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Abstract 

 Grasshoppers, and among them especially the species Chorthippus biguttulus, have been used 

as a model system to study the neuronal basis of acoustic behavior. Auditory neurons have been 

described from intracellular recordings. The growing interest to study population activity of neurons 

has been satisfied so far with artificially combining data from different individuals. Here for the first 

time multielectrode recordings from the brain of a small grasshopper brain were made. Three 12 µm 

tungsten wires (combined in a multielectrode) to record from local brain neurons and from a 

population of auditory neurons entering the brain from the thorax. It was possible to separate up to five 

units by sorting algorithms. Tungsten wires exhibited stable recordings with higher signal-to-noise 

ratio than copper wires. Due to the tight temporal coupling of auditory activity to the stimulus spike 

collisions were frequent and collision analysis retrieved 10–15% of additional spikes. Physiological 

identification of units described from intracellular recordings was hard to achieve therefore the focus 

was on comparing individual units. Recording the population activity of auditory neurons in one 

individual prevents interindividual and trial-to-trial variability which otherwise reduce the validity of 

the analysis. Decoding the information about the acoustic stimulus was compared between single 

neurons and set of simultaneously recorded neurons. Information was higher for some data sets with 2 

or more simultaneously recorded neurons indicating the existence of a population code inside the brain 

of grasshopper. Local brain neurons were recorded from lateral protocerebrum, anterior brain and 

central complex and were separated from ascending neurons based on their longer latencies. One local 

brain neuron was found discriminating between behaviorally attractive and non-attractive stimuli. 

Using such multielectrodes, it was also possible to induce singing responses by electrically stimulating 

different auditory neuropiles in the brain of grasshoppers. 
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1.1 Communication and its sensory aspects 

 Communication is a very much fascinating thing. Its study has helped in the general 

understanding of motor and sensory systems, evolution, and speciation. A major appeal of studying 

communication is that a researcher can quantify how biologically important information can be coded 

in particular physical properties of a signal and then experimentally determine if the animals 

themselves use this information (Gerhardt and Huber 2002). The main use of sounds for vocal 

communication is widespread among vertebrates and invertebrates which range from mating calls in 

insects to speech in humans. Sound can transmit broader messages like species identity or narrow 

messages like the effective state of a caller (Schehka 2009). Communication is a key area of animal 

behavior because all social interactions among individuals are based on the exchange of information. 

For communication to occur, a sender has to encode information in a signal, which is then transmitted 

to a receiver (Shannon and Weaver 1949). Animals have evolved the most astounding ways to pass on 

messages, by using optical, acoustic, electric or chemical signals. Among them, acoustic signals serve 

a number of functions and are often part of social behavior. One of the key goals in research on 

acoustic communication is to explore the wide range of information conveyed in vocal signals. 

1.2 Acoustic communication in insects 

 Acoustic communication is widely spread among vertebrates but, among invertebrates, 

hearing and acoustic communication are well developed only in insects, in which they serve as 

detection of predators, the location of mates and of hosts (Pollack 2000). Insects offer several 

advantages as model systems for neuroethological studies, including robust behavior, easily accessible 

nervous system and uniquely identifiable neurons that permit one to frame general questions about the 

neural analysis of signals at the levels of single nerve cells (Nolen and Hoy 1984). Insects are good 

subjects for studies of the mechanisms underlying signal production and recognition and localization. 

In insects, interneurons that trigger sound-producing mechanisms have been characterized both 

anatomically and physiologically (Stumpner and Ronacher 1991). Moreover, the orchestrated activity 

of motor neurons, muscles or both that pattern acoustic signals has been described in detail (Gans 

1973; Hedwig 1994; Heinrich and Elsner 1997a). Insects are also suitable for studying sensory 
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processes. Many cells have been characterized physiologically, and connections among them are well 

known. Studying orthopteran insects has an additional advantage that all the biologically relevant 

information available in the acoustic waveform is conveyed to the brain by a handful of ascending 

neurons which are individually identifiable (Huber and Thorson 1985; Pollack 1988) and can be 

recorded in behaving animals. Insects are also suitable for studying the genetic bases of acoustic 

system and selective responsiveness (Shaw 1996; Ritchie 2000). Some insects have been the subjects 

of artificial selection experiments that can estimate additive genetic variation and covariation in signal 

structure and receiver selectivity (Bakker and Pomiankowski 1995). 

 Acoustic communication in insects presents a diverse and fascinating set of opportunities for 

biologists interested in sensory mechanisms.   

1.3 Grasshoppers Chorthippus biguttulus as a model system to study acoustic communication 

 The complexity and size of sensory systems vary greatly, from the auditory system of a 

noctuid moth consisting of few neurons (Roeder, 1967), to the primate visual system consisting of 250 

million neurons (Hubel, 1988). This size depends on the difficulty of the tasks that a sensory system 

has to fulfill. Essentially, the auditory system of the noctuid moth only needs to detect bat cries while 

the visual system of a primate has to analyze and interpret a whole variety of complex visual scenes. 

The amount of computations needed to perform these tasks differs correspondingly. Somewhere 

within this range of complexity lies the grasshopper auditory system with a few hundred neurons 

(Pollack 1998). This system has two advantages: (1) The set of natural stimuli is well known, most 

importantly the communication signals that are employed by grasshoppers in the mate finding process 

(Elsner 1974). (2) Despite their simplicity, some grasshoppers show highly evolved behavioral 

patterns which are accessible to systematic investigations (von Helversen and Elsner 1977). 

 Work on the species Ch. biguttulus has provided valuable insights into the neural basis of song 

recognition in the early auditory system of acridid grasshoppers. On hot summer days, males produce 

a calling song by rubbing their hindlegs against a hardened vein on their forewings. A male calling 

song is a broadband sound having frequency components between 4 and 40 kHz. Species-specific 
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motor programs produce a movement pattern that modifies this carrier with species- and sex-specific 

amplitude modulations (Elsner 1974; von Helversen and von Helversen 1997). In the species 

Ch.biguttulus, this envelope consists of 20–30 repetitions of a basic sub-unit called syllable followed 

by a shorter and much softer pause (von Helversen 1972). If a female grasshopper of the same species 

hears this song and considers it attractive, it responds with her own song. This female response allows 

the male to localize and approach the female, resulting eventually in copulation (Schul et al. 1999) 

1.4 Neuronal basis of hearing in grasshoppers 

 The anatomy of the auditory system (Fig.1.1) constrains the processing of auditory inputs. A 

tympanic membrane is located on each side of the lateral abdomen which is responsible for sound 

detection. About 70 spiking receptor cells are attached to each membrane (Gray 1960). There are four 

different kinds of receptor cells and three of these receptor types are most sensitive to low carrier 

frequencies, the fourth responds most strongly to high carrier frequencies (Römer 1976; Jacobs et al. 

1999). As long as a signal contains frequencies in the appropriate range, its amplitude distribution is 

well encoded by receptor neurons (Machens et al. 2001). The receptor cells project (transfer the 

information) into the metathoracic ganglion where information is preprocessed before being sent into 

the head ganglion (brain). As the highest neural processing stage, the brain integrates available 

information and produces a decision signal. The metathoracic ganglion contains four classes of 

interneurons. Many have been morphologically and physiologically classified (Stumpner and 

Ronacher 1991). The ascending neurons (ANs) form a particularly important class. They have 

probably no direct input from receptor neurons and are the only neurons projecting into the brain. 

Some neurons (AN1, AN2) encode directional information (Stumpner 1988), whereas others (e.g. 

AN3, AN4, AN12) are presumably involved in pattern recognition (Stumpner and Ronacher 1991, 

Krahe et al. 2002). Because of their small number (approximately 20), this group constitutes a 

bottleneck for the information transmission of the auditory system. In a behaviorally attractive song, 

one of the ascending neurons, the AN12 marks the beginning of each syllable with a phasic burst 

provided pauses between syllables are long enough (Stumpner and Ronacher 1991). The AN3 and 

AN4 respond in a phasic-tonic manner to stimuli and, possibly, they encode onset steepness (Krahe et 
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al. 2002) and are involved in another behaviorally relevant feature, gap detection (Ronacher and 

Stumpner 1988). Most described ascending neurons (ANs) originate from metathoracic ganglion, form 

a bundle, enter each hemisphere of the brain and make branches in the lateral protocerebrum 

(Eichendorf and Kalmring 1980; Stumpner and Ronacher 1991; Kutzki 2012). The information is then 

taken up by some local auditory brain neurons (LBNs) for further processing. However, there is 

limited information available about the locations and the role of local brain neurons in the auditory 

processing. 

1.5 Goal of the project 

 The project aims at elucidating important steps of neuronal processing involved in the 

recognition of species-specific acoustic communication signals and in the selection of appropriate 

acoustic responses. The main goal of the project is to test a newly introduced method in insect science 

known as multiunit recordings using a tetrode. The whole project is then further divided into three 

subprojects. The first part is to analyze the combined activity of ascending neurons and detect the 

potential correlation with specific features of a male song used as auditory stimulus. The second part is 

to find the locations of the local auditory neurons in the brain and find their potential specialization in 

the process of song recognition. The third part is electrical stimulation of the auditory neuropiles in the 

brain to induce a specific motor response (stridulation) to find out locations of these neuropiles 

involved in stridulation. 
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Figure 1.1: The auditory system of grasshoppers and locusts. Sound impinges on the two tympana where the 

receptor neurons translate the sound into neural activity which is forwarded to the metathoracic ganglion (MG). 

Ascending neurons transmit information upwards to the brain which is then further processed by local brain 

neurons. Image is from Creutzig (2008). 
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1.6 Terminology to describe a grasshopper song 

 Most species of grasshoppers produce the song by stocking a file on the inside of each hindleg 

femur across a raised vein on the wing (von Helversen and von Helversen 1994). I here include a 

glossary of terms to describe the song of Ch.biguttulus. I follow the nomenclature of (von Helversen 

and von Helversen 1994) (Figure 1.2). 

 

 Pulse: Each partial or uninterrupted upward or downward leg movement produces a pulse. 

 

 Syllable: Pulses are grouped into syllables. One syllable consists of one full cycle of upward 

and downward movements of the legs.  

 

 Pause:  During the stridulation of Ch. biguttulus, the leg stops for about 10-15 ms after end of 

each syllable. These intervals between two syllables are called a pause. 

 

 Gaps: Male Ch. biguttulus can lose a hindleg, often due to autotomy during contacts with 

predators and also occasionally as a result of difficulties in molting ( von Helversen and von Helversen 

1997). Such males can no longer mask small intervals between the pulses that arise from turning 

points of leg movements which are called gaps. 

 

 Song:  A series of syllables separated by pauses are called song. A typical male Ch. biguttulus 

song is 1-3 seconds long. 
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Figure 1.2 Song patterns of male and female Ch.biguttulus. a: duet between male and female. b,c: Parts of 

song of intact animals stridulating with both hindlegs. d: Movement of hindlegs during stridulation and sound 

pattern of one leg. e: Same as in d at a larger scale to demonstrate the rectangular modulated pulses of males and 

the ramp-shaped pulses of females .(Image source: von Helversen and von Helversen 1997) 
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1.7 Thesis outline 

 The thesis is divided into chapters where each chapter explains the different part of the project. 

 Chapter 2 describes the method multielectrode recordings from auditory neurons in the brain 

of a small grasshopper. This chapter is based on a published manuscript (Bhavsar et al. 2015 a) in the 

Journal of Neuroscience methods. 

 Chapter 3 is based on the population coding among the ascending auditory neurons in the 

brain of a small grasshopper. This chapter describes how the information about the stimuli is encoded 

among the ascending neurons and also the importance of recording from populations of neurons in the 

same individual. 

 Chapter 4 describes the locations, role and electrical stimulation of local auditory neurons in 

the brain of a small grasshopper. This chapter explains where the local auditory neurons are located 

and the role of one local brain neuron as a feature detector in the brain. This chapter also explains 

“auditory neuropiles” which have been described by electrical stimulation in the brain of a small 

grasshopper. 

 Chapter 5 is the general discussion about the newly introduced method called multiunit 

recording in the brain of small insects. This chapter mainly describes the pros and cons of using 

multielectrode recordings in the brain of small insects by comparing the experiences of the people 

have used this method in different insects to study different sensory processing. This chapter is based 

on a published review Bhavsar et al. 2015 b in the Journal of Neuroscience communications. 

 Chapter 6 is a summary of the project. 
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Abstract 

Background: Grasshoppers have been used as a model system to study the neuronal basis of insect 

acoustic behavior. Auditory neurons have been described from intracellular recordings. The growing 

interest to study population activity of neurons has been satisfied so far with artificially combining 

data from different individuals. 

New method: We for the first time used multielectrode recordings from a small grasshopper brain. We 

used three 12 µm tungsten wires (combined in a multielectrode) to record from local brain neurons and 

from a population of auditory neurons entering the brain from the thorax. Spikes of the recorded units 

were separated by sorting algorithms and spike collision analysis. 

Results: The tungsten wires enabled stable recordings with high signal-to-noise ratio. Due to the tight 

temporal coupling of auditory activity to the stimulus spike collisions were frequent and collision 

analysis retrieved 10 – 15 % of additional spikes. Marking the electrode position was possible using a 

fluorescent dye or electrocoagulation with high current. Physiological identification of units described 

from intracellular recordings was hard to achieve. 

Comparison with existing methods: 12 µm tungsten wires gave a better signal-to-noise ratio than 15 

µm copper wires previously used in recordings from bees’ brains. Recording the population activity of 

auditory neurons in one individual prevents interindividual and trial-to-trial variability which 

otherwise reduce the validity of the analysis. Double intracellular recordings have quite low success 

rate and therefore are rarely achieved and their stability is much lower than that of multielectrode 

recordings which allows sampling of data for 30 minutes or more.
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2.1 Introduction 

Neuroethology aims at understanding the neuronal basis of animal behaviour. Invertebrates 

have been chosen for many neuroethological studies, since individual neurons can be identified and 

experiments can be designed for testing the contribution of these neurons to behaviour (Comer and 

Robertson 2001). In many cases electrophysiological recordings cannot be performed in behaving 

animals, but neuronal response properties recorded from immobilised animals can be compared to 

behavioural data (e.g. Roeder 1998). The identified neuron approach often allows extensive 

comparison across species (e.g.Yager and Svenson 2008). However, understanding elaborated 

behaviours as for example recognition of complex acoustic signals like the species- and situation 

specific songs of grasshoppers cannot be achieved by analysis of single neuron physiology (e.g. 

Clemens et al. 2011). Methods to analyse the activity of simultaneously recorded neurons to 

understand complex behaviours have been established in vertebrate research (Nguyen et al. 2009; Gao 

et al. 2012). Therefore, also in invertebrate research considering groups or populations of neurons 

instead of single neurons has increasingly gained attention during the last years (Laurent 2002; 

Clemens et al. 2011; Campbell et al. 2013). Recording the activity of several neurons at a time, 

however, is hard to achieve in small animals as many insects are. Instead, activity recorded from single 

units in several individuals or in one individual successively is widely used to analyse their potential 

combined activity (Kostarakos and Hedwig 2012; Meckenhäuser et al. 2014). In order to analyse 

neural information encoded in the activity of neuronal populations, it would be more appropriate to 

record activity of several neurons at the same time in the same individual. Not too many studies have 

achieved this, e.g. for analysis of cockroach antennal functions with regard to locomotion (Ritzmann 

et al. 2008; Guo and Ritzmann 2013) or for studies in bee (Brill et al. 2013; Duer et al. 2015) or locust 

olfactory systems (Saha et al. 2013; Aldworth and Stopfer 2015). We adopted the method of recording 

with more than one wire (usually four in a tetrode) from olfactory pathways in the honey bee brain 

(Brill et al. 2013) to study auditory processing in a small grasshopper. Here we present the adaptations 

we had to make to solve specific problems that come along with studying the auditory system. 
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2.2 Materials and methods 

2.2.1 Animals 

Adult female grasshoppers (Ch. biguttulus) (Linnaeus, 1758)) were used in all experiments. 

The animals were collected from meadows in Göttingen (Germany) or its vicinity between July and 

October. They were maintained in the laboratory and allowed to lay eggs into containers filled with 

vermiculite (Deutsche Vermiculite Dämmstoff – Sprockhövel, Germany). The collected eggs were 

kept at 4°C for at least 2 months. The nymphs hatched after ~1 week at 26°C and they were raised to 

adulthood on wheat and supplemental food for crickets (Nekton Nektar – Pforzheim, Germany). 

2.2.2 Animal preparation 

In order to minimize the movement of the animal, the legs and wings were removed and the 

animal was fixed with its dorsal side up onto a holder using wax. The brain was exposed by opening 

the head capsule between the compound eyes, the ocelli, and the antennal sockets. Tracheas were 

moved aside at the insertion site before electrode placement. The exposed brain was supported by a 

steel spoon to reduce movements. The ganglionic sheath of the brain was carefully removed using 

extra fine forceps (Dumont – Switzerland) to facilitate the penetration of the electrode. The whole 

head capsule was filled with locust saline (Pearson and Robertson 1981). 

2.2.3 Multielectrode design and electrophysiology setup 

A multielectrode is used to record multiunit activity from the nervous tissue (Recce and 

O’Keefe 1989). The design of the multielectrode was adopted from previous studies on insects (Okada 

et al. 1999, 2007; Strube-Bloss et al. 2011; Brill et al. 2013). The multielectrode consisted of either 

three insulated copper wires (15 μm diameters, Electrisola – Escholzmatt, Switzerland) or three 

insulated tungsten wires (12 μm diameters, Goodfellow – Huntingdon, UK). The wires were twisted 

and joined together using heated (~ 70°C) dental wax and then glued to a glass capillary which was 

fixed on a small plexiglas plate. The impedance of multielectrode wires was measured using NanoZ 

(Neuralynx – Bozeman, USA). The impedance at 1 kHz was 30 - 40 kΩ for tungsten wires and 300 - 

400 kΩ for copper wires. In case of high impedance (> 100 kΩ), the charge capacity of the 
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multielectrode was increased by passing bipolar, constant current square waves to each wire of the 

multielectrode using NanoZ. The electrode was attached to an electrode holder that was connected to 

the head stage (NPI Electronic Instruments – Tamm, Germany). A silver wire (25 μm diameter, 

Goodfellow – Huntingdon, UK) was placed in one eye of the animal as a reference electrode which 

was connected to the reference pin of the head stage. The output of the head stage was connected to a 

differential multichannel amplifier (DPA-2FL, NPI Electronic Instruments – Tamm, Germany). The 

signal was amplified 2000 times, band pass filtered (300-5000 Hz) and then fed to an interface (Power 

Mk II, CED – Cambridge, UK) for data acquisition. Data were recorded with a sampling rate of 25000 

Hz and stored digitally with the software Spike2 7.10 (CED – Cambridge, UK). The software enabled 

monitoring of each channel and allowed separate settings for filtering, offset and single channel 

magnification view. 

2.2.4 Acoustic stimulation 

Experiments were performed in a Faraday cage lined on the inside with sound absorbing 

pyramidal foam (at least 50% above 500 Hz; Fritz Max Weiser Schaumstoffe – Bochum, Germany). 

The preparation was acoustically stimulated by two loud speakers (D21/2, Dynaudio – Rosengarten, 

Germany) situated laterally at a distance of 35 cm from the grasshopper. For the experiment, different 

auditory stimuli (5 kHz sine wave (duration: 25 ms, 2 ms rise and fall time), 20 kHz sine wave 

(duration: 25 ms, 2 ms rise and fall time), broadband white noise stimulus (bandwidth 0.5-40 kHz, 

duration: 100 ms, 2 ms rise and fall time)) were created in Spike2 7.10. Sound pressure levels were 

calibrated using a continuous signal with a Brüel & Kjær microphone (Type 4133 – Nærum, 

Denmark) positioned at the location of the experimental animal and directed towards the speaker, grid 

on, and a Brüel & Kjær measuring amplifier (type 2602). Sound intensities are given in dB SPL 

(Sound pressure level) re 2 × 10
-5 

N m
-2 

.The microphone has been calibrated using a calibrator (Brüel 

& Kjær type 4230). The signal was then band pass filtered between 5 kHz to 60 kHz to reduce the 

high frequency distortion from digital to analog conversion. All stimuli were stored digitally and 

presented by Spike2 7.10 with a DA conversion rate of 100 kHz (Power Mk II, CED – Cambridge, 

UK) during experiments. 
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In order to detect auditory neuronal activity at the start of the experiment, search stimuli (5 

kHz sine wave (25 ms) and broadband white noise (100 ms)) were repeated at 1 s intervals. Activity 

was considered auditory if spike rates changed during the stimulus with a latency of at least 13 to 15 

ms following stimulus onset. During the search program an audio monitor (AUDIS-01D/16 NPI 

Electronic Instruments – Tamm, Germany) was used. For obtaining intensity response characteristics, 

5 kHz sine wave (duration: 25 ms) and 20 kHz sine wave (duration: 25 ms) stimuli were presented 

between 50 and 90 dB SPL, increasing in 10 dB steps while the broadband white noise stimuli were 

delivered between 30 and 90 dB SPL, increasing in 10 dB steps. The various sound amplitudes were 

achieved by using a digital attenuator (CS3310 Cirrus Logic – Austin, USA) which was controlled by 

a script (produced by Phillip Jähde, Göttingen) in Spike2. Stimuli were separated by 1 s interstimulus 

intervals and repeated 10 times at each sound pressure level. 

2.2.5 Marking the recording locations 

Multiunit recordings have been obtained from ascending auditory neurons and local auditory 

neurons in the brain of the grasshopper Ch. biguttulus at room temperature (22 - 26 °C). Almost all 

described ascending interneurons originate from the metathoracic ganglion, enter the brain dorsally 

and project into the lateral dorsal protocerebrum (Stumpner and Ronacher 1991; Kutzki 2012). Local 

auditory brain neurons are postsynaptic to the ascending auditory neurons. However, so far there is 

very little information available about these neurons. 

For the visualization of the recording site after a successful recording, several methods have 

been tested. The first method was electrical current-driven deposition of copper which was adopted 

from a study by Guo and Ritzmann (2013).  

The second method intended to mark the recording location with a fluorescent dye. After a 

successful recording the electrode was retracted from the brain, dipped into the fluorescent dye lucifer 

yellow (Sigma-Aldrich – St. Louis, USA) and reinserted to the previous location until the auditory 

activity was detected again. The electrode was kept at this position inside the tissue for 10 seconds to 

let the dye diffuse into the tissue. Then a drop of Paraformaldehyde (PFA, 4%) was added to fix the 
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tissue in the vicinity of the electrode and to prevent extensive diffusion of Lucifer yellow. The brain 

was extracted from the head and fixed in PFA for 2 hours. Then it was dehydrated in an ascending 

alcohol series (30%, 50%, 70%, 80%, 90%, 96%, and 2 times 100% ethanol, each step 20 min) and 

finally transferred into methylsalicylate (Sigma-Aldrich – St. Louis, USA). The whole mount 

preparation was observed with a fluorescence microscope (Axioscope, Zeiss – Jena, Germany). For 

subsequent analysis, the brain was rehydrated, embedded in albumin-gelatin (Crane and Goldman 

1979), fixed in 4% PFA overnight and sectioned transversely or horizontally into 30 µm slices with a 

vibrating blade microtome (VT1000s Leica – Wetzlar, Germany). The sections were transferred to a 

slide, enclosed under a cover slip using DABCO as a medium and viewed with a fluorescence 

microscope (Axioscope, Zeiss – Jena, Germany). 

With a third method we tried to coagulate the tissue at the recording site by passing a high 

current after data collection through one of the tungsten wires. If successful, this coagulates the brain 

tissue and generates a black spot at the approximate recording location. We tried different currents (up 

to 0.2 mA, 9V) which were passed between one of the tungsten wires and a reference wire for periods 

of 5 to 20 minutes. Then the brain was extracted from the head and fixed in PFA for 2 hours. Brains 

were sectioned and prepared for microscopic analysis as described in the previous paragraph.  

2.2.6 Offline spike sorting 

Spike sorting is a technique to group spikes based on the similarity of their shape. Given that 

spikes of each neuron will be recorded with a particular shape depending on the distance between the 

neuron and the electrode, the resulting clusters represent the activity of different individual neurons 

(Quiroga 2007). Spike2 7.10 was used for spike sorting. However, spike sorting is sensitive to 

misclassification (Harris et al. 2000; Joshua et al. 2007; Quiroga 2007) so special care has been taken 

for this problem. As a first step, a finite impulse response filter was applied on each channel (known as 

“smoothing” algorithm) with a time constant of 100 µs (comparable with a low pass filter of 10 kHz) 

and “DC remove” with a time constant of 3.2 ms which leads to offset adjustment (comparable to a 

high pass filter of 312.5 Hz). The Spike2 function ‘Analyze as a tetrode’ was used for sorting. If only 

three wires were used, one of the three channels was copied and all four channels were analyzed as a 
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tetrode. The threshold for spike detection was set to ± 3 * standard deviation (SD) of the mean signal 

amplitude of 10 seconds of recording without acoustic stimulation at the beginning of the experiment 

(Brill et al. 2013). It was decided not to use subtracted versions of the channels for spike sorting (Brill 

et al. 2013) since the acoustically stimulated spikes were highly coincident and similar among the 

three channels and subtraction led to the loss of most of the important information. The time window 

was set from -0.4 ms before to 1 ms after either positive or negative peak amplitude for the template 

formation. Acoustic stimuli with high sound pressure levels are known to induce high frequency firing 

with similar latency in the population of ascending auditory interneurons, especially at the start of the 

response. Hence, regularly occurring overlapping spikes of different neurons may be interpreted as 

separate templates (= spike shape of a particular neuron) by the software. To avoid this, template 

formation was done in responses to stimuli with low sound pressure levels (30 – 60 dB SPL), since all 

the ascending neurons in Ch. biguttulus relevant for song recognition generate action potentials to an 

acoustic stimulus below 60 dB SPL at lower frequencies and white noise (Stumpner and Ronacher 

1991). Generated templates were then applied to the complete range of stimulus intensities used in the 

experiments after template formation. The sorted units were clustered by applying the clustering 

dialogues of Spike2. A cluster in the principle component analysis (PCA) display represents all spikes 

whose shapes are similar and similarity decreases with increasing distance to the center of the cluster. 

Borders of individual clusters were defined as 3.5 times the Mahalanobis distance around the center of 

gravity (Wölfel and Ekenel 2005; Brill et al. 2013). After cluster analysis, interval histograms of all 

sorted units were plotted and the spike shapes were superimposed to make false positive sorting 

visible. After completion of analysis clusters might represent spikes of individual neurons. 

2.2.7 Collision analysis 

Spike collision is a common problem in the analysis of multiunit recordings (Pillow et al. 

2013). The collisions occur when two or more neurons fire at nearly the same time and the resulting 

waveform is a summation of the individual spike shapes of these cells (Wehr et al. 1999). It is 

desirable to extract individual spikes from such collisions in order to assign them to a particular 

neuron and reduce the inaccuracy of the data analysis. The software Spike2 has an inbuilt “matching 
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algorithm” which supports the extraction of overlapping spikes. Collisions are identified by an 

exhaustive search among all possible pairs of templates at all temporal alignments of the identified 

spike waveform templates. A special program script was written in Spike2 which can automatically go 

through the entire recording, detect the potential collisions and replace them, wherever possible, with 

two spikes in single units. 

2.2.8 Constancy of recording conditions 

 Stability of the preparation and quality of the recordings have been analyzed in two different 

ways. First by quantifying the signal-to-noise ratio and then by analyzing changes in spike shapes. To 

analyze the stability of the preparation, the intensity recording program (Methods –Acoustic 

stimulation) was repeated at the end of the experiment and the recorded neural activities from both 

stimulus series were compared. The time difference between the start and the end of the experiment 

typically was around 15 minutes. To determine the signal-to-noise ratio, the “Signal” value was 

calculated by taking the root mean squared (RMS) amplitude of the responses to 10 stimuli while the 

“Noise” was calculated by taking the RMS amplitude from the first 10 seconds of recording without 

acoustic stimulation. 

2.2.9 Unit identification 

Ascending auditory neurons have previously been recorded intracellularly in the thorax of Ch. 

biguttulus. These ascending neurons were characterized with respect to their morphology and 

physiology (Stumpner and Ronacher 1991). After spike sorting and collision analysis of multiunit 

recordings, identification of the sorted units was attempted by comparing their sound evoked 

responses with the responses of previously identified neurons. 
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2.3 Results 

2.3.1 Marking the recording locations 

  Fig.1 shows the locations of the recording with a multielectrode. Fig.1-A displays the sketch 

of a grasshopper brain with the projection area of most of the auditory ascending neurons (AN-a, AN-

b) and local auditory brain neurons (BN). Fig.1-B shows the marking of the two recording locations of 

local auditory brain neurons using the fluorescent dye lucifer yellow as described in the Methods. 

Shown is the deepest horizontal section with fluorescent dye marking. Localized marking sites were 

only achieved with PFA fixation shortly after insertion of the dye - coated electrode. Otherwise 

widespread diffusion of lucifer can mask the location of the recording. The two methods with current 

injection had different success. Low current with the attempt of precipitating copper did not give 

reliable results. Weak dark spots appeared only in some of the preparations. Electrocoagulation with 

higher current, on the other hand, always leads to dark markings and sometimes even holes in the 

brain tissue. However, passing a current of about 70 µA (5V) for 5 minutes lead to dark markings 

without damage. The effectivity of the current obviously depends on depositions at the electrode tip. 

This cannot be controlled during the experiments. In some cases, the brain got damaged even after 5 

minutes current injection. 

 

 

 

 

 

 

Figure 2.1 Locations of the recording. (A) Sketch of a grasshopper brain. AN-a: projection area of the majority 

of auditory ascending neurons in the lateral protocerebral neuropil; AN-b: alternative projection area of some of 

the auditory ascending neurons like AN1; BN: the majority of auditory local brain neurons. (B) Marking of the 

recording location (local brain neurons) using lucifer yellow. Locations are highlighted by black arrows 
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2.3.2 Comparison between copper and tungsten wire recordings 

 The first series of experiments was performed with electrodes made from copper wires as 

described for previous recordings from bee brains (Brill et al. 2013). Penetration of electrodes into the 

deutocerebrum or the lateral protocerebrum, structures that both contain axonal projections of 

ascending auditory interneurons (Fig.2.1-A), detected auditory activity with high success rate. 

However, the signal-to-noise ratio in these recordings was not satisfactory (< 1.5) which lead to 

problems in template formation during spike sorting. For comparison of wires made from different 

materials, the signal-to-noise ratio was calculated for the copper wire from 10 different preparations 

and compared to the signal-to-noise ratio of 10 different recordings with tungsten wires. The signal-to- 

noise ratio of tungsten wire recordings was clearly higher than that of copper wires which can be seen 

in the box plot shown in figure 2.1-A (Mann-Whitney U-test: p = 0.002). An example recording can be 

seen in figure 2.2-B. Also the higher tensile strength of tungsten wires compared to copper wires 

helped to use single multielectrodes repeatedly. Due to these advantages multielectrodes made of 

tungsten wires were used for subsequent experiments. 

 

 

 

 

 

 

Figure 2.2 Recordings of auditory activity with multielectrodes made from copper or tungsten wires. 

 (A) signal-to-noise ratio was determined from auditory responses to 20 kHz stimuli (Signal) and spontaneous 

activity without acoustic stimuli (Noise) in 10 preparations for each type of wire. The length of the box 

represents the interquartile range. The black line in the box represents the median value. The upper and lower 

whiskers represent the maximum and minimum values respectively. (B) Recording example showing the 

response to copper and tungsten wires.  The black line marks the stimulus. 
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2.3.3 Spike sorting 

Offline spike sorting was done to isolate the activity of single units from the multiunit 

recording (Fig.2.3). Units were separated based on differences in their spike shape. Spike sorting was 

done without subtracting between the channels since the auditory spikes were highly similar among 

the three channels and subtraction would cause loss of most of the important information which can be 

seen in figure 2.3-B. For clear separation of spikes based on their shapes, the principle component 

analysis method has been employed as described in the Materials and method section. Figure 2.3-D 

shows three clustered units surrounded by 3.5 times the Mahalanobis distance. The resulting clouds 

are fairly well separated from each other which may be interpreted as the presence of three different 

types of spikes being generated by three different neurons. Figure 2.3-E shows the interval histograms 

for three different units from figure 2.3-D. An overlay of spikes assigned to one cluster (Fig.3-F) 

serves as a control for the quality of spike sorting. Within the activity of one cluster, one would not 

expect any spike intervals shorter than 2 ms, relating to the refractory period following an action 

potential in one neuron. After this procedure, the sorted spikes were plotted on three different channels 

(Fig.2.3-G). 
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Figure 2.3 Spike sorting in multiunit recordings of acoustically stimulated activity in ascending auditory 

interneurons (A) Response of ascending auditory neurons to acoustic stimuli recorded via three different 

channels of a multi electrode. (B) Magnified version of channels shown in A. and the result of subtracting the 

channels with extended scale. The threshold for spike detection (shown as dotted lines in the middle part) was set 

as: mean (±) 3S.D. during 10s of recording without acoustic stimulation. (C) Superimposed recordings from the 

three channels to visualize the subtle differences between the signals. (D) The clustered units that emerge from 

principle component analysis are surrounded by 3.5 times Mahalanobis distance. (E) Interspike interval 

histograms for all spikes of each sorted unit. F. Superimposed spikes of each sorted unit showing different spike 

shape and numbers (Unit 1: 517 spikes, Unit 2: 527 spikes, Unit 3: 1174 spikes). (G) Occurrence and waveforms 

of three sorted units extracted from channel of the multielectrode recording. Black line marks stimulus duration. 
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2.3.4 Collision analysis 

 If a channel contains more than one class of spikes and the spikes are independently generated 

by different neurons, temporal spike collision can prevent spikes from being correctly assigned to a 

unit. When two cells fire with similar latency to a stimulus, this will produce a complex compound 

spike shape. Collision analysis was done using the ‘Matching algorithm’ of the Spike2 software. It 

detects the collisions by searching for two templates whose sum is most similar within predefined 

limits to the compound spike and replaces it with spikes aligned to the best matching templates (Fig. 

2.4-A). The following strategy has been followed to optimize collision analysis. The spike templates 

were generated only for low stimulus intensities that initiate rather sparse spiking activity (30 - 60 dB 

SPL) to avoid superimposed spikes being detected as a new template. Templates derived from periods 

of low level activity were subsequently used in collision analysis. The result of collision analysis was 

evaluated by plotting peristimulus time histograms (PSTH) before and after doing collision analysis 

for intensity recordings (50 - 90 dB SPL) of 20 kHz stimuli. An increase in the total number of spikes 

is especially seen at shorter latencies when ascending interneurons simultaneously start firing with 

high frequencies leading to a high degree of overlapping spike activity (Fig.2.4-B). Collision analysis 

increased the total number of spikes that could be assigned to a particular spike template and hence to 

a particular neuron by an average of 18% (range 11% – 29%, n=5). 
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Figure 2.4 Collision analyses in recordings from ascending auditory interneurons. (A) Recording from one 

channel of the multielectrode containing partially overlapping spikes from two different units. The detected 

compound spike and its separation into spikes of two different single-spike templates extracted from the same 

recording are shown below. (B) Superimposed PSTHs of total spike activity derived from the same recording 

during an intensity scan of 50 - 90 dB SPL with 20 kHz stimuli before (gray) and after (white) collision analysis. 

Collision analysis increases the total number of detected spikes from 87 to 101 especially in the beginning of the 

acoustically-stimulated response (15 ms latency). The black line marks the stimulus. 

 

2.3.5 Constancy of recording conditions 

 Figure 2.5-A shows a comparison of signal-to-noise ratios at the beginning and at the end of 

recording experiments. No significant difference in the signal-to-noise ratio was seen after 

approximately 15 min. of recording with the multielectrode. To analyze potential changes in spike 

shapes, spike sorting was done (as described in Methods) in the beginning of the experiment and at the 

end of the experiment and the results were compared. As a typical example, figure 2.5-B shows the 

result of such an analysis for two sorted units. Alterations of their spike shapes after the 15 minute 

recording period are minor and do not impact their discrimination. 
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Figure 2.5 Analysis of the stability of multielectrode recordings from ascending auditory interneurons. (A) 

Comparison of signal-to-noise ratios in the beginning and about 15 minutes later of four experiments. The box 

plot represents the same information as explained in figure 2-A (B) Superimposed sorted spikes of two units 

along with a cluster analysis from the same channel of a multielectrode in the beginning (left) and at the end 

(right) of one experiment. 

 

2.3.6 Auditory units 

Figure 2.6 shows examples of PSTH of four individual units recorded during a series of 20 

kHz acoustic stimuli with varying intensity (50 - 90 dB SPL). Three units increased their firing rates at 

expected latencies between 13 ms to 15 ms following stimulus onset. Therefore these units were 

considered as auditory units and used for further analysis. Units which did not show any stimulus 

dependency like unit 4 were considered as non-auditory and were not included into further analyses 

(figure 2.6). 
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Figure 2.6 Auditory units. Responses of single units to acoustic stimuli (20 kHz; 25 ms; 50 - 90 dB SPL) and 

Peristimulus time histograms of cumulative responses. Auditory units 1-3 increase their firing rate after the 

expected latency while the firing pattern of the unit 4 is not influenced by the acoustic stimulus. PSTH width: 60 

ms, bin size:  2ms, black line marks the stimulus. 

 

2.3.7 Intensity response functions and unit identification 

 In order to identify the types of ascending auditory interneurons the results of extracellular 

multielectrode recordings in the brain were compared to previous physiological data acquired by 

intracellular recordings of ascending interneurons in the metathoracic ganglion of Ch. biguttulus 

(Stumpner 1988; Stumpner and Ronacher 1991). Figure 2.7 compares the responses to ipsi- and 

contralateral stimulation (defined as the position of the speaker with respect to the side of recording) 

with white noise and to ipsilateral stimulation with 5 kHz and 20 kHz stimuli between one 

extracellularly recorded unit and the identified neuron AN2. The extracellularly recorded unit displays 

a strong difference between ipsi-and contralateral stimulation at intensities ≥ 60 dB SPL (Fig.2.7-A 

left). Previous studies identified one of the ascending auditory interneurons with a prominently 

different intensity response to ipsi-and contralateral stimulation as AN2 (Fig.2.7-A right) (Stumpner 
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and Ronacher 1991). When comparing the responses to 5 kHz and 20 kHz of the extracellularly 

recorded unit to responses of two different AN2 (Stumpner 1988), the intensity dependence of 20 kHz 

is somehow similar between the extracellularly recorded unit and one of the intracellularly recorded 

AN2, though absolute spike numbers differ. At 5 kHz, however, the functions look different especially 

between 60 and 80 dB SPL (Fig.2.7-B), which is true also for two intracellularly recorded AN2 from 

two different individuals. 

 

     

 

 

 

 

 

 

 

 

Figure 2.7 Unit identification (A) Intensity response functions of a single sorted unit (left) and an intracellularly 

recorded AN2 (right) for white noise stimuli (100 ms) from ipsilateral and contralateral (B) Intensity response 

functions of the same unit as in A for 5 kHz and 20 kHz (25 ms) stimulus (left), and the intensity response 

functions for two intracellularly recorded AN2 (middle and right). Data of AN2 are modified from Stumpner 

(1988) and Stumpner and Ronacher (1991) 

 

 

 

 



  Chapter 2: Multiunit recordings in grasshoppers     

 

28 
 

Figure 2.8 shows another comparison between an extracellularly recorded unit and an 

identified ascending neuron, the AN12. Most obvious is the much lower spike number of the 

extracellular recording, so that the intensity dependence is hard to compare (Fig. 2.8-A). A special 

characteristic of AN12 not shared by any other ascending interneuron is its phasic response to the 

onset of each syllable in Ch. biguttulus songs (Stumpner and Ronacher 1991; Creutzig et al. 2009). 

Artificial songs that retain the typical syllable to pause relation of the natural songs elicit pronounced 

syllable-onset activity in multiple successive syllables, while artificial songs with too short pauses 

stimulate strongly reduced responses to syllables of a series (Fig.2.8-B right). This feature is also seen 

in the extracellularly recorded unit (Fig.2.8-B left). Based on these evidences; the unit was identified 

as AN12. 
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Figure 2.8 Unit identification. (A) Intensity response functions of a single sorted unit for 5 kHz and 20 kHz (25 

ms) stimuli (left), Intensity response functions of AN12 for 5 kHz and 20 kHz (25 ms) stimulus (right)  (B) 

PSTH showing the response of the single sorted unit to two different artificial grasshopper songs of 80 ms-7.5 

ms pattern(left-up) and 80 ms-40 ms pattern (left-down) which is compared to PSTH of two different artificial 

grasshopper songs of 85 ms-8.8 ms pattern (right-up) and 85 ms-42.6 ms pattern (right-down) for AN12. Data of 

AN12 are modified from Stumpner (1988) 
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2.4 Discussion 

The activity of several auditory neurons was simultaneously recorded from the brain of the 

grasshopper Ch. biguttulus for the first time using multielectrodes. This type of method has previously 

been applied in honeybees (Brill et al. 2013), locusts (Saha et al. 2013) and cockroaches (Ritzmann et 

al. 2008). Our studies demonstrate the stability of multielectrode recordings for sufficiently long 

periods that allow extensive characterization of neuronal activity for large numbers of stimulus 

repetitions. In addition we demonstrate reliable isolation of single unit activities from multiunit 

recordings using spike sorting and spike collision detection. In some cases, single unit activity can be 

attributed to the identified ascending auditory neurons that have previously been characterized by 

intracellular recording. Extracellular recordings have the advantage of recording from more than one 

neuron for a significantly longer period of time than achieved by intracellular recordings from most 

insect neurons (Vogel et al. 2005; Vogel and Ronacher 2007). Such multiunit recordings also allow 

examination of population coding by neuronal assemblies. However, multiunit recordings also have 

some limitations which will be discussed below. 

2.4.1 Production of multielectrodes 

For recordings in vertebrate central nervous systems, one has the freedom to choose larger 

diameter electrodes (around 50 to 150 µm) due to the larger sizes of brains and brain regions 

associated with particular functions (e.g. monkeys: Crist & Lebedev, 2008). In most invertebrates, like 

in the grasshopper, central nervous structures are much smaller and hence the size of wires and the 

diameter of the multielectrode is an important factor for the applicability of multielectrode recordings. 

Insulated copper wires (diameter 15 µm) as have been used in previous studies on other insects (Brill 

et al. 2013) allowed to record auditory activity in the grasshopper brain. However, signal-to-noise ratio 

of the recordings was insufficient for reliable spike detection and spike sorting. One reason for a low 

signal-to-noise ratio could be the high impedance of these wires (around 250 kΩ at 1 kHz). So the 

copper wires were replaced with tungsten wires (diameter 12 µm) which provided an increased signal-

to-noise ratio allowing a more reliable determination of spikes and single unit spike shapes in the 

recording due to lower impedance of these wires (around 70 kΩ at 1 kHz). In addition to that, the 
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smaller diameter of tungsten wire electrodes compared to copper wires allows more focal recording 

from the bundle of ascending auditory neurons and likely causes less damage of brain tissue during 

penetration. Wires with even smaller diameter are not suited to build electrodes since, even after 

embedding in dental wax, they will be too fragile and flexible for penetration into brain tissue. 

Tungsten wires with 12 µm diameter are already requiring careful handling during electrode 

preparation. 

2.4.2 Marking the recording locations 

The first method to mark the recording location by electrical current-driven deposition of 

copper did not give reproducible results. The second method which was marking the locations with the 

fluorescent dye lucifer yellow gave some reliable results (Fig.2.1-B).  Although in all cases auditory 

activity was immediately found again at the site of insertion, it imposed some uncertainty to match the 

exact recording position of the electrode. The third method was electrocoagulation of the tissue at the 

recording site by passing high current through one of the tungsten wires to generate a dark spot of 

coagulation at the recording sites. With this method there is always a risk of damaging a larger area of 

surrounding tissue or the whole brain due to high current passing for a longer time. However, carefully 

controlling the time (around 5 minutes) of current injection can give good and reliable results.   

2.4.3 Constancy of recording conditions 

One major advantage of multiunit recordings in insects with metal micro wires is the 

possibility to record for at least 30 minutes from the same set of neurons. Multiunit recordings are 

extracellular recordings in which electrodes are placed in the vicinity of the neurons. Therefore, the 

neurons likely remain undamaged which prevents injury-related tampering of neuronal activity, 

increases the stability of the preparation and thus allows the application of longer stimulus protocols. 

In intracellular recordings the recording duration is mostly much shorter than one hour – often below 

10 minutes because of stability problems. This is especially true, when neural activity can only be 

recorded from neurites (Chorev et al., 2009). We quantified the stability of multiunit recordings in four 

different animals by comparing neuronal responses to the same series of acoustic stimuli with varying 
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intensities at the beginning and end of an experiment. No significant changes in signal-to-noise ratio 

and shapes of the recorded spikes were observed which demonstrated high stability of the preparation. 

2.4.4 Spike sorting and collision analysis 

Spike sorting methods should ideally group the spikes based on their shape (Quiroga 2007; 

Takekawa et al. 2010). We have decided to use Spike2 software for spike sorting instead of some 

other sorting algorithms like offline sorter (Plexon – Dallas, USA), Waveclus (Quiroga et al. 2004) 

and a customized MATLAB subroutine for spike sorting (Mathworks – Natick, USA) (Martelli et al. 

2013) since Spike2 is a fully developed and easy to handle spike sorting program with inbuilt 

algorithms for Principle component analysis (PCA) and overlapping spike analysis. There are three 

main steps involved in Spike sorting: (1) spike detection, (2) feature extraction and (3) spike clustering 

based on combinations of extracted features (Takekawa et al. 2010). Potential spikes are detected in 

the first place using an amplitude threshold. Choosing the threshold is critical: If the value of the 

threshold is too low, noise fluctuations will get detected as spikes and if it is too high, too many low-

amplitude spikes will be missed. There is a criterion established to detect the threshold as a multiple of 

an estimate of the standard deviation of the noise, i.e., threshold = mean ± k * SD, where k is a 

constant typically between 3 and 5 (Rey et al. 2015). Spikes were detected using a threshold of mean ± 

3 SD over 10 seconds of recording without stimulation which in our case gave the best compromise 

between avoidance of noise fluctuation and detection of auditory spikes. The first three principle 

components were used to extract features of the spike waveforms and used for the clustering. The 

clusters were separated by using 3.5 times Mahalanobis distance around the center of gravity (Wölfel 

and Ekenel 2005). However, it was very difficult to exactly determine the boundaries in the regions 

where clusters were overlapping just by using this criterion. Therefore, an additional manual approach 

has been applied to determine the boundaries, especially for the regions where clusters were 

overlapping. Still, classification errors can arise due to the presence of very similar waveforms in two 

neurons. This may lead to a cluster which is considered as a ‘single unit’, but in reality contains spikes 

from two or more neurons (Gray et al. 1995). This type of error can be detected by the presence of 

interspike intervals shorter than 2 ms indicating the absence of a clear refractory period in the interval 



  Chapter 2: Multiunit recordings in grasshoppers     

 

33 
 

distribution of a spike train. However, even if such short intervals do not occur this does not 

completely exclude the possibility that two neurons which are mostly active at different times may be 

classified into one template. So there is no absolute guarantee that spikes assigned to one template are 

always generated by a single neuron (Gray et al. 1995). 

‘Collision’ is a word used to describe spike waveforms generated by two or more neurons 

firing nearly at the same time which will lead to spike overlap and produce a distorted waveform in the 

recording. Normally it is relatively easy to identify such collisions in the recording when a small delay 

between the spikes is present producing double peaks (Fig.2.4-A). However, if two neurons fire 

absolutely synchronously with opposite potential deflections, the overlap may lead to “extinction” by 

resulting in amplitude below threshold value of both spikes. Conventional spike sorting techniques fail 

to identify such collisions in the recording (Wang et al. 2006) which will lead to loss of information. 

However the significance of overlapping spikes should not be overlooked, since it can affect the 

accuracy of spike sorting (Lewicki 1998). Some methods have been proposed to detect such collisions 

in the recording, for example the “binary pursuit” algorithm (Pillow et al. 2013), the “deconfusion” 

method (Franke et al. 2010) and a fast Fourier transforms (Wang et al. 2006) all having their 

advantages and disadvantages. In our study, we used the inbuilt “Matching algorithm” of Spike2 to 

detect and extract spike collisions present in the recordings. The auditory neurons tend to fire with 

similar latency especially at the beginning of the stimulus because of the tight coupling to temporally 

precisely defined stimuli. So the collisions of spikes are expected to occur regularly and especially at 

the beginning of the stimulus. Therefore the results illustrated in Fig.2.4-B showing higher spike 

numbers in the classes between about 15 and 25 ms after stimulus onset representing the beginning of 

the response is in line with these expectations. 

2.4.5 Unit identification 

The original idea of this study was to compare the physiological responses of extracellularly 

recorded sorted units to the physiological responses of intracellularly recorded ascending neurons 

(Stumpner and Ronacher 1991) and to identify the extracellularly recorded neurons based on the 

similarity of the responses to those recorded intracellularly. However, identification of neurons just by 
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comparing extracellular data with intracellular data was not as easy as expected which is exemplified 

for AN2 and AN12. One reason for the identification problem is neuronal variability. Intracellular 

recordings are more prone to trial-to-trial neuronal variability than extracellular recordings (Ostrowski 

and Stumpner 2014) (see also similar problems encountered in the leech CNS (Baljon and Wagenaar 

2015)). The intracellular recordings have been made from dendritic regions in the metathoracic 

ganglion where neurons are penetrated with an electrode which causes cell injury and additional 

depolarization due to intrusion of extracellular fluid which may lead to higher numbers of spikes to a 

particular acoustic stimulus. Also when recording in the metathoracic ganglion, housing the first 

center of auditory processing (Römer et al. 1988), opening of the thorax likely affects physical 

characteristics of the peripheral auditory system which may affect the bioacoustics and may also 

introduce some variability in the spike response. In contrast, recordings from the brain leave the 

thoracic auditory system completely intact. The lower spike numbers seen in extracellularly recorded 

data in the present study and intracellular recordings from the brain in another study (Kutzki 2012) 

may therefore be more similar to natural auditory information processing. Additionally, there is also 

interindividual neuronal variability (Stumpner 1989) as shown in figure 2.7-B. Intracellularly recorded 

responses of AN2 from two different individuals (described in Stumpner 1988) differ considerably. 

Interindividual neuronal variability has been studied to some detail (Meckenhäuser et al. 2014; 

Ronacher et al. 2004; Vogel et al. 2005). The sources of such interindividual neuronal variability could 

be differences in sensitivity of cells, biophysical differences between animals, differences in synaptic 

strength, number of synapses and stochastic nature of spike generation which can affect the 

transmission at different stages in the nervous system (Meckenhäuser et al. 2014; Ronacher et al. 

2004; Vogel et al. 2005). Adaptation and habituation of neuronal responses may also contribute to 

spike train variability, since spike count and spike timing change markedly during longer stimuli or 

with repeated stimulations (Stumpner and Ronacher 1991; Ronacher and Krahe 1998; Givois and 

Pollack 2000; Krahe et al. 2002a). Due to these reasons the neuronal response is variable within the 

same animal during repeated trials and among different animals which makes it difficult to compare 

the responses with extracellularly recorded responses from one single experiment for identification of 

neurons. However, some ascending neurons encode particular properties of acoustic stimuli in their 
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physiological responses that may increase the reliability of identification (Stumpner and Ronacher 

1994a). For example, AN12 has a phasic characteristic mediating pronounced responses to stimulus 

onsets (Creutzig et al. 2009), AN4 is involved in gap detection (Ronacher and Stumpner 1988) and 

neurons like AN1 and AN2 encode directional information (Stumpner and Ronacher 1994). These 

partially unique characteristics can be useful criteria for the identification of extracellularly recorded 

auditory units. The unit depicted in figure 2.8 displays a pronounced and phasic response to the onset 

of each syllable in an artificial song only if the pauses between two syllables are sufficiently long. This 

equals the typical response of AN12 (Stumpner 1988; Creutzig et al. 2009). Since this response 

characteristic among ascending auditory interneurons of Ch. biguttulus is especially reliably seen in 

AN12, the extracellularly recorded unit can with high likelihood be identified as AN12. So in addition 

to comparison of extracellular responses to intracellular physiological responses with standard stimuli, 

responses specific to stimuli mimicking natural grasshopper songs can be a good criterion for 

identifying the extracellularly recorded neurons. 

2.4.6 Multielectrode recordings and song recognition in grasshoppers 

Research in neurophysiology has focused on understanding how populations of neurons 

encode naturalistic stimuli in vertebrates (Pasupathy & Connor 2002; Petersen et al. 2001). This 

approach is also gaining attention in invertebrates (Ritzmann et al. 2008; Brill et al. 2013; Campbell et 

al. 2013; Saha et al. 2013). In the grasshopper auditory system ascending neurons process acoustic 

stimuli, extract and encode particular features of the signal and convey the preprocessed information to 

the brain where neural circuits for pattern recognition reside (Bauer and von Helversen 1987; Clemens 

et al. 2011, 2012). It has been experimentally demonstrated  by some studies that there is a better 

decoding of the stimulus when one analyses the activity of the population of neurons which suggests 

that the information in the auditory pathway of grasshoppers is represented according to a population 

code (Clemens et al. 2011; Meckenhäuser et al. 2014). These studies have pooled single cell data from 

different individuals for modeling the processing in one individual central nervous system (Clemens et 

al. 2011; Meckenhäuser et al. 2014). This introduces two types of variability – interindividual and 

trial-to-trial variability. Recording from a population of neurons in the same individual responding to 
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the same stimuli using a multielectrode approach reduces this variability. There have been few double 

intracellular recordings performed to study combined responses of different neurons (Vogel et al. 

2005; Vogel and Ronacher 2007) but the success rates for simultaneous recordings from two 

synaptically coupled neurons or two identified neurons in insects is usually quite low. Therefore, 

recording from a population of neurons simultaneously with a multielectrode may considerably 

improve the judgement of auditory information processing in grasshoppers, even if identification of 

described neurons may be hard to achieve. 
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 Chapter 3                                                                  

Population coding among ascending neurons in the brain of a 

small grasshopper 
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3.1 Introduction 

 Audition plays an important role especially in the detection of mating partners and natural 

predators in various animals; how the brain processes this auditory information is one of the 

fundamental issues in system neuroscience. Evolutionary processes have built auditory systems and 

behaviors with complexity (Hauser 1996; Bradbury and Lee 1998). As an example, in humans, 

cortical areas process auditory stimuli, extract language information  and generate motor signals which 

are necessary for proper speech production (Levelt 1993; Ehret and Romand 1997). Auditory systems 

of insects have a relatively simple architecture with few hundreds of neurons in comparison with 

mammals. Even with a lower number of neurons, this auditory system is still capable of doing 

impressive neuronal computations (Machens et al. 2001), making insects ideal models for studying 

auditory information processing and linking the identified neural circuits to behavior (Campbell et al. 

2013). 

 Acoustic communication of grasshoppers has become a well-known model to investigate 

principles of neural processing of acoustic stimuli. Grasshoppers produce acoustic signals called 

“songs” to attract the mating partner. These songs are repetitions of stereotyped subunits (syllable and 

pause) with species-specific amplitude modulation of a broad band carrier frequency that is produced 

by rubbing the hind legs against the forewings (von Helversen and von Helversen 1997). The auditory 

pathway of grasshoppers offers an advantage of identifiable neurons that can be discriminated based 

on their characteristic morphology (Stumpner and Ronacher 1991). The ears of grasshoppers are 

located on the side of the first abdominal segment. The receptor neurons transduce the tympanal 

vibrations into a series of action potentials which travel into the metathoracic ganglion complex, 

which houses the first auditory processing stage. Metathoracic ganglion contains five classes of 

neurons: receptor neurons, local neurons (SN), bisegmental neurons (BSN), T-shaped (TN) and 

ascending neurons (AN). The axons of receptor neurons make contact with local neurons which then 

contact 20 (so far) identified ascending neurons (Stumpner 1988; Stumpner and Ronacher 1991). The 

best-described class of ascending neurons ascend up to the brain from the metathoracic ganglion and 
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establish the likely main auditory input to higher processing circuits and decision centers located in the 

brain (Eichendorf and Kalmring 1980; Boyan et al. 1993; Kutzki 2012). Since the population of 

ascending neurons creates a bottleneck for the information available to the brain, they will be in the 

main focus of this study. 

 In the brain, the information is divided into the patterns of activity occurring over a population 

of neurons. Understanding the encoding of information in population activity is important for grasping 

the fundamental computations underlying brain function (Sanger 2003). The analysis of information 

processing among a population of neurons is called population coding. The popular way of studying 

population coding in insects is by recording activity from single neurons in several individuals (or in 

one individual successively) which then is used to analyze their potential combined activity (Clemens 

et al. 2011; Meckenhäuser et al. 2014). However, in order to analyze neural information encoded in 

the activity of the neuronal populations, it would be more appropriate to record the activity of several 

neurons at the same time in the same individual which reduces effects of neuronal variability 

(Ronacher et al. 2004). 

 Here, I recorded from the population of ascending neurons in the brain of Ch. biguttulus 

(which is the best-studied grasshopper species for acoustic behavior) using multielectrodes and 

investigated if there is any match between the neuronal and the behavior data. Additionally, I also 

investigated information content carried by a population of ascending neurons (in comparison with the 

single units) using decoding techniques.  
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3.2 Materials and methods 

3.2.1 Animals 

Adult female grasshoppers (Ch. biguttulus (Linnaeus, 1758)) were used in all experiments. 

The animals were collected from meadows in Göttingen (Germany) or its vicinity between July and 

October. They were maintained in the laboratory and allowed to lay eggs into containers filled with 

vermiculite (Deutsche Vermiculite Dämmstoff – Sprockhövel, Germany). The collected eggs were 

kept at 4°C for at least 2 months. The nymphs hatched after ~1 week at 26°C and they were raised to 

adulthood on wheat and supplemental food for crickets (Nekton Nektar – Pforzheim, Germany). 

3.2.2 Animal preparation 

In order to minimize the movements of the animal, front legs were removed and the animal 

was fixed with its dorsal side up onto a holder using wax resin mixture. The brain was exposed by 

opening the head capsule between the compound eyes, the ocelli, and the antennal sockets. Tracheas 

were moved aside at the insertion site before electrode placement. The exposed brain was supported 

by a steel spoon to reduce movements. The ganglionic sheath of the brain was carefully removed using 

extra fine forceps (Dumont – Switzerland) to facilitate the penetration of the electrode. The whole 

head capsule was filled with locust saline (Pearson and Robertson 1981) 

3.2.3 Acoustic stimulation 

Experiments were performed in a Faraday cage lined on the inside with sound absorbing 

pyramidal foam (at least 50% above 500 Hz; Fritz Max Weiser Schaumstoffe – Bochum, Germany). 

The preparation was acoustically stimulated by two loudspeakers (D21/2, Dynaudio – Rosengarten, 

Germany) situated laterally at a distance of 35cm from the grasshopper. For the experiment, different 

auditory stimuli (5 kHz sine wave (duration: 25 ms, 2 ms rise and fall time), 20 kHz sine wave 

(duration: 25 ms, 2 ms rise and fall time), broadband white noise stimulus (bandwidth 0.5-40 kHz, 

duration: 100 ms, 2 ms rise and fall time)) were created in Spike2 7.10. Sound pressure levels were 

calibrated using a continuous signal with a Brüel & Kjær microphone (Type 4133 – Nærum, 
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Denmark) positioned at the location of the experimental animal and directed towards the speaker, grid 

on, and a Brüel & Kjær measuring amplifier (type 2602). Sound intensities are given in dB SPL 

(sound pressure level) re 2 × 10
-5 

N m
-2 

.The microphone has been calibrated using a calibrator (Brüel 

& Kjær type 4230). The signal was then band-pass filtered between 5 kHz to 60 kHz to reduce the 

high-frequency distortion from digital to analog conversion. All stimuli were stored digitally and 

presented by Spike2 7.10 with a DA conversion rate of 100 kHz (Power Mk II, CED – Cambridge, 

UK) during experiments. Different stimuli were divided into different stimulus programs which are 

saved as ‘configuration file’ in Spike2 7.10 as described below 

Search-program. In order to detect auditory neuronal activity from ascending neurons at the start of 

the experiment, search stimuli (5 kHz sine wave (25 ms) and broadband white noise (100 ms)) were 

repeated at 1 s intervals. To facilitate finding auditory activity during the search program, an audio 

monitor (AUDIS-01D/16 NPI Electronic Instruments– Tamm) was used.  

Intensity-response program. For obtaining “intensity response characteristics” (responses to changing 

sound amplitude) 5 kHz sine wave (duration: 25 ms) and 20 kHz sine wave (duration: 25 ms) stimuli 

were presented between 50 and 90 dB SPL, increasing in 10 dB steps from the ipsilateral side (left) 

and broadband white noise stimuli were delivered between 30 and 90 dB SPL, increasing in 10 dB 

steps successively from the ipsilateral and contralateral side (right) (Stumpner 1988). The 

multielectrode was always inserted in the left side of the brain and stimulation is also provided from 

the left side which is considered as the ipsilateral side (for nearly all ascending neurons this is 

equivalent to the soma-contralateral side). The various sound amplitudes were achieved by using a 

digital attenuator (CS3310 Cirrus Logic - Austin, USA) which was controlled by a script (produced by 

Phillip Jähde, Göttingen) in Spike2. Stimuli were separated by 1 s interstimulus intervals and repeated 

10 times at each sound pressure level. 

Temporal pattern program. In order to test neuronal responses to variation of temporal patterns, male 

artificial grasshopper songs were presented that were varied in syllable duration (40 ms, 60 ms, 80 ms 

and 100 ms), pause duration (7.5 ms, 10 ms, 15 ms, 20 ms, 25 ms and 40 ms) and gap duration (2 ms 
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and 5 ms) (for definitions see introduction). The temporal patterns were generated using broadband 

white noise (2 ms ramped at the beginning and at the end of a syllable), were presented at 75 dB SPL 

in a pseudo-randomized order and were separated by 1 s interstimulus intervals. Two temporal 

programs were made. One program was for different syllable – pause patterns while another program 

was for Syllable-gap. Each syllable-pause or syllable-gap pattern was repeated 10 times. To 

standardize and reduce the effect of adaptation, a broadband white noise pulse (1 s, 75 dB SPL) was 

presented in the beginning. 

3.2.4 Offline spike sorting and collision analysis 

 Spike sorting and collision analysis were done as described in Chapter 2. 

3.2.5 Data analysis 

Syllable-pause and gap tuning 

 Syllable-pause and gap tuning plots were made in order to check the correlation between the 

neuronal and the behavior data. Neuronal data were plotted by calculating the mean spike count 

against the pause duration. Behavior data regarding syllable-pause tuning were obtained from (von 

Helversen 1972) and behavior data regarding gap tuning were obtained and averaged from Ronacher 

and Stumpner (1988). These analyses were done in Excel 2010. 

Calculation of feature vectors for PCA-based classification 

In order to classify the sorted units, four feature vectors were calculated using the equation shown 

below. 

1. Response to the Onset of stimuli:  

𝑁𝑜. 𝑜𝑓 𝑠𝑝𝑖𝑘𝑒𝑠 𝑖𝑛 𝑓𝑖𝑟𝑠𝑡 25% 𝑜𝑓 𝑠𝑦𝑙𝑙𝑎𝑏𝑙𝑒 (80 − 40 𝑚𝑠) 𝑝𝑎𝑡𝑡𝑒𝑟𝑛

𝑁𝑜. 𝑜𝑓 𝑠𝑝𝑖𝑘𝑒𝑠 𝑖𝑛 𝑤ℎ𝑜𝑙𝑒 𝑠𝑦𝑙𝑙𝑎𝑏𝑙𝑒 (80 − 40) 𝑚𝑠  𝑝𝑎𝑡𝑡𝑒𝑟𝑛
 

(1 = marking the onset of syllable, 0 = not marking the onset of syllable) 
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2. Response to the syllable with gaps: 

𝑁𝑜. 𝑜𝑓 𝑠𝑝𝑖𝑘𝑒𝑠 0𝑚𝑠 𝑔𝑎𝑝𝑠 − 𝑁𝑜. 𝑜𝑓 𝑠𝑝𝑖𝑘𝑒𝑠 5𝑚𝑠 𝑔𝑎𝑝𝑠

𝑁𝑜. 𝑜𝑓 𝑠𝑝𝑖𝑘𝑒𝑠 0𝑚𝑠 𝑔𝑎𝑝𝑠
 

(1 = Gappy, 0 = non-gappy, Negative = non-gappy) 

3. Response to the directional stimuli: 

𝑁𝑜. 𝑜𝑓 𝑠𝑝𝑖𝑘𝑒𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑖𝑝𝑠𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑠𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑁𝑜. 𝑜𝑓 𝑠𝑝𝑖𝑘𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝑖𝑝𝑠𝑖. +𝑁𝑜. 𝑜𝑓 𝑠𝑝𝑖𝑘𝑒𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑐𝑜𝑛𝑡𝑟𝑎. 𝑠𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 

(1 = extremely directional from ipsi. side, 0.5 = non-directional, 0 = extremely directional from 

contra.side) 

4. Overall response to the stimulus (Phasic/Tonic): 

𝑁𝑜. 𝑜𝑓 𝑠𝑝𝑖𝑘𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 ℎ𝑎𝑙𝑓 𝑜𝑓 𝑃𝑆𝑇𝐻 𝑚𝑎𝑑𝑒 𝑓𝑟𝑜𝑚 𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠

𝑁𝑜. 𝑜𝑓 𝑠𝑝𝑖𝑘𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑤ℎ𝑜𝑙𝑒 𝑃𝑆𝑇𝐻 𝑚𝑎𝑑𝑒 𝑓𝑟𝑜𝑚 𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠
 

(1 = phasic, 0.5 = tonic) 

3.2.6 Decoding using confusion matrix 

 Song identities were decoded from the neuronal responses using a similar decoding approach 

as used by Clemens et al. 2011. Spike train matrices or confusion matrices were made to decode song 

identity from the spike trains (Victor and Purpura 1998; van Rossum 2001).  

Single unit distance matrices 

 Single unit distance matrices were constructed as described by Clemens et al. 2011. Spike 

trains were binned with a resolution of 0.05 ms and filtered with an α-function: α (t) = θ (t) t exp (-t/τ), 

where θ (t) is Heaviside’s function. Classification performance is a function of the metric’s temporal 

resolution τ. Information was optimized with a grid search for τ ranging from 0 to 1000 ms (13 values 

spaced linearly on a logarithmic scale). The highest probability for correct classification of the stimuli 

was found at τ = 10 ms. This value of τ was considered in making the single unit matrices. The 
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distance matrices were made by calculating the Euclidean distances between all pairs of responses (10 

repetitions of 6 male song segments of 40 ms syllables) and plotted on a distance matrix.  

Combined unit distance matrices 

 Combined unit distance matrices were constructed by combining the recorded units from a 

single experimental data file. Application of these matrices amounts to filtering the spike trains with 

an α-function, embedding the spike trains from multiple cells into a vector space, and then taking the 

Euclidean distance between different spike trains. The resulting distance matrix for each population is 

used to quantify stimulus discriminability through the classification algorithm. The only difference to 

the single unit metric is that the spike trains of the cells comprising a population are embedded into a 

vector space (Clemens et al. 2011). 

Classifier 

 Responses were classified using a nearest-neighbor clustering algorithm as used in Machens et 

al. (2001) and Clemens et al. (2011). Nearness was calculated by the single or the combined unit 

matrices. One template spike train was randomly selected from each of the 10 repetition of a song. The 

remaining spike trains were classified as being evoked by the song the nearest template belonged to.  

Out of 10, spike trains of 9 repetitions are used to train the classifier and spike trains of the 10th 

repetition is used as test data. The classification results were organized in a confusion matrix, which 

shows the frequency with which a spike train being evoked by a song. 

Calculation of mutual information from a confusion matrix 

 Mutual information of the confusion matrix was calculated as following equation (Quian 

Quiroga and Panzeri 2009). Mutual Information is given by:  

  

𝐼 = 𝑃(𝑠, 𝑟) 𝑙𝑜𝑔2
𝑃(𝑠, 𝑟)

𝑃(𝑠) ∗ 𝑃(𝑟)
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P (s, r) = is the probability of response r given presentation of stimulus s 

P(r) = is the probability of responses 

P(s) = is the probability of stimuli  

 Mutual information is 0 bits when the confusion matrix is “uniformly distributed”, that is 

when each entry has the value 1/64. It is maximal (for 8 stimuli log2 (6) = 2.58 bits) when there is a 

one-to-one relationship between spike trains and classes, e.g. when all entries are concentrated at the 

matrix’ diagonal. Mutual information was expressed as a rate in bits.  

 All the analyses regarding stimulus decoding and mutual information calculation were done in 

MATLAB using the codes written and kindly provided by Dr. Jan Clemens (Princeton University, 

New Jersey, USA). 
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3.3 Results 

3.3.1 Unit identification 

 A total of 177 units were sorted from 66 recordings from ascending neurons in the brain of 

Ch.biguttulus. Unit identification has been tried by comparing the extracellular data with previous 

physiological data acquired by intracellular recordings of ascending interneurons in the metathoracic 

ganglion of Ch.biguttulus (Stumpner 1988; Stumpner et al. 1991). As described by Bhavsar et al. 

2015a it was extremely difficult to identify units just by comparing the physiology and so the majority 

of sorted units remains unidentified.  

AN12 

 AN12 is an ascending neuron with a strong phasic response produced at the onset of a 

stimulus (Stumpner 1988; Stumpner et al. 1991; Creutzig et al. 2009), which is maintained over a 

broad intensity range. Among all described ascending neurons AN12 is most reliably influenced by 

the syllable-pause structure of the songs. The phasic burst in AN12 occurs reliably at the onset of 

syllables, provided that the pauses between syllables exceed a certain duration (Stumpner 1988; 

Stumpner et al. 1991). Also, the number of spikes per syllable increases linearly with increasing pause 

duration. This property was mainly used in identifying the sorted units as AN12. However, there has 

been quite a lot variation in the intensity response with lower spike numbers for extracellular units in 

comparison to intracellularly recorded AN12. Among all 177 sorted units, AN12 has been identified 

22 times. Figure 1 shows an example of such a unit which is identified as AN12 based on its ability to 

mark the onsets of the syllables when provided with different model male grasshopper songs. The 

PSTHs of this unit are compared to the PSTHs of intracellularly recorded AN12 (Stumpner 1988). 

 

 

 

 



  Chapter 3: Population coding in grasshoppers 

 

47 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Unit identification. PSTHs(repetition = 10, bin size = 2 ms) showing the responses of the single 

sorted unit to three different artificial grasshopper songs of 80 ms syllable with 7.5 ms pause (left-up), 80 ms 

syllable with 20 ms pause (left-middle) and 80 ms syllable with 40 ms pause pattern (left-down) which are 

compared to PSTHs of three different artificial grasshopper songs of 85 ms syllable with 8.8 ms pause (right-up), 

80 ms syllable with 23.8 ms pause (right-middle) and 85 ms syllable with 42.6 ms pause (right-down) for AN12. 

Data of AN12 are from (Stumpner 1988) (repetition = between 5 to 8, bin size = 2 spikes/class) 

  

 Figure 3.2 shows intensity responses of 5 different units (identified as AN12) to 5 kHz and 20 

kHz sine wave stimuli. Most obvious is the much lower spike number of the extracellular units 

compared to intracellularly recorded AN12 (figure 3.2 A) whereby the intensity responses are hard to 

compare. Figure 3.2 B shows the mean response of all the 22 units identified as AN12 to 5 kHz and 20 

kHz sine wave stimuli. 
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Figure 3.2 Unit identification AN12. (A) Intensity response functions of  five sorted units for 5 kHz and 20 kHz 

(25 ms) stimuli (left), Intensity response functions of AN12 for 5 kHz  and 20 kHz (25 ms) stimuli (right). Data 

of AN12 are modified from (Stumpner and Ronacher 1991) (B) Mean response of the sorted units identified as 

AN12  calculated from 22 preparations along with standard deviation 
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 AN4 

 AN4 is an ascending neuron which is described as an excellent candidate for detecting gaps 

within the syllables since its activity is suppressed by syllables with gaps longer than few ms 

(Ronacher and Stumpner 1988). This characteristic was used to identify sorted units as AN4. AN4 has 

been identified 9 times among all 177 sorted units. However, there has been quite a lot variation found 

while comparing the intensity responses of the sorted units with intracellularly recorded AN4. Figure 

3.3 shows example PSTHs of such units which are identified as AN4. The unit responds strongly to 

syllables without gaps while its response is clearly reduced for syllables with gaps of 2ms and 5 ms. 

 

 

 

 

 

 

 

 

 

Figure 3.3 Unit identification AN4. PSTHs showing the responses of a single sorted unit to three different 

artificial model grasshopper songs of 80–15 ms with and without gaps (repetition = 10, bin size = 2 ms)   

  

 Figure 3.4 shows the intensity response of 5 different units to 5kHz, 20 kHz and white noise 

stimuli which were identified as AN4. Responses of the extracellular units were variable with lower 

spike count. Figure 3.4 B shows the mean response of all the 9 units identified as AN4 to 5 kHz and 

20 kHz sine wave stimuli. 
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Figure 3.4 Unit identification AN4.  (A) Intensity response functions of  five sorted units for 5 kHz, 20 kHz (25 

ms)  and white noise (100 ms) stimuli (left), Intensity response functions of AN4 for 5 kHz, 20 kHz (25 ms) and 

white noise (100 ms) stimulus (right). Data of AN4 are modified from  (Stumpner and Ronacher 1991). (B) 

Mean response of the sorted units identified as AN4 calculated from 9 preparations of along with standard 

deviation. 
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AN2 

 AN2 is an ascending neuron which is drastically influenced by the direction of the stimuli 

since its activity is mostly suppressed by a soma ipsilateral stimulus up to 80 dB SPL (Stumpner 1988; 

Stumpner and Ronacher 1991). This property of AN2 was used to identify the sorted unit as AN2. 

Figure 3.5 shows intensity responses of the units identified as AN2 to 5 kHz and 20 kHz sine wave 

stimuli and their responses to directional stimuli along with the comparison to intracellularly recorded 

AN2. Intensity-responses of 5 different units to white noise stimuli provided from the ipsi-lateral side 

(left) and the contra-lateral side (right) are shown. All the 5 units clearly show suppression in the 

activity for the contra-lateral stimuli compared to the ipsi-lateral stimuli (figure 3.5). AN2 has been 

identified 10 times among all 177 sorted units. Figure 3.5 B shows the mean response of all the units 

identified as AN2 to 5 kHz and 20 kHz sine wave stimuli. 
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Figure 3.5 Unit identification AN2. (A) Intensity response functions of five sorted units for white noise  (100 

ms) for ipsilateral and contralateral stimuli (left), Intensity response functions of AN2 for white noise (100 ms) 

for ipsilateral and contralateral stimuli (right). Data of AN2 are modified from  (Stumpner and Ronacher 1991). 

(B) Mean response of the sorted units identified as AN2 calculated from 10 preparations along with standard 

deviation. 
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AN6 

 AN6 is the only described ascending neuron which responds tonically to acoustic stimuli at all 

intensities and doesn’t saturate at highest intensities (Stumpner and Ronacher 1991). This property 

was used to identify sorted units as AN6. AN6 has been identified 20 times among all 177 sorted units. 

 Figure 6 shows an example of such units identified as AN6. Figure 6 A shows the response of 

a unit to 20 kHz sine wave (25 ms) stimuli which can be regarded as a tonic activity. Figure 6 B shows 

the intensity response of 5 different units to 5kHz and 20 kHz sine wave stimuli. Responses of the 

extracellular units were linearly increasing with increase in the sound intensity (exception Unit 2 - 5 

kHz), however, with a lower spike count in comparison with intracellularly recorded AN6. Figure 6 C 

shows the mean responses of 20 units identified as AN6 to 5 kHz and 20 kHz sine wave stimuli. 
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Figure 3.6 Unit identification AN6. (A) PSTH showing tonic responses of single unit to acoustic stimuli (20 

kHz; 25 ms; 50–90 dB SPL). PSTH width: 60 ms, bin size: 2 ms; the black line marks the stimulus. (B) Intensity 

response functions of  five sorted units for 5 kHz  and 20 kHz (25 ms) stimuli (left), Intensity response functions 

of AN6 for 5 kHz and 20 kHz (25 ms) stimulus (right). Data of AN6 are modified from Stumpner (1988) (C) 

Mean response of the sorted units identified as AN6 calculated from 20 recordings along with standard 

deviation. 
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AN11 

 AN11 is mainly identified only by comparing the intensity frequency response with 

intracellular recordings. AN11 mainly respond between 40 to 60 dB SPL with a peak response at 50 

dB SPL to white noise stimuli (Stumpner 1988; Stumpner and Ronacher 1991). AN11 has been 

identified 12 times among all 177 sorted units with much uncertainty. Figure 3.7 A shows an example 

of 5 different units which are identified as AN11 based on their response to 5 kHz, 20 kHz and white 

noise stimuli. Figure 3.7 B shows the mean response of the unit identified as AN11 to 5 kHz and 20 

kHz sine wave stimuli. 
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Figure 3.7 Unit identification AN11. (A) Intensity response functions of  five sorted units for 5 kHz,20 kHz (25 

ms)  and white noise stimuli (left), Intensity response functions of AN11 for 5 kHz, 20 kHz (25 ms) and white 

noise stimuli (right). Data of AN11 are modified from (Stumpner and Ronacher 1991). (B) Mean responses of 

the sorted units identified as AN11 calculated from 12 preparations along with standard deviation. 
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3.3.2 PCA-based classification of grasshopper ascending neurons 

 Since the majority of the sorted units remain unidentified, I also tried to classify the sorted 

units with a PCA-based cluster analysis. For each sorted ascending unit, I calculated (see Chapter 3 - 

methods - data analysis) response to the onset of stimuli, response to directional stimuli, response to 

syllables with gaps and overall response to the stimuli (phasic/tonic). Figure 3.8 shows first two 

principle components of all four feature vectors projected, since first two principle components 

capture majority (63%) of the variance of the data. PCA Clouds representing stimulus onset and 

directionality were seen however with an area of overlap. Units present in these both clouds were 

mainly identified as AN12 and AN2 during identification using physiology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 PCA-based cluster analysis of 89 sorted units from spike trains of grasshopper ascending 

neurons. Each dot corresponds to a feature vector that describes the response of a single neuron, projected to the 

first two principal components. Two circles express the group of units representing directionality (lower circle) 

and stimulus onset responses (upper circle). 

 



  Chapter 3: Population coding in grasshoppers 

 

58 
 

3.3.3 Summed activity of the ascending neurons for different syllable – pause patterns 

 It has been suggested by Clemens et al. 2011 that the population coding take place at the level 

of ascending neurons in the grasshoppers where each neuron encodes different aspects of the stimulus. 

This means that the behavior is likely represented by the summed activity of ascending neurons. 

Ascending neurons were recorded in around 100 preparations and data were analyzed from 66 

preparations due to the better quality of the recording. The responses to the artificial male grasshopper 

songs were analyzed by making peristimulus time histograms (PSTH) for each grasshopper song. In 

order to quantify the summed response, different techniques have been tested like calculating the mean 

spikes above a certain level (mean (±) 3*SD) from 10 repetitions, taking the mean maximum spike 

count from 10 repetitions and calculating the mean number of spikes from 10 repetitions. In the end, 

the summed response was analyzed by plotting the mean spikes count from 10 repetitions against the 

pause duration. A clear match between the behavior and the summed response was not seen in any of 

the recordings.  

 Figure 3.9 shows a single example of the summed neuronal response of ascending neurons (3 

units) along with the behavior data of 40 ms syllables. Figure 3.9 A shows PSTHs of the summed 

neuronal response for four different types of 40 ms syllable pause pattern. PSTHs were quantified by 

plotting the mean spikes against different pause durations as shown in figure 3.9 B. It can be inferred 

from the PSTHs that there is at least one unit present which fires strongly at the onset of the syllables. 

However, the summed neuronal response was not much affected by the pause durations and remained 

more or less consistent for the entire pause durations, however, with the high variability in the 

responses. No clear match between the neuronal and the behavioral data was observed. 
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Figure 3.9 Syllable-pause tuning. (A) PSTHs of summed response of ascending neurons (3 units) for 

grasshopper model songs of 40 ms syllables with varying pause durations (repetitions = 10, bin width = 2ms). 

(B) Plot shows the quantification of the summed neuronal response of ascending neurons along with the 

behavior data. The average number of spikes from 10 repetitions is plotted against the pause durations. Behavior 

data are obtained from von Helversen (1972). 
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 Figure 3.10 shows a single example of the summed neuronal response of ascending neurons (3 

units) along with the behavior data of 60 ms syllables. Figure 3.10 A shows PSTHs of the summed 

responses for four different types of 60 ms syllable-pause patterns for 10 repetitions. PSTHs were 

quantified by plotting the mean spikes against the pause duration as shown in figure 3.10 B. Increase 

in spike count with a peak at 60-25 ms and then decrease at 60 – 40 ms was seen, however, with the 

high variability in the responses. Even though, there is a tendency to produce more spikes with pauses 

above than at 20 ms or below, due to high variability in the responses there is no consistent match 

between the neuronal and the behavioral data. 
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Figure 3.10 Syllable-pause tuning. (A) PSTHs of the summed response of ascending neurons (2 units) for 

grasshopper model songs of syllable 60 ms with varying pause durations (repetitions = 10, bin width = 2ms). (B) 

Plot shows the quantification of summed neuronal response of ascending neurons along with the behavior data. 

The average number of spikes from 10 repetitions is plotted against the pause durations. Behavior data were 

obtained from von Helversen (1972). 
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 Figure 3.11 shows an example of the summed neuronal response of ascending neurons (3 

units) along with the behavior data of 80 ms syllable. Figure 3.11 A shows PSTHs of the summed 

response for four different types of 80 ms syllable pause pattern for 10 repetitions. It can be inferred 

from the PSTHs that the summed activity increases and the onset of the syllable becomes pronounced 

with the increase in the pause duration. These PSTHs were quantified by plotting the mean spikes 

against the pause duration as shown in figure 3.11 B. There is a weak tendency for an overall increase 

of spike number with increasing pause duration, but with high variability. 
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Figure 3.11 Syllable-pause tuning. (A) PSTHs of the summed response of ascending neurons (3 units) for 

grasshopper model songs of 80 ms syllables with varying pause durations (repetitions = 10, bin width = 2ms). 

(B) Plot shows the quantification of the summed neuronal response of ascending neurons along with the 

behavior data. The average number of spikes from 10 repetitions is plotted against the pause durations. Behavior 

data were obtained from von Helversen (1972). 
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 Figure 3.12 shows a single example of the summed response of ascending neurons (3 units) 

along with the behavior data for 100 ms syllables. Figure 3.12 A shows PSTHs of the summed 

neuronal responses for four different types of 100 ms syllable pause patterns for 10 repetitions. It can 

be inferred from the PSTHs that the neuronal responses were dominated by tonically firing units and 

high neuronal activity was seen at 100 – 20 ms syllable pause duration. PSTHS were quantified by 

plotting the mean number of spikes against the pause duration as shown in figure 3.12 B.  Neuronal 

responses at shorter and longer pauses were more or less similar except slight increase at 20 ms pause 

duration. No match between the behavior and the neuronal data was observed. 
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Figure 3.12 Syllable-pause tuning. (A) PSTHs of the summed response (3 units) of ascending neurons for 

grasshopper model songs of 100 ms syllables with varying pause durations (repetitions = 10, bin width = 2ms). 

(B) Plot shows the quantification of the summed neuronal response of ascending neurons along with the 

behavior data. The average number of spikes from 10 repetitions is plotted against the pause durations. Behavior 

data were obtained from von Helversen (1972). 
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 Figure 3.13 shows examples showing the mean summed spike count plotted against the pause 

durations for four different types of syllables in 10 different recordings. There was a high variability in 

responses observed among the recordings and a clear match between the behavior and the neuronal 

response was not seen in any of the recordings. 

 

 

 

 

 

 

 

 

 

Figure 3.13 Syllable-pause tuning. Plots show the behavior and the summed neuronal response of ascending 

neurons to different male grasshopper model songs with 40 ms, 60 ms, 80 ms and 100 ms syllables. The average 

number of spikes from 10 repetitions is plotted against the pause durations. Behavior data were obtained from 

von Helversen (1972). 
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3.3.4 Summed activity of the ascending neurons for different syllable-gap patterns 

 Summed responses to different syllable-gap patterns (0 ms, 2 ms, and 5 ms) were analyzed in 

48 different preparations. Out of 48, none of the recordings showed a clear match between the 

behavior and the summed neuronal response. Figure 3.14 shows a single example of the summed 

response of two sorted ascending units (2 units) to syllable with and without gaps. This example was 

chosen since it shows the summed neurons response not getting affected by the gap durations (neither 

strong increase, nor strong decrease).  Figure 3.14 A shows PSTHs of the summed neuronal response 

to syllables with and without gaps. These PSTHs were quantified as shown in figure 3.14 B by 

plotting the mean spikes against the gap durations. No match between the neuronal and the behavior 

data was seen. 
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Figure 3.14 Gap tuning. (A) PSTHs of the summed response of two ascending neurons to male grasshopper 

model songs with 80/15 ms syllable/pause duration and variable gaps (repetitions = 10, bin width = 2ms).  (B) 

Plot shows the quantification of the summed neuronal response of ascending neurons (2 units) along with the 

behavior data. Behavior data were obtained and averaged from Ronacher and Stumpner (1988). 
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 Figure 3.15 shows an example showing the summed spike count of 2 or 3 units recorded 

simultaneously plotted against the gap duration for 20 different recordings. Most of the recordings did 

not show any clear match between the behavior and the neuronal data as shown in figure 3.15 A. 

However, in two recordings, a clear increase in neuronal response with increasing gap duration was as 

shown in figure 3.15 B. This increase in the neuronal activity was due to the presence of those units 

which shows stronger response to syllables containing gaps than to those not containing gaps. 

 

 

 

 

Figure 3.15 Gap tuning. (A) Plot shows the summed neuronal response of ascending neurons to male 

grasshopper model songs with 80/15 ms syllable/pause durations and variable gaps. The average number of 

spikes from 10 repetitions is plotted against the gap durations. Behavior data were obtained and averaged from 

Ronacher and Stumpner (1988). (B) Plot shows the increasing summed neuronal response of ascending neurons 

to different model grasshopper songs with and without gaps. The average number of spikes from 10 repetitions is 

plotted against the gap durations. Behavior data were obtained and averaged from Ronacher and Stumpner 

(1988). 
 Additionally, I also tried to quantify the combined response (2 or 3 units) from those 

recordings where at-least one unit was identified as AN4 (n=4). One such example of AN4 

identification is shown in figure 3.3. However, the response was not decreasing strongly and not a 

strong match between the behavior and the neuronal data was found when analyzing the summed 

(combined) response to syllables with and without gaps as shown in figure 3.16.  This may be due to 

presence of those units along with AN4 which show reverse dependence to syllables containing gaps. 
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Figure 3.16 Gap tuning. Plot shows behavior and the summed neuronal data of ascending neurons where at least 

one unit was identified as AN4 to different model grasshopper songs with and without gaps. Behavior data were 

obtained and averaged from Ronacher and Stumpner (1988). 
 

3.3.5 Decoding the stimulus identity from the response 

 Both decoding and information theory extract quantitative information from the population 

responses by quantifying the knowledge about the stimulus that is gained from the neuronal population 

response. Decoding algorithms predict the stimulus that caused the neuronal response. The 

performance of such decoding algorithms are typically measured by the percentage of correct 

predictions (Quian Quiroga and Panzeri 2009). Here, I tried to decode the response of a population of 

ascending neurons to six different artificial syllable pause patterns of 40 ms syllables. 

Optimization of matrix parameters 

 Classification performance is a function of the matrix temporal resolution τ. Information was 

optimized with a grid search for τ ranging from 0 to 1000 ms (13 values spaced linearly on a 

logarithmic scale). The performance of τ used for decoding is shown in figure 3.17. Figure 3.17 A 
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shows the probability of correct classification of the stimulus for the different values of τ.  Figure 3.17 

B shows the mutual information calculated for the different values of τ. The highest probability for 

correct classification of the stimuli and the highest mutual information is found at τ = 10 ms, which 

therefore was used in all decoding analyses.  

 

 

 

 

 

 

Figure 3.17 Performance of the decoder. (A) Plot shows the probability of correct prediction of the stimulus 

(six grasshopper songs of 40 ms syllables) from the summed response for 13 values of τ spaced linearly on a 

logarithmic scale. (B)  Plot shows the values of the mutual information for 13 values of τ spaced linearly on a 

logarithmic scale.    
 

Confusion matrices and mutual information 

 In order to calculate the mutual information, confusion matrices for single sorted units and 

combined units were constructed and compared. Mutual information was quantified on sorted units of 

45 recordings of ascending neurons as shown in figure 3.18.  There was an average increase in mutual 

information seen while comparing the single units with combined units as shown in figure 3.18. After 

analyzing each recording individually, 18 recordings showed an increase in the mutual information for 

the population of units in comparison to the single units (Fig.3.19). The other 27 recordings showed no 

increase in the mutual information when comparing the population of units to the single units. 
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Figure 3.18 Mutual information.  Box plot showing the comparison of the mutual information for six syllable – 

pause patterns (40 ms syllables) calculated from the single units and the combined units in 47 data files.  The 

black line in the box represents the median value. The upper and lower whiskers represent the maximum and 

minimum values respectively. The box is 25% above and below the median. 
  

 Figure 3.19 shows an example of a comparison of the mutual information between single 

sorted units with combined units recorded in the same individual for six different types of male 

grasshopper songs. Figure 3.19 A and B show that the decoding performance increased for combined 

units in comparison to three and two single sorted units recorded in the same individual at the same 

time. Figure 3.19 C shows the comparison of the mutual information of single sorted units with the 

combined units for 18 recordings. Highest information among the sorted units was considered for 

single unit MI calculation to avoid any bias.  Mutual information for combined units was higher in 

comparison to the mutual information of single units (p = 0.0002, Wilcoxon rank-sum test). 
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Figure 3.19 Confusion matrices and the mutual information. (A) Plots show four confusion matrices for three 

sorted units and combined units recorded in the same individual for six male grasshopper songs. The order is set 

as presented during the time of experiments. 4020 means 40 ms syllables, 20 ms pauses etc.. (B) Plots show 

three confusion matrices for two sorted units and combined units recorded in the same individual for six male 

grasshopper songs. (C) Box plot showing the comparison of the mutual information calculated from the single 

units and the combined units in 18 individuals. Highest information among the sorted units was considered for 

single unit MI calculation. The black line in the box represents the median value. The upper and lower whiskers 

represent the maximum and minimum values respectively. The box is 25% above and below the median. 
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 To see if the mutual information increases with increase in the number of the recorded units, I 

compared the mutual information of 2 units with 3 and 4 units recorded in the same individual at the 

same time as shown in figure 3.20 and figure 3.21. The sorted units have been randomly selected for 

the mutual information calculation. Figure 3.20 A shows that the decoding performance increased for 

3 units in comparison with 2 units in confusion matrices which are recorded in the same individual. 

Figure 3.20 B shows the comparison of the mutual information of 2 units with 3 units for 9 recordings. 

Mutual information for three units was higher than mutual information of two units (p = 0.017, 

Wilcoxon rank sum test). Similarly, the decoding performance and the mutual information of 4 units 

was also compared with 3 and 2 units for three individuals as shown in figure 3.21 A and B. Mutual 

information and decoding performance increased for 4 units in comparison to 3 and 2 units recorded in 

the same individual (n=3). 

 

 

 

 

 

 

 

 

Figure 3.20 Confusion matrices and the mutual information. (A) Plots show two confusion matrices for two 

sorted units (left) and three units (right) recorded in the same individual for six male grasshopper songs. (B) Box 

plot showing the comparison of the mutual information calculated from two units and three units in 9 

individuals. The black line in the box represents the median value. The upper and lower whiskers represent the 

maximum and minimum values respectively. The box is 25% above and below the median. 
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Figure 3.21 Confusion matrices and the mutual information. (A) Plots show three confusion matrices for two 

units (left), three units (middle) and four units (right) recorded in the same individual for six male grasshopper 

songs. (B) Box plot showing the comparison of the mutual information calculated by combining two, three and 

four units in 3 individuals. The black line in the box represents the median value. The upper and lower whiskers 

represent the maximum and minimum values respectively. The box is 25% above and below the median. 
  

 Figure 3.22 shows two examples from those 27 recordings which did not show any increase in 

the mutual information while comparing the single units with the combined units. Figure 3.22 A and B 

show that the decoding performance remained the same for the combined units in comparison to three 

and two single sorted units recorded in the same individual at the same time. Figure 3.22 C shows the 

comparison of the mutual information of single sorted units with combined units for 27 recordings. 

Mutual information for the combined units was either similar or decreased slightly (n=5) to the mutual 

information of single units (p = 0.01, Wilcoxon rank sum test). 
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Figure 3.22 Confusion matrices and the mutual information. (A) Plots show four confusion matrices for three 

sorted units and combined units recorded in the same individual for six male grasshopper songs. (B) Plots show 

three confusion matrices for two sorted units and combined units recorded in the same individual for six male 

grasshopper songs. (C) Box plot showing the comparison of the mutual information calculated from the single 

units and the combined units in 29 individuals. The black line in the box represents the median value. The upper 

and lower whiskers represent the maximum and minimum values respectively. The box is 25% above and below 

the median. 
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3.4 Discussion 

 Information about the relevant aspects of a stimulus must be represented by a population of 

neurons in the brain. As single neurons are not sufficiently informative, to obtain the complete 

information about sensory processing some sort of population averaging should be done in the brain.  

Such information averaging is known as population coding (Averbeck et al. 2006). So far in 

grasshopper auditory systems, population coding has been studied by combining the responses of 

single cells recorded intracellularly in several individuals (Clemens et al. 2011; Meckenhäuser et al. 

2014). This method suffers from the problem of interindividual and intertrial neuronal variabilities 

(Ronacher et al. 2004). It would be more appropriate to record the activity of several neurons at the 

same time in the same individual to reduce such neuronal variabilities. Here, I recorded from the 

population of ascending auditory neurons in the brain of the grasshopper Ch. biguttulus and analyzed 

population response using summed activity analysis and decoding techniques. 

3.4.1 Problems in unit identification 

 The original idea of this study was to compare the intensity responses of extracellularly 

recorded units to the intracellularly recorded ascending neurons (Stumpner 1988; Stumpner and 

Ronacher 1991) and identify the units based on the similarity of the responses to those recorded 

intracellularly. However, identification of neurons just by comparing the intensity responses of 

extracellular data with intracellular data turned out to be hard. One reason for the identification 

problem is neuronal variability as explained in Chapter 2. However, some ascending neurons encode 

particular properties of acoustic stimuli in their physiological responses that may increase the 

probability of identification. For example, AN12 has a strictly phasic characteristic mediating  

pronounced responses to stimulus onsets (Stumpner 1988; Creutzig et al. 2009), activity of AN4 is 

suppressed by syllables with gaps (Ronacher and Stumpner, 1988), AN2 encodes directional 

information (Stumpner 1988; Stumpner and Ronacher 1991) and AN6 is the only described neuron 

showing tonic responses over a large intensity range (Stumpner 1988; Stumpner and Ronacher 1991). 

These partially unique characteristics can be used as a criteria for the identification of extracellularly 

recorded auditory units.  
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 Since the identification of neurons just by comparing intensity responses did not give 

satisfactory results, additionally, a PCA-based classification was done using four feature vectors. It 

was expected to have completely independent clouds each representing a single class of neurons. Two 

clouds representing the stimulus onset and the directionality emerged, however, with areas of overlap. 

Likely reasons for this could be the selection of insufficient number of feature vectors. This leads to 

lower variance among each class of neurons and clouds with overlaps. It turns out to be difficult to 

classify units just by using four feature vectors and so the majority of the units remained unidentified. 

3.4.2 Population response of ascending neurons 

  It has been previously suggested by Clemens et al. (2011) that there is a population code 

taking place at the level of ascending neurons in grasshoppers, where each neuron likely encodes 

different aspects of the stimulus. To analyze the population response of simultaneously recorded 

ascending neurons, I have used two different analytical methods. 

1. Analyzing the summed response of the recorded neurons. 

2. Analysis using decoding techniques to understand the population code. 

 Since the unit identification turned out to be difficult, these analyses were done without unit 

identification after sorting the recorded units. 

3.4.2.1 Summed response of the recorded neurons 

Syllable-pause tuning 

 Syllable – pause tuning was analyzed in 66 preparations and no clear match was seen between 

the behavior and the neuronal data. Here, the experiments were performed using simple block stimuli 

and data have been analyzed only for syllable-pause and syllable-gap patterns. Real grasshopper songs 

are more complicated having many more features within a song (intensity, frequency, onset etc). It is 

likely that many more ascending neurons are involved in encoding all features of a natural song. Also, 

one has to consider that such multielectrodes tend to record from the larger axons of the neurons in the 

vicinity. Due to this fact, smaller neurons get masked in the recording and one always systematically 
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miss information from such units in the analysis. Other problems like the sudden spontaneous firing of 

the recorded units and errors in clearly discriminating the units during the spike sorting will also affect 

the calculations. 

Gap tuning 

 In the grasshopper Ch.biguttulus, some neurons located in the metathoracic ganglion are 

described as feature detectors. One example is AN4, which is selectively and strongly inhibited by 

interrupted sound pulses called syllables with gaps (Ronacher and Stumpner 1988). Such gappy songs 

are generated by male grasshoppers with one hindleg (another hind leg is lost often due to autonomy 

during contact with predators) who are no longer able to mask small gaps in the song (von Helversen 

and von Helversen 1994). Female Ch.biguttulus uses these gaps in a male song as criteria for rejection 

in the context of sexual selection (Kriegbaum 1989). I analyzed the gap tuning of summed response of 

ascending neurons in 48 preparations and none of them showed a clear match with the behavior data 

even those where at least one unit was identified as AN4. This may be due to the recording from those 

units which responds better to syllables with gaps and compensate the decrease in the spike counts. 

Two recordings showed an increase in the neuronal activity with gap durations. This increase in the 

neuronal activity may be due to the presence of those neurons which shows a stronger response to 

syllables containing gaps than to those not containing gaps. Such neurons (AN3 and AN12) have been 

previously described by Stumpner et al. (1991) and are significantly influenced by gaps. It is likely 

that these neurons (AN3 and AN12) are also involved in transferring the information about gaps to the 

brain along with AN4. 

3.4.2.2 Population coding analysis using decoding techniques 

 Information about behaviorally important variables such as sensory signals or motor actions is 

carried by the joint activity of a population of neurons (Panzeri et al. 2015). Population coding is a 

method to represent stimuli by using the joint activities of a number of neurons. Each neuron encodes 

different aspect of a stimulus, and the responses of many neurons may be combined to determine some 

value about the stimulus (Wu et al. 2002).  
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 Clemens et.al (2011) have suggested that there is a population code taking place among the 

ascending neurons in grasshoppers. Here, I have tried to decode song identity from the neuronal 

responses to six different grasshopper songs (40 ms syllable-pause patterns) using confusion matrices 

(Clemens et al. 2011). These matrices were used for mutual information calculation to extract 

quantitative information from the neuronal responses (Quian Quiroga and Panzeri 2009; Clemens et al. 

2011). Such metrices quantify the dissimilarity of spike trains among different stimuli to calculate the 

information transferred by the recorded neurons (Quian Quiroga and Panzeri 2009). However, this 

approach underestimates the full information in the statistical sense, one can come closer to what 

biological system can read from spike trains (Clemens et al. 2011). Out of 45 data sets, 18 showed an 

increase in the mutual information for the population of units with a better decoding performance in 

comparison to single units, indicating that the relevant stimulus features of syllable-pause patterns are 

represented by a population of the recorded ascending neurons. Similar results were also observed by 

Kobayashi et al. (2013) while studying population coding in the moth antennal lobe. He tried to 

decode odorant identity from the activity of the recorded neurons using the maximum likelihood 

method and found that decoding performance rapidly improves with increasing number of neurons. 

However, in our results, 27 recordings showed no increase in the mutual information for the combined 

units in comparison to the single units. It is likely that these recorded units do not represent the 

features of syllable-pause patterns and may be involved in representing other features of a song. 

Additionally, it was observed that if a non-auditory unit was included during the analysis, decrease in 

mutual information occurs for combined units.  

 Here, the analysis has been done using only simple block stimuli of syllable-pause patterns. 

The real grasshopper songs are much more complicated since they include many features in one song. 

Using such real songs, one can expect that the decoding from an intact population of at least 20 ANs in 

grasshoppers would  reach considerably higher decoding performance, which supports the hypothesis 

of a population code in the central nervous system (Clemens et al. 2011; Meckenhäuser et al. 2014) of 

grasshoppers. In future, it would be interesting to analyze the population response of all 20 ascending 

neurons to complicated stimuli which include many features. 
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3.5 Outlook 

 In summary, the information about the stimulus identity (syllable-pause patterns) is likely 

represented by the population of specific ascending neurons which supports the previously formulated 

hypothesis of a population code taking place among the ascending neurons.  In future, it would be 

interesting to use more realistic stimuli consisting of many features in one song. Additionally, it would 

also be intersting to develop a technique which can simultaneously record from an intact population of 

20 ascending neurons (eg. using several multielectrode at different locations in the brain) to get the 

maximum information about the stimulus.  
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Chapter 4 

Recordings and electrical stimulation of local auditory neurons 

in the brain of a small grasshopper 
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4.1 Introduction  

 Mammals, birds, and insects use acoustic signals with variations in carrier frequency, 

amplitude, and temporal patterns for acoustic communication. Species- and context-specificity of these 

communication signals is mainly based on the temporal structure of songs arising from combinations 

and repetitions of stereotypical elements (Gerhardt and Huber 2002). Processing and recognition of 

these songs are very important for species and gender  recognition, localization of reproductive 

partners, assessment of genetic quality and for mating success (Bradbury and Lee 1998). One of the 

main challenges for such insects while communicating is recognizing the difference between the call 

of a conspecific from that of congeneric (Römer and Seikowski 1985). Behavioral experiments with 

crickets and grasshoppers have shown that they can recognize a song produced by a conspecific and 

that some temporal features like syllable (for definition see Chapter 1 : General introduction) or 

intervals are more effective than others in activating the innate releasing mechanism for phonotaxis 

(Haskell 1958; Dumortier 1963; von Helversen 1972). Many electrophysiological studies have been 

performed on the auditory pathway of various insects in an attempt to elucidate the neuronal 

mechanisms underlying song recognition. 

 Among invertebrates, the acoustic behavior of grasshoppers has attracted the interest of 

neuroethologists for many years (Elsner 1974). Grasshoppers produce species- and context-specific 

sound patterns by rhythmically rubbing stridulatory files on the inner sides of their hindlegs against a 

cuticular vein of the forewings (von Helversen and von Helversen 1997). The neuro-muscular activity 

patterns underlying stridulatory movements are generated by rhythm generating neural circuits in the 

meso- and metathoracic ganglia (Hedwig 1986). These networks consist of two hemi-ganglionic 

pattern generators, each driving one hind leg (Ronacher 1989; Heinrich and Elsner 1997b), which are 

connected via local bilaterally arborizing interneurons and thus produce coordinated phase coupled 

hind leg moments (Hedwig 1992). The decision about when and which song pattern to sing is made by 

central brain neuropils that activate descending cephalo-thoracic command neurons which connect to 

the respective pattern generating thoracic networks  (Hedwig 1994; Hedwig and Heinrich 1997). The 

stridulatory command neurons receive direct or indirect input from local neurons in the brain (Hedwig 
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2001) and in this way some of such local brain neurons could be directly involved in controlling the 

stridulation. However, the information on the location and the involvement of such local brain neurons 

in processing different features of a male grasshopper song and controlling the stridulation is still 

limited. 

 Here, I have used multielectrodes and recorded local brain neurons from different areas in the 

brain of Ch. biguttulus. Additionally, I have used the same multielectrodes and extracellularly 

stimulated these different neuropiles to induce the stridulation.  

4.2 Materials and methods 

4.2.1 Animals 

Adult female grasshoppers (Chorthippus biguttulus (Linnaeus, 1758)) were used in all 

experiments. The animals were collected from meadows in Göttingen (Germany) or its vicinity 

between July and October. They were maintained in the laboratory and allowed to lay eggs into 

containers filled with vermiculite (Deutsche Vermiculite Dämmstoff – Sprockhövel, Germany). The 

collected eggs were kept at 4°C for at least 2 months. The nymphs hatched after ~1 week at 26°C and 

they were raised to adulthood on wheat and supplemental food for crickets (Nekton Nektar – 

Pforzheim, Germany). 

4.2.2 Animal preparation 

In order to minimize the movements of the animal, front legs were removed and the animal 

was fixed with its dorsal side up onto a holder using wax. The brain was exposed by opening the head 

capsule between the compound eyes, the ocelli, and the antennal sockets. Tracheas were moved aside 

at the insertion site before electrode placement. The exposed brain was supported by a steel spoon to 

reduce movements. The ganglionic sheath of the brain was carefully removed using extra fine forceps 

(Dumont – Switzerland) to facilitate the penetration of the electrode. The whole head capsule was 

filled with locust saline (Pearson and Robertson 1981) 

4.2.3 Acoustic stimulation 
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Experiments were performed in a Faraday cage lined on the inside with sound absorbing 

pyramidal foam (at least 50% above 500 Hz; Fritz Max Weiser Schaumstoffe – Bochum, Germany). 

The preparation was acoustically stimulated by two loudspeakers (D21/2, Dynaudio – Rosengarten, 

Germany) situated laterally at a distance of 35 cm from the grasshopper. For the experiment, different 

auditory stimuli (5 kHz sine wave (duration: 25 ms, 2 ms rise and fall time), 20 kHz sine wave 

(duration: 25 ms, 2 ms rise and fall time), broadband white noise stimulus (bandwidth 0.5-40 kHz, 

duration: 100 ms, 2 ms rise and fall time)) were created in Spike2 7.10. Sound pressure levels were 

calibrated using a continuous signal with a Brüel & Kjær microphone (Type 4133 – Nærum, 

Denmark) positioned at the location of the experimental animal and directed towards the speaker, grid 

on, connected to a Brüel & Kjær measuring amplifier (type 2602). Sound intensities are given in dB 

SPL (Sound pressure level) re 2 × 10
-5 

N m
-2 

.The microphone has been calibrated using a calibrator 

(Brüel & Kjær type 4230). The signal was band-pass filtered between 5 kHz and 60 kHz to reduce the 

high frequency distortion from digital to analog conversion. All stimuli were stored digitally and 

presented by Spike2 7.10 with a DA conversion rate of 100 kHz (Power Mk II, CED – Cambridge, 

UK) during experiments. Different stimuli were divided into different stimulus programs which were 

saved as ‘configuration file’ in Spike2 7.10 as described below. 

Search-program. In order to detect auditory neuronal activity from brain neurons at the start of the 

experiment, search stimuli (5 kHz sine wave (25 ms) and broadband white noise (100 ms)) were 

repeated at 1 s intervals. To facilitate finding auditory activity during the search program, an audio 

monitor (AUDIS-01D/16 NPI Electronic Instruments– Tamm) was used.  

Intensity response program. For obtaining “intensity response characteristics” (responses to changing 

sound amplitude) 5 kHz sine wave (duration: 25 ms) and 20 kHz sine wave (duration: 25 ms) stimuli 

were presented between 50 and 90 dB SPL, increasing in 10 dB steps from the ipsilateral side (left) 

and broadband white noise stimuli were delivered between 30 and 90 dB SPL, increasing in 10 dB 

steps from the ipsilateral and contralateral side (right) (Stumpner 1988). The multielectrode was 

always inserted in the left side of the brain and stimulation is also provided from the left side which is 

considered as the ipsilateral side. The various sound amplitudes were achieved by using a digital 
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attenuator (CS3310 Cirrus Logic - Austin, USA) which was controlled by a script (produced by Phillip 

Jähde, Göttingen) in Spike2. Stimuli were separated by 1 s inter-stimulus intervals and repeated 10 

times at each sound pressure level. 

Temporal pattern program. In order to test neuronal responses to variation of artificial  temporal 

patterns, male grasshopper songs were presented that were varied in syllable duration (40 ms, 60 ms, 

80 ms and 100 ms), pause duration (7.5 ms, 10 ms, 15 ms, 20 ms, 25 ms and 40 ms) and gap duration 

(2 ms and 5 ms) (for definition see introduction). The temporal patterns were generated using 

broadband white noise, were presented at 75 dB SPL in a pseudo-randomized order and were 

separated by 1 s inter-stimulus intervals. Two temporal programs were made. One program was for 

different syllable – pause patterns while another program was for different syllable - gap patterns. 

Each syllable - pause pattern or syllable - gap pattern was repeated 10 times. To standardize the effect 

of adaptation, a broadband white noise pulse (1 s, 75 dB SPL) was presented in the beginning. 

Attractiveness stimulation program: In order to compare the neuronal data with behavioral data 

published by Clemens et al. (2014), twenty-five sequences consisting of different combinations of 

attractive and non-attractive syllables were presented in pseudorandom order. The stimulus design was 

adapted from Clemens et al. (2014). Attractive and non-attractive syllables were created using the 

programming script wavemake.s2s. Attractive syllables consisted of 75 ms long noise pulses with 

broadband white noise (5-40 kHz) of constant amplitude followed by 12ms of pause. Non-attractive 

syllables were created by introducing gaps (5 ms) in a syllable and removing high frequency (5-12 

kHz). The syllables with gaps having low-frequency content are known to reduce the female response 

probability drastically (Ronacher and Stange 2013). 

4.2.4 Electrical stimulation 

 After recording auditory activity, extracellular electrical stimuli were applied to the same site 

within the auditory neuropiles in order to elicit the stridulation. Electrical current was injected via one 

of the tungsten wires and the reference wire to stimulate the neurons in the vicinity of the tip using a 

stimulus isolation unit (ISO-STIM 01M, NPI Electronic Instruments, Tamm). In the “GATE TTL 
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Input mode”, the output current is generated by the built-in timing unit which was triggered by gate 

pulses from the interface (Power Mk II, CED – Cambridge, UK). Current pulses (3 ms current 

followed by 3 ms pause) of 50 µA were applied for at least 5 s. To detect stridulatory hind leg 

movements a custom made position detector was installed on the left side of the grasshopper (von 

Helversen and Elsner 1977). A small reflector (Scotchlight 3 M, type7610) was attached to the hind 

leg. Light emitted from the position detector was reflected to a photo sensor. The up- and down-

strokes of the leg were converted to a proportional voltage signal, amplified and sent to a data 

acquisition system (Power Mk II, CED – Cambridge, UK). Leg movements were recorded with a 

sampling rate of 4000 Hz and stored digitally with the software Spike 2 7.10. Additionally, a small 

electrical microphone (Conrad Electronic, sensitive in the audio and near ultrasound range) was placed 

near the stridulating hindleg to record the sound.  

4.2.5 Marking the recording/stimulation sites 

 The position of the multielectrode during recording and electrical stimulation was marked by 

electrocoagulation of adjacent tissue (Strube-Bloss et al. 2011). After a successful experiment, current 

(100 µA) was passed between a tungsten wire and the reference wire for 5 minutes. After retraction of 

the multielectrode, the brain was extracted from the head and fixed in paraformaldehyde (4% in 

phosphate buffered saline) for 2 hours. For subsequent analysis, the brain was embedded in albumin-

gelatin (Crane and Goldman 1979), fixed in 4% PFA overnight and sectioned horizontally (with 

respect to the neural axis) into 30 µm slices with a vibrating blade microtome (VT1000s Leica – 

Wetzlar, Germany). The sections were transferred to a slide, enclosed under a cover slip using 

DABCO (Carl Roth – Karlsruhe, Germany) as a medium and viewed with an epi-fluorescence 

microscope (Axioscope, Zeiss – Jena, Germany). 

4.2.6 Offline spike sorting 

 Spike sorting was done as described in Chapter 2. 

 

 



                                                                                             Chapter 4: Local brain neurons in the grasshoppers 

 

88 
 

4.2.7 Syllable-pause and gap tuning 

 Syllable-pause and gap tuning plots were made in order to check the correlation between the 

neuronal and the behavior data. Neuronal data was plotted by calculating the mean spike count against 

the pause duration. Behavior data regarding syllable - pause tuning were obtained from von Helversen 

(1972) while average behavior responses to gap tuning were obtained from Ronacher and Stumpner 

(1988). These analyses were done in Excel 2010. 

4.3 Results 

4.3.1 Latency criteria 

 First spike latency (FSL) of a given neuron is defined as the time from the onset of a stimulus 

to the occurrence of the first spike in response to that stimulus. When neurons are spontaneously 

active, that is, they spike in the absence of experimenter controlled stimulation, the first spike on a 

given trial might not be necessarily be evoked by the stimulus. Therefore other definitions of FSL are 

also in use, for example, the time from stimulus onset to the initial peak in a post-stimulus-time 

histogram computed from the responses of a neuron to numerous repetitions of that stimulus (Heil 

2004). 

 Local brain neurons were mainly recorded in lateral protocerebrum, anterior protocerebrum 

and central complex. For clearly discriminating local auditory brain neurons from ascending neurons, 

a latency criterion was implemented. Since local brain neurons are directly or indirectly 

postsynaptically connected to the ascending neurons in the brain (Eichendorf and Kalmring 1980; 

Kutzki 2012), they showed longer first spike latency than ascending neurons in the same individual. 

The FSL generally shortens monotonically as the overall amplitude of sound increases. Therefore, I 

compared the FSL of local auditory brain neurons to the ascending neurons recorded in the same 

individual at the highest sound intensity (90 dB SPL) for the same stimulus as shown in figure 4.1 A 

and B. The latency of ascending neurons recorded from the deutocerebrum was 15 ms or shorter. The 

latency of local brain neurons recorded from the lateral protocerebrum, the anterior protocerebrum and 

the central complex was longer than 15 ms. Figure 4.1 C shows the comparison of the latency in 21 
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sorted ascending units which are compared with the 21 sorted local brain units (Mann–Whitney U-test: 

p ≤ 0.05).  

 

 

Figure 4.1 Latency criteria. (A) Recording traces showing the response of ascending neurons with shorter 

latency and local brain neurons with longer latency to 20 kHz sinewave stimuli (25 ms) at 90 dB SPL. The 

recordings have been done in the same individual (B) PSTHs made from 20 kHz sinewave stimuli (25 ms) at 90 

dB SPL repeated 10 times (C) Latency difference between local brain neurons and ascending neurons recorded 

in 21 different individuals (Mann-Whitney U-test: p≤0.05). Box plot has been plotted from the latency of 21 

sorted ascending units and local brain units. The length of the box represents the interquartile range. The black 

line in the box represents the median value. The upper and lower whiskers represent the maximum and minimum 

values respectively.  
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4.3.2 Local brain neurons recorded in the lateral protocerebrum and their exact locations 

 The best-described class of ascending neurons ascend from the metathoracic ganglion up to 

the brain and make branches in the lateral protocerebrum (LP) which indicates the presence of local 

auditory brain neurons which are directly postsynaptically connected to the ascending neurons 

(Eichendorf and Kalmring 1980; Kutzki 2012). Local brain neurons were recorded from the lateral 

protocerebrum in 12 preparations and data were evaluated from seven preparations only due to better 

quality of the recording. The recorded neurons were considered local brain neurons based on their 

longer first spike latency to the stimulus at the highest intensity (90 dB SPL). A total of nine local 

auditory brain units were sorted in seven preparations from lateral protocerebrum and their intensity 

response curves were plotted for 5 kHz, 20 kHz and White noise (Fig.4.2).  One out of nine units (Unit 

5) showed an increase in response with increase in the sound intensities for 5 kHz and 20 kHz stimuli. 

Unit 3,4,7,8 and 9 showed increase in response for 5 kHz and decrease in response for 20 kHz stimuli 

at higher intensities. Unit 1 showed optimum type response for 5 KHz stimuli. Most of the units 

(except Unit 7) showed similar responses for white noise presented from ipsi- and contralateral side. 

Unit 7 showed higher response for white noise on ipsilateral side in comparison to contralateral side.  
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Figure 4.2 Intensity response curves. Plots show the intensity dependence of all sorted local brain units 

recorded from lateral protocerebrum for 5 kHz, 20 kHz and white noise stimuli. 5 kHz sine wave (25 ms) and 20 

kHz sine wave (25 ms) stimuli were presented between 50 and 90 dB SPL, increasing in 10 dB steps from the 

ipsilateral side and broadband white noise (100 ms) stimuli were delivered between 30 and 90 dB SPL, 

increasing in 10 dB steps from the ipsilateral and contralateral side 

 Out of nine sorted units, one unit (Fig.4.2 - Unit 7) showed the strongest directional 

dependence in the response. The response to ipsilateral side was clearly higher than the contralateral 

side as shown in figure 4.3. 

 

Figure 4.3 Intensity response curves. Plot shows the directionality dependence of one sorted local brain unit 

recorded from the lateral protocerebrum (Fig. 4.2 - Unit 7) for broadband white noise (100 ms). 
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 Syllable-pause tuning was checked for all the sorted units recorded from the lateral 

protocerebrum and compared with the behavior data of female Ch. biguttulus obtained from von 

Helversen (1972). Some potential dependences of the neuronal activity on different pause durations 

were seen but a clear match between the neuronal and the behavioral data was not seen in any case 

(Fig.4.4). 

 

 

 

 

 

 

 

 

Figure 4.4 Syllable-pause tuning. Plots show the neuronal responses of sorted local brain units recorded from 

lateral protocerebrum to different male grasshopper model songs along with behavior data. The average number 

of spikes from 10 repetitions is plotted against the pause durations for four different syllables. Behavior data 

were obtained from von Helversen (1972). 

 

 Among all the units shown in figure 4.4, one unit (Unit 3) responded with a phasic burst at the 

onset of syllables, provided that the pauses between syllables exceed a certain duration as shown in 

figure 4.5 A. In order to quantify the onset response, the average number of spikes per syllable 

crossing the horizontal threshold (mean+/- 3*SD) was calculated from the PSTHs and plotted against 

the pause duration which is shown in figure 4.5 B. The number of spikes per syllable increases linearly 

with increasing pause duration. 
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Figure 4.5 Marking onset of the syllable. (A) Plots show the PSTHs of one of the sorted local brain unit 

recorded (Fig. 4.4 - Unit 3) from lateral protocerebrum for different model grasshopper song with syllables of 40 

ms and six different pause durations (repetitions = 10, bin width = 2ms) (B) Spike response to the onset of the 

syllable was quantified by calculating mean spikes per syllable crossing the threshold (mean (±) 3*SD) in 

PSTHs. 
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 Figure 4.6 shows the responses of one unit (Fig.4.4 - Unit 3) to different syllable-pause 

patterns along with the behavioral data (von Helversen 1972) of female Ch. biguttulus. The mean 

spike count was plotted against different pause durations. A clear match between the neuronal and the 

behavioral data was seen for 100 ms syllable patterns as shown in figure 4.6. Lower neuronal activity 

at shorter and longer pause with peak response at 25 ms matches with the behavioral response. 

Additionally, a similar good match is seen between the neuronal and the behavioral data at 40 ms 

syllables. Decrease in the neuronal activity at longer pauses matches the behavior. The neuronal 

activity was not much affected by 60 ms syllable and no match between the neuronal and the 

behavioral data was seen for 60 ms and 80 ms syllable-pause patterns. 

 

 

 

 

 

 

 

 

Figure 4.6 Syllable-pause tuning. Plots show the neuronal response of one sorted local brain unit (Fig.4.4 - Unit 

3) recorded from lateral protocerebrum to different male grasshopper model songs along with the behavior data. 

The average number of spikes from 10 repetitions is plotted against the pause durations for four different 

syllables. Behavior data were obtained from von Helversen (1972). 
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 Many of the local brain neurons recorded from lateral protocerebrum were highly adapting to 

the stimulus. Figure 4.7 shows one example of such a local brain unit showing high adaptation to two 

different artificial male grasshopper songs. 

 

 

 

 

 

 

 

Figure 4.7 Peristimulus time histograms. Plots show PSTHs of one sorted local brain unit recorded from lateral 

protocerebrum for grasshopper model songs with syllable duration of 40 ms and two different pause durations 

(repetitions = 10, bin width = 2ms). 

 

 Syllable-gap patterns were successfully checked in five preparations and the neuronal response 

of six units was compared with the behavior data of female Ch. biguttulus (Ronacher and Stumpner 

1988). Unit 4 clearly showed a clear increase in neuronal activity with gap duration while Unit 3 

showed a weak tendency in increase in neuronal activity with gap durations as shown in figure 4.8. 

This dependence on gap durations was not as strong as described for certain ascending neurons 

(AN12) (Stumpner 1988). The activity of other units (Unit 1, Unit 2, Unit 5 and Unit 6) were not much 

affected by the gaps of syllables and thus did not show any match with the behavior data as shown in 

figure 4.8.  
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Figure 4.8 Gap tuning. Plots show the neuronal responses of sorted local brain units recorded from lateral 

protocerebrum to male grasshopper model songs with 80/15 ms syllable/pause durations and variable gaps. The 

average number of spikes from 10 repetitions is plotted against the pause durations. Behavior data were obtained 

and averaged from Ronacher and Stumpner (1988). 

 

 Figure 4.9 A provides a summary of locations in the lateral protocerebrum where auditory 

activity was recorded from the local brain neurons. After a recording auditory activity successfully, the 

position of the multielectrode within the brain tissues was marked by passing high continuous current 

(100 μA) for 5 minutes between one of the tungsten wires and the reference wire or between two 

tungsten wires. This procedure coagulates the brain tissue and generates a black spot in the immediate 

vicinity of the electrode as shown in figure 4.9 B highlighted with a red arrow.  

 

 

 

 

 

 

Figure 4.9 Marking of the recording location. (A) Sketch of a grasshopper brain with exact recording locations 

in lateral protocerebrum shown using green dots. (B) Marking of the recording location using electrocoagulation. 

Location is highlighted by a red arrow. 
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4.3.3 Local brain neurons recorded in anterior protocerebrum and their exact locations   

 Local brain neurons in the anterior protocerebrum were recorded in 13 preparations and data 

were evaluated from 11 preparations due to a better quality of the recording. A total of 12 local 

auditory brain units were sorted in 11 preparations from anterior protocerebrum and their intensity 

response curves were plotted as shown in figure 4.10. Eight out of 12 units showed an increase in 

response with increase in the sound intensities (Unit 1, 2, 3, 4, 5, 9, 10, and 12) for 5 kHz and 20 kHz 

stimuli. Additionally, three units (Unit 2, 6 and 7) showed optimum type response at 20 kHz stimuli. 

Most of the units (except Unit 3 and 4) showed similar responses for white noise presented from ipsi- 

and contralateral side. Unit 3 and 4 showed higher response for white noise at 60 dB SPL on ipsilateral 

side in comparison to contralateral side, while Unit 11 showed higher response for white noise on 

contralateral side in comparison to ipsilateral side at higher intensities. 

 

 

 

 

 

 

 

 

 

Figure 4.10 Intensity response curves. Plots show the intensity dependence of all sorted local brain units 

recorded from anterior brain for 5 kHz, 20 kHz and white noise stimuli. 5 kHz sine wave (25 ms) and 20 kHz 

sine wave (25 ms) stimuli were presented between 50 and 90 dB SPL, increasing in 10 dB steps from the 

ipsilateral side and broadband white noise (100 ms) stimuli were delivered between 30 and 90 dB SPL, 

increasing in 10 dB steps from the ipsilateral and contralateral side 
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 Syllable-pause tuning was checked for all the sorted units recorded from the anterior 

protocerebrum and compared with the behavior data of female Ch. biguttulus obtained from von 

Helversen (1972). Some potential dependences of the neuronal activity with different pause durations 

were seen but a clear match between the neuronal and the behavioral data was not seen in any case as 

shown in figure 4.11. 

 

Figure 4.11 Syllable-pause tuning. Plots show the neuronal response of sorted local brain units recorded from 

anterior brain to different male grasshopper model songs along with behavioral data. The average number of 

spikes from 10 repetitions is plotted against the pause durations for four different syllables. Behavior data were 

obtained from von Helversen (1972). 

 

 Syllable-gap patterns were successfully checked in four preparations and the neuronal 

response of five units was compared with the behavior data of female Ch. biguttulus (Ronacher and 

Stumpner 1988). Unit 5 showed a strong increase in the neuronal activity while Unit 1 showed a 

consistent increase in the neuronal activity with the gap durations (Fig.4.12). Unit 2 showed a decrease 

in neuronal activity with the gap durations (Fig.4.12). The neuronal responses of other units were not 

much affected by the syllables with 2 ms and 5 ms gaps. 
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Figure 4.12 Gap tuning. Plot shows the neuronal response of sorted local brain units recorded from anterior 

protocerebrum to male grasshopper model songs with 80/15 ms syllable/pause durations and variable gaps. The 

average number of spikes from 10 repetitions is plotted against the pause durations. Behavior data were obtained 

and averaged from Ronacher and Stumpner (1988). 

.  

 Figure 4.13 A provides a summary of locations in the anterior protocerebrum where auditory 

activity was recorded from local brain neurons. After recording auditory activity successfully, the 

position of the multielectrode within the brain tissues was marked by passing high continuous current 

(100 μA) for 5 minutes between one of the tungsten wires and the reference wire or between two 

tungsten wires. This procedure coagulates the brain tissue and generates a black spot in the immediate 

vicinity of the electrode as shown in figure 4.13 B highlighted with a red arrow.  

 

 

 

 

 

Figure 4.13 Marking of the recording location. (A) Sketch of a grasshopper brain with recording locations in 

the anterior brain shown using green dots. (B) Marking of the recording location using electrocoagulation. 

Location is highlighted by a red arrow 
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4.3.4 Local brain neuron showing selectivity between attractive and non-attractive stimuli 

 Clemens et al. (2014) described how the decisions of female Ch. biguttulus grasshoppers to 

reply to a male grasshopper song change when provided with attractive and non-attractive grasshopper 

songs (Chapter 4: Materials and Method). In grasshoppers, the auditory information is preprocessed 

in the metathoracic ganglion before being sent to the brain (Stumpner 1988) where the available 

information is integrated and decision to generate behavioral response is made. Since the local brain 

neurons are at higher stage, it is expected that some of the local brain neurons are directly involved in 

the decision making process. To make the neural implementation of these behavioral experiments 

(Clemens et al. 2014), I  used the same stimuli to see if there is any local brain neuron which shows 

selectivity between such attractive and non-attractive stimuli and I found one local brain neuron being 

selective between attractive and non-attractive stimuli as shown in figure 4.14. As a control, these 

stimuli were also tested on the ascending neurons (recorded in deutocerebrum) and they did not show 

any discrimination between attractive and non-attractive stimuli (Fig.4.14). Such filtering local brain 

neuron was recorded a total of four times and data were evaluated from three preparations due to better 

signal quality. Figure 4.16 shows the responses of this local brain neuron to combinations of different 

attractive and non-attractive stimuli. It can be seen that this neuron is clearly selective between 

attractive and non-attractive stimuli irrespective of the number and position of the attractive syllables. 

Figure 4.17 shows the responses of one sorted ascending neuron to different combinations of attractive 

and non-attractive stimuli. This ascending neuron was chosen from the several units in the recording to 

show clear  response differences between local brain neuron and ascending neurons for the attractive 

and non-attractive stimuli. Ascending neuron did not show any discrimination between attractive and 

non-attractive stimuli. After a successful recording, the location of the recording of this local brain 

neuron was marked using electrocoagulation and the recording location is identified close to the α lobe 

of mushroom body as shown in figure 4.15. 
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Figure 4.14 Local brain neuron showing selectivity between attractive and non-attractive stimuli. 

Recording trace of a local auditory brain neuron showing selectivity between 10 attractive and non-attractive 

syllables (above). Recording trace of the response of ascending neurons to 10 attractive and non-attractive 

stimuli as a control (below). On the right is the recording location of the local auditory brain neuron (above) and 

ascending neurons (below) in the brain of Ch. biguttulus.   

 

 

 

 

 

 

 

Figure 4.15 Marking of the recording location. (A) Sketch of a grasshopper brain with recording location of 

local brain neuron close to the α lobe of mushroom body shown as green dots (B) Marking of the recording 

location using electrocoagulation. Location is highlighted by a red arrow. 
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Figure 4.16 Peristimulus time histograms. PSTHs showing responses of one of the four times recorded local 

brain neuron to different combinations of attractive and non-attractive stimuli. Green and red line below the 

PSTH indicates attractive and non-attractive stimuli repeated 10 times respectively. (bin size: 2ms) 
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Figure 4.17 Peristimulus time histograms. PSTHs showing the responses of one sorted ascending neuron 

(control) to different combinations of attractive and non-attractive stimuli. Green and red line below the PSTH 

indicates attractive and non-attractive stimuli repeated 10 times respectively (bin size: 2ms) 
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 The neuronal responses of this local brain neuron were compared with the behavioral data of 

female Ch. biguttulus (Clemens et al. 2014) as shown in figure 4.18. The mean spike count was 

obtained from three recordings.  Local brain neuron was active when the behavioral response was 

above 50% and vice versa (Fig.4.18 left) while the activity of ascending neuron did not show such 

dependence on the behavioral response (Fig.4.18 right). 

 

 

 

 

 

 

Figure 4.18 Response tuning of a local brain neuron and ascending neuron. Left plot shows mean response 

of local brain (n=3) neuron along with the behavioral data of female Ch.biguttulus described in Clemens et. al 

(2014).  Right plot shows the mean response of one sorted ascending neuron (n=2) along with the behavior data 

described in Clemens et.al (2014). Average numbers of spikes are plotted against the attractive and non-

attractive syllables from 10 repetitions. 

  

 Additionally, gap tuning was checked for this local brain neuron (n=3) and compared with the 

behavior data of female Ch. biguttulus obtained and averaged from Ronacher and Stumpner (1988). 

This unit showed decrease in spike count with increasing duration of gaps in syllables (Fig.4.19). 

However, this decrease in the spike count with the gap duration was not as strong as in the ascending 

neuron (AN4). 
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Figure 4.19 Gap tuning. Plot shows the neuronal responses of a sorted local brain unit to male grasshopper 

model songs with 80/15 ms syllable/pause durations and variable gaps. The average number of spikes from 10 

repetitions is plotted against the pause durations. Behavior data were obtained and averaged from Ronacher and 

Stumpner (1988). 

  

 This local brain neuron was recorded four times and data were evaluated from three 

preparations due to better signal quality. Figure 4.20 shows intensity response curves of the local brain 

neuron. The local brain neuron showed an increase in the neuronal response with increase in the sound 

intensities to 5 kHz, 20 kHz and white noise stimuli. 

 

 

 

 

 

Figure 4.20 Intensity response curves. Plots show the intensity dependence of the local brain neuron for 5 kHz, 

20 kHz and white noise stimuli. 5 kHz sine wave (25 ms) and 20 kHz sine wave (25 ms) stimuli were presented 

between 50 and 90 dB SPL, increasing in 10 dB steps from the ipsilateral side and broadband white noise (100 

ms) stimuli were delivered between 30 and 90 dB SPL, increasing in 10 dB steps from the ipsilateral side 
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 Additionally, syllable-pause tuning was checked for  this local brain neuron and compared 

with the behavior data of female Ch. biguttulus obtained from von Helversen (1972). Dependence of 

the neuronal activity on different pause durations was seen but a clear match between the neuronal and 

the behavioral data was not found in any of the syllable-pause patterns as shown in figure 4.21. 

 

 

 

 

 

 

 

 

 

 

Figure 4.21 Syllable pause tuning. Plots show the neuronal responses of one sorted local brain unit to different 

male grasshopper model songs along with behavior data. The average number of spikes from 10 repetitions is 

plotted against the pause durations for four different syllables. Behavior data were obtained from von Helversen 

(1972). 
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4.3.5 Local brain neurons recorded in the central complex and their exact locations   

 Local brain neurons were recorded from the central complex in 23 preparations and data were 

evaluated in 11 preparations due to a better quality of the recording. A total of 13 local auditory brain 

units were sorted from these preparations and their intensity response curves were plotted as shown in 

figure 4.22. Seven out of 13 units (Fig.4.22 – Unit 2, 3, 5, 7, 8, 10, and 13) showed an increase in 

response with increase in intensities for 5 kHz stimuli. Six units (Fig.4.22 – Unit 1, 2, 4, 6, 11 and 12) 

showed an optimum type of response at 20 kHz stimuli. Unit 9 showed decrease in response at high 

intensities for 20 kHz stimuli. Ipsilateral and contralateral white noise stimuli were successfully tested 

in eight preparations out of 12 so only those data are shown in figure 4.22. Unit 6 showed higher 

response at intermediate intensities from ipsilateral side in comparison to contra lateral side and at 

higher intensities it reverses. This could be dues to threshold shift between left and right. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22 Intensity response curves. Plots show the intensity dependence of all sorted local brain units 

recorded from central complex for 5 kHz, 20 kHz and white noise stimuli. 5 kHz sine wave (25 ms) and 20 kHz 

sine wave (25 ms) stimuli were presented between 50 and 90 dB SPL, increasing in 10 dB steps from the 

ipsilateral side and broadband white noise (100 ms) stimuli were delivered between 30 and 90 dB SPL, 

increasing in 10 dB steps from the ipsilateral and contralateral side. 
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 Out of eight sorted units, two units (Fig.4.22 - Unit 1 and Unit 5) showed strong directional 

dependence in the response. The response of Unit 1 was clearly higher to ipsilateral side than to 

contralateral side as shown in figure 4.23 (left). The response of Unit 5 was clearly higher to 

contralateral side than to ipsilateral side at high intensities as shown in figure 4.23 (left). 

 

 

Figure 4.23 Intensity response curves. Left plot shows the directionality dependence of one sorted local brain 

unit recorded from central complex (Fig.4.22 - Unit 1) for broadband white noise (100 ms).Right plot shows the 

directionality dependence of one sorted local brain unit recorded from central complex (Fig.4.22 - Unit 5) for 

broadband white noise (100 ms).  
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 Syllable-pause tuning was checked in nine preparations and the neuronal response of 11 units 

recorded from the central complex was compared with the behavior data of female Ch. biguttulus 

obtained from von Helversen (1972). Dependence of the neuronal activity on different pause durations 

was seen but a clear match between the neuronal and the behavioral data was not seen in any case as 

shown in figure 4.24. 

 

 

 

 

 

 

 

 

 

 

Figure 4.24 Syllable pause tuning. Plots show the neuronal responses of sorted local brain units recorded from 

central complex to different male grasshopper model songs along with the behavioral data. The average number 

of spikes from 10 repetitions is plotted against the pause durations for four different syllables. Behavior data 

obtained from von Helversen (1972). 

 

 Among all the units shown in figure 4.24, one unit (Unit 10) responded with a phasic burst at 

the onset of syllables, provided that the pauses between syllables exceed a certain duration as shown in 

figure 4.25 A. In order to quantify the onset response, average number of spikes per syllable crossing 

the horizontal threshold (mean+/- 3*SD) was calculated from the PSTHs and plotted against the pause 

duration which is shown in figure 4.25 B. 
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Figure 4.25 Marking onset of syllable. (A) Plots show PSTHs of one of the sorted local brain neurons recorded 

from central complex (Fig.4.24 - Unit 12) for grasshopper model songs with 80 ms syllable and six different 

pause durations (repetitions = 10, bin size = 2ms)  (B) Spike response to the onset of the syllable quantified by 

calculating the mean spikes per syllable crossing the threshold (mean+/- 3*SD) in the PSTH marked as a 

horizontal black line. 
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 Figure 4.26 shows syllable-pause tuning of the unit described in figure 4.25 for all the 

syllable-pause durations. The mean spike count was plotted against different pause durations. Higher 

number of spikes at longer syllables and an increase in spike count with an increase in pause duration 

at all syllable durations was seen. However, not a clear match between the behavioral and the neuronal 

data was found (Fig.4.26). 

   

 

 

 

 

 

 

 

 

 

Figure 4.26   Syllable pause tuning. Plots show the neuronal response of a sorted local brain unit to different 

male grasshopper model songs along with the behavioral data. The average number of spikes from 10 repetitions 

is plotted against the pause durations for four different syllables. Behavioral data were obtained from von 

Helversen (1972). 

  

 Additionally, gap tuning was checked for all the sorted units and compared with the behavior 

data of female Ch. biguttulus obtained and averaged from (Ronacher and Stumpner 1988). Syllables 

with and without gaps were successfully tested in seven preparations. Figure 4.27 shows gap tuning of 

nine units sorted in seven preparations. Three out of nine units (Unit 1, 2, 5) showed increase in 

neuronal response with gap duration and three units (Unit 3, 4, 9) showed decrease in in neuronal 
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response with gap duration. However, this dependence on gap duration was not so strong as described 

for certain ascending neurons like AN12 and AN4 (Stumpner 1988).   

 

 

 

 

 

 

 

 

Figure 4.27 Gap tuning. Plots show the neuronal responses of sorted local brain units recorded central complex 

to male grasshopper model songs with 80/15 ms syllable/pause durations and variable gaps. The average number 

of spikes from 10 repetitions is plotted against the pause durations. Behavior data were obtained and averaged 

from Ronacher and Stumpner (1988). 

  Figure 4.28 A provides a summary of locations in the central complex where auditory activity 

was recorded from the local brain neurons. After recording auditory activity successfully, the positions 

of the multielectrode within the brain tissues were marked by passing high continuous current (100 

μA) for 5 minutes between one of the tungsten wires and the reference wire or between two tungsten 

wires. This procedure coagulates the brain tissue and generates a black spot in the immediate vicinity 

of the electrode as shown in figure 4.28 B highlighted with a red arrow.  

 

 

 

 

 

Figure 4.28 Marking of the recording location. (A) Sketch of a grasshopper brain with recording locations in 

the central complex (CC) shown as green dots. (B) Marking of the recording location using electrocoagulation. 

Location is highlighted by a red arrow.  
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4.3.6 Electrical stimulation in the auditory neuropile 

After a successful recording of auditory activity, extracellular electrical stimulation in the 

recording site was tried in 25 female Ch. biguttulus and it was successful in 21females. At the 

beginning, different current amplitudes were tested to find out the minimal current required eliciting 

stridulation and it was around 50 µA as shown in figure 4.29. The electrical stimulation was tried in 

four different regions of the brain where auditory activity can be recorded, namely posterior brain 

(deuto/tritocerebrum), lateral protocerebrum, mushroom body (anterior calyx and α lobe) and central 

complex. Stridulation can be elicited in all regions except for the mushroom body. 

 

 

 

 

 

 

 

 

Figure 4.29 Electrical stimulation in one auditory neuropile. Upper trace shows the increasing intensity of 

current pulses and the lower trace shows recording of leg movement using a position detector. The interval 

between two stimuli is around 5 s. Current was injected for at least 5 s at pulsed at 166 Hz. A position detector 

was used to detect the leg movements of the animal. The stimulation was done in the posterior brain 

(deuto/tritocerebrum). 
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4.3.7 Female Chorthippus biguttulus song structure 

 Figure 4.30 shows a typical example of electrically stimulated stridulation in a Ch. biguttulus 

female. Stimulation of descending pathways in the tritocerebrum instantly induces stridulatory hind 

leg movements. As it is typical for natural songs of this species, stridulatory  activity is structured into 

song sequences of approximately 2-3 s duration separated by pauses  of approximately 1s, that consist 

of repetitive syllables (70-120 ms duration), each containing two or three up-and-down movements of 

the hind leg.  Continuous electrical stimulation for 10 s elicited four song sequences, with the first 

sequence being of longer duration than the following ones, which is also typically observed in 

naturally singing Ch. biguttulus. 

 

Figure 4.30 Structure of a female grasshopper song elicited by electrical stimulation. In the magnified 

version below typical syllable-pause pattern can be seen. Here syllable is defined as the train of impulses 

produced by one femoral upward or downward movement (Elsner 1974). The stimulation was done in the 

posterior brain (deuto/tritocerebrum). Syllables are marked using red lines and pauses are marked with sky blue 

points. Each syllable is between 70-120 ms long while each pause is around 30-40 ms long. 
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 Additionally, sound produced by the leg movements was recorded using a microphone placed 

near the left leg of the animal. The sound of the leg movements were recorded as pulsed and irregular 

syllables by the microphone. The pulses can be grouped into syllables which are defined by the 

syllable pauses. The frequency spectrum was made from the recorded sound and most of the 

components were found in low-frequency region between 1 to 5 kHz as shown in figure 4.31. 

 

 

Figure 4.31 Recording sounds of leg movements. The sound was recorded from the movements of the left leg 

using a microphone placed near the leg. Frequency spectrum was made using the recorded sound of the leg 

movements. 
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4.3.8 Differences in the singing while stimulating different sites 

The electrical stimulation was successfully tried on three different sites in the brain namely the 

posterior brain (deuto/tritocerebrum), the lateral protocerebrum and the central complex. When 

stimulated in the deuto/tritocerebrum, grasshoppers continuously generated song sequences throughout 

the entire stimulation time of 10 s (Fig.4.32). This led to the performance of 4-6 song sequences per 

stimulus. In contrast, stridulatory activity during electrical stimulation in the lateral protocerebrum and 

the central complex stopped after 4-6 s of the 10 s stimuli and, in comparison to stimulation in the 

tritocerebrum, lower numbers of song sequences were generated in all experiments. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.32 Electrical stimulation of different auditory neuropiles.50 µA current pulses were injected at 166 

Hz in three different brain regions. A position detector was used to detect the leg movements of the animal  
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4.3.9 Locations of the stimulation sites 

 Figure 4.33 provides a summary of locations where auditory activity was recorded and 

stridulation could be induced by current injection. Stridulation could be successfully induced from the 

auditory neuropiles in the deuto/tritocerebrum, the lateral protocerebrum and the central complex. 

Stridulation could not be induced from the auditory neuropiles located in the anterior protocerebrum.  

 

 

 

 

 

 

 

 

 

 

Figure 4.33 Sketch showing locations of the stimulation sites in a grasshopper brain. Area of the mushroom 

body (shown as dotted lines) was not seen in the original electrocoagulation sections and so it is approximated 

by comparing the sections with immunofluorescence sections. Exact locations may be above or below the α lobe 

of the mushroom body 
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4.4 Discussion 

 The key to understanding the neural basis of recognition is the identification of mechanisms 

that cause “higher order” neurons to selectively respond to the same stimuli that trigger specific 

behavior (Schöneich et al. 2015). In Ch. biguttulus there is not much information available about the 

locations and functionality of such “high order” local auditory brain neurons. Here I demonstrated 

different locations in the brain of the female Ch. biguttulus from where the local auditory brain 

neurons can be recorded and stridulation can be elicited using extracellular electrical stimulation. 

4.4.1 Recording auditory activity in grasshoppers 

 Most described ascending neurons originate from the metathoracic ganglion, enter soma 

contralateral hemisphere of the brain and terminate in the lateral protocerebrum (Eichendorf and 

Kalmring 1980; Stumpner and Ronacher 1991; Kutzki 2012). The local brain neurons were mainly 

recorded from regions like lateral protocerebrum, anterior protocerebrum, and central complex. 

Additionally, the local brain neurons were separated from ascending neurons based on their longer 

first spike latencies. One important point of emphasis here is that the signal-to-noise ratio of recording 

from local brain neurons was lower in comparison to that of ascending neurons. A likely reason for 

that is that multielectrodes tend to record better signals from larger axons of neurons than from smaller 

neurites. The local brain neurons were recorded probably from smaller axons (or neurites) in the 

auditory neuropiles leads to the smaller signal-to-noise ratio. 

4.4.2 Local brain neurons recorded in the lateral protocerebrum and in the central complex 

 Since it is known that most of the ascending neurons terminate in the lateral protocerebrum 

(Eichendorf and Kalmring 1980; Boyan et al. 1993; Kutzki 2012) , the local brain neurons recorded in 

this region are likely to be directly postsynaptically connected to the ascending neurons. Such local 

brain neurons are also previously described by Kutzki 2012. Among all, there was one unit clearly 

responding with a phasic burst at the onset of syllables, provided that the pauses between syllables 

exceed a certain length. Such a local brain neuron marking onset of the syllable at longer pauses was 

also recorded from the central complex. Among all described ascending neurons, AN12 is an 
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ascending neuron with a strong phasic response produced at the onset of the syllable provided that the 

pauses between syllables exceed a certain length within a model song (Stumpner 1988; Stumpner and 

Ronacher 1991) so it is likely that these local brain neurons are directly postsynaptically connected to 

AN12.  

 Syllable-pause and gap tuning of the recorded local brain neurons were tested. There was 

some dependence found on pause and gap durations but no clear match between the behavioral and the 

neuronal data was seen. One reason is that many of the local brain neurons recorded were highly 

adapting to the stimulus and not showing any syllable pause tuning. Since in the recordings of such 

multielectrode spikes from larger axons are more likely to be represented in the recording, one may 

systematically miss spikes from neurons with smaller branches. Other problems like the sudden 

spontaneous firing of the recorded units and errors in clearly discriminating the units during the spike 

sorting can affect the spike count analysis. 

4.4.3 A local brain neuron showing selectivity between attractive and non-attractive stimuli 

 Decision making is mainly a two stage process. First, the task-relevant information is extracted 

from the input and then the extracted information is integrated to make a decision. Basically in neural 

systems performing a decision-making task, stimulus cues are extracted by sensory neurons, integrated 

over some time and combined to inform a motor action (Clemens and Ronacher 2013). This suggests 

the presence of feature detector and feature integrator neurons in the central nervous system (Clemens 

et al. 2014). Feature detector neurons are responsible for extracting the information while feature 

integrator neurons are responsible for combining the extracted information to generate a decision 

signal. In grasshopper auditory systems some neurons located in the metathoracic ganglion are 

described as a feature detector like AN4 which is selectively and strongly inhibited by interrupted 

sound pulses (syllables with shorter or longer gaps). Males with one hindleg produce gaps but these 

are relatively short and longer gaps may come from males with poor immunocompetence (Ronacher 

and Stumpner 1988). In grasshoppers auditory systems, the features of a song are detected at the 

metathoracic ganglion and all these features are integrated in the brain to generate a decision 

(Stumpner and Ronacher 1994). Since the local auditory neurons are located in the brain, some of 
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them are expected to be directly involved in the decision-making process. I found one local brain 

neuron close to the α  lobe of mushroom body clearly discriminating between attractive stimuli (high 

frequency components without any gaps) and non-attractive stimuli (contains low frequency 

components with gaps in the syllable) and showing a match with the behavior of female Ch. biguttulus 

described in Clemens et al. (2014). Additionally, this neuron showed dependence for syllable-gap 

patterns and so it is likely that this local brain neuron is getting also input from AN4. However, this 

neuron did not show clear syllable-pause tuning. This suggests that this local brain neuron relied only 

on the features like frequency and gap durations of the song and therefore it cannot be the grand 

"integrator neuron”, assuming the presence of an integrator neuron in the brain.  

4.4.4 Electrical stimulation of auditory neuropiles 

 In grasshoppers, the neuronal network that suffices to generate the species-specific excitation 

pattern is located in the metathoracic ganglion and  is controlled by command neurons descending 

from the brain (Hedwig 1994; Hedwig and Heinrich 1997). Extracellular electrical stimulation of the 

brain generating specific motoric behavior  has been previously described by Wadepuhl (1983) in the 

grasshopper Gomphocerus rufus. He explored the influence of the brain on the acoustic behavior of 

the grasshopper by means of local electrical stimulation using sharpened metal wires. He successfully 

induced stridulation by stimulating auditory neuropiles in the central complex and mushroom body 

regions in the brain of grasshopper Gomphocerus rufus.  Here I used multielectrodes and successfully 

induced stridulation by stimulating higher auditory neuropiles (lateral protocerebrum and central 

complex) and the command systems (deuto/tritocerebrum) in the grasshopper Ch.biguttulus. One point 

of emphasis here is that injecting higher current (100 μA) apparently also leads to neuronal damage at 

the stimulation site. Additionally, using such extracellular stimulation it is also difficult to assess the 

effects of the current spread at the recording sites (e.g. number of neurons which are indeed 

depolarized at the stimulation sites). 

 The generated stridulatory pattern was always subdivided into song sequences separated by 

intervals about 1 s. Such songs are typical for Ch. biguttulus males and females and are also seen in 

pharmacological experiments done by Heinrich et al. (1998) and Weinrich et al. (2008). During 
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electrical stimulation in the deuto/tritocerebrum, grasshoppers persistently generated song sequences 

(4-6 songs) throughout the entire stimulation. This was in contrasts to stridulatory activity during 

stimulation in the lateral protocerebrum and the central complex where stridulatory activity stopped 

after 4-6 s of the 10 s stimulus. Stimulation of lateral protocerebrum or central complex suggests direct 

activation of local brain neurons which provides input to the descending command neurons. Such local 

brain neurons involved in song recognition have also been described for Ch. biguttulus by Hedwig 

(2001). He intracellularly stimulated a local brain neuron and induced stridulation with a certain delay 

and the stridulation continued even after stimulation was stopped. Stimulating the posterior brain 

(deuto/tritocerebrum) generated stridulation during the complete stimulus suggesting direct activation 

of descending command neurons independent of any control from local brain networks.  

4.5 Outlook 

 The data presented in this chapter demonstrates some locations at which local auditory brain 

neurons can be recorded and where stridulation can be elicited. These locations could be used in the 

future to record and stain neurons using intracellular techniques to understand the morphology and 

neuronal basis of song recognition.  
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Abstract   

Currently, more and more laboratories are acquiring the capability of simultaneously detecting 

the extracellular activity of neuronal populations in anaesthetized and awake animals by 

multielectrode recordings. In insects, multielectrode recordings are challenging due to the small size of 

the nervous system. Nevertheless, multielectrode recordings have been successfully established in 

brains of cockroaches, honeybees, fruit flies and grasshoppers to study sensory processing related to 

mechanosensation, olfaction, vision and audition. The number of neurons which can be recorded using 

such multielectrode did not exceed 5 and likely depends on factors like recorded compartment of the 

neuron, impedance of the multielectrode, number of wires included in the multielectrode and threshold 

for spike detection. Signal-to-noise ratio (SNR) of the recordings obviously depends on the material 

and method used for production of multielectrodes. To mark the location of the recording, different 

methods like current-driven copper deposition, labelling with fluorescent dye and electrocoagulation 

of nervous tissue are used. As expected, multielectrode recordings are more difficult in freely moving 

compared to restricted insects due to movement artifacts and requirement for fixed placement of the 

multielectrode at a particular recording site in the CNS. Specific differences among different 

preparations and sensory systems like disentangling spike collisions in auditory stimulation increase in 

SNR after some time in olfactory systems and photoelectrical effect from compound eye in visual 

stimulation may require special attention and particular adaptations. 

 

 

 

 

 

 

 



                                                     Chapter 5: Mini review: Multielectrode recordings in insect brains 

 

124 
 

5.1 Introduction 

 One of the major developments in the field of neurophysiology is the use of multielectrodes 

(or tetrodes in case of four wires) to simultaneously monitor spiking activity of  populations of 

neurons (Wise and Angell 1975; Recce and O’Keefe 1989) which is used to study  fundamental 

aspects of the functional organization of the nervous system. Long term multielectrode recordings 

have become routine in mammalian neurophysiology (Nicolelis et al. 1993; Welsh et al. 1995) and at 

present a large variety of experimental conditions are applied, which include in-vitro preparations 

using culture or brain slices (Gross et al. 1982; Potter 2001), acute and chronic recordings in 

anesthetized animals (Ghazanfar and Nicolelis 1997), long term recordings in behaving animals 

(Laubach et al. 2000) and even short term neurophysiological monitoring in human subjects (Kreiman 

et al. 2000). However, in insects multielectrode recordings still remain a challenge due to the smaller 

size of their nervous system. Intracellular recordings with sharp electrodes are very popular in insects 

since they provide very detailed data on identified neurons. However, this technique is usually limited 

to one cell at a time (very rarely more), requires a restrained animal and can typically only be 

stabilized for relatively short periods of time.  

 Over the last decade considerable attention has been directed on how populations of neurons 

encode and process different aspects of a sensory stimulus in insects. So far, intracellularly recording 

single units in several individuals or in one individual successively is a widely used method to analyze 

their potential combined activity (Meckenhäuser et al. 2014; Schöneich et al. 2015). However, this 

method suffers from the limitations like trial-to-trial and interindividual neuronal variability (Ronacher 

et al. 2004).  In order to analyze the activity of populations of neurons, however, it would be more 

appropriate to record the activity of several neurons at the same time in the same individual (Bhavsar 

et al. 2015a). Multiunit recordings using combined single wires (multielectrodes) can serve this 

purpose. They allow recording the activity of multiple neurons from a particular recording site via a 

bundle of 3-4 closely located insulated microwires. Association of spikes with single neurons  relies 

on the fact that both amplitude and shape of spikes change with distance and tissue conductivity 

between the electrode tip and the cell (Gray et al. 1995; Harris et al. 2000). Since every cell will be at 
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a different distance from the different contact sites of the electrodes, it will be recorded with a 

different shape and amplitude at the tips of the wire of a multielectrode. Recordings with this method 

are typically much more stable than intracellular recordings (Bhavsar et al. 2015a) allowing for long 

term analysis of the recorded units. In insects, few research groups have successfully used this method 

for studying mechanosensory processing in cockroaches (Ritzmann et al. 2008), olfactory processing 

in honeybees (Brill et al. 2013, 2014; de Camp 2013; Duer et al. 2015) and locusts (Saha et al. 2013; 

Aldworth and Stopfer 2015), visual processing in fruit flies (Zhong et al. 2014) and auditory 

processing in the grasshoppers (Bhavsar et al. 2015a). Here we discuss the questions they studied in 

different sensory systems and adaptations they had to make to solve specific problems with using 

multielectrode recordings in small insects. 

5.2 Type of material used for production of multielectrodes 

 Multielectrodes are typically made from copper, tungsten or nickel-chromium (NiCr) wires. 

However, signal-to-noise ratio of the recordings differs when using these different metals for 

multielectrodes. Signal-to-noise ratio (SNR) generally means the dimensionless ratio of signal power 

to noise power. It allows quantifying the size of  signal relative to the fluctuations (called noise) that 

are outside experimental control (Schultz 2007).  High SNR determines the quality of the 

electrophysiological recordings and the ability to extract and sort single spikes from background noise. 

The SNR depends on factors like impedance and diameter of the multielectrode, recorded 

compartment of the neurons and the distance between the neuron and the tip of the electrode. Among 

these, the impedance of the multielectrode is likely the most influencing factor.  It has been shown in 

Bhavsar et al. (2015a) that for example 12 µm tungsten wires gave better SNR (> 2)  than 15 µm  

copper wires (< 1.5) which is likely due to the lower resistance of tungsten wires (40 - 70 kΩ)  
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Figure.1 Schematic drawing of a multielectrode (Tetrode with 4 wires) placed near the bundle of 3 axons 

in invertebrate nervous tissue. The differences between the channels are typically subtle. The black line 

represents the stimulus. The closer the recorded neurons are positioned to the electrode, the stronger and better 

signal-to-noise ratios can be achieved. What ultimately leads to principle differences in spike shape is not 

known.   

compared to wires (200-700 kΩ). Additionally, higher tensile strength of the tungsten wires compared 

to copper wires eases penetration of the tissue and enables the repeated use of one produced 

multielectrode in multiple experiments. Another method for getting higher SNR in multielectrode 

recordings is electroplating the recording tip of the multielectrode using noble metals like iridium, 

gold or platinum. Such an electroplating process basically uses current to reduce dissolved metal 

cations so that they form a noble metal coating on the electrode. Zhong et al. (2014) have used iridium 

oxide (IrO2) films which were deposited at the tip of four 17 µm insulated NiCr wires by an anodic 

deposition process with an electrochemical work station at room temperature. The impedance of the 

IrO2 modified electrode was almost reduced to 10% of an unmodified NiCr multielectrode. 

Benefitting from the decreased impedance of the electrodeposited IrO2 films, the SNR was increased 

to 7.5 which was the highest SNR described in all studies. However, one of the pitfalls of this method 

is that it is required to plate the multielectrode again after each use because of the low durability of the 
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plating metal (Desai et al. 2010). Another method to decrease the impedance of multielectrodes is by 

changing their charge capacity for example with the equipment NanoZ (Neuralynx – Bozeman, USA). 

It increases the charge capacity of the multielectrode by passing bipolar, constant current square waves 

to each wire of the multielectrode (User Manual NanoZ). The average decrease in resistance of 

multielectrodes after using NanoZ was 30% from the original resistance. 

  One point of emphasis during production of multielectrodes is the fragile nature of these 

microwires. They are easily bent or damaged if  not carefully handled during production and 

implantation (Guo et al. 2014; Bhavsar et al. 2015a). Wires may be carefully retracted from the 

preparation after the experiment is completed, allowing for two or three uses. After each use the tip 

must be cut or cleaned in an  ultrasound waterbath to remove any deposit from the tip and plating 

needs to be refreshed before each use (Guo et al. 2014). 

5.3 Number of neurons that can be recorded using multielectrodes 

 The number of neurons that have been simultaneously recorded with sufficient quality to be 

isolated as one unit is up to five (Brill et al. 2013; Zhong et al. 2014, Bhavsar unpublished). It depends 

on different factors like recording compartment of the neuron, impedance of the multielectrode, 

number of wires of the multielectrode and threshold of spike sorting. For example, in the grasshopper 

auditory system around 20 auditory neurons ascending from the thorax form  a bundle that enters each 

hemisphere of  the brain (Stumpner and Ronacher 1991b; Kutzki 2012). Since the larger axons of 

ascending auditory neurons generate larger amplitude action potentials, it is possible to record up to 

five ascending auditory units using multielectrodes with good SNR. However, in a neuropile recording 

electrical activity recording from smaller dendrites may include more cells but SNR will be low. 

Another important factor affecting the number of neurons is the impedance of the multielectrode. This 

has been shown in Zhong et al. (2014) : they were able to record from 5 different neurons using low 

impedance fabricated IrO2 stereotrodes. The number of neurons that can be distinguished also depends 

on the number of wires used in the production of the multielectrode. It is obvious that with a larger 

number of wires, more neurons can be detected. For insect brains it is always advisable to use only 3 

to 4 wires per multielectrode, since with increasing number of wires the total diameter of the tip also 
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increases and therewith also the amount of damage to the nervous tissue during electrode insertion. 

This is seen especially in very small  brains  of Drosophila melanogaster (Left-right diameter 600 µm) 

where stereotrodes made of NiCr wires having total diameter of at least 34 µm were described as 

being still too large for recordings due to insertion damage - even though recordings were with good 

SNR (Zhong et al. 2014; Lu Yi - personal communication). Threshold of spike detection during spike 

sorting is a further important factor influencing how many units can be sorted from the recording.  A 

common criterion has been established to choose the threshold as a multiple of an estimate of the 

standard deviation  (SD)  of the noise (noise indicates activity that is not related to the stimulus), i.e., 

threshold = mean (±) k * SD , where k is a constant (Rey et al. 2015). Choosing the value of k is 

critical: if the value is too low, noise fluctuations will be interpreted as spikes and if it is too high, too 

many low amplitude spikes will be missed which eventually decreases the number of detected units. 

Brill et al. (2013) and Bhavsar et al. (2015a)  showed that a value of  k = 3 provided the best 

compromise between avoidance of noise fluctuations and detection of spikes in honeybees and 

grasshoppers. However, higher values like k = 4.5  applied by (Zhong et al. 2014) have also given 

satisfactory results in fruit flies due to the high SNR of their recordings. 

5.4 Methods to mark the location of the recordings 

 One of the major limitations of multielectrode recordings is that the morphology of the 

recorded neurons remains unknown unlike in intracellular recorded neurons which often are stained 

following physiological characterization. However, there are some methods available to at least mark 

the position of the tip of the multielectrode. Such information about the location of the recording can 

be used to search for neurons with sharp electrodes and fill them with dye during intracellular 

recordings. For the visualization of the recording site after a successful extracellular recording, three 

methods have been used, each with particular merits and demerits. 

 The first method is electrical current-driven deposition of copper from copper plated NiCr 

wires as described by Bender et al. (2010) and Mizunami et al. (1998) . At the end of the recording 

experiment, a 10µA, and 5ms DC current for 5 seconds was passed between one of the tetrode wires 

and the reference electrode to deposit copper at the recording site. Concentrated brownish deposits 
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occurring in several adjacent serial sections were identified as the recording location. This method was 

also tried by Bhavsar et al. (2015a) using unplated copper wires on the grasshopper brain. However, 

results were not reproducible. The likely explanation is that the maximum current which can be passed 

via such small diameter unplated copper wires did not dissociate sufficient copper at the recording site. 

Another explanation could be that the copper from s solid wire can be dissolved with less efficiency 

than from the plated material at the tip of the multielectrode. 

 A second method for marking the recording location is the application of fluorescent dyes like 

Alexa hydrazide (Brill et al. 2014), green fluorescent Nissl stain (Zhong et al. 2014) or lucifer yellow 

(Bhavsar et al. 2015a). In  grasshoppers, after a successful recording, the multielectrode was retracted 

from the brain, dipped into the fluorescent dye and reinserted to the previous location until the 

auditory  activity was detected again (Bhavsar et al. 2015a).  The electrode was kept at this position 

for 10 s to let the dye diffuse into the tissue. Then with the electrode still in place, a drop of 

Paraformaldehyde (PFA, 4%) was added to fix the dye in the tissue and prevent extensive diffusion of 

the dye. This method introduces some uncertainty about the exact recording site since the electrode 

was removed for dipping in the fluorescent dye and then reinserted. However, in the grasshopper brain  

recording of auditory activity was re-established immediately in all preparations suggesting that the 

multielectrode was reintroduced to its previous recording position with reasonable precision (Bhavsar 

et al. 2015a). 

 The third method is electric coagulating of brain tissue by passing high current for several 

minutes, either between one of the tungsten wires and the reference wire (Bhavsar et al. 2015a) or 

between two tungsten wires (Bhavsar  unpublished). The high current (100 µA) coagulates the brain 

tissue and generates a black spot at the recording location. This method harbors the risk of damaging a 

larger volume of tissue around the electrode which may go along with shrinkage and deformation. So 

one needs to control the time of current injection to have reliable results without destroying the brain. 

Accumulation of gas bubbles at the deposition site may serve as a good indicator for sufficient current  
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injection. A clear advantage of this method (and the first one mentioned) compared to the previous one 

is a marking procedure without any changes of electrode position. 

5.5 Recording in freely moving insects vs recording in restrained insects 

 Obviously, multielectrode recordings in freely moving insects are more challenging than in 

restrained insects, since small movements of the brain relative to the electrode impair the recording. 

Nevertheless, such recordings have been successfully performed in honeybees (de Camp 2013; Duer et 

al. 2015) and cockroaches (Guo and Ritzmann 2013; Guo et al. 2014). Most importantly after 

insertion, the multielectrode must be fixed to stay at the same position during the subsequent recording 

period. For this, two component silicon glue is applied around the electrodes into the hole of the head 

capsule (de Camp 2013; Duer et al. 2015). It turned out to be important to remove all the hemolymph 

surrounding the brain before applying the glue so that the glue can harden quickly (Duer et al. 2015). 

Another option for fixing the multielectrode at the recording site is to use hot dental wax (Guo et al. 

2014). The number of wires used to produce multielectrodes also affects the recording in freely 

moving insects. Duer et al. (2015) observed that the honey bee was not moving freely with tetrodes 

since these were too heavy. Therefore, the number of wires in a multielectrode was reduced to two. 

Also the length of the multielectrode must be adjusted in a way that the animal can move freely in the 

setup without restrictions and without getting entangled in the wires (Guo et al. 2014). Guo et al. 

(2014) performed recordings from mechanosensory units from the central complex of 50 freely 

moving cockroaches and none of the experiments was terminated because the cockroach damaged the 

wire sets. Nowadays, wireless electrophysiological systems are commercially available  which could 

be more appropriate for small freely moving animals (Harrison et al. 2011; Ghomashchi et al. 2014), 

but they suffer from limitations like time of data acquisition, battery life and weight (Guo et al. 2014). 

 In comparison to freely moving insects, the multielectrode recordings in restrained insects are 

relatively easy and straightforward. The animal can be anesthetized for fixation and appendages may 

be cut to reduce movements (Brill et al. 2014). Before the insertion of the multielectrode, the brain is 

typically supported by a metal platform (Saha et al. 2013; Bhavsar et al. 2015a) to reduce  its 

movements as much as possible. In restrained animals one has an additional freedom to record from 
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more than one area of the brain in the same animal provided that the electrode insertion induces only 

minor damage. As useful as these restrained preparations have been and will continue to be, they do 

present some limitations. The sensory processing depends on the behavioral state and often is limited 

by restraint. In such restrained conditions the behaviors that the insect can perform - if at all - are 

limited as well. Most restrained preparations are “open loop“, that is, they do not allow for normal 

movement-related feedback to the system (Guo et al. 2014).  

5.6 Specific differences between the species and sensory systems 

 Multielectrode recordings in insects were mainly used in studies of   sensory processing (see 

introduction). Specific differences that affect the analysis of data from multielectrode recordings have 

been detected in the processing of information from different sensory modalities. For example, while 

recording from olfactory neurons in a honeybee (Brill et al. 2013), the  SNR of the recording  

improved  over 15 -30 minutes after inserting the multielectrode in the brain.  This is due to the fact 

that the hemolymph or ringer surrounding the brain can prevent the electrodes from making a tight 

contact with glia and neurons. As time passes, the ringer evaporates away and the electrodes get closer 

to the neurons which will eventually lead to an increased SNR.  

 In auditory processing it is seen that the auditory neurons tend to fire with similar latency 

especially at the beginning of the acoustic stimuli because of the tight coupling between the response 

and the temporally precise stimuli (Bhavsar et al. 2015a). Such coupling will lead to complex spike 

shapes known as collisions due to spike overlap. Therefore, it is equally important to extract such 

spike collision from the recording to reduce the loss of important information (Lewicki 1998). 

Surprisingly spike collision analysis was not performed by most of the studies. The likely reason is, 

that relevant spike collisions are not as frequent in other systems as in auditory systems due to less 

precise coupling of activity of several neurons to a stimulus (Roy Ritzmann - personal 

communication). Nevertheless, the importance of extracting overlapping spikes should not be 

overlooked since it may provide additional useful information. 
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  Brill et al. (2013) used differential (pairwise subtracted) channels for the spike sorting that 

contained reduced noise without compromising spike detection too much. However, this is helpful 

only when the stimulus related activities recorded by the channels are very different. In case of similar 

activity recorded on different channels (see Fig.1),  subtraction also reduces the specific stimulus-

related activity and hence is not recommended (Bhavsar et al. 2015a).  

 Zhong et al. (2014) observed a special problem related to optical stimulation, a photoelectrical 

effect while recording with multielectrodes from the compound eye of the fruit fly Drosophila 

melanogaster. During stimulating with blue light, the metals (NiCr) used for the production of 

multielectrode emit electrons when light shines upon them which affect the potential of the 

photoreceptors.  

5.7 Conclusion 

 Here, the pros and cons of multielectrode recordings in different sensory systems were 

reviewed. Lower resistance wires like tungsten or gold plated NiCr are probably best suited for 

multielectrode recordings. Compared to other physiological recording techniques in insects, 

multielectrode recordings ensure long-time access to population neuronal activity in behaving insects. 

Multielectrode recordings can also be successfully applied to freely moving insects. A major pitfall is 

missing neuronal identification as compared to intracellular studies. In the ideal case, both studies are 

combined in the same species and may allow identification of neurons based on their physiology also 

in multielectrode recordings. Interindividual neuronal variability, however, may be the main obstacle 

in this approach. 
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6.1 Multielectrode recordings from auditory neurons in the brain of a small grasshopper 

 Three 12µm tungsten wires (combined in a multielectrode) were used to record from local 

brain neurons and from a population of auditory neurons entering the brain from the thorax. Spikes of 

the recorded units were separated by sorting algorithms and spike collision analysis. The tungsten 

wires enabled stable recordings with high signal-to-noise ratio. Due to the tight temporal coupling of 

auditory activity to the stimulus spike collisions were frequent and collision analysis retrieved 10–15% 

of additional spikes. Marking the electrode position was possible using a fluorescent dye or 

electrocoagulation with high current. Physiological identification of units described from intracellular 

recordings of ascending neurons was hard to achieve. 12 µm tungsten wires gave a better signal-to-

noise ratio than 15 µm copper wires previously used in recordings from bees’ brains. Recording the 

population activity of auditory neurons in one individual prevents interindividual and trial-to-trial 

variability which otherwise reduce the validity of the analysis. Double intracellular recordings have 

quite low success rate and therefore are rarely achieved and their stability is much lower than that of 

multielectrode recordings which allows sampling of data for 30 min or more. 

6.2 Population coding among ascending neurons in the brain of a small grasshopper 

 In the brain, information is represented by activity occurring over populations of neurons 

(Gerstein et al. 1985; Sanger 2003; Houghton and Kreuz 2013; Kobayashi et al. 2013). Understanding 

the encoding of information in neural population activity is important for understanding fundamental 

computations underlying brain functions (Quian Quiroga and Panzeri 2009). I tried to understand 

population coding among ascending neurons in the brain of female Ch.biguttulus using multiunit 

recordings. The identification of ascending neurons just by comparing the physiology to intracellularly 

recorded neurons turned out to be difficult due to inter-trial and interindividual variability. Also, PCA 

classification of the sorted units using just four feature vectors did not give satisfactory results so the 

summed response of sorted units has been analyzed without identification. Data has been analyzed for 

syllable pause and gap tuning. Clear syllable-pause or gap tuning was not seen except few data 

showing partly correlations. Likely reasons could be the complexity of a grasshopper song and 
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limitation of a multielectrode to record from smaller axons. Song identity was decoded using single 

and multi-neuronal confusion matrices. 40% of the all data sets showed an increase in mutual 

information. The decoding performance improved when comparing single units to population of up to 

4 units, which indicates that a population code takes place among ascending neurons. However, rest of 

the data did not show any improvement in decoding performance and this is likely due to these data 

representing neurons not encoding features like syllable and pause. In future, it would be interesting to 

analyze the population response to more realistic stimuli. 

6.3 Recordings and electrical stimulation of local auditory neurons in the brain of a small 

grasshopper 

 The key to understanding the neural basis of recognition processes is the identification of 

“high order” brain neurons which selectively respond to same stimuli that trigger specific behavior 

(Schoneich et al. 2015). Here, I recorded from local auditory brain neurons in the lateral 

protocerebrum, anterior brain and central complex. The local brain neurons were separated from the 

ascending neurons based on their longer spike latency. The signal-to-noise ratio was low while 

recording from the local brain neurons in comparison to ascending neurons. Local brain neurons 

recorded from lateral protocerebrum and central complex were found marking onset of the syllables 

and encoding directionality of the stimulus. Additionally, one local brain neuron was found showing a 

selective response to artificial grasshopper songs made from attractive and non-attractive stimuli. This 

local brain neuron also showed reduced response to the syllables with gaps. Extracellular electrical 

stimulation was tried mainly in lateral protocerebrum, central complex and posterior regions of deuto-

tritocerebrum. Stimulating the posterior regions (likely stimulating command neurons) generated 

continuous song sequences throughout the stimulation while stimulating central complex or lateral 

protocerebrum (likely stimulating local neurons) generated singing only for first 2-3 s of stimulation. 

Differences in stridulation while activating local brain neurons and command neurons suggests that 

the stridulation is likely controlled by the higher centers in the brain located in the central complex and 

lateral protocerebrum.  
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Codes 

Splitting Spike collisions (Spike2) 

var ss%;                    ' handle of spike shape dialog 

var num%; 

var data%; 

var chan%; 

var lastCh%; 

var list%[33]; 

var ok%; 

var text$; 

var ct%; 

var MeanWdt%:=1; 

var minErr := 1; 

var maxErr := 1.5; 

var SplitId%:=1; 

 

Data%:=FrontView(); 

 

If viewkind(data%)<> 0 then 

    Message("Not a data view. Halting"); 

    Halt; 

Endif 

Chanlist(list%[], 16); 

If list%[0] = 0 then 

    Message("No WaveMark channels available. Halting"); 

    Halt; 

endif 

 

Chan%:=List%[1]; 

Ct%:=Count(list%[1], 0, MaxTime()); 

text$:=Print$("Total spikes %d", ct%); 

       num%:=ct%; 

 

DlgCreate("Setup");  'Start new dialog 

DlgAllow(0, 0, Change%); 

DlgChan(1,"Channel to process", 16+4096+16384+2097152); 

DlgInteger(2,"Number of spikes to process",1, ct%); 

DlgLabel(3, Text$); 

DlgCheck(4, "Mean width"); 

DlgReal(5, "Choose Mean error limit", 0, 100); 

DlgCheck(6, "Split as ideal?"); 

 

DlgButton(1,"OK"); 

DlgButton(0,"Cancel"); 

 

 

 

ok% := DlgShow(Chan%, Num%, Text$, MeanWdt%, minErr, SplitId%); 

 

 

ss% := SSOpen(1,1);         ' Open an Edit WaveMark dialog 

SSChan(chan%); 

if ss% < 0 then halt endif;  

SSButton(13,1);             ' Set collision analysis mode 
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if MeanWdt% = 1 then 

    SSButton(14,1); 

else 

    SSButton(14,0); 

endif 

 

if SplitId% = 1 then 

    SSButton(15,1); 

else 

    SSButton(15,0); 

endif 

 

 

var n%,n1%,n2%,p1,p2,err; 

var i%; 

var j%; 

 

  

 

for i% := 1 to Num% do  'go through all the wave marks 

     

    n% := SSColInfo(err,n1%,n2%,p1,p2); 

     

    if (n% = 2) and (err > minErr) then ' if err is in between 0.2 and 2.5 

         

        SSColApply(2); 'apply the best match criteria to split the spike           

         

        PrintLog("%10.5f %5.2f %2d %2d %5.2f %5.2f\n",      

        View(ViewLink()).Cursor(0), err, n1%, n2%, p1, p2); ' write the locations of the found collisions in the log 

window, min error, and the classes in which it is splitted 

          

    endif; 

     

    SSRun(1);                    ' step to the next item 

next; 

 

Func Change%(item%); 

Var val%; 

Var New$; 

 

If item% = 1 then 

    Chan%:=Dlgvalue(1);  

    if lastCh% <> Chan% then 

        ct%:=Count(Chan%, 0, maxtime()); 

        New$:=Print$("Total spikes %d", ct%); 

        DlgValue$(3, New$); 

        LastCh%:=Chan%; 

    endif     

endif 

return 1 

end 

 

 

View(App(3)).WindowVisible(0);     
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