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Abstract 

Cardiovascular diseases and their long term consequences constitute serious health 

and economic burdens. Although promising new therapeutic approaches to ameliorate 

the detrimental consequences have been introduced, there is still no therapy that would 

lead to a therapeutically efficient replacement of lost cardiomyocytes (CMs), e.g. after a 

myocardial infarction. CMs can be reliably generated from pluripotent stem cells, 

including embryonic and induced pluripotent stem cells. Parthenogenetic stem cells 

(PSCs) have recently been introduced as an alternative, attractive pluripotent stem cell 

entity. PSCs generated from pharmacologically activated unfertilized oocytes contain 

only maternal chromosomes, and show a growth and differentiation behavior similar to 

embryonic stem cells (ESCs). The unique chromosomal constitution of PSCs makes 

them largely haploidentical, creating the possibility for immunological matching.  

In this study we demonstrated that transgenic major histocompatibility complex (MHC)-

haploidentical PSCs (H-2d/d) can be generated carrying a neomycin resistance gene 

(NeoR) transcribed under the control of the CM-restricted alpha myosin heavy chain 

(MYH6) promoter for antibiotic selection of PSC-CMs. Differentiation and 

cardiomyocytes purification could be achieved at a large scale in suspension culture 

spinner flasks. PSC-derived non-myocytes (NM) express MHC-I which was significantly 

upregulated after interferon gamma (IFNγ) stimulation. PSC-derived CM did not express 

MHC-I and MHC-II under basal conditions, but were up-regulated after IFNγ treatment. 

Expression of co-stimulatory molecules (CD40, CD80 and CD86) was not evident in 

PSC-derivatives under baseline or IFNγ stimulated conditions. PD-L1 expression was 

upregulated after IFNγ stimulation. In vitro immune cell proliferation assays showed that 

PSC-CM and PSC-NM had strong effect on lymphocyte activation, while PSC-EHM had 

negligible effect on lymphocyte stimulation. Implantation of PSC-CM under the kidney 

capsule suggested enhanced survival under MHC-matching. In conclusion, this study 

provides insight into the immunological properties of PSC-derived cardiomyocytes and 

their derivatives.  
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1 Introduction 

1.1 Cardiovascular diseases and cardiac tissue engineering 

Patients commonly lose approximately 50 grams, i.e. 10% of the total heart muscle 

mass upon myocardial infarction (Vunjak-Novakovic et al., 2010). This loss in contractile 

cells is for the most part irreversible and thus leads to contractile failure of the heart. 

Heart failure is a leading cause of death throughout the world (Doppler et al., 2013; 

Sanchez et al., 2006). In light of an increasing life expectancy and incidence of 

cardiovascular insults with age and the increasing effectiveness of acute medical 

interventions leading to the stabilization of hemodynamics without any palpable 

remuscularization, there is a pressing need to develop novel therapeutics to regenerate 

or biologically repair the failing heart. 

Drug and device therapies (e.g. cardiac resynchronization, left ventricular assist 

devices) have improved the prognosis of heart failure patients (Katz, 2008). However, in 

end stage heart failure, heart transplantation remains the only causal therapy (Agnetti et 

al., 2015). Due to the shortage of organ donors (~300 heart transplants are performed 

annually in Germany), heart transplantation will remain an option only for a few selected 

heart failure patients and cannot be considered as a therapeutic solution for the 

anticipated heart failure epidemic. In vitro engineered heart muscle is thus developed to 

overcome this limitation and provide ideally functional and immunologically matched 

allografts.   

Tissue engineering combines cells, biomaterials and growth factors to generate 

functional three-dimensional (3D) tissue outside of the body. Cardiac regeneration using 

engineered tissue requires the seamless integration of bioengineered structure into the 

myocardium. Structural, functional and immunological properties of the engineered 

grafts have to be matched with the recipient to achieve this (Karikkineth and 

Zimmermann, 2013; Soler-Botija et al., 2012; Ye et al., 2013). 

The heart is a highly complex organ with contractile, conductive and vascular systems 

working together to provide its dynamic function. The heart is one of the first fully 
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functional organs formed in the human body and mechanically the most dynamic one 

(Buckingham et al., 2005). Cardiomyocytes form a three-dimensional network that 

propagates electrical signals across cellular junctions to trigger mechanical contractions 

and pump the blood (Severs, 2000). However cardiomyocytes make up for only 25-35% 

of the cells in an adult heart while endothelial cells, fibroblasts and smooth muscle cells 

represent the majority of the cardiac cell population (Bergmann et al., 2015; Pinto et al., 

2016). 

Several groups have reported promising results with various methods for constructing 

cardiomyocytes seeded patches (Ye et al., 2013).The first engineered cardiac muscle 

with palpable contractile performance was generated from chick embryo 

cardiomyocytes in collagen hydrogels (Eschenhagen et al., 1997) by an adaptation of a 

three-dimensional culture format for biophysical studies of chick embryo fibroblasts 

(Kolodney and Elson, 1993). This protocol could be successfully adopted to the rat 

model and further optimized by the introduction of MatrigelTM to enhance 

cardiomyocytes spreading and mechanical loading and to improve force development 

(Zimmermann et al., 2000). Function and geometry could subsequently be optimized by 

adding non-myocytes (Naito et al., 2006b) and fusion of individual tissue units 

(Zimmermann et al., 2006). Most recently combined electromechanical stimulation was 

introduced to further advance tissue maturation (Godier-Furnemont et al., 2015). This 

engineered heart muscle (EHM) technology was also demonstrated to be applicable to 

mouse and human pluripotent stem cell derived cardiomyocytes (Didie et al., 2013; 

Soong et al., 2012; Tiburcy et al., 2014). Alternative tissue engineering technologies 

include cell sheet engineering in which three dimensional tissues are formed by layering 

cell sheets without any additional scaffold materials (Shimizu et al., 2002).   

Implantation of EHM on chronically scarred (Zimmermann et al., 2006) or acutely 

injured (Didie et al., 2013) myocardium was feasible and demonstrated therapeutic 

efficacy, i.e., enhance systolic thickening of the infarct region. The therapeutic effect 

was most pronounced in rats with overt heart failure (Zimmermann et al., 2006). In a 

recent xenograft study of human EHM in immune compromised rats (RNU-rats) long-

term survival of engrafted cardiomyocytes and a delayed disease progression after 
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ischemia/reperfusion injury could be demonstrated (Riegler et al., 2015). A concurrent 

finding was strong vascularization of the primarily avascular grafts upon implantation. A 

surprising observation already in an earlier syngeneic implantation model was strong 

immune rejection (Zimmermann et al., 2002). Hence, immune suppression had to be 

applied and was used successfully in the follow-up allograft study (Zimmermann et al., 

2006). To address the immunological complication also in an allograft setting, 

parthenogenetic stem cells were developed and tested in mice with matching and 

mismatching H-2 composition (Didie et al., 2013). The results of this study were in line 

with the hypothesis that haploidentical parthenogenetic stem cells would represent more 

generic donor lines for cell based tissue repair because of their less complex variation in 

the MHC locus (Doulatov and Daley, 2013). 

1.2 Stem cell sources 

A human left ventricle consists of 6 ±1.8 x 109 myocyte nuclei which varies depending 

on the age of the individual (Olivetti et al., 1991). After a myocardial infarction 

approximately one billion cardiomyocytes (Murry and Keller, 2008) are lost, that have to 

be replaced in a successful tissue engineering cardiac repair approach. Several animal 

studies showed a successful engraftment of immature cardiomyocytes into the adult 

heart (Delcarpio and Claycomb, 1995; Koh et al., 1993; Koh et al., 1995; Muller-Ehmsen 

et al., 2002; Rubart et al., 2003). Limiting factors for such a therapeutic approach are 

low cell retention and the availability of cardiomyocytes at clinical scale and quality. 

Pluripotent stem cells could overcome the limited provision of cardiomyocytes if their 

differentiation into functionally competent cardiomyocytes can be ensured. Large efforts 

have been made to develop strategies for the differentiation of different pluripotent stem 

cell types into cardiomyocytes. Embryonic stem cells constitute the prototypic 

pluripotent stem cell type. Mouse embryonic stem cells (ESCs) appear to be derived 

preferentially from the early inner cell mass (Evans and Kaufman, 1981). At this stage, 

murine ESCs rely on the presence of leukemia inhibitory factor (LIF) to maintain 

pluripotency. In contrast, human embryonic stem cells appear to be largely derived from 

the epiblast and thus dependent on basic fibroblast growth factor (bFGF) signaling to 

maintain pluripotency in culture (Thomson et al., 1998). In spite of these differences, 
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human and murine ESCs exhibit comparable differentiation potential. Here it is 

important to note that differences in the extent of cardiac differentiation are often 

reported for different ESC lines (Hannes et al., 2015; Sepac et al., 2012). 

Mainly owing to ethical concerns related to the inevitable destruction of a potentially 

viable embryo during ESC generations, alternative pluripotent cell sources have been 

sought for. These include parthenogenetic stem cells (PSC) (Didie et al., 2013), male 

germline stem cells (maGSCs) (Guan et al., 2006) and induced pluripotent stem cells 

(iPSC) (Takahashi and Yamanaka, 2006) (Figure 1).  

Embryonic stem cells (ESCs) are highly susceptible to directed differentiation towards 

the cardiomyocyte lineage (Burridge et al., 2015; Kattman et al., 2011; Lian et al., 2013; 

Zhu et al., 2011)  Induced pluripotent stem cells have similar properties, but appear 

more variable in outcome (Wright et al., 2014). Although less studied than ESC and 

iPSC, there is clear evidence for similar cardiomyogenic potential in ESC and PSC 

(Didie et al., 2013).                             

                        

Figure 1: Generation of stem cells for cardiac tissue engineering. The inner cell mass of embryonic 

and parthenogenetic blastocysts can be harvested to establish pluripotent stem cells from its outgrowths. 

Male germ line stem cells and induced pluripotent stem cells require selection in culture or 

reprogramming of somatic cells. Figure adapted from Zimmermann (2011). 
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1.3 Cardiac differentiation of stem cells 

It has been demonstrated that the formation of ESC aggregates induces multicellular 

interactions and thus promotes their differentiation into the derivatives of all three germ 

layers (Wobus and Boheler, 2005). This property is exploited commonly for the 

induction of cardiac differentiation in mouse ESCs. ESC aggregates are generally 

prepared via the formation of suspended spherical aggregates called embryoid bodies 

(EB).  

There are two major conventional methods for the preparation of EBs. One is a hanging 

drop method and the other is a suspension culture method. In case of the hanging drop 

method, the droplets of ESC suspension are hanged from the lid of culture dishes for 

several days and then an EB is formed in each droplet. In this method, the size of EBs 

can be controlled by the cell concentration in the suspension. It has been shown that 

the direction and efficiency of ESC differentiation significantly depend on the size of EBs 

(Ng et al., 2005; Wobus et al., 1991). Therefore, the hanging drop method is 

advantageous to prepare size-controlled EBs for the efficient and reproducible ESC 

differentiation into a specific lineage. On the other hand, the hanging drop method is 

time consuming and labor-intensive and thus disadvantageous in the mass preparation 

of cardiomyocytes.  

In case of the suspension culture method, ESCs are cultured in non-adhesive culture 

dishes for several days and then EBs are forming randomly and spontaneously. In this 

method, a large number of EBs can be easily prepared. In contrast, however, the size of 

EBs is not controlled and thus the differentiation efficiency and reproducibility becomes 

much lower than the case of hanging drop method (Kurosawa, 2007). For the 

generation of large number of cardiomyocytes, more cost-effective culture methods are 

needed. Several research groups started to develop scalable culture methods for the 

mass preparation of size-controlled EBs, such as multiwell plates (Kim et al., 2007), 

microwell substrates (Khademhosseini et al., 2006; Mohr et al., 2006), patterned culture 

plates (Bauwens et al., 2008; Sasaki et al., 2009) and rotary suspension culture in 

bioreactors (Carpenedo et al., 2007). 
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Selecting bioreactors for stem cell expansion and differentiation mainly depends on 

whether the cells are adherent, suspension grown as single cells or aggregates for EB 

formation (King and Miller, 2007). In addition, bioreactors have significant advantages 

over static suspension culture which are as follows: scale up of expansion and 

differentiation of ES cells, less labor-intensive, less space requirement and the ability to 

monitor and control critical culture parameters (i.e. pH, dissolved oxygen, glucose 

consumption and lactic acid production) (Kempf et al., 2014). In this study we have 

chosen spinner flask type bioreactors for the differentiation of PSC into cardiomyocytes 

in large scale. 

Spinner flasks have been developed, as promising in vitro systems for stem cell 

expansion, EB cultivation and differentiation of ES/iPS cells into specific cell types 

(Serra et al., 2009). Spinner flasks provide attractive benefits due to their simple design, 

scalable configuration, the possibility for culture of cells in aggregates or microcarriers 

(Abranches et al., 2007) and ease of continuous monitoring for tight regulation of the 

culture environment (e.g. O2 tension, pH, shear forces, medium exchange rate) 

(Zandstra et al., 2003). The rotation of hanging pendulum in spinner flasks results in the 

formation of large ES cells aggregates within a few days (Schroeder et al., 2005). The 

scaling-up is generally simple because of improved homogenous mixing of cell 

suspension achieved by stirring. Numerous culture parameters for this system have 

been optimized including the agitation rate, cell concentration and medium 

compositions. Consequently, an optimal medium velocity promoting the suitable shear 

stress for the cell type being cultured is also important (Fok and Zandstra, 2005). 

 

For clinical uses, pluripotent stem cells must be propagated and efficiently differentiated 

into cardiomyocytes which should be highly purified before transplantation to prevent 

the development of tumors derived from contaminating pluripotent stem cells (Lin et al., 

2010). Several biochemical substances, such as retinoic acid (Wobus et al., 1997), 

ascorbic acid (Takahashi et al., 2003), nitric oxide (Kanno et al., 2004), Bone 

morphogenetic protein (BMP) inhibitors (Yuasa et al., 2005), Wnt inhibitors (Naito et al., 
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2006a) and activin A (Laflamme et al., 2007), were found to promote cardiac 

differentiation of ESCs. 

With respect to the purification of ESC-derived cardiomyocytes, Klug et al. developed a 

transgenic purification method using antibiotic-resistant gene, which was designed to  

be expressed in differentiated cardiomyocytes; cardiomyocytes purities of 99% can be 

achieved with this approach (Klug et al., 1996). Similar genetic purification methods 

were developed later by the use of reporter genes such as enhanced green 

fluorescence protein (EGFP) which yields around 98% pure cardiomyocytes (Anderson 

et al., 2007; Hidaka et al., 2003). Cardiomyocytes up to 99% purity was also obtained 

by transgene-free metabolic selection after differentiation of stem cells (Tohyama et al., 

2013). Enriched populations of functional cardiomyocytes with up to 88% purity can also 

be obtained by discontinuous percoll gradient centrifugation (E et al., 2006). 

1.4 Major histocompatibility complex and transplantation immunology 

Transplantation of cells, tissues and organs between genetically non-identical 

individuals results in most cases in the development of an immune response towards 

the graft and consequently to graft destruction which poses a pivotal challenge for 

translating cell based therapeutics into a clinical application. Organ rejection is primarily 

targeted at proteins, so called alloantigens presented by donor cells at the cell 

membrane (Bradley et al., 2002). There are three distinct classes of alloantigens: (1) the 

major histocompatibility complex antigens (MHC), (2) the minor histocompatibility 

complex (mHC) antigens and (3) the ABO blood group antigens. The most rapid and 

acute rejection occurs due to failure to properly match donor and recipient MHC alleles 

(Drukker, 2004). 

Human MHC molecules are known as human leukocyte antigen (HLA) and mouse as H-

2, for histocompatibility 2. The HLA genes are located on human chromosome 6.The 

mouse H-2 genes are located on mouse chromosome 17 (Figure 2). The MHC genes 

are traditionally divided into three classes: the MHC class I and class II genes, which 

encode the antigen-presenting MHC molecules and the class III genes, a miscellaneous 
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group of genes encoding molecules with important immune functions and others with no 

known immune function. Another immunologically highly relevant gene, the gene 

encoding b2-microglobulin lies outside the MHC coding region, on mouse chromosome 

2. All the other genes encoding chains of the class I and class II MHC molecules are 

present in several different copies within the MHC genomic region and each cell 

expressing them displays several different MHC molecules (Moussa et al., 2012). The 

peptide antigen-presenting MHC molecules are known as classical MHC molecules. 

There are also structurally related molecules of both classes that do not function in the 

presentation of peptide antigens to T-cells: these are known as non-classical MHC 

molecules. The classical MHC molecules are present in more than 500 different 

variants. 

 

Figure 2: MHC polymorphism on mouse chromosome 17. Distribution of MHC- molecules on mouse 

chromosome 17. Figure adapted from Moussa et al. (2012). 

The MHC antigens were originally recognized for their role in initiating T-cell responses 

that lead to the rejection of transplanted tissue. The MHC class I antigens are 

traditionally associated with the activation of CD8+ cytotoxic T-lymphocytes (CTLs), 

whereas MHC class II antigens are recognized by CD4+ helper T-lymphocytes (TH) 

(Bradley et al., 2002). 
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It is well established that HLA compatibility determines kidney and bone marrow 

allograft survival (Picascia et al., 2014). Cardiac rejection can be either hyper acute, 

acute or chronic which attack two different compartments of the heart. (1) Hyper acute 

rejection is mediated by preformed antibodies in the recipient directed against donor cell 

antigen’s (Dronavalli et al., 2015). (2) Acute rejection is defined by interstitial 

mononuclear cell infiltrates with myocyte damage. (3) Chronic rejection is mediated by 

constant low grade inflammation of the vasculature with similarities to classical 

arteriosclerosis and subsequent organ failure (Kaul et al., 2015).  

The behavior of alloantigen specific T-cells in response to heart, skin and islet allografts, 

showed marked differences in the susceptibility of different organs to rejection and 

resistance to the induction of tolerance. It could be demonstrated that CD8+ T-cells are 

dependent on CD4+ T-cells during cardiac allograft rejection in contrast to skin and islet 

allografts (Jones et al., 2001). It has also been demonstrated that increasing the mass 

of transplanted organs prolonged graft survival (Sun et al., 1995).  

The expression of MHC antigens in various organs and tissues was determined 

intensively in animals and humans. Several groups show that expression of class II 

antigens is increased in rejected organs and in tissues undergoing autoimmune injury, 

in viral disease and in inflammatory conditions (Isobe et al., 1992). High expression of 

MHC-I on the myocardium was observed in 75% of cardiac biopsies from patients who 

had received cardiac transplantation (Rose et al., 1986). However, in most studies 

MHC-expression was analyzed in histological samples of whole hearts including non- 

cardiomyocytes. Cardiac interstitial cells such as endothelial and dendritic cells can 

serve as non-professional and professional antigen presenting cells respectively. Within 

the myocardium they express high levels of MHC I, MHC II and Intracellular adhesion 

molecule 1 (ICAM-1) (Karabekian et al., 2011). Native adult cardiomyocytes express 

low levels of MHC I antigens (MHC K and D in mice) and do not express detectable 

levels of MHC II antigens (MHC IA and IE in mice) (Isobe et al., 1992). 

Theoretically HLA-A, B, C antigen expression should be on the membranes of 

nucleated cells. Under normal conditions without activation of immune system there is 
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no expression of MHC class I antigen on the cardiomyocyte sarcolemma. Whether the 

absence of MHC antigen expression is a methodological problem because the antigen 

density is below the sensitivity of staining or is a true absence of these proteins is 

unclear (Hufnagel and Maisch, 1991). Interestingly allogeneic cardiosphere derived 

cells appear less immunogenic in vivo and can survive in the infarcted myocardium for 3 

weeks in order to stimulate endogenous reparative and regenerative pathways 

(Malliaras et al., 2012). 

Cardiac cells are able to upregulate MHC-antigens after viral infection. Huber et.al 

showed that two types of CD8+ T-cells infiltrate the myocardium during coxsackievirus 

B3-induced myocarditis. One type expresses αβ T-cell receptors and represents the 

classical antigen specific T-cells which are MHC antigen restricted and abundant in 

peripheral lymphoid tissues. The second type expresses γδ T-cell receptors, these cells 

are usually a minor component of peripheral lymphoid tissues, but tend to accumulate in 

inflammatory lesions. These lymphocytes recognize antigen independently of MHC 

molecules through Fas dependent apoptosis (Huber, 2000). 

Apart from MHC antigens, minor histocompatibility antigens can also trigger graft versus 

host disease (GvHD) (Goulmy, 1997; Korngold and Sprent, 1983). A number of minor 

antigens have now been described and characterized (Simpson et al., 2002). Even if 

the stem cells are from an autologous source, it is possible that so called autoantigens 

are presented followed by an immune response (Boyd et al., 2005). 

1.5 The allorecognition pathways 

The allorecognition pathways are mainly mediated by professional antigen presenting 

cells (APCs) and T-cells which can be divided into the direct and the indirect 

allorecognition pathways. In the direct allorecognition pathway donor derived APCs, 

contained within the graft, move to near lymph nodes where they interact with host 

CD4+ and CD8+ T-cells. Due to the expression of foreign MHC class II molecules 

resident CD4+ and CD8+ T-cells become activated and elicit an immune response 

leading to acute graft rejection (Figure 3).  
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In the indirect allorecognition pathway professional APCs of the host engulf antigens 

derived from transplanted cells which became necrotic or apoptotic. These MHC 

antigens are subsequently presented to host CD4+ and CD8+ T-cells in draining lymph 

nodes inducing immune rejection against somatic cells which display these antigens. In 

the context of stem cell derived cardiac cell replacement therapies mainly the indirect 

pathway would be involved since preferably pure cell population without the presence of 

APCs would be transplanted. 

                                

Figure 3: Direct and indirect T-cell allorecognition pathways. A. In direct allorecognition, T-cells 

recognize intact allogeneic MHC molecules together with the bound antigen on the surface of donor 

APCs in the graft. B. In indirect allorecognition, alloantigens are recognized as linear peptides in the 

milieu of recipient MHC class II molecules after they have been processed and presented by recipient 

APCs. Figure adapted from Bradley et al. (2002). 

1.6 Stem cell immunology 

Many stem cells express no or only low levels of MHC antigens and have been 

considered to be immune privileged or lacking the ability to induce an immune 

response. In fact, ESCs and mesenchymal stem cells (MSCs) have been considered as 

prototypes for immune privileged cells for cell transplantation studies (Menendez et al., 

2005; Yang, 2007) 
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Using standard flow cytometry, neither MHC class I nor MHC class II complexes were 

detected on the cell surface of mESCs (Magliocca et al., 2006; Tian et al., 1997). 

However, even very few MHC class I complexes on target cells are sufficient to induce 

transient calcium signaling and killing activity in CTLs (Brower et al., 1994) and the 

ability of CTLs to kill mESCs was shown in vitro (Dressel et al., 2009).  

The presence of MHC class I molecules on mESCs was also demonstrated utilizing 

lacZ-inducible, antigen/MHC class I specific T-cell hybridomas (Abdullah et al., 2007). 

These T-cell hybridomas had a lacZ reporter gene under control of the IL-2 promoter. 

Following T-cell receptor (TCR)-dependent activation upon co-culture with αPIG ESCs, 

the T-cell hybridomas expressed β-galactosidase. In addition, T-cell mediated 

responses against mESCs were demonstrated in vivo (Boyd and Wood, 2009; Dressel 

et al., 2009; Robertson et al., 2007; Wu et al., 2008).  

Contradictory data was published regarding the ability of mESCs to respond to IFNγ 

signaling. One group reported that the expression of MHC class I molecules was not 

enhanced after IFNγ treatment, neither on transcript nor on protein level (Abdullah et al., 

2007; Nussbaum et al., 2007; Tian et al., 1997). Another group reported that MHC class 

I molecule expression increased after IFNγ treatment in mESCs (Bonde and Zavazava, 

2006). Likewise, it remains uncertain how the expression of MHC class I molecules 

changes upon differentiation of mESCs. 

Lampton et al. have examined levels of mRNA and protein expression of MHC class I 

proteins, as well as several MHC class I antigen processing and presentation 

chaperones in mESCs and PSC (Lampton et al., 2008). They found that H-2K, Qa-2, 

TAP1, TAP2 and tapasin mRNAs were all expressed at low levels in undifferentiated 

and differentiated ESCs which were significantly upregulated in response to IFNγ 

treatment after 14 days of differentiation. Likewise, expression of H-2Kb and H-2Kk 

proteins were upregulated to measurable levels by IFNγ after differentiation, but Qa-2 

protein expression remained low or absent. They also found that MHC class I, TAP1, 

TAP2 and tapasin mRNAs were all expressed at very low levels in ESCs compared to 
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T-cells, suggesting transcriptional regulation of these genes in ESCs (Lampton et al., 

2008). 

It was reported that MHC class I molecules were generally up-regulated when mESC 

differentiate into teratomas in vivo (Nussbaum et al., 2007). Another study suggested 

that mESCs only transiently, between day 4 and day 6 of differentiation, slightly up-

regulate MHC class I protein expression (Abdullah et al., 2007). Also regarding the 

susceptibility of mESCs to the cytotoxic activity of natural killer (NK) cells several groups 

were able to show that mESCs are efficiently killed. This was most likely due to low 

MHC class I molecule expression, which serve as ligand for inhibitory NK cell receptors, 

combined with expression of ligands for activating NK cell receptors (Dressel et al., 

2010; Dressel et al., 2008; Frenzel et al., 2009). In summary, the findings published so 

far suggest that ESCs are probably more immunogenic than initially proposed in many 

early studies, in which a general immune privilege of ESCs was suggested (Bonde and 

Zavazava, 2006; Koch et al., 2008; Li et al., 2004; Magliocca et al., 2006). 

Allogeneic immune response was detected in mice after implantation of labeled 

embryonic stem cells in ischemic myocardium (Kofidis et al., 2005). It was also found 

that mESC transplanted into injured myocardium provoke infiltration of T-cells, B cells 

and macrophages. The transplanted cells and their progeny disappear over a period of 

weeks, most likely because of this response (Swijnenburg et al., 2005). In contrast to 

this, Fandrich et al. showed that allogeneic rat ESC-like cells injected into the portal vein 

induce a state of tolerance that allows survival of cardiac allografts of the same major 

histocompatibility complex (MHC) types as the ESC (Fandrich et al., 2002). 

Transplantation of differentiated ESC in an animal model could enhance MHC-I levels 

and the myocardium could be particularly inductive for an immune response (Drukker 

and Benvenisty, 2004). After myocardial injury, inflammation occurs which leads to 

recruitment of active immune cells (van Laake et al., 2006). It has been demonstrated 

that hESC derived cardiomyocytes can survive and mature after intramyocardial 

injection in immunodeficient mice up to 12 weeks (van Laake et al., 2007). In one of the 

studies with mESC, cyclosporin was used as a immunosuppressive agent to avoid 
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immune rejections in rats (Naito et al., 2004). In contrast transplantation of PSC into 

ischemic myocardium of immune competent animals significantly enhanced 

neovascularization and improved heart function (Liu et al., 2013a). Taken together, 

most of the in vivo experiments with stem cell-derived cardiomyocyte implantations 

were done under immunosuppression or in immune deficient animal models. 

1.7 Interferon gamma and regulation of major histocompatibility complex  

Interferons (IFNs) are proteins released by host cells in response to the presence of 

pathogens or tumor cells. They are typically divided into type I (alpha and beta) and 

type II (gamma) classes. Besides antiviral function, IFNs have broader range of anti-

proliferation and pro-inflammatory activities (Schroder et al., 2004). IFNγ exposure to 

cells can up regulate MHC class I expression on their cell surface and enhance CTLs 

recognition (Rosa and Fellous, 1988). In this way, CTLs kill bacteria and virus infected 

cells via CTL epitope/MHC class I complexes on the surface of target cells (Boehm et 

al., 1997). The components of MHC class I antigen processing machinery are 

upregulated by IFNγ through the JAK/STAT signal transduction pathway (Kohlhuber et 

al., 1997; Wu et al., 1997) (Figure 4). IFNγ performs its biological functions through 

binding to IFNγ-receptor (IFNGR). IFNGR is present on all nucleated cells. 

Initially, it was understood that CD4+ T helper cell type 1 (Th1) lymphocytes, CD8+ 

cytotoxic lymphocytes and NK cells exclusively produce IFNγ (Bach et al., 1997; Young, 

1996). However, now it is known that other cells, such as B cells, natural killer T-cells 

(NKT) and professional antigen-presenting cells (APCs) secrete IFNγ (Carnaud et al., 

1999). IFNγ production by professional APCs (monocyte/macrophage, dendritic cells 

(DCs)) acting locally may be important in cell self-activation and activation of nearby 

cells (Frucht et al., 2001). IFNγ secretion by NK cells and possibly professional APCs is 

likely to be important in early host defense against infection, whereas T-lymphocytes 

become the major source of IFNγ in the adaptive immune response (Sen, 2001).                                                                                                                                                                                                                                                                                        
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Figure 4: Interferon-gamma signal transduction pathway. Ligand (IFNγ) binding causes a 

conformational change IFNGR, such that the inactive JAK kinases are activated by phosphorylations. The 

activated JAK phosphorylates STAT1. STAT1 homodimers move to the nucleus and bind to promoter 

IFNγ activation site (GAS) elements to initiate/suppress transcription of IFNγ regulated genes. IRF-1 is 

also able to promote transcription of STAT1 through an unusual ISRE site (IRF-E/GAS/IRF-E). ICAM-1, 

Intercellular adhesion molecule-1; MIG, monokine induced by IFNγ; iNOS, inducible nitric oxide synthase; 

IRF, Interferon response factor; ISRE, Interferon stimulated response element. Figure adapted from 

Schroder et al. (2004). 

1.8 Immune regulatory properties of pluripotent stem cells 

In addition to the proposed immune privilege of ESCs due to undetectable MHC class I 

expression, further mechanisms of ESCs to evade immune responses were reported. 

Such mechanisms appear evolutionary plausible for ESCs since these cells, derived 

from the early blastocyst, need immune escape mechanisms to avoid the maternal 

immune response (Trowsdale and Betz, 2006). Abdullah et al. reported that murine 

ESCs are protected against immune responses, due to high expression of serpin 6 
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(Abdullah et al., 2007). This protein is an endogenous inhibitor of granzyme B, the 

serine protease that enables NK cells and CTLs to lyse target cells via the granule 

exocytosis pathway (Medema et al., 2001). Another known protective protein against 

cellular cytotoxicity is cathepsin B. Cathepsin B is a protease that inactivates the pore-

forming activity of perforin, thereby inhibiting the transport of granzyme B into target 

cells. It was shown that CTLs protect themselves against perforin of their own cytotoxic 

granules by expression of cathepsin B (Balaji et al., 2002). 

Furthermore, it was reported that expression of Fas ligand (FasL) on murine ESCs play 

a crucial role for their immune escape (Bonde and Zavazava, 2006). FasL is a 

transmembrane protein on cytotoxic cells that induces apoptosis in Fas receptor 

expressing cells. In addition to the granzyme B pathway, the expression of FasL is a 

mechanism of CTLs to induce apoptosis in target cells (Nagata, 1996). Cells of immune 

privileged areas such as testis or cornea express FasL, thereby avoiding the cytotoxic 

activity of infiltrating CTLs by a counter attack (Ferguson and Griffith, 1997; Griffith and 

Ferguson, 1997). Accordingly, Bonde et al. reported that 75 % of pre-activated T-cells 

became apoptotic following exposure to murine ESCs and apoptosis was inhibited by 

addition of a FasL neutralizing antibody in a concentration dependent manner (Bonde 

and Zavazava, 2006). However, in other studies no FasL expression on several murine 

ESCs was detected (Brunlid et al., 2007; Frenzel et al., 2009). In addition, no FasL 

expression was detected on human ESCs (Drukker et al., 2006; Grinnemo et al., 2006). 

It was also reported that ESCs evade the immune response by secretion of TGFβ. It is 

well established that TGFβ, released by regulatory T-cells, inhibits the activation of 

naive T-cells. The release of TGFβ by mESCs was demonstrated using ELISA and 

ESC-conditioned medium was able to suppress proliferation of CD4 positive T-cells. 

Proliferation was largely restored after addition of a TGFβ sRII/Fc fusion protein or 

addition of a TGFβ neutralizing antibody (Koch et al., 2008). Indoleamine 2,3-

dioxygenase (IDO), a tryptophan-catabolizing enzyme, suppresses immune reactions 

which is mainly observed in mesenchymal stem cells (MSC). T-cell proliferation is 

inhibited by tryptophan depletion from the cellular microenvironment and further studies 

demonstrated that the tryptophan catabolite kynurenine induces apoptosis in T-cells by 



 Introduction 

17 
 

activation of caspase-8 (Fallarino et al., 2002; Munn and Mellor, 2007; Munn et al., 

1999) 

1.9 Major histocompatibility complex homozygosity 

The issue of immune mediated rejection of an allotransplant remains a major challenge. 

Immunogenicity of a stem cell derivative depends on the expression of the highly 

polymorphic MHC genes. This polymorphism is further increased by genetic 

heterozygosity. The risk of transplant rejection is proportional to the degree of cell-

surface antigen differences between the donor cells and the recipient. In an autologous 

transplant, donor tissue is identical to the recipient. However, autologous transplants 

are not usually practical because of site availability and morbidity. Donor tissues are 

typically screened for cell-surface antigens in order to determine the degree of MHC 

compatibility with the recipient. Matching donor and recipient tissue for HLA antigens 

reduces the chance of a cytotoxic T-cell response in the recipient and thus greatly 

increases the likelihood of transplant survival. In heart transplantation with limited donor 

organ availability only ABO matching is performed (Sjogren et al., 2010). 

 A transplant can be much less immunogenic when its two MHC haplotypes are 

identical resulting in a much higher probability for tissue matching. Grafts derived from 

such homozygous stem cells, presenting as few as three or four antigens, would match 

a much wider range of hosts than a heterozygous graft (Lin et al., 2003). Because some 

HLA haplotypes have a higher distribution in the population, the use of homozygous 

stem cells holds the possibility of creating a bank of stem cells covering most 

phenotypes in the general population (Nakajima et al., 2007).  

Normal ESC derived from fertilized embryos are genetically divergent from any patient 

requiring tissue transplantation (Drukker, 2004). It was estimated that a stem cell bank 

containing 10 stem cell lines from selected homozygous HLA-typed volunteers could 

match 93% of the UK population with a minimal requirement for immune suppression 

(Taylor et al., 2011). Similarly as few as 50 such homozygous lines could potentially 

match 90% of the Japanese population (Nakatsuji et al., 2008). But the chances of 
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obtaining homozygous iPSC or ESC on a more global scale are extremely rare or nearly 

impossible. There are several ways to develop MHC homozygous grafts including the 

knockout of one MHC haplotype in a heterozygous stem cell line or the fertilization of an 

oocyte with a sperm that has an MHC identical to the oocyte or generating iPS from 

MHC homozygous donors.  

Even though iPSC seems to provide a perfect match for autologous condition, many 

reports have shown that iPSC derivatives are immunogenic either because of 

reprogramming factors or reprogramming induced DNA damage (Araki et al., 2013; Cao 

et al., 2013; Kruse et al., 2015; Zhao et al., 2011). Because of these limitations with 

HLA homozygosity from hESC and hiPSC as mentioned above one possible alternative 

is to generate HLA homozygous cell lines is by parthenogenesis. PSCs are by nature 

largely haploidentical (75% of the cell lines appear haploidentical for HLA), with only 

crossing over events during meiosis I causing some heteroyogosity (Revazova et al., 

2008)  

1.10 Major histocompatibility complex-haploidentical parthenogenetic stem cells 

The term parthenogenesis is derived from the greek word for “virgin birth”. It is a form of 

reproduction in which an unfertilized egg can develop into a blastocyst and in some 

non-mammalian species even fertile offspring. Several insect species including aphids, 

bees and ants, but also lower vertebrates such as some fish and chicken under 

developmental pressure can reproduce by parthenogenesis (Sarvella, 1973). Recently 

parthenogenesis has received considerable attention as a tool for the production of 

largely haploidentical diploid plutipotent stem cells (Didie et al., 2013; Doulatov and 

Daley, 2013). The possibility of deriving stem cells from parthenogenetic blastocysts  

without destruction of an embryo makes parthenotes also ethically widely acceptable 

and because of their typical haploidentical HLA gene loci an advantage as to HLA 

matching in an allograft setting (Wininger, 2004). A potential concern of haploidentity is 

that autosomal recessive mutations may present a potentially harmful phenotype. 
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The phenomenon of parthenogenesis was discovered in the 18th century by Charles 

Bonnet. The molecular events that lead to oocyte activation have been studied in detail 

in invertebrates, amphibians and mice. Mouse parthenotes are capable of developing 

beyond the post implantation stage (day 10 of gestation) in vivo (Kaufman et al., 1977; 

Kono et al., 2004; Surani et al., 1984); porcine parthenotes have developed up to post-

activation day 29 (limb bud stage, past the early heart beating stage); rabbit parthenotes 

until day 10–11 (Ozil, 1990); primates (Callithrix jacchus) have only been shown to 

implant (Marshall et al., 1998); in humans, parthenogenesis can occur and lead to 

ovarian teratomas (Oliveira et al., 2004), but not to full embryonic development. The 

reason for the arrested development in parthenotes is believed to be due to genomic 

imprinting. In normal zygotes maternal and paternal haploid genomes are epigenetically 

distinct and both sets are required for successful development of the organism (Sasaki 

et al., 1992; Surani et al., 1990). Since all genetic material in parthenotes is of maternal 

origin, there is no paternal imprinting component and this prevents proper development 

of extra embryonic tissues whose expression is regulated by the male genome (Surani 

and Barton, 1983). 

There is no confirmed example of unassisted mammalian parthenogenetic reproduction, 

but mammalian oocytes can be artificially activated to undergo parthenogenesis in vitro 

by a two-step protocol involving the treatment with a chemical agent (ionomycin, 

ethanol, or inositol 1,4,5-triphosphate) to elevate Ca2+ levels transiently, followed by 

application of an inhibitor of protein synthesis (cycloheximide) or protein 

phosphorylation (6-dimethylaminopurine(DMAP)) (Hipp and Atala, 2004). Success rates 

and viability appear to be species dependent.  

Mouse oocytes can be activated to undergo parthenogenesis by exposure to Ca2+ and 

Mg2+ free medium; medium containing hyaluronidase; exposure to ethanol, Ca2+ 

ionophores, or chelators; inhibitors of protein synthesis and electrical stimulation (Surani 

et al., 1984). Pronuclear formation and cleavage occurs following incubation with 

calcium ionophore and puromycin or DMAP (Nakagawa et al., 2001). Broad 

differentiation capability of primate (Macaca fascicularis) pluripotent stem cells derived 

by parthenogenesis was demonstrated. The in vitro differentiation of these cells to well 
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characterized dopaminergic neurons (Cibelli et al., 2002) and hepatocytes (Espejel et 

al., 2014) was established. Parthenogenetic stem cells (PSCs) showed self-renewal 

capacity and indefinite proliferation in vitro, but with impaired embryonic and extra 

embryonic development as a consequence of altered genomic imprinting in vivo (Allen 

et al., 1994; Nagy et al., 1989; Spindle et al., 1996). Specification to ectodermal 

differentiation is not effected in vitro (Vrana et al., 2003) and in vivo (Sturm et al., 1994), 

while endodermal and mesodermal cell lineage specifications are compromised 

developmentally in parthenotes (Allen, Barton et al. 1994). The first human PSC line 

was unintentionally created in a failed nuclear transfer experiment (Mai et al., 2007). 

Revazova et.al created intentionally, six pluripotent HLA heterozygous human PSC 

lines by chemical activation of unfertilized oocytes harvested directly from explanted 

ovaries of patients undergoing super ovulation treatment (Revazova et al., 2007). Since 

then several human parthenogenetic stem cell lines have been reported (de Fried et al., 

2008; Hao et al., 2009; Mai et al., 2007).  

Using various activation protocols, it is possible to create PSCs with different HLA 

status. Parthenogenetic activation of immature oocytes (MI) and inhibiting the extrusion 

of first polar body prevents segregation of homologous chromosome pairs (Daughtry 

and Mitalipov, 2014). This result in the generation of haploid PSC, however the 

acquisition of MI oocytes is not trivial. Parthenogentic activation of meiosis II (MII) 

oocytes with a combination of the activating agent’s ionomycin and 6-

dimethylaminopurine (6-DMAP) blocks the extrusion of the second polar body; 

therefore, activated oocytes retain all of their genetic material (Figure 5). The HLA 

genotypes of hPSCs derived from these oocytes can be heterozygous or homozygous 

due to crossing over events and thus can be genetically HLA-matched to the donors 

(Didie et al., 2013; Doulatov and Daley, 2013).  
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Figure 5: Embryonic and parthenogenetic meiosis. A. During normal fertilization the maternal or 

paternal chromosomes segregate into the first polar body (1
st
 PB) in meiosis I (MI). In meiosis II (MII) a 

further reduction of the chromosomal DNA occurs by the separation of sister chromatids and the 

extrusion of one set of chromatids as the second polar body (2
nd

 PB). Fusion of two haploid gametes 

(oocyte and sperm) results in a diploid zygote B. In heterozygous parthenogenesis, meiosis II (MII) 

arrested oocytes are activated artificially by blocking extrusion of the second polar body. Diploidy is 

maintained and the resulting blastocysts yield hetrozygous diploid parthenote. C. In homozygous 

parthenogenesis  autodiploidization of haploid genome occurs leading to the formation of homozygous 

diploid parthnotes. D. In haploid parthenogenesis haploid genome is maintained through following mitotic 

divisions resulting in the formation of haploid parthnote. PI: prophase I. Figure adapted from Daughtry 

and Mitalipov (2014). 
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2 Aims of the thesis 

The main aim of the thesis was to study the immunological properties of MHC-

homozygous PSC-derived cardiomyocytes in vitro and in vivo, with the long-term 

objective to apply engineered heart muscle derived from PSC-derived cardiomyocytes 

in human heart repair.  

The following specific aims were addressed: 

1) Set-up of a bioreactor differentiation protocol for cardiomyocytes derivation from 

PSC. 

2) Generation of engineered heart muscle (EHM) from PSC-derived 

cardiomyocytes. 

3) Characterization of the immunological properties of PSC-derivatives and PSC- 

EHM in vitro and in vivo. 

4) Characterization of immunogenicity of MHC-homozygous PSC-derived non-

myocytes and cardiomyocytes in vivo. 

 

Figure 6: Schematic representation of the project. 
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3 Materials and methods 

3.1 Molecular biology methods 

3.1.1 Transformation of competent cells 

50 µl of competent E.coli cells (DH5α) were thawed on ice and incubated with 1 µl of 

plasmid (10-100 ng) and kept on ice for 30 min. The transformation reaction mixture 

was then subjected to heat shock at 42°C for 1 min and then immediately kept on ice for 

2-3 min. In order to accelerate the bacterial growth, 250 µl of SOC medium (Invitrogen) 

was added to the mixture and incubated at 37°C, with shaking for 1hr. The SOC 

medium with bacteria (50 -100 µl) was then plated on LB agar plates containing 

ampicillin (100µg/ml) and incubated at  37°C for less than 16 hrs. 

3.1.2 Plasmid DNA preparation 

Colonies were picked from the LB-agar plates and cultured in 50 ml polypropylene 

tubes (Falcon) containing 5 ml of LB medium (Appendix) and 100 μg/ml ampicillin. The 

liquid culture was incubated at 37°C with shaking at 450 rpm for 8 to 12 hrs till an optical 

density (OD) of 0.6 was reached. Plasmid DNA was extracted and purified from DH5α 

cells as follows:  2 ml of the liquid culture was transferred to 2 ml reaction tubes 

(Eppendorf). Cells were pelleted by centrifugation at 14,000 × g for 30 seconds. The 

supernatant was decanted and the pellet was resuspended in 250 μl buffer P1 

(QIAGEN, Cat#19051) by vortexing. 250 μl of buffer P2 (QIAGEN, Cat#19052) was 

added to the homogenous cell suspension to initiate cell lysis. The tubes were mixed 

well by gentle inversion for several times (without vortexing) and allowed to stand at 

room temperature for 5 minutes (or until the cell suspensions were clear). Lysis reaction 

was neutralized by the addition of 300 μl buffer P3 (QIAGEN, Cat#19053) followed by 

gentle inversion of the tubes. The tubes were kept on ice for 5 minutes and centrifuged 

at maximum speed (20,000 x g) for 10 minutes. Supernatants containing plasmid DNA 

were then transferred to 1.5 ml tubes. 600 μl of isopropanol was added to each tube, 

mixed vigorously and kept at room temperature for 2 minutes to precipitate the plasmid 

DNA. The plasmid DNA was pelleted by centrifugation at maximum speed (20,000 x g) 
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and 4°C for 20 minutes and supernatants were carefully aspirated. 400 μl of 70% 

ethanol was added to each tube followed by gentle inversion to wash the DNA pellets. 

The DNA was pelleted by centrifugation at maximum speed (20,000 x g) and 4°C for 5 

minutes and the supernatants were carefully removed. 

3.1.3 Restriction digestion of DNA 

The restriction analysis was performed with 1 μg DNA in a total volume of 10 μl. The 

DNA sample was digested with restriction enzymes (AflII/HindIII) in the prescribed 

buffer (NEB buffers) at the recommended temperature for 1-2 hrs. At the end of 

incubation, the single and/or double digested DNA samples and undigested controls 

were analyzed by agarose gel electrophoresis (100 ng/lane) and purified if necessary.  

Reaction Mixture: 

DNA                                             1 µl  

NEB buffer                                   1 µl  

BSA                                             1 µl  

AflII enzyme (20,000 U/ml)          0.3 µl 

HindIII enzyme (20,000 U/ml)      0.3 µl  

Sterile H2O                                   6.4 µl  

3.1.4 Polymerase chain reaction 

In order to amplify the genomic DNA or single stranded cDNA, polymerase chain 

reaction (PCR) was performed. For PCR amplification, Takara Ex Taq® DNA 

polymerase (Clonetech) was used. All amplifications were performed using a PCR 

cycler (Veriti® 96-well Thermal cycler; Applied Biosystems) under optimized conditions 

for each target sequence. PCR reactions were performed in sterile 0.2 ml thin wall tubes 

as described below. 

Sequences encoding for the pluripotency markers Oct3/4, Nanog, Sox-2 and Rex-1 as 

well as GAPDH as a house keeping gene were amplified. Primer sequences are given 

in the appendix 2.1 
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4x Reaction-Master Mix: 

10x ExTaq Buffer                          5 µl 

dNTP mix (2.5 mmol/L each)        4 µl 

ExTaq polymerase (5 U/µl)           0.25 µl  

Forward Primer (10 µmol/L)          1 µl        

Reverse Primer (10 µmol/L)          1 µl 

dH2O (36.75 µl) added up to 48 µl. 

PCR conditions 

1. Denaturation   1 min        95°C 

2. Denaturation   15 sec      95°C 

3. Annealing        15 sec      60°C 

4. Elongation       30 sec      72°C 

5. Repeat step 2- 4 for 29-35 cycles 

7. Hold at 4°C until further use 

3.1.5 DNA electrophoresis in agarose gels 

To analyze the PCR products, samples were electrophoretically separated according to 

their molecular size in 2% agarose gels. The agarose was boiled in a microwave for 2-3 

min in 1x TAE buffer and after cooling to (~ 60°C) 2-3 μl of ethidium bromide solution 

(10 mg/ml) per 100 ml gel was added and poured in a gel casting plate. The amount of 

DNA loaded was as follows on a gel: 10 μl of PCR reaction /lane, for plasmid after 

purification 100 ng /lane, for the restriction digest 100 ng /lane. Migration of the DNA in 

the gel can be judged by visually monitoring the migration of the tracking dyes, that is 

bromophenol blue and xylene cyanol present in the DNA loading buffer. After adequate 

migration, DNA fragments were visualized on an ultraviolet transilluminator (due to the 

intercalation of the fluorescent dye ethidium bromide into the double strand of DNA, 

DNA becomes fluorescent) and photographed by a camera attached to a gel 

documentation system (GelDocTM XR imaging system, Biorad). In order to define the 

size of the DNA fragments, DNA size marker was also loaded on the gel. 
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3.1.6 Isolation of DNA fragments from agarose gels 

The linearized DNA fragments were eluted from the agarose gel using QIAquick gel 

extraction kit (QIAGEN) based on the manufacturer´s protocol. After gel electrophoresis, 

the appropriate DNA fragment with proper size was carefully excised from the agarose 

gel with a clean, sharp blade. The excised gel was weighed in a 2 ml reaction tube 

(Eppendorf) and 300 μl of Buffer QG was added per 100 mg of gel. The tubes were 

incubated at 50°C for 10 minutes. After the gel slice was completely dissolved, 100 μl of 

isopropanol was added to the tube and mixed well by vortexing. The mixture was then 

transferred to a QIAquick spin column with a 2 ml collection tube and spun at 13,000 x g 

for 1 minute. The flow-through was discarded. The column was washed with 0.5 ml 

Buffer QG and centrifuged at 13,000 x g for 1 minute. The flow-through was discarded 

and the column was washed with 0.75 ml PE Buffer. After centrifugation at 13,000 x g 

for 1 minute, the flow-through was discarded, and the centrifugation was repeated once 

to remove residual wash buffer. The column was placed into a clean 1.5 ml tube and 50 

μl Buffer EB was added to the center of the column. The tube was allowed to stand at 

room temperature for up to 4 min and the DNA was eluted from the column by 

centrifugation at 13,000 x g for 1 minute. The concentration of DNA was quantified 

using a spectrophotometer (Nanodrop, ND-1000, Thermo Scientific). 

3.1.7 Plasmid DNA preparation  

After the confirmation of purified plasmid DNAs, a large scale preparation (maxi prep) 

was carried out using the NucleoBond Xtra Maxi kit (Macherey-Nagel). 1 ml of starter 

bacterial culture was mixed with 250 ml LB medium (Appendix) containing 100 μg/ml 

ampicillin in a 1 L conical flask. The mixture was incubated on a shaker at 37°C 

overnight. The following steps were performed based on manufacturer´s protocol for 

low-copy plasmid purification. 250 ml of bacterial liquid culture was transferred into an 

ultracentrifuge tube and spun at 6,000 x g for 15 minutes at 4°C. After discarding the 

supernatant, the cell pellet was completely resuspended in 24 ml of Buffer RES+RNase 

A by pipetting the cells up and down. 24 ml of Buffer LYS was added to the suspension 

and mixed thoroughly by gentle inversion until a homogeneous cell lysate was obtained. 
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The cell lysate was then incubated at room temperature for 5 minutes. During the 

incubation period, a NucleoBond® Xtra Column together with the inserted column filter 

was equilibrated with 25 ml of Buffer EQU. 24 ml of Buffer NEU was added to the 

suspension and the cell lysate was mixed by gentle inversion. The cell lysate was then 

loaded into the equilibrated NucleoBond® Xtra Column Filter. The column filter 

containing cell lysate was washed with 15 ml of Buffer EQU. The column filter was 

discarded and 25 ml of Buffer WASH was applied to the center of NucleoBond® Xtra 

Column. The plasmid DNA was eluted by the addition of 15 ml of Buffer ELU and the 

eluate was collected in a 50 ml centrifuge tube. The eluted plasmid DNA was then 

precipitated by adding 10.5 ml of isopropanol at room temperature and mixed 

thoroughly using a vortex. The tube was centrifuged at 15,000 x g for 30 minutes at 4°C. 

After discarding the supernatant, the DNA pellet was washed with 70% ethanol at room 

temperature and centrifuged again at 15,000 x g for 30 minutes at 4°C. The DNA pellet 

was allowed to air-dry at room temperature and reconstituted with appropriate volume of 

buffer TE. The resulting purified plasmid DNA was quantified by a spectrophotometer 

(Nanodrop, ND-1000, Thermo Scientific). 

3.1.8 PCR for microsatellite markers 

In order to analyze microsatellite marker D17Mit178 located on the chromosome 17 the 

double stranded genomic DNA from different non transgenic PSC-lines was isolated. 

PCR was performed to amplify the D17Mit178 locus (refer to appendix 2.1 for primer 

sequence information). For PCR amplification, Takara Ex Taq® DNA polymerase 

(Clonetech) was used. All amplifications were performed using PCR cycler (Veriti®96 

well thermocycler, Applied Biosystems) under optimized conditions for each target 

sequence. PCR conditions are summarized below 
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PCR conditions 

1. Denaturation     15 sec 95°C 

2. Annealing          15 sec 60-56°C 

3. Elongation          20 sec 72°C 

Repeat steps 1, 2 and 3 for 20 cylces 

4. Denaturation      15 sec 95°C 

5. Annealing           15 sec 56°C 

6. Elongation          15 sec  72°C 

Repeat steps 4 for 15 cycles 

7. Hold at 4 °C 

After amplification the products were separated by electrophoresis and visualized after 

incubation with ethidium bromide. 

3.2 Cell culture techniques 

3.2.1 Preparation of murine embryonic fibroblasts feeder cultures 

PSCs are usually grown on a layer of mitotically inactivated primary MEFs in the 

presence of leukemia inhibitory factor (LIF) to promote growth and prevent 

differentiation. Mouse embryos (NMRI strain) were harvested at day 13 post coitum 

(p.c., assuming day one is the first day the plug is observed) following timed 

pregnancies after euthanasia of the pregnant mouse by cervical dislocation. The heads 

and internal organs (liver, heart) were dissected prior to enzymatic dissociation in 0.25% 

trypsin to produce single cell suspensions. MEFs were expanded in MEF medium 

(Appendix 2) on 15 cm culture plates. After enzymatic dispersion (0.25% trypsin) MEFs 

were suspended in cryopreservation medium (1 ml), frozen and stored in liquid nitrogen. 

MEFs were mitotically inactivated prior to use as a feeder layer either by γ-irradiation 

(30 Gy) or mitomycin C treatment (50 µg/ml). We routinely used irradiated MEFs for 

PSC- maintenance. 

A frozen vial of P0 MEFs was thawed and plated in a 15 cm tissue culture plate with 

MEF medium. The cells were allowed to grow until confluent (3 to 5 days). Medium was 
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changed after the first day and every other day thereafter. The cells were then 

passaged by trypsinization and resuspended in 10 ml MEF medium followed by plating 

at a 1:10 dilution. Medium was added to a final volume of 25 ml in 15 cm plate. The 

cells were allowed to grow until confluent (3 to 5 days) and passage at a 1:5 to 1:10 

dilution, using twenty-five to fifty 150 cm cell culture plates. Medium from confluent 

plates was removed and the cells were rinsed with 15 ml Ca2+ and Mg2+ free PBS and 

overlayed with 0.25% trypsin. MEFs from ten to fifteen 15 cm cell culture plates were 

typically processed in parallel. The pellet was resuspended in 10 ml MEF medium and 

transferred in suspension to a 50 ml falcon tube at a concentration of 2 million cells per 

ml. The cells were then exposed 2 times to 30Gy of γ-radiation (Biobeam 8000) for 15 

min each. The number of cells was counted and either used freshly for PSC-culture by 

plating (1 x 106 cell/10 cm dish) or frozen (8 x 106 cells/ vial) for later use. 

3.2.2 Freezing and thawing of cells 

PSCs and MEFs were trypsinized, washed, centrifuged and resuspended in medium. 

The cell concentration was adjusted to 1-2 x 106 cells per ml and 0.5 ml of this 

suspension was mixed with 0.5 ml of cell freezing medium (Appendix 2) containing 80% 

FBS and 20% DMSO. Aliquots of cells (1-2 x 106 cells/1 ml) were frozen at -80°C 

overnight and for long-term storage transferred to liquid nitrogen. For thawing, frozen 

cells were quickly transferred from liquid nitrogen into a 37°C water bath, thawed, 

washed with 10 ml of pre-warmed medium and seeded on a dish coated with 0.1% 

gelatin or seeded with irradiated MEFs (see above) depending on the requirements of 

the experiment. 

3.2.3 Neomycin selectable parthenogenetic stem cell lines 

Approximately 5 x 106 PSC were resuspended in 800 μl PBS. 20 μg of a linearized 

plasmid encoding for a neomycin-resistance (NeoR) under control of a cardiomyocytes-

specific 5.5 kb αMHC promoter fragment and a hygromycin resistance (Hygro R) under 

the control of ubiquitously active phosphoglycerate kinase (PGK) promoter (kindly 

provided by Prof. Loren J. Field, Indianapolis, USA) was diluted in 100 μl of PBS and 
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mixed with the cell suspension. The mixture was transferred into a GenePulser cuvette 

(0.4 cm electrode, gap 50). The cell and plasmid mix was incubated on ice for 20 

minutes. Electroporation was then performed using GenePulser Electroporator (BioRad) 

at 300 V and 1200 μF, pulse 2 ms. Immediately after electroporation the cell suspension 

was transferred to a 10 cm dish containing 10 ml of stem cell medium with LIF and 

layered with irradiated MEFs prepared one day earlier. Selection of resistant colonies 

was started 48 hrs later by addition of hygromycin at a concentration of 200 μg/ml. 

Approximately 10 days later resistant colonies were obtained. 11 colonies were picked 

and sub cultured as separate clones. All clones were expanded and frozen in multiple 

vials. At least four positive clones (by PCR for NeoR gene) were chosen for the initial 

round of screening for cardiac differentiation. Clone-10 was randomly chosen and all the 

data shown in this study is from αMHC-Neo PSC clone 10. 

3.2.4 Characterization of parthenogenetic stem cell clones 

DNA was extracted from cultured cells using DNeasy Blood & Tissue Kit (QIAGEN) 

following the manufacture´s protocol. In brief, 1-2 x 106 cells were collected and pelleted 

at 300 x g for 5 minutes. The cell pellet was resuspended with DPBS and cells were 

lysed with Buffer AL containing proteinase K. After incubating at 56°C for 10 minutes, 

DNA was precipitated by adding 96-100% ethanol and mixing thoroughly. Samples 

were transferred into DNeasy Mini spin columns and spun at 7000 × g for 1 minute to 

allow DNA to bind to the membrane of the columns. The columns were washed with 

Buffer AW1 and AW2 in sequence. Finally, DNA was eluted from the columns by adding 

Buffer AE. PCR reactions were carried out using GeneAmp® PCR System 9700 

(Applied biosystems) and Takara Ex Taq® DNA polymerase (Clonetech). The primer 

sequences for detecting the transgene neoR are listed in appendix 2.1. PCR conditions 

are described below. PCR products were separated by electrophoresis in 1% agarose 

gels as described above 
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Reaction Mixture: 

dNTP (2.5 mmol/L each)          1.6 µl 

10x buffer                                2 µl 

Forward primer (10 mmol/L)                  0.2 µl 

Reverse primer (10 mmol/L)                  0.2 µl 

Extaq polymerase (5 U/µl)                     0.1 µl 

DNA (500 ng/µl)                                2 µl 

Distilled water                                13.9 µl 

PCR Conditions: 

1. Denaturation   30 sec  94°C      

2. Denaturation   10 sec  98°C     

3. Annealing        30 sec  61°C              

4. Elongation       30 sec  72°C      

5. Repeat steps 1-4 for 35 cycles 

6. Elongation      5 min     72°C      

Hold at 4°C      

3.2.5 Culture of parthenogenetic stem cells 

PSC-colonies were cultured on feeder layer cells (MEFs). At least one day before 

plating the PSC-colonies, 10 cm culture dishes (Nunclon™Δ) were coated with 0.1% 

gelatin and incubated at 37°C in a humidified incubator with 5% CO2 for 10 minutes. 

One million inactive MEFs were plated and cultured with MEF medium. Medium was 

changed after 24 hrs. The MEFs plates were kept at 37°C in a humidified incubator with 

5% CO2 one week before use. PSCs were suspended in stem cell medium (SC 

medium). 1 x 106 cells were plated on the MEFs dishes and cells were evenly 

distributed by swirling the dishes gently. Medium was changed daily. When the cell 

density reached 80% confluence, cells were split into fresh MEFs dishes at 1:3 or 1:6 

ratio. Medium was aspirated and cells were washed with DPBS (without Ca/Mg) once. 3 

ml of Trypsin/EDTA (0.25%; Invitrogen) was added to a 10 cm dish and incubated at 

37°C in a humidified incubator with 5% CO2 for 3 minutes. Trypsin/EDTA was 
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inactivated by adding 5 ml of SC medium (Appendix 2). Single cell suspension was 

obtained by trituration. The single cell suspension was then transferred to a 15 ml tube 

and pelleted at 300xg for 5 minutes. Supernatant was removed and the pellet was 

resuspended with 5 ml fresh ES medium. Cell number was counted by CASY cell 

counter (Model TT, Roche Innovatis AG) and required number of cells (approx.1 million) 

was plated onto 10 cm fresh MEF dishes. 

3.2.6 Assessment of proliferation rate 

5 x 104 undifferentiated PSC were plated on MEF-seeded culture dishes (6 cm2). Cells 

were isolated (triplicates) for every 12 hrs with Trypsin/EDTA (0.25%). The cell number 

was determined using a CASY cell counter (Model TT, Roche Innovatis AG). The 

doubling time was calculated from the linear interval of the resultant growth curve.  

DoublingTime = duration × log (2)/log (Final cell count) −log (Initial cell count) 

3.2.7 Assessment of cardiac differentiation  

To evaluate the efficiency of cardiac differentiation, each PSC clone was differentiated 

in vitro in hanging drop embryoid body (EB) cultures. For this, cell colonies were 

dissociated into single cell suspensions by trypsinization as described before. The 

feeder layer cells (MEFs) were removed by preplating for 30 minutes. After preplating, 

the supernatant was collected in 50 ml tubes and the number of cells was counted using 

a CASY cell counter (Model TT, Roche Innovatis AG). After cell counting, cell 

suspensions were diluted to 500 cells per 20 μl of differentiation medium (Appendix 2). 

20 μl drops were placed on the lids of 15 cm culture dishes using a multichannel pipette 

and carefully inverted to cover the dishes. Each dish contained 15 ml DPBS to prevent 

the drops from drying out. The 15 cm dishes were incubated at 37°C in a humidified 

incubator with 5% CO2. After 3 days, EBs were collected by rinsing the lids with 10 ml 

differentiation medium and transferred to 10 cm petri dishes for suspension culture for 2 

more days. After suspension culture, EBs was plated onto 10 cm cell culture dishes 

coated with 0.1% gelatin for adhesion culture. On day 11 (11 days after the initiation of 

hanging drops), 200 μg/ml of geneticin (G-418, PAA) was added into the differentiation 
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medium to select for cardiomyocytes. The differentiation and selection were terminated 

on day 18. The morphology of the EBs and beating activities were observed daily 

throughout the period of differentiation. The clone with highest beating activity (αMHC- 

Neo PSC clone 10) compared with other clones was chosen for further experiments. 

3.2.8 Differentiation in spinner flask cultures 

To enhance the culture process, spinner flask cultures were implemented. PSCs were 

cultured and passaged as described before. Before initiating differentiation, cells were 

passaged at least two times. PSC colonies were dissociated into single cells by 

trypsinization as described before. After preplating for 30 minutes to reduce the MEF 

content, cell suspensions were collected in 50 ml tubes and cell number was counted. 

10 million cells were transferred to another 50 ml tube and pelleted by centrifugation at 

300 x g and 4°C for 5 minutes. After centrifugation, the supernatant was removed and 

the pellet was resuspended with 25 ml differentiation medium. The cell suspension was 

then transferred into a 125 ml culture vessel (Techne, F7988) containing 25 ml of 

differentiation medium. The stirring speed was set to 60 rpm (day 0). On the next day 

(day 1), 50 ml of differentiation medium was added into the culture vessel. Half of the 

medium was replaced every other day. On day 11, 200 μg/ml of geneticin (G-418, PAA) 

was added to the medium for the selection of cardiomyocytes. After 7 days of selection, 

EBs were harvested and digested into single cardiomyocytes for further experiments. 

 

Figure 7: Schematic overview of PSC differentiation in spinner flasks. A. Stirred suspension culture 

in a spinner flask is depicted below. 
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3.2.9 Assessment of contractility in embryoid bodies 

EBs formed after 3 days of culture in spinner flasks were transferred into gelatin coated 

48 well plates at a concentration of one EB per well. The number of beating EBs was 

counted in each well every alternate day (days 5, 7, 9,11,13,15 and 17). 

3.2.10 Dissociation of embryoid bodies 

EBs were collected from the culture vessel and transferred into two 50 ml polypropylene 

tubes (Falcon). The tubes were placed upright for 5 minutes to allow EBs to sediment. 

The supernatant was aspirated and EBs were washed with 20 ml of DPBS and 

resuspended with 6 ml of collagenase I (Sigma) containing 20 μl/ml DNase I 

(Calbiochem). The tubes were incubated at 37°C for 1 hour in a warm chamber with 

shaking. 20 ml of DPBS (w/o Ca2+/Mg2+) was added and single cells were obtained by 

triturating with a 10 ml pipette few times. The cells were pelleted by centrifugation at 

200 x g for 5 minutes at room temperature. For further digestion, the pellet was 

resuspended with 5 ml 0.25% trypsin-EDTA and incubated at room temperature for 10 

minutes. The trypsin suspension was gently triturated with 5 ml pipette to yield single 

cell suspensions. The enzyme digestion was neutralized with 20 ml differentiation 

medium containing 20 μl/ml DNase and then triturated further using a 10 ml pipette. The 

cells were pelleted by centrifugation at 200 x g for 5 minutes at 4°C. After resuspension 

in 10 ml differentiation medium, the suspension was passed through a 70 µm cell 

strainer to remove cell clumps. Number of cells was then counted by staining with 

trypan blue dye solution on a Neubauer counting chamber.  

3.2.11 Preparation of engineered heart muscle 

Self-made glass culture dishes consisting of 4 ring-shape molds (inner/outer diameter: 4 

/10.6 mm) were used for casting the EHMs (Figure 8A). The volume inside each mold 

was 450 μl. All the pipetting steps were carried out on ice to prevent premature 

polymerization of the EHM reconstitution mixture. 1.5 x 106 cell mixture containing 70% 

of PSC-derived cardiomyocytes and 30% non-cardiomyocytes (inactivated MEFs) were 

mixed and resuspended with appropriate volume of differentiation medium. An equal 
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amount of 2X DMEM was added to collagen type I dissolved in 0.1% acetic acid (rat tail 

collagen). The pH was adjusted to (~7.4) with 0.1 N NaOH. Finally, the proper amount 

of cell suspension was added into the mixture. A standard pipette scheme for 

generating four EHMs is given below. Homogeneity of cell-collagen mixtures was 

achieved by careful trituration with a pre-cooled 2 ml pipette. 450 µl of mixture was cast 

into each mold and incubated at 37°C in a humidified incubator with 5% CO2 for one 

hour. After initial condensation of the collagen, 6 ml of differentiation medium was 

added into each glass culture dish. 

The EHMs were incubated at 37°C in a humidified incubator with 5% CO2 for three 

days. On day 3, EHMs were transferred to static stretchers (Figure 8B) and kept in 

culture for 10 more days. Medium was changed every other day during the entire 

culture time. 

Pipette Scheme for preparation of 4 EHMs 

1. Collagen (0.4 mg/ml)               419 µl 

2. 2X DMEM                                419 µl  

3. NaOH (0.1N)                            82 µl           

4. Cell Suspension                       1180 µl 

Composition of 2X DMEM: 

FCS (PAA-102)                   40% 

10X DMEM                          20% 

P/S (100 units/ 100 µg/ml)   2% 

Adjusted to the final volume with distilled water                   
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Figure 8: Preparation of EHM. A. 3 days of culture in casting molds B. EHMs transferred onto a static 

stretcher and cultured for 7 days C. EHM subjected to isometric force measurement in an organ bath. 

3.2.12 Isometric contraction measurements 

On day 10~12, EHMs were suspended between retaining hooks and force transducers 

inside organ baths containing Tyrode´s solution (Appendix 2) (Figure 8C). The 

temperature in the organ baths was maintained at 37°C and the pH was adjusted to 7.4 

with carbogen (95% O2, 5% CO2 gas mixture). After 15 minutes of equilibration, EHMs 

were electrically stimulated at 4 Hz with pulse duration of 5 ms and 200 mA current. 

EHMs were pre-stretched under 1.8 mM [Ca2+] till the force reached a stable maximal 

level (Lmax) according to Frank-Starling mechanism. The solution inside the organ 

baths was replaced with fresh Tyrode´s solution containing 0.2 mmol/L [Ca2+]. 

Contraction forces were initially measured under cumulatively increasing [Ca2+] (0.2-2.8 

mmol/L). Contractile force was recorded at steady state i.e. typically 5 minutes after 

addition of calcium. The maximum and minimum forces were measured by PC-based 

acquisition software (BMON, Engineering firm G. Jaeckel, Hanau). Force of contraction 

(FOC) was calculated by the difference between maximum (peak systolic force) and 

minimum (diastolic) forces. 
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3.2.13 Flow cytometry analysis 

Single cells were prepared as described above by trypsinization. The dissociated cells 

were centrifuged, washed and filtered through a 40 μm cell strainer (BD Pharmingen).  

3.2.13.1 Live cell staining 

Cell count was determined using a CASY cell counter (Model TT, Roche Innovatis AG) 

before suspension in an appropriate volume of staining buffer (PBS supplemented with 

5% FBS) to obtain a cell density of 0.5 x 106 cell/ 50 µl. Cells were then dispensed into 

FACS tubes and stained either with isotype control or antigen-specific antibodies diluted 

in the staining buffer. Cell-surface antigen expression was detected using fluorescently 

conjugated antigen-specific antibodies (direct staining) or labeling the cells with 

unconjugated primary antibody followed by fluorescently-tagged secondary antibody 

(indirect staining) by incubating at 4°C for 30 minutes (Appendix 2.2). The cells were 

washed two times with 1X PBS. Unstained samples were used as a negative control. 

The cell suspension was measured and data was acquired on flow cytometer (BD LSRII 

flow cytometer, FACSDiva software, BD Biosciences). Cells were gated on forward and 

side scatter dot plots. 10,000 events per sample were acquired and the data were 

analyzed with flowing software (free software version 2.5.1). Hoechst (BD biosciences) 

or sytox (life technologies) was used for gating of viable cells. 

3.2.13.2 Fixed cell staining 

Cells were counted and fixed in methanol stabilized 4% formaldehyde (Histofix) for 20 

minutes at room temperature. Supernatant was discarded after centrifugation at 300 x g 

for 5 minutes and washed with 1X PBS once. Cells were then transferred to FACS 

tubes and incubated in blocking buffer (5% FBS, 1%BSA, 0.5% Triton X-100 in PBS) for 

10 minutes on ice. After incubation cells were centrifuged and the supernatant was 

drained by inversion of the tubes. Antibody solutions were prepared by diluting them in 

blocking buffer. Cells were incubated with primary antibody for 45 minutes followed by 

washing with blocking buffer for two times. Secondary antibody solution was then added 

and incubated for 30 minutes at room temperature in dark. The cells were than washed 
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twice with blocking buffer and finally resuspended in 0.5 ml of PBS and proceeded for 

flow cytometry analysis. Cells were gated on forward and side scatter dot plots. 10,000 

events per sample were acquired and the data were analyzed with flowing software 

(version 2.5.1). Hoechst (BD biosciences) or sytox (life technologies) was used for 

gating cell viability.  

3.2.14 Flow cytometry of immunological molecules 

Approximately 5 ml of the EB containing suspensions from spinner flask cultures were 

collected and seeded into a 10 cm bacterial suspension culture dish. EBs was collected 

before initiating the selection for cardiomyocytes. After selection with G-418, cardiac 

bodies were collected from the spinner flask and transferred into 10 cm bacterial 

suspension culture dish. Mouse recombinant interferon gamma (IFNγ; peprotech) was 

added to unselected EBs and cardiac bodies at a concentration of 25 ng/ml and 

incubated at 37°C in a humidified incubator with 5% CO2 for 48 hrs. After 48 hrs these 

embryoid and cardiac bodies were dissociated as mentioned above and stained for the 

expression of MHC-I (H-2Kd) (Biolegend), MHC-II (I-A/I-E) (BDbiosciences),CD1d 

(Biolegend), CD40 (Biolegend), CD80 (Biolegend), CD86 (Biolegend), PD-L1 

(Biolegend), PD-1 (Biolegend).Staining was done according to the protocol mentioned 

above. After staining the cells were analyzed by flow cytometry. 

3.2.15 Isolation of neonatal mouse cardiomyocytes  

Cardiomyocytes from DBA neonatal mice expressing GFP under alpha Myosin Heavy 

Chain (MHC) promoter were isolated by using then neonatal heart dissociation kit 

(mouse and rat, Miltenyi Biotec 130-098-373). Briefly 10-20 neonatal mouse hearts 

were harvested and transferred into a 10 cm dish containing PBS. Using forceps, 

remaining blood was pumped out. The blood vessels and remaining connective tissue 

were cut away from the ventricles. Enzyme mix 1 (enzyme P- 62.5 µl) and (buffer X- 

2,300 µl) was pre-heated for 5 minutes at 37°C. 2,363 µl of enzyme mix 1 was added to 

138 µl of enzyme mix 2 (buffer Y- 25 µl, enzyme A- 12.5 µl and enzyme D- 100 µl). The 

harvested tissue was transferred in to a gentle MACS C tube, 2.5 ml of the enzyme mix 
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was added and the lid of the “C-tube” was tightly closed. The “C-tube” was inverted and 

incubated at 37°C for 15 minutes. The “C-tube” was then attached onto the sleeve of 

the gentle MACS dissociator and gentle MACS program h_tumor_1 was run. This was 

repeated for two times and after termination of the gentle MACS program, the “C-tube” 

was detached and 7.5 ml of differentiation medium was added. Cell suspension was 

resuspended and filtered through a 70 µm cell strainer. The cells were than centrifuged 

at 600xg for 5 minutes and the supernatant was discarded. The cell pellet was 

resuspended in 10 ml of differentiation medium and incubated on a gelatin coated 10 

cm dish for 1 hour at 37°C in a humidified incubator with 5% CO2. After one hour, the 

supernatant was collected and centrifuged at 300 x g for 5 minutes. The pellet was 

resuspended in 5 ml of differentiation medium and the cells were counted in Neubauer 

chamber. The purity of cardiomyocytes was measured by flow cytometry. 

3.2.16 Isolation of cardiomyocytes by the Langendorff method 

For immunostainings of cardiomyocytes from adult mouse heart, cells were isolated 

from DBA mice by retrograde perfusion of the heart through the aorta with enzyme 

(Liberase/Trypsin) solution according to Langendorff. A 21 G cannula connected to a 

peristaltic pump set was used to ensure constant perfusion at 3 ml/min. All perfusion 

solutions (Appendix 2) were pre-warmed to 37°C for optimal digestion.  

The Liberase concentration was adjusted to 0.021-0.042 mg/ml according to the mouse 

heart size and activity of the liberase batch. Prior to heart isolation, mice were 

heparinized (10 mg/kg), anesthetized (isoflurane) and sacrificed by cervical dislocation, 

the heart was removed quickly and mounted via the aorta onto the cannula, fastened (2 

thread loops around the cannula) and perfused. After 3 minutes, the perfusion buffer 

was changed to a digestion buffer and perfused until the buffer was used up. The heart 

was demounted and transferred into the beaker with the 2.5 ml digestion buffer. The 

atria were removed, and the heart was mechanically minced for 30 seconds using small 

scissors. To inhibit the enzymatic digestion, 2.5 ml stopping buffer 1 were added. To 

further dissociate the remaining pieces of tissue by shearing force, the suspension was 

pulled up and down using a 1 ml insulin syringe without a needle for 3 minutes. The 
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suspension was filtered through a 150 µm cell-culture mesh and the cells were 

sedimented for 5 minutes at room temperature. The cell pellet was resuspended in 

stopping buffer 2.  

Calcium concentration was slowly increased to 1 mmol/L by adding 50 µl of 10 mmol/L 

calcium chloride solution twice, 100 µl of 10 mmol/L calcium chloride solution, 30 and 50 

µl of 100 mmol/L calcium chloride solution. The cardiomyocytes were left to equilibrate 

for 4 minutes at each step. Following calcium adaptation, cells were incubated at 37°C 

for 15 minutes to sediment the cardiomyocytes. After removal of most of the 

supernatant, cardiomyocytes were carefully resuspended in the remaining supernatant 

(~ 1 ml), and 50 µl cell suspension was seeded on laminin-coated (10 µg/ml) coverslips. 

Next, cells were left to settle down and adhere to the laminin-coated coverslips for at 

least 45 minutes, before cell culture medium was added. Cells were cultured at 37°C 

and 5 % CO2 for 24 hrs with and without IFNγ (20 ng/ml) followed by a staining for β-2-

microglobulin.  

3.2.17 Immunofluorescence imaging 

Cardiomyocytes seeded on coverslips were fixed with acid free (pH 7), phosphate-

buffered formaldehyde (4%) solution (Histofix, Roth) for 10 minutes at room 

temperature, followed by washing with DPBS. The cells were permeabilized and the 

unspecific binding sites were saturated by incubating with blocking buffer containing 5% 

FBS (Gibco), 1% bovine serum albumin (BSA, Sigma) and 0.5% TritonX-100 

(AppliCehm) in DPBS for 30 minutes at room temperature. The cells were incubated 

with primary antibodies developed to bind α-actinin (Sigma), cardiac-troponin I (abcam), 

β 2-microglobulin (abcam) for 60 minutes at room temperature (Appendix 2.2). 

Subsequently incubation with secondary antibody conjugated with fluorescent dye (anti-

mouse Alexa Fluor® 546, anti-rabbit Alexa Fluor® 488, anti-mouse Alexa Fluor® 633 

Molecular Probe®) was performed for 60 minutes at room temperature. Nuclei were 

counterstained with 4’, 6’-diamidino-2-phenylindole (DAPI; 1 μg/ml, 1:1000, Sigma). 

Samples were washed thoroughly with blocking buffer 3 times for 5 minutes with a final 

wash with only DPBS for 5 minutes. A drop of mounting medium (Fluoromount-G, 
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SoutherBiotech) was put on the slide and the cover slip containing the cells was 

inverted over the medium carefully to prevent the trapping of air pockets within the 

sample. The slides were allowed to dry and then imaged. Fluorescent images were 

acquired using laser scanning confocal microscope (LSM710, Zeiss, Germany). 

3.3 Immunological techniques 

3.3.1 Isolation of mouse splenocytes 

Mice (BL6-J and DBA2J) were sacrificed by cervical dislocation and then dissected 

under sterile conditions. Spleens were collected in a dish containing 1X PBS, a 70 µm 

filter was placed into 50 ml polypropylene tube and rinsed with RPMI medium. The 

spleen was then transferred on the filter. With the help of piston of a 5 ml syringe the 

spleen was pressed against the filter to dissociate the cells and continuously rinsed with 

medium. 

RBC lysis was done by incubating the splenocytes with 1X RBC lysis buffer (Biolegend) 

for 5 min at room temperature. The remaining splenocytes were then washed and 

resuspended in 10% RPMI and counted in a Neubauer chamber. These splenocytes 

were used for the co- culture with PSC-derived cells. 

3.3.2 Immune cell proliferation assay 

The influence of PSC-derived cells on the activation or proliferation of splenocytes and 

T-lymphocytes was analyzed using a co-culture approach. 1 x 105 PSC-derived cells, in 

the form of EBs were transferred into suspension culture 48-well cell culture plates. 

Splenocytes were washed with PBS twice to remove serum. The cells were than 

resuspended at double the desired final concentration in PBS (pre-warmed to room 

temperature).10 µmol/L solution of Cell Proliferation Dye eFluor® 670 (ebioscience) in 

PBS (pre-warmed to room temperature) was prepared. This was mixed with the 2X cell 

suspension at 1:1 ratio and incubated for 10 minutes at 37°C in the dark. The eFluor® 

670 dye (Appendix 2) labeling was stopped by adding 4-5 volumes of cold 10% RPMI 
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and incubated on ice for 5 minutes. The cells were then washed 3 times with 10% 

RPMI.   

1 x 106 eFluor® 670 labeled splenocytes were then added to 1 x 105 PSC-derived cells 

(non-myocytes/cardiomyocytes; NM/CM) and cultured for 4 days with 10% RPMI at 37 

°C and 5% CO2. We used two different conditions: PSC-derivatives co cultured with 

DBA splenocytes (MHC-match for H-2d/d locus) and PSC-derivatives co cultured with 

BL6 splenocytes (H-2b/b, MHC-mismatch). Labeled splenocytes treated with 5 µg/mL 

concanavalin A (Con.A) served as positive control. Unlabelled splenocytes treated with 

Con.A served as negative control. Similarly EHMs made with PSC-CM (H-2d/d) and DBA 

MEF (H-2d/d) were incubated with DBA (H-2d/d) and BL6 (H-2b/b) labeled splenocytes for 

4 days on a shaker with RPMI medium (Appendix 2) at 37°C and 5% CO2. Also EHMs 

made with PSC-CM (H-2d/d) and BL6-MEF (H-2b/b) were treated with DBA (H-2d/d)   and 

BL6 (H-2b/b) splenocytes in the same way. A typical experimental set up is shown in 

Figure 9. 

 

Figure 9: Experimental setup for in vitro proliferation assay. Different conditions were tested in a 48 

well plate. Con.A: concanavalin A, NM: non-myocytes, CM: cardiommyocytes, Spl: splenocytes. 

After 4 days of co-culture splenocytes were collected and filtered through 70 µm cell 

strainer to remove the EBs. The strained splenocytes were than stained with Alexa 488 
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labelled CD3 (Biolegend) and the proliferation of CD3 positive splenocytes was 

analyzed using flow cytometry.  

3.3.3 Isolation of T-lymphocytes from spleen 

Splenocytes were isolated from spleen as mentioned above. T-lymphocytes were 

isolated from splenocytes by using the mouse Pan T cell isolation kit II (Miltenyi biotec 

130-095-130). 107 splenocytes were resuspended in 40 µl of buffer(containing PBS, pH 

7.2, 0.5% BSA, and 2 mmol/L EDTA).10 µl of Biotin-Antibody Cocktail (Cocktail of 

biotin-conjugated monoclonal antibodies against CD11b, CD11c, CD19, 

CD45R  [B220], CD49b [DX5], CD105, Anti-MHC class II, and Ter-119) was added to 

107 total cells. The cell suspension was mixed well and incubated for 5 minutes in the 

refrigerator (4°C) followed by the addition of 30 µl of buffer per 107 total cells. Finally 20 

µl of anti-biotin microbeads per 107 total cells was added and mixed well. This cell 

suspension was incubated for 10 minutes at 4°C followed by magnetic separation on LS 

columns mounted on a quadro MACS separator (Miltenyi Biotec). A minimum of 500 µl 

cell suspension was added to LS columns, the flow-through containing unlabeled cells 

was collected, representing the enriched T-cells. The column was washed with 3 ml of 

buffer and the pass through was collected representing the enriched T-cells. The cells 

were counted using a Neubauer chamber. T-cell purity was measured by flow 

cytometry. 

3.3.4 In vitro cytotoxicity assay 

To assess cytotoxic effects of T-cells cardiomyocytes were obtained from the spinner 

flask cultures dissociated as mentioned above, and seeded on gelatin coated 96 well 

plates at a concentration of 105 cells per well. T-lymphocytes were isolated from the 

spleens of BL6-J and DBA2J mice as mentioned above and added to the 

cardiomyocytes at a concentration of 106 cells per well (CM: T-cells ratio, 1:10).The co-

culture was incubated at 37°C and 5% CO2 for 4 hrs and proceeded with the 

measurement of cell lysis by using the cytotox 96® non-radioactive cytotoxixity assay kit 

(promega). 
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Briefly 100 µl of 10% RPMI medium was added to all the wells of a 96 well plate. For 

maximum lysis, 10 µl of lysis solution per 100 µl of medium was added and incubated at 

37°C for 45 minutes.  The plate was than centrifuged at 250 x g for 4 minutes. Then 50 

µl of supernatant from all wells was transferred into a fresh 96-well flat-bottom 

(enzymatic assay) plate followed by the addition of 50 µl of substrate mix to each well of 

the enzymatic assay plate. The plate was then covered with foil or an opaque box to 

protect it from light and incubated for 30 minutes at room temperature. Finally 50 µl of 

stop solution was added to each well and the absorbance was recorded at 490 nm or 

492 nm with the help of 96 well plate reader (Flexstation 3, molecular devices). 

Percent cytotoxicity was measured by using the following formula: 

% Cytotoxicity = Experimental – Effector Spontaneous – Target Spontaneous  x 100  

                                     Target Maximum – Target Spontaneous 

The average absorbance values of the culture medium background were subtracted 

from the average absorbance values of experimental, target spontaneous and effector 

spontaneous. Similarly the average absorbance values of volume correction control 

were subtracted from average absorbance values of target maximum.  

3.4 Animal experiments 

All the animal experiments were performed according to institutional and governmental 

guidelines. Animal studies were approved by the Niedersächsisches Landesamt für 

Verbraucherschutz und Lebensmittelsicherheit (LAVES; G15.1841). 

3.4.1 Cell implantation under the kidney capsule  

PSC-derived EBs and cardiac bodies were implanted under the kidney capsule (right 

kidney) of B6D2F1 mice and BL6-J mice (8-15 weeks age; Figure 10). The implantation 

was performed under isoflurane (3%) anesthesia. A vertical incision was made through 

the skin along the animal’s spine, about 2 cm from the base of the tail to the top curve of 

the spine. The kidney was accessed via a deeper 0.5 cm horizontal incision. With the 
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aid of curved blunt glass pastuer pipette the kidney was pulled out gently and a small 

tear was made in the kidney capsule with the help of sharp needle. EBs and cardiac 

bodies were gently placed under the capsule via a blunt 21G cannula. The tear of the 

kidney capsule was then cauterized and the kidney was carefully relocated 

retroperitoneally. The incision closed with a 6-0 Prolene® (Ethicon) suture followed by 

suturing the skin. Upon completion of the surgery, the animal was placed on a warm 

heating pad, to aid in regaining its body temperature. For analgesia, buprenorphine 

(0.05-0.1 mg/kg) was administered subcutaneously in the right flank. 

The kidneys were harvested from the mice at different time points of days1, 3, 7,14,  

and 28 followed by microscopic (Zeiss, Lumar.V12, SteREO) search for beating cardiac 

bodies and proceeded further for histological analysis. The kidneys were divided into 

two halves; one half was used for H&E staining and the other half for 

immunofluorescence staining of α-actinin and CD3. 

 

Figure 10: Schematic overview of implantation experiments. H-2 homozygous PSCs obtained from 

B6D2F1 mice were used for implantation in MHC-match (B6D2F1) and mismatch (BL6) conditions. 

3.4.2 Histological analysis 

Explanted kidneys from the mice were fixed in 4% formaldehyde (in PBS) overnight at 

4°C. Half of each kidney was paraffin-embedded, and sectioned using Leica RM 2165 

microtome (Leica). For hematoxylin-eosin (H&E) staining, tissue slides were 
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deparaffinized and rehydrated by performing 9 washing steps (2X xylene for 20 

minutes, 100% ethanol, 90% ethanol, 80% ethanol, 65% ethanol, 50% ethanol, 25% 

ethanol, tap water; incubation for 5 minutes each). Kidney sections were stained three 

times with hematoxylin and twice with eosin for 2 minutes each at the Department of 

Pathology, University Medical Center, Goettingen. Thanks to Ines Müller from 

Department of Pharmacology and Toxicology for helping with the H&E staining. The 

slides were imaged with an upright microscope (Zeiss, Imager.M2). 

3.5 Statistics 

GraphPad Prism software (GraphPad Software Inc; San Diego) was used to convert 

data sets into graphs (displayed as mean±SEM) and subjected to Student’s t-test, one-

way, or two-way ANOVA test where appropriate. P<0.05 was considered to be 

significant. Sample number (n), statistical test and p-value are presented with each data 

set. 
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4 Results 

4.1 Genetic modification of a parthenogenetic stem cell line 

The aim was to stably integrate an antibody resistance gene (NeoR) transcribed under 

the control of the cardiomyocyte specific α-myosin heavy chain promoter (MYH6 

gene)(Klug et al., 1996) into a previously established PSC-line (Didie et al., 2013).  

4.1.1 Determination of growth rate of non-transgenic parthenogenetic stem cell 

lines 

Several of the previously established PSC-lines (Didie et al., 2013) were screened for 

MHC homozygosity by microsatellite marker analysis; the target sequence was located 

on chromosome 17 and its PCR amplification allowed for a differential analysis of the 

DBA (H-2d/d)-and BL6 (H-2b/b)-mouse H2-locus (D17Mit178; Figure 11A). In order to 

identify whether the established PSC-lines exhibit differences in proliferation rate and 

exclude PSC-lines with low proliferation rate 3 different PSC-lines were randomly 

chosen and compared. These analysis confirmed a similar population doubling time in 

PSCA3 (13±1 hours), PSC30B3 (14±0.1 hours) and PSC32D1 (12±1 hours); (Figure 

11B). Finally, the PSC30B3line was chosen randomly for the generation of stable 

transgenic cell lines and further studies. 
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Figure 11: MHC genotyping and assessment of PSC growth.  A. Amplification of microsatellite marker 

D17Mit178 on chromosome 17; DNA from BL6, DBA, and B6D2F1 was used as positive control; DNA 

fragment sizes: 164 bp (DBA-H-2
d/d

); 144bp (BL6- H-2
b/b

). B. Comparison of the proliferation rate in H2 

haploidentical PSC-cell lines PSCA3, PSC30B3, and PSC32D1 (n=3 for each time point and PSC-line). 

4.1.2 Confirmation of transgene identity 

A vector encoding for a neomycin resistance (NeoR) gene under the control of the 

cardiomyocytes specific α-myosin-heavy-chain promoter (MYH6 gene–Figure 12A; 

kindly provided by Loren J. Field, Indianapolis; Klug et al. 1996) was amplified in 

bacterial cultures. Five bacterial colonies were picked and plasmid DNA was isolated. 

Restriction enzyme digestion with AflII (cutting site 5,362bp) and HindIII (cutting site 

8,335bp) confirmed the presence of the αMHC-Neo vector: double digestion with AlfII 

and HindIII resulted in the anticipated two fragments (8,004bp and 2,973bp; Figure 

12B).  
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Figure 12: Confirmation αMHC-Neo plasmid identity.  A. Vector map of αMHC-Neo plasmid with 

selected restriction sites and relevant inserts highlighted. B. Restriction digests of αMHC-Neo plasmid 

with AflII and HindIII generated the anticipated 8,004bp and 2,973bp fragments. 

4.1.3 αMHC-Neo parthenogenetic stem cell line 

The αMHC-Neo plasmid was amplified and linearized by digestion with HindIII and XhoI 

(Figure 13A) to remove the ampicillin gene from the vector backbone. The HindIII/XhoI 

fragment (8335bp) was purified and subsequently transfected into the PSC30B3 line 

using electroporation. Following hygromycin selection for 2 weeks (plasmid also 

encodes a ubiquitously expressed hygromycin resistance); DNA was extracted from 11 

cell clones and subjected to PCR for the detection of neomycin resistance (NeoR) gene 

(Figure 13B). PSC30B3 Clone 10 was randomly chosen for further experiments in this 

study. 
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Figure 13: Identification of transgenic PSC clones by PCR. A. Restriction digestion of the αMHC-Neo 

plasmid with HindIII and XhoI. The upper band (8,335bp) was cut out and used for transfection after 

purification. B. clones 1, 2, 3, 6, 8, and 10 were detected as transgenically modified based on the 

amplification of the transgenic NeoR (383bp) sequence. The αMHC-Neo plasmid was run on the gel as 

positive control. 

4.1.4 Morphological and molecular evidence for pluripotency  

After transfection, PSC30B3-MHCNeo clone 10 was further cultured and expanded. The 

colonies represented a compact homogeneous morphology characteristic for murine 

pluripotent stem cell cultures (Figure 14A). Semi-quantitative reverse transcription (RT)-

PCR was performed on RNA extracted from the undifferentiated PSC30B3-MHCNeo 

cultures. All investigated pluripotency markers (Oct3/4, Sox-2, Nanog, and Rex-1) were 

expressed (Figure 14B). 
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Figure 14: Morphological and molecular evidence for pluripotency. A. Morphology of PSC30B3 

colonies at passage 21. B. Stemness markers/pluripotency genes (Oct3/4: 101bp, Sox-2:131bp, Nanog: 

71bp, Rex-1: 232bp) and GAPDH (171bp- used as housekeeping gene for normalization) was amplified 

as an internal loading control. 

4.1.5 Cardiomyocyte differentiation and purification in spinner flasks 

Differentiation of the B3line was established in spinner flasks for 11 days to form EBs 

followed by selection with G-418 for 7 days to eliminate non-myocytes (NM) and support 

the formation of cardiac bodies. Beating of EBs/cardiac bodies from spinner flask 

cultures was systematically evaluated 3 days after additional plating on gelatin-coated 

48-well plates (plating of one EB/cardiac body/well at the indicated time point; Figure 

15). EBs before selection with G-418 (spinner flask culture day 11; Figure 15A) showed 

a heterogeneous morphology and were larger in size compared to cardiac bodies 

formed after selection with G-418 (spinner flask culture day 18; Figure 15B). First 

beating areas in EBs were noticed from day 5 on with 100% of the EBs beating by 

culture day 11(Figure 15C). After addition of G-418 for the removal of non-myocytes 

100% beating was maintained in the resulting cardiac bodies. 
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Figure 15: Morphology and beating in PSC-derived EBs and cardiac bodies. A. Morphology of 

unselected EBs (day 11 in spinner flask culture). B. Cardiac bodies after G-418 selection (day 18 in 

spinner flask culture).C. Percentage of beating EBs/cardiac bodies 3 days after plating at the indicated 

time point. 
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4.1.6 High cardiomyocyte purity after selection 

The cardiac bodies obtained after G-418 selection for 7 days were dissociated and the 

cells were stained for the expression of α-actinin, cardiac-troponin I and myosin heavy 

chain (MF-20) to analyze the purity of cardiomyocytes by flow cytometry. These 

analysis demonstrated 91±2% actinin positive cells, 91±2% of troponin I positive cells 

and 88±3% MF-20 positive cells (Figure 16). Stirred suspension spinner flask cultures 

with an input quantity of 10 x 106 PSCs resulted in 25±5 x 106 cardiomyocytes (n=12 

spinner flask cultures). Note that cardiomyocyte isolation from EBs/cardiac bodies 

requires careful handling and adaptations of the dissociation protocol according to the 

EB/cardiac body size, structure, age and morphology. 

 

Figure 16: Cardiomyocyte purity after selection in spinner flask cultures. Depicted are isotype 

(IgG1) control data (A and D) and detection of canonical cardiomyocyte expressed proteins such as α-

actinin (B), myosin heavy chain (MF-20; C) and cardiac troponin I (E). F. Bar graph shows a summary of 

the flow cytometry data with n-numbers indicated inside the bars. 
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4.1.7 Morphological properties of PSC-derived cardiomyocytes 

We analyzed the morphology of PSC-derived cardiomyocytes obtained from spinner 

flask cultures after enzymatic digestion. CMs were cultured on gelatin coated cover slips 

for 2 additional days before immunofluorescence labeling of f-actin, α-actinin, and 

cardiac troponin I. Confocal microscopy confirmed the flow cytometry data on 

cardiomyocyte purity and demonstrated the characteristic morphology of stem cell 

derived cardiomyocytes in monolayer culture with the formation of sarcomeres (Figure 

17). 

 

Figure 17: Morphology of PSC-derived cardiomyocytes. Confocal microscopy of PSC-derived 

cardiomyocytes. Panels indicate the respectively labeled structures. Scale bars: 20 µm. 

4.2 Immunological properties of PSC-derived cells 

After successful generation of transgenic PSC-lines to facilitate purification of PSC-

derived cardiomyocytes, we analyzed the expression levels of immunological molecules 

like MHC antigens, co-stimulatory molecules and immunomodulatory molecules like PD-

L1 in PSC-cardiomyocytes. These molecules play an important role in the antigen 

presentation and activation of the immune system. We have also analyzed the 
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expression of immunological molecules on PSC-derivatives (non-myocytes) obtained 

after differentiation of PSC. 

4.2.1 PSC-derivatives express immunologically relevant surface markers 

PSC-derived cells before selection with G418 (non-myocytes - NM) and after G418 

selection (cardiomyocytes - CM) were treated with mouse recombinant IFNγ (25 ng/ml) 

for 48 hrs. After treatment with IFNγ the cells were dissociated and analyzed by live cell 

flow cytometry. NM showed the expression of MHC-I (H-2Kd) on 35±15% of all cells and 

no MHC-II (I-A/I-E) expression at unstimulated conditions, which was further 

upregulated to 85±3% and 12±2.3% after IFNγ stimulation. CM did not apparently show 

expression of MHC-I(H-2Kd) and MHC-II(I-A/I-E) under baseline conditions; IFNγ 

treatment resulted in MHC-I and MHC-II(I-A/I-E) expression in 55±8% and 35±8% of the 

CMs respectively (Figure 18A,B,C).  

CD1d is a non-classical MHC molecule generally expressed on antigen presenting cells 

such as dendritic cells, activated monocytes, B lymphocytes and T-cells. It was shown 

by many groups that CD1d was upregulated on cardiomyocytes during inflammatory 

conditions like myocarditis and coxsakievirus B3 (CVB3) infections (Huber et al., 2003). 

Taking this into consideration we analyzed the expression of CD1d before and after 

IFNγ stimulation. CD1d expression was not influenced by inflammatory condition. A 

basal expression of CD1d on 20±15% of all NM and on 40±9% of all CM was observed 

(Figure 18D). No significant upregulation of the co-stimulatory proteins CD40, CD80, 

and CD86 was observed in the absence and presence of IFNγ (Figure 18E). In one out 

of 3 experiments CD80 expression on CM and CD86 expression on NM appeared to be 

upregulated.   
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Figure 18: Flow cytometry analysis of cell surface markers associated with immune responses.  A 

and B represent individual histograms obtained from NM and CM cultures with and without IFNγ 

exposure; grey histogram represent the isotype controls. C-E Bar graphs summarizing the flow cytometry 

data obtained from NM (blue) and CM (red) cultures with and without IFNγ exposure (25 ng/ml for 48 hrs). 

*p<0.05, (two-tailed, unpaired Student’s t-test, n=3). 
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PD-1/PD-L1 pathway plays an important role in the immune regulation mainly in 

immune escape mechanism of transplanted cells (Riella et al., 2012). PD-1 was not 

expressed on PSC-NM and PSC-CM even after IFNγ stimulation (Figure 19A). In 

contrast PD-L1 expression was up-regulated in both NM to 30±7% and CM to 40±9% 

after IFNγ treatment (Figure 19B). 

  

Figure 19: Flow cytometry analysis of PD-L1 and PD-1 associated with immune escape. A. 

Represents individual histograms obtained from NM and CM cultures with and without IFNγ exposure; 

grey histograms represent the isotype controls. B. Bar graphs summarizing the flow cytometry data 

obtained from NM (blue) and CM (red) cultures with and without IFNγ exposure (25 ng/ml for 48 hrs). 

*p<0.05, (two-tailed, unpaired Student’s t-test, n=3). 

4.2.2 Sustained expression of MHC-I on PSC-derivatives 

IFNγ abundance is increased in the overloaded or inflamed heart, mainly because of 

enhanced homing of T-cells, macrophages and dendritic cells under these conditions 

(Levick and Goldspink, 2014). In the previous experiments, the presence 
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immunologically relevant surface markers were assessed either in the absence or 

presence of IFNγ. To test whether transient inflammation would result in sustained 

immune activation, indicated by sustained expression of MHC-I (H-2Kd), NM and CM 

were stimulated transiently with IFNγ for 48 hours and thereafter kept in culture for 

additional 4 days with regular medium change every other day without IFNγ. The cells 

were dissociated and analyzed by flow cytometry for MHC-I (H-2Kd) expression. 

Abundance of MHC-I remained high in NM and CM even 4 days after withdrawal of 

IFNγ (Figure 20). This experiment suggested that short episodes of IFNγ stimulation 

may lead to long lasting alterations in PSC-immunogenicity. 

                    

Figure 20: Sustained MHC-I expression after transient IFNγ stimulation. Individual histograms 

obtained from NM and CM cultures with transient and without IFNγ exposure; grey histograms represent 

the isotype controls. (n=1). 

4.3 Functional and immunological properties of engineered heart muscle 

EHM can be generated from mixtures of PSC-derived cardiomyocytes, inactivated 

NMRI murine embryonic fibroblasts, and rat tail collagen (Didie et al., 2013). In addition 

to contractility measurements in EHM from the newly generated selectable PSC-line 

(B3) and immunological properties of CM in matured in EHM were assessed by flow 

cytometry. 
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4.3.1 Contractile parameters of engineered heart muscle 

EHMs were generated from PSC-derived cardiomyocytes supplemented with 30% 

inactivated MEFs. EHMs showed spontaneous contraction after 4 days in culture (one 

day after transferring to stretchers). Isometric force measurements at culture day 10 

demonstrated positive inotropic response to increasing extracellular calcium 

concentrations with maximal contractile force (0.30±0.04 mN; n=7) at 0.8±0.4 mmol/L 

extracellular calcium (Figure 21A). The apparent EC50 for calcium was found to be 

0.4±0.04 mmol/L. Contraction experiments were performed under 4 Hz electrical field 

stimulation in Tyrode’s solution. EHMs showed a slight but not significant positive 

inotropic response to adrenergic stimulation. Subsequent muscarinergic stimulation with 

carbachol elicited a negative inotropic response (Figure 21B). 

           

Figure 21: Contractile properties of PSC-EHM. The ordinates indicate force of contraction (FOC) of 

EHM exposed to increasing extracellular calcium (A) or isoprenaline followed by carbachol stimulation at 

the indicate concentrations (B) *p<0.05 (two-tailed paired Student’s t-test, n=7). C. Bright field image of 

EHM. 



 Results 

60 
 

4.3.2 Morphological analysis of engineered heart muscle 

The morphology of cardiomyocytes within the EHM was analyzed by whole mount 

staining of EHM for α-actinin, connexin 43, and cardiac troponin I. Whole mount staining 

of EHMs for α-actinin showed that cardiomyocytes in EHM are anisotropically arranged 

(Figure 22). The EHMs also showed positive staining for the gap junction protein 

connexin 43 in a diffuse pattern along the cell surfaces, providing morphological 

evidence for cardiomyocyte coupling within the EHMs. 

  

 

Figure 22: Morphological characterization of engineered heart muscle. Immunfluorescence stainings 

and confocal microscopy of whole mount EHMs. Immunolabeled structures are indicted in the respective 

panels. DNA (in blue) was labelled with Hoechst. Scale bars: 20 µm 

4.3.3 Immunologically relevant proteins in engineered heart muscle 

EHMs from PSC-derived CMs and inactivated NMRI MEFs were dissociated into single 

cells. Flow cytometry identified 49±3% (n=7) of the cells as α-actinin positive CMs 

(Figure 23).  
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Figure 23: Cardiomyocyte content in EHM. Representative scatter plot of EHM-derived cells labelled 

with isotype control (A) and α-actinin (B). C. Bar graph summarizes the data obtained from seven EHMs. 

Similarly as for PSC-cells directly from spinner flask cultures, EHM were analysed under 

basal and IFNγ (25 ng/mL; 48 hrs prior to dissociation) stimulated conditions by flow 

cytometry. EHM-derived cells showed no detectable MHC-I (H-2Kd), MHC-II (I-A/I-E), 

CD86, PD-1, and PDL-1 (Figure 24A and 24B). CD40 and CD80 were identified in 

2±0.5% and 7±2.5%. CD1d was detected in 5.5±2.5% of the EHM-cells. IFNγ increased 

the amount of EHM-cells expressing MHC-I (H-2Kd), MHC-II (I-A/I-E), PD-1, and PD-L1 

to 32±1.5%, 1.3±0.3%, 1±0.5%, and 28%. Conversely, CD40 positive cells appeared to 

be reduced to 1.5±0.5% of the EHM cells (Figure 24C-F). 
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Figure 24: Immunological properties of PSC-EHM derived cells. A and B represent individual 

histograms obtained from EHM derived cells with and without IFNγ exposure (25 ng /ml for 48 hrs); grey 

histogram represent the isotype controls. C-F Bar graphs summarize the flow cytometry data. *p<0.05, 

(two tailed, unpaired Student’s t-test, n=3).  
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4.4 Immunological properties of native cardiomyocytes 

After finding surprisingly little MHC-I expression on unstimulated PSC-derived 

cardiomyocytes, we wanted to confirm expression of MHC-I also in cardiomyocytes 

isolated from neonatal (n=1) and adult (n=1) mice. 

4.4.1 Expression of MHC-I on cardiomyocytes from neonatal mice 

Cardiomyocytes were isolated enzymatically from neonatal DBA (H-2d/d) mice (n=1), 

expressing GFP under the control of the alpha myosin heavy chain (MYH6) promoter 

(Figure 25B). The isolated cells were then stained for MHC-I expression and analyzed 

by flow cytometry. 47% of the cardiomyocytes (GFP-positive) were found to be MHC-I 

(H-2Kd) positive (Figure 25A).  

      

Figure 25: MHC-I expression on neonatal mouse cardiomyocytes. A. Flow cytometry analysis for H-

2K
d 

staining on cardiomyocytes derived from DBA neonatal mice. Scatter blot on the left represents 

negative control for GFP; middle plot represents isotype control and the scatter plot on the right 

represents MHC-I staining (n=1). B. GFP expression on cardiomyocytes from αMHC-GFP mice in culture. 
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4.4.2 Expression of MHC-I on cardiomyocytes from adult mice 

After finding high basal MHC-I expression in neonatal mouse cardiomyocytes in 

contrast to PSC-derived CM, we analyzed MHC-expression on adult murine 

cardiomyocytes. 

Cardiomyocytes were isolated from adult αMHC-GFP transgenic DBA mice heart by 

Langendorff perfusion method and seeded on laminin coated cover slips for 24 hours 

with IFNγ treatment. Flow cytometry of adult cardiomyocytes is challenging because of 

their size. Thus the cells were stained after fixation for β-2 microglobulin, a surrogate for 

MHC-I. Adult cardiomyocytes showed very low basal B2M protein abundance, with 

enhanced B2M after IFNγ stimulation (Figure 26). 

 

Figure 26: MHC-I expression on adult mouse cardiomyocytes. Representative immunofluorescence 

stainings for β-2 microglobulin (B2M, red) in adult GFP-positive cardiomyocytes (αMHC-GFP model; 

green). Bar graph summarizing the data from comparative analyses of cardiomyocytes with or without 

IFNγ treatment (25 ng/mL for 24 hrs). Blue: nuclear DAPI staining (* p<0.05 vs -IFNγ, two tailed, unpaired 

Student’s t-test, 10 cells per group, AU: Arbitrary units). 
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4.5 In vitro immunogenicity analysis of PSC-cardiomyocytes 

For the analysis of in vitro immune stimulatory properties of PSCs, we employed a co-

culture system of splenocytes from DBA (H-2Kd/d) and BL6 (H-2b/b) mice with PSC-

derived cells (H-2d/d) and IFNγ treated PSC-derivatives (H-2d/d) to simulate 

“inflammation” in the dish. In this co-culture system the immune cells from a crude or T-

cell selected splenocyte population (responders) are in direct contact with the PSC-

derived cells (stimulators; NM/CM). Activation of lymphocytes results in their 

proliferation and enhanced cytotoxic effects.         

4.5.1 Isolation of T-lymphocytes from spleen 

T-lymphocytes were isolated from mouse spleen by depletion of cells expressing 

CD11b, CD11c, CD19, CD45R (B220), CD49b (DX5), CD105, Anti-MHC-class II, and 

Ter-119(magnetic activated cell sorting method- MACS). After isolation, the cells were 

screened for viability and purity by flow cytometry. Viability was tested by staining with 

sytox and purity by staining for CD3. Flow cytometry data showed that 28% of the 

splenocyte population was CD3 positive (Figure 27A). T-lymphocyte enrichment by 

MACS resulted in 98% CD3+ cells (Figure 27B). 



 Results 

66 
 

                     

Figure 27: Assessment of splenocyte identity by flow cytometry. A. Representative histogram-

overlay showing 28% CD3 positive cells in the crude splenocyte populations. B. Bar graph showing the 

percentage of CD3 positive cells before and after MACS enrichment (n=3). C. Gating strategy showing 

the viability (Sytox negative) of the CD3 positive population (middle panel); 98% of the cells from this 

population were identified as CD3 positive T-lymphocytes. Grey filled histograms represents isotype 

controls. 

4.5.2 Validation of immune cell activation assay 

eFluor 670 is a red fluorescent dye that binds unspecifically to intercellular proteins. It is 

very stable and upon cell division is distributed equally between the daughter cells. 

Thus “dilution” of the dye with every cell division can be analysed by flow cytometry 

(Figure 28A), allowing for a precise assessment of proliferative activity over several cell 

divisions (Quah et al., 2007). 

After validation of the assay with T-lymphocytes from Balb/c mice and concanavalin A 

(Con.A) activation (Figure 28A), splenocytes were isolated from BL6 (H-2b/b) and DBA 

(H-2d/d) mice and labelled with eFluor 670. These labelled cells were co-cultured with 

PSC-derived NMs (H-2d/d) and CMs (H-2d/d) for 4 days with and without IFNγ (25 ng/ml)) 
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treatment and monitored for cell proliferation as described above. Splenocytes from BL6 

and DBA mice treated with Con.A served as positive controls, showing higher rate of 

cell proliferation compared to all other conditions. Unlabeled cells treated with Con.A 

were investigated to define autofluorescence. eFluor 670 labels cells without Con.A 

treatment served as a baseline fluorescence control. After co-culture of eFluor 670 

labelled splenocytes (responders) with PSC-derivatives (stimulators), the immune cells 

in the splenocytes are activated and proliferated which resulted in the dilution of the dye 

in the splenocytes (the peak observed between the unstained stimulated cells and 

stained unstimulated cells). In the co-culture models; these division peaks were not 

clearly evident likely because of the heterogeneous splenocyte cell population (Figure 

28B). We thus calculated the complete fraction of cells with lower eFluor 670 signal and 

compared it to the high eFluor 670 non-proliferative cell fraction. 

                        

Figure 28: T-lymphocyte proliferation assay. A. Control experiment: treatment of purified eFluor670 

(APC-A) T-lymphocytes isolated from Balb/c spleen with the unspecific T-cell stimulator concanavalin A 

for 4 days resulted in approximately 4 consecutive cell divisions (see peaks in histogram). B. Splenocyte 

proliferation: treatment of eFluor670 (APC-A) labelled splenocytes isolated from spleen with concanavalin 

A for 4 days. Live cells were gated based on cell size (FSC-A) and granularity (SSC-A; left dot plot); 

double positive T-lymphocyte population stained with alexa 594 CD3 (PE-Texas Red-A) and eFluor 670 

(APC-A; middle plot); the histogram delineates the proliferating T-lymphocyte population. 
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4.5.2.1 Strong leukocyte activation by PSC derivatives in monolayer culture 

Under basal conditions, CM and NM enhanced leukocyte proliferation (Figure 29-30). In 

the T-cell enriched populations proliferation was enhanced massively to Con.A control 

levels irrespective of the simulated autograft (DBA model; Figure 29) and allograft (BL6 

model; Figure 30) scenario. IFNγ (25 ng/ml) stimulated cells (48 hours) did not further 

enhance T-cell proliferation. Only in the unselected splenocyte population cultured with 

MHC-mismatching PSC-NM allografts there appeared to be enhanced proliferation 

under IFNγ stimulation (Figure 30B). 

 

Figure 29: In vitro immunogenicity induction by MHC-matched PSC-derivatives. A. Representative 

histogram-overlays of unstained cells, stained unstimulated cells and stimulated cells under different 

conditions. Bar graphs summarizing the data on splenocyte (Spl.) (B) and T-cell (C) proliferation. Con.A 

Concanavalin A, Spl. Splenocytes.  
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Figure 30: In vitro immunogenicity induction by MHC-mismatched PSC-derivatives. A. 

Representative histogram-overlays of unstained cells, stained unstimulated cells and stimulated cells 

under different conditions. Bar graphs summarizing the data on splenocyte (Spl.) (B) and T-cell (C) 

proliferation. Con.A Concanavalin A, Spl. Splenocytes.  

4.5.2.2 No leukocyte activation by PSC-engineered heart muscle 

Next, immunogenicity of PSC-EHM was assessed. Similarly as outlined above, eFluor 

670 dye labelled splenocytes from BL6 (H-2b/b) and DBA (H-2d/d) were co-cultured with 

EHMs generated from PSC-CM (B3 line-H-2d/d) and inactivated BL6-MEFs or 

inactivated DBA-MEFs. In addition, EHMs were treated with IFNγ for 48 hours and then 

co-cultured with eFluor 670 dye labelled splenocytes for 4 days. Inclusion of different 

MEFs in the EHM resulted either in a complete MHC match or MHC mismatch for the 

NM-fraction, allowing analysis of different MHC-I match and mismatch combinations 

between CM, NM and responder cells. After 4 days of co-culture, splenocytes were 

collected and measured for cell proliferation by flow cytometry. 

DBA and BL6 responder splenocytes co-cultured with DBA-EHMs and BL6-EHMs did 

not show significant differences in proliferation, irrespective of IFNγ treatment or MHC-
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match situation. A basal proliferation rate of 20±4.5% with splenocytes and 15±3.5% 

with T-cells was seen in the matched allograft DBA model (Figure 31A-C). Similarly a 

minimal proliferation of 12±3% in splenocytes and 9±2% in T-cells was seen in all the 

mismatch conditions with BL6 splenocytes (Figure 32A-C).  

 

Figure 31: In vitro immunogenicity induction by MHC-matched PSC-EHM. A. Representative 

histogram-overlays of unstained cells, stained unstimulated cells and stimulated cells under different 

conditions. Bar graphs summarizing the data on splenocyte (Spl.) (B) and T-cell (C) proliferation. Data 

from three independent experiments. BL6-EHM: CMs + inactivated BL6-MEFs; DBA-EHM: CMs + 

inactivated DBA-MEFs; with or without IFNγ stimulation: 25 ng/mL for 48 hrs. 
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Figure 32: In vitro immunogenicity induction by MHC-mismatched PSC-EHM. A. Representative 

histogram-overlays of unstained cells, stained unstimulated cells and stimulated cells under different 

conditions. Bar graphs summarizing the data on splenocyte (Spl.) (B) and T-cell (C) proliferation. Data 

from three independent experiments. BL6-EHM: CMs + inactivated BL6-MEFs; DBA-EHM: CMs + 

inactivated DBA-MEFs; with or without IFNγ stimulation: 25 ng/mL for 48 hrs. 

4.5.3 Activation of cytotoxic T-Lymphocytes 

In the previous experiments the stimulation of splenocyte and T-cell proliferation by 

PSC-derivatives in monolayer and EHM co-culture were analysed. Proliferation and 

activation of T-cells can lead to target cell lysis by cytotoxic (CD8 positive) T-cells. To 

investigate if the PSC-derived CMs can induce a cytotoxic reaction we employed a non-

radioactive lactate dehydrogenase (LDH) release assay.  

Briefly in this method, T-cells isolated from BL6 and DBA spleens were co-cultured with 

PSC-CM treated with and without IFNγ for 4 hrs which allows the direct contact of T-
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cells with PSC-CM (Figure 33A). Depending on the amount of lysis, lactate 

dehydrogenase (LDH) is released in to the culture medium. After 4 hrs of co-culture, the 

medium supernatant is removed and the lysis was measured spectrophotometrically at 

490 nm. There was a very low LDH-release with no difference between CM co-cultured 

with MHC-matched (DBA) and mismatched (BL6) T-cells. After IFNγ treatment there 

was a trend towards a higher LDH-release which was more pronounced in the 

mismatch condition (Figure 33B).  

          

Figure 33: Activation of cytotoxic T-lymphocytes by PSC-CM A. Morphology of T-cells, CMs and co-

culture. B. Percentage lysis of the target cells was compared between different conditions. Effector cells 

(T-cells) to target cells (CM) ratio was 10:1. (n=3/group). 

4.6 In vivo immunogenicity analysis of PSC-derivatives 

Finally, we evaluated the immunogenicity of PSC-derivatives (NM/CM) in mice with a 

MHC-match (B6D2F1, H-2b/d; PSC-B3 were derived from B6D2F1 chimeras) and MHC-

mismatch (BL6, H-2b/b) background. B6D2F1 mice were chosen to simulate the 

anticipated clinical scenario of perfect MHC-I matching of PSC-derivatives (H-2d/d) in an 

MHC-mismatch recipient with heterozygote expression from the MHC locus (Didie et al., 

2013). PSC-derivatives were implanted underneath the kidney capsule either as EBs 
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mainly consisting of NMs (Figure 34A) or PSC-derived cardiac bodies mainly consisting 

of CMs (Figure 34B). 

 

Figure 34: Morphological analysis of PSC-derived cardiac bodies and EBs. A. H&E staining for 

cardiac and embryoid bodies. B. Cardiac bodies obtained after selection with G418 were stained for α-

actinin (red) and f-actin (green); nuclei were labelled in blue (DAPI). 

4.6.1 Retention of PSC-derived cardiac body implants 

Implantation underneath the kidney capsule was chosen to evaluate the effect of MHC-I 

match and mismatch on immune cell infiltration. The kidney capsule was chosen as 

implantation site, because of rapid vascularisation and an easy identification of the 

implants even after weeks (Figure 35A). Kidneys were harvested 1, 3, 7, 14, and 28 

days after implantation of cardiac bodies and monitored for graft survival and cellular 

infiltration. Spontaneous contraction could be observed macroscopically until day 3 and 

in one animal until day 28 after implantation under MHC-matched conditions and until 

day 7 under MHC-mismatched conditions (Figure 35). Despite selection to cardiac 

bodies, one mouse showed a large teratoma in the MHC-matched condition.  
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Figure 35: Retention of PSC-derived cardiac body implants. A. Macroscopic appearance of a cardiac 

body implant underneath the kidney capsule (immediately after implantation). B. Representative images 

of kidneys implanted with cardiac bodies(H-2
d/d

): upper panels show kidneys harvested from B6D2F1 

mice (H-2
b/d

, MHC-match) at the indicated time points after cardiac body implantation; bottom panels 

show kidneys harvested from BL6 mice (H-2
b/b

, MHC-mismatch) at the indicated time points after cardiac 

body implantation. The site of implantation is highlighted with a black circle. C. Summary of observed 

beating activity of cardiac bodies immediately after harvesting the kidney from MHC-matched and MHC-

mismatched mice on the indicated days. The tick mark () represents a beating graft/mouse and a cross 

mark () represents no beating upon visual inspection.                        
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4.6.2 Histological analysis 

Kidney explants were subjected to morphological analyses in paraffin sections after 

H&E staining to evaluate the status of inflammation and cellular infiltration after 

implantation in the MHC-match and mismatch conditions. The degree of cellular 

infiltrates after implantation of cardiac bodies in the MHC-match with missing allele 

(B6D2F1) and mismatched (BL6) conditions were similar with low to moderate amounts 

of infiltration at days 7, 14 and 28 after implantation (Figure 36).In contrast, after 

implantation of EBs a high cellular infiltration could be observed within 7 days after 

implantation in both matched and mismatched conditions. At day 14 and day 28 the EB 

grafts were mostly rejected (Figure 37). 
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Figure 36: H&E staining of kidney sections implanted with cardiac bodies. A. Upper panels show 

kidneys harvested from B6D2F1 mice (H-2
b/d

, MHC-match) at the indicated time points after cardiac body 

implantation (H-2
d/d

). The lower panel show kidneys harvested from BL6-J mice (H-2
b/b

, MHC-mismatch) 

at the indicated time points after implantation. K: kidney; G: graft. B. Summary of morphological findings 

with a focus on inflammatory responses i.e., round cell infiltration, in MHC-matched implants (in B6D2F1 

mice) and MHC-mismatched implants (in BL6-J mice) at the indicated time points after implantation; semi 

quantitative score: - No, + little, ++ moderate, +++ extensive. 
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Figure 37: H&E staining of kidney sections implanted with embryoid bodies. Upper panels show 

kidneys harvested from B6D2F1 mice (H-2
b/d

, MHC-match) at the indicated time points after EB 

implantation (H-2
d/d

). Lower panels show kidneys harvested from BL6-J mice (H-2
b/b

, MHC-mismatch) at 

the indicated time points after EB implantation (H-2
d/d)

). K: kidney; G: graft. B. Summary of morphological 

findings with a focus on inflammatory responses, i.e., round cell infiltration, in MHC-matched EB implants 

(B6D2F1 mice) and MHC-mismatched EB implants (in BL6-J mice) at indicated time points after 

implantation; semi quantitative score: - No, + little, ++ moderate, +++ extensive. 
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5 Discussion 

The largely haploidentical genome of parthenogenetic stem cells, generated by artificial 

activation in MII oocytes (Figure 5C), makes them immunologically attractive for cell 

based organ repair applications. MHC-haploidentical cells may be applicable broadly 

with minimal transient or even without immune suppression as allografts in MHC-

matched recipients (Nakajima et al., 2007; Taylor et al., 2005). In this study we 

generated a novel transgenic H-2 haploidentical PSC line carrying a NeoR gene 

expressed under the control of the cardiomyocyte restricted α-myosin heavy chain 

(MYH6) promoter (Klug et al., 1996). Bioreactor protocols for scalable cardiomyocyte 

differentiation as well as selection and subsequent application in myocardial tissue 

engineering were established. As to their immunological properties, we found that PSC-

derived cardiomyocytes (CM) exhibited little to no MHC-I and MHC-II, little to no CD40 

and CD86 as well as little to no PD-L1 and PD-1, but notable CD80 and CD1d 

expression under basal conditions. PSC-derived non-myocytes (NM) showed little to no 

MHC-II, little to no CD40, CD80, and CD86 as well as little to no PD-L1 and PD-1, but 

notable MHC-I and CD1d expression under basal conditions. Simulated “inflammation” 

by stimulation with IFNγ increased MHC-I, MHC-II, and PD-L1 in all investigated cells. 

CD86 was enhanced in PSC-derived NMs under IFNγ in 1 out of 3 experiments. 

Interestingly, transient IFNγ resulted in sustained activation of MHC-I in PSC-derived 

CMs and NMs. PSC-EHM were in general less susceptible to IFNγ with only enhanced 

MHC-I and PD-L1. In a mixed lymphocyte reaction type experiment, massive 

lymphocyte activation by autologous or allogeneic PSC-derivatives was observed in 

monolayer culture. Conversely, no lymphocyte activation under basal and IFNγ 

stimulated conditions was observed in EHM culture. Finally, cytotoxicity appeared to be 

enhanced in a simulated allograft scenario. Implantation of PSC-CM and PSC-NM (H-

2d/d) under the kidney capsule in two allogeneic mouse models with a MHC-match (H-

2b/d) and a complete MHC-mismatch (H-2b/b) showed no obvious difference in immune 

cell infiltration (implant study for 4 weeks). However, in one mouse with a MHC-matched 

implant beating was observed even after 4 weeks. Collectively, these data support the 
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notion that PSC-derivatives are not immunologically naive, but may be suitable for 

MHC-matching without immune suppression 

5.1 Generation and differentiation of a neomycin selectable PSC line 

A selectable marker gene (NeoR) was introduced into the B3 PSC line with confirmed 

haploidentity in the H-2 locus. Although derived from B6D2F1 chimeras this line 

expresses only the DBA H-2-haplotype H-2d/d. Haploidentity is a common feature in 

PSC-lines, rendering them potentially advantageous for allograft applications with MHC-

matching (Didie et al. 2013). We chose a NeoR as a well-established selectable marker 

gene under transcriptional control by the cardiomyocytes-specific alpha myosin heavy 

chain (MYH6) promoter. MYH6 is detectable early in the developing heart in vivo and it 

is specific for cardiomyocytes in differentiating ES cells (Boheler et al., 2002; Gulick et 

al., 1991). After successful integration of the αMHC-NeoR transgene into the B3-PSC 

line, a spinner flask suspension culture was established to allow scaling of 

cardiomyocyte differentiation. In the presence of G418 spontaneously beating EBs 

could be converted into cardiac bodies comprised of >90% cardiomyocytes. This was in 

line with the original description of this selection procedure in mouse embryonic stem 

cells (Klug et al., 1996) and our recent study on the genetic manipulation of PSCs using 

a similar strategy (Didie et al., 2013). In spinner flasks we succeeded to produce 25±5 x 

106 cardiomyocytes from 10 x 106 input PSCs. We have not attempted to apply directed 

differentiation (Kattman et al., 2011) or metabolic (Tohyama et al., 2013) selection 

which may achieve similar numbers and purity without the need for genetic 

manipulation. These protocols are well established in human models, but so far not 

used widely in the mouse. For a clinical approach it is very important to generate a pure 

population of cardiomyocytes from any stem cell source, since after implantation the 

presence of proliferating stem cells might lead to the formation of teratoma. It was 

shown that as few as 1950 pluripotent stem cells can lead to teratoma formation 

(Hentze et al., 2009). 
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5.2 Immunologically relevant proteins on PSC-derived cardiomyocytes and non-

myocytes 

PSC and PSC-derivatives have unique immunological properties because they are 

typically homozygous at the MHC locus (Didie et al., 2013). This is because the MHC 

locus in mouse and human is located near the centromere and thus does typically not 

crossover during meiosis (Revazova et al., 2008). There is very little information 

available on the expression of immunologically relevant molecules on PSC-derivatives. 

Thus we assessed the expression of MHC-I, MHC-II, CD-40, CD-80, CD-86, CD1d, PD-

L1 and PD-1 in cardiomyocytes (CM) and non-myocytes (NM) derived from the H-2d/d 

B3 line. NMs showed significant expression of MHC-I and CD1d, whereas CMs showed 

no expression MHC-I, MHC-II but CD80 and CD1d expression was observed under 

basal conditions. This argues for low MHC-related immunogenicity of CM. In order to 

mimic inflammatory conditions that generally occur during cardiovascular diseases like 

myocardial infarction or viral myocarditis, PSC-NM and PSC-CM were treated with 

IFNγ. After IFNγ stimulation, MHC-I (H-2Kd), MHC-II (I-A/I-E) and PD-L1 were 

upregulated significantly in PSC-NM and PSC-CM. This data is in accordance with 

observations in ESC derivatives (Bonde and Zavazava, 2006; Lampton et al., 2008). 

The demonstration that MHC-I is expressed in CM under IFNγ stimulation did however 

suggest that immunological competence may be achieved quickly under in vivo 

conditions. Up-regulation of MHC-I expression after IFNγ treatment was persistent; 

suggesting that PSC-derivatives, once immunologically challenged, obtain sustained 

MHC-I (H-2Kd) with associated immunogenicity.  

The expression levels of immunological molecules such as MHC-I, MHC-II and co 

stimulatory molecules (CD80, CD86, CD40) was very low in undifferentiated PSC which 

was hardly influenced by IFNγ treatment. It has been shown that human ES cells 

express MHC-I proteins in very low levels (Suarez-Alvarez et al., 2010). Although most 

somatic cells express high levels of MHC-I, the in vitro and in vivo differentiated 

derivatives of human ESCs apparently retain a low level of MHC-I expression. 

Consistent with our data, addition of IFNs in particular IFNγ to the growth media of 

differentiated human ES cells resulted in high levels of MHC-I protein expression 
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(Drukker et al., 2002). In NM we observed high (35% of all PSC-NM) expression of 

MHC-I under basal conditions which could be increased to nearly 100% after IFNγ 

treatment. Consequently, it may be anticipated that NMs trigger rejection more strongly 

than CMs. 

When T-cells recognize mismatched antigen presented by either a donor or recipient 

APC, a signal is delivered to the T-cell via the TcR/CD3 complex.  Immediately a 

second co-stimulatory signal is received that activates the T-cell, triggering it to divide or 

proliferate to differentiate and communicate with other leukocytes that can then 

participate in the rejection response. This second signal is delivered for CD4+ T-cells 

when a co-stimulatory B7.1 (CD80) molecule on the APC binds with the CD28 receptor 

on the T-cell. On the other hand CD8+ T-cells receive their co-stimulation and definitive 

activation by helper T-cells. An absence of co-stimulation will render a T-cell anergic, 

i.e., non-responsive to further stimulation by the antigen (Boyd et al., 2005). In this study 

we could detect only a very low expression of co-stimulatory molecules (CD40, CD80 

and CD86) on PSC-NM and PSC-CM even after IFNγ stimulation. Theoretically this 

should ameliorate or completely inhibit a rejection of PSC-derivatives in vivo despite 

MHC-I expression.  

CD1d molecule was significantly expressed at basal conditions on PSC-derivatives and 

was not altered after IFNγ treatment. CD1d is a non classical MHC-I like molecule 

generally expressed on thymocytes, dendritic cells, activated monocytes and B 

lymphocytes. It is also expressed on T-cells and non-haematopoetic cells like CMs and 

endothelial cells, CoxsakievirusB3 (CVB3) myocarditis infections can enhance CD1d 

expression (Liu and Huber, 2011). NKT-cells kill CVB3 infected CD1d positive CMs in a 

Fas-dependent manner, which aids in viral control by eliminating infected cells early in 

the virus replication cycle (Huber, 2005). In a mouse model of CVB3 induced 

myocarditis, an infection activates heart-specific, autoimmune CD8+ cytolytic T-

lymphocytes (NKT cells) (Guthrie et al., 1984; Huber and Lodge, 1984) which kill 

uninfected cardiomyocytes through recognition of cardiac myosin epitopes. All this data 

suggests that expression of CD1d on cardiomyocytes might activate the NKT cells 

which further results in death of CMs. Intrestingly CD1d expression on PSC-EHM-
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derived cells was low compared to its expression on PSC-CM in a monolayer culture 

suggesting a low propensity for NKT cell activation. 

An important mechanism regulating the peripheral tolerance and autoimmunity is the 

expression of programmed death-1 (PD-1) receptor (Francisco et al., 2010; Tarrio et al., 

2012). Binding of PD-1 to its ligand programmed death ligand 1 (PD-L1) results in the 

upregulation of suppressive functions such as T-cell anergy or stimulation of Tregs in 

the immune system. PD-L1 is broadly expressed on hematopoietic cells and non-

hematopoietic cells such as vascular endothelial cells, epithelial cells, muscle cells, 

hepatocytes, placental cells and islet cells (Riella et al., 2012). Myocardial injury is 

associated with up regulation of endogenous inflammatory mechanisms (Baban et al., 

2014). It has been shown that expression of PD-1 and PD-L1 were significantly 

increased in the ischemic-reperfused heart (Baban et al., 2015). PSC-derived CMs 

showed an upregulation of PD-L1 after IFNγ stimulation. In contrast PD-1 expression 

was not observed even after IFNγ stimulation. Absence of PD-1 and presence of PD-L1 

on PSC-CM might have important role in the immunoregulatory mechanism of CMs and 

lead to an immune suppressive effect of cardiomyocytes. 

5.3 Expression of immunologically relevant molecules in EHM  

Expression of immunological molecules MHC-I, MHC-II, CD40, CD80, CD86 and CD1d 

was studied on EHM derived PSC-CM. EHMs were generated from 70% PSC-CM and 

30% NMRI MEF and showed functional properties similar to native myocardium. With 

respect to adrenergic stimulation with isoprenaline the EHM derived from PSC30B3 cell 

line did not show any significant effect in contrast to the EHM made from PSCA3 (Didie 

et al., 2013). The positive inotropic response of cardiomyocytes after beta-adrenergic 

stimulation increases in parallel with a maturation of the cells. Thus CMs derived from 

PSCA3 might be more matured compared to CMs derived from PSC30B3. However 

immunofluorescence staining for α-actinin and troponin I after additional 7 days of 

culture under constant load demonstrated the presence of well developed 

cardiomyocytes with regular sarcomeric cross-striations and expression of gap-junction 

proteins (Connexin-43). It has been shown that immature cardiomyocytes terminally 
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differentiate and mature in an organotypic manner in engineered heart tissue model with 

time (Tiburcy et al., 2011). With this information one can assume that PSC-CM might 

also immunologically mature in the EHM model. PSC-CMs in EHM showed negligible 

expression of MHC-molecules and co-stimulatory molecules. Even after IFNγ 

stimulation only MHC-I and PD-L1 was significantly up regulated and other molecules 

were unchanged. Taken together, we assume that lack of MHC-II expression on EHM 

derived cells argues for the immunological maturity of PSC-CM in EHM model.  

5.4 MHC-I expression on neonatal and adult heart cardiomyocytes 

After finding low MHC-I expression on PSC-CM we were investigating if this is a feature 

of PSC-derived CM or if it is a general characteristic of CM. To this means we stained β-

2 microglobulin on adult CM. The rationale for choosing β-2-microglobulin for 

immunofluroscence was because there is no optimal antibody available for staining of 

MHC-I (H-2Kd) in fixed cells and tissue samples and because β-2 microglobulin is a 

component of MHC-I molecules. Staining for β-2 microglobulin after IFNγ stimulation 

showed that this protein was mostly localized surrounding the nucleus with a spotty 

appearance through put the cell. β-2 microglobulin is processed in the endoplasmic 

reticulum before it is transported to the membranes (Dargemont et al., 1991). Better 

resolved microscopy would need to be performed to identify whether the spotty β-2 

microglobulin signals are located at the outer cell membrane including its invaginations 

(t-tubules). In line with our in vitro observation Rose et al. showed that normal 

myocardium does not express MHC-antigens, however after transplantation MHC-I 

antigens can be induced (Rosa and Fellous, 1988). Wang et al. showed that hESC cells 

lacking β-2 microglobulin show reduced killing by CD8+ T-cells (Wang et al., 2015). 

Two fold recognition of MHC-I and MHC-II antigens is necessary for activation by 

cytotoxic T-cells for lysis of virus-infected cells and cells bearing alloantigens 

(transplanted cells) (Zinkernagel and Doherty, 1979). The MHC-II antigens are involved 

in cellular communication that regulates the immune response. These antigens are 

found primarily on interstitial dendritic cells in the heart (Daar et al., 1984). It was 

demonstrated that normal fetal and adult myocytes express very low levels of MHC-I 
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antigens and do not have detectable levels of MHC-II antigens (Seko et al., 1990). 

Endothelial cells lining the microvasculature might express both MHC-I and MHC-II 

antigens (Rose et al., 1985). In conclusion these findings might explain why the heart is 

relatively resistant to organ rejection after transplantation and why the chronic rejection 

after heart transplantation is mainly directed against the vasculature. 

5.5 In vitro immunogenicity of PSC-derived cardiomyocytes and non-myocytes 

In order to study the susceptibility of PSC-derivatives to elicit an immune reaction, we 

employed in vitro proliferation assay. In this assay haploidentical PSC-NM (H-2d/d) and 

haploidentical PSC-CM (H-2d/d) were co-cultured with labeled splenocytes from related 

MHC-match DBA (H-2d/d) and unrelated MHC-mismatch BL6 (H-2b/b) mice. Many groups 

have used [3H] thymidine labeling of cells for measuring the proliferative response of 

responder cells (splenocytes). We attempted to label CMs with [3H] thymidine and 

encountered problems with background release, which required the use of an 

alternative method (eFluor 670 labeling). The use of fluorescence cell labeling for cell 

migration and proliferation under in vitro and in vivo conditions has been shown by 

many groups, it was also demonstrated that these fluorescent dyes show low variance 

and low toxicity (Quah and Parish, 2012; Quah et al., 2007). 

Proliferation of the T-lymphocyte population from the splenocytes was investigated by 

staining with CD3. In the MHC-match condition PSC-NM and PSC-CM show a similar 

degree of splenocytes and T-lymphocytes activation (35±3% and 55±3%); IFNγ did not 

enhance lymphocyte proliferation. This data suggests that upregulation of MHC-I, MHC-

II after IFNγ stimulation does not have any effect in stimulating the proliferation of MHC- 

matched splenocytes or T-lymphocytes in vitro. Poor resolution of division peaks in the 

co-culture set up might be because of heterogeneous responders (splenocytes) 

population, whereas pure T-lymphocytes stimulated with mitogen concanavalin A (Con. 

A) showed clear division peaks (Figure 29A). 

In MHC-mismatch condition BL6 (H-2b/b), splenocyte proliferation appeared to be 

stimulated by PSC-NM after IFNγ treatment. Conversely, PSC-CM did not show any 
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effect on proliferation of splenocytes and T-lymphocytes with IFNγ treatment. Our data 

is in accordance with Malliaras et.al where they have showed that allogeneic rat 

cardiosphere derived cells (CDCs) elicited negligible lymphocyte proliferation 

comparable to that seen with syngeneic CDCs (Malliaras et al., 2012). In contrast it has 

been demonstrated that undifferentiated syngeneic iPSC and their derivatives lack 

immunogenicity in vitro, whereas with allogeneic iPSC and their derivates a strong 

stimulation to proliferation was observed (Guha et al., 2013). Baban et al. showed that 

cells prepared from normal hearts increased T-cell proliferation suggesting their role in 

antigen presentation, whereas ischemic reperfused cardiac cells significantly reduced 

the percent of proliferating T-lymphocytes which can be reversed by treatment with PD-

L1 blocking antibody (Baban et al., 2015). However, we did not find significant 

differences in PD-L1 expression between PSC-CM and PSC-NM. H-2Kb specific T-cells 

analyzed in the spleen after 25 days of post transplantation with heart allograft showed 

that ~50% of carboxyfluorescein succinimidyl ester (CFSE) labeled T-cells divided six 

times in response to the graft. These H-2Kb specific T-cells that responded to the graft 

showed characteristics of memory cells and were capable of producing IL-2 and IFNγ 

on restimulation (Jones et al., 2001). Finally, splenocytes obtained from a mouse which 

is pre-sensitized with PSC-derivatives might be immunologically more active and might 

show an immune reaction. Taken together, our in vitro proliferation data suggests that 

PSC-CM exhibit a limited effect on splenocyte and T-lymphocyte proliferation from 

MHC-match (DBA) and MHC-mismatch conditions (BL6). 

In this study we show that DBA (H-2d/d) splenocytes and T-lymphocytes after co-culture 

with EHM generated from PSC-CM (H-2d/d) and DBA-MEF (H-2d/d) as well as EHM 

made with PSC-CM (H-2d/d) and BL6-MEF (H-2b/b) show an average proliferation rate of 

15±10%, MHC-I upregulation in the EHM after IFNγ has no effect on the immune cell 

proliferation rate. Also an MHC-mismatch of the MEFs failed to stimulate the 

proliferation of splenocytes and T-lymphocytes. This might be either because of less 

duration of co-culture of EHMs and splenocytes (4 days) or improper contact of 

responder (splenocytes/T-lymphocytes) and stimulator (CM/MEF) cells or lack of 

sufficient stimulation on the stimulator cells. Similar results were seen when BL6 (H-2b/b) 
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splenocytes and T-lymphocytes were co-cultivated with DBA-EHM (with DBA-MEF) and 

BL6-EHM (with BL6-MEF) with an average proliferation rate of 10±5%. The rationale 

behind using MHC-matched and –mismatched MEFs was because we know from 

studies in our group that for the successful generation of EHM, non-myocytes are 

essential. Non-cardiomyocytes can be allogeneous, e.g. PSC-derived, but also easily 

generated autologously, e.g. by generating fibroblasts from skin-biopsies, in a clinical 

application. 

Pluripotent stem cell derived cells stimulated with IFNγ present MHC-I antigens on their 

cell surface, these antigens with specific peptide interact with cytotoxic T-lymphocytes 

(Varda-Bloom et al., 2000). To confirm that cytotoxic lymphocytes are involved in lysis 

of PSC-CM we used non radioactive method of cytotoxicity measurement. Our results 

suggested that the killing of PSC-CMs by CTLs was negligible (10%) even after IFNγ 

stimulation in the complete MHC-mismatch condition (BL6). This data contradicts with a 

study where murine ESCs are lysed by allogeneic CTLs after treating the ESCs with 

IFNγ (Bonde and Zavazava, 2006). It has been shown that susceptibility to lysis of the 

ESC derivatives could be increased through pre-incubation with IFNγ for 48 hrs, the 

resulting lysis efficiency was however lower than lysis of normal fibroblasts (Kadereit 

and Trounson, 2011). This data strongly confirms that PSC-CMs have immune 

privileged properties under normal conditions. 

5.6 In vivo immunogenicity of PSC-derived cardiomyocytes and non-myocytes 

In this study we investigated the immunological tolerance of PSC-CM (H-2d/d) after 

allograft implantation in MHC-matched (B6D2F1, H-2d/b, with missing allele) and MHC-

mismatched (BL6, H-2b/b) mouse models under the kidney capsule. The rationale 

behind choosing kidney as the site of implantation was because it is easily accessible 

and transplanted EBs are well contained under the kidney capsule in a highly 

vascularized site (DeWard et al., 2014). Many groups have shown that cells injected 

directly into myocardium are mostly lost in the blood circulation and their viability is 

highly compromised (Paulis et al., 2013; Roell et al., 2007). PSC-CM implanted under 

the kidney capsule of MHC-matched mice survived at least until 28 days after 
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implantation suggesting immune resistance. A minimal amount of cellular infiltration was 

observed in the initial time intervals (day 1, day 3, day 7) in haematoxylin and eosin 

staining suggesting this inflammation might be because of the surgery procedure. In 

one of the three MHC-match mice implanted with PSC-CM at day 28, teratoma formed 

indicating the presence of proliferating cells even after CM-purification. This data is in 

accordance with Hentze et al. where they observed that ESC differentiated cells even 

after extended culture time formed teratoma in mice (Hentze et al., 2009).This might be 

a major limitation when using stem cell derived-CMs for clinical applications. 

T-cells, B cells and macrophages have been shown to infiltrate teratomas in syngeneic 

mice (de Almeida et al., 2013). Although they were incapable of preventing tumor 

growth, these lymphocyte infiltrates did reduce tumor appearance (Dressel et al., 2008). 

It was demonstrated that when a small number of syngeneic ES cells were implanted, 

teratomas were not formed. Implantation of 5 x 105 undifferentiated or differentiated 

syngeneic ES cells has been shown to result in teratoma formation in 33% and 17% of 

recipients respectively. However, implantation of high numbers of undifferentiated or 

differentiated cells (2 x 106) produced teratoma formation in 100% of recipients (Dressel 

et al., 2008; Lee et al., 2009). From this data one can assume that when low numbers of 

cells are implanted, cells either die instantly after transplantation or are rejected. 

In the MHC-mismatch (BL6, H-2b/b) setting, after implantation of PSC-CM (H-2d/d) under 

the kidney capsule, beating was noticed until day 7. No beating cells were observed 

after 28 days. These especially need to be repeated to finally draw a conclusion as to 

the immune privilege of PSC-derivatives in vivo. The results from the implantation data, 

where PSC-NM implanted under the kidney capsule have shown similar results to that 

of PSC-CM in MHC-match (B6D2F1, H-2b/d) and strong rejection in MHC-mismatch 

(BL6, H-2b/b) mouse models. Implantation of PSC-NM in the MHC-match setting showed 

significant cellular infiltration until 7 days of implantation. This might be either because 

the in vitro maintenance of PSC-NM might have altered the immunological property or 

the surgical procedure, which has to be further evaluated with further animal 

experiments. In the MHC-mismatch setting high cellular infiltration was also observed 

until 7 days of implantation and most of the implanted PSC-NM seems to be rejected 
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and killed after 28 days of implantation. Very few of the implanted cells remained after 4 

weeks of implantation in the allogeneic setting. This suggests that significant amount of 

MHC-I expression on PSC-NM, results in the development of a strong immune rejection 

in the allogeneic setting. In contrast to our data, it was also reported that male EBs 

implanted under the kidney capsule of female mice survived indefinitely despite of 

occurrence of T-cells specific for mH antigen (Robertson et al., 2007). 

In contrast it has been shown that induction of MHC-I expression by the use of IFNγ 

under in vitro condition improve the subsequent survival and immune integration of ESC 

derived vascular progenitor cells in the syngeneic setting (Ma et al., 2010). It has also 

been demonstrated that the immunogenicity of iPSC derived tissues is comparable to 

that of ESC derived tissues in murine models; terminally differentiated cells from iPSC 

show limited immune response in vivo (Araki et al., 2013). In contrast, other group 

demonstrated that iPSC-derived CMs transplanted in the myocardium of syngeneic 

mice were rejected; they also show that immunogenicity of iPSC-derivatives was 

increased after differentiation (Liu et al., 2013b). Recently it was shown that 

cardiomyocytes derived from MHC-homozygous iPSC exhibited reduced allogeneic 

immunogenicity in MHC-matched non-human primates (Kawamura et al., 2016). In 

contrast to the above data shown, it was reported that co-transplantation of dendritic 

cells along with iPSC derived grafts under kidney capsule results in the immune 

rejection of iPSC grafts (Todorova et al., 2015). Many groups have shown that dendritic 

cells with immature phenotype (low expression of MHC-II molecules and co-stimulatory 

molecules like CD40, CD80, CD86) can induce anergic state in T-lymphocytes 

(Lipscomb and Masten, 2002; Lutz and Schuler, 2002; Lutz et al., 2000), so these 

immature cells when implanted along with the grafts might prolong the survival of the 

graft. 
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6 Conclusions 

Based on the results obtained in this study we can conclude the following points. 

 Parthenogenetic stem cells can be successfully differentiated into 

cardiomyocytes in large scale using suspension spinner flask culture. 

 Parthenogenetic stem cell derived cardiomyocytes do not express MHC 

molecules (MHC-I and MHC-II) until they are stimulated with IFNγ.  

 Engineered heart muscle can be generated from PSC-derived cardiomyocytes. 

 Immunological maturation of PSC-derived CM in relation to their MHC-II 

expression was observed in EHM model. 

 PSC-derived cells activate lymphocytes under MHC-match and MHC-mismatch 

settings. 

 PSC-CM retention appeared to be enhanced under MHC-matching. 
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8 Appendix 

8.1 Appendix 1 (Supporting Information) 
 

                        

A1.1: Pluripotency markers expression on PSC by flow cytometry. A. Histogram- 

overlay showing the expression of Oct3/4 on PSC at passage p21. B. Histogram-

overlay showing the expression of SSEA-1on PSC. Grey filled histogram represents 

isotype control (IgG).       

   

A1.2: Expression of HLA-ABC molecules on human iPSC. Histogram-overlay of 

hiPSC (A) HFF (B) and hiPSC-CMs (C) were shown. Grey filled histogram represents 

isotype control. 

 



 Appendix 

110 
 

8.2 Appendix 2 (Reagents) 

For cloning 

1X TAE-buffer                         mM 

Tris-Acetate                            40 

Sodium-Acetate                      20 

EDTA, pH 7.5                          1 

LB-agarose plate (with ampicillin) 

Agar                                                                               7.5 g 

LB-medium                                                                    500 ml 

Ampicillin stock (100 mg/ml)                                          500 μl 

The LB-agar was autoclaved. After cooled down to around 60°C, LB-agar was poured 

into 10-cm petri dishes. Plates were stored at 4°C after the agar has hardened. 

LB-medium 

Bacto-Tryptone                                                                10 g 

Bacto Yeast Extract                                                         5 g 

NaCl                                                                                10 g 

Chemicals were dissolved with 950 ml of ddH2O and pH was adjusted to 7.4 with 0.1 N 

NaOH. Final volume was brought up to 1 liter and medium was autoclaved. Medium can 

be kept at 4°C for 3 weeks. 

Ampicillin stock (100 mg/ml) 

500 mg of Ampicillin was dissolved in 5 ml of ddH2O. The stock solution was stored at -

20°C in 500 μl aliquots. 
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Reagents and solutions for isometric force measurement 

For making Tyrode’s working solution, the following stock solutions should be prepared: 

CaCl2 stock (2.25 M) 

CaCl2 x 2 H2O (Mw = 147.02)                                  165.57 g 

ddH2O                                                                       500 ml 

MgCl2 stock (1.05 M) 

MgCl2 x 6 H2O (Mw = 203.01)                                 106.83 g 

ddH2O                                                                       500 ml 

Stock I: Ca2+ concentration in stock I can be adjusted accordingly. 

[Ca2+] (mM)                                      1.8           0.4              0.2 

NaCl (Mw = 58.44)                          175 g       175 g          175 g 

KCl (Mw = 74.58)                            10 g         10 g            10 g 

CaCl2 stock                                     20 ml       4.44 ml       2.22 ml 

MgCl2 stock                                    25 ml        25 ml         25 ml 

Make up with ddH2O to                 1000 ml    1000 ml      1000 ml 

Stock II 

NaHCO3 (Mw = 84.01)                                                  50 g 

ddH2O                                                                          1000 ml 

Stock III 

NaH2PO4 (Mw = 137.99)                                              5.8 g 

ddH2O                                                                           1000 ml 

All stock solutions should be stored at 4°C till required. 
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Tyrode’s working solution (for 8 EHMs) 

Stock I                                         80 ml 

Stock II                                        76 ml 

Stock III                                       20 ml 

Glucose                                       2 g 

Ascorbic acid                              100 mg 

H2O to                                         2 liters 

Reagents for the isolation of Adult mouse cardiomyocytes by Langendorff 
method 

1.Perfusion buffer in mmol/L: 113 NaCl, 4.7 KCl, 0.6 KH2PO4, 0.6 Na2HPO4x2H2O, 

1.2 MgSO4x7H2O, 12 NaHCO3, 10 KHCO3, 10 HEPES, 30 taurine, 10 2,3- 

butanedione-monoxime, 5.5 glucose, 0.03 phenol red, pH 7.4 in H2O. 

2. Liberase DH solution (4.2 mg/ml): 50 mg of Liberase DH were dissolved in 12 ml of 

sterile water, reconstituted on ice for 20 minutes and stored in 150 µl aliquots at -20°C. 

3. Digestion buffer: 30 ml of the perfusion buffer were supplemented with 12.5 µmol/l 

CaCl2, 150-450 µl of Liberase solution, and 300 µl of 2.5 % trypsin solution. Enzymes 

were added straight before use. 

4. Stopping buffer 1: 2.5 ml perfusion buffer supplemented with 50 µmol/l CaCl2 and 1 

% bovine serum albumin (BSA). 

5. Stopping buffer 2: 10 ml perfusion buffer supplemented with 37.5 µmol/l CaCl2 and 

0.5 % bovine serum albumin (BSA). 

6. Culture medium: Minimum essential medium (MEM) supplemented with 0.1 % BSA,                                                                                                                                                                  

2 mM L-glutamine, 10 mM BDM, antibiotics (100 U/ml Penicillin, 100 µg/ml 

Streptomycin) and insulin-transferrin-selenium supplement. 
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Cell culture Medium: 

MEF Medium: DMEM (Gibco # 61965), 10% FCS, 2 mmol/L L-glutamine,1% non 

essential aminoacids (NEAA), 100 U/ml Penicillin und 100 μg/ml Streptomycin. 

Freezing medium: 80% FBS,20% DMSO. 

SC medium: DMEM (Gibco #42430), 15% FCS, 1.000 U/ml LIF,2 mmol/L L-Glutamine, 

1 x NEAA, 50 U/ml Penicillin, 50 µg/ml Streptomycin, 1 mmol/L Na+-Pyruvate, 1X 

Nucleoside mix ( in µmol/L: 30 adenosine, 30 guanosine, 30 cytidine, 30 uridine, 10 

thymidine) and 100 µmol/L 2-mercaptoethanol. 

Differentiation medium: Iscove Medium (Biochrom #F0465), 20% FCS, 2 mmol/L L-

glutamine, 1% NEAA, 100 U/ml Penicillin(P), 100 μg/ml Streptomycin(S), 100 μmol/L 2-

mercaptoethanol, 0.02 mmol/L L-ascorbic acid 2-phosphate sesquimagnesium salt 

hydrate (sigma). 

RPMI medium: RPMI with Glutamax(Gibco), 10% heat inactivated FCS, 100 U/ml 

penicillin, 100 μg/ml streptomycin,100 μmol/L 2-mercaptoethanol, 

eFluor® 670 stock solution: 5 mmol/L eFluor® 670 dissolved in DMSO 
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A2.1 List of primers 

Gene Sequence Tm 
(°C) 

Product 
size(bp) 

D17Mit178 For: 5'-ACACAATTTCTTTTAGTGGGTTCC -3' 56 144(b/b)/
162(d/d) Rev: 5'-TGTGGAAGACACTCAATATCAACC-3' 

Neomycin 
resistance 

For: 5'-TCCTGCCGAGAAAGTATCCATCATGGCTGA-
3' 

63 383 

Rev: 5'-ATTCGCCGCCAAGCTCTTCAGCAATATCAC-
3' 

 

Gene Sequence Tm 
(°C) 

Produc
t 

size(bp
) 

Oct3/4 For: 5’-GCCCCAATGCCGTGAAG- 3’ 59 101 

Rev: 5’-CAGCAGCTTGGCAAACTGTTC- 3’ 

Nanog For: 5’-TGCTACTGAGATGCTCTGCACA- 3’ 59 71 

Rev: 5’-TGCCTTGAAGAGGCAGGTCT- 3’ 

Sox2 For: 5’-GGCAGCTACAGCATGATGCAGGAGC- 
3’ 

60 131 

Rev: 5’-CCTGCAGTACAACTCCATGACCAG- 3’ 

Rex-1 For: 5’-GGCCAGTCCAGAATACCAGA- 3’ 59 232 

Rev: 5’- GAACTCGCTTCCAGAACCTG - 3’ 

GAPDH For: 5’-ATGTTCCAGTATGACTCCACTCACG- 3’ 60 171 

Rev: 5’- TGTCGTGGAGTCTACTGGTGTCTTC -
3’ 

 

A2.2 List of primary antibodies 

Antibody Dilution Company clone 

PE anti mouse CD1d 1:100 Biolegend 1B1 

PE anti mouse H-2Kd 1:100 Biolegend SF1-1.1 

PE anti mouse H-2Kb 1:100 Biolegend AF6.88.5 

Alexa Fluor 594 anti 
mouse CD3 

1:100 Biolegend 17A2 

Alexa Fluor 488 anti 
mouse CD3 

1:100 Biolegend 17A2 

FITC Hamster anti mouse 
CD40 

1:100 Biolegend 3/23 

PE anti mouse CD86 1:100 Biolegend GL-1 

FITC anti mouse CD 80 1:100 Biolegend 16-10A1 

Alexa Fluor 488 rat anti 1:100 BD Pharmingen M5/114.15.2 
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mouse I-A/I-E 

PE anti mouse CD274(B7-
H1,PD-L1) 

1:100 Biolegend 10F.9G2 

FITC anti mouse 
CD279(PD-1) 

1:100 Biolegend 29F.1A12 

Monoclonal anti –α- 
Actinin 

1:4000(FC) 
1:1000(IF) 

sigma EA-53 

Anti cardiac Troponin I 1:500 abcam ab47003 

β- 2-Microglobulin 1:250 abcam EP2978Y 

Myosin heavy chain 1:500 DSHB MF20 

Connexin 43 1:250 BD pharmingen 610062 

 

A2.3 List of isotype controls 

Isotype Controls Dilution company clone 

PE Rat IgG2b, k 1:100 Biolegend RTK4530 

PE mouse IgG2a, k 1:100 Biolegend MOPC-173 

PE Mouse IgG2b, k 1:100 Biolegend MPC-11 

Alexa Fluor 488 Rat 
IgG2b, k 

1:100 Biolegend RTK4530 

FITC Rat IgG2a, k 1:100 Biolegend RTK2758 

PE Rat IgG2a, k 1:100 Biolegend RTK2758 

FITC Armenian 
Hamster IgG 

1:100 Biolegend HTK888 

Mouse IgG1 1:250 R&D systems MAB002 

Rabbit IgG 1:2000 sigma I5006 

 

A2.4 List of secondary antibodies 

Secondary 
Antibody 

Dilution Species Company 

Anti-mouse IgG 
Alexa 488 

1:1000 Goat Invitrogen 

Anti-mouse IgG 
Alexa 546 

1:1000 Goat Invitrogen 

Anti-mouse IgG 
Alexa 633 

1:1000 Goat Invitrogen 

Anti-rabbit IgG 
Alexa 488 

1:1000 Goat Invitrogen 

Anti-rabbit IgG 
Alexa 546 

1:1000 Goat Invitrogen 

Anti-rabbit IgG 
Alexa 633 

1:1000 Goat Invitrogen 



 Appendix 

116 
 

A2.5 List of fluorescent labels 

Label Concentration Target Company 

DAPI 0.1 µg/ml DNA sigma 

Hoechst 1 µg/ml DNA BD biosciences 

Phalloidin 488 300 units f-actin Invitrogen 

Phalloidin 546 300 units f-actin Invitrogen 

Phalloidin 633 300 units f-actin Invitrogen 
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and their application in cardiac tissue engineering”.  Supervisor: Prof. Wolfram-
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Research Experience 

Frontier lifeline Pvt.LTD (K.M.Cherian Heart foundation)                    Chennai 
Scientist, Dept of Tissue engineering and stem cell biology     June 2007- March 2011 

 Investigation on scaffold generation for heart tissue repair. 
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Academic Qualifications 

Master of 
Technology 

Medical biotechnolgy IIT Madras, Chennai 2005-07 

Masters of Science 

 

Biochemistry Bhavans Vivekananda 
college, Hyderabad 

 

2003-05 

Bachelor of Science Microbiology, 
Biochemistry, Chemistry 

P.B Siddhartha College of arts 
and Science, Vijaywada. 

2000-03 

Academic Distinctions 

Was among the top 3% in the all India entrance exam, GATE 2005. 

Publications 

 Crosslinked acellular saphenous vein for small-diameter vascular graft. Ramesh 

B, Mathapati S, Galla S, Cherian KM, Guhathakurta S. Asian Cardiovascular and 

Thoracic Annals 2013 21: 293. 

 Nanofiber-reinforced biological conduit in cardiac surgery: preliminary report. 

Guhathakurta S, Galla S, Ramesh B, Venugopal JR, Ramakrishna S, Cherian KM. 

Asian Cardiovascular and Thoracic Annals 2011 19: 207. 

 Analytical Study to Evaluate the Extracellular Matrix in Processed Acellular 

Xenografts. Galla S, Santosh Mathapati, Vijaya Nayak, K.M. Cherian, Soma 

Guhathakurta. Indian J Thorac Cardiovasc Surg (2010) 26:132–138. 

 Qualitative and Quantitative Detection of Sodium Deoxycholic Acid in Decellurized 

Tissue. Santosh Mathapati, Galla S, Kavitha Sankaranarayanan, Rama Shanker 

Verma, Kotturathu Mammen Cherian, Soma Guhathakurta. Indian J Thorac 

Cardiovasc Surg (2010) 26:129–131. 

 

Conferences/Symposiums/Workshops Attended (International and National) 

 Satish Galla, Michael Didie, Vijayakumar Muppala, Ralf Dressel, W-H.Zimmermann. 
Immunological properties of parthenogenetic stem cell-derived cardiomyocytes. 
Symposium on cardiovascular regenerative medicine by NIH-NHLBI at Bathesda, 
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 Satish Galla, Michael Didie, Vijayakumar Muppala, Ralf Dressel, W-H.Zimmermann. 

Parthenogenetic Stem Cell-derived Cardiomyocytes Express Major 

Histocompatibility Complex-I only after Inflammatory Stimulation. Basic 

Cardiovascular sciences meeting by AHA at Las Vegas, U.S.A. July 14th-17th 2014. 

 Satish Galla, R.Bala Sundari, Sheerinbegam Naser, K.M.Cherian, Soma 

Guhathakurtha. Electrospun polymeric nanofiber reinforced porcine pulmonary 

xenograft as a versatile conduit in cardiovascular surgery. 20th World Congress, 

World society of Cardio-thoracic surgeons Oct 20-23, 2010, Chennai,India. 

 Participated in “International conference on cardiovascular genetics” held on Dec 3
rd 

2008 organized by Frontier lifeline hospital, Chennai.  

 Participated in “Workshop on Nanoscience & Technology for Health Care: Medical 

Diagnosis, Imaging and Drug Delivery” organized by IGCAR, Chennai on Feb 26
th

, 
2008. 

 Participated in “Recent Trends in Collagen” an international conference held from 

24-25 January 2008 at CLRI, Chennai.  

 Radha C; Ananthakrishnan B; Veerappan S; Satish Galla; K M Cherian; S 

Guhathakurta, Surface characterization of processed natural biological tissue, 

International conference on stem cell, Tissue engineering and regenerative 

medicine, 2007, Frontier Lifeline, Chennai. 
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Technical Skills 
 
Animal surgeries: 

 Implantation of cardiomyocytes under the kidney capsule of mice.  

 Teratoma assays in mice. 

 Isolation of cardiomyocytes from neonatal mice hearts. 

 Langendorff heart perfusion in mice. 

 Isolation of splenocytes and T lymphocytes from mice. 

 
Animal Handling: 

 IP injections in mice and rats  

 Blood sampling techniques from mice and rats 

 Tail vein injections in mice and rats  

 Organs collection for histology 
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Cell Culture: 

 Parthenogenetic and embryonic murine stem cell culture, generation of stable 

cell lines. 

 Differentiation of stem cell into cardiomyocytes. 

 Immune cell proliferation assays and cytotoxicity assays.  

 T lymphocyte culture.  

 Preparation of engineered heart muscle. 

 
Microscopic techniques: 

 Fluorescent microscopy  

 Confocal microscopy 

 2 photon imaging techniques 

 

Other Techniques: 

 Flow cytometry (FACS Diva) 

 Electrospinning of nanofibers  

 Immunohistochemistry / Immunofluorescence 

 Universal tensile testing machine 

 Organ bath setup to study the contractile properties of engineered heart muscle,  

 PCR, qPCR  

 Western blotting. 

 
Teaching Experience 
 

 Was involved in the teaching of the course “P.G Diploma in stem cell technology 
and tissue engineering” from Madras University, Chennai. 

 

 Supervised 2 Bachelors and one medicine student for their thesis at Institute of 
pharmacology, UMG, Goettingen. 

 
Certifications 
 

 FELASA B certification for Animal experiments. 
 
Language skills 
 

 English, Basic German language (A2 level). 
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