnikova and Su, 1998). In 

Xenopus laevis an additional IGL of σ-isotype is present (Klein et al., 2002). The light 

chain isotypes can be distinguished by specific conserved amino acid motifs as well as 

by distinct species specific usage frequencies (Das et al., 2008). For instance, in cattle, 

sheep, and horses λ-light chains are predominantly expressed (Arun et al., 1996; 

Home et al., 1992). This isotype occurs in more than 90% of horse serum antibodies 

(Gibson, 1974). 

In several genetic investigations equine IGH constant regions (IGHC) as well as the 

germline VH, DH, and JH segments were mapped to Equus caballus autosome (ECA) 24 

and the genomic scaffold UN0011. Eleven IGHC, 50 VH, 40 DH, and eight JH segments 

were described (Sun et al., 2010; Wagner, 2006). The genomic organization of equine 

IGL is characterized by 144 variable λ-light chain segments (IGLV) and 60 variable 

κ-light chain segments (IGKV). While IGKV and IGKJ-segments are organized, as it is 

the case, for example, in humans and mice, IGLV-segments are distributed into two 

clusters located up- and downstream of the IGLJ-IGLC-cluster (Kawasaki et al., 2001; 

Roschenthaler et al., 2000; Sun et al., 2010). The genetic information for equine λ-light 

chains was found to be located on ECA8. Genes for equine κ-light chains are located 

on ECA15. The number of genes is supposed to be responsible for the dominant λ-light 

chain expression (Almagro et al., 2006; Sun et al., 2010). 112 IGLV-pseudogenes 

(IGLVψ) were described for the λ-locus (Sun et al., 2010). Beside IGLV, seven IGLC 

were described for the equine genomic λ-locus. Each was preceded by an 

IGLJ-segment. Genomic analyses revealed that three IGLC were functional, while in 

transcriptional analyses four IGLC were determined to be functional (Das et al., 2008; 

Sun et al., 2010).  
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In general, light chains enlarge antibody variability and contribute to antigen binding. 

Both can be enhanced by mechanisms of somatic hypermutation and gene conversion 

(Arakawa and Buerstedde, 2009; Parng et al., 1996; Winstead et al., 1999; Zhou et al., 

2004). Beside gene conversion utilizing nonfunctional V-gene segments, genes for the 

constant regions can also contribute to antibody diversity (Emorine et al., 1983; Moxley 

and Gibbs, 1992). Allotypic variants emerging from alleles of the constant regions of 

IGH and IGL as well as the resulting epitope variability can improve immune responses 

(Bastida-Corcuera et al., 2000; Bastida-Corcuera et al., 1999a; Bastida-Corcuera et al., 

1999b; Oli et al., 2004). Similar allelic variations of the light chains have already been 

described for different cattle breeds (Diesterbeck et al., 2012) but not yet for horses. In 

addition, no structural analyses of the inter-domain interface between the first constant 

IGH and IGL regions are available. Comparable data were obtained by analyses of the 

crystal structures of two murine and two human Fabs (Padlan et al., 1986).  

We investigated two horse breeds (Rhenish-German Coldblood, RGC, and Hanoverian 

Warmblood, HW) with different stud book sizes and breeding goals. Our interest was a 

comparative analysis of IGLC sequences and the identification of different alleles and 

putative allotypes. The locations of allotype-specific amino acid residue substitutions 

within the molecule were examined using comparative 3D modeling with known crystal 

structures. Furthermore, the usage frequency and rearrangement of IGLV-segments 

were examined for comparison of the λ-light chain repertoire in HW and RGC. 
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2. Material and methods 

2.1. Breed selection, isolation of lymphocytes and cDNA-synthesis 

For the analysis of breed specific expression of the immunoglobulin λ-light chain the 

equine breeds Rhenish-German Coldblood (RGC) and Hanoverian Warmblood (HW) 

were chosen as these breeds differ in stud book size and breeding goals. In RGC the 

stud book is closed resulting in a true-breeding population. For HW the stud book is 

open and the breeding concept is more flexible (Hartmann et al., 2006).  

Peripheral blood samples were collected from 10 randomly chosen animals per breed. 

All animals of one breed were located in one stable. Peripheral blood mononuclear 

cells (PBMC) were isolated from 20 ml EDTA-blood using Ficoll gradients (GE 

Healthcare Europe GmbH, Germany) according to the manufacturer’s protocol. After 

staining with trypan blue viable PBMC were counted and total RNA was extracted from 

1x107 cells by using the RNeasy® Mini Kit (QIAGEN, Germany). For synthesis of cDNA 

from 3 µg of total RNA in a total volume of 20 µl pd(N)6-primers were used (First-Strand 

cDNA Synthesis Kit, GE Healthcare Europe GmbH, Germany). 

 

2.2. PCR amplification of the expressed immunoglobulin λ-light chain repertoire 

Complete λ-light chains were amplified using primers binding in the 5’UTR 

(eIgL_5’UTR_for: 5’-GCCACAGAAGGCAGGACTCGG-3’) and the 3’UTR 

(eIgL_3’UTR_rev1: 5’-AGGGGTCCCGTGACAGCAGG-3’). Primer eIgL_5’UTR_for 

hybridizes at positions 2-22 in the reference sequence L07565 (Home et al., 1992). 

Primer eIgL_3’UTR_rev is complementary to positions 764-783 in the same reference 

sequence. The expected product size of the λ-light chain including leader, variable, and 

constant region was 782 bp. By using the eIgL_5’UTR_for primer, subgroup 8-IGLV 

were amplified. 

A total reaction volume of 50 µl contained 2 µl of cDNA, 200 µM dNTPs (Bioline, 

Germany), 5 µl of 10x PCR buffer (75 mM Tris HCl pH 9.0; 2 mM MgCl2; 50 mM KCl; 

20 mM (NH4)2SO4), 0.4 µM of each primer, and 2 units DNA polymerase (Biotools, 

Spain). Thermal cycling was carried out at 95°C for 5 min, 95°C for 1 min, 65°C for 1 

min, 72°C for 2 min for 35 cycles with initial denaturation at 95°C for 5 min and terminal 

elongation at 72°C for 10 min. The length and purity of the PCR products was 

evaluated by agarose gel electrophoresis. 
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2.3. PCR amplification of the germline IGLJ-IGLC pairs 

To examine the presence of all predicted germline IGLJ-IGLC pairs, they were 

amplified from genomic DNA, which was isolated from EDTA-blood (QIAamp® DNA 

Blood Mini Kit, QIAGEN, Germany). Primers for the functional and transcribed IGLC 

were based on the breed specific sequence information derived from the analyses of 

the expressed λ-light chains. To generate primers for nonfunctional IGLC, sequences 

from Acc. No. NW_001867428.1 were used as reference. The IGLJ-IGLC pair specific 

primers are shown in Table 1 including sequences, start and stop positions within the 

reference as well as product sizes. For IGLJ5-IGLC5 and IGLJ7-IGLC7 identical 

reverse primers were used. IGLJ6-IGLC6 was not amplified particularly because only 

one difference to IGLJ7-IGLC7 concerning one nucleotide could be identified. Product 

size varies from 1614 bp to 1870 bp. 

 

Table 1  
Primers for amplification of germline IGLJ-IGLC pairs. Binding positions for primers amplifiying 
IGLJ1-IGLC1 to IGLJ7-IGLC7 and referring to NW_001867428.1 in the equine genome 
assembly EquCab2.0. 

Primers 
Sequences 

5‘ > 3‘ 
Product 

Size 
Binding positions 

eIgL_J1-C1L_for 
eIgL_J1-C1L_rev 

AGAACACTCTGAGGGGGACAGT 

TGAGACTCAGTCACCGTGGT 
1870 bp 

4144485…4144506 
4146335…4146355 

eIgL_J2-C2L_for 
eIgL_J2-C2L_rev 

CCTCTGAGGGGGACACTTTCT 

TGTGTCACAGTGTTCATAGTTCAC 
1667 bp 

4139378…4139399 
4141021…4141045 

eIgL_J3-C3L_for 
eIgL_J3-C3L_rev 

AGCACACTCTGAGGGGGACACTTT 

CTGTGTCACTGTGTCCTGTGC 
1614 bp 

4133976…4134000 
4135569…4135590 

eIgL_J4-C4L_for 
eIgL_J4-C4L_rev 

AAGGACACTCTGAGGGGGACAGT 

TGCTGTATTCGGCGGAGGCAC 
1743 bp 

4130704…4130727 
4132426…4132447 

eIgL_C5L_for 
eIgL_J7-C5L_rev 

TTCCACTCTGTGGAGGTCCGTG 

ACCTGACCATCGCAGGTGAGTC 
1635 bp 

4127429…4127450 
4129063…4129042 

eIgL_C7L_for 
eIgL_J7-C5L_rev 

TTCCACTGTGCGGAAGTCCGC 

ACCTGACCATCGCAGGTGAGTC 
1637 bp 

4120613…4120633 
4122249…4122228 

 

A total reaction volume of 50 µl contained 2 µl of cDNA, 200 µM dNTPs (Bioline, 

Germany), 5 µl of 10x PCR buffer (75 mM Tris-HCl pH 9.0; 2 mM MgCl2; 50 mM KCl; 

20 mM (NH4)2SO4), 3% of DMSO; 0.4 µM of each primer, and 2 units of DNA 

polymerase (Biotools, Spain). Thermal cycling was performed at 95°C for 5 min, 95°C 

for 1 min, 60°C for 1 min, 72°C for 2 min for 35 cycles with initial denaturation at 95°C 

for 5 min and terminal elongation at 72°C for 10 min. Length and purity of the PCR 

products were evaluated by agarose gel electrophoresis. 
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2.4. Purification and cloning of PCR products 

For reasons of purity and amount, PCR-products were either purified by gel extraction 

or they were concentrated. For gel extraction the MiniElute Gel Extraction Kit was used 

(QIAGEN, Germany) according to the manufacturer’s protocol. The QG buffer was 

replaced by a QX1 buffer. Samples were eluted with 13 µl of 10 mmol Tris/HCl; pH 8.5. 

To increase the concentration of the PCR-products the DNA Clean & Concentrator™ 

Kit was used (Zymo Research Corporation, CA92867 U.S.A) in accordance to the 

manufacturer’s protocol. Purified products were sub-cloned into the pCR®2.1-TOPO® 

3.9 kb TA vector and transformed into chemically competent One Shot TOP 10 E. coli 

cells (Invitrogen™, Germany). After blue-white selection, 12 randomly chosen white 

transformants, which had been generated individually from each horse, were grown in 

5 ml LB-ampicillin broth. Plasmid isolation occurred using a MiniPrep Kit (QIAGEN, 

Germany). In order to verify the correct insert size, plasmids were cleaved with EcoRI 

(New England Biolabs, Germany).  

2.5. Sequencing and sequence analysis of PCR products 

A definite number of 12 clones per animal were sequenced according to the 

chain-termination method (Sanger et al., 1977). The M13 (-20) Forward and M13 

Reverse (Invitrogen, Germany) vector specific primers as well as the corresponding 

gene specific primers eIgL_5’UTR_for/ eIgL_3’UTR_rev were used for sequencing. The 

sequences were analyzed with the DNAstar program (GATC Biotech AG, Germany) 

and aligned by ClustalW (Thompson et al., 1994) to the nucleotide sequences from the 

genomic IGLV and IGLC published by Sun et al. (2010). The nomenclature for the 

transcribed IGLV and IGLC corresponds to this reference. The IMGT numbering 

system was used for numbering of amino acid residues (Lefranc et al., 2005). In order 

to determine the different isotypes, specific amino acid residue motifs were identified. 

Unique features in IGLC1 are SWK at positions 40-42, KSSSSV at positions 97-102, 

and VTH at positions 106-108. IGLC6/7 can only be distinguished from IGLC5 due to 

the combination of special motifs. In IGLC6/7 STPS, DAVTT, and TRTSAQW are 

characteristic at positions 1.1-3, 45-45.4, and 90-96. In contrast, IGLC5 has SAPS, 

DAVTN, and TRTSTEW at these positions. Identities between IGLC5 and IGLC4 are 

KSYSSV and VKH (positions 97-102 and 106-108). IGLC4 and IGLC1 share SWK, 

GAATT, and PLTPTQW at positions 40-42, 45-45.4, and 90-96. In addition, 

phylogenetic trees as well as sequence identity of at least 80% were used for grouping 

the transcribed with the genomic IGLC and IGLV. New alleles of IGLC were defined if 
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substitutions were detected in at least two clones sequenced from one animal. 

Furthermore, these substitutions had to occur in at least two animals in order to 

exclude sequencing errors derived from reverse transcriptase and DNA polymerase 

amplification. Nucleotide substitutions found in more than four sequences of one 

animal were also defined as new allele. All alleles were compared with the equine 

ESTs (expressed sequence tags) database (gp/9796.11760/9796_est; 37199 

sequences) using BLASTN. Breed information derived from sequences with 100% 

coverage and identity were also considered. In sequences received from the two horse 

breeds RGC and HW combinations of IGLV with IGLC-isotypes were analyzed with 

regard to occurrence and frequency. 

 

2.6. Homology-based modeling of the λ-constant region 

The amino acid sequences of the transcribed IGLC were deduced from the 

corresponding nucleotide sequences. By using the PHYRE server (Kelley and 

Sternberg, 2009) the protein sequences were aligned with known crystal structures of 

λ-light chains. Due to this alignment the generation of a three-dimensional (3D) model 

was possible. The analysis included the identification of amino acid residue positions 

which putatively form the connection to the constant region of the heavy chain 

according to Padlan et al. (1986) and the position of detected amino acid residue 

substitutions within the 3D-molecule. Graphical analyses and figure preparation were 

compiled with vmd (Humphrey et al., 1996). To demonstrate the accessible surface 

area, additional 1.4Å were added to the radii of van der Waals forces (Lee and 

Richards, 1971). 

 

2.7. Statistical analyses 

Frequencies of individual IGLC and IGLV genes as well as combinations of both within 

one breed and among the breeds have been compared by applying non-parametric 

tests. Such test procedures, i.e. the Chi2-test for analyzing IGLC and IGLV 

independently and Fisher's exact test for the gene segment x breed contingency table, 

are implemented in the software package SAS, Version 9.2. 

The association between the count variable usage frequency of IGLV and the effects of 

transcriptional orientation including either all classified IGLV or only the putative 

functional IGLV was analyzed separately by breed as well as by combining both breeds 

via mixed model theory. The association study was carried out by defining the usage 

frequency of IGLV as a dependent variable as well as by modelling transcriptional 
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orientation and functionality as fixed effects. Application of linear mixed models 

considering both fixed and random effects assumes a Gaussian distribution for the 

variable to be analyzed, whereas the count variable usage frequency of IGLV follows a 

Poisson-like distribution. Hence, as an extension of linear mixed models a generalized 

linear mixed model (GLMM), that can be used to analyze data with a Poisson-like 

distribution, was used for this specific part of the statistical analysis. The main feature 

of a GLMM is a link function that allows the mean of a population to depend on a linear 

predictor. The link function  between the linear predictor  and the observations 
 

used for these type of count data was a log link defined as . The 

statistical model was defined as follows: 

log = r =  + s + δt 

where yrst = value for usage frequency of IGLV r;  = overall mean effect; s = fixed 

effect of transcriptional orientation s; δt = fixed effect of functionality t. 

 

  

if ih iy

)(log ieif h=

yrst[ ]
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3. Results 

 

3.1. Amplification of germline IGLJ-IGLC pairs 

To examine the presence of all predicted germline IGLJ-IGLC pairs, specific primers 

were generated. For functional IGLJ-IGLC pairs, primers based on the sequences of 

the transcribed λ-light chain repertoire (IGLJ1-IGLC1, IGLJ4-IGLC4, IGLJ5-IGLC5, 

IGLJ6/7-IGLC6/7). The genomic contig NW_001867428.1 was used for primer 

generation of the nonfunctional IGLJ2-IGLC2 and IGLJ3-IGLC3 pairs. Nomenclature of 

the IGLC-genes refers to Sun et al. (2010). DNA of two RGC animals were not 

available. All six IGLJ-IGLC pairs were amplified in two RGC animals and one HW 

animal. IGLJ1-IGLC1 was demonstrated in all RGC animals as well as in eight animals 

of the breed HW. IGLJ2-IGLC2 was proven in all animals analyzed in RGC, whereas in 

HW eight animals showed the presence of this IGLJ-IGLC pair. IGLJ3-IGLC3 was 

amplified in five animals of the breed RGC and in six HW animals, respectively. 

IGLJ4-IGLC4, which seemed to be nonfunctional due to a single C-insertion within the 

IGLJ4 exon (Sun et al., 2010), was demonstrated in eight and seven animals of RGC 

and HW. In four RGC as well as in five HW animals IGLJ5-IGLC5 was amplified. 

IGLJ6/7-IGLC6/7 was amplified in all RGC and HW animals analyzed. IGLJ6 and 

IGLJ7 as well as IGLC6 and IGLC7 were not distinguished, because primer 

hybridization sites were identical due to the high sequence similarities. 

 

3.2. Transcriptional use of IGLC-genes 

A total of 12 sequences per animal were analyzed to establish potential differences in 

usage frequencies of IGLC-genes in the breeds RGC and HW. IGLC were 

differentiated by specific amino acid residue motifs. The analysis of 120 sequences per 

breed revealed that IGLC-genes were transcribed in different frequencies (Fig. 1a). The 

isotype IGLC6/7 was predominantly used in both horse breeds examined and was 

identified in 55% (n=66) of the 120 sequences analyzed in each breed. IGLC5 had a 

lower frequency in RGC (n=25, 20.8%) than in HW (n=42, 35.0%). Twenty-seven 

sequences (22.5%) of RGC were classified to IGLC1, whereas in HW 12 sequences 

(10%) were identified as IGLC1. IGLC4 was transcribed in two RGC animals (1.7%), 

but not in the breed HW. In the breed RGC highly significant differences (P<0.001) in 

the transcription were confirmed by the Chi² test between IGLC1 and IGLC4, IGLC1 

and IGLC6/7, IGLC4 and IGLC5, IGLC4 and IGLC6/7, as well as IGLC5 and IGLC6/7. 

The same P-values were obtained for the statistical comparison of IGLC1 and IGLC5, 
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as well as IGLC1 and IGLC6/7 in HW. With P≤0.05 IGLC5 and IGLC6/7 were 

significantly different in this breed (Fig. 1a). Statistical analysis did not show significant 

differences of IGLC usage between the breeds. 

In most of the animals more than one IGLC-gene was transcribed (Fig. 1b) but without 

a significant preference of a specific combination. The isotype combinations 

IGLC1/IGLC5/IGLC6/7 (four animals) as well as IGLC1/IGLC6/7 (three animals) were 

preferred in RGC. The combinations of IGLC1/IGLC4/IGLC5 and 

IGLC1/IGLC4/IGLC5/IGLC6/7 were exhibited by one RGC animal. Exclusive 

transcription of IGLC6/7 was detected in four animals of the breed HW but in only one 

RGC animal. Other IGLC-genes transcribed simultaneously were detected in two HW 

animals (IGLC5/IGLC6/7, IGLC1/IGLC5, IGLC1/IGLC5/IGLC6/7; Fig 1b).  
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Fig. 1 Transcription of IGLC-genes in the horse breeds Rhenish-German Coldblood (RGC) and 
Hanoverian Warmblood (HW). a Usage frequency of IGLC-genes in RGC and HW. Significant 
differences between transcriptional frequency of the four IGLC are indicated by asterisks 
(*P≤0.05, **P≤0.01, ***P≤0.001). b Concurrently transcribed IGLC-genes in RGC- and HW 
animals. IGLC1, IGLC4, IGLC5, and IGLC6/7 describe immunoglobulin λ-light chain constant 
regions that were transcribed in this study. Nomenclature of the IGLC-genes corresponds to a 
previous study (Sun et al., 2010).  
 

 

3.3. Transcriptional use of IGLV-segments 

In analogy to the IGLC-genes, the 120 sequences available per breed were analyzed 

for transcriptional use of IGLV-segments. With a threshold of at least 80% sequence 

identity, all sequences were classified to 11 of 144 genomic IGLV-segments. Those 11 

germline IGLV-segments were assigned to subgroup 8 of 11 known IGLV subgroups 

as previously described (Sun et al., 2010). All eleven IGLV-segments found were 

transcribed in RGC, whereas nine IGLV-segments were transcribed in HW (Fig. 2).  
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Fig. 2 Usage frequency of IGLV in Rhenish-German Coldblood (RGC) and Hanoverian 
Warmblood (HW) resulting from transcription analysis. IGLV describe the numbers of 
immunoglobulin λ-light chain variable gene segments as designated in a previous study (Sun et 
al., 2010). Significant differences between transcriptional frequency of the IGLV are indicated by 
asterisks (*P≤0.05, **P≤0.01, ***P≤0.001). For IGLV25, a significant difference was calculated 
between the two breeds (P=0.0233).  

 

In both breeds examined, IGLV17 was rearranged preferably (RGC: n=53, 44.2%; 

HW: n=51, 42.5%). Similarly, IGLV15 was used with high frequencies in RGC (n=25, 

20.8%) as well as in HW (n=21, 17.5%). In both breeds the Chi2 statistics revealed 

significant differences of the transcriptional use of IGLV15 and IGLV17 in comparison 

to the other transcribed IGLVs. P-values ≤0.001 were obtained for the transcription of 

IGLV17 compared to IGLV19, IGLV18, IGLV74ψ, IGLV22, IGLV25, IGLV26, and 

IGLV27 within the both breeds examined. Comparing IGLV17 and IGLV15, we 

received a P-value ≤0.01 for RGC and ≤0.001 for HW. Very high significances 

(P≤0.001) were observed for the use IGLV15 in comparison to IGLV19, IGLV74ψ, and 

IGLV26 in RGC and HW animals. The same P-values were calculated for IGLV15 and 

IGLV23 as well as for IGLV15 and IGLV101ψ in RGC. Differences in the significance 

level were obtained between IGLV15 and IGLV18 (PHW=0.0004, PRGC=0.0015) and 

IGLV15 and IGLV27 (PHW=0.0017, PRGC=0.0326). Beside these similarities in 

transcriptional use of IGLV15 and IGLV17, both breeds differed in usage of further 
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IGLV-segments. While HW preferred IGLV25 as a third major IGLV-segment (n=22, 

18.3%), RGC favored IGLV27 (n=12, 10%) as verified by Chi². In HW significant 

differences (P≤0.001) in transcription frequency were calculated for IGLV25 compared 

to IGLV19, IGLV74ψ, and IGLV26. Comparing IGLV25-IGLV18 (P≤0.05), IGLV22, and 

IGLV27 (P≤0.01) additional significant differences were calculated. In RGC IGLV27 

revealed significant differences in transcriptional use to IGLV19, IGLV74ψ, IGLV101ψ 

(P≤0.01), IGLV23, and IGLV26 (P≤0.05). Statistical analysis further revealed significant 

differences in the expression of IGLV25 between the breeds (P=0.0233). 

Moreover, it is noteworthy that two pseudogenes (IGLV101ψ and IGLV74ψ) were 

completely transcribed. For IGLV74ψ we identified nucleotide variations in CDR1 

sequences that started at nucleotide position 96 of IGLV and neutralized the stop 

codons. These nucleotide variations within CDR1 resulted in a frame shift by what the 

deduced amino acid sequence changed and replaced the first stop codon by A, while 

S, K, I, or R substituted the second stop codon.  

In order to describe the impact of the transcriptional orientation on the usage of 

IGLV-segments two assumptions were examined. The first calculation was based on all 

classified IGLV independently of their functionality. The second analysis included only 

the putative functional segments. Both statistical analysis showed that the F-ratios 

provided in the analysis of variance are identical to the Wald/rank(K) F-statistics as 

defined by Littell et al. (2004). Those F-statistics have been used to identify the impact 

of fixed effects on transcriptional orientation and functionality. For both breeds, RGC 

and HW, the transcriptional orientation has no influence on the transcription frequency 

of the IGLV-segments.  

 

3.4. Rearrangement of IGLV- and IGLC-genes 

In order to investigate the λ-light chain repertoire in the breeds RGC and HW, we 

analyzed rearrangement frequencies of the transcribed IGLV- and IGLC-genes. In 

addition, we used non-parametric tests for the analysis of significant differences within 

the rearrangements in the breeds as well as between the two breeds. The most 

frequently transcribed IGLC6/7 was rearranged with all of the transcribed 

IGLV-segments. In RGC, IGLV19, IGLV18, IGLV74ψ, and IGLV101ψ were only 

combined with IGLC6/7 (Fig. 3a), while IGLV26 was combined solely with IGLC6/7 in 

HW (Fig. 3b).  
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Fig. 3 Frequency of rearrangement of IGLV and IGLC genes in Rhenish-German Coldblood 
(RGC; a) and Hanoverian Warmblood (HW; b). IGLC1, IGLC4, IGLC5, and IGLC6/7 describe 
immunoglobulin λ-light chain constant regions that were transcribed in this study. IGLV describe 
the numbers of immunoglobulin λ-light chain variable gene segments as designated in a 
previous study (Sun et al., 2010). Ψ indicates completely transcribed pseudogenes. Arrows 
below annotation of the horizontal axis designate transcriptional orientation of IGLV. Arrows 
pointing to the right hand side indicate the same transcriptional orientation as germline IGLJ-
IGLC cluster. Asterisks show significant differences in IGLC usage within this IGLV (*P≤0.05, 
**P≤0.01, ***P≤0.001). For IGLV15 there is a significant difference between the breeds 
(P=0.011). 
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Furthermore, in RGC IGLV22 and IGLV26 were rearranged either with IGLC1/IGLC6/7 

or IGLC5/IGLC6/7, respectively. The IGLV-segments IGLV23, IGLV25, and IGLV27 

were rearranged with IGLC1, IGLC5, and IGLC6/7, whereas in RGC IGLV15 and 

IGLV17 were rearranged with all four transcribed IGLC-genes, wherein in both IGLV 

IGLC4 was rearranged once (Fig. 3a). 44.0% of IGLV15 sequences in RGC were 

rearranged with IGLC1, 24.0% were joined to IGLC5, and 28.0% were joined to 

IGLC6/7. In HW IGLC5 was used preferentially (57.1%) for recombination with IGLV15. 

IGLC6/7 (38.1%) and IGLC1 (4.8%) were recombined less frequently with IGLV15. 

Analyses of the sequence numbers showed significant differences (P=0.011) of 

rearrangements of IGLV15 with the IGLC-genes between both breeds examined. 

These analyses also revealed significant differences of IGLC rearrangements within 

the breeds (PRGC=0.0436; PHW=0.0119). IGLV17 preferred recombination with IGLC6/7 

(RGC: 62.3%; HW: 70.6%) followed by IGLC5 (RGC: 20.8%; HW: 23.5%) and IGLC1 

(RGC: 15.1%; HW: 5.9%). For IGLV17 statistical analyses showed highly significant 

differences of IGLC rearrangements within the two breeds examined (PRGC<0.0001; 

PHW<0.0001). 

In comparison to RGC, in HW IGLV19, IGLV18, IGLV74ψ, IGLV22, and IGLV27 were 

rearranged with either IGLC1/IGLC6/7 or IGLC5/IGLC6/7, whereas IGLV17, IGLV15, 

and IGLV25 were combined with IGLC1, IGLC5, and IGLC6/7 (Fig. 3b).  

 

 

3.5. Allelic variants of IGLC1 

In the breeds analyzed, single nucleotide polymorphisms (SNPs) of IGLC1 were 

detected (Table 2, Fig. 4a). The analyses of the deduced amino acid sequences 

revealed five allotypic variants denominated as IGLC1a, IGLC1b, IGLC1c, IGLC1d, and 

IGLC1e. Germline IGLC1 was set as allotype a. The corresponding sequence can be 

found in the contig NW_001867428.1 (nucleotides 4144483-4144802) of the equine 

genome assembly EquCab2.0. SNPs were compared to the positions within this exon. 

Deduced amino acid residue substitutions were referred to the IMGT nomenclature 

(Lefranc et al., 2005; Table 2, Fig. 4a). The homology-based modeling showed the 

closest model for all IGLC1 allotypic variants to the crystal structures of either Fab KOL 

or Fab NEW derived from human mAbs (IGLC1a, e PDB code 2FB4, IGLC1b-d PDB 

code 1AQK; Faber et al., 1998; Kratzin et al., 1989). Identities of at least 63% were 

calculated.  
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Table 2  
Allotypic variants of IGLC1. Nucleotide substitutions of allotypes are shown as SNP at 
corresponding nucleotide positions of IGLC. Resulting amino acid residue substitutions are 
shown as follows: initial amino acid residue, position, and replacing amino acid residue. 
Numbering of amino acid residue positions occurred in accordance with the IMGT numbering 
system for constant domains (Lefranc et al., 2005). 

Isotype Allotype/ allele Position: SNPa 
Position 

amino acid 
substitution 

IGLC1 
 
 

b 

7: C > A P 1.3 T 
10: A > C T1.2 P 
146: T > C I 45.3 T 
149: G > C S 45.4 T 
156: A > C - 
189: T > C - 
201: G > A - 
204: T > C - 
217: A > C T 90 S 
229: G > A 

A 94 S 
230: C > G 
316: T > C S 127 P 

c 

10: A > C 
T 1.2 L 

11: C > T 
16: G > C A 1 P 
62: C > T A 16 V 
146: T > C I 45.3 T 
149: G > C S 45.4 T 
156: A > C - 
170: A > G K 82 R 
189: T > C - 
201: G > A - 
204: T > C - 
217: A > C T 90 P 
229: G > A A 94 T 
316: T > C S 127 P 

d 

16: G > A A 1 T 
146: T > C I 45.3 T 
149: G > C S 45.4 T 
156: A > C - 
189: T > C - 
201: G > A - 
204: T > C - 
217: A > C T 90 S 
229: G > A 

A 94 S 
230: C > G 
316: T > C S 127 P 

e 

149: G > C S 45.4 T 
170: A > G K 82 R 
217: A > C T 90 P 
229: G > A A 94 T 
316: T > C S 127 P 

a Single nucleotide polymorphism. 
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The allotypic variant IGLC1b differed from IGLC1a in two conservative as well as four 

non-conservative amino acid residue substitutions represented by P1.3T, T1.2P, 

S45.4T, T90S, A94S, and S127P which are located at the solvent accessible surface 

(Table 2, Fig. 4b). A fifth non-conservative amino acid residue substitution namely 

I45.3T was located inside the molecule. The adjoining residues 1.3 and 1.2 are located 

at the linking area to IGLV. At position 1.3 the hydrophobic P was replaced by the 

hydrophilic T. Due to the reverse substitution at position 1.2 the polarity in this molecule 

part was converted. At position 94 the replacement of A by S also led to a polar side 

chain. Residue 90 was adjacent to the putative interface to CH1, whereas positions 

45.4 and 94 were located at the outer side of the molecule as determined by homology-

based 3D modeling (Fig. 4b). Another non-conservative amino acid residue substitution 

represented by S127P was located at the C-terminal end of IGLC1, leading to the 

replacement of the neutral and hydrophilic amino acid residue by the stabilizing 

heterocyclic and hydrophobic P. Altogether 12 sequences of five RGC horses were 

assigned to allotypic variant IGLC1b (JN228100). Three of these five animals 

transcribed this allotype solely, two were heterozygous with IGLC1d. In HW amino acid 

residue substitutions regarding IGLC1b were not observed (Table 3).  
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Fig. 4 Comparison of IGLC1 and its allotypic variants. a Alignment of isotype IGLC1 by 
ClustalW (Thompson et al., 1994) using detected allotypes. Sequences were numbered 
according to the IMGT numbering system for constant domains (Lefranc et al., 2005). A, B, C, 
D, E, F, and G correspond to the sandwich fold beta strands, whereas AB, BC, CD, DE, EF, and 
FG classify the turns and loops of constant domain immunoglobulin structure. Dots indicate 
identical nucleotides and dashes indicate gaps. The asterisk marks the stop codon. Amino acid 
residues providing the contact to CH1 on the interface between IGHC1 and IGLC in the crystal 
structure of human mAb NEW are indicated by bold letters and in the crystal structure of human 
mAb KOL they are indicated by italic letters (Padlan et al., 1986). Bold and italic letters 
demonstrate interface residues in both of the mAbs. b Homology-based modeling of IGLC 
isotype IGLC1 and its allotypes. For the predicted 3D structures solvent accessible surfaces are 
shown from two opposite sides. The images at the bottom are turned by 180° over the vertical 
axis compared to those at the top. The putative interface to CH1 is green. Locations of amino 
acid residue differences to the basic allotype IGLC1a within the interface are marked in orange, 
whereas the remaining substitutions are marked in magenta. VL indicates the location of the 
corresponding variable region. Description of the amino acid residues followed the IMGT 
nomenclature (Lefranc et al., 2005). 
 
 

IGLC1c showed nine amino acid residue substitutions in comparison to IGLC1a 

(Table 2, Fig. 4b). Seven of them occurred in residues exposed to the surface whereas 

only four were shown in figure 4a due to sequence predictions of the homology-based 

PDB-file. Amino acid residue substitutions at positions 16 and 45.3 were placed inside 

the molecule. While amino acid residues T45.4 and T94 were adjacent to the putative 

interface to CH1, R82 and P90 were located at the outer side of the molecule. The 

amino acid residue substitutions at positions 45.4 and 82 were conservative, while at 

position 90 the hydrophilic T was replaced by the hydrophobic P and the hydrophilic T 

was incorporated instead of hydrophobic A at position 94. There was no change of 

charge beside the change of hydrophobicity. Allotype IGLC1c (JN228101) was detected 

in one HW animal as well as in one RGC animal that were heterozygous and also 

exhibited IGLC1e (Table 3).  

The fourth allotypic variant IGLC1d also revealed two conservative amino acid residue 

substitutions resulting in T45.4 and S90, whereas the hydrophilic S at position 94 

replaced the hydrophobic A. These positions were located at the surface of the 

molecule. IGLC1d also differed from IGLC1a by T45.3. An additional amino acid residue 

substitution enabling the differentiation of IGLC1d from the other four allotypic variants 

of IGLC1 was located at amino acid residue position 1. Here, A was replaced by T 

exhibiting a polar side chain (Table 2, Fig. 4a, b). IGLC1d (JN228102) was found in 

three animals of the breed RGC but was not detected in HW. In two animals this 

allotype was transcribed heterozygously together with IGLC1b, while it was transcribed 

homozygously in one animal (Table 3). 
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Table 3  
Transcriptional occurrence and frequencies of the allotypic variants in the horse breeds 
Rhenish-German Coldblood (RGC) and Hanoverian Warmblood (HW). Homozygous and 
heterozygous transcription is indicated by the combination of allotypic variants. Only transcribed 
allotypic variants are shown in the table. 

 Allotypes/ Alleles  Horse breeds 

   RGC HW 

IGLC1 

b/b  3 0 

b/d  2 0 

c/e  1 1 

d/d  1 0 

e/e  2 3 

  ∑ 9 4 

Frequencies 

b  0.44 0 

c  0.06 0.13 

d  0.22 0 

e  0.28 0.87 

  ∑ 1 1 

IGLC5 

a/a  2 5 

a/b  0 1 

a/c  1 0 

a/d  1 0 

d/d  2 0 

  ∑ 6 6 

Frequencies  

a  0.5 0.92 

b  0 0.08 

c  0.08 0 

d  0.42 0 

  ∑ 1 1 

IGLC6/7 

a1/a1  1 0 

a1/a2  3 7 

a1/a3  1 0 

a2/a2  0 1 

a2/a3  1 0 

a3/a3  1 0 

a2/b  1 0 

a3/b  1 0 

  ∑ 9 8 

Frequencies 

a1  0.33 0.44 

a2  0.28 0.56 

a3  0.28 0 

b  0.11 0 

  ∑ 1 1 
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IGLC1e revealed five amino acid residue substitutions compared to IGLC1a (S45.5T, 

K82R, T90P, A94T, S127P; Table 2, Fig. 4a). In accordance to IGLC1b-d, IGLC1e differs 

in S127P IGLC1a.  This stabilizing amino acid substitution is located at the C-terminal 

end of IGLC1 and also had an influence on hydrophobicity. In HW, three horses were 

homozygous for IGLC1e as well as two animals of RGC (RGC: JN228103, 

HW: JN228104). In each breed, one animal showed heterozygous transcription 

together with IGLC1c (Table 3).   

In silico analyses of the ESTs database gave evidence to one nucleotide sequence 

coding for IGLC1d in a Dartmore Pony (CD470899). For further allotypes no entries 

were observed matching 100% sequence identity and coverage. Alleles IGLC1a, 

IGLC1b, IGLC1c, IGLC1d, and IGLC1e were at least 96.0% identical to each other 

(Online Resource 1). 

  

3.6. Allelic variants of IGLC5 

For IGLC5, four allotypic variants were identified and were denominated as IGLC5a, 

IGLC5b, IGLC5c, and IGLC5d. The germline sequence of the equine genome assembly 

EquCab2.0 (NW_001867428, nucleotide no. 4127347-4127666) was set IGLC5a. The 

allotypic variants were distinguished by the deduced amino acid residue substitutions 

resulting from 10 different SNPs (Table 4, Fig. 5a). For IGLC5, the deduced amino acid 

residues of the allotypic variants were aligned and 3D structures of the accessible 

surfaces were calculated (Fig. 5b). IGLC5a shared the best homology with the PDB 

code 2FB4 (Kratzin et al., 1989). The closest model for IGLC5b-d was PDB code 1AQK 

(Faber et al., 1998). Homology to selected PDB codes was at least 63%.  

For IGLC5a five of ten HW animals were homozygous (JN228106) and one animal also 

transcribed IGLC5b. In RGC four of 10 animals transcribed this allotype (JN228105). In 

one of these animals IGLC5a was transcribed heterozygously together with IGLC5c. A 

second RGC animal transcribed IGLC5d (Table 3). 

IGLC5b differed from IGLC5a in three amino acid residue substitutions (Table 4, 

Fig. 5b). A1P and K107T represented conservative amino acid residue substitutions 

concerning charge and hydrophobicity. In spite of that, the long amino acid side chain 

of K107 was replaced by the shorter side chain of T and a steric influence on the 

molecule has to be considered. The replacement T1.2L resulted in a neutral amino acid 

with hydrophobic side chain which was located at the opposite site of the interface to 

CH1. Allotype IGLC5b (JN228107) was only identified in five sequences of one HW 

animal. In this animal IGLC5a was also determined (Table 3). 
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Fig. 5 Comparison of IGLC5 and its allotypic variants a Alignment of isotype IGLC5 by ClustalW 
(Thompson et al., 1994) using detected allotypes. Sequences were numbered according to the 
IMGT numbering system for constant domains (Lefranc et al., 2005). A, B, C, D, E, F, and G 
correspond to the sandwich fold beta strands, whereas AB, BC, CD, DE, EF, and FG classify 
the turns and loops of constant domain immunoglobulin structure. Dots indicate identical 
nucleotides and dashes indicate gaps. The asterisk marks the stop codon. Amino acid residues 
providing the contact to CH1 on the interface between IGHC1 and IGLC in the crystal structure 
of human mAb NEW are indicated by bold letters and in the crystal structure of human mAb 
KOL they are indicated by italic letters (Padlan et al., 1986). Bold and italic letters demonstrate 
interface residues in both of the mAbs. b Homology-based modeling of IGLC isotype IGLC5 and 
its allotypes. For the predicted 3D structures solvent accessible surfaces are shown from two 
opposite sides. The images at the bottom are turned by 180° over the vertical axis compared to 
those at the top. The putative interface to CH1 is green. Locations of amino acid residue 
differences to the basic allotype IGLC5a within the interface are marked in orange, whereas the 
remaining substitutions are marked in magenta. VL indicates the location of the corresponding 
variable region. Description of the amino acid residues followed the IMGT nomenclature 
(Lefranc et al., 2005). 
 
 
 

IGLC5c (JN228108) revealed a single SNP located near the putative interface to CH1, 

which resulted in the conservative amino acid residue substitution A1P (Table 4, 

Fig. 5b). This substitution was solely observed in one RGC animal which also 

expressed IGLC5a (Table 3). 

Three non-conservative amino acid residue substitutions at positions 1, 77, and 83 as 

well as one conservative amino acid residue substitution at position 45.4 characterized 

IGLC5d (Table 4, Fig. 5a). Due to the amino acid residue substitution P83S a new 

hydrophilic amino acid residue was exposed to the accessible surface. In addition, 

R77G converts the charge at this position into neutral as the hydrophobic G was 

incorporated instead of the hydrophilic R. Position 77 was adjacent to the putative 

interface to CH1. Amino acid residue substitutions at positions 45.4 and 107 were 

located at the opposite site to the interface to CH1. As IGLC5c, allotypic variant IGLC5d 

(JN228109) was only found in one RGC animal that also transcribed IGLC5a. IGLC5d 

was represented by one sequence in two further animals of RGC (Table 3). 

For allotypic variants of IGLC5 no EST was observed with 100% identity and coverage. 

Alleles IGLC5a, IGLC5b, IGLC5c, and IGLC5d showed at least 96.9% identity to each 

other (Online Resource 2). 
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Table 4  
Allotypic variants of IGLC5. Nucleotide substitutions of further allotypes are shown as SNP at 
corresponding nucleotide positions of IGLC. Resulting amino acid residue substitutions are 
shown as follows: initial amino acid residue, position, and replacing amino acid residue. 
Numbering of amino acid residue positions occurred in accordance with the IMGT numbering 
system for constant domains (Lefranc et al., 2005). 

Isotype Allotype/ allele Position: SNPa 
Position 

amino acid 
substitution 

IGLC5 

b 

10: A > C 
T 1.2 L 

11: C > T 
16: G > C A 1 P 
129: A > G - 
269: A > C K 107 T 

c 16: G > C A 1 P 

d 

16: G > A A 1 T 
112: T > C - 
129: A > G - 
149: A > C N 45.4 T 
154: C > G R 77 G 
172: C > T P 83 S 

a Single nucleotide polymorphism. 

 

3.7. Allelic variants of IGLC6/7 

The analyses of the predominantly expressed isotypes revealed two allotypic variants 

(IGLC6/7a, IGLC6/7b). For IGLC6/7a three allelic variants were differentiated 

(IGLC6/7a1, IGLC6/7a2, IGLC6/7a3; Table 5, Fig. 6a). The germline sequence of the 

equine genome assembly EquCab2.0 was defined as IGLC6/7a1. The corresponding 

nucleotides are presented by positions 4120531-4120851 coding for IGLC7 in the 

contig NW_001867428. IGLC6 and IGLC7 were not distinguished from each other as 

their sequences differed only in nucleotide position 16 within their genes corresponding 

to positions 4124306 (G) and 4120837 (A) (NW_001867428). This SNP resulted in 

different motifs at amino acid positions 1.1 to 3 (SAPS for IGLC6, STPS for IGLC7). In 

all of our sequences analyzed nucleotide A and therefore amino acid residue motif 

STPS was determined similarly to germline IGLC7.  
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Table 5  
Allelic and allotypic variants of IGLC6/7. Nucleotide substitutions of the variants are shown as 
SNP at corresponding nucleotide positions of IGLC. Resulting amino acid residue substitutions 
are shown as follows: initial amino acid residue, position, and replacing amino acid residue. 
Numbering of amino acid residue positions occurred in accordance with the IMGT numbering 
system for constant domains (Lefranc et al., 2005). 

Isotype Allotype/ allele Position: SNPa  
Position  

amino acid 
substitution 

 IGLC6/ 
IGLC7 

a2 93: T > C - 

a3 112: C > T - 

b 
32: T > C  L 6 P 
93: T > C - 
167: C > T  T 81 I 

a Single nucleotide polymorphism. 

 

Alignments of the deduced amino acid sequences to the crystal structures of human 

mAb KOL and NEW derived Fabs enabled calculation of the accessible surfaces 

(Fig. 6b). For IGLC6/7a, b the closest model was PDB code 1AQK (Faber et al., 1998). 

Homology to this PDB code was at least 63%. 

The three alleles were distinguished by SNPs at nucleotide positions 4120760 with 

T>C (IGLC6/7a2) and 4120741 with C>T (IGLC6/7a3) within the gene (NW_001867428, 

Table 5, Fig. 6a). Only one animal of the breeds analyzed showed homozygous 

transcription of IGLC6/7a1 (RGC: JN228110, HW: JN228111). IGLC6/7a2 was found in 

five RGC animals (JN228112) and in eight horses of HW (JN228113). One HW animal 

was homozygous for this allele. All remaining animals were heterozygous and 

transcribed additionally either IGLC6/7a1, IGLC6/7a3, or IGLC6/7b. IGLC6/7a3 

(JN228114) was transcribed in four animals of the breed RGC (Table 3). 

In comparison to IGLC6/7a, IGLC6/7b is characterized by the two amino acid residue 

exchanges L6P and T81I. At position six a neutral and hydrophobic amino acid side 

chain was replaced by an aliphatic and hydrophobic side chain. The amino acid residue 

substitution resulting in a hydrophobic side chain at position 81 affected one of the 

conserved residues that were responsible for the interaction between CL and CH1 

(Fig. 6b). In comparison to IGLC6/7a2 the same SNP like at nucleotide position 

4,120,760 caused a silent mutation in IGLC6/7b. 

IGLC6/7b was only detected in two animals of the breed RGC (JN228115). In these two 

animals either IGLC6/7a2 or IGLC6/7a3 were observed additionally. For all allotypic 

variants of IGLC6/7 no EST showed 100% identity and coverage. The four alleles of 

IGLC6/7 were at least 98.4% identical to each other (Online Resource 3).  
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Fig. 6 Comparison of IGLC6/7 and its allotypic variants a Alignment of isotype IGLC6/7 by 
ClustalW (Thompson et al., 1994) using detected allotypes. Sequences were numbered 
according to the IMGT numbering system for constant domains (Lefranc et al., 2005). A, B, C, 
D, E, F, and G correspond to the sandwich fold beta strands, whereas AB, BC, CD, DE, EF, and 
FG classify the turns and loops of constant domain immunoglobulin structure. Dots indicate 
identical nucleotides and dashes indicate gaps. The asterisk marks the stop codon. Amino acid 
residues providing the contact to CH1 on the interface between IGHC1 and IGLC in the crystal 
structure of human mAb NEW are indicated by bold letters and in the crystal structure of human 
mAb KOL they are indicated by italic letters (Padlan et al. 1986). Bold and italic letters 
demonstrate interface residues in both of the mAbs. b Homology-based modeling of IGLC 
isotype IGLC6/7 and its allotypes. For the predicted 3D structures solvent accessible surfaces 
are shown from two opposite sides. The images at the bottom are turned by 180° over the 
vertical axis compared to those at the top. The putative interface to CH1 is green. Locations of 
amino acid residue differences to the basic allotype IGLC7a within the interface are marked in 
orange, whereas the remaining substitutions are marked in magenta. VL indicates the location 
of the corresponding variable region. Description of the amino acid residues followed the IMGT 
nomenclature (Lefranc et al., 2005). 
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4. Discussion 

 

Our study is the first detailed molecular genetic description of allotypic variants within 

the equine λ-light chain locus. The present analyses revealed the existence of five 

IGLC1, four IGLC5, and two IGLC6/7 allotypic variants. For IGLC6/7a three alleles were 

observed. The amino acid residue variations at positions 1.3, 1.2, 1, 45.3, 45.4, 81, 83, 

90, 94, 95, and 107 were located at the accessible surface as confirmed by 

homology-based predicted 3D structural analysis. These modifications are assumed to 

possess distinct serological properties resulting in allotypic variants.  

The transcriptional use of IGLC6/7 was significantly preferred in both breeds analyzed 

as confirmed by Chi² statistics. There were highly significant differences in the 

transcription frequency of the four functional IGLC isotypes within the two breeds. 

IGLC6 and IGLC7 were distinguished by only one amino acid residue substitution 

which was caused by one SNP. Due to the similarity of our corresponding sequences it 

was not obvious whether they were different alleles of IGLC6 or IGLC7 or allotypic 

variants of one gene. It is noteworthy that the sequences analyzed resembled IGLC7. 

All allotypic variants identified showed distinct amino acid residue substitutions in all 

seven β-sheets according to the IMGT nomenclature (Lefranc et al., 2005). Most of the 

substitutions were located within the accessible surface area (Padlan et al., 1986). 

Seven of these substitutions (A1T, R77G, T81I, 82R, P83S, T90S/P) were positioned 

within the interface between the constant region of the light chain and the first constant 

region of the heavy chain. These changes might influence the stable connection 

between both the heavy and light chains. Due to crystal structures of Fabs derived from 

human mAbs KOL and NEW, six amino acids (F7, E12, E13, T20, V22, and T81) were 

defined as conserved residues. They are expected for the main interaction of IGLC and 

IGHC1. The remaining interface residues may be variable (Padlan et al., 1986). 

Regarding these facts, T81I affected one of the conserved residues for the contact to 

IGHC1 leading to the conclusion, that the assembly of heavy and light chains could be 

changed. Otherwise we do not have any information about allelic changes in CH1 of 

the heavy chains and this conclusion remains to be verified. In previous studies IGHC1 

was related to antibody affinity (Pritsch et al., 1996). IGLC and IGHC1 were found to 

have an influence on the whole immunoglobulin molecule due to time differences in the 

assembly of full size antibodies and in the kinetics of antigen binding (Montano and 

Morrison, 2002).  
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Amino acid residue substitutions located at the solvent accessible surface area might 

be distinguished by specific sera and therefore might be used as markers. Specific 

markers differing in frequencies within human populations were observed in λ- and 

κ-light chains as well as in heavy chains of IgG and IgA (Calderon et al., 2007; 

Matsumoto et al., 1984; Schanfield et al., 2008). Due to either direct association or 

linkage disequilibrium with the causative gene, allotypic markers of human 

immunoglobulin chains could be related to susceptibility of different infectious diseases 

(Giha et al., 2009; Granoff et al., 1984; Pandey, 2000; Pandey et al., 1995; Pandey et 

al., 1979). Influences of bovine allotypes on effector functions, complement activation, 

and age dependent expression have also been pointed out in previous studies 

(Bastida-Corcuera et al., 2000; Bastida-Corcuera et al., 1999a; Bastida-Corcuera et al., 

1999b; Corbeil et al., 1997). As investigations on these issues are missing in horses, 

we suppose heterozygotic horses to be advantageous to the humoral immune 

response.  

In addition to IGLC1, IGLC5, and IGLC6/7, a fourth IGLC-gene (IGLC4) was found in 

one sequence of two RGC horses. Both of them varied from each other as well as from 

the genomic sequence in the genome assembly EquCab2.0. Since our set criteria for 

the definition of a new allotype were not fulfilled, this isotype was not analyzed further. 

This constant region was described as potentially nonfunctional due to a single 

C-insertion within the corresponding joining gene segment IGLJ4. We observed 

transcription without the C-insertion within the IGLJ-segment as mentioned in previous 

studies (Sun et al., 2010).  

In our investigation we also analyzed the presence of all predicted germline 

IGLJ-IGLC pairs. Each of the six distinguishable IGLJ-IGLC pairs was amplified from 

two RGC and one HW animal. IGLJ5-IGLC5 was detected in four animals of RGC and 

five animals of HW. In contrast, in previous investigations germline IGLJ5-IGLC5 as 

well as IGLJ7-IGLC7 were not amplified. In the same study germline IGLC6 and IGLC7 

were distinguished by PCR-products amplified with primers that anneal within the 

genomic introns (Sun et al., 2010). As we used exon specific primer pairs to minimize 

genomic sequence variability and to avoid false-negative results we could not 

differentiate between IGLC6 and IGLC7. 

Beside the presence of predicted germline IGLJ-IGLC pairs and the transcription 

frequency of IGLC-genes, we had a closer look at the usage of IGLV-segments of 

subgroup 8 because this subgroup contains the highest number of functional IGLV. In 

addition, Sun et al. (2010) showed this subgroup is transcribed preferentially. As there 
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are nine functional IGLV in subgroup 8, we sequenced 12 clones per animal to find 

subgroup 8-IGLV transcribed at low frequency in horses, too. Finally, there were two 

variable segments, IGLV15 and IGLV17, which were preferred in both breeds. For 

IGLV15, statistical analyses showed significant differences of the rearrangements with 

the four IGLC-isotypes transcribed. While rearrangement of IGLV17 was highly 

significant different from the other IGLV-segments in both breeds examined, 

rearrangement of IGLV15 showed P-values of 0.0119 in HW and 0.0436 in RGC. 

Between both breeds analyzed, only IGLV15 differed significantly in rearrangements 

with the IGLC-genes (P=0.011). In HW a third variable segment, IGLV25, was 

transcribed at high frequency. For this segment Chi2 revealed significant differences of 

transcription frequency within both breeds examined (P=0.0233). These results 

indicate that the V-domain repertoire is dominated by two breed independent IGLV 

genes and a third breed specific IGLV gene that are effectively used for combinatorial 

joining of IGLJ-IGLC-genes and thus for antibody production. Furthermore, two putative 

pseudogenes (IGLV74ψ, IGLV101ψ) were transcribed. For IGLV74ψ a frameshift in 

CDR1 resulting in two in frame stop codons in FR3 and CDR3 was described 

(Sun et al., 2010). In addition, no TATA-box was identified. As known for humans and 

Saccharomyces cerevisiae, the TATA-box is not essential for accurate transcription 

initiation (Bjornsdottir and Myers, 2008; Yang et al., 2007). Consequently the 

premature stop codons are seen as reason for nonfunctionality. The isolated 

sequences did not show premature termination. We identified variations in CDR1 

sequences that were introduced by the deletion of C, which was present at nucleotide 

position 96 of germline IGLV74ψ. This deletion resulted in a frame shift replacing the 

first stop codon by A, and the second one either by S, K, I, or R. As cDNA sequences 

were identified as IGLV74ψ due to sequence identities between 82.5% and 90.1%, we 

suppose individual mutations within the breeds to enable the transcriptional use of 

pseudogenes. Further we have to consider that germline sequences are prepared from 

a Thoroughbred, which is a very conserved breed founded by few stallions. So 

mutations resulting in pseudogenes may be spread within this breed but can be 

eliminated in other breeds. In RGC IGLV101ψ, also caused by a frame shift within the 

CDR1 of the germline sequence, was identified in two sequences. Transcription of 

pseudo V-gene segments has already been described for cattle, chicken, and rabbits 

(Arakawa and Buerstedde, 2009; Parng et al., 1996; Winstead et al., 1999). In these 

species usage of pseudogenes occurs by gene conversion which is a process 

contributing to antibody diversity. Our results indicated presence of similar mechanisms 
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in horses. In addition, we have to take into account that the spacer sequences of the 

recombination signal sequences shown in Sun et al. (2010) of the transcribed IGLVs 

seem to be conserved. The spacer sequence in IGLV101ψ is identical to that in 

IGLV17 and IGLV15, which are the mainly used IGLV. As shown in Nadel et al. (1998), 

spacer sequences contribute to rearrangement of human IGKV segments. In analogy 

these identical sequences of the spacers are an additional option for the transcription 

of potential pseudogenes. Moreover, transcriptional use of IGLV19 is limited in 

comparison to the other IGLV. The spacer of this segment shows three nucleotide 

substitutions relative to IGLV17 at positions 3, 10, and 12 of the spacer which also 

indicate the spacer to be a determinant factor for rearrangements.  

As analyses took place in two breeds with different stud book sizes and breeding goals, 

some of the results could be linked to breeding. RGC is a quiet conserved breed with 

approximately 1348 mares and 153 stallions presently in Germany. Animals of this 

breed are mainly used for agricultural purposes and breed representations (Bremond 

and Balzer, 2011). In contrast, animals of the breed HW participate in all disciplines of 

equestrian sports and are internationally well placed. This breed influenced other horse 

breeds and it presently is one of the biggest horse breeds with 19492 registered mares 

and more than 522 stallions (Bremond and Balzer, 2011). As there was a large number 

of founder animals of genetically different breeds, the permission to choose stallions 

from different sire lines, and modest migration of sires from other breeds is also 

granted. The inbreeding coefficient in the Hanoverian population is at low level (1.33%) 

than those of smaller populations like the Rhenish German Coldblood (1.73%; 

Biedermann et al., 2002; Hamann and Distl, 2008). Nevertheless, effective 

management of breeding and therefore restricted use of single stallions is necessary to 

prevent the random loss of alleles caused by large genetic contributions of few 

individuals over a long time period (bottleneck effect). Genetic drift and homogenization 

of genetic information may also occur and have to be controlled as the rate of 

inbreeding has increased in Hanoverians in the last ten years (Constans et al., 1985; 

Hamann and Distl, 2008; Simianer and Kohn, 2010). 

Our study aimed to characterize genetic and transcriptional differences of λ-light chain 

in two horse breeds. Distinct alleles and putative allotypic variants were described for 

the first time in horses. Future investigations should evaluate the distribution of allotypic 

markers of immunoglobulin chains in further horse breeds. Moreover, the linkage to 

infectious diseases such as in humans and cattle should be examined. 
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Legends to the Supplemental tables 

 

Supplemental table 1 Percent identity (upper triangle) and divergence (lower triangle) 

of the detected allotypes of IGLC1 were divided by black boxes. Database entries were 

indicated by their accession number, calculations were based on the pairwise 

alignment using ClustalW (Thompson et al., 1994). Percent identity was compared to 

sequence pairs without regard to their phylogenetic relationships. Divergence was 

calculated in relation to the phylogeny. 

 

Percent Identity  

D
iv

e
rg

e
n

c
e
 

 1 2 3 4 5 6   

1  96.3 96.0 96.3 97.5 96.3 1 IGLC1a 

2 3.8  97.5 98.8 97.8 98.8 2 IGLC1b 

3 4.2 2.5  97.2 98.4 97.2 3 IGLC1c 

4 3.8 1.3 2.9  97.8 100.0 4 IGLC1d 

5 2.5 2.2 1.6 2.2  97.8 5 IGLC1e 

6 3.8 1.3 2.9 0.0 2.2  6 CD470899 

 1 2 3 4 5 6   
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Supplemental table 2 Percent identity (upper triangle) and divergence (lower triangle) 

of the detected allotypes of IGLC5 were divided by black boxes. Calculations were 

based on the pairwise alignment using ClustalW (Thompson et al., 1994). Percent 

identity was compared to sequence pairs without accounting for their phylogenetic 

relationships. Divergence was calculated in relation to the phylogeny. 

 

 

 Percent Identity  

D
iv

e
rg

e
n

c

e
 

 1 2 3 4   

1  98.4 99.7 97.5 1 IGLC5a 

2 1.6  98.8 96.9 2 IGLC5b 

3 0.3 1.3  97.5 3 IGLC5c 

4 2.5 3.2 2.5  4 IGLC5d 

  1 2 3 4   

 

 

 

Supplemental table 3 Percent identity (upper triangle) and divergence (lower triangle) 

of the detected alleles and allotypes of IGLC6/7 were divided by black boxes. 

Calculations were based on the pairwise alignment using ClustalW (Thompson et al., 

1994). Percent identity was compared to sequence pairs without regard to their 

phylogenetic relationships. Divergence was calculated in relation to the phylogeny. 

 

  

  Percent Identity  

D
iv

e
rg

e
n

c
e
 

 1 2 3 4 5   

1  99.7 100.0 99.4 99.1 1 IGLC7a1 

2 0.3  99.7 99.0 98.7 2 IGLC6a1 

3 0.0 0.3  99.4 99.1 3 IGLC6/7a2 

4 0.6 1.0 0.6  98.4 4 IGLC6/7a3 

5 0.9 1.4 0.9 1.6  5 IGLC6/7b 

 1 2 3 4 5   
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Bovine Immunoglobulins 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The nature and extent of my contribution to the work was the following: 

 
3. Exceptionally long CDR3H are not isotype restricted in bovine 

immunoglobulins 

Nature of contribution Extent of contribution 

1. Scientific design 50% 

2. Laboratory work 80% 

3. Evaluation 70% 

4. Scientific Writing 65% 

 

4. Development of a bioinformatics framework for the detection of gene 

conversion and the analysis of combinatorial diversity in immunoglobulin heavy 

chains in four cattle breeds 

Nature of contribution Extent of contribution 

1. Scientific design 50% 

2. Laboratory work 50% 

3. Evaluation 70% 

4. Scientific Writing 65% 
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Bovine immunoglobulin heavy and light chains 
 

Bovine immunoglobulin heavy chain gene locus 

The bovine immunoglobulin heavy chain gene (IGH) locus was assigned to the Bos 

taurus autosome (BTA) 21 and spans approximately 250 kb (Miller et al. 1992; Niku et 

al. 2012). Southern blot analyses indicated the existence of two IGHV families (boVH1 

and boVH2) in the bovine germline repertoire. Before the study of Walther et al. (2013), 

the expression of only boVH1 genes has been observed and boVH2 was found 

comprising only pseudogenes (Tutter and Riblet 1989; Berens et al. 1997; Saini et al. 

1997; Sinclair et al. 1997; Lopez et al. 1998). The family boVH1 offers a restricted set 

of functional genes, which shares homologies to the murine Q52 family and human 

VHII family. The definite number and organization of IGHV has not been determined 

yet. The latest in silico analysis using blastn on all bovine genome assemblies revealed 

IGHV on the contigs NW_003104530.1 and NW_003104538.1 on Bos taurus 

chromosome 21 (BTA21; AC_000178.1), NW_003064289.1, NW_003064290.1, 

NW_003064296.1, NW_003064297.1, NW_003064298.1, and NW_003064299.1 on 

BTA7 (AC_000164.1), as well as on several unplaced contigs (Walther et al. 2013). In 

total, 36 IGHV are identified in the bovine genome assembly. On BTA 21, IGHV1 and 

IGHV2 were found at the centromeric region in NW_003104530.1. Eight IGHV located 

at the telomeric region were described within about 146 kb on NW_003104538.1 

(IGHV3, IGHV4, IGHV5, IGHV6, IGHV7, IGHV8, IGHV9, and IGHV10). The 

contigs NW_003064289.1, NW_003064290.1, NW_003064296.1, NW_003064297.1, 

NW_003064298.1, and NW_003064299.1 were annotated to 144 kb of the centromeric 

region on BTA7 possessing nine IGHV (IGHV11, IGHV12, IGHV13, IGHV14, 

IGHV15, IGHV16(ORF), IGHV17(ORF), IGHV18, and IGHV19). Thirteen out of 

the 36 IGHV segments are putatively functional. Eleven IGHV segment pairs shared 

sequence identity of 100% (IGHV3/33, IGHV10/34, IGHV9/35, IGHV4/32, 

IGHV7/22, IGHV2/26, IGHV1/27, IGHV18/30, IGHV16(ORF)/25, 

IGHV14Ψ/23Ψ, and IGHV36/29(F)). Phylogenetic analyses revealed a relation of all 

functional IGHV to huIGHV2-05, whereas this group corresponds to the bovine IGHV 

family 1 (boVH1) (Berens et al. 1997; Saini et al. 1997; Sinclair et al. 1997).  

In cattle, ten IGHD genes are classified into four families that are organized in sub-

clusters (Koti et al. 2008; Koti et al. 2010). Further, the IGHD exons reveal huge size 
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differences (Koti et al. 2008). On the telomeric end of BTA21, the bovine IGHD8 and 

IGHD4 were localized between IGHV6 and IGHV7 (Walther et al. 2013). Within the 

contig NW_003064411.1 on BTA7 one IGHD cluster of 1131 bp, encoding 

IGHD1(ORF) to IGHD3(ORF), was identified. On BTA8 a third location enclosing about 

43 kb possesses five IGHD segments, a δ chain pseudogene, a µ chain gene, and six 

IGHJ segments. In general, loci for the IGHD were observed on three chromosomes 

(Walther et al. 2013).  

By hybridization experiments, six joining segments (IGHJ) were detected on BTA11q23 

(Hosseini et al. 2004). The number of IGHJ segments preceding the IGHC genes was 

described by screening a bovine BAC and Cosmid library. Only two out of six IGHJ are 

functional (IGHJ1, IGHJ2). IGHJ1 is recombined predominantly while IGHJ2 is 

rearranged at low frequency (Zhao et al. 2003; Hosseini et al. 2004).  

 
 

Figure 1: Physical map of the bovine heavy chain locus 
The locus is shown in 3’-5’ direction on chromosome 21. This figure is adapted from current 
literature (Zhao et al. 2003; Zimin et al. 2009; Koti et al. 2010; Niku et al. 2012; Walther et al. 
2013; Pasman 2014).  
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The CDR3H encoded by IGHV-IGHD-IGHJ recombinations varies from 3 to 67 amino 

acid residues (Berens et al. 1997; Saini et al. 1999; Saini and Kaushik 2002; Saini et al. 

2003; Kaushik et al. 2009; Larsen and Smith 2012). These exceptionally long CDR3H 

are specific for cattle and possess characteristic hydrophilic Glycine and Tyrosine 

residues. The 148 bp long IGHD2 contributes to those CDR3H (Berens et al. 1997; 

Shojaei et al. 2003; Koti et al. 2008). Further, a high number of Cysteine residues was 

described and is demonstrated to promote intra-CDR3H disulfide bonds that contribute 

to the “knob” domain in exceptionally long CDR3H (Sinclair et al. 1997). In contrast, 

inter CDR disulfide bonds may exist in mid-length CDR3H due to one to three Cys 

residues in CDR3H and one Cys within CDR2H (Saini et al. 1999; Ramsland et al. 

2001). Additional mechanisms contributing to the unusual length of bovine CDR3H 

were studied because the imprecise junction of germline encoded IGHV, IGHD, and 

IGHJ cannot fully explain the existence of exceptionally long CDR3H in cattle. The 

insertion of conserved short nucleotide sequences of 13 to 18 nucleotides specifically 

into the IGHV and IGHD junction was found to contribute to a further elongation of the 

CDR3H. So far, this mechanism is unique for cattle (Koti et al. 2010). 

The genomic organization of the bovine IGHC locus was described by screening a 

bovine BAC and Cosmid library. All heavy chain isotype classes that have been 

detected in other mammals were also described for cattle (Knight and Becker 1987; 

Zhao et al. 2002). Three sub-classes comprise the γ-isotype, namely γ1, γ2, and γ3 

(Knight and Becker 1987; Symons et al. 1989). The IGHC locus spans approximately 

150 kb enclosing the genes in the following order: 5’-JH–7 kb–μ–5 kb–δ–33 kb–γ3–20 

kb–γ1–34 kb–γ2–20 kb–ε–13 kb–α-3’ (Zhao et al. 2003). 

 

 

Bovine immunoglobulin M (IgM)  

IgM is the major serum antibody in the primary immune response as it provides the first 

antibody-mediated host defense (Saini and Kaushik 2001; Woof and Burton 2004). IgM 

combats septicaemia when administered passively to calves and it is an important 

bactericidal antibody directed against mastitis in cattle and other ruminants (Mousavi et 

al. 1998). High amounts of IgM are described in colostrum and milk (3 mg/ml) (Butler 

1995).  

Two loci comprising functional IGHM genes were identified on BTA21 and BTA11q23 

by in situ hybridization, whereas the latter is currently assigned to BTA8 (Tobin-Janzen 

and Womack 1992; Hayes and Petit 1993). The IGHM gene comprises four exons 
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(IGHM1-4) encoding the constant domains, as well as two additional exons encoding 

the transmembrane domain (TM1, TM2) (Mousavi et al. 1998). Three bovine IgM 

allotypes are described, designated as IgMa, IgMb, and IgMc. While these allotypes 

are classified by amino acid substitutions within the exons, further IgM variants may 

result via alternative splicing e.g. inserting in frame codons at the IGHM1 and IGHM2 

junction. IGHM2 possesses few proline residues and functions as a hinge restricting 

flexibility and antigen binding ability of IgM (Saini and Kaushik 2001; Pasman 2014). 

 

 

Bovine immunoglobulin D (IgD)  

On BTA7 (contig NW_003064411.1), a cluster of 1131 bp was identified encoding 

exons for IGHD1(ORF) to IGHD3(ORF) and a pseudogene for a δ chain. The exons 1 

and 2 of the IGHD pseudogene are fragmented and exon 6 is missing (codes for the 

secretory region). Nevertheless, IgD is also found in a secreted form although showing 

lower concentrations than IgG, IgA, and IgM (Preud'homme et al. 2000; Zhao et al. 

2002). Further, frame shifts were identified. Genomic information for IGHD4 to 7 and a 

δ chain pseudogene were found on the contig NW_001503306.1, while IGHD4 and 8 

were detected on NW_001504477.2. A locus involving a putative functional δ chain 

gene was detected on NT_186572. In addition to NW_003100387.1, including a δ 

chain pseudogene locus, a putative functional δ chain gene was noted on 

NW_003100112.1 (Walther et al. 2013). 

The bovine, ovine, and porcine germline IgD genes are transcriptionally active at low 

levels and show structural similarities to the human IgD due to the three constant 

domains and the hinge region. As phylogenetic analyses revealed the Cδ gene 

duplicated from the Cμ gene more than 300 million years ago, the exon of the first 

constant domain of the IgD (IGHD1) is very similar to the IGHM1 exon. Further, unlike 

other species, the bovine IGHD has a switch region that may permit class switch 

recombination (Zhao et al. 2002).  

 

 

Bovine immunoglobulin G (IgG)  

Immunoglobulin G is the most abundant isotype in bovine serum as it constitutes more 

than 75% of serum immunoglobulins (Saini et al. 2007). It is also found in blood, lymph, 

peritoneal fluid, and cerebrospinal fluid. Furthermore, IgG contributes to different 

effector functions. For instance, it is involved in the enhancement of phagocytosis, 
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antibody-dependent cellular cytotoxicity, the regulation of cytokine and antibody 

production, antigen processing and presentation, as well as in the selective transfer via 

the FcRn-like receptor on alveolar epithelial cells of mammary glands (Burg and 

Pillinger 2001; Kacskovics 2004; Mestecky 2005; Pentsuk and van der Laan 2009).  

Three IgG subclasses (IgG1, IgG2, and IgG3) were identified in cattle, whereas two 

subclasses (IgG1 and IgG2) were found in sheep, seven IgG subclasses (IgG1-7) were 

detected in horses, four subclasses were described in humans, five in swine, and one 

in rabbits (Knight et al. 1988; Symons et al. 1989; Clarkson et al. 1993; Kacskovics et 

al. 1995; Kacskovics and Butler 1996; Rabbani et al. 1997; Wagner et al. 2004; 

Pasman 2014). Depending on characterization methods, two different types of 

designation exist. IgG1, IgG2a, and IgG2b were used in serological analyses, whereas 

IgG1, IgG2, and IgG3 were used in molecular analyses, respectively (Knight et al. 

1988). Serum concentrations of IgG1 and IgG2 reveal 10 mg/ml and the concentration 

of IgG1 can exceed 60 mg/ml in hyperimmunized animals. In colostrum, IgG1 

concentration was also found to exceed 100 mg/ml (Butler 1995). The bovine IgG3 

shows low serum concentrations, which may be caused by the longer hinge region that 

is a preferred proteolytic site (Rabbani et al. 1997).  

These three bovine Cγ genes (γ1, γ2, and γ3) have been mapped to chromosome 

21q24 and are located between the δ and ε genes of the heavy chain locus (Gu et al. 

1992; Tobin-Janzen and Womack 1992; Chowdhary et al. 1996; Saini et al. 2007). 

Interestingly, in an in silico study, on the bovine genome assembly BTA20 revealed the 

genomic information for a γ2 chain. A genomic order of γ3, γ2, and γ1 was identified on 

NT_185580.1. Genes coding for γ1 and γ3 were found on NW_003100065.1 and 

NW_003099305.1 (Walther et al. 2013). Gene duplication of bovine IGHG1 led to 

IGHG2 and IGHG3. Sequence similarities of 85.1% and 83.4% exist between the 

homologues IGHG1 and IGHG3, as well as IGHG1 and IGHG2, respectively (Zhao et 

al. 2003). For IgG1, four allotypic variants were described (IgG1a-d) (Symons et al. 

1989; Jackson et al. 1992; Kacskovics and Butler 1996; Saini et al. 2007). The bovine 

IgG2 and IgG3 reveal the two allotypic variants IgG2a and IgG2b (Kacskovics and 

Butler 1996) and IgG3a and IgG3b (Rabbani et al. 1997), respectively. Significant 

structural differences within the hinge regions and the CH3 domain result in different 

biological effector functions of IGHG1, IGHG2, and IGHG3. Amino acid residue 

substitutions were also described within the CH1 and CH2 domains of these three 

genes (Saini et al. 2007).  

The four known IgG1 allotypic variants are characterized by individual amino acid 
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differences at the positions 190 and 192 (CH1), 218, 224, 225, and 226 (hinge region), 

as well as 281 (CH2), and 402 (CH3), which were designated using the EU numbering 

system. IgG1a showed the amino acids Gly190, Thr192, Arg218, Thr224, and Thr226, 

Asp281, Gly402, as well as a deletion of the amino acid at position 225. The most 

similar allelic variants IgGb and IgGd possess Gly190, Thr192, Thr218, Pro224, 

Ser225, Pro226, and Asp281. They solely differ by Gly and Ser at position 402. The 

allotypic variant IgGc shows the amino acid residues Ala190, Ser192, Arg218, Arg224, 

Pro226, Asn281, Ser402 and a deletion at position 225. Three-dimensional modeling 

revealed that all substitutions are located on the surface of the IgG molecule and 

therefore may be recognized by antisera and effector molecules such as cellular 

adhesion molecules (Symons et al. 1989; Saini et al. 2007). Additionally, the repeating 

motif Pro-Ala-Ser-Ser at the positions 189–192 and 205–208 within the CH1 domain of 

IgG1c may stabilize the core immunoglobulin fold or promote interactions with 

fibronectin or similar adhesion molecules. The replacement of Thr with Arg residues 

within the hinge region reduces the number of O-linked glycosylation sites and 

increases the susceptibility to degradation by protease secreting bacteria (Saini et al. 

2007). 

The allotypic variants IgG2a and IgG2b differed in amino acid residues at 19 positions. 

These amino acid residue substitutions were found in the three constant region 

domains (CH1, CH2, and CH3) but also in the hinge region. In CH1, IgG2a and IgG2b 

differed by Ser and Ala at position 129 (Ser/Ala129), Cys/Ser131, Lys/Thr135, 

Gly/Ala190, and Thr/Ser192. Within the hinge region Ser/Ile219, Pro/Cys224, 

Asn/His225, and His/Asn228 were observed. In CH2, Thr/Ser290, Ile/Asn326, and 

Ser/Pro332 differentiate IgG2a and IgG2b. Val/Leu364, Ile/Thr370, Asp/Ala378, 

Asp/Asn384, Ala/Thr402, Arg/Glu419, and Thr/Ala422 are the characteristic amino 

acids described for IgG2a and IgG2b, respectively. These amino acid differences result 

in different immune responses of the two IgG2 allotypes (Kacskovics and Butler 1996; 

Corbeil et al. 1997). In comparison to IgG2a, IgG2b activates the complement more 

than twice (Bastida-Corcuera et al. 1999a).  

Previous studies indicated that IgG3a is expressed at a lower level than IgG3b. These 

two allotypic variants differ in six positions. The amino acids Ser/Arg131, Arg/Leu174, 

and Ser/Thr192 are located in the CH1 domain, whereas Pro/Gln237 and Lys/Glu238 

were found in the hinge region, and Lys/Arg4431 characterizes individual amino acid 

residues of IgG3a and IgG3b in the CH3 domain (Rabbani et al. 1997). 
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The allotypic variants of IgG provide polymorphic immunoglobulin genetic markers with 

specific abilities. In particular, modified qualities in complement activation, age-

dependent expression, and influences on the effector function against Haemophilus 

somnus and Tritrichomonas foetus were made for the allotypic variants of bovine IgG2 

(Corbeil et al. 1997; Bastida-Corcuera et al. 1999b; Bastida-Corcuera et al. 2000; Saini 

et al. 2007). 

 

 

Bovine immunoglobulin E (IgE)  

Whereas IgE is found in low amounts in the serum, IgE is mainly found during immune 

responses against parasite infections mediated by basophiles and mast cells. 

Furthermore, the presence of IgE gives rise to type I hypersensitivity reactions such as 

asthma, conjunctivitis, and rhinitis (Mousavi et al. 1997). The bovine IgE also shows 

heat labile skin sensitizing ability as the human IgE does (Hammer et al. 1971). 

The latest in silico analysis revealed genomic information for an ε chain on 

NT_185723.1 (Walther et al. 2013). This finding is consistent with previous studies, 

where only a single copy of the bovine IgE was identified (Knight et al. 1988). IgE has 

four exons (IGHE1-4) showing homologies of 87% to sheep IGHE, 58% to horse IGHE, 

55% to human IGHE, and 52% to mouse IGHE. Due to the additional fourth constant 

domain, IGHE possesses a higher molecular weight than other Ig isotypes. The 

additional domain is supposed to be important for high affinity binding to Fc receptors 

on mast cells (Mousavi et al. 1997).  

 

 

Bovine immunoglobulin A (IgA)  

Immunoglobulin A is the dominating isotype on mucosal surfaces such as mammary 

glands with an important part in the immune response against microbial infections.  

A single IGHA gene was identified in the bovine genome and was assigned to the 

contig NT_185723.1 (Knight et al. 1988; Walther et al. 2013). IgA possesses three 

IGHA exons (Brown et al. 1997). Two allelic variants were identified by restrictions 

fragment length polymorphism and serological analyses but were not confirmed by 

genomic DNA analyses of 50 Swedish cattle (De Benedictis G 1984; Brown et al. 1997; 

Pasman 2014).  
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The bovine immunoglobulin light chain gene loci 

In cattle, two distinct immunoglobulin light chain isotypes (lambda λ and kappa κ) have 

been described (Pilstrom 2002; Das et al. 2008). In serum antibodies, bovine λ-light 

chains are predominantly expressed in a proportion of 95% (Arun et al. 1996). About 

5% of the heavy chains in serum antibodies are connected with functional κ-light chains 

(Arun et al. 1996; Aitken et al. 1999). Similarly, the light chain repertoire is dominated 

by λ-light chains in horses (Ford et al. 1994) and sheep (Foley and Beh 1992; Griebel 

and Ferrari 1994; Broad et al. 1995), although a functional kappa system was 

described, too (Home et al. 1992). In contrast, human and mice serum antibodies 

dominantly associate κ-light chains (60% and 95%) (Chen et al. 2008). Genomic 

conditions such as genomic complexity of the loci, recombination signal sequences, the 

ordered rearrangement of κ- and λ-light chains, as well as antigen selection are 

supposed to influence differences in the κ:λ ratio across species (Pasman et al. 2010).  

 

Bovine lambda light chain genes 

The bovine variable, joining, and constant region genes of the λ-light chain (IGL) are 

located on Bos taurus autosome 17 (BTA17) (Tobin-Janzen and Womack 1992). The 

locus spans 412 kb and contains 25 to 31 variable gene segments (IGLV) whereof 14 

to 17 are potentially functional (Ekman et al. 2009). A total of 63 IGLV were identified 

on ten scaffolds in the current genome assembly (Btau_3.1). Out of these 63 IGLV, 32 

were identified on unplaced contigs and 11 of them are also potentially functional 

(Ekman et al. 2009). The IGLV locus possessed both transcriptional orientations. All 

IGLV are organized in three clusters separated by 126.8 kb and 138.3 kb introns. The 

three IGLV clusters also define separate IGLV families designated as IGLV1, IGLV2, 

and IGLV3. The predominantly expressed IGLV1 genes are subdivided into five 

subfamilies (IGLV1a, IGLV1b, IGLV1c, IGLV1d, IGLV1x) (Sinclair et al. 1995; Saini et 

al. 2003). These IGLV1 are located within the two 5’ subclusters, whereas the minor 

expressed IGLV2 and IGLV3 genes were identified within the IGLJ-proximal cluster. 

The subfamilies IGLV1a and IGLV1b are mainly expressed, whereas IGLV1c, IGLV1e, 

and IGLV1x specifically pair with heavy chains possessing CDR3H with at least 50 

amino acid residues (Saini et al. 1999; Saini et al. 2003). Analyses of genomic 

sequences of the cattle breed Herford revealed 17 IGLV1 genes of which ten are 

described functional. Further, three out of four IGLV2 genes as well all four IGLV3 

genes were designated functional (Pasman et al. 2010). Phylogenetic comparisons 

revealed that four of six ovine subgroups cluster with the bovine ones, which are 
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supposedly ruminant specific genes. Consequently, due to sequence identities of 

92.6% and 88.9%, the bovine IGLV1 and IGLV2 families are closely related with the 

ovine families IGLVI and IGLVII. The bovine IGLV3 family is related to the unclassified 

ovine IGLV family (Pasman et al. 2010; Pasman 2014). In addition, the CDR1L length 

varies from 6, 8, or 9 codons. The length of CDR2L is restricted to 3 or 7 codons. The 

number of unique CDR1L–CDR2L combinations is lower than in mice and humans 

(Ekman et al. 2009).  

 

 

Figure 2: Physical map of the bovine lambda light chain locus 
The locus is shown in 5’-3’ direction on chromosome 17. This figure is adapted from (Pasman et 
al. 2010; Pasman 2014). 

 

 

 

In cattle, four λ-light chain constant region (IGLC) genes (IGLC1, IGLC2, IGLC3, and 

IGLC4) were identified yet, each preceded by a joining gene segment (IGLJ1-4) (Parng 

et al. 1995; Parng et al. 1996; Chen et al. 2008; Ekman et al. 2009; Pasman et al. 

2010). Only IGLC2 and IGLC3 are functional whereas IGLC3 is preferentially 

expressed during rearrangements. IGLC1 and IGLC4 are pseudogenes (Chen et al. 

2008; Ekman et al. 2009; Pasman et al. 2010). A fifth bovine IGLC gene was detected 

but could not be located on a chromosome until now (Ekman et al. 2009). In 

comparison, in sheep only two IGLC genes were described (IGLC1 and IGLC2). The 
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ovine IGLC1 is functional and in the IGLC2 gene possess a premature stop codon 

(Jenne et al. 2003). Furthermore, in previous studies seven equine IGLC genes were 

identified. Three of these genes are functional, whereas the others were described to 

be pseudogenes (Home et al. 1992; Das et al. 2008; Sun et al. 2010).  

Transcription analyses in several cattle breeds revealed single nucleotide 

polymorphisms (SNPs) for both the bovine IGLC2 and IGLC3 genes resulting in silent 

mutations or amino acid residue substitutions (Diesterbeck et al. 2012). Within the 

breeds German Simmental (GS) and Aubrac (A), single nucleotide polymorphisms of 

IGLC2 were identified. Analyses in the breeds German Black Pied (GBP) and Holstein 

Friesian (HF) revealed the already known allele and allotype IGLC2a. Two additional 

alleles, IGLC2b and IGLC2c, were detected and represent putative new allotypes. 

Amino acid residue substitutions were either conservative or led to charge changes. 

They were located within the molecule by homology based three-dimensional 

modeling. Most amino acid residue substitutions were found on the outer side of the 

molecule in the solvent accessible surface area, within or near the putative interface to 

IGHC1. Additionally, by in silico analyses IGLC2a was also identified in other cattle 

breeds such as Angus (DY170709) and Hereford (EH173018). IGLC2a and IGLC2b 

showed 98.4% sequence identity while IGLC2c was 97.8% identical to IGLC2a and 

96.9% identical to IGLC2b (Diesterbeck et al. 2012). Similar to IGLC2, five allelic 

variants were identified for the predominantly expressed IGLC3 (IGLC3a, IGLC3b, 

IGLC3c, IGLC3d, IGLC3e) within the same cattle breeds. Amino acid residue 

substitutions were also determined on the accessible surface of the molecule, as well 

as in and next to the interface to IGHC1. Reversed charges were observed due to 

several amino acid residue replacements. Further, nucleotide sequences coding for 

IGLC3a were found in Hereford (EV679232) and Angus (DY173535), while IGLC3b 

was only found in Angus (DY149783). IGLC3c was identified both in Holstein Friesian 

crossbreed (DY145594) and purebred (CK950153). Angus and Holstein Friesian 

crossbreeds (EV608839, DY216512), as well as Holstein Friesian purebred 

(CK979405) and Hereford (DT858283) exhibited IGLC3d (Diesterbeck et al. 2012). 

 

Bovine kappa light chain genes 

The bovine κ-light chain genes are located on Bos taurus autosome 11 (BTA11) 

(Ekman et al. 2009) and span approximately 280 kb, although the complete Ig κ-light 

chain (IGK) locus encompasses a size of 412 kb (Pasman et al. 2010). The analysis of 

the bovine κ-light chain locus on Herford genome sequence revealed 22 IGKV, 3 IGKJ, 
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and 1 IGKC (Ekman et al. 2009). The IGKV genes are organized in a cluster that 

covers 150 kb and which is followed by the three IGKJ genes and the IGKC gene. Out 

of 22 IGKV, only eight are functional (Ekman et al. 2009). They are present in both 

transcriptional orientations (Sitnikova and Nei 1998). The 22 IGKV genes are classified 

into four subfamilies. Twenty-one of them are closely related to the ovine gene families 

1, 2, and 4. Seven of the eight functional segments belong to bovine subgroup 2 

(IGKV2), which therefore is supposed to be mainly expressed. This subgroup is 

phylogenetically related to sheep (91%), killer whale (84%), and dolphin (84%). Bovine 

IGKV vary from six, ten, or 11 codons within CDR1L and differs from human, mice, and 

sheep CDR1L possessing 11 codons, whereby CDR2L constantly possesses three 

codons (Ekman et al. 2009; Ehrenmann et al. 2010; Pasman 2014). 

The three IGKJ genes (IGKJ1, IGKJ2, IGKJ3) are clustered within 800 bp on the 

genome and are followed by one IGKC gene. Although all IGKJ genes are functional, 

they were all transcribed in different frequencies. IGKJ1 showing the conserved 23 bp 

RSS, was transcribed predominantly in animals of the breeds GS, HF, A, and GBP 

(Stein et al. 2012). IGKJ2 was detected in two animals of GS despite of the shortened 

spacer with a size of 22 bp instead of 23 bp (Ekman et al. 2009). IGKJ3 was also 

described in each of the four cattle breeds. The distinct cladistic protein motif ‘EIK’ was 

found changed in IGKJ3 to ‘EIK’ (Das et al. 2008).  

 

 

 
Figure 3: Physical map of the bovine kappa light chain locus 
The locus is shown in 5’-3’ direction on chromosome 11. The locus is identical to both BTAU 4.6 
and UMD 3.1 assembly of the Hereford cow genome. This figure is adapted from Pasman and 
Kaushik (2014) and Ekman et al. (2009). 
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Transcriptional analysis of IGKC within four cattle breeds revealed three alleles 

distributed in different frequencies (Stein et al. 2012). In animals of HF, GS, and A, all 

three alleles were identified, whereas in GBP solely IGKCa was found. Additional in 

silico analyses of the ESTs database revealed allele 1 and 2 of IGKCa in Hereford 

Shorthorns (CF763228, CF768037). The three alleles differed at four nucleotide 

positions with two of them leading to amino acid residue substitutions at positions 100 

and 116 within the constant region resulting in the putative allotypic variants of IGKCa 

and IGKCb. The two amino acid residue replacements caused either a change in 

polarity or a change in electric charge of the amino acid side chain. The amino acid 

residue substitutions were located at the solvent accessible surface. Also for humans 

and rabbits three and five allotypes were described, respectively (Emorine et al. 1983; 

Moxley and Gibbs 1992). In humans, an improvement of immune responses by IGKC 

allotypes was observed (Pandey et al. 1979; Granoff et al. 1984). Due to the similar 

substitutions in bovine allotypes, different serological properties are assumed in cattle 

allotypes, too (Stein et al. 2012). 

 

Development of B cells and the bovine antibody repertoire 

The development of immunoglobulin producing cells already starts in the bovine fetus. 

While IgM-bearing B-cells have been detected at day 59 of gestation (Schultz et al. 

1973), recombinations of heavy and light chain gene segments were observed in 

splenic B-cells at day 125 of gestation and serum immunoglobulins were detectable at 

day 145 of gestation (Saini and Kaushik 2002). The perinatal diversification occurs in 

the ileal Peyer’s patches (Yasuda et al. 2004; Yasuda et al. 2006) but λ-light chain 

diversification was observed in bovine fetal spleen prior to the diversification in the 

ileum (Lucier et al. 1998; Aida 2014). Pre-B like cells were also noted in the fetal bone 

marrow and lymph node indicating B lymphopoieses in parallel to ileal Peyer’s patches 

(Ekman et al. 2012; Aida 2014). 

The generation of antibody diversity in vertebrates depends on several mechanisms 

that are very similar in all vertebrate species. Such processes are the recombination of 

separated germline gene segments (IGHV, IGHD, and IGHJ; IGLV/IGKV and 

IGLJ/IGKJ), the imprecise junction of these gene segments due to nucleotide deletions 

or additions (N, P), the combination of two identical heavy and light chains (Alt and 

Baltimore 1982; Kurosawa and Tonegawa 1982; Tonegawa 1983; Desiderio et al. 

1984), as well as somatic hypermutations (Reynaud et al. 1995; Wagner and 
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Neuberger 1996; Berens et al. 1997). The available pool of the germline IGHV, IGHD, 

and IGHJ segments differs between species. Whereas humans and mice possess a 

high number of IGHV-IGHD-IGHJ genes, in livestock such as chicken (Reynaud et al. 

1989), pigs (Sun et al. 1994), sheep (Dufour et al. 1996), and cattle (Berens et al. 

1997; Saini et al. 1997; Sinclair et al. 1997) relatively few genes were detected 

resulting in a restricted combinatorial diversity. Therefore, several diversifying 

mechanisms dominate or additional options are employed in such species. For 

instance, in chicken and bovine λ-light chains gene conversion is a post-

recombinatorial strategy for the generation of the preimmune antibody repertoire 

(Reynaud et al. 1995; Arakawa et al. 2004). Further, this mechanism is discussed in 

horses (Sun et al. 2010). 

Today, differences in gene usage of bovine fetus and adult animals are known. In fetal 

IGHV-IGHD-IGHJ recombinations two IGHV are preferentially used (Saini and Kaushik 

2002). Furthermore, IGHD5 and IGHD7 dominate both in bovine fetus and adult 

animals in contrast to IGHDQ52 (Koti et al. 2010). Within the CDRs transition 

nucleotide substitutions predominate over transversion mutations and in framework 

region three somatic hypermutations lead to isotype dependent degree of 

diversification (Kaushik et al. 2009). 

In both bovine fetal and adult heavy chains, exceptionally long CDR3H regions 

contribute to higher variability, which is restricted by the use of only one VH-family 

(Armour et al. 1994; Saini et al. 1999; Saini and Kaushik 2002; Wang et al. 2013). 

Those long CDR3H regions were first described in IgM but were also detected in IgG 

and in all other isotypes by now and occur in 8-10% of circulating B cells (Saini et al. 

1997; Sinclair et al. 1997; Saini et al. 1999; Saini and Kaushik 2002; Saini et al. 2003; 

Kaushik et al. 2009; Larsen and Smith 2012; Walther et al. 2013). The length of 

CDR3H varies by class. Consequently, the bovine CDR3H has an average length of 

22.7 ± 3.2 amino acids, whereas in IgM there are 21.7 ± 1.8 and in IgG there are 18.2 ± 

1.3 amino acids (Almagro et al. 2006; Kaushik et al. 2009; Aida 2014). While the 

CDR3H region in human and mice encodes 12 amino acid residues, in cattle it extends 

up to 67 amino acid residues (Sun et al. 1994; Walther et al. 2013) and up to 30 in 

chicken (McCormack and Thompson 1990) where this phenomenon is caused by the 

usage of two IGHD segments within on CDR3H region. Therefore the length of the 

CDR3H region is 50% greater than in human, mice, swine, and rabbit sequences 

(Butler 1997). The extensive size heterogeneity in CDR3H together with intrachain 

disulfide bridges results in a configurational diversity of this region (Saini and Kaushik 
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2002; Wang et al. 2013). Crystallization of such bovine antibodies revealed a unique 

‘stalk and knob’ structure (Wang et al. 2013). Although both fetal and adult 

exceptionally long CDR3H originate from identical IGHV-IGHD-IGHJ rearrangements, 

there are structural differences. In the bovine fetus, there is no addition of CSNS at the 

IGHV-IGHD junction resulting in a shorter or non-existent stalk. Due to a structural 

support, bovine heavy chains with exceptionally long CDR3H always pair with λ-light 

chains that possess a conserved Ser at position 90 (Wang et al. 2013).  

In contrast to human and mice bovine antibody diversity increases by somatic 

hypermutation, which may also occur without previous antigen contact (Tomlinson et 

al. 1996; Berens et al. 1997; Lopez et al. 1998). Furthermore, diversity already exists at 

the foetal stage as a result of somatic hypermutation. 

In bovine light chains, gene conversion and somatic hypermutation are the major 

mechanisms leading to diversification (Parng et al. 1995; Parng et al. 1996). Initial 

diversification of λ-light chains was identified in the early fetal spleen before the 

establishment of a diverse repertoire in the ileum in cattle and sheep (Lee and 

Richards 1971). Gene conversion is supposed to be less significant in sheep than in 

cattle as there is a higher number of IGLV pseudogenes in the bovine genome (Parng 

et al. 1996; Ekman et al. 2009). This mechanism is also highly relevant regarding light 

chain diversification in chicken (Arakawa and Buerstedde 2009), as well as in rabbits 

using gene conversion to diversify Ig heavy chains (Weinstein et al. 1994). In addition, 

allotypes diversify the immunoglobulin repertoire, which has already been described in 

species like humans and rabbits. For instance, in humans three allotypic variants of the 

so called Km 1, Km 1.2, and Km 3 (Moxley and Gibbs 1992) are described. Similarly, 

rabbits possess five allotypic variants of the κ-light chain constant region gene called 

b4 (a+b), b5, b6, and b9 (Emorine et al. 1983). In cattle, allotypes have been identified 

for both the heavy and light chains (Bastida-Corcuera et al. 1999a; Bastida-Corcuera et 

al. 1999b; Diesterbeck et al. 2012; Stein et al. 2012). 
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Abstract  

Exceptionally long third complementarity determining regions of the heavy chain 

(CDR3H) were previously described as a specificity of bovine IgG and IgM 

immunoglobulins. In addition, the genomic organization of the immunoglobulin heavy 

chain locus remains to be elucidated with a special focus on the number of variable 

segments (IGHV).  

By analyzing the variable regions according to the isotype-specific PCR using cDNA-

PCR, we were able to prove the existence of exceptional long CDR3H in all bovine 

isotypes. The corresponding sequences of three distinct amplicons were grouped 

according to the length of the CDR3H. Sequences of CDR3H possessed 5 to 10, 12 to 

31 or at least 48 amino acid residues. Long and mid-length CDR3H were composed of 

mainly hydrophilic amino acid residues, while short CDR3H also contained 

hydrophobic amino acid residues. All sequences with long CDR3H were related to the 

germline variable segment 10.  

Using the current genome assembly, Bos taurus NCBI build 6.1, the genomic 

organization of the bovine immunoglobulin heavy-chain locus was analyzed. A main 

locus was investigated on BTA21. Exons coding for variable, diversity, and joining 

segments, as well as for the constant regions of different isotypes, were also localized 

on BTA7, BTA8, and BTA20. Together with the information from unplaced contigs, 36 

IGHV were detected of which 13 are putatively functional. Phylogenetic analysis 

revealed two bovine IGHV families (boVH1, boVH2). Thus, the existence of the two 

bovine families suggested was demonstrated, where boVH1 comprises all functional 

segments.   

This study substantially improves the understanding of the generation of 

immunoglobulin diversity in cattle.  
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Introduction 

The generation of antibody diversity in vertebrates is subjected to a sequence of steps 

such as the recombination of separated germline gene segments for both heavy (V, D, 

and J) and light (V and J) chains. Furthermore, the imprecise junction of the germline 

gene segments occurs as a result of nucleotide deletions or additions (N, P), 

introduced by the terminal deoxynucleotidyl transferase during the recombination 

process. The assembly of two identical heavy and light chains completes the tetrameric 

molecule [1,2,3,4]. In addition, somatic hypermutations contribute to antibody diversity 

– dependent or independent of antigen contact [5,6,7]. While these general processes 

of diversification are very similar in all vertebrate species, considerable differences 

were found in the available pool of the germline V, D, and J segments. Although 

humans and mice possess a large pool of VDJ genes [8], livestock such as chicken [9], 

pigs [10], sheep [11], and cattle [6,12,13] are relatively restricted in the generation of 

combinatorial diversity. Therefore, species-dependent mechanisms dominate the 

different diversification steps or additional options are employed. For instance, in 

chicken gene conversion, the use of pseudogene sequences is a frequent post-

recombinatorial strategy for the generation of the preimmune antibody repertoire [5,14]. 

This mechanism was confirmed for λ-light chains in cattle [15] and is discussed in 

horses [16].  

All heavy-chain isotype classes detected in other mammals were also described for 

cattle [17,18], whereas the γ-isotype encompasses three sub-classes, namely γ1, γ2, 

and γ3 [18,19]. The bovine IGH locus was assigned to the Bos taurus autosome (BTA) 

21 [20] and localized on the q23-q24 bands [21] or on the q24 band respectively 

[22,23]. An IgM-like chain was assigned to BTA11q23 by hybridization [24,25], which 

was supported by the detection of six IGHJ segments on the same chromosome [26]. 

By screening a bovine BAC and Cosmid library, the genomic organization of the IGHC 

locus was described, as well as the number of the preceding joining segments (IGHJ). 

Only two out of six IGHJ were classified as functional – of which only one seems to be 

involved predominantly in the recombination process [21,26]. The IGHV itself codes for 

the complementarity determining regions 1 and 2 (CDR1H, CDR2H) and for the N-

terminal part of the complementarity determining region 3 (CDR3H). Bovine IGHV offer 

a restricted set of genes related to one family (boVH1), which shares homologies to the 

murine Q52 family and human VHII family. Southern blot analyses indicated one 

additional IGHV family in the germline repertoire but only expression of boVH1 has 
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been observed yet [6,12,13,27,28]. The definite number and organization of IGHV 

remains under further investigation.  

Another peculiarity is the organization of the bovine IGHD locus. Ten IGHD genes 

classified into four families are organized in sub-clusters [29,30]. A comparison of the 

IGHD exons revealed huge size differences [29]. Cattle antibodies provide 

exceptionally long CDR3H consisting of up to 62 amino acid residues (aa) 

[6,31,32,33,34,35]. IGHD2, with 148 bp in size, contributes to those CDR3H and 

encodes the characteristic hydrophilic Glycine and Tyrosine residues [6,29,36]. The 

high number of Cysteine residues detected is supposed to promote intra-CDR3H 

disulfide bonds [13]. Mid-length CDR3H – containing one to three Cys residues – were 

almost always accompanied by one Cys residue found in the CDR2H, which may result 

in intra CDR disulfide bond formation [31,37]. The germline encoded IGHV, IGHD, and 

IGHJ and their imprecise junction during rearrangement cannot fully explain the 

remarkable length of the CDR3H. Conserved short nucleotide sequences of 13 to 18 

nucleotides are specifically inserted into the IGHV and IGHD junction, leading to a 

further extension of the CDR3H. This mechanism is unique for cattle [30]. 

To date, these exceptionally long CDR3H have been attributed exclusively to the γ1-3- 

and µ-isotype [33,35]. In our study, we demonstrate the expression of exceptionally 

long CDR3H in all bovine immunoglobulin isotypes. We were able to observe three 

distinct groups of CDR3H sizes, which were related to their genomic origin. Loci of 

IGHV were determined on BTA7, BTA21 and seven unplaced contigs. 
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Materials and Methods 

 

In silico Analysis of the Bovine IGHV Segments 

A sequence search was performed with blastn on Bos taurus in the Reference genomic 

sequences (refseq_genomic) database using the leader and variable region of one 

mRNA sequence (accession number AY145128). On the identified contigs, the IGHV 

and their respective leader were annotated together with the recombination signal 

sequences (RSS). The octamers, TATA boxes, and splicing sites were also noted. The 

nucleotide sequences of the bovine IGHD1 to 8 and Q52 [30], as well as all IGHJ 

coding sequences (AY158087, AY149283), were used for a similar alignment 

approach. The detected IGHV, IGHD, and IGHJ were used in the further analysis of the 

amplified immunoglobulin sequences. To annotate the constant region locus, IgM 

(U63637), IgD (AF411240, AF515672), IgG1 (X16701), IgG2 (S82407, X16702), IgG3 

(U63638), IgE (AY221098), and IgA (AF109167) bovine coding sequences were 

applied. Missing transmembrane regions were determined in bovine ESTs (expressed 

sequence tags). Based on the available sequence data, functionality was defined 

according to Lefranc [38]. In brief, functional sequences exhibited an open reading 

frame (ORF) without stop codon, and no defects in the splicing sites, RSS, or in the 

regulatory elements. If sequence information was missing due to end of contigs or N’s 

introduced in the sequence but the available sequence offered putative functionality, 

genes were marked with (F). Classification to ORF included either alterations in the 

splicing site, RSS, regulatory elements, substitutions of conserved amino acid residues 

(Cys23, Trp41, Leu89, Cys104 within IGHV or IGHC and a Phe/Trp118-Gly119-X120-

Gly121 motif within IGHJ [39]) or orphons ((ORF)). In this case, orphons are located 

outside of BTA21 [20,21,22,23]. Pseudogenes () were characterized by the presence 

of stop codons or frameshifts. Fragmented loci were also defined as pseudogenes. 

Functional recombination assays revealed the spacer lengths, the first three 

nucleotides of the heptamer as well as three consecutive adenosine residues within the 

nonamer to be crucial for efficient recombination [40,41]. 

For the purpose of phylogenetic analysis, the complete nucleotide sequences of bovine 

IGHV segments were aligned with one member of the human IGHV families 1 to 7, 

respectively, using the ClustalW algorithm with the ClustalX 2.1 interface [42]. The 

phylogenetic tree was calculated using the neighbor-joining method, with the exclusion 

of gaps. The confidence values were compiled with 1000 bootstrap replicates [43]. To 
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root the tree, the sequence of one IGHV segment of the horned shark (accession 

number X13449) and little skate (X15124) were defined as an outgroup, similar to the 

method performed by Sitnikova and Su [44] and Almagro et al. [45]. Visualization of the 

phylogenetic tree was performed using the program NJplot [46]. 

 

Ethical Statement 

To collect B-lymphocytes, 20 ml of EDTA blood were taken from the tail vein of a 

German Simmental bull kept by the Division of Microbiology and Animal Hygiene for 

demonstrations in claw-treatment within student courses and to study the clinical 

development of Mycobacteria avium spp. paratuberculosis infection. The bull was 

owned, because he had acquired a natural infection of MAP and showed positive 

antibody-titers already with an age of 18 months. Similar to other cattle herds, he has 

to be tested for cattle diseases periodically. The blood sample was taken from the tail 

vein during regular investigation of infectious diseases in the bull. The plasma was 

applied e.g. in an indirect ELISA testing for antibodies against Mycobacteria avium spp. 

paratuberculosis or BHV-1. Therefore, no specific approval is required. 

 

Isolation of PBMCs and cDNA Synthesis 

Peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll gradients (GE 

Healthcare Europe GmbH, Germany) according to the manufacturer’s protocol. Viable 

B cells were stained with trypan blue and counted. Total RNA was isolated from 1x107 

cells using the RNeasy Mini Kit (Qiagen, Germany). The first-strand cDNA was 

synthesized using pd(N)6 primers from 3 µg of total RNA in a total volume of 20 µl 

(SuperScript™III First-Strand Synthesis SuperMix, Life Technologies GmbH, 

Germany). 

 

Amplification of Immunoglobulin Heavy-chain Isotype Restricted Variable 

Regions 

To amplify the variable region restricted to each isotype, a primer set was generated 

with one primer hybridizing in the leader region, and individual primers with binding 

sites in the constant region (CH) of the immunoglobulin heavy chains. The primers 

were based on database entries and their own sequence information (data not shown). 

For α, γ1-3, and ε isotypes primers anneal to the CH1. For δ and µ isotypes, primers 

bind within the CH2 (Table 1). To monitor the integrity and purity of the cDNA, 527 bp 
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of the bovine GAPDH (Glycerinaldehyde 3-phosphate dehydrogenase) were amplified 

as a positive control. A no template control served as a negative control for the PCR.  

 

Table 1. Primer for the isotype-specific amplification of the complete variable regions.  

 
Forward primer Reverse primer Primersequence 5’-3’ Approximated 

product size in 
bp 

BoLH_BACK  ACCCACTGTGGACCCTCCTC  
 BoIgMCH2_FOR TGCCGTCACCAGAGAGGCTGT 795 
 BoIgDCH2_FOR TGCGTGCTGACCGCCTTGTT 805 
 BoIgG1-3CH1_FOR GGCACCCGAGTTCCAGGTCA 536 
 BoIgECH1_FOR GCCCAGCCTTACACGGGCTT 467 
 BoIgACH1_FOR GCCAGCACGGCAGGGAAGTT 574 

GAPDH_for  TGGTCACCAGGGCTGCT  

 GAPDH_rev GGAGGGGCCATCCACAGTCT 527 

One universal forward primer was used for annealing within the leader region. For each isotype, 
a reverse primer was generated for specific amplification. The annealing sites were selected in 
the first constant region (IGCH1), with the exception of IgM and IgD. Both isotypes share high 
homologies in the IGCH1 and therefore, specific reverse primers were generated for binding in 
the second constant region. The IgG subtypes were not distinguished further. Primers for 
bovine GAPDH served as cDNA quality control. 

 

The total reaction volume of 50 µl included 1 µl of cDNA, 200 µM dNTPs (Bioline, 

Germany), 5 µl of 10x PCR buffer (75 mM Tris HCl pH 9.0; 2 mM MgCl2; 50 mM KCl; 

20 mM (NH4)2SO4), 5% DMSO (Dimethyl sulfoxide), 0.4 µM of each primer pair, and 2 

units of DNA polymerase (Biotools, Spain). PCR was performed under cycling 

conditions of 95oC for 5 min, followed by 35 cycles of 95oC for 1 min, 58°C for 1 min, 

72oC for 2 min, and terminated with elongation at 72°C for 10 min. The length and 

purity of the PCR products were evaluated by means of electrophoresis on 1% agarose 

gels. 

 

Cloning and Sequencing of the PCR Products 

The PCR products were purified and concentrated using the DNA Clean & 

Concentrator Kit (Zymo Research, USA). Purified products were cloned into the pCR 

2.1-TOPO 3.9 Kb TA vector (InvitrogenTM, Karlsruhe, Germany) and transformed into 

chemically competent One Shot TOP10 E. coli cells (InvitrogenTM, Karlsruhe, 

Germany). Transformants were plated on LB agar containing 0.3 mM ampicillin, 40 µl 

2.44 µM X-gal (5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside), and 40 µl 1 M 

IPTG (Isopropyl β-D-1-thiogalactopyranoside) for blue/white selection. After incubation 

at 37°C, overnight cultures of randomly selected white transformants were grown in a 

5 ml LB-ampicillin broth. Plasmids were isolated using the MiniPrep Kit (Qiagen, 
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Germany). In order to assess the insert size, plasmid DNA was cleaved with EcoRI 

(New England Biolabs, Germany) and DNA sizes were confirmed by agarose gel 

electrophoresis.  

Twenty plasmids of each PCR product were sequenced according to the chain-

termination method [47]. The M13 (-20) Forward and M13 Reverse (Invitrogen, 

Germany) vector-specific primers, as well as the corresponding gene specific primers, 

were used for sequencing.  

 

Nucleotide and Amino Acid Sequence Analyses 

The genetic information of the VDJ recombinations was used for further analysis. The 

amplified part of the constant regions served as verification of the respective isotype. 

The sequences were analyzed using the DNAStar program (GATC Biotech AG, 

Germany) and aligned by ClustalW [48]. 

The deduced amino acid residues of the variable parts were aligned to the IMGT 

nomenclature [39] using the IMGT/DomainGapAlign [49,50]. Framework regions, as 

well as CDRs, were identified and analyzed with regard to their biochemical properties 

such as the hydrophobicity, polarity, and charge of the amino acid residues 

incorporated. The CDR3H regions were classified according to their number of amino 

acid residues. The amino acid compositions of CDR2H and CDR3H were examined for 

their numbers of Tyr, Gly, aromatic amino acid residues and Cys, since some bovine 

CDR3Hs are characterized by exceptional length and preferred amino acid residues.   
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Results 

 

Annotation of the Bovine Germline Immunoglobulin Heavy-chain Locus 

For the identification of germline IGHV, a search using blastn on all bovine genome 

assemblies was performed. The contigs NW_003104530.1 and NW_003104538.1 

were identified on Bos taurus chromosome 21 (BTA21; AC_000178.1). 

NW_003104530.1 was located at the centromeric region with two IGHV (IGHV1 and 

IGHV2). A region of about 146 kb on NW_003104538.1, located at the telomeric 

region, comprised eight IGHV: IGHV3, IGHV4, IGHV5, IGHV6, IGHV7, IGHV8, 

IGHV9, and IGHV10. Upstream of them, the exons coding for the µ, ε and α chains, 

were identified. Two IGHD (8 and 4) were localized between IGHV6 and IGHV7 

(Figure 1A).  

The contigs NW_003064289.1, NW_003064290.1, NW_003064296.1, 

NW_003064297.1, NW_003064298.1, and NW_003064299.1 were localized to the 

centromeric region on BTA7 (AC_000164.1) involving nine IGHV (IGHV11, 

IGHV12, IGHV13, IGHV14, IGHV15, IGHV16(ORF), IGHV17(ORF), IGHV18, 

and IGHV19). This cluster spans approximately 144 kb. Downstream on BTA7, a 

cluster of 1131 bp, with exons encoding IGHD1(ORF) to IGHD3(ORF), was identified 

on contig NW_003064411.1, followed by a pseudogene for a δ chain. The latter one is 

characterized by fragmented exons 1 and 2, a deleted exon 6 (codes for the secretory 

region), and frame shifts (Figure 1B).  

A third location comprising five IGHD segments, a δ chain pseudogene, a µ chain 

gene, and six IGHJ segments in about 43 kb was detected on BTA8. Two loci for the 

IGHD were observed. IGHDQ52(ORF) was the most downstream segment on contig 

NW_003066919.1, whereas IGHD4(ORF) to 7(ORF) were found to be the most 

upstream on contig NW_003066918.1 (Figure 1C). Interestingly, BTA20 revealed the 

genomic information for a γ2 chain (Figure 1D). 
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Figure 1. Chromosomal organization of variable (IGHV), diversity (IGHD), joining (IGHJ) 
segments, and the constant regions of the heavy chains. The physical map displays the 
order of functional segments (F), pseudogenes (Ψ), and open reading frames (ORF). 
Classification to “functional” includes an ORF without stop and exhibition of conserved amino 
acid residues as well as no defects in splicing signals, recombination signal sequences (RSS) 
or regulatory elements. ORF are defined by alterations in the splicing signals, recombination 
signal sequences, and/or regulatory elements. In addition, changes to conserved amino acid 
residues, which may lead to misfolding were included in the ORF classification. Functional 
elements on orphon localizations are highlighted with ORF in parenthesis (ORF) [38,39]. 
Pseudogenes possessed stop codons, frameshifts or mutations of the spacer lengths within the 
first three nucleotides of the heptamer as well as in three consecutive adenosines residues 
within the nonamer abolish the recombination [40,41]. In addition, fragmented loci were also 
defined as pseudogenes. Arrows indicate the transcription direction. 
 
In addition, unplaced contigs (NT_182448.1, NT_182449.1, NT_183109.1, 

NT_185036.1, NT_185907.1, NT_186922.1, and NW_003100762.1) were discovered 

to contain IGHV segments. Likewise, IGHD1(ORF) and 2 genes were localized on 

NT_186153.1. NW_001494075.1 includes a gene coding for IGHDQ52 downstream of 

an IGHJ1 to 6 locus. Genes coding for a µ chain and a δ chain pseudogene were found 

most upstream in this contig. The contig NW_001503306.1 comprises the genomic 

information for IGHD4 to 7 and a δ chain pseudogene while IGHD4 and 8 were 

detected on NW_001504477.2. A locus involving IGHJ4ORF to 6ORF and a putative 

functional δ chain gene was detected on NT_186572. Additional genomic information 

for α and ε chains were discovered on NT_185723.1. A genomic order of γ3, γ2, and 

γ1 was identified on NT_185580.1. Furthermore, a gene coding for γ1 and γ3 was 

found on NW_003100065.1 and NW_003099305.1, respectively. Along with 

NW_003100387.1, including a δ chain pseudogene locus, a putative functional δ chain 

gene was noted on NW_003100112.1.  

Thirteen out of the 36 IGHV segments identified are putatively functional 

(Supplemental Table S1). Eleven IGHV segment pairs shared sequence identity of 

100%, namely IGHV3/33, IGHV10/34, IGHV9/35, IGHV4/32, IGHV7/22, 

IGHV2/26, IGHV1/27, IGHV18/30, IGHV16(ORF)/25, IGHV14Ψ/23Ψ, and 

IGHV36/29(F). Since the human IGHV locus has been fully investigated [51], one 

member of each family was chosen for phylogenetic analysis. The sequences 

clustered into two distinct branches either with huIGHV2-05 or with huIGHV4-04 and 

huIGHV6-1. All functional IGHV were phylogenetically related to huIGHV2-05 (Figure 

2). This group corresponds to the bovine IGHV family 1 (boVH1) described previously 

[6,12,13]. Multiple alignments revealed two distinct families with identities of at least 

80.5% for boVH1 and 79.5% for boVH2. IGHV5Ψ and IGHV8Ψ represent fragmented 

loci consisting of 77 bp. They share the highest identity of 70.1% with IGHV1Ψ, 
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IGHV18Ψ, IGHV27Ψ, and IGHV30Ψ which are members of boVH2. The highest 

identity between members of both families was calculated to be 69.7%.  

Figure 2. Neighbor-joining phylogenetic tree of the genomic bovine IGHV segments. The 
complete sequences of the bovine IGHV segment (boIGHV), and one representative sequence 
of each human family (huIGHV1 to huIGHV7), were used for the comparison. The reliability of 
the tree was estimated using 1000 bootstrap replicates [43]. Numbers at each node are the 
percentage bootstrap value and are indicated only when greater than 50%. Arrows mark the 
respective node. The Roman numerals I, II, and III describe the clans [64]. Two clusters of 
bovine IGHV were visible and corresponded to two families. The bovine IGHV family 1 (boVH1) 
comprises all functional segments, whereas boVH2 consists only of pseudogenes. IGHV5Ψ and 
IGHV8Ψ present fragmented loci, which consist of only 77 bp. They share 70.1% sequence 
identity with IGHV1Ψ, IGHV18Ψ, IGHV27Ψ, and IGHV30Ψ. We would therefore propose to 
assign IGHV5Ψ and IGHV8Ψ to boVH2. Horned shark (heIGHV from accession number 
X13449) and little skate (raIGHV; X15124) represent the outgroup in this analysis, similar to that 
performed by Sitnikova and Su [44] and Almagro et al. [45]. The scale bar indicates the number 
of nucleotide substitutions per site. 
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Amplification of Isotype-specific Variable Regions and Sequence Analyses  

The immunoglobulin heavy chains were amplified by PCR for each bovine isotype. 

Three distinct bands became visible following agarose gel electrophoresis of the 

amplicons of the µ, δ, γ1 to 3, ε, and α isotypes. The expected product sizes of 467 bp 

(IgE) to 805 bp (IgD) corresponded with the lowest band. The isotypes γ1 to 3, ε, and α 

revealed the lowest band, always approximately 100 bp below the middle band, which 

was again 100 bp smaller than the largest band (Figure 3). The dominant product was 

observed in the middle band. In contrast, a faint lower band was noticed in the 

products of IgM and IgD – also with differences in size of 100 bp. The middle and 

upper bands showed strong amplification. The three bands observed per amplified 

isotype should allow for grouping of the respective CDR3H lengths. After sub-cloning of 

the purified products, 20 sequences per isotype were evaluated.  

 

Figure 3. PCR products of the bovine µ, δ, γ1 to 3, ε, and α isotypes.  
The amplicons of the heavy chain variable domain of each bovine isotype were resolved by 
2.5% agarose gel electrophoresis and revealed three distinct products. Lanes 1 and 11: 1kb 
ladder, lanes 2 and 10: 100 bp ladder. Lane 1: product of the GAPDH positive control; Lanes 4 
and 5: in the products of µ and δ, a faint lower band was noticed also with differences in size of 
100 bp. The middle and upper bands showed strong amplification. Lanes 6 to 8: the dominant 
product of isotypes γ1 to 3, ε, and α was observed in the middle with a size difference of about 
100 bp compared to both the upper and the lower band. Lane 9 is the no template negative 
control of the PCR.  
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The deduced amino acid sequences were aligned to the IMGT nomenclature for 

variable domains [39]. The size of the variable regions varied between 111 and 173 

amino acid residues (Table 2). The Cysteine residues, forming the intra-chain disulfide 

bond, were always observed at position 23 and 104. Trp41 and Leu89 were also 

conserved. These amino acid residue positions are coded by the V segment [39]. A Trp 

at position 118 and subsequently a Gly119, coded by the J segment, were also found 

in most sequences analyzed. In four sequences, amino acid residue substitutions were 

observed at these positions. Two SNPs resulted in the replacement of Gly119 by Asp 

(SNP: GGC>GAC, in one sequence) or Ser (SNP: GGC>AGC, in two sequences). In 

one sequence, we found Trp118 substituted by Ser, which was caused by the SNP 

TTG>TCG. 

The CDR1H always comprised eight amino acid residues, whereas CDR2H possessed 

seven amino acid residues. They consisted of both hydrophobic and hydrophilic amino 

acid residues. 

 

Table 2. Analysis of the complement determining regions (CDR) of the different isotypes.  

 
Isotype Length of the 

variable region 

Length of the 

CDR1H 

Length of the 

CDR2H 

Length of the 

CDR3H 

IgM 131.65 ±14.62 8 ±0 7 ±0 25.65 ±14.62 

IgD 138.70 ±17.54 8 ±0 7 ±0 32.70 ±17.54 

IgG1-3 138.70 ±19.39 8 ±0 7 ±0 32.70 ±19.39 

IgE 136.55 ±17.97 8 ±0 7 ±0 30.55 ±17.97 

IgA 127.05 ±12.17 8 ±0 7 ±0 21.05 ±12.17 

The average amino acid residue lengths of the complete variable region and the CDR regions, 
according to the IMGT nomenclature [39], are provided with their standard deviations. The size 
of the variable regions ranged from 111 to 173 amino acid residues. In total, 20 sequences per 
isotype were analyzed. 
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Composition of the CDR3H with Different Lengths 

The three distinct sizes of the CDR3H were noted in all bovine immunoglobulin 

isotypes. A specific composition of amino acid residues was found within the CDR3H, 

which seems to correlate with the different lengths of CDR3H. The shortest group 

(group 1) – comprising five to ten amino acid residues according to Lopez et al. [27] – 

was characterized by hydrophobic, as well as hydrophilic amino acid residues, without 

Cysteines (Figure 4). Twelve to 31 amino acid residues formed the middle size 

(group 2). Within this group, hydrophilic amino acid residues were incorporated 

predominantly into the CDR3H. The Gly, Tyr, and Cys-rich, long CDR3H included more 

than 47 amino acid residues (group 3). Gly and Tyr were frequently found within the 

CDR3H, whereas Gly dominated in most sequences analyzed. Within the exceptionally 

long CDR3H, four, six, seven or eight Cys were detected, which accumulated in the 

middle of the CDR3H. Group 1 and 2 only possessed none, one, or two Cys. In two 

sequences of IgE, with one Cys in the mid-length CDR3H, one additional Cys was 

found in CDR2H. Gly, Pro and multiple Cys, as well as aromatic residues, were 

observed in long and intermediate CDR3H. 

 

 
 
Figure 4. Three distinct sizes of CDR3H in all isotypes. The lengths of CDR3H of all 
sequences analyzed was divided into three groups. These groups were identified in each 
isotype, marked in different colors. The numbers of amino acid residues (aa) in CDR3H are 
indicated on the horizontal axis, whereas the number of sequences possessing each number of 
aa is provided on the vertical axis.  
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The IGHV, IGHD, and IGHJ segments were related to their genomic origin by 

phylogenetic alignment. In general, IGHJ1 was related to all sequences and heavy-

chain isotypes were analyzed. Although IGHJ2 is also functional, we did not identify 

this segment. In addition to the exclusive use of one IGHJ segment, six IGHV 

segments were recombined. For group 1, segment IGHV3 was detected in six out of 

seven sequences. One sequence showed IGHV6. The segments IGHV2 (1 sequence), 

IGHV3 (5 sequences), IGHV6 (18 sequences), IGHV10 (6 sequences), IGHV17(ORF) 

(35 sequences), and IGHV36 (9 sequences) were identified within group 2. These 

IGHV segments were distributed between the isotypes in similar proportions. Only the 

segment IGHV10 was identified in all group 3 sequences. The phylogenetic alignment 

of IGHD segments revealed dissimilarities between recombined and genomic 

sequences, which resulted in low sequence identities. In addition, there were 

homologies between the germline IGHD segments ranging from 81.4% (IGHD2 and 

IGHD8) up to 97.6% (IGHD1 and IGHD6). Therefore, it was not possible to 

unambiguously annotate all CDR3H regions of the sequences analyzed. Nevertheless, 

IGHD2 was preferentially recombined in sequences possessing exceptionally long 

CDR3H. At the IGHV-IGHD junctions, conserved short nucleotide sequences (CSNS) 

were identified, which are rich in A nucleotides. The inclusion of N and P nucleotides 

was noted within the IGHD-IGHJ junction. In addition to the presence of CSNS in 

sequences possessing very long CDR3H, these CSNS were also discovered in 

sequences with CDR3H of mid-length. IGHD4 was used most often in these group 2 

sequences. All other known IGHD segments were recombined less frequently in this 

group. The short IGHD segments IGHDQ52 and IGHD4(1 and 2) – possessing 15 and 

36 nucleotides – were identified in very short CDR3H regions.  
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Discussion 

The in silico analyses of the genomic organization of the heavy-chain locus revealed 

differences from previous mapping and annotation results. The functional locus was 

mapped to BTA21q23-q24 [21,22,23], where we also detected ten variable and two 

diversity segments together with the exons coding for IgM(F), IgE, and IgA(F). The 

order of the respective segments highlighted deviations from other fully described 

mammalian loci [16,52]. Zhao et al. [21] have already described the constant heavy-

chain locus by means of BAC clone analysis, as well as the joining segments 

organized upstream of IgM. These BAC clones were not introduced into the genomic 

assembly. Since the UMD2 assembly used mapping data, synteny with the human 

genome, and paired-end sequence information [53], we did not expect heavy-chain loci 

on BTA7, BTA8, and BTA20. Upstream of IGHV11, the bovine 

contig-NW_003064289 on BTA7-harbors the genes for FBXL12 (F-box and 

leucine-rich repeat protein 12), UBL5 (ubiquitin-like 5), PIN1 (peptidylprolyl cis/trans 

isomerase, NIMA-interacting 1), and OLFM2 (olfactomedin 2) which share homology 

with HSA19. The human gene following downstream is COL5A3 (collagen, type 5, 

alpha 3). No variable segment was found between OLFM2 and COL5A3 on 

HSA19p13.2. The bovine pseudo δ-chain locus on BTA7 revealed no human 

equivalent. The human 5pter part is inversely syntenic to BTA20qter [54]. On contig 

NW_003104522.1, we found the gene ADCY2 (adenylat cyclase 2) as an anchor. The 

bovine IgG2(ORF) (IGCGAMMA) gene, annotated between AHRR (aryl-hydrocarbon 

receptor repressor) and PDCD6 (programmed cell death 6), has no homologue on the 

HSA5pter, although it has been noted that AHRR and PDCD6 overlap on HSA5pter. 

For IGHD4 to 7, and pseudo δ-chain on BTA8, no specific genes were identified. 

Human syntenic groups on BTA8 were described for HSA8p and HSA9 [54]. No 

additional genes were determined on contig NW_003066919, with a complete IgDΨ, 

IgM(ORF) gene and IGHJ1(ORF) to 6(ORF), as well as IGHDQ52(ORF). Hybridization 

investigations assigned an IgM-like chain (probe IGHML1) to the syntenic group U16; 

corresponding to HSA9q [24,55]. Later, IGHML1 was assigned to BTA11q23 by 

hybridization [24,25], which was supported by the detection of six IGHJ segments on 

the same chromosome using BAC clone and locus-specific PCR analysis [26]. We 

were not able to identify an IgM-like locus on BTA11. Based on these results and the 

fact that we observed a transcribed IGHV from a putative orphon, we concluded an 

incorrect and incomplete annotation of the bovine immunoglobulin heavy-chain locus, 
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which may be solved by the re-sequencing of the described localizations and 

underpinned by different authors and methods.  

Previous studies have already classified bovine IGHV segments into clan II, with the 

closest homology to the human VH2 family [6,12,13,44]. Quite in contrast to the 

statement made by Tutter and Riblet [28] and Berens et al. [6], none of the genomic 

sequences clustered with the human clan III family VH3. All of the functional bovine 

IGHV segments are most closely related to the human VH2 family represented by 

IGHV2-05, which explains the exclusive transcription of only one bovine VH family 

[6,13,56]. The comparison with human sequences was performed by Saini et al. [12] 

using one VH4 family sequence only. The second bovine VH family described here 

consisted only of pseudogenes and clustered with the human VH4 and VH6 family. We 

were now able to describe the second bovine VH family (boVH2) previously proposed 

[6], but we had no indications of the possible gene conversions using boVH2 segments 

in the sequences investigated, as shown for the bovine λ-light chains [15]. We would 

propose that IGHV5Ψ and IGHV8Ψ should be assigned to the boVH2 family as they 

are fragmented loci and share 70.1% sequence identity with IGHV1Ψ, IGHV18Ψ, 

IGHV27Ψ, and IGHV30Ψ. 

With regard to the description of unusually long CDR3H in bovine IgM, long and short 

IGHD segments have already been described. Independent of nucleotide addition 

during rearrangement they contribute directly to CDR3H length heterogeneity. 

Nevertheless, the genomic IGHD segments showed high homologies among 

themselves, which resulted in the complicated annotation of the transcribed IGHD. In 

particular, many hypermutations within the recombined IGHD segments led to low 

sequence identities. Intrinsic hot spots as targets for somatic hypermutations within 

CDR1H, CDR2H, and CDR3H were already found in a bovine fetus. Furthermore, 

CDR3H length heterogeneity, junctional flexibility, and somatic hypermutation are 

thought to contribute solely to IgM antibody diversification in both bovine fetus and 

adult cattle [32]. As we found CDR3H length heterogeneity in all isotypes, exceptionally 

long CDR3H are apparently not primarily generated to compensate the restricted 

flexibility of IgM caused by reduced Pro numbers within Cµ2. The most recent study on 

the IgG repertoire in calves also showed very long CDR3H [35]. Therefore, antigen 

selection of variable domains and class switch recombination seem to be of higher 

impact. We did not observe any evidence to suggest that the combination of two 

different IGHD segments enhances diversity, which was the case for horses [16]. The 

exceptionally long CDR3H were generated by the direct fusion of a single IGHV 
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segment (IGHV10), the longest IGHD segment (IGHD2), and one functional IGHJ 

segment (IGHJ1), as described previously [30]. In very short CDR3H, we noted a 

preferred use of the short IGHD segments, IGHDQ52 and IGHD4. In sequences of 

CDR3H group 1 and 2, no predominant use of one special IGHV segment was 

determined. According to structural analyses, spatial distances are not thought to 

contribute to preferred IGHV-IGHD-IGHJ rearrangements, as there are conformational 

changes of chromatin resulting in the repositioning of the IGHD cluster and the merging 

of proximal and distal IGHV regions during early B cell development [57]. All IGHV 

segments identified were found to be functional. Thus, there is no evidence for gene 

conversion in bovine immunoglobulin heavy chains, which is already known to 

contribute to the diversity of chicken immunoglobulin heavy chains and bovine λ-light 

chains [15,58]. Conserved short nucleotide sequences (CSNS), which were inserted 

into the IGHV-IGHD junction, were found both in intermediate length and very long 

CDR3H. This novel mechanism, which contributes to antibody diversification, is neither 

restricted to immunoglobulin heavy chains with exceptionally long CDR3H, nor is it 

isotype restricted. As the insertion of CSNS is supposed to directly follow antigen 

exposure during the development of an immune response [30], we conclude class 

switch recombination to be responsible for isotype-independent, long CDR3H in cattle. 

In addition, exceptionally long CDR3H protrude from the variable domain with support 

from the λ-light chains. Thus, there is no conventional combining site and the other two 

CDRH do not contribute to antigen binding. Instead, this function is undertaken by side 

chains that are exclusively contained within long CDR3H regions, as investigated by 

structural comparisons with protein toxins [37].  

Transcribed CDR1H, CDR2H, and short CDR3H sequences showed both hydrophilic 

and hydrophobic amino acid residues. In long CDR3H, hydrophilic amino acid residues 

were represented mainly by repetitive Gly, Tyr, and Ser, whereas Gly dominated in 

most of the sequences analyzed – which is consistent with previous findings [27]. The 

major usage of the hydrophilic reading frame was already described in humans [59], 

mice [60], chicken [58], and rabbits [61]. Their occurrence in antigen-binding loops is 

thought to enhance flexibility and recruit somatic hypermutations for advantageous 

antigen binding [59].  

Moreover, in accordance with descriptions provided previously, we identified multiple 

and mainly even numbered Cys within exceptionally long CDR3H, which were 

accumulated in the middle of the CDR3H [31,33]. These Cys are predicted to form intra 

and inter CDRH disulfide bonds, rigidifying the combining site or helping to stabilize 



                                             Chapter 3: Exceptionally long CDR3H in bovine immunoglobulins 
 

147 

 

long CDR3H, as demonstrated in the crystallized human Fab Kol [62] and the camel 

cAb-Lys3 single domain antibody [63]. In this context, additional Cys in CDR2H were 

noticed before, when there were only one or three Cys in CDR3H [31]. Concerning the 

IMGT numbering system, we solely identified one additional Cys in CDR2H, when one 

Cys in CDR3H was found in two sequences of IgE with middle-length CDR3H. When 

numbering the amino acids according to Kabat et al. [8], ten sequences classified in 

group 2 possessed one Cys in CDR3H and showed an additional Cys in CDR2H. We 

did not note analogues for sequences from group 1 or group 3. In contrast to the 

findings that there is at least one Cys in CDR3H regions containing more than 12 

amino acid residues, and that there is no Cys if the CDR3H possessed less than 10 

amino acid residues [27], we also observed CDR3H sequences of intermediate length 

without Cys residue in CDR3H.  

We annotated the bovine immunoglobulin heavy-chain locus, demonstrated the 

expression of unusually long CDR3H in the five bovine immunoglobulin isotypes, and 

specified their genomic origin. Thus, this study reviewed the opinion that exceptionally 

long CDR3H are a unique feature of bovine IgG1-3 and IgM. 

 

Note 

Sequences can be found under GenBank Acc.No. KC471523 to KC471622. 

 
 
 

Supporting Information 

Table S1 Genomic annotation of the bovine immunoglobulin heavy-chain locus. 

For a functional gene (F), the complete coding sequence, octamer motif, TATA box, 

splicing signals or recombination signal sequences (RSS), and poly A motif were 

identified. Putative functional genes ((F)) lacked some of the described parts due to 

end of the contig or N's introduced into gaps for example. ORFs are classified by 

alterations in the splicing signals, RSS or regulatory elements. The extension (ORF) 

describes fully functional genes in putative orphons. Pseudogenes (Ψ) revealed stop 

codons, frameshifts or mutations within the RSS, which lead to abolition of 

recombination. Fragmented loci were also defined as Ψ [38,39,40,41]. 

(XLS) 
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Abstract 

We have developed a new bioinformatics framework for the analysis of rearranged 

bovine heavy chain immunoglobulin (Ig) variable regions by combining and refining 

widely used alignment algorithms. This bioinformatics framework allowed us to 

investigate alignments of heavy chain framework regions (FRHs) and the separate 

alignments of FRHs and heavy chain complementarity determining regions (CDRHs) to 

determine their germline origin in the 4 cattle breeds Aubrac, German Black Pied, 

German Simmental, and Holstein Friesian. Now it is also possible to specifically 

analyze Ig heavy chains possessing exceptionally long CDR3Hs. 

In order to gain more insight into breed specific differences in Ig combinatorial diversity, 

somatic hypermutations and putative gene conversions of IgG, we compared the 

dominantly transcribed variable (IGHV), diversity (IGHD), and joining (IGHJ) segments 

and their recombination in the 4 cattle breeds.  

The analysis revealed the use of 15 different IGHV segments, 21 IGHD segments, and 

2 IGHJ segments with significant different transcription levels within the breeds. 

Furthermore, there are preferred rearrangements within the 3 groups of CDR3H 

lengths. In the sequences of group 2 (CDR3H lengths (L) of 11-47 amino acid residues 

(aa)) a higher number of recombination was observed than in sequences of group 1 

(L≤10 aa) and 3 (L≥48 aa). The combinatorial diversity of germline IGHV, IGHD, and 

IGHJ-segments revealed 162 rearrangements that were significantly different. The few 

preferably rearranged gene segments within group 3 CDR3H regions may indicate 

specialized antibodies because this length is unique in cattle.  

The most important finding of this study, which was enabled by using the bioinformatics 

framework, is the discovery of strong evidence for gene conversion as a rare event 

using pseudogenes fulfilling all definitions for this particular diversification mechanism.  
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Author Summary 

The humoral immune response is an integral part in the specific pathogen defense. 

Beside universal processes for the generation of the immunoglobulin diversity applying 

for all higher vertebrates, species-specific mechanisms exist. Cattle possess less 

functional gene segments available for combinatorial diversity if compared with human 

and mice.  

Thus, we hypothesized that cattle use pseudogenes for a genetically exchange, the so-

called gene conversion. Beside the difficulty of the incomplete annotated bovine heavy 

chain immunoglobulin locus, we were able to verify gene conversion events fulfilling all 

conditions like clusters of nucleotide exchanges, at least triplets, origin of the 

pseudogene upstream of the rearranged segment and a high degree of flanking 

homology.  

In addition, we analyzed the combinatorial diversity and hot spots for hypermutations in 

four different cattle breeds: Aubrac, German Black Pied, German Simmental, and 

Holstein Friesian. Here we observed a significant non-random distribution in the usage 

of the segments as well as in their combinations in Aubrac and German Simmental. 

The highest variability within the variable region was always observed in the transition 

of framework regions to complementarity determining regions (CDRH) if compared to 

the middle of the CDRHs. 
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Introduction 

The basic genetic mechanism in developing immunoglobulin diversity is similar in all 

jawed vertebrates. Immunoglobulins (Ig) are Y-shaped hetero-tetramers consisting of 

two identical heavy chains (IGH) and two identical light chains, either  or  in 

mammals (IGK, IGL) [1]. Both chains are functionally divided into variable and constant 

domains that are combined during B-cell development. The variable domain is 

rearranged by separate heavy and light chain variable (IGHV, IGKV, IGLV), diversity 

(IGHD), and joining (IGHJ, IGKJ, IGLJ) germline gene segments [2]. In addition, the 

imprecise junction of the germline gene segments and somatic hypermutations 

contribute to antibody diversity [3-5].  

Species differences were primarily found in the number of germline IGHV/IGKV/IGLV, 

IGHD, and IGHJ/IGKJ/IGLJ segments. In livestock species with restricted 

combinatorial germline diversity such as chicken [4], pigs [6], sheep [7], and cattle [5, 

8, 9], species-dependent mechanisms dominate the different diversification steps. For 

instance, the use of pseudogene sequence parts is a frequent post-recombinatorial 

strategy for the generation of the preimmune antibody repertoire in chicken, sheep, and 

rabbit [4, 10-13]. This phenomenon, called gene conversion, was also confirmed for 

IGLs in cattle [14] and is assumed to be operative in horses [15].  

Gene conversions are difficult to detect especially within a large number of sequences 

e.g. like those obtained from high throughput sequencing. Gene conversion in 

immunoglobulins is characterized by clusters of nucleotide changes [14], sometimes 

only triplets [11], originating from upstream genes of the rearranged segment [4, 13]. 

High degree of flanking homology of the conversion region ensures the genetic 

exchange [13], whereby 3 to 5 nucleotides seem to be the minimal overlapping 

requirement [11].  

Detection of gene conversion in bovine IGHV is complicated due to the incomplete IGH 

locus annotation. The main bovine IGH locus was assigned to the Bos taurus 

autosome (BTA) 21 but exons coding for variable, diversity, and joining segments were 

also found on BTA7, BTA8, and BTA20 [16-18]. Thirty-six IGHVs were identified of 

which 13 are functional and belong phylogenetically to the bovine IGHV family 1 

(boVH1). The second bovine IGHV family consists solely of non-functional IGHVs that 

have not been identified in expression analyses yet. Eleven IGHV segment pairs 

shared 100% sequence identity, whereas two of these pairs contain a functional 

segment and either an ORF or a putative functional segment, respectively [17]. The 
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high proportion of pseudogene segments leads to the assumption of their use in gene 

conversion events. Two IGHJ loci possessing six IGHJ segments were detected on 

BTA11 by BAC clone and locus-specific PCR analysis and were found to rearrange at 

low frequency while those located on BTA21 rearrange at high frequency. Only two out 

of these six IGHJ were classified as functional whereas one is involved predominantly 

in the recombination process [19, 20]. Fifteen IGHD genes were detected and revealed 

a sub-cluster organization. IGHD are classified into four families and the IGHD exons 

revealed huge size differences [21, 22]. The organization of the actual bovine germline 

repertoire and its possible allelic variants is incomplete and needs to be investigated in 

more detail [17]. Since, even the organization of the extensively studied human 

immunoglobulin germline repertoire is questioned and requires ongoing analyses [23]. 

In all rearranged bovine immunoglobulin isotypes, exceptionally long complementarity 

determining region 3 of the heavy chain (CDR3H) possessing up to 67 aa were 

described [17]. Together with IGHD2 and IGHJ1, the germline IGHV10 segment was 

found to be the only variable segment rearranged in these exceptionally long CDR3Hs 

[17, 24]. This mechanism is also not isotype restricted [17, 25]. 

An additional bovine specific mechanism for antibody diversification is the insertion of 

conserved short nucleotide sequences into the IGHV-IGHD junction, which was found 

in intermediate and exceptionally long CDR3Hs [24].  

Currently available programs like IMGT/Junction Analysis [26], IMGT/V-QUEST [27, 

28] and IMTG/HIGHV-QUEST [29], VBASE2 [30], JoinSolver [31], iHMMun-align [32], 

and IgBLAST [33] allow the annotation of only the entire IGHV sequence to germline 

IGHV segments. Differentiated analysis of single parts is not directly possible. Most of 

the databases are focusing on mouse and human immunoglobulin genes (VBASE2, 

human, [30]). For cattle and other livestock or companion animals, separate databases 

have to be created (IgBLAST, [33]). Furthermore, the IMGT numbering system does 

not provide numbering for CDR3H larger than 31 aa. Placing of bovine intermediate as 

well as of exceptional long CDR3H in this numbering system is therefore not possible 

and consequently does not allow correct analysis of the rearrangement in those 

immunoglobulins. In addition, only IgBLAST allows the adjustment of parameters for 

IGHD identification. 

Detailed genetic analysis of the pre- and post-immunization humoral immune response 

is important to describe the developing diversity and the effectiveness of vaccines and 

to detect possible individual and breed related differences including non-responders. 
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As a conclusion those analyses help to develop fast recombinant antibodies for 

passive vaccination, therapy or diagnostic by genetically pre-selection of newly 

developed or abundant sequences. 

As a first attempt to gain more insight into bovine breed specific differences, we 

compared the dominantly transcribed and the combinatorial diversity of germline IGHV, 

IGHD, and IGHJ segments as well as somatic hypermutations and putative gene 

conversions of IgG in the four cattle breeds Aubrac, German Simmental, German Black 

Pied and Holstein Friesian, by using a newly developed Bioinformatics framework. This 

new bioinformatics framework combines and extends several analysis tools and takes 

into account the unique specificities of bovine immunoglobulin sequences of 

exceptionally long CDR3Hs. In addition, it allows for the adaptation of alignment 

parameters for the single segments and enables the selective analysis of the different 

functional regions of the variable domain (namely framework regions and CDRs) to 

determine putative gene conversions. This new tool should facilitate a fast and detailed 

analysis of data sets generated by high throughput sequencing. 
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Results 

For sequence analysis, we developed a new bioinformatics framework using MUSCLE 

[34, 35] for the initial fast and accurate multiple nucleotide sequence alignment. 

Subsequently, the sequence distances were calculated with ClustalW [36]. For 

nucleotide alignments of IGHV and IGHJ, default values of MUSCLE were used. To 

improve the biological significance of the assignment of germline and sample IGHDs, 

we tested three different procedures using different parameters. To determine the 

germline origin using the new bioinformatics framework, only the FRHs were aligned to 

avoid interference with the highly diversified CDRH [18]. To analyze possible gene 

conversion events, FR1-3Hs and CDR1-3Hs were extracted and aligned separately to 

the corresponding regions of the IGHV reference sequences to find the most similar 

germline segment. 

Using our bioinformatics tool, we established a sample sequence set for use in detailed 

analysis of the transcribed bovine immunoglobulin repertoire. Blood samples were 

taken from 10 animals per cattle breed: Aubrac (A), German Simmental (GS), German 

Black Pied (GBP), and Holstein Friesian (HF).  

In total, 160 IgG heavy chain sequences per breed (n=640 sequences) were 

investigated as described above. The variable regions were identified and extracted at 

the 5’ end (N-terminal end) using the motif GCCTCCACC/AST (nt/AA) marking the 

start of the first constant region of all bovine IgGs. Due to premature Stop-codons or 

incompletely amplified variable regions, 131 sequences were excluded from further 

analyses. Consequently, 509 sequences were left: 137 in A, 116 in GS, 111 in GBP, 

and 145 in HF. Sequences analyzed are published under accession numbers 

KT761498-KT762006. 
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Transcriptional analyses, assignment of germline gene segments 

 

Assigning the FR1H to FR3H of transcribed IGHV segments to their germline 

origin 

Ig heavy chain gene usage and identity to germline gene segments was determined by 

comparing the transcribed sequences with the germline Ig heavy chain genes 

described by Walther et al. [17] and Liljavirta et al. [22]. We found six of the germline 

IGHVs possess 100% sequence identity (presented as IGHVx/y) up to the 3’ end of 

FR3H. Analysis of transcribed IGHV segments (here: comprising FR1-3H) revealed 

germline gene usage of IGHV3/33, IGHV6, IGHV10/34, IGHV36/29(F), 

IGHV17(ORF)/31(F), IGHV1S26, IGHV1S28, IGHV1S32, IGHV1S33, IGHV1S34, 

IGHV1S35, IGHV1S37, IGHV1S38, IGHV1S39 as well as IGHV1S40 (Fig 1). 

 

 

 

 
Fig 1. Transcription frequencies of IGHV in four cattle breeds. Transcribed IGHV 
are shown on the horizontal axis, their relative usage frequencies are indicated on the 
vertical axis. Each breed is marked by the following color code: Aubrac: white, German 
Simmental: light grey, Holstein Friesian: black, German Black Pied: dark grey 
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We were not able to unambiguously assign ten of 116 analyzed GS sequences to one 

germline IGHV; this was also true for 14 out of 111 GBP sequences, 12 out of 145 HF 

sequences, and 19 out of 137 analyzed sequences of A. 

These samples showed equal divergence to at least two germline IGHV which included 

combinations of IGHV3/33, IGHV6, IGHV10/34, IGHV17(ORF)/31(F), IGHV1S28, and 

IGHV1S32-40. The most frequent multiple assignment affected IGHV6 and IGHV1S34, 

followed by IGHV6 and IGHV1S35 in all A, GS, and HF. IGHV6, IGHV1S34, and 

IGHV17(ORF)/31(F) could not be differentiated in two sequences of GS, one sequence 

of GBP and two sequences of HF. Ambiguously assigned germline IGHVs and multiple 

assignments are listed in Table 1.  

 

Table 1. IGHV assigned ambiguously and their frequency. Ambiguous sequences 
can be assigned to more than one germline IGHV with the same distance. 
 
Breed A GBP GS HF 

Total No. of animals 10 10 10 10 

No. of animals with ambiguous sequences 9 5 4 6 

Total No. of sequences analyzed 137 111 116 145 

No. of ambiguous sequences 19 14 10 12 

Total No. of putative IGHV recombinations 167 140 130 158 

Ambiguous IGHV 
 

 
  

IGHV3/IGHV1S33 0 0 1 0 

IGHV3/IGHV1S39 0 0 0 2 

IGHV6/IGHV17 1 0 0 0 

IGHV6/IGHV1S34 3 3 3 5 

IGHV6/IGHV1S35 3 0 1 1 

IGHV6/IGHV36 0 1 1 1 

IGHV6/IGHV1S39 1 0 1 0 

IGHV1S28/IGHV1S32 0 0 0 1 

IGHV1S33/IGHV1S39 1 1 0 0 

IGHV1S33/IGHV1S40 1 0 0 0 

IGHV1S37/IGHV1S38 0 0 0 1 

IGHV1S39/IGHV17 0 1 0 0 

IGHV1S39/IGHV1S40 1 0 0 0 

IGHV3/IGHV10/IGHV1S39 2 0 0 0 

IGHV6/IGHV17/IGHV1S34 0 2 2 1 

IGHV6/IGHV17/IGHV1S40 1 0 0 0 

IGHV6/IGHV1S32/IGHV1S34 1 0 1 0 

IGHV6/IGHV1S33/IGHV1S35 1 0 0 0 

IGHV3/IGHV6/IGHV17/IGHV1S34 0 2 0 0 

IGHV6/IGHV10/IGHV1S34/IGHV1S39 1 0 0 0 

IGHV6/IGHV17/IGHV1S28/IGHV1S39 0 1 0 0 

IGHV6/IGHV17/IGHV1S34/IGHV1S39 1 1 0 0 

IGHV6/IGHV36/IGHV1S34/IGHV1S39 0 1 0 0 

IGHV3/IGHV6/IGHV17/IGHV1S34/IGHV1S39 0 1 0 0 

IGHV6/IGHV17/IGHV1S33/IGHV1S34/IGHV1S35 1 0 0 0 
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Including the multiple assignments as described above, a total number of 595 possible 

transcribed germline IGHV were observed. Overall, the most frequent variable gene 

segment was IGHV1S39; this was identified in 17.65% of all sequences. This IGHV 

was used in 51 A sequences (n=167, 30.54%), in 19 sequences of GBP (n=140, 

13.57%), in four sequences of GS (n=130, 3.08%), and 31 sequences of HF (n=158, 

19.62%) (Fig 1, Table 2). IGHV3/33 was represented by 14.29% of all sequences. The 

number of transcribed IGHV3/33 varied from 15 in GS (11.54%) to 32 in HF (20.25%) 

(Fig 1, Table 2). In similar proportions of 13.45% and 12.27% germline IGHV36/29(F) 

and IGHV1S40 were used. IGHV1S28, IGHV1S34, and IGHV6 were transcribed in 

proportions of 8.07%, 8.57%, and 9.24%. The other transcribed IGHVs were identified 

in minor proportions of 0.17% to 5.04%, respectively. These rarely used IGHVs were 

identified once or twice in GS and HF but up to ten times in A (Fig 1). Very high 

significant differences were calculated for IGHV usage within the breeds and between 

the breeds (P<0.0001). 

 

Table 2. Percentage of IGHV assigned to sample sequences of four cattle breeds. 

IGHV 
A  

(%; n=167) 
GS  

(%; n=130) 
GBP  

(%; n=158) 
HF  

(%; n=140) 

IGHV1S26 0.00 0.77 0.00 0.00 

IGHV1S28 6.59 8.46 8.57 8.86 

IGHV1S32 0.00 2.31 0.00 1.27 

IGHV1S33 3.59 1.54 0.71 0.00 

IGHV1S34 5.99 10.00 13.57 5.70 

IGHV1S35 2.99 11.54 1.43 1.27 

IGHV1S37 0.00 0.00 0.00 1.27 

IGHV1S38 0.00 0.77 0.00 0.63 

IGHV1S39 30.54 3.08 13.57 19.62 

IGHV1S40 8.38 15.38 15.71 10.76 

IGHV3 11.98 11.54 12.86 20.25 

IGHV6 10.78 7.69 9.29 8.86 

IGHV10 5.99 6.92 1.43 5.70 

IGHV17 5.39 3.08 6.43 1.90 

IGHV36 7.78 16.92 16.43 13.92 
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Separated analyses of FRH 1-3 and CDRH 1-2 to detect gen conversion events 

In livestock such as chicken, rabbit, and cattle the use of pseudogene segments is 

known to contribute to immunoglobulin diversity [4, 10, 11, 13, 14, 37, 38]. Gene 

conversion in immunoglobulins is characterized by clusters of nucleotide changes [14], 

sometimes only triplets [11], originating from upstream genes of the rearranged 

segment [4, 13]. A high degree of flanking homology of the conversion region ensures 

the genetic exchange [13], whereby three to five nucleotides have been shown to be 

the minimal overlapping requirement [11]. 

Consequently, FR1-3H and CDR1-2H were analyzed separately to identify mutations 

within the FR1-3H and CDR1-2H that would indicate possible gene conversion events. 

The current genomic annotation of germline immunoglobulin segments in cattle makes 

a correct prediction of 5’ donor segments difficult. Nonetheless, larger contigs have 

been identified [17] and enabled us to show gene conversion events in bovine 

immunoglobulin heavy chains variable regions.  

For instance, the calculated putative originating germline genes for nucleotide changes 

identified solely in the CDR2H region of KT761864 were IGHV4Ψ, IGHV9Ψ, and 

IGHV18Ψ (divergence 0.190). In the calculation covering the whole V-region and using 

only FR1-3H, IGHV6 was identified as the originating gene for KT761864 (divergence 

0.075). All genes but IGHV18Ψ are located on BTA21, whereas IGHV4Ψ is located 

upstream of IGHV6 and is therefore most likely used for the gene conversion. There 

are two triplets in KT761864 and IGHV4Ψ that are different from IGHV6 due to a 

transversion mutation in the first changed triplet (from AAT in IGHV6 to TAT in 

KT761864 and IGHV4Ψ) and a transition mutation in the second changed triplet (from 

GAT in IGHV6 to AAT in KT761864 and IGHV4Ψ; Table 3). 

 

Table 3. Possible gene conversion in KT761864. 

Sample/Gene Sequence in CDR2H Location Divergence 

KT761864 ATT AAT TAT AAT … GGA GAC ACC BTA21  

IGHV4ᴪ ATA TAT TAT AAT … GGT GAC ACT BTA21 0.190 

IGHV9ᴪ ATA TAT TAT AAT … GGT GAC ACT BTA21 0.190 

IGHV18ᴪ ATA TAT TAT AAT … GGT GAC ACT BTA7 0.190 

IGHV61 ATA GAT AAT GAT … GGA GAC ACA BTA21 0.075 
1 Divergence in calculations covering the whole V-region and using only FR1-3H. This gene was 
not observed in the analysis of the separated CDR2H. 
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Due to high sequence similarities and because we assumed preferable transcription of 

functional germline gene segments, we first concentrated on pseudogenes that were 

calculated as unique origin of the sample sequences considering the particular regions. 

 

In all breeds, IGHV13Ψ and IGHV17(ORF) were used most often in CDR2H (3.34% 

and 1.77%) as well as in FR2H and FR3H (IGHV17(ORF) both 1.38%) and CDR2H 

(IGHV13Ψ 1.77%), respectively. IGHV15Ψ was found in 0.59% of CDR2H in 

sequences of A and HF. IGHV11Ψ, IGHV12Ψ, and IGHV21Ψ always showed the 

same divergence from GBP and HF sequences but were not solely identified as the 

potential origin of the sample sequence. Similarly, IGHV4Ψ, IGHV9Ψ, and IGHV18Ψ 

were identified in triplet as possible originating gene segments but only together with 

functional germline genes. In one sequence of GBP and 2 sequences of GS both in 

CDR1H and CDR2H pseudogenes were calculated as possible parental IGHVs. In one 

A sequence only a pseudogene showed lowest divergence from the sample in FR2H 

and CDR2H (Fig 2). 

 

Fig 2. Possible gene conversion in FRH and CDRH. The absolute number of possible gene 
conversion events is shown for pseudogenes assigned unambiguously to CDR1H, FR2H, and 
CDR2H in the four cattle breeds Aubrac (A), German Black Pied (GBP), German Simmental 
(GS), and Holstein Friesian (HF). 
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Our analyses revealed a less distinct assignment to the germline gene segments. 

Nevertheless, the majority of identified and putative originating germline sequences 

were IGHV3/33, IGHV6, IGHV10/34, IGHV2/26, IGHV29(F)/36, IGHV16(ORF)/25, 

IGHV17(ORF)/31(F), and IGHV19Ψ, as well as IGHV1S19, IGHV1S23-28, IGHV1S30, 

IGHV1S32-40 [22] within FRHs and CDRHs. Although these are the same gene 

segments as determined for the complete IGHV segment, calculations indicate 

exchanges between the IGHV gene segments within FRHs and CDRHs. Additional 

pseudogenes (IGHV1Ψ, IGHV4Ψ, IGHV7Ψ, IGHV9Ψ, IGHV11Ψ, IGHV12Ψ, 

IGHV13Ψ, IGHV15Ψ, IGHV18Ψ, IGHV21Ψ) were identified by the program and 

concentrated on CDR1H and CDR2H. IGHV13Ψ, IGHV15Ψ, and IGHV19Ψ showed 

little divergence in FR1H and FR2H from sample sequences, too. Within these FRHs, 

different functional IGHV were possible originating germline sequences (Table 4).  

 

Table 4. Possible gene conversions in FRH and CDRH. 

  
A GBP GS HF Sum Percent 

  a1 u2 a1 u2 a1 u2 a1 u2 a1 u2 u2 

IGHV1Ψ CDR1H 1 0 0 0 0 0 1 0 2 0 0.00 

 
CDR2H 1 1 1 0 1 0 2 0 5 1 0.20 

IGHV4Ψ CDR1H 1 0 0 0 0 0 1 0 2 0 0.00 

 
CDR2H 4 0 1 0 2 0 2 0 9 0 0.00 

IGHV7Ψ CDR2H 2 1 1 0 1 1 4 0 8 2 0.39 

IGHV9Ψ CDR1H 1 0 0 0 0 0 1 0 2 0 0.00 

 
CDR2H 4 0 1 0 2 0 2 0 9 0 0.00 

IGHV11Ψ CDR2H 0 0 0 0 0 0 2 0 2 0 0.00 

IGHV12Ψ CDR2H 0 0 0 0 0 0 2 0 2 0 0.00 

IGHV13Ψ CDR1H 18 0 11 0 9 0 19 0 57 0 0.00 

 
FR2H 1 0 0 0 0 0 0 0 1 0 0.00 

 
CDR2H 16 2 20 5 17 5 22 5 75 17 3.34 

IGHV17Ψ FR1H 80 0 58 0 63 0 75 0 276 0 0.00 

 
CDR1H 20 0 10 0 2 0 10 0 42 0 0.00 

 
FR2H 8 4 4 1 4 0 6 2 22 7 1.38 

 
CDR2H 12 5 7 1 3 0 14 3 36 9 1.77 

 
FR3H 9 5 10 1 9 0 8 1 36 7 1.38 

IGHV15Ψ CDR1H 7 2 3 0 3 0 4 1 17 3 0.59 

 
FR2H 0 0 0 0 0 0 0 0 0 0 0.00 

 
CDR2H 3 1 9 0 1 0 9 2 22 3 0.59 

IGHV18Ψ CDR1H 1 0 0 0 0 0 1 0 2 0 0.00 

 
CDR2H 4 0 1 0 2 0 2 0 9 0 0.00 

IGHV19Ψ FR1H 80 0 58 0 63 0 75 0 276 0 0.00 

 
CDR1H 25 0 13 0 27 0 20 0 85 0 0.00 

 
FR2H 6 1 1 0 0 0 4 0 11 1 0.20 

 
CDR2H 9 0 15 0 9 0 25 0 58 0 0.00 

IGHV21Ψ CDR2H 0 0 0 0 0 0 2 0 2 0 0.00 
1 ambiguously assigned 
2 unambiguously assigned  



            Chapter 3: Gene conversion and combinatorial diversity in bovine heavy chains 

 

182 

 

CDR3H length distribution  

In all four cattle breeds the program identified very short CDR3Hs (less or equal 10 aa, 

group 1), CDR3Hs of intermediate length (11-47 aa, group 2) as well as exceptionally 

long CDR3Hs (at least 48 aa, group 3) (Fig 3, Table 5). Very high significant 

differences were calculated for the number of sequences within the 3 groups of lengths 

(P<0.0001) when they were compared between all breeds but also within the breeds 

(GS, GBP, A, HF: P<0.0001). Fourty-four (7.37%) sequences possessed a CDR3H 

length with 10 or less amino acid (aa) residues. The highest amount of sequences 

within this group were identified in breed A (12.57%), followed by HF (7.55%), GBP 

(5.00%) and GS (3.05%). In the breeds A, GS, and HF one and four sequences 

possessed only four amino acid residues within the CDR3H. Five amino acid residues 

were the shortest CDR3H in sequences of GBP.  

 

 
Fig 3. Length distribution of CDR3H in the four cattle breeds. The number of amino acid 
residues making up the CDR3H lengths identified are shown on the horizontal axis, their relative 
usage frequencies are indicated on the vertical axis. Each breed is marked by the following 
color code: Aubrac: white, German Simmental: light grey, Holstein Friesian: black, German 
Black Pied: dark grey 
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Table 5. Length distribution of the CDR3Hs. 

Number of amino 
acids within CDR3H 

All breeds 
(%; n=597) 

GS 
(%; n=131) 

GBP 
(%; n=140) 

HF 
(%; n=159) 

A 
(%; n=167) 

4 1.01 0.76 0.00 0.63 2.40 

5 2.68 0.00 2.14 2.52 5.39 

6 1.68 1.53 1.43 2.52 1.20 

7 1.17 0.76 1.43 0.63 1.80 

8 0.17 0.00 0.00 0.63 0.00 

9 0.34 0.00 0.00 0.63 0.60 

10 0.34 0.00 0.00 0.00 1.20 

11 1.17 0.00 0.71 1.89 1.80 

12 1.01 0.00 3.57 0.00 0.60 

13 1.01 0.76 0.00 2.52 0.60 

14 1.51 2.29 2.14 0.63 1.20 

15 3.18 4.58 2.86 1.89 3.59 

16 4.36 0.00 6.43 8.18 2.40 

17 2.85 2.29 5.00 1.89 2.40 

18 4.86 3.82 5.00 4.40 5.99 

19 3.85 3.82 0.71 5.66 4.79 

20 5.70 9.16 3.57 5.66 4.79 

21 6.70 12.21 3.57 6.29 5.39 

22 10.55 12.21 8.57 10.69 10.78 

23 8.38 6.11 10.71 6.29 10.18 

24 8.04 10.69 6.43 8.81 6.59 

25 6.87 4.58 7.86 7.55 7.19 

26 6.20 9.16 5.71 4.40 5.99 

27 7.20 6.11 10.71 6.29 5.99 

28 2.51 1.53 5.71 2.52 0.60 

29 1.68 0.76 1.43 3.14 1.20 

30 1.17 0.00 2.14 0.63 1.80 

31 0.34 0.76 0.71 0.00 0.00 

49 0.17 0.76 0.00 0.00 0.00 

50 0.17 0.00 0.71 0.00 0.00 

52 0.17 0.00 0.00 0.00 0.60 

53 0.34 0.76 0.00 0.63 0.00 

54 0.17 0.00 0.71 0.00 0.00 

56 0.34 0.76 0.00 0.00 0.60 

57 0.17 0.00 0.00 0.63 0.00 

58 0.17 0.00 0.00 0.00 0.60 

59 0.17 0.00 0.00 0.00 0.60 

60 0.50 1.53 0.00 0.63 0.00 

61 0.17 0.00 0.00 0.63 0.00 

63 0.34 0.76 0.00 0.63 0.00 

64 0.17 0.00 0.00 0.00 0.60 

65 0.50 1.53 0.00 0.00 0.60 
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Complementarity determining regions of group 2 were identified in 532 of all 

sequences analyzed (89.11%). 93.57% of GBP sequences were found to use 11 up to 

47 aa. In HF, 89.31% of the sequences were attributed to this group as well as 83.83% 

of A and 90.84% of GS sequences. The most frequent CDR3H length was 22 aa, 

which was found in 10.78% of A sequences, in 8.57% of GBP, in 12.21% of GS, and in 

10.69% HF sequences. Simultaneously, this length was identified preferably in CDR3H 

of A and HF. Nevertheless, in GS CDR3H with a length of 21 aa was identified as often 

as a length of 22 aa (12.21%). In GBP, CDR3Hs with a length of 23 and 27 aa 

dominated (10.71%). 

CDR3Hs of group 3 were identified in 21 sequences of all four breeds (9.22%). The 

breed GS showed the highest number of these sequences (6.11%) followed by A 

(3.59%). German Black Pied and HF sequences possessed smaller proportions of the 

exceptionally long CDR3H with 3.14% and 1.43%, respectively. Whereas in GS and 

HF sequences with 65 aa were the longest CDR3Hs (1.53%, 0.6%), 63 and 54 aa were 

counted in the longest CDR3Hs of A (0.63%) and GBP (0.71%), respectively.  

 

Assigning IGHD to their germline origin using 3 different procedures 

We tested three different procedures to assign germline and sample IGHDs in order to 

improve the biological significance. At first, we applied the default values of MUSCLE, 

in procedure 2 we changed the penalties for gap opening (=-4) and gap extention 

(=-0.3), and in procedure 3 we additionally incorporated a modified scoring matrix 

(match +2) to evaluate transversion and transition mutations.  

In all three procedures, the assignment of germline and transcribed IGHD revealed 

clear results for the sequences analyzed. Nevertheless, using procedure 3 we obtained 

results matching short and long sample IGHD sequences best to germline short 

CDR3H and exceptionally long CDR3H, respectively, whereas procedure 1 and 2 

assigned a major number of group 3 CDR3H to germline IGHD of moderate length. 

Twenty-one different germline IGHD were transcribed, whereby IGHD8 located on 

BTA21, IGHD3 located on BTA7, IGHD5 as well as the very short IGHDQ52 located on 

BTA8; these were preferred in all breeds (Fig 4, Table 6). While IGHDQ52, IGHDS10 

and 14 [22] were solely transcribed in sense orientation, germline IGHD1 to IGHD8 

gene segments were transcribed in antisense direction in 38 sequences distributed 

over all four breeds investigated. IGHD4 (antisense (as), [21]) was identified the most 

often, followed by IGHD1 (as, [39]), IGHD3 (as, [39]), IGHD2 (as, [39]), IGHD5 (as, 
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[21]), IGHD6 (as, [21]), IGHD8 (as, [21]) and IGHD7 (as, [21]). Very high significant 

differences were calculated for the IGHD usage within the cattle breeds (P<0.0001) but 

not between the breeds (P=0.06). 

 

 

Fig 4. Transcription frequencies of IGHD in four cattle breeds using procedure 3. 
Transcribed IGHD are shown on the horizontal axis, their relative usage frequencies are 
indicated on the vertical axis. Calculation occurred after changing the default values for gap 
opening (-4) and gap extention (-0.3) and a modified scoring matrix (match +2) of MUSCLE. 
Each breed is marked by the following color code: Aubrac: white, German Simmental: light grey, 
Holstein Friesian: black, German Black Pied: dark grey 
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Table 6. Percentage of IGHD assigned to sample sequences of four cattle breeds. 

IGHD 
A 

(%; n=137) 
GS 

(%; n=116) 
GBP 

(%; n=111) 
HF 

(%; n=145) 

IGHD1_as1_[39] 2.92 0.86 1.80 0.69 

IGHD1_s2_BTA7 4.38 1.72 7.21 8.97 

IGHD2_as_[39] 1.46 0.86 0.00 0.00 

IGHD2_s_BTA7 5.11 1.72 0.00 1.38 

IGHD2_s_[39] 0.73 7.76 2.70 3.45 

IGHD3_as_[39] 2.92 0.86 0.90 0.00 

IGHD3_s_BTA7 8.76 12.07 14.41 13.79 

IGHD4_as_[21] 2.92 1.72 0.90 2.76 

IGHD4_s_BTA8 9.49 3.45 8.11 8.97 

IGHD5_as_[21] 0.73 0.86 0.00 0.69 

IGHD5_s_BTA8 19.71 14.66 11.71 10.34 

IGHD5_s_NW001503306 3.65 1.72 6.31 4.83 

IGHD6_as_[21] 0.00 0.00 0.90 1.38 

IGHD6_s_BTA8 0.73 0.86 2.70 2.76 

IGHD7_as_[21] 0.00 0.00 0.90 0.00 

IGHD7_s_BTA8 5.11 10.34 7.21 6.21 

IGHD8_as_[21] 0.73 0.00 0.90 0.69 

IGHD8_s_BTA21 12.41 22.41 13.51 11.72 

IGHDQ52_s_BTA8 10.22 8.62 10.81 15.71 

IGHDS10_[22] 5.11 5.17 7.21 4.83 

IGHDS14_[22] 2.92 4.31 1.80 1.38 
1 antisense 
2 sense 

 

 

In comparison, 20 different germline IGHD were transcribed using default conditions of 

MUSCLE for alignments (procedure 1), whereby IGHD8 being located on BTA21 was 

the preferred IGHD in all breeds. The very short IGHDQ52 located on BTA8 was 

transcribed in high frequencies in the breeds A, GBP, and HF (S1 Fig, S1 Table). While 

IGHDQ52, IGHDS10 and 14, and IGHD6 were solely transcribed in sense orientation, 

germline IGHD1 to IGHD8 gene segments were transcribed in antisense direction in 23 

sequences that were distributed over all four breeds. IGHD4 (as, [21]) was identified 

the most often. Very high significant differences were calculated for the IGHD usage 

within the cattle breeds (P<0.0001) but not between the breeds (P=0.1630). 
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After changing penalties for gap opening and gap extension (procedure 2), 17 different 

germline IGHD were transcribed, whereby IGHD8 located on BTA21, was the most 

observed IGHD in all breeds (S2 Fig, S2 Table). Germline IGHD1, IGHD4, IGHD6, and 

IGHD8 gene segments were transcribed in as direction in 24 sequences that were 

distributed over all four breeds. Again, IGHD4 (as, [21]) was identified the most often. 

Very high significant differences were calculated for the IGHD usage within the cattle 

breeds (P<0.0001) but not between the breeds (P=0.6654). 

 

Assigning the FR4H and IGHJ to their germline origin 

Located on BTA21, IGHJ1 and IGHJ6 [22] were identified as origin to the transcribed 

gene segments, which defines the FR4H within the samples analyzed. IGHJ1 was 

transcribed preferably in the sequences investigated in all breeds (98.83%). IGHJ6 [22] 

(1.17%) was detected in only one sequence of each A, GS, and GBP (0.73%, 0.85%, 

0.90%), as well as in three sequences of HF (2.05%) animals. One sequence of GS 

and HF, respectively, showed IGHJ1 and IGHJ6 as a possible originating germline 

segment (Fig 5, Table 7). Statistical analysis revealed very high significant differences 

(P<0.0001) for the usage of IGHJ1 and IGHJ6 [22] within all cattle breeds. No 

significant differences were calculated between the four breeds.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 5. Transcription frequencies of IGHJ in four cattle breeds. Transcribed IGHJ are shown 
on the horizontal axis, their relative usage frequencies are indicated on the vertical axis. Each 
breed is marked by the following color code: Aubrac: white, German Simmental: light grey, 
Holstein Friesian: black, German Black Pied: dark grey 
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Table 7. Percentage of IGHJ assigned to sample sequences of four cattle breeds. 

IGHJ 
A 

(%; n=137) 
GS 

(%; n=117) 
GBP 

(%; n=111) 
HF 

(%; n=146) 

IGHJ1 99.27 99.15 99.10 97.95 

IGHJ6 [22] 0.73 0.85 0.90 2.05 

 

 

Recombination of IGHV, IGHD, and IGHJ in different cattle breeds using 

procedure 3 

Recombined IGHV, IGHD, and IGHJ were identified for each sequence and all possible 

frequencies were analyzed statistically within and between the breeds examined. In 

total, 597 recombinations were analyzed including double assigned germline origins for 

IGHV and IGHJ. 

Applying procedure 3 for the IGHD assignment, 162 different combinations of IGHV, 

IGHD, and IGHJ were revealed (Fig 6, S3 Table). Most combinations occurred in less 

than ten sequences. Calculations revealed very high significant differences in usage 

frequencies of the rearranged gene segments between the breeds investigated 

(P<0.0001). Eleven rearrangements were observed in ten to 27 sequences. They were 

observed in sequences of all four breeds. These major rearrangements were: IGHV36-

IGHD8 (sense (s), BTA21)-IGHJ1 (AY158087) (4.52%), IGHV1S40-IGHD5 (s, BTA8)-

IGHJ1 (AY158087) (3.02%), IGHV1S39-IGHD5 (s, BTA8)-IGHJ1 (AY158087) (2.85%), 

IGHV1S40-IGHD3 (s, BTA7)-IGHJ1 (AY158087) (2.35%), IGHV1S39-IGHD8 (s, 

BTA21)-IGHJ1 (AY158087) (2.18%), IGHV3-IGHD5 (s, BTA8)-IGHJ1 (AY158087) 

(2.01%), IGHV3-IGHDQ52 (s, BTA8)-IGHJ1 (AY158087) (1.84%), IGHV36-IGHDQ52 

(s, BTA8)-IGHJ1 (AY158087) (1.84%), IGHV1S39-IGHD4 (s, BTA8)-IGHJ1 

(AY158087) (1.68%), IGHV1S39-IGHD7 (s, BTA8)-IGHJ1 (AY158087) (1.68%), 

IGHV3-IGHD8 (s, BTA21)-IGHJ1 (AY158087) (1.68%). Beside these preferred 

combinations, 52 minor recombinations were identified solely in one sequence 

distributed with 19 sequences in A, 14 in GS, six in GBP, and 13 in HF. Six variations 

of rearranged IGHJ6 were also identified one and two-times. These appear distributed 

over all four breeds: IGHV3-IGHD3 (s, BTA7)-IGHJ6 [22], IGHV1S28-IGHD4 (s, 

BTA8)-IGHJ6 [22], IGHV1S39-IGHD3 (s, BTA7)-IGHJ6 [22], IGHV1S40-IGHDS10-

IGHJ6 [22], IGHV3-IGHD8 (as, [21])-IGHJ6 [22], as well as IGHV10-IGHD5 (as, [21])-

IGHJ6 [22]. 
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Fig 6. Recombinations of IGHV, IGHD, and IGHJ over all four cattle breeds. In the 
sequences of all four cattle breeds analyzed 162 different combinations of IGHV, IGHD, and 
IGHJ were identified. Relative frequencies (%) of the combinations of the 21 transcribed IGHD 
and the 2 transcribed IGHJ are shown depending on the rearranged IGHV (n=15). 

 

Fifteen out of the 162 IGHV-IGHD-IGHJ combinations were identified in all four cattle 

breeds investigated. In animals of A, 91 different rearrangements were found, whereas 

in GBP 74 different recombinations were observed. German Simmental revealed 72 

combinations and HF showed 85 variations. Within the cattle breed A (167 

rearrangements), the combinations IGHV1S39-IGHD5 (s, BTA8)-IGHJ1 (AY158087), 

IGHV1S39-IGHD8 (s, BTA21)-IGHJ1 (AY158087), and IGHV1S39-IGHD4 (s, BTA8)-

IGHJ1 (AY158087) were most frequently used in 7.78%, 4.79%, and 3.59%, 
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respectively. Chi square calculations revealed high significant differences in usage 

frequencies of the recombinations in the breed A (P=0.0004). In animals of HF (159 

rearranged sample sequences), the dominant rearrangements were IGHV3-IGHD8 (s, 

BTA21)-IGHJ1 (AY158087) (4.40%), IGHV3-IGHDQ52 (s, BTA8)-IGHJ1 (AY158087) 

(3.77%), IGHV36-IGHDQ3 (s, BTA7)-IGHJ1 (AY158087) (3.77%), IGHV3-IGHD5 (s, 

BTA8)-IGHJ1 (AY158087) (3.14%), and IGHV3-IGHD1 (s, BTA7)-IGHJ1 (AY158087) 

(3.14%). The Chi square test did not show significant usage differences (P=0.6689) of 

the different rearranged gene segments in this breed. Very high significant differences 

were calculated for the recombined IGHV-IGHD-IGHJ in the breeds GS (P<0.0001), 

while in GBP no significant differences were found (P=0.8870). In GS animals 

rearranged IGHV36-IGHD8 (s, BTA21)-IGHJ1 (AY158087) (10.69%), IGHV1S40-

IGHD3 (s, BTA7)-IGHJ1 (AY158087) (4.58%), IGHV1S40-IGHD5 (s, BTA8)-IGHJ1 

(AY158087) (4.58%), IGHV1S34-IGHD8 (s, BTA21)-IGHJ1 (AY158087) (3.82%), and 

IGHV1S35-IGHD7 (s, BTA8)-IGHJ1 (AY158087) (3.82%) were observed in at least five 

sequences (131 rearranged samples). Four rearrangements were preferred in GBP 

(140 rearranged sequences): IGHV36-IGHD8 (s, BTA21)-IGHJ1 (AY158087) (5.00%), 

IGHV1S40-IGHD5 (s, BTA8)-IGHJ1 (AY158087) (3.57%), and IGHV36-IGHDQ52 (s, 

BTA8)-IGHJ1 (AY158087) (3.57%), and IGHV1S34-IGHD1 (s, BTA7)-IGHJ1 

(AY158087) (3.57%). 

 

Recombination of IGHV, IGHD, and IGHJ in different cattle breeds using 

procedure 1 

With the alignment conditions applied in procedure 1 and 2, different predominantly 

used recombinations were observed as expected due to the different identified IGHDs. 

Using the default values of MUSCLE (procedure 1), 147 different combinations of 

IGHV, IGHD, and IGHJ were found (S3 Fig, S4 Table). Most combinations occurred in 

less than ten sequences. We found very high significant differences in the usage 

frequencies of the rearranged gene segments between the breeds investigated 

(P<0.0001). We also observed rearrangements observed in a quantity of ten to 21 

sequences that also occurred in sequences spanning of all four breeds. The major 

rearrangement was IGHV36-IGHD8 (s, BTA21)-IGHJ1 (AY158087) (3.52%). Beside 

this preferred combination, 49 were identified solely in one sequence, whereby 12 were 

identified in A, 15 in GS, nine in GBP, and 13 in HF. We also identified seven variations 

rearranging IGHJ6 over all animals. 
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Twenty-one out of the 147 IGHV-IGHD-IGHJ combinations were identified in all four 

cattle breeds investigated. In animals of A, 81 different rearrangements were found, 

whereas in GBP 74 different recombinations were observed. German Simmental had 

74 combinations and HF had 80 variations. Within the cattle breed A (167 rearranged 

sample sequences), the combination IGHV1S39-IGHD3 (s. BTA7)-IGHJ1 (AY158087) 

was the most frequently used in 5.99%. Chi square calculations revealed significant 

differences in usage frequencies of the recombinations in the breed A (P=0.0108). In 

animals of HF (159 rearranged sample sequences), the dominant rearrangement was 

IGHV1S40-IGHD5 (s, BTA8)-IGHJ1 (AY158087) (4.40%). The Chi square test did not 

show significant usage differences (P=0.0546) for the different rearranged gene 

segments in this breed. High significant differences were seen for the recombined 

IGHV-IGHD-IGHJ in the breeds GS (P=0.0002), while in GBP no significant difference 

was found (P=0.9585). In GS animals rearranged IGHV36-IGHD8 (s, BTA21)-IGHJ1 

(AY158087) (9.16%) was observed in at least six sequences (131 rearranged 

samples). Four rearrangements were preferred in GBP (140 rearranged sequences): 

IGHV36-IGHD8 (s, BTA21)-IGHJ1 (AY158087) (3.57%), IGHV1S40-IGHD8 (s, BTA8)-

IGHJ1 (AY158087) (3.57%), IGHV1S34-IGHD5 (s, BTA8)-IGHJ1 (AY158087) (3.57%), 

and IGHV36-IGHD5 (s, NW_001503306)-IGHJ1 (AY158087) (3.57%).  

 

Recombination of IGHV, IGHD, and IGHJ in different cattle breeds using 

procedure 2 

When applying procedure 2 with changed values for gap opening and gap extension, 

we identified 119 different combinations of IGHV, IGHD, and IGHJ (S4 Fig, S5 Table) 

were identified. As seen for the other procedures, most combinations occurred in less 

than ten sequences. Calculations revealed very high significant differences in usage 

frequencies of the rearranged gene segments between the breeds investigated 

(P<0.0001). Fifteen different rearrangements were observed in a quantity of ten to 42 

sequences and were observed across all four breeds. The major rearrangement was 

IGHV1S39-IGHDQ52 (s, BTA8)-IGHJ1 (AY158087) (7.04%). Beside the dominant 

combinations, 43 were identified solely in one sequence, whereby six were identified in 

A, 13 in GS, 12 in GBP, and 12 in HF. Again, seven variations rearranging IGHJ6 were 

identified. 

Fifteen out of the 119 IGHV-IGHD-IGHJ combinations were identified in all four cattle 

breeds investigated. For A we found 58 different rearrangements, whereas in GBP 65 
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different recombinations were observed. German Simmental had 57 combinations and 

HF had 62 variations. Within A (167 rearrangements), the combination IGHV1S39-

IGHDQ52 (s, BTA8)-IGHJ1 (AY158087) was the most frequently used and was seen in 

11.38% of the time. Chi square calculations showed significant differences in the usage 

frequencies of the recombinations for breed A (P=0.0108). In animals of HF (159 

rearranged sample sequences), the dominant rearrangement was IGHV1S39-

IGHDQ52 (s, BTA8)-IGHJ1 (AY158087) (8.81%). The Chi square test did not show 

significant usage differences (P=0.0546) for the different rearranged gene segments in 

this breed. High significant differences were seen for the recombined IGHV-IGHD-IGHJ 

in the breed GS (P=0.0002), while in GBP no significant differences were observed 

(P=0.9585). In GS animals rearranged IGHV36-IGHDQ52 (s, BTA8)-IGHJ1 

(AY158087) (11.45%) was observed predominantly (131 rearranged sequences). The 

rearrangement IGHV1S40-IGHDQ52 (s, BTA8)-IGHJ1 (AY158087) (9.29%) was 

preferred in GBP (140 rearranged sequences). 

 

Recombination of IGHV, IGHD, and IGHJ with different length of CDR3H 

Within the three groups of length of CDR3H we identified different preferably 

expressed recombinations of IGHV, IGHD, and IGHJ. Very high significant differences 

regarding identified rearrangements within these groups were calculated (procedure 1: 

among the breeds, GS, A, HF: P<0.0001; GBP: P=0.0016; procedure 2: among the 

breeds, GS, A, HF, GBP: P<0.0001; procedure 3: among the breeds, A, GBP: 

P<0.0001; GS: P=0.0003; HF: P=0.0085).  

Using changed penalties for gap opening and gap extension and a new scoring matrix 

(procedure 3) rearrangements of IGHV3 and IGHJ1 (AY158087) together with IGHD1 

(s, BTA7), IGHD2 (as, [39]), IGHDQ52 (s, BTA8), and IGHDS10 [22] dominated (0.5-

0.84%) in sequences with group 1 CDR3H if breed was not taken into account. The 

single breeds showed different major recombinations. In A, IGHV6-IGHD2 (s, BTA7)-

IGHJ1 was calculated for 1.8% of the sequences, whereas in GS IGHV3-IGHDQ52 (s, 

BTA8)-IGHJ1 was identified in the same frequencies as IGHV3-IGHD2 (as, [39])-

IGHJ1, IGHV3-IGHD1 (as, [39])-IGHJ1, and IGHV1S35-IGHD8 (s, BTA21)-IGHJ1 

(0.76%), in GBP IGHV3-IGHDS10 [22]-IGHJ1, IGHV3-IGHDS14 [22]-IGHJ1, IGHV3-

IGHD3 (s, BTA7)-IGHJ1, IGHV3-IGHD1 (s, BTA7)-IGHJ1, IGHV1S34-IGHDS10 [22]-

IGHJ1, IGHV1S34-IGHDS14 [22]-IGHJ1 and IGHV6-IGHDS10 [22]-IGHJ1 made up 
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0.71%, and in HF IGHV3-IGHDQ52 (s, BTA8)-IGHJ1 was found the most often 

(2.52%).  

In samples of all breeds possessing CDR3Hs of group 2 the rearrangement of 

IGHV36-IGHD8 (s, BTA21)-IGHJ1 was found most often (4.52%). This is congruent 

with our findings from the cattle breeds GS and GBP (10.69%, 5.00%). In A sequences 

with rearrangement of IGHV1S39-IGHD5 (s, BTA8)-IGHJ1 were used with the highest 

frequency (7.19%) whereas in HF IGHV3-IGHD8 (s, BTA21)-IGHJ1 and IGHV36-

IGHD3 (s, BTA7)-IGHJ1 dominated (3.77%).  

The recombination of IGHV10-IGHD2 (s, [39])-IGHJ1 was identified in 0.84% of all 

sequences with group 3 CDR3Hs. This combination was also dominant in sequences 

possessing an exceptionally long CDR3H in HF (1.26%). In A, the combination 

IGHV10-IGHD2 (s, BTA7)-IGHJ1 was preferred (1.2%), whereas in GS, IGHV10-

IGHDS10 [22]-IGHJ1 was found the most often (2.29%). In GBP IGHV10-IGHD8 (as, 

[21])-IGHJ1 and IGHV10-IGHD7 (as, [21])-IGHJ1 were identified (0.71%). 

 

If only new values for gap opening and gap extension were applied (procedure 2), 

rearrangements of IGHV3 and IGHJ1 (AY158087) together with IGHD1 (as, [39]) 

dominated (1.01%) in sequences with a very short CDR3H if the breed was not taken 

into account. The single breeds showed different major recombinations. In A, IGHV6-

IGHD1 (s, BTA7)-IGHJ1 was calculated for 2.4% of the sequences, whereas in GS 

IGHV3-IGHDQ52 (s, BTA8)-IGHJ1 was identified in the same frequencies as IGHV3-

IGHD4 (as, [21])-IGHJ1, IGHV3-IGHD1 (s, BTA7)-IGHJ1, and IGHV1S35-IGHD1 (s, 

BTA7)-IGHJ1 (0.76%), in GBP IGHV3-IGHD1 (as, [39])-IGHJ1 made up 1.43%, 

whereas in HF IGHV3-IGHD1 (as, [39])-IGHJ1 and IGHV3-IGHD4 (s, BTA8)-

IGHJ1were found the most often (1.26%).  

In samples of all breeds possessing group 2 CDR3Hs, the rearrangement of 

IGHV1S39-IGHDQ52 (s, BTA8)-IGHJ1 was found the most often (7.04%). This is 

congruent with the findings in the cattle breeds A and HF (11.38%, 8.81%). In GS 

sequences showing the rearrangement IGHV36-IGHDQ52 (s, BTA8)-IGHJ1 were used 

with the highest frequency (11.45%) whereas in GBP IGHV1S40-IGHDQ52 (s, BTA8)-

IGHJ1 dominated (9.29%).  

The recombination of IGHV10-IGHD8 (s, BTA21)-IGHJ1 was identified in 1.17% of all 

sequences with group 3 CDR3Hs. This combination was also dominant in sequences 

possessing exceptionally long CDR3H in A (2.4%) and GBP (0.71%). In GBP IGHV10-
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IGHDS10-IGHJ1 was also found at this frequency. In GS, the combinations IGHV10-

IGHD1 (s, BTA7)-IGHJ1 and IGHV10-IGHD4 (s, BTA8)-IGHJ1 were preferred (2.29%), 

whereas in HF, IGHV10-IGHD3 (s, BTA7)-IGHJ1 was found most often (1.26%). 

 

Using default values (procedure 1) rearrangements of IGHV3 and IGHJ1 (AY158087) 

together with IGHDQ52 (s, BTA8) as well as IGHV6-IGHD1 (s, BTA7) dominated (1.51 

and 0.5%) in sequences with a short CDR3H if the breed was not taken into account. 

But again the single breeds showed different major recombinations. In A, IGHV3-

IGHDQ52 (s, BTA8)-IGHJ1 and IGHV6-IGHD1 (s, BTA7)-IGHJ1 were found for 1.8% 

of the sequences, whereas in GS IGHV1S35-IGHD4 (s, BTA8)-IGHJ1 was identified at 

the same frequency as IGHV3-IGHD2 (s, BTA8)-IGHJ1, IGHV3-IGHD1 (as, [39])-

IGHJ1, and IGHV3-IGHD8 (as, [21])-IGHJ1 (0.76%), in GBP IGHV3-IGHD1 (s, BTA7)-

IGHJ1, IGHV3-IGHD2 (as, [39])-IGHJ1, IGHV3-IGHD5 (s, BTA8)-IGHJ1, IGHV3-

IGHDQ52 (s, BTA8)-IGHJ1, IGHV1S34-IGHD5 (s, BTA8)-IGHJ1, IGHV1S34-IGHD5 (s, 

NW_001503306.)-IGHJ1 and IGHV6-IGHD5 (s, BTA8)-IGHJ1 made up 0.71%, and in 

HF IGHV3-IGHDQ52 (s, BTA8)-IGHJ1 was found most often (3.14%).  

In samples of all breeds possessing CDR3Hs of group 2 the rearrangement of 

IGHV36-IGHD8 (s, BTA21)-IGHJ1 was found most often (3.52%). This is congruent 

with the findings in the cattle breed GS (9.16%). In HF sequences showing the 

rearrangements IGHV1S39-IGHD8 (s, BTA21)-IGHJ1 and IGHV1S40-IGHD5 (s, 

BTA8)-IGHJ1 were used with the highest frequency (4.4%) whereas in A IGHV1S39-

IGHD3 (s, BTA7)-IGHJ1 dominated (5.99%) as well as IGHV1S40-IGHD8 (s, BTA21)-

IGHJ1, IGHV36-IGHD5 (s, NW_001503306)-IGHJ1, and IGHV36-IGHD8 (s, BTA21)-

IGHJ1 in the cattle breed GBP (3.57%).  

The recombination of IGHV10-IGHD8 (s, BTA21)-IGHJ1 was identified in 1.01% of all 

sequences with exceptionally long CDR3Hs. In sequences possessing those group 3 

CDR3H in HF the combinations IGHV10-IGHD4 (s, BTA8)-IGHJ1 and IGHV10-IGHD8 

(s, BTA21)-IGHJ1 (1.26%) dominated. In A, the combination IGHV10-IGHD4 (s, 

BTA8)-IGHJ1 was preferred (1.2%), whereas in GS, IGHV10-IGHD2 (s, BTA7)-IGHJ1 

and IGHV10-IGHD8 (s, BTA21)-IGHJ1 were found most often (1.53%), and in GBP 

only the two recombinations IGHV10-IGHD8 (s, BTA21)-IGHJ1 and IGHV10-IGHD4 

(as, [21])-IGHJ1 were identified (0.71%).  
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Variability based on amino acid substitutions  

We then counted the amino acid substitutions at each position to calculate variability as 

described by Wu and Kabat [40]. The results are shown in the variability plots for each 

breed separately in Figs 8 a-d. The amino acid positions were numbered in accordance 

to the IMGT numbering systems [41]. Therefore, FRHs and CDRHs are defined by the 

following amino acid positions: FR1H: 1…26, CDR1H: 27…38, FR2H: 39…55, 

CDR2H: 56…65, FR3H: 66…104, CDR3H: 105…117, FR4H: 118…128. In cattle there 

are no amino acids assigned to positions 10, 31-34, 60-62, and 73.  

 

 

 

 

 

Fig 7. Variability plots of the heavy chain variable regions in the cattle breeds Aubrac, 
German Simmental, Holstein Friesian, and German Black Pied. The complete variable 
region is displayed on the horizontal axis. Positions are numbered in accordance to the IMGT 
numbering system. Within the FR1-4H, little variability is discernable whereas in CDR1-3H 
increase in variability is observed. (A) Aubrac, (B) German Simmental, (C) Holstein Friesian, (D) 
German Black Pied 

 

 

 

(A) (B) 

(C) (D) 
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Within the FR1-4H little variability is discernable whereas in CDR1-3H an increase in 

variability is observed as expected. A maximum of variability in FRHs is calculated for 

position 96 in FR3H. Variability at this position is 23.7 in A, in HF 19.0, whereas in GS 

and GBP variability is 12.7 and 17.5, respectively. In CDRHs, variability increases from 

CDR1H to CDR3H in all breeds. In CDR1H breed A showed the highest variability. In 

CDR2H variability varies between 58 in GS and 93 in GBP. GBP also showed highest 

variability in CDR3H. The lowest variability within CDR3H was found in GS. Both HF 

and A showed moderate variability of CDR2H and CDR3H in comparison to GBP and 

GS. Overall, variability was much higher at the transition areas between FRH and CDR 

than in the middle of the CDRHs.  
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Discussion 

This study makes a substantial contribution to the analysis and understanding of the 

development of the transcribed bovine immunoglobulin repertoire. We examined 

possible gene conversions within the variable region of bovine heavy chains. We 

investigated the dominantly transcribed IGHV, IGHD, and IGHJ gene segments and 

their combinatorial diversity using a newly developed bioinformatics framework, which 

considers the unique specificity of exceptionally long CDR3 group of bovine 

immunoglobulin heavy chains. During the development of the program, we applied 

different conditions (procedure 1 to 3) to improve the alignments of the single gene 

segments. The progress of assigning germline IGHV, IGHD, and IGHJ to sample 

sequences is also shown in this study. Unlike previous studies, we complemented our 

investigation with the analysis of breed specific differences in the four different cattle 

breeds Aubrac, German Simmental, German Black Pied, and Holstein Friesian. 

Due to the limited germline sequence divergence recent studies on bovine 

immunoglobulin genetics focused on antibody diversification strategies and the 

junctional diversity of the antibody repertoire. Specific diversification strategies were 

identified such as the generation of exceptionally long CDR3H [17, 42, 43], the 

insertion of conserved short nucleotide sequences (CSNS) at the IGHV-IGHD junction 

[24], the use of pseudogene fragments in lambda light chains as well as gene 

conversions [14], and somatic hypermutations independent of exposure to external 

antigens during B-cell development [44]. In addition, more germline gene segments 

were determined over the last few years [17, 18, 22]. Since the current bovine genome 

assembly is still incomplete, the full germline repertoire remains under active 

investigation.  

Previous analyses of the bovine immunoglobulin repertoire aimed at identifying 

rearranged germline gene segments applied various software tools for sequence 

alignments. As these tools are of limited use for detailed analysis of rearranged 

immunoglobulin genes due to the difficult and error prone manual assembly of different 

genes, specialized software tools have been developed. The most familiar ones are 

IMGT/Junction Analysis [26], IMGT/V-QUEST [27, 28], IMTG/HIGHV-QUEST [29], 

VBASE2 [30], JoinSolver [31], iHMMun-align [32], and IgBLAST [33]. Only IgBLAST 

enables the analysis of both nucleotide and protein sequences for FR/CDR and allows 

the user to either apply the numbering system of Kabat or the IMGT system [41, 45]. 

Matching germline IGHV, IGHD, and IGHJ genes as well as details at rearrangement 
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junctions may be analyzed. Searches against germline gene databases and other 

databases are possible [33]. Tools other than IgBLAST do not provide simultaneous 

database searches or the analysis of protein sequences. All of these immunoglobulin 

sequence analysis tools support organisms such as human, mouse, rat, rabbit and 

rhesus monkey, but representation of livestock is missing or incomplete. We did not 

apply these analysis tools, as they do not consider the bovine specific occurrence of 

exceptionally long CDR3H. Therefore, we developed a new bioinformatics framework 

to address this specific case.  

In contrast to the analysis tools mentioned above, our program not only searches our 

updated bovine specific immunoglobulin germline gene database but also is able to 

load other pre-designed databases. Matches are identified on the basis of nucleotides 

as it is the case for all other tools. For the delineation of FR and CDR, we apply the 

IMGT nomenclature that is currently recommended and most widely used. In addition, 

we focused on the adjustment of search parameters for IGHV and IGHJ and especially 

for the identification of IGHD.  

The analysis of Ig heavy chain variable regions in four cattle breeds revealed the 

usage of 15 different IGHV segments, 21 IGHD segments, as well as two IGHJ 

segments. IGHV1S39 was used most frequently followed by IGHV3/33. Rarely used 

IGHV segments were IGHV1S26, IGHV1S32, IGHV1S33, IGHV1S37, and IGHV1S38. 

In bovine fetal bone marrow, ileum, and spleen high frequencies of IGHV3/33 

(=IGHV1S3) and IGHV1S39 was observed as well as low frequencies of IGHV1S38 

and IGHV1S26 [22]. The transcription of IGHV1S32 and S37 has not yet been 

described. Among the 20, 17, and 21 transcribed IGHD (regarding procedures 1-3), 

IGHDS8, IGHDS5, IGHDS10, and IGHDQ52 (=IGHDS9) were preferred in all breeds. 

IGHDS1 to IGHDS8 were also found to be transcribed in antisense direction in the third 

calculation procedure but in low numbers. Using the first procedure, IGHDS6 was not 

identified in antisense direction, and applying the second procedure IGHDS1, IGHDS4, 

IGHDS6, and IGHDS8 were shown to be transcribed in antisense orientation. Previous 

studies also elucidated the transcription of 14 IGHD, where the occurrence of IGHDS5 

was the most frequent one and was present in 42% of the sequences analyzed in 

bovine fetus [22]. The assignment of the FR4H to germline IGHJ revealed the 

transcription of IGHJ1, and IGHJ6 [22] with IGHJ1 clearly preferred. In the cattle breed 

A, procedure 3 confirmed IGHV1S39-IGHD5-IGHJ1 as the most common 

recombination of gene segments which is identical to the most frequent finding in 
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bovine fetus [22]. This recombination belongs to immunoglobulins possessing a 

CDR3H region of intermediate length. Statistical analyses showed significant different 

transcription levels of IGHV, IGHD, and IGHJ segments within the breeds.  

The usage of pseudogene segments has already been described for animals such as 

chicken [4, 37]. In bovine lambda light chains, fragments of pseudogenes were also 

shown to contribute to immunoglobulin diversity in a gene conversion process [14]. In 

the current analysis, possible gene conversion events were identified by the 

assignments of parental germline IGHV to separate FR1-3H and CDR1-3H. In addition 

to the IGHV identified for the complete variable region based exclusively on FR1-3H, 

several pseudogenes were assigned as possible originating germline IGHV in the 

separation analysis. For instance, the pseudogenes IGHV4Ψ, IGHV9Ψ, and IGHV18Ψ 

belong to the boVH2 family [17], but seem to contribute to gene conversion events by 

nucleotide substitutions. In particular, IGHV4Ψ, which was mentioned in the example 

above meets the criteria for gene conversion such as the location upstream of the 

rearranged segment [4, 13] and clusters of nucleotide changes [14]. Further, the 

flanking homology of the conversion region supports the genetic exchange [13] and the 

separation from IGHV6 by more than 18 kb on the genome allows looping during 

rearrangement [17]. In comparison, in chicken the nearest pseudogene is separated by 

7 kb [4]. It should be noted that it is difficult to consider the order of gene segments to 

evaluate the plausibility of other gene conversions due to the incomplete annotation of 

the bovine genome [17, 18]. Finally, our data indicate an exchange between the two 

bovine VH families which obviously is rare and which might be an influence of breed or 

method of analysis when compared to previous results [18].  

The length distribution of CDR3H consists of short CDR3H (group 1), intermediate 

length CDR3H (group 2), and exceptionally long CDR3H (group 3) in all four cattle 

breeds. In the breed GS the highest percentage of group 3 CDR3H was calculated. 

The longest CDR3H with 65 aa were found in GS and HF sequences. The longest ever 

detected CDR3H in cattle was 67 aa long using IMGT numbering [17]. In contrast, four 

amino acids made up the shortest CDR3H in A animals, GS animals, and HF animals. 

The maximum length of group 2 CDR3H was 22 aa.  

The combinatorial diversity of germline IGHV, IGHD, and IGHJ-segments is 

represented by 162 different rearrangements that were expressed with significant 

differences (procedure 3). In comparison, 147 and 119 different recombinations of 

IGHV-IGHD-IGHJ were identified using calculation procedures 1 and 2, respectively. In 
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the four breeds, different rearrangements were found. In detail, 91 different 

combinations occurred in A (procedure 1: 81, and 2: 58), 74 in animals of GBP 

(procedure 1: 74, and 2: 65), 72 in GS animals (procedure 1: 74, and 2: 57), and 85 in 

the breed HF (procedure 1: 80, and 2: 62). Most of these combinations were observed 

in less than ten sequences but seven occurred in up to 21 sequences in all four cattle 

breeds examined (procedure 1: up to 21, and 2: up to 42).  

In sequences belonging to group 1 CDR3H, combinations of IGHV3 and IGHJ1 

(AY158087) together with IGHDQ52 (s, BTA8) dominated over all breeds using 

procedure 3. As IGHDQ52 is the shortest IGHD segment possessing only four amino 

acids, these results explain best the origin of short CDR3H. Group 3 CDR3H mostly 

exhibited IGHV10-IGHD2 (s, [39])-IGHJ1 (procedure 3), or IGHV10-IGHD8 (s, BTA21)-

IGHJ1 (procedure 1 and 2) in all breeds. Only results from procedure 3 identified 

biological meaningful combinations of germline IGHV, IGHD, and IGHJ as it gave the 

best explanation for the origin of group 3 CDR3H. IGHD2 is the longest IGHD segment 

identified so far. Further, IGHV10, which is identical to IGHV1S1 and IGHV1S15, was 

found to contribute solely to those exceptional lengths [17, 18, 22]. It is assumed, that 

the “ThrThrValHisGln” terminal motif of IGHV10, that initiates an ascending β strand in 

the folded antibody enables the formation of the “stalk and knob” structure in addition 

to inserted conserved short nucleotide sequences (CSNS) [22, 43]. Furthermore, in 

sequences of group 2 a higher number of recombinations were observed than in 

sequences of group 1 and 3. As group 3 CDR3H regions are unique in cattle, the few 

preferably rearranged gene segments within this group may indicate specialized 

antibodies.  

Variability plots indicated quite similar features within the variable region in all breeds. 

Nevertheless, amino acid residues at each position vary between the samples and the 

breeds and within the regions. In FR1-4H little variability was calculated, whereas the 

variability increased from CDR1H to CDR3H, which was described already as 

concentrated areas of diversity in equine heavy and light chain CDRs [46, 47]. The 

breed A possesses the highest amino acid variations in CDR1H and HF in CDR2H 

while GS exhibited lowest variability in these two CDRHs. Further, transition areas 

between FRHs and CDRHs had a higher variability than the middle of CDRHs. Position 

96 in FR3H shows the highest variability within the FRHs. This residue is located on 

the outer surface of the variable region of the immunoglobulin molecule [43] within the 

area where the constant region is connected to the variable region. The high variability 
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at this position may indicate an influence on the position of variable and constant 

region and their sterical orientation, which may affect light chain pairing as heavy 

chains possessing group 3 CDR3H are connected to a special type of lambda light 

chains [43, 48]. 

Further analysis revealed that no amino acids were assigned to the IMGT amino acid 

positions 10, 31-34, 60-62, and 73 in cattle. This means, that one amino acid position 

within FR1H, four positions in CDR1H, three positions in CDR2H, as well as one 

position in FR3H were not filled. Consequently, in cattle 8 out of 12 amino acid 

positions within CDR1H are covered. In CDR2H, 10 positions are available and 7 are 

covered. Compared to FR-IMGT and CDR-IMGT lengths of functional and ORF IGHV-

genes of human IGHV, mouse IGHV, rat IGHV, arabian camel IGHV, sheep IGHV, and 

pig IGHV the missing amino acids within FR1H and FR3H are conserved in all animals 

mentioned [49, 50]. Averaged eight to ten amino acids were positioned in CDR1H 

whereas in CDR2H six to ten amino acids were placed by the IMGT numbering system 

in human, mouse, rat, camel, sheep, and pig IGHV. Therefore, the positions of missing 

amino acids are congruent with other species. 

In the breed A, the highest number of recombinations and variability were observed 

when compared to the other breeds investigated. GS possessed the lowest number of 

recombinations and showed less variability except in the middle of the CDR3H region. 

This finding indicates the contribution of insertions and deletions to diversity in case of 

few rearrangements [25]. It should be noted that A and GS were kept under the same 

management in a mixed herd. GBP and HF were kept at different farms. The breeds 

kept in different areas were consequently exposed to different antigens. Thus, the 

individual number of rearrangements per breed and differences in variability 

additionally indicate a specialized immune response as animals on one farm are 

challenged with the same environment. 

The application of the newly developed bioinformatics framework led to important new 

results. Our analyses demonstrated that the bovine heavy chain diversity is not 

restricted to the use of a limited number of germline genes although there are preferred 

rearrangements within the three groups of CDR3H lengths. We also found strong 

evidence for gene conversion using pseudogenes. Despite current advances in the 

understanding of bovine immunoglobulin diversification, future investigations of the 

germline repertoire are necessary.   
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Material and Methods 

Detailed analyses of immunoglobulin sequences using a newly developed 

bioinformatics framework 

For sequence analysis, we developed a new bioinformatics framework using MUSCLE 

[34, 35] for the initial fast but accurate multiple nucleotide sequence alignment and 

following ClustalW [36] for calculating the sequence distances after deduction of the 

amino acid residues. Both programs are available as stand-alone algorithms and were 

implemented into our program. The immunogenetics nomenclature (IMGT) was used to 

assign framework regions 1-4 (FR1-4H) and the complementarity determining regions 

1-3 [41].  

Therefore, germline nucleotide sequences were imported in FASTA-format (IGHV, 

IGHD, IGHJ [17, 18, 22]). Using the functional IGHV, the nucleotide sequences were 

translated into amino acids to number the codons of the functional germline IGHV gene 

segments according to the IMGT system from FR1H to FR3H. This required first the 

identification of the conserved and preassigned positions of Cys23, Trp41, Leu89, and 

Cys104 defined by Lefranc et al. [41]. Following, the nucleotide sequences of germline 

pseudo IGHV gene segments were aligned separately using MUSCLE [34, 35] to 

obtain the putative open reading frame. The previously defined positions of the codons 

using the functional genes were transferred onto the pseudogenes. Insertions as well 

as deletions of nucleotides within the pseudo gene segment sequence were discarded. 

The last 33 nucleotides of germline IGHJs were then used to define the FR4H. The 

region between FR3H and FR4H is defined as CDR3H. This region was later used to 

align the sample CDR3H to germline IGHD segments. Defining FRHs and CDRHs 

allowed, beside the analyses of the complete transcribed genes, the alignment of 

IGHV, IGHD and IGHJ using different parameters to improve the biological significance 

as well as the analyses of the single functionally divergent regions to determine 

putative gene conversion events in those regions. All functional and pseudo gene 

germline segments are referred as reference sequences. 

Framework regions and CDRs of transcribed sequences (designated as sample 

sequences) were aligned pairwise to the isolated reference sequences after isolation 

from the first IgG constant region. Following, minimal divergence was used to identify 

the most similar sample sequence and reference sequence pairing.  

For nucleotide alignments of IGHV and IGHJ, default values of MUSCLE were used. 

We tested three different procedures to assign germline and sample IGHDs to improve 
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biological significance. In procedure 1, we applied default values of MUSCLE [34, 35], 

in procedure 2 we changed the penalties for gap opening to -4 and for gap extention to 

-0.3 [22], and in procedure 3 we additionally incorporated a new scoring matrix with 

match = 2, transversion = -1, and transition = 1 to evaluate transversion and transition 

mutations, whereby the IUB (international union of biochemistry) code for single and 

wobble bases was used. 

The three procedures were applied to a set of sample sequences of IgG-derived 

variable regions from four different cattle breeds. Each nucleotide sequence of our 

sample sequences was aligned separately to the reference sequences to determine 

the most similar reference sequence as germline origin. Following, the codons were 

translated into amino acids. Sample sequences possessing premature Stop codons or 

not covering the full length of the variable region due to incomplete sequencing were 

eliminated and were not incorporated in further analyses. The remaining sample 

sequences were annotated in accordance to the IMGT nomenclature. For exceptional 

long CDR3H no positions are defined in the IMGT system, therefore positions had to 

be added as required and designated as 111.1-111.x and 112.y-112.1 in accordance to 

the IMGT numbering system [41]. To determine the germline origin, only the FRHs 

were aligned to avoid interference with the highly diversified CDRH [18]. To analyze 

possible gene conversion events, FR1-3Hs and CDR1-3Hs were extracted and aligned 

separately to the corresponding regions of the IGHV reference sequences to find the 

most similar one (Fig 8). The results were presented as an html table.  
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Fig. 8. Graphical presentation of workflow of the developed bioinformatics framework 
used for analyzing bovine heavy chain IgG. (A) At first the reference sequences were 
prepared. Using the functional segments the pseudogenes were aligned. (B) The bioinformatics 
framework analyzed the germline origin of bovine immunoglobulin heavy chain variable 
segments (IGHV), diversity segments (IGHD), and joining segments (IGHJ). One approach 
used the framework regions (FRH) 1 to 3 to determine the closest germline IGHV. The second 
approach analyzed single functional regions FRH1 to 3 and complementarity determining 
regions (CDRH) 1 and 2 independently to reveal putative gene conversion events. (C) The last 
step included the calculation of the variability and the statistical analyses. 

 

 

To display accumulation of amino acid substitutions in distinct segments of the variable 

region, variability was calculated as described by Wu and Kabat [40]. Thus, the 

frequency of the most common amino acid at a distinct position was calculated first. 

The number of the most abundant amino acid at a given position was divided by the 

number of all amino acids observed at this position. This means, only samples 

possessing an amino acid residue at this position in accordance to the IMGT 

nomenclature were considered. Subsequently, the number of different amino acids at 

the given position was divided by the frequency of the most common amino acid 

residue to determine variability. The variability results were written into a txt-file, which 

allows further analyses in statistical software. 

For the statistical analyses of the distribution of IGHV, IGHD, and IGHJ segments 

including putative gene conversions within one breed and among breeds have been 

compared by applying non-parametric tests. Such test procedures, i.e. the Chi2- test for 

analyzing IGHV, IGHD and IGHJ independently and Fisher's exact test for the gene 

segment × breed contingency table, are implemented in the software package SAS, 

Version 9.2. 
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Generation of the sample sequence set 

Breed selection, isolation of PBMCs and cDNA synthesis 

For the analysis of the transcription of IgG heavy chain genes, the four cattle breeds 

German Black Pied (GBP), German Simmental (GS), Holstein-Friesian (HF), and 

Aubrac (A) were chosen. The animals selected from the herd of breed A were 

composed of seven French and three German animals, whereas the sample of breed 

GS included one Austrian bull. German Black Pied and A represent small populations 

and have local importance, whereas HF and GS are commonly used in global 

commercial milk and meat production. German Simmental and A are kept on the same 

farm under same management conditions and in a mixed herd. 

Blood samples were collected from ten randomly chosen animals per breed during 

routine blood sampling for mandatory examinations in disease control. Peripheral blood 

mononuclear cells (PBMCs) were isolated using Ficoll gradients (GE Healthcare 

Europe GmbH, Germany) according to the manufacturer’s protocol. Cells were stained 

with trypan blue and viable cells were counted. Total RNA was isolated from 1x107 

cells using the RNeasy Mini Kit (Qiagen, Germany). The first-strand cDNA was 

synthesized using pd(N)6 primers from 3 µg of total RNA in a total volume of 20 µl 

(SuperScript™III First-Strand Synthesis SuperMix, Life Technologies GmbH, 

Germany). 

 

Ethical Statement 

To collect B-lymphocytes, 20 ml of EDTA blood were taken from the tail vein during 

regular investigation of infectious diseases in the cattle herds. The plasma was applied 

e.g. in an indirect ELISA testing for antibodies against Mycobacteria avium spp. 

paratuberculosis or BHV-1. Therefore, no specific approval is required. 

 

Amplification of immunoglobulin heavy-chain isotype restricted variable regions 

To amplify the variable regions restricted to γ1-3 isotype heavy chains, a PCR was 

performed with primers binding within the leader region and the 3’UTR (bIgG_leader: 

ATG AAC CCA CTG TGG ACC; bIgG_3’UTR: CAG GAG GAA TGC ACA CAG). The 

primers were based on database sequence information and assigned to accession 

number X62916. The primer boIgG_leader anneals to position 22-39, and the primer 

boIgG_3’UTR to position 1518-1535. To monitor the integrity and purity of the cDNA, 

527 bp of the bovine GAPDH (Glycerinaldehyde 3-phosphate dehydrogenase) were 
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amplified as a positive control. A no- template control served as a negative control for 

the PCR. The total reaction volume of 50 µl included 0.67 µl of cDNA, 200 µM dNTPs 

(Bioline, Germany), 5 µl of 10x PCR buffer (75 mM Tris-HCl, pH 9.0; 2 mM MgCl2; 

50 mM KCl; 20 mM (NH4)2SO4), 0.4 µM of each primer, and 2 units of DNA polymerase 

(Biotools, Spain). PCR was performed under cycling conditions of 95oC for 5 min, 

followed by 35 cycles of 95oC for 1 min, 59.4°C for 1 min, 72oC for 2 min, and 

terminated with elongation at 72°C for 10 min. Length and purity of the PCR products 

were evaluated by means of electrophoresis on 1% agarose gels.  

 

Cloning and sequencing of the PCR products 

The PCR products were purified and concentrated using the MiniElute Gel Extraction 

Kit (Qiagen, Germany) in accordance to the manufacturer’s protocol except QX1 buffer 

replaced QG buffer. Samples were eluted with 13 µl EB buffer (10 mM Tris-HCl, pH 

8.5) and were stored at 4°C. Purified products were cloned into the pCR 2.1-TOPO 

3.9 kb TA vector (InvitrogenTM, Karlsruhe, Germany) and transformed into chemically 

competent One Shot TOP10 E. coli cells (InvitrogenTM, Karlsruhe, Germany). 

Transformants were plated on LB agar containing 0.3 mM ampicillin, 40 µl 2.44 µM X-

gal (5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside), and 40 µl 1 M IPTG 

(Isopropyl β-D-1-thiogalactopyranoside) for blue-white selection. After incubation at 

37°C, overnight cultures of randomly selected white transformants were grown in a 

5 ml LB-ampicillin broth. Plasmids were isolated using the MiniPrep Kit (Qiagen, 

Germany). In order to assess the insert size, plasmid DNA was cleaved with EcoRI 

(New England Biolabs, Germany) or a colony PCR was performed. Therefore a 25 µl 

mixture containing 2 µl cell culture, 0.4 µM of vector specific primers M13 (-20) Forward 

and M13 Reverse (Invitrogen, Germany), respectively, and one PCR-bead (GE 

Healthcare Europe GmbH, Germany) were used in a hot start PCR at 95°C for 5 min, 

denaturation at 95°C for 1 min, annealing at 60°C for 1 min, and extension at 72°C for 

2 min up to a total of 30 cycles. A final extension at 72°C for 10 min was included after 

the final cycle before PCR mixtures were cooled down to 4°C. The size of the resulting 

fragments and of the PCR products was confirmed by agarose gel electrophoresis.  

Sixteen clones per animal were sequenced according to the chain-termination method 

[51]. The M13 (-20) Forward (5’-GTA AAA CGA CGG CCA G-3’) and M13 Reverse (5’-

CAG GAA ACA GCT CTG AC-3’, Invitrogen, Germany) vector-specific primers, as well 

as the gene specific primers boIgG_leader, boIgG_3’UTR, boIgG_CH1_for (5’-GCC 
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TCC ACC ACA GCC CCG AAA G-3’), boIgG_CH3_rev (5’-GAC CTT GCA CTT GAA 

CTC C-3’) and boIgG_CH1_rev (5’-ACG GTC ACC ATG CTG CTG AG-3’) were used 

for sequencing. 
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Supporting information 

 

 

S1 Fig. Transcription frequencies of IGHD in four cattle breeds using procedure 

1. Transcribed IGHD are shown on the horizontal axis, their relative usage frequencies 

are indicated on the vertical axis. Calculation occurred using the default values for gap 

opening and gap extention of MUSCLE. Each breed is marked by the following color 

code: Aubrac: white, German Simmental: light grey, Holstein Friesian: black, German 

Black Pied: dark grey 
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S2 Fig. Transcription frequencies of IGHD in four cattle breeds using procedure 

2. Transcribed IGHD are shown on the horizontal axis, their relative usage frequencies 

are indicated on the vertical axis. Calculation occurred after changing the default 

values for gap opening (-4) and gap extention (-0.3) of MUSCLE. Each breed is 

marked by the following color code: Aubrac: white, German Simmental: light grey, 

Holstein Friesian: black, German Black Pied: dark grey 

  



            Chapter 3: Gene conversion and combinatorial diversity in bovine heavy chains 

 

216 

 

 

S3 Fig. Recombinations of IGHV, IGHD, and IGHJ over all four cattle breeds 

using procedure 1. In the sequences of all four cattle breeds analyzed 147 different 

combinations of IGHV, IGHD, and IGHJ were identified. Relative frequencies (%) of the 

combinations of the 21 transcribed IGHD and the 2 transcribed IGHJ are shown 

depending on the rearranged IGHV (n=15). 
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S4 Fig. Recombinations of IGHV, IGHD, and IGHJ over all four cattle breeds 

using procedure 2. In the sequences of all four cattle breeds analyzed 119 different 

combinations of IGHV, IGHD, and IGHJ were identified. Relative frequencies (%) of the 

combinations of the 21 transcribed IGHD and the 2 transcribed IGHJ are shown 

depending on the rearranged IGHV (n=15). 
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S1 Table. Transcription frequencies of IGHD in four cattle breeds using 

procedure 1. 

IGHD 
A 

(%; n=137) 

GS 

(%; n=116) 

GBP 

(%; n=111) 

HF 

(%; n=145) 

IGHD1_as1_[39] 2.19 0.86 0.00 0.00 

IGHD1_s2_BTA7 6.57 2.59 7.21 5.52 

IGHD2_as_[39] 0.00 0.00 0.90 0.69 

IGHD2_s_BTA7 2.92 5.17 4.50 2.07 

IGHD2_s_[39] 0.73 1.72 2.70 1.38 

IGHD3_as_[39] 0.00 0.00 0.00 0.69 

IGHD3_s_BTA7 14.60 11.21 9.91 13.79 

IGHD4_as_[21] 2.92 0.86 2.70 2.07 

IGHD4_s_BTA8 10.95 6.03 2.70 11.72 

IGHD5_as_[21] 0.73 0.00 0.00 0.00 

IGHD5_s_BTA8 15.33 13.79 17.12 17.24 

IGHD5_s_NW001503306 4.38 3.45 12.61 6.90 

IGHD6_s_BTA8 0.00 0.86 0.00 0.69 

IGHD7_as_[21] 0.00 0.00 0.90 0.00 

IGHD7_s_BTA8 9.49 12.93 6.31 4.83 

IGHD8_as_[21] 0.73 0.86 0.00 0.69 

IGHD8_s_BTA21 11.68 25.86 15.32 15.86 

IGHDQ52_s_BTA8 10.95 3.45 9.91 9.66 

IGHDS10 [22] 3.65 7.76 4.50 4.14 

IGHDS14 [22] 2.19 2.59 2.70 2.07 
1 antisense 
2 sense 
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S2 Table. Transcription frequencies of IGHD in four cattle breeds using 

procedure 2. 

1 antisense 
2 sense 

  

IGHD 

A 

(%; n=137) 

GS 

(%; n=116) 

GBP 

(%; n=111) 

HF 

(%; n=145) 

IGHD1_as1_[39] 2.19 0.86 2.70 2.07 

IGHD1_s2_BTA7 9.49 8.62 7.21 6.21 

IGHD2_s_BTA7 2.19 0.86 1.80 1.38 

IGHD2_s_[39] 0.00 0.00 0.90 0.69 

IGHD3_s_BTA7 2.92 2.59 4.50 4.14 

IGHD4_as_[21] 3.65 2.59 0.00 2.76 

IGHD4_s_BTA8 12.41 12.07 4.50 13.10 

IGHD5_s_BTA8 1.46 3.45 4.50 0.69 

IGHD5_s_NW001503306 0.00 0.86 1.80 0.69 

IGHD6_as_[21] 0.00 0.00 0.90 0.00 

IGHD6_s_BTA8 2.19 0.86 2.70 2.07 

IGHD7_s_BTA8 0.00 0.86 0.90 2.76 

IGHD8_as_[21] 0.00 0.00 0.90 0.00 

IGHD8_s_BTA21 8.76 12.07 11.71 8.28 

IGHDQ52_s_BTA8 37.96 42.24 39.64 36.55 

IGHDS10 [22] 16.79 11.21 15.32 18.62 

IGHDS14 [22] 0.00 0.86 0.00 0.00 
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S3 Table. Recombinations of IGHV, IGHD, and IGHJ over all four cattle breeds 

using procedure 3. 

IGHV - IGHD - IGHJ 

 

all  

(n=597) 

A  

(n=167) 

GBP  

(n=140) 

GS  

(n=131) 

HF  

(n=159) 

IGHV1S26 - IGHD8_s1_BTA21 - IGHJ1 0.17 0.00 0.00 0.76 0.00 

IGHV1S28 - IGHD1_as2_[39] - IGHJ1 0.34 0.00 1.43 0.00 0.00 

IGHV1S28 - IGHD1_s_BTA7 - IGHJ1 0.50 1.20 0.00 0.00 0.63 

IGHV1S28 - IGHD2_s_[39] - IGHJ1 0.17 0.00 0.00 0.76 0.00 

IGHV1S28 - IGHD3_as_[39] - IGHJ1 0.17 0.60 0.00 0.00 0.00 

IGHV1S28 - IGHD3_s_BTA7 - IGHJ1 1.01 1.20 2.14 0.00 0.63 

IGHV1S28 - IGHD4_s_BTA8 - IGHJ6_[22] 0.17 0.00 0.00 0.00 0.63 

IGHV1S28 - IGHD4_s_BTA8 - IGHJ1 1.17 1.20 1.43 0.76 1.26 

IGHV1S28 - IGHD5_s_BTA8 - IGHJ1 1.17 1.20 0.71 2.29 0.63 

IGHV1S28 - IGHD5_s_NW_001503306 - IGHJ1 0.34 0.60 0.00 0.76 0.00 

IGHV1S28 - IGHD6_s_BTA8 - IGHJ1 0.17 0.00 0.71 0.00 0.00 

IGHV1S28 - IGHD7_s_BTA8 - IGHJ1 0.84 0.00 1.43 1.53 0.63 

IGHV1S28 - IGHD8_s_BTA21 - IGHJ1 0.34 0.00 0.00 0.76 0.63 

IGHV1S28 - IGHDQ52_s_BTA8 - IGHJ1 0.84 0.00 0.71 0.76 1.89 

IGHV1S28 - IGHDS10 [22] - IGHJ1 0.67 0.00 0.00 0.00 2.52 

IGHV1S28 - IGHDS14 [22] - IGHJ1 0.34 0.60 0.00 0.76 0.00 

IGHV1S32 - IGHD2_s_[39] - IGHJ1 0.17 0.00 0.00 0.76 0.00 

IGHV1S32 - IGHD8_s_BTA21 - IGHJ1 0.34 0.00 0.00 1.53 0.00 

IGHV1S32 - IGHDS10 [22] - IGHJ1 0.17 0.00 0.00 0.00 0.63 

IGHV1S32 - IGHDS14 [22] - IGHJ1 0.17 0.00 0.00 0.00 0.63 

IGHV1S33 - IGHD3_as_[39] - IGHJ1 0.17 0.60 0.00 0.00 0.00 

IGHV1S33 - IGHD3_s_BTA7 - IGHJ1 0.34 1.20 0.00 0.00 0.00 

IGHV1S33 - IGHD4_s_BTA8 - IGHJ1 0.17 0.00 0.71 0.00 0.00 

IGHV1S33 - IGHD5_s_BTA8 - IGHJ1 0.17 0.00 0.00 0.76 0.00 

IGHV1S33 - IGHD8_s_BTA21 - IGHJ1 0.17 0.60 0.00 0.00 0.00 

IGHV1S33 - IGHDQ52_s_BTA8 - IGHJ1 0.34 1.20 0.00 0.00 0.00 

IGHV1S33 - IGHDS14 [22] - IGHJ1 0.17 0.00 0.00 0.76 0.00 

IGHV1S34 - IGHD1_as_[39] - IGHJ1 0.17 0.60 0.00 0.00 0.00 

IGHV1S34 - IGHD1_s_BTA7 - IGHJ1 1.34 0.60 3.57 0.76 0.63 

IGHV1S34 - IGHD2_s_BTA7 - IGHJ1 0.34 0.60 0.00 0.00 0.63 

IGHV1S34 - IGHD2_s_[39] - IGHJ1 0.17 0.00 0.00 0.76 0.00 

IGHV1S34 - IGHD3_s_BTA7 - IGHJ1 0.84 0.00 2.14 0.76 0.63 

IGHV1S34 - IGHD4_s_BTA8 - IGHJ1 0.67 0.60 1.43 0.00 0.63 

IGHV1S34 - IGHD5_s_BTA8 - IGHJ1 1.01 0.60 1.43 0.76 1.26 

IGHV1S34 - IGHD5_s_NW_001503306 - IGHJ1 0.34 0.00 0.71 0.00 0.63 

IGHV1S34 - IGHD6_s_BTA8 - IGHJ1 0.17 0.00 0.00 0.76 0.00 

IGHV1S34 - IGHD7_s_BTA8 - IGHJ1 0.34 0.60 0.71 0.00 0.00 

IGHV1S34 - IGHD8_s_BTA21 - IGHJ1 1.01 0.00 0.71 3.82 0.00 

IGHV1S34 - IGHDQ52_s_BTA8 - IGHJ1 1.51 2.40 2.14 0.76 0.63 
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IGHV1S34 - IGHDS10 [22] - IGHJ1 0.34 0.00 0.71 0.00 0.63 

IGHV1S34 - IGHDS14 [22] - IGHJ1 0.34 0.00 0.00 1.53 0.00 

IGHV1S35 - IGHD1_s_BTA7 - IGHJ1 0.17 0.00 0.00 0.00 0.63 

IGHV1S35 - IGHD2_s_[39] - IGHJ1 0.17 0.00 0.00 0.76 0.00 

IGHV1S35 - IGHD3_s_BTA7 - IGHJ1 0.50 0.00 0.71 1.53 0.00 

IGHV1S35 - IGHD4_as_[21] - IGHJ1 0.34 0.60 0.00 0.76 0.00 

IGHV1S35 - IGHD4_s_BTA8 - IGHJ1 0.34 0.60 0.00 0.76 0.00 

IGHV1S35 - IGHD5_s_BTA8 - IGHJ1 0.50 0.00 0.00 2.29 0.00 

IGHV1S35 - IGHD7_s_BTA8 - IGHJ1 1.01 0.00 0.71 3.82 0.00 

IGHV1S35 - IGHD8_s_BTA21 - IGHJ1 0.67 1.20 0.00 1.53 0.00 

IGHV1S35 - IGHDQ52_s_BTA8 - IGHJ1 0.17 0.60 0.00 0.00 0.00 

IGHV1S35 - IGHDS10 [22] - IGHJ1 0.17 0.00 0.00 0.00 0.63 

IGHV1S37 - IGHD4_s_BTA8 - IGHJ1 0.17 0.00 0.00 0.00 0.63 

IGHV1S37 - IGHDQ52_s_BTA8 - IGHJ1 0.17 0.00 0.00 0.00 0.63 

IGHV1S38 - IGHD3_s_BTA7 - IGHJ1 0.17 0.00 0.00 0.76 0.00 

IGHV1S38 - IGHDQ52_s_BTA8 - IGHJ1 0.17 0.00 0.00 0.00 0.63 

IGHV1S39 - IGHD1_as_[39] - IGHJ1 0.34 0.60 0.00 0.00 0.63 

IGHV1S39 - IGHD1_s_BTA7 - IGHJ1 1.01 1.20 1.43 0.00 1.26 

IGHV1S39 - IGHD2_as_[39] - IGHJ1 0.34 1.20 0.00 0.00 0.00 

IGHV1S39 - IGHD2_s_BTA7 - IGHJ1 0.34 0.60 0.00 0.00 0.63 

IGHV1S39 - IGHD2_s_[39] - IGHJ1 0.84 0.00 1.43 0.76 1.26 

IGHV1S39 - IGHD3_s_BTA7 - IGHJ6_[22] 0.17 0.00 0.00 0.00 0.63 

IGHV1S39 - IGHD3_s_BTA7 - IGHJ1 1.01 1.20 1.43 0.00 1.26 

IGHV1S39 - IGHD4_as_[21] - IGHJ1 0.50 0.60 0.00 0.76 0.63 

IGHV1S39 - IGHD4_s_BTA8 - IGHJ1 1.68 3.59 0.71 0.00 1.89 

IGHV1S39 - IGHD5_s_BTA8 - IGHJ1 2.85 7.78 0.71 0.00 1.89 

IGHV1S39 - IGHD5_s_NW_001503306 - IGHJ1 1.17 1.20 2.86 0.76 0.00 

IGHV1S39 - IGHD6_as_[21] - IGHJ1 0.34 0.00 0.00 0.00 1.26 

IGHV1S39 - IGHD6_s_BTA8 - IGHJ1 0.34 0.00 0.00 0.00 1.26 

IGHV1S39 - IGHD7_s_BTA8 - IGHJ1 1.68 2.40 0.71 0.76 2.52 

IGHV1S39 - IGHD8_s_BTA21 - IGHJ1 2.18 4.79 1.43 0.00 1.89 

IGHV1S39 - IGHDQ52_s_BTA8 - IGHJ1 1.34 2.99 0.00 0.00 1.89 

IGHV1S39 - IGHDS10 [22] - IGHJ1 1.01 1.20 2.86 0.00 0.00 

IGHV1S39 - IGHDS14 [22] - IGHJ1 0.50 1.20 0.00 0.00 0.63 

IGHV1S40 - IGHD1_s_BTA7 - IGHJ1 0.17 0.00 0.00 0.00 0.63 

IGHV1S40 - IGHD2_s_BTA7 - IGHJ1 0.17 0.60 0.00 0.00 0.00 

IGHV1S40 - IGHD2_s_[39] - IGHJ1 0.17 0.00 0.00 0.76 0.00 

IGHV1S40 - IGHD3_as_[39] - IGHJ1 0.17 0.60 0.00 0.00 0.00 

IGHV1S40 - IGHD3_s_BTA7 - IGHJ1 2.35 0.00 2.86 4.58 2.52 

IGHV1S40 - IGHD4_as_[21] - IGHJ1 0.17 0.60 0.00 0.00 0.00 

IGHV1S40 - IGHD4_s_BTA8 - IGHJ1 0.84 0.60 1.43 0.00 1.26 

IGHV1S40 - IGHD5_s_BTA8 - IGHJ1 3.02 2.99 3.57 4.58 1.26 

IGHV1S40 - IGHD5_s_NW_001503306 - IGHJ1 0.50 0.60 0.71 0.00 0.63 

IGHV1S40 - IGHD6_as_[21] - IGHJ1 0.17 0.00 0.71 0.00 0.00 
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IGHV1S40 - IGHD6_s_BTA8 - IGHJ1 0.17 0.60 0.00 0.00 0.00 

IGHV1S40 - IGHD7_s_BTA8 - IGHJ1 0.84 0.00 1.43 1.53 0.63 

IGHV1S40 - IGHD8_s_BTA21 - IGHJ1 1.34 1.20 2.14 0.76 1.26 

IGHV1S40 - IGHDQ52_s_BTA8 - IGHJ1 1.51 0.60 1.43 2.29 1.89 

IGHV1S40 - IGHDS10 [22] - IGHJ6_[22] 0.17 0.00 0.71 0.00 0.00 

IGHV1S40 - IGHDS10 [22] - IGHJ1 0.50 0.00 0.71 0.76 0.63 

IGHV3 - IGHD1_as_[39] - IGHJ1 0.34 0.60 0.00 0.76 0.00 

IGHV3 - IGHD1_s_BTA7 - IGHJ1 1.51 0.00 2.14 0.76 3.14 

IGHV3 - IGHD2_as_[39] - IGHJ1 0.50 1.20 0.00 0.76 0.00 

IGHV3 - IGHD2_s_BTA7 - IGHJ1 0.50 0.60 0.00 0.76 0.63 

IGHV3 - IGHD2_s_[39] - IGHJ1 0.34 0.00 0.71 0.00 0.63 

IGHV3 - IGHD3_as_[39] - IGHJ1 0.17 0.60 0.00 0.00 0.00 

IGHV3 - IGHD3_s_BTA7 - IGHJ1 1.34 1.20 2.14 0.76 1.26 

IGHV3 - IGHD3_s_BTA7 - IGHJ6_[22] 0.34 0.00 0.00 0.76 0.63 

IGHV3 - IGHD4_as_[21] - IGHJ1 0.50 0.00 0.71 0.00 1.26 

IGHV3 - IGHD4_s_BTA8 - IGHJ1 0.50 1.20 0.71 0.00 0.00 

IGHV3 - IGHD5_as_[21] - IGHJ1 0.17 0.60 0.00 0.00 0.00 

IGHV3 - IGHD5_s_BTA8 - IGHJ1 2.01 1.20 1.43 2.29 3.14 

IGHV3 - IGHD5_s_NW_001503306 - IGHJ1 0.50 0.60 0.00 0.00 1.26 

IGHV3 - IGHD7_s_BTA8 - IGHJ1 0.50 0.60 1.43 0.00 0.00 

IGHV3 - IGHD8_as_[21] IGHJ6_[22] 0.17 0.60 0.00 0.00 0.00 

IGHV3 - IGHD8_s_BTA21 - IGHJ1 1.68 0.60 0.71 0.76 4.40 

IGHV3 - IGHDQ52_s_BTA8 - IGHJ1 1.84 0.00 0.71 3.05 3.77 

IGHV3 - IGHDS10 [22] - IGHJ1 1.01 2.40 0.71 0.76 0.00 

IGHV3 - IGHDS14 [22] - IGHJ1 0.50 0.00 1.43 0.76 0.00 

IGHV6 - IGHD1_as_[39] - IGHJ1 0.17 0.60 0.00 0.00 0.00 

IGHV6 - IGHD1_s_BTA7 - IGHJ1 0.67 0.60 1.43 0.00 0.63 

IGHV6 - IGHD2_s_BTA7 - IGHJ1 0.50 1.80 0.00 0.00 0.00 

IGHV6 - IGHD2_s_[39] - IGHJ1 0.17 0.00 0.00 0.76 0.00 

IGHV6 - IGHD3_as_[39] - IGHJ1 0.34 0.00 0.71 0.76 0.00 

IGHV6 - IGHD3_s_BTA7 - IGHJ1 0.84 0.60 1.43 0.00 1.26 

IGHV6 - IGHD4_as_[21] - IGHJ1 0.34 0.60 0.00 0.00 0.63 

IGHV6 - IGHD4_s_BTA8 - IGHJ1 1.01 1.20 0.00 0.76 1.89 

IGHV6 - IGHD5_s_BTA8 - IGHJ1 0.84 0.60 1.43 0.00 1.26 

IGHV6 - IGHD5_s_NW_001503306 - IGHJ1 0.50 0.60 0.71 0.76 0.00 

IGHV6 - IGHD7_s_BTA8 - IGHJ1 0.50 0.60 0.71 0.00 0.63 

IGHV6 - IGHD8_s_BTA21 IGHJ1 1.34 1.80 0.71 3.05 0.00 

IGHV6 - IGHDQ52_s_BTA8 - IGHJ1 1.34 1.80 1.43 0.00 1.89 

IGHV6 - IGHDS10 [22] - IGHJ1 0.34 0.00 0.71 0.00 0.63 

IGHV6 - IGHDS14 [22] - IGHJ1 0.34 0.00 0.00 1.53 0.00 

IGHV10 - IGHD2_as_[39] - IGHJ1 0.34 1.20 0.00 0.00 0.00 

IGHV10 - IGHD1_s_BTA7 - IGHJ1 0.34 0.60 0.00 0.00 0.63 

IGHV10 - IGHD2_s_BTA7 - IGHJ1 0.50 1.20 0.00 0.76 0.00 

IGHV10 - IGHD2_s_[39] - IGHJ1 1.01 0.60 0.00 2.29 1.26 
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1 sense 
2 antisense 

IGHV10 - IGHD3_s_BTA7 - IGHJ1 0.67 0.60 0.00 0.76 1.26 

IGHV10 - IGHD4_s_BTA8 - IGHJ1 0.17 0.60 0.00 0.00 0.00 

IGHV10 - IGHD5_as_[21] - IGHJ6_[22] 0.17 0.00 0.00 0.00 0.63 

IGHV10 - IGHD5_s_BTA8 - IGHJ1 0.17 0.00 0.00 0.00 0.63 

IGHV10 - IGHD5_s_NW_001503306 - IGHJ1 0.17 0.00 0.00 0.00 0.63 

IGHV10 - IGHD7_as_[21] - IGHJ1 0.17 0.00 0.71 0.00 0.00 

IGHV10 - IGHD7_s_BTA8 - IGHJ1 0.17 0.00 0.00 0.76 0.00 

IGHV10 - IGHD8_as_[21] - IGHJ1 0.34 0.00 0.71 0.00 0.63 

IGHV10 - IGHD8_s_BTA21 - IGHJ1 0.17 0.60 0.00 0.00 0.00 

IGHV10 - IGHDQ52_s_BTA8 - IGHJ1 0.17 0.60 0.00 0.00 0.00 

IGHV10 - IGHDS10 [22] - IGHJ1 0.50 0.00 0.00 2.29 0.00 

IGHV17 - IGHD1_s_BTA7 - IGHJ1 0.50 0.60 1.43 0.00 0.00 

IGHV17 - IGHD3_s_BTA7 - IGHJ1 1.01 1.80 0.71 1.53 0.00 

IGHV17 - IGHD4_as_[21] - IGHJ1 0.17 0.60 0.00 0.00 0.00 

IGHV17 - IGHD4_s_BTA8 - IGHJ1 0.34 0.60 0.71 0.00 0.00 

IGHV17 - IGHD5_s_BTA8 - IGHJ1 0.50 0.00 1.43 0.00 0.63 

IGHV17 - IGHD5_s_NW_001503306 - IGHJ1 0.17 0.00 0.71 0.00 0.00 

IGHV17 - IGHD7_s_BTA8 - IGHJ1 0.34 0.00 0.71 0.00 0.63 

IGHV17 - IGHD8_s_BTA21 - IGHJ1 0.34 0.00 0.00 1.53 0.00 

IGHV17 - IGHDQ52_s_BTA8 - IGHJ1 0.50 1.20 0.00 0.00 0.63 

IGHV17 - IGHDS10 [22] - IGHJ1 0.34 0.60 0.71 0.00 0.00 

IGHV36 - IGHD1_as_[39] - IGHJ1 0.17 0.60 0.00 0.00 0.00 

IGHV36 - IGHD1_s_BTA7 - IGHJ1 0.34 0.60 0.00 0.00 0.63 

IGHV36 - IGHD3_as_[39] - IGHJ1 0.50 0.60 0.71 0.76 0.00 

IGHV36 - IGHD3_s_BTA7 - IGHJ1 1.51 0.00 2.14 0.00 3.77 

IGHV36 - IGHD4_s_BTA8 - IGHJ1 0.84 0.00 0.00 1.53 1.89 

IGHV36 - IGHD5_as_[21] - IGHJ1 0.17 0.00 0.00 0.76 0.00 

IGHV36 - IGHD5_s_BTA8 - IGHJ1 1.51 1.80 2.86 0.76 0.63 

IGHV36 - IGHD5_s_NW_001503306 - IGHJ1 0.50 0.00 0.71 0.00 1.26 

IGHV36 - IGHD6_s_BTA8 - IGHJ1 0.67 0.00 1.43 0.00 1.26 

IGHV36 - IGHD7_s_BTA8 - IGHJ1 0.50 0.60 0.00 0.76 0.63 

IGHV36 - IGHD8_s_BTA21 - IGHJ1 4.52 1.20 5.00 10.69 2.52 

IGHV36 - IGHDQ52_s_BTA8 - IGHJ1 1.84 1.80 3.57 0.76 1.26 

IGHV36 - IGHDS10 [22] - IGHJ1 0.17 0.00 0.00 0.76 0.00 

IGHV36 - IGHDS14 [22] - IGHJ1 0.17 0.60 0.00 0.00 0.00 
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S4 Table. Recombinations of IGHV, IGHD, and IGHJ over all four cattle breeds 
using procedure 1. 

IGHV - IGHD - IGHJ 
all 

(n=597) 

GS 

(n=131) 

GBP 

(140) 

A  

(n=167) 

HF 

(n=159) 

IGHV1S26 - IGHDS14 [22] - IGHJ1 0,17 0,76 0,00 0,00 0,00 

IGHV1S28 - IGHD1_as1_[39] - IGHJ1 0,17 0,00 0,00 0,60 0,00 

IGHV1S28 - IGHD1_s2_BTA7 - IGHJ1 0,34 0,00 0,71 0,60 0,00 

IGHV1S28 - IGHD2_s_BTA7 - IGHJ1 0,17 0,00 0,71 0,00 0,00 

IGHV1S28 - IGHD2_s_[39] - IGHJ1 0,17 0,00 0,71 0,00 0,00 

IGHV1S28 - IGHD3_s_BTA7 - IGHJ1 0,67 0,76 0,00 0,60 1,26 

IGHV1S28 - IGHD4_s_BTA8 - IGHJ6_[22] 0,17 0,00 0,00 0,00 0,63 

IGHV1S28 - IGHD4_s_BTA8 - IGHJ1 0,50 0,00 0,00 0,60 1,26 

IGHV1S28 - IGHD5_s_BTA8 - IGHJ1 2,18 3,82 2,86 0,00 2,52 

IGHV1S28 - IGHD5_s_NW_001503306 - IGHJ1 0,84 0,76 0,71 1,20 0,63 

IGHV1S28 - IGHD7_s_BTA8 - IGHJ1 0,50 0,76 1,43 0,00 0,00 

IGHV1S28 - IGHD8_as_[21] - IGHJ1 0,17 0,00 0,00 0,00 0,63 

IGHV1S28 - IGHD8_s_BTA21 - IGHJ1 1,17 1,53 0,71 1,20 1,26 

IGHV1S28 - IGHDQ52_s_BTA8 - IGHJ1 0,84 0,76 0,71 1,20 0,63 

IGHV1S28 - IGHDS10 [22] - IGHJ1 0,34 0,00 0,00 0,60 0,63 

IGHV1S32 - IGHD3_s_BTA7 - IGHJ1 0,17 0,76 0,00 0,00 0,00 

IGHV1S32 - IGHD5_s_NW_001503306 - IGHJ1 0,17 0,00 0,00 0,00 0,63 

IGHV1S32 - IGHD8_s_BTA21 - IGHJ1 0,34 1,53 0,00 0,00 0,00 

IGHV1S32 - IGHDQ52_s_BTA8 - IGHJ1 0,17 0,00 0,00 0,00 0,63 

IGHV1S33 - IGHD1_s_BTA7 - IGHJ1 0,17 0,00 0,00 0,60 0,00 

IGHV1S33 - IGHD2_s_BTA7 - IGHJ1 0,17 0,00 0,00 0,60 0,00 

IGHV1S33 - IGHD3_s_BTA7 - IGHJ1 0,17 0,00 0,00 0,60 0,00 

IGHV1S33 - IGHD4_s_BTA8 IGHJ1 0,17 0,76 0,00 0,00 0,00 

IGHV1S33 - IGHD5_as_[21] - IGHJ1 0,17 0,00 0,00 0,60 0,00 

IGHV1S33 - IGHD5_s_BTA8 - IGHJ1 0,34 0,00 0,71 0,60 0,00 

IGHV1S33 - IGHD7_s_BTA8 - IGHJ1 0,17 0,76 0,00 0,00 0,00 

IGHV1S33 - IGHDS14 [22] - IGHJ1 0,17 0,00 0,00 0,60 0,00 

IGHV1S34 - IGHD1_s_BTA7 - IGHJ1 0,50 0,76 0,71 0,60 0,00 

IGHV1S34 - IGHD2_s_BTA7 - IGHJ1 0,17 0,00 0,00 0,60 0,00 

IGHV1S34 - IGHD2_s_[39] - IGHJ1 0,34 0,00 0,71 0,60 0,00 

IGHV1S34 - IGHD3_s_BTA7 - IGHJ1 0,84 0,76 1,43 0,60 0,63 

IGHV1S34 - IGHD4_as_[21] - IGHJ1 0,17 0,00 0,00 0,00 0,63 

IGHV1S34 - IGHD4_s_BTA8 - IGHJ1 0,67 0,00 2,14 0,00 0,63 

IGHV1S34 - IGHD5_s_BTA8 - IGHJ1 2,01 3,05 3,57 1,20 0,63 

IGHV1S34 - IGHD5_s_NW_001503306 - IGHJ1 0,50 0,00 1,43 0,00 0,63 

IGHV1S34 - IGHD7_s_BTA8 - IGHJ1 0,84 0,76 0,00 1,20 1,26 

IGHV1S34 - IGHD8_s_BTA21 - IGHJ1 1,17 3,82 0,71 0,00 0,63 

IGHV1S34 - IGHDQ52_s_BTA8 - IGHJ1 0,67 0,00 2,14 0,60 0,00 

IGHV1S34 - IGHDS10 [22] - IGHJ1 0,50 0,76 0,00 0,60 0,63 

IGHV1S34 - IGHDS14 [22] - IGHJ1 0,17 0,00 0,71 0,00 0,00 
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IGHV1S35 - IGHD2_s_BTA7 - IGHJ1 0,17 0,76 0,00 0,00 0,00 

IGHV1S35 - IGHD2_s_[39] - IGHJ1 0,17 0,76 0,00 0,00 0,00 

IGHV1S35 - IGHD3_s_BTA7 - IGHJ1 0,50 0,76 0,00 0,60 0,63 

IGHV1S35 - IGHD4_s_BTA8 - IGHJ1 0,34 0,76 0,00 0,00 0,63 

IGHV1S35 - IGHD5_s_BTA8 - IGHJ1 0,67 1,53 0,00 1,20 0,00 

IGHV1S35 - IGHD5_s_NW_001503306 - IGHJ1 0,17 0,76 0,00 0,00 0,00 

IGHV1S35 - IGHD7_s_BTA8 - IGHJ1 0,84 3,05 0,71 0,00 0,00 

IGHV1S35 - IGHD8_s_BTA21 - IGHJ1 0,34 0,76 0,71 0,00 0,00 

IGHV1S35 - IGHDQ52_s_BTA8 - IGHJ1 0,34 0,00 0,00 1,20 0,00 

IGHV1S35 - IGHDS10 [22] - IGHJ1 0,50 2,29 0,00 0,00 0,00 

IGHV1S37 - IGHDQ52_s_BTA8 - IGHJ1 0,34 0,00 0,00 0,00 1,26 

IGHV1S38 - IGHD7_s_BTA8 - IGHJ1 0,17 0,76 0,00 0,00 0,00 

IGHV1S38 - IGHDQ52_s_BTA8 - IGHJ1 0,17 0,00 0,00 0,00 0,63 

IGHV1S39 - IGHD1_as_[39] - IGHJ1 0,34 0,00 0,00 1,20 0,00 

IGHV1S39 - IGHD1_s_BTA7 - IGHJ1 1,84 0,76 2,86 2,40 1,26 

IGHV1S39 - IGHD2_s_BTA7 - IGHJ1 0,17 0,00 0,71 0,00 0,00 

IGHV1S39 - IGHD2_s_[39] - IGHJ1 0,34 0,00 0,00 0,00 1,26 

IGHV1S39 - IGHD3_s_BTA7 - IGHJ6_[22] 0,17 0,00 0,00 0,00 0,63 

IGHV1S39 - IGHD3_s_BTA7 - IGHJ1 3,02 0,76 2,14 5,99 2,52 

IGHV1S39 - IGHD4_as_[21] - IGHJ1 0,84 0,76 0,00 1,80 0,63 

IGHV1S39 - IGHD4_s_BTA8 - IGHJ1 1,34 0,00 0,00 3,59 1,26 

IGHV1S39 - IGHD5_s_BTA8 - IGHJ1 2,68 0,00 2,86 5,39 1,89 

IGHV1S39 - IGHD5_s_NW_001503306 - IGHJ1 1,01 0,76 1,43 1,20 0,63 

IGHV1S39 - IGHD6_s_BTA8 - IGHJ1 0,17 0,00 0,00 0,00 0,63 

IGHV1S39 - IGHD7_as_[21] - IGHJ1 0,17 0,00 0,71 0,00 0,00 

IGHV1S39 - IGHD7_s_BTA8 - IGHJ1 1,68 0,00 0,00 3,59 2,52 

IGHV1S39 - IGHD8_s_BTA21 - IGHJ1 1,68 0,00 0,71 1,20 4,40 

IGHV1S39 - IGHDQ52_s_BTA8 - IGHJ1 0,84 0,00 1,43 1,20 0,63 

IGHV1S39 - IGHDS10 [22] - IGHJ1 0,67 0,00 0,00 1,20 1,26 

IGHV1S39 - IGHDS14 [22] - IGHJ1 0,67 0,00 0,71 1,80 0,00 

IGHV1S40 - IGHD1_s_BTA7 - IGHJ1 0,34 0,00 0,00 0,00 1,26 

IGHV1S40 - IGHD2_s_BTA7 - IGHJ6_[22] 0,17 0,00 0,71 0,00 0,00 

IGHV1S40 - IGHD2_s_BTA7 - IGHJ1 0,17 0,76 0,00 0,00 0,00 

IGHV1S40 - IGHD2_s_[39] - IGHJ1 0,17 0,00 0,71 0,00 0,00 

IGHV1S40 - IGHD3_s_BTA7 - IGHJ1 1,17 2,29 1,43 0,60 0,63 

IGHV1S40 - IGHD4_s_BTA8 - IGHJ1 0,67 0,76 0,00 1,20 0,63 

IGHV1S40 - IGHD5_as_[21] - IGHJ1 0,17 0,00 0,00 0,60 0,00 

IGHV1S40 - IGHD5_s_BTA8 - IGHJ1 2,35 0,76 1,43 2,40 4,40 

IGHV1S40 - IGHD5_s_NW_001503306 - IGHJ1 0,84 0,76 2,14 0,60 0,00 

IGHV1S40 - IGHD7_s_BTA8 - IGHJ1 1,68 4,58 1,43 1,20 0,00 

IGHV1S40 - IGHD8_s_BTA21 - IGHJ1 2,85 4,58 3,57 1,20 2,52 

IGHV1S40 - IGHDQ52_s_BTA8 - IGHJ1 0,84 0,00 2,14 0,60 0,63 

IGHV1S40 - IGHDS10 [22] - IGHJ1 0,84 0,76 2,14 0,00 0,63 

IGHV3 - IGHD1_as_[39] - IGHJ1 0,17 0,76 0,00 0,00 0,00 
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IGHV3 - IGHD1_s_BTA7 - IGHJ1 0,67 0,00 1,43 0,00 1,26 

IGHV3 - IGHD2_as_[39] - IGHJ1 0,34 0,00 0,71 0,00 0,63 

IGHV3 - IGHD2_s_BTA7 - IGHJ1 0,84 1,53 0,71 0,00 1,26 

IGHV3 - IGHD3_s_BTA7 - IGHJ6_[22] 0,17 0,00 0,00 0,00 0,63 

IGHV3 - IGHD3_s_BTA7 - IGHJ1 1,17 1,53 2,14 0,60 0,63 

IGHV3 - IGHD4_as_[21] - IGHJ6_[22] 0,17 0,00 0,00 0,60 0,00 

IGHV3 - IGHD4_as_[21] - IGHJ1 0,67 0,00 1,43 1,20 0,00 

IGHV3 - IGHD4_s_BTA8 - IGHJ1 1,84 0,76 0,71 2,40 3,14 

IGHV3 - IGHD5_s_BTA8 - IGHJ1 2,01 2,29 2,14 0,00 3,77 

IGHV3 - IGHD5_s_NW_001503306 - IGHJ1 0,34 0,00 0,71 0,00 0,63 

IGHV3 - IGHD7_s_BTA8 - IGHJ1 0,17 0,76 0,00 0,00 0,00 

IGHV3 - IGHD8_as_[21] - IGHJ1 0,34 0,76 0,00 0,60 0,00 

IGHV3 - IGHD8_s_BTA21 - IGHJ6_[22] 0,17 0,76 0,00 0,00 0,00 

IGHV3 - IGHD8_s_BTA21 - IGHJ1 2,35 0,76 1,43 2,99 3,77 

IGHV3 - IGHDQ52_s_BTA8 - IGHJ1 2,18 0,00 1,43 2,99 3,77 

IGHV3 - IGHDS10 [22] - IGHJ1 0,67 2,29 0,00 0,60 0,00 

IGHV3 - IGHDS14 [22] - IGHJ1 0,17 0,00 0,00 0,00 0,63 

IGHV6 - IGHD1_s_BTA7 - IGHJ1 1,01 1,53 0,71 1,80 0,00 

IGHV6 - IGHD2_s_BTA7 - IGHJ1 0,17 0,00 0,00 0,60 0,00 

IGHV6 - IGHD2_s_[39] - IGHJ1 0,17 0,00 0,00 0,60 0,00 

IGHV6 - IGHD3_as_[39] - IGHJ1 0,17 0,00 0,00 0,00 0,63 

IGHV6 - IGHD3_s_BTA7 - IGHJ1 1,68 0,00 0,71 2,40 3,14 

IGHV6 - IGHD4_as_[21] - IGHJ1 0,34 0,00 0,00 0,00 1,26 

IGHV6 - IGHD4_s_BTA8 - IGHJ1 0,50 0,00 1,43 0,00 0,63 

IGHV6 - IGHD5_s_BTA8 - IGHJ1 1,34 0,76 2,86 1,20 0,63 

IGHV6 - IGHD5_s_NW_001503306 - IGHJ1 0,50 0,76 0,71 0,60 0,00 

IGHV6 - IGHD7_s_BTA8 - IGHJ1 0,50 0,00 0,00 0,60 1,26 

IGHV6 - IGHD8_s_BTA21 - IGHJ1 1,34 3,82 0,71 0,60 0,63 

IGHV6 - IGHDQ52_s_BTA8 - IGHJ1 1,17 0,76 1,43 1,80 0,63 

IGHV6 - IGHDS10 [22] - IGHJ1 0,34 0,00 0,71 0,60 0,00 

IGHV10 - IGHD1_s_BTA7 - IGHJ1 0,67 0,76 0,00 1,20 0,63 

IGHV10 - IGHD2_s_BTA7 - IGHJ1 0,50 1,53 0,00 0,60 0,00 

IGHV10 - IGHD3_s_BTA7 - IGHJ1 0,34 0,76 0,00 0,60 0,00 

IGHV10 - IGHD4_as_[21] - IGHJ1 0,50 0,00 0,71 1,20 0,00 

IGHV10 - IGHD4_s_BTA8 - IGHJ1 0,84 0,76 0,00 1,20 1,26 

IGHV10 - IGHD5_s_BTA8 - IGHJ6_[22] 0,17 0,00 0,00 0,00 0,63 

IGHV10 - IGHD5_s_BTA8 - IGHJ1 0,17 0,00 0,00 0,60 0,00 

IGHV10 - IGHD5_s_NW_001503306 - IGHJ1 0,17 0,00 0,00 0,00 0,63 

IGHV10 - IGHD8_s_BTA21 - IGHJ1 1,17 1,53 0,71 0,60 1,89 

IGHV10 - IGHDQ52_s_BTA8 - IGHJ1 0,17 0,76 0,00 0,00 0,00 

IGHV10 - IGHDS14 [22] - IGHJ1 0,34 0,76 0,00 0,00 0,63 

IGHV17 - IGHD1_s_BTA7 - IGHJ1 0,50 0,76 1,43 0,00 0,00 

IGHV17 - IGHD3_s_BTA7 - IGHJ1 0,84 0,76 0,71 1,80 0,00 

IGHV17 - IGHD4_s_BTA8 - IGHJ1 0,50 0,00 1,43 0,00 0,63 
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IGHV17 - IGHD5_s_BTA8 - IGHJ1 0,34 0,00 0,71 0,60 0,00 

IGHV17 - IGHD5_s_NW_001503306 - IGHJ1 0,17 0,00 0,71 0,00 0,00 

IGHV17 - IGHD7_s_BTA8 - IGHJ1 0,67 0,76 0,00 0,60 1,26 

IGHV17 - IGHD8_s_BTA21 - IGHJ1 0,50 0,76 0,00 1,20 0,00 

IGHV17 - IGHDQ52_s_BTA8 - IGHJ1 0,50 0,00 0,71 1,20 0,00 

IGHV17 - IGHDS14 [22] - IGHJ1 0,17 0,00 0,71 0,00 0,00 

IGHV36 - IGHD1_s_BTA7 - IGHJ1 0,34 0,00 0,71 0,00 0,63 

IGHV36 - IGHD2_s_BTA7 - IGHJ1 0,50 0,00 0,71 0,60 0,63 

IGHV36 - IGHD2_s_[39] - IGHJ1 0,17 0,76 0,00 0,00 0,00 

IGHV36 - IGHD3_s_BTA7 - IGHJ1 1,84 0,76 1,43 1,80 3,14 

IGHV36 - IGHD4_s_BTA8 - IGHJ1 0,67 1,53 0,00 0,00 1,26 

IGHV36 - IGHD5_s_BTA8 - IGHJ1 2,01 0,76 2,86 2,40 1,89 

IGHV36 - IGHD5_s_NW_001503306 - IGHJ1 1,84 0,00 3,57 0,60 3,14 

IGHV36 - IGHD6_s_BTA8 - IGHJ1 0,17 0,76 0,00 0,00 0,00 

IGHV36 - IGHD7_s_BTA8 - IGHJ1 0,50 0,00 1,43 0,60 0,00 

IGHV36 - IGHD8_s_BTA21 - IGHJ1 3,52 9,16 3,57 1,80 0,63 

IGHV36 - IGHDQ52_s_BTA8 - IGHJ1 1,01 1,53 1,43 0,00 1,26 

IGHV36 - IGHDS10 [22] - IGHJ1 0,50 0,76 0,71 0,00 0,63 

IGHV36 - IGHDS14 [22] - IGHJ1 0,34 0,76 0,00 0,00 0,63 
1 antisense 
2 sense 
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S5 Table. Recombinations of IGHV, IGHD, and IGHJ over all four cattle breeds 

using procedure 2. 

IGHV - IGHD - IGHJ 
all 

(n=597) 

GS 

(n=131) 

GBP 

(n=140) 

A  

(n=167) 

HF 

(n=159) 

IGHV1S26 - IGHDQ52_s1_BTA8 - IGHJ1 0,17 0,76 0,00 0,00 0,00 

IGHV1S28 - IGHD1_s_BTA7 - IGHJ1 1,01 0,00 2,14 1,20 0,63 

IGHV1S28 - IGHD2_s_[39] - IGHJ1 0,17 0,00 0,00 0,00 0,63 

IGHV1S28 - IGHD3_s_BTA7 - IGHJ1 0,50 0,76 0,71 0,00 0,63 

IGHV1S28 - IGHD4_as2_[21] - IGHJ1 0,17 0,00 0,00 0,60 0,00 

IGHV1S28 - IGHD4_s_BTA8 - IGHJ1 0,67 1,53 0,71 0,60 0,00 

IGHV1S28 - IGHD6_s_BTA8 - IGHJ6_[22] 0,17 0,00 0,00 0,00 0,63 

IGHV1S28 - IGHD6_s_BTA8 - IGHJ1 0,34 0,00 0,71 0,00 0,63 

IGHV1S28 - IGHD8_s_BTA21 - IGHJ1 0,50 2,29 0,00 0,00 0,00 

IGHV1S28 - IGHDQ52_s_BTA8 - IGHJ1 3,18 3,05 2,86 2,40 4,40 

IGHV1S28 - IGHDS10 [22] - IGHJ1 1,51 0,76 1,43 1,80 1,89 

IGHV1S32 - IGHD1_s_BTA7 - IGHJ1 0,50 1,53 0,00 0,00 0,63 

IGHV1S32 - IGHD7_s_BTA8 - IGHJ1 0,17 0,00 0,00 0,00 0,63 

IGHV1S32 - IGHDQ52_s_BTA8 - IGHJ1 0,17 0,76 0,00 0,00 0,00 

IGHV1S33 - IGHD1_as_[39] - IGHJ1 0,17 0,00 0,00 0,60 0,00 

IGHV1S33 - IGHD2_s_BTA7 - IGHJ1 0,17 0,76 0,00 0,00 0,00 

IGHV1S33 - IGHD3_s_BTA7 - IGHJ1 0,34 0,00 0,00 1,20 0,00 

IGHV1S33 - IGHDQ52_s_BTA8 - IGHJ1 0,67 0,76 0,71 1,20 0,00 

IGHV1S33 - IGHDS10 [22] - IGHJ1 0,17 0,00 0,00 0,60 0,00 

IGHV1S34 - IGHD1_as_[39] - IGHJ1 0,17 0,00 0,71 0,00 0,00 

IGHV1S34 - IGHD1_s_BTA7 - IGHJ1 1,34 0,76 1,43 2,99 0,00 

IGHV1S34 - IGHD4_as_[21] - IGHJ1 0,17 0,00 0,00 0,60 0,00 

IGHV1S34 - IGHD4_s_BTA8 - IGHJ1 0,17 0,00 0,71 0,00 0,00 

IGHV1S34 - IGHD5_s_BTA8 - IGHJ1 0,34 0,76 0,71 0,00 0,00 

IGHV1S34 - IGHD5_s_NW_001503306 - IGHJ1 0,34 0,76 0,71 0,00 0,00 

IGHV1S34 - IGHD6_as_[21] - IGHJ1 0,17 0,00 0,71 0,00 0,00 

IGHV1S34 - IGHD6_s_BTA8 - IGHJ1 0,17 0,00 0,71 0,00 0,00 

IGHV1S34 - IGHD8_as_[21] - IGHJ1 0,17 0,00 0,71 0,00 0,00 

IGHV1S34 - IGHD8_s_BTA21 - IGHJ1 0,67 1,53 0,71 0,00 0,63 

IGHV1S34 - IGHDQ52_s_BTA8 - IGHJ1 3,18 5,34 2,86 1,80 3,14 

IGHV1S34 - IGHDS10 [22] - IGHJ1 1,51 0,00 3,57 0,60 1,89 

IGHV1S34 - IGHDS14 [22] - IGHJ1 0,17 0,76 0,00 0,00 0,00 

IGHV1S35 - IGHD1_s_BTA7 - IGHJ1 0,17 0,76 0,00 0,00 0,00 

IGHV1S35 - IGHD4_s_BTA8 - IGHJ1 1,17 3,82 0,71 0,00 0,63 

IGHV1S35 - IGHD5_s_BTA8 - IGHJ1 0,17 0,76 0,00 0,00 0,00 

IGHV1S35 - IGHD8_s_BTA21 - IGHJ1 0,34 1,53 0,00 0,00 0,00 

IGHV1S35 - IGHDQ52_s_BTA8 - IGHJ1 1,34 3,82 0,00 1,20 0,63 

IGHV1S35 - IGHDS10 [22] - IGHJ1 0,84 0,76 0,71 1,80 0,00 

IGHV1S37 - IGHD4_s_BTA8 - IGHJ1 0,17 0,00 0,00 0,00 0,63 
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IGHV1S37 - IGHDS10 [22] - IGHJ1 0,17 0,00 0,00 0,00 0,63 

IGHV1S38 - IGHD4_s_BTA8 - IGHJ1 0,17 0,00 0,00 0,00 0,63 

IGHV1S38 - IGHD6_s_BTA8 - IGHJ1 0,17 0,76 0,00 0,00 0,00 

IGHV1S39 - IGHD1_s_BTA7 - IGHJ1 0,50 0,76 0,00 1,20 0,00 

IGHV1S39 - IGHD2_s_BTA7 - IGHJ1 0,67 0,00 0,71 1,20 0,63 

IGHV1S39 - IGHD2_s_[39] - IGHJ1 0,17 0,00 0,71 0,00 0,00 

IGHV1S39 - IGHD3_s_BTA7 - IGHJ1 0,84 0,00 1,43 1,20 0,63 

IGHV1S39 - IGHD4_as_[21] - IGHJ1 0,50 0,00 0,00 1,80 0,00 

IGHV1S39 - IGHD4_s_BTA8 - IGHJ1 2,35 0,00 0,71 5,39 2,52 

IGHV1S39 - IGHD5_s_BTA8 - IGHJ1 0,34 0,76 0,00 0,60 0,00 

IGHV1S39 - IGHD6_as_[21] - IGHJ1 0,17 0,00 0,71 0,00 0,00 

IGHV1S39 - IGHD6_s_BTA8 - IGHJ1 0,34 0,00 0,00 1,20 0,00 

IGHV1S39 - IGHD7_s_BTA8 - IGHJ1 0,50 0,00 0,71 0,00 1,26 

IGHV1S39 - IGHD8_s_BTA21 - IGHJ1 1,68 0,00 2,14 2,40 1,89 

IGHV1S39 - IGHDQ52_s_BTA8 - IGHJ6_[22] 0,17 0,00 0,00 0,00 0,63 

IGHV1S39 - IGHDQ52_s_BTA8 - IGHJ1 7,04 1,53 5,00 11,38 8,81 

IGHV1S39 - IGHDS10 [22] - IGHJ1 2,35 0,00 1,43 4,19 3,14 

IGHV1S40 - IGHD1_as_[39] - IGHJ1 0,17 0,00 0,00 0,60 0,00 

IGHV1S40 - IGHD1_s_BTA7 - IGHJ1 0,34 0,00 1,43 0,00 0,00 

IGHV1S40 - IGHD3_s_BTA7 - IGHJ1 0,50 1,53 0,71 0,00 0,00 

IGHV1S40 - IGHD4_s_BTA8 - IGHJ1 0,50 0,00 0,00 0,00 1,89 

IGHV1S40 - IGHD5_s_BTA8 - IGHJ1 0,50 0,76 1,43 0,00 0,00 

IGHV1S40 - IGHD6_s_BTA8 - IGHJ1 0,34 0,00 0,71 0,60 0,00 

IGHV1S40 - IGHD8_s_BTA21 - IGHJ6_[22] 0,17 0,00 0,71 0,00 0,00 

IGHV1S40 - IGHD8_s_BTA21 - IGHJ1 0,67 0,76 0,00 1,80 0,00 

IGHV1S40 - IGHDQ52_s_BTA8 - IGHJ1 6,37 6,87 9,29 3,59 6,29 

IGHV1S40 - IGHDS10 [22] - IGHJ1 2,68 5,34 1,43 1,80 2,52 

IGHV3 - IGHD1_as_[39] - IGHJ1 1,01 0,00 1,43 1,20 1,26 

IGHV3 - IGHD1_s_BTA7 - IGHJ6_[22] 0,17 0,76 0,00 0,00 0,00 

IGHV3 - IGHD1_s_BTA7 - IGHJ1 0,84 1,53 0,00 0,60 1,26 

IGHV3 - IGHD2_s_BTA7 - IGHJ1 0,67 0,76 0,71 0,60 0,63 

IGHV3 - IGHD4_as_[21] - IGHJ1 1,01 1,53 0,00 1,20 1,26 

IGHV3 - IGHD4_s_BTA8 - IGHJ1 1,34 1,53 0,00 0,60 3,14 

IGHV3 - IGHD5_s_BTA8 - IGHJ1 0,17 0,00 0,71 0,00 0,00 

IGHV3 - IGHD5_s_NW_001503306 - IGHJ1 0,17 0,00 0,00 0,00 0,63 

IGHV3 - IGHD6_s_BTA8 - IGHJ1 0,34 0,00 0,00 0,60 0,63 

IGHV3 - IGHD7_s_BTA8 - IGHJ1 0,17 0,76 0,00 0,00 0,00 

IGHV3 - IGHD8_s_BTA21 - IGHJ1 2,01 1,53 2,86 0,60 3,14 

IGHV3 - IGHDQ52_s_BTA8 - IGHJ6_[22] 0,17 0,00 0,00 0,00 0,63 

IGHV3 - IGHDQ52_s_BTA8 - IGHJ1 4,02 2,29 5,71 4,19 3,77 

IGHV3 - IGHDS10 [22] - IGHJ6_[22] 0,17 0,00 0,00 0,60 0,00 

IGHV3 - IGHDS10 [22] - IGHJ1 2,18 1,53 1,43 1,80 3,77 

IGHV6 - IGHD1_s_BTA7 - IGHJ1 1,01 0,00 0,71 2,99 0,00 

IGHV6 - IGHD3_s_BTA7 - IGHJ1 0,50 0,00 1,43 0,00 0,63 
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IGHV6 - IGHD4_as_[21] - IGHJ1 0,50 0,00 0,00 0,60 1,26 

IGHV6 - IGHD4_s_BTA8 - IGHJ1 0,34 0,00 0,00 0,60 0,63 

IGHV6 - IGHD5_s_BTA8 - IGHJ1 0,50 0,76 0,71 0,00 0,63 

IGHV6 - IGHD6_as_[21] - IGHJ1 0,17 0,00 0,71 0,00 0,00 

IGHV6 - IGHD7_s_BTA8 - IGHJ1 0,17 0,00 0,00 0,00 0,63 

IGHV6 - IGHD8_s_BTA21 - IGHJ1 0,34 0,00 0,71 0,00 0,63 

IGHV6 - IGHDQ52_s_BTA8 - IGHJ1 3,85 6,11 3,57 4,19 1,89 

IGHV6 - IGHDS10 [22] - IGHJ1 1,68 0,00 1,43 2,40 2,52 

IGHV6 - IGHDS14 [22] - IGHJ1 0,17 0,76 0,00 0,00 0,00 

IGHV10 - IGHD1_as_[39] - IGHJ1 0,17 0,00 0,00 0,00 0,63 

IGHV10 - IGHD1_s_BTA7 - IGHJ1 1,01 2,29 0,00 1,20 0,63 

IGHV10 - IGHD3_s_BTA7 - IGHJ1 0,34 0,00 0,00 0,00 1,26 

IGHV10 - IGHD4_as_[21] - IGHJ1 0,34 0,00 0,00 1,20 0,00 

IGHV10 - IGHD4_s_BTA8 - IGHJ1 1,01 2,29 0,00 1,20 0,63 

IGHV10 - IGHD6_s_BTA8 - IGHJ6_[22] 0,17 0,00 0,00 0,00 0,63 

IGHV10 - IGHD8_s_BTA21 - IGHJ1 1,17 1,53 0,71 2,40 0,00 

IGHV10 - IGHDQ52_s_BTA8 - IGHJ1 0,50 0,76 0,00 0,00 1,26 

IGHV10 - IGHDS10 [22] - IGHJ1 0,34 0,00 0,71 0,00 0,63 

IGHV17 - IGHD3_s_BTA7 - IGHJ1 0,34 0,00 0,71 0,60 0,00 

IGHV17 - IGHD4_s_BTA8 - IGHJ1 0,50 0,00 0,00 1,80 0,00 

IGHV17 - IGHD5_s_BTA8 - IGHJ1 0,34 0,76 0,71 0,00 0,00 

IGHV17 - IGHD6_as_[21] - IGHJ1 0,17 0,00 0,71 0,00 0,00 

IGHV17 - IGHD8_s_BTA21 - IGHJ1 0,50 0,00 0,71 0,00 1,26 

IGHV17 - IGHDQ52_s_BTA8 - IGHJ1 1,51 0,76 2,86 1,80 0,63 

IGHV17 - IGHDS10 [22] - IGHJ1 0,67 0,76 0,71 1,20 0,00 

IGHV17 - IGHDS14 [22] - IGHJ1 0,17 0,76 0,00 0,00 0,00 

IGHV36 - IGHD1_as_[39] - IGHJ1 0,17 0,76 0,00 0,00 0,00 

IGHV36 - IGHD1_s_BTA7 - IGHJ1 1,17 0,00 0,71 0,60 3,14 

IGHV36 - IGHD3_s_BTA7 - IGHJ1 0,34 0,00 0,71 0,00 0,63 

IGHV36 - IGHD4_as_[21] - IGHJ1 0,17 0,76 0,00 0,00 0,00 

IGHV36 - IGHD4_s_BTA8 - IGHJ1 1,34 1,53 0,71 0,60 2,52 

IGHV36 - IGHD5_s_BTA8 - IGHJ1 0,34 0,00 0,71 0,60 0,00 

IGHV36 - IGHD5_s_NW_001503306 - IGHJ1 0,17 0,00 0,71 0,00 0,00 

IGHV36 - IGHD8_s_BTA21 - IGHJ1 1,17 1,53 1,43 0,00 1,89 

IGHV36 - IGHDQ52_s_BTA8 - IGHJ1 6,37 11,45 7,14 4,19 3,77 

IGHV36 - IGHDS10 [22] - IGHJ1 2,18 0,76 4,29 1,80 1,89 
1 sense 
2 antisense 
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General Discussion 

 

Since the resistance of antigens to antibiotics remains a significant problem in livestock 

production due to considerable economic impacts, research in the alternate treatment 

of infectious diseases increased. The investigation of special genetic aspects of 

immunoglobulins has attracted higher attention during the last few decades. New high 

throughput technologies are available that facilitate and advance the experimental 

workflow. The price for analyses of the immunoglobulin repertoires is descending. 

Initial studies on the immunoglobulin repertoire were performed on humans and mice 

but successful techniques were applied to various other animals such as chicken, 

rabbit, cattle, horses, and zebrafish, too. Nevertheless, investigation in immunoglobulin 

genetics still needs more attention to complete previous information about 

fundamentals, such as the number of genomic available gene segments, gene families, 

and allotypes of different isotypes of the immunoglobulin heavy and light chains in 

cattle and horses. 

The primary objective of this thesis was to analyze the genomic available and 

transcribed immunoglobulin heavy and light chain gene segments to contribute to a 

more detailed understanding of immunoglobulin diversity in cattle and horses.  

 

Similar to most vertebrates, bovine and equine immunoglobulins possess two identical 

heavy and light chains that consist of a variable region and a constant region. The 

variable regions are created by the random fusion of germline variable 

(IGHV/IGLV/IGKV), diversity (IGHD), and joining gene segments (IGHJ/IGLJ/IGKJ) that 

are combined with a constant region gene (IGHC/IGLC/IGKC) (Tonegawa 1983). The 

gene segments are found in species-specific numbers in the genome. The 

immunoglobulin repertoire is generated by several processes of combinatorial and 

junctional diversity comprising the imprecise joining of the single gene segments and 

non-templated or palindromic nucleotide insertions between two adjacent gene 

segments, as well as somatic hypermutations. Secondary mechanisms such as gene 

conversion and isotype switch may increase the diversity further. Highly specialized, 

complementarity determining regions form a perfect counterpart to the antigen epitope 

and are stabilized by conserved framework regions (Kabat and Wu 1991).  

In mammals, two types of light chains are described – the lambda and kappa light 

chains (Korngold and Lipari 1956). They are expressed in species-specific ratios. In 
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contrast to humans and mice, where the kappa isotype dominates in serum antibodies, 

the lambda isotype is predominantly found in cattle and horses (Arun et al. 1996; 

Almagro et al. 1998). In addition to what is already known about the general structural 

features of both bovine and equine immunoglobulins and their function, this thesis on 

diversity gave some important baseline information and contributes to the scientific 

background for the production of highly specific and effective recombinant antibodies 

or antibody libraries. The findings will also be of future importance in analyzing 

seroconversion data after infection or vaccination, as well as determining breed 

specific differences to select healthy, robust animals. 

 

Since the late 19th century, horse antibodies in terms of anti-sera were closely 

connected with the treatment of human diseases. Today, equine immunoglobulins are 

also used to support immunosuppression after organ or stem cell transplantation, or to 

manage autoimmune diseases in humans (Leleu et al. 2006; Zand 2006). In addition, 

equine antibody applications gain in importance in order to prevent or treat equine 

infectious diseases. Amongst others they can be regarded as potential alternatives to 

antibiotic therapy in the near future. Therefore it is necessary to investigate the 

fundamental immunoglobulin genetics underlying the equine immunoglobulin immune 

response. 

The understanding of the organization of equine immunoglobulin genes has increased 

significantly in recent years (reviewed in publication 1). For equine heavy chains, 52 

IGHV, 40 IGHD, 8 IGHJ and 11 IGHC were determined. With 40 IGHD identified, 

horses belong to the mammalian species that possess the most IGHD. Likewise, in 

guinea pig and the African elephant 41 and 87 IGHD gene segments are known so far 

(Guo et al. 2011; Guo et al. 2012). Seven of the equine IGHCs are gamma chain 

genes (IgG). Only in the porcine immune system a similarly high number of eleven 

genomic constant region genes representing six putative subclasses has been 

described (Butler et al. 2009).  

Using biochemical and serological methods, the subclasses IgGa, IgGb, IgGc, IgG(T), 

and IgG(B) were identified and characterized (Rockey et al. 1964; Sandor et al. 1964; 

Klinman et al. 1965; Rockey 1967; Widders et al. 1986; Sheoran and Holmes 1996). 

Later, seven IgG isotypes were identified by the analysis of a BAC library. The previous 

subclasses were renamed. Multiple duplications, gene conversions, and crossovers 

are supposed to explain these seven IgG isotypes (Wagner et al. 2006). The individual 
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IgG subclasses possess specific roles in protective immunity. Thus, the FcγR and 

complement-binding isotypes IgG1, IgG4, and IgG7 (former IgGa and IgGb) contribute 

to the protection against several equine pathogens such as equine influenza virus 

(Nelson et al. 1998; Breathnach et al. 2006), Streptococcus equi (Sheoran et al. 1997) 

and Rhodococcus equi (Lopez et al. 2002). In addition, systemic and mucosal IgG 

responses were described to play an important role in limiting the spread and severity 

of equine herpes virus 1 (Kydd et al. 2006). The first recombinant versions of all seven 

equine IgG subclasses (mouse -light chains, horse IGHG1-7) were expressed in 

Chinese Hamster Ovary cells to analyze their individual physical and biological 

properties (Lewis et al. 2008). Further, seven distinct monoclonal equine antibodies 

(IgM, IgG1, IgG3, IgG4/7, IgG5, IgG6, and IgE) were produced in equine-murine 

heterohybridomas to be used for quantification of isotypes in diagnostic testing and 

immunological research (Keggan et al. 2013). 

The combinatorial and junctional levels of IGHV-IGHD-IGHJ sequences in equine fetus 

were comparable to those of adult horses and a similar set of variable gene segments 

was used during fetal and post-natal life stages (Tallmadge et al. 2009; Tallmadge et 

al. 2013). Few IGHV segments were used predominantly at all ages. The 250,000 

bases between the expressed gene segments suggest that the entire IGHV locus is 

available throughout equine life (Tallmadge et al. 2013). Similarly, in fetal piglets the 

IGHV usage was described to be independent of the genome position although there is 

a limited number of IGHV representing the Ig repertoire, too (Eguchi-Ogawa et al. 

2010; Butler et al. 2011). In contrast, the biased usage of germline IGHV in the mouse 

fetus was explained with different accessible positions within the IGHV locus (Jeong et 

al. 1988). The incorporation of more than one IGHD into the IGHV-IGHD-IGHJ 

rearrangement resulting in IGHV-IGHD-IGHD-IGHJ was observed (Sun et al. 2010). In 

horses, sequence diversity and length variation further increased in complementarity 

determining region 1 (CDR1H) and CDR2H, and framework regions in accordance to 

somatic hypermutation (Tallmadge et al. 2013). Within the CDR3H of an adult horse, at 

least 5 amino acid residues were observed, whereas 25 amino acid residues were 

counted in the longest CDR3H, which was identified in an equine neonate (Tallmadge 

et al. 2013). In comparison, recent studies showed the length heterogeneity of very 

short CDR3H (5-10 amino acids), midlength CDR3H (11-31 amino acids) and 

exceptionally long CDR3H (more than 47 amino acids) in all isotypes in both bovine 

fetuses and adult cattle. Very long CDR3H contribute to diversity by uniquely folded 
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small domains (Saini et al. 1999a; Saini and Kaushik 2002; Shojaei et al. 2003; Koti et 

al. 2010; Walther et al. 2013; Wang et al. 2013). 

The equine kappa light chain contains 60 IGKV, 5 IGKJ and 1 IGKC, whereas there are 

144 IGLV, 7 IGLJ, and 7 IGLC for the lambda light chain. Each of the 7 IGLJ is 

preceded by one IGLC and there are two clusters of IGLV possessing different 

transcriptional orientations. Within each IGLV cluster there are functional genes and 

pseudogenes (Sun et al. 2010). Similarly, pseudogenes are described in different 

species such as chicken, where it is already known that pseudogenes are used for 

gene conversion (Reynaud et al. 1985). During age development, a decrease in IGLVs 

is noted, although nucleotide diversity and significant differences in gene usage 

increased. As in all previous studies different methods were used for designation, the 

standardization of the existing nomenclature of immunoglobulin genes is suggested.  

 

The study of allotypic variants within the equine λ-light chain locus (publication 2) was 

the first detailed molecular genetic description. Five IGLC1, four IGLC5, and two 

IGLC6/7 allotypic variants, as well as three alleles for IGLC6/7a were observed. 

Especially for the transcriptional use of IGLC6/7, significant differences were calculated 

by Chi² tests.  

Several amino acid residue variations were located at the accessible surface as 

confirmed by homology-based predicted 3D structural analysis. Distinct serological 

properties resulting in allotypic variants due to these modifications are assumed. All 

allotypic variants showed distinct amino acid residue substitutions in all seven β-sheets 

according to the IMGT nomenclature (Lefranc et al. 2005). Most of them were located 

within the solvent accessible surface area (Padlan et al. 1986). Seven of these 

substitutions were positioned at the interface to the first constant region of the heavy 

chain (IGHC1). As one of these amino acid substitutions affected one of the conserved 

residues for the main interaction of constant region of the light chain (IGLC) and 

IGHC1, the stable assembly of heavy and light chains could be changed. We do not 

have any information about allelic changes in IGHC1, thus this assumption remains to 

be verified. Amino acid residue substitutions located at the solvent accessible surface 

area might be distinguished by specific sera and therefore might be used as markers. 

Previously, allotypic markers of human immunoglobulin chains were related to the 

susceptibility of different infectious diseases due to either direct association or linkage 

disequilibrium with the causative gene (Pandey et al. 1979; Granoff et al. 1984; Pandey 
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et al. 1995; Pandey 2000; Giha et al. 2009). Furthermore, influences of bovine 

allotypes on effector functions like complement activation, and age dependent 

expression have also been shown (Corbeil et al. 1997; Bastida-Corcuera et al. 1999a; 

Bastida-Corcuera et al. 1999b; Bastida-Corcuera et al. 2000). Specific investigations 

on functional differences of allotypic variants are missing in horses, but similar to cattle 

heterozygotic horses are thought to possess an advantage in their humoral immune 

response.  

Beside the presence of predicted germline IGLJ-IGLC pairs and the transcription 

frequency of IGLC-genes, the usage of IGLV-segments of subgroup 8 was further 

analyzed. This subgroup contains the highest number of functional IGLV and was 

shown to be transcribed preferentially (Sun et al. 2010). The variable segments 

IGLV15, IGLV17, and IGLV25 were preferably transcribed. Significant differences were 

calculated for the rearrangements with the four IGLC-isotypes transcribed within and 

among the breeds. Consequently, the V-domain repertoire is dominated by two breed 

independent IGLV genes and a third breed specific IGLV gene that are productively 

used for combinatorial joining of IGLJ-IGLC-genes and thus for antibody production. 

Furthermore, two putative pseudogenes (IGLV74ψ, IGLV101ψ) were transcribed. The 

isolated sequences showed variations in CDR1 sequences resulting in a frame shift 

replacing the premature stop codons of germline IGLV74ψ. Individual mutations within 

the breeds are supposed to enable the transcriptional use of pseudogenes. In addition, 

in silico germline sequences are prepared from a Thoroughbred, which is a conserved 

breed founded by few stallions. Hence, mutations resulting in pseudogenes may be 

segregate within this breed but can be functional in other breeds. The transcription of 

pseudo V-gene segments has already been described in species such as cattle, 

chicken, and rabbits and occurs by gene conversion (Parng et al. 1996; Winstead et al. 

1999; Arakawa and Buerstedde 2009). The results of this study indicated the presence 

of similar mechanisms in horses. Moreover, the spacer sequences of the 

recombination signal sequences of the transcribed IGLVs seem to be conserved (Sun 

et al. 2010). In IGLV101ψ, the spacer sequence is identical to that in IGLV17 and 

IGLV15, which are the dominantly used IGLV. These identical sequences of the 

spacers are an additional option for the transcription of potential pseudogenes as was 

already shown in human IGKV segments (Nadel et al. 1998). 

Some of the results could be linked to breeding because two breeds with different stud 

book sizes and breeding goals were examined. While Rhenish German Coldblood is a 
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quiet conserved and small breed mainly used for agricultural purposes and breed 

representations (Bremond and Balzer 2011), animals of Hanoverian Warmblood 

belong to one of the biggest horse breeds and participate in all disciplines of equestrian 

sports (Bremond and Balzer 2011). Although the inbreeding coefficient in the 

Hanoverian population (1.33%) is at lower level than those of smaller populations like 

the Rhenish German Coldblood (1.73%; (Biedermann et al. 2002; Hamann and Distl 

2008), effective management of breeding is necessary to prevent the random loss of 

alleles caused by large genetic contributions of few individuals over a long time period 

(bottleneck effect). Genetic drift and homogenization of genetic information may also 

occur and have to be controlled as the rate of inbreeding has increased in Hanoverians 

in the last ten years (Constans et al. 1985; Hamann and Distl 2008; Simianer and Kohn 

2010). 

This study characterized genetic and transcriptional differences of λ-light chain in two 

horse breeds. For the first time distinct alleles and putative allotypic variants were 

described in horses. Future investigations should evaluate the distribution of allotypic 

markers of immunoglobulin chains in further horse breeds. Moreover, the linkage to 

infectious diseases such as in humans and cattle should be examined. 

 

The in silico analyses of the genomic organization of the bovine heavy-chain locus 

revealed differences from previous mapping and annotation results (publication 3). 

The functional locus was mapped to BTA21 (Gu et al. 1992; Hayes et al. 2000; Zhao et 

al. 2003). Additional bovine heavy-chain loci were detected on BTA7, BTA8, and 

BTA20, unexpectedly. The order of the respective segments deviated from other fully 

described mammalian loci (Matsuda and Honjo 1996; Sun et al. 2010). Further, the 

constant heavy-chain locus described by means of BAC clone analysis (Zhao et al. 

2003), were not introduced into the genomic assembly. Several genes upstream of the 

heavy-chain locus on the bovine contig-NW_003064289 on BTA7 share homology with 

HSA19 but some did not show any human equivalent. Similarly, on HSA5pter no 

equivalent was found to the bovine IgG2(ORF) gene, although the adjacent genes 

were identified. Hybridization experiments assigned IGHML1 to BTA11 (Tobin-Janzen 

and Womack 1992; Hayes and Petit 1993), which was supported by the detection of 

six IGHJ segments on the same chromosome using BAC clone and locus-specific PCR 

analysis (Hosseini et al. 2004). Nevertheless, in silico analyses did not identify an IgM-

like locus on BTA11. Consequently, the bovine immunoglobulin heavy-chain locus 
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seems to be annotated incorrectly and incompletely. This problem may be solved by 

the re-sequencing of the described localizations and underpinned by different authors 

and methods.  

All of the functional bovine IGHV segments are most closely related to the human clan 

II family VH2, which explains the exclusive transcription of only one bovine VH family 

(Sinclair and Aitken 1995; Berens et al. 1997; Sinclair et al. 1997). The second bovine 

VH family consists only of pseudogenes and clustered with the human VH4 and VH6 

family. The description of the second bovine VH family (boVH2) previously proposed 

was now possible (Berens et al. 1997), but there are still no indications of possible 

gene conversions using boVH2 segments (Liljavirta et al. 2014) in the sequences 

investigated, as shown for the bovine λ-light chains (Parng et al. 1996). For further 

studies the assignment of fragmented loci of bovine IGHV to boVH1 or boVH2 based 

on sequence identity is recommended.  

In bovine IgM, three groups of CDR3H defined by their number of amino acids were 

described. Independent of nucleotide addition during rearrangement long and short 

IGHD contribute directly to CDR3H length heterogeneity. Nevertheless, annotation of 

the transcribed IGHD is complicated due to high homologies among the genomic IGHD 

segments. In particular, CDR3H length heterogeneity, junctional flexibility, and somatic 

hypermutation within the recombined IGHD segments led to low sequence identities. 

Furthermore, intrinsic hot spots targeting somatic hypermutations to CDR1H, CDR2H, 

and CDR3H were thought to contribute solely to IgM antibody diversification in both 

bovine fetus and adult cattle (Saini and Kaushik 2002).  

CDR3H length heterogeneity was fond in all bovine immunoglobulin isotypes. Hence, 

exceptionally long CDR3H are apparently not primarily generated to compensate the 

restricted flexibility of IgM. As the most recent study on the IgG repertoire in calves also 

showed exceptionally long CDR3H (Larsen and Smith 2012), antigen selection of 

variable domains and class switch recombination seem to be of higher impact. The 

exceptionally long CDR3H were generated by the direct fusion of a single IGHV 

segment (IGHV10), the longest IGHD segment (IGHD2), and one functional IGHJ 

segment (IGHJ1), as described previously (Koti et al. 2010). In short CDR3H, the 

preferred use of the short IGHD segments, IGHDQ52 and IGHD4 was observed. All 

IGHV segments identified were found to be functional. Thus, analyses do not reveal 

evidence for gene conversion in bovine immunoglobulin heavy chains, which 

contributes to the diversity of chicken immunoglobulin heavy chains and bovine λ-light 
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chains (Reynaud et al. 1994; Parng et al. 1996). Both in intermediate and exceptionally 

long CDR3H conserved short nucleotide sequences (CSNS) were inserted into the 

IGHV-IGHD junction. This mechanism contributes to antibody diversification in all 

immunoglobulin heavy chain isotypes and CDR3H lengths. As the insertion of CSNS is 

supposed to directly follow antigen exposure (Koti et al. 2010), class switch 

recombination is supposed to be responsible for isotype-independent exceptionally 

long CDR3H in cattle. In addition, exceptionally long CDR3H do not have a 

conventional antigen binding site because these CDR3H protrude from the variable 

domain with support from the λ-light chains. Antigen binding is undertaken by side 

chains that are exclusively contained within long CDR3H regions, as investigated by 

structural comparisons with protein toxins (Ramsland et al. 2001).  

As described in humans (Corbett et al. 1997), mice (Kaartinen and Mäkelä 1985), 

chicken (Reynaud et al. 1994), and rabbits (Friedman et al. 1994), mainly hydrophilic 

amino acid residues such as Tyr, Ser, and Gly were identified in the bovine 

exceptionally long CDR3H. The occurrence of the hydrophilic reading frame in antigen-

binding loops is thought to enhance flexibility and recruit somatic hypermutations for 

advantageous antigen binding (Corbett et al. 1997).  

In accordance with previous descriptions, multiple and mainly even numbered Cys 

accumulated in the middle of the exceptionally long CDR3H were identified (Saini et al. 

1999a; Kaushik et al. 2009). They are predicted to form intra and inter CDRH disulfide 

bonds that rigidify the combining site or help to stabilize long CDR3H, as demonstrated 

in the crystallized human Fab Kol (Schmidt et al. 1983), the camel cAb-Lys3 single 

domain antibody (Desmyter et al. 1996), and the bovine Fabs BLV1H12 and BLV5B8 

(Wang et al. 2013). Former observations of an additional Cys in CDR2H when there 

were only one or three Cys in CDR3H (Saini et al. 1999a), or at least one Cys in 

CDR3H regions containing more than 12 amino acid residues and no Cys in CDR3H 

with less than ten amino acids (Lopez et al. 1998) were verified with some 

reservations. The numbering system had an influence on the number of additional Cys 

in CDR2H and some sequences with intermediate CDR3H lengths did not possess any 

Cys. 

The bovine immunoglobulin heavy-chain locus was annotated, the expression of 

exceptionally long CDR3H in the five bovine immunoglobulin isotypes was 

demonstrated, and their genomic origin was specified. Thus, this study reviewed the 

opinion that exceptionally long CDR3H are a unique feature of bovine IgM and IgG1-3. 



                                                                                          Chapter 4: General Discussion 

 

240 

 

 

The new bioinformatics framework enables more detailed analyses of bovine 

immunoglobulin heavy chains and substantially contributes to the understanding of the 

development of the transcribed bovine immunoglobulin repertoire (publication 4). It is 

now possible to analyze the unique exceptionally long CDR3H group of bovine 

immunoglobulin heavy chains. Possible gene conversions within the variable region of 

bovine heavy chains were examined, too. Further, the dominantly transcribed IGHV, 

IGHD, and IGHJ gene segments and their combinatorial diversity were investigated. In 

contrast to previous studies, this investigation extended analyses to breed specific 

differences in the four cattle breeds Aubrac (A), German Simmental (GS), German 

Black Pied (GBP), and Holstein Friesian (HF). 

Recent studies on bovine immunoglobulin genetics focused on antibody diversification 

strategies and the junctional diversity of the antibody repertoire. Bovine specific 

diversification mechanisms were identified such as the generation of exceptionally long 

CDR3H (Saini et al. 1999b; Walther et al. 2013; Wang et al. 2013), the insertion of 

conserved short nucleotide sequences (CSNS) at the IGHV-IGHD junction (Koti et al. 

2010), the use of pseudogene fragments in lambda light chains, as well as gene 

conversions (Parng et al. 1996), and somatic hypermutations independent of exposure 

to external antigens during B-cell development in lambda light chains (Lucier et al. 

1998). In addition, new germline gene segments were determined in the recent years 

(Niku et al. 2012; Walther et al. 2013; Liljavirta et al. 2014). Nevertheless, the current 

bovine genome assembly is still incomplete and the full germline repertoire remains 

under active investigation.  

Previous analyses of rearranged immunoglobulin germline gene segments applied 

various software tools for sequence alignments. Due to the difficult and error prone 

manual assembly of different genes, specialized software tools have been developed 

such as IMGT/Junction Analysis (Yousfi Monod et al. 2004), IMGT/V-QUEST (Brochet 

et al. 2008; Giudicelli et al. 2011), IMTG/HighV-QUEST (Alamyar et al. 2012), VBASE2 

(Retter et al. 2005), JoinSolver (Souto-Carneiro et al. 2004), iHMMun-align (Gaeta et 

al. 2007), and IgBLAST (Ye et al. 2013). Only IgBLAST provides different settings for 

nucleotide and protein sequences, the numbering system of Kabat or the IMGT system 

(Lefranc et al. 2003; Kabat et al. 2006), and germline gene database searches (Ye et 

al. 2013). Matching germline IGHV, IGHD, and IGHJ genes, as well as details at 

rearrangement junctions may be analyzed. Organisms such as human, mouse, rat, 
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rabbit and rhesus monkey are supported but the representation of livestock is missing 

or incomplete. In particular, the bovine specific occurrence of exceptionally long 

CDR3H is not taken into account. For more detailed analyses of the origin of the 

immunoglobulin diversity considering species-specific diversification mechanisms, a 

new bioinformatics framework was developed. Three different procedures were applied 

to improve biological significance. Consequently, the program is based on nucleotide 

sequences, searches our updated bovine specific immunoglobulin germline gene 

database, and is able to load other pre-designed databases. The currently 

recommended and most widely used IMGT nomenclature is used for the delineation of 

FR and CDR. The adjustment of search parameters for IGHV an IGHJ and especially 

for the identification of IGHD is also possible.  

The analysis of Ig heavy chain variable regions in the four cattle breeds revealed the 

usage of 15 different IGHV segments, 21 IGHD segments, as well as two IGHJ 

segments. Within the breeds, statistical analyses showed significant different 

transcription levels of IGHV, IGHD, and IGHJ segments. IGHV1S39 and IGHV3/33 

were used most frequently. The segments IGHV1S26, IGHV1S32, IGHV1S33, 

IGHV1S37, and IGHV1S38 were rarely used. Both findings were consistent with 

findings for IGHV1S39, IGHV3/33, IGHV1S26, and IGHV1S38 in bovine fetal bone 

marrow, ileum, and spleen (Liljavirta et al. 2014). The transcription of IGHV1S32 and 

S37 was described for the first time. In all breeds IGHDS8, IGHDS5, IGHDS10, and 

IGHDQ52 (=IGHDS9) were preferred. IGHDS1 to IGHDS8 were transcribed in 

antisense direction, too. In previous studies 14 IGHD were transcribed, where IGHDS5 

was the most frequent one in 42% of the sequences analyzed in bovine fetus (Liljavirta 

et al. 2014). The germline IGHJ1 was clearly preferred but IGHJ6 (Liljavirta et al. 2014) 

was transcribed in small proportions. In Aubrac, procedure 3 confirmed IGHV1S39-

IGHD5-IGHJ1 as the most common recombination of gene segments which is identical 

to the most frequent finding in bovine fetus (Liljavirta et al. 2014). This recombination 

belongs to immunoglobulins possessing a CDR3H region of intermediate length.  

Possible gene conversion events were identified. For instance, the pseudogene 

IGHV4Ψ seem to contribute to gene conversion events by nucleotide substitutions. 

This gene segment meets the criteria for gene conversion such as the location 

upstream of the rearranged segment (Reynaud et al. 1989; Becker and Knight 1990) 

and clusters of nucleotide changes (Parng et al. 1996). The flanking homology of the 

conversion region also supports the genetic exchange (Becker and Knight 1990) and 
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the separation from IGHV6 by more than 18 kb on the genome allows looping during 

rearrangement (Walther et al. 2013). In comparison, in chicken the nearest 

pseudogene is separated by 7 kb (Reynaud et al. 1989). Nevertheless, it is difficult to 

consider the order of gene segments to evaluate the plausibility of other gene 

conversions because of the incomplete annotation of the bovine genome (Niku et al. 

2012; Walther et al. 2013). Finally, a rare exchange between the two bovine VH 

families is indicated. These results might be an influence of breed or method of 

analysis when compared to previous results (Niku et al. 2012).  

In the CDR3H, three different groups of lengths were examined in all four cattle breeds: 

short CDR3H (group 1, ≤10 aa), intermediate length CDR3H (group 2, 11-47 aa), and 

exceptionally long CDR3H (group 3, ≥48 aa). The breed GS possessed the highest 

percentage of group 3 CDR3H. In this study, the longest CDR3H with 65 amino acids 

were found in GS and HF sequences, whereas the longest ever detected CDR3H in 

cattle was 67 amino acids long using IMGT numbering (Walther et al. 2013). Four 

amino acids made up the shortest CDR3H in A animals, GS animals, and HF animals.  

The combinatorial diversity of transcribed germline IGHV, IGHD, and IGHJ-segments 

was represented by 162 different rearrangements. They were expressed with 

significant differences (procedure 3). Different rearrangements were found in the four 

breeds, whereas 91 different combinations occurred in A, 74 in animals of GBP, 72 in 

GS animals, and 85 in the breed HF. Most of these combinations were observed in 

less than ten sequences but seven occurred in up to 21 sequences in all four cattle 

breeds examined.  

In sequences of group 1 CDR3H, the combination of IGHV3-IGHDQ52 (sense, BTA8)-

IGHJ1 (AY158087) dominated over all breeds using procedure 3. As IGHDQ52 

possesses only four amino acids, these results explain best the origin of short CDR3H. 

Sequences of group 3 CDR3H mostly exhibited IGHV10-IGHD2 (sense, (Shojaei et al. 

2003))-IGHJ1 (procedure 3) in all breeds. Only results from this procedure identified 

biological meaningful combinations of germline IGHV, IGHD, and IGHJ, and gave the 

best explanation for the origin of group 3 CDR3H. IGHV10 contributed solely to those 

CDR3H of exceptional lengths (Niku et al. 2012; Walther et al. 2013; Liljavirta et al. 

2014). The “Thr-Thr-Val-His-Gln” terminal motif of IGHV10 that initiates an ascending β 

strand in the folded antibody, is assumed to enable the formation of the “stalk and 

knob” structure together with inserted conserved short nucleotide sequences (CSNS) 

(Wang et al. 2013; Liljavirta et al. 2014). Further, IGHD2 is the longest IGHD segment 
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identified so far. In contrast, sequences of group 2 showed a higher number of 

recombinations than sequences of group 1 and 3. The few preferably rearranged gene 

segments within group 3 CDR3H may indicate specialized antibodies because group 3 

regions are unique in cattle.  

Variability plots indicated quite similar features of varying amino acid residues at each 

position within the variable region in all breeds. From CDR1H to CDR3H variability 

increased, which was described already as concentrated areas of diversity in equine 

heavy and light chain CDRs (Tallmadge et al. 2013; Tallmadge et al. 2014). In 

transition areas between FRHs and CDRHs variability was higher than in the middle of 

CDRHs. The highest variability within the FRHs was identified at position 96 in FR3H. 

This residue is located on the outer surface of the variable region of the 

immunoglobulin molecule (Wang et al. 2013) within the area where the constant region 

faces the variable region. The high variability at this position may indicate an influence 

on the position and sterical orientation of variable and constant region. This may affect 

light chain pairing because heavy chains possessing group 3 CDR3H are connected to 

a special type of lambda light chains (Saini et al. 2003; Wang et al. 2013). 

The highest number of recombinations and variability were observed in the breed A, 

while GS possessed the lowest number of recombinations and showed less variability 

except in the middle of the CDR3H region. Therefore, the contribution of insertions and 

deletions to diversity is indicated in case of few rearrangements (Larsen and Smith 

2012). The breeds A and GS were kept under the same management in a mixed herd, 

whereas GBP and HF were kept at different farms. Consequently, the breeds kept in 

different areas were exposed to different antigens. Thus, the individual number of 

rearrangements per breed and differences in variability additionally indicate a 

specialized immune response as animals on one farm are challenged with the same 

environment. 

Important new results were gained by the application of the newly developed 

bioinformatics framework. Analyses demonstrated that the bovine heavy chain diversity 

is not restricted to the use of a limited number of germline genes although there are 

preferred rearrangements within the three groups of CDR3H lengths. We also found 

strong evidence for gene conversion using pseudogenes. Despite current advances in 

the understanding of bovine immunoglobulin diversification, future investigations of the 

germline repertoire are necessary. 
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Conclusions 

 

This thesis contributed essentially to the more detailed understanding of the expressed 

immunoglobulin repertoire in cattle and horses.  

 

Allotypic and allelic variants have been described in equine lambda light chains for the 

first time. Individual mutations within the breeds are supposed to enable the 

transcriptional use of pseudogenes. Several amino acid residue substitutions were 

located at the accessible surface as confirmed by homology-based predicted 3D 

structural analysis. These modifications are supposed to result in distinct serological 

properties of the allotypic variants. Further, one of the conserved residues for the main 

interaction of IGLC and IGHC1 was affected and, therefore, the stable assembly of 

heavy and light chains might be changed. 

Specific investigations on functional differences of allotypic variants are missing in 

horses, but similar to cattle heterozygotic horses are thought to possess an advantage 

in their humoral immune response.  

Significant differences in transcription frequencies of IGLV and IGLC were observed 

within and between the two horse breeds examined. As these breeds with different 

stud book sizes and breeding goals were kept under different conditions, the results 

could be linked to breeding and an influence of the exposure to antigens is strongly 

indicated.  

 

The bovine immunoglobulin heavy-chain locus seems to be annotated incorrectly and 

incompletely because inconsistent germline gene segments were identified on various 

bovine autosomes. Consequently, future investigations of the germline repertoire are 

necessary. 

The CDR3H length heterogeneity was found in all bovine immunoglobulin isotypes. 

Hence, exceptionally long CDR3H are not primarily generated to compensate the 

restricted flexibility of IgM and class switch recombination contributes to the bovine 

specific long CDR3H in all immunoglobulin isotypes. 

Previous analyses of rearranged immunoglobulin germline gene segments applied 

various software tools for sequence alignments. As underlying databases did not 

support the bovine specific occurrence of exceptionally long CDR3H and more detailed 

analyses of the transcribed gene segments was required, a new bioinformatics 
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framework was developed. Within the breeds, statistical analyses showed significant 

different transcription levels of IGHV, IGHD, and IGHJ segments as described for 

equine lambda light chains. In the CDR3H, three different groups of lengths were 

examined in all four cattle breeds. Thus, exceptionally long CDR3H are neither 

restricted to isotypes nor to cattle breeds. The combinatorial diversity of transcribed 

germline IGHV, IGHD, and IGHJ-segments showed significant differences. Only few of 

these rearrangements were preferred within group 3 CDR3H and may indicate 

specialized antibodies because group 3 regions are unique in cattle. Although the 

annotation of the bovine germline repertoire is incomplete, possible gene conversion 

events were identified within the variable region of bovine heavy chains.  

The highest variability within the FRHs was identified at position 96 in FR3H may 

indicate an influence on the position and sterical orientation of variable and constant 

region. 

The breeds A and GS were kept under the same management in a mixed herd, 

whereas GBP and HF were kept at different farms. Consequently, the breeds kept in 

different areas were exposed to different antigens. Breed specific numbers of 

recombinations and differences in variability were observed and may indicate a 

specialized immune response as animals on one farm are challenged with the same 

environment.  
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Future Prospects 

 

Further research in this field should concentrate on more detailed analyses of both the 

germline repertoire, as well as the expressed immunoglobulin repertoire in cattle and 

horses. Allelic or haplotypic differences for both variable and constant region genes 

should be investigated and linked to individuals or breeds. For instance, in vitro 

analyses of bovine IgG already determined the influences of genetic variations on the 

immune response (Corbeil et al. 1997; Bastida-Corcuera et al. 1999a; Bastida-

Corcuera et al. 1999b; Bastida-Corcuera et al. 2000). Similar in vitro studies of the 

effector functions of recombinant versions of the seven equine IgG subclasses also 

revealed different effects on the immune response (Lewis et al. 2008). Subsequent 

studies in genetic, structural, and configurational properties of bovine and equine 

immunoglobulins, as well as analyses of the immunoglobulin repertoire after infection 

or immunization might offer opportunities for the development of new antibody-based 

therapeutics. The results will contribute to the analysis and generation of synthetic 

recombinant antibodies, which replace the production of recombinant antibodies from 

animals. In addition, unfavorable side effects of conventional therapeutics may be 

excluded and higher antigen specificity will be achieved. Consequently, recombinant 

antibodies and antibody fragment related products are important tools for research, 

diagnostics and therapy (Hust and Dubel 2004). However, only few engineered 

species-specific antibodies have been developed against veterinary pathogens (Koti et 

al. 2014). A very promising outcome from immunoglobulin research might be the 

construction of tailor-designed antibodies based on the format of single chain 

fragments variable (scFv). In these antibodies VH and VL domains are linked together. 

Therefore, naïve or immunized immunoglobulin libraries have to be constructed. Then, 

phage display can be used to identify highly affine and neutralizing recombinant scFv 

molecules against any desired viral, bacterial, and parasitic antigenic site, as well as 

toxins. Through genetic manipulation or the fusion of an appropriate constant domain, 

a promising scFv-molecules can be enhanced, for example to scFv-FCGRT (FcRn) 

fusion proteins (Kontermann 2011; Koti et al. 2014) or to complete IgG antibodies from 

different species as established for human antibodies (Moutel et al. 2009). A further 

advantage is the elongated half-life time and clearance of scFvs in vivo, that also 

achieves effector functions such as opsonization, complement-dependent cytotoxicity 

(CDC), and antibody-dependent cellular cytotoxicity (ADCC).  
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In addition, analyses of antigen/antibody binding using X-ray crystal structures (Saini et 

al. 1999a; Saini and Kaushik 2002; Wang et al. 2013) and sequencing data from high-

throughput next generation sequencing will give valuable information on antigen-

/antibody interactions. Subsequent amino acid replacement, especially in the CDR-

regions may lead to recombinant antibody molecules with enhanced binding efficiency.  
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