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Introduction  
 

1 Introduction 

Alzheimer´s disease (AD) is named after the German physician Alois Alzheimer. In 1906 he 

presented a single case study of one of his patients. Auguste Deter developed a cognitive de-

cline and behavioral symptoms. After his patient´s death Alzheimer examined her brain and 

found neuron loss, extracellular amyloid plaques and intracellular neurofibrillary tangles (Alz-

heimer 1907; Alzheimer et al. 1995), which today are commonly accepted neuropathological 

hallmarks of AD (Montine et al. 2012). It took up until 1992, when John Hardy and Gerald 

Higgins formulated the amyloid cascade hypothesis, to identify the accumulation of amyloid 

beta (Aβ) as the key event in the pathogenesis of AD (Hardy and Higgins 1992). Today, more 

than 100 years after its description AD is the most prevalent form of dementia (Reitz et al. 

2011) and therapeutic options are urgently needed. However, to date no disease modifying 

strategy is available.  

 

1.1 Clinical aspects of Alzheimer´s disease 

Alzheimer´s disease is classified as a degenerative disorder of the brain that progresses gradu-

ally following a slow onset (World Health Organization). It is characterized clinically by a 

global cognitive impairment. Lasting for longer than six months, this syndrome is referred to 

as dementia. In order to distinguish Alzheimer´s disease from other forms of dementia it is 

further characterized by neuropathological and neurochemical hallmarks (McKhann et al. 

2011; Holtzman et al. 2011). The most commonly observed late-onset Alzheimer´s disease 

(LOAD) begins beyond the age of 65 with an increasing incidence starting at the end of the 

seventh decade of life. On the contrary an early onset form of Alzheimer´s disease (EOAD), 

which often progresses more rapidly is described (Reitz and Mayeux 2014). According to the 

National Institute on Aging (NIA) the disease progresses from a preclinical stage to mild cog-

nitive impairment due to AD and finally dementia due to AD (Albert et al. 2011; McKhann et 

al. 2011). It is assumed that in the preclinical stage the pathological process resulting in the 

development of AD is initiated as early as 20 to 30 years before the first symptoms occur 

(Blennow et al. 2006). Mild cognitive impairment due to AD progresses to dementia due to 

AD with a conversion rate of 10 to 15 % per year (Petersen 2004), which finally results in the 

death of patients (Holtzman et al. 2011). 
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1.1.1 Epidemiology 

Alzheimer`s disease is the most prevalent form of dementia, accounting for approximately 70 

% of the cases (Reitz et al. 2011). Globally the estimated prevalence was 23.4 million in 2006 

(Ferri et al. 2006). By the year 2050 however, this number is predicted to increase dramatically 

by the factor four (Reitz and Mayeux 2014), in the light of demographic ageing in developed 

countries (Reitz et al. 2011). For Germany in 2007 the prevalence of dementias of all etiologies 

was 1.07 million in over 60 year-old persons with an incidence of 244.000. Interestingly, the 

prevalence rates in Eastern-Germans aged above 85 years was higher than in Western-

Germans (Ziegler and Doblhammer 2009). The incidence of Alzheimer`s disease increases 

progressively with age, rising from approximately 0.5% in persons aged 65-70 to 7-8% in over 

85 year old individuals (Mayeux and Stern 2012). In general women are at higher risk to devel-

op AD (Farrer et al. 1997).  

In addition to ageing a number of other non-genetic risk factors for developing AD are de-

scribed. Risk factors for atherosclerosis like hypertension, hypercholesterolemia and smoking 

also increase the risk for developing AD later in life (Kivipelto et al. 2001; Kivipelto et al. 

2005) and persons suffering from heart failure (Qiu et al. 2006) or diabetes mellitus are at 

greater risk for developing AD (Leibson et al. 1997). Furthermore, a history of traumatic brain 

injury predisposes for the development of AD (Plassman et al. 2000; Jellinger et al. 2001; Si-

vanandam and Thakur 2012; Gupta and Sen 2016). 

 

1.1.2 Diagnosis 

Alzheimer´s disease is diagnosed applying cognitive tests, followed by laboratory tests and 

imaging procedures, in order to allow an early diagnosis, distinguish between different forms 

of dementia and monitor disease progression  (Leitlinie Demenzen 2009). Taking prevalence 

and clinical features into account, most relevant differential diagnoses are vascular dementia 

(Qiu et al. 2007) and frontotemporal dementia (Weder et al. 2007). Typical slow onset, gradual 

progression, and the exclusion of other explanatory medical findings hint towards "probable 

AD dementia". An AD family history can further strengthen the diagnosis, while an abrupt 

onset, epilepsy, paresis and sensory deficits in early stages make AD less probable (McKhann 

et al. 2011). Pre-existing psychiatric conditions like depressions and an intake of anticholiner-

gic medication may increase the risk for later developing dementia in general (Carrière et al. 

2009) or AD in particular (Ownby et al. 2006).  
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Presence and severity of cognitive impairment in AD patients can be quantified with cognitive 

tests. The Mini-Mental State Examination is most commonly used and provides a scale rang-

ing from 0 (severe impairment) to 30 (no impairment) (Folstein et al. 1975). The test, among 

others like the clock-drawing test (Sunderland et al. 1989) or the Cambridge Cognitive Exami-

nation, is especially suitable as a screening test (Mitchell 2009, Aprahamian et al. 2010, 2010; 

Martinelli et al. 2014). Behavioral components of AD can be quantified by comprehensive 

tests (Reisberg et al. 1997; Blazina et al. 1995) or focusing specific aspects of behavioral ab-

normalities in AD (Cohen-Mansfield 1997; Clarke et al. 2007). However, results from cogni-

tive tests can be confounded by educational level and dementia can be caused by other pa-

thologies than AD. Therefore, further diagnostic tests should be considered in order to specify 

the diagnosis (McKhann et al. 2011). The detection of prodromal AD cases (Hampel et al. 

2009) is especially important for proper stratification, aiding study design of clinical trials, test-

ing preventive or therapeutic strategies (Hampel et al. 2010; Hampel et al. 2011). Alzheimer´s 

disease cerebrospinal fluid (CSF) biomarkers are particularly specific for the disease since 

changes derive from deposits of amyloid protein and intracellular neurofibrillary tangles (Ge-

nius et al. 2012). Interestingly, CSF levels of Aβ42 (Blennow and Hampel 2003; Andreasson et 

al. 2007) and the ratio of Aβ1-42/Aβ1-40 are decreased (Mattsson et al. 2009). Concentrations of 

total Tau-protein (T-Tau) and phosphorylated Tau (p-Tau) are increased, but certain p-Tau 

species are more specific for AD (Arai et al. 2000; Hu et al. 2002).  

Using structural magnetic resonance imaging (MRI) atrophy of hippocampus and amygdala, 

typically found in the late-onset form of the disease (Reitz and Mayeux 2014) and the precu-

neus, commonly affected in early onset forms (Karas et al. 2007; Mungas et al. 2005) can be 

visualized. Using positron emission tomography (PET), protein aggregates amyloid plaques 

can be visualized with FDDNP ((2-(1-{6-[(2-[fluorine-18]fluoroethyl)(methyl)amino]-2-

naphthyl}-ethylidene)malononitrile ) (Shoghi-Jadid et al. 2002; Shin et al. 2010) or PIB (pits-

burgh compound B) (Edison et al. 2008; Rowe et al. 2007; Klunk et al. 2004) respectively. 

Single photon emission computed tomography (SPECT) tracers targeting components of the 

cholinergic system (Colloby et al. 2010) also deliver an altered signal in AD. However proven 

to be useful, biomarkers have to be obtained in standardized procedure (Genius et al. 2012), 

which partly have yet to be defined (Frisoni et al. 2013). 

 

3 
 



 
Introduction  
 
1.1.3 Therapy 

To date no disease modifying therapy or preventive strategy of Alzheimer´s disease is available 

and patients are solely treated symptomatically. Inhibitors of the acetylcholinesterase are ad-

ministered to treat patients with mild to moderate AD, addressing an acetylcholine deficiency, 

induced by neurodegeneration in the basal forebrain. Although effects are small, patients 

treated for 6 or 12 months with donepezil, galantamine or rivastigmine, improve significantly 

in AD-tests (Birks 2006). These substances should be applied in the highest tolerated dose 

(Leitlinie Demenzen 2009). Moderate to severe cases of AD are treated with memantine, a 

non-competitive glutamate N-methyl-D-aspartate (NMDA) receptor agonist. The substance 

has a small beneficial effect on cognition, activities of daily living and behavior (McShane et al. 

2006). Furthermore, agitation and psychosis that occur regularly in AD (Levy et al. 1996) 

should be treated with selective serotonin reuptake inhibitors (SSRIs) like sertralin and cital-

opram (Seitz et al. 2011). The usage of antipsychotic drugs like haloperidol or olanzapine has 

to be limited in time and dosage, since the risk of mortality is significantly increased (Kales et 

al. 2014). According to the literature available, no definite conclusion on a beneficial effect of 

cognitive training and cognitive rehabilitation can be drawn (Bahar-Fuchs et al. 2013). Instead, 

there are studies indicating that physical exercise can have a beneficial effect in AD patients 

(Rolland et al. 2007). Many clinical trials have been and are still trying to address the need for 

new therapeutics of AD. Promising therapeutic approaches include targeting the production 

of Aβ, its oligomerization and facilitation of its clearance (Schneider et al. 2014). 

 

1.1.4 Neuropathology of Alzheimer´s disease 

A definite diagnosis of AD requires post mortem neurohistopathological investigation of the 

brain. The AD defining neuropathological pathology can be cassified as low, intermediate or 

high according to the ABC score (Montine et al. 2012). It is determined by the phase of Aβ 

plaque deposition (Thal et al. 2002), the stage of NFT deposition (Braak and Braak 1991) and 

the abundance of neuritic plaques (Mirra et al. 1991; Montine et al. 2012). Aβ plaque deposi-

tion starts in the neocortex (Phase 1), progresses to allocortical brain regions and diencephalic 

nuclei, the striatum and cholinergic nuclei of the basal forebrain (Phase 2). Later stages are 

characterized by plaque deposits in brain stem nuclei (Phase 4) and the cerebellum (Phase 5) 

(Thal et al. 2002). In contrast, neurofibrillary tangle pathology starts in the transentorhinal 

region (Stages I-II) and extends to the entorhinal region (Stages III-IV). Eventually neurofi-

brillary tangles are found in the isocortex (Stages IV-V) (Braak and Braak 1991). The classifi-
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cation of the density of neuritic plaques ranges from sparse (1-5 neuritic plaques/mm2) and 

intermediate (6-20 neuritic plaques/mm2) to high (>20 neuritic plaques/mm2(Mirra et al. 

1991). Besides these criteria used for post-mortem diagnosis of AD a number of further neu-

ropathological hallmarks is found. For example, Cerebral amyloid angiopathy is the commonly 

observed deposition of Aβ in cerebral vessels (Ellis et al. 1996). Additionally, an inflammatory 

response is seen in AD brains (Akiyama et al. 2000). 

 

1.2 Pathogenesis of Alzheimer´s Disease 

The influential amyloid cascade hypothesis proposes that Aβ is the causative agent of AD 

pathology (Hardy and Higgins 1992). Aβ was shown to be the major component of senile 

plaques (Masters et al. 1985). Interestingly, Aβ is constantly produced in the brain by cleavage 

of its precursor protein (Haass et al. 1992) and is found in healthy individuals throughout life 

(Seubert et al. 1992). Following production it is removed from the brain by various clearance 

mechanisms (Deane et al. 2009; Lee and Landreth 2010; Tarasoff-Conway et al. 2015). A 

change in the delicate homeostasis between Aβ production and its clearance leads to an ele-

vated steady state of Aβ concentrations (Selkoe 2000). According to the amyloid cascade hy-

pothesis Aβ accumulation causes a series of downstream effects that eventually cause demen-

tia (Hardy and Selkoe 2002). Changes on either side of the equilibrium of Aβ production and 

Aβ clearance can cause AD . Overproduction however is a rare cause mainly limited to famili-

al Alzheimer´s disease (FAD), early onset cases, while impaired clearance of Aβ is assumed to 

cause the majority of sporadic late-onset cases of the disease (Bates et al. 2009). 

 

1.2.1 Amyloid precursor protein 

The amyloid precursor protein (APP) is a type I membrane protein expressed in various cell 

types throughout the body (Mattson 1997). Several physiological functions in neurons have 

been attributed to the protein involving neurotrophic activity (Mucke et al. 1996), neurite out-

growth (Milward et al. 1992), neuronal differentiation (Hung et al. 1992) and cell adhesion 

(Storey et al. 1996; Coulson et al. 1997). The neuronal isoform comprises 695 amino acids. It 

consists of a large N-terminal portion that is located extracellularly, a 24 amino acid hydro-

phobic stretch that anchors the protein in intracellular membranes and in the plasmamem-

brane, and a small C-terminal intracellular domain. The Aβ fragment includes the last 28 resi-

5 
 



 
Introduction  
 
dues of the extracellular portion and the first 12-14 residues of the transmembrane domain 

(Selkoe 1998). 

 

1.2.2 Processing of the amyloid precursor protein 

An amyloidogenic and a non-amyloidogenic pathway of APP processing are classically de-

scribed. The turnover of APP by each of the two pathways is inversly correlated as the respec-

tive enzymes involved compete for APP as a substrate. Due to its localization within the cen-

ter of its precursor protein two proteolytical cleavages are nessecary to liberate Aβ. Firstly, 

APP is cleaved extracellularly by the beta-secretase β-site APP-cleaving enzyme 1 (BACE1) 

(Vassar et al. 1999; Kandalepas and Vassar 2012), resulting in the release of the N-terminal 

APPsβ and the production of a membrane-bound C-terminal fragment (CTF-β). Secondly, the 

membrane embedded γ-secretase catalyzes the cleavage of the C-terminal fragment within the 

transmembrane domain (Selkoe and Wolfe 2007), which leads to the release of Aβ into the 

extracellular space. The residual cytoplasmatically located polypeptide is referred to as amyloid 

precursor protein intracellular domain (AICD). Gamma-secretase is a multi-subunit protein 

complex comprised of presenelin-1 (De Strooper et al. 1998) or presenilin-2 (Yan et al. 1999) 

harboring the active site of the complex and its limiting cofactors (Francis et al. 2002; Ta-

kasugi et al. 2003) Nicastrin (Yu et al. 2000; Edbauer et al. 2002), anterior pharynx-defective 1 

(Aph-1) (Goutte et al. 2002; Francis et al. 2002) and presenilin enhancer 2 (Pen-2) (Francis et 

al. 2002). Peptides produced by γ-secretase most commonly end after amino acid 40 (90 %) 

and amino acid 42 (10 %) (Thinakaran and Koo 2008). 

The non-amyloidogenic pathway is initiated by alpha-secretase cleavage of APP between 

Lys16 and Leu 17 within the Aβ -domain, interfering with Aβ production (Allinson et al. 

2003). This leads to the release of the sAPPα ectodomain (Sisodia 1992) that in addition serves 

in promoting neuroprotection (Furukawa et al. 1996; Mattson et al. 1999) and memory en-

hancement (Thinakaran and Koo 2008). The residual membrane bound C-terminal fragment 

(CTF-α) is referred to as C83 (Vassar et al. 1999). Subsequent protolytic cleavage results in the 

formation of AICD and the non-pathogenic p3 (Haass et al. 1992). Various zinc metallopro-

teinases harbor alpha secretase activity including the ADAM-family (a disintegrin and metallo-

proteinase) (Allinson et al. 2003).  

Recently a third physiological APP processing pathway was described. The first step of APP 

cleavage by membrane-bound matrix metalloproteinases leads to the formation of CTF-η. The 

generated C-terminal fragment is further cleaved by ADAM and BACE, which results in the 
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formation of Aη-α and Aη-β. Aη-α is found in AD-brains and impairs neuronal function (Wil-

lem et al. 2015). 

 

1.2.3 Genetics of Alzheimer´s disease 

A number of mutations have been described accounting for early-onset Alzheimer´s disease. 

All of these mutations were identified in genes responsible for the generation of Aβ by pro-

teolytical cleavage of APP or APP itself (Karch et al. 2014). More than 30 mutations in the 

APP gene account for approximately 16 % of the cases of EOAD (Raux et al. 2005). Those 

are heterozygous missense mutations in or near the Aβ coding regions (Jack et al. 2013) and 

APP gene duplications (Kasuga et al. 2009; Rovelet-Lecrux et al. 2006; Rovelet-Lecrux et al. 

2007; Sleegers et al. 2006; Cabrejo et al. 2006) as well as recessive mutations (Tomiyama et al. 

2008; Di Fede et al. 2009). By these mutations Aβ production and the ratio of Aβ42 to Aβ40 

can be altered or the aggregation propensity of Aβ is increased (Bettens et al. 2013). Due to its 

localization on chromosome 21, more APP is produced in persons with trisomy 21 causing a 

genetic form of AD (Olson and Shaw 1969). Mutations in PSEN and PSEN2 encoding the 

presenilin subunits of gamma secretase lead to an increased Aβ42/Aβ40 ratio (De Strooper et 

al. 1998; Bentahir et al. 2006; Kumar-Singh et al. 2006; Scheuner et al. 1996). For sporadic and 

familial LOAD the apolipoprotein E4 (apoE4) allele is a well-established risk factor (Corder et 

al. 1993; Strittmatter et al. 1993; Scheuner et al. 1996). Three different apoE alleles are found in 

human named apoE2, apoE3 and apoE4 (Nickerson et al. 2000). As compared to the most 

frequent genotype, e3e3, the age-adjusted relative risk for developing AD of individuals with 

one e4 allele is three, those with two e4 allele have a 15 fold higher risk to develop AD. In 

individuals aged between 60 and 69 the risk is even 35 times higher than in e3e3 carriers (Far-

rer et al. 1997). The life time risk of developing AD is 35 %  in female e3e4 carriers and 68 % 

in female e4e4 carriers (Genin et al. 2011). 

 

1.2.4 Amyloid cascade hypothesis 

The amyloid cascade hypothesis states that Aβ accumulation in the brain is an early event in 

the pathogenesis of AD driving downstream processes that eventually lead to dementia. It is 

proposed that Aβ production, due to mutations in APP, PSEN1 and PSEN2 genes, is in-

creased and accumulation of the peptide leads to the oligomerization and deposition as extra-

cellular plaques. According to the hypothesis these Aβ deposits induce synaptic and neuronal 
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injury that is accompanied by alterations in neuronal ionic homeostasis, oxidative injury, and 

altered activities of kinase and phosphatase activities, resulting in the formation of neurofibril-

lary tangles. Eventually, dementia is caused by widespread neuronal dysfunction and cell death 

(Hardy and Higgins 1992; Hardy and Selkoe 2002). Evidence supporting the hypothesis is 

provided by the fact that autosomal dominant EOAD is exclusively caused by mutations in 

genes involved in Aβ production. Additionally the hypothesis is consistent with findings on a 

role of apoE facilitated Aβ deposition (Holtzman et al. 2000) and results showing that muta-

tions in the gene encoding tau induce frontotemporal dementia but not Aβ deposition  as it is 

seen in AD (Hutton et al. 1998), indicating that tau pathology is a downstream event in the 

pathogenesis of AD.  

 

1.2.5 The modified amyloid hypothesis 

Although the amyloid cascade hypothesis is explanatory for the general role of Aβ as the 

pathogenic agent in AD, it is inconsistent with the finding that severity of the disease as meas-

ured by clinical features in AD-patients is well reflected by the extent of neurofibrillary tangle 

pathology (Braak and Braak 1991), but not by the extent of Aβ plaque deposition (Gianna-

kopoulos et al. 1997). In contrast it was observed that intraneuronal accumulation of Aβ pre-

cedes NFT and plaque pathology (Gouras et al. 2000) and that intraneuronal Aβ deposits are 

correlated with apoptotic cell death in AD brains (LaFerla et al. 1997; Chui et al. 2001). Cell 

culture studies show that Aβ can also be produced intracellularly (Greenfield et al. 1999) and 

can be taken up from the extracellular space (Knauer et al. 1992). Taken together, these find-

ings led to the formulation of the modified ß-amyloid hypothesis highlighting the role of in-

tracellular Aβ in the etiology of AD (Wirths et al. 2004). 

Studies have also shown that Aβ plaque deposition correlates poorly with neurodegeneration 

in AD patients (Lesné et al. 2013) and in AD mouse models (Schmitz et al. 2004; Moechars et 

al. 1999). In contrast, a correlation is seen when levels of soluble forms of Aβ are analyzed 

(Haass and Selkoe 2007). A major role Aβ toxicity of soluble Aβ oligomers (Haupt et al. 2012) 

and β-sheet containing amyloid fibrils (Klein 2002) has been suggested. 

 

1.2.6 Aβ toxicity 

Early studies showed that soluble monomeric Aβ, as it is released by APP-cleavage from neu-

rons, is not toxic but may rather be neurite-promoting. Subsequently Aβ becomes toxic due to 
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polymerization  (Pike et al. 1991). In the course of fibril-formation soluble oligomers, which 

are a heterogeneous group of non-fibrillar polypeptides, are formed (Fändrich 2012). Differ-

ent kinds of such oligomers are found in AD brains and impair synapse structure and function 

(Shankar et al. 2008; Noguchi et al. 2009). The level of soluble Aβ in brains correlates with 

severity of AD (McLean et al. 1999; Mc Donald, Jessica M et al. 2010), while plaques are as-

sumed to serve as Aβ reservoirs standing in a dynamic equilibrium with soluble oligomers 

(Benilova et al. 2012). Mechanisms of Aβ oligomer induced synaptic dysfunction and cytotox-

icity discussed are a disruption of LTP by affecting NMDA-receptor and AMPA-receptor 

function (Yamin 2009) or the upregulation of the nicotinic acetylcholine receptor (Dineley et 

al. 2001). Furthermore, a disruption of Calcium signaling (Demuro et al. 2010), induction of 

apoptosis by activation of caspases (Nakagawa et al. 2000) and mitochondrial dysfunction 

(Reddy and Beal 2008) have been reported. Moreover soluble Aβ oligomers induce hyper-

phosphorylation of tau (De Felice, Fernanda G et al. 2008; Zempel et al. 2010; Jin et al. 2011), 

linking Aβ depositon to neurofibrillary tangle pathology.  

 

1.2.7 Aβ variants 

In addition to Aβ1-40 and Aβ1-42, many species with a truncated N- or C-terminus were identi-

fied in AD (Masters et al. 1985; Prelli et al. 1988; Miller et al. 1993). An extended C-terminus 

of Aβ1-42 elevates the aggregation propensity as compared to the shorter Aβ1-40 (Pike et al. 

1995), and deposition of Aβ1-42  was found to be an early event in plaque formation (Iwatsubo 

et al. 1994). N-terminally truncated and modified versions were also identified in AD brains 

(Saido et al. 1995; Näslund et al. 1994). While Aβ1-40, AβpE3-42 , Aβ4-40, and Aβ1-42 are the most 

abundant species (Portelius et al. 2010), it was shown that N-terminal truncation increases 

aggregation propensity and toxicity of Aβ (Pike et al. 1995). Further posttranslational modifi-

cations including isomerization (Kuo et al. 1998) and racemization (Mori et al. 1994) of amino 

acid residues promote stability and formation of Aβ (Kuo et al. 1998). Aβ species modified by 

metal induced oxidation (Dong et al. 2003) and phosphorylation (Kumar et al. 2011) also have 

been identified in AD-brains. Another mechanism of increased pathogenicity of modified Aβ 

variants is an altered interaction with apoE (Munson et al. 2000).   
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1.2.8 Pyroglutamate modified Aβ 

There is accumulating evidence pointing to a major role of pyroglutamate modified Aβ in the 

pathogonesis of AD. AβpE3-42 is abundantly found in AD-brains (Saido et al. 1995; Harigaya et 

al. 2000). A pyroglutamate residue in Aβ is generated from a glutamate residue at position 3 of 

Aβ that by the catalytical activity of the enzyme glutaminyl cyclase (Schilling et al. 2008). 

AβpE3-42 is more neurotoxic than full lengths Aβ peptide (Russo et al. 2002). This property is 

due to altered oligomerization kinetics and an up to 250-fold acceleration in the formation of 

aggregates as compared to the unmodified full-length peptide (Schilling et al. 2006). Further-

more, AβpE3-42 has an increased hydrophobicity compared to the respective unmodified pep-

tides leading to a decreased solubility (Schlenzig et al. 2009). In consequence more toxic high 

molecular weight oligomers are produced by this Aβ species (Bouter et al. 2013).  To study in-

vivo effects of AβpE3-42 transgenic mouse models have been developed. Constructs encoding 

Aβ3-42 with glutamine at position 3 that serves as a substrate for QC (Cynis et al. 2008b) were 

used. Intracellular presence of AβpE3-42 induced a neuron loss in these models (Alexandru et al. 

2011; Wirths et al. 2009). 

 

1.2.9 The TBA42 mouse model 

To study the exclusive impact of pyroglutamate modified Aβ3-42 the TBA42 mouse model has 

been developed by the group of Prof. Bayer (Wittnam et al. 2012). In TBA42 mice a transgen-

ic vector encoding murine thyrotropin-releasing hormone-Aβ (mTRH-Aβ3–42) under the con-

trol of the murine Thy1.2 regulatory sequence (Cynis et al. 2006; Wirths et al. 2009; Alexandru 

et al. 2011) is expressed. N-truncated AβpE3-42 with a glutamine at position 3 is liberated into 

the secretory pathway (Cynis et al. 2006). The peptide is converted into AβpE3-42 by the catalyt-

ical activity of the enzyme glutaminyl cyclase (Sevalle et al. 2009; Cynis et al. 2006; Jawhar et al. 

2011). Glutamine is used instead of the naturally occurring glutamate, since it is a better sub-

strate for QC (Schilling et al. 2004; Huang et al. 2005) and is also converted at a higher rate 

spontaneously (Cynis et al. 2006). In TBA42 mice AβpE3-42 is deposited primarily intraneu-

ronally within the hippocampus, spinal cord and cerebellar nuclei. Extracellular Aβ is only 

sparsely deposited and no Aβ plaques are formed. In the hippocampus a marked gliosis is 

induced by the presence of pyroglutamate modified Aβ (Wittnam et al. 2012). 
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1.2.10 Aß clearance 

AD is triggered by the accumulation of Aβ in the brain (Hardy and Higgins 1992). Recent 

evidence suggests that this accumulation in the most common, sporadic, late-onset form of 

the disease is due to an impaired clearance of the peptide, but not its overproduction 

(Mawuenyega et al. 2010). Pathways of Aβ clearance are the cleavage by proteolytically active 

enzymes, the cellular uptake Aβ followed by its proteasomal degradation (Wang et al. 2006), 

interstitial fluid bulk flow (Weller et al. 2008; Hawkes et al. 2012), cerebrospinal fluid absorp-

tion into the circulatory system (Pollay 2010) and efflux via the blood brain barrier (BBB) 

(Tarasoff-Conway et al. 2015; Deane et al. 2009; Zlokovic 2011). The latter mechanism is ad-

dressed by the neurovascular hypothesis of Alzheimer´s Disease proposing that impaired 

clearance of Aβ by the low density lipoprotein receptor-related protein 1 (LRP1) at the BBB 

induces more Aβ deposition, which leads to the progression of AD (Zlokovic 2005).  

 

1.2.11 LRP1 

LRP1 is a member of the LDL receptor family, which serves as a receptor in cell signaling and 

as a cargo transporter (Dieckmann et al. 2010; Boucher and Herz 2011). The protein is ubiqui-

tously expressed in human tissues, including neurons and the brain endothelium (Moestrup et 

al. 1992). LRP1 interacts with a variety of ligands including Aβ (Zlokovic et al. 2010). Genetic 

studies have linked LRP1 to sporadic late-onset AD and cerebral amyloid angiopathy (Kang et 

al. 1997; Lambert et al. 1998; Christoforidis et al. 2005). Interestingly, expression of LRP1 in 

the brain and brain capillaries decreases with age (Silverberg et al. 2010) and is reduced in AD-

brains (Donahue et al. 2006). One mechanism of LRP1-mediated Aβ clearance is the cellular 

uptake and subsequent degradation of Aβ (Nazer et al. 2008; Kanekiyo et al. 2013). 

Transcytotic transport across the blood brain barrier however is assumed to be the major 

route of Aβ elimination followed by periperal degradation of the peptide in liver, spleen and 

kidneys (Shibata et al. 2000; Bell et al. 2007). Thus far the contribution to Aβ clearance by the 

different LRP1-mediated mechanisms could not be dissected quantitatively, since LRP1-

inhibitors do not lower BBB-clearance selectively (Qosa et al. 2014).  

 

1.2.12 The 5xFAD Lrp1BE
-/- mouse model 

In order to study the role of brain endothelial LRP1 in the clearance of Aβ across the blood 

brain barrier an inducible LRP1-knockout model was developed by the group of Prof. Pietrzik 

11 
 



 
Introduction  
 
(Storck et al. 2016). Lrp1fl/fl mice that harbor a Cre/loxP recombination system, allowing for 

an inducible, tissue specific knockout of LRP1 (Rohlmann et al. 1998) were bred with 

Slco1c1-CreERT2 mice that express Cre recombinase exclusively in endothelial cells of brain 

vessels and the choroid plexus but not in other vascular components (Ridder et al. 2011). The 

generated Slco1c1-CreERT2 x Lrp1fl/fl mice were named LRP1BE
fl/fl. By induction with the se-

lective estrogen receptor modulator Tamoxifen, brain endothelial LRP1 is fully knocked out in 

Lrp1fl/fl, producing Lrp1BE
-/- mice. In neurons, microglia, the vast majority of astrocytes and 

non-endothelial components of the brain vasculature of Lrp1BE
-/- mice LRP1 is still present 

and the permeability of the BBB is not influenced. LRP1 knockout leads to a lowering in the 

rate of clearance of radiolabeled [125I] Aβ1–42 in Lrp1BE
-/- mice as compared to Lrp1BE

fl/fl mice. 

Lrp1BE
fl/fl mice were then crossed with 5xFAD mice (Storck et al. 2016). The 5xFAD model 

harbors the five FAD mutations, three in APP, K670N/M671L (Swedish), I716V (Florida), 

V717I (London) and two in PS1, M146L and L286V. These 5xFAD mice display an early 

plaque pathology and gliosis (Oakley et al. 2006). Seven months old 5xFAD/Lrp1BE
-/- mice 

had elevated brain levels of soluble and insoluble Aβ1-40 and higher levels of insoluble Aβ1-42 

(Storck et al. 2016). 

 

1.3 Project objectives 

The aim of this thesis was to extend the knowledge about pathogenic effects of cerebral Aβ 

deposition, induced by its overproduction one hand and its clearance on the other hand. For 

this purpose, the thesis was divided into two parts and neuropathological and behavioral fea-

tures were analyzed in two transgenic murine mouse models (Figure 1.1).  

Firstly, the pathological effects of the expression of Aβ3-42, which forms soluble oligomers, in 

the TBA42 mouse model were investigated. The peptide is an abundant variant of Aβ found 

in AD brains (Portelius et al. 2010). The expression in brain and spinal cord of TBA42 mice 

was confirmed. Additionally, a quantification of neurons in the hippocampal CA1 region and a 

series of cognitive and sensorimotor tests was conducted at three different ages to test the 

hypothesis that Aβ3-42 is toxic in vivo and leads to age dependent neuropathological and behav-

ioral alterations. Three, six and twelve month old mice were tested  

Secondly, the effects of the knock-out of LRP1, which mediates the clearance of Aβ from the 

brain, were studied in the 5xFAD mouse model. The hypotheses that elevated cerebral Aβ 

levels induced by knockout of LRP1 (Storck et al. 2016) leads to an aggravated cognitive phe-
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notype, but not a difference in plaque deposition in 5xFAD mice were tested in the second 

project. Four groups of seven month old animals were tested Wildtype (WT), Lrp1BE
-/-, 

5xFAD/Lrp1BE
-/- and 5xFAD/Lrp1BE

fl/fl. 

 

1.3.1 Project I: Quantification of neurodegeneration and analysis of behavioral defi-

cits in the TBA42 mouse model 

1. To confirm the pattern of Aβ deposition in TBA42 mice. 

2. To assess an age-dependent neuron loss in the CA1 region of the hippocampus of 

TBA42 mice possibly induced by  

3. To characterize an age-dependent cognitive, behavioral and motor deficits of TBA42 

mice. 

 

1.3.2 Project II: Exploring in vivo effects of impaired Aβ clearance induced by 

knockout of brain endothelial LRP1 in 5xFAD mice 

1. To quantify the effect of the knockout of LRP1 on plaque deposition and inflamma-

tion in 5xFAD mice. 

2. To analyze the effect of the knock-out of LRP1 on learning, memory and motor abili-

ties in 5xFAD mice. 
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Figure 1.1 Project objectives
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2 Materials and methods 

2.1 Animal breeding and genotyping 

All animals were of the species Mus musculus. Wildtype mice were of the inbred strain 

C56Bl/6J (Jackson Laboratories, Bar Harbor, ME, USA). For the first project heterozygous 

transgenic TBA42 mice were bred on wild-type background in order to obtain heterozygous 

transgenic TBA42 mice. Wildtype littermates were used as control animals for behavioral test-

ing and stereological quantification. Transgenic mice were identified by PCR-Genotyping. 

Mouse tail biopsies were taken in order to obtain chromosomal DNA, which was analyzed by 

PCR, amplifying Aβ DNA-sequence and subsequently visualized by gel electrophoresis. Ani-

mals were housed at a 12-h day/12-h night cycle in a constant environment with ad libitum 

access to water and a standard laboratory diet. 

For the second project, Lrp1BE
–/– and 5xFAD Lrp1BE

–/– mice were fed with a diet that con-

tained 400 mg tamoxifen citrate per kilogram dry weight (CRE Active TAM400, LASvendi, 

Soest, Germany), while wildtype controls and Lrp1BE
fl/fl were fed a standard laboratory diet. 

All animals were handled according to the guidelines of the “Society for Laboratory Animals 

Science” (GV-SOLAS) and the guidelines of the “Federation of European Laboratory Animal 

Science Association” (FELASA). Studies were approved by the responsible autorities. Refer-

ence numbers: Project 1: G15/1760 LAVES; Project 2: G12-1-051 Rhineland-Palatinate.  

 

2.1.1 DNA extraction  

Deoxyribonucleic acid (DNA) extraction was conducted by alcaline lysis of mouse tail biopsy 

tissue. Tissue samples were incubated in 500mM lysis buffer containing (100mM Tris/HCl 

(pH 8.5, Roth, Karlsruhe, Germany), 5mM EDTA (AppliChem, Darmstadt, Germany), 0,2 % 

sodium dodecyl sulfate (SDS, Biomol, Hamburg, Germany), 200 mM NaCl (Roth, Karlsruhe, 

Germany)) and 5 µl Proteinase K (20 mg/ml stock, Peqlab, Erlangen, Germany) at 55 °C for 

20 hours in a Thermomixer Compact (Eppendorf, Hamburg, Germany). Samples were subse-

quently centrifuged in a Heraeus Biofuge Stratos (Thermo Fisher Scientific, Waltham, MA, 

USA) at 17.000 rounds per minute for 20 minutes at 4 °C. Supernatants were transferred to a 

new tube. Afterwards, DNA was precipitated with 500 µl ice cold 70 % isopropanol (Roth, 
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Karlsruhe, Germany) solution. Samples were vortexed (Vortex Genie 2, Scientific Industries, 

Bohemia, NY, USA) and centrifuged at 13.000 rpm for 10 minutes at room temperature in a 

Heraeus Biofuge Pico centrifuge (Thermo Fisher Scientific, Waltham, MA, USA). Superna-

tants were discarded and the DNA pellet was washed with 500 µl of 70 % Ethanol (Merck, 

Darmstadt, Germany). After another centrifugation step (13.000 rpm, 10 min., at room tem-

perature) supernatants were discarded and the DNA pellet was dried at 37 °C on a Thermo-

mixer Compact (Eppendorf, Hamburg, Germany) for 1 hour. DNA was suspended in 40 µl of 

distilled, deionized water (ddH2O) and stored over night at 4 °C.  

 

2.1.2 DNA concentration determination 

For concentration and purity determination of DNA an Eppendorf Biophotometer (Eppen-

dorf, Hamburg, Germany) was used. For this purpose, a blank value was measured using 80 µl 

molecular grade water in a UVette® (Eppendorf) cuvette. Thereafter in the same cuvette 2 µl 

of DNA sample was diluted in 78 µl of ddH2O for the photometrical measurement. The 

A260/A280 light absorbance ratio was measured for each DNA sample to determine purity. A 

value of 1.8 was indicative of acceptable purity. The DNA concentration was measured at 

OD260 and samples were diluted to a final concentration of 20 ng/µl with molecular weight 

water. 

 

2.1.3 Polymerase chain reaction 

Polymerase chain reaction (PCR) was performed on a SensoQuest LabCycler (SensoQuest, 

Göttingen, Germany) in 20 µl PCR tubes (Greiner Bio-One, Kremsmuenster, Austria) to am-

plify the transgene fragment from the chromosomal DNA of TBA42 mice. The PCR reaction 

mixture contained the extracted murine DNA and the following reagents (Table 1): Taq ther-

mostable DNA polymerase (Axon Labortechnik, Kaiserslautern, Germany), 10x reaction 

buffer (Mg2+ free, Axon), MgCl (Axon), dNTP mix (Invitrogen), ddH20 and Aβ PCR Primers 

(forward: 5 GTGACTCCTCAGCTTCCAC 3`; reverse: 5 GTTACGCTATGACAACACC 

3`). Thirty-four PCR amplification cycles were used (Table 2).  
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Table 1 PCR-mixture used for genotyping of TBA42 mice 

Reagent Concentration Volume (µl)  
DNA 20µg/µl 2 

Primer forward 10µmol/µl 1 

Primer reverse 10µmol/µl 1 

dNTPs 2mM 2 

MgCl2 25mM 1.6 

10 x Buffer  2 

H2O  10.2 

Taq-Polymerase 5U/µl 0.2 

PCR Mixture  20 

 

2.1.4 Agarose gel electrophoresis 

PCR products were analyzed by agarose gel electrophoresis. For this purpose, 2 % agarose gel 

was prepared by cooking 2 grams of agarose (Lonza, Basel, Switzerland) in 100 ml of 1XTBE 

buffer until the agarose was dissolved. Once the agarose solution was cooled down but still 

fluid it was poured into a casting tray with a 20 pocket casting comb. Before the gel became 

solid 5 µl of ethidium bromide solution (10 mg/ml; Roth, Karlsruhe, Germany) were added to 

the gel, dispensed and air bubbles were removed using a pipette tip. After it was set, the aga-

rose gel was transferred into an electrophoresis chamber (Bio-Rad, Hercules, CA, USA) filled 

with 1XTBE buffer. 10 µl of PCR product were mixed with 2 µl of 6 x loading buffer (Life 

Technologies, Carlsbad, CA, USA) and each well was filled with one 12 µl sample. Additional-

ly, 5 µl of a DNA ladder (Bioron, Ludwigshafen, Germany) were added to another well. The 

gel chamber was closed and connected to a Power Pack P 25 power supply (Biometra, 

Goettingen, Germany). The gel was run at 100 V until DNA bands had properly separated. 

DNA was visualized in a Gel Doc 2000 (BioRad, Hercules, CA, California) UV transillumina-

tor (366 nm) and all gels were documented using Quantity One software (version 4.3, Biorad).  

10XTBE buffer: 108 g Tris (Roth, Karlsruhe, Germany) and 55 g boric acid (Sigma, St. Louis, 

MO, USA) were dissolved in 900 ml ddH2O. 40 ml 0,5 M Na2EDTA (pH 8.0; Roth, Karls-

ruhe, Germany) was added to the solution and the volume was adjusted to 1 l with ddH2O. 

Before use the solution was diluted 1:10 in ddH2O to obtain 1XTBE buffer. 
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Table 2 PCR protocol used for genotyping of TBA42 mice 

Step Temperature(°C) Time (s) Number of Cycles 
Initialization 94 180 1 

Denaturation 94 45 34 

Annealing 58 60 34 

Elongation 72 60 34 

Final Elongation 72 300 1 

Final Hold 4 ∞ 1 

PCR Procedure  2 hours 26 minutes  

 

2.2 Preparation of CNS-tissue  

Mice were sacrificed via transcardiac perfusion followed by decapitation. Mice were anesthe-

tized with a mixture of 10 % ketamine (Medistar, Ascheberg, Germany) and 2 % xylazinehy-

drochloride (Xylariem, 23.3 mg/ml, Ecuphar, Oostkamp, Belgium) diluted in Aqua ad injecta-

bilia (B. Braun, Melsungen, Germany). The anesthetic was administered by intraperitoneal 

injection at a dosage of 100 mg/kg ketamine and 10 mg/kg xylazinehydrochloride. When mice 

were deeply anesthetized, the perfusion surgery was started. Mice were secured by their limbs 

on a perfusion tray using thin needles. The abdominal skin was incised and the thoracic skin 

was removed, in order to expose the ribcage. The abdominal wall was subsequently opened 

und the diaphragm was cut in order to access the thoracic cavity. The ribcage was partially 

removed and the beating heart was exposed. Surgical scissors were used to cut open the right 

atrium and the syringe attached to the perfusion pump was inserted into the left ventricle. 

Perfusion was first conducted with 30 ml ice cold 0.01 M phosphate buffered saline (PBS) to 

wash out the animals´ blood. The perfusion process was monitored by observing a color-

change of the animal´s liver, from dark red to gray. Next, the pump was stopped and was now 

connected to a cylinder containing a 4% paraformaldehyde (PFA, Roth, Karlsruhe, Germany) 

in 0.01 M PBS solution. The perfusion process was continued and 40 ml of the fixation agent 

were applied as described above. Proper fixation was indicated by a stiffening of the animal´s 

limbs and tail. Thereafter, mice were removed from the perfusion tray and decapitated using 

large surgical scissors. Subsequently, mouse brains and spinal cords were quickly dissected on 

ice. Starting from the spinal canal and ending at the temporal part of the orbital cavity, two 

lateral incisions along the temporal skullbase were made. The skullcap was additionally loos-

ened by cutting the osseous connection between the eyes. The skullcap could now be re-

moved using fine forceps. Subsequently, the brain was gently extracted from the cranial cavity. 
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Olfactory bulbs and cranial nerves were resected and brain hemispheres were separated along 

the interhemispheral fissure using a scalpel. For spinal cord preparation, back muscles were 

removed to expose the vertebral column. Vertebral arcs were incised laterally and removed. 

Cervicothoracic spinal cord tissue was subsequently sampled. Thereafter right brain hemi-

spheres and spinal cords were transferred into embedding cassettes (Simport, Beloeil, QC, 

Canada) and stored in Histofix® solution (Roth, Karlsruhe, Germany) for 96 hours at 4 °C. 

Subsequently the tissue was embedded using an EG1140 H Embedding Station (Leica, Wetz-

lar, Germany). Left brain hemispheres that were eventually used for Stereology, were post-

fixed in 10 ml 4 % paraformaldehyde in 0.01 M PBS solution overnight and later transferred 

into 30 % sucrose (Roth, Karlsruhe, Germany) in 0.01 M PBS solution for cryoprotection. 

Subsequently, brain hemispheres were quickly frozen on dry ice and stored at -80 °C. 

 

2.3 Stereology 

2.3.1 Preparation of cryosections 

For stereology left brain hemispheres were frontally cut into 30 µm sections on a CM1850 UV 

cryostat (Leica, Wetzlar, Germany) (Figure 2.1 A). Every tenth section was systematically sam-

pled into 4 ml Rotilab screw threads (Roth, Kaiserslautern, Germany). Thereafter brain tissue 

was transferred into -80 °C and sections were stored until further processing. Before staining, 

sections were mounted onto Superfrost ® slides (Thermo Fisher Scientific, Watham, MA, 

USA). For this purpose, ice cold 0.01 M PBS was added to one screw thread sections and the 

embedding material was allowed to dissolve. Sections where than transferred to a culture dish 

and carefully mounted using a fine paintbrush. When residual PBS had evaporated sections 

were stored in a dry box at 37 °C for 16 hours.  

 

2.3.2 Cresyl violet staining 

Cryosections were stained with cresyl violet in order to unspecifically visualize neuronal nuclei. 

For delipidation sections were incubated in Solution A for 2 x 10 minutes. Delipidation was 

achieved by incubating sections in solution B for 20 minutes. Thereafter sections were trans-

ferred back to solution A for 2 x 10 minutes. Staining was performed by incubating sections 

for 2 x 8 minutes at room temperature in cresyl violet staining solution. Remaining staining 

solution was subsequently washed away 3 times for 1 minute in solution A. Sections were now 
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dehydrated in alcohol (3 min in 100 % ethanol (CVH, Hannover, Germany), 10 min in 100 % 

isopropanol (Roth, Karlsruhe, Germany) and 2 x 5 min in xylol (Roth)). After dehydratation 

xylol was allowed to evaporate and sections subsequently were covered with cover slips (Men-

zel-Gläser GmbH, Braunschweig, Germany) using Roti Histokitt (Roth, Karlsruhe, Germany). 

The mounting medium was allowed to harden overnight under a fume hood and sections were 

covered with aluminium foil to avoid light exposure.  

Solution A: 13.61 g Natrium Trihydrate (Roth) diluted in 100 ml ddH2O. 40 ml of the gener-

ated 1 M Natrium Acetate solution was mixed with 9.6 ml 100 % acetic acid (Merck, Darm-

stadt, Germany). The volume was adjusted 10 1 l with ddH2O. 

Solution B: 2 ml Triton X-100 (Roth) dissolved in 10 ml ddH2O. 2.5 ml of the generated solu-

tion were mixed with 50 ml ddH2O and 150 ml 100% ethanol (Roth). 

Staining solution: 0.1 g cresyl violet (Fluka, St. Louis, MO, USA) was added to 1l work solu-

tion A and stirred for 1 hour. 

 

Figure 2.1 Stereological quantifications of the neuron number in the hippocampal CA1 region. 
Brains were cut frontally and every tenth 30 µm sections were sampled (A). Using a high mag-
nification lens (100 x magnification), neuronal nuclei were sampled (B). Cells within the box 
or touching the green line were counted. Cells located outside the box or touching the red line 
were not counted. Counting areas were automatically and randomly selected.  

 

2.3.3 Optical fractionator workflow 

Unbiased stereological analysis was performed, using design-based stereology to quantify neu-

ron number in the hippocampal CA1 region. An Olympus BX51 stereology station (Olympus, 

Shinjuku, Japan) with a motorized microscope stage, which allows for automatic sampling and 

Stereo Investigator 7 software (MicroBrightField Bioscience, Williston, VT, USA) was used. 

Sections that contained CA1 tissue (Bregma -1.22 mm to -3.80 mm) were identified at 4 x 
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magnification and the CA1 region was delineated. Counting was then performed at high mag-

nification using a 100 x oil lens (Figure 2.1 B). Within a 49 x 105 micrometer sampling grid, 

randomly distributed counting frames (14 x 14 micrometer) were used. Optical dissector 

probes were used to sample neuronal nuclei and the total neuron number was estimated using 

a 2 micrometer top guard zone. Counting was performed according to the principles of stere-

ology (West et al. 1991; Schmitz and Hof 2005). The section thickness was evaluated on every 

sampling site. The hippocampal cell layer CA1 of TBA42 mice and wildtype littermate con-

trols were analyzed in sex- and age-matched groups (n = 3 per group). Samples were blinded 

to avoid a counting bias. The total neuron number was calculated using the following formulas 

(1), 2)) and parameters (Table 3, Table 4): 

1) 𝑃𝑃 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥 𝑡𝑡𝑡𝑡𝑡𝑡   2) N = ∑ (𝑃𝑃 𝑥𝑥 𝑄𝑄)𝑖𝑖𝑛𝑛
𝑖𝑖=1  

Table 3 Definition of stereological parameters 

Stereological parameters 
 

asf 

 

Area sampling fraction (xy/XY) 

ssf Section sampling fraction 

tsf Thickness sympling fraction (T/Z) 

Z Dissector height 

P Number of neurons 

T Mean section thickness 

Q Total markers counted (neuron number) 

 

Table 4 Stereological parameters for quantification of neurons in the CA1 region 

Parameter CA1 
 

Sampling grid (x) (µm) 

 

49 

Sampling grid (y) (µm 105 

Sampling grid area (xy) (µm2) 5145 

Counting frame width (X) (µm) 14 

Counting frame height (Y) (µm) 14 

Counting frame area (XY)(µm2) 

asf 

ssf 

196 

26.25 

10 

Z (µm) Total markers counted (neuron number) 
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2.4 Immunohistochemistry 

2.4.1 Fixation and paraffin embedding of CNS tissue 

After preparation of CNS tissue as described above, embedding cassettes were transferred to 

the TP 1020 Automatic Tissue Processor (Leica, Wetzlar, Germany) for dehydration in a se-

ries of ethanol baths and paraffin emersion. The following steps were programmed: five 

minutes in 4 % histofix (Roth, Karlsruhe, Germany), 30 minutes in tap water, 1 hour in 50 %, 

60 %, 70 %, 80 % and 90 % ethanol solutions (CVH, Hannover, Germany), 2 x 1 hour in 100 

% ethanol, 1 hour in xylol (Roth) and 2 x 1 hour in melted paraffin (Roth). Following this 

procedure CNS tissue was embedded cut side down in molten paraffin wax on an EG1140 H 

embedding station (Leica, Wetzlar, Germany). 

 

2.4.2 Preparation of paraffin sections 

Paraffin embedded tissue was cut to produce 4 µm sections using a HMI 335E microtome 

(Thermo Fischer Scientific, Watham, MA, USA). Sections were carefully transferred to a water 

bath containing ddH2O at room temeperature and mounted onto Superfrost ® slides (Ther-

mo Fisher Scientific). Sections were subsequently fixed onto the slides in a 54 ° C water bath 

(Medax, Olching, Germany). Sections were dried on a heating block for approximately 20 

minutes at 54 ° C and at 37 ° C overnight. 

 

2.4.3 3.3´-Diaminobenzidine (DAB) immunohistochemistry 

3.3´-Diaminobenzidine (DAB) immunostaining was conducted on 4 µm paraffin sections. 

First, sections were deparaffinized in xylol (Roth, Karlsruhe, Germany) for 2 x 5 min, subse-

quently rehydrated in a series of ethanol (CVH, Hannover, Germany) baths (10 min 100 %, 5 

min 95 %, 5 min 70 %) and washed in ddH2O. Endogenous peroxidases were blocked in 30 

% H2O2 in 0.01 M PBS. Antigen retrieval was achieved by boiling sections in 10mM citrate 

buffer (pH 6.0, Roth) for 10 minutes (800 W until boiling, 80 W for 8 minutes). After sections 

were cooled down section were washed in ddH2O. Membranes were permeabilized using 0.1 

% Triton X-100 (Roth) in 0.1 M PBS and subsequently washed in PBS. For Aβ staining addi-

tional antigen retrieval was achieved by incubating sections for 3 minutes in 88 % formic acid 

(Roth). Following another washing step (2 x 10 minutes in 0.01 M PBS) sections were circled 

with a lipid pen (Pap Pen, Kisker Biotech, Steinfurt, Germany) and unspecific antigen epitopes 
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were blocked using 100 µl of 0.01 M PBS containing 10 % fetal cow serum (Thermo Fischer 

Scientific, Waltham, MA, USA) and 4 % skim milk powder (Roth). Primary antibodies were 

diluted in 10 % fetal cow serum in 0.01 M PBS solution and, after removing the blocking solu-

tion sections were incubated at room temperature for 16 hours. After washing three times 

with 0.1 % Triton X-100 in 0.01 M PBS and with 0.01 M PBS, sections were incubated with 

the respective biotinylated secondary antibody 37 ° C for 1 hour. Secondary antibodies were 

diluted in 0.01 M PBS containing 10 % fetal cow serum. Avidin-biotin complex solution was 

prepared according to the manufracturer´s instructions using VECTASTAIN Elite ABC Kit 

(Vector Laboratories, Burlingame, CA, USA). In brief, each solution was added to a 0 % fetal 

cow serum in 0.01 M PBS solution at a concentration of 1:100 and the solution was incubated 

for 30 minutes at 4 ° C. Sections were washed three times in 0.01 M PBS and subsequently 

incubated with 100 µl of avidin-biodin complex solution per section for 1.5 hours at 37 ° C. 

After incubation sections were washed in 0.01 M PBS to remove unbound antibodies. Anti-

body binding was visualized using DAB. The DAB solution was prepared by adding 100 µl of 

DAB stock solution (25mg/ml DAB in 50 mM Tris/HCl, Sigma, St. Louis, MO, USA) and 

2.5 µl 30 % H2O2 to 5 ml 50 mM Tris/HCl (pH 7.5, Roth). Sections were incubated in 100 µl 

DAB solution until the staining was detected by eyesight. The DAB staining was followed by 

three 5 min washing steps in 0.01 M PBS. A counterstaining was performed using hematoxy-

lin. Subsequently, sections were washed under tap water for 5 minutes. Dehydration was 

achieved using a series of ethanol (CVH) baths: 1 minute in 70 % ethanol, 5 minutes in 95 % 

ethanol, 10 minutes in 100 % ethanol, and 2 x 5 minutes in xylol (Roth). Slides were covered 

using two drops of Roti®-Histokitt mounting medium (Roth) and a cover slip. Bright field 

images were acquired using a BX-51 microscope (Olympus, Shinjuku, Japan) equipped with a 

camera. 

2.5 4-6-diaminidino-2-phenylindole (DAPI) staining 

4-6-diaminidino-2-phenylindole (DAPI) staining was performed on 4 µm paraffin sections. 

First sections were deparaffinized in xylol (Roth, Karlsruhe, Germany) for 2 x 5 min, subse-

quently rehydrated in a series of ethanol (CVH, Hannover, Germany) baths (10 min 100 %, 5 

min 95 %, 5 min 70 %) and washed for 1 minute in ddH2O and for 1 minute in 0.01 M PBS. 

The staining solution contained 1.5 mg/l DAPI (Sigma, St. Louis, MO, USA) in ddH2O. After 

staining, slides were washed twice in 0.01 M PBS. Subsequently, fluorescent mounting medi-

um (Dako, Glostrup, Denmark) was added to cover the slides with a cover slips (Menzel-
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Gläser GmbH, Braunschweig, Germany). Images were acquired using a BX-51 microscope 

(Olympus, Shinjuku, Japan) equipped with a mercury arc lamp, a filter box and a camera. 

 

2.6 Quantifications 

Aβ plaque load was measured on images of the hippocampal region, taken from sagittal paraf-

fin sections of mouse brains spaced a minimum 20 µm apart. Sections were stained using the 

polyclonal Aβ antibody 24311 (AG Bayer) (Stainings by Nils Schubert). Three sections per 

animal were analyzed. Using NIH ImageJ software (version 1.49c), images were converted 

into an eight-bit black and white format, using a predefined frame area (Figure 2.2). Thresh-

olds were set to a fixed value. Thresholds were selected to maximize the stained area detected, 

while minimizing the contribution of intracellular Aβ deposits and background staining. 

Plaque load was defined as the area of the image occupied by Aβ staining. For microglia and 

astrocyte staining the procedure was conducted accordingly on sections stained with Iba1 

(polyclonal from rabbit, Waco) and GFAP (polyclonal from mouse, Chemicon) antibodies 

(Stainings by Nils Schubert). The following quantification parameters were defined in an IJM 

macro file: 

makeOval(69, 585, 2571, 1275); 
waitForUser( "Quantification","OK to continue");  
run("8-bit"); 
run("Clear Outside"); 
setAutoThreshold("Default"); 
//run("Threshold..."); 
setThreshold(0, 110); 
run("Colors...", "foreground=black background=white") 
run("Convert to Mask"); 
run("Measure"); 
run("Open Next"); 
 

 

Figure 2.2 Quantification procedure. Images were opened using image J software (A). Using a 
macro file the area of interest was labeled using a predefined frame (B). The labeled area of 
the image was converted into an eight-bit black and white format and the area covered was 
calculated automatically (C). 
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2.7 Behavioral analyses 

In all behavioral tests TBA42 transgenic animals were tested at 3 different ages (TBA 42: 3 

months n = 11, 6 months n = 12, 12 months n = 8) and compared to age matched wildtype 

mice (Wildtype: 3 months n = 12, 6 months n = 10, 12 months n = 10). For the LRP1 project 

four groups of seven month-old female mice were used: Wildtype (WT) (n=6), Lrp1BE
-/- 

(n=5), 5xFAD/Lrp1BE
-/- (n=7) and 5xFAD/Lrp1BE

fl/fl (n=7). Each individual mouse received 

only one round of testing and was subsequently sacrificed. 

 

2.7.1 Balance beam 

The balance beam was used to assess general motor function and balance in TBA42 mice 

compared to wildtype littermates. The balance beam apparatus consisted of a 1 cm wooden 

dowel that was laterally supported by two 44 cm columns, each carrying an escape platform. 

The 50 cm beam was installed spanning a padded surface (Figure 2.3 A) and cleaned with 70 

% ethanol (Merck, Darmstadt, Germany) solution after every trial. Three trials were given to 

each mice on one day with an average inter-trial interval of 10 minutes. At the beginning of 

the procedure mice were released onto the center of the beam and the time mice remained on 

the apparatus was stopped. When mice did not fall within 60s or managed to escape onto the 

platform a maximum time of 60s was documented. Falling latencies of the three trials were 

thereafter averaged.  

 

2.7.2 Inverted grip hang 

Vestibular function and muscle strength were tested with the inverted grip hanging test (Fig-

ure 2.3 B). The testing apparatus consisted of a wire grid 45 cm long and 30 cm wide with a 

grid spacing of 1 cm2. The grid was suspended 40 cm above a padded surface using foam sup-

ports. Mice were released in the center of the grid, which was inverted subsequently. The time 

the mice that mice held on to the grid was recorded during a single 60 second trial. When mice 

were able to remain on the grid for the entire testing period or escaped over the edge of the 

grid, the maximum time of 60 seconds was given. Otherwise, the latency to fall from the grid 

was recorded. Between testing the mice, the apparatus was cleaned with 70 % ethanol (Merck, 

Darmstadt, Germany) to diminish odor cues. 
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Figure 2.3 Setup of motor test apparatuses. Balance beam (A), Inverted grid (B) and String 

suspension (C). 

2.7.3 String suspension 

Sensory-motor abilities of TBA42 mice were additionally analyzed using the string suspension 

test. A 0.5 cm string was spanned between two wooden support columns (Figure 2.3 C). The 

apparatus was cleaned with 70 % ethanol (Merck, Darmstadt, Germany) solution between 

trials. Mice were allowed to grasp the string with forepaws and subsequently released onto the 

string. A rating system was used to categorize the animal´s sensory-motor abilities (Table 5). 

 

 

Table 5 String suspension scoring system. 

Rating Criteria 
 

0 

 

Unable to remain on string 

1 Hangs by frontpaws or hindpaws 

2 Hangs by frontpaws or hindpaws, attempts to climb on string 

3 Sits on string and is able to hold balance 

4 Four paws and tail around string, lateral movement 

5 Escapes 
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2.7.4 Morris water maze 

Spatial learning and spatial reference memory in TBA42 and wildtype control mice for project 

1 and in wildtype, Lrp1BE
-/- and 5xFAD/Lrp1BE

-/-, 5xFAD/Lrp1BE
fl/fl for project 2 were as-

sessed using the Morris water maze (MWM) (Morris 1984). Mice learn to navigate to a hidden 

platform (diameter 10 cm) in a circular 1.1 m diameter pool filled with non-transparent water. 

Non-toxic white acrylic paint was added to the water that had room temperature. The pool 

was segmented and four virtual quadrants were defined. Based on their relative position to the 

goal platform they were named left, right, opposite and target quadrant. The target quadrant 

contained the goal platform.  

The testing procedure started with three days of cued training (Figure 2.4 A) during which the 

goal platform was highlighted with a triangular flag. The location of the platform as well as the 

position from where the mice were introduced into the pool was altered between trials. Four 

training trials per day were conducted. Mice that did not find the platform within 60 seconds 

were gently guided to it. All mice were allowed to stay on the platform for 10 seconds before 

being transferred back to their cage. Between the trials mouse were allowed to dry under a 

heat lamp and rest for 10 minutes. Mice that showed decreased escape latencies during the 

cued training qualified for the acquisition training. 

Twenty-four hours after the last day of cued training, mice performed 5 days of acquisition 

training (Figure 2.4 B). For this part of testing the flag was removed from the platform and 

cues were attached to the outside of the pool. The platform position remained in the same 

location in the target quadrant for each mouse throughout the entire acquisition training. Tri-

als were conducted as during the cued training phase.  

Twenty-four hours after finishing the acquisition trial, a probe trial was performed (Figure 2.4 

C) for analyzing spatial reference memory. The platform was removed and mice were released 

into the water from a new entry point. Mice were allowed to swim for 1 minute while their 

route was recorded. ANY-Maze software (Stoelting, Wood Dale, IL, USA), which was con-

nected to a camera (Computar, Commack, NY, USA) was used to record and calculate the 

distance travelled, escape latency, swimming speed and time that mouse spent in the different 

quadrants. 
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Figure 2.4 Morris water maze apparatus. Cued training (A), Acquisition training (B), Probe 
trial (C). 

2.7.5 Cross maze 

Spontaneous alternation rates of mice were analyzed using a cross maze apparatus, which is 

built of a black plastic material. The maze had four arms arranged in a 90 ° angle extending 

from a central area that measured measuring 8 x 8 cm (arm size: 30 cm length, 8 cm width, 15 

cm height). During the test sessions, each mouse was placed in one of the four arms and was 

able to move through the maze. A complete alternation was defined as four subsequent en-

tries into different arms in overlapping sets (for example 3, 1, 4, 2 or 1, 2, 4, 3 but not 3, 1, 2, 

1). Distance travelled and routes were recorded using the automated ANY-maze video track-

ing software (Stoelting, USA) connected to a camera (Computar, Commack, NY, USA). The 

alternation percentage was calculated as the ratio of complete alternations and the total num-

ber of recorded arm entries. In order to remove odor cues the apparatus was cleaned with 70 

% ethanol (Merck, Darmstadt, Germany) solution after each animal tested. 

 

2.7.6 Elevated plus maze 

The elevated plus maze was used to study exploratory behavior, locomotor activity, and anxie-

ty levels. The maze was shaped like a “+” with two alternating open and two alternating 
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closed arms that extended from a central area. The apparatus was raised 75 cm above ground 

level. Each one of the arms measured 15 cm in length expanding from a 5 x 5 cm central 

zone. Closed arms were bounded by a transparent 15 cm acrylic glass wall. For testing mice 

were placed on the area and were allowed to explore the maze for 5 minutes. Anxiety is meas-

ured by the time mice spend in the open arms of the maze. Lower anxiety levels correspond to 

a greater amount of time spent in the open arms (Karl et al. 2003).  

The ratio of time spent in the open arms to the total testing time and the percentage of open 

arm entries to the total arm entries were measured using the automated ANY-maze video 

tracking software (Stoelting, USA) and a camera that recorded mouse paths (Computar, 

Commack, NY, USA). Odor cues were removed with 70 % ethanol (Merck, Darmstadt, Ger-

many) solution after each animal tested. 

 

2.8 Data analysis 

Details on the statistical analyses and the number of biological replicates (n)are indicated in 

the respective results section. Levels of significance are indicated as follows: ***p < 0.001, ** 

p < 0.01, * < 0.05. Data was analyzed by one-way analysis of variance (ANOVA) followed by 

Bonferroni multiple comparisons, two-way ANOVA, repeated measures analysis of variance 

(MANOVA) and unpaired T-test using GraphPad Prism v.5 (GraphPad Software, San Diego, 

CA, USA) and repeated measures analysis of variance (MANOVA) using Statistica v.12 

(StatSoft, Tulsa, Oklahoma, USA).  

2.9 Software 

The following software was used: GraphPad Prism v.5.04 (GraphPad Software, San Diego, 

CA, USA), Statistica v.12.0 (StatSoft, Tulsa, Oklahoma, USA), ANY-Maze software (Stoelting, 

Wood Dale, IL, USA), Microsoft Office 365 (Microsoft, Redmond, WA, USA), Adobe Illus-

trator CS6 (Adobe Systems, San Jose, CA, USA) 
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3 Results 

Parts of this work have been published: 

Meißner JN, Bouter Y, Bayer TA (2015): Neuron Loss and Behavioral Deficits in the TBA42 
Mouse Model Expressing N-Truncated Pyroglutamate Amyloid-β3-42. J Alzheimers Dis.45, 
471–482 

Storck SE, Meister S, Nahrath J, Meißner JN, Schubert N, Di Spiezio A, Baches S, Vanden-
broucke RE, Bouter Y, Prikulis I, Korth C, Weggen S, Heimann A, Schwaninger M, Bayer 
TA, Pietrzik CU (2016): Endothelial LRP1 transports amyloid-beta1-42 across the blood-brain 
barrier. J Clin Invest.126, 123–136 

 

3.1 Project I: Quantification of neurodegeneration and analysis of behavioral deficits 

in the TBA42 mouse model 

The TBA42 mouse model is a transgenic mouse model that does not rely on the overexpres-

sion of mutated genes that are involved in the production of Aβ by proteolytic cleavage of the 

amyloid precursor protein. Instead the model overexpresses only a single transgene, which 

results in the formation of the N-terminally truncated and pyroglutamate modified Aβ species 

AβpE3-42 (Wittnam et al. 2012). It was the aim of the first project to deliver a detailed character-

ization of the TBA42 mouse model. For this purpose, the presence of AβpE3-42 in the hippo-

campus was confirmed. This was followed by a quantification of neuron numbers in the hip-

pocampal CA1 region at three time points, analyzing brains of young (3 months) and older (6 

and 12 months) animals. Finally, the behavioral phenotype, with an emphasis on cognitive and 

motor functions, of TBA42 mice and wildtype control mice at the same age points was as-

sessed. 

 

3.1.1 Aβ deposition in the hippocampal CA1 region and spinal cord of TBA42 mice 

Immunohistochemical DAB-staining was used to confirm the pattern of expression of the 

transgene in the TBA42 mouse model previously described (Wittnam et al. 2012). Using the 

polyclonal pan-Aβ antibody 24311 (host rabbit, AG Bayer) antibody Aβ deposits were visual-

ized. As previously shown, the strongest expression could be detected in the neuronal CA1 

layer of the hippocampus (Figure 3.1 A). In aged TBA42 mice Aβ was located intracellularly as 

well as extracellularly (Figure 3.1 B). Intracellular Aβ was deposited in compact granular struc-
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tures. Extracellular Aβ depositions were found in the CA1 region in the hippocampus as well 

but not in other brain regions. These extracellular Aβ deposits should not be referred to as 

plaques since they were diffusely organized and not as clearly structured as plaques are. Inter-

estingly, in the spinal cord of aged TBA42 mice Aβ deposition was different from deposition 

in the hippocampus. Neuronal cells expressing the transgene were located widely distributed 

within the gray matter of the cervicothoracic spinal cord of TBA42 mice (Figure 3.1 C). Aβ 

immunoreactivity was observed in small granular structures within motor neurons (Figure 3.1 

D). However, no diffuse extracellular Aβ deposits were detected. In sum, the high rate of Aβ 

expression and deposition within the hippocampal CA1 region and the cervicothoracic spinal 

cord could be confirmed. Additionally, previous findings that Aβ plaques were lacking in 

TBA42 mice were corroborated. 

 

Figure 3.1 Expression of Aβ in hippocampus and spinal cord of TBA42 mice. Expression of 
Aβ in the hippocampal CA1 region of TBA42 mice confirmed by immunohistochemistry (A). 
Intraneuronal Aβ formed granular structures (black arrow), while extracellular Aβ was diffuse-
ly deposited (white arrow) (B). In the spinal cord of TBA42 mice Aβ was present as well (C). 
Here Aβ was only found within neurons (arrows), but not extracellularly. Representative brain 
mounts stained with 24311 Aβ -antibody. A, C: Scale bar = 200 µm; B, D: Scale Bar = 33 µm. 
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3.1.2 Obvious neuron loss depicted by DAPI staining 

To asses a possible neurodegeneration induced by the accumulation of Aβ, mouse brain sec-

tions were histochemically stained using the fluorescent dye 4-6-diaminidino-2-phenylindole 

(DAPI). In order to obtain information about whether the presence of intraneuronal AβpE3-42 

leads to the reduction of neuronal cell number in the brain region with the highest transgene 

expression neuronal nuclei were visualized on paraffin sections of 3, 6 and 12 months old 

TBA42 mice and wildtype control mice of the same age.  

An age dependent neuron loss of the hippocampal CA1 region became obvious in aged 

TBA42 mice, as this neuronal layer was considerably thinned in brains of these animals when 

compared to TBA42 mice at the age of 3 and six months (Figure 3.2). Since the AβpE3-42 is also 

found in the spinal cord of TBA42 mice, it is possible that it leads to neuron loss here as well. 

However, in spinal cord tissue no difference in the number of motor neurons of the ventral 

horn became obvious. A stereological quantification of the neuron number in the spinal cord 

was not realizable. 

 

Figure 3.2 Age-dependent neuron loss in TBA42 mice. DAPI staining revealed an age-
dependent neuron loss in the hippocampal CA1 region of aged TBA42 mice (C) as compared 
to 3-month old (A) and 6-month old animals(B). Scale Bar = 50 µm. 

 

3.1.3 Stereological quantification of neuron loss 

Mouse brains were objected to stereological investigation in order to corroborate the observa-

tions about neuronal loss in the CA1 region of the hippocampus of aged TBA42 mice. The 

number of neurons in the hippocampal CA1 region was investigated in 3, 6 and 12 months 

old TBA42 mice and wildtype control mice of the respective age using the optical fractionator 

workflow. By stereological quantification an age-dependent neurodegeneration of the hippo-

campal CA1 region was observed in aged TBA42 mice (Figure 3.3). Twelve months old 

TBA42 mice showed a 35 % neuron loss (mean = 184,600, SEM ± 8,734, p = 0.0019), as 

compared to wildtype mice (mean = 283,800 SEM ± 10,360). In contrast, in 3-month old 
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TBA42 mice, no neuron loss could be detected (TBA42: mean = 274,700 SEM ± 17,790; 

wildtype: mean = 287,700 SEM ± 7,280). Likewise, at the age of 6 months no difference in 

the total number of neurons between TBA42 (mean = 281,800 SEM ± 19,750) and wildtype 

control mice (mean = 284,400, SEM ± 3,053) was seen.  

In sum, the data collected by stereological quantification of the hippocampal neuron number, 

indicate that a relevant neuron loss is initiated between the age of six and twelve months in the 

TBA42 mouse model. 

 

Figure 3.3 Quantification using unbiased stereology. Unpaired t-test ** p = 0.01 m = age in 
months; n = 3 per group; 3 months: 3 males, 6 months: 3 males, 12 months: 2 females, 1 
male. WT = wildtype Data presented as mean ± SEM. m = months 

 

3.1.4 Severe motor deficits in aged TBA42 mice 

Since a strong intra-neuronal accumulation of Aβ in spinal cord neurons was seen by im-

munohistochemistry, sensory-motor abilities of TBA42 and wildtype control mice were as-

sessed using the balance beam, the string suspension and the inverted grip hanging test (Figure 

3.4). The balance beam was used to analyze the ability of mice to remain on a wooden rod. 3 

months old TBA 42 mice did not show an impairment in this task, whereas 6 months old 

TBA 42 mice performed worse than wildtype controls (p < 0.001). Motor function as meas-

ured by the balance beam task was exacerbated in 12 months old TBA 42 mice (Figure 3.4 A). 

The inverted gri hanging test was also used to assess motor abilities by analyzing the ability of 

mice to hold on to an inverted metal grid. 3 months old TBA 42 mice did not display an im-

pairment in this task, while 6 months old TBA 42 mice showed a decreased latency to fall (p < 
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0.01), which decreased further at 12 months of age (p < 0.001) (Figure 3.4 B). The string sus-

pension test is another sensory-motor test that was used to measure the ability of mice to re-

main on a wire spanned between two wooden dowels. TBA 42 mice of 3 months already 

showed poorer performance compared to WT mice (p < 0.05). In older TBA42 mice this def-

icit was even aggravated (p < 0.001) (Figure 3.4 C).  

In sum, the results from the different sensory-motor tests reveal a severe age-dependent mo-

tor deficit induced by the presence of AβpE3-42 in TBA42 mice. 

 

3.1.5 Reduced anxiety in aged TBA42 mice 

The elevated plus maze was used to assess anxiety related behavior of 3-, 6-, and 12-month 

old TBA42 mice in comparison to age-matched wildtype controls (Figure 3.5 A, B). In the 

elevated plus maze paradigm the time mice spent in the closed arm of the apparatus is corre-

lated with the level of anxiety. TBA42 mice displayed an age-dependent increase in anxiety 

behavior (Two-way ANOVA main significant effect of age combined with genotype: p < 

0.05). In young TBA42 mice, only a trend toward reduced anxiety levels could be detected, 

transgenic mice spent more time in the open arms of the maze.  However, this difference did 

not reach significance (Figure 3.5 A). In contrast, 6-month old TBA42 mice spent a greater 

amount of time in the open arms of the elevated plus maze than the control animals (One-way 

ANOVA followed by Bonferroni multiple comparisons: p < 0.05). At an age of 12 months 

this difference compared to the appropriate control group became more significant (One-way 

ANOVA followed by Bonferroni multiple comparisons: p < 0.001). An age dependent reduc-

tion in locomotor activity could be detected irrespective of genotype (Two-way ANOVA main 

significant effect of age: p < 0.001). However, TBA42 mice, compared to same-aged wildtype 

animals, sowed no difference in the total distance travelled at any age tested (Figure 3.5 B). In 

summary, an age dependent reduction of anxiety levels as reflected by the greater amount of 

time spent in the open arms of the elevated plus maze was found in TBA42 mice.  
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Figure 3.4 Severe motor deficits in TBA42 mice. The balance beam (A) and the inverted grid 
hanging test (B) revealed a motor deficit in TBA42 mice starting at 6 months of age and pro-
gressing in an age dependent manner. In the string suspension test (C) a deficit could already 
been found at 3 months of age. WT=wildtype. One-way analysis of variance (ANOVA) fol-
lowed by Bonferroni multiple comparisons. *** p < 0.001; ** p < 0.01; * p < 0.05. 3 months 
n = 11-12, 6 months n = 10-12, 12 months n = 8-10. Data presented as mean ± SEM. m = 
months 
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Figure 3.5 Reduced Anxiety in aged TBA42 mice. The elevated plus maze revealed a reduced 
anxiety in TBA42 mice as reflected by a significantly greater amount of time spent in the open 
arms (A). No difference in the covered distance was detected (B). ***p<0.001, *p<0.05Data 
presented as mean ± SEM. m = months 

 

3.1.6 Impaired working memory in aged TBA42 mice 

Working memory was assessed in wildtype and TBA42 mice using the cross maze task (Figure 

3.6 A, B). A reduction in alternation rates could be detected for TBA42 mice (Two-way 

ANOVA main significant effect of genotype: p < 0.05). Alternation rates of 3- and 6-month 

old TBA42 mice did not differ significantly from age-matched wildtype controls (Figure 3.6 

A). However, in 12-month old TBA42 mice, an impaired working memory could be observed 

as reflected by a reduced alternation rate, which was even below the chance level (One-way 

ANOVA followed by Bonferroni multiple comparisons: p < 0.05), compared to 12-month old 

wildtype animals. This reduction was not due to a decreased explorative behavior since no 

difference in the distance travelled between TBA42 and age-matched wildtype mice could be 

detected (Figure 3.6 B).  
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Figure 3.6 Impaired working memory in aged TBA42 mice. The significantly lowered alterna-
tion rate of 12-month old TBA42 mice in the cross maze (C) was not due to changes in the 
total distance travelled (D). No significant changes in alternation rates of wildtype mice were 
detected. Chance level is indicated by horizontal line at 22.22 %. WT, wildtype. One-way anal-
ysis of variance (ANOVA) followed by Bonferroni multiple comparisons. *p<0.05 Data pre-
sented as mean ± SEM. m = months 

 

3.1.7 TBA42 mice display spatial learning deficits 

Spatial reference learning was analyzed in TBA42 and wildtype control mice at three age 

points using the Morris water maze. First, mice performed cued training with a marked plat-

form to familiarize with the pool and to rule out effects from motor or sensory deficits. Both, 

TBA42 and wildtype mice showed a significant decrease in escape latencies and therefore 

reached criteria for further testing (Figure 3.7 A, C, E) (Unpaired t-test day 1 versus day 5: 3 

and 6 months wildtype and TBA42 p < 0.001, 12 months wildtype and TBA42 p < 0.01). The 

cued training showed that all mice tested had appropriate eyesight and motor abilities to swim 

(Figure B, D, F). However, TBA42 mice swam slower than their littermates (Unpaired t-test: 3 

months day 2, day 3 p < 0.05, 6 months day 1, day 3 p < 0.01, day 2 p < 0.05, 12 months day 

1 p < 0.05) 

Twenty-four hours after the cued training was finished, the acquisition training was started, in 

order to test their ability to learn finding the location of a submerged platform relying on cues 

(Figure 3.7). Swimming speeds of TBA42 mice differed from wildtype controls (Repeated 

measures ANOVA: significant main effect of genotype: p < 0.01) on day 1 (Unpaired t-test: p 

< 0.01) for 6-month old mice (Figure 3.7 D) and throughout the five days of acquisition train-

ing in 12-month old mice (Figure 3.7 F). Twelve month old TBA42 mice displayed an average 

swimming speed of 0.119m/s over the five days of acquisition training, mice were able to 
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swim the maximum distance from entry point to goal platform (approximately 85 cm) within 

7.1 s. Wildtype mice of the same age displayed a mean swimming speed of 0.160m/s, enabling 

them to travel the same distance within 5.3 s 

Since the escape latency as a measure for learning can be confounded by the reduced swim-

ming speed observed in TBA42 mice, we analyzed the distance travelled by mice to measure 

learning behavior in a less biased manner. The distance travelled decreased from day 1 to day 

5 in both TBA42 and wildtype mice at the ages of 3 and 6 months, respectively (Figure 3.8 A, 

C; unpaired t-test day 1 versus day 5: 3 months TBA 42 and wildtype p < 0.001; 6 months 

TBA42 p < 0.001; 6 months wildtype p < 0.05). However, at the age of 12 months, a deficit in 

learning behavior in TBA42 mice was detected, as they did not show a decreased average dis-

tance travelled, while wildtype mice of the same age still did (Figure 3.7 E; main significant 

effect of genotype: p < 0.01. Unpaired t-test day 1 versus day 5: 12-month old wildtype p < 

0.01). 12-month old TBA42 mice swam significantly slower than their wildtype littermates 

(Repeated measures ANOVA: significant main effect of genotype: p < 0.05) (Figure 3.8 F). 

Therefore, it can be stated that 12-month old TBA42mice display a deficit in spatial learning.  

Twenty-four hours after the last acquisition trial, a probe trial was given to assess spatial refer-

ence memory. Three- and 6-month old TBA42 and wildtype mice displayed a significant pref-

erence for the target quadrant (Figure 3.9 C), as indicated by the greater amount of time spent 

in the target quadrant of the pool than in the other quadrants (Unpaired t-test target versus 

left, right, and opposite quadrant). In contrast, no preference for the target quadrant was 

found for aged TBA42mice, while it was still observed for aged wildtype mice (p < 0.001) 

(Figure 3.9 E). Swimming speeds in the probe trial did not differ between groups for 3- and 6-

month old animals (Figure 3.9 B, D). As observed in the acquisition training, 12-month old 

TBA42 mice also showed a reduced swimming speed in the probe trial (Unpaired t-test, p < 

0.01) (Figure 3.9 F). In sum, the results from the probe trial indicate a reduced spatial refer-

ence memory in aged TBA42 mice, although an influence of decreased swimming speed can-

not be ruled out completely.  
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Figure 3.7 Cued Training showed that all mice have appropriate motor abilities and intact vi-
sion. The escape latency of mice decreased significantly in all groups tested (A, C, E). During 
the cued training TBA42 mice swam slower than their age-matched wildtype littermates (3 
months on days 2 and 3, 6 months all 3 days, 12 months day 1) Unpaired t-test for each day.  
***p<0.001, **p<0.01, *p<0.05. Data presented as mean ± SEM. m = months 
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Figure 3.8 Impaired spatial learning in aged TBA42 mice. The distance travelled decreased 
over the five days of acquisition training in 3-month old (A) and 6-month old (C) TBA42 and 
wildtype mice. In contrast, in 12-month old TBA42 mice the distance travelled remained on a 
high level E), while wildtype mice showed a reduction in this measure. Swimming speeds did 
not differ in 3- and 6-month old mice (B, D). At 12 months, swimming speeds were signifi-
cantly lowered in TBA42 mice (F). WT, wildtype Escape latency: Unpaired t-test day 1 versus 
day 5 for each group and between groups for each day. Swimming speed: Unpaired t-test.   
***p<0.001, **p<0.01, *p<0.05. Data presented as mean ± SEM. m = months 
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Figure 3.9 Impaired spatial reference memory in aged TBA42 mice. Three- and 6-month old 
TBA42 and wildtype mice show a preference for the target quadrant, as they spent more time 
in this quadrant (A, C). At 12 months, wildtype animals show a target quadrant preference, 
while12-month old TBA42 no longer spent more time in the target quadrant (E). Swimming 
speed differed between 12-month old TBA42 mice and wildtype controls (F), while it was 
unaltered in younger animals (B, D). T, target quadrant; LRO, average of left, right, and oppo-
site quadrant. One-way ANOVA followed by Bonferroni multiple comparisons.  ***p<0.001, 
**p<0.01, *p<0.05. Data presented as mean ± SEM. m = months 
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3.2 Project II: Exploring in vivo effects of impaired Aβ clearance induced by knock-

out of brain endothelial LRP1 in 5xFAD mice 

3.2.1 Unaltered plaque pathology and gliosis in 5xFAD/ Lrp1BE
-/- mice 

This part of the work was performed in collaboration with Nils Schubert (Immunohistochem-

ical stainings by Nils Schubert; Image acquisition, Quantification and Statistical analysis by 

Julius Nicolai Meißner) 

To evaluate the impact of LRP1 knockout on Aβ plaque deposition, the plaque load as meas-

ured by the area covered with Aβ immunoreactivity was measured in the hippocampus of 7 

months old female 5xFAD/Lrp1BE
fl/fl and 5xFAD/Lrp1BE

-/- mice. 

 

Figure 3.10 LRP1 knockout does not lead to altered plaque loads and gliosis in 5xFAD mice. 
Exemplary images from brain mounts that were used for quantifications. Stainings by Nils 
Schubert. 24311 polyclonal Aβ antibody in 5xFAD/Lrp1BE

fl/fl (A) and 5xFAD/Lrp1BE
-/- (B) 

mice. GFAP staining in 5xFAD/Lrp1BE
fl/fl (D) and 5xFAD/Lrp1BE

-/- (E). Iba1 staining 
in 5xFAD/Lrp1BE

fl/fl (G) and 5xFAD/Lrp1BE
-/- (H). Quantifications revealed no significant 

difference in plaque load and gliosis. Scale bars 200µm. For statistical analysis unpaired t-test 
was used. Data presented as mean ± SEM. 
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3.2.2 Morris water maze 

Since the plaque load in 5xFAD mouse brains was unaffected by the conditional knockout of 

LRP1 in endothelial cells of brain vessels, but soluble levels of Aβ were elevated, it was ana-

lyzed if brain endothelial LRP1 knockout affects the cognitive functions by examining spatial 

learning and spatial reference memory. It was analyzed, whether 5xFAD/Lrp1BE
-/- displayed 

memory deficits earlier and spatial learning and memory at 7 months of age was assessed in 

four experimental groups: Wildtype (WT) (n=6), Lrp1BE
-/- (n=5), 5xFAD/Lrp1BE

-/- (n=7) and 

5xFAD/Lrp1BE
fl/fl (n=7). Testing the spatial learning in the acquisition training revealed signif-

icantly reduced escape latencies for each genotype except 5xFAD/Lrp1BE
fl/fl (Figure 3.11 A, 

Unpaired t-test, Day 1 vs. Day 5, 5xFAD/Lrp1BE
-/- p = 0.036 5xFAD/Lrp1BE

fl/fl p = 0.314; 

Lrp1BE
-/- p = 0.025; WT p = 0.017). However, on days 3 to 5 5xFAD/Lrp1BE

-/- mice displayed 

an increased escape latency when compared to the other groups. The swimming speed did not 

differ between groups (Figure 3.11 B). These results suggest that spatial learning is impaired in 

both 5xFAD/Lrp1BE
fl/fl and 5xFAD/Lrp1BE

-/- mice.  

 

 

Figure 3.11 Spatial learning deficits in 5xFAD/Lrp1BE
-/-. Female 7-month-old wildtype (WT) 

(n=6), Lrp1BE
-/- (n=5), 5xFAD/Lrp1BE

-/- (n=7) and 5xFAD/Lrp1BE
fl/fl (n=7). Animals under-

went acquisition training to learn to use cues to navigate a route to a submerged platform. 
Escape latency decreased significantly in all groups except 5xFAD/Lrp1BE

fl/fl. Swimming 
speed was comparable in all mice tested. For statistical analyses, the following tests were used: 
escape latency day 1 vs. day 5: unpaired t-test; swimming speed and comparisons of escape 
latency: One-way ANOVA followed by Bonferroni multiple comparisons. ***p<0.001, 
*p<0.05. Data presented as mean ± SEM. 
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The following probe trial revealed that 5xFAD/Lrp1BE
fl/fl mice displayed a significant prefer-

ence for the target quadrant, whereas no quadrant preference was found for 5xFAD/Lrp1BE
-/- 

mice (Figure 3.12 A). Swimming speeds did not differ between groups (Figure 3.12 B). In 

summary, the results illustrate that endothelial-specific Lrp1 knockout in 5xFAD mice, and 

therefore, reduced clearance of Aβ peptides, induced an impairment of spatial reference 

memory as reflected by the absence of a preference for the target quadrant. 

 

 

Figure 3.12  Impairment of spatial reference memory deficits in 5xFAD/Lrp1BE
-/-. The probe 

trial was performed analyze spatial reference memory. 5xFAD/Lrp1BE
fl/fl, Lrp1BE

-/- and 
wildtype (WT) control mice showed no impairment of spatial reference memory, as reflected 
by the significant greater percentage of time spent in the target quadrant (p < 0.001 target vs. 
left, right and opposite quadrant). The probe trial revealed an impaired spatial reference 
memory in 5xFAD/Lrp1BE

-/- mice as they showed no preference for the target quadrant. 
Swimming speed did not differ between the groups. Abbreviations: T=target quadrant, L=left 
quadrant, R=right quadrant, O=opposite quadrant. For statistical analyses of quadrant prefer-
ence and swimming speed, the following tests were used: One-way ANOVA followed by 
Bonferroni multiple comparisons. Data presented as mean ± SEM. 
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4 Discussion 

4.1 Project I: Quantification of neurodegeneration and analysis of behavioral deficits 

in the TBA42 mouse model 

When Masters et al. (1985) purified Aβ from brains of AD-patients and aged Down syndrome 

patients their analysis by high-performance liquid chromatography revealed the presence of N-

terminally ragged species of the peptide. Mori et al. (1992) first described the presence of py-

roglutamate modified Aβ in AD-brains, overcoming difficulties in sequencing the N-terminus 

of Aβ, which is blocked by pyroglutamate formation (Selkoe et al. 1986; Mori et al. 1992). A 

study performed by Miller et al. (1993) that used matrix assisted, laser-desorption-time-of-

flight (MALDI-TOF) mass spectroscopy and protein sequencing further extended the findings 

on truncated Aβ, detecting Aβ species starting with each of the first eleven amino acids. Using 

species-specific Aβ antibodies in 28 AD-brains Saido et al. (1995) identified AβpE3-42 as the 

dominant species of Aβ in AD. Based on data obtained in ELISA experiments it was later 

estimated that AβpE3-42 constitutes approximately 25 % of the total Aβx-42 deposits (Harigaya et 

al. 2000). Interestingly, AβpE3-42 was reported to be present already in presymptomatic AD 

patients (Sergeant et al. 2003). N-truncated forms of Aβ are not only found in human AD 

brains but also in AD-mouse models. In APP/PS1KI mice Casas et al. (2004) identified dif-

ferent N-terminally ragged Aβ peptides as early as at 2.5 months using two-dimensional gel 

electrophoresis and mass spectroscopy. AβpE3-42 deposition was also found starting at 6 

months and increasing with age. AβpE3-42 was also detected in 5xFAD mice using mass spec-

troscopy (Wittnam et al. 2012) 

It is assumed that the formation of AβpE3-42 requires two steps. Firstly full length Aβ is truncat-

ed by proteolytic cleavage, which leads to the exposure of the glutamate residue at position 3 

(Jawhar et al. 2011). Secondly, pyroglutamate formation via dehydration of glutamate is enzy-

matically catalyzed by glutaminyl cyclase (QC) (Schilling et al. 2004; Cynis et al. 2008a).  

Not only is AβpE3-42 a highly abundant Aβ species in AD brains, moreover it is assumed to be 

highly pathogenic. The peptide shows a higher hydrophobicity, due to the loss of two positive 

charges and one negative charge (Schlenzig et al. 2009). An increased propensity to form sta-

ble aggregates has been reported (Bouter et al. 2013). The formation of aggregates by AβpE3-42  

is up to 250 fold accelerated (Schilling et al. 2006). This higher aggregation propensity was 

shown to be caused by an increased tendency to form a β-sheet containing secondary structure 
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induced by pyroglutamate formation (Dammers et al. 2015). Cell culture experiments revealed 

an elevated toxicity as compared to the unmodified full length peptide in vitro (Russo et al. 

2002; Bouter et al. 2013). Moreover, AβpE3-42 containing deposits are inaccessible for ami-

nopeptidases, thus clearance by proteolytic cleavage of the peptide is impeded (Jawhar et al. 

2011; Cummins and O'Connor 1998). Finally, In vivo experiments showed that intraventricular 

injection of AβpE3-42 in wildtype mice led to a reduction in working memory, further implying a 

role of the peptide in AD (Bouter et al. 2013). Taken together, the findings from human AD-

brains, cell culture experiments and AD mouse models indicate a crucial role of AβpE3-42 in the 

pathogenesis and disease progression of AD 

 

4.1.1 The TBA42 mouse model 

In transgenic mouse models a variety of Aβ species are found, mimicking the situation in AD-

patients. However, the effects of different species are hardly distinguishable. To further inves-

tigate AβpE3-42 toxicity in vivo transgenic mouse models have been developed. The TBA42 

model represents a transgenic mouse line that expresses N-truncated Aβ3-42 with a glutamine 

residue at position 3 under the control of the Thy1.2 promotor sequence. The peptide is post 

transcriptionally converted into AβpE3-42 by the glutaminyl cyclase (Wittnam et al. 2012). In the 

TBA2 mouse models, harboring the same DNA-construct, AβpE3-42 expression induced an 

early lethal phenotype, limiting the usability of these lines in studying AD-mechanisms and 

therapeutic strategies (Wirths et al. 2009). In the FAD42 model that was generated by crossing 

5xFAD with TBA42 mice, an increase of the AβpE3-42 dose induced an aggravated behavioral 

phenotype. In TBA42 mice AβpE3-42 does not induce early lethality, however important AD-

like hallmarks are produced. This AD-like phenotype is generated without relying on the ex-

pression of mutated genes that in humans cause early-onset familial forms of AD. 

The aim of the present work was to extend previous findings, performing a detailed character-

ization of the TBA42 mouse model. For this purpose, the behavioral phenotype and hippo-

campal neurodegeneration were analyzed in the course of aging, testing male and female mice 

at 3, 6 and 12 months of age. TBA42 mice display a progressive neurodegeneration in the CA1 

region of the hippocampus, where the highest transgene expression is observed. Furthermore, 

an age-dependent deficit in spatial learning, spatial reference memory and working memory is 

observed. These cognitive impairments are accompanied by sensorimotor deficits and a reduc-

tion of anxiety, resembling important hallmarks of Alzheimer disease.  

 

46 
 



Discussion  
 

4.1.2 Neuron loss in aged TBA42 mice 

Hippocampal neuron loss and brain atrophy are major neuropathological hallmarks of AD-

patient brains (West et al. 1994; Villemagne et al. 2013). APP single t .ransgenic AD mouse 

models often failed to produce a neuron loss as it is seen in AD patients (Wirths and Bayer 

2010). However, transgenic mouse lines with several mutations in the APP and the PS1 gene 

do exhibit neurodegeneration. APP/PS1KI mice display a neuron loss in the hippocampal 

CA1/CA2 region of more than 50 % at the age of 10 months (Casas et al. 2004, 2004; Brey-

han et al. 2009). Additionally, 35 % of the neurons in  the frontal cortex (Christensen et al. 

2008) and 35 % of those in cholinergic nuclei were lost at the age of 12 months (Christensen 

et al. 2010). In the 5xFAD model, which harbors five different FAD mutations, an age de-

pendent neuron loss was observed in the fifth cortical layer starting at 9 months. However, the 

total number of neurons in the hippocampus was unaltered, as measured by unbiased stereol-

ogy (Jawhar et al. 2012). Interestingly AβpE3-42 is present in both mouse lines. In APP/PS1KI 

mouse-brains a heterogeneous combination of N-terminally truncated Aβ species was detect-

ed, appearing at 6 months of age (Casas et al. 2004), coinciding with the first neuronal loss 

(Wirths and Bayer 2010). In homozygous TBA 2.1 mice accumulation of AβpE3-42 led to a loss 

of more than 40 % of hippocampal CA1 neurons (Alexandru et al. 2011). Interestingly, corre-

lating with the observed neurodegeneration, AβpE3-42 show the strongest relative increase in 

aggregation profiles in the hippocampus of APP/PS1KI mice (Breyhan et al. 2009). In the 

5xFAD model AβpE3-42  is found as a fraction of a variety of N-terminally truncated Aβ pep-

tides (Wittnam et al. 2012). While intraneuronal Aβ was present in the fifth cortical layer of 

5xFAD mice, it was absent in the CA1, linking the pattern of neurodegeneration to the distri-

bution pattern of intraneuronal Aβ (Eimer and Vassar 2013; Jawhar et al. 2012). Taking these 

findings into account, it is likely that the neuron loss observed in 5xFAD and APP/PS1KI 

mice to some extend is induced by AβpE3-42 and intraneuronal Aβ deposits rather than by 

plaque-bound Aβ.  

Using unbiased stereological quantification, we found that TBA42 mice exhibit a significant 35 

% neuron loss in the hippocampal CA1 region at the age of 12 months induced by the pro-

duction of AβpE3-42 (Meißner et al. 2015), corroborating previous findings on a severe neuro-

logical phenotype in TBA2.1, TBA2.2 and TBA2 mouse models expressing AβpE3-42 (Alexan-

dru et al. 2011; Wirths et al. 2009). Intraneuronal AβpE3-42 deposition preceded neuronal loss 

since AβpE3-42 is deposited starting in young animals (Wittnam et al. 2012), while neurodegen-

eration was only observed in aged animals. Strikingly, the observed neurodegeneration in 

TBA42 mice is induced by very low levels of AβpE3-42, which were detected by mass spectrom-
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etry (Wittnam et al. 2012). Intriguingly, in 12 month-old TBA42 mice the predominant in-

traneuronal Aβ staining was decreased and diffuse extracellular Aβ deposits were additionally 

detected. As neuron loss was present at this age, it is likely that AβpE3-42-positive neurons died 

beneath the burden of AβpE3-42 toxicity. A similar course of events was shown for neurodegen-

eration observed in Tg4-42 mice, albeit a more severe neurodegeneration but similar intraneu-

ronal pattern of Aβ distribution is observed in this model (Bouter et al. 2014).  

The mechanism of AβpE3-42 toxicity remains to be investigated further. Recently, Gunn and 

colleagues (2015) reported that AβpE3-42 induces lipid peroxidation resulting in a loss of plasma 

membrane integrity in neuronal cell cultures. An altered ion homeostasis measured by an in-

crease Ca2+-flux was also identified as a mechanism of toxicity mediated by AβpE3-42. Moreo-

ver, Nussbaum et al. suggested a tau-dependent mechanism of AβpE3-42 that relies on an inter-

action of AβpE3-42 and tau while AβpE3-42 is transported intracellularly (Nussbaum et al. 2012). 

In order to extend the findings on neurodegeneration in TBA42 mice, it would be informative 

to perform detailed stereological analyses of the neuron number at different time points be-

tween 6 and 12 months to determine the exact onset of neurodegeneration. Additionally, neu-

ron loss in other brain regions should be evaluated in order to decide if lower transgene ex-

pression is sufficient to induce neuronal death in these regions. Furthermore, homozygous 

TBA42 mice could be generated and analyzed to evaluate if neurodegeneration is dose-

dependent as seen in the Tg4-42 model (Bouter et al. 2013).  

 

4.1.3 Impaired motor function in TBA42 mice 

AD is characterized predominantly by the progressive impairment of cognitive functions. In 

addition, patients also develop neuropsychiatric symptoms including motor dysfunctions, agi-

tation and depression. Motor dysfunctions are a commonly observed feature of AD. Particu-

larly late stage AD-patients exhibit motor impairments (Wirths and Bayer 2008). However, 

motor deficits are also observed in mild AD (Pettersson et al. 2005). In these early stages re-

duced motor function might even serve as a prognostic parameter for faster disease progres-

sion (Scarmeas et al. 2005). In transgenic mouse models of AD motor deficits are commonly 

observed (Wirths and Bayer 2008). Single transgenic APP models, for example, display an 

impairment in sensorimotor functions (Le Cudennec et al. 2008; Lee et al. 2004), bigenic 

APP/PS1 (Ewers et al. 2006). APP/PS1knock-in mice display a motor deficit starting at 6 

months of age (Wirths et al. 2008),  while in 5xFAD mice a motor deficit is seen starting from 

9 months of age (Jawhar et al. 2012).  
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We found that AβpE3-42 accumulation in TBA42 mice induces a robust motor dysfunction 

when compared to wildtype mice beginning at 6 months of age. This dysfunction was aggra-

vated in the course of aging (Meißner et al. 2015). The sensorimotor function was tested using 

the balance beam, inverted grip hang and string suspension tests, which are all well-

established. The decline in motor functions in the TBA42 model correlate with the presence 

of intraneuronal of AβpE3-42 in the motor cortex and the spinal cord, which was previously 

shown (Wittnam et al. 2012). Although neurodegeneration could not be observed, due to limi-

tations in the quantification procedure, in the spinal cord, at least neuronal dysfunction in 

these regions most likely contributes to the observed motor phenotype in TBA42 mice. It was 

shown that the accumulation of N-truncated Aβ in the spinal cord of APP/PS1KI mice was 

followed by axonal degeneration, characterized by the presence of axonal swellings and demy-

elination (Wirths et al. 2007). This led to motor deficits in this model (Wirths et al. 2008).  In 

5xFAD mice motor deficits were also correlated with the presence of axonal dysfunction 

(Jawhar et al. 2012). The severe motor dysfunctions in the TBA42 mouse line were detected 

before the onset of memory deficits. This progression pattern does not reflect the course of 

events in human AD-patients. Nevertheless, an important and clinically relevant attendant 

phenomenon of AD is resembled by the model.  

 

4.1.4 Reduced anxiety behavior in the TBA42 model 

On one hand anxiety is a neuropsychiatric feature that is commonly seen in AD patients (Por-

ter et al. 2014), on the other hand however, disinhibition and agitation is observed in some 

patients (Lyketsos et al. 2002). In mice, correlates of these diametrically opposed disease mani-

festations can be tested using the elevated plus maze. An increased amount of time spent in 

the open arms of the maze stands for reduced anxiety and disinhibition, while increased anxie-

ty is indicated by more time spent in the closed arms of the maze (Faure et al. 2011). Anxiety 

levels have been studied in a number of AD transgenic mouse models. 5xFAD (Jawhar et al. 

2012), APP/PS1KI (Faure et al. 2011) and APPswe+PS1/ΔE9 (Lalonde et al. 2005) mice as 

well as single transgenic APP695swe (Lalonde et al. 2003a) and PS1-A246E mice (Lalonde et 

al. 2003b) displayed reduced anxiety levels. In contrast the 3xTg-AD mouse model showed 

only a tendency towards increased anxiety  (Sterniczuk et al. 2010) while anxiety levels were 

unaltered in APP23 mice (Lalonde et al. 2002). TBA42 mice displayed a reduction in anxiety 

levels in the elevated plus maze starting at 6 months of age, which was even more pronounced 

in 12 months old animals (Meißner et al. 2015).  
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Connectivity between different brain regions mediates the rather complex anxiety behavior, as 

it is tested in the elevated plus maze (Walf and Frye 2007). Hippocampus and amygdala 

(McHugh et al. 2004), as well as the prefrontal cortex (Lacroix et al. 2000) are involved in gen-

eration of anxiety behavior.  

The observed anxiolysis and disinhibition in TBA42 mice is likely a consequence of neuro-

degeneration within the hippocampus, although abnormalities in other brain regions may con-

tribute to the observed phenotype. This assumption is supported by the finding that anxiety 

levels are already elevated, while the neuron number of the CA1 is still unaltered. It could as 

well be hypothesized that synaptic dysfunction induced by AβpE3-42 leads to anxiolysis in 

TBA42 mice.  

 

4.1.5 Cognitive decline in aged TBA42 mice 

Working memory, which, by definition, is "short-term memory for an object, stimulus or loca-

tion within a testing session, but not typically between sessions" (Dudchenko 2004) is a cogni-

tive function that is frequently affected in AD patients (Baddeley et al. 1991; Kirova et al. 

2015). Working memory impairments, as indicated by a reduced alternation rate in the Y-maze 

or the cross maze task, were described in various transgenic mouse models including the 

5xFAD model (Jawhar et al. 2012; Oakley et al. 2006) and the APP/PS1KI model (Wirths et 

al. 2008). In the latter model this deficit is also associated with a neuron loss in the CA1 region 

of the hippocampus (Breyhan et al. 2009). A number of APP-transgenic mouse models did 

not display an impaired spatial working memory (Lalonde 2002; Karl et al. 2003; Savonenko et 

al. 2003). Interestingly, the Tg4-42 mouse model does not display an impaired spatial working 

memory, although a more pronounced neurodegeneration in the CA1 region was detected in 

the model (Dietrich 2015).  

In TBA42 mice working memory was studied in order to correlate effects of the observed 

neurodegeneration in the CA1 region of the hippocampus. Spatial working memory in TBA42 

mice was tested by calculating spontaneous alternation rates in the X-maze. When exploring a 

maze, due to their natural behavior, mice have the tendency to alternate their entries into the 

different arms (Dudchenko 2004). These spontaneous alternations were shown to rely on the 

interplay of different brain regions including the hippocampus, the prefrontal cortex, the sep-

tal region and the striatum (Lalonde 2002). TBA42 mice showed a decline in working 

memory, since their alternation rate in the X-maze was reduced (Meißner et al. 2015). Taken 

together, the findings on hippocampal neurodegeneration suggest that the working memory 
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impairment in aged TBA42 can at least partially be attributed to the neuron loss in the CA1 

region, induced by AβpE3-42 expression as the two events coincided and the hippocampus 

plays a crucial role in this form of short term memory. However dysfunctions in other brain 

regions might contribute to the observed deficit. 

As opposed to the cross-maze, which addresses more basic cognitive functions, the Morris 

water maze (MWM) is a very sensitive and well-established test, which is suitable for assessing 

spatial learning and spatial reference memory in rodents (Morris 1984). The MWM is a widely 

used experiment to test AD-like cognitive impairment in mouse models. During the testing 

procedure mice learn to navigate a path to a submerged platform in a pool filled with opaque 

water. In contrast to other cognitive tests like the cross maze test, almost all established mouse 

models show an impairment in the MWM. A single mutation or the Swedish double mutation 

in the APP gene has been shown to be sufficient to induce deficits in transgenic mice, detect-

able by the MWM (Westerman et al. 2002; van Dam et al. 2003). 3xTg (Billings et al. 2005), 

APP/PS1KI (Webster et al. 2013). 5xFAD and Tg4-42 mice show an impairment in the task 

as well (Bouter et al. 2014). However, reflecting the findings in humans, the time course of 

cognitive decline in these models correlates poorly with plaque loads (Tanila 2012).  

In TBA42 mice, we found an age-dependent deficit using the MWM. Young TBA42 mice 

performed indistinguishably from their wildtype littermates. Aged TBA42 mice however, dis-

played an impairment in spatial learning, as the distance travelled, while navigating a path to 

the submerged platform did not decrease significantly during the five days of acquisition train-

ing. A lack of target preference in the probe trial indicated an impairment in spatial reference 

memory (Meißner et al. 2015). It has to be stated that the performance in the Morris water 

maze is partially influenced by the motor deficits seen in TBA42 mice. Aged TBA42 mice 

swam significantly slower during all three testing stages. However, their swimming speed was 

sufficient to explore the testing apparatus entirely. 

Spatial learning is particularly dependent on the integrity of the hippocampal formation 

(D'Hooge and De Deyn, P P 2001) and damage of the hippocampus largely affects perfor-

mance in the acquisition training of the MWM (Smith et al. 1991). It was demonstrated that 

lesions encompassing 30 - 50 % of the hippocampus lead to an impairment of spatial memory, 

which was aggravated by increasing the lesion size (Broadbent et al. 2004). 

These findings are in good agreement with the observations made in TBA42 mice. Here, an 

impairment in spatial learning and spatial reference memory is accompanied by a 35 % neu-

ronal loss in the CA1 region of the hippocampus. However, contrasting findings were pub-
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lished claiming that only 20 – 40 % of the hippocampus is sufficient maintain spatial learning 

(Moser et al. 1995), and Tg4-42 mice that displayed a similar extent of neurodegeneration in 

the CA1 were not impaired in memory function (Bouter et al. 2014). In addition to the hippo-

campus, it has been shown that other brain regions contribute to spatial learning in rodents. 

Lesion studies revealed that the thalamus (Savage et al. 1997), mammillary bodies (Santin et al. 

1999), the amygdala (Decker et al. 1995) and different brain stem nuclei (Compton et al. 1995; 

Riekkinen and Sirvio 1990) influence this particular cognitive function.  

Learning has additionally been attributed to hippocampal long term potentiation (LTP) 

(D'Hooge and De Deyn, P P 2001). It was shown that LTP was reduced by AβpE3-42 expres-

sion in TBA2.1 mice (Alexandru et al. 2011). It would be informative to investigate long term 

potentiation in TBA42 mice to analyze if this contributes to learning and memory deficits in 

this model. In summary, it can be stated that the decline in spatial learning and spatial memory 

in aged TBA42 mice is induced by a hippocampal neuron loss, although it is possible that neu-

rodegeneration in other brain regions and general neuronal dysfunction contribute to the ob-

served deficits. 

 

4.1.6 TBA42 is a valid model of AD 

Animal models of AD are an important component in studying and understanding the mech-

anisms of disease in vivo. Several transgenic mouse models have been developed, each of which 

resemble some clinical or neuropathological features found in AD, including plaque and neu-

rofibrillary tangle formation, gliosis, neurodegeneration, as well as cognitive and behavioral 

alterations (Elder et al. 2010). For example The first AD-mouse model that showed an AD-

like pathology, PDAPP was generated by the expression of a human APP transgene contain-

ing an FAD-related mutation (V717F) under the control of the platelet derived growth factor 

(Games et al. 1995). The model exhibits plaques, surrounded by dystrophic neurites, reactive 

astrocytes and activated microglia (Reilly et al. 2003; Games et al. 1995). Furthermore, the 

model shows learning deficits (Chen et al. 2000) and synapse loss (Dodart et al. 2000). How-

ever APP single transgenic mouse models lack a neuron loss (Elder et al. 2010). Conversely, 

the 5xFAD or the APP/PS1KI model, in which a neuron loss is seen, rely on the combination 

of multiple mutations that individually are sufficient to induce AD in humans (Oakley et al. 

2006; Jawhar et al. 2012; Casas et al. 2004). In addition to these inadequacies, the named ex-

amples model the genetically predetermined familial AD (FAD). However, FAD cases repre-

sent only a minor fraction of patients. Around 99 % of all AD cases are induced by a multifac-
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torial pathogenic process of unknown etiology leading to sporadic AD (SAD) (Zetterberg and 

Mattsson 2014). There is an urgent need to model aspects of SAD in order to understand the 

underlying mechanisms.  

An attempt to model SAD has been made by addressing a cerebral insulin resistant state that 

is found in AD patients (Steen et al. 2005; Talbot et al. 2012). By intracerebroventricular ad-

ministration of streptozocin some aspects of an AD-like phenotype have been induced. In 

non-transgenic mice injected with streptozocin that develop such a cerebral insulin resistance 

(Chen et al. 2013), this leads to neuroinflammation, tau-hyperphosphorylation and behavioral 

deficits (Salkovic-Petrisic et al. 2009; Chen et al. 2013).  

The TBA42 mouse model is a member of a new group of mouse models models, which do 

not harbor mutations in the APP, PSEN-1 or PSEN-2 sequence, seen in FAD. Instead it ex-

presses Aβ directly (Wittnam et al. 2012). It can therefore be seen as a model for sporadic AD. 

The model was developed based on the observation that AβpE3-42  is a highly toxic and abun-

dant species found in AD-brains (Portelius et al. 2010; Russo et al. 2002). In TBA42 mice di-

rect expression of Aβ induces intracellular accumulation of AβpE3-42 in hippocampal neurons, 

leading to an age dependent hippocampal neurodegeneration. A reduced anxiety and more 

importantly a cognitive decline appear to be induced by this neuron loss. In addition, AβpE3-42 

accumulates in spinal cord neurons, which led to motor deficits. These deficits occurred even 

before the onset of cognitive deficits. Although important hallmarks of AD are developed by 

the model, plaque deposition and neurofibrillary tangle pathology is not seen. Additionally, the 

direct expression of Aβ does not reproduce the physiological pathway of Aβ generation by 

amyloidogenic processing of APP. 

Taken together, these findings underline the importance of AβpE3-42 in the etiology and pro-

gression of AD by demonstrating its toxicity in vivo and make TBA42 a valid model to study 

AD in mice. 

 

4.1.7 AβpE3-42 as a potential drug target 

It was demonstrated that AβpE3-42 leads to neuron loss and cognitive decline in the TBA42 

mouse model (Meißner et al. 2015). Since AβpE3-42 is more toxic than the full-length peptide, 

lowering the concentration of AβpE3-42 seems to be a promising treatment strategy to fight AD 

(Perez-Garmendia and Gevorkian 2013; Bayer and Wirths 2014). Two strategies to lower cer-

ebral AβpE3-42 concentrations are conceivable. Firstly, limiting the conversion from unmodified 
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Aβ to AβpE3-42 by inhibiting the responsible enzymes is possible. Secondly, passive immuniza-

tion against AβpE3-42 appears to be auspicious in reversing AβpE3-42 toxicity.  

In AD mouse models oral treatment with a glutaminyl cyclase inhibitor resulted in the reduc-

tion of the AβpE3-42, and Aβx-42 burden (Schilling et al. 2008). A phase two clinical study of the 

small molecule is ongoing. Moreover, treatment with the 9D5 antibody, recognizing AβpEx-42 

resulted in a significantly lowered plaque load in 5xFAD mice (Wirths et al. 2010). The thera-

peutic antibody Solanezumab (Eli Lilly) has been reported to recognize various N-terminally 

truncated Aβ species (Imbimbo et al. 2012). Recently, it has been shown by our group that the 

biosimilar of this antibody detects AβpE3-42 in TBA42 mice (Bouter et al. 2015). Although 

Phase 3 studies have failed to show an improvement in cognition (Doody et al. 2014), a posi-

tive effect was seen in the mild AD population of the study, which showed a slower disease 

progression (Siemers et al. 2015). Interestingly, the newly developed NT4X antibody, prefer-

entially binds AβpE3-42 among other N-truncated Aβ species in cerebral blood vessels but binds 

only weakly to Aβ plaques (Bouter et al. 2015). We could recently show that treatment with 

this antibody reduced Aβ deposition in 5xFAD mice and even rescued neuron loss and behav-

ioral deficits in Tg4-42 mice (Antonios et al. 2015).  

Together these findings from preclinical studies may suggest that AβpE3-42 is a potential drug 

target in fighting or preventing AD. 
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4.2 Project II: Exploring in vivo effects of impaired Aβ clearance induced by knock-

out of brain endothelial LRP1 in 5xFAD mice 

Autosomal dominant forms of AD are induced by the overproduction of toxic Aβ peptides 

(Hardy and Higgins 1992; Hardy and Selkoe 2002). These forms of the disease are induced by 

mutations in the APP or PSEN genes (Bettens et al. 2013). However, only a minor fraction of 

the patients is affected hereby. The vast majority of AD patients suffers from the late-onset 

form of the disease that is associated with a reduced clearance of Aβ from the brain, rather 

than by overproduction of Aβ (Bates et al. 2009; Mawuenyega et al. 2010).  

Pathways of Aβ clearance are the cleavage by proteolytically active enzymes, the cellular up-

take of Aβ followed by its proteasomal degradation (Wang et al. 2006), interstitial fluid bulk 

flow (Weller et al. 2008; Hawkes et al. 2012), cerebrospinal fluid absorption into the circulato-

ry (Pollay 2010) system and efflux via the blood brain barrier (Tarasoff-Conway et al. 2015; 

Deane et al. 2009; Zlokovic 2011). The latter mechanism is addressed by the neurovascular 

hypothesis of Alzheimer´s disease proposing that impaired clearance of Aβ by LRP1 at the 

BBB induces more Aβ -deposition, which leads to the progression of AD (Zlokovic 2005). Aβ 

is transported from the blood into brain by RAGE and from the brain into blood by LRP1 

(Donahue et al. 2006).  

The neurovascular hypothesis is corroborated by several studies underlining the importance of 

LRP1 in the BBB clearance of Aβ. Firstly, LRP1 brain levels naturally decrease during ageing 

(Shibata et al. 2000; Silverberg et al. 2010). Additionally, LRP1 levels are further decreased in 

the brains of AD patients (Shibata et al. 2000; Kang et al. 2000). Secondly, LRP1 substrates 

were identified as components of senile plaques (Rebeck et al. 1995). Thirdly, genetic risk fac-

tors of AD have been linked to a reduced clearance of Aβ by LRP1. This is the case for asso-

ciations of variations in the LRP1 gene and AD (Lambert et al. 1998; Christoforidis et al. 

2005). Additionally, variants in PICALM that encodes the phosphatidylinositol binding clath-

rin assembly protein, are a well-established risk factor for AD (Harold et al. 2009). The protein 

has been shown to drive LRP1-mediated transcytosis (Zhao et al. 2015). Interestingly, a pro-

tective PICALM gene variant increases PICALM expression and thereby LRP1-mediated Aβ 

clearance (Lambert et al. 2013; Zhao et al. 2015). Moreover, apoE4 limits LRP1-mediated 

clearance of Aβ via the BBB (Bell et al. 2007; Deane et al. 2008) 
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Various experiments have been carried out to test the role of LRP1 in Aβ BBB clearance. 

Pharmacological inhibition of LRP1 does not limit BBB transport by LRP1 selectively (Qosa 

et al. 2014) and attempts study the role of LRP1 in AD by knocking out LRP1 globally have 

failed and resulted in embryonic lethality, since the protein is essential for embryo implanta-

tion (Herz et al. 1992; Herz et al. 1993). A conditional knockout of LRP1 in vascular smooth 

muscle cells of APP/PS1 mice, however, leads to an increased Aβ accumulation (Kanekiyo et 

al. 2012). Still, there are contrasting findings on the role of LRP1 in Aβ clearance by transport 

across the blood brain barrier (Ito et al. 2010; Yamada et al. 2008). These studies, on the basis 

of data obtained in in-vitro BBB models, come to the conclusion that LRP1 does not mediate 

transcytosis, but endocytosis and subsequent degradation of Aβ (Nazer et al. 2008). 

The 5xFAD/Lrp1BE
-/- mouse model of AD has been developed by the group of Prof. Pietrzik 

to address remaining issues and test the neurovascular hypothesis. The model combines the 

commonly used 5xFAD model, harboring five different AD mutations (Oakley et al. 2006), 

and a brain endothelial specific knockout model of LRP1. Aβ levels measured by enzyme-

linked immunosorbent assay were significantly increased by this knockout (Storck et al. 2016). 

The aim of the present work was to assess the effects of LRP1 knockout in vivo, evaluating 

the consequences on hippocampal Aβ plaque deposition and hippocampal gliosis, and testing 

spatial learning and spatial reference memory of the new mouse line. 

 

4.2.1 Plaque pathology in 5xFAD/Lrp1BE
-/- 

Although, not correlating well with the clinical presentation and neurodegeneration that is 

observed in AD (Giannakopoulos et al. 1997), Aβ plaques are a major neuropathological hall-

mark of Alzheimer´s disease (Thal et al. 2002). Aβ plaque deposition is adequately modeled in 

the murine 5xFAD model, which is predominantly characterized by widely distributed, plaque 

bound Aβ that is found in mouse brains starting at the age of 2 to 3 months (Jawhar et al. 

2012; Oakley et al. 2006).  

To evaluate whether LRP1 knockout, which is followed by cerebral Aβ retention (Storck et al. 

2016), eventually leads to an increased plaque deposition, plaques were stained immunohisto-

chemically in 5xFAD/LrpBE
fl/fl and 5xFAD/Lrp1BE

-/- mice. A difference in plaque loads was 

not obvious (Storck et al. 2016). A standardized procedure was used to quantify the area cov-

ered with Aβ plaques within the hippocampus. However, no increase in plaque deposition in 

5xFAD/Lrp1BE
-/- mice could be measured, when compared to 5xFAD/LrpBE

fl/fl. This finding 

was in good agreement with the results of immunoprecipitation and ELISA experiments, 
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showing that insoluble Aβ deposits were only significantly elevated for Aβx-40 but not for Aβx-

42. In contrast, both shorter Aβx-40 and C-terminally truncated for Aβx-42 where significantly 

elevated when soluble levels where analyzed. The Aβ1-42/ Aβ1-40 ratio was elevated (Storck et 

al. 2016). It has to be studied yet, if 5xFAD/Lrp1BE
-/- mice start to develop higher plaque 

loads than 5xFAD/LrpBE
fl/fl in the course of ageing. 

 

4.2.2 Gliosis in 5xFAD/Lrp1BE
-/- mice 

In addition to Aβ plaque deposition, neuroinflammation is a hallmark of AD (Akiyama et al. 

2000). Activated astrocytes and microglia facilitate Aβ clearance by cellular uptake (Wyss-

Coray et al. 2003; Wyss-Coray et al. 2001). In Alzheimer´s disease mouse models gliosis is a 

commonly observed feature. In TBA42 mice, for example, gliosis is observed in close proxim-

ity to Aβ accumulations (Wittnam et al. 2012). In 5xFAD mice hippocampal gliosis is ob-

served starting in 2 months old animals and further increasing in older animals (Girard et al. 

2014; Oakley et al. 2006).  

In both, 5xFAD/Lrp1BE
-/- and 5xFAD/Lrp1BE

fl/fl mice a marked gliosis was observed (Storck 

et al. 2016). However, no quantitative difference in the amount of astrocytes and microglia, as 

measured by the area of covered by GFAP and Iba1 immmunoreactivity was found. It is 

known that gliosis in 5xFAD mice is proportional to plaque deposition. Additionally, the pat-

tern of gliosis follows plaque distribution and reactive astrocytes surround Aβ plaques in this 

model (Oakley et al. 2006). Thus, the findings on unaltered gliosis in 5xFAD/Lrp1BE
-/- are in 

good agreement with the findings on Aβ plaque deposition which was similarly unaffected. 

 

4.2.3 Cognitive decline in 5xFAD/Lrp1BE
-/- mice 

To test the behavioral effects of increased accumulation of soluble Aβ in 5xFAD/Lrp1BE
-/- 

mice, animals were objected to the Morris water maze, testing spatial learning and spatial ref-

erence memory. Cognitive deficits have previously been reported for 5xFAD mice. At the age 

of 12 months mice have been reported to display a deficit in spatial learning and spatial refer-

ence memory (Bouter et al. 2014). Deficits in spatial working memory tested in the cross maze 

paradigm were reported to occur already in 6 months old animals (Jawhar et al. 2012). 

In the present study we showed that 5xFAD/Lrp1BE
-/- mice display a reduction in spatial 

learning when the acquisition training was analyzed. Compared to the control groups mice 

displayed significantly higher escape latencies. More obviously, spatial reference memory of 
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5xFAD/Lrp1BE
-/- mice was impaired indicated by the absence of target preference in the 

probe trial of the MWM. The observed deficits cannot be separately explained by either the 

5xFAD mutations or the knockout of LRP1 in the cerebrovasculature, since 

5xFAD/LrpBEfl/fl and Lrp1BE
-/- performed equally to, or only slightly poorer that wildtype 

animals. Instead, the two genetic modifications induced the deficits when they were combined. 

Thus inducible knockout of LRP1 in the brain endothelium, resulting in increased cerebral Aβ 

accumulation (Storck et al. 2016), shifted the onset of cognitive decline in 5xFAD mice to an 

earlier point in time. 

It is known that the concentrations of soluble Aβ species, rather than the amount of Aβ 

plaques is correlated to the extent of cognitive decline in animal models (Dodart et al. 2002) 

and in AD-patients (Mc Donald, Jessica M et al. 2010; McLean et al. 1999). A similar correla-

tion was seen in the 5xFAD/Lrp1BE
-/- mouse model. Concentrations of soluble A species are 

and the ratio of Aβ1-42/ Aβ1-40 where elevated (Storck et al. 2016), which led to severe cognitive 

deficits, while the plaque load was unaltered, supporting the idea of the greater importance of 

soluble Aβ oligomers in AD-pathogenesis. For further investigations of the model it would be 

informative to test older animals. This way it could be analyzed whether longer-lasting disrup-

tion of BBB Aβ clearance by LRP1 knockout leads to an increased divergence in the cognitive 

performance between 5xFAD/Lrp1BE
-/- and control mice. In summary, the data collected in 

this work in combination with biochemical data on the function of LRP1 (Storck et al. 2016) 

highlight the significance of LRP1 in the clearance of Aβ across the BBB. Restoring and facili-

tating BBB clearance of Aβ is a promising approach for future treatments and prevention 

strategies of AD 

 

4.2.4 Restoring BBB clearance as a potential treatment and prevention of AD 

Since the clearance of Aβ via the BBB is decreased in AD (Mawuenyega et al. 2010), restoring 

this function seem to be a promising approach in treating or even preventing AD (Rama-

nathan et al. 2015). In APP/PS1 mice an extract of the root of Withania somnifera induced an 

increased expression of LRP1 in microvessels of the brain and in the liver. The earlier increase 

of liver LRP1 is accompanied by the reversion of cerebral Aβ accumulation and behavioral 

deficits in the mice (Sehgal et al. 2012). The olive-oil derived oleocanthal also induced the ex-

pression of LRP1 in mice brain endothelial cells. This led to an increased clearance rate of 

radiolabeled Aβ, which was injected into the brains of wildtype mice (Abuznait et al. 2013). 
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In addition to classical active substances, gene therapy might be a possible strategy for ad-

dressing cerebrovascular LRP1 deficiency that is found in AD. Using Adeno-associated viral 

vectors the delivery of transgenic DNA to different components of the central nervous system 

can be achieved (Davidson et al. 2000). Especially brain endothelial cells could easily be tar-

geted since they are directly accessible from the blood for adeno-associated viral vectors when 

applied intravenously (Chen et al. 2009; Varadi et al. 2012). Given that brain-endothelial LRP1 

transports major amounts of Aβ across the blood brain barrier (Storck et al. 2016), gene ther-

apy appears to be a promising approach. The newly developed 5xFAD/Lrp1BE
-/- could serve 

as a valuable tool for testing this gene therapeutic approach in an AD mouse model. 
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5 Summary 

According to the influential amyloid cascade hypothesis cerebral accumulation of Aβ is the 

key event in the pathogenesis of Alzheimer´s disease. Aβ deposits occur as soluble forms, as 

well as insoluble forms. It is assumed that soluble and intraneuronal Aβ predominantly pro-

motes development and progression of the disease. There is a large variety of Aβ species that 

differ in lengths and the presence of posttranscriptional modifications. The pyroglutamated 

and truncated isoform AβpE3-42 is an especially toxic variant of the peptide. It was the aim of 

the present work to extent the knowledge on the role of Aβ in the development of the disease. 

For this purpose, two transgenic mouse models that address different aspects of the disorder, 

were characterized by analyzing age neuropathological and behavioral features. 

In the first part of the thesis, an AD-like phenotype is demonstrated in the murine transgenic 

TBA42 model, which does not harbor mutated transgenes that are involved in Aβ generation 

by processing of its precursor protein. It is shown that direct expression of AβpE3-42 in TBA42 

mice leads to an age-dependent neurodegeneration in the hippocampal CA1 region of the 

hippocampus, which is intimately involved in cognition. This leads to a decline in memory 

function and altered anxiety levels. Moreover, accumulation of AβpE3-42 induces a severe motor 

deficit, which even precedes the cognitive decline. Thus the toxicity of AβpE3-42 is demonstrat-

ed in vivo. Taken together, these findings underline the importance of AβpE3-42 in the etiology 

and progression of AD and make TBA42 a valid model to study mechanisms of AD progres-

sion and potential therapeutic strategies in mice.  

The majority of AD cases occur sporadically and no overproduction of Aβ is found in these 

cases. In contrast, sporadic AD is characterized by the impairment of various mechanisms of 

Aβ clearance. Transport of Aβ across the blood brain is one important mechanism. According 

to the neurovascular hypothesis of AD an impaired blood brain barrier clearance by LRP1 

leads to the retention of Aβ in the brain, resulting in a higher rate of Aβ deposition. In the 

second part, using the 5xFAD/Lrp1BE
-/- model, in which soluble Aβ species are retained in the 

brain, the effect of a brain endothelial knockout of LRP1 on cognition in an established AD 

mouse model is demonstrated. While the plaque load and gliosis is unaltered by the knockout, 

the onset of cognitive impairments is shifted to a younger age in 5xFAD/Lrp1BE
-/- mice. Tak-

en together these findings confirm the neurovascular hypothesis of AD, by highlighting the 

importance of LRP1-mediated blood brain barrier clearance of Aβ. 5xFAD/Lrp1BE
-/- mice 
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could be used to test therapeutic approaches, which try to restore the impaired clearance of 

Aβ across the blood brain barrier.  

In summary, both the TBA42 and the 5xFAD/Lrp1BE
-/- mouse model are valid AD models 

addressing features of sporadic AD. 
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