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ABBREVIATIONS  
 

Abbreviation Description  

°C Degree Celsius 

µF Microfarad 

µl Microliter 

16S rDNA 16S ribosomal DNA 

A  Adenine 

bp Base Pairs 

BSA Bovine Serum Albumin 

C  cytosine 

CTAB Cetrimonium Bromide 

dATP Deoxyadenosine triphosphate 

dATPαS α-thiotriphosphate 

dH2O Deionized water 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

dNTP Deoxynucleoside Triphosphate 

E. coli Escherichia coli 

EcoRI E. coli restriction enzyme I 

EDTA Ethylenediaminetetraacetic Acid 

EtBr Ethidium Bromide 

F Forward 

g Gram 

G  Guanine 

GITC Guanidinium Thiocyanate 

gm Gram 

h Hour 

hrs Hours 

kb Kilobase Pairs 

kV Kilovolt 

LB Medium Luria – Bertani Medium 

LMP Low Melting Point 

MID Multiplex Identifier 
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Abbreviation Description  

min Minute 

ml Milliliter 

mM Millimolar 

ng Nanogram 

nm Nanometer 

No. Number 

OTU Operational Taxonomic Units 

PCR Polymerase Chain Reaction 

PPi Pyrophosphate 

R Reverse 

R  Purines (adenine or guanine)  

RNA Ribonucleic Acid 

RNase Ribonuclease 

rpm Revolutions per Minute 

RT Room Temperature 

S.O.C. Super Optimal Broth with Catabolite Repression 

SDS Sodium Dodecyl Sulfate 

Sec Second 

StMQ Sterile MilliQ 

T  Thymine (5-methyluracil)  

TAE Tris-Acetate-EDTA-Buffer 

Taq Thermus aquaticus 

Tris Tris (hydroxymethyl) -aminomethane 

U Unit 

UV Ultraviolet radiation 

V Volt 

x g 9.8 meter/second² (acceleration caused by gravity)  

Y  Pyrimidines (cytosine, thymine or uracil)  
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SUMMARY  
 

This thesis is on the Archaea and Bacteria from a hypersaline hyperalkaline lake sediment 

of a meteorite impact crater named Lonar. We have surveyed the active and the total 

biodiversity of the sediment from Lonar. We have detected biogeochemically related 

important taxa and functional genes from the sediment. We have constructed and 

screened metagenomic libraries for industrially relevant enzymes. We have also 

investigated this communities’ ability to engineer its microenvironment in terms of pH.  

The study site, Lonar crater lake represents a unique environment. As per its origin, Lonar 

is a meteorite impact crater and as per physicochemical parameters, it is hypersaline and 

hyperalkaline. This meteorite crater soda lake is located in the southern peninsula of 

Indian subcontinent known as Lonar lake. Main objectives were to investigate the total 

(DNA-based) and the active (RNA-based) biodiversity of Archaea and Bacteria, the 

presence of different taxa and genes (metagenome-based) with their role in 

biogeochemical cycles, and the ability of the microbial community to engineer their 

microenvironmental pH. 

A total of 85,668 high-quality partial 16S rRNA gene sequences of archaeal and 182,137 

sequences of bacterial origin were recovered and analyzed. In Archaea, the total and the 

active community diversity, a coverage of 74.21 % and 84.07% was observed. The total 

and the active community diversity of Bacteria showed a coverage of 59.78% and 88.98% 

respectively. Among the Archaea at the order level, most dominant taxa was 

Halobacteriales. Halobacteriales is mostly represented by Natronococcus, which was also 

the most dominant genera both in the total and the active community diversity. In the 

case of Bacteria most dominant phyla was Firmicutes and the genera were Alkaliphilus 

and Bacillus. Both of these genera represents Firmicutes. Upon comparison of all the 

previous studies on Lonar lake and this investigation, more than 67 % of all bacterial and 

archaeal genera are unique to this study and were not observed in previous investigations. 

In our study, we have observed 24 genera, for example, Methanosaeta and 

Methylobacterium, which may have been involved in methane cycle. In Archaea, they 

contribute to an average of 39.24 % relative abundance in the active community. In the 

case of Bacteria, they contribute to an average of 0.50 % relative abundance in the active 
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community. A total of 16 genera, for example, Ammonifex and Nitratireductor, were 

found which may have been involved in the nitrogen cycle. Among Archaea, they 

contribute to an average of 1.37 % relative abundance in the active community. In the 

case of Bacteria, they contribute to an average of 2.87 % relative abundance in the active 

community. A significantly high diversity of bacterial genera, totaling 36, involved in the 

sulfur cycle were recorded, for example, Desulfococcus and Thioalkalivibrio. They 

represent an average relative abundance of 0.93 % relative abundance in the active 

community.  

A total of 32 million paired-end reads were obtained from direct metagenome 

sequencing. Analysis of the metagenome resulted in 588,668 contigs, with a total number 

of base of 371 Mb (371,120,372 bases).  Several ORFs involved in these biogeochemical 

cycles were detected. The predicted relative abundance of ORFs in relation to methane 

metabolism, nitrogen metabolism, and sulfur metabolism pathways were found to be 

1.49 %, 0.50 %, and 0.68 %. Experimental data mapped on the reference pathways 

provides a comprehensive overall view of methane, nitrogen and sulfur metabolism in the 

sediments of Lonar crater lake.  

A total of 235,943 archaeal and 1,657,168 bacterial partial 16S rRNA gene sequences were 

recovered from the different time point of the nonoptimal pH exposure of the sediments. 

The microbial community, from the Lonar meteorite crater soda lake sediments, was 

exposed to suboptimal and superoptimal pH conditions. The change of pH of the culture 

filtrate was monitored. Community dynamics was also measured at a resolution of 5 days 

for a total of 25 days using high-throughput  16S rRNA gene analysis. We observed an 

average coverage of 71.04 % in Archaea and 85.56 % in Bacteria.  We have seen a 10-fold 

change in the initial hydrogen ion concentration difference to a point between suboptimal 

and superoptimal pH. Several archaeal and bacterial taxa at phylum (Bacteria) or order 

(Archaea) level and genus (both Archaea and Bacteria) level have been identified to 

modulate significantly upon exposure to nonoptimal pH. Several of them regained their 

original or extremely close to their original relative abundance with the progression of 

time. Also, from HPLC analysis, it is evident that metabolism of ammonia and 

hydroxyproline have a function in this community dynamics and eventual 

microenvironmental pH homeostasis. However, we were not able to confirm if this 
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observation is due to correlation or causality. It was also observed, that the dynamics of 

several archaeal and bacterial genera can be grouped in to different types of dynamic 

groups based on their changing relative abundances. We found two types of dynamic 

groups in Archaea and four types of dynamic groups in Bacteria. Considering, all these 

observations, it might be safe to speculate that this microbial community can change their 

microenvironment to a more favorable (hypothetical optimal) one in terms of pH at the 

same time resisting permanent change in its community structure. 
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1 INTRODUCTION  
 

1.1 STATE OF THE RESEARCH ON PROKARYOTES INHABITING SODA 
LAKES 

 

This study on the Lonar meteorite crater soda lake at prima facia deals with soda lakes as 

subject and metagenomics as the approach to investigate this soda lake for getting 

answers to some fundamental questions. The questions like, what is the microbial 

community structure, what are the ecologically important functional genes and if this 

community can engineer their own environment.  A survey was conducted to understand 

the attention of researchers on soda lakes in general and Lonar lake specifically. It was 

found that although the soda lakes have been subjected to scrutiny from as early as the 

beginning of the 1990s, the Lonar Crater Lake has been studied thoroughly only since 

2006. In 2015, a total of 28 publications were found from all other soda lakes whereas 13 

were found on Lonar. Considering the number of available literature from the previous 

years both are gaining contemporary relevance in recent past (Figure 1). 

 

FIGURE 1: A COMPARISON OF INVESTIGATION EFFORT ON LONAR AND OTHER SODA LAKES. 

 

A comprehensive review also revealed the crucial areas of investigations that have been 

subjected to examination by various researchers; it is tabulated in Table 1 and discussed 

later in this chapter. Most of the detailed biological analyses have been limnological rather 

than microbiological. The most vividly studied soda lakes are of the East African Rift Valley 

where detailed limnological and microbiological investigations have been carried out 
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since as early as the 1930s. Microbiological studies of Central Asian soda lakes have also 

been thoroughly documented. 

 

TABLE 1: COMPREHENSIVE REVIEW OF AVAILABLE PUBLICATIONS ON SODA LAKES. The column on 
the left depicts the crucial areas of investigations and column on the right depicts 
the relevant studies. 

Area of Contribution Reference 

Cultivation and isolation 

of Bacteria 

(Duckworth, Grant et al. 1996, Ochsenreiter, Pfeifer et al. 

2002, Surakasi, Wani et al. 2007, Dimitriu, Pinkart et al. 

2008, Joshi, Kanekar et al. 2008, Mwirichia, Muigai et al. 

2010) 

Biodiversity of Soda 

Lakes 

(Duckworth, Grant et al. 1996, Jones, Grant et al. 1998, 

Ochsenreiter, Pfeifer et al. 2002, Humayoun, Bano et al. 

2003, Ma, Zhang et al. 2004, Rees, Grant et al. 2004, Tiago, 

Chung et al. 2004, Wani, Surakasi et al. 2006, Mesbah, 

Abou-El-Ela et al. 2007, Surakasi, Wani et al. 2007, Dimitriu, 

Pinkart et al. 2008, Joshi, Kanekar et al. 2008, Mwirichia, 

Cousin et al. 2010, Surakasi, Antony et al. 2010, Deshmukh, 

Pathak et al. 2011, Xiong, Liu et al. 2012) 

Carbon cycle/utilization 

in Soda Lakes 

(Oremland, Marsh et al. 1982, Sorokin, Jones et al. 2000, 

Kaluzhnaya, Khmelenina et al. 2001, Lin, Radajewski et al. 

2004, Antony, Kumaresan et al. 2010, Antony, Doronina et 

al. 2012, Antony, Murrell et al. 2012, Nolla-Ardevol, Strous 

et al. 2012, Shetty, Marathe et al. 2013) 

Nitrogen cycle/utilization 

in Soda Lakes 

(Milford, Achenbach et al. 2000, Sorokin, Gijs Kuenen et al. 

2001, Boltianskaia Iu, Kevbrin et al. 2007, Shapovalova, 

Khijniak et al. 2008, Sorokin, van Pelt et al. 2009, Shao, 

Zhang et al. 2010) 
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Area of Contribution Reference 

Sulfur cycle/utilization in 

Soda Lakes 

(Sorokin and Kuenen 2005, Zhilina, Zavarzina et al. 2005, 

Foti, Ma et al. 2006, Asao, Takaichi et al. 2007, Foti, Sorokin 

et al. 2007, Sorokin, Foti et al. 2007, Banciu, Sorokin et al. 

2008, Sorokin, Tourova et al. 2008, Sorokin, van den Bosch 

et al. 2008, Gorlenko, Bryantseva et al. 2009, Sorokin and 

Muyzer 2010, Sorokin and Muyzer 2010, Sorokin, Rusanov 

et al. 2010, Asao, Pinkart et al. 2011, Sorokin, Detkova et 

al. 2011, Sorokin, Kuenen et al. 2011, Sorokin, Muntyan et 

al. 2012, Sorokin, Tourova et al. 2012, Sorokin, Tourova et 

al. 2012, Tourova, Slobodova et al. 2013) 

Arsenic cycle in Soda 

Lakes 

(Ciulla, Diaz et al. 1997, Hollibaugh, Budinoff et al. 2006, 

Kulp, Hoeft et al. 2006, Sorokin, Zhilina et al. 2006, Hoeft, 

Blum et al. 2007, Kulp, Han et al. 2007, Sorokin, Tourova et 

al. 2012) 

 

 

1.1.1 PROKARYOTES ISOLATED FROM SODA LAKES 

 

Prokaryotes have been isolated from various soda lakes as early as the end 1970’s. In the 

year 1979, William D. Grant isolated an alkaliphilic species of Ectothiorhodospira from a 

Kenyan soda lake named Lake Hannington. It resembled Ectothiorhodospira 

shaposhnikovii in some aspects but contrasted in demonstrating more extreme alkaliphily, 

the pH optimum of pH 9.0 to pH 9.5, and in being obligatory phototrophic (Grant, Mills et 

al. 1979). Since then numerous prokaryotes have been isolated, and many novel genera 

and species of Archaea and Bacteria have also been reported from various soda lakes from 

around the world.  
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1.1.1.1 PROKARYOTIC BIODIVERSITY AND BIOGEOCHEMICAL CYCLES IN SODA LAKES  

 

Regardless of the seemingly hostile circumstances enforced by high alkalinity and 

occasionally high salinity, soda lakes harbour alkaliphilic prokaryotes. These prokaryotes 

living and flourishing in the soda lakes are representatives of most of the major 

evolutionary and trophic groups of Archaea and Bacteria (Duckworth, Grant et al. 1996, 

Jones, Grant et al. 1998, Grant, Gerday et al. 2006). They are also associated with the 

active carbon, nitrogen, and sulfur cycling under the aerobic and anaerobic environment 

(Grant and Sorokin 2011, Sorokin, Berben et al. 2014). Conventionally, investigations on 

microbial communities were limited to only a few cultured isolates. A species of 

Halobacterium has been isolated from solar evaporation ponds and sodium 

sesquicarbonate deposits at Lake Magadi, Kenya. It differs from known species of 

Halobacterium in being obligate alkaliphilic with a pH optimum between pH 9.0 and pH 

10.0 (Tindall, Mills et al. 1980). A new phototrophic bacterium, new species 

Ectothiorhodospira vacuolata, have been isolated from Jordanian and Kenyan alkaline salt 

lakes. They use sulfide and thiosulfate as photosynthetic electron donors. During the 

oxidation of sulfide to sulfate, this new species forms elemental sulfur which accumulates 

outside the cells. This species is strictly anaerobic, moderately halophilic and alkaliphilic 

(Imhoff, Tindall et al. 1981). An alpha-amylase-producing haloalkaliphilic archaeon 

Natronococcus amylolyticus sp. nov., has been isolated from Kenyan soda lakes (Kanal, 

Kobayashi et al. 1995). An extremely haloalkaliphilic, chemoorganotrophic, 

homoacetogenic bacteria, Natroniella acetigena gen. nov., sp. nov., has been isolated 

from Lake Magadi, Kenya. It is an obligate anaerobic Bacteria with optimal growth pH in 

the range of pH 9.7 to pH 10.0(Zhilina, Zavarzin et al. 1996). An alkaliphilic, halotolerant 

microaerophilic bacteria, Bogoriella caseilytica gen. nov., sp. nov., with optimal growth 

pH values between pH 9 and pH 10 has been isolated from Lake Bogoria, Kenya (Groth, 

Schumann et al. 1997). A new alkaliphilic, sulfate-reducing bacterium, 

Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., has been isolated from Lake 

Magadi in Kenya with optimum growth pH between pH 9.5 to pH 9.7(Zhilina, Zavarzin et 

al. 1997). An alkaliphilic anaerobic ammonifier, Tindallia magadii gen. nov., sp. nov., has 

been isolated from Lake Magadi, Kenya with optimum growth pH of 8.5(Kevbrin, Zhilina 
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et al. 1998). An alkaliphilic acetogenic anaerobe, Natronoincola histidinovorans gen. nov., 

sp. nov., has been isolated from Lake Magadi, Kenya with a pH optimum of pH 9.4(Zhilina, 

Detkova et al. 1998). A new strictly anaerobic purple sulfur bacterium, Thiorhodospira 

sibirica gen. nov., sp. nov., has been isolated from Lake Malyi Kasytui, southeast Siberia 

with pH optima of pH 9.0. This new bacterium under anoxic conditions uses hydrogen 

sulfide and elemental sulfur as photosynthetic electron donors (Bryantseva, Gorlenko et 

al. 1999). Two haloalkaliphilic strictly aerobic archaea, Natronorubrum bangense gen. 

nov., sp. nov. and Natronorubrum tibetense gen. nov., sp. nov, has been isolated from a 

soda lake in Tibet in 1999 with optimum growth pH between pH 9.0 and pH 9.5(Xu, Zhou 

et al. 1999). An alkaliphilic obligatory phototrophic strictly anaerobic purple sulfur 

bacterium, Thioalkalicoccus limnaeus gen. nov., sp. nov., has been isolated from soda 

lakes in the steppe of southeast Siberia, Russia with optimal growth pH of pH 

9(Bryantseva, Gorlenko et al. 2000). An alkaliphilic purple nonsulfur bacterium, 

Rhodobaca bogoriensis gen. nov., sp. nov., has been isolated from African Rift Valley soda 

lakes Lake Bogoria and Crater Lake with the pH optimum for growth at pH 9(Milford, 

Achenbach et al. 2000). Two new genera, Thioalkalimicrobium and Thioalkalivibrio, with 

two and three new species respectively, Thioalkalimicrobium aerophilum gen. nov., sp. 

nov., T. sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., T. nitratis sp. 

nov., T. denitrificancs sp. nov., has been isolated from soda lakes in south-east Siberia, 

Russia and Kenya. They are all obligate alkaliphilic and obligate chemolithoautotrophic 

sulfur-oxidizing Bacteria (Sorokin, Lysenko et al. 2001). A novel lithoautotrophic sulfur-

oxidizing alkaliphilic moderately halophilic bacterium, Thioalkalispira microaerophila gen. 

nov., sp. nov., has been isolated from Lake Fazda, Wadi Natrun, Egypt with optimum 

growth pH of pH 10(Sorokin, Tourova et al. 2002). New alkaliphilic anaerobic fermentative 

bacteria, Anoxynatronum sibiricum gen. nov., sp. nov., has been isolated from the soda 

lake Nizhnee Beloye, Baikal with pH optima of pH 9.1(Garnova, Zhilina et al. 2003). A new 

anaerobic alkaliphilic saccharolytic bacteria, Alkaliflexus imshenetskii gen. nov., sp. nov., 

have been isolated from the alkaline lake, Verkhneye Beloye of Central Asia with an 

optimum growth pH around pH 8.5(Zhilina, Appel et al. 2004). Novel aerobic 

haloalkaliphilic archaea, Natronolimnobius baerhuensis gen. nov., sp. nov., and N. 

innermongolicus sp. nov., has been isolated from soda lakes in Inner Mongolia, China 

growing optimally between pH 9.0 and pH 9.5(Itoh, Yamaguchi et al. 2005). A novel 
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alkaliphilic anaerobe, Anaerovirgula multivorans gen. nov., sp. nov., has been isolated 

from Owens Lake, California, USA with optimal growth pH of pH 8.5(Pikuta, Itoh et al. 

2006). An alkalitolerant moderately halophilic bacterium, Salsuginibacillus kocurii gen. 

nov., sp. nov., has been isolated from the Lake Chagannor in the Inner Mongolia 

Autonomous Region, China with pH optima of pH 8.5(Carrasco, Marquez et al. 2007). Two 

novel alkaliphilic moderately halotolerant obligate anaerobes, Dethiobacter alkaliphilus 

gen. nov., sp. nov., and Desulfurivibrio alkaliphilus gen. nov., sp. nov., has been isolated 

from north-eastern Mongolian soda lakes and Wadi al Natrun lakes in Egypt able to grow 

between pH 8.5 and pH 10.3(Sorokin, Tourova et al. 2008). One new genus and one new 

species of anaerobic halophilic alkaliphilic thermophilic bacteria, Natronovirga 

wadinatrunensis gen. nov., sp. nov., and Natranaerobius trueperi sp. nov., has been 

isolated from lakes of the Wadi An Natrun, Egypt (Mesbah and Wiegel 2009). An obligate 

haloalkaliphilic obligate anaerobic dissimilatory sulfur-reducing bacterium, Desulfurispira 

natronophila gen. nov., sp. nov., has been isolated from soda lakes of Kulunda Steppe, 

Altai, Russia with a pH growth optimum from pH 10 to pH 10.2(Sorokin and Muyzer 2010). 

One new haloalkaliphilic heterotrophic sulfate reducing bacterial genera and one species 

of Desulfobulbus, Desulfonatronobacter acidivorans gen. nov., sp. nov., and Desulfobulbus 

alkaliphilus sp. nov., have been isolated from hypersaline soda lakes in Kulunda Steppe 

Altai, Russia (Sorokin, Tourova et al. 2012). An obligate alkaliphilic halotolerant anaerobic 

bacterium, Natranaerobaculum magadiense gen. nov., sp. nov., has been isolated from 

Lake Magadi, Kenya with pH optima between pH 9.25 and pH 9.5(Zavarzina, Zhilina et al. 

2013). An extremely haloalkaliphilic archaeon, Halostagnicola bangensis sp. nov., has 

been isolated from Lake Bange in the region of Tibet, China (Corral, Corcelli et al. 2015). 

With the advent of modern high-throughput sequencing techniques, the study of 

microbial community composition as a whole become more and more feasible. A 

significant number of cultured isolates has already been found from soda lakes, as 

described in the previous section. Culture-independent approaches are also uncovering a 

much more detailed and diverse microbial community from soda lakes. The complete 

range of soda lake prokaryotic community structure and the roles played by individual 

members of the community has not been entirely discovered. It is speculated that yet 

unrepresented phylogenetic groups will eventually prove to have soda lake members and 



18 
 

perhaps the elusive, exclusively soda lake group will emerge in the future (Sorokin, Berben 

et al. 2014).  

 

1.2 SODA LAKE ENVIRONMENT 
 

One of the most remarkable features of alkaline soda lakes is that irrespective of their 

apparent adverse conditions conferred by its extreme alkaline pH and often high salinity, 

they are one of the most productive aquatic ecosystems on Earth(Melack and Kilham 

1974). Soda lakes are naturally occurring alkaline environments. They characterize the 

most alkaline, natural environments on earth, mostly between pH 8.5 to pH 10, 

occasionally reaching as high as pH 12(Grant and Jones 1992). The existence of large 

amounts of sodium carbonate or complexes of it distinguishes soda lakes. With the 

progression of evaporative concentration alkalinity develops as the concentration of CO32- 

exceeds the concentration of Mg2+ and Ca2+. As a consequence of this process, a shift in 

the CO2/HCO3-/CO3-/OH- equilibrium is observed (Grant, Gerday et al. 2006). Soda lakes 

occur throughout the geological record. At Green River formation in Wyoming and Utah, 

one of the largest and between 36 and 55 million years old fossil soda lakes are reported. 

Geological formations at Ventersdorf formation of South Africa advocate up to 2.3 billion-

year-old fossil soda lakes (Grant and Jones 1992). Distribution of soda lakes spread 

throughout the world. Some of them are listed in Table 2. 

Several soda lakes have been studied extensively, but they still represent only a small 

fraction of all the soda lakes distributed on different continents. Among the best studied 

soda lakes are the soda lakes of East African rift valley (Grant, Mwatha et al. 1990, 

Duckworth, Grant et al. 1996, Jones, Grant et al. 1998), Mono Lake in California (Ward, 

Martino et al. 2000, Humayoun, Bano et al. 2003), hyper alkaline spring waters in 

Maquqrin, Jordan(Pedersen, Nilsson et al. 2004, Tiago, Chung et al. 2004), Inner 

Mongolian Baer soda lake(Ma, Zhang et al. 2004, Dadheech, Glockner et al. 2013) and 

Kenyan soda lakes(Rees, Grant et al. 2004, Mwirichia, Cousin et al. 2010). 
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TABLE 2: GLOBAL DISTRIBUTION OF SODA LAKES 

Continent Country Name pH 

Africa Egypt Wadi El Natrun lakes 8.5-9.5 

 Sudan Malha Crater Lake 9.5-10.3 

 Ethiopia Lake Arenguadi 9.5-9.9 

 Ethiopia Lake Basaka 9.6 

 Ethiopia Lake Shala 9.8 

 Ethiopia Lake Chitu 10.3 

 Ethiopia Lake Abijatta 9.9 

 Kenya Lake Magadi 10 

 Kenya Lake Bogoria 10.5 

 Kenya Lake Turkana 8.5-9.2 

 Kenya Lake Nakuru 10.5 

 Kenya Lake Logipi 9.5-10.5 

 Kenya Lake Sonachi  10.4 

 Tanzania Lake Manyara 9.5-10 

 Tanzania Lake Natron 9-10.5 

 Tanzania Lake Rukwa 8.0-9.0 

 Tanzania Lake Eyasi 9.3 

 Botswana Lake Ngami 9 

 Chad Rombou Lake 10.2 

Asia Russia Kulunda Steppe Lakes 9.95-11.05 

 Russia Lake Khatyn 10 

 Turkey Lake Van 9.7-9.8 

 Turkey Lake Salda 9 

 Iran Lake Urmia 7.35-8.45 

 India Lonar Lake 9.5-10.5 

 India Sambhar Salt Lake 9.5 

 India Khyagar Lake 9.5 

 India Tso Moriri Salt Lake 9 

 India Tso Kar Salt Lake 8.8 

 Aksai Chin Lake Surigh Yilganing Kol NA 

 Aksai Chin Tso Tang Lake NA 

http://en.wikipedia.org/wiki/Soda_lake#cite_note-Lanzen-3
http://en.wikipedia.org/wiki/Soda_lake#cite_note-Lanzen-3
http://en.wikipedia.org/wiki/Soda_lake#cite_note-Lanzen-3
http://en.wikipedia.org/wiki/Soda_lake#cite_note-Lanzen-3
http://en.wikipedia.org/wiki/Lake_Abijatta
http://en.wikipedia.org/wiki/Soda_lake#cite_note-Lanzen-3
http://en.wikipedia.org/wiki/Lake_Magadi
http://en.wikipedia.org/wiki/Lake_Bogoria
http://en.wikipedia.org/wiki/Lake_Turkana
http://en.wikipedia.org/wiki/Soda_lake#cite_note-17
http://en.wikipedia.org/wiki/Lake_Nakuru
http://en.wikipedia.org/wiki/Lake_Logipi
http://en.wikipedia.org/wiki/Lake_Manyara
http://en.wikipedia.org/wiki/Soda_lake#cite_note-Tanzania-18
http://en.wikipedia.org/wiki/Lake_Natron
http://en.wikipedia.org/wiki/Lake_Rukwa
http://en.wikipedia.org/wiki/Soda_lake#cite_note-Tanzania-18
http://en.wikipedia.org/wiki/Lake_Eyasi
http://en.wikipedia.org/wiki/Soda_lake#cite_note-Tanzania-18
http://en.wikipedia.org/wiki/Lake_Ngami
http://en.wikipedia.org/wiki/Soda_lake#cite_note-Hammer-19
http://en.wikipedia.org/wiki/Lake_Van
http://en.wikipedia.org/wiki/Lake_Salda
http://en.wikipedia.org/wiki/Lake_Urmia
http://en.wikipedia.org/wiki/Soda_lake#cite_note-Surakasi-5
http://en.wikipedia.org/wiki/Tso_Moriri
http://en.wikipedia.org/wiki/Tsokar_Lake
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Continent Country Name pH 

 Aksai Chin Aksayqin Hu Lake NA 

 Aksai Chin Lake Hongshan Hu NA 

 Aksai Chin Tianshuihai lake NA 

 Aksai Chin Guozha lake NA 

 Aksai Chin North Tianshuihai lake NA 

 India & China Pangong Salt Lake 9.4 

 India & China Spanggur Tso NA 

 China Qinghai Lake 9.3 

 China Namucuo Lake 9.4 

 China Lake Zabuye 10 

 Mongolia Taboos-nor NA 

Australia Australia Lake Werowrap 9.8 

Europe Hungary Lake Fehér NA 

 Hungary Böddi-szék 8.8-9.8 

 Austria, Hungary Lake Neusiedl 9-9.3 

 Serbia Rusanda 9.3 

 Hungary Kelemen-szék 9-9.7 

North America USA Mono Lake 9.8 

 USA Big Soda Lake 9.7 

 USA Soap Lake 9.7 

 USA Alkali Lake  11 

 USA Summer Lake NA 

 USA Owens Lake 9.1-9.7 

 USA Borax Lake NA 

 Canada Manitou Lake NA 

 Canada Goodenough Lake 10.2 

 Mexico Lake Texcoco 8.8-11.5 

 Mexico Lake Alchichica 8.9 

South America Chile Antofagasta Lake NA 

 

 

http://en.wikipedia.org/wiki/Aksai_Chin_Lake
http://en.wikipedia.org/wiki/Lake_Pangong
http://en.wikipedia.org/wiki/Qinghai_Lake
http://en.wikipedia.org/wiki/Soda_lake#cite_note-Xing-21
http://en.wikipedia.org/wiki/Soda_lake#cite_note-Xing-21
http://en.wikipedia.org/wiki/Lake_Zabuye
http://en.wikipedia.org/wiki/Soda_lake#cite_note-Hammer-19
http://en.wikipedia.org/wiki/Lake_Feh%C3%A9r_(Szeged)
http://en.wikipedia.org/wiki/Soda_lake#cite_note-Felfoldi-22
http://en.wikipedia.org/wiki/Lake_Neusiedl
http://en.wikipedia.org/wiki/Soda_lake#cite_note-Felfoldi-22
http://en.wikipedia.org/wiki/Rusanda
http://en.wikipedia.org/wiki/Soda_lake#cite_note-Felfoldi-22
http://en.wikipedia.org/wiki/Soda_lake#cite_note-Felfoldi-22
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1.2.1 ORIGIN OF SODA LAKES 

 

The soda lakes are a class of lakes with waters showing an excess of the total alkalinity, 

TA= HCO3- + 2CO32-, (the total of the charges of the bicarbonate ion and carbonate ion) 

over the charges of the alkaline earth metal ions magnesium and calcium; HCO3- +2CO32- 

> 2Mg2+ +2Ca2+. When the water of this property evaporates the high concentration of 

CO32- will cause a rise in pH making the water alkaline. The perfect condition for the 

establishment of a soda lake has a lot in common with those for the creation of a 

thalassohaline salt lake. However, in soda lakes; carbonate or complexes of it becomes 

the major anion in the solution. The most significant contributing feature for creation of 

a soda lake is the lack of alkaline earth metal ions, (cations, Ca2+ and Mg2+) in the nearby 

topography, which basically means a lack of rocks of sedimentary origin. Additional 

conditions require a formation of a closed drainage basin of shallow depression with a 

high marginal relief, also with sufficient rainfall to sustain the source of water entering the 

basin to construct a standing body of water. In arid zones through higher rates of 

evaporation than the rate of inflow, salts accumulate by evaporative concentration. For 

example, in the Rift Valley of Kenya-Tanzania, the graben is composed of Pleistocene 

alkaline trachyte lavas which are high in Na+, low in Ca2+ and low in Mg2+. Under these 

conditions in the groundwater of meteoric origin (water derived from precipitation), 

saturated with CO2, the molar concentration of HCO3- /CO32- greatly exceeds that of Ca2+ 

/Mg2+. Saturation of the alkaline earth metal cations is rapidly achieved as a result of 

evaporation in this arid tropical zone, and they precipitate out of solution in the form of 

insoluble carbonates leaving Na+, Cl-, and HCO3- /CO32- as the major ions in solution. 

 

1.2.2 PH AS A MAJOR ENVIRONMENTAL VARIABLE 

 

There has been a detailed investigation of how pH affects bacterial growth. One particular 

problem with pH-growth models is that they are not 1:1. Two different values of pH can 

give the same growth rate. Considering the definition of pH, at face value, both a high and 

low concentration of hydrogen ions influence the growth rate similarly (Lambert 2011). 
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Initially, the pH-growth models were exponential or square root models later they have 

been moved to cardinal polynomial models. Most widely used standard model for the 

effect of pH is known as the CPM (Cardinal pH Model) or based on CPM. Cardinal pH Model 

was introduced by Rosso et al. in 1995 (Rosso, Lobry et al. 1995).  In later year other 

models were also proposed, in 1997 by Presser et al. (Presser, Ratkowsky et al. 1997), in 

2000 by Tienungoon et al. (Tienungoon and Ratkowsky 2000) and another one by Lambert 

and Pearson (Lambert and Pearson 2000), then in 2003 by Lambert et al. known as 

extended Lambert–Pearson model (Tienungoon and Ratkowsky 2000, Lambert and 

Lambert 2003). However, none of them explain the effect of pH at the community level, 

or they prove to fit accurately at high alkaline pH. Most of these studies were conducted 

keeping issues of food quality and pathogens in mind. 

The pH of naturally existing environments can contrast extensively from approximately 

pH 0.6 to almost pH 12.6 (Becking, Kaplan et al. 1960). pH value can drive or shape 

prokaryotic communities. In research of lake sediments of Tibetan Plateau, no correlation 

between the relative abundance of Acidobacteria and Bacteriodetes and pH was found 

(Xiong, Liu et al. 2012). In another study of sediments and other samples from springs in 

Western Canada (Boström, Pettersson et al. 1989) and the Taupo Volcanic Zone, New 

Zealand (Giggenbach 1995) by C. E. Sharp et al. found that pH can only explain variability 

from 13 % to 20 % (Sharp, Brady et al. 2014). These are the reasons; the significance of pH 

cannot be seen as the lone limiting environmental influence on bacterial communities.  

 

1.3 ELEMENT CYCLING IN THE SODA LAKE ENVIRONMENT 
 

1.3.1.1 CARBON CYCLE 

 

Photosynthetic primary production seems to have an imperative part in the soda lakes in 

supporting all other microbial community. Oxygenic and anoxygenic haloalkaliphilic 

phototrophs and chemolithoautotrophs, autotrophic primary producers, living in the soda 

lakes are capable of fixing inorganic CO2 into organic polymers. The primary production in 

most soda lakes is high due to a dense population of haloalkaliphilic Cyanobacteria. They 
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are primitive taxa of photosynthetic prokaryotic microorganisms (Wood, Rueckert et al. 

2008). Cyanobacteria have existed on this planet for around 2.8 billion years (Olson 2006). 

Dense blooms of Cyanobacteria usually dominate the less alkaline lakes. Hypersaline soda 

lakes support both Cyanobacteria and alkaliphilic anoxygenic phototrophs belonging to 

the genera Ectothiorhodospira and Halorhodospira (Grant, Mwatha et al. 1990, Jones, 

Grant et al. 1998). Several cyanobacteria from the orders Nostocales and Chroococcales 

have also been reported from the highly alkaline lake, Santa Olalla, southwest of Spain 

(Lopez-Archilla, Moreira et al. 2004). The cyanobacterial members mostly, Oscillatoriales, 

Nostocales and Chroococcales, which are dominant in tropical soda lakes in Kenya and 

Ethiopia, include the genera Arthrospira, Microcoleus, Lyngbya, Oscillatoria, 

Trichodesmium, Anabaenopsis, Cyanospira and Synechococcus (Ballot, Kotut et al. 2009, 

Krienitz, Dadheech et al. 2012, Dadheech, Glockner et al. 2013, Schagerl, Burian et al. 

2015). Cyanobacterial genera Leptolyngbya was also reported from Lake Arenguadi of 

Ethiopia (Lanzen, Simachew et al. 2013). Anoxygenic phototrophic purple bacteria, other 

than Cyanobacteria, also produce organic matter (Kompantseva, Sorokin et al. 2005, 

Kompantseva 2007, Nuianzina-Boldareva and Gorlenko 2014). The most thoroughly 

studied alkaliphilic purple Bacteria are from Lake Wadi-el-Natrun, Egypt (Imhoff, Sahl et 

al. 2009), the lakes of the Kenyan Rift Valley (Tindall, Mills et al. 1980) and the lakes of the 

southeastern Transbaikal region (Kompantseva, Sorokin et al. 2005). Also two new strictly 

anaerobic obligate phototrophic purple sulfur bacteria, Thiorhodospira sibirica and 

Thioalkalicoccus limnaeus, were isolated from low saline soda lakes in the steppe of 

southeast Siberia (Bryantseva, Gorlenko et al. 1999, Bryantseva, Gorlenko et al. 2000). 

Under anoxic conditions, these Bacteria use hydrogen sulfide and elemental sulfur as 

photosynthetic electron donors. The haloalkaliphilic members of Chromatiales like 

Thiorhodospira at moderate salinity and Ectothiorhodospiracea like Ectothiorhodospira 

and Halorhodospira at high salinity, also represent anoxygenic phototrophs which 

contribute to the primary production in soda lakes (Bryantseva, Gorlenko et al. 1999, 

Gorlenko, Briantseva et al. 2004, Kovaleva, Tourova et al. 2011). Also, aerobic 

chemolithoautotrophic Bacteria contribute to inorganic carbon fixation in soda lakes 

(Sorokin, Berben et al. 2014). Very few purple nonsulfur Bacteria also have been reported 

from soda lakes with low mineralization. The Rhodobaca bogoriensis, is capable of both, 

phototrophic and chemotrophic growth have been isolated from Lake Bogoria, Kenya, 
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(Milford, Achenbach et al. 2000). Also, two more alkaliphilic heliobacteria, Heliorestis 

daurensis and H. baculata have been isolated from Siberian soda lakes able to grow 

photoheterotrophically(Bryantseva, Gorlenko et al. 1999, Bryantseva, Gorlenko et al. 

2000). Also, Roseinatronobacter thiooxidans, another alkaliphilic Bacteriochlorophyll-a 

containing Bacteria, has been isolated from Siberian low-salt soda lakes (Sorokin, Turova 

et al. 2000). 

The primary degradation of organic matter, which is formed by the autotrophic Bacteria, 

is performed by the heterotrophic Bacteria. These heterotrophic Bacteria comprise of 

aerobes and fermentative anaerobes. These fermentative anaerobes, in turn, are 

composed of two subgroups, hydrolytics, and secondary heterotrophs. The hydrolytics 

accomplish degradation of polymers, and the resulting monomers are utilized by the 

secondary heterotrophs (Sorokin, Berben et al. 2014). Several known isolates, performing 

aerobic hydrolytics, were recovered from soda lakes. They mostly include aerobic 

Firmicutes, such as Bacillus, Amphibacillus, Clostridium, Natronoincola and several 

Actinobacteria, such as Cellulomonas, Dietzia, Rathayibacter, Microbacterium and 

Proteobacteria, such as Alkalimonas, Alcalilimnicola (Martins, Davids et al. 2001, Yakimov, 

Giuliano et al. 2001, Sorokin, Tourova et al. 2002, Humayoun, Bano et al. 2003, Grant, 

Sorokin et al. 2004, Carrasco, Marquez et al. 2007, Wu, Zheng et al. 2010, Grant and 

Sorokin 2011, Wang, Huang et al. 2014). The occurrence of haloalkaliphilic chitinolytic 

microbial community in hypersaline soda lakes has been described like, Marinimicrobium 

from hypersaline soda lakes of Kulunda Steppe, Altai, Russia (Sorokin, Tourova et al. 

2012). An anaerobic low salt-tolerant cellulolytic Clostridium has also been reported from 

soda lakes (Zhilina, Kevbrin et al. 2005, Zvereva, Fedorova et al. 2006). Pectin utilizing 

anaerobic haloalkaliphiles Natronoflexus, and Natronovirga have been isolated from soda 

lakes of the Kulunda Steppe, Altai, Russia (Sorokin, Panteleeva et al. 2011, Sorokin, 

Tourova et al. 2012). A fermentative haloalkaliphilic bacteria, Chitinivibrio alkaliphilus, 

specialized in exclusive chitin utilization have been isolated from soda lakes (Sorokin, 

Gumerov et al. 2014). The most detailed studied groups of aerobic haloalkaliphiles are 

secondary heterotrophs isolated from soda lakes. They are capable of utilizing monomeric 

organic compounds, sugars, amino acids, organic acids and alcohols. The genus 

Halomonas from the Proteobacteria, Bacillus from the Firmicutes, and Actinobacteria are 
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the most abundant haloalkaliphilic aerobes (Duckworth, Grant et al. 1996, Grant and 

Sorokin 2011). Most dominated anaerobic haloalkaliphilic heterotrophic genera found in 

soda lakes are Anaerobacillus, Alkaliphilus, Anoxynatronum, Anaerovirgula, 

Anaerobranca, Natranaerobius, Natranaerobaculum and Spirochaeta (Zavarzin, Zhilina et 

al. 1999, Zavarzin and Zhilina 2000, Bowers, Mesbah et al. 2009, Grant and Sorokin 2011, 

Mesbah and Wiegel 2012). The homoacetogens and methanogens are the less 

exhaustively studied functional groups of secondary anaerobes performing the last stage 

of organic carbon degradation in soda lake microbial communities (Sorokin, Berben et al. 

2014). They mostly include Tindallia, Natronincola, and Natroniella represent 

heterotrophic fermentative haloalkaliphilic acetogens, utilizing amino acids and alcohols 

as substrates (Zhilina, Zavarzin et al. 1996, Kevbrin, Zhilina et al. 1998, Zhilina, Detkova et 

al. 1998, Pikuta, Hoover et al. 2003, Alazard, Badillo et al. 2007). The only culturable 

haloalkaliphilic obligately anaerobic hydrogenotrophic homoacetogen from soda lake, 

Fuchsiella alkaliacetigena of the order Halanaerobiales, have been reported in 2012 from 

soda lake Tanatar III, Altay, Russia (Zhilina, Zavarzina et al. 2012).  

There is sufficient evidence for biogenic methane production in soda lakes. The methane 

cycle has been studied in soda lakes as a significant part of the microbial carbon cycle. 

Among the most detailed studied ones are North American and Central Asian soda lakes 

(Oremland, Marsh et al. 1982, Oremland, Cloern et al. 1988, Khmelenina, Eshinimaev et 

al. 2000, Lin, Radajewski et al. 2004, Nolla-Ardevol, Strous et al. 2012, Sorokin, Abbas et 

al. 2015). One carbon compounds are most probably abundant in soda lakes due to 

anaerobic degradation of cyanobacterial mats. The strains of haloalkaliphilic 

methanogens have been isolated, as early as the 1980s, from Lake Wadi-el-Natrun, Egypt 

(Boone, Worakit et al. 1986). Most of the prokaryotes, involved in methane cycle, isolated 

from various soda lakes are related to members of the family Methanosarcinaceae within 

the phylum Euryarchaeota.  Most of the methanogenic Archaea isolated so far are mainly 

methylotrophic. They use a variety of one-carbon (C1) compounds like methanol and 

methylamine. These particular methanogens are mostly represented by the genus 

Methanocalculus, Methanosalsum, and Methanolobus (Antony, Murrell et al. 2012, 

Sorokin, Abbas et al. 2015, Sorokin, Abbas et al. 2015). Hydrogen-utilizing methanogens, 

Methanobacterium spp, has also been reported from soda lakes (Nolla-Ardevol, Strous et 
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al. 2012). The bacterial genera like Methylobacter and Methylomicrobium are methane-

oxidizing prokaryotes (Sorokin, Jones et al. 2000, Kaluzhnaya, Khmelenina et al. 2001). 

They utilize methane in soda lakes under aerobic or microaerophilic conditions and return 

carbon of methane to the soda lakes organic matter by methanotrophy.  

 

1.3.1.2 NITROGEN CYCLE 

 

The contribution of Cyanobacteria in soda lake is not only limited to primary production 

but also they are well-known nitrogen fixers. Undoubtedly heterocystous Cyanobacteria 

such as Anabaenopsis, Cyanospira and Nodularia as observed in soda lakes of the African 

Rift Valley are active in atmospheric nitrogen fixation (Florenzano, Sili et al. 1985, Krienitz, 

Dadheech et al. 2012, Sorokin, Berben et al. 2014). Nonheterocystous Cyanobacteria, like 

Oscillatoria, have also been recorded from soda lakes to fix nitrogen as members of 

diazotrophic microbial communities in alkaline hypersaline Mono Lake, California 

(Oremland 1990). Heterotrophic anaerobic fermentative haloalkaliphiles, Bacillus 

alkalidiazotrophicus and Natronobacillus azotifigans, are known to fix nitrogen actively in 

soda lakes of the Kulunda Steppe, Altai, Russia and north-eastern Mongolia (Sorokin, 

Kravchenko et al. 2008, Sorokin, Kravchenko et al. 2008, Sorokin, Zadorina et al. 2008). In 

some other soda lakes anaerobes show the presence of the nifH gene, for example, 

Geoalkalibacter ferrihydriticus and Clostridium alkalicellulosi(Zhilina, Kevbrin et al. 2005, 

Zavarzina, Kolganova et al. 2006). Anoxygenic phototrophs may also contribute to 

nitrogen fixation in soda lakes as the nifH gene has been detected in several cases 

(Tourova, Spiridonova et al. 2007). Several heterotrophs are known for denitrification in 

soda lakes. They are represented by extremely halotolerant alkaliphiles of the genus 

Halomonas, facultative anaerobic lithotrophs of the genus Thioalkalivibrio and the 

Alkalilimnicola–Alkalispirillum group belonging to the class Gammaproteobacteria 

(Sorokin, Zhilina et al. 2006, Shapovalova, Khijniak et al. 2008, Shapovalova, Khijniak et al. 

2009, Berben, Sorokin et al. 2015). In soda lakes, for example, Mongolian soda lakes, 

ammonium produced during nitrogen fixation is oxidized to nitrite by prokaryotes like a 

subpopulation of Nitrosomonas halophila and this nitrite is further oxidized to nitrate by 
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Nitrobacter alkalicus (Sorokin, Muyzer et al. 1998, Sorokin, Tourova et al. 2001, Sorokin 

and Kuenen 2005).  

 

1.3.1.3 SULFUR CYCLE 

 

The sulfur cycle has been studied with significant details in soda lakes (Foti, Sorokin et al. 

2007, Sorokin, Kuenen et al. 2011, Sorokin, Berben et al. 2014). Sulfidogenesis is a typical 

and important biogeochemical processes in soda lakes (Sorokin, Rusanov et al. 2010). 

Oxidized sulfur compounds for example sulfate, sulfite, thiosulfate, and sulfur are 

converted into sulfide during dissimilatory reduction. Dissimilatory reduction of oxidized 

sulfur is performed by several obligatory anaerobic and obligatory haloalkaliphilic 

Bacteria. Most investigated ones are represented by the members of the 

Deltaproteobacteria such as genera Desulfonatronum, Desulfonatronovibrio, and 

Desulfonatronospira represent lithotrophic sulfate-reducing Bacteria in soda 

lakes(Zhilina, Zavarzin et al. 1997, Pikuta, Hoover et al. 2003, Zhilina, Zavarzina et al. 2005, 

Sorokin, Tourova et al. 2008, Sorokin, Tourova et al. 2011, Sorokin, Tourova et al. 2012, 

Zakharyuk, Kozyreva et al. 2015). Hydrogen, formate or short chain organic compounds 

are used as electron donor and sulfate, thiosulfate or sulfite as an electron acceptor by 

the sulfate-reducing Bacteria (SRB) of soda lakes to obtain energy by oxidation. 

Disproportionation of thiosulfate or sulfite is also used by SRB to obtain energy (Sorokin, 

Tourova et al. 2008, Sorokin, Kuenen et al. 2011). Incompletely oxidizing heterotrophic 

SRB utilizes either propionate as in the case of Desulfobulbus alkaliphilus or butyrate as in 

the case of Desulfobotulus alkaliphilus as electron donor or carbon source and sulfate or 

thiosulfate as electron acceptor, in the process they form acetate as the end product 

(Sorokin, Detkova et al. 2010, Sorokin, Tourova et al. 2012). Completely oxidizing SRB is 

also reported from soda lakes, for example, Desulfonatronobacter acidivorans. It can 

oxidize several volatile fatty acids completely to CO2 with sulfate or thiosulfate as an 

electron acceptor (Sorokin, Tourova et al. 2012). Reduction of elemental sulfur in soda 

lakes is accomplished by diverse obligatory anaerobic haloalkaliphiles. They can use 

polysulfide formed abiotically at high pH as an electron acceptor. They include 

Desulfurispira natronophila of the phylum Chrysiogenetes, Desulfuribacillus 
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alkaliarsenatis and Natroniella sulfidigena of the phylum Firmicutes (Sorokin and Muyzer 

2010, Sorokin, Detkova et al. 2011, Sorokin, Tourova et al. 2012).  

Alkaliphilic anaerobes from soda lakes have been reported to be able to grow 

chemolithoautotrophically by sulfur or polysulfide disproportionation, for example 

Dethiobacter alkaliphilus and Desulfurivibrio alkaliphilus (Sorokin, Tourova et al. 2008, 

Poser, Lohmayer et al. 2013). 

Phototrophic sulfur oxidizing Bacteria (SOB) oxidize sulfide, produced by sulfidogens, to 

elemental sulfur or sulfate (Sorokin and Kuenen 2005). They are dominated by anoxygenic 

purple sulfur Bacteria mostly represented by members of the genera Ectothiorhodospira, 

Halorhodospira, Thiorhodospira, Thioalkalicoccus, and Ectothiorhodosinus (Imhoff, Tindall 

et al. 1981, Bryantseva, Gorlenko et al. 1999, Bryantseva, Gorlenko et al. 2000, Gorlenko, 

Briantseva et al. 2004, Gorlenko, Bryantseva et al. 2009, Sorokin, Kuenen et al. 2011). 

Other than the phototrophic SOB in soda lakes chemotrophic SOB are also dominant. They 

can use reduced sulfur compounds such as sulfide, polysulfide, thiosulfate, polythionates, 

and elemental sulfur as the electron donor (Sorokin, Kuenen et al. 2001, Sorokin, Tourova 

et al. 2002, Banciu, Sorokin et al. 2004). Several chemotrophic SOB has been reported to 

be haloalkaliphilic Gammaproteobacteria such as Thioalkalimicrobium, Thioalkalispira, 

Thioalkalivibrio and Thioalkalibacter (Sorokin, Lysenko et al. 2001, Sorokin, Tourova et al. 

2002, Banciu, Sorokin et al. 2004, Foti, Ma et al. 2006, Banciu, Sorokin et al. 2008, Sorokin, 

Banciu et al. 2013). 

 

1.4 UNIQUE NATURE OF LONAR 
 

The Lonar crater lake is a 50,000 year (Approximately) old impact structure it is situated 

in the Buldhana district of Maharashtra, India (Nayak 1972, Fredriksson, Dube et al. 1973). 

This lake is a roughly circular depression in the basalt flows of the Deccan Traps. It is 1830 

m across and is almost 150 m deep; a shallow alkaline saline lake occupies the majority of 

the floor. In the region of most of the circumference, the rim is raised about 30 m above 

the nearby plain (Fudali, Milton et al. 1980). A view of the Lonar Crater Lake is provided 

in Figure 2. 
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FIGURE 2: VIEW OF THE LONAR CRATER LAKE FROM THE TOP OF THE IMPACT EJECTA. Photograph 
by Soumya Biswas. 

 

This comparatively small crater is one of only two acknowledged (so far) terrestrial craters 

to be created in basaltic target rock surface by a meteorite impact; the other one is the 

Logancha crater in Russia(Feldman, Sazonova et al. 1983). The target rocks are mostly 

classified as quartz-normative tholeiites that contain a moderate level of iron enrichment. 

These tholeiitic basalts comprise higher total iron, lower MgO, lower Al2O3, and higher 

CaO content than do other terrestrial tholeiitic provinces (Roy and Chatterjee 1998). The 

unusual compositional characteristics of the Lonar crater strongly match the composition 

of Martian basalts, which also have higher Fe and lower Al abundances than most 

terrestrial basalts (Mcsween 1994, McSween 2002). Another fascinating characteristic of 

the Lonar crater was documented in 1996 by Nayak, who suggested that the groundwater 

underlying the Lonar crater was heated by remnant impact energy, thus resulting in the 

establishment of post-impact hydrothermal activity. The validity of this hydrothermal 

hypothesis is supported by evidence of impact-induced hydrothermal systems in other 

terrestrial craters (Newsom 1980, Allen, Gooding et al. 1982, Crossey and McCarville 

1993).  

As per our observation on available literature regarding Lonar, we found some general 

trend. There is a paucity of available literature on ecologically important taxa and 

ecologically important functional genes present in Lonar. A lack of using metagenomics in 

general or high throughput sequencing specifically to survey the microbial diversity is 

prominent. Therefore, it is reasonable to consider this study a timely endeavor to 

investigate Lonar Meteorite Crater Soda Lake using metagenomics. 
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1.5 BIODIVERSITY AND RIBOSOMAL RNA GENES   
 

The most exclusive quality of the planet Earth is the existence of life, and the most 

amazing characteristic of life is its diversity. Approximately two decades ago, at the first 

Earth Summit (The United Nations Conference on Environment and Development held in 

Rio de Janeiro on 3rd June to 14th June 1992) the vast majority of the world’s nations 

acknowledged that human actions were dismantling the Earth’s ecosystems, eliminating 

species, biological traits and genes at a shocking rate (Cardinale, Duffy et al. 2012). To be 

able to study diversity or the number and variety of organisms found within a specified 

geographic region it is of utmost importance to identify, classify and catalog these 

variations and this is the sole objective of biosystematics. 

The principal purpose of bacterial systematic is the founding of a classification that spans 

the hole of the prokaryote kingdom. However, classification by conventional techniques 

has been proved to be difficult for prokaryotes, due to the relative morphological 

simplicity. Diverse molecules have been discussed, for a long time, in relation to their 

suitability for providing the ground for a molecular phylogeny. rRNA genes had been used 

widely to identify and classify prokaryotes. The ribosome is undoubtedly of a very ancient 

origin and is essentially everywhere. The primary structures of these rRNA molecules are 

satisfactorily constrained that on the whole, they have not altered rapidly over time (Fox, 

Pechman et al. 1977). They include regions of both extremely conserved regions (Woese, 

Fox et al. 1975) and hypervariable regions (Sogin, Sogin et al. 1971) so that both distant 

and close relationships can be investigated using rRNA genes. Earlier alignments of 

bacterial 16S rRNA gene sequences have discovered nine separate hypervariable regions, 

which was termed as V1 to V9 in relation to previous nomenclature (Van de Peer, Chapelle 

et al. 1996).  
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1.6 COMMUNITY DYNAMICS AND MICROENVIRONMENTAL PH 
HOMEOSTASIS  

 

Microorganisms can endure and rapidly adapt to non-optimal and fluctuating 

environmental situations. They are small in size, ubiquitous in distribution, versatile in 

metabolism, flexible in adaptation and demonstrates genetic plasticity. Prokaryotes sense 

their environment and react to specific environmental challenges individually as well as 

cooperatively, demonstrating communal activities. In most of the microbial ecosystems, 

the functionally the active unit is not a solitary species but a consortium of many species 

sharing a common microenvironment (Guerrero and Berlanga 2006). Rich biodiversity 

stabilizes microbial ecosystems. Richness stabilizes communities mainly by increasing 

community biomass and reducing the strength of demographic stochasticity and also with 

asynchrony in the responses of the community dwellers to environmental fluctuations (de 

Mazancourt, Isbell et al. 2013). Various environmental variables largely shape community 

structure and community dynamics. However, one issue concerning this question is 

apparently under investigated; that is, if and to what extent microbial community can 

affect its environment or microenvironment in the context of microbial ecology. The 

microenvironment is a comparatively small, often noticeably specialized and effectively 

isolated biophysical environment surrounding a living organism. pH is one of the most 

significant of these environmental variables.  

 

1.7 METAGENOMICS 
 

A revolution took place in the field of microbiology during the last 30 years, which has 

changed microbiologist's view of microorganisms and how to study them. Accepting the 

fact that most microorganisms cannot be grown willingly in pure culture (till date) and the 

credible demonstration that the uncultured microbial world is greater than the cultured 

world along with evidence that these uncultivable microorganisms can be studied was at 

the heart of this revolution (Olsen, Pace et al. 1985, Pace, Stahl et al. 1985, Pace 1995). In 

the following years of this essential addition to the revolutionary approach to studying 

microbial life forms, microbiologists devoted earnest attempt to describe the 
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phylogenetic diversity of exotic and usual environments like sea surfaces, deep sea 

hydrothermal vents, hot springs, soils, animal rumens and guts, human oral cavity and 

intestine. Several new lineages were classified exclusively based on their molecular 

signatures. The next development that followed was to reveal the functions of these new 

phylotypes and conclude whether they epitomized new species, genera, or phyla of 

prokaryotic life. These questions triggered the development of diverse techniques, 

including metagenomics itself. 

During the last ten years, the science of metagenomics has been transformed by the use 

of whole genome shotgun sequencing technology that a decade or so earlier 

revolutionized the field of the single organism genomics (Fleischmann, Adams et al. 1995). 

More current advances in the next generation sequencing technologies, causing a 

remarkable drop in the price of DNA sequencing, resulted in efforts on the scale 

considerably surpassing the scale permissible by the conventional technologies in DNA 

(genome, genes, cDNA and whole transcriptome) sequencing. Previously unfeasible 

questions in microbiology, turn out to be possible to address, due to these developments. 

They have also been demonstrated to be useful to accelerate considerably genome-based 

detection for medical and biotechnological applications of microbial, previously 

untapped, resources by delivering a comprehensive and high-resolution blueprint of a 

variety of biochemical transformations that has been evolved and fine-tuned by nature 

since the emergence of life itself. In the last few years, the study of uncultured 

microorganisms had expanded from just the study of diversity to their function and 

application. 
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2 OBJECTIVE AND IMPORTANCE  
 

The overview of the workflow from sediment sample to objectives is provided in a simple 

flow chart below (Figure 3).  

 

FIGURE 3: OVERVIEW OF THE OBJECTIVES AND WORKFLOW. The figure shows the workflow 
from samples to objectives. 

 

2.1 OBJECTIVES OF THE INVESTIGATION  
 

Our primary objectives of the current investigation were- 

1. To assess the total prokaryotic biodiversity and the active prokaryotic biodiversity 

using high-throughput sequencing-based techniques,  

2. To assess the relative abundance and presence of different ecologically important 

functional genes using high-throughput sequencing based direct metagenome 

analysis, 
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3. To study the community dynamics during microenvironmental pH homeostasis of 

the prokaryotic community from the hyperalkaline and saline Lonar meteorite 

crater lake in India. 

4. To investigate any possibilities of exploiting the polyextremophilic adaptations of 

the microbial community for industrial use.  

 

2.2 IMPORTANCE OF THIS INVESTIGATION  
 

Sediment microbial communities play important roles in ecosystem functioning and 

processes such as biogeochemical cycles and nutrient transformation (Nissenbaum 1975, 

Whitby, Saunders et al. 2001, Foti, Sorokin et al. 2007, Emmerich, Bhansali et al. 2012, 

Melton, Schmidt et al. 2012, Zeng, Zhao et al. 2012, Li, Jin et al. 2013, Vissers, Anselmetti 

et al. 2013, Eyice, Namura et al. 2015). Microorganisms have indispensable roles in 

influencing and regulating nearly all ecosystems. Archaea and Bacteria exist in different 

metabolic states in these ecosystems. They could be actively growing, dormant and 

recently deceased. These various metabolic states can have a differential influence on 

their environment. Consequently, it is of substantial importance to truly associate 

microbial taxa with its metabolic state. So that it is possible to have any inference of the 

relationships between ecosystem functions and microbial community structure 

(Blazewicz, Barnard et al. 2013). However, most of the metagenomic exploration used 

DNA-based approaches. As a result, they concentrate only on the total bacterial 

community, which contains dormant microorganisms, dead cells and extracellular DNA 

(Lennon and Jones 2011). There is no known literature about overall diversity on the 

potentially metabolically active archaeal and bacterial communities in Lonar sediment. 

Although there are very few reports on the active community study in sediments of other 

types; from the sea (Sorensen and Teske 2006, Edlund, Hardeman et al. 2008, Mills, Reese 

et al. 2012, Kormas, Pachiadaki et al. 2015), lakes (Nercessian, Noyes et al. 2005) and 

estuary (Li, Wang et al. 2012, Chen, Wang et al. 2013). These populations can be evaluated 

by analysis of 16S rRNA transcripts (Pace, Stahl et al. 1985). The abundance of rRNA serves 

as an index of activity but not as a direct measure of activity (Blazewicz, Barnard et al. 
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2013). Thus, variations in the relative abundance essentially do not mirror variations in 

the activity of the studied microbial group. 

Studying microbial diversity of hyperalkaline hypersaline meteorite impact crater lake 

ecosystems is valuable for several reasons. Research on the microbial community of soda 

lakes may provide clues to the evolution of life on earth; as some of the earliest microbial 

life on Earth might have been haloalkaliphiles (Kunte, Trüper et al. 2002). Due to the 

presence of hypersaline conditions on Mars, terrestrial saline environments can be used 

as an appropriate analog for investigation (Mancinelli, Fahlen et al. 2004). Lonar, 

specifically, is preferable over other soda lakes as Mars analog due to its strong 

resemblance with martian basalts. The origin of Lonar lake, the impact event itself, makes 

Lonar even more unique to all other soda lakes. The post impact crater and hydrothermal 

activity could mimic the prebiotic chemistry (Cockell 2006) in relation to the origin of life 

itself. Impact structures are a scarce ecosystem on earth, but wherever they are present, 

they can potentially have a significant influence on the local ecology. Impact events are 

one of the processes that can cause localized obliteration to ecosystems, understanding 

the behavior of recolonization of these impact structures is of ecological interest. Impact 

craters are a universal phenomenon on solid planetary surfaces, and so they are of 

possible biological importance on other planetary habitats(Cockell, Osinski et al. 2003).  
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3 MATERIALS AND METHODS 
 

3.1 SEDIMENT SAMPLES 
 

The sediment samples used in this study were collected on 14th of September 2014 from 

three different places of Lonar Lake, Buldhana district, Maharashtra, India. A total of 3 

sediment samples were collected from various locations in triplicate. These triplicates 

were mixed in equal weight to obtain the working samples which will be referred as Lonar 

1, Lonar 2 and Lonar 3 in the rest of the article.  

 

3.2 HANDLING OF EQUIPMENT AND REAGENTS 
 

All glassware, culture media, buffers and other solutions were autoclaved (20 min, 121°C) 

to sterilize except for the heat labile substances. Non-autoclavable or heat labile 

substances (e. g. lysozyme, glucose) were dissolved in sterile buffers or water and filter-

sterilized. Tools that were not autoclavable were first rinsed with 70 % (w/v) ethanol and 

subsequently with sterile dd H2O. 

 

3.3 MEDIA, MEDIA SUPPLEMENTS AND ANTIBIOTICS 
 

All the reagents and recipes of preparation are provided bellow. 

 

Modified Horikoshi Amount 

Glucose 6.75 g 

Component (A)   

Soluble Starch 6.25 g 

Peptone 6.25 g 
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Modified Horikoshi Amount 

Yeast Extract 6.25 g 

KH2PO4 (Potassium dihydrogen phosphate)  1.25 g 

MgSO4 ∙ 7 H2O (Magnesium sulfate)  0.25 g 

NaCl (Sodium chloride)  12.50 g 

Component (B)   

Na2CO3 (Sodium carbonate)  12.50 g 

TABLE 3: COMPOSITION OF MODIFIED HORIKOSHI MEDIUM.  

 

 

 

Enrichment Medium for Protease Amount 

Casin 10.00 g 

NaCl 20.00 g 

NaCO3 10.00 g 

K2HPO4 0.50 g 

CaCl2 0.025 g 

MgSO4 0.005 g 

Deionized H2O 1000 ml 

TABLE 4: COMPOSITION OF PROTEASE ENRICHMENT MEDIUM 

Enrichment Medium for Lipase Amount 

Olive oil 3.5 ml 

NaCl 20.00 g 

NaCO3 10.00 g 

K2HPO4 0.50 g 
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Luria-Bertani (LB) medium (Sambrook, 1989)                                         Amount 

Tryptone 10 g 

Yeast extract 5 g 

NaCl 10 g 

Deionized H2O 1000 ml 

TABLE 7: COMPOSITION OF LURIA-BERTANI MEDIUM 

 

Enrichment Medium for Lipase Amount 

CaCl2 0.025 g 

MgSO4 0.005 g 

Deionized H2O 1000 ml 

TABLE 5: COMPOSITION OF LIPASE ENRICHMENT MEDIUM 

Enrichment Medium for Cellulase Amount 

Cellulose 10.00 g 

NaCl 20.00 g 

NaCO3 10.00 g 

K2HPO4 0.50 g 

CaCl2 0.025 g 

MgSO4 0.005 g 

Deionized H2O 1000 ml 

TABLE 6: COMPOSITION OF CELLULASE ENRICHMENT MEDIUM 



41 
 

Supplement  Stock solution Working concentration 

Ampicillin  50 mg/ml 50 % Ethanol 0 50-100 mg/ml 

Kanamycin  25 mg/ml dd H2O  50 mg/ml 

IPTG 25 mg/ml dd H2O  50 mg/ml 

X-Gal  20 mg/ml Dimethylformamide  40 mg/ml 

TABLE 8: LIST OF SUPPLEMENTS AND THEIR CONCENTRATIONS. 

 

 

3.4 ORGANISMS, OLIGONUCLEOTIDES, ENZYMES, AND BUFFERS 
 

3.4.1 STRAIN DESCRIPTION 

 

E. coli 

strain  

Genotype  Source 

DH5α F- φ80lacZΔM15Δ (lacZYA-argF) U169 endA1 recA1 hsdR17 

(rk-, mk+) supE44 thi -1 gyrA96 relA1 phoA 

Invitrogen 

TOP10 F- mcrA Δ (mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 

recA1 araD139 Δ (ara-leu) 7697 galU galK rpsL (StrR) end A1 

nupG 

Invitrogen 

EPI300-T1 F– mcrA Δ (mrr-hsdRMS-mcrBC) (StrR) φ80dlacZΔM15 

ΔlacX74 recA1 endA1 araD139 Δ (ara, leu) 7697 galU galK λ– 

rpsL nupG trfA tonA dhfr 

Epicentre 

TABLE 9: LIST OF E.COLI STRAINS WITH DESCRIPTION. 
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3.4.2 DESCRIPTION OF PRIMERS 

 

3.4.2.1 PRIMERS FOR ROCHE PLATFORM SEQUENCING  

 

The V3-V5 region was amplified with the following set of primers containing the Roche 

454 pyrosequencing adaptors (blue), key (red) and MID or multiplex identifier (10 bp long) 

in the case of forward primer only. Modified bacterial primers were S-D-Bact-0343-a-S-15 

(Bac343F) (Nossa, Oberdorf et al. 2010) and S-D-Bact-0907-a-A-20 (Bac907R) (Muyzer, 

Teske et al. 1995). Modified archaeal primers were S-D-Arch-0340-a-S-18 (Arch340F) 

(Ovreås, Forney et al. 1997) and S-D-Arch-0911-a-A-20 (Arch915R) (Stahl and Amann 

1991). 

Primers for bacterial 16S rRNA gene 

S-D-Bact-0343-a-S-15 

(forward)  

CCATCTCATCCCTGCGTGTCTCCGACTCAG-MID-TACGGRAGGCAGCAG 

S-D-Bact-0907-a-A-

20 (reverse)  

CCTATCCCCTGTGTGCCTTGGCAGTCTCAGCCGTCAATTCMTTTGAGT 

Primers for archaeal 16S rRNA gene 

S-D-Arch-0340-a-S-18 

(forward)  

CCATCTCATCCCTGCGTGTCTCCGACTCAG-MID-

CCCTAYGGGGYGCASCAG 

S-D-Arch-0911-a-A-

20 (reverse)  

CCTATCCCCTGTGTGCCTTGGCAGTCTCAGGTGCTCCCCCGCCAATTCCT 

TABLE 10: LIST OF 16S RRNA PRIMERS FOR ROCHE PLATFORM SEQUENCING 

 

 

3.4.2.2 PRIMERS FOR ILLUMINA PLATFORM SEQUENCING 

 

The V3-V4 region was amplified with the following set of primers containing the Illumina 

overhang adapter (blue). Primer set used for amplification of bacterial V3-V4 was S-D-
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Bact-0341-b-S-17 (forward) and S-D-Bact-0785-a-A-21 (reverse) (Klindworth, Pruesse et 

al. 2013) with modifications. For Archaea 514Fa (Reed, Fujita et al. 2002) and In-house 

were used. 

 

Primers for bacterial 16S rRNA gene 

S-D-Bact-0341-b-

S-17 (forward)  

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG 

S-D-Bact-0785-a-

A-21 (reverse)  

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC 

Primers for archaeal 16S rRNA gene 

514Fa (forward)  TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGTGBCAGCCGCCGCGGTAA 

 In-house  GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCCGCCAATTYCTTTAAG 

TABLE 11: LIST OF 16S RRNA PRIMERS FOR ILLUMINA PLATFORM SEQUENCING. 

 

 

3.4.3 VECTORS 

 

Vector Name  Purpose   Source 

pCR-XL-TOPO Small insert Library (Plasmid Library)  Invitrogen 

pCC1FOS Large insert Library (Fosmid library)  Epicentre 

TABLE 12: LIST OF VECTORS USED FOR CONSTRUCTION OF METAGENOMIC LIBRARIES 
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FIGURE 4: VECTOR MAP OF PCR-XL-TOPO (FROM INVITROGEN)  
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FIGURE 5: VECTOR MAP OF PCC1FOS (FROM EPICENTER)  
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3.4.4 DETAILS OF THE ENZYMES 

 

Enzymes Usage 

Antarctic Phosphatase (5U)  Dephosphorylation of DNA ends 

EcoRI Restriction enzyme Plasmid Digestion 

Lysozyme Cell lysis during DNA extraction 

Phusion DNA Polymerase (2U)  PCR for cloning 

T4 Polymerase (5U)  Generation of blunt-end DNA 

Taq Polymerase (5U)  Temperature gradient PCR 

TABLE 13: LIST OF ENZYMES USED. 

 

3.4.5 COMPOSITION OF BUFFERS AND STOCK SOLUTIONS  

 

Reagent Amount 

CTAB 10 g 

StMQ H2O  100 ml 

TABLE 14: 10 % CTAB 

 

Reagent Amount 

Na2EDTA.2H2O 186.1 g 

NaOH 20 g 

Adjust pH to 8.0  

StMQ H2O 1000 ml  

TABLE 15: EDTA (0.5M, PH 8.0)  
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Reagent Amount 

Tris HCl (100mM; pH 8.0) )  100 ml 

Sodium Phosphate Buffer (2M)  50 ml 

Sodium EDTA (100mM; pH 8.0)  200 ml 

NaCL (1.5 M)  300 ml 

CTAB 1 % 100 ml 

TABLE 16: DNA EXTRACTION BUFFER 

 

 

Reagent Amount 

NaCl 292 g 

StMQ H2O  1000 ml 

TABLE 17: NACL (5M)  

 

 

Reagent Amount 

Na2HPO4 141.95 g 

NaH2PO4 119.97 g 

StMQ H2O  1000 ml 

TABLE 18: SODIUM PHOSPHATE SOLUTION (2M)  
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Reagent Amount 

Tris 121 g 

Adjust pH with con. HCl to 8.0  

StMQ H2O  1000 ml 

TABLE 19: TRIS-HCL (1M)  

 

 

Reagent Amount 

Tris-HCl 0.157 mg 

NaCl 0.584 g 

MgCl2.6H2O 0.203 g 

StMQ H2O 100 ml 

TABLE 20: PHAGE DILUTION BUFFER. 

 

 

Reagent Amount 

Tris 242 g 

Acetate 57 ml 

EDTA (0.5 M)  100 ml 

StMQ H2O Add 1000 ml 

TABLE 21: 50X TAE 
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3.5 COMMERCIAL KITS 
 

Kit Provider 

GeneRead Size Selection Kit Qiagen GbH, Germany 

peqGOLD Gel Extraction Kit (Safety-Line)  Peqlab Biotechnologie GbH, Germany 

peqGOLD Plasmid Miniprep Kit I  Peqlab Biotechnologie GbH, Germany 

PowerClean DNA cleanup kit  MoBio Laboratories, Inc., USA 

Quant-iT dsDNA BR assay kit Invitrogen GbH, Germany 

RNA PowerSoil DNA elution accessory kit Mo Bio Laboratories, Inc., USA 

RNA PowerSoil total RNA isolation kit Mo Bio Laboratories, Inc., USA 

RNeasy MinElute Cleanup kit  Qiagen GbH, Germany 

SureClean Kit  Bioline GbH, Germany 

TOPO XL PCR Cloning Kit  Invitrogen GbH, Germany 

TURBO DNA-free kit  Ambion Applied Biosystems, Germany 

TABLE 22: LIST OF KITS USED 
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3.6 COMPUTATIONAL AND STATISTICAL ANALYSIS TOOLS 
 

Software/Services   Source 

NanoDrop 1000, version 3.8.0 ThermoFisher Scientific 

USEARCH version 8.1 http://drive5.com/usearch/ 

 

UPARSE http://drive5.com/uparse/ 

Reff. (Edgar 2013) 

UCHIME http://drive5.com/usearch/manual/uchime_algo.html 

Reff. (Edgar, Haas et al. 2011) 

QIIME, Version 1.9 
(Quantitative Insights into 
Microbial Ecology)  

http://qiime.org/ Reff. (Caporaso, Kuczynski et al. 
2010) 

R version 3.2.3 https://www.r-project.org Reff. (R Core Team 2015) 

SigmaPlot, Exact Graphs and 
Data Analysis 

Systat Software, Inc., San Jose California USA, 
www.sigaplot.com 

Trimmomatic v.0.30 http://www.usadellab.org/cms/?page=trimmomatic 
Reff. (Bolger, Lohse et al. 2014) 

SPAdes version 3.7.1 http://bioinf.spbau.ru/en/spades Reff. (Bankevich, 
Nurk et al. 2012) 

Prodigal version 2.6.0 
(Prokaryotic Dynamic 
Programming Genefinding 
Algorithm)  

http://prodigal.ornl.gov/ 

Reff. (Hyatt, Chen et al. 2010) 

GhostKOALA version 2.0 http://www.kegg.jp/ghostkoala/ 

Reff. (Kanehisa, Sato et al. 2016) 

TABLE 23: LIST OF TOOLS USED. 
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3.7 DNA AND RNA EXTRACTION METHODS  
 

Extraction of DNA was carried out by two general methods with minor modifications. The 

first method is Phenol–chloroform extraction. It is a liquid–liquid extraction method in 

biochemistry. It is broadly used in molecular biology for isolating DNA, RNA, and protein. 

Equal volumes of phenol : chloroform mixture and an aqueous sample are mixed, forming 

a biphasic mixture. This method can take longer than a column-based system, such as the 

silica-based purification, but has the benefit of high recovery of DNA. It was formerly used 

by Piotr Chomczynski and Nicoletta Sacchi (referred to as guanidinium thiocyanate-

phenol-chloroform extraction) and published in 1987 (Chomczynski and Sacchi 1987). In 

1998, this basic Phenol-Chloroform extraction was adapted by Yeats (Yeates, Gillings et 

al. 1998). In this thesis, we have used the method revised by Yeates et al. with some more 

modifications. It is described in next two chapters. The second method is column based. 

The key to these systems is the binding matrix/column that avidly, but reversibly, binds 

under certain optimal conditions allowing proteins and other contaminants to be 

removed. Then the nucleic acids can be easily eluted with deionized water. 

 

3.7.1 EXTRACTION OF DNA AND RNA FOR THE TOTAL AND THE ACTIVE 

PROKARYOTIC BIODIVERSITY ASSESSMENT BY ILLUMINA PLATFORM 

 

Co-extraction of total environmental RNA and DNA were performed from 0.5 g of 

sediment of each of the Lonar 1, Lonar 2 and Lonar 3. The RNA PowerSoil total RNA 

isolation kit and the RNA PowerSoil DNA elution accessory kit were used respectively, as 

per the recommendation of the manufacturer (MoBio Laboratories, USA). The extracted 

RNA was purified from residual DNA with the TURBO DNA-free kit (Ambion Applied 

Biosystems, Germany). The success of purification was confirmed by PCR to determine 

the absence of DNA as described by Wemheuer et al. (Wemheuer, Wemheuer et al. 2012). 

Purification and concentration of the DNA-free RNA were achieved with the RNeasy 

MinElute Cleanup kit (Qiagen GbH, Hilden, Germany). Isolated DNA was cleaned with the 

PowerClean DNA cleanup kit (MoBio Laboratories). Concentrations of DNA and RNA were 
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determined using a NanoDrop ND-1000 spectrophotometer (Peqlab Biotechnologie GbH, 

Erlangen, Germany).  cDNA synthesis was performed, from approximately 500 ng of 

purified RNA, with the SuperScriptTM III reverse transcriptase as recommended by the 

manufacturer (Invitrogen, Karlsruhe, Germany) and the reverse primer S-D-Bact-0785-a-

A-21 (reverse) (Klindworth, Pruesse et al. 2013) and in-house (reverse) of the next PCR 

reaction separately. These DNA and cDNA will be used to assess the biodiversity of the 

total and the active bacterial and archaeal community. 

 

3.7.2 EXTRACTION OF DNA FOR ADDITIONAL BIODIVERSITY ASSESSMENT BY 

ROCHE PLATFORM 

 

DNA extraction protocol for lake sediments in use was modified after Yeates (Yeates, 

Gillings et al. 1998). 10g of sediment was suspended in 20ml of wash buffer (50mM Tris-

HCl, 50mM EDTA, and 25 % sucrose), it was vortexed briefly to disperse the soil particles 

and centrifuged at 10,000g for 3 minutes. The supernatant was discarded. This helps 

eliminate the salts and exopolysaccharides. The sediment was resuspended in 15 ml of 

DNA extraction buffer [100 mM Tris-HCl (pH 8.0) , 100 mM sodium EDTA (pH 8.0) , 1.5 M 

NaCl, CTAB 1 % w/v]. 75 µl of lysozyme (from a 100mg/ml stock solution) and 75 µl of 

RNAseA (from a 100 mg/ml stock solution) were added and incubated at 37 oC for 1 h. It 

was frozen using liquid nitrogen and then thawed in a water bath at 65 oC for 30 minutes. 

This freeze-thaw cycle was repeated one more time. 1.6 ml of 20 % (w/v) SDS and 0.7 ml 

of 6M GITC was added, mixed gently by inversion and incubated for 2 hrs at 65 oC with 

occasional gentle mixing. After 2 hrs, the mixture was centrifuged at 15,000 rpm for 20 

min at 10 oC to remove soil residue, and the supernatant was transferred, which contains 

the crude DNA, into a clean tube. An equal volume of chloroform: isoamyl alcohol (24:1) 

was added and mixed gently on a slow shaker for 10 minutes. The mixture was centrifuged 

at 15,000 rpm for 20 min at 10 oC and the supernatant was transferred to a clean tube. 

The 0.7x volume of isopropanol was added and allowed to mix on a slow shaker for 10 

minutes. The mixture was centrifuged at 15,000 rpm for 40 min at 10 oC to pellet the DNA, 

and all traces of the supernatant were removed. The DNA pellet was resuspended in a 
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minimum amount (2 ml) of St.MQ and aliquoted into Eppendorf tubes using a wide bore 

pipette tip. The DNA was purified by using an equal volume of phenol/chloroform/isoamyl 

alcohol (25:24:1). One was extracted with Chloroform: isoamyl alcohol (24:1) to remove 

traces of phenol. The mixture was centrifuged at 15,000 rpm for 20 min at 10 oC and the 

supernatant was transferred to a clean tube. The 0.7x volume of isopropanol was added 

and allowed to mix on a slow shaker for 10 minutes. The mixture was centrifuged at 

15,000 rpm for 20 min at 10 oC to pellet the DNA and remove all traces of the supernatant. 

The pellet was washed twice with 80 % (v/v) ethanol, air-dry and dissolves in 2 ml St.MQ. 

The quality and quantity were checked by 0.8 % agarose gel electrophoresis and 

Nanodrop (NanoDrop ND-1000, Thermo Scientific). This DNA will be used for additional 

surveying of the total diversity to confirm the coverage. 

 

3.7.3 EXTRACTION OF DNA FROM AGAROSE GEL 

 

Gel extraction of DNA with peqGOLD Gel Extraction Kit (Safety-Line, Cat. No.12-2500-01). 

The sonicated sample was mixed with Loading Dye and loaded on a 0.8 % agarose gel. The 

electrophoresis was performed for 90 min at 90 V. Afterward, the sides with the marker 

were cut out and stained in Ethidium Bromide (EtBR). The gel with DNA from 6 to 10 kb 

was excised out under UV to mark the region of interest. The rest of the unstained gel was 

added in between the marked stained gel pieces and was cut as well (it was not stained 

with EtBR or exposed to UV). For DNA Extraction from the gel, the peqGOLD Gel Extraction 

Kit provided by Peqlab Biotechnology was used along with the provided protocol 

described in the next paragraph. 

The approximate volume of the gel slice was determined (by weighing) to add an equal 

volume of the provided Binding Buffer. The mixture was incubated for 7 min. at 65°C. 

During this time, it was inverted from time to time to mix thoroughly until the gel was 

completely dissolved. A PerfectBindDNA Column was placed in a 2 ml Collection Tube 

(both provided with the kit) and loaded with the DNA/agarose solution. The column/tube 

was centrifuged for 1 min. at 10.000 x g. The flow-through was discarded, and the column 

was loaded again until there was no solution left. Afterward, the Binding Buffer was added 
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to the column, and another centrifugation step (same conditions) was performed. Then, 

the column was washed with CG Wash Buffer (diluted with ethanol). Again, the 

column/tube was centrifuged for 1 min at 10.000 x g. The centrifugation step was 

repeated to dry the column and remove ethanol. The column was placed in a fresh tube, 

and prewarmed Elution Buffer was added directly to the filter. The column/tube was 

centrifuged for 1 min. at 5.000 x g to elute the DNA. The success of the DNA gel extraction 

was verified by gel electrophoresis. 

 

3.7.4 EXTRACTION OF DNA FOR DIRECT METAGENOME ANALYSIS 

 

The DNA extraction protocol is same as described in the chapter 3.7.2. The only difference 

was, before storing the extracted DNAs were further cleaned using SureClean Kit (Bioline, 

Germany). 

 

3.7.5 EXTRACTION OF DNA FOR THE STUDY OF COMMUNITY DYNAMICS 

DURING MICROENVIRONMENTAL PH HOMEOSTASIS 

 

Cultures from non-optimum pH exposures were subjected to centrifugation as 15 ml 

aliquots. The cell pellet was resuspended in 15 ml of DNA extraction Buffer and 75 µl of 

lysozyme were added. The mixture was incubated at 37°C for 1 h. Afterward, 1.6 ml of 20 

% SDS and 0.7 ml of 6 M GITC were added. The sample incubated for 2 hrs and 65°C. It 

was inverted from time to time. An equal volume of phenol/chloroform/isoamyl alcohol 

(25:24:1) was added and mixed on a slow shaker for 10 min. Followed by a centrifugation 

step for 20 min. at 15,000 rpm and 10 °C. The supernatant was transferred to a clean tube. 

To remove traces of Phenol; Chloroform/Isoamylalcohol (24:1) was added. The mixture 

was centrifuged at 15.000 rpm for 20 min at 10°C and the supernatant was placed in a 

clean tube. The 1X volume of Isopropanol was added, and the solution was mixed gently 

and kept overnight at -20 °C. On the next day, the mixture was centrifuged at 15.000 rpm 

for 40 min at 10°C to precipitate the DNA as a pellet. All traces of supernatant were 
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removed. The pellet was washed twice with 80 % ethanol, air-dried and dissolved in 1 ml 

StMQ water. 

 

3.7.6 EXTRACTION OF DNA FOR CONSTRUCTION OF METAGENOMIC LIBRARIES  

 

Enrichment cultures (as described in 3.9.1)  were subjected to centrifugation as 15 ml 

aliquots. Rest of the protocol is as described above (3.7.2). 

 

3.7.7 EXTRACTION OF PLASMID DNA 

 

3.7.7.1 ISOLATION OF PLASMID USING PEQGOLD PLASMID MINIPREP KIT 

 

For plasmid isolation the peqGOLD Plasmid Miniprep Kit I was used, offered by Peqlab 

Biotechnology. The cultures were transferred to 2 ml tubes and centrifuged 2 times for 10 

min at 5.000 x g. The bacterial pellet was resuspended in Solution I (with RNase A) to lyse 

the Bacteria. Solution II was added and the mixture was mixed by inverting. The lysate 

was neutralized by adding Solution III and inverting. A white flocculent precipitate was 

observed. The solution was centrifuged at 10.000 x g for 10 min at room temperature. The 

supernatant was transferred to a column collection tube. The column and the tube were 

centrifuged 1 min at 10.00x g at room temperature, and the flow through was discarded. 

Then, three washing steps followed: HB Buffer was added, and the Solution was 

centrifuged for 1 min at 10.000 x g. Then, Wash Buffer completed with ethanol was added 

two times to the column. The Centrifugation was repeated. For drying, the column was 

centrifuged one more time with same conditions. Afterward, DNA was eluted by placing 

the column to a fresh tube adding Elution Buffer and centrifuging at 5.000 x g for 1 min. 

An analytical gel electrophoresis was performed to check the extraction success. 
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3.7.7.2 ISOLATION OF PLASMID USING QIAGEN PLASMID PLUS MIDI KIT 

 

Pelleted cell mass was resuspended in 2 ml Buffer P1 (with RNase A). The pellet was 

resuspended completely by vortexing. 2 ml of Buffer P2 was added and gently mixed by 

inverting. The mixture was incubated at 25°C for 3 min. 2 ml of Buffer S3 was added to 

the lysate and mixed immediately by inverting several times. The lysate was transferred 

immediately to the QIAfilter Cartridge and incubate at room temperature for 10 min. 

During incubation, the vacuum manifold, and the QIAGEN Plasmid Plus Midi spin columns 

were prepared. The plunger was inserted gently into the QIAfilter Cartridge and filter the 

cell lysate into a new tube, allowing space for the addition of Buffer BB. Filtration was 

performed until all of the lysates has passed through the QIAfilter Cartridge. 2 ml Buffer 

BB was added to the cleared lysate and mix by inverting several times. The lysate was 

transferred to a QIAGEN Plasmid Plus Midi spin column with a tube extender attached on 

the vacuum set. The solution was drawn through the QIAGEN Plasmid Plus Midi spin 

column using –300 mbar pressure. 0.7 ml of Buffer ETR was added to the DNA to wash. 

The tube extenders were discarded and the QIAGEN Plasmid Plus Midi Spin Column was 

placed into the 2 ml collection tube, provided with the kit. The column was washed by 

centrifuging for 1 min at 10,000 x g. The flow-through was discarded. 0.7 ml of Buffer PE 

was added. The column was washed again by centrifuging for 1 min at 10,000 x g. The 

flow-through was discarded. The column was again centrifuged for 1 min at 10,000 x g in 

a microcentrifuge to remove the residual wash buffer completely. The QIAGEN Plasmid 

Plus Midi spin column was placed into a clean 1.5 ml microcentrifuge tube. The DNA or 

Plasmid was eluted by adding 200 μl of stMQ Water to the center of the QIAGEN Plasmid 

Plus Midi spin column. The setup was allowed to stand for 1 min and then centrifuged for 

1 min at 10,000 x g. The plasmid was stored at –20°C. 
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3.8 QUANTIFICATION OF DNA 
 

Nucleic acids absorb ultraviolet light in a precise pattern. In a spectrophotometer, a 

sample is exposed to ultraviolet light at 260 nm and a photodetector measures the light 

that travels through the sample. The more light absorbed by the sample, the higher the 

nucleic acid concentration in the sample. Using the Beer-Lambert Law, it is achievable to 

correlate the quantity of light absorbed to the concentration of the absorbing molecule.  

In this thesis the DNA concentration was measured with two instruments one is with 

Nano-Drop Spectrophotometer (Cat No. ND-1000) by Thermo Fisher Scientific and the 

other is Qubit 2.0 Fluorometer (Cat No. Q32866) by Life Technologies. Qubit 2.0 

Fluorometer unlike Nano-Drop Spectrophotometer uses fluorescence rather than 

absorbance.  

 

3.8.1 DETERMINATION OF DNA CONCENTRATION BY NANO-DROP 

SPECTROPHOTOMETER 

 

Before every measurement, the sample plate was cleaned with 5 μl of StMQ water and 

dried with a tissue. Afterward, a blank was measured using 2 μl of the solution in which 

the DNA was dissolved (StMQ water or any other DNA Elution Buffer). The sample plate 

was cleaned again, and 2 μl of the sample were placed on the plate. The concentrations 

were determined using the computer program NanoDrop 1000 (version 3.8.0) provided 

by ThermoFisher Scientific. The concentration was stated in ng/μl. In addition, other 

values were available, which contains calculations of absorbance ratios and allows 

drawing conclusions about the quality or purity of the examined DNA. One of the most 

important values was the A260/A280 ratio (1.8 can be considered as pure or clean). 
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3.8.2 DETERMINATION OF DNA CONCENTRATION BY QUBIT FLUOROMETER 

 

The principle of measurement of DNA concentration by Qubit is based on fluorescent dyes 

that bind specifically to DNA, RNA or protein. The dye releases a detectable fluorescent 

signal when it is bind to its target (DNA, RNA or Protein). Therefore, the Qubit 

measurement is more accurate than the NanoDrop measurement. NanoDrop is based on 

absorbance, where it is possible that other molecules can exist in the DNA solution, which 

is measured along with the DNA and provide inaccurate measurement compared to Qubit.  

Before starting the measurement, a Working Solution has to be prepared. 199 μl of 

provided buffer is mixed with 1 μl of dye for every sample. The solution is mixed by 

vortexing. 190 μl of it were aliquoted for standards. They were completed with 10 μl of 

standard solution (2 per measurement). The other working solution was used for the 

samples. Depending on the amount of sample which is used for measurement, 198 μl-199 

μl Working Solution were aliquoted in assay tubes. In the end, the total volume should be 

200 μl. So, 1 μl-2 μl of the sample were added. The solution was mixed by vortexing and 

incubated for 2 min at room temperature. Then the measurement starts by choosing the 

kind of the sample and blanking the Qubit with Standard Solution 1 and 2 by putting the 

assay tubes in the designated place. Afterward, the samples are measured using the 

provided computer program. 

 

3.9 CONSTRUCTION AND SCREENING OF METAGENOMIC LIBRARIES  
 

3.9.1 ENRICHMENT CULTURES 

 

An enrichment culture is a medium with definite and known character that positively 

discriminates the growth of a specific microorganism above others. The microbiologist 

(and botanist) Martinus Willem Beijerinck (March 16, 1851 – January 1, 1931) is credited 

with developing the first enrichment cultures (King-Thom and Hunter 1996).  We 

established three different enrichment cultures to get the population of protease, lipase 
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and cellulase producing microorganism vastly obtainable. The recipe as described in 

Chapter 3.3 (Table 4, Table 5, Table 6). 

 

3.9.2 CONSTRUCTION OF SMALL INSERT LIBRARY  

 

For the construction of small insert library TOPO XL PCR Cloning Kit provided by Invitrogen 

was used in this experiment. 

 

3.9.2.1 PREPARATION OF ELECTROCOMPETENT CELLS 

 

For the preparation of electrocompetent cells, a 5 ml overnight culture was added to 250 

ml growth medium. LB supplemented with kanamycin was used for E. coli DH5α. The cells 

were incubated at 30 °C until an optical density (OD600) of 0.5 – 1. The OD was measured 

with an Ultraspec 3300 pro photometer (Amersham Pharmacia Biotech Europe GbH). The 

E. coli culture was then incubated 20 min on ice before being centrifuged for 10 min (5000 

x g, 4 °C). The pellet was washed two times with equal volume of sterile H2O and 

subsequently washed one time with 10 ml glycerol (10 %). Resuspension was done with 

0.5 ml of glycerol (10 %) and for further use aliquots of 40 μl were prepared and frozen 

using liquid nitrogen before storage at -70 °C. 

 

3.9.2.2 SMALL INSERT LIBRARY  

 

Small-insert libraries were constructed using the TOPO XL PCR Cloning Kit (Invitrogen GbH, 

Karlsruhe, Germany) with plasmid pCR-XL-TOPO as a vector. For each enrichment culture, 

approximately, 10 µg extracted DNA was separated by agarose gel electrophoresis.  DNA 

fragments of more than 6 kb in size were selected and purified from the gels using the 

peqGold Gel Extraction Kit (Peqlab Biotechnologie GbH, Germany). The purified DNA 

fragments were subjected to sticky end repairing using T4 DNA polymerase (MBI 
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Fermentas, Germany) as suggested by the manufacturer. Afterward, the DNA was purified 

using SureClean Kit (Bioline GbH, Germany) and the resulting DNA pellet was suspended 

in 35 µl H2O. Then, a deoxyadenosine was added to the 3’ end of the DNA to facilitate the 

TA cloning method. For this purpose, 1 µl dATP solution (100 mM) , 6 µl MgCl2 solution 

(25 mM) , 7 µl of 10X Taq DNA polymerase buffer containing (NH4) 2SO4- (Fermentas) , 1 

µl of Taq DNA polymerase (5 U) , and 20 µl of H2O were mixed with the DNA solution, 

incubated at 72 oC for 30 min, and purified using SureClean solution (Bioline GbH). The 

resulting DNA pellet was suspended in 15 µl H2O and dephosphorylated using 5U 

Antarctic Phosphatase (NEB, Ipswich, MA). The blunt-end-DNA with 3’ A-overhang was 

mixed with 1.5 µl of Antarctic Phosphatase Buffer (10x) and 1 µl of Antarctic Phosphatase 

(5U). The sample was incubated for 15 min. at 37 °C and inactivated by another incubation 

step at 65 °C for 15 min. 

Finally, the recovered DNA fragments were inserted into pCR-XL-TOPO using the TOPO XL 

PCR cloning kit (Invitrogen) by adding 1 µl of the pCR-XL-TOPO vector to 4 µl of prepared 

enrichment culture DNA (protease and lipase separately). The mixture was incubated for 

5 min at room temperature. Then, 1 µl Stop solution (provided with the kit) was added, 

and the ligation mixture was kept on the ice. 

 

3.9.2.2.1 Transformation Of E. Coli TOP10 And E. Coli DH5α Cells By Electroporation 

 

Electroporation is a quick transformation method (Dower, Miller et al. 1988). It is based 

on the permeability of the cell membrane. The rapid breakdown of the membrane 

potential allows the absorption of DNA, mostly plasmids. 

The TOPO-Cloning reactions were used to transform Escherichia coli TOP10 cells with the 

electroporation method. 2 µl of the TOPO-Cloning reaction was added to one vial of 

OneShot electrocompetent E. coli cells and mixed gently. The cells with the DNA were 

transferred to a chilled 0.1 cm electroporation cuvette. Electroporation occurred at 25 µF, 

200 Ω and 2.5 kV with the pulse controller II and the gene controller II manufactured by 

BioRad. Immediately after electroporation 450 µl of S.O.C. medium (room temperature) 

was added and mixed well. The solution was transferred to a 2 ml tube and incubated for 
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one hour at 37 °C to allow expression of the antibiotic resistance genes. During incubation, 

the solution was inverted from time to time. Afterward, the cells were spread on four 

plates, one of 50 µl, two of 100 µl and one of 150 µl. The plates were incubated overnight 

at 37 °C.  

The metagenomic libraries were used to transform E. coli DH5α cells in the same way as 

described above.  Instead of the TOPO-Cloning reaction the library itself is used. 

 

3.9.2.2.2 Detection Of Recombinant Cells By Blue-White Screening 

 

Kanamycin provided the selection for successful transformation in addition of X-Gal and 

IPTG. The presence of X-Gal (bromo-chloro-indolyl-galactopyranoside) allows a selection 

of insert-carrying plasmids. Galactoside is linked to indole. Galactose and 5-bromo-4-

chloro-3-hydroxyindole emerge from cleavage by β-galactosidase. Oxidation of 5-bromo-

4-chloro-3-hydroxyindole results in a blue product. Since the aminoterminal region of the 

lacZ gene is situated in the multiple cloning site, an insert-carrying clone is not able to 

produce a functional β-galactosidase, assumed that the host cells carry an inactive lacZ 

gene or lack the aminoterminal region. IPTG (Isopropyl β-D-1-thiogalactopyranoside) 

served as an inducer to ensure the activity of possible presence of β-galactosidases. 

 

3.9.2.2.3 Library Preparation 

 

The white and blue E. coli TOP10 clones resulting from TOPO-XL-cloning were counted 

and removed from plates, followed by a QIAGEN Plasmid Plus Midi preparation as 

described in 3.7.7.2. The plasmids were then collected in one tube, stored at -20 °C, and 

referred to as a metagenomic library.  

All the procedures were performed three times with three enrichment culture DNA 

resulting into three small insert libraries.  
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3.9.2.3 SCREENING OF SMALL INSERT LIBRARIES  

 

3.9.2.3.1 Protease Activity Screening  

 

LB agar plates containing skimmed milk were used for detection of proteolytic activity. 

Skimmed milk can be degraded by proteolytic enzymes leading to the formation of a halo 

around a positive clone. After transforming the protease enrichment library into E. coli 

DH5α, recombinant cells were plated and incubated at 37 °C for 3 to 14 days. 

 

3.9.2.3.2 Lipase Activity Screening 

 

LB agar plates containing glycerol tributyrate were used for detection of lipolytic activity. 

Recombinant cells expressing lipolytic enzymes can be detected by halo formation caused 

by the degradation of short-chain triglycerides. After transforming the lipase enrichment 

library into E. coli DH5α, recombinant cells were plated and incubated at 37 °C for 3 to 14 

days. 

 

3.9.3 LARGE INSERT LIBRARY 

 

For the construction of large insert library, Copy Control Fosmid Library Production Kit 

provided by Epicentre was used in this experiment. 

 

3.9.3.1 PREPARATION OF INFECTION CELLS 

 

Infection cells were prepared before packaging. 1 µl of E. coli EPI300 cells were inoculated 

into 50 ml of LB (+ 10 mM MgSO4). The flask was incubated at 37 °C for overnight on a 

shaker. 5 ml of overnight grown culture was transferred into 50 ml of LB (+ 10 mM 
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MgSO4). The flask was incubated at 37 °C with shaking until OD600 reaches 0.8 – 1.0. The 

culture was stored at 4 °C for later use (maximum of 5 days). 

 

3.9.3.2 SHEARING THE INSERT DNA 

 

DNA extracted from enrichment culture (for cellulase) was sufficiently sheared as a result 

of the purification process, and additional shearing was not necessary. 

 

3.9.3.3 END-REPAIR OF THE SHEARED DNA 

 

For each reaction, 60 µl of sheared DNA (up to 20 μg), 8 µl of 10x End-Repair Buffer, 8 µl 

of 2.5 mM dNTPs, 8 µl of 10mM ATP and 4 µl of End-Repair Enzyme Mix were mixed gently 

and incubated for 2 h. After incubation, the insert DNA was purified with Bioline SureClean 

and eluted with 12 µl of sterile water. 

 

3.9.3.4 LIGATION REACTION 

 

For each reaction 2 µl of 10X Ligation Buffer, 2 µl of 10 mM ATP, 2 µl of Copy Control 

pCC1FOS Vector (0.5 μg/μl), 12 µl of insert DNA and 2.0 µl of DNA Ligase were mixed and 

incubated at 16 °C for overnight. Following overnight ligation additional 1 µl of DNA ligase 

was added to the ligation mix and incubate at room temperature for 2 hrs. The reaction 

was inactivated by heating at 70 °C for 10 minutes. The reaction mix was cooled on ice for 

10 min. 

 

3.9.3.5 PACKAGING OF FOSMID CLONES 

 

The entire ligation mix was used in this step. 25 µl of thawed Max Plax packaging extract 

was added to the ligation mix (the remaining 25 μl of the Max Plax Packaging Extract was 
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kept at -70 °C). The mix was incubated at 30 °C for 120 min. After incubation additional 25 

µl of the phage packaging extract was added to the sample and incubated again for 120 

min at 30 °C. Phage dilution buffer was added to a final volume of 1 ml, and 25 µl of 

chloroform was added to the sample. The sample was stored at 4 °C until further use. 

 

3.9.3.6 INFECTION 

 

During infection, different volumes (e.g. 10 µl / 30 µl / 50 µl) of the packaged sample were 

added to 100 µl of infection cells. The cells were incubated at 37 °C for 90 min in a heating 

block. The library was plated onto LB (+ 12.5 µg/ml Chloramphenicol) plates. The plates 

were incubated at 37 °C overnight. 

 

3.10 PCR AMPLIFICATION OF PARTIAL 16S RRNA GENE 
 

The polymerase chain reaction (PCR) is the fundamental laboratory technique of 

molecular biology. It is one of the most influential laboratory techniques that have been 

discovered ever; PCR combines the distinctive properties of being very sensitive and 

specific with an immense degree of flexibility. With the PCR, it is achievable to address a 

specific DNA sequence and to amplify this sequence to an extremely high number of copy. 

Since its initial development in the early 1980’s, several variations on the fundamental 

idea of PCR have successfully been carried out.  

 

3.10.1 AMPLIFICATION OF PARTIAL 16S RRNA GENE FOR THE TOTAL AND 

THE ACTIVE COMMUNITY DIVERSITY ASSESSMENT  

 

The V3-V4 region of the 16S rRNA gene was amplified by PCR (polymerase chain reaction). 

Every sample was amplified in triplicates. Every sample was amplified 3 times in replica 

along with negative controls (no template) resulting in a total of 40 reactions; 50µl each 
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(36 samples, 4 controls). 3 sediment samples (Lonar 1, Lonar 2 and Lonar 3) , two type of 

template (DNA and cDNA) , two set of primers (Archaeal and Bacterial) and 3 replicas for 

each resulting in 36 reactions in total. Each PCR reaction (50µl) contained 31 µl nuclease-

free demineralized sterile H2O, 10µl 5X reaction buffer (Phusion GC Buffer for Archaea 

and Phusion HF buffer for Bacteria, ThermoFisher Scientific) , 1µl of 10 mM of 

deoxynucleoside triphosphates (all four) , 2.5 µl DMSO, 2 µl of BSA [20 mg ml-1 in 10 mM 

Tris-HCl (pH 7.4 at 25o C) , 100 mM KCl, 1 mM EDTA and 50 % (v/v) glycerol] (ThermoFisher 

Scientific) , 1µl of 10µM primer each (forward and reverse) , 0.5µl of 2U/µl Phusion high-

fidelity DNA Polymerase (ThermoFisher Scientific) , 1µl of isolated DNA diluted to 50 ng/µl 

concentration as template. The V3-V4 hypervariable region was selected as the parameter 

for identification of Bacteria (Vasileiadis, Puglisi et al. 2012, Vilo and Dong 2012). Primer 

set used for amplification of V3-V4 region was S-D-Bact-0341-b-S-17 (forward) and S-D-

Bact-0785-a-A-21 (reverse) (Klindworth, Pruesse et al. 2013) with modifications(3.4.2.2). 

The V3-V4 hypervariable region was also selected as the parameter for identification of 

Archaea. Primer set used for amplification of V3-V4 region was 514Fa (forward) and  In-

house (reverse) with modifications(3.4.2.2). The scheme of thermal cycling was- initial 

denaturation at 98 oC for 5 min, 25 cycles of denaturation at 95 oC for 45 s, annealing at 

57 oC for 45 s, and extension at 72 oC for 90 s followed by a final extension for 10 min at 

72 oC. The PCR products were visualized on 0.8 % agarose gel and cleaned using GeneRead 

Size Selection Kit (QIAGEN) following the protocol as suggested by the manufacturer. 

Quantification of the cleaned PCR products was performed using the Quant-iT dsDNA BR 

assay kit and a Qubit fluorometer (Invitrogen) as suggested by the manufacturer. PCR 

products were pooled in an equal amount of DNA as per sediment sample, primer and 

type of template resulting in 6 samples for Archaea (3 each for DNA and cDNA) and 6 for 

Bacteria (3 each for DNA and cDNA). The Goettingen Genomics Laboratory determined 

the sequences of the partial 16S rRNA genes by using a MiSeq System (Illumina) and the 

instructions of the manufacturer for amplicon sequencing. 
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3.10.2 AMPLIFICATION OF PARTIAL 16S RRNA GENE FOR ADDITIONAL 

TOTAL DIVERSITY ASSESSMENT  

 

The V3-V5 region of the 16S rRNA gene was amplified by PCR (polymerase chain reaction). 

Every sample was amplified 3 times in replica along with negative controls (no template) 

resulting in a total of 20 reactions; 50µl each (18 samples, 2 controls). 3 sediment samples 

(Lonar 1, Lonar 2 and Lonar 3), one type of template (DNA), two set of primers (archaeal 

and bacterial) and 3 replicas for each resulting in 18 reactions in total. Each PCR reaction 

(50µl) contained 31 µl nuclease-free demineralized sterile H2O, 10µl 5 fold reaction buffer 

(Phusion GC Buffer, Thermo Scientific), 1µl of 10 mM of deoxynucleoside triphosphates 

(all four), 2.5 µl DMSO, 2 µl of BSA, 1µl of 10µM primer each (forward and reverse) , 0.5µl 

of 2U/µl Phusion high-fidelity DNA Polymerase (Thermo Scientific) , 1µl isolated DNA of 

50 ng/µl as template. The V3-V5 region was amplified with the following set of primers 

containing the Roche 454 pyrosequencing adaptors, key and MID or multiplex identifier 

in the case of forward primer only. For Bacteria,  the primer sequences were modified 

Bac343F(Nossa, Oberdorf et al. 2010) primer and modified Bac907R(Muyzer, Teske et al. 

1995); for Archaea modified Arch340F(Ovreås, Forney et al. 1997) primer and modified 

Arch915R(Stahl and Amann 1991). Details of the primers are provided in 3.4.2.1. The 

scheme of thermal cycling was- initial denaturation at 98 oC for 5 min, 25 cycles of 

denaturation at 95 oC for 45 s, annealing at 64 oC for 45 s, and extension at 72 oC for 90 s 

followed by a final extension for 10 min at 72 oC.  

All amplified triplicate samples were pooled in equal amounts resulting in 6 samples (3 for 

Bacteria and 3 for Archaea, and purified using the peqGold gel extraction kit as 

recommended by the manufacturer (Peqlab Biotechnology). Quantification of the PCR 

products was performed using the Quant-iT dsDNA BR assay kit and a Qubit fluorometer 

(Invitrogen) as suggested by the manufacturer. PCR products were pooled in an equal 

amount of DNA as per sediment sample and primer resulting in 3 samples for Archaea and 

3 for Bacteria. The Goettingen Genomics Laboratory determined the sequences of the 

partial 16S rRNA genes by using a Roche GS-FLX 454 pyrosequencer (Roche) and the 

instructions of the manufacturer for amplicon sequencing. 
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3.10.3 AMPLIFICATION OF PARTIAL 16S RRNA GENE FOR COMMUNITY 

DYNAMICS STUDY DURING MICROENVIRONMENTAL PH HOMEOSTASIS  

 

The V3-V4 region of the 16S rRNA gene was amplified by PCR (polymerase chain reaction). 

Every sample was amplified 3 times in replica along with negative controls (no template) 

resulting in a total of 208 reactions; 50µl each (186 samples, 22 controls). Each PCR 

reaction (50µl) contained 31 µl nuclease-free demineralized sterile H2O, 10µl 5X reaction 

buffer (Phusion GC Buffer for Archaea and Phusion HF buffer for Bacteria, ThermoFisher 

Scientific), 1µl of 10 mM of deoxynucleoside triphosphates (all four), 2.5 µl DMSO, 2 µl of 

BSA [20 mg ml-1 in 10 mM Tris-HCl (pH 7.4 at 25o C), 100 mM KCl, 1 mM EDTA and 50 % 

(v/v) glycerol] (ThermoFisher Scientific), 1µl of 10µM primer each (forward and reverse), 

0.5µl of 2U/µl Phusion high-fidelity DNA Polymerase (ThermoFisher Scientific), 1µl of 

isolated DNA diluted to 50 ng/µl concentration as template.  

The V3-V4 hypervariable region was selected as the parameter for identification of 

Bacteria (Vasileiadis, Puglisi et al. 2012, Vilo and Dong 2012). Primer set used for 

amplification of V3-V4 region was S-D-Bact-0341-b-S-17 (forward) and S-D-Bact-0785-a-

A-21 (reverse) (Klindworth, Pruesse et al. 2013) with modifications (3.4.2.2). The V3-V4 

hypervariable region was also selected as the parameter for identification of Archaea. 

Primer set used for amplification of V3-V4 region was 514Fa (forward) and In-house 

(reverse) with modifications (3.4.2.2). 

The scheme of thermal cycling was- initial denaturation at 98 oC for 5 min, 25 cycles of 

denaturation at 95 oC for 45 s, annealing at 57 oC for 45 s, and extension at 72 oC for 90 s 

followed by a final extension for 10 min at 72 oC. The PCR products were visualized on 0.8 

% agarose gel and cleaned using GeneRead Size Selection Kit (QIAGEN) following the 

protocol as suggested by the manufacturer. Quantification of the cleaned PCR products 

was performed using the Quant-iT dsDNA BR assay kit and a Qubit fluorometer 

(Invitrogen) as suggested by the manufacturer. The Goettingen Genomics Laboratory 

determined the sequences of the partial 16S rRNA genes by using a MiSeq System 

(Illumina) and the instructions of the manufacturer for amplicon sequencing. 
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3.11 NONOPTIMAL MICROENVIRONMENTAL PH EXPOSURE 
 

To investigate how this microbial community responds to nonoptimal 

microenvironmental pH. We used Horikoshi media (with modification) which is the most 

commonly used culture medium for isolating alkaliphiles designed by Koki Horikoshi 

(Horikoshi 1999). The prokaryotic cultures were set up using modified Horikoshi media, 

which is essentially a 50 % v/v Horikoshi-I and Horikoshi-II. This modified Horikoshi media 

contains glucose 5g, soluble starch 5g, peptone 5g, yeast extract 5g, KH2PO4 1g, MgSO4 ∙ 

7 H2O 0.2g, Na2CO3 10g and NaCl 40g for every 1000 ml of media. The pH was adjusted to 

pH 9 (suboptimal) and pH 10 (superoptimal) with sterile NaOH, respectively. A total of 8 

cultures of 300 ml modified Horikoshi were set up 4 for each initial pH; 3 samples and 1 

control. The modified Horikoshi medium was inoculated with 3 g of the sediment mix. 

Controls were used to see the extent of the effect of aeration due to shaking and the 

impact of the sediment itself. Two controls, one for each pH, were inoculated with 3 g of 

double autoclaved sediment. The cultures were incubated at 30 °C on a shaker at 100 rpm. 

50 ml of culture from each flask was taken every 5 days until 25 days. The samples were 

centrifuged for 15 min at 10,000 rpm and 10 °C (Sorvall RC 6 Centrifuge, Thermo 

Scientific). The supernatants were used for pH measurement and HPLC analysis. The 

resulting cell pellets were used for DNA extraction. 

 

3.12 HPLC ANALYSIS OF CULTURE FILTRATE FROM NONOPTIMAL PH 
EXPOSURE BY VARIAN STAR PLATFORM 

 

Culture filtrates were collected and centrifuged at low rpm resulting supernatants were 

filter sterilized and lyophilize, stored in the freezer until required. HPLC was performed on 

a Varian Star instrument where channel was A=Fluores 1V, detector type was ADCB (1 

Volt), bus address 16, sample rate 5.00 Hz and run time was 50.003 min. Run mode was 

analysis, peak measurement was peak area and calculation type was percent.  
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3.13 SEQUENCING 
 

In this study, we have used high-throughput next generation sequencing (NGS) techniques 

to explore the total and the active prokaryotic biodiversity of sediment from Lonar crater 

lake. High-throughput sequencing is also deployed to follow the community dynamics of 

prokaryotes during microenvironmental pH homeostasis and direct metagenome 

analysis. With the advance in high-throughput sequencing techniques, it is possible to 

produce an enormous volume of data cheaply (Metzker 2010). In this study, we have used 

two different high-throughput sequencing platform, both based on ‘sequencing by 

synthesis’ principle of Melamade(Melamade 1985, Hyman 1988). One is Roche GS-FLX 

454 pyrosequencer, and the other is Illumina MiSeq.  

 

3.13.1  SEQUENCING BY ILLUMINA MISEQ 

 

In the case of Illumina, solid-phase amplification PCR is used for clonal amplification of 

templates to yield arbitrarily distributed clusters on a glass slide. Forward and reverse 

primers are covalently attached to the slide. The primer-template ratio delimits density of 

the amplified clusters. This process results in hundreds of millions spatially distinct 

template clusters. Illumina uses a four-color cyclic reversible terminator (CRT) chemistry 

that includes four different fluorescently labeled nucleotide incorporation, fluorescence 

imaging, and cleavage repeatedly (Metzker 2005). A DNA polymerase, attached to the 

primed template, adds only one fluorescently modified nucleotide, which represents the 

complement of the template base. The DNA synthesis is termination after the addition of 

a single nucleotide. The remaining unincorporated nucleotides are discarded. After that 

imaging is performed to identify the incorporated nucleotide. Then a cleavage step 

removes the terminating or inhibiting group along with the fluorescent dye. After 

washing, next cycle is performed. In this way, one nucleotide per cycle, the sequence is 

determined. Four colors are detected by total internal reflection fluorescence imaging 

using two lasers (Metzker 2010). 
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3.13.2  SEQUENCING BY ROCHE GS-FLX 454 PYROSEQUENCER 

 

In the case of Roche, emulsion PCR (emPCR) is used to amplify the templates clonally. 

Universal priming sites of adaptors are ligated to the target ends; the DNA strands are 

separated and arrested onto beads as one DNA molecule per bead. After emPCR beads 

are amplified and enriched, they are deposited on individual picotiter plate (PTP) wells 

(Leamon, Lee et al. 2003, Metzker 2010). The NGS chemistry is performed in these wells. 

Smaller beads with attached sulfurylase and luciferase are loaded into wells surrounding 

the larger template beads. Different dNTPs are then flowed through the wells and 

dispensed in a predetermined chronological order. The sequencing chemistry of Roche is 

a non-electrophoretic, bioluminescence scheme that measures the release of inorganic 

pyrophosphate, that is pyrosequencing, by proportionately translating it into a visible light 

signal using a series of enzymatic reactions (Ronaghi, Karamohamed et al. 1996, Ronaghi, 

Uhlen et al. 1998). This bioluminescence is imaged with a charge-coupled device camera.  

 

3.14 ANALYSIS OF SEQUENCING DATA 
 

3.14.1 ANALYSIS OF SEQUENCING OF PARTIAL 16S RRNA GENE DATA 

FROM ILLUMINA PLATFORM 

 

Raw sequence data from samples of the total and the active community diversity was 

extracted from Illumina MiSeq. Datasets, generated from MiSeq sequencing, of partial 

16S rRNA gene, were processed with Usearch version 8.0.1623 (Edgar 2010, Edgar and 

Flyvbjerg 2015). Paired-end reads were merged and quality filtered. Filtering included the 

removal of reads shorter than 400bp. Processed sequences of all samples were joined and 

clustered into operational taxonomic units (OTUs) at 3 % genetic dissimilarity using the 

UPARSE algorithm (Edgar 2013) implemented in USEARCH. A denovo chimera removal 

was included in the clustering step. Afterward, putative chimeric sequences were 

removed using UCHIME (Edgar, Haas et al. 2011) in reference mode. It was done with the 
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SILVA database (Silva SSURef 123 NR) (Quast, Pruesse et al. 2013, Yilmaz, Parfrey et al. 

2014) as reference dataset (Camacho, Coulouris et al. 2009). Subsequently, processed 

sequences were mapped to OTU sequences to obtain an OTU table. Taxonomy was 

determined by the representative sequence of each OTU classified by BLAST alignment 

against the most recent SILVA database (see above). All non-Bacterial or non-Archaeal 

OTUs were removed. Alpha diversity indices and rarefaction curves were calculated with 

QIIME version 1.9 (Caporaso, Kuczynski et al. 2010) as described by Wemheuer et al. 

(Wemheuer, Taube et al. 2013). 

 

3.14.2 ANALYSIS OF SEQUENCING OF PARTIAL 16S RRNA GENE DATA 

FROM ROCHE PLATFORM 

 

Raw sequence data from samples of additional total diversity survey was extracted from 

Roche GS-FLX 454 pyrosequencer. Sequences with shorter read than 300bp, with an 

average quality value below 25, sequences with number of ambiguous base exceeding 6, 

possessing long homopolymer stretches (>8bp) and primer mismatches (>3) were 

removed. These sequences were denoised using Acacia denoiser (Bragg, Stone et al. 

2012). Remaining primer sequences were truncated from the obtained reads with 

Cutadapt (Martin 2011). Chimeric sequences were also removed using UCHIME and the 

current greengenes core set as reference dataset (DeSantis, Hugenholtz et al. 2006, Edgar, 

Haas et al. 2011). Processed sequences of all samples were joined, sorted by decreasing 

the length, and clustered employing the UCLUST algorithm (Edgar 2010). Sequences were 

clustered into operational taxonomic units (OTUs) at 3 % genetic divergence according to 

Simon et al. (Simon, Wiezer et al. 2009). OTUs at 3 % divergences represent species level 

(Schloss and Handelsman 2005). The phylogenetic composition was determined using the 

QIIME (Version 1.9) assign_taxonmy.py script (Caporaso, Kuczynski et al. 2010). A BLAST 

alignment against the Silva SSURef 123 NR database (Pruesse, Quast et al. 2007) was 

thereby performed. Sequences were classified as per the Silva taxonomy of their best hit. 

Rarefaction curves, Shannon indices (Shannon 2001) and Chao1 indices (Chao and Bunge 

2002) were calculated. 
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3.14.3 ANALYSIS OF DIRECT METAGENOME SEQUENCING DATA FROM 

ILLUMINA PLATFORM 

 

Reads were obtained from the direct sequencing of the Lonar metagenome and filtered 

with Trimmomatic v.0.30(Bolger, Lohse et al. 2014). Assembling of this metagenomic data 

was performed with SPAdes, v 3.7.0, (Bankevich, Nurk et al. 2012, Nurk, Bankevich et al. 

2013) using its metaSPAdes function and default settings. Resulting contigs were analyzed 

for predicted ORFs (Open Reading Frame) with Prodigal (Prokaryotic Dynamic 

Programming Gene Finding Algorithm) , v 2.6.0 (Hyatt, Chen et al. 2010) using 

recommended mode for metagenome, Anonymous mode. All the protein translation 

results of these ORFs from Prodigal are annotated and analyzed using GhostKOALA, v 2.0 

(Kanehisa, Sato et al. 2016), a KEGG (Kyoto Encyclopedia of Genes and Genomes) tool for 

functional characterization of the genome and metagenome sequences. Reconstruction 

of Genes or proteins (KEGG GENES) , KO groups (KEGG ORTHOLOGY) , KEGG modules, 

functional hierarchy (KEGG BRITE) and pathway maps (KEGG PATHWAY) were also 

obtained from the GhostKOALA service by KEGG. 
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4 RESULTS AND DISCUSSION 
 

4.1 DESCRIPTION OF SEDIMENT SAMPLES FROM LONAR CRATER LAKE 
 

The coordinates of Lonar 1, Lonar 2 and Lonar 3 (as described in 3.1) were 19°58'20.65"N 

76°30'22.74"E, 19°58'36.70"N 76°30'45.19"E and 19°58'47.82"N 76°30'17.50"E. Their 

respective pH and temperature were found to be pH 9.7, pH 10.2, pH 10.3 and 27.2 oC, 

28.5 oC, 28.3 oC. Lonar 1, Lonar 2 and Lonar 3 were mixed thoroughly w/w and analyzed   

to determine an overview of physicochemical parameters of Lonar lake sediment (Table 

24). All samples were stored at -80 oC until further processing. 

 

TABLE 24: PHYSICOCHEMICAL PARAMETERS OF LONAR SEDIMENT 

Parameter Unit Measuring Value Detection Limit 

Ash 815 °C (FG)   % of Wet Weight 57.9  

Ash 815 °C (FG)   % of Dry Weight 97.3  

Carbon  % of Wet Weight 0.8  

Carbon  % of Dry Weight 1.3  

Hydrogen  % of Wet Weight 0.1  

Hydrogen  % of Dry Weight 0.1  

Nitrogen  % of Wet Weight 0.2  

Nitrogen  % of Dry Weight 0.3  

Oxygen  % of Wet Weight 0.6  

Oxygen  % of Dry Weight 1  

Sulphur  % of Wet Weight 0  

Sulphur  % of Dry Weight 0  

Aluminium mg/L 0.18 0.02 

Antimony mg/L < 0.010 0.01 

Arsenic mg/L < 0.010 0.01 
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Parameter Unit Measuring Value Detection Limit 

Barium mg/L < 0.0050 0.005 

Beryllium mg/L < 0.001 0.001 

Boron mg/L 0.89 0.02 

Cadmium mg/L < 0.001 0.001 

Calcium mg/L 6 0.1 

Chromium mg/L < 0.005 0.005 

Copper mg/L 0.089 0.005 

Iron mg/L < 0.005 0.005 

Lead mg/L < 0.01 0.01 

Lithium mg/L < 0.02 0.02 

Magnesium mg/L 0.56 0.1 

Manganese mg/L < 0.005 0.005 

molybdenum mg/L 0.029 0.005 

Nickel mg/L < 0.005 0.005 

Phosphorus mg/L 1.57 0.05 

Potassium mg/L 4.3 0.1 

Selenium mg/L < 0.01 0.01 

Sodium mg/L 374 0.1 

Strontium mg/L 0.0289 0.005 

Thallium mg/L < 0.005 0.005 

Tin mg/L < 0.0 0.005 

Titanium mg/L < 0.02 0.02 

Vanadium mg/L 0.98 0.005 

Zinc mg/L 0.039 0.01 
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The physicochemical parameters of the sediments samples that we collected differ from 

some of the other studies in certain aspects, particularly Sulphur, Iron and Nickel. In our 

analysis, we failed to detect these elements whereas in the studies from 2006 (Wani, 

Surakasi et al. 2006) and 2015 (Paul, Kumbhare et al. 2015) these elements have been 

detected. Sulfates as high as 53.84 mg/L, Iron as high as 7.9 g/L and Nickel as high as 8.25 

mg/L has been reported from these studies from 2006 and 2015.  

 

4.2 THE TOTAL AND THE ACTIVE PROKARYOTIC DIVERSITY OF LONAR 
CRATER LAKE 

 

4.2.1 GENERAL ANALYSES OF THE TOTAL AND THE ACTIVE COMMUNITY 

SEQUENCING DATA 

 

The significant benefit of illumine sequencing technique is the assembly of paired-end 

reads. This assembly prominently decreases the number of erroneous sequences included 

in downstream analyses (Bartram, Lynch et al. 2011). Significantly low total error rates, 

between 0.0030 and 0.0049, has been reported for Illumina MiSeq (Ross, Russ et al. 2013). 

As described in 3.10.1 and 3.13.1, V3-V4 region of the 16S rRNA gene was amplified and 

sequenced.  Reads shorter than 400bp was removed. Processed sequences of all samples 

were joined and clustered into operational taxonomic units (OTUs) at 3 % genetic 

dissimilarity using the UPARSE algorithm (Edgar 2013) implemented in USEARCH. The 

analysis method is provided in 3.14.1. A total of 12  samples (3 sediments X 2 types of 

target domains X 2 types of template DNA) as described in 3.10.1 and 3.10.2.  In 6 samples 

of the total diversity assessment, a total of 31,650 and 59,079 of archaeal and bacterial 

sequences were found. It ranges from 11,664 to 5,567 with an average of 10,550 in 

Archaea and in Bacteria it varies from 26,430 to 13,979 with an average of 19,693. In the 

case of 6 samples of the active community diversity, a total of 20,724 and 71,205 of 

archaeal and bacterial sequences were found. It ranges from 9,691 to 4,907 with an 

average of 6,908 for Archaea and for Bacteria it is 28,270 to 16,079 with an average of 

23,735. 
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4.2.2 PROKARYOTIC DIVERSITY AND RICHNESS 

 

All the OTUs were identified at genetic distances of 3 % by using  4,907 randomly selected 

and denoised sequences per sample for Archaea and 13,979 sequences per sample for 

Bacteria were used. These OTUs were used to determine rarefaction curves, richness, and 

diversity. At 3 % genetic distance all rarefaction curves attain a significant level of 

saturation, indicating that the surveying effort covered a substantial range of taxonomic 

diversity present in the samples at this genetic distance (Figure 6). 

 

 

FIGURE 6: RAREFACTION CURVES INDICATING THE OBSERVED NUMBER OF OPERATIONAL 
TAXONOMIC UNITS (OTUS) IN THE TOTAL AND THE ACTIVE COMMUNITY STUDY. Three different 
samples are indicated in red, green and black respectively for Lonar 1, Lonar 2 and 
Lonar 3. The curves indicate gradual saturation in the number of OTUs with an 
increase in the number of sequences examined. On the left rarefaction curves for 
Archaea and on the right for Bacteria, all the curves are at 3 % genetic distances. 
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Evaluation of the rarefaction analyses with the number of OTUs determined by Max. 

clusters (nmax) revealed that among Archaea, the total and the active community diversity 

covered 74.21 % (± 1.83) and 84.07 % (± 3.52) of the estimated complete diversity. In the 

case of Bacteria the total and the active community diversity covered 59.78 % (± 2.24) and 

88.98 % (± 3.96). Highest coverage in Bacteria among all samples was observed in the 

active community of Lonar 1, 93.95 %. Lowest coverage was found in the total diversity of 

Lonar 2 for Bacteria, 56.61 %. Thus, we did not survey the full extent of taxonomic diversity 

at these genetic distances, but the surveying efforts assessed a substantial fraction of the 

prokaryotic diversity within individual sediment samples. In samples of the total and the 

active community diversity, variation in the number of OTUs is observed (Figure 7).  

 

FIGURE 7: BOXPLOT DIAGRAM OF THE NUMBER OF TAXONOMIC UNITS (OTUS) AT THE SPECIES LEVEL 
IN DIFFERENT SAMPLING EFFORTS. On the left is the boxplot diagram for Archaea and on 
the right is for Bacteria.  

 

In the survey of the total diversity, the highest number of unique OTUs in Archaea and 

Bacteria were found from Lonar 2 and Lonar 1 of 355 OTUs and 2,057 OTUs respectively. 

Among the active community, the highest number of OTUs in Archaea and Bacteria were 

observed in Lonar 1 and Lonar 3 of 146 OTUs and 618 OTUs respectively. Most of the OTUs 

derived from all the samples shows that majority of them are not cultured (Figure 8). One 

noteworthy observation in this regard is that the total archaeal diversity has more 

cultured representatives than the active archaeal diversity. However, in the case of 

Bacteria, the active community diversity is better represented in terms of closely related 
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cultured members than in the total diversity. In archaeal samples, the average percentage 

of cultured OTUs in the total and the active community diversity was found to be 32.11 % 

(±13.21) and 17.6 % (±4.56). In the case of Bacteria, we observed, the average percentage 

of cultured OTUs in the total and the active community diversity of 26.25 % (±8.14) and 

48.75 % (±8.04). Among all the observations highest percentage of cultured prokaryotes, 

59.95 %, was found in the active bacterial community of Lonar 3 sediment. Lowest 

percentage of cultured prokaryotes were observed in the active archaeal community of 

Lonar 3 sediment. These observations indicate that bacterial community of soda lakes are 

better investigated than archaeal community. Also, the majority of the prokaryotes do not 

have a cultured representative. 

 

FIGURE 8: RELATIVE DISTRIBUTION OF UNCULTURED AND CULTURED UNIQUE OTUS. On the left 
distribution of uncultured and cultured unique OTUs among Archaea is shown. On 
the right distribution of uncultured and cultured unique OTUs among Bacteria is 
shown.  

 

Details of all 12 individual observations with their Observed clusters, Max. clusters (nmax), 

Coverage ( %) , Shannon index (H’) and Chao1 are given in Table 25. The 

comparison of coverage of all the 12 observations highest 5 covered samples shows that 

all 5 are from the active community. It indicates that, in our survey, the active community 

is more widely covered than the total diversity. Also, this observation signifies that the 
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total diversity is more diverse than the active community, and  all the prokaryotes of the 

sediment may not be active at the time of collection. Out of these 5 observations, only 2 

are from Archaea and 3 from Bacteria. In our assessment Bacteria is better covered than 

Archaea. It may be a result of recovering more bacterial sequences than Archaeal. The 

coverage of these samples ranged from 93.96 % to 84.27 %. The comparison of Shannon 

index from all 12 observations revealed that out of highest indexed 5 samples 3 of them 

were from the total diversity and 2 of them were from the active community. It indicates 

that the total diversity is more diverse than the active community. Also, we noticed that 

all of these 5 observations were from Bacteria, which signifies that bacterial diversity is 

more than archaeal in this habitat. Highest Shannon index was observed to be 7.762 in 

the total diversity of Lonar 3 Bacteria. In the case of Chao 1 among the 5 with highest 

values are all from Bacteria. 3 of which are from the total diversity and other 2 are from 

the active community diversity. In these 5 samples, Chao 1 values are between 3,755.51 

to 545.27. From all the  Observed clusters, Max. clusters (nmax), Shannon index (H’) 

and Chao1, sediments of Lonar 3 and Lonar 2 tends to be more diverse than Lonar 1 

sediments.  

 

TABLE 25: GENERAL ANALYSIS OF THE SEQUENCE DATA. 

Sample Observed 
clusters 

Max. 
clusters 
(nmax)  

Coverage 
( %)  

Shannon 
index 
(H’)  

Chao1 

Total Lonar 1 
(Archaea)  

131.6 177.49 74.14 3.01 225.52 

 Lonar 2 
(Archaea)  

191.9 266.52 71.99 3.75 453.88 

 Lonar 3 
(Archaea)  

135 176.47 76.49 3.67 226.82 

 Mean 152.83 206.83 74.21 3.48 302.08 

 SD 27.65 42.21 1.83 0.33 107.34 

 CV 0.18 0.20 0.02 0.09 0.35 

 Lonar 1 
(Bacteria)  

1405 2292.51 61.28 7.50 3491.55 

 Lonar 2 
(Bacteria)  

1405.3 2482.00 56.61 6.75 3557.27 
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Sample Observed 
clusters 

Max. 
clusters 
(nmax)  

Coverage 
( %)  

Shannon 
index 
(H’)  

Chao1 

Total Lonar 3 
(Bacteria)  

1518 2469.82 61.46 7.76 3755.51 

 Mean 1442.76 2414.77 59.78 7.33 3601.44 

 SD 53.19 86.59 2.24 0.42 112.19 

Sample Observed 
clusters 

Max. 
clusters 
(nmax)  

Coverage 
( %)  

Shannon 
index 
(H’)  

Chao1 

 CV 0.03 0.03 0.03 0.05 0.03 

Active Lonar 1 
(Archaea)  

123.3 140.31 87.87 4.41 145.78 

 Lonar 2 
(Archaea)  

118.2 139.13 84.95 3.79 157.32 

 Lonar 3 
(Archaea)  

127 159.98 79.38 3.71 157.51 

 Mean 122.83 146.47 84.07 3.97 153.54 

 SD 3.60 9.56 3.52 0.31 5.48 

 CV 0.02 0.06 0.04 0.07 0.03 

 Lonar 1 
(Bacteria)  

283.7 301.93 93.95 5.69 291.22 

 Lonar 2 
(Bacteria)  

512.4 577.52 88.72 6.23 545.27 

 Lonar 3 
(Bacteria)  

559 663.35 84.26 5.74 628.31 

 Mean 451.7 514.27 88.98 5.89 488.27 

 SD 120.30 154.17 3.96 0.24 143.36 

 CV 0.26 0.29 0.04 0.04 0.29 
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4.2.3 DISTRIBUTION OF TAXA AND PHYLOTYPES 

 

4.2.3.1 THE TOTAL AND THE ACTIVE COMMUNITY DIVERSITY OF ARCHAEA 

 

Among Archaea, we were able to classify 99.91 % and 98.94 % of all the sequences above 

domain level in the total and the active community diversity respectively. All the archaeal 

OTUs were distributed to 10 Order or order-level taxa and 47 Genera. In the total and the 

active community 45 and 27 genera were observed. Relative abundances of archaeal 

orders are presented in Figure 9 and Figure 10. The genera are presented in Figure 11 and 

Figure 12. Details of the relative abundances of the orders and genera are provided in 

Table 33 and Table 34. Most dominant orders were Halobacteriales, Methanobacteriales, 

Methanomicrobiales, Thermoplasmatales, Methanosarcinales.  
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FIGURE 9: RELATIVE ABUNDANCES OF ARCHAEAL ORDERS IN LONAR SEDIMENTS. Sample numbers 
indicating the different sediment samples are given below the respective bars. 
Orders are accounting for <1 % of all classified sequences are summarized in the 
artificial group ‘others.'  
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FIGURE 10: RELATIVE ABUNDANCES OF THE RARE ARCHAEAL ORDER IN LONAR SEDIMENTS. Sample 
numbers indicating the different sediment samples are given below the respective 
bars. Only the phylogenetic groups are accounting for <1 % of all classified sequences 
are shown.  

 

In the total and the active community, Halobacteriales alone contribute to the average 

relative abundance of 66.73 % and 46.18 %. Highest relative abundance, 93.31 %, of 

Halobacteriales was observed in the total diversity of Lonar 3 sediments, and lowest of 

27.59 % was found in the sediments of Lonar 1. In the total diversity, the Halobacteriales 

were mostly represented by Natronococcus (72.28 %) , Haloterrigena (10.71 %) , Natrialba 
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(2.66 %) , Halovivax (1.34 %) , and Natronorubrum (0.59 %). In case of the active 

community diversity, Natronococcus (50.78 %) , Haloterrigena (5.87 %) , Halovivax (1.44 

%) , Natrialba (0.82 %) , and Natronorubrum (0.22 %) represents the order 

Halobacteriales. Two novel haloalkaliphilic archaeon species of Natronococcus, 

Natronococcus amylolyticus sp. nov., and Natronococcus roseus sp. nov., has been 

isolated from Kenyan soda lake, Lake Magadi and sediments of the soda lake Chagannor, 

Inner Mongolia, China, they are able to grow at ph as high as pH 11 (Kanal, Kobayashi et 

al. 1995, Corral, Gutierrez et al. 2013). Members of the genus Haloterrigena are mostly 

halophilic and often alkaliphilic as well. Novel species of this genus has been isolated from 

soda lakes and are known to grow at NaCl concentrations as high as 4.5 M, pH as high as 

pH 11.(Ventosa, Gutierrez et al. 1999, Selim and Hagagy 2016).  The novel genus Halovivax 

are mostly extremely halophilic and moderately alkaliphilic, they have been isolated from 

salt lakes of Iran and Inner Mongolia, China, they usually are able to grow at pH lower 

than pH 10.(Castillo, Gutierrez et al. 2006, Castillo, Gutierrez et al. 2007, Amoozegar, 

Makhdoumi-Kakhki et al. 2014, Amoozegar, Makhdoumi-Kakhki et al. 2015). However, 

Halovivax has also been reported from soda lakes, for example, Lake Elmenteita in 

Kenya(Mwirichia, Cousin et al. 2010).  Novel species of Natrialba, Natrialba hulunbeirensis 

sp. nov., and Natrialba chahannaoensis sp. nov., has been reported from soda lakes of 

Inner Mongolia, China(Xu, Wang et al. 2001). Two novel haloalkaliphilic species of novel 

genus Natronorubrum, Natronorubrum bangense gen. nov., sp. nov., and Natronorubrum 

tibetense gen. nov., sp. Nov.,  have been isolated from the soda lakes of Tibet, with the 

ability to grow at pH as high as pH 11(Xu, Zhou et al. 1999).  

In the total and the active community diversity the relative abundance of the order 

Methanobacteriales was found to be 24.75 % and 13.34 % respectively. Sediments of 

Lonar 1 shows the highest relative abundance of, 60.99 %, Methanobacteriales in the total 

diversity and lowest relative abundance, 1.66 %, was found in the sediments of Lonar 2 in 

the total diversity. The order Methanobacteriales was represented by the genera 

Methanobacterium (0.68 %) , Methanobrevibacter (0.03 %) , Methanosphaera (0.01 %) in 

the total community and Methanobrevibacter (16.90 %) , Methanobacterium (2.01 %) , in 

the active community diversity. We were unable to detect any Methanosphaera in the 

active community. Several methylotrophic novel species of Methanobacterium has been 
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observed from various lake sediments. For example Methanobacterium movens sp. nov., 

Methanobacterium flexile sp. nov., Methanobacterium lacus sp. nov.,(Zhu, Liu et al. 2011, 

Borrel, Joblin et al. 2012, Schirmack, Mangelsdorf et al. 2014). Although they are not of 

significance in terms of alkaliphily, they are well-known methanogens. We found a paucity 

of available literature about the presence of Methanobrevibacter and Methanosphaera in 

soda lakes. Which is not surprising as there is a general lack of investigations on Archaea 

of soda lakes as compared to Bacteria. However, they are both well known for their 

methanogenic activity(van de Wijngaard, Creemers et al. 1991).  

The order Methanomicrobiales was observed to be of 4.30 % and 29.39 % relative 

abundance in the total and the active community. Sediments of Lonar 3 showed the 

maximum abundance of Methanomicrobiales; that is 43.21 % in the active community and 

lowest value of 2.58 % was observed in sediments of Lonar 1 in the total diversity 

assessment. The order Methanomicrobiales, in the total diversity, was represented by the 

genera Methanocalculus (2.74 %), Methanoculleus (0.05 %) and Methanogenium (0.004 

%). In case of the active diversity, Methanomicrobiales was represented by 

Methanocalculus (5.87 %) , Methanocorpusculum (0.17 %) , Methanospirillum (0.12 %) 

and Methanoculleus (0.08 %). Haloalkaliphilic methanogenic novel species, 

Methanocalculus alkaliphilus sp. nov., and Methanocalculus natronophilus sp. nov., of the 

genus Methanocalculus has been isolated from hypersaline soda lakes including Lonar 

with optimum growth pH between pH 9 and pH 9.5(Surakasi, Wani et al. 2007, Zhilina, 

Zavarzina et al. 2013, Sorokin, Abbas et al. 2015). Several novel methanogen species of 

genus Methanocorpusculum has been isolated from various waterbodies but not from any 

soda lake(Zellner, Stackebrandt et al. 1989). Novel species of the genus Methanoculleus 

has been isolated from marine sediment as well as from Lonar before and they are 

methanogenic(Mikucki, Liu et al. 2003, Dabir, Honkalas et al. 2014, Weng, Chen et al. 

2015). New methanogenic species, for example, Methanogenium frigidum sp. nov., 

Methanogenium marinum sp. nov., Methanogenium boonei sp. Nov., of the genus 

Methanogenium has been isolated mostly from marine and lake sediments, however, 

none has been isolated from soda lakes(Franzmann, Liu et al. 1997, Chong, Liu et al. 2002, 

Kendall, Wardlaw et al. 2007). Novel methanogenic species, Methanospirillum lacunae sp. 

nov., and Methanospirillum psychrodurum sp. nov., of the genus Methanospirillum has 
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been isolated from soils but not from soda lakes mostly able to grow between pH 6.5 and 

pH 8(Iino, Mori et al. 2010, Zhou, Liu et al. 2014).  

Relative abundance of the order Thermoplasmatales was observed in the total and the 

active community to be 2.82 % and 5.48 % respectively. The highest relative abundance 

of 8.53 % was found in the active community of Lonar 1 sediments, and lowest relative 

abundance of 1.18 % was found in the sediments of Lonar 3 in the total diversity 

assessment. The order Thermoplasmatales is represented by the genus 

Methanomassiliicoccus in both the total and the active community diversity. Higher 

relative abundance was observed in the active community (0.72 %) than in the total 

diversity (0.004 %). Species of the genus Methanomassiliicoccus has been reported from 

sediments of estuary but not from any soda lake(Zhou, Chen et al. 2014). 

In the total and the active community diversity the relative abundance of the order 

Methanosarcinales was found to be 1.27 % and 5.32 % respectively. Maximum relative 

abundance was noticed in the active community of Lonar 1 sediments to be 6.49 %. The 

sediments of Lonar 2 in the total diversity showed the lowest relative abundance of 0.32 

%. They are mostly represented by Methanosaeta (4.93 %) , Methanosarcina (0.32 %) , 

Methanolobus (0.01 %) , Methanococcoides (0.004 %) and Methermicoccus (0.004 %) in 

the total diversity. In the active community, they are mostly represented by 

Methanosaeta (14.89 %), Methanosarcina (1.88 %) and Methanolobus (0.07 %). 

Methanosaeta has been reported from the soda lakes of Kulunda Steppe, Altai, Russia 

able to function as methanogenic Archaea between pH 8 and pH 10.5(Sorokin, Abbas et 

al. 2015). Several methanogenic species of Methanosarcina has been isolated and 

reported from various lake sediments including Lonar(Cairo, Clarens et al. 1992, 

Simankova, Parshina et al. 2001, Antony, Kumaresan et al. 2013, Ganzert, Schirmack et al. 

2014). Methanogenic species of Methanolobus has been found in soda lakes of Kulunda 

Steppe, Altai, Russia and also from Lonar(Antony, Murrell et al. 2012, Sorokin, Abbas et 

al. 2015). Methanogenic species of Methanococcoides has been isolated from marine, 

lake and estuarine sediments but not from soda lakes(Singh, Kendall et al. 2005, Lyimo, 

Pol et al. 2009, Ticak, Hariraju et al. 2015). The novel methanogenic genus 

Methermicoccus with only one species,  Methermicoccus shengliensis gen. nov., sp. nov., 
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has only been isolated from Shengli oilfield, China. No species of Methermicoccus have 

been isolated or reported from soda lakes. 

 

 

FIGURE 11: RELATIVE ABUNDANCES OF THE MOST ABUNDANT ARCHAEAL GENERA IN LONAR 
SEDIMENTS. Sample numbers indicating the different sediment samples are given 
below the respective bars. Only the phylogenetic groups accounting for >1 % of all 
classified sequences are shown.  
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FIGURE 12: RELATIVE ABUNDANCES OF THE RARE ARCHAEAL GENERA IN LONAR SEDIMENTS. Sample 
numbers indicating the different sediment samples are given below the respective 
bars. Only the phylogenetic groups, accounting for <1 % of all classified sequences 
are shown.  
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4.2.3.2 THE TOTAL AND THE ACTIVE COMMUNITY DIVERSITY OF BACTERIA 

 

All the bacterial sequences have been classified above domain level. All the bacterial OTUs 

were distributed to 47 phylum or phylum-level taxa and 386 genera or genera level taxa 

in the total diversity. In the case of the active community, all the OTUs were distributed 

to 40 phylum or phylum-level taxa and 236 genera or genera level taxa. Relative 

abundances of these phyla and genera are presented in the Figure 13, Figure 14 and Figure 

15, Figure 16. Details of the relative abundances of the phyla and genera are provided in 

Table 35 and Table 36. Most dominant phyla in the total diversity are Firmicutes, 

Actinobacteria, Chloroflexi, Proteobacteria and Gemmatimonadetes. In the active 

community, most dominant phyla are Firmicutes, Actinobacteria, Proteobacteria, 

Chloroflexi and Deinococcus-Thermus. 
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FIGURE 13: RELATIVE ABUNDANCES OF DOMINANT BACTERIAL PHYLUM GROUPS IN LONAR 
SEDIMENTS. Sample numbers indicating the different sediment samples are given 
below the respective bars. Phylogenetic groups accounting for <1 % of all classified 
sequences are summarized in the artificial group ‘others.'  
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FIGURE 14: RELATIVE ABUNDANCES OF THE RARE BACTERIAL PHYLUM IN LONAR SEDIMENTS. Sample 
numbers indicating the different sediment samples are given below the respective 
bars. Only the phylogenetic groups, accounting for <1 % of all classified sequences 
are shown.  

 

In the active and the total community diversity phylum Firmicutes contributes to 51.16 % 

and 55.03 % relative abundance respectively. The highest relative abundance of 63.55 % 

was observed in the sediments of Lonar 3 in the active community. Lowest abundance of 

45.96 % was found in the sediments of Lonar 1 in the total diversity. Firmicutes, in the 

total diversity, are mostly represented by Bacillus (34.83 %) , Alkaliphilus (10.22 %) , 
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Dethiobacter (8.55 %) , Anaerobacillus (7.28 %) and Natronincola (3.58 %). In the case of 

the active community Firmicutes are mostly represented by Alkaliphilus (24.02 %), 

Anaerobacillus (20.08 %), Bacillus (12.78 %), Natronincola (9.22 %) and Gelria (0.38 %). 

Several species including novel species (Bacillus bogoriensis sp. nov., Bacillus 

chagannorensis sp. nov., Bacillus daliensis sp. nov., Bacillus lonarensis sp. nov., Bacillus 

caseinilyticus sp. nov.,) of the genus Bacillus has been isolated from various soda lakes 

around the world including Lonar(Vargas, Delgado et al. 2005, Carrasco, Marquez et al. 

2007, Zhai, Liao et al. 2012, Reddy, Thirumala et al. 2015, Vishnuvardhan Reddy, 

Thirumala et al. 2015). They are mostly alkaliphilic and often halotolerant, some are able 

to grow at pH 11. Novel species of the genus Alkaliphilus has been isolated from saline 

lake (Alkaliphilus halophilus sp. nov.,) and soda lake (Alkaliphilus peptidofermentans sp. 

nov.,) (Zhilina, Zavarzina et al. 2009, Wu, Shi et al. 2010). They are halophilic and 

alkaliphilic with pH optima ranging from pH 8 and pH 9.1. Novel reductive sulfur cycling 

genus Dethiobacter (Dethiobacter alkaliphilus gen. nov. sp. nov.,) has been isolated from 

north-eastern Mongolian soda lakes, with the ability to grow at pH 10.3(Sorokin, Tourova 

et al. 2008). Novel strictly anaerobic diazotrophic genus Anaerobacillus (Anaerobacillus 

alkalilacustre gen. nov., sp. nov.) has been isolated from soda lake Khadyn, Russia. They 

are mesophilic halotolerant obligate alkaliphilic and able to grow between pH 8.5 to pH 

10.7(Zavarzina, Tourova et al. 2009). Two novel obligate alkaliphilic species, Natronincola 

ferrireducens sp. nov., and Natronincola peptidovorans sp. nov., of the genus Natronincola 

with pH optima of pH 8.4 to pH 8.8, have been isolated from soda lakes(Zhilina, Zavarzina 

et al. 2009). Gelria are obligately anaerobic, obligately syntrophic, in pure culture shows 

saccharolytic growth and they transfer formed hydrogen to methanogenic partner. 

However, the novel genus Gelria (Gelria glutamica gen. nov., sp. nov.,) has not been 

isolated or reported from soda lake and they are able to grow in pH up to pH 8 (Plugge, 

Balk et al. 2002). 

Phylum Actinobacteria contributes to 15.97 % and 13.49 % in the total and the active 

community diversity respectively. They show maximum and minimum relative abundance 

of 25.56 % and 3.37 % in the active community diversity of the sediments of Lonar 2 and 

Lonar 1 respectively.   Phylum Actinobacteria is mostly represented by Longispora (5.51 

%), Luedemannella (0.51 %), Nitriliruptor (0.43 %), Micromonospora (0.23 %) and Euzebya 
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(0.16 %) in the total diversity. In the active community Actinobacteria is mostly 

represented by Longispora (5.05 %), Euzebya (2.10 %), Nitriliruptor (1.53 %), 

Micromonospora (0.59 %) and Luedemannella (0.58 %). Two novel species of novel 

aerobic genus  Longispora (Longispora albida gen. nov., sp. nov., and Longispora fulva sp. 

nov.,) has been isolated from soils but not from soda lakes (Matsumoto, Takahashi et al. 

2003, Shiratori-Takano, Yamada et al. 2011). Longispora albida gen. nov., sp. nov., can 

utilize glucose, inositol, xylose and sucrose as only carbon sources. Longispora fulva sp. 

nov., can utilize glucose but can not utilize inositol, xylose and sucrose. Two aerobic novel 

species of novel genus Luedemannella, represented by Luedemannella helvata sp. nov. 

and Luedemannella flava sp. Nov., have been isolated from soil but not from any soda 

lakes. They can grow in pH up to 9 (Ara and Kudo 2007). Novel haloalkaliphilic genus, 

Nitriliruptor alkaliphilus sp. nov., has been isolated from soda lakes of Kulunda Steppe, 

Altai, Russia, with the ability to grow at pH as high as pH 10.6 (Sorokin, van Pelt et al. 

2009). Several species of Micromonospora including some novel species have been 

isolated from marine and mangrove sediments, but not from any soda lakes (Huang, Lv et 

al. 2008, Ohlendorf, Schulz et al. 2012, Xie, Qu et al. 2012, Supong, Suriyachadkun et al. 

2013, Li and Hong 2015, Phongsopitanun, Kudo et al. 2015). Novel genus Euzebya has 

been isolated from the ventral epidermis of the Holothuria edulis (sea cucumber) but not 

from soda lakes. Euzebya tangerina gen. nov, sp. nov., are known to grow at pH of up to 

pH 9 (Kurahashi, Fukunaga et al. 2010). 

In the total and the active community diversity, the relative abundance of phylum  

Chloroflexi was found to be 9.57 % and 11.27 % respectively. The highest relative 

abundance of Chloroflexi was found to be 19.68 % in the sediments of Lonar 1 in the total 

diversity assessment and lowest, 3.07 %, was observed in Lonar 2 sediments of the total 

diversity. Phylum Chloroflexi is mostly represented by genera Nitrolancea (1.12 %), 

Sphaerobacter (0.06 %), Pelolinea (0.04 %), Dehalococcoides (0.01 %) and Ornatilinea 

(0.006 %) in the total diversity and by Nitrolancea (1.10 %), Sphaerobacter (0.14 %), 

Dehalococcoides (0.02 %), Pelolinea (0.003 %) in the active community. A 

chemolithoautotrophic nitrite-oxidizing novel genus, Nitrolancea hollandica gen. nov., sp. 

nov., was isolated from a nitrifying bioreactor with pH optima between pH 6.8 to pH 7.5 

(Sorokin, Vejmelkova et al. 2014). However, they have not been reported from any soda 
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lake. Chemoorganotrophic Sphaerobacter thermophilus gen. nov., sp. nov., has been 

isolated only from sewage sludge (Demharter, Hensel et al. 1989). Obligate anaerobic 

novel genus Pelolinea submarina gen. nov., sp. nov., has been isolated from marine 

subsurface sediments near Japan in 2014, none has been reported from any soda lakes. 

They can grow in pH up to pH 8.5 (Imachi, Sakai et al. 2014). Dehalococcoides mccartyi 

gen. nov., sp. nov., are obligate anaerobic hydrogenotrophic, organohalide-respiring 

Bacteria isolated from digester sludge of a wastewater treatment plant (Loffler, Yan et al. 

2013). However, they are not isolated or reported from soda lakes. A new anaerobic 

organotrophic cellulolytic genus Ornatilinea (Ornatilinea apprima gen. nov., sp. nov.,) able 

to grow at pH up to pH 9 has been reported from Russia, but not from any soda lake in 

2013 (Podosokorskaya, Bonch-Osmolovskaya et al. 2013). 

Phylum Proteobacteria contributes to 7.00 % and 12.93 % in the total and the active 

community diversity respectively. The highest relative abundance of Proteobacteria, 

17.24 %, was observed in sediments of Lonar 1 of the active community diversity and 

lowest, 3.51 %, was found in the total diversity of the Lonar 1 sediments. In the total 

diversity, phylum Proteobacteria is mostly represented by Hyphomicrobium (2.22 %), 

Haliangium (1.01 %),  Desulfovibrio (0.81 %), Geoalkalibacter (0.79 %) and Vulgatibacter 

(0.40 %). Phylum Proteobacteria, in case the active community is mostly represented by 

Pelomonas (2.35 %), Caulobacter (2.10 %), Acinetobacter (2.09 %), Sphingomonas (0.97 

%) and Brevundimonas (0.81 %). Methylotrophic species of Hyphomicrobium has been 

isolated from alkaline soil of coal mine, China and gold mine debris, Portugal, some of 

them are able to grow at pH as high as pH 12 (Marco, Pacheco et al. 2004, Han, Chen et 

al. 2009). Two obligate aerobic and moderately halophilic novel species, Haliangium 

ochraceum sp. nov., and Haliangium tepidum sp. nov., of the novel genus Haliangium gen. 

nov., has been isolated from coastal seaweed or sea grass of Japan (Fudou, Jojima et al. 

2002). Several novel species of sulfate-reducing bacterial genus Desulfovibrio has been 

isolated from various freshwater, marine, coastal and estuarine sediments of all over the 

world (Bale, Goodman et al. 1997, Reichenbecher and Schink 1997, Sass, Berchtold et al. 

1998, Sun, Cole et al. 2000, Takii, Hanada et al. 2008, Suzuki, Ueki et al. 2009). Members 

of the novel genus  Geoalkalibacter (Geoalkalibacter ferrihydriticus gen. nov. sp. nov.,) has 

been isolated from soda lakes of Russia. They are obligate alkaliphilic, capable of 
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dinitrogen fixation and able to grow at pH as high as pH 10 (Zavarzina, Kolganova et al. 

2006). In 2014, an obligate aerobic organotrophic new genus Vulgatibacter (Vulgatibacter 

incomptus gen. nov., sp. nov.,) has been isolated from a forest soil of Yakushima Island, 

Japan with the ability to grow at pH as high as pH 9 (Yamamoto, Muramatsu et al. 2014). 

However, none has been reported from any soda lake. Two novel species of Pelomonas, 

Pelomonas aquatica sp. nov., and Pelomonas puraquae sp. nov., with nitrogen fixing 

ability has been isolated in 2007, but not from soda lakes (Gomila, Bowien et al. 2007). 

Caulobacter has been reported from a soda lake of Kulunda Steppe, Altai, Russia (Tourova, 

Grechnikova et al. 2014). Members of the genus Acinetobacter has been reported and 

isolated from soda lakes of the Kulunda Steppe, Altai, Russia and high-altitude shallow 

lakes and salterns (Andean lakes) of dry Central Andes region of South America (Foti, 

Sorokin et al. 2008, Di Capua, Bortolotti et al. 2011, Kurth, Belfiore et al. 2015). They are 

known for their tolerance to high UV radiation, high salinity, and high heavy metal 

content. Several members of the genus Sphingomonas has been isolated from freshwater 

lakes as well as alkaline lake some are associated with environments of high UV 

irradiation, hypersalinity, drastic temperature changes (Farias, Revale et al. 2011, Chen, 

Jogler et al. 2013, Salka, Srivastava et al. 2014, Wei, Wang et al. 2015). Some of them can 

grow at pH as high as pH 10. Several species of the genus Brevundimonas including few 

new species, for example, Brevundimonas terrae sp. nov., Brevundimonas 

kwangchunensis sp. nov., Brevundimonas abyssalis sp. nov., Brevundimonas denitrificans 

sp. nov., has been isolated from deep subseafloor sediments and alkaline soils, some are 

able to grow at pH 10 (Yoon, Kang et al. 2006, Yoon, Kang et al. 2006, Tsubouchi, Shimane 

et al. 2013, Tsubouchi, Koyama et al. 2014). 

In the total diversity, the relative abundance of phylum  Gemmatimonadetes was found 

to be 4.69 % and in the case of the active community, it was 0.37 %. The maximum relative 

abundance of the phylum  Gemmatimonadetes, of 9.02 % was observed in Lonar 3 of the 

total diversity and minimum was observed (0.25 %) in Lonar 1 sediments of the active 

community assessment. It was represented in the total diversity mostly by 

Gemmatimonas (only cultured representative) and the genus Gemmatimonas was not 

detected in the active community diversity. The new aerobe genus Gemmatimonas 

aurantiaca gen. nov., sp. nov., have been described in 2003 from a laboratory scale 
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wastewater treatment process with the ability to grow between pH 6.5 and pH 9.5 (Zhang, 

Sekiguchi et al. 2003). 

In the active community, the relative abundance of the phylum Deinococcus-Thermus was 

found to be 1.72 % and in the total community, it was 1.3 %. Sediments of Lonar 1 in the 

total diversity shows highest relative abundance of the phylum Deinococcus-Thermus, 

3.00 % and lowest of 0.21 %, was observed in Lonar 1 sediments in the active community 

diversity.  The phylum Deinococcus-Thermus was mostly represented by Deinococcus 

(0.01 %) and Truepera (2.07 %) in the active community and by Truepera (2.79 %) in the 

total community. We were unable to detect any Deinococcus in total diversity. 

Deinococcus is a well known chemoorganotrophic Bacteria with one of the most radiation 

resistant cell (vegetative). Few species of the genus Deinococcus (Deinococcus enclensis 

sp. nov., Deinococcus radiopugnans) have been isolated from soil and marine sediments. 

However, none has been reported from any soda lake (Masters, Murray et al. 1991, 

Thorat, Mawlankar et al. 2015). New chemoorganotrophic aerobic alkaliphilic moderately 

thermophilic and moderately halophilic genus Truepera radiovictrix gen. nov., sp. nov., 

has been isolated from hot springs with the ability to grow in pH up to pH 11.2 

(Albuquerque, Simoes et al. 2005). They are also radiation resistant. 
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FIGURE 15: RELATIVE ABUNDANCES OF THE MOST ABUNDANT BACTERIAL GENERA IN LONAR 
SEDIMENTS. Sample numbers indicating the different sediment samples are given 
below the respective bars. Only the phylogenetic groups accounting for >1 % of all 
classified sequences are shown.  
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FIGURE 16: RELATIVE ABUNDANCES OF THE RARE BACTERIAL GENERA IN LONAR SEDIMENTS. Sample 
numbers indicating the different sediment samples are given below the respective 
bars. Only the phylogenetic groups accounting for <1 % of all classified sequences 
are shown.  
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4.2.3.3 RELATIVE COVERAGE OF THE TOTAL AND THE ACTIVE COMMUNITY 

 

Relative coverage of the total and the active community was analyzed using R version 

3.2.3 (R Core Team 2015) and gplots (v 2.17.0) (Gregory R. Warnes 2015), plotrix (v 3.6.1) 

(Lemon 2006) packages. Among Archaea at order level 80 % are shared between the total 

and the active community. The total and the active community both shows 10 % unique 

order or order-level taxa. At the genus level, the ubiquitously shared genera represent 

53.2 % in Archaea. The total diversity shows 42.6 % unique genera and in the active 

community 4.3 % unique genera were observed. Among Bacteria, we observed unique 

phylum or phylum-level taxa of 16.7 % and 2.1 % in the total and the active community 

diversity respectively. The total and the active community share 81.2 % phylum. At the 

genus level, they show 28 % common genera between the total and the active diversity. 

In the total and the active community diversity, we observed unique genera of 51.4 % and 

20.6 % respectively. All the mutual overlap of coverages are shown in Figure 17. It is safe 

to conclude that individual surveying effort (total or active) does have an effect on 

detection of taxa.  
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FIGURE 17: VENN DIAGRAM OF RELATIVE COVERAGE BETWEEN DIFFERENT SURVEYING EFFORTS. 
Upper left- Order level, Archaea, lower left- Genus level, Archaea, upper right- 
Phylum level, Bacteria, lower right- Genus level, Bacteria.  
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4.3 GENERAL ANALYSES OF THE ADDITIONAL SEQUENCING OF THE 
TOTAL DIVERSITY DATA FROM LONAR 

 

High-throughput pyrosequencing of 16S rRNA gene sequences provides more sequence 

data compared to traditional Sanger sequencing of 16S rRNA gene clone libraries for 

exploring phylogenetic diversity and community composition (Sogin, Morrison et al. 

2006). The error rate in terms of error per base in pyrosequencing of 16S rRNA genes is 

no greater than that of Sanger sequencing(Huse, Huber et al. 2007). The inherent rate of 

error of pyrosequencing may cause overestimation of the number of rare phylotypes. To 

minimize the overestimation of rare phylotypes, quality control filtering of the 

pyrosequencing-derived dataset was used. For clustering and diversity estimates genetic 

divergences of 3 % were used (Kunin, Engelbrektson et al. 2010). The analysis method is 

provided in 3.14.2. The pyrosequencing-based analysis of the V3-V5 region of the 16S 

rRNA genes resulted in the recovery of 61,362 high-quality sequences for Bacteria and 

37,968 for Archaea; across all 6 samples, 3 samples each for of Bacteria and Archaea. All 

the sequences were filtered for sequences with a read length between 300 to 1000 bp, 

the maximum number of allowed ambiguous bases limiting to 6 and a maximum number 

of allowed mismatches in primer limiting to 3. The average read length was 469.78 bp for 

Bacteria and 467.53 for Archaea. The number of sequences per sample for Bacteria 

ranged from 16,298 to 25,450 with an average of 20,454 and for Archaea, it ranges from 

7,754 to 16,084 with an average of 12,656. Alpha diversity was analyzed at the same level 

of surveying effort. For Bacteria,  it was 13,540 sequences per sample and for Archaea 

6,640 sequences per sample. Additionally, denoising of every sequence subset was 

performed to avoid overestimation of operational taxonomic units (OTUs) and diversity 

(Bragg, Stone et al. 2012). We were able to assign 51,853 sequences out of 61,362 to the 

domain Bacteria (84.5 %) and to classify all of these sequences below the domain level 

(84.5 %). In the case of Archaea, 33,294  sequences out of 37,968 were assigned to the 

domain Archaea (87.68 %), and we were able to classify 33,266 of these sequences below 

the domain level (87.61 %). 

All the OTUs were identified at genetic distances of 3 % by using 6,640 randomly selected 

and denoised sequences per sample for Archaea and 13,540 sequences for Bacteria. 
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These OTUs were used to determine rarefaction curves, richness, and diversity. At 3 % 

genetic distance the rarefaction curves attain a significant level of saturation Figure 18.  

 

 

FIGURE 18: RAREFACTION CURVES INDICATING THE OBSERVED NUMBER OF OPERATIONAL 
TAXONOMIC UNITS (OTUS) IN ADDITIONAL ASSESSMENT OF THE TOTAL DIVERSITY. Three 
different samples are indicated in red, green and black respectively for Lonar 1, Lonar 
2 and Lonar 3. The curves indicate gradual saturation in the number of OTUs with an 
increase in the number of sequences examined. On the left rarefaction curves for 
Archaea and on the right for Bacteria at 3 % genetic distances are shown. 

 

As per rarefaction analyses with the number of OTUs determined by Max. clusters (nmax) 

revealed that Archaea covered 86.48 % (± 1.86) of the estimated total diversity. In the 

case of Bacteria, the coverage was observed to be 81.24 % (± 0.89). Thus, we did not 

survey the full extent of taxonomic diversity at these genetic distances, but the surveying 

efforts assessed a substantial fraction of the prokaryotic diversity. Details of the Observed 

clusters, Max. clusters (nmax), Coverage (%), Shannon index (H’) and Chao1 of individual 

samples are given in Table 26. The coverage was more than the previous total diversity 

assessment, where we have surveyed both the total and the active community diversity 

using Illumina MiSeq. Due to the increased coverage of this additional total diversity 

assessment furnished several taxa at order or phylum and genus level, which was not 

detected by our previous total diversity assessment. The proportion of uncultured and 

cultured OTUs were observed to be 83.24 % and 16.75 % in Archaea. In the case of 

Bacteria, it was found to be 87.26 % and 12.73 % for uncultured and cultured OTUs 

respectively. 
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TABLE 26: GENERAL ANALYSIS OF THE ADDITIONAL TOTAL DIVERSITY SEQUENCING DATA 

Sample Observed 
clusters 

Max. 
clusters 
(nmax)  

Coverage 
( %)  

Shannon 
index 
(H’)  

Chao1 

Lonar 1 (Archaea)  235.6 274.33 85.88 5.34 286.06 

Lonar 2 (Archaea)  222 249.39 89.01 5.61 260.07 

Lonar 3 (Archaea)  225.7 266.91 84.55 4.91 272.35 

Mean 227.76 263.54 86.48 5.29 272.82 

SD 5.74 10.45 1.86 0.28 10.61 

CV 0.02 0.03 0.02 0.05 0.03 

Lonar 1 (Bacteria)  1081.9 1314.24 82.32 8.06 1288.14 

Lonar 2 (Bacteria)  1019 1253.70 81.27 7.64 1223.63 

Lonar 3 (Bacteria)  1114.9 1391.32 80.13 7.91 1357.78 

Mean 1071.93 1319.75 81.24 7.87 1289.85 

SD 39.78 56.31 0.89 0.17 54.77 

CV 0.03 0.04 0.01 0.02 0.04 

 

Due to the increased coverage of this additional total diversity assessment furnished 

several taxa at order (for Archaea) or phylum (for Bacteria) and genus level, which was 

not detected by our previous total diversity assessment. Details are provided in Table 37 

of supplements. 

This additional assessment of the total diversity furnished 2 archaeal order and 5 archaeal 

genera that has not been detected by our previous surveying effort. One of order is 

Marine Benthic Group E (0.22 %), and the other is Archaeoglobales (0.19 %). Also, 1 

bacterial phylum-level taxa, LCP-89 (0.01 %) has not been detected by our previous 

assessment. In the case of Bacteria, 44 genera or genera level taxa has been observed 

which was not detected by our previous total diversity assessment. 
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4.4 COMPARISON OF PRESENT AND PREVIOUS INVESTIGATIONS ON 
PROKARYOTIC DIVERSITY OF LONAR CRATER LAKE 

 

The present study contributed 52 archaeal genera and 530 bacterial; out of which 36 

(69.23 %) archaeal genera and 407 (76.79 %) bacterial genera has never been reported 

before from Lonar lake before. Abundances of cultivatable aerobic Bacteria, as described 

by Joshi in 2008, in Lonar lake water was found to be 102–104 CFU/ml and for sediment 

samples were found to be 102–106 CFU/g. Previous research on diversity and abundance 

of heterotrophic Bacteria isolated from the Lonar lake water and sediment showed most 

dominant phylum to be the Firmicutes, followed by Proteobacteria and 

Actinobacteria(Wani, Surakasi et al. 2006, Joshi, Kanekar et al. 2008, Antony, Kumaresan 

et al. 2013); which is also the case for this present study. Study of Lonar lake also resulted 

in recovery of 4 novel heterotrophs (Nitritalea halakaliphila, Indibacter alkaliphilus, 

Cecembia lonarensis and Georgenia satyanarayanai) and one new methylotroph 

(Methylophaga lonarensis) (Anil Kumar, Srinivas et al. 2010, Anil Kumar, Srinivas et al. 

2012, Antony, Doronina et al. 2012). DNA stable-isotope probing experiments by Antony 

in 2010 with Lonar lake sediments showed Methylomicrobium, Methylophaga and 

Bacillus spp to be the predominant the active methylotrophs utilizing methane, methanol, 

and methylamine, respectively(Antony, Kumaresan et al. 2010). The previous study of 

archaeal 16S rRNA genes recovered from Lonar lake sediment showed five crenarchaeotal 

phylotypes and eight euryarchaeotal phylotypes (Wani, Surakasi et al. 2006). However, 

we found in this survey that most of the OTUs belong to the phylum Euryarchaeota and 

Thaumarchaeota some OTUs affiliated to Korarchaeota was also noticed. Methanogenic 

species associated to Methanosarcina, Methanocalculus and Methanoculleus have been 

isolated from the Lonar lake sediments(Thakker and Ranade 2002, Surakasi, Wani et al. 

2007). 

Over the last several years different work, has been undertaken by the various researcher 

on prokaryotes of Lonar lake resulting in accumulation of hundreds of DNA sequence. We 

collected all available 16S rRNA gene sequences from NCBI (National Center for 

Biotechnology Information) Nucleotide database. All sequences with less than 300 bp in 

size were removed resulting in 1245 number of sequences. These sequences were 
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processed with the similar protocol (for details see Chapter 3.14) as the one used to 

process sequences derived from the present study to make the comparison as valid as 

possible, mainly to avoid issues regarding phylogeny and taxonomy. A total of 17 archaeal 

and 197 bacterial genera was found in this analysis in contrast with 530 and 52, respective, 

genera found in our study. Among these only 139 (23.88 %) genera was found in both of 

the groups (analyzed NCBI nucleotide database sequences and the present high-

throughput sequencing data) and 443 (76.11 %) genera were found to be unique to our 

present study. It is worth mentioning here that these 443 genera have never been 

reported from Lonar before. Relative coverage at genus level of all the previous surveying 

efforts and the surveying efforts of the present studies are analyzed using R version 3.2.3 

(R Core Team 2015) and gplots (v 2.17.0) (Gregory R. Warnes 2015), plotrix (v 3.6.1) 

(Lemon 2006) packages. Among Archaea both the surveying efforts share 30.2 % genera, 

and present investigation shows 67.9 % unique genera. In the case of Bacteria, at the 

genus level, the ubiquitously shared genera represent only 20.4 %, and the present 

investigation reveals 67.4 % unique genera. All the mutual overlaps of coverages are 

shown in Figure 19. Some of these genera represent a significant relative abundance of 

the prokaryotic community. 
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FIGURE 19: COMPARISON OF CURRENT AND PREVIOUS INVESTIGATIONS IN DETECTION GENERA. The 
figure shows mutual coverage of detected Genera in all previous investigations 
(Others) and current investigation (Present). The red circle represents this study and 
blue represents all other studies.   

 

As per this study these unique archaeal genera together represent the average relative 

abundance of 3.62 % (±0.51) and 21.54 % (±0.68) in the total and the active community 

respectively. Among these unique archaeal genera, the highest 3 abundant genera in the 

active community include Methanobrevibacter, Methanobacterium and 

Methanomassiliicoccus representing relative abundance of as high as 17.54 %, 2.32 % and 

2.15 % respectively. In the total diversity assessment, 3 most abundant of these unique 

genera are Halobiforma, Methanobacterium and Natronorubrum showing relative 

abundance as high as 0.96 %, 1.41 % and 1.24 % respectively. A rarity of available 

literature about the presence of Methanobrevibacter in soda lakes was noticed. Which is 

in accordance with the fact that there is a general lack of investigations on Archaea of 

soda lakes. They obtain energy by reducing CO2 to CH4, using H2 and sometimes formate 
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as the electron donor, but not acetate, methanol, methylamines(Leadbetter, Crosby et al. 

1998, Tokura, Tajima et al. 1999, Savant, Shouche et al. 2002, Ng, Kittelmann et al. 2015, 

Zhou, Zeitz et al. 2015). Methanobacterium are also hydrogen-utilizing methanogens, and 

they have been reported from soda lakes of Central Asia (Nolla-Ardevol, Strous et al. 

2012).  Methanomassiliicoccus are obligatory anaerobic methanogenic and moderately 

alkaliphilic (Dridi, Fardeau et al. 2012). The presence of the genus Methanomassiliicoccus 

has been reported from sediments of the estuary(Zhou, Chen et al. 2014). However, none 

has been reported from soda lakes. Members of aerobic extremely halophilic novel genus 

Halobiforma (Halobiforma haloterrestris gen. nov., sp. nov., and Halobiforma lacisalsi sp. 

nov.,) has been isolated from hypersaline soil, Aswan, Egypt and Salt Lake in Xinjiang, 

China (Hezayen, Tindall et al. 2002, Xu, Wu et al. 2005). Natronorubrum is strictly aerobic 

and haloalkaliphilic with optimum growth pH between 9.0 and 9.5. Two species, 

Natronorubrum bangense gen. nov., sp. nov., and Natronorubrum tibetense gen. nov., sp. 

nov, has been isolated from Tibetian soda lake. (Xu, Zhou et al. 1999). Some novel species 

have also been isolated from salt lakes of Xin-Jiang, China and soils of lake Texcoco, 

Mexico with most of them able to grow till pH 10 (Cui, Tohty et al. 2006, Cui, Tohty et al. 

2007, Ruiz-Romero, Valenzuela-Encinas et al. 2013). 

In the case of Bacteria these unique genera cumulatively contribute to 22.21 % (±4.69) 

and 17.75 % (±3.22) average relative abundance in the total and the active bacterial 

diversity respectively. Among these unique bacterial genera, highest 3 abundant genera 

in the total diversity were found to be Longispora, Hyphomicrobium and Brassicibacter 

representing as high as 8.23 %, 4.22 %, and 3.61 % respectively. In the active community 

diversity of Bacteria, 3 most abundant of these unique genera were Longispora, 

Pelomonas and Caulobacter showing relative abundance of 5.05 %, 2.35 % and 2.10 % 

respectively. Few members of aerobic genus Longispora has been isolated from soils. They 

are not reported from soda lakes, but they are known to be able to grow at pH 9 

(Matsumoto, Takahashi et al. 2003, Shiratori-Takano, Yamada et al. 2011). Members of 

Hyphomicrobium are able to grow at pH as high as pH 12. They are methylotrophic and 

has been isolated from alkaline soil of coal mine, China and gold mine debris, Portugal 

(Marco, Pacheco et al. 2004, Han, Chen et al. 2009). Novel species of obligate anaerobic 

chemoorganotrophic Brassicibacter (Brassicibacter thermophilus sp. nov.) has been 
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isolated from coastal marine sediment. Some members are also known to grow in pH of 

up to pH 9 (Fang, Zhang et al. 2012, Wang, Ji et al. 2015). Few nitrogen-fixing members of 

Pelomonas, Pelomonas aquatica sp. nov., and Pelomonas puraquae sp. nov., has been 

reported (Gomila, Bowien et al. 2007). However, they are not from soda lakes. Some 

aerobic chemoorganotrophic species of Caulobacter of are known to grow in pH up to pH 

9. They have been reported from a hypersaline soda lake of Kulunda Steppe, Altai, Russia 

(Tourova, Grechnikova et al. 2014). 

 

4.4.1 GENERA DETECTED IN LONAR CRATER SODA LAKE WITH SIGNIFICANCE IN 

BIOGEOCHEMICAL CYCLES 

 

In this survey of the prokaryotic diversity of the lake sediment from Lonar showed rich 

biodiversity despite its extreme physicochemical parameters. The presence of different 

ecologically appealing functional groups was found. Most of these genera had not been 

reported from Lonar before. A comprehensive list of these genera is provided in Table 27.  

 

TABLE 27: GENERA INVOLVED IN VARIOUS BIOGEOCHEMICAL CYCLE 

Methane cycle Nitrogen cycle Sulfur cycle 

Archaeal genera Archaeal genera Bacterial genera 

Candidatus 
Methanoperedens 

Candidatus Nitrosopumilus Candidatus Desulforudis 

Methanobacterium Candidatus Nitrososphaera Desulfatiglans 

Methanobrevibacter Bacterial genera Desulfatitalea 

Methanocalculus Ammonifex Desulfitibacter 

Methanocella Ammoniphilus Desulfitispora 

Methanococcoides Azoarcus Desulfobacca 

Methanocorpusculum Azospirillum Desulfobulbus 

Methanoculleus Bradyrhizobium Desulfococcus 

Methanogenium Candidatus 
Anammoximicrobium 

Desulfomonile 
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Methane cycle Nitrogen cycle Sulfur cycle 

Methanolinea Mesorhizobium Desulfonatronobacter 

Methanolobus Nitratireductor Desulfonatronospira 

Methanomassiliicoccus Nitriliruptor Desulfonatronum 

Methanosaeta Nitrincola Desulforhabdus 

Methanosarcina Nitrolancea Desulforhopalus 

Methanosphaera Nitrosococcus Desulfosarcina 

Methanospirillum Nitrospira Desulfosporosinus 

Bacterial genera Rhizobium Desulfotomaculum 

Methylobacterium  Desulfovibrio 

Methylobacterium  Desulfovirga 

Methylocaldum  Desulfuribacillus 

Methyloceanibacter  Desulfurispora 

Methylocella  Desulfurivibrio 

Methylohalomonas  Desulfuromonas 

Methylonatrum  Desulfuromusa 

Methylonatrum  Dethiobacter 

  Sulfitobacter 

  Thioalkalispira 

  Thioalkalivibrio 

  Thiogranum 

  Thiohalobacter 

  Thiohalocapsa 

  Thiohalomonas 

  Thiohalophilus 

  Thiohalospira 

  Thiomicrospira 

  Thioprofundum 

 

In our study, we have observed 24 genera which may have been involved in methane cycle 

both from Archaea and Bacteria. In Archaea, they contribute to an average of 39.24 % 

relative abundance in the active community and an average of 8.97 % in the total 

community. In the case of Bacteria,  they contribute to an average of 0.50 % relative 
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abundance in the active community and an average of 0.24 % in the total community. 

Most dominant genera involved in methane cycle was found to be Methanosaeta 

(Archaea) exhibiting relative abundance as high as 19.79 % in the active community of 

Lonar 3 sediments. Several methanogenic species of Methanosaeta has been isolated 

from rice paddies, natural wetlands, and lake sediments from around the world including 

marine and estuarine sediments as well as hypersaline soda lakes of Kulunda Steppe, Altai, 

Siberia (Mizukami, Takeda et al. 2006, Carbonero, Oakley et al. 2010, Mori, Iino et al. 2012, 

Sorokin, Abbas et al. 2015). 

A total of 16 genera were found which may have been involved in nitrogen cycle both 

from Archaea and Bacteria. Among Archaea, they contribute to an average of 0.46 % 

relative abundance in the active community and an average of 0.79 % in the total 

community. In the case of Bacteria,  they contribute to an average of 2.87 % relative 

abundance in the active community and an average of 1.95 % in the total community. 

Most dominant genera involved in nitrogen cycle was found to be Nitriliruptor (Bacteria) 

with the relative abundance of 2.97 %  in Lonar 2 sediments in the active community. 

Members of obligate aerobic nitrile degrading genus Nitriliruptor are aerobic alkaliphilic 

and moderately halotolerant. For energy and carbon source they use short-chain organic 

acids, amides, and aliphatic nitriles. Nitriliruptor alkaliphilus gen. nov., sp. nov., has been 

isolated from soda lakes which can grow in pH of up to pH 10.6 (Sorokin, van Pelt et al. 

2009). 

A significantly high diversity of bacterial genera, totaling 36, involved in the sulfur cycle 

were recorded. They represent an average relative abundance of 0.93 % relative 

abundance in the active community and an average of 10.84 % in the total community. 

The most dominant genus was found to be Dethiobacter representing relative abundance 

as high as 16.11 % in the total community from Lonar 1 sediments. In the case of the active 

community, it was found to be also Dethiobacter, from sediments of Lonar 1, with the 

relative abundance of 0.66 %. In reductive sulfur cycling genus Dethiobacter, H2 is used as 

the electron donor and thiosulfate, elemental sulfur and polysulfide are used as the 

electron acceptors. Obligate anaerobic chemolithoautotrophic Dethiobacter alkaliphilus 

gen. nov., sp. nov., has been isolated from soda lakes, northeast Mongolia, able to grow 

in pH between pH 8.5 and pH 10.3 (Sorokin, Tourova et al. 2008).  
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4.5 DIVERSITY OF FUNCTIONAL GENES WITH EMPHASIS ON 
ECOLOGICAL ROLE 

 

In the previous chapter several genera potentially involved in the nitrogen cycle, sulfur 

cycle and methane cycle were detected. This analysis is an attempt to detect functional 

genes involved in those geobiochemical cycles and also relative abundance of different 

genes of the different functional category. 

 

4.5.1 GENERAL ANALYSIS OF THE METAGENOME FROM THE SEDIMENTS OF 

LONAR LAKE  

 

A total of 32 million paired-end reads were obtained from the sequencing effort. These 

sequences were analyzed as described in the Chapter 3.14.3. Sequences were assembled 

with metaSPAdes v 3.7.0 resulting in to 588,668 contigs, total number of base 371 Mb 

(371,120,372 base). These contigs were analyzed with Prodigal v 2.6.0 for ORF prediction 

and protein translation resulting in to 790,245 proteins. All the sequences shorter than 

150 amino acids were discarded leaving 236,182 deduced protein sequences. These ORFs 

were annotated and analyzed with GhostKOALA, v 2.0. A total of 104,143 translations (41 

%) were successfully annotated using KEGG database.  

The metagenome shows the assignment of the taxonomic composition of the 

metagenome in accordance with our 16S rRNA gene based assessment of the sediments 

from Lonar crater lake (Figure 20). Most dominant phyla were Firmicutes, Actinobacteria, 

Proteobacteria, Chloroflexi and Deinococcus-Thermus in our 16S rRNA gene based 

assessment as described in 4.2.3. We observed that the metagenome also shows 

Firmicutes (30.65%), Proteobacteria (25.87%), Actinobacteria (8.78%), Chloroflexi (7.24%) 

and Deinococcus-Thermus (1.89%). 
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FIGURE 20: TAXONOMIC COMPOSITION OF THE METAGENOME. The figure shows relative 
abundance of the taxonomic groups in the Lonar metagenome. 

 

An overview of reconstruction of Genes or proteins (KEGG GENES), KO groups (KEGG 

ORTHOLOGY), KEGG modules, functional hierarchy (KEGG BRITE) and pathway maps 

(KEGG PATHWAY) are provided in Supplement-F: Diversity of Functional genes observed 

by direct metagenome analysis. 

 

4.5.1.1 RELATIVE ABUNDANCE OF FUNCTIONAL CATEGORY 

 

The detected ORFs were distributed in 17 (excluding Unclassified) distinct functional 

categories. Out of these categories most, abundant categories were Genetic Information 

Processing, Environmental Information Processing and Amino acid metabolism with the 

relative abundance of 16.72 %, 13.53 %, and 10.33 % respectively. One of the lowest 

abundant categories was found to be Metabolism of terpenoids and polyketides, 

Xenobiotics biodegradation & metabolism and Biosynthesis of other secondary 

metabolites with an abundance of 1.55 %, 1.49 %, and 1.17 % respectively. Also, it was 
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observed that abundance of category Unclassified was significant, 9.58 %. Details of the 

relative abundance of each category are provided in Figure 21.  

 

 

FIGURE 21: RELATIVE ABUNDANCE OF FUNCTIONAL CATEGORIES IN THE LONAR SEDIMENT. The pie 
diagram shows the relative abundance of detected and annotated ORFs in the Lonar 
sediment with respect to its functional category. 

 

 

4.5.2 BIOGEOCHEMICAL CYCLE AND METABOLISM OF METHANE, NITROGEN, 

AND SULFUR 

 

Methane, nitrogen, and sulfur metabolism contribute to 54.73 % of the general functional 

category Energy metabolism as per the abundance of the KEGG ortholog. This methane, 

nitrogen, and sulfur metabolism together contribute to 2.69 % of all the detected KEGG 

ortholog.  
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4.5.2.1 METHANE METABOLISM  

 

In the global carbon cycle methane metabolism is predominantly accomplished by 

methanotrophs and methanogens. Methane metabolism alone represents 30.52 % of 

Energy metabolism and 1.49 % of all metabolism in Lonar lake sediment metagenome. 9 

pathway modules have been detected in this study. Out of these 9, 3 were complete, and 

6 were partial. Details are provided in Table 28. Methane is consumed as the solitary 

carbon source by methanotrophs and methane is produced as a metabolic by-product by 

methanogens. Also, there are methylotrophs, able to acquire energy by oxidizing one-

carbon compounds, such as methane and methanol.  

 

TABLE 28: MODULE COVERAGE OF METHANE METABOLISM. 

Module No. / Description Path No. of 
KEGG 
Ortholog 

Coverage 

        M00357 Methanogenesis (acetate => methane)  map01200 
map00680  

678 2 blocks 
missing 

        M00356 Methanogenesis (methanol => methane)  map01200 
map00680  

347 2 blocks 
missing 

        M00358 Coenzyme M biosynthesis  map00680  28 1 block 
missing 

        M00608 2-Oxocarboxylic acid chain extension map01210 
map00680  

7 1 block 
missing 

        M00346 Formaldehyde assimilation (serine pathway)  map01200 
map00680  

351 2 blocks 
missing 

        M00345 Formaldehyde assimilation (ribulose 
monophosphate pathway)  

map01200 
map00680  

227 complete 

        M00344 Formaldehyde assimilation (xylulose 
monophosphate pathway)  

map01200 
map00680  

83 1 block 
missing 

        M00378 F420 biosynthesis  map00680  53 complete 

        M00422 Acetyl-CoA pathway map00680  83 complete 

 

Experimental data mapped on the reference pathway provides a comprehensive overall 

view of methane metabolism. Figure 22 and Figure 23 shows the pathway and coverage. 

There are different categories of methanogenic pathways observed in prokaryotes; CO2 

to methane, methanol to methane, and acetate to methane. Coenzyme M is used by 
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methanogens as the terminal methyl carrier in methanogenesis. Coenzyme M 

biosynthesis requires 4 enzymes. The presence of 3 out of these 4 enzymes for Coenzyme 

M biosynthesis were detected in Lonar sediment metagenome shown in the Figure 23 as 

enzyme commission (EC) number 4.4.1.19 (phosphosulfolactate synthase), 3.1.3.71 (2-

phosphosulfolactate phosphatase) and 4.1.1.79 (sulfopyruvate decarboxylase). 

CoenzymeB-CoenzymeM heterodisulfide reductase (Hdr) is required for the final reaction 

steps of the methanogenic pathway (Madadi-Kahkesh, Duin et al. 2001, Mander, Duin et 

al. 2002, Hedderich, Hamann et al. 2005). We were able to detect this Hdr in Lonar 

sediment metagenome, shown in the Figure 22 as EC number 1.8.98.1. One of the key 

enzymes of methanogenesis is methyl-coenzyme M reductase, which catalyzes the final 

step in methanogenesis (Rospert, Breitung et al. 1991, Hallam, Girguis et al. 2003, Dhillon, 

Lever et al. 2005, Ferry 2011, Zeleke, Lu et al. 2013). We have detected this methyl-

coenzyme M reductase in Lonar sediments, shown as E.C. 2.8.4.1 in the Figure 22. 

Formaldehyde is formed by oxidation of methane by methanotrophs and methylotrophs. 

This formaldehyde proceeds further by oxidation to CO2 for an energy source or 

assimilation for biosynthesis of organic matter. Different pathways convert formaldehyde 

to two-carbon or three-carbon compounds. These pathways are serine pathway and 

ribulose monophosphate pathway. The enzymes known as methane monooxygenases, 

oxidize methane to methanol (Nielsen, Gerdes et al. 1996, Hakemian and Rosenzweig 

2007, Sirajuddin and Rosenzweig 2015). In our sample, we were unable to detect the 

presence of methane monooxygenases as shown in Figure 22 as EC number 1.14.13.25 

and 1.14.18.3. However, methanol dehydrogenase (EC 1.1.2.7) was observed in Lonar 

sediment. Methanol dehydrogenase acts on methanol and other primary alcohols 

(including ethanol, duodecanol, chloroethanol, cinnamyl alcohol) resulting in the 

formation of formaldehyde (Patel and Felix 1976, Dumont and Murrell 2005). 
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FIGURE 22: METHANE METABOLISM (A). The figure shows experimental data (red) 
mapped on the reference pathway. 
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FIGURE 23: METHANE METABOLISM (B). The figure shows experimental data (red) 
mapped on the reference pathway. 

 

 

4.5.2.2 NITROGEN METABOLISM 

 

The multifaceted process of biological nitrogen cycle involves diverse reactions performed 

by prokaryotes. Nitrogen metabolism alone represents 10.26 % of Energy metabolism and 

0.50 % of all metabolism. 5 pathway modules have been detected in this study. Out of 

these 5, 3 were complete, and 2 were partial. Details are provided in Table 29. During the 
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process nitrogen changes its oxidation state varies between +5 in nitrate and -3 in 

ammonia. There are 4 reductions (Nitrogen fixation, Assimilatory nitrate reduction, 

Dissimilatory nitrate reduction, Denitrification) and 2 oxidations (Nitrification, Anaerobic 

ammonium oxidation) pathway involved in the nitrogen cycle.  

TABLE 29: MODULE COVERAGE OF NITROGEN METABOLISM. 

Module No. / Description Path No. of KEGG 
Ortholog 

Coverage 

        M00175 Nitrogen fixation map00910  2 1 block missing 

        M00531 Assimilatory nitrate reduction map00910  42 complete 

        M00530 Dissimilatory nitrate reduction map00910  184 complete 

        M00529 Denitrification map00910  177 complete 

        M00804 Complete nitrification map00910  63 2 blocks missing 

 

Experimental data mapped on the reference pathway provides a comprehensive overall 

view of nitrogen metabolism. Figure 24 and Figure 25 shows the pathway and coverage. 

Atmospheric molecular nitrogen is reduced to ammonia by nitrogen fixation. The reaction 

is catalyzed by the nitrogenase enzyme system (Kim and Rees 1994, Fani, Gallo et al. 2000, 

Henson, Watson et al. 2004). In our sample, we detected nitrogenase (genes coding for 

nitrogenase) as shown in Figure 24 as EC number 1.18.6.1 and in Figure 25 as NifDHK. 

Assimilatory nitrate reduction and dissimilatory nitrate reduction convert nitrate to 

ammonia. In the process of assimilatory nitrate reduction, nitrate reductase (EC 1.7.99.4) 

and ferredoxin nitrite reductase (EC 1.7.7.1) are important enzymes (Pino, Olmo-Mira et 

al. 2006, Martinez-Espinosa, Lledo et al. 2007, Imamura, Terashita et al. 2010). Both of 

them have been detected in our assessment as NasAB and NirA as shown in the Figure 25. 

Also in the Figure 24 , nitrate reductase is shown as EC number 1.7.99.4. The process of 

dissimilatory nitrate reduction requires nitrate reductase (EC 1.7.5.1 and EC 1.7.99.4,) 

which converts nitrate to nitrite and nitrite reductase (EC 1.7.1.15 and EC 1.7.2.2 ) which 

converts nitrite to ammonia(Bursakov, Carneiro et al. 1997, Smith, Nedwell et al. 2007, 

Tamegai, Ikeda et al. 2007, Dong, Smith et al. 2009, Kuroki, Igarashi et al. 2014, Mauffrey, 

Martineau et al. 2015). In the Lonar sediment, we observed all of these enzymes, shown 

in the Figure 25 as NarGHU, NapAB, NirBD and NrfAH. Denitrification reduces nitrate or 

nitrite by using them as a terminal electron acceptor and returning N2, NO and N2O to the 

atmosphere (Yan, Yang et al. 2005, Barth, Isabella et al. 2009, Torres, Rubia et al. 2011, 
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Torres, Rubia et al. 2014). We observed the presence of all the enzymes (genes coding for 

the enzymes) in sediments of Lonar meteorite crater soda lake shown in the Figure 25 as 

NarGHU, NapAB, NirK, NirS, NorBC and NosZ. During nitrification ammonia is the oxidized 

with oxygen into nitrite and nitrite into nitrate. In this process ammonia monooxygenase 

(EC 1.14.99.39), hydroxylamine dehydrogenase (EC 1.7.2.6) and nitrate reductase (EC 

1.7.99.4) catalyzes the reactions converting ammonia to hydroxylamine, hydroxylamine 

to Nitrite and finally nitrite to nitrate. However, we were able to detect only the nitrate 

reductase, shown in the Figure 25 as NxrAB. Oxidation of ammonium (NH4+) to N2 is 

performed by anaerobic ammonium oxidation (Anammox), where nitrite is used as an 

electron acceptor. The key enzyme of this process is hydrazine oxidoreductase (EC 

1.7.99.8) that converts hydrazine to nitrogen (Jetten, Strous et al. 1998, Schalk, de Vries 

et al. 2000, Jetten, Sliekers et al. 2003, Smith, Bohlke et al. 2015). In our sample, we were 

unable to detect the presence of hydrazine oxidoreductase. However, we detected nitrite 

reductase (EC 1.7.2.1) shown in the Figure 25 as NirK and NirS that converts nitrite to nitric 

oxide. This nitric oxide combined with ammonia forms hydrazine. 

 

 

 

FIGURE 24: NITROGEN METABOLISM (A). The figure shows experimental data (red) 
mapped on the reference pathway. 
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FIGURE 25: NITROGEN METABOLISM (B). The figure shows experimental data (red) 
mapped on the reference pathway. 

 

 

4.5.2.3 SULFUR METABOLISM 

 

In the global sulfur cycle, a significant role is played by organic sulfur compound 

metabolism. Sulfur metabolism alone represents 13.95 % of Energy metabolism and 0.68 

% of all metabolism in Lonar sediments. 3 pathway modules have been detected in this 

study. Out of these 3, 2 were complete, and 1 was partial. Details are provided in Table 

30. Different oxidation states of sulfur are present in the sulfur cycle, between +6 in 

sulfate and -2 in sulfide.  
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TABLE 30: MODULE COVERAGE OF SULFUR METABOLISM. 

Module No. / Description Path No. of 
KEGG 
Ortholog 

Coverage 

        M00176 Assimilatory sulfate reduction map00920 197 complete 

        M00596 Dissimilatory sulfate reduction map00920 79 complete 

        M00595 Thiosulfate oxidation by SOX complex map00920  20 1 block missing 

 

Experimental data mapped on the reference pathway provides a comprehensive overall 

view of nitrogen metabolism. Figure 26 and Figure 27  shows the pathway and coverage. 

Sulfate is reduced by assimilatory pathway and dissimilatory pathway (Peck 1961). During 

biosynthesis of sulfur-containing amino acids, sulfur compounds are reduced by 

assimilatory pathway (Cuhel, Taylor et al. 1981, Cuhel, Taylor et al. 1982, Daniels, Belay et 

al. 1986, Liu, Beer et al. 2012). In the case of the dissimilatory pathway, sulfate or sulfur is 

used as the terminal electron acceptor and inorganic sulfide is produced. The initial step 

of the assimilatory and dissimilatory pathway is the activation of sulfate that forms 

adenylyl-sulfate(APS) using ATP (Neumann, Wynen et al. 2000). Sulfate 

adenylyltransferase (EC 2.7.7.4) is the enzyme that activates sulfate and forms adenylyl-

sulfate(APS) was detected in our sample and shown in Figure 27 as Sat and CysND. This 

APS, by assimilatory pathway, is transformed to 3'-phospho-adenylyl-sulfate (PAPS) and 

further reduced to sulfite. This sulfite is again reduced to sulfide. Some of the other 

enzymes of assimilatory sulfate reduction were also observed. For example, adenylyl-

sulfate kinase (EC 2.7.1.25), phosphoadenylyl-sulfate reductase (EC 1.8.4.8) and 

assimilatory sulfite reductase (EC 1.8.1.2) were detected and shown in Figure 27 as CysC, 

CysH, CysJI and Sir. In the case of the dissimilatory pathway, APS is directly reduced to 

sulfite. This sulfite is again reduced to sulfide (Basen, Kruger et al. 2011, Bradley, Leavitt 

et al. 2011, Barton, Fardeau et al. 2014). We were able to detect all the enzymes involved 

in the process such as sulfate adenylyltransferase (EC 2.7.7.4), adenylyl-sulfate reductase 

(EC 1.8.99.2) and dissimilatory sulfite reductase (EC 1.8.99.5) in the Figure 27 as Sat, AprAB 

and DsrAB. The sulfur oxidation capacity of the SOX system (sulfur oxidation) is a well-

recognized sulfur oxidation pathway (Wodara, Kostka et al. 1994, Quentmeier, Hellwig et 

al. 2003, Ghosh and Dam 2009, Grimm, Franz et al. 2011, Yin, Zhang et al. 2014). All the 

enzymes of SOX system were detected in our sample as shown in the Figure 27. During 
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anoxygenic photosynthesis by green and purple sulfur bacteria, reduced sulfur 

compounds such as sulfide, elemental sulfur, and thiosulfate are used as the electron 

donor.  

 

 

 

FIGURE 26: SULFUR METABOLISM (A). The figure shows experimental data (red) mapped 
on the reference pathway. 
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FIGURE 27: SULFUR METABOLISM (B). The figure shows experimental data (red) 
mapped on the reference pathway. 
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4.6 COMMUNITY DYNAMICS DURING MICROENVIRONMENTAL PH 
HOMEOSTASIS 

 

4.6.1 SHIFT OF EXTRACELLULAR PH 

 

The measured pH of the surface water of Lonar Meteorite Crater Soda Lake ranged 

between pH 9.19 to pH 10.5, indicating pronounced seasonality (Badve, Kumaran et al. 

1993, Siddiqi 2007). pH of the sediment itself was recorded at pH 9.65, and in our sample 

we found it to be pH 9.9, but there is no record of seasonality or maximum and minimum 

pH variation (Kanekar, Sarnaik et al. 1998). The objective of this experiment was to 

investigate how this microbial community responds to nonoptimal microenvironmental 

pH. The prokaryotic cultures were set up using modified Horikoshi media as described in 

3.11. The pH was adjusted to pH 9 (suboptimal) and pH 10 (superoptimal) with sterile 

NaOH, respectively. 

All the measured pH values from both the superoptimal and suboptimal systems in 

triplicates at all the time points from t0 to t5 (day 0 to day 25 with a resolution of 5 days) 

were recorded (Figure 28). The modified Horikoshi medium contains glucose; as a result, 

we observed a rapid acidification in the beginning (Solé, Lorén et al. 2010). This 

phenomenon was observed till t1 in both the suboptimal and superoptimal systems. In 

superoptimal system pH dropped from pH 10.094 (± 0.049) to pH 8.193 (± 0.075) and in 

suboptimal system pH dropped from pH 9.054 (± 0.024) to pH 7.7 (± 0.087). From t2 to t5 

in both systems pH gradually increased to pH 9.253 (± 0.066) and pH 9.286 (± 0.053) in 

the superoptimal system and suboptimal system respectively. In this study, we found that 

the initial pH difference between both the systems of 1.04 unit of pH decreased to 0.032 

unit of pH. Which in terms of H+ ion concentration translates to more than 10 fold. 

However, the interesting fact is that in both systems, irrespective of initial pH, the final 

pH is approximately pH 9.3 (9.253 and 9.286), which is close to the reported pH of the 

sediment of pH 9.65.  
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FIGURE 28: CHANGE OF EXTRACELLULAR PH. The Figure Shows Changes in 
Microenvironmental pH with Time. The Blue line depicts the Changes of pH in the 
Superoptimal pH System and Red line depicts the Changes in the Suboptimal pH 
System. 

 

4.6.2 DIFFERENTIAL UTILIZATION OF DIFFERENT AMINO ACIDS IN SUBOPTIMAL 

AND SUPEROPTIMAL PH 

 

Amino acid content of the culture filtrate at t0 was considered as baseline and culture 

filtrate at t4 was compared in both the pH system to detect any changes. We observed 

that NH3 and hydroxyproline behave oppositely depending on the pH system they were 

exposed to. The amount of NH3 increases in the medium when exposed to suboptimal pH 

but decreases when exposed to superoptimal pH. Similarly, hydroxyproline also increases 

in suboptimal pH but increases in superoptimal pH. Details are shown in Figure 29. From 

these observations, it is evident that NH3 and hydroxyproline metabolism does have some 

effect on the pH dynamics. 
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FIGURE 29: CHANGES IN THE MICROENVIRONMENT IN RESPONSE TO SUBOPTIMAL OR SUPEROPTIMAL 
PH. Amino acids are given above the respective bars. pH 9 is considered as 
suboptimal, and pH is considered as superoptimal. 

 

 

4.6.3 PROKARYOTIC DIVERSITY, RICHNESS AND DISTRIBUTION OF TAXA 

 

Two pH system (suboptimal and superoptimal), 5 time points (t1 to t5) in triplicates and 

t0 (original sediment) resulted in a total of 33 samples. For details see 3.11. From these 

33 samples a total of 235,943 archaeal and 1,657,168 bacterial sequences were found. 

We observed an average coverage of 71.04 % (± 2.5) in Archaea with maximum and 

minimum coverage as 73.96 % and 65.7 %. For Bacteria, the average coverage was 85.56 

% (± 8.3) , maximum and minimum coverages were 95.13 % and 63.17 % (Table 31).   
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TABLE 31: GENERAL ANALYSIS OF SEQUENCE DATA. 

Archaea (1,038 Sequences / Sample)  

 chao1 Michaelis-
Menten 
Fit 

Observed 
OTUs 

Shannon 
Index 

Simpson 
Index 

Coverage 

Average 228.61
3 

155.892 110.444 4.836 0.936 71.04 % 

Maximum 287.66
7 

185.696 122 4.913 0.94 73.96 % 

Minimum 188.07
9 

138.719 102.6 4.763 0.934 65.70 % 

Standard 
Deviation 

34.039 14.178 6.201 0.055 0.001 2.506 

Bacteria (19,920 Sequences / Sample)  

 chao1 Michaelis-
Menten 
Fit 

Observed 
OTUs 

Shannon 
Index 

Simpson 
Index 

Coverage 

Average 381.25
3 

262.765 206.975 3.616 0.833 85.56 % 

Maximum 1584.9
1 

1058.121 668.4 4.205 0.914 95.13 % 

Minimum 146.34
1 

112.489 101 2.957 0.721 63.17 % 

Standard 
Deviation 

374.11
5 

245.141 146.073 0.359 0.054 8.3 

 

 

In the case of Archaea, 1,071 OTUs were unique. The most dominant genus was 

Methanocalculus representing 11.77 % of all sequences. In the case of Bacteria, in a total 

of 33 samples, 3,259 OTUs were unique. The most dominant genus was Exiguobacterium 

representing 20.4 % of all sequences. There is also an overall initial drop of total number 

of OTUs in both pH systems and increase at the end (Figure 30). 
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FIGURE 30: CHANGES IN THE NUMBER OF OTUS WITH TIME. The Figure shows an overall 
initial drop of the total number of OTUs and increase at the end in both Superoptimal 
and Suboptimal pH Systems.  

 

4.6.4 COMMUNITY DYNAMICS OF PROKARYOTES 

 

The overarching objective of this experiment was to investigate the community dynamics 

or changing biodiversity from a temporal perspective as the pH of the culture changes. 

Upon reviewing the relative abundance of all the samples at higher level taxa, we can see, 

there is a fundamental difference in how archaeal and bacterial community responds to 

exposure to superoptimal or suboptimal pH (Figure 31).  
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FIGURE 31: CHANGES IN THE PROKARYOTIC DIVERSITY WITH TIME. The figure shows changes in 
relative abundance of archaeal Phylum and bacterial Order in Suboptimal and 
Superoptimal pH in relation to time. 

 

Archaeal community changes significantly from t0 to t1 but at t5 in both pH systems they 

change gradually and exhibit relative abundance similar to t0 or original profile. The 

bacterial community also changes significantly from t0 to t1 but like the archaeal 
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community at t5 in both pH systems, they do not show any gradual overall changes in 

relative abundance to very close relative abundance values of t0 or original profile. It is 

noticed that after 25 days of incubation Clostridiales and Haloplasmatales were able to 

regain its relative abundance closer to its original values in the suboptimal pH system than 

in superoptimal pH system. 

Looking at the changes in relative abundances of different genera in details, we were able 

to identify several archaeal and bacterial genera which shows variation. For the purpose 

of emphasizing on the relative change in population sizes, relative abundance at t0 in the 

case of both pH systems was considered as 1 or 100 % and variations were plotted as log2 

values along the y-axis (Figure 32 to Figure 37). Among the Archaea the genera showing 

significant variations were Candidatus Nitrosopumilus, Natronorubrum, Methanolobus, 

Halorubrum, Haloterrigena, Halovenus and Halonotius. Among the bacterial genera 

showing significant variations were Alkalibacterium, Lysinibacillus, Natronincola, 

Anaerobacillus, Paenibacillus, Anaerovirgula, Desulfitispora, Salimesophilobacter and 

Clostridium sensu stricto 7.  

First of all, we must acknowledge that neither the culture medium nor the culture 

condition exactly represents the microenvironment of the sediment. Also, the duration of 

incubation might not be sufficient to let the community work on their microenvironment. 

However, nonetheless, it can be seen by looking at the dynamics of the above mentioned 

archaeal and bacterial genera that they can be grouped in to different types of dynamic 

groups. 

 

 

4.6.4.1 DYNAMICS OF ARCHAEAL GENERA:  

 

After scrutinizing the growth dynamics of archaeal genera, we were able to identify 7 

genera showing significant variation in relative abundance. We were able to group them 

into 2 groups based on their changing relative abundance pattern. 
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4.6.4.1.1 Dynamic Group Type-AI: 

 

Five of them namely Natronorubrum, Haloterrigena, Halovenus, Halorubrum and 

Candidatus Nitrosopumilus show a significant increase in relative abundance in between 

t2 and t4 compared to t0. Then again at t5, they tend to get closer to the original relative 

abundance of t0 (Figure 32).  

 

 

FIGURE 32: DYNAMIC GROUP TYPE-AI. The figures show changes in relative abundance 
in Suboptimal and Superoptimal pH in relation to time. 

 

Natronorubrum reaches its highest relative abundance of 33.333 % in the suboptimal pH 

system and 17.777 % in the superoptimal pH system at t4 and t3 respectively. Then 

decrease to 0.462 % and 0.374 % at t5 which is close to 0.264 % at t0. Natronorubrum 

have been found and isolated from various habitats like, a soda lake in Tibet , Aibi salt lake 

in Xin-Jiang (Xu, Zhou et al. 1999), China (Cui, Tohty et al. 2006), Aiding salt lake in Xin-

Jiang, China (Cui, Tohty et al. 2007), from sediment of the hypersaline Lake Chagannor in 
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Inner Mongolia (Gutierrez, Castillo et al. 2010) and former Lake Texcoco in Mexico (Ruiz-

Romero, Valenzuela-Encinas et al. 2013). Most, if not all, of them are known 

haloalkaliphiles showing growth at pH as high as 11 with optimal pH for most of them 

being between 8.5 to 9.5 and for some of them optimal NaCl concentration is 3.4 M. 

Haloterrigena has been reported from different so called extreme habitat, solar salterns 

of Cabo Rojo, Puerto Rico (Montalvo-Rodriguez, Lopez-Garriga et al. 2000); Aibi salt lake, 

Xin-Jiang, China (Xu, Liu et al. 2005); Fuente de Piedra salt lake, Spain (Romano, Poli et al. 

2007); salt lake Xilinhot in Inner Mongolia, China (Gutierrez, Castillo et al. 2008); saline-

alkaline soil from Daqing, Heilongjiang Province, China (Wang, Yang et al. 2010). Most of 

them are extremely halophilic and extremely alkaliphilic, able to grows at a salinity of 5 M 

NaCl (Gutierrez, Castillo et al. 2008) and pH 10.5 (Wang, Yang et al. 2010). 

Halovenus has been observed in the Aran-Bidgol salt lake, Iran (Makhdoumi-Kakhki, 

Amoozegar et al. 2012); Isla Bacuta saltern, Huelva, Spain (Infante-Dominguez, Corral et 

al. 2015). Most of them are extremely halophilic and alkaliphilic, able to grows at a salinity 

of 5.1 M NaCl (approximately, actual 30 % w/v) (Infante-Dominguez, Corral et al. 2015) 

and pH 9. 

Halorubrum has been observed in extremely diverse but polyextremophilic habitats, in 

Lake Tebenquiche, situated in the northern part of the Atacama Saltern, Chile (Lizama, 

Monteoliva-Sanchez et al. 2002); from Lake Zabuye, on the Tibetan Plateau; China (Fan, 

Xue et al. 2004); soda lake in Xinjiang, China (Feng, Zhou et al. 2005); Lake Ejinor, a saline 

lake in Inner Mongolia, China (Castillo, Gutierrez et al. 2006); Aibi salt lake and Aiding salt 

lake in Xin-Jiang, China (Cui, Tohty et al. 2006); Ayakekum salt lake on the Qinghai-Tibet 

Plateau (Xu, Wu et al. 2007); Laguna Antofalla in the Argentinian Puna (Burguener, 

Maldonado et al. 2014); hypersaline lake Aran-Bidgol in Iran (Corral, de la Haba et al. 

2016); water and silt sample from Burlinskoye Lake, Altai Krai, Russia (Rozanov, 

Bryanskaya et al. 2015); subterranean salt mine in Yunnan, China (Chen, Liu et al. 2015). 

Most of the members of Halorubram genus are extremely halophilic and often alkaliphilic 

growing at salinity as high as 5 M NaCl (Gutierrez, Castillo et al. 2011) and pH 10 (Hu, Pan 

et al. 2008). 

Candidatus Nitrosopumilus have been isolated and reported before from varies kind of 

environment; marine sediment from Svalbard, the Arctic Circle (Park, Kim et al. 2012), 
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estuary of San Francisco Bay (Mosier, Allen et al. 2012), pelagic redoxcline in the central 

Baltic Sea (Labrenz, Sintes et al. 2010) similar sequences has also been reported from 

underwater cave systems, beneath Australia’s vast, dry Nullarbor Plain (Tetu, Breakwell 

et al. 2013) and the Yellowstone geothermal complex, USA (Kan, Clingenpeel et al. 2011). 

Candidatus Nitrosopumilus is a known ammonia-oxidizing archaeon. 

 

4.6.4.1.2 Dynamic Group Type-AII: 

 

In two other genera, Methanolobus and Halonotius similar behavior was observed in the 

beginning as they show an increase in relative abundance in between t1 and t4. Later at 

t5, although they tend to decrease to the original relative abundance, the similarity is not 

as close as the first discussed group of archaeal genera. Most logically significant feature 

to group them apart is that Methanolobus and Halonotius do not behave similarly in 

suboptimal and superoptimal pH system. Unlike Type-AI, they show these dynamics only 

in one system (Figure 33).  

 

FIGURE 33: DYNAMIC GROUP TYPE-AII. The figures show changes in relative abundance 
in Suboptimal and Superoptimal pH in relation to time. 

 

Methanolobus show a highest relative abundance of 19.576 % in the suboptimal pH 

system at t4; regaining 0.727 % relative abundance at t5, which is similar to 0.286 % 
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relative abundance at t0. In the superoptimal pH system, there is no significant change in 

the relative abundance of  Methanolobus. Methanolobus has been isolated from 

estuarine sediments (Ticak, Hariraju et al. 2015), Tibetan plateau wetland (Chen, Feng et 

al. 2015), natural gas field in Japan (Mochimaru, Tamaki et al. 2009), from a coal seam 

located 926 m below the surface, Monroe, Louisiana, USA (Doerfert, Reichlen et al. 2009), 

from the Zoige wetland of the Tibetan plateau (Zhang, Jiang et al. 2008), from gas and oil 

wells in the Gulf of Mexico (Ni and Boone 1991). Most of them are moderately halophilic 

and extremely alkaliphilic methanogen, grows over a wide pH range, from 6.8 to 9.0. 

Halonotius has been isolated from a crystallizer pond of Cheetham Salt Works, Geelong, 

Victoria, Australia (Burns, Janssen et al. 2010); hypersaline Deep Lake, Antarctic (Burns, 

Camakaris Hm Fau - Janssen et al. 2004). These are extremely halophilic known to grow 

at near saturation concentration. 

 

4.6.4.2 DYNAMICS OF BACTERIAL GENERA: 

 

Regarding the complexity of the dynamics, bacterial genera show more variational pattern 

than in archaeal genera. However, they do not share as high total relative abundance as 

in archaeal genera. After scrutinizing their dynamics, we identified nine genera that show 

most variation in relative abundance. Generally speaking, they can be grouped into four 

groups based on their changing relative abundance pattern.  

 

4.6.4.2.1 Dynamic Group Type-BI: 

 

In the first group of genera namely Lysinibacillus and Desulfitispora, it is observed that like 

Type-AI their relative abundance increases in both suboptimal and superoptimal pH 

system at first. Also, at t5, it tends to decrease but does not successfully reaches the 

original relative abundance of t0 (Figure 34).  
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FIGURE 34: DYNAMIC GROUP TYPE-BI. The figures show changes in relative abundance 
in Suboptimal and Superoptimal pH in relation to time. 

 

Lysinibacillus show the highest increase in relative abundance of 8.255 % and 4.829 % in 

suboptimal and superoptimal pH system respectively at t3. At t5, it decreases to 2.598 % 

2.153 % in suboptimal and superoptimal pH system respectively but not very close to near 

zero value at t0. Lysinibacillus has been isolated from both extreme as well as not so 

extreme habitats. It is reported from saline-alkaline soil samples from Lingxian County, 

Shandong Province, China (Kong, Wang et al. 2014); agricultural soil (Ahmed, Yokota et al. 

2007, Liang, Lu et al. 2009); marine sediments (Zhao, Dong et al. 2016); arsenic 

contaminated lands (Rahman, Nahar et al. 2015); tropical soil, Malaysia (Chan, Chen et al. 

2015). Most of them are not extremophiles. However, some of the members of this genus 

are known haloalkaliphiles are growing at the alkaline condition as high as pH 10 (Zhao, 

Feng et al. 2015). 

Desulfitispora has been found in soda lakes in south-eastern Kulunda Steppe, Altai, Russia 

(Sorokin and Muyzer 2010). Only one species has been described so far, Desulfitispora 

alkaliphila. They are obligately alkaliphilic with a pH range for growth between 8.5 and 

10.3 and an optimum at pH 9.5. It is also reported to have some effect on the initial pH of 

the culture, but it has not been studied in details. 
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4.6.4.2.2 Dynamic Group Type-BII: 

 

In another group a general trend in the dynamics of Alkalibacterium, Natronincola, 

Anaerobacillus and Paenibacillus was observed. They exhibit an increase in one pH system 

and a decrease in the other pH system of relative abundance between t1 and t4 with a 

decrease or increase in relative abundance at t5 towards its original relative abundance 

or t0. However, never reaching as close as it was observed in the case of Archaea (Figure 

35). For example, Alkalibacterium, the increase of its highest relative abundance is seen 

in the superoptimal system, at t1 reaching as high as 42.182 %. Then at t5, they decrease 

to 3.698 %, but although the progression is towards the values observed at t0, it is not as 

close as we have seen in the case of archaeal genera. In the case of Paenibacillus, the 

observation is in the suboptimal pH system instead of the superoptimal pH system. It 

shows an increase in relative abundance at t1 to 0.202 % then a decrease to 0.075 % which 

is relatively closer to the t0 relative abundance value of 0.002 %.  
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FIGURE 35: DYNAMIC GROUP TYPE-BII. The figures show changes in relative abundance 
in Suboptimal and Superoptimal pH in relation to time. 

 

Alkalibacterium has been observed in different habitat, decaying marine algae, decaying 

seagrass, raw fish, salted fish and salted and fermented shrimp paste, temperate area of 

Japan and Thailand (Ishikawa, Tanasupawat et al. 2009); from wash-waters during the 

preparation of edible olives (Ntougias and Russell 2001); They are reported to grow at pH 

as high as 12. Paenibacillus has been isolated from various environments, from the 

alkaline soil, Korea (Yoon, Kang et al. 2005); desert sand sample, Gansu Province, China 

(Jeon, Lim et al. 2009); soil sample, Assam, India (Rai, Roy et al. 2010). Some of them are 

extremely haloalkaliphilic able to grow at pH as high as pH 12 (Lee, Lee et al. 2002) and at 

a salinity of up to 5M NaCl (Raddadi, Cherif et al. 2013). 
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Natronincola has been reported from bottom sediment of a coastal lagoon of the soda 

lake Verkhnee Beloe, Buryatia and Lake Khadyn, Tyva (Zhilina, Zavarzina et al. 2009); from 

soda deposits in Lake Magadi, Kenya (Zhilina, Detkova et al. 1998). Most of them if not all 

are obligate alkaliphiles growing at pH as high as 10.5. Anaerobacillus has been observed 

in various habitats, from soda lake Khadyn, Tuva upper Yenisey region, Russia (Zavarzina, 

Tourova et al. 2009); the arsenic contaminated environment in Bendigo, Victoria, Australia 

(Wang, Liu et al. 2015). Most of them are halotolerant or moderately halophilic, obligate 

or moderately alkaliphilic. 

Anaerobacillus has been observed in various habitats, from soda lake Khadyn, Tuva upper 

Yenisey region, Russia (Zavarzina, Tourova et al. 2009); the arsenic contaminated 

environment in Bendigo, Victoria, Australia (Wang, Liu et al. 2015). Most of them are 

halotolerant or moderately halophilic, obligate or moderately alkaliphilic. 

Paenibacillus has been isolated from various environments, from the alkaline soil, Korea 

(Yoon, Kang et al. 2005); desert sand sample, Gansu Province, China (Jeon, Lim et al. 

2009); soil sample, Assam, India (Rai, Roy et al. 2010). Some of them are extremely 

haloalkaliphilic able to grow at pH as high as pH 12 (Lee, Lee et al. 2002) and at a salinity 

of up to 5M NaCl (Raddadi, Cherif et al. 2013). 

 

4.6.4.2.3 Dynamic Group Type-BIII: 

 

The third group consists of Clostridium sensu stricto 7, Salimesophilobacter. They increase 

in their relative abundance in both the pH system with highest obtained relative 

abundance at a very early stage of the incubation and not at later stages and at t5 they 

are farther away from regaining their original relative abundance (Figure 36). For example 

Clostridium sensu stricto 7 reaches a relative abundance of 23.494 % at t1 in suboptimal 

pH and 0.009 % at t2 in the superoptimal pH system from near zero relative abundance 

at t0. At t5, they change to 0.688 % in suboptimal and near zero in the superoptimal pH 

system.  
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FIGURE 36: DYNAMIC GROUP TYPE-BIII. The figures show changes in relative abundance 
in Suboptimal and Superoptimal pH in relation to time. 

 

Clostridium sensu stricto 7  The species of Clostridium comprise a very heterogeneous 

assemblage of Bacteria that do not form a phylogenetically coherent group (Gupta and 

Gao 2009). They are same as the Group-C of Rainey at al. and mostly thermophiles 

(Rainey, Ward et al. 1993). In our study, we found Clostridium botulinum BKT015925, 

Clostridium sp. 17cr1, and some uncultured bacterium. Their known role in ecology is not 

as well studied or understood as its pathology. 

Salimesophilobacter has been isolated from the wastewater of a paper mill in Zhejiang, 

China (Zhang, Fang et al. 2013). So far only one species has been described, 

Salimesophilobacter vulgaris, they can grow at up to pH 9.5. 

 

 

4.6.4.2.4 Dynamic Group Type-BIV: 

 

Finally, there is Anaerovirgula, where there is an opposite trend at first (t1) in suboptimal 

and superoptimal pH. After that, it behaves similarly to Type-BI. Anaerovirgula reaches a 

relative abundance of 0.023 % at t4 in suboptimal pH and 0.022 % at t2 in the 



141 
 

superoptimal pH system from near zero, 0.003 % relative abundance at t0 (Figure 37). At 

t5, it changes to 0.011 % in suboptimal and near zero in the superoptimal pH system.  

 

FIGURE 37: DYNAMIC GROUP TYPE-BIV. The figures show changes in relative abundance 
in Suboptimal and Superoptimal pH in relation to time. 

 

Anaerovirgula has been reported from mud sediments of a soda lake, California, USA 

(Pikuta, Itoh et al. 2006). Only one species is described so far, Anaerovirgula multivorans, 

able to grow at pH 10. 

There are many reports and detailed investigations on how the external 

microenvironmental pH can change the community dynamics of microbial community as 

mentioned in the introduction section of this article. Even more, information is available 

on how single species of numerous genera are affected by its microenvironmental 

pH(Raevuori and Genigeorgis 1975, Russell and Dombrowski 1980, Chow and Russell 

1990, McKay and Peters 1995, Adamberg, Kask et al. 2003, LeBlanc, Garro et al. 2004, 

Oladipo, Adeleke et al. 2010, Mtimet, Guegan et al. 2016). Also, there is a tremendous 

amount of literature investigating the response of individual species on their mechanism 

of sensing and intracellular homeostasis(Krulwich, Guffanti et al. 1982, Nakamura, 

Kawasaki et al. 1992, Follmann, Becker et al. 2009, Quinn, Resch et al. 2012, Soemphol, 

Tatsuno et al. 2015). However, there is no significant accumulation of scientific literature 

on how the microbial community can change their external pH. However very few, 

although not regarding community but as a single species, literature is available on how 
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their growth effect the pH of their culture media or immediate external 

microenvironment. It is not bilateral, or acidification and alkalization simultaneously do 

not happen for one individual species. It is reported that some bacterial species can acidify 

their microenvironment by producing organic acids(Solé, Lorén et al. 2010). Alkalization 

of microenvironment is also well known(Anderson 1984, Athmann, Zeng et al. 2000, 

Shenderov 2013, Cepl, Blahuskova et al. 2014, Yang, Meng et al. 2015). However, 

irrespective of their initial external pH, a stabilization of pH, which is also as high as pH 

9.3, is not reported before. 

 

4.6.4.3 MICROENVIRONMENTAL PH HOMEOSTASIS AS A FUNCTION OF GROWTH 

 

We observed that there was a substantial variation in initial pH, pH of the culture filtrate, 

the number of OTUs and incubation duration. All these variables were analyzed with R 

version 3.2.3. In order to find out which variable predicts best the microenvironmental pH 

we performed a linear model fit and plotted as a partial residual plot (Figure 38) with the 

R package car version 2.1.0. A partial residual plot is a graphical method that shows the 

relationship between a given independent variable and the response variable assumed 

that other independent variables are also in the model.  From the Figure 38, we can see 

that incubation time (Time) have the greatest impact on microenvironmental pH change 

(Ini.pH) followed by the number of OTUs and lastly exposure to suboptimal or 

superoptimal pH with no significant impact. It can be explained as the duration of 

incubation, and associated community dynamics is the most probable cause of 

microenvironmental pH homeostasis.  
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FIGURE 38: PARTIAL-RESIDUAL PLOT SHOWING MICROENVIRONMENTAL PH WITH TIME, OTUS AND 
NONOPTIMAL INITIAL PH. 
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5 CONCLUSION AND FUTURE DIRECTION 
 

In this thesis, we have found that irrespective of the cataclysmic history of the origin and 

apparent hostile environmental conditions the prokaryotic community of this meteorite 

crater soda lake, Lonar, is significantly diverse. We observed Max. clusters (nmax), Shannon 

index (H’) and Chao1 as high as 2482.00, 8.06 and 3755.51 respectively. The hypersaline 

and hyperalkaline ecosystem flourishes with archaeal and bacterial life. We successfully 

surveyed the prokaryotic biodiversity at taxa level as low as species (genetic distance of 

3%) and discussed at taxa level as low as genus. We observed coverage (%) as high as 

93.96 % and 89.01 % in Bacteria and Archaea respectively. This investigation contributed 

52 archaeal genera and 530 bacterial genera; out of which 36 (69.23 %) archaeal genera 

and 407 (76.79 %) bacterial genera has never been reported from Lonar lake before. The 

difference between the total (DNA-based) diversity and the active (RNA-based) diversity 

is also noticed. In this investigation, we have observed 24, 16 and 36 genera which may 

have been involved in methane cycle, nitrogen cycle and sulfur cycle respectively. This 

methane, nitrogen, and sulfur metabolism together contribute to 2.69 % of all the 

detected KEGG ortholog in the metagenome. The microbial community of Lonar Crater 

Lake sediment, when exposed to the nonoptimal pH condition, can change their 

microenvironment to a more favorable (hypothetical optimal) one in terms of pH, 

simultaneously resist permanent change in its community structure. 6 different and 

distinct changing relative abundance patterns of groups of different genera (Dynamic 

Groups) was also observed. More detailed investigation is needed to confirm their limit 

and mechanism to modify their microenvironment.  

Most of the soda lakes, as described in Table 2, create a kind of clustering at the points 

where two or more continental plates meet. This distribution pattern has never been 

reported or observed before. Almost all of them are on or proximity to Rift, Step, Tectonic 

contact, and Thrust-fault.   
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FIGURE 39: FIGURE SHOWS THE GLOBAL DISTRIBUTION OF SODA LAKES AND THEIR LOCATION. 
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The map was prepared by overlaying the country boundaries and plate boundaries on a 

GIS platform. The data used is available from https://github.com/fraxen/tectonicplates. It 

was originally published in the paper titled, An updated digital model of plate boundaries 

in 2003 (Bird 2003). The map is prepared using UTM projection, and the scale of the map 

is 1: 75,000,000.  

From the map, it is comprehensible that there are 4 major clusters. One cluster was 

observed at the meeting point of Juan de Fuca plate, Pacific plate and North American 

plate. The second cluster is located near the contact of African plate and Eurasian plate. 

The third cluster is at the junction of Arabian plate and African plate. The fourth cluster is 

near the meeting point of Indian plate and Eurasian plate. It seems there is a possibility of 

some correlation of plate tectonic activity and soda lakes. One reasonable question to ask 

can be if the biodiversity of the soda lakes is also related to its origin in relation to plate 

tectonic activity. 

We at this moment propose a hypothesis that the origin or geological history of the soda 

lake plays a significant role in shaping the prokaryotic biodiversity of the soda lakes. Thus, 

these soda lakes can be categorized as follows- 

1. Geothermally Active Plate Tectonic Dependent Soda Lake (GAPDSL) - Lakes at the 

contact points of continental plates with current geothermal activity.  

2. Geothermally Inactive Plate Tectonic Dependent Soda Lake (GIPDSL) - Lakes at 

the contact points of continental plates without current geothermal activity/with 

past geothermal activity.  

3. Plate Tectonic Independent Soda Lake (PISL) - Lakes away from the contact points 

of continental plates. 

For a hypothesis to be valid, it has to be falsifiable. We did a trial analysis from available 

information to test the hypothesis. We made a comparison, of 10 soda lakes distributed 

through 4 continents from 40 Short Read Archive (Table 32) and present investigation on 

Lonar using QIIME in a similar way as described in Chapter 3.14.  
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TABLE 32: PROPOSED TYPES OF SODA LAKES WITH EXAMPLES. 

Type of 
Soda Lake 

Geothermally Inactive Plate 
Tectonic Dependent Soda Lake  

 (GIPDSL)  

Geothermally the 
active Plate 
Tectonic 
Dependent Soda 
Lake  

 (GAPDSL)  

Plate 
Tectonic 
Independent 
Soda Lake 
(PISL)  

Name and 
Location 

Abhijata, 
Arenguadi, 
Beseka, Chitu, 
Shalla- Africa 

Silber, Unterer, 
Zicklacke - 
Europe 

Heart Lake Geyser 
Basin - North 
America 

Lonar- Asia 

Data used 
(Short 
Read 
Archaive, 
NCBI)  

SRR618362 

SRR618380 

SRR618367 

SRR618375 

SRR618366 

SRR618354 

SRR618352 

SRR618356 

SRR618374 

SRR618360 

SRR618358 

SRR618370 

SRR618372 

SRR618376 

SRR618373 

SRR618378 

SRR618377 

SRR618353 

SRR618364 

SRR618382 

SRR618368 

SRR618379 

SRR1519340 

SRR1519333 

SRR1519332 

SRR1519335 

SRR1519337 

SRR1519338 

SRR1519334 

SRR1519336 

SRR1519339 

SRR900430 

SRR900451 

SRR900428 

SRR900433 

SRR900431 

SRR900426 

SRR900437 

SRR900457 

SRR900439 

Present 
investigation  
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QIIME analysis provided a relative abundance of different OTUs with assigned taxonomy. 

We selected only the genera from the three groups of Soda lakes (GAPDSL, GIPDSL, and 

PISL) and analyzed in R, as described in Chapter 4.2.3, to find out their mutual coverage 

in terms of presence or absence of the different genera. The analysis shows that 

irrespective of the fact that all of these lakes are Soda lakes they share a very small 

percentage of genera, 0.3 %, which is mutually universal. On the other hand, these groups 

mutually show a higher number of genera to be unique to each group, and the percentage 

is much greater if considered individually. GAPDSL, GIPDSL, and PISL show 2.1 %, 47.6 %, 

and 21.6 % genera respectively exclusive when considered mutually. Individually the 

percentage of exclusive genera for GAPDSL, GIPDSL and PISL shows 60.5 %, 62.4 %, and 

43.7 % Figure 40. 

 

FIGURE 40: MUTUAL AND EXCLUSIVE COVERAGE OF GENERA BY GROUPS OF SODA LAKES. 
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From the above observations, it seems possible that some taxa are exclusive to each soda 

lake group. If so then the plate tectonics do predict its prokaryotic diversity (to some 

extent), and the hypothesis on the types of soda lakes is true. Otherwise, there is no effect 

of the fact that in general most of the soda lakes happen to be near geologically the active 

zones, and the hypothesis is false. However, to reach any conclusion about it, there has 

to be more investigation in a uniform approach; as the nature of samples, 16S rRNA gene 

primers, sequencing platform or chemistry and coverage (surveying effort) were not 

identical. 

To progress our understanding of the alkaliphiles, of Lonar Meteorite Crater Soda Lake 

specifically and soda lakes in general, we can investigate two broad question. 

1. To investigate the mechanisms by which the microbial community of Lonar Crater 

Lake sediment can modulate their microenvironment to favorable (hypothetical 

optimal) one in terms of pH, concurrently repelling permanent alteration in its 

community structure. 

2. To investigate if prokaryotic biodiversity of the soda lakes and the proximity of the 

most of the soda lakes to the geologically the active have any correlation and if 

the grouping of soda lakes based on its proximity to plate tectonically the active 

area is reasonable. 
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