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Abstract
We consider Ore monoid actions in a certain bicategory of étale groupoids Gprop.
Examples of such actions include self-similar groups, higher rank graphs and
actions of Ore monoids on spaces by topological correspondences. We prove that
every Ore monoid action in Gprop has a colimit. We construct a functor from
Gprop to the bicategory of C∗-correspondences Corr. We prove that this functor
preserves colimits of Ore monoid actions. We write the colimit of an Ore monoid
action concretely, and in doing so provide a groupoid model for the Cuntz–Pimsner
algebra of the product system associated with the action. In the second part of
this thesis, we study colimit equivalence in the bicategories Corr and Gr. We
show that under certain assumptions on a diagram, cofinal subdiagrams have
equivalent colimits. This generalises the notions of shift equivalences of graphs
and C∗-correspondences.



Acknowledgments
First and foremost, I am using this opportunity to express my sincere gratitude
to my main supervisor, Prof. Dr. Ralf Meyer for his guidance, patience and
encouragement.
I am grateful to Prof. Dr. Alcides Buss who has agreed to be a second referee

for this thesis.
I am also thankful to the people at the Mathematisches Institut in Göttingen

for providing the great environment for research.
Finally, I especially thank my parents, my brothers, my sister and my close

friends for their invaluable support.





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The bicategory of groupoid correspondences . . . . . . . . . . . . . 3
1.3 Colimit equivalent dynamical systems . . . . . . . . . . . . . . . . 5
1.4 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Groupoid bicategories and the bicategory of C∗-correspondences 9
2.1 Bicategories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Groupoid correspondences . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Groupoid correspondences . . . . . . . . . . . . . . . . . . . 16
2.2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 The composition of groupoid correspondences . . . . . . . . . . . . 20
2.4 Bicategories of groupoid correspondences . . . . . . . . . . . . . . 22
2.5 The functor to Corr . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 Diagrams and colimits . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6.1 Diagrams of groupoid correspondences . . . . . . . . . . . . 30
2.6.2 Diagrams of C∗-correspondences . . . . . . . . . . . . . . . 33
2.6.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Actions of Ore monoids 37
3.1 Ore monoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Actions of Ore monoids by tight correspondences . . . . . . . . . . 39

3.2.1 The construction of the colimit groupoid . . . . . . . . . . . 41
3.2.2 Properties of the colimit groupoid . . . . . . . . . . . . . . 48
3.2.3 Product systems associated with tight Ore monoid actions . 51

3.3 Actions of Ore monoids by proper correspondences . . . . . . . . . 56
3.3.1 Tightening a proper Ore monoid action . . . . . . . . . . . 56
3.3.2 The product systems . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4.1 Actions by local homeomorphisms . . . . . . . . . . . . . . 69
3.4.2 Self-similar group actions . . . . . . . . . . . . . . . . . . . 71

4 Colimit equivalent diagrams 77
4.1 Colimit equivalent diagrams in general bicategories . . . . . . . . . 77

1



Contents

4.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2.1 Shift equivalence of C∗-correspondences . . . . . . . . . . . 85

2



1 Introduction

1.1 Motivation
If a locally compact group G acts on a locally compact Hausdorff space X by
homeomorphisms, one can form the full crossed product GnC0(X) of C0(X) by G.
We think of GnC0(X) as a skew tensor product of the full group C∗-algebra C∗(G)
with C0(X). A celebrated result of Rieffel [42] shows that C0(X/G) is Morita
equivalent to Gn C0(X) when the group action is free and proper. This suggests
to call the crossed product G n C0(X) a noncommutative quotient, see [12, 21].
So from the point of view of noncommutative geometry, the crossed product
G n C0(X) replaces the quotient space X/G. If the group G acts freely and
properly on X, then X/G is Hausdorff. But what happens for non-Hausdorff
quotients? In such cases the quotient space is not suitable to encode the group
action, as we will illustrate in the following example. Let θ ∈ R be a fixed real
number. We consider the rotation action of Z on the unit circle T given by

(n, z) 7→ e2πinθz.

If θ is a rational number then the quotient space T/Z is a circle. Hence

′′C(T/Z)′′ := {f ∈ C(T) | f(nz) = f(z) for all n ∈ Z, z ∈ T} ∼= C(T).

If θ is irrational then the action is free, but not proper; the quotient space T/Z
has only two open sets and therefore ′′C(T/Z)′′ ∼= C. In both cases, the crossed
product Z n C(T) is isomorphic to the noncommutative torus Aθ.
There is, however, a natural groupoid G nX associated with an action of G

on X which may replace X/G. The object space of G nX is X and the arrow
space is G×X. The source and range maps are

r(g, x) = g(x), s(g, x) = x

and the multiplication map is

(g, x)(h, y) = (gh, y)

if h(y) = x. The inverses are defined by (g, x)−1 = (g−1, g(x)). While the
groupoid GnX remembers the isotropy groups, the quotient space X/G totally
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1 Introduction

forgets this information. Moreover, C∗(G n X) is isomorphic to G n C0(X).
This makes G n X the right object to study from the perspective of noncom-
mutative geometry. Another reason to use a groupoid as a middle step when
associating a C∗-algebra to given topological data is the well developed theory
of groupoid C∗-algebras. The existence of a groupoid model for a C∗-algebra
allows to use the general theory of groupoid algebras to study its basic structural
properties, such as simplicity, nuclearity or pure infiniteness.

In the previous example, we started with an action of a group on a space. This
is an instance of a reversible dynamical system. A prototype for a non-reversible
dynamical system can be obtained from a bouquet of n loopsX over a vertex {?} for
a fixed natural number n ∈ N. This corresponds to an action of N on the set {?} by
the graphX : {?} → {?}, where a natural number k ∈ N acts on {?} by the product
space Xk realised as a bouquet of nk loops over {?}. The graph X : {?} → {?}
gives a C∗-correspondence Cn : C → C, see Section 2.5. The Cuntz-algebra On
is the right C∗-algebra to associate with the correspondence Cn : C → C. It
is generated by isometries S1, . . . , Sn such that

∑n
i=1 SiS

∗
i = 1. There is also a

groupoid GX , the Cuntz groupoid, associated with the graph X with C∗(GX) ∼= On,
see [40, p. 140].

The construction of the Cuntz algebra has been generalised to what is now called
Cuntz–Pimsner algebras, which were introduced by Pimsner in [39]. Pimsner
constructs a C∗-algebra from a C∗-correspondence over a C∗-algebra. Cuntz–
Pimsner algebras have been receiving continuous interest as generalised crossed
products associated to possibly non-invertible, singly generated C∗-dynamics. An
action by a C∗-correspondence is equivalent to an action of the monoid N. Actions
of a general monoid may be defined by putting together several C∗-correspondences
in a suitable way. The correct definition is that of an (essential) product system
over the monoid; product systems were introduced by Fowler [17], who was inspired
by earlier work of Arveson [3]. We have shown in [2] that the Cuntz–Pimsner
algebra of a product system is the right analogue of the crossed product for monoid
actions by proper C∗-correspondences.
An important source of product systems is monoid actions by topological cor-

respondences. A topological correspondence is a quadruple (E, V, r, s), where E
and V are locally compact spaces, r : E → V is a continuous map and s : E → V
is a local homeomorphism. An action of an Ore monoid P on a space X by
topological correspondences gives rise to a product system in the bicategory of
C∗-correspondences. One of our main results in [1] is the construction of a groupoid
model for the Cuntz–Pimsner algebra associated to such a product system. This
generalises constructions for graph algebras [23] and higher-rank topological graph
algebras [46]. As we will be working simultaneously on two tracks–on the groupoid
level and on the C∗-algebraic level–it is helpful to keep in mind the following
diagram regarding C∗-algebras associated with Ore monoid actions by topological
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1.2 The bicategory of groupoid correspondences

correspondences.

Ore monoid action by topological correspondence

Groupoid Product system

Groupoid C∗-algebra Cuntz–Pimsner algebra∼=
In this work we are interested in generalizing this result. But before explaining
this let us analyze the previous examples further. Cuntz–Pimsner algebras of
product systems satisfy certain universal properties, which make them colimits of
the associated diagrams in a certain bicategory of C∗-algebras, see [2]. Colimits
are canonical constructions to build new objects from simpler ones. For a group
action (G,X), the crossed product Gn C0(X) is also a colimit of the associated
diagram (G,C0(X)). If we view the action (G,X) as a diagram of topological
spaces, then its colimit is the quotient space X/G. In an appropriate bicategory
of groupoids its colimit is the transformation groupoid GnX.

There were several attempts to find an appropriate categorical setting to study
dynamical systems. In [24], a categoryM of discrete higher-rank graphs has been
introduced. The authors in [24] also introduce a functor fromM to the category
of C∗-algebras and isomorphism classes of Hilbert bimodules as arrows. This
makesM attractive as a possible setup for defining generalised dynamical systems.
Moreover, if Λ is a discrete higher-rank graph and X : Λ→ Λ is an endomorphism
in M, then a new higher-rank graph Λ ×X N (called the skew graph) may be
constructed. The C∗-algebra of the graph Λ×X N is naturally isomorphic to the
Cuntz–Pimsner algebra OC∗(X), see [24, Theorem 6.8]. Nevertheless, despite their
combinatorial structure and their nice C∗-algebras, discrete higher-rank graphs are
not well-suited as a common ground to study dynamical systems. Many examples
are left untreated and an extra step is usually needed to link this category to a
suitable category of groupoids.

1.2 The bicategory of groupoid correspondences
In 1967, Bénabou introduced bicategories in [6]. In a bicategory, we replace the
sets of arrows between objects by categories of arrows. The composition of arrows

3



1 Introduction

becomes a bifunctor. We demand that the associativity and unitality hold only
up to isomorphisms of functors.

We study colimits mainly in bicategories. The reason for this is best explained
by the following example. Let A be a C∗-algebra and let G be a group acting
on A by isomorphisms (αg)g∈G. The colimit of this action in the usual category
of C∗-algebras, which consists of C∗-algebras as objects and ∗-homomorphisms as
arrows, is not an interesting object. It is the largest quotient of A such that all
isomorphisms αg are trivial on this quotient. On the contrary, the colimit of this
action in the bicategory of C∗-correspondences is the crossed product GnA.

What are diagrams in categories and their colimits? Let C and D be categories.
A diagram in D of shape C is a functor C → D. Such diagrams are again the
objects of a category DC , with natural transformations between functors as arrows.
Any object x of D gives rise to a “constant” diagram constx : C → D of shape C.
The colimit colimF of a diagram F : C → D is an object of D with the following
universal property: there is a natural bijection between arrows colimF → x in D
and transformations F ⇒ constx for all objects x of D. In brief,

D(colimF, x) ∼= DC(F, constx). (1.1)

Let C and D be bicategories. A diagram in D of shape C is a functor C → D.
The functors C → D are the objects of a bicategory DC; arrows and 2-arrows
in this bicategory are called transformations between functors and modifications
between transformations, see [25].

Thus DC(F1, F2) for two diagrams F1 and F2 is a category, not just a set. Simi-
larly, for two objects x1 and x2 of D, there is a category D(x1, x2) of arrows x1 → x2
and 2-arrows between them. Once again, there is a constant diagram constx of
shape C for any object x of D. The bicategorical colimit is defined by the same
condition (1.1) after interpreting ∼= as a natural equivalence of categories. The
colimit colimF of some diagram D is unique up to equivalence if it exists.
Our main interest lies in the realm of groupoids and C∗-algebras. In the

following we introduce bicategories Corr with C∗-algebras and Gr with groupoids
as objects. First, let A, B be C∗-algebras. A correspondence from A to B is
a right Hilbert B-module E with a non-degenerate ∗-homomorphism ϕ from A
to the C∗-algebra of adjointable operators on E . The correspondence E is called
proper if the image of ϕ is contained in the C∗-algebras of compact operators.
An isomorphism between two such correspondences is a unitary operator which
intertwines the left A-actions. Let Corr be the bicategory consisting of C∗-algebras
as objects, correspondences as arrows and isomorphisms of correspondences as
2-arrows. Let C be a category. A diagram of shape C in Corr is a functor C →
Corr. Such diagrams are the objects of a bicategory CorrC; the arrows and 2-
arrows in CorrC are transformations between functors and modifications between
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1.3 Colimit equivalent dynamical systems

transformations (see [11]). Any C∗-algebra D gives rise to a constant diagram of
shape C. The colimit of a diagram F : C → Corr is a C∗-algebra colimF with the
following universal property:

Corr(colimF,D) ∼= CorrC(F, constD), (1.2)

where ∼= now means an equivalence of categories.
Let P be a monoid, then a functor P → Corr is the same as an essential product

system over the monoid P op (see [17]). We prove in [2] that every diagram in the
subcategory of proper correspondences has a colimit; the Cuntz–Pimsner algebra
of a proper product system is the colimit of the associated diagram in Corr.

Next, let H and G be étale groupoids. A correspondence X : H → G is a space X
with commuting left and right G-actions on X such that the right action of G on X is
free and proper and the source anchor map sX : X → G0 is a local homeomorphism.
We say that X is proper if the range anchor map rX : X → H0 induces a proper
map rX∗ : X/G → H0. Let X : H → G and Y : G → D be correspondences. Let
X ◦G Y be the quotient of the fibre product X ×sX ,G0,rY Y with respect to the
diagonal G-action. The space X ◦G Y carries a free and proper right D-action
and a left H-action, and the two actions commute. In addition, the anchor
map s : X ◦G Y → D0 is a local homeomorphism. Thus X ◦G Y is a correspondence
from H to D. We call this correspondence the composite correspondence of
X and Y. We denote by Gr the bicategory consisting of étale groupoids as
objects, groupoid correspondences as arrows and equivariant homeomorphisms of
correspondences as 2-arrows. There is a covariant functor Gr→ Corr sending a
correspondence X : H → G to a correspondence E : C∗(H)→ C∗(G).
Colimits in Gr are defined by an equivalence of groupoids as in Equation (1.2).

We construct such colimits for proper Ore monoid actions. And we prove that

C∗(lim−→(F )) = lim−→C∗(F )

for such diagrams. This explains groupoid models for row-finite higher-rank graphs
without sinks and the C∗-algebras of self-similar groups defined by Nekrashevych.

1.3 Colimit equivalent dynamical systems
Ever since the introduction of Cuntz–Krieger algebras in [13], many authors have
considered the question of deciding which subshifts of finite type have Morita–
Rieffel equivalent Cuntz–Krieger algebras (see [4,15,29]). Another related question
in symbolic dynamics comes from the conjugacy problem. This classification
problem amounts to deciding when two given subshifts are conjugate. A partial
answer to this question treats subshifts of finite type as edge shifts of directed
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1 Introduction

graphs, see [26, Proposition 2.3.9]. The question can be simplified in terms of
defining certain operations on graphs producing conjugacies of edge shifts. Such
graphical constructions can be found in the work of Pask and Bates in [5].

Beyond the singly generated dynamics of shifts of finite type, it is more difficult
to determine whether two topological dynamical systems give the same C∗-algebra.
The language of bicategories offers the right setup to understand these questions.
An (elementary) shift equivalence in a bicategory can be obtained by a functor
from the category Cs generated freely by

x y

S

R

to the bicategory under consideration. In particular, a functor F : Cs → Grprop
is equivalent to the functor given by two groupoids G and H and proper corre-
spondences X : G → H and Y : H → G. The N-actions given by X ◦H Y : G → G
and Y ◦G X : H → H have the same colimit groupoid in Gr. For the special
case where the groupoids G and H are just spaces, we obtain the usual notion of
elementary strong shift equivalence of topological graphs (compare [44, Definition
2.2]).
The same happens in the bicategory of C∗-correspondences. An elementary

strong shift equivalence of C∗-correspondences, see [44, Definition 3.10], is equiva-
lent to a functor F : Cs → Corr.
Both results are special cases of a general phenomenon of colimits of diagrams

containing a cofinal subdiagram. This perspective allows to simultaneously treat
dynamical systems with the same colimit in Gr and Corr. We call (C∗-algebraic or
topological) dynamical systems colimit equivalent if they have the same colimit.

1.4 Overview of the thesis

We describe now the contents of individual chapters of this thesis.
We start in Chapter 2 by recalling basic definitions regarding bicategories. In

Section 2.2, we introduce groupoid correspondences and in Section 2.4 we show
that groupoid correspondences form a bicategory Gr. In Section 2.5, we construct a
functor from Gr to the bicategory of C∗-correspondences Corr, and we characterise
when the C∗-correspondence associated with a groupoid correspondence is proper.
In Chapter 2, we also describe functors to Gr and to Corr, transformations between
such functors, and modifications between such transformations, and we define
colimits of diagrams in Gr.

6



1.4 Overview of the thesis

In Chapter 3, we introduce and study Ore monoids and Ore monoid actions by
proper correspondences and by tight correspondences. Here we say that a corre-
spondence X : H → G is tight if the map induced by the range map rX∗ : X/G → G0

is a homeomorphism.
In the first section of Chapter 3, we associate an étale groupoid to a given action

of an Ore monoid by tight correspondences. We then show in Theorem 3.15 that
this groupoid is the colimit of the action in Gr. We show in Theorem 3.21 that
the colimit groupoid of an action in Gr is a groupoid model of the Cuntz–Pimsner
algebra for the product system associated with the action.
In Section 3.3 we show how to transform an Ore monoid action by proper

correspondences to an action by tight correspondences. This construction preserves
the colimits by Theorem 3.30.
Finally, Chapter 4 is devoted to studying diagrams with the same colimit in

bicategories. If C is a diagram with a cofinal object x, then the colimit of the
diagram C is isomorphic to the colimit of the diagram C(x, x). This theorem allows
to recover notions like shift equivalence of C∗-correspondences, as introduced by
[32], as a special case. The same applies to diagrams in the groupoid bicategory.
We also generalise the notion of shift equivalence of graphs (see [44]).

7
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2 Groupoid bicategories and the
bicategory of C∗-correspondences

This chapter introduces the bicategory of groupoid correspondences Gr. The
definition of a groupoid correspondence is a common generalisation of topological
graphs by Katsura [20] and permutational group bimodules [36], which are related
to (possibly non-faithful) self-similar group actions. It is based on the notion of
groupoid actors by Meyer and Zhu which goes back to Buneci [8]. Our category is
a subcategory of the category of topological correspondences introduced in [18].
We construct a morphism from Gr to the bicategory of C∗-correspondence Corr as
we will see in Section 2.5.

In Section 2.6 we discuss colimits of diagrams in the bicategories Gr and Corr.
We finish the chapter by some examples of colimits in Gr and Corr including
colimits of group actions.

2.1 Bicategories
We recall in this section some definitions regarding bicategories. Our main reference
here is the small preprint [25]. Readers already familiar with bicategories can skip
this section.

When taking the leap from category theory to higher category theory, we weaken
equalities from one level to natural transformations at the following level. The new
structure is then required to satisfy certain coherence conditions. Our interests lie
in the realm of bicategories. A bicategory has three levels: objects, arrows and
2-arrows. The composition in the second level is weakly associative and weakly
unital. More concretely,

Definition 2.1. A bicategory C consists of the following data:

(1) A set of objects C0;

(2) categories C(A,B) for all objects A and B ∈ C0;

(3) for all objects A, B and C ∈ C0, a composition bifunctor

∗ : C(B,C)× C(A,B)→ C(A,C), (u1, u2) 7→ u1 ∗ u2,

9



2 Groupoid bicategories and the bicategory of C∗-correspondences

called the horizontal composition, which commutes with the composition in
the categories C(A,B), that is, it commutes with the vertical composition;

(4) for all objects A, B ∈ C0 and arrows f ∈ C(A,B)0, natural isomorphisms
called the unitor

lf : 1B ∗ f ⇒ f,

rf : f ∗ 1A ⇒ f ;

(5) for all objects A,B,C,D ∈ C0, natural isomorphisms called the associator

Φ: f1 ∗ (f2 ∗ f3)⇒ (f1 ∗ f2) ∗ f3

for all composable arrows f1 ∈ C(C,D), f2 ∈ C(B,C) and f3 ∈ C(A,B).

And we require the following axioms:

(6) for all A, B,C ∈ C0 and all f2 ∈ C(A,B) and f1 ∈ C(B,C) the following
diagram commutes:

(f1 ∗ 1B) ∗ f2 f1 ∗ (1B ∗ f2)

f1 ∗ f2

Φ

rf1 ∗ 1f2 1f1 ∗ lf2

(2.1)

(7) for all composable arrows f1, f2, f3, f4 in C the following diagram commutes:

f1 ∗ ((f2 ∗ f3) ∗ f4)

(f1 ∗ (f2 ∗ f3)) ∗ f4

((f1 ∗ f2) ∗ f3) ∗ f4

(f1 ∗ f2) ∗ (f3 ∗ f4)

f1 ∗ (f2 ∗ (f3 ∗ f4))

Φ

Φ

Φ

Φ Φ

(2.2)

10



2.1 Bicategories

A functor or a morphism of bicategories is a weakening of that of categories. For
instance, a functor of bicategories is only unital up to natural transformations.

Definition 2.2. A functor (F , µ) : C → D between bicategories consists of the
following data

(1) a function F0 : C0 → D0,

(2) functors F1 : C(A,B)→ D(F0(A),F0(B)) for all A and B ∈ C0,

(3) 2-arrows µf,g : F (f) ◦ F (g)⇒ F (f ◦ g) for all composable arrows f , g ∈ C1,

(4) 2-arrows µA : 1F (A) ⇒ F (1A) for all A ∈ C0,

such that the following diagrams commute:

(F1h ◦ F1g) ◦ F1f F1(h ◦ g) ◦ F1f F1((h ◦ g) ◦ f)

F1h ◦ (F1g ◦ F1f) F1h ◦ F1(g ◦ f) F1(h ◦ (g ◦ f))

µh,g ∗ 1 µh◦g,f

1 ∗ µg,f µh,g◦f

Φ F1(Φ) (2.3)

for composable arrows h, g and f , and

F1f ◦ 1F0(A) F1f ◦ F1(1A)

F1f F1(f ◦ 1A)

1 ∗ µA

µf,1ArF1f

F1(rf )

(2.4)

1F0B ◦ F1f F1(1B) ◦ F1f

F1f F1(1B ◦ f)

λB ∗ 1F1f

µ1y ,flF1f

F1(lf )

(2.5)

for an arrow f : A→ B in C.

Definition 2.3. Let C and I be bicategories and let A be an object in C. The
constant functor constA : I → C maps all objects x of I to A, all arrows f in I to
the identity arrow on A, and the 2-arrows µ in Definition 2.1 are identities.

11



2 Groupoid bicategories and the bicategory of C∗-correspondences

Definition 2.4. Let C and D be bicategories and let (F , µ), (J , ω) : C ⇒ D be
functors. A transformation F ⇒ J consists of

• arrows σA : F0(A)→ J0(A) for all A ∈ C0,

• 2-arrows σf : J1(f) ◦ σA ⇒ σB ◦ F1(f) for all arrows f : A→ B in C;

such that the diagram

(F1g ◦ F1f) ◦ σA F1g ◦ (F1f ◦ σA) F1g ◦ (σB ◦ J1f) (F1g ◦ σB) ◦ J1f

F1(g ◦ f) ◦ σA σE ◦ J1(g ◦ f) σE ◦ (J1g ◦ J1f) (σE ◦ J1g) ◦ J1f

Φ 1 ∗ σf Φ−1

µg,f ∗ 1
σg◦f

1 ∗ ωg,f Φ

σg ∗ 1

(2.6)
commutes for composable arrows f : A→ B, g : B → E in C, and the diagram

1F0(A) ◦ σA σA σA ◦ 1J0A

F1(1A) ◦ σA σA ◦ J1(1A)

lσA r−1
σA

µA ∗ 1σA
σ1A

1 ∗ ωA (2.7)

commutes for all objects A ∈ C0.

We often need to work with transformations to the constant functor over some
object in the target bicategory. We rewrite the previous definition in this case.

Definition 2.5. Let C and D be bicategories and let (F , µ) : C ⇒ D be a functor
and A ∈ D0. A transformation F ⇒ constA consists of

• arrows σx : F0(x)→ A for all x ∈ C0,

• 2-arrows σf : σx ⇒ σy ◦ F1(f) for all arrows f : x→ y in C;

such that the following diagram commutes for composable arrows g : y → z,
h : x→ y:

σx

σx

σy ◦ Fh

σz ◦ Fgh

σz ◦ Fg ◦ Fhidσx

σh

σgh

σg ∗ 1

1 ∗ ◦µg,h

(2.8)

12



2.2 Groupoid correspondences

Definition 2.6. Let C and D be bicategories and let (F , µ), (J , ω) : C ⇒ D be
functors. A modification between two transformations α, β : F ⇒ J consists of
2-arrows ΓA : αA ⇒ βA for all objects A ∈ C0, such that the following diagram
commutes for all arrows f : x→ y in C:

J f ◦ αx J f ◦ βx

αy ◦ Ff βy ◦ Ff

1 ∗ Γx

βfαf

Γy ∗ 1

(2.9)

Finally, if J in Definition 2.6 is the constant diagram over an object A ∈ D0,
then the coherence condition (2.9) simplifies to

αx βx

αy ◦ Ff βy ◦ Ff

Γx

βfαf

Γy ∗ 1

(2.10)

for all arrows f : x→ y in C.

2.2 Groupoid correspondences
A groupoid is a common generalisation of groups and spaces where the unique unit
of a group is replaced by a space of units and the multiplication is only partially
defined. We start this section with some basic definitions and some results
concerning groupoids and their actions. Then we define groupoid correspondences.
We finish this section with some examples of our correspondences.

Our main reference for general properties of groupoids, groupoid actions and
groupoid principal bundles is the survey article [31]. In the this article, groupoids
are dealt with in an abstract setting, allowing us to apply results for non-Hausdorff
groupoids as well. Another reference is [45].

Definition 2.7. A (discrete) groupoid is a set G with partially defined product
on a set G2 ⊂ G × G and an inverse map g → g−1 such that:

(1) if (a, b), (b, c) ∈ G2 then (ab, c), (a, bc) ∈ G2 and

(ab)c = a(bc);

13



2 Groupoid bicategories and the bicategory of C∗-correspondences

(2) (g, g−1) ∈ G2 for all g ∈ G, and if (a, b) ∈ G2 then

a−1(ab) = b, (ab)b−1 = a.

The set of units G0 of G is the subset of elements gg−1 for all g ∈ G. The source
map and the range map are defined by

r(g) := gg−1, s(g) := g−1g

for all g ∈ G, respectively. For g, h ∈ G the pair (g, h) is in G2 if and only
if r(h) = s(g). For x ∈ G0 we denote by Gx and Gx the sets Gx := s−1(x)
and Gx := r−1(x). We say that G is a topological groupoid if it has a topology
such that the product and inversion are continuous.

The two extreme classes of groupoids are spaces and groups. A space is a
groupoid with only units and a group is a groupoid with a single unit. To assign
a C∗-algebra to a topological group G, one needs a left-invariant measure on G
in order to define a convolution. Similarly, a family of measures on a groupoid
is needed to define its C∗-algebra. However, unlike for groups, where a unique
left-invariant measure always exists, a family of measures must be specified a
priori. We are interested mainly in étale groupoids. These generalise discrete
groups, and carry a canonical family of counting measures.

Definition 2.8. An étale locally compact groupoid is a groupoid G with a topology
such that

(1) the space of units G0 is Hausdorff and locally compact;

(2) the range and source maps r, s : G ⇒ G0 are local homeomorphisms;

(3) the multiplication and inverse maps are continuous.

We allow G to be non-Hausdorff. Any point in G has a Hausdorff, compact
neighbourhood because r is a local homeomorphism and G0 is Hausdorff and
locally compact.

Standing assumption 2.9. We shall assume for the rest of this thesis that all
groupoids are étale and locally compact.

Let G be a groupoid. A right G-space is a topological space X , possibly non-
Hausdorff, with a continuous map s : X → G0, the anchor map, and a continuous
map

mult : X ×s,G0,r G → X , X ×s,G0,r G := {(x, g) ∈ X × G | s(x) = r(g)},

which we denote multiplicatively as ·, such that

14



2.2 Groupoid correspondences

(1) s(x · g) = s(g) for all x ∈ X , g ∈ G with s(x) = r(g);

(2) (x ·g1) ·g2 = x · (g1g2) for all x ∈ X , g1, g2 ∈ G with s(x) = r(g1) and s(g1) =
r(g2);

(3) x · s(x) = x for all x ∈ X .

The orbit space X/G is the quotient X/∼G with the quotient topology, where
x ∼G y if there is an element g ∈ G with s(x) = r(g) and x · g = y.

Proposition 2.10 ([31, Proposition 9.34]). The orbit space projection p : X →
X/G is open.

Left G-spaces are defined similarly. We always write s : X → G0 for the anchor
map in a right action and r : X → G0 for the anchor map in a left action.

Definition 2.11. Let X and Y be right G-spaces. A continuous map f : X → Y
is G-equivariant if s(f(x)) = s(x) for all x ∈ X and f(x · g) = f(x) · g for
all x ∈ X , g ∈ G with s(x) = r(g).
Let X be a right G-space and Z a space. A continuous map f : X → Z is
G-invariant if f(x · g) = f(x) for all x ∈ X , g ∈ G with s(x) = r(g).

Definition 2.12 ([7, I.10.1], “application propre”). Let X and Y be topological
spaces. A map f : X → Y is proper if f × idZ : X ×Z → Y ×Z is closed for every
topological space Z.

Definition 2.13 ([45, Definition 2.9]). A groupoid G is proper if the following
map is proper:

(r, s) : G → G0 × G0, g 7→ (r(g), s(g)).

Definition 2.14. A right G-space X is proper if the transformation groupoid XoG
is proper, that is, the following map is proper:

X ×s,G0,r G → X × X , (x, g) 7→ (x · g, x). (2.11)

Definition 2.15. A right G-space X is basic if the map in (2.11) is a homeomor-
phism onto its image.

The image of the map (2.11) is the subspace

X ×X/G X := {(x, y) ∈ X 2 | x ∼G y}.

Basic actions are defined in [31] in a more abstract setting, and the definition
above is an equivalent characterisation of the basic actions in the setting of
topological spaces, possibly non-Hausdorff, with étale surjections as covers, compare
[31, Proposition 9.40]. We recall some more details related to this.
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2 Groupoid bicategories and the bicategory of C∗-correspondences

Definition 2.16. A right G-space X is free if x · g = x for x ∈ X and g ∈ G
implies g = 1s(x).

An action is free if and only if the map (2.11) is injective. An action is basic
if and only if it is free and the map from X ×X/G X to G that maps (x, y) ∈ X 2

with x ∼G y to the unique g ∈ G with s(x) = r(g) and x · g = y is continuous: this
implies that the inverse map X ×X/G X → G ×s,G0,r X is continuous.

Proposition 2.17 ([31, Corollary 9.35 and Proposition 9.40]). Let G be a groupoid
and X a right G-space. The following are equivalent:

(1) the action of G on X is basic and the orbit space X/G is Hausdorff;

(2) the action of G on X is free and proper.

In this case, the orbit space projection is a local homeomorphism.

The statement in Proposition 2.17 about the orbit space projection needs our
standing assumption that G is étale.
All topological spaces that we shall need are locally Hausdorff and locally

compact.

2.2.1 Groupoid correspondences
We introduce the main building blocks of our bicategory: groupoid correspondences.

Definition 2.18. Let H and G be groupoids. A groupoid correspondence from H
to G is a (topological) space X with commuting actions of H on the left and G on
the right, such that the right anchor map s : X → G0 is a local homeomorphism
and the right G-action is free and proper.

Having commuting actions of G and H means that s(h ·x) = s(x), r(x ·g) = r(x),
and (h·x)·g = h·(x·g) for all g ∈ G, x ∈ X , h ∈ H with s(h) = r(x) and s(x) = r(g),
where s : X → G0 and r : X → H0 are the anchor maps. If s : X → G0 is a local
homeomorphism and G0 is Hausdorff, locally compact, then X must be locally
Hausdorff and locally compact; but it need not be Hausdorff. The orbit space X/G
is Hausdorff and the projection map X → X/G is a local homeomorphism by
Proposition 2.17. Thus X/G is locally compact as well.

Definition 2.19. A correspondence X : H → G is proper if its left anchor map
induces a proper map r∗ : X/G → H0. It is tight if r∗ is a homeomorphism.

Lemma 2.20. For a tight correspondence X : H → G the map r : X → H0 is a
surjective local homeomorphism.
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2.2 Groupoid correspondences

Proof. The quotient map X � X/G is a surjective local homeomorphism by
Proposition 2.17, and r∗ : X/G → H0 is a homeomorphism. The map r is the
product of these two maps and hence also a surjective local homeomorphism.

In [31], a “bibundle actor” between two groupoids in a category with a pre-
topology is defined as an object in the underlying category with two commuting
actions such that the right action is basic and the right anchor map is a cover
in the pretopology. In particular, a bibundle actor in the category of locally
Hausdorff, locally compact spaces with surjective local homeomorphisms as covers
is a space X with two commuting actions of H and G such that the right anchor
map s is a surjective local homeomorphism and the right action is basic. This is
very close to a groupoid correspondence. There are only two differences. First, we
do not require the source map on X to be surjective because we never need this
and there are relevant examples where this does not happen. Secondly, we ask
the orbit space X/G to be Hausdorff. (By Proposition 2.17, an action is free and
proper if and only if it is basic and the orbit space is Hausdorff.) Furthermore, for
a bibundle actor as above, the groupoids involved may have a locally Hausdorff,
locally compact object space. We need X/G to be Hausdorff to ensure that certain
groupoids we are going to construct from a correspondence have a Hausdorff object
space and also to pass to C∗-correspondences.
The tight bibundle actors are close to the covering bibundle functors in the

notation of [31]. Here the only difference is that we do not require the right
anchor map to be surjective. The orbit space X/G is required, anyway, to be
homeomorphic to H0, so its Hausdorffness is not an assumption on X but only
on H.

Definition 2.21. A correspondence X : G → H is called a bicorrespondence if
the range map r : X → G is a local homeomorphism and the action of G on X is
free and proper. A bicorrespondence X : G → H is called a partial equivalence if
r∗ : X/H → G0 and s∗ : G\X → H0 are homeomorphisms onto their images.

2.2.2 Examples
Example 2.22. Let G and H be locally compact spaces viewed as groupoids with
no arrows and let X : H → G be a correspondence. Since the spaces G and H act
trivially on X, the correspondence X is equivalent to the triple (X, r, s). That
is, the correspondence X is given by a locally compact space X with anchor
maps s : X → G and r : X → H such that s is a local homeomorphism. The
triple (X, r, s) is called a topological correspondence in [1]. See also [20]. It is
called a continuous graph if G and H are the same space and r : X → H is also a
local homeomorphism (see [14]). Hence a continuous graph is a bicorrespondence
over a locally compact space.
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2 Groupoid bicategories and the bicategory of C∗-correspondences

Example 2.23. Let X be a finite set and let G be a discrete group acting on X.
Let ϕ : G×X → G be a (one)-cocycle for this action. That is, for all g, h ∈ G and
all x ∈ X we have

ϕ(gh, x) = ϕ(g, h(x))ϕ(h, x). (2.12)

Let X∗ be the set of finite words over X. The action of G on X extends to an
action on X∗ using the recursive formula

g(xw) = g(x)ϕ(g, x)(w) (2.13)

for all g, h ∈ G, x ∈ X and all w ∈ X∗. We call the triple (G,X,ϕ) a self-similar
action of the group G.

The pair (G,X) is called a faithful self-similar action if the action of G on X∗ is
faithful (compare [37, Definition 2.1]). In this case, ϕ(g, x) is called the restriction
of g on x and denoted g|x.

Lemma 2.24. Let G be a discrete group. Self-similar G-actions are equivalent to
proper correspondences over G.

Proof. Let (G,X,ϕ) be a self-similar group. The space X := X×G is in a natural
way a correspondence over the group G. The left and right actions of G on X ×G
are

h · (x, g) := (h(x), ϕ(h, x)g),
(x, g) · h := (x, gh)

for all x ∈ X and all g, h ∈ G. Clearly, the anchor map s : X×G→ {G0} = {1} is
a local homeomorphism since X ×G is discrete. Furthermore, the right action is
free and proper. In fact, the map ((x, g), h) 7→ (x, gh) is a homeomorphism. The
orbit space of the right action X/G is homeomorphic to X via the map [x, g] 7→ x.
The map induced by the range map r∗ : X/G→ {1} is proper by our assumption
that X is finite.
Conversely, let X : G → G be a proper correspondence. The source anchor

map s : X → {1} is a local homeomorphism. Thus X is discrete. The map
r∗ : X/G→ {1} is proper. Hence X/G is compact and so it is finite. Therefore,
we may choose a finite fundamental domain (a basis) X ⊂ X for the right action.
That is, X intersects every orbit of the right action once. By assumption, the right
action is free. Hence the restriction of the multiplication map m : X × G → X
to X × G is an invertible map. Let θ : X → X × G be its inverse. That is,
if θ(y) = (x, g) for an element y ∈ X , then the elements x ∈ X and g ∈ G are the
unique elements with y = x · g. The space X ×G is a right G-space. Furthermore,
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2.2 Groupoid correspondences

the map θ is G-equivariant. That is, θ(yg) = θ(y)g for all y ∈ X and all g ∈ G.
We define a left action of G on the space X ×G by the rule

gθ(y) = θ(gy)

for all y ∈ X . With this action, X×G becomes a correspondence over the group G
such that θ : X → X ×G is an isomorphism. The map

X → X, x 7→ pr1(θ(g · x)),

for all g ∈ G, defines a permutation action of the group G on the finite set X. We
define

ϕ(g, x) := pr2(θ(g · x))

for all g ∈ G and x ∈ X. Then

ϕ(gh, x) = ϕ(g, h(x))ϕ(h, x)

for all g, h ∈ G and x ∈ X. That is, the map

G×X → G, (x, g) 7→ ϕ(g, x)

is a cocycle. The triple (X,G,ϕ) is a self-similar group. We have shown that
the map θ : X → X × G is an isomorphism of correspondences. So the two
constructions are inverse to each other up to isomorphism.

A proper correspondence over a discrete group is the same as a d-covering
permutational bimodule over the group as in [36, §2.1].

Lemma 2.24 gives an equivalence between self-similar group actions and proper
group correspondences. A closer investigation shows that a tight group corre-
spondence is equivalent to a self-similar action on an alphabet consisting of one
letter. That is, a tight correspondence over a group G is equivalent to a group
endomorphism over G.
Example 2.25. Let G and H be discrete groups. Let ϕ : H → G be a group
homomorphism. Let Gϕ := G as a set. Then Gϕ is a free and proper right G-space
with the group multiplication and the trivial anchor map. The group H acts
on Gϕ using the maps ϕ. That is, for all h ∈ H and g ∈ Gϕ we define

h · g := ϕ(h)g.

This action commutes with the action of G on itself by right multiplication
and hence Gϕ is a correspondence. Moreover, Gϕ/G = [1G], which implies
that Gϕ : H → G is tight. Conversely, any tight correspondence X : H → G is
isomorphic to a correspondence of the form Gψ for some homomorphism ψ : H → G.

19



2 Groupoid bicategories and the bicategory of C∗-correspondences

To see this, first observe that |X/G| = 1. We fix an element x ∈ X . Then for
all y ∈ X there is a unique element g = 〈x, y〉 such that y = xg. This implies that

Lx : G→ X , g 7→ xg,

is a bijection. Now let h ∈ H. There is a unique element ϕ(h, x) ∈ G such that
h(x) = xϕ(h, x). We define

ψ(h) := ϕ(h, x)

for all h ∈ H. Then ψ is a group homomorphism.

2.3 The composition of groupoid correspondences
Our next step toward a bicategory of groupoid correspondences is the composition
bifunctor. We will compose two correspondences X : G → H and Y : H → K to
obtain a correspondence G → K. The classes of tight and proper correspondences
are closed under this composition.
Let X : H → G be a groupoid correspondence. The image of the map (2.11)

consists of those (γ1, γ2) ∈ X × X with [γ1] = [γ2] in X/G. Since (2.11) is a
homeomorphism onto its image for any groupoid correspondence, we may define a
continuous map

X ×X/G X
∼−→ X ×s,G0,r G

pr2−−→ G, (γ1, γ2) 7→ 〈γ1, γ2〉. (2.14)

That is, 〈γ1, γ2〉 for γ1, γ2 ∈ X with [γ1] = [γ2] in X/G is the unique η ∈ G
with γ1η = γ2.

Proposition 2.26. Let X : H → G be a groupoid correspondence. The inner
product map in (2.14) is a local homeomorphism. It has the following properties:

(1) s(〈γ1, γ2〉 = s(γ2), r(〈γ1, γ2〉 = s(γ1), and γ1 · 〈γ1, γ2〉 = γ2 for all γ1, γ2 ∈ X
with [γ1] = [γ2];

(2) 〈γ, γ〉 = 1 for all γ ∈ X ;

(3) 〈γ2, γ1〉 = 〈γ1, γ2〉−1 for all γ1, γ2 ∈ X with [γ1] = [γ2];

(4) 〈ζγ1η1, ζγ2η2〉 = η−1
1 〈γ1, γ2〉η2 for all ζ ∈ H, γ1, γ2 ∈ X , η1, η2 ∈ G with

s(ζ) = r(γ1) = r(γ2), s(γ1) = r(η1), s(γ2) = r(η2), [γ1] = [γ2].

Proof. The coordinate projection pr2 : X ×s,G0,r G → G is a local homeomorphism
because s : X → G0 is a local homeomorphism. Hence so is the map in (2.14). The
algebraic properties of the inner product map are verified by direct computation.
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Let H, G and K be groupoids and let X : H → G and Y : G → K be groupoid
correspondences. We are going to compose them. Let

X ×G0 Y := {(x, y) ∈ X × Y | s(x) = r(y)}.

We define an action of G on the space X ×G0 Y by

g · (x, y) := (x · g−1, g · y)

for x ∈ X , y ∈ Y and g ∈ G with s(g) = rY(y) = sX (x). We call this the
diagonal action. Let X ◦G Y be the orbit space of the diagonal action. The
maps r(x, y) := rX (x) and s(x, y) := sY(y) on X ×G0 Y induce maps r : X ◦G Y →
H0 and s : X ◦G Y → K0. These are the anchor maps for commuting actions of H
on the left and K on the right:

h · [x, y] := [h · x, y], [x, y] · k := [x, y · k],

for all h ∈ H, x ∈ X , y ∈ Y , k ∈ K with s(h) = r(x), s(x) = r(y), and s(y) = r(k).
Here [x, y] denotes the image of (x, y) ∈ X ×G0 Y in X ◦G Y.

Proposition 2.27. The actions of H and K on X ◦G Y defined above are well
defined and turn this into a groupoid correspondence H → K.
If both correspondences X and Y are proper or tight or bicorrespondences or

partial equivalences, then so is X ◦G Y.

Proof. The action of G on X is basic and the coordinate projection X ×G0 Y →
X is G-equivariant. Therefore, the diagonal action of G on X ×G0 Y is also
basic. Arguments as for the composition of bibundle actors in [31] show that the
induced actions of H and K are well-defined, continuous groupoid actions on the
space X ◦G Y , that the source map s : X ◦G Y → K0 is a local homeomorphism, and
that the right K-action is basic. One way to show this is by shrinking G and K to
the open subgroupoids with object spaces s(X ) and sY(r−1

Y (sX (X )), respectively,
to make the two right anchor maps surjective. Then our groupoid correspondences
become bibundle actors in a suitable category with pretopology, which satisfies
the axioms in [31] that show that the composite is again a bibundle actor.

We claim that the orbit space of the K-action on X ◦G Y is Hausdorff. The orbit
space Y/K is Hausdorff by Proposition 2.17, and the right G-action on X is proper.
Hence the diagonal action of G on X ×G0 (Y/K) is proper by [45, Proposition
2.20]. Thus the orbit space of this proper action is Hausdorff by Proposition 2.17.
This orbit space is X ◦G (Y/K) ∼= (X ◦G Y)/K by [31, Remark 7.9]. Since the
right K-action on X ◦G Y is basic and its orbit space is Hausdorff, this action is
free and proper by Proposition 2.17. Thus X ◦G Y is a groupoid correspondence.
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2 Groupoid bicategories and the bicategory of C∗-correspondences

Now assume that the groupoid correspondences X and Y are proper. We want to
prove that their product remains proper. We use the following pull-back diagram:

X ×s,G0,r Y/K Y/K

X G0

pr2

pr1
s

r∗
(2.15)

The map r∗ : Y/K → G0 is proper. Hence the parallel map pr1 in the pull-back
diagram is also proper. Then the induced map (pr1)∗ : X ◦G Y/K → X/G on the
orbit spaces is proper by [45, Lemma 2.32]. The map r∗ : X ◦G Y/K → H0 is
proper because it is the product of the proper map r∗ : X/G → H0 with (pr1)∗.
Assume that the groupoid correspondences X and Y are tight. That is, the

maps r∗ : X/G → H0 and r∗ : Y/K → G0 are homeomorphisms. The pullback
diagram (2.15) shows that (pr1)∗ : X ×G0 Y/K → X/G is a homeomorphism. Then
the induced map (pr1)∗ : X ◦GY/K → X/G is a homeomorphism by [31, Proposition
5.9]. The map r∗ : X ◦G Y/K → H0 is a homeomorphism because it is the product
of the homeomorphism r∗ : X/G → H0 with (pr1)∗. Finally, using the same
arguments as before, X ◦G Y is a bicorrespondences, or a partial equivalence if
both X and Y are.

The next two lemmas are proved like their analogues for bibundle actors in [31].

Lemma 2.28. Let X : H → G be a groupoid correspondence. The maps

H ◦H X → X , [h, x] 7→ h · x,
X ◦G G → X , [x, g] 7→ x · g,

are G,H-equivariant homeomorphisms.

Lemma 2.29. Let Gi for 1 ≤ i ≤ 4 be groupoids. Let Xi : Gi → Gi+1 for 1 ≤ i ≤ 3
be correspondences. The map

X1 ◦G1 (X2 ◦G2 X3)→ (X1 ◦G1 X2) ◦G2 X3, [x1, [x2, x3]] 7→ [[x1, x2], x3],

is a G1,G4-equivariant homeomorphism.

2.4 Bicategories of groupoid correspondences
In this section, we show that correspondences form a bicategory Gr; the subclasses
of proper or tight correspondences and the subclasses of bicorrespondences and
partial equivalences are all subbicategories in Gr.
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We define the bicategory of groupoid correspondences Gr. Its objects are
(étale, locally compact, possibly non-Hausdorff) groupoids. Its arrows H → G are
groupoid correspondences H → G. The 2-arrows X ⇒ Y for arrows X ,Y : G ⇒
H are G,H-equivariant homeomorphisms X ∼= Y. The composition of arrows
H → G → K is the construction ◦G above, which we often abbreviate from now
on as ◦. This is a bifunctor with respect to our 2-arrows, that is, equivariant
homeomorphisms on both factors. The unit transformations and associator are
given by Lemma 2.28 and Lemma 2.29. These are clearly natural for equivariant
homeomorphisms of groupoid correspondences, and they also satisfy the coherence
conditions needed for a bicategory, see Definition 2.1.

Theorem 2.30. The equivalences in Gr are exactly the Morita equivalences of
groupoids. That is, a groupoid correspondence X : H → G is an equivalence if and
only if both actions are basic and both anchor maps induce homeomorphisms X/G ∼=
H0 and H\X ∼= G0.

Proof. First, let X be a Morita equivalence H → G. Then X is a groupoid
correspondence as well, and so is the inverse Morita equivalence X ∗, which we get
by reversing left and right in X . Being a Morita equivalence implies X ◦ X ∗ ∼= H
and X ∗ ◦ X ∼= G. Thus X is an equivalence in Gr.
Conversely, let X : H → G be an equivalence in Gr with inverse Y. Since the

right anchor map s : Y ◦ X → G0 is surjective, the right anchor map s : X → G0 is
surjective. Similarly, the right anchor map s : Y → H0 is surjective. Thus both X
and Y are bibundle actors in a suitable category with pretopology, and so they are
equivalences in the bicategory of bibundle actors. These equivalences are identified
with bibundle equivalences in [31, Theorem 7.31]. These are exactly the Morita
equivalences.

The classes of proper and tight correspondences and the classes of bicorrespon-
dences and partial equivalences are all closed under composition by Proposition 2.27.
In addition, the identity correspondence over a groupoid G belongs to all three
classes. Therefore, these classes are subbicategories in Gr. We denote these
by Grprop, Grtight and Grbicor, respectively.
Next we show some properties of the bicategory of bicorrespondences. This

bicategory consists of arrows with no predefined direction. We make this precise
in the following section.

The symmetric bicategory Grbicor

The bicategoryGrbicor carries a natural involution making it a symmetric bicategory.
It is essential here to distinguish between the notions of commutativity and
symmetry. The notion of commutativity works well when the category under
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2 Groupoid bicategories and the bicategory of C∗-correspondences

consideration has a single object; it becomes less useful when applied to other
categories. As a consequence, the notion of a symmetric bicategory, when restricted
to single object categories, is more general than symmetric monoidal categories
Recall that we are mainly interested in bicategories where all 2-arrows are

invertible. This makes the definition of a symmetric bicategory a little simpler.

Definition 2.31 (compare [30, Definition 16.2.1]). An involution on a category C
is a functor (∗, ω) : C → Cop such that

(1) the map ∗ : C0 → C0 is bijective with (A∗)∗ = A for all A ∈ C0,

(2) the functor ∗ : C(A,B) → C(B∗, A∗) = Cop(A∗, B∗) gives an equivalence of
categories for all objects A and B in C; the natural isomorphisms of the
equivalence are given by 2-arrows ξ : f → f∗∗,

(3) the following diagram commutes

f ◦ g (f ◦ g)∗∗

f∗∗ ◦ g∗∗ (g∗ ◦ f∗)∗

ξ

ω∗

ω

ξ ∗ ξ (2.16)

for all composable arrows f and g ∈ C1.

A symmetric bicategory is a bicategory with an involution. An object A ∈ C is
called commutative if A∗ = A.

Proposition 2.32. The bicategory Grbicor is symmetric.

Proof. We define an involution (∗, ω) on Grbicor as follows. Let G∗ := Gop for all
groupoids G. For a bicorrespondence X : H → G we define X ∗ := X as a topological
space. The left action of G∗ on X ∗ is given by the anchor map rX ∗ := sX and the
multiplication map

G∗ ×s,G0,sX X
∗ → X ∗, (g, x) 7→ x · g.

Similarly, X ∗ is a right H∗-space. The left and right actions commute and they are
both free and proper, since X is a bicorrespondence. This makes X ∗ : G∗ → H∗ a
bicorrespondence. For an isomorphism γ : X1 → X2, we define γ∗ := γ. This defines
functors ∗ : Gr(G,H) → Gr(H∗,G∗) for all groupoids G and H. Let X : G → H
and Y : H → K be correspondences. we define

wX ,Y : Y∗ ◦H∗ X ∗ → (X ◦H Y)∗, [y, x] 7→ [x, y].
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2.5 The functor to Corr

This is an isomorphism of correspondences. In addition, for all X ∈ Gr1 we define

ξ = id: (X ∗)∗ → X .

We leave it to the reader to check that (∗, w) is a functor Gr → Grop and the
functors ∗ : Gr(G,H) → Gr(H,G) are isomorphisms of categories. Moreover,
Condition (2.16) is satisfied since w∗ ◦ w = id.

2.5 The functor to Corr

We are going to construct a covariant functor from the bicategory Gr to the
correspondence bicategory of C∗-algebras, which is studied in [11]. A similar
functor of bicategories is constructed in [18]. The construction is very close to the
construction of Morita–Rieffel equivalences between groupoid C∗-algebras from
equivalences of groupoids in [34], which is extended to the non-Hausdorff case
in [41].
Let G be an étale groupoid. We call a function on G quasi-continuous if it is a

finite linear combination of compactly supported functions U → C for Hausdorff,
open subsets U of G, where we extend a function on U by 0 outside U to a function
on G. If G is non-Hausdorff, these functions are not continuous. Let S(G) be
the C-vector space of quasi-continuous functions on G.
We define an involution and a convolution on S(G) as in [22]:

ξ ? η(g) =
∑

h:r(h)=r(g)
ξ(h)η(h−1g), (2.17)

ξ∗(g) = ξ(g−1) (2.18)

for ξ, η ∈ S(G).
To make S(G) a normed ∗-algebra we define a norm as follows:

‖f‖I,r := sup
u∈G0

∑
z:r(z)=u

|f(z)|,

‖f‖I,s := sup
u∈G0

∑
z:r(z)=u

|f(z−1)|.

Then

‖f‖I := max{‖f‖I,r, ‖f‖I,s}.

We need the following fact about C∗-algebras of étale groupoids.
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2 Groupoid bicategories and the bicategory of C∗-correspondences

Lemma 2.33 ([38, p. 47]). Let G be an étale groupoid. Then S(G) has a bounded
approximate identity with respect to the I-norm.

Proof. Since G0 is open in G and Hausdorff, Urysohn’s lemma gives a sequence
{ξn} in Cc(G0) ⊂ S(G) such that 0 ≤ ξn ≤ 1 for every n ∈ N and such that G0 =⋃
n∈N Un, where Un is the interior of the set {u ∈ G0 | ξn(u) = 1} and Un ⊂ Un+1.

‖ξn‖I = ‖ξn‖I,r = ‖ξn‖I,s = sup
u∈G0
|ξn(u)| = 1.

It follows that the sequence {ξn} is bounded with respect to the I-norm. If ξ ∈ S(G)
then n ∈ N we have

ξ ? ξn(g) =
∑

r(k)=s(g)
ξ(gk)ξn(k−1)

for all g ∈ G and n ∈ N. Since ξn ∈ S(G0), the last formula can be rewritten as

ξ ? ξn(g) = ξ(gs(g))ξn(s(g)) = ξ(g)ξn(s(g)).

We may assume without loss of generality that the support of f is contained in a
compact set C ⊂ G. Then we can pick n ∈ N large enough such that s(C) ⊂ Un,
and f ?fn = f for such n. Similarly, fn ?f = f , so {fn} is an approximate identity
for S(G).

Definition 2.34. A correspondence from a C∗-algebra A to a C∗-algebra B is a
Hilbert B-module F with a nondegenerate left action of A by adjointable operators.
A correspondence is proper if A acts by compact operators. An isomorphism
between two correspondences from A to B is a unitary operator on the underlying
Hilbert B-modules that intertwines the left actions of A.

There is a bicategory Corr that has C∗-algebras as objects, correspondences
as arrows, isomorphisms of correspondences as 2-arrows, and the interior tensor
product as composition of arrows, see [11].

Let G and H be groupoids and let X : H → G be a correspondence from G to H.
We are going to construct a C∗-correspondence C∗(X ) : C∗(H)→ C∗(G) as follows.
We equip S(X ) with the right S(G)-action

ξ · b(y) :=
∑

γ∈G:r(γ)=s(y)
ξ(y · γ)b(γ−1) (2.19)

for ξ ∈ S(X ) and y ∈ X , with the S(G)-valued inner product

〈ξ, η〉(g) :=
∑

y∈X :r(g)=s(y)
ξ(y)η(y · g) (2.20)
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2.5 The functor to Corr

for ξ, η ∈ S(X ) and g ∈ G, and with the left S(H)-module structure

ϕ(a)(ξ)(y) :=
∑

h∈H:r(h)=r(y)
a(h)ξ(h−1 · y)

for a ∈ S(H), ξ ∈ S(X ) and y ∈ X .
If X were an equivalence of groupoids, we could also define a left inner product

and complete X to a full Hilbert C∗(H),C∗(G)-bimodule, see [41, Corollaire 5.4];
the statement in the Hausdorff case without coefficients in [34, Theorem 2.8] is
slightly more transparent, and the proof in [35] is far more detailed. The main
issue is to prove the positivity of the inner product, so as to get a Hilbert module
completion C∗(X ), and to prove that the left action on S(X ) extends to an action
on C∗(X ). If we only assume that X is a groupoid correspondence, then part of
the proof still works in the same way and shows that C∗(X ) is a correspondence
from C∗(H) to C∗(G). If G, H and X are Hausdorff, this is proved in [18], even
for groupoids with Haar systems. Given this long list of nearby results, we allow
ourselves to omit the proof of the following proposition:

Proposition 2.35. There is a unique completion of S(X ) to a Hilbert C∗(G)-
module C∗(X ), and the left C∗(H)-action on S(X ) extends to a nondegenerate
∗-homomorphism C∗(H)→ B(S(X )).

Thus C∗(X ) is a C∗-correspondence C∗(H)→ C∗(G).
Let X ∼= X ′ : H → G be an isomorphism of groupoid correspondences. Clearly,

this induces an isomorphism of C∗-correspondences

C∗(X ) ∼= C∗(X ′).

The identity groupoid correspondence G on a groupoid G is mapped to the iden-
tity C∗-correspondence C∗(G) on the groupoid C∗-algebra. If two correspon-
dences X : H → G and Y : G → K are composable, then there is a canonical
isomorphism

C∗(X ◦ Y) ∼= C∗(X )⊗C∗(G) C∗(Y), (2.21)

which is induced by the map

µX ,Y : S(X )⊗S(G) S(Y)→ S(X ◦ Y), µ(f ⊗ g)([x, y]) :=
∑

f(x)g(y),

where the sum runs over all representatives (x, y) ∈ X ×s,G0,r Y of [x, y] ∈ X ◦ Y.
This map is aS(H)-S(K)-bimodule map, preserves theS(K)-valued inner product
and has a dense range. Hence it extends to an isomorphism of correspondences as
in Equation (2.21).

Proposition 2.36. The data above defines a covariant functor from the bicategory
of groupoids Gr to the C∗-correspondence bicategory Corr.
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2 Groupoid bicategories and the bicategory of C∗-correspondences

Proof. The conditions for a functor between bicategories are formulated, for
instance, in [25]. They are routine to check here.

Remark 2.37. Let X : H → G be a bicorrespondence. Similar arguments as above
show that C∗(X ) is a Hilbert C∗(H),C∗(G)-bimodule in the sense of Watatani, see
[19]. The left inner product is

〈ξ, η〉(h) :=
∑

y∈X :r(h)=r(y)
ξ(g−1 · y)η(y) (2.22)

for ξ, η ∈ S(X ) and h ∈ H.
The left and right inner products for a Hilbert bimodule associated with a

bicorrespondence do not satisfy any compatibilty condition, therefore it does not
give a Hilbert bimodule as in [11], for instance.
Now assume, in addition, that r, s : X → G0 are surjective. This implies

that the Hilbert bimodule C∗(X ) is full (as a left and right Hilbert module).
Therefore, it is a bi-Hilbertian bimodule in the sense of Kajiwara–Pinzari–Watatani
(see [19, Definition 2.3]). It follows that the functor F : Gr→ Corr restricts to a
functor F : Grbicor → CorrHilb, where CorrHilb is the subbicategory of Corr of Hilbert
bimodules in Watatani’s sense. Moreover, the image under F of a bicorrespondence
with both anchor maps being surjective is a bi-Hilbertian bimodule.

Finally, if the bicorrespondence X is a partial equivalence, then C∗(X ) is a
Hilbert bimodule in the usual sense, see [10].

Proposition 2.38. Let G, H be groupoids and let X : G → H be a correspondence.
The C∗-correspondence C∗(X ) is proper if the groupoid correspondence X is proper.

Proof. Let X◦GX ∗ denote the orbit space of the action of G on the space X×s,G0,sX
given by (x, y) · g := (xg, yg) for all (x, y) ∈ X ×s,G0,s X and all g ∈ G with r(g) =
s(x). Let f ∈ S(X ◦G X ∗) be a compactly supported function. We set

ψ(f)(ζ)(x) :=
∑

y∈X :s(x)=s(y)
f(x, y)ζ(y)

for all x ∈ X and all ζ ∈ S(X ). Let ξ, η ∈ S(X ). Then the function θη,ξ ∈
S(X ◦G Xq) defined by

θη,ξ(x, y) :=
∑

g∈G:r(g)=s(y)
η(x · g) · ξ(y · g)
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2.5 The functor to Corr

satisfies

ψ(θη,ξ)(ζ)(x) =
∑

y∈X :s(x)=s(y)
ζ(y)

∑
g∈G:r(g)=s(x)

η(x · g) · ξ(y · g)

=
∑

g∈G:r(g)=s(x)
η(x · g)

∑
y∈X :s(g)=s(y)

ξ(y)ζ(y · g−1)

=
∑

g∈G:r(g)=s(x)
η(x · g)〈ξ, ζ〉(g−1)

= η ∗ 〈ξ, ζ〉(x).

Therefore, ψ(θη,ξ) = |η〉〈ξ| ∈ K(C∗(X )). Let a ∈ S(H1). Then a acts on S(X ) by

ϕ(a) · ξ(x) =
∑

h∈G:r(h)=r(x)
a(h)ξ(h−1x). (2.23)

The correspondence C∗(X ) is proper if ϕ(a) is a compact operator for all a ∈ S(H).
Since H is an étale groupoid, by Lemma 2.33, there is an approximate unit {ai}
for C∗(H) such that ai ∈ C0(H0). It follows that C∗(X ) is proper if and only
if ϕ(Cc(H0)) ⊂ K(C∗(X )). Let a ∈ Cc(H0). We define

fa(x, y) :=
{
a(r(y)) if x = y,

0 otherwise.
(2.24)

Then

ψ(fa)(ξ)(x) = a(r(x))ξ(x) = ϕ(a)(ξ)(x). (2.25)

Hence ϕ(a) is a compact operator if its integral kernel fa is compactly supported
on the diagonal D := {[x, x] ∈ X ◦ X ∗}. The diagonal D is homeomorphic to the
space X/G via the map [x] 7→ [x, x]. Furthermore, the map rX∗ : X/G → H0 is
proper if and only if it induces a map C0(H0) → C0(X/G). This concludes our
proof.

Example 2.39. Let G and H be the same locally compact space, viewed as a
groupoid. Then a groupoid correspondence H → G is the same as a topological
graph [20] with vertex space G = H, that is, a space X with a continuous
map H → X and a local homeomorphism X → G (see Example 2.22). The
groupoid C∗-algebra of G is the commutative C∗-algebra of C0-functions on G,
and C∗(X ) is the C∗-correspondence associated to a topological graph as in [20].
Proposition 2.38 says that such a correspondence is proper if and only if the
map H → X is proper, which is well-known (compare [33, Corollary 3.12]). The
composition of groupoid correspondences in this case is the usual fibre product,
and the multiplicativity of the map X 7→ C∗(X ) is [1, Lemma 4.3], compare also
[33, Lemmas 6.1–4].
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2 Groupoid bicategories and the bicategory of C∗-correspondences

2.6 Diagrams and colimits
2.6.1 Diagrams of groupoid correspondences
In this section, we define diagrams in the bicategory of groupoid correspondences,
natural transformations between such diagrams and colimits. We finish this section
by describing colimits of group actions in Gr.
Let C be a category. We denote by GrC the bicategory whose objects are

functors C → Gr, arrows are transformations between such functors, and 2-arrows
are modifications (see [25]).

Functors were defined in Definition 2.2 and transformations between functors in
Definition 2.4. The following propositions can be considered as the definitions of
transformations, modifications and functors in Gr. Their proofs are similar to the
proofs in the C∗-algebraic setting in [11].

Proposition 2.40. A functor C → Gr consists of

• locally compact groupoids Gx for all objects x of C;

• correspondences Xg : Gx → Gy for all arrows g : x→ y in C;

• isomorphisms µg,h : Xh ◦Gy Xg → Xgh for all pairs of composable arrows
g : y → z, h : x→ y in C;

such that

(1) X1x is the identity correspondence on Gx for all objects x of C;

(2) µ1y ,g : Xg ◦Gy Gy → Xg and µg,1x : Gx ◦Gx Xg → Xg are the canonical isomor-
phisms for all arrows g : x→ y in C;

(3) for all composable arrows g01 : x0 → x1, g12 : x1 → x2, g23 : x2 → x3, the
following diagram commutes:

(Xg01 ◦Gx1
Xg12) ◦Gx2

Xg23

Xg01 ◦Gx1
(Xg12 ◦Gx2

Xg23)

Xg02 ◦Gx2
Xg23

Xg01 ◦Gx1
Xg13

Xg03can.

µg12,g01 ◦Gx2
idXg23

idXg01
◦Gx1

µg23,g12

µg23,g02

µg13,g01

(2.26)

Here g02 := g12 ◦ g01, g13 := g23 ◦ g12, and g03 := g23 ◦ g12 ◦ g01.
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The diagram (2.31) commutes automatically if one of the arrows g01, g12
or g23 is an identity arrow.

Proposition 2.41. Let (G0
x,X 0

g , µ
0
g,h) and (G1

x,X 1
g , µ

1
g,h) be two functors from C

to Gr. A transformation between them consists of

• proper correspondences γx from G0
x to G1

x for all objects x of C;

• isomorphisms Vg : γx ◦G1
x
X 1
g → X 0

g ◦G0
y
γy for all arrows g : x→ y in C;

such that

(1) V1x : γx ◦G1
x
G1
x → G0

x ◦G0
x
γx is the canonical isomorphism for each object x

in C;

(2) for each pair of composable arrows g : y → z, h : x→ y in C, the following
diagram commutes:

γx ◦G1
x
X 1
h ◦G1

y
X 1
g

γx ◦G1
x
X 1
gh

X 0
h ◦G0

y
γy ◦G1

y
X 1
g

X 0
gh ◦G0

z
γz

X 0
h ◦G0

y
X 0
g ◦G0

z
γzidγx ◦G1

x
u1
g,h

Vh ◦G1
y

idX 1
g

Vgh

idX 0
h
◦G0

y
Vg

u0
g,h ◦G0

z
idγz

(2.27)

The diagram (2.27) commutes automatically if g or h is an identity arrow.

Proposition 2.42. Let (G0
x,X 0

g , µ
0
g,h) and (G1

x,X 1
g , µ

1
g,h) be functors from C to Gr

and let (γ1
x, V

1
g ) and (γ2

x, V
2
g ) be transformations between them. A modification

from (γ1
x, V

1
g ) to (γ2

x, V
2
g ) consists of isomorphisms of proper correspondences

Wx : γ1
x → γ2

x for each object x in C such that the diagrams

γ1
x ◦G1

x
X 1
g γ2

x ◦G1
x
X 1
g

X 0
g ◦G0

y
γ1
y X 0

g ◦G0
y
γ2
y

Wx ◦G1
x

idX 1
g

V 1
g V 2

g

idX 0
g
◦G0

y
Wy

(2.28)

commute for all arrows g : x→ y in C. This diagram commutes automatically if g
is an identity arrow.
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The composition of transformations is defined as follows. Describe functors C →
Gr by (G0

x,X 0
g , µ

0
g,h), (G1

x,X 1
g , µ

1
g,h) and (G2

x,X 2
g , µ

2
g,h), and transformations between

them by (γ01
x , V

01
g ) and (γ12

x , V
12
g ) as above. The composite transformation is

defined by γ02
x := γ01

x ◦G1
x
γ12
x for objects x of C and

V 02
g : γ02

x ◦G2
x
X 2
g = γ01

x ◦G1
x
γ12
x ◦G2

x
X 2
g

id
γ01
x
◦G1
x
V 12
g

−−−−−−−−→ γ01
x ◦G1

x
X 1
g ◦G2

y
γ12
y

V 01
g ◦G2

y
id
γ12
y−−−−−−−−→ X 0

g ◦G0
y
γ01
y ◦G1

y
γ12
y = X 0

g ◦G0
y
γ02
y

for all arrows g : x→ y in C. These (γ02
x , V

02
g ) indeed form a transformation.

Let C be a category and let (Gx,Xg, µg,h) describe a functor C → Gr. To describe
the colimit of this diagram, we only need transformations from (Gx,Xg, µg,h) to
constant functors constD : C → Gr, and modifications among such transformations.
The following definition is a special case of Definition 2.3.

Definition 2.43. Let D be a locally compact groupoid. The constant func-
tor constD : C → Gr maps all objects x of C to D, all arrows g in C to the identity
correspondence on D, and all pairs g, h to the canonical isomorphism D◦DD → D.

By Definition 2.5, a transformation from the functor given by (Gx,Xg, µg,h)
to constD is given by correspondences γx from Gx to D for all objects x of C and
isomorphisms of correspondences

Vg : γx → Xg ◦Gy γy for all arrows g : x→ y in C,

such that V1x is the canonical isomorphism for all objects x and the diagrams

γx

γx

Xh ◦Gy γy

Xgh ◦Gz γz

Xh ◦Gy Xg ◦Gz γzidγx

Vh

Vgh

idXh ◦Gy Vg

µg,h ◦Gz idγz

(2.29)

for composable arrows g : y → z, h : x→ y in C commute. This diagram commutes
automatically if g or h is an identity arrow.
If (γ1

x, V
1
g ) and (γ2

x, V
2
g ) are two such transformations, then a modification

between them is given by isomorphisms of correspondences

Wx : γ1
x → γ2

x for all objects x of C,
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such that the diagrams

γ1
x γ2

x

Xg ◦Gy γ1
y Xg ◦Gy γ2

y

Wx

V 1
g V 2

g

idXg ◦Gy Wy

(2.30)

commute for all arrows g : x→ y in C, see Definition 2.6. This diagram commutes
automatically if g is an identity arrow.
The colimit for a functor F : C → Gr is, by definition, a groupoid H such that

the groupoid of arrows H → D and 2-arrows between them is naturally equivalent
to the groupoid of transformations F → constD and the modifications between
them for each locally compact groupoid D.

2.6.2 Diagrams of C∗-correspondences
In this section, we describe diagrams in Corr, transformation between such diagrams
and modification between transformations. Our reference for this is [11, §4], where
the same is worked out for the bicategory of C∗-algebras with nondegenerate
∗-homomorphisms as arrows and unitary intertwiners as 2-arrows.

Proposition 2.44. A functor C → Corr consists of

• C∗-algebras Ax for all objects x of C;

• correspondences Eg : Ax → Ay for all arrows g : x→ y in C;

• isomorphisms of correspondences µg,h : Eh ⊗Ay Eg → Egh for all pairs of
composable arrows g : y → z, h : x→ y in C;

such that

(1) E1x is the identity correspondence on Ax for all objects x of C;

(2) µ1y ,g : Eg ⊗Ay Ay → Eg and µg,1x : Ax ⊗Ax Eg → Eg are the canonical isomor-
phisms for all arrows g : x→ y in C;

(3) for all composable arrows g01 : x0 → x1, g12 : x1 → x2, g23 : x2 → x3, the
following diagram commutes:

(Eg01 ⊗Ax1
Eg12)⊗Ax2

Eg23

Eg01 ⊗Ax1
(Eg12 ⊗Ax2

Eg23)

Eg02 ⊗Ax2
Eg23

Eg01 ⊗Ax1
Eg13

Eg03can.

µg12,g01 ⊗Ax2
idEg23

idEg01
⊗Ax1

µg23,g12

µg23,g02

µg13,g01

(2.31)
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Here g02 := g12 ◦ g01, g13 := g23 ◦ g12, and g03 := g23 ◦ g12 ◦ g01.
The diagram (2.31) commutes automatically if one of the arrows g01, g12
or g23 is an identity arrow.

Proposition 2.45. Let (A0
x, E0

g , µ
0
g,h) and (A1

x, E1
g , µ

1
g,h) be two functors from C

to Corr. A transformation between them consists of

• correspondences γx from A0
x to A1

x for all objects x of C;

• isomorphisms of correspondences Vg : γx ⊗A1
x
E1
g → E0

g ⊗A0
y
γy for all ar-

rows g : x→ y in C;

such that

(1) V1x : γx ⊗A1
x
A1
x → A0

x ⊗A0
x
γx is the canonical isomorphism for each object x

in C;

(2) for each pair of composable arrows g : y → z, h : x→ y in C, the following
diagram commutes:

γx ⊗A1
x
E1
h ⊗A1

y
E1
g

γx ⊗A1
x
E1
gh

E0
h ⊗A0

y
γy ⊗A1

y
E1
g

E0
gh ⊗A0

z
γz

E0
h ⊗A0

y
E0
g ⊗A0

z
γzidγx ⊗A1

x
u1
g,h

Vh ⊗A1
y

idE1
g

Vgh

idE0
h
⊗A0

y
Vg

u0
g,h ⊗A0

z
idγz

(2.32)

The diagram (2.32) commutes automatically if g or h is an identity arrow.

Proposition 2.46. Let (A0
x, E0

g , µ
0
g,h) and (A1

x, E1
g , µ

1
g,h) be functors from C to Corr

and let (γ1
x, V

1
g ) and (γ2

x, V
2
g ) be transformations between them. A modification

from (γ1
x, V

1
g ) to (γ2

x, V
2
g ) consists of isomorphisms of correspondencesWx : γ1

x → γ2
x

for all objects x in C such that the diagrams

γ1
x ⊗A1

x
E1
g γ2

x ⊗A1
x
E1
g

E0
g ⊗A0

y
γ1
y E0

g ⊗A0
y
γ2
y

Wx ⊗A1
x

idE1
g

V 1
g V 2

g

idE0
g
⊗A0

y
Wy

(2.33)

commute for all arrows g : x→ y in C. This diagram commutes automatically if g
is an identity arrow.
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2.6 Diagrams and colimits

2.6.3 Examples
Group actions by homeomorphisms

Lemma 2.47. Let X be a locally compact space and let G be a discrete group.
There is an equivalence between G-actions on X by homeomorphisms and mor-
phisms G→ Gr which map the unique object in G to X.

Proof. First, let α : G → Homeo(X) be a group action. That is, αg := α(g)
are homeomorphisms on X such that αgαh = αgh for all g, h ∈ G. Let Xg

be the correspondence given by Xg := X as a topological space, with anchor
maps rg, sg : Xg → X given by

rg(x) := x, sg(x) := αg(x).

for all x ∈ X. To define a functor G→ Gr we still need to define the multiplication
isomorphisms; these are given by

µαg,h : Xg ×sg ,X,rh Xh
∼−→ Xhg, (x, αg(x)) 7→ x.

It is routine to check that (Xg, µ
α
g,h) is indeed a functor G→ Gr.

Conversely, let (Xg, µαg,h) be a functor G → Gr with X1 = X. That is
Xg : X → X are correspondences and µg,h : Xg ◦X Xh

∼−→ Xhg are isomorphisms of
correspondences. The correspondence Xg is an equivalence for each g ∈ G. By
Theorem 2.30, it is a Morita equivalence over the space X. This implies that
both r : Xg → X and s : Xg → X are homeomorphisms. Let

αg := sgr
−1
g

for all g ∈ G. Then
G→ Homeo(X), g 7→ αg,

defines an action of G on the space X. Moreover, the maps Vg := sg : Xg → Xg,
where Xg : X → X are the correspondences as in the first part of the proof, form
an invertible transformation from the functor (Xg, µg,h) to the functor associated
to an action of G on X by homeomorphisms.

Lemma 2.48. Let α : G→ Homeo(X) be a group action on a space X by homeo-
morphism. The colimit of the action in Gr is the transformation groupoid GnX.

Proof. Let (Xg, µ
α
g,h) be the functor associated to α : G → Homeo(X) as in

Lemma 2.47. Let D be a groupoid and let (Y, Vg) be a transformation from
(Xg, µ

α
g,h) to constD. The group G acts on Y by

g · y := Vg(rY(y), y). (2.34)
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2 Groupoid bicategories and the bicategory of C∗-correspondences

Together with the D-equivariant map rY∗ : Y/G → X, the group action of G on Y
gives an action of the transformation groupoid GnX on Y that commutes with
the D-action (see [31, Proposition 4.10]). This gives a correspondence Y : GnX →
D. Conversely, let Y : GnX → D be a correspondence. By [31, Proposition 4.10]
this is equivalent to an action of G on Y with a G-map rY : Y → X. It follows
that Y : X → D is a correspondence using the anchor map rY . We define

Vg(rY(y), y) := g · y. (2.35)

for all g ∈ G and all y ∈ Y. Then Vg : X ×id,X,rY Y → Y is an isomorphism of
correspondences and (Y, Vg) satisfies the coherence condition in (2.29) and therefore
gives a transformation from (Xg, µ

α
g,h) to constD. The above two constructions are

inverse to each other and natural in the formal sense. So they show that GoX is
the colimit.
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3 Actions of Ore monoids

In this chapter, we study Ore monoid actions in the bicategory of groupoid
correspondences. The most basic example of an Ore monoid is the monoid of
natural numbers N. An action of N in Gr by proper correspondences is equivalent
to a single correspondence X : G → G for a groupoid G. To associate a C∗-algebra
to the action given by X , we may first use the functor Gr → Corr to obtain
a C∗-correspondence E := C∗(X ) : C∗(G) → C∗(G) and then take the Cuntz–
Pimsner algebra OE .
Now we know from [2] that OE is the colimit of the action given by E in the

correspondence bicategory Corr. We will show that the action given by X also has
a colimit groupoid H in Gr. Theorem 3.36 shows that H is a groupoid model of
the Cuntz–Pimsner algebra OE , that is, OE ∼= C∗(H).
Our construction of the groupoid colimit of an action of an Ore monoid P by

correspondence has two steps. We first show that an Ore monoid action by tight
correspondences always has a colimit. This is done in Section 3.2. In Section 3.3
we show how to approximate an Ore monoid action by correspondences through
an action by tight correspondences in a way that does not change the colimit, see
Theorem 3.30.

3.1 Ore monoids
In this section, we introduce Ore monoids and their actions in the bicategory of
groupoid correspondences Gr.

Definition 3.1 ([27, Section IX.1]). A category C is filtered if it is nonempty and

(1) for any two objects x, y ∈ C0, there are z ∈ C0, g ∈ C(x, z) and h ∈ C(y, z);

(2) for any two parallel arrows g, h ∈ C(x, y), there are z ∈ C0 and k ∈ C(y, z)
with kg = kh.

Let P be a monoid and let CP be the category with object set P and arrow
set P ×P , where (p, q) is an arrow from p to pq, and where (pq, r) · (p, q) := (p, qr)
for all p, q, r ∈ P . The category CP is filtered if and only if P satisfies the following
Ore conditions:

(Ore1) for all x1, x2 ∈ P , there are y1, y2 ∈ P with x1y1 = x2y2;
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3 Actions of Ore monoids

(Ore2) if xy1 = xy2 for y1, y2, x ∈ P , then there is z ∈ P with y1z = y2z.

Definition 3.2. We call P a right Ore monoid if the category CP is filtered. We
call P a left Ore monoid if P op is a right Ore monoid.

Condition (Ore2) follows if P has cancellation. Both hold if P ⊆ G for a group G
with PP−1 = G.

Let P be an Ore monoid. We may construct a group completion G = G[P ]
of P by taking equivalence classes of formal fractions pq−1 := (p, q) ∈ P × P ,
where (p1, q1) ∼ (p2, q2) if there are elements a1, a2 ∈ P with (p1a1, q1a1) =
(p2a2, q2a2). The product of the elements [p1, q1] and [p2, q2] is given by

[p1, q1][p2, q2] := [p1t1, q2t2]

where t1, t2 ∈ P are such that q1t1 = p2t2. The group G is determined by the
monoid P , and every monoid morphism ϕ : P → H for a group H extends to a
group homomorphism ϕ̃ : G→ H. The group homomorphism is simply given by

ϕ̃[p, q] = ϕ(p)ϕ(q)−1

for all [p, q] ∈ G.
Example 3.3. Commutative monoids are Ore monoids. Normal monoids are also
Ore; here we say that a monoid P is normal if sP = Ps for all s ∈ P . Non-abelian
free monoids are examples of monoids which do not satisfy the Ore conditions.
An action of an Ore monoid P in the bicategory Gr is a functor F : P op → G

(see Proposition 2.40). Here we think of an Ore monoid as a category with one
object (the identity) and elements of the monoid as arrows; the product of two
arrows p and q is pq.
We include the following definition for convenience.

Definition 3.4. Let G be a groupoid and let P be an Ore monoid. An action
of P op on G by correspondences consists of the following data:

• correspondences Xp : G → G for p ∈ P \ {1};

• isomorphisms σp,q : Xpq → Xp ◦G Xq for p, q ∈ P \ {1}.

We assume that X1 = G is the identity correspondence and that σp,1 and σ1,q are
the canonical homeomorphisms Xp ∼= Xp ◦G G and Xq ∼= G ◦G Xq for p, q ∈ P . For
an action of P , we also require the diagram

Xp ◦G Xq ◦G Xt Xpq ◦G Xt

Xp ◦G Xqt Xpqt

σp,q ◦G idXt

idXp ◦G σq,t σpq,t

σp,qt

(3.1)
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3.2 Actions of Ore monoids by tight correspondences

to commute for all p, q, t ∈ P \ {1}. This diagram commutes automatically
if p = 1, q = 1 or t = 1, so our assumption implies that it commutes for
all p, q, t ∈ P .

3.2 Actions of Ore monoids by tight correspondences
In this section, we describe colimits of Ore monoid actions by tight correspondences.
Let X : G → G be a tight correspondence. By Proposition 2.26, there is a local

homeomorphism
X ×X/G X → G, (x, y) 7→ 〈x, y〉. (3.2)

The element 〈x, y〉 is the unique element in G with x〈x, y〉 = y. By our assump-
tion, X is a tight correspondence. That is, r∗ : X/G → G0 is a homeomorphism.
Therefore, we may replace X/G in Equation (3.2) with G0. Hence we obtain a
map

X ×r,G0,r X → G, (x, y) 7→ 〈x, y〉. (3.3)
The existence of the map in Equation (3.3) for a tight correspondence is the main
feature which allows to construct a colimit groupoid for a given Ore monoid action
by tight correspondences.

Definition 3.5. Let G, H be locally compact groupoids. Let X : G → H be
a correspondence. We say that an open subset U ⊂ X is a bisection if the
restrictions of the source map sX and the quotient map p : X → X/G to U are
both homeomorphisms.

Our definition implies that a bisection should meet every orbit of the right
action exactly once. We denote the set of all bisections of a correspondence X by
Bis(X ). For a groupoid G, a bisection in the identity correspondence G : G → G is
the same as a bisection in the groupoid G. That is, an open set in G such that the
restriction of the source and range maps to this set are homeomorphisms.

In the following, we fix a groupoid G, an Ore monoid P and an action (Xp, σp,q)
of P on G by tight correspondences. That is, Xp is a tight correspondence for
all p ∈ P and σp,q : Xpq → Xp ◦G Xq is an isomorphism for all p and q ∈ P . To
reduce notation, we write

xp · xq := σ−1
p,q ([xp, xq]) (3.4)

for all (xp, xq) ∈ Xp ×sp,G0,rq Xq. We call xp · xq ∈ Xpq the concatenation of xp
and xq. Let Xp◦GX ∗q be the quotient of the space Xp×sp,G0,sqXq by the equivalence
relation (xp, yq) ∼ (xpg, yqg) for all g ∈ G with r(g) = sp(xp).
Let k ∈ P . Let αkp,q be the map

αkp,q : Xp ×sp,G0,sq Xq → Xpk ◦G X
∗
qk, (xp, xq) 7→ [xp · xk, xq · xk], (3.5)
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3 Actions of Ore monoids

where xk ∈ Xk is such that rk(xk) = sp(xp). To see that (3.5) does not depend
on the choice of the point xk with rk(xk) = sp(xp), let yk ∈ Xk be another point
with rk(yk) = sp(xp) = rk(xk). Since yk〈yk, xk〉 = xk, we have

[xp · xk, xq · xk] = [xp · (yk〈yk, xk〉), xq · (yk〈yk, xk〉)]
= [(xp · yk)〈yk, xk〉, (xq · yk)〈yk, xk〉] = [xp · yk, xq · yk].

In particular, for k = 1, the last formula implies that

αkp,q(xpg, xqg) = αkp,q(xp, xq).

for all xp, xq and all g ∈ G with r(g) = sp(xp). Therefore, αkp,q induces a well-
defined map αkp,q : Xp ◦ X ∗q → Xpk ◦ X ∗qk.

Lemma 3.6. The map αkp,q : Xp ◦ X ∗q → Xpk ◦ X ∗qk is a local homeomorphism.
Moreover,

αlpk,qk ◦ αkp,q = αklp,q (3.6)

for all p, q, k, l ∈ P .

Proof. Let x = [xp, xq] ∈ Xp ◦G X ∗q . We want an open subset U ⊂ Xp ◦G X ∗q such
that x ∈ U and the restriction map αkp,q|U is a homeomorphism. Let U1 ⊂ Xp
and U2 ⊂ Xq be bisections with xp ∈ U1 and xq ∈ U2. We claim that U :=
p(U1 ×sp,G0,rq U2) ⊂ Xp ◦G X ∗q is the desired open set. Let V := r−1

k (sp(U1) ∩
sq(U2)). Then V is open in Xk since sp is a local homeomorphism and rk is
continuous. We may write V as a union of bisections V =

⋃
i∈I Vi for an index

set I. Let Q : Xpk×spk,G0,sqk Xqk → Xpk ◦G X
∗
qk denote the quotient map. We define

Ti := Q(σ−1
p,k · p(U1 ×sp,G0,rk Vi)×spk,G0,sqk σ

−1
q,k · p(U2 ×sp,G0,rk Vi))

for all i ∈ I. Since σp,k and σq,k are homeomorphisms and the quotient maps p
and Q are open by Proposition 2.10, Ti is open for all i ∈ I. Furthermore,

αkp,q(U) =
⋃
i∈I

Ti.

To see this, let i ∈ I and let [xp · xk, yp · yk] ∈ Ti. Then sk(xk) = sk(yk) and
hence xk = yk since Vi is a bisection. This implies that [xp · xk, yp · yk] ∈ αkp,q(U).
The other implication is clear. It follows that αkp,q(U) is an open set. Since every
open set in Xp ◦G X ∗q is a union of bisections of the form p(U1 ×sp,G0,rq U2) for
U1 ∈ Xp and U2 ∈ Xq, the map αkp,q is open. It remains to show that αkp,q|U is
injective. Let [xp, xq], [yp, yq] ∈ p(U1×sp,G0,sqU2) with αkp,q([xp, xq]) = αkp,q([yp, yq]).
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3.2 Actions of Ore monoids by tight correspondences

Then rp(xp) = rp(yp) and rq(xq) = rq(yq). This implies that xp = yp and xq = yq
by our assumption that rp|U1 and rq|U2 are homeomorphisms. It follows that
[xp, xq] = [yp, yq], and the map αkp,q is injective on p(U1×sp,G0,sqU2). The restriction
αkp,q|U of αkp,q on the open set U is open, injective and continuous. That is, the
map αkp,q|U is a homeomorphism. Finally, the maps (σp,q)p,q∈P are part of an
action of P on the groupoid G. Hence they satisfy condition (3.1). This implies
Equation (3.6).

3.2.1 The construction of the colimit groupoid
Next we associate a groupoid H to the action (Xp, σp,q). We construct the
groupoid H by first constructing a “fibre” Hg for all g ∈ G = G[P ]. Recall that
the elements of the group completion G = G[P ] are equivalence classes of formal
fractions p1p

−1
2 for p1, p2 ∈ P with p1p

−1
2 ∼ (p1r)(p2r)−1. For g ∈ G we set

Rg := {(p1, p2) ∈ P × P | p1p
−1
2 = g in G}. (3.7)

Let p = (p1, p2) and q = (q1, q2) ∈ Rg. Let CgP (p, q) be the set of all h ∈ P
with p1h = q1 and p2h = q2. These are the arrows of a category CgP with
multiplication given by that in P . The category CgP is filtered by [1, Lemma 3.14].
This allows us to take the inductive limit of the spaces Xp ◦G X ∗q with respect to
the connection maps αkp,q given in Equation (3.5). We set

(Hg, fp,q) := lim−→
CgP

(Xp ◦G X ∗q , αkp,q), (3.8)

where fp,q : Xp ◦G X ∗q → Hg is the universal map associated to the inductive limit
space Hg, for all (p, q) ∈ CgP . Let

H :=
⊔
g∈G
Hg. (3.9)

Elements of H are equivalence classes of pairs [xp, xq] ∈ Xp ◦G X ∗q , where [xp, xq] ∼
αkp,q([xp, xq]) for all k ∈ P . We will use this identification and, with a slight abuse
of notation, we will abbreviate fp,q([xp, xq]) by [xp, xq] if no confusion can arise.

Our next goal is to show that the space H is in a canonical way a locally compact
groupoid with Hausdorff unit space H0.

Let g ∈ G and let x = [xp, xq] ∈ Hg. We define the source and the range of x by

rH(x) := [xp, xp] = [rp(xp), rp(xp)],
sH(x) := [xq, xq] = [rq(xq), rq(xq)].

(3.10)

That is, [xp, xp] is the image of the point [xp, xp] ∈ Xp ◦G X ∗p under the map fp,p.
Before defining a multiplication map on the groupoid H, we need the following

lemma regarding the inner product map.

41



3 Actions of Ore monoids

Lemma 3.7. Let p, t, k ∈ P . Then

xt〈xp · xt, yp · xk〉 = 〈xp, yp〉xk

for all (xp, yp) ∈ Xp ×rp,G0,rp Xp and all xt ∈ Xt, xk ∈ Xk with sp(xp) = r(xt) and
sp(yp) = r(xk).

Proof. We have xp〈xp, yp〉 = yp and xp · xt · 〈xp · xt, yp · xk〉 = yp · xk. This implies

yp · 〈xp, yp〉−1xt〈xp · xt, yp · xk〉 = yp · xk.

It follows that 〈xp, yp〉−1xt〈xp · xt, yp · xk〉 = xk since the right action of G on Xp
is free. Hence xt〈xp · xt, yp · xk〉 = 〈xp, yp〉xk.

Now let x = [xp1 , xq1 ] and y = [yp2 , yq2 ] ∈ H with rp2(yp2) = rq1(xq1). Roughly
speaking, we want to define the product x·y as for pair groupoids. Think of x as the
image in H of an arrow starting with xq1 and ending with xp1 . Similarly, y is the
image of the arrow starting with yq2 and ending with xp2 . If p2 = q1 and yp2 = xq1 ,
then we may define the product x ·y as [xp1 , yq2 ]. In general, if the range of y is the
source of x, we may choose different representatives of x and y with this property.
To be more precise, since P is an Ore monoid, there are a, b ∈ P such that p2b = q1a.
Let xa ∈ Xa and yb ∈ Xb with ra(xa) = sp1(xp1) and rb(yb) = sp2(yp2). Then
[xp1 , xq1 ] = [xp1 · xa, xq1 · xa] and [yp2 , yq2 ] = [yp2 · yb, yq2 · yb]. We define

[xp1 , xq1 ] · [yp2 , yq2 ] := [xp1 · xa · 〈xq1 · xa, yp2 · yb〉, yq2 · yb]. (3.11)

The product formula (3.11) does not depend on the choice of the representa-
tives [xp1 , xq1 ] ∈ Xp1 ◦G Xq1 and [yp2 , yq2 ] ∈ Xp2 ◦G Xq2 in H. To show this,
let k1, k2 ∈ P . Let also xk1 ∈ Xk1 and xk2 ∈ Xk2 such that rk1(xk1) = sp1(xp1) and
rk2(xk2) = sp2(xp2). We have

([xp1 · xk1 , xq1 · xk1 ], [yp2 · xk2 , yq2 · xk2 ]) = ([xp1 , xq1 ], [yp2 , yq2 ]) ∈ H2.

Next let c1, c2, d1, d2 be such that k1c1 = ad1 and k2c2 = bd2. We can also find t1, t2
such that d1t1 = d2t2. Then q1k1c1t1 = q1ad1t1 = p2bd2t2 = p2k2c2t2. We may
replace c1t1 by c1, c2t2 by c2 and d2t2 = d1t1 by t. We get k1c1 = at, k2c2 = bt
and q1k1c1 = q1at = p2bt = q2k2c2. Let also xt ∈ Xt with r(xp) = s(xa) = s(xb).
Then xa ·xt ∈ Xat = Xk1c1 and xb ·xt ∈ Xbt = Xk2c2 . It follows that xa ·xt = xk1 ·xc1

and xb ·xt = xk2 ·xc2 , where [xk1 , xc1 ] = σk1,c1(xa ·xt) and [xk2 , xc2 ] = σk2,c2(xb ·xt).
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3.2 Actions of Ore monoids by tight correspondences

Lemma 3.7 implies

[xp1 · xk1 · xc1 , xq1 · xk1 · xc1 ] · [yp2 · xk2 · xc2 , yq2 · xk2 · xc2 ]
= [xp1 · xk1 · xc1 · 〈xq1 · xk1 · xc1 , yp2 · xk2 · xc2〉, yq2 · xk2 · xc2 ]
= [xp1 · xa · xt · 〈xq1 · xa · xt, yp2 · yb · xt〉, yq2 · yb · xt]
= [xp1 · xa · 〈xq1 · xa, yp2 · yb〉xt, yq2 · yb · xt]
= [xp1 · xa · 〈xq1 · xa, yp2 · yb〉, yq2 · yb]
= [xp1 , xq1 ] · [yp2 , yq2 ].

Therefore, the product formula gives a well-defined map H2 → H.
Finally, we define the inversion in H by

[xp, xq]−1 := [xq, xp] (3.12)

for all [xp, xq] ∈ H.

Lemma 3.8. The map β : H0 → G0, [xp, xp] 7→ rp(xp), is a homeomorphism.

Proof. We have [xp, xp] = [rp(xp) ·xp, rp(xp) ·xp] = [rp(xp), rp(xp)] for all [xp, xp] ∈
H. This implies that the the map β is a bijection. It is open since the range map
rp is open in the groupoid G and H0 ⊂ H1 has the inductive limit topology. To
show that it is continuous, it suffices to see that the set

f−1
p,p (β−1(U)) = {pp,p(xp, xp) | (xp, xp) ∈ r−1

p (U)×sp,G0,sp r
−1
p (U)}

is open if U ⊂ G0 is open. This follows since rp is continuous for all p ∈ P .

Lemma 3.9. For all g ∈ G and all (p, q) ∈ CgP , the map fp,q : Xp ◦G X ∗q → Hg is
a local homeomorphism.

Proof. The map fp,q is open and continuous since the maps αkp,q are local homeo-
morphisms for all p, q, k ∈ P by Lemma 3.6 and the space Hg carries the inductive
limit topology. The proof that every point [xp, xq] in Xp◦GX ∗q has a neighborhood U
such that the restriction of fp,q to U is injective is as in the proof of Lemma 3.6.

For simplicity, we write ιp := fp,1 : Xp → H. That is,

ιp(xp) = fp,1([xp, sp(xp)]). (3.13)

Proposition 3.10. With the groupoid structure defined above, H is an étale locally
compact groupoid with Hausdorff unit space.

43



3 Actions of Ore monoids

Proof. Let U be an open set in H. Without loss of generality, we may assume
that U = fp,q(U1 ◦G U∗2 ) for open sets U1 ⊂ Xp and U2 ⊂ Xq. The inverse image of
the set U with respect to the multiplication map defined in Equation (3.11) is⋃

k∈P
p(U1 ×sp,G0,sk Xk)×rk,G0,rk p(Xk ×sp,G0,sq U2);

this is open since the quotient maps p are open by Proposition 2.10. This implies
that Equation (3.11) defines a continuous map. The inverse image of U with
respect to the inversion defined in Equation (3.12) is

fq,p(U2 ◦G U∗1 ),

which is open in H. Hence the inversion H → H is also continuous.
Now we show thatH is étale. For all p ∈ P , the map rp is a local homeomorphism

by Lemma 2.20. Let [xp, xq] ∈ H for p and q ∈ P . Then there are bisections
U ⊂ Xp and V ∈ Xq with xp ∈ U and xq ∈ V . We set

M := fp,q(U ◦ V ∗) = {[yp, yq] ∈ H | yp ∈ U, yq ∈ V }.

Then M is an open set; this follows since fp,q is open by Lemma 3.9. Moreover,
for all [yp, yq] ∈M we have

rH([yp, yq]) = β−1(rp(yp)), sH([yp, yq]) = β−1(rq(yq)).

This implies that the maps rH and sH are local homeomorphisms by Lemma 2.20
and Lemma 3.8. In addition, Lemma 3.8 implies that H0 is Hausdorff since it is
homeomorphic to G0, which is Hausdorff by assumption.

Before proving that the groupoid H is the colimit of the diagram (Xp, σp,q) we
prove the following results regarding the maps fp,q.

Lemma 3.11. Let g ∈ G and let (p, q) ∈ CgP . The map fp,q : Xp ◦G X ∗q → Hg is
injective if the left action of G on Xk is free for all k ∈ P .

Proof. Let [xp, xq], [yp, yq] ∈ Xp ◦G X ∗q be such that fp,q([xp, xq]) = fp,q([yp, yq]).
Then there is an element k ∈ P and there are elements xk and yk ∈ Xk with
rk(xk) = sp(xp) and rk(yk) = sp(yp) and such that

[xp · xk, xq · xk] = [yp · yk, yq · yk].

Hence there is an element g ∈ G such that

xp · xk = yp · ykg, xq · xk = yq · ykg.

This implies that there are h1, h2 ∈ G such that xp = yph1, xk = h−1
1 ykg, xq =

yqh2 and xk = h−1
2 ykg. It follows that h−1

1 ykg = h−1
2 ykg and therefore h1 =

h2 by our assumption that the left action of G on Xk is free for all k ∈ P .
Consequently, [xp, xq] = [yph1, yqh1] = [yp, yq] and the map fp,q is injective.
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3.2 Actions of Ore monoids by tight correspondences

Lemma 3.12. The map ι1 : G → H is a groupoid homomorphism. It is injective
if and only if the left action of G on Xk is free for all k ∈ P .

Proof. Let g and h ∈ G. We need to show that ι1(g)−1 = ι1(g−1) and ι1(gh) =
ι1(g)ι1(h). The first claim follows since

ι1(g)−1 = [g, s(g)]−1 = [s(g), g] = [s(g)g−1, gg−1] = [g−1, r(g)] = ι1(g−1)

for all g ∈ G. And the second claim follows since

ι1(g)ι1(h) = [g, s(g)] · [h, s(h)] = [g〈s(g), h〉, s(h)] = [gh, s(h)] = ι1(gh)

for all g and h ∈ G with r(h) = s(g). If the left action of G on Xk is free for
all k ∈ P then the map ι1 = fp,1 is injective by Lemma 3.11. We assume now that
the map ι1 is injective. Let k ∈ P and let (g, xk) ∈ G ×s,G0,r Xk with g · xk = xk.
We have

ι1(g) = [g, s(g)] = [gxk, xk] = [xk, xk] = [s(g), s(g)] = ι1(s(g)).

Hence g = s(g) by the injectivity of ι1. This implies that the left action of G on Xk
is free for all k ∈ P .

We omit the proof of the following lemma, which uses only properties of the
inner product map (see Proposition 2.26).

Lemma 3.13. The maps ιp = fp,1 for p ∈ P satisfy the following properties:

(1) ιp(xp)ι1(g) = ιp(xpg) for all g ∈ G and xp ∈ Xp with r(g) = sp(xp).

(2) ι1(g)ιp(xp) = ιp(gxp) for all g ∈ G and xp ∈ Xp with rp(xp) = s(g).

(3) ιp(xp)ιq(xq)∗ = fp,q([xp, xq]) for all [xp, xq] ∈ Xp ◦G X ∗q .

(4) ιp(xp)∗ιp(yp) = ι1(〈xp, yp〉) for all xp and yp ∈ Xp with rp(xp) = rp(yp).

(5) ιp(xp)ιq(xq) = ιpq(xp · xq) for all xp ∈ Xp and xq ∈ Xq with sp(xp) = rq(xq).

Remark 3.14. We have H1 = {[xp, yp] ∈ H | xp, yp ∈ Xp}. This is a clopen
subgroupoid of H. To see this, let p and q ∈ P and let [xp, yp] ∈ H1 and [xq, yq] ∈
H1. Let k1 and k2 ∈ P be such that pk1 = qk2. Let also xk1 and xk2 be such
that rk2(xk2) = sq(xq) and rk1(xk1) = sp(xp). Then we have

[xp, yp] · [xq, yq] = [xp · xk1 · 〈yp · xk1 , xq · xk2〉, yq · xk2 ],

It follows that [xp, yp] · [xq, yq] ∈ H1. Furthermore, for all [xp, yp] ∈ H1 we
have [xp, yp]−1 = [yp, xp] ∈ H1. So H1 is closed under taking inverses and
multiplication. Thus H1 is a subgroupoid in H. It is also clopen in H.
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3 Actions of Ore monoids

Theorem 3.15. Let G be a groupoid and let (Xp, σp,q) be an action of an Ore
monoid P by tight correspondences. Let H be the groupoid constructed above.
Then H is the colimit of the diagram (Xp, σp,q) in Gr, Grprop and Grtight.

Proof. Let D be a groupoid and let (Y, ϕp) be a transformation from (Xp, σp,q)
to constD. That is, Y : G → D is a proper correspondence and ϕp : Xp ◦G Y → Y is
an isomorphism of groupoid correspondences for all p ∈ P . We want to extend Y
to a correspondence Y : H → D. The anchor map r : Y → H0 is obtained using
the identification H0 ∼= G0, see Lemma 3.8. We extend the action of G on Y to
an action of the groupoid H as follows. For all xp ∈ Xp, let Sxp : Y → Y be the
partial map

Sxp(y) := ϕp([xp, y]) (3.14)

for all y ∈ Y with r(y) = sp(xp). Let y1, y2 ∈ Y with r(y1) = r(y2) = sp(xp) and
Sxp(y1) = Sxp(y1). Then ϕp(xp, y1) = ϕp(xp, y1) and hence [xp, y1] = [xp, y2] ∈
X ◦G Y. It follows that there is g ∈ G such that xpg−1 = xp and gy1 = y2. But
then g = s(xp) since the right action of G on X is free. Hence y1 = y2, and Sxp
is injective. Let S−1

xp be the inverse of Sxp . The domain of S−1
xp is the range

of Sxp and it consists of all elements y ∈ Y with r(y) = rp(xp). To see this,
let y ∈ Y with r(y) = rp(xp) be such an element and let (yp, y1) ∈ Xp ×sp,G0,rY Y
be such that ϕp([yp, y1]) = y. This exists because ϕp is an isomorphism. We
have rp(yp) = r(y). But r(y) = rp(xp) by assumption. Hence rp(xp) = rp(yp)
which implies that there is an element g ∈ G with ypg = xp because Xp is a tight
correspondence. It follows that

ϕq([yp, y1]) = ϕq([ypg, g−1y1]) = ϕq([xp, g−1y1]) = Sxp(g−1y1) = y.

The last equation also says that Sxpg(y) = Sxp(gy) for all g ∈ G with r(g) = sp(xp).
Equivalently, S−1

xpg(y) = g−1S−1
xp (y) for all g ∈ G such that r(g) = sp(xp). More

generally, (2.29) implies

Sxp·xk(y) = ϕpk(xp · xk, y) = ϕp(xp, ϕk(xk, y)) = SxpSxk(y)

for all k ∈ P , xk ∈ Xk and all y ∈ Y with rk(xk) = sp(xp) and r(y) = sp(xp). This
implies that

Sxp·xk = SxpSxk (3.15)

for all xp ∈ Xp and all xk ∈ Xk with rk(xk) = sp(xp).
We define a left action of H on Y by

[xp, xq] · y := SxpS
−1
xq (y) (3.16)

for all p, q ∈ P and all ([xp, xq], y) ∈ (Xp◦GX ∗q )×sH,H0,rYY . Equation (3.15) insures
that (3.16) is compatible with the inductive limit structure on Hg for all g ∈ G and
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3.2 Actions of Ore monoids by tight correspondences

hence gives a well-defined action of H on Y. Clearly, this action commutes with
the right action of D on X . Therefore, Y : H → D is a correspondence in Gr. If the
correspondence Y : G → D is proper (tight) then the map rY∗ : Y/D → H0 = G0

is proper (a homeomorphism); that is, the correspondence Y : H → D is proper
(tight).

Conversely, let Y : H → D be a correspondence. We may view Y : H → D as a
correspondence Y : G → D using the map ι1 : G → H. Recall that ιp : Xp → H is
the local homeomorphism given by

ιp(xp) = fp,1([xp, sp(xp)]),

see Equation (3.13). The anchor map rG : Y → G0 is given by

rG(y) := β(r(y)),

where β : H0 → G0 is the homeomorphism defined in Lemma 3.8. The left action
of G on Y is given by

g · y := ι1(g) · y = [g, s(g)] · y

for all g ∈ G, y ∈ Y with rY = s(g). The resulting action commutes with the right
action of D on Y. For all p ∈ P , we define

ϕp(xp, y) := ιp(xp) · y = [xp, idsp(xp)] · y (3.17)

for all (xp, y) ∈ Xp ×sp,G0,rY Y. We have

ϕp(xpg, g−1 · y) = ιp(xpg) · (ι1(g−1) · y)
= ιp(xp)ι1(g)ι1(g−1) · y = ιp(xp) · y = ϕp(xp, y)

for all (xp, y) ∈ Xp ×sp,G0,rY Y and all g ∈ G with r(g) = sp(xp) by Lemma 3.13.
Thus ϕp induces a well defined map ϕp : Xp ◦G Y → Y . Next we show that ϕp is an
isomorphism. Let (xp, y1), (yp, y2) ∈ Xp ×sp,G0,rY Y with ϕp(xp, y1) = ϕp(yp, y2).
Then rp(xp) = rp(yp). Let g := 〈xp, yp〉. We have xpg = yp. Moreover, ιp(xp) ·y1 =
ιp(yp) · y2 implies

y2 = ιp(yp)−1ιp(xp) · y1 = ιp(xpg)−1ιp(xp) · y1

= ι1(g−1)ιp(xp)−1ιp(xp) · y1 = g−1 · y1.

Thus [yp, y2] = [xpg, g−1 · y1] = [xp, y1]. Therefore, ϕp : Xp ◦G Y → Y is injective.
Now let y ∈ Y. Since rp is surjective, there is a point xp ∈ Xp such that
rY(y) = rp(xp). We set y′ := ιp(xp)−1 · y = [idsp(xp), xp] · y. Then

ϕp(xp, y′) = ιp(xp) · y′ = ιp(xp)ιp(xp)−1 · y = y.

47



3 Actions of Ore monoids

So ϕp is a bijection. Furthermore, we have

ϕp(gxp, y) = ιp(gxp) · y = ι1(g)ιp(xp) · y = g · ϕp(xp, y)

for all (xp, y) ∈ Xp×sp,G0,rYY and all g ∈ G with s(g) = rp(xp). This implies that ϕp
is G-equivariant. It is also D-equivariant since Y : H → D is a correspondence
and the right and left actions on Y commute. The map ϕp is the map induced
by mult◦(ιp×id) : Xp×sp,G0,rYY → H×s,G0,rYY → Y on the quotient space Xp◦GY .
The map ιp × id : Xp ×sp,G0,rY Y → H ×s,H0,rY Y is a local homeomorphism
(see Lemma 3.9). The multiplication map mult : H ×s,H0,rY Y → Y is a local
homeomorphism as well. Hence the product map mult ◦ (ιp × id) is a local
homeomorphism, and so is its induced map on the space Xp ◦G Y. It follows that
ϕp is an isomorphism of correspondences for all p ∈ P .
Next let p, q ∈ P and let xp ∈ Xp, xq ∈ Xq and y ∈ Y with rY(y) = sq(xq) and

rq(xq) = sp(xp). Then

ϕpq(xp · xq, y) = ιpq(xp · xq) · y = ιp(xp)ιq(xq) · y = ϕp(xp, ϕq(xq, y)).

Hence the coherence condition (2.29) holds. This implies that (Y, ϕp) is a trans-
formation from (Xp, σp,q) to the constant diagram over D.
This construction is the inverse to the one above. Moreover, if the correspon-

dence Y : H → D is proper (tight) then Y : G → D is also proper (tight).
Finally, isomorphisms of correspondences H → D are homeomorphisms Y → Y ′

that are equivariant with respect to the left H- and right D-actions. Thus an
isomorphism Y1 → Y2 is also equivariant with respect to the left G-actions, and
it intertwines the isomorphisms ϕp and ϕ′p by Equation (3.17). Equivariance
with respect to the left G-actions means that it is an isomorphism between
correspondences G → D, and intertwining the maps ϕp and ϕ′p means that it is a
modification (Y, ϕp)→ (Y ′, ϕ′p).
We have shown that

Gr(H,D) ∼= GrP ((Xp, σp,q), constD),
Grprop(H,D) ∼= GrPprop((Xp, σp,q), constD),
Grtight(H,D) ∼= GrPtight((Xp, σp,q), constD).

Thus H is the colimit of the diagram (Xp, σp,q) in Gr, Grprop and Grtight.

3.2.2 Properties of the colimit groupoid
We study some properties of the colimit groupoid of an Ore monoid action by
tight correspondences. As before, let P be an Ore monoid and let (Xp, σp,q) be an
action of P on a groupoid G by tight correspondences. Let H be the colimit of
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3.2 Actions of Ore monoids by tight correspondences

this action in Gr. We will provide sufficient criteria for H to be Hausdorff and to
posses a grading over the group completion G = G[P ] of P . We recall that H has
a decomposition H =

⊔
g∈GHg, see Equation (3.8).

Proposition 3.16. The decomposition H =
⊔
g∈GHg satisfies Hg ·Hh ⊆ Hgh and

H−1
g = Hg−1 . Assume that sp is surjective for all p ∈ P . Then Hg · Hh = Hgh for

all g, h ∈ G.

Proof. Let g, h ∈ G and let (p1, q1) ∈ CgP , (p2, q2) ∈ Chp . Since P is an Ore
monoid, there are a, b ∈ P such that q1a = p2b. Furthermore, (p1, q1)(p2, q2) =
(p1a, q1a)(p2b, q2b) = (p1a, q2b) ∈ CghP . Now let [xp1 , xq1 ] ∈ fp1,q1(Xp1 ◦G X ∗q1) ⊂ Hg
and [xp2 , xq2 ] ∈ fp2,q2(Xp2 ◦G X ∗q2) ⊂ Hh. Then

[xp1 , xq1 ] · [yp2 , yq2 ] = [xp1 · xa · 〈xq1 · xa, yp2 · yb〉, yq2 · yb]

by (3.11). Thus [xp1 , xq1 ] · [yp2 , yq2 ] ∈ Hgh. Moreover, if [xp, xq] ∈ Hg then
[xp, xq]−1 = [xq, xp] ∈ Hg−1 . So H−1

g = Hg−1 .
We assume now that the maps sp are all surjective. Let g, h ∈ G. Applying

the Ore condition (Ore1), we may assume without loss of generality that gh =
p1p
−1
2 , g = p1p

−1
3 and h = p3p

−1
2 for p1, p2, p3 ∈ P . Let p, q ∈ P with pq−1 = gh

and let [xp, xq] ∈ Hgh. Then there are k1, k2 ∈ P with pk1 = p1k2 and qk1 = p2k2.
Let xk1 ∈ Xk1 with rk1(xk1) = sp1(xp1) and let y ∈ Xp3k2 be such that sp3k2(y) =
sk1(xk1). We have [xp · xk1 , y] ∈ Hg and [y, xq · xk1 ] ∈ Hh. Furthermore,

[xp · xk1 , y][y, xq · xk1 ] = [xp · xk1 , xq · xk1 ] = [xp, xq]. (3.18)

Thus Hgh ⊆ Hg · Hh and therefore Hgh = Hg · Hh .

Remark 3.17. Proposition 3.16 shows that the map

c : H =
⊔
g∈G
Hg → G, xg 7→ g,

is a cocycle. Moreover, if the maps sp are surjective for all p ∈ P , then the
decomposition H =

⊔
g∈GHg is a G-grading in the sense of [10].

Lemma 3.18. With the structure maps inherited from the groupoid H, the space
Hg : H1 → H1 is a partial equivalence for all g ∈ G = G[P ].

Proof. By Remark 3.14, H1 is a groupoid. Moreover, for all [xk, yk] ∈ H1 and all
[xp, yq] ∈ Hg with r(xp) = r(yk), we have

[xk, yk] · [xp, yq] = [xk · xa · 〈yk · xa, xp · yb〉, yq · yb],

where a, b ∈ P are such that ka = pb and xa ∈ Xa, yb ∈ Xb satisfy r(xa) = s(xk)
and r(yb) = s(yq). This implies that [xk, yk] · [xp, yq] is an element of Hg. It follows
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that the restriction of the multiplication map mult : H×s,H0,rH → H to the space
H1×s,H0,rHg defines a left action of the groupoid H1 on the space Hg. This action
is free and proper by construction. Similarly, the groupoid H1 acts freely and
properly on the right on Hg and the two actions commute. Thus Hg : H1 → H1
is a bicorrespondence. The source and range maps in the groupoid H are local
homeomorphisms by Proposition 3.10. We need to show that s∗ : H1\Hg → H0

1
is injective. The claim regarding the range anchor map follows similarly. Let
[xp1 , xq1 ] and [yp2 , yq2 ] ∈ Hg with r(yq2) = r(xq1). Since P is an Ore monoid, there
are a, b ∈ P with q1a = q2b. Let xa ∈ Xa and yb ∈ Xb with r(xa) = s(xq1) and
r(yb) = s(yq2). We have [xp1 , xq1 ] = [xp1 ·xa, xq1 ·xa] and [yp2 , yq2 ] = [yp2 ·yb, yq2 ·yb].
Let g := 〈xq1 ·xa, yq2 ·yb〉. Then since p1a = p2b, we have [yp2 ·yb, xp1 ·xag−1] ∈ H1.
Moreover,

[yp2 · yb, xp1 · xag−1] · [xp1 , xq1 ] = [yp2 · yb, xp1 · xag−1] · [xp1 · xa, xq1 · xa]
= [yp2 · yb, xq1 · xag]
= [yp2 · yb, yq2 · yb] = [yp2 , yq2 ]

And the claim follows.

Remark 3.19. By Lemma 3.18, the bicorrespondence Hg : H1 → H1 is a groupoid
equivalence Hg : H1|r(Hg) → H1|s(Hg), where H1|r(Hg) is the restriction of the
groupoid H1 to the open invariant set r(Hg) ⊂ H0, and similarly for H1|s(Hg).
Finally, we have

r(Hg) =
⋃

(p,q)∈CgP

rq(s−1
q (sp(Xp)))

for all g ∈ G.
Assume now that all sp are surjective. Then Hg : H1 → H1 is an equivalence

for all g ∈ G. Let multg,h : Hg ◦H1 Hh → Hgh be the map induced by the product
map in H. Then multg,h is an isomorphism and (Hg,multg,h) is an action of the
group Gop on H1 in Gr.

Proposition 3.20. Let G be a groupoid and let (Xp, σp,q) be an action of an Ore
monoid P by tight correspondences. Assume that the groupoid G is Hausdorff and
the left action of G on Xp is free for all p ∈ P . Then the groupoid H is Hausdorff.

Proof. If the groupoid H is not Hausdorff, then there are elements g, h ∈ H that
have no disjoint neighborhoods. Since H0 is Hausdorff, this implies s(g) = s(h)
and r(g) = r(h); otherwise we can use the range or source map to get disjoint
neighborhoods for g and h. It follows that s(g) ∈ Hs(g)s(g) and h−1g ∈ Hs(g)s(g) have no
disjoint neighborhoods. Hence in order to prove that the groupoid H is Hausdorff,
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it suffices to show that for every element x ∈ H0 and for every pair g, h ∈ Hxx of
distinct points there are disjoint open sets U, V ⊂ H such that g is in U and h
in V .

Now assume that the groupoid G is Hausdorff and that the left action G on Xp
is free for all p ∈ P . The groupoid H is Hausdorff if and only if the groupoid H1
is Hausdorff. To see this, let g ∈ G and let [xp, xq], [yp, yq] ∈ Hg with rp(xp) =
rq(xq) = rp(yp) = rq(yq). By Proposition 3.16 we have Hg · Hg−1 ⊂ H1. Hence
if H1 is Hausdorff, then there are disjoint open neighborhoods U and V for the
points [xq, yq] = [xp, xq]−1[yp, yq] and [yq, yq], respectively. The open sets [xp, xq]·U
and [xp, xq] · V form disjoint neighborhoods for [xp, xq], [yp, yq] ∈ Hg, respectively.
We will show that H1 is Hausdorff. Let x ∈ G0 and let [x1

p, y
1
p], [x2

p, y
2
p] ∈ H1

for p ∈ P be two distinct points such that rp(x1
p) = rp(x2

p) = rp(y1
p) = rp(y2

p) = x.
Since rp∗ is a homeomorphism, we have [x1

p, y
1
p] = [xp, xpg], [x2

p, y
2
p] = [xp, xph]

for xp = x1
p = x2

p and g, h ∈ Gsp(xp)
sp(xp) with g 6= h. Since G is Hausdorff, there are

disjoint open bisections U1, U2 ⊂ G such that g ∈ U1, h ∈ U2. Let U be an open
bisection containing the point xp. The multiplication map

Xp ×sp,G0,r G → Xp, (xp, g) 7→ xpg,

is open. Hence U · Ui is open for i = 1, 2. We set Vi := fp,p(U ×sp,G0,sp U · Ui)
for i = 1, 2. Then V1, V2 are open neighborhoods of (xp, xpg) and (xp, xph),
respectively. This follows because the maps fp,p are open for all p ∈ P by
Lemma 3.9. Now assume that V1 ∩ V2 6= ∅. Then there are elements (xp, yp · g1),
(x′p, y′p · g2) ∈ U ×sp,G0,sp U · Ui such that fp,p([xp, yp · g1]) = fp,p([x′p, y′p · g2]).
Thus rp(xp) = rp(x′p) and rp(yp) = rp(y′p) and therefore xp = x′p and yp = y′p
since rp is a homeomorphism on the set U . By Lemma 3.11 the map fp,p is
injective. So [x′p, y′p · g2] = [xp, yp · g1] ∈ Xp ◦G X ∗p . Thus ypg1 = ypg2 and
hence g1 = g2 ∈ U1 ∩U2, which contradict our assumption that U1, U2 are disjoint.
Thus V1 ∩ V2 = ∅. This finishes the proof.

3.2.3 Product systems associated with tight Ore monoid actions
The image of the Ore monoid action (Xp, σp,q) under the functor Gr → Corr
is a product system in Fowler’s sense over the monoid P , see [1, §3]. In the
following, we show that the groupoid constructed in Section 3.2.1 is a groupoid
model for the Cuntz–Pimsner algebra of the product system constructed from
the action (Xp, σp,q) using the functor Gr→ Corr. The product system associated
with (Xp, σp,q) consists of

• the groupoid algebra C∗(G) as a coefficient algebra;

• correspondences C∗(Xp) from C∗(G) to itself for all p ∈ P \ {1};
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• isomorphisms of correspondences µp,q : C∗(Xp)⊗C∗(G) C∗(Xq)→ C∗(Xpq) for
all p, q ∈ P \ {1} given by

µp,q(f1 ⊗ f2) = (f1 ⊗ f2) ◦ σp,q

for all f1 ∈ S(Xp) and f2 ∈ S(Xq). The maps µp,q satisfy the associativity
condition

µp,qr ◦ (id⊗A µq,r) = µpq,r ◦ (µp,q ⊗A id) : Ep ⊗A Eq ⊗A Er → Epqr.

This follows from the associativity condition (3.1) for σp,q.

In [2], we describe the Cuntz–Pimsner algebra for a given product system as the
full sectional C∗-algebra of a Fell bundle. We recall the construction of the Fell
bundle from the product system (C∗(Xp))p∈P .
The isomorphism µp,q : C∗(Xp)⊗A C∗(Xq)→ C∗(Xpq) induces a nondegenerate

∗-homomorphism

ϕp,q : K(C∗(Xp))→ K(C∗(Xpq)), T 7→ µp,q(T ⊗A idC∗(Xq))µ
∗
p,q. (3.19)

The correspondence Xp is tight. Hence C∗(Xq) is proper; ϕp,q(K(C∗(Xp))) is
contained in K(C∗(Xpq)).
For (p1, p2) ∈ Rg, let Op1,p2 := K(C∗(Xp2),C∗(Xp1)). We define a contraction

ϕhp1,p2 : Op1,p2 → Op1h,p2h, T 7→ µp1,h(T ⊗A idC∗(Xh))µ∗p2,h. (3.20)

The maps ϕhp,q form a functor from CgP to the category of Banach spaces with
linear contractions. The category CgP is filtered. This allows us to take the
colimit Og of this diagram. If g1 and g2 ∈ G, (p1, p2) ∈ Rg1 and (p2, p3) ∈ Rg1 ,
then (p1, p3) ∈ Rg1g2 . The composition of compact operators gives a bounded
bilinear map Op1,p2 ×Op2,p3 → Op1,p3 . These maps induce a bounded linear map

Og1 ×Og2 → Og3 . (3.21)

In addition, the adjoint maps Op1,p2 → Op2,p1 , T 7→ T ∗ induce an involution Og →
Og−1 . The multiplication maps and the involutions on (Og)g∈G give a Fell bundle
over the group G. By [1, Theorem 3.16], the Cuntz–Pimsner algebra of the product
system (C∗(G),C∗(Xp), µp,q) is isomorphic to the full sectional C∗-algebra of the
Fell bundle (Og)g∈G.

Theorem 3.21. The groupoid C∗-algebra C∗(H) is canonically isomorphic to the
Cuntz–Pimsner algebra of the product system (C∗(Xp))p∈P over P described above.
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Proof. For p, q ∈ P , let ψp,q : S(Xp ◦GX ∗q )→ K(C∗(Xq),C∗(Xp)) be the map given
by

ψp,q(f)(ξ)(xp) :=
∑

xq∈Xq :s(xp)=s(xq)
f([xp, xq])ξ(xq)

for f ∈ S(Xp ◦G X ∗q ), ξ ∈ C∗(Xp) and xp ∈ Xp. We claim that ψ is an injective
∗-homomorphism.
Let ξ ∈ S(Xp), η ∈ S(Xq). Then the function θξ,η ∈ S(Xp ◦G X ∗q ) given by

θξ,η([xp, xq]) :=
∑

g∈G:r(g)=s(xq)
ξ(xp · g) · η(xq · g)

satisfies

ψp,q(θξ,η)(ζ)(xp) =
∑

xq∈Xq :sp(xp)=sq(xq)
ζ(xq)

∑
g∈G:r(g)=s(xq)

ξ(xp · g) · η(xq · g)

=
∑

g∈G:r(g)=s(xp)
ξ(xp · g)

∑
xq∈Xq :s(g)=s(xq)

η(xq)ζ(xq · g−1)

=
∑

g∈G:r(g)=s(xp)
ξ(xp · g)〈η, ζ〉(g−1)

= ξ · 〈η, ζ〉(xp)
= |ξ〉〈η|(ζ)(xp)

for all xp ∈ Xp. Thus ψp,q(θξ,η) = |ξ〉〈η| ∈ K(C∗(Xq),C∗(Xp)). Let f ∈ S(Xp◦GX ∗q )
be such that ψp,q(f) = 0. Then

ψp,q(f)(ξ)(xp) =
∑

xq∈Xq :s(xp)=s(xq)
ξ(xq)f(xp, xq) = 0

for all ξ ∈ C∗(Xp) and xp ∈ Xp. In particular, the equality holds for the func-
tions fxp ∈ C∗(Xp) given by fxp(xq) := f(xp, xq) for all xq ∈ Xq, xp ∈ Xq
with s(xp) = s(xq). Thus

ψp,q(f)(fxp)(xp) =
∑

xq∈Xq :s(xp)=s(xq)
f(xp, xq)f(xp, xq) = 0.

Hence f(xp, xq) = 0 for all (xp, xq) ∈ Xp ×sp,G0,sq X ∗q . Thus ψp,q is injective from
Xp ◦G X ∗q to K(C∗(Xq),C∗(Xp)). We have related compact operators C∗(Xq) →
C∗(Xp) to kernel functions, getting continuous linear maps

Kp,q := S(Xp ◦G X ∗q ) ⊆ K(C∗(Xq),C∗(Xp)).
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3 Actions of Ore monoids

Let f1 ∈ S(Xp◦GX ∗q ) and f2 ∈ S(Xq◦GX ∗k ) for p, q, k ∈ P . Then the convolution
product f1 ? f2 ∈ S(H) is an element in S(Xp ◦G X ∗k ); it is given by

f1 ? f2(xp, xk) =
∑

xq∈Xq :s(xq)=s(xk)
f1(xp, xq)f2(xq, xk).

Furthermore,

ψp,k(f1 ? f2)(ξ)(xp) =
∑

xk∈Xk:s(xk)=s(xp)
ξ(xk)

∑
xq∈Xq :s(xq)=s(xp)

f1(xp, xq)f2(xq, xk)

=
∑

xk∈Xk:s(xk)=s(xp)

∑
xq∈Xq :s(xq)=s(xp)

ξ(xk)f1(xp, xq)f2(xq, xk)

= ψp,q(f1)(ψq,k(f2)(ξ))(xp)

for all ξ ∈ S(Xk) and all xp ∈ Xp. Let ξ ∈ S(Xp), η ∈ S(Xq). Then θ∗η,ξ ∈ S(H)
is supported on the set Xq ◦G X ∗p . It is given by

θ∗η,ξ(xq, xp) =
∑

g∈G:r(g)=s(xq)
η(xp · g) · ξ(xq · g) = θξ,η(xp, xq).

Hence
ψp,q(θ∗η,ξ) = ψp,q(θξ,η) = |ξ〉〈η| = |η〉〈ξ|∗ = ψq,p(θη,ξ)∗

We have proved that the convolution on S(H1) restricted to Kp2,p3 ⊗ Kp1,p2

for p1, p2, p3 ∈ P is a map to Kp1,p3 ; the description of the composition of compact
operators C∗(Xp1)→ C∗(Xp2)→ C∗(Xp3) through kernel functions shows that the
convolution on S(H1) and the composition of compact operators both restrict to
the same map Kp2,p3 ⊗Kp1,p2 → Kp1,p3 . Furthermore, the involution on S(H1)
and the involution K(C∗(Xp2),C∗(Xp1)) → K(C∗(Xp1),C∗(Xp2)) restrict to the
same map Kp1,p2 → Kp2,p1 .
Next let p, q, k ∈ P . Equation (3.5) gives a map αkp,q : Xp ◦G X ∗q → Xpk ◦G X ∗qk.

It induces a map (αkp,q)∗ : Kp,q → Kpk,qk by setting

(αkp,q)∗(ψ)[xpk, xqk] =
∑

[xp,xk]∈Xp◦GX ∗q
αkp,q([xp,xk])=[xpk,xqk]

ψ([xp, xk]). (3.22)

The following diagram commutes:

Kp,q Kpk,qk

K(C∗(Xq),C∗(Xp)) K(C∗(Xqk),C∗(Xpk))

(αkp,q)∗

ψp,q ψpk,qk

ϕkq,p

(3.23)

54



3.2 Actions of Ore monoids by tight correspondences

Now let p ∈ P . The space Xp ◦ X ∗p is a subgroupoid of the groupoid H. To see
this, let [xp, yp] and [mp, np] in Xp ◦ X ∗p with rp(mp) = rp(yp). Then

[xp, yp] · [mp, np] = [xp〈yp,mp〉, np],

which belongs to Xp ◦X ∗p . Recall that 〈yp,mp〉 is the unique point in G with ypg =
mp. Moreover,

[xp, yp]−1 = [yp, xp]

for all [xp, yp] ∈ Xp ◦ X ∗p . Finally, the unit space of the groupoid Xp ◦ X ∗p is given
by

(Xp ◦ X ∗p )0 = {[xp, xp] ∈ Xp ◦ X ∗p }.

Therefore, the map

Xp ◦ X ∗p → Xp/G, [xp, xp] 7→ [xp],

is a homeomorphism. The ∗-algebra structure onKp,p comes also from the structure
of Xp ◦ X ∗p . The C∗-completion C∗(Kp,p) of Kp,p is the groupoid algebra C∗(Xp ◦
X ∗p ). The space Xp induces a Morita equivalence between the groupoid Xp ◦ X ∗p
and G|sp(Xp), see [34, p. 5]. Hence C∗(Kp,p) = C∗(Xp ◦ X ∗p ) is Morita–Rieffel
equivalent to C∗(G|sp(Xp)). Thus the inclusion map Kp,p → K(C∗(Xp)) extends to
an isomorphism

C∗(Kp,p)→ K(C∗(Xp)).

This implies that the inclusion Kp,p → S(H1) ⊆ C∗(H) gives a ∗-homomorphism
K(C∗(Xp))→ C∗(H). In addition,

H1 = lim−→Xp ◦G X
∗
p (3.24)

implies
S(H1) = lim−→S(Xp ◦G X ∗p ). (3.25)

Moreover, a C∗-seminorm on S(H1) which is continuous with respect to the
inductive limit topology is the same as a family of C∗-seminorms on S(Xp ◦G X ∗p )
each continuous with respect to the inductive limit topology. Thus

C∗(H1) = lim−→C∗(Xp ◦G X ∗p ) = lim−→K(C∗(Xp)) = O1.

By the results of [10], the C∗-algebra C∗(H) is the sectional C∗-algebra of
the Fell bundle (C∗(Hg))g∈G[P ]. Let g ∈ G[P ]. Then C∗(Hg) is the comple-
tion of S(Hg) in the norm obtained from the right C∗(H1)-valued inner prod-
uct. By [1, Theorem 3.15], the Cuntz–Pimsner algebra O of the product sys-
tem (C∗(Xp))p∈P is the sectional C∗-algebra of the Fell bundle (Og)g∈G[P ], where
Og = lim−→(p,q)∈CgP

K(C∗(Xq),C∗(Xp)). Here Og is completed with respect to the
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3 Actions of Ore monoids

right O1-valued inner product. Since S(Hg) = lim−→(p,q)∈CgP
S(Xp ◦G X ∗q ) is a

dense subspace in Og, it follows that Og is isomorphic to Hg. Thus the Fell
bundles (C∗(Hg))g∈G[P ] and (Og)g∈G[P ] are isomorphic. So O is isomorphic to
C∗(H).

3.3 Actions of Ore monoids by proper correspondences
In this section, we study Ore monoid actions in the bicategory of proper corre-
spondences Grprop. We show two main results. First, every diagram of Ore shape
in Grprop has a colimit. Secondly, the colimit of a diagram of Ore shape is a
groupoid model of the Cuntz–Pimsner algebra of the associated product system.

To construct the colimit of an Ore monoid action in Grprop, we provide a colimit
preserving map from GrPprop to GrPtight for a given monoid P . This allows us to
apply the construction in Section 3.2 to obtain a groupoid colimit of a given action
by proper correspondences. We also show that the map GrPprop → GrPtight induces
a colimit preserving map on the C∗-algebraic level. This gives a concrete groupoid
model for the Cuntz–Pimsner algebra of the product system associated with an
Ore monoid action in Grprop.

3.3.1 Tightening a proper Ore monoid action
In this section, we fix a groupoid G, an Ore monoid P and an action (Xp, σp,q)
of P on G by proper correspondences. As a preparation, we start with some results
about proper correspondences.

Lemma 3.22. Let D be a groupoid and let X , Y be proper D-correspondences.
Then the map rX ,Y : X ◦ Y/D → X/D given by

rX ,Y [(x, y)] := [x]

is proper.

Proof. The correspondence X ◦ Y is proper by Proposition 2.27. That is, the map
induced by the range map rX◦Y∗ : X ◦ Y/D → D0 is proper. We have rX◦Y∗ =
rX∗ ◦rX ,Y . It follows that rX ,Y is a proper map since X ◦Y/D is Hausdorff and rX∗
is proper and continuous.

Let D be a groupoid and let X and Y be proper D-correspondences. For x ∈ X
we let

Cx := {z ∈ X ◦ Y | rX ,Y([z]) = [x]}.

Let C ′x := p−1(Cx) ⊂ X ×s,D0,r Y, where p : X ×s,D0,r Y → X ◦ Y be the orbit
space projection.
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Lemma 3.23. Let D be a groupoid and let X and Y be proper D-correspondences.
For all x ∈ X , the restriction of the quotient map p : X ×s,D0,r Y → X ◦ Y to C ′x
is injective.

Proof. Let (x, ξ1), (x, ξ2) ∈ X ×G0 Y be such that p(x, ξ1) = p(x, ξ2). It follows
that there is an element g ∈ Ds(x) such that (x · g, g−1 · ξ1) = (x, ξ2). Hence
x · g = x and g−1 · ξ1 = ξ2. By our assumption, the right action of D on X is free.
This implies g = s(x) and hence ξ1 = ξ2.

Finally, let Sx,Y : Cx ⊂ X ◦ Y → Y be the map given by

Sx,Y(ξ) := pr2 ◦p−1(ξ) (3.26)

for all ξ ∈ Cx, where pr2 : X ×s,D0,r Y → Y is the projection map.

Corollary 3.24. Let D be a groupoid and let X : D → D and Y : D → D be
proper correspondences. For all x ∈ X , the map Sx,Y : Cx → Y is injective and
continuous.

Proof. The map Sx,Y is continuous since it is the composition of two continuous
maps. It is injective by Lemma 3.23.

Now we turn back to our monoid action (Xp, σp,q). The isomorphisms σp,q induce
homeomorphisms σp,q∗ : Xpq/G → Xp ◦G Xq/G. We abbreviate

rp,q := rXp,Xq ◦ σp,q∗ : Xpq/G → Xp/G (3.27)

for all p, q ∈ P . Lemma 3.22 implies that rp,q is proper for all p and q ∈ P . Notice
that r1,p is the map induced by the range map rXp on the quotient space Xp/G by
our assumption that X1 is the identity correspondence G : G → G. Moreover, since
the maps σp,q satisfy (3.1) we obtain

rp,qrpq,t = rp,qt (3.28)

for all p, q, t ∈ P . Thus (Xp/G, rp,q) is a projective system over the directed
category CP (see Definition 3.1). We denote its projective limit by

H0 := lim←−
CP

(Xp/G, rp,q). (3.29)

A point η ∈ H0 is given by (ηp)p∈P with rp,q(ηpq) = ηp for all p, q ∈ P .

Lemma 3.25. The space H0 is locally compact and Hausdorff. The maps

πp : H0 → Xp/G, (ηp)p∈P 7→ ηp,

are proper for all p ∈ P .
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Proof. By Proposition 2.17, the spaces Xp/G are locally compact Hausdorff for
all p ∈ P . The maps rp,q are proper for all p, q ∈ P . The proof then follows using
similar arguments as in [1, Lemma 4.9].

There is a map r : H0 → G0 given by

r(η) := r1,1(η1)

for all η = (ηp)p∈P ∈ H0. The associativity condition (3.28) implies that r(η) =
(rXp)∗(ηp) for all p ∈ P . Moreover, Lemma 3.25 implies that r : H0 → G0 is a
proper map; it is the anchor map of a natural action of G on H0. It is given by

g · (ηp)p∈P = (gηp)p∈P (3.30)

for all g ∈ G and all η = (ηp)p∈P ∈ H0 with r(η) = s(g). Let

G̃ := G nH0

be the transformation groupoid associated with this action. Let

X̃p := Xp ×sp,G0,r H0 (3.31)

for all p ∈ P . We claim that X̃p is naturally a tight correspondence over the
groupoid G̃. First, we define the anchor maps r̃p, s̃p : G̃ → H0 = G̃0. Given
a point η ∈ H0 and an element xp ∈ Xp such that r(η) = sp(xp), we may
concatenate xp to η and get a new point xp · η ∈ H0, defined formally by

(xp · η)pt := ppt ◦ σ−1
p,t (xp, η′t) (3.32)

for all t ∈ P , where ppt : Xpt → Xpt/G is the quotient map and η′t is any point
in Xt such that pt(η′t) = ηt. If b ∈ P is not of the form pt for some t ∈ P then by
the Ore condition, we may find k1 and k2 ∈ P with bk1 = pk2. We define

(xp · η)b := rb,k1 ((xp · η)pk2) . (3.33)

The point (xp · η)pt does not depend on the choice of η′t since σ−1
p,t is G-equivariant.

Here we use implicitly that because the Ore monoid pP is cofinal in P there is a
homeomorphism

H0 = lim←−
CP

(Xp/G, rp,q)→ lim←−
CpP

(Xpt/G, rpk,pl). (3.34)

It follows that, for all xp ∈ Xp, we have a map

(H0)sp(xp) → H0, η 7→ xp · η.
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We define the range and source maps r̃p, s̃p : X̃p → H0 as

r̃p(xp, η) := xp · η, s̃p(xp, η) := η (3.35)

for all (xp, η) ∈ Xp ×sp,G0,r H0.
The right action of G̃ on X̃ is given by

(xp, η) · (g, ζ) := (xpg, g−1η) (3.36)

for all ((xp, η), (g, ζ)) ∈ X̃p ×s̃,H0,rG̃
G̃. And the left action is given by

(g, ζ) · (xp, η) = (g · xp, η) (3.37)

for all ((g, ζ), (xp, η)) ∈ G̃ ×sG̃ ,H0,r̃p X̃p.

Lemma 3.26. The map s̃p : X̃p → H0 is a local homeomorphism for all p ∈ P . It
is surjective if sp is surjective.

Proof. We may use the following pullback diagram

X̃p = Xp ×sp,G0,r H0 Xp

H0 G0

pr1

pr2 = s̃p

r

sp

The source map sp : Xp → G0 is a local homeomorphism, hence so is the parallel
map s̃. Similarly, s̃p is surjective if sp is.

Lemma 3.27. The map r̃p induces a homeomorphism r̃p∗ : X̃p/G → H0 for
all p ∈ P .

Proof. To see that the map r̃p∗ is surjective, let η = (ηp)p∈P ∈ H0. Let η′p ∈ Xp
be such that pp(η′p) = ηp. For all t ∈ P we write ζt := Sη′p,Xt(ηpt). Recall from
Equation (3.26) that Sη′p,Xt(ηpt) = pr2 ◦p−1(ηpt), where p : Cη′p ⊂ Xp×sp,G0,rt Xt →
Xp ◦G Xt is the quotient map. Let q ∈ P . Then rq,t(ζqt) = rq,t ◦ Sη′p,Xqt(ηpqt). But
rq,t ◦ Sη′p,Xqt = Sη′p,Xq ◦ rpq,t. This implies that

rq,t(ζqt) = Sη′p,Xq ◦ rpq,t(ηpqt) = Sη′p,Xq(ηpq) = ζq

and therefore ζ ∈ H0. By construction, (η′p · ζ)pt = ηpt for all t ∈ P . Let b ∈ P .
Since P is an Ore monoid we may find k1 and k2 ∈ P with bk1 = pk2. We define

(η′p · ζ)b = rb,k1

(
(η′p · ζ)pk2

)
= rb,k1(ηpk2) = rb,k1(ηbk1) = ηb.
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Thus η′p ·ζ = η and r̃p∗ is surjective. To see that r̃p∗ is injective, let (xp, ξ), (yp, η) ∈
X̃p with xp · ξ = yp · η. So ppt ◦ σ−1

p,t (yp, η′t) = ppt ◦ σ−1
p,t (xp, ξ′t) for all t ∈ P .

Hence σ−1
p,t (yp, η′t) = σ−1

p,t (xp, ξ′t)h for an element h ∈ G. This means that there is
an element g ∈ G such that r(g) = sp(xp) and

(ypg, g−1η′t) = (xp, ξ′t · h).

Consequently, the points (xp, ξ) and (yp, η) represent the same point in X̃p/G.
Finally, the map r̃p∗ is open and continuous since the space H0 is endowed
with the projective limit topology and r̃p∗ is given by the maps σ−1

t and pt, see
Equation (3.32), which are both open and continuous for all t ∈ P .

Lemma 3.28. X̃p is a tight correspondence over the groupoid G̃ for all p ∈ P .
The left action of G̃ on X̃p is free if the left action of G on Xp is free.

Proof. The defining formulas of the actions (3.37), (3.36) show that the right and
left actions of the groupoid G̃ on X̃p commute; the right action of G̃ on X̃p is
free and proper since the right action of G on Xp is free and proper and the left
action of G̃ on X̃p is free if the left action of G on Xp is free. The source map
on X̃ is a local homeomorphism By Lemma 3.26. The map r̃p∗ : X̃p/G → H0 is a
homeomorphism by Lemma 3.27.

Next we show that the isomorphisms σp,q : Xpq → Xp ◦G Xq lift to isomor-
phisms σ̃p,q : X̃pq → X̃p ◦G̃ X̃q. Let τp,q : X̃p ◦G̃ X̃q → X̃pq be the map given by

τp,q([xp, ξ, yq, η]) := (σ−1[xp, yq], η) (3.38)

for all [xp, ξ, yq, η] ∈ X̃p ◦G̃ X̃q.

Lemma 3.29. τp,q : X̃p ◦G̃ X̃q → X̃pq is an isomorphism for all p, q ∈ P .

Proof. First we have to check that Equation (3.38) gives a well-defined map.
If [xp, ξ, yq, η] = [x1

p, ξ
1, y1

q , η
1] ∈ X̃p ◦G̃ X̃q, then there is an element (g, ζ) ∈ G̃ such

that gζ = ξ and (xpg, g−1ξ, g−1yp, η) = (x1
p, ξ

1, y1
q , η

1) as elements in the space
Xp ×sp,G0,r H0 ×s̃p,H0,r̃q Xq ×sq ,G0,r H0. Thus η1 = η, xpg = x1

p, g−1yq = y1
q . Then

τp,q([x1
p, ξ

1, y1
q , η

1]) = (σ−1
p,q [xpg, g−1yq], η)

= (σ−1
p,q [xp, yq], η)

= τp,q([xp, ξ, yq, η]),

so the map τp,q is well defined. Now let [xp, ξ, yq, η], [x1
p, ξ

1, y1
q , η

1] ∈ X̃p ◦G̃ X̃q be
such that τp,q([xp, ξ, yq, η]) = τp,q([x1

p, ξ
1, y1

q , η
1]). Then

(σ−1
p,q [xp, yq], η) = (σ−1

p,q [x1
p, y

1
q ], η1).
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Hence η = η1 and σ−1
p,q [xp, yq] = σ−1

p,q [x1
p, y

1
q ]. Since σp,q is an isomorphism, there is

an element g ∈ G such that (xpg, g−1yq) = (x1
p, y

1
q ) in Xp ×sp,G0,rq Xq. Thus xpg =

x1
p, g−1yq = y1

q . In addition, ξ1 = y1
q · η = g−1yq · η = g−1ξ. So

[x1
p, ξ

1, y1
q , η] = [xpg, g−1ξ, g−1yq, η] = [xp, ξ, yq, η]. (3.39)

Then τp,q is injective. Next let (xpq, η) ∈ X̃pq. Since σp,q is an isomorphism, there
is (x1

p, x
2
q) ∈ Xp×sp,G0,rq Xq with σ(xpq) = [x1

p, x
2
q ]. Then (x1

p, x
2
q ·η) ∈ X̃p, (x2

q , η) ∈
X̃q, (x1

p, x
2
q ·η, x2

q , η) ∈ Xp×sp,G0,rH0×s̃p,H0,r̃qXq×sq ,G0,rH0 and τ(x1
p, x

2
q ·η, x2

q , η) =
(σ−1
p,q [x1

p, x
2
q ], η) = (xpq, η). Then τp,q is surjective. It is also open and continuous

since σ−1
p,q is a homeomorphism. To see that τp,q is G̃-equivariant, let [xp, ξ, yq, η] ∈

X̃ ◦G̃ X̃q and let (g, ζ) ∈ G̃ satisfy gζ = η. We have

τp,q([xp, ξ, yq, η]) · (g, ζ) = (σ−1
p,q [xp, yq], η) · g

= (σ−1
p,q [xp, yq]g, g−1η) = (σ−1

p,q [xp, yqg], g−1η)
= τp,q([xp, ξ, yqg, g−1η]) = τp,q([xp, ξ, yq, η] · (g, ζ)).

Similarly, (g, ζ) · τp,q([xp, ξ, yq, η]) = τp,q((g, ζ)[xp, ξ, yq, η]) for all [xp, ξ, yq, η] ∈
X̃◦G̃Xq and all (g, ζ) ∈ G̃ with ζ = σ−1

p,q [xp, yq]·η. Since ξ = yq·η, we have r̃p(xp, ξ) =
xp · ξ = σ−1

p,q [xp, yq] · η = ζ.

For all p, q ∈ P , we set σ̃p,q := τ−1
p,q . The maps σ̃p,q satisfy Equation (3.1), since

the maps σp,q satisfy the same condition, being part of an action of P on G by
proper correspondences. Moreover, the correspondence X̃p is tight for all p ∈ P
by Lemma 3.28. It follows that (X̃p, σ̃p,q) defines an action of P on G̃ by tight
correspondences. Hence it has a colimit by Theorem 3.15. It remains to show that
the colimit of this action is a colimit of the original diagram.

Theorem 3.30. The diagrams (Xp, σp,q) and (X̃p, σ̃p,q) have the same colimit
in Gr.

Proof. The colimit of the diagram (X̃p, σ̃p,q) exists by Theorem 3.15. We set

H := colim(X̃p, σ̃p,q). (3.40)

We will show that the groupoid H given by Equation (3.40) is also a colimit of
the diagram (Xp, σp,q). This is sufficient since the colimit of a diagram is unique
(up to isomorphism) if it exists.

Let D be a groupoid and let (Y, ϕp) be a transformation from (Xp, σp,q) to
constD. For all p ∈ P , the isomorphism ϕ−1

p : Y → Xp ◦G Y, composed with the
projection rXp,Y : Xp ◦G Y → Xp/G, gives a map ψp : Y → Xp/G. On the one hand,
we have

rp,qrXpq ,Y(σ−1
p,q ×G idY)(idXp ×G ϕ−1

q ) = rXp,Y
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for all p, q ∈ P . So

rp,qrXpq ,Y(σ−1
p,q ×G idY)(idXp ×G ϕ−1

q )ϕ−1
p = rXp,Yϕ

−1
p

for all p, q ∈ P . On the other hand, the maps ϕp satisfy the coherence condi-
tion (2.27). Therefore,

(σ−1
p,q ×G idY)(idXp ×G ϕ−1

q )ϕ−1
p = ϕ−1

pq .

Thus

rp,qψpq = ψp. (3.41)

Equation (3.41) says that (ψp)p∈P is an inverse limit map from Y to (Xp/G, rp,q).
Hence it induces a continuous map ψ∞ = lim←−ψp : Y → H0 = lim←−Xp/G. We define
a left action of G̃ on Y, using ψ∞ as a left anchor map, by setting

(g, ξ) · y := g · y, (3.42)

for all (g, ξ) ∈ G̃, y ∈ Y with ψ∞(y) = ξ. This action is well defined and commutes
with the right action of D. This implies that Y is also a correspondence from G̃
to D.
Let p ∈ P . We want to extend the isomorphism ϕp : Xp ◦G Y → Y to an

isomorphism ϕ̃p : X̃p ◦G̃ Y → Y , so that (X̃p, ϕ̃p) becomes a natural transformation
from (X̃p, σ̃p,q) to constD. We claim that the map

ϕ̃p : X̃p ◦G̃ Y → Y, ((xp, ξ), y) 7→ ϕp(xp, y), (3.43)

achieves this.

Lemma 3.31. For all p ∈ P , ϕ̃p : X̃p ◦G̃ Y → Y is an isomorphism of corre-
spondences. (Y, ϕ̃p) is a transformation from (X̃p, σ̃p,q) to the constant diagram
constD.

Proof. First, let ((xp, ξ), y) ∈ X̃p ×sG̃ ,G̃0,ψ∞
Y and let (g, η) ∈ G̃ with ψ∞(y) =

gη = rG̃(g, η). Then

ϕ̃p((xp, ξ)(g, η), (g, η)−1y) = ϕ̃p((xpg, g−1ξ), g−1y)
= ϕp(xpg, g−1y) = ϕp(xp, y)
= ϕ̃p((xp, ξ), y).

It follows that ϕ̃p is a well defined map. Now let ((xp, ξ), y) ∈ X̃p ×sG̃ ,G̃0,ψ∞

Y and let ((x′p, ξ′), y′) ∈ X̃p ×sG̃ ,G̃0,ψ∞
Y with ϕ̃p((xp, ξ), y) = ϕ̃p((x′p, ξ′), y′).
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3.3 Actions of Ore monoids by proper correspondences

Then ϕp(xp, y) = ϕp(x′p, y′). Since ϕp is an isomorphism, there is an element g ∈ G
such that rG(g) = rY(y) and (x′p, y′) = (xpg, g−1y). This implies x′p = xpg, y′ =
g−1y and hence ξ′ = ψ∞(g−1y) = g−1ψ∞(y) = g−1ξ. The element (g, g−1ξ) ∈ G̃
satisfies

((xp, ξ)(g, g−1ξ), (g, g−1ξ)−1y) = ((xpg, g−1ξ), g−1y) = ((x′p, ξ′), y′).

Then [(x′p, ξ′), y′] = [(xp, ξ), y] ∈ X̃p ◦G̃ Y. It follows that the map ϕ̃p is injective.
Next let y ∈ Y and let (xp, z) ∈ Xp ×sp,G0,rY Y be such that ϕp(xp, z) = y. Then
the point x = ((xp, ϕ∞(z)), z) satisfies ϕ̃p([x]) = y. Thus the map ϕ̃p is surjective.
The definition of the left action of G̃ on X̃p and the fact that ϕp is G,D-equivariant
imply that ϕ̃p is a G̃,D-equivariant.
Finally, the map (ϕp)p∈P satisfies condition (2.29). Therefore, the definition of

the isomorphisms σ̃p,q implies that (ϕ̃p)p∈P satisfies the same condition. We have
the pullback diagram

X̃p ◦s̃p,G̃0,r Y Xp ×sp,G0,r Y

Y Y

pr1×idY

ϕ̃p ◦ p

id

ϕp ◦ p

So ϕ̃p ◦ p is open and continuous since ϕp ◦ p is. Hence ϕ̃p is open and continuous
since p is open and continuous. This concludes the proof of the lemma.

Conversely, let (Y, ϕ̃p) be a transformation from (X̃p, σ̃p,q) to constD. There is
a natural action of G on Y. The right anchor map is given by rGY(y) = rG(rY(y)).
The action is defined by

g · y = (g, rY(y)) · y (3.44)

for all y ∈ Y and g ∈ G with rGY(y) = s(g).
This action commutes with the right action of D on Y. Next we define

ϕp : X̃p ×sp,G0,rGY
Y → Y, (xp, y) 7→ ϕ̃p((xp, rY(y)), y). (3.45)

Using similar arguments as in Lemma 3.31, we see that (ϕp,Y) is a trans-
formation from (Xp, σp,q) to the constant diagram constD. The two construc-
tions (Y, ϕp) 7→ (Y, ϕ̃p) and (Y, ϕ̃p) 7→ (Y, ϕp) are inverse to each other. Moreover,
a modification between two transformations (ϕp,Y) and (ϕ′p,Y ′) is an isomor-
phism w : Y → Y ′ of G,D-correspondences that intertwines ϕp and ϕ′p, see Equa-
tion (2.30). Equation (3.42) says that w is an isomorphism of G̃,D-correspondences
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3 Actions of Ore monoids

and Equation (3.43) says that it intertwines ϕ̃p and ϕ̃′p. Consequently, w is a modi-
fication from (Y, ϕ̃p) to (Y ′, ϕ̃′p). Similarly, by Equation (3.44) and Equation (3.45),
a modification between two transformations (Y, ϕ̃p) to (Y ′, ϕ̃′p) is the same as a
modification between (Y, ϕp) and (Y ′, ϕ′p). Thus we have an equivalence between
the groupoids CorrP ((Xp, σp,q), constD) and CorrP ((X̃p, σ̃p,q), constD). Therefore,
the diagrams (X̃p, σ̃p,q) and (Xp, σp,q) have the same colimit in Gr. This colimit
is H by Theorem 3.15.

3.3.2 The product systems

Let L be an étale groupoid. Let S ⊂ Bis(L) be an inverse semigroup. Let u ∈ S
be a bisection (see Definition 3.5). Then the map α(u) : r(u)→ s(u), s(g) 7→ r(g)
is a homeomorphism. And the map

α : S 7→ I(L0), u 7→ α(u), (3.46)

is a semigroup homomorphism. See [16, Proposition 5.3]. This gives an action of S
on L0. Furthermore, the action of S on L0 by partial homeomorphisms induces an
action of S on C0(L0) by partial isomorphisms, that is, an action by isomorphisms
between closed ideals in C0(L0). For simplicity, we also denote the induced action
by α. In what follows, we assume that S is wide inverse semigroup. That is, the
inclusion map S → Bis(L) is a wide representation, see [28, Definition 2.18], and⋃
u∈S u = L1. Equivalently, the transformation groupoid S n L0 is isomorphic

to the groupoid L. For instance, we may take S = Bis(L) (see [9, Proposition
5.1]). For a wide inverse semigroup S ⊂ Bis(G), the groupoid C∗-algebra C∗(L) is
naturally isomorphic to the crossed product S nC0(L0) (see [16, Proposition 9.7]).

Definition 3.32. Let S be a unital inverse semigroup. Let D be a C∗-algebra and
F a Hilbert D-module. A representation of S on F is a semigroup homomorphism
from S to the inverse semigroup I(F) of isomorphisms between sub-Hilbert modules
of F . Let α : S → I(F) be a representation. For u ∈ S, let Fu be the domain of
the isomorphism α(u).

Definition 3.33. Let X be a locally compact Hausdorff space. And let α : S →
I(X) be an action of S on X by partial homeomorphisms. Let Eu denote the
domain of the homeomorphism α(u). We also denote by α the action of S
by partial isomorphisms on C0(X). A covariant representation of (S,X) is a
pair (β,F), where F is a correspondence from C0(X) to a C∗-algebra D and β is
a representation of S on F such that

(1) the domain of β(u) is Fu = C0(Eu∗)F and its codomain is C0(Eu)F ;
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3.3 Actions of Ore monoids by proper correspondences

(2) β(u)ϕC0(X)(a)β(u)∗ = ϕC0(X)(α(u)(a))

for all u ∈ S and all a ∈ C0(Eu∗).

Covariant representations of inverse semigroup actions have been introduced in
[43, Definition 4.5], see also [16, Definition 8.1].

Proposition 3.34. Let L be an étale groupoid and let S ⊂ Bis(L) be a wide
inverse semigroup. Let D be a C∗-algebra. Then there is a bijection between the
set of correspondences F : C∗(L) → D and the set of covariant representations
of (S,L0) on Hilbert D-modules.

Proof. Let F : C∗(L)→ D be a correspondence. The correspondence L : L0 → L
is proper. Hence, by Proposition 2.38, the C∗-correspondence C∗(L) : C0(L0)→
C∗(L) is a proper.
We denote Bu := C0(u∗)F and

β(u) : Bu∗ → Bu, f · ξ 7→ α(u)(f) · ξ.

See (3.46) for the definition of α. Then we have

〈β(u)(f1 · ξ1), β(u)(f2 · ξ2)〉 = 〈α(u)(f1) · ξ1, α(u)(f2) · ξ2〉
= 〈ξ1, (α(u)(f1))∗α(u)(f2) · ξ2〉
= 〈ξ1, α(u∗u)(f∗1 f2) · ξ2〉
= 〈ξ1, f

∗
1 f2 · ξ2〉 = 〈f1 · ξ1, f2 · ξ2〉.

It follows that β(u) is an isometry. It is surjective since α(u) is an isomorphism.
Hence β(u) : Bu → Bu∗ is an isomorphism of Hilbert D-modules. We will show
that (β,F) is a covariant representation. Condition (1) is satisfied by construction.
Next we check condition (2). Let u ∈ S and let a ∈ C0(L0). Then for all f ·ξ ∈ Bu∗
we have

β(u)aβ(u)∗(f · ξ) = α(u)(aα(u∗)(f)) · ξ = α(u)(a)f · ξ.

Furthermore, the map β : S → I(F) is a semigroup homomorphism since α : S →
I(C0(L0)) is a semigroup homomorphism.

To prove the converse, let (β,F) be a covariant representation of the pair (S,L0).
By [16, Theorem 9.8], C∗(L) ∼= C0(L0) o S. We define an action of C∗(L) on F
as follows. Let f ∈ S(L). Then there is a natural number n ∈ N such that f =∑n
k=1 fk ◦ s|uk for bisections u1, . . . , un ∈ S and fk ∈ Cc(u∗kuk) for k = 1, . . . , n.

We set

ϕ(f)(ξ) = f · ξ :=
n∑
k=1

β(uk)ϕC0(L0)(fk)(ξ). (3.47)
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Equation (3.47) gives a well defined map
⊕

u∈S Cc(u)→ B(F). For the map ϕ to
extend to a map S(L)→ B(F), it has to vanish on the kernel of the natural map
E :

⊕
u∈S Cc(u) → S(L). By [10, Proposition B.2], the kernel of E is given by

the closed linear span of the set of elements of the form fδu − fδv for f ∈ Cc(u),
u, v ∈ S and u ⊂ v, where δu is the characteristic function on u. Let fδu − fδv
be such an element. Then f = g ◦ s|u with g ∈ Cc(u∗u). We have β(u) = β(v)|Fu
since u ⊂ v and (β,F) is a representation. Hence

(fδu − fδv) · ξ = β(u)ϕC0(L0)(g)(ξ)− β(v)ϕC0(L0)(g)(ξ) = 0

for all ξ ∈ F . It follows that ϕ(fδu − fδv) = 0. Since ϕ is continuous, it vanishes
on the kernel of E and gives a well-defined map S(L)→ B(F). This map extends
to a non-degenerate ∗-homomorphism ϕC∗(L) : C∗(L) → B(F). The map ϕC∗(L)
restricts to (β,F) by construction. This finishes the proof.

Let X be a locally compact Hausdorff space. Let L be a groupoid acting on X.
Let S ⊂ Bis(L) be such that S nL0 ∼= L. Then the action of L on X is equivalent
to an action of S on X by partial homeomorphisms, see [9, Theorem 3.7]. The
action of S is given as follows. Let e ∈ S be an idempotent. Let Xe := r−1(e).
Now for each u ∈ S, define αu : Xu∗u → Xuu∗ by

αu(x) = g · x, (3.48)

where g ∈ u is the unique element with r(x) = s(g).

Lemma 3.35. Let X be a locally compact Hausdorff space. Let L be a groupoid
acting on X. Let S ⊂ Bis(L) be a wide inverse semigroup. Let D be a C∗-algebra.
There is a bijection between the set of correspondences F : C∗(LnX)→ D and
the set of non-degenerate covariant representations of (S,X).

Proof. The inverse semigroup S is wide in the groupoid LnX. Hence the claim
follows from Proposition 3.34.

Theorem 3.36. The product systems (C∗(X̃p), µ̃p,q) and (C∗(Xp), µp,q) have the
same colimits in Corr and in Corrprop. The groupoid H is a groupoid model for
the Cuntz–Pimsner algebra of the product system (C∗(Xp), µp,q).

Proof. Let D be a C∗-algebra and let (F , Ṽp) be a transformation from the dia-
gram (C∗(X̃p), µ̃p,q) to constD. Here F : C∗(G̃)→ C∗(D) is a correspondence and
Ṽp : C∗(Xp)⊗C∗(G̃) F → F is an isomorphism for all p ∈ P ; the isomorphisms Ṽp
satisfy condition (2.32).

Now the natural (left) action of G on G̃ commutes with the right action of G̃ on
itself by multiplication. Hence G̃ : G → G̃ is a correspondence (an actor in fact). It
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3.3 Actions of Ore monoids by proper correspondences

is proper since r∗ : G̃/G̃ = H0 → G0 is proper by Lemma 3.25; and hence it induces
a non-degenerate ∗-homomorphism ι : C∗(G)→ C∗(G̃).
We define

νp : X̃p → Xp ◦G G̃, (xp, ξ) 7→ [xp, ξ].

The map νp is injective and G-equivariant. Let x = [xp, (g, ξ)] ∈ Xp ◦G G̃, then x =
[xpg, ξ] = νp(xpg, ξ). Hence νp is surjective. Let (g, η) ∈ G̃ and (xp, ξ) ∈ X̃p satisfy
gη = ξ. Then

νp(xp, ξ)(g, η) = [xp, ξ](g, η) = [xpg, η] = [xpg, g−1ξ].

Therefore, νp is G̃-equivariant. It is also open and continuous. Hence it is an
isomorphism. Thus its image under the functor Gr→ Corr is an isomorphism

C∗(X̃p) ∼= C∗(Xp)⊗C∗(G) C∗(G̃).

As a result, we obtain isomorphisms

C∗(Xp)⊗C∗(G) F
∼=−→ C∗(Xp)⊗C∗(G) C∗(G̃)⊗C∗(G̃) F

∼=−→ C∗(X̃p)⊗C∗(G̃) F
∼=−→ F .
(3.49)

Let Vp : C∗(Xp) ⊗C∗(G) F → F for p ∈ P be the product of the isomorphisms
in (3.49). Since Ṽp satisfies condition (2.27), the isomorphisms Vp also satisfy (2.27).
This implies that (F , Vp) is a transformation from (C∗(Xp), µp,q) to the constant
diagram constD.
Conversely, let (F , Vp) be a transformation from (C∗(Xp), µp,q) to the constant

diagram constD. We want to construct a transformation from (C∗(X̃p), µ̃p,q) to
constD. The space Xp is a correspondence from the space Xp/G to G, where the left
anchor map r = pp : Xp → Xp/G is the quotient map. The image of Xp : Xp/G → G
under the functor Gr→ Corr is a C∗-correspondence C∗(Xp) : C0(Xp/G)→ C∗(G).
That is, the C∗-algebra C0(X/G) acts on the Hilbert C∗(G)-module C∗(Xp) by
pointwise multiplication. The Hilbert D-modules C∗(Xp) ⊗C∗(G) F and F are
isomorphic via the map Vp. Hence we may view F as a C∗-correspondence
from C0(Xp/G) to D. The left action of C0(Xp/G) on F is given by ϕC0(Xp/G)(a) :=
VpaV

−1
p . Furthermore, for all p, q ∈ P , the map rp,q : Xpq/G → Xp/G is proper by

Lemma 3.25. Hence it induces a map r∗p,q : C0(Xp/G) → C0(Xpq/G). We claim
that

ϕC0(Xpq/G)r
∗
p,q = ϕC0(Xp/G). (3.50)

First, we have

Vpq = Vp(idC∗(Xp) ⊗C∗(G) Vq)(u−1
p,q ⊗C∗(Xp) idF ).
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Hence

V −1
pq = (up,q ⊗C∗(G) idF )(idC∗(Xp) ⊗C∗(G) V

−1
q )V −1

p .

We also have

(u−1
p,q ⊗C∗(G) idF )(r∗p,q(a))(up,q ⊗C∗(Xp) idF ) = a⊗C∗(G) idC∗(Xq) ⊗C∗(G) idF .

So

ϕC0(Xpq/G)r
∗
p,q(a) = Vpq(a⊗C∗(G) idF )V −1

pq

= Vp(idC∗(Xp) ⊗C∗(G) Vq)(a⊗C∗(G) idC∗(Xq) ⊗C∗(G) idF )·
(idC∗(Xp) ⊗C∗(G) V

−1
q )V −1

p

= Vp(a⊗C∗(G) idF )V −1
p = ϕC0(Xp/G)(a).

And the claim follows. Equation (3.50) and the universal property of the inductive
limit imply that (ϕC0(Xp/G))p∈P induces a map

ϕ : lim−→
CP

(C0(Xp/G), r∗p,q)→ B(F).

This map is non-degenerate since ϕC0(Xp/G) is non-degenerate for all p ∈ P .
Furthermore,

lim−→
CP

(C0(Xp/G), r∗p,q) = C0(lim←−
CP

(Xp/G, rp,q)) = C0(H0).

Summing up, we obtain a C∗-correspondence F : C0(H0) → D. And F is a
correspondence C∗(G) → D. We have to show that F extends to a correspon-
dence F : C∗(G̃) = C∗(G nH0) → D. By Proposition 3.34, the correspondence
F : C∗(G)→ D is equivalent to a non-degenerate covariant representation (α,F)
of the pair (S,G0). We will show that the pair (α,F), where F is now a cor-
respondence from C0(H0) to D, is also a covariant representation. Then using
Proposition 3.34 again we get a correspondence F : C∗(G̃)→ D. First, linearity
of the maps Vp for p ∈ P implies condition (1) in Definition 3.33. Secondly, the
action of G on Xp/G induces an action of S on Xp/G. The resulting action induces
an action of S on C0(Xp/G). With a slight abuse of notation, we denote this action
also by α. The action is given by

αu(fp(xp)) = fp[g · xp] (3.51)

for all fp ∈ S(Xp/G), u ∈ S and xp ∈ G, where g ∈ u is the unique ele-
ment with s(g) = r(xp). This action commutes, as expected, with the maps
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r∗p,q : C0(Xp/G) → C0(Xpq/G) for all p, q ∈ G and induces the action of S on
C0(H0). We only need to check that the condition (2) in Definition 3.33 holds for
the pairs (S,C0(Xp/G)) for all p ∈ P . Now let p ∈ P . Let u ∈ S, fp ∈ Cc(Xp/G).
Then for all ξp ⊗ ξ ∈ C∗(Xp)⊗C∗(G) F and all f ∈ S(u), we have

β(u)fpβ(u∗)(Vp(fξp ⊗ ξ)) = β(u)Vp(fpα(u∗)(f)ξp ⊗ ξ). (3.52)

But for all xp ∈ Xp we have

fpα(u∗)(f)ξp(xp) = fp[xp]f(g−1)ξp(g−1xp),

where g ∈ u is the unique element with r(g) = rp(xp). It follows that

fpα(u∗)(f)ξp = α(u)(fp)α(u∗)(f)ξp.

Thus

β(u)fpβ(u∗)(Vp(fξp ⊗ ξ)) = Vp(α(u)(fp)fξp ⊗ ξ) = α(u)(fp)Vp(fξp ⊗ ξ). (3.53)

This implies that the condition (2) is satisfied. Therefore, we get a correspon-
dence F : C∗(G̃) → D. Furthermore, equality (3.49) holds. Hence we have a
transformation (F , Ṽp) from (C∗(X̃p), µ̃p,q) to constD. Clearly, the transformation
from (C∗(Xp), µp,q) to constD obtained as before from (F , Ṽp) is again (F , Vp).

Finally, let (F , Ṽp) be a transformation from (C∗(X̃p), µ̃p,q) to constD. Let (β,F)
be the representation of (S,G0) obtained as before. Let u be a bisection in Xp for
p ∈ P and let f ∈ C0(u∗u). Then f ◦ s|u ∈ C0(u) ⊆ C0(Xp/G). So

ϕ(f ◦ s|u) = β(u)ϕ(f).

The functions of the form f ◦ s|u span a dense subset in C0(Xp/G). Hence the
action of C0(Xp/G) is given by the action of C0(G0) on F and the isomorphisms
Vp constructed from the action as above. Thus (F , Ṽp) is determined uniquely by
the transformation from (C∗(Xp), µp,q) to constD obtained from it.

3.4 Examples
3.4.1 Actions by local homeomorphisms
Let X be a locally compact Hausdorff space. Let P be an Ore monoid acting
on X by local homeomorphisms. We can turn this action into an action by
correspondences on the space X in two different ways. First, for all p ∈ P we may
form the correspondence Xp as a copy of the space X with source and range maps
given by

sp := p : X → X, rp := id: X → X.
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The map σp,q : X ×sp,X,rq X, (x, p(x)) 7→ x, is a correspondence isomorphism.
Clearly, the isomorphisms σp,q satisfy the coherence condition (3.1). Second, we
may take the dual X∗p of Xp. That is, X∗p = X as a topological space and the
source and range maps are given by

sp := id: X → X, rp := p : X → X.

Similarly, the map σ∗p,q : X ×sp,X,rq X, (q(x), x) 7→ x, is a correspondences isomor-
phism.
What are the colimits of the diagrams (Xp, σp,q) and (X∗p , σ∗p,q) in Gr?

(a) We start with the diagram (Xp, σp,q). This diagram consists of tight correspon-
dences, which allows us to apply the method in Section 3.2 to get the colimit.
Let p, q, k ∈ P . Then the map αkp,q : Xp ×sp,X,sq Xq → Xpk ×spk,X,sqk Xqk is
the identity map. It follows that for all g ∈ G = G[P ] the inductive limit
space Hg can be described by

Hg =
⊔

(p,q)∈Rg

Xp ×sp,X,sq Xq

= {(x, p, q, y) ∈ X × P × P ×X | pq−1 = g, p(x) = q(y)}.

The groupoid H is the disjoint union of all Hg. Therefore, as a space, H can
be written as

H = {(x, g, y) ∈ X ×G×X | ∃p1, p2 ∈ P, g = p1p
−1
2 , p1(x) = p2(y)}.

The groupoid structure on H is given by

(x, p1p
−1
2 , y)(y, p2p

−1
3 , z) = (x, p1p

−1
3 , z), (u, pq−1, v)−1 = (v, qp−1, u)

for all (x, p1p
−1
2 , y), (y, p2p

−1
3 , z), (u, pq−1, v) ∈ H. That is, the groupoid H

is the transformation groupoid associated with the action of P on X.

(b) We describe the colimit of the diagram (X∗p , σ∗p,q). For this to be a diagram
of proper correspondences, we need to assume from now on that the local
homeomorphisms p : X → X are proper for all p ∈ P . We also associated in
[1] a groupoid to an action of an Ore monoid by topological correspondences.
We will show that the groupoid constructed in [1] is isomorphic to the colimit
of the diagram (X∗p , σ∗p,q) in Gr. First, the projection map rp,q : Xpq → Xp

is given by rp,q(x) = q(x) for all x ∈ Xpq. The unit space of the colimit
groupoid is the inverse limit of (Xpq, rp,q) over the filtered category CP . That
is, H0 = lim←−CP (Xpq, q). That is, a point x ∈ H0 is given by (xp)p∈P with
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3.4 Examples

q(xpq) = xp. Elements of H0 are called complete histories. Moreover, the
tight correspondences X̃∗p for p ∈ P are given by

X̃∗p = X∗p ×sp,X,r H0 = {(x, (xp)) ∈ X∗p ×H0 | x = p(xp)}.

The range map on X̃∗p is given by

r̃p(xp, η) = xp · η.

Recall that, by Equation (3.33), we have

(xp · η)pt = σ−1
p,t (xp, ηt) = ηt

for all t ∈ P . That is, the range map on a pair (xp, η) in H0 simply
concatenates xp to the complete history η. The source map on X̃∗p is given
by

s̃p(xp, η) = η.

To land back in the setting of [1], we transform the action (X̃p, σ̃p,q) to an
action as in the previous case (a). The range map r̃p is a homeomorphism by
Lemma 3.27. Therefore, we may replace X̃∗p by H0 using r̃p. We also replace
the source map s̃p by s̃ ◦ r̃−1

p . The new tight correspondence is then X̃∗p =
H0 : H0 → H0, where the range map on X̃∗p is the identity and the source
map s̃p is the local homeomorphism which takes a complete history η and
forgets what happens in the last time period of length p. Formally, s̃p(η)t =
ηpt for t ∈ P . Finally, we replace the isomorphisms σ̃∗p,q : X̃∗p ×s̃p,H0,r̃q X̃

∗
q →

X̃∗pq with the isomorphisms σ̃∗p,q : H0 ×s̃p,H0,idH0 → H0, (x, s̃p(x)) 7→ x. The
colimit groupoid H of the action (X̃∗p , σ̃∗p,q) is then given by

H = {(x, g, y) ∈ H0 ×G×H0 | ∃p1, p2 ∈ P, g = p1p
−1
2 , s̃p1(x) = s̃p2(y)}.

Thus, we obtain the transformation groupoid associated with the action of P
on H0 given by the local homeomorphism s̃p, compare [1, Definition 4.12].

3.4.2 Self-similar group actions
In the following, we fix a self-similar group action (G,X), see Example 2.23.
We want to compute the groupoid model associated with the N-action given by
iterations of the (proper) correspondence X ×G : G→ G. First we show that the
iterations (X ×G)n : G→ G are given by self-similarities (G,Xn). The group G
acts on the space Xn recursively by

g(xw) = g(x)g|x(w)
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for all g, h ∈ G, x ∈ X and all w ∈ Xn−1. And the cocycle G×Xn → G is given
by

g|x1x2···xn = g|x1 |x2 . . . |xn

This gives a self-similar group action (G,Xn) and hence a correspondence Xn ×
G : G→ G.

Lemma 3.37. Let (G,X) be a self-similar group and let X = X × G be the
associated correspondence. Then for all n ∈ N the n-fold composition Xn is
isomorphic to the correspondence Xn ×G : G→ G.

Proof. The map ψn : Xn → Xn ×G given by

[((x1, g1), (x2, g2), . . . (xn, gn)])
7→ (x1, g1(x2), . . . ((g1|x2g2)|x3 . . . gn−1)(xn), ((g1|x2g2)|x3 . . . gn−1)|xngn),

is an isomorphism. This follows since the correspondences Xn and Xn × G are
discrete and the map ψn is a bijection and G equivariant.

In [37], Nekrashevych associates a C∗-algebra OG,X to a self-similar group (G,X)
and in [37, §5.2] he associates a groupoid model DG to OG,X . The groupoid DG is
given as follows. Let 〈G,X〉 be the quotient of the free inverse semigroup generated
by the set {Sx, S∗x | x ∈ X} ∪G under the relations

(1) the relations in the group G;

(2) S∗xSx = 1 for all x ∈ X and S∗xSy = 0 for x 6= y.

The inverse semigroup 〈G,X〉 acts on the space Xω by the local homeomorphisms

SugS
∗
v(vξ) = ug(ξ).

The groupoid DG is then the groupoid of germs of this action. In the theory of
self-similar groups, the action of G on X∗ is always assumed to be faithful; see [37].
Under this assumption, the germ groupoid is the same as the transformation
groupoid of the action. Thus if the action of G on X∗ is faithful, then the
transformation groupoid 〈G,X〉nXω is always effective.

Theorem 3.38. Let (G,X) be a self-similar group and let X = X × G be the
associated correspondence. Then 〈G,X〉nXω is isomorphic to the colimit H of the
diagram (N,+)→ Grprop associated with X . If the action of G on X∗ is faithful,
then DG is effective; it is isomorphic to H.
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Proof. By Equation (3.29), the unit space H0 of the groupoid model H is

H0 = lim←−(Xn/G, rn,m),

where rn,m is the map

rn,m : X n+m/G→ X n/G,
[(x1, g1), (x2, g2), . . . , (xn+m, gn+m)n+m] 7→ [(x1, g1), (x2, g2), . . . , (xn, gn)].

(3.54)

By Lemma 3.37, Xn/G is homeomorphic to the space Xn. This homeomorphism
is equivariant with respect to the left G-actions on Xn/G and Xn. Under these
homeomorphisms, the maps rn,m for n,m ∈ N correspond to the maps Xn+m →
Xn, (x1 . . . xn+m) 7→ (x1 . . . xn), which we also denote by rn,m. Thus H0 is
homeomorphic to

Xω := lim←−(Xn, rn,m).

The space Xω is the space of right infinite words on the alphabet X in the
terminology of [37]. We identify Xω with H0 in the sequel. The action of the
group G on the set of right infinite words Xω = H0 is obtained recursively from
Equation (2.13). It is given by

g · (x1, x2, . . .) = (g(x1), g|x1(x2), g|x1x2(x3), . . .)

for g ∈ G and xi ∈ X . Next, let n ∈ N. The tight correspondence X̃n : GnXω →
GnXω is given by X̃n = Xn ×G×Xω. The source and range maps s̃n and r̃n
are given by

s̃n((x1, x2, . . . , xn, g), η) = η,

r̃n((x1, x2, . . . , xn, g), η) = (x1, x2, . . . , xn) · (g · η)

for all (x1, x2, . . . , xn, g, η) ∈ Xn × G × Xω. That is, the range of an ele-
ment (x1, x2, . . . , xn, g, η) ∈ Xn × G × Xω is obtained by first acting with the
group element g on η and then concatenating the finite word (x1, x2, . . . , xn) to
the resulting infinite path g · η.
Let n,m ∈ N. We have

X̃n ◦GnXω X̃ ∗m =
{[(x̄, g, ξ), (ȳ, h, ξ)] | ((x̄, g, ξ), (ȳ, h, ξ)) ∈ (Xn ×G×Xω)× (Xm ×G×Xω)},

(3.55)
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where the equivalence relation is given by

((x̄, g, ξ), (ȳ, h, ξ)) ∼ ((x̄, gt, t−1 · ξ), (ȳ, ht, t−1 · ξ))

for all t ∈ G. Thus ((x̄, g, ξ), (ȳ, h, ξ)) ∼ ((x̄, gh−1, h·ξ), (ȳ, 1, h·ξ)) in X̃n◦GnXω X̃ ∗m.
Hence we can rewrite X̃n ◦GnXω X̃ ∗m as the equivalence classes of quadruples
(x̄, g, ȳ, ξ) in the space Xn ×G×Xm ×Xω under the equivalence relation

(x̄, g, ȳ, ξ) ∼ (x̄, gh−1, ȳ, hξ)

for all h ∈ G. If k ∈ N, then the map αkn,m is given by

αkn,m([x̄, g, ȳ, ξ]) = [x̄ · g(z̄), g|z̄, ȳz̄, η]

for all [x̄, g, ȳ, ξ] ∈ X̃n ◦GnXω X̃ ∗m, where η ∈ Xω and z̄ ∈ Xk are such that z̄η = ξ.
Finally, the groupoid H as a set is given by

H = {[x̄, g, ȳ, ξ] | (x̄, g, ȳ, ξ) ∈ Xn ×G×Xm ×Xω for some n,m ∈ N}.

The unit space of H is Xω and the source and range maps on H are

s([x̄, g, ȳ, ξ]) = ȳξ, r([x̄, g, ȳ, ξ]) = x̄ · g(ξ) (3.56)

for all [x̄, g, ȳ, ξ] ∈ H. The inverse of an element [x̄, g, ȳ, ξ] ∈ H is

([x̄, g, ȳ, ξ])−1 = [ȳ, g−1, x̄, g(ξ)]. (3.57)

If ([x̄, g, ȳ, ξ], [ȳ, h, z̄, η]) ∈ H2 with x̄ ∈ Xn, ȳ ∈ Xm and z̄ ∈ Xk then

[x̄, g, ȳ, ξ] · [ȳ, h, z̄, η] = [x̄, gh, z̄, η]. (3.58)

Since ([x̄, g, ȳ, ξ], [ȳ, h, z̄, η]) ∈ H2, we have ȳξ = ȳ · h(η). So ξ = h(η).
We check that the map

ψ : H → DG, [x̄, g, ȳ, ξ] 7→ [Sx̄gS∗ȳ , ȳ · ξ],

is an isomorphism. Let [x̄, g, ȳ, ξ] ∈ H. Then

ψ([x̄, g, ȳ, ξ]−1) = ψ[ȳ, g−1, x̄, g(ξ)]
= [Sȳg−1S∗x̄, x̄ · g(ξ)] = [Sx̄gS∗ȳ , ȳ · ξ]−1 = ψ([x̄, g, ȳ, ξ])−1.

If ([x̄, g, ȳ, ξ], [ȳ, h, z̄, η]) ∈ H2 with x̄ ∈ Xn, ȳ ∈ Xm and z̄ ∈ Xk then

ψ([x̄, g, ȳ, ξ]) · ψ([ȳ, h, z̄, η]) = [Sx̄gS∗ȳ , ȳξ] · [SȳhS∗z̄ , z̄η]
= [Sx̄gS∗ȳ · SȳhS∗z̄ , z̄η] = [Sx̄ghS∗z̄ , z̄η]
= [x̄, gh, z̄, η] = ψ([x̄, g, ȳ, ξ] · [ȳ, h, z̄, η]).
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This implies that ψ is a groupoid homomorphism. Let a = [Sx̄gS∗ȳ , ξ] ∈ DG. Then
since ξ is in the domain of the local homeomorphism Sx̄gS

∗
ȳ , it is of the form ȳη

for η ∈ Xω. Then [x̄, g, ȳ, η] ∈ H and ψ([x̄, g, ȳ, η]) = a. Hence ψ is surjective. Let
[x̄, g, ȳ, η] ∈ H with ψ([x̄, g, ȳ, η] = [Sx̄gS∗ȳ , ȳ · η] ∈ D0

G. This implies that there
is an open set V = ȳU ⊂ Xω such that the restriction Sx̄gS∗ȳ |V is trivial. This
implies that x̄ = ȳ and g acts trivially on the open set U ⊂ Xω. We may assume
without loss of generality that U = z̄Xω with z̄ ∈ Xk and k ∈ N. Since g acts
trivially on U , we have g(z̄) = z̄ and g|z̄ acts trivially on Xω. Furthermore, η ∈ U .
Hence η = z̄ξ for some element ξ ∈ Xω. This implies that

αkn,m([x̄, g, ȳ, η]) = [x̄g(z̄), g|z̄, x̄z̄, ξ].

If g|z̄ = 1 then
αkn,m([x̄, g, ȳ, η]) = [x̄z̄, 1, x̄z̄, ξ],

and [x̄, g, ȳ, η] is a unit in the groupoid H. So ψ is injective. Furthermore, for H
to be effective, we have to ask for the action of G on Xω to be faithful. This is
true since the action of G on X∗ is faithful. The map ψ is open and continuous
since Hn is endowed with the inductive limit topology for all n ∈ Z.
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4 Colimit equivalent diagrams

An interesting question when studying C∗-dynamics is whether two (generalised)
dynamical systems have isomorphic crossed products. For singly generated dynam-
ical systems we may achieve that two dynamical systems give isomorphic crossed
products by asking for an isomorphism between the objects being acted on; and
this isomorphism should intertwine the actions in the obvious sense. We may also
ask for two arrows with opposite directions between the objects being acted on such
that their compositions give the generators of the dynamical systems we started
with. This has been called strong shift-equivalence (see [32]). The description of
crossed products of generalised actions in Corr as colimits of diagrams allows us,
for instance, to realise that a strong shift equivalence is itself a diagram containing
both actions as subdiagrams, so that the colimit of this diagram is isomorphic to
the colimits of both subdiagrams.
We prove in this chapter that under certain assumptions on a diagram, we

may restrict to any cofinal object and obtain an Ore monoid action with the
same colimit as the original diagram. This is done in the abstract setting of
a general bicategory. We verify in the last section that our notion of colimit
equivalence generalises that of shift-equivalence for graphs and C∗-correspondences
when restricting to the bicategories Corr and Gr.

4.1 Colimit equivalent diagrams in general bicategories
Filtered categories
In the following we relax the notion of filtered categories.

Definition 4.1. A nonempty category C is called weakly filtered if

(1) for any two objects x, y ∈ C0, there is an object z ∈ C0 and arrows g ∈ C(x, z)
and h ∈ C(y, z);

(2) for any two parallel arrows g, h ∈ C(y1, y2), there is an object y3 ∈ C0 and
arrows k1, k2 ∈ C(y2, y3) such that k1g = k2h.

If we demand in (2) that k1 = k2, then C is a filtered category in the notation of
[27, §IX.1].
From (1) and (2), it follows that
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(3) for all g1, g2 ∈ C with s(g1) = s(g2), there are k1, k2 ∈ C such that
k1g1 = k2g2.

The category C is called 2-directed if it is weakly filtered and

(4) if k1g = k2g for k1, k2, g ∈ C, then there is h ∈ C with hk1 = hk2.

Notice that for monoids, the notions of Ore and 2-directed coincide.

Conditions (3)–(4) imply that we can construct a (discrete) groupoid from the
category C. This is done as follows. Let X o P be the quotient of C ×r C =
{(g, h) ∈ C1 × C1 | r(g) = r(h)} by the equivalence relation (g1, h1) ∼ (g2, h2)
if there are k1, k2 ∈ C such that (k1g1, k1h1) = (k2g2, k2h2). The object set
of X o P is identified with C0 by the map x 7→ [(idx, idx)]. The source and range
maps are given by r(g, h) := s(g) and s(g, h) := s(h) for all (g, h) ∈ G. The
multiplication is given by (g1, h1)(g2, h2) := (k1g1, k2h2), where k1, k2 ∈ C are
such that k1h1 = k2g2. Conditions (3) and (4) imply that the multiplication
does not depend on the choice of k1, k2 and that it is well defined. The inverse
of an element [(g, h)] ∈ G is given by [(g, h)]−1 := [(h, g)]. Define iC : C → G
by iC(g) := [(idr(g), g)]. Then iC is a faithful functor from C to G.

Definition 4.2. Let C be a category and let C1 be a full subcategory of C. We
say that C1 is cofinal if for any object y ∈ C0, there is an object x ∈ C1

0 and an
arrow g ∈ C(y, x). We say that an object x is cofinal if the subcategory C(x, x) is
cofinal.

Lemma 4.3. A cofinal subcategory C1 of a 2-directed category C is also 2-directed.

Proof. Let C1 be a cofinal subcategory of a 2-directed category C. We will show
that conditions (1), (2) and (4) hold in C1. Condition (1) follows because every
cofinal subcategory is full. Let g1, g2 ∈ C1 with s(g1) = s(g2). Then there
are k1, k2 ∈ C such that k1g1 = k2g2. Since C1 is cofinal there is an object z ∈ C1

0
and an arrow l : r(k2) → z. The arrows lk1, lk2 ∈ C1 satisfy lk1g1 = lk2g2, and
condition (2) follows. Condition (4) follows similarly.

Lemma 4.4. Let C be a 2-directed category and let x be a cofinal object in C.
Then for every triple (g, h, k) with r(g) = r(k) = x and h ∈ C(s(k), s(g)) there are
ξ1, ξ2 ∈ C(r(g), r(g)) with ξ1gh = ξ2k.

Proof. Let (g, h, k) be as in the assumption. Let y1 = s(g) and y2 = s(k).

x

y1 y2

g
k

h

78



4.1 Colimit equivalent diagrams in general bicategories

By our assumption that C is 2-directed, there is an object y ∈ C0, and there are
elements η1, η2 ∈ C(x, y) with η1gh = η2k. There is also an arrow t ∈ C(y, x)
since x is cofinal. Let ξ1 := tη1 and ξ2 := tη2. It follows that ξ1gh = ξ2k with
ξ1, ξ2 ∈ C(x, x).

Let G, G1 denote the groupoid completions of C, C1 respectively. Then G1 is
the restriction of G to the object set G1

0 if C1 is a cofinal subcategory of C. In
particular, if x is an object in a 2-directed category C such that C(x, x) is cofinal,
then the group completion of the monoid C(x, x) is the isotropy group of x in the
groupoid completion of C.

Example 4.5. Let Cs be the path category of the directed graph

x y

S

R

The arrows in Cs are composites (SR)n, (RS)n, R(SR)n, S(RS)n for n ≥ 0,
where (SR)0 and (RS)0 are interpreted as the identity arrows on x and y, re-
spectively. We claim that Cs is 2-directed. Condition (1) in Definition 4.1 is
satisfied. To show that (2) holds, let g and h be two parallel arrows in Cs. We
have four cases. If g, h : x→ x, then they are necessarily of the form g = (SR)n
and (SR)m for n,m ∈ N. We assume without loss of generality that n ≥ m. We
have (SR)n−m(SR)m = (SR)n and we may choose k1 = (SR)n−m and k2 = id.
The other three cases can be treated similarly. It follows that Cs is weakly filtered.
In addition, Condition (4) holds, even more, Cs is path cancellative. This implies
that Cs is 2-directed. Notice that it is not a filtered category. It is routine to check
that the full subcategories Cs(x, x) and Cs(y, y) are cofinal in Cs.
More generally, for n ∈ N, let Dns be the path category of

x1 x2 x3 . . . xn−1 xn

S1

R1

S2

R2

Sn−1

Rn−1

And let Cns be the quotient of Dns generated by the relations Ri−1Si−1 ∼ SiRi
for i = 2, . . . , n− 1. In this case, the full subcategories Cns (x1, x1) and Cns (xn, xn)
are cofinal in Cns . We prove next that Cns is 2-directed. Let 1 ≤ i ≤ l ≤ j ≤ n and
let g = (RjSj)kSj−1 · · ·Sl−1 · (SlRl)a · Sl · · ·Si be an arrow from xi to xj with a,
k ∈ N. Then using the identifications Rm−1Sm−1 ∼ SmRm for m = 2, . . . , n − 1
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we get
g = (RjSj)kSj−1 · · ·Sl−1 · (SlRl)a · Sl · · ·Si

= (RjSj)kSj−1 · · ·Sl−1 · (Rl−1Sl−1)a · Sl · · ·Si
= (RjSj)kSj−1 · · ·Sl−2 · (Sl−1Rl−1)aSl−1 · Sl · · ·Si
= (RjSj)kSj−1 · · ·Sl−2 · (Rl−2Sl−1)aSl−1 · · ·Si
= (RjSj)k+aSj−1 · · ·Si.

It follows that any arrow from xi to xj for 1 ≤ i ≤ j ≤ n is of the form
(RjSj)kSj−1 · · ·Si for k ∈ N. Let k1, k2 ∈ N and let g = (RjSj)k1Sj−1 · · ·Si,
h = (RjSj)k2Sj−1 · · ·Si be two such arrows. We may assume without loss of
generality that k1 ≥ k2. Then we have (RjSj)k1−k2h = g and therefore Condition
(2) in Definition 4.1 is satisfied. The other conditions in Definition 4.1 follow as in
the case of n = 2.

Definition 4.6. LetM be a bicategory with all 2-arrows being invertible. We
call two diagrams D1 and D2 colimit equivalent if they have the same colimit.

Theorem 4.7. LetM be a bicategory with all 2-arrows being invertible. Let C be
a 2-directed category and x ∈ C0 a cofinal object. Let F : C →M be a functor, and
let Fx be its restriction to the monoid C(x, x). Then F and Fx have equivalent
colimits.

Proof. We will make an extensive use of the coherence conditions (2.3) and (2.8)
in this proof. To avoid tedious repetition of these arguments, we will omit parts
of the calculations to make the proof clearer.
Let D ∈M0 be an object. We want an equivalence of groupoids

Rx : MC(x,x)(Fx, constD)
∼=−→MC(F, constD).

This implies the equivalence of the colimits for both diagrams. Recall that colimits
are only well-defined up to equivalence inM.
Since C(x, x) is a full subcategory of C we have an obvious map

Ψx : MC(F, constD) −→MC(x,x)(Fx, constD).

This map sends an object (G, V ) ∈MC(F, constD)0 (a transformation) to its restric-
tion (Gx, Vx) to the monoid C(x, x). The image under the map Ψx of a modification
W : (G1, V 1) → (G2, V 2) is the restricted modification Wx : (G1

x, V
1
x ) → (G2

x, V
2
x ).

We need an inverse Rx of Ψx. Let (Tx, Ug) ∈ MC(x,x)(Fx, constD)0 be a trans-
formation (see Definition 2.5). We want to extend this transformation to a
transformation from F to constD.
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First, let y ∈ C0. The object x is cofinal. So we can choose an arrow hy : y → x.
We define

Ty := Tx ◦ F (hy).

Secondly, let g : y2 → y1 be an arrow in C. Since C is 2-directed and x is cofinal,
Lemma 4.4 gives ξ1, ξ2 ∈ C(x, x) such that

ξ1hy1g = ξ2hy2 .

Let φξ1,ξ2
g : F (ξ2)F (hy2)→ F (ξ1)F (hy1)F (g) be the 2-arrow given by

φξ1,ξ2
g := (idFξ1

∗ u−1
hy1 ,g

) ∗ u−1
ξ1,hy1g

∗ uξ2,hy2

= (u−1
ξ1,hy1

∗ idF (g)) ∗ u−1
ξ1hy1 ,g

∗ uξ2,hy2
.

The last equality follows from the associativity condition (2.3). We define

U ξ1,ξ2
g := (U−1

ξ1
∗ idF (hy1 )◦F (g))(idTx ∗ φξ1,ξ2

g ) ∗ (Uξ2 ∗ idF (hy2 )). (4.1)

This is a 2-arrows U ξ1,ξ2
g from Ty2 = Tx ◦F (hy2) to Ty1 ◦F (g) = Tx ◦F (hy1) ◦F (g).

Lemma 4.8. The 2-arrow U ξ1,ξ2
g does not depend on the choice of ξ1 and ξ2.

Proof. Let g, ξ1 and ξ2 as before. First we show that for all k ∈ C(x, x) we have

Ukξ1,kξ2
g = U ξ1,ξ2

g . (4.2)

By repeated application of (2.3):

φkξ1,kξ2
g (uk,ξ2 ∗ idF (hy2 ))

= (u−1
kξ1,hy1

∗ idF (g))u−1
kξ1hy1 ,g

· ukξ2,hy2
(uk,ξ2 ∗ idF (hy2 ))

= (u−1
kξ1,hy1

∗ idF (g))u−1
kξ1hy1 ,g

· uk,ξ2hy2
(idF (k) ∗ uξ2,hy2

)

= (u−1
kξ1,hy1

∗ idF (g))u−1
kξ1hy1 ,g

· uk,ξ1hy1g
(idF (k) ∗ uξ2,hy2

)

= (u−1
kξ1,hy1

∗ idF (g))(uk,ξ1hy1
∗ idF (g))(idF (k) ∗ u−1

ξ1hy1 ,g
)(idF (k) ∗ uξ2,hy2

)

= (uk,ξ1 ∗ idF (hy1 )◦F (g))(idFk ∗ φ
ξ1,ξ2
g ).

Hence

φkξ1,kξ2
g = (uk,ξ1 ∗ idF (hy1 )◦F (g))(idFk ∗ φ

ξ1,ξ2
g )(u−1

k,ξ2
∗ idF (hy2 )). (4.3)
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Therefore,

Ukξ1,kξ2
g = (U−1

kξ1
∗ idF (hy1 )◦F (g))(idTx ∗ φkξ1,kξ2

g ) ∗ (Ukξ2 ∗ idF (hy2 ))

= (U−1
ξ1
∗ idF (hy1 )◦F (g))(U−1

k ∗ idF (ξ1)) ∗ (idF (k) ∗ φξ1,ξ2
g )∗

(((Uk ∗ idF (ξ2)) ∗ Uξ2) ∗ idFhy2
) = U ξ1,ξ2

g . (4.4)

Here we used the identity Ukξ2 = (idTx ∗ uk,ξ2)(Uk ∗ idF (ξ2)) ∗ Uξ2 and a similar
identity for U−1

kξ1
, as (Tx, Ug) ∈MC(x,x)(Fx, constD) is a transformation and hence

satisfies (2.8).
Now let (η1, η2) ∈ C(x, x) be another pair satisfying η1hy1g = η2hy2 . There

are k1, k2 ∈ C(x, x) such that k1ξ1 = k2η1. Hence k1ξ2hy2 = k2η2hy2 . Since C is
2-directed (Definition 4.1), there is an element z ∈ C(x, x) such that zk1ξ2 = zk2η2.
Therefore, we have

U ξ1,ξ2
g = U zk1ξ1,zk1ξ2

g = U zk2η1,zk2η2
g = Uη1,η2

g .

So, the 2-arrow U ξ1,ξ2
g does not depend on the choice of the pair (ξ1, ξ2).

Let Ug := U ξ1,ξ2
g . Next we verify the coherence condition (2.8). Let g : y2 → y1

and h : y3 → y2 be two composable arrows in C. Then there are ξ1, ξ2, ξ′2 and
ξ3 ∈ C(x, x) with ξ2hy2h = ξ3hy3 and ξ1hy1g = ξ′2hy2 . Since C(x, x) is Ore, there
are η1, η2 ∈ C(x, x) with η1ξ

′
2 = η2ξ2. Then

η1ξ1hy1gh = η1ξ
′
2hy2h = η2ξ2hy2h = η2ξ3hy3 .

The elements ηξ1, η1ξ
′
2 = η2ξ2 and η2ξ3 satisfy η1ξ1hy1g = η1ξ

′
2hy2 , η1ξ

′
2hy2h =

η2ξ3hy3 and η1ξ1hy1gh = η2ξ3hy3 . Therefore, without loss of generality, we may
choose ξ2 = ξ′2; and we get

ξ1hy1gh = ξ2hy2h = ξ3hy3 .

Similar computations as in the proof of (4.3) show that

(idF (ξ1)F (hy1 ) ∗ u−1
g,h)φξ1,ξ3

gh = (φξ1,ξ2
g ∗ idFh)φξ2,ξ3

h . (4.5)

This equation will be relevant in the following.
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To check (2.8), we start with the following commuting diagram:

Tx ◦ F (hy3)

Tx ◦ F (hy3)

(Tx ◦ F (ξ3)) ◦ F (hy3)

(Tx ◦ F (ξ3)) ◦ F (hy3)

(Tx ◦ F (ξ3)) ◦ F (hy3)id

Uξ3 ∗ idF (hy3 )

Uξ3 ∗ idF (hy3 )

id

id

(4.6)

Let
K1 := (U−1

ξ2
∗ idF (hy2 )◦F (h))(idTx ∗ φ

ξ2,ξ3
h ),

K2 := (U−1
ξ1
∗ idF (hy1 )◦F (g)◦F (h))(idTx ∗ φξ1,ξ2

g ∗ idF (h))(idTx ∗ φ
ξ2,ξ3
h ),

K3 := (U−1
ξ1
∗ idF (hy1 )◦F (gh))(idTx ∗ φ

ξ1,ξ3
gh ).

Then the diagram

Tx ◦ F (hy3)

Tx ◦ F (hy3)

Tx ◦ F (hy2) ◦ F (h)

Tx ◦ F (hy1) ◦ Fgh

Tx ◦ F (hy1) ◦ F (g) ◦ F (h)id

K1 ∗ (Uξ3 ∗ idF (hy3 ))

K3 ∗ (Uξ3 ∗ idF (hy3 ))

K2 ∗ id ∗K−1
1

K3 ∗ id ∗K−1
2

also commutes. Computing the expressions in the diagram gives
K1 ∗ (Uξ3 ∗ idF (hy3 )) = Uh,

K2 ∗ id ∗K−1
1 = Ug ∗ idF (h),

K3 ∗ id ∗K−1
2 = id(Tx◦F (hy1 )) ∗ ug,h,

K3 ∗ (Uξ3 ∗ idF (hy3 )) = Ugh.

So the following diagram commutes:

Tx ◦ F (hy3)

Tx ◦ F (hy3)

Tx ◦ F (hy2) ◦ F (h)

Tx ◦ F (hy1) ◦ Fgh

Tx ◦ F (hy1) ◦ F (g) ◦ F (h)id

Uh

Ugh

Ug ∗ idF (h)

id(Tx◦F (hy1 )) ∗ ug,h

(4.7)
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Substituting Tyi = Tx◦Fhyi for i = 1, 2, 3, in the last diagram, we get the coherence
condition in (2.8). So (T,U) is a transformation from C to constD. Let (T 1

x , U
1
ξ )

and (T 1
x , U

1
ξ ) be transformations inMC(x,x)(Fx, constD), and let Wx : T 1

x → T 2
x be

a modification between (T 1
x , U

1
ξ ) and (T 1

x , U
1
ξ ). As we have seen before, we can

extend (T ix, U iξ) to a transformation (T i, U ig) ∈MC(F, constD) for i = 1, 2. Next we
show that we can extend the modification Wx to a modification W from (T 1, U1

g )
to (T 2, U2

g ). For all y ∈ C0, define Wy : T 1
y → T 2

y by

Wy := Wx ∗ idF (hy).

We verify that W satisfies the coherence condition (2.10). Let g : y1 → y2 be an ar-
row in C and let ξ1, ξ2 be such that ξ1hy1g = ξ2hy2 . The coherence condition (2.10)
is satisfied for the monoid C(x, x). Therefore, the following diagram commutes:

T 1
x T 2

x

T 1
x ◦ F (ξ2) T 2

x ◦ F (ξ2)

Wx

U1
ξ2

U2
ξ2

Wx ∗ idF (ξ2)

(4.8)

Hence

T 1
x ◦ F (hy2) T 2

x ◦ F (hy2)

T 1
x ◦ F (ξ2) ◦ F (hy2) T 2

x ◦ F (ξ2) ◦ F (hy2)

Wx ∗ idF (hy2 )

U1
ξ2
∗ idF (hy2 ) U2

ξ2
∗ idF (hy2 )

Wx ∗ idF (ξ2) ∗ idF (hy2 )
(4.9)

also commutes. Next, notice that

(U2
ξ1
−1 ∗ idF (hy1 )◦F (g))(idTx ∗ φξ1,ξ2

g )(Wx ∗ idF (ξ2)◦F (hy2 ))

(idTx ∗ φξ1,ξ2
g

−1)(U1
ξ1 ∗ idF (hy1 )◦F (g)) = Wy1 ∗ idF (g). (4.10)

The last equality holds since Wx = U2
ξ1
−1(Wx ∗ idF (ξ1))U1

ξ1
, see (4.8). Hence

multiplying U1
ξ2
∗ idF (hy2 ) in (4.9) with (U1

ξ1
−1 ∗ idF (hy1 )◦F (g))(idTx ∗ φξ1,ξ2

g ) and
multiplying U2

ξ2
∗ idF (hy2 ) with (U2

ξ1
−1 ∗ idF (hy1 )◦F (g))(idTx ∗φξ1,ξ2

g ), we get that the
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diagram

T 1
y2 T 2

y2

T 1
y1 ◦ F (g) T 2

y1 ◦ F (g)

Wy2

U1
g U2

g

Wy1 ∗ idF (g)

(4.11)

commutes. Therefore, W is a modification. Now let W 1 be another modification
from (T 1, U1

g ) to (T 2, U2
g ) with Wx = W 1

x . Let y ∈ C0. Then the following diagram
commutes:

T 1
y T 2

y

T 1
x ◦ F (hy) T 2

x ◦ F (hy)

W 1
y

U1
hy

= id U2
hy

= id

W 1
x ∗ idF (hy)

Thus Wy = Wx ∗ idF (hy). So the modification W 1 is uniquely determined by
W 1
x = Wx.

Corollary 4.9. Let C be a 2-directed category and C1 be a connected cofinal
subcategory of C. Let F : C →M be a functor and let F1 be its restriction to C1.
Then F and F1 have equivalent colimits.

Let C be a 2-directed category and let x, y ∈ C0 be such that C(x, x), C(y, y)
are cofinal. Let F : C →M be a functor and let Fx, Fy be its restrictions to the
monoids C(x, x) and C(y, y), respectively. A direct consequence of Corollary 4.9 is
that Fx and Fy have equivalent colimits.

4.2 Applications
We apply Theorem 4.7 in the bicategories Gr and Corr.

4.2.1 Shift equivalence of C∗-correspondences
Muhly, Pask and Tomforde [32] introduced a notion of equivalence for correspon-
dences which generalises “elementary strong shift equivalence” of graphs. This
notion also has an elegant interpretation in terms of colimits, which then allows
to extend it to diagrams of more general shape.

Definition 4.10. Let A and B be C∗-algebras and let E1 : A→ A and E2 : B → B
be correspondences. An elementary strong shift equivalence between E1 and E2
consists of correspondences ER : A→ B and ES : B → A with

E1 ∼= ER ⊗A ES and E2 ∼= ES ⊗B ER.

85



4 Colimit equivalent diagrams

Let strong shift equivalence be the equivalence relation generated by elementary
strong shift equivalence. Thus a strong shift equivalence between E1 and E2 consists
of

• C∗-algebras A1 . . . An for n ∈ N such that A1 = A and An = B;

• correspondences ERi : Ai → Ai+1 and ESi : Ai+1 → Ai for i = 1 . . . n− 1 such
that
(1) E1 ∼= ER1 ⊗A2 ES1 and E2 ∼= ESn−1 ⊗An−1 ERn−1 ,

(2) ESi−1 ⊗Ai ERi−1
∼= ERi ⊗Ai+1 ESi for i = 2, . . . , n− 1.

We recall the definition of the categories Cs and Cns from Example 4.5. An
elementary strong shift equivalence between E1 and E2 defines a functor from Cs
to Corr, mapping R(SR)n 7→ E⊗An1 ⊗A ER, (SR)n 7→ E⊗An1 , and so on. Up to
isomorphism, this functor is determined by ER and ES because Cs is generated
freely by the arrows R and S.
Let ERi : Ai → Ai+1 and ESi : Ai+1 → Ai for i = 1, . . . , n − 1 be a strong shift

equivalence between E1 and E2. As before, the assignments Si 7→ ESi and Ri 7→ ERi
for i = 1, . . . , n − 1, determine a functor S ′ : Dns → Corr. The isomorphisms in
Condition (2) allow to descend this to a functor S : Cns → Corr. Theorem 4.7
implies that the colimit of the diagram S : Cns → Corr in Corr is Morita–Rieffel
equivalent to the colimit of either of the diagrams Sx : N→ Corr and Sy : N→ Corr
obtained by restricting S to Cns (x, x) and Cns (y, y), respectively. We include a direct
proof of this fact for n = 1.

Proposition 4.11. Let S be the functor Cs → Corrprop corresponding to the strong
shift equivalence

A B,

ER

ES

where A and B are C∗-algebras and ER and ES are proper correspondences. Let S1
and S2 be the diagrams (N,+)→ Corrprop generated by ER⊗BES : A→ A and ES⊗A
ER : B → B, respectively. Then

colim(S) ∼= colim(S1) ∼= colim(S2)

in Corr, that is, these colimits are Morita–Rieffel equivalent.

Proof. Let D be a C∗-algebra. A transformation from S to constD is a quadru-
ple (FA,FB, US , UR), where

FA : A→ D, FB : B → D
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are correspondences and

US : ES ⊗A FA → FB, UR : ER ⊗B FB → FA

are isomorphisms of correspondences. This induces isomorphisms

UA : (ER ⊗B ES)⊗A FA → FA, UB : (ES ⊗A ER)⊗B FB → FB.

Here we use implicitly that Corr is associative up to canonical isomorphism.
Hence we get transformations (FA, UA) and (FB, UB) from S1 and S2 to constD,
respectively. Conversely, let (FA, UA) be a transformation from S1 to constD.
Define

FB := ES ⊗A FA, US := idFB ,

and let UR : ER ⊗B FB → FA be the composite of UA : (ER ⊗B ES)⊗A FA → FA
and the associator ER ⊗B FB ∼= (ER ⊗B ES) ⊗A FA. This gives a transforma-
tion (FA,FB, US , UR) from S to constD. This is a quasi-inverse for the functor
taking (FA,FB, US , UR) to (FA, UB). Similarly, a transformation (FB, UB) from S2
to constD induces a transformation from S to constD. By the universal property of
the colimit, this means that the diagrams S, S1 and S2 have the same colimit.

Similarly,

Proposition 4.12. Let S be the functor Cs → Grprop corresponding to the strong
shift equivalence

G H,
XR

XS

where G and H are groupoids and XR and XS are groupoid correspondences.
Let S1 and S2 be the diagrams (N,+) → Gprop generated by XR ◦H XS : G → G
and XS ◦G XR : H → H, respectively. Then

colim(S) ∼= colim(S1) ∼= colim(S2)

in Corrprop, that is, these colimits are equivalent.
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